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Cette thése décrit une série dexpériences mettant en lumiere I'action en
retour de la mesure et la décohérence pour un systeme quantique ouvert
élémentaire, le qubit supraconducteur. Ces observations sont rendues possibles
grace au développement récent d'amplificateurs Josephson proches de la limite
quantique. Linformation extraite du systéme peut étre utilisée dans des boucles
de rétroaction quantique.

Pour stabiliser un état arbitraire prédéterminé du qubit, une mesure
projective est réalisée périodiquement et une boucle de rétroaction permet de
corriger les erreurs détectées.

En se substituant a I'environnement et en réalisant une mesure hétéro-
dyne continue de la fluorescence du qubit, nous reconstituons des trajectoires
quantiques individuelles lors de sa relaxation.

En conditionnant cette détection au résultat d'une mesure projective
postérieure, nous déterminons les weak values du signal de fluorescence.

En formant une boucle de rétroaction continue a partir de ce signal, nous
stabilisons également un état arbitraire du qubit.

Enfin, nous observons dans une derniére expérience la dynamique quan-
tique Zénon d'un mode micro-onde, induite par son couplage au qubit.

This thesis presents a series of experiments highlighting measurement
back action and decoherence in a basic open quantum system, the superconduc-
ting qubit. These observations are enabled by recent advances in amplification
close to the quantum limit using Josephson circuits. The information extracted
from the system can then be used as input in quantum feedback.

A stroboscopic projective readout is performed and a feedback loop is
used to correct for detected errors, thus stabilizing an arbitrary predetermined
state of the qubit.

When monitoring continuously the environment of the qubit by hetero-
dyne detection of its fluorescence, we reconstruct individual quantum trajecto-
ries during relaxation.

Conditioning this detection to the outcome of a following projective
measurement, we access the weak values of the fluorescence signal.

Included in a continuous feedback loop, this detection is also used to
stabilize an arbitrary state of the qubit.

Finally, a last experiment witnesses quantum Zeno dynamics of a reso-
nant microwave mode, entailed by its coupling to the qubit.
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ABSTRACT

In quantum physics, a measurement corresponds to the interaction of a system with an
observer, who is part of its environment. In general, this measurement disturbs the state
of the system in a an effect known as the quantum back action. This perturbation is
stochastic and cannot be predicted a priori. However, if the observer efficiently extracts
the information from the measurement, he can know about the back action a posteriori,
and thus keep track of the system’s evolution.

As flexible quantum machines, whose collective behavior follows the laws of quantum
physics, superconducting circuits are promising systems to investigate this subject. A
particular superconducting qubit, the 3D transmon, reaches coherence times over 100
microseconds. Combined with the development of near quantum limited parametric
amplifiers, also based on superconducting circuits, it is possible to coherently control,
measure and react on a 3D transmon before it loses its coherence.

In this thesis, we describe several experiments performing such tasks on a 3D transmon.
In particular, a stroboscopic and non demolition measurement with high fidelity in a
single shot is used in a feedback loop to stabilize an arbitrary state of the qubit.
In another experiment, the fluorescence signal of the qubit is used to track its state
during a single relaxation event. This signal is also used to implement continuous analog
feedback, again to stabilize an arbitrary state of the qubit. When averaged conditionally
to a final projective measurement outcome, the fluorescence signal displays weak values
out of range for unconditional average. Last, the qubit is used as an auxiliary system
to induce Zeno dynamics of an electromagnetic mode of a resonant cavity with which
it is coupled.
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INTRODUCTION

The state of a closed quantum system evolves in a deterministic and reversible manner.
Physically, this state constitutes a description of the statistics of outcomes for any fol-
lowing measurement on the system. In the Copenhagen interpretation, a measurement
irreversibly projects, or collapses, the wavefunction onto a particular set of states. A
paradox then arises when considering the measurement apparatus as part of the sys-
tem itself, so that the global evolution should be reversible. About these issues, Bell
and Nauenberg considered in 1966 that "the typical physicist feels that they have been
long answered, and that he will fully understand just how, if ever he can spare twenty
minutes to think about it." Yet, this paradox has since fueled heated debates, and
interpretations such as many worlds theory [1] or the more recent work on Quantum

Darwinism [2].

Already that same year, Daneri et al. [3, 4] argued that the measurement problem is
key to understanding the boundary between the classical and quantum worlds. Their
claim that one has to take into account the macroscopicity of the measurement appa-
ratus is the starting point of modern decoherence theory. Fully quantum behavior is
usually observed in systems containing only a small number of degrees of freedom. The
irreversible evolution during a measurement comes from the difficulty to monitor a
great number of auxiliary degrees of freedom, or ancillas, on which information on the
system has been imprinted through reversible evolution in interaction. Dismissing the
information thus carried away effectively induces a collapse toward the pointer states,
which are immune to distant operations on the ancillas!.

In the past decades, experiments using various systems have succeeded in decom-
posing the information extraction process [6, 7, 8], which now plays a central role in
attempts to axiomatize the quantum theory [9, 5]. As flexible quantum machines, whose
collective behavior follows the laws of quantum physics, superconducting circuits [10]
are promising systems to investigate further these issues. The rapid improvement of
their coherence times combined with efficient detectors now allows to recover a large
fraction of the information leaking out from such a system through controlled dissipa-
tion or dephasing channels [11], and to feed it back before it looses its coherence.

In this thesis, we describe experiments performed on a particular superconducting
circuit, the transmon [12]. When cooled down at dilution refrigerator base tempera-
ture, it behaves as an anharmonic resonator that, properly addressed with microwave
radiations, implements a controllable quantum bit. It is enclosed in an off-resonant 3
dimensional microwave cavity [13] probed via transmission lines, which provide a con-

more precisely the states that are stable under local operations that can be unmade by action on the
distant ancillas [5].



trolled and monitored environment for the qubit. In these conditions, the transmon
is a good test-bed to investigate quantum measurement and feedback. In particular,
the dynamics of an open quantum system is analyzed in the situation where the main
relaxation and dephasing channels are efficiently monitored. Combined with single-
shot readout schemes, we study the effect of post-selection on these dynamics. The
extracted information is also used via a feedback loops to stabilize arbitrary states and
to effectively engineer dissipation.

1.1 MONITORED QUBIT
1.1.1  Qubit coupled to an environment

The system used in the experiments described throughout this thesis follows the de-
sign of the 3D transmon [12, 13]. It consists in a Josephson junction (JJ) linking two
antennas. The JJ behaves as a non linear inductor and the antennas form a large
shunting capacitance so that this circuit is a weakly anharmonic oscillator. Its reso-
nance frequency is in the GHz range and it thus needs to be cooled down at dilution
refrigerator base temperature to be used for quantum information experiments. Via the
antennas, this circuit couples to the electromagnetic field so that it can be controlled
with microwave radiations. Its energy levels are not evenly spaced and, if addressing
only the transition at w, between the ground state |g) and the first excited state |e),
it forms an effective qubit whose hamiltonian reads H, = hw,%.

This circuit is fabricated on a sapphire chip, enclosed in a 3 dimensional resonant
cavity of high quality factor (see Fig. 10a). The electromagnetic modes of the cavity
can be modeled as harmonic oscillators. They are coupled to semi infinite transmission
lines via 2 ports, whose coupling rates can be tuned over a wide range. In the experi-
ment, one of the ports, called the output port has a much larger coupling rate than the
other one and than the cavity internal losses. Thus, the leak through this output port
dominates the damping of the cavity modes photons and the qubit radiative decay.
The cavity dimensions were chosen so that its first mode resonates at w, = wy + A,
above the qubit transition. Its hamiltonian reads H, = hwya'a, where a is the photon
annihilation operator.

The detuning A is far larger than the coupling between this mode and the qubit
via the antennas. It is thus in the dispersive regime and the total system hamiltonian

reads

H = hwyala + 'hwqo?z - hgazcﬁa , (1)

where we neglected the other modes of the cavity, farther detuned, and the higher order
terms in a'a. The dispersive shift Y makes the cavity resonance frequency dependent
of the qubit state. Probing the cavity in transmission then provides a measurement
scheme of the oz operator of the qubit. If the information carried by this transmitted
signal is dismissed, it leads to dephasing of the qubit at rate I'y, proportional to the



probe power [11].

Another role of the cavity is to control the electromagnetic environment of the
qubit [14]. In particular, the noise power at w, is filtered by the off resonant cavity.
As a result, the relaxation rate v of the qubit is considerably lowered, enabling us to
coherently manipulate it much faster than its lifetime. In the Purcell limit [15, 16, 17],
this rate is dominated by the relaxation into the modes of the output line, where fluo-
rescence can be detected.

Z A

e)

9)

Figure 1: Schematic representation of the qubit in the 3 dimensional cavity. The output port
couples with a high rate the first mode of the cavity to the output line. It is used
to channel the fluorescence field of the qubit (in green, at wy) and the transmitted
signal at cavity resonance frequency which comes from the input port (in purple, at
wy). If dismissed, the information and energy contained in these fields leaking out
of the system leads to relaxation at a rate 71 (collapse of the state toward |g)) and
dephasing with rate I'; that scales with the input field power (collapse of the state
on the z-axis of the Bloch sphere).

When considering the qubit as the system, and the cavity and the lines as its envi-
ronment, it implements a two-level system in presence of a dephasing and a relaxation
channel [18] as schematized on Fig. 1b. The system dynamics is governed by the Lind-
blad Master FEquation reading

dp 1 Ty
— = ——|H, Dlo_ —D 2
" 7 [Hqs p] +nPlo-]p+ Dozl | (2)
where the damping super-operator D is defined by
1 1
D[L]p = LpL' — 5LTLp — 5pLTL. (3)

These rates can be increased by other uncontrolled processes (non radiative decay,
pure dephasing). For a qubit at finite temperature, a third channel associated with



the o4 operator is opened. Note that in H,, the qubit frequency is now dressed by its
hybridization with the cavity mode and depends on its occupation (AC Stark shift).

These channels ultimately lead to the erasure of the information initially encoded by
the qubit and constitute a limit to quantum information processing. However, if one
monitors efficiently these channels, the qubit state can be followed in time so that its
purity remains of order 1.

1.1.2  Prediction from past measurements

The damping terms in Eq. (2) originate from the coupling between the qubit and the
bath of traveling modes in the probe lines?. Over a time-step longer than the bath auto-
correlation time, they can be modeled as a series of unread generalized measurements
involving these modes as ancillas [18]. In order to retrieve the information contained
in the ancillas, we detect the output field from the cavity.

We place on the output line a phase preserving parametric amplifier, the Josephson
Parametric Converter (JPC) [19, 20]. The JPC performs heterodyne detection of the
field on a finite amplification bandwidth. It has been showed to work near the quantum
limit, so that if the signal that we want to detect is properly collected and transmitted
to its input, the detection efficiency n is of order 1. The experiments described in this
thesis use two types of detection, depending on the measured frequency range.

When the JPC is tuned at the cavity frequency, it is used to detect the transmitted
field at w,, shifted by the dispersive interaction with the qubit (see Eq. (1)). The
two measured signals, called the measurement records, integrated over a time step dt,
read [21]

Al = dodt 4+ AWy
dQ = VTnmlog)dt+dW, o

where i is a constant depending on the system parameters that will be detailed in

(4)

Sec. 3.2.3, and Wy 1 are independent Wiener processes, or idealized random walks,
verifying

dWw; = 0

, (5)
aw? = dt

The measurement is thus noisy when integrated on a finite time step. This noise ulti-
mately originates from the quantum fluctuations of the detected field. T',, is the total
measurement rate. It defines the time scale on which the measurement can discriminate
between the two states of the qubit®. One can show that T, = nl'y [11], so that for
perfect measurement efficiency, no information is lost and the observer acquires infor-
mation as fast as the dephasing induced by the measurement. For finite efficiency, one

In the case of the dephasing term, the coupling is mediated by the cavity mode
With this convention, the same measurement rate requires to integrate the signal twice longer to
discriminate between |g) and |e) compared to homodyne detection.



needs to integrate further the readout signal after that the qubit has been projected

by measurement in order to get a good readout fidelity in a single shot.

a)

I

Figure 2: a) Detection of the field associated with dispersive measurement (in purple) or the

fluorescence field (in green). The upper inset shows a measurement record associated
with the first detection, on a time scale larger than 7T} and for a large measurement
rate. It reveals quantum jumps [22]. The second, from a different experiment, shows
a quantum trajectory associated with the fluorescence detection when no dispersive
measurement takes place. A quantum filter F is used to propagate the density ma-
trix from ¢ to ¢t + dt knowing dI; and d@;. The qubit state diffuses continuously
toward |g). b) Density of probability for I(Timeas) and Q(Tineas) extracted from 106
measurement outcomes when the qubit is prepared in states |g) or |e) with equal
probability. The halved probability density corresponding to the preparation of |g)
only (resp. |e)) is plotted in blue (red) together with the marginals along the I and
@ axes. The distributions are well separated, indicating that when integrating the
dispersive measurement record over a sufficiently long time Tjeas < 11, One gets a
high fidelity, non-destructive, single shot readout of the qubit.

A particular quantum filter, the Stochastic Master Equation (SME) [23, 24], is used
to translate the measurement records in quantum trajectories. These are the states

occupied by the qubit in time during the measurement. If one collects efficiently the

information (n ~ 1), these states can be deduced accurately and their purity remains of

order 1 during the collapse on |g) or |e). The measurement record presented on Fig. 2a

(purple inset) would lead to a trajectory displaying abrupt variations or jumps [22]

between |g) and |e). This limit is reached when the integration time step d¢ is much

larger than the measurement time 1/I,,.



A second measurement scheme used in these experiments is performed by heterodyne
detection of the fluorescence field emitted by the qubit when relaxing into the output
line [25, 26]. The JPC is then tuned to the qubit resonance frequency. In that case,
the measurement records read [24]

{d[ = \/\/?<ax>dt+qu | “
2

dQ = /T{oy)dt+dW;q

so that it can be understood as a measurement of the hermitian and anti-hermitian
parts of the o_ operator of the qubit. This measurement is weak on a timescale shorter
than 77. Therefore it is not QND in the sense that it eventually collapses the qubit
state to |g). The typical trajectory displayed on Fig. 2a (green inset) corresponds to a
diffusion of this state from the initial preparation in |e) at t = 0, to |g) at t = 2.5 1.

The SME allows us to predict the state of the qubit at time ¢ using the measurement

records from 0 to t. We now show how to infer this state a posteriori, conditioned on
the outcome of a measurement taking place after t.

1.1.3  Influence of post-selection

d
S il ) S —-in.p
+> DlLlp +> DlLilp
p(0) ey () E(l) B(T)
(') {f T time>
preparation L weak t post-selection
Tr[p(t) E(1)Lo]
Lo)w =
ol = Tl

Figure 3: The density matrix p and effect matrix E are propagated respectively forward and
backward from initial state (resp. final post selection) toward ¢. They allow to predict
the average value of the detected signal at time ¢ for the post-selected experiments.

In 1964, Aharonov et al. noticed that post-selection on the final state of a closed
quantum system played a time symmetric role to preparation [27]. This paved the way
for the still controversial weak value physics [28]. Recently, this theoretical framework
was extended to open quantum systems [29, 30, 31]. The information of the final
measurement at time 7' is encoded in an effect matriz E(T), similar to the density
matrix. This matrix is then propagated backward in time until a given time ¢, taking



into account the damping by a set of jump operators {L;}, as depicted on Fig. 3. In
this expression, the modified damping super operator D reads

3 1
DI|L|E = —L'EL + 5(LT LE+FEL'L). (7)

It is similar to the Lindblad master equation, but does not lead to a time-symmetric
evolution for E compared to the one for p if L # L, which is the case for a relaxation
process.

Both p and F are used to make predictions on post-selected sub ensembles of exper-
iments. The conditional average value of a weak measurement at time ¢, such as the
continuous monitoring of a jump operator Ly over a small integration time step, reads
(Lo)w = Tr[prLo| where

pE

(8)

Figure 4: a)The resonance fluorescence of a driven qubit is detected on the output line (in
green) from 0 to T' = 2.5us (T < T1). The traces are averaged conditionally to a final
projective measurement outcome using the dispersive shift of the cavity (in purple).
For a qubit driven around oy, only the I measurement record contains information
about the qubit dynamics on average. b) The conditional fluorescence signal (to the
left) displays features from both preparation and post-selection. It can take much
larger values than the unconditionally averaged signal (to the right). Lines surround
regions with weak values beyond the accessible range for unconditional average.

In order to test this theory on the monitored relaxation channel (Lo = /710-),
we modify the detection setup schematized on Fig. 2a as represented on Fig. 4a. The
qubit is driven resonantly so that it undergoes Rabi oscillations from time 0 to T



(blue arrows). At T', it is measured projectively along o, using the dispersive shift of
the cavity resonance (high power readout method, described in Sec. 3.3). On a large
number of experiments, the measurement records from the fluorescence detection are
then averaged according to this final measurement outcome. For a qubit initially in |e)
and when varying the Rabi pulsation Q)p, the probability to post select the qubit, say,
in |g), becomes very low when QrT = 2nm. Such events would not be possible if not
for the decoherence induced by the relaxation channel, which is the only decoherence
channel in the present case. As a result, the average fluorescence signal conditioned
on this post-selection then takes large values (dark colors in the right panel of Fig. 4b
compared to the unconditioned case on the left), in quantitative agreement with the
predicted weak value.

Now that both the dispersive and fluorescence detections have been characterized,
we describe in the next section how they were used in feedback loops to stabilize
an arbitrary state of the qubit. We compare these feedback protocols to reservoir
engineering and to coherent engineering of the system energy levels.

1.2 QUANTUM FEEDBACK

Classically, feedback loops are used indifferently either to prepare a system in a target
state starting from an unknown state, or to protect an unknown initial state from ex-
ternal noise. In the quantum domain, one might distinguish these two situations when
the state to protect should not be measured in order to preserve the information that
it carries.

In the first situation, it is necessary to evacuate the entropy from the initial unknown
state, so that the loop includes either a measurement, implementing measurement based
feedback [33, 24] (MBF), or a specifically designed dissipative channel, which defines
reservoir engineering [34], also called autonomous feedback. We present two experiments
using MBF loops to stabilize arbitrary states (even dynamic ones), and compare them
to reservoir engineering techniques. Their performances are similar when using efficient
detectors and we show that continuous MBF allows to effectively engineer dissipation.

On the other hand, protecting an unknown state can be done coherently*. We present
an experiment witnessing Zeno dynamics[35, 36, 37, 38, 39] of a microwave mode, en-
tailed by coherent control only. Seen as coherent feedback inhibiting departure from
a stabilized subspace, it only protects from spurious transitions induced by coherent
processes. However, since decoherence and relaxation can ultimately be described as
coherent evolution with ancillary modes, inhibiting coherently these interactions ef-
fectively decreases the rate of induced errors. A trivial example is the use of an off
resonant cavity to control the electromagnetic environment of the qubit. Another de-
vice commonly used is the so called Purcell filter, which can lower considerably the
relaxation rate into the probe lines [16, 17].

We do not consider here correcting codes that make use of a larger Hilbert space to protect a logical
qubit by careful measurement or dissipation, stabilizing a coding subspace.



1.2.1  Measurement-based feedback and reservoir engineering
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Figure 5: a) Stroboscopic MBF using a pulsed dispersive measurement (purple waves). The
controller (in red) integrates the signal on () and instructs the actuator (in brown)
to trigger a fast correcting m-pulse (large green wave) if the qubit is in |e). This
pulse is combined with the readout signals and, in the present case, a weak constant
drive to induce Rabi oscillations. More complex operations by the FPGA could allow
for more elaborate bayesian feedback schemes. b) Bloch sphere representation of
stabilized Rabi oscillations from the setup described in a. Time is encoded in color
fromt =0 (inred) to t ~ 4 77 (in blue). Actuations "A" correspond to the application
of the correcting pulse and compensate for the purity loss during each oscillation. c)
Continuous markovian feedback using the fluorescence field (in green) detection. The
controls u;, vy and wy are proportional to the current values dI; and d@; of the
records. The control hamiltonian is Heont = uiox + veoy + wioyz. Rotations around
ox,y are implemented by drives at w, (in green) and around oz by dressing the
qubit frequency with a field near w, (purple). d) Stabilized states represented as red
dots in the (y,z) plane of the Bloch sphere, in the stationary state of the feedback
schematized in c.

A measurement based feedback loop can be decomposed in three parts. A sensor
extracts efficiently information from the system. It transmits it to a controller that
"decides" of the strategy to adopt in order to steer the system toward the target state.
This decision is communicated classically to an actuator that applies coherent drives
on the system accordingly. Realizations of MBF were recently performed using Ryd-



berg atoms [40, 41] and superconducting circuits [42].

First, we implement stroboscopic feedback using the dispersive measurement. It is
schematized on Fig. Ha. At discrete times, a readout pulse at the cavity resonance fre-
quency is sent through the input line. The transmitted field is amplified by a JPC (the
sensor) and the resulting signal is digitized at room temperature by an FPGA board
(the controller). The board integrates the signal so as to determine the state of the
qubit in a single-shot with high fidelity. If it is detected in |e), it sets a control bit to
1. This bit is transferred on to the board’s DAC (the actuator) that generates a pulse
at qubit frequency so as to perform a 7 rotation of the state if the bit is 1.

With this strategy, we can reset the qubit efficiently as was done in [42], which imple-
ments the removal of entropy needed as quantum information protocols first step [43].
Moreover, by applying measurement pulses at predefined times only, which are when
the qubit is expected to be in the ground state, we can stabilize a non trivial trajectory
such as Rabi or Ramsey oscillations (see Fig. 5b).

This measurement based feedback loop is similar to the discrete time version of an
autonomous scheme previously realized in [44] and that we reproduced in the resolved
photon number regime [45] (see Fig. 52). Making use of a dispersive shift larger than
the cavity linewidth, we first drive the cavity at w, 4 = w, + x/2 so that a large coher-
ent state |a) develops only if the qubit is in |g). A 7 pulse on the qubit is then applied
conditioned on the cavity being in the vacuum. This sequence effectively swaps the
qubit state with an effective qubit formed by the orthogonal cavity states |0) and |c).
The performances are similar to the measurement based scheme for high efficiency de-
tection. Indeed, both protocols are limited by thermal excitations during the necessary
delay before using the qubit for other operations in order for the cavity field to leak
out. The minimal amplitude of this field is in both cases set by a distinguishability
criterion between |0) and |a). Moreover, the autonomous scheme relies on having a
cold ancilla (the cavity in the present case) to swap states with the qubit. This ancilla
needs to be reset or replaced to repeat the scheme, requiring a cold bath to dissipate
into. The complete loop is thus not coherent, and the ancilla effectively plays the same
role as a bit of memory in the FPGA board.

A second experiment uses the fluorescence field measurement. The feedback is contin-
uous and markovian, in the sense that the controller does not have a memory and sets
the control drives as a function of the current values of the detected signal only. One
can show that [23, 24, 46], when considering a perfect detection of a single jump op-
erator L and a simple proportional controller, the feedback loop results in an effective
master equation for the qubit in which L has been modified as

L+« L—iHy,, 9)

where H, is an arbitrary drive hamiltonian®. In the case of the heterodyne detec-
tion used in this experiment, which corresponds to the simultaneous detection of
L, = \/7;10_ and Lo = i\/%Ta_, we can still define a proportional controller that
stabilizes an arbitrary state of the Bloch sphere for perfect detection efficiency. With

In general, a constant drift in the qubit hamiltonian also needs to be compensated.
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the limited efficiency of our setup, we stabilize the states with finite purity as repre-
sented on Fig. 5d.

Note that by canceling the imaginary part of a jump operator with the right drive
hamiltonian, it is possible to effectively transform a dissipation process into a QND con-

tinuous measurement. Conversely, when considering, for example, the case L = %az

as for a dispersive measurement with homodyne detection, and choosing H; = \/l;zay,
one could stabilize the state | + z), on the equator of the Bloch sphere. Thus, efficient
detection, combined with continuous markovian measurement based feedback, allows
to engineer dissipation just as autonomous techniques [47]. Such a scheme was first
used by Vijay et al. to stabilize Rabi oscillations [48].

1.2.2  Quantum Zeno Dynamics

A last experiment led us to the observation of Quantum Zeno Dynamics (QZD) of
the microwave mode of a cavity. This experiment demonstrates a similar effect for
light than was previously done for atomic levels [49, 50]. In its original definition, the
quantum Zeno effect corresponds to the inhibition of coherent transitions from, or to,
the pointer states of a strong measurement or dissipative process. Instead of freezing
the dynamics, one can restrict it to a given subspace by choosing a measurement with
degenerate eigenvalues.

Similar behavior can also be induced by rapid unitary "kicks" [37, 38], leaving the
subspace to protect unaffected. It can be understood considering a model for the origi-
nal Zeno measurement as a series of coherent interactions with ancillary systems. When
the interactions are strong enough, departure from the subspace is perfectly suppressed,
so that the outcome of the detector is always the same. Therefore, the ancillas are all
left in the same state after the interaction and they do not need to be reset. One can
then enforce Zeno dynamics by performing repeatedly unitary operations controlling
the state of an auxiliary degree of freedom. This amounts to re-using the same ancilla,
at the condition that the unitary evolutions are fast enough to effectively randomize
the phase of coherences created with the system. In that sense, QZD is a coherent
feedback, which engineers the energy level landscape of a system or its environment
by coherent coupling with an ancillary degree of freedom.

In the experiment, a qubit in the resolved photon number regime [45] plays the role
of the ancillary system. A strong Rabi drive is applied on its transition conditioned
on the cavity mode hosting N photons (N = 3 on Fig. 6a). The drive hybridizes the
levels |N,g) and |N,e) that repel each other. The level |N) is then moved out from
the harmonic ladder of the cavity mode. When starting in the vacuum and applying
a coherent drive at w,, the generated state cannot contain N photons so that it is
restricted to IV levels.

11



Figure 6: a) Combined energy level diagram for the qubit and cavity. By applying a strong Rabi
drive on the [3,¢g) <> |3,¢) transition, the |2) <> |3) transition of the cavity becomes
off resonant at w, 4. b) Oscillations of the Fock state occupation when driving the
cavity mode from the vacuum and blocking |3). ¢) Wigner tomography of the field at
half period of oscillation (dashed line in b). The quasi-probability density is confined
within a circular barrier of radius /3 (white circle). Negativities (in blue) reveal a
non classical state.

When measuring the Fock state occupation probabilities as a function of time for this
effective driven N-level system, characteristic oscillations appear (see Fig. 6b). Quan-
tum coherence of the field is revealed by direct Wigner tomography [51] (see Fig. 6c¢).
At half-period of the oscillations, fringes with negativities can be observed. This non
classical state is similar to a "Schrodinger cat state", confined in phase space within a
circular barrier of radius v/N.

This thesis is organized as follows. Chapters 1 and 2 describe the formalism adopted
in this work, the system and its decoherence channels, and the two types of detections
used in the experiments. Chapter 3 focusses on a weak value experiment and describes
the framework to combine information from past and future measurements. Chapters
4 and 5 report experiments implementing measurement based feedback and reservoir
engineering. Chapter 6 describes the Zeno dynamics of the microwave mode. Chapter
7 gives a brief overview of experimental techniques used throughout the experiments.
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Part I

OPEN SYSTEM AND QUANTUM TRAJECTORIES






OPEN QUBIT

2.1 QUANTUM BIT OF INFORMATION : THE SIMPLEST QUANTUM SYSTEM

We will define here the notations used throughout this thesis, describe the representa-
tions for a qubit state and formally derive a Master Equation as a general framework
to model open qubit dynamics.

2.1.1 TLS representation

A two level system, which will be referred to in this thesis as a quantum bit (qubit)
for it can be used to carry one bit of information, has exactly 2 steady states. If non
degenerate, they are called ground |g) and excited |e) by order of energy. If the qubit
state is perfectly known, it is in a pure state and can be written alg) + fle) with «
and B some complex coefficients such that /[a[? +[3]2 = 1. In order to describe
the qubit state even in the case of imperfect knowledge, we use the density matrix
formalism. For a pure state [¢), the density matrix is simply p = [¢)(¢)]|. With the
above decomposition on the eigenbasis {|e), |¢g)}, the density matrix then reads

2 *
()
« «

When considering a statistical mixture of states [);), the density matrix becomes
p = Y pilti)(¢i| where {p;} is a set of (classical) probabilities of sum 1. Since p is

(2
hermitian, positive and of trace 1, it can be decomposed on the Pauli matrice basis

1 . 0 1 0 —2 1 0
p==1+4z0, +yo,+z0,) with o, = , Oy = L0, = )

2 10 i 0 0 —1
(11)

A convenient graphical representation for these density matrices uses the so-called
Bloch sphere, which is a ball of radius 1. A state is then represented by a vector of
coordinates {z,y, z} (Fig. 7). A density matrix p being hermitian, it can be diagonalized
on an orthonormal basis. This means that there exist 2 orthogonal states |[+) and |—)
such that

p=p|H){++ 0 =p) =) (12)

where p € [0,1] since p is positive and of trace 1. This decomposition is in fact unique,
except for the maximally entropic state p = %]l. Indeed, as orthogonal pure states,
|+)(+| and |—)(—| are represented by two Bloch vectors B—+> and B_ of length 1
(Egs. (10,11)), and the Bloch vector for p is B = pﬁ + (1 —p)B—_>: any Bloch vector
remains inside the sphere.
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Figure 7: Bloch sphere representation of the mixed state p = %(ll + ﬁaw + Téiay) (to the
left) and its decomposition on a basis in which p is diagonal (to the right): noting
|+) = %ﬂg} + 1—\/_51|e>) and |—) = %ﬂg) — 1—\7; e)) the two pure states whose Bloch
vectors are collinear to the one of p, these states are orthogonal so that they form a
basis and their Bloch vectors are opposed. It is the basis on which the outcomes of a
projective measurement of the qubit will yield the minimum Shannon entropy.

2.1.2  Entropy

The possibility to consider mixed states can first appear as a practical way to take
into account experimental imperfections. However, we will see throughout this thesis
that, on a fundamental level, variation of entropy is unavoidable when considering an
open-system. If a system interacts with its environment and that the information thus
imprinted in auxiliary degrees of freedom is not fed back to the system, it can result
in an increase of entropy.

There are several definitions for entropy that quantify the lack of knowledge of an
observer. In this thesis, we will use the Von Neumann definition

S = —Tr[pLogs,[p]] = —pLogy[p] — (1 — p)Logy[1 — p], (13)

where p is the probability entering the decomposition of Eq. (12). Hence, the entropy of
a qubit state lies between 0 for a pure state and 1 bit for the maximally entropic state
p = %]l. Moreover, it corresponds to the Shannon entropy associated to the statistics
of the outcome of a measurement along the basis {|+), |—)}. Any other projective mea-
surement along a different basis {|a), |b)} would yield the outcome a with probability
p' = Tr[pla)(al] = pg+ (1 —p)(1 —q) where g = [(+a)[?, so that |p’ — 5| < |p— 3|, and
the corresponding Shannon entropy would be larger than S. This excess uncertainty
about the outcome of a measurement on an imperfect basis is sometimes referred to
as measurement entropy[52].

An important feature of the entropy associated to a density matrix is that its value
does not depend on the choice of the basis on which it is written. As a consequence,
any unitary operation on a density matrix preserves entropy.

The purification principle states that apparition of entropy for a system A can always
be modeled as the entanglement of A in a pure state with an auxiliary system B, fol-
lowed by an unread measurement of B. This is even the only postulate that differs
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between quantum and classical information theory in the axioms of Chiribella et al[9].
Such an unread measurement is mathematically described by the partial trace opera-
tion. Given an orthonormal basis {|¢;)} on which B will be measured, and a density
matrix p4p describing a potentially entangled state of A and B, it is defined by:
Trplpanl =Y _(¢ilpasldi) (14)

7

The resulting matrix p4 represents a state of the system A only. This operation is
trace preserving so that the density matrix p4 is well defined, but not unitary so that
the entropy is not preserved. Another important feature is that ps does not depend
of the choice of the basis {|¢;)}. This means that which measurement will actually be
performed on B does not matter. As long as one gives up all information on any future
measurement on system B, the knowledge about A is be encoded by p4. For instance,
a qubit that interacts with an electromagnetic mode will undergo the same evolution
(namely submitted to relaxation and/or decoherence), whatever the fate of the light
in this mode as long as all info about it is dismissed. That it be measured along a
particular basis, absorbed by the environment or let to travel in free space indefinitely
does not change the state of A. Thus, in this formalism, a quantum state is defined
relatively to an observer: it is no more than the knowledge that we have about it. As
a consequence, entropy is also defined relatively to an observer.

Another notion from information theory that will be of interest is the relative entropy
[52]. Considering two density matrices p and o, we define

S(pllo) = —Tr[pLogy ()] + Tr[pLogy(p)]- (15)

This quantity is a measure of the "distance"!

between the states represented by p and
o. In particular, S(p||c) > 0, with equality when p = 0. We will see that without ex-
tracting any information about an open quantum system, the relative entropy of two
different initial states, which can be understood as the distinguishability between two
initial preparations, can only decrease with time. This is in contrast to the entropy of a
particular state that, depending on the interaction with the environment, can increase

due to decoherence, or decrease in presence of dissipation.

In order to describe in a compact way the effects of the interaction of a qubit with
its environment, which makes it an open quantum system, we will now establish a
Lindblad master equation that describes its dynamics.

