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Introduction and Context of the Thesis

Biometrics aims at identifying people based on their intrinsic morphological or behavioral characteristics.
These characteristics can be face shape, fingerprint, hand shape, gait, signature. The key idea of biometrics is
to guarantee the identity of people based on what they are instead of what they possess (an ID card) or what
they know (a password). In this thesis we have studied the identification of people based on the texture of their
irises, namely, iris recognition.

Iris recognition is a relatively young biometric modality : the first automatic recognition system able to
identify people based on their iris texture was proposed by John Daugman in [16] in 1993. Despite its youth,
iris recognition was very quickly seen as a very interesting biometric modality for critical applications. This
modality has several interesting properties :

o Iris texture is epigenetic, meaning that it is not entirely determined by genotype. As a consequence, the
two irises of a single person differ, and so do twins’ irises.

o It has been assessed that iris texture is rich enough to uniquely characterize each individual in a very
large population.

e Iris is an internal organ accessible without contact, making it suitable for user friendly application.

o It is hard to fake someone’s identity using a synthetic lens. Liveliness detection is easily performed in
real applications because the pupil always has high frequency contractions/dilations that can be detected
and extracted from a video stream.

e Iris texture is known to be stable over time and very well protected from external degradations (though,
this last claim has been challenged in [20]).

The recognition rate is especially critical when working on very large databases because the number of
errors produced by the system is proportional to the size of the database. To this end, industrial companies
have been constantly working on trying improving their algorithms to decrease the error rate. Accordingly, it
is important for industrial companies to be able to transfer new results proposed by the research community
into robust, accurate and scalable industrial systems.

The proposed thesis has been conducted as part of a partnership between the industrial company Thales and
Telecom Sud-Paris. The purpose of this partnership was to transfer the academic knowledge of Telecom Sud-
Paris on iris recognition to Thales in order to develop an industrial product. The first step of this collaboration
was to study the limitations of traditional iris recognition systems and to propose some possible innovations to
solve them. A classical iris recognition system usually follows the main steps proposed by Daugman’s in [16].

Image Acquisition :  Image acquisition is done under Near Infra Red (NIR) illumination, having wave-
lengths between 700 and 900 nm. At these wavelengths even dark brown irises
show a very rich texture which is suitable for recognition. In a standard con-
trolled acquisition scenario, the subject is asked to stand still and look straight at
the camera from a short distance. However, recent works tend to relax acquisi-
tion conditions. For example an image can be acquired at a distance [4] or using
a visible wavelength [60]. Subjects are also less constrained : they do not have
to look straight at the camera [10] or they may move during the acquisition [43].

Image Segmentation :  Given the acquired eye image, the first algorithmic task is the segmentation of
the iris, aiming at isolating iris texture from other elements of the image such
as eyelids, shadows or glasses. Segmentation is challenging as the more the
acquisition conditions are relaxed, the more degradations have to be handled at
this stage.



Texture Normalization :  Texture is mapped into a dimensionless coordinate system to handle variability
in the eye image, such as pupil dilation. The most common choice for normal-
ization is the rubber sheet model introduced by Daugman in [16]. Iris borders are
modeled by two non-concentric circles and texture is unwrapped with respect to
these circles. Precision is a critical issue at this stage as small errors in the esti-
mation of the circles’ parameters can dramatically decrease performance of the
overall system as outlined by Proenca in [58].

Feature Extraction : The discriminative iris texture’s features are extracted. These features are the
basis of the comparison of iris images in order to perform the comparison. The
most used features are based on a quantization of Gabor filters’ phase. This
quantization generates a binary code characterizing the iris.

Fattern Matching : Comparison of the input features to a reference in order to decide if the two
images come from the same iris. In systems based on Daugman [16] the com-
parison is made by computing the Hamming distance of the two binary codes,
which are characteristic of the two irises. The Hamming distance between two
binary codes is low when they come from the same iris and high when they come
from different irises. Therefore, the key aspect at this stage is to fix a threshold
in order to decide whether or not the two binary codes come from the same iris.

In his early article [16], Daugman assumes that the iris has been acquired under a constrained acquisition
scenario. This means that the subject is active and fully cooperative during the acquisition. However, a
recent trend in iris recognition systems is to reduce the acquisition constraints in order to make the systems
more user friendly. This could allow to decrease check-in time to get in airplanes for instance. Relaxing the
acquisition conditions generates degradations in the image, such as blur or illumination inhomogeneities. As
such degradations appear at the first stage of the system, they tend to be increased at each subsequent stage.
Hence, there is an important degradation of the system’s recognition performance when not designed to handle
such data.

Two main approaches have been considered in the literature to adapt iris recognition systems to degraded
images. The first approach is to extract more information from the normalized image. This allows the extracted
features to remain discriminative even when the amount of the biometric information is reduced. The second
approach is to consider new models for segmentation that can more robustly identify the iris region and borders
in the image.

In this context, the company Thales dedicated two theses to these two subjects. The first one, by Sandra
Cremer [13], focuses on the improvement of the Feature Extraction and the Pattern Matching stages of the
system. The second one, here presented, focuses on the Image Segmentation and Texture Normalization stages.
The two theses have been conducted simultaneously and have complementary results. Indeed, the first thesis
focuses on an effective exploitation of the biometric information whereas the second one aims at formatting
this biometric information as well as possible. The final goal of these two theses is to develop a complete
software working with images acquired in relaxed acquisition conditions for fast border crossing. However,
no acquisition systems were available during the theses. Therefore, we decided to define the ICE2005 and the
ND-Iris databases as references for our experiments because they contain most of the degradation we expect
to have on the target system such as blur or off-angle images.

This thesis focuses on the Image Segmentation and Texture Normalization stages. Our purpose is to gener-
ate an accurate normalized image with an indication of the texture’s areas hidden by occlusions. Two distinct
actions are required to produce such information :

o The identification of pixels belonging to the iris in the eye image (generating a so called segmentation
mask)



e The estimation of a parametric description of the inner and outer iris boundaries in the image, but also
under possible occlusions

These two piece of information are critical in order to carry out recognition. The parametric contours are used
to unwrap the iris texture to produce the normalized image which is then used for Feature Extraction. The
segmentation mask is used to remove artifacts from the normalized image at the Pattern Matching stage.

During this thesis we developed a complete segmentation system that can work with degraded data. We
present this complete system in Annexe A, but in the core document focus on 4 critical issues for which we
develop some novel solutions :

e Rough localization of the pupil in the eye image in order to initialize the complete segmentation process.
e Accurate detection of the pixels belonging to the iris texture in the image, i.e. iris region segmentation.
e Estimation of the iris borders under possible occlusions in order to generate the normalized image.

e Evaluation of the quality of segmentation results in order to identify failures of the segmentation process.

The pupil is considered as the most stable element in an eye image acquired in near infrared illumination.
Indeed, the pupil always appears as a very dark region inside the iris. Accordingly, most of the algorithms
in the literature first roughly localize the pupil area in the image in order to initialize some more complex
algorithms. The difficulty of this localization is to be able to distinguish the pupil from other dark elements in
the eye such as eyebrows, packed eyelashes, hair or the arms of the glasses. To solve this issue, we propose
firstly to identify the regions of eyebrows and eyelashes and then remove them from the pupil localization
process.

The next task is the identification of the pixels belonging to the iris texture in the image. The iris texture can
vary largely from one person to another and is dependent on acquisition factors, such as blur or illumination.
Therefore, the algorithm must be very robust to handle this variability in the image. Moreover, it must also
be very precise as inaccuracies will provide wrong information to the Pattern Matching algorithms, leading
to erroneous comparison results. Accordingly, we have decided to study a classical family of segmentation
algorithms that have become popular for iris segmentation [17, 76, 66, 62] : Active Contours. These kinds of
segmentation algorithms model the expected solution as being the minimum of a given functional. This mini-
mum is found by iteratively morphing a contour until it reaches the minimum of the energy. However, despite
this growth in popularity, there is no comparative evaluation of such algorithms in the literature. Therefore, we
implemented several Active Contour algorithms and discuss their advantages and limitations

The final step of iris segmentation is the estimation of the iris shape under possible occlusions. This task is
critical because this estimation of the iris borders is used to produce the normalized image that is used for the
Feature Extraction and Pattern Matching stages. Small inaccuracies in the estimation of these borders result
in a large corruption of the normalized image, leading to a significant decrease of the system’s recognition
performance. However, this estimation of the iris border can be difficult when acquisition conditions are
relaxed. The iris is more likely to be occluded by eyelids and the contours may have a non-circular shape due
to gaze deviation. Therefore, we propose a new robust and effective way to fit ellipses on the iris border in
order to generate the normalized image.

This thesis is conducted from an industrial perspective. In such context, it is mandatory to detect erroneous
results of automatic algorithms, like segmentation failures. Unlike the pupil and iris segmentation issues that
are widely studied in the literature, estimating the quality of an iris segmentation have not been widely studied
so far. Indeed, few works in the literature focus on this specific subject [38, 29, 81, 30, 80].

The outline of this thesis is divided into two main parts. In the first part (Chapter 1 to 3), we describe some
general considerations about iris recognition systems and in the second part (Chapter 4 to 7), we describe more
deeply the specificity of this thesis.



In Chapter 1, we present in detail a typical iris recognition system based on the ideas of Daugman [16]. We
describe each module and we explain why the degradation of the input data quality has such a negative impact
on this kind of system.

In Chapter 2, we explain how to evaluate the recognition performance of a biometric system, with a focus
on iris recognition systems. Then, we describe how we can use the system’s recognition performance to
evaluate the accuracy of an iris segmentation algorithm. Finally, we describe the databases we used during this
thesis to evaluate our algorithms.

