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Résumé

Étant donnés un graphe simple non orienté G = (V, E) et un sommet particulier r ∈ V appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul (∅, ∅) soit un arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal à sa capacité. Soit w un vecteur de poids sur les arêtes dans R V et p un vecteur de profits sur les sommets dans R E . Le problème du r-arbre borné maximum (MBrT, de l'anglais Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F ) de G tel que e∈F w e + v∈U p v soit maximisé. Si la contrainte de capacité du problème MBrT est relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l'anglais Maximum r-Tree). Cette thèse contribue à l'étude des problèmes MBrT et MrT. Tout d'abord, ces deux problèmes sont formellement définis et leur complexité est étudiée. Nous présentons ensuite des polytopes associés ainsi qu'une formulation pour chacun d'entre eux. Par la suite, nous proposons plusieurs algorithmes combinatoires pour résoudre le problème MBrT (et donc le problème MrT) en temps polynomial sur les arbres, les cycles et les cactus. En particulier, un algorithme de programmation dynamique est utilisé pour résoudre le problème MBrT sur les arbres. Pour les cycles, nous sommes amenés a considérer trois cas différents pour lesquels le problem MBrT se réduit à certains problèmes polynomiaux. Pour les cactus, nous montrons tout d'abord que le problème MBrT peut être résolu en temps polynomial sur un type de graphes appelé cactus basis. En utilisant une série de décompositions en sous-problèmes sur les arbres et les cactus basis, nous obtenons un algorithme pour les graphes de type cactus.

La deuxième partie de ce travail étudie la structure polyédrale de trois polytopes associés aux problèmes MBrT et MrT. Les deux premiers polytopes, B xy (G, r, c) et B x (G, r, c) sont associés au problème MBrT. Tous deux considèrent des variables sur les arêtes de G, mais seuls B xy (G, r, c) possède également des variables sur les sommets de G. Le troisième polytope, R x (G, r), est associé au problème MrT et repose uniquement sur les variables sur les arêtes. Pour chacun de ces trois polytopes, nous étudions sa dimension, caractérisons certaines inégalités définissant des facettes, et présentons les moyens possibles de décomposition. Nous introduisons également de nouvelles familles de

Introduction

Consider a simple undirected graph G = (V, E) with a root node r ∈ V and a nodecapacity vector c ∈ Z V

+ . An r-tree of G is either the empty graph (∅, ∅), or a tree containing the root node r. We call a subgraph of G bounded if the degree of each node in the subgraph does not exceed its capacity. Given an edge-weight vector w ∈ R E and a node-price vector p ∈ R V , the Maximum Bounded r-Tree (MBrT) problem consists of finding a bounded r-tree T = (U, F ) of G such that e∈F w e + v∈U p v is maximized. This problem has been addressed recently as a new combinatorial optimization problem by [START_REF] Chakareski | A note on the data-driven capacity of p2p networks[END_REF]. Its application arises in the content delivery networks, specifically the delivery of video streams in under-provisioned peer-to-peer (P2P) networks, where the resources (most of all, the upload capacities) of the peers are generally recognized as the bottleneck of the networks [START_REF] Chakareski | A note on the data-driven capacity of p2p networks[END_REF], [START_REF] Massoulié | Randomized decentralized broadcasting algorithms[END_REF], [START_REF] Liu | P2p streaming capacity REFERENCES under node degree bound[END_REF]). Such a P2P network can be represented by a simple undirected graph, where the source of the video stream naturally corresponds to the root node, and for each peer its upload-capacity limit can be converted into a degree limit. In [START_REF] Kerivin | Models for the maximal bounded r-tree packing problem[END_REF], the MBrT problem was proved to be N P-hard by reducing the 3-SAT problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]) to it, and polynomial-time algorithms were given on certain classes of graphs such as trees and complete graphs. explicitly, provide their complexity results and formulations. Polynomial-time algorithms are proposed to solve both problems on several classes of graphs. We then study the problems' polytopes, and strengthen them by adding new families of valid equations and facet-defining inequalities. Through this theoretical study, complete descriptions of these polytopes are obtained on certain classes of graphs. Finally, we embed the different formulations into a branch-and-cut framework and compare their performance in the computational simulation. This dissertation is organized as follows.

Chapter 1 provides the theoretical basis and the notation that will be used throughout this dissertation.

Chapter 2 firstly gives the definition and complexity results of the MBrT problem and the MrT problem. The associated polyhedra are defined with respect to two sets of variables. The first one considers both node-and edge-indexed variables, while only the edge-indexed variables are present in the second.

After that, a literature survey of both the MBrT problem and the MrT problem is presented. Notably, the degree constraints is one of the factors that contribute to the difficulty of the MBrT problem. Hence we address the connection between the MBrT problem and a few other well-studied degree-constrained problems, such as the b-matching related problems and the minimum bounded degree spanning tree (MBDST).

On the other hand, we also review a few results concerning some non-degree-constrained problems that are closely related to the MBrT problem and the MrT problem. Particularly, as an r-tree is can be seen as a Steiner tree with one terminal, [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF] related the MrT problem to the Steiner tree problem and presented a polyhedral study with respect to the MrT problem's polytope considering both node-and edge-indexed variables. Besides, the connected subgraph problem is similar to the MBrT problem and the MrT problem in the sense that they all aim at finding a connected subgraph that non-necessarily contains a node cover.

We also introduce the background of the application of the MBrT problem in the telecommunication industry, and demonstrate the need of significant effort towards its application, and the lack thereof at present. Chapter 3 presents a few polynomial-time combinatorial algorithms that can be used to solve the MBrT problem on certain classes of graphs, particularly, on trees, cycles and cactus graphs. Since the MrT problem is a relaxation of the MBrT problem, the proposed algorithms are also feasible for the MrT problem.

On trees, an algorithm based on dynamic programming is used to solve the MBrT problem, where we break it down to a collection of subproblems corresponding to each node Introduction considering only edge-indexed variables, for which the same counter examples also exist.

Chapter 6 presents results on the MBrT problem's polytope with considering only edgeindexed variables. We show that it is also full-dimensional. Two different approaches to decompose the polytope are proposed. The first one is a decomposition through 1-sum at the root node, while the second one decomposes a graph containing a bridge into two subgraphs that both contain that bridge. Similar to the previous chapters, we also give necessary and sufficient conditions for each set of valid inequalities to be facet-defining. We then introduce several sets of newly discovered inequalities, including those two sets of inequalities mentioned for the MrT problem. We show that they can all be obtained by projection from the constraints for the polytope considering both node-and edge-indexed variables. Bounds on their Chvátal-Gomory rank are also discussed. With the help of the newly discovered inequalities, we prove that one can obtain a linear system that is Totally Dual Integral (TDI), and completely characterize the polytope on trees and cycles.

In Chapter 7, we discuss the separation problems for all the inequalities considered in the previous chapters. A couple of branch-and-cut frameworks are presented to solve the MBrT problem together with a greedy-based matheuristic that generates feasible solutions to the problem. These branch-and-cut algorithms were implemented with CPLEX and intensive computational experiments are presented and analyzed.

Chapter 1

Preliminaries and notation

This chapter introduces some preliminary definitions, notation and some background theories that are used in this dissertation.

Algorithms and computational complexity

The complexity theory was born following the work of [START_REF] Edmonds | Covers and packings in a family of sets[END_REF] and [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]. It offers a framework to classify problems according to their difficulty. More information about complexity theory can be found in [START_REF] Karp | Reducibility among combinatorial problems[END_REF], [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF], von [START_REF] Von Leeuwen | Handbook of theoretical computer science: Algorithms and complexity[END_REF], and [START_REF] Papadimitriou | Computational complexity[END_REF].

A problem is a general question to be answered and it usually possesses several formal parameters with no specific values. Such problem is characterized by a general description of all its parameters and a statement of properties that the answer, or the solution, should satisfy. An instance of a problem is when all the problem's parameters have specified values. A decision problem is a problem whose solution is either "yes" or "no". For instance, "Given a graph G = (V, E), does there exist a Hamiltonian path in G?" is a decision problem. An optimization problem, on the other hand, generally aims at maximizing or minimizing a certain objective function. An optimization problem is not a decision problem, nonetheless it can often be transformed into a decision problem. For instance, "Given a graph G = (V, E) with a set of terminals S ⊆ V , find a Steiner tree in G with minimum number of edges." is an optimization problem. Its decision problem can be described as "Given a graph G = (V, E) with a set of terminals S ⊆ V and a value B ∈ Z + , does there exist a Steiner tree in G with at most B edges?".

An algorithm is a general step-by-step procedure for solving problems. The efficiency of an algorithm, evaluated as the amount of computing resources it requires, decides whether an algorithm is good or not. However, the time complexity, or computational complexity, is the most common way to determine the efficiency of an algorithm. The time complexity of an algorithm is expressed as a function of the size of the problem instance, where the instance size is usually represented by the length of the input data required to describe the instance. If an algorithm has time complexity bounded from above by a polynomial function in the size of the problem instance, then the algorithm is said to be a polynomial-time algorithm.

The computational complexity of a problem can be related to the algorithms that solve it. Moreover, any problem can be classified into some complexity classes according to its complexity. The most well-known complexity classes P (Polynomial ) and N P (Nondeterministic Polynomial ) are collections of decision problems. We hereafter provide more formal definitions of classes P, N P, N P-complete and N P-hard.

A problem is said to be polynomially solvable if there exists a polynomial-time algorithm to solve it. The collection of all polynomially solvable decision problems is denoted by P. For example, the decision problem of the minimum spanning tree problem is in P [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF], [START_REF] Prim | Shortest connection networks and some generalizations[END_REF]).

The class N P is defined as the collection of decision problems with the property that, for any instance for which the answer is "yes", there is a polynomial-time checkable certificate of the "yes". It can be seen that the class P belongs to N P.

In order to compare the computational complexity associated with two problems, the definition of polynomial-time reduction needs to be introduced. Let Q and R be two problems in N P. If the input and output of any instance of Q can be transformed by a polynomial-time algorithm into input and output of an instance of R, then Q is polynomially reducible to R. It ensures that any polynomial-time algorithm for R can be converted into a corresponding polynomial-time algorithm for Q. Intuitively, this means that Q is not more difficult than R, or conversely that R is at least as hard as Q. Now with the concept of polynomial-time reduction, the class of N P-complete problems can be defined as follows. A problem R in N P is N P-complete if any other problem in N P is polynomially reducible to R. [START_REF] Cook | The complexity of theorem-proving procedures[END_REF] was the first one to prove that a problem, namely the boolean satisfiability problem (SAT), is N P-complete. A list of N P-complete problems can be found in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] (see also [START_REF] Ausiello | A compendium of np optimization problems[END_REF]).

Finally, the class of N P-hard problems is composed of problems for which any algorithm solving them can be converted into one solving any problem in N P. In other words, N P-hard problems are at least as hard as the most difficult problems in N P. It is worth noting that an optimization problem is N P-hard if its decision problem is N P-complete.

In this dissertation, vectors are column vectors, and they are represented by boldface letters. The transpose of a vector is represented by adding the superscript of T , e.g., a T is the transpose of vector a. Matrices are represented by regular-face letters, and the transpose of a matrix A is denoted as A T .

In [START_REF] Whitney | On the abstract properties of linear dependence[END_REF], the author introduced the concept and the properties of matroid. A pair (S, I) is called a matroid if S is a finite set and I is a nonempty collection of subsets of S that satisfies:

1. if A ∈ I and B ⊆ A, then B ∈ I, 2. if A, B ∈ I and |A| < |B|, then A ∪ {e} ∈ I for some e ∈ B \ A.

The sets in I are called the independent sets and are said to be independent.

Given a weight vector w : S → R, the greedy algorithm to find a set I in I maximizing e∈I w e is as follows. Set I = ∅, and next repeatedly choosing e ∈ S \ I with I ∪ {e } ∈ I and with w e as large as possible. The algorithm stops if no such e exists. It has been proved that the greedy algorithm works and only works on matroids (see [START_REF] Rado | Note on independence functions[END_REF], [START_REF] Gale | Optimal assignments in an ordered set: an application of matroid theory[END_REF], [START_REF] Edmonds | Matroids and the greedy algorithm[END_REF] and also [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]).

A uniform matroid, as a trivial class of matroid, is determined by a set S and a number k, where a subset I of S is independent if |I| ≤ k.

Polyhedra and linear optimization

This section gives some fundamental results on linear and integer optimization. Further references are Schrijver [1986b], [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF], [START_REF] Wolsey | Integer Programming[END_REF] and [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF].

Given n ∈ N, the symbol R n (Z n , respectively) represents the set of vectors, or points, having n real components (integer components, respectively). If all the components of a vector are zeros, it is denoted by 0.

Given λ ∈ R, λ ( λ , respectively) represents the largest integer lower than or equal to (the smallest integer greater than or equal to, respectively) λ.

Given a subset A of U , the complement of A is denoted U \ A, or A if U is clear from the context. Additionally, given a set A, we also use R A (Z A , respectively) to represent the set of vectors having |A| real components (integral components, respectively), each of which being indexed by one element in A.

Given any vector a in R A and a subset S ⊆ A, let a(S) = e∈S a e .

A vector x ∈ R n is a linear combination of vectors

x 1 , • • • , x k in R n if there exist k real scalars λ 1 , • • • , λ k such that x = k i=1 λ i x i . In addition, if λ 1 , • • • , λ k satisfy k i=1 λ i = 1, then x is said to be an affine combination of λ 1 , • • • , λ k . Moreover, if x is an affine combination of x 1 , • • • , x k with non-negative λ-coefficients, that is, λ i ≥ 0 for all i ∈ {1, • • • , k}, then x is a convex combination of vectors x 1 , • • • , x k .
A set of vectors is said to be linearly independent if none of the vectors can be written as a linear combination of the other vectors in the set. Similarly, a set of vectors is affinely independent if none of the vectors can be written as an affine combination of the other vectors in the set.

The convex hull of a set X of R n , denoted conv(X), is the set of all vectors in R n which can be written as a convex combination of vectors in X.

A subset C of R n is called a cone if λx ∈ C for any x ∈ C and λ ∈ R + .

A subset P of R n is called a polyhedron if there exist a matrix A ∈ R m×n and a vector b ∈ R m such that P = {x ∈ R n : Ax ≤ b}. Any inequality α T x ≤ β with α ∈ R n , β ∈ R is called valid for P if α T x ≤ β holds for any x ∈ P . A polyhedron P is bounded if there exist l, u ∈ R n such that l ≤ x ≤ u for any x ∈ P . A subset P of R n is called a polytope if it is the convex hull of finitely many vectors in R n . One has that a set P is a polytope if and only if P is a bounded polyhedron [START_REF] Minkowski | Geometrie der Zahlen[END_REF], [START_REF] Steinitz | Bedingt konvergente reihen und konvexe systeme[END_REF], [START_REF] Weyl | Elementare theorie der konvexen polyeder[END_REF]).

A polyhedron P of R n has dimension d if the maximum number of affinely independent vectors in P is d + 1. The dimension of P is denoted by dim P . If dim P = n, then the polyhedron P is said to be full-dimensional.

Given a polyhedron P = {x ∈ R n : Ax ≤ b}, a subset F of P is called a face if F = {x ∈ P : A x = b }, where A x ≤ b is a sub-system of Ax ≤ b. The face F is proper if F = P . If α T x ≤ β is valid for P , then the inequality α T x ≤ β is said to define or induce the face F = {x ∈ P : α T x = β}. Any face F of P satisfies dim F ≤ dim P . The recession cone associated with the polyhedron P is P 0 = {r ∈ R n : Ar ≤ 0}.

Nonzero members of the recession cone are called rays of P . A ray r of P is an extreme ray if there are n -1 linearly independent constraints binding at r.

A face of P is called a facet if it is nonempty, proper, and inclusion-wise maximal. In other words, a face F of P is a facet if it has dimension one less than the dimension of P , that is, dim F = dim P -1. An inequality inducing a facet of P is called facet-defining.

A vector x ∈ R n is an extreme point of a pointed polyhedron P if it cannot be written as a convex combination of other vectors in P .

We call any vector x ∈ R n that satisfies Ax ≤ b a feasible solution for the linear system Ax ≤ b. The feasibility of a system of linear inequalities, which indicates whether the system admits feasible solutions or not, is characterized by Farkas' Lemma [START_REF] Farkas | A Fourier-féle mechanikai elv alkamazása [Hungarian[END_REF]).

Theorem 1.2.1 (Farkas' Lemma). The polyhedron P = {x ∈ R n : Ax ≤ b} with A ∈ R m×n and b ∈ R m is not empty if and only if y T b ≥ 0 holds for any y ≥ 0 with y T A = 0 T .

A linear optimization problem consists of maximizing (or minimizing) a linear function over a polyhedron. A linear optimization problem over the polyhedron P has the form max{c T x : x ∈ P }.

The linear function c T x is called the objective function.

If it is known that P = {x ∈ R n : Ax ≤ b}, the optimization problem also has an equivalent form as the following.

max{c T x : Ax ≤ b, x ≥ 0}.

(1.1)

If we take (1.1) as the primal problem, its corresponding dual problem is

min{y T b : y T A ≥ c T , y ≥ 0}. (1.2)
Duality is a fundamental concept in linear optimization that characterizes the relation between the primal problem and the dual problem. Further details on duality theory can be found in von [START_REF] Neumann | Discussion of a maximum problem[END_REF], [START_REF] Gale | Linear programming and the theory of games[END_REF], and [START_REF] Dantzig | Linear Programming and Extensions[END_REF].

The primal-dual relation is described in the following duality theorems.

Theorem 1.2.2 (Weak Duality Theorem). If x ∈ R n is feasible for (1.1) and y ∈ R m is feasible for (1.2), then c T x ≤ y T b.

It can be seen that for a maximization problem, every feasible solution x to (1.1) provides a primal bound or lower bound of the optimal solution, that is, c T x ≤ z * , where z * is the optimal value of (1.1). Conversely, every feasible solution y to (1.2) provides a dual bound or upper bound of the optimal solution, that is, y T b ≥ z * .

Theorem 1.2.3 (Strong Duality Theorem).

max{c T x : Ax ≤ b, x ≥ 0} = min{y T b : y T A ≥ c T , y ≥ 0}, if at least one of these optima is finite.

The strong duality theorem states that if one of the two problems has a finite optimal solution, then both of them have finite optimal solutions and equal optimal value.

Furthermore, the following complementary slackness theorem characterizes necessary and sufficient conditions for a pair of primal-dual feasible solutions to be optimal.

Theorem 1.2.4 (Complementary Slackness Theorem). The vector x ∈ R n is an optimal solution to (1.1) and the vector y ∈ R m is an optimal solution to (1.2) if and only if x and y are feasible for (1.1) and (1.2) respectively, and

(y T A -c T )x = 0, (1.3) y T (Ax -b) = 0.
(1.4)

Conditions (1.3) and (1.4) are called the complementary slackness conditions. These conditions provide an effective way to develop a test of optimality for a putative solution to either (1.1) or (1.2).

Moreover, a dual bound can also be obtained by solving a relaxation of the primal problem. A relaxation may consist of maximizing the same objective function over a larger polyhedron, e.g., a polyhedron defined by a subsystem of the original linear system. The inequalities that are left out are said to be relaxed. For instance, let P = {x ∈ R n : Ax ≤ b} and P = {x ∈ R n : A x ≤ b } be two polyhedra such that A x ≤ b is a subsystem of Ax ≤ b, then one has P ⊆ P , and max{c T x : x ∈ P } is a relaxation of the problem max{c T x : x ∈ P }. As a result, max{c T x : x ∈ P } ≤ max{c T x : x ∈ P }.

A vector x ∈ R n is called integer or integral if each of its components is an integer, that is, if x ∈ Z n . The integral hull of a polyhedron P ⊆ R n is the convex hull of integer vectors in P , that is, conv(P ∩ Z n ). Figure 1.1 illustrates a polyhedron P and its integral hull P I . A polyhedron is said to be integral if it is its own integral hull, or alternatively, each of its faces contains an integral vector.

In [START_REF] Edmonds | A min-max relation for submodular functions on graphs[END_REF], a strong notion called Totally Dual Integrality (TDI-ness)

Figure 1.1: A polyhedron and its integral hull is introduced.

Definition 1.2.5. A linear system of inequalities Ax ≤ b is called Totally Dual Integral (TDI) if for each integral vector c ∈ Z n , the dual problem of max{c T x : Ax ≤ b} has an integer optimal solution if it is finite. [START_REF] Edmonds | A min-max relation for submodular functions on graphs[END_REF] showed that TDI-ness is a sufficient condition for integrality, as stated in the following theorem.

Theorem 1.2.6. Let Ax ≤ b be a TDI system where A is rational and b is integral.

Then the polyhedron {x : Ax ≤ b} is integral.

Further information on integrality of polyhedra and properties of TDI systems can be found in [START_REF] Hoffman | A generalization of max flow-min cut[END_REF], [START_REF] Edmonds | A min-max relation for submodular functions on graphs[END_REF], Schrijver [1986aSchrijver [ ,b, 2003]], [START_REF] Korte | Combinatorial Optimization -Theory and Algorithms[END_REF].

Given a polyhedron P of R n+m in the variables x ∈ R n and y ∈ R m , the projection of P onto the x-space R n is defined as proj x (P ) := {x ∈ R n : ∃y ∈ R m with (x, y) ∈ P }.

If P = {(x, y) ∈ R n+m : Ax + By ≤ b}, let the projection cone associated with proj x (P ) be W = {v : v T A = 0, v ≥ 0}.

One has proj x (P ) := {x ∈ R n : (v T B)x ≤ v T b, v is an extreme ray of W }.

Alternatively, proj x (P ) can also be obtained either by Fourier-Motzkin elimination.

The following relation holds concerning the integrality of P and any of its projection proj x (P ), see [START_REF] Balas | Projection, lifting and extended formulation in integer and combinatorial optimization[END_REF].

Theorem 1.2.7. If P is an integral polyhedron of R n+m , then proj x (P ) is an integral polyhedron of R m .

Integer optimization and polyhedral approach

Similar to (1.1) for linear optimization, if we add the restriction that all variables must take integer values, we then have an integer optimization problem with the following form

max{c T x : Ax ≤ b, x ∈ Z n }.
The corresponding linear optimization problem max{c T x : Ax ≤ b} is called the linear relaxation of the integer optimization problem. A formulation of this integer optimization problem is a polyhedron of R n whose integral hull is conv{x ∈ R n : Ax ≤ b}.

No polynomial-time algorithm is known to solve an integer optimization problem. In fact, the general integer optimization problem has been proved to be N P-hard by [START_REF] Karp | Reducibility among combinatorial problems[END_REF] through a polynomial reduction of SAT to a variation of a 0-1 integer optimization problem.

The branch-and-bound algorithm provides an approach that solves a large-scale problem (or a hard problem) by considering smaller-scale ones (or easier ones), which is often used to tackle integer optimization problems.

Recall that the branch-and-bound algorithm breaks down an optimization problem over a set of feasible solutions into optimization problems over its subsets. This operation is referred as branching. Additionally, the branching process can be shortened by pruning the infeasible branches based on primal and dual bounds.

For instance, consider the integer optimization problem max{c T x : x ∈ S}, S ⊆ {0, 1} n . An enumeration tree can be constructed, where S is decomposed into k ≥ 2 sets S 1 , . . . , S k which can also be decomposed into several smaller sets. The problem can be solved by carrying out the complete enumeration. However, for most problems with a large number of variables, complete enumeration is impossible. Furthermore, improvements on the primal and dual bounds, often made by other means such as heuristics, may allow one to prune some branches of the enumeration tree.

For N P-hard integer optimization problems, where finding optimal solutions efficiently is generally not possible, various approaches can be used for them aside from branch-andbound. Approximation algorithms, as one of them, are often used in such cases aiming at finding near-optimal or sub-optimal solutions in polynomial time. Moreover, the use of approximation algorithms is also a rising trend for problems where exact polynomial-time algorithms are known but are too costly due to the input size.

An approximation algorithm usually exploits the algorithmically relevant combinatorial structure of a problem by using certain algorithmic techniques just as exact algorithms normally do. Nonetheless, it obtains a feasible solution within a fixed multiplicative factor of an optimal solution, instead of the optimal solution itself. An approximation algorithm is called a f (n)-approximation algorithm, or a factor f (n) approximation algorithm, for input size n if it can be proved that the solution the algorithm finds is at most a multiplicative factor of f (n) times worse than the optimal solution. For instance, if the optimal value of a given maximization problem is denoted z * , an f (n)-approximation algorithm is an algorithm that always finds a feasible solution with value not less than z * /f (n).

Another approach that also aims at obtaining good feasible solutions is heuristic. Heuristics are often used when classic methods are too slow or fail to find any optimal solution. A heuristic generally finds a feasible solution, or primal bounds in other words, in polynomial time based on some experimental data or empirical knowledge of the problem.

Oftentimes heuristics are much more quickly than solving the problem straightforwardly, and thus with the the primal bounds obtained from heuristics, it may shorten the overall time consumed on solving the problem. Unlike an approximation algorithm, a heuristic produces solutions with no guarantee, and its performance may vary largely for differently instances.

Given a ground set E, and S as a set of vectors representing subsets of E, a combinatorial optimization problem P which optimizes an objective function over S can be defined as follows. max{c T x : x ∈ S}, where c : E → R is a vector carrying the weights associated with components in E.

As one of the foremost technique to solve hard combinatorial optimization problems, the polyhedral approach has been widely used to solve combinatorial optimization problems after it was first introduced by [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF].

Consider the convex hull conv(S) of S. The problem P is equivalent to the linear optimization problem max{c T x : x ∈ conv(S)}.

(1.5)

If one succeeds to describe the polytope conv(S) by a system of linear inequalities Ax ≤ b, then problem P is reduced to solving the following linear program:

max{c T x : Ax ≤ b}.
The polyhedral approach studies the polyhedral structure of conv(S), and solves P by solving a linear optimization problem. Recall that solving a linear optimization problem has been proved to be polynomial [START_REF] Khachiyan | A polynomial algorithm in linear programming[END_REF][START_REF] Khachiyan | Polynomial algorithms in linear programming[END_REF], [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF]).

However, in general it is difficult to obtain the complete linear description of the polytope conv(S). Additionally, if the problem is N P-hard, it is not likely to find such description. Moreover, even if the complete description of conv(S) is known, it may contain an exponential number of inequalities. It makes it impossible to solve the problem using the algorithms for general linear optimization problems. The cutting-plane algorithm has been introduced in order to solve problems in such scenario. It allows us to obtain an optimal solution to a problem by solving a sequence of linear programs, each of which contains a polynomial number of inequalities.

A key component of the cutting-plane algorithm is the so-called separation problem and the computational equivalence of optimization and separation [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF], [START_REF] Karp | On linear characterizations of combinatorial optimization problems[END_REF], [START_REF] Padberg | Odd minimum cut-sets and b-matchings[END_REF]). More details can be found in Schrijver [1986b], [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF], [START_REF] Padberg | Linear Optimization and Extensions[END_REF] and [START_REF] Korte | Combinatorial Optimization -Theory and Algorithms[END_REF].

Definition 1.3.1. Let P be a polyhedron in R n . Given a vector x ∈ R n , the separation problem for P is to decide whether x is in P and if not, give an inequality that is valid for P but violated by x.

Optimization and separation over a polyhedron has been proved to be computationally equivalent [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF], [START_REF] Karp | On linear characterizations of combinatorial optimization problems[END_REF], [START_REF] Padberg | Odd minimum cut-sets and b-matchings[END_REF]), as stated in the following theorem.

Theorem 1.3.2. Given a polyhedron P in R n , the optimization problem over P is polynomially solvable if and only if the separation problem for P is polynomially solvable.

The cutting-plane algorithm is presented hereafter. Let P ⊆ R n be a polyhedron defined by a family of known valid inequalities for conv(S), such that the separation problem for P can be solved in polynomial time. Often limited by the resource, only a part of the valid inequalities can be added initially in the cutting-plane algorithm. Denote P 0 the polyhedron defined by a subset of inequalities defining P .

Algorithm 1.1 shows a general cutting-plane algorithm that solves optimization problems over P starting with the polyhedron P 0 .

The valid inequalities generated by this algorithm are often called cutting planes or cuts. By generating cuts, the cutting-plane algorithm produces a series of tighter outer-Algorithm 1.1: General cutting-plane algorithm Input : Polyhedron P 0 and vector c. Output: max{c T x : x ∈ P }. begin 1 Initialization. Set t = 0. while no optimal solution is found do 2 Solve the linear program: max{c T x : x ∈ P t } to get x t .

3 Solve the separation problem for P with respect to x t . if a valid inequality a T x ≤ b for P is found with a T x t > b then 4

Set P t+1 = P t ∩ {x : a T x ≤ b}.

5

Set t = t + 1. else 6

Stop.

approximations of P . However, if P is not a complete description of conv(S), the solution obtained by the cutting-plane algorithm is sometimes not optimal with respect to the problem (1.5).

In the context of integer optimization, the branch-and-bound algorithm is often combined with the cutting-plane algorithm. The combination of these two approaches is called a branch-and-cut algorithm. In a branch-and-cut algorithm, cutting planes are generated through out the enumeration tree in an attempt to obtain tighter dual bounds at each branch-and-bound node. Such branch-and-cut algorithm usually reduces the number of nodes in the enumeration tree.

Another effective approach that helps to generate valid inequalities for an integral polytope is the Chvátal-Gomory procedure. In fact, given a polyhedron, the Chvátal-Gomory procedure is a well-known method to derive the description of its integral hull, see [START_REF] Gomory | Outline of an algorithm for integer solutions to linear programs[END_REF][START_REF] Gomory | Solving linear programming problems in integers[END_REF], [START_REF]Edmonds polytopes and a hierarchy of combinatorial problems[END_REF].

More precisely, let X ∈ Z n be the set of integer solutions for an integer optimization problem. Let P = {x ∈ R n : Ax ≤ b} be a polyhedron that satisfies X = P ∩ Z n . Denote the columns of A ∈ R m×n by {a 1 , • • • , a n }. Given a non-negative vector μ ∈ R m + , the inequality

n i=1 μ T a i x i ≤ μ T b is valid for X. Furthermore, inequalities n i=1 μ T a i x i ≤ μ T b and n i=1 μ T a i x i ≤ μ T b
are both valid for X, among which the last inequality is stronger than the other two. This simple procedure is proved to be sufficient to generate all valid inequalities for X.

Theorem 1.3.3. Each valid inequality for X can be obtained by applying the Chvátal-Gomory procedure a finite number of times.

The minimum number of times this procedure required to obtain a certain inequality is called the Chvátal-Gomory rank of that inequality. Accordingly, the Chvátal-Gomory rank of a given polyhedron P equals the minimum number of times the procedure required to obtain the integral hull of P . However, even in R 2 , there exist polyhedra with arbitrarily large Chvátal-Gomory rank. Therefore, using the Chvátal-Gomory procedure to derive the integral hull of a given polyhedron is often costly and inefficient in practice.

Graph theory

The definitions and notation in graph theory used in this dissertation are mainly taken from [START_REF] Diestel | Graph Theory[END_REF] and [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF].

A graph G consists of a set of nodes V and a set of edges E, such that each edge in E has its both extremities, in V , that is G = (V, E). Given a graph G, its node set can be referred to as V (G), and its edge set as E(G). If a node v ∈ V is an extremity of an edge e ∈ E, we say that e is at or incident with v and v is incident with e. An edge e with extremities u, v can also be denoted by uv. Two distinct nodes u, v ∈ V are adjacent, or neighbors, if they are the extremities of an edge e = uv ∈ E. A graph is simple if there do not exist two distinct edges that have the same extremities, and there does not exist an edge in it with both extremities being the same node. All graphs mentioned in this dissertation are considered simple.

If a graph G = (V , E ) satisfies V ⊆ V , E ⊆ E, then G is a subgraph of G, or we can also say that G contains G .
Given a graph G = (V, E) and a node set S ⊆ V , let E[S] be the set composed of all the edges having both extremities in S, and let G[S] = (S, E[S]) be the subgraph of G induced by S. Accordingly, for an edge set F ⊆ E, let V [F ] be the set composed of all the nodes having at least one incident edge in F , and

G[F ] = (V [F ], F ).
The degree of a node v ∈ V is equal to the number of its neighbors and is denoted as deg (v). A node of degree 0 is said to be isolated. Let N (v) denote the set of neighbors of a node v, and δ(v) the set of edges incident with v.

A path is a non-empty graph G p = (V p , E p ) of the form

V p ={v 0 , v 1 , • • • , v k }, E p ={v 0 v 1 , v 1 v 2 , • • • , v k-1 v k },
where the v i are all distinct, i = 1, • • • , k. The length of a path equals to the number of its edges. Note that the length of a path can be 0.

The two nodes of degree one in V p are called the ends of P and the two edges at these nodes are the end edges of P . If r is an end of P and e is the end edge of P at the other end of P , P is called an re-path and is denoted by P re . If r and t are the two ends of P , P is called an rt-path and is denoted by

P rt . If the path G p = (V p , E p ) has length at least 2, then the graph C = (V p , E p ∪ {v k v 0 }) is called a cycle. A graph G is acyclic if it does not contain any cycle.
A non-empty graph is called connected if there exists at least one path between any two of its nodes. A maximal connected subgraph of a graph G is called a connected component of G.

An acyclic graph is a forest, if it is also connected it is then a tree. A cactus graph is a connected graph such that each edge belongs to at most one cycle. A complete graph is a graph that all the nodes are pairwise adjacent. A complete graph of n nodes is often denoted K n . Define a series composition as replacing an edge by two edges in series, and a parallel composition as replacing an edge by two edges in parallel. A series-parallel graph is a graph such that each of its 2-connected components can be generated from K 2 with a sequence of series and parallel compositions.

Given an undirected graph G = (V, E), the graphic matroid (E, I) satisfies that the independent sets in I are the subsets of E that induce forests of G.

Given G = (V, E) with a specific node, the root r ∈ V , a rooted-tree T = (U, F ) (also called an r-tree) is a tree of G which contains r if U = ∅. T is also said to be rooted at r. Notice that (∅, ∅) and ({r}, ∅) are both considered r-trees. The tree order associated with an r-tree T = (U, F ) is a partial order ≤ over V that is defined as follows. For any two distinct nodes u, v ∈ U , we define u ≤ v, if u belongs to the only rv-path in T . For example, in Figure 1.

2 one has r ≤ v 1 ≤ v 3 , r ≤ v 2 , v 2 ≤ v 4 and v 2 ≤ v 5 .
The up-closure and down-closure of v, denoted v and v respectively, are defined as

v = {u ∈ U : v ≤ u}, v = {u ∈ U : u ≤ v}. For instance, in Figure 1.2, the up-closure and down-closure of v 2 are v 2 = {v 4 , v 5 }, v 2 = {r}, respectively.
A node v a ∈ V is an articulation node, or a one-node cutset, in G = (V, E), if there exist two distinct sets S 1 , S 2 ⊆ V such that each path between any u ∈ S 1 and any v ∈ S 2 Figure 1.2: Tree order in a rooted-tree contains v a . Accordingly, an edge e b ∈ E is a bridge in G = (V, E), if there exist two distinct sets S 1 , S 2 ⊆ V such that each path between any u ∈ S 1 and any v ∈ S 2 contains e b . Such articulation node or bridge is said to separate S 1 and S 2 .

A 1-clique-sum, or a 1-sum, of two graphs G 1 , G 2 is formed by gluing these two graphs at a node. Note that the shared node is then an articulation node in the resulting graph.

A graph G = (V, E) is called k-connected, if |V | > k and for each S ⊆ V with |S| < k the subgraph G = G[V \ S] is connected. Accordingly, a graph G = (V, E) is called k-edge- connected if |V | > k and for each F ⊆ E with |F | < k, the subgraph G = (V, E \ F ) is connected. A set π = {S 1 , • • • , S k } of non-empty subsets of V is called a partition of V if
the sets in π are pairwise disjoint and their union is V . If {S, V \ S} is a partition of the node set V , the set composed of all the edges having one extremity in each of S and V \ S is called a cut, and denoted δ G (S) or δ G (V \ S). For any S 1 , S 2 ⊆ V with S 1 ∩ S 2 = ∅, let δ(S 1 , S 2 ) denote set of edges having one extremity in each set S 1 and S 2 , that is,

δ(S 1 , S 2 ) = δ G (S 1 ) ∩ δ G (S 2 ).
The subscript G may be omitted in all the notation if the underlying graph is clear from the context.

For the sake of simplification, given a graph G = (V, E) and a node set

U ⊆ V , the subgraph G[V \ U ] of G after removing U is also denoted G \ U . Similarly, for some F ⊆ E, one has G \ F = (V, E \ F ). Additionally, G \ e is also used as a simplification of G \ {e}.
Chapter 2

Maximum bounded rooted-tree problem

In the field of content delivery service, one of the major issues is to find a way to deliver the content (e.g. documents, software, video streams) to the users effectively and efficiently. Peer-to-peer (P2P) architecture, as it allows users to both provide and use resources, can reduce the setup and running cost and increase greatly the scalability of the network. Hence, it is widely used in content delivery networks. Moreover, the under-provisioning issue is often addressed respecting large P2P networks, and the upload capacities of devices are commonly recognized as the bottlenecks in these networks. Therefore, the problem can be described as follows. A tree is desired by the service provider to deliver the content from a server to as many users as possible, with respect to the limit of the amount of data can be sent by each device in the network. This problem has been addressed as a combinatorial optimization problem called the MBrT problem. Moreover, if the upload limits, or so-called capacity constraints, of the devices are neglected, one obtains another problem called the MrT problem. These two problems are the main focus of this dissertation. This chapter first defines these two problems. For each problem we present the complexity result and the associated polyhedra, and propose a formulation for each polytope. Finally, a literature review on related problems and their applications are presented.

Introduction

Firstly, the definition of the Maximum r-Tree Problem is given below.

Definition 2.1.1 (The MrT problem). Given an undirected graph G = (V, E), a node r ∈ V , an edge-weight vector w ∈ R E , and a node-price vector p ∈ R V , the Maximum r-Tree (MrT) problem consists of finding an r-tree T = (U, F ) of G with maximum value

f (T ) = w(F ) + p(U ).
When each node of G is required to satisfy some degree requirement, the Maximum Bounded r-Tree problem can be defined as follows.

Definition 2.1.2 (The MBrT problem). Given an undirected graph G = (V, E), a node r ∈ V , a capacity vector c ∈ Z V + with c v ≥ 1 for any node v ∈ V , an edge-weight vector w ∈ R E , and a node-price vector p ∈ R V , the Maximum Bounded r-Tree (MBrT) problem consists of finding an r-tree T of G with maximum value f (T ) and such that the following capacity requirements

|δ T (v)| ≤ c v ∀v ∈ V are satisfied.
An r-tree of G that satisfies such capacity requirements is then called a bounded r-tree.

The MrT problem can be seen as a relaxed MBrT problem from leaving out the capacity constraints. On the other hand, if we keep the capacity constraints of the MBrT problem but get rid of the constraints associated with the r-tree properties, we then obtain the following Maximum Simple b-Matching problem.

Definition 2.1.3 (The MSbM problem). Given an undirected graph G = (V, E), a capacity vector c ∈ Z V + with c v ≥ 1 for any node v ∈ V , and an edge-weight vector w ∈ R E , the Maximum Simple b-Matching (MSbM) problem consists of finding a set of edges F ⊆ E with maximum value w(F ) and such that the following capacity requirements

|δ G[F ] (v)| ≤ c v ∀v ∈ V are satisfied.
An edge set F of G that satisfies the capacity requirements is called a b-matching.

Despite these three aforementioned problems are closely related, only the MSbM problem has been well studied in the literature, whereas the MrT problem and the MBrT problem have not received much attention.

The complexity result concerning each problem is given below.

Using a similar approach as in [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF], the MrT problem can be proved to be N P-hard by polynomially reducing the Minimum Steiner Tree (MST) problem to the MrT problem. The MST problem is well-known to be N P-hard [START_REF] Karp | Reducibility among combinatorial problems[END_REF]). Hereafter we present the polynomial-time reduction from the MST problem to the MrT problem.

Theorem 2.1.4. The MST problem is polynomially reducible to the MrT problem.

Proof. Given an undirected graph G = (V, E) and a set T ⊆ V of terminals, a Steiner tree is a tree (U, F ) of G that spans all the terminals, that is, T ⊆ U . Let w ∈ R E be an edge-weight vector. The MST problem consists of finding a Steiner tree (U, F ) with minimum value w(F ).

Consider an instance of the MST problem, with

T = {v 1 , • • • , v t } ⊆ V, t ≥ 3, and w ∈ R E + . We construct a graph G = (V , E ) that is defined as follows V = V ∪ {s i : i = 1, • • • , t -1}, E = E ∪ {v i s i : i = 1, • • • , t -1}.
We can now construct an instance of MrT problem on G by picking out v t ∈ T as the root node and defining an edge-weight vector w ∈ R E + such that

w e = -w e if e ∈ E, M if e ∈ E \E,
where M is a sufficiently large positive number. Besides, all the node weights are set to 0. Then one looks for a maximum r-tree of G rooted at v t . This construction can be done in polynomial time.

To show that an optimal solution of MrT problem on G yields an optimal solution of the MST problem on G, let G [F ] be a maximum r-tree of G with F ⊆ E . Because of the large weights on the edges

v i s i , i = 1, • • • , t -1, it is straightforward to see that F contains all the edges v i s i , for i = 1, • • • , t -1, which gives us T \ {v t } ⊆ V [F ].
In addition, as v t is the root and F = ∅, one also has

v t ∈ V [F ]. Therefore, T ⊆ V [F ].

Moreover, as one has δ(s

i ) = {v i s i } for any i ∈ {1, • • • , t -1}, then v i s i is a leaf edge and s i is a leaf of the r-tree G [F ]. Let F = F ∩ E. It can be seen that G[F ] is connected and v i ∈ V [F ] for i ∈ {1, • • • , t -1}. Meanwhile, since it is known that v t ∈ F and F ∩ δ(v t ) ⊆ F , one has v t ∈ V [F ]. Thus, T ⊆ V [F ]. Furthermore, G[F ] is a subgraph of acyclic graph G [F ], which indicates that it is also acyclic. Therefore, G[F ] is a Steiner tree of G with weight w(F ) = -w (F ) = -(w (F ) -M (t -1)).
Conversely, given any Steiner tree of G, it is known that it contains all nodes in T . In addition, by the construction of G , it can be seen that v i s i is the only edge incident with s i in G . Thus, by extending each node v i , for i = 1, • • • , t -1, to an edge v i s i , one then obtains an r-tree of G . In other words, each Steiner tree of G can be associated with an r-tree of G that contains all the edges

v i s i , for i = 1, • • • , t -1. Therefore any maximum r-tree G [F ] of G corresponds to a minimum Steiner tree G[F ] of G.
As a result of this polynomial reduction and the N P-hardness of the MST problem, one then has that the MrT problem is N P-hard.

Corollary 2.1.5. The MrT problem is N P-hard.

As for the MBrT problem, if p v = 0 for any v ∈ V and w e = λ for any e ∈ E, where λ ∈ R is positive, it is then called a Maximum Size Bounded Rooted-Tree (MSBrT) problem. The MSBrT problem has been proved to be N P-hard, see [START_REF] Chakareski | A note on the data-driven capacity of p2p networks[END_REF], [START_REF] Kerivin | Maximum bounded rooted-tree packing problem[END_REF]. Consequently, the following theorem holds.

Theorem 2.1.6. The MBrT problem is N P-hard.

Alternatively, the N P-hardness of the MBrT problem can also be deduced from the N P-hardness of the MrT problem, as the latter is a relaxation of the former.

On the other hand, the MSbM problem has been shown to be polynomially solvable. Several polynomial-time algorithms have been proposed in the literature [START_REF] Pulleyblank | Faces of Matching Polyhedra[END_REF], [START_REF] Iii Marsh | Matching Algorithms[END_REF], [START_REF] Gabow | An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems[END_REF], [START_REF] Anstee | A polynomial algorithm for b-matchings: an alternative approach[END_REF], [START_REF] Gerards | Matching[END_REF]).

Associated polyhedra

In this section we define the polyhedra associated with the three problems introduced in Definitions 2.1.1 -2.1.3, and propose a formulation for each polytope.

Consider any graph G = (V, E), the incidence vector y U of a node subset U of V is defined as

y U v = 1 if v ∈ U, 0 if v / ∈ U.
Accordingly, the incidence vector x F of an edge subset F of E is defined as

x F e = 1 if e ∈ F, 0 if e / ∈ F.
The incident vector of a subgraph (U, F ) of G is represented by x F y U . The convex hull of the incidence vectors of r-trees of G is called the Extended r-Tree Polytope and is denoted by

R xy (G, r) = conv({ x F y U ∈ {0, 1} E × {0, 1} V : (U, F ) is an r-tree}).
The following formulation for the extended r-tree polytope is proposed by [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF].

Let P xy (G, r) be the polyhedron of R E+V defined by

x(E) -y(V \ {r}) = 0, (2.1) x(E[S]) -y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (2.2) y r ≤ 1, (2.3 
)

x e ≥ 0 ∀e ∈ E.
(2.4) This formulation has been proved to completely describe the extended r-tree polytope on series-parallel graphs [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF]), that is, the following theorem holds.

Theorem 2.2.1. Let G be a series-parallel graph. R xy (G, r) = P xy (G, r).

Alternatively, an r-tree can also be represented only by its edges. When focusing on edges only, we say that an edge set

F ⊆ E induces an r-tree if the graph G F = (V [F ] ∪ {r}, F ) is an r-tree.
It can be noted that the empty set induces the r-tree G ∅ = ({r}, ∅).

The convex hull of the incidence vectors of edge sets inducing r-trees of G is called the r-Tree Polytope and is denoted by

R x (G, r) = conv({x F ∈ {0, 1} E : G F is an r-tree}).
Notice that the r-tree (∅, ∅) is only our concern in the discussion with both node-and edge-indexed variables, as there is no way to distinguish it from ({r}, ∅) with only edgeindexed variables.

Let P x (G, r) be the polyhedron defined by the linear system composed of following inequalities

x e -x(δ(S)) ≤ 0 ∀e ∈ E[S], r ∈ S, (2.5) x(E[S]) ≤ |S| -1 ∀S ⊆ V, |S| ≥ 3, (2.6) x e ≤ 1 ∀e ∈ E, (2.7
) It can be proved that

x e ≥ 0 ∀e ∈ E. ( 2 
P x (G, r) is a formulation for the polytope R x (G, r), that is, Proposition 2.2.2. R x (G, r) ∩ Z E = P x (G, r) ∩ Z E .
Proof. Inequalities (2.5) ensure that each edge is connected with the root node. Inequalities (2.6) ensure the acyclicity.

Similarly, the bounded r-tree polyhedra can be defined as follows.

The convex hull of the incidence vectors of bounded r-trees of G is called the Extended Bounded r-Tree Polytope and is denoted by

B xy (G, r, c) = conv({ x F y U ∈ {0, 1} E+V : (U, F ) is a bounded r-tree}).
Recall that a bounded r-tree is an r-tree that satisfies the capacity requirements, which can be presented as the following extended capacity inequalities:

x(δ(v)) -c v y v ≤ 0 ∀v ∈ V, (2.9)
Therefore, a formulation P xy (G, r, c) for the extended bounded r-tree polytope can be obtained by incorporating the extended capacity inequalities into the formulation P xy (G, r), that is,

P xy (G, r, c) = P xy (G, r) ∩ {[ x y ] ∈ R E+V : [ x y ] satisfies (2.9)}.
This formulation used the inequalities from the formulation for the extended r-tree polytope, on top of which the extended capacity inequalities (2.9) are added to enforce the capacity requirements.

Proposition 2.2.3.

P xy (G, r, c) is a formulation for B xy (G, r, c), that is, B xy (G, r, c) ∩ Z E+V = P xy (G, r, c) ∩ Z E+V .
Proof. According to the formulation for the extended r-tree polytope, any integral vector that satisfies inequalities (2.2), (2.3) and (2.4) induces an r-tree. Moreover, with inequalities (2.9) being satisfied, any integral vector in P xy (G, r, c) induces a bounded r-tree. Conversely, any incidence vector of a bounded r-tree of G clearly satisfies all the inequalities (2.1) -(2.9).

Notice that for the inequalities (2.2), by setting S = {u, v} for any uv = e ∈ E, one gets the following subgraph inequalities:

x e -y v ≤ 0 ∀v ∈ V, e ∈ δ(v).
(2.10)

It is also worth noting that the subgraph inequalities (2.10) together with inequalities (2.3) and (2.4) ensure that the following inequalities hold.

x e ≤ 1 ∀e ∈ E,

y v ≥ 0 ∀v ∈ V.
The convex hull of the incidence vectors of edge sets inducing bounded r-trees of G is called the Bounded r-Tree Polytope and is denoted by

B x (G, r, c) = conv({x F ∈ {0, 1} E : G F is a bounded r-tree}).
Similarly to the r-tree case, we need to incorporate the following capacity inequalities (2.11) into P x (G, r) to obtain a formulation for the bounded r-tree polytope, that is,

x(δ(v)) ≤ c v ∀v ∈ V
P x (G, r, c) = P x (G, r) ∩ {x ∈ R E : x satisfies (2.11)}. Proposition 2.2.4. P x (G, r, c) is a formulation for B x (G, r, c), that is, B x (G, r, c) ∩ Z E = P x (G, r, c) ∩ Z E .
Proof. Recall that for the r-Tree polytope, it has been proved that any integral vector that satisfies inequalities (2.5), (2.6), (2.7) and (2.8) induces an r-tree. If such integral vector also satisfies inequalities (2.11), then the induced graph is also bounded. Therefore, any integral vector in P x (G, r, c) induces a bounded r-tree. Conversely, any incidence vector of the edge set of a bounded r-tree of G clearly satisfies all the inequalities (2.5), (2.6), (2.7), (2.8) and (2.11).

The convex hull of the incidence vectors of b-matchings in G is called the Simple b-Matching Polytope and is denoted by

M x (G, c) = conv({x F ∈ {0, 1} E : G F is bounded by c}).
The complete description of the simple b-matching polytope was given by Schrijver [2003] (see also [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF], [START_REF] Pulleyblank | Faces of Matching Polyhedra[END_REF] and [START_REF] Edmonds | Some well-solved problems in combinatorial optimization[END_REF]).

Let P x (G, c) be the polyhedron of R E defined by

x(E[S]) + x(F ) ≤ 1 2 c(S) + |F | ∀S ⊆ V, F ⊆ δ(S) with c(S) + |F | odd, (2.12) x(δ(v)) ≤ c v ∀v ∈ V, (2.13) 0 ≤ x e ≤ 1 ∀e ∈ E. (2.14)
Inequalities (2.12) are known as the blossom inequalities. [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF] proved that (2.12)-(2.14) completely describe the simple b-matching polytope as stated in the following theorem (see also [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF]).

Theorem 2.2.5.

M x (G, c) = P x (G, c).
Moreover, [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF] showed that if we discard the condition of c(S)+|F | being odd for the blossom inequalities (2.12), the system is then TDI (see also [START_REF] Pulleyblank | Total dual integrality and b-matchings[END_REF]).

Any bounded r-tree of a graph G is also an r-tree of G, and any edge set of a bounded r-tree of G is also a b-matching of G. Hence, one has the following proposition.

Proposition 2.2.6. Given an undirected graph G = (V, E), a root node r ∈ V , and a capacity vector c ∈ Z V + with c v ≥ 1 for any node v ∈ V , then the following relations among the polyhedra hold.

B xy (G, r, c) ⊆ R xy (G, r), B x (G, r, c) ⊆ R x (G, r), B x (G, r, c) ⊆ M x (G, c).
An immediate consequence of this proposition is stated as the corollary below.

Corollary 2.2.7. Any inequality valid for R xy (G, r) 

is also valid for B xy (G, r, c). Any inequality that is valid for either R x (G, r) or M x (G, c) is also valid for B x (G, r, c).
It is worth noting that, for the MBrT problem, one set of nodes that stand out in both the algorithm development and the polyhedral study are the nodes with unit capacity.

It can be noticed that these nodes (except r) are not providing any connectivity to the other nodes, in other words they can only appear as leaves in any bounded r-tree. Let (2.15) denote the set of these nodes.

O := {v ∈ V \ {r} : c v = 1}.
(2.15)

Nodes in O have a significant impact on the dimension analysis as well as the facet-defining conditions of valid inequalities for the polyhedra associated with MBrT problem.

As a result of the existence of O, it can be noticed that even if G is connected, there might still be some nodes or edges in G such that they cannot be reached by any bounded r-tree of G. We say that a node v (edge e, respectively) of G is unreachable from root r if there does not exist any path in G containing r and v (e, respectively) that does not have any node in O as an internal node. Let V u and E u be the sets composed of the unreachable nodes and edges of G, respectively. Any incidence vector of a bounded r-tree of G straightforwardly satisfies the following equations (2.16)

x e = 0 ∀e ∈ E u ,
y v = 0 ∀e ∈ V u .
(2.17)

In fact, for polyhedral study, these unreachable nodes and edges are insignificant. Let

G c = (V \V u , E\E u ). A characterization of B xy (G c , r, c ) (B x (G c , r, c ), respectively) yields a characterization of B xy (G, r, c) (B x (G, r, c), respectively), where c is the restriction of c to V \ V u .
In order to prove it, we give a more generalized result considering any polytope with some fixed variables.

Given two polytopes

P = {x ∈ R n : Ax ≤ b}, P = {[ x x 0 ] ∈ R n+m : Ax ≤ b, I 0 x 0 = b 0 },
where I 0 is the identity matrix of size m, one has the following result.

Theorem 2.2.8. P is integral if and only if P is integral.

Proof. As P is a projection of P , according to Theorem 1.2.7, P is integral if P is integral.

Now assume that P is integral. Consider an arbitrary extreme point x with respect to P , and let S(x) be the system of equations that defines it. It is straightforward to see that [ x x 0 ] is defined by the system composed of S(x) and I 0 x 0 = b 0 . Hence, [ x x 0 ] is an extreme point with respect to P , and it is integral as P is integral. Thus x is integral, and hence P is integral, which completes the proof.

Moreover, for graphs that contain unreachable node or edges, one can actually get rid of them in polynomial time with some search algorithms. Therefore, the rest of the dissertation is based on the following assumption.

Assumption 2.2.9.

V u = ∅, E u = ∅. Denote G r = (V r , E r ) the connected component that contains r in the graph G[V \ O].
One can deduce straightforwardly from this assumption that

G r = G[V \ O].

State of the art

This section provides an overview of the most important known results for the aforementioned problems.

On the one hand, we show that there is a lack of intensive theoretical study of the MBrT problem in the literature, despite some related problems have been well studied.

On the other hand, we also show that in content delivery networks, especially for the live video streaming service, the underlying problem of the business procedure has been found to have a closer connection with the MBrT problem, instead of the traditionally identified max-flow problem. Thus, the quantity-focused strategy for content delivery which is in use currently should shift to a quality-over-quantity one in order to improve the overall quality of service in the dedicated networks. Besides, the algorithms that are used currently in the industry often refer to the algorithms for problems such as shortest path problem and minimum spanning tree problem. Therefore, the theoretical study and algorithms for the MBrT problem and its variants deserve more attention from the literature.

Degree-constrained problems

The MBrT problem is relatively new in the field of combinatorial optimization, thus hardly any research has been conducted around it. It was first addressed in [START_REF] Chakareski | A note on the data-driven capacity of p2p networks[END_REF], where the author presented a few preliminary results and raised some open questions. The authors proved its N P-hardness, and provided a formulation for the problem. In addition, a proposed heuristic was also presented with experimental results.

Several different models were proposed for the MBrT problem in [START_REF] Kerivin | Models for the maximal bounded r-tree packing problem[END_REF], including a cut-based model, a level-based model and a flow-based model. The authors proved that the linear relaxation corresponding to each model is polynomially solvable.

In [START_REF] Kerivin | Exploring the dark side of live streaming[END_REF], [START_REF] Kerivin | Maximum bounded rooted-tree packing problem[END_REF], it is shown that the decision problem of the uniform-weight restriction of the MBrT problem, namely the MSBrT problem, is N P-complete as 3-SAT is polynomially reducible to it. However, the authors showed that some special cases of the MBrT problem are polynomially solvable. A dynamic programming approach was proposed to solve the MSBrT problem on trees in polynomial time. In addition, on complete graphs, the author presented a polynomial-time algorithm that solves the MSBrT problem based on the trivial fact that computing a Hamiltonian path in a complete graph can be done in linear time.

As a well-studied topic in the literature, b-matching and its associated problems have a connection with the MBrT problem in the aspect of constrained node-degree. There are several different versions of b-matching problems.

