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Introduction and Context of the Thesis

Biometrics aims at identifying people based on their intrinsic morphological or behavioral characteristics.
These characteristics can be face shape, fingerprint, hand shape, gait, signature. The key idea of biometrics is
to guarantee the identity of people based on what they are instead of what they possess (an ID card) or what
they know (a password). In this thesis we have studied the identification of people based on the texture of their
irises, namely, iris recognition.

Iris recognition is a relatively young biometric modality : the first automatic recognition system able to
identify people based on their iris texture was proposed by John Daugman in [16] in 1993. Despite its youth,
iris recognition was very quickly seen as a very interesting biometric modality for critical applications. This
modality has several interesting properties :

• Iris texture is epigenetic, meaning that it is not entirely determined by genotype. As a consequence, the
two irises of a single person differ, and so do twins’ irises.

• It has been assessed that iris texture is rich enough to uniquely characterize each individual in a very
large population.

• Iris is an internal organ accessible without contact, making it suitable for user friendly application.

• It is hard to fake someone’s identity using a synthetic lens. Liveliness detection is easily performed in
real applications because the pupil always has high frequency contractions/dilations that can be detected
and extracted from a video stream.

• Iris texture is known to be stable over time and very well protected from external degradations (though,
this last claim has been challenged in [20]).

The recognition rate is especially critical when working on very large databases because the number of
errors produced by the system is proportional to the size of the database. To this end, industrial companies
have been constantly working on trying improving their algorithms to decrease the error rate. Accordingly, it
is important for industrial companies to be able to transfer new results proposed by the research community
into robust, accurate and scalable industrial systems.

The proposed thesis has been conducted as part of a partnership between the industrial company Thales and
Telecom Sud-Paris. The purpose of this partnership was to transfer the academic knowledge of Telecom Sud-
Paris on iris recognition to Thales in order to develop an industrial product. The first step of this collaboration
was to study the limitations of traditional iris recognition systems and to propose some possible innovations to
solve them. A classical iris recognition system usually follows the main steps proposed by Daugman’s in [16].

Image Acquisition : Image acquisition is done under Near Infra Red (NIR) illumination, having wave-
lengths between 700 and 900 nm. At these wavelengths even dark brown irises
show a very rich texture which is suitable for recognition. In a standard con-
trolled acquisition scenario, the subject is asked to stand still and look straight at
the camera from a short distance. However, recent works tend to relax acquisi-
tion conditions. For example an image can be acquired at a distance [4] or using
a visible wavelength [60]. Subjects are also less constrained : they do not have
to look straight at the camera [10] or they may move during the acquisition [43].

Image Segmentation : Given the acquired eye image, the first algorithmic task is the segmentation of
the iris, aiming at isolating iris texture from other elements of the image such
as eyelids, shadows or glasses. Segmentation is challenging as the more the
acquisition conditions are relaxed, the more degradations have to be handled at
this stage.
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Texture Normalization : Texture is mapped into a dimensionless coordinate system to handle variability
in the eye image, such as pupil dilation. The most common choice for normal-
ization is the rubber sheet model introduced by Daugman in [16]. Iris borders are
modeled by two non-concentric circles and texture is unwrapped with respect to
these circles. Precision is a critical issue at this stage as small errors in the esti-
mation of the circles’ parameters can dramatically decrease performance of the
overall system as outlined by Proenca in [58].

Feature Extraction : The discriminative iris texture’s features are extracted. These features are the
basis of the comparison of iris images in order to perform the comparison. The
most used features are based on a quantization of Gabor filters’ phase. This
quantization generates a binary code characterizing the iris.

Pattern Matching : Comparison of the input features to a reference in order to decide if the two
images come from the same iris. In systems based on Daugman [16] the com-
parison is made by computing the Hamming distance of the two binary codes,
which are characteristic of the two irises. The Hamming distance between two
binary codes is low when they come from the same iris and high when they come
from different irises. Therefore, the key aspect at this stage is to fix a threshold
in order to decide whether or not the two binary codes come from the same iris.

In his early article [16], Daugman assumes that the iris has been acquired under a constrained acquisition
scenario. This means that the subject is active and fully cooperative during the acquisition. However, a
recent trend in iris recognition systems is to reduce the acquisition constraints in order to make the systems
more user friendly. This could allow to decrease check-in time to get in airplanes for instance. Relaxing the
acquisition conditions generates degradations in the image, such as blur or illumination inhomogeneities. As
such degradations appear at the first stage of the system, they tend to be increased at each subsequent stage.
Hence, there is an important degradation of the system’s recognition performance when not designed to handle
such data.

Two main approaches have been considered in the literature to adapt iris recognition systems to degraded
images. The first approach is to extract more information from the normalized image. This allows the extracted
features to remain discriminative even when the amount of the biometric information is reduced. The second
approach is to consider new models for segmentation that can more robustly identify the iris region and borders
in the image.

In this context, the company Thales dedicated two theses to these two subjects. The first one, by Sandra
Cremer [13], focuses on the improvement of the Feature Extraction and the Pattern Matching stages of the
system. The second one, here presented, focuses on the Image Segmentation and Texture Normalization stages.
The two theses have been conducted simultaneously and have complementary results. Indeed, the first thesis
focuses on an effective exploitation of the biometric information whereas the second one aims at formatting
this biometric information as well as possible. The final goal of these two theses is to develop a complete
software working with images acquired in relaxed acquisition conditions for fast border crossing. However,
no acquisition systems were available during the theses. Therefore, we decided to define the ICE2005 and the
ND-Iris databases as references for our experiments because they contain most of the degradation we expect
to have on the target system such as blur or off-angle images.

This thesis focuses on the Image Segmentation and Texture Normalization stages. Our purpose is to gener-
ate an accurate normalized image with an indication of the texture’s areas hidden by occlusions. Two distinct
actions are required to produce such information :

• The identification of pixels belonging to the iris in the eye image (generating a so called segmentation
mask)

CONFIDENTIAL



4

• The estimation of a parametric description of the inner and outer iris boundaries in the image, but also
under possible occlusions

These two piece of information are critical in order to carry out recognition. The parametric contours are used
to unwrap the iris texture to produce the normalized image which is then used for Feature Extraction. The
segmentation mask is used to remove artifacts from the normalized image at the Pattern Matching stage.

During this thesis we developed a complete segmentation system that can work with degraded data. We
present this complete system in Annexe A, but in the core document focus on 4 critical issues for which we
develop some novel solutions :

• Rough localization of the pupil in the eye image in order to initialize the complete segmentation process.

• Accurate detection of the pixels belonging to the iris texture in the image, i.e. iris region segmentation.

• Estimation of the iris borders under possible occlusions in order to generate the normalized image.

• Evaluation of the quality of segmentation results in order to identify failures of the segmentation process.

The pupil is considered as the most stable element in an eye image acquired in near infrared illumination.
Indeed, the pupil always appears as a very dark region inside the iris. Accordingly, most of the algorithms
in the literature first roughly localize the pupil area in the image in order to initialize some more complex
algorithms. The difficulty of this localization is to be able to distinguish the pupil from other dark elements in
the eye such as eyebrows, packed eyelashes, hair or the arms of the glasses. To solve this issue, we propose
firstly to identify the regions of eyebrows and eyelashes and then remove them from the pupil localization
process.

The next task is the identification of the pixels belonging to the iris texture in the image. The iris texture can
vary largely from one person to another and is dependent on acquisition factors, such as blur or illumination.
Therefore, the algorithm must be very robust to handle this variability in the image. Moreover, it must also
be very precise as inaccuracies will provide wrong information to the Pattern Matching algorithms, leading
to erroneous comparison results. Accordingly, we have decided to study a classical family of segmentation
algorithms that have become popular for iris segmentation [17, 76, 66, 62] : Active Contours. These kinds of
segmentation algorithms model the expected solution as being the minimum of a given functional. This mini-
mum is found by iteratively morphing a contour until it reaches the minimum of the energy. However, despite
this growth in popularity, there is no comparative evaluation of such algorithms in the literature. Therefore, we
implemented several Active Contour algorithms and discuss their advantages and limitations

The final step of iris segmentation is the estimation of the iris shape under possible occlusions. This task is
critical because this estimation of the iris borders is used to produce the normalized image that is used for the
Feature Extraction and Pattern Matching stages. Small inaccuracies in the estimation of these borders result
in a large corruption of the normalized image, leading to a significant decrease of the system’s recognition
performance. However, this estimation of the iris border can be difficult when acquisition conditions are
relaxed. The iris is more likely to be occluded by eyelids and the contours may have a non-circular shape due
to gaze deviation. Therefore, we propose a new robust and effective way to fit ellipses on the iris border in
order to generate the normalized image.

This thesis is conducted from an industrial perspective. In such context, it is mandatory to detect erroneous
results of automatic algorithms, like segmentation failures. Unlike the pupil and iris segmentation issues that
are widely studied in the literature, estimating the quality of an iris segmentation have not been widely studied
so far. Indeed, few works in the literature focus on this specific subject [38, 29, 81, 30, 80].

The outline of this thesis is divided into two main parts. In the first part (Chapter 1 to 3), we describe some
general considerations about iris recognition systems and in the second part (Chapter 4 to 7), we describe more
deeply the specificity of this thesis.
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In Chapter 1, we present in detail a typical iris recognition system based on the ideas of Daugman [16]. We
describe each module and we explain why the degradation of the input data quality has such a negative impact
on this kind of system.

In Chapter 2, we explain how to evaluate the recognition performance of a biometric system, with a focus
on iris recognition systems. Then, we describe how we can use the system’s recognition performance to
evaluate the accuracy of an iris segmentation algorithm. Finally, we describe the databases we used during this
thesis to evaluate our algorithms.

In Chapter 3, we make a survey of classical iris segmentation methods available in the literature. We pro-
pose a distinction between two main families : Contours First strategies and Texture First strategies. Contours
First strategies first search for the parametric contours of the iris borders, and then estimate the pixels be-
longing to the iris texture by removing the occlusions. Texture First strategies first identify accurately the iris
region in the image and then use this information to estimate the parametric contours of the iris under possible
occlusions. These two strategies have their advantages and shortcomings which we analyze. In this thesis, we
decided to apply a Texture First strategy to segment the iris texture ; at the end of this chapter, we explain why
we made this choice and the impacts it had on the design of our system.

In Chapter 4, we describe the algorithms we implemented to roughly localize the pupil area in the eye
image. The main difficulty at this stage is to distinguish the pupil from other dark elements in the eye image.
Therefore we propose two algorithms for identifying eyelashes and eyebrows in order to remove them from
the localization process. Once these areas have been removed, it is possible to identify the pupil area with
simple algorithms such as thresholding. We evaluate the impact of our two eyelash and eyebrow detectors on
two databases with different kind of degradations.

In Chapter 5 we describe the algorithms we implemented to segment the iris region in the image. We have
decided to focus on Active Contours for iris segmentation. Basically, these algorithms evolve by morphing a
contour onto the object to be segmented. Therefore, there are two elements to define in order to apply such an
algorithm : the curve’s representation and the object’s model. In this chapter, we propose to study the influence
of these two elements on the system’s recognition performance.

In Chapter 6, we describe the contour fitting algorithm we designed to estimate the borders of the iris under
possible occlusions. Our algorithm results from the formalism of Active Contours presented in Chapter 5 for
iris segmentation. However, the purpose of our algorithm is to estimate the location of the iris border under
possible occlusions instead of identifying pixels that belong to the iris in the image. Our algorithm iteratively
evolves an elliptic contour until it best fits the iris borders’ location.

In Chapter 7, we describe the algorithm we designed to estimate the quality of a given segmented image.
We first make a brief survey on the evaluation of iris quality. Then, we present a new set of segmentation
quality measures specifically designed for iris segmentation. This set of individual measures is used to predict
the intrinsic tendency of the segmented image to produce erroneous comparisons.

In Chapter 8, we summarize all the contributions of this thesis and give some perspectives for further
works.
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Chapter 1

A Classical Iris Recognition System

The iris is the annular colored part between the pupil and the limbus (also called sclera). It acts as a diaphragm
regulating the amount of light entering the eye. The possibility to identify human beings using their irises was
proposed by an ophthalmologist, Frank Burch, in 1936. However, the first patent describing a conceptual iris-
based recognition system was released almost 50 years later by Flom and Safir in 1987 [23]. It took another
decade to get the first automatic system able to identify people based on the texture of their irises. This pioneer
work was proposed by John Daugman in 1993 [16] and was followed by Wildes’ system in 1997 [77], based
on a different recognition algorithm.

Most actual iris recognition systems are based on the earliest works of Daugman [16] and are usually
divided in five main parts as illustrated in Figure 1 :

Image Acquisition : Acquisition of a high resolution eye image containing the iris texture.

Image Segmentation : Detection of the iris region in the image and estimation of iris borders’ shape
under possible occlusions.

Texture Normalization : Unwrapping of the iris texture to generate a "dimensionless" image in polar co-
ordinates.

Feature Extraction : Extraction of the features characterizing the iris texture.

Pattern Matching : Comparison of the input features to reference ones in order to decide if the two
images come from the same iris.

In this chapter, we present this classical iris recognition system. From Section 1.1 to 1.5, we briefly
describe each of the above modules. In Section 1.6, we present some limitations of these traditional iris
recognition systems.
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A Classical Iris Recognition System 13

Figure 1: A standard iris recognition system. The image is first acquired in Near infrared (NIR) illumination.

Iris texture is then segmented and normalized (unwrapped). Characteristic features of the texture are extracted

and represented using a binary code (called iris code in the literature). The comparison of two irises is done by

computing the Hamming distance between these two codes.
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14 A Classical Iris Recognition System

1.1 Image Acquisition

Acquisition of high quality iris image is a challenging task because the iris represent a very small portion of the
whole face. The image acquisition uses Near Infra Red (NIR) illumination, having wavelengths between 700
and 900 nm. At those wavelengths even dark brown irises show very rich texture suitable for recognition. The
cornea is also permeable to these wavelengths which avoid illumination reflections in the image. In a standard
controlled acquisition scenario, the subject is asked to stand still and look straight at the camera from a short
distance (≈20-50cm). Figure 2 shows some examples of such acquisition devices.

(a) LG2200 (b) LG2200 (c) OKI IRISPASS-h

Figure 2: Examples of iris acquisition devices. Figure (a) and (b) : the stop and stare sensor LG2200 from LG
with an acquisition range between 8cm - 25cm. Figure (c) : the hand held sensor OKI IRISPASS-h from OKI.

The sensors showed in Figure 2 can acquire image of very good quality, but they lack of user-friendliness.
Therefore, the design of new sensor allowing a relaxation of the acquisition conditions has been an active
way of research during the last years. For example, images can be acquired at a distance [4] or using visible
wavelength [60]. The subject is also less constrained : it may not look straight at the camera [10] or move
during the acquisition [43].

1.2 Image Segmentation

Once the eye image has been acquired, the iris region in the image shall be identified in the image in order
to limit the Feature Extraction and the Pattern Matching to this region. It is also necessary to get an accurate
parametric model of the iris borders under possible occlusions in order to apply the Texture Normalization that
we describe in the next section. These two actions (identification of the iris region and estimation of the iris
borders) are called iris segmentation. The binary mask indicating which pixels of the image belong to the iris
texture is called the segmentation mask. Figure 3 illustrates the result of the segmentation process on a good
quality image.

The first methods of Daugman and Wildes model the iris using two non-concentric circles. Accordingly,
they reduce the segmentation stage to a circle detection problem. However, these simple methods have shown
a high sensitivity to image degradations. It is also commonly accepted that circles are only an approximation
of the iris true shape and that more complex models should be used to describe the iris borders. We discuss
this topic in detail in Chapter 3
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1.3. Texture Normalization 15

(a) Original Image (b) Segmentation results

Figure 3: Illustration of the segmentation process results. The segmentation results contains both the region of
the iris texture in the image and a parametric description of the iris borders under possible occlusions.

1.3 Texture Normalization

One of the main problems appearing when trying to characterize the iris texture is the deformations due to
contraction and dilation of the pupil. In [16], Daugman propose to use a "rubber sheet" model to map the iris
texture into a dimensionless coordinate system. Such mapping can be seen as an unwrapping of the image
region contained between the inner and outer contour of the iris, as illustrated in Figure 4. The main advantage
of such a mapping is that the texture displayed in the normalized image is independent of the pupil dilation.

Figure 4: Illustration of the unwrapping process of Daugman’s normalization. On the left the segmented image,
on the upper right the unwrapped texture of the iris and on the lower right the segmentation mask of the iris
region

In the early work of Daumgan [16], the pupil and iris borders are modeled using two non-concentric circles
Cp(xcp, ycp, rp), the pupil circle and Ci(xci, yci, ri), the iris circle with parametrization :

(
xp
yp

)
(θ) =

(
xcp
ycp

)
+ ri

(
cos(θ)
sin(θ)

)
(
xi
yi

)
(θ) =

(
xci
yci

)
+ ri

(
cos(θ)
sin(θ)

) (1)
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16 A Classical Iris Recognition System

with θ ∈ [0, 2π[. The formula to unwrap the annular part between the two circles is then :(
x
y

)
(r, θ) = (1− r)

(
xp
yp

)
(θ) + r

(
xi
yi

)
(θ) (2)

with r ∈ [0, 1[ and θ ∈ [0, 2π[. This model can handle changes in pupil size, however modeling the iris border
with circles is now known to be too restrictive, so new representations using more general contours have been
introduced in the literature. The classical formulation (2) is therefore extended to :

R(r, θ) = (1− r)P (θ) + rL(θ), (3)

where P stands for the parametric description of the pupil/iris border and L stands for the parametric description
of the iris/limbus border. These parametric descriptions could be geometric shapes like ellipses, or more
general models such as Fourier series expansions or splines.

Let us note that Feature Extraction and the Pattern Matching are applied to the normalized image. There-
fore, precision of the unwrapping is a critical aspect of iris recognition systems. In [58], Proenca points out
that small errors in the normalization process dramatically decrease the performance of the overall system.

1.4 Feature Extraction

The Feature Extraction stage aims at extracting the characteristics of a given iris. These characteristics results
in a template that will be used to perform the recognition in the Pattern Matching stage.

In Daugman’s based system [16], the template for the iris is a binary code encoding frequency information
at several scales. This binary code (the so-called iris-code) is generated by applying a set of Gabor filters with
different scales and orientations at predetermined points of the normalized iris image. The filter with maximal
response characterizes the iris texture at a considered point. Formally a Gabor filter can be written as :

G{Re,Im} = sgn{Re,Im}

∫
ρ

∫
φ
I(ρ, φ)eiω(θ0−φ).e

−(r0−ρ)
2

α2 e
−(θ0−φ)

2

β2 ρ dφdρ, (4)

where I(ρ, φ) is the image intensity of the normalized iris image at pixel (ρ, φ) (normalized image can be
seen as a polar image, hence the notations), α and β are the scale parameters, ω is the wavelet frequency, and
(r0, θ0) are the coordinates of the application point in the normalized image. Gabor filters have a complex
formulation, therefore they provide both phase and module information. In [16], Daugman assesses that the
phase of the Gabor filters is a relevant biometric information to characterize an iris. In order to compress this
phase information, Daugman proposes to consider only the quadrant of the phase, so that this information
can be coded using only two bits. The unwrapped segmentation mask is also binarized in order to indicates
significant bits in the iris code.

Figure 5 summarizes the process described above to generate the iris code. Gabor filters are applied at
specific points of the normalized image. The phase of the filter with strongest response is compressed into two
bits. The process is repeated until all the analysis points have been covered.

1.5 Pattern Matching

The final step of iris recognition systems is to determine if two iris templates belong to the same iris. Com-
parison of two iris templates is done by computing the hamming distance of the two binary codes. Figure 6
illustrates such a computation for a genuine (iris codes generated from the same iris) and an impostor compar-
isons (iris codes generated from different irises).
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Figure 5: Feature Extraction and Iris Code Generation. The process is divided in four parts. First, an applica-

tion point is selected in the normalized image. Then, a set of Gabor filters is applied at this application point.

The filter giving the larger answer characterize the texture of the iris at this point. The phase of the Gabor

Filter’s answer is quantized using two bits. These two bits are stored in the iris code and the process starts

again at the next application point.

Formally, the hamming distance between two iris codes {codeA, codeB} with associated segmentation

masks {maskA,maskB} is :

HD =
‖(codeA⊗ codeB) ∩maskA ∩maskB‖

‖maskA ∩maskB‖ , (5)

where ⊗ is the XOR operator counting the bits that disagree in codeA and codeB, ∩ is the intersection operator

insuring that the information is computed only in valid region of codeA and codeB and ‖ ‖ counts the non-zero

bits in the iris code.

For impostor comparisons, the two binary codes are uncorrelated and the resulting hamming distance is

equivalent to the mean of a random binary drawing of 1 and 0, i.e. 0.5. For genuine comparisons, it should

result in a 0 Hamming distance between the binary codes. However, in real scenarios the iris texture is affected

by the acquisition conditions, and so is the resulting iris code. It can only be stated that the comparison of two

iris code should be below 0.5.

Let us note that Equation (5) assumes that the two binary codes {codeA, codeB} are aligned when per-

forming the comparison. This alignment is determined by the arbitrary cut done when unwrapping the texture

at the Texture Normalization stage. However, tilling of the head produces a rotation of the iris texture in the

original image that results in a shift of the texture in the normalized image. Therefore, the corresponding

binary codes are not aligned and the comparison using Equation (5) is meaningless. To handle this limitation,

Daugman [16] proposes to apply a binary shift to one of the iris code (codeA for instance) and to perform

comparisons with the shifted iris code using Equation (5). The final comparison score is the minimum of all

the comparisons. The simple statistical drawing of 0 and 1 is then transformed in a "best of n" comparison test

of agreement. In [16], Daugman shows that it induces a shit from 0.5 to 0.45 of the theoretical mean for an
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18 A Classical Iris Recognition System

Figure 6: Illustration of the comparisons between two iris codes (not considering segmentation masks and

texture rotations). First, the two iris codes are compared using a XOR operation. The sum of the 1 in the

resulting binary code represents the distance between the two input iris codes. For iris codes generated from

the same iris (genuine comparison) the score is expect to be below 0.5. For iris codes generated from different

irises it is expected to have a score around 0.5.

impostor comparison (assuming 7 rotations).

In the end, using a threshold value τ , it is possible to states if the two iris codes {codeA, codeB} belong

to the same iris or not. If the comparison gives a value below τ the system states that the two codes have been

generated from the same iris, and if it gives a value above τ the system states that the two codes have been

generated from the different irises. Determination of the threshold value τ is a critical aspect of biometric

systems. We discuss this issue in Chapter 2.

1.6 Limitations of Classical Iris Recognition Systems

The early articles of Daugman [16] and Wildes [77] assume that iris has been acquired under constraint acqui-

sition scenario. This means that the subject is active and fully cooperative during the acquisition. However,

a recent trend in iris recognition systems is to reduce the acquisition constraints in order to make the systems

more user friendly. Relaxation of these acquisition conditions leads to a broad type of degradations in the

image such as the ones displayed in Figure 7 :
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1.6. Limitations of Classical Iris Recognition Systems 19

• Strong occlusions by eyelid, eyelashes, shadows or glasses (Figures 7a, 7b, 7d, 7g, 7i).

• Motion or focus blur (Figure 7f).

• Illumination inhomogeneity or low contrast along the iris borders (Figures 7e, Figures 7g, Figures 7h).

• Gaze deviation (Figures 7c, Figures 7i).

The Feature Extraction and the Pattern Matching stages are highly affected by the degradation of the
biometric information. Global degradations such as blur or illumination inhomogeneity tend to corrupt the
available biometric information. It leads to errors in the templates generation, and therefore, to errors in the
comparisons.

The Image Segmentation and the Texture Normalization stages are even more affected by degradations of
the iris region in the acquired image. Global degradations such as blur, illumination inhomogeneity or low
contrast tend to make the identification of the iris region harder. Therefore, simple segmentation schemes
such as the ones proposed by Daugman [16] and Wildes [77] fail when such degradations occur in the image.
Moreover, in degraded images, the iris may not appear circular because of occlusions or gaze deviation leading
to failures of systems which assume a circular shape for the iris borders.

Accordingly, two main approaches have been considered in the literature to allow iris recognition systems
working with degraded images. First approach is to extract more information from the image in order to
remain discriminant when the amount quality of the biometric information is reduced. The second approach is
to consider new models for segmentation that can robustly identify the iris region in the image and accurately
fit a contour model on the iris borders. In this thesis, we have chosen to study improvements for the Image
Segmentation and the Texture Normalization stages. Therefore, this thesis we will propose robust and accurate
methods to segment the iris, assuming that the Feature Extraction and the Pattern Matching are fixed.
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20 A Classical Iris Recognition System

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Examples of difficult images for segmentation. (a) : Very packed and dark eyelashes. (b) : Shadows
on the pupil and the iris. (c) : Off angle image. (d) : branch of glasses. (e) : Strong reflexions due to glasses.
(f) : Out of focus image. (g) : Low contrast between the iris and the sclera. (h) : Low contrast between the
pupil and the iris. (i) : Off angle image with heavy occlusion.
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1.7 Conclusion

In this chapter, we have presented a classical iris recognition system based on the works of Daugman [16].
Such system has 5 stages : Image Acquisition, Image Segmentation, Texture Normalization, Feature Extrac-
tion, Pattern Matching. They have shown very good recognition performance in constrained acquisition con-
ditions, namely when the subject is active and fully cooperative during image acquisition. However, early iris
recognition systems are sensitive to the degradation of the input data quality.

The thesis is focused on the segmentation and the normalization steps of a complete iris recognition system.
This particular context for tackling the iris segmentation problem is of a main importance in this thesis, since
it leds to a specific methodology for evaluating the segmentation algorithms here proposed. For this reason,
in next chapter, we describe the evaluation framework proposed in this thesis for assessing iris segmentation
algorithms.
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Chapter 2

Evaluation of Iris Recognition Systems

Biometric systems can be used on huge databases. National databases can store the information of millions of
individuals (or even a billion for the UIDAI program in India [74]). Such biometric systems are expected to
achieve a very high recognition performance. Therefore, it is important to have an estimation of the expected
accuracy of the system on very large databases.

In Section 2.1, we explain how we evaluate the accuracy of a general biometric system, with a particular
focus on the case of iris. Then, in Section 2.2, we explain how to evaluate the quality of an iris segmentation
algorithm using the whole recognition system. Finally, in Section 2.3, we describe the databases used in this
thesis to validate our results.

2.1 General Evaluation of Biometric Systems

Large scale evaluation of biometric systems is done offline on reference databases : each biometric sample
of each individual is compared to every other element in the database. When the samples belong to the same
person, the comparison is labeled as "genuine comparison". When the samples belonged to different persons,
the comparison is labeled as "impostor comparison".

To evaluate the accuracy of a biometric system, score distributions for genuine and impostor comparisons
are generated for the whole database. The precision of a biometric system is characterized by its ability to
separate between the two distributions. It defines a threshold setting the boundary between the two distributions
(if the score of a comparison is bellow the threshold, it is considered as genuine, otherwise it is considered as
impostor).

If the two distributions do not overlap, the system can perfectly distinguish between the genuine class and
the impostor class (See Figure 8a). However, in operational systems the two distributions do overlap, so no
threshold can perfectly separate the two classes (See Figure 8b). For any given threshold, some of the genuine
comparisons will be taken as being impostors (producing a False Rejection; FR when this happens) and some
impostor comparisons will be taken as being genuine (generating a False Acceptance ; FA).

(a) Ideal biometric system (b) Real biometric system

Figure 8: Genuine and impostor scores in biometric systems. Figure (a) : Ideal Biometric system where the
genuine and impostor scores do not overlap. Figure (a) : Operational biometric system with an overlapping
between genuine and impostor scores generating errors.
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2.1. General Evaluation of Biometric Systems 23

Figure 9: Example of ROC curve, setting the balance achievable between FAR and FRR for a given system.

A biometric system is characterized by the average amount of FA and FR for a given threshold namely
the False Acceptance Rate (FAR) and False Rejection Rate (FRR). Definition of FAR and FRR are introduced
in [28].

In a biometric system, any user has to claim an identity I . He also provides a biometric template XQ

(through iris acquisition for example). XQ shall be similar to the bimoetric template stored in database for this
identity I : XI . Then the hypotheses are :

H0 The input XQ does not belong to the same person as the template XI .

H1 The input XQ belongs to the same person as the template XI .

The resulting decisions are :

D0 The person is not who she claims to be (fraud).

D1 The person is who she claims to be.

The decision rule is then : if the matching score S(XQ, XI) is less than a given threshold, decideD1 otherwise
decide D0. The resulting errors are :

type I : False Acceptance (D1 is decided when H0 is true).

type II : False Rejection (D0 is decided when H1 is true).

FAR is the probability of type-I error and FRR is the probability of type-II error :

FAR = P (D1|H0),
FRR = P (D0|H1),

(6)
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24 Evaluation of Iris Recognition Systems

Figure 10: Distribution of the genuine and impostor scores for an iris recognition system

As explained earlier, the evaluation of a biometric system is done using the genuine and impostor distribu-
tions for a reference database. Estimation of FAR and FRR for a given threshold t (assuming that genuine
comparisons have lower scores than impostor comparisons) is :

FAR(t) =

∫ t

−∞
p(S(XQ, XI)|H0)dS,

FRR(t) =

∫ ∞
t

p(S(XQ, XI)|H1)dS,
(7)

The system performance at any operating point (variation of threshold t) is represented by the Receiver Op-
erating Characteristic (ROC) curve such as the one displayed in Figure 9. This representation allows evaluating
the expected behavior of the system for a given threshold, and therefore, to determine a threshold according to
this behavior. For instance, a system regulating the entrance to a restricted area should prevent impostors from
getting in (low FAR), even if the authorized persons need several attempts to get in (high FRR). Given the sys-
tem’s ROC curve displayed in Figure 9, a possible operating point could be : FAR = 10−5 and FRR = 0.15.
For such an operating point, an impostor has one chance out of 100.000 to get in, but regular users are refused
15% of the time.

Figure 10 shows the typical distributions for an iris recognition system. As expected, the impostor distri-
bution has a mean around 0.45 and the genuine distribution has a mean around 0.28. The genuine distribution
has a larger variance and the right tail of the distribution tends to expand further on the right. Comparisons
scores in this right tail usually involve images of very low quality.
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2.2 Evaluation of Segmentation Quality

As this thesis is devoted to iris segmentation, evaluating the quality of our segmentation results is a key issue.
The evaluation of segmentation quality is a classical image processing problem. However, despite a global
consensus about the importance of this topic, it is still an open problem.

This statement becomes even more true when applied to the iris segmentation problem. This problem
refers to two different actions : the generation of the segmentation masks and the estimation of the iris borders
for normalization. Our first attempt to evaluate the quality of our segmentation algorithms was to compare the
results with a manually generated ground truth. Though this approach seemed pertinent for the segmentation
mask, it appeared as irrelevant for the evaluation of the normalization contours. Indeed, we noticed that the
recognition performance of systems using simple iris segmentation algorithms were better than the recognition
performance of systems using our manual ground truth. We find out that this behavior comes from the small
impressions introduced by the operator during the generation of the ground truth. Indeed, results produced by
an human operator have a few pixels of uncertainty and automatic algorithms usually provide more reliable
results (even simple ones). Therefore, the only effective way of evaluating the accuracy of a segmentation
algorithm is by assessing its impact on the recognition performance.

In Biometrics, the quality of every module of a system is evaluated with respect to its impact on the
overall recognition performance. It is intuitive that the better a segmentation algorithm performs, the better the
recognition performance should be. Accordingly, the first way to evaluate the quality of segmentation is by
using the ROC curves presented in the previous section.

Figure 11: Ranking of different segmentations using ROC curves, using the same features extractor and the
same features matching.

ROC curves enable a global evaluation of the system’s performance, but they fail to assess the segmentation
quality of a single image. To handle this issue, we use a concept introduced in the article of Elham Tabassi [70].
The key idea is to define image specific error rates.

• Image false match rate iFMR - the proportion of comparisons involving this image producing a false
match.

• Image false non-match rate iFNMR - the proportion of comparisons involving this image producing a
false non match.
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Let us note the FAR and the FRR we introduced in the previous chapter are related to a system, whereas the
FNM and the FNMR are related to a recognition algorithm. The FAR and the FRR consider images that have
been rejected by the system as being errors (because their quality is too low for instance). On the opposite, the
FMR and the FNMR only consider mistakes of the comparison algorithm.