In Chapter 3, we make a survey of classical iris segmentation methods available in the literature. We pro-
pose a distinction between two main families : Contours First strategies and Texture First strategies. Contours
First strategies first search for the parametric contours of the iris borders, and then estimate the pixels be-
longing to the iris texture by removing the occlusions. Texture First strategies first identify accurately the iris
region in the image and then use this information to estimate the parametric contours of the iris under possible
occlusions. These two strategies have their advantages and shortcomings which we analyze. In this thesis, we
decided to apply a Texture First strategy to segment the iris texture ; at the end of this chapter, we explain why
we made this choice and the impacts it had on the design of our system.

In Chapter 4, we describe the algorithms we implemented to roughly localize the pupil area in the eye
image. The main difficulty at this stage is to distinguish the pupil from other dark elements in the eye image.
Therefore we propose two algorithms for identifying eyelashes and eyebrows in order to remove them from
the localization process. Once these areas have been removed, it is possible to identify the pupil area with
simple algorithms such as thresholding. We evaluate the impact of our two eyelash and eyebrow detectors on
two databases with different kind of degradations.

In Chapter 5 we describe the algorithms we implemented to segment the iris region in the image. We have
decided to focus on Active Contours for iris segmentation. Basically, these algorithms evolve by morphing a
contour onto the object to be segmented. Therefore, there are two elements to define in order to apply such an
algorithm : the curve’s representation and the object’s model. In this chapter, we propose to study the influence
of these two elements on the system’s recognition performance.

In Chapter 6, we describe the contour fitting algorithm we designed to estimate the borders of the iris under
possible occlusions. Our algorithm results from the formalism of Active Contours presented in Chapter 5 for
iris segmentation. However, the purpose of our algorithm is to estimate the location of the iris border under
possible occlusions instead of identifying pixels that belong to the iris in the image. Our algorithm iteratively
evolves an elliptic contour until it best fits the iris borders’ location.

In Chapter 7, we describe the algorithm we designed to estimate the quality of a given segmented image.
We first make a brief survey on the evaluation of iris quality. Then, we present a new set of segmentation
quality measures specifically designed for iris segmentation. This set of individual measures is used to predict
the intrinsic tendency of the segmented image to produce erroneous comparisons.

In Chapter 8, we summarize all the contributions of this thesis and give some perspectives for further
works.
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Chapter 1

A Classical Iris Recognition System

The iris is the annular colored part between the pupil and the limbus (also called sclera). It acts as a diaphragm
regulating the amount of light entering the eye. The possibility to identify human beings using their irises was
proposed by an ophthalmologist, Frank Burch, in 1936. However, the first patent describing a conceptual iris-
based recognition system was released almost 50 years later by Flom and Safir in 1987 [23]. It took another
decade to get the first automatic system able to identify people based on the texture of their irises. This pioneer
work was proposed by John Daugman in 1993 [16] and was followed by Wildes’ system in 1997 [77], based
on a different recognition algorithm.
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Most actual iris recognition systems are based on the earliest works of Daugman [16] and are usually
divided in five main parts as illustrated in Figure 1 :

Image Acquisition :  Acquisition of a high resolution eye image containing the iris texture.

Image Segmentation :  Detection of the iris region in the image and estimation of iris borders’ shape
under possible occlusions.

Texture Normalization :  Unwrapping of the iris texture to generate a "dimensionless" image in polar co-
ordinates.

Feature Extraction :  Extraction of the features characterizing the iris texture.
Pattern Matching : Comparison of the input features to reference ones in order to decide if the two

images come from the same iris.

In this chapter, we present this classical iris recognition system. From Section 1.1 to 1.5, we briefly
describe each of the above modules. In Section 1.6, we present some limitations of these traditional iris
recognition systems.
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A Classical Iris Recognition System 13

Image
Acquisition

Image
Segmentation

Texture
Normalization

10100110110100101110101101010010011101010010101010110101001010101110101001
01101011101010100101010101101010101000101011011101110101010101010101010111 Feature
010110101110101010010101010110101010100010101101110111010101010101071010101 .

11010110101110101010010101010110101110111010101010101010101011000101110100 Extraction

Data
Comparison

00101011010100101111010100101010111101011101011101011101011101010101011110
10111010111010111010111011001011110101100101111010111101011001011110101111

Reference
Data

01011001011110101111010110010111101011110101100101111010111101011001011110
10111001011110101111010110010111101011100101111010111101011001011110101110

Figure 1: A standard iris recognition system. The image is first acquired in Near infrared (NIR) illumination.
Iris texture is then segmented and normalized (unwrapped). Characteristic features of the texture are extracted
and represented using a binary code (called iris code in the literature). The comparison of two irises is done by
computing the Hamming distance between these two codes.
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14 A Classical Iris Recognition System

1.1 Image Acquisition

Acquisition of high quality iris image is a challenging task because the iris represent a very small portion of the
whole face. The image acquisition uses Near Infra Red (NIR) illumination, having wavelengths between 700
and 900 nm. At those wavelengths even dark brown irises show very rich texture suitable for recognition. The
cornea is also permeable to these wavelengths which avoid illumination reflections in the image. In a standard
controlled acquisition scenario, the subject is asked to stand still and look straight at the camera from a short
distance (=20-50cm). Figure 2 shows some examples of such acquisition devices.

(a) LG2200 (b) LG2200 (c) OKI IRISPASS-h

Figure 2: Examples of iris acquisition devices. Figure (a) and (b) : the stop and stare sensor LG2200 from LG
with an acquisition range between 8cm - 25cm. Figure (c¢) : the hand held sensor OKI IRISPASS-h from OKI.

The sensors showed in Figure 2 can acquire image of very good quality, but they lack of user-friendliness.
Therefore, the design of new sensor allowing a relaxation of the acquisition conditions has been an active
way of research during the last years. For example, images can be acquired at a distance [4] or using visible
wavelength [60]. The subject is also less constrained : it may not look straight at the camera [10] or move
during the acquisition [43].

1.2 Image Segmentation

Once the eye image has been acquired, the iris region in the image shall be identified in the image in order
to limit the Feature Extraction and the Pattern Matching to this region. It is also necessary to get an accurate
parametric model of the iris borders under possible occlusions in order to apply the Texture Normalization that
we describe in the next section. These two actions (identification of the iris region and estimation of the iris
borders) are called iris segmentation. The binary mask indicating which pixels of the image belong to the iris
texture is called the segmentation mask. Figure 3 illustrates the result of the segmentation process on a good
quality image.

The first methods of Daugman and Wildes model the iris using two non-concentric circles. Accordingly,
they reduce the segmentation stage to a circle detection problem. However, these simple methods have shown
a high sensitivity to image degradations. It is also commonly accepted that circles are only an approximation
of the iris true shape and that more complex models should be used to describe the iris borders. We discuss
this topic in detail in Chapter 3
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1.3. Texture Normalization 15
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(a) Original Image (b) Segmentation results

Figure 3: Illustration of the segmentation process results. The segmentation results contains both the region of
the iris texture in the image and a parametric description of the iris borders under possible occlusions.

1.3 Texture Normalization

One of the main problems appearing when trying to characterize the iris texture is the deformations due to
contraction and dilation of the pupil. In [16], Daugman propose to use a "rubber sheet" model to map the iris
texture into a dimensionless coordinate system. Such mapping can be seen as an unwrapping of the image
region contained between the inner and outer contour of the iris, as illustrated in Figure 4. The main advantage
of such a mapping is that the texture displayed in the normalized image is independent of the pupil dilation.

-

Figure 4: Illustration of the unwrapping process of Daugman’s normalization. On the left the segmented image,
on the upper right the unwrapped texture of the iris and on the lower right the segmentation mask of the iris

region

In the early work of Daumgan [16], the pupil and iris borders are modeled using two non-concentric circles
Cp(Zep, Yep, Tp), the pupil circle and C; (i, Yei, 71), the iris circle with parametrization :

(o= (o )en (56 ) 0
v ) (0) = < b >+n ( 098((95 )

Yi Yei



16 A Classical Iris Recognition System

with 6 € [0, 27[. The formula to unwrap the annular part between the two circles is then :

<z>(r,0)=(1—?")<§§>(9)+7“(§z>(9) @

with r € [0, 1] and 0 € [0, 2x[. This model can handle changes in pupil size, however modeling the iris border
with circles is now known to be too restrictive, so new representations using more general contours have been
introduced in the literature. The classical formulation (2) is therefore extended to :

R(r,0) = (1 —7r)P(0) +rL(0), 3)

where P stands for the parametric description of the pupil/iris border and L stands for the parametric description
of the iris/limbus border. These parametric descriptions could be geometric shapes like ellipses, or more
general models such as Fourier series expansions or splines.

Let us note that Feature Extraction and the Pattern Matching are applied to the normalized image. There-
fore, precision of the unwrapping is a critical aspect of iris recognition systems. In [58], Proenca points out
that small errors in the normalization process dramatically decrease the performance of the overall system.

1.4 Feature Extraction

The Feature Extraction stage aims at extracting the characteristics of a given iris. These characteristics results
in a template that will be used to perform the recognition in the Pattern Matching stage.

In Daugman’s based system [16], the template for the iris is a binary code encoding frequency information
at several scales. This binary code (the so-called iris-code) is generated by applying a set of Gabor filters with
different scales and orientations at predetermined points of the normalized iris image. The filter with maximal
response characterizes the iris texture at a considered point. Formally a Gabor filter can be written as :

—(rg—p)? —(0g=8)?