The general weighted b-matching problem aims at finding a maximum-weight b-matching in a graph. It has no other constraints aside from the node-degree constraints. The associated general b-matching polytope was characterized by [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF], while a minimal TDI system was given by [START_REF] Pulleyblank | Total dual integrality and b-matchings[END_REF]. When incorporating the edgecapacity constraints with the general weighted b-matching problem, one gets the so-called weighted capacitated b-matching problem. For this problem, each edge has an integer capacity which the variable associated with this edge should not exceed. If the capacity of each edge is set to 1, we obtains the MSbM problem. The simple b-matching polytope and an associated TDI system was proposed by [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]. The MSbM problem is the closest to the MBrT problem of all the b-matching problems, as the MBrT problem also has the unit edge-capacity constraints.

Algorithms for other versions of the MSbM problem have also been proposed in the literature [START_REF] Johnson | Network Flows, Graphs and Integer Programming[END_REF], [START_REF] Gabow | An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems[END_REF], [START_REF] Gondran | Graphs and Algorithms[END_REF], [START_REF] Gerards | Matching[END_REF]).

The minimum bounded degree spanning tree (MBDST) problem is closely related to the MBrT problem in the sense that node-degree constraints are enforced, yet it looks for a spanning tree instead of a rooted tree and all the nodes have the same degree upper bound k ≥ 2.

In [START_REF] Goemans | Minimum bounded degree spanning trees[END_REF], the MBDST problem is considered, providing a crucial point that the support graph of the solution to the linear relaxation is proved to have the so-called laminar property. This laminar property is exploited to build a matroid, and with the help of matroid intersection [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF][START_REF] Edmonds | Matroids and the greedy algorithm[END_REF], [START_REF] Lawler | Matroid intersection algorithms[END_REF]), the author proposed a polynomial-time approximation algorithm. The algorithm is able to obtain a suboptimal solution where the degree of each node is bounded by k + 2. In [START_REF] Zhao | Optimal distribution of video streams in large peer-to-peer networks[END_REF], we proved that the MBrT problem does not possess the laminar property as described in [START_REF] Goemans | Minimum bounded degree spanning trees[END_REF] for the MBDST problem, which makes it impossible to directly adapt the said approximation algorithm for the MBrT problem.

In [START_REF] Singh | Approximating minimum bounded degree spanning trees to within one of optimal[END_REF], by using an extension of the iterative rounding method introduced by [START_REF] Jain | A factor 2 approximation algorithm for the generalized steiner network problem[END_REF], the authors provided another polynomial-time approximation algorithm to obtain a suboptimal solution which improved the node-degree bound to k + 1.

Other methods such as primal separation and ant colony algorithm have also been studied on the MBDST problem, where some showed the potential in the computational aspect [START_REF] Behle | A primal branch-and-cut algorithm for the degreeconstrained minimum spanning tree problem[END_REF], [START_REF] Letchford | Primal separation algorithms[END_REF], [START_REF] Raidl | An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem[END_REF], [START_REF] Bui | An improved ant-based algorithm for the degreeconstrained minimum spanning tree problem[END_REF], [START_REF] Malik | Bees algorithm for degree-constrained minimum spanning tree problem[END_REF]).

Non-degree-constrained related problems

In [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF], the MrT problem and the extended r-tree polytope R xy (G, r) are studied in the context of the Steiner tree problem. A formulation is proposed along with the results concerning the separation problem for the constraints and the facets of the polytope. The author then proved that the formulation leads to a characterization of R xy (G, r) on series-parallel graphs. Additionally, the author also showed that the polyhedral study of R xy (G, r) can be restricted on 2-connected subgraphs by proving the feasibility of a decomposition through 1-sum. Nevertheless, to the best of our knowledge the r-Tree polytope R x (G, r) has not been considered in the literature.

The Steiner tree problem also share a characteristic with the MBrT problem and the MrT problem. More precisely, the root node in the MBrT problem and the MrT problem can be seen as a terminal. Thus a feasible solution to these two problems is always a Steiner tree. The Steiner tree problem is one of the most popular and well-studied topics in the field of combinatorial optimization. Although the Steiner tree problem is N P-hard [START_REF] Karp | Reducibility among combinatorial problems[END_REF]), even in grid graphs, planar graphs and bipartite graphs [START_REF] Hakimi | Steiner's problem in graphs and its implications[END_REF], Garey andJohnson [1977, 1979]), there are special cases that have been proved to be polynomially solvable. If all nodes in the graph are terminals, it is then a minimum spanning tree problem, which can be solved by polynomial-time algorithms proposed by [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] and [START_REF] Prim | Shortest connection networks and some generalizations[END_REF]. If there exist only two terminals in the graph, the problem becomes a shortest path problem, and can be solved by the algorithm of [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] in polynomial time. Additionally, if the underlying graph is an outerplanar graph, a series-parallel graph or a Halin graph, linear-time algorithms have been developed for the Steiner tree problem as well [START_REF] Rardin | A polynomial algorithm for a class of steiner tree problems on graphs[END_REF], Wald and Colbourn [1982a,b], [START_REF] Winter | Steiner problem in halin networks[END_REF]). Further study on the algorithms and polyhedral structure of the Steiner tree problem can be found in [START_REF] Dreyfus | The steiner problem in graphs[END_REF], [START_REF] Lawler | Combinatorial Optimization: Networks and Matroids[END_REF], [START_REF] Wong | A dual ascent approach for steiner tree problems on a directed graph[END_REF], [START_REF] Lucena | Tight bounds for the steiner problem in graphs[END_REF], [START_REF] Chopra | Solving a steiner tree problem on a graph using branch and cut[END_REF], [START_REF] Goemans | A catalog of steiner tree formulations[END_REF], Chopra and Rao [1994a,b], [START_REF] Jain | A factor 2 approximation algorithm for the generalized steiner network problem[END_REF], [START_REF] Didi-Biha | Steiner trees and polyhedra[END_REF]. [START_REF] Goemans | A catalog of steiner tree formulations[END_REF] presented several different formulations for the Steiner tree problem. In Chopra and Rao [1994a,b], the authors studied the polyhedral structure of the Steiner tree problem. Several new facet-defining inequalities were introduced, with which the authors proved that the description of the dominant of the Steiner tree polytope can be obtained. Moreover, [START_REF] Didi-Biha | Steiner trees and polyhedra[END_REF] proposed a new class of valid inequalities that generalizes the ones proposed by Chopra and Rao [1994b]. The authors showed that these inequalities can help to describe the dominant of the Steiner tree polytope in series-parallel graphs with the terminals satisfying certain conditions.

In [START_REF] Jain | A factor 2 approximation algorithm for the generalized steiner network problem[END_REF], a 2-approximation algorithm is proposed for the generalized Steiner network problem relying on a property of the solution to the linear relaxation. It first obtains the solution to the linear relaxation with the assumption that the requirement function is weakly supermodular. Based on this assumption the author then proved that there exists at least one edge having value more than 1 2 in any linear relaxation solution. The author proposed an algorithm which is able to iteratively round off the solution due to this property.

The connected subgraph problem is another problem that bears a similarity to the MBrT problem, as they both aim at finding a connected subgraph. In fact, the MBrT problem can be considered as a restriction of the connected subgraph problem. In [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF], the authors focused on the polyhedral aspect of the problem. A new set of facet-defining inequalities, namely the matching-partition inequalities, was introduced to strengthen the formulation. Although the general separation problem for these inequalities was proved to be N P-hard, the authors showed that they are polynomially separable and are helpful for the polyhedral characterization on certain classes of graphs. Besides, valid inequalities and approximation algorithms concerning variants of connected subgraph problem have also been studied under different conditions in the literature [START_REF] Cheriyan | Approximating minimum-size k-connected spanning subgraphs via matching[END_REF], [START_REF] Bendali | The k-edge connected subgraph problem: Valid inequalities and branch-and-cut[END_REF], [START_REF] Chan | Degree bounded network design with metric costs[END_REF], [START_REF] Cheriyan | Approximating minimum-cost k-node connected subgraphs via independence-free graphs[END_REF], [START_REF] Cornaz | On minimal two-edge-connected graphs[END_REF]).

Applications in the telecommunication field

The MBrT problem originally comes from the telecommunication industry, more specifically, the content delivery service. This section introduces the context of the telecommunication problem, and some facts and techniques that are worth highlighting related to the problem.

Content delivery, including video streaming, has become one of the most popular services people are using on the Internet recently. According to the prediction of a technical report from Cisco in 2014 (Cisco [2014]), Internet Protocol (IP) video traffic will account for 79 percent of all consumer Internet traffic in 2018, up from 66 percent in 2013, and the sum of all forms of video will be in the range of 80 to 90 percent of global consumer traffic by 2018. Within the video traffic, by 2018, 67 percent of it will go through content delivery networks, up from 53 percent in 2013, see Cisco [2014]. In the case of the most famous video sharing website YouTube, in 2015, every second, about 97,000 videos are being viewed throughout the Internet.

Streaming from one or multiple servers simultaneously to this large amount of users and ensuring good quality of service at the same time is no doubt a challenge for any service provider. In order to meet the demand of video streaming, P2P architecture has been widely adopted to replace the old-fashion client-server architecture, as it has much better scalability and no requirements for any hierarchical organization or centralized control. Despite the supportive techniques that have been highly focused on in research and development, one fact that cannot be overlooked about P2P networks is the under-provisioning network resources, see [START_REF] Kerivin | Exploring the dark side of live streaming[END_REF], [START_REF] Passarella | A survey on content-centric technologies for the current internet: Cdn and p2p solutions[END_REF], [START_REF] Sweha | Angelcast: Cloud-based peer-assisted live REFERENCES streaming using optimized multi-tree construction[END_REF]. Furthermore, the bottleneck of the P2P network, as opposed to the assumption made for traditional network flow problems, are the upload capacities of the node devices instead of capacities of the links [START_REF] Massoulié | Randomized decentralized broadcasting algorithms[END_REF], [START_REF] Liu | P2p streaming capacity REFERENCES under node degree bound[END_REF]). Among all the approaches that have been developed for P2P streaming, although meshbased approaches have shown its superiority in certain aspects, the tree-based approaches are still the most popular [START_REF] Yiu | Challenges and approaches in large-scale peer-to-peer media streaming[END_REF], [START_REF] Padmanabhan | Distributing streaming media content using cooperative networking[END_REF], [START_REF] Magharei | Mesh or multiple-tree: A comparative study of live p2p streaming approaches[END_REF]). Moreover, the tree-based approaches fit better the under-provisioned context encountered in content delivery services [START_REF] Kerivin | Exploring the dark side of live streaming[END_REF]).

The tree-based approaches can be further categorized into two sub-classes, the singletree-based and multiple-tree-based approaches. They both use trees as overlay to deliver requested content from the servers to the clients. The difference between them is that multiple-tree-based approach splits the content stream into smaller sub-streams with the help of the Dynamic Adaptive Streaming over HTTP (DASH) mechanism [START_REF] Stockhammer | Dynamic adaptive streaming over http -standards and design principles[END_REF]) and techniques such as Multiple Description Coding (MDC) or Layered Coding (LC) [START_REF] Mccanne | Receiver-driven layered multicast[END_REF], [START_REF] Goyal | Multiple description transform coding of images[END_REF], [START_REF] Li | Layered video multicast with retransmission (lvmr): Evaluation of hierarchical rate control[END_REF], [START_REF] Byers | Fine-grained layered multicast[END_REF], [START_REF] Goyal | Multiple description coding: Compression meets the network[END_REF], [START_REF] Vitali | Multiple description coding -a new technology for video streaming[END_REF]). Each sub-stream is delivered through a particular delivery tree. Each peer might participate in a subset of all the trees. The quality of the content offered to each peer is positively related to the number of sub-streams received by that peer device.

As mentioned earlier, the upload capacity of the peers must be considered during the construction and the maintenance of the delivery trees. The policy adopted for the allocation of the upload capacities, and the algorithm used for the construction of the delivery trees can affect the quality of service significantly. In practice, peers in P2P networks may also fail or disconnect from the network [START_REF] Banerjee | Resilient overlays using multicast[END_REF]). To prevent or minimize the delivery disruption in this kind of situation, the content delivery tree or trees must be repaired within a short time.

Traditionally, one fundamental issue often addressed in literature about P2P streaming concerns the maximum bit-rate that can be sustained for all peers. However, due to the development of DASH and encoding techniques such as MDC and LC, the qualityover-quantity strategy is proved to be better than the quantity-focused one for modern streaming [START_REF] Kerivin | Exploring the dark side of live streaming[END_REF]). Therefore, the objective now has become no longer the maximum bit-rate, but the best delivery tree or trees one can possibly find. Such trend in the telecommunication industry motivates the effort to study on problems such as the MBrT problem.

Another problem that is often focused on in the telecommunication field is the multicast tree construction problem [START_REF] Oliveira | Optimization problems in multicast tree construction[END_REF]). Such problem often involves reducing the overall delay among the clients or reducing the overall cost on the links [START_REF] Brosh | Approximation and heuristic algorithms for minimum delay application-layer multicast trees[END_REF]), while looking for a spanning tree in general. In practice, algorithms that have been proposed for the multicast tree construction problem often employ some straightforward approaches such as the shortest path based approach and the minimum spanning tree based approach, or use heuristics or other techniques such as genetic algorithms and evolutionary algorithms [START_REF] Tran | A peer-to-peer architecture for media streaming[END_REF], [START_REF] Li | An efficient algorithm for constructing delay bounded minimum cost multicast trees[END_REF], [START_REF] Jurcík | Construction of the bounded application-layer multicast tree in the overlay network model by the integer linear programming[END_REF], [START_REF] Oliveira | Optimization problems in multicast tree construction[END_REF]).

Unfortunately, although there have been many research projects which have addressed the issues in content delivery networks, the under-provisioning aspect has not received much if any attention as it should otherwise have. In such context, researchers generally aimed at finding algorithms for the MBDST problem or the degree constrained Steiner tree problem with different constraints [START_REF] Tran | A peer-to-peer architecture for media streaming[END_REF], [START_REF] Li | An efficient algorithm for constructing delay bounded minimum cost multicast trees[END_REF], [START_REF] Liu | An efficient distributed algorithm for constructing delay-and degree-bounded application-level multicast tree[END_REF], [START_REF] Jurcík | Construction of the bounded application-layer multicast tree in the overlay network model by the integer linear programming[END_REF], [START_REF] Oliveira | Optimization problems in multicast tree construction[END_REF], [START_REF] Cao | Dsd-d: A distributed algorithm for constructing highstability application-layer multicast tree[END_REF]).

Therefore, hardly any work has defined explicitly the problem with regard to the underprovisioning as well as the quality-over-quantity objective. This eventually leads to the current state of unbalance between the rising need in application and the lack of theoretical support.

Conclusion

In the field of combinatorial optimization, the MBrT problem has not been emphasized in research. It has been addressed recently with a few models and some polynomial cases. As a relaxation of the MBrT problem, the polyhedral structure and algorithms for the MSbM problem have been thoroughly studied by the literature. As for the MrT problem, there are some results obtained with respect to the extended r-tree polytope and its characterization, yet nothing has been done regarding the r-Tree polytope. Moreover, as far as we know, there has been neither intensive polyhedral study nor computational study for the MBrT problem.

There exist some related problems such as the Steiner tree problem, the MBDST problem and the connected subgraph problem, which have been focused by the literature. However, the results and algorithms developed cannot be used directly on the MBrT problem. On the contrary, applications of the MBrT problem in content delivery networks have received substantial attention from researchers, although the fact of under-provisioning issue of the networks is oftentimes overlooked.

Therefore, there is a compelling need for the study on the polyhedra associated with the MBrT problem as well as the MrT problem. This dissertation is dedicated to the polyhedral, algorithmic and computational study of the MBrT problem and the MrT problem. The polyhedral study generally helps to provide dual bounds which are as tight as possible. Even for instances that cannot be solved quickly, tight dual bounds can help quantify the quality of heuristic-based solutions. We present some newly discovered facets of the polytopes and show that they indeed make a difference in providing tighter dual bounds in the computational test.

Chapter 3 Combinatorial algorithms for the MBrT problem

As mentioned in the previous chapter, the MBrT problem is N P-hard in general, even for the MSBrT problem where uniform edge-weights are considered. However in [START_REF] Kerivin | Models for the maximal bounded r-tree packing problem[END_REF], [START_REF] Kerivin | Exploring the dark side of live streaming[END_REF], [START_REF] Kerivin | Maximum bounded rooted-tree packing problem[END_REF], the authors present polynomialtime algorithms for the MSBrT problem on complete graphs and trees. The algorithm on complete graphs is based on constructing a Hamiltonian path, whereas a dynamic programming approach is used in the algorithm for trees.

In this chapter, we present polynomial-time algorithms for the MBrT problem on different classes of graphs. In particular, an algorithm based on dynamic programming is proposed for the MBrT problem on trees. We also propose algorithms to solve the MBrT problem on cycles. We then explore the MBrT problem on cactus graphs, since a cactus graph can be seen as a combination of trees and cycles. We prove that the MBrT problem on a cactus graph can be decomposed into subproblems on the so-called cactus bases and trees. We prove that the MBrT problem on cactus bases is polynomial, and using the decomposition property of cactus graphs, the MBrT problem on cactus graphs can be solved in polynomial time. Besides, the proof of a general decomposition related to articulation nodes is given for the MBrT problem.

Notably, the algorithms proposed in this chapter concern the general MBrT problem with both edge weights and node weights. Nonetheless they can be converted into algorithms for any restriction of MBrT problem such as the MSBrT problem. Likewise, some relaxation of the MBrT problem such as the MrT problem can also be solved by adapting the algorithms to the specific situation. For example, one can discard all the capacity-related parts in an algorithm for the MBrT problem to obtain a corresponding algorithm for the MrT problem.

Recall that the MBrT problem is defined by an undirected connected graph G = (V, E) with a root node r ∈ V , a node-capacity vector c ∈ Z V + , an edge-weight vector w ∈ R E and a node-price vector p ∈ R V . A feasible solution to the MBrT problem is a bounded r-tree T = (U, F ) of G. The goal of the MBrT problem is to find a bounded r-tree T with maximal value of f (T ), where for any subgraph

T = (U, F ) of G, f (T ) = v∈U p v + e∈F w e .
Let Opt G (r) denote the value of f (T ) associated with a maximum bounded r-tree of G, where the subscript G can be omitted when the graph is clear from the context. Opt G may also be used instead of Opt G (r) when the root is clear from the context.

On trees

If the underlying graph G is a tree, we present a dynamic-programming approach for solving the MBrT problem.

For any node v ∈ V , the set composed of all the neighbors of v in its up-closure is denoted by

N u (v) = N (v) ∩ v . For any node v ∈ V \ {r}, the only neighbor of v in its down-closure is denoted by d v , that is, d v ∈ N (v) \ N u (v).
Given any node v ∈ V , let g(v) be the value of a maximum non-empty bounded tree rooted at v of the subgraph G [ v ] of G induced by the up-closure of v, where the capacity vector

c v ∈ Z v + satisfies c v v = c v -1 if v = r, c v v = c v if v = r, and c v s = c s , for s ∈ v \ v. In other words, g(v) = max{f (T ) : T is tree of G[ v ] with v ∈ V (T ) and bounded by c v }.
It can also be seen that the following relation holds

Opt G[ v ] (v) = max{0, g(v)} (3.1)
which gives Opt G (r) = max{0, g(r)}. Hence, the problem of calculating Opt G (r) is reduced to the problem of calculating g(r).

For any leaf v ∈ V \ {r}, it is straightforward to see that

g(v) = p v , (3.2)
since the only non-empty bounded tree rooted at v is the graph reduced to v. Proof. Suppose otherwise that a maximum non-empty bounded tree T v rooted at v contains a non-empty bounded tree T v k rooted at v k which is not maximum. By replacing T v k in T v by a maximum non-empty bounded tree rooted at v k , one obviously obtains a non-empty bounded tree rooted at v whose weight is larger than T v . Hence, it contradicts with the assumption.

For any non-leaf node v ∈ V , let N u (v) = {v 1 , • • • , v q },
For any non-leaf node v ∈ V , let

h(v k ) = w vv k + g(v k )
for any k ∈ {1, • • • , q}. According to Lemma 3.1.1, the problem of calculating g(v) reduces to

p v + max{ v k ∈S h(v k ) : S ⊆ N u (v), |S| ≤ c v v }.
As it is a maximization problem over a uniform matroid, if g(v k ) is known for all k ∈ {1, • • • , q}, it can be easily solved by a greedy algorithm in linear time, where at each step one selects a node v k with the maximum non-negative h(v k ) until there is no such nodes or c v -1 nodes have been chosen. Without loss of generality, suppose

h(v 1 ) ≥ h(v 2 ) ≥ • • • ≥ h(v i ) > 0 ≥ h(v i+1 ) ≥ • • • ≥ h(v q ). Let j = min{c v v , i}.
The following equation holds.

g(v) = p v + j k=1 h(v k ).
(3.3) Algorithm 3.1 is used to obtain the value g(r) using dynamic programming. It calculates the value of g(v) for each node in V on G from the leaves to the root r.

The correctness of the solution obtained from Algorithm 3.1 is a direct consequence of the definition of g(v) and the equation (3.3).

Proposition 3.1.2. Algorithm 3.1 computes g(r).

It can be deduced that Algorithm 3.1 also computes a maximum-weight non-empty bounded r-tree. At each step of computing g(v) for a non-leaf node v ∈ V , a maximum non-empty bounded tree T v rooted at v is obtained by combining v with vv k and

T v k for all k ∈ {1, • • • , j}.
Algorithm 3.1: Algorithm to compute g(r) on trees Proof. For each v ∈ V that is not a leaf, the greedy algorithm for calculating g(v) has complexity of O(|N u (v)|). In the algorithm, each g(v) for all v ∈ V is used once. Moreover, from the definition and calculation of g(v), each of the terms w e , p v for any e ∈ E, v ∈ V is used only once for the summation. Therefore, the algorithm has time complexity of O(n).

Input : Tree G = (V, E), w ∈ R E and p ∈ R V . Output: g(r
As an immediate consequence, the following theorem holds.

Theorem 3.1.4. If G is a tree, the MBrT problem can be solved in the time of O(n).

As the MBrT problem is proved to be polynomially solvable on trees, the following proposition can be developed thereby.

Corollary 3.1.5. The MBrT problem on a graph containing only one cycle can be solved in the time of O(n 2 ).

Proof. Given G = (V, E) having only one cycle C = (U C , F C ) as a subgraph, we claim that the MBrT problem on G can be reduced to |F C | MBrT problems on trees.

As there exists only one cycle in G, each subgraph G e = (V, E \ {e}), e ∈ F C , is a tree. Therefore, one can solve the MBrT problem on each G e , e ∈ F C , using Algorithm 3.1. Moreover, there does not exist a bounded r-tree that contains all edges in F C because of the acyclicity requirement. Hence, the maximum bounded r-tree on G is the maximum bounded r-tree among all the solutions obtained from each subgraph G e , e ∈ F C , that is,

Opt G = max{Opt G e : e ∈ F C }.
Therefore the MBrT problem on G is polynomially solvable, and since this approach solves |F C | MBrT problems on trees, it has a running time of O(n 2 ).

On cycles

Assume now that graph G is a cycle on n nodes. Without loss of generality, let

V = {r, v 1 , • • • , v n-1 }, E = {e 1 , • • • , e n }, with δ(v i ) = {e i , e i+1 }, i = 1, • • • , n -1, δ(r) = {e 1 , e n }.
Recall that according to Assumption 2.2.9, |O| ≤ 1, otherwise there will exist some unreachable nodes or edges.

If c r = 1, the feasible solution space contains at most 2n integer points. If c r = 2, the feasible solution space contains at most n(n+1) 2 +1 integer points. Thus the MBrT problem can be solved in polynomial time simply by going through all the possible solutions in the time of O(n 2 ). Notice that same argument also applies for the cases if O = ∅ holds in the two cases stated above, as the number of feasible solutions only reduces due to the existence of the unit-capacity node. Alternatively, according to Corollary 3.1.5, the MBrT problem on cycles can also be reduced to n MBrT problems on trees.

Nonetheless, there are other approaches to solve it without enumerating all the solutions or using the algorithm for trees. This section introduces linear-time algorithms for the MBrT problem on cycles.

Given any edge set F ⊆ E, denote by

P F rv , an rv-path of G[F ] such that P F rv ⊆ F, v ∈ V [F ]. For any F ⊆ E with r ∈ V [F ], the weight of a maximum-weight nonempty bounded rv- path of G[F ] is denoted by ϕ(F ) := max{f (P F rv ) : P F rv = ∅, v ∈ V [F ]}.
It is worth noting that according to the definition we have

ϕ(F ) = max{f (T ) : T is a bounded r-tree , |δ(r) ∩ V (T )| = 1}. (3.4)
We first show that if F is an rv-path, ϕ(F ) can be obtained in linear time. We define two subpaths of G as follows.

P 1 = {e 2 , e 3 , • • • , e n } if O = ∅, {e o , e o+1 , • • • , e n } if O = {v o }, o ∈ {1, • • • , n -1}. P n = {e 1 , • • • , e n-1 } if O = ∅, {e 1 , • • • , e o } if O = {v o }, o ∈ {1, • • • , n -1}.
The following proposition can be derived.

Proposition 3.2.2. ϕ(E) = max{ϕ(P 1 ), ϕ(P n )}.

(3.5)

Proof. Since graph G = (V, E) is a cycle, any nonempty bounded rv-path P E rv ⊆ E, v ∈ V of G is also an rv-path of either G[P 1 ] or G[P n ],
the proposition thereby holds.

Theorem 3.2.3. If G is a cycle and c r = 1, the MBrT problem can be solved in linear time.

Proof. If c r = 1, as any bounded r-tree is an rv-path of G, one thus have

Opt G = max{0, p r , ϕ(E)}.
Furthermore, according to Proposition 3.2.1, ϕ(E) can be obtained in linear time. Hence, Opt G can be obtained in linear time.

Consider now the case of c r = 2.

Denote the path between v 1 and v n-1 without going through r by

P r = E \ {e 1 , e n }.
Recall that we denote a uv-path of G[P r ] by P Pr uv ⊆ P r . Given a non-empty path P uv between u and v, let 

ζ(P uv ) := f (G[P uv ]) -p u -p v ,
f (G) -ζ Min (P r ) = max{f (T ) : T = (U, F ) is a bounded r-tree of G, |δ(r) ∩ F | = 2}.
Proof. From the definition of ζ Min (P r ), it can be seen that ζ Min (P r ) = min{f (G)f (T ) :

T = (U, F ) is a bounded r-tree of G, |δ(r) ∩ F | = 2}. Since f (G) = w(E) + p(V ) is constant, the lemma is thereby proved.
Then the following result respecting the optimal value of the MBrT problem on G can be developed for the case of c r = 2. Proposition 3.2.5.

If c r = 2, Opt G = max{0, p r , ϕ(E), f(G) -ζ Min (P r )}.
(3.6)

Proof. According to (3.4) and Lemma 3.2.4,

max{ϕ(E), f(G) -ζ Min (P r )} = max{f (T ) : T = (U, F ) is a bounded r-tree of G, 1 ≤ |δ(r) ∩ F | ≤ 2}.
Combining with the solutions (∅, ∅) and ({r}, ∅) and the fact that

|δ(r)∩F | ≤ 2 is satisfied for any subgraph (U, F ) of G, one has max{0, p r , ϕ(E), f(G) -ζ Min (P r )} = max{f (T ) : T is a bounded r-tree of G}.
Therefore the proposition holds.

The MBrT problem on G in the case of c r = 2 is then reduced to the problem of finding ϕ(E) and ζ Min (P r ).

Recall that ϕ(E) can be calculated in linear time, as it is shown in Propositions 3.2.1 and 3.2.2. We present hereafter the algorithms to obtain ζ Min (P r ). Notice that, depending on whether O is empty or not, there are two situations to deal with.

The following proposition needs to be put forward as a preparation for the presentation of the algorithm for calculating ζ Min (P r ) in the case of O = ∅.

Given a path P s 1 sq = {s 1 s 2 , s 2 s 3 , • • • , s q-1 s q } between s 1 and s q .Let P s i s j denote a path of G[P s i sq ] between s i and s j with 1 ≤ i < j ≤ q, as a simplification of P

Ps 1 sq s i s j . Given i ∈ {1, • • • , q -1}, let ζ s i
Min (P s i sq ) be the minimum value of ζ(P s i s j ) with i < j ≤ q, that is,

ζ s i Min (P s i sq ) = min{ζ(P s i s j ) : i < j ≤ q}.
Proposition 3.2.6. For any i ∈ {1, • • • , q -2},

ζ s i Min (P s i sq ) = min{w s i s i+1 , w s i s i+1 + p s i+1 + ζ s i+1 Min (P s i+1 sq )}.
Proof. It is straightforward to see

ζ s i Min (P s i sq ) ≤ min{w s i s i+1 , w s i s i+1 + p s i+1 + ζ s i+1 Min (P s i+1 sq )},
as the right-hand side contains two feasible solutions of the left-hand side, that is,

w s i s i+1 = ζ({s i s i+1 }) and w s i s i+1 + p s i+1 + ζ s i+1
Min (P s i+1 sq ) = ζ(P s i s j ) for some j with i + 1 < j ≤ q. On the other hand, suppose

ζ s i Min (P s i sq ) < min{w s i s i+1 , w s i s i+1 + p s i+1 + ζ s i+1
Min (P s i+1 sq )} with i ≤ q-1. It is known that there exists some j with i+1 < j ≤ q and ζ(P s i s j ) = ζ s i Min (P s i sq ). 

s i s j ) : 1 ≤ i < j ≤ q} = min{ζ(P Ps i sq s i s j ) : i ∈ {1, • • • , q -1}, i < j ≤ q}, = min{ζ s i Min (P s i sq ) : i ∈ {1, • • • , q -1}}.
Therefore, the lemma holds. 

Input : Cycle G = (V, E), w ∈ R E and p ∈ R V Output: ζ Min (P r ). begin 1 Set ζ v n-2 Min (P Pr v n-2 v n-1 ) = ζ({e n-1 }) = w e n-1 . 2 Set i = n -3. while i ≥ 1 do 3 Set ζ v i Min (P Pr v i v n-1 ) = min{w e i+1 , w e i+1 + p v i+1 + ζ i+1 Min (P Pr v i+1 v n-1 )}. 4 Set i = i -1 5 ζ Min (P r ) = min{ζ v i Min (P Pr v i v n-1 ) : i ∈ {1, • • • , n -2}}.
Proposition 3.2.8. Algorithm 3.2 obtains the value of ζ Min (P r ).

Proof. Line 1 of the algorithm obtains

ζ v n-2 Min (P Pr v n-2 v n-1 ) = ζ({e n-1 }) = w e n-1 ,
as the only nonempty path between v n-2 and v n- Proof. In this algorithm, each term of w e , p v for any e ∈ P r and v ∈ V \ {r, v 1 , v n-1 } occurs only once. Therefore the time complexity is O(n).

1 in G[P r ] is {e n-1 }. Line 3 calculates ζ v i Min (P Pr v i v n-1 ) for each i ∈ {1, • • • , n -3},
Therefore, we now have the following result. Proof. As a result of Propositions 3.2.1, 3.2.2, 3.2.8 and 3.2.9, both ϕ(E) and ζ Min (P r ) can be obtained in linear time. Therefore, according to Proposition 3.2.5, Opt G can be obtained in linear time. 

P o vov ), for u ∈ V [P o ] \ {v o }, v ∈ V [P o ] \ {v o }. Let ζ o = min{ζ(P Po vou ) : u ∈ V [P o ] \ {v o }},
and

ζ o = min{ζ(P P o vov ) : v ∈ V [P o ] \ {v o }}.
We first show that these two values lead to the optimal value of the MBrT problem.

Proposition 3.2.11.

If c r = 2 and O = {v o }, then Opt G = max{0, p r , f(G) -ζ o , f(G) -ζ o , f(G) -ζ o -ζ o -p vo }.
Proof. Let u be a node in 

f ((∅, ∅)) = 0, f (({r}, ∅)) = p r , f (G[P P o rvo ∪ P Po ru ]) = f (G) -ζ o , f (G[P Po rvo ∪ P P o rv ]) = f (G) -ζ o , f (G[P P o rv ∪ P Po ru ]) = f (G) -ζ o -ζ o -p vo . Hence Opt G ≥ max{0, p r , f(G) -ζ o , f(G) -ζ o , f(G) -ζ o -ζ o -p vo },
because the right-hand side contains the values of feasible solutions to the MBrT problem on G.

Assume that there exists a path Each case on cycles is hereby given a linear-time algorithm to solve the MBrT problem accordingly.

P ss with r ∈ V [P ss ], s ∈ V [P o ] and s ∈ V [P o ], such that f (G[P ss ]) > max{0, f(G) -ζ o , f(G) -ζ o , f(G) -ζ o -ζ o -p vo }.
Opt G ≤ max{0, p r , f(G) -ζ o , f(G) -ζ o , f(G) -ζ o -ζ o -p vo },

On cactus graphs

Consider now the MBrT problem on a cactus graph G = (V, E). A cactus graph can be seen as a combination of trees and cycles while having a tree hierarchy among the components of trees and cycles. Provided that the MBrT problem is polynomially solvable on both trees and cycles, it is convincing to argue that the MBrT problem on cactus graphs is also polynomially solvable.

This section provides an effective approach to decompose a cactus graph, based on which an according polynomial-time algorithm is proposed to solve the MBrT problem on it.

The following results support the decomposition of cactus graphs in later discussion.

Given a graph G = (V, E) with r ∈ V and a capacity vector

c ∈ Z V + , let Opt i G (r) denote the maximum weight of a bounded r-tree T = (U, F ) of G such that |δ(r) ∩ F | = i, i ≤ c r . Opt i
G is also used for the sake of simplification if the root node is clear from context.

Proposition 3.3.1. Opt 1 G -p r ≥ Opt 2 G -Opt 1 G . (3.8) Proof. Suppose Opt 1 G -p r < Opt 2 G -Opt 1 G . Let T j = (U j , F j ) be a bounded r-tree of G that satisfies |F j ∩ δ(r)| = j and f (T j ) = Opt j G , j = 1, 2.
Notice that T 2 can be seen as a combination of two r-trees having exactly one edge in δ(r). Denote these two r-trees T 1 2 and T 2 2 . Since from the assumption, f (T 1 )p r < (f (T 1 2 ) + f (T 2 2 )p r )f (T 1 ) holds, one has 2f (T 1 ) < f(T 1 2 )+f (T 2 2 ). Thus at least one of f (T 1 2 ) and f (T 2 2 ) is larger than f (T 1 ), which forms a contradiction with the optimality of T 1 .

The following proposition can then be derived based on (3.8), which is necessary to complete the decomposition on cactus graphs.

Given a graph G = (V, E) with an articulation node v a , let

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two subgraphs separated by v a .Without loss of generality, let r ∈ V 1 . Proposition 3.3.2. If |δ G 2 (v a )| = 2, let G be the graph composed of G 1 and two edges e 1 = v a v 1 , e 2 = v a v 2 taking the place of G 2 such that p v 1 = p v 2 = 0, w e 2 = Opt 2 G 2 -Opt 1 G 2 and w e 1 = Opt 1 G 2 -p va . Then Opt G = Opt G .
Proof. Firstly, any bounded r-tree of G that contains no edges in G 2 can also be seen as a bounded r-tree of G with no edges in {e 1 , e 2 }, and vice versa. 

E C \ F C from r.
In addition, for some hinge h ∈ H such that h = {h }, and some edge v b h ∈ δ(h ), such that removing v b h disconnects some edges from r. The graph Transform G C into an edge according to Corollary 3.3.3.

G v b = G[V v b ] with V v b = {v ∈ V : removing v b h
3

Solve the MBrT problem on the transformed graph using Algorithm 3.1.

Proposition 3.3.5. Algorithm 3.3 has time complexity of O(n 2 ).
Proof. The algorithm on cactus graphs uses both the algorithm for trees and the algorithm for cactus bases. Each cycle component requires the calculation of Opt

1 G C (h) and Opt 2 G C (h) based on Algorithm 3.1, which requires O(|V (C)||V (G C |)
, and Algorithm 3.1 also needs to be run once on each tree branch encountered in the process. Therefore the algorithm has time complexity of O(n 2 ).

General graph decomposition

Besides the discussion on trees, cycles and cactus graphs, a general decomposition is proposed in this section regarding the articulation nodes.

Given a graph G = (V, E) with an articulation node v a ∈ V , let G 1 = (V 1 , E 1 ), G 2 = (V 2 , E 2 ) be two subgraphs of G separated by v a such that E = E 1 ∪ E 2 , V = V 1 ∪ V 2 . Without loss of generality, assume r ∈ V 1 .
Proposition 3.4.1. If the MBrT problem on G 1 and G 2 can be solved in polynomial time, the MBrT problem on G is also polynomially solvable.

Proof. First it is worth noting that finding a maximum nonempty bounded r-tree of a graph can be reduced to finding a maximum bounded r-tree of a graph by setting p r to a sufficiently large number. Hence, a maximum nonempty bounded r-tree can be found in polynomial time on both G 1 and G 2 .

There are 2 cases to be considered depending on whether r = v a holds. Notice that here we assume that

c v ≤ |δ(v)| is always satisfied, otherwise one can manually set c v = |δ(v)|. Case 1). r = v a . Let Opt G k ,i denote the the weight of a maximum nonempty bounded r-tree of G j with setting c r = i, for i ∈ {0, 1, • • • , c r }, k ∈ {1, 2}. For a given i, j ∈ {0, 1, • • • , c r }, it is straightforward that Opt G k ,i ≤ Opt G k ,j holds if i ≤ j, for k ∈ {1, 2}. As a result, for a given i ∈ {0, 1, • • • , c r }, we have Opt G 2 ,cr-i = max{Opt G 2 ,j : j ∈ {0, • • • , c r -i}}.
Then the maximum nonempty bounded r-tree of G can be chosen among c r + 1 combinations, which is

Opt G = max{Opt G 1 ,i + Opt G 2 ,cr-i -p r : i ∈ {0, 1, • • • , c r }}.
We then have the optimal value of the MBrT problem on G as

Opt G = max{0, Opt G },
where 0 is the weight of the empty graph.

Case 2). r = v a .

Similarly to the previous case, let Opt G 2 ,i be the maximum weight of a nonempty bounded r-tree of G 2 with v a being the root and

c va = i, for i ∈ {0, 1, • • • , c va -1}. We have Opt G 2 ,i ≤ Opt G 2 ,j , if i ≤ j for i, j ∈ {0, 1, • • • , c va -1}.
Let Opt G 1 ,i,j be the optimal value for the MBrT problem on G 1 with the capacity of v a being c va = i, and replacing the weight

p va of v a by p v a = Opt G 2 ,j , for i ∈ {1, • • • , c va }, j ∈ {0, • • • , c va -1}. It can be seen that Opt G 1 ,i,j ≤ Opt G 1 ,i,k if j ≤ k, for i ∈ {1, • • • , c va }, j, k ∈ {0, • • • , c va -1}. Thus for a given i ∈ {1, • • • , c va }, we have Opt G 1 ,i,cv a -i = max{Opt G 1 ,i,j : j ∈ {0, • • • , c va -i}}. It can be seen that Opt G 1 ,i,cv a -i corresponds to a bounded r-tree of G that contains at most i edges in δ G 1 (v a ). Hence we have Opt G 1 ,i,cv a -i ≤ max{f (T ) : T is a bounded r-tree of G, |δ G 1 (v a ) ∩ E(T )| ≤ i}.
Assume that there exists a bounded r-tree T of G that contains at most i edges in

δ G 1 (v a ) such that f (T ) > Opt G 1 ,i,cv a -i . It can be deduced that v a ∈ V (T ), as otherwise T is also a bounded r-tree of G 1 that does not contain v a , which indicates f (T ) ≤ Opt G 1 ,i,cv a -i . Thus T is composed of a bounded r-tree T 1 of G 1 and a nonempty bounded tree T 2 of G 2 such that it contains at most c va -i edges in δ G 2 (v a ). As f (T 2 ) ≤ Opt G 2 ,cv a -i holds, f (T ) ≤ Opt G 1 ,i,cv a -i
also holds, which forms a contradiction. As a result, we have

Opt G 1 ,i,cv a -i ≥ max{f (T ) : T is a bounded r-tree of G, |δ G 1 (v a ) ∩ E(T )| ≤ i}.
Therefore, one can find the maximum weight of a bounded r-tree of G by

Opt G = max{Opt G 1 ,i,cv a -i : i ∈ {1, • • • , c va }}.
To summarize, the MBrT problem on G can be solved in polynomial time in both aforementioned cases.

Conclusion

In this chapter, we provided algorithms for the MBrT problem on trees, cycles and cactus graphs. We also proved that if the MBrT problem is polynomially solvable on two graphs it is also polynomially solvable on the 1-sum of the two graphs.

The algorithmic study provides a brief glimpse of the polyhedral structure of the problem. For instance, the decomposition for cactus graphs also reflects the possible decomposition for the polytope. Furthermore, it can also be seen how the capacity creates complexity for us to solve the problem in different scenarios.

Moreover, since the MBrT problem is polynomially solvable on trees, cycles, and cactus graphs, it is worth studying the polyhedra on these classes of graphs, and more importantly, trying to obtain the characterization thereof.

Chapter 4

Polyhedral study on Extended Bounded r-Tree Polytope

Recall that given a graph G = (V, E), a root node r ∈ V , a capacity vector c ∈ Z V + , an edge-weight vector w ∈ R E , and a node-price vector p ∈ R V , the MBrT problem consists of finding an r-tree T of G with maximum value f (T ) = w(E(T )) + p(V (T )) and such that the degree of any node v ∈ V (T ) is bounded by c v .

In this chapter, we focus on the extended bounded r-tree polytope B xy (G, r, c), which is the integral hull of the formulation introduced in Chapter 2, that is,

x(E) -y(V \ {r}) = 0, (4.1) x(E[S]) -y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (4.2) x(δ(v)) -c v y v ≤ 0 ∀v ∈ V, (4.3) y r ≤ 1, (4.4 
)

x e ≥ 0 ∀e ∈ E. (4.5)
According to Assumption 2.2.9, G does not have any unreachable elements. We first show that its dimension is related to the blocks and unit-capacity nodes in the graph. Several sets of valid equations and inequalities are introduced during the dimension study. After that, we prove that the polytope can be decomposed with respect to articulation nodes through 1-sum. Necessary and sufficient conditions for each set of valid inequalities to be facet-defining are examined. Finally, we give the complete description of B xy (G, r, c) when the graph is a tree or a cycle, and as a result of the decomposition result, we can aslo characterize B xy (G, r, c) on cactus graphs.

Dimension

Before stating the dimension of B xy (G, r, c), a few lemmas related to implicit equations should be introduced in advance.

For any v ∈ S ⊆ V \ {r}, according to (4.1) and (4.2) one has

-x(E) + y(V \ {r}) = 0, x(E[S \ (O \ {v})]) -y(S \ (O ∪ {v})) ≤ 0, x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0.
From (4.7) we have

x(δ(v o )) -y vo = 0 ∀v o ∈ O \ {v}, which leads to x(δ(O \ {v})) -y(O \ {v}) = 0.
Summing them up gives us

y v -x(δ(S) \ δ(O \ {v})) ≤ 0. (4.6)
Inequalities (4.6) are valid but mostly redundant, nonetheless they are used to simplify the presentation of the proof of the following lemma, and will also be useful throughout the dissertation for both the theoretical and computational developments. Note that if |S| = 1 or |S| = 1, (4.6) defines the same face as x(E[S])y(S \ {v}) ≤ 0 in the former case and x(E[S])y(S \ {r}) ≤ 0 in the latter.

For the unit-capacity nodes but r (i.e., the nodes in O), we can deduce some equations as stated in the following lemma.

Lemma 4.1.1. Given any node v o ∈ O, x(δ(v o )) -y vo = 0 (4.7) is valid for B xy (G, r, c). Proof. Since c vo = 1, x(δ(v o ))
y vo = 0 can be immediately obtained from (4.3) and (4.6) associated with S = {v o }.

This lemma gives a brief glance at how the unit-capacity nodes affect the polytope in terms of dimension.

A block of a graph is defined as a maximal connected subgraph with no articulation node.

Recall that G r is connected according to Assumption 2.2.9, and as a nonempty connected graph, G r can be uniquely decomposed into the 1-sum union of its blocks. Note that the blocks of G r are maximal 2-connected subgraphs or bridges.

Let (V 1 , E 1 ), • • • , (V q , E q ), q ≥ 1, represent the blocks of graph G r . For any i ∈ {1, • • • , q}, let v a i denote the node in block (V i , E i ) that separates all the nodes in V i \ {v a i } from r.
In other words, for any node

v i ∈ V i , i ∈ {1, • • • , q}, a path between r and v i has to contain v a i .
For the sake of homogeneity, we may represent r by v a i for any block (V i , E i ) that contains r. Moreover, as nodes in O can only be leaves in any bounded r-tree of G, any bounded r-tree T of G also induces a bounded r-tree T \ O of G r , and this motivates our focus on the blocks of G r rather than those of G.

We then can derive the following results with respect to the blocks and the articulation nodes of G r .

Lemma 4.1.2. Given a graph G r and one of its blocks

(V i , E i ), any rooted tree T = (U, F ) of G r contains (U ∩ V i , F ∩ E i ) as a tree rooted at v a i .
Proof. Direct consequence of the definition of the blocks and the articulation nodes

v a i of G r .
Notice that Lemma 4.1.2 applies to any graph as long as the definitions of blocks and articulation nodes are preserved.

An immediate result of (4.1) and Lemma 4.1.2 is the following corollary.

Corollary 4.1.3. For any block

(V i , E i ), i ∈ {1, • • • , q}, x(E i ) -y(V i \ {v a i }) = 0 (4.8) is valid for B xy (G, r, c). Since G = (V r ∪O, E r ∪δ(O))
, we can immediately derive the following linear dependency.

Corollary 4.1.4. Equation (4.1)can be obtained as the sum of all equations (4.7) and (4.8).

It is worth mentioning that for any node v in V \ {r}, subtracting inequality (4.2) associated with V and v from (4.1) gives the following valid inequality

y v -y r ≤ 0. (4.9)
Similarly, given any block Proof. Let S = be the system composed of the equations (4.7) and (4.8). The support graphs of these |O| + q equations are pairwise edge-disjoint. Since the edge sets of these support graphs are nonempty, S = then has full row-rank, that is,

(V i , E i ) and any node v ∈ V i \ {v a i }, for i ∈ {1, • • • , q}, from ( 
rank S = = |O| + q.
Consequently, one obtains

dim B xy (G, r, c) ≤ |E| + |V | -|O| -q = |E| + |V r | -q,
where the last line comes from {V r , O} being a partition of V .

The following technical lemma that was proved by [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF], and can be viewed as a specific case of Menger's Theorem [START_REF] Menger | Zur allgemeinen kurventheorie[END_REF]), is necessary for providing a lower bound of the dimension.

Lemma 4.1.6. Given a 2-connected graph G = (V, E), for every distinct u, v, w ∈ V there exists a path in G from u to w that does not go through v.

We now prove that all valid equations whose support graphs are subgraphs of G r can be written as linear combinations of inequalities (4.8).

Proposition 4.1.7. Then any valid equation for B xy (G, r, c) whose support graph is a subgraph of G r is a linear combination of inequalities (4.8).

Proof. Assume that α

T x + β T y = γ is satisfied by all [ x y ] ∈ B xy (G, r, c),
where α e = 0 for any e / ∈ E r and

β v = 0 for any v / ∈ V r . Since 0 ∈ B xy (G, r, c), one clearly has γ = 0.
Besides, as the incidence vector of ({r}, ∅) is also in B xy (G, r, c), one has r,c), and thus 

β r = 0. Consider any block (V i , E i ) of G r , i ∈ {1, • • • , q}, that contains r. For any edge rv ∈ E i , the incidence vector of G[{rv}] = ({r, v}, {rv}) is in B xy (G,
α rv + β v = 0. Now consider any edge uv ∈ E i \ δ(r). Such edge exists only if this block is a 2-connected component of G r . Recall that O ∩ V i = ∅,
α uv + β v = 0.
Therefore form the connectivity of G[E i ] we obtain

α e = λ i ∀e ∈ E i , β v = -λ i ∀v ∈ V i \ {r},
where λ i is a real scalar.

Consider now any block

(V j , E j ) of G r , j ∈ {1, • • • , q}, such that r / ∈ V j .
Let P rva j be any path between r and v a j . For any edge v a j v ∈ E j , both P rva j and P rva j ∪ {v a j v} induce bounded r-trees of G, thus

α va j v + β v = 0. Furthermore if G[E j ] is a 2-connected component of G r , consider any edge uv ∈ E j \δ(v a j ).
Let P va j u be a path between v a j and u that does not go through v. Both P rva j ∪ P va j u and P rva j ∪ P va j u ∪ {uv} induce bounded r-trees of G, which leads to

α uv + β v = 0.
Therefore form the connectivity of G[E j ] we obtain

α e = λ j ∀e ∈ E j , β v = -λ j ∀v ∈ V j \ {v a j },
where λ j is a real scalar.

Consequently,

α T x + β T y = q i=1 e∈E i λ i x(E i ) + q i=1 v∈V i \{va i } (-λ i )y(V i \ {v a i }) = q i=1 λ i (x(E i ) -y(V i \ {v a i })).
Therefore, α T x + β T y = 0 is a linear combination of equations (4.8).

Based on Proposition 4.1.5 and Proposition 4.1.7, the dimension of B xy (G, r, c) can be stated.

Theorem 4.1.8. dim B xy (G, r, c) = |E| + |V r | -q. (4.11)
Proof. Based on Propositions 4.1.5 and 4.1.7, we have

B xy (G r , r, c r ) = |E r | + |V r | -q,
where c r is the restriction of c to G r . In other words, one has |E r | + |V r |q + 1 affinely independent vectors, each of which induces a bounded r-tree of G r (and of G).

Meanwhile, the connectivity of G r also ensures that for each edge e in δ G (V r ), there exists an re-path between r and e such that none of its internal nodes is in O. Thus, each of the |δ G (V r )| incidence vectors of these paths satisfies the capacity constraints. Additionally, it is straightforward to see that each of them also contains a unique element (i.e., e) with non-zero coefficient. Hence, one has

|E r | + |V r | -q + 1 + |δ G (V r )| affinely independent vectors in B xy (G, r, c), which gives us dim B xy (G, r, c) ≥ |E r | + |V r | + |δ G (V r )| -q = |E| + |V r | -q, as {E r , δ G (V r )} is a partition of E.
Combining it with Proposition 4.1.5 completes the proof.

In this section the articulation nodes in G r are crucial for the dimension of B xy (G, r, c). It is worth noting that the two sets of articulation nodes in G r and in G do not necessarily have inclusion relation. For instance, an articulation node in G which separates only nodes in O from r is not an articulation node in G r , whereas in a cycle G, if O is not empty, one can trivially find some articulation nodes in G r .

Before performing a facial study of B xy (G, r, c), we show in the next section that the articulation nodes of G are the relevant ones when studying B xy (G, r, c) through a decomposition lens.

Decomposition through 1-sum

Consider a graph G = (V, E) which could be written as the 1-sum of two graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ). Let v a denote the node that belongs to V 1 and V 2 . Note that v a is an articulation node in G. Without loss of generality, assume r ∈ V 1 . Given a vector [ x y ] in R E+V , let x i y i be its restriction to G i , i = 1, 2. Similarly, given a capacity vector c ∈ Z V + , let c i ∈ Z V i , i = 1, 2, be the restriction of c to G i . We hereafter show that the characterizations of B xy (G 1 , r 1 , c 1 ) and B xy (G 2 , r 2 , c 2 ) yield the characterization of B xy (G, r, c), where r 1 = r and r 2 = v a . Denote P C (G, r, c) ={[ x y ] : x 1 y 1 ∈ B xy (G 1 , r 1 , c 1 ), x 2 y 2 ∈ B xy (G 2 , r 2 , c 2 ), x(δ(v a )) -c va y va ≤ 0}.
We claim that P C (G, r, c) and B xy (G, r, c) are equal. It can be first proved that both polytope have the same set of integral points, as stated in the following proposition.

Proposition 4.2.1.

B xy (G, r, c) ∩ Z E+V = P C (G, r, c) ∩ Z E+V . Proof. Consider any vector [ x y ] in B xy (G, r, c) ∩ Z E+V , that is, [ x y ]
is the incidence vector of a bounded r-tree of G. Any bounded r-tree of G contains a tree of G 1 rooted at r 1 bounded by c 1 , and according to Lemma 4.1.2, it also contains a tree of G 2 rooted at v a and bounded by c 2 . Hence

x 1 y 1 and x 2 y 2 are in B xy (G 1 , r 1 , c 1 ) and B xy (G 2 , r 2 , c 2 ), respectively. Moreover, any bounded r-tree of G satisfies x(δ(v a )) -c va y va ≤ 0 as well. Thus, B xy (G, r, c) ∩ Z E+V ⊆P C (G, r, c) ∩ Z E+V . Conversely, any vector [ x y ] in P C (G, r, c) ∩ Z E+V induces an r-tree of G, as y 1 va = y 2 va
ensures the connectivity between the two r-trees in G 1 and G 2 . This r-tree of G contains a bounded r-tree of G i for i ∈ {1, 2}, thus any node v in V \ {v a } is bounded by c v . In addition, x(δ(v a ))-c va y va ≤ 0 is also satisfied. Therefore, [ x y ] induces a bounded r-tree of G, meaning that it belongs to B xy (G, r, c) ∩ Z E+V , and hence our proof is complete.

Recall that B xy (G, r, c) is a convex hull of a finite subset of Z E+V , and then is an integral polytope. So now we just need to prove that P C (G, r, c) is integral.

Given any extreme point x y of P C (G , r, c), let S(x, y) denote the linear system composed of the equations associated with the constraints of P C (G , r, c) binding at x y . Since x y is an extreme point, it is the only solution to S(x, y). Let S i (x, y) be the set of equations of S(x, y) whose support graphs are subgraphs of G i , i = 1, 2. It is important to note that the equation y va = 0 (or y va = 1) belongs to both S 1 (x, y) and S 2 (x, y) or none, and no other equations of S(x, y) can belong to both S 1 (x, y) and S 2 (x, y).

Proposition 4.2.2. Let x y be an extreme point of P C (G, r, c) with y va = 0. Then x y is integral.

Proof. Assume that x y is fractional. Since for any node v ∈ V 2 \ {v a }, we have y v ≤ y va by (4.10), hence y v = y va = 0 holds for any v ∈ V 2 . Additionally, recall that a subset of the extended subtour elimination inequalities (4.2) associated with an edge and its extremity is v), and therefore one also has x e = 0 for any e ∈ E 2 . Moreover, since x 1

x e -y v ≤ 0 ∀v ∈ V, e ∈ δ(v). (4.12) Hence, we have x e -y v ≤ 0 for any v ∈ V 2 , e ∈ δ(
y 1 ∈ B xy (G 1 , r 1 , c 1 ), there must exist an integral extreme point x 1 y 1 of B xy (G 1 , r 1 , c 1
) that is a solution to S 1 (x, y). Note that y 1 va = 0. Combining x 1 y 1 and x 2 y 2 = 0 gives us an integral point that also satisfies S(x, y), which is a contradiction to x y being an extreme point.

Proposition 4.2.3. Let x y be an extreme point of P C (G, r, c) with x(δ(v a ))-c va y va < 0. Then x y is integral.

Proof. Assume that x y is fractional. Note that y va > 0 according to Proposition 4.2.2.

Additionally, since

x i y i satisfies S i (x, y) with y i va > 0 for i ∈ {1, 2}, there exists some extreme point x i y i of B xy (G i , r i , c i ) that also satisfies S i (x, y) with y i va = 1. Vector x i y i obviously is integral for i ∈ {1, 2}. Combining x 1 y 1 and x 2 y 2
gives us another vector that satisfies S(x, y), which is a contradiction to x y being an extreme point. Therefore, satisfies S i (x, y) with y i va being fractional for i ∈ {1, 2}, there exists some extreme point

x i y i of B xy (G i , r i , c i ) that also satisfies S i (x, y) with y i va = 0. Vector x i y i
obviously is integral. Let x y be the vector obtained by combining

x 1 y 1
and x 2 y 2 . Moreover, as y 1 va = y 2 va = 0, and

x i (δ G i (v a )) -c i va y i va ≤ 0 is valid for B xy (G i , r i , c i ), i ∈ {1, 2}, we also have x(δ G (v a )) = x 1 (δ G 1 (v a )) + x 2 (δ G 2 (v a )) ≤ c 1 va y 1 va + c 2 va y 2 va = 0.
Therefore, vector x y is a different solution than x y to S(x, y), a contradiction to x y being an extreme point.

