
HAL Id: tel-01729126
https://theses.hal.science/tel-01729126

Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Browser Fingerprinting : Exploring Device Diversity to
Augment Authentification and Build Client-Side

Countermeasures
Pierre Laperdrix

To cite this version:
Pierre Laperdrix. Browser Fingerprinting : Exploring Device Diversity to Augment Authentification
and Build Client-Side Countermeasures. Cryptography and Security [cs.CR]. INSA de Rennes, 2017.
English. �NNT : 2017ISAR0016�. �tel-01729126�

https://theses.hal.science/tel-01729126
https://hal.archives-ouvertes.fr

Browser Fingerprinting:
Exploring Device

Diversity to Augment
Authentication and

Build Client-Side
Countermeasures

Thèse soutenue le 03.10.2017
devant le jury composé de :

Ludovic ME
Professeur, CentraleSupélec / président

Frank PIESSENS
Professeur, KU Leuven / rapporteur
Claude CASTELLUCCIA
Directeur de recherche, INRIA Grenoble / rapporteur
Nataliia BIELOVA
Chargé de recherche, INRIA Sophia Antipolis / examinateur
Gildas AVOINE
Professeur, INSA Rennes / Co-encadrant de thèse
Benoit BAUDRY
Directeur de recherche, INRIA Rennes / Directeur de thèse

THESE INSA Rennes
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’INSA RENNES

Spécialité : Informatique

présentée par

Pierre LAPERDRIX
ECOLE DOCTORALE : MathSTIC
LABORATOIRE : IRISA

Browser Fingerprinting: Exploring Device
Diversity to Augment Authentication and

Build Client-Side Countermeasures

Pierre LAPERDRIX

Document protégé par les droits d’auteur

Résumé en français

Contexte

L’arrivée de l’Internet a bousculé notre société à l’aube du 21e siècle. Nos habitudes se sont méta-
morphosées pour prendre en compte cette nouvelle manière de communiquer et de partager avec
le monde. Grâce aux technologies qui en constituent ses fondations, le web est une plateforme
universelle. Que vous utilisiez un PC de bureau sous Windows, un PC portable sous MacOS, un
serveur sous Linux ou une tablette sous Android, chacun a les moyens de se connecter à ce réseau
de réseaux pour partager avec le monde. Pour optimiser au maximum l’expérience de navigation
de chaque utilisateur, les navigateurs web partagent des informations sur leur environnement. La
résolution d’écran, le système d’exploitation ou le fuseau horaire sont quelques exemples d’attributs
qui sont accessibles librement au sein d’un navigateur web. En 2010, grâce au site Panopticlick,
Peter Eckersley de l’Electronic Frontier Foundation (EFF) a enquêté sur la diversité des informa-
tions accessibles à partir d’un navigateur web. En collectant une liste d’une dizaine d’attributs, il a
été capable d’identifier de façon unique 83.6% des navigateurs dans un échantillon de 470 161. Ce
pourcentage est plus élevé si les plugins Flash et Java sont installés, car ils permettent d’accéder
à encore plus d’informations. Le domaine du browser fingerprinting est né de cette étude. A
partir des données qu’il a récupérées, Eckersley a montré qu’il y avait une très grande diversité
de terminaux connectés à l’Internet. Il en a conclu que cette technique pourrait être utilisée pour
identifier de façon unique un usager sur Internet, contournant ainsi tous les systèmes de protec-
tion actuels contre le traçage sur Internet. Comme le browser fingerprinting est une technique
complètement invisible et transparente, l’utilisateur n’a aucun moyen de s’y opposer. Il n’est pas
non plus au courant quand un tel processus s’exécute dans son navigateur. L’impact d’une telle
pratique sur le respect de la vie privée en ligne est alors très important.

Sept ans se sont écoulés depuis l’étude initiale d’Eckersley. Le browser fingerprinting a dé-
passé le stade d’un simple prototype de laboratoire et est devenu un domaine à part entière. La
recherche sur ce sujet est aujourd’hui alimentée par le monde académique mais aussi par des acteurs
industriels. Les piliers du web l’utilisent pour renforcer la sécurité de leurs services. Les agences
publicitaires y voient une alternative pour traquer les usagers sur Internet. Les législateurs et
les organisations non gouvernementales le considèrent déjà comme une menace pour la vie privée.
Les personnes responsables de la sûreté de systèmes et de réseaux critiques sont conscients des
possibilités d’attaques ciblées émanant de cette collecte d’informations. L’impact économique et
sociétal du browser fingerprinting s’est très largement étendu ces dernières années mais de nom-
breuses questions sur le sujet se trouvent encore sans réponses. Ce qui est possible avec le browser
fingerprinting aujourd’hui est très différent de ce qui était possible en 2010. Les organisations de
standardisation du web et les développeurs de navigateurs repoussent constamment les limites du
web et, par la même occasion, façonnent les mécanismes derrière cette technique.

Le browser fingerprinting est un domaine fascinant qui en est encore à ses balbutiements. Avec
cette thèse, nous contribuons à l’écriture des premières pages de son histoire en fournissant une
vue d’ensemble du domaine, de ses fondations jusqu’à l’impact des nouvelles technologies du web
sur cette technique. Nous nous tournons aussi vers le futur en explorant une nouvelle facette
du domaine pour améliorer la sécurité des comptes sur Internet dans une période où le nombre
d’attaques en ligne sur les bases de données ne cesse de croître.

i

ii RÉSUMÉ EN FRANÇAIS

Comprendre le browser fingerprinting avec AmIUnique

Depuis l’étude d’Eckersley qui a révélé le fingerprinting en 2010, les navigateurs web ont subi
d’importantes transformations. Le développement de HTML5 a repoussé les limites de ce qui
est possible sur Internet avec l’introduction de nouvelles interfaces de programmation comme le
Canvas, WebGL ou Web Audio. La navigation sur mobiles a aussi explosé dans la dernière décennie
avec la démocratisation des smartphones et des tablettes. Pour faire suite à l’étude Panopticlick
de 2010 et pour comprendre le statut actuel du browser fingerprinting avec toutes ces évolutions
récentes, nous avons lancé en Novembre 2014 le site AmIUnique.org. Quand un utilisateur s’y
connecte, le serveur récupère l’empreinte du navigateur et la compare à toutes les empreintes
récoltées précédemment. L’objectif du site web est double :

• Récupérer de vraies empreintes pour comprendre leur composition et pour détecter les at-
tributs les plus discriminants

• Informer les utilisateurs du fingerprinting et plus généralement du traçage sur Internet

Aux termes de cette étude en mai 2017, plus de 385 000 empreintes ont été récoltées. En
février 2016, nous avons réalisé une analyse de 118 934 empreintes pour comprendre la diversité
des appareils connectés à Internet, et certains des résultats obtenus nous ont surpris.

Comparaison avec Panopticlick
Pour comparer le jeu de données obtenues par le site AmIUnique avec celui de Panopticlick, nous
avons calculé l’entropie de chaque attribut collecté. Les résultats ont été immédiats : on observe
un niveau d’entropie similaire entre les deux études sauf pour la liste des polices de caractère et la
liste des plugins. Ces chiffres s’expliquent par l’absence de plugins et de Flash sur les terminaux
mobiles.

Impact des nouveaux attributs
Grâce aux données récupérées sur AmIUnique, nous avons été les premiers à enquêter sur l’impact
de l’interface Canvas et WebGL. Pour les tests s’appuyant sur des rendus de canvas, l’entropie est
dans le top 5 des attributs les plus discriminants. La force du canvas fingerprinting vient du fait
qu’il s’appuie sur différentes couches du système : le navigateur, le système d’exploitation et même
le matériel de l’appareil étudié. Pour les tests s’appuyant sur l’interface WebGL, on peut récupérer
des informations exactes sur le modèle de la carte graphique utilisé. En revanche, le défaut majeur
de cet attribut est qu’il n’est pas disponible dans tous les navigateurs. Bien que Chrome y donne
accès par défaut, le navigateur Firefox masque la vraie valeur pour des raisons de sécurité.

Fingerprinting de terminaux mobiles
La question de la viabilité du browser fingerprinting sur des terminaux mobiles a été également
étudiée. Vu que les utilisateurs ne conçoivent pas eux-mêmes leurs smartphones, existe-t-il une
diversité suffisante des appareils mobiles pour pouvoir différencier un utilisateur d’un autre ? Si
deux personnes achètent exactement le même modèle de téléphone, est-il possible de les distinguer
? À notre grande surprise, la réponse est oui. Cependant, là où les plugins et les polices de
caractères étaient très discriminants sur les PCs de bureau, c’est une tout autre histoire pour les
terminaux mobiles. Tout d’abord, les en-têtes user-agent sont beaucoup plus précis et détaillés
sur smartphones. En plus de renseigner la plateforme et la version exacte du navigateur, certains
appareils indiquent la version exacte du firmware utilisé. Certaines applications ajoutent même de
nouvelles informations auxquelles un simple navigateur n’a normalement pas accès. Un exemple
vient de l’application Facebook qui ajoute l’opérateur de téléphonie de l’utilisateur dans le user-
agent. Toutes ces informations contenues dans le user-agent sont d’autant plus de données qui
peuvent servir à différencier un appareil d’un autre. Enfin, le canvas fingerprinting sur terminaux
mobiles est plus discriminant que sur PCs grâce à la présence d’émojis. Il n’est pas rare de voir
un constructeur de téléphones fournir sa propre police d’émojis. Cette petite image qui représente
une émotion facilite encore plus la distinction entre deux appareils.

iii

Concevoir des contremesures adaptées

Défis

Une contremesure est une solution qui empêche l’identification de terminaux par la collecte d’empreintes.
Concevoir une contremesure contre le browser fingerprinting est difficile, car il faut trouver le juste
équilibre entre protection et utilisabilité. Nous listons ci-dessous les propriétés à respecter pour
qu’une contremesure soit efficace :

• La contremesure ne doit pas empêcher la navigation. Comme une empreinte de navigateur
reflète l’environnement logiciel et matériel d’un appareil, la modifier arbitrairement peut tout
simplement empêcher son utilisateur de naviguer sur Internet. Les développeurs doivent donc
restreindre le champ d’action de leur solution pour éviter de tels problèmes.

• La contremesure ne doit pas être détectable. Pour être efficace, aucun site tiers ne doit
détecter qu’une solution contre le fingerprinting est active. Notamment, un effort tout parti-
culier doit être fait sur la couverture des éléments modifiés. Si la couverture n’est pas totale,
la contremesure est alors détectable. Par exemple, la plateforme d’un appareil est présente à
la fois dans l’en-tête user-agent mais aussi dans la propriété JavaScript platform. Si une solu-
tion modifie l’un mais pas l’autre, cela va créer une incohérence détectable dans l’empreinte
collectée et l’utilisateur sera alors plus visible que s’il n’utilisait aucune protection.

• La contremesure doit empêcher l’identification d’un appareil sur plusieurs jours. Pour être
efficace, l’empreinte présentée doit changer suffisamment souvent pour empêcher de suivre
un utilisateur sur Internet.

• La contremesure doit fonctionner de façon transparente. Pour fournir la meilleure expérience
utilisateur possible, il ne doit pas être nécessaire de programmer des procédures de protection
complexes. La solution de protection doit agir de la façon la plus automatique possible pour
qu’un utilisateur sans connaissances particulières puisse protéger ses activités sur Internet.

Suivre ces procédures pendant la conception d’une contremesure est compliqué. Les solutions
présentes dans l’état de l’art le prouvent, car certaines fournissent une très bonne protection mais
un confort de navigation très limité. D’autres ont un champ d’action très restreint mais produisent
des empreintes incohérentes et donc détectables par un site tiers. Avec Blink et FPRandom, nous
apportons des solutions nouvelles pour répondre à ces problèmes.

Blink

Comme décrit dans la section précédente, de nombreuses protections contre le browser fingerprint-
ing présentent un problème de couverture d’attributs. Les navigateurs évoluent aujourd’hui à une
telle vitesse qu’il est très compliqué de maintenir à jour des solutions de protection. Avec Blink,
nous adoptons une approche radicalement différente de celles déjà existantes. Au lieu de modifier
artificiellement le contenu d’une empreinte de navigateur, nous synthétisons de toutes pièces des
environnements de navigation aléatoires et uniques. L’avantage de cette approche est qu’elle ne
crée aucune incohérence dans l’empreinte, car elle s’appuie sur de vrais composants qui tournent
réellement sur l’appareil de l’utilisateur. Grâce à une base de données composée de 4 systèmes
d’exploitation, 6 navigateurs, 39 plugins et 2762 polices de caractères, Blink synthétise des envi-
ronnements de navigation très diversifiés en assemblant des composants à la volée. Blink empêche
donc le suivi d’un utilisateur entre deux sessions de navigation, car les empreintes présentées seront
tellement différentes d’une session à l’autre qu’aucun site tiers ne pourra les lier. En revanche, le dé-
faut majeur de Blink est qu’il occupe un espace disque non négligeable. Pour rendre cette approche
possible, il faut que la base de données soit physiquement présente sur le disque de l’utilisateur et
comparée au poids d’un simple navigateur, la solution présentée est malheureusement beaucoup
plus lourde.

iv RÉSUMÉ EN FRANÇAIS

FPRandom

Une des propriétés clés du browser fingerprinting concerne la stabilité des attributs collectés.
Plusieurs heures, plusieurs jours, voire même plusieurs semaines peuvent s’écouler avant d’observer
un changement dans l’empreinte d’un navigateur. Cette faible fréquence de changement permet
l’identification, car un script de fingerprinting s’attend à ce que deux empreintes identiques collec-
tées sur deux sites différents proviennent du même appareil.

Avec FPRandom, nous introduisons de l’aléa dans certaines fonctions du navigateur pour rendre
certains attributs instables et inutilisables pour de l’identification. Notre prototype sous Firefox
s’attaque aux 3 techniques suivantes : le canvas fingerprinting, l’AudioContext fingerprinting et
l’identification du navigateur par l’ordre des propriétés d’un objet JavaScript. Notre approche est
possible pour les raisons suivantes :

• Les implémentations de JavaScript dans les navigateurs sont déterministes. Par effets de
bord, ce déterminisme introduit des comportements détectables et utilisables pour du finger-
printing. En analysant la spécification ECMAScript, nous avons identifié des endroits où ce
déterminisme peut être relâché, réduisant ainsi les effets de bord du navigateur.

• Les rendus multimédias dans les navigateurs peuvent être légèrement modifiés à chaque exé-
cution sans dégrader l’expérience utilisateur. Par exemple, la couleur de quelques pixels d’un
rendu de canvas peut être changée pour introduire de l’instabilité tout en ayant un impact
minimal sur l’utilisateur. Le défi ici est de trouver des modifications qu’aucun internaute
ne remarquera mais qui produiront des valeurs différentes à chaque exécution d’un script de
fingerprinting.

FPRandom exploite la flexibilité des navigateurs modernes pour rendre des attributs instables
et inutilisables.

Utiliser le fingerprinting pour de l’authentification

Défis

Sur le papier, le browser fingerprinting devrait être un candidat idéal pour renforcer l’authentification
sur Internet. Quand un utilisateur se connecte à son compte, le serveur pourrait récupérer
l’empreinte de l’appareil et vérifier qu’elle est connue du système. Cependant, il y a plusieurs
problèmes qui empêchent l’adoption de cette approche à grande échelle.

• Tous les attributs d’une empreinte peuvent être modifiés. Avec une simple extension de
navigateur, n’importe quel utilisateur peut modifier le contenu d’une empreinte pour raconter
l’histoire qu’il veut. Cela ouvre la porte à de nombreuses attaques, car un adversaire peut
imiter l’empreinte d’une de ses victimes pour passer outre le système d’authentification.

• Les attributs présents dans une empreinte de navigateur sont connus des développeurs mais
aussi des attaquants. Comme tous les scripts de fingerprinting s’appuient sur les mêmes
tests, il est très facile pour un adversaire de collecter une empreinte complète.

• Les empreintes évoluent à travers le temps. Si une différence existe entre deux empreintes,
est-ce qu’elle provient d’une mise à jour légitime du terminal de l’utilisateur ou d’un terminal
complètement différent ? Dans le premier cas, le serveur autoriserait le bon appareil à
se connecter au compte en ligne. Dans le deuxième cas, un attaquant pourrait exploiter
cette faiblesse pour contourner le système de protection mis en place. Maîtriser l’évolution
des empreintes de navigateur est difficile. Il est nécessaire de collecter des données pour
comprendre quelles évolutions sont légitimes de celles qui ne le sont pas.

Pour pouvoir surmonter ces obstacles, nous devons nous tourner vers le côté dynamique du
browser fingerprinting.

v

Pourquoi le canvas fingerprinting ?
Le canvas fingerprinting peut être utilisé pour un système d’authentification à questions/réponses.
Contrairement aux autres techniques de fingerprinting qui collectent des attributs simples et prévis-
ibles, le canvas fingerprinting est extrêmement dynamique. À chaque fois que l’utilisateur se con-
necte, le serveur demande au navigateur de peindre un élément Canvas de façon unique. Comme
un rendu dépend des couches logicielles et matérielles d’un appareil, cet attribut est beaucoup plus
compliqué à manipuler que d’autres attributs statiques d’une empreinte, ce qui en fait un candidat
idéal pour de l’authentification. En changeant de tests canvas à chaque connexion, un attaquant ne
pourra pas contourner notre système de protection, car il n’aura pas pu collecter la bonne réponse.

Les études Panopticlick et AmIUnique ont démontré qu’il n’était pas possible d’identifier de
façon unique chaque appareil sur Terre. Cela veut dire qu’un système d’authentification à base
de canvas fingerprinting ne peut pas être utilisé tout seul. Il est nécessaire qu’il soit intégré à un
système d’authentification double facteurs (2FA) ou multi-facteurs (MFA).

Fonctionnement du schéma d’authentification

Le mécanisme d’authentification conçu est complètement transparent pour l’utilisateur. À la con-
nexion, le serveur demande au navigateur de peindre deux éléments canvas avec des chaînes de
caractères très précises qui ont toutes leur propre taille, rotation, ombre et couleur. Le premier
rendu sert à vérifier la connexion courante et le deuxième sera utilisé pour la prochaine connexion.
Comme le canvas fingerprinting est un processus très stable, le serveur s’attend à ce que le client
renvoie une réponse qui soit identique au pixel près à celle envoyée lors de la précédente connex-
ion. Si c’est le cas, l’appareil est autorisé à se connecter. Si des irrégularités dans le rendu sont
observées, le test de canvas échoue et l’accès au compte est alors refusé.

Futur du browser fingerprinting

Le browser fingerprinting est un domaine fascinant qui est à la croisée entre le monde académique,
l’industrie et les législateurs. Depuis son apparition il y a 7 ans, cette technique a mûri et a main-
tenant un vrai impact sur le web, car elle est déjà utilisée dans des situations réelles. Cependant,
son futur est incertain. Comme le browser fingerprinting dépend fortement des technologies em-
barquées dans les navigateurs web modernes, il est difficile d’anticiper la façon dont ce domaine
va évoluer. Les développeurs de navigateur et les organismes de standardisation développent le
web à une vitesse tellement effrénée que c’est à chacun de deviner et d’imaginer la forme que
prendra l’Internet dans 5 ans, 10 ans et même 20 ans. Quelle que soit la direction que prendra le
browser fingerprinting dans les années à venir, il y a une certitude : ce domaine n’a pas fini de
nous surprendre.

Abstract

Users are presented with an ever-increasing number of choices to connect to the Internet. From
desktops, laptops, tablets and smartphones, anyone can find the perfect device that suits his or
her needs while factoring mobility, size or processing power. Browser fingerprinting became
a reality thanks to the software and hardware diversity that compose every single one of our
modern devices. By collecting device-specific information with a simple script running in the
browser, a server can fully or partially identify a device on the web and follow it wherever it
goes. This technique presents strong privacy implications as it does not require the use of stateful
identifiers like cookies that can be removed or managed by the user. In this thesis, we provide
three contributions to the browser fingerprinting domain:

1. We perform the analysis of 118,934 genuine fingerprints from the AmIUnique.org web-
site. We show that device identification is possible as 89.4% of collected fingerprints are
unique. Notably, we observe that browser fingerprinting can be extended to mobile devices
despite their constrained nature in terms of software and hardware.

2. We design two countermeasures called Blink and FPRandom. Since the information
contained in a fingerprint is primarily used to tailor the browsing experience to the user’s
device, modifying it correctly presents great challenges as the wrong information can be
detected and break the browsing session. By taking advantage of software diversity and
randomness, we constantly change the values collected by tracking scripts so that they are
unable to identify a device online.

3. We detail a complete protocol based on canvas fingerprinting to augment authen-
tication on the web. At a time where passwords and logins are considered insecure with
the numerous data breaches reported each year, we provide a new way to assert the identity
of a device. By asking the browser to render very specific images in a canvas element, we can
verify that a device is a known one, preventing account takeover through simple credentials
theft.

Browser fingerprinting is still in its early days. As the web is in constant evolution and as
browser vendors keep pushing the limits of what we can do online, the contours of this technique
are continually changing. With this dissertation, we shine a light into its inner-workings and its
challenges along with a new perspective on how it can reinforce account security.

vii

Acknowledgements

When I first set foot at INRIA in late 2013, I never imagined the adventure I was about to embark
on. Here, I want to thank everyone who helped and supported me as they made the past 4 years
of my life memorable and such a fun ride to go through.

First, I want to thank all the members, past and present, of the entire DiverSE team. It
has been an incredible pleasure to work every day in such a dynamic and friendly environment.
Thanks to everyone for the great discussions and for explaining to me the latests trends in software
engineering. I want to especially thank Paul Temple, Kevin Corre, Fabien Coulon and Dorian Leroy
for the fun I had inside and outside the lab with them. I also want to give a big thanks to my
previous office mates: Guillaume Becan in office F231, Erwan Bousse, Marcelino Rodriguez-Cancio
and Alejandro Gomez-Boix in the now legendary office F234 where the true brainstorming takes
place. It was a real pleasure to discuss and learn from you every day. Thanks to the McGyver
of the DiverSE team, Olivier Barais, who provided much needed help when we first setup the
AmIUnique website. Thanks to the external collaborators for the great discussions that helped
shape this thesis in some way: Nick Nikiforakis, Alexandre Garel, Antoine Vastel and Clémentine
Maurice. Thanks to Valérie Gouranton for suggesting me to do a research master. I would have
never considered at the time to work into research and pursue a PhD. Outside of the lab, thanks
to my friends Mathieu Berland, Charles Robin and Alexandre Carteron for the laughs, the success
and the failures battling each other in online games and facing countless legions of online foes.

I am incredibly thankful to my whole family. I could not have made it this far without their
love and overwhelming support. Thanks to Marie and Eugénie for being the best sisters a brother
could ask for. You are always there to cheer me up and you always welcome me with open arms
every time I make a stop in Paris. Thanks to my parents, Bruno and Valérie, for accompanying
me and supporting me every step of the way for the past twenty five years. I am where I am today
because of you and the incredible support you have given me through the years.

Thanks to Gildas Avoine for helping me during this thesis. You brought a fresh security
perspective to the work I have done in this thesis and I had a great time collaborating with you.

Finally, this section would not be complete without thanking Walter Rudamtekin and Benoit
Baudry. I basically did a PhD because of you as you showed me both the beautiful and fun side
of doing research.

Thanks Walter for everything you did during my research internship and for the help you have
given me at the start of my PhD. I learned a lot from you as you guided me in my first steps in the
academic world. You helped me at my first conferences and I had a great time putting the final
touches to some papers with you during crunching time in a deserted lab.

To Benoit, I do not think a simple thanks is enough for all the help you have given me. Every
time I had a question, you always took the time to listen to me and answer me whether you were in
your office or on the other side of the globe. I am also very grateful that you gave me opportunities
early on in my thesis to meet with other researchers and discuss with the public about my work.
Through this and by working with you, I learned a lot professionally and I have also grown a lot
personally. Thank you for making the past 4 years such a blast! I am very grateful that I got to
spend this adventure on browser fingerprinting with you.

Pierre Laperdrix, Rennes, July 2017

ix

Contents

Résumé en français i

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Capturing the actual state of browser fingerprinting 2
1.2.2 Designing innovative countermeasures . 2
1.2.3 Hardening online authentication . 3

1.3 List of scientific publications . 3
1.4 List of tools and prototypes . 3
1.5 Outline . 4

2 Background and Context 5
2.1 Context . 5

2.1.1 Connecting the world . 5
2.1.2 Identifying devices on the web . 8

2.2 Browser fingerprinting . 10
2.2.1 Definition . 10
2.2.2 Identifying a device with browser fingerprints 11
2.2.3 Investigating device diversity in the wild . 13
2.2.4 Adoption on the web . 13
2.2.5 Usage . 16

2.3 Diversity of collected information . 19
2.3.1 HTTP headers . 20
2.3.2 JavaScript . 21
2.3.3 Plugins . 27
2.3.4 Conclusion . 28

2.4 Defences against fingerprinting . 28
2.4.1 Increasing device diversity . 29
2.4.2 Presenting a homogeneous fingerprint . 32
2.4.3 Decreasing the surface of browser APIs . 34
2.4.4 Summary of existing defences . 35

2.5 Conclusion . 35

3 Investigating browser fingerprinting 39
3.1 Building a website for all browsers . 39

3.1.1 Collecting fingerprints . 39
3.1.2 Supporting legacy technologies . 40

3.2 Statistics on 118,934 fingerprints . 41
3.2.1 Fingerprinting script . 41

xi

xii CONTENTS

3.2.2 Descriptive statistics . 43
3.2.3 Statistical validity of the dataset . 44

3.3 Fingerprinting with the most recent technologies 45
3.3.1 Canvas fingerprinting . 45
3.3.2 WebGL fingerprinting . 47
3.3.3 Additional attributes . 48

3.4 Mobile fingerprint diversity . 49
3.4.1 Mobile and Desktop fingerprint comparison 49
3.4.2 Comparison Mobile OS and browsers . 51

3.5 Assessing the impact of possible technical evolutions 52
3.6 Investigating fingerprint evolution through time . 56

3.6.1 Collection of data . 56
3.6.2 Statistics . 56

3.7 Informing users and helping developers . 58
3.7.1 Users . 58
3.7.2 Fingerprint Central . 58

3.8 Conclusion . 59

4 Designing smart countermeasures 61
4.1 Key properties to mitigate browser fingerprinting 61

4.1.1 Generic properties . 61
4.1.2 Design choice in this thesis . 62

4.2 Multi-level reconfiguration and diversification with Blink 63
4.2.1 Approach . 63
4.2.2 Implementation . 67
4.2.3 Research questions . 70
4.2.4 Experiment setup . 70
4.2.5 Results . 71
4.2.6 Threats to validity . 73
4.2.7 Discussion and further development . 73

4.3 Randomizing core browser objects with FPRandom 74
4.3.1 Approach . 74
4.3.2 Implementation . 75
4.3.3 Evaluation . 78
4.3.4 Discussion and further perspectives . 81

4.4 Conclusion . 82

5 Augmenting authentication 83
5.1 Using browser fingerprinting for authentication . 83

5.1.1 Challenges . 83
5.1.2 Exploiting the dynamic nature of canvas fingerprinting 84

5.2 Tuning canvas fingerprinting for authentication . 84
5.2.1 Exploring a relevant parameter space . 85
5.2.2 Understanding canvas stability . 88

5.3 Canvas authentication mechanism . 89
5.3.1 Challenge-response protocol . 89
5.3.2 Integration in a MFA scheme . 90
5.3.3 Authentication function . 91
5.3.4 Implementation . 93

5.4 Security analysis . 94
5.4.1 Adversary model . 94
5.4.2 Replay attack . 94
5.4.3 Man-in-the-middle or relay attacks . 95
5.4.4 Preplay attack . 95
5.4.5 Guessing or building the right response . 96
5.4.6 Protection against configuration recovery 98

CONTENTS xiii

5.5 Conclusion . 100

6 Conclusion 101
6.1 The big picture . 101
6.2 Contributions . 102

6.2.1 The past, present and possible future of browser fingerprinting 102
6.2.2 Improving current defence mechanisms . 102
6.2.3 Augmenting authentication . 103

6.3 Future work . 103
6.3.1 Detecting fingerprinting scripts . 103
6.3.2 Fingerprinting with a very high number of devices 105

6.4 Perspectives and sustainability of browser fingerprinting 105
6.5 Concluding thoughts . 106

A Code snippets from fingerprinting scripts 107
A.1 Browser APIs . 107
A.2 Flash . 109

B Appendices to the AmIUnique study 111
B.1 Additional data on all AmIUnique’s attributes . 111
B.2 Our attempt at a WebGL test . 111
B.3 Additional Flash attributes . 112
B.4 Comparison to the Panopticlick study . 113

B.4.1 Distribution of fingerprints . 113
B.4.2 Distribution of browsers . 113
B.4.3 Anonymity set sizes . 113

B.5 Update to the 2016 study . 117

C Appendices to the Blink study 119
C.1 Fingerprint attribute weights . 119
C.2 Fingerprint Dissimilarity . 119

D Appendices to the FPRandom study 123
D.1 Analyzing differences in the AudioContext API . 123
D.2 Example of string comparison when ordering JavaScript properties 124

E Appendices to the authentication chapter 125
E.1 Phase 1 of the canvas API study . 126
E.2 Phase 2 of the canvas API study . 128
E.3 Phase 3 of the canvas API study . 130
E.4 Example of a complete MFA scheme . 132

List of Figures 133

List of Tables 135

Author’s publications 137

Tools and prototypes 139

Bibliography 141

Chapter 1

Introduction

1.1 Motivation

The Internet has rocketed our society into the 21st century with new ways to communicate and
share around the world. Thanks to the technologies powering it, the web is a universal platform
where the device you own does not matter. Whether you are on desktop computer running on
Windows, a laptop running on MacOS, a server running on Linux or a tablet running on Android,
each of us has the tools to get access to this vast network of networks and communicate with
each other. In order to offer a comfortable browsing experience, browsers share details about their
environment so that what is displayed on a screen is tailored to each device. In 2010, Peter Eckersley
from the Electronic Frontier Foundation (EFF) decided to investigate the diversity of device-specific
information that could transpire through a web browser and the results were striking [72]. By
collecting several attributes like the screen resolution or the list of plugins, he was able to uniquely
identify 83.6% of browsers in a sample of 470,161. This number increased to 94.2% if Flash or
Java was installed. From this study, the process of collecting information from a web browser was
coined as “browser fingerprinting” and a whole domain was born. With the data he gathered from
visitors, he not only showed that there exists an incredible diversity of devices around the world
but he highlighted that this very same diversity could be used as an identification mechanism on
the web.

Seven years after Eckersley’s initial report, browser fingerprinting has grown from a simple
proof-of-concept to a fully fledged domain. Research on this topic is now fueled by both academia
and the industry as its reach has extended well beyond the walls of the research lab. Major
web actors use it to improve the security of their services [142, 143, 145, 151, 154]. Advertising
and tracking companies see browser fingerprinting as an alternative to cookies [39, 52, 94, 95, 170].
Law makers and non-governmental organization consider it to be a threat to online privacy [79].
Members of the computer security community perceive it as a conduit for targeted attacks [133].
The economic and societal impact of browser fingerprinting has kept growing in the past few years
and it is now at the centre of discussions of many different actors with very diverse backgrounds.
However, many questions on the topic of browser fingerprinting are still left unanswered. Browser
vendors and standard organizations are constantly pushing the limits of what is possible online
and the contours of this technique are continually being redrawn. What was possible in 2010
is different than what can be done today as the online landscape has evolved a lot through the
years. Mobile browsing is now a reality with the democratisation of smartphones [114]. The
introduction of dynamic features in browsers like Canvas [28] or WebGL [30] is providing richer
and more interactive experiences on the web. The development of HTML5 and the push to make
web browsers more secure have rendered plugins obsolete [139,169]. All these changes have a direct
impact on the fingerprinting domain and researchers are experimenting to find out what can be
done with all the information that can be collected via a web browser.

Browser fingerprinting is a fascinating domain. It is still in its infancy and a large part of its
history has yet to be written. With this thesis, we want to contribute to the first pages of its
story by painting a full picture of its past, present and possible future. We aim at understanding

1

2 CHAPTER 1. INTRODUCTION

the methods and tools that support the scientific foundations of browser fingerprinting. Our
main objective is as follows: investigate the software mechanisms that leak the data contained in
fingerprints. This investigation rely on the analysis of data, software architecture and code. To
tackle this objective, we address the following research questions:

• How diverse are browser fingerprints on the web?

• How unique and revealing is each attribute?

• What is the impact of recent browser changes on fingerprinting? Is device identification still
possible?

• How do the defence solutions present in the state of the art fare against the changing nature
of browser fingerprints?

• Do they still provide appropriate protection several years after their conception? If not, what
would be a sustainable approach?

• What is the impact of randomization or moving target defences to mitigate tracking?

• Can fingerprinting be used for other purposes other than device identification? If so, how
and in which capacity?

Throughout this thesis, you will find the answers to all of these questions as they drive the
current discussions of all the actors involved around fingerprinting. While the story of browser
fingerprinting has no definitive ending in sight, we hope that the following chapters will bring a
satisfying overview of this technique along with the key concepts that constitute the fundamentals
of the domain.

1.2 Contributions

1.2.1 Capturing the actual state of browser fingerprinting
Since web browsers are continually changing, the entire fingerprinting domain keeps evolving and
its effectiveness can vary with time. Capturing the actual state of browser fingerprinting is essential
to understand what can be done with this technique and to pinpoint exactly its limits. By analysing
118,934 fingerprints collected on the AmIUnique.org website from November 2014 to February 2016,
we explore the validity of browser fingerprinting in today’s environment. We confirm the results
of previous studies while observing new trends that stem from recent decisions of major browser
vendors. 89.4% of collected fingerprints in our study are unique, proving that device identification
is still possible 6 years after Eckersley’s study despite the evolution of web browsers. We show that
the introduction of new APIs like Canvas in HTML5 provides new highly discriminating attributes
that can reinforce online identification. We also witness a shift in existing attributes. While
the list of plugins was a highly revealing one several years ago, this is not the case anymore as
plugins are being deprecated from modern browsers. With the recent booming of mobile browsing,
we also demonstrate why fingerprinting is as effective on mobile devices than on desktops and
laptops despite the restrained nature of hardware and software on these devices. The custom
firmwares delivered by manufacturers coupled with the use of apps reveal unnecessary information
to trackers online. Finally, we also anticipate how browser fingerprinting could evolve in the future
by simulating plausible technological changes. We show that simple modifications could be made
inside web browsers to improve online privacy without fundamentally changing the way the web
currently works.

1.2.2 Designing innovative countermeasures
In the constant arms race between privacy advocates and tracking companies, we explore the ecosys-
tem of defence solutions against browser fingerprinting. We especially highlight the shortcomings
of current tools as most of them render their users more visible to trackers and we introduce two
novel solutions.

1.3. LIST OF SCIENTIFIC PUBLICATIONS 3

Blink

With Blink, we explore the use of a moving target defence system to mitigate tracking through
fingerprinting. By assembling at runtime an operating system, a browser, plugins and fonts, we
create random but genuine fingerprints that are able to fool trackers online. We validate our
approach with the creation of 5,000 random browsing environments. We show that Blink generates
very dissimilar configurations and it can deceive a commercial fingerprinting script from BlueCava.

FPRandom

With FPRandom, we explore the use of randomization to render some attributes in a fingerprint
unstable for tracking. We pinpointed locations in the source code of the browser where noise can be
introduced so that tracking scripts will be presented with constantly changing values. We evaluate
our approach with a prototype based on Firefox and we target the following attributes: Canvas
fingerprinting, AudioContext fingerprinting and the unmasking of the browser through the order
of special JavaScript objects. Our tests show that our modifications impact known fingerprinting
scripts that use the targeted attributes. Our performance benchmarks indicate that the introduced
overhead is very small, proving that the impact on the user experience is minimal.

1.2.3 Hardening online authentication

Since browser fingerprints can be stolen and simulated by attackers, they cannot act as a primary
conduit against identity theft. Yet, we demonstrate that the use of dynamic attributes offers new
perspectives for authentication to reinforce the security of online services. We show that canvas
fingerprinting can act as a true prime candidate for stronger authentication on the web thanks
to an incredible diversity and a negligible performance overhead. By tracking the evolution of a
single canvas rendering on a thousand different devices, we show that the stability of a canvas test
is sufficient to be used in the context of an authentication scheme as the mean number number of
changes is very low. Our scheme fights off common attacks thanks to a challenge-response system
that generates a new challenge each time the user logs in. With our approach, answers to previous
questions cannot be replayed and the challenges are diverse enough so that an attacker cannot
collect all the right responses beforehand.

1.3 List of scientific publications

Parts of this thesis are adapted from the following publications:

[1] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Mitigating browser fingerprint
tracking: multi-level reconfiguration and diversification. In 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), Firenze,
Italy, May 2015.

[2] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the Beast: Diverting
modern web browsers to build unique browser fingerprints. In 37th IEEE Symposium on
Security and Privacy (S&P 2016), San Jose, United States, May 2016.

[3] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. FPRandom: Randomizing core browser
objects to break advanced device fingerprinting techniques. In 9th International Symposium
on Engineering Secure Software and Systems (ESSoS 2017), Bonn, Germany, July 2017.

1.4 List of tools and prototypes

For this thesis, we developed different websites, tools and prototypes to collect data and test our
approaches on real-world scenarios. The entirety of the source code for these tools is fully and
freely available online. The complete list of developed artefacts is as follows:

4 CHAPTER 1. INTRODUCTION

• the AmIUnique website used to collect genuine data on the diversity of fingerprints on the
web [4]

• the AmIUnique browser extensions used to collect data on the evolution of fingerprints
through time [5, 6]

• the original Blink defence prototype based on VirtualBox which assembles random browsing
environments at runtime [7]

• the second version of Blink running on Docker [8]

• the Blink browser extensions responsible for transferring user profiles between generated
environments [9, 10]

• the Fingerprint Central website developed as part of the Google Summer of Code 2016 to
help the Tor organization improve the fingerprinting defences of the Tor browser [11]

• the FPRandom defence prototype which introduces random noise into advanced fingerprint-
ing routines [12]

1.5 Outline

The thesis is organised as follows.
Chapter 2 sets the stage by introducing the context of this work. Browser fingerprinting is then

explained in its entirety. What are its foundations? What are the mechanisms behind it? What
is collected? How can it be used? This chapter refers to scientific publications from the literature
but also to online tools from developers and companies as browser fingerprinting has extended
beyond the simple research prototype to be used in real-world scenarios. We finish this chapter by
detailing current defences against browser fingerprinting while highlighting their shortcomings.

In Chapter 3, we present a much needed update on the actual state of device diversity with
our AmIUnique.org website. By collecting browser fingerprints from online visitors, we are able to
understand the evolution of the fingerprinting domain by assessing the impact of new attributes and
witnessing new trends. We also report about the impact of AmIUnique beyond our research. The
website raises awareness among visitors about online tracking and we invite them to improve the
security of their day-to-day browsing activities by installing simple browser extensions. AmIUnique
also provided the blueprint for Fingerprint Central, a project aimed at improving the online privacy
of Tor browser’s users with regards to browser fingerprinting.

Chapter 4 details our two contributions to mitigate tracking through browser fingerprinting.
The first one called Blink works at the operating system level. With a system of reusable compo-
nents, it synthesizes at runtime environments that exhibit random but genuine browser fingerprints
to fool online trackers. This solution addresses one of the main problems in the current literature
which is the generation of mismatches between attributes in collected fingerprints. The second
called FPRandom operates at the browser level. It introduces noise into very specific browser
routines to prevent the use of advanced fingerprinting techniques.

Chapter 5 reports on our efforts to improve account security by detailing an authentication
scheme based on canvas fingerprinting. As information contained in a fingerprint can be modified
and replayed, using browser fingerprints to improve the security of login systems presents great
challenges against well-known attacks. We explore in this chapter the use of canvas fingerprinting
as we can generate a unique set of challenges every time the user connects to the service.

Lastly, Chapter 6 concludes this thesis by summarizing our main contributions and by detailing
future avenues of research and progress for browser fingerprinting.

Chapter 2

Background and Context

In this chapter, we perform an in-depth analysis of browser fingerprinting to understand how it
works and where it stems from. As its foundations are rooted in software diversity, we focus on
the software tools and technologies that support its exploitation and its mitigation. Moreover,
as touched upon in Chapter 1, browser fingerprinting has an impact from a technical, business,
privacy and security perspective. Hence, in order to get a complete view of the domain, we embrace
the diversity of approaches and refer to academic publications as well as public reports and tools
from the civil society and private companies.

This chapter is organised as follows. To introduce the context of this thesis, we first go back in
Section 2.1 to the origins of the web to understand the underlying technologies that support such
a massive network. Then, we explore in Section 2.2 the current state of browser fingerprinting by
explaining what is a fingerprint, how it is built, and how it is used on the Internet. Section 2.3
reports on the different types of information that can be collected through a web browser. In
Section 2.4, we look at the different tools that exist to mitigate and defend against unwanted
tracking. Finally, we provide a conclusion in Section 2.5.

2.1 Context

2.1.1 Connecting the world

Beginning of the web and the support of device diversity

In 1989, Tim Berners-Lee outlined in a document entitled “HyperText and CERN” how he would
link information systems at CERN to prevent loss of information and to accommodate the high
turnover of people. He notably wrote that, to make such a system feasible, “heterogeneity” of
systems must be taken into account [38]. Little did he know at the time that this early paper
would fuel the research into what we know today as the World Wide Web. One of the key ideas of
the early development of the web is that, for anyone to get access to this vast network of machines,
it should be device agnostic, i.e. run on any device with any type of architecture. The World Wide
Web Foundation details this as “Universality: For anyone to be able to publish anything on the
web, all the computers involved have to speak the same languages to each other, no matter what
different hardware people are using; where they live; or what cultural and political beliefs they
have” [196].

HTTP and HTML were born from that need of having a universal way of communicating be-
tween machines. The Hypertext Transfer Protocol (HTTP) provided the “application-level protocol
with the lightness and speed necessary for distributed, collaborative, hypermedia information sys-
tems” [165] while the Hypertext Markup Language (HTML) was “a simple markup language used
to create hypertext documents that are platform independent” [164].

5

6 CHAPTER 2. BACKGROUND AND CONTEXT

(a) Best viewed with Internet
Explorer (b) Best viewed with Netscape Navigator

Figure 2.1: Examples of “Best viewed with” banners

Indicating browser limitations: the case of the user-agent header

In the early 90s, web browsers started to appear from various teams around the world to support
these soon-to-be standards. However, as the foundations of the web started to evolve to keep
pushing what is possible online, not every browser and not every platform supported the latest
additions. Some browsers conformed to only a subset of the specifications and developed their
own features. This started the now infamous era of the “Best viewed with X” banners as seen in
Figure 2.1.

To prevent incompatibility problems, the HTTP protocol includes the “User-Agent request-
header”. According to the official standard of May 1996, the header is present “for statistical
purposes, the tracing of protocol violations, and automated recognition of user agents for the sake
of tailoring responses to avoid particular user agent limitations” [165]. Browsers started to include
their name, their version and even sometimes the platform on which they were running.

As reported by [98] and [99], the story of the user-agent header is very rich and it keeps writing
itself today as modern browsers still bear the legacy of the very first browsers. The information
contained in this header has become complex as browser vendors started copying the value of their
competitors to declare their compatibility with a different rendering engine. For example, the
current user-agent for version 57 of a Chrome browser running on Linux is the following:

Mozilla /5.0 (X11; Linux x86_64) AppleWebKit /537.36 (KHTML , like Gecko) Chrome
/57.0.2987.110 Safari /537.36

The only relevant pieces of information here are “(X11; Linux x86_64)” and “Chrome/57.0.2987.110”.
Other strings like “Gecko”, “KHTML” or “Safari” are present to declare their compatibility with
other layout engines. The string “Mozilla/5.0” even dates back from the time where the first ever
version of Firefox was released to the public. All modern web browsers now include it in the
user-agent header for no particular reason.

In the end, the user-agent header can be considered as the very first piece of information that
deliberately indicated differences between devices to help developers take into account browser
limitations. As we will see in the following sections, this is one of many differences that are
observable from today’s web ecosystem.

Bridging the gap between web browsers and native software applications

At the very beginning of the web, pages needed to be reloaded completely to allow live modifi-
cations. In 1995, Brendan Eich added a scripting language called JavaScript inside the Netscape
Navigator to make web pages more dynamic. From then on, the language quickly gained a lot
of traction and was implemented in most browsers in the months following its introduction. The
specification of the language became standardized in June 1997 under the name “ECMAScript”,
with JavaScript being the most well known of its implementations at the time.

As the language started growing and as browsers started to offer more and more features to
their users, developers pushed to create a bridge between the browser and the platform it is running
on. The goal was to incorporate information from the user’s environment inside the browser to
feel more like a native software application. The very first edition of the ECMAScript specification

2.1. CONTEXT 7

offers the first traces of such integration with details on the “Date” object that “contains a number
indicating a particular instant in time to within a millisecond” [73]. Especially, Section 15.9.1.7
refers to “Local Time Zone Adjustment” where an “implementation of ECMAScript is expected to
determine the local time zone adjustment by whatever means are available”. To conform to the
specification, browsers directly got from the operating system the timezone of the device. This
piece of information is another example of one of the first detectable differences between devices
on the web.

Now, in 2017, browsers are providing more features than even before through a wealth of
Application Programming Interface (API). An API is an interface that provides an entry point to
specific objects and functions. Some APIs require a permission to be accessed like the microphone
or the camera but most of them are freely accessible from any JavaScript script. In the past 10
years, new APIs have surfaced to reinforce the capabilities offered by web browsers. The Canvas [28]
and WebGL [30] API rely on the graphic card of the device to render 2D and 3D animations in
real-time. The Web Audio API [27] provides a powerful system for controlling audio on the Web.
A WebVR API [29] is being finalized to provide access to Virtual Reality devices. The modern
browser has slowly shifted in the past 15 years from being a tool that displays simple HTML pages
to a very rich multimedia platform compatible with many formats and devices. This transition
has created a very strong link between the browser and the underlying layers of the system. As a
result, the diversity of devices connected to the Internet is more exposed than before through these
newly added APIs since they exploit the unique characteristics of the hardware and software that
the browser rely on.

Architecture of web browsers

To conclude this section, let us take a look at the architecture of modern web browsers. This
will help us get a better understanding of how everything is structured and why we can observe
differences between browsers.

Figure 2.2: High-level structure of a web browser taken from [44]

Figure 2.2 provides a simplified view of the architecture of a web browser. The top half of the
figure represents the components that handle the interaction of the user with the browser. All the
elements that are in the bottom half are not directly visible to the user but they are responsible
for most of the heavy lifting inside the web browser. We want to highlight specifically 4 of these
components:

• The rendering engine: it is responsible for displaying web content directly in the browser. Its
main role is to display and render web pages in HTML by parsing them, interpreting them
and painting them. The most well-known rendering engines are Gecko for Firefox, Blink for

8 CHAPTER 2. BACKGROUND AND CONTEXT

Chrome and WebKit for Safari. Mozilla is currently working on a more advanced rendering
engine that takes advantage of modern hardware called Quantum [156].

• The JavaScript interpreter: As web pages are now populated with very large JavaScript
libraries, browsers must be able to process thousands of lines of code efficiently, otherwise
the user experience will deteriorate quickly. Major web actors have turned to just-in-time
(JIT) compilers to combine the best of compilers and interpreters (see more details in [103]).
Each browser has its own JavaScript engine: SpiderMonkey for Firefox, V8 for Chrome, Nitro
for Safari or Chakra for Microsoft Edge.

• Networking: this component is responsible for making HTTP requests when contacting
servers around the world. It notably adds in requests several headers that are specific to
the browser as we saw with the example of the user-agent.

• UI Backend: This part uses system libraries to display and adapt a web page to the user’s
screen.

Based on these four core components, web browsers do not behave the same way. The HTTP
requests will be different. The rendering engines will not render HTML elements identically with
pixel precision. The JavaScript interpreters do not offer the same optimisations and may react
differently to language quirks. The UI backend can impact how the user actually sees what is
displayed on a physical screen. A difference in behaviours can also be noticed when browsers are
run on devices with different hardware and software characteristics as each browser will adapt to
offer the best experience possible to the user.

In the end, the way web browsers are built enables them to take full advantage of the capabilities
of each device. Whether it is on the software or the hardware side, a browser is flexible enough to
adapt to its environment by having separate and distinct components. However, as we will see in
Section 2.3, differences between browsers and devices can be detected because of modern browsers’
architecture and flexibility, thus making browser fingerprinting a reality.

2.1.2 Identifying devices on the web

Identifying a device on the web has many purposes from improving security to personalizing the
online experience of each user. Here, we detail the processes that are used to perform such a
detection along with the economic impact it has on the web ecosystem.

Cookies and third-party tracking

Cookies are small pieces of data sent from a website and stored directly in the browser. Any
information can be stored in a cookie but the majority of them contain a unique identifier that
links to a specific online identity. For example, when users log on their favourite websites, a cookie
is stored to identify them and log them automatically on subsequent connections. The information
in the cookie enables the website to verify the identity of each user for each request.

As a technology, cookies have been part of the Internet since the very beginning. The official
specification came from RFC 2109 [162] in 1997 and RFC 2965 [163] in 2000 on the subject of
“HTTP State Management Mechanism”. But the very first traces date back from 1994 where a
programmer named Lou Montulli came up with the idea of giving the web a memory. He coined
the name “cookies” as an homage to magic cookies [200].

Nowadays, it is very hard to write about cookies without mentioning third-party tracking as
they are the primary conduct for this type of practice. When a web page is loaded, many resources
like scripts or images are fetched from servers that are different from the main domain that the
user is visiting. For example, when a user consults an article on the BBC.com website, the browser
connects to the BBC server to fetch the article but it will connect to other websites from different
companies to provide additional features. One of them is Chartbeat which provides statistical
measurement tools as they enable “media organizations to understand and harness genuine audience
engagement” [50]. Others are more famous like Facebook or Twitter as they provide the well-known
“Share” buttons on all articles [82,189]. All these servers that do not belong to the first-party domain

2.1. CONTEXT 9

are called third-party servers. Some websites call more than a hundred of them to provide the
desired services.

