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Introduction générale

Cette thèse s'intéresse à l'étude de la concentration autour de la moyenne des fonctions de variables aléatoires indépendantes. Précisément, soit une suite X 1 , . . . , X n de variables aléatoires indépendantes à valeurs dans un espace mesurable (X , F) et soit F une fonction mesurable de X n dans R. On définit la variable aléatoire Z := F (X 1 , . . . , X n ).

(1.1.1) L'objectif est d'obtenir de bonnes majorations des quantités P(Z -E[Z] ≥ x) et P(Z -E[Z] ≤ -x) pour tout réel positif x.

La somme X 1 + . . . + X n a été le premier cas étudié (voir Bernstein [15], Bennett [4], Hoeffding [25]). Afin d'obtenir des inégalités de concentration pour des fonctions plus générales, de puissants outils ont été développés à partir des années 70. Citons, entre autres, la méthode de martingale (voir Azuma [2], Yurinskii [START_REF] Yurinskii | Exponential bounds for large deviations[END_REF], Maurey [START_REF] Maurey | Construction de suites symétriques[END_REF], Milman et Schechtman [START_REF] Milman | Asymptotic theory of finite dimensional normed spaces[END_REF] et les études de McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF][START_REF] Mcdiarmid | Concentration. In Probabilistic methods for algorithmic discrete mathematics[END_REF]), les inégalités de transport initiées par Marton [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF][START_REF] Marton | Bounding d-distance by informational divergence : a method to prove measure concentration[END_REF][START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF], les inégalités isopérimétriques et la méthode d'induction de Talagrand [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF][START_REF] Talagrand | New concentration inequalities in product spaces[END_REF][START_REF] Talagrand | A new look at independence[END_REF], ainsi que la méthode entropique, basée sur des inégalités logarithmiques, introduite par Ledoux [29].

L'origine de ces travaux de thèse concernait l'analyse de la concentration des suprema de processus empiriques, c'est-à-dire :

Z := sup n k=1 (f (X k ) -E[f (X k )]) : f ∈ F , (1.1.2)
1 où F est une classe de fonctions mesurables de X dans R. Les méthodes de Talagrand et de Ledoux, mentionnées ci-dessus, se sont révélées être efficaces et très performantes pour l'obtention d'inégalités de concentration pour Z lorsque les fonctions de la classe F sont bornées. Cependant, dès que l'hypothèse de bornitude est relaxée, les résultats existants ne sont plus aussi bons qu'espérés et les constantes apparaissant dans les inégalités ne semblent pas optimales. L'objectif initial de ces travaux est alors d'améliorer les résultats dans ce cas ci, en adoptant une autre méthode.

D'autre part, dans plusieurs travaux, Pinelis et Bentkus ont obtenu des inégalités fines de comparaison (sur des moments généralisés et sur les queues de distribution), valables notamment pour des accroissements de martingales non nécessairement bornés. Cela a donc motivé l'adoption de la démarche suivante dans toute la thèse : l'association de techniques de martingales avec des inégalités de comparaison. Précisément, posons F 0 := {∅, Ω} et pour tout k = 1, . . . , n, F k := σ(X 1 , . . . , X k ). Alors Z -E[Z] admet la décomposition en martingale suivante (connu comme la décomposition de Doob) :

Z -E[Z] = n k=1 ∆ k où ∆ k := E[Z | F k ] -E[Z | F k-1 ].
(

L'étape suivante consiste essentiellement à obtenir une inégalité de comparaison du type

E[ϕ(∆ k ) | F k-1 ] ≤ E[ϕ(T k )], (1.1.4) 
pour toute fonction réelle ϕ d'une classe de fonctions assez riche (afin de pouvoir optimiser), où T k est une variable aléatoire de loi connue. On en déduit alors une inégalité de comparaison pour E[ϕ(Z -E[Z])] puis pour P(Z -E[Z] ≥ x) par l'inégalité de Markov et en optimisant sur la classe de fonctions ou en utilisant des résultats (avec constantes explicites) de Pinelis.

Dans la suite de ce chapitre introductif, nous présentons les résultats de comparaison sur lesquels s'appuie cette thèse ainsi qu'un descriptif des résultats existants. Enfin dans une dernière section, nous décrivons les travaux réalisés durant la thèse et l'organisation du manuscrit.

Pour une présentation complète des phénomènes de concentration, nous renvoyons le lecteur aux ouvrages de Dubhashi et Panconesi [20], Boucheron, Lugosi et Massart [17], Bercu, Delyon et Rio [14] et Ledoux [30].

Inégalités de comparaison 1.2.1 Description de la méthode

Dans toute cette section, X et ξ sont deux variables aléatoires réelles intégrables. On appelle inégalité de comparaison de moments généralisés, toute inégalité :

E[ϕ(X)] ≤ E[ϕ(ξ)], (1.2.1) 
vraie pour toute fonction ϕ d'une certaine classe de fonctions réelles H. Si de plus H est inclus dans l'ensemble des fonctions croissantes positives, par l'inégalité de Markov, on a pour tout x ∈ R

P(X ≥ x) ≤ inf ϕ∈H E[ϕ(X)] ϕ(x) ≤ inf ϕ∈H E[ϕ(ξ)] ϕ(x) . (1.2.2)
Ceci nous donne alors une méthode générale pour obtenir une inégalité de concentration pour X : on cherche une variable aléatoire ξ et une classe de fonctions H vérifiant une inégalité de comparaison (1.2.1), telles que l'on puisse calculer (ou majorer) le membre de droite de (1.2.2).

Lorsque H est la classe des fonctions exponentielles croissantes, c'est-àdire E := {x → e tx , t > 0}, on reconnaît la méthode de Cramér-Chernoff. Les inégalités exponentielles classiques, par exemple, pour les sommes de variables aléatoires indépendantes ou plus généralement pour les martingales, sont basées sur cette méthode (voir les chapitres 2 et 3 de [14]). Considérons, par exemple, le résultat suivant démontré par Hoeffding [25, Théorème 2] : Théorème 1.2.1. Soit a 1 , . . . , a n des réels positifs vérifiant n k=1 a 2 k = 1. Soit ε 1 , . . . , ε n une suite de variables aléatoires indépendantes de loi de Rademacher. Soit Z une variable aléatoire Gaussienne standard et R n := n k=1 a k ε k . Alors pour tout x ≥ 0, (1.2.3)

P(R n ≥ x) ≤ inf
Maintenant, en comparant le membre de droite de (1.2.3) avec le comportement asymptotique connu P(Z ≥ x) ∼ (x √ 2π) -1 e -x 2 /2 quand x tend vers l'infini, il « manque » un facteur d'ordre 1/x pour des réels positifs x grands. La cause apparente de cette perte est que la classe des fonctions exponentielles E n'est pas assez riche. Pour remédier ce problème, on définit une famille de classes de fonctions plus riches : pour tout réel α > 0, on pose

H α + := ϕ : ϕ(u) = ∞ -∞
(u -t) α + µ(dt) pour une mesure borélienne µ ≥ 0 sur R et pour tout u ∈ R .

Pinelis (voir [41, Proposition 1 (ii)] et [START_REF] Pinelis | On normal domination of (super)martingales[END_REF]Proposition 1.1]) a montré les propriétés suivantes concernant les classes de fonctions H α + :

Proposition 1.2.2. (i) E[ϕ(X)] ≤ E[ϕ(ξ)] pour tout ϕ ∈ H α + si et seule- ment si E[(X -t) α + ] ≤ E[(ξ -t) α + ] pour tout t ∈ R. (ii) 0 < β ≤ α implique H α + ⊂ H β + . (iii) Soit α ∈ N * . Alors f ∈ H α
+ si et seulement si f est dérivable (α -1)fois, f (α-1) est convexe sur R et lim x→-∞ f (j) (x) = 0 pour tout j = 0, . . . , α -1.

(iv) Pour tout t ∈ R, tout β ≥ α et tout λ > 0, les fonctions x → (x -t) β + et x → e λ(x-t) appartiennent à H α + .

Au vu de (1.2.2), ces classes sont intéressantes si on peut calculer l'infimum inf

ϕ∈H α + {(ϕ(x)) -1 E[ϕ(X)]}. (1.2.4)
La méthode a été donnée par Pinelis [START_REF] Pinelis | Optimal tail comparison based on comparison of moments[END_REF][START_REF] Pinelis | Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities[END_REF] ; le point clé est le théorème suivant [START_REF] Pinelis | Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities[END_REF]Théorème 4] (voir aussi [START_REF] Pinelis | Optimal tail comparison based on comparison of moments[END_REF]Théorème 3.11]). ≤ c α,0 P(ξ ≥ x), (1.2.6) où la constante c α,0 := Γ(α + 1)(e/α) α est la meilleure possible.

On peut montrer que la borne exponentielle classique est meilleure que (1.2.6) pour des réels x petits. En revanche, dans les applications statistiques où l'intérêt est porté sur les grandes valeurs de x, la borne (1.2.6) est nettement meilleure que la borne exponentielle. Remarque 1.2.4 (À propos de la log-concavité). Pour toute fonction f de R dans R + , on peut définir son enveloppe log-concave notée f LC , comme la fonction minimale log-concave telle que f ≤ f LC . On définit x → P LC (ξ ≥ x) l'enveloppe log-concave de la fonction x → P(ξ ≥ x). On peut alors enlever l'hypothèse de log-concavité requise dans le théorème ci-dessus en remplaçant P(ξ ≥ x) dans (1.2.6) par P LC (ξ ≥ x). Cependant l'optimalité de la constante c α,0 n'est plus assurée.

Dans [START_REF] Pinelis | An optimal three-way stable and monotonic spectrum of bounds on quantiles : a spectrum of coherent measures of financial risk and economic inequality[END_REF], Pinelis a mené une étude approfondie de P α (ξ; x). On peut également trouver une description du calcul pour des α dans {1, 2, 3} et pour des familles de lois spécifiques (exponentielle, uniforme, normale, binomiale et Poissonnienne) dans Bentkus, Kalosha et van Zuijlen [13].

Étant donné que ces résultats de comparaison de moments généralisés sont intéressants en eux-mêmes, mentionnons quelques extensions à des classes plus riches que H α + . Commençons par établir le lien existant entre H 1 + et la classe des fonctions convexes. On renvoie le lecteur à Bentkus [10,Proposition 3] pour une preuve. Proposition 1.2.5. Les propositions suivantes sont équivalentes :

(i) E[X] = E[ξ] et E[ϕ(X)] ≤ E[ϕ(ξ)] pour tout ϕ ∈ H 1 + . (ii) E[ϕ(X)] ≤ E[ϕ(ξ)] pour toute fonction convexe ϕ.
Enfin, Pinelis [START_REF] Pinelis | Convex cones of generalized multiply monotone functions and the dual cones[END_REF]Corollaire 5.8] a obtenu un énoncé général permettant de passer d'une inégalité de comparaison dans H α + avec α ∈ N * , à une inégalité de comparaison dans une classe légérement plus grande sous des conditions de moments. Proposition 1.2.6. Soit k ≤ n deux entiers naturels et définissons la classe de fonctions réelles G k:n := {ϕ : ϕ ∈ C n-1 et ϕ (j) est croissante pour tout j = k -1, . . . , n}, où ϕ (n) désigne la dérivée à droite de la fonction convexe f (n-1) . Alors E[ϕ(X)] ≤ E[ϕ(ξ)] pour tout ϕ ∈ G k:n , si et seulement si les conditions suivantes sont satisfaites :

(i) E[ϕ(X)] ≤ E[ϕ(ξ)] pour tout ϕ ∈ H n + , (ii) E[X j ] = E[ξ j ] pour tout j = 1, . . . , k -1, (iii) E[X k ] ≤ E[ξ k ].

Repères bibliographiques

Dans ce manuscrit, notre intérêt se porte sur les inégalités de comparaison de moments généralisés (associés à une classe de fonctions convexes) et de queues de distribution qui en découlent par la méthode décrite. Ainsi, dans cette sous-section, nous dressons un état des résultats obtenus dans cette direction. D'autres méthodes ont été utilisées afin d'obtenir directement des inégalités de comparaison sur les queues de distribution. Un exemple important est l'étude de la constante c dans la généralisation du Théorème 1.2.1 : P(R n ≥ x) ≤ c P(Z ≥ x) où Z est une variable aléatoire Gaussienne standard. Mentionnons, entre autres, les travaux de Bobkov, Götze et Houdré [16], Bentkus [5,6,8], Pinelis [START_REF] Pinelis | Toward the best constant factor for the Rademacher-Gaussian tail comparison[END_REF] et Bentkus et Dzindzalieta [12] dans lequel les auteurs obtiennent la meilleure constante possible.

Le concept d'inégalité de comparaison convexe (c'est-à-dire pour la classe des fonctions convexes) a été introduit en 1963 par Hoeffding [25,Section 6]. Dans ce papier, il remarque qu'avec un résultat de comparaison convexe entre X et ξ et un contrôle des moments exponentiels de ξ, alors on obtient de ce fait une inégalité de déviation pour X. En exemple, il montre que la somme de n variables aléatoires issues d'un tirage sans remise au sein d'une population finie est plus concentrée pour la classe des fonctions convexes que la somme de n variables aléatoires issues d'un tirage avec remise au sein de cette même population. Il montre également le résultat suivant (voir les inégalités (4.1) et (4.2) de ce même papier) : Lemme 1.2.7. Soit a, b deux réels positifs et X une variable aléatoire tels que -a ≤ X ≤ b. Soit θ une variable aléatoire prenant uniquement les valeurs

-a et b et telle que E[θ] = E[X]. On a alors E[ϕ(X)] ≤ E[ϕ(θ)] pour toute fonction convexe ϕ.
(

Hoeffding avait déjà étudié les phénomènes de comparaison convexe en 1956 [24,Théorème 3]. Il a montré que la somme de n variables aléatoires indépendantes de Bernoulli de paramètre p k est plus concentrée au sens des fonctions strictement convexes qu'une variable aléatoire binomiale de paramètres n et la moyenne arithmétique des p k . Ce résultat a été étendu aux fonctions convexes en 1975 par Gleser [23,Corollary 2.1].

En 1970, Eaton [21] généralise le Théorème 1.2.1 à une classe de fonctions contenant les fonctions réelles x → (|x| -t) 3 + pour tout t > 0 (voir Pinelis [START_REF] Pinelis | Extremal probabilistic problems and Hotelling's T 2 test under a symmetry condition[END_REF]Proposition A.1.]). Puis, en 1974, Eaton [22] (voir son Corollaire 1 et la remarque qui suit) a conjecturé que cette dernière inégalité impliquait l'inégalité de déviation suivante :

P(R n ≥ x) ≤ c 3,0 ( √ 2π) -1 e -x 2 /2 pour tout x > √ 2. (1.2.8)
En 1994, Pinelis [39, Théorème 2.2] a prouvé le raffinement suivant de la conjecture d'Eaton :

P(R n ≥ x) ≤ c 3,0 P(Z ≥ x) pour tout x ∈ R,
(1.2.9) où c 3,0 = 2e Ce résultat repose sur la généralisation suivante du Lemme 1.2.7 de Hoeffding pour les variables aléatoires réelles majorées et à variance majorée :

(F k ) telle que M 0 = 0 et X k ≤ 1, et E[X 2 k | F k-1 ] ≤ s 2 k p.s. (1.2.10) Alors E[ϕ(M n )] ≤ E[ϕ(T n )] pour tout ϕ ∈ H 2 + , où T n = θ 1 + . . . +
Lemme 1.2.9. Soit σ 2 > 0 et b > 0. Soit X une variable aléatoire telle que X ≤ b et E[X 2 ] ≤ σ 2 . Soit θ une variable aléatoire prenant uniquement les valeurs -σ 2 /b et b telle que E[θ] = 0. On a alors E[θ 2 ] = σ 2 et E[ϕ(X)] ≤ E[ϕ(θ)] pour toute fonction ϕ ∈ H 2 + .
De plus, en utilisant un argument de Schur-concavité, similaire à celui de Eaton [22], sous la condition s 2 1 + . . . + s 2 n = ns 2 = constante, il montre que E[ϕ(T n )] est maximale lorsque les θ k sont identiquement distribuées. Il note également que ce même lemme permet de traiter le cas La comparaison directe entre le résultat de Bentkus et celui de Pinelis n'est pas simple. On renvoie le lecteur à [START_REF] Pinelis | On the Bennett-Hoeffding inequality[END_REF] pour une analyse de ces bornes.

X k ≤ b k (où b k ≥ 0) et E[X 2 k | F k-1 ] ≤ s 2 k ) de
E[X 3 k+ ] ≤ β k , et β := n k=1 β k ≤ n k=1 s 2 k := s 2 , 1. Introduction alors E[ϕ(M n )] ≤ E[ϕ(Γ n(s 2 -β) + Πnβ )] pour tout ϕ ∈ H
Pinelis [START_REF] Pinelis | Binomial upper bounds on generalized moments and tail probabilities of (super) martingales with differences bounded from above[END_REF] a généralisé le Théorème 1.2.8 aux surmartingales sous les mêmes hypothèses sur les accroissements. De plus comme x → P(T n ≥ x) n'est pas log-concave, il montre comment améliorer la borne P • (T n ≥ x) que fournit le Théorème 1.2.3 et la remarque qui suit. La même année, dans [START_REF] Pinelis | On normal domination of (super)martingales[END_REF], Pinelis étudie les surmartingales dont les accroissements sont bornés (possiblement asymétriquement) et les compare dans la classe H 5 + à une loi Gaussienne standard améliorant les résultats de Bentkus [8] (obtenus par une méthode plus directe). De plus, (voir aussi [8] qui est antérieur), il remarque que l'association de techniques de martingales avec les inégalités de comparaison obtenues permet de traiter le cas des fonctions séparément Lipschitz :

Théorème 1.2.11. Soit (E 1 , d 1 ), . . . , (E n , d n ) une suite d'espaces métriques de diamètres positifs ∆ 1 , . . . , ∆ n . Soit E n := E 1 × . . . × E n . Soit F une fonction Borélienne de E n dans R 1-Lipschitz : |F (x 1 , . . . , x n ) -F (y 1 , . . . , y n )| ≤ n k=1 d k (x k , y k ). Soit σ 2 n := ∆ 2 1 + . . . + ∆ 2 n le diamètre de McDiarmid. Soit X 1 , . .

. , X n une suite de variables aléatoires indépendantes à valeurs dans E n et soit

Z := F (X 1 , . . . X n ). Alors E[ϕ(Z -E[Z])] ≤ E[ϕ((σ n /2)Z)] pour tout ϕ ∈ H 5 + , (a)
où Z est une variable aléatoire Gaussienne standard. En conséquence,

P(Z -E[Z] ≥ σ n x) ≤ c 5,0 P(Z ≥ 2x). (b)
Ensuite, Pinelis [START_REF] Pinelis | Exact inequalities for sums of asymmetric random variables, with applications[END_REF] remplace la condition de bornitude asymétrique sur les X k par un nouveau type de condition de bornitude asymétrique (ne portant pas directement sur les X k ). Il obtient une comparaison dans H Enfin, dans [START_REF] Pinelis | Optimal binomial, Poisson, and normal left-tail domination for sums of nonnegative random variables[END_REF], Pinelis s'intéresse à la déviation à gauche de sommes de variables aléatoires positives satisfaisant une certaine condition par rapport à une filtration croissante (le cas indépendant en fait partie) et obtient des résultats de comparaison similaires aux résultats précédents dans les classes « réfléchies » de H α + (c'est-à-dire l'ensemble des fonctions x → ϕ(-x) où ϕ ∈ H α + ). Dans la plupart des travaux ayant pour objectif d'améliorer ou d'étendre les résultats de Hoeffding [25] (y compris les résultats mentionnés ci-dessus), peu concernent le cas des variables aléatoires non bornées. En 2008-10, Bentkus [9,10,11] a developpé une méthode afin de relaxer ces hypothèses de bornitude. L'idée générale est de remplacer les bornes déterministes par des dominations stochastiques par des variables aléatoires dont on connaît la loi. Bentkus a montré (dans divers cas) que l'on pouvait définir une variable aléatoire ξ à partir des variables aléatoires dominantes telle que 

E[ϕ(X)] ≤ E[ϕ(ξ)] pour ϕ dans H α + avec α ∈ {1, 2,

Présentation des travaux de thèse 1.3.1 Première partie

Dans la première partie, nous nous intéressons à Z := F (X 1 , . . . , X n ) où X 1 , . . . , X n sont des variables aléatoires à valeurs dans un espace vectoriel (E, . ), F est une fonction de E n dans R et nous ne supposons pas les variables aléatoires X k bornées. Nous appliquons la décomposition en martingale (1.1.3) en remarquant de plus, que pour toute variable aléatoire

A k-1 , F k-1 -mesurable, ∆ k = Z k -A k-1 -E[Z k -A k-1 | F k-1 ] où Z k := E[Z | F k ]. (1.3.1)
Cett décomposition avait déjà été faite par Pinelis et Sakhanenko [START_REF] Pinelis | Remarks on inequalities for large deviation probabilities[END_REF] pour la norme de la somme. Pour remplacer l'absence de condition de bornitude déterministe sur les X k , on suppose que l'on a une condition stochastique 

-ξ k Z k -A k-1 ξ k pour
Z (k) := F (X 1 , . . . , X k-1 , 0, X k+1 , . . . , X n ).
Supposons que pour tout k = 1, . . . , n, il existe des variables aléatoires

T k et W k , positives, de carré intégrables, telles que E k [T k ] et E k [W k ] sont indépendantes de F k-1 , et -T k ≤ Z -Z (k) ≤ W k p.s.
Soit ξ 1 , . . . , ξ n une suite de variables aléatoires positives vérifiant, pour La suite du chapitre est consacrée à plusieurs applications de ce résultat : les fonctions F séparément convexes et séparément Lipschitz, les fonctions de répartition empiriques à poids, les suprema de processus empiriques randomisés ainsi que les chaos d'ordre deux.

tout t ∈ R, max E[(T k -t) + ], E[(W k -t) + ] ≤ E[(ξ k -t) + ]. Alors E[ϕ(Z -E[Z])] ≤ E ϕ n k=1 ε k Q ξ k (U k /2) pour tout ϕ ∈ H 2 + , où Q Y (u) désigne le (1 -u)-

Seconde partie

La seconde partie de la thèse est uniquement centrée sur les suprema de processus empiriques définis par (1.1.2) et associés à une suite de variables aléatoires indépendantes identiquement distribuées selon une loi P .