2.1.3 Lindblad Master Equation

2.1.3.1 Quantum operations

Nielsen and Chuang [18] proposed three equivalent ways to describe quantum opera-
tions, that is any physical transformation acting on a system A. These are represented
by a super operator L, also referred to as a map, acting on the density matrices of A.
They must, in the axiomatic way, have the 3 following properties.

1 but the relative entropy is not a proper metric since it is not symmetric
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e L is trace-preserving®: Vp, Tr[L[p]] = 1

o L is completely positive. This property means that for any auxiliary system B with
which our system is potentially entangled, the map £4 ® I acting on the whole
system must preserve positivity (that is p4p with non-negative eigenvalues). The
2 previous properties ensure that the eigenvalues of £[p] can still be interpreted
as classical probabilities of a mixed state.

o L is convex linear: for a set of probabilities {p;} and states {p;}, L[> pipi] =
i
> piL[pi]. This means that picking randomly from an ensemble of initial states
i

with some given probability distribution, one expects to get one of the trans-
formed states with the same probability after the operation .

Then, they show that for such a map, if the system is not initially entangled with
the rest of the universe (its environment), there exists a finite set of so-called "Kraus
operators’ {M;} which are linear operators acting on the states of A, such that, for
any density matrix pa,

Llpal = ZMiPAMzTﬂ (16)

with the normalisation relationship

S MM =1. (17)

(2

A simple example is the one of a unitary evolution U. In this case, a single Kraus
operator My = U is enough. Note that the assumption that system and environment
are initially in a separable state does not imply that they cannot be correlated due to
prior interaction. This model just does not account for the pre-existing entanglement
and the environment needs to be first traced out. In practice, the system is supposed
not to interact with a part of the environment to which it is already entangled. Thus,
we need the entanglement with the system to be either diluted in a large number of
degrees of freedom, or that the modes entangled with the system do not interact any-
more: these two possibilities are formally equivalent [11].

This decomposition is very convenient for calculations and will be used to derive
a master equation. To get some physical insight and to introduce a method used in
Sec. 4.1.2, let us present a last description of quantum operations and show its equiv-
alence with the Kraus operators. The idea is that a quantum operation can always
be modeled as a generalized measurement that is a unitary evolution of the system A
coupled to an auxiliary system B, followed by a projective measurement of B. Indeed,
starting from the decomposition of Eq. (16), one can introduce a sufficiently large aux-
iliary system B and associate to each M; a base state |¢P) of B®. B is initially supposed

Nielsen and Chuang give a less strict property 0 < Tr[£[p]] < 1 to allow the trace of p to encode the
probability that a series of quantum operations occur. Those will be described in chapter 3. For now
we suppose that no information is extracted from the system.

this system can be the physical environment of the qubit or a fictitious auxiliary system used for
calculations
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to be in a pure state |1{’). Then, the operator defined on H4 ® Vect(|sf)), for any
vector 1)) of Ha, by

U: @ vg) = 3 Milv?) @ |67) (18)

can be extended into a unitary operator over H4 ® Hp thanks to the normalization
relation on {M;}. The action of this unitary evolution on a density matrix p4, followed
by an unread projective measurement on the basis {|¢”)} of B then has the same effect
as the operator £ of Eq. (16). Indeed, if the measurement outcome i is known, the state
is projected to the matrix

MpaM;]
,01' — sz 7 T , (19)
Tr[M;paM]]
and the measurement yields this outcome with probability
pi = Tr[Mipa ] (20)

(this result will be used in Sec. 3.1.2). On the other hand, if the measurement result is
unread, one encodes the resulting state as a statistical mix Y, pip; = L(pa). This re-
sult is quite remarkable since it shows that any physical evolution of a system initially
separated from its environment can be understood as a unitary evolution followed by
a measurement of one of the environment observables.

Note that it is actually this unread measurement that can imply a change in the
system entropy. This description also explains the theorem mentioned in Sec. 2.1.2:
starting from 2 initial states pa and o4, the unitary operator U preserves the relative
entropy so that the potentially entangled states pap and oap resulting from this

evolution verify

S(pap || 0aB) = S(pa® [¥B){(¥s| || ca®|¥B)(¥B]) = S(pa || 0a). (21)

On the other hand, the unread measurement, mathematically realized by tracing out
the auxiliary system B, can only decrease the relative entropy. We then get

S(Llpal |l Lloal) = S(Trplpas] || Trploas]) < S(pa || 04). (22)

A physical evolution can therefore only decrease the relative entropy of 2 states.

2.1.3.2  Continuous time evolution

Up to now, we have considered a measurement occurring abruptly. What if we can
track the measurement in time? We will apply the previous results to the evolution
of a qubit between time ¢t and t + dt, where dt is a short time-step compared to the
typical time 7" on which its state evolves (due to intrinsic hamiltonian evolution or to
the interaction with its environment). In order for the above assumptions to be verified,
we will restrict our model to Markovian environments. This essentially means that the
part of the environment that interacts with the system does not have any memory
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after a typical time 7., which is much shorter than the time step d¢. It implies that
one cannot take the limit d¢ — 0 rigorously, but instead will have to settle with the
hierarchy 7. < dt < T'. This is called a coarse-grained description. In the Heisenberg
picture, the Markovian hypothesis reads that, for any observable A appearing in the
interaction hamiltonian, in the absence of interaction,

TrlppA(t)A(t +7)] = 0, (23)

for 7 > ..

Then, considering the evolution of the qubit state during a time interval dt, we
consider that the interaction with the environment is first turned off during 7.. This
does not affect the evolution since 7. < T', and it gives time for the environment to
get back to its steady state and trace out any entanglement. Then, during dt — 7. ~ dt,
the map p(t) — p(t + dt) can be written

3
p(t+dt) = > Mp(t)M]. (24)
i=0

Note that we restrict the number of Kraus operators to 4 which is universal for a qubit
evolution. The M;’s do not depend on ¢ since the environment is in a steady state.
Moreover, since p(t 4+ dt) = p(t) + O(dt), we can choose M of the order of unity[53],
and separating the hermitian and anti-hermitian parts of the first-order term (resp. H
and J), we write it as

H
Mo =1 —i—dt — Jdt + O(dt?), (25)

and the other terms appearing in (24) are of order dt¢ so that we can write the other
Kraus operators

M; = VdtL;, (26)

where the L;’s are of order unity. Then, the normalization relation (17) gives J =

3
DY LZTLZ-, and we get the Lindblad form of the master equation [54]
i=1

. 3
il = A+ Sl (27)

where we have defined the Lindblad superoperator D[L] acting on a matrix p as
i Lptp, o Lopt
D[L]p = LpL'" — §L Lp— §pL L. (28)

In this equation, H can be identified to the hamiltonian of the qubit which is dressed
by its coupling to the environment. In particular, it accounts for the Lamb shift of
energy levels when the environment is an electromagnetic mode. Finally, we choose
"arbitrarily" a particular set of L;’s so that each term might be easily interpreted:

o Ly = /Tjo_ = /T |g)(e| for relaxation
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o Ly = /Thor = /Ty|e)(g| for excitation
e L3 =,/T4/2 o, for pure dephasing.
The master equation then reads

df(’if) _ —%[H, pl + T, Dlo_]p+ Do ]p+ %D[oz]p- (29)

We can already identify the characteristic timescales of the qubit.

o 11 = ﬁ is the typical time for energy decay.

o Th = ﬁ is the typical time for coherence decay.
2 ¢

In order to discuss these rates further, one needs to be more specific and describe
the physical implementation of the qubit.

2.2 3D TRANSMON

The system that is used for the experiments described throughout this thesis follows
the design of the 3D transmon [13]. A single Josephson junction is shunted by a large
capacitance and is coupled to the lowest resonant electromagnetic mode of a high Q
cavity made out of bulk aluminum or copper, cooled down at 20 mK.

2.2.1 Resonant cavity and LC resonator

The field of cavity quantum electrodynamics (CQED) studies the interaction of a light
mode confined between two highly reflective mirrors (Faby-Perot cavity) with an atom
or other particles. Electromagnetic confinement allows for an enhanced coupling to
the particle of interest and has led to ground-breaking experiments [51, 55, 56] that
implement the thought experiments of the quantum physics pioneers. Fully quantum
behaviors that were thought unreachable and entailing "ridiculous consequences" by Fr-
win Schrodinger have been observed. With superconducting circuits, strong coupling
of a qubit to a microwave mode confined on chip was achieved in 2004 by Wallraff et
al. [57], and many experiments have since succeeded in reproducing, and sometimes
going beyond, CQED achievements [58, 59, 60, 61, 10]. In our experiments, even if we
use superconducting circuits on chip to implement artificial atoms, the cavity design
is similar to CQED setup.

A parallelepipedic cavity is machined out of bulk aluminum as can be seen on Fig. 8a.
Its lowest resonant modes are transverse electric (TE) and characterized by 3 integers
{ng,ny,n.} such that the wave vectors are (on a basis defined by the orientation of
the walls): k= nx%e} + ny%e; + nzﬁe_;, where I, . are the 3 dimensions of the
cavity. Maxwell’s laws impose that one of the n;’s is zero and the direction of the
electric field is along the corresponding axis. We chose the dimensions of the cavity
to be (26.5 x 26.5 x 9.6) mm? so that the first resonant mode is TE110, resonating at
[ =51 k2 + k; ~ 8 GHz. Distribution of the electric field can be simulated using full
3D electromagnetic simulations and is represented on Fig. 8b. Its maximum amplitude
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is at the centre of the cavity.

c) I
)

U ——— )
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Figure 8: a) Picture of the two blocks of aluminum from which the cavity is machined out.
When pressed together, they form a cavity whose first mode resonates at 8 GHz.
b) Calculated distribution of the electric field of mode TE110 using full 3D electro-
magnetic simulation of the cavity. Electric field direction is represented by the arrow
direction, amplitude encoded in color (from strong to weak: red to blue). ¢) LC res-
onator equivalent of a cavity mode. @ is the magnetic flux threading the coil and @
is the charge on the capacitance electrode.

In order to quantize this mode, one can write down the electromagnetic lagrangian

c= [ Qg L pgps (30)
v 2 210

and decompose ﬁ and ﬁ over the basis of the TE modes. We then get the Lagrangian
of N uncoupled harmonic oscillators, N being the number of resonant modes of the
cavity (N — oo for a full description [62]). The dynamics of these modes is thus the
same as the one of LC resonators and we will model them so. This apparently formal
identification has in fact a physical significance since the upper and lower walls of the
cavity which are orthogonal to play the role of a charged capacitor, and current

flows in the vertical walls as in an inductor.

In order to quantize the LC circuit depicted on Fig. 8c , one has to introduce the
flux ® and charge @ defined by

& = [t _U(t)dt

t (31)
Q = [ I(t)dt
Then, the Lagrangian for this LC circuits reads
2 q)2
e (32)
2C 2L
and the Kirchoff laws and constitutive relations of the elements imply that
gﬁ. = —-LI = &
9q (33)
0P @

so that ® and @ are the two canonically conjugated variables for the system quantiza-
tion. We can then promote them to quantum observables verifying the commutation
relation [63, 64, 65]

[@,Q] =ih. (34)
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Note that this commutation relation in fact holds for any element and does not depend
on the particular circuit under study: it can be directly derived from microscopic
commutation relations of E' and B in quantum electrodynamics[66]. The hamiltonian
of the LC circuit is
. QQ q>2
H=®Q-L=—"—+—. 35

@ 2C + 2L (35)
Following the classical method for the second quantization of an harmonic oscillator,
we introduce the annihilation operator defined as

1
2hZ,

Zy
a= D+ — 36
+i320Q, (36)
where we note Z, = +/L/C the characteristic impedance of the resonator. We also
drop the hat notation for operators as it can be implicitly understood from now on.
From Eq. (34), we get the commutation relation with the creation operator af

[a,al] = 1. (37)
Then we can write the hamiltonian of the mode in a canonic way as
i 1
Hy = hw,(a'a+ 5) (38)

Here, w, = 1/VLC ~ 27 x 8 GHz is the resonance pulsation of the mode and n =
a'a is the number of energy quanta in the mode. Note that in order to witness non-
classical behavior, the typical energy associated to the temperature of the cavity needs
to be much smaller than the energy of a photon: kT < hwg so that T' <« 400 mK.
Thus, the quantum properties of microwave modes are hidden at room temperature
in contrast with electromagnetic modes in the optical domain. This temperature is
routinely reached in properly equipped dilution refrigerators (see A.2). Besides, at this
temperature, typical energies are well below the gap of superconducting aluminum
(~ 1.2 K) so that losses inside the aluminum cavity are considerably lowered and the
Josephson effect provides us with the non linear and non dissipative element at the
base of our quantum circuit (see Sec. 2.2.3).

However, in the model presented above, we neglected the spurious internal losses of
the cavity and the coupling to the outside world. We will see in the next section that
these two phenomena can be simply modeled in the same way.

2.2.2 3D cavity coupled to transmission lines

2.2.2.1 Lossy resonators

In practice, the cavities are intrinsically lossy due to finite conductivity for copper
cavities and impurities on the surface or quasi-particules for aluminum ones. To model
these internal losses, we add in parallel to the LC model a resistor R. Resistors are not as
simple to model in quantum mechanics as inductors or capacitors. Indeed, we cannot
write down a hamiltonian since its dynamics is not reversible and it is intrinsically
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Figure 9: a) To include the losses inside the cavity in our model, we add a resistor R to
the resonator. This resistor can be modeled as a semi-infinite transmission line of
characteristic impedance Zy = R. b) Telegraph model for a transmission line of

characteristic impedance Zy = \@ . [ is the inductance per unit length and ¢ the
capacitance to the ground per unit length.

an open-system since it dissipates energy. However, such an element of purely real
impedance is in fact equivalent to a lossless semi-infinite transmission line, that is an
infinite collection of purely reactive elements. To show this, we consider the telegraph
model of a transmission line (e.g. a coaxial cable) as depicted on Fig. 9b. It has an
inductance per unit length [ and a capacitance to the ground per unit length c. We
model it by a periodic pattern of period dx. Then we have the recursive relation between
the impedance of a length ndx and (n+ 1)z

Zuir (@) = [(Zale) + il %) || ] i (39)

wedx

This directly leads, for an infinite and continuous line, to

Zo = lim |Z,] =4/ -. 40

0=t 2] = (40)
n—oo

Here, the resistor R is galvanically coupled to the LC' resonator. Therefore, it is mod-

eled by a galvanically coupled semi-infinite line of characteristic impedance Zy = R.

In fact, this basic RLC' model can also represent a capacitively coupled line such as
the ones we use to probe our system (Fig. 10a). Noting Z. the characteristic impedance
of the line, if the coupling capacitance C} is much smaller than 1/Z.w,, we show in
appendix B.1 that, as seen from the cavity, the circuit is equivalent to a galvanically
coupled line of characteristic impedance Zy with

) > Ze. (41)

B C2uw2Z,
Thus, a capacitive coupling to a transmission line is equivalent to a galvanic coupling
to a high impedance line?.

The cavity mode capacitance is slightly renormalized by the coupling capacitance.
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2.2.2.2  Master equation for a cavity mode

A coupled semi-infinite line induces a non-unitary evolution for the intra-cavity field.
These dynamics can be taken into account by a Lindblad master equation. For a zero
temperature line, it reads [24]

T [H’ IO] + /@D[a]p, (42)

k=W (43)

is the photon exit rate. Note that when the coupling capacitance C,; to the transmission
line decreases, the impedance mismatch between the resonator and its environment in-
creases so that the damping rate  is reduced.

In Eq. (42), we suppose that the environment is Markovian. In appendix B.2, we
show that this imposes to choose a coarse time step dt that respects the hierarchy

1 1
— < dt< - (44)
W K
In this formalism, a coherent drive through one of the lines can be taken into account
by adding up to the hamiltonian of the cavity a drive term [67]

Hy = h(eqe™ital 4 efet™ilq), (45)

where the displacement rate €; is proportional to the drive amplitude, so that H =
Ho+ Hy.

In appendix B.2, we show the Heisenberg picture counterpart of the master equa-
tion (42) for the field amplitude,

1 K
Oa ih [a; ]iO] 5 a—+ \/Eazny ( 6)

which is the quantum Langevin equation. We also define the incoming and outgoing
mode operators and show that a;,” and au, are linked by the input /output relation

VEG = @i + Gout- (47)

2.2.2.3  Choosing the coupling to the lines
Using the quantum Langevin equation, we show in this section how to infer the cou-

pling rates through the ports of the cavity from its scattering properties.

In our devices, 2 tunnels are drilled through the upper wall of the cavity and two
standard SMA connectors whose pins go through these tunnels are mounted on the

5 Equivalence with the Schrédinger picture is made by setting e e~ et = ivk(a;n) in Eq. (45).
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Figure 10: a) Picture of the 2 halves of the cavity and SMA connectors. A transmon qubit is
fabricated on the sapphire chip. An indium thread is used to seal the two halves.
b) Cavity with 2 connectors before closure. ¢) Measured (blue) and simulated (red)
coupling rates through a port as a function of the pin length inside the cavity.
d) Transmission measurement (blue dots) on the aluminum cavity at fridge base
temperature (20 mK). Coupling through the ports was calibrated at room temper-
ature. Red line: fit with internal losses rate k7, = 2.6 kHz. Internal quality factor is
Q= fr/k~25x106

cavity (see Fig. 10a). These pins interact capacitively with the cavity modes. Connect-
ing a coaxial line on these connectors, we get the situation described in Appendix B.2.
Moreover, by changing the length of the pins so that their tip stays in the tunnel or
dips inside the cavity, one can modulate the coupling rates k1 and ko between the cav-
ity and lines 1 and 2 over more than 8 orders of magnitude (see Fig. 10c). The internal
losses can be seen as a virtual third line that cannot be monitored with a coupling rate
k1. With this 3-port situation, the Langevin equation becomes

1 K1+ K2+ K
Oia = ﬁ[aa Hy) — %La + VE1Gin,1 + VE1Gin2 + /K1Qin, L, (48)

with the input/output relations
\/H»Z'CL = Qing —+ Qout,i (Z =1,2, L). (49)

When driving the harmonic cavity mode with a classical source at zero temperature,
the intra cavity field is a coherent state |a)%. If we drive only through port 1 at an

o _la? AR e
On the Fock state basis, it reads |a) = e~ 2 nZ::O %M)
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amplitude o, 1while line 2 and the cavity dissipative part are at zero temperature, the
equation for the now classical fields becomes

K1+ Ko+ KL

a(t) = —iwpalt) — fa(t) + VE1ina (1), (50)
which reads in the spectral domain

2 /1

K1+ Ko + KT —2i(w —wr)

alw) = in1 (w). (51)

Using the input/output relations, we get the scattering coefficients of our cavity

e — 2 (0 —
Si1(w) o Qowl _ Mzfr- LY z(w wr) (reflection)
Qin,1 K1+ K2 +2/£L—22(w—wr) . (52)
Sa1(w) o Cotd s (transmission)
Qin 1 K1+ Ko+ kL — 2i(w —wy)

We can characterize precisely the coupling strengths through the ports and the
internal losses of the cavity by measuring the reflection coefficients on the ports 1
and 2 and the transmission coefficient from 1 to 2 as a function of w. The internal
quality factors of our cavity have been measured to be @ ~ 2.5 x 10° for aluminum
and @ ~ 40000 for the copper at 20 mK and || ~ 1.

2.2.3  Transmon qubit in 3D cavity

2.2.3.1 Transmon regime

The transmon is made of a single Al/Aly;O3/ Al Josephson Junction (JJ) connected to
2 antennas. This circuit is fabricated through standard e-beam lithography techniques
(see Sec. A.1) on a sapphire chip. The device is then enclosed in the 3D cavity (see
Fig. 10a).

A tunnel junction between two superconducting electrodes at zero temperature has
a single collective degree of freedom, which is the superconducting phase difference ¢
across the junction. It is linked to its electromagnetic phase @ ; by

o
Y= =7 mod 2r, (53)
$¥0
where g = % is the reduced flux quantum.

In practice, the electrodes have a finite capacitance C' (see Fig. 11a). The corresponding
2

charge energy E. = 5~ corresponds to 1 excess charge on one of the electrodes. Then,

taking into account this shunting capacitance, the JJ forms a non-linear resonator

that can store energy. Noting n the number of excess Cooper pairs (QQ = 2en for the

corresponding circuit node), its hamiltonian reads

H = 4Ec(n—ny)* — Ejcos . (54)

In this expression,
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o from the commutation relation [®,Q] = ih, one gets the conjugation relation
[n,expip] = expip’.

o noting {|n),n € Z} the charge states of the JJ, we have
Ey, ; E
~Ejcosp =~ (¥ 4+ e7) = =2 3 (In+ 1)(nl + |n)(n+ 1)), (55)

so that % can be interpreted as the energy associated with the tunneling of a
Cooper pair.

o the value of E; depends on the geometry of the junction and on the thickness of
the insulating barrier. Both parameters can be be adjusted during fabrication.

e N4 is an offset in the number of Cooper pairs due to the uncontrolled electrostatic
environment of the junction (e.g. trapped charges in the substrate) that tends to
attract charges on one of the electrodes.

The hamiltonian (54) is often referred to as the Cooper-Pair Box hamiltonian. It is
exactly solvable in terms of Mathieu functions [68]. The energy levels depend on the
charge offset n4 so that charge offset fluctuations induce decoherence. However, the sen-
sitivity of energy levels on n, decreases exponentially with g—é For g—é ~ 80, we reach
the transmon regime [12, 69, 70], in which this dispersion with n, becomes negligible.
In our geometry, F¢o can be increased independently of E; by increasing the size of the
antennas that form a large capacitance shunting the junction. As depicted on Fig. 11c,
this shunting capacitance simply renormalizes the junction intrinsic capacitance and
lowers the charging energy. Moreover, in this regime, eigenstates will be quite close to
phase states. In other words, the charge () is uncertain, whereas ® is well defined, in
agreement with the Heisenberg uncertainty principle.

We can then represent the energy levels of the circuit in a cosine potential (Fig. 11b)
as a function of @ ;. At low temperature (kT < hweg), its state is bounded at the
bottom of a well. It can therefore be understood as an anharmonic oscillator whose
magnetic term reads

q)2
H=FE;— + H;. 56
J2<,0(2) TH (56)
The first term correspond to the energy stored in an inductor L; = ¢2/E; and,
developing up to the fourth order in &/,
E; o*
H = === 57
! 24 cpé (57)
is a purely non linear perturbation. We represent it as a spider element [71] in the
circuit of Fig. 11b. Due to this term, the levels of the oscillator are not evenly spaced
(Fig. 11c) so that we can address specifically the transition between ground |g) and

first excited |e) states. These will be the 2 states of our qubit.

In the case of the transmon, the variable ¢ is strictly speaking compact. ¢ and ¢ + 27 are the same
physical state and equivalently, n is a well-defined integer. Therefore, there is no operator ¢ and only
periodic operators such as exp iy or cos ¢ exist.
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Figure 11:

Figure 12:

=C+Cy

a) E-beam microscope image of a Josephson junction fabricated on a sapphire chip.
It links 2 aluminum antennas (each ~ 1.5 x 0.05 mm on this sample) also on chip,
and colored in red on the picture. The sapphire substrate is pinched between the
two cavity halves. b) Representation of the cavity mode (to the left) and trans-
mon (to the right) energy levels in their electromagnetic phase potentials. Cavity
levels, in a parabolic potential, are evenly spaced, in contrast with transmon levels
in a cosine potential. The first transmon transition can be addressed selectively. c)
Josephson junction circuit element in parallel with a large shunting capacitance C'
that limits sensitivity to charge fluctuations. The small intrinsic Josephson capac-
itance (Cy ~ 1F) only slightly contributes to this capacitance. In the transmon
regime, the junction can be seen as an inductor Lj; = cpg/EJ in parallel with a
purely non linear element ("spider" symbol) that will lead to the perturbation H;
in its hamiltonian.

I

a) Schematic representation of the capacitive interactions created by the antennas
with a single cavity mode. The coupling capacitances C,, Cj, and the cavity capaci-
tance C) depend on the cavity mode under consideration. On the electrical circuit,
only one mode of the cavity is represented. b) Foster equivalent circuit seen by the
non-linear element, taking into account N cavity modes.

The antennas play another crucial role in the setup, which is capacitively coupling

the JJ to the cavity modes. A simplified representation of the capacitive network in-

29



side the cavity is represented on Fig. 12a. It only takes into account a single mode of
the cavity. However, the same pattern applies for the coupling of the JJ mode to any
cavity mode: the interaction is that of a dipole in the sense that the direct coupling
capacitance C, from an antenna to the closest cavity wall is shunted by Cj, the one
of the other antenna to same wall. Thus, the effective coupling capacitance between
the junction and a given mode (~ % ~ 1 fF) remains in practice more than an
order of magnitude lower than the one of the coupled modes (respectively ~ Cg and
C, which are both of about 100 fF).

Note that in the limit of a small gap between the antennas compared to their length,
the gap size has a very small impact on these capacitances. Similarly, the sapphire
substrate, which has a dielectric constant ¢, ~ 10, only slightly increases the capaci-
tances because of its small thickness compared to the cavity size. A full analysis of this
network could lead us to the full hamiltonian of the system.

Though this analysis can give some physical insight on the system’s properties (see
Sec. 2.2.3.3), it becomes very complex as one wants to include the effect of higher
cavity modes, and it needs to account for the distortion of these modes due to the
presence of the antennas. Moreover, the intrinsic quantities on which it will depend
are not directly measurable in our system. We will rather derive the hamiltonian of
the system following a Black-Box Quantization method[62, 72, 73].

2.2.3.2  Circuit Black Box Quantization

The general principle of the BBQ method is the following. In the transmon regime, the
JJ is decomposed as an inductor in parallel with a purely non linear "spider" element.
This element will be treated perturbatively. The rest of the circuit, which is made
of the linear part of the junction with its shunting capacitance and N modes of the
cavity, can be decomposed as N+1 LC' resonators in series (Fig. 12b). This so-called
Foster decomposition is equivalent to diagonalizing the N+1 coupled modes into N+1
hybrid but decoupled modes. First neglecting the losses represented by the R,’s, the
hamiltonian of this system reads

N+1
Hyp =Y hwp(ala, +1/2), (58)
p=1

being the resonant pulsation of mode p, Z, = é—z its characteris-

wy, = L

p /LpCyp
tic impedance and a, = ﬁq)p + 14/ QZ—%QP the corresponding annihilation opera-
tor. The eigenstates are definite numbers of excitations for each of these oscillators
|n1,ng,..ny+1). From Kirchoff laws, we find the following relation for the flux at the

poles of the spider element,

N+1
D=> D, (59)
p=1

We can now treat the leading order hamiltonian H; Eq. (57) of the spider element
as first order perturbation, assuming non-degenerate modes. Then, expanding it using
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Eq. (59) and keeping only the terms that conserve the number of excitations in each

mode and using the commutation relation [a,, a;g] =1, it reads
1
H, = Z Apny + 3 Z Xpp/ TopTp (60)
p P’
np = a;f)ap being the excitation number operator of mode p. Here, A, = —% [Z, oy Ly —

2
%] is a slight correction to the frequencies of the oscillators and

L, O
X = ———FE¢ the anharmonicity (self-Kerr) of mode p
pp L;C, ( ) . (61)
Xpp' = 2v/XppXp'p/ the pull (cross-Kerr) between modes p and p’
where CH = C, + Cy is the capacitance shunting the junction®. Thus, all the oscil-

lators being hybridized, they inherit some anharmonicity from the junction and the
number of excitations in an oscillator shifts the resonant frequency of the others. This
last behavior enables to readout non destructively the state of the qubit (see Sec. 3.2.3)
or conversely to measure the number of photons in a cavity mode (see Sec. 7.2.1).

However, in a regime in which the coupling between the physical modes is small and
the detuning important, which is the case in practice, one particular mode (that we
label ¢) has a much higher anharmonicity than the others: x4q > X, for p’ # ¢. It
can be interpreted as the mode of the junction (and its capacitance) dressed by the
cavity modes.

In order to connect with the notations used in the following section, let us note that
this much larger anharmonicity for the qubit mode implies that Vp' # g,

> = 62

cy ~ C, (62)
Thus, the impedances Z, of the dressed cavity modes seen by the junction are much
greater than the ones of the original bare modes which are only weakly coupled with
the junction through small capacitances. Then, considering the low and high frequency
limit of the circuit on Fig. 12b, we find that

L, = Ly (from the low frequency limit)
2

) (63)
> Cy = ¢y 1 (from the high frequency limit)
Iz

where Cy is the total capacitance in parallel with the junction?. It follows that the qubit
resonator inductance reads, to the first order, L, ~ L; and its capacitance C; ~ Ckx.
Letting Fo = % the corresponding charging energy, the qubit mode parameters are

fo = %\/m (resonance frequency)

a = FE¢ (anharmonicity)

(64)

8 this convention is not the one used in [62], but C' X E¢ does not depend on C
9 Oy, = O + Cc in the following section
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Dissipation or leakage through external ports can now be modeled by resistors R,
on each of these modes. Note that a more general model for losses goes beyond the
Foster decomposition[73]. These resistors induce non coherent decay of each mode, so
that we get the Lindblad master equation for the whole system

do(t . N+1
’(’12) = —%[Ho +Hi,pl + Y 5pDlay)p, (65)
p=1

with k), = wp% (see Eq. (43)). Note that even in absence of internal dissipation in-
side the junction, it inherits some dissipative part due to the hybridization to cavity
modes!'C. This relaxation of the "cavity part" of the qubit into the probe lines is known
as the Purcell effect [15, 16, 17].

This very general description led us to a simple master equation. If one includes
higher order terms in Hy, it can account for more subtle non-linear effects such as
cross-Kerr shifts in the straddling regime[12, 74, 75]. All the terms of the equation can
be measured independently. We will now see how this model can be used to predict
the characteristic values of a system according to its geometry, and compare it to a
less refined but more intuitive 2-mode model.

2.2.3.3 Designing the experiment: BBQ VS two-mode model

Now that the form of the master equation has been established, we want to connect
the physical parameters of the experiment (dimensions of the cavity, length of the
antennas, inductance of the JJ...) to the effective parameters of this equation (wp,
Kp...). One of the main advantages of using 3D cavities in circuit-QED experiments
is that the electromagnetic environment of the Josephson junction is well controlled
and can be simulated exactly by performing full 3D electromagnetic simulations using
finite elements methods (see Sec. A.3). Thus, inputing the above physical parameters
in the model and replacing the JJ by a port with an attached lumped inductor, one can
simulate the response of the linear part of the system to an excitation at any frequency
w. Then, the resonance frequencies can be identified and it comes directly [62] from
the decomposition depicted in Fig. 12b that!'!

1
= Re¥@)] (66)
C, = %Im[Y’(wp)]

This can in principle determine the full behavior of the system for a given set of
parameters. We then tune the physical parameters of the system to get the desired
effective parameters in the master equation. However, dissipation being very small,
the response of the system is nearly divergent at resonances and the measurement of

Here, non radiative decay, thermal excitation and pure dephasing of the qubit are not taken into
account.
valid for small dissipation, that is Ry, > Zp, which is the case for our experiments
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R, — oo gets imprecise for reasonable simulation times. Moreover, it is difficult with
this black-box method to know on which physical parameter to act in order to get to
the desired effective parameters.

a) b)  Transmon
Q14

4

AY4
X
&

Figure 13: a) Equivalent circuit for a junction mode coupled to a single mode of the cavity.
Fluxes and charges on the nodes are conjugated [®;,Q;] = ih for i = 1,2. b) Com-
bined energy level diagram for the two coupled modes. Cavity levels are noted with
numbers (0,1,2,...), transmon levels with letters (g,e,...). The cavity pull x can be
understood as repulsion (double head brown arrows) between levels: original cou-
pled levels (black lines) become hybrid ones (dotted lines). If w, > wy, hybridization
increases cavity resonant frequency w, > wpgre. Cavity pull is reduced for trans-
mon compared to a two-level system (Jaynes-Cummings hamiltonian) due to higher
levels.

To enable an analytic approach, we limit ourselves to the first resonant mode of
the cavity. This is particularly relevant in the experiments described throughout this
thesis since the qubits considered are chosen to resonate at f;, ~ 4 —6 GHz which is
below the first cavity mode TE110 at f,. ~ 8 GHz. The electrical field direction for
this mode is along the antenna axis and maximum amplitude of the field occurs at
the centre of the cavity where the qubit is located. The qubit is therefore much better
coupled to this mode than to the next excited modes TE210, TE120, TE0O11 or TE101
at f ~ 12 — 15 GHz that have either a node at the centre of the cavity or an orthogo-
nal electric field [76]. Thus the next coupled modes are far detuned and hybridize only
marginally with the qubit mode.

With only one cavity mode only, the equivalent circuit is depicted on Fig. 13, where
the effective capacitances are C. = % and C) = % + Cy (in reference to
Fig. 12¢). It is then possible to calculate analytically the transmon energy levels. A
detailed calculation by Kurtis Geerlings, based on prior study by Shyam Shankar and
Michel Devoret, can be found in Sec.2.2.1 of [77]. Here, we outline briefly the used
method and give its main results.

