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ABSTRACT

Phenotypic heterogeneity is a common, complex property of microbial populations:
it bridges genetics, the organism’s response to the environment, and evolutionary
concepts such as bet hedging.

Individual cells of isogenic microbial populations exposed to the same microen-
vironment can stochastically switch among discrete phenotypes as a strategy of sur-
vival. �e determinants of such “phenotypic switches” between multiple stable states
are o�en both genetic and non-genetic, and can relate to the interaction between the
population and the environment.

Phenotypic multistability is o�en correlated with phenomena of inheritance of
the phenotype from parent cells to their o�spring, sometimes over several generation
times. �is “trans-generational persistence” of the phenotype may pave the way for
the evolution of division of labour.

Pseudomonas �uorescens switching strains (switchers) are a model system to study
microbial heterogeneity, phenotypic switching and transgenerational memory. �e
alternative phenotypic states, called CAP+ and CAP-, are related to the production of
a colanic acid capsule around the cell surface.

�e switchers were evolved from the Pseudomonas �uorescens SBW25 wild type
strain by experimental evolution: the switch arises from highly speci�c genetic muta-
tions on genes belonging to the pyrimidine metabolic pathway, crucial in both nucleic
and colanic acid biosynthesis. Di�erent switching strains di�er in terms of growth
rate and frequency of the CAP+ phenotype during exponential phase.

Populations of the switchers undergo big time variations in the fraction of cells ex-
pressing one phenotype even when they are kept in exponential growth. �e amount
of variation depends on the initial condition in ways that can be accounted for only if
one considers that the switching rate depends on the environmental conditions cre-
ated by growth of the population itself. Such a feedback gives rise to a dependence on
history that can be interpreted as population-level evidence of phenotypic “memory”.

Standard models whereby the genotype determines the switching rates fail to ex-
plain the observed non-monotonous dynamics of the phenotypes’ frequencies, pro-
ducing simple exponential decays to the asymptotic frequencies. �e switching rates



4 CONTENTS

need to be made non-constant, for instance by linking their value to that of an envi-
ronmental cue.

We developed a model consisting of a third-order dynamical system where one
of the state variables quanti�es the intracellular concentration of a metabolite X syn-
thetized by the cell and diluted along with cell division. �is internal concentration
works as the mediator of the coupling between population demography and switch-
ing dynamics, and the growth rate as the proxy for the ensemble of the environmental
cues modulating the probabilities of switching.

�is model manages to reproduce the main experimental observations (overshoot
and undershoot in the frequency of the phenotypes, biphasic response to preculture
conditions, long-term e�ect in the phenotypic composition of the population) and
predicts the negative correlation between the mean growth rate and the frequency of
the CAP+ phenotype in exponential phase that we observed.

In summary, a growing population of switching cells cannot be fully characterized
only by the asymptotic steady state of the phenotypes’ frequencies, because pheno-
typic switching is inextricably intertwined with demography. One possible way to
model this interdependence is through internal concentrations, a choice that in our
case allowed us to coherently interpret the experimental data.

From an evolutionary perspective, internal concentrations-mediated transgener-
ational inheritance of the phenotype may favour the emergence of bet-hedging-like
strategies. Nevertheless, given the number of factors involved, only through a detailed
knowledge of the ecological dynamics it is possible to draw signi�cant conclusions
on the evolutionary outcome.
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Résumé en langue française

L’hétérogénéité phénotypique est un trait commun des populations microbiennes qui
relie la génétique, la réponse de l’organisme à l’environnement et concepts évolutifs
tels que le bet-hedging.

Des cellules individuelles de populationsmicrobiennes isogéniques peuvent changer
de façon aléatoire leur phénotype comme stratégie de survie, même quand elles sont
exposées aumêmemicroenvironnement. Les déterminants de tels switch phénotypiques
entre plusieurs états stables peuvent être génétiques ou non-génétiques, et souvent
liés à l’interaction entre la population et l’environnement.

La multistabilité phénotypique est souvent corrélée à des phénomènes d’hérédité
du phénotype, parfois à travers plusieurs générations. Ce�e persistance du phénotype
peut ouvrir la voie à l’évolution de la division du travail.

Les souches de Pseudomonas �uorescens, appelées switchers, sont un système
modèle pour étudier l’hétérogénéité phénotypique, les switch phénotypiques et la
mémoire transgénérationnelle. Les états phénotypiques alternatifs, appelés CAP+ et
CAP-, sont liés à la production d’une capsule d’acide colanique autour de la paroi
cellulaire.

Les switchers ont été développés à partir de la souche de type sauvage Pseu-
domonas �uorescens SBW25 par évolution expérimentale : des mutations génétiques
spéci�ques sur certains gènes de la voie métabolique de la pyrimidine, essentielle dans
la biosynthèse à la fois de l’ADN/ARN et de l’acide colanique, entraı̂nent l’émergence
du switch. Chaque souche est caractérisée par son taux de croissance et sa fréquence
du phénotype CAP+ en phase de croissance exponentielle.

Même lorsqu’elles sont maintenues en croissance exponentielle, les populations
des switchers présentent de grandes variations temporelles dans la fraction de cel-
lules exprimant un des deux phénotypes. Le degré de variation dépend de la condition
initiale d’une manière qui suggère que le taux de switch dépend des conditions en-
vironnementales engendrées par la croissance de la population elle-même. Une telle
rétroaction donne lieu à une dépendance des conditions passées qu’on peut interpréter
en termes de “mémoire” phénotypique à l’échelle de la population.

Les modèles standard qui associent à chaque génotype des taux de switch �xes ne
perme�ent pas d’expliquer le caractère non-monotone de la dynamique des fréquences
des phénotypes. Les taux de switch doivent être rendus non-constants, par exemple
en reliant leur valeur à celle d’un signal environnemental.

J’ai développé un modèle sous forme de système dynamique de troisième ordre
où l’une des variables d’état quanti�e la concentration intracellulaire d’un métabolite
X synthétisé par la cellule et dilué à travers la division cellulaire. Ce�e concentra-
tion interne couple la démographie et la dynamique de switch. Le taux de croissance
moyen de la population fonctionne comme proxy pour l’ensemble des signaux envi-
ronnementaux modulant les probabilités de switch.

Mon modèle reproduit les principales observations expérimentales et prédit la
corrélation négative entre le taux moyen de croissance et la fréquence du phénotype
CAP+ en phase exponentielle que nous avons observée.

En résumé, une population croissante de cellules capables de switch phénotypiques
ne peut être entièrement caractérisée en déterminant uniquement l’état asympto-
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tique des fréquences des phénotypes, car il se trouve que le switch phénotypique est
étroitement lié à la démographie. Il est possible de modéliser ce�e interdépendance à
travers des concentrations internes — un choix qui, dans le cas des switchers, permet
d’interpréter de manière cohérente les données expérimentales.

Dans une perspective évolutive, l’héritage du phénotype par des concentrations
pourrait seconder l’émergence de stratégies comme le bet-hedging. Pourtant, vu
le nombre de facteurs impliqués, seule une connaissance détaillée de la dynamique
écologique permet de tirer des conclusions signi�catives à ce sujet.



a mia mamma





CHAPTER 1
INTRODUCTION

P
��������� �������������, i.e. the variability in observable traits across
members of a sympatric population, is ubiquitous among living organ-
isms. Genetic, environmental and epigenetic factors a�ect phenotypic
variability in a wide variety of ways, weaving a complex cloth of interac-

tions, from the molecular scale, up to the behavioral one.
Isogenic populations of microbes, too, display heterogeneity at the phenotypic

level, which proves to be advantageous from an evolutionary perspective. Micro-
bial phenotypic heterogeneity o�en takes the form of alternative, discrete phenotypes
whose adaptive value resides in allowing the organism to respond to changes in the
environmental conditions, or anticipate them by stochastically generating phenotypic
variants. �e la�er strategy, where individual cells stochastically switch between the
possible alternative states, is adaptive when the environment is hardly predictable,
and can be interpreted as an a�empt of the population to hedge its “survival bets”.

Most mathematical models for the studymicrobial phenotypic heterogeneity draw
a dychotomous distinction between responsive and stochastic variability. Neverthe-
less, the examples of hybrid responsive-stochastic phenotypic switch are manifold,
bacterial persistence being the most eminent one. By using Pseudomonas �uorescens
as model organism for populations of phenotypically switching units, in this�esis I
explore the general framework through a mixed theoretical-experimental approach.

�is research develops two main themes. First, I will address the mutual depen-
dence between phenotypic variability and the demography of populations of switch-
ing units. As already mentioned, under certain circumstances, variability can be ad-
vantageous for those populations adopting it. Besides, many are the instances of en-
vironmental cues a�ecting population growth that can be associated with a change in
the phenotypic composition of the population. However, the evolution of phenotypic
switch is seldom studied beyond the cases of simple demographic regimes (e.g. pop-
ulations arti�cially held in exponential phase). �is is a reasonable simpli�cation, for
the sake of simplicity and power of prediction, unless the switching behaviour proves
to be in�uenced by the state of growth of the population.
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A second theme tackled in this�esis is the relation between phenotypic switch-
ing and trans-generational, non-genetic heritability of the phenotype. Indeed, it can
be noticed that o�en the phenomena of maintenance of the phenotype throughout
generations are correlated with the presence of multistability. �is is true in other
�elds, too — such as physics and neurobiology: the existence of multistable states
is considered to be strictly linked to “memory” (metastability). If this is a general
property, is it possible to establish a link between trans-generational memory and the
existence of the switch? I will investigate the consequences on the population-level
history-dependence of having a context-dependent stochastic switch.

In summary, by the use of mathematical models and experiments on Pseudomonas
�uorescens switching populations, this �esis aims at investigating the mechanisms
that might underpin the interplay between population demography and phenotypic
variability, and its possible ecological outcomes. �is is realized by going beyond the
classic dualistic view where context-independent stochastic switch is in opposition to
a responsively-tuned switching behaviour.

�estions addressed by this thesis

More in detail, this�esis tackles the aforementioned general problems by addressing
the following questions:

• Can the phenotypic switch performed by Pseudomonas �uorescens populations
be considered as purely stochastic or environmentally-driven? How is it possi-
ble to discern between these two scenarios through population-level measure-
ments?

• Which are the relevant observables to describe the phenotypic state of a collec-
tion of switching units? How can these quantities be measured?

• What are the ecological processes in�uencing phenotypic heterogeneity in pop-
ulations of P. �uorescens switchers? Is population growth one of them? If yes,
which interplay exists between the time scales of the cellular switch and that
of population growth?

• How is phenotypic variabilitymaintained and sustained in growing populations
of P. �uorescens? Can a non-genetic trans-generational transmission of the phe-
notypic state be inferred from measurements of the phenotypic composition of
the population? If yes, what are the ecological conditions in�uencing it?

Outline of this Chapter

�is Introduction to my �esis starts by providing an overview on phenotypic het-
erogeneity, focusing on the cellular mechanisms that can in�uence its emergence and
on the functions that this signi�cant property can provide (Section 1.1). I then dis-
cuss what mathematical models can bring to the understanding of the ecological and
evolutionary consequences of phenotypic heterogeneity (Section 1.2). Finally, Pseu-
domonas �uorescens is presented as an appropriate model system for the study of
microbial phenotypic heterogeneity (Section 1.3).
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1.1 Phenotypic heterogeneity in microbial popula-
tions

Natural selection acts on phenotypes, and phenotypic variation is its raw material.
Indeed, a gene is a�ected by the action of natural selection only if the la�er di�eren-
tially in�uences the phenotypes expressed by the former. In the long run, competition
among phenotypes results in the perpetuation or elimination of the whole underlying
genotype from the population pool [58]. In other words, natural selection makes the
genetic pool of a population more and more adapted to the environment if at least
part of the phenotypic variation has a genetic basis.

Alongwith genetic information, environmental cues are fundamental in the deter-
mination of phenotypic heterogeneity [99]. It was shown that extreme environmen-
tal changes, just as high mutation rates, tend to increase phenotypic variation1. �is
raises the question: Is variation due to mutations and due to environmental change
equivalent? A positive answer is suggested by studies introducing the concept of
“equivalence” (or “interchangeability”) [103]: this phenomenon — empirically discov-
ered in a phylogeny study on sex determination in turtles and lizards [50] — consists
in the fact that a (great) change in gene expression can be equally induced by genetic
mutations or by (extreme) environmental change, and is one of the strongest pieces
of evidence in support of genetic assimilation [97]. Genetic

assimilationIn other words, gene expression, the means through which biological information
phenotypic trait
�xation due to a
genetic change in
regulation follow-
ing a persistent
selection for that
trait, usually
environmentally
induced

is processed, is indi�erent to its causes, let them be endogenous or external. If we
consider variability in a phenotypic trait as a distinct phenotypic trait itself, then we
should conclude that genetic and environmental factors might result in the same de-
gree of phenotypic variability. As it will become evident later on, the focus of this
work is phenotypic variation in isogenic bacterial populations, thus independent of
genetic mutations as sources of variability at the phenotype level. Moreover, the study
of bacteria rules out complications associated to using animals or plants as model or-
ganisms, such as long generation times, large genome size, polyploidy and sex.

For further simplicity, the (more general) problem of continuous traits tackled by
quantitative genetics is reduced here to the case of alternative phenotypes. Pheno-
typic alternatives fall into two broad categories, in terms of the selective contexts that
give rise to them and (in some cases) induce their expression: alternatives fundamen-
tally due to the response to environmental heterogeneity or change, and alternatives
expressed a priori, enabling to escape from strong intraspeci�c competition for re-
sources (e.g. nutrients, space, or mates) [98]. In either case, alternative phenotypes
represent the epitome of the ability of living beings to respond and adapt to, or antic-
ipate, any change in their surroundings [99].

Increased levels of phenotypic heterogeneity can evolve in the laboratory, driven
by experimentally imposed �uctuating selection [51, 15, 63, 11]. In a social context,
where cells are arranged in groups of interacting elements, phenotypic heterogeneity
can be at the basis of the division of labour between individuals and therefore in-

1A classical example areDrosophilae, see [97] and cf. [46]: “In addition to the average phenotypic change
by genetic mutation, the observed increase in phenotypic �uctuation acts as an evolutionary strategy to
produce an extreme phenotype under severe selective environments.”.
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crease, through group performance, the rate at which populations grow or the range
of functions that they can perform [79]. �e role of selection regimes is there crucial:
experimental evolution on the trans-generational persistence of heterogeneous col-
lectives showed that, counterintuitively, a regime where the lowest �tness phenotype
at the cell level a�ributes an enhanced �tness to the lineage (and thus has a great-
est evolutionary potential) is favoured on the one where the low-�tness phenotype is
purged from the population pool [45]. Other cases where heterogeneity/division of
labour emerged in the lab can be found in yeast evolution experiments [81]. Alternative

phenotypes
discrete options
for a particular
function, always
divergent from
each other due to
selection under the
di�erent conditions
of their expression

Section 1.1.1 reviews what is known about the role of genes on the determination
of phenotypes and their variability. In Section 1.1.2 the ability to tune the phenotype
in response to the environment, called phenotypic plasticity, is discussed. Section 1.1.3
is devoted to detailing the role of stochasticity in the determination of phenotypic het-
erogeneity. Examples of alternative phenotypes, and a review on the possible mecha-
nisms underpinning their expression and evolutionary consequences are expounded
in Section 1.1.4. Finally, the role of mechanisms allowing microbial populations to
transfer information throughout generations is discussed in Section 1.1.5.

1.1.1 �e genotype-to-phenotype relationship
�e genotype is at the same time the physical substrate and the information at the ba-
sis of phenotypic determination. All factors linking the genotype with the expression
of phenotypes are of extreme importance for evolution.

Since the Danish botanist and genetics pioneerWilliam Johannsen in 1906 formal-
ized the relation between genotype and phenotype (later described as a “map”), the
mechanisms shaping and controlling it have been the subject of intense debate [3, 76].
Although a “one genotype, one phenotypic trait” correspondence is o�en assumed for
parsimony and simplicity, a large body of experimental observations indicate that in
many important circumstances tno univocal relationship between the genotype and
expressed phenotype can be established, for example in populations living in unpre-
dictable environments.

It is well known that genes and their level of expression a�ect not only the mean
phenotypic trait values (making them more or less adapted to the speci�c environ-
ment), but also their variability. �eoretical and experimental studies indicate the
existence of a positive correlation between the variability of a phenotype across a
population and the average response of such phenotype to a given genetic change.
Kunihiko Kaneko and collaborators performed an evolutionary experiment in bacteria
in which they selected for increased �uorescence of a protein and measured a positive
correlation between the phenotypic �uctuation of the �uorescence over clone bacte-
ria (inter-individual variability) and the speed of �uorescence evolution (response to
the genetic change) [85]. In other words, the closer the system is to “perfect” adap-
tation, the lower is the trait improvement due to mutations, as well as the variance
of the trait variation around the mean phenotype, a conclusion which is analogous to
Fisher’s theorem on gene and trait variation [36].
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1.1.2 �e role of environment: phenotypic plasticity
Phenotypic (intraspeci�c) variation can be classi�ed according to di�erent properties:
its responsive/stochastic character [16], the continuous/discrete nature of the trait
[39], or depending on whether the phenotypic variability has a purely genetic origin
or not. About the last categorization, in 1963 Mayr introduced a distiction between
polymorphism (genetically-induced phenotypic heterogeneity) and polyphenisms (non-
genetically-induced phenotypic heterogeneity), which can be regarded as the extreme
ends of a continuous spectrumof phenotypic outcomes due to genes, environment and
their interaction. Phenotypic

plasticity
the ability of an
organism to react
to an environmen-
tal input with a
phenotypic change

When dealing with environmentally-induced variation alone, phenotypic hetero-
geneity is usually named phenotypic plasticity. Phenotypic plasticity is the ability of
a single genotype to produce more than one alternative form of morphology, phys-
iological state, and/or behaviour in response to the environmental conditions [98].
Plasticity is a concept borrowed from developmental biology, and it can be interpreted
as time-dependent intra-individual variability [99].

In other words, one given trait (and, by extension, also a strain or a population)
is plastic if the possible phenotypes produced by that single genotype when exposed
to di�erent environmental conditions are more than one [77, 39]. Together with con-
trol mechanisms like genetic canalization and developmental stability, plasticity con-
tributes to the tuning of phenotypic variation induced by all the sources of variability
(genes, environment and stochasticity). It also modulates the level of competition
between sympatric populations [98].

1.1.3 �e role of stochasticity: from noise to bet hedging
Finally, some instances of phenotypic heterogeneity cannot be ascribed neither to
genes, nor to the environment or their interaction, and appear to be generated by
random processes: stochastic phenotypic heterogeneity is found both in continuous
traits (e.g. seed dormancy in annual plants [19]), and in discrete ones (e.g. the o�-
spring size in chicken [29]).

Stochasticity is generated at the molecular scale by �uctuations in the number
of key cellular components, such as transcription factors in gene expression [92, 30].
Noise in gene expression has been classi�ed into extrinsic or intrinsic [93, 31]: extrin-
sic noise refers to stochasticity in gene expression due to �uctuations in other cellular
compounds or processes (cell age, cell cycle phase) a�ecting the expression of the gene
of interest, while intrinsic noise consists in the stochasticity in the expression of a par-
ticular gene all other factors being equal. Intrinsic variability is typically a�ributed to
stochastic �uctuations in the number of molecules involved in gene expression, when
these are present in small numbers within cells.

Noise in gene expression can underpin heterogeneity only under certain genetic
network architectures [17, 75, 66]. Seemengly, some of these modular gene regulation
topologies, calledmotifs, evolved across di�erent clades due to the �tness increase that
they can supply to the organism [5]. Furthermore, noise in gene expression might be-
stow a selective advantage to organisms under stress, as high levels of �uctuations
can generate a library of di�erent metabolic possibilities, thus phenotypic diversi�ca-
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tion. Noise-induced enhancement in a population’s adaptive potential highlights the
potentially fundamental role of stochastic mechanisms in the evolution of microbial
survival strategies [38].

For the scope of this work, the most relevant adaptive value of stochastic phe-
notypic heterogeneity resides in the fact that it allows some individuals of a popula-
tion to survive sudden changes in selective conditions, thereby eliciting persistence
of the underpinning genotype in ever-changing, unpredictable environments. In this
perspective, the stochastic generation of variant phenotypes is interpreted as a bet-
hedging strategy [88] (see [94] for a review). Bet hedging
In adaptive bet hedging, the mean individual �tness of an isogenic population or random assign-

ment of the
possible pheno-
types to recurrent
but unpredictable
environments, on
the chance that
some will fall into
an environment
where they are
adapted and thus
save the lineage
from the decline or
extinction

brood is lowered by the expression, in some individuals, of maladaptive phenotypes.
Rather than those perfectly adapted to their current environment, though, selection
may favor populations expressing some of those phenotypic alternatives, thus reduc-
ing the chances of a complete failure in the future. In other terms, homogeneous
populations adapted to the most favourable environment (the “good year specialists”)
maximize their arithmetic �tness, while by adaptive bet hedging a population maxi-
mizes the �tness geometric mean over the set of possible environmental conditions.

Bet-hedging strategies can enhance the success of microbial infections, with pop-
ulations of infectious microbes performing division of labour in order to optimize tim-
ing and spreading of their infections. �is was observed for populations of Salmonella
typhimurium [2, 24] and Pseudomonas aeruginosa [25]. Typically, such populations
are poorly susceptible to classic countermeasures like antibiotics exposure, the most
noteworthy example being persistence to antibiotics treatment in E. coli [8].

�eoretical and experimental studies show that bet hedging evolves as a response
to unpredictably �uctuating environments over a time scale usually longer than a gen-
eration time. Other solutions are instead preferable with other pa�erns of environ-
mental variation. When the changes in the environmental conditions are predictable,
then genetically encoding for a sort of developmental program, or heterochrony [43],
might be a preferred strategy. When the changes occur on a time scale faster than indi-
vidual generation time, thus “detectable” by single individuals, sensing is the preferred
strategy [54]. Spatially heterogeneous enviroments as well favour genetically-driven
di�erentiation (polymorphisms) over bet hedging [87].

1.1.4 Alternative phenotypes and switching
As reviewed in the previous Sections, phenotypic heterogeneity shows a great deal
of variety in terms of determinants and functions. Here and throughout this work, I
focus on a simple yet general instance of phenotypic heterogeneity, that is the case of
discrete phenotypic states for qualitative traits, also known as polyphenisms or alter-
native phenotypes. Alternative phenotypes can either be induced by environmental
cues, or stochastically determined [99]. �e expression of alternative phenotypes can
be seen as a clear manifestation of the “principle of divergence” [23]: the advantage
of adopting opposite, extreme phenotypes or tactics enables individuals to escape,
partially at least, competition with conspeci�cs that would otherwise be their closest
rivals.
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In the microbial domain, alternative phenotypes are everywhere. Instances of
alternative phenotypes are o�en distinguished between responsive and stochastic. Re-
sponsive alternatives are elicited by the assessment of the environmental conditions
through sensingmechanisms, and generate a response tomatch the new environment.
Stochastic alternatives rely on the intrinsic stochasticity of the gene circuits involved
in the determination of the phenotype of interest, and allow microbial populations to
hedge their survival bets and prevent extinction in the case of very rare or completely
unpredictable events. �orum sensing

bacterial cell to cell
communication in-
volving the produc-
tion, detection, and
response to autoin-
ducers, i.e. signal-
ing molecules pro-
duced and excreted
by cells

One of the most fascinating example of responsive alternative phenotypes in mi-
crobes is quorum sensing [84]. In pathogenic bacteria, the response to population
density can for instance consist in the ability of tuning the transcription of genes
related to virulence [18, 2], allowing some bacteria to maintain a benign persistent in-
fection in their host. Such persistence possibly facilitates the evolution of mutualistic
relationships [32].

In turn, examples of noise-generated phenotypic bistability can be found in bac-
terial persistence in Escherichia coli and genetic competence in the soil bacterium
Bacillus subtilis. Persistence is provided by a phenotype that is rarely expressed in
bacterial isogenic populations. Cells in the persistent state are characterized by a very
low growth rate but also by the capacity to stand exposure to antibiotics for a very
long time. Once the antibiotics cycle is over, these cells restore normal cell division,
therefore allowing the genotype to survive. Populations grown from such surviving
bacteria are not resistent to antibiotics, and the proportion of susceptible cells does
not change a�er the �rst cycle of antibiotics, which proves the phenotypic nature of
the switch between the persistent to the susceptible state and vice versa [8].

In stationary phase, around 10% of cells in genetically identical B. subtilis popula-
tions gain the ability to take up naked DNA from the environment (genetic compe-
tence). Bistability results from noisy expression of the comK gene: while in exponen-
tial phase its product ComK is rapidly degraded in all cells, when stationary phase is
reached, a quorum sensing cascade leads to the expression of ComS, a protein that
protects ComK from degradation. Cells reaching a threshold level of ComK sponta-
neously switch to the competent state (and those that drop below the ComK threshold
switch back to the non-competent state) ([60], reviewed in [26]).

It should be pointed out, however, that such a distinction between responsive and
stochastic switching is nothing but an oversimpli�cation, as sensing and noise are of-
ten tangled mechanisms. An example is provided by diauxic shi�s, i.e. the production
ofmorphologically distinct dormant stages in response to starvation [65, 91]. �e clas-
sic view identi�ed its main cause in the modi�cation of metabolic �uxes induced by
the exhaustion of one nutrient source, while recent studies on Lactococcus lactis and
Klebsiella oxytoca revealed how much stochasticity and response can be intertwined
[89, 86]. Lactococcus lactis presents populations able to grow on two sugar sources
always present two coexisting stable cell types with alternative metabolic strategies.
�e fraction of each metabolic phenotype depends on the level of catabolite repres-
sion and the metabolic state-dependent induction of stringent response, as well as on
epigenetic cues [89]. �ese examples of environment-dependent stochastic bistability
�nd all a common factor in the presence of growth rate di�erences, which result on an



16 Introduction

e�ective reduction of population-averaged production of cells in exponential phase. I
will tackle this problem in Chapter 3.

Whatever the mechanisms underpinning their behaviour, phenotypically switch-
ing microbial populations are o�en described in terms of multistable systems whose
global state (the ensemble of the variables2 of the system, like population size and
frequency of the alternative phenotypes across the population) depends on few en-
vironmental or internal parameters [26]. Multistability encompasses the concepts of
�uctuation (the variance of some quantity) and response (the average change of that
quantity for a given parameter change). With a theoretical approach, Kaneko and col-
laborators proposed a proportionality relationship between �uctuation and response
in biological systems, analogous to the �uctuation–dissipation theorem in physics
[85], suggesting a quantitative way to interpret evolutionary strategies such as the
production of extreme phenotypes [46].

A most striking signature of multistability is hysteresis, whereby the history of
the system in�uences its response to a same input or signal [94]. As environmen-
tal conditions (e.g. concentrations of available nutrients, or selective agents) change,
relative frequencies of phenotypes in a phenotypically heterogeneous isogenic mi-
crobial population are susceptible to vary in a hysteretic fashion, as was shown for
the expression of the lac operon in Escherichia coli [73], or genes subjected to mutual
repression in a synthetic circuit [20].

At the cellular level, both responsive and stochastic polyphenisms work through
a mechanism that makes individuals change their phenotypic state: I refer to any kind
of process allowing the transition between discrete alternative states with the term
“switch”. Typically, individual cells in microbial heterogeneous populations switch
phenotype on a temporal scale faster than that of genetic mutations (see [74] and
references therein). Such a time scale depends on that of environmental change, di-
rectly in the case of responsive switching, and indirectly for stochastic bet-hedging
strategies [54].

In either case, switching has an in�uence on �tness and long-term population
growth [1] whenever the alternative phenotypes are not equivalent (neutral) with
respect to the environment. �e long-term success of an exponentially growing pop-
ulation can be assessed on the basis of the probabilities of switching between pheno-
types [57]. Indeed, if one of the two phenotypes is more adapted than the other to a
given environmental state, it will grow faster and/or reach a higher population size
in that environment, while the reverse occurs when conditions become favourable to
the other phenotype. �e average growth rate of the isogenic population of switchers,
which can be computed as the weighted average of the growth rate of its phenotypi-
cally diverse components, is therefore in�uenced by the population composition.

2Here and later in this�esis, I will refer to time-dependent observables characterizing the state of the
system with the term variable, and I will adopt the term parameter for observables specifying a condition
of the system, in�uencing the variables of the system and in principle externally controllable.
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1.1.5 Non-genetic trans-generational phenotypic “memory”
Due to its relevance in the study of phenotypic variability in bacterial populations,
in this Section I present and discuss another main topic of modern evolutionary syn-
thesis: the heritability of the phenotype, that is the trans-generational persistence of
phenotypes, herein also referred to as non-genetic “memory”. Indeed, (each kind of)
variability needs to be heritable in order to be the rawmaterial for selection. As proved
by the ubiquitous existence of epigenetic mechanisms (even excluding behaviour or
cultural transmission), heritability in its broader sense is partly non-genetic and has
a very strong impact on evolution [47]. In other terms, the problem consists in an-
swering the following question: How does the behaviour of single cells scale up to
history-dependence at the population level?

In the presence of stochastic phenotypic switching, it is usually possible to asso-
ciate characteristic persistence times to each of the possible phenotypic states. Experi-
mental evidences onmicrobes showed that there exist twomain qualitatively di�erent
classes of phenotypes in terms of their persistence time distributions across the mem-
bers of the population [72]: “memoryless” states (whose duration follows a negative
exponential distribution, like radioactive decay), and “time-controlled” states (whose
duration is distributed around a characteristic persistence time). In either case, an av-
erage persistence time can be de�ned: when such a characteristic time scale exceeds
the generation time, then the phenotypic persistence can be interpreted as the result
of trans-generational memory mechanisms.

When the division rate of the individual depends on its phenotypic state (thus
when the �tness of the population depends on inter-individuals heterogeneity), tun-
ing the time scales of the switch between alternative states and the e�cacy of phe-
notypic “memory” becomes essential for microbial populations to cope with the in-
evitable changing nature of their environments [48]. Many examples about multiple
phenotypes associated with trans-generational “memory” support this idea: micro-
bial populations are known to respond faster to a change of nutrient source when the
forthcoming nutrient source has been presented in the recent past (“nutrient shi�s”,
[56]), and to display increased survival to a given level of stress when previously ex-
posed to sub-lethal levels of the same stress (“stress response”, [7] and [64]).

As I will discuss in detail in Section 1.3, P. �uorescens is an excellent biological
model organism to study phenotypic heterogeneity and trans-generational persis-
tence of the phenotype: several phenotypically heterogenous phenotypes have been
obtained through experimental evolution in controlled conditions, and the phenotypic
states that they can express persists for several generations. �ese features make this
bacterium an ideal candidate to study the relation between phenotypic heterogeneity
and population eco-evolution.
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1.2 �eoretical models of phenotypic heterogeneity
If the “book [of Nature] is wri�en in mathematical language” [40], biology makes no
exception. �e study of living systems is all about the assessment of variations (in
number, shape, pa�ern. . . , both in time and in space) and, although biology had re-
mained a mostly observational and conjectural discipline for centuries, only rigorous
quanti�cation and analysis has so far permi�ed to compare and discuss the results on
an objective ground.

Models, i.e. convenient schemes of reality, can be e�ective tools to investigate
natural phenomena in a systematic way, as they spell out the hypotheses of a given
interpretation framework, andmake testable predictions. When the relations between
the qualities of the object of study are wri�en in mathematical terms, the expression
mathematical model is used. �eir formalism must accomodate the characteristics of
the system to be studied and be appropriate to answer the relevant questions. Classic
examples can be found in the use of systems of ordinary di�erential equations for the
population dynamics of two interacting species [59], or in the application of agent
based modelling to the study of collective motion [82].

�e elaboration of a mathematical model proceeds by inductive reasoning, and
aims to an arbitrarily good description of the phenomena of interest. Once a�ained
the desired level of precision in its descriptive power, a mathematical model is queried
for quantitative predictions about the behaviour of the real system under di�erent
conditions, whose correctness and accuracy can then be experimentally tested. �e
analysis of the deviations between theoretical predictions and results of the experi-
mental tests usually reveals to be useful for the re�nement (or, eventually, the u�er
refutation) of the model itself.

In this Section, I discuss the variety of approaches typically used to describe the
generation and the maintainance of phenotypic heterogeneity in microbial popula-
tions. I will disregard the case where evolved regulatory units (such as operons and
regulons) enable an almost immediate adaptation to a new environment [49], corre-
sponding to homogeneous populations in �xed environmental conditions. Instead, my
focus will be on populations with a standing phenotypic diversity, where cells cannot
tune exactly their state to match the surrounding environment.

