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Abstract
Natural language processing systems often rely on the idea that language is com-
positional, that is, the meaning of a linguistic entity can be inferred from the
meaning of its parts. This expectation fails in the case of multiword expressions
(MWEs). For example, a person who is a sitting duck is neither a duck nor nec-
essarily sitting. Modern computational techniques for inferring word meaning
based on the distribution of words in the text have been quite successful at mul-
tiple tasks, especially since the rise of word embedding approaches. However,
the representation of MWEs still remains an open problem in the field. In par-
ticular, it is unclear how one could predict from corpora whether a given MWE
should be treated as an indivisible unit (e.g. nut case) or as some combination
of the meaning of its parts (e.g. engine room). This thesis proposes a framework
of MWE compositionality prediction based on representations of distributional
semantics, which we instantiate under a variety of parameters. We present a
thorough evaluation of the impact of these parameters on three new datasets
of MWE compositionality, encompassing English, French and Portuguese MWEs.
Finally, we present an extrinsic evaluation of the predicted levels of MWE compo-
sitionality on the task of MWE identification. Our results suggest that the proper
choice of distributional model and corpus parameters can produce composition-
ality predictions that are comparable to the state of the art.

Keywords: distributional semantics, multiword expressions, compositionality, id-
iomaticity.
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Résumé
Les systèmes de traitement automatique des langues reposent souvent sur l’idée
que le langage est compositionnel, c’est-à-dire que le sens d’une entité linguis-
tique peut être déduite à partir du sens de ses parties. Cette supposition ne
s’avère pas vraie dans le cas des expressions polylexicales (EPLs). Par exemple,
une personne qui est une poule mouillée n’est ni une poule, ni nécessairement
mouillée. Les techniques modernes de calcul pour déduire le sens des mots en
fonction de leur distribution dans le texte ont obtenu de bons résultats sur plu-
sieurs tâches, en particulier depuis l’apparition des modèles communément ap-
pelés word embeddings. Cependant, la représentation des EPLs reste toujours un
problème non résolu. En particulier, on ne sait pas comment prédire avec préci-
sion, à partir des corpus, si une EPL donnée doit être traitée comme une unité
indivisible (par exemple carton plein) ou comme une combinaison du sens de ses
parties (par exemple eau potable). Cette thèse propose un cadre méthodologique
pour la prédiction de compositionnalité d’EPLs fondé sur des représentations de
la sémantique distributionnelle, que nous avons instancié à partir d’une variété
de paramètres. Nous présenterons une évaluation complète de l’impact de ces
paramètres sur trois nouveaux ensembles de données modélisant la composi-
tionnalité d’EPLs, en anglais, français et portugais. Finalement, nous présente-
rons une évaluation extrinsèque des niveaux de compositionnalité prédits par le
modèle dans le contexte d’un système d’identification d’EPLs. Les résultats sug-
gèrent que le choix spécifique de modèle distributionnel et de paramètres de
corpus peut produire des prédictions de compositionnalité qui sont comparables
à celles présentées dans l’état de l’art.

Mots clés : expressions polylexicales, sémantique distributionnelle, compositio-
nalité, idiomaticité.
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Resumo
Sistemas de processamento de linguagem natural baseiam-se com frequência na
hipótese de que a linguagem humana é composicional, ou seja, que o signifi-
cado de uma entidade linguística pode ser inferido a partir do significado de
suas partes. Essa expectativa falha no caso de expressões multipalavras (EMPs).
Por exemplo, uma pessoa caracterizada como pão-duro não é literalmente um
pão, e também não tem uma consistência molecular mais dura que a de ou-
tras pessoas. Técnicas computacionais modernas para inferir o significado das
palavras com base na sua distribuição no texto vêm obtendo um considerável
sucesso em múltiplas tarefas, especialmente após o surgimento de abordagens
de word embeddings. No entanto, a representação de EMPs continua a ser um
problema em aberto na área. Em particular, não existe um método consolidado
que prediga, com base em corpora, se uma determinada EMP deveria ser tratada
como unidade indivisível (por exemplo olho gordo) ou como alguma combina-
ção do significado de suas partes (por exemplo tartaruga marinha). Esta tese
propõe um modelo de predição de composicionalidade de EMPs com base em
representações de semântica distribucional, que são instanciadas no contexto
de uma variedade de parâmetros. Também é apresentada uma avaliação mi-
nuciosa do impacto desses parâmetros em três novos conjuntos de dados que
modelam a composicionalidade de EMP, abrangendo EMPs em inglês, francês e
português. Por fim, é apresentada uma avaliação extrínseca dos níveis previstos
de composicionalidade de EMPs, através da tarefa de identificação de EMPs. Os
resultados obtidos sugerem que a escolha adequada do modelo distribucional e
de parâmetros de corpus pode produzir predições de composicionalidade que são
comparáveis às observadas no estado da arte.

Palavras-chave: expressões multipalavras, semântica distribucional, composicio-
nalidade, idiomaticidade.
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1. Introduction
The ever-growing presence of computers in our society has put forward an in-
creasing demand for new ways of dealing with human-generated content. The
field of Natural Language Processing (NLP) has the goal of mediating this inter-
action between computers and human language, ranging from the interpretation
of written texts on the web to the interaction with spoken commands on hand-
held devices. A common theme to many of the NLP tasks is the requirement of
semantic interpretation (i.e. determining the meaning of the text).

One of the most fundamental assumptions in the field of semantics is that
the meaning of a phrase, expression or sentence can be determined from the
meanings of its parts. Part of the appeal of this principle of compositionality1 is
that it implies that a meaning can be assigned by humans even to sentences that
have never been seen before, through the combination of the meaning of familiar
words (Goldberg 2015). In the case of NLP, semantic composition can also be an
attractive way of deriving the meaning of larger units from their smaller parts.
By employing the principle of compositionality, one could design generic NLP
systems, able to perform the semantic interpretation of any text.

The representation of the meaning of individual words and their combinations
in computational systems has often been addressed by distributional semantic
models (DSMs). DSMs are based on Harris’ distributional hypothesis that the
meaning of a word can be inferred from the context in which it occurs (Harris
1954; Firth 1957). In these models, words are usually represented as vectors
that, to some extent, capture cooccurrence patterns in corpora. These vectors
are assumed to be good proxies for meaning representations. Traditionally, a
vector can be built for a target word by explicitly counting all its cooccurrences
with context words (Lin 1998; Landauer, Foltz, and Laham 1998). These models,
also known as count-based models (Baroni, Dinu, and Kruszewski 2014), result
in sparse vectors that are often projected into a low-dimensionality space using
a statistical technique such as singular value decomposition. The more recent
neural-network models, often referred to as word embeddings, also represent
words as real-valued vectors projected onto some low-dimensional space, but
these are obtained as a by-product of training a neural network to learn a func-
tion between words and their contexts (Mikolov, Sutskever, Chen, et al. 2013).

Evaluation of DSMs has focused on obtaining accurate semantic representa-
tions for single words, and it is on this basis that many optimizations have been
proposed (Lin 1999; Erk and Padó 2010; Baroni and Lenci 2010). For instance,
state-of-the-art models are already capable of obtaining a high level of agree-
ment with human judgments for predicting synonymy or similarity between sin-
gle words (Freitag, Blume, Byrnes, et al. 2005; Camacho-Collados, Pilehvar, and

1 Attributed to Frege (1892/1960).
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Navigli 2015; Lapesa and Evert 2017). Although there seems to be a reasonable
understanding of the strengths and weaknesses of vector representations for sin-
gle words, the same is not true for larger units such as sentences. There exist
some proposals for modeling the composition of individual words to create repre-
sentations for larger units such as phrases, sentences and even whole documents
(Mitchell and Lapata 2010; McCarthy, Keller, and Carroll 2003; Reddy, McCarthy,
and Manandhar 2011; Mikolov, Sutskever, Chen, et al. 2013; Ferret 2014). They
include the use of simple additive and multiplicative vector operations (Mitchell
and Lapata 2010), syntax-based lexical functions (Socher, Huval, Manning, et al.
2012), and the application of matrices and tensors as word-vector modifiers (Ba-
roni and Lenci 2010; Bride, Van de Cruys, and Asher 2015). These operations
usually assume the principle of compositionality when building representations
for larger units.

However, this assumption is challenged in the case of idiomatic expressions,
whose meanings may not be straightforwardly related to their parts (Sag, Bald-
win, Bond, et al. 2002). In fact multiword expressions (MWEs) display a wide
spectrum of idiomaticity, from more compositional to more idiomatic cases (Bald-
win and Kim 2010). For instance, although the meaning of olive oil can be de-
rived from its parts (as oil extracted from olives), this is not the case for snake
oil, which is used to refer to any product of questionable benefit (not necessarily
oil and certainly not extracted from snakes). Such constructions are notoriously
challenging for semantically-focused systems, as they are very numerous in a
speaker’s lexicon (Jackendoff 1997), but they are often not compositional. For
example, a non-compositional expression such as dead end should not be literally
translated into French as *fin morte, as it would lose its intended meaning. It is
therefore crucial to determine to what degree the principle of compositionality
applies to a specific expression to ensure its correct semantic interpretation.

The task of compositionality prediction consists in assigning a numerical score
to a word combination indicating to what extent the meaning of the whole com-
bination can be directly computed from the meanings of its component words.
This score can then be used to decide how the combination should be repre-
sented in downstream tasks and applications. Given that idiomatic expressions
are quite frequent in human languages, compositionality prediction is relevant
to any NLP task and application that performs some form of semantic processing.
For instance, in machine translation, idiomatic expressions must be translated
as an indivisible whole (Cap, Nirmal, Weller, et al. 2015; Salehi, Mathur, Cook,
et al. 2015; Carpuat and Diab 2010; Ren, Lü, Cao, et al. 2009). In semantic
parsing, one needs to identify complex predicates and their arguments to avoid
erroneous analyses (Jagfeld and Plas 2015; Hwang, Bhatia, Bonial, et al. 2010).
For word-sense disambiguation, no sense should be ascribed to the individual
words pertaining to an idiomatic expression (Schneider, Hovy, Johannsen, et al.
2016; Kulkarni and Finlayson 2011). In all of these cases, there is a need for the
preprocessing task of MWE token identification in running text, and this opera-
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tion may benefit from the availability of compositionality scores.
In this thesis, we discuss approaches for automatically predicting the compo-

sitionality of MWEs on the basis of their semantic representation and those of
their component words represented using DSMs. To determine to what extent
these models are adequate cross-lingually, we evaluate them in three languages,
English, French and Portuguese. Since MWEs encompass a large amount of re-
lated but distinct phenomena, we focus exclusively on a sub-category of MWEs:
nominal compounds (NCs).2 Nominal compounds (such as nut case or milk tooth)
represent an ideal case study for the work in this thesis, thanks to their relatively
homogeneous syntax (as opposed to e.g. verbal idioms such as take into account,
which may take internal arguments and modifiers), as well as their pervasiveness
in the languages under consideration. We assume that, in the future, models able
to predict the compositionality of nominal compounds could be generalized to
include other categories of MWEs by addressing their morphological and syntac-
tical variability.

By using DSM instances to predict the compositionality of nominal compounds,
we are also indirectly evaluating those instances themselves. While evaluations
of DSMs based on single words abound, their evaluation on tasks involving
MWEs are currently lacking. Some notable exceptions include the works of
Reddy, McCarthy, and Manandhar (2011), who compare additive and multi-
plicative combinations of traditional DSMs, and of Salehi, Cook, and Baldwin
(2015) who look at addition-based models for compositionality prediction using
both traditional and neural-network DSMs (see Section 4.1 for more details).
However, these works do not explore the vast landscape of existing DSM config-
urations, and may be unable to draw conclusions that are generalizable across
languages, DSMs, their parameters and the corpora they are learned on.

The main goal of this thesis is to bridge this gap by presenting a framework
for MWE compositionality prediction along with a broad cross-lingual evalua-
tion. We evaluate both intrinsically and extrinsically to what extent DSMs can
accurately model the semantics of NCs with various levels of compositionality
compared to human judgments. The following section details the contributions
that allow us to reach this goal.

1.1. Contributions
The main contributions of this thesis are the following:

Compositionality dataset We construct and evaluate three datasets containing
NCs ranging from fully compositional to fully idiomatic. These NCs were man-
ually annotated based on their degree of compositionality. The datasets span
multiple languages (English, French and Portuguese), and can be useful in the

2 A generalization over compound nouns, see Section 2.3.1.

16



evaluation of MWE compositionality prediction techniques. Section 3.1 presents
a detailed account of the data collection process. The dataset has also been
described in a publication (Ramisch, Cordeiro, Zilio, et al. 2016).

Dataset analysis We report the results of a thorough analysis of the three con-
structed datasets, studying the correlation between compositionality and related
linguistic variables. Part of these results has been published in Ramisch, Cordeiro,
Zilio, et al. (2016) (focusing on the distribution of annotations) and in Cordeiro,
Ramisch, and Villavicencio (2016a) (focusing on inter-annotator agreement).
Section 3.2 expands on these results by analyzing the correlation between human-
rated scores and distributional characteristics of the NCs.

Compositionality prediction framework We propose a language-independent
framework for the prediction of the degree of compositionality in MWE expres-
sions. As part of this framework, we also systematize a set of parameters that
can be evaluated across different DSMs, allowing a sound comparison of multi-
ple DSMs under a variety of settings. In Chapter 4, we extend the underlying
model with the possibility of six compositionality prediction strategies — two
of which are original strategies (maxsim and geom), proposed in the scope of
this thesis. The implementation of this framework is freely available as part of
the mwetoolkit. The predictive framework has been described in a publication
(Cordeiro, Ramisch, and Villavicencio 2016b).

Intrinsic evaluation We evaluate the proposed compositionality prediction model
under a variety of settings: different DSMs, different DSM parameters, different
corpora parameters, different prediction strategies. Chapter 5 of the thesis ex-
tends these results with predictions for Portuguese datasets, including previously
unpublished results for one DSM (lexvec) and multiple prediction strategies. We
additionally evaluate corpus-specific parameters such as corpus size and a new
technique of parallel predictions. Furthermore, we consolidate the interpretation
of these results through a large set of previously unpublished sanity checks and
detailed error analyses. The results have been published in Cordeiro, Ramisch,
Idiart, et al. (2016).

Extrinsic evaluation We perform an extrinsic evaluation of the proposed com-
positionality prediction model by using predicted scores as features in the task
of MWE identification. Chapter 6 presents the implementation of an MWE iden-
tifier based on syntactic patterns (Cordeiro, Ramisch, and Villavicencio 2016c),
and compare its accuracy with the one achieved by a technique of sequence mod-
eling, with and without the help of the predicted scores (Scholivet, Ramisch, and
Cordeiro 2017).
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1.2. Investigated hypotheses
This thesis investigates a series of hypotheses concerning MWEs and their com-
positionality, both in relation to the human perception of compositionality and in
relation with DSM-based representations. The hypotheses described in this sec-
tion guide our work — whose main goal is to propose, implement and evaluate
distributional methods for the compositionality prediction of MWEs.

Central to this thesis is a framework of compositionality prediction based on
DSM representations of semantics. The main assumption behind this framework
is that, when the semantics of a compositional MWE can be derived from a com-
bination of its parts, this should be reflected in DSMs. In particular, the vector for
the compositional MWE should be similar to the combination of the vectors of
its parts. Conversely we can use the lack of similarity between the MWE vector
representation and a combination of its parts to detect non-compositionality. We
formulate this assumption in the form of the general hypothesis hpred-comp ≈ comp:
MWE compositionality as assessed by human annotators is correlated with
compositionality predictions, where the predictions are based on the distribu-
tional representation of MWE elements and MWEs themselves.

We begin our work with the construction of three datasets of nominal com-
pounds with human-annotated compositionality scores. This dataset is analyzed
so as to evaluate the hypothesis hidiom ≈ distr: idiomaticity is correlated with dis-
tributional characteristics of MWEs. In particular, we consider the following
sub-hypotheses:

• hidiom ≈ distr.freq The level of idiomaticity of an MWE is positively correlated
with its frequency. The intuition is that exceptional constructions (such
as idiomatic MWEs) need to be frequent to ensure their survival in the
language (Pinker 1995).

• hidiom ≈ distr.convent The level of idiomaticity of an MWE is positively corre-
lated with its level of conventionalization. This follows from the literature
on MWE type extraction, which uses estimators of conventionalization to
identify the idiomatic expressions among a list of MWE candidates (Fazly
and Stevenson 2006; Bu, Zhu, and Li 2010; Gurrutxaga and Alegria 2013;
El Maarouf and Oakes 2015).

For each dataset, we instantiate DSMs under a variety of configurations, gen-
erating a total of more than 8 thousand sets of compositionality predictions. We
then evaluate what kinds of variables may influence the accuracy of the highest-
ranking configurations. We consider the general hypothesis haccur← MWE: the ac-
curacy of the model depends on MWE-specific properties, and we formulate
four non–mutually-exclusive sub-hypotheses:
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• haccur← MWE.idiom The accuracy of predicted scores is higher for MWEs that
were classified by humans as more compositional (i.e. less idiomatic). The
intuition is that DSM representations should be more faithful to the reality
for compositional MWEs, which follow the regularities that are normally ex-
ploited in other works in the literature (Mitchell and Lapata 2010; Mikolov,
Sutskever, Chen, et al. 2013).

• haccur← MWE.diffic The accuracy of predicted scores is lower for MWEs that
are more difficult to annotate for humans, as measured through the level of
agreement among annotators. The intuition is that one would expect the
predictive model to have difficulty in the same MWEs that posed a problem
for humans, either due to some inherent difficulty in the MWE or due to
less reliability of the data.

• haccur← MWE.freq The accuracy of predicted scores is positively correlated
with the frequency of the MWE in the corpus. The intuition is that low-
frequency expressions should have a less trustworthy representation inside
DSMs.

• haccur← MWE.convent The accuracy of predicted scores is positively correlated
with the conventionalization of the MWE. The intuition is that the elements
of highly conventionalized MWEs are more likely to share contexts, and
thus have a more compatible vector representation.

In addition to these MWE-centric hypotheses, we consider the specific choice
of DSMs and internal parameters in the task of compositionality prediction. The
hypothesis haccur← DSM is that the accuracy of the model depends on DSM-
specific parameters. In particular, we consider two sub-hypotheses:

• haccur← DSM.window The accuracy of compositionality prediction depends
on the amount of content that is taken into account at each occurrence of
a word (i.e. the size of the context window). More context should lead to a
more precise representation and thus result in better predictions.

• haccur← DSM.dims The accuracy of compositionality prediction depends on
the number of dimensions in each vector generated by the DSM. A higher
number of dimensions should allow for a more fine-grained representation
of the data.

Along with an influence from DSM-specific parameters, we also consider the
impact of different corpus-specific configurations. The hypothesis we evaluate is
haccur← corpus: accuracy of the model depends on corpus-specific parameters.
We evaluate the following sub-hypotheses:
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• haccur← corpus.wordform Higher-quality compositionality predictions are ob-
tained when the corpus is preprocessed so as to reduce the sparseness of
the word occurrences (e.g. through lemmatization). The intuition is that
the reduction in sparseness should allow DSMs to generate vectors from a
more varied number of contexts, and that these vectors would thus be more
robust than the ones generated without preprocessing.

• haccur← corpus.size DSM representations built from larger corpora outper-
form representations built from smaller corpora. The intuition is that more
varied occurrences of each word allow the construction of DSM representa-
tions that more faithfully correspond to the actual semantics.

• haccur← corpus.parallel Multiple parallel DSM representations built from dif-
ferent parts of the corpora can be combined to achieve equivalent com-
positionality predictions. The intuition is that these representations could
still provide a high-quality description of the underlying semantics, while
allowing for the final predictions to be calculated through a combination of
multiple computational resources (e.g. computer clusters).

Regarding the compositionality prediction model, we consider six different
predictive strategies (defined in Section 5.4). The hypothesis hstrat is that the
accuracy of the model depends on the predictive strategy. In particular, we
consider these three sub-hypotheses:

• hstrat.partial-info Predictions derived only from parts of an MWE (i.e. its syn-
tactic head) will be less accurate than predictions that consider all words in
the MWE. The intuition is that, by using only part of the available distribu-
tional information, these strategies are limited in their ability of predicting
the compositionality of the MWE as a whole.

• hstrat.maxsim We can improve the score prediction of compositional MWEs
through a strategy that favors compositional interpretations. More specifi-
cally, we can improve predictions if we assign weights to the vector repre-
sentation of each member word of an MWE so as to maximize its compo-
sitionality score. The maxsim strategy proposed in this thesis models this
assignment of weights favoring composition.

• hstrat.geom We can improve the score prediction of idiomatic MWEs through
a strategy that favors idiomatic interpretations. More specifically, we pro-
pose the geom strategy that multiplies individual predictions of composition-
ality for all words in an MWE. If any word has been identified as idiomatic
(i.e. having a small level of compositionality), the compositionality score of
the MWE as a whole will be reduced.
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One final hypothesis we consider is related to the use of predicted composi-
tionality scores in an extrinsic evaluation. Here, we consider the task of MWE
token identification, which can be seen as an important preprocessing step to
semantic applications (such as machine translation or text simplification). The
relevant hypothesis is hpred-comp→ ident-accur: predicted compositionality scores
are useful in the task of MWE identification. This hypothesis is evaluated by a
comparison of the accuracy of the MWE identification with and without the use
of predicted compositionality scores.

1.3. Context of the thesis
The work in this thesis has been produced as part of a joint supervision (co-
tutelle) between two universities: Universidade Federal do Rio Grande do Sul
(UFRGS, Brazil) and the Aix-Marseille Université (AMU, France). I have spent
part of my research time in each university, and most of the publications derive
from this cooperation.

This thesis is centered on the topic of multiword expressions (MWEs) and dis-
tributional semantic models (DSMs), which are two areas of research that have
been growing in the latest decade. The increasing interest in MWE research has
been the main motivation behind the formation of the PARSEME network of re-
searchers (ICT COST Action IC1207). Some of the work done in conjunction
with PARSEME researchers, notably the shared task on verbal MWE identifica-
tion (Savary, Ramisch, Cordeiro, Sangati, et al. 2017), falls out of the scope
of this thesis, but has been paramount to a broadening of my view of the field.
Moreover, part of the work described in this thesis was carried out in the context
of PARSEME-FR (ANR-14-CERA-0001), a French-language spin-off of PARSEME.

This thesis is also closely related to a software called mwetoolkit (Ramisch
2015), which was both used and extended during this thesis. The mwetoolkit is
one of the major resources published by the research group in the side of UFRGS,
and it is currently being maintained in joint work with Carlos Ramisch in AMU.
The contributions from this thesis are integrated and freely available as part of
the mwetoolkit.3

1.4. Publications
I present below a list of papers that have been published or accepted for publica-
tion during the period of my PhD studies. The papers that are directly relevant
to the topic of this thesis are the following ones:

• Cordeiro, Ramisch, Idiart, Villavicencio. Predicting the Compositionality of
Nominal Compounds: Giving Word Embeddings a Hard Time. In: ACL 2016.

3 http://mwetoolkit.sf.net
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• Ramisch, Cordeiro, Zilio, Idiart, Villavicencio, Wilkens. How Naked is the
Naked Truth? A Multilingual Lexicon of Nominal Compound Compositionality.
In: ACL 2016.

• Cordeiro, Ramisch, Villavicencio. mwetoolkit+sem: Integrating Word Em-
beddings in the mwetoolkit for Semantic MWE Processing. In: LREC 2016.

• Cordeiro, Ramisch, Villavicencio. Filtering and Measuring the Intrinsic Qual-
ity of Human Compositionality Judgments. In: MWE 2016.

• Cordeiro, Ramisch, Villavicencio. UFRGS&LIF: Rule-Based MWE Identifica-
tion and Predominant-Supersense Tagging. In: SemEval 2016.

• Scholivet, Ramisch, Cordeiro. Sequence Models and Lexical Resources for
MWE Identification in French. In: PMWE 2017. Submitted for review.

• Wilkens, Zilio, Cordeiro, Paula, Ramisch, Idiart, Villavicencio. LexSubNC: A
Dataset of Lexical Substitution for Nominal Compounds. In: IWCS 2017.

• Cordeiro, Ramisch, Villavicencio. Token-based MWE Identification Strategies
in the mwetoolkit. In: PARSEME 2015.

• Cordeiro, Ramisch, Villavicencio. Nominal Compound Compositionality: A
Multilingual Lexicon and Predictive Model. In: PARSEME 2016.

• Cordeiro, Ramisch, Villavicencio. MWE-aware corpus processing with the
mwetoolkit and word embeddings. In: W-PROPOR 2016.

Other papers published (or submitted for review) during this period are not
directly implicated in the present thesis. Nevertheless, they all have in common
the topic of MWE processing and semantic representation:

• Savary, Ramisch, Cordeiro, Sangati, Vincze, QasemiZadeh, Candito, Cap,
Giouli, Stoyanova, Stoyanova, Doucet. The PARSEME Shared Task on Auto-
matic Identification of Verbal Multiword Expressions. In: MWE 2017.

• Zilio, Wilkens, Möllmann, Wehrli, Cordeiro, Villavicencio. Joining forces for
multiword expression identification. In: PROPOR 2016.

• Savary, Ramisch, Cordeiro, Candito, Vincze, Sangati, QuasemiZadeh, Giouli,
Cap, Stoyanova, Stoyanova, Doucet. The PARSEME shared task on automatic
identification of verbal multiword expressions. In: PMWE 2017. Submitted
for review.

• Savary, Candito, Mititelu, Bejček, Cap, Čéplö, Cordeiro, Eryiğit, Giouli,
Gompel, Hacohen-Kerner, Kovalevskaite, Krek, Liebeskind, Monti, Escartín,
Plas, Qasemizadeh, Ramisch, Sangati, Stoyanova, Vincze. PARSEME multi-
lingual corpus of verbal multiword expressions. In: PMWE 2017. Submitted
for review.
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1.5. Thesis structure
The remainder of this thesis is structured as follows:

• Chapter 2 presents the terminology and necessary background in the sta-
tistical representation of languages. It also presents a literature review on
MWE research, as well as related work on the semantic representation of
words and MWEs.

• Chapter 3 describes the methodology used in the construction of three new
datasets of nominal compounds annotated with compositionality scores. It
also presents an analysis of the score distribution and difficult of annotation,
as well as the correlation between the annotated score and distributional
characteristics of the MWEs.

• Chapter 4 presents our framework of MWE compositionality prediction,
with a detailed description of the experimental setup that will be used in
the following Chapter.

• Chapter 5 presents a large-scale intrinsic evaluation of our model of com-
positionality prediction against datasets of human-rated compositionality
scores, focusing on nominal compounds as a specific category of MWE.

• Chapter 6 presents an extrinsic evaluation of our model of compositionality
prediction, in the form of its application in the task of MWE identification.

• Chapter 7 presents some conclusions and perspectives of future work.
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2. Background
This chapter describes the background information that is essential for the re-
mainder of the thesis. Section 2.1 defines the basic terminology that will be used
in the rest of the thesis. Section 2.2 presents the use of statistics in NLP, going
from co-occurrence measures to evaluation methods. Section 2.3 then presents
the motivation and challenges associated with the research on MWEs. Finally,
Sections 2.4 and 2.5 present an overview of lexical semantic representations in
NLP, on the level of single words and MWEs. Since it constitutes the core of
this thesis, the state of the art on compositionality prediction will be presented
later, in Section 4.1, along with the definition of the model that we propose and
evaluate.

2.1. Basic terminology
The work in this thesis focuses on the interpretation of written texts. Linguists
often classify the interpretation of texts into different layers of abstraction. For
example, consider the sentence “this student published a paper”. These are some
of the levels in which this sentence can be analyzed:

• Morphology: A word can change its base form to express a change of gram-
matical category (derivational morphology; e.g. “publish” → “publisher”)
or to represent a variation such as gender, number or tense (inflectional
morphology; e.g. “publish” → “published”).

• Syntax: Just like morphology works on the level of words and their internal
structure, syntax can be used to analyze sentences based on their internal
structure (word order). Such analysis, when applied to the above sentence,
could inform us that “published” is the main verb, and that “this student”
and “a paper” are respectively the subject and direct object of this verb.

• Semantics: The field of semantics looks at the meaning of words and phrases.
For example, although the word “paper” is often used as reference to the
material that is created from cellulose, in this particular context it should
be interpreted as a scientific document (e.g. it can be in electronic format).

• Pragmatics: While one may be able to build an accurate abstract mental
model for a word such as “student” given only the surrounding words, the
specific reference in “this student” can only be resolved by taking the un-
derlying context into account. If this sentence is uttered by a person who
is pointing at someone else, for example, one may conclude through prag-
matics who is the referent of “this student”.
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In the area of NLP, the operations that can be performed on texts are usually
conceptually organized in tasks. Many of these tasks may take as an input a
collection of sentences and have as an output the same sentences with an added
layer of information (Jurafsky and Martin 2008). Tasks are often performed in
succession as a pipeline, where the output of a task is the input for the next
one. These are some of the tasks that are often performed in any end-to-end
application in NLP involving text analysis:

• Tokenization: The goal of tokenization is to break a written text into to-
kens, which correspond somewhat to the linguistic notion of words. While
the precise definition of word depends on language-specific semantics, a
token is a pragmatic concept used in NLP, and its definition will often vary
depending on the tokenizer at hand. For example, the sentence

Mr. Smith doesn’t eat bananas with a fork.

could be tokenized as such:

Mr. Smith does n’t eat bananas with a fork .

The punctuation associated with the abbreviations (e.g. “Mr.”) is often to-
kenized along with the preceding characters, while the period at the end
of the sentence is considered a token apart. Also note that the contraction
“doesn’t” may be separated in two tokens, indicating the two underlying
words “do+not”. The use of tokens allows a trade-off between linguistic
accuracy and practicality of implementation.

• POS tagging: In a given context, every word can be associated with a gram-
matical class, known as its Part-of-Speech (POS). The task of POS tagging
consists in identifying the POS of each token in the text according to a
tagset. A list of POS tags for the sentence above could be the following one:

PROPN PROPN AUX PART VERB NOUN ADP DET NOUN PUNCT

These tags follow the Universal POS tagset, which standardizes a common
set of tags across a variety of languages (Petrov, Das, and McDonald 2011).

• Lemmatization: The goal of lemmatization is to identify a canonical form
for the tokens in the text. For each token in its surface form, the lemmatizer
will produce the corresponding lemma. For the example above, these could
be the resulting lemmas:

Mr. Smith do not eat banana with a fork .

Lemmatization is usually applied to neutralize distinctions caused by mor-
phological inflection (e.g. “publish/publishes/published/publishing”→ “pub-
lish”).
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• Parsing: In the goal of understanding a sentence, it is often useful to have
a representation of how words are grouped to form larger structures. This
syntactic information can be encoded in different ways, and it usually cor-
responds to one of two classes of grammar theories: phrase structure and
dependency grammar.

Figure 2.1 presents a syntax tree for the sentence “this man eats bananas
with a fork” according to the phrase structure grammar. In this representa-
tion, words that behave syntactically as a single unit are grouped as phrases
(also known as constituents). For example, the phrase “this man” behaves
as a single noun, and is thus grouped under a single node of the tree, known
as a noun phrase (NP).

S

NP

Det

this

Noun

man

VP

Verb

eats

Noun

bananas

PP

Prep

with

NP

Det

a

Noun

fork

Figure 2.1.: Representing syntax: constituency tree.

In a dependency tree representation, words are connected by labeled edges,
in what is known as a dependency relation (see Figure 2.2). This relation
connects heads (e.g. a verb) to their dependents (e.g. a verb’s subject). The
root of the tree is usually the main verb (in the example, the verb eats), and
everything else is connected to this verb through a chain of dependency
relations.

this man eats bananas with a fork

det subj

root

obj

pmod

det

obj

Figure 2.2.: Representing syntax: dependency tree.
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Many works in NLP are centered around the idea of a corpus. A corpus is a
large body of (written or spoken) text that can be considered representative of a
human language (Mitkov 2005). In NLP, this is often taken to mean that corpora
should be as large as possible. The construction of a corpus is often performed
automatically (e.g. by crawling the web), digitally storing the data according to
some file format for further processing. In the case of written corpora, the pre-
processing pipeline may include tasks such as the aforementioned tokenization,
POS tagging and lemmatization.

One important distinction that must be made in NLP is the one between types
and tokens. While a given corpus may have many concrete instances of a given
word (tokens), it is often useful to talk about the unique concept that instantiated
those tokens (the type). In the same manner that tokens can be assembled in
sentences to form corpora, types can be assembled in dictionary entries. Such
dictionaries are also known as lexicons, or more generally as lexical resources.
The set of all types instantiated in a corpus is known as its vocabulary, which we
will denote in this thesis as V .

Finally, most applications in NLP involve some kind of prediction, where the
computational system attempts to replicate the outcome that a human would
have produced. This prediction is then compared against a blind test set. Test
sets are often handcrafted based on direct human knowledge, which forms an
authoritative sample of test cases and their solutions (in which case it is also
known as a gold standard). Some systems are designed so as to perform their
predictions solely based on a programmed algorithm. Others, known as super-
vised approaches, require a training set with examples from which the system
may learn to perform the predictions (Manning and Schütze 1999; Jurafsky and
Martin 2008)

2.2. Language and statistics
Now that we have defined the basic terminology, we turn to a statistical view
of the properties of human language. We start with with some background on
the occurrence counts of isolated words (Section 2.2.1) and of word pairs in
the same context (Section 2.2.2). We then present measures of association be-
tween word pairs (Section 2.2.3). We also consider the creation of human-rated
datasets, focusing on measures of inter-rater agreement (Section 2.2.4). Finally,
we consider different ways of measuring the accuracy of computational predic-
tions of human annotation, both in the case of continuous data (Section 2.2.5)
and in the case of categorical data (Section 2.2.6).
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2.2.1. Occurrence counts
Many properties of words can be inferred from their statistical behavior with
regards to human language. One of the simplest statistical measures that can
be considered is the number of occurrences of each word in a corpus. For exam-
ple, consider the following three toy corpora: English-language (EN) Wikipedia
entry “U.S.A”, French-language (FR) Wikipedia entry “France” and Portuguese-
language (PT) Wikipedia entry “Brasil” (Brazil).1 Table 2.1 presents the tokens
with highest number of occurrences (#occur) in each of these toy corpora.

Rank #occur EN word #occur FR word #occur PT word
1 1256 the 1340 de (of) 770 de (of)
2 742 of 912 la (the) 460 e (and)
3 701 and 799 et (and) 401 do (of+the)
4 473 in 533 le (the) 349 a (the/to)
5 268 The 480 des (the/of+the) 323 o (the)
6 245 United 423 en (in) 233 em (in)
7 235 to 392 les (the) 204 da (of+the)
8 206 a 379 du (of the) 151 Brasil (Brazil)
9 191 States 365 à (to) 144 no (in+the)
10 186 is 286 est (is) 136 que (that)

Table 2.1.: Most frequent words in toy corpus.

Two notable categories of words can be seen in the table:

• Words that have been biased by the input corpus (e.g. States). These words
are an artifact of the chosen corpora, and would have a notably lower rank-
ing in a more general corpus.

• Words that only convey a general meaning (e.g. prepositions, articles), serv-
ing mainly to connect other words according to the underlying grammar.
These words are known as function words, and contrast with the more se-
mantically distinguished content words (e.g. nouns, verbs). In NLP, a sim-
ilar concept to function words is the one of stopwords. When dealing with
semantic tasks, one very common step of corpus preprocessing involves the
removal of stopwords from the text. The definition of stopwords may be
based on their POS tag (e.g. removing all prepositions from the text) or
based on a list of e.g. the 50 or 100 words with the highest number of
occurrences in the corpus.