Taking the formulation of the original article, we define sijkl the comparison score of the k-th image of
subject i with the l-th image of the subject j. Then, the set of impostors for the k-th image of subject i is :

I(i, k) = {sijkl, i 6= j, j = 1...J, l = 1...Nj}, (8)

for comparison against all Nj images of all J persons in the test set. The image false match rate is then defined
for a given threshold τ as :

iFMR(τ, i, k) =

∑
s∈I(i,k) 1−H(s− τ)∑

s∈I(i,k) 1
, (9)

with H the Heaviside function defined as :

H(x) =

{
0 if x ≤ 0
1 if x > 0

(10)

The non false match rate is defined in a similar way. For a given threshold τ :

G(i, k) = {siikl, k 6= l, l = 1...Ni}, (11)

iFNMR(τ, i, k) =

∑
s∈G(i,k)H(s− τ)∑

s∈G(i,k) 1
. (12)

For a given threshold τ , the iFMR and iFNMR value of an image k defines its tendency to produce false
match or false non match comparisons. An interesting aspect of this formulation is that images on which
segmentation has failed will have a tendency to produce more False Non-Matches than correctly segmented
ones. Figure 12 shows the iFNR and iFNMR for some images of very bad quality or poorly segmented.

Let us note that the evaluation tools we described are specific to a given recognition system. We will discuss
some more image related quality metrics in Chapter 7 where we try to predict failures of the segmentation
algorithms.

CONFIDENTIAL



2.2. Evaluation of Segmentation Quality 27

(a) iFNMR = 0.95 ; iFMR = 0.01 (b) iFNMR = 0.90 ; iFMR = 0.00

(c) iFNMR = 0.10 ; iFMR = 0.18 (d) iFNMR = 0.78 ; iFMR = 0.51

(e) iFNMR = 0.90 ; iFMR = 0.23 (f) iFNMR = 0.90 ; iFMR = 0.26

Figure 12: Examples of images identified as not suitable for recognition based on their image False Match
Rate and image False Non Match Rate (threshold set at 0.36). The results of the segmentation process are
displayed on the images. The two ellipses correspond to the normalization contours and the blue region to the
segmentation mask. Figure (a) : Off-angle image where contours fitting has failed. Figure (b) : Image correctly
segmented but with a cosmetic contact lens, making it unsuitable for recognition. Figure (c) : Image correctly
segmented, but with very few information available due to occlusions. Figures (d) (e) (f) : Complete failures
of the segmentation.
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2.3 Databases

Databases are a key aspect of biometric systems evaluation : to assess the recognition performance of a system,
a large number of comparisons is required. In this thesis, we focus on the databases ICE2005, ND-Iris and
CASIA V3/V4.

We choose to study these databases because they are the largest databases acquired with low acquisition
constraints available at the beginning of this thesis. Therefore, the databases contain several kind of image
degradations such as illumination inhomogeneities, hard or synthetic lenses, occlusions, poor focus or off-
angle images. It is also interesting to note that the CASIA databases have been acquired with a different sensor
than the one to acquire the ICE2005 and ND-Iris databases that allows validating our results for different
sensors.

2.3.1 ICE 2005

Figure 13: Examples of ICE2005 images

The Iris Challenge Evalution [55] (ICE) was constructed by the NIST in 2005 to proceed the first large scale
iris recognition challenge, namely evaluating iris recognition systems on degraded images. The ICE database
consists of 2,953 images from 132 subjects including degradations such as illumination inhomogeneities, oc-
clusions, poor focus or off-angle images.

2.3.2 Nd Iris

Figure 14: Examples of ND-Iris images

The Nd-Iris-0405 Database [56] is an extension of the ICE2005 database. This Database is one of the
largest public databases available for iris recognition with 64,980 iris images obtained from 356 subjects (712
unique irises). This database is acquired with low constraints. It contains off-angle images, hard or synthetic
lenses, large occlusions or images with illumination variations.
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2.3.3 CASIA

The CASIA databases have been constructed by the Chinese Academy of Sciences’ Institute of Automation [9].
These databases are mainly composed of Asian people. This population tends to have thin eyelashes oriented
downwards for the upper eyelid, thus covering a significant part of the iris and therefore inducing segmentation
errors.

CASIA V1 was the first public irises database. Therefore, this database has been widely studied in the early
ages of iris literature. The database is composed of 756 irises of 108 different eyes. The acquisition was highly
constrained and the pupil was manually edited to be a uniform region of constant intensity. Therefore, this
database should not be used for Iris recognition anymore as it does not match real acquisition conditions [54].

CASIA V3 was released later and is composed of three subsets :

Interval This subset contains 2,655 images from 396 eyes of 249 persons. Images are acquired using the
same sensor as CASIA V1, but without manual alteration of the pupil. The in-house sensor used
to create this database ensure a strong illumination showing very rich texture in the iris.

Lamp This subset contains 16,213 images captured from 819 eyes of 411 subjects. This database con-
tains strong illumination inhomogeneities and several other degradations such as hair occlusions.
Since the eyes are taken under different illumination conditions, the pupil dilation may vary
largely from one eye image to another. The authors expect this database to be suitable for study-
ing non-linear distortions of the iris texture due to pupil dilation.

Twins This subset contains 3,183 images captured from 400 eyes of 200 subjects (100 pairs of Twins).
The authors expect this database to demonstrate that iris is strictly different even between Twins.

(a) CASIA V1 (b) CASIA Interval

(c) CASIA Lamp (d) CASIA Thousand

Figure 15: Examples from the different CASIA databases.
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CASIA V4 extends CASIA V3 adding three new subsets :

Distance This subset contains images captured at a distance using an in-house imaging system. The ac-
quisition system also acquired other biometric samples such as high quality face images in order
to evaluate multi-modal fusion.

Thousand This database contains 20,000 iris images from 1,000 subjects. This is the first publicly available
iris database containing one thousand different subjects.

Syn CASIA-Iris-Syn contains 10,000 synthetic iris images representing 1,000 chimeric subjects. The
irises are synthesized using normalized images from CASIA V1.

2.4 Conclusion

In this chapter, we have first recalled how to evaluate the recognition performance of a given biometric system.
This evaluation is done offline by comparing a large number of biometric samples.

This chapter is centered on how to use the recognition performance of a complete iris recognition system
to characterize the accuracy of an iris segmentation algorithm. Indeed, the better the segmentation algorithm
is, the better the system’s recognition performance should be. We propose to carry out the evaluation at two
levels :

• At a global level (the whole recognition system) using ROC curves.

• At an image level using the image False Match Rate (iFMR) and image False Non-Match Rate (iFNMR).

Finally, we have described the different databases we used during this thesis for validating our results. We
have selected these databases because they have been acquired with low acquisition constraints and therefore,
are representative of the different problems addressed during this thesis.

In next chapter, we will study the specificity of iris segmentation. We will make a survey of some classical
iris segmentation methods. We will use this survey to explain technical choices made in this thesis and the
consequences for our segmentation system.
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Chapter 3

Segmentation Techniques for Iris
Recognition

Iris segmentation refers to two distinct actions :

1. The identification of the pixels belonging to the iris in the eye image (generating a so called segmentation
mask).

2. The estimation of a parametric description for the iris inner and outer boundaries (in the image, but also
under possible occlusions)

Such information is critical to perform recognition. The parametric contours are used to unwrap the iris
texture in order to produce the normalized image (Equation (3) of Chapter 1) that is used at matching step. The
segmentation mask is used to remove non iris area from the matching process (Equation (5) of Chapter 1).

The first segmentation algorithms of Daugman [16] and Wildes [77] assume that the iris can be modeled by
two non concentric circles possibly occluded by the eyelids. Therefore, they reduce the segmentation problem
to the search of circles with simple eyelids detection schemes. These approaches showed good results when
subjects are highly cooperative. However, when acquisition conditions are relaxed, the iris borders are more
likely to be occluded and simple segmentation models tend to fail. For this reason, new algorithms have been
proposed in order to handle degradations appearing in this context.

The iris segmentation task thus produces a segmentation mask and a parametric description of the iris bor-
ders. Accordingly, we identify two main strategies that differ in the processing order. The first strategy, which
we call Contours First, first finds parametric descriptions of the iris borders and then removes occlusions in the

Figure 16: Two main segmentation strategies. On the upper row, the Contours First strategy : the borders of
the iris are found first and then the segmentation mask is obtained by removing occlusions. On the lower row,
the Texture First strategy : the texture of the iris is found first and then a model is fitted on the iris borders.
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segmentation mask. The second strategy, which we call Texture First, first determines a precise segmentation
mask of the iris texture and then, finds a parametric description of the iris borders. The difference between
such two strategies is illustrated in Figure 16. At the end, both strategies will produce close results, but this
choice has some consequences on the design of the segmentation algorithms :

• Contours First strategies (first row of Figure 16) first find parametric descriptions of the iris borders and
then remove the occlusions. This first stage must be both robust and accurate in finding the visible iris
borders, and in predicting the shape of the occluded ones. Indeed, mistakes made during this first stage
will directly affect the image normalization. Once the shape of the iris is known, occlusions are removed
from the segmentation mask using simple methods like eyelids detection.

• Texture First strategies (second row of Figure 16) first precisely segment the iris texture in the image and
then estimate the iris borders. This segmentation can be performed directly on the image using classical
region segmentation algorithms. However, the region segmentation does not provide parametric contours
for normalization. Accordingly, the search of the parametric contours is done using the information from
the region segmentation.

In this chapter, we review some methods proposed in the literature to segment the iris. First, in Section 3.1,
we recall briefly the early segmentation approaches of Daugman and Wildes. Then, we present more recent
works on iris segmentation. We describe Contours First strategies in Section 3.2 and then present Texture First
strategies in Section 3.3. Finally, in Section 3.4, we present the key problems to solve in the framework of the
chosen strategy for iris segmentation and the proposed solutions.

3.1 Early Segmentation Approaches

The first article proposing an automated system able to identify people based on the texture of their irises was
proposed by Daugman in [16] in 1993. This article was followed in 1997 by an article of Wildes [77] based on
a different comparison algorithm. These two articles address the problem of identifying people whose irises
have been acquired in a controlled acquisition scenario. In these studies, the eye images are clear and the irises
always visible in the image. They both model the iris borders using circles but propose different algorithms
to find these circles in the image. Finally, they remove the eyelids from the image using simple detection
methods.

Using the terminology we proposed in the introduction of this chapter, these two articles apply a Contours
First strategy because they first search the parametric contours (the circles) and then remove the occlusions
(the eyelids).

3.1.1 Daugman’s approach

In [16], Daugman proposes to find circles in the image using the following integrodifferential operator (IDO) :

max(r,x0,y0)

∥∥∥∥Gσ(r) ∗ ∂

∂r

∮
θ

I(x0 + r cos θ, y0 + r sin θ)

2πr
dθ

∥∥∥∥ , (13)

where (r, x0, y0) are the parameters of a circle with center (x0, y0) and radius r, I is the image, Gσ is a
smoothing Gaussian of scale σ, and ∗ denotes convolution. This operator finds the circle where the change of
intensity is maximal. For practical implementations, the author proposes using a first order approximation of
the operator and evaluating the operator on a fixed grid. These approximations allow to speed up the process
compared to a naive implementation of equation (13).

In the original article [16], Daugman makes an empirical assumption on the expected location of the eyelids
and always remove there areas from the segmentation mask. In [15], Daugman proposes to locate the eyelids
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based on an integrodifferential operator designed to locate parabola similarly to what he proposes for circles
in Equation (13).

Although the operator (13) has shown good result in controlled acquisition scenarios, it lacks robustness
in less constraint acquisition conditions. Indeed, as the circle detection is based on an energy formulation, it
can be affected by irrelevant optima created by other elements of the image such as the eyelids, eyelashes or
shadows.

3.1.2 Wildes’ approach

In [77], Wildes proposes to find circles in the image using classical image processing methods : he first looks
for edges in the image using a simple edge detector (Canny in [77]) followed by a CHT (Circular Hough
Transform [53]). In addition to this circle finding process, the author proposes to segment the eyelids to
remove this area from the comparison process. This detection is also very classical and is based on a linear
Hough Transform. The critical issue of this method is to select an accurate edge detector. Indeed, if the iris’s
edges are not present in the edge image, the Hough transform can not find the iris contours. On the opposite,
if the edge detector is not selective enough, the time computation of the CHT may dramatically increase. For
these reasons, most of the articles based on Wildes’ idea modify the edge detector to improve performance
[36] [41] [39]. This method is very robust because it uses very stable image processing tools. However, the
precision is directly affected by the choice of edge detector and its settings.

3.2 Contour First Strategy

In this section we describe methods we identified as Contours First strategies. These methods first accurately
locate the borders of the iris visible in the image. Then, they use this information to predict the shape of the
iris in occluded regions. Finally, they remove the occlusions (like eyelids or eyelashes) from the segmentation
mask. We give a brief summary of the key elements of each article in Table 1.

In [17], Daugman proposes a set of methods to solve some of the main issues of early iris segmentation
systems, like handling persons which have an anatomically non-circular iris and gaze deviations. To that aim,
he models the iris borders with parametric contours described by Fourier coefficients instead of circles. He
first roughly locates the pupil and the iris in the image and then, uses this initialization to segment the iris with
snakes described by Fourier series expression. The interest of this formulation is twofold : on one hand it
gives a very effective scheme to identify the iris borders, and on the other hand, the contours are parametrically
described an can be used to normalize the image instead of circles. To address the off-angle problem, the
author uses the first two coefficients of the contours’ Fourier expansion to rectify the image deviation (i.e. he
assumes an elliptic shape). Finally, the eyelashes overlapping the iris are removed based on a simple statistical
test on the intensity distribution.
This method is a good illustration of modern Contours First strategies because the author focuses on the
research of a parametric description of the iris anatomic borders and then uses a simple scheme to remove
occlusions. Therefore, the main difficulty of the proposed model is to use only the "true" iris borders in the
image to fit the snake. Indeed, if the snake fitting is done using some edges generated by occlusions (for
instance an edge separating the iris texture and the eyelid), the overall shape of the contour will be corrupted.

In [46], Miyazawa et al. propose a new approach to compare irises using global phase correlation. This
comparison method provides an interesting alternative to the Daugman’s reference method described in Sec-
tion ?? and 1.5 of Chapter 1. However, the method proposed in [46] also requires a normalized image generated
using a parametric description of the iris contours. To get these parametric contours the authors propose a quite
unique Contours First segmentation strategy. They first locate the pupil by looking for dark areas close to spec-
ular reflections. Then, they apply a Parametric Deformable Model based on 10 parameters to segment the iris.
This model is composed of one ellipse for the pupil border and one for the iris border. The idea of this method
is to minimize a certain energy of the contour by iteratively evolving the parameters of the model.
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This method is interesting because the Parametric Deformable Models are known to be very robust and are
likely to work even with degraded images. However, they assume that the iris can only be occluded by eyelids
and other types of occlusions are not handled by this model.

In [63], Ryan et al. adapt an eye tracking method called starburst to iris segmentation. They first locate
the pupil with a simple thresholding method assuming that the pupil should be far from white areas (the skin).
Then, they propose to fit an ellipse on the pupil and the iris contours using starburst. The idea of starburst is to
send rays from the initial location of the pupil and assume that the occurrences of larger gradient found along
the ray correspond to the pupil or the iris borders. Several directions are considered to get a set of points that
are likely to belong to the borders. Those points are used to generate an ellipse for the pupil and the iris. The
eyelids are segmented using a 1-D snake. Unlike most biometric-related articles the authors do not evaluate
the segmentation accuracy using the performance of their system. Instead, they rely on manually segmented
images from ICE2005. The authors define a distance metric for ellipses and compare their algorithm to some
reference algorithms of the literature on images which have been manually annotated.

In [26], He et al. propose a complete Contours First segmentation strategy. They first propose an accurate
and effective way to get a parametric description of the iris borders, and then, they propose an effective scheme
to remove occlusions generated by eyelashes and eyelids. The pupil is first roughly localized using an adaboost
classifier. This rough location is used to initialize a "pulling and pushing" algorithm to generate the parametric
description of the iris borders. This algorithm starts by a rough detection of the edges points that are likely to
belong to the pupil (resp. the iris) border, and then the "pulling and pushing" algorithm is used to keep only
edge points belonging to the pupil (resp. the iris) border. This set of edge points is used to fit a spline which
will give the parametric description of the pupil (resp. the iris) border. Finally, the eyelids and eyelashes are
segmented using statistical inferences of the intensities in the regions.
Like [17], the method proposed in [26] is a good illustration of Contours First strategies because they apply a
very effective scheme to first find a parametric description of the iris borders and then remove the occlusions.

In [10], Chou et al. focus on the correction of the gaze deviation for off-angle images. The authors first
propose a new acquisition device taking simultaneously the three visible channels and a NIR image of the eye.
The pupil is first roughly segmented using thresholding in the NIR image. Eyelash area are removed using
hypotheses on the pupil shape. Then, an elliptic Direct Least Square fitting is applied in order to get an elliptic
contour for the pupil area. This elliptic contour is used to perform a circular rectification, i.e. applying a global
transform on the image morphing the pupil ellipse into a circle. Once the four channel image has been rectified,
the authors look for a circle in the corrected image using the RANSAC [21] algorithm on the four channels
of the image. The performance evaluation is done both in terms of recognition performance and using manual
annotation. The authors show that a significant improvement of performance is achieved compared to a circle
based method and that the improvement is proportional to the strength of the gaze deviation.
The approach proposed in [10] is interesting because it explicitly studies the influence of an elliptic contour
model on off-angle images. The results of this study show that elliptic methods are pertinent to solve the off-
angle problem. However, this approach can not be used directly without the sensor proposed by the authors to
simultaneously acquire the NIR and the visible image of the eye.

In [84], Zuo et al. propose a complete system for iris segmentation designed to handle most of the degra-
dations commonly found in iris images. The authors start by applying a preprocessing to the image in order
to remove specular reflections and noise. The pupil is segmented based on a rough thresholding and morpho-
logical operations. Finally, an elliptic contour is fitted to the pupil border. The iris contour is found using an
adaption of Daugman’s integrodifferential operator for ellipses. Finally, illumination inhomogeneities are cor-
rected, and the eyelash occlusions are removed using morphological operations. To estimate the segmentation
quality the authors propose to use a subjective evaluation based on the distance between the resulting ellipses
and the actual borders of the iris.
The proposed approach differs from the other Contours First strategies we presented. Indeed, the authors pro-
poses to correct the degradations in the image at every step of the algorithm whereas other methods usually
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Article Initialization Segmentation Refinements Unwrapping con-
tours

Daugman
1993 [16]

- Pupil and iris found
using IDO

Empiric suppres-
sion of the upper
and lower part of
the iris

Circles from the
IDO

Wildes
1997 [77]

- Pupil and iris found
using CHT

Eyelids detection
based on a Linear
Hough Transform

Circles from the
CHT

Daugman
2007 [17]

Rough localization,
eyelids segmenta-
tion

Snakes using
Fourier series

Off-axis correction
and eyelash sup-
pression

Parametric con-
tours given by
Fourier series

Miyazawa et
al. 2008 [46]

Rough pupil seg-
mentation

Deformable iris
model with 10
parameters

Eyelash suppres-
sion

Ellipses from the
deformable model

Ryan et al.
2008 [63]

Rough pupil local-
ization

Starburst segmenta-
tion for the pupil
and the iris con-
tours

Eyelid segmenta-
tion using snakes

Ellipses from the
starburst segmenta-
tion

He et al.
2009 [26]

Rough location
based on Adaboost
classifier

Pupil and iris seg-
mentation using
pulling and pushing
method

Border fitting us-
ing cubic splines.
Eyelid segmenta-
tion and eyelash
suppression

Refined polynomial
curves

Chou et al.
2010 [10]

Rough pupil seg-
mentation

Elliptic DLS for the
pupil and RANSAC
algorithm for the
iris

Global transform to
map the pupil el-
lipse onto a circle

Circles in the recti-
fied image

Zuo et al.
2010 [84]

Inpainting and con-
trast enhancement

Thresholding for
the pupil and the
iris. Fitting using
elliptic Daugman’s
IDO

Illumination cor-
rection and eyelid
removal

Ellipses from the
elliptic IDO

Uhl et al. [3] Rough initializa-
tion using weighted
Adaptative Hough
transform

Line search in
polar coordinates
and elliptic DLS
fitting. Second
contour is found
using ellipsopolar
transform w.r.t. to
the first contour

Eyelid and eyelash
removal

Segmented ellipses

Table 1: Relevant iris segmentation/normalization algorithms from the literature which use a Contours First
strategy. (IDO stands for Integrodifferential Operator and DLS for Direct Least Square)
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remove the occlusions at the end. Moreover, the pupil region is first accurately segmented before the elliptic
fitting. Therefore, the pupil segmentation stage can be seen as a Texture First approach. We decided to classify
this algorithm as Contours First strategy because the iris segmentation stage is done using a Contours First
strategy.

Most iris segmentation methods we described so far are designed to segment images acquired under Near
Infrared illumination. For this type of illumination, the pupil is the most stable element in the image and is
segmented first. For image acquired in visible wavelength, the most stable element in the image is the limbus.
Accordingly, the outer boundary of the iris is segmented first. In [3], Uhl et al. propose a method to segment
the inner and outer border of the iris without assumptions on the processing order. Therefore, this method can
be used either for NIR and visible images. The process is first initialized by finding a rough localization of
the iris center using a weighted adaptive Hough transform. Then, the image is transformed into a polar image
and the first contour is found by searching for lines in the polar image. The second contour is found using an
ellipsopolar transform. Finally, the contours are identified as either pupil or iris contours based on the strength
of the image’s gradient at the location of the contour.

We can note that all the articles we presented as Contours First strategy focus on finding the visible borders
of the iris in the image to fit a parametric model under possible occlusions. These models can be either
circles [16, 77], ellipses [46, 63, 10, 84, 3] or general parametric contours [17, 26] and these parametric
descriptions are used to generate the normalized image of the iris texture. However, this process must be very
robust and accurate because any mistake made during the localization of the contours will directly impact the
normalized image.

3.3 Texture First Strategy

In this section we describe Texture First methods. These methods segment the iris texture first and then apply
a fitting method based on the region segmentation results to get the parametric description of the iris borders.
Such methods can handle arbitrary types of occlusion and achieve a very precise segmentation of the texture.
We give a synthesis of the key points of the presented articles in Table 2.

In [76], Vatsa et al. propose a complete iris recognition system from the Image Segmentation to the Pattern
Matching. They propose to segment the iris using the Chan and Vese model for Active Contours [8]. Then they
propose several quality enhancements applied on the normalized image to improve the recognition performance
of the system. Finally, they propose two comparison algorithms they fuse using a Support Vector Algorithm
(SVM).
The segmentation process starts by a rough estimation of the pupil and iris borders based on an iterative
algorithm designed to find ellipses in the image. They initialize a circle at the center of the eye and randomly
select some points on the circumference to decide if the contour should shrink or expand in order to maximize
the variation of intensities. Then, based on this rough initialization, a Chan and Vese active contour is used to
get the accurate segmentation mask of the iris and the iris is normalized using the initial ellipse parameters.
This approach was one of the first Texture First methods of the literature. One of the main limitation of this
approach is that the contours used to generate the normalized image are the same as the one used to initialize
the Active Contours. It is a problem because this process is done quite empirically and have a low accuracy
compared to the region segmentation proposed in the article.

In [66], Shah et al. want to segment the iris region without making assumption on the shape of the iris.
Therefore, they propose to use Geodesic Active Contours (GAC [7]) to segment the iris texture. The process is
initialized using a rough segmentation of the pupil based on thresholding. In order to distinguish the pupil area
from other dark elements in the eye the authors propose to apply a circular least square fitting on the regions
borders and select the region closest to a circle. Then, they use this rough initialization of the pupil to segment
the iris using a Geodesic Active Contours. Finally, in order to get the parametric description of the contours
for normalization, they propose to apply a circular fitting on some relevant points of the iris mask.
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This article is the first complete Texture First strategy proposed in the literature. The authors first accurately
segment the iris region in the image and then propose a way to estimate the shape of the contours using the
shape of the region. This article was used as a basis for our work on iris texture segmentation and we describe
more deeply its technical aspects in Section 5.3.1 of Chapter 5.

In [62], Roy et al. propose an complete recognition system to handle non-ideal iris images. They first
segment the pupil and the iris using two different kinds of active contours and then they propose several feature
extraction algorithms. These features are merged using genetic algorithms and Support Vector Machines.
The pupil is first segmented using Geodesic Active Contours in a similar way Shah et al. [66] did for the iris
segmentation, and then they segment the iris texture using a Chan and Vese active contour [8] to segment the
iris. Finally, they propose to refine the segmentation mask by segmenting the eyelids assuming a parabolic
shape. Then they remove the eyelashes using the process described in [37]. Normalization contours are found
the same way [66] do.
The segmentation method proposed in this article is very close to the article of Shah et al. [66] but they propose
to describe the iris region using its intensity distributions rather that the gradient of its boundaries.

In [59], Proenca proposes an interesting extension of He et al.’s method [26] for segmentation. He focuses
on the definition of image quality criteria for images acquired in visible wavelength. The author proposes
to apply the segmentation method [26] to generate the segmentation mask of the iris region. Then Proenca
retrieves the normalization contours by robust variational fitting of a contour contours described by Fourier
series coefficients.
The proposed method uses a Contours First strategy [26] to generate the segmentation masks, but, instead of
using the contours of the original method, Proenca proposes an alternative method to get the iris borders from
the segmentation mask. The interest of this formulation is that is can basically be used as a complement to any
method first generating a segmentation mask. However, the fitting is done on the border of the segmentation
mask. Therefore, errors in the accuracy of the segmentation mask may corrupt the contour fitting stage.

In [68], Sutra et al. propose a method in between Contours First and Texture First strategies. They propose
to segment the boundaries of the iris region in the image (different from the anatomic iris borders) using the
Viterbi algorithm. This algorithm is an adaptation of a classical algorithm from the signal transmission theory.
Applied to the iris segmentation problem, it can be seen as finding the contour of minimal length going around
the iris region while following areas of strong gradient. The authors first roughly localize the pupil to transform
the image into polar coordinates. In the polar image they search for the path of minimal length linking the two
sides of the image and passing through areas of strong gradient. The path closest to the center is the pupil one
and the further one is the iris path. The image region contained between these two paths is the iris region.
In order to obtain the parametric description of the iris borders for normalization, the Viterbi algorithm is
applied a second time at a lower resolution to get a rougher representation of the iris borders. The interest
of this rough representation is that more strength is given to the areas where it is more likely to have an iris
border (right and left regions) and less to areas where it is more likely to have occlusions (upper and lower
regions). These contours are used to apply a circular Direct Least Square to fit the parametric description of
the iris contours.
Although this article focuses on a contour finding method the authors clearly apply a Texture First strategy
because they first segment the iris region and then propose a way to get the parametric description of the iris
borders. An interesting aspect of this approach is that they do not directly rely on the region segmentation to
fit the parametric contour, therefore they do not depend too much on the accuracy of the first run of the Viterbi
algorithm.

An interesting aspect of Texture First strategies is their ability to precisely segment iris texture almost inde-
pendently of the occlusion types. However, they require an effective scheme to get the parametric description
of the iris contours based on the shape of the segmented region. A limitation of the presented articles is that
they often strongly rely on the accuracy of the region segmentation results to estimate the shape of the iris
borders. Therefore, inaccuracies in the region segmentation process will lead to inaccuracies on the borders’
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description.

Article Initialization Segmentation Refinements Unwrapping con-
tours

Vatsa et al.
2008 [76]

Pupil and iris ini-
tialized as ellipses

Level set based on
Chan and Vese for-
mulation [8]

Eyelid segmenta-
tion

Initial ellipses

Shah et al.
2009 [66]

Segmentation
of the pupil and
circular DLS

Segmentation
of the iris using
Geodesic Active
Contours

Iris fitting using
circular DLS on
points of the limbus
boundary

Refined circles

Roy et al. 2011 [62] Pupil contour ini-
tialized using ellip-
tic DLS

Geodesic Active
Contours for the
pupil. Level set
based on Chan
and Vese formu-
lation [8] for the
iris

Circles are found
in the same way as
Shah [66]. Eyelid
segmentation and
eyelash suppression

Refined Circles

Proenca 2010 [59] - Segmentation using
the method [26]

Recursive fitting of
a Fourier series to
the iris borders

Parametric con-
tours given by
Fourier series

Sutra et al.
2012 [68]

Rough pupil local-
ization

Viterbi algorithm in
polar coordinates
for the pupil and
the iris

Downsampled
Viterbi algorithm
and circular DLS

Refined circles

Table 2: Relevant iris segmentation/normalization algorithms from the literature using Texture First strategies.
DLS stands for Direct Least Square

3.4 Focus of this Thesis

We have identified two main strategies for iris segmentation, namely Contours First and Texture First strategies.
In this thesis, we have decided to apply a Texture First strategy for two main reasons. The first is that Contours
First strategies are closer to the original articles of Daugman and Wildes. Therefore, they have been more
intensively studied than Texture First strategies which are relatively new (the first article we identified as
Texture First has been published in 2008). The second reason is that these strategies allow to make very few
assumptions on the content of the image, as we have discussed in Section 3.3. We find this property particularly
interesting for handling the degradations that may appear in the image when relaxing acquisition conditions
(See Section 1.6 of Chapter 1).

The overview of the complete system that we developed during this thesis is described in Appendix A.
During the development of this system, we faced four critical issues for which we have proposed original
solutions compared to the literature (presented in Sections 3.2 and 3.3) :

(i) Rough Pupil Localization : Localization of the pupil area in the whole image (Chapter 4).

(ii) Iris Region Segmentation : Segmentation of the iris region in the image (Chapter 5).

(iii) Contour Fitting : Fitting of a parametric contour on the iris borders (Chapter 6).

(iv) Segmentation Quality : Evaluation of the quality of the segmentation results (Chapter 7).
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Concerning part (i), every article presented in Sections 3.2 and 3.3 first roughly localizes the pupil region
and then applies some more complex algorithms based on this localization. Therefore, this step of Rough Pupil
Localization is of crucial importance indeed, a failure at the Rough Pupil Localization step will result in the
failure of the complete segmentation process. The difficult aspect of this localization is to distinguish the pupil
from other dark elements in the eye such as eyebrows, packed eyelashes, hair or the arms of glasses. To solve
this issue, we propose to first identify eyebrows and eyelashes regions and then to remove them from the pupil
localization process. We describe this process in Chapter 4.

Concerning part (ii), as we have decided to use a Texture First strategy, we first segment the regions before
fitting the parametric contour in the image. Therefore, Iris Region Segmentation is challenging because the
algorithm should not only reach a good precision, but it must also be very robust to handle image variability.
Accordingly, we focused on Active Contours for iris similarly as the articles [76, 66, 62]. We present several
implementations of such algorithms in Chapter 5 and discuss their advantages and limitations.

Concerning part (iii), Texture First strategies described in our survey usually find the parametric contours
of the iris borders by making a strong use of segmentation results. This tends to create a lack of robustness in
the contour fitting scheme because inaccuracies in segmentation results may lead to large failures in the contour
fitting process. To solve this issue, we developed a new algorithm based on the formalism of Active Contours.
This algorithm allows to fit robustly and accurately an elliptic contour on the iris borders. We describe our new
model in Chapter 6.

Concerning part (iv), we were concerned about detecting large failures of the segmentation process. Indeed,
segmentation failures have a large impact on the recognition performance of the global system [46]. In order to
reduce the error rate of the system, it is necessary to detect such segmentation failures ; besides, this opens other
possibilities like reacquiring the image if possible, or changing the algorithm’s settings in order to correctly
segment the image. Unlike the pupil and iris segmentation issues that are widely studied in the literature,
the estimation of the segmentation quality and the detection of failures have not been widely studied so far.
Indeed, few work in the literature target this critical problem [38, 29, 81, 30, 80]. Traditionally, the algorithms
estimating the image quality are often placed either at the image acquisition level to check the quality of the
raw image, or after the segmentation module to assess if the biometric sample has enough information to
characterize the iris. In Chapter 7, we propose a set of new segmentation quality measures. We explain why
we choose them and how they are fused to produce a final segmentation quality score.
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Chapter 4

Automatic Localization of the Pupil Area in
the Eye

The pupil is the dark hole located inside the iris allowing the light to enter the eye. This area is usually very
dark and homogeneous. For this reason, it is considered as the most stable element in an eye image acquired
in near infrared illumination. Therefore, most iris segmentation algorithms start by a rough localization of the
pupil area to initialize more complex algorithms. However, if the localization of the pupil fails, the algorithms
may be initialized very far from the actual location of the iris, leading to a complete failure of the segmentation
process.

Although the pupil is usually one of the darkest elements in the eye image, it may not be the only dark
region : eyelashes, eyebrows or hair may have intensities very close to those of the pupil area (see Figure 17). It
is obviously critical to be able to distinguish the pupil from these other dark elements in the eye. Our proposal
to handle this problem is inspired from the work of Pundlik et al. [61] and aims at roughly segmenting the
eyelashes and eyebrows in order to remove them from the pupil localization process. Let us note that this
approach differs from most eyelash segmentation methods : usually eyelashes are removed directly from the
segmentation mask assuming that the pupil’s location is known.