Dans le Chapitre 3, nous cherchons à obtenir des inégalités de concentration lorsque F est une classe de fonctions non nécessairement bornées possédant une enveloppe de carré intégrable Φ, c'est à dire,

|f | ≤ Φ pour tout f ∈ F , et P (Φ 2 ) < ∞.
Notons tout d'abord la raison pour laquelle appliquer la méthode « directe » de la première partie n'est pas souhaitable ici. Prenons l'exemple traité dans le Chapitre 2, des suprema de processus empiriques randomisés, c'est-à-dire :

Z = sup f ∈F n k=1 Y k f (X k ),
où X 1 , . . . , X n est une suite de variables aléatoires indépendantes à valeurs dans un espace mesurable (X , F), Y 1 , . . . , Y n est une suite de variables aléatoires réelles symétriques telles que les deux suites sont indépendantes et F est une classe de fonctions mesurables de X dans R possédant une enveloppe de carré intégrable. Les bornes obtenues sur les moments de Z -E[Z] par le Théorème 1 font uniquement intervenir la fonction enveloppe de F et permettent de dériver des résultats satisfaisants dans plusieurs cas (voir la section 7 du Chapitre 2). Cependant, pour les suprema de processus empiriques, l'objectif est d'obtenir les extensions exactes des résultats connus sur les processus Gaussiens (qui sont la limite en loi des processus empiriques associés à une classe Donsker) ou des résultats connus sur les sommes de variables aléatoires indépendantes (qui correspondent au cas F réduit à une seule fonction). Ainsi, on voudrait classiquement avoir dans les bornes de déviations les paramètres σ 2 = sup f ∈F

1 n n k=1 E[f 2 (X k )] (« wimpy variance ») et E[Z].
Un exemple important est l'inégalité de type Bennett suivante obtenue par Bousquet [18], améliorant un résultat antérieur de Rio [START_REF] Rio | Une inégalité de Bennett pour les maxima de processus empiriques[END_REF] : Théorème 1.3.1. Soit X 1 , . . . , X n une suite de variables aléatoires indépendantes à valeurs dans un espace mesurable (X , F) de distribution commune P . Soit F une classe de fonctions mesurable de X dans R telle que

P (f ) = 0 et f ≤ 1 pour tout f ∈ F . Soit Z définie par (1.1.2) et po- sons v n := nσ 2 + 2 E[Z]. Soit h la fonction définie, pour tout u ≥ -1, par h(u) := (1 + u) log(1 + u) -u. Alors pour tout t ≥ 0, P(Z -E[Z] ≥ t) ≤ exp -v n h t v n .
Ce type de résultat avait été obtenu initialement par Talagrand [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] au moyen d'inégalités isopérimétriques pour les mesures produits. Ensuite, Ledoux [29] a montré que ces inégalités pouvaient être obtenues à partir de la méthode entropique. Ces travaux ont été le point de départ d'une série de papiers dont l'objectif est d'améliorer les constantes dans ces inégalités et de relaxer les hypothèses : Massart [START_REF] Massart | About the constants in Talagrand's concentration inequalities for empirical processes[END_REF], Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF][START_REF] Rio | Une inégalité de Bennett pour les maxima de processus empiriques[END_REF][START_REF] Rio | Sur la fonction de taux dans les inégalités de Talagrand pour les processus empiriques[END_REF], Klein [26], [18], Klein et Rio [27], Boucheron & al. [17]. Une approche par les inégalités de transports a également été développée par Samson [START_REF] Samson | Infimum-convolution description of concentration properties of product probability measures, with applications[END_REF].

Ainsi, dans le Chapitre 3, nous analysons plus finement les accroissements ∆ k . Nos résultats font intervenir les paramètres σ 2 , la fonction enveloppe de F et les espérances

E k := E sup f ∈F k -1 k j=1 f (X j ). (1.3.2)
Les résultats existants dans le cas non borné font intervenir en plus de σ 2 et de la fonction enveloppe :

-soit la weak variance Σ 2 := E[sup f ∈F n k=1 f 2 (X k )] qui est, contrairement au cas borné, difficile à comparer avec σ 2 (voir la Section 15 dans Boucheron & al. [17]), -soit ne font pas intervenir d'autres paramètres, mais alors concernent la déviation de Z autour de (1 + η)E[Z] avec η > 0 et les constantes sont non explicites (voir Adamczak [1], van de Geer et Lederer [START_REF] Van De Geer | The Bernstein-Orlicz norm and deviation inequalities[END_REF]28]).

Décrivons maintenant notre approche : la structure de processus empiriques nous permet de réécrire la décomposition du Chapitre 2 sous la forme

∆ k = ξ k + r k -E[r k | F k-1 ],
où ξ k est une variable aléatoire de moyenne nulle conditionnellement à F k-1 et r k est une variable aléatoire positive. Nous étudions alors séparément les deux martingales

ξ k et (r k -E[r k | F k-1 ]
) à l'aide d'inégalités de type Fuk-Nagaev obtenues par Courbot [19] et Rio [START_REF] Rio | About the constants in the Fuk-Nagaev inequalities[END_REF]. La première est la partie principale et son étude est directe. L'analyse de la deuxième, partie corrective, se fait à l'aide d'inégalités de comparaison (analogue au Lemme 1.2.12) et grâce au lemme suivant qui repose sur une propriété d'échangeabilité des variables (voir Lemme 3.3.10) :

Lemme 2 On a 0 ≤ E k-1 [r k ] ≤ E n-k+1 p.s.
Ce lemme est en fait l'outil fondamental de toute cette seconde partie. On obtient alors les résultats suivants (voir Théorèmes 3.3.2 et 3.3.3) :

Théorème 3

Soit X 1 , . . . , X n une suite de variables aléatoires à valeurs dans un espace mesurable (X , F) de distribution commune P . Soit F une classe de fonctions mesurables de X dans R telle que P (f ) = 0 pour tout f ∈ F . Soit Φ une fonction enveloppe de F de carré intégrable. Soit Z définie par (1.1.2). Soit x > 0. Pour tout s > 0, on a :

P((Z -E[Z]) + ≥ x) ≤ 1 + x 2 snσ 2 -s/2 + 1 + x 2 sV n -s/2 + 2n P Φ(X 1 ) ≥ x 2s .
Si Φ(X 1 ) possède un moment faible d'ordre > 2, pour tout u ∈]0, 1[,

P Z -E[Z] > 2 log(1/u) σ √ n+ V n +3 n 1/ µ Λ + (Φ(X 1 ))u -1/ ≤ u.
Λ + (Y ) désigne le moment faible d'ordre pour toute variable aléatoire réelle Y , V n = n k=1 E[ξ 2 k ] où pour tout k = 1, . . . , n, ξ k est une variable aléatoire dont la loi est définie par Φ et E k , et telle que V n /n converge vers 0 lorsque n tends vers 0 (on donne une expression explicite de V n ). On donne également une application aux suprema de processus empiriques satisfaisant une condition de queues de distribution lourdes.

Ensuite, dans le Chapitre 4, nous remarquons que la démarche précédente peut être utilisée pour obtenir des résultats dans la bande de grandes déviations dans le cas des classes de fonctions uniformément bornées, étendant ainsi les résultats obtenus par Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF] pour les suprema de processus empiriques indexés par une classe d'ensembles. Ce dernier résultat est le seul à notre connaissance dans cette direction. Le résultat principal est le suivant (voir Théorème 4.3.1) :

Théorème 4

Soit X 1 , . . . , X n une suite de variables aléatoires indépendantes à valeurs dans un espace mesurable (X , F) de distribution commune P . Soit F une classe de fonctions mesurables de X dans [-1, 1] telle que P (f ) = 0 pour tout f ∈ F . Soit Z définie par (1.1.2). Pour tout f ∈ F , soit f et F les fonctions définies par

f (t) := log P (e tf ) et F (t) := sup f ∈F f (t) pour tout t ≥ 0.
(1.3.3)

Soit Ē := n -1 (E 1 + . . . + E n ) et v n := ( Ē/2)(1 -( Ē/2)). Soit θ (n)
une variable aléatoire centrée prenant uniquement les valeurs -v n et 1. On dénote par vn la transformée log-Laplace de θ (n) . Alors pour tout x ≥ 0,

P(Z -E[Z] > n( * -1 F (x) + 2 * -1 vn (x))) ≤ e -nx ,
où * X désigne la transformée de Young de X pour toute variable aléatoire réelle X.

Ce résultat est à rapprocher du principe de grandes déviations obtenu par Wu [START_REF] Wu | Large deviations, moderate deviations and LIL for empirical processes[END_REF] où il montre que si les fonctions de F sont à valeurs dans [0, 1], alors la fonction de taux est inf f ∈F * f . La preuve repose sur les mêmes idées que le résultat du Chapitre 3, en utilisant cette fois le Théorème 1.2.8 de Bentkus pour contrôler la partie corrective. Aussi, un résultat récent de Baraud [3] pour la majoration de E[Z] lorsque F est une VC-subgraph classe, nous permet de fournir une borne avec constantes explicites pour * -1 vn (x).

Dans le Chapitre 5, on exploite les Théorèmes 1.2.8 et 1.2.10 (respectivement de Bentkus et Pinelis) lorsque les fonctions de F sont à valeurs dans [-a, 1] (pour un a > 0) ou dans ] -∞, 1]. On compare ainsi dans les classes H α + avec α = 2 ou 3 selon les cas, Z -E[Z] avec une somme de variables aléatoires indépendantes de loi à deux points ou avec une somme d'une loi de Poisson et d'une loi Gaussienne. En particulier, appliqué aux suprema de processus empiriques indexés par des classes d'ensembles, nos résultats étendent un résultat de Rio [START_REF] Rio | Inégalités de concentration pour les processus empiriques de classes de parties[END_REF] pour les ensembles de petite mesure sous P . La preuve repose sur une vérification stricte des hypothèses des théorèmes mentionnés, toujours à l'aide du Lemme 2.

Enfin, dans le Chapitre 6, on s'intéresse au cas où les fonctions de F sont majorées par 1 mais n'ont pas de variance. Le seul résultat à notre connaissance dans cette direction est donné par Rio [START_REF] Rio | Inégalités exponentielles pour les processus empiriques[END_REF]. Nous avons déjà remarqué précédemment, que si les fonctions possèdent une variance, la démarche adoptée dans le Chapitre 2 n'est pas favorable (puisque l'on n'a alors pas le bon terme de variance dans les bornes de déviations). En revanche, cette méthode s'applique quand même lorsque la variance est infinie. C'est ce qui est exploité dans ce Chapitre. Aussi, afin de fournir des constantes explicites, on suppose que, sous P , les fonctions ont une queue de distribution du type t → t p pour 1 < p < 2 sur la gauche. Le résultat principal peut alors être résumé ainsi (voir Théorème 6.2.1) :

Théorème 5

Soit 1 < p < 2. Soit X 1 , . . . , X n une suite de variables aléatoires à valeurs dans un espace mesurable (X , F) de distribution commune P . Soit F une classe de fonctions mesurables de X dans ] -∞, 1] telle que pour tout f ∈ F , P (f ) = 0 et

P(f (X 1 ) ≤ -t) ≤ min{t -p , 1}.
Soit Z définie par (1.1.2). Alors pour x suffisamment petit,

P(Z -E[Z] ≥ n 1/p x) ≤ exp -K p x q 1 + O x 2/(p-1) n -1/q
, (1.3.4) où q = p/(p -1) est l'exposant conjugué de Hölder de p et K p est une constante dépendant uniquement de p.

On remarque que ce résultat est analogue au résultat connu suivant lorsque l'on suppose que les fonctions ont une variance finie :

P(Z -E[Z] ≥ √ nx) ≤ exp - x 2 2v 1 + O xn -1/2 , (1.3.5) où v := σ 2 + n -1 E[Z].

Part I

Concentration inequalities for separately convex functions

Chapter 2

Concentration inequalities for separately convex functions

We provide new comparison inequalities for separately convex functions of independent random variables. Our method is based on the decomposition in Doob martingale. However we only impose that the martingale increments are stochastically bounded. For this purpose, building on the results of Bentkus ( [4], [5], [6]), we establish comparison inequalities for random variables stochastically dominated from below and from above. We illustrate our main results by showing how they can be used to derive deviation or moment inequalities for functions which are both separately convex and separately Lipschitz, for weighted empirical distribution functions, for suprema of randomized empirical processes and for chaos of order two. This Chapter is adapted from the work [19].

Introduction

Let E be a vector space. A function F from E n into R is said to be separately convex if it is convex in each coordinate. Let (Ω, F, P) be a probability space and X 1 , . . . , X n be a finite sequence of independent and centered random variables with values in E. Throughout the chapter, F is a measurable separately convex function from E n to R. In this work, we are concerned with deviation inequalities for the random variable Z := F (X 1 , . . . , X n ).

(2.1.1)
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Before going further, let us introduce some notations which are used in this chapter. Set F 0 := {∅, Ω} and for all k = 1, . . . , n, F k := σ(X 1 , . . . , X k ) and

F k n := σ(X 1 , . . . , X k-1 , X k+1 , . . . , X n ). Let E k (respectively E k n ) denote the conditional expectation operator associated to F k (resp. F k n ). Set also Z k := E k [Z],
(2.1.2)

Z (k) := F (X 1 , . . . , X k-1 , 0, X k+1 , . . . , X n ). (2.1.3)
Our approach to obtain deviation inequalities is based on the martingale method. The idea is to decompose the random variable Z -E[Z] as a sum of martingale increments. Precisely, the sequence (Z k ) is an (F k )-adapted martingale (the Doob martingale associated with Z -E[Z]) and

Z -E[Z] = n k=1 ∆ k , where ∆ k := Z k -Z k-1 .
The main problem is to control the increments ∆ k . Classical concentration inequalities for martingales assume that their increments are bounded (see, for example, Chapter 3 of Bercu, Delyon and Rio [8]). In this chapter, our hypotheses on F and on the random variables X 1 , . . . , X n do not imply a deterministic boundedness condition on the martingale increments, but only a symmetric two-sided stochastic one : -ξ k Z k -Z (k) ξ k , for some stochastic order , where ξ 1 , . . . , ξ n are real-valued nonnegative random variables. ∆ k and Z k -Z (k) are linked by the following observation:

∆ k = Z k -E k [Z (k) ] -E k-1 [Z k -E k [Z (k) ]].
(2.1.4)

Note that this observation was already made by Pinelis and Sakhanenko [26] (see their Inequality (9)) when the function F is the norm of the sum. Let us now explain which stochastic order we work with. Let α > 0. We define the class H α + of functions ϕ from R into R as follows:

H α + := ϕ : ϕ(u) = ∞ -∞ (u -t) α + µ(dt) for some Borel measure µ ≥ 0 on R and all u ∈ R .
Here, as usual, x + := x ∨ 0 := max(0, x) and x α + := (x + ) α for all reals x. Using the family H α + , we define a family of stochastic order by the formula

X H α + ξ if E[ϕ(X)] ≤ E[ϕ(ξ)] for all ϕ ∈ H α + , (2.1.5)
where X and ξ are real-valued random variables. We refer the reader to Pinelis [24] for more on this stochastic order. Our main results in this chapter will be expressed in terms of comparison inequalities with respect to

H α + between Z -E[Z]
and a function of ξ 1 , . . . , ξ n . Concerning general functions of independent random variables, Boucheron, Bousquet, Lugosi and Massart [9] provided general moment inequalities, using an extension of the entropy method proposed by Ledoux [18]. They derived moment inequalities for various functions such as homogeneous tetrahedral polynomials in Rademacher variables or unbounded empirical processes. Recently, Adamczak and Wolff [2] (see their Theorem 1.4) gave a concentration inequality for polynomials of independent sub-Gaussian random variables. Moreover, if F is separately Lipschitz (E is then assumed equipped with a norm), Z k -Z (k) satisfies naturally our stochastic boundedness conditions. When F is only separately Lipschitz, a corollary of a result of Pinelis [20] gives that

F (X 1 , . . . , X n ) -E[F (X 1 , . . . , X n )] H 1 + 2 n k=1 ε k X k ,
where ε 1 , . . . , ε n is a sequence of independent Rademacher random variables. Kontorovich [16] gave extensions of McDiarmid's inequality for metric spaces with unbounded diameter. He required a sub-Gaussian control of the symmetrized of X k -X k where X k is an independent copy of X k . A particular case of separately convex functions is suprema of empirical processes : F (x 1 , . . . , x n ) = sup t∈T n i=1 x i,t , where T is a countable index set. Only few results concern concentration inequalities for suprema of unbounded empirical processes : assuming weak tails with respect to suitable Orlicz norms, Adamczak [1], and van de Geer and Lederer [29] obtained exponential bounds. Later van de Geer and Lederer [17] required only weak moment conditions on an envelope of the class of functions and obtained generalized moment inequalities. In this chapter, we will also treat the case of F (x 1 , . . . , x n ) = sup t∈T 1≤i<j≤n x i,t x j,t , which is a particular case of suprema of polynomials in independent random variables.

We shall use the following notations throughout the chapter. The quantile function of a real-valued random variable X which is the general inverse of the nonincreasing and right continuous tail function of X, P(X > t), is denoted by Q X . It is defined by

Q X (u) := inf{x ∈ R : P(X > x) ≤ u}. (2.1.6)
Moreover, for p ≥ 1, let L p be the space of real-valued random variables with a finite absolute moment of order p and we denote by X p the L p -norm of X. As usual for any a := (a 1 , . . . , a n ) ∈ R n and any real r ≥ 1, we write

a r = n k=1 |a k | r 1/r
, and

a ∞ = max 1≤k≤n |a k |.
Finally, for any real function f , we denote by f (a+) (respectively f (a-)) the right (resp. left) limit of f at point a.

The chapter is organized as follows. In Section 2.2, we state the main results of this chapter. In Section 2.3, we explain how we can extract a tail comparison inequality from a comparison inequality with respect to the stochastic order associated with the class H α + . In Section 2.4, new comparison inequalities for unbounded real-valued random variables are given. The results in this section will allow us to control the increments of the Doob martingale associated to Z -E[Z]. We provide detailed proofs of Sections 2.2 and 2.4 in Section 2.9. We give some applications of the main results in other sections : in Section 2.5 we examine the special case where F is also separately Lipschitz. Section 2.6 considers the weighted empirical distribution functions, Section 2.7 deals with suprema of randomized empirical processes. Finally, Theorems 2.2.1 and 2.2.3 are applied to chaos of order two in Section 2.8.

Main results

Theorem 2.2.1. Let Z and Z (k) be defined respectively by (2.1.1) and (2.1.3). Assume that for all k = 1, . . . , n, there exist nonnegative, square integrable random variables

T k and W k , such that E k [T k ] and E k [W k ] are independent of F k-1 and -T k ≤ Z -Z (k) ≤ W k , almost surely. (2.2.1)
Let ξ 1 , . . . , ξ n be any finite sequence of nonnegative random variables such that, for any t ∈ R, 

max E[(T k -t) + ], E[(W k -t) + ] ≤ E[(ξ k -t) + ]. (2.2.2) Then Z -E[Z] H 2 + n k=1 ε k Q ξ k (U k /2), ( 2 
W k such that E k [T k ] and E k [W k ] are nde- pendent of F k-1
, and nonnegative, L r -integrable and

F k n -measurable random variables ψ k , conditionally independent, with respect to F k , of T k and W k , such that -T k ψ k ≤ Z -Z (k) ≤ W k ψ k , almost surely. ( 2 

.2.4)

Let ξ 1 , . . . , ξ n be any finite sequence of nonnegative random variables such that, for any t ∈ R,

max E[(T k -t) + ], E[(W k -t) + ] ≤ E[(ξ k -t) + ].
(2.2. 5)

Then (Z -E[Z]) + 2 r ≤ (p -1) n k=1 E k-1 [ψ k ] 2 r Q ξ k (U k /2) 2 r , (2.2.6) 
where U 1 , . . . , U n are independent random variables uniformly distributed on [0, 1].

Concentration inequalities from comparison inequalities in H α

+

In this section, we repeat the relevant materials from [22] and [23] without proofs, of how one obtains a deviation inequality from a comparison inequality with respect to the stochastic order associated with the class H α + , α > 0, such as in Theorem 2.2.1.

First, let us mention some facts about the class

H α + . It is easy to see that 0 < β < α implies H α + ⊂ H β + .
Moreover, for any real t and any positive λ, the functions x → (x -t) α + and x → e λ(x-t) belong to H α + . Finally, the following assertions are equivalent:

(i) X H α + ξ (ii) E[(X -t) α + ] ≤ E[(ξ -t) α + ] for all t ∈ R.
The following is a special case of Theorem 4 of Pinelis [23].

Theorem 2.3.1. Suppose that α > 0, X and ξ are real-valued random variables, and the tail function

x → P(ξ ≥ x) is log-concave on R. Then the comparison inequality X H α + ξ implies that, for all x ∈ R, P(X ≥ x) ≤ P α (ξ ; x) := inf t<x E[(ξ -t) α + ] (x -t) α (2.3.1) ≤ c α,0 P(ξ ≥ x), (2.3.2)
where the constant factor c α,0 := Γ(α + 1)(e/α) α is the best possible.

Remark 2.3.2.

A thorough study of P α (ξ ; x) can be found in Pinelis [24]. See also Bentkus, Kalosha and van Zuijlen [7] for a description of the calculation for specific α and specific families of distribution.

Remark 2.3.3. Since the class H α

+ contains all increasing exponential functions, P α (ξ ; x) is also majorized by the exponential bound inf λ>0 e -λx E[e λξ ]. For all small enough x, the exponential bound is better than (2.3.2). However, for large values of x, the latter will be significantly better than the exponential one.

New comparison inequalities

The purpose of this section is to obtain extensions of an inequality of Hoeffding to unbounded random variables. In particular, Lemma 2.4.6 below will be our main tool to control the increments of the Doob martingale associated to Z -E[Z]. First, let us recall the definition of the usual stochastic order. Let X and Y be two real-valued random variables. X is said to be smaller than Y in the usual stochastic order, denoted by

X ≤ st Y , if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R.
Throughout this section, η and ψ are real-valued random variables such that

η ∈ L 1 , ψ ∈ L 2 , and η ≤ st ψ. (2.4.1)
We introduce a family of probability distributions related to the distributions of η and ψ. We first recall some classical notations. The distribution function of a real-valued random variable X is denoted by F X . The generalized inverse of F X is defined by

F -1 X (u) := inf{x ∈ R : P(X ≤ x) ≥ u}.
Definition 2.4.1. Let assumption (2.4.1) hold. For every q ∈]0, 1[, we set

a q := F -1 η (1 -q), b q := F -1 ψ (1 -q)
and let F q be the distribution function defined by

F q (x) :=      F η (x) if x < a q , 1 -q if a q ≤ x < b q , F ψ (x) if x ≥ b q .
We also set F 0 := F η and F 1 := F ψ . In the following, we always denote by ζ q a random variable having F q as distribution function.