Proposition 4.2.5. Let x y be an extreme point of P C (G, r, c) with y va = 1. Then x y is integral.

Proof. Assume that x y is fractional. We claim that there does not exist i ∈ {1, 2} such that x i y i is integral. In order to prove it, assume otherwise that

x i y i is integral with i ∈ {1, 2} and let j ∈ {1, 2} with j = i. We know that x i (δ G i (v a )) is integral as well as x j (δ G j (v a )) = c va y va -x i (δ G i (v a )) is integral. Let c = c va y va -x i (δ G i (v a )).
Due to the integrality of B xy (G j , r j , c j ), where c j is obtained from c j by substituting c for c j va , there must exist some extreme point x j y j of B xy (G j , r j , c j ) satisfying x j (δ G j (v a )) = c and all the equations of S j (x, y). Recall that y va = 1 is an equation of S j (x, y). Therefore combining x i y i and x j y j gives an integral point that also satisfies S(x, y), which forms a contradiction. Therefore, x 1 y 1 and x 2 y 2 are both fractional. Thus there can be at most

|E i | + |V i | -1 linearly independent equations from S i (x, y), i ∈ {1, 2}.
Without loss of generality we assume that y va = 1 is included in both sets of linearly independent equations. Additionally, there is one equation (that is, x(δ(v a ))c va y va = 0) of S(x, y) that does not belong to either S 1 (x, y) or S 2 (x, y). Thus we have at most

|E 1 | + |V 1 | -1 + |E 2 | + |V 2 | -1 -1 + 1 = |E| + |V | -1,
linearly independent equations from S(x, y), which forms a contradiction to S(x, y) admitting a unique solution. Thus, x y is integral.

Hence, the following theorem is proved by considering Propositions 4.2.1 to 4.2.5.

Theorem 4.2.6. B xy (G, r, c) = P C (G, r, c).
It shows that if the extended bounded r-tree polytope can be characterized on two graphs then it can be characterized on their 1-sum. Before characterizing B xy (G, r, c) on trees and cycles, and as a consequence of Theorem 4.2.6 on cactus graphs, we present in the next section a facial study of B xy (G, r, c).

Facets

In this section, for each valid inequality among (4.2)-(4.5), we give necessary and sufficient conditions for it to be facet-defining of B xy (G, r, c). Actually as seen in Section 4.1, inequalities (4.6), (4.9) and (4.10) can be obtained as linear combination of inequalities (4.2) and equations (4.7), (4.8). Thus, the facial study of (4.2) covers the facial study of (4.6), (4.9) and (4.10).

For the non-negativity inequalities (4.5), it is worth noting that the following relation holds: 2. whenever e belongs to a 2-connected block

dim{[ x y ] ∈ B xy (G, r, c) : x e = 0} = dim B xy (G \ e, r, c). (4.13) Recall that G \ e = (V, E \ {e}).
(V i , E i ) of G r , for some i ∈ {1, • • • , q}, (V i , E i \ {e}) remains 2-connected.
Proof. For the necessity, consider first that there exists an edge e ∈ E \ {e} such that removing e and δ(O) \ {e } disconnects e from r. It can be seen that the face induced by x e ≥ 0 is a proper subset of the face induced by x e ≥ 0 in this case.

Suppose now that e belongs to a 2-connected block

(V i , E i ) of G r for some i ∈ {1, • • • , q}, such that (V i , E i \ {e}) is not 2-connected. Let {E 1 , • • • , E q } be the partition of E r = E r \ {e} such that each E j , j ∈ {1, • • • , q }, induces a block of G[E r ]. Since (V i , E i \ {e}) is not 2-connected but (V i , E i ) is, we have q ≥ q + 1.
According to (4.13) and Theorem 4.1.8, one therefore has

dim{[ x y ] ∈ B xy (G, r, c) : x e = 0} = dim B xy (G \ e, r, c) = |E \ {e}| + |V r | -q ≤ |E| + |V r | -q -2,
which implies that x e ≥ 0 is not facet-defining.

For the sufficiency, assume that both conditions hold. In G \ e, there is no unreachable edge and the number of blocks in G r \ e equals q, the number of blocks in G r . According to Theorem 4.1.8, we have

dim B xy (G \ e, r, c) = |E \ {e}| + |V r | -q = dim B xy (G, r, c) -1,
and thus x e ≥ 0 is facet-defining for B xy (G, r, c) according to (4.13).

The upper bound inequality (4.4) always defines a facet of B xy (G, r, c), as stated in the next proposition.

Proposition 4.3.2. y r ≤ 1 defines a facet of B xy (G, r, c).
Proof. As there is only one bounded r-tree without containing r, that is, the empty graph (∅, ∅), there must exist dim B xy (G, r, c) affinely independent vectors that induce bounded r-trees containing r. Therefore y r ≤ 1 defines a facet of B xy (G, r, c).

Proposition 4.3.3. x(δ(r)) -c r y r ≤ 0 defines a facet of B xy (G, r, c) if and only if one of the two conditions is satisfied 1. |δ(r)| = c r = 1; 2. |δ(r)| > c r . Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x(δ(r)) -c r y r = 0}.
Clearly we need to have |δ(r)| ≥ c r for F to be nonempty.

For the necessity, assume that |δ(r)| = c r ≥ 2. According to (4.12), x ey r ≤ 0 is valid for B xy (G, r, c) for any e ∈ δ(r). Thus any bounded r-tree of G that satisfies x(δ(r))c r y r = 0 also satisfies x ey r = 0 for e ∈ δ(r). The latter equation is not valid for B xy (G, r, c) since the graph reduced to r is a bounded r-tree that satisfies x ey r < 0. As c r ≥ 2, the graph reduced to any edge e incident with r is a bounded r-tree that satisfies x ey r = 0 and x(δ(r))c r y r < 0. Thus F is a proper subset of the proper face induced by x ey r ≤ 0 for e ∈ δ(r).

For the sufficiency, assume first that |δ(r)| = c r = 1. As the incidence vector of the graph reduced to r is the only vector in B xy (G, r, c) not in F, there must exist dim B xy (G, r, c)

affinely independent vectors in F. Therefore x(δ(r)) -c r y r ≤ 0 defines a facet of B xy (G, r, c) if |δ(r)| = c r = 1. Suppose now that |δ(r)| > c r and F ⊆ {[ x y ] ∈ B xy (G, r, c) : a T x + d T y = b} B xy (G, r, c), where a T x + d T y ≤ b is valid for B xy (G, r, c). As 0 ∈ F, we immediately have b = 0. Let v ∈ N (r). Consider F ⊆ δ(r) \ δ(v) such that |F | = c r . Clearly such set F exists.
The incidence vector of the bounded r-tree G[F ] belongs to F, and so does the incidence vector of the bounded r-tree G [F \ {e} ∪ {rv}] for any e ∈ F . Therefore, we obtain

a rv + d v = λ ∀v ∈ N (r), (4.14) 
where λ ∈ R. Considering again the incidence vector of G[F ], we have

d r = -a(F ) -d(V [F ] \ {r}) = -c r λ.
Consider any edge uv ∈ E \ δ(r). Without loss of generality, we suppose that u / ∈ O and there exists a path P ru in G r between r and u such that it does not contain v and

|N (r) ∩ V [P ru ]| = 1. Let F u ⊆ δ(r) with |F u | = c r -1 and F u ∩ P ru = ∅. The subgraphs G[F ∪P ru ]
and G[F ∪P ru ∪{uv}] are two bounded r-trees of G and their incidence vectors are in F. Hence, it can be deduced that

a uv + d v = 0. (4.15) Note that if uv ∈ E i \ δ(v a i ), i ∈ {1, • • • , q}, where (V i , E i ) is a 2-connected block of G r ,
then nodes u and v are interchangeable in the previous argument. Consequently, for any block

(V i , E i ) of G r , i ∈ {1, • • • , q}, we have d v = i ∀v ∈ V i \ {v a i }, a e = -i ∀e ∈ E i \ δ(r),
where i ∈ R. Combining this with (4.14), we deduce that for any rv

∈ E i , for some i ∈ {1, • • • , q}, a rv = λ -d v = λ -i .
For any node v o ∈ O (4.15) yields

d vo = μ vo , a e = -μ vo ∀e ∈ δ(v o ) \ δ(r),
where μ vo ∈ R.

For each edge rv o with v o ∈ O, from (4.14) one gets

a rvo = λ -d vo = λ -μ vo . It is important to note that {δ(O), E 1 , • • • , E q } is a partition of E and {{r}, O, V 1 \ {v a 1 }, • • • , V q \ {v aq }} is a partition of V . Consequently, the inequality a T x + d T y ≤ b can be written as -c r λy r + q i=1 e∈δ(r)∩E i (λ -i )x e - q i=1 e∈E i \δ(r) i x e + q i=1 v∈V i \{va i } i y v + vo∈O μ vo y vo - vo∈O,u =r μ vo x uvo + vo∈O (λ -μ vo )x rvo ≤ 0, which is equivalent to λ(x(δ(r)) -c r y r ) - q i=1 i (x(E i ) -y(V i \ {v a i })) - vo∈O μ vo (x(δ(v o )) -y vo ) ≤ 0.
It is then proved that a T x + d T y ≤ b is a linear combination of x(δ(r))c r y r ≤ 0 and equations (4.7) and (4.8).

Finally we have F = B xy (G, r, c) as the graph reduced to r is a bounded r-tree whose incidence vector is not in F. Therefore, F is a facet of B xy (G, r, c).

Proposition 4.3.4. Let v ∈ V \ {r}. x(δ(v)) -c v y v ≤ 0 defines a facet of B xy (G, r, c) if and only if |δ(v)| > c v ≥ 2. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x(δ(v)) -c v y v = 0}. Clearly we need to have |δ(v)| ≥ c v for F to be nonempty.
For the necessity, if c v = 1, then we have v ∈ O, and thus any bounded r-tree of G must satisfy

x(δ(v)) -c v y v = 0 according to (4.7), that is, F = B xy (G, r, c). If |δ(v)| = c v ≥ 2,
we deduce from (4.12) that any bounded r-tree of G that satisfies x(δ(v))c v y v = 0 also satisfies x ey v = 0 for any edge e ∈ δ(v). Additionally, as |δ(v)| = c v ≥ 2, a path P rv between r and v of G r induces a bounded r-tree of G that satisfies x ey v < 0 for some edge e ∈ δ(v). Hence x ey v = 0 is not valid for B xy (G, r, c), and thus F is a proper subset of the proper face defined by x ey v ≤ 0.

For the sufficiency, assume that the condition in the proposition is satisfied, and r,c). As the empty graph and the graph reduced to r are both bounded r-trees that satisfy x(δ(v))c v y v = 0 we obtains that b = 0 and d r = 0.

F ⊆ {[ x y ] ∈ B xy (G, r, c) : a T x + d T y = b} B xy (G, r, c), where a T x + d T y ≤ b is valid for B xy (G,
Consider any edge uw ∈ E \ δ(v). Without loss of generality, we suppose that u / ∈ O and there exists a path P ru in G r between r and u such that it does not contain w and P ru contains as few edges as possible.

As v = r, v = u, we have either |P ru ∩ δ(v)| = 0 or |P ru ∩ δ(v)| = 2.
In the former case, G[P ru ] and G[P ru ∪ {uw}] are two bounded r-trees of G and their incidence vectors are in F. For the latter case, let

F u ⊆ δ(v) with F u ∩ P ru = ∅ and |F u | = c v -2. The subgraphs G[F ∪ P ru ] and G[F ∪ P ru ∪ {uw}]
are two bounded r-trees of G and their incidence vectors are in F. Hence, for both cases we have 

a uw + d w = 0. (4.16) Note that if uw ∈ E i \ (δ(v a i ) ∪ δ(v)), i ∈ {1, • • • , q}, where (V i , E i ) is a 2-connected block of G r ,
d u = i ∀u ∈ V i \ {v a i , v}, a e = -i ∀e ∈ E i \ δ(v),
where i ∈ R.

Without loss of generality, assume that

v ∈ V j \ {v a j } for some block (V j , E j ) of G r with j ∈ {1, • • • , q}.
It is straightforward to see that any path in G r between r and v contains exactly (and ends with) one edge in δ(v) ∩ E j .

For u ∈ N (v), let P u rv denote a path between r and v in G r such that uv / ∈ P u rv and it contains as few edges as possible if such path exists (that is, if u = v a j when block (V j , E j ) is a bridge). Let vv denote the edge in both δ(v) and P u rv . Consider any edge set

F u ⊆ δ(v) \ {uv, vv } with |F u | = c v -1. Both G[P u rv ∪ F u ] and G[P u rv ∪ F u \ {e} ∪ {vu}] are bounded r-trees whose incidence vectors belong to F for any e ∈ δ(v) \ {vv , uv}. If (V j , E j ) is 2-connected (or equivalently, |δ(v) ∩ E j | ≥ 2), such P u
rv exists (and so does F u ) for any node in N (v). Thus we have

d u + a uv = λ ∀u ∈ N (v), where λ ∈ R. Moreover, as for any u ∈ N (v), G[P u rv ∪ F u ] and G[P u rv \ δ(v)
] are two bounded r-trees whose incidence vectors belong to F, we have

d v = -(c v λ -d v ) = -c v λ + j . Recall v ∈ N (v) ∩ V [P u rv ]. If (V j , E j ) is a bridge (or equivalently, |δ(v) ∩ E j | = 1), let E j = {vv }. Note that v a j = v .
Similar to the previous case, P u rv and F u exist for any node in N (v) \ {v }, and thus we have

d u + a uv = λ ∀u ∈ N (v) \ {v }, where λ ∈ R. Additionally, considering G[P u rv ∪ F u ] and G[P u rv \ {vv }] for any u ∈ N (v) \ {v } gives us a vv + d v = -(a(F u ) + d(V [F u ] \ {v})) = -(c v -1)λ.
Thus, without loss of generality, we set

a vv = λ -j , d v = -c v λ + j ,
where j ∈ R.

To summarize, in both cases (block (V j , E j ) being 2-connected or a bridge) we have

d v = -c v λ + j ,
and also

a uv = λ -d u ∀u ∈ N (v).
(4.17)

As a consequence, for any

u ∈ N (v) ∩ V i \ {v a i }, where (V i , E i ) is a block of G r , we have a uv = λ -d u = λ -i .
Without loss of generality, for any v o ∈ O, let

d vo = μ vo ,
where μ vo ∈ R. We then have from (4.17), for any

v o ∈ N (v) ∩ O, a vvo = λ -μ vo .
Besides, from (4.16) one has for any e

∈ δ(v o ) \ δ(v) a e = -μ vo .
Finally, if r ∈ N (v), then (4.17) gives

a rv = λ -d r = λ. Note that {δ(O), E 1 , • • • , E q } is a partition of E and {{r}, {v}, O, V 1 \ {v, v a 1 }, • • • , V q \ {v, v aq }} is a partition of V .
Hence, all the coefficients associated with elements in V and E have been taken care of. Therefore, a T x + d T y ≤ b can be rewritten as andequations (4.7) and (4.8). Finally, any path between r and v in G r is a bounded r-tree that satisfies

0y r + (-c v λ + j )y v + q i=1 u∈V i \{va i } i y u + vo∈O μ vo y vo + q i=1 e∈E i \δ(v) (-i )x e + vo∈O e∈δ(vo)\δ(v) (-μ vo ) x vvo + vo∈O e∈δ(vo)∩δ(v) (λ -μ vo ) x vvo + q i=1 e∈E i ∩δ(v) (λ -i )x e + e∈δ(r)∩δ(v) λ ≤ 0, which is equivalent to λ(x(δ(v)) -c v y v ) - q i=1 i (x(E i ) -y(V i \ {v a i })) - vo∈O μ vo (x(δ(v o )) -y vo ) ≤ 0. Hence, a T x + d T y ≤ b is a linear combination of x(δ(v)) -c v y v ≤ 0
x(δ(v)) -c v y v < 0, which leads to F B xy (G, r, c). Therefore, one can conclude that x(δ(v)) ≤ c v y v is facet-defining.
The extended subtour elimination inequalities (4.2) are also mentioned in [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF] for the r-tree problem and R xy (G, r), where the conditions are partially reflected in the conditions for B xy (G, r, c). However, for B xy (G, r, c) the capacity constraints are considered and the facial study cannot be restricted to the blocks of G r . As a result, the facets induced by the extended subtour elimination inequalities of B xy (G, r, c) are significantly different those of R xy (G, r).

The following proposition contains a condition that is taken directly from [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF] and it is still viable for B xy (G, r, c). As a first step, we give the proofs that it is sufficient to cover all the facets induced by the extended subtour elimination inequalities by just considering a subset of them.

Proposition 4.3.5. x(E[S]) -y(S \ {v}) ≤ 0, S ⊆ V i , defines a facet of B xy (G, r, c) only if G[S] is connected. Proof. If G[S] is not connected, there must exist some u ∈ S \ {v} that is in a connected component of G[S]
Firstly, we restrict the set S to such that O ∩ S \ {v} = ∅. r,c). Thus the proposition holds.

Proposition 4.3.6. Given v ∈ S ⊆ V and O ∩ S \ {v} = ∅, if F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0} is a proper face of B xy (G, r, c), it is always a subset of a proper face defined by either x e ≥ 0 for some e ∈ δ(O), or x(E[S ]) -y(S \ {v}) ≤ 0 with O ∩ S \ {v} = ∅. Proof. Assume that v o ∈ S \ {v} for some v o ∈ O. If there exists e o ∈ δ(v o ) \ E[S], F is clearly a subset of the proper face induced by x eo ≥ 0. Otherwise if δ(v o ) ⊆ E[S], then x(E[S \ {v o }]) -y(S \ {v, v o }) ≤ 0 induces the same face as F since x(δ(v o )) -y vo = 0 is a valid equation for B xy (G,
Secondly, we show that if S ⊆ V \ O, we can restrict to the cases such that S ⊆ V i for some

i ∈ {1, • • • , q}. Proposition 4.3.7. Given v ∈ S ⊆ V \ O, if F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0} is a proper face of B xy (G, r, c), it is always a subset of a proper face defined by x(E[S ]) -y(S \ {v }) ≤ 0 where v ∈ S ⊆ V i ∩ S for some i ∈ {1, • • • , q}.
Proof. Note that we can assume that G[S] is connected according to Proposition 4.3.5. We denote

S i = S ∩ V i for i ∈ {1, • • • , q}. For i ∈ {1, • • • , q}, with v / ∈ S i and E[S i ] = ∅, let v i denote the node in S i such that removing it from G r disconnects E[S i ] and v a i . Otherwise if v ∈ S i and E[S i ] = ∅, let v i = v.
One has the following valid inequalities

x(E[S i ]) -y(S i \ {v i }) ≤ 0 ∀i ∈ {1, • • • , q}, E[S i ] = ∅. Notice that {S 1 \ {v 1 }, • • • , S q \ {v q }} is a partition of S \ {v}, and {E[S 1 ], • • • , E[S q ]} is a partition of E[S]. Thus x(E[S]
)y(S \ {v}) ≤ 0 can be written as a linear combination of these inequalities. Therefore, F is a subset of the face defined by any of the aforementioned inequalities, and at least one of the faces defined by the aforementioned inequalities is proper as F is proper.

Lastly, we show that if v ∈ O, we can restrict to the cases such that

S \ {v} ⊆ V i for some i ∈ {1, • • • , q}. Proposition 4.3.8. Given S ⊆ V and S ∩ O = {v}, if F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0} is a proper face of B xy (G, r, c), it is always a subset of a proper face defined by x(E[S ]) -y(S \ {v }) ≤ 0 with v ∈ S and S \ {v } ⊆ V i ∩ S for some i ∈ {1, • • • , q}. Proof. We denote S i = S ∩ V i for i ∈ {1, • • • , q}. There exists j ∈ {1, • • • , q}, such that N (v) ∩ S j = ∅. As we clearly have E[S] = E[S j ∪ {v}] ∪ E[S \ S j ],
one has the following valid inequalities

x(E[S j ∪ {v}]) -y(S j ) ≤ 0, x(E[S \ S j ]) -y(S \ (S j ∪ {v})) ≤ 0.
Note that this decomposition of inequality can be applied on any j ∈ {1, • • • , q}, with N (v) ∩ S j = ∅. Thus the proposition holds.

According to Propositions 4.3.6 -4.3.8, we can therefore focus on the extended subtour elimination inequalities associated with S and v such that

S \ {v} ⊆ V i and v ∈ V i ∪ O, for some i ∈ {1, • • • , q}.
In other words, the following proposition holds.

Proposition 4.3.9. Given v ∈ S ⊆ V with |S| ≥ 2, if F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0} is a facet of B xy (G, r, c), then either F = {[ x y ] ∈ B xy (G, r, c) : x(E[S ]) -y(S \ {v }) = 0} for some v ∈ S and S \ {v } ⊆ V i ∩ S, i ∈ {1, • • • , q}, or F = {[ x y ] ∈ B xy (G, r, c) : x e = 0}
for some e ∈ δ(O).

Proof. Direct result of Propositions 4.3.6 -4.3.8.

We introduce a property of 2-connected graphs in the following lemma as a preparation for the facial proofs of the extended subtour elimination inequalities, for which the definition of an open ear decomposition [START_REF] Whitney | Non-separable and planar graphs[END_REF]) is needed.

An ear of a graph G is either a path or a cycle, where a cycle also can be considered as a path with two ends being the same node. An ear decomposition of a graph G is a partition of its set of edges into a sequence of ears, such that the one or two ends of each ear belong to earlier ears in the sequence whereas the internal nodes of each ear do not belong to any earlier ear. An open ear decomposition is an ear decomposition in which only the first ear is a cycle. According to the work of [START_REF] Whitney | Non-separable and planar graphs[END_REF] 

G i = G i-1 ∪ G[P i ] for i ∈ {1, • • • , k}, and G 0 = G[C]. For i ∈ {0, 1, • • • , k -1},
we call any path P such that as its ends belong to G i and its inner nodes (if exist) do not belong to G i a G i -ear, .

We claim that for any edge e of P i+1 , there exists a G i-1 -ear P such that e is in P for

i ∈ {1, • • • , k -1}. Note that P i+1 is a G i -ear.
Without loss of generality, let P i be a path between u i and v i for i ∈ {1, • • • , k}. If u i+1 and v i+1 both belong to G i-1 then the proof is trivial. If only one of u i+1 and v i+1 belongs to G i-1 , without loss of generality, suppose it is u i+1 . u i+1 is then an inner node of P i .

Combining P i+1 with the subpath between u i+1 and u i (or v i ) of P i gives us a G i-1 -ear which contains e . If none of u i+1 and v i+1 belongs to G i-1 , that is, they are both inner nodes of P i . Without loss of generality, suppose that between u i+1 and v i+1 , u i+1 is closer to u i on the path P i , and v i+1 is closer to v i on P i . Then combining P i+1 with the subpath between u i+1 and u i of P i and the subpath between v i+1 and v i of P i gives us a G i-1 -ear which contains e .

By induction, we have that for any edge e ∈ E \ C, there exists an G 0 -ear that contains e . Thus, there exists a G 0 -ear P that contains e, and without loss of generality, assume that the two ends of P are u and v . Let P 1 u v and P 2 u v the two paths between u and v in the cycle G 0 . As there does not exist a cycle of G which contains u, v, and e, it can be deduced that one of the two paths P 1 u v and P 2 u v contains u as an inner node and the other contains v as an inner node. Combining P with the subpath between u and u of P 1 u v and the subpath between v and v of P 2 u v gives us a path between u and v that contains e. Note that here u and v, u and v , P 1 u v and P 2 u v are interchangeable without affecting the proof.

Therefore, there always exists a path P uv of G between u and v with e ∈ P uv .

As an immediate result, we also obtain the following corollary that considers a node instead of an edge.

Corollary 4.3.11. Given a 2-connected graph G = (V, E) and three distinct nodes u, v, w ∈ V , there exists a path P uv between u and v with w ∈ V [P uv ].

Proof. Consider any edge e ∈ δ(w). According to Lemma 4.3.10, there exists a path P uv of G between u and v with e ∈ P uv . As a consequence, there exists a path P uv between u and v with w ∈ V [P uv ].

Another result that can be deduced directly is the following.

Corollary 4.3.12. Given a 2-connected graph G = (V, E), an edge uv ∈ E and a node w ∈ V with w = u and w = v, there exists a cycle that contains uv and w.

Proof. According to Lemma 4.3.11, there exists a path P uv of G between u and v with w ∈ V [P uv ]. As one clearly has uv / ∈ P uv , P uv ∪ {uv} induces a cycle.

Although we are able to restrict ourselves to a subset of extended subtour elimination inequalities, they are still complicated to be dealt with as a whole. Hereafter, we split them into several even smaller subsets and present the facial study results case by case.

We first consider the extended subtour elimination inequality associated with

V i and v = v a i for i ∈ {1, • • • , q}.
Note that it defines the same face as y vy va i ≤ 0 from (4.10) which has a simpler form. r,c) if and only if the following two conditions are satisfied

Proposition 4.3.13. Let v ∈ V i \ {v a i }, i ∈ {1, • • • , q}. y v -y va i ≤ 0 defines a facet of B xy (G,
1. c r ≥ 2 if v a i = r and |δ(r)| ≥ 2; 2. c va i ≥ 3 if v a i = r and |δ(v a i )| ≥ 3. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : y v -y va i = 0}.
For the necessity, if either condition is not satisfied, then F is a proper subset of a proper face induced by x(δ(v a i ))-c va i y va i ≤ 0.

For the sufficiency, assume that the conditions are satisfied and r,c). First, the empty graph is a bounded r-tree with its incidence vector in F, and thus b = 0. If r = v a i , then the graph reduced to r is also a bounded r-tree with its incidence vector in F, which gives us d r = 0.

F ⊆ {[ x y ] ∈ B xy (G, r, c) : a T x + d T y = b} B xy (G, r, c), where a T x + d T y ≤ b is valid for B xy (G,
If v a i = r, let (V j , E j ) be the block of G r such that v a i ∈ V j \ {v a j }.
Consider any edge uw ∈ E \ E i . Without loss of generality, let u / ∈ O and let w = v ap if u ∈ V p , for some p ∈ {1, • • • , q}. There must exist a path P ru of G r between r and u without passing w.

If v a i / ∈ V [P ru ] and w = v a i , G[P ru ]
and G[P ru ∪{uw}] are bounded r-trees whose incidence vectors belong to F.

If v a i / ∈ V [P ru ] and w = v a i , G[P ru ]
and G[P ru ∪ P va i v ∪ {uw}] are bounded r-trees whose incidence vectors belong to F, where

P va i v is a path between v a i and v in G r . If v a i ∈ V [P ru ] and E i ∩P ru = ∅, then G[P ru ∪P va i v ]
and G[P ru ∪P va i v ∪{uw}] are bounded r-trees whose incidence vectors belong to F, where

P va i v is a path between v a i and v in G r . If E i ∩ P ru = ∅, let (V k , E k ) be the block of G r such that v a k ∈ V i \ {v a i } and removing v a k from G r disconnects r and u. If v / ∈ V [P ru ] , one has that (V i , E i ) is 2-connected.
According to Corollary 4.3.11, there exists a path

P va i va k in (V i , E i ) such that v ∈ V [P va i va k ].
Then by substituting the subpath between v a i and v a k of P ru forP va i va k , one gets a path between r and u of G r such that it contains v but not w. To summarize, there always exists a path P ru between r and u of G r such that v ∈ V [P ru ] and w / ∈ [P ru ]. Therefore, G[P ru ] and G[P ru ∪ {uw}] are bounded r-trees whose incidence vectors belong to F.

Consequently, one can summarize that for any p ∈ {1, • • • , q} with p = i we have

d w = p ∀w ∈ V p \ {v ap , v a i }, a e = -p ∀e ∈ E p ,
where p ∈ R. Additionally, for any v o ∈ O, one has

d vo = μ vo , a eo = -μ vo ∀e ∈ δ(v o ),
Consider the case where

(V i , E i ) is 2-connected. Let uw ∈ E i ∩ (δ(v a i ) ∪ δ(v)
\ {v a i v}) be an edge with w = v and w = v a i . There exists a path P va i v of (V i , E i ) without passing w. Let P rva i be any path between r and v a i of G r .

Then G[P rva i ∪ P va i v ] and G[P rva i ∪ P va i v ∪ {uw}] are two bounded r-trees whose incidence vectors belong to F.

As (V i , E i ) is 2-connected, it contains two paths P 1 va i v , and P 2 va i v such that they do not share any inner node. Consider an edge uw ∈ P 1

va i v ∪ P 2 va i v \ (δ(v a i ) ∪ δ(v))
, and without loss of generality assume uw ∈ P 1 va i v . Let P 1 va i u denote the subpath between v a i and u of P 1

va i v . One has that G[P rva i ∪ P 2 va i v ∪ P 1 va i u ], G[P rva i ∪ P 2 va i v ∪ P 1 va i u ∪ {uw}], G[P rva i ∪ P 1 va i v ∪ P 2 va i v \ (P 1 va i u ∪ {uw})], G[P rva i ∪ P 1 va i v ∪ P 2 va i v \ P 1 va i u
] are all bounded r-trees, and their incidence vectors belong to F. Hence, we have

d u = d w = -a uw .
Consequently, for any e ∈ P 1

va i v ∪ P 2 va i v \ (δ(v a i ) ∪ δ(v)), and any u ∈ V [P 1 va i v ] ∪ V [P 2 va i v ] \ {v a i , v}, we have d u = -a e = i , where i ∈ R. If v ∈ N (v a i ), assume that |P 1 va i v | ≥ 2. We have that G[P rva i ∪ {v a i v}] and G[P rva i ∪ P 1 va i v
] are two bounded r-trees whose incidence vectors belong to F. This gives us

a va i v = d(V [P 1 va i v ] \ {v a i , v}) + a(P 1 va i v ) = i . Consider an edge uw ∈ E i \ (δ(v a i ) ∪ δ(v)) such that w / ∈ V [P 1 va i v ] ∪ V [P 2 va i v ]. Let P va i u be a path of G r between v a i and u without passing through w. If v ∈ V [P va i u ], then G[P rva i ∪ P va i u ] and G[P rva i ∪ P va i u ∪ {uw}] are bounded r-trees whose incidence vectors belong to F. Otherwise if v / ∈ V [P va i u ], among nodes in V [P 1 va i v ] ∪ V [P 2 va i v ],
let u be the closest node to u in the path P va i u . Note that we might have u = v a i or u = u. Without loss of generality, suppose that u ∈ V [P 1 va i v ]. Let P 1 va i u denote the subpath of P 1 va i v between v a i and u , and let P u u denote the subpath of P va i u between u and u. Then

G[P rva i ∪ P 2 va i v ∪ P 1 va i u ∪ P u u ] and G[P rva i ∪ P 2 va i v ∪ P 1 va i u ∪ P u u ∪ {uw}] are two bounded r-trees whose incidence vectors belong to F. As (V i , E i ) is connected, we also have d u = d w = -a uw = i . Now consider an edge uw ∈ E i \ (P 1 va i v ] ∪ P 2 va i v ∪ δ(v a i ) ∪ δ(v)) such that u ∈ V [P 1 va i v ], w ∈ V [P 2 va i v ]. Note that implicitly we have |P 1 va i v | ≥ 2, |P 2 va i v | ≥ 2. Let P l zz denote the subpath of P l va i v between any two nodes z and z in V [P l va i v ], l ∈ {1, 2}. G[P rva i ∪P 1 va i u ∪{uw}∪P 2 wv ] and G[P rva i ∪ P 1 va i u ∪ P 2 va i v
] are two bounded r-trees whose incidence vectors belong to F.

Thus, we deduce that

a uw = a(P 2 va i w ) + d(V [P 2 va i w ] \ {v a i , w}) = -i .
Note that here u and w are interchangeable in the proof.

Moreover if the block (V i , E i ) is a bridge of G r and v a i = r, we can always set a va i v =i with i ∈ R. Thereby, we can now conclude that for any edge e ∈ E i and any node u ∈ V i \ {v a i , v} (if exists) we have

d u = -a e = i .
If v a i = r, by considering any path P va i v of G r one has

d va i + d v = -a(P va i v ) -d(V [P va i v ] \ {v a i , v}) = i .
Without loss of generality, one gets

d v = i + λ, d va i = -λ, where λ ∈ R.
If v a i = r, let P rva i be a path between r and v a i of G r and P va i v a path between v a i and v of G r and f be the edge in P rva i and δ(v a i ). G[P rva i \ {f }] and G[P rva i ] ∪ P va i v are two bounded r-trees whose incidence vectors are in F. We then deduce that

d va i + d v = -a f -a(P va i v ) -d(V [P va i v ] \ {v a i , v}) = j + i .
Without loss of generality, one can set

d v = i + λ, d va i = j -λ,
where λ ∈ R.

To summarize, in all cases a T x + d T y ≤ b can be written as

-λy va i + λy v + q p=1 u∈Vp\{va p } p y u + vo∈O μ vo y vo - q p=1 e∈Ep p x e - vo∈O eo∈δ(vo) μ vo x eo ≤ 0, that is, λ(y v -y va i ) + q p=1 p (y(V p \ {v ap }) -x(E p )) + vo∈O μ vo (y vo -x(δ(v o ))) ≤ 0.
Thus it is a linear combination of y vy va i ≤ 0 and equations (4.7) and (4.8). Finally, the incidence vector of any path between r and

v a i of G r is not in F but in B xy (G, r, c). Hence F is a facet of B xy (G, r, c).
We consider now the the extended subtour elimination inequalities associated with a single edge, that is (4.12). Note that for any edge e

∈ δ(v o ), v o ∈ O, x e -y vo ≤ 0 is redundant as x(δ(v o )) -y vo = 0 is valid from (4.7). Besides, for any edge e = v a i v ∈ E i ∩ δ(v a i ), i ∈ {1, • • • , q}, we deduce that x va i v -y va i ≤ 0 is redundant as y v -y va i ≤ 0 is valid from (4.10). Additionally, if E i = {v a i v} for some i ∈ {1, • • • , q}, x va i v -y v ≤ 0 is redundant as x va i v -y v = 0 is valid from (4.8
). Thus, we focus on the case where e = v a i v ∈ E i with (V i , E i ) being 2-connected, which is dealt by the following proposition. r,c). First, the empty graph and the graph reduced to r are bounded r-trees with their incidence vectors in F, and thus b = 0 and d r = 0.

Proposition 4.3.14. Let e = v a i v ∈ E i ∩ δ(v a i ) be an edge in a 2-connected block (V i , E i ) of G r for some i ∈ {1, • • • , q}. x e -y v ≤ 0 defines a facet of B xy (G, r, c). Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x e -y v = 0}. Assume that F ⊆ {[ x y ] ∈ B xy (G, r, c) : a T x + d T y = b} B xy (G, r, c), where a T x + d T y ≤ b is valid for B xy (G,

Consider an edge uw ∈ E \{e} with u /

∈ O and w = v, and assume that there exists a path P ru between r and u in G r without passing through w.

If v / ∈ V [P ru ], then G[P ru ] and G[P ru ∪ {uw}] are two bounded r-trees whose incidence vectors are in F. If v ∈ V [P ru ],
then by substituting the subpath between r and v of P ru by rv, one gets another path P ru between r and u in G r without passing through w. Hence, G[P ru ] and G[P ru ∪ {uw}] are two bounded r-trees whose incidence vectors are in F. Thus, we obtain

d w = -a uw .
As it can be seen, for any edge uw ∈ E p \ (δ(v ap ) ∪ δ(v)), for p ∈ {1, • • • , q}, u and w are interchangeable in the proof. Consequently, for any p ∈ {1, • • • , q}, one can set

d u = p ∀u ∈ V p \ {v, v ap }, a f = -p ∀f ∈ E p \ {e},
with p ∈ R, and for any v o ∈ O, one gets

d vo = μ vo , a eo = -μ vo ∀e o ∈ δ(v o ),
with μ vo ∈ R. Furthermore, let P rva i be a path between r and

v a i in G r . Notice that if v a i = r, P rva i = ∅. G[P rva i ] and G[P rva i ∪ {e}]
are two bounded r-tree whose incidence vectors belong to F. Hence, we have

a e + d v = 0,
and thus without loss of generality, we set

d v = i -λ, a e = λ -i , with λ ∈ R.
Thus, a T x + d T y ≤ b can always be written as

( i -λ)y v + q p=1 u∈Vp\{v,va p } p y u + vo∈O μ vo y vo +(λ -i )x e - q p=1 f ∈Ep\{e} p x f - vo∈O eo∈δ(vo) μ vo x eo ≤ 0, that is, λ(x e -y v ) + q p=1 p (y(V p \ {v ap }) -x(E p )) + vo∈O μ vo (y vo -x(δ(v o ))) ≤ 0.
Thus it is a linear combination of x ey v ≤ 0 and equations (4.7) and (4.8). Finally, the incidence vector of the graph reduced to e is not in r,c).

F but in B xy (G, r, c). Hence F is a facet of B xy (G,

Now consider the edges in δ(O).

As y vy r ≤ 0 is valid for any v ∈ V \ {r} from (4.9), we deduce that x ey r ≤ 0 is redundant for any e ∈ δ(r). The following proposition deals with those extended subtour elimination inequalities associated with an edge in δ(O) \ δ(r).

Proposition 4.3.15. Let e = vv o ∈ δ(O) with v ∈ V i \ {r} for some i ∈ {1, • • • , q}. x e -y v ≤ 0 defines a facet of B xy (G, r, c) if and only if either c v ≥ 3 or |δ(v)| = 2. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x e -y v = 0}. For the necessity, if c v = 2 and |δ(v)| ≥ 3, then F is a proper subset of a proper face induced by x(δ(v)) -c v y v ≤ 0.
For the sufficiency, assume that the condition is satisfied and r,c). First, the empty graph is a bounded r-tree with its incidence vector in F, and thus b = 0. As v = r, the graph reduced to r is also a bounded r-tree with its incidence vector in F, which gives us d r = 0.

F ⊆ {[ x y ] ∈ B xy (G, r, c) : a T x + d T y = b} B xy (G, r, c), where a T x + d T y ≤ b is valid for B xy (G,
Consider an edge uw ∈ E \{e} with u / ∈ O and w = v, and assume that there exists a path P ru between r and u in G r without passing through w. ∪ {e, uw}] are two bounded r-trees whose incidence vectors are in F. In both cases, we obtain

If v / ∈ V [P ru ], then G[P ru ] and G[P ru ∪ {uw}] are two bounded r-trees whose incidence vectors are in F. If v ∈ V [P ru ], then G[P ru ] ∪ {e} and G[P ru
d w = -a uw .
Consequently, for any p ∈ {1, • • • , q}, one gets

d u = p ∀u ∈ V p \ {v, v ap }, a f = -p ∀f ∈ E p ,
with p ∈ R, and for any u o ∈ O, one gets

d uo = μ uo , a eo = -μ uo ∀e o ∈ δ(u o ) \ {e},
with μ uo ∈ R.

Let P rv be a path between r and v in G r , and let e be the edge in both P rv and δ(v).

Note that we have that e ∈ E j , v ∈ V j \ {v a i } for some j ∈ {1, 

d v + a e = j -μ vo .
We can then set

d v = j -λ, a e = λ -μ vo ,
where λ ∈ R.

Thus, a T x + d T y ≤ b can always be written as

( j -λ)y v + (λ -μ vo )x e + q p=1 u∈Vp\{v,va p } p y u + uo∈O μ uo y uo - q p=1 f ∈Ep p x f - uo∈O eo∈δ(uo)\{e} μ uo x eo ≤ 0, that is, λ(x e -y v ) + q p=1 p (y(V p \ {v ap }) -x(E p )) + uo∈O μ uo (y uo -x(δ(u o ))) ≤ 0.
Thus it is a linear combination of x ey v ≤ 0 and equations (4.7) and (4.8). Finally, the incidence vector of any path between r and v of G r is not in

F but in B xy (G, r, c). Hence F is a facet of B xy (G, r, c).
For the rest cases of the extended subtour elimination inequalities, we give some necessary conditions for them to be facet-defining.

Proposition 4.3.16. Let e = uv ∈ E i \ δ(v a i ) for some i ∈ {1, • • • , q}. x e -y v ≤ 0 defines a facet of B xy (G, r, c) only if G[V i \ {u, v}] is connected. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x e -y v = 0}. For the necessity, if G[V i \ {u, v}]
is not connected, then there must exist some S V i such that {u, v} S and F is a proper subset of a proper face induced by x(E[S ])y(S \ {v}) ≤ 0.

The following proposition deals with the extended subtour elimination inequalities that satisfy

|S| ≥ 3, S ⊆ V i for some i ∈ {1, • • • , q}. Proposition 4.3.17. x(E[S]) -y(S \ {v}) ≤ 0, S V i , |S| ≥ 3, defines a facet of B xy (G, r, c) only if 1. G[S] is 2-connected; 2. G[V i \ S] is connected; 3. v = v a i if v a i ∈ S. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0}.
For the necessity, if G[V i \S] is not connected, then there must exist some S V i such that S S and F is a proper subset of a proper face induced by

x(E[S ]) -y(S \ {v}) ≤ 0. If G[S]
is not 2-connected and |S| ≥ 3, there must exist some u ∈ S \{v} and e ∈ δ(u)∩E [S] such that F is a proper subset of a proper face induced by

x e -y u ≤ 0. If v = v a i and v a i ∈ S, since S = V i , F is then a proper subset of a proper face induced by x(E[S]) -y(S \ {v a i }) ≤ 0.
We consider now the extended subtour elimination inequalities that satisfy |S| ≥ 3,

S \ {v} V i for some i ∈ {1, • • • , q}. Proposition 4.3.18. x(E[S]) -y(S \ {v}) ≤ 0, S \ {v} V i , |S| ≥ 3, v ∈ O, defines a facet of B xy (G, r, c) only if 1. G[S] is 2-connected; 2. G[V i \ S] is connected. Proof. Let F = {[ x y ] ∈ B xy (G, r, c) : x(E[S]) -y(S \ {v}) = 0}.
For the necessity, if G[V i \S] is not connected, then there must exist some S V i such that S S and F is a proper subset of a proper face induced by x(E[S ])y(S \ {v}) ≤ 0. If G[S] is not 2-connected and |S| ≥ 3, there must exist some u ∈ S \{v} and e ∈ δ(u)∩E [S] such that F is a proper subset of a proper face induced by x ey u ≤ 0.

After investigating the facets of B xy (G, r, c), in the next section, we show that it can be characterized on cactus graphs with the help of all the constraints introduced previously.

Characterization

In this section, we first show that the extended bounded r-tree polytope B xy (G, r, c) can be characterized on trees and cycles. As a result of Theorem 4.2.6, the characterization of B xy (G, r, c) on cactus graphs then immediately follows.

We prove the integrality of the formulation proposed in this section using the same approach as in [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF] and [START_REF] Lovász | Graph theory and integer programming[END_REF]. Essentially, it is achieved by showing that any facet of B xy (G, r, c) is defined by one of the inequalities in the proposed formulation.

In particular, given a weight vector [ w p ] ∈ R E+V , denote by Γ(w, p) the set of incidence vectors of maximum bounded r-trees in G. We show that if none of the inequalities in the formulation is satisfied at equality by all the solutions in Γ(w, p), then [ w p ] can be written as a linear combination of the rows in the coefficient matrix that correspond to the equations in the proposed formulation.

Let P Cac (G, r, c) denote the polytope defined by constraints (4.2) -(4.5) and (4.7), (4.8), that is, 

P Cac (G, r, c) = {[ x y ] ∈ R E+V : [ x y ]

On trees

In Section 4.3, we presented necessary and sufficient conditions for (4.2) -(4.5) to be facet-defining. After getting rid of the non-facet-defining inequalities from P Cac (G, r, c), we end up with the following linear optimization problem

max w T x + p T y s.t. x fv -y v = 0 ∀v ∈ V \ {r}, (4.19) x e -y v ≤ 0 ∀v ∈ V, e ∈ δ(v) \ {f v }, (4.20) x(δ(v)) -c v y v ≤ 0 ∀v ∈ V, v is not a leaf, (4.21) y r ≤ 1, (4.22)
x e ≥ 0 ∀e ∈ E, e is a leaf edge, (4.23)

where f v denotes the edge of path P rv incident with v.

Let P T ree (G, r, c) = {[ x y ] ∈ R E+V : [ x y ] satisfies (4.19) -(4.23)}.
As a first step, we prove in the next proposition that

P T ree (G, r, c) is a formulation for B xy (G, r, c) if G is a tree. Proposition 4.4.1. Let G be a tree. P T ree (G, r, c) ∩ Z E+V = B xy (G, r, c) ∩ Z E+V .
Proof. As constraints (4.19)-(4.23) are a subset of the constraints defining P Cac (G, r, c), 

we have B xy (G, r, c) ⊆ P Cac (G, r, c) ⊆ P T ree (G, r, c). Consequently, B xy (G, r, c)∩Z E+V ⊆ P T ree (G, r, c) ∩ Z E+V .

Consider now a vector

f v in F , G[P rv ] is a subgraph of (U, F ).
Therefore, (U, F ) induces a bounded r-tree of G and x y ∈ B xy (G, r, c) ∩ Z E+V , which completes the proof.

We recall some notation introduced in Chapter 3 that is reused in the proof after. We denote Opt G (r) the optimal value of the MBrT problem on G with r being the root. Given any node v ∈ V , let g(v) be the value of a maximum non-empty tree rooted at v of the subgraph G[ v ] and bounded by c v , where the capacity vector

c v ∈ Z v + satisfies c v v = c v -1 if v = r, c v v = c v if v = r, and c v s = c s , for s ∈ v \ v.
In other words,

g(v) = max{f (T ) : T is tree of G[ v ] with v ∈ V (T ) and bounded by c v }. Correspondingly, for v ∈ V \ {r}, let h(f v ) = max{0, w fv + g(v)
} be the actual gain associated with considering f v in the solution.

Proposition 4.4.2. Let G be a tree. First of all, for any v ∈ V \ {r}, if w fv + g(v) < 0, then x e = 0 is satisfied for any e ∈ E[ v ] ∪ {f v } by all solutions in Γ. Thus we have

P T ree (G, r, c) is integral. Proof. Let A ≤ [ x y ] ≤ b ≤ denote
w fv + g(v) ≥ 0 ∀v ∈ V \ {r}. (4.24) As an immediate result, one has h(f v ) = w fv + g(v) for all v ∈ V \ {r}.
It can be seen that 0 ∈ Γ(w, p), as it is the only integral feasible solution with y r < 1. Hence, we have Opt G (r) = max{0, g(r)} = 0, and thus g(r) ≤ 0 and p r ≤ 0.

If p r < 0, there must exist some v ∈ N (r) with h(f v ) > 0, as otherwise x e = 0 is satisfied for any e ∈ E by all solutions in Γ(w, p).

Let S = {v ∈ N (r) : h(f v ) > 0}. If |S| < c r , then x fv -y r = 0 is satisfied for any v ∈ S by all solutions in Γ(w, p). If |S| ≥ c r , then
x(δ(r))c r y r = 0 is satisfied by all solutions in Γ(w, p). Thus we have

p r = 0. If there exists v ∈ N (r) with h(f v ) > 0, one has Opt G (r) ≥ h(f v ) + p r > 0 which contradicts against Opt G (r) = 0. Thus we have that, w fv + g(v) ≤ 0, for all v ∈ N (r).
Combining this with (4.24) gives us

w fv + g(v) = 0 ∀v ∈ N (r).
We claim that given v ∈ V \ {r}, if w fv + g(v) = 0 then w fv + p v = 0 holds and so does

w fu + g(u) = 0 for any node u ∈ N (v) ∩ v . From w fv + g(v) = 0 and p v ≤ g(v) one has w fv + p v ≤ 0. If w fv + p v < 0, there exists some u ∈ N (v) ∩ v with g(f v ) > 0, since otherwise we would have w fv + g(v) < 0. Let S = {u ∈ N (v) ∩ v : h(f u ) = w fu + g(u) > 0}. If |S| < c v v , then x fu -y v = 0 is satisfied for any u ∈ S by all solutions in Γ(w, p). If |S| ≥ c v v , then x(δ(v)) -c v y v = 0
is satisfied by all solutions in Γ(w, p). Thus, we have w fv + p v = 0. Moreover, as w fv + g(v) = 0 and w fv + p v = 0, there does not exist u ∈ N (v) ∩ v with w fu + g(u) > 0, which leads to w fu + g(u) = 0.

By induction one can deduce that

w fv + p v = 0 ∀v ∈ V \ {r}.
Therefore, we have [ w p ] = μ T A = for some real vector μ, and hence P T ree (G, r, c) is an integral polytope.

Immediately, we obtain P T ree (G, r, c) = B xy (G, r, c). Furthermore, as P Cac (G, r, c) ⊆ P T ree (G, r, c) and both polytopes are formulations for B xy (G, r, c), the follow theorem holds.

Theorem 4.4.3. Let G be a tree.

P Cac (G, r, c) = P T ree (G, r, c) = B xy (G, r, c).
For the case of trees, the nodes in O have little impact on the characterization of B xy (G, r, c), as they can only be the leaves and the associated extended capacity inequalities are redundant. Nonetheless, they play a significant role in the characterization of B xy (G, r, c) on cycles.

On cycles

This section presents the proof of the characterization of B xy (G, r, c) on cycles. Since in a cycle all nodes have degree of 2, hence the extended capacity inequality for any node with capacity 2 is redundant. Moreover, according to Assumption 2.2.9, we have either O = ∅ or |O| = 1. Thus, the characterization on cycles needs be categorized into four different situations according to the capacity of r and the existence of O.

For the case with c v ≥ 2 for all v ∈ V , all the r-trees of G are bounded. Hence B xy (G, r, c) = R xy (G, r). According to Theorem 2.2.1 (proved by [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF]), one has P xy (G, r) = R xy (G, r) on series-parallel graphs, which is sufficient for the characterization of B xy (G, r, c) in this case, that is, r,c). Furthermore, as P Cac (G, r, c) contains all the constraints in P xy (G, r, c) and thus in P xy (G, r), we therefore have the following proposition. r,c). Now consider the case where c r = 1, and c v ≥ 2, for v ∈ V \ {r}. In this case, G r = G and it contains only 1 block. Hence (4.8) reduces to x(E)y(V \ {r}) = 0, that is, (4.1). Moreover, as all capacities are redundant except for r, we do not have any equation form (4.7) as O = ∅, and (4.3) reduces to one inequality, that is,

P xy (G, r) = R xy (G, r) = B xy (G,
Proposition 4.4.4. Let G be a cycle with c v ≥ 2 for all v ∈ V . P Cac (G, r, c) = B xy (G,
x(δ(r)) -y r ≤ 0.
(4.25) Therefore, the system defining P Cac (G, r, c) can be rewritten as (4.1), (4.2), (4.4), (4.5) and (4.25).

Proposition 4.4.5. Let G be a cycle with c r = 1 and Let [ w p ] ∈ R E+V be a weight vector such that none of (4.2), (4.4), (4.5) and (4.25) is satisfied at equality by all solutions in Γ(w, p).

c v ≥ 2 for all v ∈ V \ {r}. P Cac (G, r, c) is integral. Proof. Let A ≤ [ x y ] ≤ b ≤ denote
It can be seen that 0 ∈ Γ(w, p), as it is the only feasible solution with y r < 1. Hence, the optimal value must equal to 0, and as a result, one also has p r ≤ 0. Additionally, as x(δ(r))y r ≤ 0 is not satisfied at equality by all solutions in Γ(w, p), it can be deduced that p r = 0.

It is worth noting that each non-empty bounded r-tree in G is a rv-path for some v ∈ V . According to the assumption, there does not exist e ∈ E and v ∈ V \{r} such that e ∈ δ(v) and x ey v = 0 is satisfied by all solutions in Γ(w, p). Then there must exist a solution in Γ(w, p) corresponding to the rv-path P rv that does not contain e. Consequently, any rv-path P rv induces a solution in Γ(w, p) for any v ∈ V \ {r}. Thus one can deduce that p v + w e = 0 for any e ∈ δ(v), v ∈ V \ {r}. Due to the connectivity of G, we have that p v + w e = 0 for any v ∈ V \ {r} and any e ∈ E. Therefore, [ w p ] = μ T A = , for some real vector μ, and thus P Cac (G, r, c) is integral.

Consider now the case where c r ≥ 2 and O = {v o }. It can be noted that G r contains |E| -2 blocks with each one of them being a bridge. Hence (4.8) reduces to the following equations

x fv -y v = 0 ∀v ∈ V \ {r, v o }, (4.26)
where f v denotes the edge incident with v ∈ V \ {r, v o } and in the path between r and v without passing through v o . In addition, (4.7) reduces to the following equation

x(δ(v o )) = y vo . (4.27)
Besides, all inequalities in (4.3) are redundant. Thus, the system defining P Cac (G, r, c) can be rewritten as (4.2), (4.4), (4.5), (4.26) and (4.27). We show in this case P Cac (G, r, c) is integral as stated in the following proposition. Let [ w p ] ∈ R E+V be a weight vector such that none of (4.2), (4.4) and (4.5) is satisfied at equality by all solutions in Γ(w, p). It can be seen that 0 ∈ Γ(w, p), as it is the only feasible solution with y r < 1. Hence, the optimal value equals to 0, and as a result, one also has p r ≤ 0.

If there exists v ∈ V \ {r, v o } with w fv + p v > 0 and without loss of generality let f v = uv, then x fvy u = 0 is satisfied by all solutions in Γ(w, p). Thus, we have

w fv + p v ≤ 0 ∀v ∈ V \ {r, v o }.
If p r < 0, there must exist e ∈ δ(v o ) with w e + p vo > 0 and f (G[P re ]) = 0 since otherwise x e = 0 for e ∈ E is satisfied by all solutions in Γ(w, p). We then deduce that y voy r = 0 is satisfied by all solutions in Γ(w, p). Therefore, one obtains p r = 0.

Similarly, if there exists w fv +p v < 0 for some v ∈ V \{r, v o }, as x fv = 0 is not satisfied by all solutions in Γ(w, p), there must exist a path P rvo with f v ∈ P rvo and f (G[P rvo ]) = 0. One therefore has that y voy r = 0 is satisfied by all solutions in Γ(w, p). Hence, we have

w fv + p v = 0 ∀v ∈ V \ {r, v o }.
For e ∈ δ(v o ), as x e > 0 holds for some solution in Γ(w, p), one has w e + p vo ≥ 0. And as one has p r = 0 and w fv + p v = 0 for any v ∈ V \ {r, v o }, one can also deduce w e + p vo ≤ 0, which gives us w e + p vo = 0.

To summarize, [ w p ] = μ T A = for some real vector μ, and thus P Cac (G, r, c) is integral.

Consider now the case where c r = 1 and O = {v o }. Similar to the previous case, (4.8) reduces to (4.26), and (4.7) reduces to (4.27).

Furthermore, (4.3) reduces to

x(δ(r))y r ≤ 0.

(4.28) Therefore, the system defining P Cac (G, r, c) can be rewritten as (4.2), (4.4), (4.5), (4.26), (4.27) and (4.28). Let [ w p ] ∈ R E+V be a weight vector such that none of (4.2), (4.4) (4.5) and (4.28) is satisfied at equality by all solutions in Γ(w, p). It can be seen that 0 ∈ Γ(w, p), as it is the only feasible solution with y r < 1. Hence, the optimal value equals to 0. Moreover, as the graph reduced to r is the only solution that does not satisfy x(δ(r))y r = 0, its incidence vector is in also Γ(w, p). Hence, we have p r = 0.

It is worth mentioning that each non-empty bounded r-tree is a path between r and some node v such that it does not contain v o as an inner node. For any edge e ∈ E, let P re be the path between r and e such that it does not contain v o as an inner node, and without loss of generality let e = uv and v = r is one end of P re . As neither x e = 0 nor x ey u = 0 is satisfied by all solutions in Γ(w, p), then we deduce that P re induces a maximum bounded r-tree of G for each e ∈ E. Thus we have

w fv + p v = 0 ∀v ∈ V \ {r, v o }, w e + p vo = 0 ∀e ∈ δ(v o ),
where f v denotes the edge incident with v and in the path between r and v without passing through v o .

Therefore, [ w p ] = μ T A = for some real vector μ, and thus P Cac (G, r, c) is integral.

We have thereby proved that P Cac (G, r, c) is an ideal formulation for all cases on cycles, as stated in the following theorem.

Theorem 4.4.8. Let G be a cycle. P Cac (G, r, c) is integral.

