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ABSTRACT

Phenotypic heterogeneity is a common, complex property of microbial populations: it bridges genetics, the organism's response to the environment, and evolutionary concepts such as bet hedging.

Individual cells of isogenic microbial populations exposed to the same microenvironment can stochastically switch among discrete phenotypes as a strategy of survival. e determinants of such "phenotypic switches" between multiple stable states are oen both genetic and non-genetic, and can relate to the interaction between the population and the environment.

Phenotypic multistability is oen correlated with phenomena of inheritance of the phenotype from parent cells to their ospring, sometimes over several generation times. is "trans-generational persistence" of the phenotype may pave the way for the evolution of division of labour.

Pseudomonas uorescens switching strains (switchers) are a model system to study microbial heterogeneity, phenotypic switching and transgenerational memory. e alternative phenotypic states, called CAP+ and CAP-, are related to the production of a colanic acid capsule around the cell surface.

e switchers were evolved from the Pseudomonas uorescens SBW25 wild type strain by experimental evolution: the switch arises from highly specic genetic mutations on genes belonging to the pyrimidine metabolic pathway, crucial in both nucleic and colanic acid biosynthesis. Dierent switching strains dier in terms of growth rate and frequency of the CAP+ phenotype during exponential phase.

Populations of the switchers undergo big time variations in the fraction of cells expressing one phenotype even when they are kept in exponential growth. e amount of variation depends on the initial condition in ways that can be accounted for only if one considers that the switching rate depends on the environmental conditions created by growth of the population itself. Such a feedback gives rise to a dependence on history that can be interpreted as population-level evidence of phenotypic "memory".

Standard models whereby the genotype determines the switching rates fail to explain the observed non-monotonous dynamics of the phenotypes' frequencies, producing simple exponential decays to the asymptotic frequencies. e switching rates need to be made non-constant, for instance by linking their value to that of an environmental cue.

We developed a model consisting of a third-order dynamical system where one of the state variables quanties the intracellular concentration of a metabolite X synthetized by the cell and diluted along with cell division. is internal concentration works as the mediator of the coupling between population demography and switching dynamics, and the growth rate as the proxy for the ensemble of the environmental cues modulating the probabilities of switching.

is model manages to reproduce the main experimental observations (overshoot and undershoot in the frequency of the phenotypes, biphasic response to preculture conditions, long-term eect in the phenotypic composition of the population) and predicts the negative correlation between the mean growth rate and the frequency of the CAP+ phenotype in exponential phase that we observed.

In summary, a growing population of switching cells cannot be fully characterized only by the asymptotic steady state of the phenotypes' frequencies, because phenotypic switching is inextricably intertwined with demography. One possible way to model this interdependence is through internal concentrations, a choice that in our case allowed us to coherently interpret the experimental data.

From an evolutionary perspective, internal concentrations-mediated transgenerational inheritance of the phenotype may favour the emergence of bet-hedging-like strategies. Nevertheless, given the number of factors involved, only through a detailed knowledge of the ecological dynamics it is possible to draw signicant conclusions on the evolutionary outcome.

Résumé en langue franc ¸aise

L'hétérogénéité phénotypique est un trait commun des populations microbiennes qui relie la génétique, la réponse de l'organisme à l'environnement et concepts évolutifs tels que le bet-hedging.

Des cellules individuelles de populations microbiennes isogéniques peuvent changer de fac ¸on aléatoire leur phénotype comme stratégie de survie, même quand elles sont exposées au même microenvironnement. Les déterminants de tels switch phénotypiques entre plusieurs états stables peuvent être génétiques ou non-génétiques, et souvent liés à l'interaction entre la population et l'environnement.

La multistabilité phénotypique est souvent corrélée à des phénomènes d'hérédité du phénotype, parfois à travers plusieurs générations. Cee persistance du phénotype peut ouvrir la voie à l'évolution de la division du travail.

Les souches de Pseudomonas uorescens, appelées switchers, sont un système modèle pour étudier l'hétérogénéité phénotypique, les switch phénotypiques et la mémoire transgénérationnelle. Les états phénotypiques alternatifs, appelés CAP+ et CAP-, sont liés à la production d'une capsule d'acide colanique autour de la paroi cellulaire.

Les switchers ont été développés à partir de la souche de type sauvage Pseudomonas uorescens SBW25 par évolution expérimentale : des mutations génétiques spéciques sur certains gènes de la voie métabolique de la pyrimidine, essentielle dans la biosynthèse à la fois de l'ADN/ARN et de l'acide colanique, entraînent l'émergence du switch. Chaque souche est caractérisée par son taux de croissance et sa fréquence du phénotype CAP+ en phase de croissance exponentielle.

Même lorsqu'elles sont maintenues en croissance exponentielle, les populations des switchers présentent de grandes variations temporelles dans la fraction de cellules exprimant un des deux phénotypes. Le degré de variation dépend de la condition initiale d'une manière qui suggère que le taux de switch dépend des conditions environnementales engendrées par la croissance de la population elle-même. Une telle rétroaction donne lieu à une dépendance des conditions passées qu'on peut interpréter en termes de "mémoire" phénotypique à l'échelle de la population.

Les modèles standard qui associent à chaque génotype des taux de switch xes ne permeent pas d'expliquer le caractère non-monotone de la dynamique des fréquences des phénotypes. Les taux de switch doivent être rendus non-constants, par exemple en reliant leur valeur à celle d'un signal environnemental.

J'ai développé un modèle sous forme de système dynamique de troisième ordre où l'une des variables d'état quantie la concentration intracellulaire d'un métabolite X synthétisé par la cellule et dilué à travers la division cellulaire. Cee concentration interne couple la démographie et la dynamique de switch. Le taux de croissance moyen de la population fonctionne comme proxy pour l'ensemble des signaux environnementaux modulant les probabilités de switch.

Mon modèle reproduit les principales observations expérimentales et prédit la corrélation négative entre le taux moyen de croissance et la fréquence du phénotype CAP+ en phase exponentielle que nous avons observée.

En résumé, une population croissante de cellules capables de switch phénotypiques ne peut être entièrement caractérisée en déterminant uniquement l'état asympto-tique des fréquences des phénotypes, car il se trouve que le switch phénotypique est étroitement lié à la démographie. Il est possible de modéliser cee interdépendance à travers des concentrations internes -un choix qui, dans le cas des switchers, permet d'interpréter de manière cohérente les données expérimentales.

Dans une perspective évolutive, l'héritage du phénotype par des concentrations pourrait seconder l'émergence de stratégies comme le bet-hedging. Pourtant, vu le nombre de facteurs impliqués, seule une connaissance détaillée de la dynamique écologique permet de tirer des conclusions signicatives à ce sujet. a mia mamma CHAPTER 1 INTRODUCTION P , i.e. the variability in observable traits across members of a sympatric population, is ubiquitous among living organisms. Genetic, environmental and epigenetic factors aect phenotypic variability in a wide variety of ways, weaving a complex cloth of interactions, from the molecular scale, up to the behavioral one.

Isogenic populations of microbes, too, display heterogeneity at the phenotypic level, which proves to be advantageous from an evolutionary perspective. Microbial phenotypic heterogeneity oen takes the form of alternative, discrete phenotypes whose adaptive value resides in allowing the organism to respond to changes in the environmental conditions, or anticipate them by stochastically generating phenotypic variants. e laer strategy, where individual cells stochastically switch between the possible alternative states, is adaptive when the environment is hardly predictable, and can be interpreted as an aempt of the population to hedge its "survival bets".

Most mathematical models for the study microbial phenotypic heterogeneity draw a dychotomous distinction between responsive and stochastic variability. Nevertheless, the examples of hybrid responsive-stochastic phenotypic switch are manifold, bacterial persistence being the most eminent one. By using Pseudomonas uorescens as model organism for populations of phenotypically switching units, in this esis I explore the general framework through a mixed theoretical-experimental approach.

is research develops two main themes. First, I will address the mutual dependence between phenotypic variability and the demography of populations of switching units. As already mentioned, under certain circumstances, variability can be advantageous for those populations adopting it. Besides, many are the instances of environmental cues aecting population growth that can be associated with a change in the phenotypic composition of the population. However, the evolution of phenotypic switch is seldom studied beyond the cases of simple demographic regimes (e.g. populations articially held in exponential phase). is is a reasonable simplication, for the sake of simplicity and power of prediction, unless the switching behaviour proves to be inuenced by the state of growth of the population.

A second theme tackled in this esis is the relation between phenotypic switching and trans-generational, non-genetic heritability of the phenotype. Indeed, it can be noticed that oen the phenomena of maintenance of the phenotype throughout generations are correlated with the presence of multistability. is is true in other elds, too -such as physics and neurobiology: the existence of multistable states is considered to be strictly linked to "memory" (metastability). If this is a general property, is it possible to establish a link between trans-generational memory and the existence of the switch? I will investigate the consequences on the population-level history-dependence of having a context-dependent stochastic switch.

In summary, by the use of mathematical models and experiments on Pseudomonas uorescens switching populations, this esis aims at investigating the mechanisms that might underpin the interplay between population demography and phenotypic variability, and its possible ecological outcomes. is is realized by going beyond the classic dualistic view where context-independent stochastic switch is in opposition to a responsively-tuned switching behaviour.

estions addressed by this thesis

More in detail, this esis tackles the aforementioned general problems by addressing the following questions:

• Can the phenotypic switch performed by Pseudomonas uorescens populations be considered as purely stochastic or environmentally-driven? How is it possible to discern between these two scenarios through population-level measurements?

• Which are the relevant observables to describe the phenotypic state of a collection of switching units? How can these quantities be measured?

• What are the ecological processes inuencing phenotypic heterogeneity in populations of P. uorescens switchers? Is population growth one of them? If yes, which interplay exists between the time scales of the cellular switch and that of population growth?

• How is phenotypic variability maintained and sustained in growing populations of P. uorescens? Can a non-genetic trans-generational transmission of the phenotypic state be inferred from measurements of the phenotypic composition of the population? If yes, what are the ecological conditions inuencing it?

Outline of this Chapter is Introduction to my esis starts by providing an overview on phenotypic heterogeneity, focusing on the cellular mechanisms that can inuence its emergence and on the functions that this signicant property can provide (Section 1.1). I then discuss what mathematical models can bring to the understanding of the ecological and evolutionary consequences of phenotypic heterogeneity (Section 1.2). Finally, Pseudomonas uorescens is presented as an appropriate model system for the study of microbial phenotypic heterogeneity (Section 1.3).

Phenotypic heterogeneity in microbial populations

Natural selection acts on phenotypes, and phenotypic variation is its raw material. Indeed, a gene is aected by the action of natural selection only if the laer dierentially inuences the phenotypes expressed by the former. In the long run, competition among phenotypes results in the perpetuation or elimination of the whole underlying genotype from the population pool [START_REF]Genetic Basis of Evolutionary Change[END_REF]. In other words, natural selection makes the genetic pool of a population more and more adapted to the environment if at least part of the phenotypic variation has a genetic basis.

Along with genetic information, environmental cues are fundamental in the determination of phenotypic heterogeneity [START_REF]Developmental Plasticity and Evolution[END_REF]. It was shown that extreme environmental changes, just as high mutation rates, tend to increase phenotypic variation 1 . is raises the question: Is variation due to mutations and due to environmental change equivalent? A positive answer is suggested by studies introducing the concept of "equivalence" (or "interchangeability") [START_REF]Concentration-anity equivalence in gene regulation: convergence of genetic and environmental eects[END_REF]: this phenomenon -empirically discovered in a phylogeny study on sex determination in turtles and lizards [START_REF]Environmental Sex Determination in Reptiles: Ecology, Evolution, and Experimental Design[END_REF] -consists in the fact that a (great) change in gene expression can be equally induced by genetic mutations or by (extreme) environmental change, and is one of the strongest pieces of evidence in support of genetic assimilation [START_REF]Genetic Assimilation of the Bithorax Phenotype[END_REF].

Genetic assimilation

In other words, gene expression, the means through which biological information phenotypic trait xation due to a genetic change in regulation following a persistent selection for that trait, usually environmentally induced is processed, is indierent to its causes, let them be endogenous or external. If we consider variability in a phenotypic trait as a distinct phenotypic trait itself, then we should conclude that genetic and environmental factors might result in the same degree of phenotypic variability. As it will become evident later on, the focus of this work is phenotypic variation in isogenic bacterial populations, thus independent of genetic mutations as sources of variability at the phenotype level. Moreover, the study of bacteria rules out complications associated to using animals or plants as model organisms, such as long generation times, large genome size, polyploidy and sex.

For further simplicity, the (more general) problem of continuous traits tackled by quantitative genetics is reduced here to the case of alternative phenotypes. Phenotypic alternatives fall into two broad categories, in terms of the selective contexts that give rise to them and (in some cases) induce their expression: alternatives fundamentally due to the response to environmental heterogeneity or change, and alternatives expressed a priori, enabling to escape from strong intraspecic competition for resources (e.g. nutrients, space, or mates) [START_REF] We | Phenotypic plasticity and the origins of diversity[END_REF]. In either case, alternative phenotypes represent the epitome of the ability of living beings to respond and adapt to, or anticipate, any change in their surroundings [START_REF]Developmental Plasticity and Evolution[END_REF].

Increased levels of phenotypic heterogeneity can evolve in the laboratory, driven by experimentally imposed uctuating selection [START_REF]Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at dierent scales[END_REF][START_REF]Disturbance and diversity in experimental microcosms[END_REF][START_REF]Adaptive radiation in a uctuating environment: Disturbance aects the evolution of diversity in a bacterial microcosm[END_REF][START_REF]Experimental evolution of bet hedging[END_REF]. In a social context, where cells are arranged in groups of interacting elements, phenotypic heterogeneity can be at the basis of the division of labour between individuals and therefore in-crease, through group performance, the rate at which populations grow or the range of functions that they can perform [START_REF]Cheats as rst propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity[END_REF]. e role of selection regimes is there crucial: experimental evolution on the trans-generational persistence of heterogeneous collectives showed that, counterintuitively, a regime where the lowest tness phenotype at the cell level aributes an enhanced tness to the lineage (and thus has a greatest evolutionary potential) is favoured on the one where the low-tness phenotype is purged from the population pool [START_REF]Life cycles, tness decoupling and the evolution of multicellularity[END_REF]. Other cases where heterogeneity/division of labour emerged in the lab can be found in yeast evolution experiments [START_REF]Experimental evolution of multicellularity[END_REF].

Alternative phenotypes discrete options for a particular function, always divergent from each other due to selection under the dierent conditions of their expression Section 1.1.1 reviews what is known about the role of genes on the determination of phenotypes and their variability. In Section 1.1.2 the ability to tune the phenotype in response to the environment, called phenotypic plasticity, is discussed. Section 1.1.3 is devoted to detailing the role of stochasticity in the determination of phenotypic heterogeneity. Examples of alternative phenotypes, and a review on the possible mechanisms underpinning their expression and evolutionary consequences are expounded in Section 1.1.4. Finally, the role of mechanisms allowing microbial populations to transfer information throughout generations is discussed in Section 1.1.5.

e genotype-to-phenotype relationship

e genotype is at the same time the physical substrate and the information at the basis of phenotypic determination. All factors linking the genotype with the expression of phenotypes are of extreme importance for evolution.

Since the Danish botanist and genetics pioneer William Johannsen in 1906 formalized the relation between genotype and phenotype (later described as a "map"), the mechanisms shaping and controlling it have been the subject of intense debate [START_REF]From genes to phenotype: dynamical systems and evolvability[END_REF][START_REF]Genotype-phenotype mapping and the end of the 'genes as blueprint' metaphor[END_REF]. Although a "one genotype, one phenotypic trait" correspondence is oen assumed for parsimony and simplicity, a large body of experimental observations indicate that in many important circumstances tno univocal relationship between the genotype and expressed phenotype can be established, for example in populations living in unpredictable environments.

It is well known that genes and their level of expression aect not only the mean phenotypic trait values (making them more or less adapted to the specic environment), but also their variability. eoretical and experimental studies indicate the existence of a positive correlation between the variability of a phenotype across a population and the average response of such phenotype to a given genetic change. Kunihiko Kaneko and collaborators performed an evolutionary experiment in bacteria in which they selected for increased uorescence of a protein and measured a positive correlation between the phenotypic uctuation of the uorescence over clone bacteria (inter-individual variability) and the speed of uorescence evolution (response to the genetic change) [START_REF]On the relation between uctuation and response in biological systems[END_REF]. In other words, the closer the system is to "perfect" adaptation, the lower is the trait improvement due to mutations, as well as the variance of the trait variation around the mean phenotype, a conclusion which is analogous to Fisher's theorem on gene and trait variation [START_REF]Genetical eory of Natural Selection[END_REF].

e role of environment: phenotypic plasticity

Phenotypic (intraspecic) variation can be classied according to dierent properties: its responsive/stochastic character [START_REF]Evolution of Phenotypic Variance[END_REF], the continuous/discrete nature of the trait [START_REF]Phenotypic plasticity in development and evolution: facts and concepts. Introduction[END_REF], or depending on whether the phenotypic variability has a purely genetic origin or not. About the last categorization, in 1963 Mayr introduced a distiction between polymorphism (genetically-induced phenotypic heterogeneity) and polyphenisms (nongenetically-induced phenotypic heterogeneity), which can be regarded as the extreme ends of a continuous spectrum of phenotypic outcomes due to genes, environment and their interaction.

Phenotypic plasticity the ability of an organism to react to an environmental input with a phenotypic change When dealing with environmentally-induced variation alone, phenotypic heterogeneity is usually named phenotypic plasticity. Phenotypic plasticity is the ability of a single genotype to produce more than one alternative form of morphology, physiological state, and/or behaviour in response to the environmental conditions [START_REF] We | Phenotypic plasticity and the origins of diversity[END_REF]. Plasticity is a concept borrowed from developmental biology, and it can be interpreted as time-dependent intra-individual variability [START_REF]Developmental Plasticity and Evolution[END_REF].

In other words, one given trait (and, by extension, also a strain or a population) is plastic if the possible phenotypes produced by that single genotype when exposed to dierent environmental conditions are more than one [START_REF]Phenotypic plasticity and evolution by genetic assimilation[END_REF][START_REF]Phenotypic plasticity in development and evolution: facts and concepts. Introduction[END_REF]. Together with control mechanisms like genetic canalization and developmental stability, plasticity contributes to the tuning of phenotypic variation induced by all the sources of variability (genes, environment and stochasticity). It also modulates the level of competition between sympatric populations [START_REF] We | Phenotypic plasticity and the origins of diversity[END_REF].

e role of stochasticity: from noise to bet hedging

Finally, some instances of phenotypic heterogeneity cannot be ascribed neither to genes, nor to the environment or their interaction, and appear to be generated by random processes: stochastic phenotypic heterogeneity is found both in continuous traits (e.g. seed dormancy in annual plants [START_REF]Optimizing reproduction in a randomly varying environment[END_REF]), and in discrete ones (e.g. the ospring size in chicken [START_REF]Environmental unpredictability and ospring size: Conservative versus diversied bet-hedging[END_REF]).

Stochasticity is generated at the molecular scale by uctuations in the number of key cellular components, such as transcription factors in gene expression [START_REF] Go | Tunability and Noise Dependence in Dierentiation Dynamics[END_REF][START_REF]Functional roles for noise in genetic circuits[END_REF]. Noise in gene expression has been classied into extrinsic or intrinsic [START_REF]Intrinsic and extrinsic contributions to stochasticity in gene expression[END_REF][START_REF]Stochastic gene expression in a single cell[END_REF]: extrinsic noise refers to stochasticity in gene expression due to uctuations in other cellular compounds or processes (cell age, cell cycle phase) aecting the expression of the gene of interest, while intrinsic noise consists in the stochasticity in the expression of a particular gene all other factors being equal. Intrinsic variability is typically aributed to stochastic uctuations in the number of molecules involved in gene expression, when these are present in small numbers within cells.

Noise in gene expression can underpin heterogeneity only under certain genetic network architectures [START_REF] Go | Architecture-dependent noise discriminates functionally analogous dierentiation circuits[END_REF][START_REF]Noise Propagation in Gene Networks[END_REF][START_REF]Eect of Phenotypic Selection on Stochastic Gene Expression[END_REF]. Seemengly, some of these modular gene regulation topologies, called motifs, evolved across dierent clades due to the tness increase that they can supply to the organism [START_REF]An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF]. Furthermore, noise in gene expression might bestow a selective advantage to organisms under stress, as high levels of uctuations can generate a library of dierent metabolic possibilities, thus phenotypic diversica-tion. Noise-induced enhancement in a population's adaptive potential highlights the potentially fundamental role of stochastic mechanisms in the evolution of microbial survival strategies [START_REF]A chance at survival: Gene expression noise and phenotypic diversication strategies[END_REF].

For the scope of this work, the most relevant adaptive value of stochastic phenotypic heterogeneity resides in the fact that it allows some individuals of a population to survive sudden changes in selective conditions, thereby eliciting persistence of the underpinning genotype in ever-changing, unpredictable environments. In this perspective, the stochastic generation of variant phenotypes is interpreted as a bethedging strategy [START_REF]Hedging one's evolutionary bets[END_REF] (see [START_REF]Bistability, epigenetics, and bethedging in bacteria[END_REF] for a review).

Bet hedging

In adaptive bet hedging, the mean individual tness of an isogenic population or random assignment of the possible phenotypes to recurrent but unpredictable environments, on the chance that some will fall into an environment where they are adapted and thus save the lineage from the decline or extinction brood is lowered by the expression, in some individuals, of maladaptive phenotypes. Rather than those perfectly adapted to their current environment, though, selection may favor populations expressing some of those phenotypic alternatives, thus reducing the chances of a complete failure in the future. In other terms, homogeneous populations adapted to the most favourable environment (the "good year specialists") maximize their arithmetic tness, while by adaptive bet hedging a population maximizes the tness geometric mean over the set of possible environmental conditions.

Bet-hedging strategies can enhance the success of microbial infections, with populations of infectious microbes performing division of labour in order to optimize timing and spreading of their infections. is was observed for populations of Salmonella typhimurium [START_REF]Self-destructive cooperation mediated by phenotypic noise[END_REF][START_REF] Re | Stabilization of cooperative virulence by the expression of an avirulent phenotype[END_REF] and Pseudomonas aeruginosa [START_REF]Pseudomonas biolm formation and antibiotic resistance are linked to phenotypic variation[END_REF]. Typically, such populations are poorly susceptible to classic countermeasures like antibiotics exposure, the most noteworthy example being persistence to antibiotics treatment in E. coli [START_REF]Bacterial persistence as a phenotypic switch[END_REF].

eoretical and experimental studies show that bet hedging evolves as a response to unpredictably uctuating environments over a time scale usually longer than a generation time. Other solutions are instead preferable with other paerns of environmental variation. When the changes in the environmental conditions are predictable, then genetically encoding for a sort of developmental program, or heterochrony [START_REF]Ontogeny and phylogeny[END_REF], might be a preferred strategy. When the changes occur on a time scale faster than individual generation time, thus "detectable" by single individuals, sensing is the preferred strategy [START_REF]Phenotypic diversity, population growth, and information in uctuating environments[END_REF]. Spatially heterogeneous enviroments as well favour genetically-driven dierentiation (polymorphisms) over bet hedging [START_REF]What is bet-hedging?[END_REF].

Alternative phenotypes and switching

As reviewed in the previous Sections, phenotypic heterogeneity shows a great deal of variety in terms of determinants and functions. Here and throughout this work, I focus on a simple yet general instance of phenotypic heterogeneity, that is the case of discrete phenotypic states for qualitative traits, also known as polyphenisms or alternative phenotypes. Alternative phenotypes can either be induced by environmental cues, or stochastically determined [START_REF]Developmental Plasticity and Evolution[END_REF]. e expression of alternative phenotypes can be seen as a clear manifestation of the "principle of divergence" [START_REF]On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life[END_REF]: the advantage of adopting opposite, extreme phenotypes or tactics enables individuals to escape, partially at least, competition with conspecics that would otherwise be their closest rivals.

In the microbial domain, alternative phenotypes are everywhere. Instances of alternative phenotypes are oen distinguished between responsive and stochastic. Responsive alternatives are elicited by the assessment of the environmental conditions through sensing mechanisms, and generate a response to match the new environment. Stochastic alternatives rely on the intrinsic stochasticity of the gene circuits involved in the determination of the phenotype of interest, and allow microbial populations to hedge their survival bets and prevent extinction in the case of very rare or completely unpredictable events. One of the most fascinating example of responsive alternative phenotypes in microbes is quorum sensing [START_REF]Bacterial quorum sensing: its role in virulence and possibilities for its control[END_REF]. In pathogenic bacteria, the response to population density can for instance consist in the ability of tuning the transcription of genes related to virulence [START_REF]Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: e luxS gene is necessary for expression of genes in pathogenicity island 1[END_REF][START_REF]Self-destructive cooperation mediated by phenotypic noise[END_REF], allowing some bacteria to maintain a benign persistent infection in their host. Such persistence possibly facilitates the evolution of mutualistic relationships [START_REF]orum Sensing Aenuates Virulence in Sodalis praecaptivus[END_REF].

In turn, examples of noise-generated phenotypic bistability can be found in bacterial persistence in Escherichia coli and genetic competence in the soil bacterium Bacillus subtilis. Persistence is provided by a phenotype that is rarely expressed in bacterial isogenic populations. Cells in the persistent state are characterized by a very low growth rate but also by the capacity to stand exposure to antibiotics for a very long time. Once the antibiotics cycle is over, these cells restore normal cell division, therefore allowing the genotype to survive. Populations grown from such surviving bacteria are not resistent to antibiotics, and the proportion of susceptible cells does not change aer the rst cycle of antibiotics, which proves the phenotypic nature of the switch between the persistent to the susceptible state and vice versa [START_REF]Bacterial persistence as a phenotypic switch[END_REF].

In stationary phase, around 10% of cells in genetically identical B. subtilis populations gain the ability to take up naked DNA from the environment (genetic competence). Bistability results from noisy expression of the comK gene: while in exponential phase its product ComK is rapidly degraded in all cells, when stationary phase is reached, a quorum sensing cascade leads to the expression of ComS, a protein that protects ComK from degradation. Cells reaching a threshold level of ComK spontaneously switch to the competent state (and those that drop below the ComK threshold switch back to the non-competent state) ( [START_REF]Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop[END_REF], reviewed in [START_REF]Bistability in bacteria[END_REF]).

It should be pointed out, however, that such a distinction between responsive and stochastic switching is nothing but an oversimplication, as sensing and noise are often tangled mechanisms. An example is provided by diauxic shis, i.e. the production of morphologically distinct dormant stages in response to starvation [START_REF]e growth of bacterial cultures[END_REF][START_REF]Enzymatic adaptation in bacteria[END_REF]. e classic view identied its main cause in the modication of metabolic uxes induced by the exhaustion of one nutrient source, while recent studies on Lactococcus lactis and Klebsiella oxytoca revealed how much stochasticity and response can be intertwined [START_REF]Bet-hedging during bacterial diauxic shi[END_REF][START_REF]Phenotypic heterogeneity driven by nutrient limitation promotes growth in uctuating environments[END_REF]. Lactococcus lactis presents populations able to grow on two sugar sources always present two coexisting stable cell types with alternative metabolic strategies. e fraction of each metabolic phenotype depends on the level of catabolite repression and the metabolic state-dependent induction of stringent response, as well as on epigenetic cues [START_REF]Bet-hedging during bacterial diauxic shi[END_REF]. ese examples of environment-dependent stochastic bistability nd all a common factor in the presence of growth rate dierences, which result on an eective reduction of population-averaged production of cells in exponential phase. I will tackle this problem in Chapter 3.

Whatever the mechanisms underpinning their behaviour, phenotypically switching microbial populations are oen described in terms of multistable systems whose global state (the ensemble of the variables2 of the system, like population size and frequency of the alternative phenotypes across the population) depends on few environmental or internal parameters [START_REF]Bistability in bacteria[END_REF]. Multistability encompasses the concepts of uctuation (the variance of some quantity) and response (the average change of that quantity for a given parameter change). With a theoretical approach, Kaneko and collaborators proposed a proportionality relationship between uctuation and response in biological systems, analogous to the uctuation-dissipation theorem in physics [START_REF]On the relation between uctuation and response in biological systems[END_REF], suggesting a quantitative way to interpret evolutionary strategies such as the production of extreme phenotypes [START_REF]How selection aects phenotypic uctuation[END_REF].

A most striking signature of multistability is hysteresis, whereby the history of the system inuences its response to a same input or signal [START_REF]Bistability, epigenetics, and bethedging in bacteria[END_REF]. As environmental conditions (e.g. concentrations of available nutrients, or selective agents) change, relative frequencies of phenotypes in a phenotypically heterogeneous isogenic microbial population are susceptible to vary in a hysteretic fashion, as was shown for the expression of the lac operon in Escherichia coli [START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF], or genes subjected to mutual repression in a synthetic circuit [START_REF]Construction of a genetic toggle switch in Escherichia coli[END_REF].

At the cellular level, both responsive and stochastic polyphenisms work through a mechanism that makes individuals change their phenotypic state: I refer to any kind of process allowing the transition between discrete alternative states with the term "switch". Typically, individual cells in microbial heterogeneous populations switch phenotype on a temporal scale faster than that of genetic mutations (see [START_REF]Emergence of phenotype switching through continuous and discontinuous evolutionary transitions[END_REF] and references therein). Such a time scale depends on that of environmental change, directly in the case of responsive switching, and indirectly for stochastic bet-hedging strategies [START_REF]Phenotypic diversity, population growth, and information in uctuating environments[END_REF].