The hamiltonian of the circuit reads
_ P Q7 o Q@

1
— _ Ercos—t 4+ I
oL, 20, %% Tac Tacy

(67)
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where @ (resp. Q¢, Q) is the charge on a plate of the capacitor C; (resp. C., C))),
linked to the canonically conjugated nodes variables ®1 2 and Q12 by

(68)

{Q1 = Q-Q.
QQ - QT’+QC

Introducing the corresponding annihilation operators a; and as'? and assuming the
transmon regime Wi()) = F¢ < Fj and in the rotating wave approximation, the
hamiltonian transforms into

Ee.
H = hwsy(abas +1/2) + hwy(alar +1/2) + hg(abay + asal) — E(al +al)4, (70)

with, in the limit C, > C.,

1
VL, C,
w1 = \/SEJEc/h . (71)
C

g = = N
2 C'T(C'H-i-cc)

Wy =

We recognize the hamiltonian of two coupled oscillators, one being anharmonic. We
can then define 2 uncoupled but hybridized oscillators a and b. In the experiment, the
detuning A = w, — wq is much larger than g, which is called the dispersive regime. In
this regime, oscillator a is a cavity-like mode dressed by a small qubit part, and b a
qubit-like mode dressed by the cavity. The hybrid annihilation operators read

a ~ —az+ fa; (72)
b ~ fax+aw

These operators obey canonical commutation relations up to the first order in 4. The
corresponding resonance frequencies w, and w, are slightly renormalized compared to
the bare resonance frequencies wy and w; as

Wy w2+%
2 (73)

(,L)q ~ wl_f

Note that experimentally, we only have access to these resonance frequencies. They
correspond to the w),’s of the BBQ Foster decomposition.

C . L .
ag = 2171 L: Dy +iy Tlh 70: Q2 cavity mode
(69)
[Ce+C L
_ 1 Il .l J ; ;
a; = 5% Tdﬁ +iy [ 57 Gt O Q1 junction mode
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Now treating the non-linear term —Zs(a; + al)* as a perturbation, one finds a

hamiltonian of the same form as H, l(iis) +H fGU) with!?

def 1

o = Xe¢ = —jbc (74)
def _ 2
—X = Xrq = _QQP

Another effect of this hybridization is that the drive hamiltonian (45) splits into two
parts:

Hy = —h(eqe”“ilal + ejet@ilq) + h%(ede*iwdth + ehet™atp), (75)

so that both cavity and qubit can be driven through the cavity ports. Moreover, adding

up a resistor in parallel to the cavity LC resonator to take into account the losses into
the lines, one gets,

92
Y1,Purcell = K/Eu (76)

where 71 purcell and s are respectively the decay rates of qubit and of the cavity associ-
ated with photon leakage out of the cavity '*. With this simple formula and Eq. (74),
one can compute the expected bound on 77 due to the Purcell effect by measuring
X, @ and k on the system. It has been shown however to be inaccurate. Indeed, qubit
decay time measured to exceed 1/71 purcen computed with this simple model have been
reported in [77], and have also been observed with the qubits used in this thesis (see
Sec.A.1). A more rigorous approach consists in characterizing the qubit electromagnetic
environment with simulations (see Sec. A.3) and using [78]

Re[Y [w,]]

urcell = 5 77
V1,Purcell Oy Ce (77)

which generalizes Eq. (43).

This analytical treatment gives us some insight on the constraints and choosable
parameters of our system.

e In order to remain in the transmon regime, we impose Ec < 50F;.

e We want thermal excitation to remain as low as possible at refrigerator base
temperature. We thus need that hf, < kgT’, so that %\/8EJEC > 4 GHz.

e To remain in the situation described above of a qubit coupled to a single cavity
mode, we want the qubit to resonate at lower frequency than the cavity first
mode. The coupling strength being set (see below), we need a sufficiently large
detuning in order for the interaction to be dispersive. In practice, all the qubits
described in this thesis are designed so that f, <6 GHz.

a and x are chosen to be positive so that wef —wge = —a and wr e —wr,g = —x with wyr g and wr e
defined in Eq. (81)

2
This can be understood considering that in Eq.(72), gﬁ is the participation ratio of the cavity photon
number (leaking out into the lines with rate ) in the qubit-like mode excitation.
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e To use the anharmonic oscillator as a qubit, we need to address specifically its
first transition on a time scale much shorter than all decoherence (typically 17 o ~
10 us). This sets a lower bound for the anharmonicity: Ec = « > 100 MHz.

These requirements put strong constraints on the choice of E¢x. Therefore, all the
qubits used in the experiments described in this thesis have an anharmonicity o ~
27 x 150 — 200 MHz. Resonance frequency is then finely tuned by adjusting F; through
the size of the Josephson Junction.

This value o« = E¢ much constraints the size of the antennas, which also determines
the coupling capacitances and thus the value of g. However, some margin exists by
tuning the aspect ratio of the antennas. Effectively, the shunting capacitance Cl
(Fig. 12d) depends mostly on the surface of the antennas whereas the coupling ca-
pacitance C. «x C, — C} essentially depends on their length. In practice, we used 2
different geometries in the experiments presented here, both leading to the same charg-
ing energy F¢ mentioned above

e 1.5 x 0.05 mm leading to g ~ 27 x 300 MHz
e 1x0.4 mm leading to g ~ 27 x 200 MHz

These orders of magnitude do not take into account a correction in E}/ * (see Eq. (71)).
The last tunable parameter is the cavity damping rate x, which is set by the connector
pin length (Fig. 10 a). As we will see in the next chapter, it can be set in order
to optimize the readout efficiency of the qubit. A list of measured qubits and their
properties is presented on Tab.3. We can summarize the choice of parameters and
their physical origin in the following table.

Parameter Value Range Control
Ec/h 150-200 MHz Antenna area
E;/h 10-25 GHz Junction size
fa 46 Gz VBESEc/h
fr 7.5 GHz Cavity dimensions
200-300 MHz Antennas length
K 1 kHZ - 10 MHz | Connector pin length

A final constraint revealed by this model is the fact that, in order to remain in the
dispersive regime of hamiltonian (70), one needs the detuning A to be much larger than
the Rabi splitting 2¢gv/n + 1, where n + 1 is the number of photons inside the cavity.
We then find that the photon number should remain much smaller than a critical value
ne in order for the cavity and qubit not to exchange energy. In practice, cavity photons
will be used to readout the qubit state and this readout is non destructive only if

A2

(78)

Within this range of parameters, we now have a system implementing the open two-
level system described in Sec. 2.1. Indeed, probing the transmon only around its first
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transition frequency effectively transforms the anharmonic oscillator into a qubit. We
then get an effective Lindblad master equation for the qubit coupled to a single cavity

mode [79]

dp(t 7

Z(t) - _%[H’ p] + RD[a]p + ’Yl,PurceHD[U_]p, (79)
with

H = hwala+ h%az — h%a*aaz

. . . : (80)
+h(ece”Welal + ezetela) + h(ege”Wilo, + ejetWils ).

The frequencies w, and w, are slightly modified compared to Eq. (71) since they
are the dressed cavity and qubit frequencies. In the drive part of the hamiltonian, we
distinguished a tone at frequency w. around w, and a tone at wy around w,. Note that,
according to Eq. (75), for identical drive powers Py, ive referenced at the cavity input
port, €g < € since €g = €. X \/Paive. Finite anharmonicity of the cavity-like mode
is neglected, but its value can be computed from Eq. (61). Finally, compared to the
exact equation Eq. (65), other cavity modes are traced out. Extra modes result in an
increase of 1 purcenn and the apparition of dephasing terms in Eq. (80), but this will be
taken into account later on as unmonitored sources of relaxation and decoherence.

2.2.4  AC Stark shift and measurement induced dephasing

In the previous section, we saw that the free evolution of our system entangles the qubit
and cavity modes. Indeed, in the hamiltonian (80), the cross-Kerr term —h%aTaaz can
be seen as a qubit state dependent shift of the cavity resonance frequency. Thus,

Wr = Wrg def wr + & if qubit state is |g)

def

(81)
Wr = Wre = wy — 5 if qubit state is |e)

If we probe the cavity in transmission with, say, a coherent drive at frequency w. near
wy, such as the one in hamiltonian (80), the transmitted field will acquire a phase-shift
dependent on the qubit state (see Eq. (52)). This will provide us with a non destructive
measurement scheme for the o, operator of the qubit [80] as described in 3.2.3. In the
present section, we focus on the back-action of this measurement on the conjugated
operator, which is measurement induced dephasing of the qubit.

Let us first note that the same cross-Kerr term —'h%aTaaz can, alternatively to
Eq. (81), be seen as a cavity photon number dependent shift of the qubit frequency.
When the cavity mode is in Fock state |n),

Wq = Wan of Wg — NX- (82)

Driving the cavity with a coherent tone at w, puts the cavity mode in a coherent state
as well (see Eq. (51)), so that the number of photons is not determined. If we do not
collect and measure the output field from the cavity, the information on the cavity is
dismissed. This procedure is taken into account by tracing out the cavity state. Then,
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Figure 14: Measurement induced dephasing and ac-Stark shift. a) Scheme of the pulse sequence.
The cavity pulse is arbitrarily chosen to have the same duration as the readout pulse
at wy. The second 7/2 pulse at w, is phase shifted by an angle ¢ compared to the
initial 7w /2 pulse. b) Final occupation of the |e) state as a function of ¢ and for several
cavity pulse powers encoded in color according to the color scale at bottom. The
amplitude (resp. phase) of the oscillation is proportional to exp(—TgTineas) (resp.
WStark Imeas), where Ty is the average extra dephasing rate (resp. @k the average
frequency shift) at that power compared to Py = 0. ¢) For values of P, varying
from 0 to Py readout /10, T4 as a function of w,.. Red line: theoretical prediction using
(87) with p adjusted to 4= = 1.25 MHz/\/Pi, readout- d) Idem for the ac-Stark shift

WStark-

the qubit frequency becomes a stochastic variable and the qubit state gets dephased.

More quantitatively, starting from Eq. (79), Gambetta et al. have shown [21] how
to derive a qubit master equation of the form (29). In the frame rotating at w,, the
coherent states |ay(t)) (resp. |ae(t))) developing in the cavity when the qubit is in |g)
(resp. |e)) verify Eq. (50)%°

dg(t) = i(we—wr—%)ag(t) — Say(t) + e (83)
de(t) = i(we—wr+ ¥)ac(t) — Sae(t) +ec
Thus, they find that the effective master equation for the qubit reads [21]
dp(t Wy + wstark (
p( ) = —’L[MU& P] + '71,PurcellD[0'f]p + rd<t)D(t) [Uz]p7 (84)

dt 2

15 For the sake of simplicity, compared to the hamiltonian (80), we shifted the drive term by 7, that is
€c — i€c with e € R
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Figure 15: Numerical simulation of the average measurement induced dephasing (to the left)
and AC Stark shift (to the right) for the readout pulse (Pin = Pinreadout) 85 a
function of the probe frequency. The parameters of the qubit are the one of the
experiment except for y that is varied from /5 to 4k (encoded in color). In black:
experimental value of .

where

{ Ta(t) = xIm[a’(t)ae(t)]

(85)
wstark(t) = xRe[a} () (t)]

Note that counter-intuitively, when probing the cavity at w,, the qubit frequency is
increased when driving the cavity near resonance in the regime x < k (see Fig. 15).

The measurement induced dephasing and Stark shift can be used to calibrate the
attenuation of the line probing the cavity, that is the factor u linking the power P,
at the refrigerator input to the amplitude displacement rate €. for the cavity field:

= p/Pr. This method is illustrated in [81] and on Fig. 14 (Qubit 1 in Tab. 3) as
follows The qubit is first prepared in a state close to 7(! e) + |g)) by applying a fast
5 pulse to rotate the qubit around the y axis of the Bloch sphere. This is done by
driving at w, with a tone of large amplitude ¢4 € iR during a time ¢ = ﬁ). A pulse
of power Py, frequency w. and duration Tyeas is then sent to the initially empty cavity.
After waiting long enough so that the cavity goes back to its ground state (in practice,
Twait = 1 us ~ 12/ (27k)), we measure the coherence of the qubit Peg- This is done by
reading out the qubit state (see Sec. 3.2.3.1) after a second § pulse of phase ¢. When
averaging the result of this readout, and then repeating the experlment for ¢ € [0, 27|,
the resulting probability as a function of ¢ is a sinusoid whose amplitude is |peq| and
phase is Arg[pe,] (see Fig. 14b).

It is useful to define a quantity 3 that scales with |e.|?
B(6) = X/ a;((s,t)ae((s,t)/egdt for e.(t) =0(t)0(1— (t —T))eo'S, (86)
0

which can be numerically computed knowing x and k. Following Eq. (85), one gets

Peg(8, P) oc e~ Finln*RelB(0)] o= Pinl*Im[5(3)] (87)
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When varying w, and P;,'7, measured coherences are in good agreement with (87)
and consistent with - = 1.25 MHz/ /Py, readout 18 where Pi, readout is the power of the
tone used for the qubit readout as described in section 3.2.3. This leads to a number of
photons inside the cavity in the stationary regime n = 1.4 photons when the readout
pulse is turned on.

2.2.5  Other decoherence channels and thermal effects

Up to now, we have described relaxation and dephasing mechanisms for the qubit
due to its coupling to the cavity and the transmission lines. We will see in the next
chapter that these channels can be monitored and that we can use the information
from this detection to recover our knowledge about the qubit state, that is purify the
density matrix. In the ideal situation of perfect monitoring, on a single experiment
and starting from a pure state, the qubit remains in a pure state that depends on
the continuous measurement record. However, in practice, the system state is not
perfectly known and has non-zero entropy. This comes from finite detection efficiency
as described in the next chapter, but also from unknown (and thus unmonitored)
decay and decoherence channels. In practice, in the Lindblad master equation (29),
the experiments are described within the following constraints.

e I'| > 71 purcell: there are extra-relaxation events associated with non radiative
decay of the qubit. This could be due to dielectric losses in the substrate [77],
trapped TLS resonant with the qubit [84, 85], quasi-particles in the supercon-
ducting aluminum thin film or cavity [86, 87, 88]...

« I't > 10 ms~! for aluminum cavities, ry>2 ms~! for copper ones (see Tab. 3).
The qubit is coupled to unknown hot baths that induce thermal excitation. This
could be due to poor thermalization of the substrate phonons or of the systems
responsible for cavity losses, or high frequency radiations coming down the control
lines and creating "hot" quasi particles [89]. Note that these excitation rates
increase when the cavity surface is not properly etched before the cool-down (see
Sec. A.1.3).

e I'y > 60 ms~!, even when the cavity mode is empty!®. This could be due to
residual effect of the charge noise, interaction with non-resonant trapped two-
level systems, flux noise in the effective superconducting loops formed by the
Josephson junction conduction channels, photon shot-noise inside the cavity[77]...
It can be accessed by measuring the coherence decay rate I's during a Ramsey
interference experiment (see Fig 16a) and using the relation I'y = % +Ty.

The first two terms can be determined experimentally by measuring the energy decay
rate I'1 = I') + T’y (Fig. 16a) and the relative occupancy of the ground and excited

17 We limit ourselves to Py, < Pij readout/ 10 in order for the first-order approximation (72) to be valid.
For larger probe powers, I'j and wgiark do not scale perfectly linearly with Py,.

18 The value given in the supplementary material of [81] is erroneous.

19 the dephasing rate also appears to depend strongly on the cavity surface state (see Sec. A.1.3)
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Figure 16: a) Ramsey interference experiment with the qubit used in [81] and Sec. 5.1 (Qubit 1
in Tab. 3). The qubit is first prepared close to the |+), state by applying a fast
7/2]y, pulse to rotate it around the y axis. After a waiting time At, each Pauli op-
erator o;, i = z,y, z is measured. Since readout only allows direct measurement of
0., a fast w/2|, , pulse is applied before the measurement for o, ,. Drive pulses are
slightly detuned from qubit frequency in order to observe Ramsey interference pat-
tern. Fitting the exponential decay of energy ((o;)) we find T; = 26 us. Fitting the
exponential decay of coherences (|(0) +i(oy)|) we find 7> = 11 us. b) Bloch sphere
representation of the state of the qubit as a function of time (encoded in color) dur-
ing the same experiment c¢) Dots: measured amplitude of the cavity transmission
coefficient when varying the probe pulsation wy with a qubit at thermal equilib-
rium (Qubit 2 in Tab.3, used in Sec. 4.2.1 and [82]). Red line: theoretical prediction
adjusting a ground state occupation at equilibrium of p, = 71%. Inset: correspond-
ing magnitude of transmission coefficient. d) Amplitude of the transmitted field at
wq = wr ¢ after a Rabi drive, varying the drive amplitude for another qubit (Qubit 3
in Tab. 3, used in Sec. 7 and [83]). In blue: qubit initially at equilibrium. In red:
initial 7 pulse on |e) < | f). Main panel: quadrature of the field containing the infor-
mation. Dots: experimental data. Line: cosine fit. Oscillation amplitude ratio gives
pg = 58%. Inset: corresponding oscillations in the Fresnel plane.

states at equilibrium, linked by the detailed balance p,I'y = p.I'|. We use two differ-
ent methods to determine this ratio, that are presented on Fig. 16c-d. Note that the
given figures correspond to different qubits and different cavity parameters. In both
cases, we include higher excited states of the anharmonic transmon mode and assume
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a Boltzmann distribution for their occupation: g 2 = 4 Ll = rp = exp— ZLT‘Z L. Note
that it is possible to directly measure the occupation of the second excited state with
a protocol presented in Sec. 6.1.2. In the supplementary material of [81] is presented
a method to give an upper bound on this value in the case of very low occupation
probability (Qubit 1 in Tab. 3). This bound is found in agreement with the Boltzmann

distribution assumption.

In Fig. 16¢, the sample corresponds to Qubit 2 in Tab.3, used in Sec. 4.2.1 and in [82].
With the qubit at equilibrium, the cavity is probed with a low power continuous tone
around its resonance frequency. Several peaks appear, each corresponding to different
occupied qubit levels. Note that contrary to what is predicted by Eq. (60), these peaks
are not all exactly separated by the same amount y. Indeed, due to higher order non
linear terms, cavity pull decreases with the number of excitations in the qubit mode.
Fitting the relative heights of these peaks yields the ratio 1% = rp = 0.29, correspond-
ing to an effective temperature Tog = 200 mK.

In Fig. 16d, the sample corresponds to Qubit 3 in Tab. 3, used in Chap. 7 and [83].
The qubit is resonantly driven with an amplitude ¢4 for a short time Tyve = 50 ns < T7.
We then probe the cavity during a time Tieas < 17 with a tone at w. = w, + x/2,
that is the cavity resonant frequency when the qubit is in |g), and the average complex
amplitude of the transmitted field is recorded. Increasing the drive pulse amplitude
yields characteristic Rabi oscillations. In blue, the qubit is initially at equilibrium
whereas in red we first applied a fast 7 pulse on its second transition to invert the
population of the two first excited states |e) and |f). Calling ¢, (resp. t.) the average
amplitude that would be recorded if the qubit were in |g) (resp. |e)), the average field
amplitude that we measure oscillates between

Doty + Dete +¢ < Ppetg+ pgte + ¢ for the blue curve (88)

Potg +pfte +¢ < ppty+ pgte + ¢ for the red curve

where ¢ and ¢ are two unknown constants, and pg . r are the occupations of the states

lg,e, f) at equilibrium. Then the ratio of the blue and red oscillation amplitudes is

ap] . 1 h o o . .
D = 1 We then find r, =B = 0.40, corresponding to an effective temperature

Teg = 300 mK?20,

This second method was better adapted in that particular experiment. Indeed the
system was in a regime where the anharmonicity of the cavity was not negligible
Xrr ~ k. This implies that to get a similar figure as in ¢, one would have to probe the
cavity with a power corresponding to much less than a photon on average. Otherwise,
the Kerr effect would affect the shape of the peaks in a non trivial way. For a reasonable
averaging time, it becomes difficult to extract the value of rp with that first method.
In [44], Geerlings et al. demonstrate a slightly different method, consisting in comparing
the amplitude of the oscillations in the measurement signal when inducing Rabi oscil-

Note that when neglecting the occupation of the higher excited states at thermal equilibrium, one gets
Pue = %M so that Peq(le)) = 22 %, which is the figure given in [83] and Chap. 7.
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lations between the first and second excited state, starting from thermal equilibrium
or after inverting the occupation of |g) and |e) with a fast m-pulse.
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MEASUREMENT AND QUANTUM TRAJECTORIES

3.1 STOCHASTIC MASTER EQUATIONS
3.1.1  Measurement efficiency - discussion based on the Stern and Gerlach experiment

In the seminal experiment by Stern and Gerlach in 1922, the spin of silver atoms is
measured along a chosen direction by sending these atoms through a medium with a
magnetic field gradient [90]. Under this field, the spin degree of freedom gets entangled
to the spatial one that acts as a pointer. Then, by detecting the position of the atom,
the oz component of the spin is measured strongly, which means that it gets projected.
Thus, if one prepares the spins in a pure state along ox' and for a sufficiently large
field gradient, one gets two separated distributions for the detected positions, each
associated with an eigenvalue of oz. (see Fig. 17a).

The extension of these distributions has two origins. An irreducible component is the
vacuum fluctuations dzg = zzpr of the atom position. Imperfections in the detection
setup (atoms in a thermal state for position, fluctuations of the magnetic field, im-
precision of the detection panel...) adds up an extra classical noise to this uncertainty
so that 622 = 5,222 + §2%. This noise can be expressed in terms of detection efficiency

P 2
n= ;7‘5. One can then define a dephasing rate I'; as the inverse of the flight time that

is needed to get two resolved spatial distributions for the detected atom positions in
the ideal case n = 1 [11]. It corresponds to the measurement rate for an observer not
subject to classical noise. The rate at which the observer acquires information on the
spin state is in general nl'y. We can then identify several regimes when comparing these
rates to the decoherence rate I's that is associated with other measurements performed
by an unmonitored environment [91], and to the measurement time Teas.

o 'y < T3 the spin cannot be measured before it loses its original coherences.
1

Tmeas
corresponding to z = £1 are not distinguishable (see Fig. 17¢) in one shot. The

> I'y > I'y: the measurement is weak, meaning that the pointer states

original spin state is affected but not fully projected.

o« Iy > ﬁ > nly > T: the spin state is fully collapsed onto |+ z) but the
observer cannot know the outcome for sure (see Fig. 17b). This is a strong but
low fidelity readout.

o nly > ﬁm > I'y: strong single-shot readout. This is the regime reached by Stern
and Gerlach, even though their measurement efficiency was very low.

1 This was not the case for the experiment by Stern and Gerlach, in which the spins were initially in a
maximally mixed state corresponding to thermal equilibrium
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Figure 17: a) Thought experiment inspired by the one of Stern and Gerlach [90]. An atom pre-
pared in a coherent superposition of | 1) and | |) states is sent through a medium
with a magnetic field gradient (in blue). The atom is then deflected upward or down-
ward according to its spin state. The vertical position of the atom is detected on
a screen (in gray). When repeating the experiment, a double peak distribution ap-
pears (in brown). The width of each peak corresponds to the total noise on the atom
position. The incompressible zero point fluctuations are shown as green gaussians.
If the two peaks do not overlap (as represented here), the measurement of the spin
state is projective and single-shot. Dotted lines: distributions when the atoms are
initially prepared in |g) or |e). b) Same experiment with a weaker magnetic gradient.
If the brown peaks overlap, the experimenter cannot distinguish between |e) and
|g), but if the separation is larger than the zero point fluctuations, the spin is still
projected. For the experimenter, the spin is in a mixed state. ¢) For a perfect mea-
surement (n = 1), the uncertainty on the atom position only comes from zero point
fluctuations. If the magnetic gradient is weak enough that the two peaks overlap,
the measurement is not projective, but the state remains pure.

Qubit detectors with efficiency close to 1 have only recently been developed [11], which
has permitted to investigate the regime of weak measurement. The back action of the
measurement induces a non trivial stochastic evolution of the system but, a posteri-
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ori, the experimenter can use the measurement outcome to reconstruct the quantum
evolution so that purity remains of order 1. The successive states of the system in the
Hilbert space during a single experiment form a quantum trajectory. In 2008, Katz et
al. [8] showed that it was possible to cancel the effect of a first partial measurement
by a second "symmetric" measurement giving the same outcome. In 2011, Vijay et al.
[22] observed quantum jumps of a superconducting qubit, which correspond to quan-
tum trajectories in the strong measurement limit. In 2013, Murch et al. [92] detected
quantum trajectories corresponding to a weak and continuous measurement with ho-
modyne detection (see Sec. 3.2.2). A similar experiment was performed by Hatridge
et al. [93] with heterodyne detection (see Sec. 3.2.3) while varying the strength of the
measurement, illustrating the fact that a strong projective measurement is ultimately
an integrated continuous one.

We will now derive the general formalism that describes the evolution of a qubit
state under monitoring, which is done through a Stochastic Master Equation (SME).

3.1.2  SME with a jump detector

In Eq. (27) we have described the evolution of a qubit under the action of a set of jump
operators. In this section, we will describe the evolution of a system for which we know
when these jumps occur. The jumps correspond to a measurement as in Eq. (18) and
Eq. (19), and we assume that the result of this measurement is known. The derivation
presented here follows the notes by D. Steck [94].

Starting from a simplified version of (24), we consider a single jump operator L.
Then, we need only two Kraus operators My = 1 — i%dt — %LLTdt and M; = V/dtL.
If these jumps are perfectly detected?, considering the evolution of the density matrix
between ¢ and ¢t + dt¢ as in Eq. (20) and Eq. (19),

¢ if no jump occurred, which happens with probability pg = M) ng =1—-dt(L'L),
developing to the first order in dt,
MopM{

) 1
dpo = - —%dt[H, pl = dH{LIL —(LTL), p} (89)
Po

e if a jump occured, which happens with probability p; = M; leT = dt(LTL)

MypM{  LpL'
dpy = = — . 90

Denoting by dN; the number of jumps detected during dt3, for a small enough time
step, ANy is either 0 or 1, with F(dN;) = (LTL)dt, and the evolution of the density
matrix reads

dp = (1 —dNy)dpo + dNidpy = dpg + dNdpy. (91)

2 when L = ,/y0—, this corresponds to a perfect photocounter at the output of the cavity
3 dN; is a Poisson process.
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The last equality holds because dpg is of order d¢t when dp; is of order 1. Then, we get

i 1 LpLt
dp = ——dt[H, p| — ~dt{LTL — (LTL dN, ( - ) 2
which can be written in a more common form
. i dNy LpLt )
= ——[H DIL — (L)) (5 —p).
p ==l ol+ Dl + (G- ') ) (5 (93)

The last term in this equation, proportional to the deviation of the detector from its
expected average value is called actuation. It compensates for the purity lost due to
from the Lindblad term. Starting from a pure state, the qubit remains in a pure state.
This means that if we monitor every interaction of the qubit with its environment,
we know its state perfectly. However, this state depends on the random detector out-
come, which cannot be predicted a priori. When averaging the detected trajectories
over many experiments, the actuation term averages out to 0, and we get back the
evolution predicted by the Lindblad master equation.

Let us consider two possible cases for L. For simplicity, we consider a non driven
qubit, whose hamiltonian in the frame rotating at w, reads H=0.

o |L= %‘ﬁaz , L represents a dephasing jump. Then Eq. (92) simplifies into

dp = dNy (azpaz — p). (94)

The state does not change until a jump is detected. In that case, its phase is ro-
tated by 7. Since, in the Markov approximation, the environment has no memory
of the past jumps and the qubit remains in a state which has the same symmetry
as the initial one, the jump rate is constant and the number of jumps after time
t follows a Poissonian law of parameter %4’15. Then, considering that after an even
number of jumps n, the system gets back its initial phase whereas it takes a
minus sign for odd numbers of jump, as a mean, its coherences read

Gy

nl = peg(o)eXp(_%ﬁt)' (95)

peg(t) = peg (D)exp(—24) (1)

n

Thus, its coherences decay with a rate vy.

e | L =,/y0_| L represents a relaxation jump. Then dp; = |g)(g| — p. Thus, if a

jump occurs, the qubit is projected onto the ground state. The trajectory when
no jump is detected is non-trivial. In terms of Bloch coordinates, it reads:

o = Jax
Ylo 32y (96)
o = 30—

We can check that purity remains 1 when the system starts in a pure state (but
is not constant otherwise). The steady states are |g)(g| (which is stable) and
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le)(e| (unstable). Any other state will eventually collapse onto the ground state,
even in the absence of a jump! This can be understood with a simple Bayesian
argument: detecting no jump is more probable if the qubit is in the ground state
so that, starting from a symmetric superposition, detecting no jump implies that
the qubit is more probably in |g). In this sense, the absence of a jump event is
in fact a signal itself.

In this formalism, finite detection efficiency means that only a fraction 7 of the jumps
are detected. This changes the statistics of d/V; in the actuation term as

i an™ iy, LoLf

o[ H, p] + DILlp+ (= = (L' L) (v — )y (97)

¢ (7L

where 7 is the detector efficiency with n € [0,1], and E[dNt(n)] =n(LTL).

In this section, we described the behavior of a monitored qubit with a particular

detector, which is a jump detector. In the case of o_ jumps, it can be realized by
collecting the field leaking out of the cavity and sending it to a photo-counter. However,
such a diode-like element with good efficiency does not exist yet in the microwave
range even though encouraging experiments have been performed [95, 96] and new
detection schemes recently proposed [97]. In Appendix C, we propose a Stochastic
Master Equation associated to this type of detection.
In the rest of this thesis, we focus on heterodyne detection of the field, which can be
performed using linear amplifiers. We will now derive and use a SME formalism for
linear detectors in two cases. First when detecting the field at the output port of the
cavity at w,. This will enable us to perform non-destructive readout of the qubit. Then
we will describe the detection of the field around the qubit resonance frequency, which
allows us to unravel the relaxation jumps of the qubit using the information contained
in the field that leaks out in the process.

3.2 DISPERSIVE MEASUREMENT
3.2.1 Linear detection

Non destructive measurement of the oy operator of the qubit is performed using the
dispersive interaction of the qubit and cavity. In the hamiltonian (80), the dispersive
term —h%aTaaz can be seen as a shift of the cavity mode resonance frequency depend-
ing on the qubit state. When probing the cavity around its resonance frequency, the
transmitted field aq,: thus depends on the qubit state. We now focus on the case of
a probe field at w,. In Fig. 18b, we represent the states of this field corresponding to
a qubit in |g) or |e), in the Fresnel plane rotating at w, and when driving the cavity
at resonance. Measuring the observable Im[ay¢| allows one to distinguish between the
two states of the qubit as depicted on Fig. 18c. The detection of Re[ayy:] does not
provide information about oz, but as we will see in the next section, it is associated
with a back action on the qubit state so that, if we dismiss the measurement outcome,
it leads to dephasing.
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Figure 18: a) Measured phase of the transmitted field in the experiment described in 3.2.3,
when the qubit is in |g) (blue) or |e) (red). b) Fresnel plane representation (plane
rotating at w,) of the calculated transmitted field at w, (same color code as in
a). Filled circles represent the quantum uncertainty of the field. ¢) corresponding
distributions of the integrated homodyne detection outputs. When the phase of the
detection is § = /2, the observer can distinguish partially between |g) and |e)
and gets a weak measurement of oz. When § = 0, the observer cannot distinguish
between |g) and |e), but he gets information about the number of photons in the
field, and thus learns about the shifts in the qubit phase induced by measurement
back action.
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The detection of one of the quadratures of a,, is called a homodyne detection. For
a classical signal, homodyne detection of a microwave field can be performed using a
commercial mizer that multiplies the signal s(¢) = I cosw,t + @ sinw,t by a strong car-
rier B cosw,t + § provided by a Local Oscillator (LO) at the same frequency. Averaging
out the fast oscillating components, the resulting signal reads u o< I cosd + @ sind, so
that by varying J, one can choose the detected quadrature.
Heterodyne detection consists in detecting simultaneously both quadratures. It is per-
formed by an IQ mizer that splits the signal and mixes one part with the LO, and
another with the LO dephased by 7/2. Note that in our setup, heterodyne detection
is performed by another technique, mixing the signal with a slightly detuned LO at
wy + wp. The output signal u(t) o I coswpt + @ sinwpt oscillates at small enough fre-
quency that it can be detected and digitized, leading to a simultaneous measurement
of both I and @) by numerical demodulation.

Mixers are based on diodes, which provide the non-linearity needed for the multipli-
cation. However, since these diodes are dissipative, noise is added to the measurement.
The field aqy; being very small, diode based mixers cannot be directly used to perform
an efficient detection. A non-linear, non-dissipative element, is thus needed to perform
quantum limited measurement[11]. For microwave signals, Josephson junctions provide
such an element. The field a,,; can be linearly amplified with no noise added, and the
output signal can be detected with commercial mixers at room temperature?.

The no-cloning thorem[98] stating that a quantum state cannot be copied, one
needs to specify what quantum limited amplification means. Following the results of
Sec. 2.1.3.1, we define it as an operation that does not increase the entropy of the

The Josephson device can also be seen as performing the detection by itself and its output as a
classical signal. From an informational point of view, the exact position of the limit between quantum
and classical worlds is irrelevant since the effect on the qubit state is the same in both cases.
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system. Thus, quantum limited amplification is a hamiltonian evolution. In the fol-
lowing sections, we will describe the physical implementations of such amplifiers and
the stochastic master equations ruling the evolution of the qubit under such detections.

3.2.2  Homodyne detection

Before describing the heterodyne detection that is used in the experiments reported in
this thesis, it is instructive to describe homodyne detection. A Josephson junction based
linear amplifier commonly used for homodyne detection is the so-called Josephson
Parametric Amplifier (JPA)[99, 100, 101]. We give here a brief description of its working
principle. Alternative designs of the JPA and many other degenerate amplifiers can be
used [102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114].