G{Re,[m} = S9N {Re,Im} / /(j) I(pa ¢)eiw(90_¢)'6 oF e A2 p dodp, 4)
p

where I(p, ¢) is the image intensity of the normalized iris image at pixel (p, ¢) (normalized image can be
seen as a polar image, hence the notations), « and 3 are the scale parameters, w is the wavelet frequency, and
(ro,00) are the coordinates of the application point in the normalized image. Gabor filters have a complex
formulation, therefore they provide both phase and module information. In [16], Daugman assesses that the
phase of the Gabor filters is a relevant biometric information to characterize an iris. In order to compress this
phase information, Daugman proposes to consider only the quadrant of the phase, so that this information
can be coded using only two bits. The unwrapped segmentation mask is also binarized in order to indicates
significant bits in the iris code.

Figure 5 summarizes the process described above to generate the iris code. Gabor filters are applied at
specific points of the normalized image. The phase of the filter with strongest response is compressed into two
bits. The process is repeated until all the analysis points have been covered.

1.5 Pattern Matching

The final step of iris recognition systems is to determine if two iris templates belong to the same iris. Com-
parison of two iris templates is done by computing the hamming distance of the two binary codes. Figure 6
illustrates such a computation for a genuine (iris codes generated from the same iris) and an impostor compar-
isons (iris codes generated from different irises).
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Figure 5: Feature Extraction and Iris Code Generation. The process is divided in four parts. First, an applica-
tion point is selected in the normalized image. Then, a set of Gabor filters is applied at this application point.
The filter giving the larger answer characterize the texture of the iris at this point. The phase of the Gabor
Filter’s answer is quantized using two bits. These two bits are stored in the iris code and the process starts
again at the next application point.

Formally, the hamming distance between two iris codes {codeA, codeB} with associated segmentation
masks {maskA, maskB} is :

[(code A ® codeB) N maskA N maskB]|

HD =
|lmaskA N maskB]|

; &)

where ® is the XOR operator counting the bits that disagree in code A and code B, M is the intersection operator
insuring that the information is computed only in valid region of code A and code B and || || counts the non-zero
bits in the iris code.

For impostor comparisons, the two binary codes are uncorrelated and the resulting hamming distance is
equivalent to the mean of a random binary drawing of 1 and 0, i.e. 0.5. For genuine comparisons, it should
result in a 0 Hamming distance between the binary codes. However, in real scenarios the iris texture is affected
by the acquisition conditions, and so is the resulting iris code. It can only be stated that the comparison of two
iris code should be below 0.5.

Let us note that Equation (5) assumes that the two binary codes {codeA, codeB} are aligned when per-
forming the comparison. This alignment is determined by the arbitrary cut done when unwrapping the texture
at the Texture Normalization stage. However, tilling of the head produces a rotation of the iris texture in the
original image that results in a shift of the texture in the normalized image. Therefore, the corresponding
binary codes are not aligned and the comparison using Equation (5) is meaningless. To handle this limitation,
Daugman [16] proposes to apply a binary shift to one of the iris code (codeA for instance) and to perform
comparisons with the shifted iris code using Equation (5). The final comparison score is the minimum of all
the comparisons. The simple statistical drawing of 0 and 1 is then transformed in a "best of n" comparison test
of agreement. In [16], Daugman shows that it induces a shit from 0.5 to 0.45 of the theoretical mean for an
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Figure 6: Illustration of the comparisons between two iris codes (not considering segmentation masks and
texture rotations). First, the two iris codes are compared using a XOR operation. The sum of the 1 in the
resulting binary code represents the distance between the two input iris codes. For iris codes generated from
the same iris (genuine comparison) the score is expect to be below 0.5. For iris codes generated from different
irises it is expected to have a score around 0.5.

100110011001110[...]

010000001000100[...]

3 out of 15 bits

3/15=>0.2

il

impostor comparison (assuming 7 rotations).

In the end, using a threshold value 7, it is possible to states if the two iris codes {codeA, code B} belong
to the same iris or not. If the comparison gives a value below 7 the system states that the two codes have been
generated from the same iris, and if it gives a value above 7 the system states that the two codes have been
generated from the different irises. Determination of the threshold value 7 is a critical aspect of biometric
systems. We discuss this issue in Chapter 2.

1.6 Limitations of Classical Iris Recognition Systems

The early articles of Daugman [16] and Wildes [77] assume that iris has been acquired under constraint acqui-
sition scenario. This means that the subject is active and fully cooperative during the acquisition. However,
a recent trend in iris recognition systems is to reduce the acquisition constraints in order to make the systems
more user friendly. Relaxation of these acquisition conditions leads to a broad type of degradations in the
image such as the ones displayed in Figure 7 :
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Strong occlusions by eyelid, eyelashes, shadows or glasses (Figures 7a, 7b, 7d, 7g, 7i).

Motion or focus blur (Figure 7f).

Illumination inhomogeneity or low contrast along the iris borders (Figures 7e, Figures 7g, Figures 7h).

Gaze deviation (Figures 7c, Figures 71).

The Feature Extraction and the Pattern Matching stages are highly affected by the degradation of the
biometric information. Global degradations such as blur or illumination inhomogeneity tend to corrupt the
available biometric information. It leads to errors in the templates generation, and therefore, to errors in the
comparisons.

The Image Segmentation and the Texture Normalization stages are even more affected by degradations of
the iris region in the acquired image. Global degradations such as blur, illumination inhomogeneity or low
contrast tend to make the identification of the iris region harder. Therefore, simple segmentation schemes
such as the ones proposed by Daugman [16] and Wildes [77] fail when such degradations occur in the image.
Moreover, in degraded images, the iris may not appear circular because of occlusions or gaze deviation leading
to failures of systems which assume a circular shape for the iris borders.

Accordingly, two main approaches have been considered in the literature to allow iris recognition systems
working with degraded images. First approach is to extract more information from the image in order to
remain discriminant when the amount quality of the biometric information is reduced. The second approach is
to consider new models for segmentation that can robustly identify the iris region in the image and accurately
fit a contour model on the iris borders. In this thesis, we have chosen to study improvements for the Image
Segmentation and the Texture Normalization stages. Therefore, this thesis we will propose robust and accurate
methods to segment the iris, assuming that the Feature Extraction and the Pattern Matching are fixed.
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(d) (e)

® (b

Figure 7: Examples of difficult images for segmentation. (a) : Very packed and dark eyelashes. (b) : Shadows
on the pupil and the iris. (c) : Off angle image. (d) : branch of glasses. (e) : Strong reflexions due to glasses.
(f) : Out of focus image. (g) : Low contrast between the iris and the sclera. (h) : Low contrast between the
pupil and the iris. (i) : Off angle image with heavy occlusion.
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1.7 Conclusion

In this chapter, we have presented a classical iris recognition system based on the works of Daugman [16].
Such system has 5 stages : Image Acquisition, Image Segmentation, Texture Normalization, Feature Extrac-
tion, Pattern Matching. They have shown very good recognition performance in constrained acquisition con-
ditions, namely when the subject is active and fully cooperative during image acquisition. However, early iris
recognition systems are sensitive to the degradation of the input data quality.

The thesis is focused on the segmentation and the normalization steps of a complete iris recognition system.
This particular context for tackling the iris segmentation problem is of a main importance in this thesis, since
it leds to a specific methodology for evaluating the segmentation algorithms here proposed. For this reason,
in next chapter, we describe the evaluation framework proposed in this thesis for assessing iris segmentation
algorithms.



Chapter 2

Evaluation of Iris Recognition Systems

Biometric systems can be used on huge databases. National databases can store the information of millions of
individuals (or even a billion for the UIDAI program in India [74]). Such biometric systems are expected to
achieve a very high recognition performance. Therefore, it is important to have an estimation of the expected
accuracy of the system on very large databases.

In Section 2.1, we explain how we evaluate the accuracy of a general biometric system, with a particular
focus on the case of iris. Then, in Section 2.2, we explain how to evaluate the quality of an iris segmentation
algorithm using the whole recognition system. Finally, in Section 2.3, we describe the databases used in this
thesis to validate our results.

2.1 General Evaluation of Biometric Systems

Large scale evaluation of biometric systems is done offline on reference databases : each biometric sample
of each individual is compared to every other element in the database. When the samples belong to the same
person, the comparison is labeled as "genuine comparison". When the samples belonged to different persons,
the comparison is labeled as "impostor comparison".

To evaluate the accuracy of a biometric system, score distributions for genuine and impostor comparisons
are generated for the whole database. The precision of a biometric system is characterized by its ability to
separate between the two distributions. It defines a threshold setting the boundary between the two distributions
(if the score of a comparison is bellow the threshold, it is considered as genuine, otherwise it is considered as
impostor).

If the two distributions do not overlap, the system can perfectly distinguish between the genuine class and
the impostor class (See Figure 8a). However, in operational systems the two distributions do overlap, so no
threshold can perfectly separate the two classes (See Figure 8b). For any given threshold, some of the genuine
comparisons will be taken as being impostors (producing a False Rejection; FR when this happens) and some
impostor comparisons will be taken as being genuine (generating a False Acceptance ; FA).

N Threshold N Threshold
Distribution Distribution

Genuine Distribution Impostor Distribution Genuine Distrbution 3 Impostor Distribution

~
r

Scores Scores

Falsa Accaplation False Rejection

(a) Ideal biometric system (b) Real biometric system

Figure 8: Genuine and impostor scores in biometric systems. Figure (a) : Ideal Biometric system where the
genuine and impostor scores do not overlap. Figure (a) : Operational biometric system with an overlapping
between genuine and impostor scores generating errors.
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Figure 9: Example of ROC curve, setting the balance achievable between FAR and FRR for a given system.

A biometric system is characterized by the average amount of FA and FR for a given threshold namely
the False Acceptance Rate (FAR) and False Rejection Rate (FRR). Definition of FAR and FRR are introduced
in [28].