In either case, switching has an inuence on tness and long-term population growth [START_REF]Stochastic switching as a survival strategy in uctuating environments[END_REF] whenever the alternative phenotypes are not equivalent (neutral) with respect to the environment. e long-term success of an exponentially growing population can be assessed on the basis of the probabilities of switching between phenotypes [START_REF]Individual histories and selection in heterogeneous populations[END_REF]. Indeed, if one of the two phenotypes is more adapted than the other to a given environmental state, it will grow faster and/or reach a higher population size in that environment, while the reverse occurs when conditions become favourable to the other phenotype. e average growth rate of the isogenic population of switchers, which can be computed as the weighted average of the growth rate of its phenotypically diverse components, is therefore inuenced by the population composition.

Non-genetic trans-generational phenotypic "memory"

Due to its relevance in the study of phenotypic variability in bacterial populations, in this Section I present and discuss another main topic of modern evolutionary synthesis: the heritability of the phenotype, that is the trans-generational persistence of phenotypes, herein also referred to as non-genetic "memory". Indeed, (each kind of) variability needs to be heritable in order to be the raw material for selection. As proved by the ubiquitous existence of epigenetic mechanisms (even excluding behaviour or cultural transmission), heritability in its broader sense is partly non-genetic and has a very strong impact on evolution [START_REF]Evolution in Four Dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life[END_REF]. In other terms, the problem consists in answering the following question: How does the behaviour of single cells scale up to history-dependence at the population level?

In the presence of stochastic phenotypic switching, it is usually possible to associate characteristic persistence times to each of the possible phenotypic states. Experimental evidences on microbes showed that there exist two main qualitatively dierent classes of phenotypes in terms of their persistence time distributions across the members of the population [START_REF]Memory and modularity in cell-fate decision making[END_REF]: "memoryless" states (whose duration follows a negative exponential distribution, like radioactive decay), and "time-controlled" states (whose duration is distributed around a characteristic persistence time). In either case, an average persistence time can be dened: when such a characteristic time scale exceeds the generation time, then the phenotypic persistence can be interpreted as the result of trans-generational memory mechanisms.

When the division rate of the individual depends on its phenotypic state (thus when the tness of the population depends on inter-individuals heterogeneity), tuning the time scales of the switch between alternative states and the ecacy of phenotypic "memory" becomes essential for microbial populations to cope with the inevitable changing nature of their environments [START_REF]Adaptive Advantage of Phenotypic Memory in Changing Environments, Philosophical transactions of the Royal Society of London[END_REF]. Many examples about multiple phenotypes associated with trans-generational "memory" support this idea: microbial populations are known to respond faster to a change of nutrient source when the forthcoming nutrient source has been presented in the recent past ("nutrient shis", [START_REF]Memory and Fitness Optimization of Bacteria under Fluctuating Environments[END_REF]), and to display increased survival to a given level of stress when previously exposed to sub-lethal levels of the same stress ("stress response", [START_REF]Evolution of stress response in the face of unreliable environmental signals[END_REF] and [START_REF]Response of single bacterial cells to stress gives rise to complex history dependence at the population level[END_REF]).

As I will discuss in detail in Section 1.3, P. uorescens is an excellent biological model organism to study phenotypic heterogeneity and trans-generational persistence of the phenotype: several phenotypically heterogenous phenotypes have been obtained through experimental evolution in controlled conditions, and the phenotypic states that they can express persists for several generations. ese features make this bacterium an ideal candidate to study the relation between phenotypic heterogeneity and population eco-evolution.

eoretical models of phenotypic heterogeneity

If the "book [of Nature] is wrien in mathematical language" [40], biology makes no exception. e study of living systems is all about the assessment of variations (in number, shape, paern. . . , both in time and in space) and, although biology had remained a mostly observational and conjectural discipline for centuries, only rigorous quantication and analysis has so far permied to compare and discuss the results on an objective ground.

Models, i.e. convenient schemes of reality, can be eective tools to investigate natural phenomena in a systematic way, as they spell out the hypotheses of a given interpretation framework, and make testable predictions. When the relations between the qualities of the object of study are wrien in mathematical terms, the expression mathematical model is used. eir formalism must accomodate the characteristics of the system to be studied and be appropriate to answer the relevant questions. Classic examples can be found in the use of systems of ordinary dierential equations for the population dynamics of two interacting species [START_REF]Analytical Note on Certain Rhythmic Relations in Organic Systems[END_REF], or in the application of agent based modelling to the study of collective motion [START_REF] Flocks | herds and schools: A distributed behavioral model[END_REF].

e elaboration of a mathematical model proceeds by inductive reasoning, and aims to an arbitrarily good description of the phenomena of interest. Once aained the desired level of precision in its descriptive power, a mathematical model is queried for quantitative predictions about the behaviour of the real system under dierent conditions, whose correctness and accuracy can then be experimentally tested. e analysis of the deviations between theoretical predictions and results of the experimental tests usually reveals to be useful for the renement (or, eventually, the uer refutation) of the model itself.

In this Section, I discuss the variety of approaches typically used to describe the generation and the maintainance of phenotypic heterogeneity in microbial populations. I will disregard the case where evolved regulatory units (such as operons and regulons) enable an almost immediate adaptation to a new environment [START_REF]Genetic regulatory mechanisms in the synthesis of proteins[END_REF], corresponding to homogeneous populations in xed environmental conditions. Instead, my focus will be on populations with a standing phenotypic diversity, where cells cannot tune exactly their state to match the surrounding environment.

Concerning the mechanisms of switching underpinning sustained heterogeneous populations at xed environmental conditions, dierent possible criteria of classication can be used. e most relevant for the aim of this work concerns the relationship between the intrinsic stochasticity of the system and the role of external factors. I start by discussing a rst case where the switching behaviour has only stochastic causes, and the environment can have consequences on the dierential survival probability of the alternative phenotypes (context-independent switch, Section 1.2.1). I then focus on a second class of models where changes in the environmental conditions aect both the expression of the alternative phenotypes and their survival (contextdependent phenotypic switch, Section 1.2.2). As more thoroughly examined in Chapter 3, the relevance of the classication of phenotypic switches according to the role of the environment resides in the dierence in the resulting temporal dynamics of the phenotypic variability across the population (Fig. 1.1). 

Pure stochastic switchers

In models where all extrinsic sources of variability are neglected, the switching behaviour is characterized by constant rates of transition between phenotypic alternatives. erefore, the typical way of modelling it is to consider the switch between the possible states as a Markovian process with xed transition rates [START_REF]Optimality and adaptation of phenotypically switching cells in uctuating environments, Physical Review E -Statistical, Nonlinear[END_REF]. As all other Markovian processes, this does not display any kind of memory.

Dealing with pure stochastic switching does not mean that the environment has no eect whatsoever on the system: for example, the tness of alternative phenotypes may be dierentially aected by the state of the environment (usually summarized by one or few environmental proxies), in terms of rate of survival or division.

Models of pure stochastic switching behaviour typically aim at predicting the long-term growth rate and the evolution of the population under conditions of exponential growth, thus eectively neglecting transient periods and interactions between phenotypic state and demography [START_REF]Evolution of stress response in the face of unreliable environmental signals[END_REF]. e evolutionary benet of an environmentindependent stochastic switch strategy relies in dierentiating (bet hedging), in environments where the conditions do not change too frequently [START_REF]Modeling network dynamics: e lac operon, a case study[END_REF].

Many are the examples of systems modelled as pure stochastic switchers in the recent literature. One notable example is provided by a particular instance of bacterial persisters, that is the Escherichia coli high persistence hipQ mutant, isolated in a screen for high persistence to noroxacin treatment [START_REF]Mutants of Escherichia coli K-12 Exhibiting Reduced Killing by Both inolone and 3-Lactam Antimicrobial Agents[END_REF]. Balaban et al. showed that their phenotypic dynamics is well described by a model with constant switching rates between the persistent and the normal cell state, and characterized by one order of magnitude of dierence between the normal cell type's division rate and that of the persistent state. Such a dierence was observed to occur before and aer the antibiotic treatment, indierently [START_REF]Bacterial persistence as a phenotypic switch[END_REF].

e relationship between the environmental uctuations and the stochastic switch are also very important for the long-term tness of the population: a seminal paper by Kussell & Leibler mathematically proved that the optimal strategy for a population of phenotypically switching microbes consists in tuning the inter-phenotype switching rates to the frequency of environmental change [START_REF]Phenotypic diversity, population growth, and information in uctuating environments[END_REF]. is was aerwards conrmed in an experimental study where fast-and slow-switching populations of Saccharomyces cerevisiae competed in both slowly and rapidly changing environments [START_REF]Stochastic switching as a survival strategy in uctuating environments[END_REF].

e feedback between the environment and the switching strategies makes a full circle when the environment is responsive to the state of the population, for example in the case of "catastrophic responsive environments" [START_REF]Switching and growth for microbial populations in catastrophic responsive environments[END_REF], analogous to some instances of host immune response [START_REF]Adhesion and entry of uropathogenic Escherichia coli[END_REF]. A theoretical model by Allen and collaborators explored the scenario in which the individuals can switch between a fast-growing but susceptible state and a slow-growing non-susceptible one, and in which the environmental state ips and strongly reduces the fast-growing susceptible subpopulation with a probability depending on the dierence between its relative size in the population and a given threshold. ey found that, when the environment is responsive, two alternative strategies can be followed to maximize the population tness: never switch to the non-susceptible state (and thus maximize growth), or switch at an optimal rate. e degree of the sharpness of the environmental response to the population state aects both the optimal switching rate and which of the two strategies is the most favourable [START_REF]Switching and growth for microbial populations in catastrophic responsive environments[END_REF].

Context-dependent switchers

With respect to mathematical models of pure stochastic switch, allowing the switch to be aected by the environmental context can lead to more complicated phenotypic dynamics, which can display dependence on the previous states explored by the system, and therefore bearing evolutionary consequences.

ese models interpret the interaction between cells and environment as the result of the mediation of cell physiology, via metabolism, genetics, or a combination of the two. Measurable properties such as growth rate, rate of synthesis or degradation of proteins, and concepts such as density-or frequency-dependence, are then introduced to explain the behaviour of heterogeneous populations [START_REF] . L S | Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population[END_REF]. e level of "resolution" can scale up to describing how genes or gene networks inuence the cell response to the environmental inputs [START_REF]An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF][START_REF]Growth Rate-Dependent Global Eects on Gene Expression in Bacteria[END_REF].

A quintessential case of environment-dependent switch was identied by Balaban et al. in Escherichia coli hipA7 mutant [START_REF]/i>, a newly recognized gene of <i>Escherichia coli </i>K-12 that aects frequency of persistence aer inhibition of murein synthesis[END_REF]. e bimodal distribution of growth rates in the hipA7 population, which can be appreciated also prior to the environmental trigger (in that case, antibiotic exposure), appears to be at the basis of the phenotypic variability: aer the antibiotic ceases to be provided to the population, persister cells exit their state of arrested growth and can generate a newly sensitive population [START_REF]Bacterial persistence as a phenotypic switch[END_REF]. Balaban et al. decided to model this system as a two-state chain where the two transition probabilities can each assume two xed dierent values, depending on the presence or absence of the antibiotic. Moreover, the switch is unidirectional in the exponential regime of population growth, the transition rate to the persistent state being set to zero [START_REF]Bacterial persistence as a phenotypic switch[END_REF].

Other known examples of models of microbial responsive diversication through phenotypic switching can be found in the study of the operon lac, whose discovery by Jacob and Monod [START_REF]Genetic regulatory mechanisms in the synthesis of proteins[END_REF] set the bases for the extraordinary development of molecular and systems biology. Across the decades, the case study of lac operon in Escherichia coli inspired the development of mathematical models at the dierent levels of description, from population dynamics, to cellular metabolism and gene expression, as reviewed in [START_REF]Modeling network dynamics: e lac operon, a case study[END_REF]. In pivotal works on the lac operon switch, single-cell imaging allowed to unveil the distribution of the individual phenotypes across an isogenic population. Environmental conditions, in terms of extracellular concentrations of carbon sources, were shown to elicit a hysteretic response. A model by Ozbudak et al. provided a quantitative and predictive description of the intracellular state's dependence on lactose availability, in the form of a bistable dynamical system [START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF].

In biological systems of context-dependent switch, trans-generational "memory" of the individually-expressed phenotypic states can take the form of hysteresis due to the gene networks wiring conferring an intrinsic bistability to the system [START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF]. Again, the relation between the time scales of the switch and of the environmental variation can have implications on the evolutionary time scale: Lambert et al. showed that all possible combinations of the average duration and variability shape a phase diagram for memory optimization where evolutionary phase transitions between "constitutive", "memoryless" and "nite memory" responses can be dened [START_REF]Memory and Fitness Optimization of Bacteria under Fluctuating Environments[END_REF].

To conclude, in this scenario phenotypic heterogeneity is an observable changing dynamically in time, which means that a complete characterization of the system requires the assessment of variability both across individuals and in time. Environmental change can be determined by the growth of the population itself, as actually happens to microbial populations in less articial seings than those devised to study only the stochastic or the responsive component of a switch. In the next Section, I present Pseudomonas uorescens as an appropriate model system for this study.

Pseudomonas fluorescens switchers: a model system for diversity

Pseudomonas uorescens is a common plant-colonizing, aerobic bacterium [START_REF]Physical and genetic map of the Pseudomonas uorescens SBW25 chromosome[END_REF], which has been widely used in evolutionary genetics because of its ability to rapidly generate a wide variety of mutants under novel environmental conditions [START_REF]Adaptive evolution of highly mutable loci in pathogenic bacteria[END_REF]. Mutants strains are easily screened by examining the morphology of clonal colonies grown on agar plates. Wild-type strains indeed form smooth translucent colonies with a regular round shape. Mutants, on the other hand, typically display a variety of wrinkled, rugged colony shapes that are generated when cells secrete unsoluble compounds, such as colanic acid or cellulose. ese compounds also elicit identication of mutants at the single-cell level. Selection for survival in unstructured and structured environments showed that while the wild type morphology was maintained over evolutionary time in the the former case, spatial structure supported an extraordinary rapid diversication. Indeed, competition for limiting oxygen, consumed as the population grows to saturation, selects mutant genotypes that secrete polymers on the scale of a few days. ese "Wrinkly Spreader" mutants are particularly ecient in building a biolm to the airwater interface, thus creating a new niche from which wild-type cells are, temporarily at least, excluded. Biolm formation, and the related wrinkly colony morphology, are achieved by the excretion of cellulose, that acts as a "glue" able to keep cellular mats together and prevents them to sink by sticking to the vessel's walls [START_REF]Adaptive radiation in a heterogeneous environment[END_REF][START_REF]e causes of Pseudomonas diversity[END_REF].

Phenotipically heterogeneous isogenic strains have been subsequently evolved in two dierent set of experiments from the same wild type strain SBW25 in the lab of Paul Rainey. Of the two alternative phenotypes, one is always morphologically identical to the wild-type. However, the genetic underpinning and morphology of the alternative phenotypes depend on the features of the selection regime under which evolution took place.

Selection for phenotypic novelty at the moment of plating produced cells that were able to produce both smooth and wrinkled colony shapes, so that at every selection cycle a novel phenotype was produced even in genetically uniform populations [START_REF]Experimental evolution of bet hedging[END_REF]. Interestingly, this solution was found aer a number of generations when novelty was brought in by genetic mutations analogous to those observed in the previously mentioned adaptive radiation experiment [START_REF]Adaptive radiation in a heterogeneous environment[END_REF][START_REF]e causes of Pseudomonas diversity[END_REF]. However, once the potential of variation originated from knocking out unessential pathways was reduced, the best solution has been for cells to exploit stochastic variations of their phenotype.

Selection for survival in an experimentally imposed life-cycle, with alternating growth in structured and unstructured environments [START_REF]Life cycles, tness decoupling and the evolution of multicellularity[END_REF], gave rise to cells that alternated between a wild-type, smooth phenotype, and a WS-like phenotype, thus they were able to easily generate biolms when the environmental context gave to such an arrangement a selective advantage.

Although the complete genetic and molecular characterization of the second type of switchers is underway, both in the case of the exclusion rule and in that of the lifecycle experiment, the phenotype alternative to the wild type had similar features, and produced opaque sectors in growing colonies. However, as far as the rst experiment is concerned, as I will discuss more in detail later, the polymer that was excreted was colanic acid and not cellulose, because the exclusion rule gives no advantage to stickiness per se. I will call these "capsulation" switchers, because the excreted polymer forms a thick capsule outside the cell wall.

In the rest of this Section, I will present the genetic and metabolic underpinning of the laer type of Pseudomonas uorescens switchers, and provide more details on the experimental exploration of their phenotypic heterogeneity. Aer a brief description of the two phenotypes and a recall of the current knowledge about the mechanisms involved in the switch (Section 1.3.1), I detail the experimental evolution protocol giving rise to the Pseudomonas uorescens capsulation switchers (Section 1.3.2). en, I discuss the role of the genotype and of the environmental conditions on the switching behaviour (Section 1.3.3), and nally present the results of experimental observations which proved that phenotypic heterogeneity displayed by populations of switchers depends on the time of the observation and on the past history of the population (Section 1.3.4). ese observations were instrumental for the development of a mathematical model aimed at describing the observed phenomenology and infer its implications, which will be the object of the next Chapters.

e alternative phenotypes of the capsulation switchers

e alternative phenotypes expressed by the Pseudomonas uorescens "capuslation switchers" are called CAP-and CAP+. e CAP-phenotype corresponds to the wild type prevalent morphology, whereas the CAP+ phenotype is characterized by a massive capsule of excreted polymers that can be directly imaged by staining (Figure 1.2). Capsulated cells can be also identied by uorescent microscopy, thanks to the transformation of the switching strain with a uorescent marker, put under the promoter of the operon producing the polymer (see Chapter 2). e measure of this level of uorescence allows to quantify the fraction of cells in the population that have switched on the polymer production, either by direct imaging of uorescence under a microscope, or by automatic counting via FACS.

e capsulated phenotype CAP+ is expressed by around 1:10000 cells in wild type SBW25 populations, and its expression was found to be caused by the activation of an operon responsible for the production of colanic acid-like polymers [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF]. More in detail, transposon mutagenesis demonstrated that the structural basis of the capsule is a polymer encoded by a specic locus (Pu-3656-wzb). ere exists a link with smooth (SM) / wrinkly spreaders (WS) colony morphology heterogeneity: the WS mats are mainly made of ACP (acetylated cellulosic polymer), coded by a 10-gene operon called wss. e CAP+ polymer consists of a mix of ACP and an acidic polymer encoded by wzb, and was found to belong to the 5th group, that of the M-antigens [START_REF]Adaptive radiation in a heterogeneous environment[END_REF]. e biosynthesis of a variety of excreted polymers as a response, for instance, to stress is well-documented in other bacterial strains (e.g. Vibrio parahaemolyticus [START_REF] Eb L | Relation of Capsular Polysaccharide Production and Colonial Cell Organization to Colony Morphology in Vibrio parahaemolyticus[END_REF], Vibrio cholerae [START_REF]Vibrio cholerae O1 El Tor: identication of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biolm formation[END_REF]). 

e evolution of the capsulation switchers

Via a process of articial selection, Rainey and collaborators evolved Pseudomonas uorescens strains able to express the CAP+ phenotype at a much higher frequency with respect to the wild type (⇠ 10 1 vs ⇠ 10 4 ) [START_REF]Experimental evolution of bet hedging[END_REF].

e evolution experiment consisted in subjecting 12 identical populations of Pseudomonas uorescens SBW25 to successive rounds of alterned growth regimes and selection through single-colony boleneck based on phenotypic novelty, that is by restarting a new culture in fresh medium from the colony whose morphology was the most dierent from the prevalent one (Fig. 1.3, top panel). Aer nine rounds, in two lines out of twelve a noticeable increase in the frequency of uncommon morphotypes was observed. is shi coincided with the appearance of a switching mutant, which managed to be largely overrepresented among cells that survived the exclusion rule, thus rapidly making up the totality of the population.

When let grow for longer times on agar plates, such high-frequency switching lines produced sectored colonies (Figure 1.3, mid panel). e colony morphology reected two features of the cell-level phenotypic behaviour that I will more extensively treat in Chapter 3. First, individual cells are found in one of the two alternative phenotypic states (Fig. 1.3, boom panel). Second, since the lineage descending from a newly switched cell creates a sector in the colony, the phenotypic state must persist for several generations, so that the whole descendence of a cell tends to express, at least over a suciently short time scale, the same phenotype.

One of the main insights that the exclusion rule of the evolution experiment pro- vided about Pseudomonas uorescens CAP+/CAP-phenotypic switch was the role of contingency: each round of the evolution experiment led to the selection of a mutation giving rise to phenotypic novelty at the colony level, and each successive mutation participated in creating the genetic substrate for the last, decisive mutation to happen. Indeed, genetic studies provided the list of mutations needed to evolve the CAP+/CAP-phenotypic switch. e switching behaviour, however, could be directly obtained by articially inducing the last mutation on the right locus of the wild type genome [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF].

Re-evolved switchers

When dealing with microbes, it is possible to 'replay the tape of life' and explore the role of contingency in evolution [START_REF]Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli[END_REF]. In the case of the CAP switchers, aer each round of selection a sample from the selected, morphologically novel colony was taken and frozen. Restarting the evolution experiment from the immediate precursor of 1w4 (one of the two switching lines obtained), six more switching strains were evolved.

Each of the independently re-evolved strains displayed a high degree of phenotypic variability [START_REF]Evolutionary and molecular origins of a phenotypic switch in Pseudomonas uorescens SBW[END_REF]. e causal mutations all involved a couple of genes (carB and pyrH ) along the pyrimidine pathway, although they aect dierent loci (Fig. 1.4).

Figure 1.4: Genes involved in the nal mutation endowing Pseudomonas uorescens strains with the capacity of expressing the CAP+ phenotype at high frequency. Although the aected genes are always carB and pyrH, the loci where such nal mutations take place can vary across 1w4 and the switchers re-evolved from its direct predecessor (white arrows). Figure from [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF].

Such mutations seem to be responsible for a disequilibrium in the ux of UDP and UTP along the pyrimidine pathway, before a branching point where metabolites are partitioned between DNA/RNA production and colanic acid biosynthesis (Fig. 1.5). is checkpoint might be a safety measure to prevent cells from starting division without the minimum amount of resources to accomplish it [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF], and is thus likely to be related to the response of bacterial cells to starvation. As I will discuss later, modications of such response might involve an imbalance in a number of intracellular compounds, from precursors of biomolecules to ribosomes.

On the basis of these observations, a rst interpretation of the origin of the switching behaviour was given in [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF]: there may exist a threshold in the intracellular concentration of UTP, lower than the homeostatic value for the wild type cells, above which cells express the capsulated phenotype. For the mutant genotypes, for which such a homeostatic value might be lower, stochastic uctuations are enough to cross the threshold and switching to the capsulated state. e presence of control mechanisms, elicited when the polymer production is exceedingly high, might allow cells to recover to the CAP-state. e exact nature of such control mechanisms remains, however, unclear. 

Genetic and environmental sources of heterogeneity

e availability of several strains achieving, through the same path, the same ability to switch between the capsulated and the uncapsulated phenotypes, allows to address the genetic and environmental bases of heterogeneity within bacterial populations.

Dierent "switchers" can be quantitatively compared in terms of the amount of capsulated cells they produce, of their average growth rate or demographic dynamics. As explained in more detail in Chapter 4, Section 4.1.2, the switching strain 1w4 and the 6 re-evolved strains dier in their demographic features and in the frequency at which the alternative phenotypes are expressed. is may indicate that the degree of sensitivity of the switch to random uctuations varies depending on genetic background.

e conditions in which bacterial cultures are grown also aect both the average growth rate of the population and the proportion of capsulated cells. In isogenic populations of 1w4 grown in dierent environmental conditions, a higher proportion of capsulated cells was associated to lower temperatures, older cultures, and uracil enrichment in the medium (Jenna Gallie, Philippe Remigi and Paul Rainey, unpublished, and [START_REF]Evolutionary and molecular origins of a phenotypic switch in Pseudomonas uorescens SBW[END_REF]). However, no systematic study has so far been conducted to quantify how the population composition scales with an externally controllable parameter. erefore, a causal connection between the mechanisms underpinning the switch and the population-level outcome cannot be easily established. Some qualitative expectations based on the mechanistic picture illustrated in Section 1.3.2 have been nonetheless veried. According to Jenna Gallie's model cited above, when the UTP/UDP balance is altered by addition of UDP to the extracellular medium, the probability that stochastic uctuations bring the cell above the switching threshold is expected to increase. Accordingly, more capsulated cells are observed in UDP-enriched cultures. To what extent this is actually due an increased rate of transition to CAP+, rather than on a slowdown of the rate at which the CAP-phenotype is recovered, could not be assessed with this kind of measure.

Another expectation that has been only documented in a case of colony growth on agar, is that capsulated cells divide slower that non-capsulated ones. It is reasonable to assume that this holds true also in liquid medium, as the production of a bulky polysaccharide capsule should divert resources from growth, and thus entrain a cost. is individual cost should be measurable at the population level in terms of growth reduction, so that conditions giving rise to a higher number of CAP+ cells should be associated to a slower average growth rate, and may also reect in a lower cell concentration at stationary phase. In Chapters 3 and 4, I will discuss our current understanding of the relation between growth rate and phenotypic state of the population, and how some of these intuitions might be misleading when comparing populations in dierent phases of their growth.

A particular instance of contextual dependence of the phenotypic composition of a Pseudomonas uorescens switcher population is detailed in the following Section, and will constitute the benchmark for the theoretical work of Chapter 3 of this esis.

Time-and history-dependent phenotypic heterogeneity

Considering the dependence of the population phenotypic state on the environmental context, one can wonder to what extent a genotype denes the probability of nding cells in one of the two alternative phenotypes. In other words, whether it is possible to map the genotype not to one phenotype, but to a denite percentage of cells that are found in each of the phenotypic states. In this case, the phenotypic composition of the population could be considered, similarly to what happens in multicellular organisms with dierentiated cells, as a manifestation of the underlying genotype. Understanding when and how the environment acts on the determination of the population composition is essential for the comprehension of the selective advantage of a switching genotype.

As seen in the previous Section, Pseudomonas uorescens switching strains seem to respond to changes in the environment. In fact, for microbial populations grown in batch culture, the environmental state is determined not only by externally controlled parameters, but it is inuenced by the population demography itself. e possibility that population growth aects phenotypic composition was explored by Dr. Philippe Remigi and Prof. Paul Rainey at NZIAS, Auckland, New Zealand, in an experiment that I recapitulate here, and that will be described in detail in Chapter 3, where I propose a model for describing the observations. is experiment consisted in monitoring over several bacterial generations the total size and the proportion of capsulated cells in a population held in a closed reactor. While the population size followed a standard logistic growth, eventually aaining the stationary phase (Fig. 1.6, top panel), the proportion of CAP+ cells changed in time in ways that were not only qualitatively variable, but sometimes had dramatic non-monotonic variations (Fig. 1.6, boom panel). Even more interestingly, treatments initiated with the same cell density, but derived from cultures at dierent stages of their growth (early, mid, or late exponential phase) presented quantitatively and qualitatively dierent behaviours in terms of the temporal variation of their phenotypic composition. Indeed, whereas the culture replicated from an early exponential phase preculture underwent a gradual and slow increase in the fraction of capsulated cells aer resuspension in fresh medium, cultures replicated from precultures having reached later stages of growth expanded of several folds their fraction of CAP+ phenotype in just a few bacterial generations. Such fast augmentation then ended almost as abruptly as it originated, and at the onset of stationary phase the three cultures behaved alike, with the dierence that cultures initiated from an "older" preculture still conserved their higher percentage at the end of the experiment.

Introduction

To conclude, these results proved that a genotype does not univoquely determine the phenotypic composition of a population, but the whole phenotypes' frequency and population size dynamics are necessary to fully characterize a switching Pseudomonas uorescens genotype. In Chapter 3, I will present a mathematical model that, integrating the information on the metabolic nature of the switch, can quantitatively describe the observed time-and history-dependence of the CAP+ frequency, and proposes a possible link between population growth and phenotypic composition.

esis outline

Materials and Methods (Chapter 2) In the next Chapter, I present a compendium of the materials and methods employed to investigate phenotypic heterogeneity in Pseudomonas uorescens switching strains. e lists of the bacterial strains, plasmids, antibiotics, culture media and microscopy material used all along the experimental part of my work (Section 2.1) are followed by a review of the experimental techniques and protocols, with a particular focus on the genetic manipulations performed on the strains to mark the CAP+ phenotype with the green uorescent protein (Section 2.2). Finally, I review the numerical methods used to simulate the mathematical model and analyze the results of the experimental assays (Section 2.3).

eoretical Results (Chapter 3) In Chapter 3, I present and discuss the main theoretical results of my work. Aer the presentation of the general formalism used (Section 3.1), I prove that the coupling between population growth and phenotypic expression observed in the experiment of Section 1.3.4 cannot stem from a purely stochastic switch, even in the presence of a constant growth rate dierence between the two alternative states (Section 3.2). I therefore propose a deterministic mathematical model suggesting one simple way to implement context-dependence in the switch that can reproduce the observed nonmonotonous dynamics of the phenotypic composition of the population (Section 3.3). e results of the "overshoot" experiment are extensively discussed (Section 3.4) and quantitatively ed by the mathematical model (Section 3.5). Finally, I present the predictions of the model on phenotypic variability across populations characterized by dierent average growth rates (Section 3.6) and discuss the main implication of the results (Section 3.7).