The field that we want to amplify is directed toward a microwave resonator at w,, in
which one or several Josephson junctions have been embedded so as to provide some
non linearity. Its dynamics is governed by a duffing hamiltonian that reads

Hpu = hw, ¢le+ hkelclee. (98)

When pumped on resonance with a strong coherent tone of amplitude pg on top of which
the signal of interest dc is added, in the limit pg > 4/(dcfde), it can be approximated
as

Hpug = hlw, + 2k|po|?)dctde + hk(p2oct? + pi2oc?). (99)

The input and output traveling wave operators c¢;, and cu,; are linked to ¢ = pg + dc
by the input/output relation (47)

VRIJPAC = Cin + Cout- (100)

When considering the components dc¢;, and dcyyy of these traveling waves associated
with the signal only, the new input/output relation reads [11]

Sout = VGicin + VG —16c],. (101)

In this expression, G and 0 can be adjusted by pg and depend on kjps. Due to the
pumped non-linearity in Hpug, the signal is squeezed along a direction in the Fresnel
plane that is set by the pump phase (see Fig. 19). Thus, amplification of one quadrature
of the signal is achieved at the expense of the other quadrature, which is de-amplified.
In practice, the large constant pump tone can be removed from the outgoing field by
interferometry.

If the signal is the field ay, of Fig. 18b and for large gain G, the reflected signal
from the JPA® reads

dCout ~ \/a(aout + ei6alut)~ (102)

5 A circulator is used to direct the amplified field away from the cavity into output lines.
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Thus, the JPA is implementing homodyne detection. The detected quadrature is cho-
sen via the pump phase. However, the output of the JPA is not directly the average
value (Re[aput]) or (Im[apyu]), but is subject to quantum fluctuations. After further
amplification and renormalization, when integrated over a time step dt®, it reads (in
the case where Im[ay,;] is amplified)[24]

J(g:ﬂ-/g(t)dt — \fn(ZIm[aoutht + th, (103)

where 1 < 1 is the detection efficiency. The ensemble of values taken by Js_./2 on a
given experiment is called a measurement record. In this expression, W, is a Wiener
process or idealized random walk accounting for the quantum fluctuations of pg. It
verifies

dW, = 0

(104)

Before describing the stochastic master equations associated with these measurements,
let us compute the measurement rate I',, associated with the homodyne detection of
Im[ayyt]. In the absence of input drive through the output port of the cavity, agy: is
linked to the intra cavity field a by (aput) = v/k(a) where k is the damping rate of the
cavity mode. Moreover, from Eq. (51), when driving the cavity at resonance, we have

2

(Im[a]) = (0.)v/n sing = (o) X (105)

n—2=

k2 + x?
where n is the mean number of photons in the cavity, and 6 the angle between o, and
ag (see Fig. 19). Thus, we can rewrite Eq. (103) as

2

Js—r/2(t)dt = 2(c,) nn( "Xt + dw (106)

K2+ Xx%)
Following Clerk et al. in [11], we define the measurement rate from the signal to noise
ratio of this signal integrated from 0 to t as

diflSNR - kx>

| S .
2t n(/@2 +x?)

(107)

We can check that I',,, = nI'g, where I'y is the dephasing rate given in Eq. (85). In the
case of perfect detection, we acquire information at the same rate that the qubit is
dephased.

The measurement record can be written as *

Js—ry2(t)dt = /2T, (0 7)dt + AW (108)

We now present the Stochastic Master equation associated with each homodyne de-
tection, which is the proper way to actuate our knowledge of the qubit state using

in the limit dt > 1/ws

The global sign of J(¢), just as the scaling factor in experimental data, is not relevant for the SME.
In practice, it is set by the numerical demodulation performed by the acquisition board. However,
changing the sign of dW; has a physical significance and must be taken into account in the SME.
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Figure 19: a) Homodyne detection of the transmitted field with a JPA for a qubit initially
in 1/v/2(|g) + |€)). aout is mixed with a strong pump tone at w, in a non linear
resonator. The output field dcyy; is squeezed along a direction that depends of
the phase § of the pump. After further amplification, the signal is mixed with a
commercial mixer at room temperature and digitized. According to the detected
quadrature, the qubit state diffuses along a meridian of the Bloch sphere (6 = 7/2)
or along the equator (6 = 0).

the measurement records. A derivation from the SME of the cavity mode and using a
Jayne-Cummings model can be found in [115]. We propose in Appendix C a derivation
starting from the SME associated with a detection with a photocounter, and using a
model of homodyne detection borrowed from quantum optics, which is equivalent to
the one described above.

If |6 = 5|, the SME reads®

; T
dp = —%dt[H,p] + ?ddtp[az]p-i- dW; v/ QFmM[UZ]Pa (109)

where the measurement super operator M acts on p as

Midp = 5 (e~ (@)p+ ol — () | (110)

8 For simplicity, we do not include the terms associated with other decoherence channels.
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This equation leads to a diffusive behavior for the qubit state which moves stochasti-
cally along a meridian of the Bloch sphere according to the value of W; (see Fig. 19).
Indeed, in terms of Bloch coordinates, the actuation term leads to

de = —dWy/2l,z2x
dy = —dW/2Tzy : (111)

dz = +dWi2T,,(1 - 22)

As an example, starting at time ¢ from a state verifying y = 0, let us compute the
variation of the squared norm of the Bloch vector using It6 rules. We have dy = 0 and
including the contribution of the damping super operator,

d(2? + 2%) = 2T ga?dt + 22T, 2(1 — 2% — 22) AW, + 2T, (1 — 22)? + 222?)dt. (112)
Ifn=1,T, =T, so that
d(z? 4 2%) = 2(1 — 22 — 22) (V2T 2dW; + I, dt). (113)

In this case, as a mean, the Bloch vector norm increases until it reaches the surface
of the Bloch sphere, that is a pure state. In particular, a pure state remains pure at
all time. When 7 < 1, the dephasing term is stronger than the actuation term, and
the state remains inside the sphere, except when z = £1, which is a stable point for
Eq. (111) and for the Lindblad super operator.

More generally, after a typical time i, the state has reached a pole of the Bloch
sphere and stays there [21]. It thus corresponds to a non-destructive measurement of
the oz operator of the qubit. As stated previously, the measurement record, that is
the normalized signal at the output of the detection setup, is J% (t) with

Jx=(t)dt = 2/mrnsing(oz)dt +dW,

2 (114)
= vV 2Fm <Uz>dt + th

Note that in practice, this record is always scaled by a factor depending on the pump
tone for the JPA, the attenuation of the lines and other uncontrolled factors.

If , the SME reads

dp = —4di[H, p] + §dtD[oz]p — dW, V2T, Mlioz]p

‘ | (115)
— —1dt[H,p] + $atDo]p — 1AWiv/2loz.p].

This equation also leads to a diffusive behavior for the qubit state (see Fig. 19), but
along the equator of the Bloch sphere. Indeed, during dt, the evolution is governed
by the stochastic hamiltonian H — \/1"77 ho,dWy. Thus, the qubit frequency is now a
stochastic parameter so that in the frame rotating at w,, its phase shifts randomly. If
the measurement record is dismissed, after a typical time 1/T4, the initial phase of the
qubit is lost. This phenomenon corresponds to the back action of the measurement of
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oyz. However, in the present case, the quadrature of the field that contains the infor-
mation about this back action is measured so that the observer can a posteriori know
its effect and the state remains pure for n = 1. Recently, De Lange et al. showed that
the phase shifts could even be reversed by feedback [116].

In this case, and with the same normalization as in Eq. (114), the measurement
record is Jy(t) with

0
Jo(t)dt = 2y/nkn cos 5dt+th' (116)

The behavior of a qubit under these two homodyne measurements has been beautifully
illustrated by an experiment in the Siddiqi group at Berkeley [92].

3.2.3 Heterodyne measurement

As stated previously, heterodyne detection can be understood as a simultaneous homo-
dyne detection of both quadratures of the field [117]. Since the observables Re[ayy] and
Im[ayyt] associated with these quadratures do not commute, one needs to conceptually
split the signal in two parts, each one being detected separately. In that sense, a hetero-
dyne detection with efficiency n of a jump operator L is equivalent to 2 simultaneous
homodyne detections, with the same efficiency, of the jumps

_ 1
Lro= 5t (117)
Lo = 4L

If n = 1, any pure state remains pure under perfect heterodyne detection if one uses all
the information at his disposal (see [118] for theory and [93] for experimental demon-
stration).

In the experiments described in this thesis, heterodyne detection is implemented by
amplifying the output field from the cavity with a quantum limited phase preserving
parametric amplifier known as the Josephson Parametric Converter (JPC) [19, 119, 20].
We will not describe its working details here. A complete description can be found in
Emmanuel Flurin’s PhD thesis [120]. Note however that its working principle is similar
to the one of phase sensitive amplifiers. Quantum limited amplification of the signal
mode a is achieved by the necessary combination with an auxiliary mode b, usually
referred to as the idler, and a pump. When wpump = Wsignal + Widler, the JPC per-
forms amplification of both quadratures of the signal mode’. When tracing out the
idler mode, each quadrature of the amplified signal contains extra noise coming from
the idler, or equivalently in the SME, the mean value of the measurement records are
divided by v/2 following Eq. (117) compared to Eqgs. (114, 116). However, this extra
quantum noise is not detrimental to the purity of the state when solving the SME [118].

The unitary evolution during the amplification corresponds to squeezing in the phase space of the
composite system made of signal and idler [11, 121], so that the overall phase space volume is preserved
in agreement with Liouville theorem for a unitary evolution.
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The measurement record is now complex and reads

0 0
J(t)dt = \/2nkn cos §dt +dWy1 + i(\/Qn/in sin §dt<az> + th,Q), (118)

where dW; 1 and dW; o are two independent Wiener processes. The SME can be easily
deduced from the ones corresponding to homodyne detections. It reads'®

i r .
dp = —%dt[H, p]+ ?ddtD[oz]p—F dWiav/nLaMloz]lp — AW/l aMlioz]p. (119)

Note that in this expression, we have avoided using I',,. Indeed, the definition of the
measurement rate can be ambiguous, since information is extracted from both quadra-
tures of the measurement field. If considering the measurement of (o) only, the mea-
surement rate reads nl'y/2, twice smaller than for homodyne detection of Im|[agyt].

3.2.3.1  Single-shot Non Demolition readout

In the previous section, we saw that heterodyne detection provides a continuous mea-
surement scheme of the oz operator. In the present section, we describe how this
measurement can be used as a high-fidelity projective quantum non-demolition (QND)
readout and how to calibrate the efficiency 7 of our detection chain.

On the experiment presented on Fig. 20a, the parameters of the qubit and cavity are
the same as those in 2.2.4 and [81], corresponding to Qubit 1 in Tab. 3. Then, starting
from an unknown state and not driving the qubit (H = 0 in the frame rotating at
wq), we probe the cavity in transmission with a tone at w, that leads to a stationary
number of photons calibrated to be n = 1.4 photons. This stationary regime is reached
in 1/k ~ 90 ns and leads to a dephasing rate (see Eq. (85))

X2

I'yj=2n—F——
d n/{(/i2+x2)

~ 1/100 ns. (120)
Thus after a time t.o; = 240 ns, we consider that stationary regime is reached for the
cavity field and the qubit has been projected to either |g) or |e), so that, for a single
experiment, (o7 (teon)) = £1. We then integrate the readout signal a.J(t) (« being
an unknown proportionality factor depending on uncontrolled parameters such as the
lines attenuation) during Tineas = 960 ns. Note that teon + Tmeas < 11 = 28 us so that
the state of the qubit does not evolve during measurement.

The integrated measurement records over many experiments have a mean value

23 co Tmeas
@ = ot g ()dt (121)
= ay/2nkn(cos % =+ isin g)TmeaS,
and a variance
Var(Re[a]) = Var(Im[a]) = a*Tipeas- (122)

To highlight the equivalence between a heterodyne detection and two homodyne ones, one can note
that D[oz] = D[%} + D[i%}
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Figure 20: a) Simplified experimental setup. Qubit is prepared with pulses at w, and readout
at wy. These pulses are generated by mixing a LO detuned by a small frequency
wp/2m = 62.5 MHz with a square waveform oscillating at wy. This LO is also
used for heterodyne detection: both quadratures of the output field are amplified
before down-conversion to wy, by mixing it with the LO. The resulting signal is then
digitized and numerically demodulated to recover Rela] and Im[a] up to a constant
pre factor a. By adjusting the phase of the arbitrary waveform, one can phase shift
a so that only the imaginary part of the field contains information about the qubit
state. b) Expected complex amplitude of the integrated signal a (see Eq. (121)).
The mean value @ is represented as the rod of a lollypop for both qubit states, the
fluctuations by the purple disks. These fluctuations have an irreducible component
originating from the non commutativity of Re[a] and Im[a] (Heisenberg principle)
and which is represented, for these coherent fields, by the brown and blue circles.
The limited measurement efficiency (7 = 67%) only slightly increases the observed

deviations by n=1/2 —1 = 22 %. Here we have set a = \/%I,{/TmeaLS so that a
indeed coincides with the intra-field cavity amplitude. c,d) Probability density with
the JPC OFF (c) and ON (d), extracted from 10% measurement outcomes when the
qubit is prepared in states |g) or |e) with equal probability. The halved probability
density corresponding to the preparation of |g) only (resp. |e)) is plotted in blue
(red) together with the projections along the real and imaginary axes. Turning on
the pump of the amplifier (d) results in a great enhancement of the measurement

fidelity compared to the case when it if turned off (c).
Thus, if \/2nkn sin ngeaS > \/Teas, which is equivalent to Tineas > 1/nIg, one can
use the criterion

Im[a] < 0 — qubit in |g) (123)

Im[a] > 0 — qubit in |e)
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This measurement is always projective since qubit state is collapsed to an eigenstate,
but its fidelity depends on the distinguishability between the distributions of a accord-
ing to the qubit state, and thus on 7.

In fact we empirically chose Tineas so that the fidelity of the readout beyond re-
laxation errors is 99.7 %. This can be estimated by fitting the negative part of the
probability distribution of the measured Im[a] values when the qubit is in |g) (blue
curve on the projection of Fig 20d) with a gaussian. The overlap of this gaussian with
the positive part of the axis gives the probability of error during the detection.

From this gaussian deviation and mean (signal to noise ratio), we can also estimate
7. Indeed, we have
Var(Rela]) + Var(Im[a]) 1

= 124
|a|? KT neas (124)

which is independent of o. We then find that n = 67 %.

Let us comment on this readout performances.

e The gain of the parametric amplifier is set to G > 20 dB. Since the noise temper-
ature of the following HEMT amplifier is about 10K'!, that is ~ 25 photons at
8 GHz, it ensures that this noise is below 0.25 photon referenced to the output
of the cavity. Indeed, the signal to noise ratio at the end of the detection setup

reads SNR = , where GG; and n; are the gain and added

Stm B+t
noise photons by the i** amplifier. In terms of measurement efficiency,

Nt =0t (G T (3GhiGr) T (125)
and N2 = NHEMT "~ 0.5 %.

o We do not use the real part of the measurement record (see Eq.(118)) to actuate
the density matrix of the qubit according to Eq.(119). Thus our measurement
scheme is equivalent to a homodyne measurement of efficiency n/2, so that the
number of added photons by the JPC is ny = 1/2 at minimum. However, in the
convention chosen here, an ideal amplifier corresponds to n = 1 since the factor
1/2 has already been taken into account in Eq. (119).

o The finite efficiency is partly due to the leak through the unmonitored input
port and losses in the cavity. Indeed, not all of the probing photons are collected
through the output port so that we can write n = mndetector' This leads
t0 Ndetector = 82 %, which characterizes the efficiency of the output field detector
only. In an ideal setup, we would get 7 = 1 but 1 dB of loss in the components

between the cavity output and the JPC are sufficient to explain this figure.

e A faster readout could in principle be achieved by increasing the number of
photons n in the cavity in the stationary regime so as to avoid relaxation or

11 This effective temperature takes into account the losses in the lines between the JPC and the HEMT
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excitation during readout. Indeed, in the experiment, I'|(tcon + Timeas) = 4 %
when the qubit is in |e), leading roughly to an added 2 % of readout errors, and
It (teoll + Tmeas) = 0.1 % when the qubit is in |g), leading to negligible readout
errors. However the dispersive regime is valid for n < 5 (Eq. (78)). In practice,
n = 1.4 was empirically set so that readout induced qubit flips happen less than
0.2 % of the time. Within this limit, our readout remains single shot and QND.

3.2.3.2  Quantum jumps
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Figure 21: Over 10° experiments, the qubit is prepared in |e) and then continuously monitored
for 200 ps. a) The imaginary part of the measurement record is integrated over bins
of 960 ns, which is the time needed for a high-fidelity readout. The resulting signal
is then well above 0 until it switches abruptly to negative values when the qubit
relaxes. A typical trajectory and an unusually long-lived excitation of the qubit are
presented in orange insets. Histogram of the dates of jumps follows an exponential
law of rate I'j. b) For some trajectories, the qubit then gets thermally re-excited
after the jump down (blue inset). The probability of not jumping back up after time
Tgown is supposed to follow an exponential law of rate I'y.

This non demolition readout allows us to observe quantum jumps [22]. Quantum
jumps appear when measuring a system strongly enough so that the corresponding
measurement rate [',, is much larger than the typical rate of non-coherent processes
changing its state'?. In our case, this corresponds to I',;, 77 > 1. In that case and on
a time scale larger than 1/T,,, qubit state is forced to be |g) or |e) but relaxation or
excitation events will occasionally flip this state.

Observation of quantum jumps is presented on Fig. 21a. The qubit is initially pre-
pared in |e) and is then left undriven while the cavity contains a readout field with
the same characteristics as the one described in the previous section. The value of the
imaginary part of the measurement record corresponding to Eq.(118) is represented
as a function of time. On a typical trajectory, the signal remains well above 0 (qubit
in |e)) for about 1/T'| and then abruptly becomes negative when the qubit relaxes.
However, on some trajectories such as the one presented on Fig. 21b, the qubit can
remain in |e) for much longer. When constructing the histogram of these jumps dates,

12 coherent departure from a measured state is suppressed due to Zeno effect
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one recovers an exponential decay with a rate I'j . This is another proof of the QNDness
of the readout. Jumps up from |g) to |e) also occur, but with a much smaller rate I'y.

Here, relaxation appears to be an abrupt event, but we will see in 3.4 that this is in
fact dependent on the detection scheme that is used. In the present experiment, it is
in fact our knowledge of the qubit that evolves on a short time scale 1/T,,.

3.3 HIGH-POWER READOUT

In the experiment described in 3.2.3, the parameters of the system were chosen in or-
der to maximize measurement rate with respect to relaxation rate so that I'y, /T’y > 1.
Namely, we set x ~ k. However, relaxation during the measurement limits this readout
fidelity (~ 4 % errors when the qubit is in |e)). Moreover, for some experiments such
as the one described in 7, parameters are constrained so that such a fidelity cannot be
obtained via QND dispersive readout. When the readout does not need to be QND,
another scheme designed by Reed et al. [122] allows for high-fidelity projective readout,
particularly in the regime where x > k. It makes use of the non-trivial regime where
the cavity is probed at high power. In this section, we will describe qualitatively this
regime and show how it can be used for qubit readout. A detailed theoretical descrip-
tion can be found in [123].

The dispersive hamiltonian H = 3 wpn, + % Y. Xpp'Mpny found through black-
p=Tyq pp'=T9
box quantization of the circuit (see Sec. 2.2.3.2) and in which the cavity mode inherits

a small constant anharmonicity y,, from its hybridization with the qubit is only valid
in the dispersive limit n < n.. When cranking up probe power, cavity resonance fre-
quency is shifted by an amount ;.- per photon, but this anharmonicity decreases down
to 0 for large powers [124]. In this regime, cavity resonance frequency is the one of the
bare cavity mode fqre'>. A map showing cavity transmission coefficient as a function of
probe power and frequency is presented on Fig. 22a. At low power (n ~ 1 photon) the
system behavior is well captured by the dispersive hamiltonian (60). Several resonances
appear separated by y due to thermal excitation of the qubit. These frequencies are
shifted linearly with increasing power. At large powers, only one resonance remains,
at fpare- The physics in between these two limits is still poorly understood. Cavity
transmission displays complex pattern as a function of probe frequency probably due
to interferences between bistable solutions.

When probing the cavity at fpe.e, transmission is very low at low power but when ap-
proaching the region circled in green, the response displays a strong non-linearity and
the cavity switches abruptly to a bright state (high transmission). The probe power for
which the cavity switches depends on the qubit state. This can be simply understood
considering that when in |e), the qubit shifts the cavity low power resonance frequency
by x/2m toward fpere. Thus, the lorentzian filter in Eq. (51) is less strong and intra
cavity field is stronger for a given probe power. The cavity switching probability as a

13 but is still affected by the sapphire chip and the antennas
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Figure 22: a) Magnitude of the cavity transmission coefficient encoded in color as a function
of probe power and frequency, when driving with a continuous tone. We normalize
the signal by the bright state transmission. Readout frequency is frpr = fpare
(black line). Readout power is chosen within the region materialized by a green
circle. b) Cavity response to pulsed driving (pulse length: is 800 ns). We represent
the switching probability as a function of probe pulse amplitude for a qubit at
thermal equilibrium (blue) or after a 7 pulse (red). Switching detection criterion
is chosen as in c. Plain lines: cavity initially empty. Dotted lines: cavity containing
initially about 5 photons. Readout power Prppr is chosen to maximize contrast.
¢) Integrated output signal represented in the Fresnel plane rotating at fpq.. over
1000 experiments for a qubit at thermal equilibrium (blue) and after a 7 pulse (red).
For long enough integration time, two well separated distributions appear. Switching
detection threshold is chosen in between. Correcting for thermal population (Qubit 2
in Tab.3, used in Sec. 4.2.1 and [82]), these distributions are consistent with a cavity
that is never switching when the qubit is in state |g), and switching in 94 % of the
experiments when the qubit is in an excited state (6 % false negatives).

function of the probe pulse amplitude displays a characteristic S-shape (Fig. 22b) that
is therefore shifted according to the qubit state. In practice, we choose the amplitude
that maximizes the contrast between ground and excited qubit state response.

An advantage of this method is that once the cavity has switched to its bright state,
it stays there as long as the field energy has not decreased beyond a given threshold.
Thus, we can map the qubit state onto the cavity state and then integrate the output
signal for an indefinite amount of time as long as probe power is not turned off. Signal
to noise ratio can thus be increased at will so that quantum limited amplification chain
is not needed. Errors are then dominated by spurious switching of the cavity but prob-
abilities as low as 2 % of false positives and false negatives have been measured in some
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cases. In the experiment corresponding to Fig. 22¢, we calibrated 6% of false negatives
and no measurable false positive. The origin of these errors needs more investigation.
Possible explanations include quasi-particles mediated excitations of the qubit, large
probe field fluctuations...

Another advantage of this readout method is that its results depend only weakly on
the prior state of the cavity, as long as the photon number is low. If ny,, < &, low
power resonance frequency does not depend on n and switching probability is not af-
fected by these photons . On Fig. 22b, plain lines correspond to a cavity mode initially
empty of photons, and dotted lines correspond to a intra cavity field of ~ 5 photons
before readout. The cavity responses are very similar. Therefore, it is not needed to
wait for the cavity to empty before reading out the state of the qubit, which would
limit single-shot readout fidelity as it allows for relaxation of the qubit!'4.

Beside being destructive for the qubit, the main drawback of this method is that the
used power is so large (~ 1.5 x 10° photons on average in the cavity if the excitation
were permanent) that it creates quasi-particles in the superconducting aluminum of the
cavity or antennas. The relaxation of these quasi-particles has been studied in [126] but
the corresponding time constant is not well understood. Their effect is to limit the life
time 77 of the qubit and even more drastically the coherence time T5. Moreover, qubit
resonance frequency sometimes displays low frequency fluctuations, which cannot be
described within the Lindblad model. This limits the repetition rate of the experiment.
We found an important variation in the relaxation rate of these quasi-particles (from a
few us up to several ms) from a qubit design to another, but also with the same system
after cycling it above the critical temperature of superconducting aluminum. This is
consistent with recent observation of quasi-particles induced noise suppression due to
vortices in aluminum thin films [127, 128]. These vortices are created when cooling
down the sample under constant magnetic field and act as quasi-particle traps.

In practice, high fidelity single-shot readout is not always needed. When only oc-
cupation probability of the excited state as a mean is needed, a compromise can be
found between the experiment repetition rate and the readout fidelity by lowering the
readout pulse power. In the intermediate region between high and low power regimes
for the cavity, we then adjust readout power and frequency to empirically maximize
the readout contrast.

3.4 MONITORING THE FLUORESCENCE

The measurement scheme that was described in 3.2.3 uses the dispersive interaction be-
tween qubit and cavity to probe the oz operator. This interaction entails decoherence
of the qubit, which is associated to a Lindblad super operator D[\/gaz] defined in
Eq.(84). However, if the measurement signal is efficiently detected, the evolution of the
qubit state is not predictable but can be known a posteriori. Instead of decoherence,

14 another method consists in using another empty coupled cavity for readout [125]
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the qubit follows a stochastic evolution towards |g) or |e). Therefore, at times longer
than 77%’ the continuous measurement of the field at w, constitutes a QND projective
readout.

Then what about the other decoherence processes in the master equation (29)? Can

we detect the corresponding measurement signal and take it into account to better
predict the state of the qubit?
In the model described in 2.2.3.2 an unavoidable relaxation process comes from the
hybridization of qubit and cavity modes. Qubit energy decays directly into the probe
lines at a rate y1 purcell- The corresponding jump operator is L = V1, Purcell 0 —- In order
to retrieve this information and actuate the density matrix with it, we will once again
monitor the electromagnetic field in the output line with a high efficiency detection
chain. However, contrary to the scheme pictured in Fig. 19, detection is not made at
cavity frequency w, but at qubit frequency wy.

Starting from Eq. (93), if an ideal photocounter working at w, is placed on the
output line, it acts as a jump detector and the dynamics is described by Egs.(93,96).
Thus, neglecting for now any relaxation processes but the one into the output line, if
no jump is detected, qubit state collapses toward |g) on a typical time-scale 1/71 purcell
but remains pure for a detection efficiency 1. When a jump is detected, it goes instan-
taneously to |g).

However, we do not have efficient photo-counters in the microwave range and as in
3.2.3, we rather realize a heterodyne detection. For perfect detection, the SME reads
[23, 24]

dp = —4dt[H,p]+dtD[/Ai0-]p

(126)
+ ﬁth,IM [\/ 71,Purcellg—]p + \/ith,QM [i\/ ’Yl,PurcellU—]p7

with M(c| defined, as in 3.2.2, by M(c]p = £ ((c— (¢))p + p(c" — (c))) and W, ; and
Wi two independent Wiener processes. I and () refer respectively to the in phase
(0 = 0) and in quadrature (0 = —7) part of the detected signal.

Relaxation into the unmonitored input line, through cavity internal losses and non
radiative decay processes have the same effect, which is limiting the overall detection
efficiency 1. We take this into account along with imperfections of the detection setup
whose first amplifier is a JPC designed so that its amplification bandwidth is centred
at wq. We can indeed decompose

__ 1,Purcell % Y1,Purcell,out
it Y1,Purcell

X Tdetecs (127)

where the first term accounts for the fraction of the energy radiated into the lines when
the qubit decays being finite (see Sec. 2.2.5), the second for the finite fraction of the
energy leaking through the monitored output line (see Eq. (49)), and the third for
the detection setup imperfections (dominated by losses in RF components between the
cavity and the JPC). The first and third contributions are impossible to distinguish in
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practice due to uncalibrated cavity output impedance, and we only access the value of
the overall efficiency 7.

Including non-relaxation induced dephasing, we get the full Stochastic Master Equa-

tion:
dp = —4dt[H, p] +mdtDlo_]p+ §dtDloz]p
+ \/@(g_p + poy — <Ux>p)th,[ + LQYIO'U—KJ —ipoy — <UY>p)th,Q'
(128)

The measurement records are given by

{d[ = ?@xﬂHdWm ' (129)
2

dQ = \/B(oy)dt+d Wi g

3.4.1 Mean fluorescence signal

The fluorescence signal of an atom, which is the light that it emits when de-exciting,
is commonly observed and used in physics, but also in biology, chemistry... However,
due to limited measurement efficiency for linear detection setups, it has mostly been
characterized through its power spectrum. When driven on resonance, the signature
of fluorescence is the so-called Mollow triplet [129]. With superconducting qubits, it
has recently been observed on the single "atom" level [26], and efficient linear detection
with a sufficiently large bandwidth has allowed to resolve temporally the fluorescence
signal [25, 130].

In the experiment reported in [82] and described in Fig. 23, a qubit resonating at
wq/2m = 5.2 GHz (Qubit 2 in Tab.3) is embedded in a 3D aluminum cavity whose first
mode resonates at w, /27 = 7.8 GHz. When the qubit is resonantly driven, it under-
goes Rabi oscillations that can be revealed by measuring the occupation of the levels
after a time ¢ varying from 0 to T" = 2.5 us < T} = 16 ps. This is done using a high
power readout method (see Sec. 3.3), whose fidelity has been calibrated as in Fig. 22.
Measured Rabi oscillations for a qubit initially in |g) (in purple) or |e) (in orange) are
presented in Fig. 23b. The qubit is actually in |g) only f; = 91% of the experiments
when preparing the ground state, and in |e) only f. = 85% of the times when preparing
the excited state. This limited preparation fidelity comes from an important thermal
excitation rate in this experiment that results in about 30% spurious occupation of the
excited state at thermal equilibrium, which is partially lowered using the cool down
scheme described in 6.1 prior to every experiment. This imperfect preparation fidelity
lowers the contrast of the oscillations.

In a separate experiment, we drive the qubit during the whole time interval [0,T].
While this drive is applied through a lowly coupled transmission line labelled in on
Fig. 23a, the resonance fluorescence is collected on the strongly coupled out line and
measured continuously using a JPC tuned at qubit frequency. The coupling rate
Kout/2m = 0.25 MHz to this line far dominates the coupling rates ki, k7, to other
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Figure 23: a) Schematic of the experimental setup. A 3D transmon is driven through the in
line and its fluorescence signal (in green) is collected on the out line, along with
the small portion of the drive field that is transmitted through the cavity (in blue).
In the Fresnel plane rotating at wg, the transmitted signal has a constant complex
amplitude (peak at wy in the power spectrum), whereas the fluorescence signal has
a complex amplitude oscillating at the Rabi frequency (in the frequency domain,
2 side bands appear around wy). Note that in the experiment, the signal is down-
converted by mixing with a LO before being digitized (not represented: see 3.4.2
and Fig. 25b for detailed description). b) Measured occupation of the qubit levels
during the drive (dotted line) and predicted value of the fluorescence signal (plain
lines) for a qubit initially in |g) or |e).

decay channels of the cavity. However, qubit decay rate is measured to be dominated
by unknown non radiative processes. Quantitatively, y1 > 71 purcen =~ 50 pus~!, so that
signal collection efficiency in Eq. (129) is quite small. However, here we are only inter-
ested in the fluorescence signal as a mean so that the efficiency 1 only modifies the a
priori unknown scaling factor relating the output cavity field to the voltage measured
by the acquisition board.

Considering a drive field a;;, in a large coherent state |a;y,) whose phase is set to 0
(ain, > 0), it results in an added drive term in the qubit hamiltonian that reads, as

in Eqs. (45, 75), Harive = h(iy/Enink (04 —0-)) = —h\/Rinin %oy, so that the
unitary evolution operator for the qubit after time ¢ is

U(t) = exp(i,/nmam%ayt) = cos(%t) 1 —H’sin(%t) oy, (130)

where Qp = 21/ninam% is the Rabi pulsation. Thus, the qubit rotates around the
y-axis of the Bloch sphere. Following Eq. (129), the corresponding mean fluorescence

record is
a7 - o .
Tt = V2 lox) =/ TsinQgt (131)
daQ = JMioy) = 0 '
dt fluo 2 \YY
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The finite transmission of the cavity at w, implies that a fraction of the drive field is
also detected and adds up to the fluorescence signal. This contribution can essentially
be understood classically. Indeed, the transmitted field is in a coherent state |aouz0)
at wq, which reads, according to Eq. (52),

V 2KinKout ~ —iQp v Rout . (132)

Kot — 2i(wg — wy) 29

Qoyt,0 —

Here, we have used that A = w, —wy > Kior, Wwhere A is the detuning between qubit
and cavity. In the @) measurement record defined in Eq. (129), this transmitted field
yields a constant term

i€ =0
{ Ithns o M% (133)
dt trans V. 2 g
Thus, the fluorescence signal and the transmitted signal should each be detected on a
different quadrature. However, in our experiment, the transmission between input and
output port is dominated by a —50 dB aerial cross-talk so that the transmitted signal
has an unknown amplitude and phase. In terms of measurement record, both I and
@ have an unknown constant component from the transmitted field. Combining with
Eq. (131), and taking into account an unknown scaling factor V{, the mean complex
signal detected by the JPC thus reads

S(t) = Vou/sir (T +i%) (134)
- <O-*(t)>+507

where Vj is defined so that S(t)/Vp matches with the value of (o_(t)). The complex
number Sy scales with (Qp and needs to be determined as explained below.

This record is not directly the digitized signal at the output of the detection setup.
Indeed, the measurement has a finite bandwidth § f = 1.6 MHz, which is dominated
by the JPC amplification bandwidth and which acts as a low-pass filter for the signal.
In the filtered signal S(t),

o the transmitted field contribution V56 (t) results in a non constant signal So(t) =
VoBo(1 —exp —t/ (27 f)) during a transient regime that lasts about 100 ns after
turning on the drive at ¢ = 0. Note that it still does not depend on the qubit
state.

o after the short transient, the oscillating part Vp(o_(t)) gets its amplitude de-
creased for Rabi frequencies beyond 4 f.