(a) Very dark packed eyelashes (b) Dark eyelashes touching the
pupil

(c) Hair in the image (d) Braches of glasses occluding
the pupil

Figure 17: Some difficult images for pupil localization. (Figure (a) and Figure (b) are taken from the ND-Iris
database and Figure (c) and Figure (d) are taken from the CASIA Thousand database)

In order to identify eyelash and eyebrow areas we design two algorithms that we describe in Section 4.1.
This information on eyelash location allows enhancing the pupil area in the image as we explain in Section 4.2.
Enhancing the pupil area makes its detection easier and, therefore, reduces the amount of mis-localization of
the pupil area. Finally, in Section 4.3 we evaluate the two algorithms we have developed for eyelashes detection
on two different databases : ND-Iris and Casia Thousand.

4.1 Segmentation of eyelashes and eyebrows

Eyelashes are usually highly textured whereas the pupil is rather homogeneous. In [61], Pundlik et al. pro-
pose to segment the eyelashes using this textural information. To that aim, they propose to use Harris corner
detection framework [25] in order to identify textured regions. Let’s consider the operator :

G(x) =
∑

x′∈Ng(x)

[
I2
x(x′) Ix(x′)Iy(x

′)
Ix(x′)Iy(x

′) I2
y (x′)

]
, (14)
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Figure 18: Rough localization of the pupil area. First, the eyelash regions are detected in the original image.

This information is used to enhance to pupil region in the original image. Enhancement is done in such a way

that the pupil area can be retrieved using simple thresholding techniques.
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where x is a given pixel of the image I , Ng(x) is a neighborhood of x, Ix(x) the horizontal gradient at pixel
x and Iy(x) the vertical gradient at pixel x. Let e1 and e2 be the two eigenvalues of G(x) with e1 ≤ e2. The
eigenvector associated to the largest eigenvalue represents the dominant direction of the texture’s orientation
in the neighborhood Ng(x). The strength of the eigenvalues characterize the nature of the region around x. If
both e1 and e2 are small, x belongs to an homogeneous region. If e1 >> e2 and e2 is small, x belongs to an
edge. If both e1 and e2 are large, x belongs to a region where the gradient is isotropic, namely a corner point.
To detect the corner points in the image, Pundlik et al. set and empirical threshold τ and select the points where
h(x) = min{e1, e2} > τ .

This process generates a binary map of corner points in the image. Eyelash regions are expected to contain
a higher density of corner points than the other regions in the image. In order to estimate the density of corner
points, the authors apply a weighted sum of the radial histogram at each point (this can be seen as a smoothing
of the binary image). This process results in a dense map of the textured areas.

The main limitation of the approach proposed in [61] is the definition of one global empiric threshold τ .
Indeed, the strength of the eigenvalues can however vary depending on the blur in the image. Thus, influencing
the optimal value of τ . Therefore, we propose to use the same idea as Pundlik et al. [61] (eyelashes are in
areas of high frequency), but we propose two different methods based on an adaptive thresholding to identify
these regions. The first method we call Texture-Based is a direct extension of the works of Pundlik et al. with
an adaptive thresholding process. The second method we call Probabilistic-Based is based on a Reductio ad
absurdum on the intensity distribution of the high frequency image.

In order to obtain the final eyelash location, We fuse these results using the scheme presented in Figure 19.
In addition to the two eyelash location information, we also favor dark regions in the image. Therefore,
our fusion scheme is the product of three images of probability : probability of the Texture-Based approach,
probability of the Probabilistic-Based approach and probability of being in a dark region. As the product

Figure 19: Figure (a) : Original image. Figure (b) : Probability Pp. Figure (c) : Probability Pt. Figure (d) :
Probability Pd. Figure (e) : Product of the three probabilities Pee. Figure (f) : Final enhanced probability P ′ee.
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operation tends to generate a few high intensity pixels and mostly low intensity pixels, we correct the intensity
in the image to have a better repartition in the intensity distribution.

4.1.1 Texture-Based Eyelash Detection

An empiric analysis of the operator h(x) = min{e1, e2} presented in the above section shows that its his-
togram follows a decreasing exponential law. If we noteH the histogram of the operator h normalized between
0 and 1 we assume that we have :

[0, 1] −→ [0, 1]

H(t) = exp(− t
σ

),
(15)

where σ is the time constant of the exponential law. The value of σ is related to the blur in the image : it is low
for blurred images and high for sharp images. Figure 20 gives examples of such histogram for three different
images. The first two images are rather sharp, so the slope of their histogram H is very high. On the opposite,
the last image is rather blurry so the slope of the histogram is quite low compared to the two previous images.

(a) Original Image (b) Operator h (normalized be-
tween 0 and 1)

(c) Histogram H of h (d) Pt

(e) Original Image (f) Operator h (normalized be-
tween 0 and 1)

(g) Histogram H of h (h) Pt

(i) Original Image (j) Operator h (normalized be-
tween 0 and 1)

(k) Histogram H of h (l) Pt

Figure 20: Eyelids area enhancement based on the Texture-Based model. The first column presents the original
image. The second column presents the operator h normalized between 0 and 1. This operator gives a indica-
tion on the eyelash location but their is a large gap between pixels having high intensity and pixels having low
intensity. The third column presents the histogram H of the operator h. Finally, the last column presents Pt,
the result of the Texture-Based eyelash detection process.
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Therefore, we propose to use this information to automatically adapt the empirical threshold τ of Pundlik et
al. [61].

We first estimate σ̂ using the slope of the histogram at the origin H ′(0) = − 1
σ̂ and apply the following

transform to the operator h of the previous section :

Pt(x) = min{ h(x)

10 · σ̂
, 1}, (16)

Pt can be seen as a limitation of the intensity at a maximum of 10σ̂ with a linear normalization between 0
and 1. The interest of Pt as opposed to the process proposed in [61] is that the threshold is set adaptively, and
Pt has values between 0 and 1 instead of strictly binary values.

Figure 20 illustrates the process for several images with different types of eyelashes. The image in Fig-
ure 20a has very dark and packed eyelashes. The image in Figure 20e has very thin eyelashes. The image in
Figure 20i has very thin and dark eyelashes with a large focal blur. The results of the proposed process are
displayed in the last column and show that our process can automatically highlight the eyelashes in the three
images.

4.1.2 Probabilistic-Based Eyelash Detection

In [33], Kang et al. detect eyelashes using high frequency of the image. They consider the average amount
of high frequencies in the image to adapt a two-fold algorithm for eyelash detection. They use a region based
algorithm to select the packed eyelashes and a filter-based scheme to select the separable eyelashes.

To extract this high frequencies map the authors take the difference between the original image and a
blurred image :

HF = I −K ∗ I, (17)

where K is a blurring kernel. The approach proposed in [33] shows that it is possible to identify eyelashes in
the high frequency image HF . However, this image HF also contains other high frequency elements such as
edges and noise.

Based on the idea of Kang et al. [33], our proposition to find eyelashes in HF is divided in two steps :

(i) Defining an adaptive threshold to identify pixels of higher frequency in HF .

(ii) Distinguish eyelashes areas from edges and noise.

Concerning (i), we apply a Reductio ad absurdum assuming thatHF is only composed of a Gaussian white
noise, i.e. that there is no information in the image (no edge nor corner points). As we know this assumption
is wrong, we can check for incoherency between the model and the actual HF to extract the eyelash. This
process is illustrated in Figure 21. First we compute HF as the difference between the original image and
its blurred version Equation (17). Then, we compute σ the variance of HF . If the white noise assumption
was true, more than 99% of the pixels in the image should fall in the interval [−3σ; 3σ] and they should be
widespread randomly in the image. Accordingly, we mark all the pixels in the image above 3σ and below−3σ
:

Ep(x) =

{
0 if HF (x) ∈ [−3σ; 3σ]
1 otherwise

. (18)

Concerning (ii) : eyelashes are usually located in dense regions of Ep, whereas edges are usually located
along thin lines and the noise is spread randomly in the image. Therefore, blurring the binary image removes
both the edges and the noise, whereas it homogenize the eyelash regions. Accordingly, we generate the eyelash
probability map by blurring Ep with a Gaussian kernel of variance τ : Gτ .

Pp = Gτ ∗ Ep, (19)
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Figure 21: Figure (a) : Original image. Figure (b) : Blurred image. Figure (c) : High frequency image obtained
as the difference between the first two images (histogram equalization is applied to improve visualization).
Figure (d) : Histogram of the high frequency image, values are between [−50, 50] and the histogram spike is
at 0. Figure (e) : Pixels of Figure (c) having a value below −3σ or above 3σ, where σ is the variance of the
histogram in (d).

4.1.3 Retrieving the Eyelash Map

We merge the two operators Pp and Pt of the previous sections in order to get the expected location of eyelashes
and eyebrows. As we are only interested in eyelashes and eyebrows that can be wrongly detected as pupil area,
we add a constraint Pd to select only dark areas in the image.

Pd(x) = max{255− 5 ∗ I(x)

255
, 0}, (20)

The Figure 19 we presented earlier in this section illustrates the complete eyelash localization process.
Pp(x), Pt(x) and Pd(x) are computed separately and merged using equation :

Pee(x) = Pp(x) · Pt(x) · Pd(x). (21)

The product of Equation (21) allows getting an estimation of the eyelash’s expected location in the dark
regions. However, the product operator tends to produce a large difference between high and low values in Pee.
Therefore, we propose to enhance the probabilities using the same scheme we used for Pp in Section 4.1.1. We
also apply a Gaussian blur of variance 5 to smooth the image leading to the equation :

P ′ee(x) = G5 ∗min{
hPee(x)

10 · σ
, 1}, (22)

where hPee is the histogram of Pee normalized between 0 and 1, and G5 is a Gaussian blur of variance 5.
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4.2 Rough Pupil Segmentation

In this section, we propose to build an image where the pupil is the darkest element. To do so, we use the prior
knowledge we have on the properties of the pupil :

• The pupil is a dark region in the original image.

• The pupil is not in the eyelash regions.

• The pupil should be close to the specular reflections generated by the illumination device [46].

Accordingly, we use these three assumptions to enhance the pupil region as presented in Figure 22. First,
we use the Eyelash map we built in Section 4.1 to discard the eyelash areas. Then we consider the input image
In normalized between 0 and 1. Finally, we use the location of the specular reflexions S to localize the pupil
region (see Annexe A for details about the generation of S). As S is a binary mask, we blur this mask using a
Gaussian kernel of large variance to generate a smoother map using the equation :

Sn = 1− Gσ ∗ S
maxx∈S Gσ ∗ S(x)

(23)

In order to fuse these three probability information (In(x), P ′ee and Sn), we simply use a product of the
three probabilities :

Ipupil(x) = In(x) · P ′ee(x) · Sn(x). (24)

where x is a pixel in the image.

This overall process ensures that the pupil is the darkest region in the image. The rough segmentation of
the pupil is achieved using a simple hysteresis thresholding. The image Ipupil is normalized between 0 and 1
and the first threshold is set to 0.01 and the higher threshold is set to 0.1. If several disconnected components
are generated using this process, the region of largest area is labeled as being the pupil region.
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Figure 22: Generation of the enhanced map. Figure (a) : the eyelashes map Pee. Figure (b) : the original image

normalized between 0 and 1 In. Figure (c) : mask of the specular reflections in the image. Figure (d) : blurred

and inverted image of the specular reflections. Figure (e) : composite image enhancing the pupil region.

CONFIDENTIAL



52 Automatic Localization of the Pupil Area in the Eye

4.3 Evaluation

In this section, we propose to evaluate the Texture-Based and the Probabilistic-Based eyelash detection meth-
ods presented in Section 4.1.1 and 4.1.2. We use either one of the algorithm, none of then or both of them to
generate the pupil enhanced image Ipupil of Section 4.2. Then we assess the impact on the system recognition
performance. This leads to four different system configurations :

Simple Model Pupil location extracted without eyelash information (i.e. we only use the
intensities and specular reflections locations).

Texture-Based Model Pupil location extracted with eyelash information provided by the method de-
scribed in Section 4.1.1

Probabilistic-Based Model Pupil location extracted with eyelash information provided by the method de-
scribed in Section 4.1.2

Complete Model We use the information of both Section 4.1.1 and Section 4.1.2 to locate the
pupil.

Figure 23 shows the ROC curves associated to the four above scenarios on the ND-Iris and CASIA-
Thousand databases. We decide to evaluate the recognition performance of our system on these two databases
because they do not share the same kind of degradations. The ND-Iris database contains a significant amount
of images with packed eyelashes and eyebrows like the image shown in Figure 17a and Figure 17b in the
introduction of this chapter. The CASIA Thousand database contains mostly hair and glasses that we do not
specifically handle with our proposed algorithms (Figure 17c and 17d).

(a) ND-Iris (b) CASIA Thousand

Figure 23: ROC curve of the recognition performance of the system when using different eyelash detection
schemes to help the localization of the pupil. Figure (a) shows the results on the ND-Iris database and Figure (a)
shows the results on the CASIA Thousand database.

First we can note that for both databases the ranking of the four models is the same: The Simple model
performs the worst followed by the Probabilistic-Based Model. Finally, the Texture-Based Model and Complete
model perform roughly as well.

The Texture-Based Model performs the best because it can very efficiently identify eyelashes in almost
any kind of images thanks to the adaptive thresholding process. Though the Probabilistic-Based Model has
a good influence on the recognition performance, it does not perform as well as the Texture-Based Model.
We noticed that, a fusion of the two models does not provide a significant improvement compared to the
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single Texture-Based Model. This behavior illustrates that the Probabilistic-Based Model provides information
that are redundant with the one provided by the Texture-Based Model. It is an unexpected result because the
two methods are based on different assumptions so we would have expected to get uncorrelated results and,
therefore, an improvement when merging these two information. As the Complete Model does not provide a
significant improvement compared to the Texture-Based Model, we propose to simply use the Texture-Based
Model to detect the eyelash regions in the image.

It is also interesting to note that the improvement between the Simple Model and the other experiments is
more significant on the ND-Iris database than on the CASIA-Thousand database. This statement is coherent
with the knowledge we have on the degradations contained in the databases. As the ND-Iris database contains
images with packed eyelashes and eyebrows, both the Texture-Based Model, the Probabilistic-Based Model
and the Complete Model significantly improve the performance compared to the naive Simple Model based
on a thresholding algorithm. On the other hand, for the CASIA-Thousand database, the worst degradations
are due to glasses, a degradation that our model do not specifically handle. Figure 24 illustrates some pupil
localization failures due to the presence of glasses. In this case, it would be necessary to perform glasses
detection and adapt the segmentation process accordingly.

Figure 24: Pupil localization failures due to the presence of glasses in the image. (CASIA Thousand)

4.4 Conclusion

In this chapter, we have described our algorithm to localize the pupil area in the eye. This algorithm is based
on an enhancement of the pupil region by removing other dark areas. This strategy then allows to obtain the
pupil area using a simple thresholding algorithm.

We have designed two algorithms for segmenting eyelash and eyebrow areas in the image. The first one,
called Texture-Based, is a direct extension of the works of Pundlik et al. [61]. We have proposed an effective
way to define an adaptive threshold instead of setting it empirically. The second algorithm, that we called
Probabilistic-Based, is an automatic method for identifying eyelash areas in regions of high frequency.

We showed that using these algorithms provides a significant improvement of the system’s recognition
performance compared to a naive pupil localization approach. This improvement is due to a decrease of the
amount of pupil mis-localization. The Texture-Based algorithm performs better than the Probabilistic-Based
algorithm on the two databases that we considered. Interestingly, we also noticed that the fusion of the two
algorithms does not improve the recognition performance compared to the single Texture-Based algorithm.

This rough localization of the pupil area allows initializing the complete segmentation process close to the
iris location. In the following chapter, we will discuss the next stage of our segmentation system : the accurate
segmentation of the iris region.
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Chapter 5

Iris Region Segmentation

The iris texture can vary largely from one person to another and it is likely to be occluded by eyelids, eyelashes
or other exterior elements such as hair or the arms of glasses. Accordingly, segmentation algorithms should be
very precise because inaccuracies in the iris region segmentation will provide wrong information at the match-
ing step, leading to erroneous comparison results. Indeed, in order to segment automatically large databases,
segmentation algorithms must be very robust to handle the high variability encountered in iris images.

Active Contours have lately received a large interest in the iris recognition community because they meet
both requirements of precision and robustness for iris segmentation. These methods are popular for iris seg-
mentation since Daugman [17] represented the iris borders using parametric Active Contours described by
Fourier coefficients. This work was followed by the articles [66, 76, 62] which we already discussed in Chap-
ter 3.

Although Active Contours have become popular for iris region segmentation, there are no comparisons
between different implementations of such algorithms for iris segmentation. Our proposal in this chapter is
precisely to compare different types of Active Contours in the framework of a complete iris recognition system.

In Section 5.1, we first present the general framework of Deformable Models in order to illustrate the
differences existing between Active Contours we describe from Section 5.2 to 5.4. In Section 5.5, we evaluate
the performance of the considered algorithms. Finally, in Section 5.6, we conclude this chapter and propose
some perspectives to our work.

5.1 Deformable Models

Deformable Models were first introduced by Kass et. al in [35] as an explicit deformable contour used for object
segmentation. This work was the starting point of a very active branch of the Computer Vision community.
In addition to their historical application, i.e. segmentation, Deformable Models have been used for a broad
variety of applications such as pattern recognition [19, 2], computer animation [73], geometric modeling [42],
simulation [12], boundary tracking [5] and image segmentation [49, 48, 69, 32].

Active Contours are a particular type of Deformable Models dedicated to segmentation. Active Contours
iteratively make a contour evolve so that it fits the boundaries of the object to segment. Figure 25 illustrates
the segmentation of an image using Active Contours.

As any Deformable Model, an Active Contour is defined by the association of two components :

• The Shape Description gives the contour’s mathematical model.

• The Deformation Description that expresses a set of constraints on the contour as an energy function.
This energy should be minimal when the contour fits the object’s boundaries.

In this section, we first present these two elements and then, shortly present the Active Contours we have
implemented for iris region segmentation in this chapter.

5.1.1 Shape Description

The Shape Description expresses how the contour is generated. There are two main families of Shape Descrip-
tions resulting in two families of Active Contours : Parametric Contours and Geometric Contours.
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Figure 25: Iterative segmentation work-flow using Deformable Models. This iterative work-flow is divided in

three main stages. First, the contour is generated using the Shape Description of the model. Then, the vari-

ation of the energies defined by the Deformation Description are computed. This formulation (Deformation
Description) is usually composed of two terms : a Regularization Energy and a Data Energy. The regular-

ization Energy ensures that the contour remains smooth whereas the Data Energy pushes the contour onto the

borders of the object. Finally, the contour is deformed in order to minimize the energies of the Deformation
Description. CONFIDENTIAL
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In case of Parametric Contours, the contour is generated using an explicit parametric equation. This
parametric equation is characterized by a shape vector Θ = {θi, i = 1...n} with n degrees of freedom of the
model. In this context, the contour C is defined as :

CΘ : Rn × R → R2

(θ1...θn, s) 7→ x(s) = (x(s), y(s))
(25)

with x = (x, y) ∈ L2(R)× L2(R), where L2(R) is the set of the square integrable functions of R. Using this
kind of shape representation allows explicit accessing of the points on the contour by means of parameter s.
Parametric Contours are so called because of the parametric equations x(s) = (x(s), y(s)).

Geometric Contours rely on the Level Set framework [1] to represent the contour. In this framework, the
contour is represented as the 0 Level-Set of a 2-dimensional manifold embedded in a 3-dimensional space.
Formally, for a function φ of R3, C is defined as C = {x ∈ Ω|φ(x) = 0}. In this framework, the contour is
seen as a geometrical object, and therefore, does not have an explicit parametric description like Parametric
Contours do. Figure 26 illustrates such a geometric definition. The red contour is defined as the intersection
between the manifold φ and a plane.

Figure 26: The definition of a curve as being the zero-level of a 2D surface embedded in a 3D space (image
taken from [18]).

Parametric Contours are usually more intuitive than Geometric Contours are (the curve is generated using
an explicit equation). However, due to this formulation, they can only segment shapes having a parametric
expression. For instance, they can hardly segment objects composed of multiple disconnected regions.

At the opposite, Geometric Contours can take almost any shape during the evolution. For instance, they can
naturally split in several regions if the object to segment has several disconnected components. However, the
evolution of the contour is done through the evolution of a 3D surface, that is much slower than the evolution
of a classical 2D contour.

5.1.2 Deformation Description

The Deformation Description is usually expressed as the minimization of an energy functional defined along
the contour. Such an energy E is composed of two terms, a regularization term Eint, ensuring that the contour
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remains smooth, and a data term Edata pulling the contour toward specific features of the image. This leads
to :

E : L2(R)× L2(R) → R
C 7→ Eint(C) + Edata(C),

(26)

The data energy Edata is related to the representation of the object to segment. Two main families of data
terms exist in the literature : an Edge-Based data energy and a Region-Based data energy. In the Edge-Based
formalism, the borders of the objects are modeled as areas of strong gradient in the image. Therefore, in case of
an Edge-Based formalism, the contour is forced to pass through areas of strong gradient. In the Region-Based
data energy case, the borders of the object are modeled as boundaries between regions; thus, the contour is
forced to separate regions having different statistical properties.

The minimization of E in Equation (26) does not have a general analytic solution ; therefore, the min-
imization is handled using iterative minimization schemes. Figure 25 illustrates such a minimization in the
segmentation context. The curve at a given iteration step is generated using its corresponding Shape Descrip-
tion, then the energy terms are computed in order to make the contour evolve. This minimization is achieved
by a gradient descent algorithm :

Ct+δt = Ct − δt∂E
∂t

(C)

= Ct − δt(∂Eint
∂t

(C) +
∂Edata
∂t

(C))
(27)

We have focused on the description of deformable models in an energetic framework which is the one we
use in this chapter. However, let us note that there are some alternative frameworks that can be considered
for the Deformation Description, such as an optimal alignment of the shape with the image using a Marko-
vian framework. We let the reader refer to the surveys [47], [44] and [24] for more details about alternative
formulations of Deformable Models.

5.1.3 Active Contours for Iris Segmentation

In this chapter, we propose to compare several Active Contours implementations for iris segmentation. They
differ either in term of Shape Description or Deformation Description. Table 3 summarizes these algorithms :

Data term Parametric Contours Geometric Contours
Edge-Based B-Snakes (Section 5.2.2) Geodesic Active Contours (Sec-

tion 5.3.1)
Region-Based B-Snakes (Section 5.2.2) Chan and Vese (Section 5.3.2)
Texture-based Texture B-Snakes (Section 5.4.5) Integrated Active Contours for Texture

Segmentation (Section 5.4)

Table 3: The different Active Contours that we implemented for iris segmentation.

In Section 5.2, we first describe some classical Parametric Contours. We present both an Edge-Based and
Region-Based data terms for this kind of contours. Then, we present an efficient way to apply the deformations
associated to these energies on the contour using B-Snakes [27].

In Section 5.3, we describe some classical Geometric Contours. We first present one contour using an
Edge-Based data term (Geodesic Active Contours [7]) and then, one using a Region-Based data term (Chan
and Vese [8]). Let us note that, these two algorithms have already been used for iris segmentation. For this
reason, we also describe some specific issues identified in the literature when using these algorithms for iris
segmentation.
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The algorithms that are presented in Section 5.2 and 5.3 are rather classical and make a direct use of
the image intensity information in order to make the contours evolve. In Section 5.4, we present instead a
specific type of Active Contours that involves texture instead of intensity. In such section, we first describe the
Geometric Contour described in the original article [64] and then we extend this formulation to Parametric
Contours.

5.2 Parametric Contours

In this section, we describe some classical Parametric Contours. We first present how to express an Edge-
Based and a Region-Based data energy on a contour C described explicitly as :

C : x(s) = (x(s), y(s)), s ∈ [0, 1]. (28)

These formulations are given in the continuous domain. However, their direct discretization leads to some
impractical issues like numerical instabilities. For this reason, in Section 5.2.2, we describe an effective way
to represent the curve by using a discrete set of control points and interpolation functions.

5.2.1 Data Energies on Explicit Parametric Contours

We first describe the Active Contour introduced by Kass et al. [35] in 1988 that exploits an Edge-Based data
energy. Then, in Section 5.2.1.2, we describe and extension of this work, proposed by Zhu and Yuille [82] in
1996, relying on an Region-Based data energy. Finally, we describe how to merge these two formulations in
an unified data energy.

5.2.1.1 Edge-Based Data Energy

The first Active Contours were introduced by Michael Kass, Andrew Witkin and Demetri Terzopoulos in their
article [35] published in 1988. The objective of the authors is to move the contour on the borders of the object
to segment, while still imposing some regularity on the contour shape. The authors express such properties
using an objective energy function we described in Section 5.1.2 for Deformable Models :

E(C) = Eint(C) + Edata(C), (29)

Eint is defined to keep the contour smooth :

Eint =

∫ 1

0

1

2
[αx′(s)2 + βx′′(s)2]ds, (30)

where α ∈ R and β ∈ R are parameters, x′(s) and x′′(s) are the first and second derivatives of the curve
parametric vector x at point at s. The first term represents a minimization of the contour’s length and the
second one ensures that the curvature remains small along the contour.

In the article [35], the authors expect the contour to fit the borders of the object. Therefore, they propose
to define data energies Edata that are small when the contour is on areas of strong gradient (i.e. the borders of
the object). There are several classical energies that can be considered for the energy term Edata such as :

E
(1)
data(x) = −‖∇I(x)‖ ,

E
(2)
data(x) = −‖∇[Gσ ∗ I](x)‖ ,

E
(3)
data(x) =

1

1 + ‖∇I(x)‖
,

E
(4)
data(x) =

1

1 + ‖∇[Gσ ∗ I](x)‖
,

(31)
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where∇ is the gradient operator, I(x) the image intensity at x, ∗ the convolution operator andGσ is a Gaussian
kernel of variance σ. All these energies are minimum when x is in an area of strong gradient.

The above energy is minimized using a gradient descent scheme. For an artificial time parameter t, each
point of the contour should move according to the equation :

xt(s, t) = αx′′(s, t)− βx′′′(s, t)−∇Edata(x(s, t)) (32)

where s ∈ [0, 1]. Equation (32) can be seen as the motion equation of the contour points.

This first work of Kass et al. is interesting because it defines some key elements leading to the general
formulation of Deformable Models. However, their work suffers from some limitations :

• The evolution of Equation (32) suffers from numerical instabilities, especially for the term x′′′(s, t) of
Equation (32) (third derivative of the position).

• The energies in Equation (31) are defined using the image gradient. However, if the contour is initialized
in an homogenous region, there is no gradient information and Edata = 0. In this situation, the contour
has no information to evolve.

5.2.1.2 Region-Based Data Energy

In the article [82], Zhu and Yuille propose an evolution of the classical Snake formulation. Traditional Active
Contours (like Snakes) focus on finding areas of strong gradient in the image. At the opposite, Zhu and Yuille
see the contour as an interface separating regions. The contour evolves in order to maximize the difference
between such regions. Zhu and Yuille call this interpretation the Region Competition principle.

In the Region Competition formalism, regions are represented based on their statistical properties. The
contour is represented in terms of a partition Ω = Ω1...ΩN of the image I . Each region of the partition Ωi, i ∈
{i...N} can be described using a set of parameters θi (for instance the mean of the region, or its histogram).
The authors in [82] propose to maximize the posterior probability of the partition Ω, p(Ω|I) :

p(Ω|I) = p(I|P (Ω)) p(P (Ω)), (33)

p(P (Ω)) describes the shape of the partition Ω and p(I|P (Ω)) indicates how well the regions match specific
features of the image. The authors [82] propose to maximize this posterior probability by iterative evolution of
the partition Ω.

The authors [82] consider that the length of the regions’ borders should be as small as possible, leading to
the following equation for p(P (Ω)) :

p(P (Ω)) = e−ν|C|, ν > 0, (34)

where |C| is the total length of the boundaries in the partition Ω. By definition of an image partition, the
regions Ωi, i ∈ {i...N} do not overlap, so we can write :

p(I|P (Ω)) = p(I|Ω1, ...,ΩN ) =

N∏
i=1

p(I,Ωi). (35)

Assuming that the statistical properties of the regions are independent, for a probability density pi in region
Ωi, Equation (35) becomes :

p(I|P (Ω)) = p(I|Ω1, ...,ΩN ) =
N∏
i=1

∏
x∈Ωi

pi(I(x)). (36)
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In order to have a linear expression, the authors propose to minimize the opposite of the logarithm : − log p(Ω|I)
instead of maximizing Equation (33). Using the equations (34) and (36), this minimization becomes :

E({Ω1, ...,Ω2}) = −Σi

∫
Ωi

log pi(I(x))dx + ν|C|, (37)

Using any parameter θi describing the region Ωi, the equation becomes :

E({Ωi, θi}i=1..N ) = −Σi

∫
Ωi

log p(I(x)|θi)dx + ν|C|. (38)

If we reduce the problem to a partition of the image into two regions (namely an object Ωin and its back-
ground Ωout), Equation (38) can be embedded in the Deformable Models framework as follows :

E(C) = Eint(C) + Edata(C),

with
{

Eint(C)
Edata(C)

=
=

ν|C|,

−
∫

Ωin

log p(I(x)|θin)dx−
∫

Ωout

log p(I(x)|θout)dx,

(39)

First, the optimization of energy (39) w.r.t. the parameters θi is achieved by maximizing their conditional
probability :

θ̂in = arg maxθin
∏

x∈Ωin

p(θin|I(x))

θ̂out = arg maxθout
∏

x∈Ωout

p(θout|I(x))
(40)

For example, if θi models a Gaussian distribution, θ̂i corresponds to the mean and the variance of the intensities
inside the region Ωi.

Zhu and Yuille [82] show that the minimization of the energy (39) w.r.t. C leads to the following motion
equation for the contour :

dx

dt
(s) = −µκ(s)

→
n (s) + log

(
p(I(x(s))|θin)

p(I(x(s))|θout)

)
→
n (s), (41)

with s ∈ [0, 1),
→
n (s) being the normal outward vector to the curve at point x(s) and κ(s) the curvature at

point x(s). The first term tends to minimize the contour’s curvature which ensures that the contour remains
smooth. The second term tends to maximize the likelihood of the inner and outer region w.r.t their parameters
θin and θout. For instance, if it is more likely that a given intensity I(x(s)) belongs to the region inside the
contour, we have :

p(I(x(s))|θin) > p(I(x(s))|θout)⇒ log

(
p(I(x(s))|θin)

p(I(x(s))|θout)

)
> 0. (42)

Therefore, the contour will move outward.

The interesting aspect of this formulation is that the data term in Equation (39) is defined as long as
θin 6= θout. Therefore, the contour can evolve even if it is initialized in homogeneous regions.

5.2.1.3 Unifying Edge and Region Energy

The main difficulty to unify these two formulations is that the Edge-Based energy is defined on the contour C
whereas the Region-Based energy is defined in terms of regions. In [27], the authors propose to unify these
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two approaches by expressing these energies on the inner surface S of the contour C :

Edata(C) =

∫
S
Tunified(s)ds,

=

∫
S
αTedge(s) + (1− α)Tregion(s)ds, (43)

where Tunified is the unified data term relating the Edge-Based and the Region-Based energy terms, Tedge
and Tregion are the new corresponding Edge-Based and the Region-Based terms, α is a parameter setting the
relative importance between the region and the edge energy and S is the surface inside the contour C.

The region energy is defined as :

Eregion(C) =

∫
S
− log

pin( I(x(s) ))

pout( I(x(s)) )
ds,

= −
∫
S
Tregion(s)ds,

(44)

with pin and pout are the histograms inside and outside the region S.

The edge energy Eedge defined as :

Eedge(C) =

∮
C

→
n ·(→eI (r))dr, (45)

where
→
n is the inward unit normal vector to the curve at point r and

→
eI is a vector field highlighting the edges

in the image (for instanve ∆I). The authors [27] transfer the edge energy expressed on the curve into an energy
expressed on the surface S using Green’s theorem [34] :

Eedge(C) =
∫
S ∇·

→
eI (s)ds,

=
∫
S Tedge(s)ds,

(46)

where Tedge = ∇· →eI denotes the divergence of the vector field
→
eI .

5.2.2 B-Snake Implementation

The energy formulations described in the previous section are defined on an explicit continuous contour. How-
ever, those expressions must be discretized for implementation. To that aim, we have implemented the algo-
rithm proposed in [27]. In this article, the contour is represented using a set of control points and B-spline
functions are used to interpolate the contour between the control points. Therefore, there is an explicit relation
between the continuous curve (generated using the B-spline) and the discrete representation of the curve (the
control points). The key idea of the algorithm is to transfer the evolution equations presented in Sections 5.2.1
onto the set of control points.