When looking at the number of occurrences per word, we can also see a clear
pattern: the number of occurrences of each word decreases proportionally to

1 Wikipedia entries collected on 2017-08-10.
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its ranking. This pattern, known as Zipf’s Law, can more easily be seen in a
graph, as in Figure 2.3, which shows the number of occurrences of the top 50
most frequent words in the three Wikipedia pages. If we consider the number
of occurrences for the English word at rank 5, we see that it is about 5 times
smaller than the number of occurrences for the word at rank 1. Similarly, the
word at rank 10 appears about 10 times less often in the corpus.
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Figure 2.3.: Most frequent words in toy corpus.

The above effects can be observed in all human languages, even in these
severely small corpora (e.g. the English toy corpus has less than 20 thousand
tokens). When comparing across different languages, one might be tempted to
consider the number of occurrences itself, but this number presents a pitfall: it is
directly dependent on the size of the corpus. An alternative solution is the use of
frequency, defined as the ratio between the number of occurrences and the size
of the underlying corpus:

freq(w) = #occur(w)
corpus size .

Frequency values range between 0.0 and 1.0 regardless of corpus size, and can
be thus regarded as a normalized version of the number of occurrences.

2.2.2. Co-occurrence counts
Similarly to how one may derive statistical information from the occurrences of
isolated words, one may consider the statistical properties of pairs of words that
co-occur (i.e. that occur in the same context). Co-occurrence may be calculated
based on syntactic information (i.e. two words co-occur if they are connected in
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a dependency tree), or on a sliding window of adjacent words (i.e. two words
are considered to co-occur if there are at most k other words in between). For ex-
ample, Table 2.2 presents the top 10 most frequent co-occurrences of the pattern
“federal <noun>” in the toy corpus, along with their co-occurrence counts (#co-
occur).2 In this thesis, we will refer to every word of interest (e.g. “federal”) as
a target word. The words that co-occur with a target word will be called context
words (e.g. “government”, “courts”, etc).

This type of word-pair information is often structured as a co-occurrence ma-
trix. For a vocabulary V of size |V |, a co-occurrence matrix of dimension |V |×|V |
contains the number of occurrences of each (target, context) pair as seen in the
corpus. One can think of these matrices as big square tables of numbers, with
Mi,j representing the value at row i and column j. Words are mapped to row/col-
umn indexes (e.g. “government” could be word53), so that both rowi and columni
refer to wordi. The co-occurrence between wordj and wordk can then be obtained
at the matrix position Mj,k. Due to the symmetry of this statistical relation, the
matrix position Mk,j yields the same result.

#co-occur word pair
9 federal government
4 federal courts
4 federal district
4 federal level
4 federal taxes
2 federal debt
2 federal law
2 federal outlays
2 federal republic

Table 2.2.: Most frequent word pairs involving “federal”.

According to the distributional hypothesis, the meaning of words is associated
with the context that they share. For the example in Table 2.2, all of these nouns
have the word “federal” as a context in common, from which we can infer that
they have related meaning. Moreover, the co-occurrence of two words can be
seen as an evidence that they are semantically “close” in a sense — e.g. these
nouns are closer in meaning to the word “federal” than other nouns not shown
here. The underlying idea is that semantically related words tend to be used
together, and hence words that often appear together can be assumed to be se-
mantically related. For example, when talking about a “government”, one will
often use the word “federal”. Similarly, among all things “federal”, the “govern-
ment” is a notable example that will come to a speaker’s mind. Co-occurrence

2 Extracted using the sliding window method with k = 0 (i.e. only adjacent word pairs were
considered)
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counts can also be used to build vector models of word semantics (as presented
in Section 2.4.2).

2.2.3. Association measures
Lexical co-occurrence can be considered a rudimentary way of estimating the
level of association between a pair of words. Word association is a statistical prop-
erty that can indicate the predictability of a specific combination of words. For
example, the word “population” appears 41 times in the text, but since none of
these is paired up with the word “federal”, it is not taken into account when rep-
resenting its semantics through co-occurrence, suggested that these two words
are not associated.

There is a downside to the use of co-occurrence counts as measures of asso-
ciation: some word pairs may co-occur with high frequency solely due to the
fact that one of the words in the pair is frequent itself. For example, even in
a syntactically restricted word-pair pattern such as “federal <word>”, the toy
corpus contains 2 occurrences of “federal and”, in the coordinations “federal and
state” and “federal and military”. The word “and” is not particularly meaningful
to the definition of “federal”, and its co-occurrence with “federal” is due to its
high overall frequency (788 occurrences in the toy corpus).

Other measures can better capture the association between word-pairs by re-
ducing the effect of words that have high isolated corpus occurrence counts. One
such measure is the pointwise mutual information (PMI), which can be defined
as

PMI(w1, w2) = log
(

freq(w1w2)
freq(w1) · freq(w2)

)
.

PMI considers the co-occurrence frequency as well as the individual frequencies
of the words. Its value can range from negative infinity to positive infinity. In an
extreme case, if the word w1 always appears alongside the word w2 in the corpus,
freq(w1) = freq(w1w2), and thus PMI = log

(
1

freq(w2)

)
= log

(
corpus size
#occur(w2)

)
, which can

reach high values for moderate numbers of occurrence of word2. On the other
hand, if word1 appears too often by itself and not as often in conjunction with
word2, the denominator will be considerably high, and thus the PMI between
the two words will be the logarithm of a low number — i.e. a low number itself
(Church and Hanks 1990).

Table 2.3 presents the number of individual occurrences, word-pair occurrence
and PMI for the word pairs mentioned in Table 2.2. Note how the PMI is close
to zero for the non-associated word pair “federal and”, but is much higher when
calculated between the word “federal” and highly associated nouns (e.g. “govern-
ment”). Moreover, even among these associated pairs, we can see a distinction
in the strength of PMI: the highest score belongs to “federal outlays”, reflecting
the fact that “outlays” only appears in the corpus in conjunction with the word
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“federal”. A significantly lower score is obtained by “federal law”, as the word
“law” often appears in other contexts inside the corpus (with only 2 out of the 19
occurrences being the expression “federal law”).

word1 word2 #occur(w1) #occur(w2) #co-occur PMI
federal government 54 38 9 4.4
federal courts 54 7 4 5.3
federal district 54 10 4 4.9
federal level 54 16 4 4.4
federal taxes 54 15 4 4.5
federal debt 54 9 2 4.3
federal law 54 19 2 3.6
federal outlays 54 2 2 5.8
federal republic 54 5 2 4.9
federal and 54 788 2 -0.1

Table 2.3.: PMI between “federal” and associated nouns.

The frequency value freq(wk) can be interpreted as the probability of a ran-
dom word being precisely wk. As a consequence of this, negative PMI values
imply that the word-pair is occurring less often than would be predicted by
chance (through the multiplication freq(w1) · freq(w2), which estimates the ex-
pected probability of two independent words co-occurring). However, such neg-
ative scores are often deemed unreliable (Jurafsky and Martin 2008). A common
solution is to use Positive PMI (PPMI), which eliminates the negative scores:

PPMI(w1, w2) = max{0, PMI(w1, w2)}.

Association measures are often used for the estimation of the level of conven-
tionalization of expressions. When referring to a given concept, the conventional-
ization refers to the degree to which the specific choice of words and word order
can be seen as fixed in the language. For example, while one may talk about
the “forecast of the weather”, there is a distinctive markedness to this choice of
words, and native speakers are more likely to refer to this concept as “weather
forecast” instead. Constructions such as the latter are thus said to be more con-
ventionalized. They have also be described as collocations, i.e. statistically id-
iosyncratic word combinations (Farahmand, Smith, and Nivre 2015; Baldwin
and Kim 2010).

Other association scores include the Dice coefficient, Student’s t-test, χ2 tests,
the log-likelihood ratio test (Dunning 1993) and NPMI (Bouma 2009). A thor-
ough description of commonly used association measures, along with their eval-
uation in the context of collocation extraction, can be found in Pecina (2010).
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2.2.4. Inter-rater agreement measures
One of the goals of NLP is to be able to replicate human-like processing of natural
language. To this end, datasets containing human annotation of some linguistic
phenomenon are often useful in the tuning and evaluation of NLP systems. The
construction of these datasets may be performed by experts (with appropriate
linguistic background), or may be framed in such a way that the task may be
performed by laypeople. In both cases, there must be a set of guidelines, which
instruct the annotator on what must be annotated and provide a solution to
common corner cases.

Human language can be often ambiguous (especially when it comes to seman-
tics), and this ambiguity may cause disagreement of annotation even among
highly well-trained experts. One indicator of the quality and objectivity of both
the annotation guidelines and the resulting dataset could be the fraction of an-
notations in which all annotators agree:

pagree = cases of agreement
all annotations

In the case of two annotators, another solution would be to calculate the linear
correlation and categorical evaluation measures (see Section 2.2.5).

However, these measures do not take into account the probability of chance
agreement among annotators. For example, consider a POS-tag annotation task
with an inventory of 17 possible POS tags. Even if two annotators decide to
assign POS tags randomly to every word in the corpus, they will still be in agree-
ment in around pchance = 1

17 = 0.058 = 5.8% of the cases. An alternative measure
that does take this probability of chance agreement into account is Cohen’s kappa
coefficient (Artstein and Poesio 2008):

κ = pagree − pchance

1− pchance

Kappa scores are usually lower-bounded by 0.0 (which indicates pure chance
agreement), and are always upper-bounded by 1.0 (which indicates perfect agree-
ment). The kappa score can be generalized for more than two annotators by
using an appropriate estimate of pchance.

One downside of the kappa coefficient is the fact that it is restricted to cate-
gorical data, with the same weight applied to all disagreements. An alternative
measure that calculates multi-annotator agreement while taking into account
the distance between ordinal ratings is Krippendorff’s alpha score (Artstein and
Poesio 2008):

α = 1− Ddisagreement

Dchance disagreement
,

in which the measure of disagreement D is an average of the variance in the
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distance between ordinal ratings for all paired-up annotators.

2.2.5. Evaluation measures for continuous data
When dealing with large amounts of data, it is useful to have a way of summariz-
ing results. In particular, one often needs to measure how similar are two sets of
numerical scores. For example, consider Table 2.4, in which each word pair has
been manually annotated by a human rater based on the perceived level of asso-
ciation between the words. While the human and PMI scores of each word pair
can be individually compared with ease, it is not immediately obvious whether
the PMI values are a good estimation of the human ratings. The similarity of
these two variables can be calculated through correlation measures.

word1 word2 Human score PMI score
federal government 6.0 4.4
federal courts 8.8 5.3
federal district 3.0 4.9
federal level 0.7 4.4
federal taxes 5.0 4.5
federal debt 2.2 4.3
federal law 1.5 3.6
federal outlays 9.5 5.8
federal republic 8.0 4.9
federal and 0.0 -0.1

Table 2.4.: Human-rated association scores vs PMI.

One way of calculating the correlation between two paired datasets X and Y
(each with N elements) is through the covariance:

cov(X, Y ) =
∑N
i=1(Xi − X̄)(Yi − Ȳ )

N − 1

The covariance between human and PMI scores in Table 2.4 is 3.86. Covariance
values close to zero serve as an evidence that the datasets are not correlated: a
positive deviation from the mean in the first dataset (Xi − X̄) is equally likely
to be paired up with a positive and a negative deviation in the second dataset
(Yi − Ȳ ). Covariance values distant from zero (whether negative or positive)
indicate a tendency of both datasets towards higher deviations for the same data
points. The covariance score is upper-bounded by the max of the variances σ2(X)
and σ2(Y ), and is similarly lower-bounded by the min of −σ2(X) and −σ2(Y ).
The variance itself is calculated as a special case of the covariance:

σ2(X) = cov(X,X).
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For the values in Table 2.4, the variance in human scores was 12.16, while the
variance in PMI was 2.64. Variance scores are either 0.0 or positive, with higher
values representing data that differs more heavily from the average.

Covariance scores are generally deemed hard to interpret, as they depend
on how the datasets themselves deviate from the mean. One way of dealing
with this difficulty is to normalize the covariance based on the variance of both
datasets. This is what is done in Pearson’s r coefficient:

r(X, Y ) = cov(X, Y )√
σ2(X) ·

√
σ2(Y )

,

This normalization permits a more straightforward interpretation of the corre-
lation, as Pearson scores range from −1.0 (perfect negative correlation) to 1.0
(perfect positive correlation). A neutral score of 0.0 represents no correlation,
and values in between represent partial levels of correlation. The Pearson coef-
ficient between human and PMI scores in Table 2.4 is 0.68, indicating that the
values are highly correlated.

Pearson scores measure the linear correlation between paired-up values from
two datasets. Sometimes, it may be considered more appropriate to interpret
these values as an indicator of the ranking of two data items instead. In this
case, the correlation between the values themselves may not be as interesting as
the ability of both sets of scores to rank the items in the same order. Thus, an
alternative measure of correlation is Spearman’s ρ rank coefficient, which repre-
sents the linear correlation between the ranks from two datasets. Spearman’s ρ
can be defined in terms of Pearson’s r:

ρ = r(rank(X), rank(Y )),

where the rank operation maps increasing values in the dataset to consecutive
integer ranks. For example, for the human scores in Table 2.4, rank(X) would
map [0.0, 0.7, 1.5 . . . 9.5] 7→ [#1, #2, #3 . . . #10]. Similarly, rank(Y ) would
map PMI scores as [−0.1, 3.6, 4.6 . . . 5.8] 7→ [#1, #2, #3 . . . #10]. As in
the case of Pearson, Spearman scores range from −1.0 (perfect negative rank
correlation) to 1.0 (perfect positive rank correlation).

Figure 2.4 presents a graphical visualization of these two approaches:

• On the left, we see the PMI values as a function of human ratings them-
selves. We can visually confirm a tendency of PMI scores to be higher for
higher values of human rating. Pearson’s r calculates the level of this cor-
relation between the values themselves (visually: how much the points in
this graph resemble a straight line). The Pearson coefficient in this example
is r = 0.68.

• On the right, we see the PMI score ranks as a function of the rank of the
human ratings. Values in the x-axis were ordered based on successive ranks
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(e.g. 0.0 7→ #1, 0.7 7→ #2, and so on). Successive ranks in the y-axis are
indicated in little squares (e.g. 5.3 7→ #9).3 In both axes, we see that con-
secutive points are separated by an equal amount of space, regardless of
the actual value, as each point is plotted based on the successive integer
ranks. Spearman’s ρ calculates the linear correlation between these ranks
(visually: how much the points in this graph resemble a straight line). The
Spearman rank coefficient in this example is ρ = 0.87.
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Figure 2.4.: Visual representation of Pearson’s r (left) and Spearman’s ρ (right)
between human-rated association scores and PMI.

2.2.6. Evaluation measures for categorical data
Correlation measures are able to adequately compare two sets of items with
quantitative (e.g. real-valued) scores. However, they are unfit for comparisons in-
volving qualitative categorical scores. The need for comparing categorical scores
arises, for example, in the task of POS tagging (see Section 2.1). Consider this
sample excerpt from the English toy corpus: “The first inhabitants of North Amer-
ica migrated from Siberia by way of the Bering land bridge”. Table 2.5 presents an
example of automatic system prediction of POS tags along with the correspond-
ing human-annotated POS tags.

Consider the human and system annotations of the NOUN tag. Humans anno-
tated 4 occurrences (“inhabitants”, “way”, “land”, “bridge”), while the system
predicted 3 occurrences (“inhabitants”, “North”, “bridge”). Out of these, 2 oc-
currences were true positives, i.e. system predictions that matched human an-
notations (“inhabitants” and “bridge”). One way of summarizing the predictive

3 Tie-breaking is not performed in this example for 4.4 and 4.9. In the remainder of the thesis,
tie-breaking is performed by assigning the average of all tied ranks (e.g. 4.9 7→ #7.5).
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Word Human POS System POS
The DET DET
first ADJ ADJ
inhabitants NOUN NOUN
of ADP ADP
North PROPN NOUN
America PROPN PROPN
migrated VERB VERB
from ADP ADP
Siberia PROPN PROPN
by ADP ADP
way NOUN ADV
of ADP ADP
the DET DET
Bering PROPN PROPN
land NOUN VERB
bridge NOUN NOUN

Table 2.5.: Human-annotated and system-predicted POS tags.

quality of this system for NOUN tags is by means of precision and recall:

precision = true positives
total system predictions , recall = true positives

total human annotations .

The precision measures how many of the predictions were correct, while the
recall measures how many of the tags were correctly predicted. These two mea-
sures are often further combined into a single score using the harmonic mean,
yielding the F1 score:

F1 = 2
1

precision + 1
recall

= 2 · precision · recall
precision + recall .

Table 2.6 present these statistics for all POS tags, comparing human and system
annotations. In particular, it can be seen how the scores for NOUN were obtained:
the precision of 2/3 represents the fraction of correct system predictions, while
the recall of 2/4 represents the fraction of human-annotated NOUN tags that were
correctly found by the system.4

In this thesis, we will also consider a variant of the F1 score known as the
Best F1 score (BF1). This measure is useful when comparing continuous system
predictions to categorical judgments in a dataset. It is obtained by calculating
the F1 score for the top k entries classified as positive (i.e. the k highest-scoring
system predictions), for all possible values of k. In other words, for a dataset X

4 To handle edge cases, we define 0/0 as 1.0.
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POS tag Total
human

Total
system

True
Positives

Precision
(TP/system)

Recall
(TP/human) F1

ADJ 1 1 1 1/1 = 1.00 1/1 = 1.00 1.00
ADP 4 4 4 4/4 = 1.00 4/4 = 1.00 1.00
ADV 0 1 0 0/1 = 0.00 0/0 = 1.00 0.00
DET 2 2 2 2/2 = 1.00 2/2 = 1.00 1.00
NOUN 4 3 2 2/3 = 0.67 2/4 = 0.50 0.57
PROPN 4 3 3 3/3 = 1.00 3/4 = 0.75 0.86
VERB 1 2 1 1/2 = 0.50 1/1 = 1.00 0.67

Table 2.6.: Binary evaluation measures for POS-tag prediction.

ordered by predicted scores:

BF1(X) = max
k

F1(X1...k).

This measure will be used in Chapter 5 when comparing the continuous pre-
dictions from our system with the categorical judgments from the Farahmand
dataset.

2.3. Multiword expressions
Sentences in human languages are more than an unordered collection of words.
In order to convey a specific meaning, the words in a sentence must be structured,
grouped so as to create phrases, which themselves can be recursively grouped
until the whole sentence has been internally connected. The semantics of the
whole sentence can then be derived from the semantics of its individual compo-
nents and from the way in which they relate to each other.

In every known human language, there is a class of expressions that does
not necessarily behave in this compositional manner, known as multiword ex-
pressions (MWEs). Examples of MWEs would be the English verb–particle con-
struction give up, the French NC carte bleue (‘bank card’, lit. blue card), and the
Portuguese idiom bater as botas (‘kick the bucket, die’, lit. hit the boots). The
meaning of an MWE is not always formed by the application of regular rules
from the grammar. Rather, each MWE constitutes a semantic unit that spans
over multiple lexemes (Sag, Baldwin, Bond, et al. 2002), and which often needs
to be analyzed as an indivisible entity. MWEs may present lexical, morpholog-
ical, syntactic, semantic, pragmatic and statistical idiosyncrasies (Baldwin and
Kim 2010), as exemplified below:

• Lexical idiosyncrasy: MWEs may contain words that do not otherwise exist
in the language, and thus cannot appear by themselves5. Examples include

5 Often called cranberry words.
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EN of yore; PT no entanto ‘however’ (lit. in-the entanto); and FR au fur et à
mesure ‘in keeping with’ (lit. to-the fur and to-the measure).

• Morphological idiosyncrasy: MWEs may contain words that do not respect
the normal rules of inflection, as in EN spill the beans, where the word bean
must always be pluralized; PT azul-marinho ‘navy blue’ (lit. marine blue),
where the marine adjective does not inflect; and FR grand-mère ‘grand-
mother’ (lit. big mother), where the adjective big does not inflect.

• Syntactic idiosyncrasy: MWEs may not conform to the regular syntactic
rules of the language. Examples include EN by and large, which behaves
as an adverb; PT faz de conta ‘make-believe’ (lit. makes of account), which
behaves as a noun; and FR bon marché ‘cheap’ (lit. good market), which
behaves as an adjective. In the case of by and large, the MWE comprises
a sequence of elements (preposition+conjunction+adjective) that would
otherwise not even be allowed by the grammar of the English language.

• Semantic idiosyncrasy: the meaning of the whole expression may not come
from the combination of the meaning of its parts. This can be seen in
the idiomatic meaning of an MWE such as EN to kick the bucket, with the
equivalent PT bater as botas (lit. to hit the boots) and FR casser sa pipe (lit.
to break one’s pipe).

• Pragmatic idiosyncrasy: MWEs may only occur in a particular extra-linguistic
context, as in the case of EN all aboard, PT bom dia ‘good morning’ (lit. good
day), FR au revoir ‘goodbye’ (lit. to see-again).

• Statistical idiosyncrasy: the expression may have been conventionalized in
a specific form, even though a substitution by a synonym could happen
in principle. This is the case of EN many thanks (compare with *a lot of
thanks), PT café preto (‘black coffee’, compare with *café negro), FR noir et
blanc (‘black and white’, compare with *blanc et noir).

Note that the definition of MWEs in the literature may exclude purely statis-
tically idiosyncratic expressions (also known as collocations). In this thesis, an
MWE is understood as a more general term that encompasses all types of id-
iosyncratic units that cross word boundaries (Sag, Baldwin, Bond, et al. 2002;
Baldwin and Kim 2010), as the main interest of our research is the variation of
these expressions in a continuum of idiomaticity.

The idiosyncratic behavior of MWEs might lead one to think that such expres-
sions constitute rare exceptions in the language. However, estimations on the
number of MWEs in a given speaker’s lexicon may reach at least the same order
of magnitude as the number of single words (Jackendoff 1997). In the context
of specialized domains, this number is expected to be even higher, as they nat-
urally favor the apparition of multiword technical terms (Sag, Baldwin, Bond,
et al. 2002).
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The abundance of MWEs, coupled with the fact that their occurrences are
not obvious and their meaning is not predictable, contributes to making this an
essential topic of research for NLP (Savary, Sailer, Parmentier, et al. 2015). A
correct analysis of MWEs is essential to any computer application that has the
goal of somehow interpreting written texts, such as machine translation and text
simplification.

2.3.1. Nominal compounds
A category of MWE that is of particular interest in this thesis is the nominal
compound. A nominal compound (NC) is defined as a syntactically well-formed
and conventionalized noun phrase containing two or more content words, the
head of which is a noun.6 Such compounds can express different levels of se-
mantic idiosyncrasy: their interpretation may come directly from the meaning
of its components (e.g. climate change), or be highly idiomatic (e.g. cloud nine),
with partially idiomatic cases in-between (e.g. spelling bee, middle school) (Nakov
2013).

The syntactic realization of NCs varies across languages. In English, they are
often expressed as a sequence of nouns, usually N1 N2 (with the head noun N2
modified by N1). This is the most frequent annotated POS-tag pattern in the
MWE-annotated English corpus DiMSUM (Schneider, Hovy, Johannsen, et al.
2016). In French and Portuguese, NCs often assume the form of ADJ N or N

ADJ, where ADJ is an adjective that modifies the head noun N. Examples of
these constructions include the French ADJ N compound petite annonce (‘classi-
fied ad’, lit. small announcement) and the Portuguese N ADJ compound buraco
negro (‘black hole’, lit. hole black). Additionally, NCs in the three languages may
also include prepositions that provide a hint on the role of the modifier noun
with respect to the head (e.g. the N PREP N compound rule of thumb). Most
prepositions are highly polysemous, and it is not clear how they should be repre-
sented in the context of distributional semantic models. In the remainder of this
thesis, we will focus on 2-word NCs that follow the form N1 N2 (in English), N

ADJ (in Portuguese and French) and ADJ N (in the three languages).

2.3.2. Type discovery
The goal of MWE discovery is to automatically find new MWEs in corpora, col-
lecting these MWEs in a lexicon for future use (Constant, Eryiğit, Monti, et al.
2017). The earliest works toward MWE discovery and lexicon building involved
attempts at extracting collocations. These are expressions that present some
level of statistical idiosyncrasy, regardless of other levels of idiosyncrasy. By tak-

6 The terms noun compound and compound noun are usually reserved to noun–noun compounds.
These are typical of Germanic languages, but not as common in Romance languages.
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ing into account some statistical measures, pairs of collocated words could be
extracted from corpora with high accuracy (Smadja 1993).

Subsequent works have applied linguistic knowledge in order to target specific
categories of MWE, such as noun compounds (e.g. milk tooth), verb–particle con-
structions (e.g. look up) and light-verb constructions (e.g. take a shower) (Juste-
son and Katz 1995; Frantzi, Ananiadou, and Mima 2000; Stevenson, Fazly, and
North 2004; Evert and Krenn 2005). More recent works also focus on more gen-
eral type-independent approaches to MWE discovery (Seretan 2011; Agrawal,
Aggarwal, et al. 2013; Tsvetkov and Wintner 2014).

MWE discovery techniques usually rely on word frequency and association
measures, which are inexpensive language-independent methods of detecting
the conventionalization of MWEs. The construction of such MWE lists can be
greatly simplified by using an MWE extractor, such as the mwetoolkit (Ramisch
2015). This toolkit includes multiple tools for MWE discovery and manipula-
tion, including an extraction algorithm that builds upon the notion of regular-
expression patterns to match token properties. For example, given a noun com-
pound pattern such as (Noun Noun+) and a POS-tagged corpus, the extraction
yields all occurrences of at least two subsequent nouns in the text. The mwe-
toolkit can then be used to calculate association measures and to filter out MWE
candidates.

A major downside of such commonly used extraction techniques is that they do
not take semantic information into account when filtering MWE candidates. One
of the contributions of this thesis is an extension of the mwetoolkit that calculates
whether an extracted expression can be treated as a combination of its parts or
whether it should be treated as a standalone semantic unit (see Chapter 4 for
more details).

2.3.3. Token identification
While MWE type discovery focuses on building lexicons of new MWE types, to-
ken identification has the goal of automatically annotating the tokens that cor-
respond to an MWE occurrence in running text (Constant, Eryiğit, Monti, et al.
2017). The accurate identification of MWE tokens is a fundamental task in the
pipeline of many NLP applications. For example, MT systems need to know when
a group of words must be translated as a unit, and parsers need to recognize the
cases where a seemingly unrelated group of words should be joined as a single
lexeme or constituent.

Identification of MWE tokens in corpora usually requires an MWE lexicon as
input, and can be seen as a tagging process, akin to POS tagging. The goal is to
look for occurrences of MWEs in a corpus and to output an augmented version of
the corpus that explicitly indicates where each expression occurs. This indication
can range from simply joining the MWE components as a single word (using a
special “MWE separator” character) to more complex metadata representations,
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such as indicating each MWE by the index of its component tokens (Schneider,
Hovy, Johannsen, et al. 2016; Savary, Ramisch, Cordeiro, Candito, et al. 2017).

MWE identification tools such as jMWE (Kulkarni and Finlayson 2011) are often
used to annotate sentences based on preexisting lexicons. Finite-state transduc-
ers can also be used to take into account the internal morphology of component
words and perform efficient tokenization based on MWE dictionaries (Savary
2009). The problem of MWE identification has also been modeled using su-
pervised machine learning, where the data is encoded in a begin-inside-outside
scheme, from which one can learn sequence taggers such as CRFs (Constant and
Sigogne 2011; Schneider, Danchik, Dyer, et al. 2014; Scholivet, Ramisch, and
Cordeiro 2017).

These solutions have some shortcomings. One of the problems is that MWEs
do not always appear contiguously in the text. For example, they may contain
internally inserted modifiers or arguments, as in the expressions to give [some-
thing] up and to take [a very long] shower. In such cases, contiguous identifiers
will fail to detect these MWEs. One way of dealing with this problem would be
the use of parsing-based approaches (Constant and Nivre 2016), but these re-
quire the existence of annotated treebanks for training, which are not available
for most languages.

Another shortcoming of using separate tools for type discovery and token iden-
tification is that one misses the opportunity of sharing information. This has neg-
ative results both in terms of CPU time and in the inability to guarantee that all
MWE candidates extracted by one tool have been projected back onto the source
corpus by the other tool. One of the contributions of this thesis is an extension of
the mwetoolkit that identifies MWE occurrences in text. The implementation ad-
dresses the latter by allowing the integration of type and token identification in
the same pipeline, and the former by enabling non-contiguous matches (e.g. eat
[food] up, as in eat that wonderful chocolate cake up) and optional and variable
elements in MWEs (e.g. throw [person] to the lions/wolves). See Section 6.1.1 for
more details.

MWE token identification is also closely related to the problem of disambigua-
tion in lexical semantics (Schneider, Hovy, Johannsen, et al. 2016). For example,
a machine translation system would need to decide whether an expression such
as a piece of cake should be interpreted as a single unit (e.g. the test was a piece
of cake) or as a composition of its parts (e.g. he just ate a piece of cake), so that it
may translate it into an equivalent meaning in the target language. Semantically-
aware MWE token identification is a current topic of research (Constant, Eryiğit,
Monti, et al. 2017).

In this thesis, we will focus on MWE type-level compositionality prediction.
The work on token-level identification is seen as a means to an end: collecting
candidate MWE tokens so as to be able to calculate type-level semantics.
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2.4. Word semantics
In the past years, NLP work on lexical semantics has been shifting from a focus
on symbolic representations (often in the form of handcrafted resources) to more
numerical techniques that can automatically extract word representations from
large bodies of text. We present below an overview of both approaches.

2.4.1. Symbolic representations
One of the earliest formal representation of semantics was the one promoted
by Montague during the 1960s and 1970s. This approach relied on the use of
formal logic to treat natural language semantics in the same rigorous way as
Chomskian grammar would deal with syntax. The resulting Montague Grammar
is still today an active area of research in the field of Linguistics (Partee 2014).
Words are defined as sets of elements: the noun house stands for the set of
everything that could be considered a house, while the adjective yellow would
be seen as the set of all things yellow. A yellow house would then be anything in
this intersection (Baroni and Zamparelli 2010). This representation is somewhat
limited, as can be seen in the expressions red watermelon (inside) versus green
watermelon (outside).

The meaning of individual words may also be approximated through a set
of semantic labels. This is the approach used in SemCor, one of the earliest
sense-annotated corpus for the English language. SemCor was constructed by
tagging the content words in the Brown corpus based on a set of semantic sense
labels7 (Landes, Leacock, and Tengi 1998). More recently, the STREUSLE cor-
pus of web reviews has been annotated in terms of on noun, verb and prepo-
sition supersenses. Supersense tags (such as person, location, and event) are a
more coarse-grained way of representing the semantics that allows some level of
comparability between different words (Ciaramita and Johnson 2003; Schneider,
Hwang, Srikumar, et al. 2016).

Another way of representing semantics is through a graph, where each node
represents a different meaning8, and edges represent some kind of relation be-
tween those meanings. For example, a graph of hypernymy relations (i.e. word
generalizations) could contain nodes such as DOG, MAMMAL and ANIMAL, with
edges connecting DOG→MAMMAL as well as MAMMAL→ANIMAL. Lexical databases
have been constructed for some languages, with the most prominent example be-
ing the hand-crafted WordNet (Fellbaum 1998), which includes relations such as
hypernymy, meronymy (i.e. part–whole), and antonymy (i.e. words with oppo-
site polarity) for the English language. Such databases require dedicated human

7 The sense labels correspond to WordNet synsets.
8 Words that may refer to the same meaning are grouped in what is known as a synset, so

e.g. the words dog and hound could be part of a synset called dog.
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work for each word in the language, requiring periodic updates to keep in line
with the lexical evolution of the language over time.

Automatically-created databases are a current topic of research, and may be
a more feasible alternative to manual annotation (especially for languages that
dispose of fewer financial resources), at the expense of accuracy (Navigli and
Ponzetto 2012). Such resources may be created from parallel texts, determining
the semantics of each word based on its possible translations (Ganitkevitch, Van
Durme, and Callison-Burch 2013). However, this approach is inherently reliant
on the alignment of large amounts of parallel data, which is a scarce resource
for most languages.

2.4.2. Numerical representations
While symbolic approaches often require an impractical amount of high-quality
data for a given language or domain, numerical solutions such as distributional
semantic models (DSMs) tend to be more malleable in their requirements. DSMs
use context information (such as the co-occurrence matrix, described in Sec-
tion 2.2) to represent the meaning of lexical units in the form of numerical vec-
tors. The central idea is that the meaning of a word is naturally learned by hu-
man beings based on the contexts where it appears — or, as popularized by Firth
(1957), “you shall know a word by the company it keeps”. Distributional models
can be built from any large-enough corpus, and do not particularly require any
level of data preprocessing.

Consider the target–context matrix in Table 2.7. Each row corresponds to a
target word (fish, dog, cat) followed by its context vector. Each dimension in the
context vector represents a measure of co-occurrence between the target (e.g.
dog) and a context that was seen close to this target in a corpus (e.g. swim). For
example, the target fish has a co-occurrence of 1 in the dimension labeled leg
and a co-occurrence of 8 in the dimension labeled swim.

vocabulary leg swim
w1 fish 1 8
w2 dog 7 3
w3 cat 9 2

Table 2.7.: Matrix with targets (rows) × contexts (columns)

The essence of DSMs consists in treating each of these rows as a numerical D-
dimensional representation of its target word (with D = 2 in this toy example).
The assumption is that the meaning of a word can be derived from this vector.
For example, the word cat would be represented as the vector v(w3) = [9, 2]. Fig-
ure 2.5 presents a visual representation of these vectors. The results exemplify
something that is often seen in DSMs: because both words dog and cat have a
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numerical representation that is strongly associated with leg and weakly associ-
ated with swim, their vectors are closer to each other, from which we can infer
that dog is overall more similar to cat than it is to fish.

leg

sw
im

(1, 8) fish

(7, 3) dog

(9, 2) cat

Figure 2.5.: DSM vectors of the target words “fish”, “dog” and “cat”, considering
the contexts “lex” and “swim”.

The similarity between the vector representation of two words can be mathe-
matically measured through the use of a function such as the cosine, which can
be defined for two n-dimensional vectors as their normalized dot product:

cos(v,w) = v · w
|v| · |w|

,

where |v| represents the norm of the vector v. This definition can be further
expanded as:

cos(v,w) =
∑n
i=1 vi · wi√∑n

i=1 v2
i ·

√∑n
i=1 w2

i

,

The cosine has a value closer to 1 for vectors that are closer to each other and
closer to 0 for vectors that are perpendicular in most dimensions.9 In the case
of DSMs, this perpendicularity indicates that those vectors do not share many
distributional features, and might suggest that they are not semantically related.
Other measures could be used for measuring word vector similarity, in particular
the euclidean distance. One of the advantages of the cosine is the fact that
it is invariant with regards to vector length (which is not usually considered
meaningful in a DSM representation).