Remark 2.4.2. A similar construction can be found in Bentkus [4], [5] and [6].

The following bound was obtained by Bentkus [6, Theorem 1] with a little stronger assumption on the stochastic boundedness condition. Indeed Bentkus supposed that η ≤ st X ≤ st ψ, which implies our hypothesis (2.4.2).

Lemma 2.4.3. Let assumption (2.4.1) hold. Let ζ q be as in Definition 2. 4

.1 and let X be a real-valued integrable random variable such that for any

t ∈ R, E[(X -t) + ] ≤ E[(ψ -t) + ], E[(t -X) + ] ≤ E[(t -η) + ].
(2.4.2)

Let q 0 be the highest real in [0, 1] such that 1 1-q 0 (F -1 ψ (u) -F -1 η (u)) du = E[X] -E[η]. (2.4.3)
Then, X and ζ q 0 have the same expectation and for any t ∈ R,

E[(X -t) + ] ≤ E[(ζ q 0 -t) + ]. (2.4.4)
Consequently, for any convex function ϕ,

E[ϕ(X -E[X])] ≤ E[ϕ(ζ q 0 -E[ζ q 0 ])].
(2.4.5)

Remark 2.4.4. As noticed by Bentkus ([4], [5], [6]), we can see this lemma as an extension of an inequality of Hoeffding (see Inequalities (4.1) and (4.2)

in [14]). Indeed, if η and ψ are two constants, respectively equal to a and b, it easy to see that (2.4.1) and (2.4.2) imply that a ≤ X ≤ b a.s. Then we obtain for all convex functions

ϕ that E[ϕ(X)] ≤ E[ϕ(θ)]
where θ is twovalued random variable taking the values a and b, and such that

E[X] = E[θ].
Remark 2.4.5. The special case 0 ≤ X ≤ st ψ was considered by Bentkus ([4], [5]). In [6], Bentkus obtained similar results when X ≤ st ψ and the variance of X is known.

The right-hand side of (2.4.5) still depends on the expectation of X by the term E[ζ q 0 ]. The next lemma provides a bound in the symmetric case η = -ψ, which does not depend of E[X]. The drawback is that we have to pick ϕ in the smaller class of functions H 2 + .

Lemma 2.4.6. Let ψ and η be two random variables, respectively nonnegative and nonpositive, satisfying (2.4.1). Let ζ q , a q and b q be given by Definition 2.4.1.

(i) Let q := inf{q ≥ 1/2 : b q + a q ≤ 2 E[ζ q ]}. Then for all t ∈ R, q → E[(ζ q -E[ζ q ] -t) 2 + ] is nonincreasing on [q, 1].
(ii) Assume that η = -ψ and let X be a real-valued integrable random variable satisfying 

(2.4.2). If E[X] ≥ 0, then X -E[X] H 2 + ζ 1/2 . ( 2 
such that E[Y | X] = 0 almost surely. Then (X + Y ) + 2 r ≤ X + 2 r + (r -1) Y 2 r .
Exactly as in Rio [27, Theorem 2.1], we deduce from Proposition 2.4.8 the following inequality by induction on n.

Corollary 2.4.9. Let r > 2 and (M n ) n≥0 be a sequence of random variables in L r . Set ∆M k := M k -M k-1 . Assume that E[∆M k | M k-1 ] = 0 almost surely for any positive k. Then M n+ 2 r ≤ M 0+ 2 r + (r -1) n k=1 ∆M k 2 r .
(2.4.7)

Lipschitz functions of independent random vectors

Throughout this section, we assume that (E, . ) is a separable Banach space. In addition to being separately convex, we suppose that F is separately 1-Lipschitz. Precisely, F satisfies the following Lipschitz type condition:

|F (x 1 , . . . , x n ) -F (y 1 , . . . , y n )| ≤ n k=1 x k -y k . Now, Z = F (X 1 , . . . , X n ) naturally fulfills the hypotheses (2.2.1) -(2.2.2) of Theorem 2.2.1 with ξ k = X k .

Moment inequality

Proposition 2.5.1. Let r ≥ 2 and define the function Q by

Q 2 (u) := n k=1 Q 2 X k (u). Then E[(Z -E[Z]) r + ] ≤ g r r 1/2 0 Q r (u)du, (2.5.1)
where g is standard Gaussian random variable.

Example 2.5.2. Let X be a centered random vector with values in E and a 1 , . . . , a n be deterministic reals. Let X 1 , . . . , X n be n independent copies of X. Define the function F by

Z := F ( X 1 , . . . , X n ) := n k=1 a k X k ,
where

X k := a k X k . The definition of the quantile function (2.1.6) implies that for any k = 1, . . . , n, Q X k (u) = |a k |Q X (u). Then Proposition 2.5.1 yields for any r ≥ 2 that E[(Z -E[Z]) r + ] ≤ g r r n k=1 a 2 i r/2 1/2 0 Q r X (u)du ≤ g r r n k=1 a 2 i r/2 1 0 Q r X (u)du (2.5.2)
We recall now that for any real-valued random variable ξ, Q ξ (U ) has the same distribution as ξ for any random variable U with the uniform distribution over [0, 1], and that g r r = π -1/2 2 r/2 Γ((r + 1)/2), where Γ(.) is the usual Gamma function. Then we get from (2.5.2),

E[(Z -E[Z]) r + ] ≤ π -1/2 2 n k=1 a 2 i r/2 E[ X r ] Γ r + 1 2 . (2.5.3)
We now apply this result to suprema of empirical processes. Let Y be a random variable valued in some measurable space (X , A) and let

Y 1 , . . . , Y n be n independent copies of Y . Let F be a countable class of measurable functions from X into R such that E[f (Y )] = 0 for all f ∈ F . We assume that F has an r-integrable envelope function Φ, that is |f | ≤ Φ for all f ∈ F , and Φ ∈ L r . (2.5.4) Let M r := E[Φ r (Y )].
We denote by l ∞ (F ) the space of all bounded real functions on F equipped with the norm

x F := sup f ∈F |x(f )|, making (l ∞ (F ), . F ) a Banach space. We define Z := F ( X 1 , . . . , X n ) := sup f ∈F n k=1 a k f (Y k ) ,
where

X k := (a k f (Y k )) f ∈F .
We first assume that F is finite which implies that (l ∞ (F ), . F ) is separable. The countable case will follow from the finite case by the virtue of the monotone convergence theorem. Then (2.5.3) yields

(Z -E[Z]) + r ≤ π -1/2r 2 n k=1 a 2 i M Γ r + 1 2 1/r , (2.5.5)
where Γ(.) is the usual Gamma function. This result improves Theorem 4.1 of Lederer and van de Geer [17].

Proof of Proposition 2.5.1. Theorem 2.2.1 applied with

ξ k = X k and (2.1.5) specified to ϕ(x) = x r + yield that E[(Z -E[Z]) r + ] ≤ E n k=1 ε k Q X k (U k /2) r + . (2.5.6) Since the random variables ε k Q X k (U k /2) are symmetric, E n k=1 ε k Q X k (U k /2) r + = 1 2 E n k=1 ε k Q X k (U k /2) r .
(2.5.7)

Conditioning by F n and using the classical Khintchine inequality with the best possible constant founded by Whittle (for r ≥ 3) and Haagerup (for r > 0) (see the Introduction of Figiel et al. [13] and references therein for a statement of these results), one has

1 2 E n k=1 ε k Q X k (U k /2) r ≤ 1 2 g r r E n k=1 Q 2 X k (U k /2) r/2 , (2.5.8)
where g is a standard Gaussian random variable. Furthermore let us prove the following general lemma:

Lemma 2.5.3. Let r ≥ 1. Let ξ 1 , . . . , ξ n be nonnegative random variables. Then ξ 1 + . . . + ξ n r ≤ Q ξ 1 (U ) + . . . + Q ξn (U ) r ,
where U has the uniform distribution over [0, 1].

Proof. First, by Riesz Representation Theorem we get

ξ 1 + . . . + ξ n r = sup W r ≤1 |E[W (ξ 1 + . . . + ξ n )]|, (2.5.9)
where r is such that 1/r + 1/r = 1. Moreover, observe that

E[|W |(ξ 1 + . . . + ξ n )] ≤ 1 0 Q |W | (u)Q ξ 1 +...+ξn (u)du (2.5.10) ≤ 1 0 Q |W | (u)(Q ξ 1 (u) + . . . + Q ξn (u))du, (2.5.11) 
where we use Lemma 2.1 (a) of Rio [28] in (2.5.10) and Lemma 2.1 (c) of [28] in (2.5.11). Finally, combining (2.5.9), (2.5.11) and an application of Riesz Representation Theorem concludes the proof of Lemma 2.5.3.

Then this lemma applied to the right-hand side of 2.5.8 leads to the inequality:

E n k=1 Q 2 X k (U k /2) r/2 ≤ E n k=1 Q 2 X k (U/2) r/2 , (2.5.12)
where U is a random variable distributed uniformly on [0, 1]. Finally, combining (2.5.6) -(2.5.12), one has (2.5.1) which ends the proof.

A deviation inequality for the bounded case

Consider the bounded case X k ≤ a k a.s., for some reals a k > 0. Set also a = (a 1 , . . . , a n ). Theorem 2.2.1 with 

ξ k = a k implies that Z -E[Z] H 2 + n k=1 a k ε k , ( 2 
∈ [0, 1], * (x) = 1 2 (1 + x) log(1 + x) + (1 -x) log(1 -x) ,
and

P(Z -E[Z] ≥ a 1 x) ≤ exp - a 2 1 a 2 2 * (x) . (2.5.14)
Proof. Since the exponential function x → e tx belongs to H 2 + for any t > 0, (2.5.13) ensures that

log E[exp(t(Z -E[Z]))] ≤ log E exp t n k=1 ε k a k = n k=1 (a k t). (2.5.15)
Note that (.) = tanh(.) is a concave function on [0, ∞[. Now, from (2.5.15), proceeding exactly as in Bercu, Delyon and Rio [8] 

Weighted empirical distribution functions

Let U be a random variable uniformly distributed on [0, 1], U 1 , . . . , U n be n independent copies of U , and denote the uniform empirical process by

e n (t) = 1 √ n n k=1 (1 U k ≤t -t) for any t ∈ [0, 1].
Let q :]0, 1[→ R be a weight function, continuous, such that

q(t) =q(1 -t), q(t) > 0, 1/2 0 dt q 2 (t) < ∞,
and t → q(t) t is nonincreasing.

Remark 2.6.1. The previous assumptions implies that t → q(t)/(1 -t) is nondecreasing.

Example 2.6.2. The most common such weight functions q are

q(t) = t(1 -t) α , for any α ∈]0, 1[, q(t) = max t(1 -t), δ(1 -δ) , for some 0 < δ < 1.
In this section, the quantity of interest is

Z := sup 0<t<1 e n (t) q(t) .
We refer the reader to Csörgő and Horváth [11] for asymptotic results on this object. Setting now the class of functions F :=

1 [0,t] -t q(t)
: t ∈]0, 1[ and

X k := (f ( U k )) f ∈F , we can write Z as Z = F ( X 1 , . . . , X n ) := 1 √ n sup f ∈F n k=1 f ( U k ).
Proposition 2.6.3. We have

Z -E[Z] H 2 + 1 √ n n k=1 ε k 1 -U k /2 q(U k /2) , (2.6.1)
where ε 1 , . . . , ε n are independent Rademacher random variables, U 1 , . . . , U n are independent random variables distributed uniformly on [0, 1] and these two families are independent.

Remark 2.6.4. Define ∞ (F ) := {x : F → R : sup f ∈F |x(f )| < ∞} equipped with the norm x F := sup f ∈F |x(f )|.
Then, the summands in the right-hand side of (2.6.1) are equal to X k F , leading to

Z -E[Z] H 2 + 1 √ n n k=1 ε k X k F .
Remark 2.6.5. The uniform case also treats the general one. Precisely, let X 1 , . . . , X n be n independent copies of a real-valued random variable X with a continuous distribution function F X . Then

Z := 1 √ n sup t∈R 0<F X (t)<1 n k=1 (1 X i ≤t -F X (t)) q(F X (t)) = sup t∈R 0<F X (t)<1 e n (F X (t)) q(F X (t))
.

Proceeding in the same way as in the proof of Proposition 2.5.1, we obtain the following moment inequality:

Corollary 2.6.6. Let α ∈]0, 1[, q(t) = t(1 -t) α , and r ≥ 2 such that rα < 2. Then E[(Z -E[Z]) r + ] ≤ g r r 1/2 0 (1 -u) (2-α)(r/2) u -αr/2 du, (2.6.2)
where g is a standard Gaussian random variable.

Example 2.6.7. With r = 2 and α = 1/2,

E[(Z -E[Z]) 2 + ] ≤ 1 2 + 3 16 π ≈ 1.089.
Proof of Proposition 2.6.3. For any function f in F and for all x ∈]0, 1[,

- x q(x) ≤ f (x) ≤ 1 -x q(x) . Since q(t) = q(1 -t), W := (1 -U )/q(1 -U ) and T := U/q(U ) have the same distribution. Moreover Q T (U k /2) = (1 -U k /2)/q(U k /2
). Then Theorem 2.2.1 implies (2.6.1), and the proof is completed.

Suprema of randomized empirical processes

Let X 1 , . . . , X n be a sequence of independent random variables with values in some Polish space X and Y 1 , . . . , Y n be a sequence of independent real-valued symmetric random variables such that the two sequences are independent. Let F be a countable class of measurable real-valued functions and define the function F by

Z := F ( X 1 , . . . , X n ) := sup f ∈F n k=1 Y k f (X k ), (2.7.1) 
where

X k := (Y k f (X k )) f ∈F .
Assume that there exist nonnegative functions G and H such that for any function

f in F , -G ≤ f ≤ H. It thus follows that -T k ≤ Z -Z k ≤ W k ,
where

W k := Y k+ H(X k ) + Y k-G(X k ), T k := Y k-H(X k ) + Y k+ G(X k ). Throughout, we assume that E[G 2 (X k )] < ∞ and E[H 2 (X k )] < ∞ for any k = 1, . . . , n. Since Y is symmetric, W k and T k have the same distribution. Then Theorem 2.2.1 yields Z -E[Z] H 2 + n k=1 ε k Q W k (U k /2). (2.7.2)
Throughout this section we will use the following notation:

s 2 := n k=1 s 2 k := n k=1 E[Y 2 k ],
(2.7.3)

σ 2 := n k=1 σ 2 k := n k=1 E[Q 2 W k (U k /2)].
(2.7.4)

In the rest of this section, we present how (2.7.2) may be used to derive concentration inequalities through several examples. However, in some cases, this bound can prove difficult to manipulate. Now, we show that, due to the symmetry of the Y k , we can derive a more tractable comparison moment inequality, which is, however, less efficient. Precisely, let us define

ξ k := Y k+ (G(X k ) + H(X k )).
Let us first observe the following lemma:

Lemma 2.7.1. For any t ∈ R, E[(W k -t) + ] ≤ E[(ξ k -t) + ].
Proof. Since W k and ξ k are nonnegative, the inequality is trivially true for t < 0. Let now t ≥ 0. By the definition of W k and since Y k is symmetric and independent of X k ,

E[(W k -t) + ] = E[(Y k+ H(X k ) -t) + ] + E[(Y k+ G(X k ) -t) + ]
Now, the superadditivity of the function

x → (x -t) + on [0, ∞[ yields E[(W k -t) + ] ≤ E[(Y k+ (H(X k ) + G(X k )) -t) + ] = E[(ξ k -t) + ],
which ends the proof.

Moreover, since Y k is symmetric and independent of

X k , ε k Q ξ k (U k /2) and Y k (G(X k ) + H(X k ))
have the same distribution. Consequently, we derive from Lemma 2.7.1 and Theorem 2.2.1 that

Z -E[Z] H 2 + n k=1 Y k (G(X k ) + H(X k )).
(2.7.5)

Example 2.7.2. Let F 0 : R → [0, 1] be a nondecreasing function. Let X 1 , . . . , X n be independent real-valued random variables and let q :]0, 1[→ R be a weight function, continuous, such that

q(t) > 0, 1/2 0 dt q 2 (t) < ∞, t → q(t) t is nonincreasing, and t → q(t) 1 -t is nondecreasing.
Define now

Z := sup t∈R 0<F 0 (t)<1 n k=1 Y k 1 X k ≤t -F 0 (t) q(F 0 (t)) .
In this case

H(x) = 1 -F 0 (x) q(F 0 (x))
, and

G(x) = F 0 (x-) q(F 0 (x-)) , whence Z -E[Z] H 2 + n k=1 Y k 1 -F 0 (X k ) q(F 0 (X k )) + F 0 (X k -) q(F 0 (X k -))
(2.7.6)

H 2 + n k=1 Y k q(F 0 (X k )) , (2.7.7)
where the last inequality come from Theorem 2.2.1 applied to the right-hand side of (2.7.6

) since Y k ≤ Y k+ and 0 ≤ G(X k ) + H(X k ) ≤ 1/q(F 0 (X k ))
by the assumption on q. Let us now give a relevant example. We assume that X 1 , . . . , X n are n independent copies of a random variable U distributed uniformly on [0, 1]. Let F 0 = F U be the distribution function of U and let q(t) = max(t, δ) for some 0 < δ < 1. Then (2.7.7) gives

E[(Z -E[Z]) 2 + ] ≤ 1 2 n k=1 E Y 2 k max(X k , δ) = 1 2 s 2 log e δ .

Case G = 0

Here

W k = Y k+ H(X k ). Since Y k is symmetric and independent of X k , ε k Q W k (U k /2) and Y k H(X k ) have the same distribution. Then (2.7.4) becomes σ 2 = n k=1 E[Y 2 k ] E[H 2 (X k )], (2.7.8) 
and (2.7.2) becomes For any x > 0,

Z -E[Z] H 2 + n k=1 Y k H(X k ). ( 2 
P(Z -E[Z] ≥ σx) ≤ min 1 1 + x 2 , 1 2x 2 .
(2.7.10)

Proof. Let ξ := n k=1 Y k H(X k ). Let x > 0.
From (2.7.9) and the result of Pinelis (2.3.1), we derive

P(Z -E[Z] ≥ x) ≤ P 2 (ξ ; x) = inf t<x E[(ξ -t) 2 + ] (x -t) 2 .
(2.7.11)

Taking now t = 0 in the right-hand side of (2.7.11) gives the bound

P 2 (ξ ; x) ≤ σ 2 /(2x 2 ).
(2.7.12)

Moreover, since z 2 + ≤ z 2 for all z ∈ R, we get the so-called Cantelli's inequality

P 2 (ξ ; x) ≤ inf t<x E[(ξ -t) 2 ] (x -t) 2 = inf t<x σ 2 + t 2 (x -t) 2 = σ 2 σ 2 + x 2 .
(2.7.13)

Finally, combining (2.7.11), (2.7.12) and (2.7.13) ends the proof.

H = 1 and Gaussian case

Here, we assume that Y 1 , . . . , Y n is a sequence of independent centered Gaussian random variables. Since H = 1, σ defined by (2.7.8) is the standard deviation of n k=1 Y k . We obtain the following inequality: Proposition 2.7.4. Let Y 1 , . . . , Y n be a sequence of independent centered Gaussian random variables. Let g be a standard Gaussian random variable. Let σ denote the standard deviation of n k=1 Y k . Let Z be defined by (2.7.1). Then for any x > 0,

P(Z -E[Z] ≥ σx) ≤ min 1 1 + x 2 , 1 2x 2 , e 2 2 P(g ≥ x) := h(x). (2.7.14)
Remark 2.7.5. Note that h(x) = 1/(1+x 2 ) for any 0 < x ≤ 1, h(x) = 1/2x 2 for any 1 < x ≤ x 0 and h(x) = (e 2 /2) P(g ≥ x) for any x > x 0 , where x 0 is the unique root of the equation (e 2 /2) P(g ≥ x) = 1/2x 

0 ≤ H ≤ 1 and Gaussian case

Here, we assume that Y 1 , . . . , Y n is a sequence of independent centered Gaussian random variables and X 1 , . . . , X n are identically distributed according to some distribution P . Proposition 2.7.6. Let g 1 , . . . g n be a sequence of independent standard Gaussian random variables and let a 1 , . . . , a n be a sequence of positive deterministic reals. Set for any k = 1, . . . , n, Y k = a k g k . Let X 1 , . . . , X n be a sequence of independent random variables valued in some Polish space X with common distribution P and independent of the sequence g 1 , . . . , g n . Let Z be defined by (2.7.1). Let a := (a 1 , . . . , a n ), v := E[H 2 (X 1 )] and let γ be the function defined on ]0, ∞[ by

γ(x) := x √ 2/ log(1 + v -1 (e x -1)).
Then for any x > 0,

P Z -E[Z] > a 2 2 a ∞ γ a 2 ∞ x a 2 2 ≤ exp(-x).
(2.7.17)

Remark 2.7.7. As x goes to zero, the function γ has the asymptotic expansion

γ(x) = √ 2vx (1 + O(x)),
and as x goes to infinity, γ(x) ∼ √ 2x.

Proof of Proposition 2.7.6. Starting as in the proof of Proposition 2.5.5 and conditioning by X k , one has

log E[exp(t(Z -E[Z]))] ≤ n k=1 log E E[exp(ta k g k H(X k )) | X k ] ≤ n k=1 log E exp a 2 k t 2 2 H 2 (X 1 ) .
Define next the function v by v (t) := log(1 + v(e t 2 /2 -1)) for any t > 0.

(2.7.18)

Now by the convexity of the function λ → e αλ for any α ≥ 0, the chordal slope lemma yields 

log E exp a 2 k t 2 2 H 2 (X 1 ) ≤ v (a k t). ( 2 
v (t) = v (t) 1 t + t(1 -v) 1 + v(e t 2 /2 -1)
.

Then

h v (t) = t v (t) -v (t) t 2 = v (t) 1 -v 1 + v(e t 2 /2 -1)
.

Since v ≤ 1, we get h v (t) ≥ 0 and the lemma follows.

Next, from (2.7.19) and Lemma 2.7.8, proceeding exactly as in Bercu, Delyon and Rio [8] (see their Inequality (2.97)), one has

log E [exp(t(Z -E[Z]))] ≤ a 2 2 a 2 ∞ v ( a ∞ t).
From the inversion formula for * v given in [8] (see Exercise 1, p. 57): * -1

v (x) = inf{t -1 ( v (t) + x) : t > 0}, (2.7.20) 
we can see that for any x > 0, inf

t>0 1 t a 2 2 a 2 ∞ v ( a ∞ t) + x = a 2 2 a ∞ * -1 v a 2 ∞ x a 2 2 .
(2.7.21)

Then (see Lemma 2.7 of [8]),

P Z -E[Z] > a 2 2 a ∞ * -1 v a 2 ∞ x a 2 2 ≤ exp(-x).
(2.7.22)

However, it seems difficult to calculate the inverse function of * v . Then to obtain a "ready-to-use" inequality, we will bound up * -1 v (x). Let t x := 2 log(1 + v -1 (e x -1)). Remark that t x is optimal in the Gaussian case (v = 1). Hence, putting t x in (2.7.20), we get * -1 v (x) ≤ γ(x) and the proposition follows.