5.2.2.1 Curve Generation Using B-splines

We first need to come back to the definition of a deformable model given in Section 5.1. In this framework,
the contour is defined using a parameter vector Θ = {ck, k = 1...M} where ck ∈ R are the control points.
The curve C is generated using :

C(t) =

∞∑
k=−∞

ψ(t− k)
[

ck ck+1 ck+2 ck+3

]
(47)
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where ψ is a uniform cubic B-spline defined for t ∈ R :

ψ(t) =
1

6

[
1 t t2 t3

] 
1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

 . (48)

This formulation allows obtaining the location of any point on the curve with parameter t ∈ R, namely,
formalizing the Shape Description of the contour. Figure 27 shows the representation of a circle using the
above formulation for a different number of control points.

(a) 3 control points (b) 4 control points (c) 5 control points (d) 6 control points

Figure 27: Representation of a circle using a different number of control points.

5.2.2.2 Energy Formulation

Like done in the previous sections, the objective of the authors is to express the objective energy using the
formulation :

E(C) = Eint(C) + Edata(C). (49)

For the internal energy Eint, the authors [27] propose to force the control points to be regularly spaced :

Eint(C) = −
∫ M

0

∥∥∥∥∥x′(s)∥∥2 − c2
∥∥∥ ds, (50)

where x′(s) is the tangential vector to the curve at point s and c is the average spacing between the control
points. This energy is minimum when all the control points are equally spaced.

The authors use the unified data term we introduced in Section 5.2.1.3 :

Edata(C) =

∫
S
Tunified(s)ds,

=

∫
S
αTedge(s) + (1− α)Tregion(s)ds,

(51)

where α is a parameter setting the relative importance between the region and the edge energy and S is the
surface inside the contour C .

5.2.2.3 Partial Derivatives and Evolution of the Contour

The evolution of the contour C is obtained by the gradient descent algorithm with the partial derivatives of the
energy in Equation (49) computed on the set of control points :

(
cp+1
x,k

cp+1
y,k

)
=

(
cpx,k
cpy,k

)
−


∂

∂cpx,k
Edata

∂

∂cpy,k
Edata

−


∂

∂cpx,k
Eint

∂

∂cpy,k
Eint

 (52)
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Where the upper index refers to an artificial time parameter p, the first lower index is either x or y referenc-
ing the first or second coordinate of the control point, the second lower index refers to the index of the control
point in Θ = {ck, k = 1...M} and Eint, Edata are defined in Equations (50) and (51).

We let the reader refer to the original article [27] for calculus details, but the partial derivatives of Edata
can be expressed a follow : 

∂

∂cpx,k
Edata

∂

∂cpy,k
Edata

 =

M−1∑
l=0

[
−cpy,l
cpx,l

]
QTunified(k, l) (53)

where :
QTunified(k, l) =

∫ ∞
−∞

Tunified(I)(t+ k)ψ(t)ψ′(t+ k − l)dt. (54)

This term can be computed in an efficient way because the functions ψ and ψ′ have a finite support, so the
integral is null in a large portion of the integration domain. The term QTunified can be seen as the influence of
the curve on the closer control points using the unified data term to guide the evolution.

On the other hand, the partial derivatives of Eint can be expressed a follow :

∂

∂cpx,k
Eint =

∑
|l|,|m|,|n|<N

cpx,k−lc
p
x,k−mc

p
x,k−nh1(l,m, n)

+
∑

|l|,|m|,|n|<N

cpx,k−lc
p
y,k−mc

p
y,k−nh1(l,m, n)

−4c
∑
|l|<N

cpx,k−lh2(l)

(55)

∂

∂cpy,k
Eint =

∑
|l|,|m|,|n|<N

cpy,k−lc
p
y,k−mc

p
y,k−nh1(l,m, n)

+
∑

|l|,|m|,|n|<N

cpy,k−lc
p
x,k−mc

p
x,k−nh1(l,m, n)

−4c
∑
|l|<N

cpy,k−lh2(l)

(56)

where :
h1(l,m, n) =

∫ ∞
−∞

ψ′(t)ψ′(t+ l)ψ′(t+m)ψ′(t+ n)dt

h2(l) =

∫ ∞
−∞

ψ′(t)ψ′(t+ l)dt.
(57)

5.2.2.4 Iris Segmentation Using B-Snakes

There are two main elements to define in order to use the B-Snakes algorithm for segmentation : the number
of control points used to generate the contour and the balance between the edge and the region information in
Equation (43).

The number of control points is related to the degrees of freedom on the contour. The more there are control
points, the less the shape of the contour is constrained. At the opposite, the less there are control points, the
more the shape of the contour is restricted. Setting a high number of control points could seem interesting, but
giving too much freedom to the contour that can lead to incorrect segmentation results. Indeed, the contour
may be attracted by some artifacts in addition to the iris region. From our experiments, we found out that 10
control points seem to set a fair balance between constraint and freedom of the contour shape.
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The edge term and the region term defined in Equation (43) have different properties. The edge term Eedge
is only defined in the proximity of the edges in the image, but can lead the contour to a very accurate location
of the object borders. At the opposite, the region term Eregion is always defined, even far from the actual
borders of the object. However, the location of borders is usually less accurate using the region information
instead of gradient information. Accordingly, we propose to split the evolution of the contour into two stages.
First, the contour evolves mostly using the region energy Eregion and, once the contour is close to the edges
of the object, the contour evolves mostly using the edge energy Eedge. Such a behavior can be achieved by
setting the α parameter in Equation (43) close to 0 at the beginning of the process and close to 1 at the end.

Figure 28 illustrates the evolution on an iris image using the B-Snake algorithm with 10 control points. As
we have explained above, we divide the evolution into two phases : we first give a strong weight to the region
forces in order to guide the contour from the initial location to the approximate border of the iris. Then we give
more strength to the edge forces ensuring that the contour fits precisely the borders of the iris. It is interesting
to note that because of the limited number of control points, the contour has a quite constrained shape and can
not catch small details such as eyelashes or shadows.

(a) Iteration 0 (b) Iteration 40 (c) Iteration 90

Figure 28: Segmentation of the iris using B-Snakes. The red curve represents the contour and the blue points
are the corresponding control points.
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5.3 Geometric Contours

In this section, we present some classical Geometric Contours. They differ from Parametric Contours de-
scribed in Section 5.2 in terms of Shape Description. In case of Geometric Contours, the contour is generated
using the Level-Set framework described in Section 5.1.2. In this framework, the curve is defined as the
intersection of a 3D manifold and a plane. The evolution of the curve is done by deforming the manifold.

In next Section 5.3.1, we describe Geodesic Active Contours that use an Edge-Based Data Energy for
Geometric Contours. Then, in Section 5.3.2 we describe the Chan and Vese model that extends the Region
Competition principle we described in Section 5.2.1.2 to Geometric Contours.

5.3.1 Geodesic Active Contours

Geodesic Active Contours (GAC) were introduced by Casselles et al. [7] in 1997. We study GAC because they
are the first Geometric Contours. Moreover, they have already been successfully used for iris segmentation
in [66].

5.3.1.1 General Formulation

Geodesic Active Contours aim at minimizing the functional :

EGAC(C, I) =

∫ 1

0
gedge( I( C(q) ) ) |C ′(q)|dq. (58)

where C is a closed differentiable contour in R2, C : [0; 1) → R2, I is the input image and gedge is a term
designed to respond on image edges. As explained previously, this functional is minimized by iteratively
evolving the contour C until it reaches a minimum of gedge. Accordingly gedge is called the stopping term
of the functional because it indicates where the contour should stop in the image. A physical interpretation
of Equation (59) is that gedge is a potential energy, and the global energy of the contour is minimal when it
reaches areas of low potential. Therefore, one of the key ideas of this method is to build the term gedge so that
its minima represent the boundaries of the object to segment.

A classical formulation for gedge is :

gedge(I(x)) =
1

1 + |∇I(x)|
, (59)

where ∇I is the image gradient. Using this definition of gedge implies that EGAC(C, I) is minimal when the
contour C passes through areas of strong gradient in I . Let us note here that other features can be exploited
instead of edges, as we will see in Section 5.4. Figure 29 shows an example of the energy term gedge for a
natural image.

(a) Original image (b) Gradient of the original image |∇I| (c) Edge term gedge

Figure 29: Exemple of edge term gedge for a natural image
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As explained in Section 5.1, the minimization of EGAC is performed using a gradient descent algorithm,
i.e., for an artificial time parameter t, the evolution of the contour is given by (see[7] for calculus details) :

∂C

∂t
= −∂EGAC

∂t
=

[
gedge(I)κ− < ∇gedge,

→
n>
] →
n,

(60)

where
→
n the outward normal vector of the contour and κ the contour’s curvature.

Equation (60) comes from the derivation of a single energy term in Equation (58). However, the two terms
of Equation (60) can be interpreted in a similar fashion to the reference Equation (26) given for Deformable
models. The first term of Equation (60) tends to minimize the curvature along the curve, i.e. it ensures that
the curve remains smooth similarly to the internal term ∂Eint

∂t . The second term indicates that the contour is
attracted by the minimums of the function∇gedge(I) that can be seen as the influence of the data term ∂Edata

∂t .

This evolution could be performed on the contour like the Parametric Contours described in Section 5.2.
However, Casselles et al. noted that this minimization can be handled very efficiently by the Level-Set frame-
work [1] described in Section 5.1.2. Indeed, in this framework the contour is represented as the 0 level set of
a 2-dimensional manifold embedded in a 3-dimensional space. Formally, for a function φ of R3, C is defined
as C = {x ∈ Ω|φ(x) = 0}. Most geometric properties of C can be expressed using only the φ function. For
instance :

→
n = − ∇φ

‖∇φ‖ ,

κ = div
(
∇φ
‖∇φ‖

)
.

(61)

We can rewrite Equation (60) :
∂C

∂t
= −∂E(C)

∂C
= F.

→
n, (62)

with F the speed function of the model. As we have φ(C(t), t) = 0 for all t we can write :

d

dt
φ(C(t), t) = ∇φ∂C

∂t
+
∂φ

∂t
= ∇φ. →n +

∂φ

∂t
. (63)

Using the formula
→
n= − ∇φ

‖∇φ‖ we can transfer the evolution equation from the curve C to φ :

∂φ

∂t
= ‖∇φ‖F. (64)

Therefore, the minimization flow of equation (60) expressed on C can be expressed on φ instead :

∂φ

∂t
=

[
gedge(I)div

(
∇φ
‖∇φ‖

)
+ < ∇gedge(I),

∇φ
‖∇φ‖

>

]
‖∇φ‖ , (65)

leading to the evolution equation of the φ function :

φt+∆t = φt −∆t
∂E(C)

∂C

= φt + ∆t
∂φ

∂t

(66)

This equation can be efficiently implemented using the narrow band algorithm [1]. This algorithm proposes
to compute the function φ only in the neighborhood of its zero-level (the curve C) to speed up the process.
However, the function φ needs to be re-evaluated regularly in order to ensure the stability of the evolution.
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5.3.1.2 Adapting GAC to Iris Segmentation

The GAC framework is successfully used for iris segmentation by Shah et. al in [66]. They propose to use an
evolution of the traditional GAC formulation and adapt it to the iris segmentation task. First, they define an
alternative stopping term gedge′ defined as :

gedge′(I(x)) =
1

1 +
(
‖∇[G∗I](x)‖

k

)α , (67)

where G is a Gaussian kernel and k and α are parameters enhancing the edges of the image. Changing these
parameters acts on the sharpness on the energy valleys in gedge′(I). The authors also remove the pupil area
from gedge′(I) in order to ensure that the contour does not get stuck in pupil edges.

They also propose to add a balloon force [11] to the contour forcing the contour to evolve in one direction.
This leads to the evolution equation :

∂φ

∂t
= gedge′(I)|∇φ|(c+ εdiv

(
∇φ
‖∇φ‖

)
)+ < ∇gedge′(I).∇φ >, (68)

where the parameter c sets the strength of the evolution and can be seen as a balloon force pushing the contour
outward and ε the regularity of the contour based on its curvature.

(a) iteration 0 (b) iteration 400 (c) iteration 800 (d) iteration 1200

Figure 30: Iris segmentation using GAC. The first row shows the evolution on the original image. The second
row shows the evolution on the gedge′(I).

In order to segment the iris, we set the same parameters as proposed in [66] : k = 2.8, α = 8, c = 0.65 and
ε = 1. Using these settings tends to produce an edge term gedge′(I) where the transitions between homogenous
regions and high frequency regions are very sharp. Moreover, the balloon force is regulated by c and is quite
high compared to the other elements. Therefore, the contour is expected to expand mostly due to the balloon
force, until it reaches low energies regions of gedge′(I) where it should stop.

Figure 30 shows an example of GAC evolution for iris segmentation. The first row shows the evolution on
the original image and the lower one on the edge term gedge′ . Like Shah et. al [66], we mask the pupil area in
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gedge′ . The contour is initialized inside the pupil and first expands mainly thanks to the balloon force c. Around
iteration 400, the contour reaches textured areas of the iris (dark areas in gedge′). The contour slows down in
these areas, and even stops in highly textured areas. Between iterations 400 and 800 the contour crosses the
textured areas thanks to the regularization and balloon forces. Finally, between iterations 800 and 1200, the
contour progressively fits the iris border until it reaches an equilibrium between the forces.

The main problem with equation (68) is the setting of parameter c (as highlighted by the authors [66]). On
one hand, if this term is not set strong enough, the contour stops before reaching the edges of the iris. On the
other hand, if it is set too high, the contour may cross the borders of the iris. Moreover, this force assumes that
the contour has been initialized either inside or outside the object to segment, but the overall evolution is one
sided (if c > 0 the contour only moves outward, if c < 0 the contour only moves inward). Figure 31 illustrates
and over-segmentation due to the balloon force.

(a) original image (b) energy term (c) Contour after 800 iterations

Figure 31: Example of a segmentation failure due to the balloon force c. The iris edges are very weak on the
right side and almost non existent in the energy term gedge′ . Accordingly, the contour crosses the edge due to
the balloon force.

5.3.2 Chan And Vese Formulation

The Chan and Vese formulation is an extension of the GAC using the Region Competition approach introduced
by Zhu and Yuille [82] we already described in Section 5.2.1.2 for Parametric Contours.

5.3.2.1 General Formulation

In the following, we note Rin the region of the image inside the contour C and Rout the region of the image
outside the contour C. Chan and Vese proposed to minimize the energy ECV :

ECV (C, c1, c2) = Eint(C) + Edata(C, c1, c2),

with
{

Eint(C)
Edata(C, c1, c2)

=
=

µLength(C) + νArea(inside(C)),

λ1

∫
Rin

(I(x)− c1)2dx + λ2

∫
Rout

(I(x)− c2)2dx,

(69)

where C is the contour, I the considered image, c1 and c2 respectively the expected means of the pixels’
intensities inside and outside C and µ, ν, λ1 and λ2 are parameters. Values of c1 and c2 can be either defined
based on a prior knowledge about the object to segment, or recomputed during the evolution of the contour as
the mean of the pixels’ intensities inside and outside C if no assumption is made about such objects’ intensity.

Eint(C) tends to minimize the length and the area of the contour, which forces the contour to remains
smooth and keep limited area. Edata(C, c1, c2) is low when the pixels inside C have a mean close to c1

and the pixels outside C have a mean close to c2. This formulation is a simplification of the Mumford and
Shah functional [51]. In [51], Mumford and Shah set the segmentation problem as the minimization of a
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given functional in a very formal and mathematical way. However, the resolution of their functional is known
to be extremely slow which usually requires to use approximations. The Chan and Vese formulation is a
simplification (but exact) resolution of the Mumford and Shah functional assuming a 2 regions problem and
that the solution of the segmentation is a piecewise constant image (regions are only described by their means).

Chan and Vese show that this formulation is well suited for a minimization using the Level-Set framework
described in Section 5.1.2. The idea is to express the functional ECV of equation (69) using the Heaviside
function H: {

H(x) = 1 if x ≥ 0
= 0 otherwise

(70)

the Dirac function δ: {
δ(x) = 1 if x = 0

= 0 otherwise
(71)

and the function φ defined as: 
C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0},
Rin = ω = {(x, y) ∈ Ω : φ(x, y) > 0},
Rout = Ω\ω = {(x, y) ∈ Ω : φ(x, y) < 0},

(72)

where Ω is the image domain and ω ∈ Ω is an open set whose border is the current curve C = ∂ω. The
functional ECV can be written using φ instead of C :

ECV (φ, c1, c2) = µ

∫
Ω
δ(φ(x)) ‖φ(x)‖ dx + ν

∫
Ω
H(φ(x))dx

+λ1

∫
Ω

(I(x)− c1)2H(φ(x))dx + λ2

∫
Ω

(I(x)− c2)2(1−H(φ(x)))dx.
(73)

The main interest of this formulation compared to the one expressed on C in equation (69) is that all the
integrals are computed on the whole image domain Ω. This statement allows an efficient use of calculus to
minimize ECV w.r.t. φ, c1 and c2.

First, fixing φ and minimizing ECV w.r.t. c1 and c2 leads to :

c1(φ) =

∫
Ω
I(x)H(φ(x))dx∫
Ω
H(φ(x))dx

= average(I) in {φ ≥ 0}

c2(φ) =

∫
Ω
I(x)(1−H(φ(x))dx∫
Ω

1−H(φ(x))dx

= average(I) in {φ < 0}

(74)

Then, by fixing c1 and c2, the minimization of ECV w.r.t. φ is done by gradient descent. For an artificial
time parameter t, we have the minimization flow :

∂φ

∂t
= δε(φ)

(
µdiv

(
∇φ
‖∇φ‖

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

)
, (75)

where δε is a continuous approximation of the Dirac function such that δε → δ for ε→ 0.

Like done in the previous section, the function φ evolves using the scheme :

φt+∆t = φt + ∆t
∂φ

∂t
. (76)
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GAC Chan & Vese Meaning

ε gedge′(I)| ∇φ|div
(
∇φ
‖∇φ‖

)
µ δε(φ) div

(
∇φ
‖∇φ‖

)
mean curvature flow

c gedge′(I) |∇φ| ν δε(φ) balloon force
< ∇gedge(I).∇φ > δε(φ)

(
−λ1(I − c1)2 + λ2(I − c2)2

)
data term

Table 4: Interpreting the mathematical terms in GAC versus in the Chan and Vese formulation

It is interesting to compare this equation with the traditional evolution of GAC in Equation (68) :

The mean curvature flow and the balloon force have the same influence on the contour evolution in both
formulations, but the data term is very different. The term < ∇gedge(I).∇φ > from the GAC formulation
only influences the evolution of the contours in areas where ∇gedge(I) 6= 0. On the other hand, for the Chan
and Vese model, the term δε(φ)

(
−λ1(I − c1)2 + λ2(I − c2)2

)
influences the evolution of the whole contour

as long as c1 6= c2. This means that the data term of the GAC has a local definition, whereas the data term of
the Chan and Vese model has a global definition.

(a) Iteration 0 (b) Iteration 400 (c) Iteration 800 (d) Iteration 1200

(e) Iteration 0 (f) Iteration 400 (g) Iteration 800 (h) Iteration 1200

Figure 32: Segmentation of a synthetic image using the Chan and Vese formulation for the first row and the
Geodesic Active Contours in the second row.

Figure 32 shows the segmentation of a synthetic image using the Chan and Vese evolution scheme in Equa-
tion (75) compared to the Geodesic Active Contour scheme in Equation (68). The objects’ borders are very
smooth, so the data term in the GAC formulation is null almost everywhere (∇gedge(I) ≈ 0 in Equation (68)).
Therefore, the contour slowly shrinks due to the mean curvature flow (the balloon force has been removed
for this experiment). At the opposite, the contour in the framework of the Chan and Vese formulation catches
the intensity properties of the object (c1 6= c2 in Equation (75)) and converges to the expected borders of the
object.
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5.3.2.2 Iris Segmentation

The classical formulation of the Chan and Vese contour has already been used for iris segmentation [76][62],
but from our point of view using directly the Chan and Vese model does not seem suitable for iris segmen-
tation. Indeed, as discussed above, the Chan and Vese model assumes that the solution of the problem is a
piecewise constant image. Therefore the object to segment and the background should be distinguishable by
their mean intensity value. Although, even if the iris has a quite stable intensity, no assumptions can be made
on "background intensities" (namely, everything that is not the iris texture). In an iris image, it often happens
that the background contains very dark elements such as eyelashes, and very bright ones as well, such as the
skin or the limbus. In this situation, the iris and the background have very close means and the use of the above
formulation will not lead to a correct segmentation.

(a) Iteration 0 (b) Iteration 400 (c) Iteration 800 (d) Image Histogram

Figure 33: Segmentation of a synthetic image using Chan and Vese traditional formulation. Figure 33d shows
the intensity distributions of the regions (red for the object, blue for the background)

Figure 33 illustrates this problem with a synthetic image. The object and the background have different
intensity distributions but the same means. The object’s intensities follow a Normal distribution of mean 124
and the background intensities follow a mixture of two Normal distributions of mean 74 and 174. As the
object and the background have the same mean, the traditional Chan and Vese model is not able to distinguish
between both.

In order to solve this problem, we propose to model the image regions by their intensity distributions
instead of their means. Formally, we now aim at minimizing :

ECV ′(φ, I, pin, pout) = µ

∫
Ω
δ(φ(x)) ‖φ(x)‖ dx + ν

∫
Ω
H(φ(x))dx

+λ1

∫
Ω
− log(pin(I(x)))H(φ(x))dx + λ2

∫
Ω
− log(pout(I(x)))(1−H(φ(x)))dx.

subject to
∫
R
pi(a)da = 1 , i = {1, 2}

(77)

It can be shown (see [50]) that the optimization of ECV ′ w.r.t. pin and pout while fixing φ, leads to a
continuous version of the Parzen window estimate of the densities inside and outside the contour C. For
a ∈ R :

pin(a) =

∫
Rin

Kε(I(x)− a)dx∫
Rin

dx

,

pout(a) =

∫
Rout

Kε(I(x)− a)dx∫
Rout

dx

,

(78)
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(e) Iteration 0 (f) Iteration 600 (g) Iteration 1200 (h) Iteration 3600

Figure 34: The convergence of the contour minimizing the energy ECV ′ in the image of Figure 33. The first
row shows the evolution of the contour and the second shows the intensity histograms inside (red) and outside
(blue) the contour (excluding the pupil area from the computation).

where Kε is a Gaussian Kernel of small variance ε. The optimization of ECV ′ w.r.t. φ also uses a gradient
descent approach leading to:

∂φ

∂t
= δε(φ)

(
µdiv

(
∇φ
‖∇φ‖

)
− ν − λ1 log(pin(I)) + λ2 log(pout(I))

)
, (79)

Figure 34 shows an illustration of the minimization scheme in Equation (79), considering only the influence
of the data term from the Chan and Vese model for the segmentation of the synthetic image from Figure 33.

As discussed above, one of the main interest of the Chan and Vese Model is that the data energy is defined
globally as opposed to the data term of the GAC model that is defined locally. Therefore the balloon term in
Equation (79) can be set to 0. Thanks to the region data energy, the contour evolves even if the initialization is
done far from the expected final location of the contour. However, in order to speed up the convergence, we do
not set the balloon force to 0, but to a low value compared to the other terms.

Figure 35 illustrates the segmentation of an iris image using the Chan and Vese Model. The contour is
initialized around the pupil region and progressively evolves until it segments the iris region. It is interesting
to note that as the balloon force has little influence on the contour evolution, the contour can shrinks in some
parts and expand in some others simultaneously. Indeed, the upper part (initialized inside some eyelashes and
shadows) shirks while the lower part (initialized inside the iris region) expends. Such a behavior could not
have been achieved with a strong balloon force such as the one used for GAC.

The Chan and Vese Model and the GAC presented in the previous Section are based on different Defor-
mation Descriptions, but they tend to fail on the same kind of images : images in which the iris texture has
intensities very close to its surrounding elements, like the limbus for instance. For such images, the gradient
between the iris region and the limbus region is very weak, which leads to segmentation failures as we already
discussed in Section 5.3.1. Similarly, as there is no clear difference between the intensities of the iris and the
limbus ones, the Chan and Vese Model is not able to distinguish the two regions based on their intensities,
which leads to segmentation failures. Therefore, in the next section, we propose to describe the iris region
using texture instead of intensities in order to avoid such failures.
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(e) Iteration 0 (f) Iteration 1500 (g) Iteration 2000 (h) Iteration 5000

Figure 35: The convergence of the contour minimizing ECV ′ energy. The upper row presents the evolution the
contour and the lower presents the separation of the inner (red) and outer (blue) histograms.

5.4 Texture Based Active Contours

As explained at the end of Section 5.3, representing the iris region using only the intensity information can
lead to segmentation failures. Therefore, we propose to use this textural information to segment the iris region
instead of the intensity information. To do so, we have implemented some ideas described in [64]. In this paper,
Chen et al. propose a Geometric Contour exploiting textural information in Active Contours. This textural
information is used to build both a new Edge-Based and a new Region-Based data energy. The Edge-Based
data energy is built in order to define a notion of gradient between areas with different textural properties. The
Region-Based data energy is a simple extension of the Chan and Vese Model for multichannel images.

5.4.1 Texture Descriptors

Our implementation follows [64] using Gabor filters to extract texture information. A filter is constructed
according to three parameters :

• the orientation θ, i.e. the direction of a pattern’s repetition.

• the radial frequency f , i.e. the frequency at which a sinusoidal pattern repeats itself.

• the scale σ, determines how a pattern spreads itself in the image.

Let h : R2 → C be the impulse response of a 2D-Gabor filter such that:

Re(h(x, y)) = g(xθ, yθ) cos(2π(Ux+ V y)) (80)

Im(h(x, y)) = g(xθ, yθ) sin(2π(Ux+ V y)) (81)

where U = f cos θ and V = f sin θ represent the 2-D spatial frequencies, (xθ, yθ) is the image of (x, y) under
a rotation of θ radians, g is a centered elliptical Gaussian window function with covariance matrix Σ defined
as:

Σ =

[
λσ2 0

0 σ2

]
. (82)
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Our purpose is to use such Gabor filters to characterize the texture of a given point in the image. There-
fore, we apply a set of Gabor filters and, for each point, we memorize the filter giving the strongest re-
sponse. We use this filter to build a multichannel image characterizing texture in the original image : M =
{C0, Cθ, Cf , Cσ, CRe, CIm} where, for a given pixel x :

• C0(x) is the magnitude of the filter giving the largest response at x.

• Cθ is the orientation of the filter giving the largest response.

• Cf is the frequency of the filter giving the largest response.

• Cσ is the scale of the filter giving the largest response.

• CRe and CIm the real and imaginary components of the filter’s response.

(a) Original image (b) Maximum response of the
filters (C0)

(c) Cf (d) Cθ

Figure 36: Synthetic image and some channels of the Gabor feature space.

5.4.2 Edge Indicator

Before detailing how the authors in [64] build their texture edge detector, let us make a digression and discuss
a geometric interpretation of the GAC energetic functional of equation (59) in Section 5.3.1. A classical gray-
scale image can be seen from a strictly geometric point of view as a 2D Riemannian surface (manifold), with
(x, y) as local coordinate, embedded in R3 with (X,Y, Z) as local coordinates. The relation between (x, y)
and (X,Y, Z) is given by (X = x, Y = y, Z = I(x, y)). Using this formulation, the minimization of the
GAC energetic functional of equation (59) can be seen as finding the contour of minimal length on the 2D
Riemannian manifold w.r.t. a certain distance measure. Measuring the distance on this manifold can be done
using :

dGS(x, y) =

(
1 + IxIx IxIy
IxIy 1 + IyIy

)
, (83)

where dGS is the distance on the gray-scale manifold, Ix and Iy correspond to the image derivatives w.r.t. x
and y. This metric indicates how fast the manifold’s shape changes : for instance, an edge in the image can
be seen as a cliff on the manifold, therefore det(dGS) will be high along edges. dGS can be seen as an edge
indicator, and the inverse of det(dGS) can be seen as a good stopping function for the GAC. Actually, we even
have the equivalence :

gedge(I(x, y)) =
1

det(dGS(x, y))
, (84)

where det(dGS(x, y)) is the determinant of the matrix dGS(x, y) and gedge the stopping term of Section 5.3.1.

The key idea of [64] is to extend this geometric interpretation of the GAC using the Gabor features space
instead of the image space. Formally, the image is seen as a 2D Riemannian surface embedded in a R7 space
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with {x, y, Cθ(x, y), Cf (x, y), Cσ(x, y), CRe(x, y), CIm(x, y)}. Though less intuitive than the traditional im-
age space, the feature space denoted

(
F 1(x, y), ..., Fn(x, y)

)
allows defining the non-Euclidian distance on

the manifold :

dtexture(x, y) =


1 +

n∑
i=1

F ixF
i
x

n∑
i=1

F ixF
i
y

n∑
i=1

F ixF
i
y 1 +

n∑
i=1

F iyF
i
y

 , (85)

and the associated edge stopping function for the GAC becomes :

gtexture =
1

det(dtexture))
. (86)

We let the readers refer to [64] for calculus details of the above formulation, but the underlying idea is the
following : if there is a discontinuity in the feature space (border between two regions with different textural
properties), det(dtexture) will be high, and accordingly gtexture will be low. For this reason, we are able to
substitute gedge by gtexture in the GAC formulation of Section 5.3.1. Figure 37 illustrates det(dtexture) and
gtexture for a synthetic image composed of regions with different textural properties.

(a) original image (b) det(dtexture) (c) gtexture

Figure 37: Example of the distance term and the stopping term for a synthetic image.

5.4.3 Minimization Flow

We define our optimal energy ETexture on the multichannel image M = {Cθ, Cf , Cσ, CRe, CIm} introduced
in Section 5.4.1 :

ETexture({piin, 1...n}, {piout, 1...n}, C) = EGAC−Texture + ERegion−Texture
with

EGAC−Texture =

∫ 1

0
gtexture(I(C(q)))|C′(q)|dq

ERegion−Texture = +

∫
inside(C)

1

N

N∑
i=1

log(piin(M i(x)))dx,

−
∫
outside(C)

1

N

N∑
i=1

log(piout(M
i(x)))dx,

(87)

where piin and piout are computed using the Parzen windows formula given in Equation (78) of Sec-
tion 5.3.2.
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EGAC−Texture makes a straight use of the edge term defined in Section 5.4.2. ERegion−Texture is an
extension of classical Chan and Vese term for multichannel images.

The resulting minimization flow expressed as a function of φ is :

∂φ

∂t
(x) = δε(φ)

[
div
(
gtexture(x) ∇φ‖∇φ‖(x)

)
− 1

N

N∑
i=1

log(piin(M i(x)))

+
1

N

N∑
i=1

log(piout(M
i(x)))

]
,

(88)

5.4.4 Iris Segmentation Using a Texture-Based Geometric Contour

In the algorithm presented in this section, we first generate the multichannel imageMiris describing the textural
information in an iris image. To that aim, we must design the Gabor filters in such a way that the differences
between the the iris region and other surrounding elements (such as the limbus, the eyelashes, the shadows or
the skin) are highlighted. We empirically assess that the filters should verify σ > 1

2f for producing meaningful
descriptors. Imposing this constraint on the filters allows characterizing the different elements in the image, as
shown in Figure 38. We also noted that studying the texture on both the original image and on an up-sampled
(by a factor 2) version of the image allows extracting some extra information from the image (we up-sampled
the image instead of changing the filters because we faced some numerical instabilities for filters with a too
small spacial extension in the original image).

(a) Original im-
age (x1)

(b) Maximal re-
sponse (x1)

(c) Cσ (x1) (d) Cf (x1)

(e) Original image (x2) (f) Maximal response (x2) (g) Cσ (x2) (h) Cf (x2)

Figure 38: Examples of channels of the Gabor feature space for an iris image. The first row shows the results
for the original image and the second row for the image up-sampled by a factor 2.

Now that the filters have been designed, the next step of the process is the generation of the multi-
channel image Miris describing the textural information in the iris image. At both scales, the maximum
response of the filters C0, the frequency information Cf and the scale information Cσ provide meaning-
ful information. Moreover, we also found interesting to add the original intensity information I to this
textural information in order to make the process more robust when few textural information is available
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(because of blur for instance). Therefore, the multichannel image we considered for iris segmentation is
Miris =

{
C

(1x)
0 , C

(1x)
f , C

(1x)
σ , C

(2x)
0 , C

(2x)
f , C

(2x)
σ , I

}
.

Figure 39: Evolution of the active contour driven by the Gabor framework. The upper row presents the
evolution on the original image. The lower one on the region term computed on the whole image showing if it
is more likely that a pixel belongs to the inside of the contour (blue) or to the outside (green).

Figure 39 illustrates the evolution of the contour driven by the framework presented in this section. The
lower row presents the evolution of the contour and the region term :

− 1

N

N∑
i=1

log(piin(M i
iris(x))) +

1

N

N∑
i=1

log(piout(M
i
iris(x))), (89)

from equation (88) evaluated for the whole image.

We can see in Figure 39 that the contour produces a very accurate segmentation of the iris borders. It is
especially interesting to note that the contour can exclude the shadows on the left part of the iris. Indeed, this
shadow has intensities very close to the average iris intensity, but the contour can identify the shadow as not
being part of the iris thanks to textural information. It is also interesting to note the evolution of the region
term computed on the whole image as the contour evolves. The closer the contour is from its final location,
the sharper is the difference between the inner and outer region. This illustrates that this term is pertinent to
distinguish the iris region from the other elements in the eye.