Experimental Results (Chapter 4) Chapter 4 deals with the experimental observations that provided the premises of my theoretical work, and with the results of the experimental assays aimed at testing its validity. First, I present the evidences I collected about the existence of a signicant negative correlation between the average growth rate and the levels of expression of the CAP+ phenotype in exponential regime of growth (Section 4.1). Although the model of Chapter 3 predicts the negative sign of such correlation, I show that it cannot account for the most part of the observed variability in the CAP+ frequency, unless the ratio between the maximum switching rates depends on the growth rate in a nonlinear fashion (Section 4.2). Finally, I discuss a physiological interpretation of the mathematical model that might justify why such nonlinear scaling yields to an improved prediction of the degree of the variability in the expression of the CAP+ phenotype in exponentially growing populations of switchers (Section 4.3).

Discussion (Chapter 5) In the last Chapter I review the main results of this esis and discuss their implication on phenotypic heterogeneity in Pseudomonas uorescens. In particular, I explore the combined role of genetic, environmental and stochastic factors in the expression of the CAP+ phenotype and its variability. I end this work by puing into a general context the choice of modelling context-dependence through intracellular concentrations of proteins, as population growth alone can provide the sucient information on the environment to yield transient variations in the phenotypic composition of the population.

A contextualized the problem of phenotypic heterogeneity in microbial isogenic populations, the variety of mechanisms and that of the evolutionary consequences, in this Chapter I present the biological material used to perform the experimental part of my work, together with the genetic, microbiology and computational techniques acquired and employed to advance the project.

In Section 2.1 I inventory all the bacterial strains, plasmids, antibiotics, culture media and microscopy material I needed for the experimental side of this work. Section 2.2 is devoted to a review of the experimental techniques used and protocols followed, with a particular focus on the genetic manipulations performed on the switching strains to have the CAP+ phenotype marked with the green uorescent protein. Finally, in Section 2.3 I present the basic ideas behind the development of the numerical methods needed to simulate the mathematical model and analyse the results of the experimental assays.

Materials

Bacterial strains

e study of microbial phenotypic heterogeneity was experimentally addressed by means of a series of experiments on Pseudomonas uorescens strains characterized by a phenotypic switch related to the production of a capsule around the cellular wall [START_REF]Experimental evolution of bet hedging[END_REF]. Starting from the wild type SBW25, Rainey and collaborators evolved strains switching at high frequency via an experimental evolution protocol ("re-evolved switchers" see Chapter 1, Section 1.3.2 for details). Following the approach set by Jenna Gallie [START_REF]Evolutionary and molecular origins of a phenotypic switch in Pseudomonas uorescens SBW[END_REF], I contributed to transform seven of the re-evolved switchers by marking the capsulated phenotype with the insertion of gfp. A couple of specic Escherichia coli strains (donor and helper) were needed to accomplish this task. All bacterial strains used are listed in Table 2.1 and were stored at -80°C in 45% glycerol saline solution. Helper strain carrying pRK2013 plasmid (tra+, Km ) [START_REF]Evolutionary and molecular origins of a phenotypic switch in Pseudomonas uorescens SBW[END_REF] Table 2.1: Designations and characteristics of bacterial strains used.

Plasmids and transposons

Two plasmids were needed to realize the aforementioned insertion of gfp into the genome of the re-evolved Pseudomonas uorescens switching strains, called pRK2013 and pUX-BF13. e former is needed as a mobilization helper, so that the laer, the one inserting the gfp sequence thanks to the Tn7 transposon, could deliver the insert in the chromosome. e plasmids and the transposons used in this study are listed in Table 2.2.

Name Characteristics Reference

Plasmids pRK2013 Km R , IncP4, tra, mob; mobilization helper for tri-parental mating [START_REF]Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans[END_REF] pUX-BF13

Mini-Tn7 delivery plasmid, providing the Tn7 transposase proteins [START_REF]An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria[END_REF] Transposons Tn7 High-frequency bacterial transposon [START_REF]Tn7: a target sitespecic transposon[END_REF] Table 2.2: Designations and characteristics of plasmids and transposons used.

Antibiotics

ree antibiotics were needed in dierent phases of the project. Tetracycline and Nitrofurantoin were used aer the tri-parental mating process to select for the transformed bacteria (see later, Section 2.2.1). On the other hand, Gentamycin was added to all Pseudomonas uorescens switchers cultures to prevent the invasion of cells having lost the gfp insert. e antibiotics used in this study are listed in Table 2 Table 2.4: Designations and composition of culture media used.

Pseudomonas uorescens cultures were grown with shaking at 120 rpm at 28°C unless expressly mentioned. e culture microcosms consisted either of 250 ml glass microcosms containing 50 ml of culture medium or 50 ml Falcon plastic tubes containing 10 ml of culture medium. Overnight cultures were grown for 16 hours unless specied.

Microscopy materials

Cell-level microscopy was performed using a Zeiss Axio Observer inverted microscope. Samples were prepared on standard microscopy slides and mounted onto the high precision 130x100 Scanning Stage, surrounded by a heated chamber warmed at 28°C and at controlled air humidity. All images were collected through the Zeiss 60x oil immersion objective with 1.6x Optovar magnication changer and the Denite Focus.2 system for maintenance of focus over time. GFP proteins present in the samples were excited with the 495 nm line from a 230 W X-cite 120LED lamp and collected with a dichroic mirror (Chroma #49002) and a 525/50 nm emission lter. Images were acquired with a Hamamatsu ORCA-Flash4.0 LT Digital CMOS camera. e xyz position of the stage, the objective, the choice of the excitation light channel (phase contrast or GFP), the exposition time, and the camera were all controlled with Micro-Manager Open Source Microscopy soware.

Experimental methods

Bacterial conjugations

Bacterial conjugation is a mechanism of articially induced horizonthal gene transfer (inter-strain exchange of genetic material) by direct cell-to-cell contact or via pili. Individual cells of the so-called recipient strain receive mobilizable genetic material from the cells of the donor strain. Under certain circumstances, the presence of a third strain (helper) is needed to facilitate the process by providing a conjugative plasmid coding for the genes required for conjugation and DNA transfer (triparental mating).

In this work, triparental mating was used to transform Pseudomonas uorescens re-evolved switchers (Re1.2, Re1.4, Re1.5, Re1.8, Re2, Re12) with the insertion of a promoter-gfp-vector to mark capsule expression with GFP, as already accomplished on 1w4 by Prof. Rainey and Dr. Gallie [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF].

Triparental mating

Pseudomonas uorescens of various genotypes are crossed with a 1:1 mixture of DH5↵ pir carrying pUIC3 containing mutated DNA and an Escherichia coli helper strain DH5↵ (pRK2013) (tra+, Km ). 500 l of Pseudomonas uorescens cells in an Eppendorf tube are heat-shocked at 45°C for 20 minutes. 500 l of Escherichia coli donor in LB and 500 l of Escherichia coli helper in LB are mixed 1:1 and pelleted. Cells are washed once in 1 ml of LB broth and then resuspended in 1 ml LB broth. Following heat-shock, Pseudomonas uorescens cells are pelleted and resuspended in the Escherichia coli mix. Cells are again pelleted, resuspended in 30 l of LB broth, and the 30 l droplet transfered to the surface of an LBA plate, pre-heated to 28°C. e spot was allowed to dry before being transferred to the 28°C growth room to incubate overnight. e next day, spots are harvested by scraping up cells with the edge of a sterile tip and resuspending in 1 ml LB in an Eppendorf tube. Bacterial suspensions were diluted to 10 1 in 1 ml LB, and 25, 50, and 100 l aliquots (respectively) of each dilution (10 0 and 10 1 ) are spread onto LBA plates containing 10 g/ml tetracycline, and 0.1 mg/ml nitrofurantoin (NF). NF is prepared fresh when the plates are poured by dissolving 0.08 g of NF in 2 ml of DMSO and adding this to 800 ml of LB agar. Tetracycline selects for the pUIC3 vector in Pseudomonas uorescens, while nitrofurantoin selects against Escherichia coli. pUIC3 cannot replicate in Pseudomonas uorescens so all recombinants should have plasmid insertions in the cloned region of interest carried on pUIC3 (Fig. 

Biological assays

Optical density curves in bulk through spectrometry ree statistical replicates from each of the three biological replicates per strain per time point are prepared by extracting an aliquot of ⇠ 1 l of the the correspondent culture and diluted in fresh KB or KBS medium depending on the experiment. Optical density of each of the statistical replicates was then measured through a portable WPA Biowave spectrometer. e exact quantities of cellular culture and fresh medium were chosen as to obtain a dilution allowing to measure OD in the optimal range for the instrument (OD < 1).

Optical density curves in TiCan 96-wells plates ree statistical replicates for each of the three biological replicates of the eight strains were inoculated into 81 of the 96 wells of the plates at our disposal. e TiCan reader ran over 42 hours, geing optical density data every 10 minutes. Resulting growth proles were analyzed with simple routines wrien in the R programming language and devoted to perform linear t of the logarithm of the measured OD in a chosen time window (to select time points corresponding to exponential phase).

Flow cytometry

Flow cytometry allows a higher throughput in counting assays with the possibility, among the many options, to distinguish between cells expressing or not a uorescent protein.

Here I present the protocol designed by Dr. Philippe Remigi to assess the frequency of CAP+ cells in any sample of a growing population of Pseudomonas uorescens. For each of the eight analysed strains, three independent overnight cultures were prepared by inoculating KBS microcosms directly with glycerol stock, except for the only replica for the control strain 1w4 (without the GFP marker). Aer 24 hours one tube per strain was prepared: between 5 and 10 L of the night culture, previously washed and diluted in PBS, was vortexed and then added to 1 mL of PBS, adjusting the quantity according to the ow rate the uocytometer revealed during each premeasurement (which had to be around 1000 and 4000 particles per second). A blank sample (2 mL of PBS) was analyzed to get information about the intrinsic noise of the measurements. e machine was calibrated with the use of 350 L of CST, that is a solution of uorescent beads, whose intensity spectrum is well-known, in PBS.

Each tube was then passed to the ow cytometer until 50000 events (particles) had been revealed and measured, where cells were counted and sorted for the characteristics of their uorescent spectrum. e auto-uorescence of CAP-individuals and the GFP signal coming from CAP+ cells appeared on the screen as partially superposing gaussian proles.

Counting assays e counting technique developed by Dr. Jenna Gallie in her Ph.D. thesis to assess the frequency of capsulated cells in the population revealed to be extremely useful for the scope of this work, too. At the time point during exponential phase at which the measurement of the frequency of the CAP+ phenotype in the population is performed, ⇠ 2 l of the bacterial culture are put onto a microscope slide and covered with a plastic coverslip aer one minute (to let the sample dry a lile and force cells to adhere to the microscope slide). e so-prepared sample is brought under the Zeiss microscope, where phase contrast and GFP pictures were taken under the 60x objective endowed with a 1.6x Optovar magnication changer. Around 20-30 photos were collected for each biological replicate, for each genotype or temperature, so to reach a minimum statistics of bacteria per replicate (then estimated in around 500-1000 cells). e total number of cells, along with that of CAP+/GFP+ cells, was then established by automatic procedures through embedded ImageJ routines (segmentation and counting).

Time-lapse microscopy

rough time-lapse microscopy it is possible to track the growth of a microcolony of bacterial cells growing on agar pads and the phenotype expressed by the individual cells, over a long time span and in an automatic fashion. In this work, technical issues prevented me from eciently using time-lapse movies to assess the expression of the alternative phenotype. Nevertheless, time-lapse microscopy allowed me to test some hypotheses of the mathematical model about the role of the phenotype in the determination of the cellular division rate. Overnight cultures of the strains were started from -80°C, around 18 hours before the start of the acquisition of the rst images. e microscope slide had been carefully cleaned and then prepared by the application of an adhesive strip onto it, resulting in a well. en, ⇠ 350 L of 1.5% agarose KBS gel was poured into the well and immediately leveled by the superposition of another microscopy slide. Once the gel had cooled down and solidied, the upper slide was removed and the blue adhesive strip opened and cut to form a channel through which air could ow to let obligate aerobic P. uorescens bacteria live. Finally, ⇠ 1.5 L of a 10 3 dilution in KBS of the original night culture is added to both sides of the channel and, once dried out, covered with a thin microscopy slide which had to rmly adhere to the adhesive strip. e system is then ready to be observed at the Olympus microscope, where around 10 bacterial microcolonies (founded by a single cell) were photographed every 20 minutes for a total time of more than 6 hours. Growth of the microcolonies were assessed via the segmentation of the successive pictures with the ImageJ soware. e areas of the microcolonies, much simpler than the tracking of several divisions, was measured for every time point. As for the ImageJ algorithm, here are the steps followed to segment the les sorted out by the microscope soware:

• split gfp and phase contrast channels (an example of phase contrast image is presented in Fig. 2.2, top-le panel);

• Image ! Adjust ! Brightness/contrast;

• save images as 8bit;

• Process ! Substract background (30 pixel radius): images must be very clean, requiring to perform a series of this step when necessary;

• Image ! Adjust ! Brightness/contrast (Fig. 2.2, top-right panel);

• Image ! Adjust ! reshold: adjust the threshold to try to get as much surface as possible (keeping white background and black colonies, Fig. 2.2, boom-le panel);

• Process ! Binary ! Fill gaps (Fig. 2.2, boom-right panel);

• Analyze ! Measure particules (size: 0.01 1). Finally, the gaps of the so-created binary mask are lled in via another built-in function (boom right). e last image is then ready to be analyzed through the "Measure particles" command.

Numerical methods

Simulation of the dynamical system

e dynamical systems dened by the mathematical models of Chapter 3, developed to describe the transient phenotypic dynamics were simulated via ad hoc Python routines wrien by the Author. e rst part of such routines consisted of the declaration and the initialization of the main parameters and variables dening the model. Modular denitions of the functions followed (e.g. seing the functional form of the switching rates). Code modularity allowed to make the routines easily adaptable to dierent variations of the model. e system of ordinary dierential equations was integrated with the odeint routine present in the ScyPy Python scientic package. e plot of any output of the Python routines were produced through specic Python modules embedded in the main code. All Python routines were run through the Enthought Canopy 1.4.1 (Academic License version) graphical user interface.

Fit of the overshoot experiment

To evaluate the goodness of the mathematical models elaborated to describe and interpret the results of the overshoot experiment, I wrote specic Python routines comparing the experimental data with the theoretical predictions. Aer selecting those regions of the parameter space considered of particular interest given the biological assumptions of the models, an alternating direct search followed: successive combinations of the free parameters were simulated and the output (the temporal dynamics of the three variables (N, f, c)) evaluated in terms of the deviation from the measurements of the dynamics of the population size N and of the CAP+ frequency f . e combination of the parameters that best ed the experimental data was found by extracting, from the log le collecting the results, the one scoring the minimum 2 , through simple AWK scripts. 

Analysis of the results of the biological assays

CHAPTER 3 MODELLING NONLINEAR GROWTH-AND-SWITCH DYNAMICS

O

C is the study of Pseudomonas uorescens "switchers" (Chapter 1, Section 1.3) as a particular instance of context-dependent phenotypic switch. Aer having introduced the Pseudomonas uorescens "switchers" evolved by experimental evolution [START_REF]Experimental evolution of bet hedging[END_REF] as a convenient biological model system for the study of phenotypic heterogeneity (Chapter 1), I present here a general modelling framework to tackle the problem of how phenotypic heterogeneity varies in time in a growing population of switching units. Once introduced the general problematic and the mathematical tools, I carry out the comparison between the two classes of models discussed in Chapter 1, Section 1.2 in terms of their predictive power of the phenomenology presented in Section 1. 3.4, that is between mathematical models of context-independent and context-dependent phenotypic switch. e questions addressed in this Chapter are the following:

• Given the experimental observations on the temporal variation of phenotypic composition of growing populations of switchers, can their phenotypic heterogeneity be interpreted in terms of a context-independent stochastic switch?

• If not, which are the essential features that simple models of context-dependent phenotypic switching need in order to reproduce the experimental observations, in terms of the dynamics of the phenotypic composition of the population?

• What would a context-dependent switch mediated by internal concentrations imply on the variation of phenotypic expression across dierent genotypes characterized by dierent growth rates?

Aer having presented the general formalism in Section 3.1, in Section 3.2 I mathematically prove that the observed coupling between population growth and phenotypic expression cannot be the result of a pure stochastic switch, even in the presence of a constant growth rate dierence between the two alternative states. In Section 3.3 I propose a deterministic mathematical model corresponding to one simple way to implement context-dependence in such systems. By linking the phenotypic dynamics with demography through internal concentrations of proteins, the observed non-monotonous dynamics of the frequency of the two alternative phenotypes can be reproduced. e results of the "overshoot" experiment, whose salient features were reviewed in Chapter 1, Section 1.3.4, are extensively discussed in Section 3.4, and the mathematical model's quantitative t of such results are the subject of Section 3.5. Finally, in Section 3.6 I discuss the prediction, provided by the model, of the existence of a negative correlation between the growth rate and the expression level of the CAP+ phenotype in exponential phase, which will be experimentally tested in Chapter 4.

Representations and formalism

In this Section, I discuss which of the measurable quantities (observables) of the biological system are needed in a model describing a growing population of switching units (Section 3.1.1), introduce a general notation allowing a straightforward comparison between the classes of mathematical models discussed in the following (Section 3.1.2), and nally recall the experimental terminology that is used in this Chapter (Section 3.1.3).

From observables to variables and parameters

e rst phase in the elaboration of any mathematical model describing a natural phenomenon is the assessment of which measurable characteristics of the system, or observables, to take into account and how to partition those between variables (usually those assuming dierent numerical values during the observations) and parameters (intrinsic constants or accurately controllable properties of the system whose variation can qualitatively change the behaviour of the system).

In a study on phenotypic heterogeneity in growing populations of switching units, the observables related to the demographic state of the population (e.g. population size, the population growth rate) can be distinguished from those characterizing the phenotypic state of the population (e.g. the frequency of one phenotype, the time scale associated to the switch).

General modelling framework

In this work the analytical methods chosen for a quantitative description of growing populations of switching units belong to dynamical systems theory. In particular I make use of ordinary dierential equations, the most natural choice when dealing with the variation of continuous quantities in time.

Although at a rst thought the most straightforward way to model demography and the phenotypic state of the population is to track the time variation in the number of cells expressing the alternative states, in this work I make use of the alternative, equivalent description where the state of the system is wrien in terms of the total number of cells and of the frequencies of the alternative phenotypes.

e passage between the two formalisms can be easily demonstrated. Let N + and N be the total number of CAP+ and CAP-cells, respectively, R + (t) and R (t) the time-dependent maximal growth rates associated with the two phenotypes, and S + (t) and S (t) the (in general time-dependent) switching terms. e dynamics of the system in terms of numbers of CAP+ and CAP-is given by:

Ṅ+ = D(N + + N ) [R + (t)N + + S + (t)N S (t)N + ] (3.1) Ṅ = D(N + + N ) [R (t)N S + (t)N + S (t)N + ] (3.2)
where the change in the number of CAP+ (CAP-) cells is either due to growth or to a change in phenotype of CAP-(CAP+) cells. A density-dependent factor, called

D(N ) 2 [0, 1]
, is assumed to be equal in both growth and switching terms and thus factored out. is corresponds to the assumption that switching can only occur as long as cells can divide, and slows down as stationary phase is approached, as one would expect for any metabolically related cell process. By rewriting the system in terms of the total number of cells N = N + + N and of the fraction of CAP+ cells f = N+ N , the dynamical system dened by Eqs. 3.1 and 3.2 gives:

Ṅ = Ṅ+ + Ṅ (3.3) ḟ = Ṅ+ N N + Ṅ N 2 (3.4) which yields Ṅ = [R (t) + (R + (t) R (t)) f ] D(N )N (3.5) ḟ = D(N ) [(R + (t) R (t)) f (1 f ) + S + (t)(1 f ) S (t)f ] (3.6)
or, by dening the dierence in growth rate

R(t) = R + (t) R (t), Ṅ = [R (t) + R(t)f ] D(N )N (3.7) ḟ = D(N ) [ R(t)f (1 f ) + S + (t)(1 f ) S (t)f ] . (3.8) 
e total number of cells N thus follows a density-dependent growth of speed R (t)D(N )N , corrected by a time-dependent term if the two phenotypes have dierent growth rates. e frequency of the CAP+ phenotype changes due to both population growth and phenotypic switch. However, when the two phenotypes are identical with respect to growth, this dependence reduces to a density-dependent modulation of the switching rates.

Experiment-related terms

e terminology related to the experimental evidences presented in Chapter 1, Section 1.3.4 is here recalled, given its relevance in the construction of the mathematical models. Non-monotonic variations of the frequencies of the alternative phenotypes can be observed in populations of Pseudomonas uorescens "switchers". In this work, the term "overshoot" designates the transitory values assumed by one frequency exceeding its nal value. Aer the overshoot, the transitory values of the frequency below its nal value are indicated with the term "undershoot".

e "overshoot" experiment consisted of two successive rounds of growth, called 0 and 1. Round 0 corresponded to a preculture stage, during which identical populations of switchers were grown until they reached dierent population densities. Bolenecking these populations and diluting them to the same population density provided dierent inocula for the subsequent measurement stage (round 1). Measures of cell density (through optical density) and of population composition (through uocytometry) started aer these inocula were resuspended into fresh medium.

ree dierent treatments were realized, that diered only in the time of sampling in round 0, therefore in the age of the culture and its optical density. e names "low", "mid" and "high" will in the following designate experiments started on round 1 with inocula from early, mid, and late exponential phase of growth in round 0. Set aside this dierence in the history of the culture, all treatments undergo the same protocol. Culture in round 1 are started by dilution to the same initial cell density, which is suciently low for populations to recover exponential growth for several hours, before entering the stationary phase about 10 hours aer dilution. e mean population growth rate in exponential phase is indicated by ⇢. During the rst hours of exponential growth, an overshoot in the fraction of CAP+ cells was observed for the "mid" and "high" treatments. is term indicates a transient non-monotonic increase in the frequency, as illustrated in Fig. 3.1. When, aer the overshoot, the frequency of capsulated cells (CAP+) decreases below the level that it would assume at the end of the experiment, the term undershoot is used.

In the following Section, I will assess to which extent such experimental observations can be explained by simple models of stochastic switching, where the temporal variation of the switching rate is limited to a density-dependence common to the two phenotypes.

Models for context-independent switching

In this Section, three mathematical models of pure stochastic switching are presented (Fig. 3.2) and shown to fail to describe the basic features of the experiment. Indications about the missing characteristics needed to model the phenotypic dynamics of a growing populations of switchers will be drawn. 

Growth rate dierence, no switch ("dierential growth")

Looking for the most parsimonious set of hypotheses to explain the experimental observations presented in Chapter 1, Section 1.3.4, the simplest option consists in considering xed growth rate dierences between phenotypes, and that -in the shortterm at least -there is no switch in the cellular phenotype (Fig. 3.3). e rapid initial increase in CAP+ cells may thus result from a combination of a higher initial proportion of capsulated cells in the "mid" and "high" treatments, and a faster growth of the CAP+ phenotype. e frequency dynamics of capsulated cells would be driven in this case by the dierential demography of the two subpopulations.

If switching between phenotypic states is not allowed (S + (N, f ) = S (N, f ) = 0), then the equations ruling the dynamical system become:

Ṅ+ = R + (t)D(N + + N )N + (3.9) Ṅ = R (t)D(N + + N )N .
(3.10)

In terms of the total number of cells and of the fraction of CAP+ cells, I obtain:

Ṅ = [R (t) + R(t)f ] D(N )N (3.11) ḟ = D(N ) R(t)f (1 f ).
(3.12)

e expression for the temporal variation of the frequency of the CAP+ phenotype (Eq. 3.12) is slaved to demography through the density-dependence term D(N ), which is always positive. Such factor acts as a time scale modulation of the dynamics of frequencies, but it neither changes its equilibria, nor alters the sign of the variation of f , as it would be necessary to have an overshoot. e qualitative dynamics of the system is thus determined by the dependence of the frequency variation on the frequency itself. As no 1-D dynamical system can display a dynamics like the one experimentally observed, the equilibria being always attained monotonously, this model cannot explain the overshoot/undershoot dynamics. I can nevertheless discuss which stead-state is predicted by this model, and establish if such a model could be appropriate for describing the rst couple of hours of the experiment, when the population grows exponentially and the fraction of capsulated cells dramatically explodes.

Phenotypic equilibria in exponential phase

In early exponential phase, when D(N ) ' 1, Eqs. 3.12 and 3.11 become:

Ṅ = [R (t) + R(t)f ] N (3.13) ḟ = R(t)f (1 f ). (3.14) 
In early exponential phase the growth rates of the CAP+ and CAP-phenotypes are constant and equal to their maximum values r + and r , respectively. By leing ⇢ be the average growth rate ⇢ = r + f + r (1 f ) and dr the (constant) dierence in growth rate between CAP+ and CAP-dr = r + r , it follows:

Ṅ = ⇢N (3.15) ḟ = drf (1 f ). (3.16)
e exponential phase phenotypic equilibria (seing ḟ = 0 in Eq. 3.16) correspond to the xation of either phenotype: f ⇤ = 0 or f ⇤ = 1. ese phenotypic equilibria do not depend on the absolute growth rates, but only on their dierence: the fastest-growing phenotype gets xed in the population, again in contradiction with the experimental ndings.

antitative comparison with observations ough failing to describe the whole temporal course of the experiment, one could still think that growth rates dierences are still the factor most likely to account for the observed initial increase of CAP+ frequency f . For this reason, I made a quantitative comparison with the initial data of the overshoot experiment to estimate what should be the growth rate dierence dr compatible with the increase in frequency between the initial value and the rst measure. By solving Eq. 3.16, one obtains:

f (t 1 ) = f R0 e (r+ ⇢)t1 , (3.17) 
where ⇢ corresponds to the average growth rate ⇢ = r + f R0 + r (1 f R0 ), r + to that of CAP+ cells, t 1 the rst time point of round 1 and f R0 and f (t 1 ) the frequency of CAP+ measured at resuspension and at t 1 , respectively. Solving for r + yields:

r + = ⇢ + ln(f (t 1 )/f R0 t 1 (3.18)
and conversely for CAP-cells (whose frequency is given by 1 f (t)):

r = ⇢ + ln((1 f (t 1 ))/(1 f R0 )) t 1 . (3.19) 
e results of this analysis, obtained by informing Eqs. 3.18 and 3.19 with the measured values ⇢, f R0 , f (t1), are summarized in Table 3.1: in the "mid" and "high" treatments the CAP+ cells should divide around 4 and 7 times faster than the CAP-, respectively. 3.1: Growth rates of CAP+ and CAP-cells estimated from the data under the hypothesis that their growth rates are constant and their average growth rate does not change at the beginning of round 1.

Preculture f R0 f (t 1 ) r + (h 1 ) r (h
Although not impossible, this scenario is highly unlikely, since it would lead to a very marked dierence in the growth curves between treatments, whose eects are not evident in the growth curve (see Section 3.4 for the experimental growth curves and Section 3.3.4 for a more detailed analysis). Furthermore, such a hypothetical high dierence in growth rate between the two phenotypes was never observed during microscopic observations realized over a big spectrum of experimental conditions. Finally, one would expect that the growth rate dierence between phenotypes should be treatment-invariant. to interpret a biological system expressing two phenotypes and able to switch back and forth is a Markov chain. is is a stochastic system where the individuals can switch between the two states at any time with a non-zero (constant) probability, regardless of the previous states assumed (no memory). A constant term R, the same for both phenotypes, guarantees population growth without aecting the phenotypic composition.

Constant switching rates, same growth rate ("pure switch")

In the absence of growth rate dierences, the frequencies of the alternative phenotypes in the population may change if cells are allowed to change their phenotypic state via a switching mechanism. A classic way of representing a phenotypic switch consists then in assigning xed transition probabilities between the phenotypic states [START_REF]Phenotypic diversity, population growth, and information in uctuating environments[END_REF].

Transition probabilities per unit of time (from now on, "switching rates") are in this case held constant, and independent of the time elapsed from the previous transition, the time of last cellular division or of the previous states' time series. e switch can therefore be modelled as a Markov process [START_REF]Finite Markov chains and algorithmic applications[END_REF], dened by the switching rates to the CAP+ and the CAP-states (called ↵ + and ↵ , respectively). e growth rates of the CAP+ and of the CAP-subpopulations are moreover assumed to be equal and constant (Fig. 3.4).

Hence, seing R + (t) = R (t) = R(t) (or, equivalently R(t) = 0) and S (t) = ↵ and S + (t) = ↵ + , Eqs. 3.1 and 3.2 for the numbers of CAP+ and CAP-cells become,

Ṅ+ = D(N + + N ) [R(t)N + + ↵ + N ↵ N + ] (3.20) Ṅ = D(N + + N ) [R(t)N ↵ + N + ↵ N + ] . (3.21) 
In terms of the total population size N = N + + N and of the frequency of CAP+ cells f = N + /N , this dynamical system can be wrien as:

Ṅ = R(t)D(N )N (3.22) ḟ = D(N ) [↵ + (1 f ) ↵ f ] . (3.23)
e dynamics of the phenotypic composition of the population described by Equation 3.23 is again essentially determined by a 1-D system. Indeed, the positive factor D(N ) sets the time scale at which the equilibria are aained, and cannot cause a change in the sign of the frequency variation. As already discussed for the case of the "dierential growth" model, no such rst-order dynamical system can display any non-monotonic dynamics in the frequency of either phenotype.