Unbounded function H

Here we assume that Y k and H(X k ) are L r -integrable random variables with 2 ≤ r ≤ 4.

Proposition 2.7.9. Let 2 ≤ r ≤ 4. Then

(Z -E[Z]) + r r ≤ 1 2 n k=1 Y k r r H(X k ) r r + 1 2 σ r g r r 1 r>2 ,
where σ 2 is defined by (2.7.8) and g is a standard Gaussian random variable.

Proof. Applying (2.7.9) with ϕ(x) = x r + , we get 

Z -E[Z] r r ≤ E n k=1 Y k H(X k ) r + . ( 2 
E n k=1 Y k H(X k ) r + = 1 2 E n k=1 Y k H(X k ) r .
(2.7.24)

Now, Corollary 6.2 of Figiel et al. [13] (see also their Theorems 6.1 and 7.1) and the independence between X k and Y k lead to

E n k=1 Y k H(X k ) r ≤ n k=1 E[|Y k H(X k )| r ] + g r r n k=1 E[Y 2 k H 2 (X k )] r/2 1 r>2 ,
(2.7.25) where g is a standard Gaussian random variable. Thus, combining (2.7.23)-(2.7.25) concludes the proof.

Case G = 0

In the sequel, we assume that the underlying probability space (Ω, F, P) is rich enough to contain a random variable δ with uniform distribution over [0, 1], independent of all other considered random variables. First we present a duality formula for the r-th moment of ε k Q W k (U k /2) for any r ≥ 2. It will allow us to derive a simpler bound of these moments which we will use thereafter to obtain concentration inequalities.

Duality formula

Lemma 2.7.10. Let r ≥ 2. One has

E |ε k Q W k (U k /2)| r (2.7.26) = sup E |Y k | r (H r (X k )1 A + G r (X k )1 B ) : A, B ∈ F, P(A) + P(B) = 1 .
Remark 2.7.11. The duality formula gives us directly a more tractable bound 

E |ε k Q W k (U k /2)| r ≤ E |Y k | r E H r (X k ) + G r (X k ) . ( 2 
α 0 Q r |X| (u)du = 1 0 Q r |X| (u) Q θα (u)du = sup θ E[|X| r θ],
where the supremum is taken over the set of all Bernoulli random variables with parameter α. Consequently,

E |ε k Q W k (U k /2)| r = 2 sup E[W r k 1 C ] : C ∈ F, P(C) = 1/2 . (2.7.28)
Then, recalling the definition of W k and since

Y k+ = |Y k |1 Y ≥0 and Y k-= |Y k |1 Y <0 , one has E |ε k Q W k (U k /2)| r = (2.7.29) 2 sup E |Y k | r (H r (X k )1 C∩{Y ≥0} + G r (X k )1 C∩{Y <0} ) : C ∈ F, P(C) = 1/2 .
Since C ∩ {Y ≥ 0} and C ∩ {Y < 0} are disjoint, the supremum in the right hand-side of (2.7.29) is equal to

sup E |Y k | r (H r (X k )1 A + G r (X k )1 B ) : A, B ∈ F, A ⊂ {Y ≥ 0}, B ⊂ {Y < 0}, P(A) + P(B) = 1/2 . (2.7.30)
Now, recalling that W k and T k have the same distribution and repeating the above proof for

E[|ε k Q T k (U k /2)| r ],
we deduce that the supremum in (2.7.30) is equal to

sup E |Y k | r (H r (X k )1 Ã + G r (X k )1 B ) : Ã, B ∈ F, Ã ⊂ {Y < 0}, B ⊂ {Y ≥ 0}, P( Ã) + P( B) = 1/2 . (2.7.31)
Finally, combining (2.7.28) -(2.7.30) ends the proof of Lemma 2.7.9.

Chebyshev type inequality

Proposition 2.7.12. Define

V := n k=1 E[ Y 2 k (G ∨ H) 2 (X k ) ], and V 1 := n k=1 E[ Y 2 k (G 2 (X k ) + H 2 (X k )) ].
Let Z be defined by (2.7.1). Then for any x > 0,

P(Z -E[Z] ≥ x) ≤ min V V + x 2 , σ 2 2x 2
(2.7.32)

≤ min V V + x 2 , V 1 2x 2 , (2.7.33)
where σ 2 is defined by (2.7.4).

Remark 2.7.13.

Note that V 1 /2x 2 ≤ V /(V + x 2 ) for all x such that x 2 ≥ n k=1 E[ Y 2 k (G ∨ H)(X k ) ] n k=1 E[ Y 2 k (G 2 (X k ) + H 2 (X k )) ] n k=1 E[ Y 2 k |G 2 (X k ) -H 2 (X k )| ]
.

Example 2.7.14. Let S be a countable class of sets such that for any S in S , P(S) ≤ p. We consider the class of functions F = {1 S -P(S) : S ∈ S }.

Here H = 1 and G = p which imply V = s 2 and V 1 = (1 + p 2 )s 2 where s 2 is defined by (2.7.3). Then Proposition 2.7.12 yields for any x > 0,

P(Z -E[Z] ≥ sx) ≤          1 1 + x 2 if x < x 0 1 + p 2 2x 2 if x ≥ x 0 , where x 2 0 = (1 + p 2 )/(1 -p 2 ).
Proof of Proposition 2.7.12. Since 

σ 2 ≤ V 1 by
P(Z -E[Z] ≥ x) ≤ Var(Z) Var(Z) + x 2 .
Moreover, Theorem 4 in Pinelis and Sakhanenko [26] (or Theorem 11.1 [10]) implies that Var(Z) ≤ V . Since t → t/(t + x 2 ) is increasing on [0, ∞[, we get the bound

P(Z -E[Z] ≥ x) ≤ V V + x 2 . Furthermore, set ξ := n k=1 ε k Q W k (U k /2).
Starting from (2.7.2) and proceeding as in the proof of Proposition 2.7.3, we get

P(Z -E[Z] ≥ x) ≤ P 2 (ξ; x) ≤ σ 2 2x 2 ,
which ends the proof.

Moment inequality

Here we assume that the random variables Y k , G(X k ) and H(X k ) are L r -integrable with 2 ≤ r ≤ 4. The following moment inequality is similar to Proposition 2.7.9.

Proposition 2.7.15. Let 2 ≤ r ≤ 4. Let Z be defined by (2.7.1). Then

(Z -E[Z]) + r r ≤ 1 2 n k=1 E |ε k Q W k (U k /2)| r + 1 2 σ r g r r 1 r>2 , (2.7.34)
where σ is defined by (2.7.4) and g is a standard Gaussian random variable. Consequently, using Remark 2.7.11, we get

(Z -E[Z]) + r r ≤ 1 2 n k=1 E |Y k | r (H r (X k )+G r (X k )) + 1 2 σ r g r r 1 r>2 . (2.7.35)
Example 2.7.14 (continued). We derive immediately by Markov's inequality, for any 2 ≤ r ≤ 4, 

P(Z -E[Z] ≥ sx) ≤ 1 2 g r r √ 1 + p 2 x r 1 r>2 + 1 + p r s r x r n k=1
L(t) ≤ n k=1 log E [cosh (t Y k H(X k )) + cosh (t Y k G(X k )) -1] .
Example 2.7.14 (continued). Here, we make the additional assumptions that the Y k are standard Gaussian random variables. In this situation, the inequality above implies that

L(t) ≤ n log e t 2 /2 + e p 2 t 2 /2 -1 ≤ n 1+p 2 (t),
where v (t) := log(1 + v(e t 2 /2 -1)). Hence, for any x > 0,

P Z -E[Z] ≥ n 1+p 2 (t) + x t ≤ exp(-x).
(2.7.36)

Let t x := 2 log(1 + (1 + p 2 ) -1 (e x/n -1)). Then putting t x in (2.7.36), we obtain for any x > 0, 

P   Z -E[Z] ≥ x √ 2 log(1 + (1 + p 2 ) -1 (e x/n -1))   ≤ exp(-x). ( 2 
L(t) ≤ n k=1 log E [exp(tε k Q W k (U k /2))] .
(2.7.38)

Now, using Remark 2.7.11,

E [exp(tε k Q W k (U k /2))] = ∞ j=0 t 2j (2j)! E (Q W k (U k /2)) 2j ≤ E [cosh (tY k H(X k )) + cosh (tY k G(X k )) -1] .
Putting then this inequality in (2.7.38) ends the proof.

Chaos of order two

Let X be a Polish space and F be a countable class of measurable functions from X into R and let Γ be a subset of F × F . Let A = (a i,j ) 1≤i,j≤n be a symmetric real matrix with zero diagonal entries (i.e. a i,i = 0 for all i) and let . denote the Hilbert-Schmidt norm which is A HS = Tr(A T A). Let X be a random variable with values in X such that for any function f of F , f (X) is a centered random variable. Let X 1 , . . . , X n be n independent copies of X. Define now the function F by

Z := F ( X 1 , . . . , X n ) := sup (f,g)∈Γ 1≤i<j≤n a ij f (X i )g(X j ), (2.8.1) 
where

X k := (f (X k )g(X k )) (f,g)∈Γ .
We say that F is a Vapnik-Čhervonenkis (VC for short) subgraph class if the collection of all subgraphs of the functions in F (i.e. the collection of sets {(x, s) ∈ X × R : s < f (x)} for f ∈ F ) forms a VC-class of sets in X × R (see, for instance, van der Vaart and Wellner [30]). 

(Z -E[Z]) + p ≤ (p -1) A HS √ 2 Q Φ(X) (U/2) 2 p   1 + K(F ) (p -1) Φ(X) 2 2 Q Φ(X) (U/2) 2 p   , (2.8.2)
where U is a random variable distributed uniformly on [0, 1].

Remark 2.8.2. See that

Φ(X) p ≤ Q Φ(X) (U/2) p ≤ 2 1/p Φ(X) p . ( 2 

.8.3)

Suppose now that Φ(X) is in L p for all p > 2 and Φ(X) p tends to infinity as p tends to infinity. Then as p tends to infinity, we obtain the following behavior of the right-hand side of (2.8.2) 

(p -1) A HS √ 2 Q Φ(X) (U/2) 2 p   1 + K(F ) (p -1) Φ(X) 2 2 Q Φ(X) (U/2) 2 p   = (p -1) A HS √ 2 Φ(X) 2 p 1 + O 1 p . ( 2 
f x (q) :=   (q -1)Cx -1 Q Φ(X) (U/2) 2 q   1 + K(F ) (q -1) Φ(X) 2 2 Q Φ(X) (U/2) 2 q     q ,
where C := A HS / √ 2. Using (2.8.3) and Φ ≤ 1, one has

f x (q) ≤   (q -1)Cx -1 2 2/q Φ 2 q   1 + K(F ) (p -1) Φ 2 2 Φ 2 q     q ≤ 4 Cx -1 q 1 + K(F ) q := 4 exp(h x (q)).
Clearly, inf q>0 h x (q) = h x x/(e C 1 + K(F ) ) . Now, by Markov's inequality, for any x ≥ 0 such that 2 e Cx -1 1 + K(F ) ≤ 1,

P(Z -E[Z] ≥ x) ≤ inf p>2 E[(Z -E[Z]) p + ] x p ≤ 4 exp - x e C 1 + K(F )
.

Proof of Proposition 2.8.1. For any m and l belonging to {1, . . . , n}, we set

S k (l, m) := sup f ∈F m i=l a ik f (X i ) . Noting that |Z -Z (k) | ≤ Φ(X k ) (S k (1, k -1) + S k (k + 1, n)) ,
it follows from Theorem 2.2.3 that

(Z -E[Z]) + 2 p ≤ (p -1) Q Φ(X) (U/2) 2 p n k=1 S k (1, k -1) + E[S k (k + 1, n)] 2 p . (2.8.5)
Define the function F such that Z := F ( X 1 , . . . , X k-1 ) := S(1, k -1). Define also for each l = 1, . . . , k -1,

Z (l) := F ( X 1 , . . . , X l-1 , 0, X l+1 , . . . , X k-1 ). Hence, it follows that | Z -Z (l) | ≤ |a lk |Φ(X l ). Since S k (1, k -1) + E[S k (k + 1, n)] is a nonnegative random variable, we can replace its p-norm in (2.8.5) by (S k (1, k -1) + E[S k (k + 1, n)]) + p .
Then an application of Theorem 2.2.1 leads to

(S k (1, k -1) + E[S k (k + 1, n)]) + 2 p ≤ k-1 i=1 a ik ε i Q Φ(X) (U/2) + E[S k (1, k -1) + S k (k + 1, n)] + 2 p . (2.8.6)
Now by Corollary 2.4.9, Inequality (2.8.6) becomes

S k (1, k -1) + E[S k (k + 1, n)] 2 p ≤ (p -1) k-1 i=1 a 2 ik Q Φ(X) (U/2) 2 p + E[S k (1, k -1) + S k (k + 1, n)] 2 . (2.8.7)
Combining (2.8.5) and (2.8.7), we get

(Z -E[Z]) + 2 p ≤ (p -1) 2 1≤i<k≤n a 2 ik Q Φ(X) (U/2) 4 p + (p -1) Q Φ(X) (U/2) 2 p n k=1 E[S k (1, k -1) + S k (k + 1, n)] 2 . (2.8.8)
Let us now bound up E[S k (1, k -1)]. Define the probability measure

P k-1 = k-1 i=1 a 2 i,k δ X i .
Exactly as in the proof of Theorem 2.5.2 in van der Vaart and Wellner [30], it can be shown that for some universal constant K,

E[S k (1, k -1)] ≤ K E 1 0 log N (η(P k-1 Φ 2 ) 1 2 , F , L 2 (P k-1 ))dη × (P k-1 Φ 2 ) 1 2 , (2.8.9)
where for any semimetric space (T, d), the covering number N (η, T, d) is the minimal number of balls of radius η needed to cover T . Then, recalling that a VC-subgraph class satisfies the uniform entropy condition (see for instance [30], Theorem 2.6.7), there exists a constant C(F ) which depends only on F such that

E[S k (1, k -1)] ≤ C(F ) E k-1 i=1 a 2 i,k Φ 2 (X i ) 1 2 
.

(2.8.10)

Proceeding in the same way for E[S(k + 1, n)], we finally obtain that

(E[S k (1, k -1) + S k (k + 1, n)]) 2 ≤ 4 C 2 (F )   E k-1 i=1 a 2 i,k Φ 2 (X i ) 1 2 + n i=k+1 a 2 i,k Φ 2 (X i ) 1 2   2 .
(2.8.11)

Since ( √ x + √ y) 2 ≤ 2 (x + y) for any nonnegative x and y, and

n k=1
i =k a ik = 2 1≤i<k≤n a ik , we then get by Jensen's inequality 

E[S k (1, k -1) + S k (k + 1, n)] 2 ≤ 8 C 2 (F ) n i=1 i =k a 2 ik E Φ 2 (X) . ( 2 
Z := sup f ∈F 1≤i<j≤n a ij f (X i )f (X j ) ,
the same proof applies and we obtain exactly the same inequality (2.8.2).

Proof of Lemma 2.4.6. We recall the assumption that the random variables η and ψ are respectively nonpositive and nonnegative, satisfying (2.4.1). If η = ψ = 0 almost surely, then all the considered variables are equal to zero and Lemma 2.4.6 is trivial. Assume now that at least one of η or ψ is different from zero. For every t ∈ R, define the function g t on ]0, 1[ by

g t (q) := E (ζ q -E[ζ q ] -t) 2 + .
In the sequel, g t denote the left derivative of the continuous function g t . Let (C q ) denote the condition

(C q ) : 2 E[ζ q ] -a q -b q ≥ 0.
Remark that the left-hand side of (C q ) is nondecreasing in q and tends to a positive value as q tends to 1. Hence q := inf{q ≥ 1/2 : b q + a q ≤ 2 E[ζ q ]} exists, (C q) is true and for any q ≥ q, (C q ) is also verified.

In the following, we link the sign of g t (q) with the verification of the condition (C q ). Now,

g t (q) = -(a q -E[ζ q ] -t) 2 + -2 (b q -a q ) 1-q 0 (F -1 η (u) -E[ζ q ] -t) + du + (b q -E[ζ q ] -t) 2 + -2 (b q -a q ) 1 1-q (F -1 ψ (u) -E[ζ q ] -t) + du. (2.9.4)
We consider the following cases separately:

(i) t + E[ζ q ] ≥ F -1 ψ (u) for all u ∈]0, 1[. (ii) t + E[ζ q ] ≤ F -1 η (u) for all u ∈]0, 1[. (iii) a q ≤ t + E[ζ q ] ≤ b q . (iv) b q < t + E[ζ q ] < F -1 ψ (1-). (v) F -1 η (0+) < t + E[ζ q ] <
a q . Case (i). All the terms in the right-hand side of (2.9.4) are equal to zero. Case (ii). ζ q has a finite second moment and we have g t (q) = d/dq Var(ζ q ). Then, it is elementary to see that g t (q) ≤ 0 if and only if (C q ) is true. Case (iii). One has

g t (q) ≤ (b q -E[ζ q ] -t) (b q -E[ζ q ] -t -2q(b q -a q )) .
(2.9.5)

The first factor of the right-hand side of (2.9.5) is nonnegative. Hence the right-hand side of (2.9.5) is negative if and only if, for all t in

[a q -E[ζ q ], b q -E[ζ q ]], -2q(b q -a q ) ≤ -b q + E[ζ q ] + t.
(2.9.6)

See now that the right-hand side of (2.9.6) is nondecreasing in t. It thus follows that -2q(b q -a q ) ≤ -(b q -a q ), or equivalently q ≥ 1/2, implies that g t (q) ≤ 0.

Case (iv).

One has directly in this case

g t (q) = -2 (b q -a q ) 1 1-q F -1 ψ (u) -E[ζ q ] -t + du ≤ 0.
Case (v). Define

ε t := sup θ ∈]0, 1[: F -1 η (θ) ≤ t + E[ζ q ] . Then g t (q) = (b q -a q ) A q,t ,
where

A q,t = b q + a q -2 E[ζ q ] -2t -2 1 1-q (F -1 ψ (u) -E[ζ q ] -t)du -2 1-q εt (F -1 η (u) -E[ζ q ] -t) du = b q + a q -2 E[ζ q ] + 2 εt 0 (F -1 η (u) -E[ζ q ] -t) du ≤ b q + a q -2 E[ζ q ].
We note that if (C q ) is true, then A q,t ≤ 0, whence g t (q) ≤ 0.

Finally, if q ≥ 1/2 and (C q ) is verified, then g t (q) ≤ 0 and the proof of (i) is completed. Let us prove now (ii). Starting with Lemma 2.4.3, we get

E (X -E[X] -t) 2 + ≤ E (ζ q 0 -E[ζ q 0 ] -t) 2 +
, where q 0 is given by (2.4.3). In particular,

E[ζ q 0 ] = E[X] ≥ 0. Moreover, since η = -ψ, E[ζ 1/2 ] = 0. Recalling that E[ζ q ]
is nondecreasing with respect to q, it implies that q 0 ≥ 1/2. Now, see that

a 1/2 + b 1/2 ≤ 0 = E[ζ 1/2 ]. Indeed, for any u ∈]0, 1[, F -1 ψ (u) ≤ -sup{t ∈ R : F -ψ (t) ≤ 1 -u} = -F -1 -ψ ((1 -u)+) ≤ -F -1 -ψ (1 -u). Thus, a 1/2 + b 1/2 = F -1 -ψ ( 1 2 ) + F -1 ψ ( 1 
2 ) ≤ 0. By the point (i), we obtain (2.4.6), which concludes the proof.

Proof of Proposition 2.4.8. Since X ≤ X + , (X + Y ) + 2 p ≤ (X + + Y ) + 2 p ≤ X + + Y 2 p .
(2.9.7)

Moreover, under the same hypotheses of Proposition 2.4.8, one has the inequality X + Y 2 p ≤ X 2 p + (p -1) Y 2 p as a corollary of Proposition 2.1 of Pinelis [20] (see also Lemma 2.4 of [12] and Proposition 2.1 of [27]). Combining this with (2.9.7) completes the proof.

Proofs of Section 2.2

Proof of Theorem 2.2.1. Starting from (2.2.1) and projecting on F k , we obtain

-E k [T k ] ≤ Z k -E k [Z (k) ] ≤ E k [W k ]
almost surely. Note that, combining (2.2.2) and the conditional Jensen inequality leads to

max E[(E k [T k ] -t) + ], E[(E k [W k ] -t) + ] ≤ max E[(T k -t) + ], E[(W k -t) + ] ≤ E[(ξ k -t) + ].
Moreover, recalling that the random variables X k are centered and since F is separately convex, an application of Jensen's inequality ensures that ) ] and ψ = ξ k . Recalling (2.1.4) and Remark 2.4.7, it yields that for any function ϕ in H 2 + ,

E k-1 [Z k -Z (k) ] ≥ 0. Thus, conditionally to F k-1 , we can apply the second part of Lemma 2.4.6 with X = Z k -E k [Z (k
E k-1 [ϕ(∆ k )] ≤ E [ϕ (ε k Q ξ k (U k /2))] .
(2.9.8)

We now prove (2.2.3) by induction on n. The case n = 1 is given by (2.9.8) with k = 1. Let n > 1 and assume that (2.2.3) holds for n -1. We then have

E[ϕ(Z -E[Z])] = E [E n-1 [ϕ (Z n-1 + ∆ n )]] ≤ E [ϕ (Z n-1 + ε n Q ξn (U n /2))] ≤ E ϕ n k=1 ε k Q ξ k (U k /2) ,
where we use (2.9.8) in the first inequality and the induction assumption in the second inequality.

Proof of Theorem 2.2.3. As in the proof of Theorem 2.2.1, we obtain for any function ϕ in H 2 + ,

E k-1 [ϕ(∆ k )] ≤ E [ϕ (ε k E k-1 [ψ k ]Q ξ k (U k /2))] .
(2.9.9)

We now prove (2.2.6) by induction on n. For n = 1, it follows from (2.9.9) for k = 1 and (2.4.8). Let n > 1 and assume that (2.2.6) holds for n -1. Then

(Z -E[Z]) + 2 p ≤ (Z n-1 + ε n E n-1 [ψ n ]Q ξn (U n /2)) + 2 p ≤ (Z n-1 ) + 2 p + (p -1) E n-1 [ψ n ]Q ξn (U n /2) 2 p ≤ (p -1) n k=1 E k-1 [ψ k ] 2 p Q ξ k (U k /2) 2 p ,
where we use (2.9.9) in the first inequality, Proposition 2.4.8 in the second inequality and the induction assumption in the third inequality.