Figure 2.3 illustrates the concept of third-party tracking. In the example, when the browser
connects to SuperAds to fetch the “ad.js” script, it will put a cookie with a unique ID directly
in the browser. If the user connects to another website where another script is also provided by
SuperAds, this third party has the ability to identify the user by collecting the cookie that was
setup in a previous connection.

GET: SuperAds.com/ads.js HTTP/1.1

…
<script type=“text/javascript”
src=“SuperAds.com/ads.js”>
</script>

…

www.domainA.com

…
<script type=“text/javascript”
src=“SuperAds.com/ads.js”>
</script>

…

www.domainB.org

…
<script type=“text/javascript”
src=“SuperAds.com/ads.js”>
</script>

…

www.domainC.fr

Figure 2.3: Illustration of third-party content delivery

Blocking cookies and the rise of ad blockers

One of the most important aspects of third-party tracking is that it is completely transparent as
the creation of cookies happens in the background. This poses a serious privacy dilemma as most
users are completely oblivious to it and they do not have any say in what happens in their browser.

In an effort to push privacy at the forefront, a European directive nicknamed the “EU Cookie
law” was adopted by all EU countries in May 2011. The directive gives any individual the right to
refuse the use of cookies that could reduce their online privacy. Banners asking users to allow the
use of cookies started appearing everywhere on the web. However, as users became accustomed
to see these banners, the impact of the law has completely evaporated. Users simply click on any
buttons to make the banner or popup disappear as they want to get to the website content quickly.
Some developers even released extensions like CookiesOk [57] or I don’t care about cookies [58] to
automatically make the banners disappear as they negatively impact the user experience. All in
all, the law has become ineffective and did not bring the much wished for privacy advancements
promised by lawmakers.

More and more users are now turning to alternatives to take back control of their privacy. Some
refuse third-party cookies by directly modifying browser preferences as most modern browsers offer
a built-in blocking mechanism. Others install blocking extensions like AdBlock [16] or Ghostery [96]
to prevent tracking scripts from being executed. As reported by PageFair, a company specialised
in “respectful and sustainable advertising” [135], 11% of the global Internet population is blocking
ads on the web at the end of 2016 [136]. This represents 615 million devices with an observed 30%
growth in a single year. The use of ad blockers is becoming more and more common as people
get annoyed by intrusive online ads that can pose a threat to their privacy on the web. However,
as we will see in the next section, there are hidden costs in this arms race against these invisible
third-party companies.

10 CHAPTER 2. BACKGROUND AND CONTEXT

Online advertising and the importance of tracking

Online advertising is an integral part of today’s web ecosystem. As reported by the Interactive
Advertising Bureau (IAB), it reached $72.5 billion in revenues in the United States alone in 2016
with a 21.8% growth from 2015 [102]. Moreover, for the first time ever, digital ad revenues surpassed
TV ad revenues in the US in 2016 [188]. In the midst of this booming sector, tracking users is
crucial as it enables targeted advertising. Users may be more inclined to click on an ad if it is
targeted to their personal preference; thus, advertising agencies are willing to pay more money if
it means that their ads are targeted to a more receptive population.

However, as we saw in the last section, more and more users are adopting ad blockers. The
economic fallout from this new trend is far from being negligible as the loss of revenues from
ad blockers was estimated at $21.8 billion in 2015 [137]. Many popular websites are turning
to a premium model to survive as the decline in ad revenues forces them in unstable financial
situations. Many newspapers have developed their own subscription-based service to survive the
switch from paper to digital. New uses of social media are also impacted as some users earn a
living making videos on YouTube or streaming on Twitch. This decline in revenues culminated in
the past few years in an arms race between users of blocking extensions and websites. Mughees et
al. reported that 1100 of the top Alexa-100k websites performed detection of ad blockers and some
of them block the access to content if an ad blocker is active [120]. In August 2016, Facebook tried
to circumvent popular blocking extensions but it was met with a backlash from the ad-blocking
community [84,85].

All in all, online advertising is here to stay as long as no sustainable alternatives are found.
Web actors from the bigger ones like Google to the smaller ones like online newspapers all benefit
from it. With the rise of ad blockers, new companies are turning to new ways to identify devices
and to avoid using cookies. In this tumultuous economic and privacy context, this is where browser
fingerprinting finally takes the stage.

2.2 Browser fingerprinting

2.2.1 Definition

A browser fingerprint is a set of information related to a user’s device from the hardware to
the operating system to the browser and its configuration. Browser fingerprinting refers to the
process of collecting information through a web browser to build a fingerprint of a device. Via a
simple script running inside a browser, a server can collect a wide variety of information from public
interfaces called APIs and HTTP headers. Contrary to other identification techniques like cookies
that rely on a unique identifier (ID) directly stored inside the browser, browser fingerprinting is
qualified as completely stateless. It does not leave any trace as it does not require the storage of
information inside the browser. If the fingerprint contains enough information, it is very likely that
the fingerprint will be unique for this device, hence it can be used to fully or partially identify a
visitor on a website thanks to the device characteristics that are exposed.

For the rest of this thesis, the terms “browser fingerprint” and “device fingerprint” will be used
interchangeably. However, it should be noted that we focus only on information collected through
a web browser. We do not cover the identification of devices through smartphone applications like
Kurtz et al. [110] or Wu et al. [203] as they have access to more information than with a simple
browser and they require additional permissions to get installed. We also do not focus on the
analysis of the structure of network packets similar to the features offered by tools like nmap [125]
as they fall out of context of what the browser has access to. Finally, even if they are touched upon
in some sections of this chapter, we do not study in depth how the IP address or the geolocation of
the user can contribute to the identification of a device. While they can be used to complement a
fingerprint, we focus in this dissertation on what can be done entirely from the information given
by a web browser as connection data can be changed via a proxy or a Virtual Private Network
(VPN).

2.2. BROWSER FINGERPRINTING 11

Complementarity with cookies and the lack of control mechanisms

As a legacy technology of the web, all browsers have a built-in support for cookies and they provide
control mechanisms to dictate when and how cookies are used. By default, cookies are accepted
on any websites but a user can change this behaviour by modifying the browser preferences or by
installing an extension that will manage them in a specific way. Users have the power over these
objects and they can remove them at any time.

Browser fingerprinting can be considered to be on the opposite side of the identification spectrum
as it is not a part of any web standard. There is no built-in mechanism to allow or refuse the
execution of fingerprinting scripts. The privacy implications are then really strong as users have
no easy way of controlling this technique. They must configure their browsers precisely or install
the right extension to prevent giving away too much information. Any website that a user contacts
when browsing the web has the tools to build a complete fingerprint of a device and identify it.
Finally, it should be noted that fingerprints do not replace cookies. They complement each other
as they can be used in parallel to provide very extensive means of identification.

2.2.2 Identifying a device with browser fingerprints

Building a fingerprint

To build a browser fingerprint that is as complete as possible, one needs to rely on several browser
mechanisms to collect information from different sources.

The first pieces of information that a server can collect comes from the very first interaction
between the server and the client. As defined in the RFC on HTTP [166], the browser sends
additional headers when it makes a request so that the server can adapt its response to the client.
Figure 2.4 illustrates this very first exchange. These headers include basic information on the type
of formats or encoding supported by the browser but it extends well beyond that by indicating
the device platform or the language preferred by the user. At the time when RFC 2616 [166]
was written, the authors were well aware of the privacy implications of revealing very specific user
information, especially with the inclusion of the Accept-Language header. They wrote “Accept
request-headers can reveal information about the user to all servers which are accessed. The
Accept-Language header in particular can reveal information the user would consider to be of a
private nature, because the understanding of particular languages is often strongly correlated to
the membership of a particular ethnic group. User agents which offer the option to configure the
contents of an Accept-Language header to be sent in every request are strongly encouraged to
let the configuration process include a message which makes the user aware of the loss of privacy
involved.” Nowadays, all modern browsers support the customization of this language header but
none of them provide any warnings related to a potential loss of privacy.

GET: A.com HTTP/1.1

HTTP header Value

User-agent Mozilla/5.0 (X11; Fedora; Linux
x86_64; rv:52.0) Gecko/20100101
Firefox/52.0

Language en-US,en;q=0.5

Encoding gzip, deflate, br

Accept text/html,application/xhtml+xml,a
pplication/xml;q=0.9,*/*;q=0.8

HTTP/1.1 200 OK

HTML file

Figure 2.4: Collection of HTTP headers (passive fingerprinting)

12 CHAPTER 2. BACKGROUND AND CONTEXT

This first stage in the collection of device-specific information is sometimes referred as passive
fingerprinting as the HTTP headers are directly sent to the server without any interaction with
the browser. This comes in contrast with active fingerprinting that rely on the execution of
scripts inside the browser to collect the much sought after information. Figure 2.5 illustrates
this second stage. In the example, the “fingerprint.js” script is not embedded in the page so the
browser fetches it. When the script is received, it is directly executed and it collects information
by querying different parts of the browser. All the collected information are then sent to the same
remote server.

GET: A.com/fingerprint.js HTTP/1.1

HTTP/1.1 200 OK

POST: A.com/fpStore HTTP/1.1

Attribute Value

Screen
resolution

1920x1200x24

Timezone en-US,en;q=0.5

Platform Linux x86_64

JavaScript script fingerprint.js

<html>
…
<script type=“text/javascript”
src="/fingerprint.js"></script>
…

</html>

//Collecting data
var resolution = […];
var timezone = […];
var platform = […];

//Sending data
$.ajax({

url: 'fpStore',
type: 'POST',
data:

JSON.stringify({“res”:resolution,
“time”: timezone, “plat”: platform}),

contentType: 'application/json;
charset=utf-8',

dataType: 'json'
});

Figure 2.5: Collection of JavaScript attributes (active fingerprinting)

By default, all browsers fetch external resources present in a web page and they are executed
without any warnings or permissions. This default behaviour is really important to point out as
it explains why browser fingerprinting is possible today. As a fingerprinting script is loaded and
executed like any other script in the browser, the collection process happens in the background
without the user ever noticing. Building a browser fingerprint is then completely transparent
to the user as the browser never asks for confirmation if a script should be executed or not.

Two key principles: uniqueness and stability

In order for a fingerprint to be used in any form of identification, the collected information must
follow two key principles.

• Uniqueness: To provide enough ground for identification, each fingerprint should be as unique
as possible. This does not necessarily mean that each piece of collected information must
be unique. As we will see in Section 2.3, many attributes like the screen resolution or the
timezone have values that can be shared by many users. But the combination of all attributes
should be unique to a particular device to enable identification. Then, this uniqueness prop-
erty is correlated to the size of the dataset and the distribution of the population. If a site
handles several thousand connections every day, the number of collisions between fingerprints
could be very low or even null compared to a site handling millions of connections. Gulyás
et al. explored the concept of near-optimal fingerprinting with constraints, i.e. fingerprinting
in a context where only a limited number of the user’s attributes can be queried [97]. They
showed that, from a dataset of 43,656 lists of fonts, they were able to uniquely identify 30.58%
of users just by checking 5 fonts for each of them. This proves that most attributes may not
be needed when identifying a device in a dataset.

2.2. BROWSER FINGERPRINTING 13

• Stability: As users update their devices and customize their browsers, the collected finger-
prints are changing. In order to link browser fingerprints belonging to the same device, the
quantity of modified information should be as small as possible. For example, a server can ex-
pect to see an increase in the browser version from time to time but a change in the timezone
is more unusual as it implies that the user is travelling. Different behaviours and different
types of changes must be identified to be able to identify a device with accuracy.

In the end, while uniqueness addresses the problem of identification for a given moment in
time, stability looks to solve it over time. These two key notions will be developed all along this
thesis and they are also at the core of the privacy and anonymity discussion. To design strong
countermeasures, a developer can work on these two dimensions to have a constantly changing
signature that a server cannot follow.

2.2.3 Investigating device diversity in the wild

Related work

In 2009, Mayer investigated if device diversity could lead to the deanonymization of web clients [112].
Especially, he looked to see if differences in browsing environments could be exploited by a remote
server to identify users. He noticed that a browser could present “quirkiness” that came from the
operating system, the hardware and the browser configuration. He conducted an experiment where
he collected the content of the navigator, screen, navigator.plugins, and navigator.mimeTypes ob-
jects of browsers who connected to the website of his experiment. Out of 1328 clients, 1278 (96.23%)
could be uniquely identified with the combination of these attributes. However, he added that the
small scale of his study prevented him from drawing a more general conclusion.

A year later, Peter Eckersley from the Electronic Frontier Foundation (EFF) conducted the
Panopticlick experiment. By communicating on social media and popular websites, he amassed
470,161 fingerprints in the span of two weeks. Contrary to Mayer, the amount of collected fin-
gerprints gives a much more precise picture on the state of device diversity on the web. With
data from HTTP headers, JavaScript and plugins like Flash or Java, 83.6% of fingerprints were
unique. If users had enabled Flash or Java, this number rose to 94.2% as these plugin provided
additional device information. This study was the first to prove on a very large scale that “browser
fingerprinting” was a reality. The privacy implications that emerged from it are really strong as a
device with a not-so-common configuration can easily be identified on the Internet.

Our contribution with AmIUnique

Since 2010, no contributions have been made to analyse device diversity and confirm Eckersley’s
findings. In the span of several years, mobile browsing has been booming and new browser APIs
have entered the scene but no study has been conducted to analyse and understand the impact of
these changes. To address this problem, we launched in November 2014 the AmIUnique.org website
to investigate device diversity in the wild. Similarly to the Panopticlick website, when users connect
to AmIUnique, their device fingerprint is collected and compared with other fingerprints stored in
our database. In Chapter 3, we report on the analysis that we performed on 118,934 fingerprints.
We show that mobile fingerprinting is possible but for different reasons than on desktops and we
also notice a change in the most discriminating attributes.

2.2.4 Adoption on the web

Research studies

Since Eckersley’s study in 2010, different studies have been conducted to quantify the adoption
rate of browser fingerprinting on the web.

In 2013, Nikiforakis et al. with the Cookieless Monster study [124] crawled the Alexa top 10,000
sites to look for fingerprinting scripts from the three following companies: BlueCava, Iovation,
ThreatMetrix. They discovered 40 sites making use of their fingerprinting code.

The same year, Acar et al. performed a much larger crawl by visiting the top Alexa 1 million
websites with the FPDetective framework [14]. While visiting a web page, they log the access to

14 CHAPTER 2. BACKGROUND AND CONTEXT

very specific JavaScript functions and they decompile the Flash files they encounter to verify the
presence of fingerprinting related function calls. With their approach, they do not need to rely on
a known list of tracking scripts as they can directly look for behaviours related to fingerprinting
activities. They found 404 sites out of 1 million performing JavaScript-based font probing and 95
sites out of 10,000 performing Flash-based font probing.

Finally, in 2016, two researchers at Princeton University released the OpenWPM platform, “a
web privacy measurement framework which makes it easy to collect data for privacy studies on a
scale of thousands to millions of site” [160]. To demonstrate the capabilities of their tool, they made
an analysis of the top 1 million sites to detect and quantify emerging online tracking behaviours [77].
Their findings provide more accurate results than in the past as they instrumented extensively a
very high number of JavaScript objects to build a detection criterion for each fingerprint technique.
Out of 1 million, they found 14,371 sites performing canvas fingerprinting, 3,250 sites performing
canvas font fingerprinting and 715 sites performing WebRTC-based fingerprinting. These numbers
are much higher than what was reported in previous studies. However, they do not report on the
spread of more traditional techniques like the collection of navigator properties. After contacting
the authors, the amount of data they collected was so important that they needed to perform a
very time-consuming process of analysing scripts by hand to design new heuristics. In the end, the
number of actors performing device fingerprinting on the web is probably much higher than what
is currently reported by large crawls.

Evolution of privacy policies

As browsers started to reveal larger parts of their configuration, many websites updated their
privacy policy to indicate that they started collecting and storing device-specific information. Here,
we take a look at the privacy policies of major web actors to see if they perform device fingerprinting
and to find out what they do with this information.

• Google At the time of writing, the latest version of Google’s privacy policy dates from
March, 1st 2017 [151]. It notably includes the following pieces of information: “We collect
device-specific information (such as your hardware model, operating system version, unique
device identifiers, and mobile network information including phone number)” and “device
event information such as crashes, system activity, hardware settings, browser type, browser
language, the date and time of your request and referral URL”. There is also a specific
paragraph named “Cookies and similar technologies” where it is mentioned “We and our
partners use various technologies to collect and store information when you visit a Google
service, and this may include using cookies or similar technologies to identify your browser
or device”. While there is not a single mention of the term “fingerprinting”, collecting device-
specific information to identify a browser or device definitely fits the definition.

Another important aspect of Google’s privacy policy is its evolution. In January 2001, we
can see the first traces of the collection of information as the policy was updated to include:
“Google notes and saves information such as time of day, browser type, browser language, and
IP address with each query. That information is used to verify our records and to provide more
relevant services to users. For example, Google may use your IP address or browser language
to determine which language to use when showing search results or advertisements.” [146].
As written, the information is used here to tailor the response to the user’s device which is
exactly why they were introduced in browsers in the first place.

In July 2004, a section called “Data collection” gives new but vague details about the goal
of the collected information [147]. Notably, it indicates that “Google collects limited non-
personally identifying information your browser makes available whenever you visit a website”
but they use this information “to operate, develop and improve our services”.

The March 2012 update marks the foundations of Google’s current privacy policy but there
is a very small but notable shift in how Google uses the data [148]. While previous privacy
policies indicated that the collected data was primarily for Google’s own use, the update
enables them to share some data with their own advertising service and their partners. Then,
as indicated by following updates in March 2014 and June 2015, this sharing of data extends

2.2. BROWSER FINGERPRINTING 15

to browser fingerprinting as “Cookies and anonymous identifiers” transformed into “Cookies
and similar technologies” [150] with a precision that Google’s partners use them [149].

• Facebook The Data policy indicates the collection of “Attributes such as the operating
system, hardware version, device settings, file and software names and types, battery and
signal strength, and device identifiers” [145]. They add that they “use the information we
have to help verify accounts and activity, and to promote safety and security on and off of our
Services, such as by investigating suspicious activity or violations of our terms or policies”.

• Wikipedia The Wikimedia Foundation is very transparent on what they collect and what
they do with the information. First, they make the distinction between “Information We
Receive Automatically” (i.e. information from HTTP headers) and “Information We Col-
lect” [153]. All the data related to device identification falls into the first category as it
is only passive fingerprinting. They do not send a script to the browser to perform active
fingerprinting. Then, they explain exactly what they do with the data: “Put simply, we use
this information to enhance your experience with Wikimedia Sites. For example, we use this
information to administer the sites, provide greater security, and fight vandalism; optimize
mobile applications, customize content and set language preferences, test features to see what
works, and improve performance; understand how users interact with the Wikimedia Sites,
track and study use of various features, gain understanding about the demographics of the
different Wikimedia Sites, and analyze trends.”.

• Amazon The Amazon Privacy Notice indicates the collection of “computer and connection
information such as browser type, version, and time zone setting, browser plug-in types and
versions, operating system, and platform” and they add they “may also collect technical in-
formation to help us identify your device for fraud prevention and diagnostic purposes” [142].

• Microsoft The Microsoft Privacy Statement states they collect “data about your device
and the network you use to connect to our products. It includes data about the operating
systems and other software installed on your device, including product keys. It also includes
IP address, device identifiers (such as the IMEI number for phones), regional and language
settings” [152]. It is then unclear how these pieces of information are used as the “How We
Use Personal Data” section gives global details on all the data they collect.

• Apple The privacy policy is very similar to the others: “As is true of most internet services,
we gather some information automatically and store it in log files. This information includes
Internet Protocol (IP) addresses, browser type and language, Internet service provider (ISP),
referring and exit websites and applications, operating system, date/time stamp, and click-
stream data” [143]. They add that they “use this information to understand and analyze
trends, to administer the site, to learn about user behaviour on the site, to improve our prod-
uct and services, and to gather demographic information about our user base as a whole”
with a special mention that “Apple may use this information in our marketing and advertising
services”.

• Yahoo The policy is more vague in detailing the exact attributes that are collected: “receives
and records information from your computer and browser, including your IP address, Yahoo
cookie information, software and hardware attributes, and the page you request” [154]. They
add that “Yahoo uses information for the following general purposes: to customize the ad-
vertising and content you see, fulfill your requests for products and services, improve our
services, contact you, conduct research, and provide anonymous reporting for internal and
external clients”.

In the end, all major web actors collect device-specific information. However, it is not well-
defined to which extent they collect information and what they do with it. It seems most of them
rely on HTTP headers to identify the browser and the operating system but it remains to be
seen if they use more active methods to fingerprint devices as the privacy policies do not indicate
information collected from JavaScript or Flash.

16 CHAPTER 2. BACKGROUND AND CONTEXT

2.2.5 Usage
Building a browser fingerprint can give many details on a device and its configuration. The use of
the collected information falls into two main categories:

• Negative or destructive use An unknown third party would want to track a user without
his consent or to attack his device by identifying a known vulnerability.

• Positive use Users can be warned if their device is out of date by recommending specific
updates. The security of online services can also be reinforced by verifying that a device is
genuine and that it is known to the system.

Tracking

As browser fingerprinting can uniquely identify a device on the web, the implications on privacy
are important. By collecting browser fingerprints on several websites, a third party can recognize
a user and correlates his browsing activity within and across sessions. Most importantly, the user
has no control over the collection process as it is completely transparent since the tracking scripts
are silent and executed in the background. The Panopticlick study outlines in more details how
fingerprinting can a be a threat to web privacy [72]:

• Fingerprints as Global Identifiers If a device has a fingerprint that is unique, it can be
identified on the web without the need of other identifiers like a cookie or an IP address.
Peter Eckersley add in his study that it is “akin to a cookie that cannot be deleted”. Users
funnelling their network packets through a VPN (Virtual Private Network) are particularly
vulnerable to browser fingerprinting as the VPN will only mask the IP address but it will
not change the browser’s information.

• Fingerprint + IP address as Cookie Regenerators Most services on the web still
strongly rely on cookies to identify users as it is fast and easy to use. To protect their pri-
vacy and to prevent a third party from building a large profile of their browsing patterns,
some users remove cookies and install browser extensions to manage them in a very spe-
cific way. However, coupled with a fixed IP address, a browser fingerprint can be used to
regenerate deleted cookies. Researchers have already observed in the wild that any browser
storage mechanisms like Flash local storage [173], HTML5 Web storage [32] or IndexedDB
databases [13], can be used to “respawn” HTTP cookies. Browser fingerprinting can be added
to this list but since the detection accuracy greatly vary between devices, it needs to use an-
other source of information like the IP address to have a high probability of identifying the
right device.

• Fingerprint + IP address in the Absence of Cookies In the absence of cookies, browser
fingerprinting can be used to unmask different machines hiding behind the same IP address.
In the case of company who provide the same devices to its employees, using browser fin-
gerprinting may not prove to be successful but in a more heterogeneous environment, it is a
method that can lead to conclusive results.

As a whole, browser fingerprinting can be particularly dangerous to privacy as browsers do
not provide any controls over it. In Europe, the “Working Party on the Protection of Individuals
with regard to the processing of Personal Data”, which seeks to harmonise the application of
data protection rules throughout the EU, published an opinion on device fingerprinting [79]. The
documents states that websites must obtain the consent of the user to collect a browser fingerprint.
To make it even clearer, they add in the document that “Tracking for online behavioural advertising”
and “First-party website analytics” are affected by this directive and they also require the explicit
user’s consent. This approach is exactly the same as the one adopted for cookies with the EU
cookie law [78] which requires users to accept the use and storage of cookies in their browsers. An
update of an ePrivacy regulation has also been proposed and states that “Information related to
the end-user’s device may also be collected remotely for the purpose of identification and tracking”
but that it “should be allowed only with the end-user’s consent and for specific and transparent
purposes” [80].

2.2. BROWSER FINGERPRINTING 17

In the end, regulators are already in an uphill battle to verify if companies are complying with
these European rules as the necessary controls cannot easily be performed online. For cookies, a
simple check in the browser storage can verify if a cookie has been placed or not without the user’s
consent. For fingerprinting, the detection is much more complex as the browser has no mechanism
dedicated to it. Regulators will need to find new ways to cooperate with companies to make sure
that the privacy of web users is respected.

Identifying device vulnerabilities

A browser fingerprint is not just a simple collection of device-specific information. It truly reflects
the actual set of components that are running on a device. By analysing its content, attackers
can identify potential security vulnerabilities by cross-referencing the list of installed components
with a database like CVE (Common Vulnerabilities and Exposures [63]). They can then design
the perfect payload to target a specific device knowing its vulnerabilities in advance. For example,
through the navigator.plugins property, one can know if a device is running an outdated version
of the Flash plugin. At the time of writing, the CVE database reports 1,006 Flash vulnerabilities
and more than 84% are labelled as critical, including the most recent ones [62]. If the Flash player
is not up to date, users open themselves to serious security risks as any attacker on the web could
execute malicious code remotely on their device.

Launching a targeted attack with the help of browser fingerprinting is not new and has been ob-
served in the wild. Malwarebytes and GeoEdge have documented extensively with the “Operation
fingerprint” how malicious advertising campaigns use fingerprinting to deliver malwares to vulner-
able devices [133]. Their process is very straightforward. They hide fingerprinting code directly
into the JavaScript of fake advertisers and they look from there if the device is vulnerable or not.
If it is, the device will be presented with “an ad laced with malicious code that ultimately redirects
to an exploit kit”. If it is not, the ad will be “benign”. To illustrate their findings, they detail
several types of malvertising campaigns. One of them is called the DoubleClick campaign and it is
particularly interesting as it checks for several system properties before launching an attack:

1. The IP address must be unique. This protection is put in place to prevent security researchers
and security companies from replaying the attack.

2. The device must have Internet Explorer 10 or below so that they can use known vulnerabilities
to execute their exploit.

3. Security products from Malwarebytes, Kaspersky, TrendMicro, Invincea as well as others
must not be installed on the device.

If all these conditions are met, the device will be redirected to a page where an exploit kit is
patiently waiting to be executed. Attackers take this precaution to deliver their exploits because it
helps them stay under the radar for long periods of time. This is especially true as the document
reports the use of techniques like encrypting the payload file or hiding malicious code into a GIF
file to avoid being detected.

Another example comes from the musical4 malvertising campaign. Figure 2.6 presents de-
crypted and deobfuscated JavaScript code as reported in page 10 of the “Operation fingerprint”
document. Since version 5.5 in 2000, Internet Explorer dropped support of the NPAPI plugin
architecture in favour of ActiveX controls. In terms of functionalities, they are identical to plugins
as they provide a way to interact with the operating system from the browser. However, detecting
ActiveX controls is different than just accessing the navigator.plugins property as it was only in-
troduced in Internet Explorer 11 [141] To detect ActiveX controls, scripts must probe each plugin
individually by creating an ActiveXObject. If the control exists and if the security settings allow
it, the script will have access to it. If not, the browser will return the following error (tested in
Internet Explorer 9): “Automation server can’t create object”. On line 9 of Figure 2.6, the script
tries to detect if one version of the “Virtual Keyboard plugin” from a Kaspersky security solution
is installed on the system. If it is not, this means that the system is probably unprotected and
lines 18-19 will then redirect the browser to a malicious website where an exploit is waiting to be
executed.

18 CHAPTER 2. BACKGROUND AND CONTEXT

1 // Create a list of ActiveX controls to be checked
2 var document = document ,
3 keyboardAPI = "Kaspersky.IeVirtualKeyboardPlugin.JavascriptApi",
4 keyboardAPIArray = [keyboardAPI , keyboardAPI + ".1", keyboardAPI + ".4_5_0.1"],
5 success = false;
6 //Check if one version of the Virtual Keyboard control is present
7 for(var i = 0; i < keyboardAPIArray.length; i++) {
8 try {
9 new ActiveXObject(keyboardAPIArray[i]);

10 success = true;
11 break;
12 } catch(e) {}
13 }
14 var redirector = "https :// worldbesttraffic.eu/",
15 params = "[...]";
16 //In case no plugins are found , the script will create a malicious
17 // redirection through a malicious iframe where an exploit is waiting
18 if (! success)
19 with(document.body.appendChild(document.createElement("iframe"))) [...]

Figure 2.6: Excerpt from one script of the muscial4 malvertising campaign

Finally, one could be positioned on the other side of the spectrum where browser vulnerabilities
could be identified in the aim of patching them. Imagine system administrators who handle thou-
sands of different configurations on a network. With a simple security scan, they could identify
easily devices with outdated components and they could deploy fixes and updates really quickly. In
2015, Duo Security reported that 46% of corporate PCs ran outdated versions of browsers, Flash
and Java [70]. In order to fix this problem, they developed a self-remediation system that warns
users of out-of-date software at login, enabling them to update their own devices immediately [69].
In the end, browser fingerprinting can be used to perform targeted attacks but can also be deployed
in a security solution to detect unpatched software vulnerabilities.

Improving security on the web

Fraud prevention Another use of browser fingerprinting is to improve security on the web by
verifying the actual content of a fingerprint. As there are many dependencies between collected
attributes, it is possible to check if a fingerprint has been tampered with or if it matches the device
it is supposedly belonging to. For example, the actual platform of a device is written in clear
letters in attributes like the user-agent or the navigator.platform property. However, it can also be
inferred from other attributes by checking the file extensions of the list of plugins or by checking
the presence of OS-specific fonts. As these attributes do not clearly indicate “Windows” or “Linux”,
it is much more complicated to design a solution that sends a coherent message to tracking scripts
as the attributes in a fingerprint are strongly linked with each other.

ThreatMetrix, a security company that specializes in the verification of online transactions,
announced in 2010 the adoption of browser fingerprinting techniques to prevent online fraud [95].
They wrote in their press release that fraudsters change their IP address, delete cookies and botnet
scripts randomize device attributes. They add that relying exclusively on cookies is no longer
adequate to verify an online transaction. Another security company called MaxMind also utilizes
browser fingerprinting in their fraud detection services to detect fraud [94]. In that landscape,
companies are turning to browser fingerprinting to be competitive in this continual arms race
against fraudsters.

On the academic side, the literature on fraud detection is much thinner with only a single
publication addressing this problem. Researchers at Google designed a solution called Picasso
based on canvas fingerprinting to filter inorganic traffic [45]. By using specific graphical primitives
from the canvas API, they are able to successfully detect the browser and OS family of a device and
see if there is a mismatch between the exhibited fingerprint the actual device running the code. For
example, they can distinguish between traffic sent by an authentic iPhone running Safari on iOS
from an emulator or desktop client spoofing the same configuration. They add that the applications

2.3. DIVERSITY OF COLLECTED INFORMATION 19

are numerous including locking non-mobile clients from application marketplaces, detecting rogue
login attempts and detecting emulated clients. Their study does not give information on the
deployment of Picasso in a current Google solution but a talk at Black Hat Asia 2016 hints at its
integration into Google’s reCAPTCHA technology [171].
Augmented authentication At a time where passwords are the go-to solution for authentication
on the web, browser fingerprinting can provide a much needed addition to reinforce the security
of online accounts. By verifying the fingerprint of a device at login time, a system can easily
block unauthorized access from new and unknown devices. For example, if the login system sees
that an account is accessed from an iPhone while the user always connects through her Android
smartphone, this change can raise some serious red flags and the server can ask for an additional
confirmation before proceeding any further. Moreover, browser fingerprinting has the advantage
that it is completely transparent to the user so it does not provide additional usability burdens
during login time.

Alaca et al. studied extensively the use of device fingerprinting for web authentication [18].
They classify in total 29 different attributes from browser information to the network stack ac-
cording to criteria like repeatability, low resource use or spoofing resistance. One important aspect
considered in their study is the notion of stability. As a fingerprint is the direct reflection of what
is installed on a device, a browser fingerprint constantly changes. It is then up to the login system
to decide if the differences between two fingerprints are acceptable or not. For example, does a
change of browser version in the user-agent come from a legitimate update of the device or from a
different device altogether? If ten fonts are removed, did the user uninstall a particular software
or does it come from a different device that does not belong to the user? These questions have
no easy answer and each collected attribute has its own behaviour depending on the system being
used or the type of the device. Spooren et al. looked at mobile devices and noticed that mobile
fingerprints are predictable contrary to desktop fingerprints [175]. In Chapter 3, we provide our
own results regarding the diversity of mobile fingerprints and we will see that our conclusion differ
from theirs. The same authors also published an article where they investigated the use of battery
information for mobiles devices in a multi-factor authentication scheme [176]. By using binary
classifiers to classify battery draining and charging behaviours, they confirm that battery charge
measurements can be used to contribute to an active authentication system.

Finally, some companies include in their portfolio fingerprinting solutions to augment authenti-
cation. SecurAuth is a provider of an adaptive access control solution. As part of their multi-factor
authentication process, they include an heuristic-based authentication system through device fin-
gerprinting [170]. To deal with fingerprint changes, a system administrator can set the weights
of each component depending on their significance. From these weights, a score is computed and
then compared to specific thresholds to see if an additional authentication factor is required or not.
Another company called iovation has a solution named ClearKey [52] that integrates the collection
of device information as part of their multi-factor authentication framework. They provide their
own approach to deal with fingerprint changes with fuzzy logic algorithms [53].
Our contribution The use of browser fingerprinting for web authentication is still a fairly recent
development. As the content of a fingerprint can change at any time, it remains key to collect the
right information at the right time; otherwise, it leaves the system vulnerable to many attacks.
While the literature gives an insight into the directions browser fingerprinting can take to augment
authentication, it remains to be seen how everything holds when applied to a real userbase. In
Chapter 5, we bring our own contribution to the domain by detailing our authentication scheme
based on canvas fingerprinting. The main goal of our canvas mechanism is to strengthen the security
provided by a multi-factor authentication scheme and works alongside it. With the analysis of more
than a million canvas renderings, we show that our scheme provides strong guarantees in terms of
security. Especially, our scheme fights off common attacks like replay or pre-play attacks thanks
to its challenge-response design.

2.3 Diversity of collected information

In this section, we look at the different types of information that can be collected through a web
browser. We report on the existing literature on browser fingerprinting as well as other techniques

20 CHAPTER 2. BACKGROUND AND CONTEXT

found in scripts on the Internet. The primary goal of this section is to show that the collected
attributes in a fingerprint can be very diverse and span all layers of the system from the browser
to the operating system to the hardware. Appendix A provides snippets of code that explain how
most of the attributes are collected. Fingerprinting scripts do not use any invasive techniques as
they rely on publicly available APIs to build a fingerprint. For most attributes, only very few lines
of code are needed to be collected without the need to enter complex programming procedures.

It should be noted that the attributes listed here represent a snapshot in time of what is
possible to collect through browser fingerprinting. As new APIs are introduced and as browser
vendors tweak the behaviours of current APIs, attributes that can be collected today (i.e. at the
time of writing of this thesis) can be vastly different from the ones that will be collected in the
future. Chapter 3 reports on the evolution of the browser fingerprinting landscape in the last 5
years. The discovery of new fingerprinting techniques coupled with pushes in new directions from
major web actors make browser fingerprinting a fascinating and fast-evolving territory that can be
full of surprises.

2.3.1 HTTP headers
An HTTP request is composed of header fields to define the operating parameters of an HTTP
transaction. Section 14 of RFC 2616 [166] defines the syntax and semantics of all standard HTTP
header fields. Below, we detail the headers that can be collected to build a browser fingerprint and
we identify discriminating information.

• User-agent: Its goal is to inform the server about client limitations so that the response is
tailored to the user’s device. It contains information about the browser and its version along
with details on the operating system. The actual structure of the header comes from a rich
history which is detailed in Section 2.1.1.

// Examples
Mozilla /5.0 (X11; Fedora; Linux x86_64; rv :52.0) Gecko /20100101 Firefox /52.0
Mozilla /5.0 (Windows NT 6.1; WOW64) AppleWebKit /537.36 (KHTML , like Gecko)

Chrome /56.0.2924.87 Safari /537.36
Mozilla /5.0 (Macintosh; Intel Mac OS X 10\ _12_3) AppleWebKit /602.4.8 (KHTML ,

like Gecko) Version /10.0.3 Safari /602.4.8

• Accept: As defined by RFC 2616, this header “can be used to specify certain media types
which are acceptable for the response”. Nowadays, as most browsers are supporting the same
set of standards, this header has lost some of its purpose since devices present much less
limitations than in the past. However, we can still notice some differences as some browsers
are standing out from others by natively supporting new non-standard formats like Chrome
with the “WebP” image format [201] or Edge with the “JPEG XR” image format [104].

// Examples
// Firefox
text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q=0.8
// Chrome
text/html ,application/xhtml+xml ,application/xml;q=0.9, image/webp ,*/*;q=0.8
//Edge
text/html ,application/xhtml+xml ,image/jxr ,*/*

• Accept-Encoding: It indicates the encoding or compression formats supported by the
browser. Most web pages are compressed with the “gzip” format but some browsers support
more advanced compression formats such as Brotli [161].

// Examples
gzip , deflate , br //from Firefox
gzip , deflate , sdch , br //from Chrome
gzip , deflate //from Safari

• Accept-Language: It informs the server of the set of languages that are preferred for the
response. The languages are organized in decreasing order of priority. In the examples, the
values after the “q” letters indicate the exact value of the priority.

2.3. DIVERSITY OF COLLECTED INFORMATION 21

// Examples
en-US,en;q=0.5
fr-FR,fr;q=0.8,en-US;q=0.6,en;q=0.4
en-us

• Order of HTTP headers: When a browser performs an HTTP request, it sends all its
HTTP headers in a specific order. Unger et al. noted in one study that there is a significant
difference in how the browsers order the HTTP header fields [193].

2.3.2 JavaScript

We list here all the information that can be collected by the execution of a simple JavaScript
script in a browser. All the attributes presented here do not require any special permissions to be
accessed. Any server on the web can build a fingerprint with this information even though some
may require more time to be collected than others (i.e. benchmarking or probing browser features
require more time than accessing a simple object property).

• List of plugins: Through the navigator.plugins property, a script can get access to the
list of installed plugins. It should be noted that a plugin must not be mistaken with a
browser extension. While a browser extension offers ways to modify the behaviour of the
browser, it is limited to a set of specific browser APIs. On the other end, plugins extend
the capabilities of a browser by providing a direct link with the operating system. This
enables the browser to support formats that are not natively supported by the browser like
Flash or Silverlight and to communicate with external programs like an anti-virus. However,
as we will see in Chapter 3, the old plugin architecture called NPAPI has been deprecated
from modern browsers as HTML5 now offers many features that reduce greatly the need
for external plugins. Only Flash is still supported but it is a matter of time before it gets
dropped by major browser vendors.

// Examples
// Firefox on a Linux system
Plugin 0: Shockwave Flash; Shockwave Flash 24.0 r0; libflashplayer.so.
// Chrome on a Windows system
Plugin 0: Chrome PDF Viewer; ; mhjfbmdgcfjbbpaeojofohoefgiehjai. Plugin 1:

Chrome PDF Viewer; Portable Document Format; internal -pdf -viewer. Plugin 2:
Native Client; ; internal -nacl -plugin. Plugin 3: Shockwave Flash;

Shockwave Flash 24.0 r0; pepflashplayer.dll. Plugin 4: Widevine Content
Decryption Module; Enables Widevine licenses for playback of HTML
audiovideo content. version: 1.4.8.962; widevinecdmadapter.dll.

// Safari on a Mac system
Plugin 0: WebKit built -in PDF; ; .

• Platform: The navigator.platform property returns a string representing the platform on
which the browser is running. This information echoes what is already present in the User-
agent header.

// Examples
Linux x86_64
Win32
MacIntel

• Cookies enabled: The navigator.cookieEnabled property returns a boolean value indicating
whether cookies are enabled or not.

// Examples
true
false

22 CHAPTER 2. BACKGROUND AND CONTEXT

• Do Not Track: The navigator.doNotTrack property returns the user’s Do Not Track set-
tings. If users wish not to be tracked, they can activate Do Not Track so that a DNT header
is sent along with all the browser’s requests’ [174]. However, since its inception, the DNT
header has faced many problems as there was no incentive for companies to honor it [194].

// Examples
1
0
null

• Timezone: The following instruction returns the time zone difference in minutes from cur-
rent locale (host system settings) to UTC: new Date().getTimezoneOffset().

// Examples
-120 //GMT+2
-60 //GMT+1
480 //GMT -8

• Screen resolution and color depth: The window object provides a screen object which
provides information on the window that is currently being rendered. Notably, the screen
object offers the width, height and colorDepth properties that reflects actual characteristics of
the screen that is being used by the device. However, it should be noted that the dimensions
reported from JavaScript are limited to a single screen contrary to the Flash plugin which
can detect a multi-monitor setup.

// Examples
1920 x1200x24
1920 x1080x24
1920 x1200x24

• Local and session storage: The Web Storage API provides mechanisms to store data for
a particular domain. The difference between local and session storage is that data stored
in local storage has no expiration date. The user can disable this API at any time in the
browser settings but most users have it activated as it is the default option. To test it, a
script can try to store a value in either window.localStorage or window.sessionStorage and
see if the value persists.

// Examples
yes
no

• Use of an ad blocker: The most popular browser extensions for both Chrome and Firefox
are ad blockers with numbers easily exceeding millions of downloads. As explained in greater
details in Section 2.4.3, most blocking extensions use a blacklist system to prevent a browser
from downloading and executing advertising scripts. If the URL or the name of a script is
present in the extension database, the script is blocked. In order to test if a device has an ad
blocker installed, we look to see if a script named “ad.js” which is present in default blacklists
is executed.

// Examples
yes
no

• Canvas (2D): As defined by the specification of the W3C [28], the “2D Context provides
objects, methods, and properties to draw and manipulate graphics on a canvas drawing sur-
face”. Users can draw and animate any number of shapes and they can render textual content
directly in the browser by using the graphical capabilities of the device. With regards to fin-
gerprinting, any script can create an HTML canvas element and interact with it through a
CanvasRenderingContext2D object. When an image has been rendered, the getDataUrl()

2.3. DIVERSITY OF COLLECTED INFORMATION 23

function can be called to get a string representation of the image, thus allowing easy com-
parisons between devices. It should be noted that an image can be collected without ever
being presented to the user as a canvas element can stay invisible for the whole duration of
the rendering process.

(a) Rendering from a device running Firefox on Fedora 25

(b) Rendering from a device running Chrome on Windows 7

(c) Rendering from a device running Safari on Mac OS X

Figure 2.7: Examples of canvas renderings on three different devices

In 2012, Mowery and Shacham were the first to study the canvas API and the canvas 2D
context in their Pixel Perfect study [116] to produce fingerprints. To expose differences
between devices, they draw several lines of text with different fonts in a canvas element. One
line uses the Arial font which is commonly found in modern operating systems. From 300
canvas samples, they observed 50 distinct renderings with the largest cluster containing 172
samples. As the font handling stacks can vary between devices, they state that the operating
system, browser version, graphics card, installed fonts, sub-pixel hinting, and antialiasing
all play a part in generating the final user-visible bitmap. This is especially true as the
file providing the Arial font may slightly differ between operating system and distribution.
To remedy this problem, they try with a WebFont which is a font directly provided by the
server. Differences observed from that test are then a direct consequence of the font engine
used to render the text and not from the font file itself. From 294 samples, they observe
similar results as the Arial test with 45 distinct results. They hint in the study at a more
aggressive way to test devices with what they call “nonsense text”. Instead of asking for a
font that exists, they make an invalid font request to rely on the fallback font mechanism of
the browser. As the browser cannot find the requested font, it will used the default font that
is indicated in its settings. Depending on the operating system, this fallback font can greatly
vary creating even more differences between devices. However, there is no mention in their
study of an experiment with this “nonsense text”.
Acar et al. performed a large-scale study of canvas fingerprinting in “The Web Never For-
gets” [13]. They crawled the Alexa most popular 100,000 websites to find canvas fingerprinting
scripts on the web. By instrumenting the browser, they are able to record calls to known
functions of the canvas API and decide if a script performs canvas fingerprinting or not. They
found that 5.5% of visited websites had a canvas script on their homepage even though 95%
of the scripts belong to a single provider called addthis.com. Following this study and the
backlash that ensued, addthis.com responded that canvas fingerprinting was used for an R&D
test and that the code has been disabled since [17]. One of the most important aspects of
Acar et al. study is their analysis of the canvas fingerprinting scripts. They found that scripts
utilize the techniques outlined by Mowery and Shacham and notably, they take advantage of
the fallback font mechanism to generate even more differences between devices. This is the
first time that such techniques were reported on the Internet. They also noticed that most
scripts share a very similar codebase and they explained this similarity by the availability on
GitHub of an open source fingerprinting library called fingerprintjs [87].
Finally, the latest numbers on the adoption of canvas fingerprinting on the web come from

24 CHAPTER 2. BACKGROUND AND CONTEXT

a study conducted by Englehardt et al. in 2016 with the OpenWPM framework [77]. They
show that 1.6% of the Alexa top million websites have a canvas fingerprinting script and they
confirm that addthis.com has stopped using this technique as they did not find any scripts
from this domain.

• WebGL (3D): As designed by the Khronos Group [30], WebGL is a graphics API that
can render interactive 3D objects in the browser and manipulate them through JavaScript
without the need for plugins. It relies on the browser canvas element but instead of using
a CanvasRenderingContext2D, it has its own WebGLRenderingContext. If a graphic card or
GPU is available, the browser can make use of it to render complex 3D scenes. If hardware
rendering is unavailable, the browser can fallback on the CPU with a software renderer like
SwiftShader that Chrome uses [178].

Mowery and Shacham also studied in Pixel Perfect [116] the use of WebGL for fingerprinting.
In their test, they created a 3D surface on which they apply a very specific image and they
add different ambient lights. They observed 50 distinct renders from 270 samples. They
explain this heterogeneity by the difference in hardware and software where the processing
pipeline is not exactly identical between devices. However, it is not until 2017 that progress
was made with regards to the capabilities of WebGL for fingerprinting. Cao et al. designed
a fingerprinting technique that relies heavily on WebGL to identify devices [48] (more info
on their results in Section 2.4.1). Through a series of 31 rendering tasks, they test care-
fully selected computer graphics parameters to extract device features and they were able to
uniquely identify more than 99% of 1,903 tested devices.

• WebGL Vendor and renderer: The WebGL API supports extensions to offer additional
features for developers. The current list of extensions can be found in the official Khronos
Extension Registry [198]. One of these extensions is called “WEBGL_debug_renderer_info”
and provides information on the actual GPU vendor and renderer. As the name indicates, it
should be used for debugging purposes but that does not prevent a fingerprinting script from
accessing these values. The actual values of the vendor and renderer reflect the environment
in which WebGL is executed. It can report the exact value of the GPU used by the device or
it can give the name of the software renderer used in case the browser falls back to the CPU.
It should be noted that not all browsers give access to the WebGL Vendor and Renderer.
While any script can query these values on Chrome, Firefox requires a privileged context
activated by a browser flag to unmask the real values (it returns “Mozilla” in an unprivileged
context).

// Examples
//WebGL Vendor
Intel Open Source Technology Center
Google Inc.
ATI Technologies Inc.
NVIDIA Corporation

//WebGL Renderer
Mesa DRI Intel(R) Haswell Mobile
Google SwiftShader //Shows the use of a CPU and not of a dedicated GPU
AMD Radeon R9 M370X OpenGL Engine
GeForce GTX 970/ PCIe/SSE2

• AudioContext: Discovered by Englehardt et al. while crawling the web looking for trackers,
AudioContext fingerprinting is one of the latest additions in a fingerprinter’s toolbox [77].
The AudioContext API provides an interface to create a pipeline to process audio. By linking
audio modules together, you can generate audio signals and apply very specific operations like
compression or filtering to generate a very specific output. They found scripts that process
an audio signal generated with an OscillatorNode to fingerprint the device. The authors
add that the fingerprinting process is similar to what is done with canvas fingerprinting as
processed signals will present differences due to the software and hardware stack of the device.
The relative novelty of this technique explains that scripts using this API were only found
on a very small number of websites.

2.3. DIVERSITY OF COLLECTED INFORMATION 25

• JavaScript standards conformance: Muzanni et al. proposed a method to reliably iden-
tify a browser based on the underlying JavaScript engine [121]. They analysed browsers to see
if they complied with the JavaScript standard and they tested them to detect which features
were supported. By collecting a dataset from more than 150 browser and operating system
combinations, they were able to compute the minimal suite of tests that needs to be run to
identify uniquely each combination. Their approach is possible because web browsers present
differences in the JavaScript engine even between two subsequent versions.

• CSS querying: Unger et al. perform a series of test to detect CSS properties that are
unique to some browsers [193]. For example, Firefox presents CSS properties prefixed with
“-moz-” [60] while Chrome and Safari have some properties prefixed with “-webkit-” [61].
With their method, they can easily detect the browser family as these prefixes are not shared
between browsers.

• Font metrics: Fifield et al. looked into the analysis of character glyphs to identify devices
on the web [86]. They noticed that the same character with the exact same style may be
rendered with different bounding boxes depending on the browser and the device used. By
testing 125,000 different Unicode characters on more than 1,000 web browsers, they were able
to uniquely identify 34% of their population. With the data they collected, they were able
to reduce the number of tested characters to 43 to reach the same conclusion.

• Browser extensions: Detecting a browser extension is challenging as there is no API to
query to get the exact list of installed extensions in the browser. We explained previously
how it is possible to identify the presence of an ad blocker but it is much more difficult to
generalize this approach for a lot of extensions. During the writing of this thesis, two studies
were published regarding the detection of browser extensions.

The first was conducted by Sjösten et al. and looked at the use of web accessible re-
sources to detect extensions [172]. By accessing very specific URLs, they can know if
an extension is installed or not. For example, to display the logo of an extension, the
browser knows where it is stored on the device and it follows a URL of the form “exten-
sion://<extensionID>/<pathToFile>” to fetch it. However, since these resources can be
accessed in the context of any web page, this mechanism can be abused by a script to detect
the presence or absence of a particular extension. Moreover, this system is particularly pre-
cise as no two extensions share the same ID. The only way to prevent detection is not to use
any web resources. In their study, they were able to detect 12,154 Chrome extensions out
of 43,429 and 1,003 Firefox ones out of 14,896. The differences in numbers between Chrome
and Firefox is explained by the difference in addon architecture between the two browsers.

