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Introduction

The study of transport properties of electrons in metals dates back to the classical
Drude theory, based on the idea that free electrons were scattered by positive ions
occupying lattice sites. The discovery of quantum mechanics and of the wave character
of the electron leaded to a revision of such classical model: the electron is diffracted
from an ideal crystal and the one-particle wave-functions are given by Bloch states [1].
Resistance, and thus finite conductivity, is due to the scattering of electrons with
the imperfections in the crystal. The classical Drude model can still be used, but in
the new picture the electron is not scattered by ions but by impurities. With this
description, the mean free path of the diffusive motion of the electron is reduced when
the concentration of the impurities is increased, and thus the conductivity is lowered.
The discovery that, beyond a certain critical amount of disorder in the system, diffusion
is not just reduced but it can be completely suppressed was due to Anderson [2] almost
sixty years ago. Beyond a critical value of the disorder strength, the electron wave-
function is no more an extended plane wave, but is a standing wave confined in space
and exponentially localized around a center. The idea of Anderson was revolutionary
at that time, and was at the origin of a new view of metal-insulator transition: the
insulating phase in the Anderson model is not related to the filling of bands but to the
formation of traps for the electron in the lattice due to the presence of disorder.

The phenomenon has been intensively studied during the last sixty years leading
to important results: relatively early it was shown by Mott and Twose that in 1d all
states are localized independently of the strength of the disorder [3], as also confirmed
by successive works [4, 5]. Yet, the theory of localization made a breakthrough during
the 1970s, with the application of scaling arguments to the study of the Localization
Transition [6, 7], and with the analytical solution of the problem on the Bethe Lattice
due to Abou-Chacra, Anderson and Thouless [8]. The scaling theory of the Anderson
Localization Transition received later solid basis with the field-theory formulation of
the problem in terms of a non-linear σ model (NLσM) [9].

Numerical techniques have also given, and still give, a fundamental contribution
to the comprehension of the phenomenon, providing a way to explore transport prop-
erties [10, 11, 12, 13], as well as statistical properties of the spectrum of the Hamilto-
nian [14, 15, 16, 17, 18, 19] and of wave-functions amplitudes [20, 21, 22, 23, 24, 25].
Anderson Localization is indeed a rich field of research presenting connection with
the study of Random Matrices and chaos theory. The Hamiltonian of the Anderson
model, a tight-binding model with on-site disorder, can be viewed as a random ma-
trix, and standard Random Matrix Theory is conjectured to capture local properties
of the spectrum in the delocalized phase, typically characterized by strong correlations
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4 Introduction

between eigenvalues, described by GOE (for orthogonal systems) level statistics. The
localized phase is instead associated to Poisson level statistics. This analogy with the
field of random matrices allows for a further connection with the concepts of ergodicity
and quantum chaos: the conjectures of Barry and Tabor [26] and Bohigas, Giannoni
and Smith [27] establish respectively that quantum integrable systems have Poisso-
nian level statistics and quantum non-integrable, ergodic systems exhibit GOE level
statistics: localization transition can be viewed in this sense not just as localization in
the real space but also as localization in the configuration space. This idea is partic-
ularly important in the context of the study of Many Body Localization (MBL), an
interesting new kind of phase transition between a high-temperature ergodic phase, in
which we expect all the eigenstates to obey the Eigenstate Thermalization Hypothesis
(ETH) [28], according to which each eigenstate is representative of the micro canonical
ensemble, and a low-temperature non-ergodic phase, in which the ETH stops to hold
and the dynamic conserves some memory of the local initial conditions. This phe-
nomenon occurs in isolated interacting quantum systems, and in particular disorder
electrons, but was also independently investigated in [29] to explain the quantum er-
godicity transition of complex molecules. MBL can be thus interpreted as localization
of the N -particles wave-function in the configuration space.

Almost sixty years later the seminal work of Anderson, the phenomenon of An-
derson Localization remains an alive field of research with several unanswered issues.
A good comprehension of the problem in low dimension has been obtained, with the
identification of the lower critical dimension dc = 2 (for orthogonal spin independent
systems), and with the perturbative renormalization group expansion in 2 + ε dimen-
sion. This method is however only relevant for the critical properties of the system in
a small region near d = 2. The analytical study of the behavior in higher dimension
is challenging, mainly because of the unconventional nature of the order parameter,
the distribution of the local density of states. Anderson Localization has thus been
largely studied numerically in d ≥ 3, but due to the rapid increase of the running time
required by the algorithms, its behavior is well understood only in d = 3, while there
are very few results beyond d = 5. Important questions, like the existence of the higher
critical dimension du remain thus unanswered.

The limit of infinite dimension can be understood by considering the Anderson
model on tree-like structures, a problem which has been largely studied in literature
and constitutes one of the few cases for which analytical results can be provided [30,
31, 32, 33, 34, 35, 36, 37]. The properties of the delocalized phase of this kind of models
are however very unusual: in numerical simulations the system exhibits a strong non-
ergodic behavior in a large region even far from the critical point. This anomalous
behavior of the observables in the extended phase makes the analysis of the data
highly non trivial, and had suggested the existence of an intermediate phase, which
is delocalized but non-ergodic. It is really complicated to establish if such unusual
behavior is the sign of a true intermediate phase transition, or the consequence of strong
finite-size effects. The existence of an intermediate phase delocalized but non-ergodic
has been advocated also in other random matrix models with long-range hopping as
Lévy Matrices, whose entries are distributed independently with a heavy-tail law [38],
and which are the subject of Chapter (III).

The study of the behavior of Anderson Localization in the limit of infinite dimen-
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sion, and in particular the question of the existence of such intermediate phase is a
particularly active field, which has produced a lot of works recently [39, 40, 41, 42, 43,
44, 45, 46]. The great interest on the subject is in part due to its connection with the
study of Many Body Localization, where the existence of an intermediate delocalized
non-ergodic phase has been advocated [47] . Indeed, in a pictorial view, the problem
of N � 1 interacting particles in a finite dimensional lattice can be interpreted as a
one-particle localization problem on a very high dimensional lattice, which for spin-
less electrons consists in an N -dimensional hyper-cube of 2N sites [48, 29, 47]. This
pictorial analogy can be done by thinking MBL as localization in the Fock space.

This thesis deals with the study of Anderson Transition in high dimension: on one
hand we study a random matrix model, the Lévy Matrices, which is related to the
large connectivity limit of Anderson model on tree-like structures, and thus on the
infinite d limit of Anderson Localization. On the other hand we consider the tight-
binding Anderson model with on-site disorder on hyper-cubic lattices of dimension
d = 3, . . . , 6, and we perform a detailed numerical study in order to better understand
the critical properties of the system in high dimension and to provide new ideas to
develop novel analytical approaches to tackle this problem.

Chapter (I) is dedicated to a general introduction on Anderson Localization: we
explain the characteristics of the phenomenon and we propose a brief historical review
of the main results, both analytical and numerical. We conclude describing the open
problems, focusing in particular on the issue of the existence of the intermediate phase
in the limit of infinite dimensionality. In Chapter (II) we present some of the analytical
techniques used to study Anderson Localization and RMs: in particular, we describe
the techniques we have used in our analysis of Lévy Matrices. Chapter (III) is dedicated
to the study of Lévy Matrices: after an introduction which explains the motivations
and the relation with tree-like structures, we derive one of main results of our analysis,
which is an exact equation for the mobility edge. We focus then on the problem of the
intermediate phase, open since the seminal work of [38]. We present in particular our
arguments based on the supersymmetric method and on the Dyson Brownian motion
techniques, which support the idea that the delocalized phase of Lévy Matrices is
ergodic. In the last part of Chapter (III) we show our numerical results, which on
one hand agree with the analytical ones, and on the other hand help to understand
the mechanism which generates the large crossover region in which the system behaves
as if it was in an intermediate extended non-ergodic phase. Finally, Chapter (IV) is
dedicated to a detailed numerical study of the critical properties of the Anderson model
in dimensions from 3 to 6 based on exact diagonalization and transfer matrix method
and on an approximate Strong Disorder real space Renormalization Group (SDRG)
approach, analyzing the statistics of eigenvalues and wave-functions coefficients, as
well as transport properties. Our results support the idea that the upper critical
dimension of Anderson Localization Transition is infinite. Moreover, in high dimension
the transition seems to be governed by a strong disorder limit, as predicted by the
supersymmetric approach, since the critical values of all observables smoothly approach
the ones of the localized phase as the dimensionality is increased. Another indication
for that is the fact that the SDRG method gives much more accurate results than the
one based on the weak coupling limit (d + ε expansion) for the critical parameters in
d ≥ 3. This picture could provide an interpretation of the unusual properties of the
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delocalized phase of the system in the limit d→∞.



Chapter I
The Anderson Localization Transi-
tion: introduction

I.1 Disorder and Localization
The Anderson Localization Transition is a metal-insulator transition induced by

disorder.
When an electron propagates in a periodic potential, the interference of the reflected

and the transmitted components of the wave-function generates bands and gaps in the
electron energy spectrum [1]. For a certain energy in a band, if the density of states
is nonzero, the corresponding electron wave-function spreads over the whole structure.
In a real crystal, the scattering of the electron wave-function with impurities gives rise
to resistance and finite conductivity. In the semiclassical framework [49], the behavior
of electrons in a metal is diffusive, and can be described as a random walk: after each
collision the electron loses memory of its preceding motion, and the density of particles
n(r, t) follows, in this approximation, the equation

∂n

∂t
= D∇2n, (I.1.1)

where D is the diffusion coefficient. The density n(r, t) can be interpreted as the
density of particles, but also as the probability to find a particle in r at the instant t.
If the electron starts at time t = 0 from a certain point, the mean square displacement
at time t, for sufficiently long time, is [50]

〈r(t)2〉 = 2Dt, t→∞. (I.1.2)

From the above expression (I.1.2), introducing the mean free path l and the time
between two successive collisions τ , we can write for the diffusion constant

D = l2

2 τ = vF l

2 = ~ kF l
2m , (I.1.3)

where vF = ~kF /m is the velocity of the electron at the Fermi surface, m is the mass
of the electron and kF is the Fermi wave vector.

When an electric field E is applied to the conductor, the electron receives mo-
mentum from the external field, and acquires a drift velocity: in this semiclassical
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2 Chapter I. The Anderson Localization Transition: introduction

description, the particle is assumed to have a well defined momentum on a length scale
of the mean free path l, and to lose it each time is scattered from impurities. In equi-
librium, the rate at which the electron is accelerated from the external field is equal
to the rate at which it is scattered from impurities. Combining this description with
the idea that electric current is carried only by electrons with an energy close to the
Fermi energy EF , and using the expression of the diffusion constant (I.1.3) we obtain
for the conductivity

σ = e2Dρ(EF ), (I.1.4)

where e is the charge of the electron and ρ(EF ) the density of states at the Fermi
surface. Within this picture, increasing the disorder of the system, i.e. the concentra-
tion of impurities, the conductivity decreases, being the mean free path of the electron
reduced [51]. For strong disorder, one would expect however a finite value of σ. In his
seminal paper [2] of 1958, Anderson suggested that, beyond a critical amount of disor-
der, the relation (I.1.4) breaks down, the electron is trapped and its diffusive motion
comes to a complete halt. This idea was initially introduced in order to explain some
experimental results obtained by the Feher’s group [52], which showed anomalously
long relaxation times of electron spins in doped semiconductors. In particular, Ander-
son suggested that, when the mean free path of the electron becomes smaller than its
Fermi wavelength λF = 2π/kF , instead of thinking electrons as extended waves with
short lifetimes, they could be seen as spatially confined waves with long lifetimes. The
wave-function ψ(r) of the electron is exponentially localized around a center r0, over
a distance ξ, called localization length, and we have

|ψ(r)|2 ∼ A exp
(
−|r − r0|

ξ

)
. (I.1.5)

To explain how the phenomenon of localization can occur, Anderson used a tight-
binding model in a disordered lattice, which has become the paradigmatic model in the
study of localization phenomena. In the Anderson Model the electron feels a random
potential εi at each site i of the lattice, and it is able to hop to the neighboring sites
thanks to the hopping energy term t. Electron-electron interactions are neglected. The
Hamiltonian of the model is the following:

H =
∑
i

εic
†
ici − t

∑
〈i,j〉

c†icj + h.c., (I.1.6)

where the random variables εi are independently and identically distributed, for ex-
ample with the following box distribution:

p(εi) =


1
W , εi ∈

[
−W

2 ,
W
2

]
0 otherwise.

(I.1.7)

IfW = 0 the eigenfunctions of the model are the Bloch states, while in the opposite
case, if t = 0 the Hamiltonian is diagonal and each eigenstate is completely localized
on one site of the lattice. What happens between these two extreme cases depends
on the strength of the ratio W/t: if it is large, there is very few probability for the



I.1. Disorder and Localization 3

Figure I.1: The figure shows four localized wave-function for a disordered two dimen-
sional material. The image is by Yang-Zhi Chou and Matthew Foster (Rice Univer-
sity) [53].

electron to find a level close in energy and spatially not too far, such that the overlap of
the wave-functions at the corresponding sites is not negligible. To better understand
this idea we can imagine to diagonalize a 2 × 2 Hamiltonian, with diagonal terms
ε1 and ε2 and hopping term t. It is easy to see in this case that the deviation of the
eigenstates from the original on-site vectors is controlled by the ratio t/|ε1−ε2| and the
difference between the eingenvalues E1 and E2 is given by

√
(ε1 − ε2)2 + t2. Therefore,

if |ε1−ε2| � t, the eigenfunctions are close to the original on-site wave functions, while
if |ε1 − ε2| � t we obtain two eigenstates in which the probability is shared between
the sites (resonance). In the Anderson model we can thus imagine that, if the disorder
is strong (W � t), there will be few isolated resonances, and the wavefunctions are
close to the on-site wavevectors. In this case the electron is trapped around a center,
and its wave-function is given by the envelope (I.1.5). If on the contrary the hopping
term is enough strong compared to the disorder, we will have many resonances which
overlap and the system will have a metallic behavior.

Localized eigenstates are expected to appear in the tails of the energy spectrum.
The first intuitive reason is that these states are originated from large random energies,
and therefore one expects that they are more affected by the disorder than the states at
the center of the spectrum. The second reason was suggested by Lifshitz [54]: as men-
tioned above, diffusive motion is possible if the wavelength λF of the electron is much
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smaller than the mean free path l. Therefore, an intuitive criterion for localization is
the condition

λF ∼ l. (I.1.8)

Since the states belonging to the tails of the spectrum have a larger wavelength than
those at the center, we expect localization to occur first in the tails. For each value
of the disorder W there is a critical energy Ec, called mobility edge, which separates
the localized states from the delocalized ones. In the case of the Anderson model
the situation is qualitatively represented in figure (I.2): the density of states ρ(E)
is symmetric and two mobility edges Ec1 and Ec2 separate, for each value of W , the
localized states in the tails from the extended states in the central part of the spectrum.
By varying the Fermi level EF with respect to the mobility edge it is possible to obtain
a metal-insulator transition at zero temperature: in particular, if EF > Ec1 the system
behaves as a metal, as an insulator in the opposite case. There exists a critical value
Wc of the disorder such that Ec1 = Ec2, and all states in the spectrum are localized, as
shown in figure (I.3). The intuition of Anderson and the discover of the mechanism of
Anderson Localization has represented a breaking of the conventional diffusion picture:
the insulator of Anderson is not related to the filling of bands but to the formation of
traps for the electron in the lattice due to the presence of disorder.

Figure I.2: The localized states appear first in the tails of the spectrum, as we expect
intuitively. For a fixed value of the disorder W < Wc, by varying the Fermi energy
with respect to the mobility edge, a metal-insulator transition occurs in the system.
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Figure I.3: Qualitative sketch of the phase diagram of the Anderson model in theW -E
plane. For each value of the disorder W there are two symmetric mobility edges, and
when the disorder is increased over a critical value WC all the spectrum is localized.
The dashed lines indicate the boundaries of the spectrum, beyond which the density
of states is zero.

I.2 Characteristics of the transition and localized states
In his seminal work Anderson showed that quantum particles can be localized by

a random potential even in a situation where classical particles would be delocalized.
The intuitively way to understand this mechanism is to think about waves scattered
by random centers: the probability P of propagation from a point to another one is
obtained by summing over the amplitudes of all the possible paths between the two
points, and taking the square of the complex value obtained [55]. In particular, we
have an expression of the type

P =
∣∣∣∣∣∑
i

ai e
iSi

∣∣∣∣∣
2

, (I.2.1)

where i runs over all the possible paths between the two points considered, Si is the
action of the i-th path and ai the corresponding amplitude. Since we have to sum the
different contributions before squaring, the probability P contains a certain number
of interference terms in addition to the classical incoherent contributions given by the
sum of the squares of the amplitudes, and we have an expression of the form

P =
∣∣∣∣∣∑
i

ai

∣∣∣∣∣
2

+
∑
i 6=j

aia
∗
j e

(Si−Sj). (I.2.2)

The interference terms in equation (I.2.2) don’t cancel each other if for example
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the system has a time reversal symmetry such that the loops in the paths can be
followed in a direction and also in the opposite one: in this case the probability to
have backscattering, e.g. to return to the same point, results to be enhanced. In figure
(I.4), for a wave which propagates from point A to point B and then goes back to A,
a possible random path is represented, together with the same path traversed in the
opposite direction: because of the constructive interference between these two paths,
the probability from the propagating wave to return to point A is twice as large as
it would have been if we had considered the classical incoherent contributions only.
This mechanism, which can be a first, intuitive way to understand how localization
can occur, is particularly relevant in low dimensions (weak localization [7, 56]), where
the number of loops is larger. In particular, for a random walk in d = 1 and d = 2 the
probability to return to the starting point is one (i.e. the random walk is recurrent),
whereas this is not true for d ≥ 3. Dimensions one and two play therefore a special
role, and the quantum corrections to the conductivity (I.1.4) due to interference effects
are in this case large no matter how weak the disorder is.

Figure I.4: The wave going from A to B interferes constructively with the one going
from B to A: the interference effects enhance the probability of backscattering. The
figure is taken from [57].

Localization can also be intuitively understood in the limit of strong disorder: as
explained in the previous paragraph using the Anderson model as a reference, we expect
that, where the random potential forms a deep well, the electron is trapped, and the
overlap with adjacent orbitals is not sufficient to delocalize the particle: the wave-
function is therefore exponentially localized as in (I.1.5). If we reduce the disorder, we
can ask if the wave-functions of the particles eventually become delocalized. As we will
explain in the next section, the transition occurs for d > 2 in spinless systems with time-
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reversal symmetry (orthogonal systems): it is a continuous quantum phase transition,
i.e. a transition at zero temperature. The identification of an order parameter for the
Anderson Localization Transition is not an easy task: the first attempts to describe
the transition with the language of field theory would suggest to use the expectation
value of the local density of states (DoS), but it results in fact not critical. As we
will see in Chapter (II), the distribution of the local DoS develops heavy tails in
the localized phase: therefore, the good quantity to consider in order to distinguish
between localized and extended states is the typical value of such distribution (see
figure (I.5)). In other words, in a region of the spectrum corresponding to localized
eigenstates, the Hamiltonian has a point spectrum [58]. The average density of states
can be regular and smooth, but the local density of states varies a lot, being zero
almost everywhere and large in correspondence of few resonances: this is due to the
fact that in the localized regime just few sites contribute with a weight of order one to
a certain eigenstate, while the contribution of the others can be exponentially small.
On the contrary, in the delocalized regime the spectrum is absolutely continuous and
the typical value of the local density of states is of the same order as the average value:
each site contributes to a certain eigenstate with a weight which is of the same order
as all the other sites. Another characteristic of localized states is the insensitivity
to boundary conditions, and in general to what happens far from the localization
center of the state we consider, a feature which has often been used in numerical
analysis [59, 60, 61].

The formal definitions of the quantities which allow one to discriminate between
localized and extended states and to quantitatively study the transition are given in
section (II.1). Even if the identification of an order parameter for the Localization
Transition is not trivial, the phenomenon can be described in terms of scaling argu-
ments, as we will see in much detail in section (I.4): in this picture, the localization
length ξ defined in (I.1.5) plays the role of a characteristic length scale going to infinity
as the critical point is approached. In particular, if the transition is studied from the
insulating side, we consider the scaling of ξ:

ξ ∝ (W −Wc)−ν , (I.2.3)

while, starting from the metallic phase, a central role is played by the scaling of the
conductivity σ:

σ ∝ (W −Wc)−s. (I.2.4)

We will see in section (I.4) how scaling arguments have been justified providing
a field theory formulation of Anderson Localization Transition and we will present a
brief historical review on the field.

I.3 Anderson Localization in one and two dimensions and
weak localization

As Anderson had suggested in his seminal work, all states in a one-dimensional
chain are localized. The proof of this result is attributed to Mott and Twose [3] and
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Figure I.5: The average value of the local density of states 〈ρi〉 can not be used as
order parameter for Anderson Localization: as shown in blue in the plot, this quantity
is regular and finite in both the extended and the localized phase. Instead, since the
local density of states develops heavy tails in the localized phase, its typical value is
zero in the localized phase and finite in the extended one, as shown in red in the plot,
and is actually the good order parameter to consider.

confirmed by other authors later [4, 5]. Indeed, as explained in Appendix (A), for one
dimensional and quasi-one dimensional systems it is possible to compute the localiza-
tion length through the transfer matrix method combined with results on the limiting
behavior of products of random matrices [62, 63, 64, 65, 66]. In particular the localiza-
tion length is identified with the inverse of the smallest positive Lyapunov exponent,
which represents the slowest possible exponential increase of the wave-function in the
thermodynamic limit [67]. As shown in Appendix (A), in one dimension calculations
are particularly simple because the transfer matrix reduces to a 2 × 2 matrix. Iden-
tifying the localization length as a limiting property of a product of random matrices
is one of the way to prove that in a one dimensional disordered system all states are
localized independently of the strength of the disorder [68, 69, 70].

Localization in higher dimensions was more complicated to solve: as we will see
in section (I.4), the scaling theory shows that d = 2 is the lower critical dimension
for the Anderson Localization Transition1, therefore no metallic phase exists in two
dimensional systems. Nonetheless, the diffusive regime, i.e. the diffusive propagation
of the electron in the sample, can be obtained in 2d systems and in weakly disordered
quasi one dimensional systems, if the size L does not exceed the localization length ξ.

1This is true for spinless systems with time-reversal symmetry and spin-indipendent hopping.
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Indeed, in two dimensions the localization length is extremely large for small disorder
(of orders of 106 lattice sites for W = 1), diverging exponentially for W → 0: for
this reason, in many simulations and experiments the system behaves for all purposes
as if it was delocalized, and this has been at the origin of a debate for long time,
since various works, analyzing too small systems, identified the Anderson transition
also in two dimensions [71]. In thin wires and weakly disordered metallic films it is
thus possible to observe a diffusive regime, and the only sign of localization can be
found in anomalies with respect to the classical behavior (I.1.4): such effect is the
consequence of the quantum interference processes explained in section (I.2), which
lead to important corrections to the classical conductivity known as weak localization
corrections. As we have seen in section (I.2), in the quantum case the interference
terms enhance the probability of backscattering: since the number of loops is larger
in low dimensional systems, weak localization effects become particularly important in
this case. In two dimensions, the weak localization corrections to the conductivity are
negative and depend logarithmically on the system size [7, 72, 73]. In order to study the
dependence of these corrections on the temperature we have to replace the geometrical
system size by an effective system size Lφ (the phase coherence length) [74, 75, 76, 77]
representing the mean distance between successive inelastic scattering events and given
by

L2
φ = D τφ, (I.3.1)

with τφ the phase coherence time. This quantity is usually introduced phenomeno-
logically, assuming that it depends on the temperature as τφ ∝ T−p (p = O(1)): the
value of p can be obtained by fitting experimental data (see for example Ref. [78]).
Proceeding in this way, at low temperature we obtain logarithmic corrections to the
conductivity with the temperature, which have been observed in experiments with
films [79, 80].

Negative corrections to the conductivity as an effect of the enhanced backscattering
are present in systems with time reversal symmetry. If a strong magnetic field is applied
to the system, the time reversal symmetry is broken: on each closed loop the electron
acquires a phase which depends on the length of the loop. The sum over all loops
leads in the end to the cancellation of all these contributions and no corrections to
the classical conductivity is present. Finally, we mention for completeness the case of
systems with time reversal symmetry and spin dependent hopping between neighboring
sites (symplectic models), where the quantum corrections to the conductivity change
the sign, leading to an enhancement with respect to the classical conductivity with the
system size (weak anti-localization corrections).

I.4 Scaling theory and field theory formulation

Anderson showed that the localization transition strongly depends on the dimension
of the system, and he suggested that in a one-dimensional chain all states should be
localized. As we have mentioned in section (I.3), this was successively proved by Mott
and Twose [3], but localization in higher dimensions was more complicated to solve.

The success of scaling arguments in describing continuous phase transitions in other
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fields of statistical physics [81] suggested that the same type of arguments could be
used in the study of the Anderson Localization Transition. As pointed out in section
(I.2), unlike other quantum phase transitions, for the Anderson Localization Transition
it is not easy to identify an order parameter; nonetheless, it exists a length scale ξ
going to infinity as the transition is approached. The first to propose a description
of the phenomenon in terms of scaling properties was Wegner [6], while the scaling
theory was formulated in [7]. The order parameter [59] used to develop the theory is
a dimensionless conductance g, which is a measure of the sensitivity of the system to
a change of the boundary conditions. We define the Thouless conductance gT as

gT = e2

h

〈δE〉
∆E , (I.4.1)

where 〈δE〉 is the average change in eigenenergy which corresponds to a change in
the boundary condition, and ∆E is the mean distance between two subsequent level in
energy. It was shown in [59] that, if E belongs to the metallic part of the spectrum, then
gT = σLd−2. This behavior relates the definition (I.4.1) to the Landauer conductance,
as explained in Appendix (A). The quantity g = gT /(e2/h) is dimensionless, and it is
the only parameter used to describe the transition in scaling theory. The fundamental
assumption is that the length dependence of the conductance is given only by the
conductance itself, thus we have:

∂ log g
∂ logL = β(g). (I.4.2)

The relation (I.4.2) is supposed to hold for L large enough, such that the microscopic
details of the model become irrelevant. We consider now the limits g →∞ and g → 0.
As mentioned above, in the limit of large conductance, from considerations on the
diffusive motion of the electron, and using the relation (I.1.4), we have g = σLd−2, and
thus

β(g) = d− 2, g →∞. (I.4.3)

In the opposite limit g → 0, we have localization, and the conductance decreases
exponentially with the system size. As a consequence we have

β(g) = log g, g → 0. (I.4.4)

Assuming that β(g) is a monotonous function, the interpolation between the two
limits gives the behavior shown in figure (I.6): for d < 2 the function β(g) is always
negative, so the conductance decreases with the system size for each initial value g0.
Therefore, for d < 2 there is no phase transition. For d = 2, we have to compute the
first correction to the conductance as a function of L, in order to determine if β(g)
is positive or negative: the computation shows that β(g) < 0 for all g, and thus all
states are localized for d = 2, as we have anticipated in section (I.3), assuming that
β(g) is a monotonic function of g. These corrections to the conductance are the weak
localization corrections in the diffusive regime discussed in section (I.3). For d > 2
there is a critical point gc such that β(gc) = 0, and thus the conductance remains
constant with the system size. This is an unstable fixed point of the renormalization
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Figure I.6: Renormalization flow for d = 1, d = 2 and d = 3. For d < 2 the function
β(g) is always negative and thus there is no phase transition. For d = 3 there is a fixed
point gc where β(gc) = 0: this value gc is associated to the mobility edge.

flow: if we start from g = gc + δg, the system, for L → ∞ develops into the metallic
phase, while if we start from g = gc − δg we fall into the localized regime.

The scaling theory of Anderson Transition represents a big step in the compre-
hension of the phenomenon. This picture received solid basis with the field-theory
description of the transition in terms of a non-linear σ model (NLσM), introduced by
Wegner [9]. However, this model is not exactly solvable in most of the cases of interest,
as in d = 3. The original derivation of the σ model uses the replica trick in order to per-
form the average over the disorder [9, 82, 83, 84]. Later, an alternative supersymmetric
formulation, obtained combining fermionic and bosonic degrees of freedom, was pro-
posed by Efetov [85, 86, 87]: this formulation is equivalent to the previous one, based
on the replica method, at the level of perturbation theory, but presents the advantage
to allow a non-perturbative analysis which leads to results on the energy levels and
eigenfunctions statistics. The supersymmetric method is presented in section (II.3),
where we discuss the method in general and how it has been used to derive important
results on the Bethe Lattice. We will then use this method in Chapter (III) to derive
some properties of the level statistics of Lévy Matrices. Being d = 2 the lower critical
dimension of the NLσM, it is possible to perform a renormalization group analysis in
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d = 2 + ε dimension. The flow β can be computed perturbatively near d = 2 by ex-
pansion in the parameter t = 1/(2πg), proportional to the inverse of the dimensionless
conductance g [88, 89]. In particular, in terms of t, we have β(t) = −dt/d logL, and,
since for d = 2 + ε, with ε� 1, tc ∼ ε, the function β(t) can be expanded in powers of
t, leading to

β(t) = εt+ 2t2 − 12 ζ(3)t5 +O(t6). (I.4.5)

The critical point can be obtained from β(tc) = 0, and the critical exponents ν de-
fined in (I.2.3) from ν = −1/β′(tc). The ε expansion gives numerically accurate values
for the transition point and the critical exponents only in the limit ε→ 0: this has been
verified by numerical simulations on fractals with dimensionality slightly higher than
two [90]. However, even at five loops, it fails in estimating the critical properties in 3
dimensions (ε = 1): the result at two loops obtained for the exponent of the localization
length is ν = 1 while numeric simulations give ν ' 1.58±0.01 (here we report the most
precise estimate, obtained in [91, 92, 14, 15, 16, 17, 18, 19, 20, 21]). The computation
at five loops gives an even worse estimation of ν ' 0.67. The ε expansion remains
however an important tool for the comprehension of the qualitative properties of the
localization transition. For example it is able to capture an important feature of the
Anderson Transition at criticality: the multifractality of wave functions. At the critical
point the normalized measure |ψ|2 is indeed characterized by strong fluctuations, and
there exists an infinite set of critical exponents describing the anomalous scaling of the
moments of this distribution [93, 94] (for a quantitative description of the multifractal
behavior at the Anderson critical point see Appendix (B)). The ε expansion is able to
reproduce this behavior [95], and also to give results quite in agreement with numerical
simulations for the multifractal exponents [96]. We conclude this section stressing that
the results presented are valid for orthogonal systems, e.g. systems with time-reversal
symmetry and spin-independent hopping (the classification of symmetries and univer-
sality classes in connection with Random Matrix Theory is presented in section (I.6)).
The scaling theory, with its field-theory formulation, can be applied to other symmetry
classes: we mention here that symplectic systems present a truly metallic regime for
d = 2 [97, 98].

I.5 Anderson transition on the Bethe Lattice: mean field

The first analytical result obtained for the Anderson Localization Transition was
the one of Abou-Chacra, Anderson and Thouless [8] who provided an analytical solu-
tion of the Anderson model on the Bethe Lattice, a graph without loops, where each
node is connected to a fixed number k+1 of nodes. The analysis in [8] was based on the
approach originally used by Anderson in its seminal work [2], where the localization of
electron eigenfunctions for strong disorder (or in the tails of the energy spectrum) was
shown starting from a perturbative expansion in powers of the hopping term for the
self-energy. With this technique the authors found a self-consistent equation leading to
the mobility edge, showing thus that loops are not necessary to localize the electron.
As we will see in Chapter (II), it is the hierarchical structure of the Bethe Lattice
which makes the problem analytically tractable. Even if there exist other models pre-
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senting a localization transition which are analytically tractable, such as for example
the Power Law Random Banded model (PRBM) [99, 100, 101, 102] or the generalized
Rosenzweig-Porter random matrix model [103, 104], the Anderson Model on the Bethe
Lattice plays a special role in the study of the Localization Transition. Since in such a
structure the number of sites at a certain distance from a given site grows exponentially
with the distance itself, the Bethe Lattice is generally interpreted as corresponding to
infinite dimensionality. Statistical models defined on the Bethe Lattice usually show a
critical behavior which coincides with the one displayed in mean field approximation,
which is generally exact for infinite-range interactions (fully-connected models). For
Anderson Localization Transition, due to the unusual nature of the order parameter,
the study of the mean field behavior and of the fluctuations around is particularly
complicated: the analysis of models defined on tree-like structures remains the best
way to explore mean field properties and is the starting point for the attempt to under-
stand the behavior in high dimension. As we will explain in section (I.9) and more in
details in Chapter (II), the Anderson Transition on the Bethe Lattice has been largely
studied in literature: in particular, the critical behavior has been explored with the
supersymmetric method, (see section (II.3)), both in the version of the tight-binding
Anderson model [30, 31, 32, 33] and in the one of the σ-model [34, 35, 36, 37]. In
section (I.9) we will explain how some properties of the transition on the Bethe Lattice
still remain unclear and how the problem has received renewed attention in the last
years in connections with Many Body Localization.

I.6 Anderson Localization and Random Matrix Theory

The study of Random Matrices (RMs) is an independent and rich field of research,
intensively developed since the 1950s: it is concerned with the analysis of properties
(such as the distribution of eigenvalues, the level statistics and some properties of the
eigenvectors) of matrices with entries chosen randomly from various probability dis-
tributions. The study of RMs has begun with the application as statistical models
for heavy nuclei atoms [105], and since this pioneering work, it gained importance in
many areas of physics and also in other disciplines [106, 107, 108]. Some examples
are diffusion in random graphs [109], [110], wireless communications [111], but also
financial risk [112] and biology [113]. The reason for such versatility is that Ran-
dom Matrix Theory (RMT) provides universal results, which are independent of the
particular probability distribution of the random entries: only few features, determin-
ing the universality class, matter. The majority of results are available for the three
Gaussian Wigner ensembles, including matrices with independent and identically dis-
tributed Gaussian random variables as elements. Depending on the symmetries of the
problem we distinguish the Gaussian Orthogonal Ensemble (GOE), constituted by real
symmetric matrices, the Gaussian Unitary Ensemble (GUE), which includes complex
hermitian matrices, and the Gaussian Symplectic Ensemble (GSE), including quater-
nion self-dual matrices. In the case of Gaussian Ensembles, the rotational invariance
allows to perform analytic computations for many quantities of interest. In particular,
the joint probability distribution of the eigenvalues E1, . . . , EN can be obtained. In
the GOE case, which corresponds to independent Gaussian entries with mean 0 and
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variance of the off-diagonal elements which is half the variance of the diagonal ones, it
takes the form

P (E1, . . . , EN ) = CN,β e
−βW , (I.6.1)

W = 1
2

N∑
j=1

E2
j −

∑
i<j

log |Ei − Ej | , (I.6.2)

where β = 1. In the expression (I.6.1) β is actually a coefficient depending on
the particular Gaussian ensemble considered, and in the GUE and GSE case takes
the values 2 and 4 respectively. Due to the presence of the term

∑
i<j log |Ei − Ej | in

the potential (I.6.2), the eigenvalues of GOE matrices are strongly correlated random
variables: it can be shown [106] that the product

∏
i<j |Ei − Ej |β, which comes from

the interaction term of the potential, can be written as a determinant containing
“oscillator wave functions” (which can be expressed in terms of Hermite polynomials).
Thanks to this property the n-points correlation functions can be expressed in terms
of orthogonal polynomials, and in particular results for the density of states and for
the level statistics are available. In the thermodynamic limit the density of states for
the GOE ensemble converges to the Wigner semicircle law:

ρN→∞(E)→ 1√
2N

f

(
E√
2N

)
, (I.6.3)

where
f(x) =

√
1− x2. (I.6.4)

The determinantal structure of the joint probability density of the eigenvalues also
provides information on the level statistics: for example one quantity of interest is
the probability distribution p(s) of the spacing between two subsequent eigenvalues
s = Nρ(Eα)(Eα+1 − Eα), or equivalently the 2-points correlation functions of eigen-
values [106]. For the Gaussian ensembles explicit calculations are possible for this
quantity [114, 115], even if a final expression for the limiting correlation function is
available only in the GUE case (Dyson sine kernel). The computation of such correla-
tion functions is complicated, but, in general, a good approximation to the distribution
p(s) is given by the so called Wigner surmise, whose most general form is

p(s) = aβ s
β exp(−bβs2). (I.6.5)

In the expression (I.6.5) aβ and bβ are factors depending on the coefficient β
depending on the ensemble. As we can see in the red curve represented in fig-
ure (I.7), the Wigner surmise takes account of the “level repulsion”, i.e. for the
strong correlations between subsequent eigenvalues, characteristic of Gaussian ensem-
bles: as a consequence, two subsequent eigenvalues cannot be arbitrarily close to each
other, and p(s = 0) = 0. In the figure the opposite situation is also represented (in
black): it corresponds to independent eingenvalues, described by the Poisson statis-
tics p(s) ∝ exp(−s). Rotational invariance also assures in the Gaussian case that the
eigenvectors are delocalized, i.e. for a N×N matrix, they are uniformly distributed on
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Figure I.7: The plot shows the level spacing distribution p(s) in the Poisson case
and in the case of the Gaussian Orthgonal Ensemble (β = 1). The two behaviors are
typical of the localized phase and of the extended phase respectively.

the sphere SN−1: the coordinate of the eigenvectors have smallest possible magnitude
of order N−1/2, up to logarithmic corrections.

A generally accepted idea, which makes RMT a field open to connections with
different areas of research, is the universality conjecture: the local and global properties
of the spectrum of the Gaussian ensembles, as well as the eigenvector properties, are
believed to hold for a very large class of random matrices, in particular for general
Wigner matrices [116], i.e. matrices with i.i.d. entries distributed with a generic
distribution function with finite second moment. As we will explain in Chapter (II.4),
this conjecture, with varying degrees of strength and generality, has been proved for
some classes of Wigner matrices [117, 118, 119, 120, 121, 122, 123, 124, 125, 126],
including matrices with i.i.d. entries generically distributed with a subexponential
decay.

As mentioned above, RMT is an interesting field in its own, on a mathematical
point of view, but lots of motivation comes from physical problems. In particular,
the connection with the study of the Localization Transition in disordered systems
is strong. Indeed, the Anderson Hamiltonian (I.1.6) can be interpreted as a random
matrix, with a deterministic off-diagonal part T and a random on-site part H0:

H = H0 + T. (I.6.6)

The symmetry properties of the matrix are related to the physical problem: sym-
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metric matrices represent systems with time-reversal invariance and spin independent
hopping, hermitian matrices correspond to systems in which the time reversal invari-
ance is broken, e.g. by a magnetic field, and symplectic matrices represent systems
with time-reversal invariance and spin dependent hopping (i.e. the rotational invari-
ance is broken). Using the analogy between RMs and the Anderson Hamiltonian, we
can interpret Wigner matrices as representative of an Anderson Hamiltonian with fully
connected interactions: in this case all the eigenvectors are delocalized, and the spec-
tral properties, as explained above, are the same as in the Gaussian ensembles. Yet, the
Anderson Hamiltonian (I.1.6) with nearest-neighbours interactions belongs to a more
general universality class, composed by matrices with independent but non identically
distributed entries with the form of a Schrödiger operator with random on-site poten-
tial. There exists a universality conjecture for random Schrödiger operators, which
states that there are two different regimes depending on the energy and the disorder
strength: in the strong disorder regime the eigenfunctions are localized and the level
statistics are Poisson-like, while in the weak disorder regime the eigenfunctions are
delocalized and the level statistics are the same as in the GOE case. Intuitively, it is
easy to associate localization to Poisson statistics: we can think that, since each state
is localized around a specific site, the corresponding eigenvalues are not correlated,
and two subsequent levels can be arbitrary close to each other. On the contrary, in
the delocalized phase we expect strong correlations between subsequent eigenvalues,
and therefore the distance between two subsequent levels can not be zero. On a math-
ematical point of view, for the Anderson model in d ≥ 3 the localized regime at large
disorder or near the spectral edges has been well understood [127, 128, 58]. It has been
shown that the level statistics are Poisson-like [129] and that the eigenfunctions are
exponentially localized with an upper bound on the localization length that diverges at
the presumed transition point [130]. About the delocalized regime, delocalization has
been established on the Bethe Lattice [131, 132, 133], corresponding to the infinite di-
mensional case. In finite dimension there are no rigorous results on the level statistics,
but it is conjectured, as explained before, that in the thermodynamic limit the local
correlation functions of the eigenvalue follow the GOE statistics. Based on this con-
jecture, the behavior of the local eigenvalue statistics is used as a tool to compute the
phase diagram numerically. In particular, in Refs. [15, 16, 19, 134, 135] the transition
in the level statistics has been studied in detail in finite-d models: the methods used
require in general the computation of the histogram of the distribution p(s). More
recently it has been suggested by V. Oganesyan and D. Huse [136] to characterize the
correlations between adjacent gaps by the ratio

r = min{δα, δα+1}
max{δα, δα+1}

, (I.6.7)

where δα = Eα+1 − Eα ≥ 0. The average value over the realizations of the disorder
of this observable provides the same information as the distribution p(s), and has
well defined limits in the GOE and in the Poisson case, corresponding respectively to
〈rGOE〉 ' 0.53 and 〈rP〉 ' 0.39.