Chapter 3

Concentration inequalities for suprema of unbounded empirical processes

Using martingale methods, we obtain some Fuk-Nagaev type inequalities for suprema of unbounded empirical processes associated with independent and identically distributed random variables. We then derive weak and strong moment inequalities. Next, we apply our results to suprema of empirical processes which satisfy a power-type tail condition. This Chapter is adapted from the work [13].

Introduction

Let us consider a sequence X 1 , X 2 , . . . of independent random variables valued in some measurable space (X , F). Let P n denote for every integer n the empirical probability measure P n := n -1 (δ X 1 + . . . + δ Xn ). Let F be a countable class of measurable functions from X into R such that E[f (X k )] = 0 for all f ∈ F and all k = 1, . . . , n. We assume that F has a square integrable envelope function Φ, that is |f | ≤ Φ for any f ∈ F , and Φ ∈ L 2 .

(3.1.1)

As in Boucheron, Lugosi and Massart [5], we define the wimpy variance σ 2 and the weak variance Σ 2 by

σ 2 := sup f ∈F 1 n n k=1 E[f 2 (X k )], and Σ 2 := E sup f ∈F 1 n n k=1 f 2 (X k ) . (3.1.2)
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Let us also define

E k := E sup f ∈F P k (f ) for any k = 1 . . . , n. (3.1.3)
The purpose of this chapter is to provide concentration inequalities around its mean for the random variable

Z := sup{nP n (f ) : f ∈ F }, (3.1.4) 
involving σ 2 , and under the additional assumption of identically distributed data. Our approach is based on a decomposition of Z into a sum of two martingales. Then, we control each martingale separately by Fuk-Nagaev type inequalities: in a first part, by one found by Courbot [8], which allows us to derive a strong moment inequality (following Petrov [16]), and in a second part, by one found recently by Rio [19], which allows us to derive a weak moment inequality. We stress out that we only require that the envelope function Φ has an th weak or strong moment, while classical concentration inequalities for suprema of empirical processes assume uniform boundedness condition on the elements of F . Let us recall a main result in this direction: the following Bennett type inequality obtained by Bousquet [6], which is an improvement of Theorem 1.1 in Rio [18]: Theorem 3.1.1 ([6], Theorem 7.3). Let X 1 , . . . , X n be a sequence of independent random variables with values in X and distributed according to P . Assume that P (f ) = 0 and f ≤ 1 for all f ∈ F . Let Z be defined by (3.1.4) and set v n := nσ 2 + 2 E[Z], where σ 2 is defined in (3.1.2). Let h be the function defined, for any u ≥ -1, by h(u) := (1 + u) log(1 + u) -u. Then, for all t ≥ 0,

P(Z -E[Z] ≥ t) ≤ exp -v n h t v n (Bousquet's inequality) ≤ exp - t 2 log 1 + t v n . (Rio's inequality)
We refer the reader to Section 12 of [5] for an overview of the bounded case. Here we are interested in unbounded functions. Few results in the literature concern concentration inequalities for suprema of unbounded empirical processes. Let us first mention the considerable work of Boucheron, Bousquet, Lugosi and Massart [4], concerning moment inequalities for general functions of independent random variables. Their methods are based on an extension of the entropy method proposed by Ledoux [12]. In particular, they establish the following generalized moment inequality for suprema of (possibly unbounded) empirical processes involving σ 2 and Σ 2 : Theorem 3.1.2 ([5], Theorems 15.14 and 15.5). Let X 1 , . . . , X n be a sequence of independent random variables with values in X . Assume that for all f ∈ F and all k = 1, . . . , n, E[f (X k )] = 0. Let Z be defined by

Z := sup f ∈F n k=1 f (X k ) . Let M := max k=1,...,n Φ(X k ), where Φ is defined in (3.1.1). Then, for all ≥ 2, (Z -E[Z]) + ≤ nκ( -1)(Σ + σ) + κ( -1) M + sup f ∈F k=1,...,n f (X k ) 2 ,
where σ 2 , Σ 2 are defined in (3.1.2) and κ := √ e/( √ e -1).

For several reasons (see, for instance, the discussion after Theorem 3 in Adamczack [1]) one would like to express the variance factor in terms of σ 2 rather than Σ 2 . First, observe that Σ 2 is greater than σ 2 . In the bounded case, an application of the contraction principle gives nΣ 2 ≤ nσ 2 + 16 E[Z], when |f | ≤ 1 for any f ∈ F (see Corollary 15 in Massart [15]). However, in the unbounded case, Σ 2 is more difficult to compare to σ 2 . In the setting of Theorem 3.1.2, one can only prove the much less efficient inequality

nΣ 2 ≤ nσ 2 + 32 E[M 2 ]E[Z] + 8 E[M 2 ],
(see Theorem 11.17 and Section 15 in [5]). Similarly to the bounded case, the bounds that we will obtain in this chapter will involve σ 2 , and the expectations E k rather than the weak variance Σ 2 . Furthermore, we shall prove in a particular case that our bounds provide a much more accurate estimate of the variance.

Einmahl and Li [9] prove a Fuk-Nagaev type inequality for suprema of empirical processes involving σ 2 and the th strong moment of the envelope function. They use an improvement of Bousquet's inequality for suprema of bounded empirical processes to nonnecessarily identically distributed random variables obtained by Klein and Rio [10], a truncation argument and the socalled Hoffman-Jørgensen inequality. Using similar techniques, Adamczak [1] provides a concentration inequality for suprema of empirical processes under a semi-exponential tail condition on the envelope function Φ of F : Theorem 3.1.3 ([1], Theorem 4). Let X 1 , . . . , X n be a sequence of independent random variables with values in X . Assume that E[f (X k )] = 0 for all f ∈ F and all k = 1, . . . , n. For all α ∈]0, 1], let ψ α be the function defined, for any x > 0, by ψ α (x) := exp(x α ) -1 and let . ψα denote the associated Orlicz norm, which is defined by

X ψα := inf{λ > 0 : E[ψ α (|X|/λ)] ≤ 1}, for all random variables X.
Assume now that for some α ∈]0, 1], Φ(X k ) ψα < ∞ for all k = 1, . . . n, where Φ is defined in (3.1.1). Let Z be defined by

Z := sup f ∈F | n k=1 f (X k )|.
Then, for all 0 < η < 1 and δ > 0, there exists a constant C = C(α, η, δ), such that, for all t ≥ 0,

P(Z -(1 + η)E[Z] ≥ t) ≤ exp - t 2 2(1 + δ)nσ 2 + 3 exp - t C max k=1,...,n Φ(X k ) ψα α .
Let us point out that the upper bound in the inequality above (and also in [9]) do not involve E[Z] or the entropy of the class F . The price to be paid is the additional factor 1 + η in front of E[Z] and the non explicit constant C(α, η, δ). More recently, van de Geer and Lederer [20] introduce a new Orlicz norm (called Bernstein-Orlicz norm), and under some Bernstein conditions satisfied by the envelope function Φ, they derive exponential inequalities. Their upper bounds involve the constant K of the Bernstein conditions and E[Z] (which is bounded up in terms of the complexity of F and K). Next, the same authors in [11], require only that the envelope function Φ has an th strong moment and obtained deviation and moment inequalities involving σ 2 . However, it concerns the deviation of Z around (1+η)E[Z]. Finally, Marchina [14] provides deviation inequalities around E[Z] for suprema of randomized unbounded empirical processes involving only the envelope function Φ, see for example the following proposition: Proposition 3.1.4 ([14], Proposition 7.14). Let X 1 , . . . , X n be a sequence of independent random variables with values in X . Let Y 1 , . . . , Y n be a sequence of independent real-valued symmetric random variables such that the two sequences are independent. Let F be a countable class of measurable functions f :

X → R such that -G ≤ f ≤ H for all f ∈ F , where G and H are nonnegative functions. Define Z = sup f ∈F n k=1 Y k f (X k ). Let s 2 k := E[Y 2 k ] E[H 2 (X k ) + G 2 (X k )] and s 2 := n k=1 s 2 k .
Then, for any 2 ≤ ≤ 4,

(Z -E[Z]) + ≤ 1 2 n k=1 E |Y k | (H (X k ) + G (X k )) + 1 2 s g ,
where g is a standard Gaussian random variable.

The results of [14] are based on martingale techniques. The purpose of the present chapter is to introduce the wimpy variance in the concentration inequalities derived from the martingale approach. We shall give deviation inequalities around E[Z], without extra centering term ηE [Z] and with explicit constants.

The chapter is organized as follows: we first recall some definitions and notations in Section 3.2. In Section 3.3, we state Fuk-Nagaev type inequalities for Z -E[Z] and the resulting corollaries concerning the weak and strong moments of order > 2. We also shall apply the Fuk-Nagaev inequalities to bound up the generalized moment E[(Z -E[Z] -t) + ]. Finally, in Section 3.4, we apply the main results to the special case

Z = sup g∈G n k=1 Y k g(X k )
where Y k satisfies a power-type tail condition and G is a class of bounded functions.

Definitions and notations

In this section, we give the notations and definitions which we will use all along the chapter. Let us start with the classical notations x + := max(0, x) and x α + := (x + ) α for all reals x and α. Next, we define the tail function, the quantile function and the Conditional Value-at-Risk. Definition 3.2.1. Let X be a real-valued random variable. (i) The distribution function of X is denoted by F X and the càglàd inverse of F X is denoted by F -1

X . (ii) The quantile function of X, which is the càdlàg inverse of the tail function t → 1 -F X (t), is denoted by Q X . (iii) Assume that X is integrable. The integrated quantile function QX of X, which is also known as the Conditional Value-at-Risk (CVaR for short), is defined by QX (u) := u -1 u 0 Q X (s)ds.

We recall the following elementary properties of these quantities, which are given and proved by Pinelis [17].

Proposition 3.2.2. Let X and Y be real-valued and integrable random variables. Then, for any

u ∈]0, 1], (i) P(X > Q X (u)) ≤ u, (ii) Q X (u) ≤ QX (u), (iii) QX+Y (u) ≤ QX (u) + QY (u).
Let us now define the following class of distribution functions. Notation 3.2.3. Let q ∈ [0, 1]. Let ψ be a nonnegative random variable and set b ψ,q := F -1 ψ (1 -q). We denote by F ψ,q the distribution function defined by

F ψ,q (x) := (1 -q)1 0≤x<b ψ,q + F ψ (x)1 x≥b ψ,q . (3.2.1)
These distribution functions will be used to bound up the generalized moments of nonnegative random variables which are dominated by ψ. Precisely, let X be a nonnegative random variable stochastically dominated by ψ, that is P(X > x) ≤ P(ψ > x) for all x > 0. Let ζ ψ,q be a random variable with distribution function F ψ,q , where q is such that

E[X] = E[ζ ψ,q ].
Then Lemma 1 of Bentkus [3] (see also Lemma 2.1 of Marchina [14]) ensures that for any

function ϕ ∈ H 1 + , E[ϕ(X)] ≤ E[ϕ(ζ ψ,q )],
where H 1 + is the class of numerical functions ϕ defined by

H 1 + := ϕ : ϕ is convex, differentiable, and lim x→-∞ ϕ(x) = 0 . (3.2.2)
Now, we recall the definitions of strong and weak norms of a real-valued random variable X. For all r ≥ 1, let L r be the space of real-valued random variables with a finite absolute moment of order r and we denote by

X r the L r -norm of X. Let Λ + r (X) := sup t>0 t (P(X > t)) 1/r . (3.2.3)
We say that X has a weak moment of order r if Λ + r (|X|) is finite. Define also

Λ+ r (X) := sup u∈]0,1] u (1/r)-1 u 0 Q X (s)ds. (3.2.4)
From the definition of Q X , we have (see, for instance, Chapter 4 of Bennett and Sharpley [2])

Λ + r (X) = sup u∈]0,1] u 1/r Q X (u). (3.2.5)
Hence, we get that

Λ + r (X) ≤ Λ+ r (X) ≤ r r-1 Λ + r (X). (3.2.6)
Furthermore, from Proposition 3.2.2 (iii), Λ+ r (.) is subadditive.

Statement of results

Let us first recall the assumptions we work with. Let X 1 , . . . , X n be a sequence of independent random variables valued in X , with common distribution P . Let F be a countable class of measurable functions f : X → R such that P (f ) = 0 for all f ∈ F , and we suppose that F has a square integrable envelope function Φ defined in (3.1.1). In this situation, the wimpy variance is σ 2 = sup f ∈F P (f 2 ). We consider the random variable

Z = sup f ∈F n k=1 f (X k ). (3.3.1)
Throughout the rest of the chapter, ζ k denotes a random variable with distribution function F 2 Φ(X 1 ), q k defined in (3.2.1) where q k is the real in

[0, 1] such that E[ζ k ] = E k (E k is defined in (3.1.3)).
We also set ] to 0, which ensures that V n /n tends to 0. More precise estimates of V n will be proved for particular cases in Section 3.4.

V n := n k=1 E[ζ 2 k ]. ( 3 
We first derive a Fuk-Nagaev type inequality for Z -E[Z] from one obtained by Courbot [8] concerning martingales. Theorem 3.3.2. Let x > 0. For any s > 0, we have

P(Z -E[Z] ≥ x) ≤ P((Z -E[Z]) + ≥ x) (a) ≤ 1 + x 2 4snσ 2 -s/2 + 1 + x 2 4sV n -s/2 + 2n P Φ(X 1 ) ≥ x 4s . (b)
Next, under weak moment conditions, we derive from a Fuk-Nagaev type inequality for martingales with efficient constants obtained recently by Rio [19], another Fuk-Nagaev type inequality for Z -E[Z].

Theorem 3.3.3. Let > 2. Assume that Φ(X 1 ) have a weak moment of order . Then for any u ∈]0, 1[,

Q Z-E[Z] (u) ≤ QZ-E[Z] (u) (a) ≤ 2 log(1/u) (σ √ n + V n ) + 3 n 1/ µ Λ + (Φ(X 1 ))u -1/ , (b)
where µ := 2 + max(4/3, /3). Consequently,

P Z -E[Z] > 2 log(1/u) σ √ n + V n + 3 n 1/ µ Λ + (Φ(X 1 ))u -1/ ≤ u. (c)
In the two following results, we derive from Theorems 3.3.2 and 3.3.3, strong and weak moment inequalities for Z -E[Z].

Corollary 3.3.4. Let ≥ 2. Assume that Φ(X 1 ) is L -integrable. Then (Z-E[Z]) + ≤ 2β 1/ √ + 1 σ √ n+ V n +2 2+1/ n 1/ ( +1) Φ(X 1 )
, 

where β := ( √ π/2) Γ( /2)/ Γ((
Λ + (Z -E[Z]) ≤ Λ+ (Z -E[Z]) (a) ≤ ( /e) (σ √ n + V n ) + 3 n 1/ µ Λ + (Φ(X 1 )), (b) 
where µ := 2 + max(4/3, /3).

Bound of generalized moments of Z -E[Z]

In this section, we apply Theorem 3.3.3 to bound up E[(Z -E[Z] -t) + ] for every t > 0. We emphasize that it is of interest to obtain such bounds in various situations coming from statistical applications, such the study of rates of convergence for estimators (see, for instance, Comte and Lacour [7]). Proposition 3.3.8. Let Z, σ, V n be defined as in Section 3.3. Let > 2 and µ = 2 + max(4/3, /3). Set also

s n := σ √ n + V n , and b n, := 3 n 1/ µ Λ + (Φ(X 1 )).
Then, for any t > 0,

E[(Z -E[Z] -t) + ] ≤ s n e -1 2 (1+t 2 /s 2 n ) 1 + t 2 /s 2 n + b n, .
Proof. Let us start by recalling the variational expression of E[(X -t) + ] involving QX . Since x < Q X (u) if and only if 1 -F X (x) > u, we get for any 

t ∈ R, E[(X -t) + ] = sup u∈]0,1] u( QX (u) -t). ( 3 
E[(Z -E[Z] -t) + ] ≤ sup u∈]0,1] u s n 2 log(1/u) + b n, u -1/ -t ≤ sup u∈]0,1] u s n 2 log(1/u) -t + b n, , (3.3 
y 0 := t 2 s n + 1 + t 2 4 s 2 n . (3.3.5)
Then, the supremum in (3.3.4) is equal to s n e -y 2 0 /2 /y 0 . Observing now that y 0 ≥ 1 + t 2 /s 2 n , we finally get the desired inequality which concludes the proof.

Remark 3.3.9. As starting point of the proof, in place of (3.3.3), we can use the equality Z -E[Z]

D = Q Z-E[Z] (U )
, where U is a random variable distributed uniformly on [0, 1]. However, contrary to the above proof, we then need to integrate Inequality (b) of Theorem 3.3.3,which shows the interest of the CVaR.

Proofs of the main results

Our method is based on a martingale decomposition of Z which we now recall. We suppose that F is a finite class of functions, that is F = {f i : i ∈ {1, . . . , m}}. The results in the countable case are derived from the finite case using the monotone convergence theorem. We define F 0 := {∅, Ω} and for all k = 1, . . . , n,

F k := σ(X 1 , . . . , X k ) and F k n := σ(X 1 , . . . , X k-1 , X k+1 , . . . , X n ). Let E k (respectively E k n ) denote the conditional expectation operator associ- ated with F k (resp. F k n ). Set also Z k := E k [Z], (3.3.6) Z (k) := sup{nP n (f ) -f (X k ) : f ∈ F }. (3.3.7)
The sequence (Z k ) is an (F k )-adapted martingale (the Doob martingale associated with Z -E[Z]) and 

Z -E[Z] = n k=1 ∆ k , where ∆ k := Z k -Z k-1 . ( 3 
τ k := inf{i ∈ {1, . . . , m} : nP n (f i ) -f i (X k ) = Z (k) }. (3.3.10)
Notice first that

Z (k) + f τ k (X k ) ≤ Z ≤ Z (k) + f τ (X k ).
From this, conditioning by

F k gives E k [f τ k (X k )] ≤ Z k -E k [Z (k) ] ≤ E k [f τ (X k )]. (3.3.11) 
Set now

ξ k := E k [f τ k (X k )] and let ε k ≥ r k ≥ 0 be random variables such that ξ k + r k = Z k -E k [Z (k) ] and ξ k + ε k = E k [f τ (X k )].
Thus (3.3.11) becomes

ξ k ≤ ξ k + r k ≤ ξ k + ε k . (3.3.12)
Since the random variables τ k is F k n -measurable, we have by the centering assumption on the elements of F ,

E k n [f τ k (X k )] = P (f τ k ) = 0, (3.3.13) 
which ensures that

E k-1 [ξ k ] = 0. Moreover, E k [Z (k) ] is F k-1 -measurable. Hence we get ∆ k = Z k -E k [Z (k) ] -E k-1 [Z k -E k [Z (k) ]] = ξ k + r k -E k-1 [r k ],
which, combined with (3.3.8), yields the decomposition of Z -E[Z] in a sum of two martingales:

Z -E[Z] = Ξ n + R n , (3.3.14) 
where

Ξ n := n k=1 ξ k and R n := n k=1 (r k -E k-1 [r k ]). (3.3.15)
Before proving the results, we provide bounds for their quadratic variations which will be needed in the proofs.

(i) Bound of n k=1 E k-1 [ξ 2 k ]. Notice that the same argument as in (3.3.13) yields E k n [f 2 τ k (X k )] = P (f 2 τ k ). It follows from the conditional Jensen inequality that n k=1 E k-1 [ξ 2 k ] ≤ nσ 2 . (ii) Bound of n k=1 E k-1 [(r k -E k-1 [r k ]) 2 ]. First, we observe that E k-1 [r k ]
is bounded by a deterministic constant. This is given by the following lemma of exchangeability of variables.

Lemma 3.3.10. For any integer

j ≥ k, E k-1 [f τ (X k )] = E k-1 [f τ (X j )].
Proof. By the definition of the random variable τ , for every permutation on n elements σ, τ (X 1 , . . . , X n ) = τ • σ(X 1 , . . . , X n ) almost surely. Applying now this fact to σ = (k j) (the transposition which exchanges k and j), it suffices to use Fubini's theorem (recalling that j ≥ k) to complete the proof.

Hence,

E k-1 [ε k ] = E k-1 [f τ (X k )] = E k-1 [f τ (X k ) + . . . + f τ (X n )]/(n -k + 1) ≤ E k-1 sup f ∈F {f (X k ) + . . . + f (X n )}/(n -k + 1) = E n-k+1 . (3.3.16) Since 0 ≤ r k ≤ ε k , we thus get that 0 ≤ E k-1 [r k ] ≤ E n-k+1 .
Moreover, (3.3.12) implies that 0 ≤ r k ≤ 2 Φ(X k ). Then Lemma 1 of Bentkus [3] ensures that for any function

ϕ ∈ H 1 + , E k-1 [ϕ(r k )] ≤ E[ϕ(ζ n-k+1 )], where H 1 + is defined in (3.2.2). Notice that x → x 2 + belongs to H 1 + and r k+ = r k , we get n k=1 E k-1 [(r k -E k-1 [r k ]) 2 ] ≤ n k=1 E k-1 [r 2 k+ ] ≤ n k=1 E[ζ 2 n-k+1 ] = n k=1 E[ζ 2 k ].
We are now in a position to prove the main results.