The second study was done by Starov et al. and consists in identifying side effects produced
by extensions [177]. For example, if an extension adds a button on YouTube to provide new
controls over a video, the added button is detectable by analysing the DOM of the web page
(the Document Object Model represents the structure of a page). Detecting an ad blocker
is similar as the blocking of an ad script will prevent some ads from being displayed. If
an extension modifies any element of the page that the user is visiting, this behaviour is
detectable and can lead to the identification of the installed extension. The authors of the
study performed an analysis of the 10,000 most popular Chrome extensions. They tested
individually every single one of these 10,000 extensions to record in a database detectable
changes. They found that 9% of them produce DOM modifications that can be detected on
any domain and 16.6% introduce detectable changes on popular domains.

• Battery: Drafted as early as 2011 [34], the “Battery Status” specification defines “an API
that provides information about the battery status of the hosting device” [36]. The API is
composed of a BatteryManager interface that reports if the device is charging or not. It
also includes extra information like the charge level of the device along with its remaining
charging and discharging time. As detailed by the W3C, by giving knowledge of the battery
status to web developers, they “are able to craft web content and applications which are
power-efficient, thereby leading to improved user experience”. For example, if a portable
device is running low on battery, an application could decide to check for updates less often

26 CHAPTER 2. BACKGROUND AND CONTEXT

or simply stop sending data to preserve the battery as much as possible. The intent behind
the addition of this API seems entirely legitimate.
However, they underestimated how much information regarding the battery could be misused
in the wild. In 2015, Olejnik et al. performed a privacy analysis of the Battery Status
API [130]. They highlighted the fact that the level of the battery could be used as a short-
term identifiers across websites and that repeated readouts could help determine the capacity
of the battery. In 2016, Uber disclosed the fact that users are likely to pay more if their phone
is running out of battery because they do not take the time to look for different prices [191].
Even though Uber added that the company did not use the battery level to set prices for
a ride, this piece of information raised of a lot of concerns about how the Battery Status
API could be misused. The persons responsible for the standard did not anticipate all these
problems as they only indicated in their original draft that the “the information disclosed has
minimal impact on privacy or fingerprinting” [35].
To address the issues raised by this API, different approaches have been adopted. Mozilla
decided to remove access to the API by any untrusted code [117]. This is an unprecedented
decision in the history of the Web as this is the first time that public access to an API has
been removed due to privacy concerns. This is even more impressive considering that the
Battery Status API has been enabled by default in Firefox since version 11 released in March
2012 [118]. Firefox restricted the access to privileged code (access is allowed internally and
from extensions) to prevent misuse of the battery information in March 2017 with the release
of Firefox 52 [119]. On their end, the WebKit team has completely removed the Battery
Status API from their code [199]. The team behind the Yandex browser has chosen an opt-in
approach where default information is spoofed if the user has not given his consent [207].
In the end, there is no unique consensus on what should be done with this API as different
browser vendors have chosen different approaches. The future is still unclear as some browsers
like Chrome still supports it. However, it is a certainty that the tumultuous changes of the
Battery Status API will have an impact on the design of future web standards going forward
as privacy will be put at the forefront of discussions. Olejnik et al. documented extensively
the complete history of the Battery Status API in [131]. Notably, they detail a list of
recommendations to strongly improve the privacy engineering of web standard and to detect
early on privacy problems at the specification stage.

// Example
Charging: Discharging
Time to charge: Infinity Seconds
Time to discharge: 8917 Seconds
Battery Level: 91%

• Benchmarking: Another way to uncover information about a device is to benchmark its
CPU and GPU capabilities. Through JavaScript, a script can launch a series of tasks and
measures the time it takes to complete them. However, the biggest difficulty when using
benchmarks is to interpret differences and fluctuations correctly. Two time values can be dif-
ferent because they have been collected from two different devices but they could also belong
to a single device where a new background process came disrupting the actual measurements.
Mowery et al. were the first to study how benchmarking could be used to fingerprint a
device [115]. They use 39 different tests to identify the performance signature of the browser’s
JavaScript engine. They show that they are able to detect the browser and its version with a
79.8% accuracy. However, the biggest downside of their approach is that it takes in total 190.8
seconds to run the complete benchmark suite. Contrary to the majority of the attributes
presented in this section that can be collected in a matter of milliseconds, this time difference
makes it almost impossible to deploy such methods in the wild. They also add in their
study that they can build a more complete fingerprint by identifying the underlying OS
and the CPU architecture but it requires a very extensive dataset to detect these properties
accurately.
Nakibly et al. turned to the GPU to benchmark devices [122]. They use the WebGL API to
display complex 3D scenes and they measure the number of frames rendered by the browser.

2.3. DIVERSITY OF COLLECTED INFORMATION 27

While their experiment is small in scope, they show that benchmarking the GPU can produce
very noticeable differences between devices as a small GPU on a smartphone will behave very
differently than the latest high-end graphic card.
Finally, Saito et al. tried estimating the presence of specific CPU features through bench-
marking [168]. From a dataset composed of 350 devices, they are able to detect with 99%
accuracy the presence of AES-NI which is a special instruction that provides hardware accel-
eration for AES processing. They can also measure to some extent if TurboBoost is activated
with an accuracy of 84.7%. It is a technology that increases the frequency of the CPU in
case of heavy load. However, they still face the same shortcomings as the other studies be-
cause the benchmarks for AES-NI and TurboBoost take respectively 28 and 46 seconds to be
fully executed. These long time durations prevent these methods from actually being used
in real-world applications.

2.3.3 Plugins
Plugins are a part of the web since the beginning. In 1995, the Netscape Navigator introduced
the Netscape Plugin Application Programming Interface (NPAPI) to add support for plugins. The
intent behind it was to make the browsing experience richer by supporting new formats that the
browser did not handle natively. Through the years, many plugins were developed like Flash,
Silverlight, Java, Shockwave or Acrobat Viewer and they made the web more dynamic. However,
as we will see in Chapter 3, plugins are in their last breath as they proved to be the source of
too many security and stability problems. Flash is still supported but other plugins cannot run
anymore on modern browsers as they dropped the support of the NPAPI legacy architecture.

Plugins are interesting for fingerprinting as they do not have the same limitations as a browser
API. Since they rely on software that is directly installed on the operating system, they can have
access to very precise information on the device. In this section, we look at what can be retrieved
through the Flash plugin as it complements very well what can already be collected through
JavaScript. Notably, we look at the Capabilities class which “provides properties that describe the
system and runtime that are hosting the application” [91]. The code listed for each attribute is
written in ActionScript [15] and the Flash functions are called directly from JavaScript with the
help of the ExternalInterface class [92];

• List of fonts: Flash gives access to the exact list of fonts installed on the operating system
with a simple call to the Font.enumerateFonts function. This method is fast and direct
compared to the JavaScript alternative that consists in probing each font one by one. In 2013,
the FPDetective study by Acar et al. found 95 out of the top 10,000 websites performing
Flash-based font enumeration and 404 sites out of the top million websites doing JavaScript-
based font probing [14]. Saito et al. also showed that it is possible to identify the operating
system along with some installed applications just by analyzing the list of fonts [167]. This is
made possible because some OS and applications come with their own set of fonts that they
are the only one to provide.

// Examples
Abyssinica SIL , Aharoni CLM , AR PL UMing CN, AR PL UMing HK, AR PL UMing TW ,

AR PL UMing TW MBE , Bitstream Charter , Bitstream Vera Sans , Bitstream Vera
Sans Mono , Bitstream Vera Serif , Caladea , Caladings CLM , Cantarell ...

Agency FB, Aharoni , Algerian , Andalus , Angsana New , AngsanaUPC , Aparajita ,
Arabic Typesetting , Arial , Arial Black , Arial Narrow , Arial Rounded MT Bold
, Arial Unicode MS , Baskerville Old Face , Batang , BatangChe , Bauhaus 93...

• Screen resolution: Getting the screen resolution through Flash may appear superficial as
it can already been collected through JavaScript. However, Flash stands out by reporting
the full screen resolution of a multi-monitor configuration instead of the resolution of a single
screen.

// Examples
3840 x1200
1920 x1080
5760 x1080

28 CHAPTER 2. BACKGROUND AND CONTEXT

• Language: As defined by the documentation, Capabilities.language specifies the language
of the operating system on which the browser is running. For most users, collecting this
attribute may not provide new information as their browser will reflect the language of their
desktop environment. But for others, it may provide just enough information to identify
them if they tweaked their browser to use a language that is different than the default one
of their OS.
// Examples
en
fr
es

• Platform: The Capabilities.os property reports the current operating system. However,
contrary to the information collected from JavaScript, it can be much more precise. On
Mac or Windows, Flash indicates the exact version of the OS. And for Linux systems, Flash
reports the exact version of the Linux kernel. This divides the entire Linux population into
different groups because the way kernel updates are delivered can vastly vary between Linux
distributions. The presence of kernel information can also pose a serious security risk as it
can be a vector for a targeted attack if vulnerabilities are known for the indicated kernel
version.
// Examples
Linux 4.10.5 -200. fc25.x86_64 //’fc25’ is for Fedora 25
Linux 4.8.7-1- ARCH //’ARCH’ is for the Arch Linux distribution
Windows 7
Mac OS 10.9.5
Samsung TV Linux 3.8.13

2.3.4 Conclusion
In this section, we showed that a lot of diverse information can be collected from publicly available
browser APIs: from the browser, its version and its preferences to the operating system to the
actual GPU and CPU that are running on the device. However, it should be pointed out that not
all attributes give the same level of details. As we can see with the DNT header or the presence
of cookies, some attributes have very few values like yes or no that are shared by many devices.
Others can be very discriminating as they can report the exact model of the GPU or the exact
version of the Linux kernel. This is why it is preferred to collect as much information as possible
to perform identification as it is impossible to predict the level of precision from the collected data
beforehand. Gulyás et al. explored the concept of near-optimal fingerprinting with constraints, i.e.
fingerprinting in a context where only a limited number of the user’s attributes can be queried [97].
They showed that, from a dataset of 43,656 lists of fonts, they were able to uniquely identify 30.58%
of users just by checking 5 fonts for each of them. This proves that most attributes may not be
needed when identifying a device in a dataset.

Another important notion is stability. As users update their devices and customize their
browsers, the collected fingerprints are changing. In order to link browser fingerprints belong-
ing to the same device, the quantity of modified information should be as small as possible. For
example, a server can expect to see an increase in the browser version from time to time but a
change in the timezone is more unusual as it implies that the user is travelling. Different behaviours
and different types of changes must be identified to be able to identify a device with accuracy as
each attribute evolves in its own way.

2.4 Defences against fingerprinting

In this section, we detail techniques and solutions aimed at mitigating the effects of browser fin-
gerprinting. The goal is to improve users’ privacy by preventing unwanted tracking. As we will
see, there is no ultimate approach that can prevent fingerprinting while keeping the richness of a
modern web browser. Designing a strong defence requires a fine-tuned balance between privacy
and usability that can be challenging to get right.

2.4. DEFENCES AGAINST FINGERPRINTING 29

2.4.1 Increasing device diversity

Modifying the content of fingerprints

The first defence to mitigate browser fingerprinting is to increase the diversity of devices so that
real fingerprints are hidden in noise. The intuition behind this method is that third parties rely on
fingerprint stability to link fingerprints to a single device. By sending randomized or pre-defined
values instead of the real ones, the collected fingerprints are so different and unstable that a tracking
company is unable to identify devices on the web.

While this approach can appear to be strong on paper, the reality is much more complicated
as Peter Eckersley called it the Paradox of Fingerprintable Privacy Enhancing Technologies [72].
Instead of enhancing users’ privacy, some tools make fingerprinting easier by rendering a fingerprint
more distinctive. By looking through the extensions available for both Chrome and Firefox, one
can find many spoofers or switchers to modify the actual values that are collected by scripts. One
of the most popular one on Firefox called Random Agent Spoofer [157] claims more than 200,000
users and it provides the ability to rotate “complete browser profiles (from real browsers / devices
) at a user defined time interval”. Nikiforakis et al. performed an analysis of these extensions and
found many issues with regards to browser fingerprinting [124]. They showed that they might be
harmful as they did not cover all the possible ways of discovering the true identity of a browser.
First, these extensions provide incomplete coverage of modified objects. The researchers noted
that one extension was modifying the navigator.userAgent property but forgot to change others
property like the platform or the appName This poses a problem as not only a script can detect
that a protection is running but the lack of coverage offers the opportunity to uncover the real value
that the extension was trying to hide. Second, some extensions create impossible configurations
where there is a mismatch between different attributes. One browser could announce in its user-
agent that the underlying OS is Linux while the navigator.platform property indicates it is running
on Windows. Another example would be a device claiming to be an iPhone while the reported
screen resolution is far bigger than what is currently supported on these devices. Third, while
most attributes are collected through JavaScript, a script can rely on HTTP headers or plugins
like Flash to collect extra information. Nikiforakis et al. witnessed that some extensions were
changing the HTTP headers but forgot to change the same values accessible through JavaScript.
In the end, while the idea of switching values with other ones is promising, the constant evolution
of browsers coupled with very strong links between attributes prevent this approach from being
recommended. To fix the shortcomings of these agent spoofers, the scientific community turned
itself to new approaches that are outlined below.

Torres et al. explored the concept of separation of web identities with a solution called FP-
Block [185]. When the browser connects to a new domain, it will generate a new identity (i.e.
a new fingerprint) for this particular domain. If at some point the browser encounters the same
domain again, it will return the fingerprint associated with it. The intuition behind FP-Block is
that third parties will see different fingerprints on each site they are embedded so that tracking
is hampered. However, their approach presents the same limitations as naive spoofers since the
modified values are incomplete and can be incoherent.

FaizKhademi et al. developed the FPGuard solution which runs in two phases: detection and
prevention [83]. First, they detect fingerprinting-related activities with a series of 9 metrics. For
example, they check the number of access to the navigator and screen objects and they count
the number of fonts loaded using JavaScript. From these metrics, they compute a suspicion score
and if this score goes above a specific threshold, the script will be considered as a fingerprinting
one. From there, the second phase kicks in. FPGuard can launch a series of components that will
modify the content of a fingerprint. They target very specific attributes, namely the navigator
and screen objects, the list of plugins, the list of fonts and canvas renderings. They designed
special randomization policies that dictate how each of these attributes are modified. They write
for example that they change the subversion of the browser in the user-agent while fake plugins are
added in the plugins list. Unfortunately, the main problem with the FPGuard study is the lack of
information given in the article. There are no details on how the thresholds are computed in the
detection phase and the authors never explain the exact modifications performed in the prevention
phase. For this reason, it is not possible to discuss in greater details the advantages or weaknesses

30 CHAPTER 2. BACKGROUND AND CONTEXT

of this approach.
Fiore et al. worked to counter unwanted tracking by creating fingerprints that resemble the

ones left by someone else [88]. They claim that they have to alter data in a way that is consistent
to prevent being detected. However, their solution implemented in Google Chrome present the
same shortcomings as others. They modify a very specific subset of fingerprintable attributes with
a fake browsing profile but they do not provide a complete coverage of them. An inconsistency can
even be detected in Figure 2 of their article as there is a mismatch between the device announced
as an iPad in the user-agent and the screen resolution of 800x600 which should be 768x1024.

Baumann et al. designed a solution to disguise the Chromium browser called DCB (Disguised
Chromium Browser) by changing the following parameters: the screen resolution, the browser
language, the user-agent, the time and date, the list of fonts and the list of plugins [37]. When
DCB launches, it contacts the main server that “maintains a database of real world fingerprinting
features to enforce a robust browser configuration on the client”. One of the two following strategies
is then applied:

• N:1 Many Browsers, One Configuration - Several devices connected to the central server
will adopt the same fingerprint for a given period of time. This way, a third party will be
unable to uniquely identify a device as they will all look the same to a fingerprinter. Devices
are organized in groups of configurations that share similar values to avoid contradiction in
exhibited fingerprints.

• 1:N One Browser, Many Configurations - The browser configuration is changed on each start
of DCB, hiding at the same time the actual browser and system configuration.

DCB presents three advantages compared to other solutions. The first comes from the frequency
of the changes. Most protection solutions would return different values for each execution of a
fingerprint script. This introduces a problem of detectability as repeating the same test twice
would yield different results. Here, DCB is designed so that it will modify values the exact same
way during an entire browsing session. The second advantage is the N:1 configuration strategy.
Several solutions generate fingerprints that are different from the actual device fingerprint. The
problem is that the user can still be tracked in his session as he will be the only one with this
generated fingerprint. The N:1 strategy removes this problem entirely as several devices present
the same identical fingerprint at a given moment in time. The final advantage lies in how the
configuration groups are created. Instead of putting devices with different operating systems in
the same group, they try to regroup devices where the core configuration is similar (i.e. same OS
and same language). As browsers are massive pieces of software, the actual implementations of each
browser on different operating systems present differences that are detectable through JavaScript.
By regrouping devices with the same OS, DCB prevents the introduction of OS mismatches in
exhibited fingerprints.

Nikiforakis et al. explores with PriVaricator the use of randomization to render browser fin-
gerprints unreliable for tracking [123]. The main insight of their study is that making fingerprints
non-deterministic on multiple visits make them hard to link across browsing sessions. One way to
break this determinism is to take advantage of randomization but the key challenge is to determine
how and when to use it. As indicated by the authors, blatant lying is not such a good idea as it can
negatively impact the user experience. Indeed, key browser properties like the screen resolution
or the user agent are legitimately used by websites to optimize their displays. Modifying them
randomly can seriously degrade the user experience as web pages could become broken and calls to
missing APIs could be performed. In order to offer an effective fingerprinting protection tool that
minimizes site breakage, they introduce the concept of randomization policies. Each policy details
the modifications made to a specific attribute along with a set of requirements that define when it
kicks in. This way, any developer can define its own modification strategy that balances effective-
ness with usability. For example, as a proof of concept, they modified the Chromium source code
to add different randomization policies: three against the offset measurements of HTML elements
and four against the enumeration of the list of plugins. For the offset measurements, the browser
starts lying after it has passed a specific lying threshold which represents the number of accesses
to the offsetWidth and offsetHeight properties. Depending on the policy, the browser then returns
zero, a random number between 0 and 100 or it can add 5% noise to the given results. For plugins,

2.4. DEFENCES AGAINST FINGERPRINTING 31

a policy defines the probability of hiding each individual entry in a given list. They complete
their study by testing known fingerprinting scripts with each of their policies and they crawl the
Alexa top 1,000 websites several times to assess site breakage. The main difficulty with the ap-
proach chosen by PriVaricator is linked to the incomplete coverage problem mentioned earlier in
this section. As browsers are getting bigger and enriched with new APIs, new ways to get access
to supposedly hidden information are surfacing, rendering the proposed mitigation useless. For
example, PriVaricator lies about HTML offset measurements to prevent JavaScript font probing.
However, the Canvas API now offers a measureText method as indicated by [77] that gives the
exact same information that the browser was trying to hide with the modified functions. If the
policy is not updated to take into account this new function, the mitigation is rendered useless.
Thus, maintaining a complete set of policies requires a constant watch for new APIs and changes
to existing ones.

Finally, while most attributes are collected in string form, other ones from the Canvas or
AudioContext APIs produce more complex data structures. This brings us to the last approach of
this section. Instead of simply replacing an output with another pre-defined one, one can introduce
noise into the rendering process of these APIs. This way, a Canvas or AudioContext test can be ever
so slightly different at each execution. One way to introduce noise is to position the modification
at the very end of the processing pipeline where a script collect its values. An extension called
Canvas Defender on Firefox does exactly this [47]. When a script renders an image, the browser
will behave normally and the user will see the intended image. However, when the script tries to
read the content of the rendered canvas element, it will go through a function that modifies the
actual RGB values of each pixel. The image collected by the script is then different from the image
that the user can see. Another strength of Canvas Defender is that it addresses a problem raised in
the original study on canvas fingerprinting. Mowery et al. wrote that tools that add noise are not a
feasible defense against current scripts because the noise can be lifted by repeating a test a few times
and comparing the results [116]. With Canvas Defender, the modifications are consistent across
the same browsing session. When the browser starts, the extension generates a randomization
seed that is then used throughout the entire browsing session to provide consistency across tests.
Baumann et al. positioned themselves much earlier in the rendering pipeline by directly modifying
the Chromium source code in DCB [37]. They modified the fillText() and strokeText() that are
heavily used in canvas fingerprinting scripts to alter the renderings of canvas elements at runtime.
Their approach also provides consistency in the same browsing session as they use a random session
identifier generated at startup to steer the modifications.

In the end, it is possible to increase the diversity of exposed fingerprints and modify their content
but the challenges to have a working and undetectable solution are numerous. Attributes cannot
be modified in a way that will break browsing. The slightest mismatch between two attributes
can make a user more visible to trackers which defeats the entire purpose of running a defence
solution. All the techniques detailed in this section pose the question if such kind of approach should
be explored further or if the constant evolution of web browsers render current implementations
incredibly hard to maintain and to recommend. While researchers and developers are finding many
ways to make fingerprints unstable, there are always really small details that are easy to overlook
that make current solutions ineffective. Modern web browsers are such complex pieces of machinery
that it is incredibly hard to predict where the next piece of revealing information will be. And at
the pace at which the web evolves, it is anyone’s guess if changes can be expected on that front in
the near future.

Changing browsers

Since a large part of a device fingerprint is composed of browser-specific information, one could
decide to use two different browsers to have two distinct device fingerprints. This way, it is harder
for a third party to have a complete picture of a user’s browsing patterns as the tracking party will
obtain two decorrelated browsing profiles. While the premise behind this idea is really simple, the
truth behind it is more complicated. Two studies have shown that collecting attributes that are
specific to the OS and the hardware can be sufficient to uniquely identify a device.

Boda et al. designed a browser-independent fingerprinting algorithm that rely mainly on at-
tributes like the list of fonts, the timezone and the screen resolution [41]. Their findings show that

32 CHAPTER 2. BACKGROUND AND CONTEXT

the list of fonts provide a solid base for identification and that they were able to identify returning
visitors who used more than one browser or changed their IP addresses dynamically. However, the
small size of their dataset prevented them from drawing more general conclusions as the collected
data was not diverse enough to see if it holds at a larger scale.

Cao et al. designed a fingerprinting technique that relies heavily on the OS and hardware
functionalities of a device [48]. By rendering 31 different tasks with the WebGL API, they are able
to extract device features from carefully selected computer graphics tests. They also collect the size
of the screen along with the list of fonts of the device to complement their dataset. By collecting
data from 1,903 participants, they show that they are able to uniquely identify more than 99% of
devices even if the user switches browser. One important detail is that their whole suite of tests
take several seconds to be fully executed contrary to more standard fingerprinting scripts which
take less than a second. A run of the complete suite from their Unique Machine demo website [49]
takes about 15 seconds and as some tasks are aggressive on both the GPU and CPU, the browser
became unresponsive for several seconds during the test.

In the end, cross-browser fingerprinting is a reality even if its deployment in a real-world solution
may prove very challenging mainly due to time constraints. By collecting enough data from the
OS and hardware layers of a system, a third party can uniquely identify a device.

2.4.2 Presenting a homogeneous fingerprint

Another defence is to make all devices on the web present the same fingerprint. This is exactly the
approach chosen by the Tor Browser [181] also known as TBB (the Tor Browser Bundle) which
uses the Tor network.

The theory

At its heart, Tor is a distributed network of relays that relies on the concept of onion routing
which was introduced by Reed et al. [158]. It allows the connection between a client and a server
to remain anonymous by routing the network packets of an individual through a series of different
nodes. Dingledine et al. gave birth to the Tor network as it is known today by expanding on the
original design of onion routing with concepts like forward secrecy or integrity checking [66].

While the Tor network prevents an attacker from finding out the real IP address of a client, it
does not modify the actual content of an HTTP request. If a cookie ID or a browser fingerprint is
present in the payload, a server can uncover the true identity of a user. To fix this problem, the
Tor Browser was developed. As detailed by the official design document [184], the Tor Browser
follows two main categories of requirements. The Security requirements are designed to make
sure that the browser is properly configured to use the Tor network. The Privacy requirements are
concerned with reducing the linkability between two websites These requirements notably include a
Cross-Origin Fingerprinting Unlinkability section which specifically targets browser fingerprinting.
In the design document, they analyse the best strategy to fight against fingerprinting between
randomization and uniformity. While they acknowledge that randomization can be effective with
PriVaricator [123] cited as an example, they list several strong reasons why uniformity or the one
fingerprint for all strategy is better suited for the Tor Browser:

• Evaluation and measurement difficulties Introducing randomization may appear inter-
esting on paper but it is very difficult to objectively measure its effectiveness. They add
that it can also add a false sense of security because fingerprinters could ignore randomized
information or try to create a more stable fingerprint by either removing the randomness,
modeling it, or averaging it out. This concern is comparable to the one introduced with
cross-browser fingerprinting. By ignoring browser-specific information, Boda et al. [41] and
Cao et al. [48] are still able to identify devices on the Internet. In the case of the Tor Browser,
if not enough attributes are randomized, users could still be identifiable.

• Randomizing attributes related to the hardware While it is easy to replace a browser-
populated value like navigator.platform or navigator.userAgent, it is much harder to properly
randomize attributes that are related to the hardware. The browser must introduce enough

2.4. DEFENCES AGAINST FINGERPRINTING 33

randomness so that it behaves convincingly like other devices and the exact hardware prop-
erties must be blurred so that they cannot be used for identification.

• Usability issues We explained earlier in this chapter that browser fingerprinting is born
from the information given by browsers to improve the user experience. If one starts to
modify browser attributes extensively, it can completely break browsing for a user as the
browser will not receive a web page that is compatible with its supported technologies.

• Performance costs Randomization increases performance costs. In the case of browser
fingerprinting, modifying a large part of a fingerprint can induce heavy performance costs as
the fingerprinting surface is getting larger with time.

• Increased vulnerability surface As described by the design document, improper random-
ization can introduce new fingerprinting vectors that could be exploited by third parties to
facilitate the fingerprint process.

With all these reasons, Tor developers opted for the uniformity strategy. They modified Firefox
to provide a built-in protection against known fingerprinting vectors. The design document lists
24 different modifications that have been introduced in the Tor Browser. The most notable ones
are the blocking of the Canvas and WebGL API, the complete removal of plugins, the inclusion of
a default bundle of fonts to prevent font enumeration and the modification of the user-agent along
with HTTP headers. Whether a user is on Windows, Mac and Linux, the Tor Browser will always
report that the device is on Windows.

The reality

While the Tor Browser can be considered as one of the strongest defences against browser finger-
printing, it still presents some shortcomings. First, the fingerprint exposed by the Tor Browser is
known and easily identifiable. At the time of writing, the latest stable version (6.51) presents the
following user-agent.

Mozilla /5.0 (Windows NT 6.1; rv :45.0) Gecko /20100101 Firefox /45.0

Since TBB is based on Firefox ESR (Extended Support Release) [89], it still presents version 45 of
Firefox. The current non-ESR version that most users have is currently under version 52. Then,
if we look at the screen resolution, the values are rounded by default around 1,000 pixels. TBB
users can be identified easily as most users will present common values like 1024x768 or 1920x1080.
With only these two values coupled with the IP addresses from known Tor exit nodes, a website
can determine with high accuracy if the user is using the Tor browser or a standard one. While this
may not be important with respect to identification as one website cannot distinguish one Tor user
from another one, it can still impact their browsing experience as shown by Khattak et al. [109].
They reported that 3.67% of the top 1,000 Alexa sites either block or offer degraded service to Tor
users to reduce Internet abuse.

The second problem with Tor browser fingerprints is their brittleness. As it is not possible to
restrict every Tor users to the exact same fingerprint, differences can be detected between browsers.
The most notable one is the screen resolution. When first launched, the Tor Browser window has
a size of 1,000x1,000. However, if the user decides to maximize the window, the browser displays
the following message: “Maximizing Tor Browser can allow websites to determine your monitor
size, which can be used to track you. We recommend that you leave Tor Browser windows in their
original default size.”. If the user has an unusual screen resolution, this information could be used
to identify him as he will be the only Tor user with this screen resolution.

The third and final problem is that there are still detectable differences between operating
systems running the Tor Browser. The design document notes that they intend to reduce or
eliminate OS type fingerprinting to the best extent possible but they add that the efforts in that
area is not a priority. While this may provide very few information compared to other fingerprinting
vectors, OS differences are yet an additional vector that can be used to distinguish a user from the
pool of all Tor users.

In the end, developers of the Tor Browser have made some very strong modifications to limit
as much as possible the fingerprintability of the browser. If users stick with the default browser

34 CHAPTER 2. BACKGROUND AND CONTEXT

fingerprint that most users share, it provides the strongest protection against known fingerprinting
techniques. However, if one starts to deviate from this one and unique fingerprint, the user may
end up being more visible and more easily trackable than with a standard browser like Chrome or
Firefox.

2.4.3 Decreasing the surface of browser APIs

The last defence detailed in this chapter is to decrease the surface of browser APIs and reduce
the quantity of information that can be collected by a tracking script. One approach is to simply
disable plugins so that additional fingerprinting vectors like Flash or Silverlight are not available
to leak extra device information.

Another straight-forward way is to simply not run tracking scripts. One can go into the browser
preferences and disable the execution of JavaScript code for all web pages. However, by doing
so, the user will meet a static and broken web where it is impossible to login to most services.
An alternative is to use a browser extension like NoScript which uses a whitelist-based blocking
approach that prevents exploitation of security vulnerabilities [126]. By default, all JavaScript
scripts are blocked and it is up to the user to choose which scripts can run. The major problem
with NoScript is that it is hard sometimes to distinguish which scripts are necessary to display a
web page correctly and which domains belong to unwanted third parties. In the end, the user ends
up authorizing all scripts on the page and, in doing so, allow without knowing the execution of
fingerprinting scripts.

Another approach is to use ad and tracker blockers which block scripts and domains based on
curated lists. When a page is loaded, the extension analyses its content. If it finds a script or a
domain that is present in one of its lists, it will block it. The most popular addons based on this
workflow are Adblock Plus [16], Ghostery [96], uBlock Origin [192] and Disconnect [67]. They all
have their own methods of updating their lists. AdBlock Plus and uBlock Origin mostly rely on
lists updated by the community like EasyList [71] and Ghostery has its own crawling system to
detect new trackers. One of the main downside of this type of extensions is that it can take time a
lot of time before a new script is detected and blocked, leaving the user vulnerable in the meantime.
Moreover, the lists require a significant amount of maintenance as they must be constantly updated
and tweaked depending on new actors and user feedback. This approach is also not safe from false
positives as some benign scripts can be misclassified leading to web pages being completely broken.
For these reasons, developers are turning to new techniques to detect and classify scripts found
online.

Yu et al. proposed a concept in which users collectively identify unsafe data elements and report
them to a central server [208]. In their model, all data elements are considered unsafe by default
when they are first reported. Then, if enough users report the same value for a given script, the
data elements are considered to be safe as it cannot be used to uniquely identify a user or a group
of users. To assess the effectiveness of their approach, they implemented their technique inside
the Cliqz browser [54] where they collected anonymous data from 200,000 users. For one week, all
users formed a global intelligence network where each browser contributed in the classification of
scripts. By comparing their approach with results from the Disconnect extension, they concluded
that some popular blocking extensions are overly aggressive as they block requests that contain
no unsafe data. They were also able to detect new scripts that were sending unsafe data but
they were not blocked by the Disconnect extension. With these results and the recent addition of
Ghostery [55], the future of Cliqz is promising and one to look out for.

The EFF who were behind the original Panopticlick study [72] released in 2014 an extension
called Privacy Badger [144]. The tool is similar to the approach chosen by Yu et al. to identify
unsafe scripts but instead of relying on a global network of users, everything is computed locally by
the extension. The list of blocked scripts is somehow unique to each instance of Privacy Badger as
it is being built alongside the websites that the user visits. However, the main downside of Privacy
Badger is that the heuristic creation of blocking rules is too aggressive and leads to a high number
of unresponsive websites as reported by [113].

In terms of blocking protection, the last approach consists in disabling browser functions and
even entire APIs to prevent trackers from using them. This way, tracking scripts cannot collect
values that could help them differentiate one device from another. For example, an extension like

2.5. CONCLUSION 35

CanvasBlocker [46] on Firefox can disable the use of the Canvas API for all websites. A script is
then unable to collect any values if it interacts with this API. The extension offers other modes
where websites are still allowed to render images in the browser (i.e. writing is allowed) but all the
reading functions like toDataURL are blocked so that scripts cannot get access to the image content.
Another example is the Brave browser [42] which provides a built-in fingerprinting protection [43].
If it is activated, the following APIs are blocked: Canvas, WebGL, AudioContext, WebRTC against
IP leakage and Battery Status. Finally, the Tor Browser [181] which is explained in greater details
in Section 2.4.2 also blocks by default APIs like Canvas or WebGL to prevent scripts from learning
additional information.

2.4.4 Summary of existing defences

Table 2.1 provides a summary of all the defences detailed in this chapter. While some solutions
provide very strong protection against browser fingerprinting, it is often at the cost of usability
as we can see for example with NoScript or the Tor Browser. If we take a look at the scientific
publications, we can see that the biggest challenge met by researchers is to provide a complete
coverage of modified attributes as the slightest mismatch render users more visible to trackers. A
solution can be rendered useless in a matter of months as browsers are constantly updated and
new APIs are surfacing frequently.

Our contributions: Blink and FPRandom

In Chapter 4, we detail our contributions to the domain of defences against fingerprinting. The
first one is called Blink [1] and works at the operating system layer. From a pool of thousands
of components composed of plugins, fonts, browsers and operating systems, Blink assembles these
components at runtime to obtain a new fingerprint for each browsing session. Since Blink relies on
real components that truly run on the device, it does not present the incomplete coverage problem
met by many solutions as the exhibited fingerprints are genuine with no inconsistencies. The
second solution is FPRandom [3] and works at the browser level. By modifying the source code
of Firefox, we are able to introduce noise into very specific fingerprinting routines. The novelty
of the solution is that we exploit the flexibility of the JavaScript standard to target advanced
fingerprinting techniques.

2.5 Conclusion

The web is built on the principle that it is device agnostic. Whatever device is used to connect to
the Internet, anyone is able to browse its content and communicate with the rest of the world. To
make it a reality, the web relies on universal languages and protocols like HTML, CSS, JavaScript
or HTTP to support an incredibly rich ecosystem of devices from tablets to phones to laptops.
However, as devices share parts of their characteristics and configuration to optimize the user
experience, this diversity opened the door to browser fingerprinting. By collecting information
on different layers of a system, one is able to build a signature of a device and identify it among
many other ones. The implications on privacy are then really strong as the fingerprinting process
is completely transparent and the user has no control over it.

We showed in this chapter that the information contained in a fingerprint can come from many
sources: HTTP headers, browsers APIs or plugins if they are installed. While some attributes do
not give enough details to differentiate one device from another, others are much more revealing by
providing the exact version of a kernel or the model of a hardware component. In Chapter 3, we
provide a much needed update on the state of device diversity on the web with the recent booming
of mobile devices and the introduction of new browser APIs.

By going through a varied list of defences against fingerprinting, we showed that there is no
simple and ultimate solution to mitigate tracking. Finding a good solution is always a compromise
between protection and usability and adjusting correctly these two dimensions is never easy as we
saw in the advantages and the weaknesses of spoofers on one side and the Tor Browser on the other.
While some focus on blocking scripts, others try to modify the content of fingerprints. On paper,

36 CHAPTER 2. BACKGROUND AND CONTEXT

Solution Citation Type Comments

Sc
ie
nt
ifi
c
pu

bl
ic
at
io
ns

FP-Block [185] M +: Separation of web identities
−: Incomplete coverage

FPGuard [83] M +: Detection and prevention of fingerprinting
−: Lack of details

Fiore et al. [88] M +: Aims at creating consistent fingerprints
−: Incomplete coverage

DCB [37] M
+: N:1/1:N strategies, changes at each session, cre-
ation of groups with similar configurations
−: Incomplete coverage (?)

PriVaricator [123] M +: Custom randomization policies
−: Incomplete coverage

Changing browsers [41,48] M* +: Presents distinct and genuine fingerprints
−: Can be bypassed

Cliqz browser [54,208] BS
+: Strong protection against scripts with unique
identifiers
−: Relies on a central server

O
nl
in
e
to
ol
s

Canvas Defender [47] M +: Modifications consistent across a browsing session
−: Only canvas

Random Agent Spoofer [157] M +: Uses real database of browser profiles
−: Incomplete coverage

Tor Browser [181] U,BA +: Very strong protection against fingerprinting
−: Tor fingerprint is brittle

NoScript [126] BS +: Blocks all JavaScript scripts
−: Blocks all JavaScript scripts

Adblock Plus [16] BS +: Extensive blocking list
−: Relies on lists of known trackers

Ghostery [96] BS +: Very extensive blocking list
−: Relies on lists of known trackers

uBlock Origin [192] BS +: Extensive blocking list
−: Relies on lists of known trackers

Disconnect [67] BS +: Very extensive blocking list
−: Relies on lists of known trackers

Privacy Badger [144] BS +: Heuristics-based approach
−: Blocking may be too aggressive

Canvas Blocker [46] BA +: Blocks the entire canvas API
−: Other vectors can still be used

Brave browser [42] BA
+: Blocks the entire Canvas, WebGL, AudioContext
and WebRTC APIs
−: Other vectors can still be used

C
on

tr
ib
ut
io
ns Blink [1] M

+: Produces genuine and diverse fingerprints with
no inconsistencies
−: Take HDD space

FPRandom [3] M

+: Introduces noise into the Canvas, AudioContext
APIs and randomises the enumeration order of
JavaScript objects
−: Other vectors can still be used

Table 2.1: Summary of existing defence solutions. M = Modifying the fingerprint content. M* =
Modifying the fingerprint content by switching browsers. U = Universal fingerprint. BS = Blocking
Scripts. BA = Blocking APIs.

2.5. CONCLUSION 37

all defence solutions are sound but the biggest difficulties lie in the implementation as researchers
and developers are faced with the constant updates and evolution of the web as a platform. In
Chapter 4, we provide our own contribution to the domain. With Blink, we address the problem of
incomplete coverage as we detail a solution that synthesizes genuine fingerprints at runtime thanks
to a large pool of browsers, plugins, fonts and operating systems. With FPRandom, we explore a
new defence approach by exploiting the flexibility of modern web browsers to mitigate advanced
fingerprinting techniques.

Finally, it remains to be seen how browser fingerprinting will be used in the future as the liter-
ature has mostly focused in recent years on tracking and mitigating the collection of data. Positive
use of this technology for better security is definitely an avenue where browser fingerprinting will
grow as many companies are already adding fingerprinting-related techniques to complement their
security solutions. In Chapter 5, we bring our own solution to reinforce a multi-factor authentica-
tion scheme. Through a challenge-response mechanism, we use the Canvas API of modern browsers
to assert the identity of a device at login time. The use of canvas fingerprinting enables us contrary
to other techniques to fight off common attacks as we can generate a unique challenge for each
connection of a client.

Chapter 3

Investigating browser fingerprinting

Since the Panopticlick study shed light on browser fingerprinting in 2010, web browsers have
undergone important changes. The development of HTML5 pushed the limits of what is possible
online with the introduction of new APIs like Canvas, WebGL or Web Audio. Mobile browsing
has witnessed an incredible growth in the past few years as it overtook desktop browsing for the
first time in 2016 [114]. In this changing online landscape, we launched the AmIUnique.org website
in November 2014 to collect genuine browser fingerprints from online visitors. Our main goal
is to investigate the current state of browser fingerprinting and report on the impact of recent
technological trends. Especially, we want to study the following areas:

• Verify the results of previous studies on the diversity of devices on the web.

• Assess the impact of new attributes found in the literature.

• Analyse the impact of browser fingerprinting on mobile devices.

This chapter is organised as follows. In Section 3.1, we introduce how we collect browser finger-
prints and explain the challenges encountered to support older or legacy browsers. Then, we detail
in Section 3.2 what we collect along with detailed statistics for each attribute. In Section 3.3, we as-
sess the impact of the main techniques that emerged since 2010 before investigating the uniqueness
of mobile device fingerprints in Section 3.4. We simulate in Section 3.5 possible technological evo-
lutions and we analyse the linkability of browser fingerprints through time in Section 3.6. Finally,
we report on the impact of the AmIUnique website on both users and developers in Section 3.7
before concluding this chapter in Section 3.8.

3.1 Building a website for all browsers

3.1.1 Collecting fingerprints
AmIUnique.org is a website dedicated to browser fingerprinting, aimed both at collecting data
about device diversity and at informing users about the privacy implications of fingerprinting. All
visitors are informed of our goal with links to both our privacy policy and FAQ sections, and they
have to explicitly click on a button to trigger the collection of their device’s fingerprint. From the
very beginning, we released the code of the website as open source to ensure full transparency of
the fingerprinting procedure1.

The workflow to collect browser fingerprints on the AmIUnique website is simple. When visitors
land on the homepage, they are presented with the “View my browser fingerprint” button as seen
in Figure 3.1. When they click on it, they are redirected to the “My fingerprint” page where the
collection process takes place. The amount of information that is sent to the server then depends
on the browser and its configuration.

1. If users have disabled the use of JavaScript, we will only collect HTTP headers.
1https://github.com/DIVERSIFY-project/amiunique

39

https://github.com/DIVERSIFY-project/amiunique

40 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

2. If JavaScript is enabled, we will collect HTTP headers + JavaScript attributes.

3. If JavaScript is enabled and if Flash is present and enabled, we will collected HTTP headers
+ JavaScript attributes + Flash attributes.

When our fingerprinting script finishes the collection operation, it sends the fingerprint to the
server so that it is stored in our database. The server then sends back the percentage of fingerprints
sharing the exact same value for each attribute. This lets users know if some attributes are unique
so that they can improve their online privacy by tweaking their browser configuration.

Figure 3.1: Landing page of the AmIUnique.org website

To prevent collecting multiple copies of the same fingerprint from the same user, we store a
cookie on the user’s device with a unique ID, and we also keep a hashed version of the IP address.
These two pieces of information allow us to identify returning devices, which represent a negligible
part of our dataset.

3.1.2 Supporting legacy technologies
In order to collect meaningful data on the diversity of devices on the web, it is imperative that
the site behaves correctly on the widest range of browsers possible. The most challenging part of
building AmIUnique was to support older browsers as they can react very differently to the exact
same JavaScript code. For example, it is estimated that 5 to 7% of desktop PCs are still running
Windows XP in April 2017 according to Net Applications [64] and StatCounter [65]. When it was
released, Windows XP was accompanied with Internet Explorer 6 and updates brought Internet
Explorer 8 to the OS in 2009. When designing a fingerprinting script with these legacy browsers
in mind, one has to test them to be sure that they work as intended. The JavaScript code may
throw unexpected errors as modern keywords or data structures were not supported at the time.
Some attributes may also be collected differently like with plugins in Internet Explorer as ActiveX
controls are used instead of the NPAPI architecture. The same reasoning has to be applied when
configuring the server for HTTPS connections. Older browsers like Internet Explorer do not support
modern ciphersuites so the security of the HTTPS connection had to be downgraded so that they
could still connect to AmIUnique through less secure ones.

3.2. STATISTICS ON 118,934 FINGERPRINTS 41

All in all, the core of the AmIUnique website was developed in the span of two weeks but
it required an additional month to extensively test and adapt it to less modern browsers as the
landscape of the web 10 years ago was much different than how it is today.

3.2 Statistics on 118,934 fingerprints

AmIUnique was launched in November 2014. Thanks to websites like Slashdot [23], Clubic [20],
Framasoft [21] and social media channels like Twitter [22], the website quickly gained some traction
and it attracted several tens of thousands of visitors in the first few months. The study presented
in this chapter is based on fingerprints collected between November 2014 and February 2016. Given
that our work focuses on fingerprinting modern browsers and at analysing the importance of the
attributes in Table 3.1, we do not consider fingerprints with no JavaScript. As of February 15th,
2016, we collected 142,023 fingerprints, which were then reduced to 118,934 once we removed the
fingerprints without JavaScript for this study. At the time of writing in June 2017, more than
390,000 browser fingerprints have been collected. We provide in Appendix B.5 an update of our
2016 study with descriptive statistics from this larger dataset.

The first part of this section presents the set of attributes that we collect in our browser
fingerprinting script. Then, we give a few general descriptive statistics about the fingerprints that
serve as our dataset. We finish this section with a series of tests to compare our dataset with the
only other available set of fingerprint statistics, provided by Eckersley in 2010 [72].

3.2.1 Fingerprinting script
We implemented a browser fingerprinting script that exploits state-of-the-art techniques [13, 116]
as well as some new browser APIs. The complete list of attributes is given in the ‘Attribute’
column of Table 3.1. The ‘Source’ column indicates the origin of each attribute (HTTP, JavaScript
or Flash). The ‘Distinct values’ and ‘Unique values’ columns give a global overview of the most
discriminating attributes in a fingerprint. Finally, the last column displays a complete example
of a browser fingerprint. The top 10 attributes have been presented by Eckersley. Most of the 7
attributes at the bottom of the table have been discussed in other works. Yet, we are the first to
collect them on a large scale basis and to combine them as part of a fingerprint. We detail these 7
attributes below:

• List of HTTP headers: When connecting to a server, browsers send the user-agent, the
desired language for a web page, the type of encoding supported by the browser, among
other headers. Some software and browser extensions modify or add headers, giving extra
details about the device’s configuration. Being defined in the HTTP protocol, these headers
can always be acquired by the server and do not depend on JavaScript.

• Platform: The value in the “navigator.platform” property provides information about the
user’s operating system. While this information is already in the user-agent, we collect the
‘platform’ value to detect modified or inconsistent fingerprints, e.g., in case the returned value
is different from the one in the user-agent.

• Do Not Track/Use of an ad blocker: These two attributes are directly related to privacy and
the values can help us differentiate privacy-conscious users from others.

• WebGL Vendor and Renderer: Described by Mowery et al. [116], these two attributes were
added with the HTML WebGL API to give information on the underlying GPU of the device.
We provide extensive details about the contents of these attributes in Section 3.3.

• Canvas: Introduced by Acar et al. [13] and fully explained in Section 3.3.1, the HTML5
Canvas element gives us the ability to perform tests on both the hardware and the operating
system by asking the browser to render a picture following a fixed set of instructions.

It should be noted that the WebGL Vendor and WebGL Renderer attributes were added after
our site was launched. We isolated the results obtained from these two attributes (values collected
after fingerprint number 45,474).

42 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

Table 3.1: Browser measurements of AmIUnique fingerprints with an example

Attribute Source Distinct
values

Unique
values Example

User agent HTTP
header 11,237 6,559

Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/ 41.0.2272.118 Sa-
fari/537.36

Accept HTTP
header 131 62

text/html,application/xhtml+xml,app
lication/xml;q=0.9,image/webp,*/*;q
=0.8

Content encoding HTTP
header 42 11 gzip, deflate, sdch

Content language HTTP
header 4,694 2,887 en-us,en;q=0.5

List of plugins JavaScript 47,057 39,797

Plugin 1: Chrome PDF Viewer. Plu-
gin 2: Chrome Remote Desktop Viewer.
Plugin 3: Native Client. Plugin 4:
Shockwave Flash...

Cookies enabled JavaScript 2 0 yes
Use of local/session
storage JavaScript 2 0 yes

Timezone JavaScript 55 6 -60 (UTC+1)
Screen resolution
and color depth JavaScript 2,689 1,666 1920x1200x24

List of fonts Flash plugin 36,202 31,007
Abyssinica SIL,Aharoni CLM,AR PL
UMing CN,AR PL UMing HK,AR PL
UMing TW...

List of HTTP
headers

HTTP head-
ers 1,182 525

Referer X-Forwarded-For Connec-
tion Accept Cookie Accept-Language
Accept-Encoding User-Agent Host

Platform JavaScript 187 99 Linux x86_64
Do Not Track JavaScript 7 0 yes

Canvas JavaScript 8,375 5,533

WebGL Vendor JavaScript 26 2 NVIDIA Corporation
WebGL Ren-
derer JavaScript 1,732 649 GeForce GTX 650 Ti/PCIe/SSE2

Use of an ad
blocker JavaScript 2 0 no

We tested other attributes for inclusion in the fingerprints, but the results were inconclusive
and we decided to discard them. We designed a test that renders 3D volumes through the WebGL
API, as first tested by Mowery et al. [116]. However, after an early analysis of more than 40,000
fingerprints, the test proved to be too brittle and unreliable since a simple page reload with a
different window size on a single device could change the value of this test. Appendix B.2 goes
into more details on this WebGL test. We also tested the collection of information based on the
device’s hardware performance, like the Octane JavaScript benchmark, but they proved to be too
long and too intensive to execute. Finally, we included other Flash attributes that proved to be
useful to detect inconsistencies, but did not increase fingerprint uniqueness. More details can be
found in Appendix B.3.

3.2. STATISTICS ON 118,934 FINGERPRINTS 43

3.2.2 Descriptive statistics

Tables 3.1 and 3.2 summarize the essential descriptive statistics of the AmIUnique dataset. It
should be noted that because our website focuses on a very specific subject, our visitors are likely
saavy Internet users who are aware of potential online privacy issues. Hence, our data is biased
towards users who care about privacy and their digital footprint, and their devices might have
fingerprints different than those we could collect from a more general audience. Table 3.2 presents
the distribution of plugins, fonts and headers in our dataset. To obtain these numbers, we de-
composed each list of values into single elements and we studied how common they are by looking
at the number of fingerprints in which each element is present. We divided the results from the
plugins, fonts and headers into three categories: the ones that belong to less than 1% of collected
fingerprints, the ones present in less than 0,1% of fingerprints, and the ones that appear in only
one or two fingerprints.

Unique and distinct values

The ‘Distinct values’ column in Table 3.1 provides the number of different values that we observed
for each attribute, while the ‘Unique values’ column provides the number of values that occurred
a single time in our dataset. For example, attributes like the use of cookies or session storage
have no unique values since they are limited to “yes” and “no”. Other attributes can virtually take
an infinite number of values. For example, we observed 6,559 unique values for the user-agent
attribute. This is due to the many possible combinations between the browser, its version and
the operating system of the device. It is extremely likely that visitors who use an exotic OS with
a custom browser, such as Pale Moon on Arch Linux, will present a very rare user-agent, thus
increasing the likelihood of being identified with just the user-agent.

These numbers show that some attributes are more discriminating than others, but they all
contribute to building a unique and coherent fingerprint.