Concerning the mechanisms of switching underpinning sustained heterogeneous
populations at �xed environmental conditions, di�erent possible criteria of classi�ca-
tion can be used. �e most relevant for the aim of this work concerns the relationship
between the intrinsic stochasticity of the system and the role of external factors. I start
by discussing a �rst case where the switching behaviour has only stochastic causes,
and the environment can have consequences on the di�erential survival probabil-
ity of the alternative phenotypes (context-independent switch, Section 1.2.1). I then
focus on a second class of models where changes in the environmental conditions
a�ect both the expression of the alternative phenotypes and their survival (context-
dependent phenotypic switch, Section 1.2.2). As more thoroughly examined in Chap-
ter 3, the relevance of the classi�cation of phenotypic switches according to the role
of the environment resides in the di�erence in the resulting temporal dynamics of the
phenotypic variability across the population (Fig. 1.1).
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Figure 1.1: Environmental change can elicit di�erent dynamics in heterogeneity depending
on its role on the phenotypic switch mechanisms. Even when the switch is independent of
the environment (le� panel), the mean phenotype of the population (measured in terms of the
frequency of one of the alternative phenotypes, dashed line) can still be altered by an envi-
ronmental change (E1 to E2) if the new conditions favour one phenotype over the other one.
In context-dependent switches (right panel) this e�ect can be magni�ed (reduced) if the prob-
ability of transition to the more adapted state increases (decreases) from the old to the new
environment. Depending on the relationship between the time scales of the switch and of cell
division, these two scenarios can as well give rise to di�erent transient regime of the phenotypic
dynamics.

1.2.1 Pure stochastic switchers
In models where all extrinsic sources of variability are neglected, the switching be-
haviour is characterized by constant rates of transition between phenotypic alterna-
tives. �erefore, the typical way of modelling it is to consider the switch between the
possible states as a Markovian process with �xed transition rates [12]. As all other
Markovian processes, this does not display any kind of memory.

Dealing with pure stochastic switching does not mean that the environment has
no e�ect whatsoever on the system: for example, the �tness of alternative phenotypes
may be di�erentially a�ected by the state of the environment (usually summarized by
one or few environmental proxies), in terms of rate of survival or division.

Models of pure stochastic switching behaviour typically aim at predicting the
long-term growth rate and the evolution of the population under conditions of expo-
nential growth, thus e�ectively neglecting transient periods and interactions between
phenotypic state and demography [7]. �e evolutionary bene�t of an environment-
independent stochastic switch strategy relies in di�erentiating (bet hedging), in envi-
ronments where the conditions do not change too frequently [95].

Many are the examples of systems modelled as pure stochastic switchers in the
recent literature. One notable example is provided by a particular instance of bacte-
rial persisters, that is the Escherichia coli high persistence hipQ mutant, isolated in
a screen for high persistence to nor�oxacin treatment [100]. Balaban et al. showed
that their phenotypic dynamics is well described by a model with constant switching
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rates between the persistent and the normal cell state, and characterized by one or-
der of magnitude of di�erence between the normal cell type’s division rate and that
of the persistent state. Such a di�erence was observed to occur before and a�er the
antibiotic treatment, indi�erently [8].

�e relationship between the environmental �uctuations and the stochastic switch
are also very important for the long-term �tness of the population: a seminal paper by
Kussell & Leibler mathematically proved that the optimal strategy for a population of
phenotypically switching microbes consists in tuning the inter-phenotype switching
rates to the frequency of environmental change [54]. �is was a�erwards con�rmed in
an experimental study where fast- and slow-switching populations of Saccharomyces
cerevisiae competed in both slowly and rapidly changing environments [1].

�e feedback between the environment and the switching strategies makes a full
circle when the environment is responsive to the state of the population, for exam-
ple in the case of “catastrophic responsive environments” [96], analogous to some
instances of host immune response [71]. A theoretical model by Allen and collabora-
tors explored the scenario in which the individuals can switch between a fast-growing
but susceptible state and a slow-growing non-susceptible one, and in which the envi-
ronmental state �ips and strongly reduces the fast-growing susceptible subpopulation
with a probability depending on the di�erence between its relative size in the popula-
tion and a given threshold. �ey found that, when the environment is responsive, two
alternative strategies can be followed tomaximize the population �tness: never switch
to the non-susceptible state (and thus maximize growth), or switch at an optimal rate.
�e degree of the sharpness of the environmental response to the population state
a�ects both the optimal switching rate and which of the two strategies is the most
favourable [96].

1.2.2 Context-dependent switchers
With respect to mathematical models of pure stochastic switch, allowing the switch
to be a�ected by the environmental context can lead to more complicated phenotypic
dynamics, which can display dependence on the previous states explored by the sys-
tem, and therefore bearing evolutionary consequences.

�esemodels interpret the interaction between cells and environment as the result
of the mediation of cell physiology, via metabolism, genetics, or a combination of the
two. Measurable properties such as growth rate, rate of synthesis or degradation of
proteins, and concepts such as density- or frequency-dependence, are then introduced
to explain the behaviour of heterogeneous populations [55]. �e level of “resolution”
can scale up to describing how genes or gene networks in�uence the cell response to
the environmental inputs [5, 53].

A quintessential case of environment-dependent switch was identi�ed by Balaban
et al. in Escherichia coli hipA7 mutant [69]. �e bimodal distribution of growth rates
in the hipA7 population, which can be appreciated also prior to the environmental
trigger (in that case, antibiotic exposure), appears to be at the basis of the pheno-
typic variability: a�er the antibiotic ceases to be provided to the population, persister
cells exit their state of arrested growth and can generate a newly sensitive population
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[8]. Balaban et al. decided to model this system as a two-state chain where the two
transition probabilities can each assume two �xed di�erent values, depending on the
presence or absence of the antibiotic. Moreover, the switch is unidirectional in the
exponential regime of population growth, the transition rate to the persistent state
being set to zero [8].

Other known examples of models of microbial responsive diversi�cation through
phenotypic switching can be found in the study of the operon lac, whose discovery by
Jacob and Monod [49] set the bases for the extraordinary development of molecular
and systems biology. Across the decades, the case study of lac operon in Escherichia
coli inspired the development of mathematical models at the di�erent levels of de-
scription, from population dynamics, to cellular metabolism and gene expression, as
reviewed in [95]. In pivotal works on the lac operon switch, single-cell imaging al-
lowed to unveil the distribution of the individual phenotypes across an isogenic pop-
ulation. Environmental conditions, in terms of extracellular concentrations of carbon
sources, were shown to elicit a hysteretic response. A model by Ozbudak et al. pro-
vided a quantitative and predictive description of the intracellular state’s dependence
on lactose availability, in the form of a bistable dynamical system [73].

In biological systems of context-dependent switch, trans-generational “memory”
of the individually-expressed phenotypic states can take the form of hysteresis due to
the gene networks wiring conferring an intrinsic bistability to the system [73]. Again,
the relation between the time scales of the switch and of the environmental variation
can have implications on the evolutionary time scale: Lambert et al. showed that all
possible combinations of the average duration and variability shape a phase diagram
for memory optimization where evolutionary phase transitions between “constitu-
tive”, “memoryless” and “�nite memory” responses can be de�ned [56].

To conclude, in this scenario phenotypic heterogeneity is an observable chang-
ing dynamically in time, which means that a complete characterization of the system
requires the assessment of variability both across individuals and in time. Environ-
mental change can be determined by the growth of the population itself, as actually
happens to microbial populations in less arti�cial se�ings than those devised to study
only the stochastic or the responsive component of a switch. In the next Section, I
present Pseudomonas �uorescens as an appropriate model system for this study.
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1.3 Pseudomonas fluorescens switchers: amodel sys-
tem for diversity

Pseudomonas �uorescens is a common plant-colonizing, aerobic bacterium [78], which
has beenwidely used in evolutionary genetics because of its ability to rapidly generate
a wide variety of mutants under novel environmental conditions [68]. Mutants strains
are easily screened by examining the morphology of clonal colonies grown on agar
plates. Wild-type strains indeed form smooth translucent colonies with a regular
round shape. Mutants, on the other hand, typically display a variety of wrinkled,
rugged colony shapes that are generated when cells secrete unsoluble compounds,
such as colanic acid or cellulose. �ese compounds also elicit identi�cation of mutants
at the single-cell level.

Selection for survival in unstructured and structured environments showed that
while the wild typemorphologywasmaintained over evolutionary time in the the for-
mer case, spatial structure supported an extraordinary rapid diversi�cation. Indeed,
competition for limiting oxygen, consumed as the population grows to saturation,
selects mutant genotypes that secrete polymers on the scale of a few days. �ese
“Wrinkly Spreader” mutants are particularly e�cient in building a bio�lm to the air-
water interface, thus creating a new niche fromwhich wild-type cells are, temporarily
at least, excluded. Bio�lm formation, and the related wrinkly colony morphology, are
achieved by the excretion of cellulose, that acts as a “glue” able to keep cellular mats
together and prevents them to sink by sticking to the vessel’s walls [80, 90].

Phenotipically heterogeneous isogenic strains have been subsequently evolved in
two di�erent set of experiments from the same wild type strain SBW25 in the lab
of Paul Rainey. Of the two alternative phenotypes, one is always morphologically
identical to the wild-type. However, the genetic underpinning and morphology of the
alternative phenotypes depend on the features of the selection regime under which
evolution took place.

Selection for phenotypic novelty at themoment of plating produced cells that were
able to produce both smooth and wrinkled colony shapes, so that at every selection
cycle a novel phenotype was produced even in genetically uniform populations [11].
Interestingly, this solution was found a�er a number of generations when novelty
was brought in by genetic mutations analogous to those observed in the previously
mentioned adaptive radiation experiment [80, 90]. However, once the potential of
variation originated from knocking out unessential pathways was reduced, the best
solution has been for cells to exploit stochastic variations of their phenotype.

Selection for survival in an experimentally imposed life-cycle, with alternating
growth in structured and unstructured environments [45], gave rise to cells that al-
ternated between awild-type, smooth phenotype, and aWS-like phenotype, thus they
were able to easily generate bio�lms when the environmental context gave to such
an arrangement a selective advantage.

Although the complete genetic and molecular characterization of the second type
of switchers is underway, both in the case of the exclusion rule and in that of the life-
cycle experiment, the phenotype alternative to the wild type had similar features, and
produced opaque sectors in growing colonies. However, as far as the �rst experiment
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is concerned, as I will discuss more in detail later, the polymer that was excreted
was colanic acid and not cellulose, because the exclusion rule gives no advantage
to stickiness per se. I will call these “capsulation” switchers, because the excreted
polymer forms a thick capsule outside the cell wall.

In the rest of this Section, I will present the genetic and metabolic underpinning of
the la�er type of Pseudomonas �uorescens switchers, and provide more details on the
experimental exploration of their phenotypic heterogeneity. A�er a brief description
of the two phenotypes and a recall of the current knowledge about the mechanisms
involved in the switch (Section 1.3.1), I detail the experimental evolution protocol giv-
ing rise to the Pseudomonas �uorescens capsulation switchers (Section 1.3.2). �en, I
discuss the role of the genotype and of the environmental conditions on the switching
behaviour (Section 1.3.3), and �nally present the results of experimental observations
which proved that phenotypic heterogeneity displayed by populations of switchers
depends on the time of the observation and on the past history of the population
(Section 1.3.4). �ese observations were instrumental for the development of a math-
ematical model aimed at describing the observed phenomenology and infer its impli-
cations, which will be the object of the next Chapters.

1.3.1 �e alternative phenotypes of the capsulation switchers
�e alternative phenotypes expressed by the Pseudomonas �uorescens “capuslation
switchers” are called CAP- and CAP+. �e CAP- phenotype corresponds to the wild
type prevalent morphology, whereas the CAP+ phenotype is characterized by a mas-
sive capsule of excreted polymers that can be directly imaged by staining (Figure 1.2).
Capsulated cells can be also identi�ed by �uorescent microscopy, thanks to the trans-
formation of the switching strain with a �uorescent marker, put under the promoter
of the operon producing the polymer (see Chapter 2). �e measure of this level of �u-
orescence allows to quantify the fraction of cells in the population that have switched
on the polymer production, either by direct imaging of �uorescence under a micro-
scope, or by automatic counting via FACS.

�e capsulated phenotype CAP+ is expressed by around 1:10000 cells in wild type
SBW25 populations, and its expression was found to be caused by the activation of
an operon responsible for the production of colanic acid-like polymers [42]. More in
detail, transposon mutagenesis demonstrated that the structural basis of the capsule
is a polymer encoded by a speci�c locus (P�u-3656-wzb). �ere exists a link with
smooth (SM) / wrinkly spreaders (WS) colony morphology heterogeneity: the WS
mats are mainly made of ACP (acetylated cellulosic polymer), coded by a 10-gene
operon called wss. �e CAP+ polymer consists of a mix of ACP and an acidic polymer
encoded by wzb, and was found to belong to the 5th group, that of the M-antigens
[80]. �e biosynthesis of a variety of excreted polymers as a response, for instance,
to stress is well-documented in other bacterial strains (e.g. Vibrio parahaemolyticus
[33], Vibrio cholerae [101]).
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Figure 1.2: Microscopy image of Pseudomonas �uorescens “capuslation switchers”. �ese iso-
genic populations express two alternative capsulation phenotypes: along with the normal cel-
lular state CAP-, they can express an alternative phenotypic state called CAP+. CAP+ cells
present a capsule around the cell surface (visible a�er staining with indian ink) and present
green �uorescence due to the insertion of the gfp gene under the control of the same promoter
of the operon responsable for the capsulation. �e image was obtained through the superposi-
tion of bright-�eld and GFP �uorescent microscopy images (courtesy of Philippe Remigi).

1.3.2 �e evolution of the capsulation switchers
Via a process of arti�cial selection, Rainey and collaborators evolved Pseudomonas
�uorescens strains able to express the CAP+ phenotype at a much higher frequency
with respect to the wild type (⇠ 10�1 vs ⇠ 10�4) [11].

�e evolution experiment consisted in subjecting 12 identical populations of Pseu-
domonas �uorescens SBW25 to successive rounds of alterned growth regimes and
selection through single-colony bo�leneck based on phenotypic novelty, that is by
restarting a new culture in fresh medium from the colony whose morphology was
the most di�erent from the prevalent one (Fig. 1.3, top panel). A�er nine rounds, in
two lines out of twelve a noticeable increase in the frequency of uncommon morpho-
types was observed. �is shi� coincided with the appearance of a switching mutant,
which managed to be largely overrepresented among cells that survived the exclusion
rule, thus rapidly making up the totality of the population.

When let grow for longer times on agar plates, such high-frequency switching
lines produced sectored colonies (Figure 1.3, mid panel). �e colony morphology re-
�ected two features of the cell-level phenotypic behaviour that I will more extensively
treat in Chapter 3. First, individual cells are found in one of the two alternative phe-
notypic states (Fig. 1.3, bo�om panel). Second, since the lineage descending from a
newly switched cell creates a sector in the colony, the phenotypic state must persist
for several generations, so that the whole descendence of a cell tends to express, at
least over a su�ciently short time scale, the same phenotype.

One of the main insights that the exclusion rule of the evolution experiment pro-
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Round 1 Round 2

Figure 1.3: Scheme of the evolution ex-
periment. Top panel: Pseudomonas �u-
orescens SBW25 populations were propa-
gated in static or shaken (red arrow) mi-
crocosms, and small aliquots of them pe-
riodically plated to obtain novel colony
types, before transfering one of them
into the opposing environment (“exclu-
sion rule”). Mid panel: colonies of 1w4,
one of the evolved bet-hedging geno-
types, display variably sectored colonies,
suggesting that the phenotypic compo-
sition changes along with genetic back-
ground and context. Scale bar, approxi-
mately 2 mm. Bo�om panel: 1w4 sec-
tored colonies are composed of a mixture
of CAP+ and CAP- cells (phase-contrast
light microscopy with negative capsule
staining). �e proportions of CAP+ cells
produced in the evolved switching strain
1w4were three orders ofmagnitude higher
than both the original ancestor SBW25 and
the immediate ancestor of 1w4. Scale bar,
approximately 10 �m. Figure from [11].

vided about Pseudomonas �uorescens CAP+/CAP- phenotypic switch was the role of
contingency: each round of the evolution experiment led to the selection of a muta-
tion giving rise to phenotypic novelty at the colony level, and each successive mu-
tation participated in creating the genetic substrate for the last, decisive mutation to
happen. Indeed, genetic studies provided the list of mutations needed to evolve the
CAP+/CAP- phenotypic switch. �e switching behaviour, however, could be directly
obtained by arti�cially inducing the last mutation on the right locus of the wild type
genome [42].

Re-evolved switchers

When dealing with microbes, it is possible to ‘replay the tape of life’ and explore
the role of contingency in evolution [14]. In the case of the CAP switchers, a�er
each round of selection a sample from the selected, morphologically novel colony was
taken and frozen. Restarting the evolution experiment from the immediate precursor
of 1w4 (one of the two switching lines obtained), six more switching strains were
evolved.

Each of the independently re-evolved strains displayed a high degree of pheno-
typic variability [41]. �e causal mutations all involved a couple of genes (carB and
pyrH ) along the pyrimidine pathway, although they a�ect di�erent loci (Fig. 1.4).
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Figure 1.4: Genes involved in the �nal mutation endowing Pseudomonas �uorescens strains
with the capacity of expressing the CAP+ phenotype at high frequency. Although the a�ected
genes are always carB and pyrH, the loci where such �nal mutations take place can vary across
1w4 and the switchers re-evolved from its direct predecessor (white arrows). Figure from [42].

Such mutations seem to be responsible for a disequilibrium in the �ux of UDP and
UTP along the pyrimidine pathway, before a branching point where metabolites are
partitioned between DNA/RNA production and colanic acid biosynthesis (Fig. 1.5).
�is checkpoint might be a safety measure to prevent cells from starting division
without the minimum amount of resources to accomplish it [42], and is thus likely to
be related to the response of bacterial cells to starvation. As I will discuss later, mod-
i�cations of such response might involve an imbalance in a number of intracellular
compounds, from precursors of biomolecules to ribosomes.

On the basis of these observations, a �rst interpretation of the origin of the switch-
ing behaviour was given in [42]: there may exist a threshold in the intracellular con-
centration of UTP, lower than the homeostatic value for the wild type cells, above
which cells express the capsulated phenotype. For the mutant genotypes, for which
such a homeostatic value might be lower, stochastic �uctuations are enough to cross
the threshold and switching to the capsulated state. �e presence of control mecha-
nisms, elicited when the polymer production is exceedingly high, might allow cells
to recover to the CAP- state. �e exact nature of such control mechanisms remains,
however, unclear.
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Figure 1.5: Intracellular metabolic pathways downstream of carB gene. �e switch-eliciting
carBmutation reduces concentrations of intermediates in the pyrimidine biosynthesis pathway
(shown in black), exposing a decision point at which uridine triphosphate (UTP) is used either
by PyrG for nucleotide biosynthesis (leading to the CAP- phenotype, components in red), or
by GalU for polymer biosynthesis (generating CAP+ phenotype, components in blue). Figure
from [42].

1.3.3 Genetic and environmental sources of heterogeneity
�e availability of several strains achieving, through the same path, the same ability
to switch between the capsulated and the uncapsulated phenotypes, allows to address
the genetic and environmental bases of heterogeneity within bacterial populations.

Di�erent “switchers” can be quantitatively compared in terms of the amount of
capsulated cells they produce, of their average growth rate or demographic dynam-
ics. As explained in more detail in Chapter 4, Section 4.1.2, the switching strain 1w4
and the 6 re-evolved strains di�er in their demographic features and in the frequency
at which the alternative phenotypes are expressed. �is may indicate that the de-
gree of sensitivity of the switch to random �uctuations varies depending on genetic
background.

�e conditions in which bacterial cultures are grown also a�ect both the average
growth rate of the population and the proportion of capsulated cells. In isogenic pop-
ulations of 1w4 grown in di�erent environmental conditions, a higher proportion of
capsulated cells was associated to lower temperatures, older cultures, and uracil en-
richment in the medium (Jenna Gallie, Philippe Remigi and Paul Rainey, unpublished,
and [41]). However, no systematic study has so far been conducted to quantify how
the population composition scales with an externally controllable parameter. �ere-
fore, a causal connection between the mechanisms underpinning the switch and the
population-level outcome cannot be easily established.
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Some qualitative expectations based on the mechanistic picture illustrated in Sec-
tion 1.3.2 have been nonetheless veri�ed. According to Jenna Gallie’s model cited
above, when the UTP/UDP balance is altered by addition of UDP to the extracellular
medium, the probability that stochastic �uctuations bring the cell above the switching
threshold is expected to increase. Accordingly, more capsulated cells are observed in
UDP-enriched cultures. To what extent this is actually due an increased rate of tran-
sition to CAP+, rather than on a slowdown of the rate at which the CAP- phenotype
is recovered, could not be assessed with this kind of measure.

Another expectation that has been only documented in a case of colony growth
on agar, is that capsulated cells divide slower that non-capsulated ones. It is rea-
sonable to assume that this holds true also in liquid medium, as the production of a
bulky polysaccharide capsule should divert resources from growth, and thus entrain
a cost. �is individual cost should be measurable at the population level in terms of
growth reduction, so that conditions giving rise to a higher number of CAP+ cells
should be associated to a slower average growth rate, and may also re�ect in a lower
cell concentration at stationary phase. In Chapters 3 and 4, I will discuss our cur-
rent understanding of the relation between growth rate and phenotypic state of the
population, and how some of these intuitions might be misleading when comparing
populations in di�erent phases of their growth.

A particular instance of contextual dependence of the phenotypic composition of a
Pseudomonas �uorescens switcher population is detailed in the following Section, and
will constitute the benchmark for the theoretical work of Chapter 3 of this�esis.

1.3.4 Time- and history- dependent phenotypic heterogeneity
Considering the dependence of the population phenotypic state on the environmental
context, one can wonder to what extent a genotype de�nes the probability of �nding
cells in one of the two alternative phenotypes. In other words, whether it is possi-
ble to map the genotype not to one phenotype, but to a de�nite percentage of cells
that are found in each of the phenotypic states. In this case, the phenotypic composi-
tion of the population could be considered, similarly to what happens in multicellular
organisms with di�erentiated cells, as a manifestation of the underlying genotype.
Understanding when and how the environment acts on the determination of the pop-
ulation composition is essential for the comprehension of the selective advantage of
a switching genotype.

As seen in the previous Section, Pseudomonas �uorescens switching strains seem
to respond to changes in the environment. In fact, for microbial populations grown in
batch culture, the environmental state is determined not only by externally controlled
parameters, but it is in�uenced by the population demography itself. �e possibility
that population growth a�ects phenotypic composition was explored by Dr. Philippe
Remigi and Prof. Paul Rainey at NZIAS, Auckland, New Zealand, in an experiment
that I recapitulate here, and that will be described in detail in Chapter 3, where I
propose a model for describing the observations.

�is experiment consisted in monitoring over several bacterial generations the to-
tal size and the proportion of capsulated cells in a population held in a closed reactor.
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Figure 1.6: Demographic and
phenotypic dynamics of a pop-
ulation of a Pseudomonas �uo-
rescens “switcher” over several
bacterial generations (lasting, in
exponential phase, around 40
minutes). Population size is mea-
sured through optical density
(top panel), and CAP+ frequency
through �ow cytometry (bo�om
panel). �ree di�erent treat-
ments, corresponding to di�er-
ent �nal population densities of
the precultures they were repli-
cated from, are shown: “low”
(preculture OD ' 0.3, green cir-
cles), “mid” (preculture OD '
1.0, blue squares), “high” (precul-
ture OD ' 1.5, red triangles).
All treatments were diluted to
the same population size at the
beginning of the measurement
phase (OD = 0.05). Each of the
points corresponds to the mean
value over three statistical repli-
cas, and error bars indicate stan-
dard deviation.

While the population size followed a standard logistic growth, eventually a�aining
the stationary phase (Fig. 1.6, top panel), the proportion of CAP+ cells changed in
time in ways that were not only qualitatively variable, but sometimes had dramatic
non-monotonic variations (Fig. 1.6, bo�om panel). Even more interestingly, treat-
ments initiated with the same cell density, but derived from cultures at di�erent stages
of their growth (early, mid, or late exponential phase) presented quantitatively and
qualitatively di�erent behaviours in terms of the temporal variation of their pheno-
typic composition. Indeed, whereas the culture replicated from an early exponential
phase preculture underwent a gradual and slow increase in the fraction of capsulated
cells a�er resuspension in fresh medium, cultures replicated from precultures having
reached later stages of growth expanded of several folds their fraction of CAP+ phe-
notype in just a few bacterial generations. Such fast augmentation then ended almost
as abruptly as it originated, and at the onset of stationary phase the three cultures
behaved alike, with the di�erence that cultures initiated from an “older” preculture
still conserved their higher percentage at the end of the experiment.
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To conclude, these results proved that a genotype does not univoquely determine
the phenotypic composition of a population, but the whole phenotypes’ frequency
and population size dynamics are necessary to fully characterize a switching Pseu-
domonas �uorescens genotype. In Chapter 3, I will present a mathematical model that,
integrating the information on the metabolic nature of the switch, can quantitatively
describe the observed time- and history-dependence of the CAP+ frequency, and pro-
poses a possible link between population growth and phenotypic composition.
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1.4 �esis outline
Materials and Methods (Chapter 2) In the next Chapter, I present a compendium

of thematerials andmethods employed to investigate phenotypic heterogeneity
in Pseudomonas �uorescens switching strains. �e lists of the bacterial strains,
plasmids, antibiotics, culture media and microscopy material used all along the
experimental part of my work (Section 2.1) are followed by a review of the
experimental techniques and protocols, with a particular focus on the genetic
manipulations performed on the strains to mark the CAP+ phenotype with the
green �uorescent protein (Section 2.2). Finally, I review the numerical methods
used to simulate the mathematical model and analyze the results of the experi-
mental assays (Section 2.3).

�eoretical Results (Chapter 3) In Chapter 3, I present and discuss the main the-
oretical results of my work. A�er the presentation of the general formalism
used (Section 3.1), I prove that the coupling between population growth and
phenotypic expression observed in the experiment of Section 1.3.4 cannot stem
from a purely stochastic switch, even in the presence of a constant growth
rate di�erence between the two alternative states (Section 3.2). I therefore pro-
pose a deterministic mathematical model suggesting one simple way to imple-
ment context-dependence in the switch that can reproduce the observed non-
monotonous dynamics of the phenotypic composition of the population (Sec-
tion 3.3). �e results of the “overshoot” experiment are extensively discussed
(Section 3.4) and quantitatively ��ed by the mathematical model (Section 3.5).
Finally, I present the predictions of the model on phenotypic variability across
populations characterized by di�erent average growth rates (Section 3.6) and
discuss the main implication of the results (Section 3.7).

Experimental Results (Chapter 4) Chapter 4 deals with the experimental obser-
vations that provided the premises of my theoretical work, and with the re-
sults of the experimental assays aimed at testing its validity. First, I present the
evidences I collected about the existence of a signi�cant negative correlation
between the average growth rate and the levels of expression of the CAP+ phe-
notype in exponential regime of growth (Section 4.1). Although the model of
Chapter 3 predicts the negative sign of such correlation, I show that it cannot
account for the most part of the observed variability in the CAP+ frequency,
unless the ratio between the maximum switching rates depends on the growth
rate in a nonlinear fashion (Section 4.2). Finally, I discuss a physiological in-
terpretation of the mathematical model that might justify why such nonlinear
scaling yields to an improved prediction of the degree of the variability in the
expression of the CAP+ phenotype in exponentially growing populations of
switchers (Section 4.3).

Discussion (Chapter 5) In the last Chapter I review the main results of this �e-
sis and discuss their implication on phenotypic heterogeneity in Pseudomonas
�uorescens. In particular, I explore the combined role of genetic, environmental
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and stochastic factors in the expression of the CAP+ phenotype and its variabil-
ity. I end this work by pu�ing into a general context the choice of modelling
context-dependence through intracellular concentrations of proteins, as popu-
lation growth alone can provide the su�cient information on the environment
to yield transient variations in the phenotypic composition of the population.



CHAPTER 2
MATERIALS AND METHODS

A
���� ������ contextualized the problem of phenotypic heterogeneity in
microbial isogenic populations, the variety of mechanisms and that of
the evolutionary consequences, in this Chapter I present the biological
material used to perform the experimental part of mywork, together with

the genetic, microbiology and computational techniques acquired and employed to
advance the project.

In Section 2.1 I inventory all the bacterial strains, plasmids, antibiotics, culture
media and microscopy material I needed for the experimental side of this work. Sec-
tion 2.2 is devoted to a review of the experimental techniques used and protocols fol-
lowed, with a particular focus on the genetic manipulations performed on the switch-
ing strains to have the CAP+ phenotype marked with the green �uorescent protein.
Finally, in Section 2.3 I present the basic ideas behind the development of the numer-
ical methods needed to simulate the mathematical model and analyse the results of
the experimental assays.

2.1 Materials

2.1.1 Bacterial strains
�e study of microbial phenotypic heterogeneity was experimentally addressed by
means of a series of experiments on Pseudomonas �uorescens strains characterized by a
phenotypic switch related to the production of a capsule around the cellular wall [11].
Starting from the wild type SBW25, Rainey and collaborators evolved strains switch-
ing at high frequency via an experimental evolution protocol (“re-evolved switchers”
see Chapter 1, Section 1.3.2 for details). Following the approach set by Jenna Gal-
lie [41], I contributed to transform seven of the re-evolved switchers by marking the
capsulated phenotype with the insertion of gfp. A couple of speci�c Escherichia coli
strains (donor and helper) were needed to accomplish this task. All bacterial strains
used are listed in Table 2.1 and were stored at -80° C in 45% glycerol saline solution.
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Strain Genotype and characteristics Reference

Pseudomonas �uorescens

SBW25 Wild type, isolated from beet leaves (Oxfordshire, 1989) [78]
SBW25xGFP Wild type constitutively expressing GFP [41]
SBW25 1w4 9th strain of the REE, line 1 switcher [11]
SBW25 6w4 9th strain of the REE, line 6 switcher [11]
SBW25 Re1.2 Switcher re-evolved from 1s4, P144L mutation on carB [11], [41]
SBW25 Re1.4 Switcher re-evolved from 1s4, R123C mutation on pyrH [11], [41]
SBW25 Re1.5 Switcher re-evolved from 1s4, T279I mutation on carB [11], [41]
SBW25 Re1.8 Switcher re-evolved from 1s4, R674C mutation on carB [11], [41]
SBW25 Re2 Switcher re-evolved from 1s4, N826S mutation on carB [11], [41]
SBW25 Re12 Switcher re-evolved from 1s4, C232Y mutation on carB [11], [41]

SBW25 1w4xGFP CAP-GFP expression SBW25 1w4 strain [42]
SBW25 6w4xGFP CAP-GFP expression SBW25 6w4 strain �is study
SBW25 Re1.2xGFP CAP-GFP expression SBW25 Re1.2 strain �is study
SBW25 Re1.4xGFP CAP-GFP expression SBW25 Re1.4 strain �is study
SBW25 Re1.5xGFP CAP-GFP expression SBW25 Re1.5 strain �is study
SBW25 Re1.8xGFP CAP-GFP expression SBW25 Re1.8 strain �is study
SBW25 Re2xGFP CAP-GFP expression SBW25 Re2 strain �is study
SBW25 Re12xGFP CAP-GFP expression SBW25 Re12 strain �is study

Escherichia coli

DH5↵� �pir Donor strain carrying pUIC3 plasmid with mutated DNA [41]
DH5↵ (pRK2013) Helper strain carrying pRK2013 plasmid (tra+, Km�) [41]

Table 2.1: Designations and characteristics of bacterial strains used.

2.1.2 Plasmids and transposons
Two plasmids were needed to realize the aforementioned insertion of gfp into the
genome of the re-evolved Pseudomonas �uorescens switching strains, called pRK2013
and pUX-BF13. �e former is needed as a mobilization helper, so that the la�er, the
one inserting the gfp sequence thanks to the Tn7 transposon, could deliver the insert
in the chromosome. �e plasmids and the transposons used in this study are listed in
Table 2.2.

Name Characteristics Reference

Plasmids

pRK2013 KmR, IncP4, tra, mob; mobilization helper for tri-parental mating [35]
pUX-BF13 Mini-Tn7 delivery plasmid, providing the Tn7 transposase proteins [9]

Transposons

Tn7 High-frequency bacterial transposon [22]

Table 2.2: Designations and characteristics of plasmids and transposons used.
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2.1.3 Antibiotics
�ree antibiotics were needed in di�erent phases of the project. Tetracycline and
Nitrofurantoin were used a�er the tri-parental mating process to select for the trans-
formed bacteria (see later, Section 2.2.1). On the other hand, Gentamycin was added to
all Pseudomonas �uorescens switchers cultures to prevent the invasion of cells having
lost the gfp insert. �e antibiotics used in this study are listed in Table 2.3.

Antibiotic Purpose Conditions of use

Tetracycline (Tc) selection of gfp-transformed cells 10 �g ml�1 �nal (in 1:1 ethanol:water)
Nitrofurantoin (NF) E. coli growth inhibition 100 �g ml�1 �nal (dissolved in DMSO)
Gentamicin (Gm) counterselection of gfp casse�e loss 10 �g ml�1 �nal (liquid culture media)

Table 2.3: Designations and characteristics of antibiotics used.

2.1.4 Media and culture conditions
�ree main types of media were used in the series of experiments performed for this
work (Tab. 2.4). Lysogeny broth (LB) was needed to grow Escherichia coli populations
during the conjugation process, while King’s Broth (KB) and King’s Broth Switcher
(KBS) were the preferred culture media to grow Pseudomonas �uorescens. �e la�er, in
particular, was found to sign�cantly enhance the capacity of Pseudomonas �uorescens
switchers to express the CAP+ phenotype because of a di�erent uracil content (see
Chapter 4 for further details and measurements).