On cactus graphs

Combining the characterization on trees and cycles with the decomposition through 1sum, the characterization of B xy (G, r, c) on cactus graphs can thereby be obtained.

Theorem 4.4.9. Let G be a cactus graph.

P Cac (G, r, c) = B xy (G, r, c).
Proof. Let G 1 and G 2 be two graphs such that their 1-sum at the node v a is G, and

P Cac (G i , r i , c i ) = B xy (G i , r i , c i ) for i = 1, 2.
Following the notation in Section 4.2, let

P C (G, r, c) ={[ x y ] : x 1 y 1 ∈ B xy (G 1 , r 1 , c 1 ), x 2 y 2 ∈ B xy (G 2 , r 2 , c 2 ), x(δ(v a )) -c va y va ≤ 0}.
According to Theorem 4.2.6, one has P C (G, r, c) = B xy (G, r, c). Moreover, x(δ(v a ))c va y va ≤ 0 and all the constraints in (4.2) -(4.5) and (4.7), (4.8) with respect to Therefore, P Cac (G, r, c) = B xy (G, r, c) holds for any graph G composed of two subgraphs which are either trees or cycles and separated by an articulation node. This deduction can be repeated as many times to obtain the same result for any graph composed of as many tree-or cycle-components separated by articulation nodes, which is also known as a cactus graph. Therefore, the theorem holds.

P Cac (G i , r i , c i ), i = 1,

Conclusion

In this chapter, we have explored several aspects of the extended bounded r-tree polytope B xy (G, r, c). It has been shown that its dimension is related to the unit-capacity node set O and the blocks of the graph. We also showed that the polytope can be decomposed with respect to articulation nodes through 1-sum.

We introduce several sets of new valid equations and inequalities, along with the necessary and sufficient conditions for all the known inequalities be facet-defining. Note that for the extended subtour elimination inequalities only a subset of the induced facets have been identified, whereas for the rest we gave some properties and necessary conditions. The aforementioned valid constraints allow us to characterize B xy (G, r, c) on trees and cycles, and combining with the decomposition through 1-sum, B xy (G, r, c) can thus be characterized on cactus graphs.

On the other hand, an r-tree (or a bounded r-tree) can also be described alone by its edge set, while it cannot be decided if only its node set is given. Therefore, in the following two chapters, the r-tree polytope R x (G, r) and bounded r-tree polytope B x (G, r, c) are discussed, where only the edge-indexed variables are considered. We examine the same aspects on these two polytopes as we have done in this chapter, and show that we can also characterize them on trees and cycles.

Chapter 5

Polyhedral study on r-Tree Polytope

Recall that given a graph G = (V, E), a node r ∈ V , an edge-weight vector w ∈ R E , and a node-price vector p ∈ R V , the MrT problem consists of finding an r-tree T of G with maximum value f (T ) = w(E(T )) + p(V (T )).

As a relaxation of the MBrT problem, the MrT problem has been studied by [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF]. He proposed a formulation for R xy (G, r), presented results concerning its facets, and gave a complete description of it on series-parallel graphs. Nonetheless, R x (G, r) has not been studied yet.

This chapter presents results on R x (G, r) which considers only the edge-indexed variables. We start with the following formulation that has been introduced in Chapter 2.

x ex(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (5.1)

x(E[S]) ≤ |S| -1 ∀S ⊆ V, |S| ≥ 3, (5.2)
x e ≤ 1 ∀e ∈ E, (5.3)

x e ≥ 0 ∀e ∈ E.

(5.4)

According to Assumption 2.2.9, G is connected. With that said, we first show that R x (G, r) is full-dimensional and present some results on the known facets. We then introduce two sets of newly discovered facet-defining inequalities aside from those present in the formulation, and give necessary and sufficient conditions for all the aforementioned inequalities. Finally, we give some counter examples that suggest the infeasibility of the decomposition through 1-sum, as opposed to the case of B xy (G, r, c).

Dimension

We propose first the following lemma, which is significant for the dimension proof and facial proof of not only R x (G, r) but also B x (G, r, c).

Lemma 5.1.1. Given a connected graph G = (V, E) with r ∈ V , let F be any nonempty subset of edges of G. For any e ∈ F , consider an re-path P re in G having as few edges as possible. The set {x Pre : e ∈ F } is affinely independent.

Proof. From the assumption one has that for any two distinct edges e 1 , e 2 ∈ F ,

e 1 / ∈ P re 2 holds if |P re 1 | ≥ |P re 2 |.
Suppose that there exists a non-zero vector λ ∈ R F such that e∈F (λ e x Pre ) = 0. for any e ∈ F + \ {e m }. Therefore, λ em = 0, which forms a contradiction with the assumption. One can thus conclude that the set {x Pre : e ∈ F } is linearly independent, and thus affinely independent.

Let F + = {e ∈ F : λ e = 0}.
With Lemma 5.1.1, the dimension of R x (G, r) is given as in the following theorem.

Theorem 5.1.2. R x (G, r) is full-dimensional, that is, dim R x (G, r) = |E|.
(5.5)

Proof. According to Lemma 5.1.1, one has |E| non-zero linearly independent vectors in R x (G, r), each of which induces an re-path for a distinct e ∈ E. Combining it with the zero vector, one has |E|+1 affinely independent vectors in R x (G, r).

Hence dim R x (G, r) = |E|.
After showing that R x (G, r) is full-dimensional under Assumption 2.2.9, in the next section we present a facial study of R x (G, r) for each set of inequalities presented in the formulation.

Facets

Before diving into the facial discussion of R x (G, r), it is worth mentioning that for both R x (G, r) and B x (G, r, c) we have discovered a few universal criteria that any facet-defining inequality should follow. Note that the criteria for R x (G, r) can actually be extended to similar ones for B x (G, r, c). The following proposition shows one of them related to the bridges in the graph.

Proposition 5.2.1. Given a valid inequality a The facet-defining conditions of x e ≥ 0 for R x (G, r) is presented as follows.

T x ≤ b for R x (G, r) with a e ≥ 0, a = 0, b > 0, let E + := {e ∈ E | a e > 0}. If r / ∈ V [E + ], then a T x ≤ b defines a facet of R x (G,
Proposition 5.2.2. Let e ∈ E. x e ≥ 0 defines a facet of R x (G, r) if and only if G[E \{e}] is connected. Proof. It can be trivially seen that dim{x ∈ R x (G, r) : x e = 0} = dim R x (G[E \ {e}], r). According to Theorem 5.1.2, R x (G[E\{e}], r) is full-dimensional if and only if G[E\{e}] is connected. Therefore we have that dim{x ∈ R x (G, r) : x e = 0} = dim R x (G[E \{e}], r) = dim R x (G, r) -1 holds if and only if G[E \ {e}] is connected. In other words, x e ≥ 0 is facet-defining if and only if G[E \ {e}] is connected.
Notably, here we use G[E\{e}] instead of G\e intentionally, since G\e might contain some isolated node while G[E \{e}] being connected, in which case x e ≥ 0 is still facet-defining.

For the upper bound inequalities (5.3), we split them into two cases, for edges in δ(r) and edges not in δ(r). For the former case, we show that the associated upper bound inequality is always facet-defining.

Proposition 5.2.3. Let e ∈ δ(r). x e ≤ 1 defines a facet of R x (G, r). Proof. Suppose F = {x ∈ R x (G, r) : x e = 1} ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r) with a T x ≤ b being a valid inequality for R x (G, r).
As the r-tree reduced to e satisfies x e = 1, we clearly have a e = b. For any edge e ∈ E \ {e}, let P re be a path between r and e . Let e = rv. If e / ∈ P re and v ∈ V [P re ], there must exist another path P re with e ∈ P re , in which case, we replace P re by P re .

Thus P re ∪ {e} and P re \ {e } ∪ {e} both induce r-trees that satisfy x e = 1. Hence we have a e = 0 for any e ∈ E \ {e}. As a result, a T x ≤ b can be written as bx e ≤ b. Finally as 0 ∈ R x (G, r) \ F, we can conclude that F is a facet of R x (G, r).

For the edges not incident with r, the general criteria stated in Proposition 5.2.1 should be applied. The necessary and sufficient conditions for the associated upper bound inequality to be facet-defining are presented in the following proposition. For the sufficiency, we now suppose that the conditions in the proposition are satisfied and

F ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r) with a T x ≤ b being a valid inequality for R x (G, r).
Assume that there exists a path P re with u , v / ∈ V [P re ] for e = u v ∈ E \ {e}. There must exist a path P we between some node w ∈ V [P re ] and e such that P re ∪ P we induces an acyclic graph. Thus from the r-trees induced by P re ∪ P we and P re ∪ P we \ {e }, one gets a e = 0.

Assume that for e = u v ∈ E \ {e} there exists a path P re with u ∈ V [P re ], v / ∈ V [P re ], P re ∪ {e } induces an acyclic graph. Thus we have a e = 0 from the r-trees induced by P re and P re ∪ {e }.

Assume now otherwise that for e = u v ∈ E \ {e} any path between r and e contains u and v . Clearly, there exists a path P re with e ∈ P re , and another path P re such that P re ∩ P re = {e} and u , v ∈ V [P re ]. Let P u v be the subpath of P re between u and v . The conditions in the proposition guarantee that there exists such P re with |P u v | ≥ 2. Both P re and P re \ {e } ∪ P u v induce r-trees containing e, which leads to a e = a(P u v ). Moreover, for any edge f ∈ P u v , P re ∪ P u v \ {f } also induces an r-tree containing e.

Thus a e = a f = 0.

To summarize, one has that a e = 0 for any e ∈ E \ {e}. Finally, from the r-tree reduce to any path between r and e, one then deduce that a e = b. Therefore, a T x = b can be written as bx e = b. As F is obviously different from R x (G, r), hence it is a facet of R x (G, r).

Given e ∈ E[S]

with S ⊆ V \ {r}, the necessary and sufficient conditions for the connectivity inequalities to be facet-defining are presented in the following proposition. Assume that there exists such node w ∈ S \ {u, v} that removing uw, vw disconnects r and e. In this case, F is a proper subset of the proper face induced by x (E[{u, v, w}]) -(|{u, v, w}|-1)x(δ(S)) ≤ 0, which will be introduced as a new set of valid inequalities in the next section.

For the sufficiency, we suppose that all the conditions listed in the proposition are satisfied, and r). First of all, we have b = 0 from 0 ∈ F. For any edge f in E[S], as the incidence vector of any r-tree in G[S] is in F and G[S] is connected, thus one has a f = 0.

F ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r), where a T x ≤ b is valid for R x (G,

Consider any edge f = uv ∈ E[S]

\ {e} such that u is not an articulation node that separates r and e. There exists a path P re between r and e such that |P re ∩ δ(S)| = 1 and it does not pass through u and thus does not contain f , and there exist a path P f between some node in V [P re ] and f such that P re ∪ P f induces an acyclic graph. It can be deduced from the two r-trees induced by P re ∪ P f and P re ∪ P f \ {f } that a f = 0.

Consider now an edge f = uv ∈ E[S] \ {e} such that u and v are both articulation nodes that separate r and e. According to the conditions, f is not a bridge that separates r and e. Then there exists a path P re between r and e such that e / ∈ P re and |P re ∩ δ(S)| = 1.

Let P uv be the subpath of P re between u and v. P re and P re ∪ {f } \ P uv induce two r-trees whose incidence vectors are in F, which leads to a f = a(P uv ) = 0.

Now by considering P rf ∪ P ue for any f ∈ δ(S), where P rf is a path between r and f with |P rf ∩ δ(S)| = 1 and P ue is a path of G[S] between u ∈ S and e with f ∈ δ(S) ∩ δ(u), we have a f + a e = 0.

Therefore, a T x ≤ b is rewritten as λ(x ex(δ(S))) ≤ 0 with λ ∈ R. Finally, we have F = R x (G, r) considering any path between r and an edge in δ(S). One can then conclude that F is a facet of R x (G, r).

Theorem 5.2.6. 

Let S ⊆ V, |S| ≥ 3. x(E[S]) ≤ |S| -1 defines a facet of R x (G,
2. G[S] is 2-connected. Proof. Let F = {x ∈ R x (G, r) : x(E[S]) = |S| -1}. For the necessity, if r / ∈ S, then F is a proper subset of the proper face induced by x(E[S]) -(|S| -1)x(δ(S)) ≤ 0. If G[S] has multiple blocks, then F is a proper subset of the proper face induced by x([F i ]) ≤ |V [F i ]| -1, for any block (V [F i ], F i ) of G[S].
For the sufficiency, assume that To summarize, a T x ≤ b can be written as λx(E[S]) ≤ (|S| -1)λ. Finally, as 0 ∈ R x (G, r) \F, we can conclude F is a maximal proper face, that is, a facet of R x (G, r).

F ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r), where a T x ≤ b is valid for R x (G, r).
This section contributes to the facial study of all the inequalities mentioned in the formulation. However, during the course of our work on both theoretical and computational aspects, there are two sets of new inequalities that have been discovered to be facet-defining for R x (G, r) as well. We present the results respecting these new inequalities in the next section.

New valid inequalities

In this section, we introduce two sets of new inequalities with some instances where they help to cut off some fractional points, and as well as the necessary and sufficient conditions for them to be facet-defining for R x (G, r). Note that according to the close relation between R x (G, r) and B x (G, r, c), these results will also be extended to B x (G, r, c) in the next chapter. x v 1 v 2 = 1,

Matching-partition inequalities

Let π = {S 0 , S 1 , • • • , S k }, k ≥ 1, be a partition of V with r ∈ S 0 and let M = {e 1 , • • • , e k } be a matching of G with e i ∈ E[S i ] for all i ∈ {1, • • • , k}. The pair (M,π ) is called a matching-partition of G,
[F ], that is, x F (M ) -x F (E π ) ≤ 0 is satisfied.
x v 3 v 4 = 1, x v 1 v 2 -(x rv 1 + x v 2 v 3 ) = 0, x v 1 v 2 -(x rv 1 + x rv 4 ) = 0, x v 3 v 4 -(x v 2 v 3 + x rv 4 ) = 0.
At the meantime, x violates the valid inequality

x(M )-x(E π ) ≤ 0 with M = {v 1 v 2 , v 3 v 4 } and π = {S 0 , S 1 , S 2 }.
Let G be the graph obtained from G by shrinking each S i ∈ π, i ∈ {0, 1, • • • , k}, into a node.We show that the matching-partition inequality is facet-defining under certain conditions. r) if and only if the following three conditions are satisfied

Proposition 5.3.2. Let (M,π ) ∈ MP(G), k ≥ 2. x(M ) -x(E π ) ≤ 0 defines a facet of R x (G,
1. G[S i ] is connected, i = 0, 1, • • • , k; 2. G is 2-connected;
3. there does not exist any e ∈ E[S i ], such that removing e disconnects e i and r.

Proof. Let F = {x ∈ R x (G, r) : x(M ) -x(E π ) = 0}.
For the necessity, if G[S i ] is not connected for some i ∈ {0, 1, • • • , k}, then F is a proper subset of the proper face induced by x e ≥ 0 for some e ∈ E.

If there exists

S i ∈ π such that G[V \ S i ] is not connected, without loss of general- ity, assume that G[V \ S i ] contains a connected component induced by S j , S j+1 , • • • , S k , j ∈ {1, • • • , k}. One gets a new matching-partition (M 1 , π 1 ) of G with M 1 = M \ {e j , e j+1 , • • • , e k } and π 1 = π \ {S i , S j , S j+1 , • • • , S k } ∪ {S 1 i }, where S 1 i = S i ∪ S j ∪ S j+1 ∪ • • • ∪ S k . Let (M 2 , π 2 ) be such that M 2 = M \ M 1 and π 2 = π \ π 1 ∪ {S 2 i }, where S 2 i = V \S 1 i ∪S i . One can see that (M 2 , π 2 ) ∈ MP(G), and moreover E π 1 ∩E π 1 = ∅. Hence x(M )-x(E π ) ≤ 0 is a linear combination of x(M 1 )-x(E π 1 ) ≤ 0 and x(M 2 )-x(E π 2 ) ≤ 0,
and thus it is not facet-defining.

If there exists an edge e ∈ E[S i ], such that removing it disconnects e i from r, then let M = M \{e i }∪{e}. F is a proper subset of the proper face induced by x(M )-x(E π ) ≤ 0.

For the sufficiency, we suppose that the conditions in the proposition are satisfied and

F ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r), where a T x ≤ b is valid for R x (G, r). One first has b = 0 because of 0 ∈ F.
As G[S 0 ] is connected, for any edge e ∈ E[S 0 ], any re-path of G[S 0 ] is a feasible solution in F. We then deduce that a e = 0 for any e ∈ E[S 0 ].

Let P re i be a path between r and e i such that

|P re i ∩ δ(S i )| = |P re i ∩ δ(S 0 )| = 1, |P re i ∩ δ(S j )| ∈ {0, 2}, for all S j ∈ π \ {S 0 , S i }.
The conditions ensure that there must exist an edge set F Pre i that is composed of P re i and a path from V [P re i ] ∩ S j to e j for each S j which has |P re i ∩ δ(S j )| = 2 and e j / ∈ P re i .

For any e i ∈ M and any e ∈ E[S i ]\{e i }, i ∈ {1, • • • , k}, the conditions in the proposition ensure that there must exist P re i and F Pre i with e / ∈ P re i . Let P e be the path between some node in V [F Pre i ] ∩ S i and e . F Pre i and F Pre i ∪ P e are two r-trees whose incidence vectors belong to F. One can deduce that a e = 0 for any e ∈ E[S i ] \ {e i }.

For any e ∈ δ(S i ), i ∈ {1, • • • , k}, there must exist a path P re i and F Pre i with e ∈ P re i as G is 2-connected. Let the subpath between e i and e of P re i be P ee i . F Pre i and F Pre i \ P ee i are both r-trees that satisfies x(M )x(E π ) = 0. Thus one has a e + a e i = 0. Therefore, from the connectivity of G, one also deduce that a e = -a e i for any e ∈ E π and e i ∈ M . Thereby a T x ≤ b now can be written as λx(M )λx(E π ) ≤ 0 with λ ∈ R. Moreover, any path between r and an edge in E π is an r-tree that satisfies

x(M ) -x(E π ) < 0. Therefore, F is a facet of R x (G, r).
It can be noticed that the matching-partition inequalities introduced here are slightly different from those proposed by [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF] for CSP because of the existence of the root. Moreover, For any (M,π ) ∈ MP(G) with E[S 0 ] = ∅, a matching-partition inequality for CSP is as follows Note that the connectivity inequalities can be seen as a restriction of matching-partition inequalities to the case of |M | = 1. Nonetheless, the matching-partition inequalities consider the connectivity of multiple parts of the graph instead of only 2 parts.

x(M ) -x(E π ) ≤ 1,
Aside from the matching-partition inequalities, we have discovered another set of inequalities that are also facet-defining for R x (G, r).

Acyclicity-connectivity inequalities

Let W ⊆ S ⊆ V \ {r}, |W | ≥ 2. The acyclicity-connectivity inequality is defined as follows.

x

(E[W ]) -(|W | -1)x(δ(S)) ≤ 0 (5.7) Theorem 5.3.3. For any W ⊆ S ⊆ V \ {r}, |W | ≥ 2, (5.7) is valid for R x (G, r).
Proof. Assume that there exists an r-tree induced by an edge set

F ⊆ E such that x F (E[W ]) -(|W | -1)x F (δ(S)) ≥ 1. If x F (δ(S)) = 0, as x F (E[W ]
) ≥ 1, the connectivity inequality associated with W and some edge in

E[W ] is then violated. If x F (δ(S)) ≥ 1, we have x F (E[W ]) ≥ (|W | -1)x F (δ(S)) + 1 ≥ |W |,
and thus the acycility inequality associated with W is then violated.

Figure 5.2 shows an instance, where a fractional extreme point is cut by an acyclicity-connectivity inequality. The extreme point is decided by

x(E[S]) = |S| -1, x v 1 v 2 -x rv 1 = 0, x v 2 v 3 -x rv 1 = 0, x v 1 v 3 -x rv 1 = 0. It violates (5.7) with W = S = {v 1 , v 2 , v 3 }.
Note that the connectivity inequalities (5.1) can also be seen as a restriction of acyclicityconnectivity inequalities with |W | = 2. We present the necessary and sufficient conditions for any acyclicity-connectivity inequality with |W | ≥ 3 to be facet-defining in the following proposition. r) if and only if the following four conditions are satisfied For the sufficiency, assume that the conditions in the proposition are satisfied and 

Proposition 5.3.4. Let W ⊆ S ⊆ V \{r} with |W | ≥ 3. x(E[W ])-(|W |-1)x(δ(S)) ≤ 0 defines a facet of R x (G,
1. G[S] is connected; 2. G[S] is connected; 3. G[W ] is 2-connected;
F ⊆ {x ∈ R x (G, r) : a T x = b} R x (G, r), where a T x ≤ b is valid for R x (G,
P rv ∩ P ru ∩ E[S] \ E[W ] = ∅.
Notice that here v and u could potentially be the same node. Let

P vS = P rv ∩ E[S] \ E[W ] and P uS = P ru ∩ E[S] \ E[W ].
Without loss of generality, for any edge e ∈ P vS , two situations can happen here. The first one is that there exists a subpath P of P vS that contains e and at the same time P ∪ P uS does not contain any cycle. In this case, one can deduce that any edge e in P satisfies a e = 0. The second situation is that such P e does not exist, which also means P uS contains a path P e between the two ends of e. Replacing P e by e in P uS to obtain P uS , and through the same process for the first case, one can prove that a e = 0 for any e ∈ P e , and thus a e = a(P e ) = 0.

For any edge e in E[S] \ (E[W ] ∪ P vS ∪ P uS ), similarly, either there exists a path P ⊆ E[S] \ E[W ] that contains e and P ∪ P uS ∪ F does not contain any cycle, or P uS contains a path P e between the two ends of e, where F induces a tree that spans all nodes in W . In both cases, we have a e = 0.

Consider now an edge e ∈ δ(S).

As E[S] is connected, there must exist a path P from r to a node in S such that P ∩ δ(S) = {e}, P ∩ E[W ] = ∅. Combining P with any F that induces a tree spanning all nodes in W , one has that P ∪ F induces an r-tree. Hence, a e + a(F ) = 0 according to the previous results, and consequently,

a e = -a(F ) = (|W | -1)λ. To summarize, a T x ≤ b is equivalent to λx(E[W ])-λ(|W |-1)x(δ(S)) ≤ 0, which implies that F is a facet of R x (G, r).
Intuitively, the acyclicity-connectivity inequalities concern two aspects of the problem, 

Decomposition

Unlike what [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF] showed for R xy (G, r), the polyhedral study for R x (G, r) cannot be simply restricted to 2-connected graphs based on decomposition with respect to articulation nodes. Some simple instances are presented below where such decomposition is not feasible.

Consider the graph in Figure 5.3 as an example. Let the two subgraphs separated by the articulation node

v a be G 1 = G[{r, v 1 , v a }] and G 2 = G[{v a , v 2 , v 3 }].
The incidence vectors of ∅, {rv 1 }, {rv 1 , v 1 v a , e}, {rv a , e}, {rv a , e, v a v 2 }, {rv a , e, v a v 3 } are affinely independent, each of which induces an r-tree and is binding at the connectivity inequality (5.1) associated with e and S, that is,

x e -x(δ(S)) ≤ 0.
(5.8)

Thus it defines a facet of R x (G, r). Moreover, the support graph of inequality (5.8) contains both edges in G 1 and in G 2 . Hence if one wants to decompose G into G 1 and G 2 in polyhedral study, inequalities such as (5.8) should be added in addition to the simple combination of polytopes respecting G 1 and G 2 .

Consider again the graph in Figure 5.3. The following acyclicity-connectivity inequality (5.7) associated with S also facet-defining.

x

(E[S]

) -(|S| -1)x(δ(S)) ≤ 0.

(5.9)

On the face induced by inequality (5.9), the incidence vectors of

∅, {rv 1 }, {rv a , v a v 3 , v 3 v 2 }, {rv 1 , v 1 v a , v a v 3 , v 3 v 2 }, {rv a , v a v 3 , v a v 2 }, {rv a , v 1 v a , v a v 3 , v 3 v 2 } are affinely independent,
and it is thus facet-defining. Notice that that (5.9) also involves edges in both G 1 and Figure 5.4: Another counter example of decomposition involving 3 blocks

G 2 .
Furthermore, consider the graph in Figure 5.4. Let (M,π ) be a matching partition in the graph such that M = {e 1 , e 2 , e 3 } and π = {S 0 , S 1 , S 2 , S 3 }. We claim that the associated matching-partition inequality

x(M ) -x(E π ) ≤ 0 (5.10) defines a facet of R x (G, r).
Let the face induced by (5.10) be

F = {x ∈ R x (G, r) : x(M ) -x(E π ) = 0}. Assume that there exists a face F = {x ∈ R x (G, r) : a T x = b} such that a T x ≤ b is valid for R x (G, r) and F F R x (G, r).
From 0 ∈ F F , one has b = 0. The edge sets {e 4 , e 1 }, {e 7 , e 3 }, {e 4 , e 1 , e 5 , e 2 }, {e 7 , e 3 , e 6 , e 2 }, {e 4 , e 1 , e 5 , e 2 , e 6 , e 3 }, {e 7 , e 3 , e 6 , e 2 , e 5 , e 1 } all induce r-trees and their incidence vectors are in F. One can deduce that a e 4 = a e 5 = a e 6 = a e 7 = -a e 1 = -a e 2 = -a e 3 . Hence,

F = F R x (G, r), which indicates F is a facet of R x (G, r).
Therefore, (5.10) is also a facet-defining inequality for R x (G, r) whose support graph contains edges in multiple blocks separated by articulation nodes.

Such cases also exist for B x (G, r, c) since one can set the capacity on each node in V to be large enough to obtain the same polytope as R x (G, r). This fact makes the decomposition through 1-sum infeasible for both R x (G, r) and B x (G, r, c).

Conclusion

This chapter began with the discussion of the dimension of R x (G, r). It is shown that

R x (G, r) is full-dimensional if G is connected.
We then presented the results concerning the facets of the r-Tree Polytope. Additionally, two sets of new facet-defining inequali-ties, namely the matching-partition inequalities and the acyclicity-connectivity inequalities, are introduced with their facet-defining conditions. We reviewed the possibility of decomposing the polytope with respect to articulation nodes. Unfortunately, a few examples have been found where several facet-defining inequalities have support graphs that are not subgraphs of blocks of G. This implies that the decomposition through 1-sum cannot be applied for either R x (G, r) or B x (G, r, c) as straightforwardly as in the case of B xy (G, r, c).

As mentioned in Chapter 2, any valid inequality for R x (G, r) is also valid for B x (G, r, c). It is also likely that these two polytopes bear similarities in some aspects such as polyhedral structure and decomposition. Thus, some of the results in this chapter can be transformed into those for B x (G, r, c). In the next chapter, based on the results presented in this chapter, we bring the capacity constraints into play to obtain results with regard to B x (G, r, c). We show that B x (G, r, c) can be characterized on trees and cycles with the help of some newly discovered inequalities. The characterization of R x (G, r) can thus be obtained as an immediate result.

Chapter 6

Polyhedral study on Bounded r-Tree Polytope

Recall that given a graph G = (V, E), a root node r ∈ V , a capacity vector c ∈ Z V + , an edge-weight vector w ∈ R E , and a node-price vector p ∈ R V , the MBrT problem consists of finding an r-tree T of G with maximum value f (T ) = w(E(T )) + p(V (T )) and such that the degree of any node v ∈ V (T ) is bounded by c v .

As opposed to Chapter 4, this chapter provides results regarding B x (G, r, c), which only uses edge-indexed variables.

We start with the following formulation introduced in Chapter 2.

x ex(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (6.1)

x(E[S]) ≤ |S| -1 ∀S ⊆ V, |S| ≥ 3, (6.2) x(δ(v)) ≤ c v ∀v ∈ V, (6.3)
x e ≤ 1 ∀e ∈ E, (6.4)

x e ≥ 0 ∀e ∈ E. (6.5)

First, the dimension of B x (G, r, c) is examined. Possible approaches of decomposition for the polyhedral study are discussed with proofs. After that, some general criteria are presented for any facet-defining inequality to follow. Then, we study the necessary and sufficient conditions for each set of inequalities in the formulation to be facet-defining Furthermore, we present several families of new valid inequalities which are facet-defining for B x (G, r, c). Their facet-defining conditions are also discussed. We also show that all the new inequalities proposed in this chapter can be obtained by projection from valid inequalities for B xy (G, r, c). Moreover, the bounds on the Chvátal-Gomory rank of several sets of inequalities are investigated with respect to the original formulation. Finally, we show that incorporating certain sets of the new inequalities allows us to form a TDI system that completely describe B x (G, r, c) on trees and cycles.

Dimension

Recall that G r = (V r , E r ) and G r = G[V \ O],
and according to Assumption 2.2.9 G r is connected. Hence, we have

E = E r ∪ δ(V r ).
The dimension of B x (G, r, c) is given in the following theorem.

Theorem 6.1.1. B x (G, r, c) is full-dimensional, that is, dim B x (G, r, c) = |E|.
Proof. Given any e ∈ E r , let P re be the re-path in G r containing as few edges as possible.

According to Lemma 5.1.1, the set {x Pre : e ∈ E r } is affinely independent. Since nodes in O are not involved, each of these vectors also satisfies the capacity requirement. Combining it with the trivial fact of dim B x (G, r, c) ≤ |E| completes the proof.

Decomposition

As it has been discussed in the Chapter 5, the decomposition with respect to the articulation nodes is unlikely to work for both R x (G, r) and B x (G, r, c). Nonetheless, we present in this section a few other options of decomposition one can opt for B x (G, r, c). Notice that most of the results developed for B x (G, r, c) can be used for R x (G, r), as the r-tree problem is a relaxation of the bounded r-tree problem.

Decomposition at the root node

As showed in the last chapter, the general decomposition of B x (G, r, c) and R x (G, r) with respect to articulation nodes is proved to be infeasible due to the counter examples, or at least not as straightforward as thereof B xy (G, r, c). Nonetheless, we prove the viability of a special case of this decomposition where the articulation node is the root.

Consider a graph G = (V, E) where r is an articulation node, such that

G 1 = (V 1 , E 1 ), G 2 = (V 2 , E 2 )
are two subgraphs of G separated by r, and G is a 1-sum of G 1 and G 2 . Let x be a vector in R E , and x i be the restriction of x to E i , i = 1, 2. Let c i be the restriction of the capacity vector c to V i , i = 1, 2. It can be proved that the decomposition through 1-sum is feasible in this case.

Denote

P R (G, r, c) = {x ∈ R E : x 1 ∈ B x (G 1 , r 1 , c 1 ), x 2 ∈ B x (G 2 , r 2 , c 2 ), x(δ(r) ≤ c r }. Theorem 6.2.1. P R (G, r, c) = B x (G, r, c).
Proof. First, an edge set F ⊆ E induces a bounded r-tree of G if and only if F ∩ E i induces a bounded r-tree of G i for i ∈ {1, 2} and |F ∩ δ(r)| ≤ c r . Hence we have

P R (G, r, c) ∩ Z E = B x (G, r, c) ∩ Z E .
Assume that there exists a fractional extreme point x in P R (G, r, c). Let S(x) be the linear system composed of the equations associated with the constraints of P R (G , r, c) binding at x. Let S i (x) denote the equations in S(x) that are associated with B x (G i , r i , c i ) for i ∈ {1, 2}.

If x(δ(r)c r = 0 is not in S(x), then all the equations in S(x) are in either S 1 (x) or S 2 (x). From the integrality of B x (G 1 , r 1 , c 1 ) and B x (G 2 , r 2 , c 2 ), there must exist two integral points

x 1 ∈ B x (G 1 , r 1 , c 1 ) and x 2 ∈ B x (G 2 , r 2 , c 2 ) such that x i satisfies S i (x) for i ∈ {1, 2}. Thus, x 1 x 2
is an integral point that also satisfies S(x), which forms a contradiction. Hence, x(δ(r))c r = 0 is in S(x).

As S(x) admits a unique solution, the rank of its coefficient matrix is |E|. Moreover, as x(δ(r))c r = 0 is the only equation in S(x) that is not in S 1 (x) or S 2 (x). One has that there exists j ∈ {1, 2}, such that S j (x) contains |E j | linearly independent equations. Without loss of generality, assume j = 1. According to the integrality of B x (G 1 , r 1 , c 1 ), x 1 is integral, and thus x 1 (δ(r)) is integral. Furthermore, since the system composed of x(δ G 2 (r)) = c rx 1 (δ(r)) and equations in S 2 (x) admits a feasible solution x 2 , there must also exist an integral solution x 2 which satisfies the same equations. Combining x 1 and x 2 gives us an integral point that also satisfies S(x), which forms a contradiction with x being an extreme point.

Thus, P R (G, r, c) is integral and therefore P R (G, r, c) = B x (G, r, c).
As an immediate result, the following corollary is obtained immediately by getting rid of the capacity factor.

Corollary 6.2.2. R x (G, r) = {x : x 1 ∈ R x (G 1 , r 1 ), and x 2 ∈ R x (G 2 , r 2 )}.

Decomposition with respect to bridges

We consider now a graph containing a bridge. We show that we can decompose it to two graphs with both of them containing the bridge. Given a graph G = (V, E) which contains a bridge e b = uv, let E 1 and E 2 be the two edge sets separated by e b . Let

E i = E i ∪ {e b }, G i = (V i , E i ) = G[E i ] for i ∈ {1, 2}, as it is shown in Figure 6.1.
Without loss of generality, let r 1 = r be the root in G 1 , and r 2 = u be the root in G 2 . Note that if v = r, one can switch V 1 and V 2 as well as u and v in order to obtain the same setup. Let x be a vector in R E , and x i be the restriction of x to G i , i = 1, 2. Let c i be the restriction of the capacity vector c to V i for i = 1, 2.

We show that if B x (G, r, c) can be characterized on G 1 and G 2 , it can also be characterized on G. Notice that if either E 1 \ {e b } = ∅ or E 2 \ {e b } = ∅, the decomposition is then meaningless. Hence we assume that E i = ∅ for i = 1, 2. The following theorem demonstrates the decomposition. Theorem 6.2.3.

B x (G, r, c) = {x : x 1 ∈ B x (G 1 , r 1 , c 1 ), and x 2 ∈ B x (G 2 , r 2 , c 2 )}.
Proof. Because of the fact that x 1 and x 2 have one common component x e , one has for both sides x 1 e b = x 2 e b . First, if a vector x ∈ R E induces a bounded r-tree in G, then x i also induces a bounded r-tree in G i , i = 1, 2. Therefore,

B x (G, r, c) ⊆ {x : x 1 ∈ B x (G 1 , r 1 , c 1 ), and x 2 ∈ B x (G 2 , r 2 , c 2 )}.
On the other hand, if x i induces a bounded r-tree in G i , i = 1, 2, and x 1 e b = x 2 e b also holds, then x induces an r-tree in G. Additionally one has x(δ

G (u)) = x 1 (δ G 1 (u)) ≤ c u and x(δ G (v)) = x 2 (δ G 2 (v)) ≤ c v .
Hence x also satisfies the capacity constraints, and therefore x induces a bounded r-tree in G.

Assume now that x is a fractional extreme point of {x : x 1 ∈ B x (G 1 , r 1 , c 1 ), and x 2 ∈ B x (G 2 , r 2 , c 2 )}. Let S(x) be the linear system composed of the equations associated with the constraints of B x (G 1 , r 1 , c 1 ) and B x (G 2 , r 2 , c 2 ) binding at x.

If x e b = 0 (x e b = 0, respectively), from the integrality of B x (G 1 , r 1 , c 1 ) and B x (G 2 , r 2 , c 2 ), there must exist two integral points

x 1 ∈ B x (G 1 , r 1 , c 1 ) and x 2 ∈ B x (G 2 , r 2 , c 2 ) such that x 1 e b = x 2 e b = 0 ( x 1 e b =
x 2 e b = 1, respectively). Combining x 1 and x 2 gives us another point that also satisfies S(x), which forms a contradiction. Therefore, {x : x 1 ∈ B x (G 1 , r 1 , c 1 ), and x 2 ∈ B x (G 2 , r 2 , c 2 )} is integral and thus the theorem holds.

The following corollary concerning R x (G, r) immediately follows after this theorem. Corollary 6.2.4. R x (G, r) = {x : x 1 ∈ R x (G 1 , r 1 ), and x 2 ∈ R x (G 2 , r 2 )}.

In the next section, the facet-defining conditions for the inequalities in the proposed formulation are introduced.

Facets

In this section, we show that each set of inequalities included in the formation is indeed facet-defining. For all the inequalities (6.1)-(6.5), necessary and sufficient conditions for them to be facet-defining for B x (G, r, c) have been determined.

General results

First of all, some general criteria have also been characterized for valid inequalities to be facet-defining for B x (G, r, c). The following lemma describes the property of the coefficients of the edges in δ(O) in any facet-defining inequalities. Lemma 6.3.1. Let a T x ≤ b be a valid inequality for B x (G, r, c) that is different from x e ≥ 0 for some e ∈ E. a T x ≤ b is facet-defining for B x (G, r, c) only if it satisfies a e ≥ 0 for any edge e ∈ δ(O).

Proof. Assume that there exists an inequality a T x ≤ b is facet-defining for B x (G, r, c) such that a eo < 0 for some edge e o ∈ δ(O).

According to the assumption, there must exist an edge set F ⊆ E such that e o ∈ F , G F is bounded r-tree and it satisfies a T x F = b. Otherwise if such F does not exist, the face induced by the inequality is included in the face defined by x eo ≥ 0, which contradicts with the assumption of the lemma. Since e o is incident with a node in O, it must be a leaf edge in G F . Hence G F \{eo} is also a bounded r-tree of G. It can be deduced that a T x F \{eo} = a T x Fa eo = ba eo > b. This implies inequality a T x ≤ b is violated by the feasible solution x F \{eo} , which forms a contradiction with a T x ≤ b being valid.

Besides, the case where the root has capacity 1 is discussed in the lemma below. Lemma 6.3.2. Let c r = 1, and a T x ≤ b be a valid inequality for r,c) : x(δ(r)) = c r } and b = 0. As c r = 1, one has that any bounded r-tree of G whose edge set is nonempty satisfies x(δ(r)) = c r = 1, that is,

B x (G, r, c) that is different from x(δ(r)) ≤ c r . It is facet-defining for B x (G, r, c) only if b = 0. Proof. Assume that F = {x ∈ B x (G, r, c) : a T x = b} is a facet of B x (G, r, c) such that F = F r = {x ∈ B x (G,
B x (G, r, c) ∩ Z E \ {0} ⊆ F r . Since b = 0, 0 / ∈ F. Thus, F ⊆ B x (G, r, c) ∩ Z E \ {0} ⊆ F r .
Combining it with F = F r gives us

F F r ,
which forms a contradiction with the assumption of F being a facet of B x (G, r, c).

Besides, for those inequalities having only non-negative coefficients, the following proposition can be developed. 

there does not exist an articulation node

v a ∈ V \ {r} in G[E \ (δ(O) \ E + )] between
r and E + with c va = 2.

Proof. Suppose there exists a bridge

e b ∈ E in G[E \ (δ(O) \ E + )] between r and V [E + ].
Consider any F ⊆ E with its incidence vector x F on the face defined by a T x ≤ b. One has e + ∈ F for some e + ∈ E + . Since G F is a bounded r-tree, it must contain a path between r and e + , which has to include e b . Hence e b ∈ F , which implies the face induced by a T x ≤ b is a proper subset of the proper face induced by x e b ≤ 1.

Now suppose there exists an articulation node

v a ∈ V \ {r} in G[E \ (δ(O) \ E + )] between
r and E + with c va = 2. For any F ⊆ E with its incidence vector x F on the face defined by a T x ≤ b, it can be seen that x(δ(v a )) = c va also holds. Thus the face induced by a T x ≤ b is a proper subset of the proper face induced by x(δ(v a )) ≤ c va .

This proposition addresses the circumstance where the coefficients and the right-hand side of a valid inequality are positive. If the inequality is facet-defining, then its support graph does not contain certain substructures, specifically the bridges or articulation nodes with capacity 2.

Box inequalities

The condition for (6.5) to be facet-defining is relatively straightforward as stated in the following proposition. Since the upper bound inequalities (6.4) have nonzero right-hand side and positive coefficients for the left-hand side, both Lemma 6.3.2 and Lemma 6.3.3 can be used here. First, based on Lemma 6.3.2 the necessary and sufficient facet-defining conditions for (6.4) associated with edges in δ(r) are given below. Proposition 6.3.5. Let e = rv ∈ δ(r). Inequality x e ≤ 1 defines a facet of B x (G, r, c) if and only if the following two conditions are satisfied

1. c r ≥ 2 unless |δ(r)| = c r = 1; 2. v / ∈ O unless |δ(v)| = c v = 1. Proof. Let F = {x ∈ B x (G, r, c) : x e = 1}.
For the necessity, if |δ(r)| > c r = 1, F is a proper subset of the proper face induced by

x f ≥ 0 for any edge in δ(r) \ {e}. If v ∈ O and |δ(v)| > 1,
F is then a proper subset of the proper face induced by x f ≥ 0 for any edge in δ(v) \ {e}.

For the sufficiency, assume that all the conditions in the proposition are satisfied, and

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is a valid inequality for B x (G, r, c). Firstly, from 0 / ∈ F we derive that F B x (G, r, c).
Consider first the case where c r = 1 and δ(r) = {e}. Any non-zero integral vector in

B x (G, r, c) is in F. Hence we have dim F = |E| -1, and thus F is a facet of B x (G, r, c).
Consider now the case with c r ≥ 2. As the graph reduced to e induces a bounded r-tree that satisfies x e = 1, we have a e = b. Moreover, for any e ∈ δ(v) \ {e}, as {e, e } and {e} both induce bounded r-trees whose incidence vectors are in F, we have a e = 0.

Moreover, for any e ∈ E\δ(v), let P re be a bounded path between r and e . If v ∈ V [P re ], one can replace the subpath between r and v of P re by e. We have that P re ∪ {e} and P re ∪ {e} \ {e } induce two bounded r-trees, and their incidence vectors are in F. Thus one can deduce that a e = 0 holds for any e ∈ E \ δ(v).

Therefore, a T x ≤ b can be rewritten as bx e ≤ b, and thus F is a facet of B x (G, r, c). Additionally, Lemma 6.3.3 ensures the necessity of the last two conditions.

Now based on

For the sufficiency, assume that all the conditions in the proposition are satisfied, and

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is a valid inequality for B x (G, r, c).
First of all, since we clearly have 0 / ∈ F, we derive that F B x (G, r, c).

Let P 1 and P 2 be two edge-disjoint bounded paths between r and e, and let

V c = {w ∈ V [P 1 ] ∩ V [P 2 ] :
w is an inner node of both P 1 and P 2 }.

According to the conditions, there exist such P 1 and P 2 with c w ≥ 3 for all w ∈ V c . We have that any r-tree of G[P 1 ∪ P 2 ] that does not have any node with degree 4 is also a bounded r-tree of G. According to the proof of Proposition 5.2.4, as the graph G[P 1 ∪P 2 ] satisfies the conditions 3 and 5, there exist |P 1 ∪P 2 | affinely independent vectors in R x (G[P 1 ∪ P 2 ], r) that satisfy x e = 1 such that any node in their induced graphs has degree at most 3. Thus, there exist |P 1 ∪ P 2 | affinely independent vectors in B x (G, r, c) that satisfy x e = 1 and x e = 0 for any e ∈ E \ (P 1 ∪ P 2 ). One can then deduce that a e = b, a e = 0 ∀e ∈ (P 1 ∪ P 2 ) \ {e}.

First we consider an edge

e = u v ∈ E[V [P i ]] \ P i , i ∈ {1, 2}.
Without loss of generality, let the two ends of P i be r and v. If u v / ∈ δ(v), by substituting the subpath between u and v in P 1 for u v , one obtains another bounded path between r and e. As a e = 0 holds for any e ∈ P 1 \ {e}, we derive a u v = 0. If v = v, let the subpath between u and v of P i be P u v i . We clearly have u = u and

|P u v i | ≥ 2. Hence P i ∪ {u v, vu} \ P u v i is a bounded path, which leads to a u v = a(P u v i ) = 0. Consider an edge u v ∈ E with u ∈ V [P 1 ] \ V [P 2 ] and v ∈ V [P 2 ] \ V [P 1 ].
Let the subpath between r and u of P 1 be P ru 1 , and the subpath between r and v of P 2 be P rv 2 . Then P ru 1 ∪ {u v } ∪ (P 2 \ P rv 2 ) is a bounded path that contains e. We then deduce that a u v = (P rv 2 )a(P ru 1 ) = 0. Consider now an edge e ∈ E \E[V [P 1 ∪P 2 ]]. If there exists a bounded path P re such that e ∈ P re , we can deduce that a e = 0. Now suppose that there does not exist a bounded path P re such that e ∈ P re .

Let P re be a bounded path between r and e . Without loss of generality let s be the node in

V [P re ] ∩ V [P 1 ] such that V [P se re ] ∩ V [P 1 ] = {s} and V [P se re ] ∩ V [P 2 ] \ {s} = ∅. Let v c = s if s ∈ V c ∪ {r}, otherwise let v c be the node in V c ∪ {r} such that V [P vcs 1 ] ∩ (V c ∪ {r}) = {v c }. Then G[P 2 ∪ P vcs 1 ∪ P se re ]
is a bounded r-tree that contains e, and so is G[P 2 ∪ P vcs

1 ∪ P se re \ {e }].
Hence a e = 0. To summarize, we have

a e = 0 ∀e ∈ E \ (P 1 ∪ P 2 ).
Thus, a T x ≤ b can be rewritten as bx e ≤ b. Moreover, as 0 ∈ B x (G, r, c) \F, we conclude that F is a facet of B x (G, r, c).

Capacity inequalities

The capacity inequalities fall into the same category as the upper bound inequalities (6.4) in terms of the left-hand side coefficients and right-hand side sign. Given

v ∈ V with |δ(v)| = 1, if c v ≥ 2 the associated capacity inequality x(δ(v)) ≤ c v is redundant, where as if c v = 1, x(δ(v)) ≤ c v
and x e ≤ 1 are identical for some e ∈ δ(v), which has been discussed in the previous section as the upper bound inequalities. Thus we consider only the case with |δ(v)| ≥ 2.

We split the capacity inequalities into three cases, for r, nodes in O and nodes in V \ (O ∪ {r}).

Proposition 6.3.7. Given |δ(r)| ≥ 2, x(δ(r)) ≤ c r defines a facet of B x (G, r, c) if and only if |δ(r)| > c r . Proof. Let F = {x ∈ B x (G, r, c) : x(δ(r)) = c r }. Clearly, we need |δ(r)| ≥ c r to ensure that F is nonempty. If c r = |δ(r)| ≥ 2, then F {x ∈ B x (G, r, c) : x e = 1} B x (G, r, c)
for any e ∈ δ(r). We now consider the capacity inequalities associated with nodes in O.

Proposition 6.3.8. Let v ∈ O with |δ(v)| ≥ 2. x(δ(v)) ≤ 1 defines a facet of B x (G, r, c) if and only if 1. c r ≥ 2; 2. |δ(v)| ≥ 2;

there does not exist a bridge between r and v in G[E \ (δ(O \ {v}))];

4. there does not exist an articulation node v a with c va = 2 that separates r and v in

G[E \ (δ(O \ {v}))]. Proof. Let F = {x ∈ B x (G, r, c) : x(δ(v)) = 1}. If c r = 1, as |δ(v)| ≥ 2, thus δ(v) = δ(r),
and F is a proper subset of the proper face induced by x(δ(r))

≤ c r . If c v = |δ(v)| ≥ 2, then F {x ∈ B x (G, r, c) : x e = 1} B x (G, r, c)
for any e ∈ δ(v). Lemma 6.3.3 ensures the necessity of the last two conditions.

For the sufficiency, assume that

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c).
From the conditions we know that there exists two edge disjoint bounded paths P 1 and P 2 between r and v, and for any u ∈ V c \ {r}, one has c u ≥ 3, where V c is defined as

V c = V [P 1 ] ∩ V [P 2 ] \ {v}.
Note that Both P 1 and P 2 induce bounded r-trees and their incidence vectors belong to F.

Consider an edge e = uw ∈ E[V c

]. There must exist a subpath P uw of P i between u and w such that |P uw | ≥ 2, i ∈ {1, 2}. As both P i and P i ∪ {uw} \ P uw induce bounded r-trees whose incidence vectors belong to F, we have a uw = a(P uw ) = 0. Thus,

a e = 0 ∀e ∈ E[V c ].
Consider an edge e = uw ∈ P

1 \ (δ(v) ∪ E[V c ]).
There exists a subpath P z of P 1 between some node z ∈ V c and uw such that V [P z ] ∩ V c \ {z} = ∅. Then P z ∩ P 2 induces a bounded r-tree whose incidence vector is in F. We deduce that a e = 0 for any e ∈ P z . As P 1 and P 2 are interchangeable in this argument, we then have

a e = 0 ∀e ∈ P 1 ∪ P 2 \ (δ(v) ∪ E[V c ]). Now consider an edge e ∈ E \ (δ(v) ∪ E[V c ]
). Let P re be a bounded path between r and e, and let P se be the subpath of P re , such that

V [P se ] ∩ V [P 1 ∪ P 2 ] = {s}. Without loss of generality, suppose that s ∈ V [P 1 ]. If s / ∈ V c
, let P ws be the subpath of P 1 such that w ∈ V c and V [P ws ] ∩ V c = {w}, otherwise let w = s and P ws = ∅. We have that P 1 ∪ P ws ∪ P se and P 1 ∪ P ws ∪ P se \{e} induce two bounded r-trees whose incidence vectors belong to F. Therefore, we deduce

a e = 0 ∀e ∈ E \ (δ(v) ∪ E[V c ]).
For each e ∈ δ(v), there exists a bounded path P re between r and e. We have a e + a(P re \ {e}) = b, which combines with a(P re \ {e}) = 0 gives us

a e = b ∀e ∈ δ(v).
Therefore a T x ≤ b can be rewritten as bx(δ(v)) ≤ b, and since 0 ∈ B x (G, r, c) \ F, we thus conclude that F is a facet of B x (G, r, c).

We conclude the discussion on the capacity inequalities with the ones associated with nodes in V \ (O ∪ {r}). Proposition 6.3.9.

Let v ∈ V \ (O ∪ {r}) with |δ(v)| ≥ 2. x(δ(v)) ≤ c v defines a facet of B x (G, r, c) if and only if 1. c r ≥ 2; 2. |δ(v)| > c v ;

there does not exist a bridge between r and v in G[E \ δ(O)];

4. there does not exist an articulation node v a with c va = 2 that separates r and v in

G[E \ δ(O)]. Proof. Let F = {x ∈ B x (G, r, c) : x(δ(v)) = c v }. Clearly we need c v ≤ |δ(v)| to make F nonempty.
For the necessity, if c r = 1, according to Lemma 6.3.2, it is not facet-defining.

If

c v = |δ(v)| ≥ 2
then F is a proper subset of the proper face induced by x e = 1 for any e ∈ δ(v). Lemma 6.3.3 ensures the necessity of the rest conditions.

For the sufficiency, assume that r,c).

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G,
Let P 1 and P 2 be two edge-disjoint bounded paths between r and v, and without loss of generality assume that P 1 contains as few edges as possible and

|V [P 2 ] ∩ N (v)| ≤ 2. Let V c be defined as V c = {u ∈ V [P 1 ] ∩ V [P 2 ] : u = r
or u is an inner node of both P 1 and P 2 }.

Let F i be a subset of δ(v)\P i such that V [F i ]∩V [P i ] = {v} and |F i | = c v -1 for i ∈ {1, 2}.
We have that P i ∪ F i induces a bounded r-tree of G and its incidence vector is in F for i ∈ {1, 2}.

Consider any edge e = uw ∈ P i \ (δ(v) ∪ E[V c ]), i ∈ {1, 2}, there exists a subpath P u e j of P j between some node u ∈ V c and e such that V [P u e j ] ∩ V c = {u } with i = j ∈ {1, 2}. Then P i ∪ F i ∪ P u e j and P i ∪ F i ∪ P u e j \ {e} both induce bounded r-trees of G and their incidence vectors belong to F. Hence, a e = 0.

Consider any edge e

= uw ∈ E[V c ].
Note that e ∈ P 1 . Let P uw 2 be the subpath of P 2 between u and w. P 1 ∪ F 1 and P 1 ∪ F 1 ∪ P uw 2 \ {e} induce two bounded r-trees of G and their incidence vectors belong to F. Hence, a e = a(P uw 2 ) = 0. To summarize, we have

a e = 0 ∀e ∈ (P 1 ∪ P 2 ) \ δ(v).
For any e 1 , e 2 ∈ δ(v)\P 1 there exists

F 1 ⊆ δ(v)\P 1 such that |F 1 | = c v -2
and e 1 , e 2 / ∈ F 1 . We have that P 1 ∪ F 1 ∪ {e 1 } and P 1 ∪ F 1 ∪ {e 2 } induce two bounded r-trees of G and their incidence vectors belong to F, which leads to a e 1 = a e 2 . Then as P 1 ∪ F 1 and P 2 ∪ F 2 are two bounded r-trees of G and their incidence vectors are in F, we can deduce that a(P 1 ∩ δ(v)) = a e for some e ∈ δ(v) \ P 1 . Thus, we have

a e = λ ∀e ∈ δ(v),
where λ ∈ R. Consequently, we deduce that b = c v λ.

Consider any edge e = uw ∈ E \ (P 1 ∪ P 2 ∪ δ(v)) such that there exists a bounded path P ru between r and u that does not pass through w and v ∈ V [P ru ]. Without loss of generality assume that

|V [P ru ] ∩ N (v)| = 2 and |P ru ∩ δ(v)| = 2. There exists an edge set F ⊆ δ(v) \ (P ru ∪ δ(w)) with |F | = c v -2.
Then P ru ∪ F and P ru ∪ F ∪ {uw} are two bounded r-trees of G and their incidence vectors are in F, which leads to a uw = 0.

Consider now any edge e = uw ∈ E \ (P 1 ∪ P 2 ∪ δ(v)) such that there exists a bounded path P ru between r and u that does not pass through w and v. Without loss of generality assume that P ru contains as few edges as possible. Let P su be the subpath of P ru , such that

V [P su ] ∩ V [P 1 ∪ P 2 ] = {s} with s ∈ V [P i ], i ∈ {1, 2}. If s / ∈ V c
, let P ws be the subpath of P 1 such that w ∈ V c and V [P ws ] ∩ V c = {w}, otherwise let w = s and P ws = ∅. We have that P i ∪ F i ∪ P ws ∪ P su and P i ∪ F i ∪ P ws ∪ P su ∪ {e} induce two bounded r-trees whose incidence vectors belong to F. Thus, one obtains a e = 0, and we therefore have

a e = 0 ∀e ∈ E \ (P 1 ∪ P 2 ∪ δ(v)).
To summarize, a T x ≤ b can be rewritten as λx(δ(v)) ≤ c v λ, which combining with 0 / ∈ F gives us F = {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c). Hence, F is a facet of B x (G, r, c).

Connectivity inequalities

According to Lemma 6.3.1, any connectivity inequality (6.1) associated with a set S ⊆ V \ {r} that satisfies δ(S) ∩ δ(O) = ∅ is not facet-defining. Proof. Assume there exists f ∈ δ(S) ∩ δ(O). Clearly there does not exist any bounded re-path that contains f . Hence the face induced by x ex(δ(S)) ≤ 0 is a proper subset of the face induced by x f ≥ 0. As an extension of this proposition, the connectivity inequalities can be rewritten as the following constraint.

x e -x(δ(S) \ δ(O)) ≤ 0, ∀e ∈ E[S], S V \ {r}.
(6.6) Furthermore, (6.6) covers certain facets which (6.1) does not. For instance, in Figure 6.2, an inequality of (6.6) that defines a facet cannot be written in the form of (6.1), where c vo = 1, and c v 1 , c r ≥ 2. The inequality x ex(δ(S) \ δ(O)) ≤ 0 defines a facet, as the bounded r-trees G ∅ , G {e 2 } , G {e 1 ,e 3 } correspond to 3 affinely independent vectors on the induced face. However there does not exist a node set S ⊆ V \ {r} such that δ(S ) = δ(S) \ δ(O) and e ∈ E[S ]. This means this facet is exclusively defined by an inequality in the form of (6.6). Thus from now on, we discuss the facets induced by (6.6) instead of (6.1).

