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Abstract

Given a simple undirected graph G = (V,E) with a so-called root node r ∈ V , a rooted
tree, or an r-tree, of G is either the empty graph (∅, ∅), or a tree containing r. If a node-
capacity vector c ∈ ZV

+ is given, then a subgraph of G is said to be bounded if the degree
of each node in the subgraph does not exceed its capacity. Let w be an edge-weight
vector in RE and p a node-price vector in RV . The Maximum Bounded r-Tree (MBrT)
problem consists of finding a bounded r-tree T = (U, F ) of G such that

∑
e∈F

we +
∑
v∈U

pv is

maximized. If the capacity constraint from the MBrT problem is relaxed, we then obtain
the Maximum r-Tree (MrT) problem. This dissertation contributes to the study of the
MBrT problem and the MrT problem.

First we introduce the problems with their definitions and complexities. We define the
associated polytopes along with a formulation for each of them. We present several
polynomial-time combinatorial algorithms for both the MBrT problem (and thus the
MrT problem) on trees, cycles and cactus graphs. Particularly, a dynamic-programming-
based algorithm is used to solve the MBrT problem on trees, whereas on cycles we reduce
it to some polynomially solvable problems in three different cases. For cactus graphs, we
first show that the MBrT problem can be solved in polynomial time on a so-called cactus
basis, then break down the problem on any cactus graph into a series of subproblems on
trees and on cactus basis.

The second part of this work investigates the polyhedral structure of three polytopes as-
sociated with the MBrT problem and the MrT problem, namely Bxy(G, r, c), Bx(G, r, c)

and Rx(G, r). Bxy(G, r, c) and Bx(G, r, c) are polytopes associated with the MBrT prob-
lem, where Bxy(G, r, c) considers both edge- and node-indexed variables and Bx(G, r, c)

considers only edge-indexed variables. Rx(G, r) is the polytope associated with the MrT
problem that only considers edge-indexed variables. For each of the three polytopes, we
study their dimensions, facets as well as possible ways of decomposition. We introduce
some newly discovered constraints for each polytope, and show that these new constraints
allow us to characterize them on several graph classes. Specifically, we provide character-
ization for Bxy(G, r, c) on cactus graphs with the help of a decomposition through 1-sum.
On the other hand, a TDI-system that characterizes Bx(G, r, c) is given in each case of



viii

trees and cycles. The characterization of Rx(G, r) on trees and cycles then follows as an
immediate result.

Finally, we discuss the separation problems for all the inequalities we have found so
far, and present algorithms or cut-generation heuristics accordingly. A couple of branch-
and-cut frameworks are implemented to solve the MBrT problem together with a greedy-
based matheuristic. We compare the performances of the enhanced formulations with the
original formulations through intensive computational test, where the results demonstrate
convincingly the strength of the enhanced formulations.

Keywords: combinatorial optimization, bounded rooted-tree, algorithm, polyhedral
study, branch-and-cut
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Résumé

Étant donnés un graphe simple non orienté G = (V,E) et un sommet particulier r ∈ V

appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul (∅, ∅) soit un
arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe
de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal
à sa capacité. Soit w un vecteur de poids sur les arêtes dans RV et p un vecteur de
profits sur les sommets dans RE. Le problème du r-arbre borné maximum (MBrT, de
l’anglais Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F ) de G
tel que

∑
e∈F

we+
∑
v∈U

pv soit maximisé. Si la contrainte de capacité du problème MBrT est

relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l’anglais Maximum
r-Tree). Cette thèse contribue à l’étude des problèmes MBrT et MrT.

Tout d’abord, ces deux problèmes sont formellement définis et leur complexité est étudiée.
Nous présentons ensuite des polytopes associés ainsi qu’une formulation pour chacun
d’entre eux. Par la suite, nous proposons plusieurs algorithmes combinatoires pour ré-
soudre le problème MBrT (et donc le problème MrT) en temps polynomial sur les arbres,
les cycles et les cactus. En particulier, un algorithme de programmation dynamique est
utilisé pour résoudre le problème MBrT sur les arbres. Pour les cycles, nous sommes
amenés a considérer trois cas différents pour lesquels le problem MBrT se réduit à certains
problèmes polynomiaux. Pour les cactus, nous montrons tout d’abord que le problème
MBrT peut être résolu en temps polynomial sur un type de graphes appelé cactus basis.
En utilisant une série de décompositions en sous-problèmes sur les arbres et les cactus
basis, nous obtenons un algorithme pour les graphes de type cactus.

La deuxième partie de ce travail étudie la structure polyédrale de trois polytopes associés
aux problèmes MBrT et MrT. Les deux premiers polytopes, Bxy(G, r, c) et Bx(G, r, c)

sont associés au problème MBrT. Tous deux considèrent des variables sur les arêtes
de G, mais seuls Bxy(G, r, c) possède également des variables sur les sommets de G.
Le troisième polytope, Rx(G, r), est associé au problème MrT et repose uniquement
sur les variables sur les arêtes. Pour chacun de ces trois polytopes, nous étudions sa
dimension, caractérisons certaines inégalités définissant des facettes, et présentons les
moyens possibles de décomposition. Nous introduisons également de nouvelles familles de
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contraintes. L’ajout de ces contraintes nous permettent de caractériser ces trois polytopes
dans plusieurs classes de graphes.

Pour finir, nous étudions les problèmes de séparation pour toutes les inégalités que nous
avons trouvées jusqu’ici. Des algorithmes polynomiaux de séparation sont présentés,
et lorsqu’un problème de séparation est NP-difficile, nous donnons des heuristiques de
séparation. Tous les résultats théoriques développés dans ce travail sont implémentés
dans plusieurs algorithmes de coupes et branchements auxquels une matheuristique est
également jointe pour générer rapidement des solutions réalisables. Des expérimentations
intensives ont été menées via le logiciel CPLEX afin de comparer les formulations renfor-
cées et originales. Les résultats obtenus montrent de manière convaincante la force des
formulations renforcées.

Mots-clefs: optimisation combinatoire, arbre enraciné borné, algorithme, étude polyé-
drique, algorithme de coupe
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Introduction

Consider a simple undirected graph G = (V,E) with a root node r ∈ V and a node-
capacity vector c ∈ ZV

+. An r-tree of G is either the empty graph (∅, ∅), or a tree
containing the root node r. We call a subgraph of G bounded if the degree of each node
in the subgraph does not exceed its capacity. Given an edge-weight vector w ∈ RE and
a node-price vector p ∈ RV , the Maximum Bounded r-Tree (MBrT) problem consists of
finding a bounded r-tree T = (U, F ) of G such that

∑
e∈F

we +
∑
v∈U

pv is maximized.

This problem has been addressed recently as a new combinatorial optimization problem by
Chakareski et al. [2009]. Its application arises in the content delivery networks, specifically
the delivery of video streams in under-provisioned peer-to-peer (P2P) networks, where
the resources (most of all, the upload capacities) of the peers are generally recognized as
the bottleneck of the networks (Chakareski et al. [2009], Massoulié et al. [2007], Liu et al.
[2010]). Such a P2P network can be represented by a simple undirected graph, where
the source of the video stream naturally corresponds to the root node, and for each peer
its upload-capacity limit can be converted into a degree limit. In Kerivin et al. [2011],
the MBrT problem was proved to be NP-hard by reducing the 3-SAT problem (Garey
and Johnson [1979]) to it, and polynomial-time algorithms were given on certain classes
of graphs such as trees and complete graphs.

If the node-capacity constraints are relaxed from the MBrT problem, we obtain the
Maximum r-Tree (MrT) problem. The MrT problem was first introduced in Goemans
[1994], where a formulation with both node- and edge-indexed variables was proposed.
A study on the facets of the corresponding polytope was given and eventually the author
proved that the formulation is ideal on series-parallel graphs.

Nonetheless, to the best of our knowledge, polytopes associated with the MBrT problem
have not been previously studied in the literature, and neither has the polytope associated
with the MrT problem considering only edge-indexed variables.

This dissertation contributes to three different aspects of the MBrT problem and the
MrT problem: algorithmic issues, polyhedral structure, and computational test.

First of all, we define the aforementioned two problems and their associated polytopes
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explicitly, provide their complexity results and formulations. Polynomial-time algorithms
are proposed to solve both problems on several classes of graphs. We then study the
problems’ polytopes, and strengthen them by adding new families of valid equations and
facet-defining inequalities. Through this theoretical study, complete descriptions of these
polytopes are obtained on certain classes of graphs. Finally, we embed the different
formulations into a branch-and-cut framework and compare their performance in the
computational simulation.

This dissertation is organized as follows.

Chapter 1 provides the theoretical basis and the notation that will be used throughout
this dissertation.

Chapter 2 firstly gives the definition and complexity results of the MBrT problem and
the MrT problem. The associated polyhedra are defined with respect to two sets of
variables. The first one considers both node- and edge-indexed variables, while only the
edge-indexed variables are present in the second.

After that, a literature survey of both the MBrT problem and the MrT problem is
presented. Notably, the degree constraints is one of the factors that contribute to the
difficulty of the MBrT problem. Hence we address the connection between the MBrT
problem and a few other well-studied degree-constrained problems, such as the b-matching
related problems and the minimum bounded degree spanning tree (MBDST).

On the other hand, we also review a few results concerning some non-degree-constrained
problems that are closely related to the MBrT problem and the MrT problem. Partic-
ularly, as an r-tree is can be seen as a Steiner tree with one terminal, Goemans [1994]
related the MrT problem to the Steiner tree problem and presented a polyhedral study
with respect to the MrT problem’s polytope considering both node- and edge-indexed
variables. Besides, the connected subgraph problem is similar to the MBrT problem and
the MrT problem in the sense that they all aim at finding a connected subgraph that
non-necessarily contains a node cover.

We also introduce the background of the application of the MBrT problem in the telecom-
munication industry, and demonstrate the need of significant effort towards its applica-
tion, and the lack thereof at present.

Chapter 3 presents a few polynomial-time combinatorial algorithms that can be used
to solve the MBrT problem on certain classes of graphs, particularly, on trees, cycles
and cactus graphs. Since the MrT problem is a relaxation of the MBrT problem, the
proposed algorithms are also feasible for the MrT problem.

On trees, an algorithm based on dynamic programming is used to solve the MBrT prob-
lem, where we break it down to a collection of subproblems corresponding to each node
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in the graph. More precisely, for each node v ∈ V we define a subproblem that aims at
finding a maximum bounded r-tree in its up-closure while considering v as the root node.
We can then solve the MBrT problem by solving the subproblems from the leaves to the
root node r, where at each node a greedy algorithm is used since the subproblem reduces
to an optimization problem over a uniform matroid.

On cycles, we consider the MBrT problem in three different cases according to the capac-
ity setting of the graph. For each case, we show that the MBrT problem can be reduced
to a certain number of polynomially solvable problems that aim at finding a maximum
(or minimum) subpath of a given path.

For cactus graphs, as they can be considered as a combination of trees and cycles with
a tree hierarchy, we use a dynamic programming scheme similar to the one on trees. We
first show that the MBrT problem can be solved in polynomial time on a so-called cactus
basis, which is a graph composed of a cycle and some pending edges. Then the MBrT
problem on a cactus graph is reduced to a series of subproblems on trees and on cactus
basis for each cycle-component of the graph.

We also show that if the MBrT problem is polynomially solvable on two graphs, it is also
polynomially solvable on the 1-sum of them.

Chapter 4, 5 and 6 provide results concerning the polytopes associated with the MBrT
problem and the MrT problem.

Chapter 4 focuses on the MBrT problem’s polytope with considering both node- and edge-
indexed variables. We introduce several sets of valid equations that relate to the non-root
nodes that have capacity 1, and the blocks in the subgraph obtained by removing those
nodes from the graph. Based on these results the dimension of the polytope is given.
We then present a decomposition through 1-sum for the polyhedral study. Necessary
and sufficient conditions to be facet-defining are examined for each known set of valid
inequalities. We show that with all the introduced constraints, one is able to characterize
the polytope on trees, cycles, and also, as a result of the decomposition through 1-sum,
on cactus graphs.

Chapter 5 studies the MrT problem’s polytope with considering only edge-indexed vari-
ables. We first prove that it is full-dimensional, which is followed by a facial study of the
valid inequalities. Moreover, we propose two sets of newly discovered inequalities, namely
the so-called matching-partition inequalities and the acyclicity-connectivity inequalities,
where the former is an adaption of a similar constraint considered by Didi-Biha et al.
[2015] for the connected subgraph problem. We then give a few counter examples which
show that the polytope cannot be decomposed through 1-sum, contrary to the case for
the polytope considering both node- and edge-indexed variables. Same conclusion re-
garding the decomposition can be drawn as well for the MBrT problem’s polytope with
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considering only edge-indexed variables, for which the same counter examples also exist.

Chapter 6 presents results on the MBrT problem’s polytope with considering only edge-
indexed variables. We show that it is also full-dimensional. Two different approaches to
decompose the polytope are proposed. The first one is a decomposition through 1-sum
at the root node, while the second one decomposes a graph containing a bridge into two
subgraphs that both contain that bridge. Similar to the previous chapters, we also give
necessary and sufficient conditions for each set of valid inequalities to be facet-defining.
We then introduce several sets of newly discovered inequalities, including those two sets
of inequalities mentioned for the MrT problem. We show that they can all be obtained by
projection from the constraints for the polytope considering both node- and edge-indexed
variables. Bounds on their Chvátal-Gomory rank are also discussed. With the help of the
newly discovered inequalities, we prove that one can obtain a linear system that is Totally
Dual Integral (TDI), and completely characterize the polytope on trees and cycles.

In Chapter 7, we discuss the separation problems for all the inequalities considered in
the previous chapters. A couple of branch-and-cut frameworks are presented to solve the
MBrT problem together with a greedy-based matheuristic that generates feasible solu-
tions to the problem. These branch-and-cut algorithms were implemented with CPLEX
and intensive computational experiments are presented and analyzed.
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Chapter 1

Preliminaries and notation

This chapter introduces some preliminary definitions, notation and some background
theories that are used in this dissertation.

1.1 Algorithms and computational complexity

The complexity theory was born following the work of Edmonds [1962] and Cook [1971].
It offers a framework to classify problems according to their difficulty. More information
about complexity theory can be found in Karp [1972], Garey and Johnson [1979], von
Leeuwen [1990], and Papadimitriou [1994].

A problem is a general question to be answered and it usually possesses several formal
parameters with no specific values. Such problem is characterized by a general description
of all its parameters and a statement of properties that the answer, or the solution, should
satisfy. An instance of a problem is when all the problem’s parameters have specified
values. A decision problem is a problem whose solution is either “yes” or “no”. For instance,
“Given a graph G = (V,E), does there exist a Hamiltonian path in G?” is a decision
problem. An optimization problem, on the other hand, generally aims at maximizing
or minimizing a certain objective function. An optimization problem is not a decision
problem, nonetheless it can often be transformed into a decision problem. For instance,
“Given a graph G = (V,E) with a set of terminals S ⊆ V , find a Steiner tree in G

with minimum number of edges.” is an optimization problem. Its decision problem can
be described as “Given a graph G = (V,E) with a set of terminals S ⊆ V and a value
B ∈ Z+, does there exist a Steiner tree in G with at most B edges?”.

An algorithm is a general step-by-step procedure for solving problems. The efficiency
of an algorithm, evaluated as the amount of computing resources it requires, decides
whether an algorithm is good or not. However, the time complexity, or computational
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complexity, is the most common way to determine the efficiency of an algorithm. The
time complexity of an algorithm is expressed as a function of the size of the problem
instance, where the instance size is usually represented by the length of the input data
required to describe the instance. If an algorithm has time complexity bounded from
above by a polynomial function in the size of the problem instance, then the algorithm
is said to be a polynomial-time algorithm.

The computational complexity of a problem can be related to the algorithms that solve
it. Moreover, any problem can be classified into some complexity classes according to its
complexity. The most well-known complexity classes P (Polynomial) and NP (Nonde-
terministic Polynomial) are collections of decision problems. We hereafter provide more
formal definitions of classes P , NP , NP-complete and NP-hard.

A problem is said to be polynomially solvable if there exists a polynomial-time algorithm
to solve it. The collection of all polynomially solvable decision problems is denoted by
P . For example, the decision problem of the minimum spanning tree problem is in P
(Kruskal [1956], Prim [1957]).

The class NP is defined as the collection of decision problems with the property that, for
any instance for which the answer is “yes”, there is a polynomial-time checkable certificate
of the “yes”. It can be seen that the class P belongs to NP .

In order to compare the computational complexity associated with two problems, the
definition of polynomial-time reduction needs to be introduced. Let Q and R be two
problems in NP . If the input and output of any instance of Q can be transformed
by a polynomial-time algorithm into input and output of an instance of R, then Q is
polynomially reducible to R. It ensures that any polynomial-time algorithm for R can be
converted into a corresponding polynomial-time algorithm for Q. Intuitively, this means
that Q is not more difficult than R, or conversely that R is at least as hard as Q.

Now with the concept of polynomial-time reduction, the class of NP-complete problems
can be defined as follows. A problem R in NP is NP-complete if any other problem
in NP is polynomially reducible to R. Cook [1971] was the first one to prove that a
problem, namely the boolean satisfiability problem (SAT), is NP-complete. A list of
NP-complete problems can be found in Garey and Johnson [1979] (see also Ausiello
et al. [1999]).

Finally, the class of NP-hard problems is composed of problems for which any algorithm
solving them can be converted into one solving any problem in NP . In other words,
NP-hard problems are at least as hard as the most difficult problems in NP . It is worth
noting that an optimization problem is NP-hard if its decision problem is NP-complete.

In this dissertation, vectors are column vectors, and they are represented by boldface
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letters. The transpose of a vector is represented by adding the superscript of T , e.g., aT

is the transpose of vector a. Matrices are represented by regular-face letters, and the
transpose of a matrix A is denoted as AT .

In Whitney [1935], the author introduced the concept and the properties of matroid. A
pair (S, I) is called a matroid if S is a finite set and I is a nonempty collection of subsets
of S that satisfies:

1. if A ∈ I and B ⊆ A, then B ∈ I,

2. if A,B ∈ I and |A| < |B|, then A ∪ {e} ∈ I for some e ∈ B \ A.

The sets in I are called the independent sets and are said to be independent.

Given a weight vector w : S → R, the greedy algorithm to find a set I in I maximizing∑
e∈I we is as follows. Set I = ∅, and next repeatedly choosing e′ ∈ S \I with I∪{e′} ∈ I

and with we′ as large as possible. The algorithm stops if no such e′ exists. It has been
proved that the greedy algorithm works and only works on matroids (see Rado [1957],
Gale [1968], Edmonds [1971] and also Schrijver [2003]).

A uniform matroid, as a trivial class of matroid, is determined by a set S and a number
k, where a subset I of S is independent if |I| ≤ k.

1.2 Polyhedra and linear optimization

This section gives some fundamental results on linear and integer optimization. Fur-
ther references are Schrijver [1986b], Nemhauser and Wolsey [1988], Wolsey [1998] and
Schrijver [2003].

Given n ∈ N, the symbol Rn (Zn, respectively) represents the set of vectors, or points,
having n real components (integer components, respectively). If all the components of a
vector are zeros, it is denoted by 0.

Given λ ∈ R, 	λ
 (�λ�, respectively) represents the largest integer lower than or equal to
(the smallest integer greater than or equal to, respectively) λ.

Given a subset A of U , the complement of A is denoted U \A, or A if U is clear from the
context.

Additionally, given a set A, we also use RA (ZA, respectively) to represent the set of
vectors having |A| real components (integral components, respectively), each of which
being indexed by one element in A.
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Given any vector a in RA and a subset S ⊆ A, let

a(S) =
∑
e∈S

ae.

A vector x ∈ Rn is a linear combination of vectors x1, · · · ,xk in Rn if there exist k real
scalars λ1, · · · , λk such that

x =
k∑

i=1

λix
i.

In addition, if λ1, · · · , λk satisfy
k∑

i=1

λi = 1,

then x is said to be an affine combination of λ1, · · · , λk. Moreover, if x is an affine
combination of x1, · · · ,xk with non-negative λ-coefficients, that is, λi ≥ 0 for all i ∈
{1, · · · , k}, then x is a convex combination of vectors x1, · · · ,xk.

A set of vectors is said to be linearly independent if none of the vectors can be written as
a linear combination of the other vectors in the set. Similarly, a set of vectors is affinely
independent if none of the vectors can be written as an affine combination of the other
vectors in the set.

The convex hull of a set X of Rn, denoted conv(X), is the set of all vectors in Rn which
can be written as a convex combination of vectors in X.

A subset C of Rn is called a cone if λx ∈ C for any x ∈ C and λ ∈ R+.

A subset P of Rn is called a polyhedron if there exist a matrix A ∈ Rm×n and a vector
b ∈ Rm such that P = {x ∈ Rn : Ax ≤ b}. Any inequality αTx ≤ β with α ∈ Rn, β ∈ R

is called valid for P if αTx ≤ β holds for any x ∈ P . A polyhedron P is bounded if
there exist l,u ∈ Rn such that l ≤ x ≤ u for any x ∈ P . A subset P of Rn is called a
polytope if it is the convex hull of finitely many vectors in Rn. One has that a set P is
a polytope if and only if P is a bounded polyhedron (Minkowski [1896], Steinitz [1916],
Weyl [1934]).

A polyhedron P of Rn has dimension d if the maximum number of affinely independent
vectors in P is d + 1. The dimension of P is denoted by dimP . If dimP = n, then the
polyhedron P is said to be full-dimensional.

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, a subset F of P is called a face if
F = {x ∈ P : A′x = b′}, where A′x ≤ b′ is a sub-system of Ax ≤ b. The face F is
proper if F = P . If αTx ≤ β is valid for P , then the inequality αTx ≤ β is said to define
or induce the face F = {x ∈ P : αTx = β}. Any face F of P satisfies dimF ≤ dimP .
The recession cone associated with the polyhedron P is P 0 = {r ∈ Rn : Ar ≤ 0}.
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Nonzero members of the recession cone are called rays of P . A ray r of P is an extreme
ray if there are n− 1 linearly independent constraints binding at r.

A face of P is called a facet if it is nonempty, proper, and inclusion-wise maximal. In
other words, a face F of P is a facet if it has dimension one less than the dimension of P ,
that is, dimF = dimP − 1. An inequality inducing a facet of P is called facet-defining.

A vector x ∈ Rn is an extreme point of a pointed polyhedron P if it cannot be written
as a convex combination of other vectors in P .

We call any vector x ∈ Rn that satisfies Ax ≤ b a feasible solution for the linear system
Ax ≤ b. The feasibility of a system of linear inequalities, which indicates whether
the system admits feasible solutions or not, is characterized by Farkas’ Lemma (Farkas
[1894]).

Theorem 1.2.1 (Farkas’ Lemma). The polyhedron P = {x ∈ Rn : Ax ≤ b} with
A ∈ Rm×n and b ∈ Rm is not empty if and only if yTb ≥ 0 holds for any y ≥ 0 with
yTA = 0T .

A linear optimization problem consists of maximizing (or minimizing) a linear function
over a polyhedron. A linear optimization problem over the polyhedron P has the form

max{cTx : x ∈ P}.
The linear function cTx is called the objective function.

If it is known that P = {x ∈ Rn : Ax ≤ b}, the optimization problem also has an
equivalent form as the following.

max{cTx : Ax ≤ b,x ≥ 0}. (1.1)

If we take (1.1) as the primal problem, its corresponding dual problem is

min{yTb : yTA ≥ cT ,y ≥ 0}. (1.2)

Duality is a fundamental concept in linear optimization that characterizes the relation
between the primal problem and the dual problem. Further details on duality theory can
be found in von Neumann [1947], Gale et al. [1951], and Dantzig [1963].

The primal-dual relation is described in the following duality theorems.

Theorem 1.2.2 (Weak Duality Theorem). If x ∈ Rn is feasible for (1.1) and y ∈ Rm

is feasible for (1.2), then
cTx ≤ yTb.
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It can be seen that for a maximization problem, every feasible solution x to (1.1) provides
a primal bound or lower bound of the optimal solution, that is, cTx ≤ z∗, where z∗ is
the optimal value of (1.1). Conversely, every feasible solution y to (1.2) provides a dual
bound or upper bound of the optimal solution, that is, yTb ≥ z∗.

Theorem 1.2.3 (Strong Duality Theorem).

max{cTx : Ax ≤ b,x ≥ 0} = min{yTb : yTA ≥ cT ,y ≥ 0},

if at least one of these optima is finite.

The strong duality theorem states that if one of the two problems has a finite optimal
solution, then both of them have finite optimal solutions and equal optimal value.

Furthermore, the following complementary slackness theorem characterizes necessary and
sufficient conditions for a pair of primal-dual feasible solutions to be optimal.

Theorem 1.2.4 (Complementary Slackness Theorem). The vector x ∈ Rn is an optimal
solution to (1.1) and the vector y ∈ Rm is an optimal solution to (1.2) if and only if x
and y are feasible for (1.1) and (1.2) respectively, and

(yTA− cT )x = 0, (1.3)

yT (Ax− b) = 0. (1.4)

Conditions (1.3) and (1.4) are called the complementary slackness conditions. These
conditions provide an effective way to develop a test of optimality for a putative solution
to either (1.1) or (1.2).

Moreover, a dual bound can also be obtained by solving a relaxation of the primal prob-
lem. A relaxation may consist of maximizing the same objective function over a larger
polyhedron, e.g., a polyhedron defined by a subsystem of the original linear system. The
inequalities that are left out are said to be relaxed. For instance, let P = {x ∈ Rn : Ax ≤
b} and P ′ = {x ∈ Rn : A′x ≤ b′} be two polyhedra such that A′x ≤ b′ is a subsystem
of Ax ≤ b, then one has P ⊆ P ′, and max{cTx : x ∈ P ′} is a relaxation of the problem
max{cTx : x ∈ P}. As a result, max{cTx : x ∈ P} ≤ max{cTx : x ∈ P ′}.
A vector x ∈ Rn is called integer or integral if each of its components is an integer, that
is, if x ∈ Zn. The integral hull of a polyhedron P ⊆ Rn is the convex hull of integer
vectors in P , that is, conv(P ∩Zn). Figure 1.1 illustrates a polyhedron P and its integral
hull PI . A polyhedron is said to be integral if it is its own integral hull, or alternatively,
each of its faces contains an integral vector.

In Edmonds and Giles [1977], a strong notion called Totally Dual Integrality (TDI-ness)
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Figure 1.1: A polyhedron and its integral hull

is introduced.

Definition 1.2.5. A linear system of inequalities Ax ≤ b is called Totally Dual Integral
(TDI) if for each integral vector c ∈ Zn, the dual problem of max{cTx : Ax ≤ b} has an
integer optimal solution if it is finite.

Edmonds and Giles [1977] showed that TDI-ness is a sufficient condition for integrality,
as stated in the following theorem.

Theorem 1.2.6. Let Ax ≤ b be a TDI system where A is rational and b is integral.
Then the polyhedron {x : Ax ≤ b} is integral.

Further information on integrality of polyhedra and properties of TDI systems can be
found in Hoffman [1974], Edmonds and Giles [1977], Schrijver [1986a,b, 2003], Korte and
Vygen [2012].

Given a polyhedron P of Rn+m in the variables x ∈ Rn and y ∈ Rm, the projection of P
onto the x-space Rn is defined as

projx(P ) := {x ∈ Rn : ∃y ∈ Rm with (x,y) ∈ P}.

If P = {(x,y) ∈ Rn+m : Ax+By ≤ b}, let the projection cone associated with projx(P )

be
W = {v : vTA = 0,v ≥ 0}.

One has

projx(P ) := {x ∈ Rn : (vTB)x ≤ vTb,v is an extreme ray of W}.

Alternatively, projx(P ) can also be obtained either by Fourier-Motzkin elimination.
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The following relation holds concerning the integrality of P and any of its projection
projx(P ), see Balas [2005].

Theorem 1.2.7. If P is an integral polyhedron of Rn+m, then projx(P ) is an integral
polyhedron of Rm.

1.3 Integer optimization and polyhedral approach

Similar to (1.1) for linear optimization, if we add the restriction that all variables must
take integer values, we then have an integer optimization problem with the following form

max{cTx : Ax ≤ b,x ∈ Zn}.

The corresponding linear optimization problem max{cTx : Ax ≤ b} is called the linear
relaxation of the integer optimization problem. A formulation of this integer optimization
problem is a polyhedron of Rn whose integral hull is conv{x ∈ Rn : Ax ≤ b}.
No polynomial-time algorithm is known to solve an integer optimization problem. In
fact, the general integer optimization problem has been proved to be NP-hard by Karp
[1972] through a polynomial reduction of SAT to a variation of a 0-1 integer optimization
problem.

The branch-and-bound algorithm provides an approach that solves a large-scale problem
(or a hard problem) by considering smaller-scale ones (or easier ones), which is often used
to tackle integer optimization problems.

Recall that the branch-and-bound algorithm breaks down an optimization problem over
a set of feasible solutions into optimization problems over its subsets. This operation is
referred as branching. Additionally, the branching process can be shortened by pruning
the infeasible branches based on primal and dual bounds.

For instance, consider the integer optimization problem max{cTx : x ∈ S}, S ⊆ {0, 1}n.
An enumeration tree can be constructed, where S is decomposed into k ≥ 2 sets S1, . . . , Sk

which can also be decomposed into several smaller sets. The problem can be solved by
carrying out the complete enumeration. However, for most problems with a large number
of variables, complete enumeration is impossible. Furthermore, improvements on the
primal and dual bounds, often made by other means such as heuristics, may allow one to
prune some branches of the enumeration tree.

For NP-hard integer optimization problems, where finding optimal solutions efficiently
is generally not possible, various approaches can be used for them aside from branch-and-
bound. Approximation algorithms, as one of them, are often used in such cases aiming at
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finding near-optimal or sub-optimal solutions in polynomial time. Moreover, the use of
approximation algorithms is also a rising trend for problems where exact polynomial-time
algorithms are known but are too costly due to the input size.

An approximation algorithm usually exploits the algorithmically relevant combinatorial
structure of a problem by using certain algorithmic techniques just as exact algorithms
normally do. Nonetheless, it obtains a feasible solution within a fixed multiplicative
factor of an optimal solution, instead of the optimal solution itself. An approximation
algorithm is called a f(n)-approximation algorithm, or a factor f(n) approximation algo-
rithm, for input size n if it can be proved that the solution the algorithm finds is at most
a multiplicative factor of f(n) times worse than the optimal solution. For instance, if
the optimal value of a given maximization problem is denoted z∗, an f(n)-approximation
algorithm is an algorithm that always finds a feasible solution with value not less than
z∗/f(n).

Another approach that also aims at obtaining good feasible solutions is heuristic. Heuris-
tics are often used when classic methods are too slow or fail to find any optimal solution.
A heuristic generally finds a feasible solution, or primal bounds in other words, in poly-
nomial time based on some experimental data or empirical knowledge of the problem.
Oftentimes heuristics are much more quickly than solving the problem straightforwardly,
and thus with the the primal bounds obtained from heuristics, it may shorten the overall
time consumed on solving the problem. Unlike an approximation algorithm, a heuristic
produces solutions with no guarantee, and its performance may vary largely for differently
instances.

Given a ground set E, and S as a set of vectors representing subsets of E, a combinatorial
optimization problem P which optimizes an objective function over S can be defined as
follows.

max{cTx : x ∈ S},
where c : E → R is a vector carrying the weights associated with components in E.

As one of the foremost technique to solve hard combinatorial optimization problems, the
polyhedral approach has been widely used to solve combinatorial optimization problems
after it was first introduced by Edmonds [1965].

Consider the convex hull conv(S) of S. The problem P is equivalent to the linear opti-
mization problem

max{cTx : x ∈ conv(S)}. (1.5)

If one succeeds to describe the polytope conv(S) by a system of linear inequalities Ax ≤ b,
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then problem P is reduced to solving the following linear program:

max{cTx : Ax ≤ b}.

The polyhedral approach studies the polyhedral structure of conv(S), and solves P by
solving a linear optimization problem. Recall that solving a linear optimization problem
has been proved to be polynomial (Khachiyan [1979, 1980], Karmarkar [1984]).

However, in general it is difficult to obtain the complete linear description of the polytope
conv(S). Additionally, if the problem is NP-hard, it is not likely to find such descrip-
tion. Moreover, even if the complete description of conv(S) is known, it may contain an
exponential number of inequalities. It makes it impossible to solve the problem using
the algorithms for general linear optimization problems. The cutting-plane algorithm has
been introduced in order to solve problems in such scenario. It allows us to obtain an
optimal solution to a problem by solving a sequence of linear programs, each of which
contains a polynomial number of inequalities.

A key component of the cutting-plane algorithm is the so-called separation problem and
the computational equivalence of optimization and separation (Grötschel et al. [1981],
Karp and Papadimitriou [1982], Padberg and Rao [1982]). More details can be found in
Schrijver [1986b], Grötschel et al. [1988], Padberg [1999] and Korte and Vygen [2012].

Definition 1.3.1. Let P be a polyhedron in Rn. Given a vector x ∈ Rn, the separation
problem for P is to decide whether x is in P and if not, give an inequality that is valid
for P but violated by x.

Optimization and separation over a polyhedron has been proved to be computationally
equivalent (Grötschel et al. [1981], Karp and Papadimitriou [1982], Padberg and Rao
[1982]), as stated in the following theorem.

Theorem 1.3.2. Given a polyhedron P in Rn, the optimization problem over P is poly-
nomially solvable if and only if the separation problem for P is polynomially solvable.

The cutting-plane algorithm is presented hereafter. Let P ′ ⊆ Rn be a polyhedron defined
by a family of known valid inequalities for conv(S), such that the separation problem for
P ′ can be solved in polynomial time. Often limited by the resource, only a part of the
valid inequalities can be added initially in the cutting-plane algorithm. Denote P 0 the
polyhedron defined by a subset of inequalities defining P ′.

Algorithm 1.1 shows a general cutting-plane algorithm that solves optimization problems
over P ′ starting with the polyhedron P 0.

The valid inequalities generated by this algorithm are often called cutting planes or
cuts. By generating cuts, the cutting-plane algorithm produces a series of tighter outer-
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Algorithm 1.1: General cutting-plane algorithm
Input : Polyhedron P 0 and vector c.
Output: max{cTx : x ∈ P ′}.
begin

1 Initialization. Set t = 0.
while no optimal solution is found do

2 Solve the linear program: max{cTx : x ∈ P t} to get xt.
3 Solve the separation problem for P ′ with respect to xt.

if a valid inequality aTx ≤ b for P ′ is found with aTxt > b then
4 Set P t+1 = P t ∩ {x : aTx ≤ b}.
5 Set t = t+ 1.

else
6 Stop.

approximations of P ′. However, if P ′ is not a complete description of conv(S), the
solution obtained by the cutting-plane algorithm is sometimes not optimal with respect
to the problem (1.5).

In the context of integer optimization, the branch-and-bound algorithm is often combined
with the cutting-plane algorithm. The combination of these two approaches is called a
branch-and-cut algorithm. In a branch-and-cut algorithm, cutting planes are generated
through out the enumeration tree in an attempt to obtain tighter dual bounds at each
branch-and-bound node. Such branch-and-cut algorithm usually reduces the number of
nodes in the enumeration tree.

Another effective approach that helps to generate valid inequalities for an integral poly-
tope is the Chvátal-Gomory procedure. In fact, given a polyhedron, the Chvátal-Gomory
procedure is a well-known method to derive the description of its integral hull, see Gomory
[1958, 1960], Chvátal [1973].

More precisely, let X ∈ Zn be the set of integer solutions for an integer optimization
problem. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron that satisfies X = P ∩ Zn.
Denote the columns of A ∈ Rm×n by {a1, · · · ,an}. Given a non-negative vector μ ∈ Rm

+ ,
the inequality

n∑
i=1

μTaixi ≤ μTb

is valid for X. Furthermore, inequalities

n∑
i=1

	μTai
xi ≤ μTb
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and
n∑

i=1

	μTai
xi ≤ 	μTb


are both valid for X, among which the last inequality is stronger than the other two.
This simple procedure is proved to be sufficient to generate all valid inequalities for X.

Theorem 1.3.3. Each valid inequality for X can be obtained by applying the Chvátal-
Gomory procedure a finite number of times.

The minimum number of times this procedure required to obtain a certain inequality is
called the Chvátal-Gomory rank of that inequality. Accordingly, the Chvátal-Gomory
rank of a given polyhedron P equals the minimum number of times the procedure re-
quired to obtain the integral hull of P . However, even in R2, there exist polyhedra with
arbitrarily large Chvátal-Gomory rank. Therefore, using the Chvátal-Gomory procedure
to derive the integral hull of a given polyhedron is often costly and inefficient in practice.

1.4 Graph theory

The definitions and notation in graph theory used in this dissertation are mainly taken
from Diestel [2000] and Schrijver [2003].

A graph G consists of a set of nodes V and a set of edges E, such that each edge in E

has its both extremities, in V , that is G = (V,E). Given a graph G, its node set can be
referred to as V (G), and its edge set as E(G). If a node v ∈ V is an extremity of an edge
e ∈ E, we say that e is at or incident with v and v is incident with e. An edge e with
extremities u, v can also be denoted by uv. Two distinct nodes u, v ∈ V are adjacent, or
neighbors, if they are the extremities of an edge e = uv ∈ E. A graph is simple if there
do not exist two distinct edges that have the same extremities, and there does not exist
an edge in it with both extremities being the same node. All graphs mentioned in this
dissertation are considered simple.

If a graph G′ = (V ′, E ′) satisfies V ′ ⊆ V , E ′ ⊆ E, then G′ is a subgraph of G, or we can
also say that G contains G′.

Given a graph G = (V,E) and a node set S ⊆ V , let E[S] be the set composed of all
the edges having both extremities in S, and let G[S] = (S,E[S]) be the subgraph of G
induced by S. Accordingly, for an edge set F ⊆ E, let V [F ] be the set composed of all
the nodes having at least one incident edge in F , and G[F ] = (V [F ], F ).

The degree of a node v ∈ V is equal to the number of its neighbors and is denoted as
deg(v). A node of degree 0 is said to be isolated. Let N(v) denote the set of neighbors of
a node v, and δ(v) the set of edges incident with v.
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A path is a non-empty graph Gp = (Vp, Ep) of the form

Vp ={v0, v1, · · · , vk},
Ep ={v0v1, v1v2, · · · , vk−1vk},

where the vi are all distinct, i = 1, · · · , k. The length of a path equals to the number of
its edges. Note that the length of a path can be 0.

The two nodes of degree one in Vp are called the ends of P and the two edges at these
nodes are the end edges of P . If r is an end of P and e is the end edge of P at the other
end of P , P is called an re-path and is denoted by Pre. If r and t are the two ends of P ,
P is called an rt-path and is denoted by Prt.

If the path Gp = (Vp, Ep) has length at least 2, then the graph C = (Vp, Ep ∪ {vkv0}) is
called a cycle. A graph G is acyclic if it does not contain any cycle.

A non-empty graph is called connected if there exists at least one path between any two of
its nodes. A maximal connected subgraph of a graph G is called a connected component
of G.

An acyclic graph is a forest, if it is also connected it is then a tree. A cactus graph is a
connected graph such that each edge belongs to at most one cycle. A complete graph is
a graph that all the nodes are pairwise adjacent. A complete graph of n nodes is often
denoted Kn. Define a series composition as replacing an edge by two edges in series, and
a parallel composition as replacing an edge by two edges in parallel. A series-parallel
graph is a graph such that each of its 2-connected components can be generated from K2

with a sequence of series and parallel compositions.

Given an undirected graph G = (V,E), the graphic matroid (E, I) satisfies that the
independent sets in I are the subsets of E that induce forests of G.

Given G = (V,E) with a specific node, the root r ∈ V , a rooted-tree T = (U, F ) (also
called an r-tree) is a tree of G which contains r if U = ∅. T is also said to be rooted at
r. Notice that (∅, ∅) and ({r}, ∅) are both considered r-trees. The tree order associated
with an r-tree T = (U, F ) is a partial order ≤ over V that is defined as follows. For
any two distinct nodes u, v ∈ U , we define u ≤ v, if u belongs to the only rv-path in
T . For example, in Figure 1.2 one has r ≤ v1 ≤ v3, r ≤ v2, v2 ≤ v4 and v2 ≤ v5.
The up-closure and down-closure of v, denoted 	v
 and �v� respectively, are defined as
	v
 = {u ∈ U : v ≤ u}, �v� = {u ∈ U : u ≤ v}. For instance, in Figure 1.2, the up-closure
and down-closure of v2 are 	v2
 = {v4, v5}, �v2� = {r}, respectively.

A node va ∈ V is an articulation node, or a one-node cutset, in G = (V,E), if there exist
two distinct sets S1, S2 ⊆ V such that each path between any u ∈ S1 and any v ∈ S2
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Figure 1.2: Tree order in a rooted-tree

contains va. Accordingly, an edge eb ∈ E is a bridge in G = (V,E), if there exist two
distinct sets S1, S2 ⊆ V such that each path between any u ∈ S1 and any v ∈ S2 contains
eb. Such articulation node or bridge is said to separate S1 and S2.

A 1-clique-sum, or a 1-sum, of two graphs G1, G2 is formed by gluing these two graphs
at a node. Note that the shared node is then an articulation node in the resulting graph.

A graph G = (V,E) is called k-connected, if |V | > k and for each S ⊆ V with |S| < k the
subgraph G′ = G[V \ S] is connected. Accordingly, a graph G = (V,E) is called k-edge-
connected if |V | > k and for each F ⊆ E with |F | < k, the subgraph G′ = (V,E \ F ) is
connected.

A set π = {S1, · · · , Sk} of non-empty subsets of V is called a partition of V if the sets
in π are pairwise disjoint and their union is V . If {S, V \ S} is a partition of the node
set V , the set composed of all the edges having one extremity in each of S and V \ S

is called a cut, and denoted δG(S) or δG(V \ S). For any S1, S2 ⊆ V with S1 ∩ S2 = ∅,
let δ(S1, S2) denote set of edges having one extremity in each set S1 and S2, that is,
δ(S1, S2) = δG(S1) ∩ δG(S2). The subscript G may be omitted in all the notation if the
underlying graph is clear from the context.

For the sake of simplification, given a graph G = (V,E) and a node set U ⊆ V , the
subgraph G[V \ U ] of G after removing U is also denoted G \ U . Similarly, for some
F ⊆ E, one has G \ F = (V,E \ F ). Additionally, G \ e is also used as a simplification
of G \ {e}.
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Chapter 2

Maximum bounded rooted-tree
problem

In the field of content delivery service, one of the major issues is to find a way to deliver the
content (e.g. documents, software, video streams) to the users effectively and efficiently.
Peer-to-peer (P2P) architecture, as it allows users to both provide and use resources, can
reduce the setup and running cost and increase greatly the scalability of the network.
Hence, it is widely used in content delivery networks. Moreover, the under-provisioning
issue is often addressed respecting large P2P networks, and the upload capacities of
devices are commonly recognized as the bottlenecks in these networks. Therefore, the
problem can be described as follows. A tree is desired by the service provider to deliver
the content from a server to as many users as possible, with respect to the limit of the
amount of data can be sent by each device in the network. This problem has been
addressed as a combinatorial optimization problem called the MBrT problem. Moreover,
if the upload limits, or so-called capacity constraints, of the devices are neglected, one
obtains another problem called the MrT problem. These two problems are the main
focus of this dissertation.

This chapter first defines these two problems. For each problem we present the complexity
result and the associated polyhedra, and propose a formulation for each polytope. Finally,
a literature review on related problems and their applications are presented.

2.1 Introduction

Firstly, the definition of the Maximum r-Tree Problem is given below.

Definition 2.1.1 (The MrT problem). Given an undirected graph G = (V,E), a node
r ∈ V , an edge-weight vector w ∈ RE, and a node-price vector p ∈ RV , the Maximum
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r-Tree (MrT) problem consists of finding an r-tree T = (U, F ) of G with maximum value

f(T ) = w(F ) + p(U).

When each node of G is required to satisfy some degree requirement, the Maximum
Bounded r-Tree problem can be defined as follows.

Definition 2.1.2 (The MBrT problem). Given an undirected graph G = (V,E), a node
r ∈ V , a capacity vector c ∈ ZV

+ with cv ≥ 1 for any node v ∈ V , an edge-weight
vector w ∈ RE, and a node-price vector p ∈ RV , the Maximum Bounded r-Tree (MBrT)
problem consists of finding an r-tree T of G with maximum value f(T ) and such that the
following capacity requirements

|δT (v)| ≤ cv ∀v ∈ V

are satisfied.

An r-tree of G that satisfies such capacity requirements is then called a bounded r-tree.

The MrT problem can be seen as a relaxed MBrT problem from leaving out the capacity
constraints. On the other hand, if we keep the capacity constraints of the MBrT problem
but get rid of the constraints associated with the r-tree properties, we then obtain the
following Maximum Simple b-Matching problem.

Definition 2.1.3 (The MSbM problem). Given an undirected graph G = (V,E), a capac-
ity vector c ∈ ZV

+ with cv ≥ 1 for any node v ∈ V , and an edge-weight vector w ∈ RE, the
Maximum Simple b-Matching (MSbM) problem consists of finding a set of edges F ⊆ E

with maximum value w(F ) and such that the following capacity requirements

|δG[F ](v)| ≤ cv ∀v ∈ V

are satisfied.

An edge set F of G that satisfies the capacity requirements is called a b-matching.

Despite these three aforementioned problems are closely related, only the MSbM problem
has been well studied in the literature, whereas the MrT problem and the MBrT problem
have not received much attention.

The complexity result concerning each problem is given below.

Using a similar approach as in Didi-Biha et al. [2015], the MrT problem can be proved to
be NP-hard by polynomially reducing the Minimum Steiner Tree (MST) problem to the
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MrT problem. The MST problem is well-known to be NP-hard (Karp [1972]). Hereafter
we present the polynomial-time reduction from the MST problem to the MrT problem.

Theorem 2.1.4. The MST problem is polynomially reducible to the MrT problem.

Proof. Given an undirected graph G = (V,E) and a set T ⊆ V of terminals, a Steiner
tree is a tree (U, F ) of G that spans all the terminals, that is, T ⊆ U . Let w ∈ RE be
an edge-weight vector. The MST problem consists of finding a Steiner tree (U, F ) with
minimum value w(F ).

Consider an instance of the MST problem, with T = {v1, · · · , vt} ⊆ V, t ≥ 3, and w ∈ RE
+.

We construct a graph G′ = (V ′, E ′) that is defined as follows

V ′ = V ∪ {si : i = 1, · · · , t− 1},
E ′ = E ∪ {visi : i = 1, · · · , t− 1}.

We can now construct an instance of MrT problem on G′ by picking out vt ∈ T as the
root node and defining an edge-weight vector w′ ∈ RE′

+ such that

w′
e =

{
−we if e ∈ E,

M if e ∈ E ′\E,

where M is a sufficiently large positive number. Besides, all the node weights are set to
0. Then one looks for a maximum r-tree of G′ rooted at vt. This construction can be
done in polynomial time.

To show that an optimal solution of MrT problem on G′ yields an optimal solution of
the MST problem on G, let G′[F ′] be a maximum r-tree of G′ with F ′ ⊆ E ′. Because
of the large weights on the edges visi, i = 1, · · · , t − 1, it is straightforward to see that
F ′ contains all the edges visi, for i = 1, · · · , t − 1, which gives us T \ {vt} ⊆ V ′[F ′]. In
addition, as vt is the root and F ′ = ∅, one also has vt ∈ V ′[F ′]. Therefore,

T ⊆ V ′[F ′].

Moreover, as one has δ(si) = {visi} for any i ∈ {1, · · · , t− 1}, then visi is a leaf edge and
si is a leaf of the r-tree G′[F ′]. Let F = F ′ ∩ E. It can be seen that G[F ] is connected
and vi ∈ V [F ] for i ∈ {1, · · · , t − 1}. Meanwhile, since it is known that vt ∈ F ′ and
F ′ ∩ δ(vt) ⊆ F , one has vt ∈ V [F ]. Thus,

T ⊆ V [F ].

Furthermore, G[F ] is a subgraph of acyclic graph G′[F ′], which indicates that it is also
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acyclic. Therefore, G[F ] is a Steiner tree of G with weight

w(F ) = −w′(F ) = −(w′(F ′)−M(t− 1)).

Conversely, given any Steiner tree of G, it is known that it contains all nodes in T . In
addition, by the construction of G′, it can be seen that visi is the only edge incident with
si in G′. Thus, by extending each node vi, for i = 1, · · · , t− 1, to an edge visi, one then
obtains an r-tree of G′. In other words, each Steiner tree of G can be associated with an
r-tree of G′ that contains all the edges visi, for i = 1, · · · , t− 1.

Therefore any maximum r-tree G′[F ′] of G′ corresponds to a minimum Steiner tree G[F ]

of G.

As a result of this polynomial reduction and the NP-hardness of the MST problem, one
then has that the MrT problem is NP-hard.

Corollary 2.1.5. The MrT problem is NP-hard.

As for the MBrT problem, if pv = 0 for any v ∈ V and we = λ for any e ∈ E, where
λ ∈ R is positive, it is then called a Maximum Size Bounded Rooted-Tree (MSBrT)
problem. The MSBrT problem has been proved to be NP-hard, see Chakareski et al.
[2009], Kerivin et al. [2014]. Consequently, the following theorem holds.

Theorem 2.1.6. The MBrT problem is NP-hard.

Alternatively, the NP-hardness of the MBrT problem can also be deduced from the
NP-hardness of the MrT problem, as the latter is a relaxation of the former.

On the other hand, the MSbM problem has been shown to be polynomially solvable.
Several polynomial-time algorithms have been proposed in the literature (Pulleyblank
[1973], Marsh [1979], Gabow [1983], Anstee [1987], Gerards [1995]).

2.2 Associated polyhedra

In this section we define the polyhedra associated with the three problems introduced in
Definitions 2.1.1 - 2.1.3, and propose a formulation for each polytope.

Consider any graph G = (V,E), the incidence vector yU of a node subset U of V is
defined as

yUv =

{
1 if v ∈ U,

0 if v /∈ U.
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Accordingly, the incidence vector xF of an edge subset F of E is defined as

xF
e =

{
1 if e ∈ F,

0 if e /∈ F.

The incident vector of a subgraph (U, F ) of G is represented by
[
xF

yU

]
.

The convex hull of the incidence vectors of r-trees of G is called the Extended r-Tree
Polytope and is denoted by

Rxy(G, r) = conv({
[
xF

yU

]
∈ {0, 1}E × {0, 1}V : (U, F ) is an r-tree}).

The following formulation for the extended r-tree polytope is proposed by Goemans
[1994].

Let Pxy(G, r) be the polyhedron of RE+V defined by

x(E)− y(V \ {r}) = 0, (2.1)

x(E[S])− y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (2.2)

yr ≤ 1, (2.3)

xe ≥ 0 ∀e ∈ E. (2.4)

Equation (2.1) is called the r-tree equation. Inequalities (2.2) are called the extended
subtour elimination inequalities. Inequalities (2.3) and (2.4) are the trivial upper bound
inequalities and non-negativity inequalities.

This formulation has been proved to completely describe the extended r-tree polytope
on series-parallel graphs (Goemans [1994]), that is, the following theorem holds.

Theorem 2.2.1. Let G be a series-parallel graph. Rxy(G, r) = Pxy(G, r).

Alternatively, an r-tree can also be represented only by its edges. When focusing on edges
only, we say that an edge set F ⊆ E induces an r-tree if the graph GF = (V [F ]∪{r}, F )

is an r-tree. It can be noted that the empty set induces the r-tree G∅ = ({r}, ∅).
The convex hull of the incidence vectors of edge sets inducing r-trees of G is called the
r-Tree Polytope and is denoted by

Rx(G, r) = conv({xF ∈ {0, 1}E : GF is an r-tree}).

Notice that the r-tree (∅, ∅) is only our concern in the discussion with both node- and
edge-indexed variables, as there is no way to distinguish it from ({r}, ∅) with only edge-
indexed variables.
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Let Px(G, r) be the polyhedron defined by the linear system composed of following in-
equalities

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], r ∈ S, (2.5)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3, (2.6)

xe ≤ 1 ∀e ∈ E, (2.7)

xe ≥ 0 ∀e ∈ E. (2.8)

Inequalities (2.5) are called the connectivity inequalities. Inequalities (2.6) are called the
subtour elimination inequalities. Inequalities (2.7) and (2.8) are called the box inequalities.

It can be proved that Px(G, r) is a formulation for the polytope Rx(G, r), that is,

Proposition 2.2.2. Rx(G, r) ∩ ZE = Px(G, r) ∩ ZE.

Proof. Inequalities (2.5) ensure that each edge is connected with the root node. Inequal-
ities (2.6) ensure the acyclicity.

Similarly, the bounded r-tree polyhedra can be defined as follows.

The convex hull of the incidence vectors of bounded r-trees of G is called the Extended
Bounded r-Tree Polytope and is denoted by

Bxy(G, r, c) = conv({
[
xF

yU

]
∈ {0, 1}E+V : (U, F ) is a bounded r-tree}).

Recall that a bounded r-tree is an r-tree that satisfies the capacity requirements, which
can be presented as the following extended capacity inequalities:

x(δ(v))− cvyv ≤ 0 ∀v ∈ V, (2.9)

Therefore, a formulation Pxy(G, r, c) for the extended bounded r-tree polytope can be ob-
tained by incorporating the extended capacity inequalities into the formulation Pxy(G, r),
that is,

Pxy(G, r, c) = Pxy(G, r) ∩ {[ xy ] ∈ RE+V : [ xy ] satisfies (2.9)}.

This formulation used the inequalities from the formulation for the extended r-tree poly-
tope, on top of which the extended capacity inequalities (2.9) are added to enforce the
capacity requirements.

Proposition 2.2.3. Pxy(G, r, c) is a formulation for Bxy(G, r, c), that is,

Bxy(G, r, c) ∩ ZE+V = Pxy(G, r, c) ∩ ZE+V .
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Proof. According to the formulation for the extended r-tree polytope, any integral vec-
tor that satisfies inequalities (2.2), (2.3) and (2.4) induces an r-tree. Moreover, with
inequalities (2.9) being satisfied, any integral vector in Pxy(G, r, c) induces a bounded
r-tree. Conversely, any incidence vector of a bounded r-tree of G clearly satisfies all the
inequalities (2.1) - (2.9).

Notice that for the inequalities (2.2), by setting S = {u, v} for any uv = e ∈ E, one gets
the following subgraph inequalities :

xe − yv ≤ 0 ∀v ∈ V, e ∈ δ(v). (2.10)

It is also worth noting that the subgraph inequalities (2.10) together with inequalities
(2.3) and (2.4) ensure that the following inequalities hold.

xe ≤ 1 ∀e ∈ E,

yv ≥ 0 ∀v ∈ V.

The convex hull of the incidence vectors of edge sets inducing bounded r-trees of G is
called the Bounded r-Tree Polytope and is denoted by

Bx(G, r, c) = conv({xF ∈ {0, 1}E : GF is a bounded r-tree}).

Similarly to the r-tree case, we need to incorporate the following capacity inequalities

x(δ(v)) ≤ cv ∀v ∈ V (2.11)

into Px(G, r) to obtain a formulation for the bounded r-tree polytope, that is,

Px(G, r, c) = Px(G, r) ∩ {x ∈ RE : x satisfies (2.11)}.

Proposition 2.2.4. Px(G, r, c) is a formulation for Bx(G, r, c), that is,

Bx(G, r, c) ∩ ZE = Px(G, r, c) ∩ ZE.

Proof. Recall that for the r-Tree polytope, it has been proved that any integral vector that
satisfies inequalities (2.5), (2.6), (2.7) and (2.8) induces an r-tree. If such integral vector
also satisfies inequalities (2.11), then the induced graph is also bounded. Therefore, any
integral vector in Px(G, r, c) induces a bounded r-tree. Conversely, any incidence vector
of the edge set of a bounded r-tree of G clearly satisfies all the inequalities (2.5), (2.6),
(2.7), (2.8) and (2.11).



26 Chapter 2. Maximum bounded rooted-tree problem

The convex hull of the incidence vectors of b-matchings in G is called the Simple b-
Matching Polytope and is denoted by

Mx(G, c) = conv({xF ∈ {0, 1}E : GF is bounded by c}).

The complete description of the simple b-matching polytope was given by Schrijver [2003]
(see also Edmonds [1965], Pulleyblank [1973] and Edmonds [1975]).

Let Px(G, c) be the polyhedron of RE defined by

x(E[S]) + x(F ) ≤
⌊
1

2
c(S) + |F |

⌋
∀S ⊆ V, F ⊆ δ(S) with c(S) + |F | odd, (2.12)

x(δ(v)) ≤ cv ∀v ∈ V, (2.13)

0 ≤ xe ≤ 1 ∀e ∈ E. (2.14)

Inequalities (2.12) are known as the blossom inequalities. Schrijver [2003] proved that
(2.12)-(2.14) completely describe the simple b-matching polytope as stated in the following
theorem (see also Edmonds [1965]).

Theorem 2.2.5. Mx(G, c) = Px(G, c).

Moreover, Schrijver [2003] showed that if we discard the condition of c(S)+ |F | being odd
for the blossom inequalities (2.12), the system is then TDI (see also Pulleyblank [1981]).