Medium Chemical composition (g/L) Reference

Lysogeny Broth (LB) 10 NaCl, 10 tryptone, 5 yeast extract [13]
King’s Broth (KB) 10 glycerol, 20 Prot. Peptone No.3, 1.5 K2PO4, 1.5 MgSO4 [52]

King’s B Switcher (KBS) 10 glycerol, 20 Prot. Tryptone, 1.5 K2PO4, 1.5 MgSO4 [42]

Table 2.4: Designations and composition of culture media used.

Pseudomonas �uorescens cultures were grown with shaking at 120 rpm at 28° C
unless expressly mentioned. �e culture microcosms consisted either of 250 ml glass
microcosms containing 50 ml of culture medium or 50 ml Falcon plastic tubes con-
taining 10 ml of culture medium. Overnight cultures were grown for 16 hours unless
speci�ed.

2.1.5 Microscopy materials
Cell-level microscopy was performed using a Zeiss Axio Observer inverted micro-
scope. Samples were prepared on standard microscopy slides and mounted onto the
high precision 130x100 Scanning Stage, surrounded by a heated chamber warmed at
28° C and at controlled air humidity. All images were collected through the Zeiss
60x oil immersion objective with 1.6x Optovar magni�cation changer and the De�-
nite Focus.2 system for maintenance of focus over time. GFP proteins present in the
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samples were excited with the 495 nm line from a 230 W X-cite 120LED lamp and
collected with a dichroic mirror (Chroma #49002) and a 525/50 nm emission �lter.
Images were acquired with a Hamamatsu ORCA-Flash4.0 LT Digital CMOS camera.
�e xyz position of the stage, the objective, the choice of the excitation light channel
(phase contrast or GFP), the exposition time, and the camera were all controlled with
Micro-Manager Open Source Microscopy so�ware.

2.2 Experimental methods

2.2.1 Bacterial conjugations
Bacterial conjugation is a mechanism of arti�cially induced horizonthal gene transfer
(inter-strain exchange of genetic material) by direct cell-to-cell contact or via pili.
Individual cells of the so-called recipient strain receive mobilizable genetic material
from the cells of the donor strain. Under certain circumstances, the presence of a third
strain (helper) is needed to facilitate the process by providing a conjugative plasmid
coding for the genes required for conjugation and DNA transfer (triparental mating).

In this work, triparental mating was used to transform Pseudomonas �uorescens
re-evolved switchers (Re1.2, Re1.4, Re1.5, Re1.8, Re2, Re12) with the insertion of a
promoter-gfp-vector to mark capsule expression with GFP, as already accomplished
on 1w4 by Prof. Rainey and Dr. Gallie [42].

Triparental mating

Pseudomonas�uorescens of various genotypes are crossedwith a 1:1mixture of DH5↵�
�pir carrying pUIC3 containing mutated DNA and an Escherichia coli helper strain
DH5↵ (pRK2013) (tra+, Km�). 500 �l of Pseudomonas �uorescens cells in an Eppendorf
tube are heat-shocked at 45° C for 20 minutes. 500 �l of Escherichia coli donor in LB
and 500 �l of Escherichia coli helper in LB are mixed 1:1 and pelleted. Cells are washed
once in 1ml of LB broth and then resuspended in 1ml LB broth. Following heat-shock,
Pseudomonas �uorescens cells are pelleted and resuspended in the Escherichia colimix.
Cells are again pelleted, resuspended in 30 �l of LB broth, and the 30 �l droplet trans-
fered to the surface of an LBA plate, pre-heated to 28° C.�e spot was allowed to dry
before being transferred to the 28° C growth room to incubate overnight. �e next
day, spots are harvested by scraping up cells with the edge of a sterile tip and resus-
pending in 1 ml LB in an Eppendorf tube. Bacterial suspensions were diluted to 10�1

in 1 ml LB, and 25, 50, and 100 �l aliquots (respectively) of each dilution (100 and
10�1) are spread onto LBA plates containing 10 �g/ml tetracycline, and 0.1 mg/ml ni-
trofurantoin (NF). NF is prepared fresh when the plates are poured by dissolving 0.08
g of NF in 2 ml of DMSO and adding this to 800 ml of LB agar. Tetracycline selects for
the pUIC3 vector in Pseudomonas �uorescens, while nitrofurantoin selects against Es-
cherichia coli. pUIC3 cannot replicate in Pseudomonas �uorescens so all recombinants
should have plasmid insertions in the cloned region of interest carried on pUIC3 (Fig.
2.1).
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Figure 2.1: Scheme of the procedure followed to insert the gfp gene in the Pseudomonas �uo-
rescens switching strains. �e previously ampli�ed promoter of CAP biosynthetic locus gene
p�u3655 and the gfp-expressing gfpmut3 gene were ligated, and the vector+insert introduced
into the re-evolved switchers by conjugation (with helper plasmids pRK2013), downstream of
the glmS stop codon. Two Escherichia coli strains were used as donor (D) and helper (H): the
donor strain provided the gfp insert (integrated on a plasmid along with the Tetracycline re-
sistance casse�e), while the helper was needed to pass the pRK2013 plasmid to the donor, to
let it produce pili. A�er having been mixed together in LB broth (le� panel), the cells were
exposed to selective medium (LB agar + Tetracycline + Nitrofurantoin): Tetracycline selected
for bacteria with the Tc� (Tetracycline resistance) casse�e, and Nitrofurantoin selected against
Escherichia coli (right panel).

2.2.2 Biological assays
Optical density curves in bulk through spectrometry

�ree statistical replicates from each of the three biological replicates per strain per
time point are prepared by extracting an aliquot of ⇠ 1 �l of the the correspondent
culture and diluted in fresh KB or KBS medium depending on the experiment. Optical
density of each of the statistical replicates was thenmeasured through a portableWPA
Biowave spectrometer. �e exact quantities of cellular culture and fresh mediumwere
chosen as to obtain a dilution allowing to measure OD in the optimal range for the
instrument (OD < 1).

Optical density curves in TiCan 96-wells plates

�ree statistical replicates for each of the three biological replicates of the eight strains
were inoculated into 81 of the 96 wells of the plates at our disposal. �e TiCan reader
ran over 42 hours, ge�ing optical density data every 10 minutes. Resulting growth
pro�les were analyzed with simple routines wri�en in the R programming language
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and devoted to perform linear �t of the logarithm of the measured OD in a chosen
time window (to select time points corresponding to exponential phase).

Flow cytometry

Flow cytometry allows a higher throughput in counting assays with the possibility,
among the many options, to distinguish between cells expressing or not a �uorescent
protein. Here I present the protocol designed by Dr. Philippe Remigi to assess the
frequency of CAP+ cells in any sample of a growing population of Pseudomonas �uo-
rescens. For each of the eight analysed strains, three independent overnight cultures
were prepared by inoculating KBSmicrocosms directly with glycerol stock, except for
the only replica for the control strain 1w4 (without the GFP marker). A�er 24 hours
one tube per strain was prepared: between 5 and 10 �L of the night culture, previously
washed and diluted in PBS, was vortexed and then added to 1 mL of PBS, adjusting
the quantity according to the �ow rate the �uocytometer revealed during each pre-
measurement (which had to be around 1000 and 4000 particles per second). A blank
sample (2 mL of PBS) was analyzed to get information about the intrinsic noise of
the measurements. �e machine was calibrated with the use of 350 �L of CST, that
is a solution of �uorescent beads, whose intensity spectrum is well-known, in PBS.
Each tube was then passed to the �ow cytometer until 50000 events (particles) had
been revealed and measured, where cells were counted and sorted for the characteris-
tics of their �uorescent spectrum. �e auto-�uorescence of CAP- individuals and the
GFP signal coming from CAP+ cells appeared on the screen as partially superposing
gaussian pro�les.

Counting assays

�e counting technique developed by Dr. Jenna Gallie in her Ph.D. thesis to assess the
frequency of capsulated cells in the population revealed to be extremely useful for the
scope of this work, too. At the time point during exponential phase at which the mea-
surement of the frequency of the CAP+ phenotype in the population is performed,⇠ 2
�l of the bacterial culture are put onto a microscope slide and covered with a plastic
coverslip a�er one minute (to let the sample dry a li�le and force cells to adhere to
the microscope slide). �e so-prepared sample is brought under the Zeiss microscope,
where phase contrast and GFP pictures were taken under the 60x objective endowed
with a 1.6x Optovar magni�cation changer. Around 20-30 photos were collected for
each biological replicate, for each genotype or temperature, so to reach a minimum
statistics of bacteria per replicate (then estimated in around 500-1000 cells). �e total
number of cells, along with that of CAP+/GFP+ cells, was then established by auto-
matic procedures through embedded ImageJ routines (segmentation and counting).

Time-lapse microscopy

�rough time-lapse microscopy it is possible to track the growth of a microcolony of
bacterial cells growing on agar pads and the phenotype expressed by the individual
cells, over a long time span and in an automatic fashion. In this work, technical issues
prevented me from e�ciently using time-lapse movies to assess the expression of the
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alternative phenotype. Nevertheless, time-lapse microscopy allowed me to test some
hypotheses of the mathematical model about the role of the phenotype in the deter-
mination of the cellular division rate. Overnight cultures of the strains were started
from -80° C, around 18 hours before the start of the acquisition of the �rst images.
�e microscope slide had been carefully cleaned and then prepared by the application
of an adhesive strip onto it, resulting in a well. �en, ⇠ 350 �L of 1.5% agarose KBS
gel was poured into the well and immediately leveled by the superposition of another
microscopy slide. Once the gel had cooled down and solidi�ed, the upper slide was
removed and the blue adhesive strip opened and cut to form a channel through which
air could �ow to let obligate aerobic P. �uorescens bacteria live. Finally, ⇠ 1.5 �L of a
10�3 dilution in KBS of the original night culture is added to both sides of the chan-
nel and, once dried out, covered with a thin microscopy slide which had to �rmly
adhere to the adhesive strip. �e system is then ready to be observed at the Olym-
pus microscope, where around 10 bacterial microcolonies (founded by a single cell)
were photographed every 20 minutes for a total time of more than 6 hours. Growth of
the microcolonies were assessed via the segmentation of the successive pictures with
the ImageJ so�ware. �e areas of the microcolonies, much simpler than the tracking
of several divisions, was measured for every time point. As for the ImageJ algorithm,
here are the steps followed to segment the �les sorted out by the microscope so�ware:

• split gfp and phase contrast channels (an example of phase contrast image is
presented in Fig. 2.2, top-le� panel);

• Image! Adjust ! Brightness/contrast;

• save images as 8bit;

• Process ! Substract background (30 pixel radius): images must be very clean,
requiring to perform a series of this step when necessary;

• Image! Adjust ! Brightness/contrast (Fig. 2.2, top-right panel);

• Image!Adjust!�reshold: adjust the threshold to try to get as much surface
as possible (keeping white background and black colonies, Fig. 2.2, bo�om-le�
panel);

• Process! Binary! Fill gaps (Fig. 2.2, bo�om-right panel);

• Analyze! Measure particules (size: 0.01�1).
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Figure 2.2: Image analysis of time-lapse pictures with ImageJ in four phases. �e contrast of
the original picture (top le�) is enhanced with the speci�c built-in command (top right). �en,
an appropriate threshold allows to individuate the area of the two microcolonies (bo�om le�).
Finally, the gaps of the so-created binary mask are �lled in via another built-in function (bo�om
right). �e last image is then ready to be analyzed through the “Measure particles” command.

2.3 Numerical methods

2.3.1 Simulation of the dynamical system
�e dynamical systems de�ned by the mathematical models of Chapter 3, developed
to describe the transient phenotypic dynamics were simulated via ad hoc Python rou-
tines wri�en by the Author. �e �rst part of such routines consisted of the declaration
and the initialization of the main parameters and variables de�ning the model. Modu-
lar de�nitions of the functions followed (e.g. se�ing the functional form of the switch-
ing rates). Code modularity allowed to make the routines easily adaptable to di�erent
variations of the model. �e system of ordinary di�erential equations was integrated
with the odeint routine present in the ScyPy Python scienti�c package. �e plot of
any output of the Python routines were produced through speci�c Python modules
embedded in the main code. All Python routines were run through the Enthought
Canopy 1.4.1 (Academic License version) graphical user interface.

2.3.2 Fit of the overshoot experiment
To evaluate the goodness of the mathematical models elaborated to describe and in-
terpret the results of the overshoot experiment, I wrote speci�c Python routines com-
paring the experimental data with the theoretical predictions. A�er selecting those
regions of the parameter space considered of particular interest given the biological
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assumptions of the models, an alternating direct search followed: successive combi-
nations of the free parameters were simulated and the output (the temporal dynamics
of the three variables (N, f, c)) evaluated in terms of the deviation from the measure-
ments of the dynamics of the population size N and of the CAP+ frequency f . �e
combination of the parameters that best ��ed the experimental data was found by
extracting, from the log �le collecting the results, the one scoring the minimum �2,
through simple AWK scripts.

2.3.3 Analysis of the results of the biological assays
�e whole statistical analysis of the data obtained from the biological assays and ex-
perimental tests of themodel was performed through R routineswri�en by theAuthor
and run through the Enthought Canopy 1.4.1 (Academic License version) graphical
user interface. �e operated statistics mainly consisted in bivariate analysis (linear or
exponential �t, linear correlation analysis). All graphs of experimental data and tests
were produced with R unless speci�ed.
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CHAPTER 3
MODELLING NONLINEAR GROWTH-AND-SWITCH
DYNAMICS

O
����� �� ���� C������ is the study of Pseudomonas �uorescens “switch-
ers” (Chapter 1, Section 1.3) as a particular instance of context-dependent
phenotypic switch. A�er having introduced the Pseudomonas �uorescens
“switchers” evolved by experimental evolution [11] as a convenient bio-

logical model system for the study of phenotypic heterogeneity (Chapter 1), I present
here a general modelling framework to tackle the problem of how phenotypic hetero-
geneity varies in time in a growing population of switching units. Once introduced the
general problematic and the mathematical tools, I carry out the comparison between
the two classes of models discussed in Chapter 1, Section 1.2 in terms of their predic-
tive power of the phenomenology presented in Section 1.3.4, that is between mathe-
matical models of context-independent and context-dependent phenotypic switch.

�e questions addressed in this Chapter are the following:

• Given the experimental observations on the temporal variation of phenotypic
composition of growing populations of switchers, can their phenotypic hetero-
geneity be interpreted in terms of a context-independent stochastic switch?

• If not, which are the essential features that simple models of context-dependent
phenotypic switching need in order to reproduce the experimental observa-
tions, in terms of the dynamics of the phenotypic composition of the popula-
tion?

• What would a context-dependent switch mediated by internal concentrations
imply on the variation of phenotypic expression across di�erent genotypes
characterized by di�erent growth rates?

A�er having presented the general formalism in Section 3.1, in Section 3.2 I math-
ematically prove that the observed coupling between population growth and pheno-
typic expression cannot be the result of a pure stochastic switch, even in the presence



44 Modelling nonlinear growth-and-switch dynamics

of a constant growth rate di�erence between the two alternative states. In Section
3.3 I propose a deterministic mathematical model corresponding to one simple way
to implement context-dependence in such systems. By linking the phenotypic dy-
namics with demography through internal concentrations of proteins, the observed
non-monotonous dynamics of the frequency of the two alternative phenotypes can be
reproduced. �e results of the “overshoot” experiment, whose salient features were
reviewed in Chapter 1, Section 1.3.4, are extensively discussed in Section 3.4, and the
mathematical model’s quantitative �t of such results are the subject of Section 3.5. Fi-
nally, in Section 3.6 I discuss the prediction, provided by the model, of the existence of
a negative correlation between the growth rate and the expression level of the CAP+
phenotype in exponential phase, which will be experimentally tested in Chapter 4.

3.1 Representations and formalism
In this Section, I discuss which of the measurable quantities (observables) of the bi-
ological system are needed in a model describing a growing population of switching
units (Section 3.1.1), introduce a general notation allowing a straightforward compar-
ison between the classes of mathematical models discussed in the following (Section
3.1.2), and �nally recall the experimental terminology that is used in this Chapter
(Section 3.1.3).

3.1.1 From observables to variables and parameters
�e �rst phase in the elaboration of any mathematical model describing a natural
phenomenon is the assessment of which measurable characteristics of the system, or
observables, to take into account and how to partition those between variables (usu-
ally those assuming di�erent numerical values during the observations) and param-
eters (intrinsic constants or accurately controllable properties of the system whose
variation can qualitatively change the behaviour of the system).

In a study on phenotypic heterogeneity in growing populations of switching units,
the observables related to the demographic state of the population (e.g. population
size, the population growth rate) can be distinguished from those characterizing the
phenotypic state of the population (e.g. the frequency of one phenotype, the time scale
associated to the switch).

3.1.2 General modelling framework
In this work the analytical methods chosen for a quantitative description of growing
populations of switching units belong to dynamical systems theory. In particular I
make use of ordinary di�erential equations, the most natural choice when dealing
with the variation of continuous quantities in time.

Although at a �rst thought the most straightforward way to model demography
and the phenotypic state of the population is to track the time variation in the number
of cells expressing the alternative states, in this work I make use of the alternative,
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equivalent description where the state of the system is wri�en in terms of the total
number of cells and of the frequencies of the alternative phenotypes.

�e passage between the two formalisms can be easily demonstrated. Let N+

and N� be the total number of CAP+ and CAP- cells, respectively, R+(t) and R�(t)
the time-dependent maximal growth rates associated with the two phenotypes, and
S+(t) and S�(t) the (in general time-dependent) switching terms. �e dynamics of
the system in terms of numbers of CAP+ and CAP- is given by:

Ṅ+ = D(N+ +N�) [R+(t)N+ + S+(t)N� � S�(t)N+] (3.1)
Ṅ� = D(N+ +N�) [R�(t)N� � S+(t)N� + S�(t)N+] (3.2)

where the change in the number of CAP+ (CAP-) cells is either due to growth or
to a change in phenotype of CAP- (CAP+) cells. A density-dependent factor, called
D(N) 2 [0, 1], is assumed to be equal in both growth and switching terms and thus
factored out. �is corresponds to the assumption that switching can only occur as
long as cells can divide, and slows down as stationary phase is approached, as one
would expect for any metabolically related cell process.

By rewriting the system in terms of the total number of cells N = N+ +N� and
of the fraction of CAP+ cells f = N+

N , the dynamical system de�ned by Eqs. 3.1 and
3.2 gives:

Ṅ = Ṅ+ + Ṅ� (3.3)

ḟ =
Ṅ+N �N+Ṅ

N2
(3.4)

which yields

Ṅ = [R�(t) + (R+(t)�R�(t)) f ]D(N)N (3.5)

ḟ = D(N) [(R+(t)�R�(t)) f(1� f) + S+(t)(1� f)� S�(t)f ] (3.6)

or, by de�ning the di�erence in growth rate �R(t) = R+(t)�R�(t),

Ṅ = [R�(t) +�R(t)f ]D(N)N (3.7)

ḟ = D(N) [�R(t)f(1� f) + S+(t)(1� f)� S�(t)f ] . (3.8)

�e total number of cells N thus follows a density-dependent growth of speed
R�(t)D(N)N , corrected by a time-dependent term if the two phenotypes have di�er-
ent growth rates. �e frequency of the CAP+ phenotype changes due to both popula-
tion growth and phenotypic switch. However, when the two phenotypes are identical
with respect to growth, this dependence reduces to a density-dependent modulation
of the switching rates.

3.1.3 Experiment-related terms
�e terminology related to the experimental evidences presented in Chapter 1, Sec-
tion 1.3.4 is here recalled, given its relevance in the construction of the mathematical
models.
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Figure 3.1: Overshoot and under-
shoot in the phenotypic dynamics.
Non-monotonic variations of the fre-
quencies of the alternative pheno-
types can be observed in populations
of Pseudomonas �uorescens “switch-
ers”. In this work, the term “over-
shoot” designates the transitory val-
ues assumed by one frequency ex-
ceeding its �nal value. A�er the over-
shoot, the transitory values of the fre-
quency below its �nal value are indi-
cated with the term “undershoot”.

�e “overshoot” experiment consisted of two successive rounds of growth, called
0 and 1. Round 0 corresponded to a preculture stage, during which identical pop-
ulations of switchers were grown until they reached di�erent population densities.
Bo�lenecking these populations and diluting them to the same population density
provided di�erent inocula for the subsequent measurement stage (round 1). Measures
of cell density (through optical density) and of population composition (through �u-
ocytometry) started a�er these inocula were resuspended into fresh medium.

�ree di�erent treatments were realized, that di�ered only in the time of sampling
in round 0, therefore in the age of the culture and its optical density. �e names
“low”, “mid” and “high” will in the following designate experiments started on round
1 with inocula from early, mid, and late exponential phase of growth in round 0. Set
aside this di�erence in the history of the culture, all treatments undergo the same
protocol. Culture in round 1 are started by dilution to the same initial cell density,
which is su�ciently low for populations to recover exponential growth for several
hours, before entering the stationary phase about 10 hours a�er dilution. �e mean
population growth rate in exponential phase is indicated by ⇢. During the �rst hours
of exponential growth, an overshoot in the fraction of CAP+ cells was observed for the
“mid” and “high” treatments. �is term indicates a transient non-monotonic increase
in the frequency, as illustrated in Fig. 3.1. When, a�er the overshoot, the frequency
of capsulated cells (CAP+) decreases below the level that it would assume at the end
of the experiment, the term undershoot is used.

In the following Section, I will assess to which extent such experimental observa-
tions can be explained by simple models of stochastic switching, where the temporal
variation of the switching rate is limited to a density-dependence common to the two
phenotypes.
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3.2 Models for context-independent switching
In this Section, three mathematical models of pure stochastic switching are presented
(Fig. 3.2) and shown to fail to describe the basic features of the experiment. Indica-
tions about the missing characteristics needed to model the phenotypic dynamics of
a growing populations of switchers will be drawn.

Figure 3.2: Scheme of three instances of simple mathematical models of context-indepedent
switch. From le� to right: “di�erential growth”, “pure switch”, and amixedmodel with constant
switching rates and a di�erence in growth rate between CAP+ and CAP-.

3.2.1 Growth rate di�erence, no switch (“di�erential growth”)
Looking for the most parsimonious set of hypotheses to explain the experimental ob-
servations presented in Chapter 1, Section 1.3.4, the simplest option consists in con-
sidering �xed growth rate di�erences between phenotypes, and that – in the short-
term at least – there is no switch in the cellular phenotype (Fig. 3.3). �e rapid initial
increase in CAP+ cells may thus result from a combination of a higher initial propor-
tion of capsulated cells in the “mid” and “high” treatments, and a faster growth of the
CAP+ phenotype. �e frequency dynamics of capsulated cells would be driven in this
case by the di�erential demography of the two subpopulations.

If switching between phenotypic states is not allowed (S+(N, f) = S�(N, f) =
0), then the equations ruling the dynamical system become:

Ṅ+ = R+(t)D(N+ +N�)N+ (3.9)
Ṅ� = R�(t)D(N+ +N�)N�. (3.10)

In terms of the total number of cells and of the fraction of CAP+ cells, I obtain:

Ṅ = [R�(t) +�R(t)f ]D(N)N (3.11)

ḟ = D(N)�R(t)f(1� f). (3.12)

�e expression for the temporal variation of the frequency of the CAP+ pheno-
type (Eq. 3.12) is slaved to demography through the density-dependence termD(N),
which is always positive. Such factor acts as a time scale modulation of the dynamics
of frequencies, but it neither changes its equilibria, nor alters the sign of the variation
of f , as it would be necessary to have an overshoot.
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Figure 3.3: First null model: in the “di�eren-
tial growth” model no switch between the two
states is allowed and the subpopulations ex-
pressing the alternative phenotypes di�er only
in terms of the growth rate. Both mathematical
and biological considerations exclude that this
model could account for the observed pheno-
typic dynamics.

�e qualitative dynamics of the system is thus determined by the dependence of
the frequency variation on the frequency itself. As no 1-D dynamical system can dis-
play a dynamics like the one experimentally observed, the equilibria being always at-
tained monotonously, this model cannot explain the overshoot/undershoot dynamics.
I can nevertheless discuss which stead-state is predicted by this model, and establish
if such a model could be appropriate for describing the �rst couple of hours of the
experiment, when the population grows exponentially and the fraction of capsulated
cells dramatically explodes.

Phenotypic equilibria in exponential phase

In early exponential phase, when D(N) ' 1, Eqs. 3.12 and 3.11 become:

Ṅ = [R�(t) +�R(t)f ]N (3.13)

ḟ = �R(t)f(1� f). (3.14)

In early exponential phase the growth rates of the CAP+ and CAP- phenotypes are
constant and equal to their maximum values r+ and r�, respectively. By le�ing ⇢ be
the average growth rate ⇢ = r+f + r�(1 � f) and dr the (constant) di�erence in
growth rate between CAP+ and CAP- dr = r+ � r�, it follows:

Ṅ = ⇢N (3.15)

ḟ = drf(1� f). (3.16)

�e exponential phase phenotypic equilibria (se�ing ḟ = 0 in Eq. 3.16) correspond to
the�xation of either phenotype: f⇤ = 0 or f⇤ = 1. �ese phenotypic equilibria do not
depend on the absolute growth rates, but only on their di�erence: the fastest-growing
phenotype gets �xed in the population, again in contradiction with the experimental
�ndings.
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�antitative comparison with observations

�ough failing to describe the whole temporal course of the experiment, one could
still think that growth rates di�erences are still the factormost likely to account for the
observed initial increase of CAP+ frequency f . For this reason, I made a quantitative
comparison with the initial data of the overshoot experiment to estimate what should
be the growth rate di�erence dr compatible with the increase in frequency between
the initial value and the �rst measure.

By solving Eq. 3.16, one obtains:

f(t1) = fR0e
(r+�⇢)t1 , (3.17)

where ⇢ corresponds to the average growth rate ⇢ = r+fR0 + r�(1 � fR0), r+ to
that of CAP+ cells, t1 the �rst time point of round 1 and fR0 and f(t1) the frequency
of CAP+ measured at resuspension and at t1, respectively. Solving for r+ yields:

r+ = ⇢+
ln(f(t1)/fR0

t1
(3.18)

and conversely for CAP- cells (whose frequency is given by 1� f(t)):

r� = ⇢+
ln((1� f(t1))/(1� fR0))

t1
. (3.19)

�e results of this analysis, obtained by informing Eqs. 3.18 and 3.19 with the
measured values ⇢, fR0, f(t1), are summarized in Table 3.1: in the “mid” and “high”
treatments the CAP+ cells should divide around 4 and 7 times faster than the CAP-,
respectively.

Preculture fR0 f(t1) r+(h�1) r�(h�1)

low 0.025 0.026 0.472 0.449
mid 0.068 0.288 1.275 0.296
high 0.124 0.454 1.192 0.180

Table 3.1: Growth rates of CAP+ and CAP- cells estimated from the data under the hypothe-
sis that their growth rates are constant and their average growth rate does not change at the
beginning of round 1.

Although not impossible, this scenario is highly unlikely, since it would lead to a
very marked di�erence in the growth curves between treatments, whose e�ects are
not evident in the growth curve (see Section 3.4 for the experimental growth curves
and Section 3.3.4 for a more detailed analysis). Furthermore, such a hypothetical high
di�erence in growth rate between the two phenotypes was never observed during
microscopic observations realized over a big spectrum of experimental conditions.
Finally, one would expect that the growth rate di�erence between phenotypes should
be treatment-invariant.
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Figure 3.4: Second null model: the basic way
to interpret a biological system expressing two
phenotypes and able to switch back and forth
is a Markov chain. �is is a stochastic system
where the individuals can switch between the
two states at any time with a non-zero (con-
stant) probability, regardless of the previous
states assumed (no memory). A constant term
R, the same for both phenotypes, guarantees
population growth without a�ecting the phe-
notypic composition.

3.2.2 Constant switching rates, same growth rate (“pure switch”)
In the absence of growth rate di�erences, the frequencies of the alternative pheno-
types in the population may change if cells are allowed to change their phenotypic
state via a switching mechanism. A classic way of representing a phenotypic switch
consists then in assigning �xed transition probabilities between the phenotypic states
[54].

Transition probabilities per unit of time (from now on, “switching rates”) are in
this case held constant, and independent of the time elapsed from the previous transi-
tion, the time of last cellular division or of the previous states’ time series. �e switch
can therefore be modelled as a Markov process [44], de�ned by the switching rates
to the CAP+ and the CAP- states (called ↵+ and ↵�, respectively). �e growth rates
of the CAP+ and of the CAP- subpopulations are moreover assumed to be equal and
constant (Fig. 3.4).

Hence, se�ingR+(t) = R�(t) = R(t) (or, equivalently�R(t) = 0) and S�(t) =
↵� andS+(t) = ↵+, Eqs. 3.1 and 3.2 for the numbers of CAP+ and CAP- cells become,

Ṅ+ = D(N+ +N�) [R(t)N+ + ↵+N� � ↵�N+] (3.20)
Ṅ� = D(N+ +N�) [R(t)N� � ↵+N� + ↵�N+] . (3.21)

In terms of the total population size N = N+ + N� and of the frequency of CAP+
cells f = N+/N , this dynamical system can be wri�en as:

Ṅ = R(t)D(N)N (3.22)

ḟ = D(N) [↵+(1� f)� ↵�f ] . (3.23)

�e dynamics of the phenotypic composition of the population described by Equa-
tion 3.23 is again essentially determined by a 1-D system. Indeed, the positive factor
D(N) sets the time scale at which the equilibria are a�ained, and cannot cause a
change in the sign of the frequency variation. As already discussed for the case of the
“di�erential growth” model, no such �rst-order dynamical system can display any
non-monotonic dynamics in the frequency of either phenotype.
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Phenotypic equilibria in exponential phase

In exponential phase, when the average growth rate assumes its maximum value ⇢

and D(N) ' 1, Eqs. 3.22 and 3.23 become:

Ṅ = ⇢N (3.24)

ḟ = ↵+(1� f)� ↵�f. (3.25)

From Eq. 3.25 the exponential phase equilibria for the fraction of CAP+ cells can be
easily obtained by se�ing ḟ = 0:

f⇤ =
↵+

↵+ + ↵�
, (3.26)

meaning that the equilibrium frequency of CAP+ in exponential phase is proportional
to the CAP- to CAP+ transition probability per unit of time. Furthermore, the equi-
librium is independent of the mean growth rate ⇢, like in the previous null model.

�antitative comparison with observations

�e “pure switch” model can be regarded as a �rst approximation of the Pseudomonas
�uorescens switching populations. By se�ing the switching rate constant, and by ig-
noring the possibility of di�erences in population growth for the three preculture
conditions “low”, “mid” ad “high”, this model allows to compute a rough estimate of
the CAP- to CAP+ switching rate. Indeed, for f ' 0 (the situation at the beginning
of the experiment) Eq. 3.25 yields

ḟ ' ↵+, (3.27)

which allows to estimate the switching rate from the CAP- to the CAP+ phenotype
(Table 3.2).

Preculture density fR0 f(t1) f(t1)�fR0

t1
⇠ ↵+(h�1)

low 0.025 0.026 5.7 10�4

mid 0.068 0.288 0.126
high 0.124 0.454 0.189

Table 3.2: In the “pure switch” model, when the initial frequency is small the switching rate
from the CAP- to the CAP+ phenotype can be approximated by the derivative of the CAP+
frequency at time 0. �e values in the Table must therefore be considered overestimates of the
switching rate ↵+.

In summary, to account for the experimental data in a “pure switch” scenario, the
populations started from the dilution of low-density precultures should have a CAP-
to CAP+ switching rate 3 orders of magnitude lower than in the other treatments.
�is is unrealistic in cases where the transition rates are a property of the phenotype
alone, as assumed in most models of phenotype switching, and point to the role of
other variables in determining the speed at which the transitions between phenotypes
occur.
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Figure 3.5: �ird null model: a growth rate dif-
ference between CAP+ and CAP- cells is added
to the switching process. Like the “di�erential
growth” and the “pure switch”, this model fails
to describe the overshoot in the phenotypic dy-
namics during exponential phase.

3.2.3 Constant switching rates with growth rate di�erence
By combining the two previousmodels (“di�erential growth” and “pure switch”), I will
explore the possibility that a combination of constant switching rates and growth rate
di�erence is su�cient to produce a non-monotonous increase in CAP+ frequency at
the beginning of exponential phase (Fig. 3.5).

In this scenario, Eqs. 3.1 and 3.2 write:

Ṅ+ = D(N+ +N�) [R+(t)N+ + ↵+N� � ↵�N+] (3.28)
Ṅ� = D(N+ +N�) [R�(t)N� � ↵+N� + ↵�N+] , (3.29)

and in terms of the total number of cells N and of the frequency of CAP+ f :

Ṅ = D(N) [R�(t) + f�R(t)]N (3.30)

ḟ = D(N) [�R(t)f(1� f) + ↵+(1� f)� ↵�f ] . (3.31)

It can be noticed that for ↵+ = ↵� = 0 this model corresponds to the “di�erential
growth” (Eqs. 3.15 and 3.16), and for r+ = r� to the “pure switch” one (Eqs. 3.24 and
3.25).