Formally, distributional semantic models attempt to encode the representa-
tion of each word in a vocabulary V as a vector of real numbers R|V |. Tradi-

9 The cosine can also be negative, e.g. the vectors point to opposite directions in most dimensions.
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tionally, this representation is built by weighting the level of co-occurrence of
all pairs of words. This weighting can either be done by counting the number
of co-occurrences (Baroni, Dinu, and Kruszewski 2014) or by calculating some
measure of the association between target and context, such as the PPMI (Levy,
Goldberg, and Dagan 2015). Words are usually deemed to co-occur if they ap-
pear in the text under a small fixed-size window of words. Alternatively, some
works define co-occurrence based on whether the two words share a syntactic
dependency relation (Lin 1998; Padó and Lapata 2007). In all cases, the result
is a target–contexts mapping M = V × R|V | where many of the context weights
are zero (as most word pairs in V × V will almost never co-occur), and it is thus
often implemented as a sparse matrix. A threshold on the number of word pair
co-occurrences is often applied to discard low weights.

An alternative to working on a sparse representation is the use of word embed-
dings, in which the vectors are transformed so as to have a significantly smaller
number of dimensions.10 Two solutions are commonly employed in the litera-
ture: global contexts and dimensionality reduction. In the case of global con-
texts, only the top k most frequent words are considered as contexts, producing
a |V | × k matrix (Salehi, Cook, and Baldwin 2014; Padró, Idiart, Villavicencio,
et al. 2014). A second alternative is the use of dimensionality reduction tech-
niques. Assuming that all vectors represent data points on a space whose mean
is µ = 0, a technique known as single value decomposition (SVD) may be used
to transform the matrix rows M1..Mn in such a way that the largest variance
now occurs on Mi,1 (i.e. maximizing the variance σ2

i (Mi,1)), the second largest
variance on Mi,2, and so on. Only the first k components of each vector are then
kept; the rest is discarded. The rationale is that higher variances represent actual
structure, while lower variances represent noise in the data.

SVD achieves its results through a matrix factorization technique (Shlens 2014).
Formally, it decomposes the matrix Mm×n into three other matrices:

M = Um×m · Σm×n ·Vn×n,

where U and V specify rotations and Σ is a diagonal matrix which specifies a scal-
ing operation. The product UΣ has the aforementioned property in which lower
indexes correspond to higher variances. It can be truncated into an m×k matrix
for smaller values of k, effectively obtaining a version of M that has a reduced
number of dimensions. Similar methods have also been published focusing on
factorizing the logarithm of the co-occurrence matrix (Pennington, Socher, and
Manning 2014) and factorizing a matrix of PPMI values (Salle, Villavicencio, and
Idiart 2016).

Another word embedding technique is the one adopted by word2vec, which
trains a neural network in a task that involves predicting target–context rela-
tionships. Two approaches have been proposed: training a network to predict a

10 Each of these smaller vectors is then called a word embedding.
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target word given a window of surrounding contexts, known as the Continuous
Bag-of-Words (CBOW) model; and training a network to predict likely contexts
for a given target, known as the skip-gram model (Mikolov, Sutskever, Chen,
et al. 2013). Figure 2.6 presents the general architecture of both approaches,
for a window of 2 + 2 words around each target. In both cases, input words
are represented as a one-hot vector in {0, 1}|V |. Each entry in the input vector
is connected to a hidden layer of d neurons, which learns to generate an R|V |
output that predicts11 the one-hot vector of wi (for CBOW) or its contexts (for
skipgram). After training, the input weights from the hidden layer are then taken
as the set of d-dimensional word embeddings. In both word2vec approaches, the
network automatically adapts itself to encode useful semantic information as a
side effect of trying to solve its prediction task.

weights

 w i₋2

Inputs
(one-hot)

Output

 wi₋2

 w i₋1

 w i+1

 w i+2

Outputs

Input
(one-hot)

CBOW Skipgram

sum hidden
layer

 w i₋1

 w i+1

 w i+2

  w i   w i

weights
hidden
layer

Figure 2.6.: Architecture of word2vec (CBOW and skipgram).

When building a distributional semantic model, there are some common pa-
rameters that must be considered, but that are orthogonal to the choice of DSM
technique. One of the main considerations is the type of information that will be
provided for each word in the corpus: using the word’s surface form may gener-
ate a sparser model (due to inflections), while using the lemma may merge unre-
lated occurrences, ignoring relevant morphological distinctions. The use of POS
tags may also contribute to disambiguate polysemous words (e.g. compare the
circle with we circle), but it risks the introduction of tagging errors. Another con-
sideration is the removal of stopwords: common function words (such as the, of,
and for) do not contribute much to the semantics of the text, and their removal
may allow DSM techniques to better capture relevant co-occurrence patterns in
the text. In Chapter 5, we present some contributions to the understanding of
how these parameters affect different DSMs.

11 During training, the output layer is followed by a softmax layer, which generates the probability
for each element in V (and which is compared to the one-hot in the output).
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2.5. MWE semantics
Human language is often modeled as though it were compositional, i.e. assum-
ing that the meaning of the whole can be built from the meaning of its parts.
However, MWEs may display a wide range of idiomaticity, ranging from com-
positional cases (e.g. tennis championship) to idiomatic non-compositional cases
(e.g. gravy train). For the latter, the meaning of the expression cannot be un-
derstood directly from the meaning of its parts (e.g. a gravy train refers to a
low-effort lucrative endeavor). Even when there is a level of compositionality in
the expression, the contribution of each word may vary considerably, indepen-
dently from its status as a syntactic head or modifier, as tears (head) in crocodile
tears versus cash (modifier) in cash cow. In this section, we present the state-of-
the-art approaches towards the representation of compositional and idiomatic
MWE semantics, using symbolic as well as numerical representations.

2.5.1. Symbolic representation
In the case of compositional MWEs, Lauer (1995) argues that prepositions (such
as from, for, in) can be used to classify the role of each component (e.g. olive
oil is oil from olives). These prepositions are explicitly part of some NCs in Ro-
mance languages (e.g. FR huile d’olive and PT azeite de oliva). More generally,
Girju, Moldovan, Tatu, et al. (2005) present and compare several inventories
of semantic relations between nouns inside NCs, ranging from fine-grained to
coarse senses. These relations include syntactic and semantic classes such as
subject, instrument and location.

Free paraphrases have also been used to model compositional MWE semantics
based on the meaning of the components. Nakov (2008) suggests using unsuper-
vised generation of paraphrases combined with web search engines to classify
NCs. This was further extended in SemEval 2013, in a task where free para-
phrases were ranked according to their relevance for explicitly describing the
underlying semantic relations in the compounds (Hendrickx, Kozareva, Nakov,
et al. 2013). For instance, with respect to the expression flu virus, the para-
phrases at the top of the rank contained verbs such as cause, spread and create
(i.e. virus that causes/spreads/creates the flu).

Regarding the representation of idiomatic MWEs, lexical resources such as the
aforementioned WordNet (Fellbaum 1998) will often include them alongside
single words. However, the drawbacks from single-word lexical resources still
hold true for MWEs. In particular, for automatically constructed lexicons, the
relatively lower frequency and high syntactic variability of MWEs may exacerbate
the discrepancy between single-word and MWE coverage even further.

Regarding the representation of idiomatic MWEs, some works extend the su-
persense approach used for single words to identify every MWE as an indivisible
unit pertaining to a semantic class. Recent versions of the SemCor corpus (Lan-
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des, Leacock, and Tengi 1998) annotate MWEs as well as single-word units based
on a set of supersenses derived from top-level WordNet hypernym senses. A sim-
ilar approach is adopted by the STREUSLE corpus, which contains supersense
labels for nouns, verbs and prepositions, both when acting as single words and
as part of an MWE (Schneider, Onuffer, Kazour, et al. 2014b; Schneider, Hwang,
Srikumar, et al. 2016). This latter corpus was also extended in the DiMSUM
shared task, with the joint goal of token-based MWE identification and sense
disambiguation (Schneider, Hovy, Johannsen, et al. 2016).

2.5.2. Numerical representation
Numerical approaches to MWE semantic representation usually focus on a con-
tinuum of compositionality ranging from very compositional expressions to very
idiomatic ones. The meaning of an MWE is then expressed through a numeri-
cal compositionality score. A low score indicates a completely idiomatic mean-
ing, while a high compositionality score indicates that the meaning of the MWE
comes directly from its parts. For example, using a range from 0 to 1, the id-
iomatic expression sitting duck could be associated with the compositionality
score 0.2, while the compositional expression swimming pool could be assigned
a high score such as 0.9.

Separate scores can also be used to represent the literality associated with
each individual word (Reddy, McCarthy, and Manandhar 2011). For example,
the expression spelling bee could be 80% literal with regards to spelling and 0%
literal with regards to bee, while milk tooth could be 20% literally related to milk
and 100% related to tooth.

The meaning of an MWE can also be specified in terms of its conventionaliza-
tion (Farahmand, Smith, and Nivre 2015). Just like compositionality scores can
distinguish MWEs in a continuum of idiomaticity, conventionalization scores can
be used to identify the level of perceived statistical idiosyncrasy in an expres-
sion. For example, the expression tap water could be considered 20% conven-
tionalized, while spelling bee could be judged as 100% conventionalized. Note
that conventionalization does not imply idiomaticity (e.g. time machine is highly
conventionalized while being fairly compositional), and both measures could be
used in a single dataset to more precisely specify the semantics of an expression.

Annotating the semantics of MWEs is a considerably hard task, and annotators
may disagree on the exact compositionality score. Therefore, scores are often
average among multiple annotators. One source of divergence that may be found
among annotators is that some datasets do not take polysemy into account, as
the authors ask annotators to think about the most common sense of an MWE
without providing any context. Some of these datasets address this issue by
providing example sentences to attenuate this problem.

Numerical scores can sometimes be considered a more flexible alternative to
symbolic representations of semantics. For one, they allow the interpretation of
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compositionality in a continuum, which is in line with the perception that the
meaning of some MWEs can be more easily guessed than the meaning of the oth-
ers. Numerical representations can be more readily applied in other numerical
contexts, such as DSM representations of semantics.

Numerical representations also allow for fine-grained distinctions that are not
possible in a strictly categorical setting. For example, while one may stipulate
the categories idiomatic and compositional, any further attempts at representing
partial levels of compositionality would rely on an (implicit) ranking among the
categories, tending towards the numerical representations. The possibility of
fine-grained distinctions can also be seen as one of the major downsides of nu-
merical scores, as it may introduce uncertainty into the dataset due the subtle
differences with which different people see the MWEs. Symbolic representations
may also be preferable in the case of highly polysemous MWEs, as the distinc-
tion between the multiple senses may not be feasible with bases on commonly
studied dimensions such as compositionality or conventionalization.

2.5.3. Compositionality datasets in the literature
We present below a list of relevant datasets representing MWEs alongside human-
rated compositionality scores:

• Baldwin and Villavicencio (2002) collected binary type-level judgments for
3 078 English phrasal verbs. Each entry is classified by two experts as either
compositional (e.g. give back) or idiomatic (e.g. pull over), with 14% of the
MWEs in the dataset being judged as idiomatic.

• McCarthy, Keller, and Carroll (2003) present a dataset of 116 English verb–
particle constructions, annotated with type-level compositionality scores by
three native speakers, on a scale ranging from 0 (idiomatic) to 10 (com-
positional). Five of these were unknown to at least one judge, and were
removed from the dataset for their experiments.

• Bannard (2006) collected binary judgments for 160 English verb–particle
constructions. In this work, compositionality judgments for each expres-
sion were collected from multiple annotators, allowing more fine-grained
distinctions in idiomaticity.

• Reddy, McCarthy, and Manandhar (2011) collected judgments for a set of
90 English noun–noun and adjective–noun compounds, in terms of three
numerical scores: the compositionality of the compound as a whole and the
literal contribution of each of its parts individually, using a scale from 0 to
5. Compounds included in the dataset were selected to balance frequency
range and degree of compositionality (low, middle and high). The dataset
was built through crowdsourcing, and the final scores are the average of
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30 judgments per compound. This dataset will be used in our intrinsic
evaluation experiments in Chapter 5, where it will be referred to simply as
Reddy.

• Gurrutxaga and Alegria (2013) had three experts classify 1200 Basque
noun–verb expressions according to one of three possibilities: idiomatic,
compositional collocation, or free combination.

• Roller, Schulte im Walde, and Scheible (2013) collected judgments for a
set of 244 German noun–noun compounds, each compound with an av-
erage of around 30 judgments on a compositionality scale from 1 to 7,
obtained through crowdsourcing. The resource was later enriched with
feature norms (Roller and Schulte im Walde 2014).

• Farahmand, Smith, and Nivre (2015) had 4 experts annotate 1042 English
noun–noun compounds. Each annotator provided binary judgments for
every MWE regarding idiomaticity (non-compositionality) and convention-
alization (when a particular choice of words has been crystallized as part
of the language, even if synonyms would have been understandable). A
hard threshold can be applied so that compounds are considered as non-
compositional if at least two annotators say so (Yazdani, Farahmand, and
Henderson 2015), and the total compositionality score is given by the sum
of the 4 binary judgments. This dataset will be used in our intrinsic evalua-
tion experiments in Chapter 5, where it will be referred to as .

• Schulte im Walde, Hätty, Bott, et al. (2016) collected judgments for a set
of 868 German noun–noun compounds, with human judgments of compo-
sitionality ranging on a scale of 1 to 7. The dataset is also annotated for
in-corpus frequency, productivity and ambiguity, and a subset of 180 com-
pounds has been selected so as to be balanced with respect to these vari-
ables. The different annotations were performed by the paper authors, lin-
guists, and through crowdsourcing. A similar dataset has been collected for
verb–particle constructions (Bott, Khvtisavrishvili, Kisselew, et al. 2016).

Some of these datasets were constructed with binary judgments, while others
were constructed with a more malleable representation of idiomaticity, request-
ing human raters to specify their judgment over a range of possible values. Note,
however, that even binary judgments could constitute a numerical dataset. As
long as there are enough annotators, the average of the judgments can be taken
as a numerical estimate of its perceived idiomaticity.

While the compositionality judgments from the datasets above could be used
by themselves as features to semantic tasks such as MWE token identification
(described in Section 2.3.3), the size of these datasets may be a limiting factor
in the results obtained. On the other hand, these datasets are particularly use-
ful as a way of evaluating the quality of automatic models of compositionality
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prediction (which themselves may then be used to predict the compositionality
of a much larger set of MWEs). In Chapter 3, we present three new datasets
with human annotation of compositionality scores. Chapter 5 then evaluates a
framework of compositionality prediction on these new datasets, alongside with
the Reddy and Farahmand presented above.
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3. Compositionality datasets
As we have seen in Chapter 2, MWE compositionality can be modeled in terms of
the contribution of meaning of each element toward the meaning of the whole.
Some numerical datasets have been proposed in the literature, but they are re-
stricted to English and German MWEs. Moreover, in the former language, only
one relatively small dataset contains non-categorical compositionality scores.

In this chapter, we describe the construction of three new datasets of human-
annotated compositionality scores for nominal compounds (NCs). These datasets
are necessary for our evaluations of compositionality prediction models (reported
in Chapter 5). The resources encompass: 180 French nominal compounds (FR-
comp); 180 Brazilian Portuguese nominal compounds (PT-comp); an extension of
the English-language Reddy dataset with 90 additional compounds (EN-comp90),
for a total of 180 English compounds (Reddy++).

The work presented in this chapter has also been described in three published
papers (Ramisch, Cordeiro, Zilio, et al. 2016; Cordeiro, Ramisch, and Villavicen-
cio 2016a; Wilkens, Zilio, Cordeiro, et al. 2017). For French and Portuguese, this
is the first human-rated dataset of nominal compound compositionality.

3.1. Data collection
For each of the 3 target languages (English, French and Portuguese), quanti-
tative measures for the level of compositionality of the nominal compounds in
the dataset were collected through crowdsourcing. Non-expert participants were
asked to judge each compound in the context of three sentences where the com-
pound displayed the same sense, followed by an evaluation of the degree to
which the meaning of the compound is related to the meaning of its individual
parts. This follows from the assumption that a fully compositional expression
will have an interpretation whose meaning comes from both words (e.g. lime
tree, which is effectively a tree of limes), while a fully idiomatic compound will
have a meaning that is unrelated to its components (e.g. nut case, which refers
to an eccentric person and is not related to nuts or cases). This work follows the
protocol from Reddy, McCarthy, and Manandhar (2011), where the composition-
ality is explained in terms of the literality of the individual parts. This type of
indirect annotation of compositionality is less specialized, and does not require
expert linguistic knowledge, while still providing reliable data, as will be shown
later.

For each language, data collection involved the following four steps: com-
pound selection; sentence selection; questionnaire design; and questionnaire
application.
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3.1.1. Compound selection
The initial set of idiomatic and partially compositional candidates was constructed
by introspection, independently for each language. This list of compounds was
complemented by selecting entries from lists of frequent adjective+noun and
noun+noun pairs. These were automatically extracted through POS-sequence
queries using the mwetoolkit (Ramisch 2015). The source corpora were ukWaC
(Baroni, Bernardini, Ferraresi, et al. 2009), frWaC and brWaC (Boos, Prestes, and
Villavicencio 2014), each containing between 1.5 and 2.5 billion tokens.

We avoided selecting compounds in which the head was not necessarily a noun
(e.g. FR aller simple ‘one-way ticket’ (lit. going simple), as aller doubles as the
noun going and the infinitive of the verb to go). We also avoided selecting com-
pounds whose literal sense was very common in the corpus (e.g. EN low blow).
For PT and FR, we additionally discarded the compounds in which the comple-
ment was not an adjective (e.g. PT noun–noun abelha-rainha ‘queen bee’ (lit.
bee-queen)), as these constructions are often seen as exocentric (no head/modi-
fier distinction can be made between the compound elements).

For each language, a balanced set of 60 idiomatic, 60 partially compositional
and 60 fully compositional compounds was selected by means of a coarse-grained
manual pre-annotation.We eschewed any attempts at selecting equivalent com-
pounds for all three languages. A compound in a given language may correspond
to a single word in the other languages, and even when it does translate as an-
other compound, its pattern of POS-tags and its level of compositionality may be
widely different.

3.1.2. Sentence selection
For each compound, we selected 3 sentences from the WaC corpus where the
compound is used with the same meaning. We sorted them by sentence length,
in order to favor shorter sentences, and manually selected 3 examples that satisfy
these criteria:

• The occurrence of the compound must have the same meaning in all three
sentences.

• Each sentence must contain enough context to enable a clear disambigua-
tion of the compound.

• There must be enough inter-sentence variability, so as to provide a higher
amount of disambiguating contexts.

The goal of these sentences was to be used as disambiguating context for the
annotators. For example, for the compound benign tumour, we present the fol-
lowing disambiguating sentences: (1) “Prince came onboard to have a large
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benign tumor removed from his head”; (2) “We were told at that time it was
a slow growing benign tumor and to watch and wait”; (3) “Completely benign
tumor is oncocytoma (it represents about 5 % of all kidney tumors)”.

3.1.3. Questionnaire design
The questionnaires were presented as online webpages, and followed the same
structure for each compound. The questionnaire starts with a set of instructions
that briefly describe the task and direct participants to fill an external identifica-
tion form. This form collects demographics about the annotators, and ensures
that they are native speakers of the target language, following Reddy, McCarthy,
and Manandhar (2011). This form also presents some example questions with
annotated answers for training. After filling in the identification form, users
could start working on the task itself. The questionnaire was structured in 5
subtasks, presented to the annotators through these instructions:

1. Read the compound itself.

2. Read 3 sentences containing the compound.

3. Provide 2 to 3 synonym expressions for the target compound seen in the
sentences, preferably involving one of the words in the compound. We ask
annotators to prioritize short expressions, with 1 to 3 words each, and to try
to include the words from the nominal compound in their reply (eliciting a
paraphrase).

4. Using a Likert scale from 0 (completely disagree) to 5 (completely agree),
judge how much of the meaning of the compound comes from modifier
and head separately. Figure 3.1 shows an example for the judgment of the
literality of the head (benign) in the compound benign tumor.

5. Using a Likert scale from 0 (completely disagree) to 5 (completely agree),
judge how much of the meaning of the compound comes from both of its
components (head and modifier). This judgment is requested through a
question that paraphrases the compound: “would you say that a benign
tumor is always literally a tumor that is benign?”.

We have been consciously careful about requiring answers in an even-numbered
scale (0–5 makes for 6 reply categories), as otherwise, undecided annotators
could be biased towards the middle score. As an additional help for the anno-
tators, when the mouse hovers over a reply to a multiple-choice question, we
present a guiding tooltip, as in Figure 3.1. We avoid incomplete replies by mak-
ing Subtasks 3–5 mandatory.

The order of subtasks has also been taken into account. During a pilot test,
we found that presenting the multiple-choice questions (Subtasks 4–5) before
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Figure 3.1.: Excerpt from the questionnaire of the compound benign tumor, eval-
uating compositionality regarding the head of the compound.

asking for synonyms (Subtask 3) yielded lower agreement, as users were often
less self-consistent in the multiple-choice questions (e.g. replying that “benign
tumor is not a tumor” in Subtask 4 while replying that “benign tumor is a tumor
that is benign” in Subtask 5). This behavior was observed even when they later
carefully selected their synonyms. Asking for synonyms in Subtask 3, prior to the
multiple-choice questions, prompts the user focus on the target meaning for the
compound and also have more examples (the synonyms) when considering the
semantic contribution of each element of the compound. In this work, the syn-
onyms were only used to motivate annotators to think about the meaning of the
compound. In the future, this information could be exploited for composition-
ality prediction, but also for lexical substitution tasks (Wilkens, Zilio, Cordeiro,
et al. 2017).

3.1.4. Judgment collection
Annotators participated via online questionnaires, with one webpage per com-
pound. For EN and FR, annotators were recruited and paid through Amazon
Mechanical Turk (AMT). For PT, we developed a standalone web interface that
simulates AMT, as Portuguese speakers were rare in that platform. Annotators
for PT were undergraduate and graduate students of Computer Science, Linguis-
tics and Psychology. For each compound, we have collected judgments from
around 15 annotators.1

For each compound, the response from all annotators were gathered up into
an average compound score. We obtained the following variables:

• cH: The contribution of the head to the meaning of the compound (e.g. is a
busy bee literally a bee?), with standard deviation σH.

• cM: The contribution of the modifier to the meaning of the compound (e.g.
is a busy bee literally busy?), with standard deviation σM.

• cWC: The degree to which the whole compound can be interpreted as a com-
bination of its parts (e.g. is a busy bee a bee that is busy?), with standard

1 EN includes the 90 compounds from Reddy, McCarthy, and Manandhar (2011), which are
compatible with the other 90 compounds collected for the dataset.
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deviation σWC.

The average c scores provide absolute judgments on the compositionality of
a compound, ranging from 0 (non-literal or idiomatic) to 5 (literal or compo-
sitional). All datasets are freely available online.2 For a complete list of all
compounds, along with their translation, glosses and collected compositionality
scores, we refer to Appendix A (EN-comp90), Appendix B (FR-comp), and Ap-
pendix C (PT-comp).

3.2. Dataset analysis
In this section, we analyze some properties of the datasets. These are performed
on the 180 compounds of each language. We also present some graphics focusing
on the 90 compounds collected in EN-comp90, for comparison against the whole
dataset of 180 compounds in Reddy++. In some cases, in order to perform a
cross-language analysis of the data, we group the compositionality scores of the
three datasets into a single dataset ALL-comp with all 3× 180 compounds.

3.2.1. Score distribution
Figure 3.2 presents the average scores for the 180 compounds for each language.
Each of the 4 graphs is ordered in the x-axis based on the whole-compound
compositionality scores (rank-based cWC). Values in the y-axis then present the
average score of each compound (value-based cH, cM and cWC). The average
human judgments confirm that the three datasets are balanced in terms of com-
pound idiomaticity, with the whole-compound scores growing at a mostly linear
rate (the correlation between cWC and the list of numbers 1..180 is statistically
significant, with Pearson r > 0.99 for all four graphs). Moreover, there seems to
be a greater agreement between the score for the compound and that of its head-
/modifier for the two extremes (totally idiomatic and fully compositional), with
a greater dispersion of head/modifier scores for partially idiomatic compounds.

3.2.2. Difficulty of annotation
For each compound, the difficulty of annotation can be estimated as the standard
deviation (σ) among the compositionality scores provided by multiple human
raters. Ideally, if all annotators agreed on a compositionality score, σ should
be low. Following Reddy, McCarthy, and Manandhar (2011), we calculated for
each language the number of compounds that had standard deviation greater
than 1.5. The results are shown in Table 3.1. The largest deviations happened
for modifiers, which suggests that adjectives may be harder for humans to judge

2 http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
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(b) PT-comp dataset
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(c) Reddy+ +  dataset
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(d) EN-comp90 dataset

Figure 3.2.: Average compositionality (cH, cM and cWC) per compound.

EN FR PT
Compounds with σWC > 1.5 22 41 30
Compounds with σH > 1.5 23 44 33
Compounds with σM > 1.5 35 55 34

Table 3.1.: Number of cases of high standard-deviation σ.

than nouns. Indeed, if we consider the average of all standard deviations in
Reddy++, we obtain σH = 0.97 and noun-based σM=noun = 0.97 (with 132 cases),
but adjective-based σM=adj = 1.30 (with 48 cases). This is in line with the average
standard deviation found for the other two languages, where every modifier in
the dataset is an adjective. For FR-comp, σH = 1.01 and σM = 1.18; while for
PT-comp, σH = 0.84 and σM = 0.98.

Figure 3.3 presents the standard deviation scores of every compound as a func-
tion of its average compositionality score. Just as the head/modifier-only scores
were closer in value to the whole-compound score in the extremities (e.g. highly
idiomatic cases with compositionality cWC < 20 and highly compositional cases
with cWC > 160), so are all standard deviations lower in these extremes. This phe-
nomenon may be related to purely statistical effects of extremity values, or may
indicate that more extreme judgments are easier for humans to produce. One
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consistent property seen among all datasets is that the peak of standard devia-
tion occurs in the left side of the graphs (in particular for σH and σM), suggesting
that idiomatic compounds are slightly harder for humans to judge consistently.
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(d) EN-comp90 dataset

Figure 3.3.: Standard deviation (σH, σM and σWC) per compound.

The difficulty of annotation can also be measured through inter-rater agree-
ment measures (described in Section 2.2.4). For the English and French datasets,
most participants only provided a small amount of annotations, making these
measures unfeasible. For the Portuguese dataset, 3 of the participants annotated
a large subset of 119 compounds. For this subset, the pairwise kappa values
range from κ = .28 to κ = .58 depending on the question (head-only, modifier-
only or whole-compound) and on the annotator pair. In the case of α, there was
an agreement of α = .52 for head-only, α = .36 for modifier-only and α = .42
for whole-compound compositionality scores. We also calculated the α between
an expert annotator and himself some weeks later. The agreement rate ranges
from α = .59 for whole-compound and modifier-only, to α = .69 for head-only
compositionality scores.

3.2.3. Estimating whole-compound from head/modifier
A careful analysis of the plot presented in Figure 3.2 suggests that the whole-
compound score is lower-bounded by the head-only and modifier-only scores, i.e.
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cWC ≈ min(cH, cM). This would mean that the whole-compound compositionality
scores is estimated by human raters based on the literality of its elements. We
thus evaluated if it was possible to predict the compositionality score of the
whole compound from the scores of its parts. To quantify this relation, we used
two models: the arithmetic and geometric mean of the head-only and modifier-
only scores for that compound.

Figure 3.4 shows the linear regression for both measures in the Reddy++ and
FR-comp datasets. The goodness of fit results for Reddy++ were r2

arith = .90 for
the arithmetic mean, and r2

geom = .96 for the geometric mean, with the latter be-
ing a better predictor of the whole-compound compositionality. Similar results
were achieved for FR-comp (r2

arith = .93, r2
geom = .96), for PT-comp (r2

arith = .91,
r2

geom = .96) and for EN-comp90 (r2
arith = .90, r2

geom = .96). This means that,
whenever annotators judged an element of the compound as highly non-literal,
they have also rated the whole compound as highly idiomatic. Estimating based
on the min operation itself yields similar R2 values as r2

geom for PT-comp and FR-
comp. For Reddy++, r2

min = .90, indicating that the geometric mean is actually
a better estimator than the min function itself. The results of this analysis in-
spired the proposal of the geom compositionality prediction strategy, described
in Chapter 4.
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Figure 3.4.: Distribution of cH ⊗ cM according to cWC of each compound.

3.2.4. Correlation with distributional variables
The hypothesis hidiom ≈ distr.freq suggests that idiomatic MWEs should occur more
frequently than compositional ones in general human communication. As a re-
sult, there should be a negative correlation between the compositionality score
and the frequency of each compound in a sufficiently general corpus. We thus cal-
culate the correlation between the compositionality score cWC of each compound
and its frequency in the WaC corpora3. The result is a statistically significant

3 We used the same WaC corpora as in Section 3.1.1.
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Spearman correlation of ρ = .46 for Reddy++ and ρ = .60 for FR-comp (with
p-value p < 10−10 in both cases). In the case of PT-comp, no significant correla-
tion was found (p-value p > 0.1). Figure 3.5 presents each dataset where com-
pounds were ordered by frequency and grouped into 18 bins of 10 compounds
each. The height of each bar indicates the average of the cWC score assigned by
humans to the 10 compounds in the bin. We can see that, in the case of FR-
comp and Reddy++, the compounds that are more frequent tend to be assigned
higher compositionality scores by humans. These results go against the hypoth-
esis hidiom ≈ distr.freq, which proposed that idiomatic compounds should be overall
rather frequent, so as to permit the assimilation of their meaning (Pinker 1995)

Figure 3.5 also presents a graph where the three datasets were combined so as
to form a single set of 3 × 180 compounds. The height of each bin indicates the
average score assigned by humans to the 30 compounds therein. As in the case
of English and French data above, this combined dataset presents a statistically
significant positive correlation of ρ = .41 (with p < 10−24) between composi-
tionality scores and corpus frequency. This correlation does not mean that all of
these idiomatic compounds are rare in an absolute sense, but it does mean that,
among the most frequent compounds in the datasets, the majority of entries is
more compositional than the average.
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Figure 3.5.: Compositionality for compounds under different frequency bins.

We have similarly analyzed the correlation between the compositionality score
of each expression and the level of conventionalization (estimated through the
PMI). According to the hidiom ≈ distr.convent hypothesis, the level of idiomaticity of an
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MWE should be positively correlated with the PMI. Figure 3.6 presents all 3×180
compounds ordered by PMI and grouped under 18 bins of 30 compounds each.
The height of each bin indicates the average score assigned by humans to the
30 compounds therein. As can be seen, there is no clear pattern of correlation
between the two variables. Indeed, differently from the case of the frequency, we
found no statistically significant correlation between the compositionality scores
and the PMI (this holds true for each dataset by itself, as well as when the 3
datasets are combined). This stands in contrast with the fact that many works
in the literature rely on association measures as estimators for compositionality
(e.g. using PMI in the discovery of idioms) (Fazly and Stevenson 2006; Bu, Zhu,
and Li 2010; Gurrutxaga and Alegria 2013; El Maarouf and Oakes 2015). Given
the lack of correlation between these two variables, we do not recommend the
use of PMI as an estimator of compositionality.4
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Figure 3.6.: Compositionality for noun compounds under different PMI bins.

3.3. Summary
In this chapter, we have presented a multilingual group of datasets containing
human judgments about the compositionality of nominal compounds. It con-
tains 180 compounds for each of the 3 target languages: English, French and
Portuguese. Annotations were collected through crowdsourcing. Since the task
was performed by native speakers who may not have a background in linguistics,
it needs to be appropriately constrained not to require expert knowledge, and
this section has described the methodology that were employed towards that
goal.

An analysis of the resulting resource confirmed that the compounds are uni-
formly distributed across different ranges of compositionality scores. The 3
datasets are comparable regarding their difficulty of annotation, with partially
4 We leave the investigation of other association measures for future work.
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compositional and adjective-based compounds consistently posing a higher level
of difficulty for the human raters. Head-only and modifier-only judgments have
also been compared to whole-compound compositionality judgments, with the
latter scores behaving as the geometric mean of the former two. Compositional-
ity scores showed no correlation with a measure of conventionalization, differ-
ently from what was predicted by the hidiom ≈ distr.convent hypothesis. Finally, com-
positionality scores consistently showed a positive correlation with compound
frequency in a corpus, refuting the common intuition that the most frequent
compounds tend to be idiomatic (hypothesis hidiom ≈ distr.freq).

The datasets presented in this chapter can be used to evaluate applications and
tasks requiring some degree of semantic processing, such as lexical substitution
and text simplification. For the cases where the numerical judgments alone are
not enough for a given task, the datasets also provide sets of paraphrases, which
serve as a symbolic counterpart to those scores. These datasets have also been
described and analysed in dedicated publications (Ramisch, Cordeiro, Zilio, et
al. 2016; Cordeiro, Ramisch, and Villavicencio 2016a; Wilkens, Zilio, Cordeiro,
et al. 2017). The complete resource is freely available online.5

5 http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
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4. Compositionality prediction
Multiword expressions exist in a wide spectrum of idiomaticity, ranging from
mere statistically-idiosyncratic compositional combinations of words (such as
beach towel, which refers to an actual towel), to completely opaque idioms (such
as eager beaver, which refers to an enthusiastic person). Precision-oriented NLP
systems must distinguish between the different levels of compositionality in or-
der to appropriately handle these different kinds of MWEs. The level of MWE
compositionality has been measured through a numerical representation in mul-
tiple datasets. However, the coverage of these datasets is limited by the availabil-
ity of human resources.

This chapter focuses on the task of compositionality prediction, which consists
in automatically identifying the level of compositionality of MWEs without the
input of human raters. The core of this thesis consists in the evaluation of a
compositionality prediction model under multiple DSMs and with a variety of pa-
rameters. Section 4.1 presents the related work on compositionality prediction.
Section 4.2 then presents the compositionality prediction model that was pro-
posed and implemented for this thesis. The remainder of this chapter describes
the organization of the experiments for the evaluation of this model: corpus pre-
processing (Section 4.3), DSMs (Section 4.4), parameters (Section 4.5), and the
evaluation setup (Section 4.6). The evaluation of compositionality prediction
models can be performed intrinsically or extrinsically:

• Intrinsic evaluation requires the existence of a dataset in which each MWE
is associated with a compositionality score (e.g. the datasets presented in
Section 2.5, as well as the resources developed in Section 3), serving as
a gold standard. The compositionality prediction model is used to predict
those scores, which are then directly compared to the gold standard using a
correlation measure (such as those described in Section 2.2.5). This is the
approach followed in Chapter 5, which analyses the results of composition-
ality prediction for nominal compounds under thousands of experimental
setups.

• In extrinsic evaluation, predicted compositionality scores can be used to de-
cide how an MWE should be treated in NLP systems. For example, in an
application such as machine translation, idiomatic MWEs should be iden-
tified and translated as an atomic unit. As a consequence, an evaluation
of machine translation quality focusing on MWEs would indirectly reflect
the ability of the system to predict compositionality (Cap, Nirmal, Weller,
et al. 2015; Stymne, Cancedda, and Ahrenberg 2013; Salehi, Mathur, Cook,
et al. 2015). A less application-focused alternative would be the evaluation
of the usefulness of predicted compositionality scores in a task of identify-
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ing idiomatic MWE occurrences in a corpus. The predicted compositionality
scores would then be used as a feature in the underlying MWE identification
system. The evaluation of this system would then compare the automati-
cally identified MWEs with a gold standard corpus, resulting in an indirect
evaluation of the compositionality prediction scores. This is the approach
followed in Chapter 6.