Any bounded r-tree of a graph G is also an r-tree of G, and any edge set of a bounded
r-tree of G is also a b-matching of G. Hence, one has the following proposition.

Proposition 2.2.6. Given an undirected graph G = (V,E), a root node r ∈ V , and a
capacity vector c ∈ ZV

+ with cv ≥ 1 for any node v ∈ V , then the following relations
among the polyhedra hold.

Bxy(G, r, c) ⊆ Rxy(G, r),

Bx(G, r, c) ⊆ Rx(G, r),

Bx(G, r, c) ⊆ Mx(G, c).

An immediate consequence of this proposition is stated as the corollary below.

Corollary 2.2.7. Any inequality valid for Rxy(G, r) is also valid for Bxy(G, r, c). Any
inequality that is valid for either Rx(G, r) or Mx(G, c) is also valid for Bx(G, r, c).

It is worth noting that, for the MBrT problem, one set of nodes that stand out in both
the algorithm development and the polyhedral study are the nodes with unit capacity.
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It can be noticed that these nodes (except r) are not providing any connectivity to the
other nodes, in other words they can only appear as leaves in any bounded r-tree. Let
(2.15) denote the set of these nodes.

O := {v ∈ V \ {r} : cv = 1}. (2.15)

Nodes in O have a significant impact on the dimension analysis as well as the facet-defining
conditions of valid inequalities for the polyhedra associated with MBrT problem.

As a result of the existence of O, it can be noticed that even if G is connected, there
might still be some nodes or edges in G such that they cannot be reached by any bounded
r-tree of G. We say that a node v (edge e, respectively) of G is unreachable from root
r if there does not exist any path in G containing r and v (e, respectively) that does
not have any node in O as an internal node. Let Vu and Eu be the sets composed of
the unreachable nodes and edges of G, respectively. Any incidence vector of a bounded
r-tree of G straightforwardly satisfies the following equations

xe = 0 ∀e ∈ Eu, (2.16)

yv = 0 ∀e ∈ Vu. (2.17)

In fact, for polyhedral study, these unreachable nodes and edges are insignificant. Let
Gc = (V \Vu, E\Eu). A characterization of Bxy(Gc, r, c

′) (Bx(Gc, r, c
′), respectively) yields

a characterization of Bxy(G, r, c) (Bx(G, r, c), respectively), where c′ is the restriction of
c to V \ Vu.

In order to prove it, we give a more generalized result considering any polytope with some
fixed variables.

Given two polytopes

P = {x ∈ Rn : Ax ≤ b},
P ′ = {[ x

x0 ] ∈ Rn+m : Ax ≤ b, I0x0 = b0},

where I0 is the identity matrix of size m, one has the following result.

Theorem 2.2.8. P ′ is integral if and only if P is integral.

Proof. As P is a projection of P ′, according to Theorem 1.2.7, P ′ is integral if P is
integral.

Now assume that P ′ is integral. Consider an arbitrary extreme point x with respect to
P , and let S(x) be the system of equations that defines it. It is straightforward to see
that [ x

x0 ] is defined by the system composed of S(x) and I0x0 = b0. Hence, [ x
x0 ] is an
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extreme point with respect to P ′, and it is integral as P ′ is integral. Thus x is integral,
and hence P is integral, which completes the proof.

Moreover, for graphs that contain unreachable node or edges, one can actually get rid
of them in polynomial time with some search algorithms. Therefore, the rest of the
dissertation is based on the following assumption.

Assumption 2.2.9.

Vu = ∅,
Eu = ∅.

Denote Gr = (Vr, Er) the connected component that contains r in the graph G[V \ O].
One can deduce straightforwardly from this assumption that Gr = G[V \O].

2.3 State of the art

This section provides an overview of the most important known results for the aforemen-
tioned problems.

On the one hand, we show that there is a lack of intensive theoretical study of the MBrT
problem in the literature, despite some related problems have been well studied.

On the other hand, we also show that in content delivery networks, especially for the
live video streaming service, the underlying problem of the business procedure has been
found to have a closer connection with the MBrT problem, instead of the traditionally
identified max-flow problem. Thus, the quantity-focused strategy for content delivery
which is in use currently should shift to a quality-over-quantity one in order to improve
the overall quality of service in the dedicated networks. Besides, the algorithms that are
used currently in the industry often refer to the algorithms for problems such as shortest
path problem and minimum spanning tree problem. Therefore, the theoretical study
and algorithms for the MBrT problem and its variants deserve more attention from the
literature.

2.3.1 Degree-constrained problems

The MBrT problem is relatively new in the field of combinatorial optimization, thus
hardly any research has been conducted around it. It was first addressed in Chakareski
et al. [2009], where the author presented a few preliminary results and raised some open
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questions. The authors proved its NP-hardness, and provided a formulation for the
problem. In addition, a proposed heuristic was also presented with experimental results.

Several different models were proposed for the MBrT problem in Kerivin et al. [2011],
including a cut-based model, a level-based model and a flow-based model. The authors
proved that the linear relaxation corresponding to each model is polynomially solvable.

In Kerivin and Simon [2012], Kerivin et al. [2014], it is shown that the decision problem
of the uniform-weight restriction of the MBrT problem, namely the MSBrT problem,
is NP-complete as 3-SAT is polynomially reducible to it. However, the authors showed
that some special cases of the MBrT problem are polynomially solvable. A dynamic
programming approach was proposed to solve the MSBrT problem on trees in polynomial
time. In addition, on complete graphs, the author presented a polynomial-time algorithm
that solves the MSBrT problem based on the trivial fact that computing a Hamiltonian
path in a complete graph can be done in linear time.

As a well-studied topic in the literature, b-matching and its associated problems have a
connection with the MBrT problem in the aspect of constrained node-degree. There are
several different versions of b-matching problems.

The general weighted b-matching problem aims at finding a maximum-weight b-matching
in a graph. It has no other constraints aside from the node-degree constraints. The
associated general b-matching polytope was characterized by Edmonds [1965], while a
minimal TDI system was given by Pulleyblank [1981]. When incorporating the edge-
capacity constraints with the general weighted b-matching problem, one gets the so-called
weighted capacitated b-matching problem. For this problem, each edge has an integer
capacity which the variable associated with this edge should not exceed. If the capacity
of each edge is set to 1, we obtains the MSbM problem. The simple b-matching polytope
and an associated TDI system was proposed by Schrijver [2003]. The MSbM problem is
the closest to the MBrT problem of all the b-matching problems, as the MBrT problem
also has the unit edge-capacity constraints.

Algorithms for other versions of the MSbM problem have also been proposed in the
literature (Johnson [1979], Gabow [1983], Gondran and Minoux [1984], Gerards [1995]).

The minimum bounded degree spanning tree (MBDST) problem is closely related to the
MBrT problem in the sense that node-degree constraints are enforced, yet it looks for
a spanning tree instead of a rooted tree and all the nodes have the same degree upper
bound k ≥ 2.

In Goemans [2006], the MBDST problem is considered, providing a crucial point that
the support graph of the solution to the linear relaxation is proved to have the so-called
laminar property. This laminar property is exploited to build a matroid, and with the
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help of matroid intersection (Edmonds [1970, 1971], Lawler [1975]), the author proposed a
polynomial-time approximation algorithm. The algorithm is able to obtain a suboptimal
solution where the degree of each node is bounded by k + 2. In Zhao [2012], we proved
that the MBrT problem does not possess the laminar property as described in Goemans
[2006] for the MBDST problem, which makes it impossible to directly adapt the said
approximation algorithm for the MBrT problem.

In Singh and Lau [2007], by using an extension of the iterative rounding method in-
troduced by Jain [1998], the authors provided another polynomial-time approximation
algorithm to obtain a suboptimal solution which improved the node-degree bound to
k + 1.

Other methods such as primal separation and ant colony algorithm have also been studied
on the MBDST problem, where some showed the potential in the computational aspect
(Behle et al. [2007], Letchford and Lodi [2003], Raidl [2000], Bui et al. [2012], Malik
[2012]).

2.3.2 Non-degree-constrained related problems

In Goemans [1994], the MrT problem and the extended r-tree polytope Rxy(G, r) are
studied in the context of the Steiner tree problem. A formulation is proposed along
with the results concerning the separation problem for the constraints and the facets of
the polytope. The author then proved that the formulation leads to a characterization
of Rxy(G, r) on series-parallel graphs. Additionally, the author also showed that the
polyhedral study of Rxy(G, r) can be restricted on 2-connected subgraphs by proving the
feasibility of a decomposition through 1-sum. Nevertheless, to the best of our knowledge
the r-Tree polytope Rx(G, r) has not been considered in the literature.

The Steiner tree problem also share a characteristic with the MBrT problem and the MrT
problem. More precisely, the root node in the MBrT problem and the MrT problem can
be seen as a terminal. Thus a feasible solution to these two problems is always a Steiner
tree. The Steiner tree problem is one of the most popular and well-studied topics in
the field of combinatorial optimization. Although the Steiner tree problem is NP-hard
(Karp [1972]), even in grid graphs, planar graphs and bipartite graphs (Hakimi [1971],
Garey and Johnson [1977, 1979]), there are special cases that have been proved to be
polynomially solvable. If all nodes in the graph are terminals, it is then a minimum
spanning tree problem, which can be solved by polynomial-time algorithms proposed
by Kruskal [1956] and Prim [1957]. If there exist only two terminals in the graph, the
problem becomes a shortest path problem, and can be solved by the algorithm of Dijkstra
[1959] in polynomial time. Additionally, if the underlying graph is an outerplanar graph, a
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series-parallel graph or a Halin graph, linear-time algorithms have been developed for the
Steiner tree problem as well (Rardin et al. [1982], Wald and Colbourn [1982a,b], Winter
[1987]). Further study on the algorithms and polyhedral structure of the Steiner tree
problem can be found in Dreyfus and Wagner [1971], Lawler [1976], Wong [1984], Lucena
[1993], Chopra et al. [1992], Goemans and Myung [1993],Chopra and Rao [1994a,b], Jain
[1998], Didi-Biha et al. [2001].

Goemans and Myung [1993] presented several different formulations for the Steiner tree
problem. In Chopra and Rao [1994a,b], the authors studied the polyhedral structure
of the Steiner tree problem. Several new facet-defining inequalities were introduced,
with which the authors proved that the description of the dominant of the Steiner tree
polytope can be obtained. Moreover, Didi-Biha et al. [2001] proposed a new class of
valid inequalities that generalizes the ones proposed by Chopra and Rao [1994b]. The
authors showed that these inequalities can help to describe the dominant of the Steiner
tree polytope in series-parallel graphs with the terminals satisfying certain conditions.

In Jain [1998], a 2-approximation algorithm is proposed for the generalized Steiner net-
work problem relying on a property of the solution to the linear relaxation. It first obtains
the solution to the linear relaxation with the assumption that the requirement function
is weakly supermodular. Based on this assumption the author then proved that there
exists at least one edge having value more than 1

2
in any linear relaxation solution. The

author proposed an algorithm which is able to iteratively round off the solution due to
this property.

The connected subgraph problem is another problem that bears a similarity to the MBrT
problem, as they both aim at finding a connected subgraph. In fact, the MBrT prob-
lem can be considered as a restriction of the connected subgraph problem. In Didi-Biha
et al. [2015], the authors focused on the polyhedral aspect of the problem. A new set of
facet-defining inequalities, namely the matching-partition inequalities, was introduced to
strengthen the formulation. Although the general separation problem for these inequali-
ties was proved to be NP-hard, the authors showed that they are polynomially separable
and are helpful for the polyhedral characterization on certain classes of graphs. Be-
sides, valid inequalities and approximation algorithms concerning variants of connected
subgraph problem have also been studied under different conditions in the literature
(Cheriyan and Thurimella [1996], Bendali et al. [2007], Chan et al. [2008], Cheriyan and
Vegh [2013], Cornaz et al. [2014]).
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2.3.3 Applications in the telecommunication field

The MBrT problem originally comes from the telecommunication industry, more specifi-
cally, the content delivery service. This section introduces the context of the telecommu-
nication problem, and some facts and techniques that are worth highlighting related to
the problem.

Content delivery, including video streaming, has become one of the most popular services
people are using on the Internet recently. According to the prediction of a technical
report from Cisco in 2014 (Cisco [2014]), Internet Protocol (IP) video traffic will account
for 79 percent of all consumer Internet traffic in 2018, up from 66 percent in 2013, and
the sum of all forms of video will be in the range of 80 to 90 percent of global consumer
traffic by 2018. Within the video traffic, by 2018, 67 percent of it will go through content
delivery networks, up from 53 percent in 2013, see Cisco [2014]. In the case of the most
famous video sharing website YouTube, in 2015, every second, about 97,000 videos are
being viewed throughout the Internet.

Streaming from one or multiple servers simultaneously to this large amount of users and
ensuring good quality of service at the same time is no doubt a challenge for any service
provider. In order to meet the demand of video streaming, P2P architecture has been
widely adopted to replace the old-fashion client-server architecture, as it has much better
scalability and no requirements for any hierarchical organization or centralized control.
Despite the supportive techniques that have been highly focused on in research and devel-
opment, one fact that cannot be overlooked about P2P networks is the under-provisioning
network resources, see Kerivin and Simon [2012], Passarella [2012], Sweha et al. [2012].
Furthermore, the bottleneck of the P2P network, as opposed to the assumption made for
traditional network flow problems, are the upload capacities of the node devices instead
of capacities of the links (Massoulié et al. [2007], Liu et al. [2010]).

Among all the approaches that have been developed for P2P streaming, although mesh-
based approaches have shown its superiority in certain aspects, the tree-based approaches
are still the most popular (Yiu et al. [2007], Padmanabhan et al. [2002], Magharei et al.
[2007]). Moreover, the tree-based approaches fit better the under-provisioned context
encountered in content delivery services (Kerivin and Simon [2012]).

The tree-based approaches can be further categorized into two sub-classes, the single-
tree-based and multiple-tree-based approaches. They both use trees as overlay to deliver
requested content from the servers to the clients. The difference between them is that
multiple-tree-based approach splits the content stream into smaller sub-streams with the
help of the Dynamic Adaptive Streaming over HTTP (DASH) mechanism (Stockhammer
[2011]) and techniques such as Multiple Description Coding (MDC) or Layered Coding
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(LC) (McCanne et al. [1996], Goyal et al. [1998], Li et al. [1998], Byers et al. [2001],
Goyal [2001], Vitali [2007]). Each sub-stream is delivered through a particular delivery
tree. Each peer might participate in a subset of all the trees. The quality of the content
offered to each peer is positively related to the number of sub-streams received by that
peer device.

As mentioned earlier, the upload capacity of the peers must be considered during the
construction and the maintenance of the delivery trees. The policy adopted for the
allocation of the upload capacities, and the algorithm used for the construction of the
delivery trees can affect the quality of service significantly. In practice, peers in P2P
networks may also fail or disconnect from the network (Banerjee et al. [2005]). To prevent
or minimize the delivery disruption in this kind of situation, the content delivery tree or
trees must be repaired within a short time.

Traditionally, one fundamental issue often addressed in literature about P2P streaming
concerns the maximum bit-rate that can be sustained for all peers. However, due to
the development of DASH and encoding techniques such as MDC and LC, the quality-
over-quantity strategy is proved to be better than the quantity-focused one for modern
streaming (Kerivin and Simon [2012]). Therefore, the objective now has become no longer
the maximum bit-rate, but the best delivery tree or trees one can possibly find. Such
trend in the telecommunication industry motivates the effort to study on problems such
as the MBrT problem.

Another problem that is often focused on in the telecommunication field is the multicast
tree construction problem (Oliveira et al. [2006]). Such problem often involves reducing
the overall delay among the clients or reducing the overall cost on the links (Brosh and
Shavitt [2004]), while looking for a spanning tree in general. In practice, algorithms
that have been proposed for the multicast tree construction problem often employ some
straightforward approaches such as the shortest path based approach and the minimum
spanning tree based approach, or use heuristics or other techniques such as genetic al-
gorithms and evolutionary algorithms (Tran et al. [2004], Li et al. [2004], Jurc̆ík and
Hanzalek [2005], Oliveira et al. [2006]).

Unfortunately, although there have been many research projects which have addressed
the issues in content delivery networks, the under-provisioning aspect has not received
much if any attention as it should otherwise have. In such context, researchers generally
aimed at finding algorithms for the MBDST problem or the degree constrained Steiner
tree problem with different constraints (Tran et al. [2004], Li et al. [2004], Liu et al. [2005],
Jurc̆ík and Hanzalek [2005], Oliveira et al. [2006], Cao et al. [2010]).

Therefore, hardly any work has defined explicitly the problem with regard to the under-
provisioning as well as the quality-over-quantity objective. This eventually leads to the
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current state of unbalance between the rising need in application and the lack of theoret-
ical support.

2.4 Conclusion

In the field of combinatorial optimization, the MBrT problem has not been emphasized
in research. It has been addressed recently with a few models and some polynomial cases.
As a relaxation of the MBrT problem, the polyhedral structure and algorithms for the
MSbM problem have been thoroughly studied by the literature. As for the MrT problem,
there are some results obtained with respect to the extended r-tree polytope and its
characterization, yet nothing has been done regarding the r-Tree polytope. Moreover,
as far as we know, there has been neither intensive polyhedral study nor computational
study for the MBrT problem.

There exist some related problems such as the Steiner tree problem, the MBDST problem
and the connected subgraph problem, which have been focused by the literature. However,
the results and algorithms developed cannot be used directly on the MBrT problem. On
the contrary, applications of the MBrT problem in content delivery networks have received
substantial attention from researchers, although the fact of under-provisioning issue of
the networks is oftentimes overlooked.

Therefore, there is a compelling need for the study on the polyhedra associated with the
MBrT problem as well as the MrT problem.

This dissertation is dedicated to the polyhedral, algorithmic and computational study
of the MBrT problem and the MrT problem. The polyhedral study generally helps
to provide dual bounds which are as tight as possible. Even for instances that cannot
be solved quickly, tight dual bounds can help quantify the quality of heuristic-based
solutions. We present some newly discovered facets of the polytopes and show that they
indeed make a difference in providing tighter dual bounds in the computational test.
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Chapter 3

Combinatorial algorithms for the
MBrT problem

As mentioned in the previous chapter, the MBrT problem is NP-hard in general, even for
the MSBrT problem where uniform edge-weights are considered. However in Kerivin et al.
[2011], Kerivin and Simon [2012], Kerivin et al. [2014], the authors present polynomial-
time algorithms for the MSBrT problem on complete graphs and trees. The algorithm
on complete graphs is based on constructing a Hamiltonian path, whereas a dynamic
programming approach is used in the algorithm for trees.

In this chapter, we present polynomial-time algorithms for the MBrT problem on different
classes of graphs. In particular, an algorithm based on dynamic programming is proposed
for the MBrT problem on trees. We also propose algorithms to solve the MBrT problem
on cycles. We then explore the MBrT problem on cactus graphs, since a cactus graph
can be seen as a combination of trees and cycles. We prove that the MBrT problem
on a cactus graph can be decomposed into subproblems on the so-called cactus bases
and trees. We prove that the MBrT problem on cactus bases is polynomial, and using
the decomposition property of cactus graphs, the MBrT problem on cactus graphs can
be solved in polynomial time. Besides, the proof of a general decomposition related to
articulation nodes is given for the MBrT problem.

Notably, the algorithms proposed in this chapter concern the general MBrT problem with
both edge weights and node weights. Nonetheless they can be converted into algorithms
for any restriction of MBrT problem such as the MSBrT problem. Likewise, some relax-
ation of the MBrT problem such as the MrT problem can also be solved by adapting the
algorithms to the specific situation. For example, one can discard all the capacity-related
parts in an algorithm for the MBrT problem to obtain a corresponding algorithm for the
MrT problem.
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Recall that the MBrT problem is defined by an undirected connected graph G = (V,E)

with a root node r ∈ V , a node-capacity vector c ∈ ZV
+, an edge-weight vector w ∈ RE

and a node-price vector p ∈ RV . A feasible solution to the MBrT problem is a bounded
r-tree T = (U, F ) of G. The goal of the MBrT problem is to find a bounded r-tree T

with maximal value of f(T ), where for any subgraph T = (U, F ) of G,

f(T ) =
∑
v∈U

pv +
∑
e∈F

we.

Let OptG(r) denote the value of f(T ) associated with a maximum bounded r-tree of G,
where the subscript G can be omitted when the graph is clear from the context. OptG

may also be used instead of OptG(r) when the root is clear from the context.

3.1 On trees

If the underlying graph G is a tree, we present a dynamic-programming approach for
solving the MBrT problem.

For any node v ∈ V , the set composed of all the neighbors of v in its up-closure is
denoted by Nu(v) = N(v) ∩ 	v
. For any node v ∈ V \ {r}, the only neighbor of v in its
down-closure is denoted by dv, that is, dv ∈ N(v) \Nu(v).

Given any node v ∈ V , let g(v) be the value of a maximum non-empty bounded tree
rooted at v of the subgraph G[	v
] of G induced by the up-closure of v, where the
capacity vector cv ∈ Z

�v�
+ satisfies cvv = cv − 1 if v = r, cvv = cv if v = r, and cvs = cs, for

s ∈ 	v
 \ v. In other words,

g(v) = max{f(T ) : T is tree of G[	v
] with v ∈ V (T ) and bounded by cv}.

It can also be seen that the following relation holds

OptG[�v�](v) = max{0, g(v)} (3.1)

which gives OptG(r) = max{0, g(r)}. Hence, the problem of calculating OptG(r) is re-
duced to the problem of calculating g(r).

For any leaf v ∈ V \ {r}, it is straightforward to see that

g(v) = pv, (3.2)

since the only non-empty bounded tree rooted at v is the graph reduced to v.
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For any non-leaf node v ∈ V , let Nu(v) = {v1, · · · , vq}, we give the following technical
lemma as a support of our latter results.

Lemma 3.1.1. If a maximum non-empty bounded tree rooted at v contains vk, k ∈
{1, · · · , q}, it also contains a maximum non-empty bounded tree rooted at vk.

Proof. Suppose otherwise that a maximum non-empty bounded tree Tv rooted at v con-
tains a non-empty bounded tree Tvk rooted at vk which is not maximum. By replacing
Tvk in Tv by a maximum non-empty bounded tree rooted at vk, one obviously obtains a
non-empty bounded tree rooted at v whose weight is larger than Tv. Hence, it contradicts
with the assumption.

For any non-leaf node v ∈ V , let

h(vk) = wvvk + g(vk)

for any k ∈ {1, · · · , q}. According to Lemma 3.1.1, the problem of calculating g(v)

reduces to

pv +max{
∑
vk∈S

h(vk) : S ⊆ Nu(v), |S| ≤ cvv}.

As it is a maximization problem over a uniform matroid, if g(vk) is known for all k ∈
{1, · · · , q}, it can be easily solved by a greedy algorithm in linear time, where at each
step one selects a node vk with the maximum non-negative h(vk) until there is no such
nodes or cv − 1 nodes have been chosen. Without loss of generality, suppose h(v1) ≥
h(v2) ≥ · · · ≥ h(vi) > 0 ≥ h(vi+1) ≥ · · · ≥ h(vq). Let j = min{cvv, i}. The following
equation holds.

g(v) = pv +

j∑
k=1

h(vk). (3.3)

Algorithm 3.1 is used to obtain the value g(r) using dynamic programming. It calculates
the value of g(v) for each node in V on G from the leaves to the root r.

The correctness of the solution obtained from Algorithm 3.1 is a direct consequence of
the definition of g(v) and the equation (3.3).

Proposition 3.1.2. Algorithm 3.1 computes g(r).

It can be deduced that Algorithm 3.1 also computes a maximum-weight non-empty
bounded r-tree. At each step of computing g(v) for a non-leaf node v ∈ V , a maxi-
mum non-empty bounded tree Tv rooted at v is obtained by combining v with vvk and
Tvk for all k ∈ {1, · · · , j}.
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Algorithm 3.1: Algorithm to compute g(r) on trees
Input : Tree G = (V,E), w ∈ RE and p ∈ RV .
Output: g(r).
begin

1 Set S as the set of the leaves in V \ {r}.
2 Compute g(v) for each v ∈ S according to (3.2).

while S = {r} do
3 Set S as the node set such that for each v ∈ S, g(v) is unknown and g(vk)

is known for all k ∈ {1, · · · , q}.
4 Compute g(v) for each v ∈ S according to (3.3).

Proposition 3.1.3. Algorithm 3.1 has time complexity of O(n).

Proof. For each v ∈ V that is not a leaf, the greedy algorithm for calculating g(v)

has complexity of O(|Nu(v)|). In the algorithm, each g(v) for all v ∈ V is used once.
Moreover, from the definition and calculation of g(v), each of the terms we, pv for any
e ∈ E, v ∈ V is used only once for the summation. Therefore, the algorithm has time
complexity of O(n).

As an immediate consequence, the following theorem holds.

Theorem 3.1.4. If G is a tree, the MBrT problem can be solved in the time of O(n).

As the MBrT problem is proved to be polynomially solvable on trees, the following
proposition can be developed thereby.

Corollary 3.1.5. The MBrT problem on a graph containing only one cycle can be solved
in the time of O(n2).

Proof. Given G = (V,E) having only one cycle C = (UC , FC) as a subgraph, we claim
that the MBrT problem on G can be reduced to |FC | MBrT problems on trees.

As there exists only one cycle in G, each subgraph Ge = (V,E \ {e}), e ∈ FC , is a tree.
Therefore, one can solve the MBrT problem on each Ge, e ∈ FC , using Algorithm 3.1.
Moreover, there does not exist a bounded r-tree that contains all edges in FC because of
the acyclicity requirement. Hence, the maximum bounded r-tree on G is the maximum
bounded r-tree among all the solutions obtained from each subgraph Ge, e ∈ FC , that is,

OptG = max{OptGe : e ∈ FC}.

Therefore the MBrT problem on G is polynomially solvable, and since this approach
solves |FC | MBrT problems on trees, it has a running time of O(n2).
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3.2 On cycles

Assume now that graph G is a cycle on n nodes. Without loss of generality, let

V = {r, v1, · · · , vn−1},
E = {e1, · · · , en},

with

δ(vi) = {ei, ei+1}, i = 1, · · · , n− 1,

δ(r) = {e1, en}.

Recall that according to Assumption 2.2.9, |O| ≤ 1, otherwise there will exist some
unreachable nodes or edges.

If cr = 1, the feasible solution space contains at most 2n integer points. If cr = 2, the
feasible solution space contains at most n(n+1)

2
+1 integer points. Thus the MBrT problem

can be solved in polynomial time simply by going through all the possible solutions in
the time of O(n2). Notice that same argument also applies for the cases if O = ∅ holds
in the two cases stated above, as the number of feasible solutions only reduces due to
the existence of the unit-capacity node. Alternatively, according to Corollary 3.1.5, the
MBrT problem on cycles can also be reduced to n MBrT problems on trees.

Nonetheless, there are other approaches to solve it without enumerating all the solutions
or using the algorithm for trees. This section introduces linear-time algorithms for the
MBrT problem on cycles.

Given any edge set F ⊆ E, denote by PF
rv, an rv-path of G[F ] such that P F

rv ⊆ F, v ∈ V [F ].
For any F ⊆ E with r ∈ V [F ], the weight of a maximum-weight nonempty bounded rv-
path of G[F ] is denoted by

ϕ(F ) := max{f(P F
rv) : P

F
rv = ∅, v ∈ V [F ]}.

It is worth noting that according to the definition we have

ϕ(F ) = max{f(T ) : T is a bounded r-tree , |δ(r) ∩ V (T )| = 1}. (3.4)

We first show that if F is an rv-path, ϕ(F ) can be obtained in linear time.

Proposition 3.2.1. Given a path Pru ⊆ E between r and u of G for some u ∈ V \ {r},
a maximum-weight nonempty bounded rv-path of the subgraph G[Pru] can be obtained in
linear time.
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Proof. Given an ru-path Pru of length k, it is straightforward to see that there are exactly
k nonempty rv-paths of G[Pru]. Thus, finding a maximum-weight nonempty bounded rv-
path of G[Pru] can be done in linear time.

We define two subpaths of G as follows.

P1 =

{
{e2, e3, · · · , en} if O = ∅,
{eo, eo+1, · · · , en} if O = {vo}, o ∈ {1, · · · , n− 1}.

Pn =

{
{e1, · · · , en−1} if O = ∅,
{e1, · · · , eo} if O = {vo}, o ∈ {1, · · · , n− 1}.

The following proposition can be derived.

Proposition 3.2.2.
ϕ(E) = max{ϕ(P1), ϕ(Pn)}. (3.5)

Proof. Since graph G = (V,E) is a cycle, any nonempty bounded rv-path PE
rv ⊆ E, v ∈ V

of G is also an rv-path of either G[P1] or G[Pn], the proposition thereby holds.

Theorem 3.2.3. If G is a cycle and cr = 1, the MBrT problem can be solved in linear
time.

Proof. If cr = 1, as any bounded r-tree is an rv-path of G, one thus have

OptG = max{0, pr, ϕ(E)}.

Furthermore, according to Proposition 3.2.1, ϕ(E) can be obtained in linear time. Hence,
OptG can be obtained in linear time.

Consider now the case of cr = 2.

Denote the path between v1 and vn−1 without going through r by

Pr = E \ {e1, en}.

Recall that we denote a uv-path of G[Pr] by P Pr
uv ⊆ Pr. Given a non-empty path Puv

between u and v, let
ζ(Puv) := f(G[Puv])− pu − pv,

and
ζMin(Pr) := min{ζ(P Pr

uv ) : |P Pr
uv | ≥ 1, |P Pr

uv ∩ δ(O)| ≥ |O|}.
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Notice that, for the case of O = ∅, one has

ζMin(Pr) = min{ζ(P Pr
uv ) : |P Pr

uv | ≥ 1},

and for the case of O = ∅, one has

ζMin(Pr) = min{ζ(P Pr
uv ) : |P Pr

uv | ≥ 1, |P Pr
uv ∩ δ(O)| ≥ 1}.

Additionally, it is possible that V [P Pr
uv ] \ {u, v} = ∅, but P Pr

uv cannot be empty.

The following lemma can be deduced based on the definition of ζMin(Pr).

Lemma 3.2.4.

f(G)− ζMin(Pr) = max{f(T ) : T = (U, F ) is a bounded r-tree of G, |δ(r) ∩ F | = 2}.

Proof. From the definition of ζMin(Pr), it can be seen that ζMin(Pr) = min{f(G)−f(T ) :

T = (U, F ) is a bounded r-tree of G, |δ(r) ∩ F | = 2}. Since f(G) = w(E) + p(V ) is
constant, the lemma is thereby proved.

Then the following result respecting the optimal value of the MBrT problem on G can
be developed for the case of cr = 2.

Proposition 3.2.5. If cr = 2,

OptG = max{0, pr, ϕ(E), f(G)− ζMin(Pr)}. (3.6)

Proof. According to (3.4) and Lemma 3.2.4,

max{ϕ(E), f(G)− ζMin(Pr)}
=max{f(T ) : T = (U, F ) is a bounded r-tree of G, 1 ≤ |δ(r) ∩ F | ≤ 2}.

Combining with the solutions (∅, ∅) and ({r}, ∅) and the fact that |δ(r)∩F | ≤ 2 is satisfied
for any subgraph (U, F ) of G, one has

max{0, pr, ϕ(E), f(G)− ζMin(Pr)} = max{f(T ) : T is a bounded r-tree of G}.

Therefore the proposition holds.

The MBrT problem on G in the case of cr = 2 is then reduced to the problem of finding
ϕ(E) and ζMin(Pr).

Recall that ϕ(E) can be calculated in linear time, as it is shown in Propositions 3.2.1 and
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3.2.2. We present hereafter the algorithms to obtain ζMin(Pr). Notice that, depending
on whether O is empty or not, there are two situations to deal with.

The following proposition needs to be put forward as a preparation for the presentation
of the algorithm for calculating ζMin(Pr) in the case of O = ∅.
Given a path Ps1sq = {s1s2, s2s3, · · · , sq−1sq} between s1 and sq.Let Psisj denote a path
of G[Psisq ] between si and sj with 1 ≤ i < j ≤ q, as a simplification of P Ps1sq

sisj . Given
i ∈ {1, · · · , q − 1}, let ζsiMin(Psisq) be the minimum value of ζ(Psisj) with i < j ≤ q, that
is,

ζsiMin(Psisq) = min{ζ(Psisj) : i < j ≤ q}.

Proposition 3.2.6. For any i ∈ {1, · · · , q − 2},

ζsiMin(Psisq) = min{wsisi+1
, wsisi+1

+ psi+1
+ ζ

si+1

Min(Psi+1sq)}.

Proof. It is straightforward to see

ζsiMin(Psisq) ≤ min{wsisi+1
, wsisi+1

+ psi+1
+ ζ

si+1

Min(Psi+1sq)},

as the right-hand side contains two feasible solutions of the left-hand side, that is, wsisi+1
=

ζ({sisi+1}) and wsisi+1
+ psi+1

+ ζ
si+1

Min(Psi+1sq) = ζ(Psisj) for some j with i+ 1 < j ≤ q.

On the other hand, suppose ζsiMin(Psisq) < min{wsisi+1
, wsisi+1

+psi+1
+ζ

si+1

Min(Psi+1sq)} with
i ≤ q−1. It is known that there exists some j with i+1 < j ≤ q and ζ(Psisj) = ζsiMin(Psisq).
Then one has ζ(Psisj) = wsisi+1

+ psi+1
+ ζ(Psi+1sj) < wsisi+1

+ psi+1
+ ζ

si+1

Min(Psi+1sq). It
clearly contradicts the optimality of ζsi+1

Min(Psi+1sq). Therefore,

ζsiMin(Psisq) ≥ min{wsisi+1
, wsisi+1

+ psi+1
+ ζ

si+1

Min(Psi+1sq)},

which completes the proof.

We can also deduce the following proposition.

Proposition 3.2.7.

ζMin(Ps1sq) = min{ζsiMin(Psisq) : i ∈ {1, · · · , q − 1}}. (3.7)

Proof. From the definition of ζMin(Ps1sq) and ζsiMin(Psisq), one has

ζMin(Ps1sq)

= min{ζ(P Ps1sq
sisj ) : 1 ≤ i < j ≤ q}

= min{ζ(P Psisq
sisj ) : i ∈ {1, · · · , q − 1}, i < j ≤ q},
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= min{ζsiMin(Psisq) : i ∈ {1, · · · , q − 1}}.

Therefore, the lemma holds.

The algorithm for calculating ζMin(Pr) is based on Proposition 3.2.6 and Proposition 3.2.7.
The algorithm uses a recursive process to calculate ζMin(Pvivn−1), for all i ∈ {1, · · · , n−2},
as demonstrated in Algorithm 3.2.

Algorithm 3.2: Algorithm to obtain ζMin(Pr) on cycles
Input : Cycle G = (V,E), w ∈ RE and p ∈ RV

Output: ζMin(Pr).
begin

1 Set ζ
vn−2

Min (P
Pr
vn−2vn−1

) = ζ({en−1}) = wen−1 .
2 Set i = n− 3.

while i ≥ 1 do
3 Set ζviMin(P

Pr
vivn−1

) = min{wei+1
, wei+1

+ pvi+1
+ ζ i+1

Min(P
Pr
vi+1vn−1

)}.
4 Set i = i− 1

5 ζMin(Pr) = min{ζviMin(P
Pr
vivn−1

) : i ∈ {1, · · · , n− 2}}.

Proposition 3.2.8. Algorithm 3.2 obtains the value of ζMin(Pr).

Proof. Line 1 of the algorithm obtains

ζ
vn−2

Min (P
Pr
vn−2vn−1

) = ζ({en−1}) = wen−1 ,

as the only nonempty path between vn−2 and vn−1 in G[Pr] is {en−1}.
Line 3 calculates ζviMin(P

Pr
vivn−1

) for each i ∈ {1, · · · , n−3}, according to Proposition 3.2.6.
Line 5 calculates ζMin(Pr) according to Proposition 3.2.7.

Proposition 3.2.9. Algorithm 3.2 has time complexity of O(n).

Proof. In this algorithm, each term of we, pv for any e ∈ Pr and v ∈ V \ {r, v1, vn−1}
occurs only once. Therefore the time complexity is O(n).

Therefore, we now have the following result.

Theorem 3.2.10. If G is a cycle with cr = 2 and O = ∅, the MBrT problem can be
solved in linear time.

Proof. As a result of Propositions 3.2.1, 3.2.2, 3.2.8 and 3.2.9, both ϕ(E) and ζMin(Pr)

can be obtained in linear time. Therefore, according to Proposition 3.2.5, OptG can be
obtained in linear time.
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Figure 3.1: A cycle G with vo and its subpaths Po, P ′
o

Consider the case where cr = 2 and there exists a node vo ∈ V \ {r} with cvo = 1,
o ∈ {1, · · · , n− 1}. Denote Po = P Pn

rvo the path between r and vo passing through e1, and
P ′
o = P P1

rvo the path between r and vo passing through en, as demonstrated in Figure 3.1.

In order to calculate ζMin(Pr), Algorithm 3.2 in this case should be changed to finding a
minimum-weight subpath P Pr

uv of Pr which satisfies vo ∈ V [P Pr
uv ]. Alternatively, we show

this approach can be replaced by another algorithm described below.

Instead of finding a minimum-weight subpath of Pr, one can focus on finding two subpaths
P Po
vou, P

P ′
o

vov of Po and P ′
o respectively, such that they have minimal values of ζ(P Po

vou) and
ζ(P

P ′
o

vov), for u ∈ V [Po] \ {vo}, v ∈ V [P ′
o] \ {vo}. Let

ζo = min{ζ(P Po
vou) : u ∈ V [Po] \ {vo}},

and
ζ ′o = min{ζ(P P ′

o
vov) : v ∈ V [P ′

o] \ {vo}}.
We first show that these two values lead to the optimal value of the MBrT problem.

Proposition 3.2.11. If cr = 2 and O = {vo}, then

OptG = max{0, pr, f(G)− ζo, f(G)− ζ ′o, f(G)− ζo − ζ ′o − pvo}.

Proof. Let u be a node in V [Po] \ {vo} such that ζ(P Po
vou) = ζo, and let v be a node in

V [P ′
o] \ {vo} such that ζ(P

P ′
o

vov) = ζ ′o.

Since P
P ′
o

rvo = ∅ and P Po
ru = ∅, one has

f((∅, ∅)) = 0,
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f(({r}, ∅)) = pr,

f(G[P P ′
o

rvo ∪ P Po
ru ]) = f(G)− ζo,

f(G[P Po
rvo ∪ P P ′

o
rv ]) = f(G)− ζ ′o,

f(G[P P ′
o

rv ∪ P Po
ru ]) = f(G)− ζo − ζ ′o − pvo .

Hence
OptG ≥ max{0, pr, f(G)− ζo, f(G)− ζ ′o, f(G)− ζo − ζ ′o − pvo},

because the right-hand side contains the values of feasible solutions to the MBrT problem
on G.

Assume that there exists a path Pss′ with r ∈ V [Pss′ ], s ∈ V [Po] and s′ ∈ V [P ′
o], such

that f(G[Pss′ ]) > max{0, f(G)− ζo, f(G)− ζ ′o, f(G)− ζo − ζ ′o − pvo}. It can be seen that
Pss′ = ∅.
If vo ∈ V [Pss′ ], without loss of generality, assume s = vo. One must have f(G[Pss′ ]) >

f(G)− ζ ′o which indicates ζ(P Pr

vos′) < ζ ′o contradicts the optimality of ζ ′o.

Otherwise assume vo /∈ V [Pss′ ], then P Po
svo = ∅ and P

P ′
o

s′vo = ∅. From the assumption, one
can deduce that ζ(P Po

svo) + ζ(P
P ′
o

s′vo) < ζo + ζ ′o. Thus at least one of the two inequalities
ζ(P Po

svo) < ζo and ζ(P
P ′
o

s′vo) < ζ ′o holds, which forms a contradiction with the opimality of
either ζo or ζ ′o.

Therefore, such path Pss′ does not exist. Thus

OptG ≤ max{0, pr, f(G)− ζo, f(G)− ζ ′o, f(G)− ζo − ζ ′o − pvo},

which concludes the proof.

As a result of this proposition, the MBrT problem in this situation can be reduced to the
problem of finding ζo and ζ ′o. Similar to Proposition 3.2.1, ζo and ζ ′o can also be obtained
in linear time, except that now vo is the fixed end of the paths instead of r, and it looks
for minimum-weight paths instead of maximum-weight paths.

Theorem 3.2.12. If G is cycle with cr = 2 and O = {vo}, the MBrT problem can be
solved in linear time.

Proof. For ζo (ζ ′o, respectively), there are exactly o (n− o, respectively) nonempty paths
of G[Po] (G[P ′

o], respectively) that contain o. Hence, ζo (ζ ′o, respectively) can be obtained
in linear time, which combining with Proposition 3.2.11 completes the proof.

Each case on cycles is hereby given a linear-time algorithm to solve the MBrT problem
accordingly.
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3.3 On cactus graphs

Consider now the MBrT problem on a cactus graph G = (V,E). A cactus graph can
be seen as a combination of trees and cycles while having a tree hierarchy among the
components of trees and cycles. Provided that the MBrT problem is polynomially solvable
on both trees and cycles, it is convincing to argue that the MBrT problem on cactus
graphs is also polynomially solvable.

This section provides an effective approach to decompose a cactus graph, based on which
an according polynomial-time algorithm is proposed to solve the MBrT problem on it.

The following results support the decomposition of cactus graphs in later discussion.

Given a graph G = (V,E) with r ∈ V and a capacity vector c ∈ ZV
+, let OptiG(r) denote

the maximum weight of a bounded r-tree T = (U, F ) of G such that |δ(r)∩F | = i, i ≤ cr.
OptiG is also used for the sake of simplification if the root node is clear from context.

Proposition 3.3.1.
Opt1G − pr ≥ Opt2G −Opt1G. (3.8)

Proof. Suppose Opt1G − pr < Opt2G − Opt1G. Let Tj = (Uj, Fj) be a bounded r-tree of G
that satisfies |Fj ∩ δ(r)| = j and f(Tj) = OptjG, j = 1, 2. Notice that T2 can be seen as a
combination of two r-trees having exactly one edge in δ(r). Denote these two r-trees T 1

2

and T 2
2 .

Since from the assumption, f(T1) − pr < (f(T 1
2 ) + f(T 2

2 ) − pr) − f(T1) holds, one has
2f(T1) < f(T 1

2 )+f(T 2
2 ). Thus at least one of f(T 1

2 ) and f(T 2
2 ) is larger than f(T1), which

forms a contradiction with the optimality of T1.

The following proposition can then be derived based on (3.8), which is necessary to
complete the decomposition on cactus graphs.

Given a graph G = (V,E) with an articulation node va, let G1 = (V1, E1) and G2 =

(V2, E2) be two subgraphs separated by va.Without loss of generality, let r ∈ V1.

Proposition 3.3.2. If |δG2(va)| = 2, let G′ be the graph composed of G1 and two edges
e′1 = vav

′
1, e

′
2 = vav

′
2 taking the place of G2 such that pv′1 = pv′2 = 0, we′2 = Opt2G2

−Opt1G2

and we′1 = Opt1G2
− pva. Then

OptG = OptG′ .

Proof. Firstly, any bounded r-tree of G that contains no edges in G2 can also be seen as
a bounded r-tree of G′ with no edges in {e′1, e′2}, and vice versa.
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Figure 3.2: A cactus basis

For any bounded r-tree Ti of G with i edges in δG2(va), i ∈ {1, 2}, let T ′
i be the r-tree

obtained by replacing the part of Ti in G2 with e′1 if i = 1, or with e′1 and e′2 if i = 2. One
has f(T ′

i ) ≥ f(Ti) as a result of the optimality of Opt1G2
and Opt2G2

. Hence OptG ≤ OptG′ .

Conversely, according to Proposition 3.3.1, we′1 ≥ we′2 , thus if there exists a maximum
bounded r-tree in G′ that contains e′2, there must also exist a maximum bounded r-tree
containing e′1. Additionally, any maximum bounded r-tree in G′ containing only e′1 or
both e′1 and e′2 can be transformed into a bounded r-tree of G. Thus OptG ≥ OptG′ , and
therefore completes the proof.

If Opt1G2
and Opt2G2

and the associated bounded r-trees can be obtained in polynomial
time, Proposition 3.3.2 allows us to transform such subgraph G2 into edges and hence
simplify the structure of the graph.

Similarly, it is trivial to see that if |δG2(va)| = 1, one can transform G2 into just one edge.
The proof is immediate from the proof of Proposition 3.3.2, as one can add a virtual edge
with weight −M , where M is a sufficiently large number. In this case Opt2G2

= Opt1G2

always holds, and the associated bounded r-trees are identical. This result is stated in
the following corollary.

Corollary 3.3.3. If |δG2(va)| = 1, let G′ be the graph composed of G1 and an edge
e′1 = vav

′
1 taking the place of G2 such that pv′1 = 0 and we′1 = Opt1G2

− pva. Then

OptG = OptG′ .

Based on Proposition 3.3.2 and Corollary 3.3.3 a cactus basis as shown in Figure 3.2 can
be developed for solving the MBrT problem on cactus graphs. It is composed of a cycle
where each node except the root node is incident with some pending edges. As it contains
only one cycle, Corollary 3.1.5 implies that the MBrT problem on cactus bases can be
solved in polynomial time. On these grounds, the MBrT problem on cactus graphs can
be proved to be polynomially solvable, by reducing it to a number of subproblems on
graphs with the forms of tree and cactus basis.
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Denote by H ⊆ V , the set of hinges, which is the set composed of nodes that have degree
at least 3 and belong to at least one cycle and r if r belongs to a cycle. A cactus graph
then can be seen as a combination of cycle and tree components linked by hinges. As
cactus graphs have the tree hierarchy, the notion of up-closure and down-closure can be
extended to cactus graphs for the hinges. For any two distinct nodes u, v ∈ H, define
u ≤ v if u belongs to all the rv-paths in G. The up-closure 	v
 and down-closure �v� of
v are thereby defined as 	v
 = {u ∈ H : v ≤ u} and �v� = {u ∈ H : u ≤ v} respectively.

For each cycle C = (UC , FC) of G, we say that it is attached at a hinge h ∈ H if
h ∈ UC and removing δ(h) disconnects all nodes in UC \ {h} from r. Denote the graph
GC = (VC , EC) as the graph such that FC ⊆ EC , and removing FC disconnects all nodes
in VC \ UC and all edges in EC \ FC from r.

In addition, for some hinge h′ ∈ H such that 	h′
 = {h′}, and some edge vbh
′ ∈ δ(h′),

such that removing vbh
′ disconnects some edges from r. The graph Gvb = G[Vvb ] with

Vvb = {v ∈ V : removing vbh
′ disconnects h′ and v} ∪ {h′}

is called a tree branch attached at h′ associated with vb and vbh
′.

Proposition 3.3.4. The MBrT problem on a cactus graph is polynomially solvable.

Proof. For each cycle C of G attached at hinge h ∈ H, assume that there is no other
cycle components in GC , otherwise one has to deal with them beforehand. In other
words, the cycle component is only connected with a few tree branches. As the MBrT
problem on trees is polynomially solvable, we can transform each each tree branch Gvb

attached at some hinge h′ ∈ 	h
 \ {h} into an edge according to Corollary 3.3.3. More
precisely, for each tree branch Gvb attached at some hinge h′ ∈ 	h
 \ {h} associated with
vb, one can replace Gvb by an edge h′v′b with wh′v′b = Opt1Gvb

(h′)− ph′ and pv′b = 0. Then
the graph GC is transformed into a cactus basis, and we assume that GC is a cactus
basis hereafter. Notice that if Gvb contains only one edge, the transformation, although
harmless, is unnecessary.

According to Corollary 3.1.5, one can obtain Opt1GC
(h) and Opt2GC

(h) using the following
approach.

Let δ(h) = {e1, e2}, and let M be a sufficiently large number. Denote by Ge = GC \ {e}
the subgraph of GC without e.

Using Algorithm 3.1, one can solve the MBrT problem on two subgraphs Ge1 and Ge2

with ch = 1, and setting w′
e2
= M in Ge1 and w′

e1
= M in Ge2 respectively. It can be seen

that
Opt1(GC)(h) = max{OptGe1

(h)−M + we2 , OptGe1
(h)−M + we1}.
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This calculation can be done in the time of O(|V (GC)|).
Opt2GC

(h) can be obtained as follows. First, set h as the root node with ch = 2, w′
e1
= M

and w′
e2

= M , and then solve the MBrT problem on Ge, for each e ∈ E(C) \ {e1, e2}.
Then we have

Opt2GC
(h) = max{OptGe(h) : e ∈ E(C) \ {e1, e2}}− 2M + we1 + we2 .

This calculation can be done in the time of O(|C||V (GC)|).
According to Proposition 3.3.2, GC can then be replaced by two edges e′1, e

′
2 with the

weights we′1 = Opt1GC
(h)− ph and we′2 = Opt2GC

(h)−Opt1GC
(h).

This operation can be repeated until there is no cycles left in G. Denote the new graph
by G′. According to Proposition 3.3.2, we have OptG = OptG′ . Furthermore, as G′ is
tree, the MBrT problem on it can be solved in polynomial time according to Theorem
3.1.4. Therefore, one can solve the MBrT problem by solving a series of subproblems on
cactus bases and trees. Algorithm 3.3 demonstrates the algorithm without providing the
details of algorithms on the subgraphs.

Algorithm 3.3: Algorithm for the MBrT problem on cactus
Input : Cactus G = (V,E), w ∈ RE and p ∈ RV

Output: Solution to the MBrT problem on G.
begin

while there exists some cycle C attached at a hinge h such that GC only
contains one cycle do

if GC is already transformed into a cactus basis then
1 Transform GC into two edges according to Proposition 3.3.2.

else if GC contains some tree branch Gvb attached at a hinge h′ then
2 Transform GC into an edge according to Corollary 3.3.3.

3 Solve the MBrT problem on the transformed graph using Algorithm 3.1.

Proposition 3.3.5. Algorithm 3.3 has time complexity of O(n2).

Proof. The algorithm on cactus graphs uses both the algorithm for trees and the algo-
rithm for cactus bases. Each cycle component requires the calculation of Opt1GC

(h) and
Opt2GC

(h) based on Algorithm 3.1, which requires O(|V (C)||V (GC |), and Algorithm 3.1
also needs to be run once on each tree branch encountered in the process. Therefore the
algorithm has time complexity of O(n2).



50 Chapter 3. Combinatorial algorithms for the MBrT problem

3.4 General graph decomposition

Besides the discussion on trees, cycles and cactus graphs, a general decomposition is
proposed in this section regarding the articulation nodes.

Given a graph G = (V,E) with an articulation node va ∈ V , let G1 = (V1, E1), G2 =

(V2, E2) be two subgraphs of G separated by va such that E = E1 ∪ E2, V = V1 ∪ V2.
Without loss of generality, assume r ∈ V1.

Proposition 3.4.1. If the MBrT problem on G1 and G2 can be solved in polynomial
time, the MBrT problem on G is also polynomially solvable.

Proof. First it is worth noting that finding a maximum nonempty bounded r-tree of a
graph can be reduced to finding a maximum bounded r-tree of a graph by setting pr to
a sufficiently large number. Hence, a maximum nonempty bounded r-tree can be found
in polynomial time on both G1 and G2.

There are 2 cases to be considered depending on whether r = va holds. Notice that here
we assume that cv ≤ |δ(v)| is always satisfied, otherwise one can manually set cv = |δ(v)|.
Case 1). r = va.

Let OptGk,i denote the the weight of a maximum nonempty bounded r-tree of Gj with
setting cr = i, for i ∈ {0, 1, · · · , cr}, k ∈ {1, 2}.
For a given i, j ∈ {0, 1, · · · , cr}, it is straightforward that OptGk,i ≤ OptGk,j holds if i ≤ j,
for k ∈ {1, 2}. As a result, for a given i ∈ {0, 1, · · · , cr}, we have

OptG2,cr−i = max{OptG2,j : j ∈ {0, · · · , cr − i}}.

Then the maximum nonempty bounded r-tree of G can be chosen among cr + 1 combi-
nations, which is

Opt′G = max{OptG1,i +OptG2,cr−i − pr : i ∈ {0, 1, · · · , cr}}.

We then have the optimal value of the MBrT problem on G as

OptG = max{0, Opt′G},

where 0 is the weight of the empty graph.

Case 2). r = va.

Similarly to the previous case, let OptG2,i be the maximum weight of a nonempty bounded
r-tree of G2 with va being the root and cva = i, for i ∈ {0, 1, · · · , cva − 1}. We have
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OptG2,i ≤ OptG2,j, if i ≤ j for i, j ∈ {0, 1, · · · , cva − 1}.
Let OptG1,i,j be the optimal value for the MBrT problem on G1 with the capacity of va
being cva = i, and replacing the weight pva of va by pv′a = OptG2,j, for i ∈ {1, · · · , cva},
j ∈ {0, · · · , cva−1}. It can be seen that OptG1,i,j ≤ OptG1,i,k if j ≤ k, for i ∈ {1, · · · , cva},
j, k ∈ {0, · · · , cva − 1}.
Thus for a given i ∈ {1, · · · , cva}, we have

OptG1,i,cva−i = max{OptG1,i,j : j ∈ {0, · · · , cva − i}}.

It can be seen that OptG1,i,cva−i corresponds to a bounded r-tree of G that contains at
most i edges in δG1(va). Hence we have

OptG1,i,cva−i ≤ max{f(T ) : T is a bounded r-tree of G, |δG1(va) ∩ E(T )| ≤ i}.

Assume that there exists a bounded r-tree T ′ of G that contains at most i edges in δG1(va)

such that f(T ′) > OptG1,i,cva−i. It can be deduced that va ∈ V (T ′), as otherwise T ′ is also
a bounded r-tree of G1 that does not contain va, which indicates f(T ′) ≤ OptG1,i,cva−i.
Thus T ′ is composed of a bounded r-tree T ′

1 of G1 and a nonempty bounded tree T ′
2 of

G2 such that it contains at most cva − i edges in δG2(va). As f(T ′
2) ≤ OptG2,cva−i holds,

f(T ′) ≤ OptG1,i,cva−i also holds, which forms a contradiction. As a result, we have

OptG1,i,cva−i ≥ max{f(T ) : T is a bounded r-tree of G, |δG1(va) ∩ E(T )| ≤ i}.

Therefore, one can find the maximum weight of a bounded r-tree of G by

OptG = max{OptG1,i,cva−i : i ∈ {1, · · · , cva}}.

To summarize, the MBrT problem on G can be solved in polynomial time in both afore-
mentioned cases.

3.5 Conclusion

In this chapter, we provided algorithms for the MBrT problem on trees, cycles and cactus
graphs. We also proved that if the MBrT problem is polynomially solvable on two graphs
it is also polynomially solvable on the 1-sum of the two graphs.

The algorithmic study provides a brief glimpse of the polyhedral structure of the problem.
For instance, the decomposition for cactus graphs also reflects the possible decomposition
for the polytope. Furthermore, it can also be seen how the capacity creates complexity
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for us to solve the problem in different scenarios.

Moreover, since the MBrT problem is polynomially solvable on trees, cycles, and cactus
graphs, it is worth studying the polyhedra on these classes of graphs, and more impor-
tantly, trying to obtain the characterization thereof.
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Chapter 4

Polyhedral study on Extended
Bounded r-Tree Polytope

Recall that given a graph G = (V,E), a root node r ∈ V , a capacity vector c ∈ ZV
+, an

edge-weight vector w ∈ RE, and a node-price vector p ∈ RV , the MBrT problem consists
of finding an r-tree T of G with maximum value f(T ) = w(E(T )) + p(V (T )) and such
that the degree of any node v ∈ V (T ) is bounded by cv.

In this chapter, we focus on the extended bounded r-tree polytope Bxy(G, r, c), which is
the integral hull of the formulation introduced in Chapter 2, that is,

x(E)− y(V \ {r}) = 0, (4.1)

x(E[S])− y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (4.2)

x(δ(v))− cvyv ≤ 0 ∀v ∈ V, (4.3)

yr ≤ 1, (4.4)

xe ≥ 0 ∀e ∈ E. (4.5)

According to Assumption 2.2.9, G does not have any unreachable elements. We first show
that its dimension is related to the blocks and unit-capacity nodes in the graph. Several
sets of valid equations and inequalities are introduced during the dimension study. After
that, we prove that the polytope can be decomposed with respect to articulation nodes
through 1-sum. Necessary and sufficient conditions for each set of valid inequalities to
be facet-defining are examined. Finally, we give the complete description of Bxy(G, r, c)

when the graph is a tree or a cycle, and as a result of the decomposition result, we can
aslo characterize Bxy(G, r, c) on cactus graphs.
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4.1 Dimension

Before stating the dimension of Bxy(G, r, c), a few lemmas related to implicit equations
should be introduced in advance.

For any v ∈ S ⊆ V \ {r}, according to (4.1) and (4.2) one has

−x(E) + y(V \ {r}) = 0,

x(E[S \ (O \ {v})])− y(S \ (O ∪ {v})) ≤ 0,

x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0.

From (4.7) we have
x(δ(vo))− yvo = 0 ∀vo ∈ O \ {v},

which leads to
x(δ(O \ {v}))− y(O \ {v}) = 0.