�e phenotypic dynamics described by Equation 3.31 is decoupled from the demo-
graphic one (Eq. 3.30), except from a time-rescaling that does not change the direction
of the �ow along a trajectory: this model fails to provide a quantitative explanation
for the overshoot, too.

Phenotypic equilibria in exponential phase

Even if it does not produce an overshoot, this model may however be used to predict
the phenotypic composition of the population in the exponential phase of growth. In
this phase, D(N) ' 1, and the growth rates a�ain their maximum, so that R�(t) =
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r�, R+(t) = r+. De�ning r+ � r� = dr, I obtain:

Ṅ = (r� + fdr)N (3.32)

ḟ = drf(1� f) + ↵+(1� f)� ↵�f. (3.33)

By se�ing ḟ = 0, from equation (3.33) I obtain:

f⇤
1,2 =

dr � (↵+ + ↵�)±
p
(dr � (↵+ + ↵�))2 + 4dr↵+

2dr
. (3.34)

Unlike the previous null models, the exponential phase phenotypic equilibrium now
depends on demographic parameters, therefore capturing one of the features of the
Pseudomonas �uorescens switchers (Chapter 1, Section 1.3.3):

f⇤ =
↵+ + ⇢� r�

↵+ + ↵� + ⇢� r�
. (3.35)

Under conditions in which such equilibrium fraction is positive for every ⇢, this model
thus predicts that f⇤ increases with the average growth rate ⇢. As I will discuss in
Chapter 4, this is at odds with independent observations of the biological system.

3.2.4 Conclusions about context-independent switch models
Both the “di�erential growth” and the “pure switch” null models are qualitatively in-
consistent with the observations of Chapter 1, Section 1.3.4 as they cannot account for
the experimentally observed non-monotonic phenotypic dynamics in the exponential
growth regime. Moreover, when trying to provide a quantitative justi�cation of the
increase in the CAP+ frequency in the �rst two hours a�er resuspension in round
1, their parameters should assume disproportionate di�erences between CAP+ and
CAP-.

�e third null model, wherein a growth rate di�erence between the two states
complexi�es the Markovian switching process, cannot reproduce the non-monotonic
phenotypic dynamics either. Unlike the previous ones, however, this model predicts
the frequency of CAP+ during exponential phase to depend on the mean growth rate
of the population (Eq. 3.35), but such dependence goes in the opposite direction with
respect to independent observations.

To summarize, standard models whereby the genotype determines the switching
rates between alternative phenotypic states are not apt to explain the whole pheno-
typic dynamics of a growing population of Pseudomonas �uorescens “switchers”. To
reproduce the non-monotonicity in the dynamics of the phenotypes’ frequencies, the
switching rates need to be made time-dependent, for example by linking their value
to a demography-related variable.
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3.3 Model of demography-dependent switching
In this Section, I present a model coupling phenotypic switching at the cell level
with population demography, based on the hypothesis that internal concentrations
of proteins or other metabolic compounds are the mediators of such an interaction.
Indeed, changes in the population growth rate, corresponding to variations in the
division time of individual cells, modulate the process of dilution of proteins and
other molecules inside the cellular volume, potentially triggering a concentration-
dependent switch between alternative phenotypes.

Mathematically, this is accomplished by adding, alongside the total number of cells
and frequency of CAP+ cells, a third state variable: the concentration of a metabolite
X synthesized by the cell, accumulated inside the cellular volume, and diluted through
cell division. �is internal variable works as a proxy for the ensemble of metabolic
processes a�ecting the switching dynamics, and does not refer to any speci�c com-
pound. Under this assumption, the switching rates come to depend on the overall
population growth state: balance between production and dilution of the X metabo-
lite will be altered when the population demography, along with the generation time,
changes — and this will in turn modify the switching rates.

A similar model including growth-switch feedback mediated by internal concen-
trations as a basis for bistability has been proposed by Herbert Levine and collabo-
rators in a se�ing when the di�erence in growth rate between phenotypes was cen-
tral, that of bacterial persisters [8]. �ey showed that the dynamics of Escherichia
coli persisters can be interpreted in terms of di�erential dilution of toxin/antitoxin
(TA) molecules between the growing (and susceptible) state and the dormant (thus,
persister-like) one [34].

Here, I will instead mostly focus on the limit of negligible growth rate di�erences,
so that both phenotypes grow at a comparable rate. �is approximation is relevant
for di�erential, rather than binary (dead/alive), responses to selection.

A general mathematical representation of the model will be initially presented:
when the subpopulations expressing di�erent phenotypes do not share the same growth
rate, dilution will a�ect di�erently the internal concentrations in individual cells of
either phenotype. Moreover, the two phenotypes might in principle di�er in terms of
the production rate of the X metabolite, too. As a result, two more equations with re-
spect to the models presented in Section 3.2 would be needed to describe the internal
concentrations in capsulated (CAP+) cells and in non-capsulated (CAP-) cells. In or-
der to simplify the analysis of the system, I will however assume for most part of the
Chapter that growth rate di�erences between phenotypes are negligible, and show
that the essential features of the experimentally observed dynamics are reproduced
by a system of three equations.

3.3.1 Alternative phenotypic states and intracellular bistability
In phenotypically switchingmicrobial populations, individual cells are o�en described
in terms of multistable systems whose state depends on few environmental or internal
“parameters”. Signature of such multistability is hysteresis: the history of the system
in�uences its state [94]. As environmental conditions (e.g. concentrations of nutrients
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or antibiotics) change, relative frequencies of phenotypes in an isogenic microbial
population are susceptible to vary in a history-dependent fashion.

In Pseudomonas �uorescens switching strains, the two alternative states are related
to the expression of an operon responsible for the production of a capsule around the
cell surface (Chapter 1). Analogous to Ozbudak et al.’s experiment, these strains were
transformed so that an inserted gfp gene was stably co-expressed with the capsule
operon, resulting in a coincidence between CAP+ and GFP+ phenotypes (Chapter 2).

Back in Chapter 1, Section 1.3.3, I reviewed how the expression of the CAP+ and
CAP- phenotypes can be altered by environmental conditions such as temperature,
cell density and extracellular concentration of uracil. �e data gathered on the re-
sponse to environmental cues having an e�ect on the intracellular state supported the
idea of introducing a third state variable c, corresponding to the intracellular concen-
tration of an unknown metabolite X synthesized by cells. �is concentration would
act as a “control variable” on the bistable phenotypic dynamics, possibly as a proxy
for the overall cell metabolic state.

As commonly done for many di�erent experimental systems [20, 73, 34], I choose
to model the intracellular state as a bistable hysteretic dynamical system, where the
probability of expressing one or the other cell phenotype is a function of the intra-
cellular concentration c(t) (Fig. 3.6). When the concentration c is controlled by the
external environment as in [73], it determines the range and location of the region
where two distinct stable equilibria exist and the magnitude of their basins of a�rac-
tion. Here, on the other hand, the intracellular concentration c is one of the variables
of the system a�ecting the switching dynamics.

Figure 3.6: �e alternative phenotypes in populations of Pseudomonas �uorescens “switchers”
can be modelled as the two stable equilibria of a bistable system. I decided to consider an
internal variable (the intracellular concentration c of a generic metabolite synthesized by the
cell) in analogy with the control parameter of bifurcation diagrams with �xed environmental
conditions. �e bistability region is bound by two threshold values of c, called cLOW and
cHIGH . Being the CAP+ phenotype marked with the insertion of a gfp gene under the control
of the promoter of the same capsule-related operon, CAP- and CAP+ cellular states can be set
apart in terms of intensity of GFP �uorescence.
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Bifurcation diagram for the intracellular dynamics

In the theory of bifurcations of dynamical systems, bifurcation diagrams represent
the qualitative changes in the orbits of a (system of) di�erential equation(s) as a
consequence of continuous variations in one (or more) parameters. �ese are com-
monly called control parameters because of the possibility of observing such quali-
tative changes by externally tuning their value [6]. A famous example of an actual
bifurcation in microbial heterogeneity is that of Escherichia coli lac operon: Ozbudak
et al. demonstrated that a bistable dynamical system accounting for the genetic ar-
chitecture of the operon regulation could quantitatively explain the relation between
extracellular concentrations and the proportion of cells that were in either phenotypic
state [73]. It could moreover predict that the bistable regime would be lost under dif-
ferent conditions, where a change in the carbon source concentration would not elicit
an on-o� change in the cell phenotype.

Similarly, bifurcation theory was used by Gardner et al. to demonstrate that, in
a synthetic gene circuit, mutually inhibiting repressible promoters are able to give
rise to a region of bistability, that they quantitatively quanti�ed based on measures of
intracellular rates [20].

In the case of Pseudomonas �uorescens switchers, the knowledge of the intracellu-
lar architecture eliciting the switching behaviour is not su�ciently advanced to allow
a quantitative modelling of the intracellular regulation. I thus assumed that a qualita-
tively similar dynamical system could account for the phenotypic switch. Instead of
being a control parameter, cwill more generally be a control variable determining the
probability of switching between phenotypes. �e concentration c can be interpreted
as a proxy encompassing all the sources of modi�cation in the switching probabilities
between the CAP- and CAP+ states. In Figure 3.6 the stable equilibria, correspond-
ing to the two cellular states CAP- and CAP+, are represented with solid lines. In
the bistability region, for the same value of c, the system has two stable alternative
equilibria, and an intermediate unstable equilibrium marks the border of their basins
of a�raction, if the feedbacks stabilizing the alternative equilibria act on a fast time
scale. As a consequence of intrinsic intracellular stochasticity, however, the cell may
switch equilibrium, with a probability that is by simplicity assumed to be proportional
to the magnitude of the relative basin of a�raction relative to that of the alternative
equilibrium. �is representation allows us to avoid specifying the precise sources of
stochasticity and to model the system with a deterministic system of equations.

I chose, again for the sake of simplicity, a piecewise linear bifurcation diagram
where the relation between basins of a�raction is easily obtained (see next paragraph).
�is way, any �ne-scale variation in the degree of GFP expression among cells with
a CAP+ phenotype can be neglected, and analogously for phenotypes that do not
express the �uorescent protein at all. �e description of the phenotype through a
binary variable is a good approximation of reality, as the �uorescence peaks obtained
by FACS are well separated, supporting the assumptions that when cells change basin
of a�raction, they decay fast to the new equilibrium.
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Switching rates as a function of intracellular concentration

�e compound X is assumed to enhance the probability of expressing the CAP+ state.
As a consequence, the higher is c, the larger the switching rate towards the capsulated
state equilibrium, and the lower the switching rate to the non-capsulated phenotype.
For the simpli�ed bifurcation diagram illustrated in 3.6, the switching rates depend
linearly on c inside the bistability region. Figure 3.7 illustrates the relation between
the bifurcation diagram and the Markov chain representation:

• for low values of c (below a threshold value called cLOW ), the CAP- to CAP+
switching rate ↵+ is set to zero, while the CAP+ to CAP- switching rate ↵� is
maximum;

• for high values of c (over a threshold value called cHIGH ), ↵+ assumes its max-
imum value, while ↵� is set to zero;

• for intermediate values of c (between the two threshold values cLOW and cHIGH ),
↵+ and ↵� are both non-zero and are an increasing and a decreasing function
of c, respectively, corresponding to the relative extension of the basins of at-
traction of the two alternative equilibria.

Figure 3.7: Switching rates are proportional to the width of the basins of a�raction of the two
stable equilibria (i.e. the CAP- and the CAP+ phenotypic states). For intermediate values of the
intracellular concentration c a cell is inside the “bistability region” where the switching rates
are both non-zero. Outside the bistability region the switching rates assume their maximum or
minimum values (the la�er arbitrarily set to zero).



58 Modelling nonlinear growth-and-switch dynamics

�is description bears similarities to neural models such as that by FitzHugh-
Nagumo [37]: one variable (in this case c, playing the role of the recovery variable),
whose dynamics is slow, controls the steady-state of another one (the phenotypic
state CAP-/CAP+, corresponding to the membrane potential of neurons), whose dy-
namics is faster. �e response of excitable systems to stochastic process that occur on
fast time-scales is known to encompass, among other dynamical behaviours, transient
dramatic changes in a systems variable, analogous to what observed in the overshoot
experiment.

3.3.2 Protein concentrations can couple demography and switch
�e variable c, corresponding to an intracellular protein concentration, works as the
mediator of the impact of the population state on phenotypic heterogeneity and con-
nects demography (population size and its dynamics) and physiology (probability of
switching) in Pseudomonas �uorescens populations.

�is assumption is consistent with the experimental evidences presented in Chap-
ter 1 and in agreement with previous works: even in isogenic populations, di�erent
regimes of population growth are known to cause cell-to-cell phenotypic variabil-
ity, for example via variation in gene expression and regulation [67]. Phenotypic
switching, such as the persisters or our Pseudomonas �uorescens switchers, makes no
exception [34, 42].

Intracellular concentrations can be coupled to the population state in many dif-
ferent ways. Here, I will consider the simplest one, that is assuming no direct e�ect
of population size except the one due to dilution. �is assumption is certainly too
crude for proteins that are controlled by the wild-type genetic circuit, which are most
likely to be subjected to di�erent kinds of regulation so as to keep their expression
synchronized with growth. However, since phenotypic switchers in Pseudomonas �u-
orescens are newly evolved, it is well possible that purifying selection had no time to
optimize the modi�ed intracellular circuits, thus resulting in a minimalistic regulation
of some of its components. In this way, switching rates are essentially in�uenced not
by the cell density, but by its di�erential, the population growth rate, which provides
a “measure” for the demographic state of the population. Di�erences in division time
can in this way a�ect intracellular properties through changes in the dilution of cel-
lular internal content. �ese simple assumptions retain some of the scaling properties
of more complicatedmodels which take into account the relationship between growth
rate and other processes such as transcription or translation rates [53].

A faster (slower) growth regime will be mathematically translated into higher or
(lower) dilution factor in the equation ruling the dynamics of the internal concentra-
tion c, causing the system to move towards the le�- (right-) hand side of the bifurca-
tion diagram of Figure 3.7. Following this modelling choice, I will write the dynamics
of the internal concentration c as the combination of a production and a dilution term:
their (dynamically changing) relative importance will be responsible for the states ex-
plored by the system.
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3.3.3 General 4-D dynamical system
A general form of a model with switching rates depending on an internal variable
whose magnitude is a function of a dilution term (proportional to the growth rate)
must take into account that, in principle, CAP- and CAP+ cells might not share the
same growth rate. In this general case, two separate equations will describe the two
concentrations c+ and c�, assumed to be equal in all CAP+ and all CAP-, respectively.

�e equations for the intracellular concentrations will be coupled to the popula-
tion equations from the “constant switching rates with growth rate di�erence” null
model, through the switching rates S+ and S�. �ese will from now on depend on
the intracellular concentration of X, according to Fig. 3.7:

Ṅ = D(N) [R+(t)f +R�(t)(1� f)]N (3.36)

ḟ = D(N) [�R(t)f(1� f) + S+(c�)(1� f)� S�(c+)f ]L(t) (3.37)
ċ+ = P+(c+, t)�D(N)R+(t)c+ (3.38)
ċ� = P�(c�, t)�D(N)R�(t)c� (3.39)

where D(N) represents a density dependence term, R+(t) and R�(t) are the time-
dependent growth terms for CAP+ and CAP-, respectively,�R(t) = R+(t)�R�(t)
is their di�erence, L(t) is a time-dependent factor corresponding to the lag phase, P+

andP� are the rates of synthesis of the X product for the two phenotypes, andS�(c+)
and S+(c�) the concentration-dependent switching rates to the opposite state.

In the next paragraph I discuss the role of the density-dependence term D(N),
which translates the hypothesis that the switch is gated at cell division, and that of
the time-dependent modulation of the growth rates L(t), under the hypothesis that
switch and cell division are strictly linked processes.

�e “switch at cell division” hypothesis

�e density dependence termD(N) can be wri�en as a logistic factor (1� N
K ), where

N is the total population size and K the carrying capacity of the ecological system.
D(N) sets the time scale not only for the demographic dynamics, but also for the
intracellular one: by reducing population growth at the entry of stationary phase, it
dampens the dilution of the internal concentrations c+ and c�, making the switch to
the CAP+ state more likely, and that to the CAP- state less so.

By multiplying both switch terms S+ and S� by D(N) in the equation for the
CAP+ frequency f (Eq. 3.37), I model the hypothesis that the phenotypic switch does
not occur with the same probability at any time during the cell cycle, but it is likely to
be concentrated around the division time. Cell division is indeed the moment during
the cell cycle when stochastic �uctuations in protein number are maximum, due to
the possible assymetric repartition of low density molecules between the daughter
cells. Stochastic �uctuations are known to be at the basis of phenotypic switching,
for example by changing the concentration of a key regulator across a critical thresh-
old in an appropriately designed genetic circuit allowing bistability (e.g. via a posi-
tive feedback loop or a double negative regulation). An example is provided by the
opaque/white switch in Candida albicans colony morphology: stochastic �uctuations
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in the expression of the wor1 gene can move the concentration of its product Wor1
(a master transcriptional regulator) below or above the level triggering the cellular
switch that underpins the variability at the colony level [102]. At cell division such
�uctuations increase, making the switch more likely to happen.

�e e�ect of conditions slowing cell division thus lowers the switching rates as
well, under the hypothesis that the switch can only occur at cell division. �e e�ects
of relaxing the hypothesis of a cell-cycle triggered phenotypic switch will be later
discussed in Section 3.5.2.

Di�erent time-dependent terms were introduced so as to encompass the e�ect on
growth and switching of the lag phase that characterizes the beginning of the demog-
raphy of cultures close to stationary phase, when they are resuspended. �e growth
termsR�(t) andR+(t) are thus assumed constant and equal to the maximum growth
rates r�, r+, except when growth is arrested. Arrested growth is here modelled by a
lag factor L(t):

L(t) = ✓(t� ⌧) (3.40)

where ⌧ represents the length of the lag phase experienced by cells a�er resuspension
into fresh medium and ✓(x) is the Heaviside step function, de�ned as:

✓(x) =

(
0, if x < 0

1, if x > 0.
(3.41)

As a consequence, the time-dependent maximal growth rate is:

R+(t) = r+L(t) (3.42)
R�(t) = r�L(t). (3.43)

At times t < ⌧ , where ⌧ is the the duration of the lag phase at resuspension,
growth is impeded (✓(t � ⌧) = 0 and therefore Ṅ = 0); for times a�er the end of
the lag phase (t � ⌧ ) the equation for the demographic dynamics of the population
resumes the classic Verhulst form of logistic growth.

�e lag phase (whose early discovery in Salmonella enterica was motivated by
the research on the e�ects of temperature on bacterial growth [70]) can be de�ned
as the stage preceding the beginning of exponential growth, during which bacterial
cells are not able to grow or divide. Several, more and more re�ned interpretations of
this fact have been so far proposed: lag as the time needed for bacteria to adapt to a
novel environment [61], to recover frommolecular damage accumulated in stationary
phase [27], or corresponding to transient sensitivity to oxidative stress generating iron
accumulation [83].

In this study, one primary di�erence in the three treatments (“low”, “mid”, “high”)
is actually the time of suspended growth a�er cells get resuspended, the longer the
closer the preculture was to stationary phase. In Section 3.4 I show that in Dr. Philippe
Remigi’s experiment a delay in the onset of the exponential growth phase is present. I
make the hypothesis that the phenotypic dynamics, as well as the demographic one, is
completely interrupted in lag phase: for this reason, the factor L(t) = ✓(t� ⌧)multi-
plies the equation for ḟ , too. �is is consistent with the previously discussed coupling
between switching and cell division. With respect to the production of X, though, I
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assume that this process is not impeded during lag phase: indeed, although unable
to divide, cells are metabolically active during lag [62], meaning that the processes
of transcription and translation of X can be assumed to occur even before maximum,
exponential growth is restored (cf. also the model by Baranyi & Roberts [10]).

Production and dilution of the intracellular compound X

�e internal state of CAP+ and CAP- cells is described in terms of the concentration of
a metabolite X that cells are able to synthesize and that is diluted through cell division.
�e equations for c+ and c� each include a term of production of the X metabolite
(indicated above with P (t)) and a term accounting for the dilution process.

As for production term P (t), I make the hypothesis that concentrations get reg-
ulated proportionally to the ratio between their instantaneous values c+ (or c�) and
their maximum allowed value Kc – which I suppose to be the same for CAP+ and
CAP-. During the lag phase, the production rate is considered to be maximal and
unregulated (cf. previous paragraphs). In formulas:

P+(t) =

8
<

:
b+, if t < ⌧⇣
1� c+

Kc

⌘
b+, if t > ⌧

(3.44)

P�(t) =

8
<

:
b�, if t < ⌧⇣
1� c�

Kc

⌘
b�, if t > ⌧ ;

(3.45)

As for dilution, I assume that the average single cell volume can be considered
constant across the experimental time: although it is known to actually �uctuate,
this happens on a fast time scale, that is that of the cell cycle [21], much faster that
the whole duration of the dynamics tracked in the experiment. Dilution is therefore
described by an exponential decay process, whose exponent is proportional to the
growth termR+(t) orR�(t), itself dependent on the cellular phenotype. In summary,
the production/dilution balance will depend on population demography as follows:

������ ��� cell division is prevented and therefore no dilution is possible. Inter-
nal concentrations will exponentially increase as the result of the unregulated
production of X:

ċ+(t) = b+ (3.46)

ċ�(t) = b� (3.47)

�� ����������� ����� as the population grows at itsmaximum rate, the Xmetabo-
lite gets diluted at the highest rate possible. Production starts being regulated.
If the dilution term is greater than the production one, internal concentrations
can decrease:

ċ+(t) =

✓
1� c+

Kc

◆
b+ � r+c+ (3.48)

ċ�(t) =

✓
1� c�

Kc

◆
b� � r�c� (3.49)
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�� ���������� ����� population growth slows down, and the internal concentra-
tions might increase again as a result of having a production term greater than
the dilution one:

ċ+(t) =

✓
1� c+

Kc

◆
b+ �

✓
1� N

K

◆
r+c+ (3.50)

ċ�(t) =

✓
1� c�

Kc

◆
b� �

✓
1� N

K

◆
r�c�. (3.51)

In other words, this mathematical model includes a di�erential equation describ-
ing the temporal variation of the intracellular concentration of a protein which, in
principle, is not constitutively expressed, given the observed variation in the capsu-
lation generated by environmental change. �e dilution factor is modelled as a linear
function of the growth rate, and the rate of production of the protein as a saturating
function of the concentration itself.

Fully-coupled equations

By taking into account these choices about how to formalize the di�erent parts of the
model, the system of ordinary di�erential equations writes:

Ṅ =

✓
1� N

K

◆
[r+f + r�(1� f)]N✓(t� ⌧) (3.52)

ḟ =

✓
1� N

K

◆
[(r+ � r�)f(1� f) + ↵+(c�)(1� f)� ↵�(c+)f ] ✓(t� ⌧)

(3.53)

ċ+ =

✓
1� c+

Kc
✓(t� ⌧)

◆
b+ �

✓
1� N

K

◆
r+c+✓(t� ⌧) (3.54)

ċ� =

✓
1� c�

Kc
✓(t� ⌧)

◆
b� �

✓
1� N

K

◆
r�c�✓(t� ⌧) (3.55)

where the functional dependence of the switching rates from the intracellular con-
centrations is given by the following equations:

↵+(c�) =

8
>><

>>:

0, if c� < cLOW

↵MAX
+

c��cLOW

cHIGH�cLOW
, if cLOW  c� < cHIGH

↵MAX
+ , if c� � cHIGH

(3.56)

↵�(c+) =

8
>><

>>:

↵MAX
� , if c+ < cLOW

↵MAX
�

cHIGH�c+
cHIGH�cLOW

, if cLOW  c+ < cHIGH

0 if c+ � cHIGH .

(3.57)

�is model can be easily simulated, however the large number of non directly
quanti�able parameters related to the intracellular state makes its use for quantitative
��ing complicated and questionable, because of the risk of over��ing. I will thus
proceed to study the dynamics of a simpler 3-D approximation of the model. �e next
Section provides the experimental justi�cation for assuming that such 3-D system is a
relevant approximation of the complete 4-D model in the regimes that I am studying.
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3.3.4 Analysis of a reduced three-dimensional model
�e four-dimensional model presented in the previous paragraphs can be made sig-
ni�cantly simpler under the assumption that CAP+ and CAP- cells do not di�er in
terms of division time under the same conditions. �e results of experimental assays
presented in the last Section showed indeed no evidence of big di�erences in growth
rate between microcolonies founded by CAP+ and CAP- individual cells.

I thus consider, as a �rst approximation, R+(t) = R�(t) = R(t), or �R(t) =
0, which implies the fact that the dilution term in the equations of the model is
phenotype-invariant. Now the internal state of all cells is described by one concen-
tration c(t) instead of two:

Ṅ = D(N)R(t)N (3.58)

ḟ = D(N) [S+(c)(1� f)� S�(c)f ]L(t) (3.59)
ċ = P (c, t)�D(N)R(t)c. (3.60)

Following the same modelling choices as for the four-dimensional model:

Ṅ =

✓
1� N

K

◆
rN✓(t� ⌧) (3.61)

ḟ =

✓
1� N

K

◆
[↵+(c)(1� f)� ↵�(c)f ] ✓(t� ⌧) (3.62)

ċ =

✓
1� c

Kc
✓(t� ⌧)

◆
b�

✓
1� N

K

◆
r c ✓(t� ⌧) (3.63)

with

↵+(c) =

8
>><

>>:

0 if c < cLOW

↵MAX
+

c�cLOW
cHIGH�cLOW

if cLOW  c < cHIGH

↵MAX
+ if c � cHIGH

(3.64)

↵�(c) =

8
>><

>>:

↵MAX
� if c < cLOW

↵MAX
�

cHIGH�c
cHIGH�cLOW

if cLOW  c < cHIGH

0 if c � cHIGH .

(3.65)

�e demographic dynamics Ṅ is now independent of both f and c, and the intra-
cellular dynamics ċ does not depend on f . �e former observation justi�es looking for
the equilibria of the sub-system (ċ, ḟ) even when the population demography has not
yet reached its steady-state, and to study how the uncoupled demographic dynamics
acts as a master of the slaved subsystem. Since the equation for the concentration is
independent of f(t), the variation in the phenotypic frequency is“controlled” by the
intracellular state. In exponential phase, when density-dependent modulation is not
present, f(t) and c(t) will thus have a unique equilibrium.

3.3.5 �ree-dimensional model: equilibria and their stability
Beside the asymptotic steady state, which corresponds to the situation a�ained by the
system at growth arrest in stationary phase, I am interested in the study of the quasi-
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steady states the system may reach during exponential or early-stationary phase. In-
deed, in the experiments, the biggest changes in frequency of the phenotypes takes
place while cells are still exponentially dividing (see Fig. 1.6).

If the intracellular and phenotypic dynamics described by the (ċ, ḟ) sub-system
takes place on a faster time-scale than that of population growth, c and f will a�ain
a quasi-equilibrium before the population size reaches the carrying capacity. In other
words, if the dynamics of Ṅ is slow enough (with respect to the intracellular one)
the time scales can be separated and the quasi-steady states studied as a function of
population size N . Population size can then be treated as a measure of time, being
N(t) an invertible function of t (Verhulst logistic function).

On the other side, the asymptotic steady-state in stationary phase might not cor-
respond to the fact that the �uxes between phenotypic rates are zero. Indeed, due to
the multiplicative factor D(N), the phenotypic dynamics will halt because of popu-
lation growth arrest, and in that case the system “freezes” in an equilibrium that is
di�erent from the quasi-equilibrium for the fast subsystem. By taking the general
form of the (c, f) sub-system (Eqs. 3.59 and 3.60) and equaling all the expressions to
zero, if D(N) 6= 0:

f⇤ =
S+(c⇤)

S+(c⇤) + S�(c⇤)
(3.66)

where c⇤ is the solution of

P (c⇤, t) = D(N)R(t)c⇤. (3.67)

�e existence of equilibria for the frequency of CAP+ depends on the existence of
equilibria for c, that is the existence of times for which the concentration cmultiplied
by the dilution factor D(N)R(t) balances the production term P (t).

For times t belonging to the exponential phase and neglecting lag (which does not
occur when exponentially dividing cells are diluted into fresh medium), the quasi-
steady states for the intracellular and phenotypic dynamics can be wri�en as:

f⇤
E =

↵+(c⇤E)

↵+(c⇤E) + ↵�(c⇤E)
(3.68)

c⇤E =
1

r
b + 1

Kc

. (3.69)

Taking the linear switching rates (Eqs. 3.64 and 3.65) and consideringKc 2 [cLOW , cHIGH ],
the exponential phase quasi-equilibria for f and c are:

f⇤
E =

2

41 +
↵MAX
�

↵MAX
+

⇣
( rb + 1

Kc
)cHIGH � 1

⌘

⇣
1� ( rb + 1

Kc
)cLOW

⌘

3

5

�1

(3.70)

c⇤E =
1

r
b + 1

Kc

. (3.71)

In stationary phase the model allows an in�nity of neutrally stable (initial con-
ditions dependent) equilibria: if the concentration reaches its steady, regulated value
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Kc before the population enters stationary phase, then the (quasi-)equilibria read:

f⇤
S =

↵+(c⇤S)

↵+(c⇤S) + ↵�(c⇤S)
(3.72)

c⇤S = Kc (3.73)

and, again, considering Equations 3.64 and 3.65 and consideringKc 2 [cLOW , cHIGH ]:

f⇤
S =


1 +

↵MAX
�

↵MAX
+

(cHIGH �Kc)

(Kc � cLOW )

��1

. (3.74)

Stability

Since the density-dependent factorD(N) is always positive, the stability of the (f, c)
subsystem is determined by the corresponding reduced 2x2 Jacobian matrix at the
quasi-equilibria (f⇤, c⇤):

J̃(f⇤, c⇤) =

"
@ḟ
@f (f

⇤, c⇤) @ḟ
@c (f

⇤, c⇤)
@ċ
@f (f

⇤, c⇤) @ċ
@c (f

⇤, c⇤)

#
(3.75)

to establish their stability.
For the exponential phase quasi-equilibrium (Eqs. 3.68 and 3.69), the reduced Ja-

cobian matrix J̃ reads:

J̃E =

"
� [↵+(c⇤E) + ↵�(c⇤E)] (1� f⇤

E)
@↵+

@c (c⇤E) + f⇤
E

@↵�
@c (c⇤E)

0 �
⇣

b
Kc

+ r
⌘

#
(3.76)

If the concentration increases to the point that it reaches its maximum, regulated value
before the population enters stationary phase, then the stationary phase Jacobian ma-
trix is given by:

J̃S =

2

4
�
�
1� N

K

�
[(↵+(c⇤S) + ↵�(c⇤S)]

�
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(3.77)
Since the switching rates↵+ and↵� are linear functions of cwhen c 2 [cLOW , cHIGH ],

their partial derivatives @↵+

@c and @↵�
@c are always independent of c. Moreover, both J̃E

and J̃S are triangular matrices, which means that their eigenvalues correspond to the
elements on the principal diagonal: being both smaller than zero for any allowed value
of the parameters, I can conclude that the (f, c) quasi-equilibria in exponential and
stationary phase are stable nodes. �erefore, the undershoot in the frequency dynam-
ics cannot be explained in terms of oscillatory behaviour of the reduced subsystem.
to acknowledge the resemblance between this model and the FitzHugh-Nagumo one
[37]: as in excitable systems, in our model there exist nonlinearities (the exponential
increase of c during lag) pushing the system away from the (quasi-)steady state on a
fast time scale (the overshoot), and a slow “recovery” mechanism (dilution through
cell division) relaxing the system to its asymptotic state.
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3.4 Fitting the overshoot experiment
Following the evolution and �rst characterization of the phenotypic switch in Pseu-
domonas �uorescens “switchers” (Chapter 1), the “overshoot experiment” provided
further information about the complexity behind the expression of alternative phe-
notypes in a growing population of switching bacterial cells.

�e goal of this experiment (conceived, designed and performed by Dr. Philippe
Remigi at Rainey Lab, Massey University, Auckland) was to quantify and understand
the role of demography and of past growth conditions in the switching behaviour:
indeed, although the population demographic and phenotypic states were already
known to be tightly linked in “switchers” populations (Chapter 1, Section 1.3.3), the
extent and the eventual time dependence of their reciprocal interaction were still un-
known.

�is could be achieved by tracking the dynamics of the phenotypic composition
of the population (i.e. the change of the relative frequency of the two alternative phe-
notypes cells can express) via �ow cytometry across several generations. During this
time, and at the same time points, optical density measurements were performed to
track the dynamics of the population size. �e role of previous growth conditions was,
on the other hand, investigated by changing the time spent by the inoculum popula-
tion in a microcosm with limited resources during a preliminary stage of growth.

Figure 3.8: Scheme of the protocol of the overshoot experiment (1). Cells are prepared through
a preculture stage (round 0), during which population growth causes the nutrients’ concentra-
tion in the microcosms to get progressively exhausted (corresponding to the colour gradient).
Once the desired population size is reached along the growth curve in round 0, cells get diluted
and transfered into fresh medium to start round 1.