4.1. Related work
Compositionality prediction techniques usually involve measuring the extent to
which the meaning of an expression is constructed from a combination of the
meaning of its parts. One of the most common setups requires three ingredients:
(1) vector representations of single word meanings, such as those built using
DSMs; (2) a mathematical model of how the compositional meaning of a phrase
should be calculated, as a combination of the single-word meaning of its parts;
and (3) a measure of similarity, used to compare the compositionally-constructed
meaning of a phrase and its own meaning derived from corpora.1 Figure 4.1
presents this compositionality prediction architecture, along with the three main
ingredients. For each MWE (e.g. flea market), the DSM vectors of its elements are

9 0 1 1 3

flea_market

1 7 3 5 2

flea

0 7 9 0 3

market
combine

(2) 

compare
(3)

compositionality
score

(1) vector representations

+

~

Figure 4.1.: Common compositionality prediction architecture

combined into a single vector, which is then compared against the vector for the
MWE built from its occurrences in the corpus. For each of the three ingredients,
there are a number of different alternatives that can be seen employed in the

1 These setups often assume that each word corresponds to a single meaning (i.e. no ambiguity
is taken into account).
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literature. Throughout this thesis, we will refer to a specific choice of the three
ingredients as a compositionality prediction model.

The 1st ingredient applies to any kind of numerical representation of word
semantics. All of the representations discussed in Section 2.4.2 can be equiva-
lently used in this architecture, and different works in the literature will focus
on different representations (e.g. Reddy, McCarthy, and Manandhar (2011) use
a co-occurrence matrix with a limited vocabulary V comprising |V | = 10 000
words, while Yazdani, Farahmand, and Henderson (2015) use word embeddings
with a reduced number of dimensions). In most works, only a single DSM system
is evaluated, under a limited set of parameters. This thesis will consider multiple
DSMs under a variety of corpus and DSM parameters.

The 2nd ingredient concerns the mathematical model of meaning combination.
One of the most natural choices is the additive model, in which the compositional
meaning of an MWE w1w2 . . . wN is predicted as a linear combination of the word
vectors of its components:

∑
i βiv(wi), where the β coefficients assign different

weights for the representation of each word, and v(wi) is a D-dimensional word
vector for word wi, with D ≤ |V | (Reddy, McCarthy, and Manandhar 2011;
Schulte im Walde, Müller, and Roller 2013; Salehi, Cook, and Baldwin 2015).
These different weights can capture asymmetric contributions by each of the
components (Bannard, Baldwin, and Lascarides 2003; Reddy, McCarthy, and
Manandhar 2011). For example, in the expression couch potato (which refers
to a stereotypical person who spends a lot of time sitting down and watching
television), it is the first word that has a clear contribution to the word meaning,
and the highest weight should be in β1. In the MWE flea market; it is the second
word that contributes the most, and the highest weight should thus be in β2.

The additive model of composition can be generalized so as to use a matrix
of multiplicative coefficients, which can be estimated through linear regression
(Guevara 2011). This model can be further modified so as to learn polyno-
mial projections of higher degree, with quadratic projections yielding partic-
ularly promising results (Yazdani, Farahmand, and Henderson 2015). These
models come with the caveat of being supervised approaches, thus requiring
some amount of pre-annotated data in the target language. Due to these require-
ments, most works focus on unsupervised compositionality prediction methods
only, based exclusively on large monolingual unannotated corpora. The latter is
also the approach adopted in this thesis.

Alternatives to the linear models include the multiplicative model and its vari-
ants (Mitchell and Lapata 2008). However, results suggest that this representa-
tion yields inferior results when compared to the predictions obtained through
the additive model (Reddy, McCarthy, and Manandhar 2011; Salehi, Cook, and
Baldwin 2015). Recent work on predicting intra-MWE semantics also supports
the hypothesis that additive models tend to yield better results (Hartung, Kaup-
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mann, Jebbara, et al. 2017). This thesis evaluates different variants of composi-
tionality prediction models (see the prediction strategies in Section 4.2).

The 3rd ingredient is a measure of similarity, used to compare the MWE with
the sum of its parts. Most works in the literature rely on cosine similarity (Schone
and Jurafsky 2001; Mitchell and Lapata 2008; Farahmand, Smith, and Nivre
2015) but it also can be calculated in terms of the overlap between the profiles
of word distribution (McCarthy, Keller, and Carroll 2003), assuming that com-
positional expressions are more similar or share more semantic neighbors with
their components than idiomatic ones. In this thesis, the cosine similarity will be
used for all evaluations.

Compositionality prediction can also be achieved through an estimation of the
likelihood of an MWE (e.g. red-blood cell) being replaced by single-word terms
in a corpus (e.g. erythrocyte). MWEs that can be replaced by many single-word
terms are then deemed idiomatic (Riedl and Biemann 2015). An alternative
method would be to compare an MWE and its constituents across multiple trans-
lations of a text. If the MWE is translated literally, it is predicted as composi-
tional, while non-literal translations are interpreted as an indication of idiomatic-
ity (Salehi, Cook, and Baldwin 2014). The number of possible translations has
also been used as an indicator of idiomaticity (Cap 2017).

The level of compositionality of MWEs may also be predicted in the context
of MWE-annotated sentences. This is particularly beneficial in the presence of
ambiguous MWEs, whose degree of compositionality depends on the context
(Sporleder and Li 2009). One such type of ambiguity arises from the possi-
bility of literal and non-literal interpretations for the same lexical unit (e.g. in
the expression spill the beans). For instance, Köper and Walde (2016) evalu-
ate the impact of different features on the prediction of the literality of German
verb-particle constructions. Their features range from the use of a bag-of-words
model to distributional statistical scores. The experiments in this thesis focus
on non-ambiguous MWEs, so we do not present results for context-dependent
compositionality prediction.

4.2. Proposed model
The compositionality principle assumes that the meaning of phrases and sen-
tences can be derived from a combination of the meaning of their components.
While this may hold for compositional MWEs, for idiomatic cases we expect the
opposite to be true: by combining the semantic representations of the parts of an
MWE, we should obtain a representation that is different from the representation
of the MWE derived directly from corpora. This behavior can be exploited in the
construction of the compositionality prediction model that was implemented for
this thesis and which we evaluate in Chapters 5 and 6.
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For each MWE (e.g. flea market), let the unitized representation vu be the
vector representation built for the MWE as a whole, as seen in the corpus2:

vu(wiw2 . . . wN) = v(wi w2 . . . wN).

Define the combined vector vβ as a function of the individual meaning of the
MWE elements (e.g. flea and market). This vector is calculated through an addi-
tive operation of vector composition3:

vβ(w1w2 . . . wN) = β1
v(w1)
||v(w1)|| + β2

v(w2)
||v(w2)|| + · · ·+ βN

v(wN)
||v(wN)|| .

where βi ∈ [0, 1] is a parameter that controls the relative importance of each
word for the combined representation, with

∑N
i=1 βi = 1. The compositionality

prediction model may then calculate the compositionality score CS as the cosine
similarity between the unitized representation vu and the combined representa-
tion vβ:

CSβ(w1w2 . . . wN) = cos(vu(w1w2 . . . wN), vβ(w1w2 . . . wN)).

The above definition of the compositionality score leaves the precise values of
β unspecified. In this thesis, we will consider the following composition strate-
gies:

• Uniform, which defines βi = 1
N

(e.g. β1 = β2 = 0.5 for a 2-word MWE).
Equal weights are assigned to every word in the MWE, assuming that they
all contribute equally to the meaning of the MWE (as in the MWE access
road). This is the most commonly used prediction strategy in the literature
(Mitchell and Lapata 2010), and most of the results in this thesis will focus
on the scores obtained through this weighting strategy.

• Head, for 2-word MWEs, which defines βhead = 1 and βmod = 0, i.e. the mod-
ifier is considered to make no contribution to the semantics of the MWE,
and the meaning comes from the head alone (as in crocodile tears).

• Mod, for 2-word MWEs, which defines βhead = 0 and βmod = 1, i.e. the
meaning of the MWE is assumed to come from the modifier, while the head
is assumed to make no contribution towards the meaning of the whole (as
in the expression night owl).

2 In the corpus preprocessing stage, the components of the target MWEs are linked by “ ” to be
treated as a single token; e.g. w1 w2 = flea market (see Section 4.3).

3 DSM vector length is usually not considered meaningful, and is implicitly normalized during
the calculation of the cosine. We do explicitly normalize vector length for the computation of
vβ to properly apply the β weights.
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• Maxsim, where the set of weights βi in the construction of vβ is defined so
as to maximize the value of CS, i.e.:

β = argmax
X

CSβ=X(w1w2 . . . wN).

As a consequence, maxsim is capable of expressing the 3 previous predic-
tion strategies as a combination of weights. This model has been developed
for the purpose of this thesis. The underlying hypothesis (hstrat.maxsim) is that
this model is a better predictor of compositionality scores for compositional
MWEs, as it constructs a vector with weights that are optimal for a compo-
sitional reading.

Note that, in the case of N = 2, a closed formula can be derived for the
calculation of β values, which avoids an exhaustive search of the parameter
space (and is what we used for the experiments in Chapter 5). Let β2 =
1− β1. We want to perform the following maximization:

β1 = argmax
y

cos
(

vu(w1w2), y
v(w1)
||v(w1)|| + (1− y) v(w2)

||v(w2)||

)
.

This can be achieved by differentiating the right side of the equation:

d
dβ1

cos
(

vu(w1w2), β1
v(w1)
||v(w1)|| + (1− β1) v(w2)

||v(w2)||

)
= 0.

Replacing the cosine by the definition based on the dot product (see page 45)
and solving for β1, we obtain the closed-form solution:

β1 = cos(v(w1),vu(w1w2)) − cos(v(w1),v(w2)) · cos(v(w2),vu(w1w2))(
1− cos(v(w1),v(w2))

)
·
(

cos(v(w1),vu(w1w2)) + cos(v(w2),vu(w1w2))
) .

We additionally consider two variations on the compositionality score that do
not rely on the construction of a combined representation vβ. They compare vu
directly to the individual word vectors instead. The two relevant composition
strategies are:

• Arith, which calculates the cosine between the MWE and each component
individually, and yields the arithmetic mean of the cosines as the composi-
tionality score; i.e.:

CSA(w1w2 . . . wN) = 1
N

( N∑
i=1

cos
(
vu(w1w2 . . . wN), v(wi)

))
.

While some works in the literature seem to favor the uniform model, some
results have been published for arith (Reddy, McCarthy, and Manandhar
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2011; Schulte im Walde, Müller, and Roller 2013; Salehi, Cook, and Bald-
win 2015). To date, no work has compared the behavior of these two
models. Given that both strategies represent an additive interpretation of
the vectors, our hypothesis (hstrat.arith ≈ strat.uniform) is that the highest-ranking
configurations of both models should obtain similar scores.

• Geom, which calculates the cosine between the MWE and each component
individually, and yields the geometric mean of the cosines as the composi-
tionality score; i.e.:

CSG(w1w2 . . . wN) =
( N∏
i=1

cos
(
vu(w1w2 . . . wN), v(wi)

)) 1
N

.

This model is inspired by results found in Section 3.2, which suggest that
humans interpret whole-MWE composition as the geometric mean of the
composition of its parts. While maxsim optimizes for higher scores of com-
positionality, and should thus yield better results for compositional MWEs,
we hypothesize (hstrat.geom) that geom should obtain higher scores for id-
iomatic MWEs, due to its tendency to predict lower scores if either of the
components is judged as non-compositional regarding the whole.

Other optimized functions such as the ones proposed by Yazdani, Farahmand,
and Henderson (2015) could also be verified, but are out of the scope of this the-
sis, as they are based on supervised learning. A multiplicative version of uniform
has also been considered in early experiments, but it did not present promising
results, in particular in the case of sparse representations such as PPMI–thresh,
in which the product of any two vectors tends to have an impractical number of
non-zero dimensions.

The compositionality prediction model proposed in this thesis was implemented
as part of the mwetoolkit4. The code is publicly available, and contains an in-
ternal module for the interpretation of multiple DSM formats, including sparse-
context representations (such as the output of minimantics5) and dense repre-
sentations (such as the output of word2vec6). Internally, the set of word vectors
is represented as a sparse mapping from (target, context) word-form pairs to a
real number; i.e. (V, V ) → R. In the case of dense (fixed-length) input vectors,
where there is no clear semantics attached to each dimension, we generate arti-
ficial identifiers for the context (c0, c1, c2 . . . cD−1). This allows a unified view of
all types of vector representations.

In the implementation of the model, the sparse mapping from target–context
pairs to a numerical representation is instantiated as a hash-table. Only non-
zero mappings are explicitly represented, and thus all missing (target, context)
4 http://mwetoolkit.sf.net
5 https://github.com/ceramisch/minimantics
6 https://code.google.com/archive/p/word2vec
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pairs are assumed to map to 0. When launching the module, a parameter can be
specified to chose from among the aforementioned composition strategies. The
compositionality scores are then predicted according to the model. Several types
of output format can be specified, including a comprehensive XML format and
a more lightweight CSV output. A full description of the compositionality pre-
diction model and the associated tool has been published as Cordeiro, Ramisch,
and Villavicencio (2016b).

4.3. Corpus preprocessing
Experiments in this thesis are based on distributional models built for English,
French and Portuguese. The construction of these models uses the lemmatized
and POS-tagged versions of the following corpora:

• For English, the ukWaC (Baroni, Bernardini, Ferraresi, et al. 2009), with
2.25 billion tokens, parsed with MaltParser (Nivre, Hall, and Nilsson 2006).

• For French, the frWaC, with 1.61 billion tokens preprocessed with TreeTag-
ger (Schmid 1995).

• For Portuguese, a combination of brWaC (Boos, Prestes, and Villavicencio
2014), Corpus Brasileiro7 and all Wikipedia articles8, with a total of 1.91
billion tokens. This corpus was obtained in raw form, and parsed with
PALAVRAS (Bick 2000) for the specific purpose of this thesis.

Target MWEs in these corpora are re-tokenized so as to be represented by
a single token, with its components joined by an underscore character (e.g.
the surface form EN monkey business → monkey business and FR belle-mère →
belle mère).

During initial experiments, we noticed an inconsistency in the POS tags of
MWE occurrences (e.g. the joined token sitting_duck had most of its occurrences
tagged as VERB_NOUN instead of ADJ_NOUN). To handle such errors, we also re-tag
every annotated occurrence of an MWE with a global manually selected POS
tag.9

All forms are then lowercased (surface forms, lemmas and POS tags); and
noisy tokens, with special characters, numbers or punctuation, are removed. Ad-
ditionally, ligatures are normalized for French (e.g. œ→ oe) and a spellchecker10

is applied to normalize words across English spelling variants (e.g. color →
7 http://corpusbrasileiro.pucsp.br/cb/Inicial.html
8 Wikipedia articles downloaded on June 2016.
9 For simplicity, our work assumes that every annotated occurrence is an instance of an MWE.

We do not account for literal readings, such as cases of sitting duck that refer to an actual duck
that is sitting.

10 https://hunspell.github.io
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colour). Additionally, proper nouns are replaced by a placeholder to reduce data
sparsity.

To evaluate the influence of preprocessing in model accuracy (see Section 5.3.1),
we generated four versions of each corpus, with decreasing levels of specificity
in the informational content of each token:

1. surface+: the surface-level forms of every word in the original corpus, with
only the preprocessing described above. Example:

she is not interested in your fake crocodile_tears !

2. surface: stopword removal11; generating a corpus of surface forms for con-
tent words only (i.e. nouns, adjectives, adverbs and verbs). Example:

is not interested fake crocodile_tears

3. lemmaPoS: stopword removal, lemmatization12 and POS tagging; generat-
ing a corpus of content words distinguished by POS tags, encoded in the
format lemma/tag. This conflates the multiple inflectional forms of a word
while maintaining the information of its grammatical category. Example:

be/VERB not/ADV interested/ADJ fake/ADJ crocodile_tear/N_N

4. lemma: stopword removal and lemmatization without POS tagging; gen-
erating a corpus containing only lemmas of content words. This conflates
identically-spelled words of different grammatical categories. Example:

be not interested fake crocodile_tear

4.4. DSMs
One of the goals of this thesis is to evaluate the proposed model of composition-
ality prediction under a variety of distributional settings. In particular, we verify
the impact of different types of DSMs (previously described in Section 2.4) in
the predictive abilities of the model. For reproducibility, we present below the
fixed parameters that were used in the DSM instantiations:13

PPMI We consider three DSMs based on positive pointwise mutual information
(PPMI). In all cases, the representation of a target word is a vector containing
the PPMI association scores between the target and its contexts. The contexts
are nouns and verbs, selected in a symmetric sliding window of w words to the

11 Stopword removal reduces the size of the corpus. Given that only nouns and verbs are used as
contexts, the resulting co-occurrence matrices for surface will be less sparse than the matrices
for surface+, for a given window size.

12 In the lemmatized corpora, the lemmas of proper names are replaced by placeholders.
13 These parameters were selected with the goal of homogenizing the configurations across DSMs,

and to follow the original paper’s recommendations in the cases where the default differs.
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left/right and weighted linearly according to their distance d to the target (Levy,
Goldberg, and Dagan 2015). We consider three models that differ in how the
contexts are selected:

• PPMI–thresh, where the vectors are |V |-dimensional but only the top δ lo-
cal contexts with highest PPMI for each target word have non-zero values
(Padró, Idiart, Villavicencio, et al. 2014).

• PPMI–TopK, where the vectors are k-dimensional, with a fixed global list
of k words to be considered as context. We have defined k as the 1000
most frequent words in the corpus after removing the top 50 most frequent
words, replicating the setup from Salehi, Cook, and Baldwin (2015).

• PPMI–SVD, where SVD is used to factorize the PPMI matrix and reduce its
dimensionality from |V | to D.14 We use a Context Distribution Smoothing
of 0.75 and negative sampling of 5 for the SVD (Levy, Goldberg, and Dagan
2015).

w2v We perform experiments on both variants of word2vec (Mikolov, Sutskever,
Chen, et al. 2013): continuous bag-of-words (w2v–cbow) and skip-gram (w2v–
sg). The models are built with default configurations, except for the following:
no hierarchical softmax; negative sampling of 25; frequent-word downsampling
weight of 10−6; execution of 15 training iterations. We use the default minimum
word count threshold of 5.

glove GloVe implements a factorization of the co-occurrence count matrix (Pen-
nington, Socher, and Manning 2014). We use its default configurations, except
for the following: internal cutoff parameter xmax = 75; co-occurrence matrix is
built in 15 iterations. For lemma-based models, we use the minimum word count
threshold of 5. Due to the large vocabulary size, we use a threshold15 of 15 for
surface and 20 for surface+.

lexvec The lexvec model (Salle, Villavicencio, and Idiart 2016) factorizes the
PPMI matrices, strongly penalizing prediction errors on frequent words. We use
default configurations, except for the following: negative sampling of 25; sub-
sampling threshold of 10−6; processes the corpus for 15 iterations. Due to the
large vocabulary size, we use a minimum word count threshold of 10 for lemma-
based models and 100 for surface and surface+.16

14 We use the hyperwords toolkit: https://bitbucket.org/omerlevy/hyperwords
15 Thresholds were selected so as to not use more than 128 GB of RAM during the construction

of a DSM instance.
16 This is in line with the authors’ threshold suggestion in their paper.

73

https://bitbucket.org/omerlevy/hyperwords


4.5. Parameters
For every DSM, we construct multiple distributional models under different sets
of configurations. In particular, we exhaustively evaluate the influence of the
following variables:

• WORDFORM: One of the four word-form and stopword removal variants
when representing a corpus: surface+, surface, lemma, and lemmaPoS (see
Section 4.3). These variants were selected so as to represent different levels
of specificity in the informational content of the tokens.

• WINDOWSIZE: Indicates the number of context words that will be consid-
ered to the left/right of the target word when searching for target-context
co-occurrence pairs. We evaluate the behavior of compositionality predic-
tion when the underlying DSM model is built with context window sizes of
1+1, 4+4, and 8+8.17

• DIMENSION: We generate models with 250, 500 and 750 dimensions. The
underlying hypothesis is that, the higher the number of dimensions, the
more accurate the representation of the context is going to be.

Table 4.1 presents the set of all possible parameter configurations. These com-
binations produce a total of 228 models per language (12 models for PPMI–TopK,
36 models for each of the other 6 DSMs). Throughout the thesis, when referring
to a particular model configuration, an abbreviated notation will be used. For
example, WORDFORM=lemma, with WINDOWSIZE=4+4 and DIMENSION=250
will be represented as lemma.w4.d250.

DSM Dimension WordForm WindowSize
PPMI–TopK D = 1000

surface+,
surface,
lemma,

lemmaPoS

1+1,
4+4,
8+8

PPMI–thresh D = |V |, δ ∈ {250, 500, 750}
PPMI–SVD

D ∈ {250, 500, 750}
w2v–cbow
w2v–sg
glove
lexvec

Table 4.1.: 228 parameter combinations across all DSMs.

17 Most works in the literature choose a window of size between the extremes 1+1 and 10+10,
with a few works considering higher window sizes such as 16+16 or 20+20 (Kiela and Clark
2014; Lapesa and Evert 2014).
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4.6. Evaluation setup
For the intrinsic evaluation of the compositionality prediction model in Chapter 5,
we calculate the compositionality scores for every MWE in a dataset and compare
them to the human-rated scores. The following datasets are evaluated:

• For English: Reddy, Reddy++, EN-comp90 and Farahmand;

• For French: FR-comp;

• For Portuguese: PT-comp.

The datasets Reddy and Farahmand were described in Section 2.5.3. The other
datasets were constructed as part of this thesis, and were described in Chapter 3.

For most datasets, we report Spearman’s ρ correlation between the ranking
provided by humans and those calculated from the models (as explained in Sec-
tion 2.2.5). Exceptionally for the Farahmand dataset, due to the binary nature
of its compositionality scores, we follow Yazdani, Farahmand, and Henderson
(2015) and report the best F1 score (BF1), obtained by calculating the F1 score
for the top k MWEs classified as positive (non-compositional), for all possible
values of k (described in Section 2.2.6).

Evaluation metrics were calculated for a total of more than 8 thousand models
(see Figure 4.2). Given the high number of experiments performed, we report
the best performance of each model parameter. For instance, the performances
reported for w2v–cbow using different values of WINDOWSIZE are the best con-
figurations across all possible values of other parameters (i.e. DIMENSION and
WORDFORM). This avoids reporting local maxima that can arise if one fixes all
other parameters when evaluating a given one (Lapesa and Evert 2014).

6 datasets
total 228 DSM instances

per dataset
6 composition strategies

per DSM instance

. . .

Reddy

Reddy++

EN-comp90

FR-comp

PT-comp

Farahmand

Uniform

Head

Modifier

Maxsim

Arith

Geom

glove / lemma.w4 .d250

Figure 4.2.: Number of compositionality prediction models evaluated: 6×228×6 =
8 208.
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For English datasets, we distinguish between strict and fallback evaluation.
Strict evaluation corresponds to the performance of the model only on those
MWEs that have a vector representation in all underlying DSMs: 89 (out of 90)
for Reddy, 86 (out of 90) for EN-comp90, 175 (out of 180) for Reddy++, and
913 (out of 1042) for Farahmand. Fallback evaluation considers the full dataset,
using a fallback strategy for the imputation of missing values, assigning the aver-
age of other compositionality scores to MWEs in which one of the vectors v(w1),
v(w1) or vu has not been built due to a lack of occurrences in the corpus (Salehi,
Cook, and Baldwin 2015). This distinction is particularly important in the case
of Farahmand, which contains more rare MWEs18 such as universe human and
mankind instruction, so that 129 MWEs do not occur often enough in the English
corpus. Strict evaluation allows us to properly evaluate the quality of the predic-
tive method itself, while fallback evaluation allows us to evaluate the quality of
corpus + method, and is the better alternative when comparing to state-of-the-
art results (as it considers the whole dataset). Only strict evaluation is reported
for FR-comp and PT-comp, as all MWEs are frequent enough in their respective
corpora.

To determine whether the results for different DSM configurations are statisti-
cally different from each other, we present results from Wilcoxon’s sign-rank test
(Rey and Neuhäuser 2011).

18 Partly due to Wikipedia tokenization errors.

76



5. Intrinsic evaluation of
compositionality prediction

This chapter presents an extensive intrinsic evaluation of the compositionality
prediction framework presented in Chapter 4, using the three datasets whose
construction was presented in Chapter 3. We construct DSM instances under mul-
tiple configurations for the three target languages. For each configuration, we
generate compositionality predictions for all nominal compounds (NCs), which
we then compare with the compositionality scores provided by humans.

This chapter is organized as follows: Section 5.1 presents our findings on the
accuracy of compositionality prediction models using state-of-the-art DSMs for
the representation of word semantics. Section 5.2 investigates the impact of
DSM-specific parameters related to the size of the context window and the num-
ber of dimensions used to represent context. Section 5.3 examines the impact of
corpus parameters related to corpus size and to the degree of corpus preprocess-
ing adopted. Section 5.4 extends the evaluations performed on uniform predic-
tion so as to encompass five other prediction strategies. Section 5.5 performs a
variety of sanity checks involving other model-specific parameters. Section 5.6
presents an error analysis comparing predicted compositionality and different
variables associated with the compounds. Finally, Section 5.7 summarizes the
results from this chapter.

5.1. Overall highest results per DSM
This first evaluation aims at verifying whether some DSMs, independently of
their specific parameters, are more suitable for a given dataset/language than
others. We perform a language-based analysis, evaluating the highest-scoring
parameter combination of each DSM. All evaluations reported here use the uni-
form composition strategy (described in Section 4.2).

5.1.1. English
Figure 5.1 presents the best scores achieved under each DSM for the English
datasets. The predictions for the Reddy++ dataset were evaluated through Spear-
man ρ, while Farahmand predictions were evaluated with BF1 (both described
in Section 2.2). Each of the wide bars in these graphs represents the highest
score obtained from the set of 36 different configurations1, using different com-
binations of WORDFORM, WINDOWSIZE, and DIMENSION. Similarly, each of the

1 Only 12 configurations for PPMI–TopK , as the number of dimensions is fixed at 1000.
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narrow inner bar represents the highest score among 36 configurations using fall-
back evaluation. While the fallback evaluation is responsible for slightly higher
results in Reddy++, its pessimistic approach is detrimental when evaluating the
predictive model on the Farahmand dataset, which contains a considerable num-
ber of NCs that do not appear in the corpus. In both cases, these two types
of evaluation produce similar rankings among the different DSMs, and we will
henceforth focus on the highest results of strict evaluation (outer bars).
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Figure 5.1.: Overall highest results per DSM on English datasets.

For the Reddy++ dataset, the highest results are found for the word-embedding
models of w2v: the highest-Spearman w2v–sg model has a ρ = .741, while the
best w2v–cbow has a ρ = .730. These results are followed by PPMI–thresh, with
ρ = .704. Other models offer progressively inferior results: PPMI–SVD (ρ = .666),
lexvec (ρ = .658), glove (ρ = .651) and PPMI–TopK (ρ = .632). We performed
Wilcoxon’s sign-rank test between all possible pairs of highest-Spearman configu-
rations. The distributions of w2v–cbow, w2v–sg and glove were not deemed to be
different from one another pairwise. Moreover, glove was not deemed different
from lexvec or from PPMI–SVD. This is somewhat surprising, given the difference
in scores between glove and the other DSMs (especially w2v). All other model
pairs were deemed statistically different from each other (p < 0.05).

The Reddy++ dataset combines all NCs from Reddy and EN-comp90. If the Reddy
dataset is considered by itself, we see the same trends as in Reddy++. The overall
best performance is found for w2v–sg (ρ = .812). The performance of the models
PPMI–thresh (ρ = .803) and w2v–cbow (ρ = .796) closely follow the first place.
If we isolate the EN-comp90 NCs, a similar pattern emerges: the highest perfor-
mance is achieved by w2v–sg (ρ = .669) and w2v–cbow (ρ = .665). Note that the
highest results for EN-comp90 are inferior to the ones obtained for Reddy. As we
will see later, the best results for the French and Portuguese datasets are also in
the same range as EN-comp90. This difference in performance might be caused by
the fact that these 3 datasets contain a higher amount of adjective+noun pairs
than Reddy. As suggested in Section 3.2.2, humans had more difficultly judging
the compositionality of adjectives than judging the compositionality of nouns.
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This could imply that noun+adjective scores are less reliable than noun+noun
scores, and thus automatic methods should also obtain lower scores when pre-
dicting the compositionality of adjectives.

Similarly to the Reddy++ dataset, evaluation on Farahmand yields the best
results for the models w2v–sg (strict BF1 = .498, fallback BF1 = .455) and
w2v–cbow (strict BF1 = .501, fallback BF1 = .471). The highest results are
comparable to the BF1 = .487 reported by Yazdani, Farahmand, and Henderson
(2015), while avoiding their use of functions whose parameters must be tuned
through supervised learning for the prediction of compositionality.

5.1.2. French
As shown in Figure 5.2(a), overall FR-comp results in terms of Spearman corre-
lation are reasonably different from Reddy++ results. One of the most striking
differences is the fact that the w2v models have lower quality. They are notably
surpassed by PPMI–thresh, which rises to the first place with ρ = .702. This
result is followed by word-embedding models: glove has ρ = .680 and lexvec
has ρ = .677. Only then do we see the neural-network w2v models: w2v–sg
(ρ = .653) and w2v–cbow (ρ = .652). Other PPMI-based models have a lower
quality, dropping to the lowest ρ = .550 for PPMI–TopK.

As in the case of Reddy++, we performed Wilcoxon’s sign-rank test between
all model pairs (p < 0.05), and both w2v models were deemed equivalent (i.e.
we could not reject the hypothesis that they followed the same distribution).
The glove model, however, was deemed different from both w2v configurations.
The PPMI–SVD model was deemed equivalent to all other models except for
lexvec. All other model pairs were deemed different from each other. Particularly
in the case of the highest-Spearman DSM, PPMI–thresh, these results confirm
that its best configuration is responsible for compositionality predictions that are
statistically different form the predictions of other models.
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Figure 5.2.: Overall highest results per DSM on French and Portuguese datasets.
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5.1.3. Portuguese
Figure 5.2(b) presents the overall highest Spearman correlations for the PT-comp
dataset. As in the case of FR-comp, the PPMI–thresh model leads with the highest
score (ρ = .602). This result is followed closely by word-embedding models:
w2v–cbow has ρ = .588 and w2v–sg has ρ = .586. They are followed by lexvec
with ρ = .570 and glove with ρ = .555. As with the French dataset, the other
PPMI methods had the lowest scores: PPMI–SVD has ρ = .530 and PPMI–TopK
has ρ = .519.

We performed Wilcoxon’s sign-rank test between all model pairs (p < 0.05).
Just like for Reddy++, the distributions of w2v–cbow, w2v–sg and glove were
deemed equivalent to each other pairwise. The PPMI–SVD and glove models
were also deemed equivalent. Moreover, PPMI–TopK was deemed equivalent to
all other models except glove and PPMI–SVD. Other model pairs were deemed dif-
ferent from each other (p < 0.05). As in the case of French results, PPMI–thresh
had the highest scores, and Wilcoxon’s test has confirmed that its predictions are
statistically different form the predictions of other models.

5.1.4. Cross-language analysis
Table 5.1 presents, for each dataset, the Spearman correlation score of the highest-
Spearman configuration for every DSM (in strict/fallback format for English
datasets), with the top strict score highlighted in bold. In most of the cases,
the best score obtained under fallback evaluation is comparable to the best strict
score. Fallback results are considerably lower in the case of Farahmand. This re-
flects the fact that this dataset is not balanced with regards to compositionality:
most of its NCs are compositional, leading to a higher average compositionality
score that may not be suitable for the missing NCs, as these tend to be idiomatic.

Dataset PPMI–SVD PPMI–TopK PPMI–thresh glove lexvec w2v–cbow w2v–sg
FR-comp .58 .55 .70 .68 .68 .65 .65
PT-comp .53 .52 .60 .55 .57 .59 .59
EN-comp90 .59/.60 .56/.56 .59/.60 .52/.54 .55/.57 .65/.67 .65/.67
Reddy++ .66/.67 .62/.63 .69/.70 .64/.65 .65/.66 .72/.73 .73/.74
Reddy .74/.74 .71/.72 .79/.80 .75/.76 .77/.77 .80/.80 .81/.81
Farahmand .49/.42 .43/.38 .47/.40 .40/.36 .45/.43 .51/.47 .51/.47

Table 5.1.: Highest Spearman ρ for all datasets (strict/fallback format for English
datasets). The Farahmand dataset uses the highest BF1 instead.

Focusing on strict evaluation results, some interesting patterns can be observed
in a comparison of the three languages. In all of the collected datasets, the predic-
tions from w2v–cbow and w2v–sg follow the same distribution (as per a Wilcoxon
sign-rank test), which is reflected in the fact that their scores are almost identical.
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Concerning the highest Spearman score out of all DSMs, the w2v models yield
the best results for the two English datasets, while the highest scores for the two
Romance languages were attained instead by PPMI–thresh. On the other side of
this scale, the PPMI–TopK model is consistently ranked among the worst results.
The best PPMI–SVD configuration presents a similar behavior, with consistently
low results for all datasets but Farahmand.

5.2. DSM parameters
In this section, we investigate the hypothesis haccur← DSM, which affirms that the
accuracy of the model depends on DSM-specific parameters. We consider two
parameters that can be independently tuned in every DSM: context-window size
and number of dimensions in the output vectors.

5.2.1. Context-window size
DSMs build the representation of every word based on the frequency of other
words that appear in its context. A very simple way of defining such a context is
through a window, whereby the context of a word with e.g. WINDOWSIZE=4+4
would consist in the previous four words and the following four words in the
text. Most works in the literature construct DSMs with window sizes between
the extremes 1+1 and 10+10, with a few works considering larger window sizes
such as 16+16 or 20+20 (Kiela and Clark 2014; Lapesa and Evert 2014). We
evaluate the behavior of compositionality prediction when the underlying DSM
model is built with the commonly-used context-window sizes of 1+1, 4+4, and
8+8.2 Our hypothesis (haccur← DSM.window) is that the highest scores should be
obtained by window sizes of 8+8, as the extra amount of data would lead to a
better representation of the word-level semantics.

As can be seen in Figure 5.3, the performance with different context-window
sizes is mostly DSM-dependent. In the case of PPMI–SVD, a window of size 1+1
yields better results for all datasets, with the exception of Farahmand evalua-
tions. The glove model exhibits the opposite behavior: windows of size 1+1 are
consistently worse than the windows of size 4+4 or 8+8. These results seem
to be related to the manner with which the weights decay for different models.
In the case of PPMI–SVD with WINDOWSIZE=8+8, a context word at distance d
from its target word is weighted as 8−d

8 . In the case of glove, the decay happens
much faster, with a weight of 8

d
, which allows the model to look farther away

without being affected by the extra noise associated with the more distant con-
texts. For the other DSMs, window size is not a visible predictor of performance.
In the exceptional case of PPMI–thresh, the results were language-dependent in-
stead: French and Portuguese data can be better approximated through smaller
2 Section 5.5.3 also performs some sanity checks for windows of size 2+2.
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Figure 5.3.: Best Spearman’s ρ per DSM and WindowSize.

windows, while English data (including Reddy and Reddy++) displays a weaker
preference for larger window sizes. The appropriate choice of window size has
been shown to be task-specific (Lapesa and Evert 2017), and the results above
suggest that, in the task of compositionality prediction, even the choice of DSM
may interact with this parameter.