On Fig. 24a, we represent the averaged measured output signals for a qubit prepared
with finite fidelity in |g) or |e) for three different drive amplitudes. In order to keep
only the interesting oscillating part, we subtract the state independent transmitted
field contribution, which corresponds to the output signal for a qubit initially in the
most entropic state p = %]l. In practice, this is not done in a separate experiment
but by averaging the signals corresponding to a qubit in |g) or |e) with the proper
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coefficients to compensate for the imperfect preparation fidelities f, and fo15.

a) 6 b) 0.5 exp - — thy
A
s(t —~ |7 AN /
() =, /
_4 =N/ y ;
g
.S —0.5
1 2
2 0 t (us)
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Figure 24: a) Measured complex fluorescence signal for a qubit initially in |g) or |e), and for
increasing drive amplitudes (blue arrow) leading to Rabi frequencies 0.6, 1 and
1.4 MHz. Due to the detection setup finite bandwidth, the oscillation amplitude de-
creases when Qg increases. The scaling factor Vj is chosen as in b, so that the signal
matches the predicted and numerically filtered signal using Eq. (134). b) Normal-
ized signal s(t) after subtraction of the constant contribution from the transmitted
field and for a Rabi frequency of 1 MHz. Reduced contrast is due to initial finite
purity and filtering of the signal by the amplifier acting as a low pass filter. ¢) -d)
Predicted and measured fluorescence signal encoded in color, for Rabi frequencies

ranging from 0 to 1.6 MHz.

Then, taking the real part of the oscillating term and dividing by Vj, we get the
normalized signal s(t) = Re[(S(¢) — So(t))/Vo)]. Note that Vp is constant over all

experiments when varying Qp.

To calibrate the factor Vj, we compute the expected value of (o_(t)) using the

Lindblad master equation

dp = —%dt[H + Hdrive7 P] + ’YldtD[U—L (135)

where the pure dephasing term is neglected and we set p(0) = fqlg) (9| + (1 — f4)|e){e|
for a qubit prepared near |g). The resulting signal is numerically filtered to mimic the

15 31 = agp? + acp® where p?¢ is the density matrix representing the finite fidelity preparation of |g, e)

and the coefficients are ag = % and ae%.
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finite bandwidth of the measurement. Vj is then adjusted over all data so that this
predicted signal matches s(¢). On Fig. 24b, we represent the measured s(t) (dotted
line) and the numerically filtered predicted signal for a drive amplitude corresponding
to a Rabi frequency of Qp/27 = 1 MHz. On Fig. 24c-d the predicted and measured
signals are encoded in color for Rabi frequencies ranging from 0 to 1.6 MHz. Theoretical
predictions (lower right corner of the panel) and experimental data (upper left) show
good agreement.

3.4.2  Quantum trajectories for fluorescence

In the experiment described in the previous section, the detection efficiency of /10—
’Yl,l:”yulrcell S
0.3 Ngetec- This prevents us from using individual measurement records to get reason-

is degraded by non radiative decay processes of the qubit since 7 = 7getec

ably pure quantum trajectories. We thus design a more adapted experiment (Qubit 4
in Tab. 3). In order to increase 7 purcell, the qubit frequency is chosen closer to the
cavity mode. It was set at w,/2m = 6.3 GHz. The coupling to the out line is also
increased. This larger coupling allows us to use a copper cavity with more important
losses while keeping the condition ke > k1 >~ 27 x 200 kHz.

With this setup, we observed a far better thermalization of the qubit, with a prob-
ability of thermal excitation at equilibrium p(e) < 1 %, so that Ty < 70 mK. We
also measure the decay time 77 = 4 pus and the pure dephasing time T} = 35 us. Here,
the qubit decay time is actually longer than the upper bound set by the Purcell decay
rate computed with Eq. (76), T purcen = 1.3 ps. Such discrepancies have also been
reported in [77] and are attributed to the coupling of the transmon mode to other

1

cavity modes, which are neglected in Eq. (76). Here, the large value { ~ & may also

make some approximations assuming the dispersive regime inaccurate (see Sec. 2.2.3.3).

The experimental setup, similar to the one depicted on Fig. 23a is represented on
Fig. 25a.

« The qubit is prepared in |e) or in (|g) + |e))/+/2 by applying a fast 7 or 7/2
resonant pulse. This pulse is generated using a LO at wy /27 + 100 MHz that is
mixed with a temporally windowed 100 MHz sine.

e The fluorescence field is measured for a time ranging from 1 to 10 ps. The signal
at the output of the cavity is amplified using a JPC and several commercial
amplifiers. It is then down-converted to 100 MHz by mixing with the same LO
that was used to generate preparation pulse, before being sampled and digitized.
In order to limit the amount of recorded data, the resulting record is integrated
over dt = 200 ns bins chosen so that dt < Tj. Since the only monitored jump
operator is o and 02 = 0, a simple quantum filter [131] that we describe in
Sec. 3.4.2.2 will yield accurate quantum trajectories even for such large time
steps [132].

e The qubit state is measured using the high-power readout method described in
Sec. 3.3. On 1/3 of the experiments, this readout is directly realized at the end of
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trajectories (07 measurement), on 1/3 after a fast 7|, pulse to rotate the qubit
around y-axis (ox measurement) and 1/3 after a §|, pulse to rotate it around
the x-axis (0y measurement)'6. Note that in this experiment, the high power
readout pulse degraded the coherence time of the qubit for tens of milliseconds
after the readout, limiting the repetition rate of the experiment. This is attributed
to quasi particles creation, whose relaxation was recently shown to occur on such
long timescales [133, 128]. We chose to decrease the amplitude of this pulse in
order to limit this effect, at the expense of the readout fidelity. Thus, in a single-
shot, the fidelity of the readout is about 85 % (15 % probability of false positive
or false negative). However, since we will only use this final readout as a mean
over a given ensemble, this imperfection can be taken into account and corrected
for.

A great number of such trajectories are then recorded. For each initial state of
the qubit, each trajectory duration and each type of final tomographic measurement,
106 trajectories are recorded on a dedicated hardware. This important amount of data
can be challenging to process but this figure was chosen to sample sufficiently every
possible final density matrix of the qubit (see Sec. 3.4.2.2). Moreover, we need to keep
the whole measurement record for each experiment.

In [134], Murch et al. show that for trajectories associated with a dispersive measure-
ment of the qubit, it is possible to reconstruct the final density matrix from the integral
of the measurement record only. Indeed, for a homodyne detection of the imaginary
part of the field at cavity frequency as is done in this experiment, and neglecting the
relaxation, the SME reads (see Eq. (109))

; T
dp = —%dt[H,p] + ?ddtD[Uz]/)+ AW,/ 2nTaM[oz]p, (136)

and the measurement record is (see Eq. (108))

dJ; = /20T gzdt + dW,. (137)
Then, letting ¢ = ArcTanh(z), a direct It6 calculation leads to

d¢ = v2Tan dJi, (138)

so that

th )

Ve (139)

2(T) = tanh(¢(0) +/
0

It is also possible to show that x(7') is directly linked to z(7'). Thus, a single scalar
number is enough to reconstruct the state of the qubit.

In the present case of records associated with the fluorescence of the qubit, the in-
tegral of the measurement record does not allow to actuate p from 0 to 7. Indeed,

The 0z measurement is delayed so that the time between the end of the trajectory and the projective
measurement is the same for the 3 axis
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the measurement being destructive, the value of I(T') and Q(T') does not depend on
p for T'>> T} since it is then dominated by noise. In the following section, following a
calculation by Mazyar Mirrahimi, we define a scalar value that is directly correlated
to the tomographic averaged outcomes. This will enable us to validate the stochastic
master equation model. Moreover, it will lead to a first estimation of 7. An efficient way
of estimating 7 is crucial in this experiment, since a brute force strategy consisting in
running a maximum likelihood algorithm so that the fluorescence signal for each experi-
ment matches with the final tomographic measurement statistics is time consuming. In
Sec. 3.4.2.3, we describe another method using quantum particle filtering to estimate

n.

3.4.2.1 Integrable quantity for measurement records

prepare , record ,tomography
¢ '

! Quw,.

prepare
Y

_ . >

/a1

NS

) 0 2

/2 mqo\/1/2 T (ps)

Figure 25: a) Pulse sequence for recorded fluorescence trajectories. The qubit is first prepared

in |e) or (le) + |g))/+/2 and its fluorescence signal is then recorded for a time 7.
Qubit is eventually projectively measured along either ox, oy or oz. b) Schematic
of the experimental setup (full wiring can be found on Fig. 67). The same LO that
is used to prepare the qubit is used to down convert the fluorescence signal before
digitization. After numerical demodulation we obtain the record {Iy,Q:}. ¢) For
a qubit prepared in |e), the fluorescence signal is integrated for T' = 4 us with a
decreasing exponential weight (see Eq. (142)). Experiments with the same resulting
integral m; are binned and we plot the mean value per bin of - +1 given by the final
readout against my. When statistics is sufficient (low |my|) a Slope appears. Red line:
linear ﬁt Inset: no correlation is observed between my and - +1 d) Idem for mgq
and #5. e) Dots : fitted slopes for my’s (in blue) and mgq’s (in black) as a function
of trajectory length 7'. Red line: exponential fit with time constant 1/ (v1/2 — ypn;)
leading to n = 26%.

Starting from Eq. (128), in terms of Bloch coordinates, we find that
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Then, letting £ = _75 and applying It6 rules, we find that

d¢ = (B —rg)&dt + /AW, + Tradt

2 (141)
= (B —7p)édt +,/BHdL,

where I; is the measurement record defined in Eq. (129). Integrating this equation
between time 0 and 7', on a single trajectory we get

~(B—yyr_2(T) W/ o (B —vo)tqp, def [
e (3 PO +1 =/ Al <\ [T Emr. (142)

Let us note here that z(t) = Tr[p(t)ox| and 2(t) = Tr[p(t)oz| are not directly mea-
surable on a single experiment. Yet, when considering a great number N of trajectories

from the same initial state and giving the same measured my, if we were to use all
information in the measurement record, we would find N different pg’s with

vk, /%m[:e L—vy)T Tr[pkaX] ‘T(O) 7 (143)

Trlproz] +1  2(0) +1

so that averaging both sides of the equation over k7

[7azs _ (2 )T N v >k Trlprox] z(0)
ﬁm[ ‘ %~ >w Trlproz] +1 ~2(0)+1
(144)

L—yy)T Tr[pUX] :E(O)
Tr[poz] +1  2(0)+1

= 67(

where p is the density matrix corresponding to the statistical mixture of all the selected
final states. Thus, Tr[po,| corresponds to the average value of the o, measurement out-
comes (a = z, z) for the selected experiments.

Similarly, defining mg = fo 79)tdQ, when selecting experiments giving the
same mg, we have

R Tr[poy| y(0)

2 Tr[poz] +1  2(0)+1° (145)

On Fig. 25¢-d, for trajectories starting in pp = 3(1 + ox) and recording the fluores-
cence field for T' = 4 us, we sort the trajectories according to the value of m; and place
them into 111 bins. For each bin ¢ and using the trajectories for which we measured

oz (resp. ox) at T, we compute the average value z; (resp. x;). Plotting il as a
function of my,, a linear dependance clearly appears. We also check that no correlatlon

exists with the associated Z_yjrl
3

. Symmetrically, when sorting the trajectories according

to the values of mg and placing them into the bins j, the same slope appears when

plotting - yj

as a function of mg,. Note that due to the electrical delay between the
cavity output and the end of the detection chain, the phase of the measurement record
needs to be adjusted. Since (oy) = 0, it can be done by setting to 0 the phase of

17 if Vk, 45 = ¢, then 2

. Ok
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the average signal dI; +1dQ; = /" ((ox) + i(oy))dt when the qubit is prepared in
(lg) +1e))/v2.

The measured slopes in this experiment are directly proportional to n, but the dig-
itized measurement record is also scaled by an undetermined factor o (cables atten-
uation, LO power...). This factor can be determined by measuring the variance of
ol (1) = « [§ dI; over many experiments. For a qubit in its ground state, we directly
have:

Var[aI(7)] = o*Var[W, ; — Wy 1] = a*7. (146)

Note that the finite amplification bandwidth dw of the JPC induces correlations in the
measured signal over a typical time 7. = 1/dw so that we have to choose 7 > 7.

Repeating this process for trajectories ending up at different times 7' € [1 us, 10 us|

and fitting the measured slopes with \/%e(%_%)ip, we extract |7 =26 +2 % | (see

Fig. 25¢). This value is consistent with the more precise estimation given in Sec. 3.4.2.3.

3.4.2.2  From measurement record to trajectory

Now that detection efficiency is known, we want to translate all the measurement
records {dI;, dQ;} into quantum trajectories {p(t)}.

Up to now, we have neglected the finite bandwidth of the JPC which was about 27 x
3 MHz > ~;. However, the time constant 7. of the effective low pass filter can be
extracted along with the scaling factor a and its effect can then be corrected for.
Indeed, considering two successive time steps ¢t — dt and ¢ (in practice, dt = 200 ns,
which matches the constraints given in Sec. 2.1.3.2), the digitized records I and Q
amplified and filtered by the JPC finite bandwidth are given at first order by

- ) (147)
dQ: = AadQ;+ (1 —N)dQ—ar,

where A is defined by 7. = —logdﬁ and {dI;,dQ;} would be the records for an infinite

bandwidth detector. We then consider records much longer than 7. and for a qubit

{dft — adl + (1= Ndl,

prepared in |g) so that there is no signal on average. In that case, dI; = dW; at all
times ¢t. By definition, E[dW;dWy| = §; pdt. Then, for t > 7,

» t/dt
E[dI7] = E[(aX ;;o(l — )M gar)?]
232 t/d; 1 — )2k
= — t
N L (1=A) (148)

_ M@ —(1- )\)Zt/dt+1>

and similarly,

E[df;d];—a:] = (149)
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We can then extract the value of a which is consistent with what was found in
Eq. (146), and the value of 7. = 100 ns. We then recover the measurement records
before any amplification or filtering

dr, = @erQ-Ddha
: thJr()\)\fél)th_dt : (150)
d@r = ——F

01/\ MM A/\N\VAA\/\ hyy
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Figure 26: a) A typical 10 ps-long measurement record, rescaled and corrected for finite detec-
tion bandwidth according to Eq. (150). b) Bloch sphere representation of 5 random
10 ps trajectories (each in a different color) for a qubit initially in |e). The blue
trajectory corresponds to the measurement record shown in (a).

We can then recover the quantum trajectories using a more practical formulation of
the general SME

dp = —%dt[H, pl+dt > DIL]p+ > 2dW,/n,M[L,]p, (151)

where {L, } is a set of jump operators and {W,} a set of independent Wiener processes
associated with the jump operators. Following Amini, Mirrahimi and Rouchon [131],
we can show applying It6 rules that this equation can be written as

Myp(t) M + 52, (1= n,) Lup(t) Lidt

p(t+dt) = Te[Mop()M] + 5, (1 — 1) Lop(t) Lhdt]”

(152)
with the Kraus operator M; depending on the measurement records at time t as
, 1
My=1-(GH+Y_ 5LLLy)dt + > ViwLydd,,. (153)
v v

Here, dJ, + = /0, (L, + L;L)dt +dW, + is the measurement record associated with jump
V.
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This formulation of the SME is more adapted for data analysis [132] which is always
acquired with a finite bandwidth detector so that we cannot take the limit d¢t — 0. For
example, in Eq. (109) and for a finite time step d¢, it can occur that for a state p(t)
nearby the surface of the Bloch sphere, the state p(t + dt) lies outside of the sphere. On
the other hand, Eq. (152) ensures that the Bloch vector remains inside of the sphere
and the density matrix remains positive at each time step. It is also more adapted for
numerical simulation .

In the case of the monitored fluorescence signal, with heterodyne detection of effi-
ciency 7, and taking into account extra dephasing at a rate vy, it reads

Myp(t)M] + (1= n)yio_p(t)o dt + Rozp(t)ozdt

p(t + dt) - ¥ e )
Te[Mp(t) M/} + (1 —n)yio-p(t)ordt + Sozp(t)ozdt]

(154)

where the operator M; is similar to a Kraus operator (see 4.1.2) and depends on the
measurement record as

M, =1— (iH + %aw, + %ﬂ)dt + %a,(dlt +idQy). (155)

We applied this quantum filter to all the measurement records rescaled and corrected

for the detection finite bandwidth according to Eq. (150). We present here the result-

ing trajectories for a qubit prepared in |e) at ¢t = 0. Note that we adjusted finely the

qubit decay time to 7} = 4.15 us on the whole set of data. Imperfections in qubit

preparation due to spurious thermal excitation at equilibrium and decoherence during
the preparation 7 pulse are neglected so that p(0) = [e)(e].

On Fig. 26b, we give a Bloch sphere representation of 5 random 10 us long trajec-
tories. Each one is plotted in a different color, and the blue one corresponds to the
record plotted on Fig. 26a. Starting from |e), the qubit state diffuses randomly in the
Bloch sphere, but each trajectory eventually ends up in |g) at infinite time. For a given
trajectory, the initial rotational symmetry around the z-axis is spontaneously broken
by the quantum noise.

In order to verify our model, we compare the predictions made from the trajectories
with the results of the final tomography (see Fig. 25a). The trajectories that ended
at time T with a 07 measurement (resp. ox, oy) are sorted according to the value
of ztraj = Tr[p(T)oz] (vesp. Tuaj = Tr[p(T)ox], Yaj = Tr[p(T)oz]) and grouped in
20 bins of 5 x 10° trajectories each, with similar values of Ztraj (T€SP. Tiraj, ytraj)ls. In
each bin, we average the final projective measurement outcome, corrected for finite
readout fidelity. The average value ziomo (r€SP. Ttomo, Ytomo) is then compared with
the value predicted from the trajectories. On Fig. 27b-c, we plot ziomo against zraj and
Ttomo against Tiraj for the 4 us long trajectories. In both cases, the tomography results
match quantitatively with the predictions from the trajectories. The agreement is also
quantitative for the predictions on oy and for all trajectory durations, which we did
not plot here. Note that on Fig. 27a, we plot 5 trajectories with similar final value of

With this choice, the bins thus have a variable width Azgyaj
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Figure 27: a) Bloch sphere representation of 5 trajectories (each in a different color) for a

qubit initially in |e) and with similar final value of p(T) = L + 1&.(~0.6 £0.05,0 +

0.05,—0.2+0.05) at 7= 4 ps . b) Comparison of the predicted values zgaj of (07)
with the final projective measurement result ziomo averaged over bins containing
5 x 10° trajectories each. The red line has slope 1. Inset: distribution of Ztraj for the
108 trajectories. The bins have a constant width 0.02 and do not correspond to the
bins used in the main panel). ¢) Idem for predicted Ttraj and measured Tiomo at
final time.

p (same Tiraj, Yiraj and Ziraj within +0.05), but on Fig. 27b-c, trajectories are binned
according to the value of ziaj only for the top panel and x;a; only for the bottom
panel.

3.4.2.3 Particle filtering for the estimation of n

In this section, we describe the method proposed by Six et al. [135] to determine 7,
which uses quantum particle filtering principles [136, 137]. The idea of this method is
to compare the likelihood of different test values of 1 by comparing the probability of
having measured a given record for each considered value n;.

If 7 is known, for a given value dy; of the measurement records at time t'%, we can
map the density matrix from ¢ to ¢ + d¢ as (see Eq. (152))

Kay,[p(t)]
p(t+dt) = —— e (156)
Tr[Kay, [p(t)]]
where the so-called partial Kraus map Ka,, [24] is given by
Kay [p(t)] = May,p(t) M}, + >~ (1= n,) Lup(t) Lidt. (157)

Here, the L,’s are the jump operators, 7, the yet undetermined detection efficiency
associated with each one, and the Kraus operator Mg, is defined as in Eq. (153) and

19 in the case of heterodyne detection, dy; is a two components vector
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also depends on the choice of the 7,’s. In Eq. (156), we now note that the denomi-
nator Tr[Kaqy, [p(t)]] corresponds to the "density of probability'?°
outcome dy; at time t. It depends on the 7, ’s.

of having found the

We now want to determine the most likely value of n given a set of possible values.
For simplicity, let us assume that there is a single jump operator L, and that n is one
of two possibilities 71 and 79 that we want to test. At time t, we associate with each
one a probability m(t)i:l,g to be the true value of 1 knowing the measurement record
from 0 to t. Then, following Bayes rules, we have at time ¢ 4 d¢

mi(t+dt) = P(n=ni|dy)
_ P(dyln = m) x P(n = ;)
P(dyi|n = ni) x P(n = n;) (158)

P(dyeln = m) + P(dye|n = n2)
Te[K ], " [p(t)]] x mi(t)

Tr[Kd,," [p(O]] + Te[Kd, ™ [p(1)]]

where, for simplicity, all the probabilities P are implicitly conditioned on the measure-
ment record from 0 to t. We thus process the measurement records in a similar way
to what is done in Sec. 3.4.2.2, but applying the extended filter keeping track of both
p"="(t) and the corresponding probability 7;(t) for each i. For a long trajectory, even-
tually, one of the m;’s goes to 1, and it is the most likely value of 1. By repeating this
method, we can perform a dichotomic search of the value of 7.

a) |, b)

0.8 0.8

~—~ 0.6 — 0.6
-~ -~
N— N—r
— —
& 04 &
0.2
0 0
0 2 4 6 8 10 0 0.5 1 1.5 2 2.5 3

Number of Trajectories % 10" Number of Trajectories % 10°

Figure 28: a) Quantum particle filter applied to 10 us long records corresponding to a qubit
prepared in p(0) = (1 + ox). One of the m;’s converges toward 1 rapidly, singling
out the most likely value n = 0.24. b) After scanning the whole set of records for
more refined test values, the filter cannot decide between 1 = 0.24 and n = 0.245.

The method that we have described can easily be adapted to the heterodyne mea-
surement with several jump operators and can also account for a finite pure dephasing

20 For a density of probability to be rigorously defined, one would need to normalize dy; by Vvt
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rate, which is simply the effect of the jump operator ,/v4/20z monitored with effi-
ciency ne = 0. Note that in our data, we do not have a single long trajectory, but
a great number of short ones. The method is then applied to the concatenated mea-
surement records and p; is reset to p(0) at the end of each individual trajectory. On
Fig. 28a, we represent the 7;’s for a set of tested values of 7. After scanning 5 x 10%
individual records, the value n = 0.24 is clearly chosen by the filter as the most likely
value for . In Fig. 28b, we test more refined values of n around this first estimation.
After scanning the whole set of data, the filter cannot decide between n = 0.24 and
1n = 0.245. This gives us the estimated value of 17 and the corresponding uncertainty.

3.4.2.4  Trajectories statistics

trajectories 1 2 5 10 100 1 03 10*
per cell

“Cecean
PP

10 us

Figure 29: Distribution of the qubit states in the Bloch sphere for 10% repeated experiments
with a qubit initially in |e) and after a time ¢ from 0 to 10 ps. The Bloch sphere
is paved with cells of size dz = dy = dz = 0.02, and the number of trajectories in
each cell is encoded in color.

We now consider only the 10 us long trajectories. A proper model to describe the
statistics of these trajectories would require a Fokker-Planck equation, which is a work
still in progress at the time of this writing. In this section, we give a representation of
the distribution of the qubit states during the decay from |e) to |g).

On Fig. 29, we represent at different times t the distribution of the qubit states in
the Bloch sphere for 10° repeated experiments. To do so, we first pave the Bloch sphere
with cubic cells whose size are given by do = dy = dz = 0.02. In color, we represent
the number of experiments for which the trajectory predicts a value of (z(t),y(t), z(t))
lying inside a given cell. We do not represent a fourth of the cells (z > 0 > y) for better
visibility.
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The overall rotational symmetry around the z-axis is respected. At each time ¢,
the trajectories are dispersed on a cap of finite thickness (several cells), and this cap
collapses down to |g) at large times t. To get some qualitative understanding of this
shape, let us note that for the \/9;/20_ jump operator alone (corresponding to the
quadrature I only of the fluorescence signal), the evolution of the density matrix over
a time step dt is given by (see Eq. (128))

dp = %dtD[U_]p + ,/%(J_p +pos — (ox)p)dWi s, (159)
which leads to an evolution of the Bloch coordinates
de = —Ladt+ /22 (1+ z—2?)dW,
1 el JAWes (160)
dz = =L (1+z)dt+ /(14 z)zdW, s

A similar evolution of the y and z coordinates is associated with the i\/y1/20_ jump
operator. We can check that, beside the deterministic evolution proportional to dt¢, the
qubit states receives stochastic "kicks" proportional to dW; ;. Along the x-axis, these
kicks are stronger near the center of the Bloch sphere. This tends to push apart the
trajectories in the (x,y) plane. Along the z-axis, the kicks are stronger in the upper
part of the Bloch sphere and farther from the z-axis. This will cause the trajectories
to go down faster near the surface of the Bloch sphere, and thus to form a cap.

In this experiment, 1 being quite small (n = 24 %), the dynamics is dominated by
the deterministic evolution associated with the damping operator D[o_]. As a result,
the trajectories are well inside of the sphere, whereas they would remain on the sur-
face for n = 1. Moreover, the corresponding variation of (dx,dz) proportional to dt
in Eq. (160) pulls the trajectories toward |g) along a parabola so that the distribution
ends up wrapped upon itself.

Naively, one could think that the evolution of the statistics of trajectories can be un-
derstood as an overall shrinking of the Bloch sphere due to the unmonitored relaxation
with a rate proportional to 1 — 7, and stochastic diffusion on this reduced sphere. How-
ever, the experiment demonstrates that there is a non-zero thickness to the deformed

sphere, which informs the too simple picture of well decoupled equations of evolution
for P(p(T)).

During relaxation, we can check that the trajectories first spread out in the Bloch
sphere before gathering down toward |g). To be more quantitative, we use the relative
entropy between two matrices p and o defined in Eq. (15) as

S(pllo) = —Tr[pLogy(0)] + Tr[pLogy(p)] (161)

as a measure of distance. Then, calling pp the density matrix corresponding to the
kth cell, py, the probability of a trajectory being in this cell at time ¢ and p the mean
density matrix over all trajectories, which is the matrix one gets when not using the
fluorescence records, we have

S(px! |P)k = - Xk:kar[PkLog(P)] + Xk:kar[PkLOg(Pk)]
= —Tr[ik: prorLog(p)] — Zk:PkS(Pk) (162)
= S(p)~S(p)".
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Figure 30: For 10 experiments of monitored relaxation, evolution of the Von Neumann entropy
of the density matrix when dismissing the measurement records (red dots), the mean
entropy of a trajectory (blue dots) and the mean relative entropy from a trajectory
to the mean density matrix (green dots). Red line: calculated Shannon entropy
S = pLogyp + (1 — p)Logy (1 — p) for p the occupation of the |e) state decaying with
rate 1T}

For a perfect detection, the trajectories remain on the surface of the Bloch sphere and
we have S(pr) = 0. In that case, since the relative entropy can be seen as a distance in
the Bloch sphere, the entropy of the unconditioned density matrix p can be interpreted
as the dispersion of the trajectories around their mean value S(p| p)k. In this sense,
the increase of entropy during relaxation corresponds to an increase in the volume oc-
cupied by the trajectories in the Bloch sphere. When these trajectories gather down to
the ground state, the entropy decreases down to 0. For finite efficiency, the trajectories
are themselves entropic, which compensates for their smaller dispersion. On Fig. 30, we
plot the mean relative entropy extracted from the ensemble of trajectories (green dots),
the mean entropy of the trajectories (blue dots) and the entropy of the unconditioned
matrix (red dots). This last value is, as expected, strictly equal to the sum of the two
previous ones. It follows the expected law for a qubit initially in |e) and decaying on a
time scale T (red line).

In this chapter, we have seen how the outcomes of measurements of the qubit per-
formed until the time ¢ can be used to estimate its state. The actuated density matrix
p(t) then allows us to make predictions about the statistics of future measurements
conditioned on the history of past measurements. In the next chapter, we will see how
to use the knowledge from measurements performed both before and after time ¢ to
predict the statistics of a measurement at ¢. This knowledge about past and future
will be encoded in two matrices p(t) and E(t), forming the Past Quantum State of the
system.
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POST-SELECTED QUANTUM TRAJECTORIES

The reversibility of time evolution for a closed quantum system is an essential feature of
quantum physics. Open systems such as ones under measurement evolve irreversibly. In
1964, Aharonov et al. noticed that post-selection using a final projective measurement
plays the time symmetric role of an initial preparation [27]. In 1988, in a seminal paper,
they showed that when considering a system prepared and post-selected in eigenstates
of two non-commuting operators, a weak measurement in between could yield on av-
erage a result far outside of the allowed range for pre or post selection only [28]. This
non trivial property of the mean, which is called weak value, is a quantum feature that
cannot be observed with strong disrupting measurements [138]. It was experimentally
observed for the first time in 1991 [139] and has since then been shown to contra-
dict macro-realism in the hypothesis of a non-invasive detector, using the violation of
Leggett-Garg inequality [140, 141, 142, 143]. Other interesting features of the weak val-
ues have also been put forward (summarized in [144]) and experimentally used, such as
noiseless amplification [145, 146] or direct tomography of an operator or wave function
[147]. However, usefulness of these weak values as well as their purely quantum origin
are still the subject of heated debates [148, 32, 149, 150, 151].

In this chapter, we present the results of an experiment illustrating some of these
properties for pre and post-selected ensembles of quantum trajectories. The weak mea-
surement here is the heterodyne detection of the fluorescence field (see Sec. 3.4).

In order to make predictions about this weak measurement using all available infor-

mation, extracted both before and after it took place, one needs to design an acausal
Bayesian filter [152], in the same way that a historian tries to reconstruct the thread of
events in the recent past scanning both records from the far past and from the current
situation.
It is possible to formulate this filter to render explicit the symmetry between the
processing of the information from both sides of the timeline around the weak mea-
surement date. Using a recently developed framework generalizing to open quantum
systems the backward propagation in time of the information from a posteriori mea-
surements [29, 30, 31], we establish a time reversed version of the stochastic master
equation (154). It generalizes the quantum trajectory approach described in Sec. 3.4.2.
When considering the average value of a weak measurement on post selected ensem-
bles, the time evolution of the effect matriz, which encodes the information on the final
measured state of the qubit, is governed by a master equation similar to the Lindblad
form (see Eq. (27)). We show however that for a non QND weak measurement such
as the one used here, this evolution is not time symmetric to the one of the density
matrix.
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4.1 PAST QUANTUM STATE

4.1.1 Discrete time version

Ky, K o .
o s p(l) s p(2) ) BT ET 1) &1
Ty Ny nyT,I’I —Tlyr||yr
0r) ———p—--=-==-=-----
— Yr—1
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Figure 31: Prediction and retrodiction from discrete time measurements. A system (in orange)
is measured at discrete times k € {1...,T}. These generalized measurements are
modeled by unitary evolutions in interaction with ancillary systems, the meters,
which are then measured projectively with finite efficiency (equivalence with the
Kraus decomposition shown in Sec. 2.1.3.1 and [18]). We want to predict the prob-
ability of a given outcome n at time ¢, knowing all the other outcomes y;’s. The
observer information on the system (in the upper part of the diagram) comes both
from measurements before ¢ (information encoded in the density matrix p(t — 1)),
and after ¢ (information encoded in the effect matrix E(t)). p and E are found re-
spectively starting from the initial state pg (resp. the final effect matrix E(T) = 1)
and actuating with the measured yi’s as p(k) = Ky, [p(k—1)] if & < t (resp.
E(k—1) = Ky, [E(k)] if k > T) until time ¢.

We want to describe the situation represented on Fig. 31. A quantum system is
prepared at time 0 in a state encoded by the density matrix pg and then measured
at discrete times £k = 1,2,...,T. Here, these measurements are any generalized mea-
surement [18], from weak to fully projective. We want to make predictions about the
statistics of the outcomes of the one taking place at ¢ € [0,7] when post-selecting
the experiments that yielded a particular measurement record (y1, ..., Y¢—1, Yi+1, ---y1)
for the T'— 1 others. For now, we suppose that there is no hamiltonian evolution or
decoherence processes beyond these measurements. We will see in the following section
how to take those into account as continuous detection back-action.

We model the T'— 1 measurements with the same set of Kraus operators {M,} (see
Sec. 2.1.3.1)1. We take into account finite efficiencies encoded in a matrix  which co-
efficients are 1, , = P(y|v), corresponding to the probability of detecting the outcome
y when a v jump actually occurred. Thus 7, has coefficients between 0 and 1, and
verifies Vv, 3, 1y, = 1. Note that 1 does not need to be a square matrix. Indeed, there

For simplicity, we suppose that all measurements follow the same procedure. If one wants to model
measurements of, say, different operators, a different set of Kraus operators is needed for each time.
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can be cases for which some jumps are not detected whereas others are with efficiency
1 (in this case n has more columns than lines) or other situations when a jump can
trigger many outcomes for the measurement, each one indicating a jump with a given
confidence (in this case 7 has more lines than columns).