5.4.5 Extension of the Textural Information For B-Snakes

In this final section, we propose to extend the ideas we have presented for Geometric Contours to Parametric
Contours. To that aim, we extend the classical B-Snakes formulation given in Section 5.2.2 to exploit the
textural information presented in Section 5.4.

The Classical B-Snakes implementation of the B-Snake based on [27] evolves using the terms :

Tedge(I) = ∆I

Tregion(I) = − log
pin(I(x))

pout(I(x))

(90)
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with the notations of Section 5.2.2.

Instead, we propose to implement a Texture B-Snakes using the terms :

Tedge(I) = gtexture(I)

Tregion(I) = − log

N∑
i=1

pin(M i
iris(x))

pout(M i
iris(x))

(91)

with Miris the multichannel image introduced in Section 5.4.4 and gtexture(I) the textural edge indicator
described in Section 5.4.2.

Figure 40 and 41 illustrates the difference between Classical B-Snakes and Texture B-Snakes. In the par-
ticular image of Figure 40, the upper eyelashes have intensities close to those of the iris because of blur.
Therefore, during the first steps of the algorithm, where it mostly relies on region information, Classical B-
Snakes consider eyelashes as being part of the iris, which will lead to a segmentation failure. At the opposite,
Texture B-Snakes are able to distinguish eyelashes and the iris thanks to textural information. Therefore, during
the first step, the contour evolves roughly to its correct final location, and in the second part of the evolution,
the contour accurately fits the iris borders thanks to edge information.

(a) Iteration 0 (b) Iteration 40 (c) Iteration 90

(d) Iteration 0 (e) Iteration 40 (f) Iteration 90

Figure 40: Segmentation of the iris using the Classical B-Snakes implementation. The evolution is shown on
the original image (upper row) and on the region term Tregion evaluated on the whole image (lower row). Dark
regions in the region term’s image show pixels that are more likely to belong to the iris and light pixels that are
more likely to belong to the background.
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(a) Iteration 0 (b) Iteration 40 (c) Iteration 90

(d) Iteration 0 (e) Iteration 40 (f) Iteration 90

Figure 41: Segmentation of the iris using Texture B-Snakes implementation. The evolution is shown on the
original image (upper row) and on the region term Tregion evaluated on the whole image (lower row). Dark
regions in the region term’s image show pixels that are more likely to belong to the iris and light pixels that are
more likely to belong to the background.
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5.5 Evaluation

In order to evaluate the performance of the algorithms presented in this Chapter, we select 12,872 left and
right irises of the ND-Iris database. We segment each image using the considered Active Contours and eval-
uate the recognition performance of the complete system for 117,200 intra-class comparisons and 13,790,000
inter-class comparisons. We perform these comparisons using the Feature Extraction and Pattern Matching
algorithms described in Sections ?? and 1.5 of Chapter 1.

For evaluation, we study the differences between the Active Contours described in Sections 5.2, 5.3 and 5.4.
We first evaluate the impact of the Deformation Description for different Geometric Contours. Then, we
compare the classical B-Snakes described in Section 5.2.2 with the implementation using texture information
described in Section 5.4.5. Finally, we compare Parametric Contours versus Geometric Contours when using
the same Deformation Description.

5.5.1 Geometric Contours

In this section, we compare the performance of three Geometric Contours presented in this chapter : the
Geodesic Active Contours, the Chan and Vese Model, and the Integrated Active Contours for texture segmen-
tation. The evaluation based on the ROC curve displayed in Figure 42 shows that Geodesic Active Contours
performs the best followed by the Integrated Active Contours for texture segmentation and finally by the Chan
and Vese model.

Figure 42: Performance of the three Geometric Contours on the ND-Iris database : the Geodesic Active Con-
tours, the Chan and Vese Model, and the algorithm Integrated Active Contours for texture segmentation.

However, random visual inspection of the segmentation results showed that the Integrated Active Contours
for texture segmentation produce more accurate segmentation masks. On the other hand, we noted that the
segmentation failures are not the same for the three algorithms (See Figure 43).
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Figure 43 illustrates some segmentation failures of the three considered algorithms. Geodesic Active Con-
tours have a tendency to produce over-segmentations due to the balloon force discussed in Section 5.3.1. On
the other hand, the Chan and Vese model and Integrated Active Contours for texture segmentation have a ten-
dency to produce under-segmentations because the iris texture might be inhomogeneous and the contour only
segments one part of the iris.

This difference in the nature of failures actually has a severe impact on the recognition performance dis-
played in Figure 42. Indeed, over-segmentations mostly provide wrong information to the matching process.
This wrong information produce an increase of the False Rejection Rate that pushes the whole curve "upper"
but does not change its overall shape. On the other hand, under-segmentations result in a lack of information
for the matching algorithm. This lack of information has a tendency to produce an increase of False Accep-
tances that affects the shape of the ROC curve. Indeed, this increase of False Acceptances has no influence on
the ROC curve for high FAR but highly decreases the recognition performance for a low FAR.

We noted that Integrated Active Contours for texture segmentation and Chan and Vese Model’s algo-
rithm tend to produce more under-segmentation whereas Geodesic Active Contours tend to produce over-
segmentation. The case of under-segmentation is more critical for the matching algorithm since information
is lost. Moreover, the pattern matching here used is extremely sensitive to the number of bit comparisons that
is carried out when two images are matched : this is discussed by Daugman in [16] and Cremer in [13, 14].
Indeed, matching algorithm is based on a test of statistical independence which requires a large number of bit
comparisons in order to be statistically relevant.

This trait of the recognizer here used for evaluating the segmentation leads to the following conclusion :
a sever lack of information (case of under-segmentation) can be more damaging for the complete system here
considered (segmentation system and recognizer) than providing inaccurate segmentation mask (case of over-
segmentation).
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(a) failure of the Geodesic Active Contours (b) failure of the Geodesic Active Contours (c) failure of the Geodesic Active Contours

(d) failure of the Chan and Vese Model (e) failure of the Chan and Vese Model (f) failure of the Chan and Vese Model

(g) failure of the Integrated Active Con-
tours for texture segmentation

(h) failure of the Integrated Active Con-
tours for texture segmentation

(i) failure of the Integrated Active Contours
for texture segmentation

Figure 43: Segmentation failures resulting from the three variations of Geometric Contours here studied.
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5.5.2 Parametric Contours

In this section, we compare the classical B-Snakes described in Section 5.2.2 with the implementation using
texture information described in Section 5.4.5. To do so, we use the same settings for the two algorithms, but
they only differs in terms of the Deformation Description : the classical B-Snake uses the image intensity in-
formation to compute the edge term and the region term, whereas the textural B-Snake uses texture information
instead.

Figure 44: Performance of two Parametric Contours on the ND-Iris database : the classical B-Snake and the
textural B-Snake.

Figure 44 shows the ROC curves for the two B-Snakes implementations. They have roughly the same
behavior but the B-Snake based on texture information performs better than the one based on the classical
formulation. This result shows that the textural information provide a surplus of information compared to the
intensity information.

Figure 45 illustrates some segmentation failures of the B-Snakes algorithms. We can see that the two
algorithms have a tendency to fail on images in which the iris is highly occluded. Figure 45b illustrates an
image in which the classical B-Snake fails to fully segment the iris. This comes from the fact that the limbus
has intensities close to those of the iris, thus weakening the strength of the region force. Figure 45e shows a
failure of the textural B-Snake because the contour is initialized mostly on eyelashes. Therefore, the contour
mostly catches the properties of eyelashes instead of those of the iris, leading to a wrong segmentation.
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(a) Classical B-Snakes failure (b) Classical B-Snakes failure (c) Classical B-Snakes failure

(d) Texture B-Snakes failure (e) Texture B-Snakes failure (f) Texture B-Snakes failure

Figure 45: Segmentation failures of the Classical B-Snakes and Texture B-Snakes algorithms.
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5.5.3 Deformation Description

In this section, we compare Parametric Contours versus Geometric Contours when they use the same De-
formation Description. We first compare B-Snakes based on intensity information described in Section 5.2.2
with the Chan and Vese Model described in Section 5.3.2. Then, we compare B-Snakes based on textural
information described in Section 5.4.5 with the Integrated Active Contours for texture segmentation described
in Section 5.4.

(a) Intensity-Based (b) Texture-Based

Figure 46: Comparison between Parametric Contours and Geometric Contours that work either with an
Intensity-Based or a Texture-Based Deformation Description.

Figure 46 shows the ROC curves of the two experiments. We can see that in both experiments Parametric
Contours perform better than Geometric Contours. This is an a priori unexpected result because random visual
inspection of segmentation results shows that Geometric Contours tend to produce more accurate segmentation
masks than Parametric Contours do.

Indeed, Geometric Contours can take almost any shape during the evolution, leading to very accurate
segmentation masks. However, they are also more likely to produce results which are very different from the
expected segmentation : when the contour starts being attracted by non iris regions (eyelashes or limbus for
instance) they can freely evolve far from the iris region. On the other hand, Parametric Contours are more
constrained during their evolution because of the limited number of control points that we used (10 in our
experiments). Therefore, they are less likely to move far from the iris region.

This experiment shows that despite a priori better visual results, the lack of robustness of Geometric
Contours has a negative impact on a large scale evaluation.
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5.6 Conclusion

In this chapter, we have studied several Active Contours implementations for the iris region segmentation.
We implemented Parametric Contours and Geometric Contours for which we studied several Deformation
Descriptions. The evaluation conducted in Section 5.5 allowed us to identify general results :

• Parametric Contours perform better than Geometric Contours for the same Deformation Description
because Parametric Contours are more robust than Geometric Contours.

• It is not pertinent to evaluate a segmentation algorithm by the accuracy of the generated segmentation
masks.

• In our case, algorithms producing over-segmentations must to be favored compared those giving under-
segmentations, as the Pattern Matching is done with Daugman’s algorithm (described in Section 1.5).

Setting the balance between accuracy and robustness is a traditional issue in segmentation. Our experi-
ments have shown that for iris segmentation, the robustness of the segmentation must be favored w.r.t. seg-
mentation accuracy. This can be explained by the Feature Extraction and Pattern Matching stages that we used
in this thesis is based on a test of statistical independence on a large number of bit comparisons. Therefore,
this process can handle some small inaccuracies and still be discriminative. This behavior can be interpreted in
terms of bias-variance trade-off. Indeed, the Geometric Contours have a small bias and a large variance, and
the Parametric Contours a small variance but a large bias. From our experiments, it appears that having a small
variance is actually more important than having a small bias when using the Daugman’s matching algorithm.

However, if the segmentation of one image fails completely, the Feature Extraction and Pattern Matching
algorithms will have only false information to rely on. Therefore, this wrongly segmented image will provoke
a large number of False Acceptances and False Rejections, which will highly decrease the recognition per-
formance of the system. For this reason, we also consider the issue of automatic detection of segmentation
failures in order to remove such images from the evaluation process. We address this last issue in Chapter 7.

In order to improve the segmentation stage on its own, we propose to use more shape-constrained seg-
mentation algorithms. Indeed, the Deformable Models formalism allows to force the contour to stay close
to a reference shape. For instance, we could impose Active Contours to remain close to a circle. This extra
shape information should be extremely effective to reduce the amount of under-segmentations that have a very
negative impact on the recognition performance of the complete system here considered.

In the next chapter, we will discuss the last processing stage of our iris segmentation system : the accurate
estimation of the iris borders in order to generate the normalized image of iris texture.
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Chapter 6

Contour Fitting for Normalization

In iris recognition systems, following the approach in [16], matching is done by aligning the features of spe-
cific points (application points) from normalized images, i.e., the rectangular unwrapped texture of the two
irises (see Section 1.4 of Chapter 2). If the unwrapping is not done properly, the two textures, and therefore,
the corresponding points, do not correctly align and recognition performance is affected. Consequently, the
robustness and precision of the unwrapping is a critical aspect of iris recognition systems.

This unwrapping is done using a parametric description of the iris borders independently of the occlu-
sions. Most methods of the literature apply a simple estimator procedure, such as the Hough Transform or
Least Square Fitting to get this parametric description. Those fitting methods rely on segmentation results
for estimating the model’s parameters, and therefore, inaccuracies in segmentation results lead to errors in the
resulting contour.

The iris borders have traditionally been modeled as a pair of circles [16, 77]. However, this assumption
is incorrect for off-angle images or for people with a pupil or an iris which is anatomically non circular. To
address this shortcoming, more general shapes need to be considered, such as ellipses or free-shape parametric
contours.

Ellipses are the intuitive extension of circles, but the two classical operators used to find circles in iris
literature (Daugman’s Integrodifferential Operator (IDO) and the Circular Hough Transform (CHT)) do not
extend well to ellipses. These operators require the evaluation of an accumulator whose dimension is the
number of parameters in the model. Spanning from 3 parameters for the circle to 5 for the ellipse dramatically
increases computation time, making these operators unsuitable for real-time applications. For this reason, most
articles working with ellipses use an elliptic Direct Least Square Fitting (DLS) [22] to fit ellipses onto the iris
borders. This method is very fast, but suffers from the usual drawback of least square methods : sensitivity to
outliers.

Free-shape parametric contours are able to handle any shape for iris borders [17, 26, 57]. They can achieve
very good recognition performance but are strongly dependent on the segmentation stage. Hence, in order to
apply them, it is necessary to efficiently distinguish between the pixels belonging to the anatomic borders of
the iris and the edges generated by occlusions. If some pixels are misclassified, a large part of the resulting
contours may be affected, leading to a decrease of system’s recognition performance.

We favor a fixed-shaped model (ellipses) over a free-shape model because the latter is too sensitive to
segmentation accuracy. Accordingly, we propose a precise, robust and effective way to fit ellipses on iris
borders in order to perform iris normalization. Our system acts at two levels :

• First, we define an effective iterative scheme based on deformable models working specifically with
ellipses. Our method, which we have called Elliptic Variational Fitting (EVF) allows us to morph a
roughly initialized circle onto the exact borders of the iris. The interesting aspect of this approach is
that unlike most fitting methods, it is independent of segmentation results’ accuracy. As a consequence,
our proposed method can even correct some segmentation inaccuracies in addition to giving suitable
contours for normalization.

• The second level is dedicated to the initialization of the iterative process. We propose to initialize the
EVF framework for several initial locations and select the ellipse that reaches the lowest minimum with
respect to the energetic functional of the model. The complete process is summarized in Figure 47.

This Chapter is organized as follows: Section 6.1 presents the method we developed to fit the ellipses.
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Figure 47: Our elliptic contour fitting process in order to generate the contours for normalization. The input

region segmentation is used to initialize a rough Circular Hough Transform. This Circular Hough Transform

provides a set of initial circles close to the expected solution. Each circle is morphed into an ellipse using our

EVF framework. Finally, the ellipse reaching the best location is selected for normalization.
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We first present the general formulation of our model and give an explicit formulation of the equations for
the circles and the ellipses. Then, in Section 6.2, we expose how we have implemented the complete contour
fitting process presented in Figure 47 into our complete system presented in Chapter A. Finally, Section 6.3
evaluates the performance of our system for different contour fitting algorithms on reference databases. In this
section, we also address specific issues like the evaluation on off-angle images and computation times.

6.1 Parametric Deformable Template Optimization

In this section, we describe how we express the contour fitting problem as an optimization problem using the
general framework of deformable models introduced in Section 5.1 of Chapter 5. Then, we give the explicit
formulation of the contour evolution for circles and ellipses.

6.1.1 General Formulation

As explained in the introduction, we use a fixed-shape contour as opposed to a free-shape contour used for
segmentation in Chapter 5. To that aim, we use the formalism of deformable template introduced by Yuille et
al. in [78]. In this context, the contour is described using a small number of parameters Θ = {θi, i = 1...n}
describing its complete shape using a set of parametric equations.

For free-shape contours, the evolution is expressed locally. For instance, B-Snakes of Section 5.2.2 model
the contour by a set of control points. Each control point defines the shape of the contour in its neighborhood.
At the opposite, using the deformable template framework, changing one of the parameter affects the overall
shape of the contour. For instance, for a circle we have Θcircle = {xc, yc, r} with xc = (xc, yc) the center of
the circle and r its radius. The change of any parameter of Θcircle affects the whole circle.

Parametric Deformable Templates are very classical in Computer Vision but are almost absent from the
iris recognition literature, the only reference being Miyazawa et al. in [46] where a model with 10 parameters
is used to find simultaneously the inner and outer iris ellipses and both eyelids. Although the model assumes
an ellipse for pupil and iris borders, they are enforced to keep a circular shape in the equations. In the present
work, we explicitly provide a new algorithm to solve the optimization problem in the elliptic case.

If we go back to the formalism of deformable models introduced in Section 5.1 of Chapter 5, the set of
parameters Θ = {θi, i = 1...n} gives the Shape Description. To describe the Deformation Description, we
define an objective energy in the same fashion to what has been done in Chapter 5. Our energy functional
contains three terms : a regularization energy Eint, ensuring that the contour remains coherent with some prior
assumption of shape and location. An edge energy Eedge, ensuring that the contour passes through areas of
strong gradient and a region energyEregion to force the contour to separate regions that have different statistical
properties.

The traditional deformable model formulation is defined on the contour C as follows :

EPDM (C) = Eedge(C) + Eregion(C) + Eint(C). (92)

It can be expressed on the set of parameters Θ = {θi, i = 1...n} instead :

EPDM (Θ) = Eedge(Θ) + Eregion(Θ) + Eint(Θ) (93)

One way to minimize EPDM w.r.t. C is to fix all but one parameter θkj and optimize the functional w.r.t.
such parameter using the gradient descent algorithm :

θk+1
j = θkj −

∂

∂θkj
[Eedge(Θ) + Eregion(Θ) + Eint(Θ)] . (94)
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We define the edge term Eedge so that it promotes areas having a strong normal gradient and a low tangent
one:

Eedge(C) = En(C) + Et(C), (95)

En(C) =

∫
C

∥∥∥∥ →
∇I(x) .

→
n (x)

∥∥∥∥ 1

‖C ′(x)‖
dx ,

Et(C) = −
∫
C

∥∥∥∥ →
∇I(x) .

→
t (x)

∥∥∥∥ 1

‖C ′(x)‖
dx ,

(96)

where I is the image,
→
n (x) the outward unit normal vector to the curve at point x,

→
t (x) the unit tangent

vector to the curve at point x and C ′(x) derivative of the curve at point x.

For the region term, we use the Region Competition formulation introduced in Section 5.3.2 of Chapter 5
working with the intensity distributions.

Eregion(C) = −
∫
Rin

log pin(I(x))dx−
∫
Rout

log pout(I(x))dx, (97)

where pin and pout are respectively the probabilities of a given intensity to be inside or outside the curve (we
note Rin the region inside C and we note Rout the region outside C) :

pin(k) =

∫
Rin
{I(x) = k}dx∫
Rin

dx
,

pout(k) =

∫
Rout
{I(x) = k}dx∫
Rout

dx
.

(98)

In the following section we will describe how we apply this general framework to circles and ellipses.

6.1.2 Circular Variational Fitting (CVF) Model

The use of circles is motivated by two main reasons. First it is the simplest way to model the iris borders, and
therefore many methods in the literature still rely on circles for normalization. Having an accurate circular
model allows us to compare our results with those of the literature. The second interesting aspect comes from
the simplicity of the model : as the model is extremely constrained, it is also extremely robust.

In this context, the set of parameters {θi, i = 1...n} from the previous section becomes {xc, yc, r} with
xc = (xc, yc) the center of the circle and r its radius. The related parametric equations are :

x(θ) = xc + r cos(θ),
y(θ) = yc + r sin(θ),

(99)

with θ ∈ [0, 2π[.

We give the derivatives of Eedge and Eregion w.r.t. the parameters xc = (xc, yc) and r in Appendix B :

∂En
∂xc

=

∫ 2π

0

[
H(x)

→
nθ

]
dir(

→
nθ)dθ ,

∂En
∂r

= −
∫ 2π

0

[
H(x)

→
nθ

]
.
→
nθ dir(

→
nθ)dθ ,

(100)

and :
∂Et
∂xc

= −
∫ 2π

0

[
H(x)

→
tθ

]
dir(

→
tθ)dθ ,

∂Et
∂r

=

∫ 2π

0

[
H(x)

→
nθ

]
.
→
tθ dir(

→
tθ)dθ ,

(101)
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with :

dir(
→
nθ) = sign

[ →
∇I(x) .

→
nθ

]
, (102)

dir(
→
tθ) = sign

[ →
∇I(x) .

→
tθ

]
, (103)

∂

∂xc
Eregion =

1

2

∫ 2π

0
D(x)

→
nθ dθ ,

∂

∂r
Eregion =

1

16

∫ 2π

0
D(x)dθ , ,

(104)

To define the regularization term, we consider the order in which normalization contours are found in our
system. As the pupil contour is found first, we have no additional information on the pupil’s location, so we set
the pupil regularization energy Epint = 0. The iris contour is found after the pupil contour in order to exploit
the pupil’s location. Accordingly, we set the iris regularization energy Eiint =

∥∥xic − xpc
∥∥2 where xic is the

center of the iris and xpc the center of the pupil. This energy acts as a string restricting the iris center to stay
close to the pupil’s center. The resulting partial derivatives are :

∂

∂xic
Eiint = 2

(
xpc − xic

)
,

∂

∂ri
Eiint = 0,

(105)

The above equations defined on a circular contour are interesting because they have a very simple expres-
sion that allow understanding the evolution of the contour. For instance, the evolution of the radius r according
to the region energy Eregion (see Equation (104)) can be seen as a vote for all the points of the contour to
decide whether the circle should shrink or expand. If for a majority of contour points x, we have :

D(x) = −log pin(I(x))

pout(I(x))
< 0, (106)

then a majority of contour points vote that they are "inside". Therefore, the radius should become larger.
Accordingly, we define the evolution equation for an arbitrary time parameter k as :

rk+1 = rk − ∂

∂r
Eregion. (107)

This definition ensures that if ∂
∂rEregion < 0 the radius r will increase.

Figure 48 illustrates the evolution of a circle using the above framework. As we can see, the fitting is rather
accurate, but it is not perfect because the circular shape assumption does not match the exact shape of the iris.
Therefore we extend the above formulation to ellipses.

6.1.3 Elliptic Variational Fitting (EVF) Model

In the context of ellipses, the set of parameters {θi, i = 1...n} becomes {xc, yc, a, b, φ} where xc = (xc, yc)
is the center of the ellipse, a and b are the major and minor axes of the ellipse and φ is the angle of the ellipse
with the reference vector of the image domain. The resulting parametric equations are :

x(θ) = xc + a cos(θ) cos(φ)− b sin(θ) sin(φ),
y(θ) = yc + a cos(θ) sin(φ) + b sin(θ) cos(φ),

(108)

where θ ∈ [0; 2π[. Using the vectors
→
nφ and

→
tφ :
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(a) Iteration 0 (b) Iteration 40 (c) Iteration 90

Figure 48: The circle is initialized close to the iris borders and move onto the iris borders using our Circular
Variational Fitting (CVF) method.

→
nφ=

(
cos(φ)
sin(φ)

)
, (109)

and
→
tφ=

(
− sin(φ)
cos(φ)

)
, (110)

the ellipse can be compactly written as :

x(θ) = xc + a cos(θ)
→
nφ +b sin(θ)

→
tφ . (111)

We give the derivation of Eedge and Eregion in the Appendix B : So :

∂En
∂xc

=

∫ 2π

0

[
H(x)

→
nθ

]
dir(

→
nθ)dθ ,

∂En
∂a

=

∫ 2π

0

[
cos(θ)

[
H(x)

→
nφ

]
.
→
nθ −

→
∇I(x) .

sin(θ)

‖N(θ)‖

[
→
tφ +a

→
nθ

sin(θ)

‖N(θ)‖

]]
dir(

→
nθ)dθ ,

∂En
∂b

=

∫ 2π

0

[
sin(θ)

[
H(x)

→
tφ

]
.
→
nθ −

→
∇I(x) .

cos(θ)

‖N(θ)‖

[
→
nφ +b

→
nθ

cos(θ)

‖N(θ)‖

]]
dir(

→
nθ)dθ ,

∂En
∂φ

=

∫ 2π

0

[[
H(x)(−bsin(θ)

→
nφ +acos(θ)

→
tφ)
]
.
→
nθ −

→
∇I(x) .

→
tθ

]
dir(

→
nθ)dθ ,

(112)

And :

∂Et
∂xc

= −
∫ 2π

0

[
H(x)

→
tθ

]
dir(

→
nθ)dθ ,

∂Et
∂a

= −
∫ 2π

0

[
cos(θ)

[
H(x)

→
nφ

]
.
→
tθ −

→
∇I(x) .

sin(θ)

‖T (θ)‖

[
→
nφ +a

→
tθ

sin(θ)

‖T (θ)‖

]]
dir(

→
nθ)dθ ,

∂Et
∂b

= −
∫ 2π

0

[
sin(θ)

[
H(x)

→
tφ

]
.
→
tθ −

→
∇I(x) .

cos(θ)

‖T (θ)‖

[
−
→
tφ +b

→
tθ

cos(θ)

‖T (θ)‖

]]
dir(

→
nθ)dθ ,

∂Et
∂φ

= −
∫ 2π

0

[[
H(x)(−bsin(θ)

→
nφ +acos(θ)

→
tφ)
]
.
→
tθ +

→
∇I(x) .

→
nθ

]
dir(

→
nθ)dθ ,

(113)
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∂Er
∂xc

=

∫ 2π

0
[AN(θ)]D(x) ‖T (θ)‖ dθ ,

∂Er
∂a

=
1

8a

∫ 2π

0
cos2(θ)D(x) ‖T (θ)‖ dθ ,

∂Er
∂b

=
1

8b

∫ 2π

0
sin2(θ)D(x) ‖T (θ)‖ dθ ,

∂Er
∂φ

=
1

8

(
− 1

σ2
x

+
1

σ2
y

)∫ 2π

0

[
N(θ)T

(
sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
N(θ)

]
D(x) ‖T (θ)‖ dθ .

(114)

We define two different behaviors for Eint. For the pupil, it is necessary that the minor and major axis do
not differ much, i.e. a ≈ b. This means that if there is a lack of information, the pupil prefers circular shapes.
For the iris, the two focus points of the iris ellipse must stay close to the pupil ones, which are already fixed.

Epint = ‖ap − bp‖2 , (115)

Eiint =
∥∥∥xf

(1)
i − xf (1)

p

∥∥∥2
+
∥∥∥xf

(2)
i − xf (2)

p

∥∥∥2
, (116)

where xf
(1)
p and xf

(2)
p are the two focus points of the pupil, xf

(1)
i is the iris ellipse’s focus point closest to

xf
(1)
p and xf

(2)
i the one closest to xf

(2)
p .

The calculus of the derivatives for the pupil shape energy is straightforward :

∂Epint
∂xc

= 0,

∂Epint
∂a

= (a− b),
∂Epint
∂b

= (b− a),

∂Epint
∂φ

= 0.

(117)

Using the notations of Appendix B we have :

∂Eiint
∂xc

= 2(xic − xpc),

∂Eiint
∂a

= δpi
a√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
,

∂Eiint
∂b

= −δpi
b√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
,

∂Eiint
∂φ

= −2δpi
√

(ai)2 − (bi)2
√

(ap)2 − (bp)2 sin(φi − φp).

(118)

These partial derivatives are used to make the contour evolve using the gradient descent scheme of Equa-
tion 94. An example of such evolution is given in Figure 49

Though less intuitive than the equations of the circular model, the underlying ideas remain the same. For
instance, the evolution of the big axis a according to Eregion is very close to the evolution of the radius for the
circular model. The only difference is the weighting of the region term D(x) by factor cos2(θ)‖T (θ)‖

a . This
weighting corresponds to the relative importance of the major and minor axis.

CONFIDENTIAL



6.2. Model Initialization 95

(a) Iteration 0 (b) Iteration 10 (c) Iteration 20

Figure 49: The circle is initialized close to the iris borders and move onto the iris borders using our Elliptic
Variational Fitting (EVF) method. Accordingly, the intial circle morphs into an ellipse during the process.

6.2 Model Initialization

Section 6.1 gives an effective way of finding ellipses for normalization, but as with every method based on
variational optimization, final results depend on the initialization. If the initialization is too far from the optimal
solution, the process may stop in a local minimum of equation (93). In this section, we propose an effective
way to initialize the EVF process in order to make it more robust to local minima.

The key idea is to run the algorithm for several initial locations and to select afterward the most suit-
able ellipse for normalization. The proposed algorithm is composed of three consecutive steps illustrated in
Figure 50:

(i) Circular Init. Segmentation results are used to perform a sub sampled Circular Hough Transform to obtain
a set of initial circles (see Figure 50b).

(ii) EVF Opt. EVF optimization is applied to all circles from the initial set to generate a set of optimized
ellipses (see Figure 50c).

(iii) Final Selection The ellipse reaching the lowest minimum for equation (93) after the EVF Opt. step is se-
lected as input to the normalization process (see Figure 50d).

We generate the set of initial circles from the segmentation results displayed in Figure 50a (here resulting
from the Classical B-Snakes algorithm of Section 5.2.2 of Chapter 5). As the purpose is only to get a rough
initialization, it is possible to heavily sub sample the Hough Transform : it makes the algorithm run faster and
allows a larger exploration of the parameter space to be performed. Circles obtained at the stage Circular Init.
are optimized using the EVF scheme more precisely detailed in Section 6.1.3. Finally, we select the ellipse
reaching the lowest minimum for equation (93) within the set of ellipses from the previous step.
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(a) (b) (c) (d)

Figure 50: Complete Ellipse Fitting Process : the algorithm uses the results of the segmentation (Figure (a))
to generate a set of initial circles (Figure (b)). The EVF framework is used to morph the initial circles into
optimized ellipses (Figure (c)). The ellipse that best fits the border of the iris, i.e. the ellipse that has the lowest
energy value (Equation (93)) is selected to perform the normalization (Figure (d))

6.3 Evaluation

In this section, we first evaluate our proposed EVF algorithm compared to other boundary fitting methods. We
then address some specific issues : evaluation on off-angle images and computation times.

6.3.1 Global Performance evaluation

We evaluate the influence of the contour fitting algorithm on our complete recognition system on the databases
ICE2005, ND-Iris and Casia-Lamp using the following contour fitting algorithms :

EVF Framework from Section 6.1.3, as described in Section 6.2 taking 10 circles for the initialization.

CVF Framework from Section 6.1.2, as described in Section 6.2 taking 10 circles for the initialization.

DLS Direct Least Square (DLS) algorithm presented in [22] because it is the most common way to find
ellipses in the iris literature.

REHT Random Elliptic Hough Transform [45] (REHT) as an extension of the Circular Hough Transform.
Though faster than the standard Elliptic Hough Transform, this algorithm is by far the slowest algorithm
considered in this evaluation as we will discuss in the following.

Figures 51a, 51b and 51c display the ROC curves corresponding to the four algorithms on the three
databases. EVF performs the best on the three databases followed by CVF. REHT performs better than DLS
on ICE2005 and ND-Iris but DLS performs better than REHT on CASIA-Lamp. EVF and CVF perform best
because they are very robust : big fitting mistakes are mainly due to important segmentation failures. On the
contrary, DLS and REHT apart from giving bad estimations in the case of big segmentation errors, also fail
on some images where the segmentation is just slightly inaccurate, explaining the gap in the global system’s
recognition performance.

We now highlight specific behaviors of the four algorithms on some examples displayed in Figure 52. DLS
performs well when the iris borders are clearly visible (Figures 52f, 52n) but when failures occur, the resulting
ellipse is far from actual iris borders (Figures 52b, 52j, 52r). These errors are mainly due to segmentation
inaccuracies (skin for Figure 52r and right limbus in Figure 52j) and so, the only way to prevent these errors is
to adjust the segmentation stage.