In a biometric system, any user has to claim an identity /. He also provides a biometric template X
(through iris acquisition for example). X shall be similar to the bimoetric template stored in database for this
identity [ : X;. Then the hypotheses are :

Hy The input X does not belong to the same person as the template X;.

Hy The input X belongs to the same person as the template X.
The resulting decisions are :

Dy The person is not who she claims to be (fraud).

D The person is who she claims to be.

The decision rule is then : if the matching score S(X g, X7) is less than a given threshold, decide D; otherwise
decide Dy. The resulting errors are :

type I : False Acceptance (D; is decided when Hj is true).
type Il : False Rejection (Dg is decided when H is true).
FAR is the probability of type-I error and FRR is the probability of type-II error :

FAR = P(Di|Hy), ©
FRR = P(DylH,),
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Figure 10: Distribution of the genuine and impostor scores for an iris recognition system

As explained earlier, the evaluation of a biometric system is done using the genuine and impostor distribu-
tions for a reference database. Estimation of FAR and FRR for a given threshold ¢ (assuming that genuine
comparisons have lower scores than impostor comparisons) is :

FaR®) = [ (0, X0)lHoS .
FRR(t) = /t " p(S(Xo, X1)| H1)dS,

The system performance at any operating point (variation of threshold ¢) is represented by the Receiver Op-
erating Characteristic (ROC) curve such as the one displayed in Figure 9. This representation allows evaluating
the expected behavior of the system for a given threshold, and therefore, to determine a threshold according to
this behavior. For instance, a system regulating the entrance to a restricted area should prevent impostors from
getting in (low FAR), even if the authorized persons need several attempts to get in (high FRR). Given the sys-
tem’s ROC curve displayed in Figure 9, a possible operating point could be : FAR = 107 and FRR = 0.15.
For such an operating point, an impostor has one chance out of 100.000 to get in, but regular users are refused
15% of the time.

Figure 10 shows the typical distributions for an iris recognition system. As expected, the impostor distri-
bution has a mean around 0.45 and the genuine distribution has a mean around 0.28. The genuine distribution
has a larger variance and the right tail of the distribution tends to expand further on the right. Comparisons
scores in this right tail usually involve images of very low quality.



2.2. Evaluation of Segmentation Quality 25

2.2 Evaluation of Segmentation Quality

As this thesis is devoted to iris segmentation, evaluating the quality of our segmentation results is a key issue.
The evaluation of segmentation quality is a classical image processing problem. However, despite a global
consensus about the importance of this topic, it is still an open problem.

This statement becomes even more true when applied to the iris segmentation problem. This problem
refers to two different actions : the generation of the segmentation masks and the estimation of the iris borders
for normalization. Our first attempt to evaluate the quality of our segmentation algorithms was to compare the
results with a manually generated ground truth. Though this approach seemed pertinent for the segmentation
mask, it appeared as irrelevant for the evaluation of the normalization contours. Indeed, we noticed that the
recognition performance of systems using simple iris segmentation algorithms were better than the recognition
performance of systems using our manual ground truth. We find out that this behavior comes from the small
impressions introduced by the operator during the generation of the ground truth. Indeed, results produced by
an human operator have a few pixels of uncertainty and automatic algorithms usually provide more reliable
results (even simple ones). Therefore, the only effective way of evaluating the accuracy of a segmentation
algorithm is by assessing its impact on the recognition performance.

In Biometrics, the quality of every module of a system is evaluated with respect to its impact on the
overall recognition performance. It is intuitive that the better a segmentation algorithm performs, the better the
recognition performance should be. Accordingly, the first way to evaluate the quality of segmentation is by
using the ROC curves presented in the previous section.
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Figure 11: Ranking of different segmentations using ROC curves, using the same features extractor and the
same features matching.

ROC curves enable a global evaluation of the system’s performance, but they fail to assess the segmentation
quality of a single image. To handle this issue, we use a concept introduced in the article of Elham Tabassi [70].
The key idea is to define image specific error rates.

e Image false match rate iFMR - the proportion of comparisons involving this image producing a false
match.

e Image false non-match rate iFNMR - the proportion of comparisons involving this image producing a
false non match.



26 Evaluation of Iris Recognition Systems

Let us note the FAR and the FRR we introduced in the previous chapter are related to a system, whereas the
FNM and the FNMR are related to a recognition algorithm. The FAR and the FRR consider images that have
been rejected by the system as being errors (because their quality is too low for instance). On the opposite, the
FMR and the FNMR only consider mistakes of the comparison algorithm.

Taking the formulation of the original article, we define sz the comparison score of the k-th image of
subject i with the 1-th image of the subject j. Then, the set of impostors for the k-th image of subjectiis :
I(i,k) = {s,i# 5,5 = 1..J,l = 1..N;}, (8)

for comparison against all /V; images of all J persons in the test set. The image false match rate is then defined
for a given threshold 7 as :

Dserpy L —H(s—7)

iFMR(T,i,k) = , ©)
Doser(i) L
with H the Heaviside function defined as :
Oifx <0
H(“”)_{ lifz >0 (10
The non false match rate is defined in a similar way. For a given threshold 7 :
G(i k) = {st, k # 1,1 = 1..N;}, (11)
oy H(s—T1

iFNMR(r,i, k) = 2scalip HE 7 7). (12)

Dseaip) 1

For a given threshold 7, the iIFMR and iFNMR value of an image k defines its tendency to produce false
match or false non match comparisons. An interesting aspect of this formulation is that images on which
segmentation has failed will have a tendency to produce more False Non-Matches than correctly segmented
ones. Figure 12 shows the iFNR and iFNMR for some images of very bad quality or poorly segmented.

Let us note that the evaluation tools we described are specific to a given recognition system. We will discuss
some more image related quality metrics in Chapter 7 where we try to predict failures of the segmentation
algorithms.
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(a) iFNMR = 0.95 ; iFMR = 0.01

L

(d) iFNMR = 0.78 ; iFMR = 0.51

"y - i
(e) iFNMR =0.90 ; iFMR = 0.23 (f) iFNMR =0.90 ; iFMR = 0.26

Figure 12: Examples of images identified as not suitable for recognition based on their image False Match
Rate and image False Non Match Rate (threshold set at 0.36). The results of the segmentation process are
displayed on the images. The two ellipses correspond to the normalization contours and the blue region to the
segmentation mask. Figure (a) : Off-angle image where contours fitting has failed. Figure (b) : Image correctly
segmented but with a cosmetic contact lens, making it unsuitable for recognition. Figure (c) : Image correctly
segmented, but with very few information available due to occlusions. Figures (d) (e) (f) : Complete failures
of the segmentation.
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2.3 Databases

Databases are a key aspect of biometric systems evaluation : to assess the recognition performance of a system,
a large number of comparisons is required. In this thesis, we focus on the databases ICE2005, ND-Iris and
CASIA V3/V4.

We choose to study these databases because they are the largest databases acquired with low acquisition
constraints available at the beginning of this thesis. Therefore, the databases contain several kind of image
degradations such as illumination inhomogeneities, hard or synthetic lenses, occlusions, poor focus or oft-
angle images. It is also interesting to note that the CASIA databases have been acquired with a different sensor
than the one to acquire the ICE2005 and ND-Iris databases that allows validating our results for different
Sensors.

2.3.1 ICE 2005

Figure 13: Examples of ICE2005 images

The Iris Challenge Evalution [55] (ICE) was constructed by the NIST in 2005 to proceed the first large scale
iris recognition challenge, namely evaluating iris recognition systems on degraded images. The ICE database
consists of 2,953 images from 132 subjects including degradations such as illumination inhomogeneities, oc-
clusions, poor focus or off-angle images.

2.3.2 NdIris

Figure 14: Examples of ND-Iris images

The Nd-Iris-0405 Database [56] is an extension of the ICE2005 database. This Database is one of the
largest public databases available for iris recognition with 64,980 iris images obtained from 356 subjects (712
unique irises). This database is acquired with low constraints. It contains off-angle images, hard or synthetic
lenses, large occlusions or images with illumination variations.
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2.3.3 CASIA

The CASIA databases have been constructed by the Chinese Academy of Sciences’ Institute of Automation [9].
These databases are mainly composed of Asian people. This population tends to have thin eyelashes oriented
downwards for the upper eyelid, thus covering a significant part of the iris and therefore inducing segmentation
eITors.

CASIA V1 was the first public irises database. Therefore, this database has been widely studied in the early
ages of iris literature. The database is composed of 756 irises of 108 different eyes. The acquisition was highly
constrained and the pupil was manually edited to be a uniform region of constant intensity. Therefore, this
database should not be used for Iris recognition anymore as it does not match real acquisition conditions [54].

CASIA V3 was released later and is composed of three subsets :

Interval This subset contains 2,655 images from 396 eyes of 249 persons. Images are acquired using the
same sensor as CASIA V1, but without manual alteration of the pupil. The in-house sensor used
to create this database ensure a strong illumination showing very rich texture in the iris.

Lamp This subset contains 16,213 images captured from 819 eyes of 411 subjects. This database con-
tains strong illumination inhomogeneities and several other degradations such as hair occlusions.
Since the eyes are taken under different illumination conditions, the pupil dilation may vary
largely from one eye image to another. The authors expect this database to be suitable for study-
ing non-linear distortions of the iris texture due to pupil dilation.

Twins This subset contains 3,183 images captured from 400 eyes of 200 subjects (100 pairs of Twins).
The authors expect this database to demonstrate that iris is strictly different even between Twins.

(a) CASIA V1

(c) CASIA Lamp (d) CASIA Thousand

Figure 15: Examples from the different CASIA databases.
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CASIA V4 extends CASIA V3 adding three new subsets :

Distance This subset contains images captured at a distance using an in-house imaging system. The ac-
quisition system also acquired other biometric samples such as high quality face images in order
to evaluate multi-modal fusion.