Phenotypic equilibria in exponential phase

In exponential phase, when the average growth rate assumes its maximum value ⇢ and D(N ) ' 1, Eqs. 3.22 and 3.23 become:

Ṅ = ⇢N (3.24) ḟ = ↵ + (1 f ) ↵ f. (3.25)
From Eq. 3.25 the exponential phase equilibria for the fraction of CAP+ cells can be easily obtained by seing ḟ = 0:

f ⇤ = ↵ + ↵ + + ↵ , (3.26) 
meaning that the equilibrium frequency of CAP+ in exponential phase is proportional to the CAP-to CAP+ transition probability per unit of time. Furthermore, the equilibrium is independent of the mean growth rate ⇢, like in the previous null model.

antitative comparison with observations

e "pure switch" model can be regarded as a rst approximation of the Pseudomonas uorescens switching populations. By seing the switching rate constant, and by ignoring the possibility of dierences in population growth for the three preculture conditions "low", "mid" ad "high", this model allows to compute a rough estimate of the CAP-to CAP+ switching rate. Indeed, for f ' 0 (the situation at the beginning of the experiment) Eq. 3.25 yields

ḟ ' ↵ + , (3.27) 
which allows to estimate the switching rate from the CAP-to the CAP+ phenotype (Table 3.

2).

Preculture density In summary, to account for the experimental data in a "pure switch" scenario, the populations started from the dilution of low-density precultures should have a CAPto CAP+ switching rate 3 orders of magnitude lower than in the other treatments. is is unrealistic in cases where the transition rates are a property of the phenotype alone, as assumed in most models of phenotype switching, and point to the role of other variables in determining the speed at which the transitions between phenotypes occur. 

f R0 f (t1) f (t1) f R0 t1 ⇠ ↵ + (h

Constant switching rates with growth rate dierence

By combining the two previous models ("dierential growth" and "pure switch"), I will explore the possibility that a combination of constant switching rates and growth rate dierence is sucient to produce a non-monotonous increase in CAP+ frequency at the beginning of exponential phase (Fig. 3.5).

In this scenario, Eqs. 3.1 and 3.2 write:

Ṅ+ = D(N + + N ) [R + (t)N + + ↵ + N ↵ N + ] (3.28) Ṅ = D(N + + N ) [R (t)N ↵ + N + ↵ N + ] , (3.29) 
and in terms of the total number of cells N and of the frequency of CAP+ f :

Ṅ = D(N ) [R (t) + f R(t)] N (3.30) ḟ = D(N ) [ R(t)f (1 f ) + ↵ + (1 f ) ↵ f ] . (3.31) 
It can be noticed that for ↵ + = ↵ = 0 this model corresponds to the "dierential growth" (Eqs. 3.15 and 3.16), and for r + = r to the "pure switch" one (Eqs. 3.24 and 3.25). e phenotypic dynamics described by Equation 3.31 is decoupled from the demographic one (Eq. 3.30), except from a time-rescaling that does not change the direction of the ow along a trajectory: this model fails to provide a quantitative explanation for the overshoot, too.

Phenotypic equilibria in exponential phase

Even if it does not produce an overshoot, this model may however be used to predict the phenotypic composition of the population in the exponential phase of growth. In this phase, D(N ) ' 1, and the growth rates aain their maximum, so that R (t) = r , R + (t) = r + . Dening r + r = dr, I obtain:

Ṅ = (r + fdr)N (3.32) ḟ = drf (1 f ) + ↵ + (1 f ) ↵ f. (3.33)
By seing ḟ = 0, from equation (3.33) I obtain:

f ⇤ 1,2 = dr (↵ + + ↵ ) ± p (dr (↵ + + ↵ )) 2 + 4dr↵ + 2dr . (3.34)
Unlike the previous null models, the exponential phase phenotypic equilibrium now depends on demographic parameters, therefore capturing one of the features of the Pseudomonas uorescens switchers (Chapter 1, Section 1.3.3):

f ⇤ = ↵ + + ⇢ r ↵ + + ↵ + ⇢ r . (3.35)
Under conditions in which such equilibrium fraction is positive for every ⇢, this model thus predicts that f ⇤ increases with the average growth rate ⇢. As I will discuss in Chapter 4, this is at odds with independent observations of the biological system.

Conclusions about context-independent switch models

Both the "dierential growth" and the "pure switch" null models are qualitatively inconsistent with the observations of Chapter 1, Section 1.3.4 as they cannot account for the experimentally observed non-monotonic phenotypic dynamics in the exponential growth regime. Moreover, when trying to provide a quantitative justication of the increase in the CAP+ frequency in the rst two hours aer resuspension in round 1, their parameters should assume disproportionate dierences between CAP+ and CAP-. e third null model, wherein a growth rate dierence between the two states complexies the Markovian switching process, cannot reproduce the non-monotonic phenotypic dynamics either. Unlike the previous ones, however, this model predicts the frequency of CAP+ during exponential phase to depend on the mean growth rate of the population (Eq. 3.35), but such dependence goes in the opposite direction with respect to independent observations. To summarize, standard models whereby the genotype determines the switching rates between alternative phenotypic states are not apt to explain the whole phenotypic dynamics of a growing population of Pseudomonas uorescens "switchers". To reproduce the non-monotonicity in the dynamics of the phenotypes' frequencies, the switching rates need to be made time-dependent, for example by linking their value to a demography-related variable.

Model of demography-dependent switching

In this Section, I present a model coupling phenotypic switching at the cell level with population demography, based on the hypothesis that internal concentrations of proteins or other metabolic compounds are the mediators of such an interaction. Indeed, changes in the population growth rate, corresponding to variations in the division time of individual cells, modulate the process of dilution of proteins and other molecules inside the cellular volume, potentially triggering a concentrationdependent switch between alternative phenotypes.

Mathematically, this is accomplished by adding, alongside the total number of cells and frequency of CAP+ cells, a third state variable: the concentration of a metabolite X synthesized by the cell, accumulated inside the cellular volume, and diluted through cell division. is internal variable works as a proxy for the ensemble of metabolic processes aecting the switching dynamics, and does not refer to any specic compound. Under this assumption, the switching rates come to depend on the overall population growth state: balance between production and dilution of the X metabolite will be altered when the population demography, along with the generation time, changes -and this will in turn modify the switching rates.

A similar model including growth-switch feedback mediated by internal concentrations as a basis for bistability has been proposed by Herbert Levine and collaborators in a seing when the dierence in growth rate between phenotypes was central, that of bacterial persisters [START_REF]Bacterial persistence as a phenotypic switch[END_REF]. ey showed that the dynamics of Escherichia coli persisters can be interpreted in terms of dierential dilution of toxin/antitoxin (TA) molecules between the growing (and susceptible) state and the dormant (thus, persister-like) one [START_REF]Growth feedback as a basis for persister bistability[END_REF].

Here, I will instead mostly focus on the limit of negligible growth rate dierences, so that both phenotypes grow at a comparable rate. is approximation is relevant for dierential, rather than binary (dead/alive), responses to selection.

A general mathematical representation of the model will be initially presented: when the subpopulations expressing dierent phenotypes do not share the same growth rate, dilution will aect dierently the internal concentrations in individual cells of either phenotype. Moreover, the two phenotypes might in principle dier in terms of the production rate of the X metabolite, too. As a result, two more equations with respect to the models presented in Section 3.2 would be needed to describe the internal concentrations in capsulated (CAP+) cells and in non-capsulated (CAP-) cells. In order to simplify the analysis of the system, I will however assume for most part of the Chapter that growth rate dierences between phenotypes are negligible, and show that the essential features of the experimentally observed dynamics are reproduced by a system of three equations.

Alternative phenotypic states and intracellular bistability

In phenotypically switching microbial populations, individual cells are oen described in terms of multistable systems whose state depends on few environmental or internal "parameters". Signature of such multistability is hysteresis: the history of the system inuences its state [START_REF]Bistability, epigenetics, and bethedging in bacteria[END_REF]. As environmental conditions (e.g. concentrations of nutrients or antibiotics) change, relative frequencies of phenotypes in an isogenic microbial population are susceptible to vary in a history-dependent fashion.

In Pseudomonas uorescens switching strains, the two alternative states are related to the expression of an operon responsible for the production of a capsule around the cell surface (Chapter 1). Analogous to Ozbudak et al.'s experiment, these strains were transformed so that an inserted gfp gene was stably co-expressed with the capsule operon, resulting in a coincidence between CAP+ and GFP+ phenotypes (Chapter 2).

Back in Chapter 1, Section 1.3.3, I reviewed how the expression of the CAP+ and CAP-phenotypes can be altered by environmental conditions such as temperature, cell density and extracellular concentration of uracil. e data gathered on the response to environmental cues having an eect on the intracellular state supported the idea of introducing a third state variable c, corresponding to the intracellular concentration of an unknown metabolite X synthesized by cells. is concentration would act as a "control variable" on the bistable phenotypic dynamics, possibly as a proxy for the overall cell metabolic state.

As commonly done for many dierent experimental systems [START_REF]Construction of a genetic toggle switch in Escherichia coli[END_REF][START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF][START_REF]Growth feedback as a basis for persister bistability[END_REF], I choose to model the intracellular state as a bistable hysteretic dynamical system, where the probability of expressing one or the other cell phenotype is a function of the intracellular concentration c(t) (Fig. 3.6). When the concentration c is controlled by the external environment as in [START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF], it determines the range and location of the region where two distinct stable equilibria exist and the magnitude of their basins of araction. Here, on the other hand, the intracellular concentration c is one of the variables of the system aecting the switching dynamics. 

Bifurcation diagram for the intracellular dynamics

In the theory of bifurcations of dynamical systems, bifurcation diagrams represent the qualitative changes in the orbits of a (system of) dierential equation(s) as a consequence of continuous variations in one (or more) parameters. ese are commonly called control parameters because of the possibility of observing such qualitative changes by externally tuning their value [START_REF]Bifurcation eory and Catastrophe eory[END_REF]. A famous example of an actual bifurcation in microbial heterogeneity is that of Escherichia coli lac operon: Ozbudak et al. demonstrated that a bistable dynamical system accounting for the genetic architecture of the operon regulation could quantitatively explain the relation between extracellular concentrations and the proportion of cells that were in either phenotypic state [START_REF]Multistability in the lactose utilization network of Escherichia coli[END_REF]. It could moreover predict that the bistable regime would be lost under different conditions, where a change in the carbon source concentration would not elicit an on-o change in the cell phenotype.

Similarly, bifurcation theory was used by Gardner et al. to demonstrate that, in a synthetic gene circuit, mutually inhibiting repressible promoters are able to give rise to a region of bistability, that they quantitatively quantied based on measures of intracellular rates [START_REF]Construction of a genetic toggle switch in Escherichia coli[END_REF].

In the case of Pseudomonas uorescens switchers, the knowledge of the intracellular architecture eliciting the switching behaviour is not suciently advanced to allow a quantitative modelling of the intracellular regulation. I thus assumed that a qualitatively similar dynamical system could account for the phenotypic switch. Instead of being a control parameter, c will more generally be a control variable determining the probability of switching between phenotypes. e concentration c can be interpreted as a proxy encompassing all the sources of modication in the switching probabilities between the CAP-and CAP+ states. In Figure 3.6 the stable equilibria, corresponding to the two cellular states CAP-and CAP+, are represented with solid lines. In the bistability region, for the same value of c, the system has two stable alternative equilibria, and an intermediate unstable equilibrium marks the border of their basins of araction, if the feedbacks stabilizing the alternative equilibria act on a fast time scale. As a consequence of intrinsic intracellular stochasticity, however, the cell may switch equilibrium, with a probability that is by simplicity assumed to be proportional to the magnitude of the relative basin of araction relative to that of the alternative equilibrium. is representation allows us to avoid specifying the precise sources of stochasticity and to model the system with a deterministic system of equations.

I chose, again for the sake of simplicity, a piecewise linear bifurcation diagram where the relation between basins of araction is easily obtained (see next paragraph). is way, any ne-scale variation in the degree of GFP expression among cells with a CAP+ phenotype can be neglected, and analogously for phenotypes that do not express the uorescent protein at all. e description of the phenotype through a binary variable is a good approximation of reality, as the uorescence peaks obtained by FACS are well separated, supporting the assumptions that when cells change basin of araction, they decay fast to the new equilibrium.

Switching rates as a function of intracellular concentration e compound X is assumed to enhance the probability of expressing the CAP+ state. As a consequence, the higher is c, the larger the switching rate towards the capsulated state equilibrium, and the lower the switching rate to the non-capsulated phenotype. For the simplied bifurcation diagram illustrated in 3.6, the switching rates depend linearly on c inside the bistability region. Figure 3.7 illustrates the relation between the bifurcation diagram and the Markov chain representation:

• for low values of c (below a threshold value called c LOW ), the CAP-to CAP+ switching rate ↵ + is set to zero, while the CAP+ to CAP-switching rate ↵ is maximum;

• for high values of c (over a threshold value called c HIGH ), ↵ + assumes its maximum value, while ↵ is set to zero;

• for intermediate values of c (between the two threshold values c LOW and c HIGH ), ↵ + and ↵ are both non-zero and are an increasing and a decreasing function of c, respectively, corresponding to the relative extension of the basins of attraction of the two alternative equilibria. is description bears similarities to neural models such as that by FitzHugh-Nagumo [START_REF]Impulses and Physiological States in eoretical Models of Nerve Membrane[END_REF]: one variable (in this case c, playing the role of the recovery variable), whose dynamics is slow, controls the steady-state of another one (the phenotypic state CAP-/CAP+, corresponding to the membrane potential of neurons), whose dynamics is faster. e response of excitable systems to stochastic process that occur on fast time-scales is known to encompass, among other dynamical behaviours, transient dramatic changes in a systems variable, analogous to what observed in the overshoot experiment.

Protein concentrations can couple demography and switch

e variable c, corresponding to an intracellular protein concentration, works as the mediator of the impact of the population state on phenotypic heterogeneity and connects demography (population size and its dynamics) and physiology (probability of switching) in Pseudomonas uorescens populations.

is assumption is consistent with the experimental evidences presented in Chapter 1 and in agreement with previous works: even in isogenic populations, dierent regimes of population growth are known to cause cell-to-cell phenotypic variability, for example via variation in gene expression and regulation [START_REF]Eect of Cell Growth Phase on the Regulatory Cross-Talk between Flagellar and Spi1 Virulence Gene Expression[END_REF]. Phenotypic switching, such as the persisters or our Pseudomonas uorescens switchers, makes no exception [START_REF]Growth feedback as a basis for persister bistability[END_REF][START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF].

Intracellular concentrations can be coupled to the population state in many different ways. Here, I will consider the simplest one, that is assuming no direct eect of population size except the one due to dilution. is assumption is certainly too crude for proteins that are controlled by the wild-type genetic circuit, which are most likely to be subjected to dierent kinds of regulation so as to keep their expression synchronized with growth. However, since phenotypic switchers in Pseudomonas uorescens are newly evolved, it is well possible that purifying selection had no time to optimize the modied intracellular circuits, thus resulting in a minimalistic regulation of some of its components. In this way, switching rates are essentially inuenced not by the cell density, but by its dierential, the population growth rate, which provides a "measure" for the demographic state of the population. Dierences in division time can in this way aect intracellular properties through changes in the dilution of cellular internal content. ese simple assumptions retain some of the scaling properties of more complicated models which take into account the relationship between growth rate and other processes such as transcription or translation rates [START_REF]Growth Rate-Dependent Global Eects on Gene Expression in Bacteria[END_REF].

A faster (slower) growth regime will be mathematically translated into higher or (lower) dilution factor in the equation ruling the dynamics of the internal concentration c, causing the system to move towards the le-(right-) hand side of the bifurcation diagram of Figure 3.7. Following this modelling choice, I will write the dynamics of the internal concentration c as the combination of a production and a dilution term: their (dynamically changing) relative importance will be responsible for the states explored by the system.

General 4-D dynamical system

A general form of a model with switching rates depending on an internal variable whose magnitude is a function of a dilution term (proportional to the growth rate) must take into account that, in principle, CAP-and CAP+ cells might not share the same growth rate. In this general case, two separate equations will describe the two concentrations c + and c , assumed to be equal in all CAP+ and all CAP-, respectively.

e equations for the intracellular concentrations will be coupled to the population equations from the "constant switching rates with growth rate dierence" null model, through the switching rates S + and S . ese will from now on depend on the intracellular concentration of X, according to Fig. 3.7:

Ṅ = D(N ) [R + (t)f + R (t)(1 f )] N (3.36) ḟ = D(N ) [ R(t)f (1 f ) + S + (c )(1 f ) S (c + )f ] L(t)
(3.37)

ċ+ = P + (c + , t) D(N )R + (t)c + (3.38) ċ = P (c , t) D(N )R (t)c (3.39)
where D(N ) represents a density dependence term, R + (t) and R (t) are the timedependent growth terms for CAP+ and CAP-, respectively,

R(t) = R + (t) R (t)
is their dierence, L(t) is a time-dependent factor corresponding to the lag phase, P + and P are the rates of synthesis of the X product for the two phenotypes, and S (c + ) and S + (c ) the concentration-dependent switching rates to the opposite state.

In the next paragraph I discuss the role of the density-dependence term D(N ), which translates the hypothesis that the switch is gated at cell division, and that of the time-dependent modulation of the growth rates L(t), under the hypothesis that switch and cell division are strictly linked processes.

e "switch at cell division" hypothesis e density dependence term D(N ) can be wrien as a logistic factor (1 N K ), where N is the total population size and K the carrying capacity of the ecological system. D(N ) sets the time scale not only for the demographic dynamics, but also for the intracellular one: by reducing population growth at the entry of stationary phase, it dampens the dilution of the internal concentrations c + and c , making the switch to the CAP+ state more likely, and that to the CAP-state less so.

By multiplying both switch terms S + and S by D(N ) in the equation for the CAP+ frequency f (Eq. 3.37), I model the hypothesis that the phenotypic switch does not occur with the same probability at any time during the cell cycle, but it is likely to be concentrated around the division time. Cell division is indeed the moment during the cell cycle when stochastic uctuations in protein number are maximum, due to the possible assymetric repartition of low density molecules between the daughter cells. Stochastic uctuations are known to be at the basis of phenotypic switching, for example by changing the concentration of a key regulator across a critical threshold in an appropriately designed genetic circuit allowing bistability (e.g. via a positive feedback loop or a double negative regulation). An example is provided by the opaque/white switch in Candida albicans colony morphology: stochastic uctuations in the expression of the wor1 gene can move the concentration of its product Wor1 (a master transcriptional regulator) below or above the level triggering the cellular switch that underpins the variability at the colony level [START_REF]Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop[END_REF]. At cell division such uctuations increase, making the switch more likely to happen.

e eect of conditions slowing cell division thus lowers the switching rates as well, under the hypothesis that the switch can only occur at cell division. e eects of relaxing the hypothesis of a cell-cycle triggered phenotypic switch will be later discussed in Section 3.5.2.

Dierent time-dependent terms were introduced so as to encompass the eect on growth and switching of the lag phase that characterizes the beginning of the demography of cultures close to stationary phase, when they are resuspended. e growth terms R (t) and R + (t) are thus assumed constant and equal to the maximum growth rates r , r + , except when growth is arrested. Arrested growth is here modelled by a lag factor L(t):

L(t) = ✓(t ⌧ ) (3.40)
where ⌧ represents the length of the lag phase experienced by cells aer resuspension into fresh medium and ✓(x) is the Heaviside step function, dened as:

✓(x) = ( 0, if x < 0 1, if x > 0. (3.41) 
As a consequence, the time-dependent maximal growth rate is:

R + (t) = r + L(t) (3.42) R (t) = r L(t). (3.43) 
At times t < ⌧, where ⌧ is the the duration of the lag phase at resuspension, growth is impeded (✓(t ⌧ ) = 0 and therefore Ṅ = 0); for times aer the end of the lag phase (t ⌧ ) the equation for the demographic dynamics of the population resumes the classic Verhulst form of logistic growth.

e lag phase (whose early discovery in Salmonella enterica was motivated by the research on the eects of temperature on bacterial growth [START_REF]Ueber den Einuss von Fieber temperaturen auf die Wachstumsgeschwindigkeit und die Virulenz des Typhus Bacillus[END_REF]) can be dened as the stage preceding the beginning of exponential growth, during which bacterial cells are not able to grow or divide. Several, more and more rened interpretations of this fact have been so far proposed: lag as the time needed for bacteria to adapt to a novel environment [START_REF]Brock biology of microorganisms[END_REF], to recover from molecular damage accumulated in stationary phase [START_REF]Bacterial senescence: stasis results in increased and dierential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon[END_REF], or corresponding to transient sensitivity to oxidative stress generating iron accumulation [START_REF]Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[END_REF].

In this study, one primary dierence in the three treatments ("low", "mid", "high") is actually the time of suspended growth aer cells get resuspended, the longer the closer the preculture was to stationary phase. In Section 3.4 I show that in Dr. Philippe Remigi's experiment a delay in the onset of the exponential growth phase is present. I make the hypothesis that the phenotypic dynamics, as well as the demographic one, is completely interrupted in lag phase: for this reason, the factor L(t) = ✓(t ⌧ ) multiplies the equation for ḟ , too. is is consistent with the previously discussed coupling between switching and cell division. With respect to the production of X, though, I assume that this process is not impeded during lag phase: indeed, although unable to divide, cells are metabolically active during lag [START_REF]e oxygen consumption of Escherichia coli[END_REF], meaning that the processes of transcription and translation of X can be assumed to occur even before maximum, exponential growth is restored (cf. also the model by Baranyi & Roberts [START_REF]A dynamic approach to predicting bacterial growth in food[END_REF]).

Production and dilution of the intracellular compound X e internal state of CAP+ and CAP-cells is described in terms of the concentration of a metabolite X that cells are able to synthesize and that is diluted through cell division. e equations for c + and c each include a term of production of the X metabolite (indicated above with P (t)) and a term accounting for the dilution process.

As for production term P (t), I make the hypothesis that concentrations get regulated proportionally to the ratio between their instantaneous values c + (or c ) and their maximum allowed value K c -which I suppose to be the same for CAP+ and CAP-. During the lag phase, the production rate is considered to be maximal and unregulated (cf. previous paragraphs). In formulas:

P + (t) = 8 < : b + , if t < ⌧ ⇣ 1 c+ Kc ⌘ b + , if t > ⌧ (3.44) 
P (t) = 8 < : b , if t < ⌧ ⇣ 1 c Kc ⌘ b , if t > ⌧ ; (3.45) 
As for dilution, I assume that the average single cell volume can be considered constant across the experimental time: although it is known to actually uctuate, this happens on a fast time scale, that is that of the cell cycle [START_REF]Cell cycledependent variations in protein concentration[END_REF], much faster that the whole duration of the dynamics tracked in the experiment. Dilution is therefore described by an exponential decay process, whose exponent is proportional to the growth term R + (t) or R (t), itself dependent on the cellular phenotype. In summary, the production/dilution balance will depend on population demography as follows: cell division is prevented and therefore no dilution is possible. Internal concentrations will exponentially increase as the result of the unregulated production of X:

ċ+ (t) = b + (3.46) ċ (t) = b (3.47)
as the population grows at its maximum rate, the X metabolite gets diluted at the highest rate possible. Production starts being regulated. If the dilution term is greater than the production one, internal concentrations can decrease:

ċ+ (t) = ✓ 1 c + K c ◆ b + r + c + (3.48) ċ (t) = ✓ 1 c K c ◆ b r c (3.49)
population growth slows down, and the internal concentrations might increase again as a result of having a production term greater than the dilution one:

ċ+ (t) = ✓ 1 c + K c ◆ b + ✓ 1 N K ◆ r + c + (3.50) ċ (t) = ✓ 1 c K c ◆ b ✓ 1 N K ◆ r c . (3.51) 
In other words, this mathematical model includes a dierential equation describing the temporal variation of the intracellular concentration of a protein which, in principle, is not constitutively expressed, given the observed variation in the capsulation generated by environmental change. e dilution factor is modelled as a linear function of the growth rate, and the rate of production of the protein as a saturating function of the concentration itself.

Fully-coupled equations

By taking into account these choices about how to formalize the dierent parts of the model, the system of ordinary dierential equations writes:

Ṅ = ✓ 1 N K ◆ [r + f + r (1 f )] N✓(t ⌧ ) (3.52) ḟ = ✓ 1 N K ◆ [(r + r )f (1 f ) + ↵ + (c )(1 f ) ↵ (c + )f ] ✓(t ⌧ ) (3.53) ċ+ = ✓ 1 c + K c ✓(t ⌧ ) ◆ b + ✓ 1 N K ◆ r + c + ✓(t ⌧ ) (3.54) ċ = ✓ 1 c K c ✓(t ⌧ ) ◆ b ✓ 1 N K ◆ r c ✓(t ⌧ ) (3.55)
where the functional dependence of the switching rates from the intracellular concentrations is given by the following equations:

↵ + (c ) = 8 > > < > > : 0, if c < c LOW ↵ MAX + c c LOW c HIGH c LOW , if c LOW  c < c HIGH ↵ MAX + , if c c HIGH (3.56) ↵ (c + ) = 8 > > < > > : ↵ MAX , if c + < c LOW ↵ MAX c HIGH c+ c HIGH c LOW , if c LOW  c + < c HIGH 0 if c + c HIGH . (3.57)
is model can be easily simulated, however the large number of non directly quantiable parameters related to the intracellular state makes its use for quantitative ing complicated and questionable, because of the risk of overing. I will thus proceed to study the dynamics of a simpler 3-D approximation of the model. e next Section provides the experimental justication for assuming that such 3-D system is a relevant approximation of the complete 4-D model in the regimes that I am studying.

Analysis of a reduced three-dimensional model

e four-dimensional model presented in the previous paragraphs can be made signicantly simpler under the assumption that CAP+ and CAP-cells do not dier in terms of division time under the same conditions. e results of experimental assays presented in the last Section showed indeed no evidence of big dierences in growth rate between microcolonies founded by CAP+ and CAP-individual cells.

I thus consider, as a rst approximation, R + (t) = R (t) = R(t), or R(t) = 0, which implies the fact that the dilution term in the equations of the model is phenotype-invariant. Now the internal state of all cells is described by one concentration c(t) instead of two:

Ṅ = D(N )R(t)N (3.58) ḟ = D(N ) [S + (c)(1 f ) S (c)f ] L(t) (3.59) ċ = P (c, t) D(N )R(t)c. (3.60)
Following the same modelling choices as for the four-dimensional model:

Ṅ = ✓ 1 N K ◆ rN ✓(t ⌧ ) (3.61) ḟ = ✓ 1 N K ◆ [↵ + (c)(1 f ) ↵ (c)f ] ✓(t ⌧ ) (3.62) ċ = ✓ 1 c K c ✓(t ⌧ ) ◆ b ✓ 1 N K ◆ r c ✓(t ⌧ ) (3.63) 
with

↵ + (c) = 8 > > < > > : 0 if c < c LOW ↵ MAX + c c LOW c HIGH c LOW if c LOW  c < c HIGH ↵ MAX + if c c HIGH (3.64) ↵ (c) = 8 > > < > > : ↵ MAX if c < c LOW ↵ MAX c HIGH c c HIGH c LOW if c LOW  c < c HIGH 0 if c c HIGH . (3.65) 
e demographic dynamics Ṅ is now independent of both f and c, and the intracellular dynamics ċ does not depend on f . e former observation justies looking for the equilibria of the sub-system ( ċ, ḟ ) even when the population demography has not yet reached its steady-state, and to study how the uncoupled demographic dynamics acts as a master of the slaved subsystem. Since the equation for the concentration is independent of f (t), the variation in the phenotypic frequency is"controlled" by the intracellular state. In exponential phase, when density-dependent modulation is not present, f (t) and c(t) will thus have a unique equilibrium.

ree-dimensional model: equilibria and their stability

Beside the asymptotic steady state, which corresponds to the situation aained by the system at growth arrest in stationary phase, I am interested in the study of the quasi-steady states the system may reach during exponential or early-stationary phase. Indeed, in the experiments, the biggest changes in frequency of the phenotypes takes place while cells are still exponentially dividing (see Fig. 1.6).

If the intracellular and phenotypic dynamics described by the ( ċ, ḟ ) sub-system takes place on a faster time-scale than that of population growth, c and f will aain a quasi-equilibrium before the population size reaches the carrying capacity. In other words, if the dynamics of Ṅ is slow enough (with respect to the intracellular one) the time scales can be separated and the quasi-steady states studied as a function of population size N . Population size can then be treated as a measure of time, being N (t) an invertible function of t (Verhulst logistic function).

On the other side, the asymptotic steady-state in stationary phase might not correspond to the fact that the uxes between phenotypic rates are zero. Indeed, due to the multiplicative factor D(N ), the phenotypic dynamics will halt because of population growth arrest, and in that case the system "freezes" in an equilibrium that is dierent from the quasi-equilibrium for the fast subsystem. By taking the general form of the (c, f ) sub-system (Eqs. 3.59 and 3.60) and equaling all the expressions to zero, if D(N ) 6 = 0:

f ⇤ = S + (c ⇤ ) S + (c ⇤ ) + S (c ⇤ ) (3.66)
where c ⇤ is the solution of

P (c ⇤ , t) = D(N )R(t)c ⇤ . (3.67) 
e existence of equilibria for the frequency of CAP+ depends on the existence of equilibria for c, that is the existence of times for which the concentration c multiplied by the dilution factor D(N )R(t) balances the production term P (t).