Two rounds of growth to study the e�ect of history on population phenotypic
heterogeneity

�e experiment consists of two successive stages, or rounds. During “round 0” three
populations of switchers are grown from inocula obtained from a common night cul-
ture in sustained exponential phase. When cells from “round 0” are bo�lenecked
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and resuspended into fresh medium, a new stage of the experiment, called “round 1”,
starts: cells resume division, possibly a�er a lag phase, resulting in an exponential,
then saturating population growth. �e population phenotypic composition at the
time of sampling during round 0 and the size of the bo�leneck set the initial condi-
tions of round 1 (Fig. 3.8).

Di�erent initial conditions for frequency (but same population size)

Before resuspension, samples from populations that a�ained di�erent densities in
round 0 are diluted to the same optical density. Such bo�leneck is no as small as to
make stochastic �uctuations in sampling signi�cant. �e populations corresponding
to the three treatments observed in round 1 (’low’, “mid” and “high”, detailed in the
caption of Fig. 3.10) thus di�er in the phenotypic composition and in the demographic
and environmental conditions that their cells have experienced during the prepara-
tion stage (round 0). Importantly, during round 0 cells belonging to the “low” cell
density sample never exit exponential phase, while the “high” cell density population
approached stationary phase.

Figure 3.9: Scheme of the protocol of the overshoot experiment (2). To investigate the role
of past environmental and demographic conditions on the dynamics of the expression of the
alternative phenotypes, a growing population of switchers is sampled at di�erent time points
(cell densities) during round 0, diluted to the same cellular density and resuspended into fresh
medium. Samples from later time points show a longer lag phase but the same growth rate in
exponential phase. Symbols and colors are the same as those used later to identify the three
treatments.

3.4.1 �alitative features of the experimental observations
�e results of the measurements of population size and of CAP+ frequency during
round 1 are shown in Figure 3.10.
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Figure 3.10: Demographic and phenotypic dynamics of a Pseudomonas �uorescens switchers
population over several cellular generations (round 1). A�er resuspension into fresh medium,
population size is measured through optical density (top panel), and CAP+ frequency through
�ow cytometry (bo�om panel). �ree di�erent initial conditions, corresponding to di�erent
round 0 treatments, are shown: “low” population density at the end of round 0 (ODR0 ' 0.3,
green circles), “mid” population density at the end of round 0 (ODR0 ' 1.0, blue squares),
“high” population density at the end of round 0 (ODR0 ' 1.5, red triangles). All treatments
are diluted to the same population size at the beginning of round 1 (OD(0) = 0.05). �e
points correspond to the mean value over three statistical replicates, error bars corresponding
to standard deviation.
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Here I resume the main qualitative features of the overshoot experiment that my
model aims at reproducing:

��������� ������� ���������� ����������� �e “low”, “mid” and “high” pop-
ulations di�er in terms of their phenotypic composition at resuspension: the
higher the population density reached in round 0, the higher the frequency of
CAP+, in agreement with the known association between advanced phases of
growth and higher percentages of CAP+ cells (Chapter 1, Section 1.3.3).

��������� ������ �� ��� ���������� ���������� ����� �e di�erence in
the phenotypic composition at the end of round 0 / beginning of round 1 is con-
served across the whole duration of round 1, as the three conditions maintain
their order in terms of frequency of the capsulated phenotype flow < fmid <

fhigh at each time point.

��������������� ��������� ���������� �������� Two qualitatively dif-
ferent behaviours are observed for di�erent treatments: in the “low” treatment,
the frequency of capsulated cells increases monotonically, while the “mid” and
“high” treatments both display a non-monotonic time course.

���������/���������� In round 1, the populations of the higher density treat-
ments (“mid”, “high”) present a fast increase in the percentage of cells express-
ing the CAP+ phenotype soon a�er resuspension (thus during lag and early
exponential phases) before declining towards di�erent levels corresponding to
the initial composition (overshoot), and then increasing again when the popu-
lation approaches stationary phase (undershoot).

���� ������ ����, ��������� ��� �e three treatments have very similar growth
curves all along round 1: both the average growth rate during exponential phase
and the level of the carrying capacity exhibited at the end of the experiment are
almost the same across the three treatments. On the other hand, later treat-
ments have (slightly) lower population density during exponential phase, sug-
gesting a di�erential duration of the lag phase a�er resuspension.

3.4.2 �ree-dimensional model: qualitative dynamics
�e three-dimensional mathematical model of Section 3.3.4 captures the salient qual-
itative features of the overshoot experiment, that were listed in Section 3.4.1. In this
Section, I discuss the consequences of the model assumptions and present numerical
simulations.

I coded the numerical system in Python, making use of the odeint routine present
in the ScyPy Python scienti�c package to simulate the system of ordinary di�erential
equations (Eqs. from 3.61 to 3.63). I then used Matplotlib to plot the results of the
simulations (see Chapter 2, Section 2.3 for further details).

Choice of the initial conditions

In the model, the intracellular dynamics and resulting variation in the phenotypes’
frequencies during round 0 is what underpins di�erent frequencies of CAP+ across
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the three treatments (“low”, “mid”, “high”) at the beginning of round 1. �erefore, I
need to discuss here which role may have the dynamics in round 0 on that of round
1, and in particular that of its initial and �nal conditions.

Sampling round 0 precultures at diferent time points or, equivalently, when they
reach speci�c population densities, corresponds (if the sampling is independent of
the cell phenotype and the dilution and resuspension processes do not a�ect the per-
centage of CAP+) to di�erent initial conditions for round 1. By calling NR0 and fR0

the population size and corresponding CAP+ frequency at the moment of sampling
during round 0, the initial conditions for the demographic and frequency variables
N(0), f(0), c(0) for round 1 are given by:

N(0) = NR0 d (3.78)
f(0) = fR0 (3.79)
c(0) = cR0 (3.80)

where d is the dilution factor applied before resuspension in fresh medium at the
beginning of round 1. I moreover make the assumption that the intracellular concen-
tration is not altered when cells are transferred to new medium.

It should be noticed that, to make the three treatments start from the same popula-
tion densityN(0) at resuspension, di�erent values of dmust be appropriately chosen.
�is was one of the choices at the basis of the experimental design, aimed at exclud-
ing possible e�ects of population size from those possibly due to di�erent pheno-
typic compositions and population histories. Indeed, being initialized at the same cell
density, the three treatments are expected to experience the same density-dependent
interactions.

Unlike the initial population size in round 1N(0), which can be arbitrarily modi-
�ed by acting on the dilution factor d, the CAP+ frequency at the beginning of round
1 f(0) cannot be independently controlled but only “selected” by choosing an appro-
priate sampling time. In round 0, f varies following Equation 3.62, but it is not known
how (no measurements were performed at this stage). Round 0 precultures are started
from exponential phase inocula, and it can thus be safely assumed that no lag phase
takes place in round 0. �is is not, however, the only mechanism potentially giving
rise to variations in the CAP+ frequency: the CAP+ frequency can increase as popu-
lation size approaches the carrying capacity, or due to a di�erence between the initial
conditions of round 0 and the quasi-equilibria associated to exponential phase.

While the sampling time is measurable and, in principle, controllable by the ex-
perimenter, the initial conditions of round 0 ci and fi are free parameters of the model
whose role in the determination of the behaviour of the system in round 1 must be un-
derstood. I thus address the questions: How do di�erent initial conditions for round 0
(in terms of frequency of CAP+ fi and intracellular concentration of the molecule X
ci) a�ect the initial conditions in round 1 and, thus, the following dynamics? And is
the magnitude of this e�ect dependent on when, during round 0, the preculture gets
sampled?

�e initial condition for the frequency in round 0 (in principle manipulable by en-
riching the precultures of CAP+, e.g. through �ow cytometry) fi a�ects the system’s
behaviour in round 1 only if the sampling occurs on a faster time scale than that of the
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relaxation towards the exponential phase equilibrium f⇤
E (Eq. 3.70). Indeed, all other

parameters being equal, and set ci = c⇤E (cf. Eq. 3.71) to rule out transient intracellu-
lar dynamics, two populations characterized by di�erent phenotypic compositions at
the beginning of round 0 would soon converge to the same phenotypic frequencies.

Hence, only by sampling before the CAP+ frequency reaches its quasi-steady state
f⇤
E (Fig. 3.11, top row), the dynamics of round 1 can be altered. Furthermore, di�er-
ent initial conditions at the beginning of round 1 have an e�ect only shortly a�er
resuspension, provided that all other parameters are equal (Fig. 3.11, bo�om row).
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Figure 3.11: �e CAP+ frequency at the beginning of round 0 (top row) a�ects the round 1
dynamics (bo�om row) only when sampling early in round 0. Blue curve: fi = 0.1; red curve:
fi = 0.6. No experimental data of this (in principle measurable) observable is available for
the overshoot experiment. In the following, fi = f⇤

E (see main text). �e initial intracellular
concentration of X ci is set to c⇤E = bKc

b+rKc
for both populations. Other parameters: r = 0.5,

K = 8, ↵MAX
+ = 4, ↵MAX

� = 1, b = 3,Kc = 4, cLOW = 2, cHIGH = 8.

Also ci, the initial intracellular concentrations at the beginning of round 0, can
a�ect the initial conditions of round 1 (and thus the behaviour of the system in round
1) only if the sampling is performed before that the intracellular and phenotypic dy-
namics have relaxed to their exponential phase quasi-equilibria c⇤E and f⇤

E (Fig. 3.12).
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In other words, if the di�erence in ci is such that the two subsystems are in di�erent
regimes of switching rates at the beginning of round 0, they may diverge in terms
of CAP+ frequency, but will ultimately reach their common exponential phase quasi-
equilibrium (c⇤E , f

⇤
E) set by the value of the parameters, and the same in round 1 soon

a�er resuspension.
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Figure 3.12: �e intracellular concentration of X at the beginning of round 0 (top row) a�ects
the round 1 dynamics (bo�om row) only when sampling early in round 0. Blue curve: ci =

10; red curve: ci = 1. Being not directly accessible to measurements, ci is one of the free
parameters of the model. In the following, ci = c⇤E (see main text). �e initial CAP+ frequency
fi is set to f⇤

E for both populations. Other parameters: r = 0.5,K = 8, ↵MAX
+ = 4, ↵MAX

� =

1, b = 3,Kc = 4, cLOW = 2, cHIGH = 8.

In conclusion, since round 0 is started from exponentially growing cultures, there
is no reason to believe that at the beginning of round 0 the proportion of capsulated
cells is very o�set from its exponential equilibrium value. �erefore, in the following
I assume fi = f⇤

E , with f⇤
E de�ned by Equation 3.70. �is choice is not unrealistic,

as the frequency of CAP+ typically converges fast, as the population is maintained in
exponential phase, to its quasi-steady state value.



3.4 Fi�ing the overshoot experiment 73

�e intracellular concentration cannot be directly assessed, but the model allowed
to study what may be the e�ect of a di�erence in the initial condition for round 0
on the round 1 dynamics. If the population has remained in exponential phase long
enough a�er being diluted, the memory of the initial concentration is lost. Alike phe-
notypic frequencies, c in round 0 approaches the equilibrium value c⇤E (Eq. 3.71), usu-
ally on a faster time scale than that of sampling. �erefore, in the following Sections
I will assume ci = c⇤E .

Long-term “memory” of the population history

Trans-generational persistence of the phenotypic composition of the population was
observed in the overshoot experiment: populations started from di�erent preculture
treatments (round 0) kept their order in terms of the CAP+ frequency all along the
measurement stage (round 1), notably at the end of the experiment (more than 16
hours a�er resuspension in fresh medium).

Such “spli�ing”, corresponding to di�erent treatments having di�erent equilibria
in stationary phase, cannot be obtained in the three-dimensional system (at least,
as long as the intracellular and switching dynamics are faster than the demogra-
phy) unless the set of parameters is di�erent among the three treatments. Indeed,
the stationary-state equilibria de�ned by Equation 3.81 only depend on the system’s
parameters and not on the initial conditions, which are, together with the lag dura-
tion, what di�erentiates the three treatments in round 1. A di�erent conclusion is
in principle possible when the time scales are not su�ciently separated, so that the
vanishing of the population growth freezes the system before it can reach the equi-
librium. However, numerical integration and the analysis of the stability of the sta-
tionary equilibrium suggest that this is approached su�ciently fast so that a�er few
hours, the distance from the stationary-state equilibrium is so small that it cannot
account for the large di�erences observed in the experiments.

When the time scales are separated, the value a�ained by the frequency at the end
of round 1 depends on the ratio between themaximum switching rates↵MAX

+ /↵MAX
�

(Fig. 3.13), and on the value of the maximum intracellular concentration Kc relative
to the boundaries of the bistability region [cLOW , cHIGH ] (Fig. 3.14). Indeed, if the
concentration reaches its maximum, regulated valueKc before the population enters
stationary phase (which would otherwise progressively halt the phenotypic dynam-
ics due to the “switch at cell division” assumption of the model) then the Equation
3.72 back in Section 3.3.5 provides a prediction for the (quasi-)equilibrium for the fre-
quency of CAP+ at late times:

f⇤
S =


1 +

↵MAX
�

↵MAX
+

(cHIGH �Kc)

(Kc � cLOW )

��1

, (3.81)

with Kc 2 [cLOW , cHIGH ].
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Figure 3.13: Higher ↵MAX
+ /↵MAX

� ratios result in lower frequencies of the CAP+ phenotype
at the end of round 1 (right panel), without a�ecting the intracellular dynamics (le� panel).
Blue curve: ↵MAX

� = 4; red curve: ↵MAX
� = 1. Other parameters: r = 0.25 h�1, K = 8,

⌧ = 1.5, cR0 = 2, ↵MAX
+ = 8, b = 3,Kc = 3, cLOW = 2, cHIGH = 8.

0 5 10 15 20 25 30 35 40

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

 o
f 

th
e
 C

A
P
+

 p
h
e
n
o
ty

p
e

0 5 10 15 20 25 30 35 40

Time (h)

0

2

4

6

8

10

12

14

In
tr

a
ce

llu
la

r 
X

 c
o
n
ce

n
tr

a
ti

o
n
 (

a
.u

.)

0 5 10 15 20 25 30 35 40

Time (h)

10-2

10-1

100

101

Lo
g
 p

o
p
u
la

ti
o
n
 s

iz
e
 (

O
D

)

Figure 3.14: Higher maximum intracellular concentrationsKc yield higher frequencies of the
CAP+ phenotype at the end of round 1 (right panel), by a�ecting the intracellular dynamics
(le� panel). Blue curves: Kc = 3; red curves: Kc = 4. Other parameters: r = 0.25, K = 8,
⌧ = 1.5, cR0 = 2, ↵MAX

+ = 8, ↵MAX
� = 4, b = 3, cLOW = 2, cHIGH = 8.

�e model hence suggests that the trans-generational persistence of the pheno-
type might be underpinned by some regulatory mechanism resulting in the di�eren-
tial modi�cation, in the three treatments, of parameters de�ning the properties of the
intracellular dynamics, e.g. the switching rates or the maximum concentration of the
X metabolite. �e quantitative �t of the experimental data will test these predictions
(Section 3.5).
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�alitatively di�erent transient variations of the phenotypic state

At the beginning of round 1, not only the proportion of capsulated cells di�ers among
treatments, but the internal concentration (or its “physiological state”) is also larger
for later pre-cultures. �is means that the initial switching rate towards capsulation
will be higher the later is the pre-culture, thus providing the potential for an initial
boost in the fraction of CAP+ cells. �is e�ect is enhanced by the existence (or not) of
a lag phase, whereby the deregulated production and accumulation of the compound
X is not compensated by growth-induced dilution (Eq. 3.63). �alitative di�erent
switching regimes can be therefore obtained, depending on whether the lag phase
lasts enough for the internal concentration c to reach values for which the switching
behaviour gets unbalanced toward the CAP+ state, and fast enough for its e�ect to be
visible before the system reaches stationary phase.

In order for a gradual and slow increase in the CAP+ frequency to be observed,
however, the concentration in exponential steady-state needs to be close to the lowest
concentration for which bistability is possible, as to provide a corresponding equilib-
rium frequency that corresponds to the initial value fLOW

R0 . Indeed, for exponentially
growing cultures remaining at steady-state also during dilution, the switching to-
wards the capsulated state will not increase until cells approach stationary phase, and
density-dependent e�ects start to displace the fast equilibrium.

On the contrary, older cultures, accumulating the intracellular compound during
lag phase, will see a rapid, although temporary, increase in the probability of switch-
ing ot the capsulated state. Such increase will be larger (and thus the overshoot will
be bigger), when the lag phase lasts longer, as occurs in “mid” and “late” cultures (Fig.
3.15).
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Figure 3.15: Di�erential duration of the lag phase a�ects the transient intracellular dynamics
(le� panel) and the corresponding of the CAP+ frequency dynamics in exponential phase (right
panel). Green curves: ⌧ = 0; blue curves: ⌧ = 1; red curves: ⌧ = 2. Other parameters:
r = 0.25,K = 8, cR0 = 2, ↵MAX

+ = 8, ↵MAX
� = 4, b = 3,Kc = 3, cLOW = 2, cHIGH = 8.
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Overshoot and exponential phase (quasi-)equilibrium

In the previous paragraphs I discussed the relationship between the values of some
of the parameters and the qualitatively di�erent responses that can be obtained from
the mathematical model.

One of the most striking observations done on Pseudomonas �uorescens switch-
ers was the (treatment-dependent) non-monotonic dynamics in the frequency of the
capsulated phenotype f , characterized by an “overshoot” (i.e. a positive di�erence be-
tween the �nal frequency at the end of round 1 f⇤

S and the maximum of the dynamics)
in two out of the three treatments.

In the mathematical model, the non-monotonic dynamics of the frequency of the
CAP+ frequency is the result of a similar non-monotonic intracellular dynamics (Eq.
3.63). During the lag phase at the beginning of round 1, the production term gets
deregulated, which provides a mechanism of fast variation of the switching rates
↵+ and ↵�. Figure 3.16 shows the intracellular and phenotypic dynamics of two
populations di�ering only in terms of the ratio between maximum switching rates
↵MAX
+ /↵MAX

� : the higher is this ratio, the higher get both the maximum CAP+ fre-
quency reached and the succeeding quasi-steady value of the CAP+ frequency in ex-
ponential phase f⇤

E .

Figure 3.16: Higher ↵MAX
+ /↵MAX

� ratios (le� panel, inset) result in higher maxima in the
CAP+ frequency in round 1 and higher quasi-steady equilibria for the frequency of CAP+ in
exponential phase (right panel), without a�ecting the intracellular dynamics (le� panel). Blue
curves: ↵MAX

� = 4; red curves: ↵MAX
� = 1. Other parameters: r = 0.25, K = 8, ⌧ = 1.5,

cR0 = 2, ↵MAX
+ = 8, b = 3,Kc = 3, cLOW = 2, cHIGH = 8.

Undershoot

�e undershoot in the phenotypic dynamics is de�ned by the di�erence between the
stationary phase �nal value of the frequency f⇤

S and the quasi-steady state in expo-
nential phase:

f⇤
S � f⇤

E = f(c⇤S)� f(c⇤E) (3.82)
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which, given Eqs. 3.69 and 3.73, yields:

f⇤
S�f⇤

E =


1 +

↵MAX
�

↵MAX
+

(cHIGH �Kc)

(Kc � cLOW )

��1

�

2

41 +
↵MAX
�

↵MAX
+

⇣
cHIGH � bKc

b+⇢Kc

⌘

⇣
bKc

b+⇢Kc
� cLOW

⌘

3

5

�1

.

(3.83)
In other words, an undershoot following the overshoot can be obtained provided

that the �nal intracellular concentration c⇤S = Kc is higher than the exponential
phase quasi-steady state c⇤E = 1

1
Kc

+ r
b
. Indeed, as the population keeps growing ex-

ponentially on a time scale longer than the duration of the overshoot, the frequency
of capsulated cells will eventually converge towards its exponential steady-state. �e
approach to this limit will be then interrupted by the growth slowdown, whose ef-
fect through dilution will eventually become prevalent, thus causing the frequency to
increase again.

�erefore, two populations identical in their initial conditions of round 1 and in
their maximum capacity in terms of concentration of XKc may present undershoots
of di�erent magnitude if the ratio between the average growth rate in exponential
phase ⇢ and the production rate b are di�erent 3.17.
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Figure 3.17: �e ratio between the rate of production of b and the maximum growth rate ⇢
a�ects the balance between production and dilution (le� panel), resulting in di�erent depths
of the undershoot in the phenotypic dynamics in round 1 (right panel). Blue curves: b = 2;
red curves: b = 4. Other parameters: r = 0.4, K = 8, ⌧ = 2, cR0 = 5, ↵MAX

+ = 4,
↵�MAX = 1, Kc = 4, cLOW = 2, cHIGH = 8. In the “switch at birth” hypothesis, the
lower the ⇢/b ratio, the higher the �nal frequency at the end of round 1.

�e di�erence in the �nal CAP+ frequency in Figure 3.17, not predicted by Eq.
3.83 if all other parameters are constant, is due to the logistic factor dampening the
switching rates as population approaches stationary phase (“switch at birth” hypoth-
esis). By removing the logistic factor in the ODE for the temporal evolution of the
frequency of the CAP+ phenotype (Eq. 3.62), therefore allowing the switching rates
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to share the same value for the same intracellular concentration c irrespective of the
population size N(t), the two populations actually reach the same �nal stationary
phase equilibrium (Fig. 3.18).
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Figure 3.18: �e ratio between the rate of production of b and the maximum growth rate ⇢
a�ects the balance between production and dilution (le� panel), resulting in di�erent depths
of the undershoot in the phenotypic dynamics in round 1 (right panel). In the “switch at any
time” hypothesis, the �nal frequency at the end of round 1 is independent of ⇢/b. Blue curves:
b = 2; red curves: b = 4. Other parameters: r = 0.4, K = 8, ⌧ = 2, cR0 = 5, ↵MAX

+ = 4,
↵�MAX = 1,Kc = 4, cLOW = 2, cHIGH = 8.

In the next Section, the results of the overshoot experiment will be analyzed quan-
titatively, so to inform the mathematical model with quantitative values for the mea-
surable parameters (the average growth rate of the populations ⇢ and the duration of
the lag period at the beginning of round 1 ⌧ ). Since the experimental measures are not
su�cient to fully parametrize the system, I will discuss the results of the quantitative
�t of the model on the experimental data of the overshoot experiment (Section 3.5).

3.4.3 Estimate of the measurable parameters
�e data from the overshoot experiment can be used to inform the 3-D mathematical
model, in the form presented in Section 3.3.4. Indeed, the value of some of the pa-
rameters for each one of the three initial conditions (“low”, “mid”, “high” population
density at the end of round 0) can be obtained from the growth curves of round 1:
this is the case of the average growth rate in exponential phase ⇢ and the lag phase
duration ⌧ .

Instead, other parameters (e.g. the production rate b, the maximum switching
rates ↵MAX

+ and ↵MAX
� , the maximum X concentrationKc) are inaccessible through

direct or indirect measurements and their values will thus be ��ed (next Section).
�is re�ects the nature of the additional state variable added to couple demography
and phenotypic dynamics: c, the internal concentration of X, is a “hidden variable”
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working as a proxy for the cell response to the ensemble of the environmental cues
determining its phenotype. Since the hypothetical compound X has not yet been iden-
ti�ed (beside the fact that it does not need to correspond to an actual concentration
at all), its value cannot be measured.

For the average growth rate in exponential phase ⇢, an exponential �t was per-
formed on the �rst six time points (from 0 to 540 minutes a�er resuspension into fresh
medium) of the mean growth curves for each of the three preculture conditions (Table
3.3). �e mean value of the exponential phase growth rate ⇢̄ over the three treatments
and its standard error can be computed:

⇢̄ = (0.45± 0.02) h�1. (3.84)

�e very small variance associated with the mean growth rate ⇢̄ suggests that (1) the
preculture di�erence does not generate an important di�erence in the average growth
rate in exponential phase, and (2) there cannot be a very high growth rate di�erence
between CAP+ and CAP-. For these reasons, I a�ribute the ��ed value of ⇢ to the
parameter r of the 3-D mathematical model.

Preculture Growth rate ⇢ (h�1) R2

low (�nal ODR0 = 0.3) 0.45 ± 0.02 0.993
mid (�nal ODR0 = 1.0) 0.45 ± 0.02 0.993
high (�nal ODR0 = 1.5) 0.44 ± 0.02 0.995

Table 3.3: Results of the exponential �t of the growth curves in the overshoot experiment. Only
the �rst 6 time points (from t = 0 to t = 5400 a�er resuspension), corresponding to the early
exponential phase, are taken into account. �e exponential �t provides a very good agreement
with data for all three preculture conditions, as shown by the coe�cient of determination R2.

By comparison of the intercept of the exponential �t of the growth curves, it is
possible to compute the duration of the lag period. �e optical density at the beginning
of round 1 is set to the value of 0.05 through dilution: any variation of the optical
density extrapolated at the beginning of round 1, OD0, from this value involves a
deviation from fully exponential growth at the beginning of round 1, likely due to the
lag phase. �e duration of such lag can then be computed by evaluating the time at

Preculture Fitted OD0 Lag duration ⌧ (h)

low (�nal ODR0 = 0.3) 0.066 ± 0.002 0
mid (�nal ODR0 = 1.0) 0.059 ± 0.002 0.24 ± 0.03
high (�nal ODR0 = 1.5) 0.056 ± 0.002 0.35 ± 0.03

Table 3.4: Duration of the lag phase computed from the di�erence between the ��ed initial
optical density and the actual, imposed initial value (0.05). �e computation permits an estimate
of the time when exponential growth is resumed relative to the quickest population to resume
exponential growth (the “low” treatment), whose lag phase duration is set to zero.



80 Modelling nonlinear growth-and-switch dynamics

which the population should have had an optical density equal to 0.05. Results in Table
3.4 show that the “low” preculture condition has a higher ��ed OD0 with respect to
that of the “mid” one, which in turn is higher than that of the “high” population. �is
is the order we expected: populations experiencing more advanced stages of growth
take longer to restore their exponential growth a�er resuspension into fresh medium.

3.5 �antitative �t of the free parameters
In the previous Sections I showed that the 3-D mathematical model reproduces the
main features of the demographic and phenotypic dynamics of the overshoot exper-
iment (Section 3.4.2). In this Section, I address the possibility of obtaining a quan-
titative �t of the experimental data (Section 3.5.1), and discuss how relaxing some
hypotheses of the mathematical model a�ects its ��ing power (Section 3.5.2).

�e ��ing method consisted in �nding the best combination of the free param-
eters (the production rate b, the maximum internal concentration Kc, the maximum
switching rates ↵MAX

+ and ↵MAX
� ) and initial conditions for round 0 (number of cells

and frequency of the CAP+ phenotype at the beginning of the preculture stage) cor-
responding to the minimum deviation between the experimental data and the curve
predicted by the model.

�e original goal was to �t the trajectories of all the three treatments with the
same set of parameters, but once noticed that, in that way, it was impossible to obtain
di�erences in the �nal population composition comparable to those observed in the
experiments, I decided to �t independently the data relative to di�erent treatments,
and to examine later which of the best �t parameters were similar or di�erent across
treatments.

To all non-free parameters (the optical density at which the three populations
were sampled in round 0, the bo�leneck size, the lag phase duration ⌧ , the average
growth rate in exponential phase ⇢) I a�ributed the values estimated as explained in
Section 3.4.3. Since the units of the intracellular concentration c is arbitrary, one of
the parameters cLOW can be set to an arbitrary value. In the following, for the sake
of a greater e�ciency in the �t procedure, cHIGH is �xed as well.

�e two-rounds systemwas simulated and ��ed through Python routines for min-
imizing mean-square distance from the measured trajectories (for further details see
Chapter 2).

3.5.1 Results of the �t
A preliminary run of the �t showed that the least variable parameter in the �t was
the maximum switching rate to the CAP- state ↵MAX

� . In order to speed up the �t,
I decided to �x it to a value close to the optimal ones, and checked numerically that
small changes in such value did not signi�cantly alter the behaviour of the system.

�e impossibility of ��ing the three phenotypic dynamics with a common set
of parameters indicates that, although the model qualitatively recapitulates the be-
haviour of the system, more biological detail should be implemented to get a com-
plete, consistent description of the overshoot phenomenology. Nonetheless, if the
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rationales of this model are correct, some intuitions about the mechanisms underpin-
ning the switch may be obtained through the comparison of the ��ed values of the
parameters across the three preculture treatments, summarized in Table 3.5. �e sim-
ulation of the dynamical system informed with these values of the free parameters is
shown in Figure 3.19 (only round 1 presented).

Preculture ↵MAX
+ (h�1) ↵MAX

� (h�1) b (h�1) Kc (a.u.)

low 2.7 ± 0.4 0.60 ± 0.07 11.9 ± 0.7 0.831 ± 0.002
mid 4.6 ± 0.6 0.60 ± 0.06 11.6 ± 1.7 0.830 ± 0.003
high 6.3 ± 0.8 0.60 ± 0.08 11.9 ± 2.2 0.833 ± 0.004

Table 3.5: �e best �t parameters corresponding to the least sum of the squared residuals for
each treatment. Other (arbitrarily �xed or measured) parameters: ⇢ = 0.45 h�1, K = 8,
⌧low = 0, ⌧mid = 0.24 h, ⌧high = 0.3 h, cLOW = 0.8, cHIGH = 1.6.
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Figure 3.19: Best �t of the demographic (top row) and phenotypic dynamics (bo�om row) in
round 1 for the three preculture conditions (“low”, le� column; “mid”, central column; “high”,
right column).

�e model quantitatively reproduces the experimental measures. With this set of
parameters the demographic dynamics is best ��ed in early exponential phase and
towards the end of the experiment, while population size is underestimated in late
exponential phase. In Section 3.5.2 this aspect will be further discussed as a possible
e�ect of a growth rate di�erence between CAP+ and CAP-.

Unlike ↵MAX
� , the maximum switching rate to the CAP+ state ↵MAX

+ has to sig-
ni�cantly di�er across the three treatments to obtain their di�erent trajectories. �e
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results of the �t propose values of ↵MAX
+ increasing with the �nal density reached by

the preculture in round 0, suggesting that, if the model grasps the main mechanism at
the basis of the capsulation switch, di�erences in the preculture growth regime likely
a�ect the rate of switch to the CAP+ state more than that to the CAP-.

�e intracellular dynamics, which links the demographic and the phenotypic ones
through the “hidden” variable c, is at this stage inaccessible to direct experimental
investigations. �e results of the �t, however, suggest that neither the instantaneous
rate of synthesis of X b, nor the maximum concentration of XKc, need to vary much
to account for the di�erent phenotypic dynamics in the three treatments.

�e role of Kc and of the rapid accumulation of X within the duration of the lag
phase ⌧ can be be�er appreciated in Figure 3.20, representing the dynamics of the sys-
tem soon a�er the beginning of round 1 (lag and early exponential phases of growth).
In the “low” treatment, a very short (or inexistent) lag phase prevents the internal con-
centration of X from crossing the cHIGH threshold associated to a maximal switching
rate to the CAP+ state and a switching rate to the CAP- state equalling zero. In the
“mid” and “high” treatments, on the other hand, the concentration of X increases lin-
early with rate b during lag, before relaxing to its maximum allowed value Kc soon
a�er exponential growth is resumed.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
te

rn
a
l 
co

n
ce

n
tr

a
ti

o
n
 o

f 
X

 (
a
.u

.)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Time (hours) Time (hours) Time (hours)

Time (hours) Time (hours) Time (hours)

Lo
g 

po
pu

la
tio

n 
de

ns
ity

 (O
D)

10-1

5*10-2

10-1

5*10-2

10-1

5*10-2

Figure 3.20: Demographic (top row) and intracellular dynamics (bo�om row) at the beginning
of round 1 for the three preculture treatments (“low”, le� column; “mid”, central column; “high”,
right column). �e horizonthal green band corresponds to the concentration range associated
to bistability [cLOW , cHIGH ], wherein both switching rates are non-zero. �e vertical grey
band corresponds, for the “mid” and “high” populations, to the lag phase.

Just as discussed in Section 3.4.2, Kc has to be slightly higher than the threshold
cLOW to let f reach an appropriate quasi-steady state in later phases of the dynamics,
and the di�erential lag phase duration explains the di�erence in the transient pheno-
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typic dynamics between the “mid” and the “high” conditions in terms of the overshoot
magnitude during early exponential phase.

3.5.2 Relaxation of some modelling assumptions
�e three-dimensional model studied in the previous paragraphs was based on sev-
eral assumptions. On the one hand, such working hypotheses made the model more
tractable; on the other, some of them might have reduced the possibilities of a be�er
agreement between the model and the experimental observations. In this Section, I
address the robustness of my results when some of these assumptions are relaxed.