Summing them up gives us

yv − x(δ(S) \ δ(O \ {v})) ≤ 0. (4.6)

Inequalities (4.6) are valid but mostly redundant, nonetheless they are used to simplify
the presentation of the proof of the following lemma, and will also be useful throughout
the dissertation for both the theoretical and computational developments. Note that if
|S| = 1 or |S| = 1, (4.6) defines the same face as x(E[S])− y(S \ {v}) ≤ 0 in the former
case and x(E[S])− y(S \ {r}) ≤ 0 in the latter.

For the unit-capacity nodes but r (i.e., the nodes in O), we can deduce some equations
as stated in the following lemma.

Lemma 4.1.1. Given any node vo ∈ O,

x(δ(vo))− yvo = 0 (4.7)

is valid for Bxy(G, r, c).

Proof. Since cvo = 1, x(δ(vo))−yvo = 0 can be immediately obtained from (4.3) and (4.6)
associated with S = {vo}.

This lemma gives a brief glance at how the unit-capacity nodes affect the polytope in
terms of dimension.

A block of a graph is defined as a maximal connected subgraph with no articulation node.
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Recall that Gr is connected according to Assumption 2.2.9, and as a nonempty connected
graph, Gr can be uniquely decomposed into the 1-sum union of its blocks. Note that the
blocks of Gr are maximal 2-connected subgraphs or bridges.

Let (V1, E1), · · · , (Vq, Eq), q ≥ 1, represent the blocks of graph Gr. For any i ∈ {1, · · · , q},
let vai denote the node in block (Vi, Ei) that separates all the nodes in Vi \ {vai} from
r. In other words, for any node vi ∈ Vi, i ∈ {1, · · · , q}, a path between r and vi has to
contain vai . For the sake of homogeneity, we may represent r by vai for any block (Vi, Ei)

that contains r. Moreover, as nodes in O can only be leaves in any bounded r-tree of G,
any bounded r-tree T of G also induces a bounded r-tree T \O of Gr, and this motivates
our focus on the blocks of Gr rather than those of G.

We then can derive the following results with respect to the blocks and the articulation
nodes of Gr.

Lemma 4.1.2. Given a graph Gr and one of its blocks (Vi, Ei), any rooted tree T = (U, F )

of Gr contains (U ∩ Vi, F ∩ Ei) as a tree rooted at vai.

Proof. Direct consequence of the definition of the blocks and the articulation nodes vai
of Gr.

Notice that Lemma 4.1.2 applies to any graph as long as the definitions of blocks and
articulation nodes are preserved.

An immediate result of (4.1) and Lemma 4.1.2 is the following corollary.

Corollary 4.1.3. For any block (Vi, Ei), i ∈ {1, · · · , q},

x(Ei)− y(Vi \ {vai}) = 0 (4.8)

is valid for Bxy(G, r, c).

Since G = (Vr∪O,Er∪δ(O)), we can immediately derive the following linear dependency.

Corollary 4.1.4. Equation (4.1)can be obtained as the sum of all equations (4.7) and
(4.8).

It is worth mentioning that for any node v in V \ {r}, subtracting inequality (4.2) asso-
ciated with V and v from (4.1) gives the following valid inequality

yv − yr ≤ 0. (4.9)
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Similarly, given any block (Vi, Ei) and any node v ∈ Vi \ {vai}, for i ∈ {1, · · · , q}, from
(4.8) and inequality (4.2) associated with Vi and v, the inequality

yv − yvai ≤ 0 (4.10)

holds as well.

According to Lemma 4.1.1 and Corollaries 4.1.3 and 4.1.4, the dimension of Bxy(G, r, c)

depends on both the number of nodes in O and the number of blocks in Gr. An upper
bound on the dimension of the polytope Bxy(G, r, c) is given in the following proposition.

Proposition 4.1.5. dimBxy(G, r, c) ≤ |E|+ |Vr| − q.

Proof. Let S= be the system composed of the equations (4.7) and (4.8). The support
graphs of these |O|+ q equations are pairwise edge-disjoint. Since the edge sets of these
support graphs are nonempty, S= then has full row-rank, that is,

rankS= = |O|+ q.

Consequently, one obtains

dimBxy(G, r, c) ≤ |E|+ |V | − |O| − q

= |E|+ |Vr| − q,

where the last line comes from {Vr, O} being a partition of V .

The following technical lemma that was proved by Goemans [1994], and can be viewed as
a specific case of Menger’s Theorem (Menger [1927]), is necessary for providing a lower
bound of the dimension.

Lemma 4.1.6. Given a 2-connected graph G = (V,E), for every distinct u, v, w ∈ V

there exists a path in G from u to w that does not go through v.

We now prove that all valid equations whose support graphs are subgraphs of Gr can be
written as linear combinations of inequalities (4.8).

Proposition 4.1.7. Then any valid equation for Bxy(G, r, c) whose support graph is a
subgraph of Gr is a linear combination of inequalities (4.8).

Proof. Assume that αTx + βTy = γ is satisfied by all [ xy ] ∈ Bxy(G, r, c), where αe = 0

for any e /∈ Er and βv = 0 for any v /∈ Vr. Since 0 ∈ Bxy(G, r, c), one clearly has γ = 0.
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Besides, as the incidence vector of ({r}, ∅) is also in Bxy(G, r, c), one has

βr = 0.

Consider any block (Vi, Ei) of Gr, i ∈ {1, · · · , q}, that contains r. For any edge rv ∈ Ei,
the incidence vector of G[{rv}] = ({r, v}, {rv}) is in Bxy(G, r, c), and thus

αrv + βv = 0.

Now consider any edge uv ∈ Ei \ δ(r). Such edge exists only if this block is a 2-connected
component of Gr. Recall that O ∩ Vi = ∅, and hence any rv-path of G[Ei] satisfies the
capacity constraints. Let Pru be a path of G[Ei] between r and u that does not pass
through v. Both Pru and Pru ∪ {uv} induce bounded r-trees of G. We hence deduce

αuv + βv = 0.

Therefore form the connectivity of G[Ei] we obtain

αe = λi ∀e ∈ Ei,

βv = −λi ∀v ∈ Vi \ {r},

where λi is a real scalar.

Consider now any block (Vj, Ej) of Gr, j ∈ {1, · · · , q}, such that r /∈ Vj. Let Prvaj
be any

path between r and vaj . For any edge vajv ∈ Ej, both Prvaj
and Prvaj

∪ {vajv} induce
bounded r-trees of G, thus

αvaj v
+ βv = 0.

Furthermore if G[Ej] is a 2-connected component of Gr, consider any edge uv ∈ Ej\δ(vaj).
Let Pvaju

be a path between vaj and u that does not go through v. Both Prvaj
∪ Pvaju

and Prvaj
∪ Pvaju

∪ {uv} induce bounded r-trees of G, which leads to

αuv + βv = 0.

Therefore form the connectivity of G[Ej] we obtain

αe = λj ∀e ∈ Ej,

βv = −λj ∀v ∈ Vj \ {vaj},

where λj is a real scalar.
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Consequently,

αTx+ βTy =

q∑
i=1

∑
e∈Ei

λix(Ei) +

q∑
i=1

∑
v∈Vi\{vai}

(−λi)y(Vi \ {vai})

=

q∑
i=1

λi(x(Ei)− y(Vi \ {vai})).

Therefore, αTx+ βTy = 0 is a linear combination of equations (4.8).

Based on Proposition 4.1.5 and Proposition 4.1.7, the dimension of Bxy(G, r, c) can be
stated.

Theorem 4.1.8.
dimBxy(G, r, c) = |E|+ |Vr| − q. (4.11)

Proof. Based on Propositions 4.1.5 and 4.1.7, we have

Bxy(Gr, r, c
r) = |Er|+ |Vr| − q,

where cr is the restriction of c to Gr. In other words, one has |Er| + |Vr| − q + 1

affinely independent vectors, each of which induces a bounded r-tree of Gr (and of G).
Meanwhile, the connectivity of Gr also ensures that for each edge e in δG(Vr), there exists
an re-path between r and e such that none of its internal nodes is in O. Thus, each of the
|δG(Vr)| incidence vectors of these paths satisfies the capacity constraints. Additionally,
it is straightforward to see that each of them also contains a unique element (i.e., e) with
non-zero coefficient. Hence, one has |Er| + |Vr| − q + 1 + |δG(Vr)| affinely independent
vectors in Bxy(G, r, c), which gives us

dimBxy(G, r, c) ≥ |Er|+ |Vr|+ |δG(Vr)| − q

= |E|+ |Vr| − q,

as {Er, δG(Vr)} is a partition of E. Combining it with Proposition 4.1.5 completes the
proof.

In this section the articulation nodes in Gr are crucial for the dimension of Bxy(G, r, c). It
is worth noting that the two sets of articulation nodes in Gr and in G do not necessarily
have inclusion relation. For instance, an articulation node in G which separates only
nodes in O from r is not an articulation node in Gr, whereas in a cycle G, if O is not
empty, one can trivially find some articulation nodes in Gr.
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Before performing a facial study of Bxy(G, r, c), we show in the next section that the
articulation nodes of G are the relevant ones when studying Bxy(G, r, c) through a de-
composition lens.

4.2 Decomposition through 1-sum

Consider a graph G = (V,E) which could be written as the 1-sum of two graphs G1 =

(V1, E1) and G2 = (V2, E2). Let va denote the node that belongs to V1 and V2. Note that
va is an articulation node in G. Without loss of generality, assume r ∈ V1.

Given a vector [ xy ] in RE+V , let
[
xi

yi

]
be its restriction to Gi, i = 1, 2. Similarly, given a

capacity vector c ∈ ZV
+, let ci ∈ ZVi , i = 1, 2, be the restriction of c to Gi.

We hereafter show that the characterizations of Bxy(G1, r1, c
1) and Bxy(G2, r2, c

2) yield
the characterization of Bxy(G, r, c), where r1 = r and r2 = va.

Denote

PC(G, r, c) ={[ xy ] :
[
x1

y1

]
∈ Bxy(G1, r1, c

1),
[
x2

y2

]
∈ Bxy(G2, r2, c

2),

x(δ(va))− cvayva ≤ 0}.

We claim that PC(G, r, c) and Bxy(G, r, c) are equal. It can be first proved that both
polytope have the same set of integral points, as stated in the following proposition.

Proposition 4.2.1.

Bxy(G, r, c) ∩ ZE+V = PC(G, r, c) ∩ ZE+V .

Proof. Consider any vector [ xy ] in Bxy(G, r, c)∩ZE+V , that is, [ xy ] is the incidence vector
of a bounded r-tree of G. Any bounded r-tree of G contains a tree of G1 rooted at r1

bounded by c1, and according to Lemma 4.1.2, it also contains a tree of G2 rooted at
va and bounded by c2. Hence

[
x1

y1

]
and

[
x2

y2

]
are in Bxy(G1, r1, c

1) and Bxy(G2, r2, c
2),

respectively. Moreover, any bounded r-tree of G satisfies x(δ(va)) − cvayva ≤ 0 as well.
Thus,

Bxy(G, r, c) ∩ ZE+V ⊆PC(G, r, c) ∩ ZE+V .

Conversely, any vector [ xy ] in PC(G, r, c) ∩ ZE+V induces an r-tree of G, as y1va = y2va
ensures the connectivity between the two r-trees in G1 and G2. This r-tree of G contains
a bounded r-tree of Gi for i ∈ {1, 2}, thus any node v in V \ {va} is bounded by cv. In
addition, x(δ(va))−cvayva ≤ 0 is also satisfied. Therefore, [ xy ] induces a bounded r-tree of
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G, meaning that it belongs to Bxy(G, r, c) ∩ ZE+V , and hence our proof is complete.

Recall that Bxy(G, r, c) is a convex hull of a finite subset of ZE+V , and then is an integral
polytope. So now we just need to prove that PC(G, r, c) is integral.

Given any extreme point
[
x
y

]
of PC(G,r, c), let S(x,y) denote the linear system composed

of the equations associated with the constraints of PC(G,r, c) binding at
[
x
y

]
. Since

[
x
y

]
is an extreme point, it is the only solution to S(x,y). Let Si(x,y) be the set of equations
of S(x,y) whose support graphs are subgraphs of Gi, i = 1, 2. It is important to note
that the equation yva = 0 (or yva = 1) belongs to both S1(x,y) and S2(x,y) or none,
and no other equations of S(x,y) can belong to both S1(x,y) and S2(x,y).

Proposition 4.2.2. Let
[
x
y

]
be an extreme point of PC(G, r, c) with yva = 0. Then

[
x
y

]
is integral.

Proof. Assume that
[
x
y

]
is fractional. Since for any node v ∈ V2 \ {va}, we have yv ≤ yva

by (4.10), hence yv = yva = 0 holds for any v ∈ V2. Additionally, recall that a subset
of the extended subtour elimination inequalities (4.2) associated with an edge and its
extremity is

xe − yv ≤ 0 ∀v ∈ V, e ∈ δ(v). (4.12)

Hence, we have xe − yv ≤ 0 for any v ∈ V2, e ∈ δ(v), and therefore one also has xe = 0

for any e ∈ E2. Moreover, since
[
x1

y1

]
∈ Bxy(G1, r1, c

1), there must exist an integral

extreme point
[
x̃1

ỹ1

]
of Bxy(G1, r1, c

1) that is a solution to S1(x,y). Note that ỹ1va = 0.

Combining
[
x̃1

ỹ1

]
and

[
x̃2

ỹ2

]
= 0 gives us an integral point that also satisfies S(x,y), which

is a contradiction to
[
x
y

]
being an extreme point.

Proposition 4.2.3. Let
[
x
y

]
be an extreme point of PC(G, r, c) with x(δ(va))−cvayva < 0.

Then
[
x
y

]
is integral.

Proof. Assume that
[
x
y

]
is fractional. Note that yva > 0 according to Proposition 4.2.2.

Additionally, since
[
xi

yi

]
satisfies Si(x,y) with yiva > 0 for i ∈ {1, 2}, there exists some

extreme point
[
x̃i

ỹi

]
of Bxy(Gi, ri, c

i) that also satisfies Si(x,y) with ỹiva = 1. Vector
[
x̃i

ỹi

]
obviously is integral for i ∈ {1, 2}. Combining

[
x̃1

ỹ1

]
and

[
x̃2

ỹ2

]
gives us another vector

that satisfies S(x,y), which is a contradiction to
[
x
y

]
being an extreme point. Therefore,[

x
y

]
is integral.

Proposition 4.2.4. Let
[
x
y

]
be an extreme point of PC(G, r, c) with 0 < yva < 1. Then[

x
y

]
is integral.
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Proof. Assume that
[
x
y

]
is fractional. Note that x(δ(va)) − cvayva = 0 according to

Proposition 4.2.3. Since
[
xi

yi

]
satisfies Si(x,y) with yiva being fractional for i ∈ {1, 2},

there exists some extreme point
[
x̃i

ỹi

]
of Bxy(Gi, ri, c

i) that also satisfies Si(x,y) with

ỹiva = 0. Vector
[
x̃i

ỹi

]
obviously is integral. Let

[
x̃
ỹ

]
be the vector obtained by combining[

x̃1

ỹ1

]
and

[
x̃2

ỹ2

]
. Moreover, as ỹ1va = ỹ2va = 0, and xi(δGi

(va)) − civay
i
va ≤ 0 is valid for

Bxy(Gi, ri, c
i), i ∈ {1, 2}, we also have

x̃(δG(va)) = x̃1(δG1(va)) + x̃2(δG2(va))

≤ c1va ỹ
1
va + c2va ỹ

2
va

= 0.

Therefore, vector
[
x̃
ỹ

]
is a different solution than

[
x
y

]
to S(x,y), a contradiction to

[
x
y

]
being an extreme point.

Proposition 4.2.5. Let
[
x
y

]
be an extreme point of PC(G, r, c) with yva = 1. Then

[
x
y

]
is integral.

Proof. Assume that
[
x
y

]
is fractional. We claim that there does not exist i ∈ {1, 2} such

that
[
xi

yi

]
is integral. In order to prove it, assume otherwise that

[
xi

yi

]
is integral with

i ∈ {1, 2} and let j ∈ {1, 2} with j = i. We know that xi(δGi
(va)) is integral as well as

xj(δGj
(va)) = cvayva − xi(δGi

(va)) is integral. Let c′ = cvayva − xi(δGi
(va)). Due to the

integrality of Bxy(Gj, rj, c
j′), where cj′ is obtained from cj by substituting c′ for cjva , there

must exist some extreme point
[
xj

yj

]
of Bxy(Gj, rj, c

j′) satisfying xj(δGj
(va)) = c′ and all

the equations of Sj(x,y). Recall that yva = 1 is an equation of Sj(x,y). Therefore
combining

[
xi

yi

]
and

[
xj

yj

]
gives an integral point that also satisfies S(x,y), which forms

a contradiction.

Therefore,
[
x1

y1

]
and

[
x2

y2

]
are both fractional. Thus there can be at most |Ei|+ |Vi| − 1

linearly independent equations from Si(x,y), i ∈ {1, 2}. Without loss of generality we
assume that yva = 1 is included in both sets of linearly independent equations. Addition-
ally, there is one equation (that is, x(δ(va))− cvayva = 0) of S(x,y) that does not belong
to either S1(x,y) or S2(x,y). Thus we have at most

|E1|+ |V1| − 1 + |E2|+ |V2| − 1− 1 + 1 = |E|+ |V | − 1,

linearly independent equations from S(x,y), which forms a contradiction to S(x,y)

admitting a unique solution. Thus,
[
x
y

]
is integral.

Hence, the following theorem is proved by considering Propositions 4.2.1 to 4.2.5.
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Theorem 4.2.6. Bxy(G, r, c) = PC(G, r, c).

It shows that if the extended bounded r-tree polytope can be characterized on two graphs
then it can be characterized on their 1-sum. Before characterizing Bxy(G, r, c) on trees
and cycles, and as a consequence of Theorem 4.2.6 on cactus graphs, we present in the
next section a facial study of Bxy(G, r, c).

4.3 Facets

In this section, for each valid inequality among (4.2)-(4.5), we give necessary and sufficient
conditions for it to be facet-defining of Bxy(G, r, c). Actually as seen in Section 4.1,
inequalities (4.6), (4.9) and (4.10) can be obtained as linear combination of inequalities
(4.2) and equations (4.7), (4.8). Thus, the facial study of (4.2) covers the facial study of
(4.6), (4.9) and (4.10).

For the non-negativity inequalities (4.5), it is worth noting that the following relation
holds:

dim{[ xy ] ∈ Bxy(G, r, c) : xe = 0} = dimBxy(G \ e, r, c). (4.13)

Recall that G \ e = (V,E \ {e}).

Proposition 4.3.1. Let e ∈ E. xe ≥ 0 defines a facet of Bxy(G, r, c) if and only if the
following two conditions are satisfied

1. there does not exist an edge e′ ∈ E \ {e} such that removing e and δ(O) \ {e′} from
G separates e′ and r;

2. whenever e belongs to a 2-connected block (Vi, Ei) of Gr, for some i ∈ {1, · · · , q},
(Vi, Ei \ {e}) remains 2-connected.

Proof. For the necessity, consider first that there exists an edge e′ ∈ E \ {e} such that
removing e and δ(O) \ {e′} disconnects e′ from r. It can be seen that the face induced by
xe ≥ 0 is a proper subset of the face induced by xe′ ≥ 0 in this case.

Suppose now that e belongs to a 2-connected block (Vi, Ei) of Gr for some i ∈ {1, · · · , q},
such that (Vi, Ei \ {e}) is not 2-connected. Let {E ′

1, · · · , E ′
q′} be the partition of E ′

r =

Er \ {e} such that each E ′
j, j ∈ {1, · · · , q′}, induces a block of G[E ′

r]. Since (Vi, Ei \ {e})
is not 2-connected but (Vi, Ei) is, we have q′ ≥ q + 1. According to (4.13) and Theorem
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4.1.8, one therefore has

dim{[ xy ] ∈ Bxy(G, r, c) : xe = 0} = dimBxy(G \ e, r, c)
= |E \ {e}|+ |Vr| − q′

≤ |E|+ |Vr| − q − 2,

which implies that xe ≥ 0 is not facet-defining.

For the sufficiency, assume that both conditions hold. In G \ e, there is no unreachable
edge and the number of blocks in Gr \ e equals q, the number of blocks in Gr. According
to Theorem 4.1.8, we have

dimBxy(G \ e, r, c) = |E \ {e}|+ |Vr| − q

= dimBxy(G, r, c)− 1,

and thus xe ≥ 0 is facet-defining for Bxy(G, r, c) according to (4.13).

The upper bound inequality (4.4) always defines a facet of Bxy(G, r, c), as stated in the
next proposition.

Proposition 4.3.2. yr ≤ 1 defines a facet of Bxy(G, r, c).

Proof. As there is only one bounded r-tree without containing r, that is, the empty graph
(∅, ∅), there must exist dimBxy(G, r, c) affinely independent vectors that induce bounded
r-trees containing r. Therefore yr ≤ 1 defines a facet of Bxy(G, r, c).

Proposition 4.3.3. x(δ(r)) − cryr ≤ 0 defines a facet of Bxy(G, r, c) if and only if one
of the two conditions is satisfied

1. |δ(r)| = cr = 1;

2. |δ(r)| > cr.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : x(δ(r)) − cryr = 0}. Clearly we need to have
|δ(r)| ≥ cr for F to be nonempty.

For the necessity, assume that |δ(r)| = cr ≥ 2. According to (4.12), xe − yr ≤ 0 is
valid for Bxy(G, r, c) for any e ∈ δ(r). Thus any bounded r-tree of G that satisfies
x(δ(r))− cryr = 0 also satisfies xe − yr = 0 for e ∈ δ(r). The latter equation is not valid
for Bxy(G, r, c) since the graph reduced to r is a bounded r-tree that satisfies xe−yr < 0.
As cr ≥ 2, the graph reduced to any edge e incident with r is a bounded r-tree that
satisfies xe − yr = 0 and x(δ(r))− cryr < 0. Thus F is a proper subset of the proper face
induced by xe − yr ≤ 0 for e ∈ δ(r).
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For the sufficiency, assume first that |δ(r)| = cr = 1. As the incidence vector of the graph
reduced to r is the only vector in Bxy(G, r, c) not in F , there must exist dimBxy(G, r, c)

affinely independent vectors in F . Therefore x(δ(r)) − cryr ≤ 0 defines a facet of
Bxy(G, r, c) if |δ(r)| = cr = 1.

Suppose now that |δ(r)| > cr and F ⊆ {[ xy ] ∈ Bxy(G, r, c) : aTx + dTy = b} �

Bxy(G, r, c), where aTx + dTy ≤ b is valid for Bxy(G, r, c). As 0 ∈ F , we immediately
have b = 0.

Let v ∈ N(r). Consider F ⊆ δ(r) \ δ(v) such that |F | = cr. Clearly such set F exists.
The incidence vector of the bounded r-tree G[F ] belongs to F , and so does the incidence
vector of the bounded r-tree G[F \ {e} ∪ {rv}] for any e ∈ F . Therefore, we obtain

arv + dv = λ ∀v ∈ N(r), (4.14)

where λ ∈ R. Considering again the incidence vector of G[F ], we have

dr = −a(F )− d(V [F ] \ {r})
= −crλ.

Consider any edge uv ∈ E \ δ(r). Without loss of generality, we suppose that u /∈ O

and there exists a path Pru in Gr between r and u such that it does not contain v and
|N(r) ∩ V [Pru]| = 1. Let Fu ⊆ δ(r) with |Fu| = cr − 1 and Fu ∩ Pru = ∅. The subgraphs
G[F ∪Pru] and G[F ∪Pru∪{uv}] are two bounded r-trees of G and their incidence vectors
are in F . Hence, it can be deduced that

auv + dv = 0. (4.15)

Note that if uv ∈ Ei \ δ(vai), i ∈ {1, · · · , q}, where (Vi, Ei) is a 2-connected block of Gr,
then nodes u and v are interchangeable in the previous argument. Consequently, for any
block (Vi, Ei) of Gr, i ∈ {1, · · · , q}, we have

dv = εi ∀v ∈ Vi \ {vai},
ae = −εi ∀e ∈ Ei \ δ(r),

where εi ∈ R. Combining this with (4.14), we deduce that for any rv ∈ Ei, for some
i ∈ {1, · · · , q},

arv = λ− dv

= λ− εi.
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For any node vo ∈ O (4.15) yields

dvo = μvo ,

ae = −μvo ∀e ∈ δ(vo) \ δ(r),

where μvo ∈ R.

For each edge rvo with vo ∈ O, from (4.14) one gets

arvo = λ− dvo

= λ− μvo .

It is important to note that {δ(O), E1, · · · , Eq} is a partition of E and {{r}, O, V1 \
{va1}, · · · , Vq \ {vaq}} is a partition of V . Consequently, the inequality aTx + dTy ≤ b

can be written as

−crλyr +

q∑
i=1

∑
e∈δ(r)∩Ei

(λ− εi)xe −
q∑

i=1

∑
e∈Ei\δ(r)

εixe +

q∑
i=1

∑
v∈Vi\{vai}

εiyv

+
∑
vo∈O

μvoyvo −
∑

vo∈O,u	=r

μvoxuvo +
∑
vo∈O

(λ− μvo)xrvo ≤ 0,

which is equivalent to

λ(x(δ(r))− cryr)−
q∑

i=1

εi(x(Ei)− y(Vi \ {vai}))−
∑
vo∈O

μvo(x(δ(vo))− yvo) ≤ 0.

It is then proved that aTx + dTy ≤ b is a linear combination of x(δ(r)) − cryr ≤ 0 and
equations (4.7) and (4.8).

Finally we have F = Bxy(G, r, c) as the graph reduced to r is a bounded r-tree whose
incidence vector is not in F . Therefore, F is a facet of Bxy(G, r, c).

Proposition 4.3.4. Let v ∈ V \ {r}. x(δ(v))− cvyv ≤ 0 defines a facet of Bxy(G, r, c) if
and only if |δ(v)| > cv ≥ 2.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : x(δ(v)) − cvyv = 0}. Clearly we need to have
|δ(v)| ≥ cv for F to be nonempty.

For the necessity, if cv = 1, then we have v ∈ O, and thus any bounded r-tree of G must
satisfy x(δ(v))− cvyv = 0 according to (4.7), that is, F = Bxy(G, r, c).

If |δ(v)| = cv ≥ 2, we deduce from (4.12) that any bounded r-tree of G that satisfies
x(δ(v)) − cvyv = 0 also satisfies xe − yv = 0 for any edge e ∈ δ(v). Additionally, as
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|δ(v)| = cv ≥ 2, a path Prv between r and v of Gr induces a bounded r-tree of G that
satisfies xe−yv < 0 for some edge e ∈ δ(v). Hence xe−yv = 0 is not valid for Bxy(G, r, c),
and thus F is a proper subset of the proper face defined by xe − yv ≤ 0.

For the sufficiency, assume that the condition in the proposition is satisfied, and F ⊆
{[ xy ] ∈ Bxy(G, r, c) : aTx + dTy = b} � Bxy(G, r, c), where aTx + dTy ≤ b is valid for
Bxy(G, r, c). As the empty graph and the graph reduced to r are both bounded r-trees
that satisfy x(δ(v))− cvyv = 0 we obtains that b = 0 and dr = 0.

Consider any edge uw ∈ E \ δ(v). Without loss of generality, we suppose that u /∈ O

and there exists a path Pru in Gr between r and u such that it does not contain w and
Pru contains as few edges as possible. As v = r, v = u, we have either |Pru ∩ δ(v)| = 0

or |Pru ∩ δ(v)| = 2. In the former case, G[Pru] and G[Pru ∪ {uw}] are two bounded
r-trees of G and their incidence vectors are in F . For the latter case, let Fu ⊆ δ(v) with
Fu ∩ Pru = ∅ and |Fu| = cv − 2. The subgraphs G[F ∪ Pru] and G[F ∪ Pru ∪ {uw}] are
two bounded r-trees of G and their incidence vectors are in F . Hence, for both cases we
have

auw + dw = 0. (4.16)

Note that if uw ∈ Ei \ (δ(vai)∪δ(v)), i ∈ {1, · · · , q}, where (Vi, Ei) is a 2-connected block
of Gr, then nodes u and w are interchangeable in the previous argument. Consequently,
since (4.16) only holds for edges non-incident with v, for i ∈ {1, · · · , q}, we deduce that

du = εi ∀u ∈ Vi \ {vai , v},
ae = −εi ∀e ∈ Ei \ δ(v),

where εi ∈ R.

Without loss of generality, assume that v ∈ Vj \ {vaj} for some block (Vj, Ej) of Gr with
j ∈ {1, · · · , q}. It is straightforward to see that any path in Gr between r and v contains
exactly (and ends with) one edge in δ(v) ∩ Ej.

For u ∈ N(v), let P u
rv denote a path between r and v in Gr such that uv /∈ P u

rv and
it contains as few edges as possible if such path exists (that is, if u = vaj when block
(Vj, Ej) is a bridge). Let vv′ denote the edge in both δ(v) and P u

rv. Consider any edge set
Fu ⊆ δ(v) \ {uv, vv′} with |Fu| = cv − 1. Both G[P u

rv ∪ Fu] and G[P u
rv ∪ Fu \ {e} ∪ {vu}]

are bounded r-trees whose incidence vectors belong to F for any e ∈ δ(v) \ {vv′, uv}.
If (Vj, Ej) is 2-connected (or equivalently, |δ(v) ∩ Ej| ≥ 2), such P u

rv exists (and so does
Fu) for any node in N(v). Thus we have

du + auv = λ ∀u ∈ N(v),



4.3. FACETS 67

where λ ∈ R. Moreover, as for any u ∈ N(v), G[P u
rv ∪ Fu] and G[P u

rv \ δ(v)] are two
bounded r-trees whose incidence vectors belong to F , we have

dv = −(cvλ− dv′)

= −cvλ+ εj.

Recall v′ ∈ N(v) ∩ V [P u
rv].

If (Vj, Ej) is a bridge (or equivalently, |δ(v)∩Ej| = 1), let Ej = {vv′}. Note that vaj = v′.
Similar to the previous case, P u

rv and Fu exist for any node in N(v) \ {v′}, and thus we
have

du + auv = λ ∀u ∈ N(v) \ {v′},

where λ ∈ R. Additionally, considering G[P u
rv ∪ Fu] and G[P u

rv \ {vv′}] for any u ∈
N(v) \ {v′} gives us

avv′ + dv = −(a(Fu) + d(V [Fu] \ {v}))
= −(cv − 1)λ.

Thus, without loss of generality, we set

avv′ = λ− εj,

dv = −cvλ+ εj,

where εj ∈ R.

To summarize, in both cases (block (Vj, Ej) being 2-connected or a bridge) we have

dv = −cvλ+ εj,

and also

auv = λ− du ∀u ∈ N(v). (4.17)

As a consequence, for any u ∈ N(v) ∩ Vi \ {vai}, where (Vi, Ei) is a block of Gr, we have

auv = λ− du

= λ− εi.
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Without loss of generality, for any vo ∈ O, let

dvo = μvo ,

where μvo ∈ R. We then have from (4.17), for any vo ∈ N(v) ∩O,

avvo = λ− μvo .

Besides, from (4.16) one has for any e ∈ δ(vo) \ δ(v)

ae = −μvo .

Finally, if r ∈ N(v), then (4.17) gives

arv = λ− dr

= λ.

Note that {δ(O), E1, · · · , Eq} is a partition of E and {{r}, {v}, O, V1 \ {v, va1}, · · · , Vq \
{v, vaq}} is a partition of V . Hence, all the coefficients associated with elements in V and
E have been taken care of. Therefore, aTx+ dTy ≤ b can be rewritten as

0yr + (−cvλ+ εj)yv +

q∑
i=1

∑
u∈Vi\{vai}

εiyu +
∑
vo∈O

μvoyvo

+

q∑
i=1

∑
e∈Ei\δ(v)

(−εi)xe +
∑
vo∈O

∑
e∈δ(vo)\δ(v)

(−μvo) xvvo

+
∑
vo∈O

∑
e∈δ(vo)∩δ(v)

(λ− μvo) xvvo +

q∑
i=1

∑
e∈Ei∩δ(v)

(λ− εi)xe +
∑

e∈δ(r)∩δ(v)
λ ≤ 0,

which is equivalent to

λ(x(δ(v))− cvyv)−
q∑

i=1

εi(x(Ei)− y(Vi \ {vai}))−
∑
vo∈O

μvo(x(δ(vo))− yvo) ≤ 0.

Hence, aTx+ dTy ≤ b is a linear combination of x(δ(v))− cvyv ≤ 0 and equations (4.7)
and (4.8). Finally, any path between r and v in Gr is a bounded r-tree that satisfies
x(δ(v)) − cvyv < 0, which leads to F � Bxy(G, r, c). Therefore, one can conclude that
x(δ(v)) ≤ cvyv is facet-defining.

The extended subtour elimination inequalities (4.2) are also mentioned in Goemans [1994]
for the r-tree problem and Rxy(G, r), where the conditions are partially reflected in the
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conditions for Bxy(G, r, c). However, for Bxy(G, r, c) the capacity constraints are consid-
ered and the facial study cannot be restricted to the blocks of Gr. As a result, the facets
induced by the extended subtour elimination inequalities of Bxy(G, r, c) are significantly
different those of Rxy(G, r).

The following proposition contains a condition that is taken directly from Goemans [1994]
and it is still viable for Bxy(G, r, c).

Proposition 4.3.5. x(E[S])− y(S \{v}) ≤ 0, S ⊆ Vi, defines a facet of Bxy(G, r, c) only
if G[S] is connected.

Proof. If G[S] is not connected, there must exist some u ∈ S \ {v} that is in a connected
component of G[S] which is different from the one containing v. Thus the face induced
by x(E[S])− y(S \ {v}) ≤ 0 is a proper subset of a proper face induced by xe ≥ 0 for any
e ∈ δ(u).

As a first step, we give the proofs that it is sufficient to cover all the facets induced by
the extended subtour elimination inequalities by just considering a subset of them.

Firstly, we restrict the set S to such that O ∩ S \ {v} = ∅.

Proposition 4.3.6. Given v ∈ S ⊆ V and O ∩ S \ {v} = ∅, if F = {[ xy ] ∈ Bxy(G, r, c) :

x(E[S])−y(S \{v}) = 0} is a proper face of Bxy(G, r, c), it is always a subset of a proper
face defined by either xe ≥ 0 for some e ∈ δ(O), or x(E[S′]) − y(S ′ \ {v}) ≤ 0 with
O ∩ S ′ \ {v} = ∅.

Proof. Assume that vo ∈ S \ {v} for some vo ∈ O. If there exists eo ∈ δ(vo) \ E[S], F is
clearly a subset of the proper face induced by xeo ≥ 0. Otherwise if δ(vo) ⊆ E[S], then
x(E[S \ {vo}])− y(S \ {v, vo}) ≤ 0 induces the same face as F since x(δ(vo))− yvo = 0 is
a valid equation for Bxy(G, r, c). Thus the proposition holds.

Secondly, we show that if S ⊆ V \ O, we can restrict to the cases such that S ⊆ Vi for
some i ∈ {1, · · · , q}.

Proposition 4.3.7. Given v ∈ S ⊆ V \ O, if F = {[ xy ] ∈ Bxy(G, r, c) : x(E[S])− y(S \
{v}) = 0} is a proper face of Bxy(G, r, c), it is always a subset of a proper face defined
by x(E[S ′])− y(S ′ \ {v′}) ≤ 0 where v′ ∈ S ′ ⊆ Vi ∩ S for some i ∈ {1, · · · , q}.

Proof. Note that we can assume that G[S] is connected according to Proposition 4.3.5.
We denote Si = S ∩ Vi for i ∈ {1, · · · , q}. For i ∈ {1, · · · , q}, with v /∈ Si and E[Si] = ∅,
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let vi denote the node in Si such that removing it from Gr disconnects E[Si] and vai .
Otherwise if v ∈ Si and E[Si] = ∅, let vi = v. One has the following valid inequalities

x(E[Si])− y(Si \ {vi}) ≤ 0 ∀i ∈ {1, · · · , q}, E[Si] = ∅.

Notice that {S1 \ {v1}, · · · , Sq \ {vq}} is a partition of S \ {v}, and {E[S1], · · · , E[Sq]}
is a partition of E[S]. Thus x(E[S]) − y(S \ {v}) ≤ 0 can be written as a linear combi-
nation of these inequalities. Therefore, F is a subset of the face defined by any of the
aforementioned inequalities, and at least one of the faces defined by the aforementioned
inequalities is proper as F is proper.

Lastly, we show that if v ∈ O, we can restrict to the cases such that S \ {v} ⊆ Vi for
some i ∈ {1, · · · , q}.
Proposition 4.3.8. Given S ⊆ V and S ∩ O = {v}, if F = {[ xy ] ∈ Bxy(G, r, c) :

x(E[S])−y(S \{v}) = 0} is a proper face of Bxy(G, r, c), it is always a subset of a proper
face defined by x(E[S ′]) − y(S ′ \ {v′}) ≤ 0 with v′ ∈ S ′ and S ′ \ {v′} ⊆ Vi ∩ S for some
i ∈ {1, · · · , q}.

Proof. We denote Si = S ∩ Vi for i ∈ {1, · · · , q}. There exists j ∈ {1, · · · , q}, such that
N(v) ∩ Sj = ∅. As we clearly have

E[S] = E[Sj ∪ {v}] ∪ E[S \ Sj],

one has the following valid inequalities

x(E[Sj ∪ {v}])− y(Sj) ≤ 0,

x(E[S \ Sj])− y(S \ (Sj ∪ {v})) ≤ 0.

Note that this decomposition of inequality can be applied on any j ∈ {1, · · · , q}, with
N(v) ∩ Sj = ∅. Thus the proposition holds.

According to Propositions 4.3.6 - 4.3.8, we can therefore focus on the extended subtour
elimination inequalities associated with S and v such that S \ {v} ⊆ Vi and v ∈ Vi ∪ O,
for some i ∈ {1, · · · , q}. In other words, the following proposition holds.

Proposition 4.3.9. Given v ∈ S ⊆ V with |S| ≥ 2, if F = {[ xy ] ∈ Bxy(G, r, c) :

x(E[S])− y(S \ {v}) = 0} is a facet of Bxy(G, r, c), then either F = {[ xy ] ∈ Bxy(G, r, c) :

x(E[S ′]) − y(S ′ \ {v′}) = 0} for some v′ ∈ S ′ and S ′ \ {v′} ⊆ Vi ∩ S, i ∈ {1, · · · , q}, or
F = {[ xy ] ∈ Bxy(G, r, c) : xe = 0} for some e ∈ δ(O).

Proof. Direct result of Propositions 4.3.6 - 4.3.8.



4.3. FACETS 71

We introduce a property of 2-connected graphs in the following lemma as a preparation for
the facial proofs of the extended subtour elimination inequalities, for which the definition
of an open ear decomposition (Whitney [1932]) is needed.

An ear of a graph G is either a path or a cycle, where a cycle also can be considered
as a path with two ends being the same node. An ear decomposition of a graph G is
a partition of its set of edges into a sequence of ears, such that the one or two ends of
each ear belong to earlier ears in the sequence whereas the internal nodes of each ear
do not belong to any earlier ear. An open ear decomposition is an ear decomposition in
which only the first ear is a cycle. According to the work of Whitney [1932], a graph is
2-connected if and only if it has an open ear decomposition. Moreover, a 2-connected
graph admits an open ear decomposition starting at any cycle of the graph. We present
the following technical lemma based on this property of 2-connected graphs.

Lemma 4.3.10. Given a 2-connected graph G = (V,E) and two distinct nodes u, v ∈ V ,
there exists a path Puv between u and v with e ∈ Puv for any e ∈ E.

Proof. If there exists a cycle of G which contains u, v, and e, then such path obviously
exists.

Otherwise suppose that there does not exist a cycle of G which contains u, v, and e. As G
is 2-connected, there exists a cycle C ⊆ E of G which contains u and v. Let C, P1, · · · , Pk

be an open ear decomposition of G, and denote Gi = Gi−1∪G[Pi] for i ∈ {1, · · · , k}, and
G0 = G[C]. For i ∈ {0, 1, · · · , k − 1}, we call any path P such that as its ends belong to
Gi and its inner nodes (if exist) do not belong to Gi a Gi-ear, .

We claim that for any edge e′ of Pi+1, there exists a Gi−1-ear P ′ such that e′ is in P ′ for
i ∈ {1, · · · , k − 1}. Note that Pi+1 is a Gi-ear.

Without loss of generality, let Pi be a path between ui and vi for i ∈ {1, · · · , k}. If ui+1

and vi+1 both belong to Gi−1 then the proof is trivial. If only one of ui+1 and vi+1 belongs
to Gi−1, without loss of generality, suppose it is ui+1. ui+1 is then an inner node of Pi.
Combining Pi+1 with the subpath between ui+1 and ui (or vi) of Pi gives us a Gi−1-ear
which contains e′. If none of ui+1 and vi+1 belongs to Gi−1, that is, they are both inner
nodes of Pi. Without loss of generality, suppose that between ui+1 and vi+1, ui+1 is closer
to ui on the path Pi, and vi+1 is closer to vi on Pi. Then combining Pi+1 with the subpath
between ui+1 and ui of Pi and the subpath between vi+1 and vi of Pi gives us a Gi−1-ear
which contains e′.

By induction, we have that for any edge e′ ∈ E \C, there exists an G0-ear that contains
e′. Thus, there exists a G0-ear P ′ that contains e, and without loss of generality, assume
that the two ends of P ′ are u′ and v′. Let P 1

u′v′ and P 2
u′v′ the two paths between u′ and

v′ in the cycle G0. As there does not exist a cycle of G which contains u, v, and e, it can
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be deduced that one of the two paths P 1
u′v′ and P 2

u′v′ contains u as an inner node and the
other contains v as an inner node. Combining P ′ with the subpath between u′ and u of
P 1
u′v′ and the subpath between v′ and v of P 2

u′v′ gives us a path between u and v that
contains e. Note that here u and v, u′ and v′, P 1

u′v′ and P 2
u′v′ are interchangeable without

affecting the proof.

Therefore, there always exists a path Puv of G between u and v with e ∈ Puv.

As an immediate result, we also obtain the following corollary that considers a node
instead of an edge.

Corollary 4.3.11. Given a 2-connected graph G = (V,E) and three distinct nodes
u, v, w ∈ V , there exists a path Puv between u and v with w ∈ V [Puv].

Proof. Consider any edge e ∈ δ(w). According to Lemma 4.3.10, there exists a path Puv

of G between u and v with e ∈ Puv. As a consequence, there exists a path Puv between
u and v with w ∈ V [Puv].

Another result that can be deduced directly is the following.

Corollary 4.3.12. Given a 2-connected graph G = (V,E), an edge uv ∈ E and a node
w ∈ V with w = u and w = v, there exists a cycle that contains uv and w.

Proof. According to Lemma 4.3.11, there exists a path Puv of G between u and v with
w ∈ V [Puv]. As one clearly has uv /∈ Puv, Puv ∪ {uv} induces a cycle.

Although we are able to restrict ourselves to a subset of extended subtour elimination
inequalities, they are still complicated to be dealt with as a whole. Hereafter, we split
them into several even smaller subsets and present the facial study results case by case.

We first consider the extended subtour elimination inequality associated with Vi and
v = vai for i ∈ {1, · · · , q}. Note that it defines the same face as yv − yvai ≤ 0 from (4.10)
which has a simpler form.

Proposition 4.3.13. Let v ∈ Vi \ {vai}, i ∈ {1, · · · , q}. yv − yvai ≤ 0 defines a facet of
Bxy(G, r, c) if and only if the following two conditions are satisfied

1. cr ≥ 2 if vai = r and |δ(r)| ≥ 2;

2. cvai ≥ 3 if vai = r and |δ(vai)| ≥ 3.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : yv−yvai = 0}. For the necessity, if either condition is
not satisfied, then F is a proper subset of a proper face induced by x(δ(vai))−cvaiyvai ≤ 0.
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For the sufficiency, assume that the conditions are satisfied and F ⊆ {[ xy ] ∈ Bxy(G, r, c) :

aTx + dTy = b} � Bxy(G, r, c), where aTx + dTy ≤ b is valid for Bxy(G, r, c). First,
the empty graph is a bounded r-tree with its incidence vector in F , and thus b = 0. If
r = vai , then the graph reduced to r is also a bounded r-tree with its incidence vector in
F , which gives us dr = 0.

If vai = r, let (Vj, Ej) be the block of Gr such that vai ∈ Vj \ {vaj}.
Consider any edge uw ∈ E \ Ei. Without loss of generality, let u /∈ O and let w = vap
if u ∈ Vp, for some p ∈ {1, · · · , q}. There must exist a path Pru of Gr between r and u

without passing w.

If vai /∈ V [Pru] and w = vai , G[Pru] and G[Pru∪{uw}] are bounded r-trees whose incidence
vectors belong to F .

If vai /∈ V [Pru] and w = vai , G[Pru] and G[Pru ∪ Pvaiv
∪ {uw}] are bounded r-trees whose

incidence vectors belong to F , where Pvaiv
is a path between vai and v in Gr.

If vai ∈ V [Pru] and Ei∩Pru = ∅, then G[Pru∪Pvaiv
] and G[Pru∪Pvaiv

∪{uw}] are bounded
r-trees whose incidence vectors belong to F , where Pvaiv

is a path between vai and v in
Gr.

If Ei ∩ Pru = ∅, let (Vk, Ek) be the block of Gr such that vak ∈ Vi \ {vai} and removing
vak from Gr disconnects r and u. If v /∈ V [Pru] , one has that (Vi, Ei) is 2-connected. Ac-
cording to Corollary 4.3.11, there exists a path Pvaivak

in (Vi, Ei) such that v ∈ V [Pvaivak
].

Then by substituting the subpath between vai and vak of Pru forPvaivak
, one gets a path

between r and u of Gr such that it contains v but not w. To summarize, there always
exists a path Pru between r and u of Gr such that v ∈ V [Pru] and w /∈ [Pru]. Therefore,
G[Pru] and G[Pru ∪ {uw}] are bounded r-trees whose incidence vectors belong to F .

Consequently, one can summarize that for any p ∈ {1, · · · , q} with p = i we have

dw = εp ∀w ∈ Vp \ {vap , vai},
ae = −εp ∀e ∈ Ep,

where εp ∈ R. Additionally, for any vo ∈ O, one has

dvo = μvo ,

aeo = −μvo ∀e ∈ δ(vo),

Consider the case where (Vi, Ei) is 2-connected.

Let uw ∈ Ei ∩ (δ(vai)∪ δ(v) \ {vaiv}) be an edge with w = v and w = vai . There exists a
path Pvaiv

of (Vi, Ei) without passing w. Let Prvai
be any path between r and vai of Gr.
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Then G[Prvai
∪Pvaiv

] and G[Prvai
∪Pvaiv

∪{uw}] are two bounded r-trees whose incidence
vectors belong to F .

As (Vi, Ei) is 2-connected, it contains two paths P 1
vaiv

, and P 2
vaiv

such that they do not
share any inner node. Consider an edge uw ∈ P 1

vaiv
∪ P 2

vaiv
\ (δ(vai) ∪ δ(v)), and without

loss of generality assume uw ∈ P 1
vaiv

. Let P 1
vaiu

denote the subpath between vai and u

of P 1
vaiv

. One has that G[Prvai
∪ P 2

vaiv
∪ P 1

vaiu
], G[Prvai

∪ P 2
vaiv

∪ P 1
vaiu

∪ {uw}], G[Prvai
∪

P 1
vaiv

∪ P 2
vaiv

\ (P 1
vaiu

∪ {uw})], G[Prvai
∪ P 1

vaiv
∪ P 2

vaiv
\ P 1

vaiu
] are all bounded r-trees, and

their incidence vectors belong to F . Hence, we have

du = dw = −auw.

Consequently, for any e ∈ P 1
vaiv

∪ P 2
vaiv

\ (δ(vai)∪ δ(v)), and any u ∈ V [P 1
vaiv

]∪ V [P 2
vaiv

] \
{vai , v}, we have

du = −ae = εi,

where εi ∈ R.

If v ∈ N(vai), assume that |P 1
vaiv

| ≥ 2. We have that G[Prvai
∪{vaiv}] and G[Prvai

∪P 1
vaiv

]

are two bounded r-trees whose incidence vectors belong to F . This gives us

avaiv = d(V [P 1
vaiv

] \ {vai , v}) + a(P 1
vaiv

)

= εi.

Consider an edge uw ∈ Ei \ (δ(vai) ∪ δ(v)) such that w /∈ V [P 1
vaiv

] ∪ V [P 2
vaiv

]. Let Pvaiu

be a path of Gr between vai and u without passing through w. If v ∈ V [Pvaiu
], then

G[Prvai
∪ Pvaiu

] and G[Prvai
∪ Pvaiu

∪ {uw}] are bounded r-trees whose incidence vectors
belong to F . Otherwise if v /∈ V [Pvaiu

], among nodes in V [P 1
vaiv

] ∪ V [P 2
vaiv

], let u′ be
the closest node to u in the path Pvaiu

. Note that we might have u′ = vai or u′ = u.
Without loss of generality, suppose that u′ ∈ V [P 1

vaiv
]. Let P 1

vaiu
′ denote the subpath of

P 1
vaiv

between vai and u′, and let Pu′u denote the subpath of Pvaiu
between u′ and u. Then

G[Prvai
∪P 2

vaiv
∪P 1

vaiu
′ ∪Pu′u] and G[Prvai

∪P 2
vaiv

∪P 1
vaiu

′ ∪Pu′u ∪ {uw}] are two bounded
r-trees whose incidence vectors belong to F . As (Vi, Ei) is connected, we also have

du = dw = −auw = εi.

Now consider an edge uw ∈ Ei \ (P 1
vaiv

]∪P 2
vaiv

∪ δ(vai)∪ δ(v)) such that u ∈ V [P 1
vaiv

], w ∈
V [P 2

vaiv
]. Note that implicitly we have |P 1

vaiv
| ≥ 2, |P 2

vaiv
| ≥ 2. Let P l

zz′ denote the subpath
of P l

vaiv
between any two nodes z and z′ in V [P l

vaiv
], l ∈ {1, 2}. G[Prvai

∪P 1
vaiu

∪{uw}∪P 2
wv]

and G[Prvai
∪P 1

vaiu
∪P 2

vaiv
] are two bounded r-trees whose incidence vectors belong to F .
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Thus, we deduce that

auw = a(P 2
vaiw

) + d(V [P 2
vaiw

] \ {vai , w})
= −εi.

Note that here u and w are interchangeable in the proof.

Moreover if the block (Vi, Ei) is a bridge of Gr and vai = r, we can always set avaiv = −εi

with εi ∈ R. Thereby, we can now conclude that for any edge e ∈ Ei and any node
u ∈ Vi \ {vai , v} (if exists) we have

du = −ae = εi.

If vai = r, by considering any path Pvaiv
of Gr one has

dvai + dv = −a(Pvaiv
)− d(V [Pvaiv

] \ {vai , v}) = εi.

Without loss of generality, one gets

dv = εi + λ,

dvai = −λ,

where λ ∈ R.

If vai = r, let Prvai
be a path between r and vai of Gr and Pvaiv

a path between vai and
v of Gr and f be the edge in Prvai

and δ(vai). G[Prvai
\ {f}] and G[Prvai

] ∪ Pvaiv
are two

bounded r-trees whose incidence vectors are in F . We then deduce that

dvai + dv = −af − a(Pvaiv
)− d(V [Pvaiv

] \ {vai , v})
= εj + εi.

Without loss of generality, one can set

dv = εi + λ,

dvai = εj − λ,

where λ ∈ R.

To summarize, in all cases aTx+ dTy ≤ b can be written as

−λyvai + λyv +

q∑
p=1

∑
u∈Vp\{vap}

εpyu +
∑
vo∈O

μvoyvo
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−
q∑

p=1

∑
e∈Ep

εpxe −
∑
vo∈O

∑
eo∈δ(vo)

μvoxeo ≤ 0,

that is,

λ(yv − yvai ) +

q∑
p=1

εp(y(Vp \ {vap})− x(Ep)) +
∑
vo∈O

μvo(yvo − x(δ(vo))) ≤ 0.

Thus it is a linear combination of yv − yvai ≤ 0 and equations (4.7) and (4.8). Finally,
the incidence vector of any path between r and vai of Gr is not in F but in Bxy(G, r, c).
Hence F is a facet of Bxy(G, r, c).

We consider now the the extended subtour elimination inequalities associated with a single
edge, that is (4.12). Note that for any edge e ∈ δ(vo), vo ∈ O, xe − yvo ≤ 0 is redundant
as x(δ(vo)) − yvo = 0 is valid from (4.7). Besides, for any edge e = vaiv ∈ Ei ∩ δ(vai),
i ∈ {1, · · · , q}, we deduce that xvaiv

− yvai ≤ 0 is redundant as yv − yvai ≤ 0 is valid from
(4.10). Additionally, if Ei = {vaiv} for some i ∈ {1, · · · , q}, xvaiv

− yv ≤ 0 is redundant
as xvaiv

− yv = 0 is valid from (4.8). Thus, we focus on the case where e = vaiv ∈ Ei with
(Vi, Ei) being 2-connected, which is dealt by the following proposition.

Proposition 4.3.14. Let e = vaiv ∈ Ei∩δ(vai) be an edge in a 2-connected block (Vi, Ei)

of Gr for some i ∈ {1, · · · , q}. xe − yv ≤ 0 defines a facet of Bxy(G, r, c).

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : xe−yv = 0}. Assume that F ⊆ {[ xy ] ∈ Bxy(G, r, c) :

aTx+ dTy = b} � Bxy(G, r, c), where aTx+ dTy ≤ b is valid for Bxy(G, r, c). First, the
empty graph and the graph reduced to r are bounded r-trees with their incidence vectors
in F , and thus b = 0 and dr = 0.

Consider an edge uw ∈ E\{e} with u /∈ O and w = v, and assume that there exists a path
Pru between r and u in Gr without passing through w. If v /∈ V [Pru], then G[Pru] and
G[Pru ∪ {uw}] are two bounded r-trees whose incidence vectors are in F . If v ∈ V [Pru],
then by substituting the subpath between r and v of Pru by rv, one gets another path
P ′
ru between r and u in Gr without passing through w. Hence, G[P ′

ru] and G[P ′
ru ∪{uw}]

are two bounded r-trees whose incidence vectors are in F . Thus, we obtain

dw = −auw.

As it can be seen, for any edge uw ∈ Ep \ (δ(vap)∪ δ(v)), for p ∈ {1, · · · , q}, u and w are
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interchangeable in the proof. Consequently, for any p ∈ {1, · · · , q}, one can set

du = εp ∀u ∈ Vp \ {v, vap},
af = −εp ∀f ∈ Ep \ {e},

with εp ∈ R, and for any vo ∈ O, one gets

dvo = μvo ,

aeo = −μvo ∀eo ∈ δ(vo),

with μvo ∈ R. Furthermore, let Prvai
be a path between r and vai in Gr. Notice that if

vai = r, Prvai
= ∅. G[Prvai

] and G[Prvai
∪ {e}] are two bounded r-tree whose incidence

vectors belong to F . Hence, we have

ae + dv = 0,

and thus without loss of generality, we set

dv = εi − λ,

ae = λ− εi,

with λ ∈ R.

Thus, aTx+ dTy ≤ b can always be written as

(εi − λ)yv +

q∑
p=1

∑
u∈Vp\{v,vap}

εpyu +
∑
vo∈O

μvoyvo

+(λ− εi)xe −
q∑

p=1

∑
f∈Ep\{e}

εpxf −
∑
vo∈O

∑
eo∈δ(vo)

μvoxeo ≤ 0,

that is,

λ(xe − yv) +

q∑
p=1

εp(y(Vp \ {vap})− x(Ep)) +
∑
vo∈O

μvo(yvo − x(δ(vo))) ≤ 0.

Thus it is a linear combination of xe − yv ≤ 0 and equations (4.7) and (4.8). Finally, the
incidence vector of the graph reduced to e is not in F but in Bxy(G, r, c). Hence F is a
facet of Bxy(G, r, c).

Now consider the edges in δ(O). As yv − yr ≤ 0 is valid for any v ∈ V \ {r} from (4.9),
we deduce that xe − yr ≤ 0 is redundant for any e ∈ δ(r). The following proposition
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deals with those extended subtour elimination inequalities associated with an edge in
δ(O) \ δ(r).

Proposition 4.3.15. Let e = vvo ∈ δ(O) with v ∈ Vi \ {r} for some i ∈ {1, · · · , q}.
xe − yv ≤ 0 defines a facet of Bxy(G, r, c) if and only if either cv ≥ 3 or |δ(v)| = 2.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : xe − yv = 0}. For the necessity, if cv = 2 and
|δ(v)| ≥ 3, then F is a proper subset of a proper face induced by x(δ(v))− cvyv ≤ 0.

For the sufficiency, assume that the condition is satisfied and F ⊆ {[ xy ] ∈ Bxy(G, r, c) :

aTx + dTy = b} � Bxy(G, r, c), where aTx + dTy ≤ b is valid for Bxy(G, r, c). First,
the empty graph is a bounded r-tree with its incidence vector in F , and thus b = 0. As
v = r, the graph reduced to r is also a bounded r-tree with its incidence vector in F ,
which gives us dr = 0.