Proof of Theorem 3.3.2. First, note that (a) is straighforward since x ≤ x + for any x ∈ R. Les us prove (b). The key result is the following Fuk-Nagaev inequality for martingales obtained by Courbot:

Theorem 3.3.11 ([8], Theorem 1). Let M n := n k=1 X k be a martingale in L 2 with respect to a nondecreasing filtration (F k ), such that M 0 = 0 and E[X 2 k | F k-1 ] ∞ < ∞. Define M n := n k=1 E[X 2 k | F k-1 ].
Then, for any x, s, v > 0,

P(M n+ ≥ x) ≤ n k=1 P(sX k+ > x) + P( M n > v) + exp - s 2 v x 2 h x 2 sv , where h(x) = (1 + x) log(1 + x) -x.
We apply the above result to Ξ n (respectively

R n ) with v = nσ 2 (respec- tively v = V n ). Then, since h(x) ≥ x log(1 + x)/2,
we have for any x > 0 and any s > 0,

P(Ξ n+ ≥ x) ≤ n k=1 P(sξ k+ > x) + 1 + x 2 snσ 2 -s/2 , ( 3.3.17) 
P(R n+ ≥ x) ≤ n k=1 P(s(r k -E k-1 [r k ]) + > x) + 1 + x 2 sV n -s/2 . (3.3.18) Furthermore, since ξ k ≤ Φ(X k ), 0 ≤ r k ≤ 2 Φ(X k
) and the random variables X k are i.i.d.,

P(ξ k+ > x/s) ≤ P(Φ(X 1 ) > x/s) ≤ P(Φ(X 1 ) > x/2s), (3.3.19) and P 
((r k -E k-1 [r k ]) + > x/s) ≤ P(Φ(X 1 ) > x/2s). (3.3.20)
Moreover, we derive from (3.3.14) and the sub-additivity of x → x + , that for any x > 0,

P((Z -E[Z]) + ≥ x) ≤ inf t∈[0,1] P(Ξ n+ ≥ tx) + P(R n+ ≥ (1 -t)x) . (3.3.21)
Since the optimization in t in the right-hand side of above inequality is quite complicated to calculate, we take t = 1/2 in the sequel. Now, combining Next, to control the summands in the right-hand side, the key result is the following new Fuk-Nagaev inequality obtained by Rio:

Theorem 3.3.12 ([19], Theorem 4.1). Let M n := n k=1 X k be a martingale in L 2 with respect to a nondecreasing filtration (F k ), such that M 0 = 0 and for some constant r > 2,

E[X 2 k | F k-1 ] ∞ < ∞ and sup t>0 t r P(X k+ > t | F k-1 ) ∞ < ∞. Define σ = n k=1 E[X 2 k | F k-1 ] 1/2 ∞ and C w r (M ) = sup t>0 t r n k=1 P(X k+ > t | F k-1 ) 1/r ∞ .
Then for any u ∈]0, 1[,

QMn (u) ≤ σ 2 log(1/u) + C w r (M )µ r u -1/r ,
where µ r := 2 + max(4/3, r/3).

As in the proof of Theorem 3.3.2, we bound up

ξ k and r k -E k-1 [r k ] respectively by Φ(X k ) and 2 Φ(X k ) to get C w Ξ n + C w R n ≤ 3 n 1/ Λ + (Φ(X 1 )). (3.3.23) 
Recalling the bounds of the quadratic variations of the two martingales that we found previously, we then conclude the proof by combining (3.3.22), Theorem 3.3.12 and (3.3.23).

Proof of Corollary 3.3.4. First, we have (see Petrov [16], p.61-62 and Exercice 2.26) that for any ≥ 1,

E[(Z -E[Z]) + ] = ∞ 0 P((Z -E[Z]) + ≥ x)x -1 dx. ( 3.3.24) 
Hence, using Theorem 3.3.2, we get

E[(Z -E[Z]) + ] ≤ 2 2 s /2 B s - 2 , 2 (n σ 2 ) /2 + (V n ) /2 + 2 n ∞ 0 x -1 P(Φ(X 1 ) > x/4s)dx, (3.3.25)
where B(x, y) = 1 0 t x-1 (1 -t) y-1 dt is the usual Beta function. See now that for ≥ 2 and s := + 1, we have

B s - 2 , 2 = √ π Γ( /2) Γ(( + 1)/2)
. 

Λ+ (Z -E[Z]) ≤ (σ √ n + V n ) sup u∈]0,1] u 1/ 2 log(1/u) + 3 n 1/ µ Λ + (Φ(X 1 )).
(3.3.26) Next, observe that u 1/ 2 log(1/u) ≤ ( /e), which concludes the proof.

Application to power-type tail

Let Y 1 , . . . , Y n be a finite sequence of nonnegative, independent and identically distributed random variables and X 1 , . . . , X n a finite sequence of independent and identically distributed random variables with values in some measurable space (X , F) such that the two sequences are independent. Let P denote the common distribution of the X k . Let G be a countable class of measurable functions from X into [-1, 1] such that for all g ∈ G , P (g) = 0 and P (g 2 ) < δ 2 for some δ ∈]0,

Let G be a measurable envelope function of G that is |g| ≤ G for any g ∈ G , and G(x) ≤ 1 for all x ∈ X . (

We suppose furthermore that for some constant p > 2,

P(Y 1 > t) ≤ t -p for any t > 0. (3.4.3) 
Define now

Z := sup g∈G n k=1 Y k g(X k ). (3.4.4) 
Setting Xk := (X k , Y k ) and F the class of functions from X × R + into R which verified that for any f ∈ F there exists a unique g ∈ G such that f (x, y) = yg(x), we then have Z = sup f ∈F n k=1 f ( Xk ). Hence, this allows us to apply results of the previous section. The envelope function of F is defined by F (x, y) := y G(x). Moreover we can obtain a more precise bound for V n . Indeed, we will use an upper bound for the mean of suprema of empirical processes, expressed in terms of the uniform entropy integral, proved by van der Vaart and Wellner [22]. Let us first recall some classical definitions. Remark 3.4.4. In the unbounded case, the result of Boucheron & al. [4] recalled in Theorem 3.1.2.

(Z -E[Z]) + p ≤ B p σ √ n + o( √ n), (3.4.6) 
where

B p := 2 (1 -e -1/2 ) -1/2 √ p -1.
Remark that the constant C p is always better than the constant B p . For instance, for p = 4, we have B 4 5.5225 and C 4 4.2164. Furthermore, when p tends to infinity, B p is equivalent to

3.1884 √ p while C p is equivalent to √ p.
Proof of Theorem 3.4.2. First, we bound up the term

V n = n k=1 E[ζ 2 k ]. We recall that ζ k is a random variable with distribution function F 2 Y 1 G(X 1 ),q k (defined in (3.2.1)) and q k is such that E[ζ k ] = E k .
Let ψ be a random variable with tail function defined by P(ψ > t) = t -p for all t ≥ 1 and let ζk be a random variable with distribution function F 2ψ,q k where qk is the real in

[0, 1] such that E[ ζk ] = E k . Clearly, F 2 Y 1 G(X 1 ),q k (x) ≥ F 2ψ,q k (x) for any x ∈ R.
Then Lemma 1 of Bentkus [3] 

ensures that E[ϕ(ζ k )] ≤ E[ϕ( ζk )] for any ϕ ∈ H 1 + . In particular, this implies E[ζ 2 k ] ≤ E[ ζ2 k ].
Therefore, an elementary calculation yields

V n ≤ 2 p/(p-1) p p -2 p -1 p p-2 p-1 n k=1 E p-2 p-1 k . ( 3.4.7) 
Next we show how we can obtain a bound for E k in terms of uniform entropy integral.

Proposition 3.4.5. There exists a universal constant K such that for any integer k ≥ 1,

1 k E sup g∈G k j=1 Y j g(X j ) ≤ K p p -2 k -1/2 J(δ, G ) + p k (1/p)-1 J 2 (δ, G ) δ 2 1-1/p . Proof of Proposition 3.4.5. Notice that Q ψ (u) = u -1/p for any u ∈]0, 1[ and that (3.4.3) implies Q Y ≤ Q ψ . Let also κ ∈ R such that 2 κ = k δ 2 J 2 (δ, G ) . ( 3.4.8) 
Let U 1 , . . . , U k be k independent copies of a random variable U distributed uniformly on [0, 1]. Let us now define for every j = 1, . . . , κ ,

I j := {m ∈ {1, . . . , k} : U m ∈]2 -j , 2 1-j ]}, J κ := {m ∈ {1, . . . , k} : U m ≤ 2 -κ }.
Here, . and . denote the classical floor and ceiling functions. We recall the basic property of the quantile function Q X of a random variable X : Q X (U ) has the same distribution as X for any random variable U with the uniform distribution over [0, 1]. Then,

E sup g∈G k j=1 Y j g(X j ) ≤ E 1 + E 2 , ( 3.4.9) 
where

E 1 := κ j=1 E sup g∈G i∈I j Q ψ (U i )g(X i ) and E 2 := E sup g∈G j∈Jκ Q ψ (U j )g(X j ) .
Let us bound up E 2 . Since G ≤ 1, a straightforward calculation gives

E 2 ≤ k 2 -κ 0 Q ψ (u) du ≤ k p p -1 2 -κ(1-1/p) . (3.4.10) To bound up E 1 , we first notice that, since Q ψ is decreasing, for any m ∈ I j , |Y m g(X m )| ≤ Q ψ (2 -j
). We can then apply Theorem 2.1 of Van der Vaart and Wellner [22] which leads to

E 1 ≤ K J(δ, G ) κ j=1 E |I j | 1 2 Q ψ (2 -j ) + J 2 (δ, G ) δ 2 κ j=1 Q ψ (2 -j ) . (3.4.11)
By the definition of I j , it is easy to see that

E |I j | = k i=1 i k i (2 -j ) i (1 -2 -j ) k-i = k 2 -j .
Then, Jensen's inequality yields

E[|I j | 1 2 ] ≤ √ k 2 -j . Since Q ψ (u) = u -1/p , one has κ j=1 2 -j/2 Q ψ (2 -j ) ≤ 2 1/p-1/2 1 -2 1/p-1/2 ≤ 2 log(2) p p -2 . (3.4.12) Likewise, κ j=1 Q ψ (2 -j ) = 2 κ /p 2 1/p + κ -1 j=0 2 -j/p ≤ 2 κ /p 2 1/p + 1 1 -2 -1/p ≤ 2 κ/p log(2) p 2 p -2 . (3.4.13)
Hence, we derive from (3.4.11) -(3.4.13), Let us continue the proof of Theorem 3.4.2. Using the subadditivity of the functions x → x a for 0 < a < 1, from (3.4.7) and Proposition 3.4.5 we obtain that 

E 1 ≤ K p p -2 √ k J(δ, G ) + p J 2 (δ, G ) δ 2 2 κ/p . ( 3 
V n ≤ K p p -2 n q/4 J(δ, G ) + √ p n 1/p J(δ, G ) δ 1/q . ( 3 
+ p (Y 1 G(X 1 )) ≤ Λ + p (ψ) = 1.
This ends the proof of Theorem 3.4.2.

Chapter 4

About the rate function in the concentration inequalities for suprema of bounded empirical processes

We provide new deviation inequalities in the large deviations bandwidth for suprema of empirical processes indexed by classes of uniformly bounded functions associated with independent and identically distributed random variables. The improvements we get concern the rate function which is, as expected, the Legendre transform of suprema of the log-Laplace transform of the pushforward measure by the functions of the considered class (up to an additional corrective term). Our approach is based on a decomposition in martingale together with some comparison inequalities.

Introduction

Let X 1 , . . . , X n be a sequence of independent random variables valued in some measurable space (X , F) with common distribution P . Let P n denote the empirical probability measure P n := n -1 (δ X 1 + . . . + δ Xn ). Let F be a countable class of measurable functions f : X → R such that P (f ) = 0 and |f (x)| ≤ 1 for all x ∈ X and all f ∈ F . In this Chapter we are interested in exponential deviation inequalities with precise rate functions in the large deviations bandwidth for the random variable

Z := sup{nP n (f ) : f ∈ F }, (4.1.1) 
around its mean. First, let us briefly recall known results on concentration of Z around its mean for uniform bounded classes F . Talagrand [22] obtains a Bennett-type inequality by means of isoperimetric inequalities for product measures. Ledoux [12] introduces a new method based on entropic inequalities to recover more directly Talagrand's inequalities. This method, which allows to bound up the Laplace transform of Z, is the starting point of a series of papers, mainly to reach optimal constants in Talagrand's inequalities.

Let us cite among others, Massart [14], Rio [17,18,19], Bousquet [6], Klein [10], Klein and Rio [11]. In the large deviations bandwidth, as rate function, we expect the Legendre transform of t → sup f ∈F f (t), denoted by * F , where f is the log-Laplace transform f (t) := log P (e tf ) for all t ≥ 0 and all f ∈ F . Indeed, one has This elementary lower bound shows that the large deviations rate function * F cannot be improved. To the best of our knowledge, the only result in this direction is obtained in Rio [17] and concerns the particular case of setindexed empirical processes. Rio get as rate function, for the right-hand side deviations for sets with large measure under P and for the left-hand side deviations, that of a Bernoulli random variable which actually corresponds to * F . In this Chapter, we obtain as rate function for the general case, the function *

1 n log E[e tZ ] ≥ sup f ∈F f (t) =: F (t), (4.1.2) which implies 1 n log E[e t(Z-E[Z]) ] ≥ F (t) -t E[Z] n . ( 4 
F with an additional corrective term which tends to 0 as n tends to infinity as soon as F is a weak Glivenko-Cantelli class (see Remark 4.3.3). Our methods are only based on martingale techniques and comparison inequalities.

The Chapter is organized as follows. First, in Section 4.2 we recall some definitions and preliminary results on the conditional value-at-risk and some comparison inequalities. In Section 4.3 we state the main results of this Chapter. We study the rate function * F appearing in the main result in Section 4.4. Finally, we provide detailed proofs in Section 4.5.

Notations and preliminary results

In this section, we give the notations and definitions which we will use all along the Chapter. Let us start by the definition of the Conditional Valueat-Risk (CVaR for short). Definition 4.2.1. Let X be a real-valued integrable random variable. Let the function Q X be the càdlàg inverse of x → P(X > x). The Conditional Value-at-Risk is defined by 

QX (u) := u -1 u 0 Q X (s)ds for any u ∈]0, 1]. ( 4 
∈]0, 1], (i) P(X > Q X (u)) ≤ u, (ii) Q X (u) ≤ QX (u), (iii) QX+Y (u) ≤ QX (u) + QY (u).
(iv) Assume that X has a finite Laplace transform on a right neighborhood of 0. Then QX (u) ≤ * -1 X (log(1/u)). Remark 4.2.5. Since we use different notations from those of Pinelis, let us mention that his notations Q 0 (X; u), Q 1 (X; u) and Q ∞ (X; u) correspond respectively to Q X (u), QX (u) and * -1 X (log(1/u)). We now recall some comparison inequalities which will be used in the proof of the main result. Let us first give a notation for a family of distribution probability. Notation 4.2.6. Let α, β be two reals such that α < β. We say that a random variable θ follows a Bernoulli distribution if it assumes exactly two values and we write θ ∼ B m (α, β) if

P(θ = β) = 1 -P(θ = α) ∈]0, 1[, and E[θ] = m. (4.2.5) Notice that Var(θ) = (m -α)(β -m). (4.2.6)
The following classical convex comparison inequality between a bounded random variable X and a Bernoulli random variable with values the bounds of X was first proved by Hoeffding (see Inequalities (4.1) and (4.2) in [9]); it straight follows by the property of convexity. In particular, since

E[θ] = m, Var(X) ≤ Var(θ) = (a + m)(b -m).
Next, Bentkus (see Lemmas 4.4 and 4.5 in [3]) proved that a martingale with bounded from above increments is more concentrate with respect to a certain class of convex functions than a sum of independent and identically distributed Bernoulli random variables. Proposition 4.2.8. Let b, s 2 1 , . . . , s 2 n be positive reals. Let M n := n k=1 X k be a martingale with respect to a nondecreasing filtration (F k ) such that M 0 = 0,

X k ≤ b, and E[X 2 k | F k-1 ] ≤ s 2 k a.s. ( 4 

.2.7)

Let s 2 = n -1 (s 2 1 + . . . + s 2 n ) and S n := ϑ 1 + . . . + ϑ n be a sum of n independent copies of a random variable ϑ with distribution B 0 (-s 2 /b, b) (defined by (4.2.5)). Then, for any convex nondecreasing function ϕ : R → R, differentiable and with convex derivative,

E[ϕ(M n )] ≤ E[ϕ(S n )].
Remark 4.2.9. Actually Bentkus obtains the above inequality in a smaller class of functions. This generalization is due to Pinelis (see Corollary 5.8 in [16]).

Main results

Let us first introduce one more notation. We denote for any k = 1, . . . , n the expectations

E k := E sup f ∈F P k (f ). (4.3.1)
The main result of the Chapter is the following theorem: 

Set Ē := n -1 (E 1 + . . . + E n ) and define v n := Ē 2 1 - Ē 2 . ( 4.3.3) 
Let θ (n) be a Bernoulli random variable with distribution B 0 (-v n , 1) (defined by (4.2.5)). We denote by vn the log-Laplace transform of θ (n) (as defined by (4.2.4)). Then, for any x ≥ 0,

n -1 QZ-E[Z] (e -nx ) ≤ * -1 F (x) + 2 * -1 vn (x). (a)
Consequently, for any x ≥ 0,

P(Z -E[Z] > n( * -1 F (x) + 2 * -1 vn (x))) ≤ e -nx . (b)
The inverse function of * vn cannot be explicitly computed. For this reason we provide below a more tractable bound. 

Then * -1 vn (x) ≤ v n ψ x v n for any x ≥ 0. (a)
Consequently, for any x ≥ 0, -x) is increasing between 0 and 1/2, in order to provide a more explicit bound for v n , we only have to provide a bound for Ē (which is lower than 1 and tends to 0 as n tends to infinity). To this end, we shall use the recent results of Baraud [1] who provides (see his Theorems 2.1 and 2.2) upper bounds with explicit constants for the expectations of suprema of empirical processes, under the hypothesis that F is a weak VC-major class. Assume then that F is a weak VC-major class with dimension d. Let σ 2 := sup f ∈F P (f 2 ) denote the wimpy variance. Then Inequality (2.8) in [1] implies the following proposition (the proof is postponed to Section 4.5). As n tends to infinity, the right-hand side of (a) admits the following behavior

P Z -E[Z] > n * -1 F (x) + 2 v n ψ x v n ≤ e -
2 √ 2 σ log(e/σ)n -1/2 log(n) + 4 d n -1 log 2 (n). (b)
We end this section by giving a simple example where the function F is explicit.

Example 4.3.7. Let S be a countable class of sets. Let ε 1 , . . . , ε n be a sequence of independent Rademacher random variables and independent of X 1 , . . . , X n . Define 

Z := sup S∈S n k=1 ε k 1 S (X k ). ( 4 

S

is then given by the variational formula * -1

S (x) = inf t>0 t -1 x + log(1 + p(cosh(t) -1))
for any x ≥ 0. (4. 3.11) We also refer the reader to Bennett [2], p. 532, for an explicit formula for * S . 

About the rate function *

Comments on Large Deviation Principle

In this subsection we explain how the rate function * F arises in the large deviations theory for suprema of bounded empirical processes.

Throughout this section, we assume that for all f ∈ F , 0 ≤ f ≤ 1. We denote by l ∞ (F ) the space of all bounded real functions on F equipped with the norm F F := sup f ∈F |F (f )|, making (l ∞ (F ), . ∞ ) a Banach space. For each finite measure ν on (X , F) corresponds to an element ν F ∈ l ∞ (F ) defined by ν F (f ) := ν(f ) = f dν for any f ∈ F . With a slight abuse of notation, we will keep the notation ν instead of ν F . Wu [24] gives necessary and sufficient conditions with respect to F which ensure that P n satisfies the Large Deviation Principle (LDP for short) in l ∞ (F ). We refer the reader to the paper of Wu for these conditions (for example, if F is a Donsker class then the required conditions are satisfied). The (good) rate function is given by The important remark is that if we can invert the infimum and the supremum in inf f ∈F sup y>0 {tyf (y)}, we get that inf f ∈F * f (y) = * F (y). It seems not possible to invert the infimum and the supremum in general. However, note that we always have the inequality inf f ∈F * f (y) ≥ * F (y). In the following proposition, we describe a particular case in which the inversion is valid, which then simplifies the calculation of * F . Since it directly follows from a minimax theorem (see, for instance, Corollary 3.3 in Sion [21]), we omit the proof. Proposition 4.4.2. Let X be a random variable valued in (X , F) with distribution P . Let F be a countable class of measurable functions from X into [-1, 1] such that P (f ) = 0 for all f ∈ F . Let Θ be a convex compact subset of a vector space. Let {µ θ : θ ∈ Θ} be a family of probability distribution on [-1, 1] such that, for any t ≥ 0, θ → µ θ (t) := log e tz µ θ (dz) is concave and upper semi-continuous. We assume that for all f ∈ F , there exists θ ∈ Θ such that f (X) has the distribution µ θ . Then, * F (x) ≥ inf θ∈Θ * µ θ (x) for any x ≥ 0. The computation of the right-hand side of (4.4.3) is perfomed by Rio (see page 175 in [17]): for any 

h F (F ) := inf{H(ν | P ) : ν is a probability and ν = F on F }, (4.4 
x ≤ 1 -2p, inf θ∈[0,p] * θ (x) = * p (x) = (p + x) log(1 + x/p) + (1 -p -x) log(1 -x/(1 -p)). (4.4.4) Furthermore, for any x ≥ 1 -2p, inf θ∈[0,p] * θ (x) ≥ * p (1 -2p) + x 1-2p ( * θ ) (y)dy = 2(1 + x) log (1 + x) + 2(1 -x) log(1 -x) -(1 + 2p) log(2p) -(3 -2p) log(2 -2p). ( 4 
(Z -E[Z] ≥ nx) ≤ exp(-n * p 0 (x)), for any x > 0 such that x ≤ (x + p 0 )(1 -x -p 0 ) log (1 -p 0 ) p 0 (t + p 0 ) (1 -t -p 0 ) . ( 4 

.4.7)

Bousquet [6] tells without proof that (4.4.7) holds for any

x ≤ (3/4)(1 -2p 0 ). If x = x 0 := 1 -2p 0 , (4.4.7) is equivalent to p 0 (1 -p 0 ) ≥ (1 -2p 0 )/2 log(1/p 0 -1),
which is wrong (see Hoeffding [9] p. 19). Recall now that Bousquet's results are derived from the entropy method introduced by Ledoux [12] on the context of concentration inequalities. It appears here that this method does not provide the exact rate function for large values of x, including x = 1 -2p 0 .

The case of nondecreasing 1-Lipschitz functions

Here we study the special case of F included in the set of nondecreasing 1-Lipschitz functions. We can then bound up * -1

F by a more tractable quantity. Corollary 4.4.5. Let X be a random variable valued in (X , F) with distribution P and X 1 , . . . , X n be n independent copies of X. Let F be a countable class of measurable functions from X into [-1, 1], nondecreasing, 1-Lipschitz and such that P (f ) = 0 for all f ∈ F . Let Z be defined by (4.1.1). Moreover, we assume that the distribution P satisfies that for any t ∈ R, e tx P (dx) < ∞. Then * -1

F (x) ≤ * -1 X-E[X] (x) for any x ≥ 0. (a)
Consequently, for any x ≥ 0, Furthermore, one can prove that * -1 X (x) is equivalent to 1 -2 e e -x as x tends to infinity.