5.2.2. Number of dimensions
When instantiating a DSM, there is a trade-off in the number of vector dimen-
sions. Models that have lower amount of dimensions will correspondingly have
a smaller memory footprint3, while models that have a larger number of di-
mensions eschew any memory concerns so as to be able to represent more
fine-grained patterns of co-occurrence. The question is whether these extra di-
mensions can be put to good use by state-of-the-art DSMs. Most works in the
literature build distributional models whose vectors contain between 200 and
900 dimensions (Baroni, Dinu, and Kruszewski 2014; Lapesa and Evert 2014).
We evaluate different DSMs by using DIMENSION=250, which approximates the
common value used in the literature. We additionally present results for two

3 Memory usage grows linearly with the number of dimensions.
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of its multiples: 500 and 750 dimensions. Our hypothesis (haccur← DSM.dims) is
that the highest scores should be obtained by DSMs where the vectors contain a
higher number of dimensions.

As Figure 5.4 shows, for most DSMs, an increase in the number of dimensions
causes a moderate increase in the quality of the predictive model, reflecting the
additional information that can be used to perform the compositionality predic-
tions. This is particularly true in the case of the DSMs that obtain the highest
Spearman scores. This behavior is however inverted for PPMI–SVD, in which the
highest results can be obtained by building lower-dimension models. Moreover,
two DSMs seem to be particularly unaffected by the number of dimensions: glove
and lexvec models seem to have around the same predictive power regardless of
the number of dimensions. Overall, these results suggest that, across all DSMs,
the best scores can be obtained by configurations involving a higher number of
dimensions, as hypothesized.
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Figure 5.4.: Best Spearman’s ρ per DSM and Dimension.

5.3. Corpus parameters
According to the hypothesis haccur← corpus, the accuracy of the semantic represen-
tation in a DSM is dependent on the quality of the input representation. In this
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section, we analyze the impact of different types of corpus preprocessing, corpus
size variation, as well as the use of parallel sub-corpora in the prediction of NC
compositionality.

5.3.1. Type of preprocessing
Most works in the literature on distributional models focus on the analysis and
tuning of different statistical parameters, reducing the preprocessing to tokeniza-
tion, along with simple procedures such as lower-casing and rare word removal
(Mikolov, Sutskever, Chen, et al. 2013; Pennington, Socher, and Manning 2014;
Levy, Goldberg, and Dagan 2015; Salle, Villavicencio, and Idiart 2016). Works
that rely on DSMs in semantic tasks tend to consider other preprocessing tech-
niques, such as lemmatization, stemming, POS tagging, and stopword removal (Bul-
linaria and Levy 2012; Kiela and Clark 2014). The goal of such procedures is
to increase the quality of the word representations, by conflating different uses
of the same word into a single canonical form, by allowing the disambiguation
of homonyms based on their syntactic function, and through the elimination of
random noise from the corpora.

As described in Section 4.3, we consider four different levels of corpus pre-
processing: WORDFORM=surface+, surface, lemmaPoS and lemma. Under each of
these configurations, there is a difference in how much information is condensed
into each token in the corpus, with surface+ being the most specific (every word
in the corpus is considered verbatim) and lemma being the most general (where
only the lemmas of content words are used in the representation of each to-
ken). Our hypothesis (haccur← corpus.wordform) is that the less specific configurations
present a less sparse view of the data, contributing to higher-quality DSM repre-
sentations and thus achieving higher scores.

Figure 5.5 presents the impact of different types of corpus preprocessing on
the quality of the compositionality prediction model. The results seem to be
language-dependent: The results for the English-language datasets are quite het-
erogeneous, while for the other two languages, the lemma-based word repre-
sentations consistently allow a better prediction of compositionality scores. This
phenomenon may be explained by the fact that French and Portuguese are mor-
phologically richer than English. For the former languages, lemma-based rep-
resentations reduce the sparsity in the data and allow more information to be
gathered from the same amount of data. In the case of English, lemmatization
has a reduced effect, and in particular for PPMI–SVD, it visibly reduces the qual-
ity of predictions.

The results for lemmaPoS represent the addition of POS tags to every word
in the corpus. This extra information does not show any improvement over
lemma. This suggests that words that share the same lemma are semantically
close enough that any gains from disambiguation are compensated by the spar-
sity of a higher vocabulary size.
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Figure 5.5.: Best Spearman’s ρ per DSM and WordForm

The results obtained with surface+ are surprisingly similar to surface, which
confirms previous suggestions that stopword removal does not significantly af-
fect the data (Bullinaria and Levy 2012). These results are achieved even though
surface+ contains stopwords, which one might expect would dilute the DSM rep-
resentation (due to their low level of association with most other words), which
might then reduce the accuracy of predictions. A possible explanation could be
that the stopwords in surface+ effectively contribute to a reduced window size of
content words4, which is shown in Section 5.2.1 to consistently yield better re-
sults. Indeed, when looking at the highest surface+ scores across all models and
datasets, the majority of the configurations involve WINDOWSIZE=1+1, further
highlighting the role of the context-window size in the best-performing models.

5.3.2. Corpus size
In this thesis, we have presented results for compositionality prediction based
on three similarly-sized corpora. The general intuition gathered from the litera-
ture is that predictions based on larger corpora should obtain higher scores, as

4 This could be investigated in future work with a WordForm that only uses the content words
inside a content+stopword window.
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rarer contexts would also be taken into account, thus improving the quality of
the vector representation of these words. We express this intuition through the
hypothesis haccur← corpus.size, which predicts higher scores for DSMs instantiated
for larger-sized corpora.

This section performs a quantitative analysis of the impact of different corpus
sizes on the quality of the predictions. For each of the Reddy, FR-comp and
PT-comp datasets, we consider the highest-Spearman PPMI–thresh and w2v–sg
configuration obtained thus far for the full-size corpus.5 We then build new
models under the same configuration, but using corpus fragments of size varying
from 1% to 100% of the whole corpus, increasing by steps of 1/100 at a time.

Figure 5.6(a) presents three graphs of the scores obtained by building models
for the best PPMI–thresh configuration of each dataset. The 100 positions in the
x-axis correspond to the corpus sizes (1% to 100%). Eight different samplings of
corpus fragments were performed (for a total of 800 models per language), with
each y-axis data point presenting the average of the 8 Spearman scores obtained
from those samplings. Each data point also presents the sample standard devia-
tion for those 8 executions. Points to the left of the vertical bar have at least one
sampling with missing compounds, while points to the right have 100% of the
compounds in all 8 samplings. The results suggest that, for the three languages,
a corpus size of around 800 million to 1 billion tokens (40% of the whole cor-
pus size) is large enough to obtain the best results, with further increases in the
amount of data available only contributing marginally to the overall quality of
the predictions.

Figure 5.6(b) presents three graphs with the scores obtained by the best w2v–
sg configuration for each dataset. Due to the fact that w2v–sg is much more
time-consuming than PPMI–thresh, a single sampling was used, and thus only
one execution was performed for each datapoint (for a total of 100 vector mod-
els per language). Similarly to PPMI–thresh, a corpus fragment of around 40%
size (800 million to 1 billion tokens) was already large enough for the results to
stabilize close to the score obtained by the fragment of size 100%. This suggests
that corpus size does strongly affect the quality of the underlying DSM represen-
tation, but that it reaches a plateau around a billion tokens. Even higher corpus
sizes would presumably only offer a minor improvement in DSM representation
quality. Future work should investigate whether a similar plateau can also be
observed for other methods of compositionality prediction.

5.3.3. Parallel predictions
One idea that has been employed in the literature is that of ensemble methods, in
which the predictions from multiple methods (e.g. multiple DSM instances built

5 Results for corpus size do not consider variations in the configurations, as the best configuration
for the full-size corpus is used for every corpus size.

86



10 20 30 40 50 60 70 80 90 100
Corpus size (out of 100 fragments)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
Sp

ea
rm

an
 ρ

 (±
σ
)

(a) Reddy dataset

10 20 30 40 50 60 70 80 90 100
Corpus size (out of 100 fragments)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 ρ

(b) Reddy dataset
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Figure 5.6.: Spearman’s ρ for different corpus sizes, running PPMI–thresh (left)
and w2v–sg (right).

from the same data) are combined into a single prediction that outperforms all
other methods (Zhou 2012). We leave ensemble experiments for future work,
but we focus on an approach that is inspired by its success: parallel predictions.

The results obtained for different corpus sizes above imply that a subset of the
corpus can lead to results that are equivalent to the ones obtained for the whole
corpus. In fact, even when a smaller fraction of the corpus is considered, such as
20% of the total corpus size, the resulting model can still yield reasonably good
predictions of compositionality. We hypothesize (haccur← corpus.parallel) that, just
as an ensemble of methods instantiated from a single corpus may complement
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each other and achieve higher scores, so can a single DSM method instantiated
multiple times in parallel from an ensemble of corpora be combined so as to
achieve accurate DSM representations.

We thus propose a technique in which the whole corpus is divided in M par-
allel fragments (c1, c2, . . . cM). We then instantiate the same DSM M times in
parallel, each one based on a different corpus fragment. These DSMs can then
be used to produce a set of M compositionality predictions per compound, using
the uniform strategy (CSβ(1), CSβ(2), . . . CSβ(M)). The M parallel predictions for
each compound are then combined through the arithmetic average into a sin-
gle compositionality score CSP. We can then evaluate the set of CSP for every
compound by comparing them with the reference dataset.

In order to verify the hypothesis that the parallel predictions can yield results
that are comparable to the ones obtained on the whole corpus, we ran an exper-
iment in which the whole corpus was divided in M = 5 fragments of equal size,
each corresponding to 20% of the whole corpus. Table 5.2 presents the Spearman
scores of whole-corpus (ρ100%) and parallel prediction (ρ5×20%) for two models:
PPMI–thresh and w2v–sg. For the latter, we have considered smaller subsam-
pling sizes rates of 10−3 and 10−4, to account for the smaller corpus sizes. The
results suggest that the parallel prediction on smaller corpus fragments can be
as effective as a single prediction generated from the whole corpus.

Model (Reddy++) ρ100% ρ5×20% Difference (%) Worst ρ20% Best ρ20%
PPMI–thresh .699 .680 (−1.9) .626 .678
w2v–sg (10−3) .731 .719 (−1.2) .668 .708
w2v–sg (10−4) .731 .717 (−1.4) .667 .707
Model (FR-comp) ρ100% ρ5×20% Difference (%) Worst ρ20% Best ρ20%
PPMI–thresh .702 .709 (+0.7) .686 .714
w2v–sg (10−3) .672 .685 (+1.3) .654 .688
w2v–sg (10−4) .672 .688 (+1.6) .671 .693
Model (PT-comp) ρ100% ρ5×20% Difference (%) Worst ρ20% Best ρ20%
PPMI–thresh .602 .572 (−3.1) .496 .549
w2v–sg (10−3) .586 .581 (−0.5) .528 .569
w2v–sg (10−4) .586 .581 (−0.6) .520 .566

Table 5.2.: Results for whole-corpus and parallel predictions.

Table 5.2 also indicates the Spearman scores obtained for the highest and
lowest-ranking corpus fragments (Worst ρ20% and Best ρ20%, each using only 20%
of the corpus). In the case of Reddy++ and PT-comp, in all configurations, we can
see that the average score obtained from the 5 fragments (ρ5×20%) is slightly
higher than the score obtained by the best fragment. This suggests that the
technique of parallel predictions is actually able to combine the results from the
different fragments, confirming the underlying hypothesis. We leave it for future
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work the investigation of different ways of combining the parallel predictions
into a single score.

One of the greatest advantages of parallel prediction is its potential for scala-
bility. While a standard DSM-based predictive model requires the whole corpus
to be processed at once, a parallel model allows the computation of such pre-
dictions in a distributed fashion. This reduces the total execution time, allows
the better utilization of distributed resources (such as computer clusters), and
bypasses memory limitations of a single machine.

5.4. Prediction strategy
Now that we have evaluated the impact of DSM and corpus parameters on the
predicted compositionality scores, we turn to the underlying prediction strategy
itself. As we have seen in Chapter 3, the elements of an MWE may vary in
terms of the semantic contribution of each element to the MWE as a whole, and
this may have an impact on the success of the composition model adopted for
deriving the vector space representation of the MWE (hypothesis hstrat). For
instance, adopting a uniform (50%:50%) composition for the elements of a
compound might not accurately capture a faithful representation of compounds
whose meaning is more semantically related to one of the components than to
the other (as in the case of the compound crocodile tears, regarding its head, and
night owl, regarding its modifier).

We compare below six different compositionality prediction strategies (all de-
scribed in Section 4.2). Some of these strategies consider different variations
of weights on the compound elements themselves: uniform uses a 50%:50%
scheme, while two other strategies (head and mod) use a 0%:100% scheme We
also evaluate a proposed new model of additive composition, maxsim, which
dynamically determines weights so as to assign an optimal proximity of the com-
pound to each of its single-word elements. Additionally, we consider the arith
and geom prediction strategies, in which the representation of the compound
is independently compared to the representation of each component, and with
the resulting score being the (arithmetic or geometric) mean of the comparison
scores.

Table 5.3 presents the scores obtained for all strategies on the configurations
in which uniform obtains its highest scores (i.e. using the best configuration for
each DSM as reported up to now). In most of the cases, the score obtained for the
uniform prediction is higher than both the head and mod scores when taken sepa-
rately, which is in line with the hypothesis hstrat.partial-info that these two strategies
are somewhat limited due to the fact that they only consider half of the available
distributional information.6 However, this difference is only moderate, with mod

6 Future work should investigate why the BF1 scores of Farahmand are higher for mod than for
all other strategies.
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predictions in particular attaining results that are quite close to uniform.
Results for other strategies are slightly worse than uniform, suggesting that

these approaches are either subpar, or that they improve in configurations that
differ from the best uniform configurations.

Dataset DSM configuration uniform maxsim geom arith head mod
Reddy w2v–sg surface.w1.d750 .812 .802 .756 .805 .635 .752
EN-comp90 w2v–cbow lemma.w4.d500 .653 .651 .600 .647 .463 .613
Reddy++ w2v–sg surface+.w1.d750 .726 .730 .657 .718 .524 .677
FR-comp PPMI–thresh lemmaPoS .w1.d750 .702 .688 .668 .698 .605 .603
PT-comp PPMI–thresh lemmaPoS .w1.d750 .602 .577 .524 .595 .524 .413
Farahmand w2v–cbow lemmaPoS .w8.d250 .501 .484 .523 .517 .402 .534

Table 5.3.: Spearman scores for best uniform model of each dataset, using different
prediction strategies. The Farahmand dataset uses BF1.

To verify whether the other prediction strategies improve models that differ
from the highest-Spearman uniform configurations, we have evaluated every
strategy on all DSM instances. Table 5.4 presents a summary of the highest
scores obtainable for each prediction strategy individually (i.e. each score repre-
sents the best configuration for a given strategy evaluated on a given dataset).
Every best score is statistically different from all other scores in its row (p < 0.05).
Similarly to the above results, the score obtained for the uniform prediction
is higher than the one obtained for both head and mod strategies (hypothesis
hstrat.partial-info), which further suggests that the quality of uniform predictions is
derived from the combination of the vector representation of the two words (in
particular from mod).

The arith strategy obtains performance results that are very similar to the ones
of uniform, reflecting the fact that both methods rely on an additive model of
composition. Indeed, if we consider the average (across the 7 DSMs) of the
Pearson correlation between the 180 predictions for the highest-Spearman con-
figuration of arith and uniform, we obtain r = .972 for Reddy++, .991 for FR-comp
and .969 for PT-comp, confirming that these models produce very similar predic-
tions. Moreover, these two strategies behave very similarly when we consider
the Spearman scores obtained for the 228 DSM instances in each language: if
we consider the Pearson correlation between the 228 pairs of Spearman scores
associated with both strategies, we obtain r = .981 for Reddy++, .985 for FR-comp
and .944 PT-comp.

When one considers the highest-Spearman configuration for each strategy, re-
sults for maxsim are competitive with the results for uniform. While maxsim fares
slightly better on English continuous-score datasets, uniform obtains slightly
higher scores on the other two languages. Implicit to the calculation of maxsim
is the assignment of weights for the components of every NC, and we have con-
sidered whether the assigned weights actually differ from the 50:50 assignment
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Dataset uniform maxsim geom arith head mod
Reddy .812 .814 .797 .805 .654 .776
EN-comp90 .653 .659 .600 .647 .483 .615
Reddy++ .726 .730 .677 .718 .555 .677
FR-comp .702 .693 .699 .703 .617 .645
PT-comp .602 .590 .580 .598 .558 .486
Farahmand .501 .487 .529 .518 .422 .528

Table 5.4.: Highest Spearman score for each prediction strategy individually. Farah-
mand uses BF1.

of uniform. This does seem to be the case, as some NCs have a weight predic-
tion that is much closer to human head-only and modifier-only scores than a
50:50 prediction. For example, in the w2v–sg prediction for Reddy++, some NCs
were weighted more heavily in favor of the head (e.g. silver screen had weight
11:89), while others had more weight in the modifier (e.g. spelling bee with
weight 94:06), and with many intermediary NCs in between (e.g. dirty word
with weight 47:53).

One of the side effects of calculating these weights is that they also reveal any
bias in the semantic influence of the head or the modifier of each compound,
and we consider whether this bias may be affecting the results on each dataset.
Table 5.5 presents the highest-Spearman maxsim model for each dataset, along
with the average of the weights assigned to head and modifier for every NC in
the dataset. The results are extremely stable: while the weights that optimize
for compositionality are fairly similar for the English datasets, they are highly
discrepant for both FR-comp and PT-comp, in which the weight of the head is
disproportionately higher than the weight of the modifier.

The fact that FR-comp and PT-comp compounds have the potential for higher
compositional interpretation in the head than in the modifier could be elucidated
by the consideration that all of the modifiers in these datasets are adjectives,
while English-language modifiers may also be nouns. Therefore, the contribu-
tion of adjectives to the overall meaning could be lower due to some linguistic
phenomenon. For example, some of the adjectives used in these compounds are
highly polysemous, and could be seen contributing to some specific meaning is
not found on isolated occurrences of the adjective itself (e.g. FR beau (lit. beauti-
ful) is used in the translation of most in-law family members, such as beau-frère
‘brother-in-law’ (lit. beautiful-brother)).

Up to this point, it is still unclear whether it is true that the maxsim strategy
is able to more aptly capture the semantics of compositional MWEs (hypothesis
hstrat.maxsim). In order to better understand the behavior of maxsim with regards
to uniform, we rank the compounds in ALL-comp according to three possible
sets of scores: (a) the compositionality score assigned by human annotators; (b)
the highest-Spearman maxsim prediction; and (c) the highest-Spearman uniform
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Dataset DSM configuration maxsim weighthead weightmod
Reddy w2v–sg surface+.w1.d750 .814 53 47
EN-comp90 w2v–cbow lemma.w8.d750 .659 54 46
Reddy++ w2v–sg surface+.w1.d750 .730 55 45
FR-comp PPMI–thresh lemma.w1.d750 .693 68 32
PT-comp w2v–sg lemma.w8.d750 .590 68 32

Table 5.5.: Average weight of highest-Spearman maxsim model for each dataset.

prediction. Each compound is then assigned three corresponding ranks (positive
integers): rkhuman, rkmaxsim, rkuniform. We then calculate the improvement score
of each compound as:

improvmaxsim = |rkuniform − rkhuman| − |rkmaxsim − rkhuman|.

Figure 5.7 presents the distribution of rank improvement scores for the highest-
scoring PPMI–thresh and w2v–sg configurations.7 Each graph presents the im-
provement score for NCs from the three languages, ranked according to rkhuman.
It can be seen that, for most NCs, there is only a light variation in the rank com-
positionality of maxsim. For the NCs that have a more drastic variation in rank,
positive improvements are associated with higher human-ranked compositional-
ity (right side of the graph), while negative improvement scores are associated
with idiomatic NCs. This confirms the hypothesis that maxsim can better capture
the semantics of compositional MWEs, albeit this only applies to some outlier
cases.
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Figure 5.7.: Distribution of improvmaxsim as a function of human judgments.

Figure 5.8 presents the distribution of rank improvements for all NCs, ranked
according to rkuniform instead. Differently from above, NCs with the highest

7 We focus on one representative of PPMI-based DSMs and one representative of word-embedding
ones. Similar results were observed for the highest-Spearman configuration of other DSMs.
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variation in rank are found on the left side of the graph, indicating that they were
all initially judged as idiomatic. This indicates that maxsim tends to improve the
score of NCs that humans considered more compositional, but that the uniform
system considered more idiomatic. On the other hand, NCs that are correctly
classified as idiomatic by the uniform prediction are somewhat under-estimated
by maxsim. The positive and negative improvements are somewhat balanced,
which explains why maxsim predictions fare as well as uniform.
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Figure 5.8.: Distribution of improvmaxsim as a function of uniform scores.

Figures 5.7 and 5.8 also indicate the outlier NCs with highest most improve-
ment (numbers from 1 to 8), as well as the NCs with lowest improvement scores
(letters from A to H). Table 5.6 presents these outlier NCs along with their im-
provement scores (see the Appendices A, B and C for the translation, glosses
and human scores associated with these compounds). We can see that there is a
disproportionate amount of outlier NCs for Portuguese and French (particularly
the former), suggesting that maxsim has a stronger impact on those languages
than on English. It is also noticeable that some NCs had a similar improvement
score under both DSMs, with e.g. high improvement for PT caixa forte and low
improvement scores for PT coração partido. It is further remarkable that equiva-
lent NCs in different languages are similarly impacted by maxsim, as in the case
of PT caixa forte and FR coffre fort. Nevertheless, maxsim does not present a
considerable overall impact on the rank of the predictions, obtaining an average
improvement of improvmaxsim = +0.41.

As in the case of maxsim, we also consider the rank improvement of geom pre-
dictions over uniform. We rank the compounds in ALL-comp according to three
possible sets of scores: (a) the compositionality score assigned by human anno-
tators; (b) the highest-Spearman geom prediction; and (c) the highest-Spearman
uniform prediction. Each compound is then assigned three corresponding ranks
(positive integers): rkhuman, rkgeom, rkuniform. We then calculate the improvement
score of each compound as:

improvgeom = |rkuniform − rkhuman| − |rkgeom − rkhuman|.
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ID improv PPMI–thresh improv w2v–sg
1 (+90) FR premier plan (+138) PT cerca viva
2 (+88) FR matière première (+126) FR coffre fort
3 (+86) PT amigo oculto (+116) PT caixa forte
4 (+67) FR première dame (+107) PT golpe baixo
5 (+63) PT caixa forte (+100) PT primeira necessidade
6 (+58) PT prato feito (+95) EN role model
7 (+53) FR idée reçue (+79) FR bonne pratique
8 (+48) FR marée noire (+69) PT carta aberta
H (−42) PT alta costura (−68) FR bras droit
G (−44) EN half sister (−70) PT alta costura
F (−44) EN melting pot (−71) PT carne vermelha
E (−46) FR berger allemand (−82) PT alto mar
D (−52) PT mar aberto (−85) PT mesa redonda
C (−55) PT febre amarela (−86) EN half sister
B (−81) PT livro aberto (−109) PT febre amarela
A (−83) PT coração partido (−128) PT coração partido

Table 5.6.: Outliers regarding positive/negative maxsim improvement.

The hypothesis (hstrat.geom) is that geom should more accurately represent the
semantics of idiomatic NCs, and this would be reflected in the improvement
scores. Figure 5.9 presents the distribution of rank improvements for NCs in
ALL-comp, ranked according to rkhuman. It can be seen that, for most NCs, there
is only a slight variation in the rank compositionality of geom. For the NCs that
have a more drastic variation in rank, positive improvements are slightly more
associated with lower human-ranked compositionality (left side of the graph),
while negative improvement scores are visibly associated with compositional NCs
(right side of the graph). This is the opposite of what was observed for maxsim,
and confirms the interpretation that these models optimize for opposite extremes
of compositionality (with geom focusing on idiomatic NCs at the expense of more
compositional ones). As in the case of maxsim, this behavior is only observed for
the outlier cases.

Figure 5.10 presents the distribution of rank improvements for all NCs in the
highest-Spearman configuration, ranked according to rkuniform instead. Here
again, the behavior of the geom strategy is the opposite of what was observed
for maxsim: NCs with the highest variation in rank are found on the right side
of the graph, indicating that they were all initially judged as compositional. This
indicates that geom tends to improve the score of NCs that humans considered
more idiomatic, but that the uniform system considered more compositional. On
the other hand, NCs that are correctly classified as compositional by the uniform
prediction are somewhat pessimized by geom.

Figures 5.9 and 5.10 also indicate the outlier NCs with the highest and lowest
improvement scores (numbers and letters, respectively). Table 5.7 presents these
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Figure 5.9.: Distribution of improvgeom as a function of human judgments.
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Figure 5.10.: Distribution of improvgeom as a function of uniform scores.
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outlier NCs along with their improvement scores. As in the case of maxsim, the
majority of the outliers belong to the Portuguese dataset. Some of the NCs that
were found as outliers in maxsim re-appear as outliers for geom with inverted
polarity in the improvement score, e.g. FR bras droit scores predicted by PPMI–
thresh (improvmaxsim = +58, improvgeom = −234) and PT prato feito as predicted
by w2v–sg (improvmaxsim = −68, improvgeom = +228). This suggests that future
work should consider combining both approaches into a single prediction strat-
egy that decides which sub-strategy to use as a function of the uniform prediction
for each NC. As it stands, however, the geom strategy has a mild negative influ-
ence on the rank of the predictions, obtaining an average improvement score of
improvgeom = −7.87.

ID improv PPMI–thresh improv w2v–sg
1 (+157) EN snail mail (+228) FR bras droit
2 (+110) FR guerre civile (+158) PT lua nova
3 (+109) FR disque dur (+127) PT alto mar
4 (+104) PT alto mar (+104) PT pé direito
5 (+93) PT ônibus executivo (+89) EN carpet bombing
6 (+85) EN search engine (+75) PT lista negra
7 (+82) PT carro forte (+73) PT arma branca
8 (+79) EN noble gas (+72) EN search engine
H (−190) PT ar condicionado (−151) PT disco rígido
G (−202) FR coffre fort (−169) EN subway system
F (−202) FR bon sens (−190) PT carro forte
E (−234) PT prato feito (−238) FR disque dur
D (−292) FR baie vitrée (−256) EN half sister
C (−327) PT carta aberta (−260) PT carta aberta
B (−370) PT vinho tinto (−266) FR bonne pratique
A (−376) PT circuito integrado (−370) EN end user

Table 5.7.: Outliers regarding positive/negative geom improvement.

5.5. Sanity checks
The number of possible DSM configurations grows exponentially with the num-
ber of internal variables in a DSM, forestalling the possibility of an exhaustive
search for every possible parameter. We have evaluated above the set of vari-
ables that are most often manually tuned in the literature, but a reasonable
question would be whether these results can be further improved through the
modification of some other often-ignored model-specific parameters. We thus
perform some sanity checks through a local search of such parameters around
the highest-Spearman configuration of each DSM.
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Section 5.5.1 evaluates the number of DSM iterations. Section 5.5.2 evalu-
ates the minimum word-count threshold in the DSM. Section 5.5.3 considers
a WINDOWSIZE=2+2. Section 5.5.4 considers higher numbers of DSM vector
dimensions. Section 5.5.5 evaluates the non-determinism of DSMs through mul-
tiple random initializations. Finally, Section 5.5.6 considers whether the filtering
of dataset annotations could improve its quality as well as the accuracy of pre-
dictions.

5.5.1. Number of iterations
Some of the DSMs in consideration on this chapter are iterative: they re-read
and re-process the same corpus multiple times. For those DSMs, we present
the results of running their best configuration, but using a higher number of
iterations. This higher number of iterations is inspired by the models found in
parts of the literature, where e.g. the number of glove iterations can be as high as
50 (Salle, Villavicencio, and Idiart 2016) or even 100 (Pennington, Socher, and
Manning 2014). The intuition is that most models will lose some information
(due to their probabilistic sampling), which could be regained at the cost of a
higher number of iterations.

Table 5.8 presents a comparison between the baseline ρ for 15 iterations and
the ρ obtained when 100 iterations are performed. For all DSMs, we see that
the increase in the number of iterations does not improve the quality of the
vectors, with the relatively small number of 15 iterations yielding better results.
This may suggest that a small number of iterations can already sample enough
distributional information, with further iterations accruing additional noise from
low-frequency words. The extra number of iterations could also be responsible
for overfitting of the DSM to represent particularities of the corpus, which would
reduce the quality of the underlying vectors. Given the extra cost of running
more iterations8, we refrain from building further models with as many iterations
in this thesis.

5.5.2. Minimum count threshold
Minimum-count thresholds are often neglected in the literature, where a default
configuration of 0, 1 or 5 being presumably used by most authors. An exception
to this trend is the threshold of 100 occurrences used by Levy, Goldberg, and
Dagan (2015), whose toolkit we use in PPMI–SVD. No explicit justification has
been found for this higher word-count threshold. A reasonable hypothesis would
be that higher thresholds improve the quality of the data, as it filters rare words
more aggressively.

8 The running time grows linearly with the number of iterations.
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Model (FR-comp) ρbase ρiter=100 Difference (%)
w2v–cbow .660 .640 (−2.0)
w2v–sg .672 .636 (−3.7)
glove .680 .677 (−0.3)
lexvec .677 .671 (−0.6)
Model (Reddy) ρbase ρiter=100 Difference (%)
w2v–cbow .809 .766 (−4.3)
w2v–sg .821 .777 (−4.4)
glove .764 .746 (−1.8)
lexvec .774 .757 (−1.7)
Model (PT-comp) ρbase ρiter=100 Difference (%)
w2v–cbow .588 .558 (−3.0)
w2v–sg .586 .551 (−3.6)
glove .555 .464 (−9.1)
lexvec .570 .561 (−0.9)

Table 5.8.: Results using a higher number of iterations.

Table 5.9 presents the result from the highest-Spearman configurations along-
side the results for an identical configuration with a higher occurrence threshold
of 50. The results unanimously agree that a higher threshold does not contribute
to the removal of any extra noise. In particular, for PPMI–SVD, it seems to discard
enough useful information to considerably reduce the quality of the composition-
ality prediction measure. The results strongly contradict the default configura-
tion used for PPMI–SVD, suggesting that a lower word-count threshold might
yield better results for this task.

5.5.3. Windows of size 2+2
For many models, the best window size found was either WINDOWSIZE=1+1 or
WINDOWSIZE=4+4 (see Section 5.2.1). It is possible that a higher score could
obtained by a configuration in between. While a full exhaustive search would be
the ideal solution, a useful approximation of the best 2+2 configuration could
be obtained by running the experiments on the highest-Spearman configurations,
with the window size replaced by 2+2.

Results in Table 5.10 for a window size of 2+2 are consistently worse than
the base model, indicating that the optimal configuration is likely the one that
was obtained with window size of 1+1 or 4+4. This is further confirmed by
the fact that most DSMs had the best configuration with window size of 1+1 or
8+8, with few cases of 4+4 as best model, which suggests that the quality of
most configurations in the space of models is either monotonically increasing or
decreasing with regards to these window sizes, favoring thus the configurations
with more extreme WINDOWSIZE parameters.
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Model (FR-comp) ρbase ρmincount=50 Difference (%)
w2v–cbow .660 .610 (−5.0)
w2v–sg .672 .613 (−5.9)
glove .680 .673 (−0.7)
PPMI–SVD .584 .258 (−32.6)
lexvec .677 .653 (−2.4)
Model (Reddy) ρbase ρmincount=50 Difference (%)
w2v–cbow .809 .778 (−3.1)
w2v–sg .821 .776 (−4.5)
glove .764 .672 (−9.2)
PPMI–SVD .743 .515 (−22.8)
lexvec .774 .738 (−3.6)
Model (PT-comp) ρbase ρmincount=50 Difference (%)
w2v–cbow .588 .580 (−0.8)
w2v–sg .586 .575 (−1.1)
glove .555 .540 (−1.5)
PPMI–SVD .530 .418 (−11.1)
lexvec .570 .566 (−0.4)

Table 5.9.: Results for a higher minimum threshold of word count.

5.5.4. Higher number of dimensions
As seen in Section 5.2.2, some DSMs obtain better results when moving from 250
to 500 dimensions, and this trend continues when moving to 750 dimensions.
This behavior is notably stronger for PPMI–thresh, which suggests that an even
higher number of dimensions could have better predictive power.

Table 5.11 presents the result of running PPMI–thresh for increasing values
of of the DIMENSION parameter. The baseline configuration (indicated as ?

in Table 5.11) was the highest-scoring configuration found in Section 5.2.2:
lemmaPoS.w1.d750 for PT-comp and FR-comp, and surface.w8.d750 for Reddy. As
seen in Section 5.2.2, results for 250 and 500 dimensions have lower scores
than the results for 750 dimensions. Results for 1000 dimensions were mixed:
they are slightly worse for FR-comp and Reddy++, and slightly better for PT-comp.
Increasing the number of dimensions generates models that are progressively
worse. These results suggests that the maximum vector quality is achieved be-
tween 750 and 1000 dimensions.

5.5.5. Random initialization
The word vectors generated by the glove and w2v models have some level of non-
determinism caused by random initialization and random sampling techniques.
A reasonable concern would be whether the results presented for different pa-
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Model (FR-comp) ρbase ρwin=2+2 Difference (%)
PPMI–SVD .584 .397 (−18.7)
PPMI–thresh .702 .678 (−2.4)
glove .680 .657 (−2.3)
lexvec .677 .671 (−0.6)
w2v–cbow .660 .644 (−1.6)
w2v–sg .672 .639 (−3.3)
Model (Reddy) ρbase ρwin=2+2 Difference (%)
PPMI–SVD .743 .583 (−16.0)
lexvec .774 .757 (−1.7)
w2v–cbow .809 .777 (−3.2)
w2v–sg .821 .784 (−3.7)
Model (PT-comp) ρbase ρwin=2+2 Difference (%)
PPMI–SVD .530 .446 (−8.4)
PPMI–thresh .602 .561 (−4.1)
lexvec .570 .564 (−0.6)

Table 5.10.: Results using a window of size 2+2.

rameter variations are close enough to the scores obtained by an average model.
To assess the variability of these models, we evaluated 3 different runs of ev-
ery DSM configuration (the original execution ρ1, used elsewhere in this thesis,
along with two other executions ρ2 and ρ3) for glove, w2v–cbow and w2v–sg. We
then calculate the average ρavg of these 3 executions for every model.

Table 5.12 reports the highest-Spearman configurations of ρavg for the Reddy
and Reddy++ datasets. When comparing ρavg to the results of the original ex-
ecution ρ1, we see that the variability in the different executions of the same
configuration is minimal. This is further confirmed by the low sample standard
deviation9 obtained from the scores of the 3 executions. Given the high stability
of these models, results in the rest of the thesis were calculated and reported as
ρ1 for all datasets.

5.5.6. Data filtering
Along with the verification of parameters, we also evaluate whether dataset vari-
ations could yield better results. In particular, we consider the use of filtering
techniques, which are used in the literature as a method of guaranteeing dataset
quality. As per Roller, Schulte im Walde, and Scheible (2013), we consider two
strategies of data removal: (1) removing individual outlier compositionality judg-
ments through z-score filtering; and (2) removing all annotations from outlier

9 The low standard deviation is not a unique property of high-ranking configurations: The
average of deviations for all models was .004 for Reddy++ and .006 for Reddy.