Decoupling of cell cycle and switch

As discussed in Section 3.3.3, in my mathematical model the switching terms are
weighed by a density dependence term (1–N/K) corresponding to the hypothesis
that the switch only happens during speci�c phases of the cell cycle (e.g. at cell divi-
sion), whereas cells do not switch when not dividing. By removing this factor from
Equation 3.62, the phenotypic dynamics is described by:

ḟ = [↵+(c)(1� f)� ↵�(c)f ] ✓(t� ⌧). (3.85)

In this case, the arrest in the demographic dynamics taking place when popula-
tion size reaches the carrying capacity does not prevent the system from reaching the
steady-state in the phenotypic composition given by Equation 3.81 once the intracel-
lular dynamics has relaxed to c⇤S = Kc.

In Figure 3.21 a comparison between these alternative hypotheses (“switch at
birth” and “switch at any time”) is shown, using the set of parameters that best ��ed
the “mid” treatment of the overshoot experiment. Coupling switch to cell division
dampens the magnitude of CAP+ frequency increase at the entrance of stationary
phase, without any change in the earlier dynamics (i.e. the overshoot). Density-
dependence of the switch thus allows to be�er reproduce the levelling-o� of f that
occurs as the population enters stationary phase (Fig. 3.19).

Nonlinear switching rates

�e switching rates were chosen as stepwise-linear functions of the intracellular con-
centration c, corresponding to the relative extension of the basins of a�raction of the
alternative stable equilibria in a Z-shaped bifurcation diagram (Section 3.3.1). How-
ever, the generic shape of the bifurcation diagram of a bistable dynamical system is
rather S-shaped, whereby the bistability region is bounded by two fold bifurcations
of the equilibria. In this case, the switching rates are expected to depend nonlinearly
from the concentration c, and thus possibly alter the phenotypic dynamics, especially
when the system approaches the thresholds of the bistability region [cLOW , cHIGH ].

I compared the phenotypic dynamics obtained in the previous Section (best �t for
the “mid” treatment of the overshoot experiment) with the one obtained by replacing
the stepwise-linear switching rates with stepwise-exponential ones characterized by
in�nite absolute values of their derivatives at c = cLOW and c = cHIGH (Fig. 3.22).
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Figure 3.21: Comparison between
the phenotypic dynamics in round 1
generated by the 3-D model under
the alternative hypotheses “switch at
birth” and “switch at any time”. �e
values of the parameters are chosen
according to the best �t of the “mid”
treatment of the overshoot experi-
ment (Tab. 3.5).

Figure 3.22: Linear vs nonlinear
switching rates as functions of the in-
ternal concentration c (blue and or-
ange lines, respectively). In both
cases, switching rates are de�ned as
piecewise functions, to allow them
to be both nonzero only for val-
ues of c belonging to the bistability
region [cLOW , cHIGH ], correspond-
ing to CAP+ and CAP- coexistence.
A very extreme instance of nonlin-
earity is chosen, that is piecewise-
exponential functions with the max-
ima of derivatives near the boundaries
of the region of coexistence. �is way,
small deviations of c near the bound-
aries yield very high switching rate
variations, which should push the sys-
tem to sudden transitions.
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Figure 3.23: Comparison between
the phenotypic dynamics in round
1 generated by the 3-D model with
linear and nonlinear switching rates
(blue and orange lines, respectively).
�e values of the parameters are cho-
sen according to the best �t of the
“mid” treatment of the overshoot ex-
periment (Tab. 3.5).

Results are shown in Figure 3.23: no major change in the dynamics of the fre-
quency of CAP+ in the population was obtained. As expected, the di�erence between
the two can be be�er appreciated during the undershoot, that is when the internal
concentration c relaxes to its quasi-steady state (slightly higher than cLOW ) and thus
where the e�ects of the nonlinearities are maximal.

3.6 E�ect of growth rate on phenotypic diversity in
exponential phase

�e mathematical model presented in this Chapter satisfactorily describes the tran-
sient dynamics of the phenotypic composition of a population of Pseudomonas �uo-
rescens cells performing the capsulation phenotypic switch. I now aim to verify its
validity and predictive power on a di�erent problem, that is the link between CAP+
expression and growth rate. Indeed, the fundamental hypothesis on the context-
dependence of phenotypic switchers is that the rate of phenotypic change depends on
cell growth. Beside the case when it is a�ected by population demography, growth
might be altered in di�erent manners, while maintaining the population in the same
demographic regime. For instance, it is known that di�erent genetic backgrounds or
di�erent environmental conditions correspond to di�erent growth rates in exponen-
tial phase.

As I will more extensively treat in the next Chapter, Section 4.1.2, a statistically
signi�cant negative correlation can be observed between the fraction of capsulated
cells in a population of switchers and the mean growth rate of the population, when
these two quantities are measured in the exponential regime of growth.

In this Section, I address the question: Do the theoretical models presented in this
Chapter predict an explicit mutual dependence between the phenotypic composition
of the population and the rate of population growth? And do the predictions account



86 Modelling nonlinear growth-and-switch dynamics

for the negative correlation between these two quantities?
�e �rst two null models of Section 3.2 (“pure switch” and “di�erential growth”)

did not predict any kind of mutual dependence between the CAP+ frequency and the
mean growth rate of the population, while the third one (“constant switching rates
with growth rate di�erence”) predicted that the equilibrium frequency of the CAP+
phenotype in the population depended on the mean growth rate of the population
following Equation 3.35, which can be rewri�en as:

f⇤ =


1 +

↵�
↵+ + ⇢� r�

��1

, (3.86)

suggesting that higher values of the mean growth rate ⇢ would correspond to higher
values of the frequency of CAP+ at equilibrium f⇤ (Fig. 3.24, le� panel).

On the other hand, the 3-D mathematical model of context-dependent pheno-
typic switch of Section 3.3 provides a formula linking the exponential phase quasi-
equilibrium for the CAP+ frequency in exponential phase f⇤

E and themaximumgrowth
rate ⇢:

f⇤
E =

2

41 +
↵MAX
�

↵MAX
+

cHIGH � 1
1

Kc
+ ⇢

b

1
1

Kc
+ ⇢

b
� cLOW

3

5
�1

. (3.87)

By plo�ing the expected fraction of CAP+ cells during exponential phase f⇤
E against

the e�ective parameter ⇢
b (the ratio between the average growth rate and the maxi-

mum rate of production of the X metabolite) and using in Equation 3.87 the values of
the parameters corresponding to the best �t (Section 3.5.1), it can observed that the
relation is in this case qualitatively opposite with respect to that previously predicted
by the third null model: the higher the mean growth rate ⇢, the lower the equilibrium
frequency of CAP+ f⇤ (Fig. 3.24, right panel).

In the next Chapter, I present my experimental tests on the topic: indeed, by dis-
posing of a number of genetically di�erent mutants all displaying switching between
the CAP+ and CAP- phenotypes obtained by re-playing the evolutionary experiment
in Beaumont et al. [11] (Chapter 1, Section 1.3.2), I can measure their maximum
growth rate and frequency of the CAP+ in full exponential phase. Later in the next
Chapter, I present experimental evidence of a negative correlation between the two
quantities, and investigate whether Equation 3.87 predicts the right degree of variabil-
ity in the CAP+ frequency when I manipulate the mean growth rate ⇢ by changing
the switching genotype or by controlling the temperature of the environment.
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Figure 3.24: Correlation between the CAP+ frequency and the mean growth rate in exponen-
tial phase as predicted by the “constant switching rates with growth rate di�erence” (le� panel)
and by the three-dimensional (right panel) models. �e two models predict the correlation to
assume opposite sign. Colors correspond to the three treatments of the overshoot experiment,
each obtained by informing Eqs. 3.86 and 3.87 with the corresponding parameters obtained pro-
viding the best �t of the demographic and phenotypic dynamics of the overshoot experiment
(Table 3.5). �e intersection between each curve and the vertical, dashed black straight line
corresponding to the ��ed value of ⇢ gives the expected equilibrium fraction of CAP+ during
exponential phase.

3.7 Summary of the results and biological interpre-
tation

�e relevance of the bidirectional switch in Pseudomonas �uorescens switchers resides
in being context-dependent. Indeed, along a normal population growth trajectory, the
percentage of cells expressing the CAP+ phenotype changes dramatically in time if
the preculture is sampled su�ciently close to the stationary state.

Models wherein the switch is context-independent do not encompass such a be-
haviour, while the 3-D model introduced in this work, where temporal variations in
the intracellular concentration of a generic metabolite “translate” di�erential growth
regimes in switching rates modulations, can reproduce the observed dynamics of the
phenotypic composition of the population.

�e qualitative di�erence between populations replicated from di�erent precul-
ture treatments and the extent of the overshoot and undershoot can be interpreted as
the e�ect of intracellular dynamics being in�uenced by growth rate through dilution.
�e closer to stationary phase the cells get to during the preculture stage (round 0),
the longer the lag period at resuspension (beginning of round 1), and the higher the
concentration of X and its rate of increase at the beginning of round 1, ultimately caus-
ing cells to massively switch to the CAP+ state. On the other hand, cultures that are
maintained in exponential phase maintain their phenotypic composition until they
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reach stationary phase.
A quantitative comparison between data and model was performed, and it was

found that the three trajectories corresponding to the three preculture treatments
could not be ��ed with just one set of parameters. �is suggests that precultures at
di�erent stages of growth may be composed of cells that, beside having experienced
di�erent demographic histories, are characterized by di�erent pa�erns of gene regu-
lation related to the switching behaviour. �e parameters that most vary among the
di�erent treatments are the duration of the lag period ⌧ (measured), and the switch-
ing rate to the CAP+ state ↵MAX

+ (��ed). On the contrary, the preculture conditions
seem not to have a strong in�uence on the growth rate in exponential phase, which
might be a purely genotypic-driven observable, nor on the maximum switching rate
to the CAP- phenotype ↵MAX

� .
�e trans-generational persistence of the levels of expression of CAP+ in the pop-

ulation (i.e. the fact that the di�erence in phenotypic composition at the beginning
of round 1 is conserved across several generations, until the end of round 1) cannot
be quantitatively explained only in terms of di�erent initial conditions, but it seems
to be mediated by the CAP- to CAP+ maximum switching rate ↵MAX

+ : the longer the
preculture round, the higher the switching rate ↵MAX

+ .

Possible physiological basis of the parameter variation

During the course of the thesis, further work on the physiology and molecular un-
derpinnings of the switching strains was realized in Paul Rainey’s lab by Dr. Philippe
Remigi, Dr. Gayle Ferguson (unpublished data). In their view, switchers have a mis-
regulated production of ribosomes, that would be in particular up-regulated upon
entering the stationary phase of growth. High ribosome levels would compete with
RmsA/E genes for the translation of a positive regulator of capsule biosynthesis. Such
gene, named “A”, would encode for a protein whose concentration is responsible for
the bistability in capsule expression.

One possible interpretation provided our model is that the product of gene “A”,
which triggers the switching behaviour via a threshold mechanism, is described by
the concentration c of the product X. GFP �uorescencewouldmeasure, in experiments
such that presented above, the translation of A (or X).

On the other hand, the model does not deal with more detailed levels of descrip-
tion, like the quanti�cation of the concentration of ribosomes or that of the post-
transcriptional repression of gene A by RsmA/E. Instead, I make use of growth rate
as a proxy for the ensemble of the regulations acting on A (like the ratio between the
concentration of ribosomes and that of RmsA/E). �is choice allows me to simplify
the description of the dynamics observed in the overshoot experiment.

�e parameter b represents the maximum rate of production of X by the cell. In
the mathematical model the intracellular concentration of X saturates (with the ex-
ception of the lag phase) to a maximum value Kc which represents the maximum
amount of protein X that the cell can produce and store. �is term encompasses all
the possible regulations that control the maximum level of X. During lag, I suppose
such a regulation is relieved, allowing c to get to values greater than Kc.
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One can imagine that, as the concentration of ribosomes in the cell gets higher in
older cultures, the production term, determining the accumulation of X a�er cells are
diluted, increases too. If the growth rate is una�ected, the e�ect of having a higher
ribosomal concentration may result in an increase of b and/or Kc: more ribosomes
couldmake themaximum translation rate higher and/or to allow the cell to storemore
units of protein A/X. I modelled the second scenario but the �rst should be explored
as well in future work.

Finally, it seems reasonable that, if it has a direct e�ect on the switching behaviour,
the concentration of ribosomes should more likely a�ect the ↵MAX

+ rate, rather than
the ↵MAX

� . Indeed, ↵MAX
+ is related to the synthesis of huge amount of cellulose,

whereas ↵MAX
� is more dependent on degradation, which is not performed by ribo-

somes.

Conclusions

�e three-dimensional mathematical model introduced here qualitatively reproduces
the non-monotonic dynamics of the frequency of the capsulated phenotype. �e
model also �ts quantitatively the transient behaviour, but in order to account for
all the di�erences among preculture conditions (“low”, “mid”, “high”), each of such
treatments needs to have di�erent parameters, notably in terms of the maximal rate
of switching ↵MAX

+ . �e model moreover predicts a negative correlation between
the average growth rate of the population and the frequency of the CAP+ phenotype,
with the correlation coe�cient depending on the microscopic parameters.

�e experimental tests of this prediction will be the main focus of Chapter 4. In
Section 4.1, I present my experimental results on the negative correlation between the
level of expression of the CAP+ phenotype in the population and the growth rate of
the population in exponential phase. Section 4.2 is dedicated to compare the model
prediction with the measured variability in CAP+ frequency across strains and for the
same strain at di�erent temperatures. Finally, in Section 4.3, I propose a biologically
reasonable further hypothesis on the switching rates, which allows to improve the
��ing power of the model on the growth-capsulation data.
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CHAPTER 4
THE ROLE OF GROWTH RATE IN P. FLUORESCENS
SWITCHING DYNAMICS

L
������ ������ ���� ��� switching through internal concentrations, the
mathematical model presented in Chapter 3 succeeds in reproducing the
phenotypic dynamics of Pseudomonas�uorescens “switchers” populations.
�emodel predictsmoreover the existence of quasi-equilibria of the CAP+

frequency in exponential phase, for which it o�ers a predictive formula where the
quasi-equilibrium directly decreases with the mean growth rate of the population.

�is Chapter tackles the following questions:

1. Do variations in the mean growth rate of Pseudomonas �uorescens populations
in�uence the degree of phenotypic heterogeneity in exponential phase?

2. Does the mathematical model quantitatively predict the CAP+ frequency in ex-
ponential phase as a function of mean growth rate?

In this Chapter I present the results of experimental assays aimed at answering
these questions: a negative correlation between the mean CAP+ frequency in expo-
nential phase and the mean growth rate of the population is indeed obtained – both
by testing di�erent genotypes characterized by di�erent mean growth rate and by
controlling the growth rate through culture temperature (Section 4.1).

Even though the experimental protocol has to be re�ned in order to obtain more
reliable statistics, my observations point to a quantitative mismatch with the predic-
tions of the model, based on growth rate as an independent control parameter. When
informing the aforementioned predictive formula with the parameters of the best �t
of the overshoot dynamics, we cannot account quantitatively for the measured CAP+
frequency – which appears to be larger than predicted. Such an underestimation of
the CAP+ frequency in exponential phase suggests that the switching rates might be
explicit functions of the mean growth rate (Section 4.2).
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�e correct relation can be indeed obtained by having the maximum switching
rates scale with the mean growth rate in a way that is compatible with the hypothesis
that such rates are a�ected by ribosomal di�erential concentration between CAP+
and CAP- (Section 4.3).

4.1 �e CAP+ frequency negatively correlates with
the mean growth rate

�e goal of this Section is to answer the question: Do controlled variations in the
mean growth rate of Pseudomonas �uorescens populations in�uence the degree of phe-
notypic heterogeneity in exponential phase?

Such an inquiry is indeed motivated by the fact that both a simple growth-and-
switch null model (Chapter 3, Section 3.2.3) and the mathematical model conceived to
reproduce and explain the history-dependent dynamics of the phenotypic composi-
tion of the population (Chapter 3, Section 3.3.5) forecast the CAP+ frequency to vary
as a function of the mean growth rate.

In particular, for the “constant switching rate with growth rate di�erence” null
model I obtained a positive linear relation between the CAP+ frequency equilibrium
and the average growth rate (Eq. 3.35). �e mathematical model describing the over-
shoot dynamics, on the other hand, provided a quantitative prediction for the CAP+
frequency during exponential phase f⇤

E (Eq. 3.70), from which a negative nonlinear
relation between mean growth rate and an exponential phase CAP+ frequency quasi-
equilibrium follows.

In the following pages, experimental tests of the relationship between growth rate
and degree of phenotypic heterogeneity in Pseudomonas �uorescens are presented, and
their relation with the di�erent mathematical models discussed. First of all, I show
experimental evidence supporting the hypothesis that the main determinant of the
growth rate in exponential phase is the genotype rather than the phenotype (Sec-
tion 4.1.1). �e mean growth rate can be therefore taken as the independent variable
to compare the levels of CAP+ expression in exponential phase across the di�erent
switching genotypes, �rstly grown in KB (Section 4.1.2) and then in KBS (Section
4.1.3). Finally, one switching strain (1w4xGFP) will be exposed to di�erent culture
temperatures to control the mean growth rate and the CAP+ frequency in exponen-
tial phase, which are both known to respond to temperature (Section 4.1.4).

4.1.1 �e growth rate depends on the genotype
�e mean growth rate of one Pseudomonas �uorescens switching population depends
on the (a priori, di�erent) division rates of its two phenotypes CAP+ and CAP- and
on the phenotypic composition of the population. Time-lapse experiments allow to
measure growth rate at the microcolony level while ideally tracking the exact phe-
notypic composition of the microcolony itself, which can provide another measure
of the growth rate of the di�erent Pseudomonas �uorescens switchers and should in
principle yield to the determination of the eventual di�erence in the division time
between CAP+ and CAP-.
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In the following paragraphs, time-lapse measurements of the increase in the area
of microcolonies founded by CAP+ or CAP- individuals are presented. For this analy-
sis, only those microcolonies whose cells never displayed a switch to the CAP+ state
are considered “-” microcolonies, while “+” microcolonies will be those founded by a
CAP+ cell, without keeping exact track of the individual phenotype of all cells (which
revealed to be impossible in our experimental setup due to experimental issues). An
example of microcolony growth data is provided by Figure 4.1. Further details on the
experimental and image analysis protocols can be found in Chapter 2, Section 2.2.2.
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Figure 4.1: Example of microcolony growth data from a time-lapse experiments. Di�erent
colors represent di�erent microcolonies monitored during the same experiment (in this case,
�ve Re1.4xGFP microcolonies founded by CAP- cells). Solid lines are the exponential �t of data.

First, I compared “-”microcolonies (by far themost numerous) of strains 1w4xGFP,
Re1.4xGFP, and Re1.5xGFP, the la�er two being chosen because the fastest and the
slowest growing in bulk, respectively. In Figure 4.2 it can be noticed that the expected
order ⇢(Re1.4) < ⇢(1w4) < ⇢(Re1.5) is respected at the microcolony level, and on
agar pad, too. �e di�erences between the three strains are statistically signi�cative
(Table 4.1).

To understandwhether the phenotype of the founding individual has an impact on
the growth of Pseudomonas �uorescens colonies, time-lapse data about microcolonies
started from either CAP+ or CAP- cells for the same genotype (Re1.4xGFP) were col-
lected. Again (Figure 4.2 and Table 4.1), such microcolonies have a signi�cantly dif-
ferent growth rate with respect to those of 1w4xGFP or Re1.5xGFP, but they are not
signi�catively di�erent from one another.

In conclusion, at least for the three strains here analysed, di�erent switching geno-
types show a signi�cant di�erence in themean growth rate on agar plates, too. In turn,
a signi�cative di�erence between the two phenotypes (CAP- and CAP+) of the same
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Figure 4.2: Distribution of the
mean growth rate in exponential
phase for three di�erent “switch-
ers” (1w4xGFP, Re1.4xGFP,
Re1.5xGFP). Growth rate is
measured by ��ing the increase
in the surface covered by micro-
colonies over time. For 1w4xGFP
and Re1.5xGFP strains only
microcolonies whose individual
cells never expressed the CAP+
phenotype were taken in consid-
eration, while Re1.4xGFP both
“-” and “+” microcolonies could
be observed. �e number n of
analysed microcolonies for each
class is indicated.

1w4 (-) Re1.4 (-) Re1.5 (-)

1w4 (-) - 1.1 10�4 0.043
Re1.4 (-) - - 3.3 10�8

Re1.4 (+) 3.9 10�4 0.67 4.5 10�7

Table 4.1: Statistical signi�cance of the di�erence in the exponential phase population growth
rate between CAP- cells from 1w4xGFP, Re1.4xGFP and Re1.5xGFP, and CAP+ cells from
Re1.4xGFP (P-values of the Student’s t-test). �e growth rate was measured as the rate of in-
crease of the surface covered by micocolonies founded by one individual expressing the given
phenotype. Di�erences between “-” microcolonies from the three di�erent genotypes are sta-
tistically signi�cant if the threshold is 5%. Re1.4xGFP “+” colonies are signi�cantly di�erent
from those of 1w4xGFP and Re1.5xGFP “-”, but not from Re1.4xGFP “-”, i.e. from microcolonies
founded by individuals of the same strain but expressing a di�erent phenotype.

genotype (Re1.4xGFP) could not be appreciated. �ese results support the assumption
that the division rate could be treated as a variable independent of the phenotype, and
that, on the other hand, its main determinant is the genotype of the strain.
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4.1.2 Switching genotypes di�er in both growth and CAP+ ex-
pression

During a visit at Rainey Lab, Massey University (Auckland, New Zealand), I measured
the growth rate in exponential phase for 1w4 and the other re-evolved switchers Re1.2,
Re1.4, Re1.5, Re1.8, Re2, and Re12 (see Chapter 2, Section 2.2.2). By plo�ing such
growth rates against previous measurements of CAP+ frequency in exponential phase
performed by Jenna Gallie, I obtained a statistically signi�cant negative correlation
between these two quantities. �e strains growing faster during exponential phase
tend to have a lower percentage of CAP+ (Fig. 4.3).
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Figure 4.3: Mean growth rate and CAP+ frequency from seven switching genotypes growing
in exponential phase in KB culture medium medium negatively correlate. Growth rates are
computed by ��ing optical density measurements obtained through an automated TiCan plate
reader. CAP+ frequency measurements are those performed by Jenna Gallie and published
for the �rst time in [41]. Each point corresponds to one of the seven di�erent switching Pseu-
domonas �uorescens genotypes with the insertion of the gfp gene under the control of promoter
of CarAB (1w4, and the six switchers re-evolved from 1w4 immediate precursor, see Chapter 2
for further details). Error bars on both dimensions correspond to standard error of the mean
among replicate measures (growth measures: 3 replicates per strain; counting assays: 2500 cells
per strain). Linear correlation coe�cient ⇢ = �0.981, Pvalue = 9.245 10�5.

�e genetic transformation of the switchers (Chapter 2), paved the way to a more
precise characterization of the Pseudomonas �uorescens CAP phenotypic switch: the
frequency of the CAP+ state, nowmarked by the gfp gene, becamemeasurable by �ow
cytometry, thus in a much higher throughput fashion than by the previous, laborious
method consisting in staining cells with indian ink and then manualling counting the
two phenotypes out of microscopy observations.
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4.1.3 �e culture medium a�ects both growth and CAP+ ex-
pression

By changing the amino acid source among the ingredients of the standard growth
medium KB (King’s B), Rainey and collaborators could induce a signi�cant increase
in the frequency of the CAP+ state across Pseudomonas �uorescens CAP switching
populations when plated on agar plates. �e new formula, called KBS (“King’s B
Switcher”), is the same culture medium used in the overshoot experiment (Chapter
3), and it di�ers from KB in that tryptone substitutes peptone III: although these com-
pounds supply the same nutritional power, the switching behaviour appears to be
di�erent in the two media.

Growth rate measurements

Tomeasure the switchers’ exponential phase average growth rate in KBS, optical den-
sity was assayed in TiCan 96-plate reader, and the mean exponential phase growth
rates obtained through exponential �t of the collected data. As an example, one
growth curve for the 1w4 strain is shown in Figure 4.4.
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Figure 4.4: 1w4xGFP optical density data correspond to the expected exponential growth.
Optical density (black circles) is measured by TiCan 96-plate reader (3 replicates per genotype,
only one shown in �gure). �e exponential �t (red solid line) is performed on thirteen time
points belonging to a time window of two hours, so to select the early exponential phase.

One non-GFP control (1w4) and the line 6 switching genotype with GFP insertion
(6w4xGFP) were added to the pool of the assayed strains for these tests in KBS. �e
di�erence between every re-evolved switching genotype and its corresponding GFP
version consists just in the insertion of the gfp gene downstream the carAB operon,
under the control of its same promoter. Although it was shown that the response
to external agents such as antibiotics can be di�erent [4], the expression of the GFP
protein only weakly a�ects growth rate in bacteria. Data support the evidence that
the insertion of GFP slightly lowers the growth rate (cf. 1w4 vs 1w4xGFP in Table 4.2).
�e fastest growing strain (Re1.5xGFP) grows more than twice as fast as the slowest
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one (Re1.4xGFP), as well as the fact that genotypes sharing the same switch-triggering
mutation (1w4xGFP and Re1.8xGFP) present very similar growth rates.

KB KBS

Strain ⇢ (OD h�1) �̄⇢ (OD h�1) ⇢ (OD h�1) �̄⇢ (OD h�1)

1w4 (control) - - 0.389 0.009
1w4xGFP 0.474 0.006 0.365 0.005
6w4xGFP - - 0.329 0.009
Re1.2xGFP 0.519 0.006 0.359 0.002
Re1.4xGFP 0.362 0.003 0.218 0.005
Re1.5xGFP 0.541 0.005 0.544 0.007
Re1.8xGFP 0.460 0.007 0.381 0.004
Re2xGFP 0.494 0.004 0.467 0.003
Re12xGFP 0.496 0.006 0.323 0.004

Table 4.2: Mean growth rate and standard error of the mean for the switching Pseudomonas
�uorescens strains - experiments performed in both KB and in KBS culture media. Results were
obtained by ��ing TiCan growth curves with an exponential law in a time window of 2 hours
during early exponential phase.
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Figure 4.5: Measurements of themean exponential growth rate in KBS and in KB culture media
correlate. �e medium change from KB to KBS introduces a sistematic change in the growth
rate, which can quanti�ed via the intercept of the linear �t with the y axis. Error bars on both
dimensions correspond to standard error of the mean across the three replicates performed per
strain. Linear �t: ⇢KBS = 1.435 ⇤ ⇢KB � 0.306. Linear correlation coe�cient ⇢ = 0.798,
Pvalue = 0.031.
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Growth rate measurements in KBS correlate well with those previously performed
in KB (Fig. 4.5). �e two sets are signi�cantly di�erent (Pvalue ' 0.05), meaning that
the di�erence between the two groups can be ascribed to the medium change. �e
Pseudomonas �uorescens switching strains grow slower in KBS than in the oldmedium
recipe (all points are under the main diagonal of the graph). �e (negative) intercept
of the linear �t quanti�es the bias induced by the medium change. On the other hand,
inter-strain variability in KBS is higher than that measured in KB (the slope of the
linear �t is greater than 1).

CAP+ frequency measurements

�e frequency of the CAP+ phenotype in the populations of our Pseudomonas �uo-
rescens switching strains was measured through �ow cytometry (see Chapter 2, Sec-
tion 2.2.2 for details). �e results of the measurements (mean values and standard
error over the three replicas for every strain) are shown in Table 4.3 and Figure 4.6.
Here again, we observe that the genotypes sharing the same switch-triggering muta-
tion (1w4xGFP and Re1.8xGFP) present similar frequencies of the CAP+ phenotype.

KBS

Strain CAP+ freq. �CAP+ freq.

1w4 (control) 0.004 -
1w4xGFP 0.780 0.015
6w4xGFP 0.904 0.022
Re1.2xGFP 0.294 0.028
Re1.4xGFP 0.147 0.004
Re1.5xGFP 0.010 0.001
Re1.8xGFP 0.792 0.014
Re2xGFP 0.370 0.038
Re12xGFP 0.389 0.028

Table 4.3: Mean CAP+ frequency
and standard error of the mean
for each of the 9 di�erent switch-
ing strains (�ow cytometry measure-
ments). �ree replicates were per-
formed for each strain, with the ex-
ception of the negative control (1w4)
for which only one replicate was per-
formed.
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Figure 4.6: Mean CAP+ frequency
measured through �ow cytometry
varies across the switching geno-
types. Error bars represent standard
error of the mean. �ree replicates
were performed for each strain, with
the exception of the negative control
(1w4) for which only one replicate
was performed.

Growth rate / CAP+ frequency scatterplot

Data from growth and capsulation assays in KBS can be aggregated to verify if the
negative correlation between average growth rate in exponential phase and frequency
of the CAP+ state still holds (Fig. 4.7). Despite having signi�cantly changed the cul-
ture environment, the negative correlation between the two observables is conserved,
although it is less strong.

Unlike previous measures where they scored the highest frequency of CAP+ phe-
notype across the di�erent switchers, Re1.4xGFP cultures presented in KBS a very
low CAP+ frequency, instead of being positively a�ected by the medium change. �is
might be due to the particular mutation endowing Re1.4 with the capsulation switch,
which might have cells respond di�erently to the amino acid change, or to clumping
of cells preventing a precise measure through �ow cytometry.

In conclusion, KBS (which was found to enhance the frequency of the CAP- to
CAP+ switch on agar plates), corresponds to higher CAP+ frequency in bulk culture,
while signi�cantly slowing down population growth in exponential phase. Finally,
a negative correlation between the mean growth rates and the CAP+ frequencies is
always obtained, and appears to be irrespective of the growth medium and of the
experimental protocol. Indeed, measuring the CAP+ frequency by �ow cytometry
(rather than indian ink staining) increases the sample size of several orders of magni-
tude without altering the relative di�erences between strains, with the exception of
Re1.4xGFP.
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Figure 4.7: Mean growth rate and CAP+ frequency from di�erent switching genotypes grow-
ing in exponential phase in KBS culture medium negatively correlate. Each point corresponds
to one of the switching Pseudomonas �uorescens genotypes with the insertion of the gfp gene
1w4xGFP, 6w4xGFP, Re1.2xGFP, Re1.4xGFP, Re1.5xGFP, Re1.8xGFP, Re2xGFP, Re12xGFP, plus
6w4xGFP and the negative control 1w4 without the gfp insertion. Linear correlation coe�-
cient ⇢ = �0.227, Pvalue = 0.559 (black dashed line). When excluding the negative con-
trol 1w4 and Re1.4xGFP (whose growth curves were strongly a�ected by cellular clumping):
⇢ = �0.561 , Pvalue = 0.148 (red dashed line).

4.1.4 Temperature alters both growth and CAP+ expression
�e results of the previous Sections indicate that, though di�ering in the genetic basis
of the switching behaviour, the phenotypic state of di�erent strains follows a pa�ern
of co-variation with the growth rate: fastest-growing strains tend to have less cap-
sulated cells than slower-growing ones. If there was a direct link between switching
rates and growth rate similar to what assumed in the model presented in Chapter 3,
one could expect that the same conclusion should hold if growth rate is altered oth-
erwise than by genetic means. It is known that bacteria adjust their generation time
according to the temperature of their growth environment.

I thus decided to control the mean growth rate of one speci�c strain by exposing
it at di�erent temperatures (the same during the night culture and the measurements
phase). To this avail, 1w4xGFP cultures were grown at 20, 22, 25, 28, 31 and 34° C, and
their growth rate and CAP+ frequency in exponential phase assessed.

If changes in the mean growth rate of the population are indeed the main cause of
variability in the typical frequency of the CAP+ phenotype in Pseudomonas �uorescens
populations sustained in exponential phase, I expect to obtain the same negative cor-
relation between the two quantities, no ma�er how the growth rate is manipulated.
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Nevertheless, I cannot rule out the fact that stress response could a�ect switching
rates in ways that are independent of the “passive” dilution e�ect induced by growth
rate change.

Growth rate measurements

A�er a night culture round, each of the three replicates was diluted to the same op-
tical density (OD = 0.1) and cell density measured every 60 minutes (for the 20, 25
and 31° C samples), or every other hour (22, 28 and 34° C) through optical density. Al-
though the measurements continued longer, the exponential �t necessary to estimate
the exponential phase growth rate for each of the replicates was performed on an
early time window (between two and six hours a�er resuspension), before the culture
approached saturation. Results are presented in Table 4.4 and plo�ed in Figure 4.8.

Temp. (° C) Repl. ⇢ (h�1) �̄⇢ (h�1) Temp. (° C) Repl. ⇢ (h�1) �̄⇢ (h�1)

20 R1 0.316 28 R1 0.443
20 R2 0.308 28 R2 0.456
20 R3 0.314 28 R3 0.405

20 0.313 0.003 28 0.435 0.019

22 R1 0.310 31 R1 0.465
22 R2 0.416 31 R2 0.471
22 R3 0.335 31 R3 0.465

22 0.354 0.039 31 0.467 0.002

25 R1 0.335 34 R1 0.046
25 R2 0.367 34 R2 0.101
25 R3 0.378 34 R3 0.140

25 0.360 0.016 34 0.096 0.034

Table 4.4: Mean exponential phase growth rate of 1w4xGFP populations grown at di�erent
temperatures in KBS. An exponential �t of the optical density data between 2 and 6 hours a�er
resuspension was performed for each of the replicates. For each temperature, the mean value
and the standard error of the mean over the three replicates are also presented.