Consider an edge uw ∈ E\{e} with u /∈ O and w = v, and assume that there exists a path
Pru between r and u in Gr without passing through w. If v /∈ V [Pru], then G[Pru] and
G[Pru ∪ {uw}] are two bounded r-trees whose incidence vectors are in F . If v ∈ V [Pru],
then G[Pru] ∪ {e} and G[Pru ∪ {e, uw}] are two bounded r-trees whose incidence vectors
are in F . In both cases, we obtain

dw = −auw.

Consequently, for any p ∈ {1, · · · , q}, one gets

du = εp ∀u ∈ Vp \ {v, vap},
af = −εp ∀f ∈ Ep,

with εp ∈ R, and for any uo ∈ O, one gets

duo = μuo ,

aeo = −μuo ∀eo ∈ δ(uo) \ {e},

with μuo ∈ R.

Let Prv be a path between r and v in Gr, and let e′ be the edge in both Prv and δ(v).
Note that we have that e′ ∈ Ej, v ∈ Vj \ {vai} for some j ∈ {1, · · · , q}. G[Prv \ {e′}] and
G[Prv ∪ {e}] are two bounded r-trees whose incidence vectors belong to F . Hence, we
have

ae′ + dv + ae + dvo = 0,
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which leads to

dv + ae = εj − μvo .

We can then set

dv = εj − λ,

ae = λ− μvo ,

where λ ∈ R.

Thus, aTx+ dTy ≤ b can always be written as

(εj − λ)yv + (λ− μvo)xe +

q∑
p=1

∑
u∈Vp\{v,vap}

εpyu +
∑
uo∈O

μuoyuo

−
q∑

p=1

∑
f∈Ep

εpxf −
∑
uo∈O

∑
eo∈δ(uo)\{e}

μuoxeo ≤ 0,

that is,

λ(xe − yv) +

q∑
p=1

εp(y(Vp \ {vap})− x(Ep)) +
∑
uo∈O

μuo(yuo − x(δ(uo))) ≤ 0.

Thus it is a linear combination of xe − yv ≤ 0 and equations (4.7) and (4.8). Finally, the
incidence vector of any path between r and v of Gr is not in F but in Bxy(G, r, c). Hence
F is a facet of Bxy(G, r, c).

For the rest cases of the extended subtour elimination inequalities, we give some necessary
conditions for them to be facet-defining.

Proposition 4.3.16. Let e = uv ∈ Ei \ δ(vai) for some i ∈ {1, · · · , q}. xe − yv ≤ 0

defines a facet of Bxy(G, r, c) only if G[Vi \ {u, v}] is connected.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : xe − yv = 0}. For the necessity, if G[Vi \ {u, v}]
is not connected, then there must exist some S ′ � Vi such that {u, v} � S ′ and F is a
proper subset of a proper face induced by x(E[S ′])− y(S ′ \ {v}) ≤ 0.

The following proposition deals with the extended subtour elimination inequalities that
satisfy |S| ≥ 3, S ⊆ Vi for some i ∈ {1, · · · , q}.

Proposition 4.3.17. x(E[S]) − y(S \ {v}) ≤ 0, S � Vi, |S| ≥ 3, defines a facet of
Bxy(G, r, c) only if
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1. G[S] is 2-connected;

2. G[Vi \ S] is connected;

3. v = vai if vai ∈ S.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : x(E[S])− y(S \ {v}) = 0}.
For the necessity, if G[Vi\S] is not connected, then there must exist some S ′ � Vi such that
S � S ′ and F is a proper subset of a proper face induced by x(E[S ′])−y(S ′ \{v}) ≤ 0. If
G[S] is not 2-connected and |S| ≥ 3, there must exist some u ∈ S\{v} and e ∈ δ(u)∩E[S]

such that F is a proper subset of a proper face induced by xe − yu ≤ 0. If v = vai
and vai ∈ S, since S = Vi, F is then a proper subset of a proper face induced by
x(E[S])− y(S \ {vai}) ≤ 0.

We consider now the extended subtour elimination inequalities that satisfy |S| ≥ 3,
S \ {v} � Vi for some i ∈ {1, · · · , q}.

Proposition 4.3.18. x(E[S]) − y(S \ {v}) ≤ 0, S \ {v} � Vi, |S| ≥ 3, v ∈ O, defines a
facet of Bxy(G, r, c) only if

1. G[S] is 2-connected;

2. G[Vi \ S] is connected.

Proof. Let F = {[ xy ] ∈ Bxy(G, r, c) : x(E[S])− y(S \ {v}) = 0}.
For the necessity, if G[Vi\S] is not connected, then there must exist some S ′ � Vi such that
S � S ′ and F is a proper subset of a proper face induced by x(E[S ′])−y(S ′ \{v}) ≤ 0. If
G[S] is not 2-connected and |S| ≥ 3, there must exist some u ∈ S\{v} and e ∈ δ(u)∩E[S]

such that F is a proper subset of a proper face induced by xe − yu ≤ 0.

After investigating the facets of Bxy(G, r, c), in the next section, we show that it can be
characterized on cactus graphs with the help of all the constraints introduced previously.

4.4 Characterization

In this section, we first show that the extended bounded r-tree polytope Bxy(G, r, c) can
be characterized on trees and cycles. As a result of Theorem 4.2.6, the characterization
of Bxy(G, r, c) on cactus graphs then immediately follows.

We prove the integrality of the formulation proposed in this section using the same ap-
proach as in Goemans [1994] and Lovász [1979]. Essentially, it is achieved by showing that
any facet of Bxy(G, r, c) is defined by one of the inequalities in the proposed formulation.



4.4. CHARACTERIZATION 81

In particular, given a weight vector [wp ] ∈ RE+V , denote by Γ(w,p) the set of incidence
vectors of maximum bounded r-trees in G. We show that if none of the inequalities in
the formulation is satisfied at equality by all the solutions in Γ(w,p), then [wp ] can be
written as a linear combination of the rows in the coefficient matrix that correspond to
the equations in the proposed formulation.

Let PCac(G, r, c) denote the polytope defined by constraints (4.2) - (4.5) and (4.7), (4.8),
that is,

PCac(G, r, c) = {[ xy ] ∈ RE+V : [ xy ] satisfies (4.2) − (4.5) and (4.7), (4.8)}. (4.18)

Notice that the equation (4.1) and inequalities (4.6), (4.9) and (4.10) are not considered
since they can be obtained as linear combinations of the constraints (4.2), (4.7) and (4.8).
Clearly polytope PCac(G, r, c) is a formulation for Bxy(G, r, c). We hereafter prove that
on cactus graphs PCac(G, r, c) is an ideal formulation, that is, PCac(G, r, c) = Bxy(G, r, c).

4.4.1 On trees

In Section 4.3, we presented necessary and sufficient conditions for (4.2) − (4.5) to be
facet-defining. After getting rid of the non-facet-defining inequalities from PCac(G, r, c),
we end up with the following linear optimization problem

max wTx+ pTy

s.t. xfv − yv = 0 ∀v ∈ V \ {r}, (4.19)

xe − yv ≤ 0 ∀v ∈ V, e ∈ δ(v) \ {fv}, (4.20)

x(δ(v))− cvyv ≤ 0 ∀v ∈ V, v is not a leaf, (4.21)

yr ≤ 1, (4.22)

xe ≥ 0 ∀e ∈ E, e is a leaf edge, (4.23)

where fv denotes the edge of path Prv incident with v. Let PTree(G, r, c) = {[ xy ] ∈
RE+V : [ xy ] satisfies (4.19) − (4.23)}. As a first step, we prove in the next proposition
that PTree(G, r, c) is a formulation for Bxy(G, r, c) if G is a tree.

Proposition 4.4.1. Let G be a tree. PTree(G, r, c) ∩ ZE+V = Bxy(G, r, c) ∩ ZE+V .

Proof. As constraints (4.19)-(4.23) are a subset of the constraints defining PCac(G, r, c),
we have Bxy(G, r, c) ⊆ PCac(G, r, c) ⊆ PTree(G, r, c). Consequently, Bxy(G, r, c)∩ZE+V ⊆
PTree(G, r, c) ∩ ZE+V .

Consider now a vector
[
x
y

] ∈ PTree(G, r, c)∩ZE+V and its induced graph (U, F ). Clearly,
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(U, F ) is bounded by c according to (4.21). Hence, we only need to prove that (U, F ) is
connected and rooted at r. For any node v ∈ V \{r}, let Prv be the unique path between r

and v in G. If yv = 1 ( or equivalently xfv = 1 according to (4.19)), we deduce from (4.19)
and (4.20) that yu = 1 for any u ∈ �v� = V [Prv] and xe = 1 for any e ∈ E[�v�] = Prv.
Hence for each node v in U \ {r} and each edge fv in F , G[Prv] is a subgraph of (U, F ).
Therefore, (U, F ) induces a bounded r-tree of G and

[
x
y

] ∈ Bxy(G, r, c) ∩ ZE+V , which
completes the proof.

We recall some notation introduced in Chapter 3 that is reused in the proof after. We
denote OptG(r) the optimal value of the MBrT problem on G with r being the root.
Given any node v ∈ V , let g(v) be the value of a maximum non-empty tree rooted at v

of the subgraph G[	v
] and bounded by cv, where the capacity vector cv ∈ Z
�v�
+ satisfies

cvv = cv − 1 if v = r, cvv = cv if v = r, and cvs = cs, for s ∈ 	v
 \ v. In other words,

g(v) = max{f(T ) : T is tree of G[	v
] with v ∈ V (T ) and bounded by cv}.

Correspondingly, for v ∈ V \ {r}, let h(fv) = max{0, wfv + g(v)} be the actual gain
associated with considering fv in the solution.

Proposition 4.4.2. Let G be a tree. PTree(G, r, c) is integral.

Proof. Let A≤ [ xy ] ≤ b≤ denote the system composed of inequalities in (4.20)-(4.23), and
A= [ xy ] = b= the system composed of equations in (4.19).

Let [wp ] ∈ RE+V be a weight vector such that none of the inequalities from (4.20)-(4.23)
is satisfied at equality by all solutions in Γ(w,p).

First of all, for any v ∈ V \ {r}, if wfv + g(v) < 0, then xe = 0 is satisfied for any
e ∈ E[	v
] ∪ {fv} by all solutions in Γ. Thus we have

wfv + g(v) ≥ 0 ∀v ∈ V \ {r}. (4.24)

As an immediate result, one has h(fv) = wfv + g(v) for all v ∈ V \ {r}.
It can be seen that 0 ∈ Γ(w,p), as it is the only integral feasible solution with yr < 1.
Hence, we have OptG(r) = max{0, g(r)} = 0, and thus g(r) ≤ 0 and pr ≤ 0.

If pr < 0, there must exist some v ∈ N(r) with h(fv) > 0, as otherwise xe = 0 is satisfied
for any e ∈ E by all solutions in Γ(w,p). Let S = {v ∈ N(r) : h(fv) > 0}. If |S| < cr,
then xfv − yr = 0 is satisfied for any v ∈ S by all solutions in Γ(w,p). If |S| ≥ cr, then
x(δ(r))− cryr = 0 is satisfied by all solutions in Γ(w,p). Thus we have

pr = 0.
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If there exists v ∈ N(r) with h(fv) > 0, one has OptG(r) ≥ h(fv) + pr > 0 which
contradicts against OptG(r) = 0. Thus we have that, wfv + g(v) ≤ 0, for all v ∈ N(r).
Combining this with (4.24) gives us

wfv + g(v) = 0 ∀v ∈ N(r).

We claim that given v ∈ V \ {r}, if wfv + g(v) = 0 then wfv + pv = 0 holds and so does
wfu + g(u) = 0 for any node u ∈ N(v) ∩ 	v
.
From wfv + g(v) = 0 and pv ≤ g(v) one has wfv + pv ≤ 0. If wfv + pv < 0, there exists
some u ∈ N(v) ∩ 	v
 with g(fv) > 0, since otherwise we would have wfv + g(v) < 0. Let
S = {u ∈ N(v)∩ 	v
 : h(fu) = wfu + g(u) > 0}. If |S| < cvv, then xfu − yv = 0 is satisfied
for any u ∈ S by all solutions in Γ(w,p). If |S| ≥ cvv, then x(δ(v))− cvyv = 0 is satisfied
by all solutions in Γ(w,p). Thus, we have wfv + pv = 0. Moreover, as wfv + g(v) = 0

and wfv + pv = 0, there does not exist u ∈ N(v) ∩ 	v
 with wfu + g(u) > 0, which leads
to wfu + g(u) = 0.

By induction one can deduce that

wfv + pv = 0 ∀v ∈ V \ {r}.

Therefore, we have [wp ] = μTA= for some real vector μ, and hence PTree(G, r, c) is an
integral polytope.

Immediately, we obtain PTree(G, r, c) = Bxy(G, r, c). Furthermore, as PCac(G, r, c) ⊆
PTree(G, r, c) and both polytopes are formulations for Bxy(G, r, c), the follow theorem
holds.

Theorem 4.4.3. Let G be a tree. PCac(G, r, c) = PTree(G, r, c) = Bxy(G, r, c).

For the case of trees, the nodes in O have little impact on the characterization of
Bxy(G, r, c), as they can only be the leaves and the associated extended capacity in-
equalities are redundant. Nonetheless, they play a significant role in the characterization
of Bxy(G, r, c) on cycles.

4.4.2 On cycles

This section presents the proof of the characterization of Bxy(G, r, c) on cycles. Since in
a cycle all nodes have degree of 2, hence the extended capacity inequality for any node
with capacity 2 is redundant. Moreover, according to Assumption 2.2.9, we have either
O = ∅ or |O| = 1. Thus, the characterization on cycles needs be categorized into four
different situations according to the capacity of r and the existence of O.
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For the case with cv ≥ 2 for all v ∈ V , all the r-trees of G are bounded. Hence
Bxy(G, r, c) = Rxy(G, r). According to Theorem 2.2.1 (proved by Goemans [1994]), one
has Pxy(G, r) = Rxy(G, r) on series-parallel graphs, which is sufficient for the characteri-
zation of Bxy(G, r, c) in this case, that is, Pxy(G, r) = Rxy(G, r) = Bxy(G, r, c). Further-
more, as PCac(G, r, c) contains all the constraints in Pxy(G, r, c) and thus in Pxy(G, r),
we therefore have the following proposition.

Proposition 4.4.4. Let G be a cycle with cv ≥ 2 for all v ∈ V . PCac(G, r, c) =

Bxy(G, r, c).

Now consider the case where cr = 1, and cv ≥ 2, for v ∈ V \ {r}. In this case, Gr = G

and it contains only 1 block. Hence (4.8) reduces to x(E)− y(V \ {r}) = 0, that is, (4.1).
Moreover, as all capacities are redundant except for r, we do not have any equation form
(4.7) as O = ∅, and (4.3) reduces to one inequality, that is,

x(δ(r))− yr ≤ 0. (4.25)

Therefore, the system defining PCac(G, r, c) can be rewritten as (4.1), (4.2), (4.4), (4.5)
and (4.25).

Proposition 4.4.5. Let G be a cycle with cr = 1 and cv ≥ 2 for all v ∈ V \ {r}.
PCac(G, r, c) is integral.

Proof. Let A≤ [ xy ] ≤ b≤ denote the system composed of inequalities in (4.2), (4.4), (4.5)
and (4.25), and A= [ xy ] = b= the system composed of equations in (4.1).

Let [wp ] ∈ RE+V be a weight vector such that none of (4.2), (4.4), (4.5) and (4.25) is
satisfied at equality by all solutions in Γ(w,p).

It can be seen that 0 ∈ Γ(w,p), as it is the only feasible solution with yr < 1. Hence,
the optimal value must equal to 0, and as a result, one also has pr ≤ 0. Additionally, as
x(δ(r))− yr ≤ 0 is not satisfied at equality by all solutions in Γ(w,p), it can be deduced
that pr = 0.

It is worth noting that each non-empty bounded r-tree in G is a rv-path for some v ∈ V .
According to the assumption, there does not exist e ∈ E and v ∈ V \{r} such that e ∈ δ(v)

and xe − yv = 0 is satisfied by all solutions in Γ(w,p). Then there must exist a solution
in Γ(w,p) corresponding to the rv-path Prv that does not contain e. Consequently, any
rv-path Prv induces a solution in Γ(w,p) for any v ∈ V \ {r}. Thus one can deduce that
pv + we = 0 for any e ∈ δ(v), v ∈ V \ {r}. Due to the connectivity of G, we have that
pv + we = 0 for any v ∈ V \ {r} and any e ∈ E. Therefore, [wp ] = μTA=, for some real
vector μ, and thus PCac(G, r, c) is integral.
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Consider now the case where cr ≥ 2 and O = {vo}. It can be noted that Gr contains
|E|−2 blocks with each one of them being a bridge. Hence (4.8) reduces to the following
equations

xfv − yv = 0 ∀v ∈ V \ {r, vo}, (4.26)

where fv denotes the edge incident with v ∈ V \ {r, vo} and in the path between r and v

without passing through vo. In addition, (4.7) reduces to the following equation

x(δ(vo)) = yvo . (4.27)

Besides, all inequalities in (4.3) are redundant. Thus, the system defining PCac(G, r, c)

can be rewritten as (4.2), (4.4), (4.5), (4.26) and (4.27). We show in this case PCac(G, r, c)

is integral as stated in the following proposition.

Proposition 4.4.6. Let G be a cycle with cr ≥ 2 and O = {vo}. PCac(G, r, c) is integral.

Proof. Let A≤ [ xy ] ≤ b≤ denote the system composed of inequalities in (4.2), (4.4) and
(4.5), and A= [ xy ] = b= the system composed of equations in (4.26) and (4.27).

Let [wp ] ∈ RE+V be a weight vector such that none of (4.2), (4.4) and (4.5) is satisfied
at equality by all solutions in Γ(w,p). It can be seen that 0 ∈ Γ(w,p), as it is the only
feasible solution with yr < 1. Hence, the optimal value equals to 0, and as a result, one
also has pr ≤ 0.

If there exists v ∈ V \{r, vo} with wfv +pv > 0 and without loss of generality let fv = uv,
then xfv − yu = 0 is satisfied by all solutions in Γ(w,p). Thus, we have

wfv + pv ≤ 0 ∀v ∈ V \ {r, vo}.

If pr < 0, there must exist e ∈ δ(vo) with we + pvo > 0 and f(G[Pre]) = 0 since otherwise
xe = 0 for e ∈ E is satisfied by all solutions in Γ(w,p). We then deduce that yvo − yr = 0

is satisfied by all solutions in Γ(w,p). Therefore, one obtains

pr = 0.

Similarly, if there exists wfv +pv < 0 for some v ∈ V \{r, vo}, as xfv = 0 is not satisfied by
all solutions in Γ(w,p), there must exist a path Prvo with fv ∈ Prvo and f(G[Prvo ]) = 0.
One therefore has that yvo − yr = 0 is satisfied by all solutions in Γ(w,p). Hence, we
have

wfv + pv = 0 ∀v ∈ V \ {r, vo}.
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For e ∈ δ(vo), as xe > 0 holds for some solution in Γ(w,p), one has we + pvo ≥ 0. And as
one has pr = 0 and wfv +pv = 0 for any v ∈ V \{r, vo}, one can also deduce we+pvo ≤ 0,
which gives us we + pvo = 0.

To summarize, [wp ] = μTA= for some real vector μ, and thus PCac(G, r, c) is integral.

Consider now the case where cr = 1 and O = {vo}. Similar to the previous case, (4.8)
reduces to (4.26), and (4.7) reduces to (4.27).

Furthermore, (4.3) reduces to

x(δ(r))− yr ≤ 0. (4.28)

Therefore, the system defining PCac(G, r, c) can be rewritten as (4.2), (4.4), (4.5), (4.26),
(4.27) and (4.28).

Proposition 4.4.7. Let G be a cycle with cr = 1 and O = {vo}. PCac(G, r, c) is integral.

Proof. Let A≤ [ xy ] ≤ b≤ denote the system composed of inequalities in (4.2), (4.4), (4.5)
and (4.28), and A= [ xy ] = b= the system composed of equations in (4.26) and (4.27).

Let [wp ] ∈ RE+V be a weight vector such that none of (4.2), (4.4) (4.5) and (4.28) is
satisfied at equality by all solutions in Γ(w,p). It can be seen that 0 ∈ Γ(w,p), as it is
the only feasible solution with yr < 1. Hence, the optimal value equals to 0. Moreover,
as the graph reduced to r is the only solution that does not satisfy x(δ(r))− yr = 0, its
incidence vector is in also Γ(w,p). Hence, we have

pr = 0.

It is worth mentioning that each non-empty bounded r-tree is a path between r and
some node v such that it does not contain vo as an inner node. For any edge e ∈ E, let
Pre be the path between r and e such that it does not contain vo as an inner node, and
without loss of generality let e = uv and v = r is one end of Pre. As neither xe = 0 nor
xe − yu = 0 is satisfied by all solutions in Γ(w,p), then we deduce that Pre induces a
maximum bounded r-tree of G for each e ∈ E. Thus we have

wfv + pv = 0 ∀v ∈ V \ {r, vo},
we + pvo = 0 ∀e ∈ δ(vo),

where fv denotes the edge incident with v and in the path between r and v without
passing through vo.

Therefore, [wp ] = μTA= for some real vector μ, and thus PCac(G, r, c) is integral.
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We have thereby proved that PCac(G, r, c) is an ideal formulation for all cases on cycles,
as stated in the following theorem.

Theorem 4.4.8. Let G be a cycle. PCac(G, r, c) is integral.

4.4.3 On cactus graphs

Combining the characterization on trees and cycles with the decomposition through 1-
sum, the characterization of Bxy(G, r, c) on cactus graphs can thereby be obtained.

Theorem 4.4.9. Let G be a cactus graph. PCac(G, r, c) = Bxy(G, r, c).

Proof. Let G1 and G2 be two graphs such that their 1-sum at the node va is G, and
PCac(Gi, ri, c

i) = Bxy(Gi, ri, c
i) for i = 1, 2. Following the notation in Section 4.2, let

PC(G, r, c) ={[ xy ] :
[
x1

y1

]
∈ Bxy(G1, r1, c

1),
[
x2

y2

]
∈ Bxy(G2, r2, c

2),

x(δ(va))− cvayva ≤ 0}.

According to Theorem 4.2.6, one has PC(G, r, c) = Bxy(G, r, c). Moreover, x(δ(va)) −
cvayva ≤ 0 and all the constraints in (4.2) - (4.5) and (4.7), (4.8) with respect to
PCac(Gi, ri, c

i), i = 1, 2, are also included in the formulation with respect to PCac(G, r, c).
Hence, we have PCac(G, r, c) ⊆ PC(G, r, c) = Bxy(G, r, c). Finally, as Bxy(G, r, c) ⊆
PCac(G, r, c), we thus obtain

PCac(G, r, c) = PC(G, r, c) = Bxy(G, r, c).

Therefore, PCac(G, r, c) = Bxy(G, r, c) holds for any graph G composed of two subgraphs
which are either trees or cycles and separated by an articulation node. This deduction
can be repeated as many times to obtain the same result for any graph composed of as
many tree- or cycle-components separated by articulation nodes, which is also known as
a cactus graph. Therefore, the theorem holds.

4.5 Conclusion

In this chapter, we have explored several aspects of the extended bounded r-tree polytope
Bxy(G, r, c). It has been shown that its dimension is related to the unit-capacity node
set O and the blocks of the graph. We also showed that the polytope can be decomposed
with respect to articulation nodes through 1-sum.
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We introduce several sets of new valid equations and inequalities, along with the necessary
and sufficient conditions for all the known inequalities be facet-defining. Note that for
the extended subtour elimination inequalities only a subset of the induced facets have
been identified, whereas for the rest we gave some properties and necessary conditions.
The aforementioned valid constraints allow us to characterize Bxy(G, r, c) on trees and
cycles, and combining with the decomposition through 1-sum, Bxy(G, r, c) can thus be
characterized on cactus graphs.

On the other hand, an r-tree (or a bounded r-tree) can also be described alone by its edge
set, while it cannot be decided if only its node set is given. Therefore, in the following
two chapters, the r-tree polytope Rx(G, r) and bounded r-tree polytope Bx(G, r, c) are
discussed, where only the edge-indexed variables are considered. We examine the same
aspects on these two polytopes as we have done in this chapter, and show that we can
also characterize them on trees and cycles.
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Chapter 5

Polyhedral study on r-Tree Polytope

Recall that given a graph G = (V,E), a node r ∈ V , an edge-weight vector w ∈ RE, and
a node-price vector p ∈ RV , the MrT problem consists of finding an r-tree T of G with
maximum value f(T ) = w(E(T )) + p(V (T )).

As a relaxation of the MBrT problem, the MrT problem has been studied by Goemans
[1994]. He proposed a formulation for Rxy(G, r), presented results concerning its facets,
and gave a complete description of it on series-parallel graphs. Nonetheless, Rx(G, r) has
not been studied yet.

This chapter presents results on Rx(G, r) which considers only the edge-indexed variables.
We start with the following formulation that has been introduced in Chapter 2.

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (5.1)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3, (5.2)

xe ≤ 1 ∀e ∈ E, (5.3)

xe ≥ 0 ∀e ∈ E. (5.4)

According to Assumption 2.2.9, G is connected. With that said, we first show that
Rx(G, r) is full-dimensional and present some results on the known facets. We then
introduce two sets of newly discovered facet-defining inequalities aside from those present
in the formulation, and give necessary and sufficient conditions for all the aforementioned
inequalities. Finally, we give some counter examples that suggest the infeasibility of the
decomposition through 1-sum, as opposed to the case of Bxy(G, r, c).
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5.1 Dimension

We propose first the following lemma, which is significant for the dimension proof and
facial proof of not only Rx(G, r) but also Bx(G, r, c).

Lemma 5.1.1. Given a connected graph G = (V,E) with r ∈ V , let F be any nonempty
subset of edges of G. For any e ∈ F , consider an re-path Pre in G having as few edges
as possible. The set {xPre : e ∈ F} is affinely independent.

Proof. From the assumption one has that for any two distinct edges e1, e2 ∈ F , e1 /∈ Pre2

holds if |Pre1 | ≥ |Pre2 |.
Suppose that there exists a non-zero vector λ ∈ RF such that∑

e∈F
(λex

Pre) = 0.

Let F+ = {e ∈ F : λe = 0}. Without loss of generality, let em be an edge in F+ such
that |Prem | ≥ |Pre| holds for any e ∈ F+. Since |Prem | ≥ |Pre|, one has em /∈ Pre (or
xPre
em = 0) for any e ∈ F+ \ {em}. Therefore, λem = 0, which forms a contradiction

with the assumption. One can thus conclude that the set {xPre : e ∈ F} is linearly
independent, and thus affinely independent.

With Lemma 5.1.1, the dimension of Rx(G, r) is given as in the following theorem.

Theorem 5.1.2. Rx(G, r) is full-dimensional, that is,

dimRx(G, r) = |E|. (5.5)

Proof. According to Lemma 5.1.1, one has |E| non-zero linearly independent vectors in
Rx(G, r), each of which induces an re-path for a distinct e ∈ E. Combining it with the
zero vector, one has |E|+1 affinely independent vectors in Rx(G, r). Hence dimRx(G, r) =

|E|.

After showing that Rx(G, r) is full-dimensional under Assumption 2.2.9, in the next
section we present a facial study of Rx(G, r) for each set of inequalities presented in the
formulation.

5.2 Facets

Before diving into the facial discussion of Rx(G, r), it is worth mentioning that for both
Rx(G, r) and Bx(G, r, c) we have discovered a few universal criteria that any facet-defining
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inequality should follow. Note that the criteria for Rx(G, r) can actually be extended to
similar ones for Bx(G, r, c). The following proposition shows one of them related to the
bridges in the graph.

Proposition 5.2.1. Given a valid inequality aTx ≤ b for Rx(G, r) with ae ≥ 0,a =
0, b > 0, let E+ := {e ∈ E | ae > 0}. If r /∈ V [E+], then aTx ≤ b defines a facet of
Rx(G, r) only if there does not exist a bridge eb ∈ E between r and V [E+].

Proof. Suppose there exists a bridge eb ∈ E between r and V [E+]. For any r-tree GF of
G that satisfies aTx = b, we claim that eb ∈ F holds. Assume otherwise that eb /∈ F .
From b > 0 and xF (E+) = b, one deduce that xF

e = 1 for some edge e ∈ E+. Since eb is
a bridge between r and e, GF does not contain any path between r and e. Therefore it
contradicts with the assumption of GF being an r-tree.

The facet-defining conditions of xe ≥ 0 for Rx(G, r) is presented as follows.

Proposition 5.2.2. Let e ∈ E. xe ≥ 0 defines a facet of Rx(G, r) if and only if G[E\{e}]
is connected.

Proof. It can be trivially seen that

dim{x ∈ Rx(G, r) : xe = 0} = dimRx(G[E \ {e}], r).

According to Theorem 5.1.2, Rx(G[E\{e}], r) is full-dimensional if and only if G[E\{e}] is
connected. Therefore we have that dim{x ∈ Rx(G, r) : xe = 0} = dimRx(G[E\{e}], r) =
dimRx(G, r) − 1 holds if and only if G[E \ {e}] is connected. In other words, xe ≥ 0 is
facet-defining if and only if G[E \ {e}] is connected.

Notably, here we use G[E\{e}] instead of G\e intentionally, since G\e might contain some
isolated node while G[E\{e}] being connected, in which case xe ≥ 0 is still facet-defining.

For the upper bound inequalities (5.3), we split them into two cases, for edges in δ(r)

and edges not in δ(r). For the former case, we show that the associated upper bound
inequality is always facet-defining.

Proposition 5.2.3. Let e ∈ δ(r). xe ≤ 1 defines a facet of Rx(G, r).

Proof. Suppose F = {x ∈ Rx(G, r) : xe = 1} ⊆ {x ∈ Rx(G, r) : aTx = b} � Rx(G, r)

with aTx ≤ b being a valid inequality for Rx(G, r).

As the r-tree reduced to e satisfies xe = 1, we clearly have ae = b. For any edge
e′ ∈ E \ {e}, let Pre′ be a path between r and e′. Let e = rv. If e /∈ Pre′ and v ∈ V [Pre′ ],
there must exist another path P ′

re′ with e ∈ P ′
re′ , in which case, we replace Pre′ by P ′

re′ .
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Thus Pre′ ∪ {e} and Pre′ \ {e′} ∪ {e} both induce r-trees that satisfy xe = 1. Hence we
have ae′ = 0 for any e′ ∈ E \{e}. As a result, aTx ≤ b can be written as bxe ≤ b. Finally
as 0 ∈ Rx(G, r) \ F , we can conclude that F is a facet of Rx(G, r).

For the edges not incident with r, the general criteria stated in Proposition 5.2.1 should be
applied. The necessary and sufficient conditions for the associated upper bound inequality
to be facet-defining are presented in the following proposition.

Proposition 5.2.4. Let e = uv ∈ E \ δ(r). xe ≤ 1 defines a facet of Rx(G, r) if and only
if the following two conditions are satisfied

1. there exist two edge-disjoint paths between r and e;

2. there does not exist w ∈ N(u) ∩ N(v) such that removing uw and vw from G

disconnects r and e.

Proof. Let F = {x ∈ Rx(G, r) : xe = 1}. For the necessity, if there is a bridge eb in G

separating r and e, any r-tree containing e must also contain eb. Thus, F is a proper
subset of the proper face induced by xeb ≤ 1. If there exists a node w ∈ N(u) ∩ N(v)

such that removing uw and vw from G disconnects r and e, then F is a proper subset of
the proper face induced by x(E[S]) ≤ |S| − 1 with S = {u, v, w}.
For the sufficiency, we now suppose that the conditions in the proposition are satisfied
and F ⊆ {x ∈ Rx(G, r) : aTx = b} � Rx(G, r) with aTx ≤ b being a valid inequality for
Rx(G, r).

Assume that there exists a path Pre with u′, v′ /∈ V [Pre] for e′ = u′v′ ∈ E \ {e}. There
must exist a path Pwe′ between some node w ∈ V [Pre] and e′ such that Pre∪Pwe′ induces
an acyclic graph. Thus from the r-trees induced by Pre ∪ Pwe′ and Pre ∪ Pwe′ \ {e′}, one
gets ae′ = 0.

Assume that for e′ = u′v′ ∈ E \ {e} there exists a path Pre with u′ ∈ V [Pre], v
′ /∈ V [Pre],

Pre ∪ {e′} induces an acyclic graph. Thus we have ae′ = 0 from the r-trees induced by
Pre and Pre ∪ {e′}.
Assume now otherwise that for e′ = u′v′ ∈ E \ {e} any path between r and e contains
u′ and v′. Clearly, there exists a path Pre with e′ ∈ Pre, and another path P ′

re such that
Pre ∩ P ′

re = {e} and u′, v′ ∈ V [P ′
re]. Let P ′

u′v′ be the subpath of P ′
re between u′ and v′.

The conditions in the proposition guarantee that there exists such P ′
re with |P ′

u′v′ | ≥ 2.
Both Pre and Pre \ {e′} ∪ P ′

u′v′ induce r-trees containing e, which leads to ae′ = a(P ′
u′v′).

Moreover, for any edge f ∈ P ′
u′v′ , Pre ∪ P ′

u′v′ \ {f} also induces an r-tree containing e.
Thus ae′ = af = 0.

To summarize, one has that ae′ = 0 for any e′ ∈ E \ {e}. Finally, from the r-tree reduce
to any path between r and e, one then deduce that ae = b. Therefore, aTx = b can
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be written as bxe = b. As F is obviously different from Rx(G, r), hence it is a facet of
Rx(G, r).

Given e ∈ E[S] with S ⊆ V \ {r}, the necessary and sufficient conditions for the connec-
tivity inequalities to be facet-defining are presented in the following proposition.

Proposition 5.2.5. Let e = uv ∈ E[S], S ⊆ V \ {r}. xe − x(δ(S)) ≤ 0 defines a facet of
Rx(G, r) if and only if the following four conditions are satisfied

1. G[S] is connected;

2. G[S] is connected;

3. there does not exist an edge eb ∈ E[S]\{e} such that removing eb from G disconnects
r and e;

4. there does not exist a node w ∈ S ∩ N(u) ∩ N(v) such that removing uw, vw from
G disconnects r and e.

Proof. Let F = {x ∈ Rx(G, r) : xe − x(δ(S)) = 0}. For the necessity, if either G[S] or
G[S] is not connected, there must exist some e′ ∈ E such that F is a proper subset of
the proper face induced by xe′ ≥ 0.

If there exists an edge eb ∈ E[S] \ {e} such that removing eb from G disconnects e and r,
then F is a proper subset of the proper face induced by xeb − x(δ(S)) ≤ 0.

Assume that there exists such node w ∈ S \ {u, v} that removing uw, vw disconnects r

and e. In this case, F is a proper subset of the proper face induced by x(E[{u, v, w}])−
(|{u, v, w}|− 1)x(δ(S)) ≤ 0, which will be introduced as a new set of valid inequalities in
the next section.

For the sufficiency, we suppose that all the conditions listed in the proposition are satisfied,
and F ⊆ {x ∈ Rx(G, r) : aTx = b} � Rx(G, r), where aTx ≤ b is valid for Rx(G, r).
First of all, we have b = 0 from 0 ∈ F . For any edge f in E[S], as the incidence vector
of any r-tree in G[S] is in F and G[S] is connected, thus one has af = 0.

Consider any edge f = uv ∈ E[S] \ {e} such that u is not an articulation node that
separates r and e. There exists a path Pre between r and e such that |Pre ∩ δ(S)| = 1

and it does not pass through u and thus does not contain f , and there exist a path Pf

between some node in V [Pre] and f such that Pre ∪ Pf induces an acyclic graph. It can
be deduced from the two r-trees induced by Pre ∪ Pf and Pre ∪ Pf \ {f} that af = 0.

Consider now an edge f = uv ∈ E[S] \ {e} such that u and v are both articulation nodes
that separate r and e. According to the conditions, f is not a bridge that separates r and
e. Then there exists a path Pre between r and e such that e /∈ Pre and |Pre ∩ δ(S)| = 1.
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Let Puv be the subpath of Pre between u and v. Pre and Pre∪{f}\Puv induce two r-trees
whose incidence vectors are in F , which leads to af = a(Puv) = 0.

Now by considering Prf ∪Pue for any f ∈ δ(S), where Prf is a path between r and f with
|Prf ∩ δ(S)| = 1 and Pue is a path of G[S] between u ∈ S and e with f ∈ δ(S)∩ δ(u), we
have af + ae = 0.

Therefore, aTx ≤ b is rewritten as λ(xe − x(δ(S))) ≤ 0 with λ ∈ R. Finally, we have
F = Rx(G, r) considering any path between r and an edge in δ(S). One can then conclude
that F is a facet of Rx(G, r).

Theorem 5.2.6. Let S ⊆ V, |S| ≥ 3. x(E[S]) ≤ |S|−1 defines a facet of Rx(G, r) if and
only if the following two conditions are satisfied

1. r ∈ S;

2. G[S] is 2-connected.

Proof. Let F = {x ∈ Rx(G, r) : x(E[S]) = |S| − 1}. For the necessity, if r /∈ S, then
F is a proper subset of the proper face induced by x(E[S]) − (|S| − 1)x(δ(S)) ≤ 0.
If G[S] has multiple blocks, then F is a proper subset of the proper face induced by
x([Fi]) ≤ |V [Fi]| − 1, for any block (V [Fi], Fi) of G[S].

For the sufficiency, assume that F ⊆ {x ∈ Rx(G, r) : aTx = b} � Rx(G, r), where
aTx ≤ b is valid for Rx(G, r).

For any edge e ∈ E \E[S], one can construct an r-tree that satisfies x(E[S]) = |S| − 1 as
follows. Let F ⊂ E[S] be any edge set that induces an r-tree with |F | = |S| − 1. As G is
connected, there must exist a path Pve from some v ∈ S to e such that V [Pve]∩S = {v}.
Then Pve ∪F is an r-tree of G[S] that satisfies x(E[S]) = |S| − 1. It can be deduced that
af = 0 for any edge f ∈ Pve and thus ae = 0 also holds for any e ∈ E \ E[S].

Since G[S] is 2-connected, for any distinct edge e, f ∈ E[S], there must exist a cycle
C ⊆ E[S] of G[S] such that it contains both e and f . In addition, 2-connectivity of G[S]

also ensures that there exists an edge set F ⊂ E[S] such that it induces a spanning tree
of G[S] and F ∩ C = C \ {e}. Both F and F ∪ {e} \ {f} induce r-trees that satisfy
x(E[S]) = |S| − 1. One therefore gets ae = af , and hence ae = λ for any e ∈ E[S] and
b = (|S| − 1)λ with λ ∈ R.

To summarize, aTx ≤ b can be written as λx(E[S]) ≤ (|S| − 1)λ. Finally, as 0 ∈
Rx(G, r)\F , we can conclude F is a maximal proper face, that is, a facet of Rx(G, r).

This section contributes to the facial study of all the inequalities mentioned in the for-
mulation. However, during the course of our work on both theoretical and computational
aspects, there are two sets of new inequalities that have been discovered to be facet-
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defining for Rx(G, r) as well. We present the results respecting these new inequalities in
the next section.

5.3 New valid inequalities

In this section, we introduce two sets of new inequalities with some instances where
they help to cut off some fractional points, and as well as the necessary and sufficient
conditions for them to be facet-defining for Rx(G, r). Note that according to the close
relation between Rx(G, r) and Bx(G, r, c), these results will also be extended to Bx(G, r, c)

in the next chapter.

5.3.1 Matching-partition inequalities

Let π = {S0, S1, · · · , Sk}, k ≥ 1, be a partition of V with r ∈ S0 and let M = {e1, · · · , ek}
be a matching of G with ei ∈ E[Si] for all i ∈ {1, · · · , k}. The pair (M,π ) is called a
matching-partition of G, a concept already considered by Didi-Biha et al. [2015] with
respect to the connected subgraph problem. Denote by MP(G) the set composed of
all the matching-partitions of G, and by Eπ the set of edges having their extremities in
different classes of partition π. With any matching-partition (M,π ) ∈ MP(G), one can
associate the following matching-partition inequality

x(M)− x(Eπ) ≤ 0. (5.6)

Theorem 5.3.1. For any (M,π ) ∈ MP(G), inequality (5.6) is valid for Rx(G, r).

Proof. Consider any r-tree G[F ] with F ⊆ E. It can be seen that M and F ∩M are both
matchings of G. One needs at least |F ∩M | edges in Eπ to ensure that edges in F ∩M

and r are in the some component of G[F ], that is, xF (M)− xF (Eπ) ≤ 0 is satisfied.

Figure 5.1 demonstrates an instance where a fractional extreme point can be obtained
without and cut by a matching-partition inequality. The value for each edge of the
fractional extreme point x is indicated in the figure, and x is decided by the following
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Figure 5.1: An example of matching-partition inequality cutting off a fractional extreme
point

equations.

xv1v2 = 1,

xv3v4 = 1,

xv1v2 − (xrv1 + xv2v3) = 0,

xv1v2 − (xrv1 + xrv4) = 0,

xv3v4 − (xv2v3 + xrv4) = 0.

At the meantime, x violates the valid inequality x(M)−x(Eπ) ≤ 0 with M = {v1v2, v3v4}
and π = {S0, S1, S2}.
Let G′ be the graph obtained from G by shrinking each Si ∈ π, i ∈ {0, 1, · · · , k}, into
a node.We show that the matching-partition inequality is facet-defining under certain
conditions.

Proposition 5.3.2. Let (M,π ) ∈ MP(G), k ≥ 2. x(M)− x(Eπ) ≤ 0 defines a facet of
Rx(G, r) if and only if the following three conditions are satisfied

1. G[Si] is connected, i = 0, 1, · · · , k;
2. G′ is 2-connected;

3. there does not exist any e ∈ E[Si], such that removing e disconnects ei and r.

Proof. Let F = {x ∈ Rx(G, r) : x(M)− x(Eπ) = 0}.
For the necessity, if G[Si] is not connected for some i ∈ {0, 1, · · · , k}, then F is a proper
subset of the proper face induced by xe ≥ 0 for some e ∈ E.

If there exists Si ∈ π such that G[V \ Si] is not connected, without loss of general-
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ity, assume that G[V \ Si] contains a connected component induced by Sj, Sj+1, · · · , Sk,
j ∈ {1, · · · , k}. One gets a new matching-partition (M ′

1, π
′
1) of G with M ′

1 = M \
{ej, ej+1, · · · , ek} and π′

1 = π \ {Si, Sj, Sj+1, · · · , Sk} ∪ {S1
i }, where S1

i = Si ∪ Sj ∪ Sj+1 ∪
· · · ∪ Sk. Let (M ′

2, π
′
2) be such that M ′

2 = M \ M ′
1 and π′

2 = π \ π′
1 ∪ {S2

i }, where
S2
i = V \S1

i ∪Si. One can see that (M ′
2, π

′
2) ∈ MP(G), and moreover Eπ′

1
∩Eπ′

1
= ∅. Hence

x(M)−x(Eπ) ≤ 0 is a linear combination of x(M ′
1)−x(Eπ′

1
) ≤ 0 and x(M ′

2)−x(Eπ′
2
) ≤ 0,

and thus it is not facet-defining.

If there exists an edge e ∈ E[Si], such that removing it disconnects ei from r, then let
M ′ = M\{ei}∪{e}. F is a proper subset of the proper face induced by x(M ′)−x(Eπ) ≤ 0.

For the sufficiency, we suppose that the conditions in the proposition are satisfied and
F ⊆ {x ∈ Rx(G, r) : aTx = b} � Rx(G, r), where aTx ≤ b is valid for Rx(G, r). One
first has b = 0 because of 0 ∈ F .

As G[S0] is connected, for any edge e ∈ E[S0], any re-path of G[S0] is a feasible solution
in F . We then deduce that ae = 0 for any e ∈ E[S0].

Let Prei be a path between r and ei such that |Prei ∩ δ(Si)| = |Prei ∩ δ(S0)| = 1, |Prei ∩
δ(Sj)| ∈ {0, 2}, for all Sj ∈ π \ {S0, Si}. The conditions ensure that there must exist an
edge set FPrei

that is composed of Prei and a path from V [Prei ] ∩ Sj to ej for each Sj

which has |Prei ∩ δ(Sj)| = 2 and ej /∈ Prei .

For any ei ∈ M and any e′ ∈ E[Si]\{ei}, i ∈ {1, · · · , k}, the conditions in the proposition
ensure that there must exist Prei and FPrei

with e′ /∈ Prei . Let Pe′ be the path between
some node in V [FPrei

] ∩ Si and e′. FPrei
and FPrei

∪ Pe′ are two r-trees whose incidence
vectors belong to F . One can deduce that ae′ = 0 for any e′ ∈ E[Si] \ {ei}.
For any e ∈ δ(Si), i ∈ {1, · · · , k}, there must exist a path Prei and FPrei

with e ∈ Prei as
G′ is 2-connected. Let the subpath between ei and e of Prei be Peei . FPrei

and FPrei
\Peei

are both r-trees that satisfies x(M)− x(Eπ) = 0. Thus one has ae + aei = 0. Therefore,
from the connectivity of G, one also deduce that ae = −aei for any e ∈ Eπ and ei ∈ M .

Thereby aTx ≤ b now can be written as λx(M) − λx(Eπ) ≤ 0 with λ ∈ R. Moreover,
any path between r and an edge in Eπ is an r-tree that satisfies x(M) − x(Eπ) < 0.
Therefore, F is a facet of Rx(G, r).

It can be noticed that the matching-partition inequalities introduced here are slightly
different from those proposed by Didi-Biha et al. [2015] for CSP because of the existence
of the root. Moreover, For any (M,π ) ∈ MP(G) with E[S0] = ∅, a matching-partition
inequality for CSP is as follows

x(M ′)− x(Eπ) ≤ 1,
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Figure 5.2: An example of an acyclicity-connectivity inequality cutting off a fractional
extreme point

where M ′ = M ∪ {e0} with e0 ∈ E[S0]. It can be obtained simply from the combination
of x(M)− x(Eπ) ≤ 0 and xe0 ≤ 1.

Note that the connectivity inequalities can be seen as a restriction of matching-partition
inequalities to the case of |M | = 1. Nonetheless, the matching-partition inequalities
consider the connectivity of multiple parts of the graph instead of only 2 parts.

Aside from the matching-partition inequalities, we have discovered another set of inequal-
ities that are also facet-defining for Rx(G, r).

5.3.2 Acyclicity-connectivity inequalities

Let W ⊆ S ⊆ V \ {r}, |W | ≥ 2. The acyclicity-connectivity inequality is defined as
follows.

x(E[W ])− (|W | − 1)x(δ(S)) ≤ 0 (5.7)

Theorem 5.3.3. For any W ⊆ S ⊆ V \ {r}, |W | ≥ 2, (5.7) is valid for Rx(G, r).

Proof. Assume that there exists an r-tree induced by an edge set F ⊆ E such that
xF (E[W ])− (|W | − 1)xF (δ(S)) ≥ 1. If xF (δ(S)) = 0, as xF (E[W ]) ≥ 1, the connectivity
inequality associated with W and some edge in E[W ] is then violated. If xF (δ(S)) ≥ 1,
we have xF (E[W ]) ≥ (|W | − 1)xF (δ(S)) + 1 ≥ |W |, and thus the acycility inequality
associated with W is then violated.

Figure 5.2 shows an instance, where a fractional extreme point is cut by an acyclicity-
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connectivity inequality. The extreme point is decided by

x(E[S]) = |S| − 1,

xv1v2 − xrv1 = 0,

xv2v3 − xrv1 = 0,

xv1v3 − xrv1 = 0.

It violates (5.7) with W = S = {v1, v2, v3}.
Note that the connectivity inequalities (5.1) can also be seen as a restriction of acyclicity-
connectivity inequalities with |W | = 2. We present the necessary and sufficient conditions
for any acyclicity-connectivity inequality with |W | ≥ 3 to be facet-defining in the follow-
ing proposition.

Proposition 5.3.4. Let W ⊆ S ⊆ V \{r} with |W | ≥ 3. x(E[W ])−(|W |−1)x(δ(S)) ≤ 0

defines a facet of Rx(G, r) if and only if the following four conditions are satisfied

1. G[S] is connected;

2. G[S] is connected;

3. G[W ] is 2-connected;

4. there does not exist eb ∈ E[S] \ E[W ] such that removing eb disconnects S and r.

Proof. Let F = {x ∈ Rx(G, r) : x(E[W ])− (|W | − 1)x(δ(S)) = 0}.
For the necessity, if G[W ] is not connected, F is a proper subset of a proper faced induced
by xe ≥ 0 for any e ∈ E[W ]. If G[S] is not connected, then F is a proper subset of a
proper faced induced by xe ≥ 0 for some edge e ∈ δ(v), and v in the connected component
of G[S] that does not contain W . If G[S] is not connected, then F is a proper subset
of a proper faced induced by xe ≥ 0 for some edge e ∈ δ(v), and v in the connected
component of G[S] that does not contain r.

If there exists an edge eb in E[W ] that removing eb disconnects G[W ], F is a proper
subset of a proper faced induced by xeb − x(δ(S)) ≤ 0.

If there exists an articulation node va in W that removing δ(va) disconnects G[W ], then
for any connected component G[Wi∪{va}] induced by va, F is a proper subset of a proper
faced induced by x(E[Wi ∪ {va}])− (|Wi ∪ {va}|− 1)x(δ(S)) ≤ 0.

If there exists an edge eb in E[S] \ E[W ] that removing eb disconnects S from r, F is
a proper subset of a proper faced induced by x(E[W ]) − (|W | − 1)x(δ(S ′)) ≤ 0, where
S ′ � S and δ(S ′) = {eb}.
For the sufficiency, assume that the conditions in the proposition are satisfied and F ⊆
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{x ∈ Rx(G, r) : aTx = b} � Rx(G, r), where aTx ≤ b is valid for Rx(G, r). It can be
first deduced that b = 0 from 0 ∈ F .

As G[S] is connected, for any edge e ∈ E[S], there exists a path Pre of G[S] between r

and e. Any subpath of Pre containing r is an r-tree of G that satisfies x(E[W ])− (|W | −
1)x(δ(S)) = 0, thus one has ae = 0 for any e ∈ E[S].

For any two distinct edges e1, e2 ∈ E[W ], G[W ] is 2-connected, there must exist a cycle
C ⊆ E[W ] that contains both e1 and e2. Hence, there also exists such edge set F �

E[W ], such that C \ {e1} ⊆ F and F induces a spanning tree of G[W ]. Moreover,
F ′ = F \ {e2} ∪ {e1} also induces a spanning tree of G[W ]. Combining either of these
edge sets with any path Prv from r to a node v ∈ W such that |Prv ∩ δ(S)| = 1, gives
us an r-tree that satisfies x(E[W ]) − (|W | − 1)x(δ(S)) = 0. Therefore, we have ae = λ,
λ ∈ R, for any edge e ∈ E[W ].

Now consider edges in E[S] \ E[W ]. Since there does not exist eb ∈ E[S] \ E[W ] such
that removing eb disconnects S from r, one can deduce that there must be two paths
Prv, Pru from r to some node v or u in S such that |Prv ∩ δ(S)| = 1, |Pru ∩ δ(S)| = 1,
and Prv ∩Pru ∩E[S] \E[W ] = ∅. Notice that here v and u could potentially be the same
node. Let PvS = Prv ∩ E[S] \ E[W ] and PuS = Pru ∩ E[S] \ E[W ].

Without loss of generality, for any edge e ∈ PvS, two situations can happen here. The
first one is that there exists a subpath P of PvS that contains e and at the same time
P ∪ PuS does not contain any cycle. In this case, one can deduce that any edge e′ in P

satisfies ae′ = 0. The second situation is that such Pe does not exist, which also means
PuS contains a path Pe between the two ends of e. Replacing Pe by e in PuS to obtain
P ′
uS, and through the same process for the first case, one can prove that ae′ = 0 for any

e′ ∈ Pe, and thus ae = a(Pe) = 0.

For any edge e in E[S] \ (E[W ] ∪ PvS ∪ PuS), similarly, either there exists a path P ⊆
E[S] \E[W ] that contains e and P ∪PuS ∪F does not contain any cycle, or PuS contains
a path Pe between the two ends of e, where F induces a tree that spans all nodes in W .
In both cases, we have ae = 0.

Consider now an edge e ∈ δ(S). As E[S] is connected, there must exist a path P from
r to a node in S such that P ∩ δ(S) = {e}, P ∩ E[W ] = ∅. Combining P with any
F that induces a tree spanning all nodes in W , one has that P ∪ F induces an r-tree.
Hence, ae + a(F ) = 0 according to the previous results, and consequently, ae = −a(F ) =

(|W | − 1)λ.

To summarize, aTx ≤ b is equivalent to λx(E[W ])−λ(|W |−1)x(δ(S)) ≤ 0, which implies
that F is a facet of Rx(G, r).

Intuitively, the acyclicity-connectivity inequalities concern two aspects of the problem,
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Figure 5.3: Counter example of decomposition involving 2 blocks

the acyclicity and connectivity. It ensures the acyclicity within the subgraph G[S], and
at the same time the connectivity between r and S if at least one edge in E[S] is selected.

5.4 Decomposition

Unlike what Goemans [1994] showed for Rxy(G, r), the polyhedral study for Rx(G, r)

cannot be simply restricted to 2-connected graphs based on decomposition with respect to
articulation nodes. Some simple instances are presented below where such decomposition
is not feasible.

Consider the graph in Figure 5.3 as an example. Let the two subgraphs separated by
the articulation node va be G1 = G[{r, v1, va}] and G2 = G[{va, v2, v3}]. The incidence
vectors of ∅, {rv1}, {rv1, v1va, e}, {rva, e}, {rva, e, vav2}, {rva, e, vav3} are affinely inde-
pendent, each of which induces an r-tree and is binding at the connectivity inequality
(5.1) associated with e and S, that is,

xe − x(δ(S)) ≤ 0. (5.8)

Thus it defines a facet of Rx(G, r). Moreover, the support graph of inequality (5.8)
contains both edges in G1 and in G2. Hence if one wants to decompose G into G1 and G2

in polyhedral study, inequalities such as (5.8) should be added in addition to the simple
combination of polytopes respecting G1 and G2.

Consider again the graph in Figure 5.3. The following acyclicity-connectivity inequality
(5.7) associated with S also facet-defining.

x(E[S])− (|S| − 1)x(δ(S)) ≤ 0. (5.9)

On the face induced by inequality (5.9), the incidence vectors of ∅, {rv1}, {rva, vav3, v3v2},
{rv1, v1va, vav3, v3v2}, {rva, vav3, vav2}, {rva, v1va, vav3, v3v2} are affinely independent,
and it is thus facet-defining. Notice that that (5.9) also involves edges in both G1 and



102 Chapter 5. Polyhedral study on r-Tree Polytope

Figure 5.4: Another counter example of decomposition involving 3 blocks

G2.

Furthermore, consider the graph in Figure 5.4. Let (M,π ) be a matching partition in the
graph such that M = {e1, e2, e3} and π = {S0, S1, S2, S3}. We claim that the associated
matching-partition inequality

x(M)− x(Eπ) ≤ 0 (5.10)

defines a facet of Rx(G, r).

Let the face induced by (5.10) be F = {x ∈ Rx(G, r) : x(M) − x(Eπ) = 0}. Assume
that there exists a face F ′ = {x ∈ Rx(G, r) : aTx = b} such that aTx ≤ b is valid for
Rx(G, r) and F � F ′ � Rx(G, r). From 0 ∈ F � F ′, one has b = 0. The edge sets
{e4, e1}, {e7, e3}, {e4, e1, e5, e2}, {e7, e3, e6, e2}, {e4, e1, e5, e2, e6, e3}, {e7, e3, e6, e2, e5, e1}
all induce r-trees and their incidence vectors are in F . One can deduce that ae4 = ae5 =

ae6 = ae7 = −ae1 = −ae2 = −ae3 . Hence, F = F ′ � Rx(G, r), which indicates F is a
facet of Rx(G, r).

Therefore, (5.10) is also a facet-defining inequality for Rx(G, r) whose support graph
contains edges in multiple blocks separated by articulation nodes.

Such cases also exist for Bx(G, r, c) since one can set the capacity on each node in V to be
large enough to obtain the same polytope as Rx(G, r). This fact makes the decomposition
through 1-sum infeasible for both Rx(G, r) and Bx(G, r, c).

5.5 Conclusion

This chapter began with the discussion of the dimension of Rx(G, r). It is shown that
Rx(G, r) is full-dimensional if G is connected. We then presented the results concerning
the facets of the r-Tree Polytope. Additionally, two sets of new facet-defining inequali-
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ties, namely the matching-partition inequalities and the acyclicity-connectivity inequal-
ities, are introduced with their facet-defining conditions. We reviewed the possibility of
decomposing the polytope with respect to articulation nodes. Unfortunately, a few exam-
ples have been found where several facet-defining inequalities have support graphs that
are not subgraphs of blocks of G. This implies that the decomposition through 1-sum
cannot be applied for either Rx(G, r) or Bx(G, r, c) as straightforwardly as in the case of
Bxy(G, r, c).