100



Model (FR-comp) ρdim=X Difference (%)
dim = 250 .671 (−3.1)
dim = 500 .695 (−0.7)
dim = 750 .702 ? (0.0)
dim = 1000 .694 (−0.8)
dim = 2000 .645 (−5.8)
dim = 5000 .636 (−6.7)
dim = 30000 .552 (−15.1)
dim = 999999 .539 (−16.3)
Model (Reddy) ρdim=X Difference (%)
dim = 250 .764 (−2.7)
dim = 500 .782 (−1.0)
dim = 750 .791 ? (0.0)
dim = 1000 .784 (−0.7)
dim = 2000 .760 (−3.1)
dim = 5000 .744 (−4.7)
dim = 30000 .700 (−9.1)
dim = 999999 .566 (−22.5)
Model (PT-comp) ρdim=X Difference (%)
dim = 250 .543 (−5.9)
dim = 500 .546 (−5.6)
dim = 750 .602 ? (0.0)
dim = 1000 .609 (+0.7)
dim = 2000 .601 (−0.1)
dim = 5000 .505 (−9.7)
dim = 30000 .532 (−7.0)
dim = 999999 .500 (−10.2)

Table 5.11.: Results for higher numbers of dimensions (PPMI–thresh).

Dataset DSM configuration ρ1 ρ2 ρ3 ρavg stddev
glove lemmaPoS.w8.d250 .759 .760 .753 .757 .004

Reddy w2v–cbow surface.w1.d500 .796 .807 .799 .801 .006
w2v–sg surface.w1.d750 .812 .788 .812 .804 .014
glove lemmaPoS.w8.d500 .651 .646 .650 .649 .003

Reddy++ w2v–cbow surface+.w1.d750 .730 .732 .728 .730 .002
w2v–sg surface+.w1.d750 .741 .732 .721 .731 .010

Table 5.12.: Configurations with highest ρavg for non-deterministic models.

human judges. A compositionality judgment is considered an outlier if it stands
at more than z standard deviations away from the mean; a human judge is
deemed an outlier if its Spearman correlation to the average of the others ρoth
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is lower than a given threshold R10. These methods allow us to remove acciden-
tally erroneous annotations, as well as annotators whose response deviated too
much form the mean (in particular spammers and non-native speakers).

Table 5.13 presents the evaluation of raw and filtered datasets regarding two
quality measures: the average of the standard deviations for all NCs (σWC); and
the proportion of NCs in the dataset whose standard deviation is higher than 1.5
(Pσ>1.5), as per Reddy, McCarthy, and Manandhar (2011). The results suggest
that filtering techniques can improve the overall quality of the datasets, as seen
in the reduction of the proportion of NCs with high standard deviation, as well as
in the reduction of the average standard deviation itself. We additionally present
the data retention rate (DRR), which is the proportion of NCs that remained in
the dataset after filtering. While the DRR does indicate a reduction in the amount
of data, this reduction may be considered acceptable in light of the improvement
suggested by the quality measures.

Dataset σWC Pσ>1.5 DRRraw filtered raw filtered
FR-comp 1.15 0.94 22.78% 13.89% 87.34%
PT-comp 1.22 1.00 14.44% 6.11% 87.81%
EN-comp90 1.17 0.87 18.89% 3.33% 83.61%
Reddy 0.99 — 5.56% — —

Table 5.13.: Intrinsic quality measures for the raw and filtered datasets

On a more detailed analysis, we have verified that the improvement in these
quality measures is heavily tied to the use of z-score filtering, with similar re-
sults obtained when it is considered alone. The application of R-filtering by
itself, on the other hand, did not show any noticeable improvement in the qual-
ity measures for reasonable amounts of DRR. This is the opposite from what
was found by Roller, Schulte im Walde, and Scheible (2013) on their German
dataset, where only R-filtering was found to improve results under these qual-
ity measures. We present our findings in more detail in Cordeiro, Ramisch, and
Villavicencio (2016a).

We then consider whether filtering can have an impact on on the performance
of predicted compositionality scores. As z-score filtering was responsible for im-
provement in quality measures above, we consider For each of the 228 model
configurations that were constructed for each language, we launched an evalu-
ation on the filtered EN-comp90, FR-comp and PT-comp datasets (use use z-score
filtering only, as it was responsible for most of the improvement in quality mea-
sures). Overall, no improvement was observed in the results of the prediction
(values of Spearman ρ) when we compare raw and filtered datasets. Looking

10 The judgment threshold we adopted was z = 2.2 for EN-comp90, z = 2.2 for PT-comp and
z = 2.5 for FR-comp. The human judge threshold was R = 0.5.
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more specifically at the best configurations for each DSM (Table 5.14), we can
see that most results do not significantly change when the evaluation is per-
formed on the raw or filtered datasets. This suggests that the amount of judg-
ments collected for each compound greatly offsets any irregularity caused by
outliers, making the use of filtering techniques superfluous.

Dataset EN-comp90 FR-comp PT-comp
raw filtered raw filtered raw filtered

PPMI–SVD .604 .601 .584 .579 .530 .526
PPMI–TopK .564 .571 .550 .545 .519 .516
PPMI–thresh .602 .607 .702 .700 .602 .601
glove .538 .544 .680 .676 .555 .552
lexvec .567 .572 .677 .676 .570 .568
w2v–cbow .669 .665 .651 .651 .588 .587
w2v–sg .665 .661 .653 .654 .586 .584

Table 5.14.: Extrinsic quality measures for the raw and filtered datasets

5.6. Error analysis
In the previous sections, we have studied the performance of the compositional-
ity prediction framework in terms of the correlation between system predictions
and human judgments. We now investigate the system output with regards to
other variables that may have an impact on results, such as corpus frequency
and conventionalization. We also compare the predicted compositionality scores
with some patterns we previously found in human scores (see Section 3.2).

5.6.1. Frequency and compositionality prediction
Results from an evaluation of the hypothesis hidiom ≈ distr.freq in Section 3.2.4 show
that the frequency of NCs in large corpora is somewhat associated with the com-
positionality scores assigned by humans. We investigate whether this correlation
also holds true to system predictions: are the most frequent NCs being predicted
as more compositional?

In this experiment, we focus on a cross-language analysis with the ALL-comp
dataset, which combines the 3×180 = 540 NCs from the three datasets presented
in Chapter 3. Figure 5.11 presents the 540 NCs, ordered according to corpus
frequency and grouped into 18 bins of 30 NCs each.11 The height of each bin
indicates the average of the scores predicted (using the uniform strategy) by
a given system to the 30 NCs therein. There is a high variability in the level

11 We use binning so as to smooth over the outliers.
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of correlation between the corpus frequency of compounds and the prediction
of the models. The level of correlation ranged from ρ = .28 for PPMI–TopK
(not shown here) to ρ = .68 for glove, with the intermediate results of ρ = .36
for PPMI–SVD, ρ = .46 for PPMI–thresh, ρ = .50 for w2v–sg, ρ = .51 for w2v–
cbow and ρ = .54 for lexvec. For every system, the correlation was significant
(p < 0.05). This is in line with human judgments of compositionality, which also
had a positive correlation with the frequency of the NCs.
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Figure 5.11.: Compositionality prediction under different frequency bins.

Another hypothesis (haccur← MWE.freq) we test is whether higher-frequency NCs
are easier to predict. A first intuition would be that this hypothesis is true, as
a higher number of occurrences is also associated with a larger amount of data,
from which more representative vectors could be built. To test this hypothesis,
we calculated the correlation between NC frequency and the human–system dif-
ference |h− s|, where h is the human score and s is the system’s predicted score
for a given compound. Higher values of human–system difference indicate that
an NC’s compositionality is harder to predict. We found a weak (though statis-
tically significant) correlation for some of the systems: PPMI–TopK had ρ = .15,
PPMI–SVD had ρ = .17, and PPMI–thresh had ρ = .22 (all with p < 0.05). This cor-
relation is positive, which means that the frequency is correlated with difficulty.
This implies that the compositionality of rarer NCs was mildly easier to predict
for these systems, suggesting that the hypothesis above is false. On the other
hand, glove had an easier time predicting frequent NC, with negative correlation
of ρ = −.19, favoring the aforementioned hypothesis. Moreover, the correla-
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tion was not statistically significant for lexvec and w2v models. These results are
mixed, and either point to an overall lack of correlation between frequency and
difficulty, or indicate mild DSM-specific behaviors, which should be investigated
in further research.

5.6.2. Conventionalization and compositionality prediction
Section 2.2.3 has described the PMI as one well-known estimator of the level
of MWE conventionalization. Many of the DSMs investigated on this thesis also
rely on PMI as a way to estimate the strength of association between two words.
This measure is then directly applied to target–context word pairs during the
construction of the DSM, and the result becomes an internal matrix that is fur-
ther processed to build the real-valued output vectors. In light of the results
from the previous section, and given the reliance of most DSMs on the PMI for
the construction of their word representation, one might expect similarly high
correlations between compositionality and the PMI of compound elements. On
the other hand, given the lack of correlation found between the conventionaliza-
tion and human judgments of compositionality, good system predictions should
ideally not correlate with measures of conventionalization such as the PMI. We
thus evaluate whether our model really is predicting something different from
conventionalization.
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Figure 5.12.: Compositionality prediction under different PMI bins.

Figure 5.12 presents the 540 NCs of ALL-comp, ordered according to PMI and
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grouped under 18 bins of 30 NCs each. The height of each bin indicates the
average of the scores predicted (using the uniform strategy) by a given system to
the 30 NCs therein. The effects are milder than the ones seen for the frequency
(in Section 5.6.1). Statistically significant correlations are ρ = .13 for PPMI–
thresh, ρ = .17 for w2v–cbow and w2v–sg, ρ = .26 for glove and lexvec, and ρ = .28
for PPMI–SVD. No correlation was found for PPMI–TopK. Overall, these results
suggest that the vector representations generated by these models preserve some
level of information regarding the strength of association between words. Given
that there was no correlation between PMI and human-rated compositionality
when testing hypothesis hidiom ≈ distr.convent in Section 3.2.4, the systems that do
keep this information are at a disadvantage. Particularly in the case of w2v
models, this result is surprising, as it suggests that its high scores could be further
improved by a method that did not keep as much of a correlation with the PMI
in the word-embedding representation.

We also calculated the correlation between the PMI and the human–system
difference, calculated as |h−s|, where h is the human score and s is the predicted
system score for a given NC. The hypothesis (haccur← MWE.convent) is that the DSMs
should have lower accuracy when dealing with less conventionalized NCs (and
whose elements are not strongly associated through PMI), due to a lower amount
of shared contexts. However, for almost all DSMs, the results obtained do not
show a statistically significant correlation, suggesting that this hypothesis is not
true. For lexvec, there was a minor negative correlation of ρ = −.12 (p < 0.05)
between the PMI and the difficulty, indicating that NCs with higher PMI do have
slightly more accurate internal representation than the others in this particular
DSM. This differs from the results obtained when comparing the human–system
difference with NC frequency (Section 5.6.1), in which lexvec did not show any
statistically significant correlation, but most other models did. As in the case of
frequency, the w2v models showed no correlation between difficulty of prediction
and the PMI.

5.6.3. Human–system comparison
The general hypothesis hpred-comp ≈ comp predicted a correlation between human-
rated NC compositionality and model predictions, and this has been extensively
verified in the highest-Spearman predictions (e.g. in Section 5.1). In this section,
we present a visual validation of this hypothesis, by considering the highest-
Spearman predictions of 4 DSMs, with all datasets combined.

Figure 5.13 presents 4 graphs (one per DSM), with the predicted composition-
ality of the NCs in ALL-comp for the best configuration of each language. The
NCs were ranked by human compositionality scores, and grouped under 18 bins
of 30 NCs each. The height of each bin indicates the average of the scores pre-
dicted (using the uniform strategy) by a given system to the 30 NCs therein. The
four systems present a behavior that is consistent with their Spearman scores
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(see Section 5.1), where system predictions grow along with the corresponding
human ratings.
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Figure 5.13.: Compositionality prediction as a function of human judgments.

For all systems but PPMI–thresh, the pattern of predicted compositionality
grows mostly linearly with respect to the human scores (and this includes PPMI–
TopK and PPMI–SVD, not shown here). The PPMI–thresh system ratings behave
unusually, with overall lower predicted scores and a super-linear pattern of pre-
dictions, suggesting that the model is quite capable of capturing different levels
of compositionality for the most compositional NCs, but fails at capturing the
compositionality on the idiomatic side of the spectrum. This pattern may be ex-
plained by the fact that PPMI–thresh uses a sparse context representation (with-
out any kind of dimensionality reduction other than context filtering), which
means that the intersection of two vectors is often a vector with zero in many
dimensions, yielding overall lower scores, especially for more idiomatic cases.

5.6.4. Range-based analyses
The Spearman score assesses the performance of a given model by providing a
single numerical value. This facilitates the comparison between different models,
but it hides the internal behavior of the predictions. By splitting the datasets into
different ranges, we obtain a more fine-grained view of the pattern that governs
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the prediction of each model.12

Figure 5.14 presents the highest-Spearman models (seen in Section 5.1), eval-
uated separately on 3 different sub-datasets of 60 NCs, split according to the
standard deviation among human annotators (low, mid-range, and high values
of σWC)13. High values of standard deviation indicate disagreement among an-
notators, which can be regarded as an indicator that the annotation was difficult
for humans. We can see that low-deviation NCs obtained considerably better sys-
tem scores than the NCs for which humans disagreed among themselves. This
can be taken as an evidence in favor of the hypothesis haccur← MWE.diffic that higher
scores are achieved for NCs that were easier for humans to annotate (i.e. that
had lower standard deviation of human ratings), and suggests that part of the dif-
ficulty of this task is related to the inability of humans to determine a consensual
interpretation for each NC.
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Figure 5.14.: Spearman of best uniform models, separated by σWC ranges.

We have similarly evaluated the datasets based on three ranges of composition-
ality scores (low, mid-range and high values of cWC). The underlying hypothesis
(haccur← MWE.idiom) was that compositional NCs would be more precisely classified

12 The experiments in this section involve Reddy++, FR-comp and PT-comp, but not Farahmand,
as the latter dataset has binary judgments and thus cannot be easily split in ranges.

13 All Spearman scores for sub-datasets had p < 0.05.
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by the model than idiomatic NCs, as the former have been more extensively con-
sidered in the literature (Mitchell and Lapata 2010; Mikolov, Sutskever, Chen,
et al. 2013). Here, we consider the 540 NCs of ALL-comp, divided in three sub-
datasets based on the level of human-rated compositionality, with 180 NCs in
each sub-dataset14. Table 5.15 presents the Spearman score obtained on each
sub-dataset for the highest-Spearman configuration of each DSM.15 The results
suggest that distinctions on the level of compositionality are easier to perform for
compositional compounds than they are for idiomatic compounds. In all cases,
however, the result for sub-datasets was far lower than the score obtained for the
full dataset. This might be explained by the fact that it is harder to make fine-
grained distinctions of compositionality, while inter-range distinctions are more
straightforward. In other words, it is easier to distinguish between a idiomatic
compound (such as ivory tower) and a compositional one (such as access road)
than it is to distinguish between two compositional compounds (such as access
road and subway system).

Model full dataset low mid high
PPMI–thresh 0.66 0.29 0.24 0.37
glove 0.63 0.27 0.26 0.35
lexvec 0.64 0.18 0.20 0.37
w2v–sg 0.66 0.16 0.24 0.32

Table 5.15.: Spearman of best uniform models, separated by cWC ranges.

The results above suggest that higher scores could be obtained by consider-
ing only the compounds with scores in the two extremities: lowest and highest
compositionality. We evaluate this hypothesis for a given DSM by merging the
predictions of its highest-Spearman configurations for Reddy++, FR-comp and
PT-comp (creating a single set of 540 compositionality predictions). We then con-
sider different subsets of NC predictions in the extremities. In particular, for
every window w from 1 to 270 = 540/2, we consider the subset of w NC with
lowest score prediction along with the subset of w NCs with the highest score
prediction. We then calculate the Spearman ρ for this subset of 2w NCs, for dif-
ferent values of w. Figure 5.15 presents such results. As can be seen, for all 4
DSMs considered, low values of w consistently result in high Spearman scores,
suggesting that the DSMs encode enough semantic information to make coarse-
grained distinctions of compositionality. As we consider increasingly more cases
of partially-compositional NCs (with higher values of w), we obtain increasingly
lower results, until we arrive at the whole dataset of 540 NCs, where we get the
lowest Spearman scores in every DSMs.

We have additionally performed both standard-deviation and compositionality-

14 Scores from compounds in different languages are mixed together in each sub-dataset.
15 All Spearman scores for datasets and sub-datasets had p < 0.05.
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Figure 5.15.: Compositionality sliding windows, evaluating top w + bottom w com-
pounds, for different values of w.

range analyses for other prediction strategies than uniform. In the case of arith,
the Spearman score for different sub-datasets followed very closely the results
of uniform. In the case of maxsim, we hypothesized that its favoring of a com-
positional reading of every compound would optimize results for the composi-
tional sub-dataset when compared to uniform. Nevertheless, the results fluctu-
ated around the uniform scores, with no clear pattern of improvement for this
model. As for geom, we previously hypothesized that their tendency to lowering
the compositionality score would optimize the quality of prediction for idiomatic
compounds. The results refuted this hypothesis. Most scores were similar to
uniform scores, with improvements seen more often in the compositional range
than in the idiomatic range. However, even then the differences were small and
the pattern of improvement unclear.

5.7. Summary and discussion
In this chapter, we have described the results of a large-scale evaluation of pa-
rameter choices in a DSM-based framework of compositionality prediction. Eval-
uations were performed on six datasets, spanning across three languages. We
have built 228 DSMs for each language, and evaluated more than 8 thousand
prediction model configurations, examining the impact of DSM choice and vari-
ous types of parameters.
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The compositionality prediction model proposed in this thesis was implemented
as part of the mwetoolkit, and is freely available online.16 Given the large
amount of experiments performed in this thesis, and in order to guarantee the
reproducibility of results, we defined our experiments through a system of file
dependencies. Every step of preprocessing (e.g. re-tokenization of compounds as
a single unit, removal of stopwords) was defined in term of these dependencies,
so that any modification in the code (e.g. bug fixes) would automatically inval-
idate experiment results. The results presented in this chapter were obtained
under this system of dependencies.

Considering the experimental results in terms of DSMs, the w2v models per-
formed better than PPMI for Reddy++, both were in a tie for Farahmand, and w2v
was outperformed by PPMI–thresh for FR-comp and PT-comp. The performance of
glove on English datasets was underwhelming, and might be related to the lack
of tuning of model-specific parameters. As previously argued by Salehi, Cook,
and Baldwin (2015), PPMI–TopK is not an appropriate DSM for this task, as it
does not model relevant co-occurrence very well.

When comparing DIMENSION across languages and datasets, larger values of-
ten bring better performance, likely due to the possibility of representing more
fine-grained semantic distinctions (in agreement with the hypothesis haccur← DSM.dims).
An upper limit of around 1000 dimensions has been verified, however, with even
higher numbers of dimensions obtaining lower scores.

The most effective WINDOWSIZE depends on the model and language, but for
the best models in all datasets, a window of 1+1 outperforms the others (which
suggests that haccur← DSM.window is false). This may be a consequence of the fact
that higher window sizes are more likely to consider unrelated words as part of
a target’s context.

Regarding the WORDFORM, the lemma (i.e. stopword removal + lemmatiza-
tion) seems to be the overall best type of preprocessing across languages (as
predicted by haccur← corpus.wordform). The use of POS tags does not seem to improve
on the results, which could indicate that the higher precision of grammatical
category does not compensate for the added sparsity. In the case of English, the
effects of both stopword removal and lemmatization are questionable, with plain
surface-level word-forms producing slightly better models in some cases.

Corpus size seems to play a fundamental role in the quality of the constructed
distributional models, as corpora with less than a billion tokens result in con-
siderably weaker predictions (haccur← corpus.size). However, the improvement in
prediction quality seems to be capped at around a threshold of one billion to-
kens: larger corpora do not result in better predictions of compositionality for
nominal compounds. This threshold may be related to the minimum frequency
necessary for rarer NCs so as to permit the calculation of cosine similarity with
its components.

16 http://mwetoolkit.sf.net
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The technique of parallel predictions was shown to perform equivalently to
whole-corpus predictions (haccur← corpus.parallel). While the use of this technique
does not improve on the results obtained through whole-corpus models, it does
permit a more flexible utilization of computational resources (e.g. clusters) in
the construction of the underlying semantic representations.

Regarding the different compositionality prediction strategies, the uniform
strategy produces predictions that are consistently among the best ones. The
maxsim strategy does improve the prediction of compositional NCs, but only
for outlier cases, contributing to random variation in most cases (hstrat.maxsim).
While this does not improve on the results from uniform, it does consistently pro-
duce similarly good results. The head and mod strategies perform surprisingly
well for all top models of every dataset, in spite of their reliance on incomplete
information (hstrat.partial-info). The performance of arith is quite similar to uni-
form, reflecting the fact that both rely on an additive model of compositionality
(hstrat.arith ≈ strat.uniform). The geom strategy did optimize the scores of idiomatic
NCs, but at the expense of a pessimization of scores for some compositional
cases (hstrat.geom). A combination of the geom and maxsim strategies is left for
future work.

Concerning the sanity checks, we found no advantage in the use of a higher
number of iterations for the construction of DSMs. The minimum word-count
has similarly been found to be a small value, with higher thresholds removing
too much information. An evaluation of the random initialization used in some
DSMs found no difference in the final results across multiple executions. Regard-
ing the dataset scores, filtering techniques were also considered, but the results
were comparable to the ones obtained on the unfiltered datasets.

This chapter has also performed an error analysis of the predicted composi-
tionality scores. As in the case of human-rated scores, frequency was found to be
positively correlated with compositionality (hidiom ≈ distr.freq). This result disputes
the hypothesis that idiomatic expressions are more frequent. In the case of PMI,
while it was not correlated to human-rated scores, it did show a mild correlation
with some system scores, suggesting that these systems could be improved by
reducing their reliance on that measure (hidiom ≈ distr.convent). Intra-NC standard
deviation on human ratings has also been shown to be related to system scores:
systems have difficulty on NCs that humans also find difficult (haccur← MWE.diffic).
Moreover, system predictions were found to have higher quality in the case of
compositional expressions (haccur← MWE.idiom). Further work would be required to
improve score predictions of idiomatic NCs.

An overall recommendation for future work would be the use of large dimen-
sions and small window sizes. Moreover, investing in preprocessing provides a
good balance of a small vocabulary (of lemmas) and good accuracy. The under-
lying corpus size should contain at least 1 billion tokens. As for the underlying
model, the simple uniform prediction strategy can achieve the highest-quality
predictions.
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Regarding the choice of DSM, the average Spearman’s ρ for Reddy over all
tested parameter configurations was 0.71 for both w2v models and 0.67 for
PPMI–thresh, suggesting that both types of models can obtain good results. While
PPMI–thresh is a simple, fast and inexpensive model to build, w2v has a free and
push-button implementation, and requires less hyper-parameter tuning, as is it
seems more robust to parameter variation.

More generally, the best results obtained are comparable and even outperform
the state of the art. Table 5.16 compares the highest results in the literature for
the Reddy dataset against the highest-Spearman and highest-Pearson configura-
tion obtained for each DSM.17 Reddy, McCarthy, and Manandhar (2011) use a
compositionality prediction model with a global set of contexts that resembles
PPMI–TopK, and the results are correspondingly similar to the ones obtained
for this DSM. Salehi, Cook, and Baldwin (2014) also use global contexts, but
augment it with information obtained from translations, which improves the
results (they are somewhat comparable to our highest-Pearson PPMI–SVD con-
figuration). Salehi, Cook, and Baldwin (2015) use a configuration that is similar
to our highest-Pearson w2v–cbow. We obtain slightly better results due to our
exploration of the space of DSM and corpus configurations.18

Model & Parameters Spearman ρ Pearson r
Reddy, McCarthy, and Manandhar (2011) .714 —
Salehi, Cook, and Baldwin (2014) — .744
Salehi, Cook, and Baldwin (2015) — .796
Best w2v–sg [Spearman: surface.w1.d750] .812 (.812) .814 (.814)
Best PPMI–thresh [Spearman: surface.w8.d750] .791 (.803) .762 (.768)
Best w2v–cbow [Spearman: surface+.w1.d500] .796 (.796) .803 (.798)
Best lexvec [Spearman: surface+.w4.d500] .774 (.773) .787 (.787)
Best glove [Spearman: lemmaPoS.w8.d250] .754 (.759) .783 (.787)
Best PPMI–SVD [Spearman: surface+.w1.d500] .743 (.743) .738 (.726)
Best PPMI–TopK [Spearman: lemmaPoS.w8.d1000] .706 (.716) .732 (.717)

Table 5.16.: Comparison of our best models with state-of-the-art results for Reddy .
Results in parentheses for fallback evaluation.

Our results are also comparable to the state of the art regarding the Farah-
mand dataset, particularly when the fallback evaluation is adopted, as shown
in Table 5.17. The predictive model of Yazdani, Farahmand, and Henderson
(2015) generalizes the linear combination of word representations (such as the
one used on the uniform strategy) so as to allow for other polynomial projec-
tions, with quadratic projections on w2v–cbow obtaining the highest BF1 score

17 Due to space constraints, only the highest-Spearman configuration is shown.
18 Note that the main goal was not to beat the state of the art, but to explore the space of

configurations.
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of .487. We show that a DSM and corpus parameter tuning can beat the use of
these more complex functions, as our best configuration for w2v–cbow obtains a
BF1 of .512. Future work should investigate the joint use of quadratic projections
and the recommended DSM configurations from this thesis.

Model & Parameters BF1
Yazdani, Farahmand, and Henderson (2015) .487
Best w2v–cbow [lemma.w1.d750] .512 (.471)
Best w2v–sg [lemma.w4.d500] .507 (.468)
Best lexvec [surface.w1.d750] .449 (.431)
Best PPMI–SVD [lemma.w4.d750] .487 (.424)
Best PPMI–thresh [lemma.w4.d750] .472 (.404)
Best PPMI–TopK [lemma.w8.d1000] .435 (.376)
Best glove [lemmaPoS.w8.d750] .400 (.358)

Table 5.17.: Comparison of our best models with state-of-the-art BF1 for Farah-
mand . Results in parentheses for fallback evaluation.
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6. Extrinsic evaluation of
compositionality prediction

The accurate identification of MWEs in running text is a major challenge in the
general pipeline of NLP applications. The set of all possible categories of MWEs
in a language can be quite diverse (Schneider, Onuffer, Kazour, et al. 2014a; Con-
stant, Eryiğit, Monti, et al. 2017), and the often-employed method of identifying
such expressions from a predetermined lexicon may not yield satisfactory results
for productive MWE patterns (such as nominal compounds). MWE identification
has notably been one of the goals of the SemEval 2016 task 10: DiMSUM (Detect-
ing Minimal Semantic Units and their Meanings) (Schneider, Hovy, Johannsen,
et al. 2016). In this shared task, participants were expected to present a system
that was able to detect and group MWEs, and to assign supersense tags to each
semantic unit (MWE or single word).

In this chapter, we consider an extrinsic evaluation of predicted compositional-
ity scores, which are adopted as features in a system of MWE identification. The
hypothesis we want to evaluate is hpred-comp→ ident-accur, which predicts that the
task of MWE token identification should benefit from the use of compositionality
scores. We focus on the identification of noun-based compounds (i.e. nominal
compounds, including proper names and nominal compounds with prepositions,
such as chamber of commerce). For the identification of other categories of MWEs
(as well as our work on supersense tagging), we refer to the paper that describes
our submission for the DiMSUM shared task (Cordeiro, Ramisch, and Villavicen-
cio 2016c), as well as the paper on CRF-based detection of MWEs (Scholivet,
Ramisch, and Cordeiro 2017). Section 6.1 presents two methods of MWE identi-
fication. Section 6.2 describes the experimental setup for the extrinsic evaluation.
Section 6.3 then presents the results obtained with and without compositional-
ity scores. Finally, Section 6.4 concludes with the summary of the main findings
from this chapter.

6.1. Proposed models of MWE identification
In the interest of validating the compositionality prediction model proposed in
this thesis, we consider two methods of MWE token identification, both of which
can be applied with or without the feature of compositionality scores. The task of
MWE identification consists in taking a tokenized corpus as input and generating
an extra layer in which every occurrence of an MWE is explicitly indicated.1

1 A full review of MWE identification methods is out of the scope of this work. We refer to the
MWE Identification section of Constant, Eryiğit, Monti, et al. (2017) for a thorough survey of
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We consider two techniques of MWE identification: a rule-based method and a
probabilistic method.

6.1.1. Rule-based identification model
Rule-based methods identify MWE occurrences by projecting type-level repre-
sentations from a lexicon onto a layer of MWE occurrences in a corpus (see
Section 2.3.3 on MWE token identification). We propose a baseline model of
rule-based MWE identification which identifies words in the corpus that corre-
spond to MWE entries in the lexicon. This identification is based on lemmas
and POS tags, and may be done on a preexisting lexicon or on a list of MWE
candidates extracted through techniques of MWE type discovery (described in
Section 2.3.2).

We perform MWE token identification using an augmented version of the mwe-
toolkit, including support for both type-level discovery and token-level identifi-
cation of contiguous and non-contiguous MWEs based on some degree of cus-
tomization (Cordeiro, Ramisch, and Villavicencio 2015). MWE type-level candi-
dates are extracted from a training corpus through syntactic patterns, without
losing track of their token-level occurrences, to guarantee that all the MWE oc-
currences learned from the training data can be projected onto the test corpus.
These candidates can then be filtered based on a variety of conditions (in particu-
lar, whether their occurrences are always annotated in the training corpus). The
resulting set of candidates can then be automatically projected onto a layer of
corpus MWE occurrences. We will use this as a baseline model, and as such, the
identification will be context-independent (identifying every possible occurrence
as an MWE regardless of any contextual clues).

These are the main functionalities that we have developed and integrated into
the mwetoolkit for experiments on MWE identification:

1. Different match distances:

• Longest: Matches the longest possible candidate. Useful e.g. for nomi-
nal compounds, where we want to match the whole compound.

• Shortest: Matches the shortest possible candidate. Useful e.g. for
phrasal verbs, where we want to find only the closest particle.

• All: Matches all possible candidates. Useful as a fallback when shortest
and longest are too strict (post-processing is then required).

2. Different match modes:

• Non-overlapping: Matches at most one MWE per word in the corpus.

other methods of MWE identification.
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• Overlapping: Allows words to be part of more than one MWE. This can
be used to find MWEs that occur inside the gap of another MWE, or
MWE occurrences that share a token.

3. Source-based identification: When information is retrieved in MWE type
discovery, we keep a detailed description of the source corpus and sentence.
The identification step can then be quickly performed by projecting the
MWEs back on the source corpus.

As an example, consider the following two MWE patterns described by regular
expressions over POS tags:

• NounCompound → Noun Noun+

• PhrasalVerb → Verb (Ignored∗) Particle

Figure 6.1 presents the results of applying different matching combinations to
these patterns. Consider an input such as the one in Figure 6.1(a). By applying a
non-overlapping contiguous approach to the noun compound identification and
a gappy approach to the verb-particle construction, we may automatically iden-
tify two MWE candidates in the sentence. If we use the longest match distance for
both patterns, we capture the whole nominal compound, but we go too far for
the verb-particle construction (Figure 6.1(b)). The opposite happens if we use
shortest match distance for both patterns, which works well for the verb-particle
construction but does not capture the whole nominal compound (Figure 6.1(c)).
By using different configurations for each type of MWE, we are able to identify
the correct occurrences in the text (Figure 6.1(d)).

(a) You threw those lab rat tissue samples out without thinking ?
(b) You threw those lab rat tissue samples out without thinking ?
(c) You threw those lab rat tissue samples out without thinking ?
(d) You threw those lab rat tissue samples out without thinking ?

Figure 6.1.: MWE-annotated output with different match distances.

6.1.2. Probabilistic identification model
In addition to the rule-based approach of MWE identification, we also consider a
probabilistic model, in the form of linear-chain conditional random fields (CRFs)
(Lafferty, McCallum, and Pereira 2001). Under this approach, we construct a
classifier that tags each input token based on whether it is independent or a part
of an MWE.2 The CRF is trained based on a set of observations T = T1 . . . Tn, in
2 The CRF tagger was trained with CRFSuite (Okazaki 2007).
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which each observed input token Ti is paired up with a tag yi. When performing
predictions, the probability of a given output tag yi for an input token Ti depends
on the tag of its neighbor token (yi−1), and on a set of features of the input φ(T ).
The feature values can come from any position of the input sequence, including
the current token Ti.

We represent MWE identification as a tagging problem through the use of
the Begin-Inside-Outside (BIO) encoding (Ramshaw and Marcus 1995). In a
BIO representation, each token Ti in the training corpus is annotated with a
corresponding tag B (beginning of the MWE), I (inside MWE) or O (independent
token, outside any MWE). In this scheme, MWEs must all be contiguous, and
overlaps cannot be represented.3

6.2. Experimental setup
We instantiate multiple variants of the rule-based and probabilistic methods of
MWE identification. We present below the configuration that we use for each
method, as well as the annotated corpora on which they are evaluated. For both
methods, we consider the task identification with and without a compositionality
feature, derived from a lexicon of predicted compositionality scores, which we
also describe below.

6.2.1. Reference corpora
We perform the evaluation of the MWE identification models on two MWE-
annotated corpora.

• For the English language: training, development and test data are the ones
provided for the DiMSUM shared task (Schneider, Hovy, Johannsen, et al.
2016). The sentences originally come from multiple English corpora: a
corpus of online reviews (STREUSLE), two corpora containing Twitter data
(Ritter and Lowlands), and a corpus built from TED Talks transcripts4. The
resulting training corpus contains 4 800 sentences, and the test corpus con-
tains 1 000 sentences. Every MWE annotation was reviewed by at least two
annotators. The authors do not report the annotator agreement (Schneider,
Onuffer, Kazour, et al. 2014a; Schneider, Hovy, Johannsen, et al. 2016).

• For the French language: training, development and test data come from an
adaptation of the French Treebank (FTB) (Abeillé, Clément, and Toussenel
2003) from the SPMRL shared task on Statistical Parsing of Morphologically-
Rich Languages (Seddah, Tsarfaty, Kübler, et al. 2013). The corpus consists

3 Note however that more complex schemes could account for some level of discontinuity and
overlap, such as the two-layer BB̃ĨIOÕ representation of Schneider (2014).

4 The train/dev corpora did not contain sentences from TED. Only the blind test data did.
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of a collection of newspaper entries (Le Monde) from multiple domains,
with a total of around 1 million tokens. It contains manually-validated lem-
mas, POS-tag annotations, syntactic information (ignored in this work) and
a layer of MWE occurrence annotations.

In both corpora, we keep only MWEs representing nominal compounds. This is
done through a pattern-based filtering on the MWE layer, using the mwetoolkit.
The goal of this step is to filter out all MWEs that do not contain a noun (e.g. by
and large), as well as MWEs that contain verbs (e.g. give birth). The resulting
English test corpus has 254 MWEs, and the resulting French test corpus has 849
MWEs.