Then, knowing the density matrix of the system just before time £ and the measure-
ment outcome yg, p reads after time k

= Zl/ Pg/‘yk)Mup(k_l)MJ
(v) (163)
. S nyk,VMVP(k - 1)MJ
B P(yx)
def Ky, [p(k‘ - 1)]
Tr[Ky, [p(k)]]’

where K, is a completely positive map. Here, we can identify the probability of the
outcome y as P(yx) = Tr[>, ny, o Myp(k — 1) M]].
We then write the state of the qubit just before the measurement at time t

1) — Ky, 0Ky, ,0...0Ky [PO]
=D = Rk, oK K ‘
1“[ yr—1 O Ly o O O Ly, [:00”

(164)

To model the measurement at time ¢, we suppose that the system interacts with an
ancillary system called the meter. This representation is equivalent to the Kraus de-
composition (see Sec. 2.1.3.1 and [18]). Following Eq. (18), we suppose that the meter
is initially in a pure state that we call |0), and that there is a set of Kraus opera-
tors {Q),,}? and an orthogonal basis of the meter space {|m)} so that the interaction
transforms the whole system as

p(t —1) @ [tho) = Y Qup(t —1)QF, @ [m)(m]. (165)

m,m/

We then postpone the projection of the meter and instead, following Gammelmark et
al., place it into an imaginary safe while the system continues to evolve. At time T,
the whole density matrix reads

Z/KyT 0...0 Kyt+1 [Qmp(t - 1)0171'] ® |m><m/|

Ptot (T) = D )

(166)
with
D = Ti[ Y Ky o.oKy,, [Qup(t—1)Qf ] & [m)(m']

m,m/ (167)
= T Ky 0.0 Ky [Ounp(t — 1O

Eventually, after time T we look at the meter state in the safe, which projects on the
basis {|m)}. For now we suppose that this measurement has perfect fidelity. Errors

2 We thus let the possibility for the measurement at time ¢ to be different from the ¢ — 1 others.
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in the measurement can indeed easily be taken into account by mixing the outcomes
probabilities. We then get a particular outcome n with probability

Tr[Ky,. 0...0 K, [Q.p(t —1)QF
0l oy o) = e 2O s [l L] (169

Letting K be the adjoint map of K, which is defined by its action on a matrix A
as

wr g1 d
KA1 < S, M AM,, (169)
v
we note that for two hermitian matrices A and B,
Tr[AK,[B]] = Tr[K, [A] B]. (170)

We can then rewrite the numerator in Eq. (168) as

p(nlys, .y, po) = Tr[KyT 0..0Ky,, [an(t - 1>QLH/D
Tr[l Ky, 0...0 Ky, [Qnp(t — 1)0};”/1}
Tr[K;T []l] Ky, ,o0..0Ky [an(t — 1)0;2”/13 (171)

= Tr[K;,  o..0K; oK [1] Qup(t—1)Qf]/D,

Yt+1 yr
so that
Tr[E(t)Qup(t — 1)Of]
5 Te[E(1)Qmp(t - 1))

p(n‘ylw"?yTapO) = (172)

Here, we have introduced the so-called effect matriz E(t) [29] which is propagated
backward in time according to

E(t) =K,  o..oK, oKl (173)

Yt+1 Yyr—1

Like p, E is hermitian, but it is not normalized. Gammelmark et al named Past Quan-
tum State (PQS) the association of both matrices (p(t -1), E(t)) It contains all the
available information in order to make predictions about a measurement at time ¢,
knowing the measurement outcomes prior and after ¢.

4.1.2 Continuous time version

We now want to transpose the previous reasoning to weak continuous monitoring of
the system. Note that the actual experiment described in the next section contains
one discrete measurement of the oz operator of the qubit at time T', preceded by a
continuous heterodyne detection of the fluorescence field from time 0 to 7. We will
thus need to combine both models.

We now suppose that the system evolves continuously under the action of several
homodyne detections labelled v, which are associated to the jump operators L, and
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Figure 32: Prediction and retrodiction for continuous detections. The system is weakly and
continuously probed using homodyne detections schemes. These are associated with
a set of jump operators {L,} and yield a set of measurement records {s, 77}
according to which one propagates the density matrix p (resp. the effect matrix
E) forward (resp. backward) in time starting from time 0 (resp. T'). Propagation
depends on detection efficiencies 7, ’s. If measurement channels are left unread (see
section 4.2.1), it only represents hamiltonian evolution and decoherence. The weak
value of a given detection labelled p can then be predicted at time ¢. It is the average
of the green portion of the curve for experiments that yielded the same measurement
records at other times (in blue).

have efficiencies 7,. Note that a heterodyne detection of a jump operator L,, with
efficiency 7, can be modeled as 2 simultaneous homodyne detections with the same

efficiency, say labelled vy and vs, of the jumps L,, = %LV and L, = %LV.

We let s¢, = dyr/V dt3, where Yt,v, the measurement record associated with detec-
tion v, is defined as in Eq. (129) as

Ay, = /MLy + LL)dt +dW,, ;. (174)
Then, as in the previous section, we define

Ky, o p(t) = Myyp(t) M+ 3 (1= m) Lup(t) Lidt, (175)
with

My =1-(iH + % SLYL, + L,LY))dt + > /i LysiVdt. (176)
This operator is used to map p(t) to p(t +dt) as in Eq. (152) as

p(t+dt) = M. (177)

- Te[K[p(t)]]
Then, integrating from 0 to ¢,

Kst—dt 0..9 KSO [PO]
p(t) = :
Tr[K,, ,, 0...0 Kg[po]

(178)

3 We consider dt to be finite, which is the case for experimental data or numerical simulation
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We now assume that the measurement of interest at time ¢ is itself a homodyne
detection* and we suppose, without loss of generality, that it corresponds to one of
the L,’s jump operators, which we label p, with efficiency 7,°. Our goal is thus to
predict the statistics of the random output £ of the u detection at time ¢ conditioned
on a given value of the measurement records from 0 to ¢ and from ¢ + dt to 7". This
means computing, for all values of s ., p(§ € [st,, 5t + dE]|5]0.4 N Sjp4ar,77]) Up to the
dominant order in dt, which is V/dt as we can check at the end of the calculation.

We then model this detection at time ¢, as in the previous section, as an interaction
with a meter initially in a pure state |1g) followed by a projective measurement of this
meter, and the interaction reads, similarly to Eq. (165),

p() @10} = [ [ dgde Dep()02] 01€)(€' (179)

where {|¢)} is a continuous orthogonal basis of the meter verifying (£[€') = 6(§ — &),
and {Q)¢} is a set of Kraus operators. We show here that

2
0Oe = (2m) Vexp —%Qg, (180)
where ()¢ reads
1 ~
Q:=1- ELLLHdt + Ly /i eV dt. (181)

Indeed, in order to determine Eq. (180), one can expand Eq. (152) at order /dt. Thus,
if the output £ of the p detection integrated over the time step dt is dy,; = st#\/(ﬂ,
Qst,pp( )Qlt L

e[, ()L, ]
leads directly to Eq. (181). Now, in order to get the proper prefactor in Eq. (180), one

the density matrix at time ¢ + dt¢ has to read p(t + dt) = , which

requests that Tr[Qep(t) Qz] is consistent with the distribution of outputs for detection
i conditioned on past measurements only. In our model, the output dy,;/ Vdt is
Gaussian distributed with variance 1 and mean /7, Tr[p; (L, + L},)]v/dt. For any value
of s¢,, the probability that ¢ is found between s; , and s, + d§ reads

P& € [stp e +dE]) = Tr[Qq,,p(H)Q sw]
- \/1276Xp oIyt LLVAD?
_ \T [ bt lexpl st (L + Li)VAE+ O(dt)]de
= \/? T]( + /Tustu(L +LL>\/&)d§
= Loexp [ L) Tr[Q,, (1), JdE.

(182)

To model a strong measurement taking place during a weak monitoring, we use the equations of this
section to propagate p and E until time ¢ and then use Eq. (172)

This efficiency can be differ from 7,,. For example when one does not condition the outcome of the
i detection at time ¢ on the measurement record of the same detection at other times, 1, = 0 but

fiu 7 0.
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This final relation terminates the proof.

The combined evolution of the system and meter at ¢ outlined in Eq. (179) thus
reads

& +¢7

p(0) i) > [ [ <= exp S mdsag’ Qeo(0l @ 90 | (183)

We now follow the same line of reasoning as in the previous section. After interaction
with the meter and further monitoring until 7', the full density matrix reads [153]

2, ¢2
J I = exp =S dEde Koo 0 Ky, [Qep(HQL] @ [6)(€]

ptot(T) - D ) (184)
where
D = [ff%exp—idﬁdé’ Koy 0.0 Koy, [Qep(H)QL] © [€) (€] (185)
f\/—eXp—fdf Tl“[ "‘OK5t+dt[Q§p( )Qz]

We can then write the probability to find a value s;, when measuring the meter
conditioned on the measurement records at other times as

p(§ € [Stu’stu‘f’dfﬂs[m mS[t+dtT])

= e~ AT Koy 0.0 Key [0, 1/ (156)
rexp—ﬂdgTr[ e ..oK;‘T[]l] Qst’up(t)Qlt’H]/D,

where K7, is the adjoint map of K, defined by its action on a matrix E as

K} [El = M, EM,, +> (1-n,)L}EL,dt. (187)
v

Defining the effect matrix E(t) = K} o K o..oK; [1], we get

St+dt

52
1 exp — 52 Tr[E(t 4 dt)Q, , p(t H)Qt ]

V2r St
P(€ € [st, st +dE]|sp,qls ) = ;
tus St [0,¢]15[t+dt, T \/%fexp_%Tr[E(t—th)Qg/p(t) 5,](15/
(188)

This expression allows us to compute the statistics of the measurement record of the
homodyne detection p at time ¢, conditioned on a given value of all measurement
records from 0 to ¢ and from ¢ 4 dt to T'. In practice, in the 2 cases described in the
following sections, we are interested only in the mean value of this measurement. Then,
considering that ()¢ =1 — %LLL#dt + &/ MLy V/dt, the expressions simplify due to the
parity of the gaussian distribution and we find that the average measurement record
of the u detection, conditioned on all the other records that we dispose of, reads

@;_ga:mmw@<<Hm>n:mﬂmuaﬁmm
dt Vi Tr[E(1)p(t)] Te[p(t) E(1)]
€2 /aRel(Ly)w(t)].
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(189)

For simplicity, we replace here F(t 4 dt) by FE(t) in this final expression. Indeed, if the
outcome of the p detection at the time of interest ¢ is not conditioned on the record of
the same detection at other times (7, = 0), these two matrices differ only at the order
V/dt and can thus be identified. When N, # 0, one does not include the value of s, ¢
in the post-selection criterion so that the identification still holds.

In the last equality of Eq. (189), we have defined the so-called weak value of the L,
operator at time ¢. Historically, the term weak value was used to describe the mean-
value of a weak measurement when preparing and post-selecting the system [144]. In
this sense, p and E are rather the states resulting of a preparation and post-selection
by strong measurements. However, when integrated over time, a weak continuous mea-
surement can effectively be seen as a strong one. Recently, observation of weak values
out of the accessible range for unconditional average has been reported in supercon-
ducting qubits when post-selecting trajectories according to the measurement record
of the continuous weak monitoring itself [154] .

In this section, we saw how to actuate the density and effect matrices using all the
measurement records. This allows one to predict the statistics of an intermediate weak
measurement. The weak value can be computed from this probability density. When
combining this continuous version formalism with the discrete version described in
Sec. 4.1.1, one can can take into account final post-selection as we will see in the next
section.

4.2 WEAK VALUES OF THE FLUORESCENCE SIGNAL
4.2.1 Master equation

We now want to describe the same experiment [82] as the one described in 3.4.1 except
that a final projective measurement takes place at time T (see Fig. 33a). The same
qubit (Qubit 2 in Tab 3) is driven resonantly through the in port, and while it un-
dergoes Rabi oscillations, its fluorescence signal is collected at the out port. Note that
the contribution of the transmitted drive field is subtracted, and only the quadrature
I containing information about the qubit state is recorded.

We average the signal conditionally to the final projective measurement outcome,
implementing the situation described in 4.1.1. This projective readout follows the high-
power readout protocol described in 3.3. Thus, it has two possible outcomes denoted
1 and 0 for two possible Kraus operators M. = |e)(e| and M, = |g)(g|. Its efficiencies
have been independently calibrated to be

def
Ny = Me = F = 0.96

My = MNoe = 1-—F

(190)
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Figure 33: a) Simplified schematic of the experiment (full wiring can be found on Fig. 65). The
qubit is prepared near |g) by active cooling (see Sec. 6.1) or near |e) by applying a
fast m-pulse afterward. It is then driven for T' = 2.5 us through a weakly coupled
line in and the fluorescence signal (in green) is collected on the strongly coupled
line out, down converted and digitized. The constant transmitted field (in blue) is
subtracted. Drive phase is chosen so that the signal develops on the real quadrature
only. At the end of the experiment, a strong measurement of the o operator of the
qubit is performed. Signal is averaged conditionally to this outcome to give 2 mean
traces s? (t) (resp. s¢ (t)) when the qubit is post-selected (with finite fidelity) in |g)
(resp. |e€)). b) Pulse sequence representation. ¢) Mean fluorescence traces for a qubit
initially in pg = 2]1 driven at Rabi frequency vg = 1 MHz and post-selected in
|g) (in blue) or |e) (orange). Theoretically predicted traces are numerically filtered
to mimic JPC finite bandwidth. d) Mean fluorescence signal encoded in color for a
qubit initially in pg = %Il and post-selected in |g), and for drive amplitudes from 0 to
1.6 MHz. Lower left corner: experimental data. Upper right: theoretical prediction.

Thus, at time 7' and considering the experiments which yielded the result y for the
final readout with y € {0, 1}, the effect matrix reads

E,(T) = K}[1] = Flg)(gl + (1 —F)le)e| ify=0
(1= F)|g)(g| + Fle)(e| ify=1

Our aim is to predict the mean value of the post-selected trajectories. Thus we need
to compute the value of the PQS (p(t), E(t)) at any time ¢ € [0, T]. This state evolves
due to the hamiltonian

H= —h%ay (192)

(191)
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that accounts for the resonant drive in the frame rotating at w,, but also due to the

action of the relaxation operators 6

{L = V3o . (193)
L = z\/vjla_

Note that pure dephasing and thermal excitations during the drive are neglected.

In this experiment, the fluorescence signal is recorded but is not used to post-select
the trajectories. Thus we do not actuate the PQS according to the measurement record
of the signal s. The evolution of p and E is then modeled by a weak continuous
monitoring with 0 efficiency. Time evolution of p is governed by the Lindblad master

equation
dp i 1
I :—%[H,P]—|—71<0'7P0'+—§<U+07P+P0’+07>) (194)

and, defining K* as in Eq. (187), the evolution of E reads

E(t) =0l E(t +dt)]
= E(t+dt)+ +[H, E(t+dt)]dt

+ S (LLE(t+dt) L, — LI L, B(t +dt) — JE(t +dt)L, Lf)dt  (195)
E(t+dt) + L[H, E(t+ dt)]dt

+ (o E(t+dt)o — oo E(t+dt) — SE(t +dt)o_oy)dt,

so that, at first order,

dF ) 1
- —%[H,E] —71(0'+E02—§(U+U,E+Ea+a,)) . (196)
Eq. (190) . (192)
p(0) =0y 1) B(1) «——L2_ E(T)
(') i T time’
preparation continuous

detection of o _ post-selection

N

RIS
Txp(t) B (D)

Figure 34: The density matrix p and effect matrix E are propagated respectively forward and
backward from initial state (resp. final post selection) toward ¢. They allow to predict
the average value of the detected signal at time ¢ for the post-selected experiments.

6 these 2 operators play the same role in the Lindblad form of the master equation (194) and can be
seen as one damping operator \/y1o_, but in the actuation term of the SME (128), they correspond
to 2 different homodyne detections. Only the measurement record associated with the first one is used
in this experiment.
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Thus, we obtain for F a master equation which looks similar to the Lindblad form
(194) for p, but with some major differences. Indeed, the damping term only cancels
for £ = %]l, contrary to the damping term in Eq. (194) which cancels for p = |g)(g|.
The evolution of F is then not the time-symmetric of the one of p, as described in
Sec. 4.2.4.

Another important difference is that the trace of E is not preserved and we have
to renormalize F(t) to make predictions about a measurement at time ¢. A trace-
preserving version of this equation would no longer be linear. However, we can show
that Tr[p(¢t)E(t)] is constant. Since Tr[p(T)Ey—o(T)]] represents the probability of

the outcome y = 0 for the final measurement, the denominator appearing in the weak-
Telp(t) E(t)o_]
value of an operator (A),, =
Y Trfp(t)E(1)]

experiments out of the whole. When post-selection becomes unlikely, the weak value

corresponds to the fraction of selected

can diverge.

4.2.2 Post-selected fluorescence traces

As a first step to test these equations, we consider a qubit for which we have no in-
formation about the past so that it is prepared in pg = %11. It then undergoes Rabi
oscillations at frequency vg = 1 MHz for T" = 2.5 pus, and is measured projectively
along oz at T. We then average the fluorescence traces only for experiments that
yielded the outcome 0 during the final readout so that the qubit is mainly in |g) at
time 7. After subtraction of the constant contribution of the transmitted field, the
mean fluorescence trace s? (t) is plotted on Fig. 33c¢ (blue dots). Note that up to a
scaling factor, it corresponds to the average measurement record associated with the
homodyne detection of the jump operator L = \/71/20_. The other quadrature de-
tecting 7L is dismissed in this experiment. Alternatively, we choose here to set the
scaling factor at the same value as in 3.4.1, so that without post-selection, the exper-
imental signal s_(t) would match the numerically filtered value” of Re[(o_(t))] (see
Sec. 3.4.1). A consequence of this filtering is that the recorded signal in Fig. 33c-d is
delayed compared to the fluorescence field dynamics so that it does not cancel at t = T'.

Using Eq. (189), we compute the expected signal at time ¢ with this scaling factor.

Tr[p(t) E(t)o-]
It reads Re[{o_),] = Re
Tr[p(t)E(t))
Eq. (194) starting from pg at ¢ = 0, and E is propagated backward using Eq. (196)

. p is propagated forward in time following

starting from Ey—o(T"). With no new fit parameter the agreement is good between ex-
perimental data (dotted line) and theoretical prediction (solid line). This stays true for
a qubit post-selected in |e) (orange curves), and when varying the drive field amplitude
(Fig. 35d).

Let us comment on this experiment.

from now on, every theoretically predicted value will be numerically filtered to mimic the finite band-
width of the JPC
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e The overall number of averaged experiments varies according to the probability
of the chosen outcome at time 7" and for a drive frequency vg, but every point of
the plots correspond to a minimum of 3 x 10° averages. This leads to a maximal
standard deviation of 0.05 on s_.

o The post-selected traces have a slightly larger contrast than the pre-selected ones
(see Sec. 3.4.1) because of the better fidelities F; and F, of the final readout than
of the ones of the initial preparation f, and f.

o Except for this slightly larger contrast, the color plot on Fig. 35d is the near
time-symmetric version of the one presented on Fig. 24c. The phase of the Rabi
oscillation, instead of being set by the initial preparation, is set by the final post-
selection. Thus, post-selection plays a symmetric role to preparation [27]. The
evolution of F here appears to be the time-symmetric of the one of p because,
on the time-scale of the traces 1" < 17, relaxation is negligible.

o Experimentally, the preparation of pg = %]l is an active task since thermal

equilibrium is not described by %]1. It is done by averaging with the appro-
priate coefficients the mean traces for a qubit prepared near |g), that is pf =
Tqlg) (gl + (1 — fg)le)(e], and the traces for a qubit prepared near |e), that is
o6 = (1= fe)lg){g| + fele)(e]. The finite preparation fidelities f; = 91% and
fe = 85% are due to spurious thermal excitations despite the active cooling pre-
ceding every experiment (6.1), and to inefficient preparation m-pulse. Then, the
resulting traces are summed up with weights a, = % and ae%
chosen so that aypf + acp§ = po-
This active preparation of p = %]l contrasts with the non post-selected exper-
iment in Sec. 3.4.1, for which £ = %]l is naturally the final effect matrix in
absence of post-selection. This comes from the asymmetry between p and F in
presence of dissipation toward a non zero-temperature environment, as described
in Sec. 4.2.4.

e The absolute value of s_ remains well bellow 0.5, which is the allowed range for
an unconditional measurement of o_. Thus, in this experiment, the weak value
(0_)w does not have new features compared to a regular average. Indeed, since
p is nearly 31, we can write Re[(o_)y] ~ Re[Tr[pg(t)o_]] = Tr[pp(t) %], where

PE = ﬁ has all the properties of a density matrix.

4.2.3 Pre and post-selected fluorescence traces

We now consider the case where the qubit is initially prepared near |e), that is p(0) =
00 = Fola){gl + (1 = fy)le){e|, and post-selected near |g), that is an effect matrix
Ey—o(T) = Flg){g| + (1 = F)le) | at time T.

Average fluorescence traces for drive amplitudes corresponding to Rabi frequencies from
0 to 1.6 MHz are represented with the same scaling factor as on Fig. 33 on the color
plot of Fig. 35a. The theoretical counterpart, which is the weak value (o_(t)),, with
the PQS (p(t), E(t)) propagated in time using equations (194) and (196), is presented
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Figure 35: a) Mean fluorescence signal s/ as a function of both time and Rabi frequency, for a
qubit prepared in |e) and post-selected in |g). Plain lines surround regions with weak
values beyond the range allowed by macro realism. b) Predicted value of (o_),, for
the same range of parameters as a. ¢) Same plot for the predicted value of (o). d)
Dots: cuts of a as a function of vy for times ¢t = 0.99 us (green) and ¢t = 1.44 us (red).
Plain lines: prediction for (o_),, for the same curves. Dashed lines: cuts of Fig. 24c
at the same times. The gray region delimits the range of possible unconditional
average values, like the contours in a.

on Fig. 35b. Once again, agreement between experimental data and theory is excellent.

On the other hand, the computed weak value of o,/2 = Re[o_], represented on
Fig. 35¢, obviously does not match with the measured mean fluorescence signal. In
Eq. (134), for non post selected trajectories, the mean heterodyne fluorescence signal
verified Re[J(t)] = Re[(0_)] = (0,)®. So far, we could thus identify the averaged
outcome of the measurement record associated with the L = +/v1/20_ (resp. iL)

jump operator with a measurement of the o, (resp. o) observable. This identification

does not hold anymore for weak values. Indeed, the pseudo density matrix p, = #J?E]
is not hermitian, so that
Rel(0_)u] = Re[Trlpo_]
= Tr[Re[pp|Re[o_] — Im[pp|Im[o_]] (197)

= 1Tr[Re[pp)os — Im[p,)oy]
# %Re[Tr[ppUxH-

8 We denote Re[A] the hermitian part of an operator A so that Re[o_] = (o + ol ) = &
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Thus, by averaging the real measurement record associated with jump L only, one can
access properties of the imaginary part of L. This property of the weak value is at the
base of protocols for direct tomography of a wave function [147].

Another characteristic feature of these plots is that there are regions in which the flu-
orescence signal is much stronger (dark blue or dark red on the same color scale) than
for only pre-selected or only post-selected traces. In the regions with a black contour,
the signal even goes beyond eigenvalues of Re[(o_)], corresponding to —0.5 < s_ < 0.5.
The observation of this quantum feature predicted by Aharonov et al. [28] has been
shown to contradict macro-realism when using a non-invasive detector, equivalently
to the violation of a Leggett-Garg inequality [140]. Considering the isolation by cir-
culators placed between the cavity output port and the amplifier (see Sec. A.2), the
measurement here is indeed non-invasive. It has only recently been observed with su-
perconducting qubits [141, 142].

# detections

T di,
20y dt

Figure 36: Schematic representation of the rescaled detector output distribution at time ¢, over
a great number of experiments, for a non driven qubit. Black: preparation in |e), no
post-selection. Dark blue: preparation in |e), post-selection in |g). The average value
for the post-selected experiments goes beyond the largest average values accessible
for the non post-selected cases, reached when the qubit is prepared in | 4+ x) (red)
and | — z) (light blue).

It can seem paradoxical: the average value of an operator on a sub ensemble of
trajectories goes beyond the reachable values with no post-selection. However, this is
possible when the measurement on the considered time-step is weak. Thus, the variance
of its possible outcomes goes well beyond its mean value. For a single trajectory, such
a large value of the fluorescence signal is not forbidden. As represented schematically
on Fig. 36, when post-selecting trajectories far out-centered in the outcomes proba-
bility distribution, one can get an average beyond the reachable mean-value for non
post-selected trajectories.

Here, we considered the situation corresponding to the bottom part of Fig. 35a: the
qubit is prepared at time ¢ = 0 in |e), and after a time T" < T3 = 16 us, we select
only the experiments during which it has decayed down to |g). For a weak Rabi drive
(Qr = 0), the only process that allows for such a final state is the maps K, defined
in Eq. (175) for ¢t € [0, 7], which can have a particularly strong effect. This happens
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only if the fluorescence signal s;v/dt is itself very strong.

More generally, in absolute value, the largest fluorescence signal is detected when
the probability of post-selection is low. Indeed, we can write

Te[pE] — %Tr[pE + Ep| = Tr[Re|pE]], (198)
so that Eq. (197) reads
B Re[pE] o, Im[pE] o,
Rel(o-)u] = Tr| o o o) + T ey 2 (199)

The first term in this sum looks like a usual average value whereas the second can
diverge. This is often interpreted as amplification [145, 146] since the corresponding
quantum noise is the same as for a usual average. Indeed, in Eq. (186), the variance
of the distribution for £ remains of order 1. However, taking into account the post-
selection probability, the number of repetition of the experiment needed to get a given
signal to noise ratio is at least as large as with conventional methods [150]. This prop-

erty may still be useful in some quantum information protocols [155].

An illustration of this amplifying property of the weak values can be seen on Fig. 35d.
In this plot, dots represent the experimental value of the fluorescence signal as a func-
tion of Rabi frequency at times ¢ = 0.99 us (green) and ¢t = 1.44 ps (red). Plain lines
represent the corresponding computed weak value, and dotted lines the unconditional
average, corresponding to cuts of Fig. 24c¢ at the same time. At a fixed time, when
varying the Rabi drive amplitude Q) g, there are some values for which the slope of the
detected signal is much stiffer than for non post-selected traces. Thus, in these regions,
the sensitivity of our detection to a small variation of a parameter is increased. It could

be infinitely large if not for the finite preparation and post-selection fidelities.
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Figure 37: Mean fluorescence signal for trajectories from |g) to |e) (to the left), from |e) to
le) (center) and from |g) to |g) (to the right). Horizontal black lines materialize
regions in which preparation and post-selection disagree (lowest probability of post-
selection). Purple (resp. orange) lines materialize times for which p(¢) = |g)(g| (resp.
E(t)le) (el

On Fig. 37, we present the average fluorescence signal for trajectories from |g) to |e)
(to the left), from |g) to |g) (center) and from |e) to |e) (to the right). Horizontal black
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lines materialize Rabi drive values for which preparation and post-selection disagree
(Tr[pE] — 0). It corresponds to an integer number of oscillations for s and an integer
plus one half oscillations for s%9 and s°. In every case, it corresponds to the lowest
probability of post selection and to the highest sensitivity to the Rabi frequency value.
Indeed, bellow a line, we rather select trajectories for which the relaxation has acceler-
ated the rotation of the qubit, so that it was strong when the qubit state was rotating
down to the south pole of the Bloch sphere, which happens when (o,) > 0. Thus, in
these regions, we get a strong positive signal (dark red regions). On the other hand,
above these lines, we rather select trajectories for which the relaxation has slowed down
the rotation of the qubit, so that it was strong when the qubit state was rotating up
from the south pole of the Bloch sphere, which happens when (o,) < 0. We then get
a strong negative signal (dark blue).

A last interesting feature is materialized by the curved lines. They represent times
for which p indicates a qubit near |g) (purple lines) or times for which E indicates a
qubit near |e) (orange lines). In both cases, the fluorescence signal goes down to zero.
Indeed,

Trllg)(9|Eo-] = Tr[ple){elo-] = 0. (200)

In this section we have described an experiment in which the resonance fluorescence
of the qubit was recorded during ¢t = 2.5 us and then averaged conditionally to a final
projective measurement of oz. The information from the final readout is encoded in
the effect matrix E, propagated backward in time using Eq. (196). It is similar to the
Lindblad master equation (194) but not time symmetric. This asymmetry between
preparation and post-selection was not visible here because T' < T so that the dy-
namics was dominated by the hamiltonian evolution induced by the Rabi drive, which
is reversible. Thus in Fig. 35a and Fig. 37, the color plots are invariant under the

transformation
t — —t
) (201)
le) < 1g)

the second substitution compensating for the minus sign introduced by the first in the
hamiltonian. However, on longer timescales and when not driving the qubit (Qr = 0)
p converges to peq ~ |g)(g| at t — 400 when E converges to %]1 at t — —oo, breaking
the symmetry. To highlight this property, we briefly describe a similar experiment but
corresponding to longer trajectories with a shorter lived qubit.

4.2.4  Time asymmetry for a dissipative system

The qubit used here corresponds to Qubit 4 in Tab. 3. The experiment is similar to the
one described in the previous sections, but after preparation, the fluorescence signal
is averaged for 10 pus > 171 = 4 pus. Moreover, as in Sec. 3.4.2, the final projective
readout conditioning the average is done along ox, oy or oz, each on one third of
the experiments. We also let the possibility to prepare the qubit in |+ z) and | +y),
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which respectively denote the eigenstates of ox and oy . Finally, the occupation of the
excited state at thermal equilibrium is P.4(]e)) < 1 %, so that errors in preparation
can be neglected. On the other hand, the final readout leads to 15 % errors (for both
false positives and false negatives) for the 3 types of measurements®.
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Figure 38: Fluorescence traces for a qubit initially in |+ 2) (plain lines) or |e) (dashed lines),
averaged conditionally to the outcome of a final projective readout along ox (blue),
oy (yellow) and oz (green) at T = 10 us. The traces are grouped in 2 panels
according to the pos-selected outcome of the projective measurement for clarity.

As stated previously, the asymmetry between E and p is not visible when the dy-
namics is dominated by a fast hamiltonian evolution such as a high frequency Rabi
oscillations. Therefore, no drive is applied in order to highlight the asymmetry. On
Fig. 38, we plot the average fluorescence signal for a qubit initially in | + 2) (plain
lines) or |e) (dashed lines) and post-selected according to the outcome of the final
readout along ox (blue), oy (yellow) or oz (green). Each panel corresponds to a dif-
ferent post-selection.

A first striking feature of these plots is that all average signals decrease to 0 after a
few Ty’s. This reflects that p(t) “=5° pey =~ |g)(g], so that Tr[p(t)E(t)o_] — 0. This
is in contrast with the evolution of the effect matrix that verifies E(t) "5 1. This
asymmetry is characteristic of a dissipative system: predictions can be made about a
measurement in the far future, since the entropy of the system eventually decreases
down to 0. On the other hand, a final measurement does not bring information about
the far past, and knowing only measurement outcomes after a few 7} ’s, all initial prepa-
rations are equally probable.

Note that, had we considered only a non-dissipative decoherence process such as de-

phasing, the corresponding jump operator would have been hermitian (\/%daz in the

In this particular experiment, the microwave pulses used during the high power readout protocol (see
Sec. 3.3) degraded the coherence time of the qubit for tens of milliseconds after the readout, limiting
the repetition rate of the experiment. We chose to decrease the amplitude of these pulses in order to
limit this effect, at the expense of the readout fidelity.
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case of dephasing), and the master equations (194) for p and (196) for E would have
been symmetric.

Let us comment further on the traces of Fig. 38.

o When the qubit is prepared in | + ) and for a final readout along o, (plain blue
lines), the conditional average depends on the preparation (positive signal), but
not on the final detection outcome. This surprising feature, predicted by the past
quantum state formalism even for perfect readout fidelity, illustrates further the
asymmetry between preparation and post-selection when monitoring o_.

o The post-selection using a final readout along oy (yellow lines) does not affect the
fluorescence signal either. This can be understood considering that, up to now,
only the signal from the detection of the I quadrature of the fluorescence field,
corresponding to the \/y1/20_ jump, was recorded (see Fig. 33 and Eq. (193)).
In Sec. 3.4.2.4, we have shown that, in terms of Bloch sphere representation, the
record of this detection only influences the x and z coordinates of the qubit (see
Eq. (160)). Thus, the signal is not correlated to the outcome of the final measure-
ment along oy . Both conditionally averaged traces are equal to the unconditional
one.

o Were there no readout errors, an experiment where the qubit is post-selected in
le) (green lines on the left panel) would yield no signal. This can be understood
considering that if the qubit is detected in |e) at T', it cannot have leaked energy
prior to T. However, for the trace s°°(¢) (plain line) the signal is only slightly
lower than on the right panel, when the qubit is post-selected in |g). This is be-
cause at T' ~ 2.5 T}, most detections of a qubit in |e) are in fact false positives.