Besides the factor of unit-capacity nodes, the connectivity of the subgraphs G[S \ O] and G[S \ O]

should also be guaranteed. 

Proposition 6.3.11. Given S ⊆ V \ {r} and e ∈ E[S], x e -x(δ(S) \ δ(O)) ≤ 0 defines a facet of B x (G, r, c) only if G[S \ O] is connected and G[S \ O] is connected. Proof. Suppose that G[S \ O] (G[S \ O], respectively) is not connected. Let v be a node in S \ O (S \ O, respectively) which does not belong to the same connected component of G[S \ O] (G[S \ O], respectively) as e (r, respectively). For any edge f ∈ δ(v) \ δ(O), we have {x ∈ B x (G, r, c) : x e -x(δ(S) \ δ(O)) = 0} {x ∈ B x (G, r, c) : x f = 0} B x (G, r, c). If e ∈ δ(v o ) with v o ∈ O,
(v o ) ∩ E[S] \ {e} = ∅. Consider any edge f ∈ δ(v o ) ∩ E[S] \ {e}.
Clearly any bounded r-tree containing f contains at least one edge in δ(S) \ δ(O) while it does not contain e, which leads to {x ∈ B x (G, r, c) :

x e - x(δ(S) \ δ(O)) = 0} {x ∈ B x (G, r, c) : x f = 0} B x (G,

r, c).

There are also conditions similar to the ones described in Lemma 6.3.3, except the fact that Lemma 6.3.3 ensures the graph not to have certain substructures in G between r and some subgraph, whereas here for the connectivity inequalities, the following two conditions prevent the graph from having the same substructures in G[S] between r and the edge e. Proof. Suppose that there exists a node v a ∈ S with c va = 2 such that removing δ(v a )\{e} and δ(O) \ {e} from G disconnects r and e. Then {x ∈ B x (G, r, c) :

x e -x(δ(S) \ δ(O)) = 0} {x ∈ B x (G, r, c) : x(δ(v a )) -c va x(δ(S) \ δ(O)) = 0}.
Besides what has been stated previously, there is one very specific case where the connectivity inequality is not facet-defining. Proof. Assume the conditions in Proposition 6.3.10-6.3.15 are satisfied and

F = {x ∈ B x (G, r, c) : x e -x(δ(S) \ δ(O)) = 0} ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). As G[S \O] is connected, for any edge e ∈ E[S]∪(δ(O)∩ δ(S \ O)
) there exists a bounded path P re between r and e with P re ∩ (δ(S) \ δ(O)) = ∅. One can deduce that

a e = 0 ∀e ∈ E[S] ∪ (δ(O) ∩ δ(S \ O)).
As 0 ∈ F and x Pre ∈ F, a(P re ) = b = 0. Let V c ⊆ S be the set of nodes such that they are inner nodes of all bounded paths between r and e. We have from the conditions that c v ≥ 3 for any v ∈ V c .

Consider any edge

f = uv ∈ E[S] ∪ (δ(O) ∩ δ(S)) \ {e} such that u / ∈ V c .
There exist a bounded path P re between r and e and a bounded path P f between some node in V c and f , such that |P re ∩ δ(S)| = 1 and it does not pass through u, and P re ∪ P f induces an acyclic graph. It can be deduced from the two bounded r-trees induced by P re ∪ P f and

P re ∪ P f \ {f } that a f = 0. Consider now an edge f = uv ∈ E[S] \ {e} such that u, v ∈ V c .
According to the conditions, f is not a bridge that separates r and e. Then there must exist a bounded path P re between r and e, f / ∈ P re such that |P re ∩ δ(S)| = 1. Let the subpath of P re between u and v be P uv . We have that P re and P re ∪ {f } \ P uv both induce bounded r-trees whose incidence vectors are in F. Thus a f = a(P uv ) = 0.

To summarize, we have

a f = 0 ∀f ∈ E[S] \ {e}.
Similarly for f ∈ δ(O) ∩ δ(S \ O), there exist a bounded path P re between r and e and a bounded path P f between some node in V c and f , such that |P re ∩ δ(S)| = 1 and P re ∪ P f induces an acyclic graph. The incidence vectors of the two bounded r-trees induced by P re ∪ P f and P re ∪ P f \ {f } belong to F, which gives us 

a f = 0 ∀f ∈ δ(O) ∩ δ(S \ O).
a f + a e = 0 ∀f ∈ δ(S) \ δ(O). Therefore F = {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), which indicates F is a facet of B x (G, r, c).
The facial study on the connectivity inequalities thereby concludes. The foregoing discussion suggests that there are several substructures in the support graph of an inequality to be avoided in order to make the inequality facet-defining, such as the bridges and capacity 2 articulation nodes, and there is more to explore for other valid inequalities.

Subtour elimination inequalities

With respect to the subtour elimination inequalities, some necessary conditions are presented as follows.

Proposition 6.3.17. Let S be a subset of

V with |S| ≥ 3. Inequality x(E[S]) ≤ |S| -1 defines a facet of B x (G, r, c) only if 1. c r ≥ 2; 2. r ∈ S; 3. S ∩ O = ∅; 4. G[S] is 2-connected;

there does not exist such node set W ⊆ S, such that removing W disconnects G[S]

into k connected components, and 

|W | + k -1 ≥ c(W ), k ≥ 2.
= {v 1 , v 2 }, c v 1 = c v 2 = 2 and k = 3.
It can be noticed that on the face induced by x(E[S]) ≤ |S| -1, one always has that x(δ(v 1 )) = c v 1 and x(δ(v 2 )) = c v 2 for any vector that induces a bounded r-tree. The substructure to be avoided in this example is related to nodes with arbitrary capacities, rather than only the nodes with capacity two, that create gaps among other nodes in the graph. Figure 6.5 shows, a partition of 

S, consisting of W, U 1 , • • • , U k , where δ(U i , U j ) = ∅, for any distinct i, j ∈ {1, • • • , k}. If |W | + k -1 ≥ v∈W c v ,
U i , i = 1, • • • , k.
It can be noted that this substructure is similar to the case with articulation node of capacity 2 mentioned earlier for previous inequalities. In fact, if k = 2 and W = {v a }, c va = 2, then the substructure degenerates to a capacity 2 articulation node.

In the next section we introduce several new sets of valid inequalities for B x (G, r, c) and study the necessary and sufficient conditions to for them be facet-defining.

New valid inequalities

Besides the inequalities mentioned in the previous section, several other families of inequalities have been found to be facet-defining for B x (G, r, c) either during our theoretical work or from computational simulations.

Matching-partition inequalities

As mentioned in Chapter 5, the matching-partition inequalities can be extended to the case of B x (G, r, c).

Recall that the pair (M,π ) is called a matching-partition of G, where

M = {e 1 , • • • , e k } is a matching of G, and π = {S 0 , S 1 , • • • , S k }, k ≥ 1 is a partition of V with r ∈ S 0 such that e i ∈ E[S i ] for i ∈ {1, • • • , k}. Denote MP(G)
, the set composed of all the matching-partitions of G, and by E π the set of edges having their extremities in different classes of partition π. With any matching-partition (M,π ) ∈ MP(G), one can associate the following matching-partition inequality

x(M ) -x(E π \ δ(O)) ≤ 0. (6.7)
It is worth noting that the matching-partition inequality for B x (G, r, c) need to consider the capacity factor, specifically the nodes in O, and Lemma 6.3.1 applies here as well.

The valid proof is also similar to the case of the r-tree polytope.

Theorem 6.4.1. For any (M,π ) ∈ MP(G), inequality (6.7) is valid for B x (G, r, c).

Proof. Consider any x F ∈ B x (G, r, c) ∩ Z E , if x F (M ) -x F (E π \ δ(O)) ≥ 1, the support graph G F of x F is therefore not connected, as one needs at least |M ∩ F | edges among E π \ δ(O)
to connect r and edges in M ∩ F without violating the capacity constraint.

A matching-partition inequality associated with a matching-partition (M,π ) that has |M | = 1 is also a connectivity inequality from (6.6), for which the necessary and sufficient conditions for it to be facet-defining have already been decided. We hereafter focus on the matching-partition inequalities associated with a matching of cardinality at least 2.

Let G be the graph obtained from G by first removing O and then contracting each S i ∈ π into a node, and consequently each set 

δ(S i , S j ) \ δ(O), S i = S j ∈ π, becomes an edge in G . Proposition 6.4.2. Let (M,π ) ∈ MP(G) be a matching-partition with |M | ≥ 2. In- equality x(M ) -x(E π \ δ(O)) ≤ 0 defines a facet of B x (G, r, c) if and only if 1. G[S i \ O] is connected for i ∈ {0, 1, • • • , k}; 2. G is 2-connected; 3. E[S i ] ∩ δ(v o ) \ {e i } = ∅ if e i ∈ δ(v o ), v o ∈ O for i ∈ {1
Proof. Let F = {x ∈ B x (G, r, c) : x(M ) -x(E π \ δ(O)) = 0}. For the necessity, if G[S i \O] is not connected for some i ∈ {0, 1, • • • , k}, then F is a proper subset of the proper face induced by x e ≥ 0 for some e ∈ E. If there exist S i , S j ∈ π, i = j, such that removing δ(S i , S j ) ∪ δ(O) disconnects G, then let π = π ∪ {S i ∪ S j } \ {S i , S j }. Without loss of generality, assume i = 0. Let M = M \ {e i }. Then F is a proper subset of the proper face induced by x(M ) -x(E π \ δ(O)) ≤ 0.
If there exists S i ∈ π, such that it corresponds to an articulation node in G , without loss of generality, assume that G contains two connected components induced by

π 1 , π 2 ⊆ π such that S i ∈ π 1 , S i ∈ π 2 , π 1 ∪ π 2 = π and δ(S j , S q ) \ δ(O) = ∅ for any S j ∈ π 1 \ {S i } and S q ∈ π 2 \ {S i }. Let S 1 i = S j ∈π 2 S j , S 2 i = S j ∈π 1 S j .
Then one can obtain two matching-partitions of G by substituting S i for S 1 i and S 2 i respectively. Particularly, let (M 1 , π 1 ) and (M 2 , π 2 ) be two matching-partitions of G such that

π 1 = π 1 ∪ S 1 i \ {S i }, π 2 = π 2 ∪ S 2 i \ {S i },
and 

M 1 = M \ E[S 1 i ] if S 0 ⊆ S 1 i , M \ (E[S 1 i ] \ {e i }) otherwise, M 2 = M \ E[S 2 i ] if S 0 ⊆ S 2 i , M \ (E[S 2 i ] \ {e i }) otherwise. Then x(M ) -x(E π \ δ(O)) ≤ 0 is a linear combination of x(M 1 ) -x(E π 1 \ δ(O)) ≤ 0 and x(M 2 ) -x(E π 2 \ δ(O)) ≤ 0,

If there exists w ∈

S i ∩ N (u i ) ∩ N (v i ) with e i = u i v i such that removing {u i w, v i v} ∪ δ(O)
from G disconnects e i and r for some i ∈ {1, • • • , k}, then there exists a subset S of S i such that e ∈ E[S ] and δ(S ) \ δ(O) = {u i w, v i w} \ δ(O). F is then a proper subset of the proper face induced by

x e i -x(δ(S ) \ δ(O)) ≤ 0.

If there exists an edge e ∈ E[S

i ], i ∈ {1, • • • , k}, such that removing it disconnects e i from r, then let M = M ∪ {e} \ {e i } and F is a proper subset of the proper face induced by x(M ) -x(E π \ δ(O)) ≤ 0. If there exists a node v ∈ S i with c v = 2, i ∈ {1, • • • , k}, such that removing δ(v) ∪ δ(O) \ {e i } disconnects e i from r, there must exist a set S ⊆ S i such that v ∈ S, e i ∈ E[S] and δ(S) \ δ(O) ⊆ δ(v a ) \ (δ(O) ∪ {e i }). Then F is a proper subset of the proper face induced by x(δ(v)) -c v δ(S) \ δ(O) ≤ 0.
For the sufficiency, assume

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). One first has b = 0 because of 0 ∈ F. As G[S 0 \ O] is connected, for any edge e ∈ E[S 0 ] ∪ (δ(S 0 \ O) ∩ δ(O)
), any bounded re-path with all inner nodes in S 0 \ O is a feasible solution whose incidence vector is in F, which gives us

a e = 0 ∀e ∈ E[S 0 ] ∪ (δ(S 0 \ O) ∩ δ(O)).
Notice that for any i ∈ {1, • • • , k}, the necessary and sufficient conditions for the connectivity inequality associated with e i and S i are all satisfied. Moreover, from the conditions, for each edge e ∈ δ(S i ) \ δ(O), there exists a bounded r-tree whose incidence vector is in F such that it contains e. Thus, using a similar argument as for the edges in

E[S] ∪ (δ(O) ∩ δ(S)
) \ {e} and δ(S) \ δ(O) of Proposition 6.3.16, one can deduce that

a e = 0 ∀e ∈ E[S i ] ∪ (δ(O) ∩ δ(S i )) \ {e i }, a f + a e i = 0 ∀f ∈ δ(S i ) \ δ(O).
Furthermore, as G is 2-connected, we have that for any r,c).

S i , i ∈ {1, • • • , k}, there exists S j , i = j ∈ {1, • • • , k} such that δ(S i ) ∪ δ(S j ) \ δ(O) = ∅. Consequently, we have a f + a e i = 0 ∀f ∈ E π \ δ(O), e i ∈ M. Therefore, F = {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), which indicates F is a facet of B x (G,

Acyclicity-connectivity inequalities

Let W ⊆ S ⊆ V \ {r}, |W | ≥ 2.
The acyclicity-connectivity inequality is defined as follows.

x

(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0 (6.8) Theorem 6.4.3. For any W ⊆ S ⊆ V \ {r}, |W | ≥ 2, inequality (6.8) is valid for B x (G, r, c). Proof. Consider any x * ∈ B x (G, r, c) ∩ Z E , and assume x * (E[W ]) -(|W | -1)x * (δ(S) \ δ(O)) ≥ 1. If x * (δ(S) \ δ(O)) = 0, we have that x * e -x * (δ(S) \ δ(O)) > 0 for some edge e in E[W ] with x * e = 1. If x * (δ(S) \ δ(O)) ≥ 1, we then have x * (E[W ]) > |W | -1.
In both cases x * is not feasible, which is a contradiction.

Note that if |W | = 2, it becomes the connectivity inequalities (6.6). Thus we hereafter only consider the case with |W | ≥ 3. Some necessary conditions for (6.8) to be facetdefining is given below. Proof.

Proposition 6.4.4. Let W ⊆ S ⊆ V \ {r}, |W | ≥ 3. Inequality (6.8) defines a facet of B x (G, r, c) only if 1. G[S \ O], G[S \ O] are connected; 2. W ∩ O = ∅; 3. G[W ] is 2-connected;
Let F = {x ∈ B x (G, r, c) : x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) = 0}. If G[S \ O]
is not connected, one has that F is a proper subset of the proper face induced by x e ≥ 0 for some e ∈ δ(v), where v 

∈ S \ O is in the connected component of G[S \ O] that does not contain W . If G[S \ O] is not connected, one

Upload capacity inequalities

During the study of the polytope, some examples are found to have fractional extreme points such as the one demonstrated in Figure 6.6. This extreme point is decided by the x

(δ(v)) = c v ,
x vv 1x rv = 0,

x vv 2 -x rv = 0, x vv 3 -x rv = 0.
It can be cut by the inequality

x(δ(v)) -c v x(δ(S) \ δ(O)) ≤ 0. Let S ⊆ V \ {r} with v ∈ S \ O. The associated upload-capacity inequality is x(δ(v)) -c v x(δ(S) \ δ(O)) ≤ 0.
(6.9) Theorem 6.4.5. For any S ⊆ V \ {r}, v ∈ S \ O, inequality (6.9) is valid for B x (G, r, c).

Proof. Consider any x * ∈ B x (G, r, c) ∩ Z E , and assume x * (δ(v)) -c v x * (δ(S) \ δ(O)) ≥ 1. If x * (δ(S) \ δ(O)) = 0, the connectivity inequality associated with some edge in δ(v) is then violated. If x * (δ(S) \ δ(O)) ≥ 1, the capacity of v is then exceeded by x * .
Proposition 6.4.6. Inequality (6.9) defines a facet of B x (G, r, c) if and only if For the sufficiency, assume

1. |δ(v) \ (δ(S) \ δ(O))| ≥ c v , |δ(v)| ≥ c v + 1; 2. G[S \ O] and G[S \ O] are connected respectively; 3. if δ(v) ∩ δ(S) \ δ(O) = ∅ there exists no such edge e b ∈ E[S] ∪ δ(S) that removing δ(O) ∪ {e b } from G disconnects v and r; 4. if δ(v) ∩ δ(S) \ δ(O) = ∅ there exists no such node v a ∈ S \ {v} that c va = 2 and removing δ(O) ∪ δ(v a ) from G disconnects v and r. Proof. Let F = {x ∈ B x (G, r, c) : x(δ(v)) -c v x(δ(S) \ δ(O)) = 0}. For the necessity, if |δ(v) \ (δ(S) \ δ(O))| = c v -1 or |δ(v)| = c v , then F is a proper subset of the proper face induced by x e -x(δ(S) \ δ(O)) ≤ 0 for all e ∈ δ(v) \ (δ(S) \ δ(O)). If G[S \ O] is not connected or G[S \ O] is not connected, then F is
F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). One first has b = 0 because of 0 ∈ F.
For any edge e ∈ E[S] ∪ (δ(O) ∩ δ(S \ O)), the shortest re-path with all inner nodes in S \ O corresponds to a feasible solution in F, from which one can deduce a e = 0.

Case 1. If δ(v) ∩ δ(S) \ δ(O) = ∅. For any e ∈ δ(v) ∩ δ(S) \ δ(O), as |δ(v) \ (δ(S) \ δ(O))| ≥ c v ,
the bounded r-tree induced by combining the shortest re-path with only inner nodes in S and any 

c v -1 edges in δ(v) \ (δ(S) \ δ(O)) satisfies x(δ(v)) -c v x(δ(S) \ δ(O)) = 0. Let D S = δ(v) \ (δ(S) \ δ(O)) and D δ = δ(v) ∩ δ(S) \ δ(O).
| = c v -1, |P ve ∩ F | = |P ve ∩ δ(v)| = 1, P ve
has all inner nodes in S, and P re has all inner nodes in S. P re ∪ P ve ∪ F then induces a bounded r-tree that satisfies

x(δ(v)) -c v x(δ(S) \ δ(O)) = 0, which leads to a e = 0. Finally,One has λx(D S ) -(c v -1)λx(D δ ) -c v λx(δ(S) \ (δ(v) ∪ δ(O))) = 0. As λ = 0, it is equivalent to x(δ(v)) -c v x(δ(S) \ δ(O)) = 0, which indicates F is a facet of B x (G, r, c). Case 2. If δ(v) ∩ δ(S) \ δ(O) = ∅.
According to the conditions, there must exist two rv-paths P 1 , P 2 such that

P 1 ∩ P 2 ∩ (E[S] ∪ δ(S)) = ∅, and |P 1 ∩ δ(S) \ δ(O)| = |P 2 ∩ δ(S) \ δ(O)| = 1, and there exists no such node v a ∈ V [P 1 ] ∩ V [P 2 ] ∩ S \ {v} with c va = 2. Let P 1 ∩ δ(S) \ δ(O) = {e δ1 }, P 2 ∩ δ(S) \ δ(O) = {e δ2 }, P 1 ∩δ(v) = {e v1 }, P 1 ∩δ(v) = {e v2
}, and P re 1 , P re 2 be the paths with all inner nodes in S.

As |δ(v)| ≥ c v + 1, there must exist F ⊆ δ(v) \ {e 1 }, such that |F | = c v -1, and P re 1 ∪ P 1 ∪ F induces a bounded r-tree that satisfies x(δ(v)) -c v x(δ(S) \ δ(O)) = 0.
Without loss of generality, assume P 1 is the shortest path satisfying the aforementioned conditions, then P 1 and e 2 do not form a cycle, then by replacing any edge e ∈ F by any e ∈ δ(v) \ (F ∪ {e 1 }), one has another bounded r-tree whose incidence vector belongs to F, which gives us that for all e ∈ δ(v) \ {e 1 }, a e = λ. If the graph induced by P 2 and e 1 does not contain a cycle, a similar argument can be applied on P 2 , which leads to for all e ∈ δ(v) \ (F ∪ {e 2 }), a e = λ . If the graph induced by P 2 and e 1 contains a cycle, 

P re 2 ∪ P 2 ∪ F ∪ {e 1 } \ {e 2 }
P ev \ (δ(S) ∪ δ(v)) ⊆ E[S] \ δ(v), a set F ⊆ δ(v) with |F | = c v , |F ∩ P ev | = 1,
such that P re ∪ P ev ∪ F induces a bounded r-tree in face F. Combining with aforementioned results, one has a e = -c v λ for any e ∈ δ(S) \ (δ(O) ∪ δ(v)).

To conclude, the face {x ∈ B x (G, r, c) : a T x = b} and F are identical, which proves that F is maximal.

The upload capacity of nodes in O has to be expressed slightly different from other nodes. For any For the sufficiency, assume 3), (4) ensure that there must exist a node u ∈ U with c u ≥ 3, and two paths P ue between u and e, and For any e = uv ∈ E[U ], let P ru and P rv be the two bounded paths between r and u, v respectively, such that

S ⊆ V \ {r}, v o ∈ S ∩ O, let U = {v ∈ S \ O : δ(v) ∩ δ(S) = ∅}. The upload capacity inequality for v o ∈ O is presented as follows. x(δ(v o ) \ δ(S)) -x(δ(S) \ δ(O)) ≤ 0 (6.10) If |δ(v o ) \ δ(S)| = 1,
4. if E[S \ O] \ E[U ] = ∅ there exists v ∈ U with c v ≥ 3. Proof. Let F = {x(δ(v o ) \ δ(S)) -x(δ(S) \ δ(O)) = 0}. For the necessity, if either G[S \ O] or G[S \ O] is not connected, then F is
F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). One first has b = 0 because of 0 ∈ F. For any edge e ∈ E[S] ∪ (δ(O) ∩ δ(S \ O)) ∪ (δ(v o ) ∩ δ(S)
If δ(v o ) \ δ(S) = E[S], for any edge e ∈ E[S \ O] \ E[U ], Conditions (2), (
|P rv ∩ δ(S) \ δ(O)| = |P ru ∩ δ(S) \ δ(O)| = 1.
Such paths exist because of the definition of U . Let P uvo (P vvo , respectively) be a bounded path of G[S] between u (v, respectively) and v o . We have that P ru ∪ P uvo , P rv ∪ P vvo , P rv ∪ {uv} ∪ P uvo and P ru ∪ {uv} ∪ P vvo all induce bounded r-trees of G and their incidence vectors belong to F. Thus we deduce a uv = 0. Therefore, one has r,c), which completes the proof.

F = {x ∈ B x (G, r, c) B x (G,
Moreover, we can generalize the upload-capacity inequalities for both nodes in O and in V \(O ∪{r}) as follows. Given v ∈ S ⊆ V \{r}, the associated upload-capacity inequality is

x(δ(v)) -c v x(δ(S) \ δ(O \ {v})) ≤ 0.
(6.11)

It can be noted that the upload-capacity inequalities consider both the capacity aspect and the connectivity between r and v.

In following sections, we introduce a family of new valid inequalities, that are similar in a few aspects. Specifically, they generally consider a set of articulation nodes with the same capacity. We start with the one set with the simplest presentation, and generalize it to a wider extent.

Capacity-2 inequalities

Let S 2 = {v ∈ V \ {r} : c v = 2}. Given S ⊆ S 2 , R = V \ (S ∪ O), the capacity-2 inequality is as follows. x(δ(O)) -x(δ(R)) ≤ 0.
(6.12) Proposition 6.4.9. Inequality (6.12) is valid for B x (G, r, c).

Proof. Consider any edge set F ⊆ E that induces a bounded r-tree of G. Let G F be the graph obtained from G F by contracting R into a node r . We have that G F is composed of at most |F ∩ δ(r )| edge-disjoint paths between r and some edge e ∈ F . As each of the edges in F ∩ δ(O) has to be an end edge of a path in G F , we have that

G F contains at most |F ∩ δ(r )| edges in F ∩ δ(O), that is, x F (δ(O)) -x F (δ(R)) ≤ 1.
Proposition 6.4.10. Inequality (6.12) defines a facet of B x (G, r, c) if and only if 

1. G[R] is connected, G[S] is connected; 2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) ∩ δ(O) = ∅. Proof. Let F = {x ∈ B x (G, r, c) : x(δ(O)) -x(δ(R)) = 0}. For the necessity, if G[R] is not connected, F
(δ(O)) -x(δ(R ∪ S 1 )) ≤ 0 or x(δ(O)) -x(δ(R ∪ S 2 )) ≤ 0. If there exists v ∈ S such that δ(v) ∩ δ(R) = ∅, or δ(v) ∩ δ(O) = ∅, one has that there exists S S such that F is a proper subset of the proper face induced by x(δ(O)) -x(δ(R ∪ S )) ≤ 0 . For the sufficiency, assume F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). One first has b = 0 because of 0 ∈ F. For any edge e ∈ E[R]∪δ(R)∩δ(O), as G[R] is connected and R∩O = ∅, one has a e = 0. For any node v ∈ S, as δ(v) ∩ δ(R) = ∅, and δ(v) ∩ δ(O) = ∅, one has a e + a f = 0 for any e ∈ δ(v) ∩ δ(O) and any f ∈ δ(v) ∩ δ(R). Moreover, since G[S] is connected, for any edge v 1 v 2 ∈ E[S],
and any

e 1 ∈ δ(v 1 ) ∩ δ(O), e 2 ∈ δ(v 2 ) ∩ δ(O), f 1 ∈ δ(v 1 ) ∩ δ(R), f 2 ∈ δ(v 2 ) ∩ δ(R), one has a e 1 + a v 1 v 2 + a f 2 = 0 and a e 2 + a v 1 v 2 + a f 1 = 0, which leads to a v 1 v 2 = 0. Consequently, a e + a f = 0 holds for any e ∈ δ(O) ∩ δ(S) and any f ∈ δ(R) ∩ δ(S). Therefore, F = {x ∈ B x (G, r, c) : a T x = b}, which indicates F is a facet of B x (G, r, c).
This set of inequalities consider the aspects of capacity and the connectivity, although in a more ambiguous way. We show in the next part that it can be extended into several other sets of valid inequalities.

Capacity-i inequalities

The capacity-2 inequalities can be extended to a more generalized situation associating with nodes having same arbitrary capacity. Let

S i = {v ∈ V \ {r} : c v = i, i ≥ 2}.
Given S ⊆ S i , let R = V \ (S ∪ O), and the capacity-i inequality is as follows. 

x(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) ≤ 0. ( 6 
(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) ≤ 0.
Proposition 6.4.12. Inequality (6.13) defines a facet of B x (G, r, c) if and only if

1. G[R] is connected, G[S] is connected; 2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) ∩ δ(O) = ∅, and |δ(v) ∩ δ(O)| ≥ i -1. Proof. Let F = {x ∈ B x (G, r, c) : x(δ(O)\δ(R))-(i-2)x(E[S])-(i-1)x(δ(R)\δ(O)) = 0}.
For the necessity, if G[R] is not connected, one has x e = 0 for some e

∈ E[R]. If G[S]
is not connected, without loss of generality, assume it has two connected components induced by node sets F 1 and F 2 , with S i = F 1 ∪ F 2 . One has that F is a proper subset of either of the proper faces induced by

x(δ(O) \ δ(R ∪ F 1 )) -(i -2)x(E[S \ F 1 ]) -(i -1)x(δ(R ∪ F 1 ) \ δ(O)) ≤ 0 and x(δ(O) \ δ(R ∪ F 2 )) -(i -2)x(E[S \ F 2 ]) -(i -1)x(δ(R ∪ F 2 ) \ δ(O)) ≤ 0. If there exists v ∈ S such that δ(v) ∩ δ(R) = ∅, or δ(v) ∩ δ(O) = ∅,
then there exists F S such that F is a proper subset of the proper faces induced by

x(δ(O) \ δ(R ∪ F )) -(i -2)x(E[S i \ F ]) -(i -1)x(δ(R ∪ F ) \ δ(O)) ≤ 0. If |δ(v) ∩ δ(O)| ≤ i -2, then F is a proper subset of the proper face induced by x(δ(O) \ δ(R ∪ {v})) -(i -2)x(E[S \ {v}]) -(i -1)x(δ(R ∪ {v}) \ δ(O)) ≤ 0.
For the sufficiency, assume that

F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). One first has b = 0 because of 0 ∈ F. For any edge e ∈ E[R] ∪ δ(R) ∩ δ(O), as G[R] is connected and R ∩ O = ∅, one has a e = 0. For any node v ∈ S, as δ(v) ∩ δ(R) = ∅, δ(v) ∩ δ(O) = ∅, and |δ(v) ∩ δ(O)| ≥ i -1, for any F ⊆ δ(v) ∩ δ(O) with |F | = i -1, one has e∈F a e + a f = 0. Moreover, since G[S] is connected, for any edge v 1 v 2 ∈ E[S]
, and any

F 1 ⊂ F 1 ⊂ δ(v 1 ) ∩ δ(O), F 2 ⊂ F 2 ⊂ δ(v 2 ) ∩ δ(O) that satisfies |F 1 | = |F 2 | = i -2 and |F 1 | = |F 2 | = i -1 one has e 1 ∈F 1 a e 1 + e 2 ∈F 2 a e 2 + a v 1 v 2 + a f 2 = 0 and e 2 ∈F 2 a e 2 + e 1 ∈F 1 a e 1 + a v 1 v 2 + a f 1 = 0, which leads to a f 1 = -(i -1)a e 1 , a f 2 = -(i -1)a e 2 for any e 1 ∈ δ(v 1 ) ∩ δ(O), e 2 ∈ δ(v 2 ) ∩ δ(O), f 1 ∈ δ(v 1 ) ∩ δ(R), f 2 ∈ δ(v 2 ) ∩ δ(R), and a v 1 v 2 = -a f 2 -a e 1 = -a f 1 -a e 2 .
Consequently, one has (i -1)a e + a f = 0 and (i -2)a e + a h = 0 for any e

∈ δ(O) ∩ δ(S), f ∈ δ(R) ∩ δ(S), h ∈ E[S]. Therefore, F = {x ∈ B x (G, r, c) : a T x = b}, which indicates
F is a maximal face.

i-articulation inequalities

The capacity-i inequalities can be further generalized to the case such that we consider not only nodes adjacent with nodes in O, but also nodes which can be considered articulation nodes in the graph. Note that any node v i adjacent to a node v o ∈ O can be seen as an articulation node between r and the edge v i v o .

Let the set of articulation nodes in V be

V a = {v ∈ V \ (O ∪ {r}) : N (v) ∩ O = ∅ or v is an articulation node in G r }.
For each v ∈ V a , let

D v = {u ∈ V \ {r, v} : u ∈ N (v) ∩ O or any bounded path P ru satisfies P ru ∩ δ(v) = ∅}, F v = δ(v) ∩ δ(D v ).
Additionally, recall

S i = {v ∈ V \ {r} : c v = i}.
Let S be a subset of

V a ∩S i with i ≥ 2 such that for any distinct u, v ∈ S, D u ∩D v \O = ∅. Let D S = v∈S D v , F S = v∈S F v , R = V \ (S ∪ D S ).
Note that δ(D S )∩δ(S) = F S . The i-articulation inequality associated with S is as follows.

x(F S )

-(i -2)x(E[S]) -(i -1)x(δ(R) ∩ δ(S)) ≤ 0 (6.14)
Proposition 6.4.13. Inequality (6.14) is valid.

Proof. For any two nodes u, v ∈ V a , one has F u ∩ F v = ∅. Therefore, the validity of (6.14) can be proved using same argument as for (6.13).

Proposition 6.4.14. Inequality (6.14) defines a facet of B x (G, r, c) if and only if

1. G[R] is connected, G[S] is connected; 2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) \ δ(D S ) = ∅, and |δ(v) \ δ(D S )| ≥ i -1.
Proof. The proof for i-articulation inequalities is the same as for the capacity i nodes inequalities, except that the set O is replaced by D S whereas δ(O) ∩ δ(S) is replaced by F S .

Tightening inequalities

Another set of inequalities that has been discovered relating to capacity-2 inequalities during the computational test is called the tightening inequalities.

Assume that without loss of generality

1 ≤ c v ≤ |δ(v)| for any v ∈ V . For any S ⊆ V \ ({r} ∪ O), R = V \ (O ∪ S)
, the tightening inequalities are as follows

x(δ(O)) -x(δ(R)) ≤ v∈S (c v -2) (6.15)
This set of inequalities has been proved to be effective to tighten the dual bound in the branch-and-cut algorithm. Besides, it can also be noticed that the capacity-2 inequalities is a special case of the tightening inequalities, where c v = 2 for any node v ∈ S.

Projection from the Extended Polytope

Having the new inequalities introduced, the following sections show how can these inequalities be obtained by the projection of the valid inequalities for B xy (G, r, c) using the Fourier-Motzkin elimination. Particularly, in order to get the valid inequalities for B x (G, r, c), we use the linear system composed of (4.2) -(4.5) and (4.7), (4.8), which are the constraints defining P Cac (G, r, c) as in (4.18). Let Ax + Dy ≤ b denote the system composed of (4.2) -(4.5) and (4.7), (4.8). The projection cone associated with the projection of P Cac (G, r, c) onto R E is the following

C = {ν : ν T A = 0, ν ≥ 0},
where ν are the rays of C. We show that for each of the inequalities we introduced in the last section, there exists a ray in C such that the inequality can be obtained through projection along that ray.

Matching-partition inequalities

Here we show that for any (M,π ) ∈ MP(G), the matching-partition inequality x(M ) -

x(E π \ δ(O)) ≤ 0 is a result of projection from the valid constraints for B xy (G, r, c). Let W = {s 1 , • • • , s k } be such that e i = s i t i with c s i ≤ c t i for each e i ∈ M , i = {1, • • • , k}, and s 0 = r. Note that from the definition W ∩ O = ∅ holds.
The following steps show that inequality x(M )x(E π \ δ(O)) ≤ 0 can be obtained from (4.1), (4.2), and (4.12).

For each

S i ∈ π, i = {0, 1, • • • , k}, since W ∩ O = ∅, one has x(E[S i \ O]) -y(S i \ (O ∪ {s i })) ≤ 0.
Summing them up with

-x(E) + y(V \ {r}) = 0 gives us -x(E) + S i ∈π x(E[S i \ O]) + y(W ) + y(O) ≤ 0, -x(E π \ δ(O)) -x(δ(O)) + y(W ) + y(O) ≤ 0.
From (4.7) we have

x(δ(v o )) -y vo = 0 ∀v o ∈ O, which leads to x(δ(O)) -y(O) = 0. Hence one gets -x(E π \ δ(O)) + y(W ) ≤ 0.
From

x e i -y s i ≤ 0,
for each s i ∈ W , and e i ∈ M , one has

x(M ) -y(W ) ≤ 0, which finally leads to x(M ) -x(E π \ δ(O)) ≤ 0.
Thus the ray ν in the projection cone C that corresponds to the matching-partition inequality

x(M ) -x(E π \ δ(O)) ≤ 0 is the following ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1, for x(E[S i \ O]) -y(S i \ (O ∪ {s i })) ≤ 0 ∀i ∈ {1, • • • , k}, 1, for -x(E) + y(V \ {r}) = 0, 1, for x(δ(v o )) -y vo = 0 ∀v o ∈ O, 1, for x e i -y s i ≤ 0 ∀i ∈ {1, • • • , k}, 0, otherwise.

Upload capacity inequalities

The upload capacity constraint (6.9) associated with a node in V \ (O ∪ {r}) can be obtained from constraints (4.1), (4.2), (4.3) and (4.7) as follows. For any S ⊂ V \ {r} such that S ⊆ O, any v ∈ S \ O, according to (4.1) and (4.2) one has

-x(E) + y(V \ {r}) = 0, x(E[S \ O]) -y(S \ (O ∪ {v})) ≤ 0, x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0. From (4.7) we have x(δ(v o )) -y vo = 0 ∀v o ∈ O, which leads to x(δ(O)) -y(O) = 0.
Summing them up gives us

y v -x(δ(S) \ δ(O)) ≤ 0, which combining with x(δ(v)) -c v y v ≤ 0.
gives us

x(δ(v)) -c v x(δ(S) \ δ(O)) ≤ 0.
Then the ray ν that corresponding to the upload capacity inequality

x(δ(v)) -c v x(δ(S) \ δ(O)) ≤ 0 is as follows ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ c v , for x(E[S \ O]) -y(S \ (O ∪ {v})) ≤ 0, c v , for x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0, c v , for -x(E) + y(V \ {r}) = 0, c v , for x(δ(v o )) -y vo = 0 ∀v o ∈ O, 1, for x(δ(v)) -c v y v ≤ 0, 0, otherwise.
Similarly, the upload capacity constraint (6.10) associated with nodes in O can also be obtained from (2.1), (2.2) and (4.7).

For any S ⊂ V \ {r} and any v ∈ S ∩ O, according to (4.1) and (4.2) one has

-x(E) + y(V \ {r}) = 0, x(E[S \ (O \ {v})]) -y(S \ O) ≤ 0, x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0.
From (4.7), one also has

x(δ(v o )) -y vo = 0 ∀v o ∈ O \ {v}, which leads to x(δ(O \ {v})) -y(O \ {v}) = 0.
Summing them up gives us

y v -x(δ(S) \ δ(O \ {v})) ≤ 0,
which combining with

x(δ(v)) -y v = 0.
gives us

x(δ(v)) -x(δ(S) \ δ(O \ {v})) ≤ 0,
which can be written as

x(δ(v) \ δ(S)) -x(δ(S) \ δ(O)) ≤ 0,
Thus the ray ν ∈ C corresponding to the upload capacity inequality

x(δ(v) \ δ(S)) - x(δ(S) \ δ(O)) ≤ 0 is as follows ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1, for x(E[S \ (O \ {v})]) -y(S \ O) ≤ 0, 1, for x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0, 1, for -x(E) + y(V \ {r}) = 0, 1, for x(δ(v o )) -y vo = 0 ∀v o ∈ O, 0, otherwise.

Acyclicity-connectivity inequalities

Projection for acyclicity-connectivity inequalities (6.8) is similar to the upload capacity inequalities.

The acyclicity-connectity inequalities can be obtained from inequalities (4.6), (4.7) and (4.2) as follows.

Let W be a subset of

S ⊆ V \ {r} with W ∩ O = ∅ and |W | ≥ 2. Given a node v ∈ W , according to (4.2) one has x(E[W ]) -y(W \ {v}) ≤ 0.
In addition, for each s ∈ W \ {v}, since W ⊆ S ⊆ V \ {r} and W ∩ O = ∅, from (4.1), (4.2) and (4.7) one has

-x(E) + y(V \ {r}) = 0, x(E[S \ O]) -y(S \ (O ∪ {s})) ≤ 0, x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0. x(δ(v o )) -y vo = 0 ∀v o ∈ O,
which leads to

y s -x(δ(S) \ δ(O)) ≤ 0 ∀s ∈ W \ {v}.
Thereby by summing all inequalities above one has

x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0.
Thus the ray ν in C that corresponds to the acyclicity-connectivity inequality

x(E[W ]) - (|W | -1)x(δ(S) \ δ(O)) ≤ 0 is as follows ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1, for x(E[W ]) -y(W \ {v}) ≤ 0, 1, for x(E[S \ O]) -y(S \ (O ∪ {s})) ≤ 0 ∀s ∈ W \ {v} |W | -1, for x(E[S \ O]) -y(S \ (O ∪ {r})) ≤ 0, |W | -1, for -x(E) + y(V \ {r}) = 0, |W | -1, for x(δ(v o )) -y vo = 0 ∀v o ∈ O, 0,
otherwise.

Capacity-i inequalities

Recall that for any i ≥ 2,

S i = {v ∈ V \ {r} : c v = i}.
Given S ⊆ S i , and R = V \ (S ∪ O), and the corresponding capacity-i inequality can be obtained as follows. From (4.3),

v∈S x(δ(v)) -iy(S) ≤ 0,
which can be rewritten as

x(δ(R, S)) + x(δ(S, O)) + 2x(E[S]) -iy(S) ≤ 0. (6.16) From (4.2), one has x(E[R]) -y(R \ {r}) ≤ 0.
(6.17)

Combining (4.1) and (4.7) gives us

x(E[R ∪ S]) -y(R ∪ S \ {r}) = 0. (6.18)
Then one can see that as a result of (6.16), (6.17), and (6.18), one has

x(δ(R, S)) + x(δ(S, O)) + 2x(E[S]) -iy(S) +ix(E[R]) -iy(R \ {r}) -ix(E[R ∪ S]) + iy(R ∪ S \ {r}) ≤ 0, which is equivalent to x(δ(S, O)) -(i -2)x(E[S]) -(i -1)x(δ(R, S) ≤ 0, and 
x(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) ≤ 0.
Thus the corresponding ray ν ∈ C to this capacity-i inequality is as follows

ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ i, for x(E[R]) -y(R \ {r}) ≤ 0, 1, for x(δ(v)) -iy v ≤ 0, ∀v ∈ S, i, for -x(E) + y(V \ {r}) = 0, i, for x(δ(v o )) -y vo = 0 ∀v o ∈ O, 0, otherwise.
Furthermore, note that the capacity-i inequalities is a special case of the i-articulation inequalities. The i-articulation inequalities can be obtained by a similar approach as the one presented above, the only adjustments need to be made is that instead of considering O and δ(S, O) one considers D S and F S .

Tightening inequalities

For the tightening inequalities, from (4.3) we have

v∈S (x(δ(v)) -c v y v ) ≤ 0,
which can be rewritten as

x(δ(R, S)) + x(δ(S, O)) + 2x(E[S]) - v∈S c v y v ≤ 0. (6.19)
Inequality (6.17) still holds, and inequality (6.18) holds similarly for tightening inequalities as presented below.

x

(E[R ∪ S]) -y(R ∪ S \ {r}) = 0. (6.20)
The sum of (6.17), (6.19), and (6.20) gives us

x(δ(R, S)) + x(δ(S, O)) + 2x(E[S]) - v∈S c v y v +2x(E[R]) -2y(R \ {r}) -2x(E[R ∪ S]) + 2y(R ∪ S \ {r}) ≤ 0, which is equal to -x(δ(R, S)) + x(δ(S, O)) - v∈S (c v -2)y v ≤ 0. Combining it with v∈S (c v -2)(y v -1) ≤ 0 gives us -x(δ(R, S)) + x(δ(S, O)) - v∈S (c v -2) ≤ 0,
which is the tightening inequality. Thus the corresponding ray ν ∈ C to this tightening inequality is as follows

ν = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 2, for x(E[R]) -y(R \ {r}) ≤ 0, 1, for x(δ(v)) -c v y v ≤ 0, ∀v ∈ S, 2, for -x(E) + y(V \ {r}) = 0, 2, for x(δ(v o )) -y vo = 0 ∀v o ∈ O, c v -2, for y v ≤ 1, ∀v ∈ S, 0,
otherwise.

Thereby, we show all the new inequalities introduced earlier can be projected from the facet-defining inequalities for the extended bounded r-tree polytope.

Bounds on Chvátal-Gomory rank

We now introduce some results regarding the Chvátal-Gomory rank of the newly discovered inequalities mentioned in Section 6.4 with respect to the polytope defined by (6.1)-(6.5).

Matching-partition inequalities

First, given a matching-partition (M,π ) ∈ MP(G), denote the Chvátal-Gomory rank of its associated matching-partition inequality rk(MP M,π ). We show that the following proposition holds.

Proposition 6.6.1.

Let (M,π ) ∈ MP(G), then rk(MP M,π ) ≤ |M | -1.
Proof. In order to simplify the notation in the proof hereafter, let

δ (S 1 , S 2 ) = δ(S 1 , S 2 ) \ δ(O) ∀S 1 , S 2 V, S 1 ∩ S 2 = ∅, δ (S) = δ(S) \ δ(O) ∀S V, E π = E π \ δ(O) ∀(M,π ) ∈ MP(G).
We start with |M | = 1, since it becomes the connectivity inequality (6.1), its Chvátal-Gomory rank is clearly equal to 0, that is,

rk(MP M,π ) = 0 ∀(M,π ) ∈ MP(G), |M | = 1. For |M | ≥ 2, let M = {e 1 , • • • , e k }, π = {S 0 , S 1 , • • • , S k }. For any i ∈ {1, • • • , k}, let M i = M \ {e i }, and π i = {S 0 ∪ S i , S 1 , • • • , S i-1 , S i+1 , • • • , S k }. It is clear that (M i , π i ) ∈ MP(G). Thus one has x(M ) -x e 1 -(x(E π ) -x(δ (S 0 , S 1 ))) ≤ 0 x(M ) -x e 2 -(x(E π ) -x(δ (S 0 , S 2 ))) ≤ 0 . . . x(M ) -x e i -(x(E π ) -x(δ (S 0 , S i ))) ≤ 0 . . . x(M ) -x e k -(x(E π ) -x(δ (S 0 , S k ))) ≤ 0
Summing them up gives us

(k -1)x(M ) -kx(E π \ δ (S 0 )) -(k -1)x(δ (S 0 )) ≤ 0 (6.21)
Similarly we can also merge any distinct S i and S j in π\{S 0 } to obtain two new matchingpartition whose matchings are M \ {e i } and M \ {e j } respectively. Consequently, we have the following k(k -1) matching-partition inequalities

x(M ) -x e 1 -(x(E π ) -x(δ (S 1 , S 2 ))) ≤ 0 x(M ) -x e 2 -(x(E π ) -x(δ (S 1 , S 2 ))) ≤ 0 x(M ) -x e 1 -(x(E π ) -x(δ (S 1 , S 3 ))) ≤ 0 x(M ) -x e 3 -(x(E π ) -x(δ (S 1 , S 3 ))) ≤ 0 . . . x(M ) -x e i -(x(E π ) -x(δ (S i , S j ))) ≤ 0 x(M ) -x e j -(x(E π ) -x(δ (S i , S j ))) ≤ 0 . . . x(M ) -x e k-1 -(x(E π ) -x(δ (S k-1 , S k ))) ≤ 0 x(M ) -x e k -(x(E π ) -x(δ (S k-1 , S k ))) ≤ 0.
Summing them up leads to

(k -1)(k -1)x(M ) -(k 2 -k -2)x(E π \ δ (S 0 )) -k(k -1)x(δ (S 0 )) ≤ 0. (6.22)
From the connectivity inequalities, one has

x e 1 -x(δ (S 1 )) ≤ 0 x e 2 -x(δ (S 2 )) ≤ 0 . . . x e i -x(δ (S i )) ≤ 0 . . . x e k -x(δ (S k )) ≤ 0, which leads to x(M ) -2x(E π \ δ (S 0 )) -x(δ (S 0 )) ≤ 0. (6.23)
One also has, from the box inequalities kx(M ) ≤ k 2 (6.24)

By summing up (6.21), (6.22), (6.23), (6.24), one has

(k 2 + 1)x(M ) -k 2 x(E π \ δ (S 0 )) -k 2 x(δ (S 0 )) ≤ k 2 .
Hence, we have

k 2 + 1 k 2 + 1 x(M )- k 2 k 2 + 1 x(E π \ δ (S 0 ))- k 2 k 2 + 1 x(δ (S 0 )) ≤ k 2 k 2 + 1 , k 2 + 1 k 2 + 1 x(M )+ - k 2 k 2 + 1 x(E π \ δ (S 0 ))+ - k 2 k 2 + 1 x(δ (S 0 )) ≤ k 2 k 2 + 1 , x(M )- x(E π \ δ (S 0 ))- x(δ (S 0 )) ≤ 0.
Therefore, it shows that rk(MP M,π ) satisfies It is worth noting that one can obtain a tighter bound for some matching-partition (M,π ) ∈ MP(G) such that G contains multiple blocks, where G is the graph that obtained from G \ O by contracting S i ∈ π into a node. As it has been shown in the proof of Proposition 6.4.2, the associated inequality with such matching-partition can be written as linear combination of several matching partitions, each of which corresponds to a block of G . Thus we have the following corollary.

rk(MP M,π ) ≤ max{rk(MP M ,π ) : (M , π ) ∈ MP(G), |M | = |M | -1} + 1.
Corollary 6.6.2. Given (M,π ) ∈ MP(G), let q ∈ Z + be the number of nodes in the largest block in G . We have rk(MP M,π ) ≤ q -1.

Proof. According to the proof of Proposition 6.4.2, x(M )x(E π \ δ(O)) ≤ 0 can be written as a linear combination of several matching partitions Combining it with Proposition 6.6.1 gives us

(M 1 , π 1 ), • • • , (M j , π j ) of G, such that q = max{|M i | : i ∈ {1, • • • , j}}. Thus, rk(MP M,π ) ≤ max{rk(MP M i ,π i ) : i ∈ {1, • • • , j}}.
rk(MP M,π ) ≤ max{|M i | -1 : i ∈ {1, • • • , j}} = q -1,
which completes the proof.

Moreover, we can prove that there exists some matching-partition inequality whose Chvátal-Gomory rank is at least 2. Take the graph in Figure 6.7 as an instance and suppose the capacity constraints are redundant. Let (M,π ) ∈ MP(G) be the matchingpartition such that M = {e 2 , e 4 , e 6 },

E π = {e 1 , e 3 , e 5 , e 7 }.
The system of inequalities composed of (6.1)-(6.5) then reduces to the following

x e -x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (6.25)
x(E) ≤ |E| -1 (6.26)

x e ≤ 1 ∀e ∈ E, (6.27)

-x e ≤ 0 ∀e ∈ E. (6.28)

The matching-partition inequality associated with (M,π ) can be written as follows

x e 2 + x e 4 + x e 6x e 1x e 3x e 5x e 7 ≤ 0. (6.29)

Assume that its Chvátal-Gomory rank is 1, and let

7 i=1 a i x e i ≤ b,
be a linear combination of inequalities in (6.1)-( 6.5) such that,

a i = 1 ∀i ∈ {2, 4, 6}, a i = -1 ∀i ∈ {1, 3, 5, 7}, b = 0.
Let λ e i ,S be the coefficient corresponding to the inequality in (6.25) associated with e i and S, λ 0 be the coefficient corresponding to (6.26), λ u i be the coefficient of the inequality (6.27) associated with e i , and λ l i be the coefficient corresponding to the inequality (6.28) associated with e i . Note that all the coefficients should be non-negative. For any i ∈ {1, • • • , 7}, let

S i = {S ⊆ V \ {r} : e i ∈ E[S]}, C i = {S ⊆ V \ {r} : e i ∈ δ(S)}.
Then let

n 1 = i∈{2,4,6} S∈S i λ e i ,S , n 2 = i∈{2,4,6} S∈C i λ e i ,S , n 3 = i∈{1,3,5,7} S∈S i λ e i ,S , n 4 = i∈{1,3,5,7} S∈C i λ e i ,S .
Straightforwardly, as each inequality in (6.25) has exactly two edges in δ(S), one has

2(n 1 + n 3 ) = n 2 + n 4 , which leads to n 4 -n 3 = 2n 1 + n 3 -n 2 ≥ 2n 1 -n 2 ≥ 2(n 1 -n 2 ).

Additionally, let

m 1 = i∈{2,4,6} λ u i , m 2 = i∈{2,4,6} λ l i , m 3 = i∈{1,3,5,7} λ u i , m 4 = i∈{1,3,5,7} λ l i .
Thus we have

a 2 + a 4 + a 6 = n 1 -n 2 + 3λ 0 + m 1 -m 2 , a 1 + a 3 + a 5 + a 6 = n 3 -n 4 + 4λ 0 + m 3 -m 4 , b = 6λ 0 + m 1 + m 3 .
From the assumption, one must also have

a 2 + a 4 + a 6 3 ≥ 1, a 1 + a 3 + a 5 + a 6 4 ≥ -1, b < 1.
We can derive that

a 2 + a 4 + a 6 3 ≥ 1 > b, (6.30) a 2 + a 4 + a 6 3 ≥ 1 ≥ - a 1 + a 3 + a 5 + a 6 4 . (6.31) (6.30) gives us n 1 -n 2 + 3λ 0 + m 1 -m 2 3 > 6λ 0 + m 1 + m 3 ,
and equivalently, one has

n 1 -n 2 -15λ 0 -2m 1 -m 2 -3m 3 > 0. (6.32)
On the other hand, (6.31) together with n 4n 3 ≥ 2(n 1n 2 ) gives us

n 1 -n 2 + 3λ 0 + m 1 -m 2 3 ≥ n 4 -n 3 -4λ 0 -(m 3 -m 4 ) 4 n 1 -n 2 + 3λ 0 + m 1 -m 2 3 ≥ 2(n 1 -n 2 ) -4λ 0 -(m 3 -m 4 ) 4 0 ≥ 2(n 1 -n 2 ) -24λ 0 -4m 1 + 4m 2 -3m 3 + 3m 4 0 ≥ n 1 -n 2 -12λ 0 -2m 1 + 2m 2 - 3 2 m 3 + 3 2 m 4 , which combining with 0 ≥ -3λ 0 -3m 2 - 3 2 m 3 - 3 2 m 4 , leads to 0 ≥ n 1 -n 2 -15λ 0 -2m 1 -m 2 -3m 3 . (6.33)
Therefore, (6.32) and (6.33) form a contradiction, and thus the Chvátal-Gomory rank of (6.29) is at least 2.

Upload capacity inequalities

Given S ⊆ V \ {r} and v ∈ S, let the set of edges in δ(v) that are not in δ(S) \ δ(O) be

D := δ(v) \ (δ(S) \ δ(O)).
Let UC |D|≤cv represents the upload capacity inequalities that satisfy |D| ≤ c v .

Proposition 6.6.3. rk(UC |D|≤cv ) ≤ 1.

Proof.

For each e i ∈ D,

x e i -x(δ(S) \ δ(O)) ≤ 0.
As a result, one has

x(D) -|D|x(δ(S) \ δ(O)) ≤ 0.
From the capacity inequality for v,

x(D) + x(δ(v) \ D) ≤ c v .
From these two parts, by giving them coefficients c v and 1 respectively, one can get

(c v + 1)x(D) -(c v |D| -1)x(δ(v) \ D) -c v |D|x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v .
Since |D| ≤ c v , one can add the following part

-c v (c v -|D|)x(δ(v) \ D)) ≤ 0, -c v (1 + c v -|D|)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.
to obtain

(c v + 1)x(D) -(c v + 1)(c v -1)x(δ(v) \ D) -c v (c v + 1)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v .
Finally by dividing both sides by c v + 1, and round down the coefficients, one gets

x(D) -(c v -1)x(δ(v) \ D) -c v x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v c v + 1 ,
which can be written as

x(δ(v)) -c v x(δ(S) \ δ(O \ {v})) ≤ 0.
Therefore we have rk(UC |D|≤cv ) ≤ 1.

Moreover, if the inequality is not one of those rank 0 inequalities, then it can be restricted to rk(UC |D|≤cv ) = 1.

Let F ⊆ D, and UC represents the following inequality

x(F ) -(c v -1)x(δ(v) \ D) -c v x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0. (6.34)
This inequality is valid, because of the validity of upload capacity and the non-negativity of the variables. From the Proposition 6.6.3, one can also derive the following lemma.

Lemma 6.6.4. rk(UC |F |≤cv ) ≤ 1,

Proof. Following a similar procedure as the proof of Proposition 6.6.3 with substituting D for F , eventually one will get

(c v + 1)x(F ) + x(D \ F ) -(c v + 1)(c v -1)x(δ(v) \ D) -c v (c v + 1)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v .
Hence, after divided by c v + 1 and round-down, it becomes exactly the inequality (6.34), which proves the Chvátal-Gomory rank of (6.34) is at most

1 if |F | ≤ c v . Proposition 6.6.5. rk(UC |D|≥cv ) ≤ |D| -c v + 1.
Proof. According to Proposition 6.6.3, rk(UC |D|=cv ) ≤ |D|c v + 1.

Assume |D| ≥ c v + 1, from Lemma 6.6.4, one has for any F ⊆ D with |F | = c v , the following inequality with at most Chvátal-Gomory rank 1.

x(F ) -(c v -1)x(δ(v) \ D) -c v x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.
We then assume that, for any F ⊆ D, |F | ≥ c v +1, the Chvátal-Gomory rank of inequality (6.34) associating with the set

F ⊆ D, |F | = |F |-1, is known to be at most |F |-c v +1 = |F | -c v .
Summing up all the possibilities of F with each e ∈ F being in F \ F , results in the following inequality.