Plugins

We observed 2,458 distinct plugins, assembled in 47,057 different lists of plugins. They cover an
extremely wide range of activities, as for example, reading an uncommon file format in the browser
(e.g., FLAC files with the VLC Browser plugin), communicating with an antivirus or a download
client, launching a video game directly in the browser, site-specific plugins for added functionality,
etc. Some plugins are so specific that they leak information beyond the computer, like the company
the user works for or the brand of smartphone, camera or printer he or she uses. 97% of plugins
appear in less than 1% of collected fingerprints and 89% in less then 0,1%. A lot of plugins are
created for precise and narrow uses allowing their users to be easily identified.

Fonts

We observed 221,804 different fonts, assembled in 36,202 different lists of fonts. This really high
number shows the incredible wealth that exists: fonts for support of an additional alphabet, fonts
for web designers, fonts for drawing shapes and forms, fonts for different languages, etc. On average,
a Windows or Mac user has two to three times the amount of fonts of a Linux user. Also, 97% of
fonts appear in less than 0,1% of fingerprints and a little less than 2/3 of them are only in one or
two fingerprints. These percentages show how efficient a list of fonts can be for fingerprinting and
transitively how critical it can be for users who want to protect their privacy. However, this list is
provided through the Flash plugin, which is progressively disappearing from the web. We will see
in Section 3.5 that removing access to the list of fonts has a small impact on identification.

HTTP headers

We observed 222 different HTTP headers, assembled in 1,182 different lists of headers. New headers
are added to the standardized ones for different reasons and from different sources. Some examples
include the following:

44 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

• The browser. For example, the Opera browser on smartphones adds a X-OperaMin-Phone-
UA header, and the Puffin browser adds a X-Puffin-UA header.

• A browser extension. For example, the FirePHP extension for Firefox adds the x-FirePHP
and the x-FirePHP-Version headers to each HTTP request.

• The network on which you are connected. Some headers show the use of proxies or protection
systems.

As indicated in Table 3.2, 182 headers out of 222 appear in less than 0,1% of the collected finger-
prints, and 92 of them come from only one or two fingerprints. These statistics mean that some
HTTP headers are highly discriminating and their presence greatly affects the uniqueness of one’s
fingerprint.

Table 3.2: Summary of statistics

Attribute Total <1% FP <0,1% FP < 3 FP
Plugin 2,458 2,383 (97%) 2,195 (89%) 950 (39%)
Font 223,498 221,804 (99%) 217,568 (97%) 135,468 (61%)

Header 222 205 (92%) 182 (82%) 92 (41%)

3.2.3 Statistical validity of the dataset

This section presents a series of tests to compare our dataset with the fingerprinting statistics
provided by Eckersley in 2010.

Mathematical treatment

Entropy

We use entropy to quantify the level of identifying information in a fingerprint. The higher the
entropy is, the more unique and identifiable a fingerprint will be.

Let H be the entropy, X a discrete random variable with possible values {x1, ..., xn} and P (X)
a probability mass function. The entropy follows this formula:

H(X) = −
∑
i

P (xi) logb P (xi)

We use the entropy of Shannon where b = 2 and the result is in bits. One bit of entropy reduces
by half the probability of an event occurring.

Normalized Shannon’s entropy

To compare both the AmIUnique and Panopticlick datasets, which are of different sizes, we use a
normalized version of Shannon’s entropy:

H(X)

HM

HM represents the worst case scenario where the entropy is maximum and all values of an attribute
are unique (HM = log2(N) with N being the number of fingerprints in our dataset).

The advantage of this measure is that it does not depend on the size of the anonymity set but
on the distribution of probabilities. We are quantifying the quality of our dataset with respect
to an attribute’s uniqueness independently from the number of fingerprints in our database. This
way, we can compare the two datasets despite their different sizes.

3.3. FINGERPRINTING WITH THE MOST RECENT TECHNOLOGIES 45

Table 3.3: Normalized entropy for six attributes collected both by Panopticlick and AmIUnique

Attribute AmIUnique Panopticlick
User agent 0.570 0.531

List of plugins 0.578 0.817
List of fonts 0.446 0.738

Screen resolution 0.277 0.256
Timezone 0.201 0.161

Cookies enabled 0.042 0.019

Comparison with Panopticlick

Entropy

Table 3.3 lists the normalized Shannon’s entropy for six different attributes for both the AmIUnique
and the Panopticlick datasets. For fairness of comparison, we used our dataset in its entirety by
keeping fingerprints without JavaScript. We observe that the entropy values for both datasets are
similar for all attributes except for the list of plugins and the list of fonts.

For the list of plugins, it is still the most discriminating attribute but a difference of 0.24 is
present. It can be explained by the absence of plugins on mobile devices which are increasingly used
to browse the web and by the lack of support for the old NPAPI plugin architecture on Chrome
since April 2015 (more details in Section 3.5).

For the list of fonts, a noticeable drop of 0.29 occurs because half of the fingerprints in the
AmIUnique dataset were collected on browsers that do not have the Flash plugin installed or
activated. Since our fingerprinting script collects the list of fonts through the Flash API, this
means half of our fingerprints do not contain a list of fonts, reducing its entropy. The absence of
Flash can be explained (i) by the lack of Flash on mobile devices; (ii) by the fact that the visitors
of AmIUnique are privacy conscious and tend to deactivate Flash. Yet, we notice that the entropy
of the list of fonts is still high.

The small value of entropy for the timezone shows that our dataset is biased towards visitors
living in the same geographical areas. A higher level of entropy would have meant a more spread
distribution of fingerprints across the globe.

Distribution of fingerprints

We compared frequency distributions w.r.t. anonymity set sizes from both datasets and observed
very similar trends. We also studied each attribute separately and observed that the most discrim-
inating attributes are still the ones found by Eckersley with the addition of new efficient techniques
like canvas fingerprinting. More details on the distributions can be found in Appendix B.4.

3.3 Fingerprinting with the most recent technologies

AmIUnique collects 17 attributes to form a browser fingerprint. Out of the 118,934 fingerprints
that we study, 89.4% are unique. In this section, we analyse how the attributes collected with the
most recent technologies (7 attributes at the bottom of Table 3.1) contribute to the uniqueness of
fingerprints.

3.3.1 Canvas fingerprinting
The canvas element in HTML5 [100] allows for scriptable rendering of 2D shapes and texts. This
way any website can draw and animate scenes to offer visitors dynamic and interactive content.
As discovered by Mowery et al. [116] and investigated by Acar et al. [13], canvas fingerprinting can
be used to differentiate devices with pixel precision by rendering a specific picture following a fixed
set of instructions. This technique is gaining popularity in tracking scripts due to the fact that
the rendered picture depends on several layers of the system (at least the browser, OS, graphics
drivers and hardware).

46 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

Our test

The fingerprinting script used by AmIUnique includes a test based on the canvas element. With
this image, we collect information about three different attributes of the host device, as discussed
below.

Figure 3.2 displays the image that we use, as it is rendered by a Firefox browser running on
Fedora 21 with an Intel i7-4600U processor. Our test replicates the test performed by AddThis and
described in details by Acar et al. [13]: print a pangram twice with different fonts and colors, the
U+1F603 unicode character and rectangle with a specific color. The only adaptation is to change
the position of the second string so that it is not intertwined with the first one. More details about
this test are discussed below.

Figure 3.2: Example of a rendered picture following the canvas fingerprinting test instructions

Font probing

This test captures OS diversity. The script tells the browser to render the same pangram (a string
with all the letters of the alphabet) twice. For the first line we force the browser to use one of its
fallback fonts by asking for a font with a fake name. Depending on the OS and fonts installed on
the device, the fallback font differs. For the second line the browser is asked to use the Arial font
that is common in many operating systems and is used for the hardware and OS fingerprinting
described next.

Device and OS fingerprinting

The last character of our string may be the most important one. This character should not be
confused with an emoticon, which is a succession of letters, numbers and punctuation marks like
“:)” or “<3” to describe an emotion. The character is an emoji [75]. Officially introduced in the
Unicode standard 6.0 in 2010, emojis are ideograms that represent emotions or activities. The
difference with emoticons is that emojis have their own Unicode character and font developers
must provide their own implementation for a given emoji w.r.t. its description. Consequently,
emojis can be used for fingerprinting because their actual representation differs between systems.

Figure 3.3 shows representations of the “Smiling face with open mouth” emoji on different
operating systems and mobile devices. A square means that the browser has not found a single
font on the device that supports that emoji. The use of emojis can be a powerful technique to
uncover information, especially on mobile devices where phone manufacturers provide their own
sets of emojis.

Hardware and OS fingerprinting

As demonstrated by Mowery et al. [116], small pixel-level differences can be detected between
browsers when rendering images, even on the same OS and browser. The second line of text of
the canvas test uses the Arial font. Although this font has the same dimensions across operating
systems, there are visible variations of pixels in the final image due to differences in the rendering
process. The process to render an image is complex and depends on both hardware and software
(e.g., GPU, rendering engine, graphic drivers, anti-aliasing, OS), and this test is affected by varia-
tions in any of these layers. Interestingly, the test is also relatively stable over time because users
do not often change the configuration of layers in the rendering process.

3.3. FINGERPRINTING WITH THE MOST RECENT TECHNOLOGIES 47

(a) Windows 7 (b) Windows 10 (c) Linux (d) iOS

(e) Firefox OS (f) Android 4.3 and before (g) Android 4.4 (h) Android 5.0

(i) Android on an
LG device

(j) Android on a
Samsung device

(k) Android on an
HTC device

(l) Emoji not sup-
ported

Figure 3.3: Comparison of the “Smiling face with open mouth” emoji on different devices and
operating systems

Influence of canvas fingerprinting for identification

The strength of canvas fingerprinting comes from the fact that it combines the three tests listed
before. Alone, as a simple rendered picture, the normalized entropy is at 0.491, putting it in the
top 5 of the most discriminating attributes. However, because emojis reveal information about
both the OS and the device, it is possible to use canvas fingerprinting to detect inconsistent
fingerprints. For example, by checking if the operating system in the user-agent matches the one
indicated by the emoji, we can verify inconsistencies in the fingerprint to detect visitors who spoof
their fingerprintable attributes. Thus, the added value of canvas fingerprinting is to strengthen
the identity of a fingerprint. Moreover, one of the advantages of canvas fingerprinting is that it
is stable. You can run it many times on the same computer and you will have the same result
every time, with little variance over time (some variations can be observed if the user decides to
update drivers for example). In the end, canvas fingerprinting is an important addition to browser
fingerprinting. We discuss this technique in greater depths in Chapter 5 where we analyse how it
can be used to augment authentication.

3.3.2 WebGL fingerprinting

WebGL [197] uses the Canvas element described before to render interactive 3D objects natively in
the browser, without the use of plugins. With the final specifications in 2011, WebGL 1.0 is now
supported in all major browsers.

48 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

Our test

The WebGL API, through the
WEBGL_debug_renderer_info interface (as the name indicates, it is designed for debugging pur-
poses), gives access to two attributes that take their values directly from the device’s underlying
graphics driver. AmIUnique’s fingerprinting script collects these two properties, namely:

• the WebGL vendor: name of the vendor of the GPU.

• the WebGL renderer: name of the model of the GPU.

These attributes provide very precise information about the device. For example, we collected
exact GPU names like “NVIDIA GeForce GTX 660 Ti” or “Intel HD Graphics 3000”. These two
attributes also indirectly leak information on your OS and its environment. For example, Chrome
uses the ANGLE backend [26] on Windows to translate OpenGL API calls to DirectX API calls.
Consequently, the following WebGL renderer string indicates that the browser runs on a Windows
machine: “ANGLE (NVIDIA GeForce GTX 760 Direct3D11 vs_5_0 ps_5_0)”. Same type of leak
with the presence of the “OpenGL engine” substring on Mac systems.

Influence of WebGL fingerprinting on identification

The WebGL vendor and renderer had the potential to become a highly discriminating attribute,
but two factors greatly hamper its utility. First, not all browsers give the unmasked version of the
vendor and renderer. Chrome provides this information by default but Firefox has this informa-
tion locked behind a browser flag (“webgl.enable-privileged-extensions”) and returns a simple “Not
supported” with our script. Second, a non-negligible number of devices share the same hardware.
For example, a lot of laptops do not have a dedicated GPU and they use the embedded Intel GPU
inside their processor. This reduces the uniqueness of some of the values that we can observe. In
the end, the WebGL API opens the door to discriminating information but it is not accessible from
every browser.

3.3.3 Additional attributes

We collected the following attributes to study their utility to discriminate browsers, to strengthen
a fingerprint by verifying values, and to detect inconsistencies.

Platform

Even though the platform attribute does not add new information, it can be used to detect incon-
sistencies. For example, on an unmodified device, if the browser indicates in its user-agent that it
is running on a Linux system, you expect to see “Linux” as the value of the “platform” property.
Due to the nature of our website that incites users to modify their browser, we flagged 5,426 fin-
gerprints in our dataset as being inconsistent. Some browsers gave completely random values that
had no meaning. Others used extensions to mask the platform value. For example, one fingerprint
had the value “masking-agent”, indicating that the Masking Agent extension for Firefox [111] was
installed. Finally, other browsers modified their user-agent to mimic one from another operating
system. The problem was that the platform property was not modified and the script was able to
identify the true operating system that the user was trying to hide.

Even with its low entropy, the platform property can prove useful in cases where it is badly
modified because it can make some devices more prone to identification than others with unique
or unusual values.

Do Not Track & Ad blocker

These two attributes have a very low-level of entropy, their values are either “Yes”, “No” or “Not
communicated” (for the DNT preference). Without the Do Not Track attribute, the percentage of
unique fingerprints drops by 0.07% which is negligible. The Ad Blocker attribute is slightly better,
with a drop of 0.5%, but still insignificant compared to other attributes like the user-agent or the

3.4. MOBILE FINGERPRINT DIVERSITY 49

list of plugins.

To conclude this section, the additional attributes collected by AmIUnique are game changers:
they strengthen fingerprints, allow identification through inconsistency detection. They also allow
identification even when the list of fonts is inaccessible because of the absence of Flash, and they
provide essential information about browsers on mobile devices as it will be detailed in the next
section.

3.4 Mobile fingerprint diversity

Given the growth of mobile devices to browse the web, it is essential to analyse how browser
fingerprinting behaves in this context. Our analysis of mobile device fingerprinting is based on
13,105 mobile fingerprints. We select these fingerprints from our dataset by analysing the user-
agents. If the user-agent contains a substring that is present in a predefined set (‘Mobile’, ‘Android’,
‘iPhone’ or ‘iPad’), the fingerprint is selected as a mobile fingerprint, otherwise, it belongs to the
desktop/laptop category.

In this section, we first compare desktop/laptop fingerprints with mobile ones. Then, we perform
a detailed analysis of mobile fingerprints, looking at differences between browsers and between
mobile operating systems.

3.4.1 Mobile and Desktop fingerprint comparison

Using the attributes from Table 3.1, we succeeded in uniquely identifying 90% of desktop finger-
prints. This number is lower for mobile fingerprints at 81%, yet still quite effective. At first sight,
the overall results are close. However, as we discuss in this section, the discriminating attributes
for mobile fingerprints are very different from those for desktop fingerprints. One factor is the lack
of plugins in general, and Flash in particular, for mobile devices. We also discuss the importance
of the new attributes collected through the HTML5 canvas and WebGL elements on mobile device
fingerprinting.

D
es

kt
op

M
ob

ile

pluginsJS

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.4: Comparison of anonymity set sizes on the list of plugins between desktop and mobile
devices

If we take a look at Figure 3.4, we can clearly notice an important difference. For desktops,
more than 37% of the collected fingerprints have a unique list of plugins, while it is at 1% for
mobile devices. This is due to the fact that mobiles were designed to take full advantage of
HTML5 functionalities and do not rely on plugins. For example, Adobe removed the Flash player
from the Google Play store in August 2012 as part of a change of focus for the company [90].
Plugins are considered to be unsuitable for the modern web and Google states in their move to
deprecate NPAPI support for their Chrome browser that these plugins are a source of “hangs,
crashes, security incidents, and code complexity” [169]. This choice helps mobile device users gain
some privacy with regards to fingerprint uniqueness. The level of entropy of the plugin attribute is

50 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

close to zero (some iOS systems have the QuickTime plugin and some Android systems reported
having Flash, possibly from legacy installations). The lack of plugins also reduces information
leaks that could come from them. In particular, mobile phones and tablets do not have the Flash
plugin, thus all the fingerprint attributes leaked through the Flash API are unavailable.

Despite the unavailability of the two most discriminating attributes from desktop fingerprints
(list of fonts and plugins), mobile fingerprints are still very much recognizable. This is due to two
main factors: very rich and revealing user agents and very discriminating emojis.

D
es

kt
op

M
ob

ile

userAgentHttp

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.5: Comparison of anonymity set sizes on the user-agent between desktop and mobile
devices

Figure 3.5 shows that user-agents found on mobiles are five times more unique than the ones
found on desktops. In our dataset, about 1 smartphone out of 4 is instantaneously recognizable
with just the user-agent. This is due to two factors:

• Phone manufacturers include the model of their phone and even the version of the Android
firmware directly in the user-agent.
Example:

Mozilla /5.0 (Linux; Android 5.0.1; Nexus 5 Build/LRX22C) AppleWebKit /537.36 (
KHTML , like Gecko) Chrome /40.0.2214.109 Mobile Safari /537.36

• On a smartphone, applications are slowly replacing the default browser and they have access
to a wide range of personal information after the user has explicitly granted specific permis-
sions. The problem is that any of this information can be exposed by the application for the
world to see. We noticed in our dataset that a lot of user-agents collected on mobile devices
were sent by an application and not by the native browser.
Example with the Facebook app where the phone carrier (Vodafone UK) and the exact model
of the phone (“iPhone7” = iPhone 6 Plus) is included in the user-agent:

Mozilla /5.0 (iPhone; CPU iPhone OS 8_1_1 like Mac OS X) AppleWebKit /600.1.4 (
KHTML , like Gecko) Mobile /12 B436 [FBAN/FBIOS;FBAV /20.1.0.15.10; FBBV
/5758778; FBDV/iPhone7 ,2; FBMD/iPhone;FBSN/iPhone OS;FBSV /8.1.1; FBSS /2; FBCR/
vodafoneUK;FBID/phone;FBLC/en_GB;FBOP /5]

Sometimes, even the model of the phone can give away your phone carrier. One fingerprint
reported “SM-G900P”. It is a Samsung Galaxy S5 and the “P” is unique to the Sprint phone
carrier.

The second highest source of entropy for mobile devices comes from canvas fingerprinting.
Mobiles have unique hardware impacting the final rendered picture as explained in Section 3.3.1
and emojis can also be really discriminating between two devices. As seen in Figure 3.3, some
manufacturers have their own set of emojis and even between different versions of Android, the
emojis have evolved, splitting the Android user base into recognizable groups.

3.4. MOBILE FINGERPRINT DIVERSITY 51

In the end, desktop and mobile fingerprints are somehow equally unique in the eyes of browser
fingerprinting even though the discriminating information does not come from the same attributes.

The complete details of attributes’ entropy between desktop and mobile devices can be found
in Appendix B.1.

3.4.2 Comparison Mobile OS and browsers

More than 97% of mobile fingerprints collected on AmIUnique are either running Android or iOS:
7,416 run on Android and 5,335 on iOS. How diverse is the set of fingerprints coming from both
of these operating systems?

A
nd

ro
id

iO
S

userAgentHttp Mobile

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.6: Comparison of anonymity set sizes on the user-agent between Android and iOS devices

Figure 3.6 shows the size of anonymity sets for user-agents on both Android and iOS devices.
We can see that user agents on Android devices expose more diversity with three times as many
users being in an anonymity set of size 1 (9% for iOS devices and 35% for Android devices). This
is due to the wealth of Android models available on the market. Moreover, our dataset may not
be representative enough of the global diversity of Android devices so these percentages may be
even higher in reality. For iOS devices, the diversity is still high but much less pronounced since
users share devices with identical configurations. We can notice a trend where half of the collected
iOS fingerprints are in really large anonymity sets. The fact that Apple is the only manufacturer
of iOS devices shows in this graph.

C
hr

om
e

Fi
re

fo
x

userAgentHttp Mobile

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.7: Comparison of anonymity set sizes on the user-agent between Chrome and Firefox on
mobile devices

We saw in the previous section that user-agents can give really discriminating information on
the user’s device. Some smarpthones running Android give the exact model and firmware version
of their phone. Looking at Figure 3.7, user agents from the Chrome mobile browser are ten times

52 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

more unique than user agents from the Firefox browser (40% against less than 4%). This can
be explained by the fact that the Chrome browser is the default browser on Android and it is
automatically installed on every devices. When a phone manufacturer builds its tailored firmware
to be delivered to its clients, the embedded Chrome browser has a user-agent with information
on the corresponding phone model and Android version. On the other side, Firefox which can be
downloaded from the Google Play Store does not contain this type of information because the store
only offers a generic version for every Android mobile and it does not change its user-agent during
its installation. Firefox indirectly provides a much better protection against fingerprint tracking
by not disclosing device-related information.

You can find below two fingerprints collected from the same device but with a different browser:
the first with Chrome, the second with Firefox.

Mozilla /5.0 (Linux; Android 4.4.4; D5803 Build /23.0.1.A.5.77) AppleWebKit /537.36 (
KHTML , like Gecko) Chrome /39.0.2171.93 Mobile Safari /537.36

Mozilla /5.0 (Android; Mobile; rv :34.0) Gecko /34.0 Firefox /34.0

3.5 Assessing the impact of possible technical evolutions

Web technologies evolve very fast, and we have seen in previous sections that some recent evolutions
limit fingerprint-based identification (e.g., no Flash on mobile devices), while others open the door
to increased identification (e.g., WebGL reveals fine grained information about the GPU).

In this section, we explore 6 potential evolutions that web technology providers (browsers and
app developers, standardization organizations) could set up. We demonstrate that they would limit
the effectiveness of browser fingerprinting by simulating their impact on our dataset. The first two
scenarios are based on current trends in web technologies, while the others are more speculative and
based on the observations made in previous sections. It should be noted that we do not estimate
the impact of scenarios no4 and 5 since we can hardly predict which attributes would be affected
and how. We also treat scenario no6 separately, due to its extreme nature.

Scenario no1 - The definitive disappearance of Flash

The Flash plugin is progressively disappearing. It has been deprecated on all smartphones, tablets
and mobile devices used to browse the web. On laptop and desktop browsers, Flash’s security
flaws have progressively created mistrust in its users. Click-to-play is becoming standard on most
browsers. In the meantime, the number of web applications that replace Flash with JavaScript and
HTML5 is also growing. These phenomena let us plausibly foresee the definitive disappearance of
Flash.

Interestingly, Flash is still present in 80% of our Desktop fingerprints. Among these cases,
71.7% have it activated, 26.3% are using click-to-play protections, and 2.0% block Flash, likely by
a browser extension.

Impact of scenario no1

Figure 3.8 shows the impact of the Flash plugin on fingerprint uniqueness. The “No Flash” bar
shows statistics over our complete dataset (for the 60,617 fingerprints that have Flash, we simulate
its absence by removing the attributes obtained through Flash). The “Flash” bar is computed
with the subset of fingerprints that have Flash, since it is not possible to simulate the presence
of Flash on fingerprints that don’t have it. We uniquely identify 95% of the browsers that have
Flash, while this is reduced to 88% for those without Flash. The sizes of the anonymity sets are
notably small, with less than 0.6% of the fingerprints in a set of size 50 or greater. These numbers
confirm that browser fingerprinting in a Flash-less future is certainly possible, and that the wealth
of fingerprintable attributes compensates for the lack of access to Flash specific attributes.

3.5. ASSESSING THE IMPACT OF POSSIBLE TECHNICAL EVOLUTIONS 53

Fl
as

h
N

o
Fl

as
h

Complete fingerprint

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.8: Comparison of anonymity set sizes between devices with and without Flash

Scenario no2 - The end of browser plugins

In 2013, Google decided to stop supporting NPAPI plugins in Chrome and to rely exclusively
on the technology embedded in modern browsers and the functionalities offered by HTML5 and
JavaScript to let developers extend the browser [169]. This has forced developers to migrate old
plugins to newer alternatives [127] or to drop their support. Nevertheless, since its enforcement, it
has the advantage of drastically reducing the entropy of the list of plugins. In 2015, version 42 of
Chrome deprecated the support of NPAPI plugins by default and version 45 permanently removed
their support.

This radical evolution, and the absence of plugins on mobile platforms, lets us foresee a more
global evolution where browsers no longer provide a plugin-based architecture. Yet, this is chal-
lenging because plugins currently still provide a large number of features (as discussed in Section
3.2, we observed 2,458 different plugins in our dataset). Mozilla had plans to hide unpopular plug-
ins with a whitelist [140] but they did not find a satisfying working solution that would not break
websites or functionality. In October 2015, they announced the removal of NPAPI support by the
end of 2016 [139] but it was not until the release of Firefox 52 in March 2017 that NPAPI was
dropped [119].

Impact of scenario no2

To estimate the impact of this scenario, we look at the entropy of plugins for Chrome since Google
decided to deprecate the support of NPAPI plugins. Figure 3.9 shows the evolution of the nor-
malized entropy of plugins for the stable releases of Chrome since the launch of the AmIUnique
website. The last 4 stable versions of Firefox were added for comparison. Up to version 42, the
normalized entropy of the list of plugins was above 0.8. Since the release of version 42, the entropy
of the list of plugins has dropped below 0.5. This improvement is significant and the effects are
getting bigger with the release of version 45 where the NPAPI support is permanently dropped
(the entropy is not at zero since there are small differences in the plugin list between operating
systems). Removing plugin support definitely impacts desktop fingerprints and it seems that their
use in browser fingerprinting is becoming limited.

Scenario no3 - Adherence to the standard HTTP headers

A major source of information for browser fingerprinting comes from application and system de-
velopers that add arbitrary information in headers by either modifying existing headers (e.g., the
user-agent) or by adding new ones. Yet, the Internet Engineering Task Force (IETF) has stan-
dardized a list of fields for HTTP headers. The current diversity in the contents of the user-agent
field results from a very long history of the ‘browser wars’, but could be standardized today. This
scenario explores the possibility that technology providers converge on a standard set of HTTP
header fields, and that they follow the standard.

54 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

N
or

m
al

iz
ed

 e
nt

ro
py

 o
f p

lu
gi

ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chr
om

e 3
9 (

Nov
'14

)

Chr
om

e 4
0 (

Ja
n'1

5)

Chr
om

e 4
1 (

Mar
'15

)

Chr
om

e 4
2 (

Apr
'15

)

Chr
om

e 4
3 (

May
'15

)

Chr
om

e 4
4 (

Ju
l'1

5)

Chr
om

e 4
5 (

Sep
'15

)

Chr
om

e 4
6 (

Oct'
15

)

Chr
om

e 4
7 (

Dec
'15

)

Fire
fox

 40
 (A

ug
'15

)

Fire
fox

 41
 (S

ep
'15

)

Fire
fox

 42
 (N

ov
'15

)

Fire
fox

 43
 (D

ec
'15

)

Browser

NPAPI support

Enabled
Disabled
Removed

Figure 3.9: Evolution of the normalized entropy of plugins for different browsers on desktop com-
puters

Impact of scenario no3

To estimate the impact of adherence to standard HTTP headers, we simulate the fact that they are
all the same in our dataset. On desktops, the improvement is moderate with a decrease of exactly
8% from 90% to 82% in overall uniqueness. However, on mobile fingerprints, we can observe a drop
of 21% from 81% to 60%. This illustrates the importance of headers, and especially the user-agent,
for mobile fingerprinting and the fact that generic user-agents are essential for privacy.

Combining scenarios no1-2-3

The biggest surprise of this analysis comes from combining the 3 scenarios. For mobile devices the
results are significant but not overwhelming, the number of unique fingerprints drops by 22%. How-
ever for desktop devices, the percentage drops by a staggering 36%, from 90% to 54%. This means
that if plugins disappear and if user-agents become generic, only one fingerprint out of two would
be uniquely identifiable using our collected attributes, which is a very significant improvement to
privacy over the current state of browser fingerprinting.

Scenario no4 - Reduce the surface of HTML APIs

The potential disappearance of Flash and plugins will occur only if developers find suitable re-
placements with rich HTML and JavaScript features. Consequently, HTML APIs keep growing,
providing access to an increasing number of information about the browser and its environment.
As we saw in Section 3.3, the WebGL and canvas elements provide important information for
identification. There are potentially many more APIs that leak identifying information.

Setting the best trade-off between rich features and privacy is a critical and difficult choice
when setting up new APIs. Developers debate extensively on this kind of trade-off [33]. Yet, it is
possible to foresee that future API developments, combined with informed studies about privacy

3.5. ASSESSING THE IMPACT OF POSSIBLE TECHNICAL EVOLUTIONS 55

such as the recent work by Olejnik and colleagues [130], will lead to reduced APIs that still provide
rich features.

Scenario no5 - Increase common default content

This scenario explores the possibility that browser or platform developers increase the amount of
default elements, which would be the only ones exposed publicly. For example, we could envision
a whitelist of fonts that are authorized to be disclosed by the browser, as suggested by Fifield and
Egelman [86]. Such a list would contain the default fonts provided by an operating system. This
whitelist of fonts would also include a default encoding for emojis that is common to all versions
of the operating system, or even common to all platforms.

This evolution would aim at reducing the amount of information disclosed to external servers.
Yet, it should not prevent the users from adding new fonts or new emoji renderings. These cus-
tomization decisions should be allowed without increasing the risks for privacy.

Scenario no6 - The end of JavaScript

This last scenario explores the eventuality of coming back to a more static web, without JavaScript.
This is the most unlikely today, as it would drastically reduce the dynamicity and comfort of
browsing. Yet, there are currently millions of users who have installed the NoScript extension,
which gives control to users on which websites JavaScript is allowed to run. We believe that it
makes sense to explore the impact of such an evolution on identification through fingerprinting.
Currently by disabling JavaScript, some sites do not render at all or render improperly, while most
popular sites lose functionality even if properly rendered.

JS
N

o
JS

Complete fingerprint

% 0 20 40 60 80 100

Size of the anonymity sets

1 2−50 >50

Figure 3.10: Comparison of anonymity set sizes on the complete fingerprint between devices with
and without JavaScript

Figure 3.10 shows the impact of the unlikely return to a more static web. The presence of
JavaScript in today’s web helps make 89.4% of browsers uniquely identifiable, while removing
JavaScript reduces the rate down to 29% on our dataset. This percentage could be even lower if
user-agents become generic, as stated in scenario no3. In that case, only 7% of fingerprints would
be unique. The privacy benefits are undoubtedly significant but the cost to developers and to the
users’ comfort would be very high.

Conclusion

Here we have quantified the impact of possible technology evolution scenarii. While some of them
could become reality in the not-so-distant future, others are less plausible. Yet, we demonstrate
that they can benefit privacy with a limited impact on the beauty of current web browsing.

It is important to notice that tools already exist that can mitigate browser fingerprinting in
similar ways as the scenarii discussed in this section. Ad and script blockers, like Ghostery [96]

56 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

or Privacy Badger [144], prevent known fingerprinting scripts from being executed in the browser.
The NoScript [126] extension blocks the execution of unwanted JavaScript scripts, which is a direct
reflection of scenario no6. The Tor browser team has modified Firefox to create a large range of
defenses against browser fingerprinting [181]: from the complete removal of plugins to canvas
image extraction blocking, their most recent addition being a defense against font enumeration
by bundling a set of default fonts with the browser [182]. This protection illustrates scenario no5
where the set of exposed fonts is greatly reduced.

3.6 Investigating fingerprint evolution through time

During its lifetime, a device and its components are continually updated to provide new features
to the user and to patch security vulnerabilities. From the browser to the the operating system to
the drivers, all layers of a system are affected and a single update can have a direct impact on the
exhibited fingerprint. Understanding how browsers fingerprints evolve through time is a key concept
for both third parties and developers. A third party will be unable to track a device through time
if it cannot anticipate correctly possible device evolutions. If two fingerprints present differences,
does it come from a device which updated itself or does it come from a completely different device?
Data is required to get an insight into this question as a wrong assumption can completely break
a tracking system. For developers, understanding the intricacies of fingerprint evolution enables
them to design effective defence solutions. They can evaluate if a specific approach is suitable or
not depending on how attributes change with time. The content of this section comes from a work
in progress on the linkability of browser fingerprints.

3.6.1 Collection of data

We launched in October 2015 an AmIUnique browser extension for Chrome [24] and Firefox [25].
At the time of writing, 767 users have it installed on Chrome and 551 on Firefox. In 20 months,
we collected 79,994 fingerprints from 3,528 different devices. When the extension is installed in
a browser, it sends a complete fingerprint to the AmIUnique server every 4 hours. If a change is
detected, the server will store a new version of the device’s fingerprint. If no changes are detected,
it will register in the database that the browser has checked in. The storage of simple checks is
crucial as it enables us to know if a user has removed the extension or not. The extension also
provides a timeline feature to all users where they can see every single modification of their browser
fingerprints traced out in an easy-to-navigate representation.

3.6.2 Statistics

Evolution triggers

Browser fingerprints naturally evolve due to several reasons, but each transition can be categorized
in one of the following categories:

• Automatic transitions happen automatically without any user intervention. This is mostly
caused by automatic software upgrades, such as the upgrade of a browser or a plugin that
may impact the user agent or the list of plugins.

• Context-dependent transitions are caused by a change in the user’s real life context. Some
attributes, such as resolution or timezone are indirectly impacted by a change in the
environment, such as connecting a computer to an external screen for the resolution or
travelling to a different timezone.

• User-triggered transitions require an action from the user. They usually concern configuration
specific attributes, such as cookies, Do Not Track or local storage.

As a matter of illustration, Table 3.4 reports the number of transitions per attribute observed
between two consecutive fingerprints from the same device. In particular, we observe that the User
agent attribute is the one with the most changes. Even if it could be considered as unstable, it is

3.6. INVESTIGATING FINGERPRINT EVOLUTION THROUGH TIME 57

not totally true as the user agent is systematically impacted by software updates with new browser
versions. Changes in the user agent are then predictable as most modern browsers follow a regular
release cycle. On the lower end, transitions tend to infrequently impact attributes like cookies,
local storage and do not track. Interestingly, we also observed some unexpected evolutions of
attributes, like platform, which are likely to be constant over time. Such transitions reflect that
some users of our extension use spoofing mechanisms to artificially modify the content of their
fingerprint.

Table 3.4: Number of changes per attribute (fingerprints
collected between October 2015 and May 2017)

Attribute Trigger Transitions
User agent Automatic 26, 199
Resolution Context 19, 651
Platform Automatic 10, 452
Plugins Automatic 10, 213
Language User 9, 231
Canvas Automatic 8, 422
Accept Automatic 7, 176
Headers Automatic 4, 423
Timezone Context 4, 356
Encoding Automatic 2, 798
Do not track User 1, 623
Local storage User 893
Cookies User 180

Evolution frequency

Another key indicator to observe is the elapsed time (Et) before a transition occurs in a fingerprint.
Figure 3.11 depicts the cumulative distribution function of Et. After one day, at least one transition
occurs in 58.3% of the observed fingerprints. The 90th percentile is observed after 9 days and the
95th percentile after 16.8 days. This means that the probability that a transition occurs every 9
days is 0.9, which is non-negligible.

Figure 3.11: Cumulative distribution function of the elapsed time before a fingerprint evolution

In this context, keeping pace with the frequency of change is likely a challenge for browser
fingerprint linking algorithms. It remains to be explored if some devices are more impacted by
these changes than others. For example, users who connect their laptops to an external screen

58 CHAPTER 3. INVESTIGATING BROWSER FINGERPRINTING

at work may see daily changes to their fingerprints even though they did not update a single
component of their device.

Evolution rules

While it is difficult to anticipate browser fingerprint evolutions, one can still observe how individual
attributes evolve over time. In particular, evolutions of the User agent attribute are often tied to
upgrading the browser, while evolutions of the Plugins attribute refers to the addition, deletion
or upgrade of a plugin, which would change its version. Nevertheless, this does not hold for all
the attributes, some values might be difficult to anticipate. For example, the value of the canvas
attribute is the result of an image rendered by the browser instance. The same applies for the
screen resolution, which can take unexpected values depending on the connected screen.

Based on this observation, the accuracy of linking browser fingerprint evolutions over time
requires inferring such evolution rules. To design a good linking scheme, one must take into
account both the predictable and unpredictable nature of browser fingerprints.

3.7 Informing users and helping developers

While the primary goal of the AmIUnique website is to collect genuine browser fingerprints, its
impact has extended to users and even developers on the web.

3.7.1 Users
One objective with AmIUnique is to inform the public about browser fingerprinting and the under-
lying privacy implications. We provide on the website the “FAQ” and “Links” sections that detail
what we collect, how we collect it and how it can be used with references to articles and scientific
publications on the subject. If users want to get a deeper understanding of fingerprinting, they can
install a browser extension (see previous Section) that will help them see how their own fingerprint
evolve through time. Finally, through the “Privacy tools”, we recommend tools so that users can
improve their online privacy with browser extensions, privacy-preserving search engines or VPNs.

3.7.2 Fingerprint Central

Figure 3.12: Logo of the Fingerprint Central website

As we saw in Section 2.4.2, the approach chosen by the Tor Browser is to present the same
fingerprint to all websites but the frequent updates of web browsers pose great challenges. Devel-
opers of the Tor Browser must be continually alert about possible changes to existing APIs. They
must also watch closely what is released in the literature or on the web to fix any potential leaks

3.8. CONCLUSION 59

of information. To contribute to the efforts made by the Tor organization, we developed the Fin-
gerprint Central website as part of the Google Summer of Code 2016 [93]. FP Central is a clone of
the AmIUnique website but modified to suit the needs of the Tor organisation. When Tor Browser
users connect to the website, their browser fingerprint is collected. If the values of some attributes
differ from the most popular ones, users are redirected to detailed instructions so that they can get
back to the one fingerprint shared by most users. One of the strength of FP Central is that the
back-end has been built to address the limitations of the current AmIUnique architecture. With
the use of a NoSQL database like MongoDB, it is extremely easy to add new tests to the website
or tweak existing ones. Moreover, a customizable statistics page has been added so that developers
can easily check what they want in very few clicks. FP Central is expected to integrate the Quality
Assurance process of the Tor Browser as reported by this ticket in the Tor Bug Tracker [187]. The
complete source code can be found on GitHub at https://github.com/plaperdr/fp-central
and a beta was deployed at https://fpcentral.irisa.fr/.

3.8 Conclusion

To conclude this chapter, the impact of the AmIUnique.org website has far exceeded our expecta-
tions. When designing it, we planned on collecting several thousand fingerprints to fuel our research
but the number of visitors has been incredible since launch. The number of weekly visitors keeps
increasing with no real sign of fatigue and more and more people are installing our browser ex-
tensions. The immediate result of this reception is that it gave us the resources to investigate the
current state of browser fingerprinting. With the analysis of 118,934 fingerprints, we confirmed
Eckersley’s findings in 2010 and found that new attributes contribute to the identification of devices
on the web. Notably, canvas fingerprinting which relies on both the software and the hardware
of a device placed itself in the top 5 of the most revealing attributes in a fingerprint. We also
witnessed a shift in existing attributes due to recent browser changes. Plugins which have been
deprecated from modern browsers have seen their effectiveness brought to a halt because of secu-
rity and stability concerns. We also brought evidence that mobile fingerprinting is a reality even
if it is for different reasons than on desktops. Despite the constrained diversity of smartphones in
terms of software and hardware, identification is still possible because of revealing user-agents and
strong canvas tests. As we will see in Chapter 4, the AmIUnique data also gave us the necessary
understanding to design smart countermeasures as we were able to see the shortcomings of current
defence solutions. By analysing special and strange fingerprints, we were able to see the different
mistakes that must be avoided to provide an appropriate protection against tracking. Our authen-
tication scheme detailed in Chapter 5 was also made possible thanks to the data collected from
the hundreds of users of our browser extension. By collecting canvas renderings on long periods
of time, we are able to prove that canvas fingerprinting is stable enough to harden authentication
online.

Outside of the research area, AmIUnique now benefits from a very good visibility. People
reference the website on their blog or on social networks when they talk about online tracking and
when they want to show what transpire through a web browser. The AmIUnique website has also
been included in the official Tor Design document [184] and one reader of the Tor blog even thinks
AmIUnique could be run by employees of the FBI or the CIA [183]. This shows that AmIUnique
has made its mark on the browser fingerprinting domain since it was launched at the end of 2014.

All in all, the AmIUnique website completely shattered our initial objective and went a lot
further than even our most optimistic estimations. It formed the foundations of our research for
the past 3 years and it will continue to do so in the years ahead. We are currently planning the
next step in the AmIUnique adventure as we want to open the doors to researchers so that it will
drive the development of new and promising applications of browser fingerprinting.

https://github.com/plaperdr/fp-central
https://fpcentral.irisa.fr/

Chapter 4

Designing smart countermeasures

As a domain, browser fingerprinting is continually evolving as it relies on the technology embedded
in modern browsers. Attributes contained in a fingerprint paint an image of a device at a certain
point in time but this image is never finished because its contours are continually redrawn. New
APIs are introduced, existing ones are modified and some are even removed.

Designing a countermeasure against fingerprinting is a challenging process as it must take into
account both the changing nature of browser fingerprints and the dependencies between attributes.
The story told by a browser fingerprint must be flawless and the slightest mismatch between
attributes can render a user more visible to trackers. Moreover, the correct balance between
privacy and usability is important as the best protection becomes useless if it sacrifices the entire
user experience.

In this chapter, we detail two novel defence solutions operating at different layers of a system.
We first list in Section 4.1 the key properties that a countermeasure should follow to provide pro-
tection against browser fingerprinting. We also highlight the shortcomings of current solutions with
regards to these principles. Then, we introduce our first contribution called Blink in Section 4.2.
It operates at the OS layer and generates random but genuine browser fingerprints at runtime.
The second contribution called FPRandom is explained in Section 4.3. It introduces random noise
into very specific fingerprinting routines of a web browser to make some attributes unstable for
tracking. Finally, we provide a conclusion to this chapter in Section 4.4.

4.1 Key properties to mitigate browser fingerprinting

4.1.1 Generic properties

A countermeasure is a solution that mitigates the effects of browser fingerprinting. In order to
provide protection against identification or unwanted tracking, it should fulfill as many of the
following properties as possible:

• The proposed solution should not break browsing. As the information contained in
a fingerprint represents a snapshot of a device and its configuration, modifying it incorrectly
can seriously degrade the user experience to the point where the user cannot even browse
the web. For example, modifying arbitrarily the screen resolution can produce an unadapted
layout of a web page on the user’s device. Changing the HTTP Language header like FP-
Block proposed by Torres et al. [185] can result in a web page displayed in a language that
the user does not understand. Modifying the user-agent can even prevent the user from
downloading the correct version of a software as most websites use this header to guide the
user towards the right version. Session breakage is a real concern and developers must restrict
their scope of action to preserve the user experience.

• The proposed solution should not introduce inconsistencies. The same piece of infor-
mation can be detected from many different attributes. For example, the platform on which
the browser is running can be collected directly from the user-agent and the navigator object.

61

62 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

If a defence solution changes the header but forgets to modify the JavaScript object, it creates
a coverage problem as both values will be in contradiction with each other. A countermeasure
should not introduce inconsistencies and it should provide a complete coverage of all collected
attributes. This way, no third party can detect that a protection is running. However, the
constant updates of web browsers makes this property very difficult to maintain. A simple
change in a browser API can unmask what the browser was hiding. As we saw in Section 2.4,
many defence solutions fall short of that objective as they did not account for all the means
to collect the exact same information. For example, the PriVaricator solution tried to prevent
font probing through JavaScript by lying on HTML offset measurements [123]. Englehardt
et al. showed that this protection could be bypassed by using the measureText method of
the canvas API [77].

• The proposed solution should not be detectable. No third party should be able to
create profiles of devices with and without anti-fingerprinting tools. This property is directly
linked to the previous one as a fingerprint inconsistency lets a tracker know that a spoofing
mechanism is currently running on a device. Time constraints should also be taken into
account. If a countermeasure does not introduce inconsistencies in a fingerprint, it can still
be identified if it presents a strange temporal behaviour. For example, if a defence solution
changes half of the collected attributes between page loads, users of this particular solution
can easily be singled out. Finally, no defence solutions should add new artefacts on top of
existing attributes (like adding a random number in the user-agent for each request) because
they could be used as beacons to identify users on the web.

• The proposed solution should work automatically without requiring user inter-
action. In order to provide the best user experience, the use of a defence solution should be
automatic without the need for the user to program complex procedures.

All in all, one must have these properties in mind when designing a countermeasure as they can
improve both privacy and usability if they are integrated right from the start. As we will see in
Section 4.2, we address with Blink the problem of inconsistencies by generating genuine browsing
environments from real running components. In Section 4.3, we explore a new direction to create
fingerprint instability and we implement a special strategy in the FPRandom prototype to prevent
the detectability of our defence solution.

4.1.2 Design choice in this thesis

Since the diversity of modern devices is one of the root causes of browser fingerprinting, one can
ponder if this same diversity can be used as a strategy to prevent tracking. Instead of forcing
homogeneity between users like with the Tor browser, we decided to explore what could be done
by increasing the diversity of exhibited fingerprints. The intuition behind our solutions is that
a browser would present a constantly changing set of values instead of a predictable and reliable
fingerprint. This way, third parties would be unable to keep track of a single device as stability
would be broken. It would also fill current databases with short-lived fingerprints, rendering
the identification process even harder for tracking companies. Because of our choice to increase
diversity, a new property needs to be followed to provide protection.

• The proposed solution should break fingerprint linkability at least between ses-
sions. The notion of stability is key when designing a countermeasure. Modifying the
attributes of a fingerprint is great but if they are kept for several days or weeks, they can
still be used to identify a device. A defence solution should present a new fingerprint every
time the user wants to browse the web. This way, no third party would be able to link
the different browsing sessions of a user. If it is possible, the approach should even try to
modify a fingerprint inside the same browsing session to provide maximum protection against
tracking. However, as we will see in Section 4.3, it should not be at the cost of detectability.

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 63

4.2 Multi-level reconfiguration and diversification with Blink

The diversity of software components to customize browsers is at the source of browser finger-
printing. We argue in this section that this same diversity, combined with multi-level software
reconfiguration, provides the foundations for a counter measure to browser fingerprint tracking.
The idea is as follows. A browsing platform is assembled by randomly selecting a coherent set
of components (an OS, a browser, plugins, etc.). Third parties collect, via the browser, enough
information about the platform’s components to form a fingerprint. We then regularly reconfigure
the platform—thanks to a large set of diverse components—causing a different fingerprint to be
exhibited. Our approach breaks one essential property for the exploitation of browser fingerprints:
their stability. We propose an original application of dynamic software reconfiguration techniques
to establish a moving target defence against browser fingerprint tracking.

4.2.1 Approach

This section establishes the threat model we target and goes into the details of our moving target
approach. We explain how we leverage software diversity to change a user’s browsing platform over
time and we discuss the impact this has on both fingerprints and user comfort.

Threat model

We aim at mitigating the exploitation of browser fingerprints to track users, which is a direct
threat to privacy. Browser fingerprint tracking relies on the following: web browsers allow remote
servers to discover sufficient information about a user’s platform to create a digital fingerprint
that uniquely identifies the platform. We argue that fingerprint uniqueness and stability are the
key threats to browser fingerprint tracking, and in this work we aim at breaking fingerprint
stability over time.

A moving target defence against tracking

We propose to automatically reconfigure a user’s platform to exhibit different fingerprints over
time that cannot easily be linked to one another. Figure 4.1 shows the elements of a browsing
platform that affect the fingerprint: configuration data at different levels (HW, OS, browser);
software components that are assembled at different levels (e.g., apt-get, browser plugins, fonts);
hardware components, such as the graphics card; cross-level dynamic attributes collectable only at
runtime, such as through the HTML5 canvas. Once a user starts browsing the web, these data are
used to create a fingerprint. We say that a platform exhibits said fingerprint.

Our approach reconfigures components that affect the exhibited fingerprint. Nikiforakis et
al. [124] show that current commercial fingerprinters collect only a subset of all possible attributes,
and Eckersley [72] found the most distinguishing attributes of a fingerprint to be fonts, plugins and
user agents. Other attributes are often shared by a large pool of users, rendering them less dis-
criminating. Based on this, we identify the following set of Diversified Platform Components
(DPC) to be automatically reconfigured: fonts, plugins, browsers, the operating system and the
CPU architecture. We call a DPC configuration a consistent assembly of a browser running in
an operating system, with a specific set of fonts and plugins.

Definition 1. Diversity reservoir is the set of components used to assemble new configurations
of the DPC. Given a set O of operating systems for different architectures, a set B of browsers
of different types and versions, a set F of fonts and a set P of plugins, the reservoir is DR =
O ∪B ∪ F ∪ P .

Our intuition is that the same set of diverse software components that cause fingerprint unique-
ness can be exploited to create very large diversification reservoirs. These can be used to build
trillions of distinct configurations to switch among. Figure 4.2 illustrates this principle: we ran-
domly select components from the diversity reservoir to create DPC configurations used in the
browsing platforms. Over time, we generate new configurations that replace previous ones, chang-
ing the browsing platforms and the exhibited fingerprints. The user decides when these changes

64 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

Browsing platform

Software components

OS browser
plugins fonts ...

Hardware components
CPU ...microphone

Configuration parameters
screen res. language ...
timezone

Dynamic
attributes

canvas

DPC

...

network

Fingerprint

user agent fonts (name)

plugins (name and version)

exhibits

...
accept header

screen res.

Figure 4.1: User platform elements involved in web browsing and exhibited in the browser finger-
print

time

User platform

Diversity réservoir

DPC
config1

User platform User platform

DPC
config2

DPC
config3

Figure 4.2: Evolution of the user’s platform over time

occur. This approach falls into the family of dynamic platforms, a specific form of moving target
approaches, as described by Okhravi et al. in [129].

Our moving target defence relies on an essential characteristic needed for reconfiguration: the
modular architecture of systems and browsers. Modularity makes it possible to reconfigure the
browsing platform, on demand, by automatically assembling components. This also allows us to
progressively assemble configurations instead of building them beforehand.

Our approach is characterized by three essential properties: (i) the assembled platforms always

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 65

exhibit consistent fingerprints because the platforms are genuine and we do not lie about any
attributes; (ii) we assemble correct platforms, i.e. platforms composed of compatible components
and which run correctly; and (iii) each reconfiguration causes the exhibited fingerprints to change.
Section 4.2.2 discusses the model that supports the assembly of correct configuration and in Sec-
tion 4.2.3, we empirically demonstrate that variations in the exhibited fingerprints deceive two
commercial fingerprinting scripts.