Studying the localization transition from the point of view of Random Matrices
also allows to establish a connection with the concepts of ergodicity and quantum
chaos. In particular, the conjecture of Barry and Tabor [26] establishes that quantum



I.7. Brief review on numerical results 17

integrable systems have Poissonian level spacing statistics, and the one of Bohigas,
Giannoni and Smith [27] states that quantum non-integrable, ergodic systems (chaotic
systems) exhibit Wigner-Dyson level statistics. The idea behind this result is under-
standable in the semiclassical limit [137, 138]: for ~→ 0, the eigenstates of a quantum
non-integrable system spreads over the whole configuration space, given by the mi-
cro canonical surface. This is the quantum analogous of ergodic classical systems, in
which the micro canonical density of probability is uniform on regions with the same
energy. In this sense, the localization transition can be viewed not just as localiza-
tion of electrons in the real space, but also as localization in the configuration space.
This aspect is particularly relevant in the field of Many Body Localization (MBL), the
study of the Anderson Localization when interactions among electrons are taken into
account. Indeed, in this case the concept of the localization transition as breaking of
ergodicity and thermalization is particularly significant [139]. Some aspects of Many
Body Localization Transition and the connections with the subjects of this theses will
be presented in section (I.9.1).

I.7 Brief review on numerical results

Despite almost sixty years of research in the field, the Anderson Localization Tran-
sition remains an interesting challenging problem: as we have seen in section (I.5),
analytical results are available for the Anderson model on the Bethe Lattice and for
few other models [99, 100, 101, 102, 103, 104]. The Anderson Model in finite dimen-
sion results instead to be still not analytically tractable away from the low dimensional
limit, and much less in known in high dimension. As we will see in much details in
section (I.9), one of the reason for that is unconventional nature of the order param-
eter, the distribution of the local density of states, which develops heavy tails in the
localized phase. Moreover, there is no small parameter which allows one to study the
problem perturbatively, except in a very small region near the lower critical dimension
dc = 2: indeed, already in d = 3, the critical disorder is of the same order as the
typical bandwidth. This difficulty in treating the problem analytically has motivated
the development of numerical techniques, which still results crucial for advances in the
topic (see [71] and [61] for reviews on numerical results and methods).

The majority of numerical results has been obtained in three dimension, where
scaling analysis of different observables for increasing system sizes has been performed
using several numerical techniques. An important part of this analysis regards the
study of observables describing transport properties, such as the conductivity or the
localization length [10, 11, 12, 13, 140, 91, 92], using the transfer matrix method (see
Appendix (A)). Another group of works [14, 15, 16, 17, 18, 19] analyzes observables re-
lated to the statistics of energy levels, which, as we have seen in section (I.6), connect
the localization transition to RMT and quantum chaos. Also the analysis of wave-
function coefficients and of the multifractal nature of the states at criticality has been
performed by different authors [20, 21, 22, 23, 24, 25]. In Ref. [141] the phase diagram
in the energy-disorder plane has been also calculated. For the Anderson model with
the Hamiltionian (I.1.6) describing spinless electrons with a box distributed on-site
disorder, in the middle of the energy spectrum (E = 0) a transition is found at a crit-
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ical value of the disorder Wc ∼ 16.5. At present, the most precise numerical estimate
of the critical exponent ν, defined by (I.2.3) and describing the critical behavior of the
localization length ξ is ν = 1.58±0.01 [91, 92, 14, 15, 16, 17, 18, 19, 20, 21]. Numerical
simulations of this model in three dimension [14, 15, 16, 17, 18, 19] agree with the
conjecture explained in section (I.6): the level statistics is GOE-like in the delocalized
phase, and thus the properties of the system are captured by RMT, and is Poisson-like
in the localized phase, where wave-functions close in energy are exponentially localized
on very distant sites and thus do not overlap. At the critical point the level statistics
are not GOE nor Poisson-like [142], and are instead characterized by a universal dis-
tribution which depends on the dimensionality. Another feature of the critical point
is the multifractal spectrum shown by the wave-function amplitudes [22, 23, 24, 25]:
the critical eigenstates are not extended nor localized, with large fluctuations of wave-
function amplitudes at all length scale. Details on the properties of the multifractal
spectrum at the critical point of Anderson Localization Transition are presented in
Appendix (B).

Accurate results in 4 and 5 dimensions have also been recently provided [143]
through the study of transport properties only. There are however very few results
on the level statistics above dimension three [144] and no results for transport prop-
erties for d > 5. The reason for that is the very fast increasing of the running time of
numerical algorithms with the size of the system: for exact diagonalization such time
increases as L3d and for transfer matrix algorithms as L3d−2. As we will see in section
(I.9), this problem, besides the lack of analytical techniques, leaves some important
questions unanswered, like the existence of an upper critical dimension du or the re-
lation with the infinite d limit, corresponding to Anderson Localization on tree-like
structures.

I.8 Experiments on Localization

The phenomenon of localization has been observed in different types of systems,
even if the first experimental verification of localization arrived around twenty years
after the pioneering work of Anderson. A large group of experiments on the metal-
insulator transition was realized around 1986. The systems considered were doped
silicon Si:P [145] and persistent photoconductors [146]. The transition was studied
looking at the conductivity and at the dielectric susceptibility, on both the insulating
and the metallic side. The strength of disorder was controlled by varying the con-
centration of doping atoms in silicon or the concentration of the charge carriers by
optical excitation in photoconductors. The results obtained for the critical exponent
opened the problem known as the “exponent puzzle”: for the group of uncompensated
semiconductors, like Si:P, the critical exponent is 1/2, while for photoconductors and
other amorphous solids the value obtained is close to one.

As mentioned in section (I.3), a group of experiments in the early 1980s showed the
existence of weak localization, by observing the behavior of the resistance of weakly
disordered metalic films: the anomalies revealed could be explained only by taking
into account the quantum interference effects in the propagation of the electron wave
function. Most of results are reported in the review of Bergmann [148]: in particular it
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Figure I.8: Density profile of the atomic matter wave localized by a laser speckle.
The waveguide confines the atoms transversely to the z-axis but they are free to travel
along the z direction. A laser beam creates a disorder intensity pattern which varies
along z. A small Bose-Einstein condensate, initially confined along z is released, and
its expansion stops after about 0.5 s. The stationary density profile which emerges at
0.8, 1, and 2 s is plotted, confirming the localization. The image is by [147].

is interesting the observed logarithmic increase of the resistance with the temperature.
Localization Transition can also be observed in classical waves, such as light and

acoustic waves [149, 150, 151, 152, 153]. One of the advantage of classical waves is
that they don’t interact with each other, and it is thus easier to control the exper-
iment at room temperature. In addition to the conductance, it is then possible to
study the behavior of other observables strongly influenced by localization, like the
fluctuations of wave amplitude. In order to observe localization of light it is neces-
sary to have a material which scatters light strongly enough, but at the same time
avoiding absorption effects. A possibility is for example to use near-IR light scattered
by a semiconductor with an electronic band gap higher that the frequency of light,
such that the absorption is avoided, but with a high refractive index [154]. Other
interesting experiments with classical waves were performed with acoustic waves, and
in particular ultrasounds: using a point-like source on a three dimensional sample of
alluminium, it has been recently observed in [155] the localization of the elastic energy
in the transverse direction.

It is very difficult to obtain a clean observation of the Anderson localization in
a crystal: as we have seen, the experiments are mainly based on the observation
of modifications of bulk properties like conductivity and dielectric susceptibility, and
one has no access to the electronic wave functions. It is then complicated to reduce
interactions among electrons and the coupling with a thermal reservoir, which can
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destroy localization. The most recent experiments on Anderson Localization have been
performed using cold atoms: atoms cooled near absolute zero temperature have a large
wavelength, of the order of fractions of a micron. Contrary to the case of electrons, the
interactions can be controlled. The first observation of Anderson Localization using
cold atoms relies on the analogy of Anderson Localization with a dynamical quantum
system, the quantum kicked rotor, which is a paradigmatic model in quantum chaos.
It models the behavior of a particle periodically kicked by a field, and is described by
the Hamiltonian,

H = p2

2m +K cos θ
∞∑

n=−∞
δ(t− n), (I.8.1)

where m is the mass of the particle, p is the momentum, θ is the angular position
(we can imagine that the particle is constrained to move on a ring), and K is the
strength of the kicks. In the classical version of the model, if K is strong enough the
system is chaotic. It has been shown that in the quantum case the classical diffusion
is suppressed by interference effects [156], and it has been discovered that this system
can be mapped to the 1D Anderson model [157]. The first observation of Anderson
Localization in 1D with atomic matter waves was possible thanks to the realization of
the kicked rotor with laser-cooled atoms interacting with a pulsed standing wave [158].

Localization in one dimension was recently observed by two experimental groups,
at Institut d’Optique (Palaiseau) and at the European Laboratory for Nonlinear Spec-
troscopy (Florence), who realized the experiment exposing a Bose-Einstein condensate
to a laser speckle [147, 159, 160], which creates a controlled disorder. In these exper-
iments, the atomic density profile is imaged as a function of time, and it has been
found that disorder stops the expansion and leads to the formation of a stationary,
exponentially localized wavefunction (see figure (I.8)).

A further step is to observe the localization transition in three dimensional systems.
To this end, a generalization of the kicked rotor model which can be mapped to the 3D
Anderson model has been considered [161]. The system is obtained by modulating the
standing wave pulses with a set of two incommensurate frequencies ω2 and ω3. The
strength of the kicks K in equation (I.8.1) is thus replaced by

K(t) = K[1 + ε cos (ω2t+ φ2) cos (ω3t+ φ3)], (I.8.2)

and the variable θ is extended in the (−∞,+∞) range. This quasi periodic kicked rotor
was recently realized experimentally [162], and with a careful analysis of the scaling
properties of the dynamics the critical exponent ν of the localization length has been
determined: the value obtained is ν = 1.4± 0.3, compatible with the numerical results
for the 3D Anderson model cited in the previous section. In Ref. [163], performing a
numerical analysis of the quasiperiodic rotor, it was shown that this system actually
belongs to the same universality class as the 3D Anderson model, since both models
give the same critical exponent ν. Localization of ultra cold atoms in 3d has also
been recently observed in experiments using a disordered potential created by laser
speckle [164, 165].



I.9. Open problems 21

I.9 Open problems

After almost sixty years, the study of Anderson Localization remains an interesting
and active field, with various open questions. As we have seen in section (I.4), we have
at present a good knowledge of what happens in low dimensional systems. The scaling
theory, with its justification through field theory, is able to determine the lower critical
dimension, which is two for orthogonal systems, and analytical results for the critical
exponents have been obtained perturbatively in dimension d = 2 + ε, with ε� 1. Yet,
the method of the perturbative expansion of the RG flow near d = 2 fails in determining
quantitatively the properties of the transition in three dimensions, where exact results
for the critical exponents can be determined only numerically: the Anderson Model
(and its corresponding field theory NLσM) is in general not soluble for d > 2, except
for a narrow region near d = 2. The Anderson Localization Transition appears more
complicated to treat than conventional critical phenomena. As described in section
(I.2), the density of states does not distinguish between the localized and the extended
phase, and one has to look at fluctuations of the imaginary part of the Green function
(see section (II.1) of the next chapter). Actually, if we want to describe the transition
in terms of symmetry breaking it is necessary to introduce an order parameter function:
using the formulation of the field theory in terms of supersymmetric fields (see section
(II.3)), it has been shown that such a function, introduced in [30], is indeed related to
the distribution of one-site Green functions [166, 167]. Due to this non trivial nature
of the order parameter, and of the mean field theory of the model, the analysis of the
fluctuations around mean field is particularly complicated. The absence of a small
parameter and the unusual nature of the order parameter make analytical approaches
really challenging, and for this reason numerical techniques are still at the core of
the advances in this topic, as explained in section (I.7). Yet, due to the very rapid
increase of the running times of the algorithms with the size of the system, only
the behavior of systems with quite limited sizes can be simulated, and the sizes for
which simulations are possible become smaller and smaller as the dimensionality is
increased. As a consequence, the study of the behavior in high dimension results to
be challenging also numerically. For all these reasons, some basic questions, as for
instance the existence of an upper critical dimension du, remain unanswered. As we
will see more in detail in the next Chapters, several observations seem to indicate that
du could be infinite [144, 166, 167, 168], while different propositions have been made,
corresponding to du = 4, 6 and 8 [169, 170, 171, 172, 173, 174, 175].

Another issue is the relation with the infinite d limit. As we have explained in
section (I.5) the best way to study the behavior in high dimension is to consider the
Anderson model on the Bethe Lattice. On one hand, models on tree-like structures
allow for an analytical treatment, such that the transition point and the corresponding
critical behavior can be established. The analytical results of Abou-Chacra, Anderson
and Thouless [8], who first solved the problem, have been confirmed numerically in
Refs. [176] and [177]. Moreover, recently, rigorous results on the mobility edge and the
proof of the existence of extended states have been obtained [178, 179]. As already
mentioned, the critical behavior has been studied with the supersymmetric method,
both in the σ model formulation [34, 35, 36, 37] and in the tight binding version [30]:
it has been found that the localization length diverges at the mobility edge as ξ ∼



22 Chapter I. The Anderson Localization Transition: introduction

|E − Ec|−1. An effective method has been developed to study the transition for a
lattice in d dimension [180, 181]: this technique, the effective-medium approximation,
consists in calculating exactly the interaction between two fixed sites, and to consider
the interaction with the others as the interaction with an effective medium. This gives
the same self-consistent equations for the mobility edge as on the Bethe Lattice, but
different equations for the density-density correlation functions. This approximation
is exact for d → ∞, and gives for the critical exponent describing the behavior of
the localization length the value ν = 1/2. As we will see in the next Chapter, the
supersymmetry method predicts important and non conventional characteristics of the
Anderson Transition on the Bethe Lattice, like the exponential singularities of some
critical quantities at the transition, as the diffusion coefficient [85, 30], and the behavior
of the moments Υq of the normalized measure |ψ|2, which show a discontinuous jump
at the critical point [30, 182]. On the other hand, several features of the transition on
the Bethe Lattice, and in particular some properties of the delocalized phase are still
a debated issue, like the statistics of extended wave functions, and the behavior of the
level spacing distribution (see section (I.6)): in particular it has been argued that an
intermediate mixed phase, delocalized but non-ergodic, could exist. This problem has
been the subject of intense discussions in the last years and the question is still open.

The study of the Anderson Transition in high dimension and on tree-like structures
has attracted such an interest recently because of its connection with the problem of
Many Body Localization (MBL). The next subsection is dedicated to a brief presenta-
tion of the problem of Many Body Localization and its connection with the one-particle
problem in high dimension and on the Bethe Lattice, while in the paragraph (I.9.2)
we present some aspects of the issue of the intermediate phase.

The original part of this thesis deals on one hand with the study, both analytically
and numerically, of a random matrix model with long-range hopping, the Lévy Matri-
ces, which presents connections with the infinite d limit and with tree-like structures:
the model and the results are presented in Chapter (III) and are mainly based on
Ref. [183]. On the other hand, in Chapter (IV) we present the results of our numer-
ical study of the Anderson Model from dimensions 3 to 6, performed through exact
diagonalization (ED) and the transfer matrix method (TM) (see Appendix (A)). The
connection and the possible implications of this results on the unusual properties of
the delocalized phase observed in tree-like structures and in Lévy Matrices are then
discussed.

I.9.1 Interactions and Many Body Localization

The problem of localization becomes more complex if we consider interactions
among electrons: the fundamental question, which has remained unsolved for years,
is if the picture we have so far survives or not once we add interactions. For the one-
particle problem, we know that, if the wave function of the electron at the Fermi surface
is localized, we can have finite conductance if the electron is thermally activated above
the mobility edge. Mott showed that, coupling the electrons with a phonon bath, elec-
trons can hop between the localized states without thermal activation of the mobility
edge (“variable range hopping”) [184]. For long time it was discussed if interactions
among electrons could play an analogous role as electron-photon interactions, and thus
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restore a finite conductivity without thermal activation. The question remained un-
solved until the work of Basko, Aleiner and Altshuler [48] in 2006: the authors showed
that, if the temperature is finite but small enough, electron-electron interaction alone
can not cause finite conductivity. Yet, there exist a critical temperature Tc such that
for T > Tc the conductivity is finite. For such temperature the system of interacting
electrons undergoes thus a phase transition, called Many Body Localization Transition.
The analysis in [48] consists in taking into account the interactions in perturbation the-
ory, studying the inelastic quasiparticle relaxation, represented by the imaginary part
of the sigle-particle self-energy. In a pictorial view, MBL can be thought of as local-
ization in the Fock space of Slater determinants, which plays the role of lattice sites
in a disordered one-particle Anderson tight-binding model. The problem of N � 1
interacting particles in a finite dimensional lattice is thus interpreted as a one-particle
localization problem on a very high dimensional lattice, which for spinless electrons
consists in an N -dimensional hyper-cube of 2N sites. This makes the study of single-
particle Anderson Localization in very high dimension (and consequently the problem
on the Bethe Lattice) an interesting issue for the comprehension of the problem with
interactions. The idea of interpreting a many particle problem as a single-particle one
in a very high dimensional space appeared in the context of the study of vibrational
degrees of freedom of very big molecules [29], and was then applied in [47] to study
the problem of electron-electron lifetime in a quantum dot. The work of Oganesyan
and Huse [136], already cited in section (I.6), points out instead the link of MBL with
Random Matrix Theory, and offer, at least numerically, a way to study the transi-
tion in relation to the level spacing distribution and ergodicity properties. We have
to stress indeed that for MBL is particularly significant the description of the transi-
tion in terms of breaking of ergodicity (see section (I.6)): it is a transition between a
thermal phase, in which we expect all the eigenstates to obey the Eigenstate Thermal-
ization Hypothesis (ETH) [28], according to which each eigenstate is representative of
the micro canonical ensemble, and the many body localized phase, in which the ETH
stops to hold, and the dynamics conserve some memory of the local initial conditions.
The study of the features of this transition has received much attention during the last
years, and several questions are open, like the determination of the critical properties,
and the presence of an intermediate mixed phase, delocalized but non-ergodic (“bad
metal” phase), in analogy with the mixed phase argued for the single-particle problem
on the Bethe Lattice (see next paragraph). In the language of MBL the “bad metal”
phase is a phase in which thermalization and ergodicity is possible only on certain
subregions of the configuration space.

I.9.2 The problem of the intermediate phase

In the work of 1997 [47] cited above, Altshuler and coworkers studied the problem
of electron-electron lifetime in a quantum dot by mapping it into the problem of lo-
calization in the Fock space. In this study they found a delocalized and a localized
regime, and they identified a broad critical region near the mobility edge on the side
of the delocalized phase, in which the states are multifractal. As mentioned in the
previous sections, multifractal states, which are extended but non-ergodic, i.e. occupy
zero fraction of the lattice in the thermodynamic limit, exist in the problem of single-
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particle Anderson Transition in three dimension, but only at the critical point. The
authors of [47] suggested instead the presence of non-ergodic extended state in a whole
region near the critical point. Following up this suggestion, and the analogy between
MBL and the problem of one-particle localization on the Bethe Lattice, in [39] a nu-
merical study of the one-particle problem on the Random Regular Graph (RRG) has
been performed. A RRG of connectivity k + 1 is a graph selected at random among
all the possible graph of connectivity k + 1 [185]. As we will explain more in detail in
section (II.2.1), for a Bethe Lattice of finite size most sites belong to the boundary, and
we expect therefore that boundary effects play an important role in numerical simula-
tions, significantly affecting the results. The RRG is one of the possibility to construct
a structure which is locally a tree-like graph, but which has no boundary: it essentially
corresponds to a finite portion of a Bethe Lattice wrapped into itself2. The main result
of the analysis of Ref. [39] is that the mobility edge computed from the (numerical)
solution of the self-consistent equations [8, 186], and the transition revealed observ-
ing the level spacing distribution seem to not coincide. In particular, an intermediate
phase which is delocalized but which does not show GOE-like behavior seems to be
present. It is however complicated to establish if the observed behavior is the sign of a
real intermediate phase transition, or the consequence of very strong finite size effects:
it the latter case the data should be interpreted in terms of a finite-size crossover. The
answer to this question is non trivial, and the work of Ref. [39] remained unpublished
on purpose. More recently, other works on the Anderson Model on the RRG have in-
vestigated the problem of the intermediate phase, focusing in particular on the analysis
of the statistics of extended wave functions, finding that these statistics may indeed be
multifractal [40, 41]. In [44], combining numerical and semi-analytical calculation, has
been then found an evidence for a order transition between ergodic and non-ergodic
states within the delocalized phase in RRG. The delocalized non-ergodic phase would
imply heterogeneous behavior at the level of transport and diffusion: the particle can
travel far away from a given site, but only following specific and disorder dependent
paths. In the language of MBL, this means that thermalization is possible only on
certain subregions of the Hilbert space. As we will see in section (II.3), the presence
of such intermediate phase would be in contradiction with the results obtained by the
supersymmetric method for the behavior of the moments of the distribution of wave-
function coefficients. The question of the existence of such phase for the single-particle
problem on the Bethe Lattice and its implications for MBL is still a subject of research
and discussion. We have investigated the problem of the existence of an intermediate
phase of this type in Lévy Matrices, which, as we will explain in section (III.1), present
connections with the problem of Localization on Bethe Lattice, and could actually be
an interesting system to consider in order to understand the mean field properties of
Anderson Localization. The possibility of the existence of an intermediate delocalized
non-ergodic phase has been advocated for this kind of matrices by [38], and this is one
of the reason which motivated us to study this model. Our results support the idea
that the delocalized phase of Lévy Matrices is ergodic, both in the sense of the level
statistics and the wavefunction statistics.

The analysis performed in Ref. [42] leads to results in contradiction with those of
2Another possibility is to consider the Sparse Random Matrix model, described in Chapter (II),

which is known in mathematical literature as Erdös-Rényi random graph.
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Ref. [44] (the two works are almost contemporary): in particular, in [42] a numerical
analysis of the Anderson model on RRG has been performed, and the results show that
important finite-size effects are present in the delocalized phase. The authors have thus
interpreted the data in terms of a crossover, and have studied the non-monotonocity of
the spectral and wavefunction statistics, supporting the prediction of the supersymmet-
ric method that eigenstates in the delocalized phase are ergodic. A successive work by
two of the same authors [43] shows with analytical and numerical techniques that the
intermediate delocalized non-ergodic phase actually emerges when we consider a finite
portion of a Bethe Lattice (Cayley tree), in which most sites belong to the boundary: a
similar result had been found several years before by Monthus and Garel [187]. At the
same time, in Ref. [43] it is also shown that the intermediate non-ergodic phase, which
is a property of the delocalized phase of the Cayley tree, seems to be absent when con-
sidering locally tree-like strucures as the RRG or the Sparse Random Matrix model.
During the same period other works have been submitted [44, 45], showing results in
contradiction with those presented in Refs. [42, 43], and supporting the violation of er-
godicity of the delocalized states on the RRG. Another very recent work [46] studying
the Anderson Transition in random graphs through large scale numerical simulations,
analyzing systems up to N ∼ 2 × 106, supports instead the idea that there is only
a single Anderson transition separating a localized phase from an ergodic delocalized
one. However, the authors show that a characteristic non-ergodicity volume emerges in
the delocalized phase, such that, for scale below this characteristic volume the system
behaves as if it was in an intermediate phase, and the states display a multifractal
behavior, while for scale larger than this typical volume the system exhibits ergodicity.
The characteristic non-ergodicity volume diverges at the transition, and thus, in the
localized phase, the non-ergodic behavior extends to the whole system. Even if this
work is a strong hint of the non-existence of the intermediate mixed phase in the RRG,
the reason for such strong non-ergodic behavior exhibited up to large system sizes re-
mains unknown. As we will show in Chapter (III), we have found a similar behavior
analyzing the localization transition and ergodicity of Lévy Matrices.
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Chapter II
Overview on analytical techniques and
known results

In this Chapter, we describe some of the analytical techniques used to study An-
derson Localization Transition and random matrices. We focus in particular on the
methods we have used in our works during the theses, in particular for the study of
Lévy Matrices, presented in Chapter (III). For simplicity, and for the purposes of this
theses, in what follows we refer to real tight binding Hamiltionian H with some dis-
order, i.e. to real random matrices of the form (I.6.6). In principle the definitions
and techniques presented here can be generalized to all the models showing Anderson
Localization Transition: the original classification, corresponding to the symmetries of
the three classical Dyson ensembles in RMT, has been discussed in section (I.6). A
more general classification and discussion on symmetries and universality classes can
be found in [188].

We present first the cavity method, an approximation which is exact i the limit of
infinite dimensionality, represented by the Bethe Lattice, and that can be used also for
Lévy Matrices leading to an exact equation which is the basis of the computation of
the mobility edge. We introduce then the supersymmetric method, a technique largely
applied in the study of Anderson Localization which allows for non-perturbative calcu-
lations. Finally we present the Dyson Brownian Motion model, a standard technique
in the study of random matrices which recently has been used in many works as a tool
to extend the results of RMT to larger and more general classes of matrices.

II.1 Definitions

We consider a real random Hamiltonian H of the form (I.6.6). Given an eigenstate
|α〉 of the system, we define the moments of the normalized measure |ψα|2 as

Υq =
∑
i

|〈α|i〉|2q =
∑
i

|ψ2
αi|q , (II.1.1)

where |ψ2
αi| is the weight of the site i in the eigenstate |α〉, and the sum spreads over

all sites i. For q = 1 we have Υ1 = 1, which gives the normalization condition. For
q = 2 the expression (II.1.1) gives the definition of the Inverse Participation Ratio

27
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(IPR), the inverse of the number of sites having non-zero weight in the state |α〉. It is
easy to see the behavior of Υ2 in the two following extreme cases: if the state |α〉 is
completely delocalized, each site i contributes with a weight ψ2

αi ∼ 1/V , with V the
volume of the system, therefore, from the definition (II.1.1), Υ2 goes to zero as 1/V
in the thermodynamic limit. In the opposite case, where |α〉 is localized on a finite
number p of sites, much smaller than the number of sites of the system, the sum in the
expression (II.1.1) has just p terms different from zero, each one of order 1/p: Υ2 is
thus finite and different from zero in the thermodynamic limit. Studying the behavior
of the moments Υq as a function of the system size is therefore a way to inspect the
localization transition.

We introduce now the resolvent matrix G = ((E − iη)I−H)−1. Assuming that H
has a set of eigenvalues {Eα}α=1,...,N and a set of eigenvectors {|α〉}, for the diagonal
elements we have:

G
(N)
ii =

( 1
(E − iη)I−H

)
ii

=
N∑
α=1

|〈i|α〉|2

(E − Eα)− iη , (II.1.2)

where, as in the definition of the IPR, |i〉 is the canonical bases of H and N is the
number of sites of the system. The spectral properties of the Hamiltonian can be
expressed in terms of the resolvent. In particular, the eigenvalue density Eα, ρ(E) =
1/N

∑N
α=1 δ(E − Eα), is expressed in terms of the imaginary part of the trace of G

according to the following expression:

ρ(E) = lim
η→0

lim
N→∞

1
Nπ
=TrG(E − iη). (II.1.3)

However, the density of states (DoS) does not contain information on the local-
ization transition (for the standard symmetry classes), and in order to differentiate
between localized and extended states one has to look at the behavior of the distribu-
tion of the imaginary part of the resolvent [2, 189, 190, 71, 61], which develops heavy
tails in the localized phase due to very large and rare resonances dominating the av-
erage: in the delocalized part of the spectrum, the typical value of the imaginary part
of G has a finite limit when η → 0, which of the same order as its average value. In
the localized region of the spectrum instead, the typical value of =G is zero almost
everywhere in the limit η → 0, and there is just a discrete set of sites where =G is
infinitely large: the typical value of =G is therefore very different from its mean value.

Since the average value of the imaginary part of the resolvent does not distinguish
between localized and extended states, we must look at least at the mean square of G
in order to investigate the transition. Indeed, the quantities of interest for studying
the localization transition are expressed in terms of products of the retarded and the
advanced Green functions Gs(E, i, j) = 〈i|(E + i(−1)s−1 η I − H)−1|j〉, s = 1, 2. In
particular, we have to look at the density-density correlation function Kω(i, j) [191],
defined as

Kω(i, j) =
(

1
(E + ω

2 + iη)I−H

)
ij

(
1

(E − ω
2 − iη)I−H

)
ji

, η → 0, (II.1.4)
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where the average is over the distribution of the random matrix elements of H.
In the delocalized phase this quantity has the following form in momentum space [71]:

Kω(q) = 2πρ(E)
Dq2 − iω

, (II.1.5)

where D is the diffusion coefficient, related to the conductivity by the relation (I.1.4).
In the localized phase it takes instead the form

Kω(i, j) ∼ 2πρ(E)
−iω

exp
( |i− j|

ξ

)
, (II.1.6)

decaying exponentially on the scale of the localization length.
If we consider the correlation function K0(i, i) for i = j, which corresponds to

|Gii|2, we see that for η small but finite this represents the probability for an electron
starting at site i to return to the same site after a time η. Using the spectral represen-
tation of the Green function, it is possible to see that the eigenvalue dependent inverse
participation ratio, is given in terms of K0(i, i) by the expression

1
Nρ(E)

∑
i,α

|〈i|α〉|4δ(E − Eα) = lim
η→0

η

πNρ(E)
∑
i

|Gii(E − iη)|2. (II.1.7)

The IPR corresponds thus to the probability that the electron returns to the same
site after an infinite time interval [192, 193, 93]. It is however important to notice that
expression (II.1.7) defines the eigenvalue-dependent IPR, while the IPR introduced at
the beginning of this section and defined by expression (II.1.1) for q = 2 is the IPR
associated to the state α (see Appendix (C)).

II.2 Cavity equations
In this section we describe an approximation used to obtain a self-consistent equa-

tion for the resolvent (II.1.2): this result is found to be exact on an infinite Bethe
Lattice (see section (II.2.1)), but also for Lévy Matrices (see chapter (III)), where is
the basis for the computation of the mobility edge. Historically, the equations we derive
here were first obtained by Abou-Chacra, Anderson and Thouless [8] for the Anderson
model (I.1.6) with on-site disorder on an infinite Bethe Lattice. In order to make the
derivation as general as possible, we consider again a N ×N random Hamiltonian H,
and we don’t make any particular assumption on the probability distribution of the
entries. The first step is to write the definition of the resolvent (II.1.2) in terms of a
Gaussian integral over real auxiliary fields φi:

G
(N)
ii (z) = i

∫ ∏N
k=1 dφk φ

2
i exp

[
− i

2
∑N
k,l=1 φk(zδk,l −Hkl)φl

]
∫ ∏N

k=1 dφk exp
[
− i

2
∑N
k,l=1 φk(zδk,l −Hkl)φl

] , (II.2.1)

where we have defined z = E − iη. We now show how the cavity method yields an
exact recursion relation for the elements of the resolvent matrix G(N)

ij of a system of
size N × N as a function of the elements of the resolvent matrix of a system of size
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(N − 1) × (N − 1). The cavity method was introduced in the context of the study
of disordered spin systems, and it provides a way to compute the local marginals for
systems defined of fully-connected [194] and finitely connected random graphs and
trees [195]. Given a random matrix H of size N × N , one can always relate it to a
random graph of N nodes, each of which associated with a variable φi, (i = 1, . . . , N)
[196]. The corresponding graph is built in the following way: the pair of nodes i and j
are connected when Hij 6= 0, while there is no link between i and j when Hij = 0. In
this way the matrix H contains both the information on the topology of the graph and
on the interaction strength between the nodes. By means of this analogy, the cavity
method can efficiently be applied to the study of random matrices.

We consider the Gaussian probability measure

µ(φ) =
exp

[
− i

2
∑N
k,l=1 φk(zδkl −Hkl)φl

]
∫ ∏N

k=1 dφk exp
[
− i

2
∑N
k,l=1 φk(zδkl −Hkl)φl

] , (II.2.2)

defined on the graph associated to the matrix H, which allows to write the diagonal
elements of the resolvent G(N)

ii (z) in the compact form

G
(N)
ii (z) = i

∫ N∏
k=1

dφk φ
2
i µ(φ). (II.2.3)

We also define the marginal at site k as µ(φk) =
∫ ∏

j∈∂k dφj µ(φ), where ∂k is the
set of neighbors of site k. If we separate the contribution of site k from the rest, we
have the expression:

µ(φk) ∼
∫ ∏

j∈∂k

dφj µ
( 6=k)(φ) exp

− i2(z −Hkk)φ2
k + iφk

∑
j∈∂k

Hkjφj

, (II.2.4)

where µ(6=k)(φ) is the measure (II.2.2) defined on the graph obtained from the original
one, once the site k has been removed (cavity graph). If we now consider removing
the site l from the original graph, we have:

µ(6=l)(φk) ∼
∫ ∏

j∈∂k\l
dφj µ

(6=k,l)(φ) exp

− i2(z −Hkk)φ2
k + iφk

∑
j∈∂k\l

Hkjφj

. (II.2.5)

In the above eqs. (II.2.4) and (II.2.5) we have omitted the normalization terms
corresponding to the integrals over the sites which have been removed in the cavity
graphs. The cavity method is based on making two assumptions which allow to close
the system of eqs. (II.2.4) and (II.2.5): the first is that the measure µ( 6=i)(φ), defined
on the original graph after removing the site i, factorizes over the sites of the cavity
graph according to

µ(6=i)(φ) =
∏
j∈∂i

µ(6=i)(φj). (II.2.6)

.
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The second assumption is that, when N →∞, the measure µ(6=i)(φj) is the same as
µ(6=i,k)(φj) ∀ j. Therefore, eqs. (II.2.4) and (II.2.5) assume the following self-consistent
form:

µ(φk) ∼ exp
[
− i2(z −Hkk)φ2

k

] ∏
j∈∂k

∫
dφj µ

(6=k)(φj) exp(i φkHkjφj), (II.2.7)

µ(6=l)(φk) ∼ exp
[
− i2(z −Hkk)φ2

k

] ∏
j∈∂k\l

∫
dφj µ

( 6=k)(φj) exp(i φkHkjφj). (II.2.8)

In this way, one can first solve the problem on the cavity graph, and then recon-
struct the local marginals on the original graph by means of eq. (II.2.7). In particular,
we parametrize the Gaussian measure µ(6=l)(φk) as:

µ( 6=l)(φk) =

√√√√ i

2πG(N−1) ( 6=l)
kk (z)

exp
(
− i φ2

k

2G(N−1) ( 6=l)
kk (z)

)
, (II.2.9)

where G(N−1) ( 6=l)
kk (z) are the diagonal elements of the resolvent of the matrix H, in

which row l and column l have been removed. Substituting this ansatz in the eqs.
(II.2.7) and (II.2.8) we obtain the following equations:

G
(N−1)
ii (z) = 1

z −
∑
j∈∂i\kH

2
ij G

(N−1)
jj (z)

, (II.2.10)

G
(N)
ii (z) = 1

z −
∑
j∈∂i H

2
ij G

(N−1)
jj (z)

. (II.2.11)

The diagonal elements of the resolvent G(N)
ii (z) is therefore given by the fixed-point

solution of eqs. (II.2.10) and (II.2.11).
As mentioned above, these equations have been derived for the first time by Abou-

Chacra, Anderson and Thouless in [8], using a different technique, based on the ap-
proach originally used by Anderson in his seminal work [2], where the localization of
electron eigenfunctions for strong disorder (or in the tails of the energy spectrum) is
shown starting from a perturbative expansion in powers of the hopping term for the
self-energy Σi, defined as:

Σi = z −Hii −G−1
ii . (II.2.12)

Indeed, if we consider a tight binding Hamiltonian of the form (I.1.6) with random
on-site terms (I.1.7), in the limit of strong disorder t�W , we can write the following
expansion for the resolvent G:

G = 1
z − εi − T

= 1
G−1

0 − T
= G0 (1 + T G0 + T G0 T G0 + . . .) , (II.2.13)
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where G0 = (z − H0)−1 is the resolvent defined considering just the diagonal part
H0 =

∑
i εic

†
ici of the Hamiltonian, and T = t

∑
〈i,j〉 c

†
icj + h.c. is the off-diagonal part

of H. In terms of the matrix elements, this expansion reads for Gii

Gii = 1
z − εi

(
1 +

∑
k 6=i

Tik
1

z − εk
Tki +

∑
k,l 6=i

Tik
1

z − εk
Tkl

1
z − εl

Tli + . . .

)
=

= 1
z − εi

(
1 +

∑
n

∑
{jk}∈P

Tij1
Tj1j2 . . . Tjn−1jn

(z − εj1) . . . (z − εjn) Tjni
)
,

(II.2.14)

where j1 and jn are neighbors of the site i, and we have written the expansion on the
right hand side as a sum over all the possible (repeating) paths starting from i and
coming back to i with intermediate sites P = (j1, . . . , jn). It is possible to rearrange
the sum in the r.h.s, corresponding to the self-energy, in terms of non-repeating paths,
obtaining an equation of this type:

Σi =
∑
n

∑
(j1, ..., jn)6=i

Tij1
Tj1j2 . . . Tjn−1jn

(z − εj1 − Σ(6=i)
j1

) . . . (z − εjn − Σ(6=i)
jn

)
Tjni, (II.2.15)

where now the sum is over directed paths (j1, . . . , jn), the repeating ones having
been absorbed in the terms Σ( 6=i)

j1
, . . . , Σ(6=i)

jn
, corresponding to the self-energies at

sites i1, . . . , in, computed on the graph where the site i has been removed. The
convergence of this series should be studied in order to determine the transition: the
region of energies where (II.2.15) is convergent corresponds to localized states, while
the extended states correspond to energies where the series is divergent. The expansion
(II.2.15) is in general complicated to solve. The approach of Anderson [2] consists in
neglecting the self-energies in the denominator, assuming therefore that the terms in
the series are statistically independent (forward approximation): this approximation is
known to overestimate the delocalization mechanism [2, 197]. Abou-Chacra, Anderson
and Thouless [8] proposed instead to truncate the series at the second order in the
hopping: if we ignore the fact that the self energy on the l.h.s. and on the r.h.s are
not the same, we obtain the self consistent equation

Σi =
∑
j 6=i

Tij
1

z − εj − Σj
Tji, (II.2.16)

where the sum is over the neighbors {j} of the site i. This equation is exactly the same
of (II.2.10) written in terms of the self-energy. As we will see in the next subsection,
this equation is exact on an infinite regular tree (Bethe lattice).

II.2.1 On the Bethe Lattice
The Bethe lattice is an infinite regular tree: a graph without loops in which every

vertex has the same degree k+ 1. In the figure (II.1) a portion of a Bethe lattice with
connectivity k+1 = 3 is shown. In order to study the thermodynamical properties of a
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model defined on a Bethe lattice, we have to consider finite size versions of the graph,
and then take the limit N →∞. We can construct a finite size Bethe lattice by starting
from a root (generation n = 0) with k + 1 offsprings and creating n − 1 generations
in which each vertex has k offsprings. The n-th generation has no descendent. The
problem with this definition is that a finite fraction of the sites of the lattice belong to
the boundary and have therefore connectivity one. An alternative way to define a finite
size Bethe lattice which avoid this boundary effects, as we have explained in section
(I.9.2), is to consider a random-k + 1 regular graphs (RRG), i.e. a graph selected
uniformly from the probability space of all regular graphs of N vertices with degree
k + 1 [185]: this is a way to wrap the lattice into itself, such that the boundary sites
are connected each other in a way that preserves the local structure of the tree.

Figure II.1: Bethe lattice with connectivity k + 1 = 3.

Let’s consider the tight-binding Hamiltonian (I.1.6) with on-site disorder (I.1.7) on
a Bethe lattice: we can define the gaussian probability measure (II.2.2) for this system
and proceed as explained in section (II.2). Due to the particular structure of the graph,
where loops are absent, the assumption (II.2.6) that the probability measure factorizes
over the cavity graph results verified, and therefore the cavity equations (II.2.10) and
(II.2.11) are an exact result. We will show in Chapter (III) that the same is true in
the thermodynamic limit for Lévy Matrices. Alternatively, if we follow the approach
of Anderson and we construct the expansion (II.2.15), we see that the series reduces
to a single term, being the only non-repeating paths starting to i and coming back to
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i those of the form i → j → i, with j neighbor of i: therefore we obtain exactly the
equation (II.2.16).