(|F | -1)x(F ) -(c v -1)|F |x(δ(v) \ D) -c v |F |x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0. Hence, plus x(D) + x(δ(v) \ D) ≤ c v , it leads to |F |x(F ) + x(D \ F ) -((c v -1)|F | -1)x(δ(v) \ D) -c v |F |x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v ,
which, dividing both sides by |F | results in

x(F ) + 1 |F | x(D \ F ) -((c v -1) - 1 |F | )x(δ(v) \ D) -c v x(δ(S) \ (δ(O) ∪ δ(v))) ≤ c v |F | . Since |F | ≥ c v + 1 ≥ 2, one has 0 < 1 |F | < 1, and 0 < cv |F | < 1. Rounding this inequality down gives us x(F ) -(c v -1)x(δ(v) \ D) -c v x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0. Thus its Chvátal-Gomory rank is at most |F | -c v + 1.
Then if D = F , the inequality can be written as

x(δ(v)) -c v x(δ(S) \ δ(O)) ≤ 0 instead, which indicates that its Chvátal-Gomory rank is at most |D| -c v + 1.
Moreover, we can prove that there exists some upload capacity inequality whose Chvátal-Gomory rank is at least 2. Take the graph in Figure 6.8 as an instance and assume that Figure 6.8: An upload capacity inequality with Chvátal-Gomory rank 2 only the capacity of v is not redundant. According to the facial study, the system of inequalities composed of (6.1)-(6.5) then reduces to the following

x e i -x f ≤ 0 ∀i ∈ {1, 2, 3}, (6.35) 
x e 1 + x e 2 + x e 3 + x f ≤ 2 (6.36)

x f ≤ 1 (6.37) -x e i ≤ 0 ∀i ∈ {1, 2, 3}. (6.38) 
The upload capacity inequality associated with v and S = V \ {r} can be written as follows

x e 1 + x e 2 + x e 3 -x f ≤ 0. (6.39)
Assume that its Chvátal-Gomory rank is 1. Let λ i correspond to the coefficient to the inequality (6.35) associated with e i , λ c correspond to the coefficient to the (6.36), λ f correspond to the coefficient to the (6.37), and μ i correspond to the coefficient to the inequality (6.38) associated with e i . We have that the following system admits some feasible solution.

λ i + λ c -μ i ≥ 1 ∀i ∈ {1, 2, 3}, (6.40) -λ 1 -λ 2 -λ 3 + λ c + λ f ≥ -1, (6.41) 2λ c + λ f < 1, (6.42) λ i , μ i ≥ 0 ∀i ∈ {1, 2, 3}, (6.43) λ c , λ f ≥ 0. (6.44)
From (6.42) we have

λ c < 1 2 .
Then from (6.40) we deduce

-λ i + μ i ≤ λ c -1 < - 1 2 ∀i ∈ {1, 2, 3},
Hence, from the non-negativity of λ and μ one has

-λ 1 -λ 2 -λ 3 + λ c + λ f ≤ -λ 1 + μ 1 -λ 2 + μ 2 -λ 3 + μ 3 + λ c + λ f = -λ 1 + μ 1 -λ 2 + μ 2 -(λ 3 + λ c -μ 3 ) + 2λ c + λ f < - 1 2 - 1 2 -1 + 1 = -1,
which contradicts with (6.41). Therefore, the Chvátal-Gomory rank of (6.39) is at least 2.

In the next section we show that with the help of matching-partition inequalities and the upload capacity inequalities, we can characterize B x (G, r, c) on cycles and trees. As we have showed in this section that there are matching-partition inequalities and upload capacity inequalities on cycles and on trees that have Chvátal-Gomory rank at least 2 with respect to the polytope defined by (6.1)-(6.5), thus the characterization can not be trivially obtained as its first Chvátal closure.

TDI-ness

On trees

According to the results on valid inequalities and facets presented in Sections 6.3 and 6.4, one can deduce that some of these inequalities are redundant on trees. By getting rid of these redundant inequalities we obtain the following linear program for MBrT problem on trees. (6.46) x(δ(r)) ≤ c r , (6.47)

max w T x s.t. x e -x fe ≤ 0 ∀e ∈ E \ δ(r), (6.45) x(δ(v)) -c v x fv ≤ 0 ∀v ∈ V \ {r},
x e ≤ 1 ∀e ∈ δ(r), (6.48)

x e ≥ 0 ∀e is a leaf edge, (6.49)

where f v denotes the edge of P rv in δ(v) for v ∈ V \ {r}, and f e denotes the edge of P re adjacent to e for e ∈ E \ δ(r).

Let the polytope defined by the linear system composed of (6.45)-(6.49) be

P xT (G, r, c) = {x ∈ R E :
x satisfies (6.45) -(6.49)}.

We hereafter show that it is a ideal formulation for B x (G, r, c) on trees and that the system defining P xT (G, r, c) is TDI. First of all, we show that

P xT (G, r, c) is a formulation for B x (G, r, c) if G is a tree.
Theorem 6.7.1. Let G be a tree.

P xT (G, r, c) ∩ Z E = B x (G, r, c) ∩ Z E .
Proof. Note that (6.45) is obtained from the connectivity inequalities (6.1), whereas (6.46) is obtained from the upload capacity inequalities (6.9). Hence (6.45)-(6.49) are all valid for B x (G, r, c). Consequently, B x (G, r, c) ⊆ P xT (G, r, c).

Consider now any vector x

F ∈ P xT (G, r, c) ∩ Z E with F ⊆ E.
The induced graph G F is bounded since x F satisfies (6.46) and (6.47). For each edge e ∈ F , from (6.45), one can deduce that each edge in the path between r and e is also in

F . Thus, G F is a bounded r-tree of G, that is, x F ∈ B x (G, r, c) ∩ Z E . Proposition 6.7.2. Let G be a tree. P xT (G, r, c) is integral.
Proof. Assume that there exists a fractional extreme point

x of P x (G, r, c). Let f v =
uv ∈ E be an edge such that x fv is fractional, and either u = r or x fu = 1. Note that if u = r, we have that x fvx fu ≤ 0 is not binding at x.

According to (6.45), one has that for any edge e in E[ v ], 0 ≤ x e ≤ x uv < 1. We split the proof into two cases depending on the value of x(δ(u))c u . Since x fu = 1 when u = r, x(δ(u))c u corresponds to the left-hand side of (6.46) when u = r and of (6.47) when u = r.

Suppose first x(δ(u))c u < 0. Let x be the vector such that

x e = (1 + )x e if e ∈ E[ v ] ∪ {uv}, x e otherwise,
where ∈ R \ {0}. Notably, we have that

x e -x fe = (1 + )(x e -x fe ) if e ∈ E[ v ], x e -x fe if e ∈ E \ (E[ v ] ∪ {uv}),
and

x (δ(s)) -c s x fs = (1 + )(x(δ(s)) -c s x fs ) if s ∈ v , x(δ(s)) -c s x fs if s ∈ V \ ( v ∪ {r, u}).
In addition, for any e ∈ E with x e ∈ {0, 1}, we have x e = x e from the definition of x . Thus if any of the inequalities (6.45), (6.46), and (6.49) is binding at x then it is also binding at x . Therefore, x satisfies all the equations that x does, which forms a contradiction.

Suppose now x(δ(u))c u = 0. It can be deduced that there also exists another edge uv ∈ δ(u) \{uv} with x uv fractional. Since

x fu = 1 if u = r we clearly have uv ∈ E[ u ].
Consider the vector x defined as

x e = ⎧ ⎪ ⎨ ⎪ ⎩ (1 + λ)x e if e ∈ E[ v ] ∪ {uv}, (1 -λ )x e if e ∈ E[ v ] ∪ {uv }, x e otherwise,
where λ,λ ∈ R \ {0} are such that λx uv = λ x uv . One has that x (δ(u))c u = 0.

Similarly to the previous case, we have

x e -x fe = ⎧ ⎪ ⎨ ⎪ ⎩ (1 + λ)(x e -x fe ) if e ∈ E[ v ], (1 -λ )(x e -x fe ) if e ∈ E[ v ], x e -x fe if e ∈ E \ (E[ v ] ∪ E[ v ] ∪ {uv, uv }),
and

x (δ(s)) -c s x fs = ⎧ ⎪ ⎨ ⎪ ⎩ (1 + λ)(x(δ(s)) -c s x fs ) if s ∈ v , (1 -λ )(x(δ(s)) -c s x fs ) if s ∈ v , x(δ(s)) -c s x fs if s ∈ V \ ( v ∪ v ∪ {r, u}).
In addition, for any e ∈ E with x e ∈ {0, 1}, we have x e = x e . Therefore, x satisfies all the equations that x does, which forms a contradiction.

Consequently, P xT (G, r, c) does not admit any fractional extreme point.

The next corollary immediately follows

Corollary 6.7.3. Let G be a tree. we have

P xT (G, r, c) = B x (G, r, c).
As a result, if the capacity constraints are redundant, or in other words, in the case of R x (G, r), we have Corollary 6.7.4. Let G be a tree. we then have

R x (G, r) = {x ∈ R E :
x satisfies (6.45), (6.48) and (6.49)}.

We now prove that the linear system defining P xT (G, r, c) is TDI. Since TDI-ness is a sufficient condition for integrality, see [START_REF] Edmonds | A min-max relation for submodular functions on graphs[END_REF], Theorem 6.7.1 could have been seen as a direct consequence of the next theorem.

Theorem 6.7.5. The linear system composed of (6.45)-(6.49) is TDI.

Proof. Consider the linear program (6.50) where w ∈ R E . For any e ∈ E, let α e be the dual variable corresponding to inequality (6.45) or (6.48) associated with e. For any v ∈ V , let β v be the dual variable corresponding to inequality (6.46) or (6.47) associated with v. The dual linear program of (6.50) is the following

max{w T x : x ∈ P xT (G, r, c)},
min c r β r + e∈δ(r) α e s.t. - e ∈δ(ve)\{e} α e -(c ve -1)β ve + α e + β ue = w e
∀e is not a leaf edge, (6.51)

α e + β ue ≥ w e ∀e is a leaf edge, (6.52 
)

α e , β v ≥ 0 ∀e ∈ E, v ∈ V, (6.53) 
where for any edge e ∈ E, e ∈ δ(u e ) ∩ E[ u e ], and e ∈ δ(v e ) ∩ E[ v e ], that is, e = u e v e and v e is the extremity of e the furthest away from r.

We first recall some of the notation and results presented in Chapter 3. Given any node v ∈ V , let g(v) be the value of a maximum bounded tree rooted at v of the subgraph G[ v ] of G, where the capacity vector andc 

c v ∈ Z v + satisfies c v v = c v -1 if v = r, c v v = c v if v = r,
v s = c s , for s ∈ v \ v, that is, g(v) = max{f (G F ) = w(F ) : G F is tree of G[ v ] bounded by c v }.
For any node v ∈ V , let

h(v) = w fv + g(v) if v ∈ V \ {r}, g(v) if v = r.
According to Lemma 3.1.1, for any v ∈ V we have

g(v) = max{ s∈S h(s) : S ⊆ N (v) ∩ v , |S| ≤ c v v }. Note that since g(v l ) = 0 for any leaf v l , g(v) ≥ 0 for any v ∈ V . For each node v ∈ V , let {v 1 , • • • , v tv , v tv+1 • • • , v qv } be the set of nodes in v adjacent to v, that is, N (v) ∩ v = {v 1 , • • • , v tv , v tv+1 • • • , v qv }
with q v ≥ 0. Note that if v is a leaf, we have q = 0. Without loss of generality, we assume that h(v

1 ) ≥ h(v 2 ) ≥ • • • ≥ h(v tv ) > 0 ≥ h(v tv+1 ) ≥ • • • ≥ h(v qv ). Let j v = min{t v , c v v } for v ∈ V . We then have g(v) = jv k=1 h(v k ).
Moreover, a primal solution (whose objective value is g(r)) can be obtained using Algorithm 3.1 according to Proposition 3.1.2. Now we present an effective approach to obtain a corresponding dual solution. The value of β can be first decided as follows

β v = h(v jv ) if v ∈ V, v is not a leaf and j v = c v v , 0 otherwise.
It can be seen that β v ≥ 0 for any v ∈ V .

For any edge e = u e v e , let

α ueve = h(v e ) -β ue , Δ 0 ueve = 0 if α ueve ≥ 0, -α ueve otherwise.
Notice that α ueve + Δ 0 ueve ≥ 0 and Δ 0 ueve ≥ 0 always hold, but it is possible that α ueve < 0. For any leaf edge u e v e ∈ E, we have

α ueve + β ue = h(v e ) = w ueve . Consider a non-leaf node v ∈ V . By the definition of β v , if j v < c v v one has β v = 0. Thus j v β v = c v v β v (6.54) always holds. For any i > j v , we have that h(v i ) ≤ h(v jv ) = β v if j v = c v v , whereas h(v i ) ≤ 0 = β v if j v < c v v .
Hence we have h(v i ) ≤ β v and thus

α vv i + Δ 0 vv i = 0 ∀i > j v . (6.55)
Similarly, for any i ≤ j v it can be deduced from h

(v i ) ≥ β v that Δ 0 vv i = 0 ∀i ≤ j v . (6.56)
Therefore, for any non-leaf node v ∈ V , we have

jv i=1 h(v i ) = jv i=1 (α vv i + β v ) + qv i=jv+1 (α vv i + Δ 0 vv i ) = jv i=1 (α vv i + Δ 0 vv i + β v ) + qv i=jv+1 (α vv i + Δ 0 vv i ) = c v v β v + qv i=1 (α vv i + Δ 0 vv i ),
where the first equality comes from the definition of α vv i and (6.55), the second equality from (6.56), and the last equality from (6.54).

This gives us that for any non-leaf edge e = u e v e ∈ E, we have

α ueve + β ue = h(v e ) = w ueve + jv e i=1 h(v i e ) = w ueve + c ve ve β ve + qv e i=1 (α vev i e + Δ 0 vev i e ).
Consequently, we have

h(r) = g(r) = jr i=1 h(r i ) = c r β r + qr i=1 (α rr i + Δ 0 rr i ).
Hereafter we construct a solution

[ α β ], based on α +Δ 0 β
, that is integral, dual-feasible and with objective value g(r).

For each edge e = u e v e ∈ E, let d(e) denote the difference between the left-hand side and right-hand side of the dual constraint associated with e. For the vector α +Δ 0 β , we have

d(e) = α ueve + β ue + Δ 0 ueve -(w ueve + c ve ve β ve + qv e i=1 (α vev i e + Δ 0 vev i e )) = Δ 0 e .
Let the set of non-leaf edges which do not satisfy d(e) = 0 be

F = {e ∈ E : Δ 0 e > 0, e is not a leaf edge}.
Now we prove that there exists a vector

Δ 1 ∈ R E + such that α +Δ 0 +Δ 1 β
is dual-feasible. Algorithm 6.1 computes the vector Δ 1 . Algorithm 6.1: Algorithm on trees to obtain Δ 1

Input : Tree G = (V, E) and Δ 0 . Output:

Δ 1 . begin 1 Set Δ 1 = 0. while F = ∅ do 2
Take an edge e = u e v e ∈ F such that P rue ∩ F = ∅.

3

Pick one path P vev l between v e and any leaf v l ∈ v e .

4

For each edge in e ∈ P vev l 5 set Δ 1 e = Δ 1 e + Δ 0 ueve .

6

Set F = F \ {u e v e }.

Let α denote α + Δ 0 + Δ 1 . For each non-leaf edge e = u e v e , the d(e) corresponding to

[ α β ] is d(e) = Δ 0 ueve + Δ 1 ueve - qv e i=1 Δ 1 ueve .
Let C(e ) = {e ∈ E : e belongs to P vev l in Lines 4-5 of Algorithm 6.1} for any e ∈ E. Consider any non-leaf edge e = u e v e . We have

C(e) = qv e i=1 C(v e v i e ) \ {e}. The sets C(v e v i e ), i ∈ {1, • • • , q ve }, are pairwise disjoint. Thus d(e) = Δ 0 ueve + Δ 1 ueve - qv e i=1 Δ 1 ueve = Δ 0 ueve + e ∈C(ueve) Δ 0 e -( qv e i=1 e ∈C(vev i e )
Δ 0 e ) = Δ 0 ueve + e ∈C(ueve)

Δ 0 e -(Δ 0 ueve + e ∈C(ueve)

Δ 0 e ) = 0.
Hence, all the equations in (6.51) are satisfied. Furthermore, for any leaf edge e = u e v e ∈ E, one has

α ueve + β ue = α ueve = α ueve + Δ 0 ueve + Δ 1 ueve ≥ w ueve + Δ 1 ueve ≥ w ueve ,
which indicates that (6.52) is satisfied. For any e ∈ E, we have that α e + Δ 0 e ≥ 0 and Δ 1 e ≥ 0, which leads to α e ≥ 0. Therefore,

[ α β ] is dual-feasible.
Notice that for any edge rr i ∈ δ(r) as C(rr i ) = ∅, we have Δ 1 rr i = 0. Hence the following equation holds

g(r) = c r β r + qr i=1 (α rr i + Δ 0 rr i ) = c r β r + qr i=1 (α rr i + Δ 0 rr i + Δ 1 rr i ) = c r β r + qr i=1 α rr i .
This indicates that the objective value of

[ α β ] is g(r), and [ α β ] is dual-optimal.
Finally, vectors α and β are obtained by additions and subtractions involving only the components of w. So [ α β ] is integral if w is integral, which completes our proof.

On cycles

In this subsection, we completely characterize the polytope B x (G, r, c) on cycles by a TDI system. It is worth mentioning that the integrality of this polytope can also be obtained using a similar approach as for B xy (G, r, c) on trees and cycles in Section 4.4. However, for the sake of conciseness, we only present the proof based on the TDI-ness in this dissertation.

First of all, we introduce some notation.

For any edge e ∈ E, let

M e = {(M,π ) ∈ MP(G) : e ∈ M }, P e = {(M,π ) ∈ MP(G) : e ∈ E π \ δ(O)}.
Since G is a cycle, we can assume without loss of generality that

V = {r, v 1 , • • • , v n-1 }, E = {e 1 = rv 1 , e n = rv n-1 } ∪ {e i = v i-1 v i : i ∈ {2, • • • , n -1}}.
We consider four cases depending on the capacity of r and whether set O is empty.

6.7.2.1 Case 1. c r = 1 and O = {v o } Note that o ∈ {1, • • • , n -1}.
Let the two paths between r and v o be

P 1 = {e 1 , • • • , e o }, P 2 = {e o+1 , • • • , e n }.
From the connectivity inequalities (6.6), we have

x eo -x e 1 ≤ 0,
x e o+1x en ≤ 0, whereas from the capacity inequality (6.3) associated with r, we have

x e 1 + x en ≤ 1.
Then the capacity inequality (6.3) associated with v o , that is, x eo + x e o+1 ≤ 1, can be obtained as the sum of these three inequalities, and thus is redundant. After getting rid of some redundant inequalities from (6.3)-(6.5) and (6.6) we obtain the following linear system of inequalities (6.57)

x e i -x e i-1 ≤ 0 ∀i ∈ {2, • • • , o},
x e i -x e i+1 ≤ 0 ∀i ∈ {o + 1, • • • , n -1}, (6.58) 
x e 1 + x en ≤ 1, (6.59)

x e i ≤ 1 ∀i ∈ {1, n}.
(6.60)

x e i ≥ 0 ∀i ∈ {o, o + 1}. (6.61)
Notice that we consider (6.6) instead of (6.1) because of the existence of

v o ∈ O. Let G = (V , E ) be a path obtained from G by splitting v o into two nodes v 1 o and v 2 o , that is, V = {r, v 1 , • • • , v o-1 , v 1 o , v 2 o , v o+1 , • • • , v n-1 }, E = E \ δ(v o ) ∪ {v o-1 v 1 o , v 2 o v o+1 }.
Let c ∈ Z E be a vector such that c r = 1, and c v ≥ 2 for any v ∈ V \ {r}. System (6.57) -(6.61) corresponds to the system defining P xT (G , r, c ), where v o-1 v 1 o and v 2 o v o+1 substitute for e o and e o+1 , respectively. According to Theorem 6.7.5, the system composed of (6.57) -(6.61) is TDI. Consequently the following result holds. In this case we follow the same notation of P 1 and P 2 as for the last case. We show that (6.3)-(6.5) and (6.6) form a TDI system and then are sufficient to characterize B x (G, r, c). First, after getting rid of some redundant inequalities from (6.3)-(6.5) and (6.6) we obtain the following linear program

max w T x s.t. x e i -x fe i ≤ 0 ∀e i ∈ E \ δ(r), (6.62) x(δ(v o )) ≤ 1, (6.63 
)

x e i ≤ 1 ∀e i ∈ δ(r) \ δ(v o ), (6.64 
)

x e i ≥ 0 ∀e i ∈ δ(v o ), (6.65) 
where f e i = e i-1 for e i ∈ P 1 \ δ(r) and f e i = e i+1 for e i ∈ P 2 \ δ(r). Let the polytope that is defined by the aforementioned linear system be P 1 xC (G, r, c), that is,

P 1 xC (G, r, c) = {x ∈ R E :
x satisfies (6.62) -(6.65)}.

We show that the system defining P 1 xC (G, r, c) is TDI.

Theorem 6.7.7. The linear system composed of (6.62)-(6.65) is TDI.

Proof. Consider the linear program (6.66) where w ∈ R E . Let α be the dual variable corresponding to inequality (6.63). For any e ∈ E \δ(r), let β fe be the dual variable corresponding to inequality (6.62) associated with e (and then with f e ). For any e ∈ δ(r) \ δ(v o ), let γ e be the dual variable corresponding to inequality (6.64) associated with e. The dual linear program of (6.66) can be written as follows

max{w T x : x ∈ P 1 xC (G, r, c)},
min α + e∈δ(r)\δ(vo) γ e s.t. α ≥ w e ∀e ∈ δ(r) ∩ δ(v o ), (6.67) 
β e + γ e = w e ∀e ∈ δ(r) \ δ(v o ), (6.68)

α + β fe ≥ w e ∀e ∈ δ(v o ) \ δ(r), (6.69) -β e + β fe = w e ∀e ∈ E \ (δ(r) ∪ δ(v o )), (6.70) 
α,β e , γ e ≥ 0 ∀e ∈ E. (6.71)

As P 1 and P 2 can be deemed to be symmetric, the values of the dual variables for edges in P 1 and P 2 can obtained in the same way.

Let β , γ ∈ R E be two vectors which are obtained as follows. For e ∈ δ(r), let

β e = max{-w e , 0}
,

γ e = max{w e , 0}.
Then for each e ∈ E such that β fe has been calculated for f e , we obtain β e and γ e as the following 

β e =
. If e 1 ∈ δ(r) \ δ(v o ), that is, o ≥ 2, let γ e 1 = o-1 i=1 γ e i . Symmetrically, if e n ∈ δ(r) \ δ(v o ), that is, o ≤ n -2, let γ en = n i=o+2 γ e i .
We can deduce that regardless of whether v o is a neighbor of r or not, the following equation always holds

α + o-1 i=1 γ e i + n i=o+2 γ e i = ⎧ ⎪ ⎨ ⎪ ⎩ α + γ e 1 + γ en if o ∈ {2, • • • , n -2}, α + γ en if o = 1, α + γ e 1 if o = n -1 = α + e∈δ(r)\δ(vo) γ e .
Let

β e i = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ β e i + o-1 j=i+1 γ e j ∀i ∈ {1, • • • , o -1},
β e i + i-1 j=o+2 γ e j ∀i ∈ {o + 2, • • • , n}, β e i , otherwise.
Consequently for any i ∈ {2, • • • , o -1}, that is, e i ∈ P 1 \ (δ(r) ∪ δ(v o )), we have

β e i-1 -β e i = β e i-1 + o-1 j=i γ e j -(β e i + o-1 j=i+1 γ e j ) = β e i-1 + γ e i -β e i = w e i .
Symmetrically, for any i ∈ {o + 2, • • • , n}, that is, e i ∈ P 2 \ (δ(r) ∪ δ(v o )), we have

β e i+1 -β e i = w e i .
Thus (6.70) is satisfied by β. In addition for e o we have

β e o-1 -β eo = β e o-1 + γ eo -β eo = w eo ,
and Hence (6.69) is satisfied.

β
Furthermore, if e 1 ∈ δ(r) \ δ(v o ), we then have

-β e 1 + γ e 1 = -(β e 1 + o-1 i=2 γ e i ) + o-1 i=1 γ e i ≥ -β e 1 + γ e 1 = w e 1 .
Similarly, if e n ∈ δ(r) \ δ(v o ) we have

-β en + γ en = -(β en + n-1 i=o+2 γ e i ) + n i=o+2 γ e i ≥ -β en + γ en = w en .
which ensures that (6.68) is satisfied. Therefore,

α β γ
is dual-feasible.

We now construct a primal solution based on

α β γ . Let j 1 be the largest number in {1, • • • , o -1} with γ e j 1 > 0, that is, j 1 = max{i ∈ {1, • • • , o -1} : γ e i > 0}.
Let P j 1 = ∅ if such j 1 does not exist, otherwise let P j 1 denote the subpath of P 1 between r and e j 1 . Similarly, j 2 be the smallest number in {o + 1, • • • , n} with γ e j 2 > 0, that is,

j 2 = min{i ∈ {o + 1, • • • , n} : γ e i > 0}.
Correspondingly, let P j 2 = ∅ if such j 2 does not exist, otherwise let P j 2 denote the subpath of P 2 between r and e j 2 . As γ e j 1 > 0 and γ e j 2 > 0, one has β e j 1 = 0 and β e j 2 = 0. If α = 0, let

E * = P j 1 ∪ P j 2 .
If α > 0 and without loss of generality assume that α = γ eo , let

E * = P 1 ∪ P j 2 .
Clearly E * induces a bounded r-tree of G, and thus x E * is a feasible primal solution.

Furthermore, for any j ∈ {1, • • • , o}, we have

j i=1 w e i = γ e 1 -β e 1 + j i=2 (γ e i -β e i + β e i-1 ) = -β e 1 + j i=1 γ e i .
Symmetrically, for any j ∈ {o + 1, • • • , n}, we have

n i=j w e i = γ en -β en + n-1 i=j (γ e i -β e i + β e i+1 ) = -β en + n i=j γ e i .
Furthermore, if α = 0, as β e j 1 = 0 and β e j 2 = 0, x E * satisfies

e∈E * w e = j 1 i=1 w e i + n i=j 2 w e i = -β e j 1 + j 1 i=1 γ e i -β e j 2 + n i=j 2 γ e i = j 1 i=1 γ e i + n i=j 2 γ e i = α + e∈δ(r)\δ(vo) γ e .
Similarly, if α > 1, we have β eo = 0 and β e j 2 = 0, and thus x E * satisfies In this case, all the capacity constraints (6.3) are redundant because |δ(v)| ≤ c v for all v ∈ V . The only pertinent subtour elimination inequality in (6.2) is x(E) ≤ |E| -1, since the other inequalities (6.2) are redundant. Thus, the primal linear program for MBrT problem whose constraints are (6.1)-(6.5) and the matching-partition inequalities (6.7) can be rewritten as follows Given an edge-weight vector w ∈ R E , let the set of edges with positive weights be

e∈E * w e = o i=1 w e i + n i=j 2 w e i = -β e j 1 + o i=1 γ e i -β e j 2 + n i=j 2 γ e i = γ eo + o-1 i=1 γ e i + n i=j 2 γ e i = γ eo + o-1 i=1 γ e i + n i=o+2 γ e i = o-1 i=1 γ e i + n i=o+2 γ e i = α + e∈δ(r)\δ(vo)
max w T x s.t. x(E) ≤ |E| -1, (6.72) x(M ) -x(E π ) ≤ 0 ∀(M,π ) ∈ MP(G), ( 6 
E + (w ) = {e ∈ E : w e > 0},
and let the set of edges with negative weights be

E -(w ) = {e ∈ E : w e < 0}
.

Let E 0 (w ) = E \ (E + (w ) ∪ E -(w )).
In order to obtain a dual-feasible solution, we introduce the following concept related to partitions of E. For the sake of homogeneity in our presentation, we allow one of the partition classes to be empty.

Definition 6.7.9. Given a cycle G = (V, E) and a vector w ∈ R E , an alternating edge 

partition ρ = {H 0 , F 1 , H 1 , • • • , H q-1 , F q } of the edge set E such that 1. δ(r) ∩ H 0 = ∅ if H 0 = ∅ and δ(r) ∩ F i = ∅ for i ∈ {1,
6. F i ∪ H i ∪ F i+1 induces a connected subgraph of G for i ∈ {1, • • • , q -1}.
The sets Several examples of alternating edge partition are given in Figure 6.9, where the value by each edge is its w -value, the solid lines represent the edges in the set H 0 , • • • , H q-1 , and the dashed lines the edges in the set

H 1 , • • • , H q-1 (F 1 , • • • , F q ,
F 1 , • • • , F q .
Consider Algorithm 6.2 that creates an alternating edge partition ρ 1 (w ) based on an 

(w ) = {H 1 0 , F 1 1 , H 1 1 , • • • , H 1 q 1 -1 , F 1 q 1 }. begin 1 Let H 1 0 ⊆ E be the edge set of the component that contains r in G[E \ E -(w )]. 2 Let H 1 1 , • • • , H 1 p 1 be the edge sets of the components in G[E \ E -(w )
] such that each of them does not contain r and contains at least one edge in

E + (w ). if H 1 0 = ∅ then 3 Let F 1 1 , • • • , F 1 q 1 be the edge sets of the components in G[E \ p 1 i=0 H 1 i ]. else 4 Let F 0 1 , F 1 2 , • • • , F 1 q 1 -1 be the edge sets of the components in G[E \ p 1 i=0 H 1 i ],
where r is an inner node of the path induced by F 0 1 .

5

Split F 0 1 into two sets F 1 1 , F 1 q 1 , each of which induces a path with one end being r.

The following proposition holds, Proposition 6.7.10. Algorithm 6.2 outputs an alternating edge partition ρ 1 (w ).

Proof. It is trivial to see that Properties 2 and 3 of Definition 6.7.9 are guaranteed by Lines 1 and 2, whereas Properties 4 and 6 of Definition 6.7.9 are guaranteed by Line3.

Consider now Property 5 of Definition 6.7.9. Assume that there exists

i ∈ {1, • • • , q 1 } such that F 1 i ∩ E -(w ) = ∅.
Then the edges in F 1 i will be put, either in

H 1 0 if F 1 i is adjacent to H 1 0 in Line 1, or in H 1 j for some j ∈ {1, • • • , p 1 } in Line 2.
Finally, we claim that p 1 = q 1 -1 if H 1 0 = E, that is, the number of positive classes is always one less than the number of negative classes if H 1 0 = E. We prove this claim in two cases with H 1 0 = ∅ and H 1 0 = ∅. If H 1 0 = E and H 1 0 = ∅, as there do not exist two sets of H 1 0 , H 1 1 , • • • , H 1 p 1 that are adjacent, from Line 3 and the fact that G is a cycle, we also have that there do not exist two sets of F 1 1 , • • • , F 1 q 1 that are adjacent. Thus q 1 = p 1 + 1. Similarly, if H 1 0 = E and H 1 0 = ∅, there do not exist two sets of H 1 1 , • • • , H 1 p 1 that are adjacent. Then Line 4 ensures that we also have that there do not exist two sets of

F 0 1 , F 1 2 , • • • , F 1 q 1 -1 that are adjacent. Thus q 1 -1 = p 1 .
Given an edge-weight vector w k ∈ R E and an alternating edge partition ρ k with at least two negative classes, Algorithm 6.3 finds a matching-partition (M k , π k ) based on ρ k , obtains the corresponding dual variable β (M k ,π k ) , and modifies the edge-weight vector w k into a new weight vector w k+1 .

Algorithm 6.3: Algorithm to obtain a matching-partition and its associated dual variable based on ρ k and w k Input : Alternating edge partition Proof. First, it is trivial to see that there exists a set S 0 ⊆ V such that r ∈ S 0 and

ρ k = {H k 0 , F k 1 , H k 1 , • • • , H k q k -1 , F k q k } and w k ∈ R E . Output: Matching-partition (M k , π k ), β (M k ,π k ) and w k+1 . begin 1 Select f + i ∈ H k i ∩ E + (w k ) for i ∈ {1, • • • , q k -1}. 2 Let M k = {f + 1 , • • • , f + q k -1 }. 3 Select f - i ∈ F k i ∩ E -(w k ) for i ∈ {1, • • • , q k }. 4 Let π k be a partition of V such that E π k = {f - 1 , • • • , f - q k }. 5 Set β (M k ,π k ) = min{|w k e | : e ∈ M k ∪ E π k }.
δ(S 0 ) = {f - 1 , f - q k }. For each i ∈ {1, • • • , q k -1}
, from the definition of alternating edge partition, one has that f + i is the only edge in M k in the path between f - i and f - i+1 that does not contain r as an inner node. Thus, for each 3 Create a partition of edges ρ 1 based on w 1 using Algorithm 6.2.

i ∈ {1, • • • , q k -1} one can find a set S i with δ(S i ) = {f - i , f - i+1 }, and hence (M k , π k ) is a matching-partition of G. Furthermore, as (M k ∪ E π k ) ∩ E 0 (w k ) = ∅ we have E 0 (w k ) ⊆ E 0 (w k+1 ).

4

Set k = 1. while q k ≥ 2 do 5

Compute a matching-partition (M k , π k ) and β (M k ,π k ) based on ρ k and w k , and update w k into w k+1 using Algorithm 6.3.

6

Update ρ k into ρ k+1 based on w k+1 using Algorithm 6.4.

7 Set k = k + 1 8
Set γ e = max{w k e , 0} and δ e = max{-w k e , 0}. if q k = 0 and k = 1 then 9 Set E * = E \ {f } where f is an edge with γ f = 0.

else if q k = 0 and k ≥ 2 then 10 Set E * = E \ F k-1 1 . else if q k = 1 then 11 Set E * = E \ F k 1 .
Recall that Algorithm 6.3 ensures that for the k-th iteration there exists e ∈ M k ∪ E π k with w k+1 e = 0, and thus Algorithm 6.5 requires at most n -2 iteration to obtain the dual solution.

Consider now the k-th iteration of Algorithm 6.5 Furthermore, Algorithm 6.4 ensures that if k ≥ 2 and q k ≥ 1, then for each

i ∈ {1, • • • , q k }, F k i satisfies |F k ∩ E π k-1 | -|F k j ∩ M k-1 | = 1. If q k ≥ 2, we clearly have |F k ∩ E π k | -|F k j ∩ M k | = 1 -0 = 0.
As a result, we deduce recursively that,

|F k ∩ E π j | -|F k ∩ M j | = 1 ∀j ∈ {1, • • • , k}. (6.79)
Additionally, if a matching-partition (M k , π k ) is obtained at the k-th iteration of Algorithm 6.5, we have the following equations from Algorithm 6.3

w k+1 e = w k e -β (M,π) ∀e ∈ M k , w k+1 e = w k e + β (M,π) ∀e ∈ E π k , w k+1 e = w k e ∀e ∈ E \ (M k ∪ E π k ).
Let ρ l be the last alternating edge partition obtained by Algorithm 6.5, then the following equation holds

w e = α + w 1 e = α + w l e + (M,π)∈Me β (M,π) - (M,π)∈Pe β (M,π) .
Moreover, from Line 8 we have

w l e = γ eδ e ∀e ∈ E.

Hence, Algorithm 6.5 eventually enforces the following equation

w e = α + γ e -δ e + (M,π)∈Me β (M,π) - (M,π)∈Pe β (M,π) .
In addition, we clearly have that α ≥ 0, β (M,π) ≥ 0 for any (M,π ) ∈ MP(G), and γ e , δ e ≥ 0 for any e ∈ E. Therefore, the dual solution

α β γ
obtained by Algorithm 6.5 is feasible.

If q 1 = 0, from Line 9 one has E * = E \ {f } with γ f = 0 for some f ∈ E, δ e = 0 for any e ∈ E, and β (M,π) = 0 for any (M,π ) ∈ MP (G). Clearly E * induces a bounded r-tree of G, and its incidence satisfies

w T x E * = e∈E * w e = e∈E * (α + γ e ) = (|E| -1)α + e∈E * γ e = (|E| -1)α + e∈E γ e .
Thus, x E * and α β γ are optimal.

If q 1 ≥ 1, one immediately has α = 0. Line 9 ensures that there does not exist any edge e ∈ E * with δ e > 0, and there does not exist any edge e ∈ E \ E * with γ e > 0.

According to the algorithm and (6.79), for any As a direct consequence of Theorem 6.7.13, we have the following corollary. Corollary 6.7.14. Let G be a cycle with c r ≥ 2 and O = ∅, we then have

β (M,π) > 0, one has |(E \ E * ) ∩ E π | -|(E \ E * ) ∩ M | = 1. As a result we have |E * ∩ E π | -|E * ∩ M | = 0, which leads to e∈E * ( (M,π)∈Me β (M,π) - (M,π)∈Pe β (M,π) ) = (M,π)∈MP(G) (|E * ∩ M | -|E * ∩ E π |)β (M,π) = 0.
B x (G, r, c) = P 2 xC (G, r, c).
Furthermore, in this case we clearly have R x (G, r) = B x (G, r, c) as the capacity constraints are redundant. Hence we also have the following result. In this case, the proof proceeds in a similar fashion as the previous case, and we also reuse Algorithm 6.2 Algorithm 6.3, Algorithm 6.4 to help compute the dual solution.

First of all, the primal linear program for MBrT problem that contains (6.1)-(6.5) and the matching-partition inequalities (6.7) can be rewritten as follows

max w T x s.t. x(δ(r)) ≤ 1, (6.80) x(M ) -x(E π ) ≤ 0 ∀(M,π ) ∈ MP(G), (6.81)
x e ≥ 0 ∀e ∈ E. (6.82)

It is worth mentioning that the upper bound inequalities for e ∈ E \ δ(r) are redundant because it can be obtained by the combination of (6.80) and x ex(δ(S)) ≤ 0 with S = V \{r}. Let the polytope defined by the aforementioned linear system of inequalities be

P 3 xC (G, r, c) = {x ∈ R E :
x satisfies (6.80) -(6.82)}.

We give the following theorem regarding the TDI-ness of the linear system defining P 3 xC (G, r, c).

Theorem 6.7.16. The linear system composed of (6.80)-(6.82) is TDI.

Proof. Consider the linear program max{w T x : x ∈ P 3 xC (G, r, c)}, (6.83) where w ∈ R E . Let α r be the dual variable corresponding to inequality (6.80). For any (M,π ) ∈ MP(G), let β (M,π) be the dual variable corresponding to inequality (6.81) associated with (M,π ). The dual linear program of (6.83) is the following Create a partition of edges ρ 1 based on w 1 using Algorithm 6.2.

3 Set k = 1. while q k ≥ 2 do 4
Compute a matching-partition (M k , π k ) and β (M k ,π k ) based on ρ k and w k , and update w k into w k+1 using Algorithm 6.3, with the following priority rules for edges in F k 1 and F k q k . If there exists e ∈ F k 1 \ e 1 with w k e < 0, then select e to be in E π k ; if there exists e ∈ F k q k \ e n with w k e < 0, then select e to be in E π k 5 Update ρ k into ρ k+1 based on w k+1 using Algorithm 6.4. As a result, we have

w e ≤ (M,π)∈Me β (M,π) - (M,π)∈Pe β (M,π) ∀e ∈ E \ δ(r).
Similarly, for any e ∈ δ(r), as M e = ∅ we have

w e = γ e + (M,π)∈Me β (M,π) - (M,π)∈Pe β (M,π) , = γ e - (M,π)∈Pe β (M,π) , ≤ α r - (M,π)∈Pe β (M,π) .
Furthermore, it is clear that α r ≥ 0 and β (M,π) ≥ 0 for any (M,π ) ∈ MP(G). Hence, [ Consider now α r > 0 and ρ 1 contains at least one positive class. Without loss of generality, assume γ en = α r . We clearly have l ≥ 2, where l is the number of the last iteration. If there does not exist e ∈ E \ δ(r) with γ e < 0, let E * = E \ F l-1 1 . If there exists e ∈ E \ δ(r) with γ e < 0, let j be the largest number in {2, • • • , n -1} such that there exists γ e i = w l e i < 0. Without loss of generality let e ∈ F l-1 j ∈ ρ l-1 , j ∈ {1, • • • , q l-1 }. Then, let E * be the path between e n and H l-1 j that does not contain F l-1 j , that is,

E * = H l-1 j ∪ F l-1 j+1 ∪ • • • ∪ H l-1 q l-1 -1 ∪ F l-1 q l-1 .
In either case, we have γ e = 0 for any e ∈ E * \ δ(r). 

β (M,π) - (M,π)∈Pe β (M,π) ) = γ en + (M,π)∈MP(G) (|E * ∩ M | -|E * ∩ E π |)β (M,π) = α r .
Therefore, x E * and [ αr β ] are both feasible and optimal. Finally, α r and components of vector β are obtained by additions and subtractions involving only the components of w. Thus [ αr β ] is integral if w is integral, which completes our proof.

Consequently, the next corollary follows immediately. Corollary 6.7.17. Let G be a cycle with c r = 1 and O = ∅, we then have

B x (G, r, c) = P 3 xC (G, r, c).
The discussion on TDI systems that characterize B x (G, r, c) on trees and cycles thereby concludes.

Conclusion

Unlike the r-tree polytope R x (G, r) or the extended bounded r-tree polytope B xy (G, r, c), the bounded r-tree polytope B x (G, r, c) possesses more unexplored aspects. First, we showed that B x (G, r, c) is also full-dimensional under the assumption that there is no unreachable elements. Meanwhile, comparing to R x (G, r), the necessary and sufficient conditions for the inequalities to be facet-defining become more complicated as we consider the capacity factor. There are more substructures to avoid in different situations in order to ensure the facet-defining property. For example, the presence of bridges, articulation nodes, especially articulation nodes with capacity 2, and triangles with specific properties prevent certain inequalities from being facet-defining. Besides, for any facetdefining inequality, there are certain general criteria concerning the coefficients of nodes in O and the right-hand side.

Furthermore, matching-partition inequalities and acyclicity-connectivity inequalities were inherited from the facial study of R x (G, r) with some adjustments made to incorporate the capacity factor. Upload capacity inequalities were discovered while studying the property of the right-hand side of the facet-defining inequalities, whereas capacity-i inequalities and i-articulation were developed based on the features of articulation nodes and nodes in O.

We then showed that all these inequalities can be obtained by projection of the valid inequalities for B xy (G, r, c).

Besides, we also obtained some bounds on the Chvátal-Gomory rank of the matchingpartition inequalities and the upload capacity inequalities, and showed that they are not trivially included in the first Chvátal closure even on trees and cycles. With the help of upload capacity inequalities and matching-partition inequalities, we gave for each case on trees and cycles a TDI linear system that completely characterizes B x (G, r, c).

In the next chapter, we focus on the computational aspect of the MBrT problem. We discuss the separation problems of all the previously introduced inequalities for both B xy (G, r, c) and B x (G, r, c), and study their influence via computational test.

Chapter 7

Computational study

In this chapter, we describe four branch-and-cut frameworks that were used to perform the computational simulation on the MBrT problem, and present the results obtained under several different setups. As there is no benchmark we can refer to in the literature, we compare the performances of the enhanced formulations incorporating the newly introduced constraints and the original formulations with the intention of showing the effectiveness of the new constraints on the computational aspect of the problem. The first two frameworks are based on the initial formulations of B x (G, r, c) and B xy (G, r, c) with CPLEX default setting. The other two frameworks correspond to enhanced formulations for B x (G, r, c) and B xy (G, r, c) incorporating some new constraints introduced in the previous chapters and a matheuristic (that is, a heuristic that relies on mathematical programming models, see [START_REF] Ball | Heuristics based on mathematical programming[END_REF], [START_REF] Papageorgiou | Recent progress using matheuristics for strategic maritime inventory routing[END_REF]) to generate primal solutions. They are tested on a variety of instance sets with different graphs, different capacity settings and uniform edge weights. Finally, the results are presented and analyzed.

Methodology

In our work, the test instances have uniform edge weights, and they are selected from two different sources. The first part of the instances are fetched from SteinLib Testdata Library [START_REF] Koch | Steinlib testdata library[END_REF]. As SteinLib files are not designed for scenario carrying information for nodes such as capacities in our case, a capacity file is generated for each of the SteinLib instances. The node number of the SteinLib instances ranges from 50 to 5200.

The rest of the instances are generated as random connected graphs with different capacity settings. Each generated instance contain a random connected graph, which is generated by creating a tree first and adding certain amount of edges into it after. The capacity of The instances are tested on servers equipped with CPUs of Intel ® Xeon ® E5-2670v2 with 2.50 GHz clock rate and 64 GB available random access memory (RAM). In order to compare the performance of the algorithms in a clear fashion and have better control of each cut generated in the process, the test is only run with single thread.

In this dissertation, four different frameworks are put into comparison. The first one uses a near minimal model for B x (G, r, c) to guarantee the feasibility of the solution and employs the default setting of CPLEX. This framework is referred to as CP LEX x hereafter. CP LEX x uses the following system of inequalities as an initial input, which necessarily has a polynomial number of constraints.

x ex(δ({u, v}) \ δ(O)) ≤ 0 ∀e = uv ∈ E \ δ(r), (7.1)

x(E) ≤ |E| -1, (7.2)

x(δ(v)) ≤ c v ∀v ∈ V, (7.3) 0 ≤ x e ≤ 1 ∀e ∈ E. (7.4)
In order to cut the infeasible integral solutions, CP LEX x also includes a separation algorithm for the following connectivity inequalities and the acyclicity inequalities

x e -x(δ(S) \ δ(O)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (7.5) x(E[S]) ≤ |S| -1 ∀S ⊆ V, |S| ≥ 3. (7.6)
The separation problem of (7.5) and (7.6) with respect to an integral solution can be solved by some search algorithm. For (7.5) one looks for the connected component of the support graph of a solution that does not contain r, whereas for (7.6) one looks for a 2-connected block of the support graph of a solution. The cutting planes generated while cutting integral infeasible solutions are also called lazy cuts in CPLEX.

The second framework, namely BRT x , also contains (7.1)-(7.4) as initial input, and separates (7.5) and (7.6) through lazy cuts. In addition, in order to help cut the infeasible fractional solutions, we also introduce some separation algorithms or cut-generation heuristics for valid inequalities to generate the so-called user cuts. The user cuts in BRT x include those for (7.5), (7.6), and as well as for the following inequalities (which has been previously introduced in Section 6.4):

the matching-partition inequalities

x(M ) -x(E π \ δ(O)) ≤ 0 ∀(M,π ) ∈ MP(G), (7.7)
the acyclicity-connectivity inequalities

x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0 ∀W ⊆ S ⊆ V \ {r}, ( 7.8) 
the upload-capacity inequalities

x(δ(v)) -c v x(δ(S) \ δ(O \ {v})) ≤ 0 ∀v ∈ S ⊆ V \ {r}, ( 7.9) 
the i-articulation inequalities (7.10) and the tightening inequalities

x(F S ) -(i -2)x(E[S]) -(i -1)x(δ(R) ∩ δ(S)) ≤ 0 ∀S ⊆ V a ∩ S i ,
x(δ(O)) -x(δ(R)) ≤ v∈S (c v -2) ∀S ⊆ V \ ({r} ∪ O). (7.11)
Note that none of these inequalities is mandatory to be included in the user cuts, and thus the implementation of BRT x can vary depending on which sets of user cuts are selected, and as well as on the priorities set for different sets of user cuts.

The third framework, which is referred to as CP LEX xy , uses a near minimal model for B xy (G, r, c) with he following system of inequalities as an initial input.

y r = 1, (7.12)

x(E)y(V \ {r}) = 0, (7.13) (7.16) In order to cut the infeasible integral solutions, CP LEX xy also need to include a separation algorithm for the following extended subtour elimination inequalities

x(δ(v)) ≤ c v y v ∀v ∈ V, (7.14) 0 ≤ x e ≤ 1 ∀e ∈ E. (7.15) 0 ≤ y v ≤ 1 ∀v ∈ V.
x(E[S])y(S \ {v}) ≤ 0, ∀v ∈ S ⊆ V.

(7.17)

Particularly, we first check if there exists any edge in the solution with one of its ends not selected, that is, to separate x ey v ≤ 0 for any e ∈ δ(v), v ∈ V . Then, similarly to CP LEX x , one can look for a 2-connected block of the support graph of a solution to generate the other lazy cuts (7.17).

Correspondingly, the last framework, namely BRT xy , also uses (7.12) -(7.16) as initial input and contains the same lazy cuts as CP LEX xy . Besides, in the user cuts of BRT xy we also include the separation of (7.17) and the following constraint

y v -x(δ(S) \ δ(O \ {v})) ≤ 0 ∀v ∈ S ⊆ V \ {r}. (7.18)
Moreover, both BRT x and BRT xy include a matheuristic to generate integral feasible solutions and a preprocess to get rid of the unreachable elements of the graph.

A brief overview of the four different frameworks can be found in Table 7.2, while Table 7.3 shows their difference in the sense of initial models and cuts.

The following two sections present, for each set of inequalities, the separation problem and algorithms used to generate user cuts.

Separation problems for valid inequalities

For the separation problems, the number of some sets of the aforementioned inequalities such as box inequalities and capacity inequalities, are polynomial, and thus they can be easily separated in polynomial time. In the remainder of this section, we discuss 

Connectivity inequalities

The separation problem of the connectivity inequalities (7.5), that is, x e -x(δ(S)\δ(O)) ≤ 0 for e ∈ E[S], S ⊆ V \{r}, can be solved in polynomial time, as stated in the proposition below.

Proposition 7.2.1. The separation problem of (7.5) reduces to |V \ O| -1 minimum st-cut calculations.

Proof. Given a vector x ∈ R E , set the weight w e of each edge e in E as

w e = 0 if e ∈ δ(O), x e otherwise.
Note that we have w(δ(S)) = x(δ(S) \ δ(O)) for any S ⊆ V . For any V \ ({r} ∪ O) let S v denote the node set containing v that induces a min cut between r and v, and let f v denote an edge in δ(v) ∩ E[S v ] with the maximum value of x fv , that is, x ew(δ(S e )) ≤ x fuw(δ(S u )), Therefore, if there exists an inequality in (7.5) that is violated by x, we have

S v = argmin S {w(δ(S)) : v ∈ S ⊆ V \ {r}, O ⊆ S}, f v = argmax e {x e : e ∈ δ(v) ∩ E[S v ]}.
max{x e -w(S e ) : e ∈ E \ δ(r)} = max{x fv -w(δ(S v )) : v ∈ V \ {r}, δ(v) ∩ E[S v ] = ∅}.
Otherwise if there does not exist any inequality in (7.5) that is violated by x, we have either δ Calculate the min cut between r and v to obtain

(v) ∩ E[S v ] = ∅ for all v ∈ V \ {r}, or max{x fv -w(δ(S v )) : v ∈ V \ {r}, δ(v) ∩ E[S v ] = ∅}≤
S v and f v (if exists). if δ(v) ∩ E[S v ] = ∅ and x fv -w(δ(S v )) > λ then
To summarize, finding the most violated inequalities in (7.5) reduces to |V \ ({r} ∪ O)| minimum st-cut calculations. Algorithm 7.1 demonstrates the algorithm to solve the separation problem of (7.5).

Upload capacity inequalities

The separation problem of the upload capacity inequalities (7.9), that is, x(δ(v))c v x(δ(S) \ δ(O \ {v})) ≤ 0 for v ∈ S ⊆ V \ {r}, can be solved in polynomial time.

Proposition 7.2.2. The separation problem of (7.9) reduces to |V | -1 minimum st-cut calculations.

Proof. Given a node v ∈ V \ {r} and a vector x ∈ R E , let the weight of an edge e ∈ E be

w v e = 0, if e ∈ δ(O \ {v}), x e , otherwise.
Then let S v be the node set containing v that induces a min cut between r and v, that is,

S v = argmin S {w v (δ(S)) : v ∈ S ⊆ V \ {r}}.
Then the separation problem reduces to obtaining

max{x(δ(v)) -S v : v ∈ S ⊆ V \ {r}}.
Therefore, at most |V | -1 minimum st cut calculations are needed to find a most violated inequality in (7.9). Moreover, similar result can be obtained for (7.18), that is, Proof. We follow the same notation and edge-weight vector as previously defined for the separation problem of (7.9). Clearly, we have the following relation

y v -x(δ(S) \ δ(O \ {v})) ≤ 0 for v ∈ S ⊆ V \ {r},
max{y v -x(δ(S) \ δ(O \ {v})) : v ∈ S ⊆ V \ {r}} = max{y v -S v : v ∈ S ⊆ V \ {r}}.
Therefore, the proposition holds.

Subtour elimination inequalities

For the separation of the subtour elimination inequalities (7.6), that is, x(E[S]) ≤ |S| -1 for S ⊆ V , [START_REF] Padberg | Trees and cuts[END_REF] showed that it can be done in polynomial time using at most |V |-2 maximum flow calculations. Moreover, we generalize their approach to an extent that allows us to separate a series of inequalities with similar structures, including not only (7.6) but also the extended elimination inequalities (7.17), that is,

x(E[S]) -y(S \ {v}) ≤ 0 for v ∈ S ⊆ V .
We first claim that the following lemma is true.

Lemma 7.2.4. Given a vector [ x y ] ∈ R E+V , for any node u ∈ V , m u = max{x(E[S]
)y(S) : u ∈ S ⊆ V } can be obtained with a single minimum st-cut calculation.

Proof. This proof proceeds similarly to the proof of [START_REF] Padberg | Trees and cuts[END_REF]. First, we construct a new graph G * based on G and [ x y ] as follows. We add two nodes s and t as source and sink to G, and for each v ∈ V , we add two edges sv and vt with weights

w sv = max{ 1 2 x(δ G (v)) -y v , 0}, w vt = max{y v - 1 2 x(δ G (v)), 0}.
For each edge e in G, we assign the weight

w e = 1 2 x e .
For any S ⊆ V , the weight of the cut δ G * (S ∪ {s}) can be calculated as follows.

w(δ G * (S ∪ {s})) = v∈V \S max{ 1 2 x(δ G (v)) -y v , 0} + v∈S max{y v - 1 2 x(δ G (v)), 0} + 1 2 x(δ G (S)) = v∈V max{ 1 2 x(δ G (v)) -y v , 0} + v∈S (max{y v - 1 2 x(δ G (v)), 0} -max{ 1 2 x(δ G (v)) -y v , 0}) + 1 2 x(δ G (S)) = v∈V max{ 1 2 x(δ G (v)) -y v , 0} + v∈S (y v - 1 2 x(δ G (v))) + 1 2 x(δ G (S)) = v∈V max{ 1 2 x(δ G (v)) -y v , 0} + (y(S) -x(E[S]) - 1 2 x(δ G (S))) + 1 2 x(δ G (S)) Proof. Given [ x y ] ∈ R E+V , similarly, let V = {v 1 , • • • , v n }, S i = {v i , • • • , v n } for i ∈ {1, • • • n}, and m i = max{x(E[S]) -y(S) : v i ∈ S ⊆ S i }.
According to Lemma 7.2.4, one can obtain m i , and

S i = argmax S {x(E[S]) -y(S) : v i ∈ S ⊆ S i }
with a single minimum st-cut calculation. Additionally, as |S n | = 1 and (7.17) considers node sets with at least two nodes, thus

max{x(E[S]) -y(S \ {v}) : v ∈ S ⊆ V, |S| ≥ 2} = max{m i + max{y u : u ∈ S i } : i ∈ {1, • • • , n -1}}. Therefore, max{x(E[S]) -y(S \ {v}) : v ∈ S ⊆ V, |S| ≥ 2} can be obtained with |V | -1 minimum st-cut calculations.

Matching-partition inequalities

As mentioned earlier, [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF] have studied similar matching-partition constraints for the connected subgraph problem. In order to distinguish the matchingpartitions for the two problems, we call the pair (M,π ) a CSP matching-partition of G,

if π = {S 1 , • • • , S p }, p ≥ 1, is a partition of V and M = {e 1 , • • • , e p } is a matching of G with e i ∈ E[S i ] for all i ∈ {1, • • • , p}. Denote MP CSP (G)
the set of all CSP matching-partitions of G. The CSP matching-partition constraint is as follows.

x(M ) -x(E π ) ≤ 1 ∀(M,π ) ∈ MP CSP (G).
The difference between the two versions of matching-partition inequalities is that in the matching-partition for the MBrT problem, a matching edge in the partition class containing r is unnecessary. [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF] have proved by a polynomial transformation from multiterminal cut problem, the separation problem of the CSP matching-partition constraint is N P-hard. Due to the relation between CSP and MBrT problem, we prove the N P-hardness of the separation of the matching-partition inequalities by reducing the separation problem of the CSP matching-partition inequalities to it. Let x be any vector in R E , and

g MBrT x (M,π ) = x(M ) -x(E π \ δ(O)) ∀(M,π ) ∈ MP(G), g CSP x (M,π ) = x(M ) -x(E π ) ∀(M,π ) ∈ MP CSP (G).
The following lemma has been proven by [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF].