6.2.2. Compositionality lexicons
In both rule-based and probabilistic methods, we consider the use of a composi-
tionality feature, which we derive from a lexicon of predicted compositionality
scores. The lexicon itself was constructed through a type-based extraction of
MWE candidates from the reference corpora. The extraction used a language-
specific pattern. For English, we allow adjective+noun pairs (e.g. red wine) as
well as noun+preposition+noun (e.g. cup of tea), and combinations thereof (e.g.
president of the United States). For French, we consider noun+adjective pairs
(e.g. vin blanc (lit. wine white)), adjective+noun pairs (e.g. longue durée, ‘long-
term’ (lit. long duration)), as well as noun+preposition+noun expressions (e.g.
mise à jour ‘update’ (lit. put to day)), including combinations of these (e.g. Jour-
nal officiel de la République Française ‘Official gazette of the French Republic’ (lit.
Newspaper official of the Republic French)).

For each language, we projected the extracted MWE candidates onto WaC
corpora5, and then constructed two DSMs instances (w2v–sg and PPMI–thresh),
with the same setup as in Section 4.4, using lemma.w1.d750. For each DSM, we
calculated the predicted compositionality score for each MWE candidate under
the uniform strategy. This resulted in a total of four lexicons of compositionality
(varying between two DSMs and two languages).

6.2.3. Rule-based identification
For each language, our baseline rule-based MWE identification algorithm con-
siders 7 different rule configurations. Two of these rules are directly based on
data from the training corpus, two are based on an approach of MWE identifica-
tion based on POS-tag patterns, and two are based on the previously described
compositionality lexicons (described in Section 6.2.2).

For the rules based on training data, annotated MWEs are extracted from the
training corpus and then filtered. We keep MWE candidates whose proportion
5 We use the same corpora as in Section 4.3.
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of annotated instances with respect to all occurrences in the training corpus is
above a threshold τ , discarding the rest. For the selection of thresholds, we refer
to Cordeiro, Ramisch, and Villavicencio (2016c), where we considered thresh-
olds τ ∈ {0%, 10%, 20%, . . . , 100%}, obtaining the best results for τ = 40% (con-
tiguous MWEs) and τ = 70% (gappy MWEs).

The last step of rule-based identification consists in projecting the filtered list
of MWE candidates on the test data, that is, we segment as MWEs the test token
sequences that are contained in the lexicon extracted from the training data.
These configurations are:

• TRAINCONTIG: Contiguous MWEs annotated in the training corpus at least
once are extracted and filtered with a threshold of τ = 40%. That is, we
create a lexicon containing all contiguous lemma+POS sequences for which
at least 40% of the occurrences in the training corpus were annotated (e.g.
we keep the expression last minute, as it was annotated in 5/6 = 83% of its
occurrences in the training data). The resulting lexicon is projected on the
test corpus using this rule: an MWE is deemed to occur if its component
words appear contiguously in a sentence.

• TRAINGAPPY: Non-contiguous MWEs are extracted from the training corpus
and filtered with a threshold of τ = 70%. The resulting MWEs are projected
on the test corpus using the following rule: an MWE is deemed to occur if
its component words appear sequentially with at most a total of 3 gap words
in between them. This method is not used for French, as only contiguous
MWEs were annotated in the corpus.

We also identify MWEs in the test corpus based on POS-tag patterns:

• PATTERNNOUN: We collect candidate nominal compounds from the test cor-
pus that never appear in the training corpus, and project them back on the
test corpus. For English, we focus on contiguous noun+noun sequences
(e.g. car wash), as they are the most prevalent in the DiMSUM corpus. For
French, we consider contiguous noun+adjective pairs.6 As the French cor-
pus does not distinguish common nouns from proper nouns, both are in-
cluded as part of this method.

• PATTERNPROPN: The English corpus distinguishes common nouns and proper
nouns through their POS tag. In this method, we annotate sequences of two
or more tokens POS tagged as proper nouns (PROPN), in an effort to identify
named entities such as New York City. We do not consider any thresholds,
as named entities are sparse and most occurrences from training do not
appear in test.

6 Syntactic structures involving combinations of nouns, adjectives and prepositions are rarely
annotated in this corpus.
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For each language, we also consider two methods of MWE identification based
on compositionality lexicons (Section 6.2.2). We annotate as MWE every con-
tiguous occurrence of an entry in the compositionality lexicon, as long as its
compositionality score is under a given threshold (CSβ ≤ threshold). We con-
sider thresholds between 0 (most restrictive, eliminates almost all MWEs from
the lexicon) and 1 (most permissive, keeps almost all MWEs in the lexicon).

• COMPW2V: Uses the compositionality lexicon built from w2v–sg.

• COMPPPMI: Uses the compositionality lexicon built from PPMI–thresh.

6.2.4. Probabilistic identification
We consider the following sets of features φ(T ):

• CTX: This is a set of contextual features which corresponds to the BEST2
set from Scholivet, Ramisch, and Cordeiro (2017), without the associa-
tion measures. The feature set contains 21 single-token, 2-gram and 3-
gram features (involving surface-form, lemma and POS tag of tokens). It
also includes features indicating: whether the current token has a hyphen,
whether it has a digit, and whether it is in upper-case form. We refer to the
paper for an in-depth feature analysis, as well as a broader evaluation of
this model for all categories of MWEs in the French corpus.

• AM: This set of features contains four association measures: PMI, MLE,
Student’s t and log-likelihood (see Section 2.2.3). These are the association
measures that were found to be the most impactful in Scholivet, Ramisch,
and Cordeiro (2017), when evaluating corpora with multiple categories of
MWEs.

• COMP: This set of features is based on the MWE scores from the composi-
tionality lexicons. We designate the set of features derived from w2v–sg as
COMPW2V, and the one derived from PPMI–thresh as COMPPPMI.

Different methods of CRF modeling may or may not be able to accurately
represent continuous features. In this work, we circumvent possible limitations
by quantizing every numerical score (obtained in AM and COMP) using a uniform
distribution; i.e. we assign an equal number of MWEs to 5 different bins based
on their numerical scores. We leave the evaluation of continuous CRF models
for future work (Huang, Xu, and Yu 2015).
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6.3. Results
For each reference corpus, we evaluate the MWE identification models on the
development part under a variety of setups, as described in Section 6.2. We
present the results below.

6.3.1. Rule-based identification: baseline
We start with an analysis of the baseline results obtained by the rule-based MWE
identifier for the English corpus. Table 6.1 presents the individual score ob-
tained by each rule. At a first glance, the most promising rules seem to be
TRAINCONTIG and PATTERNPROPN, both of which obtain a high level of precision. The
rule TRAINGAPPY also obtains a high precision, but it does not capture many occur-
rences of MWEs, obtaining low recall.

Rules Precision Recall F1
traincontig .843 .232 .364
traingappy .750 .012 .023
patternpropn .750 .272 .399
patternnoun .315 .181 .230

Table 6.1.: Baseline results for rule-based MWE identifier (English dataset).

We then consider the accuracy of MWE identification when multiple rules are
combined. In particular, we fix the highest-ranking rule TRAINCONTIG, and we
consider combinations involving the other rules. Table 6.2 presents the new re-
sults. The addition of the rule TRAINGAPPY does manage to slightly improve the
recall of TRAINCONTIG, but at the expense of a considerable decrease in the preci-
sion. The addition of the rule PATTERNPROPN improves both precision and recall,
reflecting the fact that named entities are sparse, and most occurrences were not
seen in training data. Similarly, the addition of the rule PATTERNNOUN does im-
prove recall, suggesting that many occurrences of noun+noun compounds were
not seen in the training data. However, many of these predictions are spurious
(i.e. they refer to productive combinations of nouns, such as dinner plate, which
were not annotated), and thus the precision of these 2 combined rules is sub-par.
The same behavior can be seen in the last line, where we consider all rules but
TRAINGAPPY. The combination achieves a considerably higher recall, but at the
expense of a reduction in the precision.

We similarly consider the baseline results obtained by the rule-based MWE
identifier for the French corpus. Table 6.3 presents the individual score obtained
by each rule. Differently from the English corpus, many of the MWEs in the
French development set had a counterpart in the training set, which contributed
to a TRAINCONTIG recall of more than 60% of the occurrences. The pattern-based
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Rules Precision Recall F1
traincontig + traingappy .831 .232 .363
traincontig + patternpropn .783 .484 .599
traincontig + patternnoun .491 .413 .449
traincontig + patternpropn + patternnoun .561 .665 .609

Table 6.2.: Combined baselines for rule-based MWE identifier (English dataset).

rule PATTERNNOUN does find a modest amount of new MWEs, but at the cost of a
very low precision. Therefore, when both rules are combined, the result is quite
a bit lower than the one obtained for TRAINCONTIG alone.

Rules Precision Recall F1
traincontig .862 .684 .763
patternnoun .081 .107 .092
traincontig + patternnoun .381 .792 .515

Table 6.3.: Baseline results for rule-based MWE identifier (French dataset).

6.3.2. Rule-based identification: compositionality scores
The rule-based method can also be applied with an external lexicon of MWEs.
We consider the two lexicons described in Section 6.2.2: COMPW2V and COMPPPMI.
These lexicons associate MWE candidates with an automatically-calculated com-
positionality score. We consider multiple variants of the MWE identification
model by applying different thresholds on what score constitutes an idiomatic
MWE. Lower thresholds should improve precision (as they only allow annota-
tion of highly non-compositional cases), while reducing the recall due to their
restrictiveness.

Table 6.4 presents the results obtained for the rule-based system with differ-
ent thresholds of compositionality scores in COMPW2V. As expected, lower thresh-
olds are associated with a lower recall in both languages. The precision, on the
other hand, presents an unexpected behavior: the lowest precision (indicated
through † on the table) is not associated with the more permissive threshold of
CSβ ≤ 1.000. In fact, in the case of the French corpus, the precision falls mono-
tonically as we consider stricter thresholds. In the case of the English corpus,
the lowest precision is associated with a middle-range threshold of CSβ ≤ 0.200,
but note that other more restrictive thresholds (indicated through ? on the ta-
ble) are much less reliable, as the number of MWEs predicted by the system is
very low (CSβ ≤ 0.100 has 37 predictions, CSβ ≤ 0.050 has 10 predictions, and
CSβ ≤ 0.000 has 4 predictions). In the case of French, the lowest threshold of
CSβ ≤ 0.000 produces 85 predictions.
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Threshold English corpus French corpus
Precision Recall F1 Precision Recall F1

CSβ ≤ 1.000 .152 .185 .167 .245 .482 .325
CSβ ≤ 0.500 .149 .181 .164 .245 .482 .325
CSβ ≤ 0.200 .098 † .055 .070 .176 .239 .203
CSβ ≤ 0.100 .216 ? .031 .055 .132 .111 .120
CSβ ≤ 0.050 .200 ? .008 .015 .128 .029 .048
CSβ ≤ 0.000 .250 ? .004 .008 .012 † .001 .002

Table 6.4.: Results for rule-based MWE identifier using compw2v.

We then consider whether a similar behavior can be observed when using com-
positionality scores from COMPPPMI. Table 6.5 presents the results obtained for
the rule-based system under these scores. As seen in Section 5.6.3, PPMI–thresh
scores tend to be lower than in other DSMs, which explains why the scores ob-
tained for high thresholds are almost identical. As in the case of COMPW2V above,
lower thresholds are associated with a lower recall in both languages. Moreover,
the lowest values of precision are once again associated with lower thresholds,
suggesting that this is a consistent property of both datasets. These precision
scores are more reliable than the ones from COMPW2V (for English, CSβ ≤ 0.000
has 77 predictions, CSβ ≤ 0.005 has 177 predictions and CSβ ≤ 0.010 has 261
predictions; while for French, CSβ ≤ 0.000 has 513 predictions, CSβ ≤ 0.005 has
1648 predictions and CSβ ≤ 0.010 has 2155 predictions).7

Threshold English corpus French corpus
Precision Recall F1 Precision Recall F1

CSβ ≤ 1.000 .118 .240 .158 .136 .522 .215
CSβ ≤ 0.500 .118 .240 .158 .136 .522 .215
CSβ ≤ 0.200 .118 .240 .158 .135 .519 .215
CSβ ≤ 0.100 .118 .236 .158 .134 .514 .213
CSβ ≤ 0.050 .100 .185 .130 .124 .461 .196
CSβ ≤ 0.020 .094 .138 .112 .090 .284 .137
CSβ ≤ 0.010 .077 † .079 .078 .060 .153 .087
CSβ ≤ 0.005 .090 .063 .074 .053 † .104 .070
CSβ ≤ 0.000 .104 .031 .048 .066 .040 .050

Table 6.5.: Results for rule-based MWE identifier using compppmi.

A possible explanation to the behavior observed above would be that these
datasets also annotate collocations along with idiomatic MWEs. We investigate
this hypothesis through a manual annotation of all 309 MWE candidates identi-
fied by COMPW2V. We classify each MWE occurrence in one of these 4 categories:

7 Note that, due to the nature of PPMI vs PMI, CSβ ≤ 0 is equivalent to CSβ = 0 for compppmi.
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• Productive expression: when the words are combined in a fully productive
manner (e.g. nice car). In a productive expression, any of the elements can
be replaced by a similar word without any loss of meaning or increased
markedness (e.g. nice car→ nice airplane, cool car).

• Collocation: when the choice of words is conventionalized, but is still com-
positional (e.g. test results). In these cases, changes in word order and
replacement by similar words or synonyms is possible, but has a distinctive
markedness (e.g. the expression results from the tests still refers to a similar
concept, but is not the preferred way of referring to test results).

• Idiomatic expression: when the whole expression is idiomatic, with at least
one of the words not contributing to a literal sense. This includes crystal-
lized metaphors (e.g. extra mile) and proper names (e.g. New Jersey).

• Other: for all other cases. This includes errors of POS tag (e.g. wind blows
classified as NOUN+NOUN), adjacent sequences of words that do not form a
phrase (e.g. home from work), and cases in which the intended meaning
was considered hard to judge even in the context of the original sentence
(e.g. an occurrence of good sport).

For the first three categories, we consider the fraction of their occurrences for
each threshold of predicted compositionality score (Table 6.6). In particular, we
consider the lines with CSβ ≤ 0.5 and CSβ ≤ 0.2. In the case of productive
MWEs, for these two thresholds, we can see that they present a similar rate of
occurrence among the different levels of compositionality score (around 55%).
The rate of occurrence of idiomatic expressions has a slight variation, with a
higher rate for CSβ ≤ 0.2, as expected. Note however the case of collocations:
they present a difference of more than 7% between the two thresholds.8 This
suggests that the difference between annotations is related to the fact that the
dataset includes many collocations, which is precisely what we filter out when
we use the compositionality scores.

Threshold Productive Collocation Idiomatic
CSβ ≤ 1.000 170/309 = 55.0% 61/309 = 19.7% 28/309 = 9.1%
CSβ ≤ 0.500 170/308 = 55.2% 60/308 = 19.5% 28/308 = 9.1%
CSβ ≤ 0.200 78/143 = 54.5% 17/143 = 11.9% 17/143 = 11.9%
CSβ ≤ 0.100 17/37 = 45.9% 6/37 = 16.2% 8/37 = 21.6%
CSβ ≤ 0.050 1/10 = 10.0% 3/10 = 30.0% 4/10 = 40.0%
CSβ ≤ 0.000 0/4 = 0.0% 1/4 = 25.0% 3/4 = 75.0%

Table 6.6.: Classification of MWE candidates identified by compw2v.

8 Note that the scores for CSβ ≤ 0.1 and for lower thresholds are less trustworthy due to the
smaller amount of predicted MWEs.
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6.3.3. Probabilistic identification
The previous section has considered the use of predicted compositionality scores
as part of a rule-based system of MWE identification. We considered different
thresholds on these scores, and we showed that higher thresholds produced bet-
ter results. An analysis of the data suggested that higher scores may also be
associated with higher rates of annotation (as they may indicate the presence
of collocations). Rather than pursuing the rule-based approach under differ-
ent ranges of threshold, we consider a different approach: using a probabilistic
classifier which considers these scores as features for the prediction of MWE oc-
currences.

We construct a CRF classifier based on different kinds of features. The features,
described in Section 6.2.4 can be purely contextual (CTX), or involve statistical
association measures (AM), or come from the previously defined lexicon of com-
positionality scores (COMPW2V and COMPPPMI).

Table 6.7 presents the results obtained for the evaluation against the English
reference corpus. Overall, there is a notable improvement in both precision
and recall when additional features are considered beyond CTX. Concerning
the recall, it can be seen that the use of association measures is redundant with
the scores from COMPW2V (as the recall in the second and third lines are identical,
and the one in the fourth line is only slightly higher). The scores from COMPPPMI,
on the other hand, contribute to a higher improvement in the recall than the
association measures. Moreover, this feature completely subsumes AM, as can be
seen from the fact that the recall in the last two lines is the same. Regarding the
precision, COMP scores are considerably higher than CTX alone, and to a certain
extent CTX + AM as well. The highest F1 score of .710 is better than the baseline
.609 from Section 6.3.1 by +10.1 percentage points.

Features Precision Recall F1
ctx .758 .567 .649
ctx + am .789 .602 .683
ctx + compw2v .797 .602 .686
ctx + compw2v + am .798 .606 .689
ctx + compppmi .811 .626 .707
ctx + compppmi + am .820 .626 .710

Table 6.7.: Results for probability-based MWE identifier (English dataset).

Table 6.8 presents the results obtained for the evaluation against the French
reference corpus. As in the case of the English data above, the probabilistic
method improves both precision and recall when we consider features beyond
CTX. However, the improvement for the French corpus is much less pronounced.
For recall, the greatest improvement happens with the addition of association
measures (with +2.2 percentage points), with COMP providing a smaller effect.
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In the case of the precision, only the addition of both AM and COMPPPMI provided
an improvement, and it was considerably smaller than the one seen for English.
Differently from what was observed for English, we see that the highest F1 score
obtained for the probabilistic method for French (.736) is unable to surpass the
rule-based baseline of .763 obtained through TRAINCONTIG in Section 6.3.1. Further
work should investigate this behavior through an analysis of the French corpus
annotations.

Features Precision Recall F1
ctx .817 .636 .715
ctx + am .818 .658 .730
ctx + compw2v .802 .649 .717
ctx + compw2v + am .812 .664 .731
ctx + compppmi .817 .650 .724
ctx + compppmi + am .826 .664 .736

Table 6.8.: Results for probability-based MWE identifier (French dataset).

6.4. Summary
This chapter evaluated the use of automatically predicted compositionality scores
as features in the task of MWE identification in two corpora. We started with a
rule-based baseline, where a contiguous identification of lemmas seen in the
training corpus was found to obtain high precision (higher than .8) for both
languages. In the case of the English data, the recall from this method alone was
weak (.23), while the recall obtained for French was considerably higher (.68),
making this a particularly hard baseline to beat in the latter language. Indeed,
while overall English results could be improved with the addition of a pattern
for matching proper nouns (and the precision score could further be improved
through noun–noun patterns), no F1 improvement was found for the French
corpus. The highest-scoring set of rules in this baseline obtained an F1 = .609 for
English and F1 = .763 for French.

We then considered the application of compositionality scores directly as part
of the rule-based method of MWE identification. We collected a lexicon of poten-
tial MWEs (based on NC syntactic patterns) and calculated their compositional-
ity scores. Different thresholds were then applied on the compositionality scores,
with the least-compositional MWEs being automatically annotated in the corpus
according to the rule-based method. The results we obtained were consistent
across the two languages and the two lexicons of compositionality: an over-
all low precision of identification, which surprisingly drops more harshly when
stricter thresholds of idiomaticity are considered. We presume that this effect is
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caused by a high rate of annotation of collocations, which tend to have higher
compositionality scores.

Another method of identifying MWEs would be through a probabilistic ap-
proach considering multiple features. We evaluate the performance of a CRF
trained on different sets of features, grouped as: lexical features, association
measures, and compositionality scores. The results were highly corpus-dependent:
while both association measures and compositionality scores contributed to higher
values of F1 for English, the improvement in French results was considerably
weaker. Moreover, while the highest CRF scores for English (.710) convincingly
beat the baseline above (by +10.1 percentage points), the highest scores for
French (.736) are actually lower than the baseline of purely identifying all MWEs
seen in training data (by −2.7 points). Further analysis would be required to
understand this discrepancy.

Concerning the hypothesis hpred-comp→ ident-accur that compositionality scores can
have a positive effect on the accuracy of MWE identification, we have obtained
mixed results. In the case of rule-based methods, we found no improvement
in prediction with more restrictive scores of compositionality (i.e. with a lower
threshold). In fact, results suggest that the English corpus contains a high
amount of annotated collocations, which would explain why a more strict thresh-
old does not improve on the results. However, when we considered a CRF, the
F1 score for MWE identification for the English and French corpus did present
an increase (in particular for the former language). In order to evaluate this
hypothesis in a more favorable setting, future work should consider corpora that
have been annotated particularly with idiomatic MWEs in mind. For example,
the corpus for the PARSEME shared task contains an MWE category called verbal
idiom, which is guaranteed to refer to expressions that humans have judged as
idiosyncratic (Savary, Ramisch, Cordeiro, Sangati, et al. 2017), and could be a
more close fit for the evaluation of this hypothesis.

One question that can be raised from the results in this chapter is whether
association measures can be helpful in the identification of MWEs. While we did
not find any correlation between human judgments of compositionality and a
measure of conventionalization (see hidiom ≈ distr.convent on page 61), note that the
distinction being done on the task of compositionality prediction is between com-
positional and idiomatic MWEs, while the annotations on these corpora might
tend toward a distinction between fully productive expressions and any kind of
conventionalized expressions (i.e. any kind of MWEs, in the broadest sense). In
this case, we hypothesize that the improvements in MWE identification caused by
association measures is related to their ability of capturing conventionalization.
Future analysis is still needed to verify whether this interpretation is correct. In
particular, if only the idiomatic MWEs in the corpora are taken into account (i.e.
compositional cases are filtered out), we do not expect association measures to
contribute with an improvement of MWE detection scores.

The MWE identification techniques presented in this chapter were implemented
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and are currently available as part of the mwetoolkit. A description of the im-
plementation as well as further results can have been published as Cordeiro,
Ramisch, and Villavicencio (2016c) and Scholivet, Ramisch, and Cordeiro (2017).
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7. Conclusions
This thesis has proposed a framework of multiword expression compositionality
prediction, and has investigated the impact of several variables in the accuracy
of the predictions. The predictive model is based on the manipulation of distri-
butional semantic models, i.e. vectorial representations of the meaning of words
and MWEs. We have presented three new datasets of human-rated composition-
ality scores, in three different languages, and evaluate the developed framework
using these resources. Finally, we also consider the use of predicted composition-
ality scores as features in the task of MWE identification.

Both the construction of the datasets and the subsequent evaluations of the
predictive model are associated with a set of hypotheses. Table 7.1 summarizes
these hypotheses and provides a reference to the page in which they have been
evaluated.

In the following section, we present the main contributions from this thesis,
including an overview of our findings for the evaluated hypotheses. We then
present some perspectives of future work.

7.1. Contributions
The contributions of this thesis can be summarized as follows:

• Three new human-rated datasets of compositionality scores.

• An analysis of the new datasets with regards to score distribution and cor-
relation with human variables.

• A new framework of compositionality prediction, which relies on a system-
atization of DSMs and parameters.

• A large-scale multilingual evaluation of the compositionality prediction frame-
work under a variety of settings.

• An extrinsic evaluation of predicted compositionality scores in the task of
MWE identification.

Many of the results presented in this thesis have also been presented in peer-
reviewed publications. We refer back to Section 1.4 (page 21) for the complete
list of publications. As for the contributions that have been presented in this
thesis, we described them in more detail below.

Chapter 3 presented the construction of three datasets of human-rated MWE
compositionality scores. The datasets encompass three languages (English, French
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Hypothesis Sub-hypothesis Evaluation

hidiom ≈ distr
hidiom ≈ distr.convent Pages 61, 106
hidiom ≈ distr.freq Pages 61, 103

haccur ← MWE

haccur ← MWE.diffic Page 108
haccur ← MWE.idiom Page 108
haccur ← MWE.convent Page 106
haccur ← MWE.freq Page 104

haccur ← DSM
haccur ← DSM.window Page 81
haccur ← DSM.dims Page 83

haccur ← corpus

haccur ← corpus.wordform Page 84
haccur ← corpus.size Page 86
haccur ← corpus.parallel Page 87

hstrat
hstrat.partial-info Page 90
hstrat.maxsim Page 91
hstrat.geom Page 94

hpred-comp ≈ comp hpred-comp ≈ comp Chapter 5
hpred-comp → ident-accur hpred-comp → ident-accur Chapter 6

Table 7.1.: Hypotheses evaluated in this thesis.

and Portuguese), and is the first dataset of MWE compositionality for two of
these languages. This resource is freely available, and can be used for evaluating
and training techniques that involve some type of semantic processing, such as
lexical substitution and text simplification.

We also analyzed the constructed datasets, whose scores were found to follow
a uniform distribution. Moreover, the three datasets were found to have compa-
rable levels of difficulty of annotation. We have evaluated the hypothesis that
MWE idiomaticity was correlated with distributional characteristics (hidiom ≈ distr).
In particular, we considered the correlation with an estimator of conventionaliza-
tion (hidiom ≈ distr.convent), which was shown not to be statistically significant. We
also considered the correlation with the frequency (hidiom ≈ distr.freq), which turned
out to be the opposite of what one would expect: higher-frequency MWEs are
actually more likely to be compositional, with lower-frequency ones being more
likely to be idiomatic. Some of these results were also presented in publica-
tions (Cordeiro, Ramisch, and Villavicencio 2016a; Wilkens, Zilio, Cordeiro, et
al. 2017; Ramisch, Cordeiro, Zilio, et al. 2016).

Chapter 4 presents a systematization of different DSMs and their parameters
along a common set of axes, which can be used to compare multiple distri-
butional representations in a multilingual setting. This chapter also proposes
a framework of compositionality prediction that can take into account all of
these configurations. The framework has also been described in a publication
(Cordeiro, Ramisch, and Villavicencio 2016b).
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The framework above was then used in a large-scale intrinsic evaluation of
multiple combinations of DSM and corpus parameters (Chapter 5). Here too we
investigate the correlation between MWE idiomaticity and distributional charac-
teristics (hidiom ≈ distr). As in the case of human judgments above, a correlation
with corpus frequency was also observed for model predictions. Moreover, while
human judgments did not correlate with a measure of conventionalization, we
did find a mild correlation in some system scores.

One of the goals of the large-scale evaluation was to determine the factors that
influence the accuracy of model predictions. One of the hypothesis we consid-
ered was that the accuracy should be influenced by MWE-specific characteristics
(haccur← MWE). We found that both idiomaticity (haccur← MWE.idiom) and difficulty
in human judgments of compositionality (haccur← MWE.diffic) are associated with
lower-quality predictions. On the other hand, MWE frequency (haccur← MWE.freq)
and conventionalization (haccur← MWE.convent) did not show clear signs of correla-
tion with model accuracy.

We also evaluate different variations of DSMs. Our hypothesis is that DSM-
specific configuration should play a crucial role in the accuracy of the results
(haccur← DSM). While we do find a high variety in the accuracy across different
DSMs, the results for the two DSM parameters we considered were somewhat
underwhelming. We found that a higher number of dimensions would consis-
tently contribute to a mild improvement in the accuracy (haccur← DSM.dims), but
no cross-lingual and unified recommendations could be attained regarding the
variation in context-window sizes (haccur← DSM.window).

Along with the impact from DSM-specific parameters, we also hypothesized an
influence of corpus-specific parameters in the accuracy of results (haccur← corpus).
Indeed, the results confirm that stopword removal and lemmatization are both
important steps of corpus preprocessing for this task, especially in the case of lan-
guages that are morphologically richer than English. Moreover, the use of POS
tags does not contribute to a higher quality in the representation of word vectors
for this task, possibly due to the fact that it increases the sparsity in co-occurrence
counts (haccur← corpus.wordform). An analysis of different corpus sizes also showed
that these may have a direct impact in the accuracy of results (haccur← corpus.size).
Moreover, a proposed technique of parallel predictions was shown to perform
equivalently to whole-corpus predictions, while allowing for the better utiliza-
tion of computational resources (haccur← corpus.parallel).

Concerning the predictive model itself, we have considered six different strate-
gies for deriving the compositionality scores. Our hypothesis is that different
strategies would provide a different view into the data, with some strategies be-
ing more accurate than others (hstrat). We evaluated two additive strategies that
are commonly used in the literature, but that had never been compared, and
we concluded that their results are mostly equivalent to each other. Two other
strategies considered only one of the words in the NCs (head or modifier). As ex-
pected, their accuracy suffered due to the limited information (hstrat.partial-info). We
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then evaluated two proposed strategies. We confirmed the hypotheses that the
maxsim strategy is better suited for compositional MWEs (hstrat.maxsim), while the
geom strategy optimizes towards idiomatic cases (hstrat.geom). However, in both
cases, results were quite similar to the standard additive strategies, suggesting
that the impact of strategy choice is not as strong as previously thought.

All of the experiments presented in Chapter 5 revolve around a common hy-
pothesis: model predictions are correlated with human-rated MWE composition-
ality (hpred-comp ≈ comp). Indeed, the variety of results obtained in this thesis all sug-
gest that this hypothesis is true. While the correlation obtained for predictions
using the worst DSM and corpus configurations may be considered weak, we
have shown that the appropriate configurations are able to consistently produce
predictions of compositionality that highly correlate with human judgments for
a variety of datasets across multiple languages. The identification of patterns in
the large space of more than 8 thousand configurations is one of the most salient
contributions of this thesis. Some of the results on the evaluation of composition-
ality prediction were also published in an ACL paper (Cordeiro, Ramisch, Idiart,
et al. 2016), and we are currently working on another paper to be submitted to
a journal.

Finally, one of the contributions of this thesis is the application of predicted
compositionality scores to the task of MWE identification (Chapter 6). The goal
was to evaluate the hypothesis hpred-comp→ ident-accur, which predicts an improve-
ment of MWE identification with the use of predicted compositionality scores as
internal features. In a rule-based algorithm, compositionality scores were not
found to be a good feature for the identification of annotated MWE occurrences,
likely due to the presence of collocations along with idiomatic MWEs in the anno-
tation. We then considered a probabilistic model of identification, in which the
results were mixed: while compositionality scores significantly improved the re-
sults over rule-based and probabilistic baselines for the English corpus, no such
improvement was found for the French corpus. Further analysis of this phe-
nomenon is left for future work. Intermediary results for this task have been
published in Cordeiro, Ramisch, and Villavicencio (2016c), and sent for publica-
tion in Scholivet, Ramisch, and Cordeiro (2017).

7.2. Future work
Concerning the research on compositionality datasets, we envisage the extension
of the dataset for each of the languages to allow better inter-language compa-
rability (e.g. EN red wine and its translations FR vin rouge and PT vinho tinto).
We also consider the collection of compositionality judgments for MWEs in addi-
tional languages, ideally from different language families for a broader general-
ization of results.

A different direction is to augment the dataset with judgments of similarity
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between compounds sharing the same head. For example, we can ask people to
judge the similarity of the word case in the expression nut case against the word
case in similar expressions with high PMI, such as criminal case, special case, ex-
ceptional case, upper case and business case. This judgment could also be extended
to all pairs of expressions, which would allow for semantic clusters (and where
clusters of a single expression could be taken as evidence of idiomaticity). This
approach could steer some of the research on compositionality in the direction
of lexical similarity, which is commonly used for the evaluation of DSMs in the
case of single words. It would also allow further investigation of polysemy in the
case of collocations sharing the same head (Moldovan, Badulescu, Tatu, et al.
2004; Kim and Baldwin 2013). Crucially, it would allow us to peek into the DSM
representation of similarly-looking compounds and to identify the ways in which
the vectors of these expressions denote their difference in idiomaticity.

This thesis presents an extensive evaluation of an additive model of compo-
sitionality prediction using the constructed datasets. Similar evaluations could
be done for other predictive techniques in the state of the art, such as the work
of Salehi, Cook, and Baldwin (2015). The examination of these works in the
context of our multilingual datasets would provide a more solid indication of
their accuracy. Moreover, outstanding cross-language differences between such
results and the results found in this thesis would provide further directions of
investigation.

Regarding the results obtained in our compositionality prediction methods, the
highest-scoring configurations in this thesis achieved reasonably high correlation
with human predictions. Nevertheless, some of the predicted MWE scores were
diametrically opposite to the average of human judgments. A cross-DSM analy-
sis of vector representations for these MWEs could reveal whether this behavior
stems from deficiencies in the underlying DSM vector representation (e.g. the
fact that all DSMs considered could only represent a single meaning per word).
If this is the case, modifications in the DSM could be investigated so as to pre-
vent the occurrence of such discrepant score predictions. The construction of
a dataset of compound head similarity such as the one suggested above could
facilitate the discovery of these DSM weak points.

As for the compositionality prediction methods themselves, we plan on exam-
ining the use of a voting scheme for combining the output of complementary
DSMs. Moreover, we also plan on combining additional sources of informa-
tion for building the models, such as multilingual lexicons or translation data
(Salehi, Cook, and Baldwin 2014), to improve even further the compositional-
ity prediction. We would also like to propose and evaluate more sophisticated
compositionality functions that take into account the unbalanced contribution of
individual words to the global meaning of a compound. This could be done e.g.
through a combination of the maxsim and geom strategies proposed in this thesis
(either on the level of the strategy itself, or in the form of an ensemble method
that combines the predictions of multiple strategies).

134



This thesis has employed predicted compositionality scores in an application
of MWE identification. We considered a rule-based and a probabilistic model,
both of which we evaluated under a base configuration as well as in two configu-
rations involving compositionality scores. For the probabilistic model, technical
considerations required the quantization of the predicted scores for a categori-
cal interpretation. The specific quantization used may have greatly limited the
results, and future works should consider different schemes of quantization. Al-
ternatively, this problem could be solved through the use of neural networks,
which can appropriately deal with real-valued data.

Considering the results obtained by the application of MWE identification, we
see that compositionality scores significantly contribute to better accuracy in the
case of the English corpus, but has a less pronounced effect on the French corpus.
Crucially, the probabilistic method fares worse than the baseline which identifies
only MWEs seen in the training data for the French language. Future work
would be needed to investigate this difference between the results for the two
languages.

Finally, we also consider other applications of compositionality scores. In par-
ticular, we would like to incorporate the collected scores into a machine trans-
lation system, as an indication of whether an expression should be translated
as a single indivisible unit. We also envisage the application of predicted MWE
compositionality scores in MWE-aware parsers, extending the approach used in
previous work on multiword prepositions (Nasr, Ramisch, Deulofeu, et al. 2015;
Constant and Nivre 2016; Waszczuk, Savary, and Parmentier 2016).

For the task of MWE identification, we would like to explore context-based
definitions of compositionality scores. We would also like to evaluate our frame-
work on verbal MWEs, such as the ones annotated for the PARSEME shared
task (Savary, Ramisch, Cordeiro, Sangati, et al. 2017). Verbal MWEs are an
understudied topic in the literature, and present some challenges that were
not present in the case of the nominal compounds we used in this thesis. In
particular, verbal MWEs can have extremely rigid or flexible morphosyntactic
characteristics1, and can often present discontinuities (e.g. take [something] into
account). Work on verbal MWEs could be pursued in the context long-term re-
search projects.

1 For example, compare the rigid expression bite me!, which does not even allow the inflection
of the verb, with the expression pay a visit, which even allows a change in word order in the
passive voice.

135



Bibliography
[ACT03] Anne Abeillé, Lionel Clément, and François Toussenel. “Building

a treebank for French”. In: Treebanks: building and using parsed
corpora. Ed. by Anne Abeillé. Dordrecht, The Netherlands: Kluwer
academic publishers, 2003, pp. 165–168 (cit. on p. 118).