Balancing privacy and browsing comfort

There are many places where user comfort conflicts with potential gains in privacy. For example, we
have included browsers in the DPC because it is an important distinguishing factor in a fingerprint.
Yet, users populate their browsers with data such as bookmarks, passwords and open tabs. We
believe that it is important to transfer user data between platforms we assemble in order to keep
a comfortable browsing experience despite switching DPC configurations. We developed an offline
cross-browser tool that is responsible for transferring the user profile between browsing platforms.
We also acknowledge that not all users are ready to randomize their favourite browsers to obtain a
different fingerprint, so we let them customize DPC components. Users select components from the
DPC that will be included or excluded from all configurations. We call alterable and essential
the components that a user decides to include, respectively discard from the set of DPC.

The choice of an essential or alterable component is subjective and can be done for functional
reasons or for comfort. A set of plugins might be crucial for someone’s web experience, while another
user may simply wish to never change browsers. Furthermore, these choices directly impact the
remaining size of the diversity reservoir and thus, the search space for randomization. The larger
the set of essential components is, the smaller the total search space will be.

Deciding when to reconfigure can also impact privacy and comfort. This is a key decision
because frequent changes can be effective at mitigating tracking, but are disturbing to users.
However, waiting too long between changes increases the time a user’s fingerprint remains static,
leading to larger sessions that can be tracked. We provide two strategies for reconfiguration, a full
reconfiguration strategy, called Leery, and a light-weight one, called Coffee break.

Definition 2. The Leery strategy reconfigures all levels of the browsing platform: the operating
system, the browser, the fonts and the plugins. Essential components are kept and alterables are
randomized. This strategy is used each time a user starts a new session (i.e. starts a browser for
the first time). A fresh DPC configuration is generated and kept until the user ends the session. It
draws its name from its cautiousness by reconfiguring as many components as possible.

Definition 3. The “Coffee break” strategy aims to be faster than Leery by reconfiguring only
fonts and plugins. The browser and the operating system do not change. As always, essential
components are kept and alterable components are randomized. This strategy is triggered in different
ways: manually, by having the user lock his computer, or by waiting for a period of inactivity, hence
the name.

It should be noted that reconfigurations do not occur while the user is browsing the web. To
explicitly change the current fingerprint, a new session should be started (e.g., by restarting Blink)
or a Coffee break reconfiguration should be triggered. Other strategies are also possible, but we
feel these two cover a wide range of uses. The experimental assessment of Section 4.2.5 shows that
both strategies can defeat current commercial fingerprinters, but they affect fingerprints differently
(more changes lead to more privacy).

Randomizing alterable components

The randomization strategy used to select components at launch is important as an unsuited one
could result in the synthesis of uncommon or strange environments. Users would then be detectable
as their fingerprints would be a result of a combination of elements rarely found together in the
wild. The randomization strategy of Blink cannot follow a uniform distribution as it does not
reflect the actual diversity of fingerprints found online. Some plugins or fonts are more common
than others and some browsers are more popular than others. To improve the chances that Blink
users do not stand out, we rely on real fingerprints collected on AmIUnique.org (see Chapter 3).

66 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

We derive empirical distributions from our dataset that dictate which elements are picked and how
often they are. This way, the DPC configurations that are generated at runtime are more likely to
be found online than those generated from a completely uniform distribution.

Dissimilarity metric

To assess the effectiveness of fingerprint diversification, we need to quantify the differences between
fingerprints. To our knowledge, there is no established measure to compare two fingerprints, or to
determine if two different fingerprints can be related to a single platform. We define the following
dissimilarity metric that aims at capturing the difference between the attribute values observed in
two fingerprints.

D(FP1, FP2) =

∑8
i=1 ωattri × d(attri(FP1), attri(FP2))∑8

i=1 ωattri

The metric is the sum of dissimilarities between 8 attributes. Its value is defined in the range
[0,1]. Each attribute is weighted according to Eckersley’s study [72]. Heavier weights indicate
more revealing attributes. This captures, for example, that two fingerprints with the same fonts
are closer than two fingerprints with the same timezone. We also defined specific dissimilarity
functions d for attributes that are lists of values (e.g., fonts, user agent). The weights ω and the
dissimilarity functions d are defined in Appendices C.1 and C.2.

To illustrate the intuition behind our metric, let us consider two variations of the fingerprint
in Figure 3.1. If we change the browser from Firefox to Chrome and add plugins (as shown in
Table 4.1), the dissimilarity between the new and original fingerprints is 0.46. Intuitively, a third
party would hardly consider fingerprints with different browsers and plugins to come from the same
user. In the second example, only the browser version is modified (Table 4.2). The dissimilarity
is then 0.01, which indicates that the two fingerprints are almost identical. This fits our intuition:
it is very likely that a browser’s version will change at some point in time (e.g., it is updated).
Thus, similar fingerprints according to our metric are fingerprints that are likely to be detected
as originating from the same user. These two examples illustrate that some differences are more
revealing than others, which is what our dissimilarity metric is capturing.

Table 4.1: Changed attributes for example no1

Attribute Modified value
User agent Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, Gecko)

Chrome/34.0.1847.116 Safari/537.36
Plugins Plugin 0: Chrome PDF Viewer; libpdf.so, [. . .] Plugin 12: gecko-mediaplayer

1.0.9;

Table 4.2: Changed attributes for example no2

Attribute Modified value
User agent Mozilla/5.0 (X11; Linux i686; rv:26.0) Gecko/20100101 Firefox/26.0

Positioning w.r.t. existing solutions

Our proposal is to reconfigure the browsing platform at multiple levels, causing the platform to
exhibit a different fingerprint each time. It falls into the family of moving target techniques, as
described by Okhravi et al. [129]. It is, by their classification, a dynamic platform, and is similar in
nature to creating moving attack surfaces for web services [101]. Consequently, Blink’s advantage
over user-agent spoofers is to never lie. Fingerprints exhibited by the browsing platforms are based
on genuine configurations, with genuine browsers, and genuine operating systems. By construction,
there are no inconsistencies among the fingerprint attributes, which prevents standing out as a liar.
Our approach also relates to secretless strategies because knowing the fingerprint reconfiguration

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 67

strategy (random selection of DPC components) is not enough to defeat it. Cox et al. give insight
into the wealth of security advantages obtained through software diversity, particularly when there
are no secrets to hide [59].

Cross-browser fingerprinting shows that simply changing browsers is not enough because other
attributes, such as fonts and plugins, are sufficient to create unique fingerprints [41]. We counter
these attacks by randomly changing multiple levels of the browsing platform, not only the browsers.

The main drawbacks of the Tor browser are its usability and the brittleness of its fingerprint.
Users should not change any of the Tor browser’s configuration options, nor add plugins, because
their fingerprint will diverge from the base fingerprint, disrupting the unique fingerprint approach
and making them identifiable. Our approach is the opposite: we create unstable, always changing
platforms that exhibit very different fingerprints. We welcome the addition of user plugins and
fonts. And we do not force the use of any restrictive extensions (e.g., NoScript) that severely alter
the browsing experience.

Finally, we do not rely on blocking fingerprinting scripts. Maintaining proper lists of scripts
requires significant effort. Blink works as a moving target defence system that is oblivious to fin-
gerprinting scripts. Blink also has the potential to resist currently unknown fingerprinting attacks
thanks to the use of multi-level reconfigurations.

4.2.2 Implementation

Blink reconfigures the alterable components of a DPC configuration in order to assemble unique
browsing platforms. Each unique platform will exhibit a unique fingerprint because the platform
components permeate the fingerprint, as seen in Figure 4.1. Hence, by reconfiguring the platform,
distinct fingerprints are exhibited. However, several issues need to be addressed for this to work
in practice. Namely, the implementation must assemble and reconfigure DPC configurations that
lead to platforms that function correctly. The diversity reservoir must be built up to provide a
large reconfiguration space. And, finally, changing from one DPC configuration to another should
be made as simple and transparent as possible.

This section describes how Blink assembles random browsing platforms, achieves a large amount
of fingerprint diversity, and maintains a multi-platform user profile to improve usability. We
have implemented Blink using both reconfiguration strategies described in Section 4.2.1. Those
implementations are later referred to as Leery Blink and “Coffee break” Blink.

Multi-level reconfiguration

Blink leverages the modular architecture of operating systems and browsers to randomly assemble
browsing platforms that function correctly and exhibit unique fingerprints. To maximize the re-
configuration space and the diversity of exhibited fingerprints, it is important to change as many
components as possible, including the CPU architecture, the operating system, the browser, plu-
gins and fonts, which are all statistically important for fingerprinting. Although it is possible to
randomize some components directly in the user’s system, changes such as adding and removing
fonts can have negative side-effects on other applications. More importantly, certain components,
such as the operating system or the CPU architecture, cannot be directly changed. It has been
shown by Boda et al. [41] and then by Cao et al. [48] that if enough data is gathered from a system
it can still be fingerprinted and tracked despite the use of multiple browsers. For these reasons,
Blink uses virtual machines to maximize the diversity space that can be exploited by randomizing
the operating system and the CPU architecture, all the while maintaining a high degree of isolation
between the user’s system, fingerprinters and the reconfiguration process.

Blink assembles components at multiple levels to form the browsing platform shown in Fig-
ure 4.3. We use the term multi-level reconfiguration because the selection of higher level compo-
nents in the platform directly depends on lower level ones (e.g., a browser plugin depends on the
browser, which itself depends on the operating system). Fonts are a special case because although
they do not have hard dependencies to or from other components in a DPC configuration, they do
impact all user interface applications, including browsers and websites. Moreover, the modularity
mechanisms are not the same for all levels: there are different dependency management tools in

68 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

Browser

Fonts

Plugins

Virtual Hardware

Operating System

Operating System

Physical Hardware

Browser

Fonts

Plugins

Virtual Hardware

Operating System

Virtualization Layer

...

Browsing Platform 1 Browsing Platform N

Figure 4.3: A multi-level view of browsing platforms. Virtualization isolates the user’s system.

systems and in browsers, different plugin types and versions for different browsers, different CPU
architectures, etc. Fonts may also be specific to a given system due to licensing or packaging issues.

1. Operating system reconfiguration Blink uses VirtualBox to isolate browsing platforms
because it is open source and multi-platform (supports Linux, Mac OS and Windows as both
host and guest). Also, VirtualBox abstracts hardware (enabling us to randomize the CPU
architecture), provides extensive functionality, has low overhead, and allows for a number
of configuration parameters. Added bonuses are a user-friendly GUI and guest additions to
improve integration. However, it could be substituted with other solutions.

We use VirtualBox’s shared folders to transfer data between the host and the VMs. Launching
a browsing platform starts the assembly of a randomized DPC configuration (i.e. OS, fonts,
plugins, browser). The browser, fonts and plugins are copied to shared folders, as is the user’s
profile (i.e. open tabs, bookmarks, downloads, saved passwords). VMs start the BlinkVM.py
monitoring script, whose job is to install fonts and plugins, prepare the user profile, launch
and monitor the browser, and listen for commands from the host (e.g., shutdown, coffee
break reconfiguration). When shutting down, shared folders are cleaned and the user-profile
is recovered. VMs are additionally snapshotted when launched and rolled back to their pre-
browsing states when the browsing session ends. This ensures the platform returns to a known
stable state that is free of temporary files, cookies, trackers, and malware. Finally, because
the OS is low-level, reconfiguring it can cause the browser and plugins to be invalidated.

2. Font reconfiguration To install a font, the font file must be copied to the correct folder and
registered. However, many applications do not detect font changes dynamically. We tested
two methods to list the fonts available in browsers, namely Adobe Flash font enumeration
and JavaScript font probing. Our results indicate that to ensure font changes are reflected
in the exhibited fingerprint you should restart the browser.

3. Browser reconfiguration Installing a browser requires copying the installation folder and
running the main executable. Browser’s run as processes so changing from one browser to
another is as simple as stopping and starting them.

4. Plugin reconfiguration Installing a plugin is as simple as copying a file to the proper
plugin directory. However, unlike fonts, plugins are compiled for a specific CPU architecture
and operating system, and can have runtime dependencies on configuration files or system
libraries. When reconfiguring, plugins must match the CPU architecture (e.g., i686, IA-
64, amd64), the operating system (e.g., Windows, Linux), and the browser (e.g., Firefox,
Chrome) of the DPC to work properly. Interestingly, plugin support is often dynamic, as is
the case with Chrome, Opera and Firefox. This allows Blink to reconfigure the plugin list at

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 69

runtime, and is used for Coffee break reconfigurations to immediately change the exhibited
fingerprint without restarting the browsing platform.

Browser.arch = 64 ⇒ OS.arch = 64
Browser.arch = 64 ⇔ Plugin.arch = 64
Browser.arch = 32 ⇔ Plugin.arch = 32

Chrome ⇔ Plugin.type = PPAPI
Firefox ⇔ Plugin.type = NPAPI
Silverlight ⇒ Windows
Ubuntu ⇔ Familty Ubuntu

DPC config

OS
Architecture:

{i686,x86_64}

Browser
Architecture:

{i686,x86_64}
OS:

{Windows,Linux}

Plugin
Architecture:

{i686,x86_64}
Type:

{PPAPI,NPAPI}
OS:

{Windows,Linux}
Windows Linux

Fedora Ubuntu

Chrome

Flash Java VLC

Family
DejaVu

DejaVu
Sans.ttf

Font

Mandatory
sub-feature

Optional
sub-feature

XOR group

Legend

Version :
{34,35,36}

Firefox
Version :

{28,29,30}

DejaVu
Serif.ttf

Family
Droid

Droid
Sans.ttf

Droid
Serif.ttf

Silverlight ...

Family
Ubuntu

Ubuntu
Mono.ttf

Ubuntu
MI.ttf

...

Windows ⇔ Browser.OS = Windows
Windows ⇔ Plugin.OS = Windows
Linux ⇔ Browser.OS = Linux
Linux ⇔ Plugin.OS = Linux

Figure 4.4: An extract of the feature model used for assembling valid DPC configurations

The diversity reservoir

At the heart of Blink is the idea that exploiting software diversity can create an ever changing
browsing platform that limits attempts to track its users through browser fingerprint tracking.
However, this diversity has to be built; software components must be collected and managed to
ensure consistent, functional platforms are assembled and reconfigured.

1. Building the diversity reservoir The operating system is the base of the browsing plat-
form. We built VMs using various operating systems, although we focused on the Ubuntu
and Fedora Linuxes for the i686 and x86_64 architectures. Many pre-built Linux and *BSD
VMs can be downloaded freely over the internet to avoid the installation process. Other
operating system’s often require licenses and cannot be freely distributed. Once built, each
VM must be configured to work with Blink. This includes setting up shared folders and
configuring Blink’s monitoring script to auto-start.

We focused on the Chrome and Firefox browsers and downloaded multiple versions of each
from the vendors’ websites. There’s one version for each combination of release channel
(stable, beta and development) and CPU architecture (i686 and x86_64). It is easy to add
browsers and there are a number of forks for both Chrome (Chromium, SRWare Iron, Epic,
. . .) and Firefox (Iceweasel, Seamonkey, . . .) that are trivial to integrate. To add a browser
you must unpackage it into Blink’s browser folder and follow the naming convention.

We wrote scripts to crawl the Ubuntu and Fedora repositories for fonts. We found many
duplicate fonts, yet some fonts tend to be specific to a distribution. Moreover, fonts are
most often installed in groups, as seen with packages that install multiple fonts. Blink allows
defining font groups and system-specific fonts to avoid exhibiting uncommon fingerprints.

The biggest challenge with plugins is to account for the wealth of browser, operating system
and CPU architecture combinations necessary for a plugin to function correctly in each
possible DPC configuration. To obtain a large set of plugins for fingerprint diversity, we wrote
scripts to crawl the Fedora and Ubuntu Linux repositories and look for plugins in all packages,
for both i686 and x86_64 architectures. When a plugin is found, the package is downloaded,
and the plugin is extracted. Any dependencies towards, for example, configuration files or
system libraries are also extracted.

2. Modeling the well-formedness constraints in the diversity reservoir We use feature
modeling to ensure DPC configurations are valid before the browsing platforms are assem-
bled or reconfigured. This helps establish the restrictions and conflicts among the different
components in the diversity reservoir. The attributed feature model defines the valid con-
figurations, i.e. configurations that can fundamentally run. We provide an extract of the
feature model in Figure 4.4. A DPC configuration is composed of 4 mandatory features: an

70 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

OS, a browser, plugins and fonts. It must be noted that some features in this model have
attributes that specify the feature’s characteristics and have domains that define possible
values. For example, the attribute Type in the feature Plugin specifies that a plugin is either
of type Netscape Plugin API (NPAPI) or Pepper Plugin API (PPAPI). Relations in the fea-
ture model and cross-tree constraints (see bottom of Figure 4.4) specify the set of rules that
must be fulfilled for a DPC configuration to be valid and “runnable”. For example, the first
constraint states that a browser with a 64 bit architecture implies a 64 bit OS.

4.2.3 Research questions

We present a series of experiments to validate the effectiveness of multi-level platform reconfigura-
tions at breaking fingerprint stability over time. The experiments aim at answering the following
questions.
RQ1. How diverse is the sequence of fingerprints exhibited by the assembled plat-
forms? This question evaluates the ability of our approach at using the diversity reservoir to
assemble series of platforms that exhibit different fingerprints. We measure the dissimilarity be-
tween the fingerprints exhibited by each consecutive pair of platforms.
RQ2. How diverse are the platforms in the eyes of actual fingerprinters? This question
evaluates the ability of our approach to deceive commercial fingerprinting scripts.

4.2.4 Experiment setup

Our fingerprinting script

All experiments require collecting and analyzing the browser fingerprints exhibited by the assembled
browsing platforms. We developed a fingerprinting script inspired by Panopticlick [72], with some
improvements to gather more data via JavaScript and Flash. It works by gathering data through
HTTP headers and JavaScript attributes, and it uses Flash to gain access to unique attributes in
the ActionScript API. We collect some of the attributes listed in Table 3.1.

Third-party fingerprinting scripts

BlueCava is a company that offers websites to “recognize devices (i.e., computers, mobile phones
& tablets)” for advertising purposes [39]. One tool in their arsenal is a script that uses JavaScript
and Flash to fingerprint devices. BlueCava provides a page for users to opt-out of tracking that
shows the identifier associated with your device [40]. We collect these identifiers for our assembled
browsing platforms. It should be noted that the identification algorithm is on the server side and
is unknown to us.

Acar et al. [13] discovered a canvas fingerprinting script on the AddThis website that has since
been removed [17]. The script works by sending the browser some text to render using the HTML
canvas element. The text is converted into an image that is sent back to the server. Pixel variations
in the image indicate differences in hardware and software used in rendering, opening the door to
fingerprinting. We use the getDataUrl() function of the canvas element to get a URL representation
of the image that allows easy comparisons.

Dataset

An original platform represents the user’s browsing platform as it exists in the host operating
system. The content of this platform can have a strong impact on Blink’s ability at producing
diverse platforms, since we import the user’s fonts and plugins when assembling a DPC configura-
tion. In essence, the plugins and fonts of the user’s platform are included as essential components
in the assembled platforms.

We test Blink’s effectiveness using 25 original platforms. Each original platform has from 1
to 25 plugins, and from 20 to 520 fonts. The diversity reservoir for our experiments is: 4 Virtual
machines (Fedora 20 32/64 bits, Ubuntu 14.04 32/64 bits); 2762 fonts; 39 browser plugins; 6
browsers, including 3 versions of Firefox: 28.0 (stable), 29.0 (beta), 30.0 (aurora), and 3 versions
of Chrome: 34 (stable), 35 (beta), 36 (unstable).

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 71

Experimental protocol

For each of the 25 original platforms, we assemble 2 sequences of 100 platforms, providing a total
of 5000. For every assembled platform, we collect the exhibited fingerprint using our script, and
we collect the BlueCava and AddThis identifiers using their commercial fingerprinting scripts.

4.2.5 Results

RQ1. How diverse is the sequence of fingerprints exhibited by the assembled plat-
forms?

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blink on 25 original platforms

D
is

si
m

ila
rit

y

Figure 4.5: Dissimilarity between consecutive platforms (Leery mode)

This question aims at validating that the browsing platforms we assemble exhibit different
fingerprints over time. We estimate this by checking that two consecutive platforms exhibit finger-
prints that are dissimilar. Thus, for each original platform, we collect the sequence of fingerprint
dissimilarities by pairs of consecutive platforms:

dissim_seq = (D(FPi, FPi+1))1≤i≤99
For each of the 25 original platforms, we collect two sequences of dissimilarity values, which

correspond to the 2 sequences of 100 assembled platforms. Figure 4.5 displays the distribution of
dissimilarities in both dissim_seq for each original platform, in Leery mode. Figure 4.6 displays
them in Coffee break mode. The X-axis in the figures correspond to the ID of the original platform,
and the Y-axis represents the distribution of dissimilarities between pairs of consecutive platforms.
The red line indicates the mean dissimilarity value among the 5000 collected fingerprints.

Regarding the Leery strategy, Figure 4.5 shows that Blink is successful at assembling successive
platforms that exhibit very dissimilar fingerprints, with results up to 0.77. Blink can also assemble
platforms that are very similar, with some pairs of successive platforms having dissimilarity values
as low as 0.01. Since we have a relatively small pool of operating systems and browsers, it is
likely that the OS or browser was the same from one configuration to the next. So, depending
on randomization, consecutive fingerprints can be very similar or very dissimilar. Yet, despite
frequent, large variations in dissimilarities, mean values are high thanks to our large pool of fonts
and plugins.

When comparing Figures 4.5 and 4.6, the most noticeable differences are the ranges of dis-
similarity. In Leery mode, dissimilarity varies between 0.01 and 0.77, while in Coffee break mode
dissimilarity varies between 0.08 and 0.36. This shows the benefits of switching the operating

72 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blink on 25 original platforms

D
is

si
m

ila
rit

y

Figure 4.6: Dissimilarity between consecutive platforms (Coffee break mode)

system and browser. The mean dissimilarity values in Leery mode are more than twice as high as
the ones in Coffee break mode.

Dissimilarity slowly declines as the numbers of fonts and plugins grow with each original plat-
form. This trend occurs with both reconfiguration strategies and can be explained by the fact
that the assembled platforms start to share a larger set of common plugins and fonts, lowering
the overall dissimilarity score for both attributes. In the end, even if the dissimilarity is lower if
we import a lot of fonts and plugins from the user’s system, Blink still produces highly dissimilar
configurations with an average above 0.4 in Leery mode.

We conclude from these observations that Blink generates configurations that are truly different
from one another. It corresponds to our objective of breaking the stability of fingerprints over time,
and shows its effectiveness in blocking the ability of fingerprinters to track users. Variations in
Blink’s effectiveness are due to the richness of the original platforms and on the size of the diversity
reservoir.

RQ2. How diverse are the platforms in the eyes of actual fingerprinters? To answer
this, we collected fingerprint identifiers from BlueCava and AddThis for each assembled platform.
When these scripts assign the same identifier to two platforms, it means they consider them to be
the same.

BlueCava browser fingerprinting script In our tests more than 99% of the identifiers we
collected were different (we had similar results for both Leery and Coffee break modes). BlueCava’s
script is not able to detect that the assembled platforms are from the same user, in part due to
BlueCava taking into account even the slightest differences in a fingerprint. This shows that Blink
is effective against unique identifiers, and confirms that Blink can deceive BlueCava, even when
fingerprint diversity is low.

AddThis canvas fingerprinting script From the 5000 assembled platforms, we obtained 181
different identifiers in Leery mode and 34 in Coffee break mode using the AddThis script. Blink
performs relatively well despite the fact that canvas fingerprinting targets the GPU and low-level
drivers. We can also see that Leery is 5 times more effective than Coffee break because the OS and
browser change. Currently the DPC does not include graphical components (e.g., GPU drivers) or
GPU/HTML5 specific configurations, but we plan to explore this in the future.

4.2. MULTI-LEVEL RECONFIGURATION AND DIVERSIFICATION WITH BLINK 73

4.2.6 Threats to validity
To our knowledge, characterizing the impact of moving target defenses on security is an open
challenge [51]. Still, this section provided empirical evidence of the effectiveness of Blink’s behaviour
with respect to fingerprinting. We now summarize the threats to the validity of our findings.

While no established metric exists to evaluate the effectiveness of fingerprinting countermea-
sures, we defined our own dissimilarity metric. This is a construct threat because the metric might
not properly reflect the ability of fingerprinters to decide if a fingerprint is from a distinct platform.
To mitigate this threat, we based fingerprint attribute weights on the observations from Eckers-
ley’s extensive study [72]. We also collected identifiers from third-party commercial fingerprinting
scripts.

The external validity lies in the ability to generalize our observations. We evaluated Blink’s
effect on 25 initial situations, with a pool of 6 browsers and 4 operating systems, all running
Linux platforms. Starting from these situations, Blink is able to assemble platforms that exhibit
very different fingerprints. Yet, we do not know how Blink behaves in other situations (e.g.,
users that have a very large set of essential fonts). We are exploring a new domain (mitigating
fingerprint-based tracking) and further quantitative and usability studies are needed to establish a
comprehensive understanding of moving target approaches in this domain.

Internal validity very much depends on the correct implementation of Blink, as well as both the
fingerprinting scripts and the metrics. We mitigated this risk through thorough testing campaigns,
and thousands of runs to tune Blink. Yet, there might be bugs that influence our results. We
hope that they only change marginal quantitative things, and not the qualitative essence of our
findings.

4.2.7 Discussion and further development

Mitigation properties

Blink fulfills all the properties defined in Section 4.1:

• Blink does not break browsing. It runs like a native browser and we transfer the user profile
between different sessions to improve the user experience.

• Blink is completely automatic. The tool has been built so that the synthesis of browsing
environment is frictionless and it does not require user interaction.

• Blink does not introduce inconsistencies. The strongest advantage from Blink compared
to other tools is that the exhibited fingerprints are genuine with no mismatches between
attributes.

• Blink breaks fingerprint linkability between sessions by generating a completely new environ-
ment every time it is launched.

• It is very difficult to detect Blink. Users of our approach could potentially be spotted as
having “strange” fingerprints. To mitigate this effect, we can rely on real fingerprints collected
on AmIUnique.org (see Chapter 3). We observed that fingerprints rarely have more than
20 plugins and that the number of fonts range from 50 to 550. We derived two normal
distributions from the data we collected and use them to set the number of fonts and plugins
that we add to each DPC configuration. This way, we do not end up with configurations that
would never be observed in the wild, improving the chances that Blink users do not stand
out.

Improving performance

It can be argued that using virtual machines to run browsers is costly. However, current computers
can easily run multiple VMs simultaneously. Many developers already use multiple VMs to target
different platforms. VMs allow Blink to target multiple platforms and architectures, and to re-
configure the OS, all important discriminators in fingerprints. Moreover, the use of VMs presents
beneficial side-effects: it provides very strong sandboxing for all web activity, including Firefox,

74 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

which does not have a native sandbox. In our implementation, snapshots are used to return VMs
to known safe-states, removing cookies and other browsing artifacts.

Since the publication of the original article, we developed an alternative version of Blink running
completely inside Docker containers. Docker enables developers to have self-contained software by
packaging everything in a container [68]. The advantage is that a container only has the libraries
and settings required for the application to run. The HDD space is then reduced compared to
a fully-fledged virtual machine and the performance of the system is much faster. The complete
infrastructure of Blink on Docker is available publicly on GitHub [8].

Relevance

The original version of Blink was developed in 2014. At the time, plugins and fonts were the kings
of collected attributes in a fingerprint. Now, as saw in our AmIUnique study, the impact of these
attributes are getting extremely limited as modern browsers do not support the old NPAPI plugin
architecture anymore. The current implementation of Blink may be less effective at mitigating
tracking than at the time it was developed. Yet, the approach chosen when designing Blink is still
relevant today. In order to provide a complete coverage of modified attributes, it is better to rely
on running components than to artificially modify the content of a fingerprint with pre-recorded
values. Mismatches between attributes are prevented as the browsing environment reflected in the
fingerprint truly exits.

4.3 Randomizing core browser objects with FPRandom

In this section, we explore the use of browsers’ flexibility to prevent tracking through advanced
fingerprinting techniques along with an implementation in a Firefox browser called FPRandom. We
add randomness in the computation of selected browser functions, in order to have them deliver
slightly different answers for each browsing session. This way, these functions are considered
unstable for tracking and cannot be used for fingerprinting.

4.3.1 Approach

In this work, we propose to exploit browsers’ untapped flexibility to introduce randomness. Sev-
eral API functions used to build a browser fingerprint are unnecessarily deterministic and provide
device-specific information as a side effect. Instead of changing software components at runtime
like Blink [1] or lying on specific values like PriVaricator [123], we want to increase non-determinism
in browsers to reduce these side-effects that cause fingerprintable behaviours. We especially inves-
tigate the two following areas.

Flexibility of the implementation of the JavaScript specifications

The official ECMAScript specification, the de facto standard for scripting language on the web,
allows some flexibility in actual JavaScript implementations. Different parts of the specification
give some leeway by clearly indicating that specific choices are left for the implementation. The
ECMA organization strictly codifies the interpretation of the language but the exact details of how
it works remain in the hands of browser vendors. For example, as we will see in the next section,
the enumeration order of JavaScript properties are not detailed by the ECMAScript specification
but each browser presents its own unique order. Developers have made deterministic choices when
they implemented these functions. By taking a step back and removing what can be interpreted as
a surspecification of the standard, we are able to thwart fingerprinting vectors that rely on these
detectable side-effects.

Flexibility of the renderings of multimedia elements

Vendors are constantly striving to improve their browsers to provide the latest innovations and the
best possible experience to their users. Changing some attributes collected in a browser fingerprint
like the user agent or the screen resolution can negatively impact how a page is displayed to the

4.3. RANDOMIZING CORE BROWSER OBJECTS WITH FPRANDOM 75

detriment of users. However, the rendering of HTML multimedia elements can be made more
flexible and less deterministic without degrading the user experience. Especially, we can exploit
users’ perception of color and sound to introduce imperceptible noise that impacts the stability of
specific browser routines. The key challenge here is to apply very small modifications that no user
will notice while a fingerprinting script will output constantly changing values at every execution.

4.3.2 Implementation

To experiment with randomization, we target three of the most recent fingerprinting techniques:
canvas fingerprinting as it is a prime example of a dynamic media element and “in the top 5 of the
most discriminating attributes” [2]; the Web Audio API recently observed in fingerprinting scripts
by Englehardt et al. [77]; the leakage of system information through JavaScript properties’ order
found by Nikiforakis et al. in the Cookieless Montster study [124]. All the mitigation techniques
detailed in this section are implemented in a modified version of Firefox called FPRandom. The
complete patch for Firefox 54 is available on GitHub along with a fully-compiled prototype for
Linux systems [12].

Canvas API

Definition Canvas fingerprinting was firstly introduced by Mowery et al. [116] and observed on
the Internet by Acar et al. [13]. Its goal is to use the Canvas API of a browser to draw an image
that can help differentiate one device from another. Each device executes the exact same set of
instructions and depending on both hardware and software, rendered images present variations.
Figure 4.7 shows the canvas test we run on the AmIUnique website. The test consists in displaying
two lines of text with different shapes merged together. Here, depending on the hardware and the
installed drivers, the rendering of shapes and colors slightly vary between devices. Then, depending
on the software and most especially on the list of installed fonts, the lines of text can present great
differences. In our AmIUnique study [2], we showed that one of the strength of canvas fingerprint-
ing is its stability and that it is “in the top 5 of the most discriminating attributes”. It is notably
the “second highest source of entropy for mobile devices”.

Modification The first modification we made to the Firefox source code is to introduce randomness
inside the ParseColor function of the CanvasRenderingContext2D class. Every time a color is set
inside a canvas fingerprinting script, the browser changes the actual RGB values of the parsed color
by adding or removing a very small number for each color channel. For example, if a script asks
to draw an orange rectangle, the browser will paint the canvas element as requested. However, for
every browsing session, the browser will use a slightly different orange than the last time. Modifying
the ParseColor method enables us to support the full range of color declaration (for example, you
can chose a color by directly setting its RGB values or you can simply write its name like “gold”
or “orange”). The impact on the user experience is almost non-existent as the difference in color is
very hard to see with the naked eye. Finally, it should be noted that we differentiate ourselves from
tools called “canvas poisoners” that change the RGB values of each pixel of the rendered image
independently from one another. Mowery et al. wrote that they are not “a feasible defense” against
current scripts because the noise can be lifted by repeating a test a few times and comparing the
results. They add that the aggressive introduction of noise “degrades the performance of <canvas>
significantly for legitimate applications” [116]. With our approach, the color on a whole surface is
consistent as we do not introduce random noise on separate pixels. As discussed in Section 4.3.2,
we can apply the exact same modification for every run of a fingerprinting script. If a fingerprinter
were to repeat the same canvas test more than once, he will not be able to notice differences
whereas canvas poisoners present noticeable variations between runs.

The second modification operates in the SetFont function of the CanvasRenderingContext2D
class and changes a font set by a script by one present on the operating system. For the scripts
asking for a fallback font, the stability is broken as a font different from the previous session will
be presented.

76 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

Figure 4.7: Original canvas rendering with
standard colors and the default fallback font Figure 4.8: Canvas renderings with modified

colors and fonts

Example Figure 4.8 illustrates the impact of FPRandom on the exact same canvas test with all
protection features enabled. The blue, orange and green colors are slightly different for each run
and the used fonts are chosen among the ones present on the operating system. The more fonts
are installed on the user’s system, the bigger the diversity of generated canvas renderings will be.
By changing at runtime core properties of elements present in a canvas test, we break the stability
of this technique while still preserving the user experience.

AudioContext API

Definition Discovered by Englehardt et al. while crawling the web looking for trackers [77],
AudioContext fingerprinting is a newcomer in the browser fingerprinting domain. The AudioContext
API provides an interface to create a pipeline to process audio. By linking audio modules together,
you can generate audio signals and apply very specific operations like compression or filtering to
generate a very specific output.

Listing 4.1 provides an example of an AudioContext fingerprinting test. Lines 1 to 5 create
the different modules that are used in the audio pipeline. Lines 8 and 9 set parameters on two
different modules. Lines 10 to 13 link the modules together. The complete pipeline of the example
is as follows. By starting the oscillator node at line 16, the module outputs a triangle wave that
is passed to the analyser node. The audio continues through the scriptProcessor node that allows
specific operations in JavaScript. It then goes through the gain node before reaching its final
destination. The strength of the Web Audio API is that any number of modules can easily be
linked together to form a complete audio pipeline.

1 var audioCtx = new(window.AudioContext || window.webkitAudioContext),
2 oscillator = audioCtx.createOscillator (),
3 analyser = audioCtx.createAnalyser (),
4 gain = audioCtx.createGain (),
5 scriptProcessor = audioCtx.createScriptProcessor (4096, 1, 1);
6
7
8 gain.gain.value = 0; // Disable volume
9 oscillator.type = "triangle"; // Set oscillator to output triangle wave

10 oscillator.connect(analyser); // Connect oscillator output to analyser input
11 analyser.connect(scriptProcessor); // Connect analyser output to scriptProcessor

input
12 scriptProcessor.connect(gain); // Connect scriptProcessor output to gain input
13 gain.connect(audioCtx.destination); // Connect gain output to audiocontext

destination
14
15 scriptProcessor.onaudioprocess = function (bins) {...}
16 oscillator.start (0);

Listing 4.1: Excerpt of the AudioContext fingerprinting script found by [77]

In audio, sampling is applied to convert a continuous signal into a discrete one. This way, a
computer can easily process audio in distinct blocks called frames. Each frame is composed of
samples that represent the value of the audio stream at a specific point in time. Englehardt et al.
have shown that, depending on the audio stack of your system (both software and hardware), the
exact value of each of these frames slightly vary between devices. An audio fingerprint can then
be created similarly to what is done with the Canvas API.

4.3. RANDOMIZING CORE BROWSER OBJECTS WITH FPRANDOM 77

(a) Original waveform (b) Modified waveform

(c) Difference between the two waveforms

Figure 4.9: Visualization of audio rendered through the AudioContext API

Modification We performed an analysis of audio fingerprints that we collected on AmIUnique.org
and the results can be found in Appendix D.1. We decided to introduce very small noises directly
into the audio processing routines of the browser so that tests using any number of AudioContext
modules are all impacted. We operate at the heart of the AudioBuffers of the AudioNodeEngine as
they contain the frames of the processed audio. By modifying key functions, we slightly decrease
the volume of processed buffers by a factor ranging between 0.000 and 0.001. This way, a frame
can present very small variations where only the smallest decimal digits are affected. With the
use of very small factors, it is impossible to detect modified sections from unmodified ones just
by listening to the rendered track as the differences between the original and modified track can
genuinely be interpreted as side effects or simple noise of the whole audio stack of the device. For
fingerprinting scripts, these modifications produce a different hash as the audio routine will be ever
so slightly different for each browsing session.

Example Figure 4.9 shows three waveforms of the first second of the “Ride of the Valkyries” from
Wagner. The audio pipeline we set up for this example performs two operations. It first increases
the volume of the track with a GainNode and then compresses it through a DynamicsCompres-
sorNode. The waveform in Figure 4.9a represents the output from an unaltered pipeline and the
one in Figure 4.9b from a pipeline with our volume modification. The last waveform in Figure 4.9c
represents the difference between the first two (i.e. the introduced noise). In order to see the impact
of FPRandom, the 3rd waveform has been zoomed in at 1000%. The scale is a clear indication that
the generated noise is inaudible, proving that the impact on the user experience is non-existent
audio wise but it still impacts the created audio fingerprint.

Order of JavaScript object’s properties

Definition By analyzing the content of JavaScript objects in the browser, Nikiforakis et al. dis-
covered that “the order of property-enumeration of special browser objects, like the navigator and
screen objects, is consistently different between browser families, versions of each browser, and, in
some cases, among deployments of the same version on different operating systems” [124]. This
way, if someone were to hide the true browser’s identity, enumerating the properties of a special
object would simply unmask it. As stated by the latest ECMAScript Language Specification rati-
fied in June 2016, “mechanics and order of enumerating the properties is not specified” (see section
13.7.5.15 EnumerateObjectProperties of [74]). This ordering behaviour is entirely dependent on
the browser’s implementation. Chrome and Firefox yield vastly different enumeration orders for
native objects like navigator. For non-native JavaScript objects, both browsers first return integers
in ascending order and then strings in insertion order. This choice is arbitrary and many developers
have long debated for the best and most logical behaviour as illustrated by this long discussion on
the V8 bug tracker [134].

78 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

Modification The browser’s unmasking added by the surspecification of the ECMAScript standard
can simply be undone by modifying the jsiter class of Firefox. A special flag called “JS_MORE_
DETERMINISTIC” can be activated at compile time to sort IDs for both native and non-native
objects in a deterministic way. By tweaking the behaviour of the SortComparatorIds structure used
with this special flag, we flip its purpose by not making the JavaScript engine more deterministic
but by generating a unique enumeration order every time the browser is launched.

With the “JS_MORE_DETERMINISTIC” flag activated, the enumeration of a JavaScript
object first returns integers in ascending order and then strings in alphabetical order. By diving
even deeper into the source code, we found that the string comparison done by the browser relies
on the “Latin-1” or “ISO/CEI 8859-1” encoding of each string. When comparing two strings, the
engine goes through one character at a time and performs a simple subtraction of their code points
(i.e. their place in the Latin-1 character set, see [202]) to determine which character is in front of
the other. When a difference is detected, the engine knows how to order the two strings as the
result is either positive or negative. Appendix D.2 gives an example of such comparison between
the appName and appVersion strings.

In order to change the enumeration order for each browsing session, we assign a random order
for each combination (i.e. for each possible subtraction result) from the Latin-1 character set. As
the first code point starts at position no32 and the last one is at no255, we generate in total 223
different booleans to cover all possible combinations. Any attempt to unmask the browser through
this technique is then prevented.

Randomization strategy

All the modifications described in this section can be executed in different ways when browsing
the web. Here, we detail the two randomization strategies present in FPRandom while discussing
their own strengths and weaknesses.

Random mode The first mode that we propose in FPRandom is the “Random” strategy. Every
time the modified functions are executed in the browser, they will return random values. The
advantage is that it prevents cross-domain tracking as two scripts on two different domains (even
from the same provider) would collect different values on both sites. However, the major downside
of this solution is that it presents “transparency” problems as discussed by Nikiforakis et al. in
the PriVaricator study [123]. If a fingerprinter were to study the presence of randomness, a script
could execute the same test several times to detect instability. Depending on the test, a statistical
analysis could be performed to reduce or remove the introduced randomness but it requires far
more means and a certain insight into the way noise is introduced to get meaningful results. The
“Random” mode is the default one in FPRandom as we have no recorded proof of such behaviours
from today’s major fingerprinting actors.

Per session The second mode initializes all the randomized variables at startup and they are
never modified on subsequent executions. The advantages of this strategy is that it cannot be
detected through repeated measurements as the browser will always return the same answers for
an identical fingerprinting test. The downside is that it only breaks linkability between browsing
sessions as the same fingerprint will be presented to all websites until the browser is rebooted.

4.3.3 Evaluation

Deceiving fingerprinting scripts

As pointed out by [123], while it is possible to analyse the JavaScript code that runs inside the
browser and detect fingerprinting scripts, it is much more complicated to find fingerprinters that
can act as black-box oracles for our work. Some websites give a specific identifier associated with
a device’s fingerprint but others map collected attributes in a very specific way that is confiden-
tial and that is entirely performed on the side of the server. The main challenge in assessing the
impact of FPRandom is to find fingerprinting scripts that use the advanced techniques we target

4.3. RANDOMIZING CORE BROWSER OBJECTS WITH FPRANDOM 79

Firefox Random Session

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Browser

T
im

e
to

 g
en

er
at

e
a

ca
nv

as
 r

en
de

rin
g

(m
s)

(a) Canvas API

Firefox Random Session

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0

Browser

D
ur

at
io

n
of

 th
e

be
nc

hm
ar

k
(m

s)

(b) Audio API

Figure 4.10: Benchmarking results

and retrieve the right information (either an identifier or the fingerprint data that is sent).

Fingerprintjs2 is the second version of a popular open-source fingerprinting library that collects
25 different attributes and hash them all into a single value [159]. We executed the complete test
suite of this library 100 times on both a standard version of Firefox 54 and FPRandom. On Fire-
fox 54, we obtained the same hash for all of the 100 executions. For FPRandom, we collected 100
different ones with the Random mode and a single one in Session mode. These results show how
fragile the test suite is for identification. The introduction of noise on a single attribute is sufficient
to be considered as a “new” fingerprint.

Maxmind is a company specialized in IP geolocation and online fraud prevention. As part of its
fraud detection system, Maxmind has a “device tracking add-on” to identify devices “as they move
across networks” [94]. The main add-on script sends the complete device fingerprint at a specific
address in a POST request. We manually analysed the code of the add-on and found that it collects
the rendering of a canvas test along with the enumeration order of both the navigator and screen
objects. After 100 runs of the fingerprinting script, FPRandom gives a different canvas hash at
each execution whereas a standard Firefox build always send the same result. For the enumeration
orders, the behaviour of Firefox 54 is the expected one and returns the exact same order for both
JavaScript objects. For FPRandom, the browser gives a unique and different enumeration order
at each session.

Limitations Our approach does not deal with static attributes like the user-agent or the timezone
but it can mitigate the collection of dynamic attributes from APIs like Canvas or Battery. Scripts
that do not rely on the attributes we target can still build their own browser fingerprint and use it
for tracking, albeit with a less complete view of the user’s system.

Performance

We use three different JavaScript benchmark suites to assess the performance overhead introduced
by FPRandom. The experiments were conducted on a laptop running Fedora 25 with an Intel Core
i7-4600U CPU @ 2.10GHz. The tests were performed using Firefox 54 (Nightly version) with and
without our modifications present and enabled.
Canvas As there are no benchmarks that specifically target the Canvas API, we developed our own
test to assess the overhead introduced by our color and font variations. We repeated the test shown
in Figure 4.7 1,000 times and measured the time it takes for each image to be fully rendered inside
the browser. To get precise measurements, we used the JavaScript Performance API that provides
timestamps with an accuracy up to the microsecond [180]. Figure 4.10a illustrates the difference

80 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

between a vanilla version of Firefox 54 and FPRandom. While an unmodified version takes 0.12ms
to render the image, our modified browser is about 0.06ms longer on average in both randomization
modes. This difference corresponds to the time it takes to properly choose a new font and introduce
variations in the canvas colors. With these reported numbers, we consider the overhead here to
be negligible as a rendering time of less than a single millisecond will not impact the user experience.

AudioContext To assess the impact of FPRandom on the AudioContext API, we use a WebAudio
benchmark developed by a Mozilla developer [31]. The benchmark performs a series of 19 different
tests from simple gain operations to more complex mixing procedures. Each test instantiates an Of-
flineAudioContext object which is one of the objects we targeted when modifying the Firefox source
code. The results in Figure 4.10b indicate the time it takes to perform the complete series of 19
tests. It should be noted that we repeated the test suite 30 times. The mean value for FPRandom
is about 25% higher than its Firefox counterpart. The “Random” mode is also a little longer than
the “Session” one. This increase can be explained by the fact that the modified code is executed a
very high number of times in a single test. By comparison, the modification made to the canvas
API is only executed once for a test. We instrumented the browser to find a precise number and
we found out that a single run of the benchmark enters our modified function more than 8,862,000
times. As a point of reference, the AudioContext test found by Englehardt et al. [77] only enters our
function less than 3,000 times. With these numbers, we qualify the benchmark as extremely inten-
sive. The increase in processing time may not be visible for less extreme and more traditional uses
of the API. We leave for a future work the exploration of different implementation strategies where
only a specific percentage of audio frames would be modified, leading to an increase in performance.

JavaScript enumeration order As a final performance test for FPRandom, we decided to run
a standard JavaScript benchmark to see if the modification made on the enumeration order has an
impact on the overall JavaScript engine. We used the recent JetStream benchmark [107] which is
developed as part of the WebKit browser engine. Currently, the 1.1 version performs 39 different
tests and covers a wide variety of advanced workloads and programming techniques. It integrates
tests from well-known benchmarking suites like SunSpider or Octane along with new ones developed
specifically for JetStream (more details [106]).

Table 4.3: JetStream benchmark results

Firefox FPRandom-Random FPRandom-Session
Latency 76.075 ± 1.3250 74.553 ± 1.8074 74.767 ± 1.2530

Throughput 251.97 ± 3.2912 252.32 ± 2.4214 256.02 ± 1.1213
Total 147.45 ± 1.5753 146.23 ± 1.9204 147.61 ± 1.1257

The results are present in Table 4.3 (the bigger the score, the better the performance). As we
can see, the scores are almost identical and no real distinction can be made between Firefox and
FPRandom. The behaviour of the two browsers are similar on both JavaScript throughput and
latency and the impact of our order modification is seemingly nonexistent.

Web crawl In order to assess more globally the impact of our modifications on day-to-day brows-
ing, we crawled the thousand most popular websites as reported by Alexa [19] on both a vanilla
version of Firefox 54 and FPRandom. We used Selenium as the engine for the crawl of both
browsers, and we used the Performance API of the browser to measure the time it takes for the
DOM of the main page to be completely loaded. Specifically, we used the domLoading and dom-
ContentLoadedEventStart events to make our measurements as they are independent of problems
related to network instabilities and congestion. Because of server unavailability and certificate
problems encountered during our crawl, we miss loading times for 43 sites. The results can be
found in Table 4.4. In general, load times are extremely close between a vanilla Firefox and
FPRandom. Mean times indicate a slightly better performance for Firefox. Yet, in both cases,
the standard deviation is very high, meaning that the collected loading times are very dispersed
between 0 and 5s. These numbers demonstrate that the modifications introduced in FPRandom
do not have a visible impact on the user experience for day-to-day browsing. Moreover, we can

4.3. RANDOMIZING CORE BROWSER OBJECTS WITH FPRANDOM 81

also say that the amount of site breakage is kept to a minimum as only a single script provided
us with an error due to our enumeration modification. The modifications on both the Canvas and
AudioContext API had no impact on site breakage.

Table 4.4: Web crawl results

Times collected Min (ms) Max (ms) Mean (ms) SD (ms)
Firefox 957 10 64728 1602 3712

FPRandom 958 9 55852 1823 3935

User study

An important aspect of FPRandom is that it modifies multimedia elements that can be seen or
heard by the user. To make sure that the modified subroutines do not degrade substantially the
user experience at the cost of better privacy, we ran a preliminary user study in February 2017.
Its goal was to compare multimedia elements as rendered by a normal version of Firefox 54 with
modified ones rendered by FPRandom. The study was divided into two phases: the first was
focused on the modifications made to canvas elements while the second investigated the impact on
the AudioContext API. The link to our survey was communicated through regular channels like
social networks and team mailing lists. We received an answer from 20 participants and the results
are as follows:

• Half of them noticed a color difference between the original canvas rendering and the 10
modified ones, the other half did not.

• 70% said that some fonts made the strings harder to read and only one person said that it
was significantly harder for all of the modified renderings.

• For the AudioContext API, only 25% detected a difference between the original track and
the 3 modified ones.

• For people who heard a difference, they all qualified the difference with words like “tiny” or
“small”.

These results give us confidence in the direction we took with our approach but we plan on con-
ducting a more thorough study to pinpoint more precisely avenues for improvement with more
participants. Still, we will investigate how we can exclude some exotic fonts as they can make
strings in canvas renderings harder to read for users.

4.3.4 Discussion and further perspectives

Mitigation properties

FPRandom fulfills some of the properties defined in Section 4.1:

• FPRandom does not break browsing. As a modified Firefox browser, it behaves exactly like
a native browser and our web crawl showed that the amount of site breakage is kept to a
minimum.

• FPRandom is completely automatic. The tool can easily be configured and the changes to
the targeted attributes are performed in the background without requiring user interaction.

• FPRandom breaks the linkability of the targeted attributes between sessions. By making
some attributes unstable, they cannot be used by trackers to perform device identification.

• It is difficult to detect FPRandom without knowing the randomization strategies. As the
modifications performed on the targeted attributes are very subtle to limit the impact on the
user experience, it is also complicated for trackers to identify them.