Lemma 7.2.7. Given a vector x ∈ R E , the problem of finding max{g CSP x (M,π ) : (M,π ) ∈ MP CSP (G)} is N P-hard.

Then we prove the N P-hardness of the separation problem of the matching-partition inequalities for the MBrT problem by showing a polynomial-time reduction from the separation problem of the matching-partition inequalities for CSP to it. Proposition 7.2.8. The separation problem of the CSP matching-partition inequalities can be reduced to a polynomial number (at most |V | -1) of separation problems of matching-partition inequalities (7.7).

Proof. Given a instance of CSP problem on graph G = (V, E), consider an arbitrary node u in V . For each v ∈ N (u), we obtain a new graph denoted as G v by contracting the edge uv into a node r v . Note we have O

= ∅ for G v . Let (M v , π v ) be a matching-partition of G v such that g MBrT x (M , π ) is maximized, that is, g MBrT x (M v , π v ) = max{g MBrT x (M,π ) : (M,π ) ∈ MP(G v )}. Let (M , π ) be a CSP matching-partition of G such that g CSP x (M , π ) is maximized, that is, g CSP x (M , π ) = max{ CSP x (M,π ) : (M,π ) ∈ MP CSP (G)}.
Without loss of generality, for v ∈ N (u), let S v 0 be the partition class of π v that contains r v , and let S v 0 be a subset of V such that

S v 0 = S v 0 ∪ {u, v} \ {r v }.
Let e v 0 be the edge in E[S v 0 ] with the maximum value of x e v 0 , that is,

e v 0 = argmax e {x e : e ∈ E[S v 0 ]}.
We claim that the following relation holds.

g CSP x (M , π ) = max{g MBrT x (M v , π v ) + x e v 0 : v ∈ N (u)}.
For a given v ∈ N (u), it can be seen that,

g MBrT x (M v , π v ) + x e v 0 = max{x(M ) -x(E π ) : (M,π ) ∈ MP CSP (G), uv / ∈ E π }.
Moreover, it is known that for any (M,π ) ∈ MP CSP (G) there exists some e ∈ δ(u), such that e / ∈ E π , since otherwise u is isolated. Hence, one has

g CSP x (M , π ) = max{x(M ) -x(E π ) : (M,π ) ∈ MP CSP (G), uv / ∈ E π , v ∈ N (u)} = max{g MBrT x (M v , π v ) + x e v 0 : v ∈ N (u)}.
Therefore, if the matching-partition inequalities on G v , for v ∈ N (u), can be separated in polynomial time, then the matching-partition inequalities for CSP on G can also be separated in polynomial time.

This shows that the separation of matching-partition inequalities (7.7) is at least as hard as the separation of the matching-partition inequalities for CSP, and thus its N P-hardness is proved.

Proposition 7.2.9. The separation problem of (7.7) is N P-hard.

Despite its N P-hardness the separation problem of the matching-partition inequalities can be solved in polynomial time on cycles and trees. On trees, the only matchingpartition inequalities that define facets are the connectivity inequalities, for which the separation problem is known to be polynomially solvable according to Proposition 7.2.1.

On cycles, an approach for the separation of the matching-partition inequalities is presented below.

Firstly, let G be a cycle with O = {v o }. Let (M,π ) ∈ MP(G) be a matching-partition with |M | ≥ 2. From Subsections 6.4.1 and 6.7.2, we can see that the matching-partition inequalities associated with (M,π ) is redundant. Hence, we can focus on the case that has

O = ∅, which means g MBrT x (M,π ) = x(M ) -x(E π ) for any (M,π ) ∈ MP(G).
Let G = (V, E) be a cycle with O = ∅. Denote by G = (V , E ), the cycle obtained by extending r to an edge rr . Given a vector x ∈ R E , let x be a vector in R E such that

x e = x e if e ∈ E, L if e = rr ,
where L is a sufficiently large number that satisfies L > x e for any e ∈ E. Now we show that the following proposition holds.

Proposition 7.2.10.

max{g MBrT x (M,π ) : (M,π ) ∈ MP(G)} = max{g CSP x (M , π ) : (M , π ) ∈ MP CSP (G )} -L.
Proof. We claim that for any CSP matching-partition (M 

max{x(M ) -x(E π ) : (M,π ) ∈ MP(G)} = max{x(M ) -x(E π ) : (M , π ) ∈ MP CSP (G ), rr ∈ M } -L.
Therefore, the proposition holds.

According to this proposition, the separation problem of the matching-partition inequalities is polynomially solvable on cycles if the separation problem of the CSP matchingpartition inequalities is polynomially solvable on cycles. Didi-Biha et al. [2015] showed that the separation problem of the CSP matching-partition inequalities is polynomially solvable on cycles. Thus the following corollary holds.

Corollary 7.2.11. Let G be a cycle. The separation problem of (7.7) can be solved in polynomial time.

For the matching-partition inequalities, a few ways of generating matching-partition inequalities have been tested, among which, there are two different approaches in terms of how the matching-partitions are generated. One is to have a matching first, then construct a partition based on it, and the other approach is just the opposite. The former seems to be a natural choice, since the matching can be built in prior based on the weights on edges.

Maximum weighted matching is our first choice going into experiment, as generally the most violated matching-partition inequality tends to contain as many large-weight edges as possible in the matching. Consider the x-value of each edge as its weight, a matchingpartition in this case is built based on the maximum weighted matching. The partition classes are constructed by extending each matching edge to an edge set while ensuring the weights of the edges between partition classes to be as small as possible.

The second method is based on the fact that the edges with maximal weight value should never be present in E π \ δ(O) of a most violated matching-partition inequality. Thus one can derive a subgraph containing only such edges, and the connected components in this subgraph lead to the initial partition classes. After that, the edges with second largest weight can be processed the same way, and so forth till the partition is fully formed. This heuristic has been proved to be able to generate some inequalities that are helpful to eliminate certain fractional points.

Another method is based on the projection from the inequalities for B xy (G, r, c). One first lift a vector x ∈ R E to a vector x y ∈ R E+V by setting y v = max{x e : e ∈ δ(v)}. Then we can separate the extended subtour elimination inequalities (7.17) to find a set S V as the first partition class. If r ∈ S, then one looks for a matching {e 1 , e 2 } of E[S] and a node set S S such that

x e 1 + x e 2 -x(δ(S ) ∩ E[S] \ δ(O)
) is maximized. This can be achieved using the separation algorithm described in [START_REF] Didi-Biha | Polyhedral study of the connected subgraph problem[END_REF] for the inequality x e + x fx(δ(S)) ≤ 0 for e ∈ E[S] and f ∈ E[S], which can be reduced to O(|V |) minimum st-cut calculations.

If r /

∈ S, we first take an edge e 1 in E[S] with the maximum x-value to be in the matching. Then similarly to the separation of the connectivity inequalities (7.5), one looks for an edge e 2 ∈ E[S] \ δ(r) and a node set

S ⊆ S \ {r} such that x e 2 -x(δ(S ) ∩ E[S] \ δ(O)) is maximized.
This cut generation heuristic is given in Algorithm 7.2, and we show that the following result holds.

Proposition 7.2.12. Algorithm 7.2 returns a matching-partition inequality using O(|V |) minimum st-cut calculations.

Proof. It is trivial to see that Algorithm 7.2 ensures that π is a partition of V , and (M,π ) is in MP(G). Thus the matching-partition inequality it returns is valid. Furthermore, as each of the separation algorithms for (7.17), (7.5) and the inequality

x e + x f -x(δ(S)) ≤ 0 for e ∈ E[S] and f ∈ E[S] can be reduced to O(|V |) minimum st-cut calculations, one has that Algorithm 7.2 also reduces to O(|V |) minimum st-cut calculations.
This heuristic aims at finding a matching partition with 2 matching edges, and can be extended to a heuristic that looks for a matching partition with any fixed number of matching edges by simply increase the number of iterations.

Algorithm 7.2: Cut generation algorithm for matching-partition inequalities

Input :

x ∈ R E . Output: Matching-partition inequality x(M ) -x(E π \ δ(O)) ≤ 0 that is violated by x. begin 1 Set y v = max{x e : e ∈ δ(v)} for all v ∈ V .
2 Find an extended subtour elimination inequality that is violated by x y and is associated with S using the separation algorithm for (7.17 

(M ) -x(E π \ δ(O)) ≤ 0 if it is violated by x;

i-articulation inequalities and tightening inequalities

Recall that a special case of the i-articulation inequalities (7.10) is the following capacity-i inequalities (7.19) where

x(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) ≤ 0 ∀S ⊆ S i ,
S i = {v ∈ V \ {r} : c v = i, i ≥ 2} and R = V \ (S ∪ O).
Since the capacity-i inequalities, the i-articulation inequalities and tightening inequalities all have similar structures, their separation problems can be solved in a similar way. 

≤ i ≤ max{c v : v ∈ V \ {r}}, we claim a set S ⊆ S i that induces maximum x(δ(O) \ δ(R)) -(i -2)x(E[S i ]) -(i -1)x(δ(R) \ δ(O))
with R = V \(S ∪O) can be found in polynomial time. As x(δ(O)) is fixed for any given x, the problem is equivalent to finding the minimum x(δ(R))

+(i-2)(x(E[S i ]+x(δ(R)\δ(O)).
We first construct a graph G = (V , E ) based on G by adding two nodes the source s and the sink t to get

V = V ∪ {s, t}, E = E ∪ {sv : v ∈ R 0 ∪ S i } ∪ {vt : v ∈ O}.
The edge weight function for E is defined as follows. First of all, in order to ensure that in any minimum st cut of G , R 0 is on the side of s, and O is on the side of t, we set

w e = M ∀e ∈ δ(t) ∪ δ(s) ∩ δ(R 0 ),
where M is a large enough number.

Let

f (v) = v j ∈S i \{v} x vv j ∀v ∈ S i .
We set the weights of the rest of the edges as follows

w e = ⎧ ⎪ ⎨ ⎪ ⎩ x e , if e ∈ E \ E[S i ], i 2 x e , if e ∈ E[S i ], i-2 2 f (v), if e = sv ∈ δ(s) ∩ δ(S i ). Given any S ⊆ S i , let R = V \ (S ∪ O) and R = R ∪ {s}. The weight of the cut set in G induced by R the following w(δ G (R )) =x(δ G (R)) + i -2 2 e∈δ(R)∩δ(S) x e + v∈S w sv =x(δ G (R)) + i -2 2 e∈δ(R)∩δ(S) x e + i -2 2 v∈S f (v) =x(δ G (R)) + (i -2)x(E[S] + x(δ(R) ∩ δ(S))). Thus the minimum s -t cut in G gives us the maximum x(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) for any given x ∈ [0, 1] E and any integer i with 2 ≤ i ≤ max{c v : v ∈ V \ {r}}.
Additionally, there can be at most |V | -2 different values for i for each node in V \ (O ∪ {r}). Therefore, the separation of (7.19) can be done in polynomial time with at most |V \ O| -1 minimum st-cut calculations.

Similar to the capacity-i nodes inequalities, a single minimum st-cut calculation is sufficient to separate the tightening inequalities (7.11), that is,

x(δ(O))-x(δ(R)) ≤ v∈S (c v -2)
for S ⊆ V \ ({r} ∪ O) and R = V \ (S ∪ O), as stated in the following proposition.

Proposition 7.2.14. The separation problem of (7.11) reduces to a minimum st-cut problem.

Proof. Given any

x ∈ [0, 1] E , we claim a set R ⊂ V \ O that induces maximum x(δ(O)) - x(δ(R)) -v∈S (c v -2) can be found in polynomial time. As x(δ(O)
) is fixed for any given x, the problem is equivalent to finding the minimum x(δ(R))

+ v∈S (c v -2).
We first construct a graph G = (V , E ) based on G by adding two nodes, the source s and the sink t, and a few related edges into graph G. One then has V = V ∪ {s, t}. For each node v ∈ R 0 ∪ V i , add an edge sv ∈ E , and for each v ∈ O, add an edge vt ∈ E , where

S 0 = V \ (R 0 ∪ O), R 0 = {r}.
The edge weight function for E is defined as follows

. Let f (v) = c v -2, for any v ∈ S 0 .
For any edge e ∈ E, its weight w e = x e . For e ∈ δ(s) ∩ δ(R 0 ) or e ∈ δ(t), w e = M , where M is a large enough number. For sv ∈ δ(s) ∩ δ(S 0 ), w sv = f (v). The minimum st cut in G includes the node set R 0 on the side of s and the node set O on the side of t due to the weights. Assume node set R induces a minimum s

-t cut in G , with R = R ∪ {s}, R = R 0 ∪ (S 0 \ S), S = V \ (R ∪ O).
The weight of the cut set is as follows.

x

(δ G (R)) + v∈S w sv + v∈S 0 \S w vt =x(δ G (R)) + v∈S f (v) -0 v∈S 0 \S f (v) =x(δ G (R)) + v∈S (c v -2)
This minimum cut calculation gives us the maximum

x(δ(O)) -x(δ G (R)) -v∈S (c v -2)
for any given x ∈ [0, 1] E , and the transformation from G to G can be done in polynomial time. Therefore, the separation of (7.11) reduces to a minimum st-cut problem.

Following the same notation as in Subsection 6.4.6, the separation of the i-articulation inequalities (7.10) can be done in polynomial time as well by calculating the minimum cut between R 0 = V \ ((S i ∩ V a ) ∪ O) and D S i ∩Va for each possible i between 2 and max{c v : v ∈ V \ {r}}. Therefore, at most |V | -2 minimum st-cut calculations are required to separate (7.10). The algorithm and the proof would proceed the same way as for the separation algorithm of capacity-i inequalities, and the only difference is one substitutes D S i ∩Va and F S i ∩Va for O and δ(O). Thus we give the following result directly.

Proposition 7.2.15. The separation problem of (7.10) reduces to at most |V \ O| -1 minimum st-cut calculations.

Acyclicity-connectivity inequalities

For the acyclicity-connectivity inequalities (7.8), that is,

x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0 for W ⊆ S ⊆ V \ {r}
, the complexity of its separation problem remains unknown. We propose the following conjecture.

Conjecture 7.2.16. The separation problem of (7.8) is N P-hard.

A straightforward heuristic is developed based on the observation that the fractional points generated in the branch-and-cut process which violate the acyclicity-connectivity inequalities should always have a support graph with 2-connected components. Otherwise, they would be cut by the connectivity inequalities beforehand. Thus, the heuristic is based on the support graph of the given solution as follows. For each 2-connected component that does not contain r of the support graph, consider the corresponding edge set as E[W ] and obtain S from a minimum cut between r and W with respect to the solution. If the inequality x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0 is violated, then it is added into the model.

Primal matheuristic

Let x be a fractional solution obtained in the process of branch-and-cut with respect to BRT x . This section presents a matheuristic that use this primal information to derive an integer feasible point, or in other words, a primal bound (or lower bound in our case).

The matheuristic is as follows.

We start with a pool of nodes P ⊆ V containing only r at first, and each iteration select one node and one edge incident with the pool, until either a spanning tree has been found or there is no edge to select any more. There are a few options on how we grow the pool of nodes, and the priority one takes into consideration while choosing among the edges incident with the pool. We have decided that the information of the fractional solution x carries should be weighed the most. Aside from that, when expending the pool, the potential of the selected node is evaluated, where the potential of a node means if it is selected how many other nodes can be selected further in the process. Essentially, one can compare the capacity of the nodes first, because a higher capacity often indicates more edges incident with the node can be selected. If two candidates have the same capacity, then we compare the sum of capacity of their neighbors. The details of the matheuristic are presented as in Algorithm 7.3.

Algorithm 7.3: Primal matheuristic Input : Fractional solution x ∈ R E . Output: Integral feasible solution x E * ∈ Z E . begin 1 Set P = {r}, O = ∅, E * = ∅.
while there still exists some node that is not in the pool P , and

δ(P ) \ δ(O ) = ∅ do 2
Among the edges in δ(P ) \ δ(O ), choose one edge e = uv according to the following priorities: x value, capacity, sum of capacity of neighbors.

3

Set E * = E * ∪ {e}.
4

Reduce the capacity of u and v by 1, and if the capacity of u (v, respectively) becomes 0, add u (v, respectively) to O .

Algorithm 7.3 essentially has the structure of Prim's algorithm for the minimum spanning tree problem, see [START_REF] Prim | Shortest connection networks and some generalizations[END_REF]. Nonetheless it considers more factors other than the weights and has a different termination condition. Moreover, since at each iteration, one adds an edge e to E * such that e has exactly one end in the node pool P and both ends of e are not saturated in terms of capacity. Hence E * ∪ {e} always induces a bounded r-tree, and thus x E * is an integral feasible solution for the MBrT problem at the end of the algorithm.

Note that this matheuristic can also be used for any fractional solution x y obtained in BRT xy by simply considering its restriction x. Moreover, at the last step of the candidate selection, there are several ways to modify the algorithm such as comparing other properties or changing the priority of each property.

In addition, Algorithm 7.3 only targets the uniform-weight version of the MBrT problem, that is, the MSBrT problem. When applying this matheuristic on the general MBrT problem, it should also consider the edge-weights while choosing edges in order to obtain a higher quality solution.

Other than this primal matheuristic, we also experimented with another matheuristic which was unfortunately not very effective. The idea of that matheuristic is essentially to first derive a spanning tree of the support graph of a fractional solution, and then prune the branches that violate the capacity constraints. This approach generally gives a bad primal bound because there are too much pruning of the resulting spanning tree, as it does not consider the capacity factor when constructing the spanning tree.

Properties related to optimal solutions

When dealing with uniform-weight cases, the following property has been found of the optimal solutions that one can exploit.

Proposition 7.4.1. Given a bounded r-tree polytope B x (G, r, c) with G = (V, E), and uniform weight vector w = 1 E , let c r = min{c r , |δ(r)|}. The following equation holds.

max{w T x : x ∈ B x (G, r, c)} = max{w T x : x ∈ B x (G, r, c), x(δ(r)) = c r }.
Proof. Assume that all optimal solutions satisfy x(δ(r)) < c r , and assume x is one of the optimal solutions with its support graph being G = (V , E ).

First, if there exists some node v ∈ (V ∩ N (r)) \ (V ∩ N (r)), one can simply add rv to G to obtain a better solution, and thus it forms a contradiction. Then, one has (V ∩ N (r)) \ (V ∩ N (r)) = ∅. Knowing that, pick an arbitrary node u ∈ V ∩ N (r), one can add ru into G , which creates one and only one cycle since G is a tree, and the cycle contains ru. By removing the other edge in the cycle incident with u, one can obtain another r-tree G that satisfies the capacity constraints, as from G to G , the only node with its degree increasing is r. This process can be repeated as many times until the c r is saturated, and therefore, one can construct a solution which satisfies x(δ(r)) = c r . This proposition allows us to reduce the problem from optimizing the objective function over the polytope B x (G, r, c) to optimizing the same objective function over merely a face of the polytope. In other words, the dimension of the polytope we are working on is reduced by 1. Therefore, the following equation can be added into the initial model when uniform weight is considered.

x(δ(r)) = c r (7.20) This result also applies for B xy (G, r, c) when node weight is not considered.

max{w T x : [ x y ] ∈ B xy (G, r, c)} = max{w T x : [ x y ] ∈ B xy (G, r, c), x(δ(r)) = c r }.
In fact, it is deduced from the following two implicit equations.

y r = 1, x(δ(r)) = c r y r .
Combining them gives us the same equation as for B x (G, r, c). It is also worth mentioning that y r = 1 applies for any case where the root r has a non-negative weight.

Results

Note that there are plenty of options while implementing BRT x , as we have a wide range of user cuts to select from and various options of how the branch-and-cut algorithm proceeds. For the sake of conciseness and rigorous, we only show one set of results for BRT x , which has the most complete results and overall the best performance so far. In this implementation, we incorporated user cuts for (7.7), (7.9) and (7.11), but not for (7.8) and (7.10). Besides, the order of each set of cuts that is generated in the branchand-cut algorithm also affects the performance. Particularly, for BRT x we split the user cuts into two groups. We first generate cuts for the first group of inequalities, that is, the connectivity inequalities (7.5), a subset of subtour elimination inequalities (7.6), the matching-partition inequalities (7.7) and the tightening inequalities (7.11). If no cuts is found for the first group, we then generate cuts for the subtour elimination inequalities (7.6) and upload capacity inequalities (7.9).

Another factor that has influence on the performance is the timing of when and how often the primal matheuristic should be running. After a few experiments, we chose to run the matheuristic with a dynamic step. More precisely, the primal matheuristic runs every s d iterations, where each time it is executed, we adjust the step s d depending on how good is the solution found by the matheuristic comparing with the previous best incumbent.

Besides, we kept the CPLEX branching and node selection rules, as well as CPLEX default cuts (Gomory fractional cuts, zero-half cuts, etc.) with default setting.

We present our results on over 600 instances for each framework. Providing all the results would be overwhelming for the readers, thus for each testset we first give an overview of the performance of all four different frameworks, and then present the results of a few representative instances. For the overview, we give the overall percentage of the solved instances within a time limit of 2 hours, and compare the average upper bounds and lower bounds attained by each branch-and-cut framework for each testset. The following notation is used in the forthcoming tables presenting the results.

UB : the best achievable upper bound.

LB : the best lower bound.

Gap : gap in percentage between the best lower bound and the best upper bound, which is equal to UB-LB LB .

SteinLib instances

SteinLib is one of the two data sources we have for the computational test. We use the graphs of the dataset and generate a capacity files to match each of the instances. Since we only test the uniform-weight version of the MBrT problem so far, the weights in the SteinLib files are not used. Moreover, since the MBrT problem and the Steiner tree problem are quite different due to the capacity constraints in the former and the terminals in the latter, there is little to none correlation between the difficulties of the two instances that correspond to the same file. Thus, while choosing instances from the SteinLib, our intention is to make sure that the selected instances cover a wide spectrum of different properties such as node number, graph type etc.

First of all, Figure 7.1 reports the percentage of solved instances on each set of SteinLib instances. All the instances of the testset B are solved by all four frameworks within 2 hours. For testsets C and I320 BRT x showed clear improvements comparing with CP LEX x regarding the number of times reaching optimality, whereas for testsets I640 could not find a good lower bound on some instances, as it is shown in Table 7.6. Notably, BRT x actually provided some worse upper bound than CP LEX x sometimes. The reason of that could be that we did not adjust the separation algorithms specifically for each testset. Instead, we use the same separation algorithms with the same setup for all the instances. Thus in the case of testset MSM, as the instances are extremely sparse, many of our separation algorithms are non-necessarily costly when going through each node in the graph, which leads to much longer iteration time and relatively bad bounds in the end.

Random generated instances

The first set of random generated instances contains dense graphs with node capacities between 1 to 4. We have only tested on instances with less than 500 nodes, as it is already sufficient to demonstrate the big discrepancy between the results given by CP LEX x , CP LEX xy and those of BRT x and BRT xy .

Figure 7.4 demonstrates the difference between these two groups in terms of percentage of solved instances. It can be seen that BRT x and BRT xy were able to solve all the instances, while CP LEX x and CP LEX xy had difficulties on some of them. Notably, the One of the two aspects that contributes to the difficulty of the MBrT problem is the node capacity, and out of all the nodes, those in O seem to create most of the difficulties in our theoretical work including the study of algorithms and polyhedral structure. Thus, we created the testset rg_23, where all nodes in the graphs have capacity between 2 and 3 (that is, O = ∅) to see if there is any difference.

However, the results we obtained on testset rg_23 actually present in a similar pattern to those on testset rg_13. As it is demonstrated in Figure 7.8, BRT xy has solved the largest amount of instances, while BRT x and CP LEX xy had similar performances and both outperformed CP LEX x in terms of total number of instances solved.

The average upper bounds are relatively close for all four frameworks. Nonetheless, CP LEX xy had the worst average lower bounds, whereas CP LEX x was significantly better than CP LEX xy but slightly worse than BRT x , with BRT xy consistently being the best.

Table 7.9 shows some examples of the results obtained on rg_23, which support our previous inferences.

Out of the over 600 instances we have tested, BRT xy has solved 73.61% of them, and BRT x 52.46%, whereas CP LEX xy has solved 47.70% of them, and CP LEX x 35.08%. This shows, to a great extent, that the overall level of strength of each framework, and how much improvement has been made by adding the newly introduced constraints and the primal matheuristic to the original formulations.

Conclusion

This chapter has described the method used to perform the computational test of different models for the MBrT problem, in order to show how can our theoretical results make a difference in the computational aspect.

We first discussed the separation problem for each set of inequalities that has been introduced earlier for both B x (G, r, c) and B xy (G, r, c). We showed that most of them can be separated in polynomial time and provided respective separation algorithm. We proved that the separation problem of the matching-partition inequalities is N P-hard, and provided a few heuristics to generate cut planes.

With the help of CPLEX we implemented four different branch-and-cut algorithms, namely CP LEX x , CP LEX xy , BRT x and BRT xy . Particularly, CP LEX x and CP LEX xy are minimal models for B x (G, r, c) and B xy (G, r, c), whereas BRT x and BRT xy incorporate the newly discovered constraints, a preprocess and a primal matheuristic. We then tested them on a variety of instances with different properties, which were either fetched from SteinLib or generated by ourselves. Their performance are compared in the several different aspects, including overall percentage of solved instances, execution time, and upper bound and lower bound.

The results showed that in all aspects BRT x and BRT xy beat their counterparts CP LEX x and CP LEX xy significantly. It showed convincingly the strength of the enhanced formulations in the computational aspect. Moreover, while BRT x and BRT xy performed equally good on dense graphs, BRT xy outperformed BRT x on sparse graphs and most testsets of SteinLib instances. The performances of BRT x and CP LEX xy are overall similar, except that on dense graphs BRT x outperformed CP LEX xy quite significantly. Additionally, CP LEX x showed its weakness in finding good lower bounds in dense graphs, whereas CP LEX xy generally struggled the most to find good lower bounds in sparse graphs.

Conclusion

In this dissertation, we explored several aspects of two N P-hard combinatorial optimization problems, the MBrT problem and the MrT problem. We first defined their associated polytopes, namely B xy (G, r, c), B x (G, r, c), R xy (G, r) and R x (G, r). Among these two polytopes, R xy (G, r) has been studied by [START_REF] Goemans | The steiner tree polytope and related polyhedra[END_REF], whereas the other three have not drawn much attention from the literature. We gave a formulation for each one of the four polytopes. A literature review was given on the MBrT problem and the MrT problem as well as other related problems. We then introduced the background and the application of the MBrT problem in the telecommunication field, along with some of the recent related research topics. We showed that the study of the MBrT problem and its applications deserve more attention.

We approached the MBrT problem and the MrT problem from three directions, algorithms, polyhedra and computational test.

Firstly, we proposed several polynomial-time combinatorial algorithms for the MBrT problem on trees, cycles and cactus graphs respectively. A dynamic programming based approach is used on trees which computes the solution from the leaves to the root recursively. On cycles, we split the problem into 3 different cases, and solved them by calculating a min/max subpath of a given path. For cactus graphs, we reduced the problem to some subproblems on the so-called cactus basis and on trees, and then proved that the MBrT problem on cactus basis can be solved in polynomial time. It is worth noting that the proposed algorithms can also be applied on the MrT problem, as it is a relaxation of the MBrT problem.

After that, we presented results concerning three polytopes, B xy (G, r, c), R x (G, r) and B x (G, r, c). We showed that the dimension of B xy (G, r, c) is related to the number of nodes in O, which are the none-root nodes with unit-capacity, and the number of blocks in a subgraph G r = G \ O of G. On the other hand, R x (G, r) and B x (G, r, c) is proved to be full-dimensional under Assumption 2.2.9. We also showed that B xy (G, r, c) can be decomposed through 1-sum. However, such decomposition is proved to be infeasible for R x (G, r) and B x (G, r, c) except when the 1-sum is at the root node r. For B xy (G, r, c), we proposed several sets of new valid equations and inequalities to strengthen the formulation according to the dimension results. For R x (G, r), we proposed two sets of new valid inequalities that can also be inherited by B xy (G, r, c) with some adjustments. Besides these two sets of valid inequalities, we presented several other sets of new valid inequalities specifically for B x (G, r, c). For all the proposed inequalities we discussed the necessary and sufficient conditions to be facet-defining for the respective polytope. Besides, it is also demonstrated that the newly introduced valid inequalities for B x (G, r, c) can all be obtained by projection of the valid constraints for B xy (G, r, c).

We then showed that with the newly introduced constraints, B xy (G, r, c) can be characterized on trees and cycles. Moreover, as a consequence of the polyhedral decomposition through 1-sum, B xy (G, r, c) can therefore be characterized on cactus graphs. As for B x (G, r, c), we proved that with incorporating the newly introduced matching-partition inequalities and upload capacity inequalities, one can obtain a TDI system that defines B x (G, r, c) on trees and each of the four cases on cycles.

For each set of inequalities introduced in the dissertation, its separation problem has been discussed. We proposed either polynomial-time separation algorithms or some heuristics if the separation problem is N P-hard. With the help of CPLEX, we implemented four different branch-and-cut frameworks, namely CP LEX x , CP LEX xy , BRT x and BRT xy , based on the formulations for B xy (G, r, c) and B x (G, r, c). Among the four frameworks, CP LEX x and CP LEX xy correspond to the original formulations for B x (G, r, c) and B xy (G, r, c) without including any newly introduced constraints, whereas BRT x and BRT xy correspond to the enhanced formulations incorporating the newly introduced constraints as well as a preprocess and a primal matheuristic. They were tested on a variety of over 600 instances that are either from SteinLib Testdata Library or generated.

Test results showed that the performance of BRT x and BRT xy are generally better than CP LEX x and CP LEX xy . Particularly, on SteinLib instances and sparse graphs, BRT xy had the best performance with a considerable difference comparing to the other three, whereas BRT x outperformed CP LEX x . In addition, BRT x and CP LEX xy performed similarly, except CP LEX xy struggled the most at finding a good lower bound on instances on these instances. On dense graphs, BRT x is on par with BRT xy in performance, and they are both significantly better than CP LEX x and CP LEX xy . CP LEX x provided the worst performance on dense graphs, and its performance declines dramatically as the number of nodes in graph increases. To summarize, the computational test has shown in a convincing fashion the strength of the enhanced formulations, especially the enhanced formulation for B xy (G, r, c).

Certainly, there remain many unexplored aspects and potential extended research subjects of the MBrT problem. Hereafter we list a few directions that we reckon to be valuable and worth studying in the future. For the algorithmic aspect, since it has been proved that the MBrT problem can be solved in polynomial time on cactus graphs, one may extend it to possibly other classes of graphs such as series-parallel graphs and outerplanar graphs. Alternatively, it is also worth trying to devise algorithms for some classes of graphs with simple and exploitable structures such as wheels and fans.

Moreover, although the integrality proof of the polyhedron defined by the proposed formulation for B xy (G, r, c) is given in this dissertation, the TDI-ness of the formulation has yet to be proved. We obtained some examples that showed the insufficiency of the current formulation to be TDI. Thus, some redundant inequalities should be included in the formulation in order to obtain a TDI system. Besides, for B x (G, r, c) and R x (G, r), based on the study on trees and cycles, it is tempting to claim that a complete description is obtainable on cactus graphs, or to a wider extent, on series-parallel graphs.

On the other hand, the MBrT problem can be extended to a more generalized version, which is called the Maximum Bounded r-Tree Packing (MBrTP) problem. The MBrTP problem, instead of finding one r-tree, consists of finding a packing of K ≥ 2 r-trees which satisfies the overall capacity constraints. The study on the MBrT problem can be considered as the first step of the study on the MBrTP problem. There also exist corresponding applications of the MBrTP problem in various fields, hence it is worth studying its algorithms and polyhedral structure.

In fact, we have done some preliminary research on the polyhedral structure and computational tests for the MBrTP problem considering both edge-and node-indexed variables.

On the polyhedral aspect, we have characterized the fractional extreme points in the case where K = 2 and the graph G is a star with r being the central node. The said extreme points can be cut by the following two new valid inequalities

x 1 (F 1 ) + x 2 (F 2 ) + y 1 r -y 2 r ≤ c r ∀F 1 , F 2 ⊆ E, |F 1 | + |F 2 | > c r , |F 1 | < c r , x 1 (F 1 ) + x 2 (F 2 ) -y 2 r ≤ c r -1 ∀F 1 , F 2 ⊆ E, |F 1 | + |F 2 | > c r , |F 1 | = c r -1,
where x i and y i contain the variables associated with edges and nodes in the i-th bounded r-tree, i ∈ {1, 2}. Nonetheless, we have devised a polynomial combinatorial algorithm for the MBrTP problem on trees with K = 2 (Vinhas de Lima [2016]).

On the other hand, as BRT xy has shown the strongest performance among all the approaches we have tested, and even without any primal heuristic, it still solved the instances on dense graphs in a matter of seconds, so we have implemented a multi-tree version of it, which we refer to as BRT P xy . We haved tested it on dense graphs having nodes between 10 and 199 with K = 2. The simulation results are reported in Table 7.10. The column t r contains the time BRT P xy took to solve the linear relaxation at the root node of the branch-and-cut tree, whereas the column N B&C indicates the number of nodes that have been gone through in the branch-and-cut tree. BRT P xy has solved most of the instances with 10 to 99 nodes, but cannot solved most of the instances with 100 to 199 nodes within two hours. There is a significant performance deficit comparing with the performance of BRT xy in the case of K = 1 which has solved all the instances with 10 to 199 nodes within 10 seconds.

To summarize, the results obtained so far suggest that the polyhedral structure and the computational complexity of the MBrTP problem are much more complicated than the MBrT problem, even in the presumably easiest cases (e.g., K = 2, on stars).

Another direction to explore is b-matching and the related polyhedra. Despite it is a well-studied topic in the literature, the extended formulation for b-matching has not been brought up as a research topic as far as we know. We have found a representation of La formulation suivante est proposée pour le polytope étendu pour r-arbre .

On note P xy (G, r) le polyèdre de R E+V défini par

x(E)y(V \ {r}) = 0, (1.1)

x(E[S])y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (1.2)

y r ≤ 1, (1.3)
x e ≥ 0 ∀e ∈ E.

(1.4)

Cette formulation a été prouvée pour décrire complètement le polytope étendu pour rarbre sur les graphes série-parallèles, donc le théorème suivant est valable. Il convient de noter que, pour le problème MBrT, un ensemble de noeuds qui se distinguent par le développement de l'algorithme et l'étude polyédrique sont les noeuds dotés de la capacité unité. On peut remarquer que ces noeuds (à l'exception de r) ne fournissent aucune connectivité aux autres noeuds, c'est-à-dire qu'ils ne peuvent apparaître que comme feuilles dans tout r-arbre borné. L'ensemble de ces noeuds est noté par Chapitre 2

O := {v ∈ V \ {r} : c v = 1}. ( 1 

Algorithmes combinatoires pour le problème MBrT

Dans ce chapitre, nous présentons des algorithmes de temps polynomial pour le problème MBrT sur trois différentes catégories de graphes : arbres, cycles et cactus. Nous définissons Opt G (r) comme la valeur de f (T ) associée à un r-arbre borné maximum de G, où l'indice G peut être omis lorsque le graphie est dégagé du contexte. Opt G peut également être utilisé à la place de Opt G (r) lorsque la racine est dégagée du contexte.

Si le graphe G est un arbre, nous présentons une approche de programmation dynamique pour résoudre le problème MBrT.

Étant donné tout noeud v ∈ V , on note g(v) comme la valeur d'un arbre borné maximum non vide arraché à v du sous-graphe G[ v ] de G induit par la fermeture-en-haut (upclosure, en anglais) de v, où le vecteur de capacité 

c v ∈ Z v + satisfait c v v = c v -1 si v = r, c v v = c v si v =

Nous avons

Opt G (r) = max{0, g(r)}.

Pour toute feuille v ∈ V \ {r}, il est facile de voir que g(v) = p v .

(2.1)

Pour un noeud non-feuille v ∈ V , nous définissons La équation suivante est valable.

N u (v) = {v 1 , • • • , v q } et h(v k ) = w vv k + g(v k ).
Opt 1 G -p r ≥ Opt 2 G -Opt 1 G .
Sur la base de ces résultats, nous transformons chaque composant d'arbre en une arête et chaque composant de cycle en deux arêtes de manière récursive. Les poids de ces arêtes sont attribués selon les sous-problèmes résolus sur les composants respectifs. À la fin, le Chapitre 3

Etude polyédrique sur un polytope étendu pour le problème MBrT

La formulation initiale proposée pour ce polytope est la suivante.

x(E)y(V \ {r}) = 0, (3.1)

x(E[S])y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (3.2) 

x(δ(v)) -c v y v ≤ 0 ∀v ∈ V, ( 3 
Soit (V 1 , E 1 ), • • • , (V q , E q ), q ≥ 1, représentent les blocs du graphe G r = G[V \ O]. Pour tout bloc (V i , E i ), i ∈ {1, • • • , q},
x(E i )y(V i \ {v a i }) = 0 (3.7) est valable pour B xy (G, r, c).

Avec ces équations, la dimension de B xy (G, r, c) peut être décidée comme dans le théorème suivant.

Chapitre 4

Etude polyédrique sur un polytope pour le problème MrT

La formulation initiale proposée pour R x (G, r) est la suivante. De plus, L'étude polyédrique pour R x (G, r) ne peut pas être simplement limitée aux graphes 2-connexes sur la base de la décomposition par 1-somme, qui peut être prouvée dans certains cas simples. Toutefois, nous montrons dans le prochain chapitre qu'il existe des décompositions possibles pour certains cas spéciaux, et R x (G, r) peut être caractérisé sur les arbres et les cycles.

Chapitre 5

Etude polyédrique sur un polytope pour le problème MBrT

La formulation initiale pour B x (G, r, c) est donnée comme suit. x(δ(v))c v x fv ≤ 0 ∀v ∈ V \ {r}, (5.11)

x(δ(r)) ≤ c r , (5.12)

x e ≤ 1 ∀e ∈ δ(r), (5.13) 

x

  Theorem 3.2.10. If G is a cycle with c r = 2 and O = ∅, the MBrT problem can be solved in linear time.

Figure 3

 3 Figure 3.1: A cycle G with v o and its subpaths P o , P o

Figure

  Figure 3.2: A cactus basis

  4.8) and inequality (4.2) associated with V i and v, the inequality y vy va i ≤ 0 (4.10) holds as well. According to Lemma 4.1.1 and Corollaries 4.1.3 and 4.1.4, the dimension of B xy (G, r, c) depends on both the number of nodes in O and the number of blocks in G r . An upper bound on the dimension of the polytope B xy (G, r, c) is given in the following proposition. Proposition 4.1.5. dim B xy (G, r, c) ≤ |E| + |V r |q.

  Let x y be an extreme point of P C (G, r, c) with 0 < y va < 1. Then x y is integral. Proof. Assume that x y is fractional. Note that x(δ(v a ))c va y va = 0 according to Proposition 4.2.3. Since x i y i

  Proposition 4.3.1. Let e ∈ E. x e ≥ 0 defines a facet of B xy (G, r, c) if and only if the following two conditions are satisfied 1. there does not exist an edge e ∈ E \ {e} such that removing e and δ(O) \ {e } fromG separates e and r;

  which is different from the one containing v. Thus the face induced by x(E[S])y(S \ {v}) ≤ 0 is a proper subset of a proper face induced by x e ≥ 0 for any e ∈ δ(u).

  the system composed of inequalities in (4.20)-(4.23), and A = [ x y ] = b = the system composed of equations in (4.19). Let [ w p ] ∈ R E+V be a weight vector such that none of the inequalities from (4.20)-(4.23) is satisfied at equality by all solutions in Γ(w, p).

  the system composed of inequalities in (4.2), (4.4), (4.5) and (4.25), and A = [ x y ] = b = the system composed of equations in (4.1).

  Proposition 4.4.6. Let G be a cycle with c r ≥ 2 and O = {v o }. P Cac (G, r, c) is integral. Proof. Let A ≤ [ x y ] ≤ b ≤ denote the system composed of inequalities in (4.2), (4.4) and (4.5), and A = [ x y ] = b = the system composed of equations in (4.26) and (4.27).

  Proposition 4.4.7. Let G be a cycle with c r = 1 and O = {v o }. P Cac (G, r, c) is integral. Proof. Let A ≤ [ x y ] ≤ b ≤ denote the system composed of inequalities in (4.2), (4.4), (4.5) and (4.28), and A = [ x y ] = b = the system composed of equations in (4.26) and (4.27).

  2, are also included in the formulation with respect to P Cac (G, r, c). Hence, we have P Cac (G, r, c) ⊆ P C (G, r, c) = B xy (G, r, c). Finally, as B xy (G, r, c) ⊆ P Cac (G, r, c), we thus obtain P Cac (G, r, c) = P C (G, r, c) = B xy (G, r, c).

  r) only if there does not exist a bridge e b ∈ E between r and V [E + ].Proof. Suppose there exists a bridge e b ∈ E between r and V [E + ]. For any r-tree G F of G that satisfies a T x = b, we claim that e b ∈ F holds. Assume otherwise that e b / ∈ F . From b > 0 and x F (E + ) = b, one deduce that x F e = 1 for some edge e ∈ E + . Since e b is a bridge between r and e, G F does not contain any path between r and e. Therefore it contradicts with the assumption of G F being an r-tree.

  Proposition 5.2.4. Let e = uv ∈ E \ δ(r). x e ≤ 1 defines a facet of R x (G, r) if and only if the following two conditions are satisfied 1. there exist two edge-disjoint paths between r and e; 2. there does not exist w ∈ N (u) ∩ N (v) such that removing uw and vw from G disconnects r and e. Proof. Let F = {x ∈ R x (G, r) : x e = 1}. For the necessity, if there is a bridge e b in G separating r and e, any r-tree containing e must also contain e b . Thus, F is a proper subset of the proper face induced by x e b ≤ 1. If there exists a node w ∈ N (u) ∩ N (v) such that removing uw and vw from G disconnects r and e, then F is a proper subset of the proper face induced by x(E[S]) ≤ |S| -1 with S = {u, v, w}.

  Proposition 5.2.5. Let e = uv ∈ E[S], S ⊆ V \ {r}. x ex(δ(S)) ≤ 0 defines a facet of R x (G, r) if and only if the following four conditions are satisfied 1. G[S] is connected; 2. G[S] is connected; 3. there does not exist an edge e b ∈ E[S]\{e} such that removing e b from G disconnects r and e; 4. there does not exist a node w ∈ S ∩ N (u) ∩ N (v) such that removing uw, vw from G disconnects r and e. Proof. Let F = {x ∈ R x (G, r) : x ex(δ(S)) = 0}. For the necessity, if either G[S] or G[S] is not connected, there must exist some e ∈ E such that F is a proper subset of the proper face induced by x e ≥ 0. If there exists an edge e b ∈ E[S] \ {e} such that removing e b from G disconnects e and r, then F is a proper subset of the proper face induced by x e bx(δ(S)) ≤ 0.

For

  any edge e ∈ E \ E[S], one can construct an r-tree that satisfies x(E[S]) = |S| -1 as follows. Let F ⊂ E[S] be any edge set that induces an r-tree with |F | = |S| -1. As G is connected, there must exist a path P ve from some v ∈ S to e such that V [P ve ] ∩ S = {v}. Then P ve ∪ F is an r-tree of G[S] that satisfies x(E[S]) = |S| -1. It can be deduced that a f = 0 for any edge f ∈ P ve and thus a e = 0 also holds for any e ∈ E \ E[S]. Since G[S] is 2-connected, for any distinct edge e, f ∈ E[S], there must exist a cycle C ⊆ E[S] of G[S] such that it contains both e and f . In addition, 2-connectivity of G[S] also ensures that there exists an edge set F ⊂ E[S] such that it induces a spanning tree of G[S] and F ∩ C = C \ {e}. Both F and F ∪ {e} \ {f } induce r-trees that satisfy x(E[S]) = |S| -1. One therefore gets a e = a f , and hence a e = λ for any e ∈ E[S] and b = (|S| -1)λ with λ ∈ R.

  a concept already considered by Didi-Biha et al. [2015] with respect to the connected subgraph problem. Denote by MP(G) the set composed of all the matching-partitions of G, and by E π the set of edges having their extremities in different classes of partition π. With any matching-partition (M,π ) ∈ MP(G), one can associate the following matching-partition inequality x(M )x(E π ) ≤ 0. (5.6) Theorem 5.3.1. For any (M,π ) ∈ MP(G), inequality (5.6) is valid for R x (G, r). Proof. Consider any r-tree G[F ] with F ⊆ E. It can be seen that M and F ∩ M are both matchings of G. One needs at least |F ∩ M | edges in E π to ensure that edges in F ∩ M and r are in the some component of G

Figure 5 .

 5 Figure 5.1 demonstrates an instance where a fractional extreme point can be obtained without and cut by a matching-partition inequality. The value for each edge of the fractional extreme point x is indicated in the figure, and x is decided by the following
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 52 Figure 5.2: An example of an acyclicity-connectivity inequality cutting off a fractional extreme point

  4. there does not exist e b ∈ E[S] \ E[W ]such that removing e b disconnects S and r.Proof. Let F = {x ∈ R x (G, r) : x(E[W ]) -(|W | -1)x(δ(S)) = 0}. For the necessity, if G[W ] is not connected, Fis a proper subset of a proper faced induced by x e ≥ 0 for any e ∈ E[W ]. If G[S] is not connected, then F is a proper subset of a proper faced induced by x e ≥ 0 for some edge e ∈ δ(v), and v in the connected component of G[S] that does not contain W . If G[S] is not connected, then F is a proper subset of a proper faced induced by x e ≥ 0 for some edge e ∈ δ(v), and v in the connected component of G[S] that does not contain r. If there exists an edge e b in E[W ] that removing e b disconnects G[W ], F is a proper subset of a proper faced induced by x e bx(δ(S)) ≤ 0. If there exists an articulation node v a in W that removing δ(v a ) disconnects G[W ], then for any connected component G[W i ∪{v a }] induced by v a , F is a proper subset of a proper faced induced by x(E[W i ∪ {v a }]) -(|W i ∪ {v a }|-1)x(δ(S)) ≤ 0. If there exists an edge e b in E[S] \ E[W ] that removing e b disconnects S from r, F is a proper subset of a proper faced induced by x(E[W ]) -(|W | -1)x(δ(S )) ≤ 0, where S S and δ(S ) = {e b }.

  r). It can be first deduced that b = 0 from 0 ∈ F. As G[S] is connected, for any edge e ∈ E[S], there exists a path P re of G[S] between r and e. Any subpath of P re containing r is an r-tree of G that satisfies x(E[W ]) -(|W | -1)x(δ(S)) = 0, thus one has a e = 0 for any e ∈ E[S]. For any two distinct edges e 1 , e 2 ∈ E[W ], G[W ] is 2-connected, there must exist a cycle C ⊆ E[W ] that contains both e 1 and e 2 . Hence, there also exists such edge set F E[W ], such that C \ {e 1 } ⊆ F and F induces a spanning tree of G[W ]. Moreover, F = F \ {e 2 } ∪ {e 1 } also induces a spanning tree of G[W ]. Combining either of these edge sets with any path P rv from r to a node v ∈ W such that |P rv ∩ δ(S)| = 1, gives us an r-tree that satisfies x(E[W ]) -(|W | -1)x(δ(S)) = 0. Therefore, we have a e = λ, λ ∈ R, for any edge e ∈ E[W ]. Now consider edges in E[S] \ E[W ]. Since there does not exist e b ∈ E[S] \ E[W ] such that removing e b disconnects S from r, one can deduce that there must be two paths P rv , P ru from r to some node v or u in S such that |P rv ∩ δ(S)| = 1, |P ru ∩ δ(S)| = 1, and
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 53 Figure 5.3: Counter example of decomposition involving 2 blocks

For

  any edge e o = vv o ∈ δ G (V r ) with v ∈ V r and v o ∈ O, denote the re o -path P reo in G such that it composed of vv o and a path P rv between r and v of G r . It can be seen that P reo is also a bounded r-tree of G. In the set of vectors {x Pre : e ∈ E r ∪ δ(V r )}, for any e o ∈ δ(V r ), x Pre o is the only vector that has x eo = 1. Hence one has |E r | + |δ(V r )| non-zero linearly independent vectors in {x Pre : e ∈ E r ∪ δ(V r )}. Finally, combining the zero vector with it gives us |E r | + |δ(V r )| + 1 affinely independent vectors, each of which induces a bounded r-tree of G. Therefore, we have dim B x (G, r, c) ≥ |δ(V r )| + |E r | = |E|.
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 61 Figure 6.1: Decomposition of graph with a bridge

  Lemma 6.3.3. Let a T x ≤ b be a valid inequality for B x (G, r, c) with a ≥ 0, a = 0 and b > 0. Denote E + := {e ∈ E | a e > 0} the set of edges with positive coefficients. If r / ∈ V [E + ], then a T x ≤ b defines a facet of B x (G, r, c) only if the following two conditions are satisfied 1. there does not exist a bridge e b ∈ E in G[E \ (δ(O) \ E + )] between r and E + ;

  Proposition 6.3.4. Given an edge e ∈ E, inequality x e ≥ 0 defines a facet of B x (G, r, c) if and only if e is not a bridge between r and some edge e in the graph G[E \(δ(O)\{e })]. Proof. Assume e is a bridge between r and e in the graph G[E \ (δ(O) \ {e })]. Then there must exist a node set S, where δ(S) \ δ(O) = {e} with r ∈ S and e ∈ E[S]. If x * e = 0 one must have x * e = 0. In another words, F = {x ∈ B x (G, r, c) : x e = 0} {x ∈ B x (G, r, c) : x e = 0} B x (G, r, c). For the sufficiency, let G e = G[E \ {e}]. According to the assumption there exists an re -path between r and each edge e ∈ E \ {e} that also satisfies the capacity constraints. According to Lemma 5.1.1 and the proof of Theorem 6.1.1, B x (G e , r, c) remains fulldimensional, which leads to dim{x ∈ B x (G, r, c) : x e = 0} = dim B x (G e , r, c) = |E| -1. Therefore x e ≥ 0 defines a facet of B x (G, r, c).

Proof.

  Let F = {x ∈ B x (G, r, c) : x e = 1}. If c r = 1, according to Lemma 6.3.2 it is not facet-defining for B x (G, r, c). If e ∈ δ(O) and without loss of generality let v ∈ O, then F is a proper subset of the proper face induced by x(δ(v)) ≤ c v unless |δ(v)| = c v = 1. If there exists a node w ∈ N (u) ∩ N (v) such that removing uw and vw from G[E \ (δ(O) \ {e})] disconnects r and e, then F is a proper subset of the proper face induced by x(E[S]) ≤ |S| -1 with S = {u, v, w}. If without loss of generality c u = 2 and every bounded path between r and v has to pass through u, then F is a proper subset of the proper face induced by x(δ(u)) ≤ c u .

For

  the sufficiency, assume that |δ(r)| > c r and F ⊆ {x ∈ B x (G, r, c) : a T x = b} B x (G, r, c), where a T x ≤ b is valid for B x (G, r, c). Consider an edge set F with F δ(r) and |F | = c r . One has x F ∈ F, and thus a(F ) = b. Let e be an edge in F and e an edge in δ(r) \ F . We have that x F ∪{e }\{e} ∈ F, which leads to a e = a e . Hence we have a e = λ ∀e ∈ δ(r), b = c r λ, where λ ∈ R. Consider an edge e = uv in E \ δ(r) with u ∈ N (r). As |δ(r)| > c r , there exists F ⊆ δ(r) \ δ(v) such that ru ∈ F and |F | = c r . Then both F and F ∪ {uv} induce bounded r-trees of G and their incidence vectors are in F. Hence we have a uv = 0. Consider an edge e = uv in E \ δ(r) with u, v ∈ V \ N (r). There exists a bounded path P re between r and e such that |V [P re ] ∩ N (r)| = 1. There exists a set F ⊆ δ(r) such that P re ∩ δ(r) ⊆ F and |F | = c r . Then F ∪ P re and F ∪ P re \ {uv} induce bounded r-trees of G and their incidence vectors are in F. Hence we have a uv = 0. Therefore a T x ≤ b can be rewritten as λx(δ(r)) ≤ c r λ. Combining it with 0 ∈ B x (G, r, c) \ F gives us F is a facet of B x (G, r, c).

  Proposition 6.3.10. Let e ∈ E[S], S ⊆ V \{r}, and e ∈ E[S]. Inequality x e -x(δ(S)) ≤ 0 defines a facet of B x (G, r, c) only if δ(S) ∩ δ(O) = ∅.
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 62 Figure 6.2: An example of inequality (6.6) exclusively defining a facet

  and there exists some e ∈ δ(v o ) ∩ E[S] \ {e}, then x ex(δ(S) \ δ(O)) ≤ 0 does not define a facet of B x (G, r, c). Proposition 6.3.12. Let e be an edge in δ(v o ) ∩ E[S] with v o ∈ O ∩ S and S ⊆ V \ {r}. Inequality x e -x(δ(S)\δ(O)) ≤ 0 defines a facet of B x (G, r, c) only if δ(v o )∩E[S]\{e} = ∅, as stated in the following proposition. Proof. Suppose e ∈ δ(v o ), v o ∈ O, and δ

  Proposition 6.3.13. Let S ⊆ V \ {r} and e ∈ E[S]. Inequality x ex(δ(S) \ δ(O)) ≤ 0 defines a facet of B x (G, r, c), only if there does not exist an edge e b ∈ E[S] such that removing {e b } ∪ δ(O) \ {e} from G can disconnect r and e. Proof. Suppose that there is an edge e b ∈ E[S] such that removing e b ∪ δ(O) \ {e} from G can disconnect r and e. One must have a node set S with S S, e ∈ E[S] and δ(S ) \ δ(O) = {e b }. Thus we have {x ∈ B x (G, r, c) : x ex(δ(S) \ δ(O)) = 0} {x ∈ B x (G, r, c) : x ex(δ(S ) \ δ(O)) = 0}.Proposition 6.3.14. Let S ⊆ V \ {r} and e ∈ E[S]. Inequality x ex(δ(S) \ δ(O)) ≤ 0 defines a facet of B x (G, r, c) only if there does not exist a node v a ∈ S with c va = 2 such that removing δ(v a ) \ {e} and δ(O) \ {e} from G disconnects r and e.

  Figure 6.3 shows an example, with S = {r}, S = {u, v, w} and E[S] = {e, wv, uw}. In this case, the face induced by x e -x(δ(S)\δ(O)) ≤ 0 is a proper subset of the proper face induced by x(E[S]) -(|S| -1)x(δ(S) \ δ(O)) ≤ 0. Proposition 6.3.15. Let e = uv ∈ E[S], S ⊆ V \ {r}. Inequality x ex(δ(S) \ δ(O)) ≤ 0 defines a facet of B x (G,r, c) only if there does not exist a node w ∈ S ∩ N (u) ∩ N (v) that removing wu, wv and δ(O) \ {e} from G disconnects r and e. Proof. Assume that there exists a node w ∈ S ∩ N (u) ∩ N (v) that removing wu, wv and δ(O) \ {e} from G disconnects r and e. The face induced by x ex(δ(S) \ δ(O)) ≤ 0 is a proper subset of the proper face induced by x(E[S ]) -(|S| -1)x(δ(S) \ δ(O)) ≤ 0, with S = {u, v, w}.
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 63 Figure 6.3: Example of a connectivity inequality with a triangle substructure

For

  each edge f ∈ δ(S) \ δ(O), as G[S \ O] and G[S \ O] both are connected, there exists a bounded path P re such that f ∈ P re and |P re ∩ δ(S) \ δ(O)| = 1. As a(P re ) = b = 0 holds, and combining with the results above, one has
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 64 Figure 6.4: An example with a subtour elimination inequality that is not facet-defining
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 6 Figure 6.4 demonstrates an instance which violates the last condition in the former proposition, where W= {v 1 , v 2 }, c v 1 = c v 2 = 2 and k = 3. It can be noticed that on the face induced by x(E[S]) ≤ |S| -1, one always has that x(δ(v 1 )) = c v 1 and x(δ(v 2 )) = c v 2 forany vector that induces a bounded r-tree. The substructure to be avoided in this example is related to nodes with arbitrary capacities, rather than only the nodes with capacity two, that create gaps among other nodes in the graph. Figure6.5 shows, a partition ofS, consisting of W, U 1 , • • • , U k , where δ(U i , U j ) = ∅, for any distinct i, j ∈ {1, • • • , k}. If |W | + k -1 ≥ v∈W c v ,the subtour elimination inequality associated with S is then not

  Figure 6.4 demonstrates an instance which violates the last condition in the former proposition, where W= {v 1 , v 2 }, c v 1 = c v 2 = 2 and k = 3. It can be noticed that on the face induced by x(E[S]) ≤ |S| -1, one always has that x(δ(v 1 )) = c v 1 and x(δ(v 2 )) = c v 2 forany vector that induces a bounded r-tree. The substructure to be avoided in this example is related to nodes with arbitrary capacities, rather than only the nodes with capacity two, that create gaps among other nodes in the graph. Figure6.5 shows, a partition ofS, consisting of W, U 1 , • • • , U k , where δ(U i , U j ) = ∅, for any distinct i, j ∈ {1, • • • , k}. If |W | + k -1 ≥ v∈W c v ,the subtour elimination inequality associated with S is then not

  and thus it is not facet-defining.If e i ∈ δ(v o ), v o ∈ O for some i ∈ {1, • • • , k},and there exists some edge e ∈ E[S i ] ∩ δ(v o ) \ {e i }, then F is a proper subset of the proper face induced by x e ≥ 0.