In Figure 4.9 the mean growth rate is plo�ed against temperature for six di�erent
temperatures between 20 and 34° C. Growth curves are highly reproducible (except
the one at 22° C) and show quantitative di�erences as temperature is varied. It can be
noticed that the positive e�ect of culture temperature on population growth during
exponential phase seems to cease for cultures grown at temperatures higher than 31°
C: the 34° C samples are indeed sick, and observation under the microscope proved
their inability to grow associated to a very serious change of the cells’ appearence.
For this reason, they were excluded from the subsequent analysis.
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Figure 4.8: Optical density measurements of 1w4xGFP cultures grown at 22, 28, 34° C (top
panel) and 20, 25 and 31° C (bo�om panel). For each temperature, three identical replicates
were grown, and the mean and standard error of the mean computed. �e exponential �t of
the mean OD across the three replicates was performed (solid lines).
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Figure 4.9: Temperature a�ects exponential growth in Pseudomonas �uorescens 1w4xGFP pop-
ulations. �ree independent populations were grown at each of the tested temperatures (20, 22,
25, 28, 31, and 34° C) and the growth rate computed by exponential �t of the corresponding op-
tical density data. For each temperature, error bars correspond to the standard error of the
mean growth rate over the three replicates.

CAP+ frequency measurements

�e frequency of CAP+ cells in exponential phase was assayed by �uorescent mi-
croscopy. At 3 hours (20, 25, and 31° C) or 4 hours a�er resuspension (22 and 28° C),
a ⇠ 1 �l sample of each of the grown cultures was plated on a microscopy slide and
20 pictures taken at di�erent locations in both phase contrast and GFP �uorescence.
An automated Fiji image analysis procedure allowed us to gather data about the total
number of cells (phase contrast channel) and the number of CAP+ cells (GFP �uores-
cence channel). Table 4.5 recapitulates the results of the counting assays. For further
details about the experimental protocol, see Chapter 2, Section 2.2.2.
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Temperature (° C) Repl. Counted cells Counted CAP+ CAP+ frequency

20 R1 273 124 0.454
20 R2 362 77 0.213
20 R3 720 379 0.526

20 1355 580 0.428

22 R1 159 117 0.736
22 R2 404 212 0.525
22 R3 59 18 0.305

22 622 347 0.558

25 R1 254 133 0.524
25 R2 318 23 0.072
25 R3 545 154 0.283

25 1117 310 0.278

28 R1 153 25 0.163
28 R2 359 16 0.045
28 R3 102 26 0.255

28 614 67 0.109

31 R1 390 4 0.010
31 R2 430 1 0.002
31 R3 281 2 0.007

31 1101 7 0.006

34 R1 1 0 0
34 R2 2 0 0
34 R3 65 3 0.046

34 68 3 0.044

Table 4.5: Results of the counting assays for 1w4xGFP populations grown at 20, 22, 25, 28, 31,
and 34° C. Data for each replicate are shown along the total number of cells, total number of
CAP+ cells and CAP+ frequency for each of the temperatures.

Growth rate / CAP+ frequency scatterplot

When plo�ing the measured CAP+ frequency against the mean growth rate for the
�ve temperatures, I again �nd a statistically signi�cant negative correlation between
these two observables, irrespectively of considering the data from di�erent replicates
at the same temperature individually or lumped together (Fig. 4.10).
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Figure 4.10: �e fraction of CAP+ cells and the mean growth rate in exponential phase of
1w4xGFP populations grown at �ve di�erent temperatures negatively correlate — one point
per replicate (top panel) and aggregated results (bo�om panel, error bars corresponding to the
standard error of the mean across three replicates). Linear correlation coe�cient ⇢ = �0.881,
Pvalue = 0.048.

4.1.5 High variability might be due to protocol limitations
�e high degree of intra- and inter-replicate variability obtained in the �uorescent mi-
croscopy assays (Fig. 4.10) casts some doubts about the reliability of the experimental
protocol for reliably obtaining quantitative measures. Henceforward some consider-
ations about the main experimental issues and the way to improve the protocol are
discussed.
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More data is needed to obtain reproducible results on CAP+ frequency

For each temperature, three di�erent replicates were performed: for each replicate
' 20�30microscopy images were taken to gather su�cient data about the frequency
of the CAP+ phenotype in 1w4xGFP populations (see Chapter 2), corresponding to
' 500� 1000 cells. Data display extremely high inter-replicate variability (cf. Table
4.5 and Figure 4.10), resulting in a high variance on the estimation of the frequency of
CAP+ f . Here I aim at estimating how many di�erent replicates should be performed
to reduce the relative uncertainty on the CAP+ frequency below a desired level.

Table 4.6 recapitulates the minimum number of replicates R20% needed to obtain
a relative error on the CAP+ frequency of 20% for all the temperatures tested so far.
�e corresponding number of cells is obtained by multiplying the needed number of
replicates by the average number of cells assayed per replicate N/3.

Temp. (° C) R N N+ f �f �̄f/f(%) R20% N20%

20 3 1355 580 0.428 0.167 27.6 5 2171
22 3 622 347 0.558 0.215 27.2 5 977
25 3 1117 310 0.278 0.225 57.2 17 6470
28 3 614 67 0.109 0.105 68.1 24 4953
31 3 1101 7 0.006 0.006 70.7 26 9542

Table 4.6: More independent replicates are needed to decrease the dispersion of the results of
the frequency measurements to the 20% threshold. For each of the �ve di�erent temperatures,
the relative error on the frequency depends on the square root of the number of replicates
minus one, which allows us to �nd the minimum number of replicates R20% needed to get a
relative error on f of 20%. �e expected total number of cells to be assayed is �nally obtained
by multiplying R20% by the average number of cells per replicate N/3.

When is exponential phase? Choosing the right timing

Of crucial importance is �xing the moment when the �uorescent microscopy mea-
surement is performed: indeed, cultures must be in exponential phase, and at the same
time frequencies must have reached a quasi-steady state. �is means that enough time
must have elapsed a�er the overshoot, where the �uctuations of the CAP+ frequency
reach their maxima (cf. Chapter 3, Section 3.4). �is aspect concerns not only the
moment when pictures of the cultures are taken under the microscope, but also the
preparation phase (e.g. when the �rst preculture gets diluted).

For these reasons, a preliminary experiment is needed to verify that the mean
growth rate at 2 hours a�er resuspension into fresh KBS is a good proxy for the ex-
ponential phase quasi-equilibrium. To allow quantitative comparison with the model,
the growth rate and the population composition must both be stable across replicates
and irrespective of the number of previous dilutions (Figure 4.11).
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Figure 4.11: �e mean growth rate in 1w4xGFP populations is stable across successive di-
lutions of the same population. �ree identical 1w4xGFP cultures are started (T1, from R1 to
R3, black points), and three hours later each of the three replicate cultures is diluted to OD =
0.01 into fresh KBS medium (T2, from R1 to R3, blue points). �e procedure is then repeated
three hours later, founding the three T3 populations (red points). �e mean growth rate is ob-
tained through an exponential �t of the optical density data between 1 and 3 hours a�er the
foundation of each culture (solid lines).

Table 4.7 shows the series of three mean growth rates obtained by ��ing the three
successive optical density time series from one to three hours a�er foundation, for
each replicate. In general, intra-replicate variability (by comparing the standard devi-
ation of the results of the �t for T1, T2, T3 belonging to the same replicate) is higher
than inter-replicate variability for a given dilution (in 7 out of the 9 pairwise com-
binations), meaning that the procedure followed to perpetuate a population through
successive dilution does not introduce an uncertainty in the exponential phase growth
rate greater than the one that we can already observe between di�erent replicates of
cultures of a same strain.

1w4xGFP at 28° C KBS

Repl. Dilution T1 Dilution T2 Dilution T3

R1 0.323 0.325 0.347
R2 0.430 0.417 0.406
R3 0.369 0.280 0.401

Table 4.7: �e 1w4xGFP mean growth rate does not vary much between successive dilutions.
Standard deviations: �2

T1 = 0.054, �2
T2 = 0.070, �2

T3 = 0.033, �2
R1 = 0.013, �2

R2 = 0.012,
�2
R3 = 0.063.



108 The role of growth rate in P. fluorescens switching dynamics

4.2 �emodel predicts only part of the variability in
CAP+ frequency

�e experimental results presented in the last Section prove that variation in mean
growth rate translates into variation of the alternative phenotypes’ frequencies dur-
ing exponential phase, but also that this variation depends on a number of factors,
including experimental protocol, culture medium, time of observation. It is not clear
yet to what extent it is possible to describe these di�erent situations within a uni�ed
framework, where the population state is mostly controlled by growth rate di�er-
ences.
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Figure 4.12: �e fraction of CAP+ cells and the mean growth rate in exponential phase neg-
atively correlate irrespective of how the la�er is varied. Data from switchers in KBS (except
6w4xGFP and Re1.4xGFP, whose cultures were susceptible to clumping and therefore did not
provide accurate measurements) and from 1w4xGFP exposed at 20, 22, 25, 28 and 31° C are
shown. Linear correlation coe�cient ⇢ = �0.600, Pvalue = 0.051.

Data about di�erent Pseudomonas �uorescens switching genotypes and those about
1w4xGFP cultures grown at di�erent temperatures both display a negative correlation
between mean growth rate and percentage of CAP+ cells in the population. Figure
4.12 compounds the measures for di�erent strains with those for di�erent tempera-
tures. To the level of resolution reached in these experiments, it appears that the two
sources of growth variation cannot be distinguished on the sole basis of their e�ect
on population composition.

A negative correlation between CAP+ frequency and growth rate could already
be predicted by the model presented in Chapter 3. In this Section I aim at answering a
further question: Does the mathematical model quantitatively account for the CAP+
frequency in exponential phase as a function of mean growth rate?
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�e focus of Chapter 3, the mathematical model (conceived to reproduce and ex-
plain the history-dependent dynamics of the phenotypic composition of the popula-
tion) provides a quantitative prediction for the CAP+ frequency during exponential
phase f⇤

E (Eq. 3.70):

f⇤
E =

2

41 +
↵MAX
�

↵MAX
+

⇣
( rb + 1

Kc
)cHIGH � 1

⌘

⇣
1� ( rb + 1

Kc
)cLOW

⌘

3

5

�1

. (4.1)

Being f⇤
E a monotonously decreasing function of the average growth rate r = ⇢ (I

consider the case where the two phenotypes are equal in terms of the cells’ division
time), this results in the prediction of a particular functional form for the negative
correlation between these two observables.

4.2.1 �emodel underestimates themeasured CAP+ frequency
When informed with the parameters that best �t the phenotypic dynamics (Table 3.5),
the Equation 4.1 underestimates the frequency of CAP+ corresponding to low mean
growth rates in exponential phase (Fig. 4.13).
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Figure 4.13: �e mathematical model of Chapter 3 cannot explain the degree of CAP+ expres-
sion in 1w4xGFP populations exposed at di�erent culture temperatures. �e three solid lines
(green, blue and red) correspond to the growth rate - frequency of CAP+ curves obtained by in-
forming Equation 4.1 with the di�erent sets of parameters that best �t the phenotypic dynamics
under the three preculture conditions (“low”, “mid”, “high”, respectively).

Indeed, while the measurements taken at 31° C fall close to the curve obtained
informing Equation 4.1 with the parameters of the �t of the “low” preculture condi-
tions, the other measurements appear not to be predicted by the model. Taking the
aggregated data (one point per temperature obtained by summing the countings and
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averaging the mean growth rates over the three replicates), the divergence between
model and data seems to increase as temperature decreases apart from the point at
22° C (Figure 4.14).
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Figure 4.14: �e deviation of the experimental data about CAP+ frequency deviation from the
theoretical prediction issued from the overshoot model decreases with the mean growth rate.

Such deviation was computed as |fi�f⇤
E(ri)|

f⇤
E(ri)

, where fi(ri) and f⇤
E(ri) are the measured and

expected values of the fraction of CAP+ cells. Expected values are computed by Equation 4.1
by using the mean growth rates ri for any given temperature, and parameters from the best �t
of the overshoot experiment, “mid” preculture condition (Section 3.5.1). With the exception of
the point at 22° C, the decrease of the computed deviation between model and data appears to
scale linearly with the mean growth rate (dashed line).

In conclusion, I need to understand the origin of the discrepancy between model
and data, and why the discrepancy increases as the mean growth rate decreases. �e
strategy I want here to follow consists in loosening some assumptions made so far:

• the ratio between the maximum switching rates↵MAX
+ /↵MAX

� is the same that
best �ts the overshoot experiment (Section 4.2.2),

• the switching rates depend linearly on the internal concentration c (Section
4.2.3), and

• the maximum switching rates ↵MAX
+ and ↵MAX

� does not depend on the mean
growth rate (Section 4.2.4).
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4.2.2 Higher maximum switching rates ratios reduce the dis-
crepancy

Measured CAP+ frequencies as a function of the mean growth rate in exponential
phase do not concentrate around any of the curves set by Equation 4.1 when it is in-
formed by the parameters that best �t the overshoot experiment. �is discrepancy
may be due to the fact that the switching rates are di�erent under such di�erent ex-
perimental conditions. Albeit e�ort was put into following the same protocol as the
overshoot experiment, the fact of realizing measures in another lab and with di�erent
instruments might indeed have a�ected the quantitative reproducibility of the obser-
vations.
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Figure 4.15: �e �t of the relation between mean growth rate and CAP+ frequency in ex-
ponential phase is improved by increasing the ratio between the maximum switching rates
↵MAX
+ and ↵MAX

� (solid lines). Although higher values of ↵MAX
+ /↵MAX

� improve the corre-
spondance between data and model prediction with respect to that corresponding to the best �t
of the overshoot dynamics experiment (blue line), the unchanged scaling law does not appear
to match the data distribution yet.

From the analysis of the model (Chapter 3, Section 3.3.5), it is known that, if the
quasi-equilibrium f⇤

E depends on most of the parameters of the model, the slope of
the CAP+ frequency vs mean growth rate curve is particularly sensitive to changes in
the ratio between the maximum switching rates ↵MAX

+ /↵MAX
� (Equation 4.1). Please

notice that, with ↵MAX
� �xed, ↵MAX

+ appears to be the parameter that a�ects more
sensitively the �t of the phenotypic dynamics across the three preculture conditions
(Table 3.5). For growing values of the ↵MAX

+ /↵MAX
� ratio, the curves generated by

Equation 4.1 become steeper and reach higher values of the CAP+ frequency quasi-
equilibrium f⇤

E for low growth rates (Fig. 4.15).
In conclusion, the curves obtained by increasing the ↵MAX

+ /↵MAX
� ratio of one

order ofmagnitude do perform be�er than the previous ones, but they do not still seem
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Figure 4.16: Linear vs nonlinear depen-
dency of the switching rates on the inter-
nal concentration c (blue and orange lines,
respectively). In both cases, switching
rates are de�ned as piecewise functions, to
allow them to be nonzero at once only for
values of c belonging to an intermediate
region (corresponding to CAP+ and CAP-
coexistence). In this case a very extreme
instance of nonlinearity is chosen, that is
piecewise-exponential functions with the
maxima of derivatives near the boundaries
of the region of coexistence. �is way,
small deviations of c near the boundaries
yield very high switching rate variations,
pushing the system to sudden transitions.

to grasp how the CAP+ frequency scales with the mean exponential phase growth
rate.

4.2.3 Nonlinear rates do not change the predicted functional
shape

Another possible reason for the data-model discrepancy when dealing with the ex-
pected frequency of the CAP+ cells in exponential phase as a function of the mean
growth rate of the population may consist in the simplistic functional form chosen in
the model for the switching rates dependence on the internal concentration of X, c.

�erefore, for the switching rates ↵+(c) and ↵�(c) one can consider alterna-
tive functional forms, like piecewise- exponential functions corresponding to an S-
like and not Z-like intracellular bifurcation diagram of c in the bistability region
c 2 [cLOW , cHIGH ] (Fig. 4.16). It is evident from Figure 4.17 that for any of the
↵MAX
+ /↵MAX

� ratios, the piecewise-nonlinear functional form of the switching rates
does not yield a sea change in the shape of the curves: the reason lies in the fact that at
equilibrium the ratio is �xed. I conclude that we need the two switching rates ↵+(c)
and ↵�(c) explicitly depend on r, and with a di�erent scaling. In the next Section I
analyse the case where the maximum switching rates ↵MAX

+ and ↵MAX
� explicitly

depend on the mean growth rate r.
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Figure 4.17: Highly nonlinear functional form of the switching rates do not change the scaling
law for the growth rate - CAP+ frequency relation predicted by the model. With respect to the
linear ones (solid lines), nonlinear switching rates (dashed lines) predict slightly higher CAP+
frequencies (especially at lowmean growth rates) but do not account for a change in the scaling
law of the dependency of the CAP+ frequency in exponential phase on the mean growth rate.

4.2.4 �e switching rates ratio must scale with the growth rate
Equation 4.1 was derived from the more general Equation se�ing the quasi-equilibria
for the frequency of the CAP+ given the values of the switching rates when the in-
ternal concentration c reaches its quasi-steady state:

f⇤ =
↵+(c⇤)

↵+(c⇤) + ↵�(c⇤)
,

which can be wri�en as

f⇤ =


1 +

↵�(c⇤)

↵+(c⇤)

��1

. (4.2)

Furthermore, in Chapter 3 the switching rates were wri�en as the product of a
switch-characteristic time scale (the maximum switching rate) and a piecewise-linear
function of the internal concentration c, in formula:

↵+(c) = ↵MAX
+

c� cLOW

cHIGH � cLOW
(4.3)

↵�(c) = ↵MAX
�

cHIGH � c

cHIGH � cLOW
. (4.4)

Let’s now imagine that, instead of being constant parameters, themaximum switch-
ing rates scale with the mean growth rate r:

↵MAX
+ ⇠ r� (4.5)

↵MAX
� ⇠ r�, (4.6)
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which yields
↵MAX
�

↵MAX
+

⇠ r��� . (4.7)

Substituting Eqs. 4.3, 4.4 and 4.7 in Eq. 4.2 yields:

f⇤ =


1 +

↵MAX
�

↵MAX
+

cHIGH � c⇤

c⇤ � cLOW
r���

��1

. (4.8)

If ↵MAX
+ and ↵MAX

� are made constant (� = � = 0) or, more generally, if they
scale with the average growth rate following the same functional law (��� = 0), than
one obtains the previous results. On the other hand, one can try di�erent scalings (� 6=
�) and compare the results with the data of the exponential phase CAP+ frequency
quasi-equilibrium and the mean growth rates. In this case, it is possible to obtain a
decrease in CAP+ frequency with growth rate that is faster than linear, whereas the
previously discussed model predicted a concave function for the curve f⇤

E(⇢) (Figure
4.18).

0.30 0.35 0.40 0.45 0.50 0.55

0.
0

0.
2

0.
4

0.
6

0.
8

Mean growth rate ( h−1 )

Fr
ac

tio
n 

of
 C

AP
+ 

ce
lls T = 20° C

T = 22° C
T = 25° C
T = 28° C
T = 31° C

δ − γ = 0
δ − γ = 1
δ − γ = 2
δ − γ = 3

Figure 4.18: Signi�cant improvements in the theoretical prediction of the quasi-equilibrium
f⇤ can be achieved by increasing the exponent ��� of the power law scaling of the maximum
switching rates ratio ↵MAX

+ /↵MAX
� with respect to the mean growth rate. �e theoretical

expectation best reproduces the data when the ↵MAX
� /↵MAX

+ maximum switching rates ratio
scales as r��� with � � � ' 2.

Figure 4.18 also shows how, to best �t the results of the experiment, ��� must be
higher than 1, meaning that the ↵MAX

� /↵MAX
+ maximum switching rates ratio must

increase faster than linearly with the mean growth rate. A best agreement between
data and prediction is obtained by taking � � � ' 2: in Section 4.3.1 I discuss how
this result could be explained in terms of di�erential internal ribosome concentration
between CAP+ and CAP- cells (ribosomal interpretation of the switch, see Section
4.3.1).
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4.3 Biological interpretation of the switching rates
ratio scaling

As I reviewed in Chapter 1, Section 1.3.2, genetic studies showed the existence of a
branching point along the pyrimidine pathway, downstream the operon whose ex-
pression triggers the expression of the CAP+ phenotype (Fig. 1.5). Such operon is
indeed touched by genetic mutations increasing the occurrence of the expression of
the CAP+ phenotype of around three orders of magnitude with respect to the wild
type Pseudomonas �uorescens SBW25.

�e e�ect of such genetic mutations has been a�ributed to the disequilibrium in-
duced in the �uxes of UDP and UTP along the pyrimidine pathway [42], thus perturb-
ing the partition of those metabolic products between two alternative branches of the
pathway – one devoted to DNA and RNA synthesis, and the other to colanic acid
production. As a consequence, the independently evolved Pseudomonas �uorescens
switching genotypes (whose switching-related mutations are on di�erent loci of ei-
ther gene carB or gene pyrH ) are found to di�er for their mean growth rate and for
their typical frequency of the CAP+ phenotype during exponential phase.

Following these �ndings (the existence of the branching point on the pyrimi-
dine pathway and the e�ects of mutations along the pathway a�ecting the �uxes of
UDP and UTP), it can also be assumed that a trade-o� between cellular growth and
capsulation may be in place in the Pseudomonas �uorescens “switchers”: metabolic
resources related to the pyrimidine pathway must be partitioned between cellular
growth and capsule production, in ratios that depend on the speci�c mutation trig-
gering the switch at high frequency (“checkpoint hypothesis”).

�e checkpoint hypothesis is supported by my experimental results on the re-
lation between mean growth rate and frequency of the capsulated state across the
population: whether I test di�erent genotypes with di�erent characteristic exponen-
tial phase growth rates, or expose one genotype to di�erent temperatures to trigger
a variation in its growth, I always obtain a negative correlation between the growth
rate and the frequency of the capsulated phenotype.

�e mathematical model of Chapter 3, Section 3.4 — developed to explain the
highly nonlinear, history-dependent transient phenotypic dynamics of 1w4xGFP pop-
ulations grown in KBS bulk cultures — predicts the negative relation between mean
growth rate and frequency of the capsulated state through Equation 4.1. Neverthe-
less, the model is not able to quantitatively account for the degree of heterogeneity
observed for slowly-growing populations, nor to qualitatively explain the scaling law
connecting the CAP+ frequency and the mean growth rate in exponential phase.

By considering the maximum switching rates as explicit functions of the mean
growth rate of the population, and le�ing them scale di�erently with it, a be�er imi-
tation of the measured negative relation between mean growth rate and frequency of
the capsulated state can be obtained. �e ratio between the switching rate from CAP+
to CAP- and that from CAP- to CAP+ must scale superlinearly with the growth rate,
yielding the best agreement with the experimental results when it scales with the
second-power of r.
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4.3.1 Bimodal expression of ribosomal genes and switching rates
In Chapter 3, Section 3.7 the results of the �t of our mathematical model are inter-
preted in terms of a theory elaborated by Dr. Philippe Remigi, Dr. Gayle Ferguson
and Prof. Paul Rainey. Rainey and collaborators assume the existence of a competi-
tion between high ribosome levels and RmsA/E genes for the translation of a positive
regulator of capsule biosynthesis. �is gene, called “A”, would encode for a protein
whose concentration is responsible for the bistability in capsule expression. �is “ri-
bosomal hypothesis” is in agreement with what our mathematical model proposes to
explain the results of the overshoot experiment: the concentration c of the product X
is endowed with the same function of that of the product of gene “A”, that is triggering
the switching behaviour via a threshold mechanism.

�e hypothesis of the existence of a mechanism linking ribosomal concentration
and the cellular switching behaviour can indeed help in �nding a coherent interpreta-
tion of one of themajor results of this Chapter (Section 4.2.4): themaximum switching
rates’ ratio superlinear scaling with the mean growth rate might be due to a higher
concentration of ribosomes in CAP+ cells. �is would result both in a faster-than-
linear increase of the timescale of the switch to the CAP- state for higher amounts of
ribosomes (e.g. due to a higher mean growth rate of the strain [53])

Supporting this line of reasoning, Dr. Philippe Remigi’s has recently measured a
higher expression of ribosomal genes in CAP+ with respect to CAP- in 1w4 (unpub-
lished data, personal communication). Moreover, it is known that, as the concentra-
tion of ribosomes strongly increases with the growth rate in physiological conditions
[28, 53], the concentration of ribosomes inside CAP+ cells belonging to a fast-growing
population must be much higher than the concentration of ribosomes inside CAP+
cells of a slow-growing population, regardless of the origin of the growth rate di�er-
ence.

As a consequence, CAP+ cells from a fast-growing population will be character-
ized by faster cellular processes with respect to the same processes taking place in
CAP+ cells from a slow-growing population. �e switch from CAP+ to CAP- would
make no exception. On the contrary, CAP- cells, having less ribosomes than the
CAP+, might be less susceptible to the e�ect of variations in ribosome concentra-
tion related to growth rate. As a result, the ratio between the maximum switching
rates ↵MAX

� /↵MAX
+ might scale more than linearly with the mean growth rate.



CHAPTER 5
DISCUSSION AND CONCLUSIONS

A
����������� ������� Pseudomonas �uorescens “switchers” are a model
system for the study of binary polymorphism in cellular phenotypes, a
particular instance of phenotypic heterogeneity displayed by several iso-
genic populations of microbes.

Clonal Pseudomonas �uorescens populations perform a phenotypic switch between a
normal cellular state and a rare capsulated phenotype. �e phenotypic switch, al-
ready present at low frequency in the wild type, can be be�er appreciated in the
so-called “switchers”: these are strains that were arti�cially evolved under a regime
of alternating growth conditions staggered by single-colony bo�leneck, when pheno-
typic novelty was selected at the colony scale. �is experimental evolution protocol
yielded mutated genotypes whose expression rates of the rare capsulated state across
the population were at least three orders of magnitude higher than in the wild type
(from 10�4 to 10�1).

�e switchers are a particularly useful model system for addressing transitions
between alternative phenotypes because of the possibility of assessing the frequency
of the two states (and, in principle, the switching rates) through microscopy obser-
vations. �e experimental protocols progressed from Indian ink staining and manual
counting in bright �eld images, to automatic routines able to distinguish the CAP+
phenotype, marked with GFP, and produce time-resolved, high-throughput surveys
of populations during their demographic variations.

Genetic, environmental and stochastic factors all concur in the determination
of the phenotype and its variability

As I reviewed in the Introduction, instances of phenotypic switching are o�en di-
chotomously classi�ed as purely stochastic or environment-driven. Indeed, many are
the examples of phenotypic switches whose main determinant is an intrinsic bista-
bility. �e transition between alternative states is interpreted as the consequence of
number �uctuations of the molecules involved in the decision point, which can re-
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spond or not to environmental cues. One of the neatest examples of noise-driven
expression of alternative phenotypes is genetic competence in Bacillus subtilis, whose
phenotype is expressed by about 10% of cells in stationary phase due to noise in the
expression of the comK gene. On the other hand, other microorganisms sense the en-
vironment and tune their phenotype accordingly. Such sensing strategies can consist
in adjusting the phenotype as the environmental conditions change (acclimation), or
in varying the degree of heterogeneity at the population level, like Klebsiella oxytoca
isogenic populations able to adapt to nutrient limitation and �uctuation by shaping
phenotypic heterogeneity in metabolism [86].

Alternative scenarios of switch at the cellular level pave the way for di�erent
population-level manifestations, hence leading the researcher to focus on di�erent
observables. On the one hand, when the switching is purely stochastic, the population
is at any given time a mixture of phenotypes (some of which potentially maladapted):
the relevant observable is in this case the distribution of the phenotypes’ frequencies
across the population, and their time variation is neglected as the system is assumed
to be ergodic. On the other hand, responsive switching results in homogeneous pop-
ulations for most of the observation times, and the system is described in terms of the
variation of the mean phenotype in time.

From an evolutionary standpoint, the existence of di�erent strategies has been
connected to the time scale of the environmental variation that microorganisms face.
As pointed out by Kussell & Leibler, pure stochastic switching is optimal for organisms
whose environment changes in a hardly or not at all predictable fashion, while accli-
mation is preferable when the cost of producing andmaintaining sensingmechanisms
is not very high and the environment not completely unpredictable or characterized
by extreme changes. Other strategies can relate to the evolution of an internal clock
that can be synchronized to the environmental change when the la�er is regular or
highly predictable.

In this �esis, I inquired how the interplay of stochasticity and environmental
sensing a�ects the dynamics of phenotypic heterogeneity in populations of cells able
to perform a phenotypic switch.

Environmental dependence of the phenotypic switch in Pseudomonas fluo-
rescens

�e fact that the alternative, capsulated phenotypic state is always expressed in the
population, and not only for speci�c values of the environmental parameters, indi-
cates that the “decision” of expressing the capsule must have a stochastic component.
Measurements on agar pads of the timescale associated with transitions between the
alternative phenotypic states, obtained through time-lapse �uorescent microscopy,
revealed that this is longer than the cell lifetime and su�ciently short not to be neg-
ligible on the time scale (hours) of population demography. Moreover, a qualitative
asymmetry between the switching rates from or to the capsulated cellular state was
evidenced, indicating the existence of mechanisms, likely rooted in intracellular reg-
ulation pathways, able to bias the switch.

At the same time, Jenna Gallie showed in her Ph.D. thesis that several environ-
mental signals can in�uence the variation of the relative frequencies of the two phe-
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notypes: temperatures lower than the standard growth temperature (28°C) and higher
concentration of uracil in the culture medium were both shown to cause a signi�cant
increase of the frequency of the capsulated phenotype across the population. In sta-
tionary phase, too, the capsulated state is expressed at a higher frequency, suggesting
the capsulation transition to be impacted by the demographic state of the population.

�erefore, Pseudomonas �uorescens switchers can hardly be treated as collections
of purely stochastically switching units, or of responsive cells all acclimating to the
environment as it changes. Only by considering both the genetic background and
the role of the environment on the stochastic switch the observed phenomenology in
Pseudomonas �uorescens can be put into a coherent framework.

In this sense, the most similar example in the literature is antibiotic persistence,
�rst interpreted in terms of phenotypic switch and bet-hedging strategies by Balaban
et al. [8]. Contrary to persisters, in Pseudomonas �uorescens switchers there is no
clear-cut adaptive role known at this point for the capsulated phenotype, and capsu-
lated cells grow at rates that are comparable to the non-capsulated ones.

In amodelling perspective, the temporal variation of the degree of phenotypic het-
erogeneity within a population (i.e. the alternative phenotypes’ frequencies) becomes
a relevant observable, and opens novel questions about how much of such variation
is genetically or environmentally controlled. As done in Balaban et al. for persisters,
systems of ODEs provide a simple but e�cient framework to the end of describing
such dynamics.

Population growth alone can provide the su�cient information on the envi-
ronmental context to explain transient variation in population phenotypic
composition

�e gentotype of Pseudomonas �uorescens switching strains does not de�ne qualita-
tively the degree of phenotypic heterogeneity. �e frequencies of the alternative phe-
notypes CAP- and CAP+ indeed vary in time. Moreover, even the qualitative nature
of their variation depends on the history of the population.

Early observations by Dr. Jenna Gallie revealed that the frequency of the capsu-
lated phenotype was di�erent if cultures were in exponential rather than in stationary
phase. Dr. Philippe Remigi subsequently proved, through �ow cytometry experi-
ments, that the demographic history and the population frequency at the moment of
sampling a�ect the degree of phenotypic variability of a population. He showed that,
in cultures initialized at a same cell density, not only the frequency of di�erent pheno-
types was highly dynamic, but that such dynamics varied with the density at which
the preculture was harvested. Cultures derived from “older” precultures showed a
structured transient, where an overshoot in the frequency of the capsulated pheno-
type was followed by an undershoot.

To these results, I added the observation that a negative correlation existed be-
tween the average maximum growth rate and the frequency of the CAP+ cells across
the di�erent re-evolved switchers. Building on the hypothesis of a possible direct ef-
fect of growth rate on the switching behaviour, I developed a mathematical model
aimed at exploring the possibility that population demography (quanti�ed by the
average population growth rate) could bear su�cient information to explain a non-
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monotonic, history-dependent dynamics in the phenotypic composition of the popu-
lation.

Dilution of an intracellular compound can couple a bistable switch to the de-
mography of the cell population

In Chapter 3, I veri�ed that context-independent models of populations of switchers
are mathematically incompatible with the observation of an overshooting dynamics.
Indeed, in models with constant switching rates the frequencies of the phenotypes
can only change monotonously in time, even if a di�erence in growth rate is allowed
between the two phenotypes.

Mathematically, such an inadequacy of these simple but generalmodels of context-
independent switch provided the justi�cation to explore the context-dependence of
the switching rates. Modelling the intracellular switch as a bistable system controlled
by an intracellular concentration, I could couple the population composition to de-
mography.

In this model, the inherent stochastic hallmark of the system (the switching rates)
is bound to amacroscopic observable (the growth rate of the population), which “mea-
sures” the demographic state of the population as a whole. One way to provide a bio-
logically reasonable mechanism for context-dependence consists in the introduction
of a third variable, alongside the population size and the frequency of the capsulated
phenotype: the intracellular concentration c of a compound produced by the cell and
diluted through cell division.