The cavity equation on the Bethe lattice can be treated as in Ref. [8] by studying
the stability of the imaginary part of the self-energy under iteration. First of all we
separate explicitly the real and the imaginary part of Σi = Si + i∆i, and we suppose
to be in the localized phase, where =Gtypi → 0 for η → 0, and ∆i is thus very small,
except for very few resonances, as explained in section (II.1): we can therefore linearize
the self-consistent equation (II.2.16) with respect to ∆i obtaining

Si =
k∑
j=1

t2
1

E − εj − Sj
(II.2.17)

∆i =
k∑
j=1

t2
η + ∆j

(E − εj − Sj)2 ,

where we have used z = E − iη and we have substituted the elements Tij of the
hopping matrix with the constant hopping strength t. The expression for the real part
Si does not depend on ∆i, and the equation for ∆i is a linear inhomogeneous equation:
this can be rewritten as an integral equation which has a finite solution only in the
localized phase. The mobility edge is thus found by studying the kernel of such integral
equation. As described in Chapter (III), we have followed the same procedure in order
to compute the mobility edge of Lévy Matrices.

In the case of the Bethe Lattice a complete analytical solution is not easy to obtain:
however, upper and lower bound have been established for the mobility edge Wc [8,
198], and it has been shown in Ref. [198] that they match in the large connectivity
limit, giving the asymptotic behavior

Wc/t ∼ 4 k log k . (II.2.18)

The cavity equations (II.2.10) and (II.2.10), exact on the Bethe lattice, have the
same status as the Bethe Peierls approximation for the Ising model. Moreover, since
the behavior on the Bethe lattice should be representative of the behavior on high
dimensional lattices, the analysis of the Anderson model on the Bethe lattice plays an
important role also in the problem of Many Body Localization, as we have explained
in section (I.9.1).

II.3 Supersymmetric method

As pointed out in section (I.4), the first version of the σ model, based on the
replica trick, does not allow for non-perturbative calculations, particularly important
in the analysis of the level-level correlation functions and the eigenfunctions statis-
tics. This motivated Efetov to develop a novel version of the σ model, based on the
combination of fermionic and bosonic degrees of freedom, a technique known as Su-
persymmetric method [85, 86, 87]. As mentioned in the previous Chapter, this new
version of the σ model is equivalent to the previous one on a perturbative level [87],
but it indeed succeeds in allowing non perturbative calculations too. In particular,
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Efetov applied this method to the calculation of the level-level correlation function in
a small metallic particle [199], finding the same expressions as for the three classical
Dyson ensembles in RMT, considering the three corresponding possibility for the pres-
ence or absence of time reversal symmetry and central symmetry (see section (I.6)).
This was an important result, on one hand because it showed that the supersymmet-
ric version of the σ model could provide information on the level statistics, but also
because it demonstrated explicitly that RMT could be used to describe properties of
real physical systems, since applications of RMT in physics were, up to that moment,
mainly based on phenomenological assumption. The method introduced by Efetov
was successfully applied to obtain the full solution of the localization problem in long
metallic wires [200], and leaded to important results for the study of the localization
transition on the Bethe Lattice and in high dimension. In particular, as already men-
tioned in section (I.9), the Bethe Lattice version of both the σ model [34, 35, 36, 37]
and the tight-binding model [30, 32, 31, 182] were studied with the supersymmetric
approach: using this formalism the localization transition emerges as the breaking of
a particular symmetry in the supersymmetric space, and can be described by means
of an order-parameter function, whose meaning is strictly related to the behavior of
the resolvent in the different phases of the system. The properties of the localized
and the extended phases have been studied, and the authors obtained results on the
level-level correlation functions, as well as on the behavior of the IPR and the diffusion
coefficient at the transition point. Here we present the supersymmetric method mainly
following the approach of Mirlin and Fyodorov [30, 32, 31, 182]. We focus in particular
on the calculation of the level-level correlation functions carried out in [32, 31], since
our analysis of such quantity for Lévy Matrices, which we will present in Chapter (III),
is based on these works. We also present the main results on the IPR and the anoma-
lous behavior of the diffusion coefficient at the transition, which are important in the
characterization of the “mean field” behavior of the Anderson Localization Transition.

In order to introduce the supersymmetric method we consider N complex numbers
Si and N anticommuting Grassmann variables χi, which obey the anticommutation
relations

χiχj + χjχi = 0. (II.3.1)

The integrals over the Grassmann variables are defined following Berezin [201] as∫
dχi = 0,

∫
χi dχi = 1. (II.3.2)

It follows from this definition that the Gaussian integral over the anticommuting
variables gives:

∫
exp

− N∑
j,k=1

χ∗jAχk

 N∏
i=1

dχ∗i dχi = detA, (II.3.3)

where A is an N × N matrix of complex numbers. We stress that the corresponding
Gaussian integral over complex numbers is instead proportional to (detA)−1.

The fermionic and the bosonic degrees of freedom can be combined by defining
supervectors Φ with components Φi:



36 Chapter II. Overview on analytical techniques and known results

Φi =
(
χi
Si

)
, (II.3.4)

and super matrices F with block elements of the form:

Fij =
(
aij σij
ρij bij

)
, (II.3.5)

where aij and bij are complex numbers and σij and ρij are Grassmann variables. The
following relation holds for Gaussian integrals over supervectors:

( 1
π

)N ∫
exp(−Φ†FΦ)

N∏
i=1

dχ∗i dχidS
∗
i dSi = SDetF. (II.3.6)

In the expression (II.3.6) above, the super determinant SDetF is defined as

SDetF = det (a− σb−1ρ) det b−1. (II.3.7)

We also define the supertrace STr for supermatrices F as

STrF = Tra− Trb. (II.3.8)

A particular case holds for matrices F0 such that σij = ρij = 0 and aij = bij : F0
is thus equal to the unity matrix in the superblocks Fij , and the Gaussian integral
(II.3.6) is equal to one. For such matrices the following relation holds:

( 1
π

)N ∫
Φi Φ†j exp(−Φ†F0Φ)

N∏
i=1

dχ∗i dχidS
∗
i dSi = F−1

0ij , (II.3.9)

which is the basis of the use of the supersymmetric method in disordered systems.
We notice that in the corresponding Gaussian integral for complex numbers a weight
denominator is present on the left hand side of the expression above: the absence of
such denominator is due to the cancellation of determinants obtained by the integration
over bosonic and fermionic variables, and allows one to average over the disorder at
the beginning of the computations.

Given a random matrix Hij , many quantities of interest can be expressed using
integrals over supervectors. In particular, if we are interested in the density of states
(DoS), we have to introduce supervectors Φ by combining two commutative compo-
nents S(1)

i , S
(2)
i and two Grassmanian variables χi, χ∗i at each site i:

Φi =


S

(1)
i

S
(2)
i

χi
χ∗i

 , Φ†i = (S(1)
i , S

(2)
i , χ∗i ,−χi). (II.3.10)

The starting point is the field theory Z(E, J) =
∫ ∏

i [dΦi] e−[S({Φi},E,J)] with the
action
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S({Φi}, E, J) = − i2
∑
ij

Φ†i [(EÎ + JK̂)δij −Hij ] Φj , (II.3.11)

where Î is the identity matrix, K̂ is defined as
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (II.3.12)

and [dΦi] = dS
(1)
i dS

(2)
i dχ∗i dχi.

Combining the definition (II.1.3) and the result (II.3.9) for the Gaussian integral
over supervectors we can express the DoS as

ρ(E) = 1
2πN =

∂

∂J
Z(E, J)

∣∣
J=0 . (II.3.13)

The study of the density of states of the Anderson Model on the Bethe Lattice
using the supersymmetric method has been performed in [30], while in [31] the analysis
regards a random matrix model closely related to that, the ensemble of sparse RMs:
the authors study the properties of real, symmetric, N ×N matrices with identically
and independently distributed elements Hij , with a probability distribution f(Hij) of
the form:

f(z) =
(

1− p

N

)
δ(z) + p

N
h(z), p ∼ O(1), (II.3.14)

where h(z) has no δ-like singularity at z = 0 and
∫
h(z) z2 dz ∼ O(1), such that∑

ij H
2
ij = TrH2 ∼ N , i.e. the eigenvalues of the matrix are of order one. We notice

that for this kind of matrices only a finite number p of elements per row (or column)
is different from zero in the thermodynamic limit. This model is generally known in
mathematical literature as Erdös-Rényi random graph [202, 203]. The importance of
this kind of models had been already remarked in the context of the study of spin
systems: indeed, dilute models present characteristics close to short-range models,
but have a fully-connected structure which allows for analytical treatment [204, 205].
Before the work of Ref. [31], the density of states of this model had already been studied
by Bray and other authors [206, 207]. As the random regular graph, the Erdös-Rényi
random graph is another kind of graph which has locally a tree-like structure, and
allows to study a finite version of the Bethe Lattice eliminating boundary effects.
Even if the connectivity is fixed in the case of the RRG and it is a fluctuating quantity
around its average value for the Erdös-Rényi random graph, the two models are very
similar tree-like models without boundary, where the typical size of the loops scales as
lnN .

In Ref. [30, 31] the authors study firstly the DoS of sparse RMs: some details on this
analysis are presented in appendix (D). The main result is that it can be expressed in
terms of a function g0(Φ†Φ), which depends on supervectors Φ only through the norm

Φ†Φ = S2 + 2χ∗χ, S2 = S(1)2 + S(2)2
. (II.3.15)



38 Chapter II. Overview on analytical techniques and known results

Using the properties of Grassmanian variables we have g0(Φ†Φ) = g0(S2)+2χ∗χ g′0(S2),
therefore the anticommuting variables can be easily integrated out, and we obtain in
the end an expression similar to the one derived with the replica trick in [208] for the
Bethe Lattice and in [206] for sparse RM. However, as stated in section (II.1) and in
Chapter (I), if we are interested in studying the localization transition, the density of
states is not informative.

All the quantities of interest to this end, as the density-density correlation function
(II.1.4) or the IPR (II.1.7) are expressed in terms of products of retarded and advanced
Green functions. In order to write these observables as supersymmetric Gaussian
integrals we have to double the size of the supervectors. In particular, we consider
eight-component supervectors

Φi =
(

Φi,1
Φi,2

)
, (II.3.16)

where Φi,1 and Φi,2 have the structure of equation (II.3.10). The advanced and retarded
Green functions can be thus expressed as

Gs(E, i, j) = (−1)s i
∫ ∏

k

[dΦk,s] (II.3.17)

× χ∗i,sχj,s exp {− i2
∑
i,j

Φ†i,s [(E(−1)s − iη) δij − (−1)sHij ] Φj,s},

with s = 1, 2. In order to write the product of these two functions as Gaussian integrals,
we have to choose the action in the form

S({Φi}, E) = − i2
∑
i,j

Φ†i
[(
L̂E + iη

)
δij − L̂Hij

]
Φj , (II.3.18)

with L̂ = diag {1, 1, 1, 1,−1− 1− 1− 1}. With this choice we can for example express
the density-density correlation function (II.1.4) for ω = 0 as

K0(i, j) =
∫ ∏

k

[dΦk] χ∗i,1 χi,2 χj,1 χ∗j,2 exp{−S}, (II.3.19)

with [dΦk] =
∏
s=1,2 [dΦk,s]. As mentioned above, we are interested in the compu-

tation of the level-level correlation functions, i.e. the correlator between subsequent
eigenvalues, defined as

R(ω) = ρ (E + ω/2) ρ (E − ω/2)
ρ2(E) − 1. (II.3.20)

We define the relative spacing ω = r/N , and we have thus to evaluate the correla-
tion function

K(E, r) = 1
N

Tr
(
E + r

2N + iη

)−1
Tr
(
E − r

2N − iη
)−1

, η → 0+. (II.3.21)
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If we want to write this quantity as a Gaussian supersymmetric integral we have
to modify the action (II.3.18) according to

S({Φi}, E, r, J (1), J (2)) = − i2
∑
i,j

Φ†i L̂ (Eδij −Hij) Φj + i

2
∑
i

Φ†iΦi

(
r

2N + iη

)

+ i

2
∑
i

Φ†i L̂ĴM̂ Φi,

(II.3.22)

where Ĵ is an 8 × 8 diagonal matrix which contains the sources J (1), J (2), i.e. Ĵ =
diag{J (1), J (1), J (1), J (1), J (2), J (2), J (2), J (2)}, and M̂ is also an 8× 8 diagonal matrix
defined as M̂ = diag{1, 1,−1,−1, 1, 1,−1,−1}.

We have thus

K(E, r) =
( 1

2N

)2 ∂2

∂J (1)∂J (2) 〈Z(E, r, J (1), J (2))〉
∣∣
J(1)=0, J(2)=0 , (II.3.23)

Z(E, r, J (1), J (2)) =
∫ ∏

i

[dΦi] exp (−S({Φi}, E, r, J (1), J (2))) . (II.3.24)

We present now how this technique has been applied in Refs. [32, 31] to the study
of the localization transition of sparse RMs. As already mentioned, the transition
appears as the breaking of a symmetry, and a function with a particular physical
meaning can be identified as the order parameter. We present here the main steps of
the computation, while we refer to the appendix (D) and (E) for further details.

The matrices considered are N × N matrices with entries distributed according
to the expression (II.3.14), such that only a finite number p of elements per row (or
column) is different from zero in the thermodynamic limit.

By performing the average over the distribution of matrix elements, equations
(II.3.24) and (II.3.22) become

Z(E, r, J (1), J (2)) =
∫ ∏

i

[dΦi] exp
{1

2Φ† L̂(E + ĴM̂) Φ + i

2Φ†
(
r

2N + iη

)
Φ

+ p

2N
∑
ij

[
h̃(Φ†i L̂Φj)− 1

]}
,

(II.3.25)

where

h̃(z) =
∫
h(t) exp(−itz) dt. (II.3.26)

Since the sum over interacting terms in the partition function (II.3.25) runs over
all the couples i, j of the system, it is useful to use, as explained in Appendix (D), the



40 Chapter II. Overview on analytical techniques and known results

functional generalization of the Hubbard-Stratonovich transformation (D.0.4). The
interacting term is thus modified according to the following expression:

exp
{
p

2N
∑
ij

[
h̃(Φ†i L̂Φj)− 1

]}

=
∫
Dg exp

{
− Np

2

∫
[dΨ][dΨ′]g(Ψ)C(Ψ,Ψ′) g(Ψ′) + p

∑
i

g(Ψi)
}
,

(II.3.27)

where the kernel C(Ψ,Ψ′) verifies∫
[dΨ′]C(Ψ,Ψ′)

[
h̃(Ψ′†L̂Φ)− 1

]
= δ(Ψ− Φ). (II.3.28)

Substituting the expression (II.3.27) into (II.3.25), we obtain for the averaged par-
tition function

Z(E, r, J (1), J (2)) =
∫
Dg exp

{
− Np

2

∫
[dΨ][dΨ′] g(Ψ)C(Ψ,Ψ′) g(Ψ′) +N ln

∫
[dΦ]

× exp
[
i

2Φ†
[
L̂(E + ĴM̂) + r

2N + iη

]
Φ + p g(Φ)

]}
.

(II.3.29)

The integration over g can now be performed with the saddle point method for
N →∞, as for the computation of the DoS in Appendix (D), leading to the following
equation

g(Ψ) =
∫

[dΦ] [h̃(Φ†L̂Ψ)− 1] exp[(i/2)E Φ† L̂Φ− (η/2) Φ†Φ + p g(Φ)]∫
[dΦ] exp[(i/2)E Φ† L̂Φ− (η/2) Φ†Φ + p g(Φ)]

. (II.3.30)

In view of the structure of the equation (II.3.30), it is natural to search its solution
g0(Ψ) as a function of two invariants: Ψ†Ψ and Ψ†L̂Ψ. Indeed, we can notice that
equation (II.3.30) commutes with all rotations Ŝ which leave both Ψ†L̂Ψ and Ψ†Ψ
invariant, i.e.

Ŝ†Ŝ = Î , Ŝ†L̂Ŝ = L̂. (II.3.31)

We can also observe that, for η → 0, the saddle point equation (II.3.30) is invariant
for all rotations T̂ for which

T̂ †L̂T̂ = L̂, (II.3.32)

i.e. rotations which leave the norm of the supervector Ψ†L̂Ψ invariant. We can thus
interpret the parameter η/2 as a symmetry breaking parameter, and a spontaneous
symmetry breaking might be present from the full symmetry (II.3.32) to the subgroup
of rotations (II.3.31). Therefore, two possible forms of the solution g0(Ψ) are possible:
if, for η → 0, the symmetry (II.3.32) is not broken, the function g0(Ψ)|η→0 might
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be a function of the variable Ψ†1Ψ1 − Ψ†2Ψ2 only, therefore, once the integration over
Grassmanian variable is performed, the solution g0(S2

1 , S
2
2)
∣∣
η→0 only depends on the

variable y = S2
1 − S2

2 . If instead the symmetry (II.3.32) is spontaneously broken, the
solution g0(Ψ)|η→0 is a function of both the invariants Ψ†L̂Ψ and Ψ†Ψ = Ψ†1Ψ1+Ψ†2Ψ2:
the function g0(S2

1 , S
2
2)
∣∣
η→0 depends thus on both y = S2

1 − S2
2 and x = S2

1 + S2
2 .

The authors of [30, 31, 33] also show that the solution g0(x, y) of the saddle point
equation (II.3.30) has a clear physical meaning, being related to the joint probability
density of real and imaginary parts of the one-site Green function. In particular, the
following identity has been proven to hold:

g0(x, y) =
∫
dz ΓF(z)

∫
du dv f(u, v) exp

{
z2

2 (vx− iuy)
}
. (II.3.33)

In the expression (II.3.33), u is the real part of the resolvent and v is the imaginary
part, while f(u, v) is their joint probability distribution. The function ΓF(z) depends
on the model, and for sparse RMs takes the form ΓF(z) =

∫
dω Γ(ω) exp(iωz)/(2π),

Γ(ω) = p [h̃(ω)−1]. As we have seen in section (II.1) the imaginary part of the resolvent
has a very different behavior in the localized and in the extended phase: keeping in
mind the definition (II.1.2), if we consider an energy lying in the delocalized range of
the spectrum, all the weights |〈i|α〉|2 are of order 1/N , and the typical value of the
imaginary part of Gii(E) is therefore of order one. In contrast, in the localized phase
all the weights are exponentially small, except for very few resonances: =Gii(E) is
thus of order η almost everywhere, and of order η−1 with a small probability going to
zero with η. As a consequence, in the localized phase, being v in equation (II.3.33) of
order η, g0(x, y) is independent of x for η → 0, and tends to a function g0(y), which
depends on y only. In the delocalized phase v is instead of order one, and the solution
g0(x, y) depends thus on both the invariants x and y for η → 0. We observe thus that
in the localized phase the symmetry of the saddle point equation (II.3.30) and the
symmetry of the solution g0(y) coincide for η → 0, while in the extended phase the
solution g0(x, y) does not have the full symmetry (II.3.32) for η → 0, i.e. the symmetry
(II.3.32) is spontaneously broken. The rigorous proof of the identity (II.3.33) is based
on the computation of the quantities Kn,m = Gn1 (i)Gm2 (i) and can be found in [33].
In Appendix (E) we use a less rigorous procedure in order to show the meaning of the
order parameter function g0(x, y).

In the delocalized phase the solution of the equation (II.3.30) is given by a family
of functions gT (Ψ) of the form

gT (Ψ) = g0(Ψ† T̂ † T̂ Ψ,Ψ†L̂Ψ), (II.3.34)

where T̂ satisfies the condition (II.3.32). The integration with the saddle point method
in the expression (II.3.29) has thus to be performed over a manifold of solution: the
computation has been carried out in [31] and the result found for the correlator (II.3.20)
is the same as for the GOE case [106]:

R(E, r) = 1− sin z2

z2 − d

dz

(sin z
z

∫ ∞
1

sin z t
t

dt

)
, z = πrρ(E) . (II.3.35)
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We stress that the use of the Supersymmetric method makes possible the descrip-
tion of the Localization Transition in terms of the breaking of a symmetry, and shows
how a function strictly connected to the behavior of the imaginary part of the re-
solvent plays the role of the order parameter. As explained in Chapter (I), previous
attempts to describe the two phases with a single order parameter in a field-theoretical
approach had failed: the quantity which naturally emerged as order parameter is pro-
portional to the average density of states, which is non-zero both in the localized and
in the extended phase and is therefore not informative. The supersymmetric method
makes clear the origin of this difficulty, showing that, in order to properly describe the
phenomenon, a whole function g0(x, y) has to be considered as order parameter.

As mentioned in Chapter (I) and again at the beginning of this paragraph, the
supersymmetric method allows for non-perturbative calculations, and is up to now the
only method which allows analytically a connection between the Localization Transi-
tion and the behavior of quantity as the level-level correlation function, and thus to
the properties of ergodicity of the system. In the case of sparse RMs we have seen that
the integration over the manifold of solutions in the delocalized phase leads to GOE
statistics: we will follow the same steps in the following Chapter in order to study
the behavior of the level-level correlation function in the delocalized phase for Lévy
Matrices.

We conclude observing that the analysis presented in this paragraph and the results
obtained lay on the possibility to perform the integral in the equation (II.3.30) with the
saddle point method. Indeed, the Hubbard-Stratonovich transformation, used to ob-
tain the equation (II.3.27), allows one to decouple variables in an interacting problem,
transforming it into an integral of non-interacting problems. Yet, once this transfor-
mation performed, what makes the problem analytically tractable is the possibility to
compute the integral with the saddle point method: this typically happens when the
interactions are long-range, or when we consider short-range interaction problems but
in the limit of infinite dimensionality. In the case analyzed the interactions present
a percolative long-range structure which makes the problem solvable with the saddle
point integration. The study of this kind of model let thus the characterization of some
mean field properties of the Localization Transition: as explained at the beginning of
this Chapter, such analysis is particularly important, since the mean field behavior can
not be studied with the conventional approach. The study performed in [182] explores
the features of both the localized and the extended phase and determines the critical
behavior of the IPR and the diffusion constant. In particular, as mentioned in section
(I.9), these quantities appear to be non-power like at criticality: their behavior is con-
trolled by a scale A which is the scale on which the imaginary part of the resolvent is
finite, and which presents a critical behavior of the form

A = exp(const/|E− Ec|1/2), (II.3.36)

with Ec the mobility edge. This determine an “exponential” critical behavior for the
diffusion constant D, defined in the expression (II.1.5), of the type

D ∝ (Ec − E)−3/2 exp[−const/(Ec − E)−1/2] . (II.3.37)

An expression of this type has been also found in [30] studying the Anderson Model
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on the Bethe Lattice with the supersymmetric approach.
Analogously, a non-power like critical behavior has been shown to hold for the

eigenvalue-dependent IPR, studied by looking at the correlation function at coinciding
points, as explained in section (II.1). The analysis shows that Υ2(E) presents a jump
at the critical point E = Ec, and its behavior near Ec, starting from the delocalized
phase, is described by

Υ2(E) ∝ 1
N

exp[const(Ec − E)−1/2] . (II.3.38)

This anomalous critical behavior had been found also studying the supersymmet-
ric version of the σ-model on the Bethe Lattice [35, 36] and has been recovered
in the framework of the effective medium approximation (EMA) developed by Efe-
tov [180, 181], which is exact in the limit d → ∞. In successive works of Mirlin and
Fyodorov [166, 167] the supersymmetric method has been used to investigate the sta-
tistical properties of the resolvent for the Anderson Model in a d-dimensional system:
the analysis shows that for d→∞ a conventional power-law critical behavior occurs for
the quantities above, and the “exponential” atypical behavior seems therefore to be a
feature of the infinite dimensional model. The authors also proposed an interpretation
of this result: as we have explained above, there is a characteristic symmetry breaking
scale A which is responsible for the non-power like feature, and which shows the ex-
ponential behavior (II.3.36) near the critical point. This scale should be proportional
to the “correlation volume”, i.e. the number of sites which are at a distance not larger
than the correlation length ξ from a given site: on the Bethe Lattice, which is repre-
sentative of the infinite dimensional limit, this volume scales as VBL ∝ exp(const ξ),
and the behavior (II.3.36) is thus reproduced. On a lattice in dimension d the “cor-
relation volume” scales instead as ξd, giving a power-like behavior of A of the type
A ∝ |E − Ec|−d/2. The predictions of the EMA for a d-dimensional space appears
therefore to be wrong for any d <∞: this picture suggests thus that d =∞ plays the
role of an upper critical dimension.

II.4 Dyson Brownian motion model

As we have seen in section (I.6), thanks to the invariance under rotations, RMT
provides an explicit expression for the joint probability distribution P (x1, . . . , xN ) of
the eigenvalues of N × N matrices belonging to the three classical Gaussian ensem-
bles [106]:

P (x1, . . . , xN ) = CNβ e
−βW , (II.4.1)

W = 1
2

N∑
j=1

x2
j −

∑
i<j

log |xi − xj | , (II.4.2)

where β = 1, 2 or 4 respectively for the GOE, GUE and GSE case (see section (I.6)).
This expression is identical to the probability density of the position of N unit charges
on an infinite straight line −∞ < x < ∞ subjected to the potential energy (I.6.2). If
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the parameter β is identified with the inverse temperature β = (KBT )−1, the com-
putation of averages over the distribution (II.4.1) is equivalent to the computation of
thermodynamic quantities. With this picture, referred to as the Coulomb gas model,
the problem of averaging over Gaussian ensembles is mapped into a statistical me-
chanics model. Dyson extended this idea, in such a way that the Coulomb gas model
acquires meaning not only on a thermodynamic point of view, but also as a dynamical
system out of equilibrium: to do that, the variables xj must be interpreted as posi-
tions of particles in Brownian motion [209, 210, 211]. Each particle has therefore no
inertia and is subjected to a fluctuating force fj and to a frictional force proportional
to the velocity: the motion of the particles is thus described by the following system
of Langevin equations:

γ
dxj
dt

= −dW
dxj

+ fj , j = 1, . . . , N, (II.4.3)

where the fluctuating force fj is a Gaussian white noise of zero mean fj(t) = 0 and
covariance

fi(t)fj(t′) = 2γ
β
δij δ(t− t′). (II.4.4)

If x1, . . . , xN are the positions of the particles at time t, at a later time t+ δt this
positions change to x1 + δx1, . . . , xN + δxN . The δxj are random variables, and from
the relations (II.4.3) and (II.4.4) we have, to the first order in the small quantities:

γ δxj = −∂W
∂xj

δt, (II.4.5)

γ δx2
j = 2

β
δt . (II.4.6)

The Brownian motion can be alternative described by deriving the Fokker-Plank
equation, which determines the evolution of the time dependent joint probability dis-
tribution of the positions of the particles P (x1, . . . , xN ; t) [210]:

γ
∂P

∂t
=

N∑
j=1

∂

∂xj

(
P
∂W

∂xj
+ β−1 ∂P

∂xj

)
. (II.4.7)

It can be shown that the description of the motion in terms of equation (II.4.7) is
equivalent to the one in terms of equations (II.4.5) and (II.4.6). If we start from an
initial probability density P at time t = t0, the solution of the Fokker-Plank equation
(II.4.7) is unique for all t ≥ t0, and for t → ∞ the equilibrium solution coincides
with the distribution (II.4.1), (II.4.2). We stress that the time variable introduced in
this description is a fictitious time which has to be actually related to a parameter
characterizing the original Hamiltonian, and it is thus a property of the mathematical
model.

It is also possible to construct a Brownian motion model for the matrix elements of
H, of which the variables xj are the eigenvalues. The Brownian motion is defined for
the p = N +N(N − 1)β/2 independent matrix elements separately. If at time t they
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have values H1, . . . ,Hp and at time t+ δt they change in H1 + δH1, . . . ,Hp + δHp, the
Brownian motion is defined by the ensemble averages

γ δHµ = −Hµδt, (II.4.8)

γ (δHµ)2 = gµ β
−1 δt, (II.4.9)

where gµ = gij = 1+δij . The corresponding Fokker-Plank equation for the distribution
P (H1, . . . ,Hp; t) of the matrix elements is

γ
∂P

∂t
=
∑
µ

(
1
2 gµ β

−1 ∂
2P

∂H2
µ

+ ∂

∂Hµ
(HµP )

)
. (II.4.10)

The solution of the equation (II.4.10) with the initial condition H = H(0) at t = 0
is known explicitly [210, 62, 86] and is given by

P (H, t) = C (1− q2)−p/2 exp
(
−β Tr(H − q H(0))2

2 (1− q2)

)
, (II.4.11)

where q = exp (−t/γ). The distribution P (H, t) is invariant under simultaneous uni-
tary transformation of the matrices H and H(0). In the limit t → ∞ we have q → 0,
and the solution tends to the stationary distribution

P (H1, . . . ,Hp) = C exp−
(1

2 β TrH2
)
, (II.4.12)

which is the expression of the distribution of matrix elements in the three Gaussian
ensembles. Equations (II.4.8) and (II.4.9) construct a GOE (in the real symmetric
case) matrix for t→∞: they provide thus a way to obtain the GOE ensemble as the
limit t→∞ of a stochastic dynamical process.

It is possible to prove that the two approaches based on the Fokker-Plank equations
(II.4.7) and (II.4.10) are equivalent, and in particular that when the matrix H executes
a Brownian motion described by equations (II.4.8) and (II.4.9), starting from any initial
conditions, its eigenvalues x1, . . . , xN execute a Brownian motion according to the
equations (II.4.5) and (II.4.6) of the time dependent Coulomb gas. The proof is based
on the fact that equations (II.4.8) and (II.4.9) are independent of the representation
of H, and it is thus possible to choose H diagonal al time t = 0:

H
(0)
jj = xj , j = 1, . . . , N, (II.4.13)

and Hi,j = 0 for i 6= j. At time t+δt, H+δH is no longer diagonal, and its eigenvalues
xj + δxj can be computed in perturbation theory: up to the second order in δH we
have

δxj = δH
(0)
jj +

∑
i 6=j

β−1∑
λ=0

(δH(λ)
ij )2

xj − xi
. (II.4.14)

Higher terms in the perturbation series do not contribute to the first order in δt,
which is necessary to write the Fokker-Plank equation. Taking the ensemble average
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of both sides in the equation above, and using equations (II.4.8) and (II.4.9) we obtain
equation (II.4.5). When we take the ensemble average of δx2

j , only the first term on
the right side of (II.4.14) contributes to the order δt, and using the equation (II.4.9)
we arrive to equation (II.4.6).

We notice from expression (II.4.14) how perturbations split levels: in the picture
of Dyson Brownian motion this is at the origin of the potential (I.6.2) of the Coulomb
gas model responsive for level repulsion in the Gaussian ensembles.

The technique of introducing a fictitious time related to some property of the model
and to construct a Brownian motion for the matrix elements (or equivalently for the
eigenvalues) has been largely use in order to extend the results of RMT, classically
established for the Gaussian Ensembles, to larger universality classes. In section (I.6)
we have seen how a central question about random matrices is the universality conjec-
ture: it is commonly believed that local statistics of eigenvalues are determined by the
symmetries of the ensembles but are independent from the details of the distributions.
In particular, the bulk universality, e.g. the universality concerning the interior of the
spectrum, has been proven for general classes of unitary invariant ensembles using tech-
niques based on the analysis of orthogonal polynomials [212, 213, 214, 106, 215]. The
local behavior of eigenvalues is known to follow the so called Dyson sine-kernel [106].
For non-unitary matrices, the most natural class is the ensemble of the Wigner matri-
ces [116], e.g. N×N random matrices with i.i.d. entries following a general distribution
with finite second moment.

The first step in order to generalize the results on the local statistics of eigenvalues
for unitary invariant matrices to non-unitary matrices was made by Johansson [117],
who proved the bulk universality for matrices of the form

H = W + aV, (II.4.15)

where W is a Wigner matrix, V is an independent standard GUE matrix, and a is a
positive constant independent of N (of order one). The bulk universality for the matrix
(II.4.15), belonging to the so called Gaussian divisible ensemble, has been shown by
using an exact expression for the correlation function of its eigenvalues [216, 217]. We
can notice now that such matrix can be generated by the following stochastic flow:

s→W +
√
sV, s > 0, (II.4.16)

and the evolution of the eigenvalues is given by the Dyson Brownian motion as ex-
plained above. From the result of Ref. [117] we know that the asymptotic distribution
of the Dyson Brownian motion, e.g. the eigenvalue distribution of GUE, is reached for
time of order one. However, local equilibrium (i.e. equilibrium in an energy window
containing a certain fraction of the eigenvalues), can be reached on shorter time scale.
In Ref. [118] it has been proven local equilibrium in a window of size N−1+ε (with
ε > 0), and it has been shown that this result, combined to other techniques, leads to
the Dyson sine kernel.

In a further work [119] the bulk universality has been proved for Wigner matri-
ces by developing a technique which allows to approach the comparison between the
eigenvalues of W and W +

√
sV . We consider an Hermitian matrix W, and we define
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the following Ornstein-Uhlenbeck (OU) process for the real and imaginary parts of the
off-diagonal matrix elements

∂tut = Lut, L = 1
4
∂2

∂x2 −
x

2
∂

∂x
, (II.4.17)

with the measure µ(dx) = e−x
2
dx and initial distribution u0 = u. The matrix elements

evolve thus according to

t→ e−t/2W + (1− e−t)1/2V . (II.4.18)

If F is the initial joint probability distribution of entries, the distribution Ft at time
t is found by applying the dynamic etL of the OU process to all the matrix elements.

What one would like to do, in order to prove the bulk universality for the Wigner
matrix W , is to approximate the initial local correlation function F with Ft at some
small time of the order N−1, the time scale for which bulk universality has been proven
in [118]. The approximation is defined in a weak sense by the integral

Var(F, Ft) =
∫
|F − Ft| {dui}, (II.4.19)

where the integral runs over N2 variables. Heuristically we have Var(F, Ft) ∼ tN2,
and it would imply convergence of the DBM for t� N−2, which is far from t ≥ N−1.
The argument used in [119] is that, while it is not possible to compare F to Ft, it is
sufficient to find a function G such that the correlation functions for Gt = eLtG at
time t can be computed and such that Var(F, eLtG) = o(N−2) (here we indicate with
eLt := (eLt)⊗N2 the operator which represents the dynamic of the OU process for all the
matrix elements). Since F = etL(e−tLF ), we could, in principle, chooseG = e−tLF , but
the diffusive dynamics can not be reversed besides few special cases. We can however
approximately reverse it and choose the function Gt =

[
1− tL+ 1

2 t
2L2

]⊗N2

F . We
have thus etLGt − F = O(N2t3) and it can be shown [119] that |Var(etLGt, F )|2
is upper bounded by a quantity of order t6N2. This argument, called reverse heat
flow, has been first used to prove bulk universality for Wigner matrices with smooth
distribution in Ref. [119], where exponential decay of the off-diagonal matrix elements
is required. The argument has been then used to extend universality to more general
ensembles of Wigner matrices. In Chapter (III) we will use an argument based on the
DBM technique and on the reverse heat flow method, to study the behavior of local
eigenvalue statistics of Lévy matrices.

For completeness we mention that the reverse heat flow argument is one of the two
recently most used techniques to study bulk universality. Another method, developed
by T. Tao and V. Vu is known as swapping method and lays on the observation that
spectral statistics of Wigner matrices tend to be stable if just one or two entries of the
matrix are replaced with another distribution: the stability of the swapping process is
stronger if one assumes that there are some matching moments between the new and old
distribution [120, 218, 219]. The method of Dyson Brownian motion combined with the
reverse heat flow argument, and the moment comparison method seem to be in general
complementary to each other and both necessary in the study of bulk universality. We
report the recent work of Ref. [121], in which bulk universality has been proven for
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generalized Wigner matrices, whose distribution of the entries shows a subexponential
decay. The matrix elements Hij are not required to be identically distributed, provided
that the variances of the matrix entries σij are of comparable size, e.g c

N ≤ σij ≤ C
N ,

with c and C positive constants. We can notice that with this hypothesis, even if the
matrix element are not required to be identically distributed, they retain however the
main-field character of Wigner matrices. In the more recent work of Ref. [220], analysis
of Dyson Brownian motion and the Green function comparison method have been
combined to prove bulk universality for a more general class of matrices whose entries
are not identically distributed and they do no have comparable variances, including
random band matrices withW � N1−εn , with εn > 0 [99, 100, 101, 102]. As explained
in section (I.6) it is still an open mathematical problem to extend universality to the
delocalized phase of random Schröedinger operator.



Chapter III
Localization Transitions of Lévy Ma-
trices

III.1 Introduction and motivations

This Chapter is dedicated to the study of Lévy Matrices, a model of Random
Matrices which constitutes a more general universality class than the one usually dealt
with in RMT. We consider matrices with i.i.d. entries extracted from a heavy tail
distribution, such that the second moment of such probability density is not finite. The
study of the properties of such kind of matrices is interesting on a purely mathematical
point of view, but is also related to the problem of Anderson Localization, and in
particular to the characterization of the mean field properties of this phenomenon.

As we have explained in section (I.6) and (II.4), in the field of Random Matrices,
much effort has been devoted in the attempt to extend the results of RMT to larger and
larger ensembles of matrices. Indeed, the conjecture of universality states that eigen-
value statistics don’t depends on the particular distribution of the entries, provided
that their second moment is finite, but behave asymptotically as if the matrix elements
were Gaussian. In particular, this has been proven for matrices with i.i.d. entries un-
der the assumption of finiteness of the fourth moment [120, 218, 219]. It is however
interesting to explore the properties of larger ensembles of matrices eliminating some
constraints, and considering new and larger universality classes. One possibility, as we
have mentioned in the previous Chapters, is for example to consider Wigner matrices
with non-identically distributed entries, as in Refs. [121] and [220]. Another way is to
remove some constraints on the momenta of the distribution of matrix elements, by
considering heavy-tailed i.i.d. random entries. In particular, we consider N ×N real
symmetric matrices H with entries Hij = Hji distributed independently according to
a law, P (Hij) = N1/µf(N1/µHij), characterized by heavy tails:

P (Hij) '
µ

2N |Hij |1+µ , |Hij | → ∞ ; 0 < µ < 2 , (III.1.1)

For µ > 2 the distribution has a finite variance, and we fall in the GOE universality
class [38]. The specific form of the function f doesn’t matter. For concreteness, in
this work, for numerical applications we will use a distribution P (Hij) proportional

49
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to |Hij |−1−µ for |Hij | > N−1/µ, and zero for |Hij | < N−1/µ. The scaling we have
chosen is such that the typical order of magnitude of the entries Hij is (1/N)1/µ and
the largest element of a row is typically of order 1: this guarantees that almost all
eigenvalues are O(1) with N → ∞, and so the distribution of eigenvalues reaches a
stable form in the thermodynamic limit, as shown in [38]. The reference case for this
new universality class corresponds to entries that are Lévy distributed. Indeed, for
probability distributions that have infinite variance a generalized version of the CLT
holds [221, 222] (see Appendix (F)): the limiting distribution of the sum of a large
number of heavy-tailed i.i.d. random variables is the Lévy stable distribution, which
plays the role of the Gaussian distribution for non heavy tailed i.i.d. variables.

The Lévy distribution lacks of an explicit representation, and it is known by means
of its Fourier transform L̂C,βµ [221, 223]

LC,βµ (x) = 1
2π

∫
dk L̂C,βµ (k) eikx,

log L̂C,βµ (k) = − 1
N
|k|µ γµ

[
1 + iβ tan

(
πµ

2

)
sgn(k)

]
,

(III.1.2)

where µ,C and β are three parameter which characterize respectively the power-law
behavior of the tails, the typical value and the asymmetry of the distribution, and γµ
is defined by expression (F.0.2) of Appendix (F).