As mentioned in Chapter 2, any valid inequality for Rx(G, r) is also valid for Bx(G, r, c). It
is also likely that these two polytopes bear similarities in some aspects such as polyhedral
structure and decomposition. Thus, some of the results in this chapter can be transformed
into those for Bx(G, r, c). In the next chapter, based on the results presented in this
chapter, we bring the capacity constraints into play to obtain results with regard to
Bx(G, r, c). We show that Bx(G, r, c) can be characterized on trees and cycles with the
help of some newly discovered inequalities. The characterization of Rx(G, r) can thus be
obtained as an immediate result.
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Chapter 6

Polyhedral study on Bounded r-Tree
Polytope

Recall that given a graph G = (V,E), a root node r ∈ V , a capacity vector c ∈ ZV
+, an

edge-weight vector w ∈ RE, and a node-price vector p ∈ RV , the MBrT problem consists
of finding an r-tree T of G with maximum value f(T ) = w(E(T )) + p(V (T )) and such
that the degree of any node v ∈ V (T ) is bounded by cv.

As opposed to Chapter 4, this chapter provides results regarding Bx(G, r, c), which only
uses edge-indexed variables.

We start with the following formulation introduced in Chapter 2.

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (6.1)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3, (6.2)

x(δ(v)) ≤ cv ∀v ∈ V, (6.3)

xe ≤ 1 ∀e ∈ E, (6.4)

xe ≥ 0 ∀e ∈ E. (6.5)

First, the dimension of Bx(G, r, c) is examined. Possible approaches of decomposition
for the polyhedral study are discussed with proofs. After that, some general criteria are
presented for any facet-defining inequality to follow. Then, we study the necessary and
sufficient conditions for each set of inequalities in the formulation to be facet-defining

Furthermore, we present several families of new valid inequalities which are facet-defining
for Bx(G, r, c). Their facet-defining conditions are also discussed. We also show that all
the new inequalities proposed in this chapter can be obtained by projection from valid
inequalities for Bxy(G, r, c). Moreover, the bounds on the Chvátal-Gomory rank of several
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sets of inequalities are investigated with respect to the original formulation. Finally, we
show that incorporating certain sets of the new inequalities allows us to form a TDI
system that completely describe Bx(G, r, c) on trees and cycles.

6.1 Dimension

Recall that Gr = (Vr, Er) and Gr = G[V \ O], and according to Assumption 2.2.9 Gr is
connected. Hence, we have

E = Er ∪ δ(Vr).

The dimension of Bx(G, r, c) is given in the following theorem.

Theorem 6.1.1. Bx(G, r, c) is full-dimensional, that is,

dimBx(G, r, c) = |E|.

Proof. Given any e ∈ Er, let Pre be the re-path in Gr containing as few edges as possible.
According to Lemma 5.1.1, the set {xPre : e ∈ Er} is affinely independent. Since nodes
in O are not involved, each of these vectors also satisfies the capacity requirement.

For any edge eo = vvo ∈ δG(Vr) with v ∈ Vr and vo ∈ O, denote the reo-path Preo in
G such that it composed of vvo and a path Prv between r and v of Gr. It can be seen
that Preo is also a bounded r-tree of G. In the set of vectors {xPre : e ∈ Er ∪ δ(Vr)}, for
any eo ∈ δ(Vr), xPreo is the only vector that has xeo = 1. Hence one has |Er| + |δ(Vr)|
non-zero linearly independent vectors in {xPre : e ∈ Er ∪ δ(Vr)}. Finally, combining the
zero vector with it gives us |Er|+ |δ(Vr)|+ 1 affinely independent vectors, each of which
induces a bounded r-tree of G. Therefore, we have

dimBx(G, r, c) ≥ |δ(Vr)|+ |Er| = |E|.

Combining it with the trivial fact of dimBx(G, r, c) ≤ |E| completes the proof.

6.2 Decomposition

As it has been discussed in the Chapter 5, the decomposition with respect to the articula-
tion nodes is unlikely to work for both Rx(G, r) and Bx(G, r, c). Nonetheless, we present
in this section a few other options of decomposition one can opt for Bx(G, r, c). Notice
that most of the results developed for Bx(G, r, c) can be used for Rx(G, r), as the r-tree
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problem is a relaxation of the bounded r-tree problem.

6.2.1 Decomposition at the root node

As showed in the last chapter, the general decomposition of Bx(G, r, c) and Rx(G, r) with
respect to articulation nodes is proved to be infeasible due to the counter examples, or at
least not as straightforward as thereof Bxy(G, r, c). Nonetheless, we prove the viability
of a special case of this decomposition where the articulation node is the root.

Consider a graph G = (V,E) where r is an articulation node, such that G1 = (V1, E1),
G2 = (V2, E2) are two subgraphs of G separated by r, and G is a 1-sum of G1 and G2. Let
x be a vector in RE, and xi be the restriction of x to Ei, i = 1, 2. Let ci be the restriction
of the capacity vector c to Vi, i = 1, 2. It can be proved that the decomposition through
1-sum is feasible in this case.

Denote

PR(G, r, c) = {x ∈ RE : x1 ∈ Bx(G1, r1, c
1),x2 ∈ Bx(G2, r2, c

2), x(δ(r) ≤ cr}.

Theorem 6.2.1. PR(G, r, c) = Bx(G, r, c).

Proof. First, an edge set F ⊆ E induces a bounded r-tree of G if and only if F ∩ Ei

induces a bounded r-tree of Gi for i ∈ {1, 2} and |F ∩ δ(r)| ≤ cr. Hence we have

PR(G, r, c) ∩ ZE = Bx(G, r, c) ∩ ZE.

Assume that there exists a fractional extreme point x in PR(G, r, c). Let S(x) be the lin-
ear system composed of the equations associated with the constraints of PR(G,r, c) bind-
ing at x. Let Si(x) denote the equations in S(x) that are associated with Bx(Gi, ri, c

i)

for i ∈ {1, 2}.
If x(δ(r) − cr = 0 is not in S(x), then all the equations in S(x) are in either S1(x)

or S2(x). From the integrality of Bx(G1, r1, c
1) and Bx(G2, r2, c

2), there must exist two
integral points x̃1 ∈ Bx(G1, r1, c

1) and x̃2 ∈ Bx(G2, r2, c
2) such that x̃i satisfies Si(x)

for i ∈ {1, 2}. Thus,
[
x̃1

x̃2

]
is an integral point that also satisfies S(x), which forms a

contradiction. Hence, x(δ(r))− cr = 0 is in S(x).

As S(x) admits a unique solution, the rank of its coefficient matrix is |E|. Moreover, as
x(δ(r)) − cr = 0 is the only equation in S(x) that is not in S1(x) or S2(x). One has
that there exists j ∈ {1, 2}, such that Sj(x) contains |Ej| linearly independent equations.
Without loss of generality, assume j = 1. According to the integrality of Bx(G1, r1, c

1),
x1 is integral, and thus x1(δ(r)) is integral. Furthermore, since the system composed of
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Figure 6.1: Decomposition of graph with a bridge

x(δG2(r)) = cr−x1(δ(r)) and equations in S2(x) admits a feasible solution x2, there must
also exist an integral solution x̃2 which satisfies the same equations. Combining x1 and
x̃2 gives us an integral point that also satisfies S(x), which forms a contradiction with x

being an extreme point.

Thus, PR(G, r, c) is integral and therefore PR(G, r, c) = Bx(G, r, c).

As an immediate result, the following corollary is obtained immediately by getting rid of
the capacity factor.

Corollary 6.2.2. Rx(G, r) = {x : x1 ∈ Rx(G1, r1), and x2 ∈ Rx(G2, r2)}.

6.2.2 Decomposition with respect to bridges

We consider now a graph containing a bridge. We show that we can decompose it to
two graphs with both of them containing the bridge. Given a graph G = (V,E) which
contains a bridge eb = uv, let E ′

1 and E ′
2 be the two edge sets separated by eb. Let

Ei = E ′
i ∪ {eb}, Gi = (Vi, Ei) = G[Ei] for i ∈ {1, 2}, as it is shown in Figure 6.1.

Without loss of generality, let r1 = r be the root in G1, and r2 = u be the root in G2.
Note that if v = r, one can switch V1 and V2 as well as u and v in order to obtain the
same setup. Let x be a vector in RE, and xi be the restriction of x to Gi, i = 1, 2. Let
ci be the restriction of the capacity vector c to Vi for i = 1, 2.

We show that if Bx(G, r, c) can be characterized on G1 and G2, it can also be charac-
terized on G. Notice that if either E1 \ {eb} = ∅ or E2 \ {eb} = ∅, the decomposition
is then meaningless. Hence we assume that E ′

i = ∅ for i = 1, 2. The following theorem
demonstrates the decomposition.

Theorem 6.2.3.

Bx(G, r, c) = {x : x1 ∈ Bx(G1, r1, c
1), and x2 ∈ Bx(G2, r2, c

2)}.
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Proof. Because of the fact that x1 and x2 have one common component xe, one has for
both sides x1

eb
= x2

eb
.

First, if a vector x ∈ RE induces a bounded r-tree in G, then xi also induces a bounded
r-tree in Gi, i = 1, 2. Therefore,

Bx(G, r, c) ⊆ {x : x1 ∈ Bx(G1, r1, c
1), and x2 ∈ Bx(G2, r2, c

2)}.

On the other hand, if xi induces a bounded r-tree in Gi, i = 1, 2, and x1
eb

= x2
eb

also
holds, then x induces an r-tree in G. Additionally one has x(δG(u)) = x1(δG1(u)) ≤ cu

and x(δG(v)) = x2(δG2(v)) ≤ cv. Hence x also satisfies the capacity constraints, and
therefore x induces a bounded r-tree in G.

Assume now that x is a fractional extreme point of {x : x1 ∈ Bx(G1, r1, c
1), and x2 ∈

Bx(G2, r2, c
2)}. Let S(x) be the linear system composed of the equations associated with

the constraints of Bx(G1, r1, c
1) and Bx(G2, r2, c

2) binding at x.

If xeb = 0 (xeb = 0, respectively), from the integrality of Bx(G1, r1, c
1) and Bx(G2, r2, c

2),
there must exist two integral points x̃1 ∈ Bx(G1, r1, c

1) and x̃2 ∈ Bx(G2, r2, c
2) such that

x̃1
eb
= x̃2

eb
= 0 (x̃1

eb
= x̃2

eb
= 1, respectively). Combining x̃1 and x̃2 gives us another point

that also satisfies S(x), which forms a contradiction.

Therefore, {x : x1 ∈ Bx(G1, r1, c
1), and x2 ∈ Bx(G2, r2, c

2)} is integral and thus the
theorem holds.

The following corollary concerning Rx(G, r) immediately follows after this theorem.

Corollary 6.2.4. Rx(G, r) = {x : x1 ∈ Rx(G1, r1), and x2 ∈ Rx(G2, r2)}.

In the next section, the facet-defining conditions for the inequalities in the proposed
formulation are introduced.

6.3 Facets

In this section, we show that each set of inequalities included in the formation is indeed
facet-defining. For all the inequalities (6.1)-(6.5), necessary and sufficient conditions for
them to be facet-defining for Bx(G, r, c) have been determined.

6.3.1 General results

First of all, some general criteria have also been characterized for valid inequalities to
be facet-defining for Bx(G, r, c). The following lemma describes the property of the
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coefficients of the edges in δ(O) in any facet-defining inequalities.

Lemma 6.3.1. Let aTx ≤ b be a valid inequality for Bx(G, r, c) that is different from
xe ≥ 0 for some e ∈ E. aTx ≤ b is facet-defining for Bx(G, r, c) only if it satisfies ae ≥ 0

for any edge e ∈ δ(O).

Proof. Assume that there exists an inequality aTx ≤ b is facet-defining for Bx(G, r, c)

such that aeo < 0 for some edge eo ∈ δ(O).

According to the assumption, there must exist an edge set F ⊆ E such that eo ∈ F , GF

is bounded r-tree and it satisfies aTxF = b. Otherwise if such F does not exist, the face
induced by the inequality is included in the face defined by xeo ≥ 0, which contradicts
with the assumption of the lemma. Since eo is incident with a node in O, it must be a
leaf edge in GF . Hence GF\{eo} is also a bounded r-tree of G. It can be deduced that
aTxF\{eo} = aTxF − aeo = b − aeo > b. This implies inequality aTx ≤ b is violated by
the feasible solution xF\{eo}, which forms a contradiction with aTx ≤ b being valid.

Besides, the case where the root has capacity 1 is discussed in the lemma below.

Lemma 6.3.2. Let cr = 1, and aTx ≤ b be a valid inequality for Bx(G, r, c) that is
different from x(δ(r)) ≤ cr. It is facet-defining for Bx(G, r, c) only if b = 0.

Proof. Assume that F = {x ∈ Bx(G, r, c) : aTx = b} is a facet of Bx(G, r, c) such that
F = Fr = {x ∈ Bx(G, r, c) : x(δ(r)) = cr} and b = 0. As cr = 1, one has that any
bounded r-tree of G whose edge set is nonempty satisfies x(δ(r)) = cr = 1, that is,

Bx(G, r, c) ∩ ZE \ {0} ⊆ Fr.

Since b = 0, 0 /∈ F . Thus,

F ⊆ Bx(G, r, c) ∩ ZE \ {0} ⊆ Fr.

Combining it with F = Fr gives us

F � Fr,

which forms a contradiction with the assumption of F being a facet of Bx(G, r, c).

Besides, for those inequalities having only non-negative coefficients, the following propo-
sition can be developed.

Lemma 6.3.3. Let aTx ≤ b be a valid inequality for Bx(G, r, c) with a ≥ 0,a = 0

and b > 0. Denote E+ := {e ∈ E | ae > 0} the set of edges with positive coefficients. If
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r /∈ V [E+], then aTx ≤ b defines a facet of Bx(G, r, c) only if the following two conditions
are satisfied

1. there does not exist a bridge eb ∈ E in G[E \ (δ(O) \ E+)] between r and E+;

2. there does not exist an articulation node va ∈ V \{r} in G[E \ (δ(O)\E+)] between
r and E+ with cva = 2.

Proof. Suppose there exists a bridge eb ∈ E in G[E \ (δ(O) \E+)] between r and V [E+].

Consider any F ⊆ E with its incidence vector xF on the face defined by aTx ≤ b. One
has e+ ∈ F for some e+ ∈ E+. Since GF is a bounded r-tree, it must contain a path
between r and e+, which has to include eb. Hence eb ∈ F , which implies the face induced
by aTx ≤ b is a proper subset of the proper face induced by xeb ≤ 1.

Now suppose there exists an articulation node va ∈ V \{r} in G[E \ (δ(O)\E+)] between
r and E+ with cva = 2. For any F ⊆ E with its incidence vector xF on the face defined
by aTx ≤ b, it can be seen that x(δ(va)) = cva also holds. Thus the face induced by
aTx ≤ b is a proper subset of the proper face induced by x(δ(va)) ≤ cva .

This proposition addresses the circumstance where the coefficients and the right-hand
side of a valid inequality are positive. If the inequality is facet-defining, then its support
graph does not contain certain substructures, specifically the bridges or articulation nodes
with capacity 2.

6.3.2 Box inequalities

The condition for (6.5) to be facet-defining is relatively straightforward as stated in the
following proposition.

Proposition 6.3.4. Given an edge e ∈ E, inequality xe ≥ 0 defines a facet of Bx(G, r, c)

if and only if e is not a bridge between r and some edge e′ in the graph G[E\(δ(O)\{e′})].

Proof. Assume e is a bridge between r and e′ in the graph G[E \ (δ(O) \ {e′})]. Then
there must exist a node set S, where δ(S) \ δ(O) = {e} with r ∈ S and e′ ∈ E[S]. If
x∗
e = 0 one must have x∗

e′ = 0. In another words, F = {x ∈ Bx(G, r, c) : xe = 0} � {x ∈
Bx(G, r, c) : xe′ = 0} � Bx(G, r, c).

For the sufficiency, let Ge = G[E \ {e}]. According to the assumption there exists an
re′-path between r and each edge e′ ∈ E \ {e} that also satisfies the capacity constraints.
According to Lemma 5.1.1 and the proof of Theorem 6.1.1, Bx(Ge, r, c) remains full-
dimensional, which leads to dim{x ∈ Bx(G, r, c) : xe = 0} = dimBx(Ge, r, c) = |E| − 1.
Therefore xe ≥ 0 defines a facet of Bx(G, r, c).
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Since the upper bound inequalities (6.4) have nonzero right-hand side and positive co-
efficients for the left-hand side, both Lemma 6.3.2 and Lemma 6.3.3 can be used here.
First, based on Lemma 6.3.2 the necessary and sufficient facet-defining conditions for
(6.4) associated with edges in δ(r) are given below.

Proposition 6.3.5. Let e = rv ∈ δ(r). Inequality xe ≤ 1 defines a facet of Bx(G, r, c) if
and only if the following two conditions are satisfied

1. cr ≥ 2 unless |δ(r)| = cr = 1;

2. v /∈ O unless |δ(v)| = cv = 1.

Proof. Let F = {x ∈ Bx(G, r, c) : xe = 1}.
For the necessity, if |δ(r)| > cr = 1, F is a proper subset of the proper face induced by
xf ≥ 0 for any edge in δ(r) \ {e}. If v ∈ O and |δ(v)| > 1, F is then a proper subset of
the proper face induced by xf ≥ 0 for any edge in δ(v) \ {e}.
For the sufficiency, assume that all the conditions in the proposition are satisfied, and
F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where aTx ≤ b is a valid inequality for
Bx(G, r, c). Firstly, from 0 /∈ F we derive that F � Bx(G, r, c).

Consider first the case where cr = 1 and δ(r) = {e}. Any non-zero integral vector in
Bx(G, r, c) is in F . Hence we have dimF = |E| − 1, and thus F is a facet of Bx(G, r, c).

Consider now the case with cr ≥ 2. As the graph reduced to e induces a bounded r-tree
that satisfies xe = 1, we have ae = b. Moreover, for any e′ ∈ δ(v) \ {e}, as {e, e′} and {e}
both induce bounded r-trees whose incidence vectors are in F , we have ae′ = 0.

Moreover, for any e′ ∈ E\δ(v), let Pre′ be a bounded path between r and e′. If v ∈ V [Pre′ ],
one can replace the subpath between r and v of Pre′ by e. We have that Pre′ ∪ {e} and
Pre′ ∪ {e} \ {e′} induce two bounded r-trees, and their incidence vectors are in F . Thus
one can deduce that ae′ = 0 holds for any e′ ∈ E \ δ(v).
Therefore, aTx ≤ b can be rewritten as bxe ≤ b, and thus F is a facet of Bx(G, r, c).

Now based on Lemma 6.3.2 and Lemma 6.3.3, we deal with the inequalities in (6.4)
associated with edges in E \ δ(r) in the following proposition.

Proposition 6.3.6. Let e = uv ∈ E\δ(r). Inequality xe ≤ 1 defines a facet of Bx(G, r, c)

if and only if

1. cr ≥ 2;

2. e /∈ δ(O) unless |δ(vo)| = cvo = 1 for some vo ∈ O ∩ {u, v};
3. there does not exist w ∈ N(u) ∩ N(v) such that removing uw and vw from G[E \

(δ(O) \ {e})] disconnects r and e;
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4. there exists a bounded path Prw with e ∈ Prw if cw = 2, for w ∈ {u, v};
5. there exists no bridge between r and e in G[E \ (δ(O) \ {e})];
6. there exists no articulation node va with cva = 2 between r and e in G[E \ (δ(O) \

{e})].

Proof. Let F = {x ∈ Bx(G, r, c) : xe = 1}.
If cr = 1, according to Lemma 6.3.2 it is not facet-defining for Bx(G, r, c). If e ∈ δ(O)

and without loss of generality let v ∈ O, then F is a proper subset of the proper face
induced by x(δ(v)) ≤ cv unless |δ(v)| = cv = 1. If there exists a node w ∈ N(u) ∩ N(v)

such that removing uw and vw from G[E \ (δ(O) \ {e})] disconnects r and e, then F is
a proper subset of the proper face induced by x(E[S]) ≤ |S| − 1 with S = {u, v, w}. If
without loss of generality cu = 2 and every bounded path between r and v has to pass
through u, then F is a proper subset of the proper face induced by x(δ(u)) ≤ cu.

Additionally, Lemma 6.3.3 ensures the necessity of the last two conditions.

For the sufficiency, assume that all the conditions in the proposition are satisfied, and
F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where aTx ≤ b is a valid inequality for
Bx(G, r, c). First of all, since we clearly have 0 /∈ F , we derive that F � Bx(G, r, c).

Let P1 and P2 be two edge-disjoint bounded paths between r and e, and let

Vc = {w ∈ V [P1] ∩ V [P2] : w is an inner node of both P1 and P2}.

According to the conditions, there exist such P1 and P2 with cw ≥ 3 for all w ∈ Vc.
We have that any r-tree of G[P1 ∪ P2] that does not have any node with degree 4 is
also a bounded r-tree of G. According to the proof of Proposition 5.2.4, as the graph
G[P1∪P2] satisfies the conditions 3 and 5, there exist |P1∪P2| affinely independent vectors
in Rx(G[P1 ∪ P2], r) that satisfy xe = 1 such that any node in their induced graphs has
degree at most 3. Thus, there exist |P1 ∪ P2| affinely independent vectors in Bx(G, r, c)

that satisfy xe = 1 and xe′ = 0 for any e′ ∈ E \ (P1 ∪ P2). One can then deduce that

ae = b,

ae′ = 0 ∀e′ ∈ (P1 ∪ P2) \ {e}.

First we consider an edge e′ = u′v′ ∈ E[V [Pi]] \Pi, i ∈ {1, 2}. Without loss of generality,
let the two ends of Pi be r and v. If u′v′ /∈ δ(v), by substituting the subpath between
u′ and v′ in P1 for u′v′, one obtains another bounded path between r and e. As ae′ = 0

holds for any e′ ∈ P1 \ {e}, we derive au′v′ = 0. If v′ = v, let the subpath between u′ and
v of Pi be P u′v

i . We clearly have u′ = u and |P u′v
i | ≥ 2. Hence Pi ∪ {u′v, vu} \ P u′v

i is a
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bounded path, which leads to au′v = a(P u′v
i ) = 0.

Consider an edge u′v′ ∈ E with u′ ∈ V [P1] \ V [P2] and v′ ∈ V [P2] \ V [P1]. Let the
subpath between r and u′ of P1 be P ru′

1 , and the subpath between r and v′ of P2 be P rv′
2 .

Then P ru′
1 ∪ {u′v′} ∪ (P2 \ P rv′

2 ) is a bounded path that contains e. We then deduce that
au′v′ = (P rv′

2 )− a(P ru′
1 ) = 0.

Consider now an edge e′ ∈ E \E[V [P1∪P2]]. If there exists a bounded path Pre′ such that
e ∈ Pre′ , we can deduce that ae′ = 0. Now suppose that there does not exist a bounded
path Pre′ such that e ∈ Pre′ .

Let Pre′ be a bounded path between r and e′. Without loss of generality let s be the
node in V [Pre′ ] ∩ V [P1] such that V [P se′

re′ ] ∩ V [P1] = {s} and V [P se′
re′ ] ∩ V [P2] \ {s} =

∅. Let vc = s if s ∈ Vc ∪ {r}, otherwise let vc be the node in Vc ∪ {r} such that
V [P vcs

1 ] ∩ (Vc ∪ {r}) = {vc}. Then G[P2 ∪ P vcs
1 ∪ P se′

re′ ] is a bounded r-tree that contains
e, and so is G[P2 ∪ P vcs

1 ∪ P se′
re′ \ {e′}]. Hence ae′ = 0.

To summarize, we have

ae′ = 0 ∀e′ ∈ E \ (P1 ∪ P2).

Thus, aTx ≤ b can be rewritten as bxe ≤ b. Moreover, as 0 ∈ Bx(G, r, c)\F , we conclude
that F is a facet of Bx(G, r, c).

6.3.3 Capacity inequalities

The capacity inequalities fall into the same category as the upper bound inequalities (6.4)
in terms of the left-hand side coefficients and right-hand side sign. Given v ∈ V with
|δ(v)| = 1, if cv ≥ 2 the associated capacity inequality x(δ(v)) ≤ cv is redundant, where
as if cv = 1, x(δ(v)) ≤ cv and xe ≤ 1 are identical for some e ∈ δ(v), which has been
discussed in the previous section as the upper bound inequalities. Thus we consider only
the case with |δ(v)| ≥ 2.

We split the capacity inequalities into three cases, for r, nodes in O and nodes in V \
(O ∪ {r}).

Proposition 6.3.7. Given |δ(r)| ≥ 2, x(δ(r)) ≤ cr defines a facet of Bx(G, r, c) if and
only if |δ(r)| > cr.

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(r)) = cr}. Clearly, we need |δ(r)| ≥ cr to ensure
that F is nonempty. If cr = |δ(r)| ≥ 2, then F � {x ∈ Bx(G, r, c) : xe = 1} � Bx(G, r, c)

for any e ∈ δ(r).
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For the sufficiency, assume that |δ(r)| > cr and F ⊆ {x ∈ Bx(G, r, c) : aTx = b} �

Bx(G, r, c), where aTx ≤ b is valid for Bx(G, r, c). Consider an edge set F with F � δ(r)

and |F | = cr. One has xF ∈ F , and thus a(F ) = b. Let e be an edge in F and e′ an edge
in δ(r) \ F . We have that xF∪{e′}\{e} ∈ F , which leads to ae = ae′ . Hence we have

ae = λ ∀e ∈ δ(r),

b = crλ,

where λ ∈ R.

Consider an edge e = uv in E \ δ(r) with u ∈ N(r). As |δ(r)| > cr, there exists
F ⊆ δ(r) \ δ(v) such that ru ∈ F and |F | = cr. Then both F and F ∪ {uv} induce
bounded r-trees of G and their incidence vectors are in F . Hence we have auv = 0.

Consider an edge e = uv in E \ δ(r) with u, v ∈ V \N(r). There exists a bounded path
Pre between r and e such that |V [Pre]∩N(r)| = 1. There exists a set F ⊆ δ(r) such that
Pre ∩ δ(r) ⊆ F and |F | = cr. Then F ∪ Pre and F ∪ Pre \ {uv} induce bounded r-trees
of G and their incidence vectors are in F . Hence we have auv = 0.

Therefore aTx ≤ b can be rewritten as λx(δ(r)) ≤ crλ. Combining it with 0 ∈
Bx(G, r, c) \ F gives us F is a facet of Bx(G, r, c).

We now consider the capacity inequalities associated with nodes in O.

Proposition 6.3.8. Let v ∈ O with |δ(v)| ≥ 2. x(δ(v)) ≤ 1 defines a facet of Bx(G, r, c)

if and only if

1. cr ≥ 2;

2. |δ(v)| ≥ 2;

3. there does not exist a bridge between r and v in G[E \ (δ(O \ {v}))];
4. there does not exist an articulation node va with cva = 2 that separates r and v in

G[E \ (δ(O \ {v}))].

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(v)) = 1}. If cr = 1, as |δ(v)| ≥ 2, thus δ(v) = δ(r),
and F is a proper subset of the proper face induced by x(δ(r)) ≤ cr. If cv = |δ(v)| ≥ 2,
then F � {x ∈ Bx(G, r, c) : xe = 1} � Bx(G, r, c) for any e ∈ δ(v). Lemma 6.3.3 ensures
the necessity of the last two conditions.

For the sufficiency, assume that F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c).

From the conditions we know that there exists two edge disjoint bounded paths P1 and
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P2 between r and v, and for any u ∈ Vc \ {r}, one has cu ≥ 3, where Vc is defined as

Vc = V [P1] ∩ V [P2] \ {v}.

Note that Both P1 and P2 induce bounded r-trees and their incidence vectors belong to
F .

Consider an edge e = uw ∈ E[Vc]. There must exist a subpath Puw of Pi between u and
w such that |Puw| ≥ 2, i ∈ {1, 2}. As both Pi and Pi∪{uw}\Puw induce bounded r-trees
whose incidence vectors belong to F , we have auw = a(Puw) = 0. Thus,

ae = 0 ∀e ∈ E[Vc].

Consider an edge e = uw ∈ P1 \ (δ(v) ∪E[Vc]). There exists a subpath Pz of P1 between
some node z ∈ Vc and uw such that V [Pz]∩Vc \{z} = ∅. Then Pz∩P2 induces a bounded
r-tree whose incidence vector is in F . We deduce that ae′ = 0 for any e′ ∈ Pz. As P1 and
P2 are interchangeable in this argument, we then have

ae = 0 ∀e ∈ P1 ∪ P2 \ (δ(v) ∪ E[Vc]).

Now consider an edge e ∈ E \ (δ(v) ∪ E[Vc]). Let Pre be a bounded path between r

and e, and let Pse be the subpath of Pre, such that V [Pse] ∩ V [P1 ∪ P2] = {s}. Without
loss of generality, suppose that s ∈ V [P1]. If s /∈ Vc, let Pws be the subpath of P1 such
that w ∈ Vc and V [Pws] ∩ Vc = {w}, otherwise let w = s and Pws = ∅. We have that
P1∪Pws∪Pse and P1∪Pws∪Pse \{e} induce two bounded r-trees whose incidence vectors
belong to F . Therefore, we deduce

ae = 0 ∀e ∈ E \ (δ(v) ∪ E[Vc]).

For each e ∈ δ(v), there exists a bounded path Pre between r and e. We have ae+a(Pre \
{e}) = b, which combines with a(Pre \ {e}) = 0 gives us

ae = b ∀e ∈ δ(v).

Therefore aTx ≤ b can be rewritten as bx(δ(v)) ≤ b, and since 0 ∈ Bx(G, r, c) \ F , we
thus conclude that F is a facet of Bx(G, r, c).

We conclude the discussion on the capacity inequalities with the ones associated with
nodes in V \ (O ∪ {r}).
Proposition 6.3.9. Let v ∈ V \ (O ∪ {r}) with |δ(v)| ≥ 2. x(δ(v)) ≤ cv defines a facet
of Bx(G, r, c) if and only if
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1. cr ≥ 2;

2. |δ(v)| > cv;

3. there does not exist a bridge between r and v in G[E \ δ(O)];

4. there does not exist an articulation node va with cva = 2 that separates r and v in
G[E \ δ(O)].

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(v)) = cv}. Clearly we need cv ≤ |δ(v)| to make F
nonempty. For the necessity, if cr = 1, according to Lemma 6.3.2, it is not facet-defining.
If cv = |δ(v)| ≥ 2 then F is a proper subset of the proper face induced by xe = 1 for any
e ∈ δ(v). Lemma 6.3.3 ensures the necessity of the rest conditions.

For the sufficiency, assume that F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c).

Let P1 and P2 be two edge-disjoint bounded paths between r and v, and without loss of
generality assume that P1 contains as few edges as possible and |V [P2] ∩N(v)| ≤ 2. Let
Vc be defined as

Vc = {u ∈ V [P1] ∩ V [P2] : u = r or u is an inner node of both P1 and P2}.

Let Fi be a subset of δ(v)\Pi such that V [Fi]∩V [Pi] = {v} and |Fi| = cv−1 for i ∈ {1, 2}.
We have that Pi ∪ Fi induces a bounded r-tree of G and its incidence vector is in F for
i ∈ {1, 2}.
Consider any edge e = uw ∈ Pi \ (δ(v)∪E[Vc]), i ∈ {1, 2}, there exists a subpath P u′e

j of
Pj between some node u′ ∈ Vc and e such that V [P u′e

j ] ∩ Vc = {u′} with i = j ∈ {1, 2}.
Then Pi ∪ Fi ∪ P u′e

j and Pi ∪ Fi ∪ P u′e
j \ {e} both induce bounded r-trees of G and their

incidence vectors belong to F . Hence, ae = 0.

Consider any edge e = uw ∈ E[Vc]. Note that e ∈ P1. Let P uw
2 be the subpath of P2

between u and w. P1 ∪ F1 and P1 ∪ F1 ∪ P uw
2 \ {e} induce two bounded r-trees of G and

their incidence vectors belong to F . Hence, ae = a(P uw
2 ) = 0. To summarize, we have

ae = 0 ∀e ∈ (P1 ∪ P2) \ δ(v).

For any e1, e2 ∈ δ(v)\P1 there exists F ′
1 ⊆ δ(v)\P1 such that |F ′

1| = cv−2 and e1, e2 /∈ F1.
We have that P1∪F ′

1∪{e1} and P1∪F ′
1∪{e2} induce two bounded r-trees of G and their

incidence vectors belong to F , which leads to ae1 = ae2 . Then as P1 ∪ F1 and P2 ∪ F2

are two bounded r-trees of G and their incidence vectors are in F , we can deduce that
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a(P1 ∩ δ(v)) = ae for some e ∈ δ(v) \ P1. Thus, we have

ae = λ ∀e ∈ δ(v),

where λ ∈ R. Consequently, we deduce that

b = cvλ.

Consider any edge e = uw ∈ E \ (P1 ∪ P2 ∪ δ(v)) such that there exists a bounded path
Pru between r and u that does not pass through w and v ∈ V [Pru]. Without loss of
generality assume that |V [Pru] ∩ N(v)| = 2 and |Pru ∩ δ(v)| = 2. There exists an edge
set F ⊆ δ(v) \ (Pru ∪ δ(w)) with |F | = cv − 2. Then Pru ∪F and Pru ∪F ∪ {uw} are two
bounded r-trees of G and their incidence vectors are in F , which leads to auw = 0.

Consider now any edge e = uw ∈ E \ (P1 ∪ P2 ∪ δ(v)) such that there exists a bounded
path Pru between r and u that does not pass through w and v. Without loss of generality
assume that Pru contains as few edges as possible. Let Psu be the subpath of Pru, such
that V [Psu] ∩ V [P1 ∪ P2] = {s} with s ∈ V [Pi], i ∈ {1, 2}. If s /∈ Vc, let Pws be the
subpath of P1 such that w ∈ Vc and V [Pws]∩Vc = {w}, otherwise let w = s and Pws = ∅.
We have that Pi∪Fi∪Pws∪Psu and Pi∪Fi∪Pws∪Psu∪{e} induce two bounded r-trees
whose incidence vectors belong to F . Thus, one obtains ae = 0, and we therefore have

ae = 0 ∀e ∈ E \ (P1 ∪ P2 ∪ δ(v)).

To summarize, aTx ≤ b can be rewritten as λx(δ(v)) ≤ cvλ, which combining with
0 /∈ F gives us F = {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c). Hence, F is a facet of
Bx(G, r, c).

6.3.4 Connectivity inequalities

According to Lemma 6.3.1, any connectivity inequality (6.1) associated with a set S ⊆
V \ {r} that satisfies δ(S) ∩ δ(O) = ∅ is not facet-defining.

Proposition 6.3.10. Let e ∈ E[S], S ⊆ V \{r}, and e ∈ E[S]. Inequality xe−x(δ(S)) ≤
0 defines a facet of Bx(G, r, c) only if δ(S) ∩ δ(O) = ∅.

Proof. Assume there exists f ∈ δ(S) ∩ δ(O). Clearly there does not exist any bounded
re-path that contains f . Hence the face induced by xe − x(δ(S)) ≤ 0 is a proper subset
of the face induced by xf ≥ 0.
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Figure 6.2: An example of inequality (6.6) exclusively defining a facet

As an extension of this proposition, the connectivity inequalities can be rewritten as the
following constraint.

xe − x(δ(S) \ δ(O)) ≤ 0, ∀e ∈ E[S], S � V \ {r}. (6.6)

Furthermore, (6.6) covers certain facets which (6.1) does not. For instance, in Figure
6.2, an inequality of (6.6) that defines a facet cannot be written in the form of (6.1),
where cvo = 1, and cv1 , cr ≥ 2. The inequality xe − x(δ(S) \ δ(O)) ≤ 0 defines a facet,
as the bounded r-trees G∅, G{e2}, G{e1,e3} correspond to 3 affinely independent vectors
on the induced face. However there does not exist a node set S′ ⊆ V \ {r} such that
δ(S ′) = δ(S) \ δ(O) and e ∈ E[S ′]. This means this facet is exclusively defined by an
inequality in the form of (6.6). Thus from now on, we discuss the facets induced by (6.6)
instead of (6.1).

Besides the factor of unit-capacity nodes, the connectivity of the subgraphs G[S \O] and
G[S \O] should also be guaranteed.

Proposition 6.3.11. Given S ⊆ V \ {r} and e ∈ E[S], xe − x(δ(S) \ δ(O)) ≤ 0 defines
a facet of Bx(G, r, c) only if G[S \O] is connected and G[S \O] is connected.

Proof. Suppose that G[S \O] (G[S \O], respectively) is not connected. Let v be a node
in S \ O (S \ O, respectively) which does not belong to the same connected component
of G[S \ O] (G[S \ O], respectively) as e (r, respectively). For any edge f ∈ δ(v) \ δ(O),
we have {x ∈ Bx(G, r, c) : xe − x(δ(S) \ δ(O)) = 0} � {x ∈ Bx(G, r, c) : xf = 0} �

Bx(G, r, c).

If e ∈ δ(vo) with vo ∈ O, and there exists some e′ ∈ δ(vo)∩E[S] \ {e}, then xe − x(δ(S) \
δ(O)) ≤ 0 does not define a facet of Bx(G, r, c).

Proposition 6.3.12. Let e be an edge in δ(vo)∩E[S] with vo ∈ O ∩ S and S ⊆ V \ {r}.
Inequality xe−x(δ(S)\δ(O)) ≤ 0 defines a facet of Bx(G, r, c) only if δ(vo)∩E[S]\{e} = ∅,
as stated in the following proposition.
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Proof. Suppose e ∈ δ(vo), vo ∈ O, and δ(vo) ∩ E[S] \ {e} = ∅. Consider any edge
f ∈ δ(vo) ∩ E[S] \ {e}. Clearly any bounded r-tree containing f contains at least one
edge in δ(S) \ δ(O) while it does not contain e, which leads to {x ∈ Bx(G, r, c) : xe −
x(δ(S) \ δ(O)) = 0} � {x ∈ Bx(G, r, c) : xf = 0} � Bx(G, r, c).

There are also conditions similar to the ones described in Lemma 6.3.3, except the fact
that Lemma 6.3.3 ensures the graph not to have certain substructures in G between
r and some subgraph, whereas here for the connectivity inequalities, the following two
conditions prevent the graph from having the same substructures in G[S] between r and
the edge e.

Proposition 6.3.13. Let S ⊆ V \ {r} and e ∈ E[S]. Inequality xe − x(δ(S) \ δ(O)) ≤ 0

defines a facet of Bx(G, r, c), only if there does not exist an edge eb ∈ E[S] such that
removing {eb} ∪ δ(O) \ {e} from G can disconnect r and e.

Proof. Suppose that there is an edge eb ∈ E[S] such that removing eb ∪ δ(O) \ {e} from
G can disconnect r and e. One must have a node set S′ with S ′ � S, e ∈ E[S] and
δ(S ′) \ δ(O) = {eb}. Thus we have {x ∈ Bx(G, r, c) : xe − x(δ(S) \ δ(O)) = 0} � {x ∈
Bx(G, r, c) : xe − x(δ(S ′) \ δ(O)) = 0}.

Proposition 6.3.14. Let S ⊆ V \ {r} and e ∈ E[S]. Inequality xe − x(δ(S) \ δ(O)) ≤ 0

defines a facet of Bx(G, r, c) only if there does not exist a node va ∈ S with cva = 2 such
that removing δ(va) \ {e} and δ(O) \ {e} from G disconnects r and e.

Proof. Suppose that there exists a node va ∈ S with cva = 2 such that removing δ(va)\{e}
and δ(O)\{e} from G disconnects r and e. Then {x ∈ Bx(G, r, c) : xe−x(δ(S)\ δ(O)) =

0} � {x ∈ Bx(G, r, c) : x(δ(va))− cvax(δ(S) \ δ(O)) = 0}.

Besides what has been stated previously, there is one very specific case where the connec-
tivity inequality is not facet-defining. Figure 6.3 shows an example, with S = {r}, S =

{u, v, w} and E[S] = {e, wv, uw}. In this case, the face induced by xe−x(δ(S)\δ(O)) ≤ 0

is a proper subset of the proper face induced by x(E[S])− (|S| − 1)x(δ(S) \ δ(O)) ≤ 0.

Proposition 6.3.15. Let e = uv ∈ E[S], S ⊆ V \{r}. Inequality xe−x(δ(S)\δ(O)) ≤ 0

defines a facet of Bx(G, r, c) only if there does not exist a node w ∈ S ∩N(u)∩N(v) that
removing wu,wv and δ(O) \ {e} from G disconnects r and e.

Proof. Assume that there exists a node w ∈ S ∩N(u) ∩N(v) that removing wu,wv and
δ(O) \ {e} from G disconnects r and e. The face induced by xe − x(δ(S) \ δ(O)) ≤ 0 is a
proper subset of the proper face induced by x(E[S ′])− (|S| − 1)x(δ(S) \ δ(O)) ≤ 0, with
S ′ = {u, v, w}.
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Figure 6.3: Example of a connectivity inequality with a triangle substructure

Proposition 6.3.16. Let S ⊆ V \ {r} and e ∈ E[S]. Inequality xe − x(δ(S) \ δ(O)) ≤
0 then defines a facet of Bx(G, r, c) if the conditions in Propositions 6.3.10-6.3.15 are
satisfied.

Proof. Assume the conditions in Proposition 6.3.10- 6.3.15 are satisfied and F = {x ∈
Bx(G, r, c) : xe − x(δ(S) \ δ(O)) = 0} ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c). As G[S \O] is connected, for any edge e′ ∈ E[S]∪(δ(O)∩
δ(S \O)) there exists a bounded path Pre′ between r and e′ with Pre′ ∩ (δ(S)\ δ(O)) = ∅.
One can deduce that

ae′ = 0 ∀e′ ∈ E[S] ∪ (δ(O) ∩ δ(S \O)).

As 0 ∈ F and xPre ∈ F , a(Pre) = b = 0. Let Vc ⊆ S be the set of nodes such that they
are inner nodes of all bounded paths between r and e. We have from the conditions that
cv ≥ 3 for any v ∈ Vc.

Consider any edge f = uv ∈ E[S] ∪ (δ(O) ∩ δ(S)) \ {e} such that u /∈ Vc. There exist a
bounded path Pre between r and e and a bounded path Pf between some node in Vc and
f , such that |Pre ∩ δ(S)| = 1 and it does not pass through u, and Pre ∪ Pf induces an
acyclic graph. It can be deduced from the two bounded r-trees induced by Pre ∪ Pf and
Pre ∪ Pf \ {f} that af = 0.

Consider now an edge f = uv ∈ E[S] \ {e} such that u, v ∈ Vc. According to the
conditions, f is not a bridge that separates r and e. Then there must exist a bounded
path Pre between r and e, f /∈ Pre such that |Pre ∩ δ(S)| = 1. Let the subpath of Pre

between u and v be Puv. We have that Pre and Pre ∪ {f} \ Puv both induce bounded
r-trees whose incidence vectors are in F . Thus af = a(Puv) = 0.
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To summarize, we have

af = 0 ∀f ∈ E[S] \ {e}.

Similarly for f ∈ δ(O)∩ δ(S \O), there exist a bounded path Pre between r and e and a
bounded path Pf between some node in Vc and f , such that |Pre∩ δ(S)| = 1 and Pre∪Pf

induces an acyclic graph. The incidence vectors of the two bounded r-trees induced by
Pre ∪ Pf and Pre ∪ Pf \ {f} belong to F , which gives us

af = 0 ∀f ∈ δ(O) ∩ δ(S \O).

For each edge f ∈ δ(S) \ δ(O), as G[S \O] and G[S \O] both are connected, there exists
a bounded path Pre such that f ∈ Pre and |Pre ∩ δ(S) \ δ(O)| = 1. As a(Pre) = b = 0

holds, and combining with the results above, one has

af + ae = 0 ∀f ∈ δ(S) \ δ(O).

Therefore F = {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), which indicates F is a facet of
Bx(G, r, c).

The facial study on the connectivity inequalities thereby concludes. The foregoing discus-
sion suggests that there are several substructures in the support graph of an inequality
to be avoided in order to make the inequality facet-defining, such as the bridges and
capacity 2 articulation nodes, and there is more to explore for other valid inequalities.

6.3.5 Subtour elimination inequalities

With respect to the subtour elimination inequalities, some necessary conditions are pre-
sented as follows.

Proposition 6.3.17. Let S be a subset of V with |S| ≥ 3. Inequality x(E[S]) ≤ |S| − 1

defines a facet of Bx(G, r, c) only if

1. cr ≥ 2;

2. r ∈ S;

3. S ∩O = ∅;
4. G[S] is 2-connected;

5. there does not exist such node set W ⊆ S, such that removing W disconnects G[S]

into k connected components, and |W |+ k − 1 ≥ c(W ), k ≥ 2.
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Figure 6.4: An example with a subtour elimination inequality that is not facet-defining

Proof. Let F = {x ∈ Bx(G, r, c) : x(E[S]) = |S| − 1}.
If cr = 1, according to Lemma 6.3.2, it is not facet-defining. If r /∈ S, F is a proper
subset of the proper face induced by x(E[S])− (|S|−1)x(δ(S)\ δ(O)) ≤ 0. If there exists
u ∈ S ∩ O, one has x(δ(u)) = cu for any feasible solution in F . If there exists an edge
eb in E[S] that removing eb disconnects G[S], one has that F is a proper subset of the
proper face induced by xeb ≤ 1. If G[S] is not 2-connected, then for any block G[Si] of
G[S], F is a proper subset of the proper face induced by x(E[Si]) ≤ |Si| − 1.

If there exists a set W ⊆ S, such that removing δ(W ) disconnects G[S] into k connected
components, |W | + k − 1 ≥ c(W ), k ≥ 2. Since any vector in the face F that induces a
bounded r-tree spanning all the nodes in S, at least |W |+k−1 edges are needed in

⋃
v∈W

δ(v)

to connect the |W | nodes in W and k− 1 connected components. If |W |+ k− 1 ≥ c(W ),
then either each node in W is saturated which leads to x(δ(v)) = cv for v ∈ W for any
x ∈ F . In other words, F is a proper subset of the proper face induced by x(δ(v)) ≤ cv

for v ∈ W .

Figure 6.4 demonstrates an instance which violates the last condition in the former propo-
sition, where W = {v1, v2}, cv1 = cv2 = 2 and k = 3. It can be noticed that on the face
induced by x(E[S]) ≤ |S| − 1, one always has that x(δ(v1)) = cv1 and x(δ(v2)) = cv2 for
any vector that induces a bounded r-tree. The substructure to be avoided in this example
is related to nodes with arbitrary capacities, rather than only the nodes with capacity
two, that create gaps among other nodes in the graph. Figure 6.5 shows, a partition of
S, consisting of W,U1, · · · , Uk, where δ(Ui, Uj) = ∅, for any distinct i, j ∈ {1, · · · , k}. If
|W |+ k− 1 ≥ ∑

v∈W cv, the subtour elimination inequality associated with S is then not
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Figure 6.5: General example with an articulation set

facet-defining. Notice here r can be either in W or in any of Ui, i = 1, · · · , k.

It can be noted that this substructure is similar to the case with articulation node of
capacity 2 mentioned earlier for previous inequalities. In fact, if k = 2 and W = {va},
cva = 2, then the substructure degenerates to a capacity 2 articulation node.

In the next section we introduce several new sets of valid inequalities for Bx(G, r, c) and
study the necessary and sufficient conditions to for them be facet-defining.

6.4 New valid inequalities

Besides the inequalities mentioned in the previous section, several other families of in-
equalities have been found to be facet-defining for Bx(G, r, c) either during our theoretical
work or from computational simulations.

6.4.1 Matching-partition inequalities

As mentioned in Chapter 5, the matching-partition inequalities can be extended to the
case of Bx(G, r, c).

Recall that the pair (M,π ) is called a matching-partition of G, where M = {e1, · · · , ek}
is a matching of G, and π = {S0, S1, · · · , Sk}, k ≥ 1 is a partition of V with r ∈ S0

such that ei ∈ E[Si] for i ∈ {1, · · · , k}. Denote MP(G), the set composed of all the
matching-partitions of G, and by Eπ the set of edges having their extremities in different
classes of partition π. With any matching-partition (M,π ) ∈ MP(G), one can associate
the following matching-partition inequality

x(M)− x(Eπ \ δ(O)) ≤ 0. (6.7)

It is worth noting that the matching-partition inequality for Bx(G, r, c) need to consider
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the capacity factor, specifically the nodes in O, and Lemma 6.3.1 applies here as well.
The valid proof is also similar to the case of the r-tree polytope.

Theorem 6.4.1. For any (M,π ) ∈ MP(G), inequality (6.7) is valid for Bx(G, r, c).

Proof. Consider any xF ∈ Bx(G, r, c) ∩ ZE, if xF (M) − xF (Eπ \ δ(O)) ≥ 1, the support
graph GF of xF is therefore not connected, as one needs at least |M ∩ F | edges among
Eπ \ δ(O) to connect r and edges in M ∩F without violating the capacity constraint.

A matching-partition inequality associated with a matching-partition (M,π ) that has
|M | = 1 is also a connectivity inequality from (6.6), for which the necessary and sufficient
conditions for it to be facet-defining have already been decided. We hereafter focus on
the matching-partition inequalities associated with a matching of cardinality at least 2.

Let G′ be the graph obtained from G by first removing O and then contracting each
Si ∈ π into a node, and consequently each set δ(Si, Sj) \ δ(O), Si = Sj ∈ π, becomes an
edge in G′.

Proposition 6.4.2. Let (M,π ) ∈ MP(G) be a matching-partition with |M | ≥ 2. In-
equality x(M)− x(Eπ \ δ(O)) ≤ 0 defines a facet of Bx(G, r, c) if and only if

1. G[Si \O] is connected for i ∈ {0, 1, · · · , k};
2. G′ is 2-connected;

3. E[Si] ∩ δ(vo) \ {ei} = ∅ if ei ∈ δ(vo), vo ∈ O for i ∈ {1, · · · , k};
4. there does not exist w ∈ Si ∩ N(ui) ∩ N(vi) with ei = uivi such that removing

{uiw, viw} ∪ δ(O) from G disconnects ei and r for i ∈ {1, · · · , k};
5. there does not exist any e ∈ E[Si], such that removing {e}∪δ(O) from G disconnects

ei and r;

6. there does not exist any v ∈ Si with cv = 2, such that removing δ(v)∪ δ(O) from G

disconnects ei and r.

Proof. Let F = {x ∈ Bx(G, r, c) : x(M)− x(Eπ \ δ(O)) = 0}.
For the necessity, if G[Si\O] is not connected for some i ∈ {0, 1, · · · , k}, then F is a proper
subset of the proper face induced by xe ≥ 0 for some e ∈ E. If there exist Si, Sj ∈ π, i = j,
such that removing δ(Si, Sj)∪ δ(O) disconnects G, then let π′ = π ∪ {Si ∪ Sj} \ {Si, Sj}.
Without loss of generality, assume i = 0. Let M ′ = M \ {ei}. Then F is a proper subset
of the proper face induced by x(M ′)− x(Eπ′ \ δ(O)) ≤ 0.

If there exists Si ∈ π, such that it corresponds to an articulation node in G′, without loss
of generality, assume that G′ contains two connected components induced by π1, π2 ⊆ π
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such that Si ∈ π1, Si ∈ π2, π1 ∪ π2 = π and δ(Sj, Sq) \ δ(O) = ∅ for any Sj ∈ π1 \ {Si}
and Sq ∈ π2 \ {Si}. Let

S1
i =

⋃
Sj∈π2

Sj,

S2
i =

⋃
Sj∈π1

Sj.

Then one can obtain two matching-partitions of G by substituting Si for S1
i and S2

i

respectively. Particularly, let (M ′
1, π

′
1) and (M ′

2, π
′
2) be two matching-partitions of G such

that

π′
1 = π1 ∪ S1

i \ {Si},
π′
2 = π2 ∪ S2

i \ {Si},

and

M ′
1 =

{
M \ E[S1

i ] if S0 ⊆ S1
i ,

M \ (E[S1
i ] \ {ei}) otherwise,

M ′
2 =

{
M \ E[S2

i ] if S0 ⊆ S2
i ,

M \ (E[S2
i ] \ {ei}) otherwise.

Then x(M)− x(Eπ \ δ(O)) ≤ 0 is a linear combination of x(M ′
1)− x(Eπ′

1
\ δ(O)) ≤ 0 and

x(M ′
2)− x(Eπ′

2
\ δ(O)) ≤ 0, and thus it is not facet-defining.

If ei ∈ δ(vo), vo ∈ O for some i ∈ {1, · · · , k}, and there exists some edge e′ ∈ E[Si] ∩
δ(vo) \ {ei}, then F is a proper subset of the proper face induced by xe′ ≥ 0.

If there exists w ∈ Si∩N(ui)∩N(vi) with ei = uivi such that removing {uiw, viv}∪ δ(O)

from G disconnects ei and r for some i ∈ {1, · · · , k}, then there exists a subset S′ of Si

such that e ∈ E[S ′] and δ(S ′) \ δ(O) = {uiw, viw} \ δ(O). F is then a proper subset of
the proper face induced by xei − x(δ(S ′) \ δ(O)) ≤ 0.

If there exists an edge e ∈ E[Si], i ∈ {1, · · · , k}, such that removing it disconnects ei

from r, then let M ′ = M ∪{e} \ {ei} and F is a proper subset of the proper face induced
by x(M ′)− x(Eπ \ δ(O)) ≤ 0.

If there exists a node v ∈ Si with cv = 2, i ∈ {1, · · · , k}, such that removing δ(v)∪ δ(O)\
{ei} disconnects ei from r, there must exist a set S ⊆ Si such that v ∈ S, ei ∈ E[S] and
δ(S) \ δ(O) ⊆ δ(va) \ (δ(O)∪{ei}). Then F is a proper subset of the proper face induced
by x(δ(v))− cvδ(S) \ δ(O) ≤ 0.

For the sufficiency, assume F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
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aTx ≤ b is valid for Bx(G, r, c). One first has b = 0 because of 0 ∈ F .

As G[S0 \ O] is connected, for any edge e ∈ E[S0] ∪ (δ(S0 \ O) ∩ δ(O)), any bounded
re-path with all inner nodes in S0 \ O is a feasible solution whose incidence vector is in
F , which gives us

ae = 0 ∀e ∈ E[S0] ∪ (δ(S0 \O) ∩ δ(O)).

Notice that for any i ∈ {1, · · · , k}, the necessary and sufficient conditions for the con-
nectivity inequality associated with ei and Si are all satisfied. Moreover, from the con-
ditions, for each edge e ∈ δ(Si) \ δ(O), there exists a bounded r-tree whose incidence
vector is in F such that it contains e. Thus, using a similar argument as for the edges in
E[S] ∪ (δ(O) ∩ δ(S)) \ {e} and δ(S) \ δ(O) of Proposition 6.3.16, one can deduce that

ae = 0 ∀e ∈ E[Si] ∪ (δ(O) ∩ δ(Si)) \ {ei},
af + aei = 0 ∀f ∈ δ(Si) \ δ(O).

Furthermore, as G′ is 2-connected, we have that for any Si, i ∈ {1, · · · , k}, there exists
Sj, i = j ∈ {1, · · · , k} such that δ(Si) ∪ δ(Sj) \ δ(O) = ∅. Consequently, we have

af + aei = 0 ∀f ∈ Eπ \ δ(O), ei ∈ M.

Therefore, F = {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), which indicates F is a facet
of Bx(G, r, c).

6.4.2 Acyclicity-connectivity inequalities

Let W ⊆ S ⊆ V \ {r}, |W | ≥ 2. The acyclicity-connectivity inequality is defined as
follows.

x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) ≤ 0 (6.8)

Theorem 6.4.3. For any W ⊆ S ⊆ V \ {r}, |W | ≥ 2, inequality (6.8) is valid for
Bx(G, r, c).

Proof. Consider any x∗ ∈ Bx(G, r, c) ∩ ZE, and assume x∗(E[W ]) − (|W | − 1)x∗(δ(S) \
δ(O)) ≥ 1. If x∗(δ(S) \ δ(O)) = 0, we have that x∗

e − x∗(δ(S) \ δ(O)) > 0 for some edge e

in E[W ] with x∗
e = 1. If x∗(δ(S) \ δ(O)) ≥ 1, we then have x∗(E[W ]) > |W | − 1. In both

cases x∗ is not feasible, which is a contradiction.

Note that if |W | = 2, it becomes the connectivity inequalities (6.6). Thus we hereafter
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only consider the case with |W | ≥ 3. Some necessary conditions for (6.8) to be facet-
defining is given below.

Proposition 6.4.4. Let W ⊆ S ⊆ V \ {r}, |W | ≥ 3. Inequality (6.8) defines a facet of
Bx(G, r, c) only if

1. G[S \O], G[S \O] are connected;

2. W ∩O = ∅;
3. G[W ] is 2-connected;

4. there exists no such node va ∈ S that cva = 2 and removing δ({va} ∪ O) from G

disconnects W \ {va} and r;

5. there does not exist eb ∈ E[S] \ E[W ] such that removing eb and δ(O) from G

disconnects S and r.

Proof. Let F = {x ∈ Bx(G, r, c) : x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) = 0}. If G[S \ O]

is not connected, one has that F is a proper subset of the proper face induced by xe ≥ 0

for some e ∈ δ(v), where v ∈ S \O is in the connected component of G[S \O] that does
not contain W .

If G[S \O] is not connected, one has that F is a proper subset of the proper face induced
by xe ≥ 0 for some e ∈ δ(v), where v ∈ S \O is in the connected component of G[S \O]

that does not contain r.