Thousand This database contains 20,000 iris images from 1,000 subjects. This is the first publicly available
iris database containing one thousand different subjects.

Syn CASIA-Iris-Syn contains 10,000 synthetic iris images representing 1,000 chimeric subjects. The
irises are synthesized using normalized images from CASIA V1.

2.4 Conclusion

In this chapter, we have first recalled how to evaluate the recognition performance of a given biometric system.
This evaluation is done offline by comparing a large number of biometric samples.

This chapter is centered on how to use the recognition performance of a complete iris recognition system
to characterize the accuracy of an iris segmentation algorithm. Indeed, the better the segmentation algorithm
is, the better the system’s recognition performance should be. We propose to carry out the evaluation at two
levels :

e At a global level (the whole recognition system) using ROC curves.

e Atanimage level using the image False Match Rate (iIFMR) and image False Non-Match Rate (iFNMR).

Finally, we have described the different databases we used during this thesis for validating our results. We
have selected these databases because they have been acquired with low acquisition constraints and therefore,
are representative of the different problems addressed during this thesis.

In next chapter, we will study the specificity of iris segmentation. We will make a survey of some classical
iris segmentation methods. We will use this survey to explain technical choices made in this thesis and the
consequences for our segmentation system.
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Chapter 3

Segmentation Techniques for Iris
Recognition

Iris segmentation refers to two distinct actions :

1. The identification of the pixels belonging to the iris in the eye image (generating a so called segmentation
mask).

2. The estimation of a parametric description for the iris inner and outer boundaries (in the image, but also
under possible occlusions)

Such information is critical to perform recognition. The parametric contours are used to unwrap the iris
texture in order to produce the normalized image (Equation (3) of Chapter 1) that is used at matching step. The
segmentation mask is used to remove non iris area from the matching process (Equation (5) of Chapter 1).

The first segmentation algorithms of Daugman [16] and Wildes [77] assume that the iris can be modeled by
two non concentric circles possibly occluded by the eyelids. Therefore, they reduce the segmentation problem
to the search of circles with simple eyelids detection schemes. These approaches showed good results when
subjects are highly cooperative. However, when acquisition conditions are relaxed, the iris borders are more
likely to be occluded and simple segmentation models tend to fail. For this reason, new algorithms have been
proposed in order to handle degradations appearing in this context.

The iris segmentation task thus produces a segmentation mask and a parametric description of the iris bor-
ders. Accordingly, we identify two main strategies that differ in the processing order. The first strategy, which
we call Contours First, first finds parametric descriptions of the iris borders and then removes occlusions in the

Figure 16: Two main segmentation strategies. On the upper row, the Confours First strategy : the borders of
the iris are found first and then the segmentation mask is obtained by removing occlusions. On the lower row,
the Texture First strategy : the texture of the iris is found first and then a model is fitted on the iris borders.
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segmentation mask. The second strategy, which we call Texture First, first determines a precise segmentation
mask of the iris texture and then, finds a parametric description of the iris borders. The difference between
such two strategies is illustrated in Figure 16. At the end, both strategies will produce close results, but this
choice has some consequences on the design of the segmentation algorithms :

e Contours First strategies (first row of Figure 16) first find parametric descriptions of the iris borders and
then remove the occlusions. This first stage must be both robust and accurate in finding the visible iris
borders, and in predicting the shape of the occluded ones. Indeed, mistakes made during this first stage
will directly affect the image normalization. Once the shape of the iris is known, occlusions are removed
from the segmentation mask using simple methods like eyelids detection.

o Texture First strategies (second row of Figure 16) first precisely segment the iris texture in the image and
then estimate the iris borders. This segmentation can be performed directly on the image using classical
region segmentation algorithms. However, the region segmentation does not provide parametric contours
for normalization. Accordingly, the search of the parametric contours is done using the information from
the region segmentation.

In this chapter, we review some methods proposed in the literature to segment the iris. First, in Section 3.1,
we recall briefly the early segmentation approaches of Daugman and Wildes. Then, we present more recent
works on iris segmentation. We describe Contours First strategies in Section 3.2 and then present Texture First
strategies in Section 3.3. Finally, in Section 3.4, we present the key problems to solve in the framework of the
chosen strategy for iris segmentation and the proposed solutions.

3.1 Early Segmentation Approaches

The first article proposing an automated system able to identify people based on the texture of their irises was
proposed by Daugman in [16] in 1993. This article was followed in 1997 by an article of Wildes [77] based on
a different comparison algorithm. These two articles address the problem of identifying people whose irises
have been acquired in a controlled acquisition scenario. In these studies, the eye images are clear and the irises
always visible in the image. They both model the iris borders using circles but propose different algorithms
to find these circles in the image. Finally, they remove the eyelids from the image using simple detection
methods.

Using the terminology we proposed in the introduction of this chapter, these two articles apply a Contours
First strategy because they first search the parametric contours (the circles) and then remove the occlusions
(the eyelids).

3.1.1 Daugman’s approach

In [16], Daugman proposes to find circles in the image using the following integrodifferential operator (IDO) :

AL (r,20,y0)

1 0 in 6
‘GU(T> 8%9 (xo + rcosb,yo + rsind)

2 deH, (13)

2nr

where (7, x,yo) are the parameters of a circle with center (x,yo) and radius r, I is the image, G, is a
smoothing Gaussian of scale o, and * denotes convolution. This operator finds the circle where the change of
intensity is maximal. For practical implementations, the author proposes using a first order approximation of
the operator and evaluating the operator on a fixed grid. These approximations allow to speed up the process
compared to a naive implementation of equation (13).

In the original article [16], Daugman makes an empirical assumption on the expected location of the eyelids
and always remove there areas from the segmentation mask. In [15], Daugman proposes to locate the eyelids
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based on an integrodifferential operator designed to locate parabola similarly to what he proposes for circles
in Equation (13).

Although the operator (13) has shown good result in controlled acquisition scenarios, it lacks robustness
in less constraint acquisition conditions. Indeed, as the circle detection is based on an energy formulation, it
can be affected by irrelevant optima created by other elements of the image such as the eyelids, eyelashes or
shadows.

3.1.2 Wildes’ approach

In [77], Wildes proposes to find circles in the image using classical image processing methods : he first looks
for edges in the image using a simple edge detector (Canny in [77]) followed by a CHT (Circular Hough
Transform [53]). In addition to this circle finding process, the author proposes to segment the eyelids to
remove this area from the comparison process. This detection is also very classical and is based on a linear
Hough Transform. The critical issue of this method is to select an accurate edge detector. Indeed, if the iris’s
edges are not present in the edge image, the Hough transform can not find the iris contours. On the opposite,
if the edge detector is not selective enough, the time computation of the CHT may dramatically increase. For
these reasons, most of the articles based on Wildes’ idea modify the edge detector to improve performance
[36] [41] [39]. This method is very robust because it uses very stable image processing tools. However, the
precision is directly affected by the choice of edge detector and its settings.

3.2 Contour First Strategy

In this section we describe methods we identified as Contours First strategies. These methods first accurately
locate the borders of the iris visible in the image. Then, they use this information to predict the shape of the
iris in occluded regions. Finally, they remove the occlusions (like eyelids or eyelashes) from the segmentation
mask. We give a brief summary of the key elements of each article in Table 1.

In [17], Daugman proposes a set of methods to solve some of the main issues of early iris segmentation
systems, like handling persons which have an anatomically non-circular iris and gaze deviations. To that aim,
he models the iris borders with parametric contours described by Fourier coefficients instead of circles. He
first roughly locates the pupil and the iris in the image and then, uses this initialization to segment the iris with
snakes described by Fourier series expression. The interest of this formulation is twofold : on one hand it
gives a very effective scheme to identify the iris borders, and on the other hand, the contours are parametrically
described an can be used to normalize the image instead of circles. To address the off-angle problem, the
author uses the first two coefficients of the contours’ Fourier expansion to rectify the image deviation (i.e. he
assumes an elliptic shape). Finally, the eyelashes overlapping the iris are removed based on a simple statistical
test on the intensity distribution.

This method is a good illustration of modern Contours First strategies because the author focuses on the
research of a parametric description of the iris anatomic borders and then uses a simple scheme to remove
occlusions. Therefore, the main difficulty of the proposed model is to use only the "true" iris borders in the
image to fit the snake. Indeed, if the snake fitting is done using some edges generated by occlusions (for
instance an edge separating the iris texture and the eyelid), the overall shape of the contour will be corrupted.

In [46], Miyazawa et al. propose a new approach to compare irises using global phase correlation. This
comparison method provides an interesting alternative to the Daugman’s reference method described in Sec-
tion ?? and 1.5 of Chapter 1. However, the method proposed in [46] also requires a normalized image generated
using a parametric description of the iris contours. To get these parametric contours the authors propose a quite
unique Contours First segmentation strategy. They first locate the pupil by looking for dark areas close to spec-
ular reflections. Then, they apply a Parametric Deformable Model based on 10 parameters to segment the iris.
This model is composed of one ellipse for the pupil border and one for the iris border. The idea of this method
is to minimize a certain energy of the contour by iteratively evolving the parameters of the model.
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This method is interesting because the Parametric Deformable Models are known to be very robust and are
likely to work even with degraded images. However, they assume that the iris can only be occluded by eyelids
and other types of occlusions are not handled by this model.