P Z -E[Z] > n( * -1 X-E[X] (x) + 2 * -1 vn (x)) ≤ e -

Proofs

Proofs of Section 4.3

Proof of Theorem 4.3.1. First, notice that (b) follows immediately from (a) by Proposition 4.2.4 (i). Let us now prove (a). Our method is based on a martingale decomposition of Z which we now recall. We suppose that F is a finite class of functions, that is F = {f i : i ∈ {1, . . . , m}}. The results in the countable case are derived from the finite case using the monotone convergence theorem. Set F 0 := {∅, Ω} and for all k = 1, . . . , n, F k := σ(X 1 , . . . , X k ) and

F k n := σ(X 1 , . . . , X k-1 , X k+1 , . . . , X n ). Let E k (respectively E k n ) denote the conditional expectation operator associated with F k (resp. F k n ). Set also Z k := E k [Z], (4.5.1 
)

Z (k) := sup{nP n (f ) -f (X k ) : f ∈ F }. (4.5.2)
The sequence (Z k ) is an (F k )-adapted martingale and 

Z -E[Z] = n k=1 ∆ k , where ∆ k := Z k -Z k-1 . ( 4 
(f i ) = Z}, ( 4.5.4 
)

τ k := inf{i ∈ {1, . . . , m} : nP n (f i ) -f i (X k ) = Z (k) }. (4.5.5) 
Notice first that

Z (k) + f τ k (X k ) ≤ Z ≤ Z (k) + f τ (X k ).
From this, conditioning by F k gives

E k [f τ k (X k )] ≤ Z k -E k [Z (k) ] ≤ E k [f τ (X k )]. (4.5.6) Set now ξ k := E k [f τ k (X k )] and let ε k ≥ r k ≥ 0 be random variables such that ξ k + r k = Z k -E k [Z (k) ] and ξ k + ε k = E k [f τ (X k )]. Thus (4.5.6) becomes ξ k ≤ ξ k + r k ≤ ξ k + ε k . (4.5.7)
Since the random variable τ k is F k n -measurable, we have by the centering assumption on the elements of F ,

E k n [f τ k (X k )] = P (f τ k ) = 0 a.s., (4.5.8) which ensures that E k-1 [ξ k ] = 0. Moreover, E k [Z (k) ] is F k-1 -measurable. Hence we get ∆ k = Z k -E k [Z (k) ] -E k-1 [Z k -E k [Z (k) ]] = ξ k + r k -E k-1 [r k ], Lemma 4.5.4. We have 0 ≤ E k-1 [r k ] ≤ E n-k+1 ≤ 1 a.s.
Proof of Lemma 4.5.4. The proof is based on the following result on exchangeability of variables, proved in Marchina [13]. Since it is the fundamental tool of the Chapter, we give again the proof for sake of completeness.

Lemma 4.5.5. For any integer j

≥ k, E k-1 [f τ (X k )] = E k-1 [f τ (X j )] a.s.
Proof of Lemma 4.5.5. By the definition of the random variable τ , for every permutation on n elements σ, τ (X 1 , . . . , X n ) = τ • σ(X 1 , . . . , X n ) almost surely. Applying now this fact to σ = (k j) (the transposition which exchanges k and j), it suffices to use Fubini's theorem (recalling that j ≥ k) to complete the proof.

Then,

E k-1 [ε k ] = E k-1 [f τ (X k )] = E k-1 [f τ (X k ) + . . . + f τ (X n )]/(n -k + 1) ≤ E k-1 sup f ∈F {f (X k ) + . . . + f (X n )}/(n -k + 1) = E n-k+1 . (4.5.15) Recalling that 0 ≤ r k ≤ ε k , we get 0 ≤ E k-1 [r k ] ≤ E n-k+1 .
The bound E n-k+1 ≤ 1 is straightforward by the uniform boundedness condition on the elements of F , which ends the proof of Lemma 4.5.4.

Finally, (4.5.14) together with Lemma 4.5.4 and the fact that x → x(2-x) is increasing between 0 and 1 imply 

Var(r k | F k-1 ) ≤ E n-k+1 (2 -E n-k+1 ) a.s.. ( 4 
E[ϕ(R n )] ≤ E ϕ n k=1 ϑ (n) k , ( 4.5.17) 
where ϑ

(n) 1 , . . . , ϑ (n) n is a sequence of i.i.d. random variables such that ϑ (n)
k has the distribution B 0 (-ṽ n , 2) (defined by (4.2.5)) and ṽn :

= n k=1 E k (2 -E k ). Moreover, since x → x(2 -x) is concave, ṽn ≤ Ē(2 -Ē).
Finally a classical result due to Hoeffding [9] (see his Inequalities (4.1) and (4.2)) yields that for any convex, nondecreasing function ϕ differentiable with convex derivative, 

E ϕ n k=1 ϑ (n) k ≤ E ϕ 2 n k=1 θ (n) k , ( 4 

of [5]

). Therefore, for any x ≥ 0, * -1

vn (x) ≤ * -1 Πn (x) = v n h -1 x v n , ( 4.5.21) 
where h(u) := (1 + u) log(1 + u) -u for any u ≥ 0. Next, a Newton algorithm performed in Del Moral and Rio [7] Since P n F satisfies the LDP with rate function J and since P n (f ) ≤ P n F for all f ∈ F , we get

J(y) ≤ lim sup n→∞ -n -1 log P( P n F ≥ y) ≤ lim n→∞ -n -1 log P(P n (f ) ≥ y) = * f (y). (4.5.29)
Therefrom J(y) ≤ I(y) + ε. Since ε > 0 is arbitrary, we conclude the proof of "≤" by letting ε tend to 0.

(ii) Proof of J(y) ≥ I(y).

Since the infima may be written as the limit of a sequence of infima taken over finit subsets, it is enough to prove the inequality for a finite class of functions F . Let y ∈ [0, 1] and t > 0. Let ν be a probability measure absolutely continuous with respect to P such that ν F = y. Let d := (dν/dP ) be the Radon-Nikodym derivative of ν with respect to P and set g f := tf -log P (e tf ) for any f ∈ F . Young's inequality (see, for instance, Equation (A.2) in Rio [20]) implies that which implies I(y) ≤ J(y) and ends the proof.

Proof of Corollary 4.4.5. Let X be a random variable with distribution P . Recalling that P (f ) = 0 for any f ∈ F , Lemma 2 of Bobkov [4] states that for any convex function ϕ : R → R and for any f ∈ F ,

E[ϕ(f (X))] ≤ E[ϕ(X -E[X])].
In particular with ϕ(x) = e tx , t ≥ 0,

F (t) = sup f ∈F f (t) ≤ log E[e t(X-E[X]
) ] = X-E[X] (t). (4.5.33)

Thus the variational formula (4.2.3) implies * -1 F (x) ≤ * -1 X-E[X] (x) for all x ≥ 0. An application of Theorem 4.3.1 completes the proof.

Chapter 5

Comparison inequalities for suprema of bounded empirical processes

In this Chapter we provide comparison moment inequalities for suprema of bounded empirical processes. Our methods are only based on a decomposition in martingale and on comparison results concerning martingales proved by Bentkus and Pinelis.

Introduction

Let X 1 , . . . , X n be a sequence of independent random variables valued in some measurable space (X , F) with common distribution P . Let P n denote the empirical probability measure P n := n -1 (δ X 1 + . . . + δ Xn ). Let F be a countable class of measurable functions f : X → R such that P (f ) = 0 for all f ∈ F . In this Chapter we are concerned with concentration properties around the mean of the random variable

Z := sup{nP n (f ) : f ∈ F }, (5.1.1) 
when F satisfied a two-sided or a one-sided (from above) boundedness conditions. Our approach is based on a decomposition of Z -E[Z] into a sum of martingale increments together with comparison inequalities for martingales with (two-sided or one-sided) bounded increments proved by Bentkus [1] and Pinelis [7]. Before going further, let us introduce some notations. (ii) For any a ≥ 0, Γ a stands for any centered Gaussian random variable with variance equals to a.

(iii) For any a > 0, Π a stands for any Poisson random variable with parameter a. We also denote by Πa := Π a -a the centered Poisson random variable.

Let us introduce the class of convex functions in which the comparison inequalities, stated in this Chapter, are valid. Definition 5.1.2. Let k ∈ N * . As usual, we denote by C k the space of k-times continuously diffenrentiable functions from R to R. We define the following class of functions:

G k := {ϕ ∈ C k-1 : ϕ, ϕ , . . . , ϕ (k-1) are convex}.

(5.1.4)

We now recall the two following comparison results, proved by Bentkus [1] and Pinelis [7], which are the main tools in our proofs. (u -t) α + µ(dt) for some Borel measure µ ≥ 0 on R and all u ∈ R , for α ∈ {2, 3}. The extensions to G α follows from a result of Pinelis [8,Corollary 5.8] (see also [6,Section 2]).

Remark 5.1.5. From moment comparison inequalities in H α + , such as in the above Proposition, one can derive tail comparison inequalities. We refer the reader to [4,5] for the statements of these results and for some more details.

Finally, we use the notations: (5.1.7)

E k := E sup

Results

Two-sided boundedness condition

Here, by two-sided boundedness condition, we mean that F is a countable class of measurable functions with values in [-a, 1] for some positive real a. Let ψ be the function defined on [0, 1] by 

ψ(x) = x(1 -x) if x ∈ [0,
E k-1 [∆ 2 k ] ≤ σ 2 + E k-1 [2ξ k r k + r 2 k ] -(E k-1 [r k ]) 2 ≤ σ 2 + 2E k-1 [r k ] -(E k-1 [r k ]) 2 ≤ σ 2 + 2 ψ(E k-1 [r k ]) ≤ σ 2 + 2 ψ(E n-k+1 ),
(5.3.9)

where the last inequality follows from Lemma 5.3.1 and ψ is the nondecreasing function already defined in (5.2.1). Then the same conclusion as in the proof of the Case (ii) of Theorem 5. Case (ii). Since x → x 3 + is a convex function, we have

∆ 3 k+ ≤ (ξ k -E k-1 [r k ]) 3 + + 3 r k (ξ k + r k -E k-1 [r k ]) 2 + .
(5.3.10)

In the same way as previously, since E k n [f 3 τ k + (X k )] = P (f 3 τ k + ), we observe that E k-1 [ξ 3 k+ ] ≤ m 3 + . Therefrom, recalling that r k ≥ 0 and ξ k + r k ≤ 1, we get

E k-1 [∆ 3 k+ ] ≤ m 3 + + 3 ρ(E k-1 [r k ]) ≤ m 3 + + 3 ρ(E n-k+1
), (5.3.11) where the last inequality follows from Lemma 5.3.1 and ρ is the nondecreasing function defined in (5.2.3). Since ρ is concave, we complete the proof in the same way as the Case (i) by using Proposition 5.1.3 (ii) in place of Proposition 5.1.3 (i).

Classical concentration inequalities assume that the functions of F are square integrable under P , and the aim is then to establish extensions of Hoeffding's, Bernstein's and Bennett's inequalities for suprema of empirical processes. We refer the reader to Chapter 12 of the book of Boucheron, Lugosi and Massart [1] for an overview of this subject. To the best of our knowledge, the only result where the square integrability of the functions of F is not required, is provided in Rio [2, Theorem 2]. Rio gives a bound of the log-Laplace transform of Z -E[Z] involving the squares of positive parts and truncated negative parts of f (X 1 ) for all f ∈ F . His proofs relies on a martingale decomposition of Z -E[Z] and on an exponential inequality for positive selfbounded functions proved in Rio [3]. The starting point of the proof of our main result is the same martingale decomposition. However we control the increments by comparison inequalities proved in Chapter 2.

Roughly speaking, we shall establish (see Inequality (a) of Theorem 6.2.1) that for small enough x > 0, P(Z -E[Z] ≥ n 1/p x) ≤ exp -K p x q 1 + O x 2/(p-1) n -1/q , (

where q = p/(p -1) is the Hölder exponent conjugate of p and K p is a constant depending only on p. This result must be related to the following known result when the functions of F are square integrable under P (see, for instance, Rio where v := σ 2 + n -1 E[Z] and σ 2 := sup f ∈F P (f 2 ). Let q 0 be a real in ]0, 1[ such that q 0 -c p p -1

Result

(1 -q 0 ) 1-1/p = 0. (6.2.2)

Let η be a random variable such that for any t > 0, Let Z be defined by (6.1.2). Then for any x ≤ q 0 Γ(2 -p), P(Z -EZ ≥ nx) ≤ exp -nγ p x p/(p-1) (1 -ε p (x)) , (a)

F
where γ p = (pα p ) -1/(p-1) p -1 p and α p = c p p -1 Γ(2 -p), (6.2.5)

ε p (x) = p p -1 ∞ k=2 q 0 k!
x (k-p)/(p-1) (pα p ) -(k-1)/(p-1) . (6.2.6)

Moreover, for any x > q 0 Γ(2 -p),

P(Z -EZ ≥ nx) ≤ exp -n(x(1 -q 0 ) 1/p c -1 -β p ) , (b) 
where

β p = -Γ(2 -p) p -1
-q 0 -Γ(2 -p) p -1 -1 + exp((1 -q 0 ) 1/p c -1 ) -(1 -q 0 ) Let us recall the main points. Firstly by virtue of the monotone convergence theorem, we can suppose that F is a finite class of functions. Set F 0 := {∅, Ω} and for all k = 1, . . . , n, F k := σ(X 1 , . . . , X k ) and F k n := σ(X 1 , . . . , X k-1 , X k+1 , . . . , X n ). Let E k (respectively E k n ) denote the conditional expectation operator associated with F k (resp. F k n ). Set also Z (k) := sup f ∈F j =k f (X j ) and Z k := E k [Z]. Let us number the functions of the class F and consider the random variables τ := inf{i > 0 : nP n (f i ) = Z} and τ k := inf{i > 0 : nP n (f i )-f i (X k ) = Z (k) }.

Next, we observe that under the hypothesis -ta q 0 ≤ 1, the sum in (6.2.18) is an alternating series with the the absolute value of the general term decreasing to 0. Thus the sum is of the sign of the term corresponding to k = 2, which is negative. Hence, E[e tζq 0 ] ≤ q 0 e t + p(tc) p Γ(-p) + (1 -q 0 ) 1 -ta q 0 p 1 -p ≤ 1 + q 0 (e t -t -1) + p(tc) p Γ(-p) + t q 0 -(1 -q 0 )a q 0 p 1 -p . Observe that, in view of (6.2.12), q 0 -(1 -q 0 )a q 0 p 1 -p = E[ζ q 0 ] = 0.

Hence taking the logarithm and using the inequality log(1 + x) ≤ x for any x > 0 conclude the proof of Lemma 6.2.5.

Part 3 : Conclusion by the Cramér-Chernoff calculation.

We now complete the proof of Theorem 6.2.1. From Lemma 6.2.3 (b) and Lemma 6. tx -α p t p -q 0 (e t -t -1) . (6.2.21)

In order to prove Inequality (a) of the Theorem, we bound from below φ * ζq 0 (x) by taking the real t x ∈]0, 1/a q 0 ] which maximizes t → tx -α p t p . A straightforward calculation yields t x = x 1/(p-1) (pα p ) -1/(p-1) , (6.2.22)

and t x a q 0 ≤ 1 is equivalent to x ≤ q 0 Γ(2 -p) (recall (6.2.2)). We then have t x x -α p t p x = γ p x p/(p-1) and q 0 (e tx -t x -1) = γ p ε p (x)x p/(p-1) , (6.2.23) which concludes the proof of Inequality (a). The Inequality (b) follows directly by putting t = a -1 q 0 in the right-hand side of (6.2.21).

t>0e

  -tx E[e tRn ] ≤ inf t>0 e -tx E[e tZ ] = e -x 2 /2 .

Théorème 1 . 2 . 3 .

 123 Soit α > 0. Soit ξ une variable aléatoire réelle telle que la fonction x → P(ξ ≥ x) est log-concave sur R. Alorsinf ϕ∈H α + E[ϕ(ξ)] ϕ(x) = P α (ξ ; x) := inf t<x E[(ξ -t) α + ] (x -t) α(1.2.5)

Lemme 1 . 2 . 12 .

 1212 3} selon les cas considérés. En particulier, il obtient : Soit X, Y et Z trois variables aléatoires réelles telles que pour tout x ∈ R, P(Y ≥ x) ≤ P(X ≥ x) ≤ P(Z ≥ x). Alors E[ϕ(X)] ≤ E[ϕ(ξ)] pour tout fonction convexe ϕ, où ξ est une variable aléatoire de loi entièrement définie par celles de Y et Z et telle que E[ξ] = E[X]. (Une formule explicite de la loi de ξ est donnée).

.3. 3 )

 3 Now, Equality (3.3.3) and Theorem 3.3.3 (b) imply

. 4 )

 4 since u 1-1/ ≤ 1. With the change of variables y = 2 log(1/u) ∈ [0, ∞[, clearly, the supremum is achieved at

  .21) with (3.3.17)-(3.3.20) leads to inequality (b) of Theorem 3.3.2 which ends the proof. Proof of Theorem 3.3.3. First observe that (a) is the point (ii) of Proposition 3.2.2 and that (c) follows immediately from (b) by the point (i) of the same Proposition 3.2.2. Let us now prove (b). Recalling the decomposition (3.3.14), the point (iii) of Proposition 3.2.2 implies QZ-E[Z] (u) ≤ QΞn (u) + QRn (u). (3.3.22)

Finally, we conclude

  the proof by the change of variables x/4s = y in the integral term in (3.3.25) and the subadditivity of the function x → x 1/ . Proof of Corollary 3.3.7. First, observe that (a) follows directly from (3.2.6). Let us now prove (b). We proceed exactly as in Rio [19, Theorem 5.1]. Both (3.2.4) and Theorem 3.3.3 (b) imply

.4. 14 )

 14 Finally, (3.4.9), (3.4.14), (3.4.10) and the definition of κ imply Proposition 3.4.5.

  .4.15) Injecting this bound into the inequality of Corollary 3.3.4 gives (a). Similarly, injecting this bound in Inequality (b) of Corollary 3.3.7, we conclude the proof of (b) since Λ

Proposition 4 . 2 . 7 .

 427 Let a, b two positive reals and let X be a bounded random variable -a ≤ X ≤ b with mean m. Let θ ∼ B m (-a, b) (defined by (4.2.5)). Then, for any convex function ϕ : R → R, E[ϕ(X)] ≤ E[ϕ(θ)].

Corollary 4 . 3 . 2 .

 432 Let ψ be the function defined by ψ(x)

Proposition 4 . 3 . 6 . 2 √ 2 σ

 43622 Assume that n ≥ d. Then Ē ≤ log(e/σ)n -1/2 C 1 (d) + C 2 (n, d) + 8 n -1 C 1 (d) + C 2 (n, d) ,

.3. 8 )

 8 For any S ∈ S and any k = 1, . . . , n, we get by a straightforward calculationS (t) := log E[e tε k 1 S (X k ) ] = log(1 + P (S)(cosh(t) -1)) for any t ≥ 0. (4.3.9) Clearly the right-hand side is increasing with respect to P (S). Then S (t) := sup S∈S S (t) = log(1 + p(cosh(t) -1)) for any t ≥ 0, (4.3.10) where p := sup{P (S) : S ∈ S }. By (4.2.3), * -1

F

  

Lemma 4 . 4 . 1 .

 441 J(y) = inf f ∈F * f (y), where f (t) := log P (e tf ) for any t ≥ 0.

Example 4 . 4 . 3 (

 443 Set-indexed empirical processes). Let X be a random variable valued in (X , F) with distribution P and let S be a countable class of measurable sets of X . We consider the class F := {1 S -P (S) : S ∈ S }. Define p := sup{P (S) : S ∈ S } and assume that p < 1/2. For any θ ∈ [0, p], let us define the function θ (t) := log(1 + θ(e t -1)) -θt for any t ≥ 0. Then Proposition 4.4.2 yields * F (x) ≥ inf θ∈[0,p] * θ (x) for any x ≥ 0. (4.4.3)

4. 5 . 2 4 Proof of Lemma 4 . 4 . 1 .

 524441 Proofs of Section 4.We use the notation I(y) := inf f ∈F * f (y) throughout the proof. (i) Proof of J(y) ≤ I(y). Let y ∈ [0, 1] and let ε > 0. There exists a function f ∈ F such that * f (y) ≤ I(y) + ε. Now, Cramér's Theorem ensures that lim n→∞ -n -1 log P(P n (f ) ≥ y) = * f (y). (4.5.28)

  tν(f ) -log P (e tf ) = dg f dP ≤ e g f dP + (d log d -d) dP. (4.5.30) Since e g f dP = 1, (4.5.30) leads to tν(f ) -log P (e tf ) ≤ H(ν | P ). (4.5.31) In particular, (4.5.31) is valid for the function f ∈ F which satisfies y = ν( f ) (recall that F is finite) and for any t > 0. Then we have * f (y) ≤ H(ν | P ), (4.5.32)

Definition 5 . 1 . 1 .

 511 (i) Let α, β be two reals such that α < β. We say that a random variable θ follows a Bernoulli distribution if it assumes exactly two 97 values and we write θ ∼ B m (α, β) ifP(θ = β) = 1 -P(θ = α) ∈]0, 1[,and E[θ] = m.(5.1.2)Notice that Var(θ) = (m -α)(β -m).(5.1.3) 

Proposition 5 . 1 . 3 (n n k=1 β k ≤ s 2 , ( 5 . 1 . 6 )

 5132516 Lemmas 4.4 and 4.5 in[1] and Theorem 2.1 and Remark 2.3 in[7]). Let s2 1 , . . . , s 2 n , β 1 , . . . , β n be positive reals. Let M n := n k=1 X k be a martingale with respect to a nondecreasing filtration (F k ) such that M 0 = 0,X k ≤ 1, and E[X 2 k | F k-1 ] ≤ s 2 k a.s. (5.1.5) (i) Let s 2 := n -1 (s 2 1 +. . .+s 2 n) and S n := θ 1 +. . .+θ n be a sum of n independent copies of a random variable θ with distribution B 0 (-s 2 , 1) (defined by (5.1.2)).Then for anyϕ ∈ G 2 , E[ϕ(M n )] ≤ E[ϕ(S n )].(a)(ii) Additionally to (5.1.5), assuming thatE k-1 [X 3 k+ ] ≤ β k a.s., and β := 1 we have for any ϕ ∈ G 3 ,E[ϕ(M n )] ≤ E[ϕ(Γ n(s 2 -β) + Πnβ )],(b)where Γ n(s 2 -β) and Πnβ are independent and respectively defined by Definition 5.1.1 (ii) and (iii).

Remark 5 . 1 . 4 .

 514 In fact, the results in the original papers are stated in the following slightly smaller class of functionsH α + := ϕ : ϕ(u) = ∞ -∞

  f ∈F P k (f ) for any k = 1, . . . , n and Ē := n -1 (E 1 + . . . + E n ).