If there exists vo ∈ S ∩ O, F is then a proper subset of the proper face induced by
x(δ(vo) \ δ(S))− cvox(δ(S) \ δ(O)) ≤ 0.

If G[W ] is not 2-connected, then for any block G[Wi] of G[W ], F is a proper subset of
the proper face induced by x(E[Wi])− (|Wi| − 1)x(δ(S) \ δ(O)) ≤ 0.

If there exists an edge eb in E[S] \ E[W ] that removing eb and δ(O) from G disconnects
S and r, F is a proper subset of the proper face induced by x(E[W ])− (|W |−1)x(δ(S′)\
δ(O)) ≤ 0, where S ′ � S and δ(S ′) \ δ(O) = {eb}.
If there exists a node va ∈ S such that cva = 2 and removing δ({va} ∪ O) disconnects
W \ {va} and r, then F is a proper subset of the proper face induced by x(δ(va)) −
cvax(δ(S) \ δ(O)) ≤ 0.

6.4.3 Upload capacity inequalities

During the study of the polytope, some examples are found to have fractional extreme
points such as the one demonstrated in Figure 6.6. This extreme point is decided by the



6.4. NEW VALID INEQUALITIES 129

Figure 6.6: An example of upload capacity inequality cutting off a fractional extreme
point

following equations.

x(δ(v)) = cv,

xvv1 − xrv = 0,

xvv2 − xrv = 0,

xvv3 − xrv = 0.

It can be cut by the inequality x(δ(v))− cvx(δ(S) \ δ(O)) ≤ 0.

Let S ⊆ V \ {r} with v ∈ S \O. The associated upload-capacity inequality is

x(δ(v))− cvx(δ(S) \ δ(O)) ≤ 0. (6.9)

Theorem 6.4.5. For any S ⊆ V \{r}, v ∈ S \O, inequality (6.9) is valid for Bx(G, r, c).

Proof. Consider any x∗ ∈ Bx(G, r, c)∩ZE, and assume x∗(δ(v))− cvx
∗(δ(S) \ δ(O)) ≥ 1.

If x∗(δ(S) \ δ(O)) = 0, the connectivity inequality associated with some edge in δ(v) is
then violated. If x∗(δ(S) \ δ(O)) ≥ 1, the capacity of v is then exceeded by x∗.

Proposition 6.4.6. Inequality (6.9) defines a facet of Bx(G, r, c) if and only if

1. |δ(v) \ (δ(S) \ δ(O))| ≥ cv, |δ(v)| ≥ cv + 1;

2. G[S \O] and G[S \O] are connected respectively;

3. if δ(v) ∩ δ(S) \ δ(O) = ∅ there exists no such edge eb ∈ E[S] ∪ δ(S) that removing
δ(O) ∪ {eb} from G disconnects v and r;

4. if δ(v) ∩ δ(S) \ δ(O) = ∅ there exists no such node va ∈ S \ {v} that cva = 2 and
removing δ(O) ∪ δ(va) from G disconnects v and r.

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(v))− cvx(δ(S) \ δ(O)) = 0}.
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For the necessity, if |δ(v)\ (δ(S)\δ(O))| = cv−1 or |δ(v)| = cv, then F is a proper subset
of the proper face induced by xe − x(δ(S) \ δ(O)) ≤ 0 for all e ∈ δ(v) \ (δ(S) \ δ(O)). If
G[S \O] is not connected or G[S \O] is not connected, then F is a proper subset of the
proper face induced by xe ≥ 0 for some e ∈ E. If there exists an edge eb ∈ E[S] ∪ δ(S)

such that removing δ(O) ∪ {eb} disconnects v and r, let S ′ be a subset of S such that
δ(S ′) \ δ(O) = {eb}, v ∈ S ′. Then F is a proper subset of the proper face induced by
x(δ(v)) − cvx(δ(S

′) \ δ(O)) ≤ 0. If there exists such node va ∈ S \ {v} that cva = 2

and removing δ(O) ∪ δ(va) disconnects v and r, one has that F is a proper subset of the
proper face induced by x(δ(va))− cvax(δ(S) \ δ(O)) ≤ 0.

For the sufficiency, assume F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c). One first has b = 0 because of 0 ∈ F .

For any edge e ∈ E[S] ∪ (δ(O) ∩ δ(S \ O)), the shortest re-path with all inner nodes in
S \O corresponds to a feasible solution in F , from which one can deduce ae = 0.

Case 1. If δ(v) ∩ δ(S) \ δ(O) = ∅.
For any e ∈ δ(v)∩ δ(S) \ δ(O), as |δ(v) \ (δ(S) \ δ(O))| ≥ cv, the bounded r-tree induced
by combining the shortest re-path with only inner nodes in S and any cv − 1 edges in
δ(v) \ (δ(S) \ δ(O)) satisfies x(δ(v))− cvx(δ(S) \ δ(O)) = 0. Let DS = δ(v) \ (δ(S) \ δ(O))

and Dδ = δ(v) ∩ δ(S) \ δ(O). One has for any e ∈ Dδ, e′ ∈ DS, ae = −(cv − 1)ae′ .

For any e ∈ E[S] \DS, one must have F ⊆ DS and a path Pve ⊆ E[S] from r to e, with
|F | = cv − 1 and |Pve ∩ F | = |Pve ∩ δ(v)| = 1, which gives us ae = 0.

For any e ∈ δ(S)\(δ(v)∪δ(O)), there must exist a path Pev from e to v and a set F ⊆ DS

with |F | = cv such that Pre ∪ Pev ∪ F induces a bounded r-tree, where Pre has all inner
nodes in S. Thus ae = −cvae′ holds for any e ∈ δ(S) \ (δ(v) ∪ δ(O)) and e′ ∈ DS.

For e ∈ δ(O) ∩ δ(S), without loss of generality, assume e ∈ δ(vo), vo ∈ O. If vo ∈ S,
one must have an re-path with all inner nodes in S, which leads to ae = 0. If vo ∈ S,
there must exist a path Pve from v to e, an edge e′ ∈ Dδ, a path Pre′ and a set F ⊆ DS,
where |F | = cv − 1, |Pve ∩ F | = |Pve ∩ δ(v)| = 1, Pve has all inner nodes in S, and Pre′

has all inner nodes in S. Pre′ ∪ Pve ∪ F then induces a bounded r-tree that satisfies
x(δ(v))− cvx(δ(S) \ δ(O)) = 0, which leads to ae = 0.

Finally,One has λx(DS)− (cv−1)λx(Dδ)− cvλx(δ(S)\ (δ(v)∪ δ(O))) = 0. As λ = 0, it is
equivalent to x(δ(v))− cvx(δ(S) \ δ(O)) = 0, which indicates F is a facet of Bx(G, r, c).

Case 2. If δ(v) ∩ δ(S) \ δ(O) = ∅.
According to the conditions, there must exist two rv-paths P1, P2 such that P1 ∩ P2 ∩
(E[S]∪δ(S)) = ∅, and |P1∩δ(S)\δ(O)| = |P2∩δ(S)\δ(O)| = 1, and there exists no such
node va ∈ V [P1]∩ V [P2]∩ S \ {v} with cva = 2. Let P1 ∩ δ(S) \ δ(O) = {eδ1}, P2 ∩ δ(S) \
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δ(O) = {eδ2}, P1∩δ(v) = {ev1}, P1∩δ(v) = {ev2}, and Pre1 , Pre2 be the paths with all inner
nodes in S. As |δ(v)| ≥ cv + 1, there must exist F ⊆ δ(v) \ {e1}, such that |F | = cv − 1,
and Pre1 ∪ P1 ∪ F induces a bounded r-tree that satisfies x(δ(v))− cvx(δ(S) \ δ(O)) = 0.
Without loss of generality, assume P1 is the shortest path satisfying the aforementioned
conditions, then P1 and e2 do not form a cycle, then by replacing any edge e ∈ F by any
e′ ∈ δ(v) \ (F ∪ {e1}), one has another bounded r-tree whose incidence vector belongs to
F , which gives us that for all e ∈ δ(v) \ {e1}, ae = λ. If the graph induced by P2 and
e1 does not contain a cycle, a similar argument can be applied on P2, which leads to for
all e ∈ δ(v) \ (F ∪ {e2}), ae = λ′. If the graph induced by P2 and e1 contains a cycle,
Pre2 ∪P2∪F ′∪{e1}\{e2} induces a feasible solution in F which leads to ae1 = ae2 , where
F ′ ⊆ δ(v) \ {e2}, and |F ′| = cv − 1. To summarize, in both cases, for any e ∈ δ(v), one
has ae = λ.

For any edge e ∈ E[S] \ (δ(v) ∪ P1) or e ∈ δ(S) ∩ δ(O) \ δ(v), based on the conditions,
we claim that there must exist, a path Pve from v to e with all inner nodes in S, and a
set F ⊆ δ(v) \ {e1} with |F | = cv − 1, such that the graph induced by F ∪ Pve does not
contains a cycle. Moreover, P1 ∪F ∪Pve induces a bounded r-tree in face F , which gives
us ae = 0.

For any edge e ∈ E[S] ∩ P1, through a similar argument, one can prove, if the graph
induced by e ∪ P2 does not contain a cycle, P2 ∪ F ∪ Pve is a feasible solution in face F ,
with some F ⊆ δ(v)\{e2} and |F | = cv−1. If the graph induced by e∪P2 contains a cycle,
P2 ∪F ∪Pve \Pe induces a feasible solution in face F , where Pe ⊆ e ∈ E[S] \ (δ(v)∪P1).
Therefore ae = 0.

For any edge e ∈ δ(S) \ (δ(O) ∪ δ(v)), one must have a path Pre from r to e with
Pre \ {e} ⊆ E[S] \ δ(O), a path Pev from e to v with Pev ∩ δ(S) = {e}, |Pev ∩ δ(v)| = 1,
and Pev \ (δ(S) ∪ δ(v)) ⊆ E[S] \ δ(v), a set F ⊆ δ(v) with |F | = cv, |F ∩ Pev| = 1, such
that Pre ∪ Pev ∪ F induces a bounded r-tree in face F . Combining with aforementioned
results, one has ae = −cvλ for any e ∈ δ(S) \ (δ(O) ∪ δ(v)).

To conclude, the face {x ∈ Bx(G, r, c) : aTx = b} and F are identical, which proves that
F is maximal.

The upload capacity of nodes in O has to be expressed slightly different from other nodes.
For any S ⊆ V \ {r}, vo ∈ S ∩ O, let U = {v ∈ S \ O : δ(v) ∩ δ(S) = ∅}. The upload
capacity inequality for vo ∈ O is presented as follows.

x(δ(vo) \ δ(S))− x(δ(S) \ δ(O)) ≤ 0 (6.10)

If |δ(vo) \ δ(S)| = 1, it becomes the connectivity inequalities (6.6), therefore we consider
only the case |δ(vo) \ δ(S)| ≥ 2 hereafter.
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Theorem 6.4.7. For any vo ∈ S ∩ O, S ⊆ V \ {r} with |δ(vo) \ δ(S) ≥ 2|, inequality
(6.10) is valid for Bx(G, r, c).

Proof. Consider any x∗ ∈ Bx(G, r, c)∩ZE, and assume x∗(δ(vo)\δ(S))−x∗(δ(S)\δ(O)) ≥
1. If x∗(δ(S) \ δ(O)) = 0, the connectivity inequality associated with S and some edge in
δ(vo) \ δ(S) is then violated. If x∗(δ(S) \ δ(O)) ≥ 1, the capacity constraint of vo is then
violated by x∗.

Proposition 6.4.8. For any vo ∈ O, S ⊆ V \ {r} with |δ(vo) \ δ(S) ≥ 2|, inequality
(6.10) defines a facet of Bx(G, r, c) if and only if

1. G[S \O] is connected, G[S \O] is connected;

2. there does not exist an edge e ∈ E[S] such that removing e ∪ δ(O \ vo) from G

disconnects r and vo;

3. there does not exist a node v ∈ S\{vo} with cv = 2 such that removing δ(v)∪δ(O\vo)
from G disconnects r and vo;

4. if E[S \O] \ E[U ] = ∅ there exists v ∈ U with cv ≥ 3.

Proof. Let F = {x(δ(vo) \ δ(S))− x(δ(S) \ δ(O)) = 0}.
For the necessity, if either G[S \ O] or G[S \ O] is not connected, then F is a proper
subset of the proper face induced by xe ≤ 0 for some e ∈ E.

If there exists an edge eb ∈ E[S] such that removing eb ∪ δ(O \ vo) disconnects r and vo,
then with a node set S ′ � S that satisfies δ(S ′) \ δ(O) = eb, F is a proper subset of the
proper face induced by x(δ(vo) \ δ(S ′))− x(δ(S ′) \ δ(O)) ≤ 0.

If there exists a node va ∈ S such that removing δ(va)∪ δ(O \ {vo}) disconnects r and vo,
and cva = 2, then any feasible solution in F also satisfies x(δ(va))−cvax(δ(S)\δ(O)) = 0.

If E[S \ O] \ E[U ] = ∅, and there does not exist v ∈ U , such that cv ≥ 3, then F is a
proper subset of the proper face induced by xe ≤ 0 for some e ∈ E[S \O] \ E[U ].

For the sufficiency, assume F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c). One first has b = 0 because of 0 ∈ F .

For any edge e ∈ E[S] ∪ (δ(O) ∩ δ(S \ O)) ∪ (δ(vo) ∩ δ(S)), a bounded re-path with all
inner nodes in S \ O exists and corresponds to a feasible solution in F , from which one
can deduce ae = 0.

If δ(vo) \ δ(S) = E[S], one can deduce ae0 = −ae for any e0 ∈ δ(vo) \ δ(S), and e ∈
δ(S) \ δ(O).

If δ(vo) \ δ(S) = E[S], for any edge e ∈ E[S \ O] \ E[U ], Conditions (2), (3), (4) ensure
that there must exist a node u ∈ U with cu ≥ 3, and two paths Pue between u and e, and
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Puvo between u and vo that satisfy V [Pue]∩V [Puvo ] = {u}. Therefore, we have ae = 0 for
any e ∈ E[S \O] \ E[U ].

For any e = uv ∈ E[U ], let Pru and Prv be the two bounded paths between r and u, v
respectively, such that |Prv ∩ δ(S) \ δ(O)| = |Pru ∩ δ(S) \ δ(O)| = 1. Such paths exist
because of the definition of U . Let Puvo (Pvvo , respectively) be a bounded path of G[S]

between u (v, respectively) and vo. We have that Pru∪Puvo , Prv ∪Pvvo , Prv ∪{uv}∪Puvo

and Pru ∪ {uv} ∪Pvvo all induce bounded r-trees of G and their incidence vectors belong
to F . Thus we deduce auv = 0.

Furthermore, as G[S \ O] is connected, we have for any distinct e1, e2 ∈ δ(vo) \ δ(S)

there exist two paths Pue1 , Pue2 between any u ∈ U and e1, e2. Combining them with a
bounded path Pru with Pru∩δ(S)\δ(O) = {uv} gives us two bounded r-trees of G whose
incidence vectors are F . Hence we have ae1 = ae2 = −auv for any e1, e2 ∈ δ(vo) \ δ(S)

and any uv ∈ δ(S) \ δ(O).

Therefore, one has F = {x ∈ Bx(G, r, c) � Bx(G, r, c), which completes the proof.

Moreover, we can generalize the upload-capacity inequalities for both nodes in O and in
V \(O∪{r}) as follows. Given v ∈ S ⊆ V \{r}, the associated upload-capacity inequality
is

x(δ(v))− cvx(δ(S) \ δ(O \ {v})) ≤ 0. (6.11)

It can be noted that the upload-capacity inequalities consider both the capacity aspect
and the connectivity between r and v.

In following sections, we introduce a family of new valid inequalities, that are similar in
a few aspects. Specifically, they generally consider a set of articulation nodes with the
same capacity. We start with the one set with the simplest presentation, and generalize
it to a wider extent.

6.4.4 Capacity-2 inequalities

Let S2 = {v ∈ V \{r} : cv = 2}. Given S ⊆ S2, R = V \ (S∪O), the capacity-2 inequality
is as follows.

x(δ(O))− x(δ(R)) ≤ 0. (6.12)

Proposition 6.4.9. Inequality (6.12) is valid for Bx(G, r, c).

Proof. Consider any edge set F ⊆ E that induces a bounded r-tree of G. Let G′
F be the

graph obtained from GF by contracting R into a node r′. We have that G′
F is composed
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of at most |F ∩ δ(r′)| edge-disjoint paths between r′ and some edge e ∈ F . As each of
the edges in F ∩ δ(O) has to be an end edge of a path in GF , we have that GF contains
at most |F ∩ δ(r′)| edges in F ∩ δ(O), that is, xF (δ(O))− xF (δ(R)) ≤ 1.

Proposition 6.4.10. Inequality (6.12) defines a facet of Bx(G, r, c) if and only if

1. G[R] is connected, G[S] is connected;

2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) ∩ δ(O) = ∅.

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(O))− x(δ(R)) = 0}.
For the necessity, if G[R] is not connected, F is a proper subset of the proper face induced
by xe ≤ 0 for some e ∈ E[R]. If G[S] is not connected, without loss of generality, assume
it has two connected components induced by node sets S1 and S2, with S = S1 ∪ S2.
F is a proper subset of the proper face induced by either x(δ(O)) − x(δ(R ∪ S1)) ≤ 0

or x(δ(O)) − x(δ(R ∪ S2)) ≤ 0. If there exists v ∈ S such that δ(v) ∩ δ(R) = ∅, or
δ(v) ∩ δ(O) = ∅, one has that there exists S′ � S such that F is a proper subset of the
proper face induced by x(δ(O))− x(δ(R ∪ S′)) ≤ 0 .

For the sufficiency, assume F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c). One first has b = 0 because of 0 ∈ F . For any edge
e ∈ E[R]∪δ(R)∩δ(O), as G[R] is connected and R∩O = ∅, one has ae = 0. For any node
v ∈ S, as δ(v)∩δ(R) = ∅, and δ(v)∩δ(O) = ∅, one has ae+af = 0 for any e ∈ δ(v)∩δ(O)

and any f ∈ δ(v) ∩ δ(R). Moreover, since G[S] is connected, for any edge v1v2 ∈ E[S],
and any e1 ∈ δ(v1)∩ δ(O), e2 ∈ δ(v2)∩ δ(O), f1 ∈ δ(v1)∩ δ(R), f2 ∈ δ(v2)∩ δ(R), one has
ae1 + av1v2 + af2 = 0 and ae2 + av1v2 + af1 = 0, which leads to av1v2 = 0. Consequently,
ae+ af = 0 holds for any e ∈ δ(O)∩ δ(S) and any f ∈ δ(R)∩ δ(S). Therefore, F = {x ∈
Bx(G, r, c) : aTx = b}, which indicates F is a facet of Bx(G, r, c).

This set of inequalities consider the aspects of capacity and the connectivity, although in
a more ambiguous way. We show in the next part that it can be extended into several
other sets of valid inequalities.

6.4.5 Capacity-i inequalities

The capacity-2 inequalities can be extended to a more generalized situation associating
with nodes having same arbitrary capacity. Let

Si = {v ∈ V \ {r} : cv = i, i ≥ 2}.
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Given S ⊆ Si, let R = V \ (S ∪O), and the capacity-i inequality is as follows.

x(δ(O) \ δ(R))− (i− 2)x(E[S])− (i− 1)x(δ(R) \ δ(O)) ≤ 0. (6.13)

Proposition 6.4.11. Inequality (6.13) is valid.

Proof. Assume x is an integer feasible solution to the problem. Consider the edges in
the solution as pipes that consume and provide resource (i.e. capacities in our case)
at the same time. As the edges in E[R] do not participate in inequality (6.12) by any
means, it is safe to say that each edge e ∈ δ(R) \ δ(O) provides i units of capacity as it
connects one node in Si, and consumes one unit of capacity while connecting the node.
For any edge e ∈ E[S], it consumes 2 units of capacity of nodes in Si, and provides
i unit of capacity as it can be seen as connecting to a new node in Si. Any edge in
e ∈ δ(O) \ δ(R) consumes one unit of capacity of nodes in Si and provides none. So
the total capacity provided is ix(δ(R) \ δ(O))+ ix(E[S]), and total capacity consumed is
x(δ(R)\δ(O))+2x(E[S])+x(δ(O)\δ(R)). Since the capacity consumed cannot exceed the
capacity provided, one has x(δ(O)\δ(R))−(i−2)x(E[S])−(i−1)x(δ(R)\δ(O)) ≤ 0.

Proposition 6.4.12. Inequality (6.13) defines a facet of Bx(G, r, c) if and only if

1. G[R] is connected, G[S] is connected;

2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) ∩ δ(O) = ∅, and |δ(v) ∩ δ(O)| ≥ i− 1.

Proof. Let F = {x ∈ Bx(G, r, c) : x(δ(O)\δ(R))−(i−2)x(E[S])−(i−1)x(δ(R)\δ(O)) =

0}.
For the necessity, if G[R] is not connected, one has xe = 0 for some e ∈ E[R]. If G[S]

is not connected, without loss of generality, assume it has two connected components
induced by node sets F1 and F2, with Si = F1 ∪ F2. One has that F is a proper subset
of either of the proper faces induced by

x(δ(O) \ δ(R ∪ F1))− (i− 2)x(E[S \ F1])− (i− 1)x(δ(R ∪ F1) \ δ(O)) ≤ 0

and

x(δ(O) \ δ(R ∪ F2))− (i− 2)x(E[S \ F2])− (i− 1)x(δ(R ∪ F2) \ δ(O)) ≤ 0.

If there exists v ∈ S such that δ(v) ∩ δ(R) = ∅, or δ(v) ∩ δ(O) = ∅, then there exists
F � S such that F is a proper subset of the proper faces induced by

x(δ(O) \ δ(R ∪ F ))− (i− 2)x(E[Si \ F ])− (i− 1)x(δ(R ∪ F ) \ δ(O)) ≤ 0.
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If |δ(v) ∩ δ(O)| ≤ i− 2, then F is a proper subset of the proper face induced by

x(δ(O) \ δ(R ∪ {v}))− (i− 2)x(E[S \ {v}])− (i− 1)x(δ(R ∪ {v}) \ δ(O)) ≤ 0.

For the sufficiency, assume that F ⊆ {x ∈ Bx(G, r, c) : aTx = b} � Bx(G, r, c), where
aTx ≤ b is valid for Bx(G, r, c). One first has b = 0 because of 0 ∈ F . For any edge
e ∈ E[R] ∪ δ(R) ∩ δ(O), as G[R] is connected and R ∩ O = ∅, one has ae = 0. For any
node v ∈ S, as δ(v) ∩ δ(R) = ∅, δ(v) ∩ δ(O) = ∅, and |δ(v) ∩ δ(O)| ≥ i − 1, for any
F ⊆ δ(v) ∩ δ(O) with |F | = i− 1, one has∑

e∈F
ae + af = 0.

Moreover, since G[S] is connected, for any edge v1v2 ∈ E[S], and any F ′
1 ⊂ F1 ⊂ δ(v1) ∩

δ(O), F ′
2 ⊂ F2 ⊂ δ(v2)∩ δ(O) that satisfies |F ′

1| = |F ′
2| = i− 2 and |F1| = |F2| = i− 1 one

has ∑
e1∈F1

ae1 +
∑
e2∈F ′

2

ae2 + av1v2 + af2 = 0

and ∑
e2∈F2

ae2 +
∑
e1∈F ′

1

ae1 + av1v2 + af1 = 0,

which leads to af1 = −(i − 1)ae1 , af2 = −(i − 1)ae2 for any e1 ∈ δ(v1) ∩ δ(O), e2 ∈
δ(v2) ∩ δ(O), f1 ∈ δ(v1) ∩ δ(R), f2 ∈ δ(v2) ∩ δ(R), and av1v2 = −af2 − ae1 = −af1 − ae2 .
Consequently, one has (i− 1)ae + af = 0 and (i− 2)ae + ah = 0 for any e ∈ δ(O) ∩ δ(S),
f ∈ δ(R) ∩ δ(S), h ∈ E[S]. Therefore, F = {x ∈ Bx(G, r, c) : aTx = b}, which indicates
F is a maximal face.

6.4.6 i-articulation inequalities

The capacity-i inequalities can be further generalized to the case such that we consider not
only nodes adjacent with nodes in O, but also nodes which can be considered articulation
nodes in the graph. Note that any node vi adjacent to a node vo ∈ O can be seen as an
articulation node between r and the edge vivo.

Let the set of articulation nodes in V be

Va = {v ∈ V \ (O ∪ {r}) : N(v) ∩O = ∅ or v is an articulation node in Gr}.
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For each v ∈ Va, let

Dv = {u ∈ V \ {r, v} : u ∈ N(v) ∩O or any bounded path Pru satisfies Pru ∩ δ(v) = ∅},
Fv = δ(v) ∩ δ(Dv).

Additionally, recall

Si = {v ∈ V \ {r} : cv = i}.

Let S be a subset of Va∩Si with i ≥ 2 such that for any distinct u, v ∈ S, Du∩Dv\O = ∅.
Let

DS =
⋃
v∈S

Dv,

FS =
⋃
v∈S

Fv,

R = V \ (S ∪DS).

Note that δ(DS)∩δ(S) = FS. The i-articulation inequality associated with S is as follows.

x(FS)− (i− 2)x(E[S])− (i− 1)x(δ(R) ∩ δ(S)) ≤ 0 (6.14)

Proposition 6.4.13. Inequality (6.14) is valid.

Proof. For any two nodes u, v ∈ Va, one has Fu∩Fv = ∅. Therefore, the validity of (6.14)
can be proved using same argument as for (6.13).

Proposition 6.4.14. Inequality (6.14) defines a facet of Bx(G, r, c) if and only if

1. G[R] is connected, G[S] is connected;

2. for any v ∈ S, δ(v) ∩ δ(R) = ∅, and δ(v) \ δ(DS) = ∅, and |δ(v) \ δ(DS)| ≥ i− 1.

Proof. The proof for i-articulation inequalities is the same as for the capacity i nodes
inequalities, except that the set O is replaced by DS whereas δ(O) ∩ δ(S) is replaced by
FS.

6.4.7 Tightening inequalities

Another set of inequalities that has been discovered relating to capacity-2 inequalities
during the computational test is called the tightening inequalities.
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Assume that without loss of generality 1 ≤ cv ≤ |δ(v)| for any v ∈ V . For any S ⊆
V \ ({r} ∪O), R = V \ (O ∪ S), the tightening inequalities are as follows

x(δ(O))− x(δ(R)) ≤
∑
v∈S

(cv − 2) (6.15)

This set of inequalities has been proved to be effective to tighten the dual bound in the
branch-and-cut algorithm. Besides, it can also be noticed that the capacity-2 inequalities
is a special case of the tightening inequalities, where cv = 2 for any node v ∈ S.

6.5 Projection from the Extended Polytope

Having the new inequalities introduced, the following sections show how can these in-
equalities be obtained by the projection of the valid inequalities for Bxy(G, r, c) using
the Fourier-Motzkin elimination. Particularly, in order to get the valid inequalities for
Bx(G, r, c), we use the linear system composed of (4.2) - (4.5) and (4.7), (4.8), which
are the constraints defining PCac(G, r, c) as in (4.18). Let Ax + Dy ≤ b denote the
system composed of (4.2) - (4.5) and (4.7), (4.8). The projection cone associated with
the projection of PCac(G, r, c) onto RE is the following

C = {ν : νTA = 0,ν ≥ 0},

where ν are the rays of C. We show that for each of the inequalities we introduced in
the last section, there exists a ray in C such that the inequality can be obtained through
projection along that ray.

6.5.1 Matching-partition inequalities

Here we show that for any (M,π ) ∈ MP(G), the matching-partition inequality x(M)−
x(Eπ \ δ(O)) ≤ 0 is a result of projection from the valid constraints for Bxy(G, r, c). Let
W = {s1, · · · , sk} be such that ei = siti with csi ≤ cti for each ei ∈ M , i = {1, · · · , k},
and s0 = r. Note that from the definition W ∩O = ∅ holds.

The following steps show that inequality x(M)− x(Eπ \ δ(O)) ≤ 0 can be obtained from
(4.1), (4.2), and (4.12).

For each Si ∈ π, i = {0, 1, · · · , k}, since W ∩O = ∅, one has

x(E[Si \O])− y(Si \ (O ∪ {si})) ≤ 0.
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Summing them up with

−x(E) + y(V \ {r}) = 0

gives us

−x(E) +
∑
Si∈π

x(E[Si \O]) + y(W ) + y(O) ≤ 0,

−x(Eπ \ δ(O))− x(δ(O)) + y(W ) + y(O) ≤ 0.

From (4.7) we have
x(δ(vo))− yvo = 0 ∀vo ∈ O,

which leads to
x(δ(O))− y(O) = 0.

Hence one gets
−x(Eπ \ δ(O)) + y(W ) ≤ 0.

From
xei − ysi ≤ 0,

for each si ∈ W , and ei ∈ M , one has

x(M)− y(W ) ≤ 0,

which finally leads to
x(M)− x(Eπ \ δ(O)) ≤ 0.

Thus the ray ν in the projection cone C that corresponds to the matching-partition
inequality x(M)− x(Eπ \ δ(O)) ≤ 0 is the following

ν =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, for x(E[Si \O])− y(Si \ (O ∪ {si})) ≤ 0 ∀i ∈ {1, · · · , k},
1, for − x(E) + y(V \ {r}) = 0,

1, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

1, for xei − ysi ≤ 0 ∀i ∈ {1, · · · , k},
0, otherwise.

6.5.2 Upload capacity inequalities

The upload capacity constraint (6.9) associated with a node in V \ (O ∪ {r}) can be
obtained from constraints (4.1), (4.2), (4.3) and (4.7) as follows. For any S ⊂ V \ {r}
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such that S ⊆ O, any v ∈ S \O, according to (4.1) and (4.2) one has

−x(E) + y(V \ {r}) = 0,

x(E[S \O])− y(S \ (O ∪ {v})) ≤ 0,

x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0.

From (4.7) we have
x(δ(vo))− yvo = 0 ∀vo ∈ O,

which leads to
x(δ(O))− y(O) = 0.

Summing them up gives us

yv − x(δ(S) \ δ(O)) ≤ 0,

which combining with

x(δ(v))− cvyv ≤ 0.

gives us

x(δ(v))− cvx(δ(S) \ δ(O)) ≤ 0.

Then the ray ν that corresponding to the upload capacity inequality x(δ(v))− cvx(δ(S)\
δ(O)) ≤ 0 is as follows

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cv, for x(E[S \O])− y(S \ (O ∪ {v})) ≤ 0,

cv, for x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0,

cv, for − x(E) + y(V \ {r}) = 0,

cv, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

1, for x(δ(v))− cvyv ≤ 0,

0, otherwise.

Similarly, the upload capacity constraint (6.10) associated with nodes in O can also be
obtained from (2.1), (2.2) and (4.7).

For any S ⊂ V \ {r} and any v ∈ S ∩O, according to (4.1) and (4.2) one has

−x(E) + y(V \ {r}) = 0,

x(E[S \ (O \ {v})])− y(S \O) ≤ 0,
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x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0.

From (4.7), one also has

x(δ(vo))− yvo = 0 ∀vo ∈ O \ {v},

which leads to
x(δ(O \ {v}))− y(O \ {v}) = 0.

Summing them up gives us

yv − x(δ(S) \ δ(O \ {v})) ≤ 0,

which combining with

x(δ(v))− yv = 0.

gives us

x(δ(v))− x(δ(S) \ δ(O \ {v})) ≤ 0,

which can be written as

x(δ(v) \ δ(S))− x(δ(S) \ δ(O)) ≤ 0,

Thus the ray ν ∈ C corresponding to the upload capacity inequality x(δ(v) \ δ(S)) −
x(δ(S) \ δ(O)) ≤ 0 is as follows

ν =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, for x(E[S \ (O \ {v})])− y(S \O) ≤ 0,

1, for x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0,

1, for − x(E) + y(V \ {r}) = 0,

1, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

0, otherwise.

6.5.3 Acyclicity-connectivity inequalities

Projection for acyclicity-connectivity inequalities (6.8) is similar to the upload capacity
inequalities.

The acyclicity-connectity inequalities can be obtained from inequalities (4.6), (4.7) and
(4.2) as follows.

Let W be a subset of S ⊆ V \ {r} with W ∩ O = ∅ and |W | ≥ 2. Given a node v ∈ W ,
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according to (4.2) one has

x(E[W ])− y(W \ {v}) ≤ 0.

In addition, for each s ∈ W \ {v}, since W ⊆ S ⊆ V \ {r} and W ∩ O = ∅, from (4.1),
(4.2) and (4.7) one has

−x(E) + y(V \ {r}) = 0,

x(E[S \O])− y(S \ (O ∪ {s})) ≤ 0,

x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0.

x(δ(vo))− yvo = 0 ∀vo ∈ O,

which leads to

ys − x(δ(S) \ δ(O)) ≤ 0 ∀s ∈ W \ {v}.

Thereby by summing all inequalities above one has

x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) ≤ 0.

Thus the ray ν in C that corresponds to the acyclicity-connectivity inequality x(E[W ])−
(|W | − 1)x(δ(S) \ δ(O)) ≤ 0 is as follows

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for x(E[W ])− y(W \ {v}) ≤ 0,

1, for x(E[S \O])− y(S \ (O ∪ {s})) ≤ 0 ∀s ∈ W \ {v}
|W | − 1, for x(E[S \O])− y(S \ (O ∪ {r})) ≤ 0,

|W | − 1, for − x(E) + y(V \ {r}) = 0,

|W | − 1, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

0, otherwise.

6.5.4 Capacity-i inequalities

Recall that for any i ≥ 2,

Si = {v ∈ V \ {r} : cv = i}.

Given S ⊆ Si, and R = V \ (S ∪ O), and the corresponding capacity-i inequality can be
obtained as follows. From (4.3),∑

v∈S
x(δ(v))− iy(S) ≤ 0,
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which can be rewritten as

x(δ(R, S)) + x(δ(S,O)) + 2x(E[S])− iy(S) ≤ 0. (6.16)

From (4.2), one has
x(E[R])− y(R \ {r}) ≤ 0. (6.17)

Combining (4.1) and (4.7) gives us

x(E[R ∪ S])− y(R ∪ S \ {r}) = 0. (6.18)

Then one can see that as a result of (6.16), (6.17), and (6.18), one has

x(δ(R, S)) + x(δ(S,O)) + 2x(E[S])− iy(S)

+ix(E[R])− iy(R \ {r})
−ix(E[R ∪ S]) + iy(R ∪ S \ {r}) ≤ 0,

which is equivalent to

x(δ(S,O))− (i− 2)x(E[S])− (i− 1)x(δ(R, S) ≤ 0,

and

x(δ(O) \ δ(R))− (i− 2)x(E[S])− (i− 1)x(δ(R) \ δ(O)) ≤ 0.

Thus the corresponding ray ν ∈ C to this capacity-i inequality is as follows

ν =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i, for x(E[R])− y(R \ {r}) ≤ 0,

1, for x(δ(v))− iyv ≤ 0, ∀v ∈ S,

i, for − x(E) + y(V \ {r}) = 0,

i, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

0, otherwise.

Furthermore, note that the capacity-i inequalities is a special case of the i-articulation
inequalities. The i-articulation inequalities can be obtained by a similar approach as the
one presented above, the only adjustments need to be made is that instead of considering
O and δ(S,O) one considers DS and FS.
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6.5.5 Tightening inequalities

For the tightening inequalities, from (4.3) we have∑
v∈S

(x(δ(v))− cvyv) ≤ 0,

which can be rewritten as

x(δ(R, S)) + x(δ(S,O)) + 2x(E[S])−
∑
v∈S

cvyv ≤ 0. (6.19)

Inequality (6.17) still holds, and inequality (6.18) holds similarly for tightening inequali-
ties as presented below.

x(E[R ∪ S])− y(R ∪ S \ {r}) = 0. (6.20)

The sum of (6.17), (6.19), and (6.20) gives us

x(δ(R, S)) + x(δ(S,O)) + 2x(E[S])−
∑
v∈S

cvyv

+2x(E[R])− 2y(R \ {r})
−2x(E[R ∪ S]) + 2y(R ∪ S \ {r}) ≤ 0,

which is equal to

−x(δ(R, S)) + x(δ(S,O))−
∑
v∈S

(cv − 2)yv ≤ 0.

Combining it with
∑
v∈S

(cv − 2)(yv − 1) ≤ 0 gives us

−x(δ(R, S)) + x(δ(S,O))−
∑
v∈S

(cv − 2) ≤ 0,

which is the tightening inequality. Thus the corresponding ray ν ∈ C to this tightening
inequality is as follows

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, for x(E[R])− y(R \ {r}) ≤ 0,

1, for x(δ(v))− cvyv ≤ 0, ∀v ∈ S,

2, for − x(E) + y(V \ {r}) = 0,

2, for x(δ(vo))− yvo = 0 ∀vo ∈ O,

cv − 2, for yv ≤ 1, ∀v ∈ S,

0, otherwise.
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Thereby, we show all the new inequalities introduced earlier can be projected from the
facet-defining inequalities for the extended bounded r-tree polytope.

6.6 Bounds on Chvátal-Gomory rank

We now introduce some results regarding the Chvátal-Gomory rank of the newly dis-
covered inequalities mentioned in Section 6.4 with respect to the polytope defined by
(6.1)-(6.5).

6.6.1 Matching-partition inequalities

First, given a matching-partition (M,π ) ∈ MP(G), denote the Chvátal-Gomory rank
of its associated matching-partition inequality rk(MPM,π). We show that the following
proposition holds.

Proposition 6.6.1. Let (M,π ) ∈ MP(G), then

rk(MPM,π) ≤ |M | − 1.

Proof. In order to simplify the notation in the proof hereafter, let

δ′(S1, S2) = δ(S1, S2) \ δ(O) ∀S1, S2 � V, S1 ∩ S2 = ∅,
δ′(S) = δ(S) \ δ(O) ∀S � V,

E ′
π = Eπ \ δ(O) ∀(M,π ) ∈ MP(G).

We start with |M | = 1, since it becomes the connectivity inequality (6.1), its Chvátal-
Gomory rank is clearly equal to 0, that is,

rk(MPM,π) = 0 ∀(M,π ) ∈ MP(G), |M | = 1.

For |M | ≥ 2, let M = {e1, · · · , ek}, π = {S0, S1, · · · , Sk}. For any i ∈ {1, · · · , k}, let
M ′

i = M \ {ei}, and π′
i = {S0 ∪ Si, S1, · · · , Si−1, Si+1, · · · , Sk}. It is clear that (M ′

i , π
′
i) ∈

MP(G). Thus one has

x(M)− xe1 − (x(E ′
π)− x(δ′(S0, S1))) ≤ 0

x(M)− xe2 − (x(E ′
π)− x(δ′(S0, S2))) ≤ 0

...

x(M)− xei − (x(E ′
π)− x(δ′(S0, Si))) ≤ 0
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...

x(M)− xek − (x(E ′
π)− x(δ′(S0, Sk))) ≤ 0

Summing them up gives us

(k − 1)x(M)− kx(E ′
π \ δ′(S0))− (k − 1)x(δ′(S0)) ≤ 0 (6.21)

Similarly we can also merge any distinct Si and Sj in π\{S0} to obtain two new matching-
partition whose matchings are M \{ei} and M \{ej} respectively. Consequently, we have
the following k(k − 1) matching-partition inequalities

x(M)− xe1 − (x(E ′
π)− x(δ′(S1, S2))) ≤ 0

x(M)− xe2 − (x(E ′
π)− x(δ′(S1, S2))) ≤ 0

x(M)− xe1 − (x(E ′
π)− x(δ′(S1, S3))) ≤ 0

x(M)− xe3 − (x(E ′
π)− x(δ′(S1, S3))) ≤ 0

...

x(M)− xei − (x(E ′
π)− x(δ′(Si, Sj))) ≤ 0

x(M)− xej − (x(E ′
π)− x(δ′(Si, Sj))) ≤ 0

...

x(M)− xek−1
− (x(E ′

π)− x(δ′(Sk−1, Sk))) ≤ 0

x(M)− xek − (x(E ′
π)− x(δ′(Sk−1, Sk))) ≤ 0.

Summing them up leads to

(k − 1)(k − 1)x(M)− (k2 − k − 2)x(E ′
π \ δ′(S0))− k(k − 1)x(δ′(S0)) ≤ 0. (6.22)

From the connectivity inequalities, one has

xe1 − x(δ′(S1)) ≤ 0

xe2 − x(δ′(S2)) ≤ 0

...

xei − x(δ′(Si)) ≤ 0

...

xek − x(δ′(Sk)) ≤ 0,
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which leads to
x(M)− 2x(E ′

π \ δ′(S0))− x(δ′(S0)) ≤ 0. (6.23)

One also has, from the box inequalities

kx(M) ≤ k2 (6.24)

By summing up (6.21), (6.22), (6.23), (6.24), one has

(k2 + 1)x(M)− k2x(E ′
π \ δ′(S0))− k2x(δ′(S0)) ≤ k2.

Hence, we have

k2 + 1

k2 + 1
x(M)− k2

k2 + 1
x(E ′

π \ δ′(S0))− k2

k2 + 1
x(δ′(S0)) ≤ k2

k2 + 1
,⌊k2 + 1

k2 + 1

⌋
x(M)+

⌊
− k2

k2 + 1

⌋
x(E ′

π \ δ′(S0))+
⌊
− k2

k2 + 1

⌋
x(δ′(S0)) ≤

⌊ k2

k2 + 1

⌋
,

x(M)− x(E ′
π \ δ′(S0))− x(δ′(S0)) ≤ 0.

Therefore, it shows that rk(MPM,π) satisfies

rk(MPM,π) ≤ max{rk(MPM ′,π′) : (M ′, π′) ∈ MP(G), |M ′| = |M | − 1}+ 1.

As we have rk(MPM ′,π′) = |M ′| − 1 = 0 for any (M ′, π′) ∈ MP(G) with |M ′| = 1, by
induction, we deduce that rk(MPM,π) ≤ |M | − 1 for any (M,π ) ∈ MP(G).

It is worth noting that one can obtain a tighter bound for some matching-partition
(M,π ) ∈ MP(G) such that G′ contains multiple blocks, where G′ is the graph that
obtained from G \ O by contracting Si ∈ π into a node. As it has been shown in the
proof of Proposition 6.4.2, the associated inequality with such matching-partition can be
written as linear combination of several matching partitions, each of which corresponds
to a block of G′. Thus we have the following corollary.

Corollary 6.6.2. Given (M,π ) ∈ MP(G), let q ∈ Z+ be the number of nodes in the
largest block in G′. We have rk(MPM,π) ≤ q − 1.

Proof. According to the proof of Proposition 6.4.2, x(M) − x(Eπ \ δ(O)) ≤ 0 can be
written as a linear combination of several matching partitions (M1, π1), · · · , (Mj, πj) of
G, such that q = max{|Mi| : i ∈ {1, · · · , j}}. Thus,

rk(MPM,π) ≤ max{rk(MPMi,πi
) : i ∈ {1, · · · , j}}.
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Figure 6.7: A matching-partition inequality with Chvátal-Gomory rank 2

Combining it with Proposition 6.6.1 gives us

rk(MPM,π) ≤ max{|Mi| − 1 : i ∈ {1, · · · , j}}
= q − 1,

which completes the proof.

Moreover, we can prove that there exists some matching-partition inequality whose
Chvátal-Gomory rank is at least 2. Take the graph in Figure 6.7 as an instance and
suppose the capacity constraints are redundant. Let (M,π ) ∈ MP(G) be the matching-
partition such that

M = {e2, e4, e6},
Eπ = {e1, e3, e5, e7}.

The system of inequalities composed of (6.1)-(6.5) then reduces to the following

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (6.25)

x(E) ≤ |E| − 1 (6.26)

xe ≤ 1 ∀e ∈ E, (6.27)

−xe ≤ 0 ∀e ∈ E. (6.28)

The matching-partition inequality associated with (M,π ) can be written as follows

xe2 + xe4 + xe6 − xe1 − xe3 − xe5 − xe7 ≤ 0. (6.29)
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Assume that its Chvátal-Gomory rank is 1, and let

7∑
i=1

aixei ≤ b,

be a linear combination of inequalities in (6.1)-(6.5) such that,

	ai
 = 1 ∀i ∈ {2, 4, 6},
	ai
 = −1 ∀i ∈ {1, 3, 5, 7},
	b
 = 0.

Let λei,S be the coefficient corresponding to the inequality in (6.25) associated with ei

and S, λ0 be the coefficient corresponding to (6.26), λu
i be the coefficient of the inequality

(6.27) associated with ei, and λl
i be the coefficient corresponding to the inequality (6.28)

associated with ei. Note that all the coefficients should be non-negative. For any i ∈
{1, · · · , 7}, let

Si = {S ⊆ V \ {r} : ei ∈ E[S]},
Ci = {S ⊆ V \ {r} : ei ∈ δ(S)}.

Then let

n1 =
∑

i∈{2,4,6}

∑
S∈Si

λei,S,

n2 =
∑

i∈{2,4,6}

∑
S∈Ci

λei,S,

n3 =
∑

i∈{1,3,5,7}

∑
S∈Si

λei,S,

n4 =
∑

i∈{1,3,5,7}

∑
S∈Ci

λei,S.

Straightforwardly, as each inequality in (6.25) has exactly two edges in δ(S), one has

2(n1 + n3) = n2 + n4,

which leads to

n4 − n3 = 2n1 + n3 − n2

≥ 2n1 − n2

≥ 2(n1 − n2).
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Additionally, let

m1 =
∑

i∈{2,4,6}
λu
i ,

m2 =
∑

i∈{2,4,6}
λl
i,

m3 =
∑

i∈{1,3,5,7}
λu
i ,

m4 =
∑

i∈{1,3,5,7}
λl
i.

Thus we have

a2 + a4 + a6 = n1 − n2 + 3λ0 +m1 −m2,

a1 + a3 + a5 + a6 = n3 − n4 + 4λ0 +m3 −m4,

b = 6λ0 +m1 +m3.

From the assumption, one must also have

a2 + a4 + a6
3

≥ 1,

a1 + a3 + a5 + a6
4

≥ −1,

b < 1.

We can derive that

a2 + a4 + a6
3

≥ 1 > b, (6.30)

a2 + a4 + a6
3

≥ 1 ≥ −a1 + a3 + a5 + a6
4

. (6.31)

(6.30) gives us

n1 − n2 + 3λ0 +m1 −m2

3
> 6λ0 +m1 +m3,

and equivalently, one has

n1 − n2 − 15λ0 − 2m1 −m2 − 3m3 > 0. (6.32)
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On the other hand, (6.31) together with n4 − n3 ≥ 2(n1 − n2) gives us

n1 − n2 + 3λ0 +m1 −m2

3
≥ n4 − n3 − 4λ0 − (m3 −m4)

4
n1 − n2 + 3λ0 +m1 −m2

3
≥ 2(n1 − n2)− 4λ0 − (m3 −m4)

4

0 ≥ 2(n1 − n2)− 24λ0 − 4m1 + 4m2 − 3m3 + 3m4

0 ≥ n1 − n2 − 12λ0 − 2m1 + 2m2 − 3

2
m3 +

3

2
m4,

which combining with

0 ≥ −3λ0 − 3m2 − 3

2
m3 − 3

2
m4,

leads to

0 ≥ n1 − n2 − 15λ0 − 2m1 −m2 − 3m3. (6.33)

Therefore, (6.32) and (6.33) form a contradiction, and thus the Chvátal-Gomory rank of
(6.29) is at least 2.

6.6.2 Upload capacity inequalities

Given S ⊆ V \ {r} and v ∈ S, let the set of edges in δ(v) that are not in δ(S) \ δ(O) be

D := δ(v) \ (δ(S) \ δ(O)).

Let UC|D|≤cv represents the upload capacity inequalities that satisfy |D| ≤ cv.

Proposition 6.6.3. rk(UC|D|≤cv) ≤ 1.

Proof. For each ei ∈ D,
xei − x(δ(S) \ δ(O)) ≤ 0.

As a result, one has
x(D)− |D|x(δ(S) \ δ(O)) ≤ 0.

From the capacity inequality for v,

x(D) + x(δ(v) \D) ≤ cv.
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From these two parts, by giving them coefficients cv and 1 respectively, one can get

(cv + 1)x(D)− (cv|D| − 1)x(δ(v) \D)− cv|D|x(δ(S) \ (δ(O) ∪ δ(v))) ≤ cv.

Since |D| ≤ cv, one can add the following part

−cv(cv − |D|)x(δ(v) \D)) ≤ 0,

−cv(1 + cv − |D|)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.

to obtain

(cv + 1)x(D)− (cv + 1)(cv − 1)x(δ(v) \D)− cv(cv + 1)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ cv.

Finally by dividing both sides by cv + 1, and round down the coefficients, one gets

x(D)− (cv − 1)x(δ(v) \D)− cvx(δ(S) \ (δ(O) ∪ δ(v))) ≤
⌊ cv
cv + 1

⌋
,

which can be written as

x(δ(v))− cvx(δ(S) \ δ(O \ {v})) ≤ 0.

Therefore we have rk(UC|D|≤cv) ≤ 1.

Moreover, if the inequality is not one of those rank 0 inequalities, then it can be restricted
to rk(UC|D|≤cv) = 1.

Let F ⊆ D, and UC ′ represents the following inequality

x(F )− (cv − 1)x(δ(v) \D)− cvx(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0. (6.34)

This inequality is valid, because of the validity of upload capacity and the non-negativity
of the variables. From the Proposition 6.6.3, one can also derive the following lemma.

Lemma 6.6.4. rk(UC ′
|F |≤cv

) ≤ 1,

Proof. Following a similar procedure as the proof of Proposition 6.6.3 with substituting
D for F , eventually one will get

(cv + 1)x(F ) + x(D \ F )− (cv + 1)(cv − 1)x(δ(v) \D)

−cv(cv + 1)x(δ(S) \ (δ(O) ∪ δ(v))) ≤ cv.
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Hence, after divided by cv + 1 and round-down, it becomes exactly the inequality (6.34),
which proves the Chvátal-Gomory rank of (6.34) is at most 1 if |F | ≤ cv.

Proposition 6.6.5. rk(UC|D|≥cv) ≤ |D| − cv + 1.

Proof. According to Proposition 6.6.3, rk(UC|D|=cv) ≤ |D| − cv + 1.

Assume |D| ≥ cv + 1, from Lemma 6.6.4, one has for any F ⊆ D with |F | = cv, the
following inequality with at most Chvátal-Gomory rank 1.

x(F )− (cv − 1)x(δ(v) \D)− cvx(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.

We then assume that, for any F ⊆ D, |F | ≥ cv+1, the Chvátal-Gomory rank of inequality
(6.34) associating with the set F ′ ⊆ D, |F ′| = |F |−1, is known to be at most |F ′|−cv+1 =

|F | − cv.

Summing up all the possibilities of F ′ with each e ∈ F being in F \ F ′, results in the
following inequality.

(|F | − 1)x(F )− (cv − 1)|F |x(δ(v) \D)− cv|F |x(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.

Hence, plus
x(D) + x(δ(v) \D) ≤ cv,

it leads to

|F |x(F ) + x(D \ F )− ((cv − 1)|F | − 1)x(δ(v) \D)− cv|F |x(δ(S) \ (δ(O) ∪ δ(v))) ≤ cv,

which, dividing both sides by |F | results in

x(F ) +
1

|F |x(D \ F )− ((cv − 1)− 1

|F |)x(δ(v) \D)− cvx(δ(S) \ (δ(O) ∪ δ(v))) ≤ cv
|F | .

Since |F | ≥ cv + 1 ≥ 2, one has 0 < 1
|F | < 1, and 0 < cv

|F | < 1. Rounding this inequality
down gives us

x(F )− (cv − 1)x(δ(v) \D)− cvx(δ(S) \ (δ(O) ∪ δ(v))) ≤ 0.

Thus its Chvátal-Gomory rank is at most |F | − cv + 1.

Then if D = F , the inequality can be written as x(δ(v))− cvx(δ(S) \ δ(O)) ≤ 0 instead,
which indicates that its Chvátal-Gomory rank is at most |D| − cv + 1.

Moreover, we can prove that there exists some upload capacity inequality whose Chvátal-
Gomory rank is at least 2. Take the graph in Figure 6.8 as an instance and assume that
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Figure 6.8: An upload capacity inequality with Chvátal-Gomory rank 2

only the capacity of v is not redundant. According to the facial study, the system of
inequalities composed of (6.1)-(6.5) then reduces to the following

xei − xf ≤ 0 ∀i ∈ {1, 2, 3}, (6.35)

xe1 + xe2 + xe3 + xf ≤ 2 (6.36)

xf ≤ 1 (6.37)

− xei ≤ 0 ∀i ∈ {1, 2, 3}. (6.38)

The upload capacity inequality associated with v and S = V \ {r} can be written as
follows

xe1 + xe2 + xe3 − xf ≤ 0. (6.39)

Assume that its Chvátal-Gomory rank is 1. Let λi correspond to the coefficient to the
inequality (6.35) associated with ei, λc correspond to the coefficient to the (6.36), λf

correspond to the coefficient to the (6.37), and μi correspond to the coefficient to the
inequality (6.38) associated with ei. We have that the following system admits some
feasible solution.

λi + λc − μi ≥ 1 ∀i ∈ {1, 2, 3}, (6.40)

−λ1 − λ2 − λ3 + λc + λf ≥ −1, (6.41)

2λc + λf < 1, (6.42)

λi, μi ≥ 0 ∀i ∈ {1, 2, 3}, (6.43)

λc, λf ≥ 0. (6.44)

From (6.42) we have

λc <
1

2
.
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Then from (6.40) we deduce

−λi + μi ≤ λc − 1 < −1

2
∀i ∈ {1, 2, 3},

Hence, from the non-negativity of λ and μ one has

−λ1 − λ2 − λ3 + λc + λf ≤ −λ1 + μ1 − λ2 + μ2 − λ3 + μ3 + λc + λf

= −λ1 + μ1 − λ2 + μ2 − (λ3 + λc − μ3) + 2λc + λf

< −1

2
− 1

2
− 1 + 1 = −1,

which contradicts with (6.41). Therefore, the Chvátal-Gomory rank of (6.39) is at least
2.

In the next section we show that with the help of matching-partition inequalities and
the upload capacity inequalities, we can characterize Bx(G, r, c) on cycles and trees. As
we have showed in this section that there are matching-partition inequalities and upload
capacity inequalities on cycles and on trees that have Chvátal-Gomory rank at least 2
with respect to the polytope defined by (6.1)-(6.5), thus the characterization can not be
trivially obtained as its first Chvátal closure.

6.7 TDI-ness

6.7.1 On trees

According to the results on valid inequalities and facets presented in Sections 6.3 and 6.4,
one can deduce that some of these inequalities are redundant on trees. By getting rid of
these redundant inequalities we obtain the following linear program for MBrT problem
on trees.

max wTx

s.t. xe − xfe ≤ 0 ∀e ∈ E \ δ(r), (6.45)

x(δ(v))− cvxfv ≤ 0 ∀v ∈ V \ {r}, (6.46)

x(δ(r)) ≤ cr, (6.47)

xe ≤ 1 ∀e ∈ δ(r), (6.48)

xe ≥ 0 ∀e is a leaf edge, (6.49)

where fv denotes the edge of Prv in δ(v) for v ∈ V \ {r}, and fe denotes the edge of Pre

adjacent to e for e ∈ E \ δ(r).
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Let the polytope defined by the linear system composed of (6.45)-(6.49) be

PxT (G, r, c) = {x ∈ RE : x satisfies (6.45) − (6.49)}.

We hereafter show that it is a ideal formulation for Bx(G, r, c) on trees and that the system
defining PxT (G, r, c) is TDI. First of all, we show that PxT (G, r, c) is a formulation for
Bx(G, r, c) if G is a tree.

Theorem 6.7.1. Let G be a tree. PxT (G, r, c) ∩ ZE = Bx(G, r, c) ∩ ZE.

Proof. Note that (6.45) is obtained from the connectivity inequalities (6.1), whereas (6.46)
is obtained from the upload capacity inequalities (6.9). Hence (6.45)-(6.49) are all valid
for Bx(G, r, c). Consequently, Bx(G, r, c) ⊆ PxT (G, r, c).

Consider now any vector xF ∈ PxT (G, r, c) ∩ ZE with F ⊆ E. The induced graph GF is
bounded since xF satisfies (6.46) and (6.47). For each edge e ∈ F , from (6.45), one can
deduce that each edge in the path between r and e is also in F . Thus, GF is a bounded
r-tree of G, that is, xF ∈ Bx(G, r, c) ∩ ZE.

Proposition 6.7.2. Let G be a tree. PxT (G, r, c) is integral.

Proof. Assume that there exists a fractional extreme point x of Px(G, r, c). Let fv =

uv ∈ E be an edge such that xfv is fractional, and either u = r or xfu = 1. Note that if
u = r, we have that xfv − xfu ≤ 0 is not binding at x.

According to (6.45), one has that for any edge e in E[	v
], 0 ≤ xe ≤ xuv < 1. We split
the proof into two cases depending on the value of x(δ(u)) − cu. Since xfu = 1 when
u = r, x(δ(u))− cu corresponds to the left-hand side of (6.46) when u = r and of (6.47)
when u = r.