In [63], Ryan et al. adapt an eye tracking method called starburst to iris segmentation. They first locate
the pupil with a simple thresholding method assuming that the pupil should be far from white areas (the skin).
Then, they propose to fit an ellipse on the pupil and the iris contours using starburst. The idea of starburst is to
send rays from the initial location of the pupil and assume that the occurrences of larger gradient found along
the ray correspond to the pupil or the iris borders. Several directions are considered to get a set of points that
are likely to belong to the borders. Those points are used to generate an ellipse for the pupil and the iris. The
eyelids are segmented using a 1-D snake. Unlike most biometric-related articles the authors do not evaluate
the segmentation accuracy using the performance of their system. Instead, they rely on manually segmented
images from ICE2005. The authors define a distance metric for ellipses and compare their algorithm to some
reference algorithms of the literature on images which have been manually annotated.

In [26], He et al. propose a complete Contours First segmentation strategy. They first propose an accurate
and effective way to get a parametric description of the iris borders, and then, they propose an effective scheme
to remove occlusions generated by eyelashes and eyelids. The pupil is first roughly localized using an adaboost
classifier. This rough location is used to initialize a "pulling and pushing" algorithm to generate the parametric
description of the iris borders. This algorithm starts by a rough detection of the edges points that are likely to
belong to the pupil (resp. the iris) border, and then the "pulling and pushing" algorithm is used to keep only
edge points belonging to the pupil (resp. the iris) border. This set of edge points is used to fit a spline which
will give the parametric description of the pupil (resp. the iris) border. Finally, the eyelids and eyelashes are
segmented using statistical inferences of the intensities in the regions.

Like [17], the method proposed in [26] is a good illustration of Contours First strategies because they apply a
very effective scheme to first find a parametric description of the iris borders and then remove the occlusions.

In [10], Chou et al. focus on the correction of the gaze deviation for off-angle images. The authors first

propose a new acquisition device taking simultaneously the three visible channels and a NIR image of the eye.
The pupil is first roughly segmented using thresholding in the NIR image. Eyelash area are removed using
hypotheses on the pupil shape. Then, an elliptic Direct Least Square fitting is applied in order to get an elliptic
contour for the pupil area. This elliptic contour is used to perform a circular rectification, i.e. applying a global
transform on the image morphing the pupil ellipse into a circle. Once the four channel image has been rectified,
the authors look for a circle in the corrected image using the RANSAC [21] algorithm on the four channels
of the image. The performance evaluation is done both in terms of recognition performance and using manual
annotation. The authors show that a significant improvement of performance is achieved compared to a circle
based method and that the improvement is proportional to the strength of the gaze deviation.
The approach proposed in [10] is interesting because it explicitly studies the influence of an elliptic contour
model on off-angle images. The results of this study show that elliptic methods are pertinent to solve the off-
angle problem. However, this approach can not be used directly without the sensor proposed by the authors to
simultaneously acquire the NIR and the visible image of the eye.

In [84], Zuo et al. propose a complete system for iris segmentation designed to handle most of the degra-
dations commonly found in iris images. The authors start by applying a preprocessing to the image in order
to remove specular reflections and noise. The pupil is segmented based on a rough thresholding and morpho-
logical operations. Finally, an elliptic contour is fitted to the pupil border. The iris contour is found using an
adaption of Daugman’s integrodifferential operator for ellipses. Finally, illumination inhomogeneities are cor-
rected, and the eyelash occlusions are removed using morphological operations. To estimate the segmentation
quality the authors propose to use a subjective evaluation based on the distance between the resulting ellipses
and the actual borders of the iris.

The proposed approach differs from the other Contours First strategies we presented. Indeed, the authors pro-
poses to correct the degradations in the image at every step of the algorithm whereas other methods usually
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algorithm for the
iris

lipse onto a circle

Article Initialization Segmentation Refinements Unwrapping con-
tours
Daugman - Pupil and iris found | Empiric  suppres- | Circles from the
1993 [16] using IDO sion of the upper | IDO
and lower part of
the iris
Wildes - Pupil and iris found | Eyelids detection | Circles from the
1997 [77] using CHT based on a Linear | CHT
Hough Transform
Daugman Rough localization, | Snakes using | Off-axis correction | Parametric con-
2007 [17] eyelids segmenta- | Fourier series and eyelash sup- | tours given by
tion pression Fourier series
Miyazawa et | Rough pupil seg- | Deformable iris | Eyelash  suppres- | Ellipses from the
al. 2008 [46] mentation model with 10 | sion deformable model
parameters
Ryan et al. | Rough pupil local- | Starburst segmenta- | Eyelid segmenta- | Ellipses from the
2008 [63] ization tion for the pupil | tion using snakes starburst segmenta-
and the iris con- tion
tours
He et al. | Rough location | Pupil and iris seg- | Border fitting us- | Refined polynomial
2009 [26] based on Adaboost | mentation  using | ing cubic splines. | curves
classifier pulling and pushing | Eyelid segmenta-
method tion and eyelash
suppression
Chou et al. | Rough pupil seg- | Elliptic DLS for the | Global transform to | Circles in the recti-
2010 [10] mentation pupil and RANSAC | map the pupil el- | fied image

Zuo et al
2010 [84]

Inpainting and con-
trast enhancement

Thresholding  for
the pupil and the
iris.  Fitting using
elliptic Daugman’s
IDO

IIlumination  cor-
rection and eyelid
removal

Ellipses from the
elliptic IDO

Uhl et al. [3]

Rough initializa-
tion using weighted
Adaptative Hough
transform

Line search in
polar  coordinates
and elliptic DLS
fitting. Second
contour is found
using ellipsopolar
transform w.r.t. to
the first contour

Eyelid and eyelash
removal

Segmented ellipses

Table 1: Relevant iris segmentation/normalization algorithms from the literature which use a Contours First

strategy. (IDO stands for Integrodifferential Operator and DLS for Direct Least Square)
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remove the occlusions at the end. Moreover, the pupil region is first accurately segmented before the elliptic
fitting. Therefore, the pupil segmentation stage can be seen as a Texture First approach. We decided to classify
this algorithm as Contours First strategy because the iris segmentation stage is done using a Contours First
strategy.

Most iris segmentation methods we described so far are designed to segment images acquired under Near
Infrared illumination. For this type of illumination, the pupil is the most stable element in the image and is
segmented first. For image acquired in visible wavelength, the most stable element in the image is the limbus.
Accordingly, the outer boundary of the iris is segmented first. In [3], Uhl et al. propose a method to segment
the inner and outer border of the iris without assumptions on the processing order. Therefore, this method can
be used either for NIR and visible images. The process is first initialized by finding a rough localization of
the iris center using a weighted adaptive Hough transform. Then, the image is transformed into a polar image
and the first contour is found by searching for lines in the polar image. The second contour is found using an
ellipsopolar transform. Finally, the contours are identified as either pupil or iris contours based on the strength
of the image’s gradient at the location of the contour.

We can note that all the articles we presented as Contours First strategy focus on finding the visible borders
of the iris in the image to fit a parametric model under possible occlusions. These models can be either
circles [16, 77], ellipses [46, 63, 10, 84, 3] or general parametric contours [17, 26] and these parametric
descriptions are used to generate the normalized image of the iris texture. However, this process must be very
robust and accurate because any mistake made during the localization of the contours will directly impact the
normalized image.

3.3 Texture First Strategy

In this section we describe Texture First methods. These methods segment the iris texture first and then apply
a fitting method based on the region segmentation results to get the parametric description of the iris borders.
Such methods can handle arbitrary types of occlusion and achieve a very precise segmentation of the texture.
We give a synthesis of the key points of the presented articles in Table 2.

In [76], Vatsa et al. propose a complete iris recognition system from the Image Segmentation to the Pattern
Matching. They propose to segment the iris using the Chan and Vese model for Active Contours [8]. Then they
propose several quality enhancements applied on the normalized image to improve the recognition performance
of the system. Finally, they propose two comparison algorithms they fuse using a Support Vector Algorithm
(SVM).

The segmentation process starts by a rough estimation of the pupil and iris borders based on an iterative
algorithm designed to find ellipses in the image. They initialize a circle at the center of the eye and randomly
select some points on the circumference to decide if the contour should shrink or expand in order to maximize
the variation of intensities. Then, based on this rough initialization, a Chan and Vese active contour is used to
get the accurate segmentation mask of the iris and the iris is normalized using the initial ellipse parameters.
This approach was one of the first Texture First methods of the literature. One of the main limitation of this
approach is that the contours used to generate the normalized image are the same as the one used to initialize
the Active Contours. It is a problem because this process is done quite empirically and have a low accuracy
compared to the region segmentation proposed in the article.

In [66], Shah et al. want to segment the iris region without making assumption on the shape of the iris.
Therefore, they propose to use Geodesic Active Contours (GAC [7]) to segment the iris texture. The process is
initialized using a rough segmentation of the pupil based on thresholding. In order to distinguish the pupil area
from other dark elements in the eye the authors propose to apply a circular least square fitting on the regions
borders and select the region closest to a circle. Then, they use this rough initialization of the pupil to segment
the iris using a Geodesic Active Contours. Finally, in order to get the parametric description of the contours
for normalization, they propose to apply a circular fitting on some relevant points of the iris mask.
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This article is the first complete Texture First strategy proposed in the literature. The authors first accurately
segment the iris region in the image and then propose a way to estimate the shape of the contours using the
shape of the region. This article was used as a basis for our work on iris texture segmentation and we describe
more deeply its technical aspects in Section 5.3.1 of Chapter 5.

In [62], Roy et al. propose an complete recognition system to handle non-ideal iris images. They first
segment the pupil and the iris using two different kinds of active contours and then they propose several feature
extraction algorithms. These features are merged using genetic algorithms and Support Vector Machines.