82 CHAPTER 4. DESIGNING SMART COUNTERMEASURES

Extending our approach to other vectors

With FPRandom, we aim at breaking the stability of browser fingerprints over time to improve
users’ privacy. By identifying APIs with restrictive implementation with respect to the JavaScript
specification, we introduce randomness to produce slight variations at each execution of a finger-
printing script. We also generate noise inside HTML multimedia elements to alter their rendering
without deteriorating user’s perception. The approach presented in this work can be generalized to
more fingerprinting vectors. For example, there exists other parts in the ECMAScript specification
that leave the exact details of the implementation in the hands of developers. Routines from the
Math object can be used to unveil information about the device and its browser [186]. If we take
a look at Section 20.2.2 of the official JavaScript specification [74], it is written that “the choice
of algorithms is left to the implementation” and that the behaviour of mathematical functions “is
not precisely specified”. This means that the actual libraries used for these functions could be
diversified to prevent the unmasking of the operating system. In the end, the main challenge that
remains here is to perform an exhaustive search to identify and anticipate future fingerprinting
mechanisms. By locating key functions that could reveal device-specific information, we could
preemptively introduce randomness to reinforce users’ privacy on the web.

4.4 Conclusion

In this chapter, we detail our own defence solutions to mitigate unwanted tracking via browser
fingerprinting. With Blink, we answer the problem of complete coverage found in the literature
but our solution also faces some usability problems on its own. With FPRandom, we explore a new
avenue for randomization but it only renders a subset of attributes unstable for tracking. In the
end, there is no ultimate solution to defend against fingerprinting as the balance between privacy
and usability is always tricky. Changing too many attributes in a fingerprint and the user cannot
browse the web anymore. Changing too few attributes in a fingerprint and the user is still prone to
tracking. It remains to be seen if the approaches explained in this thesis are sustainable as we all
saw the challenges related to fooling fingerprinting systems. With the incredible pace of browser
updates and new APIs, solutions that can work now can lose their utility in a matter of months.

In this fast evolving landscape of the web, there is one certainty though. Browser vendors and
standard organizations have the power to change the present and future of browser fingerprinting.
Acting directly at the level of web browsers and web standards is one way to fix the privacy problems
raised by Internet users. Can these actors design a usable but privacy aware fingerprinting? As
we saw in some of the scenarios developed in Section 3.5, the answer is a simple yes. Some
modifications can be made inside web browsers to improve online privacy without breaking the
way the web works. However, the important question is: will they?

Chapter 5

Augmenting authentication

Passwords are the go-to solution when it comes to authentication due to their apparent simplic-
ity for both users and developers. However, the risks and threats on the Internet have never
been higher. Every year, numerous data breaches show that logins and passwords are frequently
stolen, leading to unauthorized access to accounts on the Internet. Lists of weak passwords are
published showing that many users are putting themselves at risk with short or easily guessable
passwords [195]. Even a big company like Yahoo recently reported account breaches from data
theft [204, 205] and cookie forgery [206]. In that landscape, there is a need for more secure ways
to authenticate users on the web.

The aim of this chapter is to investigate the opportunity of combining the high entropy of a
canvas test with the capacity of the Canvas API to generate tests on demand in order to augment
authentication. In Section 5.1, we detail the challenges behind using fingerprinting for security. As
the information contained in a fingerprint can easily be manipulated, there are obvious pitfalls to
circumvent to be able to use fingerprinting in real-world scenarios. We then explain why canvas
fingerprinting is an ideal candidate for authentication as its dynamic nature is the key to fight off
common attacks. Section 5.2 describes the preliminary analyses we performed to find the ideal
tests for our system. Section 5.3 explains the inner workings of our mechanism with a description
of the authentication function and the associated protocol. Section 5.4 provides a security analysis
of our scheme by studying its resilience to several attacks while Section 5.5 concludes this chapter.

5.1 Using browser fingerprinting for authentication

5.1.1 Challenges
As a browser fingerprint is a direct reflection of a device and its environment, it should be the
perfect conduit to augment authentication on the web. At the time of login, a server can collect
very specific attributes and verify that the device belongs to the user (i.e. that the device has been
seen in the past). This approach makes sense in theory as nobody changes their devices daily.
However, there are three major problems that prevent fingerprinting from being widely used in
practice for authentication.

• Every attribute collected by a fingerprinting script can be manipulated by the
browser. With a simple browser extension, HTTP headers and JavaScript objects can be
changed to tell any story. This opens the door to impersonation attacks as attackers can
modify their own browser fingerprints to look like the ones from their victims. Through
phishing, an attacker can very easily collect a complete fingerprint. As there is no way for
the server to guarantee the integrity or the authenticity of the sent information, replay or
pre-play attacks are then possible.

• Fingerprinting scripts always rely on the same tests. The literature reports on the
properties and functions that are known to give away device-specific information. The prob-
lem is that all these attributes are well-known to developers but also to attackers. In order

83

84 CHAPTER 5. AUGMENTING AUTHENTICATION

to fool an authentication system, attackers just have to collect a fingerprint with all known
attributes so that they will have all the information necessary to bypass the security put in
place.

• Browser fingerprints evolve through time. Modern devices are constantly updated to fix
security vulnerabilities, improve performance and provide new features. The consequence of
this behaviour is that the exhibited fingerprint changes with time. In order to use fingerprints
for authentication, a server must take into account these changes as they are an integral part
of the life of device fingerprints. However, a problem arises when comparing two fingerprints.
If there is a difference between two fingerprints, does it come from a genuine update of the
system or does it come from a completely different device? In the first case, the system
would allow the right device to connect to the user’s account. But in the second case, it
would allow an attacker with a very similar fingerprint to bypass the authentication scheme.
Mastering the evolution of browser fingerprints is a challenging research area as data is needed
to understand what changes are considered legitimate from those that are not.

All in all, using browser fingerprinting for authentication presents many obstacles. Current
tests are predictable and attackers can modify their fingerprints to impersonate other devices. In
order to overcome these obstacles, we need to turn to the dynamic side of browser fingerprinting
where we can run a different test suite at every connection.

5.1.2 Exploiting the dynamic nature of canvas fingerprinting

Key insight

The key insight of this chapter is that canvas fingerprinting [2,13] can be used for challenge/response-
based authentication. By opposition to most browser fingerprinting techniques that query an API
and collect simple and deterministic browser-populated values, canvas fingerprinting can be ex-
tremely dynamic and unpredictable. Every time the user logs in, the browser can be asked to paint
a canvas element in a very specific way following a newly received challenge. Strings with their own
size, rotation, color and shadow can be rendered in a canvas element, exposing differences between
devices. Since a canvas rendering is computed dynamically through a process that relies on both
the software and hardware of the device, it is much harder to spoof than static attributes, making
it a strong candidate for authentication.

Integrating a multi-factor authentication scheme

As many websites are turning to two-factor authentication (2FA) and even multi-factor authen-
tication (MFA) [190], we designed a scheme that acts as an additional security layer in a MFA
system. At each login, we ask the browser to paint two canvas elements in a very specific way:
one that is used to verify the current connection and the other that will be used to verify the next
connection. Because canvas fingerprinting is a stable process, the system expects that the received
response will match with pixel-precision the response generated during the previous connection. If
there is match, the device is authorized to continue. If any irregularities are detected, the canvas
test fails and the device will be denied access.

5.2 Tuning canvas fingerprinting for authentication

Canvas fingerprinting will be suitable for authentication if it can fulfill the following properties:
it is possible to generate challenges that are rendered differently on different devices (canvas tests
exhibit diversity between devices) and canvas rendering is a deterministic function (the identity of
a device does not change over time). In this section, we present the preliminary experiment that
we ran to demonstrate that canvas fingerprinting can satisfy those properties.

5.2. TUNING CANVAS FINGERPRINTING FOR AUTHENTICATION 85

5.2.1 Exploring a relevant parameter space

The canvas HTML element acts a drawing board that offers powerful tools to give life to any
shapes, forms or strings that one can imagine. We use the capabilities and the features of the
Canvas API to their full potential to expose as much diversity as possible between devices (i.e.
what types of renderings depend the most on the device’s configuration).

We perform this study in three phases. The goal of the first phase is to determine the impact
of each drawing method of the canvas API for identification purposes: by drawing a wide range
of shapes and by rendering strings in various ways, we are able to identify what type of drawing
has the most impact on the diversity of renderings. Then, in the second phase, we explore in
greater details the most promising methods by fine-tuning the parameters of the selected methods.
Finally, the third phase explores potential enhancements to further increase the overall diversity.
This study was performed on the AmIUnique.org website between January 2016 and January 2017.
The participants were fully aware of the experiment and had to click on a button so that the tests
were performed in their browser. You can find below the highlights of this study. The complete
list of results for the three phases can be found in Appendices E.1, E.2 and E.3.

Entropy

We use the Shannon entropy to analyse the results of our study and know the underlying probability
distribution of each of our performed tests. Let H be the entropy, X a discrete random variable
with possible values {x1, ..., xn} and P (X) a probability mass function. The entropy’s formula is
as follows:

H(X) = −
∑
i

P (xi) logb P (xi)

We use b = 2 to have the entropy in bits. One bit of entropy reduces by half the probability of
an event occurring or, in our case, of a variable taking a specific value. For our study, the higher
the entropy is, the better it is for our mechanism since it means that more diversity is exhibited
between devices.

Phase 1

The first phase ran between January and March 2016 and 15,010 series of 15 canvas renderings
were collected during that period. The 15 tests ranged from drawing simple shapes like a single
rectangle to displaying more complex forms with a rich gradient.

Tests with low entropy Without any surprises, tests with simple shapes like the ones in Fig-
ure 5.1 do not provide enough ground for distinguishing devices. By specifying a shape with a
uniform color, the majority of collected results are identical. Rendering curved forms helps in-
creasing the overall entropy of a test since browsers must apply anti-aliasing algorithms to soften
the edges of ellipses but, overall, all these images have an entropy that is much lower than what
we can observe in more complex tests. In order to benefit from a more powerful solution, we have
to turn to other features of the canvas API that rely much more on the system.

(a) One rectangle (Entropy:
2.32 bits)

(b) One circle with a shadow
(Entropy: 4.89 bits)

(c) Four squares (Entropy: 4.66
bits)

Figure 5.1: Examples of tests with low entropy

86 CHAPTER 5. AUGMENTING AUTHENTICATION

Tests with high entropy Rendering a string in a canvas element relies on the fonts that are
installed on the system. A script can request any fonts it desires and if the system does not have
it, it will use what is called a fallback font. Depending on the operating system, this fallback font
differs between devices increasing the pool of distinct canvas renderings. Thanks to this fallback
mechanism, tests that render strings come naturally at the forefront of our first phase. By asking
for a font that does not exist and forcing the browser to use its fallback font, the diversity exposed
in rendering a string is much greater than the one observed from rendering simple shapes. The
wealth of available fonts on modern systems make the use of strings a prime candidate for our
authentication mechanism.

Moreover, as noted by our study in Chapter 3, using emojis helps distinguishing devices because
their actual representation differs between systems. An emoji is a small ideogram representing an
emotion (one is present at the end of Figure 5.2c). In our series of tests, all strings rendered with
an emoji have a higher entropy than those without.

Finally, the use of color gradients has a definite impact on the entropy. The natural transition
between colors accentuates differences between devices than with just a single color but we leave a
broader analysis of their impact for the second phase of our study.

(a) Simple string (Entropy: 6.09 bits) (b) Simple string with a stroke and a gradient (En-
tropy: 6.52 bits)

(c) String with a pangram and an emoji (Entropy: 6.99 bits)

Figure 5.2: Examples of tests with high entropy

Phase 2

Figure 5.3: Basis of the tests of Phase 2 (Entropy: 7.69 bits)

The second phase ran between March and June 2016 and 21,231 series of 15 canvas renderings
were collected during that period. It started directly after the first one concluded. Tests for the
second phase were designed to investigate the three major distinctive components found in the
first phase which are strings, color gradients and emojis. The base rendering for all the tests from
this phase is represented in Figure 5.3: one string using a fallback font with all the letters of the
alphabet, an emoji and a radial gradient composed of three colors.

Strings We investigated several changes to the parameters relating to the rendered string. As
indicated by our test in Figure 5.4, adding a stroke actually lowers the overall diversity since the
resulting entropy is lower. However, increasing the size of the used font proves to be the most
impactful change since the test where we doubled the font size has the highest entropy value of our
whole study (8.32 bits).

5.2. TUNING CANVAS FINGERPRINTING FOR AUTHENTICATION 87

Figure 5.4: Zoom on the base rendering with text stroke (Entropy: 7.15 bits)

Gradients Modifying the gradient parameters of the string has no real impact on the overall
entropy. Changing the type of the gradient from radial to linear or changing the number of colors
produces a variation smaller than 0.1 bit.

Emojis Changing emojis has no impact on the entropy. The test with a different emoji has the
exact same entropy value than the one from the base rendering (7.69 bits). This behaviour is
expected since all the emojis of a system are most of the time provided by a single font of the sys-
tem. All devices who share an identical canvas rendering with an emoji will also share an identical
rendering with a different emoji since these devices share the same emoji font.

In the end, this second phase informs us that bigger renderings lead to better results but other
parameters can be changed without having a real impact on the overall diversity.

Phase 3

The third and final phase ran between November 2016 and January 2017 and 23,238 series of 10
canvas renderings were collected during that period. The focus of this phase was to find further
enhancements to increase the overall diversity of renderings by testing special types of curves and
assessing the impact of shadows. The base rendering for this phase is the same as the previous
phase (represented in Figure 5.3).

Figure 5.5: New effects from Phase 3 (Entropy: 8.11 bits)

Bezier curves The Canvas API offers the possibility to draw cubic and quadratic Bezier curves.
Figure 5.5 presents one quadratic curve (the longest one) and a cubic one. These curves have a
marginal impact on rendering (increase of around 0.07 bits in entropy).

Shadows A shadow can be applied to any element drawn in a canvas. Its size and its color
can be changed by modifying the shadowBlur and the shadowColor properties. Shadows allow an
increase in entropy of 0.16 bits.

Combining both features The interesting conclusion of this phase is that the combination of
both presented features has the advantage of generating more graphical artefacts than just the sum
of its parts. The entropy increases by 0.43 bits from the base rendering which is a good indication
that curves and shadows are relevant additions to expose even more diversity between devices.

88 CHAPTER 5. AUGMENTING AUTHENTICATION

5.2.2 Understanding canvas stability

In parallel with our study on canvas diversity, we performed a study on the stability of canvas
rendering. Indeed, if a device produces many different results in the span of a day or a week for the
exact same set of instructions, our system must take that behaviour into account when asserting
the validity of a response. Thanks to the extension described in Section 3.6.1, we can follow any
evolution of a canvas rendering on the same device and understand the changes. If after several
months, the number of canvas changes is very small or null, this would mean that the canvas API
is suitable for our authentication mechanism.

Results Table 5.1 displays the main results of this study. Each column is a timespan for which we
observed certain devices (difference between the first and the last fingerprint record for a device).
This way, we can include every device that participated in our experiment even for a really short
period of time. The mean and standard values for each category were computed without taking
the outliers into account. A device is considered as an outlier if more than 8 canvas changes were
observed during the given time period. They represent less than 5% of our dataset.

Table 5.1: Results on the number of canvas changes for different periods of time

Number of days 30
-60

da
ys

60
-90

da
ys

90
-12
0 d
ay
s

12
0-1
50
da
ys

15
0-1
80
da
ys

18
0-2
10
da
ys

21
0-2
40
da
ys

24
0-2
70
da
ys

27
0-3
00
da
ys

30
0-3
30
da
ys

33
0-3
60
da
ys

36
0-3
90
da
ys

To
tal

Number of devices 451 242 236 156 106 107 84 68 47 42 40 27 1606
Number of outliers (> 8
canvas changes)

15 6 8 10 4 3 4 4 5 1 4 4 68

Mean number of canvas
changes

1.25 1.47 1.61 2.03 1.81 2.19 2.37 2.45 2.57 2.34 3.05 3.13

Standard deviation of can-
vas changes

0.82 0.98 1.03 1.54 0.98 1.34 1.54 1.53 1.41 1.31 1.96 1.85

The first observation is that in the span of several weeks and even months, the mean number
of canvas changes is really low. It is around 2 for the first six months and, as time goes by, it is
slightly increasing to be above 3 for the longest periods of our dataset. Even for the 27 devices that
used the extension through the span of a whole year, half of them present 3 or less canvas changes.
This means that a canvas rendering can be even more stable than the browser’s user-agent which
changes every 6 weeks when a new browser version is released. Moreover, the really small values for
the standard deviation also prove that the majority of canvas changes are taking place in a small
range between 1 and 5. These numbers comfort us in our choice for our authentication mechanism
since the collected data clearly show that canvas fingerprinting can be stable through time. The
canvas fingerprinting process is deterministic enough to be usable as a means of verification.

The second observation is that it is uncommon to find a device where the canvas rendering has
not changed on a period of several months. This can be explained by “natural changes” of the
browsing environment. For example, we noticed that some devices on Windows had an automatic
canvas change when they switched from Firefox 49 to 50 because Mozilla added built-in support of
emojis directly in Firefox with the bundled EmojiOne font [76]. We say these changes are natural
in the sense that they are not provoked by installing a special protection against fingerprinting but
they are caused by a “natural” update of the system and its components (e.g., a browser update or a
change of graphics driver). In order to deal with these changes, our canvas mechanism relies on an
additional verification from the authentication scheme to confirm the device identity as described
in Section 5.3.2.

Outliers When we started analysing the data, we noticed some unusually high number of changes.
Several devices reported different renderings every day and even one device reported 529 changes
in less than 60 days. Due to the nature of the research subject, the extension attracts a biased

5.3. CANVAS AUTHENTICATION MECHANISM 89

population interested in the subject. After investigating these high numbers of changes, we found
out that some users deliberately modified their browser’s configuration to produce variations in their
own canvas renderings. Others have installed canvas poisoners that add a unique and persistent
noise to the generated images. Color values of pixels are changed to produce a unique rendering
every time the test is run. Poisoning a canvas element can be done via a browser extension like
the Canvas Defender extension [47] or it can directly be a built-in feature. Pale Moon is the first
browser to include such a feature in 2015 [138]. Figure 5.6 illustrates the modifications done by a
canvas poisoner.

(a) Without a poisoner (b) With a poisoner

Figure 5.6: Impact of a canvas poisoner on a rendering

On Figure 5.6a without the canvas poisoner, the surface of the orange background is uniform
and all pixels have the exact same color value. On Figure 5.6b, the canvas poisoner modifies the
RGB values and the Alpha channel of the defined pixels and it creates a unique rendering at every
execution.

5.3 Canvas authentication mechanism

We present in this section the core of our authentication mechanism and we describe the pro-
tocol associated with it. We also detail where it can fit within an already-existing multi-factor
authentication scheme to augment it and reinforce its security.

5.3.1 Challenge-response protocol

The aim of this protocol is to define a series of exchanges so that a prover (client) can authenticate
himself to the verifier (server). Our core mechanism relies on the comparison of images generated
through the canvas browser API. During one connection to the verifier, the prover uses our au-
thentication function to generate a very specific image. Our mechanism will then verify in the next
connection that the device can generate the exact same image.

For our comparison, we only look to see if two generated images are identical to one another.
Indeed, if two images differ even by a very low number of pixels, it could legitimately be caused
by an update of the prover’s device or it could have been generated by a completely different
device altogether. For this specific reason and to prevent making false assumptions by incorrectly
identifying a device, we do not compute any similarity score between two images and we do not
use specific thresholds. Moreover, we showed in Section 5.2.2 that a generated image presents
a strong stability through time so we can perform pixel-precise comparisons without worrying
about constant changes. For devices using a fingerprinting protection like a canvas poisoner, we
expect users to whitelist websites that implement our canvas mechanism to avoid changes at every
connection. The Brave browser has already adopted a similar approach as its “fingerprinting
protection” mode, which blocks several APIs and notably the Canvas one [43], is lifted on websites
that are present in a “Saved Site Exceptions” list.

The challenge-response protocol underlying our authentication mechanism is depicted in Fig-
ure 5.7.

90 CHAPTER 5. AUGMENTING AUTHENTICATION

Verifier (server) Prover (client)

Retrieve c1, r1
Generate c2

c1, c2−−−−−−−→
r1 = fk(c1)
r2 = fk(c2)

r1, r2←−−−−−−−
Check r1
Store c2, r2

Figure 5.7: Overview of the authentication protocol

Step no1 The verifier sends two challenges c1 and c2 to the prover when the connection is
initiated:

• the challenge c1 is one that has already been answered by the prover during the previous
connection. It is used to authenticate the device for the current connection by comparing the
response to the one given in the last authentication process.

• the challenge c2 is randomly generated. The response r2 given by the prover is stored alongside
the associated challenge c2 and they will be used to authenticate the device for the next
connection.

The verifier is trusted to generate challenges in a way that they are indistinguishable from
random values.

Step no2 The prover executes the authentication function f with each challenge and sends
the resulting renderings to the verifier. The secret key k represents the prover’s device and its
configuration. Each image is sent to the verifier in a textual representation obtained with the
“getDataURL()” function of the canvas API.

Step no3 This is the step where the verifier confirms the identity of the prover. The verifier
asserts whether the given response to the first challenge matches the one of the previous connec-
tion. If the given canvas rendering is identical to the stored one (i.e. if the obtained strings are
identical), we say that the response is valid and the authentication process is a success. If not,
the authentication system will follow through by asking for an additional confirmation through
another channel (see 5.3.2).

Assumptions on the channel A confidential channel (e.g., based on HTTPS) must be used
between the verifier and the prover to avoid a trivial replay attack of a genuine authentication
exchange. Moreover, there is a bootstrap phase for our mechanism because the verification process
cannot be performed during the very first connection to our system where only a single challenge is
sent. As defined in the adversary model in Section 5.4.1, we assume that prover and verifier share
an authenticated channel in the very first connection.

5.3.2 Integration in a MFA scheme

As seen in Section 5.2.2, a single canvas rendering from the same computer evolves through time
and it can take weeks or months before a difference can be observed. Because of these changes, our
system cannot stand on its own and substitute a complete MFA scheme. Here, the main goal of our
canvas mechanism is to strengthen the security provided by a multi-factor authentication scheme
and works alongside it. It can be integrated in traditional multi-layered schemes like many 2FA ones
or it can be used as an additional verification technique for authentication protocols like OpenID
Connect [132] or Facebook Login [81] that provides end user authentication within an OAuth 2.0

5.3. CANVAS AUTHENTICATION MECHANISM 91

framework [128]. Figure 5.8 gives an overview of how our system can fit within an existing MFA
scheme. A more complete example with greater details can be found in Appendix E.4.

Login with credentials Canvas verification for
startup authentication

If change detected,
additional verification

through SMS, app or token

Initial
connection
authorized

Canvas verification for
continuous authentication

Current
connection
maintained

Figure 5.8: Overview of the integration of the canvas mechanism in a multi-factor authentication
scheme

Login verification First, the user must provide his credentials. For a lot of websites, it represents
the combination of a username, a password and the presence of a cookie in the browser. After
this phase is successfully completed, our canvas mechanism takes over to perform the necessary
verification. If the responses from the canvas tests are valid, the user is authorized to continue. If
the information sent by the browser is labelled as incorrect, an additional means of verification will
kick in like the use of a one-time password (OTP) via an SMS or an app. As shown in our stability
study, it can take many weeks for a single canvas rendering to undergo a change due to a “natural”
evolution of the user’s device. The expected impact on the end-user experience is minimal as going
through an additional verification step every 3 months is acceptable for the user.

Continuous authentication The particularity of our system is that it can be used beyond
the simple login process to protect against session hijacking without adding another usability
burden for the client. We can use our mechanism to continuously authenticate the client because
canvas renderings do not present changes in the span of a session and the authentication process
is completely transparent to the user. Every few requests, we can recheck with our system the
identity of the client’s device and it has the benefit of hardening the work of an attacker wanting
to defeat our authentication scheme.

Managing separate devices It should be noted that each device has to be registered and au-
thorized separately. This behaviour is exactly the same as many websites which currently enforce
2FA. A simple analysis of the user-agent with other finer-grained attributes are sufficient to dis-
tinguish devices belonging to the same user. During the registration process of a new device, our
canvas mechanism is bootstrapped so that it can be used in subsequent connections for verification.
Moreover, we have to point out that we keep a separate series of canvas tests for each device since
they have their own software and hardware layers.

5.3.3 Authentication function

Section 5.2.1 showed that large canvas renderings with strings and color gradients are the prime
candidates to exhibit diversity between devices. Shadows and curves are also small enhancements
that can be utilized to further increase the gap between devices. Building on these results, we
detail how we use the canvas API to generate unique challenges (i.e. unique test parameters) at
each connection.

92 CHAPTER 5. AUGMENTING AUTHENTICATION

Figure 5.9: Example of a canvas test

Figure 5.9 shows an example generated by our authentication function f : random strings and
curves with randomly-generated gradients and shadows. The function is not secret and is identical
for everyone. The secret that the authentication relies on is the device configuration. The set of
parameters that we randomize are defined below.

Content of strings Each font has its own repertoire of supported characters called glyphs. We
use basic alpha-numerical glyphs that are guaranteed to be supported by most fonts. The generated
strings in our challenges are 10 characters long with any combination of glyphs.

Moreover, the order of letters in a string can be important and not all fonts behave the same
way. Glyphs in monospaced fonts share the exact same amount of horizontal space while glyphs
in proportional fonts can have different widths. Each proportional font contains a kerning table
that defines the space value between specific pairs of characters. OpenType fonts also support
contextual kerning which defines the space between more than two consecutive glyphs.

(a) Arial (b) Courier New

Figure 5.10: Spacing comparison between fonts

Figure 5.10 illustrates the kerning mechanism. With Arial which is a proportional font, the
kerning table specifies a negative space value for the pair “Ta” but nothing for the pair “aT”. For
Courier New which is a monospaced or fixed-width font, each string occupies the exact same amount
of horizontal space. In the end, this difference of spacing helps us increase the complexity of our test.

Size and rotation of strings Our experiments detailed in Section 5.2 show that bigger canvas
renderings are better at distinguishing devices than smaller ones, because they are more precise and
finer-grained. Also, as shown in Figure 5.11, rotating strings leads to pixelation and requires partial
transparency to obtain smooth edges. In our case, a bigger image leads to softer but well-defined
limits between pixels.

(a) Zoom on a ‘T’ character be-
fore rotation

(b) Zoom on a ‘T’ character af-
ter rotation

Figure 5.11: Details of a letter ‘T’ showing pixelation after rotation

5.3. CANVAS AUTHENTICATION MECHANISM 93

Curves While the impact of curves or rounded forms is definitely smaller than the one with
strings, they can still provide an added value to our mechanism. Indeed, the shape of letters
in a font can be very straight with sharp and squared corners. Relying only on these letters
can prevent us from displaying rounded strokes that generate graphical artefacts from aliasing
effects. To increase the complexity of our authentication function, we generate cubic and quadratic
Bezier curves. A curve is defined by starting and ending points along with a variable number of
intermediate ones (two for cubic curves and one for quadratic curves).

Color gradient With the introduction of CSS3, browsers now support linear and radial color
gradient. A gradient can be seen as a natural progression from one color to the other and a CSS
gradient element can be used on any string to change its color. An unlimited number of points
can be defined in a gradient and every single one of these points can have its own color from the
whole color palette. However, the main challenge is to find the right balance between the size of
the string and the number of colors. Indeed, if the size of the rendered string is too small and the
gradient is comprised of a thousand different colors, the rendering will not be big enough so that
all transitions are visible resulting in a meaningless cluster of pixels.

Figure 5.12: Identical strings with different color gradients

Shadow A shadow is defined by its color and the strength of its blur effect. A very small strength
value will cast a very thin shadow around the rendered object but a higher value will disseminate
a small cloud of pixels all around it (see Figure 5.13).

Figure 5.13: Identical forms with different shadow blurs (strongest blur on the right)

Number of strings and curves All the strings and curves in a canvas test have their own styles
from their color gradient to their shadow. The overall complexity of our test can be increased by
generating dozens of strings and curves without impacting the performance of the authentication
mechanism.

5.3.4 Implementation

We developed a prototype of our mechanism in JavaScript and we looked at both the performance
and the diversity of generated challenges.

Steps and performance The first step of our prototype generates a random challenge for the
prover which includes the exact content, size, position and rotation of all the strings along with
specific values for shadows and curves. The average generation time on a modern computer is less
than 2ms.

94 CHAPTER 5. AUGMENTING AUTHENTICATION

As a second step, the prover executes the authentication function with the received challenge.
Depending on the browser used, this step can take as much as 200ms for the most complex chal-
lenges. The average rendering time for Chrome users is about 50ms while it is around 100ms for
Firefox users.

Finally, since we collect a textual representation of an image, complex challenges can result in
really long strings with more than 200,000 characters. To prevent storing these long strings in the
authentication database, it is possible to use a cryptographic hash function to hash all received
responses, reducing so the stored values to 128 bits. The recorded average hashing time is around
40ms.

Overall, the complete process takes less than 250ms which is very acceptable in the case it is
used in an authentication scheme.

Evaluation To make sure that our mechanism is supported by most browsers, we deployed our
script alongside the one used for our test described in Section 5.4.5. We generated a unique
challenge for more than 1,111,000 devices and collected the associated response for each of them.
We also checked that two challenges with supposedly different parameters would not produce two
identical renderings (e.g., in the case that two challenges are different on paper but translate into
identical forms and figures in the final image). The analysis shows that 99.9% of devices returned
a canvas rendering and all collected images were unique. The 0.1% of non-unique values come
from either older browsers that do not support the canvas API and returned identical strings, or
browsers with extensions that blocked the rendering process and returned empty canvases. This
result shows that the canvas API is supported by most devices and it gives us confidence that the
challenges generated for our authentication function exhibit enough diversity.

5.4 Security analysis

In this section, we define the adversary model and analyse the security provided by our authenti-
cation system against known attacks.

5.4.1 Adversary model
The goal of the adversary is to impersonate a prover and fool the verifier into believing that the
sent images come from the prover. With this goal in mind, we define the adversary model as
follows:

• The adversary cannot tamper with the verifier and modify its behaviour.

• The adversary cannot eavesdrop messages exchanged between the verifier and the prover. We
ensure this by setting up a confidential tunnel for every connection.

• The adversary cannot interfere with the very first exchange between the verifier and the
prover. As with any password-based online authentication system, the first exchange must
be authenticated by another channel, e.g., a confirmation email during the registration step.

• The adversary does not know the prover’s device configuration, and neither does the verifier.
By analogy with keyed cryptographic functions, the device configuration is the prover’s secret
key.

• The adversary knows the authentication function.

• The adversary can set up a fake verifier and query the prover with a polynomially-bounded
number of chosen challenges.

5.4.2 Replay attack
Example An attacker listens to the Internet traffic of the victim and eavesdrops on a genuine
connection between the server and the client. His goal is to collect the victim’s responses to the
canvas challenges to replay them in a future connection.

5.4. SECURITY ANALYSIS 95

Analysis Before the protocol defined in Section 5.3.1 is executed, we assume that a secure channel
is established between the verifier and the prover. This can be easily achieved, for example with
TLS, which is today widely deployed on the web. Given the properties of a secure channel, a replay
attack cannot occur.

5.4.3 Man-in-the-middle or relay attacks
Example An attacker creates a phishing website that masquerades as a trustworthy or legitimate
one. To get access to the service, the victim will enter his or her credentials not knowing that the
data is directly transmitted to the attacker. The fake server can then ask the victim’s browser to
compute any canvas challenges while the connection is active.

Analysis Introduced in 1976 by Conway with the Chess Grandmaster problem [56], relay attacks
cannot be avoided by classical cryptographic means. As so, our mechanism is defeated by a
relay attack as an attacker has a direct access to the device to collect any number of canvas
renderings. However, if we start analysing the impact of our canvas mechanism as part of a whole
MFA ecosystem as it is meant to be integrated, it can provide an added layer of security. Our
mechanism can be used beyond the simple login process for continuous authentication as it is
completely transparent to the user. Canvas challenges can be sent to the user’s browser every few
page requests to verify that the connection has not been tampered with without requiring the user’s
interaction. In our case, it hardens the work of an attacker as he must not only complete the login
process but also maintain the connection to the victim to keep sending him the canvas challenges.
Continuous authentication also works against attackers who hijack already authenticated sessions
as they will face the same difficulties. For most websites, getting the user’s credentials is enough
to get access to the desired service but with our mechanism, we provide an additional barrier to
protect a user’s account.

5.4.4 Preplay attack
Example An attacker sets up a web page to collect ahead of time any canvas renderings he desires
from the victim’s device. The particularity of this attack is that it can be completely stealthily
as it does not require user’s interaction. Moreover, the attacker does not necessarily need to put
some effort into building the perfect phishing opportunity as any controlled web page can run the
desired scripts.

Analysis A preplay attack consists for an attacker to query in advance the prover with arbitrary
challenges, expecting that the challenge that will be sent by the verifier will belong to the arbitrary
challenges selected by the attacker. This way, an attacker has the necessary tools to correctly get
through our authentication mechanism. In this section, we consequently analyze how likely and
practical it is for the attacker to obtain responses and whether they allow him to perform an attack
with a non-negligible probability.

Injectivity of the authentication function

For a given device, different challenges produce different canvas renderings because the authenti-
cation function is injective. Indeed, every single parameter that is described in Section 5.3.3 has
an impact on a canvas rendering. Positioning a string and choosing its size will define which pixels
of the canvas are not blank. Generating a gradient will modify the RGB channels of each pixel
of a string. Rotating a string will use partial transparency to have a faithful result and to define
precisely the limits between pixels. In the end, no two challenges will produce the same response
on a single device. Even the smallest change of color that the eye cannot perceive will have an
impact on the final picture.

Exhaustive collection of responses

Since the actual code of our authentication function is not secret, the attacker can set up a verifier
that poses as a legitimate one and asks the victim any challenge he wants. In other terms, this

96 CHAPTER 5. AUGMENTING AUTHENTICATION

means that an attacker has a partial access to the victim’s device to collect any responses he desires.
Here, we estimate the number of possible challenges and the time it would take to transfer and
store all responses. It should be noted that we do not consider the use of curves for this calculation.

Estimating the number of challenges:

• String content: Generated strings are composed of 10 alpha-numerical characters. We con-
sider both lower-case and upper-case variants of standard letters. In total, we have 26 upper-
case letters, 26 lower-case letters, and 10 figures. We so have 6210 combinations.

• Size: Bigger font sizes lead to a better distinction of devices. We fix the lower bound at 30
and the upper one at 78, which leads to 49 different font sizes.

• Rotation: Every string can be rotated by any specific value. Following tests we performed, a
precision of the rotation up to the tenth digit has an impact on the canvas rendering. Smaller
variations do not result in detectable changes. We consequently consider 360o × 10 = 3600
different rotations.

• Gradient: The two parameters of a gradient are its colors and the position of each of these
colors. The RGB color model is used and each color is encoded on 8 bits so we have 224

different colors at our disposal. We use the “Math.random()” JavaScript function to give us
the position of each color on the gradient line. This function returns a number between 0 and
1 and it has a 52-bit precision. Variations from the thousandth digits have seemingly little to
no impact because of the limited number of pixels in our images. We only consider precision
up to the hundredth digit and we limit the number of different colors in a given gradient to
100 with a lower bound at two (one color at each extremity of the gradient line). Considering
two colors provide a conservative lower bound on the number of different gradients, we have
(224)2 = 248 combinations.

• Shadow: The color and the blur of the shadow can easily be tweaked in the canvas API.
The selection of the color is identical to the one described for the gradient so it provides 224
possibilities and we constrain the strength of the blur between 0 and 50.

• Total = 6210 × 49× 3600× 248 × 224 × 51 ≈ 2154 challenges

Taking into account practical implications, storing all responses would occupy 2.3 × 1050 bits
with an average of 10 kb per response. It would take several quintilliard years on a Gigabit internet
connection to transfer everything without considering possible network instabilities and congestion.
The sheer size of these numbers eliminates all possibilities to conduct a successful attack following
this approach.

5.4.5 Guessing or building the right response

Example An attack against a challenge-response protocol consists for an attacker to guess or
build a valid response upon reception of a canvas challenge. Here, the attacker may have access
to a cluster of compromised devices to ask for canvas renderings and he may also have specific
techniques to build a response from previously observed renderings.

Analysis To defeat such an attack, the set of possible responses should be large enough, and the
authentication function f should be non-malleable.

Blind guess

An attacker could blindly generate an image regardless of the sent challenge. This way, he can
set any desired RGBA values for all the pixels of the response. Since the canvas size in our
mechanism is 1900x300, the total number of pixels is 570,000. Given the alpha value is not random
(it strongly depends on the image content), a conservative approach consists in not considering it
in the analysis: the number of possible responses is then 224×570000 = 213680000 which is far too
high to consider this approach feasible.

5.4. SECURITY ANALYSIS 97

Choosing the most popular response

With the help of a partner who is a major French telecom operator, we sent the exact same challenge
to more than 1,111,000 devices on a period of 42 days between December 2016 and January 2017.
Devices who visited the weather or politics page of the official website of this operator received this
test and we collected the response for each of them. It should be noted that this test is different
from the one described in Section 5.3.4 where we generated a unique challenge for each device.
Here, we sent the same challenge to everyone.

In total, we observed 9,698 different responses, and 4,645 responses were received only once (i.e.
a single device answered this response). Figure 5.14 shows the distribution of sets who share the
same responses. 98.7% of them contain each less than 0.1% of the population. Only a single set is
above the 5% threshold and it represents 9.9% of the population.

Al
l s

et
s

Distribution of canvas sets

Number of sets

0 2000 4000 6000 8000 10000

% of population
<0.1 [0.1;5] >5

Figure 5.14: Number of sets containing x equal responses

The attacker aims to send the same response than the one the victim he seeks to impersonate
would send. To do so, the attacker can request his own computer with the challenge received from
the verifier. The attack succeeds if and only if the response generated by the attacker matches
the victim’s expected response. Calculating the success probability is related to the birthday
paradox on a non-uniform distribution. Assuming pi is the number of responses received in the
set i (1 ≤ i ≤ 9698) divided by the total number of received responses, the attacker’s success
probability is:

p =
i=9698∑
i=1

p2i .

Given the numerical values collected in our experiments, we have p < 0.01.
Note that the attacker can increase his success probability if he knows the distribution provided

in Figure 5.14. Indeed, to maximize his probability of guessing the right response, the attacker
would choose the response sent by the highest number of devices. The bigger this set is, the higher
his probability of fooling the system will be. Obtaining the full distribution of responses is in fact
not required to maximise the probability of success: identifying the largest set is enough. To do
so, the attacker can use a cluster of computers with common configurations (e.g., a botnet): upon
reception of a challenge from a verifier, the attacker sends this challenge to each computer of the
cluster and can expect to identify the most common canvas renderings for a given challenge. It
is worth noting that this attack requires a cluster and allows the attacker to increase his success
probability up to 9.9% only. This value is challenge-dependent but it seems to be rather stable.

Forging canvas renderings

Instead of guessing the response, an attacker can try to recreate a genuine response from observed
ones. Although the authentication function is malleable to some extent, our experiments show
that its malleability is quite limited. In particular, we consider the following actions possible:
resizing glyphs, changing the place of glyphs in a string, rotating glyphs, and applying a custom
gradient. We saw in Section 5.3.3 that the order of glyphs is important in proportional fonts
because of kerning. If an attacker were able to learn all combinations of two letters (522 = 2704),
he would not need to enumerate all the strings of 10 characters so the difficulty of knowing all

98 CHAPTER 5. AUGMENTING AUTHENTICATION

responses would be lowered. On the other hand, changing font, size, and rotating strings increase
the difficulty of the attack. These operations generate distortions and create artefacts like aliasing
or blurring. Interpolation between pixels must be perfect so that a rendering is faithful to an original
one. An attacker will need deep knowledge in image transformation to find the right algorithm
that answers the requirements imposed by our pixel-precise image comparison. Moreover, with
the use of gradients and shadows, the complexity of our test is raised to another level since it
becomes even harder to find the right balance between colors and transparency to achieve the
perfect transformation.

Defining precisely what is possible through image modification is still an open question. We
consider though that the number of involved parameters makes the attack hardly achievable even
with the help of strong image transformation tools. Although simple cases can occur, e.g., a non-
rotated string with the same letter 10 times and a gradient with the same color on both ends, the
probability that such a weak challenge c (i.e. fk(c) does not depend on k) is randomly picked is
negligible. In the end, forging canvas renderings does not seem to be a relevant attack because
guessing the response is an easier attack, with a higher success probability.

5.4.6 Protection against configuration recovery

Example By getting the browser’s fingerprint of the victim from a controlled web page, the
attacker can try to rebuild the same configuration or even buy the same device to start from a
configuration that is as close as possible to the real one.

Analysis The last attack considered in this security analysis is the configuration recovery, which
is somehow equivalent to a key-recovery attack in a classical cryptographic scheme. The full
knowledge of the configuration of a prover is indeed enough and sufficient to answer correctly
to any challenge. Contrarily to classical cryptography, though, the key is not a 128-bit binary
secret but the full hardware and software configuration of the verifier. Partial knowledge about
the configuration can be obtained by the adversary using a browser fingerprinting script. This
mechanism indeed provides the attacker with information on the targeted victim, e.g., the browser
model, the operating system, and the GPU model. A key issue consists in evaluating how much the
device configuration leaks when the prover faces a browser fingerprinting attack. It is in particular
important to evaluate whether a browser fingerprint provides the attacker with enough information
to build valid responses. It is worth noting that current fingerprinting techniques do not reveal the
full device’s configuration, e.g., they cannot catch the device’s driver, kernel, and BIOS versions,
to name but a few.

Our analysis considers the set of fingerprints used in the previous section, and we divided our
dataset into two categories: desktops and mobile devices. This distinction is important because
desktops are highly customizable whereas smartphones are highly standardized and present a lot
of similarity across models and brands. 93.3% of these 1,111,819 fingerprints come from desktop
devices and 6.5% from mobile ones. Less than 0.2% are discarded because they either come from
bots or are devices that could not be identified (their user-agents did not give enough information).
In order to determine the advantage a user can get, we regrouped fingerprints that were identical
with each other and we looked at the generated responses. The collected fingerprints were composed
of the following attributes: the HTTP user agent header, the HTTP language header, the platform,
the CPU class, the WebGL renderer (GPU of the device), and the width, height and color depth
of the screen. Inside the same group, if the canvas renderings are different from each other, this
means that the fingerprints do not capture the totality of the prover’s configuration (i.e. the key
is partial). An attacker would then not be able to recreate faithfully the victim’s renderings even
if he had the same fingerprint.

Figure 5.15 shows the distribution for desktop and mobile devices. For each category, the
distribution is divided into three: groups with a single rendering (i.e. all the devices in the group
have generated the exact same image), groups with 1 to 5 renderings, groups with more than 5
different renderings. To be consistent with the chosen scale, we only kept groups that contained
at least six fingerprints.

5.4. SECURITY ANALYSIS 99

M
od

el
M

od
el

 +
 F

irm
wa

re
C

om
pl

et
e

C
om

pl
et

e

Distribution of canvas sets

% 0 20 40 60 80 100

Number of different renderings
1 2−5 >5

D
es

kt
op

M
ob

ile

Figure 5.15: Distribution of canvas renderings for groups with identical fingerprints

Desktop With the heterogeneity of desktop configurations, we perform the analysis by keeping
all the fingerprint attributes. About 57.9% of groups have devices that share the same canvas
rendering. This number is pretty high but it does not give an attacker full confidence that he will
produce the right rendering even if he has the same fingerprint as his victim.

Mobile On mobile devices, it can be much easier to identify the type and the model of the
device. As detailed in [2], “some smartphones running Android give the exact model and firmware
version of their phone” via the user-agent. Since phones with the same model have supposedly
the same specifications, it is important to verify if all of them present identical renderings. In
particular, one may wish to verify whether the version of the Android firmware has an impact on
the canvas painting process. To find the answer, we decided to adjust the information contained
in a fingerprint and created three different categories:

• Complete: We took the complete fingerprints like we did for the desktop analysis.

• Model and firmware: We extracted from the user agent the model and the firmware of the
device.

• Model: We limited ourselves to the phone model only.

First, if we consider all the collected attributes, the percentage of groups with a unique rendering
is 60%. This value is higher than what is observed with desktops, which was expected since mobile
devices are a lot less customizable. Then, if we limit ourselves to the model and its firmware, the
groups with a unique rendering drops to 11.7%. This significant drop can be explained by the
fact that software customization has an impact on the canvas rendering. Notably, there are many
different apps and browsers available that can influence the generation of the response. Finally,
if we only identify the model of the phone, it proves to be insufficient for an attacker since the
percentage drops to a meagre 7.4%. This means that buying the same smartphone as the victim
still requires some work to be able to faithfully replicate a canvas rendering. It is really surprising
to see that there can be a lot of diversity even when considering the exact same phone with the

100 CHAPTER 5. AUGMENTING AUTHENTICATION

exact same firmware. These numbers not only prove that our mechanism is somehow resilient to
configuration recovery on desktops but also on smartphones.

In the end, even if the knowledge of a browser fingerprint makes easier a configuration-recovery
attack, the problem can be mitigated if the prover does not fully reveal his fingerprint, or lies
about it. It is also worth noting that this attack requires extra work as the attacker has to set up a
computer whose fingerprint is the same as the one of his victim, or manage a cluster of computers
whose at least one possesses the expected fingerprint.

5.5 Conclusion

Using browser fingerprinting for authentication is challenging. Attributes in a fingerprint can be
captured, manipulated and replayed, opening the doors to many different attacks on the web.
Most of them are also predictable and the method to collect them are widely-known by attackers.
In this chapter, we show how canvas fingerprinting can be used to reinforce security on the web
despite these problems. Notably, we show that it can act as an additional layer in a multi-factor
authentication scheme. Our authentication mechanism is completely transparent and frictionless
for the user. It leverages differences in software and hardware between devices by asking a browser
to paint a canvas element in a unique way. We ask browsers to display a series of custom strings
with their own size, rotation, shadow and colors. Depending on the browser and its version, the
operating system, the GPU, and the list of fonts, the generated canvas rendering differs between
devices. The key concept of our proposed mechanism is that we exploit the dynamic nature
of canvas fingerprinting for authentication because new parameters can be generated at every
connection. This way, attackers cannot bypass our system as they will not know the answer
beforehand.

By harnessing the power and possibilities offered by modern browsers, canvas fingerprinting can
be used to harden the work of an attacker. It cannot replace a classical cryptographic authentication
protocol but it can provide for free an added layer of security in a multi-factor authentication
scheme. While our system focuses on using the Canvas API, the detailed approach can be extended
to other dynamic techniques, namely WebGL and Web Audio fingerprinting. However, a complete
analysis must be performed on them to outline their exact limits when used for authentication.

Chapter 6

Conclusion

6.1 The big picture

The web is a beautiful platform and browsers gives us our entry point into it. With the introduction
of HTML5 and CSS3, the web has become richer and more dynamic than ever and it has now the
foundations to support an incredible ecosystem of diverse devices from laptops to smartphones
to PCs and tablets. The diversity that is part of the modern web opened the door to device
fingerprinting, a simple identification technique that can be used to collect a vast list of device
characteristics on several layers of the system. As its foundations are rooted into the origin of the
web, browser fingerprinting cannot be fixed with a simple patch. Clients and servers have been
sharing device-specific information since the beginning to improve user experience as a whole.

As we saw in this thesis, the main concept behind browser fingerprinting is straight-forward:
collecting device-specific information for purposes like identification or improved security. However,
when this concept is implemented, its exact contours are constantly changing as its mechanisms are
entirely defined by current web browser technologies. Each new browser version that adds, modifies
or even removes an API has a direct impact on the domain. Each new draft that is written by
the W3C introduces new capabilities. Browser vendors and standard organizations are continually
shaping the future of browser fingerprinting as they discuss about what is next for the web and
what will run in tomorrow’s browsers.

The fascinating aspect about browser fingerprinting is that it is a technique at a crossroad
between companies, academic research groups, law makers and privacy advocates. As it got out of
the research lab, it has a concrete impact on the web as it is now used in real-world scenarios. For
business companies, browser fingerprinting represents an alternative to current methods of tracking
and identification at a time where the ad landscape is undergoing tremendous changes with the rise
of ad blockers. For research groups, browser fingerprinting brought unexpected questions about
the privacy status of current and future web APIs. Especially, the work done by researchers on
the Battery API exposed the possible privacy problems that could be hiding in current browsers.
It also highlighted the importance of having third parties review the drafts of the W3C before
being implemented by browser vendors. For law makers, browser fingerprinting represents an
additional tracking mechanism that must be regulated so that the control is given back in users’
hands. However, as touched upon in this thesis, this technique is a side-effect of current browser
architecture and no browser provides built-in blocking systems to disable use of fingerprinting.
While the presence of cookies can be verified by checking the different browser storage mechanisms,
detecting that a browser is being fingerprinted is much more complex. Regulators are already in
an uphill battle before it has even begun to control uses of this technique. Finally, individuals
and entities like journalists, activists, businesses or members of the military that rely on the
confidentiality and privacy of their communications for their day-to-day activities must now take
browser fingerprinting into account. While in the past they had to think about securing their
connections through a VPN or a proxy, they must now think about what could transpire through
their browsing environment as it could potentially compromise their identity.

All in all, browser fingerprinting is still a fairly new technique. Researchers and developers are

101

102 CHAPTER 6. CONCLUSION

still trying to understand what is possible with it as we are coming to grasp with its intricacies.
Its future is paved with uncertainty, but if the past seven years are any indication of what is to
come, the road ahead is definitely full of surprises.

6.2 Contributions

In the thesis, we aimed at extending the state of the art on browser fingerprinting while exploring
at the same time a new application for the domain.