1 ) 5 . 2 . 1 .

 1521 1/2] and ψ(x) = 1/4 if x ∈]1/2, 1]. (5.2.Theorem Let F be a countable class of measurable functions from X into [-a, 1] such that P (f ) = 0 for all f ∈ F . Let Z be defined by (5.1.1). (i) Case a ≥ 1. Let θ be a Bernoulli random variable with distribution B 0 (-a, 1) (defined by (5.1.2)). Let θ 1 , . . . , θ n be n independent copies of θ and letS n := θ 1 +. . .+θ n . Then for any function ϕ ∈ G 2 , E[ϕ(Z -EZ)] ≤ E[ϕ(S n )]. (a) (ii) Case a < 1.Let ϑ be a Bernoulli random variable with distributionB 0 -(a + 1) 2 ψ a + Ē a + 1 , 1Let us now complete the proof of Theorem 5.2.1. Define the function V by V (m) := (m + a)(1 -m) for any m ∈ [0, E n-k+1 ]. (5.3.5) Case (i): a ≥ 1. Since (1 -a)/2 ≤ 0, V is decreasing on [0, E n-k+1 ] and then by Lemma 5.3.2, E k-1 [∆ 2 k ] ≤ a. Thus Inequality (a) follows by Proposition 5.1.3 (i). Case (ii): a < 1. Here the maximum of V is reached at m = min(E n-k+1 , (1 -a)/2). Thus Lemma 5.3.2 implies E k-1 [∆

2 . 1

 21 allows us to conclude the proof of Inequality (a) of Theorem 5.2.4.

Theorem 6 . 2 . 1 .≥ 1 or p -1 2p - 1 ≤ c p < 1

 62111 Let 1 < p < 2. Let c be a positive real satisfying c

2 . 5 ,

 25 by the usual Cramér-Chernoff calculation, we get P(Z -EZ ≥ nx) ≤ exp -n φ * ζq 0 (x) , (6.2.20) where φ * ζq 0 (x) = sup t∈]0,1/aq 0 ]
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  θ n est une somme de variables aléatoires indépendantes telle que θ k est une variable aléatoire centrée prenant uniquement les deux valeurs -s 2

k et 1.

  manière similaire, mais le résultat est alors dans H 3 + . Si on remplace (1.2.10) par -p k ≤ X k ≤ 1 -p k , le Lemme 1.2.7 et le résutat mentionné auparavant de Hoeffding [24] permet aussi d'obtenir un résultat comparable dans H 1 + . Citons dès à présent le résultat analogue suivant, obtenu par Pinelis en 2014 [47, Théorème 2.1] (voir aussi la prépublication [46], plus complète).

	Théorème 1.2.10. Sous les conditions du Théorème 1.2.8, si de plus

  3 + , où Γ a est une variable aléatoire de loi Gaussienne centrée et de variance a et Πa est une variable aléatoire de Poisson recentrée de paramètre a.

  des variables aléatoires positives ξ k . Maintenant, afin d'obtenir une inégalité du type (1.1.4), on se restreint d'abord au cas d'une variable aléatoire réelle vérifiant les mêmes hypothèses que les accrois-

sements. Nous avons dans un premier temps, et à l'origine sans connaissance des travaux de Bentkus

[9, 10, 11]

, ré-obtenu le Lemme 1.2.12 (voir Lemme 2.4.3) et nous avons également prouvé une extension dans le cas de domination symétrique (voir Lemme 2.4.6). On remarque alors que pour appliquer ce dernier lemme à ∆ k (conditionnellement à F k-1 ), une condition est naturellement satisfaite si l'on suppose que F est séparément convexe. On obtient ainsi le résultat suivant qui est le résultat principal de cette première partie (voir Théorème 2.2.1) :

Théorème 1

Soit X 1 , . . . , X n une suite de variables aléatoires centrées à valeurs dans un espace vectoriel (E, . ), F : E n → R une fonction mesurable séparément convexe et Z définie par (1.1.1). Soit

  In the following result, we relax the assumption (2.2.1) and we instead assume that the bounds have a F k n -measurable component.

.2.3)

where ε 1 , . . . , ε n are independent Rademacher random variables, U 1 , . . . , U n are independent random variables distributed uniformly on [0, 1] and these two families are independent.

Remark 2.2.2. Using new results of Pinelis

[25] 

(see his Corollary 5.8), it is straightforward to extend (2.2.3) to the larger class of differentiable convex nondecreasing function with a convex derivative. Theorem 2.2.3. Let r > 2. Let Z and Z (k) be defined respectively by (2.1.1) and (2.1.3). Assume that for all k = 1, . . . , n, there exist nonnegative, L rintegrable random variables T k and

Proposition 2.4.8. Let

  

.4.6) Remark 2.4.7. We have a better understanding of the random variable ζ 1/2 if we observe that it has the same distribution than ε Q ψ (U/2), where ε is a Rademacher random variable, U is a random variable distributed uniformly on [0, 1] and these random variables are independent. The following result is a corollary of the result obtained by Pinelis in [21, Proposition 2.1]. It will be needed in the proof of Theorem 2.2.3 and in Section 2.8. r > 2 and let X and Y be random variables in L r

  Let ξ := n k=1 Y k . Then σg and ξ have the same distribution. Starting as in the proof of Proposition 2.7.3, we have for any x > 0,

						(2.7.15)
	Then Inequality (2.3.2) provides			
	P 2 (ξ; x) ≤	e 2 2	P(ξ ≥ x) =	e 2 2	P(σg ≥ x),	(2.7.16)
	which gives the third bound in (2.7.14). The two other bounds are given by
	Proposition 2.					

2 

. A numerical calculation gives x 0 ≈ 1.6443. Furthermore the function h is always better than the usual exponential bound (i.e. h(x) ≤ exp(-x 2 /2)).

Proof of Proposition 2.7.4. P(Z -E[Z] ≥ x) ≤ P 2 (ξ; x). 7.3 since this case is a particular case.

  .7.19) In order to bound up the right-hand side term, we will use the property below concerning v . Let h v be the function defined by h v (t) := v (t)/t for any t > 0. Then h v is nondecreasing.

	Lemma 2.7.8. Proof of Lemma 2.7.8. A straightforward calculation leads to

  .7.27) Proof of Lemma 2.7.10. Let us recall the general following fact. Let α ∈]0, 1[ and let θ α be a Bernoulli random variable with parameter α. Let X be an integrable random variable. Then

  Remark 2.7.11, (2.7.33) follows from (2.7.32). Let us prove now (2.7.32). The Cantelli inequality (see, for instance, Exercise 2.3 in Boucheron et al. [10]), states that for any x > 0,

2.7.2.4 Exponential inequality Proposition

  

E[Y r k ] . 2.7.16. Let Z be defined by (2.7.1) and let L denote the logarithm of the Laplace transform of Z -E[Z]. Then for any t > 0,

  Proposition 2.8.1. Let Z be defined by (2.8.1) and p > 2. Assume that F is a VC-subgraph class of functions with square integrable envelope function Φ. Then there exists a constant K(F ) depending only on F such that

  + 1)/2). Note that 1/ ≤ e 1/e 1.4447. Furthermore, β 2 = 1 and → β decreases to 0 as tends to ∞. By analyzing the proofs of Theorem 3.3.2 and Corollary 3.3.4, we can slightly improve the constant 2 1+1/ to (1 + 2 ) 1/ . Let > 2. Assume that Φ(X 1 ) have a weak moment of order . Then

	Remark 3.3.5. Remark 3.3.6. Corollary 3.3.7.

  Let φ : [0, ∞[→ [0, ∞] be a convex, nondecreasing and càdlàg function such that φ(0) = 0. The Legendre transform φ * of the function φ is defined byφ * (λ) := sup{λt -φ(t) : t > 0} for any λ ≥ 0. (4.2.2)The inverse function of φ * admits the following variational expression (see, for instance, Rio[20, Lemma A.2]). X and the CVaR satisfy the following elementary properties, which are given and proved in Pinelis[15, Theorem 3.4].

		.2.1)
	Let us now recall the definition of the Legendre transform of a convex
	function.	
	Definition 4.2.2. φ * -1 (x) = inf{t -1 (φ(t) + x) : t > 0} for any x ≥ 0.	(4.2.3)
	A particular function φ satisfying conditions in Definition 4.2.2 is the log-
	Laplace transform of a random variable:	
	Notation 4.2.3. Let X be a real-valued integrable random variable with a fi-
	nite Laplace transform on right neighborhood of 0. The log-Laplace transform
	of X, denoted by X , is defined by	
	X (t) := log E[exp(tX)] for any t ≥ 0.	(4.2.4)
	The function Q Proposition 4.2.4. Let X and Y be real-valued and integrable random vari-
	ables. Then, for any u	

  Theorem 4.3.1. Let F be a countable class of measurable functions from X into [-1, 1] such that P (f ) = 0 for all f ∈ F . Let Z be defined by (4.1.1). For any f ∈ F , let f and F be the functions defined by f (t) := log P (e tf ) and F (t) := sup

	f (t) for any t ≥ 0.	(4.3.2)
	f ∈F	

  As mentioned at the beginning of the proof, this also concludes the proof of Lemma 4.5.2 by taking ϕ(x) = e tx with t ≥ 0.Proof of Corollary 4.3.2. Let Π n be a random variable with Poisson distribution with parameter v n and let Πn := Π n -v n . A classical result gives

	Let us now complete the proof of Theorem 4.3.1. From (4.2.3) and Lemmas
	4.5.1-4.5.2 we derive for any x ≥ 0,	
	* -1 Ξn (nx) ≤ n * -1 F (x) and * -1 Rn (nx) ≤ 2n * -1 vn (x).	(4.5.19)
	Furthermore, from Proposition 4.2.4 (iii), (iv) and (4.5.9)	
	QZ-E[Z] (e -nx ) ≤ QΞn (e -nx ) + QRn (e -nx )	
	≤ * -1 Ξn (nx) + * -1 Rn (nx).	(4.5.20)
	Finally, both (4.5.20) and (4.5.19) conclude the proof of Theorem 4.3.1 (a).
		.5.18)
	This inequality associated with (4.5.17) conclude the proof of Lemma 4.5.3.

vn (t) ≤ Πn (t) for any t ≥ 0 (see, for instance, Theorem 2.

  Hence Inequality (b) follows again from Proposition 5.1.3 (i) together with (5.3.6)-(5.3.7). The proof of Theorem 5.2.1 is now complete.Proof of Theorem 5.2.4. Case (i). We start from (5.3.2). SinceE k-1 [ξ k ] = 0, we get E k-1 [∆ 2 k ] = E k-1 [(ξ k + r k ) 2 ] -(E k-1 [r k ]) 2 . (5.3.8) Since E k n [f 2 τ k (X k )] = P (f 2 τ k ), the conditional Jensen inequality implies that E k-1 [ξ 2 k ] ≤ σ 2 .Therefore, from (5.3.8) and the fact that (5.3.1) implies ξ k + r k ≤ 1, we get

			2 k ] ≤ (a + 1) 2 ψ	a + E n-k+1 a + 1	.	(5.3.6)
	Furthermore, since ψ is concave,				
	1 n	n k=1	ψ	a + E n-k+1 a + 1	≤ ψ	Ē a + 1 a +	.	(5.3.7)

  Let F be a countable class of measurable functions from X into ] -∞, 1] such that for any f ∈ F and any t > 0, P (f ) = 0 andE[(-t -f (X)) + ] ≤ E[(-t -η) + ]. (6.2.4) 

η (-t) = c t p ∧ 1 and F η (t) = 1.

(6.2.3)

  Proof of Theorem 6.2.1. We start in the same way as in the proof of main results in Chapters 4 and 5 by a martingale decomposition of Z -E[Z].

1/p c -1 . (6.2.7) Remark 6.2.2. Notice that if for any f ∈ F and any t > 0, we have

P(f (X 1 ) ≤ -t) ≤ c t p ∧ 1,

(6.2.8)

then the domination hypothesis (6.2.4) is satisfied.

Concentration inequalities for separately convex functions

Concentration of suprema of unbounded empirical processes

Remerciements

Remark 2.9.1. See that, contrary to (2.9.8), there is a F k-1 -measurable term in the expectation in the right-hand side of (2.9.9), which prevents us to proceed as in the proof of Theorem 2.2.1.

Part II

Concentration inequalities for suprema of empirical processes Definition 3.4.1 (Covering number and uniform entropy integral). The covering number N ( , G , Q) is the minimal number of balls of radius in L 2 (Q) needed to cover the set G . The uniform entropy integral is defined by

Here, the supremum is taken over all finitely discrete probability distributions Q on (X , F) and f Q,2 denotes the norm of a function f in L 2 (Q).

Throughout this section, K denotes an universal constant which may change from line to line. Theorem 3.4.2. Let Z be defined by (3.4.4). Under conditions (3.4.1) - (3.4.3), the following results hold :

where β p = ( √ π/2) Γ(p/2) /Γ((p + 1)/2). (ii) Moreover,

≤ (p/e) σ √ n + K p p -2 n q/4 J(δ, G ) + √ p n 1/p J(δ, G ) δ 1/q + 3 n 1/p µ p , (b)

where q = p/(p -1) and µ p = 2 + max(4/3, p/3).

We now compare Inequality (a) above with results in the literature. Set C p := 2 β p p 1/p √ p + 1. Consider first the bounded case : Y k ≤ 1. Integrating the Rio inequality recalled in Theorem 3.1.1 and bounding up E[Z] by Proposition 3.4.5 on the present chapter, one obtains

(3.4.5)

Remark 3.4.3. Note that when p tends to infinity, q tends to 1. This allows us to see Inequality (a) of Theorem 3.4.2 as an extension of (3.4.5) to the unbounded case.

which, combined with (4.5.3), yields the decomposition of Z -E[Z] in a sum of two martingales:

where 

This ensures, with an application of the conditional Jensen inequality, that

almost surely. Then Lemma 4.5.1 follows by an immediate induction on n.

Lemma 4.5.2. We have

Proof of Lemma 4.5.2. Actually, the inequality follows by taking ϕ(x) = e tx with t ≥ 0 in the more general comparison inequality below:

n be a sequence of n independent copies of θ (n) . Then, for any convex nondecreasing function ϕ from R into R, differentiable and with convex derivative, Lemma 4.5.3. We start the proof by showing that

The first inequality above is straightforward by (4.5.7) and the uniform boundedness condition on F . Let us prove now the second inequality. We start by bounding up Var(r 

, and θ has the distribution B 0 (-p/(1 -p), 1).

, and ϑ has the distribution B 0 (-(1 -p) -2 ψ( Ē + p(1 -Ē)), 1). Theorem 3.1 of Rio [9], when applied to Z (see also his Theorem 4.2 (a)), provides a Bennett-type inequality for class of sets with small measures under P . Precisely the condition is

Hence, since G 2 contains all increasing exponential functions x → e tx , t > 0, the Case (ii) above completes Rio's result in this situation.

One-sided boundedness condition

Here, by one-sided boundedness condition, we mean that F is a countable class of measurable functions with values in ] -∞, 1]. Let ρ be the function defined on [0, 1] by

Let F be a countable class of measurable functions from

X into ] -∞, 1] such that P (f ) = 0 for any f ∈ F . Let Z be defined by (5.1.1). Define also

.4)

and v 2 := σ 2 + 2ψ( Ē) and β 3 + := m 3 + + 3ρ( Ē).

(5.2.5)

(i) Let θ be a Bernoulli random variable with distribution B 0 (-v 2 , 1) (defined by (5.1.2)). Let θ 1 , . . . , θ n be n independent copies of θ and let

where 

One can find in Pinelis [6] 

(5.2.6)

Proofs

The starting point of the proofs is a martingale decomposition of Z which we briefly recall. Firstly by virtue of the monotone convergence theorem, we can suppose that F is a finite class of functions. Set F 0 := {∅, Ω} and for all k = 1, . . . , n,

Let us number the functions of the class F and consider the random variables

] and let r k ≥ 0 be the random variable such that [3]), the centering assumption on the elements of F ensures that

The important point is that E k-1 [r k ] is a corrective term which is essentially small. This is the statement of the following lemma:

We refer the reader to [3] for a proof which rests on a property of exchangeability of variables (see Lemma 3.10 in [3]). We are now in position to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Observe first that ∆ k ≤ 1 by (5.3.1) and the uniform boundedness condition on F . Then, in view of Proposition 5.1.3 (i), it remains us to bound up the conditional variance with respect to F k-1 of ∆ k . This is the subject of the following lemma: Lemma 5.3.2. For any k = 1, . . . , n,

Proof of Lemma 5.3.2. A classical result due to Hoeffding [2] (see his Inequalities (4.1) and (4.2)) states that any bounded random variable X such that a ≤ X ≤ b for some reals a and b, satisfies

where θ is a Bernoulli random variable with distribution B E[X] (a, b) (defined by (5.1.2)). In particular, Var(X) is lower than Var(θ). We apply this result conditionally to F k-1 to the variable ξ k + r k which has its values in [-a, 1] by (5.3.1). Recalling now (5.1.3), one immediately obtains

which combined with Lemma 5.3.1 conclude the proof of Lemma 5.3.2.

Chapter 6

An exponential inequality for suprema of empirical processes with heavy-tails on the left

In this Chapter, we give exponential inequalities around the mean for suprema of empirical processes indexed by classes of functions which are bounded from above and heavy-tail like on the left. Our approach is based on a martingale decomposition together with comparison results proved in Section 3 of Chapter 2. Furthermore, the constants in the inequalities are explicit.

Introduction

Let X 1 , . . . , X n be a sequence of independent random variables valued in some measurable space (X , F) with common distribution P . Let F be a class of measurable functions from X to ] -∞, 1] such that P (f ) = 0 for all f ∈ F . Let 1 < p < 2. We suppose that for all f ∈ F , f (X 1 ) satisfies the following behavior on the left:

In particular (6.1.1) admits that Var(f (X 1 )) is infinite. We are concerned with concentration properties around the mean of the random variable

Then we have by the centering assumption on the element of F ,

The strategy of the proof is the following one :

1. Using results of Section 3 of Chapter 2, we compare generalized (conditionnal) moments of ∆ k with a random variable ζ q 0 , with known distribution, built from the random variable η. The class of generalized moments on which we obtain a comparison inequality contains increasing exponential functions x → e tx for every t ≥ 0.

2. We analyze the exponential moments of ζ q 0 .

3. We conclude the proof by the usual Cramér-Charnoff calculation.

Part 1 : Comparison inequality.

Let us denote by ζ q , for any q ∈ [0, 1], a random variable with distribution function

where a q := F -1 η (1 -q). Notice that

(1 -q) 1-1/p , (6.2.12) which ensures that (6.2.2) is equivalent to E[ζ q 0 ] = 0. Let us also define

for some Borel measure µ ≥ 0 on R and all u ∈ R .

We get the following lemma : Lemma 6.2.3. For any ϕ ∈ H 2 + and any k = 1, . . . , n, we have

Consequently, for any t ≥ 0,

Proof of Lemma 6.2.3. Since H 2 + contains all increasing exponential functions, taking ϕ(x) = e tx with t ≥ 0 in (a) leads to (b) by an induction on n. Let us now prove (a). Note that (6.2.9) and (6.2.4) imply that, for any t > 0,

(6.2.13) Furthermore, we can directly verify that the inequality (6.2.13) holds for t ≤ 0. Since f ≤ 1 for any f ∈ F , the same inequality (6.2.9) implies that ξ k + r k ≤ 1. Hence, conditionally to F k-1 , the hypotheses (2.4.2) of Lemma 2.4.3 are satisfied with X = ξ k + r k , ψ = 1 and η the random variable defined by (6.2.3). Thus we get for any convex function ϕ,

where q

. Now, in order to control the right-hand side of (6.2.14), we shall use Lemma 2.4.6 (i) of Chapter 2. Let us define q := inf{q ≥ 1/2 :

as in Lemma 2.4.6 (i) (with ψ = 1 and η the random variable defined by (6.2.3)). We shall prove the following : Lemma 6.2.4. We have

Proof of Lemma 6.2.4. Let us first prove (i). Define q 1 := 1 -min(c p , 1). One can verify that the conditions (6.2.1) on c imply E[ζ q 1 ] ≤ 0. Furthermore, observe that E[ζ q ] is nondecreasing in q. Then, since E[ζ q 0 ] = 0, one has q 1 ≤ q 0 . Next, since F η (-1) = 1 -q 1 , we have

= 0, by the definition of q, one has q ≤ q 0 which ends the proof of (i). Let us now turn to the proof of (ii). Since

= 0, it follows that q 0 ≤ q which concludes the proof of Lemma 6.2.4. Lemma 2.4.6 (i) of Chapter 2 guarantees us that q → E[(ζ q -E[ζ q ] -t) 2 + ] is nonincreasing on [q, 1]. Then Lemma 6.2.4 and (6.2.14) yield for any t ∈ R,

, which then implies Inequality (a) of Lemma 6.2.3 by the definition of H 2 + , and finishes the proof. In this part, we bound up E[exp(tζ q 0 )] for any t ≥ 0. First we recall the notation a q = F -1 η (1 -q) ≤ 0. We have Lemma 6.2.5. Let t ≥ 0 such that -ta q 0 ≤ 1. Then log E[e tζq 0 ] ≤ q 0 (e t -t -1) + α p t p .

Proof of Lemma 6.2.5. Let t > 0. Starting from the definition of the random variables ζ q , one has where Γ(-p) = 1 p(p-1) Γ(2 -p) and Γ(.) is the usual Gamma function. Moreover, using the expansion e -u = ∞ k=0 (-u) k /k!, we can prove that

Thus, since q 0 = 1 -(c/ -a q 0 ) p , (6.2.15) becomes E[e tζq 0 ] = q 0 e t + p(tc) p Γ(-p) Abstract : This thesis deals with concentration properties around the mean of functions of independent random variables using martingales techniques and comparison inequalities.

In the first part, we prove comparison inequalities for general separately convex functions of independent and non necessarily bounded random variables. These results are based on new comparison inequalities in convex classes of functions (including, in particular, the increasing exponential functions) for real-valued random variables which are only stochastically dominated.

In the second part, we are interested in suprema of empirical processes associated to i.i.d. random variables. The key point of this part is a result of exchangeability of variables. We first give Fuk-Nagaev type inequalities with explicit constants when the functions of the considered class are unbounded. Next, we provide new deviation inequalities with an improved rate function in the large deviations bandwidth in the case of classes of uniformly bounded functions. We also provide generalized moment comparison inequalities in uniformly bounded and uniformly bounded from above cases. Finally, results from the first part allow us to prove a concentration inequality when the functions of the class have an infinite variance.