In this experiment, we also record the signal corresponding to the detection of the )
quadrature of the fluorescence field. As expected, the two averaged traces conditioned
on the outcome of a final measurement along oy differ. On Fig. 39, are represented
in red (resp. in blue) these conditionally averaged traces when the qubit is driven at
Qpr/2r = 0.5 MHz around oy, for a qubit in |g) at ¢ = 0 and detected in | + y)

(resp. | —y)) at T'= 10 ps. On Fig. 39a, we plot the rescaled average signal on the [
TY[p(t)E(t)O—]}

Tr[p(t) E@)] |
The conditionally averaged signal on the ) quadrature is plotted on Fig. 39b and,

quadrature. It is reproduced by the weak value of o_, which reads Re[

according to Eq. (189), is reproduced by the weak value of io_ which reads,

» B () E(t)ior_]
(i0-)w = Re|Timar]

— [ EpOEO ] (202)
p(t)E(t)]
The predictions using the past quantum states formalism match quantitatively the
experimental curves. The signal on [ is not affected by the post-selection, similarly
to the signal on @@ when post-selecting with a measurement along ox (see Fig. 38).
The conditionally averaged traces on (), resulting from the combined effects of both

the post-selection, which forces the selected trajectories toward y = +1 in the Bloch
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Figure 39: Fluorescence traces for a qubit initially in |g), undergoing Rabi oscillations around
oy at Qp/2m = 0.5 MHz, and post-selected in |+ y) (in red) or | — y) (in blue) at
T = 10 ps. a Signal on the I quadrature detection, corresponding to the 1!%10_
jump operator. b Signal on the @ quadrature detection, corresponding to the

72—13'0_ jump operator. ¢ Same traces represented in the IQ plane.

sphere, and the drive around the y-axis, are non-trivial.

In this chapter, we have described an experiment in which the fluorescence signal

of the qubit is averaged conditionally to a final projective measurement outcome. The
average value is predicted using both p and E, which are propagated in time determin-
istically from O (resp. T') to the time of interest ¢. This contrasts with the stochastic
master equation formalism which makes use of all the measurement record before ¢
(see Sec. 3.1) and after ¢ (See Sec. 4.1.2).
In the present case of a weak monitoring via the fluorescence detection, a single tra-
jectory unravelled using the measurement record from both past and future would not
differ much from the one we would get using the measurement record from the past
only'®. This contrasts with the situation in which past quantum states are used to
smooth trajectories [30, 157]. Smoothing is used when monitoring the system with a
strong measurement of low efficiency. Calling dt the integration time step and I'q the
dephasing rate associated with the measurement backaction, it requires the hierarchy

nlqdt < 1 < T'gdt. (203)

In this essentially classical situation, the system state is always projected by the mea-
surement, but the knowledge of the observer is imperfect. By combining information
both from past and future measurements, one can, for instance, better resolve quantum
jumps of the system [157].

In our case where 7;dt < 1, the trajectories are continuous, and knowing the value of
the record at ¢ 4 dt only slightly changes our estimation of the measurement outcome

We call here measurement record only the outcomes of the weak detection of o—, and not the final
projective readout, which influences dramatically the trajectories [156]
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at t.

In the experiment, the past quantum state can describe the statistics of a particular
measurement, but not the state of the qubit. In an ideal weak value experiment, both
knowledge from the past and from the future are perfect, but different. It thus high-
lights the backaction of the weak measurement at ¢, which is strongly correlated to the
choice of post-selection.

4.3 CONCLUSION

In this part, we have described the design and constraints on the parameters of a
superconducting qubit, the 3D transmon. This system implements the simplest open
quantum system one can think of, which is a two-level system in presence of a single
relaxation channel. Its long coherence time combined with fast electronics allows for
coherent manipulations and, using the interaction of the qubit with the cavity mode,
one can realize a QND measurement of its oz operator. This measurement effectively
opens a dephasing channel for the qubit.

These two decoherence channels (relaxation and dephasing) can be monitored effi-
ciently to limit information loss in the environment, and thus to access the quantum
trajectory of the qubit on a single experiment.

The main results of this part are

o Demonstration of high efficiency (n = 67 %) detection of a microwave mode
dispersively coupled to a superconducting qubit. This detection is used to imple-
ment a high fidelity, QND readout of the o operator of the qubit in a single-shot.
Observation of quantum jumps.

« Efficient collection and heterodyne measurement of the fluorescence of a qubit.
The overall detection efficiency is n = 24 %. The signal is filtered using a Stochas-
tic Master Equation to follow in time the state of the qubit during relaxation.
Predictions are validated by independent tomographic reconstruction.

e Conditional averaging of the fluorescence traces according to the outcome of a
final projective measurement to measure weak values of the o_ operator of the
qubit. Observation of weak values out of the accessible range for unconditional

average.

Future uses of the fluorescence detection may include parameter estimation using

the past quantum states formalism [158]. For instance, with a sideband detector, one
could reconstruct the texture of non-gaussian noise on the qubit resonance frequency
from low frequency up to a few GHz . The statistics of fluorescence trajectories may
also prove a useful tool to study heat and entropy exchange in simple quantum systems,
which are the relevant quantities to the new field of quantum thermodynamics [159].
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Up to now, we have described how to monitor the state of the qubit. In the next
part, we describe active control schemes that make use of the information extracted
via dispersive measurement or fluorescence detection.
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Part 11

QUANTUM CONTROL






Hideo Mabuchi [160] distinguishes three modes of quantum control.

Open loop control in which a quantum system is driven by a time-dependent
control hamiltonian in a predetermined way. As we have seen in Sec. 2.1.2, hamil-
tonian evolution preserves the entropy of a system. Thus, it cannot be used by
itself to prepare a given target state starting from an unknown state. However,
it can de done in an open system by taking advantage of the dissipation into
a cold environment. For an open qubit, the simplest scheme is as follows. For
a sufficiently cold environment, starting from any state, we wait for a few T7’s.
This brings the qubit close to its ground state. We then apply a fast control pulse
to bring it to the desired state.

Defining the preparation fidelity as the average distance between the qubit state

o0
p(t) and the target state o(t) as F = [ Tr[p(t)o(t)]dt, we can show that this
0

open loop control scheme results in a low preparation fidelity for a target state
far from the ground state. Indeed, the error rate and the dissipation rate used to
evacuate entropy are the same since they are both set by the dissipation of the
qubit on a time scale T7.

Measurement based feedback in which a discrete or continuous measurement
record as defined in Chap. 3 is processed classically and used to adjust the system
state in real time. In Sec. 5.1, we describe an experiment implementing a stro-
boscopic feedback that takes advantage of the high measurement rate and the
non demolition nature of the dispersive readout to stabilize an arbitrary state
or trajectory of the qubit. In Sec. 5.2, we describe another experiment in which
the measurement record associated with the relaxation channel of the qubit is
fedback continuously to the qubit through a Markovian controller in order to
stabilize an arbitrary state.

Autonomous feedback, also referred to as coherent feedback, in which a quantized
field scattered by the system is processed coherently (without measurement) and
then redirected to the system as a control input. It makes use of an auxiliary
system whose dissipation rate is much larger than the qubit decay rate. By en-
gineering the coupling between the qubit and the auxiliary system, dissipation
then brings the qubit to the desired state on a rate much larger than the error
rates associated with uncontrolled decoherence channels. In Chap. 6, we show a
simple implementation of autonomous feedback using the high decay rate of the
cavity to reset the qubit state.

Closely related to these feedback based schemes, Facchi et al. define a fourth control

scheme. [36, 161] consisting in tailoring dynamically the Hilbert space of a system in

time.

Quantum Zeno dynamics occurs when the evolution of a system of large Hilbert
space dimension is restricted to a given subspace either through repeated mea-
surement or by a unitary coupling to an auxiliary system. In Chap.7, we describe
an experiment in which a qubit is used to induce such dynamics for a cavity
mode.
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Figure 40: The centrifugal governor for steam engines designed by Boulton and Watt in 1788 is
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inspired by previous governors used to regulate the distance and pressure between
millstones in windmills. The output of the engine is connected to the governor and
causes it to rotate. When the output power increases, the centrifugal force draws
the balls away from the rotation axis. This causes the valve admitting the steam
flow to the engine to close, decreasing its power. This auxiliary system can be seen
as implementing a coherent feedback in the sense that no further information comes
out of the system. However, in a classical system, coherent and measurement based
feedback are equivalent since the steam flow could be measured without perturbing
the system.



MEASUREMENT BASED FEEDBACK

Feedback loops are ubiquitous in complex systems, from automatics to biology or
economics. They stabilize a system subjected to uncontrolled stochastic noise from its
environment or prepare a given state starting from an unknown initial state. A feed-
back loop can be decomposed in three components. A sensor that monitors a given
observable (temperature, blood-glucose level...) sends this signal to a controller (elec-
tronic integrated circuit, insulin activation enzymes...) that analyzes it and uses an
actuator (heater power, insulin amount...) to react on the system.

In the quantum domain, there is a change of paradigm in feedback since measure-
ments modify the state of the system. However, using the stochastic master equation
formalism described in Chap. 3, the controller can be designed to take into account the
measurement backaction when estimating the state of the system. Thus, results from
classical control theory can be more or less transposed to quantum systems [33, 24].

The first implementation of measurement-based quantum feedback was performed
by Sayrin et al. in 2011 [40, 41]. Using Rydberg atoms, they managed to measure
the state of a microwave field inside a high finesse cavity and to use the information
to steer this state towards a target Fock state by applying coherent drive pulses or
photon transfer on a time scale much shorter than photons lifetime inside the cav-
ity. Several demonstrations of MBF have since been performed using superconducting
qubits [42, 48, 81].

In this chapter, we describe two experiments implementing measurement based feed-
back on a superconducting qubit. First, a stroboscopic digital feedback based on a
dispersive measurement, and then a continuous analog feedback based on the fluores-
cence signal of the qubit.

5.1 STROBOSCOPIC DIGITAL FEEDBACK USING DISPERSIVE MEASUREMENT
5.1.1 Feedback loop

The principle of this digital feedback is as follows. Given a target state or trajectory,
at arbitrary times,

o A fast control pulse is applied to map the target state to |g).

o The qubit is measured using the QND dispersive readout described in Sec. 3.2.3.1.

Note that in the experiment, the JPC is turned on only during this measurement. Due to imperfect
isolation from the cavity, it would otherwise induce extra dephasing of the qubit, which would lower
the feedback efficiency when stabilizing states that are not |g) or |e)
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Figure 41: a) Schematic of the feedback loop to stabilize |g) or |e). A square readout pulse

(in yellow) at wy /27 = 62.5 MHz and with phase 6 is generated by an arbitrary
waveform generator (AWG) and then up-converted to w, by mixing with a local
oscillator (LO) at w, 4+ wy, (in purple). It is sent to the input port of the cavity
and the transmitted signal is amplified and down-converted using the same LO.
The resulting signal s(¢) is then digitized by the FPGA board, demodulated and
integrated over its 960 ns long stationary regime. If its imaginary part is positive,
a short square pulse at wy,/2m = 125 MHz is generated (in orange). This pulse is
added up to other control pulses of the qubit with the same phase, and up-converted
to wq by mixing with a LO at wq + w) (in green) before being sent to the qubit. Full
schematic of the wiring can be found on Fig. 64. b-¢) apeadout 1s the integrated and
rescaled readout signal as defined in Eq. (204). The disks represent the fluctuations.
By setting the phase 6 of the readout pulse, one can choose to trigger a feedback
pulse if the qubit is detected in |e) (§ = 0°) or in |g) (§ = 180°).

o If the qubit is measured in |e), a fast 7 pulse is applied in order to bring it back
to |g).

o The qubit is sent back to the target state by applying a control pulse opposed to

108

the initial one.



To be efficient, the repetition rate of this feedback loop must be much higher than the
error rate 7y that needs to be corrected for. The two intermediate steps use the same
reset by digital feedback as described by Riste et al. [42]

The experiment [81] uses the same setup and measurement pulse as depicted in
Sec. 3.2.3.1 (Qubit 1 in Tab. 3). The feedback loop is represented on Fig. 41a. After
mapping the target state to |g), a 1.2 us long pulse at cavity frequency, corresponding
to an average photon number in the stationary regime calibrated to be 1.4 photons,
is sent through the cavity. We set the phase? of the readout pulse to be # = 0° so as
to get the configuration described on Fig. 41b. In that case, the imaginary part of the
detected signal, found integrating the measurement record of Eq. (118) and rescaled
as for Fig. 20, reads

Qreadout = m ft'icc)CEIJrTmeas J(t)dt (204)

= COS g + <UZ>i sin g + m (W1 (Tmeas) + ZWQ (Tmeas))

Here, as in Sec. 3.2.3.1, the signal integration is performed a time t.o; > 1/ after
the beginning of the readout pulse so that the state of the qubit has been collapsed
to |e) or |g), and (oz) = £1. Tineas is long enough so that the fluctuations encoded by
the Wiener processes Wi and W5 are small compared to the mean signal. Therefore,
Im[areadout] > 0 only if the qubit is in |e) (the readout fidelity beyond relaxation errors
is 99.6 %), and this criterion can be used to apply a correction pulse.

The high fidelity of the readout performed on a short time scale compared to 17 is
enabled by the high efficiency detection setup (n = 67 %), in which the JPC is used as
a pre amplifier. After further amplification, the detected signal is down-converted and
sent to a Tekmicro Triton-V5 board. The board then triggers a square pulse modulated
at we = 7 x 125 MHz conditioned on the measurement outcome. The overall feedback
delay is 480 ns and can be decomposed as follows.

e The electrical delay between the cavity output and the board ADC is 60 ns,
including the down-conversion to wy, = 27 x 62.5 MHz.

e The board ADC digitizes the signal by sampling it at a rate 500 MSample/s and
sends it to the FPGA core itself. The board is clocked using the same 10 MHz
reference as the AWG.

e The FPGA numerically demodulates this signal and averages it over its 960 ns
long stationary regime. This demodulation consists in averaging the product
of the down-converted signal s(¢) and the pre-recorded values of sinwyt (resp.
coswpt) on an integer number of periods so as to get, up to a scaling factor,
the values of Im[ayeadout] (resp. Re[areadout])- Note that only the imaginary part
contains information about the qubit state, but it is convenient to get both values
in order to adjust the phase of the readout pulse. The integration is triggered by

2 a constant offset is chosen so that [Im[aeadout]| does not depend on the qubit state and Re[areadout] >
0.
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the AWG. If the imaginary part is positive, a control bit is then set to 1 and sent
to the DAC that generates a 104 ns long pulse modulated at w, = 27 x 125 MHz.
The phase of this pulse is the reference phase for the qubit drive (rotation around
the y-axis). Note that the overall processing by the board lasts 360 ns, out of
which 160 ns are used for demodulation and integration. The remaining 200 ns
are needed to generate and send the control bit (16 ns) and to allow reliable
synchronization of the ADC/DAC and FPGA clocks (180 ns).

e The output of the board is then added up by an AWG to other control pulses
of the qubit. The resulting signal is up-converted to w,; by mixing with a LO
and sent to the qubit. The overall attenuation of the input lines is such that the
FPGA generated pulse corresponds to a 7 rotation of the qubit around the y-axis
of the Bloch sphere.

Including the duration of the readout pulse and the correction pulse, the overall
feedback loop duration is Tjoop = 1.8 ps, much smaller than the qubit decay time
T = 28 ps and than pure dephasing time Ty = 14.5 us. Moreover, the protocol can
in principle be repeated as fast as the readout pulse is short. Indeed, as long as the
qubit remains in the (z,z) plane of the Bloch sphere, one can implement any control
sequence while the board is processing the readout signal. At each detection event, if
the readout outcome turns out to be the one expected, the measurement back action
itself projects the qubit on the target state and the entropy that had appeared since
the previous measurement is evacuated. This is a difference with classical feedback
where measurement does not produce stabilization alone. If, on the contrary, the read-
out outcome is not the one expected, the qubit state is orthogonal to the target state
during the 420 ns needed for the correction pulse to reach the qubit. Whatever the
evolution of the qubit state during this lapse, as long as it is in the (z, z) plane when
the correction pulse is applied, the trajectory is then refocused to the target state.
However, the cavity readout time 1/x = 90 ns being finite, following a measurement,
one should wait until the photons leak out of the cavity before driving the qubit in
order to avoid dephasing due to photon noise.

Note that another possibility consists in setting the readout pulse phase at 6 = 180°.
In that case, Im[ayeadout] > 0 if the qubit is in |g) as represented on Fig. 41c. Then,
otherwise using the same pulse sequence and criterion to trigger the correction pulse,
one stabilizes the orthogonal state. However, this configuration is less efficient. Indeed,
since the qubit is more frequently measured in |e), there is a higher rate of relaxation
induced bit flip errors between the readout and the correction pulse. These errors are
not corrected for until the following feedback loop.

5.1.2  Qubit reset
As a first implementation of this protocol, we choose the ground state itself as the

target state. The feedback loop is then used to reset the qubit starting from any un-
determined state, similarly to what was demonstrated by Riste et al. [42]. Quantum
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Figure 42: a) Schematic of the reset pulse sequence. The qubit is effectively prepared in
p = 3(|l9){g] + |e){e]) by averaging over experiments in which it is left at ther-
mal equilibrium and others in which its population is inverted by applying a fast
7 pulse. For a time tgelay, the qubit is left to relax toward thermal equilibrium
or actively cooled down by applying between 1 and 4 feedback loops before being
measured. b) Measured occupation of the |e) level as a function of tgelay With no
feedback (in red) or after applying 1 (orange), 2 (blue) or 3 (purple) feedback loops.
Dots: experimental data. Lines: theoretical prediction including thermal excitations
toward higher energy levels of the transmon. Black dotted line: same prediction for
2 feedback loops neglecting the higher excited states of the transmon.

information processing requires such removal of entropy during initialization or when
correcting for errors [43]. This method allows to do so without fast frequency tuning
[162, 163, 16, 164], post-selection [165, 166] or limited coupling rate k < x [44].

As an illustration, the qubit is first prepared in the most entropic mixed state
p = (lg){gl + |e){e])/2 by either applying a m-pulse or not (the outcomes are aver-
aged over these two possibilities). After a time tgclay, Wwe measure the occupation of
the |e) level following zero, one or more resets by feedback. On Fig. 42b, we plot the
probability to detect a positive value of the imaginary part of the readout field as a
function of Zgelay for these various situations. Note that due to finite fidelity of the
measurement, this is not directly P(|e)). We found that starting from Py = 50 %,
a single reset brings this probability down to P(Im[aieadout] > 0) = 3.6 %, which,
without feedback, would require to thermalize during 110 us. Yet, events where the
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qubit relaxes between the middle of the measurement pulse and the feedback pulse
limit the efficiency of a single reset. Doing a second reset immediately after the first
brings the qubit much closer to the ground state with P(Im[aeadout] > 0) = 1.1 %.
Further feedback loops do note improve this figure, but for long delay, that is applying
feedback loops from thermal equilibrium, it gets as low as 0.6 %.

This can be understood considering a finite thermal excitation rate to higher energy
levels of the transmon. We model it considering a three-level system. The decay time of
the third energy level, noted |f), has been measured independently to be T .y = 15 ps.
This is possible using a detection scheme described in the supplementary material of
[81] and similar to the method used in Sec. 6.1.2. Assuming a Boltzmann distribution
for the occupation of the levels at thermal equilibrium we can compute the transition
rates between these levels using

reaf _ rgﬁ‘e — =
rf~>6+re—>f o rﬁ—>g+rg—)e - 1= Pth(|g>) - 24%
1 —
l"f_>ﬁ+l"e_>f - T1>ef (205)
1 —
re—)g_"rg*)e o Tl

Considering no further errors but the thermally induced transitions, and perfectly
QND readout pulses, we can reproduce quantitatively the feedback results (plain lines

in Fig.42b). Note that, with the present readout scheme at wyeadout = W, a qubit
in | f) yields a result Im[ayeadout] > 0 so that it is not distinguishable from |e). Moreover,

denoting F the fidelity of the measurement?, we suppose that

P(Imlarcadout] > 0) = F'x (Pmia(le)) + Puia(1))) + (1 = F) x Puia(lg)), (206)

where Ppidq(g,e, f) is the occupation of the levels in the middle of the integration in-
terval by the board. Finally, the correction pulse is supposed not to affect a qubit in
|f) and to flip a qubit in |g) and |e) only 99% of the time?.

In Sec. 3.2.3.1, F had been calibrated to be 99.7%. However, this value fails to repro-
duce faithfully the data, and the agreement between data and theoretical prediction
is far better with F© = 99.6%. This more precise value is well within the error bar
associated with the estimation made in Sec. 3.2.3.1.

Correcting for these final readout errors, we get better results for the reset than
presented in [81]. These results are summarized in Table 1. Note that this reset could
prepare any state with similar purity by applying fast rotation pulses once the qubit
is in state |g). In practice, the fidelity is limited by the fidelity of the rotation pulses.

5.1.3  Rabi oscillations

We now aim at stabilizing a dynamical state of the qubit, namely Rabi oscillations.
This was first performed by Vijay et al. [48] using a continuous and weak measurement

we make the approximation that F is also the fidelity for the detection of |f)
This value corresponds the decoherence during a 104 ns long Rabi oscillation.
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Table 1: Occupation of |e) using zero, one or two resets by feedback when starting in the most
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entropic state or in the thermalized state (effectively at 46 mK). Finite fidelity of the
final readout has been corrected for.

reset number 0 1 2
from (|g){(g| + |e)(e])/2 | 50 % | 3.2 % | 0.8 %
from thermalized state | 2.4 % | 0.4 % | 0.2 %
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Figure 43: a) Pulse sequence for stabilizing Rabi oscillations. For a typical period of 4 us, the

lines represents the drive amplitude (green) and expected occupation of the cavity
(purple). The complex amplitude a of the measurement field is recorded only during
the steady part of the occupation (red area). When Im[aeadout] > 0, a fast 7 pulse
is applied after a total delay of 480 ns (actuation). These steps are illustrated with
usual symbols for media player. b) Black line: decaying Rabi oscillation around oy
with frequency wrp = 27 x 250 kHz and measured decay time T = 15.5 us. Dots
on line: persistent Rabi oscillations measured using the pulse sequence described in
(a). ¢) Same measurement as in (b) shown on a smaller span for (oz) (dots) and
(ox) (circles). The targeted Rabi trajectory is shown as two dashed lines, black
for (07) and gray for (ox). Predictions using Bloch equations are represented as
solid lines with the same color convention. d) Bloch sphere representation of the
full tomography of the qubit for persistent Rabi oscillations during 100 ps. Time is
encoded in color as in (b).
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of the qubit state and analog feedback. Here, we make use of the fact that a qubit un-
dergoing such oscillations passes periodically by the state |g), which we know how to
stabilize from the previous section. The new feedback protocol is a simple adaptation
of the loop presented in that section and is inspired by the stroboscopic measurement
scheme proposed in [167].

A constant microwave signal at w, induces a Rabi oscillation of the qubit around oy
at a frequency chosen to be wr/27 = 250 kHz. Without feedback, these oscillations
decay on a timescale T = 15.5 us (Fig. 43b). In order to make the Rabi oscillations
persistent, a measurement is performed each time the qubit is supposed to be in state
lg) (Fig. 43a). The FPGA controller then sends a fast correcting m-pulse (actuation)
each time the measurement reveals that the qubit is in the excited state. In order
to optimize the fidelity of the feedback controlled trajectory to the targeted Rabi
oscillation, the precession angle which is left idle during the measurement — Zeno
effect freezing the trajectory anyway [168] — is briefly accelerated before and after the
measurement to compensate exactly for that pause (see Fig. 43a). Moreover, since the
qubit remains in the (y,z2) plane during the whole experiment, the correction pulse
performs a bit flip, whatever its state. Thus, it is not needed to wait for the FPGA
board to finish its computation before driving again the qubit. However, to avoid extra
dephasing, we leave the qubit in the ground state as long as the measurement field
has not leaked out of the cavity. Quantitatively, we impose that the measurement
induced dephasing rate T'4(t) associated with this field be of the same order as the
qubit decoherence rate v2. The criterion we use is I'y < 5 72, which corresponds to a
ringdown time of ~ 300 ns. I'4(¢) is estimated as in Sec. 2.2.4 using Eq. (85)

La(t) = xlm[ag(t)as (1)), (207)

where ag4(t) and a.(t) are computed numerically.

As can be seen in Fig. 43b, the Rabi oscillations are indeed stabilized permanently
with this protocol. Their average fidelity to the targeted Rabi oscillation is F' = 85%
and their average purity 80%. The discrete correction events lead to visible disconti-
nuities in the trajectories restoring the purity lost during the last Rabi period due to
decoherence (see Fig. 43c). Although it is possible to perform this stabilization using
analog feedback on a weak, continuous measurement [48], we demonstrate here that,
for limited detection efficiency, discrete feedback events are more efficient [169]. This
is simply explained by the added flexibility to vary the measurement strength in time
so as to avoid extra dephasing when the qubit is not in |g) or |e).

We can quantitatively reproduce the measured average trajectory (see Fig. 43c)
by simulating the evolution of the density matrix p® using Bloch’s equations. These
equations are equivalent to the Lindblad form of the master equation (27) derived in

Occupation of the higher energy levels of the transmon and thermal excitations are here neglected
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Sec. 2.1.3.1 [67]. Letting wg(¢) the Rabi pulsation that varies during the various steps
of the feedback loop, they read

i Pee _ _rl WR(t) . Pee 0 208
dt ( Pge ) ( —wg(t) —T2—Tq(t) ) ( Pge ) ' ( wr(t)/2 ) 20

We can divide a period of the Rabi oscillations of duration Tosc = 4000 ns in 4 steps
(see Fig. 43a) according to the values of the Rabi pulsation and of the field amplitude
in the cavity.

o step A : measurement and pause from 0 to T, = 1500 ns

During this step, the qubit is left idle (wg = 0). When turning on the readout
tone, coherences collapse nearly instantaneously. After 240 ns, the cavity field
amplitude has reached its steady state and the FPGA board starts its acquisition.
For the simulation, at half the acquisition time by the FPGA board (middle of
the red time interval in Fig. 43a), we record the population peemiq in |e) and
afterwards simulate separately two trajectories with peemia = 0 Or peemia = 1
according to the measurement outcome. To get the average trajectory plotted on
Fig. 43¢, we add up those with the actual weights pee miqa and 1 — pee mid-

o step B: fast forward from T}, = 1500 ns to T, + T = 1564 ns.
In order to compensate for half the precession lost during the pause, the drive
is performed beyond the targeted Rabi frequency during a short period of time,

2 _Tp
T 2Tosc

tude remaining in the cavity after step A decreases exponentially from a mean
photon number 0.05 (I'y >~ 5 T'y) t0 0.025 (I'y >~ 2.5 T'). In fact, the JPC is turned
off after the measurement and there may be a change in the effective cavity exit

hence wr = (the other half is compensated in step D). The field ampli-

rate k0. A slight modification of these parameters lead to a better fit to the
measured trajectory.

o step C : nominal Rabi drive from T}, + T = 1564 ns to Tosc — T = 3936 ns.

Rabi oscillation is here nominally driven at the target frequency wrp = -~

TOSC ’
Average photon number in the cavity keeps decreasing down to 0. At t = 1850 ns,

a correcting m-pulse occurs in case the measurement outcome is |e) in step A.
In the simulation, the Rabi pulsation is briefly increased for the corresponding
trajectory and the two parallel trajectories are averaged into a single one with
weights Pee,mid and 1 — Pee,mid -

e step D : fast forward from Tose — T = 3936 ns to Tys. = 4000 ns.
o Tp

s . There is no readout field inside
Tff 2Tosc

Same purpose as step B with wrp ==
the cavity at this step.

For any initial value of p, the simulated trajectory converges in about 3 or 4 periods
toward the steady state represented in Fig. 43c.

6 Due to finite isolation, the cavity mode hybridizes weakly with the amplified mode of the JPC with
which it is in resonance.
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5.1.4  Ramsey oscillations
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Figure 44: a) Evolution of (oz) (dots) and of the coherence |(ox + ioy)| (circles) when the
qubit is prepared in state (|g) + |e))/v/2 at time 0. State tomography is only per-
formed outside of the sensing and actuation periods. In color: feedback on. In black:
without feedback. b) Same evolution shown on a shorter span. Lines: simulation
of (oz) (black) and |(ocx + ioy)| (gray) using Bloch equations. Due to relaxation,
the qubit does not stay on the equator between sensing periods, so that coherences
remain when rotating it by 7 /2 toward the pole. These coherences are quickly sup-
pressed by the measurement induced dephasing. ¢) Same evolution represented in
the Bloch sphere with a Ramsey frequency wg, /27 = 10 kHz. The color encodes
the time as in (a). The simulated trajectory is only represented as a line during
sensing and actuation periods for clarity.

We now show that this feedback protocol can also be used to stabilize a state of the
qubit that does not pass by |g). As an example, the target state is now (|g) + |e))/ V2.
The feedback loop is simply adapted from the one described in Sec. 5.1.2. Every 4 pus,
a fast /2 pulse is applied to rotate the qubit around oy before measuring its state
and sending it back to the equator with a —m/2 pulse. This operation maps the x-axis
on the z-axis, so that we effectively perform a measurement of the ox operator. In
order to maximize average fidelity to (|g) + |e))/V/2, the qubit is rotated back to the
equator before the correction pulse is applied by the FPGA board.

Without measurement based feedback, the Bloch vector of the qubit decays exponen-
tially both in Z with rate 1/7) and in the X, Y plane with rate 1/T» (Fig. 44a). With
the feedback on, it follows the same evolution in between sensing periods, but the lost
purity is recovered when the correction pulse takes place. From these simulations,the
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average purity Tr(p?) of the density matrix p is calculated to be 85%, the time aver-

aged fidelity F' = (ttarg|p(t)|1targ) to the target trajectory [¢rarg) = (lg) +e))/V/2 is
F = 76% and the average information quantity 1 — Tr(—plogyp) = 0.60 bit.

We simulate the evolution of the qubit state as in Sec. 5.1.3. The only difference
is the value of wg(¢) which is 0 except during the /2 rotations. Simulated average
trajectory on a feedback period is represented on Fig. 44b and fits quantitatively the
data.

In order to connect to the usual representation of Ramsey fringes at a given fre-
quency wgy, we can rotate linearly in time the measurement axis so that (ox) maps
onto (cos(wryt)ox +sin(wryt)oy) and (oy) onto (—sin(wpryt)ox + cos(wryt)oy). The
Bloch sphere representation of the corresponding tomography is represented on Fig. 44c.

In this experiment, we showed the versatility of stroboscopic measurement based
feedback to stabilize any state or trajectory of a single qubit. Efficient QND mea-
surement associated with fast electronics allow to detect and correct for errors on a
timescale much faster than qubit lifetime. Even though for a single qubit, this feedback
loop can essentially be understood as a fast reset and preparation of the target state,
if combined with parity measurement in a multi qubit architecture, it could pave the
way for full error correction of a logical qubit [18].

5.2 CONTINUOUS ANALOG FEEDBACK USING THE FLUORESCENCE SIGNAL

Bayesian feedback Markovian feedback

‘I%%%%%{%%Iiil'

(]control

memory

plt) = p(t)
p(t) — p(t + dt)

system

dyy
sensor Jm————ss sensor controller Prarget

actuator
U(:()nfrol | —

L_{ controller

/)target

actuator

Figure 45: Bayesian versus Markovian feedback. In Bayesian feedback, the measured signal
from the sensor at time ¢ is used to update the density matrix p(¢). The controller
then compares the new matrix j(¢) and the target state Ptarget, and then use the
actuator to steer the system towards this state. The correction applied to the system
needs to be taken into account to compute the new density matrix p(t + dt). In
Markovian feedback, the control signal is sent to a static controller that processes it
and reacts on the system independently of its history. Double line arrows represent
classical communication channels.

In Sec. 3.4, we showed that we were able to detect with high-efficiency (n = 25%)
the fluorescence signal of our qubit by heterodyne measurement of the field leaking out
of the cavity at wy. This measurement corresponds to a weak continuous measurement
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of the o_ operator and we have shown that the two output signals from the heterodyne
detection read at time t”

AL, = /T (o,)dt+ AW, 200
AQr = /o)At +dW,q

where W; j and Wy g are two independent Wiener processes. We want to use this signal
and feed it back to the system in order to change its dissipation. The most general
control hamiltonian for our qubit is

Heont = h(u(t)ax +o(t)oy + w(t)az), (210)

where u,v and w are functions of the measurement records from 0 to t. We now limit
ourselves to Markovian feedback [24], in which these controls only depend on the values
of dI; and d@Q; at time t. Less general than Bayesian feedback in which the state of
the system is estimated to react optimally given a cost function for the controls and
a target state (see Fig. 45), it still yields similar results for a single qubit [170] and
is much simpler to implement experimentally. Assuming a linear dependence of the
controls on the output signals, we write

u(t) ) dl
o(t) | =G x (dcgt) + (211)
) e

w(t

gl

|

where G is a constant 3 x 2 constant gain matrix. We now derive an effective master
equation for the qubit when turning on this feedback.