6.2.1 The past, present and possible future of browser fingerprinting

With the AmIUnique.org website, we analysed 118,934 browser fingerprints collected from online
visitors. The study provides a much needed update on the actual state of browser fingerprinting
on the web. First, we confirm Eckersley’s findings in 2010 with his Panopticlick experiment as
89.4% of collected fingerprints were unique. However, in the 6 years that separated both studies,
we saw an evolution in the different attributes that compose a fingerprint. While the list of plugins
and fonts were kings at the the beginning of the decade, it is not the case anymore as plugins
have been deprecated in major browsers because of the security threat they pose. Newcomers
like canvas fingerprinting provide very strong results as we observed an important entropy in
the collected values. Then, at a time where the use of smartphones is booming, we show that
mobile fingerprinting is possible but for different reasons than on desktops. In our dataset, 81% of
fingerprints from mobile devices are unique. HTTP headers and HTML5 canvas fingerprinting play
an essential role in identifying browsers on these devices. Finally, we simulate scenarios to assess the
impact of future web evolutions. We show that certain scenarios would limit the detriment these
technologies have on privacy, while preserving the current trend towards an ever more dynamic
and rich web. In our study, simple changes like having generic HTTP headers or removing plugins
reduce fingerprint uniqueness in desktops by a strong 36%.

6.2.2 Improving current defence mechanisms

Our approach when designing strong countermeasures against browser fingerprinting is to increase
the diversity of exhibited fingerprints. By presenting constantly changing values, we break the
stability of a fingerprint over time and third parties are then unable to track a device.

One of the major drawback of defence mechanisms that modify the content of fingerprints is
that they provide an incomplete coverage of attributes. While one attribute tells a story, another
unmodified attribute is telling a different one proving that the browser has been tampered with to
provide protection. With a solution called Blink, we aimed at fixing this problem. Blink relies on a
large pool of components composed of 39 plugins, 2,762 fonts, 6 browsers and 4 operating systems.
When the user wants to browse the web, components are chosen randomly and they are assembled
to create a short-lived browsing session. The intuition behind Blink is that the fingerprint of a
session will be so different than the fingerprint of the previous one that no third parties will be
able to link the browsing activities of the user. The big advantage of Blink is that the exposed
fingerprint is genuine with no inconsistencies as the system utilizes components that truly run on
the user’s device. If a script tries to find values that are incompatible with each other, it will not
find one as the environment exists and attributes have not been modified artificially. By generating
5,000 random browsing environments, we show that Blink is capable of assembling very dissimilar
configurations and it can deceive a commercial fingerprinting script from BlueCava.

With FPRandom, we aimed at breaking the stability of specific attributes directly inside the
browser. We looked at the JavaScript specification and we identified that some browsers functions
had deterministic implementations with respect to their specification. We decided to introduce
randomness in some of these functions so that they produce slight variations at each execution
of a fingerprinting script. The FPRandom prototype targets canvas fingerprinting, AudioContext
fingerprinting and the unmasking of browsers through the enumeration order of JavaScript proper-
ties. Our evaluation proves that FPRandom provides an effective protection by running it against

6.3. FUTURE WORK 103

known fingerprinting tests. The performed benchmarks also show that the overhead introduced by
our solution is very small, thus having a minimal impact on the user experience.

6.2.3 Augmenting authentication
Using a fingerprint for authentication poses a major challenge as it could be modified to imper-
sonate another device or it could have been replayed from a previous connection to a victim. The
key insight of our contribution is that we use canvas fingerprinting for challenge/response-based
authentication. By opposition to the simple and predictable browser-populated values, canvas fin-
gerprinting is extremely dynamic. Every time the user logs in, the browser is asked to paint a
canvas element in a very specific way following a newly received challenge. Since a canvas ren-
dering is computed dynamically through a process that relies on both the software and hardware
of the device, it is much harder to spoof than static attributes, making it a strong candidate for
authentication. Thanks to the help of 1,606 devices, we show that canvas fingerprinting is stable
enough to be used for authentication as we report an average of only three canvas changes in the
span of a whole year. With the analysis of images collected from more than 1,111,000 devices in
a real-world large-scale experiment, we also show that our scheme provides great diversity and a
negligible performance overhead. Finally, we provide a security analysis of our mechanism and
establish that it fights off common impersonation attacks and configuration recovery attacks.

6.3 Future work

6.3.1 Detecting fingerprinting scripts
Finding fingerprinting scripts on the Internet is important for two reasons: to know how widespread
this technique is and to detect new fingerprinting techniques that are not reported in the literature.
In order to quantify the number of websites that are currently using fingerprinting scripts on the
Internet, one needs the means to identify them. At first sight, the task may not appear too
difficult as the collection process in a browser is straightforward but the reality is in fact much
more complex. If a script accesses the user-agent header and the list of plugins, it could be for
legitimate purposes to tailor the current web page to the user’s device. But it could also be the
first-step towards building a complete browser fingerprint. If a script makes hundreds of calls to
the Canvas API, it may be rendering a 2D animation in the browser. But it may also probe for
the list of fonts installed on the system. These simple examples illustrate that the line between a
benign script and a fingerprinting one is far from being clearly defined. When crawling the web,
researchers are facing a lot of challenges to classify scripts correctly as the goal of two scripts can
vastly vary even if they present very similar content.

Here, we detail several signs that indicate that a script may be partaking in fingerprinting
activities.

• Accessing specific functions In the fingerprinting literature, many functions and objects
are known to return device-specific information (see Section 2.3 for more details). For exam-
ple, the navigator object contains the user-agent and the platform. Does the script access
these very specific functions and objects?

• Collecting a large quantity of device-specific information Even if a script access the
screen resolution, this information alone is not sufficient to identify a device on the Internet. If
a script queries specific APIs, how many of them are accessed? Can the collected information
be used to identify a single device?

• Performing numerous access to the same object or value If a function is called an
incredible number of times, can it be considered as a normal usage of the API? Or is the
script testing different parameters to expose a certain property of the device? How can we
consider a usage as normal or abnormal?

• Storing values in a single object Is the script storing all collected values in the same
object? From a design perspective, having all the values in the same object means that they
probably share a similar purpose.

104 CHAPTER 6. CONCLUSION

• Hashing values Scripts can hash very long strings to ease processing, transfer or server-side
storage. Is the script hashing any value, especially ones that come from known fingerprinting
functions?

• Creating an ID Does the script generate a string that looks like an identifier? Is this ID
stored in a cookie or in any cache mechanisms of the browser?

• Sending information to a remote address Are there any pieces of data containing device-
specific information sent to a remote server?

• Minification and Obfuscation “Minifying” a script consists in removing all unnecessary
characters from its source code like white space characters, new line characters or comments
without changing its functionality. A lot of well-known JavaScript libraries are “minified”
to reduce the amount of data that needs to be transferred when they are downloaded. For
example, the weight of the famous jQuery library [105] in version 3.2.0 is cut in three just
by minifying the code (from 267.7kb to 86.6kb). Figure 6.1 shows a simple implementation
of the Fibonacci sequence in JavaScript. The minified version on the right is much more
compact than the one on the left.

On top of minification, a JavaScript file can be obfuscated, i.e. modified to make it difficult to
read and understand. Some variables can be renamed to very short and meaningless names.
Some sections can be intertwined to make it difficult to follow the flow of the program. Some
parts of the code can also self-generate the true payload similar to what is observed with
packing mechanisms in malwares. Most developers use obfuscation to protect their source
code and to prevent other developers from copying it but others see it as a way to hide the
true meaning of their code. In the end, it requires reverse-engineering efforts to know the true
intent of the author and it requires far more means to correctly find if a script is conducting
fingerprinting activities.

1 function fib(n) {
2 if(n <= 1) {
3 return n;
4 } else {
5 return fib(n - 1) + fib(n - 2);
6 }
7 }

Standard

1 function fib(a){return a<=1?a:fib
(a-1)+fib(a-2)}

Minified

1 eval(function(p,a,c,k,e,d){e=function(c){return c};if(!’’.replace (/^/, String)){
while(c--){d[c]=k[c]||c}k=[function(e){return d[e]}];e=function (){return ’\\w+’
};c=1}; while(c--){if(k[c]){p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c])}}
return p}(’4 3(0){5 0 <=1?0:3(0 -1) +3(0 -2)}’,6,6,’a|||fib|function|return ’.split(
’|’) ,0,{}))

Obfuscated by [108]

Figure 6.1: JavaScript code for the Fibonacci sequence. The three pieces of code are all equivalent.

• Dividing tasks in different scripts and servers Instead of collecting attributes in a single
script and send everything to a server in a single request, the whole process can be divided
in many scripts and the data can be sent to multiple servers behind multiple addresses. This
renders the classification more difficult because one script could be considered as benign but,
combined with others, it can build a very large fingerprint of any device. To observe these
fingerprinting behaviours, an analysis must be performed at the level of a website and not
on each script individually. However, this approach presents a new set of challenges as the
analysis will have to deal with constant noise from other benign scripts.

In the end, fine tuning all of these rules and identifying a script as a fingerprinting one present
many difficulties. Techniques like machine learning could be used to help the classification of scripts

6.4. PERSPECTIVES AND SUSTAINABILITY OF BROWSER FINGERPRINTING 105

on the web but it remains to be seen how much impact obfuscation and the separation in multiple
scripts could have on the results.

6.3.2 Fingerprinting with a very high number of devices

While Panopticlick and AmIUnique brought a much needed insight into the diversity of devices
on the web, there remains the question if using fingerprinting for identification at a very large
scale is a possibility. Detailed results on this front could nuance the privacy problems raised by
this technique as device identification could become impossible when a database reaches a certain
number of fingerprints. On a site handling millions of connections every day, is the number of
unique fingerprints as high as the ones reported on Panopticlick and AmIUnique? Is the diversity
of devices on the web overestimated when extended to millions of users? Unfortunately, these
questions can only be answered with a collaboration with a major website as a researchers or
organizations like the EFF do not have the reach to bring millions of visitors every day.

6.4 Perspectives and sustainability of browser fingerprinting

Looking at the future of browser fingerprinting yields many questions. The first one is regarding
its usage. While researches have proven that a fingerprint can be used to identify a device on the
web, it remains to be seen how it can be extended to other purposes. In this thesis, we showed
that there is a certain interest from the security community as fingerprinting can be used to fight
bots or device impersonation. Yet, there may be hidden benefits of using fingerprinting that are
yet to be discovered.

Another important question is the relevance and sustainability of fingerprinting in the continu-
ally changing landscape of the web. The actual structure of web browsers gave birth to it: browsers
share information about their configuration to improve the user experience. However, is this in-
formation still useful today? Could we envision a world where all the device-specific information
is not shared publicly? Could we perform all the computations and decisions on the client side?
When the web started, the intent behind this information was to help a server deliver tailored web
pages to clients. But now that the the web is so rich and dynamic, is it still necessary? If the W3C
decides tomorrow with the help of major web actors to reduce or remove the leak of unnecessary
device information, they could surely bring the whole browser fingerprinting domain to a halt in
less than a year.

Looking at a more distant future, are web browsers destined to disappear? Native applications
on smartphones and tablets have seen an incredible rise in popularity in the last decade because
they take advantage of the device on which they are installed. However, recent technologies like
HTML5 and the introduction of Progressive Web Apps [155] by Google are blurring the line between
native apps and mobile websites. Websites now adapt themselves to the widest range of devices
possible with techniques like responsive design. We believe that browsers are not going anywhere
any time soon as they are still one of the primary conduit to browse content on the web. The
diversity that is at the source of fingerprinting is the same one that will make browsers relevant in
the 21st century as not everyone will sport an Android or an iPhone device in the future. Then, if
browsers are here to stay, in what capacity should browser fingerprinting evolve? We have shown
in this thesis that the privacy threats and the security issues coming from fingerprinting are very
real. One can learn a lot of information about a device and even on the user behind it. Browser
vendors have the power to offer a rich platform for everyone to play with but it must be done with
the privacy of all web users in mind. They must act and make extra efforts to give control back in
users’ hands to prevent issues and abuse in the future. Discussions about browser fingerprinting
are also part of a much bigger debate on the current state of online tracking. As a cornerstone of
our modern society, the web is a place for everyone and a solution must be found on this tracking
front so that the Internet respects all users equally while being sustainable for all actors involved.
The future of browser fingerprinting is paved with uncertainty but if it is here to stay, we hope
that it will be used in positive ways to make the web safer for everyone.

106 CHAPTER 6. CONCLUSION

6.5 Concluding thoughts

To conclude, the future of browser fingerprinting is exciting as we are starting to understand its
intricacies. We hope that our work will consolidate the knowledge around this domain and that
it will drive the development of new and promising use cases to tackle the security problems of
tomorrow. Yet, as this technique depends strongly on the decisions of current web actors and
standard organizations, its future is uncertain. Few years from now, will browser fingerprinting
exist in the same capacity as it is today? Will browsers share a limited quantity of information to
prevent the privacy issues raised in this document? Or is the existence of browser fingerprinting
destined to be short-lived as the browser of tomorrow will be fundamentally different from what
we know today? At the time of writing, these questions have no answers as they depend on years
of discussion, study and development. No matter how the story of browser fingerprinting unfolds
in the coming years, there is one certainty: it will never stop to surprise us.

Appendix A

Code snippets from fingerprinting scripts

In this appendix, we show code snippets that are used to collect attributes in fingerprinting scripts.
The primary goal of this appendix is to show that many attributes can be collected with very few
lines of code without the need to enter complex programming procedure. Comments have been
added for some attributes in order to facilitate the understanding of the code.

A.1 Browser APIs

The attributes listed here are collected by calling public interfaces and the language used is
JavaScript.

• List of plugins: Use of the navigator object.

1 //Get the array containing details on all plugins
2 var np = window.navigator.plugins;
3 var plist = new Array ();
4 //Go through each Plugin object to collect plugin information
5 for (var i = 0; i < np.length; i++) {
6 //Name of the plugin
7 plist[i] = np[i].name + "; ";
8 // Description of the plugin
9 plist[i] += np[i]. description + "; ";

10 // Complete name of the file with extension
11 //(.dll for Windows , .plugin for Mac , .so for Linux)
12 plist[i] += np[i]. filename;
13 plist[i] += ". ";
14 }

• Platform: Use of the navigator object.

1 var platform = window.navigator.platform;

• Cookies enabled: Use of the navigator object.

1 var cookieEnabled = window.navigator.cookieEnabled;

• Do Not Track (DNT): Use of the navigator object.

1 var doNotTrack = window.navigator.doNotTrack;

• Timezone: Use of a Date object.

1 var timezone = new Date().getTimezoneOffset ();

• Screen resolution and color depth: Use of the screen object.

107

108 APPENDIX A. CODE SNIPPETS FROM FINGERPRINTING SCRIPTS

1 var resolution = window.screen.width+"x"+window.screen.height+"x"+window.
screen.colorDepth;

• Local and session storage: Use of the localStorage and sessionStorage objects.

1 //We store a value in both localStorage and sessionStorage
2 try {
3 localStorage.fp = "test";
4 sessionStorage.fp = "test";
5 } catch (ex) {
6 }
7
8 //We try retrieving the value we stored previously
9 //to know if localStorage is enabled

10 try {
11 domLocalStorage = "";
12 if (localStorage.fp == "test") {
13 domLocalStorage = "yes";
14 } else {
15 domLocalStorage = "no";
16 }
17 } catch (ex) {
18 domLocalStorage = "no";
19 }
20
21 //We try retrieving the value we stored previously
22 //to know if sessionStorage is enabled
23 try {
24 domSessionStorage = "";
25 if (sessionStorage.fp == "test") {
26 domSessionStorage = "yes";
27 } else {
28 domSessionStorage = "no";
29 }
30 } catch (ex) {
31 domSessionStorage = "no";
32 }

• Use of an ad blocker: We create an element that resembles an ad to see if it is blocked or
not.

1 //We create a new division in a script called ’advert.js’
2 var ads = document.createElement("div");
3 ads.setAttribute("id", "ads");
4 document.body.appendChild(ads);
5
6 //In fingerprinting script , we check if the "ads" element was created
7 //If the element does not exist , it means that the script was blocked by an

extension
8 //If it is present , the script was executed correctly
9 var adblocker = document.getElementById(’ads’)? ’no’ : ’yes’;

• WebGL Vendor and renderer: Use of the WebGL API to collect information on the
underlying hardware of the device.

1 var canvas = document.createElement(’canvas ’);
2 //We get a WebGL drawing context to get access to the functions of the API
3 var ctx = canvas.getContext("webgl") || canvas.getContext("experimental -webgl"

);
4
5 //If the debug extension is present , we collect the information
6 //If not , we say it is not supported
7 if(ctx.getSupportedExtensions ().indexOf("WEBGL_debug_renderer_info") >= 0) {
8 var debugExt = ctx.getExtension(’WEBGL_debug_renderer_info ’);
9 webGLVendor = ctx.getParameter(debugExt.UNMASKED_VENDOR_WEBGL);

10 webGLRenderer = ctx.getParameter(debugExt.UNMASKED_RENDERER_WEBGL);
11 } else {

A.2. FLASH 109

12 webGLVendor = "Not supported";
13 webGLRenderer = "Not supported";
14 }

• Battery: Use of the now-deprecated Battery API.

1 function updateBatteryUI(battery) {
2 //Get the level of charge of the battery between 0 and 1
3 var level = (battery.level * 100) + ’%’;
4
5 //Get the time remaining for the battery to be fully charged
6 //If battery is discharging , indicate Infinity
7 var cTime = battery.chargingTime + ’ Seconds ’;
8
9 //Get the time remaining for the battery to be empty

10 //If battery is charging , indicate Infinity
11 var dTime = battery.dischargingTime + ’ Seconds ’;
12
13 if (battery.charging === true) {
14 chargingStatus = ’Charging ’;
15 } else if (battery.charging === false) {
16 chargingStatus = ’Discharging ’;
17 }
18 }

A.2 Flash

The attributes listed here are collected through Flash. The code listed for each attribute is written
in ActionScript [15] and the Flash functions are called directly from JavaScript with the help of
the ExternalInterface class which “enables straightforward communication between ActionScript
and the SWF container” [92].

• List of fonts: Use of the Capabilities class.

1 var fontNames:Array = [];
2 for each (var font:Font in Font.enumerateFonts(true)){
3 fontNames.push(font.fontName);
4 }

• Screen resolution: Use of the Capabilities class.

1 var width = Capabilities.screenResolutionX;
2 var height = Capabilities.screenResolutionY;

• Language: Use of the Capabilities class.

1 var language = Capabilities.language;

• Platform: Use of the Capabilities class.

1 var os = Capabilities.os;

Appendix B

Appendices to the AmIUnique study

B.1 Additional data on all AmIUnique’s attributes

Table B.1: Normalized Shannon’s entropy for all AmIUnique’s attributes

Attribute All Desktop Mobile
User agent 0.580 0.550 0.741

List of plugins 0.656 0.718 0.081
List of fonts (Flash) 0.497 0.548 0.033
Screen resolution (JS) 0.290 0.263 0.366

Timezone 0.198 0.200 0.245
Cookies enabled 0.015 0.016 0.011

Accept 0.082 0.082 0.105
Content encoding 0.091 0.089 0.122
Content language 0.351 0.344 0.424

List of HTTP headers 0.249 0.247 0.312
Platform (JS) 0.137 0.110 0.162
Do Not Track 0.056 0.057 0.058

Use of local storage 0.024 0.023 0.036
Use of session storage 0.024 0.023 0.036

Canvas 0.491 0.475 0.512
Vendor WebGL 0.127 0.125 0.131
Renderer WebGL 0.202 0.205 0.165

AdBlock 0.059 0.060 0.029

B.2 Our attempt at a WebGL test

As reported by Mowery et al. [116], the WebGL API can be used to render 3D forms in the browser.
With the help of the three.js JavaScript library [179], we aimed to have a test that renders three
different forms:

• a sphere

• a cube

• a Torus knot

However, after analyzing more than 40,000 fingerprints, we concluded that the test was too
brittle and unreliable to draw any conclusions from it. Indeed, if the user were to change the size
of its browser window or open the browser console, the actual dimensions of the rendering context

111

112 APPENDIX B. APPENDICES TO THE AMIUNIQUE STUDY

would be updated inside the library and the rendering would differ with just a simple page reload.
Figure B.1 shows three renderings of the same test with three different window sizes on the same
device.

(a) 1920x1200 window

(b) 960x1200 window

(c) 1080x600 window

Figure B.1: Different renderings of the WebGL test on the same device

B.3 Additional Flash attributes

For Flash, we also collected the following four attributes:

• Capabilities.language

• Capabilities.os

• Capabilties.screenResolutionX

• Capabilties.screenResolutionY

The language obtained through Flash is the devices main language, but it is not as precise as
the content language header collected through HTTP. For the screen resolution, it can be more
interesting than the JavaScript value because Flash will return the full resolution of a multi-screen
setup and not the resolution of a single screen. Finally, when analyzing the data from the string

B.4. COMPARISON TO THE PANOPTICLICK STUDY 113

collected from the OS property, it confirmed what has been observed by Nikiforakis et al. [124] in
2013. Depending on the OS and the browser, the information is often generic, returning “Windows”
or “Linux”, but in some cases it returns the type of the OS with the exact version of the kernel
(for example, “Mac OS 10.8.2” or “Linux 3.18.4-1-ARCH”). This level of detail could be used to
forge an attack against a vulnerable system, and it is surprising that little has changed since it was
originally reported. In the end, we did not keep this information for our study because it did not
increase the number of unique fingerprints and would mainly serve to detect inconsistencies (e.g.,
caused by User-Agent spoofers).

Table B.2: Statistics of additional Flash attributes

Flash attribute Distinct values Unique values
Screen resolution XxY 584 329

Language 44 10
Platform 968 483

B.4 Comparison to the Panopticlick study

To complement Section 3.2.3 of our paper that compares our dataset with the one from Panop-
ticlick [72], we recreated the same graphs to show the impact of 5 years of browser development
on browser fingerprinting.

B.4.1 Distribution of fingerprints

If we compare both frequency distributions in Figure B.2 w.r.t. anonymity set sizes, we can
observe that the overall trend is similar in both graphs with set sizes quickly dropping to 1. While
Panopticlick has 83.6% of its fingerprints located on the tail on the right of Graph B.2a, AmIUnique
presents a slightly lower number on Graph B.2b with 79.4% of fingerprints that are unique in the
database (fingerprints with and without JavaScript).

B.4.2 Distribution of browsers

Figure B.3 shows the distribution of surprisal for different categories of browsers. We can see
that the overall trend is similar in both graphs. The main noticeable difference is the number
of browsers in each category. While the Panopticlick dataset was constituted of mainly Firefox
browsers followed by Chrome and Internet Explorer, our dataset put Chrome and Firefox at the
same level with all the other browsers behind. This shows the rapid growth of the Chrome userbase
over the last 5 years and the decline of Internet Explorer.

B.4.3 Anonymity set sizes

Figure B.4 shows the size of anonymity sets for all attributes if we consider them independently
from each other. In our case, the bigger an anonymity set is, the better it is for privacy. If a value
is in an anonymity set of size 1, it means that the observed value is unique and is not shared by
another fingerprint. With all the attributes that we collected on AmIUnique, we could not add all
of them in Figure B.4b for readability reasons so we focused on attributes with the highest level
of entropy. If we look at the upper left part of both Figure B.4a and Figure B.4b, we observe very
similar results and the most discriminating attributes on AmIUnique are still the same as the ones
observed by Eckersley (mainly fonts and plugins) but with the addition of new efficient techniques
like canvas fingerprinting.

114 APPENDIX B. APPENDICES TO THE AMIUNIQUE STUDY

1 10 100 1000 10000 100000 1000000

409,296 Distinct Fingerprints

1

10

100

1000
Fr

eq
ue

nc
y

or
 A

no
ny

m
ity

 S
et

 S
iz

e

(a) Panopticlick distribution (Fig. 1 of [72])

142,023 distinct fingerprints

Fr
eq

ue
nc

y
or

 A
no

ny
m

ity
 S

et
 S

iz
e

1
10

10
0

10
00

1 10 100 1000 10000 100000

(b) AmIUnique distribution

Figure B.2: Distribution of fingerprints w.r.t. anonymity set size

B.4. COMPARISON TO THE PANOPTICLICK STUDY 115

8 10 12 14 16 18

Surprisal (bits)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 b

ro
w

se
rs Firefox (258,898)

MSIE (57,207)
Opera (28,002)
Chrome (64,870)
Android (1,446)
iPhone (6,907)
Konqueror (1,686)
BlackBerry (259)
Safari (35,055)
Text mode browsers (1,274)

(a) Panopticlick distribution (Fig. 2 of [72])

8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

Surprisal (bits)

P
ro

po
rt

io
n

of
 b

ro
w

se
rs

Firefox (52,395)
Chrome (47,698)
Safari (9,464)
IE (5,178)
Opera (2,740)
Others (2,343)

(b) AmIUnique distribution

Figure B.3: Surprisal distributions for different categories of browser

116 APPENDIX B. APPENDICES TO THE AMIUNIQUE STUDY

1 10 100 1000 10000 100000

Anonymity Set Size, k

1

10

100

1000

10000

100000

N
um

be
r

of
 B

ro
w

se
rs

 in
 A

no
ny

m
ity

 S
et

s o
f S

iz
e

k u

u

u
u
u uu

uuuuuuuuu
uuu
u

uuu
u
uuu
uu
uu
u
uuu
uuu

u
uu
u

uu
uu

u
uuu

uu
u

uu

u

u

uuu

u
u

u

u
uuu
uuuuuu

u

u
uu
u

u

uu

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

uuu

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u
u

u

uuu
u
u

uuu

u
u

uu

u

u

uuu

uuuu

u

u

u
u
u

u

uu

uu

u

u

uu

uu

uu

u

u

uu

u

u

u

uuuu

uu

u

u

uu

u

uu

u

uu

u

uuu

u

u

u

u

u

uuuuuu

u

uu

u

u

uuuuuuuu

u

u

uu

u

uuuuuuuuuuuuuuu

u

uuuuuuuu
uuuuuuuuu

u

uu

u

uuuuuuuuuuu
uuuuuuuuuuu

u

uuuuuuuuu
uuuuuuuuuuu
uu

u

uuuuuuuu
uuuuuuu
uuuuuuuu

u

uuuuuuu
uuuuuuuuu
uuuuuu
u

u

uuuuu
uuu
uuuuuu
uuuuuuuu
uuuuuuu
uuu

uuu
uu
uuuu

u

p

p

p

p

p
p
p
p
pp
pppp

p
p
pp
ppp

ppp
pppp
p

p

p
p

p

p

p
p

p

p
pppp

p

p

pp

p

p

p

p

p

p
pp

p
p

p

p
p

p

p

p

pp

p

p

p

pp

p

pp

p

p

p

p

pp

p

pp

pppp

pp

pp

pp

p

ppp

p

p

ppp

p

p

pp

p

p

pp

p

pppp

p

ppp

p

ppppppppp

pp

pppp
pp

p

pppppppp
ppp
pppp

pp
pp
p

p
p

p

p

p

f

f

f

f

f
f
f f
ff
ffff

f
f
f

fff
f
f
f
f
ff
f

ff
f

f

f
f
ff
ff
fffff
f

f

ff

f

f
f
f

f

f

f

f

f

f

f

f
f
f

f
f

f

f

f

f

f

f

f

f

ff

f

f

f

f

f

fff

f

f

ff

f

f
f

f

f

f

f

f

ff

ff

ff

f

ff

ff

f

f

ff

f

ff

fffffffff

f

f

f

ffff

ff

ffff

f

ff

f

ffff

f

fffffffffffff
fff

f

ffffff
ffffffff
fff
f
ffffff
fff
ffff
f

ff

f

f

f

v

v

v v
v
vvv

vv
v

v

v

v
v

v

v

v

vv

v

vv

v

v

v

v

vv
v

v

v

vvv

v

v

vvv

v

v

v
v

vvvvvv
vv

v

vv

vv

v

v

vvvv
vvvvv
v

v

vv
vvvvvvv

v

vvvvvvvv
vvvv
v

v

vvvvvv
v
vvvv

vvvvvv
vv
vv
vv

v

vv
v
vvv
v
v
vvv
vv
vvv
vvv

v
vv
v
v

v
vvv
vv
vvv

vv

v

s

s

ss

s

s

s
s
s

s

h

h

h
h
h h

hhhhhh
h
h
hhhhh

h

h

h
h
h
h

h

hh
h

h

hhh
h

h

hhh

h

h

h

h

h

h

h
hhh

h
h
h

hh

hh

h

hh

h

h
h

h
h

h

h

h

h

h
h

h

h

hhh

h

h

h

h

hh

h

h
h

hh

h

hh
h

h

h

h

h

hhh

h

h

h

h

hh

h

h

h

h

hhh

h

hh

hhh

h

h

hh

h

hhh

hhhhhhhh

h

hhhhhh

h

h

hh

hhhhhhhh

hh

h

hhhhhh

h

hhhhhhh

h

hh

h

h

h

hhhh

h

hhhhh

hhh

h

h

hhhhhh

h

hhhhhhhhhhhhhhhh
hhhhhhhhhh
hhhhhh
hhhhhhhhhhh
hhhhhh
hhhhh
hhh
hhhhhhh
hhhh
hhhh

hhh
hhhh
h
hhh
h
hh

h

hhh
h

hh
h

h

t

t

t
t
t
t

t
tt
t t

tt

tt
t

tt
t

t t
tt

t
tt
tt

t t
t
t

t

tt

t
t t

t t

t

c

c

u user_agent
p plugins
f fonts
v video
s supercookies
h http_accept
t timezone
c cookie_enabled

(a) Panopticlick distribution (Fig. 3 of [72])

u

u
u uu

uuuuuuuuuuuuuu
u
u

u
uu

u
uu
uuu
u

uu
uu
uuuuuuuu

u

u
u
uu
u

u

u
uu
u

uu

u

uuu

u
u

u
u
u
uuu

u

uu

u

u

uu

u

u

uu
u

u

u

u
u

u

u

u

uu

u

u
u

uu

u

u

u

u

uu

u

u
u
u
u

u
uu
uu
u

u

u
u

uuuuu

u

uu

u

uuuu

u

uu

u

u

u

u

uuu

u

uuuuuuuu

u

uuuuuu

uu

uuuuuu

u

u

u

uu

u

u

u

uuuu

u

uuuuuuuuuuuuuuuuu

u

uu

u

uuuuuuuuuuuuuu

u

uuuuuuuuuuu
uuuuuuu

uuuuuuuu
uuuuuuu

uuuuuuu
uu

uuu

u

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

Anonymity Set Size, k

N
um

be
r o

f B
ro

w
se

rs
 in

 A
no

ny
m

ity
 S

et
s

of
 S

iz
e

k

1
10

10
0

10
00

10
00

0

1 10 100 1000 10000

p

p

p
p

p
pp

p
ppp

pppp
pp
ppppppp

p
p
p
p

p

p
p
pp
p
p
p

ppp

p
p
p

p

p

p

p

pp
p
p

p

pp

p

p

pp

p
p

p

pp

p

p

p
p

p

p

ppppppppp
p

p

pppppp
p

p

pppppp
ppppp

pp
ppppp

ppppp
ppp

ppppp

p

pp

c

c
c

c ccc

ccc
c

c
c
c
cc
c
cc
ccccc

ccc
c
c

cc
c

c

c

c
c

c

cc

c
c

c

c
c

c

c

c

c

c

c

c

cc

c

c
cc
c

c

cccc

cc

c

c

c

c

c

c

c
c

c

cc

c

c

c
c

cc

c

c

ccccc
c
c

c

c

c

c

c
cc

c

c

ccc

cc

c

c

c

c

ccccccccccc

c

cccccc

c

cccc

c

cccccccccccccc
ccc

c

cc

c
c

cccccccc
cccccccccccc

ccccccccc
ccccccc

ccccc
ccccccc

cccc
ccccccc

c
cc

c

l

l
l l

l l l
l l

lll

l

l

lll
ll
ll
ll

l
l

ll
l

l
l

l

l
l

l
l
l
l

l
l

l

lll

l

l
l
l
l
l
l

lll

l
l

l

l

l

l

l

l

l

ll

l
l

lllllll

l

l

ll

lll

l

l

l

l

l

lll

l

lllllllllllllllll
lllll

l

llllllllll
lllll

lllllll ll
llll

l l lll
ll ll

lll
llll

l
l

ll

l

l
f

f

f
f

f
f f

fffff
fff

f

f
fff
f

f

ff
f

f

f
f
f

f

fff
f

ffff

f

ffff

ff

fff

f

ff

f

ffff

f

ff ff
ff

f

fffff
ffffff

ff
ff

f

f

ff
f

u
p
c
l
f

userAgentHttp
pluginsJS
canvasJS
languageHttp
fontsFlash

(b) AmIUnique distribution

Figure B.4: Number of users in anonymity sets of different sizes, considering each variable sepa-
rately

B.5. UPDATE TO THE 2016 STUDY 117

B.5 Update to the 2016 study

As of June 7th, 2017, we collected 390,410 fingerprints and 316,372 of them had JavaScript acti-
vated. We provide here an update of our 2016 study to see which results still hold and which ones
have evolved. Table B.3 reports on descriptive statistics of the AmIUnique dataset and Table B.3
gives an update on the number of unique fingerprints in our database

Table B.3: Descriptive statistics of the AmIUnique dataset in February 2016 and June 2017

February 2016 June 2017 Trend
Attribute Distinct Unique Entropy Distinct Unique Entropy Entropy

User agent 11,237 6,559 0.580 28,725 17,668 0.601 ↗
Accept 131 62 0.082 242 124 0.074 ↘

Content encoding 42 11 0.091 91 38 0.123 ↗
Content language 4,694 2,887 0.351 9,289 5,569 0.328 ↘

List of plugins 47,057 39,797 0.656 72,762 59,443 0.523 ↘↘
Cookies enabled 2 0 0.015 3 1 0.014 ↘

Use of local/session storage 2 0 0.024 2 0 0.023 ↘
Timezone 55 6 0.198 98 27 0.187 ↘

Screen resolution 2,689 1,666 0.290 6,573 4,147 0.276 ↘
List of fonts 36,202 31,007 0.497 66,822 56,825 0.370 ↘↘

List of HTTP headers 1,182 525 0.249 2,181 973 0.244 ↘
Platform 187 99 0.137 349 212 0.133 ↘

Do Not Track 7 0 0.056 7 0 0.053 ↘
Canvas 8,375 5,533 0.491 25,943 19,187 0.503 ↗

WebGL Vendor 26 2 0.127 43 12 0.137 ↗
WebGL Renderer 1,732 649 0.202 3,222 1,134 0.250 ↗

Use of an ad blocker 2 0 0.059 2 0 0.054 ↘

Table B.4: Percentage of unique fingerprints

Month All Desktop Mobile
February 2016 89.4% 90.0% 81.0%
June 2017 88.2% 89.2% 82.5%

In the end, the new numbers do not present any surprises and confirm our findings from 2016.
All attributes present very similar levels of entropy but we can still see a big drop for both the
list of plugins and the list of fonts. This is explained by the fact that the NPAPI architecture has
been dropped from both Chrome and Firefox as detailed in Section 3.5. For the numbers of unique
fingerprints, the percentages are stable for both Desktop and Mobile devices.

Appendix C

Appendices to the Blink study

C.1 Fingerprint attribute weights

Table C.1: Weights for each attribute of a fingerprint

Attribute Entropy(bits)
User agent 10.0

Accept Header 6.09
Plugins 15.4
Fonts 13.9

Screen resolution 4.83
Timezone 3.04

DOM storage 2.12
Cookies 0.353

C.2 Fingerprint Dissimilarity

This appendix provides the strategy to determine the dissimilarity between the eight fingerprint
attributes.

[Attribute 1] User agent

We decompose the user agent attribute into two categories: data related to the browser and its
version, and data related to the architecture of the device (32 or 64 bits).

Fbr =

0 br.nameFP1
= br.nameFP2

∧
br.verFP1

= br.verFP2

0.125 br.nameFP1 = br.nameFP2 ∧
br.verFP1 6= br.verFP2

1 br.nameFP1
6= br.nameFP2

Farchi =

{
0 archiFP1

= archiFP2

1 archiFP1
6= archiFP2

We grant equal weight to both these categories. The resulting dissimilarity between the user
agents in two fingerprints is computed as follows:

d(attr1(FP1, FP2)) = 0.5× Fbr + 0.5× Farchi

119

120 APPENDIX C. APPENDICES TO THE BLINK STUDY

[Attribute 2] Plugins

Let us consider LP (FP1), the set of plugins in fingerprint 1 and LP (FP2), the set of plugins in
fingerprint 2. Plugins are stored in a list of tuples where the first element of each tuple is the name
of the plugin and the second its version. We define two different sets for plugins that are common
to both fingerprints: one where plugins have an identical version (LP=name,=ver) and one where
plugins have different versions (LP=name,6=ver).
P ∈ LP=name,=ver if ∃P1 ∈ LP (FP1)∧∃P2 ∈ LP (FP2), P1.name = P1.name∧P1.ver = P2.ver ∧
P.name = P1.name = P2.name
P ∈ LP=name,6=ver if ∃P1 ∈ LP (FP1)∧∃P2 ∈ LP (FP2), P1.name = P1.name∧P1.ver 6= P2.ver ∧
P.name = P1.name = P2.name
The total number of plugins in both lists is computed as follows (we count the plugins that appear
in both lists once):

FU = |(LP (FP1) \ (LP (FP1) ∩ LP (FP2))) ∪ LP (FP2)|

We calculate the proportion of plugins that are unique to FP1 and to FP2 as:

F1 =
|(LP (FP1) \ (LP=name,=ver ∪ LP=name,6=ver))|

FU

F2 =
|(LP (FP2) \ (LP=name,=ver ∪ LP=name,6=ver))|

FU

We get the proportion of common plugins:

F3 =
|LP=name,6=ver|

FU
F4 =

|LP=name,=ver|
FU

The dissimilarity between the plugins in two fingerprints is computed as follows:

d(attr2(FP1, FP2)) =
F1 + F2− 0.75× F3− F4 + 1

2

The dissimilarity for this attribute ranges from 0 to 1 with greater values representing an in-
creasing dissimilarity between the two lists of plugins.

[Attribute 3] Fonts

The dissimilarity between two lists of fonts is the proportion of fonts that are only in one fingerprint,
minus the proportion of fonts that are in both. This term is 0 if both lists are identical and 1 if
they are completely different.

Let us consider LF (FP1), the set of fonts in fingerprint 1 and LF (FP2), the set of fonts in
fingerprint 2. The total number of fonts in both lists is computed as follows (we count the fonts
that appear in both lists only once):

FU = |(LF (FP1) \ (LF (FP1) ∩ LF (FP2))) ∪ LF (FP2)|

The proportion of fonts unique to FP1 is:

F1 =
|(LF (FP1) \ (LF (FP1) ∩ LF (FP2)))|

FU

The proportion of fonts unique to FP2 is:

F2 =
|(LF (FP2) \ (LF (FP1) ∩ LF (FP2)))|

FU

C.2. FINGERPRINT DISSIMILARITY 121

The proportion of common fonts is:

F3 =
|(LF (FP1) ∩ LF (FP2))|

FU

The dissimilarity between the fonts in two fingerprints is:

d(attr3(FP1, FP2)) =
F1 + F2− F3 + 1

2

[Attributes 4 - 8] Accept Header, Screen resolution, Timezone, DOM storage, Cookies

These attributes can be compared without additional processing. The dissimilarity between these
attributes is:

d(attrX(FP1), attrX(FP2)) =

{
0 attrX(FP1) = attrX(FP2)

1 attrX(FP1) 6= attrX(FP2)

Appendix D

Appendices to the FPRandom study

D.1 Analyzing differences in the AudioContext API

In order to have a better understanding of the diversity of audio fingerprints on the web, we de-
ployed the AudioContext script found by Englehardt et al. on the AmIUnique.org website. After
discarding more than 1,000 fingerprints from browsers that did not implement the AudioContext
API, we collected in total 19,468 audio fingerprints on a period of 100 days between June and
September 2016. The results of this study can be found in Table D.1. We use the Shannon entropy
in bits to better represent the probability distribution of each of the attributes. The higher the
entropy is, the more diversity is exhibited between devices.

Table D.1: Study of 19,468 audio fingerprints

Name Entropy
(bits)

Size of the
biggest set

Number of
distinct values

Number of
unique values

acSampleRate 1.18 9549 10 3
acState 0.99 10821 2 0

acMaxChannelCount 0.38 18580 11 1
acNumberOfInputs 0.0 19468 1 0
acNumberOfOutputs 0.0 19468 1 0
acChannelCount 0.0 19468 1 0

acChannelCountMode 0.0 19468 1 0
acChannelInterpretation 0.0 19468 1 0

anFftSize 0.0 19468 1 0
anFrequencyBinCount 0.0 19468 1 0

anMinDecibels 0.0 19468 1 0
anMaxDecibels 0.0 19468 1 0

anSmoothingTimeConstant 0.0 19468 1 0
anNumberOfInputs 0.0 19468 1 0
anNumberOfOutputs 0.0 19468 1 0
anChannelCount 0.99 10821 2 0

anChannelCountMode 0.0 19468 1 0
anChannelInterpretation 0.0 19468 1 0

audioDynSum 3.28 5698 53 5
audioDynHash 3.43 5697 72 12

123

124 APPENDIX D. APPENDICES TO THE FPRANDOM STUDY

Most of the collected attributes have a single value and do not provide any ground to distinguish
one device from another. From the collected audio fingerprints, only 3 attributes have an entropy
superior to a single bit:

• acSampleRate is the default sample rate of a created track when using the AudioContext API.
The most common values are 44,1kHz (49,0% of collected fingerprints) and 48kHz (48,5%)
but some browsers still present some unusual ones (1,7% have 192kHz and 0,7% 96kHz).

• audioDynSum is the sum of 500 frames generated by a very specific audio processing (com-
pressed audio from an oscillator). The precision of each frame is up to 15 decimal digits. The
large majority of values are really close to each other with differences only appearing from
the 6th or 7th decimal digit.

• audioDynHash is similar to audioDynSum as it takes the exact same output but it covers the
entirety of the rendered track instead of a few hundred frames. As it covers a larger space,
the entropy is a little higher and this test exhibits more diversity than all other collected
attributes.

With these results, we decided to focus only on the differences created by the audio processing
performed inside audio nodes. Especially, we want to introduce random noise in the computed
frames so that each run of the same test produces different variations. Other values like the default
sample rate are still interesting to change but they can easily be modified and they are not the
focus of this work.

D.2 Example of string comparison when ordering JavaScript
properties

Figure D.1 illustrates the comparison mechanism between the appVersion and the appName strings.
The engine starts with the ‘a’ letter on both strings. Translating this letter to their corresponding
Latin-1 code points yields the decimal numbers ‘97’. Subtracting 97 from 97 results in 0. As no
difference is detected, the engine continues but faces the exact same result for both the second and
third characters in each string as they are identical ‘p’ letters. However, the behaviour is different
from the fourth character. The first string presents a ‘V’ and the second an ‘N’. Translating to
their decimal code points yields ‘86’ and ‘78’. This time, since the subtraction 86 − 78 = 8 does
not give a zero, it informs the engine that a difference has been detected. As the result is positive,
appName is placed before appVersion. If the result of the subtraction were to be negative, it would
have been the opposite order.

a p p V e r s i o n

a p p N a m e

1
‘a’

‘a’

‘p’

‘p’

‘V’

‘N’

Character

Latin-1

Code point Result

0

0

8

97

97

112

112

86

78

2 3

4
appVersion >

appName

1 2 3 4

Figure D.1: String comparison between the appName and appVersion properties

Appendix E

Appendices to the authentication chapter

125

126 APPENDIX E. APPENDICES TO THE AUTHENTICATION CHAPTER

E.1 Phase 1 of the canvas API study

The first phase of the canvas API study consisted of 15 tests designed to find distinctive features
in a canvas rendering. We tried different shapes with different effects for geometric figures and we
modified several parameters like the size, the color or the use of stroke for the rendering of strings.
The entropy for each test is given in bits. If every collected fingerprint presents a unique rendering,
the maximum observable entropy for a test from our dataset of more than 15,000 fingerprints is
13.87 bits. It should be noted that image sizes are not representative of their actual sizes as they
have been reduced to fit this page.

Test Entropy in bits Real size (WxH)
1 6.87 278x27
2 6.99 389x43
3 7.19 361x41
4 6.87 358x50
5 6.09 153x45
6 6.52 217x60
7 7.30 400x327
8 4.15 400x60
9 2.32 201x60
10 4.89 80x80
11 4.14 146x149
12 4.66 177x179
13 6.85 171x157
14 5.46 259x275
15 4.47 500x500

Tests no1 to no7 are renderings of strings with different fonts, colors and sizes. The string in
Test no6 is rendered with a stroke (only the contours are defined). Looking at the entropy, it is
slightly lower than Test no5 so the use of stroke should be avoided. Test no7 is the same as the 6th
one but bigger. The entropy gives a clear signal that size does matter and a clear and well-defined
figure definitely helps in distinguishing devices.

Tests no8 to no15 are different attempts to draw a wide range of figures. The entropy of all
these tests are lower than the ones with a string except for two: Test no14 with a gradient and
Test no13 which combines both a gradient and a string with an exclamation mark. Depending on
the device, the transition between colors can be smooth and natural or it can be clearly marked
with a grainy texture on the whole surface.

In the end, a large image with both a string and a gradient appears in our analysis as the right
combination in a test to distinguish the maximum number of devices.

E.1. PHASE 1 OF THE CANVAS API STUDY 127

15

13

14

11

7

12

8

9

10

6

5

4

3

2

1

Figure E.1: Phase 1 of canvas tests

128 APPENDIX E. APPENDICES TO THE AUTHENTICATION CHAPTER

E.2 Phase 2 of the canvas API study

The second phase of our study also consisted of 15 tests but the focus was put on the types of
renderings observed in the first phase that provided the most diversity between devices. We studied
variations on rendered strings and on gradients. If every collected fingerprint presents a unique
rendering, the maximum observable entropy for a test from the dataset of this second phase of
more than 21,000 fingerprints is 14.37 bits.

Test Entropy in bits Real size (WxH)
1 7.69 400x90
2 7.15 400x90
3 7.76 400x90
4 7.73 535x90
5 8.32 800x180
6 7.66 800x180
7 7.21 400x90
8 7.64 400x90
9 7.68 400x90
10 7.70 400x90
11 7.69 400x90
12 7.70 400x90
13 7.74 400x90
14 7.59 400x90
15 7.69 400x90

Test no1 is the base rendering for our second phase: a string with an emoji and a radial gradient.
Test no2 applies a stroke effect to the rendered string. Test no3 renders the exact same string as
the base one but in a reversed order. The goal of Test no4 is to study the impact of strings’ length.
Here, a longer string does not necessarily mean a higher entropy. Test no5 doubles the size of the
string of the base rendering. Bigger strings lead to more differences between devices making the
entropy of this test the highest of this second phase. Test no6 combines a bigger string with a
stroke effect. Test no7 applies a rotation to the rendered string. Test no8 changes the fallback font
to the Arial font which is common in modern operating systems. Test no9 changes the three colors
used in the gradient of the base rendering. Test no10 changes the position of the three colors of the
base gradient. Test no11 increases the number of colors in the gradient. Test no12 switches from a
radial gradient to a linear gradient. Test no13 tries a more complex linear gradient with a higher
number of points. Test no14 changes the position of the radial gradient in the canvas element. Test
no15 switches the emoji of the base test to another standard one.

E.2. PHASE 2 OF THE CANVAS API STUDY 129

15

13

14

11

7

12

8

9

10

6

5

4

3

2

1

Figure E.2: Phase 2 of canvas tests

130 APPENDIX E. APPENDICES TO THE AUTHENTICATION CHAPTER

E.3 Phase 3 of the canvas API study

The third and final phase of our study consisted of 10 tests to further enhance the diversity between
devices. We focused on analysing the impact of Bezier curves and shadows on the overall entropy.
If every collected fingerprint presents a unique rendering, the maximum observable entropy for a
test from the dataset of this second phase of more than 23,000 fingerprints is 14.50 bits.

Test Entropy in bits Real size (WxH)
1 7.68 400x90
2 7.71 400x90
3 7.70 400x90
4 7.71 400x90
5 7.75 400x90
6 7.81 400x90
7 7.84 400x90
8 7.84 400x90
9 8.05 400x90
10 8.11 400x90

Test no1 is the base rendering for our final phase: a string with an emoji and a radial gradient.
It is identical to the base rendering of the second phase. Test no2 introduces a quadratic Bezier
curve. Test no3 switches to a cubic Bezier curve. Test no4 mixes these two curves in a single
rendering. Test no5 investigates the impact of increasing the width of a drawn curve. Test no6
takes the base rendering and adds a black shadow around the rendered string. Test no7 is identical
to the previous one but with an orange shadow. Test no8 doubles the strength of the shadow blur
(from 5 to 10). Test no9 is a mix of tests no2, 3 and 5: a light shadow with two Bezier curves. The
final test increases the thickness of the curves.

In the end, shadows and curves have a small impact on the global entropy but they still help to
further differentiate devices. This phase also echoes the conclusion of the other two phases: bigger
canvas elements increase the entropy of the performed tests. This is logical as large elements have
better defined edges that could be lost if reduced to a very small surface of pixels.

E.3. PHASE 3 OF THE CANVAS API STUDY 131

7

8

9

10

6

5

4

3

2

1

Figure E.3: Phase 3 of canvas tests

132 APPENDIX E. APPENDICES TO THE AUTHENTICATION CHAPTER

E.4 Example of a complete MFA scheme

Figure E.4 gives a concrete example of how our canvas mechanism can be used on top of an already
existing authentication scheme to reinforce its security. During the login process, our protocol will
be executed as an additional means of protection to make sure that the presented device can
produce canvas renderings that match the ones sent during a previous connection. In case of a
mismatch, the server will ask for an additional confirmation through a SMS or an app as can
be seen in many web services enforcing double-factor authentication. As an added benefit, our
mechanism can also be used to prevent connection hijacking by sending new pairs of challenges
from time to time to verify the identity of the client.

User enters login and password

Credentials correct?

Retrieving cookie

Cookie present?

Canvas verification for
startup authentication

Canvas renderings correct?

Initial
connection
authorized

Connection refused

Unknown device.
Register the new device.

Canvas rendering changed.
Need addtional verification step.