The pupil is first segmented using Geodesic Active Contours in a similar way Shah et al. [66] did for the iris
segmentation, and then they segment the iris texture using a Chan and Vese active contour [8] to segment the
iris. Finally, they propose to refine the segmentation mask by segmenting the eyelids assuming a parabolic
shape. Then they remove the eyelashes using the process described in [37]. Normalization contours are found
the same way [66] do.

The segmentation method proposed in this article is very close to the article of Shah et al. [66] but they propose
to describe the iris region using its intensity distributions rather that the gradient of its boundaries.

In [59], Proenca proposes an interesting extension of He et al.’s method [26] for segmentation. He focuses

on the definition of image quality criteria for images acquired in visible wavelength. The author proposes
to apply the segmentation method [26] to generate the segmentation mask of the iris region. Then Proenca
retrieves the normalization contours by robust variational fitting of a contour contours described by Fourier
series coefficients.
The proposed method uses a Contours First strategy [26] to generate the segmentation masks, but, instead of
using the contours of the original method, Proenca proposes an alternative method to get the iris borders from
the segmentation mask. The interest of this formulation is that is can basically be used as a complement to any
method first generating a segmentation mask. However, the fitting is done on the border of the segmentation
mask. Therefore, errors in the accuracy of the segmentation mask may corrupt the contour fitting stage.

In [68], Sutra et al. propose a method in between Contours First and Texture First strategies. They propose
to segment the boundaries of the iris region in the image (different from the anatomic iris borders) using the
Viterbi algorithm. This algorithm is an adaptation of a classical algorithm from the signal transmission theory.
Applied to the iris segmentation problem, it can be seen as finding the contour of minimal length going around
the iris region while following areas of strong gradient. The authors first roughly localize the pupil to transform
the image into polar coordinates. In the polar image they search for the path of minimal length linking the two
sides of the image and passing through areas of strong gradient. The path closest to the center is the pupil one
and the further one is the iris path. The image region contained between these two paths is the iris region.

In order to obtain the parametric description of the iris borders for normalization, the Viterbi algorithm is
applied a second time at a lower resolution to get a rougher representation of the iris borders. The interest
of this rough representation is that more strength is given to the areas where it is more likely to have an iris
border (right and left regions) and less to areas where it is more likely to have occlusions (upper and lower
regions). These contours are used to apply a circular Direct Least Square to fit the parametric description of
the iris contours.

Although this article focuses on a contour finding method the authors clearly apply a Texture First strategy
because they first segment the iris region and then propose a way to get the parametric description of the iris
borders. An interesting aspect of this approach is that they do not directly rely on the region segmentation to
fit the parametric contour, therefore they do not depend too much on the accuracy of the first run of the Viterbi
algorithm.

An interesting aspect of Texture First strategies is their ability to precisely segment iris texture almost inde-
pendently of the occlusion types. However, they require an effective scheme to get the parametric description
of the iris contours based on the shape of the segmented region. A limitation of the presented articles is that
they often strongly rely on the accuracy of the region segmentation results to estimate the shape of the iris
borders. Therefore, inaccuracies in the region segmentation process will lead to inaccuracies on the borders’
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description.
Article Initialization Segmentation Refinements Unwrapping con-
tours
Vatsa et al. | Pupil and iris ini- | Level set based on | Eyelid segmenta- | Initial ellipses
2008 [76] tialized as ellipses Chan and Vese for- | tion
mulation [8]
Shah et al. | Segmentation Segmentation Iris fitting using | Refined circles
2009 [66] of the pupil and | of the iris using | circular DLS on
circular DLS Geodesic  Active | points of the limbus
Contours boundary
Royetal. 2011 [62] | Pupil contour ini- | Geodesic ~ Active | Circles are found | Refined Circles
tialized using ellip- | Contours for the | in the same way as
tic DLS pupil.  Level set | Shah [66]. Eyelid
based on Chan | segmentation and
and Vese formu- | eyelash suppression
lation [8] for the
iris
Proenca 2010 [59] | - Segmentation using | Recursive fitting of | Parametric con-
the method [26] a Fourier series to | tours given by

the iris borders

Fourier series

Sutra
2012 [68]

et

al.

Rough pupil local-
ization

Viterbi algorithm in
polar  coordinates
for the pupil and
the iris

Downsampled
Viterbi  algorithm
and circular DLS

Refined circles

Table 2: Relevant iris segmentation/normalization algorithms from the literature using Texture First strategies.
DLS stands for Direct Least Square

3.4 Focus of this Thesis

We have identified two main strategies for iris segmentation, namely Contours First and Texture First strategies.
In this thesis, we have decided to apply a Texture First strategy for two main reasons. The first is that Contours
First strategies are closer to the original articles of Daugman and Wildes. Therefore, they have been more
intensively studied than Texture First strategies which are relatively new (the first article we identified as
Texture First has been published in 2008). The second reason is that these strategies allow to make very few
assumptions on the content of the image, as we have discussed in Section 3.3. We find this property particularly
interesting for handling the degradations that may appear in the image when relaxing acquisition conditions
(See Section 1.6 of Chapter 1).

The overview of the complete system that we developed during this thesis is described in Appendix A.
During the development of this system, we faced four critical issues for which we have proposed original
solutions compared to the literature (presented in Sections 3.2 and 3.3) :

(i) Rough Pupil Localization : Localization of the pupil area in the whole image (Chapter 4).

(i1) Iris Region Segmentation : Segmentation of the iris region in the image (Chapter 5).

(iii) Contour Fitting : Fitting of a parametric contour on the iris borders (Chapter 6).

(iv) Segmentation Quality : Evaluation of the quality of the segmentation results (Chapter 7).
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Concerning part (i), every article presented in Sections 3.2 and 3.3 first roughly localizes the pupil region
and then applies some more complex algorithms based on this localization. Therefore, this step of Rough Pupil
Localization is of crucial importance indeed, a failure at the Rough Pupil Localization step will result in the
failure of the complete segmentation process. The difficult aspect of this localization is to distinguish the pupil
from other dark elements in the eye such as eyebrows, packed eyelashes, hair or the arms of glasses. To solve
this issue, we propose to first identify eyebrows and eyelashes regions and then to remove them from the pupil
localization process. We describe this process in Chapter 4.

Concerning part (ii), as we have decided to use a Texture First strategy, we first segment the regions before
fitting the parametric contour in the image. Therefore, Iris Region Segmentation is challenging because the
algorithm should not only reach a good precision, but it must also be very robust to handle image variability.
Accordingly, we focused on Active Contours for iris similarly as the articles [76, 66, 62]. We present several
implementations of such algorithms in Chapter 5 and discuss their advantages and limitations.

Concerning part (iii), Texture First strategies described in our survey usually find the parametric contours
of the iris borders by making a strong use of segmentation results. This tends to create a lack of robustness in
the contour fitting scheme because inaccuracies in segmentation results may lead to large failures in the contour
fitting process. To solve this issue, we developed a new algorithm based on the formalism of Active Contours.
This algorithm allows to fit robustly and accurately an elliptic contour on the iris borders. We describe our new
model in Chapter 6.

Concerning part (iv), we were concerned about detecting large failures of the segmentation process. Indeed,
segmentation failures have a large impact on the recognition performance of the global system [46]. In order to
reduce the error rate of the system, it is necessary to detect such segmentation failures ; besides, this opens other
possibilities like reacquiring the image if possible, or changing the algorithm’s settings in order to correctly
segment the image. Unlike the pupil and iris segmentation issues that are widely studied in the literature,
the estimation of the segmentation quality and the detection of failures have not been widely studied so far.
Indeed, few work in the literature target this critical problem [38, 29, 81, 30, 80]. Traditionally, the algorithms
estimating the image quality are often placed either at the image acquisition level to check the quality of the
raw image, or after the segmentation module to assess if the biometric sample has enough information to
characterize the iris. In Chapter 7, we propose a set of new segmentation quality measures. We explain why
we choose them and how they are fused to produce a final segmentation quality score.
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Chapter 4

Automatic Localization of the Pupil Area in
the Eye

The pupil is the dark hole located inside the iris allowing the light to enter the eye. This area is usually very
dark and homogeneous. For this reason, it is considered as the most stable element in an eye image acquired
in near infrared illumination. Therefore, most iris segmentation algorithms start by a rough localization of the
pupil area to initialize more complex algorithms. However, if the localization of the pupil fails, the algorithms
may be initialized very far from the actual location of the iris, leading to a complete failure of the segmentation
process.

Although the pupil is usually one of the darkest elements in the eye image, it may not be the only dark
region : eyelashes, eyebrows or hair may have intensities very close to those of the pupil area (see Figure 17). It
is obviously critical to be able to distinguish the pupil from these other dark elements in the eye. Our proposal
to handle this problem is inspired from the work of Pundlik et al. [61] and aims at roughly segmenting the
eyelashes and eyebrows in order to remove them from the pupil localization process. Let us note that this
approach differs from most eyelash segmentation methods : usually eyelashes are removed directly from the
segmentation mask assuming that the pupil’s location is known.

(a) Very dark packed eyelashes (b) Dark eyelashes touching the (c) Hair in the image (d) Braches of glasses occluding
pupil the pupil

Figure 17: Some difficult images for pupil localization. (Figure (a) and Figure (b) are taken from the ND-Iris

database and Figure (c) and Figure (d) are taken from the CASIA Thousand database)

In order to identify eyelash and eyebrow areas we design two algorithms that we describe in Section 4.1.
This information on eyelash location allows enhancing the pupil area in the image as we explain in Section 4.2.
Enhancing the pupil area makes its detection easier and, therefore, reduces the amount of mis-localization of
the pupil area. Finally, in Section 4.3 we evaluate the two algorithms we have developed for eyelashes detection
on two different databases : ND-Iris and Casia Thousand.