  4. there exists no such node v a ∈ S that c va = 2 and removing δ({v a } ∪ O) from G disconnects W \ {v a } and r; 5. there does not exist e b ∈ E[S] \ E[W ] such that removing e b and δ(O) from G disconnects S and r.

  has that F is a proper subset of the proper face induced by x e ≥ 0 for some e ∈ δ(v),where v ∈ S \ O is in the connected component of G[S \ O] that does not contain r.If there exists v o ∈ S ∩ O, F is then a proper subset of the proper face induced byx(δ(v o ) \ δ(S))c vo x(δ(S) \ δ(O)) ≤ 0. If G[W ] is not 2-connected, then for any block G[W i ] of G[W ], F is a proper subset of the proper face induced by x(E[W i ]) -(|W i | -1)x(δ(S) \ δ(O)) ≤ 0.If there exists an edge e b in E[S] \ E[W ] that removing e b and δ(O) from G disconnects S and r, F is a proper subset of the proper face induced by x(E[W ]) -(|W | -1)x(δ(S ) \ δ(O)) ≤ 0, where S S and δ(S ) \ δ(O) = {e b }. If there exists a node v a ∈ S such that c va = 2 and removing δ({v a } ∪ O) disconnects W \ {v a } and r, then F is a proper subset of the proper face induced by x(δ(v a ))c va x(δ(S) \ δ(O)) ≤ 0.
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 66 Figure 6.6: An example of upload capacity inequality cutting off a fractional extreme point

  a proper subset of the proper face induced by x e ≥ 0 for some e ∈ E. If there exists an edge e b ∈ E[S] ∪ δ(S) such that removing δ(O) ∪ {e b } disconnects v and r, let S be a subset of S such that δ(S ) \ δ(O) = {e b }, v ∈ S . Then F is a proper subset of the proper face induced by x(δ(v))c v x(δ(S ) \ δ(O)) ≤ 0. If there exists such node v a ∈ S \ {v} that c va = 2 and removing δ(O) ∪ δ(v a ) disconnects v and r, one has that F is a proper subset of the proper face induced by x(δ(v a ))c va x(δ(S) \ δ(O)) ≤ 0.

  One has for any e ∈ D δ , e ∈ D S , a e = -(c v -1)a e . For any e ∈ E[S] \ D S , one must have F ⊆ D S and a path P ve ⊆ E[S] from r to e, with |F | = c v -1 and |P ve ∩ F | = |P ve ∩ δ(v)| = 1, which gives us a e = 0. For any e ∈ δ(S) \(δ(v) ∪ δ(O)), there must exist a path P ev from e to v and a set F ⊆ D S with |F | = c v such that P re ∪ P ev ∪ F induces a bounded r-tree, where P re has all inner nodes in S. Thus a e = -c v a e holds for any e ∈ δ(S) \ (δ(v) ∪ δ(O)) and e ∈ D S . For e ∈ δ(O) ∩ δ(S), without loss of generality, assume e ∈ δ(v o ), v o ∈ O. If v o ∈ S, one must have an re-path with all inner nodes in S, which leads to a e = 0. If v o ∈ S, there must exist a path P ve from v to e, an edge e ∈ D δ , a path P re and a set F ⊆ D S , where |F

  induces a feasible solution in F which leads to a e 1 = a e 2 , where F ⊆ δ(v) \ {e 2 }, and |F | = c v -1. To summarize, in both cases, for any e ∈ δ(v), one has a e = λ.For any edge e ∈ E[S] \ (δ(v) ∪ P 1 ) or e ∈ δ(S) ∩ δ(O) \ δ(v), based on the conditions, we claim that there must exist, a path P ve from v to e with all inner nodes in S, and a setF ⊆ δ(v) \ {e 1 } with |F | = c v -1,such that the graph induced by F ∪ P ve does not contains a cycle. Moreover, P 1 ∪ F ∪ P ve induces a bounded r-tree in face F, which gives us a e = 0.For any edge e ∈ E[S] ∩ P 1 , through a similar argument, one can prove, if the graph induced by e ∪ P 2 does not contain a cycle, P 2 ∪ F ∪ P ve is a feasible solution in face F, with someF ⊆ δ(v)\{e 2 } and |F | = c v -1.If the graph induced by e∪P 2 contains a cycle, P 2 ∪ F ∪ P ve \ P e induces a feasible solution in face F, where P e ⊆ e ∈ E[S] \ (δ(v) ∪ P 1 ). Therefore a e = 0. For any edge e ∈ δ(S) \ (δ(O) ∪ δ(v)), one must have a path P re from r to e with P re \ {e} ⊆ E[S] \ δ(O), a path P ev from e to v with P ev ∩ δ(S) = {e}, |P ev ∩ δ(v)| = 1, and

  a proper subset of the proper face induced by x e ≤ 0 for some e ∈ E. If there exists an edge e b ∈ E[S] such that removing e b ∪ δ(O \ v o ) disconnects r and v o , then with a node set S S that satisfies δ(S ) \ δ(O) = e b , F is a proper subset of the proper face induced by x(δ(v o ) \ δ(S ))x(δ(S ) \ δ(O)) ≤ 0. If there exists a node v a ∈ S such that removing δ(v a ) ∪ δ(O \ {v o }) disconnects r and v o , and c va = 2, then any feasible solution in F also satisfies x(δ(v a ))c va x(δ(S) \ δ(O)) = 0. If E[S \ O] \ E[U ] = ∅, and there does not exist v ∈ U , such that c v ≥ 3, then F is a proper subset of the proper face induced by x e ≤ 0 for some e ∈ E[S \ O] \ E[U ].

  ), a bounded re-path with all inner nodes in S \ O exists and corresponds to a feasible solution in F, from which one can deduce a e = 0.If δ(v o ) \ δ(S) = E[S], one can deduce a e 0 = -a e for any e 0 ∈ δ(v o ) \ δ(S), and e ∈ δ(S) \ δ(O).

P

  uvo between u and v o that satisfy V [P ue ] ∩ V [P uvo ] = {u}. Therefore, we have a e = 0 for any e ∈ E[S \ O] \ E[U ].

Furthermore

  , as G[S \ O] is connected, we have for any distinct e 1 , e 2 ∈ δ(v o ) \ δ(S) there exist two paths P ue 1 , P ue 2 between any u ∈ U and e 1 , e 2 . Combining them with a bounded path P ru with P ru ∩ δ(S) \ δ(O) = {uv} gives us two bounded r-trees of G whose incidence vectors are F. Hence we have a e 1 = a e 2 = -a uv for any e 1 , e 2 ∈ δ(v o ) \ δ(S) and any uv ∈ δ(S) \ δ(O).

  As we have rk(MP M ,π ) = |M | -1 = 0 for any (M , π ) ∈ MP(G) with |M | = 1, by induction, we deduce that rk(MP M,π ) ≤ |M | -1 for any (M,π ) ∈ MP(G).
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 6 Figure 6.7: A matching-partition inequality with Chvátal-Gomory rank 2

  Corollary 6.7.6. Let G be a cycle with c r = 1 and O = {v o }. Then we have B x (G, r, c) = {x ∈ R E : x satisfies (6.57) -(6.61)}. 6.7.2.2 Case 2. c r ≥ 2 and O = {v o }

  e o+2β e o+1 = β e o+2 + γ e o+1β e o+1 = w e o+1 . Moreover, for e ∈ δ(v o ) \ δ(r), we have α + β fe = α + β fe ≥ γ e + β fe = (w eβ fe + β e ) + β fe ≥ w e .

  optimal. Moreover, as α, β and γ are obtained by additions and subtractions involving only the components of w. So α β γ is integral if w is integral, which completes our proof. Consequently, we obtain the following result. Corollary 6.7.8. Let G be a cycle with c r ≥ 2 and O = {v o }, we then have B x (G, r, c) = P 1 xC (G, r, c). 6.7.2.3 Case 3. c r ≥ 2 and O = ∅

  respectively) are called the positive (negative, respectively) classes of the partition.
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 69 Figure 6.9: Examples of alternating edge partition

6

  Set w k+1 e = w k eβ (M k ,π k ) for any e ∈ M k , and w k+1 e = w k e + β (M k ,π k ) for any e ∈ E π k . Proposition 6.7.11. Algorithm 6.3 outputs a matching-partition and w k+1 such that |E 0 (w k+1 )| > |E 0 (w k )|.

12

  Additionally, from Lines 5 and 6, we deduce that there exists some e ∈ M k ∪ E π k with w k e = 0 and w k+1 e = 0. Therefore, |E 0 (w k+1 )| > |E 0 (w k )|. Algorithm 6.5: Dual algorithm on cycles with c r ≥ 2 and O = ∅ Input : Cycle G = (V, E) and w ∈ R E . Output: Dual-feasible solution α β γ and primal-feasible solution x E * . begin Set α = max{0, min{w e , e ∈ E}}.Set w 1 e = w eα for all e ∈ E.

  feasible and optimal. Finally, vectors α, β and γ are obtained by additions and subtractions involving only the components of w. So α β γ is integral if w is integral, which completes our proof.

  Corollary 6.7.15. Let G be a cycle. we have R x (G, r) = P 2 xC (G, r, c). 6.7.2.4 Case 4. c r = 1 and O = ∅

  6 computes a dual-feasible solution. As w 1 e = -M for all e ∈ δ(r), we have Algorithm 6.6: Dual algorithm on cycles with c r = 1 and O = ∅ Input : Cycle G = (V, E) and w ∈ R E . Output: Dual-feasible solution [ αr β ] and primal-feasible solution x E * . begin 1 Set w 1 e = w e for all e ∈ E \ δ(r), and w 1 e = -M for all e ∈ δ(r), where M is a sufficiently large number.

  2

67

  Set k = k + 1 Set γ e = w e -(M,π)∈Me β (M,π) + (M,π)∈Pe β (M,π) for all e ∈ E. 8 Set α r = max{0, γ e 1 , γ en }.H k 0 = ∅ for the k-th iteration. Let l-th iteration be the last iteration, then we have ρ l = {F l 1 = E}. Hence for any e ∈ E \ δ(r) one has γ e = w e -

αrβ]

  is dual-feasible. Now we construct a primal feasible solution E * based on [ αr β ]. Firstly, if α r = 0, then let E * = ∅. Clearly, [ αr β ] and x E * are both optimal. If α r > 0 and ρ 1 = {F 1 1 = E}, without loss of generality, assume γ en = α r , then let E * = {e n }. We have β (M,π) = 0 for any matching-partition (M,π ) ∈ MP(G). Thus, γ en = w en and therefore w T x E * = w en = γ en = α r , which indicates that both [ αr β ] and x E * are optimal.

(

  Furthermore, similarly to the case of c r ≥ 2 and O = ∅, Algorithm 6.6 ensures that |E * ∩ M | = |E * ∩ E π | for any (M,π ) ∈ MP(G) with β (M,π) > 0. Hence we have w T x E * = e∈E *

  Note that for any set S ⊆ V \ {r}, w(δ(S)) = w(δ(S ∪ O)) holds.Correspondingly, for any e ∈ E \ δ(r), let S e denote the node set with e ∈ E[S e ] that induces a min cut between r and e , that is,S e = argmin S {w(δ(S)) : e ∈ E[S], S ⊆ V \ {r}}.It is trivial to see thatmax{x ex(δ(S) \ δ(O)) : e ∈ E[S], S ⊆ V \ {r}} = max{x ew(S e ) : e ∈ E \ δ(r)}. Besides, if δ(v) ∩ E[S v ] = ∅ for some v ∈ V \ {r},then for any e ∈ δ(v) we have δ(v) ∩ δ(O) = ∅ and e ∈ δ(S v ) and thus x ew(δ(S e )) ≤ x ew(δ(S v )) ≤ 0. For any edge e = uv ∈ E \ (δ(r) ∪ δ(O)) such that δ(u) ∩ E[S u ] = ∅ and δ(v) ∩ E[S v ] = ∅, we have x ew(δ(S e )) ≤ min{x fuw(δ(S u )), x fvw(δ(S v ))}. Moreover, for any edge e = uv ∈ δ(O) \ δ(r) with v ∈ O, we have w(δ(S e )) = w(δ(S u ))), and hence

  max{x ew(S e ) : e ∈ E \ δ(r)}. Algorithm 7.1: Algorithm to separate connectivity inequalities Input : x. Output: Most violated constraint x fvx(δ(S v ) \ δ(O)) ≤ 0 if exists. begin 1 Set λ = 0 and S = V \ ({r} ∪ O). while S = ∅ do 2 Take a node v ∈ S.

  3

  as stated in the following proposition.Proposition 7.2.3. The separation problem of (7.18) reduces to |V | -1 minimum st-cut calculations.

Find

  ). if S is a proper subset of V then if r ∈ S then3 Set S 0 = S.4 {e 1 , e 2 } ⊆ E[S] and a node set S S such thatx e 1 + x e 2x(δ(S ) ∩ E[S] \ δ(O)) is maximized using a similar algorithm as described in Didi-Biha et al.[2015] for their connectivity inequalities. 5 Set π = {S, S , S \ S } and M = {e 1 , e 2 }. else 6 Set S 1 = S. 7 Find and edge e 1 in E[S 1 ] with the maximum x-value. 8 Find an edge e 1 ∈ E[S] \ δ(r) and a node set S ⊆ S \ {r} such that x e 1x(δ(S ) ∩ E[S] \ δ(O)) is maximized using a similar algorithm to the separation algorithm of (7.5). 9 Set π = {S, S , S \ S } and M = {e 1 , e 2 }. 10 Return the inequality x
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  graphe simple non orienté G = (V, E) et un sommet particulier r ∈ V appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul (∅, ∅) soit un arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal à sa capacité. Soit w un vecteur de poids sur les arêtes dans R V et p un vecteur de profits sur les sommets dans R E . Le problème du r-arbre borné maximum (MBrT, de l'anglais Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F ) de G tel que f (T ) = e∈F w e + v∈U p v soit maximisé. Si la contrainte de capacité du problème MBrT est relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l'anglais Maximum r-Tree). Cette thèse contribue à l'étude des problèmes MBrT et MrT. Tout d'abord, il a été prouvé que ces deux problèmes sont N P-difficiles. Théorème 1.0.1. Le problème MrT est N P-difficile. Théorème 1.0.2. Le problème MBrT est N P-difficile. L'enveloppe convexe des vecteurs d'incidence des r-arbres de G s'appelle le polytope étendu pour r-arbre et est notée par R xy (G, r) = conv({ x F y U ∈ {0, 1} E × {0, 1} V : (U, F ) est un r-arbre}).

  Théorème 1.0.3. Soit G un graphe série parallèle, R xy (G, r) = P xy(G, r).Lorsque nous considérons uniquement les arêtes, nous disons qu'un ensemble d'arêtes F ⊆ E induit un r-arbre si le graphe G F = (V [F ] ∪ {r}, F ) est un r-arbre. On peut dire que l'ensemble vide induit le r-arbre G ∅ = ({r}, ∅).L'enveloppe convexe des vecteurs d'incidence des ensembles des arêtes induit r-arbre de G s'appelle le polytope r-arbre et est notée parR x (G, r) = conv({x F ∈ {0, 1} E : G F est un r-arbre}).De même, les polyèdres pour r-arbre borné peuvent être définis comme suit.L'enveloppe convexe des vecteurs d'incidence des r-arbres bornés de G s'appelle le polytope étendu pour r-arbre borné et est notée parB xy (G, r, c) = conv({ x F y U ∈ {0, 1} E+V : (U, F ) est un r-arbre borné}).L'enveloppe convexe des vecteurs d'incidence des ensembles des arêtes induit r-arbre borné de G s'appelle le polytope pour r-arbre borné et est notée par B x (G, r, c) = conv({x F ∈ {0, 1} E : G F est un r-arbre borné}).

. 5 )

 5 En raison de l'existence de O, on peut remarquer que, même si G est connecté, il peut y avoir des noeuds ou des arêtes de G de sorte qu'ils ne peuvent être atteints par un r-arbre borné de G. Nous disons qu'un noeud v (arête e, respectivement) de G est inaccessible depuis la racine r s'il n'existe aucun chemin dans G contenant r et v (e, respectivement) qui n'a aucun noeud dans O comme un noeud interne. On note V u et E u les ensembles composés des noeuds et des arêtes inaccessibles de G, respectivement. Tout vecteur d'incidence d'un r-arbre borné de G satisfait directement aux équations suivantesx e = 0 ∀e ∈ E u ,(1.6)y v = 0 ∀e ∈ V u . (1.7)En fait, pour les études algorithmiques et polyédriques, les noeuds et arêtes inaccessibles sont insignifiants. Nous supposons donc queV u = ∅, E u = ∅.Cette thèse est consacrée à l'étude polyédrique, algorithmique et numérique des problèmes MBrT et MrT. Dans ce résumé, une série de résultats est présentée brièvement sur chaque aspect. De plus amples détails sont disponibles dans la version anglaise.

  r, et c v s = c s pour s ∈ v \ v. En d'autres termes, g(v) = max{f (T ) : T est un arbre de G[ v ] avec v ∈ V (T ) et borné par c v }.

Algorithm 2. 2 :24 5 ζ

 25 Algorithme pour obtenir ζ Min (P r ) sur les cyclesInput : Cycle G = (V, E), w ∈ R E and p ∈ R V Output: ζ Min (P r ). Pr v n-2 v n-1 ) = ζ({e n-1 }) = w e n-1 . Set i = n -3. while i ≥ 1 do 3 Set ζ v i Min (P Pr v i v n-1 ) = min{w e i+1 , w e i+1 + p v i+1 + ζ i+1 Min (P Pr v i+1 v n-1 )}. Set i = i -1 Min (P r ) = min{ζ v i Min (P Pr v i v n-1 ) : i ∈ {1, • • • , n -2}}.
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  cours de notre travail, deux familles de nouvelles équations valides ont été découvertes.Étant donné un noeudv o ∈ O, x(δ(v o ))y vo = 0 (3.6)est valable pour B xy (G, r, c).

  x ex(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, G, r) est en fait en pleine dimension dans l'hypothèse d'aucun élément inaccessibles.Théorème 4.0.1. R x (G, r) est en pleine dimension, c'est-à-dire, dim R x (G, r) = |E|.En outre, nous présentons également deux familles de nouvelles inégalités valables pour R x (G, r).Soit π = {S 0 , S 1 , • • • , S k }, k ≥ 1, une partition de V avec r ∈ S 0 et M = {e 1 , • • • , e k } un couplage (ou matching, en anglais) de G avec e i ∈ E[S i ] pour tous i ∈ {1, • • • , k}. La paire (M,π ) s'appelle matching-partition de G.Noter par MP(G) l'ensemble composé de toutes les partitions correspondantes de G et par E π l'ensemble des arêtes ayant leurs extrémités dans différentes classes de partition π. Avec un matching-partition (M,π ) ∈ MP(G), on peut associer l'inégalité matching-partitionx(M )x(E π ) ≤ 0. (4.5) Étant donné W ⊆ S ⊆ V \ {r}, |W | ≥ 2, l'inégalité acyclicité-connectivité est définie comme suit. x(E[W ]) -(|W | -1)x(δ(S)) ≤ 0 (4.6)Les conditions nécessaires et suffisantes pour que les inégalités valides, tant dans la formulation initiale que nouvellement découverte, soient facettes définissantes sont également examinées. Les résultats et les preuves peuvent être trouvés dans la version anglaise de cette thèse.

  x ex(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, R x (G, r), nous pouvons également prouver que B x (G, r, c) est en pleine dimension.Théorème 5.0.1. B x(G, r, c) est en pleine dimension, c'est-à-dire, dim B x (G, r, c) = |E|.Quelques critères généraux ont été découverts pour que les inégalités soient facettes définissantes. Nous donnons les deux lemmes suivants comme exemples.Lemme 5.0.2. Soit une inégalité valide a T x ≤ b pour B x (G, r, c) qui est différent de x e ≥ 0 pour certains e ∈ E. a T x ≤ b est facette définissante pour B x (G, r, c) seulement si elle satisfait a e ≥ 0 pour tout arête e ∈ δ(O). Lemme 5.0.3. Soit c r = 1 et une inégalité valide a T x ≤ b pour B x (G, r, c) qui est différent de x(δ(r)) ≤ c r . Alors, a T x ≤ b est facette définissante pour B x (G, r, c) seulement si b = 0.Comme pour R x (G, r), nous avons également trouvé quelques familles de nouvelles inégalités valides pour B x (G, r, c). En fait, les deux familles de nouvelles inégalités pour R x (G, r) peuvent être adaptées aux inégalités valables pour B x (G, r, c).On note par E π l'ensemble des arêtes ayant leurs extrémités dans différentes classes de un matching-partition (M,π ) ∈ MP(G). Avec (M,π ), on peut associer l'inégalité matchingpartition suivantex(M )x(E π \ δ(O)) ≤ 0. (5.6) Étant donné W ⊆ S ⊆ V \ {r}, |W | ≥ 2, l'inégalité acyclicité-connectivité est définie comme suit. x(E[W ]) -(|W | -1)x(δ(S) \ δ(O)) ≤ 0 (5.7)En outre, il existe quelques autres inégalités valides pour B x (G, r, c). Nous donnons deux exemples dans la partie suivante.Étant donné S ⊆ V \ {r} avec v ∈ S \ O, l'inégalité capacité de téléchargement est x(δ(v))c v x(δ(S) \ δ(O)) ≤ 0.(5.8)Nous définissonsS i = {v ∈ V \ {r} : c v = i, i ≥ 2}. Étant donné S ⊆ S i , on note R = V \ (S ∪ O). L'inégalité capacité-i est x(δ(O) \ δ(R)) -(i -2)x(E[S]) -(i -1)x(δ(R) \ δ(O)) ≤ 0.(5.9)Avec les inégalités matching-partition et les inégalités capacité de téléchargement, nous montrons que B x (G, r, c) peut être caractérisé sur les arbres et les cycles d'un système linéaire qui est totalement dual intégré (TDI).Théorème 5.0.4. Sur les arbres, le système linéairex ex fe ≤ 0 ∀e ∈ E \ δ(r), (5.10)
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  we give the following technical lemma as a support of our latter results. If a maximum non-empty bounded tree rooted at v contains v k , k ∈ {1, • • • , q}, it also contains a maximum non-empty bounded tree rooted at v k .

	Lemma 3.1.1.

  Given an ru-path P ru of length k, it is straightforward to see that there are exactly k nonempty rv-paths of G[P ru ]. Thus, finding a maximum-weight nonempty bounded rvpath of G[P ru ] can be done in linear time.

	Proof.
	Proposition 3.2.1. Given a path P ru ⊆ E between r and u of G for some u ∈ V \ {r},
	a maximum-weight nonempty bounded rv-path of the subgraph G[P ru ] can be obtained in
	linear time.

s i sq ) ≥ min{w s i s i+1 , w s i s i+1 + p s i+1 + ζ s i+1 Min (P s i+1 sq )}, which completes the proof.

  Then one has ζ(P si s j ) = w s i s i+1 + p s i+1 + ζ(P s i+1 s j ) < w s i s i+1 + p s i+1 + ζ

			s i+1 Min (P s i+1 sq ). It
	clearly contradicts the optimality of ζ	s i+1 Min (P s i+1 sq ). Therefore,
	ζ s i Min (P We can also deduce the following proposition.
	Proposition 3.2.7.	
	ζ Min (P s 1 sq ) = min{ζ s i Min (P s i sq ) : i ∈ {1, • • • , q -1}}.	(3.7)
	Proof. From the definition of ζ Min (P s 1 sq ) and ζ s i Min (P s i sq ), one has
	ζ Min (P s 1 sq )	
	= min{ζ(P	Ps 1 sq

  , • • • , n -1}. Denote P o = P Pn rvo the path between r and v o passing through e 1 , and P o = P P 1 rvo the path between r and v o passing through e n , as demonstrated in Figure 3.1. In order to calculate ζ Min (P r ), Algorithm 3.2 in this case should be changed to finding a minimum-weight subpath P Pr uv of P r which satisfies v o ∈ V [P Pr uv ]. Alternatively, we show this approach can be replaced by another algorithm described below.

	Instead of finding a minimum-weight subpath of P r , one can focus on finding two subpaths
	P Po vou , P vov of P o and P o respectively, such that they have minimal values of ζ(P Po P o vou ) and
	ζ(P

  It can be seen that P ss = ∅.

	If v o ∈ V [P ss ], without loss of generality, assume s = v o . One must have f (G[P ss ]) >
	f (G) -ζ o which indicates ζ(P Pr vos ) < ζ o contradicts the optimality of ζ o .
	Otherwise assume v o / ∈ V [P ss ], then P Po svo = ∅ and P	P o s vo = ∅. From the assumption, one
	can deduce that ζ(P Po svo ) + ζ(P	P o s vo ) < ζ o + ζ o . Thus at least one of the two inequalities
	ζ(P Po svo ) < ζ o and ζ(P s vo ) < ζ o holds, which forms a contradiction with the opimality of P o
	either ζ o or ζ o .	
	Therefore, such path P ss does not exist. Thus

which concludes the proof. As a result of this proposition, the MBrT problem in this situation can be reduced to the problem of finding ζ o and ζ o . Similar to Proposition 3.2.1, ζ o and ζ o can also be obtained in linear time, except that now v o is the fixed end of the paths instead of r, and it looks

  for minimum-weight paths instead of maximum-weight paths.

	Theorem 3.2.12. If G is cycle with c r = 2 and O = {v o }, the MBrT problem can be
	solved in linear time.
	Proof. For ζ o (ζ o , respectively), there are exactly o (n -o, respectively) nonempty paths
	of G[P o ] (G[P o ], respectively) that contain o. Hence, ζ o (ζ o , respectively) can be obtained
	in linear time, which combining with Proposition 3.2.11 completes the proof.

  3.2: A cactus basisFor any bounded r-tree T i of G with i edges in δ G 2 (v a ), i ∈ {1, 2}, let T i be the r-tree obtained by replacing the part of T i in G 2 with e 1 if i = 1, or with e 1 and e2 if i = 2. One has f (T i ) ≥ f (T i ) as a result of the optimality of Opt 1 G 2 and Opt 2 G 2 . Hence Opt G ≤ Opt G .Conversely, according to Proposition 3.3.1, w e 1 ≥ w e 2 , thus if there exists a maximum bounded r-tree in G that contains e 2 , there must also exist a maximum bounded r-tree containing e 1 . Additionally, any maximum bounded r-tree in G containing only e 1 or both e 1 and e 2 can be transformed into a bounded r-tree of G. Thus Opt G ≥ Opt G , and therefore completes the proof.If |δ G 2 (v a )| = 1, let G be the graph composed of G 1 and an edge e 1 = v a v 1 taking the place of G 2 such that p v 1 = 0 and w e 1 = Opt 1 G 2p va . ThenOpt G = Opt G . V , the set of hinges, which is the set composed of nodes that have degree at least 3 and belong to at least one cycle and r if r belongs to a cycle. A cactus graph then can be seen as a combination of cycle and tree components linked by hinges. As cactus graphs have the tree hierarchy, the notion of up-closure and down-closure can be extended to cactus graphs for the hinges. For any two distinct nodes u, v ∈ H, define u ≤ v if u belongs to all the rv-paths in G. The up-closure v and down-closure v of v are thereby defined as v = {u ∈ H : v ≤ u} and v = {u ∈ H : u ≤ v} respectively. For each cycle C = (U C , F C ) of G, we say that it is attached at a hinge h ∈ H if h ∈ U C and removing δ(h) disconnects all nodes in U C \ {h} from r. Denote the graph G C = (V C , E C ) as the graph such that F C ⊆ E C , and removing F C disconnects all nodes in V C \ U C and all edges in

	Denote by H ⊆
	If Opt 1 G 2 and Opt 2 G 2 and the associated bounded r-trees can be obtained in polynomial
	time, Proposition 3.3.2 allows us to transform such subgraph G 2 into edges and hence
	simplify the structure of the graph.
	Similarly, it is trivial to see that if |δ G 2 (v a )| = 1, one can transform G 2 into just one edge.
	The proof is immediate from the proof of Proposition 3.3.2, as one can add a virtual edge
	with weight -M , where M is a sufficiently large number. In this case Opt 2 G 2 = Opt 1 G 2
	always holds, and the associated bounded r-trees are identical. This result is stated in
	the following corollary.
	Corollary 3.3.3. Based on Proposition 3.3.2 and Corollary 3.3.3 a cactus basis as shown in Figure 3.2 can
	be developed for solving the MBrT problem on cactus graphs. It is composed of a cycle
	where each node except the root node is incident with some pending edges. As it contains
	only one cycle, Corollary 3.1.5 implies that the MBrT problem on cactus bases can be
	solved in polynomial time. On these grounds, the MBrT problem on cactus graphs can
	be proved to be polynomially solvable, by reducing it to a number of subproblems on
	graphs with the forms of tree and cactus basis.

each tree branch G v b attached at some hinge h ∈ h \ {h} associated with v b , one can replace G v b by an edge h v b with w h v b = Opt 1 Gv b (h ) -p h and p v b = 0. Then the graph G C is transformed into a cactus basis, and we assume that G C is a cactus basis hereafter. Notice that if G v b contains only one edge, the transformation

  disconnects h and v} ∪ {h } is called a tree branch attached at h associated with v b and v b h . = {e 1 , e 2 }, and let M be a sufficiently large number. Denote by G e = G C \ {e} the subgraph of G C without e. Using Algorithm 3.1, one can solve the MBrT problem on two subgraphs G e 1 and G e 2 with c h = 1, and setting w e 2 = M in G e 1 and w e 1 = M in G e 2 respectively. It can be seen that Opt 1(G C )(h) = max{Opt Ge 1 (h) -M + w e 2 , Opt Ge 1 (h) -M + w e 1 }.This calculation can be done in the time of O(|V (G C )|). (h) can be obtained as follows. First, set h as the root node with c h = 2, w e 1 = M and w e 2 = M , and then solve the MBrT problem on G e , for each e ∈ E(C) \ {e 1 , e 2 }. This operation can be repeated until there is no cycles left in G. Denote the new graph by G . According to Proposition 3.3.2, we have Opt G = Opt G . Furthermore, as G is tree, the MBrT problem on it can be solved in polynomial time according to Theorem 3.1.4. Therefore, one can solve the MBrT problem by solving a series of subproblems on cactus bases and trees. Algorithm 3.3 demonstrates the algorithm without providing the details of algorithms on the subgraphs.

	Proposition 3.3.4. The MBrT problem on a cactus graph is polynomially solvable. Proof. For each cycle C of G attached at hinge h ∈ H, assume that there is no other cycle components in G C , otherwise one has to deal with them beforehand. In other words, the cycle component is only connected with a few tree branches. As the MBrT problem on trees is polynomially solvable, we can transform each each tree branch G v b attached at some hinge h ∈ h \ {h} into an edge according to Corollary 3.3.3. More precisely, for , although harmless, is unnecessary. According to Corollary 3.1.5, one can obtain Opt 1 G C (h) and Opt 2 G C (h) using the following approach. G C Then we have Opt 2 G C (h) = max{Opt Ge (h) : e ∈ E(C) \ {e 1 , e 2 }}-2M + w e 1 + w e 2 . This calculation can be done in the time of O(|C||V (G C )|). According to Proposition 3.3.2, G C can then be replaced by two edges e 1 , e 2 with the weights w e 1 = Opt 1 G C (h) -p h and w e 2 = Opt 2 G C (h) -Opt 1 G C (h). Algorithm 3.3: Algorithm for the MBrT problem on cactus Input : Cactus G = (V, E), w ∈ R E and p ∈ R V Output: Solution to the MBrT problem on G. begin while there exists some cycle C attached at a hinge h such that G C only contains one cycle do Let δ(h) Opt 2 if G C is already transformed into a cactus basis then

1

Transform G C into two edges according to Proposition 3.3.2.

else if G C contains some tree branch G v b attached at a hinge h then 2

  and hence any rv-path of G[E i ] satisfies the capacity constraints. Let P ru be a path of G[E i ] between r and u that does not pass through v. Both P ru and P ru ∪ {uv} induce bounded r-trees of G. We hence deduce

  , a graph is 2-connected if and only if it has an open ear decomposition. Moreover, a 2-connected graph admits an open ear decomposition starting at any cycle of the graph. We present the following technical lemma based on this property of 2-connected graphs.

Lemma 4.3.10. Given a 2-connected graph G = (V, E) and two distinct nodes u, v ∈ V , there exists a path P uv between u and v with e ∈ P uv for any e ∈ E.

Proof. If there exists a cycle of G which contains u, v, and e, then such path obviously exists.

Otherwise suppose that there does not exist a cycle of G which contains u, v, and e. As G is 2-connected, there exists a cycle C ⊆ E of G which contains u and v. Let C, P 1 , • • • , P k be an open ear decomposition of G, and denote

  ) is bounded by c according to (4.21). Hence, we only need to prove that (U, F ) is connected and rooted at r. For any node v ∈ V \{r}, let P rv be the unique path between r and v in G. If y v = 1 ( or equivalently x fv = 1 according to (4.19)), we deduce from (4.19) and (4.20) that y u = 1 for any u ∈ v = V [P rv ] and x e = 1 for any e ∈ E[ v ] = P rv . Hence for each node v in U \ {r} and each edge

x y ∈ P T ree (G, r, c) ∩ Z E+V and its induced graph (U, F ). Clearly, (U, F

  Without loss of generality, let e m be an edge in F + such that |P rem | ≥ |P re | holds for any e ∈ F + . Since |P rem | ≥ |P re |, one has e m / ∈ P re (or x Pre em = 0)

  is a proper subset of the proper face induced by x e ≤ 0 for some e∈ E[R]. If G[S]is not connected, without loss of generality, assume it has two connected components induced by node sets S 1 and S 2 , with S = S 1 ∪ S 2 . F is a proper subset of the proper face induced by either x

  .13) Proposition 6.4.11. Inequality (6.13) is valid.Proof. Assume x is an integer feasible solution to the problem. Consider the edges in the solution as pipes that consume and provide resource (i.e. capacities in our case) at the same time. As the edges in E[R] do not participate in inequality (6.12) by any means, it is safe to say that each edge e ∈ δ(R) \ δ(O) provides i units of capacity as it connects one node in S i , and consumes one unit of capacity while connecting the node. For any edge e ∈ E[S], it consumes 2 units of capacity of nodes in S i , and provides i unit of capacity as it can be seen as connecting to a new node in S

i . Any edge in e ∈ δ(O) \ δ(R) consumes one unit of capacity of nodes in S i and provides none. So the total capacity provided is ix(δ(R) \ δ(O)) + ix(E[S]), and total capacity consumed is x(δ(R)\δ(O))+2x(E[S])+x(δ(O)\δ(R)). Since the capacity consumed cannot exceed the capacity provided, one has x

  max{β few e , 0},γ e = max{w eβ fe , 0}.It is straightforward to see thatw e = γ eβ e , ∀e ∈ δ(r), w eβ fe = γ eβ e ∀e ∈ E \ δ(r). If δ(r) ∩ δ(v o ) = ∅, that is, without loss of generality o = 1, one has α ≥ γ e 1 = max{w e 1 , 0} ≥ w e 1 ,

	Moreover, let
	α = max{γ eo , γ e o+1 }.
	which indicates that (6.67) is satisfied

  The graphs have node number ranging from 10 to 1000. More details about the instances can be found in Table7.1.The instances are tested with the help of IBM ILOG CPLEX with C++ and Concert Technology. It allows us to build the model of our problem as well as insert customized cuts and heuristics in the branch-and-cut process conducted by CPLEX.

	Testset Number Node number Capacity Source	Density	Graph class
	B	18	50-100	1-3	SteinLib	sparse	random
	C	20	500	1-3	SteinLib	sparse	random
	I320	20	320	1-3	SteinLib mostly sparse random
	I640	16	640	1-3	SteinLib mostly sparse random
	MSM	30	90-5181	1-3	SteinLib	sparse	grid
	ran	110	10-499	1-4	generated	dense	random
	rg_13	198	10-999	1-3	generated	sparse	random
	rg_23	198	10-999	2-3	generated	sparse	random
			Table 7.1: Options for the instances	
	nodes is between 1 and 4.				

  ) is maximized, we have rr ∈ M * . First, one has rr / ∈ E π * , since otherwise combining the two partition classes that contain r and r into one partition class and picking rr as the corresponding edge in the matching gives us a better solution. As rr / ∈ E π * and x rr > x e for any e ∈ E, one must have rr ∈ M * .Furthermore, it can be seen that each matching partition (M,π ) ∈ MP (G) has a one-toone correspondence with a CSP matching-partition (M , π ) ∈ MP CSP (G ) with rr ∈ M , and vise versa. Hence the following relation holds.

* , π * ) ∈ MP CSP (G ) such that g CSP x (M * , π *

  The separation of capacity-i inequalities (7.19) can be done in polynomial time by calculating the minimum cut between R 0 = V \ (S i ∪ O) and O for each possible i between 2 and max{c v : v ∈ V \ ({r} ∪ O)}. Therefore, at most n -2 maximum flow calculation is required to separate (7.19).

Proposition 7.2.13. The separation problem of (7.19) reduces to at most |V \ O| -1 minimum st-cut calculations.

Proof. Given x ∈ [0, 1] E and integer 2

Table 7 .

 7 7 provides a glimpse to the results obtained for the dense graphs. As we can see, all 6 instances listed in Table7.7 have been solved by BRT x and BRT xy within 1 minute, whereas CP LEX x and CP LEX xy failed to find a good lower bound on some of them.Moving onto the instances with sparse graphs, we first test on the instances with node capacity chosen from 1 to 3 (that is, the testset rg_13). As it is shown in Figure7.6, BRT xy has solved the most instances, whereas BRT x still constantly performed better than CP LEX x . However, the performance of BRT x on this testset is close to CP LEX xy and is outperformed by BRT xy in a convincing fashion.Figure7.7 shows the averages bounds obtained by the four different frameworks. It can be seen that, as opposed to the case on dense graphs, CP LEX xy struggles much harder to find a good lower bound than CP LEX x .Table7.8 reports some of the results on testset rg_13. We can clearly see that BRT xy had the best overall performance, which is slightly better than BRT x , and much better than both CP LEX x and CP LEX xy . Despite CP LEX x failed to solve some instances, the gaps at the end of the execution are much smaller than those of CP LEX xy , as a CP LEX x BRT x Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)

	39_7	39 130 29 30.50 5.17% 7200.01 29 29 0.00% 0.02
	97_5	97 4196 96 96 0.00% 1.02	96 96 0.00% 0.69
	139_6 139 9118 0 138	-	7200.09 138 138 0.00% 2.77
	222_0 222 6356 221 221 0.00% 3983.44 221 221 0.00% 0.85
	370_7 370 61606 0 369	-	7214.24 369 369 0.00% 6.89
	477_7 477 65937 0 476	-	7209.92 476 476 0.00% 39.15
			CP LEX xy	BRT xy
	Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
	39_7	39 130 29 29 0.00% 0.60	29 29 0.00% 0.01
	97_5	97 4196 6	96 1500% 7200.08 96 96 0.00% 0.52
	139_6 139 9118 138 138 0.00% 1.01 138 138 0.00% 0.68
	222_0 222 6356 0 221	-	7200.10 221 221 0.00% 0.44
	370_7 370 61606 0 369	-	7205.22 369 369 0.00% 3.48
	477_7 477 65937 0 476	-	7200.97 476 476 0.00% 2.06

Table 7 .

 7 970 342 347 1.46% 7200.49 343 347 1.17% 7200.43 rg_13/560 1088 535 535 0.00% 59.90 535 535 0.00% 81.41 rg_13/739 2081 730 738 1.10% 7200.30 734 738.00 0.54% 7200.01 rg_13/981 2408 934 935 0.11% 7201.20 935 935 0.00% 112.09 CP LEX xy BRT xy Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s) rg_13/69 69 108 1 43 4200% 7200.02 1 1 0.00% 0.07 rg_13/154 200 104 104 0.00% 1092.06 104 104 0.00% 0.01 rg_13/348 970 332 345 3.92% 7200.02 343 343 0.00% 5.46 rg_13/560 1088 60 537 795% 7201.89 534 536 0.37% 7202.00 rg_13/739 2081 51 738 1347.06% 7201.45 735 735 0.00% 23.74 rg_13/981 2408 15 935 6133.33% 7200.54 935 935 0.00% 394.51 Table 7.8: Test results on instances on sparse graphs

			CP LEX x			BRT x
	Instance	|V | |E| LB UB	Gap	Time(s) LB UB	Gap Time(s)
	rg_13/69 69 108 1 1	0.00%	365.69 1	1	0.00% 0.39
	rg_13/154 200 104 104 0.00%	56.71 104 104 0.00% 0.77
	rg_13/348				

7: Test results on instances on dense graphs Figure 7.6: Percentage of solved instances on random sparse graphs Figure 7.7: Bounds on random sparse graphs

  Ins Time(s) t r (s) N B&C UB LB 155 7 7200.57 7200.57 0 220.50 0 164 5 7200.11 7200.11 0 233.00 0 167 1 7201.56 7201.56 0 229.50 0 176 2 7200.44 7200.44 0 247.50 0 179 6 7200.99 7200.99 0 236.00 0 183 3 7207.66 7207.66 0 255.50 0 189 4 7202.57 7202.57 0 271.50 0 190 5 7208.02 7208.02 0 257.50 0 198 3 7201.6 7201.6 0 277.50 0 Table 7.10: Test results with BRT P xy , 10 -199 nodes

					Ins Time(s) t r (s) N B&C UB LB
	0.02	0.02	0	9 9	97 2	0.18	0.18	0	71	71
	0.02	0.02	0	10 10	97 5 4550.08 2096.17 237	83	83
	0.04	0.04	0	12 12	98 3 1059.52 327.33 270	96	96
	0.02	0.02	0	14 14	99 1 7200.6 7200.6	0	79.50 0
	0.05	0.05	0	16 16	99 8	50.97	30.82	80	83	83
	0.04	0.04	0	16 16	100 2 7200.71 7200.71 0 135.50 0
	0.03	0.03	0	15 15	106 1 510.77 510.77	0	148 148
	0.07	0.07	0	15 15	110 9 7200.03 1155.24 164 130.64 0
	0.04	0.04	0	20 20	114 6 5788.61 5788.61 0	163 163
	0.03	0.03	0	22 22	122 7 35.13	32.96	14	121 121
	1.29	1.29	0	31 31	128 0 7203.56 7203.56 0 170.50 0
	0.20	0.20	0	29 29	133 0 194.72 194.72	0	185 185
	3.00	0.15 183 29 29	139 6 7214.45 7214.45 0 201.00 0
	1.37	1.37	0	45 45	144 4 7200.38 7200.38 0 179.09 0
	0.12	0.12	0	39 39	149 5 7202.4 7202.4	0 203.50 0
	0.10	0.10	0	44 44	151 4 7204	7204	0 212.50 0
	0.56	0.56	0	38 38						
	0.25	0.25	0	46 46						
	2.09	2.09	0	60 60						
	18.75 18.75 0	75 75						
	63.12 63.12 0	83 83						
	0.85	0.30 13 36 36						
	1125.92 14.27 180 88 88						
	0.06	0.06	0	43 43						
	2.15	1.31 13 51 51						

  Des résultats similaires sont obtenus sur les cycles concernant TDI, mais sont prouvés dans quatre cas différents.Nous étudions les problèmes de séparation pour toutes les inégalités que nous avons trouvées jusqu'ici. Des algorithmes polynomiaux de séparation sont présentés, et lorsqu'un problème de séparation est N P-dificile, nous donnons des heuristiques de séparation. Tous les résultats théoriques développés dans ce travail sont implémentés dans plusieurs algorithmes de coupes et branchements auxquels une matheuristique est également jointe pour générer rapidement des solutions réalisables. Des expérimentations intensives ont été menées via le logiciel CPLEX afin de comparer les formulations renforcées et originales. Les résultats obtenus montrent de manière convaincante la force des formulations renforcées. Puis, avec CPLEX et la technologie Concert, nous avons mis en place quatre cadres de l'algorithme de coupe, CP LEX x , CP LEX xy , BRT x , BRT xy . Tableau 6.1 donne les options choisies pour chaque cadre.Nous testons sur les instances soit sélectionnées dans SteinLib ou générées de façon aléatoire, comme le montre le Tableau 6.2. Dans les Figures 6.1 -6.4, nous montrons la performance des quatre algorithmes sur chaque testset. Sur les plus de 600 instances que nous avons testées, BRT xy a résolu 73,61 % d'entre eux et BRT x 52.46 %, tandis que CP LEX xy a résolu 47.70 % d'entre eux et CP LEX x 35.08 %. Cela montre, dans une large mesure, que le niveau de force global de chaque cadre

	e ≥ 0 est TDI, et caractérise complètement B Chapitre 6 Étude expérimentale Cadre Variable de noeud Usercut Prétraitement Matheuristic ∀e est un arête de feuille, CP LEX x × × × × CP LEX xy √ Densité Classe des graphes (5.14) B 18 50-100 1-3 SteinLib clairsemé aléatoire C 20 500 1-3 SteinLib clairsemé aléatoire I320 20 320 1-3 SteinLib surtout clairsemé aléatoire I640 16 640 1-3 SteinLib surtout clairsemé aléatoire MSM 30 90-5181 1-3 SteinLib clairsemé grille ran 110 10-499 1-4 généré dense aléatoire rg_13 198 10-999 1-3 généré clairsemé aléatoire rg_23 198 10-999 2-3 généré clairsemé aléatoire × Testset Nombre Nombre de noeuds Capacité Source Tableau 6.2: Options pour les instances

x (G, r, c).

  ConclusionDans cette thèse, nous avons abordé le problème MBrT et le problème MrT à partir de trois directions, des algorithmes, des polyèdres et des étude de calcul. Tout d'abord, nous avons proposé plusieurs algorithmes combinatoires en temps polynomial pour le problème MBrT sur les arbres, les cycles et les cactus, respectivement. Ensuite, nous avons présenté des résultats concernant trois polytopes,B xy (G, r, c), R x (G, r) et B x (G,r, c), y compris leur dimension, leur décomposition, les nouvelles contraintes, leurs facettes, leurs caractérisations sur certaines classes de graphes. Avec CPLEX, nous avons mis en place quatre cadres des algorithmes de coupe différents, à savoir CP LEX x , CP LEX xy , BRT x et BRT xy , en fonction des formulations pour B xy (G, r, c) et B x (G, r, c). Parmi les quatre cadres, CP LEX x et CP LEX xy correspondent aux formulations originales pour B x (G, r, c) et B xy (G, r, c) sans inclure les contraintes nouvellement introduites, tandis que BRT x et BRT xy correspondent aux formulations améliorées incorporant les contraintes nouvellement introduites ainsi qu'un prétraitement et une matheuristique. Le test de calcul a démontré de manière convaincante la force des formulations améliorées, en particulier la formulation améliorée pour B xy (G, r, c). , il reste beaucoup d'aspects inexplorés et des sujets potentiels de recherche du problème MBrT. Ensuite, nous énumérons quelques directions que nous estimons utiles et méritables d'être étudiées à l'avenir.Pour l'aspect algorithmique, puisqu'il a été prouvé que le problème MBrT peut être résolu en temps polynomial sur les cactus, on peut l'étendre à éventuellement d'autres classes de graphes tels que des graphes série parallèles et des graphes plans extérieurs. Alternativement, il vaut la peine d'essayer de concevoir des algorithmes pour certaines classes de graphes avec des structures simples et exploitables tels que les roues et les fans.En outre, bien que la preuve d'intégralité du polyèdre défini par la formulation proposée pour B xy (G, r, c) soit donnée dans cette thèse, la totale dual-intégralité (TDI-ness, en anglais) de la formulation doit encore être prouvée. Nous avons obtenu quelques exemples montrant que l'insuffisance de la formulation actuelle était TDI. Ainsi, certaines inégalités redondantes devraient être incluses dans la formulation afin d'obtenir un système TDI. En outre, pour B x (G, r, c) et R x (G, r), en fonction de l'étude sur les arbres et les cycles, il est tentant de prétendre qu'une description complète est disponible sur les cactus, ou dans une large mesure, sur les graphes série parallèles. D'autre part, le problème MBrT peut être étendu à une version plus généralisée, appelée le Problème d'emballage de r-arbre borné maximum (MBrTP, de l'anglais Maximum Bounded r-Tree Packing). Le problème MBrTP, au lieu de trouver un r-arbre, consiste à trouver un emballage de K ≥ 2 r-arbres qui satisfait les contraintes de capacité globales. L'étude sur le problème de MBrT peut être considérée comme la première étape de l'étude sur le problème de MBrTP. Il existe également des applications correspondantes du problème MBrTP dans divers domaines, d'où il vaut la peine d'étudier ses algorithmes et sa structure polyédrique.En fait, nous avons fait des recherches préliminaires sur la structure polyédrique et les tests de calcul pour le problème MBrTP en tenant compte des variables sur les arêtes et les noeuds. Les résultats obtenus jusqu'à présent suggèrent que la structure polyédrique et la complexité computationnelle du problème MBrTP sont beaucoup plus compliquées que le problème MBrT, même dans les cas vraisemblablement les plus faciles (e.g. K = 2, sur les étoiles).
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Set x fvx(δ(S v ) \ δ(O)) ≤ 0 as the most violated inequality found so far.

Set S = S \ {v}.

BRT xy√ √ √ √ Tableau 6.1: Options pour les algorithmes de coupes
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Algorithm 6.4: Algorithm to update an alternating edge partition ρ k into ρ k+1 according to an edge-weight vector w k+1

Input : Alternating edge partition ρ k and w k+1 ∈ R E . Output: Alternating edge partition ρ k+1 . begin 1 Initialize ρ with ρ = ρ k and let ρ = {H 0 , F 1 , H 1 , • • • , H q -1 , F q } with q = q k . if E -(w k+1 ) = ∅ then while there exists a partition class C ∈ ρ \ {H q 0 } with w k+1 (C) = 0 do if there exists F i with w(F i ) = 0, i ∈ {1, • • • , q } then if i = q then 3 Merge F i with H i-1 and H i in ρ to get a new positive partition class and update ρ and q .

else if i = q then 4 Merge F i with H i-1 and H 0 to get a new positive partition class and update ρ and q .

else if there exists H i with w(H i ) = 0, i ∈ {1, • • • , q -1} then 5 Merge H i with F i and F i+1 to get a new negative partition class and update ρ and q .

6 Set ρ k+1 = ρ .

We then construct another alternating edge partition ρ k+1 based on ρ k and w k+1 using Algorithm 6.4.

Proposition 6.7.12. Algorithm 6.4 outputs an alternating edge partition ρ k+1 with respect to the edge-weight vector w k+1 .

Proof. If E -(w k+1 ) = ∅, Line 2 ensures that ρ k+1 = {H k+1 0 = E} is an alternating edge partition.

If E -(w k+1 ) = ∅, Lines 3, 4 and 5, first ensure that there does not exist any

and second preserve the Properties 1, 2, 4 and 6 of Definition 6.7.9 of alternating edge partition.

Therefore, ρ k+1 is always an alternating edge partition with respect to w k+1 . We now are ready to prove the TDI-ness of the system composed of (6.72)-(6.75). Theorem 6.7.13. The linear system composed of (6.72)-(6.75) is TDI.

Proof. We claim that a pair of primal and dual solutions can computed using a greedy approach, as presented in Algorithm 6.5.

Note that the value of 

It can be noted that for each u ∈ V , in order to guarantee that u ∈ S, one can set w su = +∞. Thus one can obtain m u with a single minimum st-cut calculation on G * . Lemma 7.2.4 can be applied on the separation problems of both the subtour elimination inequalities (7.6), that is, x(E[S]) ≤ |S| -1 for S ⊆ V , and the extended subtour elimination inequalities (7.17), that is,

Proposition 7.2.5. The separation problem of (7.6) reduces to |V | -2 minimum st-cut calculations.

Proof. Given x ∈ R E , let y v = 1 for all v ∈ V . Then y(S) = |S| for any S ⊆ V . According to Lemma 7.2.4, for a given node v ∈ V , m v = max{x(E[S]) -|S| : v ∈ S ⊆ V } can be obtained with a single minimum st-cut calculation.

Without loss of generality, let

m i can be calculated using same approach as for m v except that we set w ut = +∞ for any u ∈ V \ S i .

Since |S i | ≤ 2 for i ∈ {n -1, n} and (7.6) concerns only the cases with |S| ≥ 3, one only needs to calculate max{x

Thus, the separation problem of (7.6) can be solved with |V | -2 minimum st-cut calculations.

Proposition 7.2.6. The separation problem of (7.17) reduces to |V | -1 minimum st-cut calculations. 7.4. It can be seen that for instances b10, b11, b18, CP LEX x needs up to 10 minutes to solve them to optimality while the other three need less than 10 seconds. In Table 7.4 and the tables after, we use underlined numbers to highlight the notable worst result among the four frameworks and bold-face numbers to highlight the best result. an extended version of the well-know blossom inequality which might be worth studying.

CP LEX

x

Besides, as the simple b-matching problem can be seen as a relaxation of the MBrT problem, the blossom inequality is actually valid for B x (G, r, c). We have implemented its separation algorithm and have tested in the computational simulation. However, it did not improve the overall performance. On the contrary, in many cases it actually slowed down the process by generating too many cuts at each node of the branch-and-cut tree, eventually resulted in a large number of iterations at each node as well as an obese model for the LP solver to solve at each iteration.

Aside from the blossom inequality, we also experimented with some lifted-projection inequalities in the computational test regarding B x (G, r, c) (similar to the last heuristic we introduced for matching-partition inequalities in Subsection 7.2.4). More precisely, we generated cuts by first lifting a solution x ∈ R E to a point x y in R E+V , finding some violated inequalities regarding x y ∈ R E+V and B xy (G, r, c), and then projecting it down to a valid inequality for B x (G, r, c). This approach can effectively generate cuts in the branch-and-cut process. However, similar to the blossom inequality, this approach did not improve the computational results, as it might not be as effective as the other inequalities. Nevertheless, these inequalities deserve more of our attention, as one can potentially either lift them to a tighter version, or determine their facet-defining conditions, in order to generate cuts that are more effective.

Symmetry [START_REF] Ostrowski | Orbital branching[END_REF], [START_REF] Fischetti | Orbital shrinking[END_REF], [START_REF] Fischetti | Orbital shrinking[END_REF]) is another potential issue in the problem that can be further addressed. In fact for B x (G, r, c), the i-articulation inequalities, especially capacity-i inequalities are symmetrybreaking inequalities to some extent. More specifically, capacity-i inequalities prevent all the symmetric solutions with respect to a set of nodes that have the same capacity and are incident with nodes in O.

EDSPIC : 799

Université Clermont Auvergne 

(2.2) Sur la base de ces résultats, l'algorithme suivant résout le problème MBrT avec la complexité de O(n). Ainsi, le théorème suivant tient.

Algorithm 2.1: Algorithme pour calculer g(r) sur les arbres Transform G C into an edge.

3

Solve the MBrT problem on the transformed graph using Algorithm 2.1.

Par conséquent, nous avons le théorème suivant. Outre les résultats susmentionnés, les conditions nécessaires et suffisantes pour que les inégalités valides soient facettes définissantes sont également examinées. Les résultats et les preuves peuvent être trouvés dans la version anglaise de cette thèse.