One-time password from
SMS, app or token? Connection refused

Canvas verification for
continuous authentication

Current
connection
maintained

Canvas renderings correct? Connection terminated

yes

yes

yes

no

yes

no

no

no

noyes

Initial authentication

Continuous authentication

Figure E.4: Example of integration of the canvas mechanism in a complete MFA scheme

List of Figures

2.1 Examples of “Best viewed with” banners . 6
2.2 High-level structure of a web browser taken from [44] 7
2.3 Illustration of third-party content delivery . 9
2.4 Collection of HTTP headers (passive fingerprinting) 11
2.5 Collection of JavaScript attributes (active fingerprinting) 12
2.6 Excerpt from one script of the muscial4 malvertising campaign 18
2.7 Examples of canvas renderings on three different devices 23

3.1 Landing page of the AmIUnique.org website . 40
3.2 Example of a rendered picture following the canvas fingerprinting test instructions 46
3.3 Comparison of the “Smiling face with open mouth” emoji on different devices and

operating systems . 47
3.4 Comparison of anonymity set sizes on the list of plugins between desktop and mobile

devices . 49
3.5 Comparison of anonymity set sizes on the user-agent between desktop and mobile

devices . 50
3.6 Comparison of anonymity set sizes on the user-agent between Android and iOS devices 51
3.7 Comparison of anonymity set sizes on the user-agent between Chrome and Firefox

on mobile devices . 51
3.8 Comparison of anonymity set sizes between devices with and without Flash 53
3.9 Evolution of the normalized entropy of plugins for different browsers on desktop

computers . 54
3.10 Comparison of anonymity set sizes on the complete fingerprint between devices with

and without JavaScript . 55
3.11 Cumulative distribution function of the elapsed time before a fingerprint evolution 57
3.12 Logo of the Fingerprint Central website . 58

4.1 User platform elements involved in web browsing and exhibited in the browser fin-
gerprint . 64

4.2 Evolution of the user’s platform over time . 64
4.3 A multi-level view of browsing platforms. Virtualization isolates the user’s system. 68
4.4 An extract of the feature model used for assembling valid DPC configurations . . . 69
4.5 Dissimilarity between consecutive platforms (Leery mode) 71
4.6 Dissimilarity between consecutive platforms (Coffee break mode) 72
4.7 Original canvas rendering with standard colors and the default fallback font 76
4.8 Canvas renderings with modified colors and fonts 76
4.9 Visualization of audio rendered through the AudioContext API 77
4.10 Benchmarking results . 79

5.1 Examples of tests with low entropy . 85
5.2 Examples of tests with high entropy . 86
5.3 Basis of the tests of Phase 2 (Entropy: 7.69 bits) 86
5.4 Zoom on the base rendering with text stroke (Entropy: 7.15 bits) 87
5.5 New effects from Phase 3 (Entropy: 8.11 bits) . 87

133

134 LIST OF FIGURES

5.6 Impact of a canvas poisoner on a rendering . 89
5.7 Overview of the authentication protocol . 90
5.8 Overview of the integration of the canvas mechanism in a multi-factor authentication

scheme . 91
5.9 Example of a canvas test . 92
5.10 Spacing comparison between fonts . 92
5.11 Details of a letter ‘T’ showing pixelation after rotation 92
5.12 Identical strings with different color gradients . 93
5.13 Identical forms with different shadow blurs (strongest blur on the right) 93
5.14 Number of sets containing x equal responses . 97
5.15 Distribution of canvas renderings for groups with identical fingerprints 99

6.1 JavaScript code for the Fibonacci sequence. The three pieces of code are all equivalent.104

B.1 Different renderings of the WebGL test on the same device 112
B.2 Distribution of fingerprints w.r.t. anonymity set size 114
B.3 Surprisal distributions for different categories of browser 115
B.4 Number of users in anonymity sets of different sizes, considering each variable sep-

arately . 116

D.1 String comparison between the appName and appVersion properties 124

E.1 Phase 1 of canvas tests . 127
E.2 Phase 2 of canvas tests . 129
E.3 Phase 3 of canvas tests . 131
E.4 Example of integration of the canvas mechanism in a complete MFA scheme 132

List of Tables

2.1 Summary of existing defence solutions. M = Modifying the fingerprint content.
M* = Modifying the fingerprint content by switching browsers. U = Universal
fingerprint. BS = Blocking Scripts. BA = Blocking APIs. 36

3.1 Browser measurements of AmIUnique fingerprints with an example 42
3.2 Summary of statistics . 44
3.3 Normalized entropy for six attributes collected both by Panopticlick and AmIUnique 45
3.4 Number of changes per attribute (fingerprints collected between October 2015 and

May 2017) . 57

4.1 Changed attributes for example no1 . 66
4.2 Changed attributes for example no2 . 66
4.3 JetStream benchmark results . 80
4.4 Web crawl results . 81

5.1 Results on the number of canvas changes for different periods of time 88

B.1 Normalized Shannon’s entropy for all AmIUnique’s attributes 111
B.2 Statistics of additional Flash attributes . 113
B.3 Descriptive statistics of the AmIUnique dataset in February 2016 and June 2017 . 117
B.4 Percentage of unique fingerprints . 117

C.1 Weights for each attribute of a fingerprint . 119

D.1 Study of 19,468 audio fingerprints . 123

135

Author’s publications

[1] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Mitigating browser fingerprint
tracking: multi-level reconfiguration and diversification. In 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), Firenze, Italy,
May 2015.

[2] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the Beast: Diverting
modern web browsers to build unique browser fingerprints. In 37th IEEE Symposium on Security
and Privacy (S&P 2016), San Jose, United States, May 2016.

[3] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. FPRandom: Randomizing core browser
objects to break advanced device fingerprinting techniques. In 9th International Symposium on
Engineering Secure Software and Systems (ESSoS 2017), Bonn, Germany, July 2017.

137

Tools and prototypes

[4] AmIUnique: Core website - Learn how identifiable you are on the Internet. https://github.
com/DIVERSIFY-project/amiunique.

[5] AmIUnique: Extension for Firefox. https://github.com/plaperdr/
amiunique-extension-firefox.

[6] AmIUnique: Extension for Chrome. https://github.com/plaperdr/
amiunique-extension-chrome.

[7] Blink on VirtualBox: Tool to mitigate browser fingerprint tracking. https://github.com/
DIVERSIFY-project/blink.

[8] Blink on Docker: Tool to mitigate browser fingerprint tracking. https://github.com/
plaperdr/blink-docker.

[9] Blink: Firefox extension for profile synchronisation. https://github.com/plaperdr/
blink-ups-firefox.

[10] Blink: Chrome extension for profile synchronisation. https://github.com/plaperdr/
blink-ups-chrome.

[11] Fingerprint Central: A platform to study browser fingerprinting. https://github.com/
plaperdr/fp-central.

[12] FPRandom: A browser to counter advanced fingerprinting techniques. https://github.com/
plaperdr/fprandom.

139

https://github.com/DIVERSIFY-project/amiunique
https://github.com/DIVERSIFY-project/amiunique
https://github.com/plaperdr/amiunique-extension-firefox
https://github.com/plaperdr/amiunique-extension-firefox
https://github.com/plaperdr/amiunique-extension-chrome
https://github.com/plaperdr/amiunique-extension-chrome
https://github.com/DIVERSIFY-project/blink
https://github.com/DIVERSIFY-project/blink
https://github.com/plaperdr/blink-docker
https://github.com/plaperdr/blink-docker
https://github.com/plaperdr/blink-ups-firefox
https://github.com/plaperdr/blink-ups-firefox
https://github.com/plaperdr/blink-ups-chrome
https://github.com/plaperdr/blink-ups-chrome
https://github.com/plaperdr/fp-central
https://github.com/plaperdr/fp-central
https://github.com/plaperdr/fprandom
https://github.com/plaperdr/fprandom

Bibliography

[13] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and
Claudia Diaz. The Web Never Forgets: Persistent Tracking Mechanisms in the Wild. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, pages 674–689, New York, NY, USA, 2014. ACM.

[14] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens,
and Bart Preneel. FPDetective: dusting the web for fingerprinters. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages
1129–1140, New York, NY, USA, 2013. ACM.

[15] ActionScript 3.0 overview. https://www.adobe.com/devnet/actionscript/articles/
actionscript3_overview.html.

[16] Adblock Plus Official website. https://adblockplus.org/.

[17] The Facts About Our Use of a Canvas Element in Our Recent
R&D Test - AddThis. https://www.addthis.com/blog/2014/07/23/
the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/.

[18] Furkan Alaca and P. C. van Oorschot. Device Fingerprinting for Augmenting Web Au-
thentication: Classification and Analysis of Methods. In Proceedings of the 32Nd Annual
Conference on Computer Security Applications, ACSAC ’16, pages 289–301, New York, NY,
USA, 2016. ACM.

[19] Alexa - The top 500 sites on the web. http://www.alexa.com/topsites.

[20] Indétectable et envahissant : le successeur des cookies est là, le fingerprint-
ing - Clubic. http://www.clubic.com/pro/webmarketing/publicite-en-ligne/
actualite-742853-fingerprinting-cookies.html.

[21] Les empreintes de nos navigateurs nous identifient — et si on brouil-
lait les pistes ? - Framablog. https://framablog.org/2014/12/23/
si-on-brouillait-les-pistes-avec-amiunique/.

[22] #AmIUnique feed - Twitter. https://twitter.com/search?q=%23AmIUnique&src=typd.

[23] How Identifiable Are You On the Web? - Slashdot. https://yro.slashdot.org/story/14/
12/14/1943218/how-identifiable-are-you-on-the-web.

[24] AmIUnique extension - Chrome Web Store. https://chrome.google.com/webstore/
detail/amiunique/pigjfndpomdldkmoaiiigpbncemhjeca.

[25] AmIUnique extension - Add-ons for Firefox. https://addons.mozilla.org/firefox/
addon/amiunique/.

[26] ANGLE: Almost Native Graphics Layer Engine. https://chromium.googlesource.com/
angle/angle.

[27] Web Audio API. https://www.w3.org/TR/webaudio/.

141

https://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
https://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
https://adblockplus.org/
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/
http://www.alexa.com/topsites
http://www.clubic.com/pro/webmarketing/publicite-en-ligne/actualite-742853-fingerprinting-cookies.html
http://www.clubic.com/pro/webmarketing/publicite-en-ligne/actualite-742853-fingerprinting-cookies.html
https://framablog.org/2014/12/23/si-on-brouillait-les-pistes-avec-amiunique/
https://framablog.org/2014/12/23/si-on-brouillait-les-pistes-avec-amiunique/
https://twitter.com/search?q=%23AmIUnique&src=typd
https://yro.slashdot.org/story/14/12/14/1943218/how-identifiable-are-you-on-the-web
https://yro.slashdot.org/story/14/12/14/1943218/how-identifiable-are-you-on-the-web
https://chrome.google.com/webstore/detail/amiunique/pigjfndpomdldkmoaiiigpbncemhjeca
https://chrome.google.com/webstore/detail/amiunique/pigjfndpomdldkmoaiiigpbncemhjeca
https://addons.mozilla.org/firefox/addon/amiunique/
https://addons.mozilla.org/firefox/addon/amiunique/
https://chromium.googlesource.com/angle/angle
https://chromium.googlesource.com/angle/angle
https://www.w3.org/TR/webaudio/

142 BIBLIOGRAPHY

[28] HTML Canvas 2D Context - W3C Recommendation 19 November 2015. https://www.w3.
org/TR/2dcontext/.

[29] WebVR draft. https://w3c.github.io/webvr/spec/1.1/.

[30] WebGL - OpenGL ES for the Web. https://www.khronos.org/webgl/.

[31] Benchmarks for the WebAudio API. https://github.com/padenot/webaudio-benchmark.

[32] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan Good, and Chris Jay
Hoofnagle. Flash cookies and privacy II: Now with HTML5 and ETag respawning. 2011.

[33] Extensive discussion about reducing the HTML battery API. https://groups.google.com/
forum/#!topic/mozilla.dev.webapi/6gLD78z6ASI.

[34] Battery Status Event Specification - W3C Working Draft 26 April 2011. https://www.w3.
org/TR/2011/WD-battery-status-20110426/.

[35] Battery Status API - W3C Candidate Recommendation 08 May 2012. https://www.w3.
org/TR/2012/CR-battery-status-20120508/.

[36] Battery Status API - W3C Candidate Recommendation 07 July 2016. https://www.w3.
org/TR/battery-status/.

[37] Peter Baumann, Stefan Katzenbeisser, Martin Stopczynski, and Erik Tews. Disguised
Chromium Browser: Robust Browser, Flash and Canvas Fingerprinting Protection. In Pro-
ceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, WPES ’16,
pages 37–46, New York, NY, USA, 2016. ACM.

[38] HyperText and CERN. https://www.w3.org/Administration/HTandCERN.txt.

[39] Online Privacy Policy - BlueCava. http://bluecava.com/privacy-policy/.

[40] Opt-out preferences - BlueCava. http://bluecava.com/opt-out/.

[41] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. User Tracking
on the Web via Cross-Browser Fingerprinting, volume 7161 of Lecture Notes in Computer
Science, pages 31–46. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[42] Brave Official website - Browse faster and safer with Brave. https://brave.com/.

[43] Fingerprinting Protection Mode - Brave browser. https://github.com/brave/
browser-laptop/wiki/Fingerprinting-Protection-Mode.

[44] How Browsers Work: Behind the scenes of modern web browsers - HTML5 Rocks. https:
//www.html5rocks.com/en/tutorials/internals/howbrowserswork/.

[45] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. Picasso: Lightweight
Device Class Fingerprinting for Web Clients. In Proceedings of the 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices, SPSM ’16, pages 93–102, New York, NY,
USA, 2016. ACM.

[46] CanvasBlocker - Firefox extension to block the Canvas API. https://addons.mozilla.org/
fr/firefox/addon/canvasblocker/.

[47] Canvas Defender - Firefox add-on that adds unique and persistent noise to a canvas element.
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/.

[48] Yinzhi Cao, Song Li, and Erik Wijmans. (Cross-)Browser Fingerprinting via OS and Hard-
ware Level Features. In 24nd Annual Network and Distributed System Security Symposium,
NDSS, 2017.

[49] Unique Machine demo from [48]. http://uniquemachine.org/.

https://www.w3.org/TR/2dcontext/
https://www.w3.org/TR/2dcontext/
https://w3c.github.io/webvr/spec/1.1/
https://www.khronos.org/webgl/
https://github.com/padenot/webaudio-benchmark
https://groups.google.com/forum/#!topic/mozilla.dev.webapi/6gLD78z6ASI
https://groups.google.com/forum/#!topic/mozilla.dev.webapi/6gLD78z6ASI
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/battery-status/
https://www.w3.org/Administration/HTandCERN.txt
http://bluecava.com/privacy-policy/
http://bluecava.com/opt-out/
https://brave.com/
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://addons.mozilla.org/fr/firefox/addon/canvasblocker/
https://addons.mozilla.org/fr/firefox/addon/canvasblocker/
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
http://uniquemachine.org/

143

[50] Chartbeat | Company. https://chartbeat.com/company/.

[51] Mihai Christodorescu, Matthew Fredrikson, Somesh Jha, and Jonathon Giffin. End-to-End
Software Diversification of Internet Services. InMoving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats, pages 117–130, New York, NY, 2011. Springer New York.

[52] ClearKey - iovation. https://www.iovation.com/clearkey.

[53] Customer Authentication Datasheet - iovation. https://www.iovation.com/resources/
datasheets/clearkey.

[54] CLIQZ Official website - Secure browser with built-in quick search. https://cliqz.com/.

[55] Cliqz buys Ghostery’s consumer operations. https://cliqz.com/en/magazine/
press-release-cliqz-acquires-ghostery.

[56] John H. Conway. On Numbers and Games. Number 6 in London Mathematical Society
Monographs. Academic Press, London-New-San Francisco, 1976.

[57] CookieOk - Accpet all cookies warnings automatically. https://cookiesok.com/.

[58] "I don’t care about cookies" Chrome extension - Chrome Web Store.
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/
fihnjjcciajhdojfnbdddfaoknhalnja.

[59] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack Davidson,
John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant Systems: A Secretless Frame-
work for Security Through Diversity. In Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Asso-
ciation.

[60] Mozilla CSS Extensions. https://developer.mozilla.org/en-US/docs/Web/CSS/
Mozilla_Extensions.

[61] Informative Historical Notes - List of known CSS prefixes by W3C. https://www.w3.org/
TR/CSS21/syndata.html#vendor-keyword-history.

[62] Adobe Flash Player: List of security vulnerabilities. https://www.cvedetails.com/
vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html.

[63] Common Vulnerabilities and Exposures - The Standard for Information Security Vulnerability
Names. https://cve.mitre.org/.

[64] Desktop Operating System Market Share (April 2017) - NetApplications. https:
//www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&
qpcustomd=0&qptimeframe=M&qpsp=219.

[65] Desktop Windows Versions Market Share Worldwide (April 2017) - StatCounter. http:
//gs.statcounter.com/os-version-market-share/windows/desktop/worldwide.

[66] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, DTIC Document, 2004.

[67] Disconnect Official website. https://disconnect.me/.

[68] What is Docker? - Docker Official website. https://www.docker.com/what-docker.

[69] Self-Remediation: Trusted Access from Duo Security - Duo Security. https://duo.com/
product/trusted-devices/self-remediation.

[70] Detecting Out of Date and Vulnerable Flash Versions on
Your Network - Duo Security. https://duo.com/blog/
detecting-out-of-date-and-vulnerable-flash-versions-on-your-network.

https://chartbeat.com/company/
https://www.iovation.com/clearkey
https://www.iovation.com/resources/datasheets/clearkey
https://www.iovation.com/resources/datasheets/clearkey
https://cliqz.com/
https://cliqz.com/en/magazine/press-release-cliqz-acquires-ghostery
https://cliqz.com/en/magazine/press-release-cliqz-acquires-ghostery
https://cookiesok.com/
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/fihnjjcciajhdojfnbdddfaoknhalnja
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/fihnjjcciajhdojfnbdddfaoknhalnja
https://developer.mozilla.org/en-US/docs/Web/CSS/Mozilla_Extensions
https://developer.mozilla.org/en-US/docs/Web/CSS/Mozilla_Extensions
https://www.w3.org/TR/CSS21/syndata.html#vendor-keyword-history
https://www.w3.org/TR/CSS21/syndata.html#vendor-keyword-history
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html
https://cve.mitre.org/
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qptimeframe=M&qpsp=219
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qptimeframe=M&qpsp=219
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qptimeframe=M&qpsp=219
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
https://disconnect.me/
https://www.docker.com/what-docker
https://duo.com/product/trusted-devices/self-remediation
https://duo.com/product/trusted-devices/self-remediation
https://duo.com/blog/detecting-out-of-date-and-vulnerable-flash-versions-on-your-network
https://duo.com/blog/detecting-out-of-date-and-vulnerable-flash-versions-on-your-network

144 BIBLIOGRAPHY

[71] EasyList filter lists. https://easylist.to/.

[72] Peter Eckersley. How Unique is Your Web Browser? In Proceedings of the 10th International
Conference on Privacy Enhancing Technologies, PETS’10, pages 1–18, Berlin, Heidelberg,
2010. Springer-Verlag.

[73] ECMA-262, 1st edition, June 1997. https://www.ecma-international.org/
publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.
pdf.

[74] ECMA-262, 7th edition, June 2016. http://www.ecma-international.org/ecma-262/7.
0/index.html.

[75] Emoji and Dingbats. http://unicode.org/faq/emoji_dingbats.html.

[76] Bugzilla - Bug 1231701: Ship an emoji font onWindows XP-7 . https://bugzilla.mozilla.
org/show_bug.cgi?id=1231701.

[77] Steven Englehardt and Arvind Narayanan. Online Tracking: A 1-million-site Measurement
and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pages 1388–1401, New York, NY, USA, 2016. ACM.

[78] Cookies - Legal requirements from the European Commission. http://ec.europa.eu/ipg/
basics/legal/cookies/index_en.htm.

[79] Opinion 9/2014 on the application of Directive 2002/58/EC to device fingerprinting - AR-
TICLE 29 DATA PROTECTION WORKING PARTY. http://ec.europa.eu/justice/
data-protection/article-29/documentation/opinion-recommendation/files/2014/
wp224_en.pdf.

[80] Proposal for a Regulation of the European Parliament and of the Council concerning the
respect for private life and the protection of personal data in electronic communications and
repealing Directive 2002/58/EC (Regulation on Privacy and Electronic Communications).
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41241.

[81] Facebook Login documentation. https://developers.facebook.com/docs/
facebook-login.

[82] Share Button - Facebook for developers. https://developers.facebook.com/docs/
plugins/share-button.

[83] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. FPGuard: De-
tection and Prevention of Browser Fingerprinting. In Data and Applications Security and
Privacy XXIX, volume 9149 of Lecture Notes in Computer Science, pages 293–308. Springer
International Publishing, 2015.

[84] A New Way to Control the Ads You See on Facebook, and an Update on
Ad Blocking - Facebook Newsroom. https://newsroom.fb.com/news/2016/08/
a-new-way-to-control-the-ads-you-see-on-facebook-and-an-update-on-ad-blocking/.

[85] FB reblock: ad-blocking community finds workaround to Facebook
- Adblock Plus Official website. https://adblockplus.org/blog/
fb-reblock-ad-blocking-community-finds-workaround-to-facebook.

[86] David Fifield and Serge Egelman. Fingerprinting web users through font metrics. In Pro-
ceedings of the 19th international conference on Financial Cryptography and Data Security,
Berlin, Heidelberg, 2015. Springer-Verlag.

[87] Anonymous browser fingerprint - fingerprintjs. https://github.com/Valve/
fingerprintjs.

https://easylist.to/
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
http://unicode.org/faq/emoji_dingbats.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1231701
https://bugzilla.mozilla.org/show_bug.cgi?id=1231701
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41241
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/docs/plugins/share-button
https://developers.facebook.com/docs/plugins/share-button
https://newsroom.fb.com/news/2016/08/a-new-way-to-control-the-ads-you-see-on-facebook-and-an-update-on-ad-blocking/
https://newsroom.fb.com/news/2016/08/a-new-way-to-control-the-ads-you-see-on-facebook-and-an-update-on-ad-blocking/
https://adblockplus.org/blog/fb-reblock-ad-blocking-community-finds-workaround-to-facebook
https://adblockplus.org/blog/fb-reblock-ad-blocking-community-finds-workaround-to-facebook
https://github.com/Valve/fingerprintjs
https://github.com/Valve/fingerprintjs

145

[88] Ugo Fiore, Aniello Castiglione, Alfredo De Santis, and Francesco Palmieri. Countering
browser fingerprinting techniques: Constructing a fake profile with google chrome. In
Network-Based Information Systems (NBiS), 2014 17th International Conference on, pages
355–360. IEEE, 2014.

[89] Mozilla Firefox ESR Overview. https://www.mozilla.org/firefox/organizations/faq/.

[90] An Update on Flash Player and Android. https://blogs.adobe.com/flashplayer/2012/
06/flash-player-and-android-update.html.

[91] Capabilities - ActionScript R© 3 (AS3) API Reference. http://help.adobe.com/en_US/
FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html.

[92] ExternalInterface - ActionScript R© 3 (AS3) API Reference. http://help.adobe.com/en_US/
FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html.

[93] Fingerprint Central - 2016 - Google Summer of Code Archive. https://summerofcode.
withgoogle.com/archive/2016/projects/5915605559410688/.

[94] Device Tracking Add-on for minFraud Services - MaxMind. https://dev.maxmind.com/
minfraud/device/.

[95] ThreatMetrix Announces Cookieless Device Identification to Pre-
vent Online Fraud While Protecting Customer Privacy -
ThreatMetrix. https://www.threatmetrix.com/press-releases/
threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/.

[96] Ghostery Official website. https://www.ghostery.com/.

[97] Gábor György Gulyás, Gergely Acs, and Claude Castelluccia. Near-Optimal Fingerprinting
with Constraints. In PET Symposium ’16, Darmstadt, Germany, July 2016.

[98] History of the browser user-agent string. http://webaim.org/blog/
user-agent-string-history/.

[99] History of the user-agent string. https://www.nczonline.net/blog/2010/01/12/
history-of-the-user-agent-string/.

[100] HTML Canvas 2D Context. http://www.w3.org/TR/2dcontext/.

[101] Yih Huang and Anup K. Ghosh. Introducing Diversity and Uncertainty to Create Moving
Attack Surfaces for Web Services, pages 131–151. Springer New York, New York, NY, 2011.

[102] The state of the blocked web - 2017 Global Adblock Report by PageFair.
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_
Revenue_Report_FY_2016.pdf.

[103] A crash course in just-in-time (JIT) compilers - Mozilla Hacks,
the Web developer blog. https://hacks.mozilla.org/2017/02/
a-crash-course-in-just-in-time-jit-compilers/.

[104] JPEG XR Codec Overview. https://msdn.microsoft.com/en-us/library/windows/
desktop/hh707223(v=vs.85).aspx.

[105] jQuery Official Website. https://jquery.com/.

[106] Introducing the JetStream Benchmark Suite. https://webkit.org/blog/3418/
introducing-the-jetstream-benchmark-suite/.

[107] JetStream benchmark. http://browserbench.org/JetStream/.

[108] JavaScript Obfuscator. http://www.danstools.com/javascript-obfuscate/index.php.

https://www.mozilla.org/firefox/organizations/faq/
https://blogs.adobe.com/flashplayer/2012/06/flash-player-and-android-update.html
https://blogs.adobe.com/flashplayer/2012/06/flash-player-and-android-update.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
https://summerofcode.withgoogle.com/archive/2016/projects/5915605559410688/
https://summerofcode.withgoogle.com/archive/2016/projects/5915605559410688/
https://dev.maxmind.com/minfraud/device/
https://dev.maxmind.com/minfraud/device/
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.ghostery.com/
http://webaim.org/blog/user-agent-string-history/
http://webaim.org/blog/user-agent-string-history/
https://www.nczonline.net/blog/2010/01/12/history-of-the-user-agent-string/
https://www.nczonline.net/blog/2010/01/12/history-of-the-user-agent-string/
http://www.w3.org/TR/2dcontext/
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://msdn.microsoft.com/en-us/library/windows/desktop/hh707223(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh707223(v=vs.85).aspx
https://jquery.com/
https://webkit.org/blog/3418/introducing-the-jetstream-benchmark-suite/
https://webkit.org/blog/3418/introducing-the-jetstream-benchmark-suite/
http://browserbench.org/JetStream/
http://www.danstools.com/javascript-obfuscate/index.php

146 BIBLIOGRAPHY

[109] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed, Srikanth Sundaresan, Da-
mon McCoy, Vern Paxson, and Steven J. Murdoch. Do You See What I See? Differential
Treatment of Anonymous Users. In 23nd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

[110] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling. Finger-
printing mobile devices using personalized configurations. Proceedings on Privacy Enhancing
Technologies, 2016(1):4–19, 2016.

[111] Masking Agent extension for Firefox. https://addons.mozilla.org/firefox/addon/
masking-agent/.

[112] Jonathan R Mayer. Any person... a pamphleteer”: Internet Anonymity in the Age of Web
2.0. Undergraduate Senior Thesis, Princeton University, 2009.

[113] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian Neuner, Mar-
tin Schmiedecker, and Edgar Weippl. Block me if you can: A large-scale study of tracker-
blocking tools. In 2nd IEEE European Symposium on Security and Privacy, Paris, France,
2017.

[114] Mobile web browsing overtakes desktop for the first time - The
Guardian. https://www.theguardian.com/technology/2016/nov/02/
mobile-web-browsing-desktop-smartphones-tablets.

[115] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Fingerprinting Infor-
mation in JavaScript Implementations. In Helen Wang, editor, Proceedings of W2SP 2011.
IEEE Computer Society, May 2011.

[116] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fingerprinting Canvas in HTML5. In
Matt Fredrikson, editor, Proceedings of W2SP 2012. IEEE Computer Society, May 2012.

[117] Bug 1313580 - Remove web content access to Battery API. https://bugzilla.mozilla.
org/showbug.cgi?id=1313580.

[118] Firefox 11 for developers. https://developer.mozilla.org/Firefox/Releases/11.

[119] Firefox 52 Release Notes. https://www.mozilla.org/en-US/firefox/52.0/
releasenotes/.

[120] Muhammad Haris Mughees, Zhiyun Qian, Zubair Shafiq, Karishma Dash, and Pan Hui. A
First Look at Ad-block Detection: A New Arms Race on the Web. CoRR, abs/1605.05841,
2016.

[121] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian Schrittwieser,
Edgar Weippl, and FH Campus Wien. Fast and reliable browser identification with javascript
engine fingerprinting. InWeb 2.0 Workshop on Security and Privacy (W2SP), volume 5, 2013.

[122] Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich. Hardware Fingerprinting Using HTML5.
CoRR, abs/1503.01408, 2015.

[123] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. PriVaricator: Deceiving Finger-
printers with Little White Lies. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, pages 820–830, Republic and Canton of Geneva, Switzerland, 2015.
International World Wide Web Conferences Steering Committee.

[124] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. Cookieless Monster: Exploring the Ecosystem of Web-Based
Device Fingerprinting. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 541–555, Washington, DC, USA, 2013. IEEE Computer Society.

[125] Nmap: the Network Mapper - OS Detection. https://nmap.org/book/man-os-detection.
html.

https://addons.mozilla.org/firefox/addon/masking-agent/
https://addons.mozilla.org/firefox/addon/masking-agent/
https://www.theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-tablets
https://www.theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-tablets
https://bugzilla.mozilla.org/show bug.cgi?id=1313580
https://bugzilla.mozilla.org/show bug.cgi?id=1313580
https://developer.mozilla.org/Firefox/Releases/11
https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html

147

[126] NoScript Official website. https://noscript.net/.

[127] NPAPI deprecation: developer guide. https://www.chromium.org/developers/
npapi-deprecation — The Netscape Plugin API (NPAPI) has been permanently removed
from Google Chrome since version 45. The Pepper API (PPAPI) is one option but few plugins
exist and it is not proposed in the developer guide as an alternative.

[128] User Authentication with OAuth 2.0. https://oauth.net/articles/authentication/.

[129] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein. Finding Focus in the Blur of Moving-
Target Techniques. IEEE Security Privacy, 12(2):16–26, Mar 2014.

[130] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. The Leaking Battery,
pages 254–263. Springer International Publishing, Cham, 2016.

[131] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery Status Not Included:
Assessing Privacy in Web Standards. In 3rd International Workshop on Privacy Engineering
(IWPE’17), San Jose, United States, 2017.

[132] OpenID Connect official website. https://openid.net/connect/.

[133] Operation Fingerprint - A look into several Angler Exploit Kit malvertising campaigns.
https://malwarebytes.app.box.com/v/operation-fingerprint.

[134] Wrong order in Object properties interation - V8 bug tracker. https://bugs.chromium.
org/p/v8/issues/detail?id=164.

[135] PageFair Official website. https://pagefair.com/.

[136] The state of the blocked web - 2017 Global Adblock Report by PageFair. https://pagefair.
com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf.

[137] The cost of ad blocking - PageFair and Adobe 2015 Ad Blocking Report.
https://downloads.pagefair.com/wp-content/uploads/2016/05/2015_report-the_
cost_of_ad_blocking.pdf.

[138] Pale Moon browser - Version 25.6.0 adds a canvas poisoning feature. https://www.palemoon.
org/releasenotes.shtml.

[139] NPAPI Plugins in Firefox. https://blog.mozilla.org/futurereleases/2015/10/08/
npapi-plugins-in-firefox/.

[140] Disallow enumeration of navigator.plugins (Mozilla bug tracker). https://bugzilla.
mozilla.org/show_bug.cgi?id=757726.

[141] Cross-browser plugin detection - Windows Developer Network. https://msdn.microsoft.
com/library/dn423948(v=vs.85).aspx.

[142] Amazon Privacy Notice. https://www.amazon.com/gp/help/customer/display.html?
nodeId=468496.

[143] Apple Privacy Policy. http://www.apple.com/legal/privacy/en-ww/.

[144] Privacy Badger Official website - Electronic Frontier Foundation. https://www.eff.org/
privacybadger.

[145] Facebook Data Policy [Accessed March 2017]. https://www.facebook.com/full_data_
use_policy.

[146] Google Privacy Policy - Archive April 2001. https://www.google.com/policies/privacy/
archive/19990920-20010104/.

[147] Google Privacy Policy - Archive July 2004. https://www.google.com/policies/privacy/
archive/20010104-20040701/.

https://noscript.net/
https://www.chromium.org/developers/npapi-deprecation
https://www.chromium.org/developers/npapi-deprecation
https://oauth.net/articles/authentication/
https://openid.net/connect/
https://malwarebytes.app.box.com/v/operation-fingerprint
https://bugs.chromium.org/p/v8/issues/detail?id=164
https://bugs.chromium.org/p/v8/issues/detail?id=164
https://pagefair.com/
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://downloads.pagefair.com/wp-content/uploads/2016/05/2015_report-the_cost_of_ad_blocking.pdf
https://downloads.pagefair.com/wp-content/uploads/2016/05/2015_report-the_cost_of_ad_blocking.pdf
https://www.palemoon.org/releasenotes.shtml
https://www.palemoon.org/releasenotes.shtml
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
https://bugzilla.mozilla.org/show_bug.cgi?id=757726
https://bugzilla.mozilla.org/show_bug.cgi?id=757726
https://msdn.microsoft.com/library/dn423948(v=vs.85).aspx
https://msdn.microsoft.com/library/dn423948(v=vs.85).aspx
https://www.amazon.com/gp/help/customer/display.html?nodeId=468496
https://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://www.apple.com/legal/privacy/en-ww/
https://www.eff.org/privacybadger
https://www.eff.org/privacybadger
https://www.facebook.com/full_data_use_policy
https://www.facebook.com/full_data_use_policy
https://www.google.com/policies/privacy/archive/19990920-20010104/
https://www.google.com/policies/privacy/archive/19990920-20010104/
https://www.google.com/policies/privacy/archive/20010104-20040701/
https://www.google.com/policies/privacy/archive/20010104-20040701/

148 BIBLIOGRAPHY

[148] Google Privacy Policy - Archive March 2012. https://www.google.com/policies/
privacy/archive/20111020-20120301/.

[149] Google Privacy Policy - Archive March 2014. https://www.google.com/policies/
privacy/archive/20131220-20140331/.

[150] Google Privacy Policy - Archive June 2015. https://www.google.com/policies/privacy/
archive/20150501-20150605/.

[151] Google Privacy Policy. https://www.google.com/policies/privacy/.

[152] Microsoft Privacy Statement. https://privacy.microsoft.com/en-US/
privacystatement.

[153] Wikimedia Foundation Privacy Policy [Accessed March 2017]. https://
wikimediafoundation.org/wiki/Privacy_policy.

[154] Yahoo Privacy Center. https://privacy.yahoo.com/.

[155] Progressive Web Apps - Google Developers. https://developers.google.com/web/
progressive-web-apps/.

[156] A Quantum Leap for the Web - Mozilla Tech. https://medium.com/mozilla-tech/
a-quantum-leap-for-the-web-a3b7174b3c12.

[157] Random Agent Spoofer - Firefox extension. https://addons.mozilla.org/firefox/
addon/random-agent-spoofer/.

[158] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998.

[159] fingerprintjs2, modern and flexible browser fingerprinting library, a successor to the original
fingerprintjs. https://github.com/Valve/fingerprintjs2.

[160] OpenWPM - A web privacy measurement framework. https://github.com/citp/OpenWPM.

[161] RFC 7932 - Brotli Compressed Data Format. https://tools.ietf.org/html/rfc7932.

[162] RFC 2109 - HTTP State Management Mechanism. https://tools.ietf.org/html/
rfc2109.

[163] RFC 2965 - HTTP State Management Mechanism. https://tools.ietf.org/html/
rfc2965.

[164] RFC 1866 - Hypertext Markup Language - 2.0. https://tools.ietf.org/html/rfc1866.

[165] RFC 1945 - Hypertext Transfer Protocol – HTTP/1.0. https://tools.ietf.org/html/
rfc1945.

[166] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/
rfc2616.

[167] T. Saito, K. Takahashi, K. Yasuda, T. Ishikawa, K. Takasu, T. Yamada, N. Takei, and
R. Hosoi. OS and Application Identification by Installed Fonts. In 2016 IEEE 30th Inter-
national Conference on Advanced Information Networking and Applications (AINA), pages
684–689, March 2016.

[168] T. Saito, K. Yasuda, T. Ishikawa, R. Hosoi, K. Takahashi, Y. Chen, and M. Zalasiński.
Estimating CPU Features by Browser Fingerprinting. In 2016 10th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pages 587–592,
July 2016.

[169] J. Schuh. Saying Goodbye to Our Old Friend NPAPI, September 2013. https://blog.
chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html.

https://www.google.com/policies/privacy/archive/20111020-20120301/
https://www.google.com/policies/privacy/archive/20111020-20120301/
https://www.google.com/policies/privacy/archive/20131220-20140331/
https://www.google.com/policies/privacy/archive/20131220-20140331/
https://www.google.com/policies/privacy/archive/20150501-20150605/
https://www.google.com/policies/privacy/archive/20150501-20150605/
https://www.google.com/policies/privacy/
https://privacy.microsoft.com/en-US/privacystatement
https://privacy.microsoft.com/en-US/privacystatement
https://wikimediafoundation.org/wiki/Privacy_policy
https://wikimediafoundation.org/wiki/Privacy_policy
https://privacy.yahoo.com/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://addons.mozilla.org/firefox/addon/random-agent-spoofer/
https://addons.mozilla.org/firefox/addon/random-agent-spoofer/
https://github.com/Valve/fingerprintjs2
https://github.com/citp/OpenWPM
https://tools.ietf.org/html/rfc7932
https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2965
https://tools.ietf.org/html/rfc2965
https://tools.ietf.org/html/rfc1866
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html

149

[170] Device / Browser Fingerprinting - Heuristic-based Authentication - SecurAuth. https://
docs.secureauth.com/pages/viewpage.action?pageId=40045162.

[171] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. I’m not a human: Break-
ing the Google reCAPTCHA. https://www.blackhat.com/docs/asia-16/materials/
asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf.

[172] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering Browser Extensions
via Web Accessible Resources. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, CODASPY ’17, pages 329–336, New York, NY, USA,
2017. ACM.

[173] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay Hoofnagle.
Flash Cookies and Privacy. In AAAI spring symposium: intelligent information privacy
management, volume 2010, pages 158–163, 2010.

[174] Tracking Preference Expression (DNT) - W3C Candidate Recommendation. https://www.
w3.org/TR/tracking-dnt/.

[175] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Mobile Device Fingerprinting Consid-
ered Harmful for Risk-based Authentication. In Proceedings of the Eighth European Workshop
on System Security, EuroSec ’15, pages 6:1–6:6, New York, NY, USA, 2015. ACM.

[176] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Leveraging Battery Usage from Mobile
Devices for Active Authentication. Mobile Information Systems, 2017:1367064:1–1367064:14,
2017.

[177] Oleksii Starov and Nick Nikiforakis. XHOUND: Quantifying the Fingerprintability of Browser
Extensions. In 38th IEEE Symposium on Security and Privacy (S&P 2017), San Jose, United
States, 2017.

[178] GPU accelerating 2D Canvas and enabling 3D content for older GPUs - Chromium blog.
https://blog.chromium.org/2012/02/gpu-accelerating-2d-canvas-and-enabling.
html.

[179] three.js, a JavaScript library to create 3D animations using WebGL - Official website. https:
//threejs.org/.

[180] High Resolution Time Level 2 (JavaScript Performance API. https://www.w3.org/TR/
hr-time/#dom-domhighrestimestamp.

[181] Tor Browser - Tor Project Official website. https://www.torproject.org/projects/
torbrowser.html.

[182] Release of Tor with a new defense against font enumeration. https://blog.torproject.
org/blog/tor-browser-55-released.

[183] Tor Browser 6.5 is released - The Tor Blog. https://blog.torproject.org/blog/
tor-browser-65-released.

[184] The Design and Implementation of the Tor Browser [DRAFT] - Tor Project Official website.
https://www.torproject.org/projects/torbrowser/design/.

[185] Christof Torres, Hugo Jonker, and Sjouke Mauw. FP-Block: usable web privacy by control-
ling browser fingerprinting. In Proceedings of the 20th European Symposium on Research in
Computer Security (ESORICS 2015), 2015.

[186] Math routines are OS fingerprintable - Tor bug tracker. https://trac.torproject.org/
projects/tor/ticket/13018.

[187] Add an FPCentral test to our test suite - Tor bug tracker. https://trac.torproject.org/
projects/tor/ticket/22587.

https://docs.secureauth.com/pages/viewpage.action?pageId=40045162
https://docs.secureauth.com/pages/viewpage.action?pageId=40045162
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.w3.org/TR/tracking-dnt/
https://www.w3.org/TR/tracking-dnt/
https://blog.chromium.org/2012/02/gpu-accelerating-2d-canvas-and-enabling.html
https://blog.chromium.org/2012/02/gpu-accelerating-2d-canvas-and-enabling.html
https://threejs.org/
https://threejs.org/
https://www.w3.org/TR/hr-time/#dom-domhighrestimestamp
https://www.w3.org/TR/hr-time/#dom-domhighrestimestamp
https://www.torproject.org/projects/torbrowser.html
https://www.torproject.org/projects/torbrowser.html
https://blog.torproject.org/blog/tor-browser-55-released
https://blog.torproject.org/blog/tor-browser-55-released
https://blog.torproject.org/blog/tor-browser-65-released
https://blog.torproject.org/blog/tor-browser-65-released
https://www.torproject.org/projects/torbrowser/design/
https://trac.torproject.org/projects/tor/ticket/13018
https://trac.torproject.org/projects/tor/ticket/13018
https://trac.torproject.org/projects/tor/ticket/22587
https://trac.torproject.org/projects/tor/ticket/22587

150 BIBLIOGRAPHY

[188] Desktop and Mobile Ad Revenue Surpasses TV for the First Time. http://adage.com/
article/digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/.

[189] Tweet Button - Twitter Developers. https://dev.twitter.com/web/tweet-button.

[190] Two Factor Auth List - List of websites supporting two-factor authentication and the methods
theu use. https://twofactorauth.org/.

[191] This Is Your Brain On Uber. http://www.npr.org/2016/05/17/478266839/
this-is-your-brain-on-uber.

[192] uBlock Origin - An efficient blocker for Chromium and Firefox. Fast and lean. https:
//github.com/gorhill/uBlock.

[193] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl. SHPF:
Enhancing HTTP(S) Session Security with Browser Fingerprinting. In 2013 International
Conference on Availability, Reliability and Security, pages 255–261, Sept 2013.

[194] Do Not Track: an uncertain future for the web’s most ambitious privacy initiative. http:
//www.theverge.com/2012/10/12/3485590/do-not-track-explained.

[195] TeamID blog post: "Announcing Our Worst Passwords of 2016". https://www.teamsid.
com/worst-passwords-2016/.

[196] History of the Web - World Wide Web Foundation. http://webfoundation.org/about/
vision/history-of-the-web/.

[197] WebGL Specification. https://www.khronos.org/registry/webgl/specs/latest/1.0/.

[198] WebGL Extension Registry. https://www.khronos.org/registry/webgl/extensions/.

[199] Bug 164213 - Remove Battery Status API from the tree. https://bugs.webkit.org/show_
bug.cgi?id=164213.

[200] Giving Web a Memory Cost Its Users Privacy - The New York Times. http://www.nytimes.
com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html.

[201] WebP - A new image format for the Web. https://developers.google.com/speed/webp/.

[202] Codepage layout - ISO/IEC 8859-1. https://en.wikipedia.org/wiki/ISO/IEC_8859-1#
Codepage_layout.

[203] W. Wu, J. Wu, Y. Wang, Z. Ling, and M. Yang. Efficient Fingerprinting-Based Android
Device Identification With Zero-Permission Identifiers. IEEE Access, 4:8073–8083, 2016.

[204] Yahoo Security Notice September 22, 2016. https://help.yahoo.com/kb/sln28092.html.

[205] Yahoo Security Notice December 14, 2016. https://help.yahoo.com/kb/SLN27925.html.

[206] Yahoo reveals more breachiness to users victimized by forged cook-
ies. https://arstechnica.com/information-technology/2017/02/
yahoo-reveals-more-breachiness-to-users-victimized-by-forged-cookies/.

[207] Beware Evil APIs. https://browser.yandex.com/blog/beware-evil-apis.

[208] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. Tracking the Trackers.
In Proceedings of the 25th International Conference on World Wide Web, WWW ’16, pages
121–132, Republic and Canton of Geneva, Switzerland, 2016. International World Wide Web
Conferences Steering Committee.

http://adage.com/article/digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/
http://adage.com/article/digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/
https://dev.twitter.com/web/tweet-button
https://twofactorauth.org/
http://www.npr.org/2016/05/17/478266839/this-is-your-brain-on-uber
http://www.npr.org/2016/05/17/478266839/this-is-your-brain-on-uber
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
http://www.theverge.com/2012/10/12/3485590/do-not-track-explained
http://www.theverge.com/2012/10/12/3485590/do-not-track-explained
https://www.teamsid.com/worst-passwords-2016/
https://www.teamsid.com/worst-passwords-2016/
http://webfoundation.org/about/vision/history-of-the-web/
http://webfoundation.org/about/vision/history-of-the-web/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/extensions/
https://bugs.webkit.org/show_bug.cgi?id=164213
https://bugs.webkit.org/show_bug.cgi?id=164213
http://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
http://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
https://developers.google.com/speed/webp/
https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Codepage_layout
https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Codepage_layout
https://help.yahoo.com/kb/sln28092.html
https://help.yahoo.com/kb/SLN27925.html
https://arstechnica.com/information-technology/2017/02/yahoo-reveals-more-breachiness-to-users-victimized-by-forged-cookies/
https://arstechnica.com/information-technology/2017/02/yahoo-reveals-more-breachiness-to-users-victimized-by-forged-cookies/
https://browser.yandex.com/blog/beware-evil-apis

Résumé

L’arrivée de l’Internet a révolutionné notre société à l’aube du
21e siècle. Nos habitudes se sont métamorphosées pour
prendre en compte cette nouvelle manière de communiquer et
de partager avec le monde. Grâce aux technologies qui en
constituent ses fondations, le web est une plateforme
universelle. Que vous utilisiez un PC de bureau sous Windows,
un PC portable sous MacOS, un serveur sous Linux ou une
tablette sous Android, chacun a les moyens de se connecter à
ce réseau de réseaux pour partager avec le monde. La
technique dite de Browser fingerprinting est née de cette
diversité logicielle et matérielle qui compose nos appareils du
quotidien. En exécutant un script dans le navigateur web d’un
utilisateur, un serveur peut récupérer une très grande quantité
d’informations. Il a été démontré qu’il est possible d’identifier de
façon unique un appareil en récoltant suffisamment
d’informations. L’impact d’une telle approche sur la vie privée
des internautes est alors conséquente, car le browser
fingerprinting est totalement indépendant des systèmes de
traçage connu comme les cookies. Dans cette thèse, nous
apportons les contributions suivantes :

1- Grâce au site AmiUnique.org, nous analysons
118,934 empreintes. Nous démontrons que
l’identification d’appareils est toujours possible, car
89.4% des empreintes collectées sur notre site sont
uniques. Nous constatons aussi que l’identification
d’appareils mobiles est possible, même si ces
plateformes logicielles et matérielles sont beaucoup
plus restreintes.

2- Nous détaillons deux contre-mesures appelées
Blink et FPRandom. Modifier artificiellement le
contenu d’une empreinte présente de nombreuses
difficultés, car un mauvais changement peut empêcher
l’utilisateur de naviguer sur Internet. En exploitant la
diversité logicielle et en introduisant un comportement
aléatoire dans certaines fonctions des navigateurs,
nous changeons constamment l’empreinte présentée à
un traqueur pour l’empêcher d’identifier un appareil sur
Internet.

3- De plus en plus de bases de données sont attaquées
chaque année, et une quantité de plus en plus grande
de mots de passe se retrouve en libre accès sur
Internet. Pour améliorer la sécurité des systèmes
d’authentification, nous avons conçu un protocole
d’authentification complet basé sur la canvas
fingerprinting. En demandant au navigateur de
dessiner une image très précise, il nous est possible
de vérifier si l’appareil utilisé est connu ou non du
système. Notre protocole permet d’éviter des piratages
de compte suite à un vol de mot de passe.

Le browser fingerprinting est un domaine fascinant qui en est
encore à ses balbutiements. Avec cette thèse, nous contribuons
à l’écriture des premières pages de son histoire en fournissant
une vue d’ensemble du domaine, de ses fondations jusqu’à
l’impact des nouvelles technologies du web sur cette technique.
Nous nous tournons aussi vers le futur via l’exploration d’une
nouvelle facette du domaine afin d’améliorer la sécurité des
comptes sur Internet.

N° d’ordre : 17ISAR 25 / D17 - 25
Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 14315 - F-35043 Rennes Cedex
Tél : 02 23 23 82 00 – Fax : 02 23 23 83 96

Abstract

Users are presented with an ever-increasing number of choices
to connect to the Internet. From desktops, laptops, tablets and
smartphones, anyone can find the perfect device that suits his
or her needs while factoring mobility, size or processing power.
Browser fingerprinting became a reality thanks to the
software and hardware diversity that compose every single one
of our modern devices. By collecting device-specific information
with a simple script running in the browser, a server can fully or
partially identify a device on the web and follow it wherever it
goes. This technique presents strong privacy implications as it
does not require the use of stateful identifiers like cookies that
can be removed or managed by the user. In this thesis, we
provide three contributions to the browser fingerprinting domain:

1- We perform the analysis of 118,934 genuine
fingerprints from the AmIUnique.org website. We
show that device identification is possible as 89.4% of
collected fingerprints are unique. Notably, we observe
that browser fingerprinting can be extended to mobile
devices despite their constrained nature in terms of
software and hardware.

2- We design two countermeasures called Blink and

FPRandom. Since the information contained in a
fingerprint is primarily used to tailor the browsing
experience to the user's device, modifying it correctly
presents great challenges as the wrong information
can be detected and break the browsing session. By
taking advantage of software diversity and
randomness, we constantly change the values
collected by tracking scripts so that they are unable to
identify a device online.

3- We detail a complete protocol based on canvas

fingerprinting to augment authentication on the
web. At a time where passwords and logins are
considered insecure with the numerous data breaches
reported each year, we provide a new way to assert
the identity of a device. By asking the browser to
render very specific images in a canvas element, we
can verify that a device is a known one, preventing
account takeover through simple credentials theft.

Browser fingerprinting is still in its early days. As the web is in
constant evolution and as browser vendors keep pushing the
limits of what we can do online, the contours of this technique
are continually changing. With this dissertation, we shine a light
into its inner-workings and its challenges along with a new
perspective on how it can reinforce account security.