REHT is more robust than elliptic DLS but inaccurate fittings still occur (Figures 52q, 52i). Let us note
here that this algorithm performs the best on the off-angle image (Figure 52a). We will discuss this statement
in the following section.
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(a) ICE2005

(b) ND-Iris

(c) CASIA-Lamp

Figure 51: ROC curves of the experiments for the algorithms Elliptic Variational Fitting (EVF), Circular
Variational Fitting (CVF), Elliptic Direct Least Square (DLS) and Random Elliptic Hough Transform (REHT)
on the databases ICE2005, ND-Iris and CASIA-Lamp
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(a) image 02463d1198 (b) image 02463d1198 (c) image 02463d1198 (d) image 02463d1198

(e) image 04203d1111 (f) image 04203d1111 (g) image 04203d1111 (h) image 04203d1111

(i) image 04319d755 (j) image 04319d755 (k) image 04319d755 (l) image 04319d755

(m) image 04322d177 (n) image 04322d177 (o) image 04322d177 (p) image 04322d177

(q) image 04322d178 (r) image 04322d178 (s) image 04322d178 (t) image 04322d178

Figure 52: This Figure shows some fitting results for the algorithms we considered in Section 6.3.1. The first
column (Figures (a) (e) (i) (m) (q)) corresponds to the results of the REHT algorithm. The second column
(Figures (b) (f) (j) (n) (r)) corresponds to the results of the DLS algorithm. The third column (Figures (c)
(g) (k) (o) (s)) corresponds to the results of the CVF algorithm. The last column (Figures (d) (h) (l) (p) (t))
corresponds to the results of the EVF algorithm.
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EVF gives very consistent results on all the images of Figure 52. Figure 52h is especially interesting
because elliptic DLS and REHT tend to flatten the iris contour because of occlusions but EVF stays coher-
ent with the shape we assume behind the eyelids. Thanks to the regularization terms Es (equations (115 of
Section 6.1.3) and (116)) some extra information is added about the expected shape of the borders behind
occlusions. However, this assumption can lead to some inaccuracies as in Figure 52p where the upper and
right part of the ellipse do not exactly fit the outer iris borders. This is because we used a fixed setting for the
constraint terms γp and γi. We expect to correct this behavior by adapting this term to the image : on images
of good quality with visible iris borders, shape assumptions should be low, but for images of bad quality with
unclear borders or heavy occlusions, the shape assumptions should be high.

It is interesting to note that CVF performs better than REHT and DLS. This is because our variational
framework exposed in Section 6.1 is very robust. Figure 52 illustrates the reason for this statement. For the
considered images, none of the CVF-based circles are exactly on the iris borders, but they are all close to the
optimal fitting. A conclusion from this experiment is that it is better to have an efficient circular scheme for
normalization than a non-optimal elliptic one.

6.3.2 Off-angle correction evaluation

Figure 53: ROC curves of off-angle images of ND-Iris

In this section, we evaluate the performance on off-angle images. In this experiment, we selected a list of
off-angle images from the ND-Iris database. The selection was made using the criterion described in [40] and
we manually removed falsely selected images. This process gives a sub-list of 50 images. For the evaluation,
we kept all comparisons of the previous experiment where at least one of the off-angle images was involved.
It generated a sub-list of 800 intra-class comparisons and 102,200 inter-class comparisons. This number of
comparisons is far from being sufficient for an accurate evaluation, but as we can see in Figure 53, it is
sufficient to get a ranking of the four algorithms considered.

As expected, CVF performs the worst on this subset. The standard EVF performs as well as DLS. Finally,
REHT performs the best on this database. The ranking of the algorithms is different in this experiment com-
pared to the whole ND-Iris database because the precision of contour fitting is even more critical for off-angle
images than for frontal images.

REHT may lack robustness as discussed above, but when the fitting goes well, it achieves a very good
precision as shown in Figure 52a. EVF is more robust, but the fitting might not be perfect for images with
strong gaze deviation because of the regularization term Es. We have discussed this issue above, but we
expect to correct this behavior by adapting the regularization strength to the image properties. For instance, by
using the criterion [40] which we used to create this image subset as an indicator of gaze deviation, we could
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100 Contour Fitting for Normalization

automatically adapt the constraint terms γp and γi. When the criterion indicates an off-angle image, constraints
should be lowered.

Let us note here that a common claim in iris literature [17, 63, 10] is to assume that an elliptic shape for
iris contours is a consistent approach to correct gaze deviation. DLS and EVF which perform worse than CVF
on the complete database perform better on the off-angle subset. This result confirms that elliptic models are
better than circular ones for off-angle images. However, the recognition performance is still very low. It seems
that this problem still needs further studies to be extended beyond the elliptic model.

6.3.3 Computation Time

Initialization Contour Fitting Selection Total
DLS — 2 ± 0.8ms — 2 ± 0.8ms

REHT — 30223 ± 22294ms — 30223 ± 22294ms
CVF 1 contour (40 iterations) 139 ± 46 ms 15 ± 3 ms 0.8 ± 0.2 ms 185 ± 49 ms

CVF 10 contours (40 iterations) 174 ± 66 ms 198 ± 34 ms 0.8 ± 0.2 ms 372 ± 100 ms
EVF 1 contour (40 iterations) 139 ± 46 ms 21 ± 4 ms 0.8 ± 0.2 ms 160 ± 67 ms

EVF 10 contours (40 iterations) 174 ± 66 ms 257 ± 37 ms 0.8 ± 0.2 ms 431 ± 103 ms

Table 5: Computation time for different contour fitting scenarios

Table 5 gives the average time for each algorithm used in this evaluation. The algorithms are implemented
in C++ without particular optimizations. The evaluation was done on a computer equipped with a 2.4 GHz
Intel processor running under a 32bit operating system.

The first statement is that DLS fitting clearly outperforms the other algorithms in term of computation time,
explaining its popularity in iris recognition literature [10, 62, 3] .

On the other hand, REHT has a huge computation time. As explained earlier, the purpose of this imple-
mentation is only to get an extension of what would have been the classical Circular Hough Transform of the
literature when transposed to ellipses. Computation time displayed here clearly shows that this algorithm is by
no mean suitable for real-time applications.

It is also interesting to note that both the initialization of EVF/CVF (based on a Circular Hough Transform)
and REHT have very high variability in computation time. This is because the complexity of those algorithms
is proportional to the contour length : the complexity is proportional to the power of three of the contours
length for the Circular Hough Transform and to the power of five for the REHT.

Our novel EVF algorithm performs in-between the two other algorithms. We performed 40 iterations for
the iterative scheme of Equation (94) and the initial Circular Hough Transform is down-sampled by a factor
of 3. Fitting of a single contour is 15 ms for a circle and 21 ms for an ellipse. This difference comes from
the reduction from 5 equations for the ellipse to three for the circle (radius r = (a + b)/2 , and φ = 0). If
we look at the complete system with 10 contours evaluated in Section 6.3.1, the computation time is 372 ms
for circles and 431 ms for ellipses. We can note that roughly 40% of the computation time is spent in the
initialization (Circular Hough Transform). It is possible to reduce this initialization time using the fast rough
location described in [3] or using DLS.
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6.4 Conclusion

In this chapter, we have proposed a precise and effective way to estimate iris contours by mean of ellipses for
iris normalization, the EVF framework. This algorithm relies on the classical Active Contours approach leading
to a compact formulation for ellipses. We have compared our algorithm to classical Direct Least Square fitting
for ellipses and to a Randomized Elliptic Hough Transform and have shown that our algorithm performs better
on several reference databases when integrated in a complete recognition system. After this global evaluation,
we have addressed some specific issues such as evaluation on off-angle images and computation times.

An interesting theoretical aspect of our model is that it can be be easily extended to use other region
competition terms like the texture descriptor that we described in Section 5.4 of Chapter 5. Another theoretical
interpretation of our model is to see the evolution as a rigid deformation of an elliptic template. A perspective
to extend our model is to consider non-rigid deformations to better adapt the template shape to the actual border
of the iris. This extension should not reduce the robustness of the process but should help characterizing more
precisely pupils or irises which are anatomically non elliptic.

The estimation of normalization contours of the iris is the last critical stage of our iris segmentation stream.
At this stage, detecting possible segmentation failures is of main importance for the complete recognition
system that we consider in this thesis. This will be the aim of the next chapter.
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Chapter 7

Image Quality and Automatic Detection of
Segmentation Failures

Recognition performance of iris recognition systems is highly related to input data quality. For this reason,
evaluations of iris image quality have received a significant interest over the last years. One of the most
significant illustrations of this trend is the IREXII-IQCE challenge [71] which gathered most of the industrial
and academic actors of the iris recognition community, to study the impact of image quality on iris recognition
systems. However, most of the quality metrics of the literature make direct use of segmentation results without
further studying the segmentation quality itself.

Our contribution in this thesis is to propose a module detecting segmentation failures, i.e. large errors in
the location of the normalization contours or a very bad segmentation mask. To build this module, we exploit
the idea that correctly segmented images may or may not have good recognition performance depending on
the quality of their information content, but images for which segmentation did fail, have always very poor
recognition performance. Accordingly, we propose in this chapter a set of metrics designed to predict an
image’s False Non Match Rate introduced in Chapter 2. Let us note that these metrics are built to detect
segmentation failures so they are not able to distinguish two "correct" segmentation results.

In order to build these metrics, we use an intermediate Rough Region Segmentation (RRS) of the image.
This RRS is generated using simple and robust algorithms exploiting the pupil and iris location provided by
the fine segmentation under evaluation. We use this intermediate RRS to build two kinds of metrics. The first
type of metrics which we call Relative Metrics assumes that the RRS is a reference ground truth. In other
words, these metrics are based on the difference between the input segmentation and the RRS. The second
type of metrics which we call Empirical Metrics evaluates the quality of the segmentation of the RRS image
with respect to some prior knowledge on what a good segmentation is.

Computing all these quality metrics results in a vector of individual quality measures. However, in order
to decide if the segmentation is valid or not, it is necessary to fuse these individual metrics in order to generate
a final segmentation quality score. We propose to fuse these metrics by predicting the image’s False Non
Match Rate of the segmented image. To solve this problem, we train an ε-Support Vector Regression (ε-SVR)
algorithm and show that the output of the ε-SVR is coherent with the expected behavior of a meaningful quality
measure.

We start this chapter by a brief overview of what iris data quality is (Section 7.1) and then follow the
process described in Figure 54. In Section 7.2, we detail how we generate the RRS. In Section 7.3, we explain
how we build the quality metrics used to detect segmentation failures. In Section 7.4 we merge the individual
quality metrics to produce the final quality score. Finally, in Section 7.5, we make some comparative evaluation
for several segmentation algorithms and databases.

CONFIDENTIAL



Image Quality and Automatic Detection of Segmentation Failures 103

Figure 54: Main steps of the segmentation evaluation process. A rough unsupervised labeling is applied to

the image based on Finite Gaussian Mixture Models. Then labels are merged using the input segmentation

information in order to generate the intermediate Rough Region Segmentation (RRS). RRS is then used to

generate a set of quality metrics which are either Relative Metrics or Absolute Metrics. Finally, results are

merged to generate a final segmentation quality score.
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7.1 What Is Iris Data Quality?

The quality of a biometric sample is correlated to its recognition performance in a specific system. Indeed,
degradations in the input image quality tend to make the recognition harder, leading to a decrease of the
system’s performance. Degradations in iris images can be either blur, illumination inhomogeneity, strong
occlusion of the iris texture, low contrast along the iris borders, etc. (See Section 1.6 of Chapter 1 where we
describe such degradations).

Classical iris quality evaluation algorithms usually assume that the segmentation is known in order evaluate
the quality of the image. For instance, evaluating the contrast between the pupil and the iris requires the
location of the border between the two regions. However, such computation become inconsistent in case of
large failures of the segmentation process. Therefore, we propose to detect such large failures in order to ensure
the consistency of traditional iris quality algorithms.

In this section, we first describe usual iris quality evaluation methods. Then, we make a brief description of
segmentation evaluation principles. Finally, we describe the few articles in the literature which are specifically
devoted to iris segmentation quality.

7.1.1 Traditional Iris Quality

We start this section by describing one of the most significant piece of work of the community on the subject :
the IREXII-IQCE challenge. This challenge aims at defining some general quality metrics that should be
implemented in iris recognition systems in order to ensure correct data quality. Then we describe some more
specific articles of the literature. Our aim is not to give a complete state of the art of iris quality evaluations,
but only to highlight main trends that motivate our further work.

7.1.1.1 Iris Quality Calibration and Evaluation Challenge

The IREXII-IQCE challenge [71] (Iris Quality Calibration and Evaluation) was organized by the NIST in
2010 and gathered the main industrial and academic actors of iris recognition community. Each participant
was asked to give an implementation of 14 quality metrics expected to describe the quality of an iris image.
The challenge consists in an objective evaluation of the most consistent metrics, independently of the imple-
mentation and the database. Among the 14 considered metrics, the most significant ones are pupil/iris contrast,
pupil shape, iris/sclera contrast, gaze angle and sharpness.

The IQCE evaluation created an awareness about the importance of iris quality assessment for operational
systems. Moreover, conclusions of this evaluation are relevant regardless of the system used for recognition.
However, a drawback of this evaluation is that most competitors were industrial companies which did not give
access to their quality metrics implementation.

7.1.1.2 Some Reference Work on the Iris Quality

Quality metrics can be divided into two categories : global metrics that evaluate the quality at an image level
and local metrics that evaluate the quality at a pixel level. Local quality metrics are important for feature
extraction and recognition algorithms in order to weight good quality regions more than poor quality ones. On
the other hand, global quality metrics evaluate whether the overall image quality is sufficient for recognition.

In [31], Kalka et al. give a good overview of most quality metrics that were available before the IQCE
challenge. The authors propose to evaluate the impact of defocus blur, off-angle, occlusion/specular reflections,
lighting and iris resolution. Then, they build the associated quality metrics using the segmentation results of
their algorithm described in [83]. Finally, they merge these metrics using Dempster-Shafer criterion. They
show that the final quality score is correlated to the recognition performance of their system. However, they
also outlined in their discussion that the proposed metrics require correct segmentation results.
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In [59], Proenca proposes to extend most existing metrics for NIR imaging to Visible Wavelength. Ac-
cordingly, he gives a good state of the art of quality assessment methods in iris recognition. The metrics he
considered can be applied either on the raw image, the segmented image or the normalized image. Among the
22 cited articles, 16 correspond to the normalized or segmented images. Then, Proenca describes quality met-
rics for measuring focus, motion blur, occlusions, iris pigmentation, pixel count (area) and pupillary dilation.
Interestingly, the author also highlights that the considered quality metrics are dependent on the segmentation
results.

To conclude this section, we note that most quality metrics of the literature are built using the segmentation
results. Therefore, they are no longer consistent when the segmentation process fails. Our proposal in this
chapter differs from the classical quality approaches because we propose to detect large segmentation failures
instead of doing a fine evaluation of data quality.

7.1.2 Segmentation Quality

The evaluation of segmentation quality is a difficult problem because it is very hard to assess what a good
segmentation is. In [79], Zhang et al. propose a very complete survey of segmentation quality evaluation where
they attempt to answer this question. Although dedicated to unsupervised segmentation metrics, their work
gives a very good description of the different possible definitions of what can be called a good segmentation.
The authors identify 5 corresponding evaluation methods :

Subjective Evaluation The quality of a segmentation is judged by a human evaluator.

System-level Evaluation Evaluation is done by examining the impact of different segmentation methods on a
specific system.

Analytical Evaluation Evaluation of the structure and the complexity of the segmentation algorithms almost
independently of its output.

Supervised Evaluation Evaluation assuming the presence of a ground truth. The quality is based on the
difference to the ground truth.

Unsupervised Evaluation Evaluation of segmentation result’s properties (for instance the number of regions,
the regions homogeneity, the shape of the regions...).

As iris segmentation is naturally embedded in a complete recognition system, evaluating an iris segmenta-
tion by looking at its impact on the complete recognition system is a natural evaluation method, i.e. performing
a System-level Evaluation. We have discussed the way such an evaluation can be performed in Section 2.2 of
Chapter 2, but in the present chapter, our purpose is to create metrics that can evaluate the iris segmentation
quality of a single image in order to detect segmentation failures.

Supervised Evaluation are strongly limited by the requirement of a ground truth. Generation of such a
ground truth is usually done manually by a human operator. Therefore, such a generation is impossible for
operational applications. However, Supervised Evaluation methods can be very effective for benchmarking,
like for instance the competition NICEII [60] which provides a ground truth for every image.

Unsupervised Methods are based on prior assumptions on what a good segmentation should be and check to
what extent the input segmentation matches the assumptions. Without further specifications, these assumptions
are usually based on the homogeneity of the segmented regions. From our first experiments, we find out that
the homogeneity criterion is not suitable to evaluate the correctness of an iris segmentation because iris texture
may be highly textured and yet, correctly segmented. Therefore, in the following we propose more complex
quality metrics that are more specific to the iris segmentation problem.
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7.1.3 Iris Segmentation Quality

As explained in the introduction, the estimation of the segmentation quality in an iris recognition system has
been little studied so far. To the best of our knowledge, only five articles have studied this problem.

The earliest paper trying to predict the segmentation failures in iris recognition systems is the thesis dis-
sertation of Lee [38] from West Virginia University. In this thesis, the author computes a set of image quality
metrics based on regions’ homogeneity and heterogeneity. These metrics are combined using PCA to com-
pute a final score predicting segmentation failures. Thesis [38] is interesting because it is the first study of
the iris segmentation evaluation problem. However, the metrics used to predict segmentation failures are too
simple because they are only based on regions homogeneity and heterogeneity and do not take into account the
specificities of the iris segmentation task. Moreover, as we mentioned in the previous section, our preliminary
experiments indicate that region homogeneity does not seem pertinent to describe iris segmentation quality.
Indeed, the iris region can be more textured, and therefore less homogenous, than other regions in the eye.

In [?] Zuo et al. first show the impact of the degradation on the reference segmentation algorithms and then
propose to evaluate a set of empirical assumptions about the expected properties of a "correct" segmentation.
First the pupil should be of sufficient size. Then the cumulative gradient along the pupil and iris border should
be high. Finally, the pupil should have a lower intensity than the iris, and the iris a lower intensity than the
sclera.

In [81], Zhou et al. propose to add several quality modules to existing iris recognition systems in order to
make them suitable for non ideal iris recognition. One of the quality modules is dedicated to the evaluation
of iris segmentation quality. This module takes as input the segmentation mask and the two normalization
contours of the pupil and the iris. The module first re-segment the pupil using the pupil contour. If the input
pupil segmentation and the re-segmented pupil region overlap, the pupil is assumed to be correctly segmented.
Then, the quality of the iris segmentation is evaluated by assessing the homogeneity of concentric rings inside
and outside the iris contour. Finally the two scores are fused to generate a final segmentation quality score.

The article of Kalka et al. [30] was our main inspiration for the use of an intermediate RRS to evaluate
segmentation quality. In this article, the authors propose to build an intermediate segmentation using the
input segmentation and probability inferences. Then, they build a metric based on the mis-classified pixels
with respect to their intermediate segmentation. An interesting aspect of their metric is that they evaluate the
contours used for normalization (circles in the article), which is critical for correct recognition. However, from
our point of view, their intermediate segmentation is too simple because it is only based on the histogram
information. Indeed, this histogram may be incoherent if the segmentation has strongly failed. This statement
motivated us for developing a more robust system for this intermediate segmentation result we describe in
Section 7.2.

In [80], Zhang et al. train a classifier for identifying mis-localized iris segmentations. The idea is to
divide the image into 12 sub-regions and to learn the average curvature of the image manifold for a correctly
segmented image in each sub-regions. From our point of view, this approach is very limited because it strongly
relies on the learning step of the classifier, and may change if the sensor or acquisition conditions change.
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7.2 Rough Region Segmentation

As explained previously, simple quality metrics based on region homogeneity are not sufficient to quantify the
correctness of an iris segmentation. On the other hand, manual generation of a segmentation ground truth is
impossible for operational applications. Therefore, our proposal is to automatically generate a Rough Region
Segmentation that can be interpreted as a ground truth for evaluation. We compute these metrics on the RRS
because the RRS generation tends to enhance failures of the segmentation, making their detection easier.

Such approach is close to the idea of Kalka et. al [30] where they build a RRS based on the histogram of
the iris region. However, from our experience, a histogram is not a robust enough feature for building such a
RRS. Indeed, it may be largely corrupted in case of large failure of the segmentation. Accordingly, we propose
a robust way to build such a RRS. Our process is twofold :

• We propose to start by an unsupervised labeling of the image based on a Gaussian Mixture Model. The
idea is to learn on the image 16 Gaussian components. Each pixel of the image will be associated to
one of such components, namely to run "unsupervised label" generation (Section 7.2.1). The idea is that
describing the regions using a few Gaussians is actually more robust than using directly the intensities.

• Finally, we "merge" the unsupervised labels into three classes : pupil (label Lp), iris (label Li) or back-
ground (label Lb). To that aim we use the spacial information provided by the input segmentation we
want to evaluate (Section 7.2.2).

The main idea of this process is that if the segmentation is correct, the resulting RRS should be very close
to the input segmentation, but if the segmentation has failed, the RRS is expected to be very different as we
will see in the following.

7.2.1 Unsupervised Labels Generation

The first step of our process is to generate an unsupervised set of labels to represent image intensities. To that
aim, we use the spatially variant Gaussian Mixture Model (GMM) algorithm introduced in [65] with 16 labels.
We set the number of labels empirically as a tradeoff between computation time and the fidelity to the image
(the more the labels, the better the fidelity is, but also the slower the generation is). This algorithm belongs to
the field of finite mixture models which assume that each pixel in the observed image is a sample of a finite
mixture distribution. Therefore, estimating the underlying distribution mixture allows to associate a label to
every pixel in the image (the distribution having the largest contribution in the pixel’s representation).

Figure 55 illustrates the evolution of the algorithm. The 16 Gaussian distributions are initialized with sim-
ilar variance and with their means covering the complete intensity range. After a few iterations, the Gaussian
distributions start to catch some specific properties of the image.

(a) Original image (b) Initial labels (c) Iteration 3 (d) Iteration 9

Figure 55: Evolution of the Gaussian mixture.
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The interesting aspect of this unsupervised labeling is that every region in the image is represented using a
few Gaussians. Accordingly, in the next section we identify the regions that should belong to the iris and the
pupil regions.

7.2.2 From Unsupervised Labels to Iris Regions

At this point, our goal is to merge the unsupervised labels generated in the previous section into one of the
classes : pupil labels Lp, the iris labels Li and the background labels Lb. To that aim, we use the input
segmentation results.

Our assumption is that labels associated to the pupil should cover at least 80% of the pupil segmentation
mask. Remaining labels associated to the iris should cover 80% of the iris mask. This idea is that the resulting
masks of Li and Lp will contain all the objects in the image overlapped by the segmentation masks of the pupil
and the iris. The background labels Lb are all the unaffected unsupervised labels. Figures 56 and 57 illustrate
the generation of Li for a correctly and wrongly segmented image.

• In Figure 56, the Gaussians covering the largest portion of the iris segmentation masks are progressively
added until Li covers 80% of the iris segmentation mask. As the iris segmentation mask is correct, the
final Li (Figure 56h) and the segmentation mask (Figure 56i) are very alike.

• In Figure 57, the localization of the pupil has failed, leading to a complete failure of the segmentation
process. Accordingly, the segmentation mask only covers a part of the iris region and mostly eyelashes.
As the iris segmentation mask covers mostly non-iris region, the first two labels added to Li correspond
to eyelashes and shadows. However, the two last Gaussians actually correspond to the iris region. There-
fore, the final label mask Li (Figure 57j) is actually closer to a "good" segmentation mask than the input
segmentation mask (Figure 57k). Such a behavior could not always be achieved, but in any case the
label mask Li and the input segmentation mask will be very different for a poorly segmented image.

An advantage of this label merging process is that it merges all the unsupervised labels covered by the
segmentation mask. If the segmentation mask covers only one region, then the associated merged label will
be very close to the segmentation mask. However, if the segmentation mask relies on several regions, the
merging process will catch labels associated to all the regions. Therefore, the resulting merged label will be
very different from the original segmentation mask. Formally, if we note U the set of unsupervised labels of
Section 7.2.1 the algorithm for the generation of Lp, Li and Lb is :

Data: U the set of unsupervised labels
Lp = Li = Lb = ∅
while Lp does not cover at least 80% of the pupil mask do

Select the label UPmax ∈ U covering the largest part of the pupil segmentation mask.
add UPmax to Lp
remove UPmax from U

while Li does not cover at least 80% of the iris mask do
Select the label UImax ∈ U covering the largest part of the iris segmentation mask.
add UImax to Li
remove UImax from U

Lb = U
Algorithm 1: Generation of the pupil labels Lp, the iris labels Li and the background labels Lb

Figure 58 illustrates the process of Algorithm 1 for a correctly segmented image. As the pupil segmentation
mask is covered mainly (over 80%) by one label, this single label is associated to the pupil label Lp. The iris is
quite textured, therefore 4 unsupervised labels are required to cover the iris segmentation mask. These 4 labels
are associated to the iris label Li. The remaining labels are associated to the background label Lb.
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(a) Original Image (b) First Gaussian (mean
43, variance 4)

(c) Second Gaussian
(mean 57, variance 5)

(d) Third Gaussian (mean
74, variance 7)

(e) Empty Label Mask Li (f) Li with 1 Gaussian (g) Li with 2 Gaussians (h) Li with 3 Gaussians

(i) Input Segmentation
Mask

(j) Mask without Li
(42% removed)

(k) Mask without Li
(57% removed)

(l) Mask without Li
(89% removed)

Figure 56: Generation of Li for a correctly segmented image.

(a) Original Image (b) First Gaussian (mean
51, variance 5)

(c) Second Gaussian
(mean 64, variance 4)

(d) Third Gaussian (mean
90, variance 5)

(e) Fourth Gaussian
(mean 77, variance 5)

(f) Empty Label Mask Li (g) Li with 1 Gaussian (h) Li with 2 Gaussians (i) Li with 3 Gaussians (j) Li with 4 Gaussians

(k) Input Segmentation
Mask

(l) Mask without Li
(28% removed)

(m) Mask without Li
(55% removed)

(n) Mask without Li
(76% removed)

(o) Mask without Li
(95% removed)

Figure 57: Generation of Li for a incorrectly segmented image.

CONFIDENTIAL



110 Image Quality and Automatic Detection of Segmentation Failures

(a) Original Image (b) Pupil Mask (c) Iris Mask

Empty label regions U Lp Li Lb

Regions of the labels Lp U Lp Li Lb

Regions of the labels Lp,
Li

U Lp Li Lb

Regions of the labels Lp,
Li and Lb

U Lp Li Lb

Figure 58: Construction of the labels Lp,Li and Lb using the set of unsupervised labels U . The first row
displays the original image, the pupil segmentation mask and the iris segmentation mask. The second row
shows the initial situation : all the Gaussians are in the unsupervised set U and Lp,Li and Lb are empty. The
third row illustrates the association of one Gaussian to Lp. This Gaussian is chosen such that the labels in Lp
covers 80% of the pupil segmentation mask shown in Figure (b). The fourth row illustrates the association
of four Gaussians to Li. These Gaussians are chosen such that the labels in Li covers at leas 80% of the
iris segmentation mask shown in Figure (c). The final row shows the association of remaining labels to the
background.
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7.3 Quality Metrics

We have developed two kinds of quality metrics using the Rough Region Segmentation presented in the previ-
ous section. On one hand, we considered metrics comparing the RRS to the input segmentation results. The
idea of these metrics is to check for incoherence between the two segmentations. On the other hand, we com-
puted some quality metrics on the RRS to assess for the prior knowledge we have on what a good segmentation
is.

As explained in Section 2.2 of Chapter 2, a poorly segmented image looks different from any other image
of its own image class, i.e. poorly segmented image have a high iFNMR (Equation 12 of Chapter 2). There-
fore, we assess the pertinence of a metric based on its ability to "predict" the iFNMR of an image. To that
aim, we generate the iFNMR for 12,872 images of the ND-Iris database. We select these 12,872 images by
taking 20 images of each eye of every subject in the database1. So the iFNMR is computed on the 20 intra-
class comparisons involving each image for a threshold of 0.36 for a match/non-match decision. Setting this
threshold corresponds to an operating point with a FAR of 7.10−5 and a FRR of 0.08 for the system we used.
The segmentation is generated using B-snakes for iris segmentation (see Section 5.2.2 of Chapter 5) and our
EVF method presented in Chapter 6 for contour fitting.

Figure 59 shows the expected behavior of what we call a "good" quality metric. An increase (or a decrease)
of the quality metric implies an increase (or a decrease) of the average iFNMR, i.e the metric is correlated to
the iFNMR.

Figure 59: Expected behavior of a good quality metric.

7.3.1 Relative Metrics

The principle of relative metrics is illustrated in Figure 60. The idea is to compare the differences between
the original segmentation and the RRS image which corresponds to a novel segmentation of the image. We
build two kinds of quality metrics based on this idea. The first metric evaluates the quality of the pupil and iris
segmentation masks and the second metric evaluates the quality of the normalization contours’ location.
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Figure 60: Relative quality metrics.

Figure 61: Average iFNMR for sSegDiff

7.3.1.1 Differential Metric

This first metric that we propose is directly inspired from supervised evaluation methods ; it simply counts the
pixels labeled differently in the two segmentations. Formally, for S the input segmentation with value Si at
pixel location i, R the associated Rough Region Segmentation and n the number of pixels in the image we
have :

sSegDiff =
1

n

n∑
i=1

{Si 6= Ri} (119)

1If only less than 20 images were available for a subject, then we took all available images for this subject
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Figure 61 displays the average iFNMR of images w.r.t. their quality score sSegDiff . First, there is no
evolution of the iFNMR when sSegDiff increases from 0 to 0.22. But after 0.22, increasing of sSegDiff imply
an increase of the average iFNMR. This means that if the segmentation of an image and its RRS differ from
more than 22%, it is more likely that there is a segmentation error.

Figure 62 shows some specific examples of sSegDiff computations. The first row shows an example of a
correctly segmented image. The RRS catches most of the iris area and the only difference comes from inaccu-
racies around region borders and some eyelashes not caught by the RRS generation process. The second row
shows an example of a segmentation failure. As the pupil and the iris regions of the input segmentation cover
several distinct regions, the RSS generation tends to cover most of these regions, producing a bad misclassi-
fication score. The final row shows an image where the RSS is responsible of the bad score value. The large
dark area has exactly the same intensities as the pupil, hence the association of the pupil label to this region.
However, we assume this last image should not pass traditional image quality checks.

(a) Original Image (b) Segmented Image (c) RRS (d) Mis-classified Pixels

(e) Original Image (f) Segmented Image (g) RRS (h) Mis-classified Pixels

(i) Original Image (j) Segmented Image (k) RRS (l) Mis-classified Pixels

Figure 62: Examples of sSegDiff computations. The first row shows an example of a correct segmentation; we
obtain sSegDiff = 0.1. The second row shows an example of segmentation failure, we have sSegDiff = 0.4.
The last row shows an example of an image where the RRS generation is incorrect, we have sSegDiff = 0.5.

7.3.1.2 Accuracy of the Contour Location

Precision on the contours used for the normalization step is critical for iris recognition system (as discussed in
Chapter 6). We built a set of metrics inspired by the ideas of [81] and [30] in order to evaluate the correctness
of these contours location. From [81], we extend the idea of looking for concentric rings inside and outside the
contour, but instead of evaluating the regions homogeneity, we propose to count mis-classified pixels w.r.t. the
RRS similarly as [30].
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We propose to note R(Cref , t) the ring between a contour Cref and the same contour dilated by a factor t,
as illustrated in Figure 63. Formally, if we note d(Cref , t) the dilation of Cref by a factor t, we have :

R(Cref , t) =

{
{x ∈ Cref} ∩ {x /∈ d(Cref , t)} if t <= 1
{x ∈ d(Cref , t)} ∩ {x /∈ Cref} if t > 1

(120)

(a) Cref (b) R(Cref , t) for t < 1 (c) R(Cref , t) for t > 1

Figure 63: Illustration of R(Cref , t) for t values below and above 1.

In order to estimate the quality of the pupil contour location, we consider the quantity :

Mp(t) =

∑
x∈R(Cpupil,t)

{
L(x) = Lp

}
−

∑
x∈R(Cpupil,t)

{
L(x) = Li

}
∑

x∈R(Cpupil,t)

{
L(x) = Lp

}
+

∑
x∈R(Cpupil,t)

{
L(x) = Li

} . (121)

where Cpupil is the pupil contour and L(x) is the label associated to x in the RRS image. Mp(t) is bounded
between [−1; 1] and evaluates the ratio between the pixels labeled as Lp and those labeled Li inside the ring
R(Cpupil, t).

• If Mp(t) = 1, there are no pixels labeled as Li in the ring R(Cpupil, t).

• If Mp(t) = 0, there are as many pixel labeled as Lp as there are pixels labeled Li.

• If If Mp(t) = −1, the ring R(Cpupil, t) contains only pixels labeled as Li.

If Cpupil relies exactly on the pupil’s border, we should have Mp(t) = 1 for t < 1 and Mp(t) = −1 for t > 1.
Therefore, if the sign of Mp(t) changes far from t = 1 it indicates an incorrect location of the pupil contour.
Figure 64 shows Mp(t), t ∈ [0.5; 1] in 3 different situations.

• Figure 64b shows the evolution of Mp(t) for a correctly segmented image 64a. When t ≈ 0.5 the ring
R(Cpupil, t) covers a large part of the pupil. Therefore, Mp(0.5) ≈ 1 as amount of pixel labeled as Li
is small regarding to the one labeled as Lp. As t increases, Mp(t) remains close to 1 until t ≈ 1 where
Mp(t) starts dropping. This last drop is due to the rough nature of the RSS : the borders of the pupil are
not as clear in the RRS as they are in the input segmentation, resulting in some mis-classification close
to the pupil borders.