This kind of matrices has been introduced in the pioneering work of Cizeau and
Bouchad [38] and has then received attention both in physical and mathematical liter-
ature [224, 225, 226, 227, 228, 229, 230]. Actually, since a huge variety of distributions
in physics and in other disciplines exhibits power-law tails, Lévy Matrices appear in
different contexts, spreading from models of spin glasses with RKKY interactions [231]
and disordered electronic systems [232], to portfolio optimization [233] and study of
correlations in big data sets [234]. Contrary to the case of Gaussian matrices, few
rigorous results are available for Lévy Matrices. The density of states has been well
studied and understood: a pioneering analysis had been already carried out in Ref. [38],
and successively in Refs. [224] and [225]. Finally, rigorous results have been obtained
by G. Ben Arous and A. Guionnet [227]. Much less understood is the behavior of
local observables, like the level statistics or the eigenvalue statistics. Actually, one
of the most interesting properties of Lévy Matrices, which was studied since the first
analysis of Ref. [38], is the presence of a mobility edge in the spectrum, separating
low-energy delocalized states from high energy localized eigenvectors. The presence
of such localization transition is a really interesting property which relates this kind
of matrices to the study of Anderson Localization. On a mathematical point of view,
even if the existence of a sharp localization transition has not been rigorously proven,
the very recent work of Ref. [235] proves delocalization at sufficiently small energy in
the spectrum and localization of the eigenstates for high energies for 0 < µ < 1.

In Chapter (I) and (II) we have seen how the study of the mean field theory for the
Anderson Localization transition is a difficult task because of the unusual nature of
the order parameter, which is a function related to the distribution of the local density
of states. The mean field approximation is generally exact in the limit of infinite range
interactions, i.e. for fully-connected models. Nevertheless, If we consider the fully



III.1. Introduction and motivations 51

connected version of the Anderson model, we have a Hamiltonian which falls in the
universality class of RMT and which exhibits therefore no localization transition. This
problem is solved by considering, as we have seen in detail, the Anderson model on
the Bethe Lattice, whose finite version without boundary can be defined both as a
Random Regular Graph or as an Erdös-Renyi random graph. The latter version has
been analyzed in section (II.3) with the supersymmetric method following the works
of Refs. [31, 32, 182], and we have seen how the sparse tree-like structure of the model
model allows for an analytical treatment. Similar features are also typical of Lévy
Matrices, which are a fully connected model with a sparse-like character: indeed, as a
consequence of the form of the distribution (II.1), each row or column of the matrix H
contains O(N) elements vanishing in the thermodynamic limit and O(1) elements of
O(1). The strong matrix elements can be explicitly distinguished from the small ones
by introducing a cutoff γ. This technique, introduced to study spin systems [236, 226],
has been already used in [225] for Lévy matrices, and it allows one to treat the backbone
of strong matrix elements |Hij | > γ as a sparse random matrix: in particular, as we
will see in section (III.5) it constitutes the adjacency matrix of an a Erdös-Rényi
random graph with an average connectivity cγ depending on the cutoff γ. The weak
matrix elements have finite variance, since we have introduced the cutoff γ in their
distribution, and play the role of a Gaussian bath. Using this strategy, and considering
the limit γ → 0, i.e. the limit cγ → ∞, Lévy matrices can be viewed as the limit of
infinite connectivity of the adjacency matrix of an Erdös-Renyi random graph, and they
can therefore be considered a useful model to investigate the mean field properties
of the localization transition. As we have explained in section (I.9.1), the study of
Localization on the Bethe Lattice in the limit of large connectivity is also important
in relation to the problem of Many Body Localization if we relate, in a pictorial view,
the problem of localization of N interacting particles to localization of one particle in
a space of very high dimension [47]. As we will see in the next paragraph, for Lévy
Matrices, in the thermodynamic limit, the cavity equations (II.2.10) and (II.2.11) are
exact, and the model is thus described by equations very similar to those obtained by
Abou-Chacra, Anderson and Thouless for the Bethe Lattice [8]: the difference is that
the sum in the cavity equations runs, in the case of Lévy, over all the N sites of the
system, while for the Bethe Lattice the sum is over the k neighbors that each site has
on the tree. As we will see in this Chapter, in the case of Lévy Matrices the cavity
equations result to be more easily treatable on a purely analytical point of view than
the cavity equations on the Bethe Lattice.

We have seen in section (I.9.2) that on the Bethe Lattice and in systems exhibiting
Many Body Localization transition, the existence of a mixed phase, delocalized but
non-ergodic, has been advocated. This has been at the origin of a long debate, which
is still open. A similar behavior seems to occur also in Lévy Matrices, where the
question of the presence of such a phase was opened since the early work of Cizeau
and Bouchaud [38]: as we will explain much in detail in section (III.6), using different
criteria for localization two different transition lines are found numerically in the µ−E
plane. Some of the results of Ref. [38] are in contradiction with the recent rigorous
results of Bordernave and Guionnet [230], showing that for 1 < µ < 2 all the moments
Υq vanish in the thermodynamic limit for q > 2, and goes to infinity for q < 2. The
question of the existence of an intermediate phase for Lévy matrices remained open
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for years, and has recently received renewed attention due to the similarity with the
problem of Anderson transition on the Bethe Lattice and with MBL.

In this Chapter we present the analysis we have performed on Lévy matrices using
both analytical and numerical techniques and the results we have obtained and which
have been published in Ref. [183]. First we show how the cavity equations presented
in section (II.2) are exact in the case of Lévy in the thermodynamic limit, and how
they are a starting point for the study of the density of state and for the computation
of the mobility edge. The transition line obtained in the µ − E plane is checked
using a semi-analytical method, in which the cavity equation are solved by means of
a population dynamics algorithm. In analogy with the analysis performed for sparse
RMs in Refs. [38] with the supersymmetric method, presented in Chapter (II), we
show how information on the behavior of the level statistics can be obtained. To study
the level statistics we also use an argument based on the Dyson Brownian Motion
method, presented in section (II.4). Finally, we present our numerical results obtained
performing exact diagonalization of Lévy matrices of sizes from 28 to 215 and analyzing
the scaling behavior with the system size of various observables. As we have anticipated
in Chapter (I.9), our results are compatible with the existence of only one transition,
between a delocalized ergodic and a localized non-ergodic phase. However, in the
region 0 < µ < 1, the system is characterized by the presence of a large crossover
region, in which it behaves as if it was in a mixed phase: this is due to the behavior
of the characteristic size governing the finite size effects, which diverges much faster
than a power law at the transition and is very large already far from it.

III.2 The recursion equation for the resolvent

In section (II.2) we have presented the cavity approximation, which is based on the
assumption that the Gaussian probability measure (II.2.2), used to write the resolvent
in the form of a Gaussian integral over auxiliary fields φi, factorizes over the sites
of cavity graph: this assumption is exact on the Bethe Lattice (see section (II.2.1)),
thanks to the particular tree-like structure in which loops are absent. We can show that
such assumption is justified also in the case of Lévy Matrices, using the fully-connected
structure of the model and the generalized central limit theorem.

The starting point is the expression of the resolvent (II.2.1) of a system of size N in
terms of a Gaussian integral over auxiliary fields φi. Following the authors of Ref. [38]
we can imagine to add a row k and its symmetric columns to the matrix H: this, in
terms of the tight binding representation of the matrix is equivalent to add a site to
the system. For the resolvent of the system with (N + 1) sites, if we integrate over all
fields except φk, we obtain

G
(N+1)
kk = i

∫
dφk φ

2
k exp

[
− i

2
∑N
i,j=1HkiG

(N)
ij Hjk φ

2
k −

i
2 (z −Hkk)φ2

k

]
∫
dφk exp

[
− i

2
∑N
i,j=1HkiG

(N)
ij Hjk φ

2
k −

i
2 (z −Hkk)φ2

k

] . (III.2.1)

Integrating now over φk we find
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1
G

(N+1)
kk (z)

= z −
∑
j

H2
kj G

(N)
jj (z)−

∑
j 6=l

Hkj G
(N)
jl (z)Hlk , (III.2.2)

where we have neglected a term Hkk in the right hand side, which is of order N−1/µ

and tends to zero for N →∞. The expression above corresponds to the cavity equation
(II.2.11), with an additional term in the right hand side which takes into account the
contribution of the off-diagonal terms of the resolvent. One argument which shows
that for large N these off-diagonal terms can be neglected with respect to the diagonal
one, was proposed by [224]: it is based on the fact that, since we are only interested in
the behavior of the diagonal elements, the off-diagonal ones can be replaced by their
typical values: as a result, the contributions of positive and negative elements lead to
the cancellation of the off-diagonal term (the elements of Hij and the ones of Gij are
suppose to be uncorrelated). Another possibility to estimate the contribute of the off-
diagonal term is to use the generalized central limit theorem, as suggested in Ref. [38]:
the off-diagonal term is therefore of order

[
1/N2∑

i 6=j |Gij |µ
]1/µ

. We have now to
estimate the off-diagonal term of the resolvent Gij . If we expand G = (zI −H)−1 in
perturbation theory, up to the first order in H, we have Gij = Hij/z + O(H2

ij), and
we can therefore consider that Gij is of the same order of Hij , e.g. O(N−1/µ). The
quantity

[
1/N2∑

i 6=j |Gij |µ
]1/µ

is thus of order N−1/µ, and vanishes for N →∞. We
obtain thus the following recursive equation for the elements Gii:

1
G

(N+1)
kk (z)

= z −
∑
j

H2
kj G

(N)
jj (z) . (III.2.3)

In the limit N → ∞ we can then assume that the distribution of the resolvent
for the system of size N + 1 is the same as for the system of size N , at we obtain
exactly the cavity equation (II.2.11), where we can drop the index labeling the size of
the system.

If we use the analogy between random matrices and random graph, we can read
the sums in equation (III.2.3) as sums over all the paths we can build on the graph
associated to the matrix H, starting from a site k and coming back to k: getting rid
of the off-diagonal term

∑
j 6=lHij G

(N)
jl (z)Hli corresponds therefore to neglect the loop

on the graph. We notice thus again the relation with the Bethe Lattice, in which
the cavity approximation is exact thanks to the lack of loops. The cavity equation
obtained for Lévy Matrices are the same as equations (II.2.10) and (II.2.11) for the
Bethe Lattice: the only difference is that in the latter case the sum spreads over k
terms instead of over all the N sites of the system.

The recursive equation (III.2.3) had been already derived in Ref. [38], and has been
rigorously proved in Ref. [227], where is the starting point for the derivation of the
density of states, as we will see in the next section.

III.3 The density of states
The recursion equation derived above for the diagonal elements of the resolvent

allows one to obtain the density of states and the mobility edge of the model. We can
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introduce the self-energy Σi(z) = z − 1/Gii(z), and separate the real and imaginary
part of Σi and Gii according to Σi = Si + i∆i and Gii = <Gii + i=Gii. The cavity
equation for Si and ∆i will then read as follows:

Si =
N−1∑
j=1

H2
ij <Gjj , ∆i =

N−1∑
j=1

H2
ij =Gjj . (III.3.1)

Hereafter we will use the following simplified notation: we will omit the double
indices and we define the random variable xj = H2

ij , distributed according to

P (xj) '
µ

4Nx1+µ/2
j

, xj →∞. (III.3.2)

Then, we have S =
∑N
i=1 xi<Gi and ∆ =

∑N
i=1 xi=Gi, where we have replaced the

sum over N − 1 terms with a sum over N terms, since in thermodynamic limit we can
assume that the distribution of {G(N−1)

i } is the same as the distribution of {G(N)
i }.

We can also notice that the matrix elements Hij and the elements of the self-energy
Σi are by construction uncorrelated.

It is now possible to determine, at least formally, the joint probability distribution
Q(S,∆) of the real and imaginary part of the self-energy, which is given by

Q(S,∆) =
∫ N∏

i=1

[
dxi dki

2π eikixi P̂ (ki)
]
δ

(
S −

N∑
i=1

xiG
R
i

)
δ

(
∆−

N∑
i=1

xiG
I
i

)

=
∫
dk1 dk2
(2π)2 ei(k1S+k2∆)

N∏
i=1

[
dxi dki

2π ei(ki−k1GRi −k2GIi )xi P̂ (ki)
]
,

(III.3.3)

where P̂ (ki) is the Fourier transform of the distribution (III.3.2). We use now the
expansion of P̂ (ki) up to the lowest order in ki:

P̂ (ki) = 1− 1
N
|k|

µ
2 γµ/2

[
1 + i tan

(
πµ

4

)
sign(k)

]
, (III.3.4)

with γµ/2 defined as in eq. (F.0.3). Performing the integrals in dxi and using the
expression (III.3.4), we find that for N →∞ the Fourier transform Q(S,∆) coincides
with the characteristic function of a complex Lévy stable distribution:

Q̂(k1, k2) =
N∏
i=1

P̂
(
k1G

R
i + k2G

I
i

)
(III.3.5)

= exp
[
− γµ/2

∫
dν(G)

∣∣∣k1G
R + k2G

I
∣∣∣µ2 (1 + i tan

(
πµ

4

)
sign

(
k1G

R + k2G
I
))]

.

This result could have been derived also by applying the generalized central limit
theorem (F.0.4) to the real random variable k1S + k2∆. Since Σi = E − iη −G−1

ii we
have that: ∫

f(G) dν(G) =
∫
f

( 1
E − iη − Σ

)
dQ(Σ), (III.3.6)
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where ν(G) is the probability distribution of the diagonal elements of the resolvent
G. As a result, Eq. (III.3.5) can be seen as a very complicated self-consistent integral
equation for the probability distribution of the self-energy.

The result (III.3.5) has been rigorously derived in ref. [227], relying on a result
about the convergence of sums of triangular arrays to complex stable law. Also the
equation (III.3.6) is proved for every bounded continuous function f .

In order to determine the density of states we now need some preliminary results.
First of all the average value of e−sx over the Student distribution P (x) of eq. (III.3.2),
with s being a complex number with positive real part, is for large N :

〈e−sx〉 ' exp
[
−

Γ
(
1− µ

2
)

N
s
µ
2

]
. (III.3.7)

Since the self-energy Σ is defined as Σ =
∑N
i=1 xiGi we have that (for t > 0):

〈eitΣ〉 = 〈eit
∑N

i=1 xiGi〉 =
N∏
i=1
〈eitGixi〉 =

N∏
i=1

exp

−Γ
(
1− µ

2
)

(−it)
µ
2G

µ
2
i

N


= exp

[
−Γ

(
1− µ

2

)
(−it)

µ
2

∫
dν(G)G

µ
2

]
,

(III.3.8)

where in the last step we have replaced the sum over the diagonal elements of the resol-
vent by an integral over the probability distribution ν(G), the elements Gi becoming
independent and identically distributed in the limit N →∞. The relation (III.3.8) can
be also found by direct integration in the complex plane of

∫
eitΣdQ(Σ), where Q(Σ)

is the complex Lévy stable distribution given by equation (III.3.5).
Another relation that we will need to use is the following integral identity, which

holds for every complex number z with negative imaginary part:

(1
z

)µ
2

= −i e
−i πµ2

Γ
(µ

2
) ∫ ∞

0
(−it)

µ
2−1e−itz dt. (III.3.9)

The relation (III.3.9) can be proved by contour integration. Let us now compute
the µ/2-th moment of G. Using equation (III.3.6) we find:

〈G
µ
2 〉 =

∫
dν(G)G

µ
2 =

∫ ( 1
E − iη − Σ

)µ
2
dQ(Σ). (III.3.10)

We now apply the integral identity, equation (III.3.9), to (E− iη−Σ)
µ
2 and obtain:

〈G
µ
2 〉 = −i e

−i πµ2

Γ
(µ

2
) ∫ ∞

0
dt (−it)

µ
2−1e−it(E−iη)

∫
eitΣ dQ(Σ). (III.3.11)

From equation (III.3.8) we have that:∫
eitΣ dQ(Σ) = exp

[
−Γ

(
1− µ

2

)
(−it)

µ
2 〈G

µ
2 〉
]
. (III.3.12)
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Thus we get the following self consistent equation for the complex number 〈G
µ
2 〉:

〈G
µ
2 〉 = −i e

−i πµ2

Γ
(µ

2
) ∫ ∞

0
dt (−it)

µ
2−1e−it(E−iη) exp

[
−Γ

(
1− µ

2

)
(−it)

µ
2 〈G

µ
2 〉
]
.

(III.3.13)
We can now introduce the function g(y):

g(y) = 2
µ

∫ ∞
0

e−v
2
µ
e−vy dv =

∫ ∞
0

w
µ
2−1 e−w e−w

µ
2 y dw, (III.3.14)

and we can define Y = (−1/z)µ/2〈G
µ
2 〉. Using this definition of Y and g(y), the self

consistent equation (III.3.13) can be recast in the form:

(−z)µ Y = e−i
πµ
2

Γ
(µ

2
) g (Γ

(
1− µ

2

)
Y

)
. (III.3.15)

As shown in [227], it is possible to prove that there exist a unique analytic solution
〈G

µ
2 〉 of the equation (III.3.13) such that 〈G

µ
2 〉 = O(|E− iη|−

µ
2 ) at infinity. Moreover,

it is possible to show that Y = (−1/z)µ/2〈G
µ
2 〉 is the unique analytic solution of the

equation (III.3.15) tending to zero at infinity. In fact. Y = O(|E − iη|−µ).
Once 〈G

µ
2 〉 is determined, one can compute all moments of the resolvent using the

relations (III.3.6) and (III.3.12). In particular, for 〈G〉 we have:

〈G〉 =
∫

dν(G)G =
∫ ( 1

E − iη − Σ

)
dQ(Σ) (III.3.16)

= i

∫ ∞
0

dt e−it(E−iη)
∫
eitΣ dQ(Σ)

= i

∫ ∞
0

dt e−it(E−iη) exp
[
−Γ

(
1− µ

2

)
(−it)

µ
2 µ〈G

µ
2 〉
]
.

Taking the imaginary part of the above expression in the limit η → 0 yields π ρµ(E).
In ref. [227] some properties of ρµ(E) are proved: it is possible to show that the density
of states is symmetric, unbounded, and it has heavy tails. In particular, the asymptotic
behavior of ρµ(E) is given by

ρµ(E) ∼ π−1 Γ(µ) =Y (E)
E

, (III.3.17)

where we have defined Y (E) = limη→0 Y (E − iη). Since we know that Y (E − iη) =
O(|E − iη|−µ), as a result ρµ(E) has heavy tails in 1 + µ. This scaling behavior was
first predicted by Cizeau and Bouchaud in their seminal paper [38] using a different
method (see also Ref. [224]).

In fig. (III.1) the density of states for Lévy matrices with µ = 0.5, 1 and 1.5 is
represented. The DoS has been computed numerically by exact diagonalization. We
see as the power-law behavior of the tails with exponent 1 +µ predicted analytically is
correctly reproduced. As expected, the distribution becomes less broad with increasing
µ, approaching the semi-circle law (I.6.3) for µ→ 2.
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Figure III.1: The plot shows the distribution of the eigenvalues for Lévy matrices
with µ = 0.5, 1 and 1.5 computed numerically by exact diagonalization. The size
of the matrices considered is 211 × 211 and we performed averages over 500 samples.
We notice the power-law behavior of the tails of the distributions, characterized by
an exponent 1 + µ. As µ is increased the width of the distribution becomes smaller,
approaching the semicircle law in the limit µ→ 2.

III.4 Computation of the mobility edge

As explained above, one of the most interesting features of Lévy matrices is the
presence of a mobility edge in the spectrum, separating the extended states from the
localized ones. We present here a procedure to obtain the transition point in the
spectrum, based on studying the stability of the localized phase under a perturbation
obtained adding a small imaginary part to the resolvent. This is the approach used
by Abou Chacra, Anderson and Thouless to study the localization transition for the
Anderson Model on the Bethe Lattice [8]. The criterion is based on the different
behavior of the distribution of the imaginary part of the diagonal elements of the
resolvent G(E) in the two phases: if the energy E corresponds to a delocalized states,
=G(E − iη) has a finite typical value when η → 0, which is of order one. On the
contrary, if E belongs to the portion of the spectrum which is localized, the typical value
of =G(E) tends to zero when η → 0. Since in the localized phase there is a discrete set



58 Chapter III. Localization Transitions of Lévy Matrices

of sites where =G(E) is infinitely large, therefore the mean value of =G(E) is however
finite. The stability of the localized phase is governed by an eigenvalue equation for
the same integral operator found in Ref. [38]: here we show how the analysis of such
equation can be simplified, and we identify the mobility edge. We start from the
equations (III.3.1) for the real and imaginary part of the self-energy, which we can
rewrite in the form:

Si + i∆i =
N∑
j=1

xij
E − Sj + i (η + ∆j)

(E − Sj)2 + (η + ∆j)2 . (III.4.1)

As explained above, the quantity of interest in the study of the localization tran-
sition is the distribution of the self-energy Q(S,∆): we want to analyze its behavior
in the thermodynamic limit near the mobility edge. First of all, since in the localized
phase ∆ is of order η with probability one, we can linearize the equation (III.4.1) with
respect to the imaginary part, obtaining the following expressions:

Si =
N∑
j=1

xj
1

E − Sj
(III.4.2)

∆i =
N∑
j=1

xj
η + ∆j

(E − Sj)2 .

We can notice that the expression above for the real part S does not depend on
the imaginary part ∆. The probability distribution QR(S) is given by:

QR(S) =
∫ N∏

i=1

[
dxi dki

2π eikixi P̂ (ki)
]
δ

(
S −

N∑
i=1

xiGi

)

=
∫
dk

2πe
ikS

N∏
i=1

[
dxi dki

2π ei(ki−kGi)xi P̂ (ki)
]
.

(III.4.3)

Using the expansion (III.3.4) we have that for N → ∞ the Fourier transform of
QR(S) coincides with the characteristic function of a Lévy stable distribution with
exponent µ/2:

Q̂R(k) =
N∏
i=1

P̂ (kGi) ' exp
[
−C|k|

µ
2

(
1 + iβ tan

(
πµ

4

)
sign(k)

)]
. (III.4.4)

Therefore, QR(S) = L
C(E),β(E)
µ/2 , with the effective parameters C(E) and β(E) given

by

C(E) = γµ/2
1
N

N∑
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∫
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)

∫
dνR (GR) |GR|

µ
2

,(III.4.5)
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where ν (G) is the probability distribution of the diagonal elements of the real part of
the resolvent matrix and γµ/2 is defined by the expression (F.0.3) in Appendix (F).
The sums over N have been replaced by integrals over such distribution because the
diagonal elements of the resolvent become independent and identically distributed in
the limit N →∞.

Although the resolvent matrix (II.1.2) can only be defined in the complex plane in
presence of a small imaginary regulator η, in order to compute the mobility edge we
have to consider the recursion equation for the self energy (III.4.1) in the limit η = 0,
thus in absence of the imaginary part. Since in this limit S = E − 1/GR, we have:

νR
(
GR
)
dGR = QR

(
E − 1

GR

)
dGR

|GR|2
, (III.4.6)

and the expressions (III.4.5) can be rewritten in terms of the distribution of the
self-energy:

C(E) = γµ/2
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∫ +∞
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µ
2 , (III.4.7)

β(E) =
∫+∞
−∞ dGR L
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−∞ dxL
C(E),β(E)
µ/2 (E − x) |x|−

µ
2

,

where we have defined x = 1/GR. We have therefore a set of two self-consistent
equations for the parameters C(E) and β(E).

If we come back now to equations (III.4.2), since the expression for the real part
S does not depend on the imaginary part ∆, we can consider the equation for the
imaginary part and study the stability over iteration. Following the steps explained in
Appendix (G) we obtain the integral equation that corresponds to (III.4.2):

Q̂(k1, k2) =
[∫

dx dS P (x) Q̂2

(
S,

k2x

(E − S)2

)
e−ik1x/(E−S) e−ik2ηx/(E−S)2

]N
,

(III.4.8)
where Q̂(k1, k2) is the standard double Fourier transform of Q(S,∆), and Q̂2(Si, ki) is
the Fourier transform of Q(S,∆), defined as

Q̂2(Si, ki) =
∫ +∞

−∞
d∆i e

−iki∆i Q(Si,∆i) . (III.4.9)

We can now make an assumption for the asymptotic behavior of Q(S,∆) in the
localized phase. We have seen above, considering the recursion equation for the self-
energy in the limit η = 0, that the real part of the self-energy is a Lévy stable law
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L
C(E),β(E)
µ/2 with effective parameters C(E) and β(E) given by the set of equations

(III.4.5). A very similar result holds for the probability distribution of the imaginary
part Q(∆): the only difference with the expressions (III.4.5) is that in this case the
parameter β is equal to 1 since all the =Gi are positive. We also know that the joint
probability distribution Q(S,∆) is a complex Lévy stable law given by the equation
(III.3.5). Since the marginal Q(∆) is obtained integrating over S the joint probability
Q(S,∆), a reasonable ansatz for the behavior of the tails of Q(S,∆) in the localized
phase is

Q(S,∆) ∼ A(S)
∆1+m . (III.4.10)

As observed in [38], the exponent m is constrained to be larger or equal than µ/2,
since integrating over S can only make the decaying of the tails of ∆ slower. This
expression in the Fourier space gives:

Q̂2(S, k) ∼ Q̂2(S, 0) + c|k|mA(S) . (III.4.11)

Q2(S, 0) is the marginal of Q(S,∆) once we integrate over ∆: therefore, as we
have seen above, it is a Lévy stable law L

C(E),β(E)
µ/2 (S) with exponent µ/2 and effective

parameters C(E) and β(E) given by the self-consistent equations (III.4.7).
As shown in details in the appendix (G), using this result forQ2(S, 0), Eq. (III.4.11),

and expanding the right hand side of Eq. (III.4.11) in powers of k2 up to the order
|k2|m, one obtains the following integral equation:

Â(k1) = NL̂
C(E),β(E)
µ/2 (k1)

∫
dx dS P (x)

∣∣∣∣ x

(E − S)2

∣∣∣∣mA(S) e−ik1x/(E−S). (III.4.12)

We have to study now the behavior of the kernel of this equation, which has well
defined solutions only in the localized phase. In the appendix (G) we explain how it
can be simplified, yielding the following equation for the mobility edge:

K2
m,µ`+`−

[
s2
µ − s2

m

]
−Km,µ (`+ + `−) sµ + 1 = 0, (III.4.13)

where we have used the following definitions:

Km,µ = µ

2 Γ
(
m− µ

2

)
Γ
(

1−m− µ

2

)
,

sµ = sin
(
πµ

2

)
,

sm = sin (πm) .

and

`+ =
∫ +∞

0

dk1
π

eik1E |k1|µ−1L̂
C(E),β(E)
µ/2 (k1), (III.4.14)

`− =
∫ 0

−∞

dk1
π

eik1E |k1|µ−1L̂
C(E),β(E)
µ/2 (k1) .
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Figure III.2: Phase diagram of Lévy Matrices in the µ − E plane. The result is
obtained solving the equation (III.4.15) for different values of µ.

The equation (III.4.13) expresses the condition to have a non-trivial solution com-
patible with our ansatz of the asymptotic behavior of Q(S,∆).

Given a value of µ, the equation (III.4.13) can be solved for different values of
m ∈ [1/2, 1], and we obtain a critical energy E(µ,m). The value of the mobility
edge E∗(µ) for each value of µ is given by the stationary point of the eigenvalue of
the equation (III.4.12) with respect to m: the reason will be more clear in the next
section. We can notice that, as in the case of the Anderson model on the Bethe lattice,
the equation (III.4.13) is symmetric around m = 1/2, therefore, if a solution of this
equation exists, the eigenvalue of the equation (III.4.12) can have a stationary point
only for m = 1/2. For the Bethe lattice, this result has been rigorously proven in [178]
and [198], and indirectly found in [8]. Hence, the equation (III.4.13) finally becomes

K2
µ

(
s2
µ − s2

1/2

)
|`(E?)|2 − 2sµKµ<`(E?) + 1 = 0 . (III.4.15)

We have solved the equation above for different values of µ ∈ (0, 1). The mobility
edge E∗(µ) is plotted in the µ− E plane in the figure (III.2). The result we find is in
agreement with the sketch of [38] and with the numerical results of [225] for µ < 1 (for
larger value of µ the numerics of [225] were very inaccurate due to the large value of
E which had to be explored).

III.4.1 The mapping to directed polymers in random media

The result we have found for the mobility edge can be obtained, always starting
from the recursion equation (III.4.2), in another way, making an analogy with the
problem of directed polymers in random media [237, 238]. In particular, we can notice
that the equation (III.4.2) for the imaginary part of the self energy can be rearranged
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in a form which coincides with the expression of the partition function of directed
polymers in random media. We proceed replacing the ∆js appearing in the sum
of the right hand side of the equation (III.4.2) by their expression in terms of their
“neighbors”: if we do that one time we obtain the expression

∆i1 =
∑
i2 6=i1

xi1i2
(E − Si2)2 ∆i2 . (III.4.16)

Proceeding iteratively, say R times, we obtain:

∆i1 =
∑
i2 6=i1

xi1i2
(E − Si2)2

∑
i3 6=i2

xi2i3
(E − Si3)2 · · ·

∑
iR 6=iR−1

xiR−1iR

(E − SiR)2 ∆iR .

This expression can be read as a sum over directed paths P = (i1, · · · , iR) of length
R originating from the site i1. For each edge (in+1, in) belonging to a given path, the
contribution to ∆i coming from the path picks the random factor xinin+1/(E−S2

in+1)2.
Therefore, we can rewrite the equation above as

∆i1 =
∑
P

 ∏
(in+1,in)∈P

xin,in+1

(E − Sin+1)2

∆iR . (III.4.17)

As mentioned above, this equation has the same form of the recursion equation for
the partition function of directed polymers in random media in presence of quenched
disorder e−εij = xij/(E−Sj)2. We can therefore use the results known in this context
in order to analyze the behavior of the distribution of the imaginary part of the self-
energy and to study the localization transition.

Directed polymers in random media present a freezing transition which has been
studied making an analogy with the freezing transition of the Random Energy Model
(REM) [238, 237, 239, 240, 107]. The sum in the expression (III.4.17) runs over an
exponential number of paths, (N −1)!/(N −R−1)! ∼ NR. In the case of large R, two
cases are possible, corresponding to the two phases of the Random Energy Model: if
the sum is dominated by few paths giving a contribute of order 1, we are in the frozen
(glassy) phase. If, on the contrary, there is an exponential number of paths giving a
small contribution such that their sum is of order 1, we are in the ergodic phase. It is
easy now to understand the analogy with the Localization Transition, if we think about
the behavior of the distribution of the imaginary part of the self-energy in the localized
and in the extended phase. Indeed, as we have explained in the section (III.4), in the
localized phase =Σ has a typical value which tends to zero when η → 0, therefore, just
large and rare resonances give a contribution of order 1 to the main value of =Σ: this
situation corresponds to the glassy phase of the REM. In the extended phase instead,
all sites contribute to the main value of =Σ with a small but non negligible term, and
we can make the analogy with the ergodic phase of the REM. The transition is thus
related to an ergodicity breaking. One of the possibility to determine the critical point
is using the replica method [241]. In particular, we introduce n replicas of the system
with the same realization of the disorder: the partition function of the system is thus
given by
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Zn =

∑
P

∏
(in+1,in)

e−εij

n

and minus the quenched free energy per site is φ = logZn/Rn. Using the one-step
Replica Symmetry Breaking ansatz we divide the n replicas in n/m groups ofm replicas
all freezed in the same specific path. Therefore, we have:

Zn =

∑
P

∏
(in+1,in)

e−mεij

 n
m

,

and the expression for the free energy is

φ(m,E) = 1
Rm

log

∑
P

∏
(in+1,in)

∣∣∣∣∣ Hin,in+1

E − Sin+1

∣∣∣∣∣
2m
 . (III.4.18)

We compute the annealed free energy per site φ = logZn/Rn instead of the
quenched one, since the result for the transition point is the same [238]. The expres-
sion (III.4.18) gives the typical value of the imaginary part of the self-energy: in the
localized phase it decays exponentially to zero under iteration, while in the delocalized
phase it blows up, and the linearization done in the equation (III.4.2) is not justified.
In the terminology of directed polymers, the free energy needs to be extremized with
respect to the parameter m: ∂φ/∂m|m=m? = 0. In the localized phase φ(m?, E) < 0,
therefore the partition function is exponentially small and tends to zero over itera-
tions. Conversely, in the delocalized phase φ(m?, E) > 0, and the partition function
grows exponentially under iteration. The condition for the localization transition is
thus given by 

∂φ(m,E)
∂m

∣∣∣∣
m=m?

= 0 ,

φ(m?, E) = 0 .

As we will show below, the parameter m corresponds to the exponent of the tail
of the distribution Q(S,∆) of the imaginary part of the self-energy which appears in
the equation (III.4.10): so, as anticipated in the previous paragraph, the localization
transition takes place for m = 1/2.

More in details, in order to determine the mobility edge, using the equation (III.4.18),
we have to analyze the behavior of

N
|xi1 |m

|E − Si1 |2m
N

|xi2 |m
|E − Si2 |2m

N
|xi3 |m

|E − Si3 |2m
· · · (III.4.19)

Using the recursion equation (III.4.2), the real part of the self-energy can be rewrit-
ten as

Sin =
H2
in,in+1

E − Sin+1
+

N−2∑
i′n=1

H2
in,i′n

E − S′in
,
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where the sum over i′n runs over all the N − 2 neighbors of in except the sites in and
in+1 which belong to the path. As a result, we have to analyze the following integral
operator:

Zin(Sin) = (N − 2)
∫
dSin+1 Zin+1(Sin+1) dHin,in+1 P (Hin,in+1)

×
N−2∏
i′n

[
dHin,i′n P (hin,i′n) dSi′nL

C(E),β(E)
µ/2 (Si′n)

]

×
∣∣∣∣∣ Hin,in+1

E − Sin+1

∣∣∣∣∣
2m

δ

Sin − H2
in,in+1

E − Sin+1
−
N−2∑
i′n

H2
i′n

E − Si′n

 .

(III.4.20)

The factor (N−2) in the expression above takes account for the number of possibil-
ity we can choose the neighbors in+1 of the site in, once we have excluded the site in−1.
Studying the stability of the imaginary part of the self-energy, is therefore equivalent
to study the behavior of the largest eigenvalue of the equation (III.4.20), in the same
way we did in the previous paragraph analyzing the integral equation (III.4.12). In
particular, if λ(E,m) is the largest eigenvalue of the equation (III.4.20), for large R
we have:

φ(m,E) ' 1
m

log λ(m,E). (III.4.21)

The mobility edge thus is found for the value E∗ such that:
1
m

log λ(m,E?) = 0 ,

∂

∂m

[ 1
m

log λ(m,E?)
]

= 0 ,

which corresponds to: 
λ(m,E?) = 1 ,
∂

∂m
λ(m,E?) = 0 .

(III.4.22)

We will show now how it is possible to recover exactly the equation (III.4.12) found
in the previous section starting from the equation (III.4.20): we can see in this way
that λ(m,E) corresponds to the Lyapunov exponent of the imaginary part of the self-
energy, and m to the exponent of the tails of its probability distribution. For this
purpose, we introduce the variable S via the integral

∫
dS δ

S − N−2∑
i′n=1

H2
in,i′n

E − Si′n

 = 1 .

According to the generalized central limit theorem, in the thermodynamic limit S
has the same distribution of the real part of the self-energy, LC(E),β(E)

µ/2 (S):

∫ N−2∏
i′n

[
dHin,i′n P (Hin,i′n) dSi′nL

C(E),β(E)
µ/2 (Si′n)

]
δ

S − N−2∑
i′n=1

H2
in,i′n

E − Si′n

 '
N→∞

L
C(E),β(E)
µ/2 (S) .



III.5. Numerical check of the phase diagram 65

We can therefore rewrite the equation (III.4.20) as:

Z(X) = N

∫
dH P (H) dS LC(E),β(E)

µ/2 (S) dX ′Z(X ′) δ
(
X − S − H2

E −X ′

) ∣∣∣∣ H

E −X ′

∣∣∣∣2m .

(III.4.23)
Taking the Fourier transform of both sides of the expression above we finally obtain:

Ẑ(k) = NL̂
C(E),β(E)
µ/2 (k)

∫
dH dX ′ P (H)

∣∣∣∣ H

E −X ′

∣∣∣∣2m Z(X ′) e−ikH2/(E−X′) , (III.4.24)

where L̂C(E),β(E)
µ/2 (k) is the Fourier transform of the Lévy stable distribution:

L̂
C(E),β(E)
µ/2 (k) = exp

[
−C(E)|k|µ/2

(
1 + iβ(E) tan

(
πµ

4

)
sign(k)

)]
. (III.4.25)

This is exactly the same equation as (III.4.12) found in the previous paragraph: so,
as announced, studying the freezing transition of directed polymers in random media
corresponds to find the localization transition in Lévy matrices analyzing the behavior
of the Lyapunov exponent of the imaginary part of the self-energy under iteration.

III.5 Numerical check of the phase diagram

The phase diagram of the figure (III.2) has been found by solving the equation
for the mobility edge (III.4.13) for different values of µ. We have checked this result
with a semi-analytical approach: the cavity equation (III.2.2) (where we neglect the
off-diagonal terms) found in the paragraph (III.2) is a recursion equation for the proba-
bility distribution of the diagonal elements Gii of the resolvent, which can be rewritten
as

Q(G) =
∫ N∏

i=1
[dGiQ(Gi) dHiP (Hi)] δ

(
G−1 − E + iη +

N∑
i=1

H2
i Gi

)
. (III.5.1)

As in the previous paragraph, for simplicity we drop the double-index notation
and we assume that in the thermodynamic limit the distribution of the resolvent of a
system with N sites is the same as the distribution of G for a system of N − 1 sites.
Using a particular property of Lévy matrices it is now possible to put this equation
in a form which makes it easily solvable numerically. As explained in section (III.1),
Lévy matrices present a “sparse-like” character [225]: as a consequence of the power-
law tails of the distribution (F.0.1), each row or column of the matrix H contains
O(N) elements vanishing in the thermodynamic limit and O(1) elements of O(1).
In order to distinguish explicitly the strong matrix elements from the small ones,
we introduce a small but finite cutoff γ. This technique, introduced to study spin
systems [236, 226], has been already used in [225] for Lévy matrices, and allows one to
treat the backbone of strong matrix elements Hij > γ as a sparse random matrix: in
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particular, it constitutes a Erdös-Rényi random matrix with an average connectivity
which can be computed from the Lévy distribution P (H) and which depends on the
cutoff γ. In particular, separating the backbone of strong matrix elements from the
weak one, the self-consistent equation (III.2) for the resolvent reads:

Gi = 1
E − iη −

∑
{j+}H

2
jGj −

∑
{j−}H

2
jGj

, (III.5.2)

where {j+} includes the indices j such that Hj > γ, and {j−} the js such that Hj < γ.
By definition, the joint distribution of the real and imaginary part of the diagonal

elements of the resolvent Q(G) is given by:

Q(G) = lim
N→∞

1
N

N∑
i=1

δ (G−Gi) ,

δ (G−Gi) = δ (=G−=Gi) δ (<G−<Gi) .
(III.5.3)

The sum in the term containing the small matrix elements in the equation (III.5.2)
runs over a number of term of order N , so, using the definition (III.5.3), we can apply
the central limit theorem for random variables with finite variance, obtaining

lim
N→∞

N∑
j=1

H2
jGj = σ2

γ

∫
dGQ(G)G = σ2

γ〈G〉. (III.5.4)

In the expression (III.5.4), σ2
γ is the variance of the distribution of the weak matrix

elements, defined by

σ2
γ = 2

∫ γ

(N)−1/µ
H2P (H) dH = µγ2−µ

N(2− µ) . (III.5.5)

Using this result, and substituting the relation (III.5.2) in the definition (III.5.3),
we can obtain a self-consistent equation for Q(G). The procedure is the same used
in the context of the study of Lévy spin glasses [236, 226], and leads to the following
result for the probability distribution Q(G):

Qγ(G) =
∞∑
k=0

pγ(k)
∫ k∏

i=1
[dGiQγ(Gi) dHiP (Hi)] δ

(
G−1 − E + iη + σ2

γ〈G〉+
k∑
i=0

H2
i Gi

)
,

(III.5.6)
where pγ(k) = e−cγckγ/k! is the Poisson distribution of the connectivity k of the random
graph generated by the strong matrix elements. We can notice that in the expression
above we have a Gaussian term coming from an infinite (in the thermodynamic limit)
number of small matrix elements, and a Poissonian term coming from a finite number
of strong matrix elements. In particular, the backbone of strong bonds constitutes a
Erdös-Rényi random graph: every two nodes in the graph have a probability to be
connected which is independent from every other couple of nodes. In particular, if N
is the number of nodes of the graph, and c is the average value of the connectivity, the
probability P (k) of two nodes to be connected by an edge is given by
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P (k) =
(
N − 1
k

)
k
c
N (N − 1− k)1− c

N . (III.5.7)

For N → ∞, the expression (III.5.7) tends to the Poisson distribution P (k) ∝
e−c ck/k!. In the case of the Erdös-Rényi random graph obtained from the strong ele-
ments of the Lévy matrices, the average connectivity cγ , as mentioned above, depends
on the cutoff γ we have introduced to separate the backbone from the Gaussian terms,
and is given by

cγ = 2N
∫ ∞
γ

P (H) dH = γ−µ. (III.5.8)

Figure III.3: Typical value of the imaginary part of the diagonal elements of the
resolvent for µ = 0.5, and different energies E in the delocalized phase as a function
of the iteration in the population dynamics algorithm. We see that, as the mobility
edge EC ' 3.85 is reached, the stationary value of log(=G) is reached for smaller and
smaller values of η.