5.2.1 Effective master equation in presence of feedback

5.2.1.1 SISO Markovian feedback with diffusive measurements

For simplicity, we first consider the case of a Single Input Single Output (SISO) Marko-
vian feedback following [23, 171, 172]. We thus neglect the pure dephasing of the qubit
so that the only decoherence channel is a relaxation channel monitored by homodyne
detection with efficiency 7. In the absence of feedback, the SME (128) simplifies into

p(t+dt) = < dt[H, p(t)] + VDl Lp(t) + 2yrdWiM(o Jor),  (212)

where damping and measurement super operators D and M defined as in Sec.2.1.3.1
and Sec. 3.2.2 by

DIL = LpLt—i0tLp— 1oL
{ [Llp p sLTLp—5p (213)

Mldp = 3((c=(e)p+plct = (1))

These signals are filtered by the finite amplification bandwidth § fypc (see Eq. (147)), but it will not
affect the feedback performances as long as this bandwidth is much larger than the characteristic
evolution rate of the system. In the present case, this condition reads d fypc > ~1.
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The output signal y; verifies

ydt = \/ny1{o)dt + dWs. (214)
The controller condition (211) simplifies into

u(t) =g Xy + 1, (215)

where g is a constant scalar gain and w a constant as defined in Egs. (210, 211). We
call o7 the control operator (typically ox, oy or oz for rotations around the axes of
the Bloch sphere). We group the constant drive with the hamiltonian H in absence of
feedback so that the full time-dependent hamiltonian reads

Heony + H = h(gytgl +HO'1) +H = H (t) + Hy, (216)

Due to the singular nature of W; which is not a bounded time function, we cannot
simply take H — H;(t) + Hp in Eq. (212) to get the closed-loop evolution. In order to
preserve causality, we need to first apply the open-loop evolution from ¢ to ¢ + d¢ and
then use the measurement record g to apply the unitary e~ w111 on the system. The

closed-loop evolution of p thus reads

p(t+dt) =
e‘%Hl(t)dt{ — Ldt[Hy, p] + y/7dtD[o_]p + 2, /n'ylth/\/l[J]p(t)}e*%Hl(t)dt.
(217)

We now simplify this formula using It6 rules, which state that dW; = 0 and dW? = 1.
Via the Baker-Campbell-Hausdorff formula

e Be™ = B+ [A,B] + [4,[A, B]]/2 + O(]|A|]) (218)
with
A = —igoi(ynyi{oz)dt + dWy) (219)
B = —3dt[Hy, p] + A1dtD[o_]p + 2,/idWiMlo_]p
and neglecting terms of order O(dtS/ 2) we get the effective master equation
pt+dt) = —idt[Ho + Y (5 gy 4 o104 ), p(t)]
+dtD[L1]p(t) + 2/AdWiM[L1]p(t) (220)
+dtD[La|p(t) 4+ 2¢/T = ndWi M|[Ls]p(t),
with
Lo = vme-—igyier (221)
Ly = —iy1—ngo

Note that a constant drift Hg.i = L;m (0_01 + 0104+ ) has appeared in the effective
hamiltonian. It can be compensated for, or adjusted to a given value, by changing H,
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which means adding more constant drives than wo;. Such constant drives are necessary
to stabilize an arbitrary state of the Bloch sphere (see Eq. (225)).

Otherwise, for efficiency n = 1, the effect of the feedback is thus to modify the

damping operator /410 — /710 —igoy1. Note that the choice of go; modifies at
will the imaginary part of the damping operator. This has the same effect as dissipation
engineering for the qubit (see Sec. 6.2.2). In general, the new stable state under the
SME (220) is not |g). In the next section, we show that we can choose arbitrarily the
stabilized state in the MIMO case.
However, the real part of the jump operator cannot be modified. In practice, this im-
plies that with the homodyne detection considered here, a state on the z-axis of the
Bloch sphere cannot be stabilized with this feedback loop®. Intuitively, information is
extracted only along ox = Re[o_], so that when some spurious noise pulls the state
away from the target state, say | + x), the fluorescence detection does not yield any
information about the angle of the displaced state around to the x-axis. Then, the
controller does not get the necessary information to restore the target state with a
coherent drive.

Let us comment on two particular cases.

e 01 = oy and g = —,/71. The new damping operator is then L; = |/y10x so
that relaxation transforms into a weak non destructive measurement of the ox
operator with rate 2v;. As stated above, even though the measurement collapses
the state on |+ z) on a time scale larger than 1/2v, spurious noise can trigger
jumps between |+ z) and | — z). Neither state is stabilized.

e 01 =0y and g = —2,/71 so that L; = ,/7104. Dissipation now causes the qubit
to relax toward the |e) state.

For finite efficiency, a new damping operator Lo = —i\/1 — ngoy appears, limiting the
fidelity of the stabilized state to the target state.

In this section, we have described a continuous, markovian, feedback loop in the SISO
(single-input, single-output) regime. In practice, it describes a continuous feedback
based on a homodyne detection. In the next section, we generalize the results to MIMO,
which can model feedback using heterodyne detection.

5.2.1.2 MIMO Markovian feedback and arbitrary state stabilization

The derivation of the closed-loop master equation for Multi Intput Multi Output
(MIMO) systems is derived by Chia and Wiseman in [46]. For concreteness, we now
consider the case of the heterodyne detection, with efficiency 7, of the fluorescence field
of the qubit as in Sec. 3.4. The 2 outputs correspond to the 2 measurement records %

and 49

1 » and we consider 3 inputs which are rotations around the z,y and 2z axes as

However, |+ y) can be stabilized. Thus, here, this is not a limitation in practice since |+ z) and | 4 y)
are equivalent. It however limits the feedback protocol based on the dispersive detection presented in
Sec. 6.2.2.
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in Eq. (210). The form of the effective master equation in presence of feedback can be

understood as a generalization of the SISO case.

The drift in the effective hamiltonian now reads?

Havige = h\/ m > Gag(0a0- +0404) + Gaglioao— —ioioq)  (222)
ae{X,)Y,Z}

where G is the gain matrix defined in Eq. (211), and the two damping operators /5o

and 72—110_ lead to four effective damping operators
Lipn = 5o —iyn >  Garo
2 faG{X,Y,Z} o
Logir = iy Bo_—iyn Y Gagoa
Lip = —iy1—n > Ga, 104
ae{X,Y,Z}
LQQ = —iy/1-—n Z Ga,Qaa
ae{X,Y,Z}

With these notations, the master equation becomes

p(t+dt) = dt[H0+Hdnft, ()]
+dtD[L1a]p(t) + dtD[Lr]p(t)
+dtD[Lg,1]p ()+dtD[LQ2]p(t)
[

1p
+dtD],/ 72‘15 o)p

where we have dropped the actuation terms, which will not be used in the experiment

(224)

since we record only average traces, and added the dephasing term.

We now want to stabilize the pure state piarget = %(]l + cosfoy, + sinfo.) (see
Fig. 47c). Let us consider the control matrix

0

u(t) 0 \/ &5 (1 +sinf) al, 2 (1 —sinf/n)cos
X +
w(t) 2 & LcosO 0 di 0

(225)
With this choice we find that
Hayrige = —hLOSQ o
L, = \/“éT(aX + isinf oy —icosh oz) . (226)
Lo, = z\/“éil(sm9 ox +ioy)

Ifn=1,Lrs = Lo = 0and we can then check that, when neglecting pure dephasing,
Prarget is indeed a stable state under the master equation (224). Note that Hy does not

9 for compactness, we call G, the rows of G, with the correspondence 1 <+ X, 2> Y and 3 <> Z.
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compensate exactly for Hgyig. This constant drive, detuned by w(t) from the qubit
resonance frequency, is necessary to stabilize a state different from |e).

For n <1, Ly2 and Lg o limit the preparation fidelity of piarget. Pure dephasing and
finite feedback delay also limit this fidelity. All these effects will be taken into account
in the simulations which results are shown in the following section. In that case, the
markovian controller defined in Eq. (225) is not optimized to get as high a preparation
fidelity to piarget as possible.

5.2.2  Experimental implementation

The qubit used for this experiment is the same as in Sec. 3.4.2 (Qubit 4 in Tab. 3).
However, this experiment corresponds to a different cool down of the sample so that
the qubit parameters are slightly different. The characteristic times of the qubit were
measured to be T7 = 5.23 us, To = 6.83 us, and the cavity pull x = 9 MHz. Moreover,
the parametric amplifier (JPC) at the head of the detection setup was changed so that
the new amplifier was optimized for a detection at the new qubit frequency wy /27 =
6.26 GHz, and the connectors between the cavity and the amplifier were changed. As
a result, the detection efficiency was improved to n = 30%.

5.2.2.1 Stabilization of |e)

As a first step, we implement the feedback loop with § = 7 so that |e) is the target

state. The control w is not used and the control matrix boils down to

1 dly
u(t)} _ i 0 1), o (227)
The form of the off-diagonal matrix can be qualitatively understood by acknowledging
that the value of % gives information about the xz-coordinate of the qubit in the Bloch

sphere. This information can then be used to send the qubit toward |e) by applying a
rotation with the appropriate sign around oy-.

A rotation of the qubit around oy corresponding to the v control is performed by
applying a tone at w, with phase!® ¢ = 0 through the input port of the cavity (see
Eq. (130)). Rotations around ox are performed by applying a tone with phase ¢ = 7.
Since in the laboratory frame, the fluorescence signal reads 4t cos(w,t) + % sin(wqt),
the feedback loop can simply be implemented by shifting its phase by 5 and re directing
it toward the input port. It also needs to be amplified by an a priori unknown factor
accounting for the target gain of the loop g—;}, the filtering by the cavity and the losses

in the lines. However, it can be calibrated with the following steps.

e In open loop, the qubit is driven resonantly and the average fluorescence signal
is recorded. The amplitude of the oscillations when starting from p = |g)(g| can

In the present experiment, the phase reference for the qubit is set by the source used to apply the /2
pulses of the final tomography used to characterize the stabilized state.
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Figure 46:

be used to calibrate the scale of the detected signal. The signal reads
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a) Simplified schematic of the experimental setup. The fluorescence field is collected
on the output line and amplified by the JPC at 20 mK. After further amplification,
the signal is down-converted to wy, /2m = 40 MHz at room temperature to be finely
filtered (bandpass 25 — 50 MHz) before being up converted back to w, with a differ-
ent LO, which phase is shifted by ¢ from the one used for down-conversion. After
amplification (tunable gain G), the signal is fed back to the qubit via the input
line. Full schematic of the wiring can be found in Sec. A.2.2. b) Dots: measured
tomography of the qubit after a time tgegpacc of MBF designed to prepare |e). The
Bloch coordinates are shown as a function of time (on logarithmic scale) starting
from thermal equilibrium at ¢ = 0. Blue line: exponential fit with characteristic
time T = 1.1 ps. c) Mean value of oz in the stationary regime when varying the
total gain of the loop, scaled by an unknown factor accounting for the losses of the
lines. The efficiency of the detection setup is varied by adjusting the gain of the
JPC. When turned off (7 = 0.5%), the occupation of |€) can reach 50% by heating
but the population is never inverted. Best performance: {(oz) = 0.17 corresponding
to n = 28%.

dar, _

dt

. def . .
\!%usmﬂrt = 41 sin (),-t.

e A constant signal with amplitude i; is amplified by a gain G and sent through
the input line. It induces Rabi oscillations of the qubit that can be detected in
the fluorescence or by dispersive measurement.

e The gain G is tuned until the period of these oscillations is 4w/~v;!'. Note that

here, G designates a gain in amplitude.

11 In practice,

4m
M

since TRabi > T1, no oscillations can be observed. It is easier to tune G in order to

get oscillations with period, say Tgrapi /100, and then divide G' by 100.
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In practice, this amplifier is situated at room temperature (see Fig. 46a). To avoid
heating the qubit with an important noise power over a large frequency span and in
particular at the |e) — |f) transition frequency, the amplified signal needs to be filtered
around w,'?. For fine filtering, the signal is first down-converted to wy,/2m = 40 MHz
at room temperature. At this low frequency, the resulting signal can be accurately
filtered using commercial low and high pass filters. Note that the bandwidth of this
filter, centered on wy, needs to verify o fier > 1. The signal is then converted back
to wy. Down-conversion and up-conversion are performed by mixing with 2 different
LO, phase-shifted by ¢. This tunable phase-shift is set to satisfy the closed-loop lock-
ing condition of Eq. (227) as ¢ = § — wytdelay, the second term compensating for the
electrical delay of loop.

Starting from thermal equilibrium, we turn on the feedback and after a time tfeedback,
full tomography of the qubit state is performed. The tomography can here be imple-
mented either by the usual dispersive measurement at cavity frequency or by fluores-
cence measurement. Both methods were demonstrated to be equivalent for all relevant
gains. Note that the feedback needs to be turned off during the tomography in both
cases in order not to disturb the readout. The results are presented on Fig. 46b. The
mean value of oz converges exponentially toward its stationary value (oz)gtat = 0.17.
The convergence time 7" = 1.1 us can be reproduced by performing discrete time quan-
tum Monte Carlo simulations (solid blue line) but (o )stat is underestimated by these
simulations for detection efficiency n = 30%.

We can vary the detection setup efficiency from close to 0 up to this optimal value
by varying the gain of the JPC. Indeed the gain of the setup is determined by

- - Ul
n 1 = nJ}_}C —+ H , (228)

where 7y is the efficiency of the following chain of amplifiers. When turning off the JPC
(Gypc = 1), we measured 1; = 0.005. When increasing G jpc, this value improves until
it reaches its maximal value (measured for Gypc = 27 dB). With these two conditions,
we can compute the efficiencies for intermediate gains, summarized in Table 2. The
feedback performances when varying n are presented on Fig. 46¢c. When the JPC is off
(n ~ 0), one can excite the qubit by increasing the gain of the loop but the population
is never inverted. This situation corresponds to an increased effective temperature of
the qubit induced by a large noise power at w,. When 7 is increased, larger values of
(07) are reached. The optimal loop gain is shifted to larger gains, but Gopt/Gypc is
not exactly constant. This could be due to the fact that the estimation of Gqpt, from the
previous section does not take into account the damping operators L;2 and Lgo = 0
appearing at finite efficiency.
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Table 2

Gypc | 0 (dB) | 18 (dB) | 23 (dB) | 27 (dB)
n 05% | 165% | 255% | 30%
Poax(le)) | 50% | 56% | 58% | 60%

5.2.2.2  Arbitrary state stabilization

We now set as the target an arbitrary!® pure state Prarget = %(]1 + cost) oy + sind 02).
In the controller of Eq. (225), w(t) is now proportional to %. In order to implement
this frequency modulation of the qubit, we use the Stark shift induced when driving
coherently the cavity mode nearby its resonance frequency [173]. In Eq. (85), we found
that the Stark shift and the measurement induced dephasing rate read

{ Osn(t) = xRelag(t)ar(1)] (220)
Ta(t) = xIm[oag(t)af(t)]
where a4(t) and ae(t) are the complex amplitudes of the cavity field when the qubit
is in |g) or |e). We can show that, in the stationary regime and for a large detuning ¢
of the drive field from the cavity frequency (see Fig. 15),
Iy
QStark

— 0. (230)

Thus, by driving sufficiently far from the cavity frequency, the qubit frequency can
be shifted with negligible extra dephasing. Moreover, for 6 > k where k is the
cavity linewidth, the stationary regime is reached on a time-scale 1/6. By choosing
0 > Kk > 71, the frequency modulator as a sufficient dynamical bandwidth to imple-
ment the w control.

In the experiment, we set 6 = 27 x 100 MHz. Note that Qgi.rk is proportional to the
power of the field at ws = w. + 9, so that we cannot simply modulate the amplitude of
a continuous wave at wg with %. The experimental setup is represented on Fig. 47a.
To get the proper linear dependence of the wave power on %, we up-convert the
fluorescence signal to ws (in purple) and amplify it with gain G5 so that it reads'*
Gy (% cos wst + % sin wst), and combine it with a constant tone of large amplitude

Ag coswgt. We then get

ar _ dQ dr
QStark(t) X ‘AO + GQE + ZGQE‘Q ~ A% + 2G2AOE (231)

We then tune the gain Gy in order to get Qgtark(t) = w(t) + Qp. The offset Qg /27 =
700 kHz shifts slightly the qubit frequency.

The JPC finite bandwidth acts as a first filter.

contrary to the homodyne case, here both o = ox —ioy and ioc_ = 0_Y +iox are detected, so
that one can stabilize | £ ) and | £ y). In practice, the stabilization of | & z) is performed by changing
the phase reference of the drive.

The phase of the signal is chosen as the reference at ws to simplify the expressions.
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Figure 47: a) Schematic of the experiment. After detection and amplification, the fluorescence

signal (in green) is split. One part is down-converted to wy, (in blue), filtered, and up-
converted back to wq before being fed back to the system (same scheme as on Fig. 46).
A constant drive around oy, corresponding to a Rabi pulsation @, is implemented
by mixing a sine form at w;, = 27 x 40 MHz with a L0 at wy + wy, (in orange).
This wave is used as phase reference in the setup. Another part of the fluorescence
signal is down-converted to w; = 27 x 70 MHz (in red), filtered and up-converted
to ws = we + 27w x 100 MHz (in purple). In order to get a linear dependence of
the total power of the field at ws sent through the input line, with respect to dt’
it is combined with a wave of same frequency, large constant amplitude Ag, and
phase ¢o adjusted to compensate for electrical delays in the circuit. Full schematic
of the wiring can be found in Sec. A.2.2 b) Measured tomography of the stabilized
states in the stationary regime of the feedback when varying 6 € [0,27]. ¢) Same
states represented in the (y,z) plane. For # = —25° (in blue), the stabilized state is
highlighted in blue, the target state in black.

Let us detail further these steps and the whole feedback setup as represented on

Fig. 47a.

126



o The conversion from w, (in green) to w, (in purple) is performed by first dow-
converting the signal to w; = 27 x 70 kHz (in red) for fine filtering, before up

converting it to ws.

e The large amplitude wave is phase shifted by ¢ with respect to the signal
wave. This is done by mixing the same LO that is used for up-conversion of
the fluorescence signal with a sine waveform of controlled phase at w;. This
allows us to adjust the quadrature for Qgiak(t), so as to compensate for the
phase @gelay,w, determined by the electrical delays in the circuit. Indeed, taking
these delays into account, the frequency modulation given in Eq. (231) becomes
Ogtark (t) = \/gcos 9(008 (p2 + qbdelay,w)% + sin (¢2 + deelay,w)%)a and we set
$2 = —Qdelay,w to stabilize a state of the yz plane of the Bloch sphere, as pre-
scribed by the controller (225).

o Here, the phase reference for this state is set by the microwave at w, implementing
the constant drive whoy in the controller (225) (LO at wy + wy, in orange, mixed
with a sine waveform at wy, in blue).

o The controls on ox and oy are the same as for the stabilization of |e)(e|, but for
a lower loop gain , /g—%(l + sin #), which is adjusted via the gain G of a different
amplifier.

On Fig. 47¢, we plot the ensemble of states that we have managed to stabilize in the
(y,z) plane of the Bloch sphere (red dots), when applying the feedback with optimal
gains GG and G5. Note that since the controller is not optimized for the finite detection
efficiency, the best fidelity to a given target state prarget = %(Il + cosb oy +sinf o) is
not given by the corresponding value in of the controller (225). For example, the max-
imum value for (oy )gtat is found to be 0.42 and is reached for § ~ 7/3. Note, though,
that we demonstrated here that it is possible to stabilize a state of the (z,y) plane with
markovian feedback on the fluorescence signal, contrary to what was predicted in [170].

In this chapter, we demonstrated the use of quantum feedback to prepare an arbitrary
state of a single qubit. It was performed using either a projective measurement result
and reacting much faster than the qubit lifetime, or feedbacking continuously a weak
measurement signal to the system. These two types of feedback loops are different
in nature and use different measurement schemes but are both measurement based
feedback. Indeed, in both cases, information is extracted from the system and processed
classically to react on the system via drive controls. In the following chapter, we show an
example of autonomous feedback, in which the system of interest is coupled coherently
to an ancillary quantum system of high dissipation. It allows one to engineer the
dissipation of the first system so that it relaxes toward a desired state or subspace.
In the example that we give, the feedback is a simple scheme used to cool down a
thermally excited qubit before starting an experiment.
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RESERVOIR ENGINEERING

In the definition given by Seth Lloyd [174], coherent quantum feedback consists in bring-
ing a quantum system to a desired state by processing the information leaking out from
it via another quantum system, with no classical information channel involved. He thus
distinguishes the reset of a qubit realized by a measurement based feedback loop such
as the one described in Sec. 5.1.2 from a reset based on quantum gates only. The idea
of this coherent reset is to swap the state of the controlled qubit with an ancillary qubit
starting in its ground state. Therefore, this feedback loop relies on the use of a cold
auxiliary degree of freedom. If one wants to repeat this loop, other degrees of freedom
forming a cold bath, need to be used. Thus, this coherent feedback actually relies on
dissipation toward a controlled environment.

In Sec. 6.1, we describe such a reservoir engineering [34] scheme that can be used
to cool down a thermally excited qubit before an experiment. This cooling procedure
is applied continuously during a time depending on the cooling rate involved. We
give an analysis of this rate depending on the system characteristic timescales. In
Sec. 6.2.1, we describe an implementation of a discrete version of this feedback loop,
which corresponds to the one originally described by Lloyd [174].

6.1 DOUBLE DRIVE RESET OF POPULATION
6.1.1  Principle and limits

Despite careful filtering of the refrigerator microwave lines (see Sec. A.2), it is com-
mon with superconducting qubits, and particularly with 3D transmons, that spurious
thermal excitations at equilibrium become an issue for the experiments. In 2013, Geer-
lings et al. [44] demonstrated an instrumental reset protocol, the Double Drive Reset
of Population (DDROP), which can be easily implemented to initialize the qubit in
the ground state before an experiment, without resorting to post-selection [165, 166] or
more elaborate schemes such as frequency tuning [162, 163, 16, 164] or feedback [42, 81].
In particular, it was used in the experiment reported in [82] and Sec. 3.4.1.

In this section, we analyze the DDROP performances in terms of induced relaxation
rates between the transmon energy levels. We show, that, as expected, the DDROP
efficiently cools down the transmon, emptying all of its energy levels toward |g). Ex-
tracting quantitatively the induced relaxation rate from excited to ground state, we
show that, within a certain range of parameters®, this rate is limited by the Quantum
Zeno effect.

1 This range is not explored in operational regime.
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Figure 48: a) Principle of the DDROP scheme. On the combined energy level diagram for the
cavity and qubit, the drive at w, 4 (in purple) generates a large coherent state |cv)
with negligible overlap with |0) if the qubit is in |g) (state occupation represented by
red circles). The Rabi drive at wy (in green) is then ineffective and |g, o) is stabilized.
In case of thermal excitation, the state jumps to the right ladder where the cavity
drive is off resonant. It rapidly decays down to |e,0), and the Rabi drive can send
it to the left ladder, where it climbs back to |g, ). b) 3-level model for the heated
transmon. Excitations are induced by the Johnson-Nyquist noise (in green). This
noise increases the relaxation rates due to dissipation into cold lines (dotted black
and green arrows). The DDROP adds a supplementary relaxation process (in blue)
that offsets the equilibrium population toward |g).

The DDROP implementation requires for the qubit to be in the resolved photon num-
ber regime [45], defined by x > k,71,72. In that case, one can address the qubit tran-
sition conditioned on the number of photons hosted in the cavity mode (see Fig. 53b).
The qubit pulsation dressed by n photons reads w, — nx. In particular, if the cavity is
continuously driven so that the generated coherent state |«) verifies (0la) ~ 0 (negli-
gible overlap with Fock state |0)), a microwave tone at w, does not excite the qubit.
Conversely, if the cavity damping rate k verifies k < x, one can address the cavity
resonance conditioned on the qubit state. For instance, a drive tone at w4 = w, + %
populates the cavity mode only if the qubit is in |g).

When these conditions are met, one can use the DDROP as schematized on Fig. 48a.
The principle consists in driving the system continuously and simultaneously with a
tone at w, 4 and a Rabi drive at w,. If the qubit is in the ground state |g), the drive
at w, g combined with the relaxation rate s excites the cavity in the steady state |a).
On the other hand, if the qubit is excited, both drives are off resonance and relaxation
brings the cavity mode towards the vacuum state. When in the vacuum state, the Rabi
drive at w, tends to equilibrate the populations |g) ® |0) and |e) ® |0)2, which cools

In the limit where the transition rate induced by the Rabi drive is much lower than the displacement
rate associated with the cavity drive, this equilibrium is never reached since the cavity gets excited as
soon as the qubit jumps to |g)
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down the qubit in the ground state before exciting the cavity at w, 4. In the end, the
process prepares the steady state |g) ® |«) at a rate which is limited by .

We can identify a limit to the rate at which this method resets the qubit in the
ground state. When a thermal excitation takes place, the cavity drive becomes off res-
onant. The ring down time of the cavity is then an incompressible delay before the
Rabi drive comes in resonance and resets the qubit.

Note than even though the higher excited states of the transmon are not directly
affected by the DDROP scheme, by emptying the |e) state, the detailed balance condi-
tion with the higher states implies that their population eventually leaks down toward
le), and thus to |g). A simple model considering three levels for the transmon is de-
picted on Fig. 48b. We consider transitions between |g), |e) and | f), which is the second
excited state. The excitation and relaxation rates are linked to the thermal equilibrium
occupation of each level by

Peq,gVge = PegeVeg , (232)
Peq,e ('Yeg + 76f) = Peq,g'}/ge + Peq,f')/fe

When turning on the DDROP, a supplementary relaxation process from |e) to |g)
appears at rate Yool (in blue), offsetting the equilibrium toward |g). In the next sections,
we measure and give an interpretation of this cooling rate in the limit of weak Rabi
drive.

6.1.2 Heating up the transmon

We consider the qubit that corresponds to Qubit 4 in Tab. 3. It has a very low oc-
cupation of the excited states at thermal equilibrium (qu,e <1 %). We heat it in a
controlled way using the Johnson-Nyquist noise [175] emitted by a hot load. In practice,
a resistor at room temperature is loaded at the input of a high power amplifier. The
output noise power spectrum is measured at the input of the refrigerator® and displays
variations below 1.5 dB over a large bandwidth covering the qubit g <+ e and e <> f
transitions. It is then sent to the the input port of the cavity via the input lines, along

which it is attenuated. This results in larger transition rates vge, Yeg, Ver and vse [11].

For a given thermal noise power, we measure the transmission of the cavity around
its resonance frequency. Three peaks appear, corresponding to the cavity resonance
frequencies when the qubit is in |g), |e) and |f) (see Fig. 49a). A fourth peak corre-
sponding to a higher excited state is barely visible. Fitting the cavity transmission and
assuming a Boltzmann distribution for the level occupations (see Fig. 16), we get a
first estimate of the effective temperature of the qubit Teg = 260 mK. The probability
for the qubit to be in a state higher than |f) is then below 2 %, justifying the 3-level
model presented in the previous section. We also extract from this curve the damping
rate of the cavity k = 2w x 3.45 MHz.

3 The noise power spectrum is not calibrated at the input port of the cavity.
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Figure 49: a Measured transmission of the cavity in amplitude (black dots) as a function of
the probe frequency, for a qubit at thermal equilibrium in presence of the added
Johnson-Nyquist noise. Red line: fit assuming a Boltzmann occupation of the qubit
levels corresponding to a temperature Tog = 260 mK. The cavity damping rate is
adjusted at k = 27 x 3.45 MHz. b) Measured transmission of the cavity (probe
frequency at fireadout On @) in the Fresnel plane, after driving the qubit with a
variable length pulse to induce Rabi oscillations between |g), |e) and |f) (details in
the main text). Large triangle: heating noise off. Small triangle: heating noise on. t4
is the transmission when the qubit is in |g) (negligible thermal excitations when the
heating noise is off), t. (resp. ty) when prepared |e) with a 7-pulse on g <+ e (resp.
| f) with a m-pulse on g <+ e and a m-pulse on e <> f).

In order to measure more finely the occupation of each level, we detect the trans-
mitted field by the cavity when sending through the input port a 2us-long pulse at
freadout, chosen to be nearby w, /27 (see Fig. 49a). This frequency was chosen in order
to maximize the distance in the Fresnel plane between the transmission of the cavity
when the qubit is in each of the 3 possible states. On Fig. 49b, the summits of the
larger triangle materialize these 3 amplitudes, called 4, t. and ty, when the qubit is
in the pure state |g), |e) or |f). For this measurement, we turn the heating noise off,
so that the qubit is in |g) at equilibrium. Each side of the triangle corresponds to a
measured Rabi oscillation of the qubit between |g) and |e) (in green, by applying a
variable length Rabi drive on e <+ g), between |g) and |f) (in purple, by applying Rabi
drive on e <> g followed by a m-pulse on e <> f) and between |e) and |f) (in blue, by
applying Rabi drive on e <+ g followed by a m-pulse on e «+ f and another on g < e).
Now that these 3 possible transmissions are known, one can determine the occupation
of each level by measuring the average transmission ¢ of the cavity for a given qubit
state. Indeed, ¢ then verifies

t = Pyty + Put. + Pyty. (233)

This equation is solvable assuming that P, + P, + Py = 1.

As a first test of this method, we again measure the transmission of the cavity when

performing the three Rabi oscillations described above, but with the heating noise on?.

The four summits can be understood as follows Fig. 49b.

note that the heating power needs to be turned off during the dispersive measurement in order not to
distort the transmission
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e 1. Transmission at equilibrium
t1 = Peqgty + Pegele + Peg sty

e 2. Transmission when applying a m-pulse on e <+ g from equilibrium
ty = Pegety + Peqgle + Peg sty

3. Transmission when applying a m-pulse on e <> g followed by a m-pulse on

e < f from equilibrium
t3 = Pty + Peggte + Peqgts

e 4. Transmission when applying a m-pulse on e <> f from equilibrium
ta = Peqgty + Peg fle + Pegets

The black dots are predicted transmissions assuming a Boltzmann distribution with
Ter = 260 mK. Qualitatively, the measured transmissions match these predictions.
Quantitatively, the measured distribution from the dispersive readout does not follow
exactly the Boltzmann law. In particular, P, s = 12 % is 5 % larger than predicted.
This could originate from a textured heating noise once filtered by the refrigerator
lines, or imprecisions when neglecting higher excited states.

We now use this readout method to follow the occupation of each of the levels of the
qubit when turning on the DDROP. This will allow us to extract the value of v.o01 for

various relative amplitudes of each drive.

6.1.3 Cooling performances

To optimize the amplitude of the drive at cavity frequency used in the DDROP, we
first measure the occupation of |g) in the steady state when varying this amplitude and
for various qubit drive amplitudes at w, (expressed in terms of Rabi pulsation Qp).
It is represented on Fig. 50a. The horizontal axis corresponding to the amplitude of
the drive at w, 4 has been calibrated in terms of coherent state amplitude « inside the
cavity, for a qubit in |g). This calibration follows the same method that is described in
details on Fig. 54d. It consists, for a given «, in measuring the occupation of each Fock
state |n) by applying a m-pulse on the qubit that operates only if there are exactly n
photons in the cavity mode (excitation at wy — ny). The probability to measure the
qubit in the excited state afterwards reads |(n|a)|?. Note that here, we consider the
steady state of the cavity mode in presence of a constant drive, and not after a fast
displacement pulse. It is slightly distorted by the small cavity anharmonicity induced
by its hybridization with the qubit, so that it is not a coherent state at large drive
amplitudes (for o > 2). On this scale, a thus represents the square root of the mean
photon number in the field, rather than the amplitude of a coherent state.

When a = 0, the Rabi drive equalizes the occupation of |e) and |g) as a mean. Linked
by the detailed balance of Eq. (232), this leads to P, = 0.4. When increasing «, the
qubit is effectively cooled down to |g). The corresponding cooling rate saturates for a
coherent field containing about 5 photons as a mean, corresponding to an overlap with
state |0) of less than 1 %. From now on, we set a = /6, for which we measure the best

cooling performances. Note that when increasing o from this value, P, decreases since
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Figure 50: a) Measured occupation of |g) in the steady state of DDROP as a function of the
amplitude of the coherent state generated when the qubit is in |g). The amplitude of
the Rabi drive at wy is encoded in color. b-d) Occupation of each level as a function
of time when turning on the DDROP at ¢t = 0 and off at ¢ = 12 us. The amplitude
of the field at w; 4 is set to ool = V6 (black line on a), and the same color code is
used for Rabi drive amplitude. Dots: experimental data. Lines: fit with 2 global fit
parameters (7eg and 7y.). The value of yco0l is a supplementary fit parameter for
each Rabi drive amplitude when the DDROP is on.

it takes more time for the photons to leak out of the cavity when the qubit gets excited.

The cooling performances also depend on the Rabi drive amplitude. When increasing
Qg, the steady state occupation of |g) increases until it saturates at Ppq,,9 = 0.95, for
Qp ~ 27 x 2 MHz (for k = 27 x 3.45 MHz). We want to extract the cooling rate vcool
associated with each value of Q. In order to do so, we measure the occupation of the
qubit levels in time when turning on or off the DDROP. The results are presented as
dots on Fig. 50b-d, when turning on the cooling drives at ¢ = 0 and turning them off
at t = 12us (same color code as in a) .

The transition rates between the 3 qubit levels are then fit parameters in a differential
equation which should match the measured traces

Py = —Py(t)yge + Pe(t)vior(t)
P, —Pe(t) (Yeot (t) +7es) + Py () vge + Pr(t)vse - (234)
Py = —Pi(t)vse + Pe(t)ves

134



with

(235)

Yeg for the cooling off
Yeot = '
VYeg + Yeool  for the cooling on

Note that the 4 transition rates when the cooling is off are linked by the detailed bal-
ance condition at equilibrium (see Eq. (232)). In practice, we fit for the last two free
parameters when the drives are off, and then fit for 7., when the drives are on. The
corresponding fitted curves of Py(t), P.(t) and Py(t) are also represented on Fig. 50b-d
(lines).

The extracted values of 7.0 are presented on Fig. 51 (red dots). They follow a
quadratic law for small Qp and then should saturate around ypmax = 2.6 Ms_l ~ r/8
(saturated regime not shown). The quadratic law for Qr < k results from a Zeno
blockade [115] of the transition from |e) to |g) induced by the drive at w, 4 acting as a
continuous measurement of the oz operator of the qubit. Indeed, the dephasing rate
associated with this drive is Ty = 63 us~! > Qg (computed from the cavity param-
eters following Eq. (85)). In this regime, coherent Rabi oscillations are inhibited, but
the Zeno blockade is incomplete so that the qubit state jumps randomly from |e) to |g).

However, the jump rate computed from a reduced master equation model by Gam-
betta e