For times t belonging to the exponential phase and neglecting lag (which does not occur when exponentially dividing cells are diluted into fresh medium), the quasisteady states for the intracellular and phenotypic dynamics can be wrien as:

f ⇤ E = ↵ + (c ⇤ E ) ↵ + (c ⇤ E ) + ↵ (c ⇤ E ) (3.68) c ⇤ E = 1 r b + 1 Kc . (3.69) 
Taking the linear switching rates (Eqs. 3.64 and 3.65) and considering

K c 2 [c LOW , c HIGH ],
the exponential phase quasi-equilibria for f and c are:

f ⇤ E = 2 4 1 + ↵ MAX ↵ MAX + ⇣ ( r b + 1 Kc )c HIGH 1 ⌘ ⇣ 1 ( r b + 1 Kc )c LOW ⌘ 3 5 1 (3.70) c ⇤ E = 1 r b + 1 Kc . (3.71)
In stationary phase the model allows an innity of neutrally stable (initial conditions dependent) equilibria: if the concentration reaches its steady, regulated value K c before the population enters stationary phase, then the (quasi-)equilibria read:

f ⇤ S = ↵ + (c ⇤ S ) ↵ + (c ⇤ S ) + ↵ (c ⇤ S ) (3.72) c ⇤ S = K c (3.73)
and, again, considering Equations 3.64 and 3.65 and considering K c 2 [c LOW , c HIGH ]:

f ⇤ S =  1 + ↵ MAX ↵ MAX + (c HIGH K c ) (K c c LOW ) 1 .
(3.74)

Stability

Since the density-dependent factor D(N ) is always positive, the stability of the (f, c) subsystem is determined by the corresponding reduced 2x2 Jacobian matrix at the quasi-equilibria (f ⇤ , c ⇤ ):

J(f ⇤ , c ⇤ ) = " @ ḟ @f (f ⇤ , c ⇤ ) @ ḟ @c (f ⇤ , c ⇤ ) @ ċ @f (f ⇤ , c ⇤ ) @ ċ @c (f ⇤ , c ⇤ ) # (3.75)
to establish their stability.

For the exponential phase quasi-equilibrium (Eqs. 3.68 and 3.69), the reduced Jacobian matrix J reads:

JE = " [↵ + (c ⇤ E ) + ↵ (c ⇤ E )] (1 f ⇤ E ) @↵+ @c (c ⇤ E ) + f ⇤ E @↵ @c (c ⇤ E ) 0 ⇣ b Kc + r ⌘ # (3.76)
If the concentration increases to the point that it reaches its maximum, regulated value before the population enters stationary phase, then the stationary phase Jacobian matrix is given by:

JS = 2 4 1 N K [(↵ + (c ⇤ S ) + ↵ (c ⇤ S )] 1 N K h (1 f ⇤ S ) @↵+ @c (c ⇤ S ) + f ⇤ S @↵ @c (c ⇤ S ) i 0 h b Kc + 1 N K r i 3 5 
(3.77) Since the switching rates ↵ + and ↵ are linear functions of c when c 2 [c LOW , c HIGH ], their partial derivatives @↵+ @c and @↵ @c are always independent of c. Moreover, both JE and JS are triangular matrices, which means that their eigenvalues correspond to the elements on the principal diagonal: being both smaller than zero for any allowed value of the parameters, I can conclude that the (f, c) quasi-equilibria in exponential and stationary phase are stable nodes. erefore, the undershoot in the frequency dynamics cannot be explained in terms of oscillatory behaviour of the reduced subsystem. to acknowledge the resemblance between this model and the FitzHugh-Nagumo one [START_REF]Impulses and Physiological States in eoretical Models of Nerve Membrane[END_REF]: as in excitable systems, in our model there exist nonlinearities (the exponential increase of c during lag) pushing the system away from the (quasi-)steady state on a fast time scale (the overshoot), and a slow "recovery" mechanism (dilution through cell division) relaxing the system to its asymptotic state.

Fitting the overshoot experiment

Following the evolution and rst characterization of the phenotypic switch in Pseudomonas uorescens "switchers" (Chapter 1), the "overshoot experiment" provided further information about the complexity behind the expression of alternative phenotypes in a growing population of switching bacterial cells.

e goal of this experiment (conceived, designed and performed by Dr. Philippe Remigi at Rainey Lab, Massey University, Auckland) was to quantify and understand the role of demography and of past growth conditions in the switching behaviour: indeed, although the population demographic and phenotypic states were already known to be tightly linked in "switchers" populations (Chapter 1, Section 1.3.3), the extent and the eventual time dependence of their reciprocal interaction were still unknown.

is could be achieved by tracking the dynamics of the phenotypic composition of the population (i.e. the change of the relative frequency of the two alternative phenotypes cells can express) via ow cytometry across several generations. During this time, and at the same time points, optical density measurements were performed to track the dynamics of the population size. e role of previous growth conditions was, on the other hand, investigated by changing the time spent by the inoculum population in a microcosm with limited resources during a preliminary stage of growth. Two rounds of growth to study the eect of history on population phenotypic heterogeneity e experiment consists of two successive stages, or rounds. During "round 0" three populations of switchers are grown from inocula obtained from a common night culture in sustained exponential phase. When cells from "round 0" are bolenecked and resuspended into fresh medium, a new stage of the experiment, called "round 1", starts: cells resume division, possibly aer a lag phase, resulting in an exponential, then saturating population growth. e population phenotypic composition at the time of sampling during round 0 and the size of the boleneck set the initial conditions of round 1 (Fig. 3.8).

Dierent initial conditions for frequency (but same population size)

Before resuspension, samples from populations that aained dierent densities in round 0 are diluted to the same optical density. Such boleneck is no as small as to make stochastic uctuations in sampling signicant. e populations corresponding to the three treatments observed in round 1 ('low', "mid" and "high", detailed in the caption of Fig. 3.10) thus dier in the phenotypic composition and in the demographic and environmental conditions that their cells have experienced during the preparation stage (round 0). Importantly, during round 0 cells belonging to the "low" cell density sample never exit exponential phase, while the "high" cell density population approached stationary phase.

Figure 3.9: Scheme of the protocol of the overshoot experiment (2). To investigate the role of past environmental and demographic conditions on the dynamics of the expression of the alternative phenotypes, a growing population of switchers is sampled at dierent time points (cell densities) during round 0, diluted to the same cellular density and resuspended into fresh medium. Samples from later time points show a longer lag phase but the same growth rate in exponential phase. Symbols and colors are the same as those used later to identify the three treatments. . ree dierent initial conditions, corresponding to dierent round 0 treatments, are shown: "low" population density at the end of round 0 (ODR0 ' 0.3, green circles), "mid" population density at the end of round 0 (ODR0 ' 1.0, blue squares), "high" population density at the end of round 0 (ODR0 ' 1.5, red triangles). All treatments are diluted to the same population size at the beginning of round 1 (OD(0) = 0.05). e points correspond to the mean value over three statistical replicates, error bars corresponding to standard deviation.

alitative features of the experimental observations

Here I resume the main qualitative features of the overshoot experiment that my model aims at reproducing: e "low", "mid" and "high" populations dier in terms of their phenotypic composition at resuspension: the higher the population density reached in round 0, the higher the frequency of CAP+, in agreement with the known association between advanced phases of growth and higher percentages of CAP+ cells (Chapter 1, Section 1.3.3).

e dierence in the phenotypic composition at the end of round 0 / beginning of round 1 is conserved across the whole duration of round 1, as the three conditions maintain their order in terms of frequency of the capsulated phenotype f low < f mid < f high at each time point.

Two qualitatively different behaviours are observed for dierent treatments: in the "low" treatment, the frequency of capsulated cells increases monotonically, while the "mid" and "high" treatments both display a non-monotonic time course.

/ In round 1, the populations of the higher density treatments ("mid", "high") present a fast increase in the percentage of cells expressing the CAP+ phenotype soon aer resuspension (thus during lag and early exponential phases) before declining towards dierent levels corresponding to the initial composition (overshoot), and then increasing again when the population approaches stationary phase (undershoot).

, e three treatments have very similar growth curves all along round 1: both the average growth rate during exponential phase and the level of the carrying capacity exhibited at the end of the experiment are almost the same across the three treatments. On the other hand, later treatments have (slightly) lower population density during exponential phase, suggesting a dierential duration of the lag phase aer resuspension.

ree-dimensional model: qualitative dynamics

e three-dimensional mathematical model of Section 3.3.4 captures the salient qualitative features of the overshoot experiment, that were listed in Section 3.4.1. In this Section, I discuss the consequences of the model assumptions and present numerical simulations.

I coded the numerical system in Python, making use of the odeint routine present in the ScyPy Python scientic package to simulate the system of ordinary dierential equations (Eqs. from 3.61 to 3.63). I then used Matplotlib to plot the results of the simulations (see Chapter 2, Section 2.3 for further details).

Choice of the initial conditions

In the model, the intracellular dynamics and resulting variation in the phenotypes' frequencies during round 0 is what underpins dierent frequencies of CAP+ across the three treatments ("low", "mid", "high") at the beginning of round 1. erefore, I need to discuss here which role may have the dynamics in round 0 on that of round 1, and in particular that of its initial and nal conditions.

Sampling round 0 precultures at diferent time points or, equivalently, when they reach specic population densities, corresponds (if the sampling is independent of the cell phenotype and the dilution and resuspension processes do not aect the percentage of CAP+) to dierent initial conditions for round 1. By calling N R0 and f R0 the population size and corresponding CAP+ frequency at the moment of sampling during round 0, the initial conditions for the demographic and frequency variables N (0), f(0), c(0) for round 1 are given by:

N (0) = N R0 d (3.78) f (0) = f R0 (3.79) c(0) = c R0 (3.80)
where d is the dilution factor applied before resuspension in fresh medium at the beginning of round 1. I moreover make the assumption that the intracellular concentration is not altered when cells are transferred to new medium.

It should be noticed that, to make the three treatments start from the same population density N (0) at resuspension, dierent values of d must be appropriately chosen. is was one of the choices at the basis of the experimental design, aimed at excluding possible eects of population size from those possibly due to dierent phenotypic compositions and population histories. Indeed, being initialized at the same cell density, the three treatments are expected to experience the same density-dependent interactions.

Unlike the initial population size in round 1 N (0), which can be arbitrarily modied by acting on the dilution factor d, the CAP+ frequency at the beginning of round 1 f (0) cannot be independently controlled but only "selected" by choosing an appropriate sampling time. In round 0, f varies following Equation 3.62, but it is not known how (no measurements were performed at this stage). Round 0 precultures are started from exponential phase inocula, and it can thus be safely assumed that no lag phase takes place in round 0. is is not, however, the only mechanism potentially giving rise to variations in the CAP+ frequency: the CAP+ frequency can increase as population size approaches the carrying capacity, or due to a dierence between the initial conditions of round 0 and the quasi-equilibria associated to exponential phase.

While the sampling time is measurable and, in principle, controllable by the experimenter, the initial conditions of round 0 c i and f i are free parameters of the model whose role in the determination of the behaviour of the system in round 1 must be understood. I thus address the questions: How do dierent initial conditions for round 0 (in terms of frequency of CAP+ f i and intracellular concentration of the molecule X c i ) aect the initial conditions in round 1 and, thus, the following dynamics? And is the magnitude of this eect dependent on when, during round 0, the preculture gets sampled?

e initial condition for the frequency in round 0 (in principle manipulable by enriching the precultures of CAP+, e.g. through ow cytometry) f i aects the system's behaviour in round 1 only if the sampling occurs on a faster time scale than that of the relaxation towards the exponential phase equilibrium f ⇤ E (Eq. 3.70). Indeed, all other parameters being equal, and set c i = c ⇤ E (cf. Eq. 3.71) to rule out transient intracellular dynamics, two populations characterized by dierent phenotypic compositions at the beginning of round 0 would soon converge to the same phenotypic frequencies.

Hence, only by sampling before the CAP+ frequency reaches its quasi-steady state f ⇤ E (Fig. 3.11, top row), the dynamics of round 1 can be altered. Furthermore, dierent initial conditions at the beginning of round 1 have an eect only shortly aer resuspension, provided that all other parameters are equal (Fig. 3.11, boom row). Also c i , the initial intracellular concentrations at the beginning of round 0, can aect the initial conditions of round 1 (and thus the behaviour of the system in round 1) only if the sampling is performed before that the intracellular and phenotypic dynamics have relaxed to their exponential phase quasi-equilibria c ⇤ E and f ⇤ E (Fig. 3.12).

In other words, if the dierence in c i is such that the two subsystems are in dierent regimes of switching rates at the beginning of round 0, they may diverge in terms of CAP+ frequency, but will ultimately reach their common exponential phase quasiequilibrium (c ⇤ E , f ⇤ E ) set by the value of the parameters, and the same in round 1 soon aer resuspension. In conclusion, since round 0 is started from exponentially growing cultures, there is no reason to believe that at the beginning of round 0 the proportion of capsulated cells is very oset from its exponential equilibrium value. erefore, in the following I assume f i = f ⇤ E , with f ⇤ E dened by Equation 3.70. is choice is not unrealistic, as the frequency of CAP+ typically converges fast, as the population is maintained in exponential phase, to its quasi-steady state value.

e intracellular concentration cannot be directly assessed, but the model allowed to study what may be the eect of a dierence in the initial condition for round 0 on the round 1 dynamics. If the population has remained in exponential phase long enough aer being diluted, the memory of the initial concentration is lost. Alike phenotypic frequencies, c in round 0 approaches the equilibrium value c ⇤ E (Eq. 3.71), usually on a faster time scale than that of sampling. erefore, in the following Sections I will assume c i = c ⇤ E .

Long-term "memory" of the population history

Trans-generational persistence of the phenotypic composition of the population was observed in the overshoot experiment: populations started from dierent preculture treatments (round 0) kept their order in terms of the CAP+ frequency all along the measurement stage (round 1), notably at the end of the experiment (more than 16 hours aer resuspension in fresh medium). Such "spliing", corresponding to dierent treatments having dierent equilibria in stationary phase, cannot be obtained in the three-dimensional system (at least, as long as the intracellular and switching dynamics are faster than the demography) unless the set of parameters is dierent among the three treatments. Indeed, the stationary-state equilibria dened by Equation 3.81 only depend on the system's parameters and not on the initial conditions, which are, together with the lag duration, what dierentiates the three treatments in round 1. A dierent conclusion is in principle possible when the time scales are not suciently separated, so that the vanishing of the population growth freezes the system before it can reach the equilibrium. However, numerical integration and the analysis of the stability of the stationary equilibrium suggest that this is approached suciently fast so that aer few hours, the distance from the stationary-state equilibrium is so small that it cannot account for the large dierences observed in the experiments.

When the time scales are separated, the value aained by the frequency at the end of round 1 depends on the ratio between the maximum switching rates ↵ MAX + /↵ MAX (Fig. 3.13), and on the value of the maximum intracellular concentration K c relative to the boundaries of the bistability region [c LOW , c HIGH ] (Fig. 3.14). Indeed, if the concentration reaches its maximum, regulated value K c before the population enters stationary phase (which would otherwise progressively halt the phenotypic dynamics due to the "switch at cell division" assumption of the model) then the Equation 3.72 back in Section 3.3.5 provides a prediction for the (quasi-)equilibrium for the frequency of CAP+ at late times: e model hence suggests that the trans-generational persistence of the phenotype might be underpinned by some regulatory mechanism resulting in the dierential modication, in the three treatments, of parameters dening the properties of the intracellular dynamics, e.g. the switching rates or the maximum concentration of the X metabolite. e quantitative t of the experimental data will test these predictions (Section 3.5).

f ⇤ S =  1 + ↵ MAX ↵ MAX + (c HIGH K c ) (K c c LOW ) 1 , ( 3 

alitatively dierent transient variations of the phenotypic state

At the beginning of round 1, not only the proportion of capsulated cells diers among treatments, but the internal concentration (or its "physiological state") is also larger for later pre-cultures. is means that the initial switching rate towards capsulation will be higher the later is the pre-culture, thus providing the potential for an initial boost in the fraction of CAP+ cells. is eect is enhanced by the existence (or not) of a lag phase, whereby the deregulated production and accumulation of the compound X is not compensated by growth-induced dilution (Eq. 3.63). alitative dierent switching regimes can be therefore obtained, depending on whether the lag phase lasts enough for the internal concentration c to reach values for which the switching behaviour gets unbalanced toward the CAP+ state, and fast enough for its eect to be visible before the system reaches stationary phase.

In order for a gradual and slow increase in the CAP+ frequency to be observed, however, the concentration in exponential steady-state needs to be close to the lowest concentration for which bistability is possible, as to provide a corresponding equilibrium frequency that corresponds to the initial value f LOW R0 . Indeed, for exponentially growing cultures remaining at steady-state also during dilution, the switching towards the capsulated state will not increase until cells approach stationary phase, and density-dependent eects start to displace the fast equilibrium.

On the contrary, older cultures, accumulating the intracellular compound during lag phase, will see a rapid, although temporary, increase in the probability of switching ot the capsulated state. Such increase will be larger (and thus the overshoot will be bigger), when the lag phase lasts longer, as occurs in "mid" and "late" cultures (Fig. 3.15). 

Overshoot and exponential phase (quasi-)equilibrium

In the previous paragraphs I discussed the relationship between the values of some of the parameters and the qualitatively dierent responses that can be obtained from the mathematical model.

One of the most striking observations done on Pseudomonas uorescens switchers was the (treatment-dependent) non-monotonic dynamics in the frequency of the capsulated phenotype f , characterized by an "overshoot" (i.e. a positive dierence between the nal frequency at the end of round 1 f ⇤ S and the maximum of the dynamics) in two out of the three treatments.

In the mathematical model, the non-monotonic dynamics of the frequency of the CAP+ frequency is the result of a similar non-monotonic intracellular dynamics (Eq. 3.63). During the lag phase at the beginning of round 1, the production term gets deregulated, which provides a mechanism of fast variation of the switching rates ↵ + and ↵ . Figure 3.16 shows the intracellular and phenotypic dynamics of two populations diering only in terms of the ratio between maximum switching rates ↵ MAX + /↵ MAX : the higher is this ratio, the higher get both the maximum CAP+ frequency reached and the succeeding quasi-steady value of the CAP+ frequency in exponential phase f ⇤ E . 

Undershoot

e undershoot in the phenotypic dynamics is dened by the dierence between the stationary phase nal value of the frequency f ⇤ S and the quasi-steady state in exponential phase:

f ⇤ S f ⇤ E = f (c ⇤ S ) f (c ⇤ E ) (3.82)
which, given Eqs. 3.69 and 3.73, yields:

f ⇤ S f ⇤ E =  1 + ↵ MAX ↵ MAX + (c HIGH K c ) (K c c LOW ) 1 2 4 1 + ↵ MAX ↵ MAX + ⇣ c HIGH bKc b+⇢Kc ⌘ ⇣ bKc b+⇢Kc c LOW ⌘ 3 5 1 . (3.83)
In other words, an undershoot following the overshoot can be obtained provided that the nal intracellular concentration c ⇤ S = K c is higher than the exponential phase quasi-steady state

c ⇤ E = 1 1 Kc + r b
. Indeed, as the population keeps growing exponentially on a time scale longer than the duration of the overshoot, the frequency of capsulated cells will eventually converge towards its exponential steady-state. e approach to this limit will be then interrupted by the growth slowdown, whose effect through dilution will eventually become prevalent, thus causing the frequency to increase again. erefore, two populations identical in their initial conditions of round 1 and in their maximum capacity in terms of concentration of X K c may present undershoots of dierent magnitude if the ratio between the average growth rate in exponential phase ⇢ and the production rate b are dierent 3.17. e dierence in the nal CAP+ frequency in Figure 3.17, not predicted by Eq. 3.83 if all other parameters are constant, is due to the logistic factor dampening the switching rates as population approaches stationary phase ("switch at birth" hypothesis). By removing the logistic factor in the ODE for the temporal evolution of the frequency of the CAP+ phenotype (Eq. 3.62), therefore allowing the switching rates to share the same value for the same intracellular concentration c irrespective of the population size N (t), the two populations actually reach the same nal stationary phase equilibrium (Fig. 3.18). In the next Section, the results of the overshoot experiment will be analyzed quantitatively, so to inform the mathematical model with quantitative values for the measurable parameters (the average growth rate of the populations ⇢ and the duration of the lag period at the beginning of round 1 ⌧ ). Since the experimental measures are not sucient to fully parametrize the system, I will discuss the results of the quantitative t of the model on the experimental data of the overshoot experiment (Section 3.5).

Estimate of the measurable parameters

e data from the overshoot experiment can be used to inform the 3-D mathematical model, in the form presented in Section 3.3.4. Indeed, the value of some of the parameters for each one of the three initial conditions ("low", "mid", "high" population density at the end of round 0) can be obtained from the growth curves of round 1: this is the case of the average growth rate in exponential phase ⇢ and the lag phase duration ⌧ .

Instead, other parameters (e.g. the production rate b, the maximum switching rates ↵ MAX + and ↵ MAX , the maximum X concentration K c ) are inaccessible through direct or indirect measurements and their values will thus be ed (next Section). is reects the nature of the additional state variable added to couple demography and phenotypic dynamics: c, the internal concentration of X, is a "hidden variable" working as a proxy for the cell response to the ensemble of the environmental cues determining its phenotype. Since the hypothetical compound X has not yet been identied (beside the fact that it does not need to correspond to an actual concentration at all), its value cannot be measured.

For the average growth rate in exponential phase ⇢, an exponential t was performed on the rst six time points (from 0 to 540 minutes aer resuspension into fresh medium) of the mean growth curves for each of the three preculture conditions (Table 3.3). e mean value of the exponential phase growth rate ⇢ over the three treatments and its standard error can be computed: By comparison of the intercept of the exponential t of the growth curves, it is possible to compute the duration of the lag period. e optical density at the beginning of round 1 is set to the value of 0.05 through dilution: any variation of the optical density extrapolated at the beginning of round 1, OD 0 , from this value involves a deviation from fully exponential growth at the beginning of round 1, likely due to the lag phase. e duration of such lag can then be computed by evaluating the time at

⇢ = (0.45 ± 0.02) h 1 . ( 3 

Preculture

Fitted OD 0 Lag duration ⌧ (h) low (nal OD R0 = 0.3) 0.066 ± 0.002 0 mid (nal OD R0 = 1.0) 0.059 ± 0.002 0.24 ± 0.03 high (nal OD R0 = 1.5) 0.056 ± 0.002 0.35 ± 0.03 Table 3.4: Duration of the lag phase computed from the dierence between the ed initial optical density and the actual, imposed initial value (0.05). e computation permits an estimate of the time when exponential growth is resumed relative to the quickest population to resume exponential growth (the "low" treatment), whose lag phase duration is set to zero.

which the population should have had an optical density equal to 0.05. Results in Table 3.4 show that the "low" preculture condition has a higher ed OD 0 with respect to that of the "mid" one, which in turn is higher than that of the "high" population. is is the order we expected: populations experiencing more advanced stages of growth take longer to restore their exponential growth aer resuspension into fresh medium.

antitative t of the free parameters

In the previous Sections I showed that the 3-D mathematical model reproduces the main features of the demographic and phenotypic dynamics of the overshoot experiment (Section 3.4.2). In this Section, I address the possibility of obtaining a quantitative t of the experimental data (Section 3.5.1), and discuss how relaxing some hypotheses of the mathematical model aects its ing power (Section 3.5.2). e ing method consisted in nding the best combination of the free parameters (the production rate b, the maximum internal concentration K c , the maximum switching rates ↵ MAX + and ↵ MAX ) and initial conditions for round 0 (number of cells and frequency of the CAP+ phenotype at the beginning of the preculture stage) corresponding to the minimum deviation between the experimental data and the curve predicted by the model.

e original goal was to t the trajectories of all the three treatments with the same set of parameters, but once noticed that, in that way, it was impossible to obtain dierences in the nal population composition comparable to those observed in the experiments, I decided to t independently the data relative to dierent treatments, and to examine later which of the best t parameters were similar or dierent across treatments.

To all non-free parameters (the optical density at which the three populations were sampled in round 0, the boleneck size, the lag phase duration ⌧ , the average growth rate in exponential phase ⇢) I aributed the values estimated as explained in Section 3.4.3. Since the units of the intracellular concentration c is arbitrary, one of the parameters c LOW can be set to an arbitrary value. In the following, for the sake of a greater eciency in the t procedure, c HIGH is xed as well.

e two-rounds system was simulated and ed through Python routines for minimizing mean-square distance from the measured trajectories (for further details see Chapter 2).

Results of the t

A preliminary run of the t showed that the least variable parameter in the t was the maximum switching rate to the CAP-state ↵ MAX . In order to speed up the t, I decided to x it to a value close to the optimal ones, and checked numerically that small changes in such value did not signicantly alter the behaviour of the system.

e impossibility of ing the three phenotypic dynamics with a common set of parameters indicates that, although the model qualitatively recapitulates the behaviour of the system, more biological detail should be implemented to get a complete, consistent description of the overshoot phenomenology. Nonetheless, if the rationales of this model are correct, some intuitions about the mechanisms underpinning the switch may be obtained through the comparison of the ed values of the parameters across the three preculture treatments, summarized in Table 3.5. e simulation of the dynamical system informed with these values of the free parameters is shown in Figure 3.19 (only round 1 presented). e model quantitatively reproduces the experimental measures. With this set of parameters the demographic dynamics is best ed in early exponential phase and towards the end of the experiment, while population size is underestimated in late exponential phase. In Section 3.5.2 this aspect will be further discussed as a possible eect of a growth rate dierence between CAP+ and CAP-.

Preculture ↵ MAX + (h 1 ) ↵ MAX (h 1 ) b (h 1 ) K c (a.
Unlike ↵ MAX , the maximum switching rate to the CAP+ state ↵ MAX + has to signicantly dier across the three treatments to obtain their dierent trajectories. e results of the t propose values of ↵ MAX + increasing with the nal density reached by the preculture in round 0, suggesting that, if the model grasps the main mechanism at the basis of the capsulation switch, dierences in the preculture growth regime likely aect the rate of switch to the CAP+ state more than that to the CAP-.

e intracellular dynamics, which links the demographic and the phenotypic ones through the "hidden" variable c, is at this stage inaccessible to direct experimental investigations. e results of the t, however, suggest that neither the instantaneous rate of synthesis of X b, nor the maximum concentration of X K c , need to vary much to account for the dierent phenotypic dynamics in the three treatments.

e role of K c and of the rapid accumulation of X within the duration of the lag phase ⌧ can be beer appreciated in Figure 3.20, representing the dynamics of the system soon aer the beginning of round 1 (lag and early exponential phases of growth). In the "low" treatment, a very short (or inexistent) lag phase prevents the internal concentration of X from crossing the c HIGH threshold associated to a maximal switching rate to the CAP+ state and a switching rate to the CAP-state equalling zero. In the "mid" and "high" treatments, on the other hand, the concentration of X increases linearly with rate b during lag, before relaxing to its maximum allowed value K c soon aer exponential growth is resumed. Figure 3.20: Demographic (top row) and intracellular dynamics (boom row) at the beginning of round 1 for the three preculture treatments ("low", le column; "mid", central column; "high", right column). e horizonthal green band corresponds to the concentration range associated to bistability [cLOW , cHIGH], wherein both switching rates are non-zero. e vertical grey band corresponds, for the "mid" and "high" populations, to the lag phase.

Just as discussed in Section 3.4.2, K c has to be slightly higher than the threshold c LOW to let f reach an appropriate quasi-steady state in later phases of the dynamics, and the dierential lag phase duration explains the dierence in the transient pheno-typic dynamics between the "mid" and the "high" conditions in terms of the overshoot magnitude during early exponential phase.

Relaxation of some modelling assumptions

e three-dimensional model studied in the previous paragraphs was based on several assumptions. On the one hand, such working hypotheses made the model more tractable; on the other, some of them might have reduced the possibilities of a beer agreement between the model and the experimental observations. In this Section, I address the robustness of my results when some of these assumptions are relaxed.

Decoupling of cell cycle and switch

As discussed in Section 3.3.3, in my mathematical model the switching terms are weighed by a density dependence term (1-N/K) corresponding to the hypothesis that the switch only happens during specic phases of the cell cycle (e.g. at cell division), whereas cells do not switch when not dividing. By removing this factor from Equation 3.62, the phenotypic dynamics is described by:

ḟ = [↵ + (c)(1 f ) ↵ (c)f ] ✓(t ⌧ ). (3.85) 
In this case, the arrest in the demographic dynamics taking place when population size reaches the carrying capacity does not prevent the system from reaching the steady-state in the phenotypic composition given by Equation 3.81 once the intracellular dynamics has relaxed to c ⇤ S = K c . In Figure 3.21 a comparison between these alternative hypotheses ("switch at birth" and "switch at any time") is shown, using the set of parameters that best ed the "mid" treatment of the overshoot experiment. Coupling switch to cell division dampens the magnitude of CAP+ frequency increase at the entrance of stationary phase, without any change in the earlier dynamics (i.e. the overshoot). Densitydependence of the switch thus allows to beer reproduce the levelling-o of f that occurs as the population enters stationary phase (Fig. 3

.19).

Nonlinear switching rates e switching rates were chosen as stepwise-linear functions of the intracellular concentration c, corresponding to the relative extension of the basins of araction of the alternative stable equilibria in a Z-shaped bifurcation diagram (Section 3.3.1). However, the generic shape of the bifurcation diagram of a bistable dynamical system is rather S-shaped, whereby the bistability region is bounded by two fold bifurcations of the equilibria. In this case, the switching rates are expected to depend nonlinearly from the concentration c, and thus possibly alter the phenotypic dynamics, especially when the system approaches the thresholds of the bistability region [c LOW , c HIGH ].