In order to find the mobility edge, we solved the equation (III.5.6) with a population
dynamics algorithm [195]. The technique consists in representing the distribution
Q(G) as a sum of delta function, according to the definition (III.5.3). At each step of
the algorithm the population is updated according to the recursion equation (III.5.6)
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until a stationary distribution is reached. With this procedure, we have obtained the
distribution of the real and the imaginary part of G for different values of µ as a
function of η and we have computed the typical value of the imaginary part: for the
value of the energy E lying in the delocalized part of the spectrum, the typical value of
=G becomes smaller as η is reduced and it reached a finite stationary value for a certain
value of η = ηc. The value of ηc becomes smaller and smaller as the mobility edge is
approached. If E belongs to the localized part of the spectrum, the typical value of
=G becomes smaller and smaller as η is reduced and tends to zero for η → 0. We have
solved the equation (III.5.6) with this method with a population of 226 elements. We
computed Qγ(G) for γ = 10−3, 10−4, 5× 10−5 and extrapolated the results for γ → 0.
In the figure (III.3) we show the results for the typical value of =G for µ = 0.5 for
different energies E in the delocalized phase. The numerical results in presence of the
cutoff γ are in good agreement with the exact equation for the mobility edge found in
the previous section.

III.6 The problem of the intermediate phase: previous results

The work of Cizeau and Bouchaud [38] cited several times in the previous sections
constitutes the pioneering work on Lévy Matrices. The results the authors obtained
on the recursion equation for the resolvent, as discussed in section (III.2), have been
rigorously proven by Ben Arous and Guionnet [227]. The authors also found results for
the density of states: even if the method they used has not been rigorously justified, it
actually gives the correct behavior of the tails of the spectrum of Lévy Matrices shown
in figure (III.1) and confirmed in Ref. [227] and by numeric successive works [225, 224].
In the same work the authors combine analytical and numerical techniques in order
to determine the phase-diagram of the model in the µ − E plane. The key result of
the work is that, looking at the behavior of different quantities, each one related to
a different definition of the Localization Transition, two different transition lines are
found, as shown in the plot of figure (III.4). In section (II.1) we have defined the
moments Υq of the normalized measure |ψα|2, and we have seen that Υ2, the IPR,
represents the inverse of the number of sites having non-zero weight in the state |α〉:
if |α〉 is completely delocalized, each site i has the same weight ψ2

αi = 1/N , therefore,
Υ2 goes to zero as 1/N in the thermodynamic limit. In the opposite case, where |α〉
is localized on p � N sites, Υ2 is finite and different from zero when N → ∞. The
authors in [38] computed Υ2 numerically by performing exact diagonalization of Lévy
Matrices for different values of µ and averaging over several realizations of the disorder.
The sizes of the matrices considered spread from N = 200 to N = 1500. The results for
Υ2 are shown in the phase diagram of figure (III.4): studying the behavior of the IPR
as a function of the system size, it appears finite and different from zero for N → ∞
in the whole region µ < 1. For µ > 1, the analysis of the scaling of Υ2 with N gives
the transition line represented in blue in figure (III.4).

The localization transition has also be investigated analytically in Ref. [38] by
means of another criterion: using the recursion equation for the resolvent (III.2.2),
the localization condition is expressed in terms of the distribution of the weight ψ2

αi

over the sites. In particular, the behavior of the quantity Υ1/2 is used in order to
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Figure III.4: Phase diagram obtained in Ref. [38] combining analytical an numerical
techniques: for 0 < µ < 1 the black curve delimits a region on the left of the µ − E
plane in which eigenstates are localized both following the analytical criterium based
on the analysis of the recursion equation for the resolvent, i.e. 〈Υ1/2〉 < ∞ in the
thermodynamic limit, and looking numerically at the behavior of the IPR, which stays
finite for N → ∞. The central region of the phase diagram, delimited by the black
curve on the left and by the blue one on the right, is characterized by a mixed behavior:
the states are delocalized from the analysis of 〈Υ1/2〉, which tends to infinity in the
thermodynamic limit, but the numerical study of the IPR shows that 〈Υ2〉 remains
finite for N →∞. On the right of the blue curve the states are delocalized both from
the numerical observation of the IPR (〈Υ2〉 → 0 for N → ∞) and from the analysis
of 〈Υ1/2〉, which is infinite in the thermodynamical limit. The numerical study of the
distribution of the level spacing P (s) suggests that in the mixed phase a non-universal
behavior, intermediate between the GOE-like and the Poisson-like limits emerges. The
Poisson-like and the GOE-like behavior characterize instead the localized phase (in
black) and the delocalized one (in red) respectively.

discriminate between the two phases: if the state α is completely delocalized, each
projection ψ2

αi of α over the site i is 1/N , therefore Υ1/2 diverges as
√
N as N →
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∞. In the case of α localized on p � N , as the IPR, Υ1/2 remains finite in the
thermodynamic limit. With this criterion, for µ > 1 all eigenstates appear delocalized,
while for 0 < µ < 1 the transition line represented by the black curve in figure (III.4) is
found. The study of the localization transition in [38] is completed with the numerical
analysis of other “observables”. In particular, the level spacing distribution P (s),
introduced in section (I.6), is computed for different values of µ and for several regions
of energies. As a result, in the localized phase delimited by the black curve in figure
(III.4), the distribution P (s) found by exact diagonalization is well fitted by the Poisson
distribution. In the delocalized phase (the region of the phase diagram on the right
of the blue curve), the behavior of the distribution of s is well represented by the
Wigner surmise (I.6.5). In the “mixed” region of the phase diagram, delimited by
the two transition line in figure (III.4), the authors find that the behavior of P (s) is
compatible with the existence of a non universal distribution, intermediate between the
Poisson distribution and the GOE-like behavior. The phase diagram in figure (III.4)
is the summary of all these results.

As we have stressed in section (III.1), Lévy Matrices are an interesting subject in
its own, with many applications in physics and other disciplines: the connection with
the study of disordered electronic system is just one of the possible field of application,
and the work of Ref. [38] was published almost ten years before the works on the
intermediate phase in MBL and for the Anderson Model on the Bethe Lattice discussed
in section (I.9). As pointed out in section (III.1) the interest in the comprehension
of Lévy Matrices is strong also on the mathematical point of view, since they belong
to a larger and new universality class than the one constituted by standard Wigner
matrices: this motivated the efforts in mathematical literature to prove rigorous results.
In particular, after the work of Ref. [227] on the DoS, it has been proven by Bordenave
and Guionnet [230] that for 1 < µ < 2 all the moments Υq vanish in the thermodynamic
limit for q > 2, and goes to infinity for q < 2: this invalidates the conjecture of
Ref. [38]. The presence of contradictory results in literature and the emerging of a
similar behavior in the context of the study of Anderson Transition and Many Body
Localization motivated us to perform a careful analysis in the attempt to understand if
an intermediate mixed phase actually exist in the phase diagram of Lévy Matrices. In
particular, motivated by the analogy with the Bethe Lattice explained in the previous
sections, and by the analysis which had been performed in Ref. [39], we have tried to
understand if there is a transition from an ergodic regime to a non-ergodic one which
takes place inside the delocalized phase in the diagram of figure (III.2), determined
analytically in section (III.4) and confirmed numerically (see section (III.5)). Since we
have found that for 1 < µ < 2 all states are delocalized, in this region the question
is just if, for a fixed µ, an ergodicity-nonergodicity transition takes place for a certain
energy. In the region 0 < µ < 1, where for any fixed µ a mobility edge appears in
the spectrum, as shown in figure (III.2), we ask if the ergodicity transition takes place
before the localization transition, i.e. for an energy ET smaller than the mobility
edge E∗. The definition of “ergodicity” here refers mainly to level statistics and is
synonymous of GOE-like behavior (see section (I.6)). Nonetheless, in various recent
works on the intermediate phase of the Anderson transition on the Bethe Lattice, the
word refers to the statistics of wavefunctions (see section (I.9)): in particular it has
been suggested that in the delocalized phase of the Anderson model on the Bethe
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Lattice all the eigenstates exhibit multifractal behavior (see Appendix (B)), which is
a feature of the critical point of the Anderson transition. Some of these works were
published [40, 41] while we were working on this analysis on Lévy Matrices, and this
motivated us to study numerically also the multifractal spectrum.

In the following two sections we present two analytical arguments based on the tech-
niques explained in Chapter (II), the supersymmetric method and the Dyson Brownian
Motion method, which support the idea that the delocalized phase of the diagram in
figure (III.2) is ergodic. We present later our numerical results obtained by exact diag-
onalization and by solving with a population dynamics algorithm the cavity equation
(III.5.6).

III.7 The Supersymmetric method applied to Lévy Matrices

In section (II.3) we have shown, following Refs. [32, 31, 182], how the supersym-
metric method applied to the model of sparse RMs allows to find GOE level statistics
in the delocalized phase. We have seen in particular that the dilute fully connected
structure of the model allows for an analytical treatment: after using the Hubbard-
Stratonovich transformation (D.0.4), the integral (II.3.29) can be performed with the
saddle point method, giving the expression (II.3.30). Equation (II.3.29), for η → 0,
is invariant for rotations T̂ such that T̂ †L̂T̂ = L̂. The term proportional to η/2 is
responsible for the breaking of this symmetry: if, for η → 0, the symmetry is not
broken, the solution is invariant under the full symmetry (II.3.32) and the solution
of the saddle point equation only depends on Ψ†1Ψ1 − Ψ†2Ψ2; if instead the symme-
try is broken for η → 0, the solution will depend on the two invariants Ψ†L̂Ψ and
Ψ†Ψ = Ψ†1Ψ1 + Ψ†2Ψ2. We have also seen that this symmetry breaking is responsible
for the localization transition: indeed, the solution of the saddle point equation has a
particular physical meaning, being related to the probability distribution of the real
and imaginary part of the resolvent (see equation (II.3.33) and the Appendix (E)).

We show now that in the case of Lévy Matrices it is possible to follow exactly the
same steps: we find in this way that the mechanism responsible for the localization
transition is the same as in the Erdös-Rényi graph.

Using the formalism introduced in section (II.3) we consider the action

S({Φi}, E, r, J (1), J (2)) = − i2
∑
i,j

Φ†i L̂ (Eδij −Hij) Φj + i

2
∑
i

Φ†iΦi

(
r

2N + iη

)

+ i

2
∑
i

Φ†i L̂ĴM̂ Φi,

(III.7.1)

which has the same form of equation (II.3.22), but nowHij are distributed according to
the heavy-tail law (II.1). The fields in equation (III.7.1) are 8-components supervectors
and the matrices are 8 × 8 matrices defined as in equation (II.3.22). Averaging over
matrix elements we obtain
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Z(E, r, J (1), J (2)) =
∫ ∏

i

[dΦi] exp
{1

2Φ† L̂(E + ĴM̂) Φ + i

2Φ†
(
r

2N + iη

)
Φ

+ µ

2N
∑
ij

∫
dx

|x|1+µ [exp (−ixΦ†i L̂Φj)− 1]
}
.

(III.7.2)

We proceed now as in the case of sparse RMs and we modify the interacting term
using the Hubbard-Stratonovich transformation (D.0.4), obtaining

exp
{
µ

2N
∑
ij

∫
dx

|x|1+µ [exp (−i xΦ†i L̂Φj)− 1]
}

=
∫
Dg exp

{
− Nµ

2

∫
[dΨ][dΨ′]g(Ψ)C(Ψ,Ψ′) g(Ψ′) + µ

∑
i

g(Ψi)
}
,

(III.7.3)

where the kernel C(Ψ,Ψ′) is defined by∫
[dΨ′]C(Ψ,Ψ′)

∫
dx

|x|1+µ [exp(−i xΨ′L̂Φ)− 1] = δ(Ψ− Φ). (III.7.4)

With this substitution we obtain for the averaged partition function

Z(E, r, J (1), J (2)) =
∫
Dg exp

{
− Nµ

2

∫
[dΨ][dΨ′] g(Ψ)C(Ψ,Ψ′) g(Ψ′) +N ln

∫
[dΦ]

× exp
[
i

2Φ†
[
L̂(E + ĴM̂) + r

2N + iη

]
Φ + µ g(Φ)

]}
.

(III.7.5)

As in the case of the Erdös-Rényi graph, the fully connected structure of the model
allows to perform the integration over g with the saddle point method for N → ∞,
yielding

g(Ψ) =
∫

[dΦ]
∫ dx
|x|1+µ [exp(−ixΨ†L̂Φ)− 1] exp[(i/2)E Φ† L̂Φ− (η/2) Φ†Φ + µ g(Φ)]∫

[dΦ] exp[(i/2)E Φ† L̂Φ− (η/2) Φ†Φ + µ g(Φ)]
.

(III.7.6)
We can notice now that the structure of the solution (III.7.6) is exactly the same

as the one obtained in the case of the Erdös-Rényi graph (II.3.30): the only difference
derives from the specific form of the distribution of matrix elements over which we
have averaged, and does not affect the symmetry structure of the solution. Exactly
as in the case of the Erdös-Rényi graph, for η → 0 equation (III.7.6) has the full
symmetry (II.3.32), which is broken for η 6= 0 by the term proportional to η/2. The
same discussion as for the case of sparse RMs thus applies: the localization transition
corresponds to the breaking of the full symmetry (II.3.32), and since the solution of
equation (III.7.6) is related to the real and imaginary part of the resolvent, in the way
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explained in section (II.3) and in Appendix (E), the symmetric solution corresponds
to the localized phase, while in the delocalized phase the symmetry (II.3.32) is broken
and we have a manifold of solution: the integration over this manifold leads to GOE
statistics as for sparse RMs. The supersymmetry method thus predicts GOE statistics
in the whole delocalized region of the phase diagram (III.2).

Caveat: We have to observe that the presence of the fermionic fields makes the
definition of the averaged partition function (III.7.2) very subtle: indeed the expansion
of the exponential in the Grassmanian variables reduces only to the terms in θ̄θ + θθ̄,
and as a consequence the first and the second moment of the Lévy distribution appear
in expression (III.7.2).

One possibility to define the integral (III.7.2) avoiding this problem is to regularize
somehow the problem, for instance introducing an upper cutoff Γ, sufficiently large such
that the structure of the matrix will still be similar to an Erdös Réyi graph (given by
the term of the same order of the cutoff) plus a GOE background. The mechanism of
the transition should thus be the same as in tree-like structures. Even if we are not
able to directly show that the limit Γ → ∞ is well-defined in general, it is possible
to see that, even without regularization (putting Γ → ∞ from the beginning), with
the supersymmetric method the recursion equation for the probability distribution of
the diagonal elements of the self-energy already found in section (III.7.2) is recovered.
This equation is the basis for the computation of the mobility edge: it is therefore
reasonable to think that in the limit Γ → ∞ the properties of the transition are
correctly described.

III.7.1 Equation on R(Σ) with the supersymmetric method

As we have seen in section (III.2), for the local self energy, R(Σ) the following
recursion equation holds:

Σii
d=

N∑
j=1

H2
ijGjj =

N∑
j=1

H2
ij

E − Σjj
, (III.7.7)

where d= denotes the equality in distribution between random variables and E contains
an infinitesimally small imaginary part i0+. Since the correlations between the terms
on the right hand side can be neglected, as shown rigorously in [227], Σii is a sum of
a large number or heavy tailed i.i.d. variables and, hence, it’s a complex Lévy random
variable. We consider its generating function:∫

dΣR(Σ)e−iX1Σ+iX2Σ∗ =
∏
j

e−iH
2
ij(X1Gij−X2G∗ij) ,

where X1 and X2 are two real variables. The right hand side can be computed in the
following way:

∏
j

e−iH
2
ij(X1Gij−X2G∗ij) =

(
1 + µ

N

∫
dΣR(Σ)

∫ dH
2|H|1+µ

[
e−ih

2
(
X1
E−Σ−

X2
E−Σ∗

)
− 1

])N
.
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Henceforth we neglect all the subleading (vanishing) terms in 1/N . This allows one to
derive the identity:∫

dΣR(Σ) e−iX1Σ+iX2Σ∗ = exp
(
µ

∫
dΣR(Σ)

∫ dH
2|H|1+µ

[
e−iH

2
(
X1
E−Σ−

X2
E−Σ∗

)
− 1

])
.

(III.7.8)
This is an implicit version of the self-consistent equation satisfied by R(Σ), or equiva-
lently by the resolvent G, as seen in Chapter (III).

We show in the following that this same result also follows directly from the super-
symmetric method. We consider for simplicity the action (E.0.4) defined in Appendix
(E), with

F(y) = µ

∫
dx

2|x|1+µ

[
e−ixy − 1

]
. (III.7.9)

By extremizing the action (E.0.4) on ρ(Φ) and taking into account the normaliza-
tion condition on ρ(Φ), at leading order in N one finds:

ρ(Φ) = exp
(
i

2EΦ†LΦ +
∫
dΨF(Φ†LΨ)ρ(Ψ)

)
.

By plugging the expression (E.0.7) into the previous equation, one can perform the
integral over Ψ:∫

dΣR(Σ) exp
(
i

2Φ(1)†Φ(1)(E − Σ)− i

2Φ(2)†Φ(2)(E − Σ∗)
)

=

exp
(
i

2E
(
Φ(1)†Φ(1) − Φ(2)†Φ(2)

)
+ µ

∫
dΣR(Σ)

∫ dx
2|x|1+µ

[
e
−ix2

(
Φ(1)†Φ(1)
E−Σ −Φ(2)†Φ(2)

E−Σ∗

)
− 1

])
.

This expression has to be valid for any Φ(1)†Φ(1) and Φ(2)†Φ(2), hence it defines a self-
consistent on R(Σ) which actually coincides with Eq. (III.7.8) established previously.
This result shows that our super-symmetric formalism is in agreement with previous
exact results: R(Σ) is the complex Lévy stable distribution obtained rigorously in [227].

III.8 The Dyson Brownian motion argument

In section (II.4) we have introduced the Dyson Brownian motion model: for ma-
trices belonging to Gaussian ensembles this technique allows to recover the expression
for the joint probability distribution of the eigenvalue (I.6.1), (I.6.2) as the equilibrium
distribution of a dynamical process, constructed by introducing a fictitious time.

The technique of constructing a Brownian motion for matrix elements has been used
to prove the universality of the results of RMT, and to extend them to Wigner matrices
with less and less constraints. Recently, the Dyson Brownian motion combined with
the reverse heat flow argument and with other techniques based on the comparison of
some moments of the distribution, has been used to prove universality for general class
of Wigner RMs [220]. The results of Ref. [220] apply to matrices with entries that
are not necessarily identically distributed, and some previous upper and lower bounds
on the second moment of the distribution of matrix elements are relaxed. Taking
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inspiration by these recent mathematical progresses, we use a strategy based on the
same type of argument to show that in the region 1 < µ < 2 the eigenvalue statistics
is GOE-like.

Our strategy consists in modifying the distribution of matrix elements P (Hij) (II.1)
into (1 − ε)P (Hij) + εN1/µW (N/µHij), where W (x) is a Gaussian distribution with
unit variance. This does not alter the fat tails of the matrix elements, and thus our
modified matrix belongs to the same universality class as the original matrix. This
is equivalent to modify the matrix H into Hε = (1 − ε)H + εW , where H is a Lévy
matrix and W a very small GOE matrix whose elements have exactly the same scaling
with N than the ones of H. The level statistics of Hε can be obtained using the Dyson
Brownian Motion, and in the spirit of the reverse heat flow argument, the result can
be extended to H.

Let’s denote Ei(t) the eigenvalues of the matrixHt = (1−t)H+tW . For t = 0 these
coincides with the eigenvalues of H and for t = ε with the ones of Hε. Using the Dyson
Brownian Motion technique we can construct a stochastic process for the eigenvalue
which describes the interpolation t = 0 → ε: using the property that a Gaussian
variable can be considered as the sum of two independent Gaussian variables, the
dynamic from Ht to Ht+dt can be interpreted as the addition of a GOE matrix and
a rescaling. Taking an infinitesimal dt allows one to use perturbation theory. The
eigenvalues of H are the initial conditions for the stochastic process for the eigenvalues
that we obtain, while the ones of Hε are the eigenvalues obtained after a “time” t = ε.

The stationary distribution for this stochastic process, as explained in section (II.4),
is the GOE distribution. The question is if the Ei(t) have enough “time” to equilibrate
to their equilibrium (GOE) probability measure. If we use the results of Ref. [220] we
have that, with our scaling, the DBM has enough “time” to reach the GOE distribution
if N−1/µ � N−1 and the typical level spacing of H is O(1/N). This last assumption is
very reasonable and agrees well with the numerics.This implies that for µ > 1 the level
statistics of the modified Lévy matrix, is indeed GOE-like in the bulk of the spectrum.
Using the assumption that all matrices with the same heavy tails are characterized
by the same level statistics, we find GOE level statistics for all matrices Hε, and in
particular for H = Hε=0.

We stress however to conclude this section that the results of Ref. [220] were derived
under more strict hypothesis on the probability distribution than the ones satisfied by
Lévy Matrices, the argument shown here has thus not to be intended as a rigorous
proof. We hope anyway that it may be a hint for further mathematical advances.

We conclude this section showing the phase diagram of figure (III.5), which sum-
marizes the analytical results obtained for Lévy Matrices: the transition line shows
the mobility edge computed in section (III.4) as a function of µ. Combining this result
with the ones obtained using the supersymmetric method and the Dyson Brownian
motion argument, we have that, for 1 < µ < 2 all states are delocalized for any value
of the energy in the spectrum, and the system has GOE statistics. For 0 < µ < 1,
there is a critical energy E∗(µ) for any value of µ separating localized and extended
energy in the spectrum. The level statistics is Poisson-like in the localized phase and
GOE-like in all the extended phase.
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Figure III.5: Summary of the analytical results obtained through the computation
of the mobility edge, the supersymmetric method and the Dyson Brownian motion
argument: for 1 < µ < 2 all states are delocalized for any value of energy in the
spectrum, and the system has GOE statistics. For 0 < µ < 1, there is a critical energy
E∗(µ) for any value of µ separating localized and extended energy in the spectrum. The
level statistics is Poisson-like in the localized phase and GOE-like in all the extended
phase.

III.9 Numerical results for µ ∈ (1, 2)

We have performed exact diagonalizations of Lévy Matrices in the range 1 < µ < 2
for several system sizes N = 2m, with m from 8 to 14. The data are averaged over at
least 222−m realization of the disorder. We have resolved the energy spectrum in 64
small intervals ν, centered around the energies Eν = 〈λn〉ν , where we indicate with λn
the n-th eigenvalue.

The behavior of several observables has been studied, in order to characterize nu-
merically the transition and to analyze the ergodicity properties of the system.

First of all we have focused on the gap ratio rn = min{δα, δα+1}/max{δα, δα+1},
introduced in section (I.6). The quantity δn = λn+1−λn ≥ 0 indicates the level spacing
between subsequent levels. This gap ratio rn has been introduced in Ref. [136] and
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contains the same information as the level statistics p(s): the distributions of rn in the
GOE and Poisson cases are known, and the mean value of this quantity can be used
to discriminate between the two behaviors. In particular, given a value of µ ∈ (1, 2),
we have computed for each interval of energy ν the mean value of r averaged over
the disorder and over the energy window considered, and we have studied how the
behavior of this quantity changes with the system size.
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Figure III.6: Gap ratio 〈r〉 (top panel) and typical value of the overlap qtyp (bottom
panel) for different system sizes for µ = 1.5: the system tends towards the GOE limit,
represented by the red dashed curve, even if we cannot observe full convergence for
high value of energy with the system sizes considered.

In the top panel of figure (III.6) 〈r〉 is plotted as a function of the energy for
different sizes for µ = 1.5: even if at high energies for the system sizes considered the
data are still far from full convergence, it is clear that 〈r〉 evolves towards its GOE
limit represented by the horizontal dashed red line, corresponding to 〈r〉GOE = 0.53.

The full probability distribution of r corresponding to four different value of en-
ergy is plotted in figure (III.7): the GOE limit, which has been computed exactly in
Ref. [242], corresponds to the dashed red curves, represented in the four panels. We
see that, as for the main value of r, the distribution of Π(r) tends to the GOE limit
when the system size is increased, even if with our data we manage to observe full
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convergence only for small values of energy.
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Figure III.7: Probability distribution of the gap ratio r for different values of energy
for µ = 1.5: the full convergence towards the GOE limit is observed only for small
energies, but it is clear that the system evolves towards this limit for increasing size.

Another interesting quantity to study is the overlap qn between eigenvectors cor-
responding to subsequent eigenvalues, defined as

qn =
N∑
i=1
|〈i|n〉||〈i|n+ 1〉|. (III.9.1)

In the GOE limit, the eigenvector components |〈i|n〉| are independent Gaussian
random variables of variance 1/N : computing the average of q over the GOE ensemble
we find thus 〈q〉GOE = 2/π, and we expect that this coincides with the typical value
qtyp = e〈log q〉. In the Poisson case, on the contrary, the eigenvectors are exactly
localized on the site wave functions and we have qtyp = 0. As shown in the bottom
panel of figure (III.6), where qtyp is plotted as a function of the energy for the case
µ = 1.5 for different system sizes, the behavior of this observable is the same as the
one of 〈r〉: for increasing system sizes qtyp tends to its GOE limit, represented by the
dashed horizontal line. The behavior of qtyp we have found numerically is interesting
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and quite surprising: in the case of Lévy Matrices there is no reason to assume that
the eigenvector components are independent random variables distributed as in the
GOE case. Actually, in figure (III.8) the distribution of the wave vector components
ΞN (|ψ2|) = ΞN (w) is considered for µ = 1.5 and E = 0.24: plotting the distribution
ΞN (Nw)/N , the curves corresponding to different sizes all collapse on a single curve
P (Nw), as we expect in the delocalized regime, being the weights all of the order 1/N .
Such distribution is compared with the Porter-Thomas distribution represented by the
black dashed line and given by [243]

PPT(x) = 1
Γ(1/2)

(1
x

)1/2
exp(−x), (III.9.2)

which characterizes the wavefunction statistics in the GOE case. We observe in the
plot of figure (III.8) that for values of Nw of order one the behavior of P (Nw) differs
from the one of expression (III.9.2) and the distribution appears broader that in the
GOE case: nonetheless the limiting value of qtyp is 2/π exactly as for GOE. As we
will see in the next sections, this happens also for 0 < µ < 1, and we are not able at
present to justify this numerical result.

We also studied numerically the behavior of the IPR Υ2 defined by expression
(II.1.1). In particular we have considered its typical value exp 〈ln Υ2〉: the scaling of
this quantity with the system size is described by the exponent β = 〈ln Υ2〉ν/ lnN .
In figure (III.9) we plot the energy dependence of β for various N . At small enough
energies we find β ' 1, corresponding to the standard scaling of the IPR for fully
delocalized states. For high energy finite size effects are stronger, and we observe that
β decreases as the energy grows for a fixed system size N . However, for fixed energy we
observe that β increases monotonously with N , and seems to approach the asymptotic
value β → 1 in the thermodynamic limit in all energy windows, even if it seems that
really large sizes are needed (much larger than those we have) in order to observe this
convergence for all energies.

While we were working on this project on Lévy Matrices, an interesting observable
has been introduced by A. De Luca and other authors in Ref. [40], the support set:
for an eigenvector n with sites ordered according to |〈i|n〉| > |〈i+ 1|n〉|, it is defined
as the sets of sites i < S

(n)
ε such that

∑S
(n)
ε
i=1 |〈i|n〉|2 ≤ 1 − ε <

∑S
(n)
ε +1
i=1 |〈i|n〉|2. The

scaling of 〈S(n)
ε 〉 for N → ∞ and ε arbitrary small but finite allows to discriminate

between the extended and the localized regimes, as S(n)
ε is N -independent for localized

wave-functions while it diverges for N → ∞ for delocalized states. This observable
has been introduced in the context of the study of ergodicity of extended states on the
Bethe Lattice, as a measure of wavefunctions multifractality. In figure (III.9) we plot
the exponent β′ = ln〈S(n)

ε 〉ν/ lnN , describing the scaling of the support set at large
N : its behavior is very similar to the one of β described above for the IPR. However,
as it was noticed in Ref. [40], the support set is apparently a sharper measure of wave-
functions ergodicity compared to the IPR, as the values of β′ are much closer to 1 in
all energy windows.

Similar results are obtained for µ = 1.1, confirming that for µ ∈ (1, 2) all eigenstates
of Lévy Matrices are extended and the level statistics is described by GOE in the whole
spectrum. Finite size effects can however be strong: in particular, the results we have
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Figure III.8: Wavefuntion statistics for µ = 1.5 for different system sizes and E =
0.024. The distribution has the stretched exponential behavior (III.9.2), represented
by the black dashed curve up to value of Nw of order one: for larger value of Nw the
distribution is broader than in the GOE case.

for the IPR, where these effects are particularly evident, explain why originally the
numerical analysis of this observable had suggested the existence of a nonergodic phase
in the region µ ∈ (1, 2). These finite size effects become stronger as µ is lowered and
can be extremely important at high energies, where one needs to consider relatively
large N to observe full converge towards the asymptotic values.

III.10 Numerical results for µ ∈ (0, 1)

We also explored numerically the region 0 < µ < 1 and analyzed the behavior of
various observables with varying system sizes.

The numerical study of the range 0 < µ < 1 may be slightly more complicated
than that in the region 1 < µ < 2. As explained in section (III.5), each row (or
column) of the Lévy Matrix H has O(N) elements of O(N−1/µ) and O(1) elements
of O(1), ensuring a well-defined thermodynamic limit. However, the largest element
of the whole matrix (which contains N2 terms) is of order N1/µ. As a consequence,
the range of variability of the matrix elements goes from O(N−1/µ) to O(N1/µ), which
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Figure III.9: Exponents β (continuous lines) and β′ (dashed lines) describing the
scaling with N of the typical value of the Inverse Participation Ratio and of the support
set as a function of the energy for µ = 1.5.

is, for large enough system sizes and for µ < 1, extremely broad. This could affect
the numerical precision of our results. In order to overcome this problem, we have
introduced a cut-off on large matrix elements scaling as ΛN1/µ, where Λ is a constant
much larger than 1. Since we are only interested in the properties of Lévy Matrices
for energies of O(1), i.e. we want to study the bulk properties of the ensemble, the
presence of such cut-off does not have any influence on our numerical results (provided
that Λ is large enough). The analysis of edge properties of Lévy Matrices is a quite
disconnected problem, which has been studied for example in Refs. [228, 244].

Furthermore, as explained in section (III.1) and (III.5), Lévy Matrices have a
“sparse-like” character which allows one to describe them in terms of a sparse Erdös-
Rényi random matrix constituted by the backbone of large entries and a Wigner matrix
(with finite variance) constituted by an infinite (in the thermodynamic limit) number
of very small terms. As we have seen in section (III.5), in order to exploit this prop-
erty in numerical simulations, we introduce a cut-off γ (very small but finite) on small
matrix elements which eliminates the contribution of small “Gaussian” terms. This
allows to simplify and speed-up the numerical calculations, since numerical routines
for exact diagonalization are faster for sparse matrices. The probability distributions
of the entry thus becomes:

P
(γ,Λ)
N (Hij) = p

(γ)
N δ(Hij) +

(
1− p(γ)

N

)
θ
(
γ < |Hij | < N1/µΛ

) C
(γ,Λ)
N

2|Hij |1+µ ,

where p(γ)
N = 1− 1/(Nγµ) and C(γ,Λ)

N = µ/[γ−µ −N−1Λ−µ].
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We have performed exact diagonalizations of such random matrices for several
system sizes N = 2m, with m from 8 to 15, and for Λ = 215 and we have averaged the
data over (at least) 222−m realization of the disorder. The energy spectrum is resolved
in 64 small intervals ν, centered around the energies Eν = 〈λn〉ν . In order to make
sure that the cut-off on small entries is small enough to reproduce the γ → 0 limit, we
have considered different values of γ (γ = 10−3, 10−4, and 5× 10−5) and checked that
the data become independent of it (within our numerical accuracy).

In the following we report our data for µ = 0.5. Similar results are found for
µ = 0.8 and µ = 0.3, although finite size effects become bigger as µ is decreased and
the crossover region gets broader.

In figure (III.10) we plot qtypν as a function of Eν for µ = 0.5 and for different system
sizes, averaged over samples and eigenstates within each energy window. For small
energies we recover the universal values qtypP = 2/π corresponding to GOE statistics,
and for high energies the value qtypP → 0 corresponding to Poisson statistics. We notice
however that the curves corresponding to different values of N seem to cross much
before the localization transition, which can be computed analytically solving equation
(III.4.15) for µ = 0.5 and should occur at E? ' 3.85: we can ask thus if this is the sign
of a different phase transition, which takes place before the localization transition and
within the delocalized region, delimiting delocalized ergodic states from delocalized
non-ergodic states with a mixed behavior. However, since our numerical data on qtyp
are extremely clean, they allow us to observe that the crossing point is actually slowly
drifting towards higher values of the energy (and most probably converging to E? in
the thermodynamic limit): there is a large region of energy in which the value of qtyp

as a function of N has a non-monotonic behavior, as shown in figure (III.12): this
defines a characteristic length Nm governing finite size effects such that, if we consider
sizes N < Nm, the system seems to approach the Poisson limit, but if we go over this
characteristic size, we see actually that the system evolves towards the GOE limit for
N →∞.

In figure (III.13), we show the probability distribution of the gap ratio, Π(r), for
µ = 0.5, for different system sizes, and for four different values of the energy. As
expected, for small enough energies (e.g., E ' 0.016, represented in the top-left panel)
the entire probability distribution is described by GOE statistics, given by the red
dashed curve. Conversely, for high enough energies (e.g., E ' 7.68, in the bottom-
right panel), in the localized regime, the data nicely approach the Poisson distribution
Π(r) = 2/(1+r)2, corresponding to the black dashed curve, except for very small values
of r where convergence is exponentially slow due to finite size effects. For moderately
high energies (e.g., E = 1.25 in the top-right panel), Π(r) evolves towards the GOE
distribution as N is increased, although we are not able to observe full convergence
for the largest system size. Finally, for energies in the crossover region (e.g., E = 2.28,
bottom-left panel), one seems to observe that Π(r) is described by a stationary (i.e., N -
independent) and non-universal (neither GOE nor Poisson) distribution, as observed
in Ref. [38]. Nevertheless, if one analyzes carefully the numerical data, focusing, for
instance, on the behavior of Π(r) at small r, one realizes that Π(r) evolves in a non-
monotonic way: for system sizes smaller than the crossover size, N < Nm ' 1200
for E ' 2.28 (see figure (III.12)), it evolves towards the Poisson distribution, while
for large system sizes, N > Nm, it commences to approach the GOE distribution.
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However, it is evident that we were able to make this kind of remark because the
analysis of the data for qtyp in figure (III.10) allowed us to recognize the existence of
the crossover scale. It is clear that, based on the bottom-left panel of figure (III.13)
solely, one would certainly conclude that for intermediate energies a new and non-
universal “mixed” level statistics is found.
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Figure III.10: ln(qtyp/qtypGOE) as a function of the energy E for different system sizes
for µ = 0.5.

As for the region 1 < µ < 2, we have studied the dependence of the exponents
β = 〈ln Υ2〉ν/ lnN and β′ = ln〈S(n)

ε 〉ν/ lnN describing the scaling with the system
size of the typical value of the IPR and of the average support set respectively. In
figure (III.11) we show the data for µ = 0.5. The behavior of β and β′ is coherent
with previous results, at least for sufficiently small and sufficiently large energies.
More precisely, one observes that, at fixed N , β and β′ decrease as the energy is
increased. Nevertheless, at fixed and small enough energy, they both grow with N and
seem to approach the standard value 1 for N → ∞. Conversely, at fixed and large
enough energy, in the localized regime, β and β′ decrease to zero as the system size
is increased, implying that 〈Υ2〉ν , 〈S(n)

ε 〉ν → cst. As mentioned above, the support
set provides a more precise measure of wave-function ergodicity compared to the IPR.
In particular, the exponent β is much smaller than one already very far from the
localization transition. In the crossover region one should expect that β and β′ show
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a non-monotonic behavior as a function of N on the crossover scale Nm(E). However,
our numerical data are too noisy to capture this behavior. As already remarked, in
fact, numerics based solely on the IPRs are inconclusive and could be undoubtedly
misinterpreted, especially for intermediate energies within the crossover regime, since
they are affected by strong finite size effects.

III.10.1 Numerical results for Q(G)

In section (III.5) we have explained how the “sparse-like” character of Lévy Ma-
trices can be exploited in order to simplify the recursion equation for the probability
distribution of the resolvent Q(G), leading to equation (III.5.1): in the expression, the
terms corresponding to the large matrix elements (|Hij | > γ) are splitted from small
ones (|Hij | < γ), and for the latter the central limit theorem for variables with finite
variance has been used.

We have solved equation (III.5.1) using a population dynamics algorithm, which,
as explained in section (III.5) has allowed us to check numerically the mobility edge
computed in section (III.4). In particular, we have used a population of 226 elements,
and computed Qγ(G) for γ = 10−3, 10−4, 5 × 10−5, and extrapolated the results for
γ → 0.

We present now an argument which shows how the properties of the distribution
Q(G) can be used to explain the existence of a crossover size. As we have pointed
out many times, what characterizes the delocalized phase is that, at any site i, the
imaginary part of Gii receives an infinitesimal contribution from an infinite number
of eigenfunctions. This leads to a typical value of Gii which is finite for N → ∞ and
η → 0. Instead, =Gtyp

ii = 0 in the localized phase. Approaching the transition from
the delocalized side, =Gtyp

ii becomes extremely small. Thus, one needs to take large
enough systems in order to realize that it is different from zero, and hence that the
system is in the delocalized and GOE-like phase. The argument, which is based on the
interpretation of =Gii as the local density of states, is as follows. The number of states
per unit of energy close to E is Nρ(E). This number, multiplied by the typical value of
the local density of states, has to be larger than one in order to be in a regime represen-
tative of the large-N limit. This defines the crossover scale N ′m(E) ∝ 1/(=Gtyp

ii ρ(E)).
In order to extract this crossover scale from our numerical data we have computed the
typical value of =Gii, =Gtypii = e〈ln=Gii〉, over the stationary distribution on the delo-
calized phase for different values of the energy E: the characteristic crossover length
corresponding to a certain energy is N ′m(E) = 1/(=Gtypii ρ(E)).

We have compared numerically lnN ′m(E) and lnNm(E) and found that they are
indeed proportional, as we can see from the plot in figure (III.15), showing that our
argument correctly captures the origin of the finite size effects.

We plot the crossover scale N ′m(E) as a function of E in figure (III.14) for µ = 0.5:
it diverges very fast approaching E?(µ), and we see that it is already really large quite
before the mobility edge. A good fit is provided by an essential singularity. These
results therefore unveil what is the mechanism responsible for the non-GOE statistics
observed for finite Lévy Matrices in a wide regime before the localization transition, as
predicted by the supersymmetric method on the Bethe Lattice for the characteristic
volume VBL (see section (II.3)).
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Figure III.11: Exponents β (continuous lines) and β′ (dashed lines) describing the
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set as a function of the energy for µ = 0.5.
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Figure III.12: The typical value of the overlap q is plotted for different energies
belonging to the crossover region as a function of the characteristic size: this defines a
characteristic length Nm which governs finite size scaling effects.

In figure (III.16) we show the marginal probability distribution of ln=Gii for sev-
eral values of the imaginary regulator η and for E = 5, deep in the GOE ergodic
phase. Since the system is delocalized and the spectrum is absolutely continuous,
Q̃I(ln=G) must have a non-singular limit as η → 0+. We indeed observe a stationary
η-independent distribution for η sufficiently small (η . 10−6). As a consequence, from
equation (II.1.7) we have 〈Υ2〉 → 0 for η → 0+.