• Figure 64c shows an example with Cp outside its expected location. The overall evolution of Mp(t) for
this example is roughly the same as it is for the correctly segmented image, but Mp(t) becomes negative
for t = 0.85. This change of sign is significantly far from t = 1, that indicates an inaccurate location of
the pupil contour. Moreover, the maximum value obtained for M(0.5) = 0.5 is quite low. Indeed, we
would have expected a value close to 1 for a contour at the correct location.

• Figure 64e shows an example of a complete segmentation failure. Mp(t) decreases linearly and becomes
negative for t = 0.75 and the maximum value is only M(0.5) = 0.3.
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(a) Image correctly segmented (b) Mp(t) corresponding to (a)

(c) Pupil contour outside the pupil (d) Mp(t) corresponding to (c)

(e) Complete segmentation failure (f) Mp(t) corresponding to (e)

Figure 64: Examples of Mp(t) evolution for different scenarios. Figure 64a and 64b : Illustration of an image
where the pupil contour is at the right location. Accordingly, the histogram ofMp(t) between 0.5 and 1 remains
close to 1 until t ≈ 1. Figure 64c and 64d : Illustration of an image where the pupil contour is actually found
outside the pupil. Accordingly the value of Mp(t) decreases as t increases. This means that the closer the ring
is to the pupil contour Cp, the more mistakes are made. Figure 64e and 64f : Illustration of an image where
the pupil contour is at the wrong location. In this situation, Mp(t) decreases linearly as t increases.
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The examples of Figure 64 show that Mp(t) can characterize good and bad locations of Cp. We found
interesting to use more information in Mp(t) than a simple value like the value of t for which Mp(t) = 0.
Therefore, we propose to use the integral of Mp(t) to characterize the quality of the contour location. For
correctly segmented image (like in Figure 64b) we expect to have

∫
Mp ≈ 1, and for poorly segmented image

(like in Figure 64d) we expect to have
∫
Mp ≈ 0. Formally we define :

sPout = 2

∫ 1

t=0.5
Mp(t)dt (122)

where sPout aims at characterizing if the pupil contour is outside its expected location.

In the same way, we define sPin that aims at characterizing if the pupil contour is inside its expected
location :

sPin = 2

∫ 1.5

t=1
Mp(t)dt (123)

We define the same kind of metrics for the iris contour :

Mi(t) =

∑
x∈R(Ciris,t)

{
L(x) = Li

}
−

∑
x∈R(Ciris,t)

{
L(x) = Lb

}
∑

x∈R(Ciris,t)

{
L(x) = Li

}
+

∑
x∈R(Ciris,t)

{
L(x) = Lb

} , (124)

for counting the amount of pixels labeled as Li as opposed to pixels labeled as Lb in the ring R(Ciris, t). In
the same way we did for the pupil contour we define :

sIout = 2

∫ 1

t=0.5
Mi(t)dt

sIin = 2

∫ 1.5

t=1
Mi(t)dt

(125)

where sIin aims at characterizing if the iris contour is inside its expected location and sIout if it is outside.

Figure 65 shows that all the computed metrics have a good correlation with the iFNMR.

• The iFNMR decreases linearly with an increase of sPin. Therefore, images having a low value of sPin
(sPin < 0) are more likely to produce False Matching.

• The iFNMR is first stable w.r.t. increases of sPout and then starts to increase for sPout > 0. Therefore,
images having a high value of sPout (sPout > 0) are more likely to produce False Matching.

• The iFNMR first decreases sharply with increase of sIin and then stops evolving for sIin > 0. Therefore,
images having a low value of sIin (sPin < 0) are more likely to produce False Matching.

• The iFNMR increases linearly with an increase of sIout. Therefore, images having a high value of sIout
(sIout > −0.6) are more likely to produce False Matching.

Figure 66 shows examples of images among the worst w.r.t. these 4 metrics. sPin, sPout and sIout have the
expected behavior, but sIin identifies images with large occlusions despite a correct location of the contour. It
is not the behavior we expected for sIin but it is known [71] that the occlusion ratio has a strong correlation
with the recognition performance of the system, explaining why we observe a correlation between sIin and the
iFNMR.
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(a) sPin (b) sPout

(c) sIin (d) sIout

Figure 65: Average iFNMR for sPin, sPout, sIin and sIout
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(a) sPin = −0.28 (b) sPin = −0.13 (c) sPin = 0.03

(d) sPout = 0.82 (e) sPout = 0.55 (f) sPout = 0.54

(g) sIin = −0.60 (h) sIin = −0.59 (i) sIin = −0.58

(j) sIout = 0.62 (k) sIout = 0.45 (l) sIout = 0.44

Figure 66: Example of images with the worst quality score for metrics sPin, sIin, sPout and sIout
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7.3.2 Empirical Metrics

The basic principle of empirical metrics is illustrated by Figure 67. The idea is to evaluate how well a segmen-
tation matches a set of empirical assumptions on what should be a good segmentation. However, as illustrated
in Figure 67, we find more relevant to evaluate these metrics on the RRS image instead of on the input seg-
mented image because the RRS process tends to enhance segmentation failures ; indeed, some problems that
cannot be been seen in the original segmentation may be visible in the RRS image.

Our assumptions we have for a correct segmentation are the following :

• The pupil and the iris regions should be close to a circle, or at least, have a compact shape.

• The distribution of the pupil and iris intensities should take a limited range of intensity.

We have considered some other unsupervised metrics proposed in the survey [79] like simple intra-region
entropy :

∫
R h(x)log(h(x))dx with h the histogram of the region R. However, our experiments showed that

metrics assuming intra-region homogeneity are not directly correlated to the iFNMR.

Figure 67: Empirical quality metrics.

7.3.2.1 Circularity and Compactness

We use the criterion presented in [79] to evaluate the circularity and the compactness of a region, i.e. a set of
pixels. Let pk be the perimeter and Sk be the area of the region (region k being either the pupil or iris region).
We have :

compactness =
p2k
Sk

circularity = 4πSk
p2k

(126)

Figure 68 shows the average iFNMR for the pupil and iris circularity and compactness :

• The iFNMR does not change with an increase of the pupil circularity, the iris circularity and the pupil
compactness. Therefore, there is no correlation between them and the iFNMR.
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(a) Pupil Circularity (b) Iris Circularity

(c) Pupil Compactness (d) Iris Compactness

Figure 68: Average iFNMR for the pupil and iris compactness and circularity

• The iFNMR clearly increases w.r.t. an increase of the metric of the iris compactness. This increase is
especially notable for a compactness above 0.15.

Accordingly we only select the metric of the iris compactness (we note sIcomp) as being a relevant metric.

7.3.2.2 Contrast

Iris and pupil contrast are among the most discriminative features for image quality according to the IREXII-
IQCE challenge. For this reason, we implemented the corresponding criteria to check whether they can be
used to estimate a segmentation’s quality. Let mp be the average intensity of the pupil region, mi the average
intensity of the iris region and the mb the average intensity of the background. Then the pupil/iris contrast and
the iris/background contrast are defined as :

contrast pupil/iris =
‖mi−mp‖

255

contrast iris/background = ‖mb−mi‖
255

(127)
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(a) Contrast Pupil/Iris (b) Contrast Iris/Back

Figure 69: Average iFNMR for the pupil/iris and iris/background contrast

Figure 69 shows that the iFNMR does not evolves with changing in these metrics. Therefore there is no
correlation between the contrast and the iFNMR.

Our results differ from the IREXII-IQCE challenge benchmark because we do not use the same protocol to
assess the metric’s performance. In the IREXII-IQCE challenge the contrast is evaluated for the two compared
images and the evaluation is performed on the difference between the contrast of the two images. Therefore,
the conclusion of the IREXII-IQCE challenge is that the contrast should be close in the two compared image.
What we can conclude from our experiments is that the contrast of a single image is not informative on the
quality of the image.

7.3.2.3 Variance of Li and Lp

If the segmentation is correct, the associated Gaussian Mixture Model Li and Lp generated during the RRS
process should cover a limited range of intensity. Therefore, we evaluate the variance of Li and Lp to assess
respectively the quality of the iris and pupil region.

• The iFNMR does not change with an increase of the variance of Lp. Therefore, there is no correlation
between this metric and the iFNMR.

• The iFNMR increases with the variance of Li. This increase is important for a variance above 15.

Accordingly, we only select variance of Li (we note sIvar) as being a relevant metric.

7.3.2.4 Distance between Li and Lp and a Gaussian Model

The quality score presented in the previous section assumes that the pupil and the iris regions should cover
a limited range of intensities. In this section, we propose an even more constraint model : we assume that
the regions’ intensity should follow a Normal law. Indeed, if the segmentation has failed, the mixture should
be composed of very different Gaussians producing a Gaussian mixture very different from a Normal low.
Therefore, we evaluate the distance between the GMM of Lp and Li and the Normal distribution of same mean
and same variance. We compute this distance using the Battacharya distance :

dB(p, q) =

∫ ∞
−∞

√
p(x)q(x)dx, (128)
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(a) Variance of Lp (b) Variance of Li

Figure 70: Average iFNMR for the variance of Li and Lp.

where p and q are two probability distributions defined on R.

(a) Distance between Lp and the corresponding Normal distribu-
tion

(b) Distance between Li and the corresponding Normal distribu-
tion

Figure 71: Average iFNMR for Lp and Li distance to its corresponding Normal distribution

• The iFNMR does not change with an increase of the distance between Lp and the corresponding Normal
distribution. Therefore, there is no correlation between this metric and the iFNMR.

• The iFNMR decreases for an increase of the distance between Li and the corresponding Normal dis-
tribution. As this evolution is linear, there is a high correlation between the iFNMR and the distance
between Li and the corresponding Normal distribution.

Accordingly, we only select the distance between Li and the corresponding Normal distribution (we note
sIDistGMM ) as being a relevant metric.
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7.3.3 Selected Metrics

Finally, we selected the following metrics : sSegDiff , sPin , sPout, sIout, sIcomp and sIDistGMM since
those metrics show a high correlation with the iFNMR. In Figure 72, we evaluate their impact on the complete
recognition system by removing the worst 1% and 5% of the database with respect to these metrics in Figure 72.

In the context of a global recognition system, a good quality metric should rank images w.r.t. their influence
on the system’s recognition performance. Therefore, removing images of worst quality should improve the
overall system’s recognition performance. Moreover, for a good quality metric, the more images are removed,
the better the system’s recognition performance should be.

For the metrics we display in Figure 72, removing 1% of the "worst" images in the database significantly
improve the system’s recognition performance. However, removing 5% of the "worst" images instead of 1%
does not improve system’s recognition performance. This means that these quality metrics are pertinent for
identifying the worst images of the database but they do not to give a ranking between normal images.

Let us note that we chose not to retain the metrics sIin and sIvar despite of a good correlation with the
iFNMR. We did not select sIin because, as we can see in Figure 66, this criterion evaluates mainly the occlusion
rate of the image and not the segmentation quality in itself. Accordingly, we decided not to use this metric. We
also did not retain sIvar because it is too similar to sIDistGMM , but with a lower correlation with the iFNMR
than sIDistGMM .

Table 6 shows the correlation between the selected quality metrics (normalized between 0 and 1). The
correlation ρ between two sets of values x = {xi; i = 1...n} and y = {yi; i = 1...n} is defined as :

ρ =

n∑
i=1

(xi − x)(yi − y)

[
n∑
i=1

(xi − x)2
n∑
i=1

(yi − y)2

] 1
2

(129)

Most of the possible pairs of metrics are very slightly correlated. The pair of metrics showing the highest
correlation is (sSegDiff ,sIout) with a correlation of 0.425.

sSegDiff sPin sPout sIout siriscompactness sIDistGMM

sSegDiff 1 0.025 0.054 0.425 0.112 -0.001
sPin 1 -0.220 0.226 -0.209 -0.100
sPout 1 0.049 0.207 0.166
sIout 1 -0.059 -0.042

siriscompactness 1 0.299
sIDistGMM 1

Table 6: Correlation between the selected quality metrics
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(a) Removing 1% of the database

(b) Removing 5% of the database

Figure 72: Impact on the system’s recognition performance when removing the worst 1% and 5% images w.r.t
selected quality metrics.
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7.4 Failure Detection

For failure detection, we propose to fuse the quality metrics presented above in order to compute a final
segmentation quality score. Indeed, fusion allows exploiting the complementarity between such metrics. We
selected our quality metrics based on their correlation with the iFNMR. Therefore, we consider the fusion
problem as a regression one, trying to predict for an image the corresponding iFNMR. To tackle this problem,
we decided to use a Machine Learning approach and train a Support Vector Regression (SVR) to predict the
iFNMR of the images.

In this section, we first make a brief description of SVR methods, then we explain how we use them to
predict the iFNMR of an image.

7.4.1 Support Vector Regression

Support Vector Regression (SVR) is a particular kind of Support Vector Machines (SVM) dedicated to regres-
sion problems. SVM are a traditional type of supervised machine learning algorithms. SVM are trained using
a set of examples for learning the underlying properties of the input set in order to predict the properties of a
new input. SVM have been developed in the 90th by Vapnik and his co-workers at AT&T Bell laboratories [6].
The idea to use SVM for regression was first proposed by Vapnik et. al [75] in 1996 with the ε-SVR we will
describe here. In the following, we take the formulation introduced in the survey [67].

We note {(m1, s1)...(mn, sn)} the training set, where mi ∈ Rn represents the space of input patterns (the
quality metrics for our purpose) and si ∈ R is the expected pattern to learn from the input ones (the iFNMR
in our case). The objective of traditional ε-SVR is to find a function f that has as many output patterns si as
possible inside the band of size ε : [f(mi)− ε; f(mi) + ε]. Figure 73 shows such a linear function f with all
the training samples lying inside a band of width ε.

Figure 73: Illustration of a linear ε− SV R

A linear function f can be written as :

f(m) =< ω,m > +b, with ω ∈ Rn , b ∈ R and < . > the scalar product in Rn. (130)

The problem to solve becomes :

minimize 1
2 ‖ω‖

2

subject to
{
si− < ω.mi > −b ≤ ε
< ω.mi > +b− si ≥ ε

(131)
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This problem can be solved using a dual problem (see [67] for calculus details) and function f can be written :

f(m) =
n∑
i=1

(αi − α∗i ) < mi,m > +b, (132)

where αi and α∗i are Lagrangian multipliers representing the constraints of the minimization. Equation (132)
is called the support vector extension of the function because f is only described using the training parameters
mi (b can also be computed directly using mi). An interesting aspect of this formulation is that the complexity
of the function f is more dependent on the training parameters than of the dimension of the input space.

We have described here only the basic idea of SVR with a linear kernel. It is possible to consider non linear
kernels instead of linear ones, yet the final function is always represented using the training parameters. For a
more detailed description of SVR possibilities, see [67].

7.4.2 iFNMR Prediction

The first problem for every Machine Learning procedure is the construction of the training set. To do so, we
considered two classes of images.

Class I The image has an iFNMR of almost 0 (below 0.2)

Class II The image has a high iFNMR (above 0.2)

Most of the images fall in Class I, so to avoid over-learning, we randomly select 20% of the images in Class II
and add the same amount of images from Class I (selection also random). The resulting learning data base is
composed of 350 images containing as many Class I images as Class II images. The remaining images are
used for validation.

(a) Quality Score Distribution

Figure 74: Quality score distribution of the SVR results. As the SVR predict the iFNMR of an image, the
lower the score is, the better the quality is.

In order to carry out the learning and regression steps of the SVR, we use the toolbox LibSVM [52] with
a ε-SVR parametrization. We tried several kernel types and learning options and find out (based on cross-
validation and its influence on the recognition performance) that cubic kernel seems to the be the most suitable
for our problem. Figure 74 gives the score distribution of the SVR results on the full testing database (12,872
images).
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Figure 75 shows how the removal of the worst images in the database according to SVR results has an
impact on recognition performance. In Figure 75a we remove images based on their ranking w.r.t. their
predicted iFNMR. In Figure 75b, we remove images based on the absolute value of their predicted iFNMR.

The final quality score (predicted iFNMR) has a better influence on the system’s recognition performance
than any of the individual metric. We also remind that removing 1% or 5% of the database for the individual
metrics had roughly the same impact on recognition performance (see Figure 72 in Section 7.3.3). On the
contrary, SVR results seems to give a good ranking of the image quality since the more images are removed,
the better the recognition performance.
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(a) Rank based evaluation

(b) Score Based evaluation

Figure 75: Evaluation of recognition performance when removing the worst images according to the score
generated by the SVR on the ND-Iris Database
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7.5 Evaluating the Impact of the Fused Quality Score

As our final quality score is based on a Machine Learning algorithm, we consider important to assess that
the resulting scores are neither dependent on the image database used for training (here ND-Iris) nor on the
algorithm used to generate the input segmentation (here B-Snakes). Therefore we have applied our SVR
(without retraining) on a different database and on images generated with a different segmentation algorithm.

Let us note that in the following, we consider that our quality score is the prediction of the image’s iFNMR.
Therefore, a high output value corresponds to a bad quality score.

7.5.1 Evaluation on the Casia-Thousand Database

We chose to evaluate the consistency of our quality score on Casia-Thousand for two reasons. First, the
database has been generated using a different sensor than the one used to generate the ND-Iris database.
Therefore, the images of the two databases are very different. The second point is that this database contains
challenging images for our segmentation algorithm (like for instance glasses, that may generate large specular
reflections on the image or corrupting pupil initialization). Therefore, we expect to have worse segmentation
results on this database than on the ND-Iris database.

Among the 3000 randomly selected images that we considered, 276 did not pass trivial quality checks like
having a non-empty segmentation mask, or neither too big nor too small normalization contours. They were
therefore discarded and the score evaluation is done on the remaining 2724 images.

(a) Quality Score Distribution

Figure 76: Quality score distribution of SVR trained on the ND-Iris database and applied on the Casia-
Thousand database

Figure 76 shows the distribution of the quality score of the 2724 images. The overall distribution is shifted
on the right compared to the reference experiment we conducted on the ND-Iris database in Section 7.4. This
means that the images of this database have a tendency to have a higher predicted iFNMR on the CASIA-
Thousand database than on the ND-Iris database. This is coherent with our expectation that our segmentation
algorithm performs worse on this database.

Figure 77 shows that our quality score provides a good ranking of the image quality in the Casia-Thousand
database since the more images are removed, the better the recognition performance. We manually check the
segmentations of the images with the worst quality score. 113 images have a quality score above 0.8 (some of
these images are displayed in Figure 78).
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(a) Rank based evaluation

(b) Score Based evaluation

Figure 77: Evaluation of the recognition performance when removing the worst images according to the score
generated by the SVR for the Casia-Thousand database
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(a) predicted iFNMR 3.08 (b) predicted iFNMR 1.50 (c) predicted iFNMR 1.61 (d) predicted iFNMR 0.89

Figure 78: Some of the images of the Casia-Thousand database with the worse quality scores.

This experiment shows that quality score defined in Section 7.4 on the ND-Iris database is still pertinent
when used on an image database different from the one used for training. However, some errors could be
corrected by using a composite database composed of images from different image databases.

7.5.2 Evaluation Using GAC algorithms

In order to study the sensitivity of our trained SVR to the algorithm used to generate the segmentation, we
segment the images using Geodesic Active Contour (GAC ; Section 5.3.1 of Chapter 5) instead of B-snakes
used for the training.

(a) Quality Score Distribution

Figure 79: Quality score distribution of the SVR results using GAC segmentation algorithm evaluated on the
reference sub-set of the ND-Iris database

Figure 79 shows the distribution of the quality scores when using GAC for segmentation. The distribution
has roughly the same shape as the reference one for B-snakes (described in Section 7.4). However, for B-
snakes, the distribution almost drops to 0 after 0.3. On the opposite, for the GAC, the distribution decreases
very slowly to 0. This means that there are more images with bad quality scores with the GAC algorithm than
with the B-snakes algorithm.

Figure 80 shows that the quality score still behaves correctly in the sense that the more images are removed,
the better the recognition results are. However, gains in recognition performance increase slowly with the
amount of removed images compared to the reference experiment (Section 7.4), in which a bigger gap is
obtained when removing the first few percents of the worst images.
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(a) Rank based evaluation

(b) Score Based evaluation

Figure 80: Evaluation of recognition performance when removing the worst images according the score gen-
erated by the SVR using GAC segmentation algorithm (on the ND-Iris database)
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In order to understand this behavior, we made a visual inspection of 200 images with a very bad quality
score (above 0.8). Among these 200 images, 114 correspond to complete segmentation failures, 42 correspond
to images poorly segmented but suitable for recognition and 44 correspond to correctly segmented images (see
Figure 81d for example).

(a) score 2.9 (b) score 2.8 (c) score 0.87 (d) score 0.89

Figure 81: Some of the segmentation generated using GAC with the worst quality scores. The first two ones
are large segmentation failures. The third one includes skin area in the iris mask, explaining the bad quality
score. The last segmentation seems correct if restricted to the normalization contours.

The problem with the above evaluation is that the iris segmentation mask is restricted to the inner part
of the two normalization contours. This is due to the fact that everything that lies outside the normalization
contour is not relevant for recognition because it will not appear in the normalized image. However, when
looking at the complete segmentation mask of the 86 "correct" images at visual inspection, they almost always
correspond to images in which there is an over-segmentation of the iris region.

In order to explain this behavior, we have to recall some properties highlighted in Section 5.5 of Chapter 5.
The GAC algorithm evolves using a balloon force may push the contour outward. This tends to produce over-
segmentation of the iris region because the contour may cross the iris borders. However, in Section 5.5 of
Chapter 5, we have assessed that this kind of segmentation failure does not have a strongly negative impact on
the recognition performance.

In Figure 82 we illustrates why over-segmentations are identified as being images of poor quality by our
quality measure. Because of the balloon force and the softness of the right iris border, the GAC has leaked out
the iris region (See Section 5.3.1 of Chapter 5). Therefore, the RRS generation process associated to the iris
labels both the iris and the limbus. Accordingly, the value of sML is rather bad for this image.

(a) Original Image (b) Segmented Image (c) RRS (d) Mis-classified Pixels

Figure 82: Example of over-segmented image using GAC with sML = 0.28.

These results are interesting because they allow identifying poorly segmented images despite the fact that
they have good recognition performance. This shows that our quality metric is pertinent from an image pro-
cessing perspective. However, identifying these images as being of poor quality can be discussed from a global
system perspective. Indeed, in the complete recognition system, we should only remove images having a bad
impact on the system’s recognition performance. Therefore, we should correct our algorithm’s behavior.
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7.6 Conclusion

In this chapter, we have proposed a quality metric to evaluate the quality of an iris segmentation. This quality
metric is the output of a Machine Learning algorithm trained using basic quality metrics dedicated to different
types of segmentation failures.

These metrics use an intermediate Rough Region Segmentation to replace a ground truth for the segmenta-
tion evaluation. The generation of this RRS is robust in the sense that the generation process tends to enhance
inaccuracies in the original segmentation, but stays coherent with this last one if the segmentation is correct.
Though based on a Machine Learning algorithm, we have validated that the learned pattern is still coherent on
different image database and for different segmentation algorithms.

We see two main perspectives for our work : first, as we have explained in this chapter, most traditional
segmentation quality metrics based on the homogeneity of the regions do not work for iris segmentation eval-
uation because the iris can be highly textured. Therefore, instead of evaluating the homogeneity of a region
using only histograms, a metric able to evaluate the homogeneity based on textural information could most cer-
tainly help to incorporate traditional homogeneity-based quality metrics to our system. Then, we have trained
our SVR on a single database for a specific segmentation algorithm. We have also assessed that results remain
pertinent when changing the iris database and the segmentation algorithm. Yet, we think that building a com-
posite database for training, mixing different databases and generated using different segmentation algorithms,
could improve the generalization performance of the SVR.
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Chapter 8

Conclusion

In this thesis, we have studied the problem of segmenting iris images acquired with low acquisition constraints.
Our segmentation system is embedded in a complete recognition system using Daugman’s [16] matching
algorithm to compare irises. This context led to designing a complete segmentation system and to evaluate it
in the framework of its interaction with the pattern matching stage. Therefore, the "best" segmentation system
is which has the best complementarity with the matching stage.

We have split the complete segmentation task into several modules, each one dedicated to a singular task.
This allows simpler individual tasks to be addressed, however, we have to consider all of them in order to
segment the iris. As described at the end of Chapter 3, we have chosen to apply a Texture First strategy to
segment the iris. This means that we first segment the iris region in the image, and then retrieve the iris borders
in order to generate the normalized image. During the development of our segmentation system, some modules
naturally appeared as being more critical than others, namely

• Rough localization of the pupil in the eye image in order to initialize the complete segmentation process.

• Accurate detection of the pixels belonging to the iris texture in the image, i.e. iris region segmentation.

• Estimation of the iris borders under possible occlusions in order to generate the normalized image.

• Evaluation of the quality of segmentation results in order to identify failures of the segmentation process.

As a consequence, we have focused on these modules for which we have proposed some novel solutions
discussed below.

The localization of the pupil area is extremely critical because an error in its localization usually results
in a complete failure of the segmentation process. Most iris segmentation algorithms assume that the pupil is
the darkest element in the image and that its location can be obtained using thresholding algorithms [46, 63,
10, 84, 66]. However, this process can fail because of other dark elements in the eye, such as eyelashes or
eyebrows. To solve this problem, we have proposed to first segment the eyelashes and eyebrows in the image
in order to remove them from the pupil localization process. This approach differs from classical eyelash and
eyebrow segmentation algorithms [17, 72, 33, 37] because they assume that the pupil location is known. With
this aim, we developed two eyelash and eyebrow segmentation algorithms and assessed their performance on
the ND-Iris and Casia-Thousand databases.

We have studied the segmentation of the iris region using Active Contours. Though Active Contours have
became popular for iris segmentation [17, 76, 66, 62], to our knowledge, there is actually no comparative
evaluation of such algorithms. In Chapter 5, we have conducted a comparative evaluation of different Active
Contours implementation for iris segmentation. The novelty of our approach is that the evaluation is performed
in a fixed segmentation framework (same initialization, same contour fitting method and same database) and
for a given recognition algorithm. Therefore, we can really evaluate the influence of the segmentation stage
only. We have studied several variations of Active Contours’ implementations in terms of contour generation
and energy formulation. This allows us identifying some desirable properties that a segmentation algorithm
should have in order to be used in our complete processing stream (from acquisition to recognition).

We have proposed a new precise and effective way to estimate elliptic contours for iris normalization : the
EVF framework. This algorithm relies on the Active Contours approach and leads to a compact formulation
for ellipses. We have compared our algorithm to classical Direct Least Square fitting for ellipses [22] and to
a Randomized Elliptic Hough Transform [45] and have shown that our algorithm performs better on several
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reference databases when integrated in the complete processing stream. After this global evaluation, we have
addressed some specific issues, such as the evaluation of off-angle images and computation times.

Finally, we have proposed an original module to detect failures of the segmentation process. To the best
of our knowledge, only 5 articles [38, 29, 81, 30, 80] study the evaluation of iris segmentation quality. In
order to identify poorly segmented images, we first re-segment the iris using an original process that we called
Rough Region Segmentation (RRS). This RRS can be interpreted as a ground truth and allows us to design a
new set of segmentation quality metrics specific to iris segmentation. We fuse these metrics using a Support
Vector Regression (SVR) in order to build a final quality score. We have assessed that our trained SVR is not
dependent on the iris database nor on the segmentation algorithm used for training.

Different main problems concerning iris segmentation are thus studied in this thesis, covering a wide range,
from basic image processing tasks to to high level tasks such as quality measurement. The methodological
framework is original since we also study the interaction between the segmentation and the recognition steps
of the global system. Conclusions consist in the following :

(i) Most contour fitting methods used in Texture First segmentation strategies [76, 66, 62] make a direct
use of the region segmentation results. Therefore, inaccuracies in the segmentation mask can lead to
large errors in the contour’s location. On the contrary, our EVF framework is barely dependent on
the accuracy of the segmentation mask. It only uses this information for initialization and then uses
the image’s intensity. Moreover, our method is also more robust than classical elliptic fitting methods
that we considered : Direct Least Square fitting for ellipses [22] and to a Randomized Elliptic Hough
Transform [45]. Indeed, as our EVF framework works on the image instead of on segmentation results,
it can even correct inaccuracies of the segmentation mask.

(ii) The evaluation conducted in Chapter 5 allows us to identify the general properties a segmentation algo-
rithm should have in order to be embedded in our system (i.e. a Texture First segmentation strategy using
Daugman’s [16] matching algorithm). We noticed that segmentation algorithms’ performance is more
characterized by the nature of their failures than by the accuracy of their generated segmentation mask.
This behavior is due to the matching algorithm we used in our complete recognition system. Indeed,
this matching algorithm is based on a test of statistical independence on a large number of bit compar-
isons. Therefore, this process can handle some small inaccuracies in the segmentation mask and still be
discriminative ; however, a lack of information results in fewer comparisons of bits and, therefore, in a
less reliable matching result. For this reason, under-segmentations have a very negative impact on our
system’s recognition performance.

(iii) The evaluation of segmentation quality is a difficult problem because it is very hard to assess what a
good segmentation is. The most common method to evaluate the accuracy of a segmentation is to use
a manually generated ground truth representing the expected segmentation result. This method can be
used for benchmarking but it is not possible to get such a ground truth in operational systems. Therefore,
we have proposed a new method to re-segment the iris so that the new segmentation can be seen as
a ground truth of the expected segmentation. This original process, which we called Rough Region
Segmentation (RRS), allows some traditional segmentation evaluation methods to be applied even in
operational systems for which no ground truth is available.

(iv) We also define a general framework to select and fuse segmentation quality metrics. We select individual
quality metrics that showed a correlation with the iFNMR of images. As all the chosen metrics are
correlated to the iFNMR of images, we propose to fuse them using a regression approach, i.e. predicting
the iFNMR of a given image using the individual metrics. With this aim, we trained an SVR and used
the predicted iFNMR as an indicator of segmentation quality. The interesting aspect of our approach is
that it is a general framework that could be used with any other segmentation quality metrics.
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The segmentation system proposed here fulfilled the objective of being able to segment irises acquired with
low acquisition constraints. However, we see some points that could be improved in our current system :

First, the contour fitting and the normalization stages should receive important attention. Indeed, in systems
based on Daugman’s recognition algorithm [16], matching is done by aligning the features of specific points
from the normalized image of the two irises. If the normalization is not done properly, the two textures, and
therefore, the corresponding points do not correctly align and recognition performance is affected. In this
thesis, we have proposed an effective way to model the iris border using ellipses. This approach has shown
improvements compared to a similar circle-based formulation and reference elliptic-based models. However,
this elliptic model is still an approximation of the "true" anatomic borders of the iris. Studying more flexible
models that can handle non-rigid deformations should improve our system. However, we have noticed that
it is more critical to have a robust fitting scheme than an accurate one. Therefore, increasing the contour’s
flexibility should not decrease the contour fitting’s robustness.

On the other hand, our study on Active Contours for region segmentation showed that most contours con-
sidered were actually too flexible. This flexibility allows them to take almost any shape during the segmentation
and thus, to produce very accurate segmentation masks. However, this flexibility can also lead to the generation
of segmentation masks which are very different from the expected solution. For this reason, considering more
constrained models should improve the final recognition performance of the whole processing stream even if
the segmentation masks are less accurate.

Finally, in order to assess the quality of a segmented image, we have focused on the prediction of the
images’ iFNMR. This is an intuitive choice as the iFNMR represents to what extent an image is similar to
other images of its own class, and a poorly segmented image is not similar to other images of its class (high
iFNMR). Therefore, it is possible to identify large segmentation failures because this kind of image tends to
look different from a correctly segmented image. However, during our study of segmentation algorithms, we
noted that False Acceptances have more impact on the system’s recognition performance than False Rejections.
It would be interesting to be able to predict the tendency of images to produce False Acceptances as we did
for False Rejections. Therefore, we would study the possibility to predict the images’ iFMR as a complement
to the approach we have presented for iFNMR. Having both a prediction of iFMR and iFNMR should allow
a better characterization of segmentation failures. Nevertheless, it is more difficult to give an interpretation
to such an approach because the iFMR of an image is influenced by other classes of images used during the
training of the algorithm.
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Appendix A

Modular System for Iris Segmentation

In this Appendix, we describe the complete segmentation system that we have developed during this thesis.
This system takes as input a row eye image acquired under Near Infrared (NIR) illumination and produces as
output a normalized image for recognition. This segmentation system integrates the key algorithms we have
described in Chapters 4 to 7, but also some classical algorithms for iris segmentation. As these algorithms do
no show a clear novelty compared to the state of the art, we propose to describe them in this Appendix instead
of in the core part of this manuscript.