4.1 Segmentation of eyelashes and eyebrows
Eyelashes are usually highly textured whereas the pupil is rather homogeneous. In [61], Pundlik et al. pro-

pose to segment the eyelashes using this textural information. To that aim, they propose to use Harris corner
detection framework [25] in order to identify textured regions. Let’s consider the operator :

Gx)= > [ L Ix(i)ly(xl) : (14)

x'€Ng(x)

CONFIDENTIAL
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Input
Image

Eyelash

Detection

Y

.-, Pupil

Enhancement

I Thresholding

Figure 18: Rough localization of the pupil area. First, the eyelash regions are detected in the original image.
This information is used to enhance to pupil region in the original image. Enhancement is done in such a way
that the pupil area can be retrieved using simple thresholding techniques.
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where x is a given pixel of the image I, Ny(x) is a neighborhood of x, I, (x) the horizontal gradient at pixel
x and [, (x) the vertical gradient at pixel x. Let e; and ep be the two eigenvalues of G(x) with e; < es. The
eigenvector associated to the largest eigenvalue represents the dominant direction of the texture’s orientation
in the neighborhood NV, (x). The strength of the eigenvalues characterize the nature of the region around x. If
both e; and es are small, x belongs to an homogeneous region. If e; >> eg and ey is small, x belongs to an
edge. If both e; and es are large, x belongs to a region where the gradient is isotropic, namely a corner point.
To detect the corner points in the image, Pundlik et al. set and empirical threshold 7 and select the points where
h(x) = min{e1,ea} > 7.

This process generates a binary map of corner points in the image. Eyelash regions are expected to contain
a higher density of corner points than the other regions in the image. In order to estimate the density of corner
points, the authors apply a weighted sum of the radial histogram at each point (this can be seen as a smoothing
of the binary image). This process results in a dense map of the textured areas.

The main limitation of the approach proposed in [61] is the definition of one global empiric threshold 7.
Indeed, the strength of the eigenvalues can however vary depending on the blur in the image. Thus, influencing
the optimal value of 7. Therefore, we propose to use the same idea as Pundlik et al. [61] (eyelashes are in
areas of high frequency), but we propose two different methods based on an adaptive thresholding to identify
these regions. The first method we call Texture-Based is a direct extension of the works of Pundlik et al. with
an adaptive thresholding process. The second method we call Probabilistic-Based is based on a Reductio ad
absurdum on the intensity distribution of the high frequency image.

In order to obtain the final eyelash location, We fuse these results using the scheme presented in Figure 19.
In addition to the two eyelash location information, we also favor dark regions in the image. Therefore,
our fusion scheme is the product of three images of probability : probability of the Texture-Based approach,
probability of the Probabilistic-Based approach and probability of being in a dark region. As the product

-
At ™

(a) Original Image

(e) Probabilities Product (f) Enhanced Probability

(d) Dark Regions

Figure 19: Figure (a) : Original image. Figure (b) : Probability P,. Figure (c) : Probability F;. Figure (d) :
Probability P,. Figure (e) : Product of the three probabilities P,.. Figure (f) : Final enhanced probability P.,.
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operation tends to generate a few high intensity pixels and mostly low intensity pixels, we correct the intensity
in the image to have a better repartition in the intensity distribution.

4.1.1 Texture-Based Eyelash Detection

An empiric analysis of the operator h(x) = min{e;, es} presented in the above section shows that its his-
togram follows a decreasing exponential law. If we note H the histogram of the operator h normalized between
0 and 1 we assume that we have :
[0,1] — [0,1]
L ] (4
o
where o is the time constant of the exponential law. The value of o is related to the blur in the image : it is low
for blurred images and high for sharp images. Figure 20 gives examples of such histogram for three different
images. The first two images are rather sharp, so the slope of their histogram H is very high. On the opposite,
the last image is rather blurry so the slope of the histogram is quite low compared to the two previous images.

.

(a) Original Image (b) Operator h (normalized be- (c) Histogram H of h
tween 0 and 1)

(e) Original Image (f) Operator h (normalized be- (g) Histogram H of h
tween 0 and 1)

0

(i) Original Image (j) Operator h (normalized be- (k) Histogram H of h
tween 0 and 1)

Figure 20: Eyelids area enhancement based on the Texture-Based model. The first column presents the original
image. The second column presents the operator i normalized between 0 and 1. This operator gives a indica-
tion on the eyelash location but their is a large gap between pixels having high intensity and pixels having low
intensity. The third column presents the histogram H of the operator h. Finally, the last column presents F;,
the result of the Texture-Based eyelash detection process.
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Therefore, we propose to use this information to automatically adapt the empirical threshold 7 of Pundlik et
al. [61].

We first estimate & using the slope of the histogram at the origin H'(0) = —é and apply the following
transform to the operator h of the previous section :
h
Py(x) = min{ 10(X()7 1, (16)

P; can be seen as a limitation of the intensity at a maximum of 106 with a linear normalization between O
and 1. The interest of P, as opposed to the process proposed in [61] is that the threshold is set adaptively, and
P; has values between 0 and 1 instead of strictly binary values.

Figure 20 illustrates the process for several images with different types of eyelashes. The image in Fig-
ure 20a has very dark and packed eyelashes. The image in Figure 20e has very thin eyelashes. The image in
Figure 20i has very thin and dark eyelashes with a large focal blur. The results of the proposed process are
displayed in the last column and show that our process can automatically highlight the eyelashes in the three
images.

4.1.2 Probabilistic-Based Eyelash Detection

In [33], Kang et al. detect eyelashes using high frequency of the image. They consider the average amount
of high frequencies in the image to adapt a two-fold algorithm for eyelash detection. They use a region based
algorithm to select the packed eyelashes and a filter-based scheme to select the separable eyelashes.

To extract this high frequencies map the authors take the difference between the original image and a
blurred image :
HF = — K +1, (17)

where K is a blurring kernel. The approach proposed in [33] shows that it is possible to identify eyelashes in
the high frequency image H F'. However, this image H F' also contains other high frequency elements such as
edges and noise.

Based on the idea of Kang et al. [33], our proposition to find eyelashes in H F' is divided in two steps :

(i) Defining an adaptive threshold to identify pixels of higher frequency in H F'.

(i) Distinguish eyelashes areas from edges and noise.

Concerning (i), we apply a Reductio ad absurdum assuming that H F' is only composed of a Gaussian white
noise, i.e. that there is no information in the image (no edge nor corner points). As we know this assumption
is wrong, we can check for incoherency between the model and the actual H F' to extract the eyelash. This
process is illustrated in Figure 21. First we compute H F' as the difference between the original image and
its blurred version Equation (17). Then, we compute o the variance of H F'. If the white noise assumption
was true, more than 99% of the pixels in the image should fall in the interval [—3c7; 30] and they should be
widespread randomly in the image. Accordingly, we mark all the pixels in the image above 30 and below —30

[ 0 if HF(x) € [—30;30]
Ep(x) = { 1 otherwise ’ (18)

Concerning (ii) : eyelashes are usually located in dense regions of £),, whereas edges are usually located
along thin lines and the noise is spread randomly in the image. Therefore, blurring the binary image removes
both the edges and the noise, whereas it homogenize the eyelash regions. Accordingly, we generate the eyelash
probability map by blurring E,, with a Gaussian kernel of variance 7 : G.

P, =G, +E,, (19)
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(d)

Figure 21: Figure (a) : Original image. Figure (b) : Blurred image. Figure (c) : High frequency image obtained
as the difference between the first two images (histogram equalization is applied to improve visualization).
Figure (d) : Histogram of the high frequency image, values are between [—50, 50] and the histogram spike is

at 0. Figure (e) : Pixels of Figure (c) having a value below —30 or above 30, where o is the variance of the
histogram in (d).

4.1.3 Retrieving the Eyelash Map

We merge the two operators P, and P; of the previous sections in order to get the expected location of eyelashes
and eyebrows. As we are only interested in eyelashes and eyebrows that can be wrongly detected as pupil area,
we add a constraint P, to select only dark areas in the image.

255 — 5 % I(x)

ors 0k (20)

Py(x) = maz{

The Figure 19 we presented earlier in this section illustrates the complete eyelash localization process.
P,(x), P;(x) and P4(x) are computed separately and merged using equation :

P.e(x) = Pp(x) - Py(x) - Py(x). (21)

The product of Equation (21) allows getting an estimation of the eyelash’s expected location in the dark
regions. However, the product operator tends to produce a large difference between high and low values in FP..
Therefore, we propose to enhance the probabilities using the same scheme we used for P, in Section 4.1.1. We
also apply a Gaussian blur of variance 5 to smooth the image leading to the equation :

hp,,(x)
10 -0

where hp, is the histogram of P, normalized between 0 and 1, and G is a Gaussian blur of variance 5.

Pl (x) = G5 * min{ , 1}, (22)
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4.2 Rough Pupil Segmentation

In this section, we propose to build an image where the pupil is the darkest element. To do so, we use the prior
knowledge we have on the properties of the pupil :

e The pupil is a dark region in the original image.
e The pupil is not in the eyelash regions.

e The pupil should be close to the specular reflections generated by the illumination device [46].

Accordingly, we use these three assumptions to enhance the pupil region as presented in Figure 22. First,
we use the Eyelash map we built in Section 4.1 to discard the eyelash areas. Then we consider the input image
I, normalized between 0 and 1. Finally, we use the location of the specular reflexions .S to localize the pupil
region (see Annexe A for details about the generation of S). As S is a binary mask, we blur this mask using a
Gaussian kernel of large variance to generate a smoother map using the equation :

Gyx S

1 23
5 maxxes Go * S(x) @3)

In order to fuse these three probability information (I,,(x), P, and S,