I compared the phenotypic dynamics obtained in the previous Section (best t for the "mid" treatment of the overshoot experiment) with the one obtained by replacing the stepwise-linear switching rates with stepwise-exponential ones characterized by innite absolute values of their derivatives at c = c LOW and c = c HIGH (Fig. 3.22). Linear vs nonlinear switching rates as functions of the internal concentration c (blue and orange lines, respectively). In both cases, switching rates are dened as piecewise functions, to allow them to be both nonzero only for values of c belonging to the bistability region [cLOW , cHIGH], corresponding to CAP+ and CAP-coexistence.

A very extreme instance of nonlinearity is chosen, that is piecewiseexponential functions with the maxima of derivatives near the boundaries of the region of coexistence. is way, small deviations of c near the boundaries yield very high switching rate variations, which should push the system to sudden transitions. Results are shown in Figure 3.23: no major change in the dynamics of the frequency of CAP+ in the population was obtained. As expected, the dierence between the two can be beer appreciated during the undershoot, that is when the internal concentration c relaxes to its quasi-steady state (slightly higher than c LOW ) and thus where the eects of the nonlinearities are maximal.

Eect of growth rate on phenotypic diversity in exponential phase

e mathematical model presented in this Chapter satisfactorily describes the transient dynamics of the phenotypic composition of a population of Pseudomonas uorescens cells performing the capsulation phenotypic switch. I now aim to verify its validity and predictive power on a dierent problem, that is the link between CAP+ expression and growth rate. Indeed, the fundamental hypothesis on the contextdependence of phenotypic switchers is that the rate of phenotypic change depends on cell growth. Beside the case when it is aected by population demography, growth might be altered in dierent manners, while maintaining the population in the same demographic regime. For instance, it is known that dierent genetic backgrounds or dierent environmental conditions correspond to dierent growth rates in exponential phase. As I will more extensively treat in the next Chapter, Section 4.1.2, a statistically signicant negative correlation can be observed between the fraction of capsulated cells in a population of switchers and the mean growth rate of the population, when these two quantities are measured in the exponential regime of growth.

In this Section, I address the question: Do the theoretical models presented in this Chapter predict an explicit mutual dependence between the phenotypic composition of the population and the rate of population growth? And do the predictions account for the negative correlation between these two quantities?

e rst two null models of Section 3.2 ("pure switch" and "dierential growth") did not predict any kind of mutual dependence between the CAP+ frequency and the mean growth rate of the population, while the third one ("constant switching rates with growth rate dierence") predicted that the equilibrium frequency of the CAP+ phenotype in the population depended on the mean growth rate of the population following Equation 3.35, which can be rewrien as:

f ⇤ =  1 + ↵ ↵ + + ⇢ r 1 , (3.86) 
suggesting that higher values of the mean growth rate ⇢ would correspond to higher values of the frequency of CAP+ at equilibrium f ⇤ (Fig. 3.24, le panel).

On the other hand, the 3-D mathematical model of context-dependent phenotypic switch of Section 3.3 provides a formula linking the exponential phase quasiequilibrium for the CAP+ frequency in exponential phase f ⇤ E and the maximum growth rate ⇢:

f ⇤ E = 2 4 1 + ↵ MAX ↵ MAX + c HIGH 1 1 Kc + ⇢ b 1 1 Kc + ⇢ b c LOW 3 5 1 . (3.87) 
By ploing the expected fraction of CAP+ cells during exponential phase f ⇤ E against the eective parameter ⇢ b (the ratio between the average growth rate and the maximum rate of production of the X metabolite) and using in Equation 3.87 the values of the parameters corresponding to the best t (Section 3.5.1), it can observed that the relation is in this case qualitatively opposite with respect to that previously predicted by the third null model: the higher the mean growth rate ⇢, the lower the equilibrium frequency of CAP+ f ⇤ (Fig. 3.24, right panel).

In the next Chapter, I present my experimental tests on the topic: indeed, by disposing of a number of genetically dierent mutants all displaying switching between the CAP+ and CAP-phenotypes obtained by re-playing the evolutionary experiment in Beaumont et al. [START_REF]Experimental evolution of bet hedging[END_REF] (Chapter 1, Section 1.3.2), I can measure their maximum growth rate and frequency of the CAP+ in full exponential phase. Later in the next Chapter, I present experimental evidence of a negative correlation between the two quantities, and investigate whether Equation 3.87 predicts the right degree of variability in the CAP+ frequency when I manipulate the mean growth rate ⇢ by changing the switching genotype or by controlling the temperature of the environment. Figure 3.24: Correlation between the CAP+ frequency and the mean growth rate in exponential phase as predicted by the "constant switching rates with growth rate dierence" (le panel) and by the three-dimensional (right panel) models. e two models predict the correlation to assume opposite sign. Colors correspond to the three treatments of the overshoot experiment, each obtained by informing Eqs. 3.86 and 3.87 with the corresponding parameters obtained providing the best t of the demographic and phenotypic dynamics of the overshoot experiment (Table 3.5). e intersection between each curve and the vertical, dashed black straight line corresponding to the ed value of ⇢ gives the expected equilibrium fraction of CAP+ during exponential phase.

Summary of the results and biological interpretation

e relevance of the bidirectional switch in Pseudomonas uorescens switchers resides in being context-dependent. Indeed, along a normal population growth trajectory, the percentage of cells expressing the CAP+ phenotype changes dramatically in time if the preculture is sampled suciently close to the stationary state. Models wherein the switch is context-independent do not encompass such a behaviour, while the 3-D model introduced in this work, where temporal variations in the intracellular concentration of a generic metabolite "translate" dierential growth regimes in switching rates modulations, can reproduce the observed dynamics of the phenotypic composition of the population.

e qualitative dierence between populations replicated from dierent preculture treatments and the extent of the overshoot and undershoot can be interpreted as the eect of intracellular dynamics being inuenced by growth rate through dilution. e closer to stationary phase the cells get to during the preculture stage (round 0), the longer the lag period at resuspension (beginning of round 1), and the higher the concentration of X and its rate of increase at the beginning of round 1, ultimately causing cells to massively switch to the CAP+ state. On the other hand, cultures that are maintained in exponential phase maintain their phenotypic composition until they reach stationary phase.

A quantitative comparison between data and model was performed, and it was found that the three trajectories corresponding to the three preculture treatments could not be ed with just one set of parameters. is suggests that precultures at dierent stages of growth may be composed of cells that, beside having experienced dierent demographic histories, are characterized by dierent paerns of gene regulation related to the switching behaviour. e parameters that most vary among the dierent treatments are the duration of the lag period ⌧ (measured), and the switching rate to the CAP+ state ↵ MAX + (ed). On the contrary, the preculture conditions seem not to have a strong inuence on the growth rate in exponential phase, which might be a purely genotypic-driven observable, nor on the maximum switching rate to the CAP-phenotype ↵ MAX .

e trans-generational persistence of the levels of expression of CAP+ in the population (i.e. the fact that the dierence in phenotypic composition at the beginning of round 1 is conserved across several generations, until the end of round 1) cannot be quantitatively explained only in terms of dierent initial conditions, but it seems to be mediated by the CAP-to CAP+ maximum switching rate ↵ MAX + : the longer the preculture round, the higher the switching rate ↵ MAX + .

Possible physiological basis of the parameter variation

During the course of the thesis, further work on the physiology and molecular underpinnings of the switching strains was realized in Paul Rainey's lab by Dr. Philippe Remigi, Dr. Gayle Ferguson (unpublished data). In their view, switchers have a misregulated production of ribosomes, that would be in particular up-regulated upon entering the stationary phase of growth. High ribosome levels would compete with RmsA/E genes for the translation of a positive regulator of capsule biosynthesis. Such gene, named "A", would encode for a protein whose concentration is responsible for the bistability in capsule expression.

One possible interpretation provided our model is that the product of gene "A", which triggers the switching behaviour via a threshold mechanism, is described by the concentration c of the product X. GFP uorescence would measure, in experiments such that presented above, the translation of A (or X).

On the other hand, the model does not deal with more detailed levels of description, like the quantication of the concentration of ribosomes or that of the posttranscriptional repression of gene A by RsmA/E. Instead, I make use of growth rate as a proxy for the ensemble of the regulations acting on A (like the ratio between the concentration of ribosomes and that of RmsA/E). is choice allows me to simplify the description of the dynamics observed in the overshoot experiment.

e parameter b represents the maximum rate of production of X by the cell. In the mathematical model the intracellular concentration of X saturates (with the exception of the lag phase) to a maximum value K c which represents the maximum amount of protein X that the cell can produce and store. is term encompasses all the possible regulations that control the maximum level of X. During lag, I suppose such a regulation is relieved, allowing c to get to values greater than K c .

One can imagine that, as the concentration of ribosomes in the cell gets higher in older cultures, the production term, determining the accumulation of X aer cells are diluted, increases too. If the growth rate is unaected, the eect of having a higher ribosomal concentration may result in an increase of b and/or K c : more ribosomes could make the maximum translation rate higher and/or to allow the cell to store more units of protein A/X. I modelled the second scenario but the rst should be explored as well in future work.

Finally, it seems reasonable that, if it has a direct eect on the switching behaviour, the concentration of ribosomes should more likely aect the ↵ MAX + rate, rather than the ↵ MAX . Indeed, ↵ MAX + is related to the synthesis of huge amount of cellulose, whereas ↵ MAX is more dependent on degradation, which is not performed by ribosomes.

Conclusions

e three-dimensional mathematical model introduced here qualitatively reproduces the non-monotonic dynamics of the frequency of the capsulated phenotype. e model also ts quantitatively the transient behaviour, but in order to account for all the dierences among preculture conditions ("low", "mid", "high"), each of such treatments needs to have dierent parameters, notably in terms of the maximal rate of switching ↵ MAX + . e model moreover predicts a negative correlation between the average growth rate of the population and the frequency of the CAP+ phenotype, with the correlation coecient depending on the microscopic parameters.

e experimental tests of this prediction will be the main focus of Chapter 4. In Section 4.1, I present my experimental results on the negative correlation between the level of expression of the CAP+ phenotype in the population and the growth rate of the population in exponential phase. Section 4.2 is dedicated to compare the model prediction with the measured variability in CAP+ frequency across strains and for the same strain at dierent temperatures. Finally, in Section 4.3, I propose a biologically reasonable further hypothesis on the switching rates, which allows to improve the ing power of the model on the growth-capsulation data.

CHAPTER 4 THE ROLE OF GROWTH RATE IN P. FLUORESCENS SWITCHING DYNAMICS

L switching through internal concentrations, the mathematical model presented in Chapter 3 succeeds in reproducing the phenotypic dynamics of Pseudomonas uorescens "switchers" populations. e model predicts moreover the existence of quasi-equilibria of the CAP+ frequency in exponential phase, for which it oers a predictive formula where the quasi-equilibrium directly decreases with the mean growth rate of the population.

is Chapter tackles the following questions:

1. Do variations in the mean growth rate of Pseudomonas uorescens populations inuence the degree of phenotypic heterogeneity in exponential phase?

2. Does the mathematical model quantitatively predict the CAP+ frequency in exponential phase as a function of mean growth rate?

In this Chapter I present the results of experimental assays aimed at answering these questions: a negative correlation between the mean CAP+ frequency in exponential phase and the mean growth rate of the population is indeed obtained -both by testing dierent genotypes characterized by dierent mean growth rate and by controlling the growth rate through culture temperature (Section 4.1).

Even though the experimental protocol has to be rened in order to obtain more reliable statistics, my observations point to a quantitative mismatch with the predictions of the model, based on growth rate as an independent control parameter. When informing the aforementioned predictive formula with the parameters of the best t of the overshoot dynamics, we cannot account quantitatively for the measured CAP+ frequency -which appears to be larger than predicted. Such an underestimation of the CAP+ frequency in exponential phase suggests that the switching rates might be explicit functions of the mean growth rate (Section 4.2).

e correct relation can be indeed obtained by having the maximum switching rates scale with the mean growth rate in a way that is compatible with the hypothesis that such rates are aected by ribosomal dierential concentration between CAP+ and CAP-(Section 4.3).

e CAP+ frequency negatively correlates with

the mean growth rate e goal of this Section is to answer the question: Do controlled variations in the mean growth rate of Pseudomonas uorescens populations inuence the degree of phenotypic heterogeneity in exponential phase? Such an inquiry is indeed motivated by the fact that both a simple growth-andswitch null model (Chapter 3, Section 3.2.3) and the mathematical model conceived to reproduce and explain the history-dependent dynamics of the phenotypic composition of the population (Chapter 3, Section 3.3.5) forecast the CAP+ frequency to vary as a function of the mean growth rate.

In particular, for the "constant switching rate with growth rate dierence" null model I obtained a positive linear relation between the CAP+ frequency equilibrium and the average growth rate (Eq. 3.35). e mathematical model describing the overshoot dynamics, on the other hand, provided a quantitative prediction for the CAP+ frequency during exponential phase f ⇤ E (Eq. 3.70), from which a negative nonlinear relation between mean growth rate and an exponential phase CAP+ frequency quasiequilibrium follows.

In the following pages, experimental tests of the relationship between growth rate and degree of phenotypic heterogeneity in Pseudomonas uorescens are presented, and their relation with the dierent mathematical models discussed. First of all, I show experimental evidence supporting the hypothesis that the main determinant of the growth rate in exponential phase is the genotype rather than the phenotype (Section 4.1.1). e mean growth rate can be therefore taken as the independent variable to compare the levels of CAP+ expression in exponential phase across the dierent switching genotypes, rstly grown in KB (Section 4.1.2) and then in KBS (Section 4.1.3). Finally, one switching strain (1w4xGFP) will be exposed to dierent culture temperatures to control the mean growth rate and the CAP+ frequency in exponential phase, which are both known to respond to temperature (Section 4.1.4).

e growth rate depends on the genotype

e mean growth rate of one Pseudomonas uorescens switching population depends on the (a priori, dierent) division rates of its two phenotypes CAP+ and CAP-and on the phenotypic composition of the population. Time-lapse experiments allow to measure growth rate at the microcolony level while ideally tracking the exact phenotypic composition of the microcolony itself, which can provide another measure of the growth rate of the dierent Pseudomonas uorescens switchers and should in principle yield to the determination of the eventual dierence in the division time between CAP+ and CAP-.

In the following paragraphs, time-lapse measurements of the increase in the area of microcolonies founded by CAP+ or CAP-individuals are presented. For this analysis, only those microcolonies whose cells never displayed a switch to the CAP+ state are considered "-" microcolonies, while "+" microcolonies will be those founded by a CAP+ cell, without keeping exact track of the individual phenotype of all cells (which revealed to be impossible in our experimental setup due to experimental issues). An example of microcolony growth data is provided by Figure 4.1. Further details on the experimental and image analysis protocols can be found in Chapter 2, Section 2.2.2. First, I compared "-" microcolonies (by far the most numerous) of strains 1w4xGFP, Re1.4xGFP, and Re1.5xGFP, the laer two being chosen because the fastest and the slowest growing in bulk, respectively. In Figure 4.2 it can be noticed that the expected order ⇢(Re1.4) < ⇢(1w4) < ⇢(Re1.5) is respected at the microcolony level, and on agar pad, too. e dierences between the three strains are statistically signicative (Table 4.1).

To understand whether the phenotype of the founding individual has an impact on the growth of Pseudomonas uorescens colonies, time-lapse data about microcolonies started from either CAP+ or CAP-cells for the same genotype (Re1.4xGFP) were collected. Again (Figure 4.2 and Table 4.1), such microcolonies have a signicantly different growth rate with respect to those of 1w4xGFP or Re1.5xGFP, but they are not signicatively dierent from one another.

In conclusion, at least for the three strains here analysed, dierent switching genotypes show a signicant dierence in the mean growth rate on agar plates, too. In turn, a signicative dierence between the two phenotypes (CAP-and CAP+) of the same genotype (Re1.4xGFP) could not be appreciated. ese results support the assumption that the division rate could be treated as a variable independent of the phenotype, and that, on the other hand, its main determinant is the genotype of the strain. e genetic transformation of the switchers (Chapter 2), paved the way to a more precise characterization of the Pseudomonas uorescens CAP phenotypic switch: the frequency of the CAP+ state, now marked by the gfp gene, became measurable by ow cytometry, thus in a much higher throughput fashion than by the previous, laborious method consisting in staining cells with indian ink and then manualling counting the two phenotypes out of microscopy observations.

e culture medium aects both growth and CAP+ expression

By changing the amino acid source among the ingredients of the standard growth medium KB (King's B), Rainey and collaborators could induce a signicant increase in the frequency of the CAP+ state across Pseudomonas uorescens CAP switching populations when plated on agar plates. e new formula, called KBS ("King's B Switcher"), is the same culture medium used in the overshoot experiment (Chapter 3), and it diers from KB in that tryptone substitutes peptone III: although these compounds supply the same nutritional power, the switching behaviour appears to be dierent in the two media.

Growth rate measurements

To measure the switchers' exponential phase average growth rate in KBS, optical density was assayed in TiCan 96-plate reader, and the mean exponential phase growth rates obtained through exponential t of the collected data. As an example, one growth curve for the 1w4 strain is shown in One non-GFP control (1w4) and the line 6 switching genotype with GFP insertion (6w4xGFP) were added to the pool of the assayed strains for these tests in KBS. e dierence between every re-evolved switching genotype and its corresponding GFP version consists just in the insertion of the gfp gene downstream the carAB operon, under the control of its same promoter. Although it was shown that the response to external agents such as antibiotics can be dierent [START_REF]e inuence of green uorescent protein incorporation on bacterial physiology: A note of caution[END_REF], the expression of the GFP protein only weakly aects growth rate in bacteria. Data support the evidence that the insertion of GFP slightly lowers the growth rate (cf. 1w4 vs 1w4xGFP in Table 4.2). e fastest growing strain (Re1.5xGFP) grows more than twice as fast as the slowest one (Re1.4xGFP), as well as the fact that genotypes sharing the same switch-triggering mutation (1w4xGFP and Re1.8xGFP) present very similar growth rates.

KB KBS

Strain ⇢ (OD h 1 ) ¯ ⇢ (OD h 1 ) ⇢ (OD h 1 ) ¯ ⇢ (OD h Growth rate measurements in KBS correlate well with those previously performed in KB (Fig. 4.5). e two sets are signicantly dierent (P value ' 0.05), meaning that the dierence between the two groups can be ascribed to the medium change. e Pseudomonas uorescens switching strains grow slower in KBS than in the old medium recipe (all points are under the main diagonal of the graph). e (negative) intercept of the linear t quanties the bias induced by the medium change. On the other hand, inter-strain variability in KBS is higher than that measured in KB (the slope of the linear t is greater than 1).

CAP+ frequency measurements

e frequency of the CAP+ phenotype in the populations of our Pseudomonas uorescens switching strains was measured through ow cytometry (see Chapter 2, Section 2.2.2 for details). e results of the measurements (mean values and standard error over the three replicas for every strain) are shown in Table 4 

Growth rate / CAP+ frequency scatterplot

Data from growth and capsulation assays in KBS can be aggregated to verify if the negative correlation between average growth rate in exponential phase and frequency of the CAP+ state still holds (Fig. 4.7). Despite having signicantly changed the culture environment, the negative correlation between the two observables is conserved, although it is less strong. Unlike previous measures where they scored the highest frequency of CAP+ phenotype across the dierent switchers, Re1.4xGFP cultures presented in KBS a very low CAP+ frequency, instead of being positively aected by the medium change. is might be due to the particular mutation endowing Re1.4 with the capsulation switch, which might have cells respond dierently to the amino acid change, or to clumping of cells preventing a precise measure through ow cytometry.

In conclusion, KBS (which was found to enhance the frequency of the CAP-to CAP+ switch on agar plates), corresponds to higher CAP+ frequency in bulk culture, while signicantly slowing down population growth in exponential phase. Finally, a negative correlation between the mean growth rates and the CAP+ frequencies is always obtained, and appears to be irrespective of the growth medium and of the experimental protocol. Indeed, measuring the CAP+ frequency by ow cytometry (rather than indian ink staining) increases the sample size of several orders of magnitude without altering the relative dierences between strains, with the exception of Re1.4xGFP. 

Temperature alters both growth and CAP+ expression

e results of the previous Sections indicate that, though diering in the genetic basis of the switching behaviour, the phenotypic state of dierent strains follows a paern of co-variation with the growth rate: fastest-growing strains tend to have less capsulated cells than slower-growing ones. If there was a direct link between switching rates and growth rate similar to what assumed in the model presented in Chapter 3, one could expect that the same conclusion should hold if growth rate is altered otherwise than by genetic means. It is known that bacteria adjust their generation time according to the temperature of their growth environment. I thus decided to control the mean growth rate of one specic strain by exposing it at dierent temperatures (the same during the night culture and the measurements phase). To this avail, 1w4xGFP cultures were grown at 20, 22, 25, 28, 31 and 34°C, and their growth rate and CAP+ frequency in exponential phase assessed.

If changes in the mean growth rate of the population are indeed the main cause of variability in the typical frequency of the CAP+ phenotype in Pseudomonas uorescens populations sustained in exponential phase, I expect to obtain the same negative correlation between the two quantities, no maer how the growth rate is manipulated. Nevertheless, I cannot rule out the fact that stress response could aect switching rates in ways that are independent of the "passive" dilution eect induced by growth rate change.

Growth rate measurements

Aer a night culture round, each of the three replicates was diluted to the same optical density (OD = 0.1) and cell density measured every 60 minutes (for the 20, 25 and 31°C samples), or every other hour (22, 28 and 34°C) through optical density. Although the measurements continued longer, the exponential t necessary to estimate the exponential phase growth rate for each of the replicates was performed on an early time window (between two and six hours aer resuspension), before the culture approached saturation. Results are presented in Table 4 Mean exponential phase growth rate of 1w4xGFP populations grown at dierent temperatures in KBS. An exponential t of the optical density data between 2 and 6 hours aer resuspension was performed for each of the replicates. For each temperature, the mean value and the standard error of the mean over the three replicates are also presented.

In Figure 4.9 the mean growth rate is ploed against temperature for six dierent temperatures between 20 and 34°C. Growth curves are highly reproducible (except the one at 22°C) and show quantitative dierences as temperature is varied. It can be noticed that the positive eect of culture temperature on population growth during exponential phase seems to cease for cultures grown at temperatures higher than 31°C

: the 34°C samples are indeed sick, and observation under the microscope proved their inability to grow associated to a very serious change of the cells' appearence. For this reason, they were excluded from the subsequent analysis.

Time after resuspension (h) log(optical density) (a.u.) Time after resuspension (h) log(optical density) (a.u.) (20, 22, 25, 28, 31, and 34°C) and the growth rate computed by exponential t of the corresponding optical density data. For each temperature, error bars correspond to the standard error of the mean growth rate over the three replicates.

CAP+ frequency measurements

e frequency of CAP+ cells in exponential phase was assayed by uorescent microscopy. At 3 hours (20, 25, and 31°C) or 4 hours aer resuspension (22 and 28°C), a ⇠ 1 l sample of each of the grown cultures was plated on a microscopy slide and 20 pictures taken at dierent locations in both phase contrast and GFP uorescence. An automated Fiji image analysis procedure allowed us to gather data about the total number of cells (phase contrast channel) and the number of CAP+ cells (GFP uorescence channel). Table 4 

Growth rate / CAP+ frequency scatterplot

When ploing the measured CAP+ frequency against the mean growth rate for the ve temperatures, I again nd a statistically signicant negative correlation between these two observables, irrespectively of considering the data from dierent replicates at the same temperature individually or lumped together (Fig. 

High variability might be due to protocol limitations

e high degree of intra-and inter-replicate variability obtained in the uorescent microscopy assays (Fig. 4.10) casts some doubts about the reliability of the experimental protocol for reliably obtaining quantitative measures. Henceforward some considerations about the main experimental issues and the way to improve the protocol are discussed.

More data is needed to obtain reproducible results on CAP+ frequency

For each temperature, three dierent replicates were performed: for each replicate ' 20 30 microscopy images were taken to gather sucient data about the frequency of the CAP+ phenotype in 1w4xGFP populations (see Chapter 2), corresponding to ' 500 1000 cells. Data display extremely high inter-replicate variability (cf. Table 4.5 and Figure 4.10), resulting in a high variance on the estimation of the frequency of CAP+ f . Here I aim at estimating how many dierent replicates should be performed to reduce the relative uncertainty on the CAP+ frequency below a desired level.

Table 4.6 recapitulates the minimum number of replicates R 20% needed to obtain a relative error on the CAP+ frequency of 20% for all the temperatures tested so far. e corresponding number of cells is obtained by multiplying the needed number of replicates by the average number of cells assayed per replicate N/3. 

Temp. (°C) R N N+ f f ¯ f /f (%) R 20% N 20% 20 

When is exponential phase? Choosing the right timing

Of crucial importance is xing the moment when the uorescent microscopy measurement is performed: indeed, cultures must be in exponential phase, and at the same time frequencies must have reached a quasi-steady state. is means that enough time must have elapsed aer the overshoot, where the uctuations of the CAP+ frequency reach their maxima (cf. Chapter 3, Section 3.4). is aspect concerns not only the moment when pictures of the cultures are taken under the microscope, but also the preparation phase (e.g. when the rst preculture gets diluted). For these reasons, a preliminary experiment is needed to verify that the mean growth rate at 2 hours aer resuspension into fresh KBS is a good proxy for the exponential phase quasi-equilibrium. To allow quantitative comparison with the model, the growth rate and the population composition must both be stable across replicates and irrespective of the number of previous dilutions (Figure 4.11). 11: e mean growth rate in 1w4xGFP populations is stable across successive dilutions of the same population. ree identical 1w4xGFP cultures are started (T1, from R1 to R3, black points), and three hours later each of the three replicate cultures is diluted to OD = 0.01 into fresh KBS medium (T2, from R1 to R3, blue points). e procedure is then repeated three hours later, founding the three T3 populations (red points). e mean growth rate is obtained through an exponential t of the optical density data between 1 and 3 hours aer the foundation of each culture (solid lines). Table 4.7 shows the series of three mean growth rates obtained by ing the three successive optical density time series from one to three hours aer foundation, for each replicate. In general, intra-replicate variability (by comparing the standard deviation of the results of the t for T1, T2, T3 belonging to the same replicate) is higher than inter-replicate variability for a given dilution (in 7 out of the 9 pairwise combinations), meaning that the procedure followed to perpetuate a population through successive dilution does not introduce an uncertainty in the exponential phase growth rate greater than the one that we can already observe between dierent replicates of cultures of a same strain. Data about dierent Pseudomonas uorescens switching genotypes and those about 1w4xGFP cultures grown at dierent temperatures both display a negative correlation between mean growth rate and percentage of CAP+ cells in the population. Figure 4.12 compounds the measures for dierent strains with those for dierent temperatures. To the level of resolution reached in these experiments, it appears that the two sources of growth variation cannot be distinguished on the sole basis of their eect on population composition.

A negative correlation between CAP+ frequency and growth rate could already be predicted by the model presented in Chapter 3. In this Section I aim at answering a further question: Does the mathematical model quantitatively account for the CAP+ frequency in exponential phase as a function of mean growth rate? e focus of Chapter 3, the mathematical model (conceived to reproduce and explain the history-dependent dynamics of the phenotypic composition of the population) provides a quantitative prediction for the CAP+ frequency during exponential phase f ⇤ E (Eq. 3.70):

f ⇤ E = 2 4 1 + ↵ MAX ↵ MAX + ⇣ ( r b + 1 Kc )c HIGH 1 ⌘ ⇣ 1 ( r b + 1 Kc )c LOW ⌘ 3 5 1 . (4.1) 
Being f ⇤ E a monotonously decreasing function of the average growth rate r = ⇢ (I consider the case where the two phenotypes are equal in terms of the cells' division time), this results in the prediction of a particular functional form for the negative correlation between these two observables.

e model underestimates the measured CAP+ frequency

When informed with the parameters that best t the phenotypic dynamics (Table 3.5), the Equation 4.1 underestimates the frequency of CAP+ corresponding to low mean growth rates in exponential phase (Fig. 4.1 with the dierent sets of parameters that best t the phenotypic dynamics under the three preculture conditions ("low", "mid", "high", respectively). Indeed, while the measurements taken at 31°C fall close to the curve obtained informing Equation 4.1 with the parameters of the t of the "low" preculture conditions, the other measurements appear not to be predicted by the model. Taking the aggregated data (one point per temperature obtained by summing the countings and averaging the mean growth rates over the three replicates), the divergence between model and data seems to increase as temperature decreases apart from the point at 22°C (Figure 4 

Such deviation was computed as

|fi f ⇤ E (r i )| f ⇤ E (r i )
, where fi(ri) and f ⇤ E (ri) are the measured and expected values of the fraction of CAP+ cells. Expected values are computed by Equation 4.1 by using the mean growth rates ri for any given temperature, and parameters from the best t of the overshoot experiment, "mid" preculture condition (Section 3.5.1). With the exception of the point at 22°C, the decrease of the computed deviation between model and data appears to scale linearly with the mean growth rate (dashed line).

In conclusion, I need to understand the origin of the discrepancy between model and data, and why the discrepancy increases as the mean growth rate decreases. e strategy I want here to follow consists in loosening some assumptions made so far:

• the ratio between the maximum switching rates ↵ MAX + /↵ MAX is the same that best ts the overshoot experiment (Section 4.2.2),

• the switching rates depend linearly on the internal concentration c (Section 4.2.3), and

• the maximum switching rates ↵ MAX + and ↵ MAX does not depend on the mean growth rate (Section 4.2.4).