Conversely, in the localized phase the marginal probability distribution of the imag-
inary part of Gii has a singular behavior as η → 0+, as illustrated in figure (III.17).
Almost all values of =Gii are of order η, except extremely rare events,whose fraction
vanishes as η,described by heavy power-law tails with an exponent 1+m and m = 1/2.
More precisely, Q̃I(=G) has a scaling form f(x/η)η for x ∼ η, with

∫
f(y) dy = 1, and

fat tails
Q̃I(=G) ' c η1−m

(=G)1+m , (III.10.1)

with c being a constant of O(1), and a cut-off for =Gii ' 1/η. The main contribution
(of order one) to the density of states comes from these tails, whereas the bulk part
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Figure III.13: Probability distribution of the gap ratio for µ = 0.5, for different system
sizes, and for four different values of the energy. The Poisson and GOE counterparts
of Π(r) are also shown. Top-left panel: E = 0.016; The entire probability distribution
is described by the GOE. Top-right panel: E = 1.25; Π(r) evolves towards the GOE
distribution as N is increased, although we are not able to observe full convergence.
Bottom-left panel: E = 2.28; Π(r) seems to be described by a N -independent non-
universal distribution. Bottom-right panel: E = 7.68; Π(r) converges to the Poisson
distribution for large N .

only yields a vanishing contribution.
In figure (III.18) we show the behavior of Q̃I(ln=G) in the crossover region.

Since the system is delocalized, we know that the η → 0+ limit exists and is non-
singular. However, convergence to a stationary distribution is observed only for ex-
tremely small values of the imaginary regulator, η . 10−13 in this case. For η
small enough but still larger than 10−13, one observes that, similarly to the localized
regime, the marginal distribution of =Gii displays “singular” power-law tails described
by Q̃I(=G) ∼ η1−m/(=G)1+m with an exponent 1/2 . m < 1, and a cut-off for
=Gii ' 1/η (the exponent is instead m ' 1 for the marginal distribution of ReGii).
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This implies that for large enough η the tails of Q̃I(ln=G) give a O(1) contribution
to the density of states, whereas the bulk part gives a contribution of O(η), as if the
system was non-ergodic.
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Figure III.14: logN ′m(E) = − log(=Gtyp
ii ρ(E)) = −〈log=Gii〉 − log(〈=G〉/π) as a

function of E for µ = 0.5.

III.10.2 Wavefunction statistics and multifractal spectrum

We show in this section the results for the probability distribution of the eigen-
function components for µ ∈ (0, 1). In figure (III.19) the scaled distribution Ξ(Nw)/N
is plotted for different system sizes and µ = 0.5, for the energy E = 0.016, in the
delocalized phase. Except for very small values of the weights w, the curves scaled as
Ξ(Nw)/N collapse to a unique curve. From the data we can clearly distinguish two
regimes: for small values of Nw we have a power-like behavior which corresponds to
the limit x → 0 of the Porter-Thomas distribution (III.9.2). For values of Nw larger
but still smaller than one, the behavior of the distribution appears instead to be still
power-like, but with an exponent different from 1/2, and whose estimation with a fit
is compatible with the value (1 + µ)/2. We see therefore that the wavefunction statis-
tics in the deeply delocalized phase is significantly different from that in the GOE
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Figure III.15: lnN ′m(E) as a function of lnNm(E).

case: nonetheless, as we have seen in section (III.10) and shown in figure (III.10), the
typical value of the overlap qtyp (III.9.1) in the delocalized phase converges for N suf-
ficiently large to the GOE value 2/π. As we have already remarked analyzing the case
µ ∈ (1, 2) this is quite surprising and we are still not able to justify this behavior. In
figure (III.21) the distribution Ξ(Nw)/N is plotted for the energy E = 7.68, deeply in
the localized phase. As we expect, the curves do not collapse to a unique curve, since
the typical value of the weights deviate significantly from 1/N . The curves exhibit
power-law behaviors with three different exponents corresponding to three regime: for
extremely small values of Nw we have the Porter-Thomas exponent 1/2, for intermedi-
ate values of Nw we have the exponent (1+µ)/2, and while the tails of the distribution
are characterized by an exponent compatible with the value 1 + (µ/2), the same as
the exponent of the tails of the distribution Q(=G) in the localized phase showed
in section (III.10.1). In the crossover region the distribution Ξ(Nw)/N presents the
behavior shown in figure (III.20), corresponding to the energy E = 1.25: the curves
present the GOE behavior corresponding to the Porter Thomas coefficient 1/2 in the
region of very small weights, and the exponent (1+µ)/2 for intermediate values of Nw.
The tails of distribution seem to exhibit a power-law behavior as in the localized phase
for small sizes, but as N is increased we are not able any more to fit the curve with
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Figure III.16: Marginal probability distribution of ln=G for different values of the
imaginary regulator η and for E = 1.25, showing convergence to a stationary η-
independent distribution for small enough η.

a power-law, indicating that the behavior is evolving towards the one characteristic
of the delocalized phase, and we expect thus that for sufficiently large system sizes
the curve collapse to an unique curve, even if with our data we do not see the full
convergence.
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Figure III.17: Marginal probability distribution of ln=G for different values of the
imaginary regulator η and for E = 5.5. In the localized phase the limit η → 0+

is singular: almost all values of =Gii are of order η, except extremely rare events
described by heavy power-law tails with an exponent 1 + m = 3/2 whose coefficient
vanishes as √η.
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Figure III.18: Marginal probability distribution of ln=G for different values of the
imaginary regulator η and for E = 3.25, in the crossover phase. For η > 10−13 the
system behaves as it was localized and non ergodic, showing “singular” power-law tails
with an exponent 1 + m with 1/2 . m < 1 and a cut-off in =G = 1/η. Convergence
to a stationary non-singular distribution is achieved for η < 10−13.
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Figure III.19: Wavefunction statistics for µ = 0.5 for different system sizes and
E = 0.016. For very small values of Nw the distribution has the power-law behavior
with exponent 1/2 corresponding to the limit of small weights of the Porter-Thomas
distribution. For larger Nw, until values of O(1), the distribution still exhibits power-
law behavior but with an exponent (1 + µ)/2.
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Figure III.20: Wavefunction statistics for µ = 0.5 in the crossover region (E = 1.25)
for different system sizes: the limit of small weights coincides with the one of the Porter-
Thomas distribution. For intermediate value of Nw we have a power-law behavior with
exponent (1 +µ)/2, while the tails of the distribution seem to have a power-law shape
as in the localized phase, but the fit get worse increasing the system size.
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Figure III.21: Wavefunction statistics for different system sizes for µ = 0.5 in the
deeply localized phase (E = 7.68): the limit of extremely small weights is the same
as that of the Porter Thomas distribution, with an exponent 1/2. The regime of
intermediate value of Nw is characterized by a power-law tail with an exponent (1 +
µ)/2, while the tails of the distribution also exhibit a power-like behavior with an
exponent 1 + (µ/2).
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To conclude the numerical study in the range µ ∈ (0, 1) we have computed the
multifractal spectrum f(α) (see Appendix (B)) for different energy windows in the
delocalized regime, in the crossover region and in the localized phase. The results are
shown in figure (III.22): we see that in the delocalized phase f(α) becomes sharper
increasing N , approaching for N →∞ the behavior f(1) = 1 and f(α) = −∞, α 6= 1.
The top-right panel and the bottom left one of figure (III.22) show the behavior in the
crossover region: apparently the curves seem to cross at a certain point αc < 1, which
could be interpreted as a fixed point: the existence of such fixed point would exclude
the possibility for the spectrum f(α) to evolve towards a sharp function concentrated
in α = 1 for increasing N , and thus to approach the ergodic behavior. However,
analyzing carefully the data we see that the crossing point actually drifts with the
system size. To characterize this drift we have considered for each size the point α1
such that f(α1) = α1, and we have studied its behavior as a function of N for different
energies in the crossover region. In the main panel of figure (III.23) we have plotted
α1 as a function of the (log of) the system size for E = 2.28 (red curve), and we show
in the same panel the behavior of qtyp (black curve). We see that, analogously to the
overlap, α1 is non monotonic with N , and in the same way as for the overlap, we see
that the characteristic size Nm which can be found by looking at the minima of α1
for the different energies, grows with E in the crossover region. In the inset of figure
(III.23) we show the behavior of this characteristic length extracted by the analysis of
α1 as function of the energy, (red curve): the behavior is very similar to the one shown
by the black curve, representing the characteristic length extracted from the analysis
of qtyp (black curve), and we expect that the two curves diverge at the transition point
E∗ ' 3.85. These results on the fractal spectrum complete the numerical analysis
of the model, and confirm the presence of a large crossover region characterized by
strong finite size effects which affect the results already far from the critical point and
for large system sizes.

III.11 Summary of the results

We conclude this Chapter summarizing the main results we have obtained from the
study of Lévy Matrices. The analysis of the stability of the imaginary part, starting
from the cavity equations, yields the equation (III.4.15) for the mobility edge, the
solution of which allows to trace the phase diagram of figure (III.2) in the µ−E plane.
Arguments based on the supersymmetric method (section (III.7)) and on the Dyson
Brownian motion model (section (III.8)) support the idea that for 1 < µ < 2 there is
only one regime, in which eigenstates are delocalized and the system is ergodic, e.g.
exhibits GOE statistics. For 0 < µ < 1 there is only one transition line, separating
delocalized ergodic states from localized non-ergodic ones. This picture, summarized
by the phase diagram of figure (III.5), is confirmed by the numerical results of section
(III.9) and (III.10). In the region 0 < µ < 1 the system reveals however an interesting
and non-conventional behavior: the data in a large region in the delocalized phase,
even far from the critical point, are affected by dramatic finite size effect. Indeed, the
characteristic length scale governing this finite size effects results to diverge faster than
a power law, leading to a large crossover region in which the system behaves as if it
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was in a mixed phase, delocalized but non-ergodic.
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Figure III.22: Analysis of multifractal spectrum f(α) for different energy and different
system sizes. For small energies (top-left panel) f(α) evolves towards a δ-function
concentrated in α = 1. In the crossover region (top-right panel and bottom-left panel)
the curves corresponding to different sizes cross at a point α < 1, which however drifts
with increasing N : this effect can be studied in a similar way as we have analyzed
the behavior of qtyp and 〈r〉. In the deeply localized phase (bottom-right panel), f(α)
becomes broader and seems to converge to a N -independent distribution.
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Chapter IV
Critical properties of the Anderson
model in high dimension

As we have explained in the introductory Chapter (I) of this thesis, the properties
of Anderson Localization in low dimensional systems are, by now, very well established
and understood. Nonetheless, despite about 60 years of intense research, there is still
(almost) no available analytical approach for Anderson Localization away from the
low-dimensional limit and much less is known in higher dimensions.

One of the reasons for that is, as we have seen in section (I.9), the absence of a small
parameter, since the critical disorder is of the same order than the bandwidth already
in three dimensional systems. We have also seen that another reason for the difficulty
in studying the properties of the transition in high dimension is the unconventional
nature of the order parameter, which, as the supersymmetry method has clarified (see
Chapter (II)), is a function related to the distribution of the local density of states,
whose typical value is singular at the critical point.

Because of these unconventional properties, the analytical study of the problem
is possible only perturbatively in a small region near the lower critical dimension
d = 2, whereas analytical approaches in higher dimensions are challenging. Numerical
techniques are thus still very important for advances in the field.

As we have explained in section (I.7), the majority of the numerical results has
been provided for the Anderson model in three dimensions, which has been analyzed
by many authors by studying the scaling of various observables for increasing system
sizes. These quantity are related to transport properties, to the statistics of energy
levels and to wave-functions statistics.

The summary of the main works has been presented in section (I.7): here we recall
that for the Anderson Model (I.1.6) in three dimension, with box-distributed disorder
(I.1.7), for E = 0 (in the middle of the band) a localization transition is found at a
critical value of the disorder Wc ' 16.5.

At present, the most precise numerical estimate of the critical exponent ν describing
the divergence of the localization length (I.2.3) for systems with orthogonal symmetry
is ν = 1.58± 0.01 [91, 92, 14, 15, 16, 17, 18, 19, 20, 21].

About the level statistics, the numerical results of Ref. [142], show that it is GOE-
like in the delocalized phase and Poisson-like in the localized one. The critical point is
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instead characterized by a universal distribution which depends on the dimensionality
and which is neither GOE-like nor Poisson. The critical wave-functions amplitudes
show a multifractal spectrum (see Appendix (B)), the critical eigenstates being neither
extended nor localized at the transition: large fluctuations of wave-function amplitude
are present at all length scales.

In 4d and 5d few recent accurate results have been provided [143], based on the
study of transport properties only. There are however no results on transport proper-
ties above dimension five, and very few results on level statistics for d > 3 [144].

As explained in section (I.7), the reason for that is that running times of numerical
algorithms increase very rapidly with the size of the system, increasing as L3d for
exact diagonalization algorithms, and as L3d−2 for algorithms based on transfer matrix
method. This sets a very severe limitation on the system sizes which can be simulated
as dimensionality is increased.

For these reasons, some basic questions of Anderson Localization remain unan-
swered or debated, as discussed in section (I.9). For instance, the existence of an
upper critical dimension du is still an issue. As we have seen in the end of section
(II.3), the analysis based on the supersymmetric method suggests that du might be
infinite [166, 167], and the same proposition has been done in Refs. [245, 144]. Dif-
ferent possibility corresponding to du = 4, 6, and 8 have instead been put forward in
Refs. [169, 170, 171, 172, 173].

As we have seen in Chapter (I), another important and highly debated aspect is the
relation with the infinite d limit, corresponding to Anderson Localization on tree-like
structures [8] and to other random matrix models with long-range hopping, as Lévy
matrices [183], studied in detail in Chapter (III). We have seen that on one hand, these
models allow for an exact solution, making it possible to establish the transition point
and the corresponding critical behavior. On the other hand, however, the properties
of the delocalized phase are very unusual, since they are affected by dramatic finite-
size effects even very far from the critical point, which produce a strong non-ergodic
behavior in a crossover region where the correlation volume is larger than the accessible
system sizes. We have seen the emergence of this behavior in the study of Lévy Random
Matrices, but the same effect has been observed in the numerical study of localization
on tree-like models [39, 41, 44, 43, 42, 46], and as we have seen, it has been interpreted
by some authors [41, 44] in terms of the existence of a new intermediate delocalized
but non-ergodic phase. This possibility would be very intriguing, although it appears
to be in conflict with the predictions of the supersymmetric method formalism we have
presented in section (II.3), and may have interesting consequences for the phenomenon
of Many Body Localization, as explained in section (I.9.1).

This Chapter is dedicated to a detailed study of the critical properties of the
Anderson model in dimensions from 3 to 6 based on “exact” numerical methods (exact
diagonalizations and transfer matrix method) and on an approximate Strong Disorder
Renormalization Group (SDRG) approach [246, 247]. We focus on both the statistics
of energy levels and wave-functions coefficients and on transport properties.

We anticipate that our results support the idea that the upper critical dimension
of Anderson Localization is infinite. In fact, the critical exponent ν we find from
our analysis smoothly evolves from ν → ∞ in d = 2 to the value ν = 1/2 in d →
∞ predicted by the supersymmetric method (see section (II.3)), showing no sign of
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saturation. Moreover, the critical values of all observables smoothly approach the ones
of the localized phase as the dimensionality is increased: Anderson Localization in
high dimension seems to be governed by a strong disorder limit, as signaled by the fact
that the critical values of all observables smoothly approach the ones of the localized
phase as the dimensionality is increased: in d → ∞ the critical states correspond to
an insulator, the statistics of energy levels is of Poisson type, and the multifractal
spectrum of wave-functions amplitudes takes its strongest possible form. In support
of this picture, as we have explained in section (I.4), the weak coupling limit seems to
control only a very narrow region close to d = 2 (even up to five-loops), contrary to
the SDRG approach which gives much more accurate results in estimating the critical
parameters in all dimensions d ≥ 3.

We also show that finite size effects become larger and larger as the dimensionality
of the system is increased. As a matter of fact, analyzing corrections to scaling, we find
that they are proportional to Ly, with an exponent y which stays roughly constant as
dimensionality is increased (y ' −1). This implies that finite-size corrections decrease
as the inverse linear system size (and not as the inverse of the volume, as in conventional
phase transitions) yielding possibly logarithmic corrections in d→∞.

In this Chapter, we present our numerical results based on exact diagonalization
and transfer matrix method for dimensions from 3 to 6. We discuss then the SDRG
approach, focusing especially on the properties of the flow close to criticality, and we
conclude with a brief summary of the results found and a discussion on the possible im-
plications on the unusual properties of the delocalized phase observed in the Anderson
model on tree-like structures.

IV.1 Numerical results in d = 3, . . . , 6

The model we focus is the Anderson model (I.1.6), consisting in non-interacting
spinless electrons in a disordered potential given by expression (I.1.7).

As observed in section (I.6), in terms of Random Matrix Theory, the model (I.1.6)
can be thought as a sum of two matrices, H = H0 + T (d): T (d) is the deterministic
off-diagonal part, proportional to the connectivity matrix C(d) of the d-dimensional
hyper-cube, Cij = −1 if sites i and j are connected and zero otherwise. H0 is a
diagonal random matrix corresponding to the on-site energies, H0 ij = εiδij .

In the following we will focus only on the middle of the spectrum, E = 0.
We present our numerical results in dimensions from 3 to 6 obtained from ex-

act diagonalization and from a Transfer Matrix approach, focusing first on transport
properties and then on the statistics of energy gaps and wave-functions amplitudes.

IV.1.1 Transport properties

As mentioned in section (I.3), transport properties can be determined in one and
quasi-one dimensional systems with the technique of Transfer Matrix, explained in
Appendix (A). The approach we use here is very similar. We consider a very long
(length Lx) quasi-one dimensional bar of cross-section Ld−1, as sketched in figure (A.2)
of Appendix (A). The system is open along the x-direction, while periodic boundary
condition are enforced along the transverse directions. Such quasi-1d system is always
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Figure IV.1: 〈ln ImG(x)〉 as a function of x in 6 dimensions, for L = 6 and for several
values of the disorder, showing that ξ1d can be measured from Eq. (IV.1.4) by linear
fitting of the data at large enough x.

localized at any arbitrarily weak value of the disorder. We consider now the resolvent
matrix G defined by (II.1.2): we have seen that its matrix elements can be expressed
in terms of a Gaussian integral over real auxiliary fields as in equation (II.2.1), which
we rewrite in a more compact way as

Glm = − i

Z

∫ N∏
i=1

dφi φlφm e
S[φi] , (IV.1.1)

where the action S[φi] is given by:

S[φi] = i

2

N∑
i,j=1

φi (zδij −Hij)φj

= i

2
∑
i

(E + iη + εi)φ2
i + i

∑
〈i,j〉

tijφiφj ,

(IV.1.2)

and the “partition function” reads:

Z =
∫ N∏

i=1
dφi e

S[φi] . (IV.1.3)

We set E = 0 throughout, which corresponds to the band center. We use now a slightly
different approach than the classical Transfer Matrix technique: we put just the left



IV.1. Numerical results in d = 3, . . . , 6 105

boundary of the quasi-1d bar of figure (A.2) in contact with a bath of electrons, and
study how these electrons propagate through the sample. This corresponds to putting
a finite positive value of η at x = 0, and setting η = 0 elsewhere inside the bar, x > 0.
Then, we can measure the quasi-1d localization length, ξ1d, from the exponential decay
of the typical value of the imaginary part of the Green’s function, exp〈ln ImG(x)〉, as a
function of x, averaged over all the sites of the x-th layer and over several realizations
of the disorder:

〈ln ImG(x)〉 ' cst− x

ξ1d
. (IV.1.4)

Since equation (IV.1.2) is a Gaussian action, in order to compute the l.h.s. of equation
(IV.1.4) we can proceed formally in the same way as in the derivation of the cavity
equations in section (II.2), and we can integrate over all the sites on a given layer x in
equation (IV.1.1), yielding an exact recursive relation expressing Green’s function on
the subsequent layer, x+ 1, in terms of the Green’s function on the layer x:

[G(x+ 1)]−1
ij = εx,iδij + t C

(d−1)
ij − t2Gij(x) , (IV.1.5)

where the index i runs over all the sites of layer x, εx,i is the random on-site energy
on site i belonging to layer x, and C(d−1) is the connectivity matrix of the transverse
layers, i.e., the (d−1)-dimensional hyper-cube. This equation can be solved numerically
by iteration, starting from the following initial condition at x = 0:

[G(0)]−1
ij = (ε0,i + iη) δij + t C

(d−1)
ij . (IV.1.6)

In order to do this we need to invert the matrix G(x) layer by layer, which can be done
by LU decomposition. Since the computer time required to perform this operation is
proportional to the third power of the total number of sites of the matrix, L3(d−1), the
running time of the TM algorithm scales as L3d−2.

In order to measure ξ1d we performed a linear fit of the data we have obtained
for 〈ln ImG(x)〉 at large enough x using equation (IV.1.4). In figure (IV.1) we show
the data obtained for 〈ln ImG(x)〉 as a function of x in 6 dimensions, for L = 6 and
for several values of the disorder W . In the localized regime, the quasi-1d localization
length grows as the transverse system size is increased at a fixed value of the disorder,
and saturates to the actual value of the localization length ξ for large enough L.
Conversely, in the metallic phase ξ1d diverges as Ld−1 at fixed W for L→∞. Hence,
the good scaling variable is the dimensionless quasi-1d localization length, defined as
λ1d = ξ1d/L. This quantity is the inverse of the smallest positive Lyapunov exponent
γ, and behaves as:

λ1d =


(L/ξ)d−2 for W < Wc

λc for W = Wc

(ξ/L) for W > Wc

The upper-left panels of figures (IV.2), (IV.3), and (IV.4) show the behavior of the
log of the dimensionless quasi-1d localization length λ1d as a function of W for several
system sizes in dimensions 4, 5 and 6 respectively. As expected, for small values of
the disorder λ1d grows as L is increased, and decreases with L for large W . The
curves corresponding to different L cross at the critical point for large enough system
sizes. However, systematic finite size effects are present due to practical limitations



106Chapter IV. Critical properties of the Anderson model in high dimension

30 35 40
W

-2

-1.5

-1

lo
g(

λ 1d
)

L=2
L=3
L=4
L=5
L=6
L=7
L=10
L=13
L=16
L=18

-50 0 50

(W-W
c
)L

1/ν

-2

-1

0

lo
g(

λ 1d
)

-50 0 50

(W-W
c
)L

1/ν

0

0.4

(λ
1d

-f
∞

)/
L

y

Figure IV.2: Left panel: λ1d as a function of the disorder W for several system sizes
L from 2 to 18 for d = 4. The vertical dashed line spots the position of the critical
point, Wc ' 34.5. Top-right panel: Finite size scaling of the same data for L from 10
to 18, showing data collapse for ν ' 1.11. Bottom-right panel: ψf1 = (λ1d − f∞)/Ly
as a function of the scaling variable (W −Wc)L1/ν for different sizes L from 2 to 7,
showing data collapse for the same value as before of Wc and ν and for y ' −1.
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on the system sizes, and it is evident from the plots that the crossing point exhibits
a shift as the size of the system is increased. In particular, in 4d we observe a shift
towards higher values of W of about 2.5% as L is increased from 2 to 18, while in
5d it moves towards lower values of the disorder (again by about 2.5%) when L goes
from 2 to 9. Finite size effects become very strong in 6d, where the crossing point
shifts systematically to lower values of W by about 10% when L varies from 2 to 6.
We have thus a first indication of the fact that, differently from conventional phase
transitions, for Anderson Localization finite size effects get more and more important
as the dimensionality is increased.

If we want to accurately estimate the critical values of the disorder strength and
of the critical exponent we have thus to take into account such finite size corrections.
In order to do that we can introduce irrelevant scaling variables, and suppose that the
observables become independent of such variables for sufficiently large system sizes.
More precisely, we follow [92, 91, 143] and suppose that the dependence of λ1d on W
and L can be described in terms of a scaling function:

λ1d(W,L) = F
(
wL1/ν , ψLy

)
, (IV.1.7)

where w = (W −Wc)/Wc is the dimensionless distance from the critical point, ν is the
critical exponent, ψ is the leading irrelevant scaling variable, and y is the smallest (in
absolute value) irrelevant critical exponent: consistently, we expect to find y < 0 if ψ is
irrelevant. For finite L there is no phase transition and F has not singularities. Hence,
assuming that the irrelevant scaling variable is not dangerous, for L large enough we
can expand Eq. (IV.1.7) up to first order in ψLy:

λ1d(W,L) = f∞
(
wL1/ν

)
+ ψLyf1

(
wL1/ν

)
, (IV.1.8)

where f∞ is the asymptotic scaling function depending only on the relevant scaling
variable. In order to estimate Wc, ν and y we then proceed in the following way: the
first step is to approximately evaluate the function f∞, by performing a cubic fit of
the numerical data for the largest available system sizes (in practice we use L = 18
and 16 in d = 4, L = 9 and 8 in d = 5, and L = 6 in d = 6). The validity of this
assumption must be verified a posteriori, once an estimation of the value the irrelevant
exponent y and of the scaling function f1 are available. Plotting the difference between
the numerical data for L < Lmax and the function f∞, divided by Ly, (λ1d − f∞)/Ly,
as a function of the scaling variable (W −Wc)L1/ν , we can look for the values of Wc,
ν and y that give the best data collapse of the curves corresponding to different values
of L (see bottom-right panels of figures (IV.2), (IV.3), and (IV.4)). In this way we
have an approximate estimation of (ψ times) the scaling function f1 (which can also
be estimated performing a cubic fit). We then plot λ1d as a function of (W −Wc)L1/ν

for the largest sizes only, checking that our estimation of the critical parameters give
a good data collapse (see top-right panels of figures (IV.2), (IV.3), and (IV.4)). Now
we have an estimation for the scaling function ψf1 and for the critical parameters
Wc, ν, and y, and we can use it to iteratively improve the estimation of f∞ originally
obtained, by performing a cubic fit of λ1d(W,Lmax)− ψLymaxf1(W,Lmax), which takes
into account finite-size corrections also for the largest system sizes in a self-consistent
way. The whole process can be repeated until it converges.
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Figure IV.4: Left panel: λ1d as a function of the disorder W for several system sizes
L from 2 to 6 for d = 6. The vertical dashed line spots the position of the critical
point, Wc ' 83.5. Top-right panel: Finite size scaling of the same data for L from 4, 5
and 6, showing data collapse for ν ' 0.84. Bottom-right panel: ψf1 = (λ1d − f∞)/Ly
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This analysis yields the following values for the critical parameters:

d = 4 d = 5 d = 6
Wc = 34.5± 0.2 Wc = 57.5± 0.2 Wc = 83.5± 0.4
ν = 1.11± 0.05 ν = 0.96± 0.06 ν = 0.84± 0.07
y = −1± 0.1 y = −1.2± 0.1 y = −1.4± 0.2

(IV.1.9)

The agreement of our results in 4d and 5d with the recent accurate estimations of [143]
is excellent. Moreover, our analysis provides the first direct calculation of the critical
parameters for Anderson Localization in six dimensions. We also applied this method
in 3d (not shown), yielding Wc = 16.35 ± 0.1, ν = 1.57 ± 0.02, and y = −1 ± 0.1, in
excellent agreement with [92, 91, 20, 21].1

As we have anticipated at the beginning of this Chapter, the leading irrelevant
exponent y seems to be almost independent of the dimension of the system, at least up
to 6 dimensions. Accordingly, finite size corrections for Anderson Localization should
be proportional to the inverse of the linear size of the system, whereas in conventional
phase transition they are proportional to the inverse of the volume N to some power
dependent on the upper critical dimension. If this result which we observe for Anderson
Localization up to dimension 6 holds also in higher dimension, it would mean that for
a fixed value of N , finite size effects get worse with increasing d: the numerical study
of Anderson Localization in dimension higher than 6 is then complicated not only
by the limited system sizes accessible by the algorithms, but also by huge finite size
effects. Moreover, if finite size corrections are proportional to L−1 = N−1/d, in the
limit d→∞ they should become of order 1/ log(N): this may explain the anomalous
behavior of the delocalized phase of the Anderson model on tree-like structures (or
other related d → ∞ models like the Lévy model analyzed in Chapter (III)) in terms
of huge finite size effects which would affect the data even for large system sizes.

IV.1.2 Statistics of level spacings and of wave-functions coefficients
In this section we present the result we have obtained through exact diagonalization

of the Hamiltonian (I.1.6) for dimensions from 3 to 6, for several system sizes L (with
periodic boundary conditions), and for several values of the disorder strength W .
In particular we have analyzed the statistics of energy gaps and of wave-functions
amplitudes. For each L and W , we have averaged over several realizations of the on-
site quenched disorder. Since we are interested in E = 0, we only focused on 1/16 of the
eigenstates centered around the middle of the band (we have checked that taking 1/32
or 1/64 of the states does not affect the results, but yields a poorer statistics). Since the
running time required for exact diagonalization algorithms grows as the third power of
the total number of sites of the matrix, L3d, slightly smaller system sizes with respect
to the Transfer Matrix method are accessible. For low enough dimensions, systems
of large sizes can still be analyzed (e.g., Lmax = 30 for d = 3 and Lmax = 13 for
d = 4), whereas one is instead limited to very small sizes as dimensionality is increased

1Note, however, that in order for the assumption in (1) to be correct, one has to check self-
consistently that ψLymaxf1(0) � f∞(0). While this seems fully justified in d = 4 and d = 5, it might
be slightly less well grounded in d = 6. Hence, the critical disorder Wc and the absolute value of the
exponent y might be overestimated in six dimensions.
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Figure IV.5: 〈r〉 (top-left) and qtyp (bottom-left) as a function of the disorder W for
several system sizes L from 4 to 30 for d = 3. The horizontal dashed lines correspond
to the reference GOE and Poisson asymptotic values. The vertical dashed line spots
the position of the Anderson Localization transition, Wc ' 16.35. Finite size scaling
of the same data (top and bottom-right panels) showing data collapse obtained for
ν ' 1.57. Finite-size corrections to Eq. (IV.1.10) are observed at small sizes (open
symbols), and can be described by Eq. (IV.1.8) with y ' −1.
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(Lmax = 8 for d = 5 and Lmax = 5 for d = 6). Exact diagonalization algorithms are
however faster if one only computes the eigenvalues and not eigenvectors. For this
reason, in d = 6 we have been able to obtain some data for the statistics of energy
gaps, for which the knowledge of the eigenfunctions is not necessary, also for Lmax = 6.

As in Chapter (III), in order to study the statistics of the spacings of neighboring
eigenvalues we focused on the gap ratio 〈r〉 (see definition (I.6.7)) and on the typical
value of the overlap qtyp (III.9.1).

In the plots of figures (IV.5), (IV.6), and (IV.7) we show the behavior of these
observables as a function of the disorder W , for several system sizes L, and for d = 3,
4, and 5 respectively. As expected, for small enough disorder we recover the universal
GOE values 〈rGOE〉 ' 0.53, and qtypGOE = 2/π, while for large value of W we have
the Poisson limit 〈rP 〉 ' 0.39 and qtypP → 0. Data for different system sizes exhibit
a crossing point around the critical points Wc, within our numerical accuracy, are in
agreement with the ones obtained in the previous subsection from the analysis of the
Lyapunov exponent, and with the ones reported in the literature [92, 91, 21, 20, 143].
One also finds that for large enough L the whole probability distribution Π(r) converges
to its GOE and Poisson counterparts forW < Wc andW > Wc respectively. As shown
in the right panels of figures (IV.5), (IV.6), and (IV.7), we see that for the largest
accessible system sizes the dependence of 〈r〉 and qtyp on W and L can be described
in terms of the scaling functions:

〈r(W,L)〉 = g∞
(
wL1/ν

)
,

qtyp(W,L) = h∞
(
wL1/ν

)
,

(IV.1.10)

with w = (W−Wc)/Wc. The values of ν are consistent, within our numerical accuracy,
with the ones estimated using the transfer matrix method in the previous subsection,
and are in perfect agreement with [92, 91, 21, 20, 143]. For small system sizes there
are evident finite size effects responsible for deviations from equation (IV.1.10): these
effects can be described in terms of systematic corrections to the one-parameter scaling
due to the presence of irrelevant scaling variables as explained above (see equation
(IV.1.8)). It is possible to estimate the exponent y describing finite-size corrections
to scaling for 〈r〉 and qtyp in the same way as explained in the previous section for
corrections to the dimensionless localization length λ1d: the values of y found in this
way are compatible, within our numerical precision, with the ones reported in table
(IV.1.9), confirming that critical properties of level statistics and transport properties
are described by the same sets of critical parameters.

As we have already seen in the previous subsection considering transport properties,
finite size effects get stronger as dimensionality is increased, and this effect is even more
visible when level statistics is considered. As it is clear from the left panel of figure
(IV.8), where we show the behavior of 〈r〉 as a function of the disorder strength W ,
for L from 2 to 6 in six dimensions, finite size effects are dramatic: the crossing point
shifts towards smaller values of W from about W ∼ 130 to W ∼ 86 as L is increased
from 2 to 6, and it has not converged yet to Wc even for the largest available system
size. Considering this finite size effects and using the critical parameters estimated in
section (IV.1.1) from the analysis of the Lyapunov exponent (Wc ' 83.5, ν ' 1.19, and
y ' −1.5) , we are however able to obtain a reasonably good finite-size scaling. This



IV.1. Numerical results in d = 3, . . . , 6 113

20 40 60
W

0.4

0.45

0.5

<r
>

-100 0 100 200
(W-Wc)

1/i

0.4

0.45

0.5

<r
>

20 40 60
W

0

0.2

0.4

0.6

ex
p 

<l
og

(q
)>

-100 0 100 200
(W-Wc) L

1/i

ex
p 

<l
og

(q
)>L=3

L=4
L=5
L=6
L=7
L=8
L=10
L=12
L=13

GOE

GOE

Poisson

Poisson

Figure IV.6: 〈r〉 (top-left) and qtyp (bottom-left) as a function of the disorder W for
several system sizes L from 3 to 13 for d = 4. The horizontal dashed lines correspond
to the reference GOE and Poisson asymptotic values. The vertical dashed line spots
the position of the Anderson Localization transition, Wc ' 34.5. Finite size scaling
of the same data (top and bottom-right panels) showing data collapse obtained for
ν ' 1.11. Finite-size corrections to Eq. (IV.1.10) are observed at small sizes (open
symbols), and can be described by Eq. (IV.1.8) with y ' −1.
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Figure IV.7: 〈r〉 (top-left) and qtyp (bottom-left) as a function of the disorder W
for several system sizes L from 3 to 8. The horizontal dashed lines correspond to
the reference GOE and Poisson asymptotic values. The vertical dashed line spots the
position of the Anderson Localization transition, Wc ' 57.5 for d = 5. Finite size
scaling of the same data (top and bottom-right panels) showing data collapse obtained
for ν ' 0.96. Finite-size corrections to Eq. (IV.1.10) are observed at small sizes (open
symbols), and can be described by Eq. (IV.1.8) with y ' −1.2.
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Figure IV.8: Left panel: 〈r〉 as a function of the disorder W for several system sizes L
from 2 to 6 for d = 6. The horizontal dashed lines correspond to the reference GOE and
Poisson asymptotic values. The vertical dashed line spots the position of the Anderson
Localization transition, Wc ' 83.5. Top-right panel: Finite size scaling of the same
data for the largest system sizes only, showing data collapse for ν ' 1.19. Bottom-right
panel: ψg1 = (〈r〉 − g∞)/Ly as a function of the scaling variable (W −Wc)L1/ν for
different sizes L from 2 to 5, showing a reasonably good data collapse for the same
value as before of Wc and ν, and for y ' −1.4.
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is shown in the top-right and bottom-right panels of figure (IV.8), where the scaling
functions g∞ and (ψ times) g1 are found from the data collapse of the numerical
data in terms of the scaling variables (W −Wc)L1/ν . Since analysis of qtyp requires
the computation of the eigenvectors component of the Hamiltonian, for qtyp data are
available up to L = 5, and we were therefore not able to repeat the same analysis for
the overlap.

As we did in the study of Lévy Matrices in Chapter (III), we have considered
the typical value of the IPR, defined as exp〈ln Υ2〉, for several values of the disorder
strength and of the system size L, and for dimensions from 3 to 5 and we have analyzed
the exponent β, approximated as

β = −(ln Υtyp
2 (W,L)− ln Υtyp

2 (W,L− 1))
(lnL− ln(L− 1)) . (IV.1.11)

The numerical results for the exponent β as a function of W for several system sizes
in four dimensions are shown in figure (IV.9): even if there are large statistical fluctu-
ations, the behavior is similar to the one found for the statistics of energy gaps. For
W < Wc β grows with L and approaches 1 for L large enough, as we expect for fully
delocalized wave-functions. Conversely, for W > Wc the exponent β decreases as the
system size is increased, and tends towards 0 for large L, implying that Υtyp

2 → const,
as expected for localized eigenstates. For the largest available sizes, the curves corre-
sponding to different values of L cross approximately around Wc ' 34.5. Moreover, as
remarked in Chapter (III), the IPR, and thus β, is affected by large finite size effects,
and the numerical study of localization based on the analysis of this parameter solely
could lead to wrong conclusions. However, if we use the same set of critical parameters
found before (Wc ' 34.5, ν ' 1.11, and y ' −1), and we use the data for the IPR as
a check of our previous results, we find that the finite size scaling yields a reasonably
good data collapse of numerical data, as shown in the right panel of figure (IV.9).
Similar results are also found in dimensions 3 and 5. However, this analysis can not
be performed in six dimensions, due to the fact that the IPR can be measured only
up to Lmax = 5, which is not sufficiently large to take care in an accurate way of the
strong finite size effects.

IV.2 Strong Disorder RG

In this section we present our results based on the Strong Disorder Renormalization
Group (SDRG) approach for Anderson Localization recently introduced in [246, 247].
The SDRG is a real-space decimation procedure in which, iteratively, the strong energy
scale in the Hamiltonian is individuated and integrated out.

The ideas behind this method reside in the seminal work of [248], and have been
successful applied to describe the critical and near-critical behavior of the Random
Transverse-Field Ising model and other random magnetic transitions [249, 250, 251],
and have also been recently used in electronic systems [252].

In the case in which the strongest energy scale happens to be the on-site energy
|εa| on site a, then site a is eliminated from the system, as sketched in the top panel of
figure (IV.10): this means that one performs the Gaussian integral over φa in equation
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Figure IV.9: Left panel: Flowing fractal exponent β describing the scaling of the
typical value of the IPR with the system size for d = 4. The vertical dashed black
line corresponds to the critical disorder Wc ' 34.5. Right panel: Finite size scaling of
the same data showing a reasonably good data collapse obtained for ν ' 1.11. Strong
finite-size corrections to the one-parameter scaling are observed at small sizes (open
symbols), and can be described by Eq. (IV.1.8) with y ' −1.
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Figure IV.10: Sketch of the SDRG decimation procedure for a site (top), and a bond
(bottom) transformation. Dotted blue lines represent pre-existing hopping amplitudes
before decimation. Solid blue lines represent new or renormalized bonds. The on site
energies of all the neighbors of the decimated sites (blue circles) are renormalized as
well.

(IV.1.3), obtaining a RG transformation for the on-site energies on all the neighbors i
of a and for the hopping amplitudes between all possible pairs of neighbors (ij) of a:

εi → εi −
t2ai
εa
,

tij → tij −
taitaj
εa

.

(IV.2.1)

Similarly, if the strongest energy scale is the hopping amplitude |tab| between sites a
and b, then sites a and b are eliminated, as sketched in the bottom panel of figure
(IV.10), performing the Gaussian integrals over φa and φb in equation (IV.1.3) this
yields the following RG transformation for the on-site energies on all the neighbors i
of a and b and for the hopping amplitudes between all possible pairs of neighbors (ij)
of a and/or b:

εi → εi −
εat

2
bi − 2tabtaitbi + εbt

2
ai

εaεb − t2ab
,

tij → tij −
εatbitbj − tab(taitbj + tajtbi) + εbtaitaj

εaεb − t2ab
.

(IV.2.2)

We note that equations. (IV.2.2) can be obtained using equation (IV.2.1) twice to
eliminate first site a and then site b.

Equations. (IV.2.1) and (IV.2.2) are in fact exact RG transformations, as it was
first shown in Ref. [253]. In d > 1 however, since the procedure explained above
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introduces new bounds, the number of non-zero matrix elements grows very rapidly
under RG, making the numerical analysis unpractical. Several procedures have been
proposed to solve this problem, which are also encountered in similar SDRG schemes
for electronic systems [252] as well as for other disordered models such as random
transverse-field Ising model [249, 250, 251]. Following Ref. [247] we set a maximum
coordination number kmax per site, throwing away most of the weak couplings. This
procedure is justified if we think that, at least in high enough dimension, the critical
properties of Anderson Localization are controlled by a strong disorder limit, as we
have mentioned in section at the beginning of this Chapter, and the weak coupling
constants generated under RG are in fact “irrelevant”.