If the stability of the alternative equilibria is controlled by c, then changes in the
population growth rate as cells experience lag, exponential and eventually station-
ary phase modify, through changes in the internal concentrations, the probability of
switching. In particular, slower growth in lag and stationary phase results in an in-
creased probability of developing a capsule, whereas in exponential phase such prob-
ability decreases on a timescale set by the population growth rate.

�emathematicalmodel proposed in Chapter 3 consists of a 3-D dynamical system
that assumes no growth rate di�erence between phenotypes. Although an approxi-
mation of the more general case where the two phenotypes are not selectively equiv-
alent, it is su�ciently simple for its dynamics to be investigated through an analytical
approach, and can qualitatively reproduce the temporal dynamics data. In particu-
lar, it can produce history-dependent qualitatively di�erent transients, whereby the
overshoot and undershoot behaviour, as well as a larger initial fraction of capsulated
cells, are associated to “old” precultures. Indeed, the delayed growth induced by the
approach to stationary phase promotes the accumulation of the intracellular com-
pound, and thus the transient increase of the switching rate towards the capsulated
state. Such switching rate subsequently decreases as the intracellular compound is
diluted out by exponential cell elongation, but increases again as growth slows down
when the population approach the stationary phase. �is generic feature is common,
though to a di�erent quantitative extent, in models whose demographic parameters
and initial conditions are chosen so as to match the experimental measures. �e other
parameters (the maximal switching rates, the intracellular rates) have not been mea-
sured on this system, but were estimated through the �t of the overshoot experiment
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data.
�antitatively��ing the transient phenotypic dynamics in a consistentway across

multiple experiments proved, however, challenging, even if a low number of free pa-
rameters was involved. One of the obstacles to explaining all behaviours with a single
set of parameters is that, whereas overshooting dynamics is generic, qualitatively dif-
ferent history-dependent behaviour is only obtained when some initial conditions
are at the brink of bistability. Moreover, the nonlinearities associated to the entry in
stationary phase play a critical role in the slowing down of the phenotypic dynamics,
but their e�ect on switching rates and on lag phase are naively described in the model
discussed in Chapter 3.

�e trade-o� between genericity of the approach and inclusion of speci�c mecha-
nistic details poses the question of how later phases of growth should be modelled in
a mathematical description of a demography-dependent switch. In our model a good
agreement between the ��ed curves and the experimental data at late time points was
achieved by supposing a fast accumulation mechanism during the lag phase, which
gave rise to the overshoot at the beginning of the dynamics. Alternatively, to repro-
duce the experimentally observed convergence in stationary phase towards a pheno-
typic steady state without invoking a lag mechanism, I could have assumed that the
maximal switching rates depended on population size in a highly nonlinear fashion.

As the biological system gets further characterized, the nature of the environ-
mental switch-tuning will be made more precise, and the elaboration of mathematical
models more adherent to the biological reality will be possible.

�e mathematical model provides qualitative predictions about the relation-
ship between growth and switch in exponential phase

Se�ing aside the problems associated to modelling the entry in stationary phase, the
mathematical model articulated in Chapter 3 can be used as a predictive tool beyond
the description and explanation of the non-monotonous history-dependent pheno-
typic dynamics. Indeed, the analytical study of the exponential phase equilibria pro-
vides a testable relationship between the average rate of population growth and the
fraction of the alternative phenotypes. In exponential phase all environmental e�ects
decreasing growth rate below its maximum value can be neglected, so that, according
to the intracellular model, the population will reach a steady state. Such an equilib-
rium is de�ned as a function of a smaller number of parameters with respect to what
is needed in order to encompass the transient dynamics, and is thus constrained by
the optimal �t of the observations.

I have asked to what extent the ��ed parameters predict the variation of the equi-
librium phenotypic composition in di�erent experimental se�ings, if the only control
parameter was the rate of exponential growth. �is question can be applied to pop-
ulations of di�erent genetic background, which in general display variations both
in growth rate and in phenotypic composition, or to the same genotype, when the
growth rate is modulated by changes in the environmental conditions (e.g. tempera-
ture).

My mathematical model predicts a negative correlation between the mean growth
rate and the frequency of the capsulated state, and this irrespective of what under-



122 Discussion and conclusions

pins the growth rate change (as long as the basic regulatory mechanism remains the
same). I proved such relation to hold true by assessing the percentage of capsulated
cells among di�erent strains, or in populations of the same strain grown at di�er-
ent temperatures. Although the qualitative agreement between the predictions of the
model and the result of my experimental tests were good, the model could not quan-
titatively account for the degree of heterogeneity observed for the slowest growing
strains, nor qualitatively explain the scaling law connecting the CAP+ frequency and
the mean growth rate in exponential phase.

By supposing that the maximum switching rates are explicit functions of the mean
growth rate (instead than �xed parameters) a be�er data-model agreement was ob-
tained. In particular, I showed that the ratio between the maximum switching rates
↵MAX
� /↵MAX

+ must scale superlinearly with the mean growth rate, and that the ex-
perimental results are best ��ed when it scales with the second-power of the mean
growth rate.

Changing the temperature might have been an invasive method for altering pop-
ulation growth. Indeed, a�ecting virtually all cellular processes, temperature may
likely perturb those directly involved in the switch. �e most conservative way of
altering the switching rates may therefore be that of considering di�erent genetic
mutants, like the seven re-evolved Pseudomonas �uorescens switching strains. In per-
spective, it would moreover be interesting to genetically alter some other component
of the translational or post-translational machinery, so as to slow down growth, with-
out altering the production of one speci�c compound. �ese kind of experiments
may help to re�ne our understanding of the essential ingredients determining the un-
balance leading to capsulation, and in particular the role of deregulation in protein
production during lag phase.

New questions and perspectives for further work

�emathematical model analysed in this work describes several aspects of phenotypic
heterogeneity in Pseudomonas �uorescens switchers: the temporal variation of the
phenotypic composition of the population, its history-dependence, and the response
of populations of switchers to the environment under a steady exponential growth
regime. In doing so, the model conjugates the approach of most models of purely
stochastic switches with the one typically followed when dealing with responsive
switching and acclimation.

�e model was then “stretched” in order to �t both the overshoot experiment and
the negative capsulation-growth correlation and, in doing so, I probably crossed the
boundaries of the domain of its meaningful application. A more advanced knowledge
of the molecular mechanisms involved in Pseudomonas �uorescens CAP phenotypic
switch will likely allow to re�ne it, for example by establishing if the growth rate is
the best variable to choose as a proxy for the environmental state perceived by the
cells.

Di�erent modi�cations may be considered for improving the predictions of the
model on speci�c aspects. For example, the shape of the negative correlation be-
tween phenotypic composition and mean growth rate in exponential phase could be
�ne-tuned by acting on the scaling law of the maximum switching rates with re-



123

spect to the mean growth rate. �is allowed to adjust the quantitative results, but did
not touch the salient property needed to model the e�ect of population growth on a
stochastic, environment-dependent phenotypic switch: the need for a feedback be-
tween the demographic state and the phenotypic repartition of the population, which
can be obtained through an internal variable “sensing” the environment.

If further studies con�rm the role of ribosomal concentration and regulation, adding
another variable explicitly representing the ribosomal concentration may allow a bet-
ter �t of the experimental results. Such a supplementary variable, explicitly coupled
to the average growth rate, would accelerate or slow down the variations in the con-
centration c, therefore introducing another time scale. Although the manipulation
of this other time scale might provide a higher degree of control over the overshoot
dynamics in the model, it would nonetheless be associated to the introduction of ad-
ditional parameters. Such complexi�cation of the model would thus likely be useful
if additional, molecular data were available to complement the experiments discussed
in this�esis.

From an experimental point of view, the limitations of considering the growth rate
as the only proxy for the population demographic state are manifold. Indeed, there
are di�erent ways of a�ecting the growth rate, not all of which are expected to be
equivalent in terms of regulation of the intracellular concentrations. One question is
to what extent can growth rate be used, in a phenomenological perspective like that
adopted by Terence Hwa and collaborators, to describe populations whose growth
has been altered because of physical (temperature), genetic (mutants having di�erent
regulatory circuits), translational (mutants with mutations in the same gene), and
post-translational (mutants that di�er in the ribosomal content) modi�cations.

To conclude, the mechanism of switch modulation described by the model is po-
tentially common, and the understanding of its consequences might be important not
only on the ecological time scale, but also for understanding how the phenotypic dy-
namics can a�ect in the long-term, evolutionary fate of cellular populations. Indeed,
the intrinsic time scale of the transient dynamics, intermediate between that of the
individual and that of the population, might pave the way to the establishment of new
levels of organismal organization.
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et Chimie Industrielles (ESPCI) for having given me the possibility to perform my
experimental work in their spaces and with their facilities.
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sense of humour. �e long hours à la paillasse ran faster in her company and I owe
to her tenacious teachings all that I can do in a microbiology laboratory.

To Professor Marco Cosentino Lagomarsino: thank you for having made me love
scienti�c research in the �rst place, and for all the encouragement and the precious
pieces of advice in the toughest moments of my doctorate!

“¡Muchas gracias!” also tomy physiotherapist Dr. Beatriz del Barco, whomanaged
to make me fully and rapidly recover from a bad fracture. Without my le� hand back
in shape I would not been able to complete the writing of this thesis.

For the last �ve years Paris has been a special place where to enjoy life, too, and
this must be ascribed to really special people: a tremendous “thank you!” goes to my
dearest friends Alberto, Claudio and Manon, Elisa, Enrico, Francesco (x2), Giovanni
and M., Isabella, Lucilla and Samir, Ma�eo, Pietro and Esther, Telemaco and Ilaria,
Vi�ore and Elizaveta.

Finally, I would like to thank my family, especially my father, my sister Sissi and
my nephew Jacopo. All my deepest gratitude goes tomy belovedmother, who su�ered
the most from my departure abroad: I wish I could rewind the tape of these �ve years
and pay her one visit more. Last but not least, thank you Paola for having been at my
side from day one and for endlessly making my life a wonderful adventure.







BIBLIOGRAPHY

[1] M. A���, J. T. M�������, ��� A. ��� O����������, Stochastic switching
as a survival strategy in �uctuating environments., Nature genetics, 40 (2008),
pp. 471–475.

[2] M. A��������, B. S������, N. E. F����, P. S������, W.�D. H����, ���
M. D������, Self-destructive cooperation mediated by phenotypic noise., Nature,
454 (2008), pp. 987–90.

[3] P. A������, From genes to phenotype: dynamical systems and evolvability, Ge-
netica, 84 (1991), pp. 5–11.

[4] D. G. A������ ��� M. A. S����������, �e in�uence of green �uorescent pro-
tein incorporation on bacterial physiology: A note of caution, Journal of Applied
Microbiology, 103 (2007), pp. 318–324.

[5] U. A���, An Introduction to Systems Biology: Design Principles of Biological Cir-
cuits, vol. 10, Chapman and Hall/CRC, 2006.

[6] V. I. A�����, V. S. A����������, Y. S. I�’��������, ��� L. P. S���’�����, Bi-
furcation �eory and Catastrophe �eory, Lecture Notes in Computer Science,
(2011).

[7] M. A��������, R. M������, S. B���������, ��� M. A��������, Evolution
of stress response in the face of unreliable environmental signals., PLoS computa-
tional biology, 8 (2012), p. e1002627.

[8] N. Q. B������, J. M�����, R. C����, L. K������, ��� S. L������, Bacterial per-
sistence as a phenotypic switch., Science (New York, N.Y.), 305 (2004), pp. 1622–5.

[9] Y. B��, D. P. L���, H. F�, ��� G. P. R������, An improved Tn7-based system
for the single-copy insertion of cloned genes into chromosomes of gram-negative
bacteria, Gene, 109 (1991), pp. 167–168.

[10] J. B������ ��� T. R������, A dynamic approach to predicting bacterial growth
in food., Int J Food Microbiol., 23 (1994), pp. 277–294.



[11] H. J. E. B�������, J. G�����, C. K���, G. C. F�������, ��� P. B. R�����, Ex-
perimental evolution of bet hedging., Nature, 462 (2009), pp. 90–3.

[12] M. K. B����� ��� G. B���́���, Optimality and adaptation of phenotypically
switching cells in �uctuating environments, Physical Review E - Statistical, Non-
linear, and So�Ma�er Physics, 92 (2015), pp. 1–8.

[13] G. B������, Studies on lysogenesis. I. �e mode of phage liberation by lysogenic
Escherichia coli., Journal of bacteriology, 62 (1951), pp. 293–300.

[14] Z. D. B�����, C. Z. B������, ��� R. E. L�����, Historical contingency and
the evolution of a key innovation in an experimental population of Escherichia
coli., Proceedings of the National Academy of Sciences of the United States of
America, 105 (2008), pp. 7899–7906.

[15] A. B�������, R. K�����, G. B���, ��� P. B. R�����, Disturbance and diversity
in experimental microcosms, Nature, 408 (2000), pp. 961–964.

[16] J. J. B���, Evolution of Phenotypic Variance, Evolution, 41 (1987), pp. 303–315.

[17] T. C��̆����, M. T�������, M. B. E������, J. G������O�����, ��� G. M. S�̈��,
Architecture-dependent noise discriminates functionally analogous di�erentiation
circuits., Cell, 139 (2009), pp. 512–22.

[18] J. C���, D. S���, ��� S. R��, Implication of quorum sensing in Salmonella en-
terica serovar typhimurium virulence: �e luxS gene is necessary for expression
of genes in pathogenicity island 1, Infection and Immunity, 75 (2007), pp. 4885–
4890.

[19] D. C����, S. S�����, E. S������, Y. C����, R. K���������, M. E���, I. W����
�����, O. S�������, M. K�����, A. T. A�����, D. C. M�����, S. G. P������,
R. F�������, B. M. C����, J. H������, J. A�������, N. E. W����, M. I. B����
����, E. C�����, M. M�������, M. T. P. G������, J. H����, ��� M. B����,
Optimizing reproduction in a randomly varying environment., Journal of theo-
retical biology, 12 (1966), pp. 119–129.

[20] J. J. C������, T. S. G������, ��� C. R. C�����, Construction of a genetic toggle
switch in Escherichia coli, Nature, 403 (2000), pp. 339–342.

[21] N. A. C������, S. W. C������, L. S. T�������, ��� J. H����, Cell cycle-
dependent variations in protein concentration, Nucleic Acids Research, 38 (2009),
pp. 2676–2681.

[22] N. L. C����, Tn7: a target sitespeci�c transposon, Molecular Microbiology, 5
(1991), pp. 2569–2573.

[23] C. D�����, On the origin of species by means of natural selection, or the preser-
vation of favoured races in the struggle for life, John Murray, London, 1859.



[24] M. D����, V. G�����, L. M����, M. N. P. R�����E��������, R. R. R�����,
M. A��������, ���W.�D. H����, Stabilization of cooperative virulence by the
expression of an avirulent phenotype., Nature, 494 (2013), pp. 353–6.

[25] E. D������� ��� F. M. A������, Pseudomonas bio�lm formation and antibiotic
resistance are linked to phenotypic variation., Nature, 416 (2002), pp. 740–743.

[26] D. D����� ��� R. L�����, Bistability in bacteria, Molecular Microbiology, 61
(2006), pp. 564–572.

[27] S. D���� ��� T. N������, Bacterial senescence: stasis results in increased and
di�erential oxidation of cytoplasmic proteins leading to developmental induction
of the heat shock regulon, Genes Dev., 12 (1998), pp. 3431–3441.

[28] M. E��������, H. B�����, ��� P. P. D�����,Medium-dependent control of the
bacterial growth rate, Biochimie, 95 (2013), pp. 643–658.

[29] S. E���� ��� I. A. F������, Environmental unpredictability and o�spring size:
Conservative versus diversi�ed bet-hedging, Evolutionary Ecology Research, 6
(2004), pp. 443–455.

[30] A. E���� ��� M. B. E������, Functional roles for noise in genetic circuits, Na-
ture, 467 (2010), pp. 167–173.

[31] M. B. E������, A. J. L�����, E. D. S�����, ��� P. S. S����, Stochastic gene
expression in a single cell., Science (New York, N.Y.), 297 (2002), pp. 1183–6.

[32] S. E������, A. C����, A. L. C������, ��� C. D���, �orum Sensing A�enu-
ates Virulence in Sodalis praecaptivus, Cell Host & Microbe, 21 (2017), pp. 629–
636.e5.

[33] J. L. E����B������ ��� L. L. M�������, Relation of Capsular Polysaccharide
Production and Colonial Cell Organization to Colony Morphology in Vibrio para-
haemolyticus, PNAS, 182 (2000), pp. 5513–5520.

[34] J. F���, D. �. K������, E. B��������, ���H. L�����, Growth feedback as a basis
for persister bistability., Proceedings of the National Academy of Sciences of the
United States of America, 111 (2013), pp. 544–549.

[35] D.H. F������� ���D. R. H�������, Replication of an origin-containing derivative
of plasmid RK2 dependent on a plasmid function provided in trans, Proceedings
of the National Academy of Sciences, 76 (1979), pp. 1648–1652.

[36] R. F�����, �e Genetical �eory of Natural Selection, Oxford University Press,
1930.

[37] R. F�������, Impulses and Physiological States in �eoretical Models of Nerve
Membrane, Biophysical Journal, 1 (1960), pp. 445–466.

[38] D. F����� ��� M. K���, A chance at survival: Gene expression noise and phe-
notypic diversi�cation strategies, Molecular Microbiology, 71 (2009), pp. 1333–
1340.



[39] G. F���� ��� A. M������, Phenotypic plasticity in development and evolution:
facts and concepts. Introduction., Philosophical transactions of the Royal Society
of London. Series B, Biological sciences, 365 (2010), pp. 547–556.

[40] G. G������, Il Saggiatore, 1623.

[41] J. G�����, Evolutionary and molecular origins of a phenotypic switch in Pseu-
domonas �uorescens SBW25, PhD thesis, Massey University, Auckland, New
Zealand, 2010.

[42] J. G�����, E. L����, F. B������, P. R�����, C. B. J��������, G. C. F�������,
N. D������, M. F. B������, U. S����, H. J. E. B�������, J. M����������,
M. K�������, ��� P. B. R�����, Bistability in a Metabolic Network Underpins
the De Novo Evolution of Colony Switching in Pseudomonas �uorescens, PLOS
Biology, 13 (2015), p. e1002109.

[43] S. J. G����, Ontogeny and phylogeny, Harvard University Press, 1977.

[44] O. H�̈������̈�, Finite Markov chains and algorithmic applications, Cambridge
University, 2002.

[45] K. H������������, C. J. R���, B. K���, ��� P. B. R�����, Life cycles, �tness
decoupling and the evolution of multicellularity, Nature, 515 (2014), pp. 75–79.

[46] Y. I��, H. T�����, K. K�����, ��� T. Y���, How selection a�ects phenotypic
�uctuation., Molecular Systems Biology, 5 (2009), p. 264.

[47] E. J������� ���M. J. L���, Evolution in Four Dimensions: Genetic, epigenetic,
behavioral, and symbolic variation in the history of life, �e MIT Press, Cam-
bridge, Massachuse�s, 2005.

[48] E. J�������, B. O�����, I. M�����, E. K����, J. H�������, ��� T. C�����,�e
Adaptive Advantage of Phenotypic Memory in Changing Environments, Philo-
sophical transactions of the Royal Society of London. Series B, Biological sci-
ences, 350 (1995), pp. 133–141.

[49] F. J���� ��� J. M����, Genetic regulatory mechanisms in the synthesis of pro-
teins, Journal of Molecular Biology, 3 (1961), pp. 318–356.

[50] F. J����� ��� G. P�������, Environmental Sex Determination in Reptiles: Ecol-
ogy, Evolution, and Experimental Design, Review Literature And Arts Of �e
Americas, 66 (2009), pp. 149–179.

[51] R. K����� ��� G. B���, Experimental evolution in Chlamydomonas. IV. Selection
in environments that vary through time at di�erent scales, Heredity, 80 (1998),
pp. 732–741.

[52] E. K���, M. W���, ��� D. R����, Two simple media for the demonstration of
pyocyanin and �uorescin, J Lab Clin Med., 44 (1954), pp. 301–7.



[53] S. K�����, Z. Z����, ��� T. H��, Growth Rate-Dependent Global E�ects on
Gene Expression in Bacteria, Cell, 139 (2009), pp. 1366–1375.

[54] E. K������ ��� S. L������, Phenotypic diversity, population growth, and in-
formation in �uctuating environments., Science (New York, N.Y.), 309 (2005),
pp. 2075–8.

[55] P. L���������, J. A. C���, E. R������, N. D. P����, ��� Z. �. L������
S�������, Heterogeneity in protein expression induces metabolic variability in
a modeled Escherichia coli population, Proceedings of the National Academy of
Sciences, 110 (2013), pp. 14006–14011.

[56] G. L������ ��� E. K������,Memory and Fitness Optimization of Bacteria under
Fluctuating Environments, PLoS Genetics, 10 (2014).

[57] S. L������ ��� E. K������, Individual histories and selection in heterogeneous
populations., Proceedings of the National Academy of Sciences of the United
States of America, 107 (2010), pp. 13183–8.

[58] R. L�������, �e Genetic Basis of Evolutionary Change, Columbia University
Press, 1974.

[59] A. J. L����, Analytical Note on Certain Rhythmic Relations in Organic Systems.,
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 6 (1920), pp. 410–415.

[60] H. M����� ��� D. D�����, Bistability in the Bacillus subtilis K-state (com-
petence) system requires a positive feedback loop, Molecular microbiology, 56
(2005).

[61] M. M������, J. M�������, ��� J. P�����, Brock biology of microorganisms,
Prentice-Hall, Upper Saddle River, NJ, 2000.

[62] D. M�����, �e oxygen consumption of Escherichia coli., J. Gen. Physiol., 15
(1932), pp. 691–708.

[63] N. M����� ��� A. G�������, Adaptive radiation in a �uctuating environment:
Disturbance a�ects the evolution of diversity in a bacterial microcosm, Evolution-
ary Ecology Research, 8 (2006), pp. 471–481.

[64] R. M����� ��� M. A��������, Response of single bacterial cells to stress gives
rise to complex history dependence at the population level, Proceedings of the
National Academy of Sciences, 113 (2016), p. 201511509.

[65] J. M����, �e growth of bacterial cultures, Annual review of microbiology, 3
(1949).

[66] T. M��� ��� A. M. W������, E�ect of Phenotypic Selection on Stochastic Gene
Expression,�e Journal of Physical Chemistry B, (2013).



[67] C. M������ ��� K. T. H�����, �e E�ect of Cell Growth Phase on the Reg-
ulatory Cross-Talk between Flagellar and Spi1 Virulence Gene Expression, PLoS
Pathogens, 10 (2014).

[68] E. R. M����, P. B. R�����, M. �. N����, ��� R. E. L�����,Adaptive evolution of
highly mutable loci in pathogenic bacteria., Current biology, 4 (1994), pp. 24–33.

[69] H. S. M���� ��� K. P. B�������, <i>hipA</i>, a newly recognized gene of
<i>Escherichia coli </i>K-12 that a�ects frequency of persistence a�er inhibi-
tion of murein synthesis., Journal of Bacteriology, 155 (1983), pp. 768–75.

[70] M. M������, Ueber den Ein�uss von Fieber temperaturen auf die Wachstums-
geschwindigkeit und die Virulenz des Typhus Bacillus., Z. Hyg. Infektionskr., 20
(1895).

[71] M. A. M�����, Adhesion and entry of uropathogenic Escherichia coli, Cellular
Microbiology, 4 (2002), pp. 257–271.

[72] T. M. N�����, N. D. L���, J. P�������, ��� R. L�����,Memory andmodularity
in cell-fate decision making., Nature, 503 (2013), pp. 481–6.

[73] E. M. O������, M. T������, H. N. L��, B. I. S�������, ��� A. V�� O����
�������, Multistability in the lactose utilization network of Escherichia coli.,
Nature, 427 (2004), pp. 737–40.

[74] P. P���� ��� S. K�����, Emergence of phenotype switching through contin-
uous and discontinuous evolutionary transitions, Physical Biology, 12 (2015),
p. 046004.

[75] J. M. P������ ��� A. V. O����������, Noise Propagation in Gene Networks,
Science, 1965 (2012).

[76] M. P��������, Genotype-phenotype mapping and the end of the ’genes as
blueprint’ metaphor., Philosophical transactions of the Royal Society of London.
Series B, Biological sciences, 365 (2010), pp. 557–566.

[77] M. P��������, C. J. M�����, ��� C. D. S����������, Phenotypic plasticity
and evolution by genetic assimilation.,�e Journal of experimental biology, 209
(2006), pp. 2362–7.

[78] P. B. R����� ��� M. J. B�����, Physical and genetic map of the Pseudomonas
�uorescens SBW25 chromosome., Molecular microbiology, 19 (1996), pp. 521–33.

[79] P. B. R����� ��� B. K���, Cheats as �rst propagules: a new hypothesis for the
evolution of individuality during the transition from single cells to multicellular-
ity., BioEssays : news and reviews in molecular, cellular and developmental
biology, 32 (2010), pp. 872–80.

[80] P. B. R����� ���M. T��������, Adaptive radiation in a heterogeneous environ-
ment., Nature, 394 (1998), pp. 69–72.



[81] W. R�������, R. D������, M. B�������, ���M. T��������, Experimental evo-
lution of multicellularity, Proceedings of the National Academy of Sciences, 109
(2012), pp. 1595–1600.

[82] C. W. R�������, Flocks, herds and schools: A distributed behavioral model, ACM
SIGGRAPH Computer Graphics, 21 (1987), pp. 25–34.

[83] M. D. R����, C. J. R���, S. L�������, C. P��, A. T�������, A. D. S. C������,
M. A�����, M. F. S�������, R. P. B����, J. B������, M. W. P���, ��� J. C. D.
H�����, Lag phase is a distinct growth phase that prepares bacteria for exponen-
tial growth and involves transient metal accumulation, Journal of Bacteriology,
194 (2012), pp. 686–701.

[84] S. T. R��������� ��� B. L. B������, Bacterial quorum sensing: its role in
virulence and possibilities for its control., Cold Spring Harbor perspectives in
medicine, 2 (2012), pp. 1–25.

[85] K. S���, Y. I��, T. Y���, ��� K. K�����, On the relation between �uctuation
and response in biological systems., Proceedings of the National Academy of
Sciences of the United States of America, 100 (2003), pp. 14086–14090.

[86] F. S��������, S. L�������, G. L����, S. E�����, A. M�����, M. M. M. K������,
���M. A��������, Phenotypic heterogeneity driven by nutrient limitation pro-
motes growth in �uctuating environments, Nature Microbiology, (2016), pp. 1–7.

[87] J. S���� ��� H. J. B��������, What is bet-hedging?, Oxford Surveys in Evo-
lutionary Biology, 4 (1987), pp. 182–211.

[88] M. S������, Hedging one’s evolutionary bets, Nature, 250 (1974), pp. 704–705.

[89] A. S�������, J. ��� G�����, F. J. W�������, H. B�������, B. T������, J. K��,
��� O. P. K������, Bet-hedging during bacterial diauxic shi�., Proceedings of
the National Academy of Sciences of the United States of America, 111 (2014),
pp. 1–6.

[90] A. S�����, A. B�������, ��� P. B. R�����,�e causes of Pseudomonas diversity,
Microbiology, (2000), pp. 2345–2350.

[91] R. S������, Enzymatic adaptation in bacteria, Annual review of microbiology,
5 (1951).

[92] G.M. S�̈��, R. P. K�������, J. D������, J. G������O�����, ���M. B. E������,
Tunability and Noise Dependence in Di�erentiation Dynamics, Science, 1363
(2005), pp. 11–14.

[93] P. S. S����, M. B. E������, ��� E. D. S�����, Intrinsic and extrinsic contribu-
tions to stochasticity in gene expression., Proceedings of the National Academy
of Sciences of the United States of America, 99 (2002), pp. 12795–800.

[94] J.�W. V������, W. K. S����, ��� O. P. K������, Bistability, epigenetics, and bet-
hedging in bacteria., Annual review of microbiology, 62 (2008), pp. 193–210.



[95] J. M. G. V����, C. C. G���, ��� S. L������,Modeling network dynamics: �e lac
operon, a case study, Journal of Cell Biology, 161 (2003), pp. 471–476.

[96] P. V����, R. J. A����, S. N. M�������, ���M. R. E����, Switching and growth
for microbial populations in catastrophic responsive environments, Biophysical
Journal, 98 (2010), pp. 1099–1108.

[97] C. W���������, Genetic Assimilation of the Bithorax Phenotype, Evolution, 10
(1956), pp. 1–13.

[98] M. J.W����E��������, Phenotypic plasticity and the origins of diversity, Annual
Review of Ecology and Systematics, 20 (1989), pp. 249–278.

[99] , Developmental Plasticity and Evolution, Oxford University Press, 2003.

[100] J. S. W������, D. C. H�����, G. L. M�����, M. A. B����, ���M. N. S�����,
Mutants of Escherichia coli K-12 Exhibiting Reduced Killing by Both �inolone
and 3-Lactam Antimicrobial Agents, Antimicrobial agents and chemotherapy,
34 (1990), pp. 1938–1946.

[101] F. H. Y����� ��� G. K. S��������, Vibrio cholerae O1 El Tor: identi�cation of
a gene cluster required for the rugose colony type, exopolysaccharide production,
chlorine resistance, and bio�lm formation., PNAS, 96 (1999), pp. 4028–33.

[102] R. E. Z�����, D. J. G�������, ��� A. D. J������, Epigenetic properties of
white-opaque switching in Candida albicans are based on a self-sustaining tran-
scriptional feedback loop., Proceedings of the National Academy of Sciences of
the United States of America, 103 (2006), pp. 12807–12.

[103] E. Z���������� ��� R. V�����, Concentration-a�nity equivalence in gene reg-
ulation: convergence of genetic and environmental e�ects., Proceedings of the Na-
tional Academy of Sciences of the United States of America, 85 (1988), pp. 4784–
8.





Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

 

Titre : Rôle des switch phénotypiques et de la mémoire non-génétique dans l'hétérogénéité des 
populations bactériennes 

Mots clés : hétérogénéité, multistabilité, mémoire 

Résumé : Pseudomonas fluorescens 
« switchers », souches évolués artificiellement 
au Rainey Lab, sont un système modèle pour les 
switch phénotypiques. Ces populations sont  
typiquement caractérisées par les fréquences de 
deux phénotypes alternatifs liés à la production 
d’une capsule d’acide colanique autour de la 
paroi cellulaire. Bien que on s’attende que telles 
fréquences soient définies d’une manière 
univoque par le génotype, elles varient au long 
de la croissance de la population, ce qui indique 
une possible dépendance des taux de transition à 
l’égard de la démographie. J’ai développé un 
modèle mathématique où les cellules sont 
représentées comme systèmes bistables 
contrôlés par une concentration intracellulaire et 
où les taux de transition dépendent de l’état de 
la croissance de la population. 

Le modèle reproduit quantitativement la 
dynamique de la composition phénotypique de 
la population (dépendante de l’histoire), et 
fournie des prédictions à propos de son quasi-
équilibre en phase exponentielle en fonction du 
taux de croissance de la population — 
prédictions ensuite qualitativement confirmées 
par les résultats de mon travail expérimental. 
Pour conclure, on ne peux pas caractériser une 
population croissante de « switchers » que par 
l’état asymptotique des fréquences de ses 
phénotypes alternatifs, puisque le switch est 
étroitement lié à la démographie. 
Dans une perspective évolutive, la persistance 
transgénérationnelle du phénotype, influencée 
par des concentrations intracellulaires, pourrait 
être à l’origine de l’émergence de  stratégies 
comme le « bet-hedging ». 
 

 

 

Title : Context-dependent phenotypic switching and non-genetic memory in heterogeneous bacterial 
populations 

Keywords : heterogeneity, multistability, memory 

Abstract : Pseudomonas fluorescens 
“switchers”, artificially evolved in Rainey Lab, 
are a model system for phenotypic switching. 
Populations can be characterized by the 
frequencies of two alternative states related to 
the production of a colanic acid capsule around 
the cell wall. Expected to be at an equilibrium 
underpinned by the genetic background, such 
frequencies vary during population growth, 
hinting to a dependence of the switching rates 
on demography, and appear to be dependent on 
the history of the preculture. I thus developed a 
mathematical model with individual cells as 
bistable systems controlled by an intracellular 
concentration, where transition rates depend on 
the growth state of the population.  

The model quantitatively reproduces the 
history-dependent dynamics of the phenotypic 
composition of the population, and provides 
qualitative  predictions on its quasi-steady state 
in exponential phase as a function of the 
growth rate — then corroborated by the results 
of my experimental work. I conclude that a 
growing population of switching cells cannot 
be fully characterized only by the asymptotic 
steady state of the phenotypes’ frequencies, 
because phenotypic switching is inextricably 
intertwined with demography. From an 
evolutionary perspective, trans-generational 
inheritance of the phenotype mediated by 
internal concentrations may be at the basis of 
the emergence of bet-hedging-like strategies. 
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