Suppose first x(δ(u))− cu < 0. Let x′ be the vector such that

x′
e =

{
(1 + ε)xe if e ∈ E[	v
] ∪ {uv},
xe otherwise,

where ε ∈ R \ {0}. Notably, we have that

x′
e − x′

fe =

{
(1 + ε)(xe − xfe) if e ∈ E[	v
],
xe − xfe if e ∈ E \ (E[	v
] ∪ {uv}),

and

x′(δ(s))− csx
′
fs =

{
(1 + ε)(x(δ(s))− csxfs) if s ∈ 	v
,
x(δ(s))− csxfs if s ∈ V \ (	v
 ∪ {r, u}).
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In addition, for any e ∈ E with xe ∈ {0, 1}, we have x′
e = xe from the definition of

x′. Thus if any of the inequalities (6.45), (6.46), and (6.49) is binding at x then it is
also binding at x′. Therefore, x′ satisfies all the equations that x does, which forms a
contradiction.

Suppose now x(δ(u)) − cu = 0. It can be deduced that there also exists another edge
uv′ ∈ δ(u)\{uv} with xuv′ fractional. Since xfu = 1 if u = r we clearly have uv′ ∈ E[	u
].
Consider the vector x′′ defined as

x′′
e =

⎧⎪⎨⎪⎩
(1 + λ)xe if e ∈ E[	v
] ∪ {uv},
(1− λ′)xe if e ∈ E[	v′
] ∪ {uv′},
xe otherwise,

where λ,λ ′ ∈ R \ {0} are such that λxuv = λ′xuv′ . One has that x′′(δ(u)) − cu = 0.
Similarly to the previous case, we have

x′′
e − x′′

fe =

⎧⎪⎨⎪⎩
(1 + λ)(xe − xfe) if e ∈ E[	v
],
(1− λ′)(xe − xfe) if e ∈ E[	v′
],
xe − xfe if e ∈ E \ (E[	v
] ∪ E[	v′
] ∪ {uv, uv′}),

and

x′′(δ(s))− csx
′′
fs =

⎧⎪⎨⎪⎩
(1 + λ)(x(δ(s))− csxfs) if s ∈ 	v
,
(1− λ′)(x(δ(s))− csxfs) if s ∈ 	v′
,
x(δ(s))− csxfs if s ∈ V \ (	v
 ∪ 	v′
 ∪ {r, u}).

In addition, for any e ∈ E with xe ∈ {0, 1}, we have x′′
e = xe. Therefore, x′′ satisfies all

the equations that x does, which forms a contradiction.

Consequently, PxT (G, r, c) does not admit any fractional extreme point.

The next corollary immediately follows

Corollary 6.7.3. Let G be a tree. we have

PxT (G, r, c) = Bx(G, r, c).

As a result, if the capacity constraints are redundant, or in other words, in the case of
Rx(G, r), we have

Corollary 6.7.4. Let G be a tree. we then have

Rx(G, r) = {x ∈ RE : x satisfies (6.45), (6.48) and (6.49)}.
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We now prove that the linear system defining PxT (G, r, c) is TDI. Since TDI-ness is a
sufficient condition for integrality, see Edmonds and Giles [1977], Theorem 6.7.1 could
have been seen as a direct consequence of the next theorem.

Theorem 6.7.5. The linear system composed of (6.45)-(6.49) is TDI.

Proof. Consider the linear program

max{wTx : x ∈ PxT (G, r, c)}, (6.50)

where w ∈ RE. For any e ∈ E, let αe be the dual variable corresponding to inequality
(6.45) or (6.48) associated with e. For any v ∈ V , let βv be the dual variable corresponding
to inequality (6.46) or (6.47) associated with v. The dual linear program of (6.50) is the
following

min crβr +
∑
e∈δ(r)

αe

s.t. −
∑

e′∈δ(ve)\{e}
αe′ − (cve − 1)βve + αe + βue = we ∀e is not a leaf edge, (6.51)

αe + βue ≥ we ∀e is a leaf edge, (6.52)

αe, βv ≥ 0 ∀e ∈ E, v ∈ V, (6.53)

where for any edge e ∈ E, e ∈ δ(ue) ∩ E[	ue
], and e ∈ δ(ve) ∩ E[�ve�], that is, e = ueve

and ve is the extremity of e the furthest away from r.

We first recall some of the notation and results presented in Chapter 3. Given any node
v ∈ V , let g(v) be the value of a maximum bounded tree rooted at v of the subgraph
G[	v
] of G, where the capacity vector cv ∈ Z

�v�
+ satisfies cvv = cv − 1 if v = r, cvv = cv if

v = r, and cvs = cs, for s ∈ 	v
 \ v, that is,

g(v) = max{f(GF ) = w(F ) : GF is tree of G[	v
] bounded by cv}.

For any node v ∈ V , let

h(v) =

{
wfv + g(v) if v ∈ V \ {r},
g(v) if v = r.

According to Lemma 3.1.1, for any v ∈ V we have

g(v) = max{
∑
s∈S

h(s) : S ⊆ N(v) ∩ 	v
, |S| ≤ cvv}.
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Note that since g(vl) = 0 for any leaf vl, g(v) ≥ 0 for any v ∈ V . For each node v ∈ V ,
let {v1, · · · , vtv , vtv+1 · · · , vqv} be the set of nodes in 	v
 adjacent to v, that is,

N(v) ∩ 	v
 = {v1, · · · , vtv , vtv+1 · · · , vqv}

with qv ≥ 0. Note that if v is a leaf, we have q = 0. Without loss of generality, we assume
that h(v1) ≥ h(v2) ≥ · · · ≥ h(vtv) > 0 ≥ h(vtv+1) ≥ · · · ≥ h(vqv). Let jv = min{tv, cvv}
for v ∈ V . We then have

g(v) =

jv∑
k=1

h(vk).

Moreover, a primal solution (whose objective value is g(r)) can be obtained using Algo-
rithm 3.1 according to Proposition 3.1.2.

Now we present an effective approach to obtain a corresponding dual solution. The value
of β can be first decided as follows

βv =

{
h(vjv) if v ∈ V, v is not a leaf and jv = cvv,

0 otherwise.

It can be seen that βv ≥ 0 for any v ∈ V .

For any edge e = ueve, let

α′
ueve = h(ve)− βue ,

Δ0
ueve =

{
0 if α′

ueve ≥ 0,

−α′
ueve otherwise.

Notice that α′
ueve +Δ0

ueve ≥ 0 and Δ0
ueve ≥ 0 always hold, but it is possible that α′

ueve < 0.
For any leaf edge ueve ∈ E, we have

α′
ueve + βue = h(ve)

= wueve .

Consider a non-leaf node v ∈ V . By the definition of βv, if jv < cvv one has βv = 0. Thus

jvβv = cvvβv (6.54)

always holds. For any i > jv, we have that h(vi) ≤ h(vjv) = βv if jv = cvv, whereas
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h(vi) ≤ 0 = βv if jv < cvv. Hence we have h(vi) ≤ βv and thus

α′
vvi +Δ0

vvi = 0 ∀i > jv. (6.55)

Similarly, for any i ≤ jv it can be deduced from h(vi) ≥ βv that

Δ0
vvi = 0 ∀i ≤ jv. (6.56)

Therefore, for any non-leaf node v ∈ V , we have

jv∑
i=1

h(vi) =

jv∑
i=1

(α′
vvi + βv) +

qv∑
i=jv+1

(α′
vvi +Δ0

vvi)

=

jv∑
i=1

(α′
vvi +Δ0

vvi + βv) +

qv∑
i=jv+1

(α′
vvi +Δ0

vvi)

= cvvβv +

qv∑
i=1

(α′
vvi +Δ0

vvi),

where the first equality comes from the definition of α′
vvi and (6.55), the second equality

from (6.56), and the last equality from (6.54).

This gives us that for any non-leaf edge e = ueve ∈ E, we have

α′
ueve + βue = h(ve)

= wueve +

jve∑
i=1

h(vie)

= wueve + cveveβve +

qve∑
i=1

(α′
vevie

+Δ0
vevie

).

Consequently, we have

h(r) = g(r)

=

jr∑
i=1

h(ri)

= crβr +

qr∑
i=1

(α′
rri +Δ0

rri).

Hereafter we construct a solution [ αβ ], based on
[
α′+Δ0

β

]
, that is integral, dual-feasible

and with objective value g(r).
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For each edge e = ueve ∈ E, let d(e) denote the difference between the left-hand side and
right-hand side of the dual constraint associated with e. For the vector

[
α′+Δ0

β

]
, we have

d(e) = α′
ueve + βue +Δ0

ueve − (wueve + cveveβve +

qve∑
i=1

(α′
vevie

+Δ0
vevie

))

= Δ0
e.

Let the set of non-leaf edges which do not satisfy d(e) = 0 be

F = {e ∈ E : Δ0
e > 0, e is not a leaf edge}.

Now we prove that there exists a vector Δ1 ∈ RE
+ such that

[
α′+Δ0+Δ1

β

]
is dual-feasible.

Algorithm 6.1 computes the vector Δ1.

Algorithm 6.1: Algorithm on trees to obtain Δ1

Input : Tree G = (V,E) and Δ0.
Output: Δ1.
begin

1 Set Δ1 = 0.
while F = ∅ do

2 Take an edge e = ueve ∈ F such that Prue ∩ F = ∅.
3 Pick one path Pvevl between ve and any leaf vl ∈ 	ve
.
4 For each edge in e′ ∈ Pvevl

5 set Δ1
e′ = Δ1

e′ +Δ0
ueve .

6 Set F = F \ {ueve}.

Let α denote α′ +Δ0 +Δ1. For each non-leaf edge e = ueve, the d(e) corresponding to
[ αβ ] is

d(e) = Δ0
ueve +Δ1

ueve −
qve∑
i=1

Δ1
ueve .

Let C(e′) = {e ∈ E : e′ belongs to Pvevl in Lines 4-5 of Algorithm 6.1} for any e′ ∈ E.
Consider any non-leaf edge e = ueve. We have

C(e) =
qve⋃
i=1

C(vevie) \ {e}.
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The sets C(vevie), i ∈ {1, · · · , qve}, are pairwise disjoint. Thus

d(e) = Δ0
ueve +Δ1

ueve −
qve∑
i=1

Δ1
ueve

= Δ0
ueve +

∑
e′∈C(ueve)

Δ0
e′ − (

qve∑
i=1

∑
e′∈C(vevie)

Δ0
e′)

= Δ0
ueve +

∑
e′∈C(ueve)

Δ0
e′ − (Δ0

ueve +
∑

e′∈C(ueve)

Δ0
e′)

= 0.

Hence, all the equations in (6.51) are satisfied. Furthermore, for any leaf edge e = ueve ∈
E, one has

αueve + βue = αueve

= α′
ueve +Δ0

ueve +Δ1
ueve

≥ wueve +Δ1
ueve

≥ wueve ,

which indicates that (6.52) is satisfied. For any e ∈ E, we have that α′
e + Δ0

e ≥ 0 and
Δ1

e ≥ 0, which leads to αe ≥ 0. Therefore, [ αβ ] is dual-feasible.

Notice that for any edge rri ∈ δ(r) as C(rri) = ∅, we have Δ1
rri = 0. Hence the following

equation holds

g(r) = crβr +

qr∑
i=1

(α′
rri +Δ0

rri)

= crβr +

qr∑
i=1

(α′
rri +Δ0

rri +Δ1
rri)

= crβr +

qr∑
i=1

αrri .

This indicates that the objective value of [ αβ ] is g(r), and [ αβ ] is dual-optimal.

Finally, vectors α and β are obtained by additions and subtractions involving only the
components of w. So [ αβ ] is integral if w is integral, which completes our proof.
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6.7.2 On cycles

In this subsection, we completely characterize the polytope Bx(G, r, c) on cycles by a
TDI system. It is worth mentioning that the integrality of this polytope can also be
obtained using a similar approach as for Bxy(G, r, c) on trees and cycles in Section 4.4.
However, for the sake of conciseness, we only present the proof based on the TDI-ness in
this dissertation.

First of all, we introduce some notation.

For any edge e ∈ E, let

Me = {(M,π ) ∈ MP(G) : e ∈ M},
Pe = {(M,π ) ∈ MP(G) : e ∈ Eπ \ δ(O)}.

Since G is a cycle, we can assume without loss of generality that

V = {r, v1, · · · , vn−1},
E = {e1 = rv1, en = rvn−1} ∪ {ei = vi−1vi : i ∈ {2, · · · , n− 1}}.

We consider four cases depending on the capacity of r and whether set O is empty.

6.7.2.1 Case 1. cr = 1 and O = {vo}

Note that o ∈ {1, · · · , n− 1}. Let the two paths between r and vo be

P1 = {e1, · · · , eo},
P2 = {eo+1, · · · , en}.

From the connectivity inequalities (6.6), we have

xeo − xe1 ≤ 0,

xeo+1 − xen ≤ 0,

whereas from the capacity inequality (6.3) associated with r, we have

xe1 + xen ≤ 1.

Then the capacity inequality (6.3) associated with vo, that is, xeo + xeo+1 ≤ 1, can be
obtained as the sum of these three inequalities, and thus is redundant. After getting rid
of some redundant inequalities from (6.3)-(6.5) and (6.6) we obtain the following linear
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system of inequalities

xei − xei−1
≤ 0 ∀i ∈ {2, · · · , o}, (6.57)

xei − xei+1
≤ 0 ∀i ∈ {o+ 1, · · · , n− 1}, (6.58)

xe1 + xen ≤ 1, (6.59)

xei ≤ 1 ∀i ∈ {1, n}. (6.60)

xei ≥ 0 ∀i ∈ {o, o+ 1}. (6.61)

Notice that we consider (6.6) instead of (6.1) because of the existence of vo ∈ O. Let
G′ = (V ′, E ′) be a path obtained from G by splitting vo into two nodes v1o and v2o , that
is,

V ′ = {r, v1, · · · , vo−1, v
1
o , v

2
o , vo+1, · · · , vn−1},

E ′ = E \ δ(vo) ∪ {vo−1v
1
o , v

2
ovo+1}.

Let c′ ∈ ZE′
be a vector such that cr = 1, and cv ≥ 2 for any v ∈ V ′ \ {r}. System

(6.57) - (6.61) corresponds to the system defining PxT (G
′, r, c′), where vo−1v

1
o and v2ovo+1

substitute for eo and eo+1, respectively. According to Theorem 6.7.5, the system composed
of (6.57) - (6.61) is TDI. Consequently the following result holds.

Corollary 6.7.6. Let G be a cycle with cr = 1 and O = {vo}. Then we have

Bx(G, r, c) = {x ∈ RE : x satisfies (6.57) − (6.61)}.

6.7.2.2 Case 2. cr ≥ 2 and O = {vo}

In this case we follow the same notation of P1 and P2 as for the last case. We show that
(6.3)-(6.5) and (6.6) form a TDI system and then are sufficient to characterize Bx(G, r, c).
First, after getting rid of some redundant inequalities from (6.3)-(6.5) and (6.6) we obtain
the following linear program

max wTx

s.t. xei − xfei
≤ 0 ∀ei ∈ E \ δ(r), (6.62)

x(δ(vo)) ≤ 1, (6.63)

xei ≤ 1 ∀ei ∈ δ(r) \ δ(vo), (6.64)

xei ≥ 0 ∀ei ∈ δ(vo), (6.65)
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where fei = ei−1 for ei ∈ P1 \ δ(r) and fei = ei+1 for ei ∈ P2 \ δ(r). Let the polytope that
is defined by the aforementioned linear system be P 1

xC(G, r, c), that is,

P 1
xC(G, r, c) = {x ∈ RE : x satisfies (6.62) − (6.65)}.

We show that the system defining P 1
xC(G, r, c) is TDI.

Theorem 6.7.7. The linear system composed of (6.62)-(6.65) is TDI.

Proof. Consider the linear program

max{wTx : x ∈ P 1
xC(G, r, c)}, (6.66)

where w ∈ RE. Let α be the dual variable corresponding to inequality (6.63). For any
e ∈ E\δ(r), let βfe be the dual variable corresponding to inequality (6.62) associated with
e (and then with fe). For any e ∈ δ(r) \ δ(vo), let γe be the dual variable corresponding
to inequality (6.64) associated with e. The dual linear program of (6.66) can be written
as follows

min α +
∑

e∈δ(r)\δ(vo)
γe

s.t. α ≥ we ∀e ∈ δ(r) ∩ δ(vo), (6.67)

− βe + γe = we ∀e ∈ δ(r) \ δ(vo), (6.68)

α + βfe ≥ we ∀e ∈ δ(vo) \ δ(r), (6.69)

− βe + βfe = we ∀e ∈ E \ (δ(r) ∪ δ(vo)), (6.70)

α,β e, γe ≥ 0 ∀e ∈ E. (6.71)

As P1 and P2 can be deemed to be symmetric, the values of the dual variables for edges
in P1 and P2 can obtained in the same way.

Let β′,γ ′ ∈ RE be two vectors which are obtained as follows. For e ∈ δ(r), let

β′
e = max{−we, 0},

γ′
e = max{we, 0}.

Then for each e ∈ E such that β′
fe

has been calculated for fe, we obtain β′
e and γ′

e as the
following

β′
e = max{β′

fe − we, 0},
γ′
e = max{we − β′

fe , 0}.
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It is straightforward to see that

we = γ′
e − β′

e, ∀e ∈ δ(r),

we − β′
fe = γ′

e − β′
e ∀e ∈ E \ δ(r).

Moreover, let

α = max{γ′
eo , γ

′
eo+1

}.

If δ(r) ∩ δ(vo) = ∅, that is, without loss of generality o = 1, one has

α ≥ γ′
e1
= max{we1 , 0} ≥ we1 ,

which indicates that (6.67) is satisfied. If e1 ∈ δ(r) \ δ(vo), that is, o ≥ 2, let

γe1 =
o−1∑
i=1

γ′
ei
.

Symmetrically, if en ∈ δ(r) \ δ(vo), that is, o ≤ n− 2, let

γen =
n∑

i=o+2

γ′
ei
.

We can deduce that regardless of whether vo is a neighbor of r or not, the following
equation always holds

α +
o−1∑
i=1

γ′
ei
+

n∑
i=o+2

γ′
ei
=

⎧⎪⎨⎪⎩
α + γe1 + γen if o ∈ {2, · · · , n− 2},
α + γen if o = 1,

α + γe1 if o = n− 1

= α +
∑

e∈δ(r)\δ(vo)
γe.

Let

βei =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β′
ei
+

o−1∑
j=i+1

γ′
ej

∀i ∈ {1, · · · , o− 1},

β′
ei
+

i−1∑
j=o+2

γ′
ej

∀i ∈ {o+ 2, · · · , n},
β′
ei
, otherwise.
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Consequently for any i ∈ {2, · · · , o− 1}, that is, ei ∈ P1 \ (δ(r) ∪ δ(vo)), we have

βei−1
− βei = β′

ei−1
+

o−1∑
j=i

γ′
ej
− (β′

ei
+

o−1∑
j=i+1

γ′
ej
)

= β′
ei−1

+ γ′
ei
− β′

ei

= wei .

Symmetrically, for any i ∈ {o+ 2, · · · , n}, that is, ei ∈ P2 \ (δ(r) ∪ δ(vo)), we have

βei+1
− βei = wei .

Thus (6.70) is satisfied by β. In addition for eo we have

βeo−1 − β′
eo = β′

eo−1
+ γ′

eo − β′
eo

= weo ,

and

βeo+2 − β′
eo+1

= β′
eo+2

+ γ′
eo+1

− β′
eo+1

= weo+1 .

Moreover, for e ∈ δ(vo) \ δ(r), we have

α + βfe = α + β′
fe

≥ γ′
e + β′

fe

= (we − β′
fe + β′

e) + β′
fe

≥ we.

Hence (6.69) is satisfied.

Furthermore, if e1 ∈ δ(r) \ δ(vo), we then have

−βe1 + γe1 = −(β′
e1
+

o−1∑
i=2

γ′
ei
) +

o−1∑
i=1

γe′i

≥ −β′
e1
+ γ′

e1

= we1 .
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Similarly, if en ∈ δ(r) \ δ(vo) we have

−βen + γen = −(β′
en +

n−1∑
i=o+2

γ′
ei
) +

n∑
i=o+2

γe′i

≥ −β′
en + γ′

en

= wen .

which ensures that (6.68) is satisfied. Therefore,
[
α
β
γ

]
is dual-feasible.

We now construct a primal solution based on
[
α
β
γ

]
. Let j1 be the largest number in

{1, · · · , o− 1} with γ′
ej1

> 0, that is,

j1 = max{i ∈ {1, · · · , o− 1} : γ′
ei
> 0}.

Let Pj1 = ∅ if such j1 does not exist, otherwise let Pj1 denote the subpath of P1 between
r and ej1 . Similarly, j2 be the smallest number in {o+ 1, · · · , n} with γ′

ej2
> 0, that is,

j2 = min{i ∈ {o+ 1, · · · , n} : γ′
ei
> 0}.

Correspondingly, let Pj2 = ∅ if such j2 does not exist, otherwise let Pj2 denote the subpath
of P2 between r and ej2 . As γ′

ej1
> 0 and γ′

ej2
> 0, one has β′

ej1
= 0 and β′

ej2
= 0. If

α = 0, let

E∗ = Pj1 ∪ Pj2 .

If α > 0 and without loss of generality assume that α = γ′
eo , let

E∗ = P1 ∪ Pj2 .

Clearly E∗ induces a bounded r-tree of G, and thus xE∗ is a feasible primal solution.

Furthermore, for any j ∈ {1, · · · , o}, we have

j∑
i=1

wei = γ′
e1
− β′

e1
+

j∑
i=2

(γ′
ei
− β′

ei
+ β′

ei−1
)

= −β′
e1
+

j∑
i=1

γ′
ei
.
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Symmetrically, for any j ∈ {o+ 1, · · · , n}, we have

n∑
i=j

wei = γ′
en − β′

en +
n−1∑
i=j

(γ′
ei
− β′

ei
+ β′

ei+1
)

= −β′
en +

n∑
i=j

γ′
ei
.

Furthermore, if α = 0, as β′
ej1

= 0 and β′
ej2

= 0, xE∗ satisfies

∑
e∈E∗

we =

j1∑
i=1

wei +
n∑

i=j2

wei

= −β′
ej1

+

j1∑
i=1

γ′
ei
− β′

ej2
+

n∑
i=j2

γ′
ei

=

j1∑
i=1

γ′
ei
+

n∑
i=j2

γ′
ei

= α +
∑

e∈δ(r)\δ(vo)
γe.

Similarly, if α > 1, we have β′
eo = 0 and β′

ej2
= 0, and thus xE∗ satisfies

∑
e∈E∗

we =
o∑

i=1

wei +
n∑

i=j2

wei

= −β′
ej1

+
o∑

i=1

γ′
ei
− β′

ej2
+

n∑
i=j2

γ′
ei

= γ′
eo +

o−1∑
i=1

γ′
ei
+

n∑
i=j2

γ′
ei

= γ′
eo +

o−1∑
i=1

γ′
ei
+

n∑
i=o+2

γ′
ei

=
o−1∑
i=1

γ′
ei
+

n∑
i=o+2

γ′
ei

= α +
∑

e∈δ(r)\δ(vo)
γe.

Thus, xE∗ and
[
α
β
γ

]
are both optimal. Moreover, as α, β and γ are obtained by additions

and subtractions involving only the components of w. So
[
α
β
γ

]
is integral if w is integral,
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which completes our proof.

Consequently, we obtain the following result.

Corollary 6.7.8. Let G be a cycle with cr ≥ 2 and O = {vo}, we then have

Bx(G, r, c) = P 1
xC(G, r, c).

6.7.2.3 Case 3. cr ≥ 2 and O = ∅

In this case, all the capacity constraints (6.3) are redundant because |δ(v)| ≤ cv for all
v ∈ V . The only pertinent subtour elimination inequality in (6.2) is x(E) ≤ |E|−1, since
the other inequalities (6.2) are redundant. Thus, the primal linear program for MBrT
problem whose constraints are (6.1)-(6.5) and the matching-partition inequalities (6.7)
can be rewritten as follows

max wTx

s.t. x(E) ≤ |E| − 1, (6.72)

x(M)− x(Eπ) ≤ 0 ∀(M,π ) ∈ MP(G), (6.73)

xe ≤ 1 ∀e ∈ E, (6.74)

xe ≥ 0 ∀e ∈ E. (6.75)

Therefore the polytope

P 2
xC(G, r, c) = {x ∈ RE : x satisfies (6.72) − (6.75)}

is a formulation for Bx(G, r, c) if G is a cycle, cr ≥ 2 and O = ∅. Hereafter we show that
the system (6.72)-(6.75) is TDI.

Consider the linear program

max{wTx : x ∈ P 2
xC(G, r, c)}, (6.76)

where w ∈ RE. Let α be the dual variable corresponding to inequality (6.72). For any
matching-partition (M,π ) ∈ MP(G), let β(M,π) be the dual variable corresponding to
inequality (6.73) associated with (M,π ). For any e ∈ E, let γe be the dual variable
corresponding to inequality (6.74) associated with e. The dual linear program of (6.76)
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is the following

min (|E| − 1)α +
∑
e∈E

γe

s.t. α +
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π) + γe ≥ we ∀e ∈ E, (6.77)

α,β (M,π), γe ≥ 0 ∀e ∈ E, (M,π ) ∈ MP(G). (6.78)

Given an edge-weight vector w′ ∈ RE, let the set of edges with positive weights be

E+(w′) = {e ∈ E : w′
e > 0},

and let the set of edges with negative weights be

E−(w′) = {e ∈ E : w′
e < 0}.

Let E0(w′) = E \ (E+(w′) ∪ E−(w′)).

In order to obtain a dual-feasible solution, we introduce the following concept related to
partitions of E. For the sake of homogeneity in our presentation, we allow one of the
partition classes to be empty.

Definition 6.7.9. Given a cycle G = (V,E) and a vector w′ ∈ RE, an alternating edge
partition ρ = {H0, F1, H1, · · · , Hq−1, Fq} of the edge set E such that

1. δ(r) ∩H0 = ∅ if H0 = ∅ and δ(r) ∩ Fi = ∅ for i ∈ {1, q}, otherwise;

2. Hi induces a connected subgraph of G and is composed of non-negative edges for
i ∈ {0, · · · , q − 1};

3. Hi contains at least one positive edge for i ∈ {1, · · · , q − 1};
4. Fi induces a connected subgraph of G and is composed of non-positive edges for

i ∈ {1, · · · , q};
5. Fi contains at least one negative edge for i ∈ {1, · · · , q};
6. Fi ∪Hi ∪ Fi+1 induces a connected subgraph of G for i ∈ {1, · · · , q − 1}.

The sets H1, · · · , Hq−1 (F1, · · · , Fq, respectively) are called the positive (negative, respec-
tively) classes of the partition.

Several examples of alternating edge partition are given in Figure 6.9, where the value
by each edge is its w′-value, the solid lines represent the edges in the set H0, · · · , Hq−1,
and the dashed lines the edges in the set F1, · · · , Fq.

Consider Algorithm 6.2 that creates an alternating edge partition ρ1(w′) based on an
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Figure 6.9: Examples of alternating edge partition

edge-weight vector w′ ∈ RE.

Algorithm 6.2: Algorithm to obtain an alternating edge partition on cycles
Input : Cycle G = (V,E) and w′ ∈ RE.
Output: Alternating edge partition ρ1(w′) = {H1

0 , F
1
1 , H

1
1 , · · · , H1

q1−1, F
1
q1}.

begin
1 Let H1

0 ⊆ E be the edge set of the component that contains r in G[E \E−(w′)].
2 Let H1

1 , · · · , H1
p1 be the edge sets of the components in G[E \ E−(w′)] such

that each of them does not contain r and contains at least one edge in E+(w′).
if H1

0 = ∅ then

3 Let F 1
1 , · · · , F 1

q1 be the edge sets of the components in G[E \
p1⋃
i=0

H1
i ].

else

4 Let F 0
1 , F

1
2 , · · · , F 1

q1−1 be the edge sets of the components in G[E \
p1⋃
i=0

H1
i ],

where r is an inner node of the path induced by F 0
1 .

5 Split F 0
1 into two sets F 1

1 , F
1
q1 , each of which induces a path with one end

being r.

The following proposition holds,

Proposition 6.7.10. Algorithm 6.2 outputs an alternating edge partition ρ1(w′).

Proof. It is trivial to see that Properties 2 and 3 of Definition 6.7.9 are guaranteed by
Lines 1 and 2, whereas Properties 4 and 6 of Definition 6.7.9 are guaranteed by Line3.

Consider now Property 5 of Definition 6.7.9. Assume that there exists i ∈ {1, · · · , q1}
such that F 1

i ∩ E−(w′) = ∅. Then the edges in F 1
i will be put, either in H1

0 if F 1
i is

adjacent to H1
0 in Line 1, or in H1

j for some j ∈ {1, · · · , p1} in Line 2.
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Finally, we claim that p1 = q1 − 1 if H1
0 = E, that is, the number of positive classes is

always one less than the number of negative classes if H1
0 = E. We prove this claim in

two cases with H1
0 = ∅ and H1

0 = ∅.
If H1

0 = E and H1
0 = ∅, as there do not exist two sets of H1

0 , H
1
1 , · · · , H1

p1 that are
adjacent, from Line 3 and the fact that G is a cycle, we also have that there do not exist
two sets of F 1

1 , · · · , F 1
q1 that are adjacent. Thus q1 = p1 + 1.

Similarly, if H1
0 = E and H1

0 = ∅, there do not exist two sets of H1
1 , · · · , H1

p1 that are
adjacent. Then Line 4 ensures that we also have that there do not exist two sets of
F 0
1 , F

1
2 , · · · , F 1

q1−1 that are adjacent. Thus q1 − 1 = p1.

Given an edge-weight vector wk ∈ RE and an alternating edge partition ρk with at least
two negative classes, Algorithm 6.3 finds a matching-partition (Mk, πk) based on ρk,
obtains the corresponding dual variable β(Mk,πk), and modifies the edge-weight vector wk

into a new weight vector wk+1.

Algorithm 6.3: Algorithm to obtain a matching-partition and its associated dual
variable based on ρk and wk

Input : Alternating edge partition ρk = {Hk
0 , F

k
1 , H

k
1 , · · · , Hk

qk−1
, F k

qk
} and

wk ∈ RE.
Output: Matching-partition (Mk, πk), β(Mk,πk) and wk+1.
begin

1 Select f+
i ∈ Hk

i ∩ E+(wk) for i ∈ {1, · · · , qk − 1}.
2 Let Mk = {f+

1 , · · · , f+
qk−1

}.
3 Select f−

i ∈ F k
i ∩ E−(wk) for i ∈ {1, · · · , qk}.

4 Let πk be a partition of V such that Eπk = {f−
1 , · · · , f−

qk
}.

5 Set β(Mk,πk) = min{|wk
e | : e ∈ Mk ∪ Eπk}.

6 Set wk+1
e = wk

e − β(Mk,πk) for any e ∈ Mk, and wk+1
e = wk

e + β(Mk,πk) for any
e ∈ Eπk .

Proposition 6.7.11. Algorithm 6.3 outputs a matching-partition and wk+1 such that
|E0(wk+1)| > |E0(wk)|.

Proof. First, it is trivial to see that there exists a set S0 ⊆ V such that r ∈ S0 and
δ(S0) = {f−

1 , f
−
qk
}. For each i ∈ {1, · · · , qk − 1}, from the definition of alternating edge

partition, one has that f+
i is the only edge in Mk in the path between f−

i and f−
i+1 that

does not contain r as an inner node. Thus, for each i ∈ {1, · · · , qk − 1} one can find a
set Si with δ(Si) = {f−

i , f
−
i+1}, and hence (Mk, πk) is a matching-partition of G.

Furthermore, as (Mk ∪ Eπk) ∩ E0(wk) = ∅ we have E0(wk) ⊆ E0(wk+1). Additionally,
from Lines 5 and 6, we deduce that there exists some e ∈ Mk ∪ Eπk with wk

e = 0 and
wk+1

e = 0. Therefore, |E0(wk+1)| > |E0(wk)|.
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Algorithm 6.4: Algorithm to update an alternating edge partition ρk into ρk+1

according to an edge-weight vector wk+1

Input : Alternating edge partition ρk and wk+1 ∈ RE.
Output: Alternating edge partition ρk+1.
begin

1 Initialize ρ′ with ρ′ = ρk and let ρ′ = {H ′
0, F

′
1, H

′
1, · · · , H ′

q′−1, F
′
q′} with q′ = qk.

if E−(wk+1) = ∅ then
2 Set ρk+1 = {Hk+1

0 } with Hk+1
0 = E and end the algorithm.

while there exists a partition class C ∈ ρ′ \ {Hq′
0 } with wk+1(C) = 0 do

if there exists F ′
i with w(F ′

i ) = 0, i ∈ {1, · · · , q′} then
if i = q′ then

3 Merge F ′
i with H ′

i−1 and H ′
i in ρ′ to get a new positive partition

class and update ρ′ and q′.

else if i = q′ then
4 Merge F ′

i with H ′
i−1 and H ′

0 to get a new positive partition class and
update ρ′ and q′.

else if there exists H ′
i with w(H ′

i) = 0, i ∈ {1, · · · , q′ − 1} then
5 Merge H ′

i with F ′
i and F ′

i+1 to get a new negative partition class and
update ρ′ and q′.

6 Set ρk+1 = ρ′.

We then construct another alternating edge partition ρk+1 based on ρk and wk+1 using
Algorithm 6.4.

Proposition 6.7.12. Algorithm 6.4 outputs an alternating edge partition ρk+1 with re-
spect to the edge-weight vector wk+1.

Proof. If E−(wk+1) = ∅, Line 2 ensures that ρk+1 = {Hk+1
0 = E} is an alternating edge

partition.

If E−(wk+1) = ∅, Lines 3, 4 and 5, first ensure that there does not exist any F k+1
i with

w(F k+1
i ) = 0, i ∈ {1, · · · , qk+1}, or Hk+1

i with w(Hk+1
i ) = 0, i ∈ {1, · · · , qk+1 − 1},

and second preserve the Properties 1, 2, 4 and 6 of Definition 6.7.9 of alternating edge
partition.

Therefore, ρk+1 is always an alternating edge partition with respect to wk+1.

We now are ready to prove the TDI-ness of the system composed of (6.72)-(6.75).

Theorem 6.7.13. The linear system composed of (6.72)-(6.75) is TDI.

Proof. We claim that a pair of primal and dual solutions can computed using a greedy
approach, as presented in Algorithm 6.5.
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Algorithm 6.5: Dual algorithm on cycles with cr ≥ 2 and O = ∅
Input : Cycle G = (V,E) and w ∈ RE.

Output: Dual-feasible solution
[
α
β
γ

]
and primal-feasible solution xE∗ .

begin
1 Set α = max{0,min{we, e ∈ E}}.
2 Set w1

e = we − α for all e ∈ E.
3 Create a partition of edges ρ1 based on w1 using Algorithm 6.2.
4 Set k = 1.

while qk ≥ 2 do
5 Compute a matching-partition (Mk, πk) and β(Mk,πk) based on ρk and wk,

and update wk into wk+1 using Algorithm 6.3.
6 Update ρk into ρk+1 based on wk+1 using Algorithm 6.4.
7 Set k = k + 1

8 Set γe = max{wk
e , 0} and δe = max{−wk

e , 0}.
if qk = 0 and k = 1 then

9 Set E∗ = E \ {f} where f is an edge with γf = 0.

else if qk = 0 and k ≥ 2 then
10 Set E∗ = E \ F k−1

1 .

else if qk = 1 then
11 Set E∗ = E \ F k

1 .

Recall that Algorithm 6.3 ensures that for the k-th iteration there exists e ∈ Mk ∪ Eπk

with wk+1
e = 0, and thus Algorithm 6.5 requires at most n − 2 iteration to obtain the

dual solution.

Consider now the k-th iteration of Algorithm 6.5 Furthermore, Algorithm 6.4 ensures
that if k ≥ 2 and qk ≥ 1, then for each i ∈ {1, · · · , qk}, F k

i satisfies

|F k ∩ Eπk−1 | − |F k
j ∩Mk−1| = 1.

If qk ≥ 2, we clearly have |F k ∩ Eπk | − |F k
j ∩Mk| = 1 − 0 = 0. As a result, we deduce

recursively that,

|F k ∩ Eπj | − |F k ∩M j| = 1 ∀j ∈ {1, · · · , k}. (6.79)

Additionally, if a matching-partition (Mk, πk) is obtained at the k-th iteration of Algo-
rithm 6.5, we have the following equations from Algorithm 6.3

wk+1
e = wk

e − β(M,π) ∀e ∈ Mk,

wk+1
e = wk

e + β(M,π) ∀e ∈ Eπk ,
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wk+1
e = wk

e ∀e ∈ E \ (Mk ∪ Eπk).

Let ρl be the last alternating edge partition obtained by Algorithm 6.5, then the following
equation holds

we = α + w1
e

= α + wl
e +

∑
(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π).

Moreover, from Line 8 we have

wl
e = γe − δe ∀e ∈ E.

Hence, Algorithm 6.5 eventually enforces the following equation

we = α + γe − δe +
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π).

In addition, we clearly have that α ≥ 0, β(M,π) ≥ 0 for any (M,π ) ∈ MP(G), and
γe, δe ≥ 0 for any e ∈ E. Therefore, the dual solution

[
α
β
γ

]
obtained by Algorithm 6.5 is

feasible.

If q1 = 0, from Line 9 one has E∗ = E \ {f} with γf = 0 for some f ∈ E, δe = 0 for any
e ∈ E, and β(M,π) = 0 for any (M,π ) ∈ MP(G). Clearly E∗ induces a bounded r-tree of
G, and its incidence satisfies

wTxE∗
=

∑
e∈E∗

we

=
∑
e∈E∗

(α + γe)

= (|E| − 1)α +
∑
e∈E∗

γe

= (|E| − 1)α +
∑
e∈E

γe.

Thus, xE∗ and
[
α
β
γ

]
are optimal.

If q1 ≥ 1, one immediately has α = 0. Line 9 ensures that there does not exist any edge
e ∈ E∗ with δe > 0, and there does not exist any edge e ∈ E \ E∗ with γe > 0.

According to the algorithm and (6.79), for any β(M,π) > 0, one has |(E \E∗)∩Eπ|− |(E \
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E∗) ∩M | = 1. As a result we have

|E∗ ∩ Eπ| − |E∗ ∩M | = 0,

which leads to∑
e∈E∗

(
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π)) =
∑

(M,π)∈MP(G)

(|E∗ ∩M | − |E∗ ∩ Eπ|)β(M,π)

= 0.

Hence we deduce

(|E| − 1)α +
∑
e∈E

γe =
∑
e∈E

γe

=
∑
e∈E∗

γe

=
∑
e∈E∗

(we −
∑

(M,π)∈Me

β(M,π) +
∑

(M,π)∈Pe

β(M,π))

=
∑
e∈E∗

we −
∑
e∈E∗

(
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π))

=
∑
e∈E∗

we

Therefore, xE∗ and
[
α
β
γ

]
are always feasible and optimal. Finally, vectors α, β and γ are

obtained by additions and subtractions involving only the components of w. So
[
α
β
γ

]
is

integral if w is integral, which completes our proof.

As a direct consequence of Theorem 6.7.13, we have the following corollary.

Corollary 6.7.14. Let G be a cycle with cr ≥ 2 and O = ∅, we then have

Bx(G, r, c) = P 2
xC(G, r, c).

Furthermore, in this case we clearly have Rx(G, r) = Bx(G, r, c) as the capacity con-
straints are redundant. Hence we also have the following result.

Corollary 6.7.15. Let G be a cycle. we have

Rx(G, r) = P 2
xC(G, r, c).
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6.7.2.4 Case 4. cr = 1 and O = ∅

In this case, the proof proceeds in a similar fashion as the previous case, and we also
reuse Algorithm 6.2 Algorithm 6.3, Algorithm 6.4 to help compute the dual solution.

First of all, the primal linear program for MBrT problem that contains (6.1)-(6.5) and
the matching-partition inequalities (6.7) can be rewritten as follows

max wTx

s.t. x(δ(r)) ≤ 1, (6.80)

x(M)− x(Eπ) ≤ 0 ∀(M,π ) ∈ MP(G), (6.81)

xe ≥ 0 ∀e ∈ E. (6.82)

It is worth mentioning that the upper bound inequalities for e ∈ E \ δ(r) are redundant
because it can be obtained by the combination of (6.80) and xe − x(δ(S)) ≤ 0 with
S = V \{r}. Let the polytope defined by the aforementioned linear system of inequalities
be

P 3
xC(G, r, c) = {x ∈ RE : x satisfies (6.80) − (6.82)}.

We give the following theorem regarding the TDI-ness of the linear system defining
P 3
xC(G, r, c).

Theorem 6.7.16. The linear system composed of (6.80)-(6.82) is TDI.

Proof. Consider the linear program

max{wTx : x ∈ P 3
xC(G, r, c)}, (6.83)

where w ∈ RE. Let αr be the dual variable corresponding to inequality (6.80). For
any (M,π ) ∈ MP(G), let β(M,π) be the dual variable corresponding to inequality (6.81)
associated with (M,π ). The dual linear program of (6.83) is the following

min αr

s.t.
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π) ≥ we ∀e ∈ E \ δ(r), (6.84)

αr −
∑

(M,π)∈Pe

β(M,π) ≥ we ∀e ∈ δ(r), (6.85)

αr, β(M,π) ≥ 0 (M,π ) ∈ MP(G), (6.86)

Algorithm 6.6 computes a dual-feasible solution. As w1
e = −M for all e ∈ δ(r), we have
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Algorithm 6.6: Dual algorithm on cycles with cr = 1 and O = ∅
Input : Cycle G = (V,E) and w ∈ RE.
Output: Dual-feasible solution [

αr
β ] and primal-feasible solution xE∗ .

begin
1 Set w1

e = we for all e ∈ E \ δ(r), and w1
e = −M for all e ∈ δ(r), where M is a

sufficiently large number.
2 Create a partition of edges ρ1 based on w1 using Algorithm 6.2.
3 Set k = 1.

while qk ≥ 2 do
4 Compute a matching-partition (Mk, πk) and β(Mk,πk) based on ρk and wk,

and update wk into wk+1 using Algorithm 6.3, with the following priority
rules for edges in F k

1 and F k
qk

. If there exists e ∈ F k
1 \ e1 with wk

e < 0, then
select e to be in Eπk ; if there exists e ∈ F k

qk
\ en with wk

e < 0, then select e

to be in Eπk

5 Update ρk into ρk+1 based on wk+1 using Algorithm 6.4.
6 Set k = k + 1

7 Set γe = we −
∑

(M,π)∈Me

β(M,π) +
∑

(M,π)∈Pe

β(M,π) for all e ∈ E.

8 Set αr = max{0, γe1 , γen}.

Hk
0 = ∅ for the k-th iteration. Let l-th iteration be the last iteration, then we have

ρl = {F l
1 = E}. Hence for any e ∈ E \ δ(r) one has

γe = we −
∑

(M,π)∈Me

β(M,π) +
∑

(M,π)∈Pe

β(M,π)

= wl
e

≤ 0.

As a result, we have

we ≤
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π) ∀e ∈ E \ δ(r).

Similarly, for any e ∈ δ(r), as Me = ∅ we have

we = γe +
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π),

= γe −
∑

(M,π)∈Pe

β(M,π),

≤ αr −
∑

(M,π)∈Pe

β(M,π).
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Furthermore, it is clear that αr ≥ 0 and β(M,π) ≥ 0 for any (M,π ) ∈ MP(G). Hence,
[
αr
β ] is dual-feasible.

Now we construct a primal feasible solution E∗ based on [
αr
β ]. Firstly, if αr = 0, then let

E∗ = ∅. Clearly, [ αr
β ] and xE∗ are both optimal.

If αr > 0 and ρ1 = {F 1
1 = E}, without loss of generality, assume γen = αr, then let

E∗ = {en}. We have β(M,π) = 0 for any matching-partition (M,π ) ∈ MP(G). Thus,
γen = wen and therefore

wTxE∗
= wen = γen = αr,

which indicates that both [
αr
β ] and xE∗ are optimal.

Consider now αr > 0 and ρ1 contains at least one positive class. Without loss of generality,
assume γen = αr. We clearly have l ≥ 2, where l is the number of the last iteration. If
there does not exist e ∈ E \ δ(r) with γe < 0, let E∗ = E \ F l−1

1 . If there exists
e ∈ E \ δ(r) with γe < 0, let j be the largest number in {2, · · · , n − 1} such that there
exists γei = wl

ei
< 0. Without loss of generality let e ∈ F l−1

j ∈ ρl−1, j ∈ {1, · · · , ql−1}.
Then, let E∗ be the path between en and H l−1

j that does not contain F l−1
j , that is,

E∗ = H l−1
j ∪ F l−1

j+1 ∪ · · · ∪H l−1
ql−1−1

∪ F l−1
ql−1 .

In either case, we have γe = 0 for any e ∈ E∗ \ δ(r). Furthermore, similarly to the
case of cr ≥ 2 and O = ∅, Algorithm 6.6 ensures that |E∗ ∩ M | = |E∗ ∩ Eπ| for any
(M,π ) ∈ MP(G) with β(M,π) > 0. Hence we have

wTxE∗
=

∑
e∈E∗

(
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π) + γe)

=
∑
e∈E∗

γe +
∑
e∈E∗

(
∑

(M,π)∈Me

β(M,π) −
∑

(M,π)∈Pe

β(M,π))

= γen +
∑

(M,π)∈MP(G)

(|E∗ ∩M | − |E∗ ∩ Eπ|)β(M,π)

= αr.

Therefore, xE∗ and [
αr
β ] are both feasible and optimal. Finally, αr and components of

vector β are obtained by additions and subtractions involving only the components of w.
Thus [

αr
β ] is integral if w is integral, which completes our proof.

Consequently, the next corollary follows immediately.
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Corollary 6.7.17. Let G be a cycle with cr = 1 and O = ∅, we then have

Bx(G, r, c) = P 3
xC(G, r, c).

The discussion on TDI systems that characterize Bx(G, r, c) on trees and cycles thereby
concludes.

6.8 Conclusion

Unlike the r-tree polytope Rx(G, r) or the extended bounded r-tree polytope Bxy(G, r, c),
the bounded r-tree polytope Bx(G, r, c) possesses more unexplored aspects. First, we
showed that Bx(G, r, c) is also full-dimensional under the assumption that there is no
unreachable elements. Meanwhile, comparing to Rx(G, r), the necessary and sufficient
conditions for the inequalities to be facet-defining become more complicated as we con-
sider the capacity factor. There are more substructures to avoid in different situations in
order to ensure the facet-defining property. For example, the presence of bridges, artic-
ulation nodes, especially articulation nodes with capacity 2, and triangles with specific
properties prevent certain inequalities from being facet-defining. Besides, for any facet-
defining inequality, there are certain general criteria concerning the coefficients of nodes
in O and the right-hand side.

Furthermore, matching-partition inequalities and acyclicity-connectivity inequalities were
inherited from the facial study of Rx(G, r) with some adjustments made to incorporate the
capacity factor. Upload capacity inequalities were discovered while studying the property
of the right-hand side of the facet-defining inequalities, whereas capacity-i inequalities and
i-articulation were developed based on the features of articulation nodes and nodes in O.
We then showed that all these inequalities can be obtained by projection of the valid
inequalities for Bxy(G, r, c).

Besides, we also obtained some bounds on the Chvátal-Gomory rank of the matching-
partition inequalities and the upload capacity inequalities, and showed that they are not
trivially included in the first Chvátal closure even on trees and cycles. With the help of
upload capacity inequalities and matching-partition inequalities, we gave for each case
on trees and cycles a TDI linear system that completely characterizes Bx(G, r, c).

In the next chapter, we focus on the computational aspect of the MBrT problem. We
discuss the separation problems of all the previously introduced inequalities for both
Bxy(G, r, c) and Bx(G, r, c), and study their influence via computational test.
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Chapter 7

Computational study

In this chapter, we describe four branch-and-cut frameworks that were used to perform
the computational simulation on the MBrT problem, and present the results obtained
under several different setups. As there is no benchmark we can refer to in the litera-
ture, we compare the performances of the enhanced formulations incorporating the newly
introduced constraints and the original formulations with the intention of showing the
effectiveness of the new constraints on the computational aspect of the problem. The
first two frameworks are based on the initial formulations of Bx(G, r, c) and Bxy(G, r, c)

with CPLEX default setting. The other two frameworks correspond to enhanced for-
mulations for Bx(G, r, c) and Bxy(G, r, c) incorporating some new constraints introduced
in the previous chapters and a matheuristic (that is, a heuristic that relies on math-
ematical programming models, see Ball [2011], Papageorgiou et al. [2016]) to generate
primal solutions. They are tested on a variety of instance sets with different graphs,
different capacity settings and uniform edge weights. Finally, the results are presented
and analyzed.

7.1 Methodology

In our work, the test instances have uniform edge weights, and they are selected from
two different sources. The first part of the instances are fetched from SteinLib Testdata
Library Koch et al. [2017]. As SteinLib files are not designed for scenario carrying infor-
mation for nodes such as capacities in our case, a capacity file is generated for each of the
SteinLib instances. The node number of the SteinLib instances ranges from 50 to 5200.

The rest of the instances are generated as random connected graphs with different capacity
settings. Each generated instance contain a random connected graph, which is generated
by creating a tree first and adding certain amount of edges into it after. The capacity of
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Testset Number Node number Capacity Source Density Graph class
B 18 50-100 1-3 SteinLib sparse random
C 20 500 1-3 SteinLib sparse random
I320 20 320 1-3 SteinLib mostly sparse random
I640 16 640 1-3 SteinLib mostly sparse random
MSM 30 90-5181 1-3 SteinLib sparse grid
ran 110 10-499 1-4 generated dense random
rg_13 198 10-999 1-3 generated sparse random
rg_23 198 10-999 2-3 generated sparse random

Table 7.1: Options for the instances

nodes is between 1 and 4. The graphs have node number ranging from 10 to 1000. More
details about the instances can be found in Table 7.1.

The instances are tested with the help of IBM ILOG CPLEX with C++ and Concert
Technology. It allows us to build the model of our problem as well as insert customized
cuts and heuristics in the branch-and-cut process conducted by CPLEX.

The instances are tested on servers equipped with CPUs of Intel® Xeon® E5-2670v2
with 2.50 GHz clock rate and 64 GB available random access memory (RAM). In order
to compare the performance of the algorithms in a clear fashion and have better control
of each cut generated in the process, the test is only run with single thread.

In this dissertation, four different frameworks are put into comparison. The first one
uses a near minimal model for Bx(G, r, c) to guarantee the feasibility of the solution
and employs the default setting of CPLEX. This framework is referred to as CPLEXx

hereafter. CPLEXx uses the following system of inequalities as an initial input, which
necessarily has a polynomial number of constraints.

xe − x(δ({u, v}) \ δ(O)) ≤ 0 ∀e = uv ∈ E \ δ(r), (7.1)

x(E) ≤ |E| − 1, (7.2)

x(δ(v)) ≤ cv ∀v ∈ V, (7.3)

0 ≤ xe ≤ 1 ∀e ∈ E. (7.4)

In order to cut the infeasible integral solutions, CPLEXx also includes a separation
algorithm for the following connectivity inequalities and the acyclicity inequalities

xe − x(δ(S) \ δ(O)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (7.5)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3. (7.6)

The separation problem of (7.5) and (7.6) with respect to an integral solution can be
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solved by some search algorithm. For (7.5) one looks for the connected component of
the support graph of a solution that does not contain r, whereas for (7.6) one looks for a
2-connected block of the support graph of a solution. The cutting planes generated while
cutting integral infeasible solutions are also called lazy cuts in CPLEX.

The second framework, namely BRTx, also contains (7.1)- (7.4) as initial input, and
separates (7.5) and (7.6) through lazy cuts. In addition, in order to help cut the infeasi-
ble fractional solutions, we also introduce some separation algorithms or cut-generation
heuristics for valid inequalities to generate the so-called user cuts. The user cuts in BRTx

include those for (7.5), (7.6), and as well as for the following inequalities (which has been
previously introduced in Section 6.4):

the matching-partition inequalities

x(M)− x(Eπ \ δ(O)) ≤ 0 ∀(M,π ) ∈ MP(G), (7.7)

the acyclicity-connectivity inequalities

x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) ≤ 0 ∀W ⊆ S ⊆ V \ {r}, (7.8)

the upload-capacity inequalities

x(δ(v))− cvx(δ(S) \ δ(O \ {v})) ≤ 0 ∀v ∈ S ⊆ V \ {r}, (7.9)

the i-articulation inequalities

x(FS)− (i− 2)x(E[S])− (i− 1)x(δ(R) ∩ δ(S)) ≤ 0 ∀S ⊆ Va ∩ Si, (7.10)

and the tightening inequalities

x(δ(O))− x(δ(R)) ≤
∑
v∈S

(cv − 2) ∀S ⊆ V \ ({r} ∪O). (7.11)

Note that none of these inequalities is mandatory to be included in the user cuts, and
thus the implementation of BRTx can vary depending on which sets of user cuts are
selected, and as well as on the priorities set for different sets of user cuts.

The third framework, which is referred to as CPLEXxy, uses a near minimal model for
Bxy(G, r, c) with he following system of inequalities as an initial input.

yr = 1, (7.12)

x(E)− y(V \ {r}) = 0, (7.13)

x(δ(v)) ≤ cvyv ∀v ∈ V, (7.14)
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0 ≤ xe ≤ 1 ∀e ∈ E. (7.15)

0 ≤ yv ≤ 1 ∀v ∈ V. (7.16)

In order to cut the infeasible integral solutions, CPLEXxy also need to include a sepa-
ration algorithm for the following extended subtour elimination inequalities

x(E[S])− y(S \ {v}) ≤ 0, ∀v ∈ S ⊆ V. (7.17)

Particularly, we first check if there exists any edge in the solution with one of its ends
not selected, that is, to separate xe − yv ≤ 0 for any e ∈ δ(v), v ∈ V . Then, similarly
to CPLEXx, one can look for a 2-connected block of the support graph of a solution to
generate the other lazy cuts (7.17).

Correspondingly, the last framework, namely BRTxy, also uses (7.12) - (7.16) as initial
input and contains the same lazy cuts as CPLEXxy. Besides, in the user cuts of BRTxy

we also include the separation of (7.17) and the following constraint

yv − x(δ(S) \ δ(O \ {v})) ≤ 0 ∀v ∈ S ⊆ V \ {r}. (7.18)

Moreover, both BRTx and BRTxy include a matheuristic to generate integral feasible
solutions and a preprocess to get rid of the unreachable elements of the graph.

A brief overview of the four different frameworks can be found in Table 7.2, while Table
7.3 shows their difference in the sense of initial models and cuts.

The following two sections present, for each set of inequalities, the separation problem
and algorithms used to generate user cuts.

7.2 Separation problems for valid inequalities

For the separation problems, the number of some sets of the aforementioned inequalities
such as box inequalities and capacity inequalities, are polynomial, and thus they can
be easily separated in polynomial time. In the remainder of this section, we discuss

Framework Node variable User cut Preprocess Matheuristic
CPLEXx × × × ×
CPLEXxy

√ × × ×
BRTx × √ √ √
BRTxy

√ √ √ √

Table 7.2: Options for the branch-and-cut frameworks
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CPLEXx BRTx CPLEXx BRTxy

Initial model (7.1)- (7.4) (7.1)- (7.4) (7.12) - (7.16) (7.12) - (7.16)
Lazy cuts (7.5), (7.6) (7.5), (7.6) (7.17) (7.17)
User cuts - (7.7)-(7.11) - (7.17), (7.18)

Table 7.3: Initial models and cuts of four branch-and-cut frameworks

the separation problem for each set of inequalities that are introduced in the previous
chapters.

7.2.1 Connectivity inequalities

The separation problem of the connectivity inequalities (7.5), that is, xe−x(δ(S)\δ(O)) ≤
0 for e ∈ E[S], S ⊆ V \{r}, can be solved in polynomial time, as stated in the proposition
below.

Proposition 7.2.1. The separation problem of (7.5) reduces to |V \ O| − 1 minimum
st-cut calculations.

Proof. Given a vector x ∈ RE, set the weight we′ of each edge e′ in E as

we′ =

{
0 if e′ ∈ δ(O),

xe′ otherwise.

Note that we have w(δ(S)) = x(δ(S) \ δ(O)) for any S ⊆ V . For any V \ ({r} ∪ O) let
Sv denote the node set containing v that induces a min cut between r and v, and let fv

denote an edge in δ(v) ∩ E[Sv] with the maximum value of xfv , that is,

Sv = argmin
S

{w(δ(S)) : v ∈ S ⊆ V \ {r}, O ⊆ S},

fv = argmax
e′

{xe′ : e
′ ∈ δ(v) ∩ E[Sv]}.

Note that for any set S ⊆ V \ {r}, w(δ(S)) = w(δ(S ∪O)) holds.

Correspondingly, for any e′ ∈ E \ δ(r), let Se′ denote the node set with e′ ∈ E[Se′ ] that
induces a min cut between r and e′, that is,

Se′ = argmin
S

{w(δ(S)) : e′ ∈ E[S], S ⊆ V \ {r}}.