In order to check whether or not this assumption is correct, it is important to ana-
lyze the accuracy of the results obtained with the SDRG and study their convergence
with kmax. In order to do this, we first focus on the average DOS, which can be written
in terms of Gaussian integrals over auxiliary fields φi as:

ρ = − 1
πLd

Tr ImG

= 1
πLd

Im
[
i

∫ N∏
i=1

dφi

(
N∑
l=1

φ2
l

)
eS[φi]

/
Z

]
,

(IV.2.3)

where Z is defined in Eq. (IV.1.3). The object
∑N
l=1 φ

2
l is a function of all fields

φ1, . . . , φN . When a given site, say site a, is integrated out under RG, this object
will become independent of φa, but new terms dependent on products of fields of the
form φiφj corresponding to all possible couple of neighbors (i, j) of a will appear,
in addition to a constant. In order to compute the density of states by successive
integrations under RG, we define thus the quadratic form Γ[φi], which is a function of
all fields [φi]:

Γ[φi] =
∑
i

ωiφ
2
i +

∑
i<j

σijφiφj + iκ . (IV.2.4)

At the level of the initial conditions one has that ωi = 1 for all i, σij = 0 for all (ij),
and κ = 0. Each time a site is integrated out, one has to renormalize the coefficients
ωi, σij and κ. The renormalized values are found by Gaussian integration as follows:

ωi → ωi + ωat
2
ai

ε2a
+ taiσai

εa
,

σij → σij + 2ωataitaj
ε2a

+ taiσaj + tajσai
εa

,

κ→ κ+ ωa
εa
.

(IV.2.5)

Similarly, when the hopping amplitude between sites a and b is eliminated, one can
determine analogous RG relations for the coefficients of Eq. (IV.2.4). At the end of the
RG, when all sites have been integrated out, ρ can be then obtained from Eq. (IV.2.3)
as (minus) the imaginary part of the final value of κ divided by πLd.
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Figure IV.11: Quasi-1d dimensionless localization length, λ1d, obtained using the
SDRG procedure for different values of kmax, at the Anderson Localization critical
point, Wc ' 83.5, in 6 dimensions, and for L = 3 (blue circles) and L = 6 (red
squares). The horizontal blue (resp., red) solid and dashed lines corresponds to the
average value of λ1d and its fluctuations computed using the transfer matrix method
for L = 3 (resp., L = 6), showing that for kmax & 240 the approximate SDRG results
converge, within our numerical accuracy, to the exact values.
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We have computed the average DOS around the Anderson Localization critical
points for dimensions from 3 to 6 using this method for several values of kmax, and
compared its numerical value with the one obtained from exact diagonalization, finding
an excellent agreement even at small values of kmax. In practice, already for kmax & 60
the average DOS obtained via the SDRG coincides within error-bars and sample-by-
sample with the one computed from exact diagonalization for all the accessible system
sizes and in all dimensions.

We turn now to transport properties. In particular, in the following we compare the
results for the dimensionless quasi-1d localization length computed from the Transfer
Matrix approach as described in section (IV.1.1), with the ones obtained using the
SDRG with different values of kmax. More precisely, instead of solving equation (IV.1.5)
exactly via LU decomposition, we apply the SDRG to invert the matrix [G(x)]−1

in an approximate way, starting from x = 0. In order to do this, on each layer
x we integrate-out progressively all the sites using equations (IV.2.1) and (IV.2.2),
eliminating iteratively the strongest energy scale, until no sites are left on that layer. In
figure (IV.11) we plot the results for λ1d at the Anderson Localization critical point in
dimension 6 (Wc ' 83.5) for different values of kmax and for L = 3 and 6, showing that
for kmax & 240 the numerical values of λ1d obtained via the SDRG approach converge,
within our numerical precision, with the ones obtained from exact techniques. Similar
results are found in all dimensions down to d = 3 (not shown).

This analysis shows that the results obtained using the SDRG approach both for
the average DOS and the Lyapunov exponent converge already for reasonably small
values of kmax to the exact ones in all spatial dimensions, at least close enough to the
Anderson Localization critical point.2 Hence, the critical parameters found using the
SDRG approach (for sufficiently large kmax) coincide, within error-bars, with the ones
given in equation (IV.1.9). Since the computer time required for an efficient algorithmic
implementation of the SDRG procedure scales as dLd(logL)k2

max(log kmax), one can in
principle apply this method to obtain very accurate results for much larger system
sizes compared with the exact numerical techniques such as exact diagonalization or
Transfer Matrix. The SDRG can then also be applied to study Anderson Localization
in dimensions larger than 6. Preliminary results in this direction have already been
obtained in [247] up to d = 10.

In the last part of this section, we focus instead on the properties of the flow of the
SDRG close to the Anderson Localization critical point. More precisely, we study the
evolution under RG of the probability distributions of the diagonal and off-diagonal
matrix elements, Qτ (ε) and Rτ (t) respectively (the index τ corresponds to the RG
“time”). Of course, these probability distributions do not contain all the important
physical information on the system. For instance, they are insensitive to correlations
between on-site energies and hopping amplitudes and/or spatial correlations between
matrix elements which may be possibly generated during the flow. However, as we will
discuss below, they can be still used to gather some important qualitative insights on
the critical properties of Anderson Localization in high dimension.

In the following, for simplicity, we will restrict ourselves to the case of real matrix
elements (i.e., we set η = 0 on all the sites of the system). Similar results are obtained

2It is natural to expect that the accuracy of the SDRG gets worse at small disorder strength, deep
into the metallic phase.
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if one considers a finite (but small, e.g. η ∼ 10/Ld) imaginary regulator and study,
for instance, the flow of the probability distributions of the modulus of diagonal and
off-diagonal matrix elements. At the Anderson Localization critical point, the initial
conditions for the probability distributions of on-site energies and hopping amplitudes
are:

Qτ=0(ε) = 1
Wc

θ

(
Wc

2 − |ε|
)
,

Rτ=0(t) = 2d
N − 1 δ(t− 1) + N − 1− 2d

N − 1 δ(t) .
(IV.2.6)

The critical disorder Wc is much larger than 1 already in three dimensions—and it
grows very fast as d is increased. As a consequence, at the beginning of the RG, the
strongest energy scales are provided by the sites with on-site energies close to the edges
of the support of Qτ=0(ε). As these sites are integrated out, new hopping amplitudes
are generated, and the two δ-peaks of Rτ=0(t) acquire a finite support. Hence, as the
RG time τ grows, Qτ (ε) shrinks and Rτ (t) broadens. When the support of the two
distributions become approximately the same, we observe a stationary state.3 As τ
is further increased, the number of matrix elements left in the systems becomes very
small and the stationary distribution is wiped out. However, this is a finite-size effect
which could in principle be avoided taking larger and larger systems.

The stationary distributions Qτ?(ε) and Rτ?(t) at the AL critical points in di-
mensions from 3 to 6 are plotted in figure (IV.12). Despite the fact that the initial
conditions are very different, we observe that Qτ?(ε) and Rτ?(t) are similar in all spatial
dimensions. This suggests that the RG flow, and thus the critical properties of An-
derson Localization are controlled by a fixed point which is very similar for all d ≥ 3.
As shown in the inset of figure (IV.12), the tails of R?(t) seems to be described by a
power law, Rτ?(t) ∼ t−γ , with an exponent γ ' 2 which is also independent on d, and
a cut-off for hopping amplitudes of O(1). Note that as d is increased, the initial con-
ditions (IV.2.6) get further and further from the quasi-stationary distributions. One
needs then more and more RG steps to approach the quasi-stationary regime of the
flow, i.e., τ? increases as d grows. For this reason, finite size effects on Qτ?(ε) and
Rτ?(t) also increase as d is increased since for τ = τ? we are left with smaller systems
and fewer matrix elements (see the caption of figure (IV.12) for more details).

These observations, together with the fact that the SDRG procedure gives very
accurate results in all dimensions d ≥ 3 for reasonably small values of kmax, provide
a convincing indication of the fact that the properties of Anderson Localization in
high dimensions are governed by a “strong disorder” fixed point, as already suggested
in [42, 247]. This idea is also supported by the results of the supersymmetry approach
for the critical properties of Anderson Localization on tree-like structures and infinite
dimensional models [167, 166, 33]. It is natural to conjecture that for d → ∞ (Wc →
∞), and in the thermodynamic limit, the power law tails of Rτ?(t) might extend to
infinitely large values of the hopping amplitudes.

3In practice, we observe that in all dimensions from 3 to 6 this happens when the support of the
probability distributions of the diagonal and off-diagonal elements become of O(1).
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Figure IV.12: Bottom-left and bottom-right panels: The quasi-stationary distribu-
tions Rτ?(t) and Qτ?(ε) at the Anderson Localization critical points in dimensions from
3 to 6. The system size is L = 33 in 3d, L = 14 in 4d, L = 8 in 5d, and L = 6 in 6d, in
such a way that the total number of sites is approximately the same, N ∼ 4 · 104, in
all dimensions. The quasi-stationary state is reached for a RG time τ? such that the
number of sites left in the system are approximately 1/8 of the initial ones in 3d, 1/16
in 4d, 1/26 in 5d, and 1/40 in 6d. The value of kmax is set to 360 in all dimensions.
Top-panel: The same data of the bottom-left panel plotted in a log-log scale, showing
the power law behavior of Rτ?(t) ∼ t−γ with γ ' 2 (black dashed line), for t smaller
than a cut-off of O(1).
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Figure IV.13: Numerical values of the inverse of the critical exponent ν as a function of
1/d in dimensions from 3 to 6 (blue circles), showing a smooth behavior interpolating
from ν → ∞ in d = 2 to ν = 1/2 in d → ∞ [166]. The turquoise dashed line
shows the predictions of the self-consistent theory of [174], with du = 4. The dashed-
dotted magenta line corresponds to the lower bound ν ≥ 2/d provided by the Harris
criterion [171]. The red solid line shows the dimensional dependence of ν obtained
from a perturbative analysis of the NLσM to five-loops in ε = d− 2 [88, 89], given by
equation. (IV.3.1).
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IV.3 Summary of the results
In this section we summarize all the results we have obtained from the study of

the Anderson model in d = 3, . . . , 6 through both “exact” numerical techniques (exact
diagonalization and transfer matrix method) and the SDRG approach. We start by
focusing on the critical exponent ν, whose behavior as a function of 1/d is plotted
in figure (IV.13). One clearly observes that ν continuously decreases from ν → ∞
in d = 2 to the value ν = 1/2 in d → ∞ predicted by the supersymmetric method
(see section (II.3)), showing no sign of saturation. This strongly indicates that the
upper critical dimension of Anderson Localization is infinite, as already suggested
in [166, 167, 144], in contrast with other propositions, as for instance, the one of
the self-consistent theory [174], which predicts du = 4 (turquoise dashed line). As
explained in section (I.4), the perturbative analysis of the effective field theory based
on the replicated NLσM has been carried to five-loops order in ε = d − 2 [88, 89],
yielding for ν the estimation:

ν = 1
ε
− 9

4ζ(3)ε2 + 27
16ζ(4)ε3 +O(ε4) . (IV.3.1)

As already pointed out, the evaluations of critical properties based on the 2 + ε expan-
sion yield a very poor agreement with the numerical results even in low dimensions,
as shown in figure (IV.13), where the dimensional dependence of the critical exponent
of equation (IV.3.1) corresponds to the solid red line. In fact, equation (IV.3.1) vi-
olates the lower bound ν ≥ 2/d based on the Harris criterion [171], represented by
the dashed-dotted magenta curve already in 3d. This implies that the weak disorder
regime controls only a very narrow region in the vicinity of dimension 2, in contrast
with the strong disorder approach based on the SDRG, which, as we have seen in the
previous section, gives much more accurate results in estimating the critical properties
of Anderson Localization in all dimensions d ≥ 3.

As mentioned above, these observations suggest that the critical properties of An-
derson Localization away from the lower critical dimension become closer to a strong
disorder regime. This idea is fully confirmed by the analysis of the critical values
and their dimensional dependence: in figure (IV.14) we plot 〈rc〉 (top-left panel), qtypc
(bottom-left panel), (λ1d)c (top-right panel), and βc (bottom-right panel) as a func-
tion of 1/d. In d = 2 + ε dimensions the critical point corresponds to weak disorder
(or, equivalently, weak coupling in terms of the NLσM), which means that the critical
level statistics is close to the GOE one. With increasing d the critical point moves
continuously towards strong disorder (strong coupling), and 〈rc〉 and qtypc approach
the Poisson reference values, suggesting that the critical level statistics in the infinite
dimensional limit is Poisson-like as in the localized phase. Similarly, βc decreases as d
is increased and seems to vanish in the d→∞ limit, implying that the IPR has a finite
limit at the Anderson Localiztion critical point in infinite dimensions, as predicted by
the supersymmetric approach [182, 167] (see section (II.3)). Finally, (λ1d)c is also a
decreasing function of d, and smoothly approaches 0 for d → ∞, showing that this
picture of strongly localized critical point in infinite dimensions is supported also by
the analysis of transport properties.

This extreme form of Anderson Localization criticality also manifests itself in the
supersymmetric solution of tree-like models [182, 166], which reproduce properly the
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Figure IV.14: Dimensional dependence of 〈rc〉 (top-left panel), qtypc (bottom-left
panel), (λ1d)c (top-right panel), and βc at the Anderson Localization critical point as
a function of 1/d. The dashed horizontal red lines correspond to the reference GOE
value, while the dashed black one to the Poisson value.
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Figure IV.15: Critical value of the disorder strength, Wc divided by 4(2d − 1), as a
function of 1/ log(2d− 1). The dashed black lines corresponds to the asymptotic exact
behavior on tree-like structures in the large connectivity limit.

critical properties of infinite dimensional systems. In this respect, it is interesting
to study the dimensional dependence of the critical value of the disorder strength Wc,
plotted in figure (IV.15). Wc grows faster than d (which would be the natural scale set
by the coordination number for conventional phase transitions) as the dimensionality is
increased and seems to approach the behavior Wc/t ∼ 4(2d−1) log(2d−1) for large d,
corresponding to equation (II.2.18) with k = 2d: this is the exact asymptotic behavior
on tree-like structures in the large connectivity limit [8, 198].

We conclude this Chapter with the analysis of the dimensional dependence of the
critical multifractal spectra of wave-function amplitudes (see Appendix (B)). From the
exact diagonalization data we have evaluated the typical value of the exponent τ(q) at
the Anderson Localiztion critical point as [22, 24, 25]:

τ typq = −d 〈log Υq〉
dL

,

from which the spectrum of fractal dimensions f(α) can be determined applying the
Legendre transformation (B.0.5). Our numerical results in dimensions from 3 to 5 are
plotted in figure ( IV.16), showing that the (re-scaled) singularity spectrum of critical
wave-functions broadens as d is increased and seems to approach the one correspondent
to tree-like structures in the large d limit. These observations support once again the
extreme form of Anderson Localization criticality in the d → ∞ limit, where the
critical states correspond to an insulator, are described by Poisson statistics, and
their multifractal spectrum takes its strongest possible form. Due to the limitations in
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running times and memory of the algorithm of exact diagonalization, we didn’t manage
to obtain with sufficient accuracy the eigenfunctions statistics in d = 6.
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Figure IV.16: Re-scaled singularity spectrum f(α)/d as a function of α/d at the
AL critical point in dimensions from 3 to 5. The dashed black line shows f(α) ob-
tained at the Anderson transition of the Anderson model on random regular graphs of
connectivity 3.
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Conclusion and perspectives

In the first part of this thesis we have studied a random matrix model, the Lévy
Matrices, early introduced in Ref. [38], which is known to present a localization-
delocalization transition in the spectrum. The ensemble is constituted by random
matrices with independently and identically distributed entries, characterized by a
probability distribution with heavy-tails in 1 + µ, with µ < 2. On one hand we have
presented the interest of this model in the field of RMs, on a mathematical point of
view, since the ensemble belongs to a more general universality class than the one usu-
ally considered by RMT. The properties and the rich behavior of this kind of matrices
make it an interesting model in the study of Anderson Localization. It is indeed a fully
connected analytically treatable model which exhibits a localization transition, and at
the same time, due to the heavy-tail law of the distribution of the entries, presents a
sparse-like character which relates it to Anderson Localization on tree-like structure,
and thus to the limit of infinite dimensionality of the Anderson model.

First, starting from an exact recursion equation for the imaginary part of the
resolvent already derived in [38] and rigorously proven in [227], we have obtained an
exact equation for the mobility edge. The phase diagram found in the µ − E plane
presents a localization-delocalization transition in the region 0 < µ < 1, whereas
for 1 < µ < 2 all states in the spectrum are delocalized. This phase diagram has
been checked with a semi-analitycal method by solving the recursion equation for the
probability distribution of the resolvent via a population dynamics algorithm. We
have then investigated the problem of the existence of an intermediate delocalized
non-ergodic phase in Lévy Matrices, already suggested in [38] and advocated for the
Anderson model on tree-like structure. The application of the supersymmetric method
to this ensemble of matrices, exactly in the same way as it was shown for sparse random
matrices [31, 32, 33], allows to conclude that the delocalized phase is characterized by
GOE statistics. In the region 1 < µ < 2 we have also shown that the level statistics
is GOE-like using an argument based on the Dyson Brownian motion approach: this
result has not to be taken as a mathematical proof, but as an hint which can be useful
for future more rigorous investigation.

We have then analyzed in detail, by exact diagonalization, the behavior of the
system both in the region µ ∈ (1, 2) and µ ∈ (0, 1). For 1 < µ < 2 our numerical
analysis of the level statistics, the Inverse Participation Ratio and the Support Set
confirms the analytical result that the system is delocalized and ergodic. In particular,
the analysis of the numerical data shows that the IPR is an observable affected by
large finite size effects: this observation explains why in the early work of Ref. [38] the
authors were leaded to interpret the behavior of their data as the sign of an intermediate
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mixed phase, being the numerical analysis based mainly on the computation of the IPR.
In the region µ ∈ (0, 1) the system exhibits a richer behavior: through a careful analysis
of the data we conclude that the localization and the level statistics transition coincide,
but strong finite size effects characterize the delocalized phase even very far from the
mobility edge. From the analysis of the properties of the distribution of the imaginary
part of the resolvent we have interpreted these results by identifying a crossover scale
which diverges at the mobility edge but is very large even far from the transition:
the system behaves thus for practical purposes as if it was in an intermediate mixed
phase, delocalized but non-ergodic. The analysis of the wave-function statistics and
the multifractal spectrum are in agreement with the existence of a unique transition
in the thermodynamic limit, and with the presence of a large crossover region in the
delocalized phase.

In the second part of this work we have performed a detailed numerical study
of the critical properties of the Anderson model in dimensions from 3 to 6, through
exact diagonalization and transfer matrix techniques, and through a strong disorder
renormalization group analysis, focusing both on the statistics of energy levels and
wave-functions coefficients and on transport properties. Our results strongly support
the hypothesis that the upper critical dimension of Anderson Localization is infinite.
Indeed, the estimated values of the critical exponent ν continuously decrease from
ν → ∞ in d = 2 to the value ν = 1/2 in d → ∞ predicted by the supersymmetric
approach [180] without showing any sign of saturation. The comparison with the val-
ues of ν predicted by the perturbative renormalization group analysis of the NLσM in
d = 2 + ε shows that the weak disorder regime controls only a very small region near
the lower critical dimension dc = 2. From our analysis based on the strong disordered
renormalization group approach we see instead that this approximation gives much
more accurate results in estimating the critical properties of Anderson Localization
for d ≥ 3. This suggest that the critical behavior of Anderson Localization, except
for a narrow region near d = 2, is governed by a strong disorder regime: this idea is
supported by the analysis of the critical values of different observables, which move
continuously towards strong disorder with increasing d: in particular, observables re-
lated to the level statistics move towards their Poisson limit, the exponent controlling
the scaling of the IPR decreases and seems to approach 0 in the limit d → ∞, and
the quasi-one dimensional localization length obtained with the transfer matrix tech-
nique also decreases and smoothly approaches 0 for d → ∞. We have also studied
the behavior of finite size corrections in the scaling of the observables with the system
size, finding that the leading irrelevant exponent describing this corrections is almost
independent from the dimensionality, at least up to d = 6.

This results can have interesting implications on the unusual delocalized phase
observed in models related to the d → ∞ limit, as the Anderson model on tree-
like structures [39, 40, 41, 42, 43, 44, 45, 46] or, as we have seen in detail, Lévy
Matrices [183], where the system manifests a strongly non-ergodic behavior on the
delocalized phase when we look it on a scale lower than a characteristic crossover scale
which is very large even far from the critical point. First of all we observe that, if
the upper critical dimension of Anderson Localization in infinite, in the limit d → ∞
the system will have a finite-size scaling in terms of the variable w(logN)1/2, with
ν = 1/2 (the value of the critical exponent predicted by the supersymmetric method
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for Anderson model on tree-like structures). This implies that in order to explore
system sizes larger than the correlation volume, exponentially large values of N would
be required. Another important consequence of our results is that, since the critical
point of Anderson Localization seems to be governed by a strong disorder regime, the
critical values of the various observables correspond to the values they assume in the
localized phase: therefore, the curves corresponding to different system sizes do not
cross at a well-defined point. Increasing N the crossing point drifts instead towards the
limiting value of the observable in the localized phase, justifying the non-monotonic
behavior observed in the delocalized phase of Lévy Matrices and Anderson model on
tree-like structures. Finally, since the leading irrelevant exponent governing finite size
corrections seems to be almost independent of d, at least up to d = 6, finite size effects
should depend on the system size as 1/L, becoming more and more important with
increasing dimensionality for fixed N . In the limit of infinite dimension they should
be very large, depending on the size as 1/ logN .

It would be interesting to apply the SDRG to higher dimensions (preliminary results
are already available [247]), but also to implement an alternative strong disorder real
space renormalization approach introduced for the family of the power-law random
banded matrix ensembles [265], which may also be appropriate in the strong disorder
limit.



134 Conclusion and perspectives



Appendix A
Transfer Matrix, conductance and lo-
calization length

A.1 Transfer Matrix and conductance
An important part of localization theory concentrates on the electron propaga-

tion, and interesting quantities as the conductance can be expressed in terms of the
transmission and reflection amplitudes of the electron. Considering the scattering ex-
periment in figure (A.1), where the sample is connected to semi-infinite ideal leads
on both sides, we want to study the probability that an electron, coming from the
left or the right side of the sample transfers to the opposite side. We define thus the
scattering matrix S as

S =
(
t+ r−

r+ t−

)
, (A.1.1)

where t+ and t− are transmission coefficients of the wave from the left to the right
and from the right to the left respectively, and r+ and r− are the reflection coefficients
from the right to the right and from the left to the left respectively.

Figure A.1: Definition of amplitudes A1, A2, B1, B2.

This matrix, considering the figure (A.1), expresses the outgoing wave functions
amplitudes B1 and A2 in terms of the incoming amplitudes A1 and B2:
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(
A2
B1

)
= S

(
A1
B2

)
(A.1.2)

The expression (A.1.2) can be rewritten in terms of the transfer matrix T as(
A2
B2

)
= T

(
A1
B1

)
(A.1.3)

where the matrix T [61] is given by

T =
(
t+ − r−(t−)−1r+ r−(t−)−1

−(t−)−1r+ (t−)−1

)
. (A.1.4)

In the case of a one dimensional system there is only one possible channel, therefore
T is a 2 × 2 matrix and we have t+ = t− = t. The probability for the electron
to be transmitted from one side to the other is given by T = |t|2. If we consider
instead a quasi-one dimensional system propagating along the x direction with a cross-
section L(d−1), like the one in figure (A.2), the electron can propagate also in directions
perpendicular to the propagation direction x: being the cross section of the leads finite,
the wave vector in directions perpendicular to x is quantized and can have only discrete
values, defining one channel for each possible value. t+ and t− are therefore matrices,
whose size is determined by the number of possible channels.

L

x

Figure A.2: Sketch of a quasi-one dimensional system with cross section L(d−1) prop-
agating along the x direction.

An important quantity in the study of electron propagation is the conductance,
which has been defined by Landauer [254] and Economou and Soukoulis [255]. If
we consider a sample connected to two semi-infinite ideal leads and which transmits
electrons from two reservoirs, the conductance g is defined by the relation

j = g∆V, (A.1.5)
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where j is the current through the sample and ∆V is the voltage difference: if we
measure the voltage difference between the leads, as proposed by Landauer [254], we
obtained the conductance

gL = e2

h

T

1− T . (A.1.6)

If we consider instead the voltage difference between the reservoirs we obtained the
definition of Economou and Soukoulis [255]

gES = e2

h
T . (A.1.7)

While in the limit of small transmission, T → 0, the two definitions are equivalent,
they lead to different limit when T → 1: the conductance gL (A.1.6) diverges in this
case, while the expression (A.1.7) converges to e2/h, this difference being originated
by the presence of a contact resistance between leads and reservoirs.

In the case of a quasi-one dimensional system discussed above, where we have
different possible channels, the conductance gES is generalized by the relation

gES = e2

h
Tr t†t , (A.1.8)

[256, 257, 258, 259]. It was proved in [257, 258] that the conductance gES defined by
relation (A.1.8), in the metallic regime is related to the conductivity σ by

gES = σLd−2 . (A.1.9)

This behavior indicates that gES is closely related to the Thouless conductance gT
defined by expression (I.4.1), and thus that gES not only measures the transmission
properties of the sample but also the sensitivity of the wave functions to the change of
the boundary conditions.

A.2 Transfer Matrix and localization length
The transfer matrix T connects the propagating waves on the left and right hand

side of the sample. We can also define the transfer matrix M relating the wave functions
in the site representation. In particular, if we consider the Anderson model in one
dimension, with a system of size Lx, the Schrödiger equation reads

(εi − E)ψi + t ψi−1 + t ψi+1 = 0 , (A.2.1)

which can be rewritten as(
ψi+1
ψi

)
= Mi

(
ψi
ψi−1

)
=
(
E − εi −t
t 0

)(
ψi
ψi−1

)
. (A.2.2)

The evolution of the state is described by the matrix product

QLx =
Lx∏
i=1

Mi , (A.2.3)
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and then we can write (
ψi+1
ψi

)
= QLx

(
ψ1
ψ0

)
. (A.2.4)

The matrix product (A.2.3) satisfies the theorem of Oseledec [260], which assures
that there exists a limiting matrix

Γ = lim
Lx→∞

(Q†LxQLx)
1

2Lx (A.2.5)

with eigenvalues exp γi, where γi are the Lyapunov exponents of QLx . The smallest
of these exponents determines the slowest possible exponential increase of the wave
function for Lx → ∞, and it can thus be identified with the inverse of the localiza-
tion length of the system ξ = γ−1. Indeed, the Lyapunov exponent γ(E) of the one
dimensional system is defined by the relation

γ(E) = lim
Lx→∞

1
2Lx

log(ψ2
Lx + ψ2

Lx+1) . (A.2.6)

Using the definition of the matrices Mi and QLx (A.2.2) and (A.2.3) we can write

ψ2
Lx+1 + ψ2

Lx =
(
ψLx+1 ψLx

)(ψLx+1
ψLx

)
=
(
ψ1 ψ0

)
Q†LxQLx

(
ψ1
ψ0

)
, (A.2.7)

thus, in the limit Lx → ∞, the Lyapunov exponent γ (A.2.6) is related to the eigen-
values of the limiting matrix QLx : we have to notice that, since QLx depends on the
random energies εi, the Lyapunov exponent γ is a random variable too. It was shown
by Oseledec [260] that γ is a self-averaging quantity. Intuitively, this can be understood
by looking at expression (A.2.7): γ is the logarithm of the eigenvalue of a product of
random matrices, and it can be considered as the sum of logarithm of the eigenvalues of
matrices Mi, i = 1, 2, . . . , Lx . Thus we can expect applying the central limit theorem
that both the mean value and variance of γ are proportional to Lx. The identifica-
tion of the localization length of the system with a limiting property of a product of
random matrices generated great interest in the search of precise conditions for the
existence and positivity of the Lyapunov exponent: the results of Furstenberg [261],
Oseledec [260], and others [262, 63, 68, 69, 70] provide the proof that in one dimension
all states are localized no matter the strength of the disorder (W 6= 0).

The concepts explained above can be generalized to the quasi-one dimensional
system of size L(d−1) × Lx sketched in figure (A.2). The Schrödiger equation in this
case takes the form

ψi+1 = t−1(E −Hi)ψi − ψi−1, (A.2.8)

where t and Hi are L(d−1) × L(d−1) matrices, representing the coupling between suc-
cessive layers and the Hamiltonian of the i-th layer respectively. ψi is a L(d−1) dimen-
sional vector containing the amplitudes of the states. As in the one dimensional case,
equation (A.2.8) can be written in terms of the transfer matrix Mi, which is now a
2L(d−1) × 2L(d−1) matrix, giving
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(
ψi+1
ψi

)
= Mi

(
ψi
ψi−1

)
, Mi =

(
E −Hi −t

t 0

)
. (A.2.9)

Analogously to the one dimensional case, the behavior of the system in the limit
Lx →∞ is determined by the following matrix product

QLx =
Lx∏
i=1

Mi . (A.2.10)

Since the system is effectively one-dimensional, the wave function must decrease
exponentially when Lx increases: this exponential decrease is given by the eigenvalues
of QLx , exp (−γα), the smallest γα determining the localization length. As above, since
the matrix QLx contains the random energies εi, the Lyapunov exponents γα will also
be a random variable. The theorem of Oseledec [260] assures again that in the limit
Lx →∞ all the eigenvalues of the matrix product[

Q†LxQLx

]L/Lx
(A.2.11)

converges to eζα and e−ζα in pairs, with

ζα = 2L
Lx

γα . (A.2.12)

The main value of ζα does not depends on Lx and the variance is proportional to
L/Lx: the parameters ζα are thus self-averaging quantities in the limit Lx →∞.
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Appendix B
Critical wave functions: multifrac-
tality

Given an Hamiltonian of the type (I.6.6), we consider an eigenstate |α〉 of the
system: the moments of the normalized measure |ψα|2 are defined as

Υq =
∑
i

〈α|i〉2q =
∑
i

|ψ2
αi|q , (B.0.1)

where ψ2
αi is the weight of the site i in the eigenstate |α〉, and the sum spreads over all

sites i.
In the Anderson Model for d ≥ 3, at the critical point, the moments Υq (B.0.1)

shows an anomalous scaling with the system size L. This feature is described by
introducing a continuous set of critical exponents τq, defined as:

〈Υq〉 = Ld〈|ψi|2q〉 ∼ L−τq , (B.0.2)

For a metal we have τq = d(q − 1), while in the localized phase τq = 0, and
the moments Υq are finite in the thermodynamic limit. The anomalous behavior
at the critical point is described by introducing the fractal dimension Dq defined as
τq = Dq(q− 1). The expression (B.0.2) can be obtained integrating over a distribution
of |ψ|2 of the form

P (|ψ|2) ∼ 1
|ψ|2

L
−d+f(− log |ψ|2

logL )
. (B.0.3)

In this way we obtain

〈Υq〉 = Ld〈|ψ|2q〉 ∼
∫
dαL−qα+f(α), (B.0.4)

where we have defined α = − log |ψ|2/ logL. The integral in the expression (B.0.4) can
be evaluated for large L with the saddle point method, giving the result (B.0.2): the
exponent τq is related to α through the Legendre transformation:

τq = qα− f(α) q = df(α)
dα

α = dτq
dq
. (B.0.5)
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The expressions (B.0.3) and (B.0.4) define the multifractal spectrum f(α), which
represents the fractal dimension of the set of points in the lattice where the measure
|ψ|2 scales as |ψ|2 ∼ L−α, i.e. the number of such points scales as Lf(α) with the
system size [263].

Figure B.1: Multifractal electron wave-function. The figure is from https://www.
int.kit.edu/918.php.

From the definitions of τq and f(α) general properties of these functions follow [188]:
τq is non-decreasing and convex (τ ′q ≥ 0, τ ′′q ≤ 0), with τ0 = −d, τ1 = 0. f(α) is also
a convex function (f ′′(α) ≤ 0) defined on the semiaxis α ≥ 0 with a maximum for
αmax = α0 (corresponding to q = 0 under Legendre transformation) and f(α0) = d.
Moreover, for the point α1 corresponding to q = 1 we have f(α1) = α1 and f ′(α1) = 1.

For a metal f(α) is concentrated at α = d, with f(d) = d and f(α) = −∞
otherwise. At the critical point f(α) acquires finite width and the maximum shifts to
a point α > d, as shown in figure (B.2).

https://www.int.kit.edu/918.php
https://www.int.kit.edu/918.php
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Figure B.2: Plot of the multifractal spectrum f(α). In the metallic phase f(α) is
concentrated at α = d. At the critical point it acquires a finite width, with a maximum
which shift to α > d.
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Appendix C
The IPR in terms of the Green func-
tion

By substituting the definition (II.1.2) of the resolvent in the quantity

ANi (E) = lim
η→0

η |GNii (E − iη)|2 (C.0.1)

we obtain

ANi (E) = lim
η→0

η
N∑
α=1

ψ4
αi

(E − Eα)2 + η2 + lim
η→0

DN
i (η,E), (C.0.2)

where the non-diagonal contribution DN
i (η,E) is defined as

DN
i (η,E) = η

N∑
α=1

ψ2
αi

E − Eα + iη

∑
β 6=α

ψ2
βi

E − Eβ − iη
. (C.0.3)

If there are no degenerate eigenvalues in the spectrum, the off-diagonal term
DN
i (η,E) vanishes for η → 0.
We can thus write from equation (C.0.2) in the limit η → 0 :

ANi (E) = π
N∑
α=1
|ψαi|4δ(E − Eα) . (C.0.4)

If we sum over all sites and we divide by Nρ(E), we obtain for N →∞

lim
η→0

η

Nρ(E)

N∑
i

|GNii (E − iη)|2 = π

Nρ

N∑
i

N∑
α=1
|ψαi|4δ(E − Eα) , (C.0.5)

which coincide with equation (II.1.7).
We stress that this expression gives the eigenvalue-dependent IPR, while equation

(II.1.1) defines the IPR associated to the state α: Υ2 =
∑
i |ψ4

αi|. In the expression
(C.0.5), before taking the sum over the sites, the average of the weight |ψαi|4 over a
small energy window around E is performed.
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Appendix D
The DoS of Sparse RM model with
the supersymmetric method

We consider N×N matrix Hij with independent and identically distributed entries
with a probability distribution f(Hij) of the form:

f(z) =
(

1− p

N

)
δ(z) + p

N
h(z), p ∼ O(1), (D.0.1)

where h(z) has no δ-like singularity at z = 0 and
∫
h(z) z2 dz ∼ O(1).

Introducing supervectors Φi of the form (II.3.10), we consider the action (II.3.11)
with the definition (II.3.12) of the matrix K̂. By averaging over the disorder we get

Z(E, J) =
∫ ∏

i

[dΦi] exp

 i

2
∑
i

Φ†i (EÎ + JK̂)Φi + p

2N
∑
ij

[
h̃(Φ†iΦj)− 1

], (D.0.2)

h̃(z) =
∫
h(t) exp(−itz) dt . (D.0.3)

We can use now a the following functional generalization of the Hubbard-Stratonovich
transformation

∫
Dg exp

{
−Np2

∫
[dΨ]

[
dΨ′

]
g(Ψ)C(Ψ,Ψ′)g(Ψ′) + p

∫
[dΨ] g(Ψ)v(Ψ)

}
= exp

{
p

2N

∫
[dΨ]

[
dΨ′

]
v(Ψ)C−1(Ψ,Ψ′)v(Ψ′)

}
,

(D.0.4)

where C−1(Ψ,Ψ′) is an integral operator inverse to that with kernel C(Ψ,Ψ′). If we
choose v(Ψ) =

∑N
i=1 δ(Ψ−Φi) and the kernel C−1(Θ,Φ) equal to a function h̃(Θ†Φ)−1,

we obtain the following expression

exp

 p

2N
∑
ij

[
h̃(Φ†iΦj)− 1

]
=
∫
Dg exp

{
−Np2

∫
[dΨ]

[
dΨ′

]
g(Ψ)C(Ψ,Ψ′)g(Ψ′) + p

∑
i

g(Ψi)
}
,

(D.0.5)
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where ∫
[dχ]C(Φ, χ)

[
ĥ(χ†η)− 1

]
= δ(Φ, η), (D.0.6)

where δ(Φ, η) is the δ-function in the space of supervectors. Using the expression
(D.0.5) we obtain for the averaged partition function

Z(E, J) =
∫
Dg exp

{
− Np

2

∫
[dΨ]

[
dΨ′

]
g(Ψ)C(Ψ,Ψ′)g(Ψ′)

+N log
∫

[dΦ] exp
[
i

2Φ†(EÎ + JK̂)Φ + p g(Φ)
]}

.

(D.0.7)

Due to the fully-connected structure of the model, we can now perform the inte-
gration in the limit N →∞ with the saddle-point method, obtaining for J = 0

g(Ψ) =
∫

[dΦ] {ĥ(Ψ†Ψ)− 1} exp((i/2)Φ†E Φ + p g′(Φ))∫
[dΦ] exp((i/2)Φ†E Φ + p g(Φ)) . (D.0.8)

Equation (D.0.8) is invariant with respect to transformations of the type g(Φ) →
g(T̂Φ), with T̂ such that

T̂ †T = Î . (D.0.9)

The solution of (D.0.8) will be therefore a function of the invariant Φ†Φ = S2+2χ∗χ
only, with S2 = (S(1))2 + (S(2))2. Thanks to the properties of the integration of an
invariant function over supervectors [264, 37], the denominator in equation (D.0.8) is
one. Using the properties (II.3.1), (II.3.2) of Grassmanian variables, the solution g̃ is
reduced to the form g̃(Φ†Φ) = g̃(S2) + 2χ∗χ g̃′(S2). If we integrate over Grassmanian
variables we obtain for the solution g̃(S2) the expression

g̃(S2) = −S
∫ ∞

0
dR exp

[
i

2ER
2 + p g̃(R2)

] ∫
dz z h(z) J1(zRS), (D.0.10)

where J1(zRS) is the Bessel function of order one. The density of states can be found
from g̃(S2) through the relations

ρ(E) = − 2
πB
<g̃′(0), B =

∫
dz h(z) z2 . (D.0.11)
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Meaning of the order parameter func-
tion

The identity (II.3.33) used in Chapter (II.3) in order to explain the meaning of
the order parameter function g0(x, y) has been rigorously proven in Ref. [33]. The
proof lays on the computation of the correlation functions Kn,m = Gn1 (i)Gm2 (i). We
present here a less rigorous argument in order to establish a relation between the order
parameter which emerges in the supersymmetric formulation and the real ad imaginary
part of the self energy.

As stated in the main text, the starting point is the field theory Z(E) =
∫ ∏

i [dΦi] e−[S({Φi},E)]

with the action

S({Φi}, E, r) = − i2
∑
i,j

Φ†i L̂ (Eδij −Hij) Φj +
∑
i

Φ†iΦi

(
r

2N + iη

)
, (E.0.1)

which we have written here without sources. Averaging over the disorder we obtain

Z(E, r) =
∫ ∏

i

[dΦi] exp
{
i

2Φ† L̂E Φ + i

2Φ†
(
r

2N + iη

)
Φ+ p

2N
∑
ij

[
h̃(Φ†i L̂Φj)− 1

]}
,

(E.0.2)
where

h̃(z) =
∫
h(t) exp(−itz) dt. (E.0.3)

We can now introduce the function ρ(Φ) = 1
N

∑
i δ(Φ− Φi) and rewrite S as

S = i

2NE
∫
dΦ ρ(Φ) Φ†L̂Φ+ i

2(r+iη)
∫
dΦ ρ(Φ)Φ†Φ+ i

2N
∫
dΦdΨρ(Φ)F(Φ†L̂Φ)ρ(Ψ) ,

(E.0.4)
with

F(y) = p

∫
dx[h(x) e−ixy − 1] . (E.0.5)
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The further integration over all Φis leads to an additional entropic-like term in
the action −N

∫
dΦρ(Φ) log(ρ(Φ)): in the main text we have seen how it emerges if

the Hubbard-Stratonovich transformation is performed in a more rigorous way. The
field theory has thus been transformed in a new one: Z =

∫
Dρ(Φ)eS[ρ]. We can

thus perform the integral with the saddle-point method thanks to the fully-connected
structure of the model, which allows one to factorize out the N in the action, and we
recover the result of the main about the symmetries of the solution and the breaking
of the symmetry leading to the phase transition.