Higher maximum switching rates ratios reduce the discrepancy

Measured CAP+ frequencies as a function of the mean growth rate in exponential phase do not concentrate around any of the curves set by Equation 4.1 when it is informed by the parameters that best t the overshoot experiment. is discrepancy may be due to the fact that the switching rates are dierent under such dierent experimental conditions. Albeit eort was put into following the same protocol as the overshoot experiment, the fact of realizing measures in another lab and with dierent instruments might indeed have aected the quantitative reproducibility of the observations. Mean growth rate ( h -1 ) Fraction of CAP+ cells /↵ MAX improve the correspondance between data and model prediction with respect to that corresponding to the best t of the overshoot dynamics experiment (blue line), the unchanged scaling law does not appear to match the data distribution yet.

T = 20° C T = 22° C T = 25° C T = 28° C T = 31° C α + max /α - max ~ 8 α + max /α - max = 40 α + max /α - max = 80
From the analysis of the model (Chapter 3, Section 3.3.5), it is known that, if the quasi-equilibrium f ⇤ E depends on most of the parameters of the model, the slope of the CAP+ frequency vs mean growth rate curve is particularly sensitive to changes in the ratio between the maximum switching rates ↵ MAX + /↵ MAX (Equation 4.1). Please notice that, with ↵ MAX xed, ↵ MAX + appears to be the parameter that aects more sensitively the t of the phenotypic dynamics across the three preculture conditions (Table 3.5). For growing values of the ↵ MAX + /↵ MAX ratio, the curves generated by Equation 4.1 become steeper and reach higher values of the CAP+ frequency quasiequilibrium f ⇤ E for low growth rates (Fig. 4.15). In conclusion, the curves obtained by increasing the ↵ MAX + /↵ MAX ratio of one order of magnitude do perform beer than the previous ones, but they do not still seem Linear vs nonlinear dependency of the switching rates on the internal concentration c (blue and orange lines, respectively). In both cases, switching rates are dened as piecewise functions, to allow them to be nonzero at once only for values of c belonging to an intermediate region (corresponding to CAP+ and CAPcoexistence). In this case a very extreme instance of nonlinearity is chosen, that is piecewise-exponential functions with the maxima of derivatives near the boundaries of the region of coexistence. is way, small deviations of c near the boundaries yield very high switching rate variations, pushing the system to sudden transitions.

to grasp how the CAP+ frequency scales with the mean exponential phase growth rate.

Nonlinear rates do not change the predicted functional shape

Another possible reason for the data-model discrepancy when dealing with the expected frequency of the CAP+ cells in exponential phase as a function of the mean growth rate of the population may consist in the simplistic functional form chosen in the model for the switching rates dependence on the internal concentration of X, c. erefore, for the switching rates ↵ + (c) and ↵ (c) one can consider alternative functional forms, like piecewise-exponential functions corresponding to an Slike and not Z-like intracellular bifurcation diagram of c in the bistability region c 2 [c LOW , c HIGH ] (Fig. 4.16). It is evident from Figure 4.17 that for any of the ↵ MAX + /↵ MAX ratios, the piecewise-nonlinear functional form of the switching rates does not yield a sea change in the shape of the curves: the reason lies in the fact that at equilibrium the ratio is xed. I conclude that we need the two switching rates ↵ + (c) and ↵ (c) explicitly depend on r, and with a dierent scaling. In the next Section I analyse the case where the maximum switching rates ↵ MAX + and ↵ MAX explicitly depend on the mean growth rate r. .17: Highly nonlinear functional form of the switching rates do not change the scaling law for the growth rate -CAP+ frequency relation predicted by the model. With respect to the linear ones (solid lines), nonlinear switching rates (dashed lines) predict slightly higher CAP+ frequencies (especially at low mean growth rates) but do not account for a change in the scaling law of the dependency of the CAP+ frequency in exponential phase on the mean growth rate.

e switching rates ratio must scale with the growth rate

Equation 4.1 was derived from the more general Equation seing the quasi-equilibria for the frequency of the CAP+ given the values of the switching rates when the internal concentration c reaches its quasi-steady state:

f ⇤ = ↵ + (c ⇤ ) ↵ + (c ⇤ ) + ↵ (c ⇤ ) ,
which can be wrien as

f ⇤ =  1 + ↵ (c ⇤ ) ↵ + (c ⇤ ) 1 . (4.2) 
Furthermore, in Chapter 3 the switching rates were wrien as the product of a switch-characteristic time scale (the maximum switching rate) and a piecewise-linear function of the internal concentration c, in formula:

↵ + (c) = ↵ MAX + c c LOW c HIGH c LOW (4.3) ↵ (c) = ↵ MAX c HIGH c c HIGH c LOW . (4.4) 
Let's now imagine that, instead of being constant parameters, the maximum switching rates scale with the mean growth rate r: 

↵ MAX + ⇠ r (4.5) ↵ MAX ⇠ r , (4.6 
f ⇤ =  1 + ↵ MAX ↵ MAX + c HIGH c ⇤ c ⇤ c LOW r 1 . (4.8) 
If ↵ MAX + and ↵ MAX are made constant ( = = 0) or, more generally, if they scale with the average growth rate following the same functional law ( = 0), than one obtains the previous results. On the other hand, one can try dierent scalings ( 6 =

) and compare the results with the data of the exponential phase CAP+ frequency quasi-equilibrium and the mean growth rates. In this case, it is possible to obtain a decrease in CAP+ frequency with growth rate that is faster than linear, whereas the previously discussed model predicted a concave function for the curve f ⇤ E (⇢) (Figure 4 18 also shows how, to best t the results of the experiment, must be higher than 1, meaning that the ↵ MAX /↵ MAX + maximum switching rates ratio must increase faster than linearly with the mean growth rate. A best agreement between data and prediction is obtained by taking ' 2: in Section 4.3.1 I discuss how this result could be explained in terms of dierential internal ribosome concentration between CAP+ and CAP-cells (ribosomal interpretation of the switch, see Section 4.3.1).

= 20° C T = 22° C T = 25° C T = 28° C T = 31° C δ -γ = 0 δ -γ = 1 δ -γ = 2 δ -γ = 3

Biological interpretation of the switching rates ratio scaling

As I reviewed in Chapter 1, Section 1.3.2, genetic studies showed the existence of a branching point along the pyrimidine pathway, downstream the operon whose expression triggers the expression of the CAP+ phenotype (Fig. 1.5). Such operon is indeed touched by genetic mutations increasing the occurrence of the expression of the CAP+ phenotype of around three orders of magnitude with respect to the wild type Pseudomonas uorescens SBW25.

e eect of such genetic mutations has been aributed to the disequilibrium induced in the uxes of UDP and UTP along the pyrimidine pathway [START_REF]Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas uorescens[END_REF], thus perturbing the partition of those metabolic products between two alternative branches of the pathway -one devoted to DNA and RNA synthesis, and the other to colanic acid production. As a consequence, the independently evolved Pseudomonas uorescens switching genotypes (whose switching-related mutations are on dierent loci of either gene carB or gene pyrH ) are found to dier for their mean growth rate and for their typical frequency of the CAP+ phenotype during exponential phase.

Following these ndings (the existence of the branching point on the pyrimidine pathway and the eects of mutations along the pathway aecting the uxes of UDP and UTP), it can also be assumed that a trade-o between cellular growth and capsulation may be in place in the Pseudomonas uorescens "switchers": metabolic resources related to the pyrimidine pathway must be partitioned between cellular growth and capsule production, in ratios that depend on the specic mutation triggering the switch at high frequency ("checkpoint hypothesis").

e checkpoint hypothesis is supported by my experimental results on the relation between mean growth rate and frequency of the capsulated state across the population: whether I test dierent genotypes with dierent characteristic exponential phase growth rates, or expose one genotype to dierent temperatures to trigger a variation in its growth, I always obtain a negative correlation between the growth rate and the frequency of the capsulated phenotype.

e mathematical model of Chapter 3, Section 3.4 -developed to explain the highly nonlinear, history-dependent transient phenotypic dynamics of 1w4xGFP populations grown in KBS bulk cultures -predicts the negative relation between mean growth rate and frequency of the capsulated state through Equation 4.1. Nevertheless, the model is not able to quantitatively account for the degree of heterogeneity observed for slowly-growing populations, nor to qualitatively explain the scaling law connecting the CAP+ frequency and the mean growth rate in exponential phase.

By considering the maximum switching rates as explicit functions of the mean growth rate of the population, and leing them scale dierently with it, a beer imitation of the measured negative relation between mean growth rate and frequency of the capsulated state can be obtained. e ratio between the switching rate from CAP+ to CAP-and that from CAP-to CAP+ must scale superlinearly with the growth rate, yielding the best agreement with the experimental results when it scales with the second-power of r.

Bimodal expression of ribosomal genes and switching rates

In Chapter 3, Section 3.7 the results of the t of our mathematical model are interpreted in terms of a theory elaborated by Dr. Philippe Remigi, Dr. Gayle Ferguson and Prof. Paul Rainey. Rainey and collaborators assume the existence of a competition between high ribosome levels and RmsA/E genes for the translation of a positive regulator of capsule biosynthesis. is gene, called "A", would encode for a protein whose concentration is responsible for the bistability in capsule expression. is "ribosomal hypothesis" is in agreement with what our mathematical model proposes to explain the results of the overshoot experiment: the concentration c of the product X is endowed with the same function of that of the product of gene "A", that is triggering the switching behaviour via a threshold mechanism.

e hypothesis of the existence of a mechanism linking ribosomal concentration and the cellular switching behaviour can indeed help in nding a coherent interpretation of one of the major results of this Chapter (Section 4.2.4): the maximum switching rates' ratio superlinear scaling with the mean growth rate might be due to a higher concentration of ribosomes in CAP+ cells. is would result both in a faster-thanlinear increase of the timescale of the switch to the CAP-state for higher amounts of ribosomes (e.g. due to a higher mean growth rate of the strain [START_REF]Growth Rate-Dependent Global Eects on Gene Expression in Bacteria[END_REF]) Supporting this line of reasoning, Dr. Philippe Remigi's has recently measured a higher expression of ribosomal genes in CAP+ with respect to CAP-in 1w4 (unpublished data, personal communication). Moreover, it is known that, as the concentration of ribosomes strongly increases with the growth rate in physiological conditions [START_REF]Medium-dependent control of the bacterial growth rate[END_REF][START_REF]Growth Rate-Dependent Global Eects on Gene Expression in Bacteria[END_REF], the concentration of ribosomes inside CAP+ cells belonging to a fast-growing population must be much higher than the concentration of ribosomes inside CAP+ cells of a slow-growing population, regardless of the origin of the growth rate dierence.

As a consequence, CAP+ cells from a fast-growing population will be characterized by faster cellular processes with respect to the same processes taking place in CAP+ cells from a slow-growing population. e switch from CAP+ to CAP-would make no exception. On the contrary, CAP-cells, having less ribosomes than the CAP+, might be less susceptible to the eect of variations in ribosome concentration related to growth rate. As a result, the ratio between the maximum switching rates ↵ MAX /↵ MAX + might scale more than linearly with the mean growth rate.

CHAPTER 5 DISCUSSION AND CONCLUSIONS

A

Pseudomonas uorescens "switchers" are a model system for the study of binary polymorphism in cellular phenotypes, a particular instance of phenotypic heterogeneity displayed by several isogenic populations of microbes. Clonal Pseudomonas uorescens populations perform a phenotypic switch between a normal cellular state and a rare capsulated phenotype. e phenotypic switch, already present at low frequency in the wild type, can be beer appreciated in the so-called "switchers": these are strains that were articially evolved under a regime of alternating growth conditions staggered by single-colony boleneck, when phenotypic novelty was selected at the colony scale. is experimental evolution protocol yielded mutated genotypes whose expression rates of the rare capsulated state across the population were at least three orders of magnitude higher than in the wild type (from 10 4 to 10 1 ).

e switchers are a particularly useful model system for addressing transitions between alternative phenotypes because of the possibility of assessing the frequency of the two states (and, in principle, the switching rates) through microscopy observations. e experimental protocols progressed from Indian ink staining and manual counting in bright eld images, to automatic routines able to distinguish the CAP+ phenotype, marked with GFP, and produce time-resolved, high-throughput surveys of populations during their demographic variations.

Genetic, environmental and stochastic factors all concur in the determination of the phenotype and its variability

As I reviewed in the Introduction, instances of phenotypic switching are oen dichotomously classied as purely stochastic or environment-driven. Indeed, many are the examples of phenotypic switches whose main determinant is an intrinsic bistability. e transition between alternative states is interpreted as the consequence of number uctuations of the molecules involved in the decision point, which can re-spond or not to environmental cues. One of the neatest examples of noise-driven expression of alternative phenotypes is genetic competence in Bacillus subtilis, whose phenotype is expressed by about 10% of cells in stationary phase due to noise in the expression of the comK gene. On the other hand, other microorganisms sense the environment and tune their phenotype accordingly. Such sensing strategies can consist in adjusting the phenotype as the environmental conditions change (acclimation), or in varying the degree of heterogeneity at the population level, like Klebsiella oxytoca isogenic populations able to adapt to nutrient limitation and uctuation by shaping phenotypic heterogeneity in metabolism [START_REF]Phenotypic heterogeneity driven by nutrient limitation promotes growth in uctuating environments[END_REF].

Alternative scenarios of switch at the cellular level pave the way for dierent population-level manifestations, hence leading the researcher to focus on dierent observables. On the one hand, when the switching is purely stochastic, the population is at any given time a mixture of phenotypes (some of which potentially maladapted): the relevant observable is in this case the distribution of the phenotypes' frequencies across the population, and their time variation is neglected as the system is assumed to be ergodic. On the other hand, responsive switching results in homogeneous populations for most of the observation times, and the system is described in terms of the variation of the mean phenotype in time.

From an evolutionary standpoint, the existence of dierent strategies has been connected to the time scale of the environmental variation that microorganisms face. As pointed out by Kussell & Leibler, pure stochastic switching is optimal for organisms whose environment changes in a hardly or not at all predictable fashion, while acclimation is preferable when the cost of producing and maintaining sensing mechanisms is not very high and the environment not completely unpredictable or characterized by extreme changes. Other strategies can relate to the evolution of an internal clock that can be synchronized to the environmental change when the laer is regular or highly predictable.

In this esis, I inquired how the interplay of stochasticity and environmental sensing aects the dynamics of phenotypic heterogeneity in populations of cells able to perform a phenotypic switch.

Environmental dependence of the phenotypic switch in Pseudomonas fluorescens e fact that the alternative, capsulated phenotypic state is always expressed in the population, and not only for specic values of the environmental parameters, indicates that the "decision" of expressing the capsule must have a stochastic component. Measurements on agar pads of the timescale associated with transitions between the alternative phenotypic states, obtained through time-lapse uorescent microscopy, revealed that this is longer than the cell lifetime and suciently short not to be negligible on the time scale (hours) of population demography. Moreover, a qualitative asymmetry between the switching rates from or to the capsulated cellular state was evidenced, indicating the existence of mechanisms, likely rooted in intracellular regulation pathways, able to bias the switch.

At the same time, Jenna Gallie showed in her Ph.D. thesis that several environmental signals can inuence the variation of the relative frequencies of the two phe-notypes: temperatures lower than the standard growth temperature (28°C) and higher concentration of uracil in the culture medium were both shown to cause a signicant increase of the frequency of the capsulated phenotype across the population. In stationary phase, too, the capsulated state is expressed at a higher frequency, suggesting the capsulation transition to be impacted by the demographic state of the population.

erefore, Pseudomonas uorescens switchers can hardly be treated as collections of purely stochastically switching units, or of responsive cells all acclimating to the environment as it changes. Only by considering both the genetic background and the role of the environment on the stochastic switch the observed phenomenology in Pseudomonas uorescens can be put into a coherent framework.

In this sense, the most similar example in the literature is antibiotic persistence, rst interpreted in terms of phenotypic switch and bet-hedging strategies by Balaban et al. [START_REF]Bacterial persistence as a phenotypic switch[END_REF]. Contrary to persisters, in Pseudomonas uorescens switchers there is no clear-cut adaptive role known at this point for the capsulated phenotype, and capsulated cells grow at rates that are comparable to the non-capsulated ones.

In a modelling perspective, the temporal variation of the degree of phenotypic heterogeneity within a population (i.e. the alternative phenotypes' frequencies) becomes a relevant observable, and opens novel questions about how much of such variation is genetically or environmentally controlled. As done in Balaban et al. for persisters, systems of ODEs provide a simple but ecient framework to the end of describing such dynamics.

Population growth alone can provide the sucient information on the environmental context to explain transient variation in population phenotypic composition e gentotype of Pseudomonas uorescens switching strains does not dene qualitatively the degree of phenotypic heterogeneity. e frequencies of the alternative phenotypes CAP-and CAP+ indeed vary in time. Moreover, even the qualitative nature of their variation depends on the history of the population.

Early observations by Dr. Jenna Gallie revealed that the frequency of the capsulated phenotype was dierent if cultures were in exponential rather than in stationary phase. Dr. Philippe Remigi subsequently proved, through ow cytometry experiments, that the demographic history and the population frequency at the moment of sampling aect the degree of phenotypic variability of a population. He showed that, in cultures initialized at a same cell density, not only the frequency of dierent phenotypes was highly dynamic, but that such dynamics varied with the density at which the preculture was harvested. Cultures derived from "older" precultures showed a structured transient, where an overshoot in the frequency of the capsulated phenotype was followed by an undershoot.

To these results, I added the observation that a negative correlation existed between the average maximum growth rate and the frequency of the CAP+ cells across the dierent re-evolved switchers. Building on the hypothesis of a possible direct effect of growth rate on the switching behaviour, I developed a mathematical model aimed at exploring the possibility that population demography (quantied by the average population growth rate) could bear sucient information to explain a non-monotonic, history-dependent dynamics in the phenotypic composition of the population.

Dilution of an intracellular compound can couple a bistable switch to the demography of the cell population In Chapter 3, I veried that context-independent models of populations of switchers are mathematically incompatible with the observation of an overshooting dynamics. Indeed, in models with constant switching rates the frequencies of the phenotypes can only change monotonously in time, even if a dierence in growth rate is allowed between the two phenotypes.

Mathematically, such an inadequacy of these simple but general models of contextindependent switch provided the justication to explore the context-dependence of the switching rates. Modelling the intracellular switch as a bistable system controlled by an intracellular concentration, I could couple the population composition to demography.

In this model, the inherent stochastic hallmark of the system (the switching rates) is bound to a macroscopic observable (the growth rate of the population), which "measures" the demographic state of the population as a whole. One way to provide a biologically reasonable mechanism for context-dependence consists in the introduction of a third variable, alongside the population size and the frequency of the capsulated phenotype: the intracellular concentration c of a compound produced by the cell and diluted through cell division.

If the stability of the alternative equilibria is controlled by c, then changes in the population growth rate as cells experience lag, exponential and eventually stationary phase modify, through changes in the internal concentrations, the probability of switching. In particular, slower growth in lag and stationary phase results in an increased probability of developing a capsule, whereas in exponential phase such probability decreases on a timescale set by the population growth rate.

e mathematical model proposed in Chapter 3 consists of a 3-D dynamical system that assumes no growth rate dierence between phenotypes. Although an approximation of the more general case where the two phenotypes are not selectively equivalent, it is suciently simple for its dynamics to be investigated through an analytical approach, and can qualitatively reproduce the temporal dynamics data. In particular, it can produce history-dependent qualitatively dierent transients, whereby the overshoot and undershoot behaviour, as well as a larger initial fraction of capsulated cells, are associated to "old" precultures. Indeed, the delayed growth induced by the approach to stationary phase promotes the accumulation of the intracellular compound, and thus the transient increase of the switching rate towards the capsulated state. Such switching rate subsequently decreases as the intracellular compound is diluted out by exponential cell elongation, but increases again as growth slows down when the population approach the stationary phase. is generic feature is common, though to a dierent quantitative extent, in models whose demographic parameters and initial conditions are chosen so as to match the experimental measures. e other parameters (the maximal switching rates, the intracellular rates) have not been measured on this system, but were estimated through the t of the overshoot experiment data.

antitatively ing the transient phenotypic dynamics in a consistent way across multiple experiments proved, however, challenging, even if a low number of free parameters was involved. One of the obstacles to explaining all behaviours with a single set of parameters is that, whereas overshooting dynamics is generic, qualitatively different history-dependent behaviour is only obtained when some initial conditions are at the brink of bistability. Moreover, the nonlinearities associated to the entry in stationary phase play a critical role in the slowing down of the phenotypic dynamics, but their eect on switching rates and on lag phase are naively described in the model discussed in Chapter 3.

e trade-o between genericity of the approach and inclusion of specic mechanistic details poses the question of how later phases of growth should be modelled in a mathematical description of a demography-dependent switch. In our model a good agreement between the ed curves and the experimental data at late time points was achieved by supposing a fast accumulation mechanism during the lag phase, which gave rise to the overshoot at the beginning of the dynamics. Alternatively, to reproduce the experimentally observed convergence in stationary phase towards a phenotypic steady state without invoking a lag mechanism, I could have assumed that the maximal switching rates depended on population size in a highly nonlinear fashion.

As the biological system gets further characterized, the nature of the environmental switch-tuning will be made more precise, and the elaboration of mathematical models more adherent to the biological reality will be possible.

e mathematical model provides qualitative predictions about the relationship between growth and switch in exponential phase

Seing aside the problems associated to modelling the entry in stationary phase, the mathematical model articulated in Chapter 3 can be used as a predictive tool beyond the description and explanation of the non-monotonous history-dependent phenotypic dynamics. Indeed, the analytical study of the exponential phase equilibria provides a testable relationship between the average rate of population growth and the fraction of the alternative phenotypes. In exponential phase all environmental eects decreasing growth rate below its maximum value can be neglected, so that, according to the intracellular model, the population will reach a steady state. Such an equilibrium is dened as a function of a smaller number of parameters with respect to what is needed in order to encompass the transient dynamics, and is thus constrained by the optimal t of the observations.

I have asked to what extent the ed parameters predict the variation of the equilibrium phenotypic composition in dierent experimental seings, if the only control parameter was the rate of exponential growth. is question can be applied to populations of dierent genetic background, which in general display variations both in growth rate and in phenotypic composition, or to the same genotype, when the growth rate is modulated by changes in the environmental conditions (e.g. temperature).

My mathematical model predicts a negative correlation between the mean growth rate and the frequency of the capsulated state, and this irrespective of what under-pins the growth rate change (as long as the basic regulatory mechanism remains the same). I proved such relation to hold true by assessing the percentage of capsulated cells among dierent strains, or in populations of the same strain grown at dierent temperatures. Although the qualitative agreement between the predictions of the model and the result of my experimental tests were good, the model could not quantitatively account for the degree of heterogeneity observed for the slowest growing strains, nor qualitatively explain the scaling law connecting the CAP+ frequency and the mean growth rate in exponential phase.

By supposing that the maximum switching rates are explicit functions of the mean growth rate (instead than xed parameters) a beer data-model agreement was obtained. In particular, I showed that the ratio between the maximum switching rates ↵ MAX /↵ MAX + must scale superlinearly with the mean growth rate, and that the experimental results are best ed when it scales with the second-power of the mean growth rate.

Changing the temperature might have been an invasive method for altering population growth. Indeed, aecting virtually all cellular processes, temperature may likely perturb those directly involved in the switch. e most conservative way of altering the switching rates may therefore be that of considering dierent genetic mutants, like the seven re-evolved Pseudomonas uorescens switching strains. In perspective, it would moreover be interesting to genetically alter some other component of the translational or post-translational machinery, so as to slow down growth, without altering the production of one specic compound. ese kind of experiments may help to rene our understanding of the essential ingredients determining the unbalance leading to capsulation, and in particular the role of deregulation in protein production during lag phase.

New questions and perspectives for further work

e mathematical model analysed in this work describes several aspects of phenotypic heterogeneity in Pseudomonas uorescens switchers: the temporal variation of the phenotypic composition of the population, its history-dependence, and the response of populations of switchers to the environment under a steady exponential growth regime. In doing so, the model conjugates the approach of most models of purely stochastic switches with the one typically followed when dealing with responsive switching and acclimation.

e model was then "stretched" in order to t both the overshoot experiment and the negative capsulation-growth correlation and, in doing so, I probably crossed the boundaries of the domain of its meaningful application. A more advanced knowledge of the molecular mechanisms involved in Pseudomonas uorescens CAP phenotypic switch will likely allow to rene it, for example by establishing if the growth rate is the best variable to choose as a proxy for the environmental state perceived by the cells.

Dierent modications may be considered for improving the predictions of the model on specic aspects. For example, the shape of the negative correlation between phenotypic composition and mean growth rate in exponential phase could be ne-tuned by acting on the scaling law of the maximum switching rates with re-spect to the mean growth rate. is allowed to adjust the quantitative results, but did not touch the salient property needed to model the eect of population growth on a stochastic, environment-dependent phenotypic switch: the need for a feedback between the demographic state and the phenotypic repartition of the population, which can be obtained through an internal variable "sensing" the environment.

If further studies conrm the role of ribosomal concentration and regulation, adding another variable explicitly representing the ribosomal concentration may allow a better t of the experimental results. Such a supplementary variable, explicitly coupled to the average growth rate, would accelerate or slow down the variations in the concentration c, therefore introducing another time scale. Although the manipulation of this other time scale might provide a higher degree of control over the overshoot dynamics in the model, it would nonetheless be associated to the introduction of additional parameters. Such complexication of the model would thus likely be useful if additional, molecular data were available to complement the experiments discussed in this esis.

From an experimental point of view, the limitations of considering the growth rate as the only proxy for the population demographic state are manifold. Indeed, there are dierent ways of aecting the growth rate, not all of which are expected to be equivalent in terms of regulation of the intracellular concentrations. One question is to what extent can growth rate be used, in a phenomenological perspective like that adopted by Terence Hwa and collaborators, to describe populations whose growth has been altered because of physical (temperature), genetic (mutants having dierent regulatory circuits), translational (mutants with mutations in the same gene), and post-translational (mutants that dier in the ribosomal content) modications.

To conclude, the mechanism of switch modulation described by the model is potentially common, and the understanding of its consequences might be important not only on the ecological time scale, but also for understanding how the phenotypic dynamics can aect in the long-term, evolutionary fate of cellular populations. Indeed, the intrinsic time scale of the transient dynamics, intermediate between that of the individual and that of the population, might pave the way to the establishment of new levels of organismal organization.
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 11 Figure 1.1: Environmental change can elicit dierent dynamics in heterogeneity depending on its role on the phenotypic switch mechanisms. Even when the switch is independent of the environment (le panel), the mean phenotype of the population (measured in terms of the frequency of one of the alternative phenotypes, dashed line) can still be altered by an environmental change (E1 to E2) if the new conditions favour one phenotype over the other one. In context-dependent switches (right panel) this eect can be magnied (reduced) if the probability of transition to the more adapted state increases (decreases) from the old to the new environment. Depending on the relationship between the time scales of the switch and of cell division, these two scenarios can as well give rise to dierent transient regime of the phenotypic dynamics.
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 12 Figure 1.2: Microscopy image of Pseudomonas uorescens "capuslation switchers". ese isogenic populations express two alternative capsulation phenotypes: along with the normal cellular state CAP-, they can express an alternative phenotypic state called CAP+. CAP+ cells present a capsule around the cell surface (visible aer staining with indian ink) and present green uorescence due to the insertion of the gfp gene under the control of the same promoter of the operon responsable for the capsulation. e image was obtained through the superposition of bright-eld and GFP uorescent microscopy images (courtesy of Philippe Remigi).
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 15 Figure 1.5: Intracellular metabolic pathways downstream of carB gene. e switch-eliciting carB mutation reduces concentrations of intermediates in the pyrimidine biosynthesis pathway (shown in black), exposing a decision point at which uridine triphosphate (UTP) is used either by PyrG for nucleotide biosynthesis (leading to the CAP-phenotype, components in red), or by GalU for polymer biosynthesis (generating CAP+ phenotype, components in blue). Figure from [42].
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 21 Figure2.1: Scheme of the procedure followed to insert the gfp gene in the Pseudomonas uorescens switching strains. e previously amplied promoter of CAP biosynthetic locus gene pu3655 and the gfp-expressing gfpmut3 gene were ligated, and the vector+insert introduced into the re-evolved switchers by conjugation (with helper plasmids pRK2013), downstream of the glmS stop codon. Two Escherichia coli strains were used as donor(D) and helper (H): the donor strain provided the gfp insert (integrated on a plasmid along with the Tetracycline resistance cassee), while the helper was needed to pass the pRK2013 plasmid to the donor, to let it produce pili. Aer having been mixed together in LB broth (le panel), the cells were exposed to selective medium (LB agar + Tetracycline + Nitrofurantoin): Tetracycline selected for bacteria with the Tc (Tetracycline resistance) cassee, and Nitrofurantoin selected against Escherichia coli (right panel).
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 22 Figure 2.2: Image analysis of time-lapse pictures with ImageJ in four phases. e contrast of the original picture (top le) is enhanced with the specic built-in command (top right). en, an appropriate threshold allows to individuate the area of the two microcolonies (boom le).Finally, the gaps of the so-created binary mask are lled in via another built-in function (boom right). e last image is then ready to be analyzed through the "Measure particles" command.
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 31 Figure 3.1: Overshoot and undershoot in the phenotypic dynamics.Non-monotonic variations of the frequencies of the alternative phenotypes can be observed in populations of Pseudomonas uorescens "switchers". In this work, the term "overshoot" designates the transitory values assumed by one frequency exceeding its nal value. Aer the overshoot, the transitory values of the frequency below its nal value are indicated with the term "undershoot".
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 32 Figure 3.2: Scheme of three instances of simple mathematical models of context-indepedent switch. From le to right: "dierential growth", "pure switch", and a mixed model with constant switching rates and a dierence in growth rate between CAP+ and CAP-.
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 33 Figure 3.3: First null model: in the "dierential growth" model no switch between the two states is allowed and the subpopulations expressing the alternative phenotypes dier only in terms of the growth rate. Both mathematical and biological considerations exclude that this model could account for the observed phenotypic dynamics.
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 34 Figure 3.4: Second null model: the basic way to interpret a biological system expressing two phenotypes and able to switch back and forth is a Markov chain. is is a stochastic system where the individuals can switch between the two states at any time with a non-zero (constant) probability, regardless of the previous states assumed (no memory). A constant term R, the same for both phenotypes, guarantees population growth without aecting the phenotypic composition.
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 35 Figure 3.5: ird null model: a growth rate difference between CAP+ and CAP-cells is added to the switching process. Like the "dierential growth" and the "pure switch", this model fails to describe the overshoot in the phenotypic dynamics during exponential phase.
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 36 Figure 3.6: e alternative phenotypes in populations of Pseudomonas uorescens "switchers" can be modelled as the two stable equilibria of a bistable system. I decided to consider an internal variable (the intracellular concentration c of a generic metabolite synthesized by the cell) in analogy with the control parameter of bifurcation diagrams with xed environmental conditions. e bistability region is bound by two threshold values of c, called cLOW and cHIGH. Being the CAP+ phenotype marked with the insertion of a gfp gene under the control of the promoter of the same capsule-related operon, CAP-and CAP+ cellular states can be set apart in terms of intensity of GFP uorescence.