[A+13] Shaishav Agrawal, Ankit Aggarwal, et al. “Hybrid Approach: A Solu-
tion for Extraction of Domain Independent Multiword Expression”.
In: Int J. of Technology Innovations and Research 5 (2013) (cit. on
p. 41).

[AP08] Ron Artstein and Massimo Poesio. “Inter-Coder Agreement for Com-
putational Linguistics”. In: Computational Linguistics 34.4 (2008),
pp. 555–596. ISSN: 0891-2017 (cit. on p. 33).

[BK10] Timothy Baldwin and Su Nam Kim. “Multiword Expressions”. In:
Handbook of Natural Language Processing, Second Edition. 2010,
pp. 267–292 (cit. on pp. 15, 32, 38, 39).

[BV02] Timothy Baldwin and Aline Villavicencio. “Extracting the Unextractable:
A Case Study on Verb-particles”. In: Proceedings of CoNLL 2002.
COLING-02. ACL, 2002, pp. 1–7. DOI: 10.3115/1118853.1118854.
URL: http://dx.doi.org/10.3115/1118853.1118854 (cit. on
p. 50).

[Ban06] Colin James Bannard. “Acquiring phrasal lexicons from corpora”.
PhD thesis. University of Edinburgh, 2006 (cit. on p. 50).

[BBL03] Colin Bannard, Timothy Baldwin, and Alex Lascarides. “A Statis-
tical Approach to the Semantics of Verb-particles”. In: Proceedings
of the ACL 2003 Workshop on Multiword Expressions: Analysis, Ac-
quisition and Treatment - Volume 18. MWE ’03. Sapporo, Japan:
Association for Computational Linguistics, 2003, pp. 65–72. DOI:
10.3115/1119282.1119291. URL: http://dx.doi.org/10.3115/
1119282.1119291 (cit. on p. 66).

[Bar+09] Marco Baroni, Silvia Bernardini, Adriano Ferraresi, et al. “The WaCky
wide web: a collection of very large linguistically processed web-
crawled corpora”. In: Language resources and evaluation 43.3 (2009),
pp. 209–226 (cit. on pp. 54, 71).

[BDK14] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. “Don’t
count, predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Baltimore, Maryland: Association for Computational

136

http://dx.doi.org/10.3115/1118853.1118854
http://dx.doi.org/10.3115/1118853.1118854
http://dx.doi.org/10.3115/1119282.1119291
http://dx.doi.org/10.3115/1119282.1119291
http://dx.doi.org/10.3115/1119282.1119291


Linguistics, June 2014, pp. 238–247. URL: http://www.aclweb.
org/anthology/P14-1023 (cit. on pp. 14, 46, 82).

[BL10] Marco Baroni and Alessandro Lenci. “Distributional memory: A gen-
eral framework for corpus-based semantics”. In: Computational Lin-
guistics 36.4 (2010), pp. 673–721 (cit. on pp. 14, 15).

[BZ10] Marco Baroni and Roberto Zamparelli. “Nouns are Vectors, Adjec-
tives are Matrices: Representing Adjective-Noun Constructions in
Semantic Space”. In: Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing. Cambridge, MA: Asso-
ciation for Computational Linguistics, Oct. 2010, pp. 1183–1193.
URL: http : / / www . aclweb . org / anthology / D10 - 1115 (cit. on
p. 43).

[Bic00] Eckhard Bick. “The parsing system Palavras”. In: Automatic Gram-
matical Analysis of Portuguese in a Constraint Grammar Framework
(2000) (cit. on p. 71).

[BPV14] Rodrigo Boos, Kassius Prestes, and Aline Villavicencio. “Identifica-
tion of Multiword Expressions in the brWaC”. In: Proceedings of
LREC 2014. ACL Anthology Identifier: L14-1429. ELRA, May 2014,
pp. 728–735. ISBN: 978-2-9517408-8-4. URL: http://www.lrec-
conf.org/proceedings/lrec2014/pdf/518_Paper.pdf (cit. on
pp. 54, 71).

[Bot+16] Stefan Bott, Nana Khvtisavrishvili, Max Kisselew, et al. “GhoSt-PV:
A Representative Gold Standard of German Particle Verbs”. In: COL-
ING 2016 (2016), p. 125 (cit. on p. 51).

[Bou09] Gerlof Bouma. “Normalized (pointwise) mutual information in col-
location extraction”. In: Proceedings of GSCL (2009), pp. 31–40 (cit.
on p. 32).

[BVA15] Antoine Bride, Tim Van de Cruys, and Nicholas Asher. “A Gener-
alisation of Lexical Functions for Composition in Distributional Se-
mantics.” In: ACL (1). 2015, pp. 281–291 (cit. on p. 15).

[BZL10] Fan Bu, Xiaoyan Zhu, and Ming Li. “Measuring the Non-compositionality
of Multiword Expressions”. In: Proceedings of the 23rd International
Conference on Computational Linguistics. COLING ’10. Beijing, China:
Association for Computational Linguistics, 2010, pp. 116–124. URL:
http://dl.acm.org/citation.cfm?id=1873781.1873795 (cit. on
pp. 18, 62).

137

http://www.aclweb.org/anthology/P14-1023
http://www.aclweb.org/anthology/P14-1023
http://www.aclweb.org/anthology/D10-1115
http://www.lrec-conf.org/proceedings/lrec2014/pdf/518_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/518_Paper.pdf
http://dl.acm.org/citation.cfm?id=1873781.1873795


[BL12] John A Bullinaria and Joseph P Levy. “Extracting semantic repre-
sentations from word co-occurrence statistics: stop-lists, stemming,
and SVD”. In: Behavior Research Methods 44.3 (2012), pp. 890–907.
ISSN: 1554-3528. DOI: 10.3758/s13428-011-0183-8. URL: http:
//dx.doi.org/10.3758/s13428-011-0183-8 (cit. on pp. 84, 85).

[CPN15] José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto
Navigli. “A Framework for the Construction of Monolingual and
Cross-lingual Word Similarity Datasets”. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Process-
ing (Volume 2: Short Papers). Beijing, China: Association for Compu-
tational Linguistics, July 2015, pp. 1–7. URL: http://www.aclweb.
org/anthology/P15-2001 (cit. on p. 14).

[Cap17] Fabienne Cap. “Show Me Your Variance and I Tell You Who You
Are–Deriving Compound Compositionality from Word Alignments”.
In: MWE 2017 (2017), p. 102 (cit. on p. 67).

[Cap+15] Fabienne Cap, Manju Nirmal, Marion Weller, et al. “How to Account
for Idiomatic German Support Verb Constructions in Statistical Ma-
chine Translation”. In: Proceedings of the 11th Workshop on Multi-
word Expressions. Denver, Colorado: Association for Computational
Linguistics, June 2015, pp. 19–28. URL: http://www.aclweb.org/
anthology/W15-0903 (cit. on pp. 15, 64).

[CD10] Marine Carpuat and Mona Diab. “Task-based evaluation of multi-
word expressions: a pilot study in statistical machine translation”.
In: Proc. of NAACL/HLT 2010. Los Angeles, CA, 2010, pp. 242–245
(cit. on p. 15).

[CH90] Kenneth Ward Church and Patrick Hanks. “Word association norms,
mutual information, and lexicography”. In: Computational linguis-
tics 16.1 (1990), pp. 22–29 (cit. on p. 31).

[CJ03] Massimiliano Ciaramita and Mark Johnson. “Supersense Tagging of
Unknown Nouns in WordNet”. In: Proceedings of the 2003 Confer-
ence on Empirical Methods in Natural Language Processing. EMNLP
’03. Stroudsburg, PA, USA: Association for Computational Linguis-
tics, 2003, pp. 168–175. DOI: 10 . 3115 / 1119355 . 1119377. URL:
https://doi.org/10.3115/1119355.1119377 (cit. on p. 43).
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APPENDIX

A. List of English Compounds
We present below the 90 nominal compounds in EN-comp90, along with their
human-rated compositionality scores. We refer to Reddy, McCarthy, and Man-
andhar (2011) for the other 90 compounds.

Compounds cWC
ancient history 1.95
armchair critic 1.33
baby buggy 3.94
bad hat 0.62
benign tumour 4.69
big fish 0.85
birth rate 4.60
black cherry 3.11
bow tie 4.25
brain teaser 2.65
busy bee 0.88
carpet bombing 1.24
cellular phone 3.78
close call 1.59
closed book 0.68
computer program 4.50
con artist 2.10
cooking stove 4.68
cotton candy 1.79
critical review 4.06
dead end 1.32
dirty money 2.21
dirty word 2.48
disc jockey 1.25
divine service 3.11
dry land 3.95
dry wall 3.33
dust storm 3.85
eager beaver 0.36
economic aid 4.33
elbow grease 0.56
elbow room 0.61
entrance hall 4.17
eternal rest 3.25
fish story 1.68
flower child 0.50
food market 3.82
foot soldier 1.95
front man 1.64
goose egg 0.48
grey matter 2.39
guinea pig 0.45
half sister 2.84
half wit 1.16
health check 4.17

Compounds cWC
high life 1.67
inner circle 1.56
inner product 3.00
insane asylum 3.95
insurance company 5.00
insurance policy 4.15
iron collar 3.88
labour union 4.76
life belt 2.84
life vest 3.44
lime tree 4.61
loan shark 1.00
loose woman 2.53
mail service 4.69
market place 3.00
mental disorder 4.89
middle school 3.84
milk tooth 1.43
mother tongue 0.59
narrow escape 1.75
net income 2.94
news agency 4.39
noble gas 1.18
nut case 0.44
old flame 0.58
old hat 0.35
old timer 0.89
phone book 4.25
pillow slip 3.70
pocket book 1.42
prison guard 4.89
prison term 4.79
private eye 0.82
record book 3.70
research lab 4.75
sex bomb 0.53
silver lining 0.35
sound judgement 3.39
sparkling water 3.14
street girl 3.16
subway system 4.63
tennis elbow 2.50
top dog 1.05
wet blanket 0.21
word painting 1.62
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B. List of French Compounds
We present below the 180 nominal compounds in FR-comp, along with their
human-rated compositionality scores.

Compounds cWC Gloss
activité physique 4.93 ‘physical activity’ (lit. activity physical)
année scolaire 3.60 ‘school year’ (lit. year scholar)
art contemporain 4.60 ‘contemporary art’ (lit. art contemporary)
baie vitrée 3.64 ‘open glass window’ (lit. opening glassy)
bas côté 1.31 ‘aisle’ (lit. low side)
beau frère 0.67 ‘brother-in-law’ (lit. beautiful brother)
beau père 1.18 ‘father-in-law’ (lit. beautiful father)
belle mère 0.80 ‘mother-in-law’ (lit. beautiful mother)
berger allemand 1.29 ‘German shepherd’ (lit. shepherd German)
bon sens 3.57 ‘common sense’ (lit. good sense)
bon vent 0.87 ‘good luck’ (lit. good/fair wind)
bon vivant 2.57 ‘bon vivant’ (lit. good "liver")
bonne humeur 4.53 ‘good mood’ (lit. good humor)
bonne poire 0.42 ‘sucker, soft touch’ (lit. good pear)
bonne pratique 4.47 ‘good practice’ (lit. good practice)
bouc émissaire 0.23 ‘scapegoat’ (lit. goat emissary)
bras cassé 0.57 ‘lame duck’ (lit. arm broken)
bras droit 0.40 ‘right arm’ (lit. arm right)
brebis galeuse 0.55 ‘black sheep’ (lit. sheep scabby)
carte blanche 0.20 ‘carte blanche’ (lit. card white)
carte bleue 1.94 ‘bank card’ (lit. card blue)
carte grise 3.08 ‘vehicle registration’ (lit. card grey)
carte vitale 1.70 ‘healthcare card’ (lit. card vital)
carton plein 0.78 ‘clean sweep’ (lit. cardboard full)
casque bleu 1.85 ‘UN peacekeeper’ (lit. helmet blue)
centre commercial 3.93 ‘shopping center’ (lit. center commercial)
cercle vicieux 2.15 ‘vicious circle’ (lit. circle vicious)
cerf volant 0.64 ‘kite’ (lit. deer flying)
chambre froide 4.27 ‘cold chamber’ (lit. chamber cold)
changement climatique 4.79 ‘climate change’ (lit. change climatic)
chapeau bas 0.64 ‘bravo’ (lit. hat low)
charge sociale 3.00 ‘social security contribution’ (lit. charge social)
chauve souris 0.33 ‘bat’ (lit. bald mouse)
chute libre 3.64 ‘free fall’ (lit. fall free)
club privé 4.58 ‘private club’ (lit. club private)
coffre fort 3.67 ‘safe, vault’ (lit. chest/box strong)
communauté urbaine 4.57 ‘urban community’ (lit. community urban)
conseil municipal 4.00 ‘city council’ (lit. council municipal)
coup dur 2.40 ‘hard blow’ (lit. blow hard)
coup franc 1.71 ‘free kick (soccer)’ (lit. blow free/frank)
courrier électronique 4.57 ‘e-mail’ (lit. mail electronic)
court circuit 1.69 ‘short circuit’ (lit. short circuit)
court métrage 2.36 ‘short film’ (lit. short length/footage)
crème fraîche 3.73 ‘French sour cream’ (lit. cream fresh)
crème glacée 4.75 ‘ice cream’ (lit. cream icy)
dernier cri 0.67 ‘latest, trendy’ (lit. last cry)
dernier mot 3.09 ‘final say’ (lit. last word)
directeur général 3.87 ‘chief executive officer’ (lit. director general)
disque dur 2.83 ‘hard drive’ (lit. disk hard)
douche froide 1.18 ‘damper’ (lit. cold shower)
droit fondamental 4.27 ‘fundamental right’ (lit. right fundamental)
développement économique 4.46 ‘economic development’ (lit. development economic)
eau chaude 5.00 ‘hot water’ (lit. water hot)
eau douce 2.33 ‘fresh water’ (lit. water sweet)
eau minérale 4.00 ‘mineral water’ (lit. water mineral)
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Compounds cWC Gloss
eau potable 5.00 ‘drinking water’ (lit. water potable)
eau vive 3.44 ‘jellyfish’ (lit. water living)
eau forte 0.90 ‘etching’ (lit. water strong)
eaux usées 4.54 ‘sewage’ (lit. waters used)
effet spécial 3.67 ‘special effect’ (lit. effect special)
expérience professionnelle 4.86 ‘professional experience’ (lit. experience professional)
fait divers 3.69 ‘news story’ (lit. fact diverse)
famille nombreuse 4.90 ‘large family’ (lit. family numerous)
faux ami 1.25 ‘false friend’ (lit. false friend)
faux cul 0.31 ‘hypocrite’ (lit. false arse)
faux pas 1.82 ‘blunder’ (lit. false step)
faux semblant 3.57 ‘false pretence’ (lit. false appearance)
feu rouge 2.60 ‘red traffic light’ (lit. fire red)
feu vert 0.71 ‘green light, permission’ (lit. fire green)
fil conducteur 1.25 ‘underlying theme’ (lit. thread conducting)
fleur bleue 0.45 ‘sentimental’ (lit. flower blue)
foie gras 4.54 ‘foie gras’ (lit. liver fatty)
fou rire 2.33 ‘giggle’ (lit. crazy laughter)
grand air 1.33 ‘outdoors’ (lit. big air)
grand jour 1.07 ‘broad daylight’ (lit. big day)
grand saut 2.17 ‘move forward’ (lit. big leap)
grand écran 3.14 ‘silver screen’ (lit. big screen)
grande entreprise 4.54 ‘big company’ (lit. big company)
grande surface 3.14 ‘department store’ (lit. big surface)
grippe aviaire 3.58 ‘avian flu’ (lit. flu avian)
gros mot 1.40 ‘swearword’ (lit. large word)
gros plan 1.87 ‘close-up’ (lit. large plan)
guerre civile 3.43 ‘civil war’ (lit. war civil)
haut parleur 1.83 ‘loudspeaker’ (lit. loud/high speaker)
haute mer 2.54 ‘high seas’ (lit. high sea)
haute montagne 4.13 ‘high mountains’ (lit. high mountain)
heure supplémentaire 4.00 ‘overtime hour’ (lit. hour extra)
huile essentielle 2.25 ‘essential oil’ (lit. oil essential)
idée reçue 2.90 ‘popular belief’ (lit. idea received)
insertion professionnelle 4.27 ‘professional insertion’ (lit. insertion professional)
intérêt général 4.36 ‘general interest’ (lit. interest general)
jeune fille 4.64 ‘young girl, maiden’ (lit. young girl)
journal officiel 4.50 ‘official gazette’ (lit. newspaper official)
langue française 4.85 ‘French language’ (lit. language French)
marée noire 3.00 ‘oil spill’ (lit. tide black)
match nul 2.46 ‘draw, stalemate’ (lit. match null)
matière grasse 5.00 ‘fat’ (lit. matter greasy)
matière grise 2.15 ‘grey matter’ (lit. material grey)
matière première 2.90 ‘raw material’ (lit. material primary)
mauvaise foi 2.38 ‘bad faith’ (lit. bad faith)
mauvaise langue 2.21 ‘gossip’ (lit. bad tongue)
montagnes russes 1.08 ‘roller coaster’ (lit. mountains Russian)
monument historique 4.79 ‘historical monument’ (lit. monument historical)
mort né 3.23 ‘stillborn’ (lit. dead born)
nouveau monde 2.73 ‘New World, Americas’ (lit. new world)
nuit blanche 1.07 ‘sleepless night’ (lit. night white)
numéro vert 1.50 ‘toll-free number’ (lit. number green)
ordure ménagère 4.20 ‘household waste’ (lit. garbage household)
organisation syndicale 4.90 ‘trade union’ (lit. organisation of-trade-union)
pages jaunes 3.00 ‘yellow pages’ (lit. pages yellow)
parachute doré 0.50 ‘golden parachute’ (lit. parachute golden)
parc naturel 4.33 ‘nature park’ (lit. park natural)
parti politique 4.88 ‘political party’ (lit. party political)
parti pris 2.69 ‘bias’ (lit. party taken)
partie fine 0.80 ‘orgy’ (lit. party fine/delicate)
petit ami 0.86 ‘boyfriend’ (lit. small friend)
petit beurre 1.64 ‘butter biscuit’ (lit. small butter)
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Compounds cWC Gloss
petit déjeuner 2.27 ‘breakfast’ (lit. small lunch)
petit joueur 1.00 ‘amateur’ (lit. small player)
petit pois 4.14 ‘pea’ (lit. small pea)
petit salé 1.15 ‘salted pork’ (lit. small salty)
petit écran 2.50 ‘television’ (lit. small screen)
petit enfant 2.79 ‘grandchild’ (lit. small child)
petit four 0.92 ‘type of dessert’ (lit. small oven)
petit nègre 0.50 ‘pidgin French’ (lit. little black-man)
petite annonce 2.69 ‘classified ad’ (lit. small announcement)
petite nature 0.47 ‘squeamish’ (lit. small nature)
pied noir 0.13 ‘French expats from Algeria’ (lit. foot black)
pièce montée 2.47 ‘tiered cake’ (lit. piece assembled)
pleine lune 3.54 ‘full moon’ (lit. full moon)
poids lourd 2.08 ‘truck’ (lit. weight heavy)
point faible 2.46 ‘weak point’ (lit. point weak)
point mort 1.00 ‘standstill’ (lit. point dead)
pot pourri 0.40 ‘medley’ (lit. pot/jar rotten)
poule mouillée 0.00 ‘coward’ (lit. chicken wet)
poupée russe 3.75 ‘Russian nesting doll’ (lit. doll Russian)
premier ministre 3.67 ‘first minister’ (lit. first minister)
premier plan 2.82 ‘foreground’ (lit. first plan)
première dame 1.92 ‘first lady’ (lit. first lady)
prince charmant 2.00 ‘Prince Charming’ (lit. prince charming)
prévision météorologique 4.70 ‘weather forecast’ (lit. forecast meteorological)
recherche scientifique 4.92 ‘scientific research’ (lit. research scientific)
ressources humaines 3.91 ‘human resources’ (lit. resources human)
rond point 3.18 ‘roundabout’ (lit. round point)
roulette russe 0.87 ‘Russian roulette’ (lit. roulette Russian)
réchauffement climatique 4.40 ‘global warming’ (lit. warming climatic)
région parisienne 4.43 ‘Paris region’ (lit. region Parisian)
réseau social 4.09 ‘social network’ (lit. network social)
sang froid 0.47 ‘self-control’ (lit. blood cold)
second degré 1.40 ‘tongue-in-cheek’ (lit. second degree)
second rôle 3.64 ‘supporting role’ (lit. second role)
septième ciel 0.21 ‘cloud nine’ (lit. seventh heaven)
service public 4.71 ‘public service’ (lit. service public)
site officiel 4.85 ‘official website’ (lit. website official)
soirée privée 4.53 ‘private party’ (lit. party private)
sucre roux 4.31 ‘brown sugar’ (lit. sugar ginger-colored)
sécurité routière 4.55 ‘road safety’ (lit. safety of-road)
sécurité sociale 3.67 ‘social security’ (lit. security social)
table basse 4.79 ‘coffee table’ (lit. table low)
table ronde 1.46 ‘round table’ (lit. table round)
tapis rouge 3.31 ‘red carpet’ (lit. carpet red)
temps fort 1.87 ‘key moment, highlight’ (lit. time strong)
temps mort 2.07 ‘wasted time, idleness’ (lit. time dead)
temps partiel 3.62 ‘part-time (work)’ (lit. time partial)
temps plein 3.08 ‘full-time (work)’ (lit. time full)
temps réel 3.00 ‘real time’ (lit. time real)
travaux publics 4.09 ‘public works’ (lit. works public)
trou noir 2.58 ‘black hole’ (lit. hole black)
trou normand 0.78 ‘palate cleanser’ (lit. hole Norman)
téléphone arabe 0.23 ‘Chinese whispers’ (lit. telephone Arabic)
téléphone portable 5.00 ‘cellphone’ (lit. telephone portable)
valeur sûre 3.64 ‘safe bet’ (lit. value safe/sure)
vie associative 4.00 ‘community life’ (lit. life associative)
vie quotidienne 4.31 ‘everyday life’ (lit. life daily)
vieille fille 2.42 ‘spinster’ (lit. old girl/maid)
vin blanc 3.80 ‘white wine’ (lit. wine white)
vin rouge 4.69 ‘red wine’ (lit. wine red)
yeux rouges 4.36 ‘red eyes’ (lit. eyes red)
école primaire 3.92 ‘primary school’ (lit. school primary)
étoile filante 3.20 ‘shooting star’ (lit. star slipping)
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C. List of Portuguese Compounds
We present below the 180 nominal compounds in PT-comp, along with their
human-rated compositionality scores.

Compounds cWC Gloss
abalo sísmico 4.42 ‘earthquake’ (lit. shock seismic)
acampamento militar 4.82 ‘military camp’ (lit. camp military)
agente secreto 4.58 ‘secret agent’ (lit. agent secret)
alarme falso 3.24 ‘false alarm’ (lit. alarm false)
algodão doce 1.28 ‘cotton candy’ (lit. cotton sweet)
alta temporada 2.04 ‘high season’ (lit. high season)
alta costura 1.52 ‘haute couture’ (lit. high sewing)
alto mar 1.35 ‘high seas’ (lit. high sea)
alto falante 0.88 ‘loudspeaker’ (lit. loud/high speaker)
amigo oculto 2.89 ‘secret Santa’ (lit. friend hidden)
amigo secreto 3.11 ‘secret Santa’ (lit. friend secret)
amor próprio 3.91 ‘self-esteem’ (lit. love own)
ano novo 4.29 ‘new year’ (lit. year new)
ar condicionado 2.44 ‘air conditioning’ (lit. air conditioned)
ar livre 1.95 ‘open air’ (lit. air free)
arma branca 0.65 ‘cold weapon’ (lit. weapon white)
ato falho 3.50 ‘Freudian slip’ (lit. act faulty)
banho turco 2.19 ‘Turkish bath’ (lit. bath Turkish)
batata doce 4.24 ‘sweet potato’ (lit. potato sweet)
bebida alcoólica 5.00 ‘alcoholic drink’ (lit. drink alcoholic)
bode expiatório 0.47 ‘scapegoat’ (lit. goat expiatory)
braço direito 0.57 ‘right arm’ (lit. arm right)
buraco negro 2.88 ‘black hole’ (lit. hole black/dark)
café colonial 2.70 ‘afternoon tea’ (lit. breakfast colonial)
caixa forte 3.19 ‘safe, vault’ (lit. box strong)
caixa preta 0.94 ‘black box’ (lit. box black)
caixeiro viajante 3.43 ‘traveling salesman’ (lit. clerk traveling)
carne branca 2.85 ‘white meat’ (lit. meat white)
carne vermelha 3.66 ‘red meat’ (lit. meat red)
carro forte 2.62 ‘armored car’ (lit. car strong)
carta aberta 3.64 ‘open letter’ (lit. letter open)
centro comercial 3.68 ‘shopping mall’ (lit. center commercial)
centro espírita 3.43 ‘Spiritualist center’ (lit. center spiritualist)
cerca viva 3.58 ‘hedge’ (lit. fence living)
cheiro verde 0.67 ‘parsley’ (lit. smell green)
circuito integrado 4.52 ‘integrated circuit’ (lit. circuit integrated)
classe executiva 2.67 ‘business class’ (lit. class executive)
coluna social 2.45 ‘gossip column’ (lit. column social)
colégio militar 4.88 ‘military high-school’ (lit. high-school military)
comida caseira 4.11 ‘homemade food’ (lit. food homemade)
companhia aérea 3.11 ‘airline’ (lit. company aerial)
conta corrente 2.71 ‘checking account’ (lit. account current)
coração partido 1.06 ‘broken heart’ (lit. heart broken)
corda bamba 1.31 ‘tightrope, bad situation’ (lit. rope wobbly)
cordas vocais 2.32 ‘vocal chords’ (lit. chords vocal)
curto circuito 1.96 ‘short circuit’ (lit. short circuit)
câmara fria 4.65 ‘cold chamber’ (lit. chamber cold)
céu aberto 1.68 ‘outdoors, open air’ (lit. sky open)
círculo vicioso 2.17 ‘vicious circle’ (lit. circle vicious)
círculo virtuoso 2.39 ‘virtuous circle’ (lit. circle virtuous)
deputado federal 4.92 ‘federal deputy’ (lit. deputy federal)
desfile militar 4.93 ‘military parade’ (lit. parade military)
direitos humanos 3.86 ‘human rights’ (lit. rights human)
disco rígido 2.76 ‘hard drive’ (lit. disk rigid)
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Compounds cWC Gloss
disco voador 2.94 ‘flying saucer’ (lit. disk flying)
efeitos especiais 3.37 ‘special effects’ (lit. effects special)
elefante branco 0.16 ‘white elephant’ (lit. elephant white)
escada rolante 3.85 ‘escalator’ (lit. stair rolling)
estrela cadente 2.52 ‘shooting star’ (lit. star falling)
exame clínico 4.75 ‘clinical examination’ (lit. examination clinical)
exames laboratoriais 4.90 ‘laboratory tests’ (lit. examinations laboratory)
farinha integral 4.72 ‘wholemeal flour’ (lit. flour integral)
febre amarela 1.43 ‘yellow fever’ (lit. fever yellow)
ficha limpa 2.97 ‘clean criminal records’ (lit. file clean)
fila indiana 1.17 ‘single file’ (lit. queue Indian)
fio condutor 1.58 ‘underlying theme’ (lit. thread conductor)
força bruta 3.33 ‘brute force’ (lit. force brute)
gatos pingados 0.00 ‘a few people’ (lit. cats dropped)
gelo seco 2.33 ‘dry ice’ (lit. ice dry)
golpe baixo 2.03 ‘low blow’ (lit. punch low)
governo federal 4.97 ‘federal government’ (lit. government federal)
gripe aviária 3.11 ‘avian flu’ (lit. flu avian)
gripe suína 2.48 ‘swine flu’ (lit. flu swine)
guarda florestal 4.16 ‘forest ranger’ (lit. guard forest)
jogo duro 1.13 ‘rough play’ (lit. game hard)
juízo final 3.60 ‘doomsday’ (lit. judgement final)
leite integral 4.67 ‘whole milk’ (lit. milk integral)
lista negra 1.60 ‘black list’ (lit. list black)
livre-docente 2.63 ‘professor’ (lit. free lecturer)
livro aberto 0.79 ‘open book’ (lit. book open)
longa data 1.63 ‘longtime’ (lit. date long)
longa-metragem 0.96 ‘feature film’ (lit. long length/footage)
lua cheia 3.52 ‘full moon’ (lit. moon full)
lua nova 1.40 ‘new moon’ (lit. moon new)
lugar comum 1.52 ‘cliché’ (lit. place common)
magia negra 1.72 ‘black magic’ (lit. magic black)
mar aberto 2.87 ‘open sea’ (lit. sea open)
maré alta 4.03 ‘high tide’ (lit. tide high)
maré baixa 4.18 ‘low tide’ (lit. tide low)
massa cinzenta 1.69 ‘grey matter’ (lit. mass grey)
mau contato 2.84 ‘faulty contact’ (lit. bad contact)
mau humor 4.29 ‘bad mood’ (lit. bad humour)
mau olhado 1.97 ‘evil eye’ (lit. bad glance)
mercado negro 1.06 ‘black market’ (lit. black market)
mesa redonda 1.10 ‘round table’ (lit. table round)
montanha russa 0.31 ‘roller coaster’ (lit. mountain Russian)
má fé 1.62 ‘bad faith’ (lit. bad faith)
máquina virtual 3.76 ‘virtual machine’ (lit. machine virtual)
mão fechada 1.06 ‘stingy’ (lit. hand closed)
navio negreiro 3.52 ‘slave ship’ (lit. ship black-slave)
novo mundo 2.29 ‘new world’ (lit. new world)
novo rico 3.62 ‘new rich, new money’ (lit. new rich)
nó cego 0.74 ‘difficult situation’ (lit. knot blind)
núcleo atômico 4.93 ‘atomic nucleus’ (lit. nucleus atomic)
olho gordo 0.28 ‘evil eye’ (lit. eye fat)
olho mágico 0.27 ‘peephole’ (lit. eye magic)
olho nu 2.15 ‘naked eye’ (lit. eye naked)
ovelha negra 0.45 ‘black sheep’ (lit. sheep black)
papel higiênico 4.27 ‘toilet paper’ (lit. paper hygienic)
paraíso fiscal 1.47 ‘tax haven’ (lit. paradise fiscal)
pastor alemão 0.90 ‘German shepherd’ (lit. shepherd German)
pau mandado 0.30 ‘subservient, stooge’ (lit. stick ordered)
pavio curto 0.80 ‘short-tempered’ (lit. fuse short)
pente fino 0.53 ‘careful research’ (lit. comb thin)
peso morto 0.90 ‘dead weight’ (lit. weight dead)
planta baixa 0.74 ‘floor plan’ (lit. plant short)
ponto cego 1.92 ‘blind spot’ (lit. point blind)
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Compounds cWC Gloss
ponto forte 1.51 ‘strong point’ (lit. point strong)
ponto fraco 2.27 ‘weak point’ (lit. point weak)
poção mágica 3.29 ‘magic potion’ (lit. potion magic)
prato feito 3.14 ‘blue-plate special’ (lit. plate ready-made)
primeira infância 3.70 ‘early childhood’ (lit. first infancy)
primeira-mão 0.71 ‘first hand’ (lit. first hand)
primeira necessidade 3.97 ‘first necessity’ (lit. first necessity)
primeira-dama 1.52 ‘first lady’ (lit. first dame)
primeiro-ministro 2.87 ‘first minister’ (lit. first minister)
primeiro plano 2.00 ‘forefront’ (lit. first plan)
processo seletivo 4.78 ‘selection process’ (lit. process selective)
pronto socorro 2.76 ‘first-aid posts’ (lit. ready aid)
príncipe encantado 1.72 ‘prince charming’ (lit. prince enchanted)
puro sangue 1.55 ‘pure blood’ (lit. pure blood)
pão-duro 0.12 ‘stingy’ (lit. bread hard)
pé quente 0.09 ‘lucky’ (lit. foot hot)
pé-direito 0.10 ‘ceiling height’ (lit. foot right)
pé frio 0.23 ‘unlucky’ (lit. foot cold)
pólo aquático 2.87 ‘water polo’ (lit. aquatic pole/polo)
quadro negro 2.94 ‘blackboard’ (lit. board black)
queda livre 3.48 ‘free fall’ (lit. fall free)
quinta categoria 1.00 ‘second-rate’ (lit. fifth category)
rede social 3.27 ‘social network’ (lit. network social)
regime político 4.00 ‘political system’ (lit. regime political)
relógio analógico 4.92 ‘analog clock’ (lit. clock analog)
relógio biológico 2.12 ‘biological clock’ (lit. clock biological)
reta final 1.12 ‘final stretch’ (lit. straight line final)
roda gigante 4.20 ‘Ferris wheel’ (lit. wheel giant)
roleta russa 0.29 ‘Russian roulette’ (lit. roulette Russian)
saia justa 0.37 ‘tight spot’ (lit. skirt tight)
sala cirúrgica 4.47 ‘operating room’ (lit. room surgical)
salão paroquial 4.52 ‘parish hall’ (lit. hall parish)
sangue azul 0.15 ‘blue-blooded’ (lit. blood blue)
sangue frio 0.52 ‘cold-blooded’ (lit. blood cold)
sangue quente 0.87 ‘hot-blooded’ (lit. blood hot)
secretária eletrônica 2.52 ‘answering machine’ (lit. secretary electronic)
segundas intenções 2.11 ‘ulterior motives’ (lit. second intentions)
segundo plano 1.55 ‘aside, in the background’ (lit. second plan)
sentença judicial 4.67 ‘court ruling’ (lit. sentence judicial)
sexto sentido 1.40 ‘sixth sense’ (lit. sixth sense)
sinal verde 1.39 ‘green lights’ (lit. signal green)
sistema político 4.36 ‘political system’ (lit. system political)
sétima arte 2.19 ‘seventh art’ (lit. seventh art)
tapete vermelho 3.76 ‘red carpet’ (lit. carpet red)
tartaruga marinha 5.00 ‘sea turtle’ (lit. turtle marine)
tela plana 4.96 ‘flat screen TV’ (lit. screen flat)
tempo real 2.81 ‘real time’ (lit. time real)
terceira idade 1.70 ‘elder’ (lit. third age)
terceira pessoa 2.00 ‘third person’ (lit. third person)
tiro livre 1.58 ‘free kick (soccer)’ (lit. shot free)
trabalho braçal 3.55 ‘manual labor’ (lit. work arm)
trabalho escravo 4.24 ‘slave work’ (lit. work slave)
vaca louca 1.23 ‘mad cow’ (lit. cow crazy/mad)
vinho branco 3.40 ‘white wine’ (lit. wine white)
vinho tinto 4.08 ‘red wine’ (lit. wine dark-red)
vista grossa 0.50 ‘turn a blind eye’ (lit. vision thick)
viva voz 1.70 ‘aloud’ (lit. live voice)
voto secreto 4.82 ‘secret ballot’ (lit. vote secret)
vôo doméstico 3.41 ‘domestic flight’ (lit. flight domestic)
vôo internacional 4.96 ‘international flight’ (lit. flight international)
água doce 1.45 ‘fresh water’ (lit. water sweet)
água mineral 4.21 ‘mineral water’ (lit. water mineral)
ônibus executivo 2.63 ‘minibus’ (lit. bus executive)
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