A.1 System Overview

Figure 83 summarizes our system’s work-flow and the connection between the different modules. These mod-
ules are :

Image Acquisition The image is acquired under Near Infrared illumination. This acquisition can be made
with different sensors and different illumination devices introducing variability in the
input images.

Preprocessing We first apply some global correction on the image to limit the influence of the sensor.

Pupil Segmentation The pupil segmentation aims at finding the pupil region in the eye and the related nor-
malization contour. The process is divided into three sub-steps :

(i) Rough localization of the pupil area in the image (Chapter 4)

(ii) Accurate segmentation of the pupil region using B-Snakes (Section A.3.2 of this
Appendix)

(iii) Fitting of an ellipse on the pupil borders (Chapter 6)

Iris Segmentation The iris segmentation aims at locating the iris region in the eye and the related normal-
ization contour. In analogy to the pupil segmentation module, we divide the process
into three sub-steps :

(i) Building of a rough region of interest containing the iris region (Section A.4.1 of
this Appendix)

(ii) Accurate segmentation of the iris region using one of the segmentation algorithm
we describe in Chapter 5.

(iii) Fitting of an ellipse on the iris borders (Chapter 6)

Segmentation Quality This module is dedicated to the detection of poorly segmented images. If the segmen-
tation process fails, the image should be discarded or re-segmented (Chapter 7).

Image Normalization The iris texture and the normalization mask are unwrapped using the normalization
contours (Section 1.3 of Chapter 1).
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A.1. System Overview 149

Figure 83: Complete work-flow for iris segmentation. The arrows indicate the inputs and outputs of every

module.
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A.2 Preprocessing

In operational systems, the image can be acquired by various sensors and under varying illumination condi-
tions. In order to make our algorithms less sensitive to this variability it is necessary to apply some global
corrections to the image.

We consider two main corrections, first we remove the specular reflections created by the NIR illumination
and then we apply a global contrast correction depending on the sensor properties.

A.2.1 Specular reflections suppression

Illumination in NIR uses diodes to highlight the iris texture. However, these diodes create specular reflections
appearing like white spots in the image (see Figure 84).

These spots are disturbing for segmentation because they create very high gradients in areas expected to be
homogenous like the pupil. For this reason it is common to remove these reflections before the segmentation
stage [84] [26].

(a) LG 2200 sensor (b) In house Casia sensor (c) IKEMB-100 sensor (d) IOM sensor

Figure 84: Specular reflections for various sensors

A.2.1.1 Spot Detection

The shape of the specular reflection depends on the sensor and the illumination device used to acquire the
image (See Figure 84). However, they always appear as very white pixels in the image. Some other regions
may have white intensities such as the skin or the limbus, so simple thresholding techniques are not sufficient
to identify the reflections.

We apply a local contrast enhancement to highlight spots. These reflections are very white spots present
in dark regions of the image (pupil). Hence, local increase of the contrast highlights these regions whereas the
skin and limbus are left unchanged. We apply the following process to every pixel x in the image :

• Compute the mean M(x) of every pixel x in the image estimated in a 5x5 neighborhood.

• Apply the transform I ′(x) = I(x) + k(I(x)−M(x)) to every pixel x in the image (with I(x) ∈ R)).

If k is negative, this transform tend to smooth the image (for k = −1, I ′(x) = M(x), i.e. a mean filtering).
If k is positive, then the contrast of the image is locally increased (term k(I(x) −M(x)) correspond to the
local contrast which is added to the original image intensity). We take k = 2, which heavily increases the
local contrast. Then, it is possible to segment the region of the specular reflections with simple thresholding
methods.
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(a) (b) (c) (d)

Figure 85: Specular reflections removal : Original image (a). Image after contrast enhancement (b). Thres-
holed image (c). Image after hole filling (d).

A.2.1.2 Hole filling

Once the spots are segmented, it is necessary to remove them from the original image. The most common
technique is to use an inPainting algorithm, aiming at filling the holes in the image with the surrounding
information (see [84] for details).

The method we implement uses the same idea but without the accuracy of the inPainting algorithm. The
purpose is only to roughly fill the holes, and not to reconstruct precisely the missing information. Our idea is
to propagate the mean from the outer regions to the inner ones :

1. Select the region to fill.

2. For each point on the border of the region, look for connected pixels where intensity is known and affect
their mean to the current pixel.

3. Erode the region to fill by one pixel (i.e. remove the border of the region).

4. Go back to the first step until their is no more region to fill.

A.2.2 Intensity adaptation

Different sensors can produce images with very different intensity distributions. For instance, the image in
Figure 86a has a good contrast between the pupil and the iris, whereas the contrast between the limbus and
the iris is rather low. On the opposite, the image displayed in Figure 86c is acquired with a sensor generating
darker images, and the contrast between the pupil and the iris is very low whereas the contrast between the
limbus and the iris is quite good.

(a) Original image of Casia-
Interval Database

(b) Corrected image of Casia-
Interval Database

(c) Original image of Casia-Lamp
Database

(d) Corrected image of Casia-
Lamp Database

Figure 86: Figures (a) (c): Original images from databases Casia-Interval and Casia-Twins. Figures (b) (d) :
Images after application of the process presented in Section A.2.2 (γ = 0.7 for Casia-Interval and γ = 1.3 for
Casia-Twins).

CONFIDENTIAL



152 Modular System for Iris Segmentation

In order to reduce the sensitivity of the following algorithms to this intensity variability we apply a global
contrast correction to the image depending on the nature of the acquisition sensor :

I ′(x) = I(x)
1
γ . (133)

For sensor producing bright images, a gamma below 1 is used, and for sensors producing dark images, a
gamma value above 1 is applied.

Finally, we apply an intensity stretching on the histogram to ensure that the intensity range is fully used.
Moreover, we crop the 5% highest and lowest intensities in order to correct some artifacts and to ensure that the
pupil is one of the darkest element in the image and the skin is the lighter one. Results of this transformation
are shown in Figure 86b and Figure 86d.

A.3 Pupil Segmentation

The pupil is one of the darkest elements of the eye image acquired in NIR illumination. For this reason it
is common to segment the pupil first. The segmentation of the pupil can be divided into three sub-problems
illustrated in Figure 87. The first, and maybe most important step, is the rough localization of the pupil. Then
the pupil region is accurately segmented. Finally a parametric contour is fitted to estimate the pupil borders
under the occlusions.

(a) Rough localization of the pupil (b) Generation of the pupil segmentation
mask

(c) Fitting of the pupil normalization con-
tour

Figure 87: The three sub-steps of the pupil segmentation.

A.3.1 Rough Pupil Localization

The pupil localization aims at finding the rough location of the pupil area in the image. This task is critical
because any mistake made at this point can no longer be corrected afterward. The key aspect of this step is to
distinguish the pupil from other dark elements in the eye such as eyelashes and eyebrows. We addressed this
issue in Chapter 4.

A.3.2 Pupil Region Segmentation

(a) Original image (b) 10 iterations (c) 20 iterations

Figure 88: Fine pupil segmentation based on B-snakes.
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The pupil usually has very sharp and clear borders, therefore segmentation of the pupil is quite simple once
the pupil area has been identified.

Thresholding methods are a popular way to segment the pupil, but from our experiments, these techniques
can lead to inaccurate segmentation when the upper eyelid or eyelashes touch the pupil. Accordingly, we use
of B-Snakes described in detail for iris segmentation in Section 5.2.2 of Chapter 5.

A.3.3 Pupil Contour Fitting

The last step of pupil segmentation is estimating a parametric contour describing pupil border under possible
occlusions. This task is challenging for the pupil, not because of the occlusions, but because the pupil may
anatomically have a non-circular shape. In Chapter 6, we presented the module we developed to efficiently
and robustly fit ellipses to the pupil borders.

A.4 Iris Segmentation

The iris segmentation follows the pupil segmentation. Therefore we can use the pupil information as a clue
for the location of the iris region. Like we did for the pupil, we divide the process into three sub-problems.
We first use the information provided by the pupil to build a region of interest where we expect to find the
iris. This rough region of interest is followed by an accurate segmentation of the iris texture using algorithms
derived from the active contours models. Finally we fit a parametric contour to the iris borders.

(a) Rough segmentation of the iris region (b) Generation of the iris segmentation
mask

(c) Fitting of the iris normalization contour

Figure 89: The three sub-steps of the iris segmentation.

A.4.1 Iris Location

In order to build this region of interest we use the pupil location. We build a rough estimation of the iris
histogram and use it to estimate a region of interest including the iris region.

A.4.1.1 Iris Histogram estimation

Based on the pupil location, we consider three sub-regions where we expect to have a border between the iris
and the limbus : left, right and down (we do not consider the upper part, as this area is often occluded by
eyelashes). See Figure 90.

The idea is to find for every region the border maximizing the distance between the inner and outer his-
togram (the iris histogram and the background histogram). To that aim, we use the Bhattacharyya distance :

dB(pi, pb) =

∫ √
pi(x)pb(x)dx, (134)
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Figure 90: Estimation of the iris and background histograms. (a) : Original image. (b) (c) (d) : extracted
sub-regions expected to have an edge between the iris and the limbus. For each of these regions, the abscissa
best separating the background and the iris are computed (displayed in red in the image). The histograms of
the three inner and outer regions are averaged and normalized in order to compute the estimated histogram for
the iris (Figure (f)) and the background (Figure (e)).

where pi is the probability distribution if iris intensities and pb the background one. This distance is between 0
and 1, value of 0 means completely different distributions, and value of 1 means identical distributions.

Once the best separation has been found for the three sub-images, we average the three inner and outer
histograms to generate an estimation of the iris and background histograms.

A.4.1.2 Region Of Interest

For every pixel in the image, we compute the log likelihood w.r.t. the two probabilities previously computed :

L(I(x)) = log( pi(I(x))
pb(I(x))),

= log(pi(I(x)))− log(pb(I(x))),
(135)

pi is the probability distribution of the iris intensities and pb correspond to the background intensities. If the
log likelihood for a given pixel is positive, the pixel is likely to belong to the iris, otherwise it is likely that it
belongs to the background.

In the end, a simple thresholding around 0 of the log-likelihood image gives an estimation of the iris
region. Finally, we apply a binary dilatation of the mask of the region of interest to ensure that the iris region
is included in the mask.
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(a) Original image (b) Log-likelihood image (c) Region Of Interest

Figure 91: Building of the iris Region Of Interest.

A.4.2 Iris Region Segmentation

The segmentation of the iris region is a critical part of the complete segmentation process because the resulting
segmentation mask indicates areas not belonging to the iris and which should be excluded from the recognition
process. This task is challenging because the algorithm should not only reach a good precision, but they must
also be very robust to handle a large variability in the acquisition conditions.

In order to solve this problem we implemented several Active Contours described in Chapter 5. The Region
of Interest we found in the previous stage is used to initialize the region segmentation process and to reduce
the computation time by restraining the process to this region.

A.4.3 Iris Contour Fitting

Like for the pupil, the last step of the iris segmentation is to find a parametric contour describing the iris borders
under the occlusions. Unlike the pupil, the anatomic iris borders are usually rather close to a circle but the iris
texture is very likely to be occluded by eyelids and eyelashes. We present a robust method which we developed
to fit ellipses to the iris borders in Chapter 6.

A.5 Segmentation Quality

(a) predicted iFNMR 1.71 (b) predicted iFNMR 1.23 (c) predicted iFNMR 1.04

Figure 92: Example segmented images with bad segmentation quality scores

The assessment of the image quality is a critical issue in iris recognition system. Traditionally, the algo-
rithms estimating the image quality are often placed either at the image acquisition level to check the quality
of the raw image, or after the segmentation module to assess if the biometric sample has enough information
to characterize the iris. Our proposition differs from the two traditional approaches in the sense that we aim at
evaluating the image segmentation independently.
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To that aim, we trained a SVR to predict the iFNMR of a segmented image using a set of new quality
measures. We describe these measures and the training of the SVR in the Chapter 7. If the quality score
of a given segmentation is too bad (like for the images of Figure 92), the image should be reacquired or
re-segmented, with new settings.
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Appendix B

Variational Contour Optimization

In this appendix, we give the explicit derivation of energetic equations presented in Chapter 6. We first give
the general formulation for ellipses and then describe the circle as a special case of ellipses, leading to some
simplification in the equations.

B.1 General elements

As explained in Chapter 6, an ellipse E(xc, a, b, φ) can be parametrized by equation :

x(θ) = xc + a cos(θ)
→
nφ +b sin(θ)

→
tφ, (136)

for θ ∈ [0; 2π[. Given this parametrization, the normal and tangential vectors are :

→
T (θ) = d

dθx(θ),

= −a sin(θ)
→
nφ +b cos(θ)

→
tφ,

(137)

→
N(θ)= −b cos(θ)

→
nφ −a sin(θ)

→
tφ, (138)

with the following properties :

‖T (θ)‖ = ‖N(θ)‖ =

√
a2 sin2(θ) + b2 cos2(θ) (139)

And the unit tangential and normal vectors are :

→
nθ =

→
N(θ)

‖N(θ)‖
,

→
tθ =

→
T (θ)

‖T (θ)‖
.

(140)

B.2 Edge energy Eedge

As explained earlier, Eedge is :
Ee(E) = En(E) + Et(E), (141)

with:

En(C) =

∫
C

∥∥∥∥ →
∇I(x) .

→
n (x)

∥∥∥∥ dx

‖C ′(x)‖
,

Et(C) = −
∫
C

∥∥∥∥ →
∇I(x) .

→
t (x)

∥∥∥∥ dx

‖C ′(x)‖
.

(142)

Considering that we have : dx = ‖T (θ)‖ dθ = ‖C ′(θ)‖ dθ for the parametrization of equation (136), the
above equations become :

En(E) =

∫ 2π

0

∥∥∥∥ →
∇I(x) .

→
nθ

∥∥∥∥ dθ ,
Et(E) = −

∫ 2π

0

∥∥∥∥ →
∇I(x) .

→
tθ

∥∥∥∥ dθ . (143)
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So we have :

∂En
∂α

=

∫ 2π

0

∂

∂α

[ →
∇I(x) .

→
nθ

]
sign

[ →
∇I(x) .

→
nθ

]
dθ ,

=

∫ 2π

0

∂ →
∇I(x)

∂α
.

 . →nθ +

[ →
∇I(x) .

∂

∂α

→
nθ]

]
sign

[ →
∇I(x) .

→
nθ

] dθ ,
=

∫ 2π

0

[
[H(x)

∂
→
x

∂α
].
→
nθ +[

→
∇I(x) .

∂

∂α

→
nθ]

]
sign

[ →
∇I(x) .

→
nθ

]
dθ ,

(144)

where H(x) is the Hessian of the image I at point x.

Considering :

dir(
→
nθ) = sign

[ →
∇I(x) .

→
nθ

]
, (145)

dir(
→
tθ) = sign

[ →
∇I(x) .

→
tθ

]
, (146)

we finally have, for an arbitrary parameter α :

∂En
∂α

=

∫ 2π

0

[
[H(x)

∂
→
x

∂α
].
→
nθ] + [

→
∇I(x) .

∂

∂α

→
nθ]

]
dir(

→
nθ)dθ ,

∂Et
∂α

= −
∫ 2π

0

[
[H(x)

∂
→
x

∂α
].
→
tθ] + [

→
∇I(x) .

∂

∂α

→
tθ]

]
dir(

→
tθ)dθ .

(147)

We have the following partial derivatives for ∂x
∂α , ∂

→
nθ
∂α and ∂

→
tθ
∂α :

∂x

∂xc
= I2,

∂x

∂a
= cos(θ)

→
nφ,

∂x

∂b
= sin(θ)

→
tφ,

∂x

∂φ
= −bsin(θ)

→
nφ +acos(θ)

→
tφ,

(148)

∂
→
nθ

∂xc
= 0,

∂
→
nθ
∂a

= − sin(θ)

‖N(θ)‖

[
→
tφ +a

→
nφ

sin(θ)

‖N(θ)‖

]
,

∂
→
nθ
∂b

= − cos(θ)

‖N(θ)‖

[
→
nφ +b

→
nφ

cos(θ)

‖N(θ)‖

]
,

∂
→
nθ
∂φ

= −
→
tφ,

(149)

∂
→
tθ

∂xc
= 0,

∂
→
tθ
∂a

= − sin(θ)

‖T (θ)‖

[
→
nφ +a

→
tφ

sin(θ)

‖T (θ)‖

]
,

∂
→
tθ
∂b

= − cos(θ)
‖T (θ)‖

[
−
→
tφ +b

→
tφ

cos(θ)

‖T (θ)‖

]
,

∂
→
tθ
∂φ

=
→
nφ,

(150)

CONFIDENTIAL



160 Variational Contour Optimization

So :

∂En
∂xc

=

∫ 2π

0

[
H(x)

→
nθ

]
dir(

→
nθ)dθ ,

∂En
∂a

=

∫ 2π

0

[
cos(θ)

[
H(x)

→
nφ

]
.
→
nθ −

→
∇I(x) .

sin(θ)

‖N(θ)‖

[
→
tφ +a

→
nθ

sin(θ)

‖N(θ)‖

]]
dir(

→
nθ)dθ ,

∂En
∂b

=

∫ 2π

0

[
sin(θ)

[
H(x)

→
tφ

]
.
→
nθ −

→
∇I(x) .

cos(θ)

‖N(θ)‖

[
→
nφ +b

→
nθ

cos(θ)

‖N(θ)‖

]]
dir(

→
nθ)dθ ,

∂En
∂φ

=

∫ 2π

0

[[
H(x)(−bsin(θ)

→
nφ +acos(θ)

→
tφ)
]
.
→
nθ −

→
∇I(x) .

→
tθ

]
dir(

→
nθ)dθ ,

(151)

And :

∂Et
∂xc

= −
∫ 2π

0

[
H(x)

→
tθ

]
dir(

→
nθ)dθ ,

∂Et
∂a

= −
∫ 2π

0

[
cos(θ)

[
H(x)

→
nφ

]
.
→
tθ −

→
∇I(x) .

sin(θ)

‖T (θ)‖

[
→
nφ +a

→
tθ

sin(θ)

‖T (θ)‖

]]
dir(

→
nθ)dθ ,

∂Et
∂b

= −
∫ 2π

0

[
sin(θ)

[
H(x)

→
tφ

]
.
→
tθ −

→
∇I(x) .

cos(θ)

‖T (θ)‖

[
−
→
tφ +b

→
tθ

cos(θ)

‖T (θ)‖

]]
dir(

→
nθ)dθ ,

∂Et
∂φ

= −
∫ 2π

0

[[
H(x)(−bsin(θ)

→
nφ +acos(θ)

→
tφ)
]
.
→
tθ +

→
∇I(x) .

→
nθ

]
dir(

→
nθ)dθ ,

(152)

B.3 Region energy Er

B.3.1 General context

We have :

Er(E) = −
∫
Rin

logpin(I(x))dx−
∫
Rout

logpout(I(x))dx. (153)

where pin and pout are the probabilities of a given pixel to be inside or outside the contour.

To handle the minimization, we will consider the Chan and Vese [8] framework we described in Chapter 5.
In this framework the object to be segmented is described using the Heaviside function H . The above problem
can then be written as :

Er(E) = −
∫

Ω
H(Φ(x))D(x)dx, (154)

with Φ a function being positive inside the object and negative outside and :

D(x) = − logpin(I(x))

logpout(I(x))
. (155)

The key idea is to select a function Φ whose level set are ellipses. We have considered the 2D Gaussian
function :

Φ(x) = exp
(
−
(
a′(x− xc)2 + 2b′(x− xc)(y − yc) + c′(y − yc)2

))
− C,

Φ(x) = exp
(
−
(
(x− xc)

TA(x− xc)
))
− C,

Φ(x) = gσx,σy ,φ(x− xc)− C,
(156)

with C ∈]0, 1[ and :
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a′ =
cos2 φ

2σ2
x

+
sin2 φ

2σ2
y

,

b′ =
− sin 2φ

4σ2
x

+
sin2 2φ

4σ2
y

,

c′ =
sin2 φ

2σ2
x

+
cos2 φ

2σ2
y

,

(157)

A =

(
a′ b′

b′ c′

)
,

=

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)( 1
2σ2
x

0

0 1
2σ2
y

)(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
,

= RT (φ)Σ(σx, σy)R(φ).

(158)

The 0 level set of the Φ function is an ellipse with parameters (xc, a, b, φ). The relation between the center
xc and this angle of the ellipse φ is straightforward. To show the relation between (σx, σy) and (a, b) we
consider the case φ = 0 in (156):

exp(−(
(x− xc)2

2σ2
x

+
(y − yc)2

2σ2
y

)) = C,

(
(x− xc)2

2σ2
x

+
(y − yc)2

2σ2
y

) = − log(C),

(x− xc)2

(
√
−2 log(C)σx)2

+
(y − yc)2

(
√
−2 log(C)σy)2

= 1.

(159)

Setting the arbitrary constant C = exp(−1
2) we get :

σx = a,
σy = b.

(160)

Going back to the energy formulation, we consider the partial derivative w.r.t. an arbitrary parameter α :

∂Er
∂α

= −
∫

Ω
δ(Φ(x))

∂

∂α
(Φ(x))D(x)dx,

= −
∫

Φ=0

1

‖∇(Φ(x))‖
∂Φ(x)

∂α
D(x)dx.

(161)

B.3.2 Geometric Gradient Calculation

We have :
∂Φ

∂x
= −∂A

∂x
gσx,σy ,φ(x− xc),

= −(RTΣR(x− xc) + (x− xc)
TRTΣR)gσx,σy ,φ(x− xc),

= −2A(x− xc)gσx,σy ,φ(x− xc),

= −2(x− xc)
TAgσx,σy ,φ(x− xc),

(162)

So :
‖∇(Φ(x))‖ = 2 ‖A(x− xc)‖ gσx,σy ,φ(x− xc). (163)

Considering that x belongs to the 0 level of the Φ function, it can be parametrized for θ ∈ [0; 2π[ :

x(θ) = xc +RTΣ−1

(
cos(θ)
sin(θ)

)
. (164)
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We have :

‖A(x− xc)‖ =

∥∥∥∥RTΣRRTΣ−1

(
cos(θ)
sin(θ)

)∥∥∥∥ ,
=

∥∥∥∥RT ( cos(θ)
sin(θ)

)∥∥∥∥ ,
= 1.

(165)

So, for a point x on the 0 level of the Φ function, we have :

‖∇(Φ(x))‖ = 2gσx,σy ,φ(x− xc). (166)

B.3.3 Partial derivatives

In the same way we get equation (162), we have :

∂Φ

∂xc
= 2A(x− xc)gσx,σy ,φ(x− xc). (167)

We now consider :

∂Φ

∂σx
= −(x− xc)

TRT (φ)

(
− 1

4σ3
x

0

0 0

)
R(φ)(x− xc)gσx,σy ,φ(x− xc),

=
1

4σ3
x

(cos(φ)(x− xc) + sin(φ)(y − yc))2 gσx,σy ,φ(x− xc),

=
1

4σ3
x

((x− xc).nφ)2 gσx,σy ,φ(x− xc).

(168)

In the same way, we show :

∂Φ

∂σy
=

1

4σ3
y

((x− xc).tφ)2 gσx,σy ,φ(x− xc). (169)

For the partial derivative w.r.t. φ we have :

∂a′

∂φ
=

sin(2φ)

2

(
− 1

2σ2
x

+
1

2σ2
y

)
,

∂b′

∂φ
=

cos(2φ)

2

(
− 1

2σ2
x

+
1

2σ2
y

)
,

∂c′

∂φ
= −sin(2φ)

2

(
− 1

2σ2
x

+
1

2σ2
y

)
.

(170)

So :
∂A

∂φ
=

1

2

(
− 1

2σ2
x

+
1

2σ2
y

)(
sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
. (171)

Finally :

∂Φ

∂φ
= −1

2

(
− 1

2σ2
x

+
1

2σ2
y

)
(x− xc)

T

(
sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
(x− xc)gσx,σy ,φ(x− xc). (172)

In the end we have :
∂Er
∂xc

= −
∫

Φ=0
A(x− xc)D(x)dx,

∂Er
∂σx

=
1

8σ3
x

∫
Φ=0

((x− xc).nφ)2D(x)dx,

∂Er
∂σy

=
1

8σ3
y

∫
Φ=0

((x− xc).tφ)2D(x)dx,

∂Er
∂φ

=
1

8

(
− 1

σ2
x

+
1

σ2
y

)∫
Φ=0

(x− xc)
T

(
sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
(x− xc)D(x)dx.

(173)
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Considering the parametrization described in the previous section, we have :

∂Er
∂xc

=

∫ 2π

0
[AN(θ)]D(x) ‖T (θ)‖ dθ ,

∂Er
∂σx

=
1

8σx

∫ 2π

0
cos2(θ)D(x) ‖T (θ)‖ dθ ,

∂Er
∂σy

=
1

8σy

∫ 2π

0
sin2(θ)D(x) ‖T (θ)‖ dθ ,

∂Er
∂φ

=
1

8

(
− 1

σ2
x

+
1

σ2
y

)∫ 2π

0

[
N(θ)T

(
sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
N(θ)

]
D(x) ‖T (θ)‖ dθ .

(174)

B.4 Regularization Energy Es

The derivation for the pupil shape energy is straightforward :

∂Eps
∂xc

= 0,

∂Eps
∂a

= (a− b),
∂Eps
∂b

= (b− a),

∂Eps
∂φ

= 0.

(175)

For the iris shape energy, we take the following parametrization for the pupil focus points :

xf (1)
p = xpc +

√
(ap)2 − (bp)2

→
npφ,

xf (2)
p = xpc −

√
(ap)2 − (bp)2

→
npφ .

(176)

Then the resulting parametrization for the iris focus points are :

xf
(1)
i = xic + δpi

√
(ai)2 − (bi)2

→
niφ,

xf
(2)
i = xic − δpi

√
(ai)2 − (bi)2

→
niφ,

(177)

with :
δpi = 1 if ‖φp − φi‖ ≤ π,

= −1 otherwise .
(178)

We have :
∂xf

(1)
i

∂xic
=

∂xf
(2)
i

∂xic
= I2,

∂xf
(1)
i

∂a
= −

∂xf
(2)
i

∂a
= δpi

a√
(ai)2 − (bi)2

→
niφ,

∂xf
(1)
i

∂b
= −

∂xf
(2)
i

∂b
= −δpi

b√
(ai)2 − (bi)2

→
niφ,

∂xf
(1)
i

∂φi
= −

∂xf
(2)
i

∂φi
= −δpi

√
(ai)2 − (bi)2

→
tiφ .

(179)

CONFIDENTIAL



164 Variational Contour Optimization

For an arbitrary parameter α we have :

∂Eis
∂α

= (xf
(1)
i − xf (1)

p )
∂xf

(1)
i

∂α
+ (xf

(2)
i − xf (2)

p )
∂xf

(2)
i

∂α
. (180)

So :
∂Eis
∂xic

= (xf
(1)
i − xf (1)

p ) + (xf
(2)
i − xf (2)

p ),

= 2(xic − xpc),
(181)

∂Eis
∂a

= δpi
a√

(ai)2 − (bi)2

[
(xf

(1)
i − xf (1)

p )− (xf
(2)
i − xf (2)

p )
]
.
→
niφ,

= δpi
a√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

→
npφ .

→
niφ

]
,

= δpi
a√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
,

(182)

∂Eis
∂b

= −δpi
b√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
, (183)

∂Eis
∂φi

= δpi

√
(ai)2 − (bi)2

[
(xf

(1)
i − xf (1)

p )− (xf
(2)
i − xf (2)

p )
]
.
→
tiφ,

= 2δpi

√
(ai)2 − (bi)2

√
(ap)2 − (bp)2

[→
npφ .

→
tiφ

]
,

= −2δpi

√
(ai)2 − (bi)2

√
(ap)2 − (bp)2 sin(φi − φp).

(184)

Summarizing the above results, we get :

∂Eis
∂xc

= 2(xic − xpc),

∂Eis
∂a

= δpi
a√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
,

∂Eis
∂b

= −δpi
b√

(ai)2 − (bi)2

[
1−

√
(ap)2 − (bp)2√
(ai)2 − (bi)2

cos(φp − φi)

]
,

∂Eis
∂φ

= −2δpi
√

(ai)2 − (bi)2
√

(ap)2 − (bp)2 sin(φi − φp).

(185)

B.5 Circular model

B.5.1 General elements

We consider the circles as a particular type of ellipses with :

xcirclec = xellipsec ,
rcircle = 1

2(aellipse + bellipse),
φcircle = 0,

(186)

therefore we have :
x(θ) = xc + r cos(θ)
y(θ) = yc + r sin(θ)

(187)
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with :

‖N(θ)‖ = ‖T (θ)‖ = r, (188)

and the unit tangential and normal vectors are :

→
tθ =

(
−sin(θ)
cos(θ)

)
→
nθ =

(
−cos(θ)
−sin(θ)

)
.

(189)

B.5.2 Edge Term

We consider the energy of Equation (151) using the simplification presented above :

∂En
∂xc

=

∫ 2π

0

[
H(x)

→
nθ

]
dir(

→
nθ)dθ ,

∂En
∂a

=

∫ 2π

0

[H(x)

(
cos(θ)

0

)]
.
→
nθ −

→
∇I(x)

r
.

[
sin(θ)

(
0
1

)
+ sin2(θ)

→
nθ

] dir(
→
nθ)dθ ,

∂En
∂b

=

∫ 2π

0

[H(x)

(
0

sin(θ)

)]
.
→
nθ −

→
∇I(x)

r
.

[
cos(θ)

(
1
0

)
+ cos2(θ)

→
nθ

] dir(
→
nθ)dθ ,

∂En
∂φ

= 0.

(190)

Accordingly, we have :

∂En
∂r

=
1

2
(
∂En
∂a

+
∂En
∂b

)

=

∫ 2π

0

[H(x)

(
cos(θ)
sin(θ)

)]
.
→
nθ +

→
∇I(x)

r
.

[(
cos(θ)
sin(θ)

)
+ (sin2(θ) + cos2(θ))

→
nθ

] dir(
→
nθ)dθ ,

=

∫ 2π

0

[−H(x)
→
nθ

]
.
→
nθ +

→
∇I(x)

r
.
[
− →nθ +

→
nθ

] dir(
→
nθ)dθ ,

=

∫ 2π

0
−
[
H(x)

→
nθ

]
.
→
nθ dir(

→
nθ)dθ ,

(191)

So in the end we have :

∂En
∂xc

=

∫ 2π

0

[
H(x)

→
nθ

]
dir(

→
nθ)dθ ,

∂En
∂r

= −
∫ 2π

0

[
H(x)

→
nθ

]
.
→
nθ dir(

→
nθ)dθ ,

(192)
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Similarly for the energy of Equation (152) :

∂Et
∂xc

= −
∫ 2π

0

[
H(x)

→
tθ

]
dir(

→
tθ)dθ ,

∂Et
∂a

= −
∫ 2π

0

[H(x)

(
cos(θ)

0

)]
.
→
tθ −

→
∇I(x)

r
.

[
sin(θ)

(
1
0

)
+ sin2(θ)

→
tθ

] dir(
→
tθ)dθ ,

∂Et
∂b

= −
∫ 2π

0

[H(x)

(
0

sin(θ)

)]
.
→
tθ −

→
∇I(x)

r
.

[
cos(θ)

(
0
−1

)
+ cos2(θ)

→
tθ

] dir(
→
tθ)dθ ,

∂Et
∂φ

= 0.

(193)

Accordingly, we have :

∂Et
∂r

=
1

2
(
∂Et
∂a

+
∂Et
∂b

)

= −
∫ 2π

0

[H(x)

(
cos(θ)
sin(θ)

)]
.
→
tθ −

→
∇I(x)

r
.

[(
sin(θ)
− cos(θ)

)
+ (sin2(θ) + cos2(θ))

→
tθ

] dir(
→
tθ)dθ ,

= −
∫ 2π

0

[−H(x)
→
nθ

]
.
→
tθ −

→
∇I(x)

r
.
[
−
→
tθ +

→
tθ

] dir(
→
tθ)dθ ,

=

∫ 2π

0

[
H(x)

→
nθ

]
.
→
tθ dir(

→
tθ)dθ ,

(194)

So in the end we have :

∂Et
∂xc

= −
∫ 2π

0

[
H(x)

→
tθ

]
dir(

→
tθ)dθ ,

∂Et
∂r

=

∫ 2π

0

[
H(x)

→
nθ

]
.
→
tθ dir(

→
tθ)dθ ,

(195)

B.5.3 Region Term

For the region term we have

∂Er
∂xc

=

∫ 2π

0
[AN(θ)]D(x) ‖T (θ)‖ dθ ,

=

∫ 2π

0

[
1

2r2
r
→
nθ

]
D(x)rdθ ,

=
1

2

∫ 2π

0
D(x)

→
nθ dθ ,

∂Er
∂r

=
1

2

1

8r

∫ 2π

0
(cos2(θ) + sin2(θ))D(x)rdθ ,

=
1

16

∫ 2π

0
D(x)dθ ,

(196)
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