Figure 3 . 7 :

 37 Figure 3.7: Switching rates are proportional to the width of the basins of araction of the two stable equilibria (i.e. the CAP-and the CAP+ phenotypic states). For intermediate values of the intracellular concentration c a cell is inside the "bistability region" where the switching rates are both non-zero. Outside the bistability region the switching rates assume their maximum or minimum values (the laer arbitrarily set to zero).

Figure 3 . 8 :

 38 Figure 3.8: Scheme of the protocol of the overshoot experiment (1). Cells are prepared through a preculture stage (round 0), during which population growth causes the nutrients' concentration in the microcosms to get progressively exhausted (corresponding to the colour gradient).Once the desired population size is reached along the growth curve in round 0, cells get diluted and transfered into fresh medium to start round 1.

e

  results of the measurements of population size and of CAP+ frequency during round 1 are shown in Figure 3.10.

Figure 3 .

 3 Figure 3.11: e CAP+ frequency at the beginning of round 0 (top row) aects the round 1 dynamics (boom row) only when sampling early in round 0. Blue curve: fi = 0.1; red curve: fi = 0.6. No experimental data of this (in principle measurable) observable is available for the overshoot experiment. In the following, fi = f ⇤ E (see main text). e initial intracellular concentration of X ci is set to c ⇤ E = bKc b+rKc for both populations. Other parameters: r = 0.5, K = 8, ↵ MAX +

Figure 3 . 12 := 4 ,

 3124 Figure 3.12: e intracellular concentration of X at the beginning of round 0 (top row) aects the round 1 dynamics (boom row) only when sampling early in round 0. Blue curve: ci = 10; red curve: ci = 1. Being not directly accessible to measurements, ci is one of the free parameters of the model. In the following, ci = c ⇤ E (see main text). e initial CAP+ frequency fi is set to f ⇤ E for both populations. Other parameters: r = 0.5, K = 8, ↵ MAX + = 4, ↵ MAX = 1, b = 3, Kc = 4, cLOW = 2, cHIGH = 8.

. 81 )Figure 3 . 13 :

 81313 Figure 3.13: Higher ↵ MAX + /↵ MAX ratios result in lower frequencies of the CAP+ phenotype at the end of round 1 (right panel), without aecting the intracellular dynamics (le panel). Blue curve: ↵ MAX = 4; red curve: ↵ MAX = 1. Other parameters: r = 0.25 h 1 , K = 8, ⌧ = 1.5, cR0 = 2, ↵ MAX +

Figure 3 . 14 := 8 ,

 3148 Figure 3.14: Higher maximum intracellular concentrations Kc yield higher frequencies of the CAP+ phenotype at the end of round 1 (right panel), by aecting the intracellular dynamics (le panel). Blue curves: Kc = 3; red curves: Kc = 4. Other parameters: r = 0.25, K = 8, ⌧ = 1.5, cR0 = 2, ↵ MAX +

Figure 3 . 15 :

 315 Figure 3.15: Dierential duration of the lag phase aects the transient intracellular dynamics (le panel) and the corresponding of the CAP+ frequency dynamics in exponential phase (right panel). Green curves: ⌧ = 0; blue curves: ⌧ = 1; red curves: ⌧ = 2. Other parameters: r = 0.25, K = 8, cR0 = 2, ↵ MAX +

Figure 3 . 16 :

 316 Figure 3.16: Higher ↵ MAX + /↵ MAX ratios (le panel, inset) result in higher maxima in the CAP+ frequency in round 1 and higher quasi-steady equilibria for the frequency of CAP+ in exponential phase (right panel), without aecting the intracellular dynamics (le panel). Blue curves: ↵ MAX = 4; red curves: ↵ MAX = 1. Other parameters: r = 0.25, K = 8, ⌧ = 1.5, cR0 = 2, ↵ MAX+

Figure 3 . 17 :

 317 Figure 3.17: e ratio between the rate of production of b and the maximum growth rate ⇢ aects the balance between production and dilution (le panel), resulting in dierent depths of the undershoot in the phenotypic dynamics in round 1 (right panel). Blue curves: b = 2; red curves: b = 4. Other parameters: r= 0.4, K = 8, ⌧ = 2, cR0 = 5, ↵ MAX + = 4, ↵ MAX = 1, Kc = 4, cLOW = 2, cHIGH = 8.In the "switch at birth" hypothesis, the lower the ⇢/b ratio, the higher the nal frequency at the end of round 1.

Figure 3 . 18 :

 318 Figure 3.18: e ratio between the rate of production of b and the maximum growth rate ⇢ aects the balance between production and dilution (le panel), resulting in dierent depths of the undershoot in the phenotypic dynamics in round 1 (right panel). In the "switch at any time" hypothesis, the nal frequency at the end of round 1 is independent of ⇢/b. Blue curves: b = 2; red curves: b = 4. Other parameters: r = 0.4, K = 8, ⌧ = 2, cR0 = 5, ↵ MAX + = 4, ↵ MAX = 1, Kc = 4, cLOW = 2, cHIGH = 8.

Figure 3 . 19 :

 319 Figure 3.19: Best t of the demographic (top row) and phenotypic dynamics (boom row) in round 1 for the three preculture conditions ("low", le column; "mid", central column; "high", right column).

Figure 3 . 21 :

 321 Figure 3.21: Comparison between the phenotypic dynamics in round 1 generated by the 3-D model under the alternative hypotheses "switch at birth" and "switch at any time". e values of the parameters are chosen according to the best t of the "mid" treatment of the overshoot experiment (Tab. 3.5).

Figure 3 .

 3 Figure 3.22: Linear vs nonlinear switching rates as functions of the internal concentration c (blue and orange lines, respectively). In both cases, switching rates are dened as piecewise functions, to allow them to be both nonzero only for values of c belonging to the bistability region [cLOW , cHIGH], corresponding to CAP+ and CAP-coexistence. A very extreme instance of nonlinearity is chosen, that is piecewiseexponential functions with the maxima of derivatives near the boundaries of the region of coexistence. is way, small deviations of c near the boundaries yield very high switching rate variations, which should push the system to sudden transitions.

Figure 3 . 23 :

 323 Figure 3.23: Comparison between the phenotypic dynamics in round 1 generated by the 3-D model with linear and nonlinear switching rates (blue and orange lines, respectively). e values of the parameters are chosen according to the best t of the "mid" treatment of the overshoot experiment (Tab. 3.5).
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Figure 4 . 1 :

 41 Figure 4.1: Example of microcolony growth data from a time-lapse experiments. Dierent colors represent dierent microcolonies monitored during the same experiment (in this case, ve Re1.4xGFP microcolonies founded by CAP-cells). Solid lines are the exponential t of data.

Figure 4

 4 density) (a.u.)

Figure 4 . 4 :

 44 Figure 4.4: 1w4xGFP optical density data correspond to the expected exponential growth. Optical density (black circles) is measured by TiCan 96-plate reader (3 replicates per genotype, only one shown in gure). e exponential t (red solid line) is performed on thirteen time points belonging to a time window of two hours, so to select the early exponential phase.

0. 20 0 1 )Figure 4 . 5 :

 20145 Figure 4.5: Measurements of the mean exponential growth rate in KBS and in KB culture media correlate. e medium change from KB to KBS introduces a sistematic change in the growth rate, which can quantied via the intercept of the linear t with the y axis. Error bars on both dimensions correspond to standard error of the mean across the three replicates performed per strain. Linear t: ⇢KBS = 1.435 ⇤ ⇢KB 0.306. Linear correlation coecient ⇢ = 0.798, P value = 0.031.
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Figure 4 . 7 :

 47 Figure 4.7: Mean growth rate and CAP+ frequency from dierent switching genotypes growing in exponential phase in KBS culture medium negatively correlate. Each point corresponds to one of the switching Pseudomonas uorescens genotypes with the insertion of the gfp gene 1w4xGFP, 6w4xGFP, Re1.2xGFP, Re1.4xGFP, Re1.5xGFP, Re1.8xGFP, Re2xGFP, Re12xGFP, plus 6w4xGFP and the negative control 1w4 without the gfp insertion. Linear correlation coecient ⇢ = 0.227, P value = 0.559 (black dashed line). When excluding the negative control 1w4 and Re1.4xGFP (whose growth curves were strongly aected by cellular clumping): ⇢ = 0.561 , P value = 0.148 (red dashed line).

Figure 4 . 8 :

 48 Figure 4.8: Optical density measurements of 1w4xGFP cultures grown at 22, 28, 34°C (top panel) and 20, 25 and 31°C (boom panel). For each temperature, three identical replicates were grown, and the mean and standard error of the mean computed. e exponential t of the mean OD across the three replicates was performed (solid lines).

1 )Figure 4 . 9 :

 149 Figure 4.9: Temperature aects exponential growth in Pseudomonas uorescens 1w4xGFP populations. ree independent populations were grown at each of the tested temperatures(20, 22, 25, 28, 31, and 34°C) and the growth rate computed by exponential t of the corresponding optical density data. For each temperature, error bars correspond to the standard error of the mean growth rate over the three replicates.

Figure 4 . 10 :

 410 Figure 4.10: e fraction of CAP+ cells and the mean growth rate in exponential phase of 1w4xGFP populations grown at ve dierent temperatures negatively correlate -one point per replicate (top panel) and aggregated results (boom panel, error bars corresponding to the standard error of the mean across three replicates). Linear correlation coecient ⇢ = 0.881, P value = 0.048.

Figure 4 .

 4 Figure 4.11: e mean growth rate in 1w4xGFP populations is stable across successive dilutions of the same population. ree identical 1w4xGFP cultures are started (T1, from R1 to R3, black points), and three hours later each of the three replicate cultures is diluted to OD = 0.01 into fresh KBS medium (T2, from R1 to R3, blue points). e procedure is then repeated three hours later, founding the three T3 populations (red points). e mean growth rate is obtained through an exponential t of the optical density data between 1 and 3 hours aer the foundation of each culture (solid lines).

Figure 4 . 12 :

 412 Figure 4.12: e fraction of CAP+ cells and the mean growth rate in exponential phase negatively correlate irrespective of how the laer is varied. Data from switchers in KBS (except 6w4xGFP and Re1.4xGFP, whose cultures were susceptible to clumping and therefore did not provide accurate measurements) and from 1w4xGFP exposed at 20, 22, 25, 28 and 31°C are shown. Linear correlation coecient ⇢ = 0.600, P value = 0.051.

Figure 4 .

 4 Figure 4.13: e mathematical model of Chapter 3 cannot explain the degree of CAP+ expression in 1w4xGFP populations exposed at dierent culture temperatures. e three solid lines (green, blue and red) correspond to the growth rate -frequency of CAP+ curves obtained by informing Equation4.1 with the dierent sets of parameters that best t the phenotypic dynamics under the three preculture conditions ("low", "mid", "high", respectively).

Figure 4 .

 4 Figure 4.14: e deviation of the experimental data about CAP+ frequency deviation from the theoretical prediction issued from the overshoot model decreases with the mean growth rate.

Figure 4 .

 4 Figure 4.15: e t of the relation between mean growth rate and CAP+ frequency in exponential phase is improved by increasing the ratio between the maximum switching rates ↵ MAX +

Figure 4 .

 4 Figure 4.16: Linear vs nonlinear dependency of the switching rates on the internal concentration c (blue and orange lines, respectively). In both cases, switching rates are dened as piecewise functions, to allow them to be nonzero at once only for values of c belonging to an intermediate region (corresponding to CAP+ and CAPcoexistence). In this case a very extreme instance of nonlinearity is chosen, that is piecewise-exponential functions with the maxima of derivatives near the boundaries of the region of coexistence. is way, small deviations of c near the boundaries yield very high switching rate variations, pushing the system to sudden transitions.

Figure 4

 4 Figure 4.17: Highly nonlinear functional form of the switching rates do not change the scaling law for the growth rate -CAP+ frequency relation predicted by the model. With respect to the linear ones (solid lines), nonlinear switching rates (dashed lines) predict slightly higher CAP+ frequencies (especially at low mean growth rates) but do not account for a change in the scaling law of the dependency of the CAP+ frequency in exponential phase on the mean growth rate.

Figure 4 . 18 :

 418 Figure 4.18: Signicant improvements in the theoretical prediction of the quasi-equilibrium f ⇤ can be achieved by increasing the exponent of the power law scaling of the maximum switching rates ratio ↵ MAX + /↵ MAX with respect to the mean growth rate. e theoretical expectation best reproduces the data when the ↵ MAX /↵ MAX + maximum switching rates ratio scales as r with ' 2.

Figure 4 .

 4 Figure 4.18 also shows how, to best t the results of the experiment, must be higher than 1, meaning that the ↵ MAX /↵ MAX

  .3.

	Antibiotic	Purpose	Conditions of use
	Tetracycline (Tc)	selection of gfp-transformed cells	10 g ml 1 nal (in 1:1 ethanol:water)
	Nitrofurantoin (NF)	E. coli growth inhibition	100 g ml 1 nal (dissolved in DMSO)
	Gentamicin (Gm)	counterselection of gfp cassee loss	10 g ml 1 nal (liquid culture media)

Table 2 . 3 :

 23 Designations and characteristics of antibiotics used.

	Medium	Chemical composition (g/L)	Reference
	Lysogeny Broth (LB)	10 NaCl, 10 tryptone, 5 yeast extract	[13]
	King's Broth (KB)	10 glycerol, 20 Prot. Peptone No.3, 1.5 K2PO4, 1.5 MgSO4	[52]
	King's B Switcher (KBS)	10 glycerol, 20 Prot. Tryptone, 1.5 K2PO4, 1.5 MgSO4	[42]

2.1.4 Media and culture conditions

ree main types of media were used in the series of experiments performed for this work (Tab. 2.4). Lysogeny broth (LB) was needed to grow Escherichia coli populations during the conjugation process, while King's Broth (KB) and King's Broth Switcher (KBS) were the preferred culture media to grow Pseudomonas uorescens. e laer, in particular, was found to signcantly enhance the capacity of Pseudomonas uorescens switchers to express the CAP+ phenotype because of a dierent uracil content (see Chapter 4 for further details and measurements).

  e whole statistical analysis of the data obtained from the biological assays and experimental tests of the model was performed through R routines wrien by the Author and run through the Enthought Canopy 1.4.1 (Academic License version) graphical user interface. e operated statistics mainly consisted in bivariate analysis (linear or exponential t, linear correlation analysis). All graphs of experimental data and tests were produced with R unless specied.

Table 3 . 2 :

 32 In the "pure switch" model, when the initial frequency is small the switching rate from the CAP-to the CAP+ phenotype can be approximated by the derivative of the CAP+ frequency at time 0. e values in the Table must therefore be considered overestimates of the switching rate ↵+.
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 33 .84) e very small variance associated with the mean growth rate ⇢ suggests that (1) the preculture dierence does not generate an important dierence in the average growth rate in exponential phase, and (2) there cannot be a very high growth rate dierence between CAP+ and CAP-. For these reasons, I aribute the ed value of ⇢ to the parameter r of the 3-D mathematical model.

	Preculture	Growth rate ⇢ (h 1 )	R 2
	low (nal OD R0 = 0.3) mid (nal OD R0 = 1.0) high (nal OD R0 = 1.5)	0.45 ± 0.02 0.45 ± 0.02 0.44 ± 0.02	0.993 0.993 0.995

: Results of the exponential t of the growth curves in the overshoot experiment. Only the rst 6 time points (from t = 0 to t = 540 0 aer resuspension), corresponding to the early exponential phase, are taken into account. e exponential t provides a very good agreement with data for all three preculture conditions, as shown by the coecient of determination R 2 .

Table 3 . 5

 35 

	u.)

: e best t parameters corresponding to the least sum of the squared residuals for each treatment. Other (arbitrarily xed or measured) parameters: ⇢ = 0.45 h 1 , K = 8, ⌧ low = 0, ⌧ mid = 0.24 h, ⌧ high = 0.3 h, cLOW = 0.8, cHIGH = 1.6.

Table 4 . 1 :

 41 Statistical signicance of the dierence in the exponential phase population growth rate between CAP-cells from 1w4xGFP, Re1.4xGFP and Re1.5xGFP, and CAP+ cells from Re1.4xGFP (P-values of the Student's t-test). e growth rate was measured as the rate of increase of the surface covered by micocolonies founded by one individual expressing the given phenotype. Dierences between "-" microcolonies from the three dierent genotypes are statistically signicant if the threshold is 5%. Re1.4xGFP "+" colonies are signicantly dierent from those of 1w4xGFP and Re1.5xGFP "-", but not from Re1.4xGFP "-", i.e. from microcolonies founded by individuals of the same strain but expressing a dierent phenotype.

				Figure 4.2: Distribution of the
				mean growth rate in exponential
				phase for three dierent "switch-
				ers" (1w4xGFP, Re1.4xGFP,
				Re1.5xGFP). Growth rate is
				measured by ing the increase
	) (min -1			in the surface covered by micro-colonies over time. For 1w4xGFP
				and Re1.5xGFP strains only
				microcolonies whose individual
				cells never expressed the CAP+
				phenotype were taken in consid-
				eration, while Re1.4xGFP both
				"-" and "+" microcolonies could
				be observed. e number n of
				analysed microcolonies for each
				class is indicated.
		1w4 (-) Re1.4 (-) Re1.5 (-)
	1w4 (-)	-	1.1 10 4	0.043
	Re1.4 (-)	-	-	3.3 10 8
	Re1.4 (+) 3.9 10 4	0.67	4.5 10 7

  Figure 4.3: Mean growth rate and CAP+ frequency from seven switching genotypes growing in exponential phase in KB culture medium medium negatively correlate. Growth rates are computed by ing optical density measurements obtained through an automated TiCan plate reader. CAP+ frequency measurements are those performed by Jenna Gallie and published for the rst time in[START_REF]Evolutionary and molecular origins of a phenotypic switch in Pseudomonas uorescens SBW[END_REF]. Each point corresponds to one of the seven dierent switching Pseudomonas uorescens genotypes with the insertion of the gfp gene under the control of promoter of CarAB (1w4, and the six switchers re-evolved from 1w4 immediate precursor, see Chapter 2 for further details). Error bars on both dimensions correspond to standard error of the mean among replicate measures (growth measures: 3 replicates per strain; counting assays: 2500 cells per strain). Linear correlation coecient ⇢ = 0.981, P value = 9.245 10 5 .

	4.1.2 Switching genotypes dier in both growth and CAP+ ex-
	pression				
	During a visit at Rainey Lab, Massey University (Auckland, New Zealand), I measured
	the growth rate in exponential phase for 1w4 and the other re-evolved switchers Re1.2,
	Re1.4, Re1.5, Re1.8, Re2, and Re12 (see Chapter 2, Section 2.2.2). By ploing such
	growth rates against previous measurements of CAP+ frequency in exponential phase
	performed by Jenna Gallie, I obtained a statistically signicant negative correlation
	between these two quantities. e strains growing faster during exponential phase
	tend to have a lower percentage of CAP+ (Fig. 4.3).
		0.25	Re1.4			
	Fraction of CAP+ cells	0.10 0.15 0.20 0.05		Re1.8	1w4 Re12
					Re2		Re1.2
		0.00					Re1.5
		0.35	0.40	0.45	0.50	0.55	0.60
			Mean growth rate ( h -1 )

Table 4 . 2 :

 42 Mean growth rate and standard error of the mean for the switching Pseudomonas uorescens strains -experiments performed in both KB and in KBS culture media. Results were obtained by ing TiCan growth curves with an exponential law in a time window of 2 hours during early exponential phase.

	1 )

  .3 and Figure 4.6.Here again, we observe that the genotypes sharing the same switch-triggering mutation (1w4xGFP and Re1.8xGFP) present similar frequencies of the CAP+ phenotype.

		1.0			
	Fraction of CAP+ cells	0.4 0.6 0.8 0.2				Figure 4.6: Mean CAP+ frequency measured through ow cytometry varies across the switching geno-types. Error bars represent standard error of the mean. ree replicates were performed for each strain, with the exception of the negative control (1w4) for which only one replicate was performed.
		0.0			
		Strain 1w4 (control)	6w4xGFP	KBS CAP+ freq. Re1.2xGFP Re1.8xGFP 1w4xGFP Re12xGFP	CAP+ freq. Re1.4xGFP Re2xGFP Re1.5xGFP	Table 4.3: Mean CAP+ frequency
		1w4 (control) 1w4xGFP	0.004 0.780	-0.015	and standard error of the mean for each of the 9 dierent switch-ing strains (ow cytometry measure-
		6w4xGFP	0.904	0.022	ments). ree replicates were per-
		Re1.2xGFP	0.294	0.028	formed for each strain, with the ex-
		Re1.4xGFP	0.147	0.004	ception of the negative control (1w4)
		Re1.5xGFP	0.010	0.001	for which only one replicate was per-
		Re1.8xGFP	0.792	0.014	formed.
		Re2xGFP	0.370	0.038
		Re12xGFP	0.389	0.028

Table 4 . 4 :

 44 .4 and ploed in Figure 4.8.

	Temp. (°C) Repl. ⇢ (h 1 )	¯ ⇢ (h 1 )	Temp. (°C) Repl.	⇢ (h 1 )	¯ ⇢ (h 1 )
	20	R1	0.316		28	R1	0.443
	20	R2	0.308		28	R2	0.456
	20	R3	0.314		28	R3	0.405
	20		0.313	0.003	28		0.435	0.019
	22	R1	0.310		31	R1	0.465
	22	R2	0.416		31	R2	0.471
	22	R3	0.335		31	R3	0.465
	22		0.354	0.039	31		0.467	0.002
	25	R1	0.335		34	R1	0.046
	25	R2	0.367		34	R2	0.101
	25	R3	0.378		34	R3	0.140
	25		0.360	0.016	34		0.096	0.034

Table 4 . 5 :

 45 .5 recapitulates the results of the counting assays. For further details about the experimental protocol, see Chapter 2, Section 2.2.2. Results of the counting assays for 1w4xGFP populations grown at 20, 22, 25, 28, 31, and 34°C. Data for each replicate are shown along the total number of cells, total number of CAP+ cells and CAP+ frequency for each of the temperatures.

	Temperature (°C) Repl. Counted cells Counted CAP+ CAP+ frequency
	R1	273	124	0.454
	R2	362	77	0.213
	R3	720	379	0.526
		1355	580	0.428
	R1	159	117	0.736
	R2	404	212	0.525
	R3	59	18	0.305
		622	347	0.558
	R1	254	133	0.524
	R2	318	23	0.072
	R3	545	154	0.283
		1117	310	0.278
	R1	153	25	0.163
	R2	359	16	0.045
	R3	102	26	0.255
		614	67	0.109
	R1	390	4	0.010
	R2	430	1	0.002
	R3	281	2	0.007
		1101	7	0.006
	R1	1	0	0
	R2	2	0	0
	R3	65	3	0.046
		68	3	0.044

Table 4 . 6 :

 46 More independent replicates are needed to decrease the dispersion of the results of the frequency measurements to the 20% threshold. For each of the ve dierent temperatures, the relative error on the frequency depends on the square root of the number of replicates minus one, which allows us to nd the minimum number of replicates R 20% needed to get a relative error on f of 20%. e expected total number of cells to be assayed is nally obtained by multiplying R 20% by the average number of cells per replicate N/3.

		3 1355 580 0.428 0.167	27.6	5	2171
	22	3	622	347 0.558 0.215	27.2	5	977
	25	3 1117 310 0.278 0.225	57.2	17	6470
	28	3	614	67	0.109 0.105	68.1	24	4953
	31	3 1101	7	0.006 0.006	70.7	26	9542

  .2 e model predicts only part of the variability in CAP+ frequency e experimental results presented in the last Section prove that variation in mean growth rate translates into variation of the alternative phenotypes' frequencies during exponential phase, but also that this variation depends on a number of factors, including experimental protocol, culture medium, time of observation. It is not clear yet to what extent it is possible to describe these dierent situations within a unied framework, where the population state is mostly controlled by growth rate dierences.

	1w4xGFP at 28°C		KBS	
	Repl.	Dilution T1 Dilution T2 Dilution T3
	R1	0.323	0.325	0.347
	R2	0.430	0.417	0.406
	R3	0.369	0.280	0.401
	Table 4.7: e 1w4xGFP mean growth rate does not vary much between successive dilutions.
	Standard deviations: 2 T 1 = 0.054, 2 T 2 = 0.070, 2 T 3 = 0.033, 2 R1 = 0.013, 2 R2 = 0.012,
	2 R3 = 0.063.			
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  .18).

	Fraction of CAP+ cells	0.0 0.2 0.4 0.6 0.8				
		0.30	0.35	0.40	0.45	0.50	0.55
			Mean growth rate ( h -1 )

A classical example are Drosophilae, see[START_REF]Genetic Assimilation of the Bithorax Phenotype[END_REF] and cf.[START_REF]How selection aects phenotypic uctuation[END_REF]: "In addition to the average phenotypic change by genetic mutation, the observed increase in phenotypic uctuation acts as an evolutionary strategy to produce an extreme phenotype under severe selective environments. ".

Here and later in this esis, I will refer to time-dependent observables characterizing the state of the system with the term variable, and I will adopt the term parameter for observables specifying a condition of the system, inuencing the variables of the system and in principle externally controllable.
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Résumé :

Pseudomonas fluorescens « switchers », souches évolués artificiellement au Rainey Lab, sont un système modèle pour les switch phénotypiques. Ces populations sont typiquement caractérisées par les fréquences de deux phénotypes alternatifs liés à la production d'une capsule d'acide colanique autour de la paroi cellulaire. Bien que on s'attende que telles fréquences soient définies d'une manière univoque par le génotype, elles varient au long de la croissance de la population, ce qui indique une possible dépendance des taux de transition à l'égard de la démographie. J'ai développé un modèle mathématique où les cellules sont représentées comme systèmes bistables contrôlés par une concentration intracellulaire et où les taux de transition dépendent de l'état de la croissance de la population.

Le modèle reproduit quantitativement la dynamique de la composition phénotypique de la population (dépendante de l'histoire), et fournie des prédictions à propos de son quasiéquilibre en phase exponentielle en fonction du taux de croissance de la populationprédictions ensuite qualitativement confirmées par les résultats de mon travail expérimental. Pour conclure, on ne peux pas caractériser une population croissante de « switchers » que par l'état asymptotique des fréquences de ses phénotypes alternatifs, puisque le switch est étroitement lié à la démographie. Dans une perspective évolutive, la persistance transgénérationnelle du phénotype, influencée par des concentrations intracellulaires, pourrait être à l'origine de l'émergence de stratégies comme le « bet-hedging ».

Title : Context-dependent phenotypic switching and non-genetic memory in heterogeneous bacterial populations

Keywords : heterogeneity, multistability, memory Abstract : Pseudomonas fluorescens "switchers", artificially evolved in Rainey Lab, are a model system for phenotypic switching. Populations can be characterized by the frequencies of two alternative states related to the production of a colanic acid capsule around the cell wall. Expected to be at an equilibrium underpinned by the genetic background, such frequencies vary during population growth, hinting to a dependence of the switching rates on demography, and appear to be dependent on the history of the preculture. I thus developed a mathematical model with individual cells as bistable systems controlled by an intracellular concentration, where transition rates depend on the growth state of the population.

The model quantitatively reproduces the history-dependent dynamics of the phenotypic composition of the population, and provides qualitative predictions on its quasi-steady state in exponential phase as a function of the growth rate -then corroborated by the results of my experimental work. I conclude that a growing population of switching cells cannot be fully characterized only by the asymptotic steady state of the phenotypes' frequencies, because phenotypic switching is inextricably intertwined with demography. From an evolutionary perspective, trans-generational inheritance of the phenotype mediated by internal concentrations may be at the basis of the emergence of bet-hedging-like strategies.