We can notice that, before averaging over the disorder, the field theory is Gaussian,
therefore, integrating over all fields but Φi we still have a Gaussian integral to handle.
Moreover, the field theory is constructed in such a way that 〈Φ(1)†

i Φ(1)
j 〉 = 4iGij and

〈Φ(2)†
i Φ(2)

j 〉 = 4iG∗ij . The average 〈δ(Φ − Φi)〉 is the gaussian measure on Φi, and
collecting all terms we obtain

〈ρ(Φ)〉 = 1
N

∑
i

exp
(
i

2Φ†L̂Φ(E −<Σii) + 1
2Φ†Φ=Σii

)
(E.0.6)

By introducing the distribution of the local self-energy R(Σ) we obtain

〈ρ(Φ)〉 =
∫
dΣR(Σ)

(
exp i

2Φ†L̂Φ(E −<Σ) + 1
2Φ†Φ=Σ

)
. (E.0.7)

The above expression (E.0.7) has the same meaning as expression (II.3.33): in the
localized phase, where the typical value of the imaginary part of the resolvent is zero,
the parameter order function, e.g. the saddle-point solution of equation (E.0.4), is
invariant under the symmetry Φ→ T̂Φ, with T̂ †L̂T̂ = T̂ , thus, given a solution ρ(Φ),
ρ(T̂Φ) is also a solution. The localization transition corresponds to the breaking of this
symmetry: in delocalized phase the typical value of =Σ is non-zero and the solution
depends thus also on the invariant Φ†Φ.



Appendix F
The generalized central limit theo-
rem

As is generally known, the Central Limit Theorem (CLT) states that the Gaussian
distribution is an attractive fixed point for all distributions with a finite variance.
If, instead, the variance of the distribution is infinite, as in the case of eq. (II.1), a
generalized version of the CLT holds [221, 222]. In particular, given a set of i.i.d.
random variables {xi}, i = 1, . . . , N , distributed according to

P (xi) '
C±

N |xi|1+µ , xi → ±∞, (F.0.1)

with µ < 2, the distribution of the sum S =
∑N
i=1 xi, when N → ∞, is a Lévy

stable law LC,βµ , a distribution entirely defined by three parameters: the exponent µ
describing the power-law behavior of the tails, the coefficient C such that the typical
value of the distribution is C1/µ, and β characterizing the asymmetry of the law. The
two parameters C and β are given by the relations:

β = C+ − C−
C+ + C−

, C = γµ(C+ + C−),

γµ = Γ(1− µ) cos
(
πµ

2

)
.

(F.0.2)

The Lévy distribution lacks of an explicit representation, and it is known by means
of its Fourier transform L̂C,βµ [221, 223]

LC,βµ (x) = 1
2π

∫
dk L̂C,βµ (k) eikx,

log L̂C,βµ (k) = − 1
N
|k|µ γµ

[
1 + iβ tan

(
πµ

2

)
sgn(k)

]
,

(F.0.3)

where µ,C and β are three parameter which characterize respectively the power-law
behavior of the tails, the typical value ad the asymmetry of the distribution.

If µ < 1, the distribution of the sum S is P (S) = LC,βµ (S); if 1 < µ < 2, the mean
value x̄i of the distribution (F.0.1) is defined, and it holds P (S) = LC,βµ (S −Nx̄i).
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A generalization of this theorem is the following: if {xi}, i = 1, . . . , N is a set of
variables distributed according to eq. (F.0.1), and {ci} is a set of regular variables, the
sum S =

∑N
i=1 cixi, in the limit N →∞, is distributed according to a Lévy stable law

LC,βµ , with

β = C+ − C−
C+ + C−

[
1
N

N∑
i=1

sgn(ci)
]
, C = γµ(C+ + C−)

[
1
N

N∑
i=1
|ci|µ

]
. (F.0.4)

This can be viewed using the Fourier representation of the Lévy distribution. The
probability density for the variable S can be written as:

Q(S) =
∫ N∏

i=1

[
dxidki

2π eikixi P̂ (ki) δ
(
S −

N∑
i=1

cixi

)]

=
∫
dk

2π e
ikS

N∏
i=1

[
dxidki

2π ei(ki−kci)xi P̂ (ki)
]
.

(F.0.5)

If we use now the expansion (III.3.4) of P̂ (ki) up to the lowest order in ki, we find
that for N →∞ the Fourier transform Q(S) coincides with the characteristic function
of a complex Lévy stable distribution LC,βµ , with parameters β and C given by the
expression (F.0.4).



Appendix G
Computation of the mobility edge of
Lévy Matrices

The self consistent equation derived in the section (III.2) for the real and imaginary
part of the self-energy reads:

Si + i∆i =
N∑
j=1

xij
E − Sj + i (η + ∆j)

(E − Sj)2 + (η + ∆j)2 . (G.0.1)

As explained in the section (III.4) of the main text, we want to analyze the behavior
of the distribution of the self-energy Q(S,∆) in the thermodynamic limit near the
mobility edge. Since in the localized phase ∆ is of order η with probability one, we
can linearize the equation (G.0.1) with respect to the imaginary part, obtaining the
following expressions:

Si =
N∑
j=1

xj
1

E − Sj
(G.0.2)

∆i =
N∑
j=1

xj
η + ∆j

(E − Sj)2 .

Now we want to obtain the integral equation corresponding to (G.0.2): the region
in which the solution is well defined identifies the localized phase.

From the equations (G.0.2) we get:

Q(S,∆) =
∫ N∏

i=1
[dxi dSi d∆i P (xi)Q(Si,∆i)] δ

(
S −

N∑
i=1

xi
E − Si

)
δ

(
∆−

N∑
i=1

xi(η + ∆i)
(E − Si)2

)
.

We replace now the δ-functions by their integral representation in the Fourier space
and we also write Q(Si,∆i) as the inverse Fourier transform of Q̂2(Si, ki), defined as:

Q̂2(Si, ki) =
∫ +∞

−∞
d∆i e

−iki∆i Q(Si,∆i). (G.0.3)

153



154 Appendix G. Computation of the mobility edge of Lévy Matrices

We have:

Q(S,∆) =
∫ N∏

i=1

dxi dSi d∆i dki
2π P (xi) Q̂2(Si, ki)e−ik1xi/(E−Si) e−ik2ηxi/(E−Si)2

×ei(ki−k2xi/(E−Si)2)∆i × dk1 dk2
(2π)2 ei(k1S+k2∆).

(G.0.4)

We can now perform the integration over d∆i, which gives 2πδ(ki − k2xi/(E − Si)2),
and then integrate over dki, yielding:

Q̂(k1, k2) =
[∫

dx dS P (x) Q̂2

(
S,

k2x

(E − S)2

)
e−ik1x/(E−S) e−ik2ηx/(E−S)2

]N
, (G.0.5)

where Q̂(k1, k2) is the standard double Fourier transform of Q(S,∆): we have obtained
in this way the integral version of the equation (G.0.2).

We can now make an assumption for the asymptotic behavior of Q(S,∆) in the
localized phase. Starting from the recursive equation (III.4.2) we have seen in the main
text that the real part of the self-energy is a Lévy stable law L

C(E),β(E)
µ/2 with effective

parameters C(E) and β(E) given by the set of equations (III.4.5). A very similar result
holds for the probability distribution of the imaginary part Q(∆): the only difference
with the expressions (III.4.5) is that in this case the parameter β is equal to 1 since all
the =Gi are positive. We also know that the joint probability distribution Q(S,∆) is
a complex Lévy stable law given by the equation (III.3.5). Since the marginal Q(∆) is
obtained integrating over S the joint probability Q(S,∆), a reasonable ansatz for the
behavior of the tails of Q(S,∆) in the localized phase is

Q(S,∆) ∼ A(S)
∆1+m . (G.0.6)

As observed in [38], the exponent m is constrained to be ≥ µ/2, since integrating
over S can only make the decaying of the tails of ∆ slower. This expression in the
Fourier space gives:

Q̂2(S, k) ∼ Q̂2(S, 0) + c|k|mA(S). (G.0.7)
Using the definition (G.0.3), Q2(S, 0) is the marginal of Q(S,∆) once we inte-

grate over ∆: therefore, as we have shown in section (III.4), it is a Lévy stable law
L
C(E),β(E)
µ/2 (S) with exponent µ/2 and effective parameters C(E) and β(E) given by

the self-consistent equations (III.4.7). The expression (G.0.5) for k2 = 0 gives:

L̂
C(E),β(E)
µ/2 (k1) =

[∫
dx dS P (x)LC(E),β(E)

µ/2 (S) e−ik1x/(E−S)
]N

. (G.0.8)

Using now the asymptotic expansion (G.0.7), the above equation becomes:

L̂
C(E),β(E)
µ/2 (k1) + c|k2|νÂ(k1) =

[ ∫
dx dS P (x)

(
L
C(E),β(E)
µ/2 (S) + c

∣∣∣∣ k2x

(E − S)2

∣∣∣∣ν A(S)
)

×e−ik1x/(E−S) e−ik2ηx/(E−S)2
]N
.

(G.0.9)
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We proceed now expanding the right hand side of the equation (G.0.9) in powers
of k2 and neglecting all the terms smaller than |k2|m. If we define

I1 =
∫
dx dS P (x)LC(E),β(E)

µ/2 (S) e−ik1x/(E−S), (G.0.10)

I2 = c

∫
dx dS P (x)

∣∣∣∣ x

(E − S)2

∣∣∣∣mA(S) e−ik1x/(E−S),

we can rewrite the equation (G.0.9) as

L̂
C(E),β(E)
µ/2 (k1) + c|k2|mÂ(k1) = (I1 + |k2|mI2)N

' IN1
(

1 +N |k2|m
I2
I1

)
= IN1 +N |k2|mIN−1

1 I2.
(G.0.11)

Using the equation (G.0.8) and the definition of I1 above, we note that IN1 =
L̂
C(E),β(E)
µ/2 (k1). As a consequence, up to the lowest order in k2 we have:

Â(k1) = NL̂
C(E),β(E)
µ/2 (k1)

∫
dx dS P (x)

∣∣∣∣ x

(E − S)2

∣∣∣∣mA(S) e−ik1x/(E−S). (G.0.12)

We have to study now the behavior of the kernel of this integral equation.
The integral over x can be performed using the fact that∫ ∞

0
dx

eikx

xa
= ei

π
2 (1−a)sign(k)|k|a−1Γ(1− a), (G.0.13)

and we obtain:∫ ∞
0

dxP (x) |x|m e−ik1x/(E−S) = 1
2N Γ(m−µ/2) e−i

π
2 (m−µ/2)sign(k1(E−S))

∣∣∣∣ k1
E − S

∣∣∣∣µ/2−m .
Plugging the result above into Eq. (G.0.12) we finally get:

Â(k1) = 1
2 Γ(m−µ/2) |k1|µ/2−m L̂C(E),β(E)

µ/2 (k1)
∫ +∞

−∞
dS

A(S)
|E − S|m+µ/2 e

−iπ2 (m−µ/2)sign(k1(E−S)).

(G.0.14)
We now replace A(S) by the inverse Fourier transform of Â(k):

A(S) =
∫
dk

2π e
ikS Â(k), (G.0.15)

and perform the integral over dS by separating it into two pieces as follows:∫ +∞

−∞
dS

eikS

|E − S|m+µ/2 e
−iπ2 (m−µ/2)sign(k1(E−S)) = (G.0.16)

e−i
π
2 (m−µ/2)sign(k1)

∫ E

−∞
dS

eikS

(E − S)m+µ/2 + ei
π
2 (m−µ/2)sign(k1)

∫ +∞

E
dS

eikS

(S − E)m+µ/2 .
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We change variable E − S → z in the first integral and S − E → z in the second
integral and find:

eikE e−i
π
2 (m−µ/2)sign(k1)

∫ ∞
0

dz
e−ikz

zm+µ/2 + eikE ei
π
2 (m−µ/2)sign(k1)

∫ ∞
0

dz
eikz

zm+µ/2 .

(G.0.17)
Using again Eq. (G.0.13) we finally find:∫ +∞

−∞
dS

eikS

|E − S|m+µ/2 e
−iπ2 (m−µ/2)sign(k1(E−S)) = (G.0.18)

eikEΓ(1−m− µ/2) |k|m+µ/2−1
[
e−i

π
2 (m−µ/2)sign(k1) e−i

π
2 (1−m−µ/2)sign(k) +

ei
π
2 (m−µ/2)sign(k1) ei

π
2 (1−m−µ/2)sign(k)

]
.

If we plug back this last result into Eq. (G.0.14) we obtain:

Â(k1) = 1
2 Γ(m− µ/2) Γ(1−m− µ/2) |k1|µ/2−m L̂C(E),β(E)

µ/2 (k1)× (G.0.19)

×
[
e−i

π
2 (m−µ/2)sign(k1)

∫ +∞

−∞

dk

2π e
ikE e−i

π
2 (1−m−µ/2)sign(k) |k|m+µ/2−1 Â(k)

+ei
π
2 (m−µ/2)sign(k1)

∫ +∞

−∞

dk

2π e
ikE ei

π
2 (1−m−µ/2)sign(k) |k|m+µ/2−1 Â(k)

]
.

We now define:

I+ =
∫ +∞

0

dk

π
eikE |k|m+µ/2−1 Â(k), (G.0.20)

I− =
∫ 0

−∞

dk

π
eikE |k|m+µ/2−1 Â(k),

and we also define Â+(k1) and Â−(k1) as the function Â(k1) restricted to the regions
k1 > 0 and k1 < 0 respectively. Using these definitions we have:

Â+(k1) = 1
2 Γ(m− µ/2) Γ(1−m− µ/2) |k1|µ/2−m L̂C(E),β(E)

µ/2 (k1)×(G.0.21)

×
[
sin
(
πµ

2

)
I+ + sin (πm) I−

]
,

Â−(k1) = 1
2 Γ(m− µ/2) Γ(1−m− µ/2) |k1|µ/2−m L̂C(E),β(E)

µ/2 (k1)×

×
[
sin (πm) I+ + sin

(
πµ

2

)
I−

]
.

Finally, we multiply both Â+(k1) and Â−(k1) by eik1E |k1|m+µ/2−1 and integrate them
over dk1/π. By defining:

`+ =
∫ +∞

0

dk1
π

eik1E |k1|µ−1L̂
C(E),β(E)
µ/2 (k1), (G.0.22)

`− =
∫ 0

−∞

dk1
π

eik1E |k1|µ−1L̂
C(E),β(E)
µ/2 (k1),
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we finally find:

I+ = 1
2 Γ(m− µ/2) Γ(1−m− µ/2)L+

[
sin
(
πµ

2

)
I+ + sin (πm) I−

]
,(G.0.23)

I− = 1
2 Γ(m− µ/2) Γ(1−m− µ/2)L−

[
sin (πm) I+ + sin

(
πµ

2

)
I−

]
.

Using the specific form of L̂C(E),β(E)
µ/2 it is easy to show that L?− = L+. The linear

system above only have non-trivial solutions different from zero if the determinant
of the matrix of the coefficients vanishes. Thus, the condition to have a non-trivial
solution compatible with our ansatz of the asymptotic behavior of Q(S,∆) is:

K2
m,µ`+`−

[
s2
µ − s2

m

]
−Km,µ (`+ + `−) sµ + 1 = 0, (G.0.24)

where we have used the following definitions:

Km,µ = µ

2 Γ
(
m− µ

2

)
Γ
(

1−m− µ

2

)
,

sµ = sin
(
πµ

2

)
,

sm = sin (πm) .

We have obtained in this way the equation (III.4.13) of the main text.
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Boston, 2010).

[224] Z. Burda, J. Zurkiewicz, M. A. Nowak, G. Papp, and I. Zahed, Phys. Rev. E 75,
051126 (2007).

[225] F. L. Metz, I. Neri, and D. Bollé, Phys. Rev. E 82, 021135 (2010).

[226] I. Neri, F. L. Metz, and D. Bollé, J. Stat. Mech. p. P010101 (2010).

[227] G. Ben Arous and a. Guionnet, Comm. in Math. Phys. 278, 715 (2008).

[228] G. Biroli, B. J. P., and M. Potters, Europhys. Lett. 78, 78 (2007).

[229] A. Auffinger, G. Ben Arous, and S. Péché, Annales de l’IHP: Probabilités et
Statistiques 45, 589 (2009).

[230] C. Bordenave and A. Guionnet, Probab. Theory and Relat. Fields 157, 885
(2013).

[231] P. Cizeau and B. J. P., J. Phys. A 26, L187 (1993).

[232] L. Levitov, Europhys. Lett. 9, 83 (1989).

[233] S. Galluccio, B. J. P., and M. Potters, Physica (Amsterdam) 259A, 449 (1998).

[234] M. Politi, E. Scalas, D. Fulger, and G. G., Eur. Phys. J. B 73, 13 (2010).

[235] C. Bordenave and A. Guionnet (2016), arXiv:1603.08845.

[236] K. Janzen, A. Engel, and M. Mézard, Eur. Phys. Lett. 89, 67002 (2010).

[237] B. Derrida and H. Spohn, Journal of Statistical Physics 51, 817 (1988).



BIBLIOGRAPHY 177

[238] B. Derrida, Physica A Statistical Mechanics and its Applications 163, 71 (1990).

[239] B. Derrida, Phys. Rev. Lett. 45, 79 (1980).

[240] T. Halpin-Healy and Y.-C. Zhang, Physics reports 254, 215 (1995).

[241] E. Derrida, B. ad Gardner, J. Phys. C: Solid St. Phys. 19, 2253 (1986).

[242] Y. Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, and E. Vivo (2013),
arXiv:1305:7156.

[243] C. Porter and R. Thomas, Phys. Rev. 104, 483 (1956).

[244] C. Monthus (2016), arXiv:1606:03241.

[245] C. Castellani, C. DI Castro, and L. Peliti, J. Phys. A: Math. Gen. 19, L1099.

[246] J. H. Mard, J. A. Hoyos, E. Miranda, and V. Dobrosavljevic, Phys. Rev. B 90,
125141 (2014).

[247] H. J. Mard, J. A. Hoyos, E. Miranda, and V. Dobrosavljevic (2014),
arXiv:1412:3793.

[248] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).

[249] F. Igloy and C. Monthus, Phys. Rep. 412, 277 (2005).

[250] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fischer, Phys. Rev. B 61, 1160
(2000).

[251] I. A. Kovacs and F. Igloy, Phys. Rev. B 83, 174207 (2011).

[252] C. Monthus and T. Garel, Phys. Rev. B 80, 024203 (2009).

[253] H. Aoki, J. Phys. C 13, 3369 (1980).

[254] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

[255] E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).

[256] M. Azbel, Phys. Lett. A 78, 410 (1980).

[257] D. S. Fischer and L. P. A., Phys. Rev. B 23, 6851 (1981).

[258] D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981).

[259] R. Landauer, Z. Phys. B 68, 217 (1987).

[260] V. Oseledec, Trans. Moscow. Math. Soc. 19, 197 (1968).

[261] H. Furstenberg, Trans. Amer. Math. Soc. 108, 377 (1963).

[262] H. Furstenberg and H. Kesten, Ann. Math. Statist. 31, 457 (1960).



178 BIBLIOGRAPHY

[263] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,
Phys. Rev. A p. 1141 (1985).

[264] J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A: Math. Gen. 17, 1093
(1985).

[265] L. Levitov, Phys. Rev. Lett. 17, 64, 547 (1990) 1093 (1985).



Synthèse en français

L’ étude des propriétés de transport des électrons dans les métaux remonte à la
théorie classique de Drude, fondée sur l’idée que les électrons libres interagisset avec
les ions positifs occupant les sites du réseau. La découverte de la mécanique quantique
et du caractère ondulatoire de l’électron a conduit à la révision de ce modèle classique
: l’électron est en fait diffracté par un cristal idéal et sa fonction d’onde correspond à
une fonction d’onde de Bloch [1]. La résistance élèctrique, c’est à dire une conductivité
finie, apparaît en conséquence de l’interaction des électrons avec les imperfections du
cristal. Le modèle classique de Drude peut encore être utilisé, mais dans ce nouveau
contexte l’électron n’interagit pas avec les ions mais avec les impuretés. Dans cette
description, le libre parcours moyen du mouvement diffusif de l’électron est réduit
lorsque la concentration des impuretés augmente te la conductivité diminue donc. La
découverte que, au-delà d’une certaine quantité critique du désordre dans le système,
la diffusion n’est pas juste réduite mais peut être complètement supprimée est due
à Anderson [2] il y a presque soixante ans. Lorsque le désordre dépasse une valeur
critique, la fonction d’onde de l’électron cesse d’être délocalisée sur tout l’espace du
réseau et devient une onde stationnaire confinée dans l’espace et localisée de façon
exponentielle autour d’un centre. L’idée d’Anderson fut révolutionnaire à l’époque
et elle a été à l’origine d’une nouvelle vision de la transition métal-isolant : la phase
isolante dans le modèle d’Anderson n’est pas due au remplissage des bandes mais à la
formation de “pièges” pour l’électron dans le réseau à cause de la présence du désordre.

Comme Anderson l’avait dejà remarqué, la localisation dépend de la dimension du
système. À une dimension il a été montré par Mott et Twose que tous les états sont
localisés quel que soit l’importance du désordre [3] et ce résultat a été en suite confirmé
par d’autres auteurs [4, 5]. La théorie de la localisation a beaucoup progressé pendant
les années 70 : le succès des arguments d’échelle dans la description des transitions
de phase continues dans d’autres domaines de la physique statistique [81] a suggéré
l’utilisation du même type d’arguments dans l’étude de la transition de localisation
d’Anderson. D’abord proposée par Wegner [6], la théorie d’échelle a en suite été
développée par [7] : un paramètre d’échelle adimensionné qui relie la dépendance de
la constante de diffusion de l’électron à la taille du système a été introduit, ainsi que
une longueur d’échelle qui tend vers zero lorsqu’on s’approche de la transition a été
donc définiée. Avec ce type d’arguments il a été établi qu’ à une et deux dimensions
tous les états sont localisés, tandis qu’ en dimension d ≥ 3, une énergie critique qui
sépare les états délocalisés des états localisés apparaît dans le spectre. Au-delà d’une
valeur critique du désordre, qui dépend de la dimension du système, tous les états
deviennent localisés. La théorie d’échelle établit donc que d = 2 est la dimension
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critique inférieure. Le comportement en dimension 2 a été débatu pendant longtemps :
dans les systèmes à deux dimensions la longueur de localisation est extrêmement grande
quand le désordre est peu important, et pour cette raison le système se comporte, dans
les simulations numériques et les expériences, comme s’il était délocalisé. L’analyse de
systèmes trop petits a donc conduit, dans plusieurs travaux, à l’identification, à tord,
d’une transition aussi en dimension d = 2 [71]. En effet, le seul signe de la localisation
qui peut être observé en dimension deux dans les expériences et les simulations est
dans les anomalies par apport au comportement classique de la conductivité dues à
des processus d’interférences quantiques, et qui sont connues pour être des corrections
de localisation faible.

La formulation de la théorie d’échelle de la localisation d’Anderson représente un
grand pas en avant dans la compréhension de ce phénomène, et elle a reçu des bases
solides avec la description de la transition en termes d’un modèle σ-non linéaire, in-
troduit par Wegner [9], qui est cependant insoluble dans la plupart des cas d’intérêt,
comme en trois dimensions. Dans sa formulation originale, la moyenne sur le désordre
est calculée en utilisant la méthode des répliques [9, 82, 83, 84]. Par la suite, une
formulation alternative fondée sur une méthode supersymétrique, qui combine des de-
grés de liberté fermioniques et bosoniques, a été proposée par Efetov [85, 86, 87]. Au
niveau perturbatif les deux techniques sont équivalentes, mais la formulation super-
symétrique présente l’avantage de permettre des calculs non-perturbatifs, qui donnent
des résultats pour la statistique des niveaux d’énergie et des coefficients des vecteurs
propres. Puisque d = 2 est la dimension critique inférieure, il est possible, par une
approche du groupe de renormalisation en d = 2 + ε, d’obtenir une estimation du
désordre critique et de l’exposant critique ν qui décrit la divergence de la longueur
de localisation lorsque l’on se rapproche du point critique [88, 89]. Cependant, ce
développement donne des résultats qui sont en accord avec les simulations numériques
seulement dans la limite ε → 0. En dimension trois (ε = 1), le calcul de ν à deux
boucles donne le résultat ν ' 1, tandis que l’estimation des simulations numériques
est ν = 1.58±0.01 [91, 92, 14, 15, 16, 17, 18, 19, 20, 21]. Le résultat du calcul à quatre
boucles s’éloigne encore plus de l’estimation numérique. Cependant, ce développement
reste un outil important, qui capture certaines propriétés de la transition, comme la
multifractalité des fonctions d’onde au point critique [93, 94].

Presque à la même époque que la première formulation de la théorie de “scaling”,
Abou-Chacra, Anderson et Thouless obtinrent un résultat important, en résolvant
analytiquement le modèle d’Anderson sur le réseau de Bethe [8]. Le résultat princi-
pal de ce travail est une equation auto-consistente qui donne le “mobility edge”, en
montrant que les boucles ne sont pas nécessaires pour la localisation de l’électron.
L’importance des modèles sur des structures en arbre est généralement liée au fait
que, grĉe à l’absence de boucles, ces modèles capturent le comportement du système
dans la limite de dimension infinie. Pour cette raison, le problème de la localisation
d’Anderson sur le réseau de Bethe a été largement étudié dans la litérature: en parti-
culier, le comportement critique a été analysé avec le formalisme supersymétrique, à
la fois dans la version “tight-binding” du modèle d’Anderson [30, 31, 32, 33] et dans
celle du modèle σ [34, 35, 36, 37].

Le lien entre la localisation d’Anderson et les matrices aléatoires est particulière-
ment intéressant. Ces dernières constituent un domaine de recherche indépendant
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développé depuis les années 50, et qui concerne notamment la caractérisation des pro-
priétés des valeurs propres et des vecteurs propres de différents types de matrices dont
les éléments sont extraits au hasard à partir de certaines distributions de probabilité.
Après avoir été introduites en tant qu’outil pour l’étude des propriétés spectrales des
atomes très lourds [105], les matrices aléatoires ont en suite été utilisées avec succès
dans des nombreux contextes, en physique et dans d’autres disciplines [106, 107, 108].
La diffusion dans les graphiques aléatoires [109, 110], les communications sans fil [111],
le risque financier [112] ou la biologie [113] en sont des exemples. La plupart des résul-
tats sur les matrices aléatoires ont été fournis pour les trois ensembles gaussiens, qui
comprennent les matrices dont les élements sont des variables aléatoires Gaussiennes
indépendantes et identiquement distribuées: en particulier, les matrices symétriques
réelles constituent l’ensemble GOE (“Gaussian Orthogonal Ensemble”), les matrices
hermítiques complexes l’ ensemble GUE (“Gaussian Unitary Ensemble”), tandis que
les matrices auto-adjointe de quaternions appartiennent à l’ensemble GSE (“Gaussian
Symplectic Ensemble”). Grâce à l’invariance par rotation de la distribution des élé-
ments, des résultats analytiques sont disponibles pour de telles classes de matrices:
en particulier la densité des états converge vers la loi du demi-cercle de Wigner et il
est possible de calculer analytiquement la fonction de corrélation à deux points des
valeurs propres (même si une expression finale n’est disponible que dans le cas GUE).
L’expression de cette fonction de corrélation tient compte des fortes corrélations entre
les valeurs propres, caractéristique des ensembles gaussiens. De plus, l’invariance par
rotation assure également que dans le cas gaussien les vecteurs propres sont délocalisés.

La grande polyvalence de la théorie des matrices aléatoires repose sur la conjecture
de l’universalité : les propriétés des ensembles gaussiens sont ainsi supposé valables
pour une très grande classe de matrices aléatoires, en particulier pour les matrices
de Wigner, qui sont des matrices dont les éléments sont distribués de façon indépen-
dante et identique, avec variance finie. L’idée que seulement quelques caractéristiques
déterminent la classe d’universalité, et donc que les propriétés des valeurs propres et
des vecteurs propres des matrices aléatoires sont indépendantes d’une distribution de
probabilités particulière, permet de relier l’étude des matrices aléatoires à différents
problèmes physiques et en particulier au comportement des systèmes électroniques
désordonnés. Le lien avec l’étude de la transition de localisation d’Anderson est par-
ticulièrement fort, puisque l’Hamiltonien d’Anderson peut être considéré comme une
matrice aléatoire, avec une partie hors-diagonale déterministe et une partie aléatoire
diagonale: cette matrice appartient à une classe plus générale de matrices aléatoires
que l’ensemble de Wigner, composé par des matrices avec des éléments indépendants
mais non identiquement distribués, et elles peuvent également être vues comme un
opérateur de Schrödinger avec un potentiel aléatoire sur chaque site. Une conjec-
ture d’universalité pour ce type de matrices établit qu’il existe deux régimes différents
en fonction de la force du désordre et de l’énergie: dans le régime de fort désor-
dre les vecteurs propres sont localisés et les statistiques des gaps d’énergie sont de
type Poisson, tandis que pour désordre suffisamment faible les vecteurs propres sont
délocalisés et les statistiques des gaps d’énergie sont les mêmes que pour les matri-
ces GOE. Cette relation entre la localisation d’Anderson et les matrices aléatoires
fournit d’une part un outil permettant de calculer numériquement le diagramme de
phase [15, 16, 19, 134, 135], en analysant le comportement des statistiques des niveaux
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d’énergie, et d’autre part d’établir un lien avec les concepts d’ergodicité et de chaos
quantique. En particulier, des conjectures distinctes dues à Barry et Tabor [26] et à Bo-
higas, Giannoni et Smith [27] établissent respectivement que les systèmes quantiques
intégrables ont des statistiques des niveaux d’énergie poissoniennes et que les sys-
tèmes ergodiques quantiques non intégrables présentent des distributions des niveaux
d’énergie GOE: dans ce contexte la transition de localisation peut être considérée
non seulement comme localisation dans l’espace réel mais aussi comme localisation
dans l’espace des configurations. Ces conjectures peuvent être comprises dans la limite
semi-classique [137, 138]: pour ~→ 0, les fonctions d’onde d’un système quantique non
intégrable s’étendent sur l’ensemble de l’espace de configuration donné par la surface
microcanonique alors que pour les systèmes quantiques intégrables ils restent localisés.

Malgré presque soixante ans de recherche intense aprés les premiers travaux d’Anderson,
l’étude de la localisation d’Anderson reste un domaine avec divers problèmes non réso-
lus. En particulier, il n’existe encore (presque) aucune approche analytique disponible
loin de la dimension critique inférieure : en effet, le développement perturbatif en di-
mension d+ ε est capable de capturer les propriétés critiques du phénomène seulement
dans une région très proche de la dimension critique inférieure. Les approches analy-
tiques au-delà de cette région proche de d = 2 sont en général difficiles, d’une part à
cause de l’absence de petits paramètres, puisque l’énergie critique est du même ordre
que la largeur de bande déja dans les systèmes tridimensionnels. D’autre part, une
autre cause de ces difficultés est la nature non conventionnelle du paramètre d’ordre
de la transition de localisation, puisqu’il s’agit de la densité locale des états, dont la
distribution de probabilité a une décroissance lente dans la phase isolante.

En conséquence de ces difficultés rencontreées dans les approches analytiques,
les méthodes numériques sont encore très importantes pour la compréhension du
phénomène. La plupart des résultats numériques sont disponibles en trois dimen-
sions: de nombreux auteurs ont analysé des quantités relatives aux propriétés de trans-
port [10, 11, 12, 13, 140, 91, 92] et aux statistiques des niveaux [14, 15, 16, 17, 18, 19]
d’énergie et des statistiques des coefficients des vecteurs propres [20, 21, 22, 23, 24, 25].
Le comportement de ces observables est en général étudié pour différentes tailles du
système et diverses analyses d’échelle sont effectuées. Pour les systèmes à symétrie or-
thogonale, l’estimation la plus précise de l’exposant critique ν décrivant la divergence
de la longueur de localisation est ν = 1, 58±0, 01 [91, 92, 14, 15, 16, 17, 18, 19, 20, 21].
Moins de résultats sont disponibles dans des dimensions plus élevées: en particulier,
peu de résultats récents en dimension 4 et 5 [143] étudiǹet seulement les propriétés de
transport. Très peu de résultats sont connus sur les statistiques des niveaux d’énergie
au-dessus de la dimension trois [144], et aucun résultat n’est disponible sur les pro-
priétés de transport au-dessus de d = 5. La raison en est l’augmentation rapide des
temps de calcul des algorithmes avec la taille du système, qui est responsable des limi-
tations sévères sur les tailles des systèmes qui peuvent être simulés lorsque la dimension
est grande aimentée.

Pour toutes ces raisons, la détermination des propriétés critiques en grande dimen-
sion reste un problème ouvert, ainsi que l’existence d’une dimension critique supérieure
du. À ce propos, plusieurs observations semblent indiquer que du est peut être in-
finie [166, 167, 144, 168], mais d’autres hypothèse proposent du = 4, 6 et 8 [169, 170,
171, 172, 173, 174, 175].
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Une autre question importante est la relation avec la limite de dimension infinie,
correspondant à la localisation d’Anderson sur des structures en arbre [8], et à d’autres
modèles de matrices aléatoires avec interactions à longue portée, comme le matrices
de Lévy [183], qui sont des matrices avec des élément distribués de façon identique et
indépendante avec une loi de probabilité de Lévy (décroissante en loi de puissance).
Comme nous l’avons déjà mentionné, le comportement du modèle d’Anderson sur des
structures en arbre a été largement étudié dans la littérature et constitue l’un des rares
modèles pour lesquels des résultats analytiques peuvent être fournis [34, 35, 36, 37, 30].
Les propriétés de la phase délocalisée de ce type de structure sont toutefois très in-
habituelles: dans les simulations numériques, le système présente un comportement
fortement non-ergodique dans une grande région, même loin du point critique. Cet
effet, observé pour la première fois dans la réf. [39], où l’analyse se concentre prin-
cipalement sur les statistiques des niveaux d’énergie, a ensuite été observé dans des
travaux ultérieurs analysant les statistiques des fonctions d’onde dans la phase délocal-
isée [40, 41]. Le comportement inhabituel de ces observables rend l’analyse des données
non triviale et a suggéré l’existence d’une phase intermédiaire, délocalisée mais non
ergodique. Il s’avère cependant difficile d’établir si un tel comportement inhabituel
est le signe d’une transition de phase intermédiaire réelle. Cela pourrait être plutôt
la conséquence d’effets très importants de taille finie qui généreraient une grande ré-
gion de “crossover” dans laquelle le volume de corrélation est plus grand que les tailles
du système accessibles. De plus, l’existence d’une phase intermédiaire délocalisée non
ergodique serait en conflit avec les résultats qui s’appuient sur le formalisme super-
symétrique et qui établissent que la phase délocalisée est ergodique.

Le comportement inhabituel observé dans la phase délocalisée des modèles en ar-
bre semble être présent également dans d’autres modèles de matrices aléatoires avec
interactions à longue portée comme le matrices de Lévy, pour lesquelles la question de
l’existence d’une phase mixte intermédiaire a été ouverte depuis le travail fondateur
de Cizeau et Bouchaud [38]. L’étude des matrices de Lévy est un sujet mathématique
intéressant: elles constituent une classe d’universalité plus grande que celle qui est
habituellement traitée dans la théorie des matrices aléatoires. De plus, puisqu’une
grande variété de distributions en physique et dans d’autres disciplines présentent des
décroissances en loi de puissance, elles apparaissent dans des contextes différents, qui
s’étendent des modèles de verres de spins avec des interactions RKKY [231] et des
systèmes électroniques désordonnés [232] à l’étude des corrélations dans des grands
ensembles de données [234]. Les matrices de Lévy présentent un comportement plus
riche que les matrices habituellement considérées dans la théorie des matrices aléa-
toires: l’une de leurs caractéristiques les plus intéressantes, qui les relie à l’étude de
la localisation d’Anderson, est la présence d’une énergie critique dans le spectre de
leurs valeurs propres, qui sépare les états délocalisés de ceux localisés. D’une part cet
ensemble de matrices présente une structure complètement connectée qui permet un
traitement analytique. D’autre part, en raison de la loi à décroissance lente des élé-
ments, les matrices de Lévy se comportent comme des matrices creuses, et elles peuvent
en effet être considérées comme la limite de très grande connectivité d’une structure en
arbre (plus précisément un graphe de Erdös- Rényi) dans un bain constitué de petits
termes de type gaussien. La similarité avec le comportement du modèle d’Anderson sur
une structure en arbre apparaît également dans les caractéristiques inhabituelles de la
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phase délocalisée: dans les matrices de Lévy, comme mentionné ci-dessus, le problème
de l’existence d’une phase intermédiaire non-ergodique était ouvert depuis le premier
travail sur le sujet [38], et c’est là une des raisons qui nous ont poussés à étudier ce
type de modèle.

Les modèles qui sont représentatifs du comportement en dimension très grande de
la localisation d’Anderson, comme les structures en arbre ou les matrices de Lévy, ont
reçu une attention renouvelée ces dernières années en raison de leur relation avec le
phénomène connu sous le nom de “Many Body Localization”, une transition de phase
qui a lieu quand on tient compte des interactions entre électrons: en effet, Basko,
Aleiner et Altshuler [48] ont montré que si la fonction d’onde de l’électron est lo-
calisée au niveau de la surface de Fermi, et si la température est inférieure à une
certaine température critique Tc, alors l’interaction électron-électron ne peut à elle
seule restaurer une conductivité finie et le système reste isolant. En revanche, au-delà
de la température critique Tc, la conductivité est finie. Exactement à Tc, le système
subit une transition de phase, appelée “Many Body Localization” (MBL). Pour décrire
ce phénomène, la description de la transition en termes de rupture de l’ergodicité est
particulièrement significative : en effet, il s’agit d’un nouveau type de transition de
phase entre une phase ergodique à haute température, et une phase non ergodique à
basse température (un verre purement quantique), dans laquelle les états propres con-
servent une certaine mémoire des conditions initiales locales. Ce phénomène se produit
dans des systèmes quantiques isolés en interaction, et en particulier pour des électrons
désordonnés, mais a également été étudié de manière indépendante dans [29] pour ex-
pliquer la transition ergodique quantique de molécules complexes. La MBL peut être
vue comme une localisation dans l’espace de Fock des déterminants de Slater, qui joue
le rôle de sites de réseau dans un modèle d’Anderson “tight-binding” à une particule.
Le problème d’un grand nombre N de particules interagissant sur un réseau en dimen-
sion finie est donc interprété comme un problème de localisation d’une particule sur
un réseau de très grande dimension. L’étude de la seule localisation d’Anderson à une
particule en grande dimension se révèle donc particulièrement intéressante également
par rapport à la MBL. Dans les systèmes présentant une transition MBL, l’existence
d’une phase non-ergodique délocalisée intermédiaire a été suggérée [47]: dans le lan-
guage de la MBL, c’est une phase dans laquelle la thermalisation et l’ergodicité ne sont
possibles que dans certaines sous-régions de l’espace des configurations.

La question de l’existence d’une phase intermédiaire délocalisée et non ergodique
pour le modèle d’Anderson en grande dimension est un problème largement débattu
qui a été à l’origine de nombreuses discussions au cours des dernières années et qui
reste encore un sujet de recherche actif. De plus, l’origine de ce comportement non-
ergodique dans une région d’une telle taille dans la phase délocalisée tel qu’il a été
observé dans les simulations numériques, reste inconnue.

L’objectif de cette thèse est d’investiguer le comportement de la localisation d’Anderson
en grande dimension. Dans la première partie nous étudions les matrices de Lévy. Nous
établissons l’equation qui détermine la transition de localisation et nous obtenons le
diagramme de phase. Nous investiguons en suite le comportement inhabituel de la
phase délocalisée. Avec des arguments basés sur la méthode supersymétrique et sur
le mouvement brownien de Dyson, nous montrons que la distribution des écarts entre
valeurs propres est la même que dans le cas GOE dans toute la phase délocalisée et
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elle est de type Poisson dans la phase localisée. Notre analyse numérique confirme ce
résultat, valable dans la limite thermodynamique, et fournit des informations sur le
comportement d’autres quantités comme la statistique des vecteurs propres. De plus,
les résultats numériques révèlent que l’échelle caractéristique qui gouverne les effets de
taille finie diverge beaucoup plus vite qu’une loi de puissance quand on s’approche de
la transition, et elle est déja très grande loin du point critique.

Dans la seconde partie nous étudions numériquement le comportement du modèle
d’Anderson en dimension de 3 à 6 en utilisant la méthode de la matrice de transfert,
la diagonalisation exacte, et une technique approximée de Groupe de Renormalisation
pour fort désordre. Les résultats suggèrent que la dimension critique supérieure de
la localisation d’Anderson est infinie. Nous discutons aussi les implications possibles
de ce scénario sur le comportament inhabituel de la phase délocalisée des modèles
réprésentatifs de la limite de dimension infinie, comme les matrices de Lévy et le
modèle d’Anderson sur des structures en arbre.
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