It is trivial to see that

max{xe′ − x(δ(S) \ δ(O)) : e′ ∈ E[S], S ⊆ V \ {r}} = max{xe′ − w(Se′) : e
′ ∈ E \ δ(r)}.
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Besides, if δ(v) ∩ E[Sv] = ∅ for some v ∈ V \ {r}, then for any e′ ∈ δ(v) we have
δ(v) ∩ δ(O) = ∅ and e′ ∈ δ(Sv) and thus

xe′ − w(δ(Se′)) ≤ xe′ − w(δ(Sv)) ≤ 0.

For any edge e′ = uv ∈ E \ (δ(r)∪ δ(O)) such that δ(u)∩E[Su] = ∅ and δ(v)∩E[Sv] = ∅,
we have

xe′ − w(δ(Se′)) ≤ min{xfu − w(δ(Su)), xfv − w(δ(Sv))}.

Moreover, for any edge e′ = uv ∈ δ(O) \ δ(r) with v ∈ O, we have

w(δ(Se′)) = w(δ(Su))),

and hence

xe′ − w(δ(Se′)) ≤ xfu − w(δ(Su)),

Therefore, if there exists an inequality in (7.5) that is violated by x, we have

max{xe′ − w(Se′) : e
′ ∈ E \ δ(r)} = max{xfv − w(δ(Sv)) : v ∈ V \ {r}, δ(v) ∩ E[Sv] = ∅}.

Otherwise if there does not exist any inequality in (7.5) that is violated by x, we have
either δ(v) ∩ E[Sv] = ∅ for all v ∈ V \ {r}, or

max{xfv − w(δ(Sv)) : v ∈ V \ {r}, δ(v) ∩ E[Sv] = ∅}≤ max{xe′ − w(Se′) : e
′ ∈ E \ δ(r)}.

Algorithm 7.1: Algorithm to separate connectivity inequalities
Input : x.
Output: Most violated constraint xfv − x(δ(Sv) \ δ(O)) ≤ 0 if exists.
begin

1 Set λ = 0 and S = V \ ({r} ∪O).
while S = ∅ do

2 Take a node v ∈ S.
3 Calculate the min cut between r and v to obtain Sv and fv (if exists).

if δ(v) ∩ E[Sv] = ∅ and xfv − w(δ(Sv)) > λ then
4 Set xfv − x(δ(Sv) \ δ(O)) ≤ 0 as the most violated inequality found so

far.

5 Set S = S \ {v}.
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To summarize, finding the most violated inequalities in (7.5) reduces to |V \ ({r} ∪ O)|
minimum st-cut calculations. Algorithm 7.1 demonstrates the algorithm to solve the
separation problem of (7.5).

7.2.2 Upload capacity inequalities

The separation problem of the upload capacity inequalities (7.9), that is, x(δ(v)) −
cvx(δ(S) \ δ(O \ {v})) ≤ 0 for v ∈ S ⊆ V \ {r}, can be solved in polynomial time.

Proposition 7.2.2. The separation problem of (7.9) reduces to |V | − 1 minimum st-cut
calculations.

Proof. Given a node v ∈ V \ {r} and a vector x ∈ RE, let the weight of an edge e′ ∈ E

be

wv
e′ =

{
0, if e′ ∈ δ(O \ {v}),
xe′ , otherwise.

Then let Sv be the node set containing v that induces a min cut between r and v, that
is,

Sv = argmin
S

{wv(δ(S)) : v ∈ S ⊆ V \ {r}}.

Then the separation problem reduces to obtaining

max{x(δ(v))− Sv : v ∈ S ⊆ V \ {r}}.

Therefore, at most |V | − 1 minimum s − t cut calculations are needed to find a most
violated inequality in (7.9).

Moreover, similar result can be obtained for (7.18), that is, yv − x(δ(S) \ δ(O \ {v})) ≤ 0

for v ∈ S ⊆ V \ {r}, as stated in the following proposition.

Proposition 7.2.3. The separation problem of (7.18) reduces to |V |−1 minimum st-cut
calculations.

Proof. We follow the same notation and edge-weight vector as previously defined for the
separation problem of (7.9). Clearly, we have the following relation

max{yv − x(δ(S) \ δ(O \ {v})) : v ∈ S ⊆ V \ {r}} = max{yv − Sv : v ∈ S ⊆ V \ {r}}.

Therefore, the proposition holds.
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7.2.3 Subtour elimination inequalities

For the separation of the subtour elimination inequalities (7.6), that is, x(E[S]) ≤ |S|−1

for S ⊆ V , Padberg and Wolsey [1983] showed that it can be done in polynomial time
using at most |V |−2 maximum flow calculations. Moreover, we generalize their approach
to an extent that allows us to separate a series of inequalities with similar structures,
including not only (7.6) but also the extended elimination inequalities (7.17), that is,
x(E[S])− y(S \ {v}) ≤ 0 for v ∈ S ⊆ V .

We first claim that the following lemma is true.

Lemma 7.2.4. Given a vector [ xy ] ∈ RE+V , for any node u ∈ V , mu = max{x(E[S])−
y(S) : u ∈ S ⊆ V } can be obtained with a single minimum st-cut calculation.

Proof. This proof proceeds similarly to the proof of Padberg and Wolsey [1983]. First,
we construct a new graph G∗ based on G and [ xy ] as follows. We add two nodes s and t

as source and sink to G, and for each v ∈ V , we add two edges sv and vt with weights

wsv = max{1
2
x(δG(v))− yv, 0},

wvt = max{yv − 1

2
x(δG(v)), 0}.

For each edge e in G, we assign the weight

we =
1

2
xe.

For any S ⊆ V , the weight of the cut δG∗(S ∪ {s}) can be calculated as follows.

w(δG∗(S ∪ {s})) =
∑

v∈V \S
max{1

2
x(δG(v))− yv, 0}

+
∑
v∈S

max{yv − 1

2
x(δG(v)), 0}+ 1

2
x(δG(S))

=
∑
v∈V

max{1
2
x(δG(v))− yv, 0}+

∑
v∈S

(max{yv − 1

2
x(δG(v)), 0}

−max{1
2
x(δG(v))− yv, 0}) + 1

2
x(δG(S))

=
∑
v∈V

max{1
2
x(δG(v))− yv, 0}+

∑
v∈S

(yv − 1

2
x(δG(v))) +

1

2
x(δG(S))

=
∑
v∈V

max{1
2
x(δG(v))− yv, 0}+ (y(S)− x(E[S])− 1

2
x(δG(S)))

+
1

2
x(δG(S))
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=
∑
v∈V

max{1
2
x(δG(v))− yv, 0}+ y(S)− x(E[S]).

Note that the value of
∑
v∈V

max{1
2
x(δG(v))− yv, 0} is independent of S, and is exclusively

dependent on [ xy ]. Thus for a given u ∈ V , we have

mu = max{x(E[S])− y(S) : u ∈ S ⊆ V }
= −min{w(δG∗(S ∪ {s})) : u ∈ S ⊆ V }+ C,

where C =
∑
v∈V

max{1
2
x(δG(v)) − yv, 0}. It can be noted that for each u ∈ V , in order

to guarantee that u ∈ S, one can set wsu = +∞. Thus one can obtain mu with a single
minimum st-cut calculation on G∗.

Lemma 7.2.4 can be applied on the separation problems of both the subtour elimination
inequalities (7.6), that is, x(E[S]) ≤ |S| − 1 for S ⊆ V , and the extended subtour
elimination inequalities (7.17), that is, x(E[S])− y(S \ {v}) ≤ 0 for v ∈ S ⊆ V .

Proposition 7.2.5. The separation problem of (7.6) reduces to |V | − 2 minimum st-cut
calculations.

Proof. Given x ∈ RE, let yv = 1 for all v ∈ V . Then y(S) = |S| for any S ⊆ V . According
to Lemma 7.2.4, for a given node v ∈ V , mv = max{x(E[S]) − |S| : v ∈ S ⊆ V } can be
obtained with a single minimum st-cut calculation.

Without loss of generality, let V = {v1, · · · , vn}, and Si = {vi, · · · , vn} for i ∈ {1, · · ·n}.
Let

mi = max{x(E[S])− |S| : vi ∈ S ⊆ Si}.

mi can be calculated using same approach as for mv except that we set wut = +∞ for
any u ∈ V \ Si.

Since |Si| ≤ 2 for i ∈ {n− 1, n} and (7.6) concerns only the cases with |S| ≥ 3, one only
needs to calculate max{x(E[S])− |S| : vi ∈ S ⊆ Si}, for i ∈ {1, · · · , n− 2}, that is,

max{x(E[S])− |S| : S ⊆ V, |S| ≥ 3} = max{mi : i ∈ {1, · · · , n− 2}}

Thus, the separation problem of (7.6) can be solved with |V | − 2 minimum st-cut calcu-
lations.

Proposition 7.2.6. The separation problem of (7.17) reduces to |V |−1 minimum st-cut
calculations.
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Proof. Given [ xy ] ∈ RE+V , similarly, let V = {v1, · · · , vn}, Si = {vi, · · · , vn} for i ∈
{1, · · ·n}, and

mi = max{x(E[S])− y(S) : vi ∈ S ⊆ Si}.

According to Lemma 7.2.4, one can obtain mi, and

Si = argmax
S

{x(E[S])− y(S) : vi ∈ S ⊆ Si}

with a single minimum st-cut calculation. Additionally, as |Sn| = 1 and (7.17) considers
node sets with at least two nodes, thus

max{x(E[S])− y(S \ {v}) : v ∈ S ⊆ V, |S| ≥ 2}
= max{mi +max{yu : u ∈ Si} : i ∈ {1, · · · , n− 1}}.

Therefore, max{x(E[S])− y(S \ {v}) : v ∈ S ⊆ V, |S| ≥ 2} can be obtained with |V | − 1

minimum st-cut calculations.

7.2.4 Matching-partition inequalities

As mentioned earlier, Didi-Biha et al. [2015] have studied similar matching-partition
constraints for the connected subgraph problem. In order to distinguish the matching-
partitions for the two problems, we call the pair (M,π ) a CSP matching-partition of G,
if π = {S1, · · · , Sp}, p ≥ 1, is a partition of V and M = {e1, · · · , ep} is a matching
of G with ei ∈ E[Si] for all i ∈ {1, · · · , p}. Denote MPCSP (G) the set of all CSP
matching-partitions of G. The CSP matching-partition constraint is as follows.

x(M)− x(Eπ) ≤ 1 ∀(M,π ) ∈ MPCSP (G).

The difference between the two versions of matching-partition inequalities is that in the
matching-partition for the MBrT problem, a matching edge in the partition class contain-
ing r is unnecessary. Didi-Biha et al. [2015] have proved by a polynomial transformation
from multiterminal cut problem, the separation problem of the CSP matching-partition
constraint is NP-hard. Due to the relation between CSP and MBrT problem, we prove
the NP-hardness of the separation of the matching-partition inequalities by reducing the
separation problem of the CSP matching-partition inequalities to it.

Let x be any vector in RE, and

gMBrT
x (M,π ) = x(M)− x(Eπ \ δ(O)) ∀(M,π ) ∈ MP(G),



7.2. SEPARATION PROBLEMS FOR VALID INEQUALITIES 193

gCSP
x (M,π ) = x(M)− x(Eπ) ∀(M,π ) ∈ MPCSP (G).

The following lemma has been proven by Didi-Biha et al. [2015].

Lemma 7.2.7. Given a vector x ∈ RE, the problem of finding max{gCSP
x (M,π ) :

(M,π ) ∈ MPCSP (G)} is NP-hard.

Then we prove the NP-hardness of the separation problem of the matching-partition
inequalities for the MBrT problem by showing a polynomial-time reduction from the
separation problem of the matching-partition inequalities for CSP to it.

Proposition 7.2.8. The separation problem of the CSP matching-partition inequali-
ties can be reduced to a polynomial number (at most |V | − 1) of separation problems
of matching-partition inequalities (7.7).

Proof. Given a instance of CSP problem on graph G = (V,E), consider an arbitrary node
u in V . For each v ∈ N(u), we obtain a new graph denoted as G′

v by contracting the edge
uv into a node rv. Note we have O = ∅ for G′

v. Let (M ′
v, π

′
v) be a matching-partition of

G′
v such that gMBrT

x (M ′, π′) is maximized, that is,

gMBrT
x (M ′

v, π
′
v) = max{gMBrT

x (M,π ) : (M,π ) ∈ MP(G′
v)}.

Let (M ′, π′) be a CSP matching-partition of G such that gCSP
x (M ′, π′) is maximized, that

is,

gCSP
x (M ′, π′) = max{CSP

x (M,π ) : (M,π ) ∈ MPCSP (G)}.

Without loss of generality, for v ∈ N(u), let Sv
0 be the partition class of π′

v that contains
rv, and let S

′v
0 be a subset of V such that

S
′v
0 = Sv

0 ∪ {u, v} \ {rv}.

Let ev0 be the edge in E[S
′v
0 ] with the maximum value of xev0

, that is,

ev0 = argmax
e

{xe : e ∈ E[S
′v
0 ]}.

We claim that the following relation holds.

gCSP
x (M ′, π′) = max{gMBrT

x (M ′
v, π

′
v) + xev0

: v ∈ N(u)}.
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For a given v ∈ N(u), it can be seen that,

gMBrT
x (M ′

v, π
′
v) + xev0

= max{x(M)− x(Eπ) : (M,π ) ∈ MPCSP (G), uv /∈ Eπ}.

Moreover, it is known that for any (M,π ) ∈ MPCSP (G) there exists some e ∈ δ(u), such
that e /∈ Eπ, since otherwise u is isolated. Hence, one has

gCSP
x (M ′, π′) = max{x(M)− x(Eπ) : (M,π ) ∈ MPCSP (G), uv /∈ Eπ, v ∈ N(u)}

= max{gMBrT
x (M ′

v, π
′
v) + xev0

: v ∈ N(u)}.

Therefore, if the matching-partition inequalities on G′
v, for v ∈ N(u), can be separated

in polynomial time, then the matching-partition inequalities for CSP on G can also be
separated in polynomial time.

This shows that the separation of matching-partition inequalities (7.7) is at least as hard
as the separation of the matching-partition inequalities for CSP, and thus its NP-hardness
is proved.

Proposition 7.2.9. The separation problem of (7.7) is NP-hard.

Despite its NP-hardness the separation problem of the matching-partition inequalities
can be solved in polynomial time on cycles and trees. On trees, the only matching-
partition inequalities that define facets are the connectivity inequalities, for which the
separation problem is known to be polynomially solvable according to Proposition 7.2.1.

On cycles, an approach for the separation of the matching-partition inequalities is pre-
sented below.

Firstly, let G be a cycle with O = {vo}. Let (M,π ) ∈ MP(G) be a matching-partition
with |M | ≥ 2. From Subsections 6.4.1 and 6.7.2, we can see that the matching-partition
inequalities associated with (M,π ) is redundant. Hence, we can focus on the case that
has O = ∅, which means gMBrT

x (M,π ) = x(M)− x(Eπ) for any (M,π ) ∈ MP(G).

Let G = (V,E) be a cycle with O = ∅. Denote by G′ = (V ′, E ′), the cycle obtained by
extending r to an edge rr′. Given a vector x ∈ RE, let x′ be a vector in RE′

such that

x′
e =

{
xe if e ∈ E,

L if e = rr′,

where L is a sufficiently large number that satisfies L > xe for any e ∈ E. Now we show
that the following proposition holds.
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Proposition 7.2.10.

max{gMBrT
x (M,π ) : (M,π ) ∈ MP(G)}

= max{gCSP
x (M ′, π′) : (M ′, π′) ∈ MPCSP (G

′)} − L.

Proof. We claim that for any CSP matching-partition (M∗, π∗) ∈ MPCSP (G
′) such that

gCSP
x (M∗, π∗) is maximized, we have rr′ ∈ M∗. First, one has rr′ /∈ Eπ∗ , since otherwise

combining the two partition classes that contain r and r′ into one partition class and
picking rr′ as the corresponding edge in the matching gives us a better solution. As
rr′ /∈ Eπ∗ and xrr′ > xe for any e ∈ E, one must have rr′ ∈ M∗.

Furthermore, it can be seen that each matching partition (M,π ) ∈ MP (G) has a one-to-
one correspondence with a CSP matching-partition (M ′, π′) ∈ MPCSP (G

′) with rr′ ∈ M ′,
and vise versa. Hence the following relation holds.

max{x(M)− x(Eπ) : (M,π ) ∈ MP(G)}
= max{x(M ′)− x(Eπ′) : (M ′, π′) ∈ MPCSP (G

′), rr′ ∈ M ′} − L.

Therefore, the proposition holds.

According to this proposition, the separation problem of the matching-partition inequal-
ities is polynomially solvable on cycles if the separation problem of the CSP matching-
partition inequalities is polynomially solvable on cycles. Didi-Biha et al. [2015] showed
that the separation problem of the CSP matching-partition inequalities is polynomially
solvable on cycles. Thus the following corollary holds.

Corollary 7.2.11. Let G be a cycle. The separation problem of (7.7) can be solved in
polynomial time.

For the matching-partition inequalities, a few ways of generating matching-partition in-
equalities have been tested, among which, there are two different approaches in terms of
how the matching-partitions are generated. One is to have a matching first, then con-
struct a partition based on it, and the other approach is just the opposite. The former
seems to be a natural choice, since the matching can be built in prior based on the weights
on edges.

Maximum weighted matching is our first choice going into experiment, as generally the
most violated matching-partition inequality tends to contain as many large-weight edges
as possible in the matching. Consider the x-value of each edge as its weight, a matching-
partition in this case is built based on the maximum weighted matching. The partition
classes are constructed by extending each matching edge to an edge set while ensuring
the weights of the edges between partition classes to be as small as possible.
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The second method is based on the fact that the edges with maximal weight value should
never be present in Eπ \ δ(O) of a most violated matching-partition inequality. Thus one
can derive a subgraph containing only such edges, and the connected components in this
subgraph lead to the initial partition classes. After that, the edges with second largest
weight can be processed the same way, and so forth till the partition is fully formed.
This heuristic has been proved to be able to generate some inequalities that are helpful
to eliminate certain fractional points.

Another method is based on the projection from the inequalities for Bxy(G, r, c). One
first lift a vector x ∈ RE to a vector

[
x
y

] ∈ RE+V by setting yv = max{xe : e ∈ δ(v)}.
Then we can separate the extended subtour elimination inequalities (7.17) to find a set
S � V as the first partition class. If r ∈ S, then one looks for a matching {e1, e2} of E[S]

and a node set S ′ � S such that xe1 + xe2 − x(δ(S ′) ∩ E[S] \ δ(O)) is maximized. This
can be achieved using the separation algorithm described in Didi-Biha et al. [2015] for
the inequality xe + xf − x(δ(S)) ≤ 0 for e ∈ E[S] and f ∈ E[S], which can be reduced to
O(|V |) minimum st-cut calculations.

If r /∈ S, we first take an edge e1 in E[S] with the maximum x-value to be in the matching.
Then similarly to the separation of the connectivity inequalities (7.5), one looks for an
edge e2 ∈ E[S] \ δ(r) and a node set S ′ ⊆ S \ {r} such that xe2 − x(δ(S ′) ∩ E[S] \ δ(O))

is maximized.

This cut generation heuristic is given in Algorithm 7.2, and we show that the following
result holds.

Proposition 7.2.12. Algorithm 7.2 returns a matching-partition inequality using O(|V |)
minimum st-cut calculations.

Proof. It is trivial to see that Algorithm 7.2 ensures that π is a partition of V , and (M,π )

is in MP(G). Thus the matching-partition inequality it returns is valid.

Furthermore, as each of the separation algorithms for (7.17), (7.5) and the inequality
xe + xf − x(δ(S)) ≤ 0 for e ∈ E[S] and f ∈ E[S] can be reduced to O(|V |) minimum
st-cut calculations, one has that Algorithm 7.2 also reduces to O(|V |) minimum st-cut
calculations.

This heuristic aims at finding a matching partition with 2 matching edges, and can be
extended to a heuristic that looks for a matching partition with any fixed number of
matching edges by simply increase the number of iterations.
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Algorithm 7.2: Cut generation algorithm for matching-partition inequalities
Input : x ∈ RE.
Output: Matching-partition inequality x(M)− x(Eπ \ δ(O)) ≤ 0 that is violated

by x.
begin

1 Set yv = max{xe : e ∈ δ(v)} for all v ∈ V .
2 Find an extended subtour elimination inequality that is violated by

[
x
y

]
and is

associated with S using the separation algorithm for (7.17).
if S is a proper subset of V then

if r ∈ S then
3 Set S0 = S.
4 Find {e1, e2} ⊆ E[S] and a node set S ′ � S such that

xe1 + xe2 − x(δ(S ′)∩E[S] \ δ(O)) is maximized using a similar algorithm
as described in Didi-Biha et al. [2015] for their connectivity inequalities.

5 Set π = {S, S ′, S \ S ′} and M = {e1, e2}.
else

6 Set S1 = S.
7 Find and edge e1 in E[S1] with the maximum x-value.
8 Find an edge e1 ∈ E[S] \ δ(r) and a node set S ′ ⊆ S \ {r} such that

xe1 − x(δ(S ′) ∩ E[S] \ δ(O)) is maximized using a similar algorithm to
the separation algorithm of (7.5).

9 Set π = {S, S ′, S \ S ′} and M = {e1, e2}.
10 Return the inequality x(M)− x(Eπ \ δ(O)) ≤ 0 if it is violated by x;

7.2.5 i-articulation inequalities and tightening inequalities

Recall that a special case of the i-articulation inequalities (7.10) is the following capacity-i
inequalities

x(δ(O) \ δ(R))− (i− 2)x(E[S])− (i− 1)x(δ(R) \ δ(O)) ≤ 0 ∀S ⊆ Si, (7.19)

where Si = {v ∈ V \ {r} : cv = i, i ≥ 2} and R = V \ (S ∪O).

Since the capacity-i inequalities, the i-articulation inequalities and tightening inequalities
all have similar structures, their separation problems can be solved in a similar way.

The separation of capacity-i inequalities (7.19) can be done in polynomial time by calcu-
lating the minimum cut between R0 = V \ (Si ∪ O) and O for each possible i between 2
and max{cv : v ∈ V \ ({r} ∪O)}. Therefore, at most n− 2 maximum flow calculation is
required to separate (7.19).

Proposition 7.2.13. The separation problem of (7.19) reduces to at most |V \ O| − 1
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minimum st-cut calculations.

Proof. Given x ∈ [0, 1]E and integer 2 ≤ i ≤ max{cv : v ∈ V \ {r}}, we claim a set
S ⊆ Si that induces maximum x(δ(O) \ δ(R)) − (i − 2)x(E[Si]) − (i − 1)x(δ(R) \ δ(O))

with R = V \(S∪O) can be found in polynomial time. As x(δ(O)) is fixed for any given x,
the problem is equivalent to finding the minimum x(δ(R))+(i−2)(x(E[Si]+x(δ(R)\δ(O)).

We first construct a graph G′ = (V ′, E ′) based on G by adding two nodes the source s

and the sink t to get

V ′ = V ∪ {s, t},
E ′ = E ∪ {sv : v ∈ R0 ∪ Si} ∪ {vt : v ∈ O}.

The edge weight function for E ′ is defined as follows. First of all, in order to ensure that
in any minimum s− t cut of G′, R0 is on the side of s, and O is on the side of t, we set

we = M ∀e ∈ δ(t) ∪ δ(s) ∩ δ(R0),

where M is a large enough number.

Let

f(v) =
∑

vj∈Si\{v}
xvvj ∀v ∈ Si.

We set the weights of the rest of the edges as follows

we =

⎧⎪⎨⎪⎩
xe, if e ∈ E \ E[Si],
i
2
xe, if e ∈ E[Si],

i−2
2
f(v), if e = sv ∈ δ(s) ∩ δ(Si).

Given any S ⊆ Si, let R = V \ (S ∪ O) and R′ = R ∪ {s}. The weight of the cut set in
G′ induced by R′ the following

w(δG′(R′)) =x(δG(R)) +
i− 2

2

∑
e∈δ(R)∩δ(S)

xe +
∑
v∈S

wsv

=x(δG(R)) +
i− 2

2

∑
e∈δ(R)∩δ(S)

xe +
i− 2

2

∑
v∈S

f(v)

=x(δG(R)) + (i− 2)x(E[S] + x(δ(R) ∩ δ(S))).

Thus the minimum s− t cut in G′ gives us the maximum x(δ(O) \ δ(R))− (i− 2)x(E[S])

− (i− 1)x(δ(R) \ δ(O)) for any given x ∈ [0, 1]E and any integer i with 2 ≤ i ≤ max{cv :
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v ∈ V \ {r}}. Additionally, there can be at most |V | − 2 different values for i for each
node in V \ (O ∪ {r}). Therefore, the separation of (7.19) can be done in polynomial
time with at most |V \O| − 1 minimum st-cut calculations.

Similar to the capacity-i nodes inequalities, a single minimum st-cut calculation is suffi-
cient to separate the tightening inequalities (7.11), that is, x(δ(O))−x(δ(R)) ≤ ∑

v∈S
(cv−2)

for S ⊆ V \ ({r} ∪O) and R = V \ (S ∪O), as stated in the following proposition.

Proposition 7.2.14. The separation problem of (7.11) reduces to a minimum st-cut
problem.

Proof. Given any x ∈ [0, 1]E, we claim a set R ⊂ V \O that induces maximum x(δ(O))−
x(δ(R)) − ∑

v∈S(cv − 2) can be found in polynomial time. As x(δ(O)) is fixed for any
given x, the problem is equivalent to finding the minimum x(δ(R)) +

∑
v∈S(cv − 2).

We first construct a graph G′ = (V ′, E ′) based on G by adding two nodes, the source s

and the sink t, and a few related edges into graph G. One then has V ′ = V ∪ {s, t}. For
each node v ∈ R0 ∪ Vi, add an edge sv ∈ E ′, and for each v ∈ O, add an edge vt ∈ E ′,
where S0 = V \ (R0 ∪O), R0 = {r}.
The edge weight function for E ′ is defined as follows. Let f(v) = cv − 2, for any v ∈ S0.
For any edge e ∈ E, its weight we = xe. For e ∈ δ(s) ∩ δ(R0) or e ∈ δ(t), we = M , where
M is a large enough number. For sv ∈ δ(s) ∩ δ(S0), wsv = f(v). The minimum s− t cut
in G′ includes the node set R0 on the side of s and the node set O on the side of t due to
the weights. Assume node set R′ induces a minimum s− t cut in G′, with R′ = R ∪ {s},
R = R0 ∪ (S0 \ S), S = V \ (R ∪O). The weight of the cut set is as follows.

x(δG(R)) +
∑
v∈S

wsv +
∑

v∈S0\S
wvt

=x(δG(R)) +
∑
v∈S

f(v)− 0
∑

v∈S0\S
f(v)

=x(δG(R)) +
∑
v∈S

(cv − 2)

This minimum cut calculation gives us the maximum x(δ(O))−x(δG(R))−∑
v∈S(cv − 2)

for any given x ∈ [0, 1]E, and the transformation from G to G′ can be done in polynomial
time. Therefore, the separation of (7.11) reduces to a minimum st-cut problem.

Following the same notation as in Subsection 6.4.6, the separation of the i-articulation
inequalities (7.10) can be done in polynomial time as well by calculating the minimum
cut between R0 = V \ ((Si ∩ Va) ∪ O) and DSi∩Va for each possible i between 2 and
max{cv : v ∈ V \ {r}}. Therefore, at most |V | − 2 minimum st-cut calculations are



200 Chapter 7. Computational study

required to separate (7.10). The algorithm and the proof would proceed the same way
as for the separation algorithm of capacity-i inequalities, and the only difference is one
substitutes DSi∩Va and FSi∩Va for O and δ(O). Thus we give the following result directly.

Proposition 7.2.15. The separation problem of (7.10) reduces to at most |V \ O| − 1

minimum st-cut calculations.

7.2.6 Acyclicity-connectivity inequalities

For the acyclicity-connectivity inequalities (7.8), that is, x(E[W ]) − (|W | − 1)x(δ(S) \
δ(O)) ≤ 0 for W ⊆ S ⊆ V \ {r}, the complexity of its separation problem remains
unknown. We propose the following conjecture.

Conjecture 7.2.16. The separation problem of (7.8) is NP-hard.

A straightforward heuristic is developed based on the observation that the fractional
points generated in the branch-and-cut process which violate the acyclicity-connectivity
inequalities should always have a support graph with 2-connected components. Other-
wise, they would be cut by the connectivity inequalities beforehand. Thus, the heuristic
is based on the support graph of the given solution as follows. For each 2-connected com-
ponent that does not contain r of the support graph, consider the corresponding edge
set as E[W ] and obtain S from a minimum cut between r and W with respect to the
solution. If the inequality x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) ≤ 0 is violated, then it is
added into the model.

7.3 Primal matheuristic

Let x be a fractional solution obtained in the process of branch-and-cut with respect to
BRTx. This section presents a matheuristic that use this primal information to derive an
integer feasible point, or in other words, a primal bound (or lower bound in our case).

The matheuristic is as follows.

We start with a pool of nodes P ⊆ V containing only r at first, and each iteration select
one node and one edge incident with the pool, until either a spanning tree has been found
or there is no edge to select any more. There are a few options on how we grow the pool
of nodes, and the priority one takes into consideration while choosing among the edges
incident with the pool. We have decided that the information of the fractional solution
x carries should be weighed the most. Aside from that, when expending the pool, the
potential of the selected node is evaluated, where the potential of a node means if it is
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selected how many other nodes can be selected further in the process. Essentially, one can
compare the capacity of the nodes first, because a higher capacity often indicates more
edges incident with the node can be selected. If two candidates have the same capacity,
then we compare the sum of capacity of their neighbors. The details of the matheuristic
are presented as in Algorithm 7.3.

Algorithm 7.3: Primal matheuristic
Input : Fractional solution x ∈ RE.
Output: Integral feasible solution xE∗ ∈ ZE.
begin

1 Set P = {r}, O′ = ∅, E∗ = ∅.
while there still exists some node that is not in the pool P , and
δ(P ) \ δ(O′) = ∅ do

2 Among the edges in δ(P ) \ δ(O′), choose one edge e = uv according to the
following priorities: x value, capacity, sum of capacity of neighbors.

3 Set E∗ = E∗ ∪ {e}.
4 Reduce the capacity of u and v by 1, and if the capacity of u (v,

respectively) becomes 0, add u (v, respectively) to O′.

Algorithm 7.3 essentially has the structure of Prim’s algorithm for the minimum spanning
tree problem, see Prim [1957]. Nonetheless it considers more factors other than the
weights and has a different termination condition.

Proposition 7.3.1. Algorithm 7.3 computes a feasible solution in time O(|V |2).

Proof. As Algorithm 7.3 starts with r in the node pool and adds exactly one node into
the pool in each iteration, thus it contains at most |V | − 1 iterations. The complexity of
Algorithm 7.3, similar to Prim’s algorithm, is at worst O(|V |2).
Moreover, since at each iteration, one adds an edge e to E∗ such that e has exactly one
end in the node pool P and both ends of e are not saturated in terms of capacity. Hence
E∗ ∪ {e} always induces a bounded r-tree, and thus xE∗ is an integral feasible solution
for the MBrT problem at the end of the algorithm.

Note that this matheuristic can also be used for any fractional solution
[
x
y

]
obtained

in BRTxy by simply considering its restriction x. Moreover, at the last step of the
candidate selection, there are several ways to modify the algorithm such as comparing
other properties or changing the priority of each property.

In addition, Algorithm 7.3 only targets the uniform-weight version of the MBrT problem,
that is, the MSBrT problem. When applying this matheuristic on the general MBrT
problem, it should also consider the edge-weights while choosing edges in order to obtain
a higher quality solution.
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Other than this primal matheuristic, we also experimented with another matheuristic
which was unfortunately not very effective. The idea of that matheuristic is essentially to
first derive a spanning tree of the support graph of a fractional solution, and then prune
the branches that violate the capacity constraints. This approach generally gives a bad
primal bound because there are too much pruning of the resulting spanning tree, as it
does not consider the capacity factor when constructing the spanning tree.

7.4 Properties related to optimal solutions

When dealing with uniform-weight cases, the following property has been found of the
optimal solutions that one can exploit.

Proposition 7.4.1. Given a bounded r-tree polytope Bx(G, r, c) with G = (V,E), and
uniform weight vector w = 1E, let c′r = min{cr, |δ(r)|}. The following equation holds.

max{wTx : x ∈ Bx(G, r, c)} = max{wTx : x ∈ Bx(G, r, c), x(δ(r)) = c′r}.

Proof. Assume that all optimal solutions satisfy x(δ(r)) < c′r, and assume x is one of the
optimal solutions with its support graph being G′ = (V ′, E ′).

First, if there exists some node v ∈ (V ∩ N(r)) \ (V ′ ∩ N(r)), one can simply add rv

to G′ to obtain a better solution, and thus it forms a contradiction. Then, one has
(V ∩N(r)) \ (V ′ ∩N(r)) = ∅. Knowing that, pick an arbitrary node u ∈ V ∩N(r), one
can add ru into G′, which creates one and only one cycle since G′ is a tree, and the cycle
contains ru. By removing the other edge in the cycle incident with u, one can obtain
another r-tree G′′ that satisfies the capacity constraints, as from G′ to G′′, the only node
with its degree increasing is r. This process can be repeated as many times until the c′r
is saturated, and therefore, one can construct a solution which satisfies x(δ(r)) = c′r.

This proposition allows us to reduce the problem from optimizing the objective function
over the polytope Bx(G, r, c) to optimizing the same objective function over merely a
face of the polytope. In other words, the dimension of the polytope we are working on
is reduced by 1. Therefore, the following equation can be added into the initial model
when uniform weight is considered.

x(δ(r)) = c′r (7.20)

This result also applies for Bxy(G, r, c) when node weight is not considered.

max{wTx : [ xy ] ∈ Bxy(G, r, c)} = max{wTx : [ xy ] ∈ Bxy(G, r, c), x(δ(r)) = c′r}.
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In fact, it is deduced from the following two implicit equations.

yr = 1,

x(δ(r)) = c′ryr.

Combining them gives us the same equation as for Bx(G, r, c). It is also worth mentioning
that yr = 1 applies for any case where the root r has a non-negative weight.

7.5 Results

Note that there are plenty of options while implementing BRTx, as we have a wide range
of user cuts to select from and various options of how the branch-and-cut algorithm
proceeds. For the sake of conciseness and rigorous, we only show one set of results for
BRTx, which has the most complete results and overall the best performance so far. In
this implementation, we incorporated user cuts for (7.7), (7.9) and (7.11), but not for
(7.8) and (7.10). Besides, the order of each set of cuts that is generated in the branch-
and-cut algorithm also affects the performance. Particularly, for BRTx we split the user
cuts into two groups. We first generate cuts for the first group of inequalities, that is,
the connectivity inequalities (7.5), a subset of subtour elimination inequalities (7.6), the
matching-partition inequalities (7.7) and the tightening inequalities (7.11). If no cuts is
found for the first group, we then generate cuts for the subtour elimination inequalities
(7.6) and upload capacity inequalities (7.9).

Another factor that has influence on the performance is the timing of when and how often
the primal matheuristic should be running. After a few experiments, we chose to run the
matheuristic with a dynamic step. More precisely, the primal matheuristic runs every sd

iterations, where each time it is executed, we adjust the step sd depending on how good
is the solution found by the matheuristic comparing with the previous best incumbent.

Besides, we kept the CPLEX branching and node selection rules, as well as CPLEX
default cuts (Gomory fractional cuts, zero-half cuts, etc.) with default setting.

We present our results on over 600 instances for each framework. Providing all the results
would be overwhelming for the readers, thus for each testset we first give an overview of
the performance of all four different frameworks, and then present the results of a few
representative instances. For the overview, we give the overall percentage of the solved
instances within a time limit of 2 hours, and compare the average upper bounds and
lower bounds attained by each branch-and-cut framework for each testset.
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Figure 7.1: Percentage of solved instances on SteinLib testsets

The following notation is used in the forthcoming tables presenting the results.

UB : the best achievable upper bound.

LB : the best lower bound.

Gap : gap in percentage between the best lower bound and the best upper bound, which
is equal to UB−LB

LB
.

7.5.1 SteinLib instances

SteinLib is one of the two data sources we have for the computational test. We use
the graphs of the dataset and generate a capacity files to match each of the instances.
Since we only test the uniform-weight version of the MBrT problem so far, the weights
in the SteinLib files are not used. Moreover, since the MBrT problem and the Steiner
tree problem are quite different due to the capacity constraints in the former and the
terminals in the latter, there is little to none correlation between the difficulties of the
two instances that correspond to the same file. Thus, while choosing instances from the
SteinLib, our intention is to make sure that the selected instances cover a wide spectrum
of different properties such as node number, graph type etc.

First of all, Figure 7.1 reports the percentage of solved instances on each set of SteinLib
instances. All the instances of the testset B are solved by all four frameworks within
2 hours. For testsets C and I320 BRTx showed clear improvements comparing with
CPLEXx regarding the number of times reaching optimality, whereas for testsets I640
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Figure 7.2: Lower bounds on SteinLib instances

and MSM their performance are close. On the other hand, BRTxy always solves much
more instances than CPLEXxy in all four other testsets than B.

Figure 7.2 and 7.3 demonstrates the differences of CPLEXx, BRTx, CPLEXxy and
BRTxy in terms of average upper bound and lower bound for the SteinLib instances.
We can see that BRTxy obtained the best upper bounds and lower bounds across the
board, while the other three are close regarding the upper bound. However, CPLEXx

and CPLEXxy, especially CPLEXxy, generally struggle to find a good lower bound.

Figure 7.3: Upper bounds on SteinLib instances

Although all the 18 instances in testset B have been solved by all four frameworks within
2 hours, it generally takes CPLEXx the longest time to solve the instances. Some of the
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CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
B/b01 50 63 27 27 0.00% 0.17 27 27 0.00% 0.08
B/b10 75 150 60 60 0.00% 20.06 60 60 0.00% 1.18
B/b11 75 150 51 51 0.00% 588.01 51 51 0.00% 8.84
B/b18 100 200 79 79 0.00% 40.66 79 79 0.00% 5.51

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
B/b01 50 63 27 27 0.00% 0.02 27 27 0.00% 0.01
B/b10 75 150 60 60 0.00% 0.60 60 60 0.00% 0.06
B/b11 75 150 51 51 0.00% 0.01 51 51 0.00% 0.06
B/b18 100 200 79 79 0.00% 0.36 79 79 0.00% 0.06

Table 7.4: Test results on instances of testset B

CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
C/c04 500 625 170 188 10.59% 7200.69 172 172 0.00% 5005.52
C/c15 500 2500 0 488.50 - 7200.04 478 478 0.00% 4.66
C/c16 500 12500 0 494.50 - 7203.17 490 490 0.00% 12.72
C/c17 500 12500 499 499 0.00% 25.02 497 499 0.40% 7200.80
C/c20 500 12500 499 499 0.00% 97.38 499 499 0.00% 1.71

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
C/c04 500 625 172 172 0.00% 1.83 167 178 6.59% 7200.26
C/c15 500 2500 10 478 4680% 7201.56 478 478 0.00% 20.58
C/c16 500 12500 2 490 24400% 7200.54 490 490 0.00% 140.33
C/c17 500 12500 56 499 791.07% 7204.38 499 499 0.00% 6.11
C/c20 500 12500 24 499 1979.17% 7201.85 499 499 0.00% 37.10

Table 7.5: Test results on instances of testset C

results are shown in Table 7.4. It can be seen that for instances b10, b11, b18, CPLEXx

needs up to 10 minutes to solve them to optimality while the other three need less than
10 seconds.

In Table 7.4 and the tables after, we use underlined numbers to highlight the notable
worst result among the four frameworks and bold-face numbers to highlight the best
result.

Table 7.5 shows that CPLEXx and CPLEXxy can only obtain a bad lower bound on
some instances comparing with their counterparts, while BRTx and BRTxy performed
much better overall.

This trend continues for the testsets I320, I640 and MSM, where BRTxy outperformed
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CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
i320-001 320 480 155 173.83 12.15% 7200.01 160 163.00 1.88% 7200.76
i320-121 320 51040 0 313.50 - 7200.18 308 308 0.00% 98.45
i320-201 320 480 164 179.17 9.25% 7200.44 170 170 0.00% 816.92
i320-331 320 640 265 272 2.64% 7200.02 251 271.33 8.10% 7200.04
i640-141 640 40896 639 639 0.00% 779.97 639 639 0.00% 920.94
i640-211 640 4135 0 629.50 - 7200.32 620 620 0.00% 25.78
i640-241 640 40896 0 625.50 - 7200.23 2 612 30500% 7209.99
i640-341 640 40896 639 639 0.00% 167.74 639 639 0.00% 138.05
msm1707 278 478 42 42 0.00% 220.60 42 42 0.00% 1.38
msm2000 898 1562 0 575.05 - 7200.10 75 755.96 907.95% 7200.29
msm4114 402 690 0 298.50 - 7201.04 2 2 0.00% 6030.40
msm4515 777 1358 0 604.50 - 7200.65 9 661.00 7244.44% 7200.49

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
i320-001 320 480 160 160 0.00% 3.20 160 160 1.88% 62.01
i320-121 320 51040 93 308 231.18 % 7200.48 308 308 0.00% 1.82
i320-201 320 480 170 170 0.00% 63.98 170 170 0.00% 2.95
i320-331 320 640 237 273.85 15.55% 7200.02 267 267 0.00% 13.62
i640-141 640 40896 96 639 565.63% 7200.32 639 639 0.00% 329.95
i640-211 640 4135 229 620 170.74 % 7200.09 620 620 0.00% 39.79
i640-241 640 40896 0 625.50 - 7200.23 612 612 0.00% 1819.88
i640-341 640 40896 7 639 9028.57% 7201.42 639 639 0.00% 2352.22
msm1707 278 478 42 42 0.00% 299.10 42 42 0.00% 0.20
msm2000 898 1562 75 706.02 841.36% 7200.00 174 174 0.00% 245.02
msm4114 402 690 2 316 15700% 7200.08 2 2 0.00% 2.88
msm4515 777 1358 41 686.67 1574.8% 7200.01 41 41 0.00% 56.86

Table 7.6: Test results on instances of testsets I320, I640 and MSM
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Figure 7.4: Percentage of solved instances on random dense graphs

all the other three frameworks by a considerable margin, and CPLEXx and CPLEXxy

could not find a good lower bound on some instances, as it is shown in Table 7.6. Notably,
BRTx actually provided some worse upper bound than CPLEXx sometimes. The reason
of that could be that we did not adjust the separation algorithms specifically for each
testset. Instead, we use the same separation algorithms with the same setup for all the
instances. Thus in the case of testset MSM, as the instances are extremely sparse, many
of our separation algorithms are non-necessarily costly when going through each node in
the graph, which leads to much longer iteration time and relatively bad bounds in the
end.

7.5.2 Random generated instances

The first set of random generated instances contains dense graphs with node capacities
between 1 to 4. We have only tested on instances with less than 500 nodes, as it is already
sufficient to demonstrate the big discrepancy between the results given by CPLEXx,
CPLEXxy and those of BRTx and BRTxy.

Figure 7.4 demonstrates the difference between these two groups in terms of percentage
of solved instances. It can be seen that BRTx and BRTxy were able to solve all the
instances, while CPLEXx and CPLEXxy had difficulties on some of them. Notably, the
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Figure 7.5: Bounds on random dense graphs

number instances which CPLEXx is able to solve decreases dramatically as the size of
the graph grows.

Consequently, the bounds achieved by CPLEXx and CPLEXxy are much worse than
those of BRTx and BRTxy, as it is shown in Figure 7.5 where the horizontal axis represents
the number of nodes.

Table 7.7 provides a glimpse to the results obtained for the dense graphs. As we can see,
all 6 instances listed in Table 7.7 have been solved by BRTx and BRTxy within 1 minute,
whereas CPLEXx and CPLEXxy failed to find a good lower bound on some of them.

Moving onto the instances with sparse graphs, we first test on the instances with node
capacity chosen from 1 to 3 (that is, the testset rg_13). As it is shown in Figure 7.6,
BRTxy has solved the most instances, whereas BRTx still constantly performed better
than CPLEXx. However, the performance of BRTx on this testset is close to CPLEXxy

and is outperformed by BRTxy in a convincing fashion.

Figure 7.7 shows the averages bounds obtained by the four different frameworks. It can
be seen that, as opposed to the case on dense graphs, CPLEXxy struggles much harder
to find a good lower bound than CPLEXx.

Table 7.8 reports some of the results on testset rg_13. We can clearly see that BRTxy

had the best overall performance, which is slightly better than BRTx, and much better
than both CPLEXx and CPLEXxy. Despite CPLEXx failed to solve some instances,
the gaps at the end of the execution are much smaller than those of CPLEXxy, as a
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CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
39_7 39 130 29 30.50 5.17% 7200.01 29 29 0.00% 0.02
97_5 97 4196 96 96 0.00% 1.02 96 96 0.00% 0.69
139_6 139 9118 0 138 - 7200.09 138 138 0.00% 2.77
222_0 222 6356 221 221 0.00% 3983.44 221 221 0.00% 0.85
370_7 370 61606 0 369 - 7214.24 369 369 0.00% 6.89
477_7 477 65937 0 476 - 7209.92 476 476 0.00% 39.15

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
39_7 39 130 29 29 0.00% 0.60 29 29 0.00% 0.01
97_5 97 4196 6 96 1500% 7200.08 96 96 0.00% 0.52
139_6 139 9118 138 138 0.00% 1.01 138 138 0.00% 0.68
222_0 222 6356 0 221 - 7200.10 221 221 0.00% 0.44
370_7 370 61606 0 369 - 7205.22 369 369 0.00% 3.48
477_7 477 65937 0 476 - 7200.97 476 476 0.00% 2.06

Table 7.7: Test results on instances on dense graphs

Figure 7.6: Percentage of solved instances on random sparse graphs
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Figure 7.7: Bounds on random sparse graphs

CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
rg_13/69 69 108 1 1 0.00% 365.69 1 1 0.00% 0.39
rg_13/154 154 200 104 104 0.00% 56.71 104 104 0.00% 0.77
rg_13/348 348 970 342 347 1.46% 7200.49 343 347 1.17% 7200.43
rg_13/560 560 1088 535 535 0.00% 59.90 535 535 0.00% 81.41
rg_13/739 739 2081 730 738 1.10% 7200.30 734 738.00 0.54% 7200.01
rg_13/981 981 2408 934 935 0.11% 7201.20 935 935 0.00% 112.09

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
rg_13/69 69 108 1 43 4200% 7200.02 1 1 0.00% 0.07
rg_13/154 154 200 104 104 0.00% 1092.06 104 104 0.00% 0.01
rg_13/348 348 970 332 345 3.92% 7200.02 343 343 0.00% 5.46
rg_13/560 560 1088 60 537 795% 7201.89 534 536 0.37% 7202.00
rg_13/739 739 2081 51 738 1347.06% 7201.45 735 735 0.00% 23.74
rg_13/981 981 2408 15 935 6133.33% 7200.54 935 935 0.00% 394.51

Table 7.8: Test results on instances on sparse graphs
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Figure 7.8: Percentage of solved instances on random sparse graphs with O = ∅

result of the bad lower bounds attained by CPLEXxy.

One of the two aspects that contributes to the difficulty of the MBrT problem is the node
capacity, and out of all the nodes, those in O seem to create most of the difficulties in
our theoretical work including the study of algorithms and polyhedral structure. Thus,
we created the testset rg_23, where all nodes in the graphs have capacity between 2 and
3 (that is, O = ∅) to see if there is any difference.

However, the results we obtained on testset rg_23 actually present in a similar pattern
to those on testset rg_13. As it is demonstrated in Figure 7.8, BRTxy has solved the
largest amount of instances, while BRTx and CPLEXxy had similar performances and
both outperformed CPLEXx in terms of total number of instances solved.

The average upper bounds are relatively close for all four frameworks. Nonetheless,
CPLEXxy had the worst average lower bounds, whereas CPLEXx was significantly
better than CPLEXxy but slightly worse than BRTx, with BRTxy consistently being the
best.

Table 7.9 shows some examples of the results obtained on rg_23, which support our
previous inferences.

Out of the over 600 instances we have tested, BRTxy has solved 73.61% of them, and
BRTx 52.46%, whereas CPLEXxy has solved 47.70% of them, and CPLEXx 35.08%.
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Figure 7.9: Bounds on random sparse graphs with O = ∅

CPLEXx BRTx

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
rg_23/54 54 108 52 53 1.92% 7200.08 52 52 0.00% 0.10
rg_23/122 122 292 118 121 2.54% 7200.15 118 118 0.00% 80.44
rg_23/254 254 569 249 253 1.61% 7200.09 249 253 1.61% 7200.16
rg_23/436 436 607 378 378 0.00% 292.65 378 378 0.00% 812.77
rg_23/695 695 1257 0 519 - 7201.88 509 519.00 1.96% 7202.87
rg_23/941 941 2480 912 940 3.07% 7200.59 929 940 1.18% 7200.45

CPLEXxy BRTxy

Instance |V | |E| LB UB Gap Time(s) LB UB Gap Time(s)
rg_23/54 54 108 52 53 1.92% 7200.32 52 52 0.00% 0.01
rg_23/122 122 292 118 120.86 2.42% 7200.75 118 119 0.85% 7200.01
rg_23/254 254 569 249 251 0.80% 7201.14 249 249 0.00% 1.13
rg_23/436 436 607 85 385 352.94% 7201.32 378 378 0.00% 6.70
rg_23/695 695 1257 2 519 25850% 7200.04 519 519 0.00% 2707.97
rg_23/941 941 2480 7 940 13328.57% 7201.09 939 939 0.00% 2137.44

Table 7.9: Test results on instances on sparse graphs with O = ∅
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This shows, to a great extent, that the overall level of strength of each framework, and
how much improvement has been made by adding the newly introduced constraints and
the primal matheuristic to the original formulations.

7.6 Conclusion

This chapter has described the method used to perform the computational test of different
models for the MBrT problem, in order to show how can our theoretical results make a
difference in the computational aspect.

We first discussed the separation problem for each set of inequalities that has been in-
troduced earlier for both Bx(G, r, c) and Bxy(G, r, c). We showed that most of them
can be separated in polynomial time and provided respective separation algorithm. We
proved that the separation problem of the matching-partition inequalities is NP-hard,
and provided a few heuristics to generate cut planes.

With the help of CPLEX we implemented four different branch-and-cut algorithms,
namely CPLEXx, CPLEXxy, BRTx and BRTxy. Particularly, CPLEXx and CPLEXxy

are minimal models for Bx(G, r, c) and Bxy(G, r, c), whereas BRTx and BRTxy incorpo-
rate the newly discovered constraints, a preprocess and a primal matheuristic. We then
tested them on a variety of instances with different properties, which were either fetched
from SteinLib or generated by ourselves. Their performance are compared in the several
different aspects, including overall percentage of solved instances, execution time, and
upper bound and lower bound.

The results showed that in all aspects BRTx and BRTxy beat their counterparts CPLEXx

and CPLEXxy significantly. It showed convincingly the strength of the enhanced formu-
lations in the computational aspect. Moreover, while BRTx and BRTxy performed equally
good on dense graphs, BRTxy outperformed BRTx on sparse graphs and most testsets of
SteinLib instances. The performances of BRTx and CPLEXxy are overall similar, except
that on dense graphs BRTx outperformed CPLEXxy quite significantly. Additionally,
CPLEXx showed its weakness in finding good lower bounds in dense graphs, whereas
CPLEXxy generally struggled the most to find good lower bounds in sparse graphs.
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Conclusion

In this dissertation, we explored several aspects of two NP-hard combinatorial opti-
mization problems, the MBrT problem and the MrT problem. We first defined their
associated polytopes, namely Bxy(G, r, c), Bx(G, r, c), Rxy(G, r) and Rx(G, r). Among
these two polytopes, Rxy(G, r) has been studied by Goemans [1994], whereas the other
three have not drawn much attention from the literature. We gave a formulation for each
one of the four polytopes. A literature review was given on the MBrT problem and the
MrT problem as well as other related problems. We then introduced the background and
the application of the MBrT problem in the telecommunication field, along with some of
the recent related research topics. We showed that the study of the MBrT problem and
its applications deserve more attention.

We approached the MBrT problem and the MrT problem from three directions, algo-
rithms, polyhedra and computational test.

Firstly, we proposed several polynomial-time combinatorial algorithms for the MBrT
problem on trees, cycles and cactus graphs respectively. A dynamic programming based
approach is used on trees which computes the solution from the leaves to the root re-
cursively. On cycles, we split the problem into 3 different cases, and solved them by
calculating a min/max subpath of a given path. For cactus graphs, we reduced the prob-
lem to some subproblems on the so-called cactus basis and on trees, and then proved
that the MBrT problem on cactus basis can be solved in polynomial time. It is worth
noting that the proposed algorithms can also be applied on the MrT problem, as it is a
relaxation of the MBrT problem.

After that, we presented results concerning three polytopes, Bxy(G, r, c), Rx(G, r) and
Bx(G, r, c). We showed that the dimension of Bxy(G, r, c) is related to the number of
nodes in O, which are the none-root nodes with unit-capacity, and the number of blocks
in a subgraph Gr = G \ O of G. On the other hand, Rx(G, r) and Bx(G, r, c) is proved
to be full-dimensional under Assumption 2.2.9. We also showed that Bxy(G, r, c) can be
decomposed through 1-sum. However, such decomposition is proved to be infeasible for
Rx(G, r) and Bx(G, r, c) except when the 1-sum is at the root node r. For Bxy(G, r, c), we
proposed several sets of new valid equations and inequalities to strengthen the formulation
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according to the dimension results. For Rx(G, r), we proposed two sets of new valid
inequalities that can also be inherited by Bxy(G, r, c) with some adjustments. Besides
these two sets of valid inequalities, we presented several other sets of new valid inequalities
specifically for Bx(G, r, c). For all the proposed inequalities we discussed the necessary
and sufficient conditions to be facet-defining for the respective polytope. Besides, it is
also demonstrated that the newly introduced valid inequalities for Bx(G, r, c) can all be
obtained by projection of the valid constraints for Bxy(G, r, c).

We then showed that with the newly introduced constraints, Bxy(G, r, c) can be charac-
terized on trees and cycles. Moreover, as a consequence of the polyhedral decomposition
through 1-sum, Bxy(G, r, c) can therefore be characterized on cactus graphs. As for
Bx(G, r, c), we proved that with incorporating the newly introduced matching-partition
inequalities and upload capacity inequalities, one can obtain a TDI system that defines
Bx(G, r, c) on trees and each of the four cases on cycles.

For each set of inequalities introduced in the dissertation, its separation problem has been
discussed. We proposed either polynomial-time separation algorithms or some heuristics
if the separation problem is NP-hard. With the help of CPLEX, we implemented four
different branch-and-cut frameworks, namely CPLEXx, CPLEXxy, BRTx and BRTxy,
based on the formulations for Bxy(G, r, c) and Bx(G, r, c). Among the four frameworks,
CPLEXx and CPLEXxy correspond to the original formulations for Bx(G, r, c) and
Bxy(G, r, c) without including any newly introduced constraints, whereas BRTx and
BRTxy correspond to the enhanced formulations incorporating the newly introduced con-
straints as well as a preprocess and a primal matheuristic. They were tested on a variety
of over 600 instances that are either from SteinLib Testdata Library or generated.

Test results showed that the performance of BRTx and BRTxy are generally better than
CPLEXx and CPLEXxy. Particularly, on SteinLib instances and sparse graphs, BRTxy

had the best performance with a considerable difference comparing to the other three,
whereas BRTx outperformed CPLEXx. In addition, BRTx and CPLEXxy performed
similarly, except CPLEXxy struggled the most at finding a good lower bound on instances
on these instances. On dense graphs, BRTx is on par with BRTxy in performance, and
they are both significantly better than CPLEXx and CPLEXxy. CPLEXx provided
the worst performance on dense graphs, and its performance declines dramatically as the
number of nodes in graph increases. To summarize, the computational test has shown in
a convincing fashion the strength of the enhanced formulations, especially the enhanced
formulation for Bxy(G, r, c).

Certainly, there remain many unexplored aspects and potential extended research sub-
jects of the MBrT problem. Hereafter we list a few directions that we reckon to be
valuable and worth studying in the future.
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Ins Time(s) tr(s) NB&C UB LB
131 0.02 0.02 0 9 9
135 0.02 0.02 0 10 10
176 0.04 0.04 0 12 12
177 0.02 0.02 0 14 14
190 0.05 0.05 0 16 16
192 0.04 0.04 0 16 16
225 0.03 0.03 0 15 15
243 0.07 0.07 0 15 15
249 0.04 0.04 0 20 20
298 0.03 0.03 0 22 22
378 1.29 1.29 0 31 31
397 0.20 0.20 0 29 29
454 3.00 0.15 183 29 29
471 1.37 1.37 0 45 45
570 0.12 0.12 0 39 39
588 0.10 0.10 0 44 44
638 0.56 0.56 0 38 38
685 0.25 0.25 0 46 46
765 2.09 2.09 0 60 60
788 18.75 18.75 0 75 75
832 63.12 63.12 0 83 83
862 0.85 0.30 13 36 36
940 1125.92 14.27 180 88 88
953 0.06 0.06 0 43 43
958 2.15 1.31 13 51 51

Ins Time(s) tr(s) NB&C UB LB
972 0.18 0.18 0 71 71
975 4550.08 2096.17 237 83 83
983 1059.52 327.33 270 96 96
991 7200.6 7200.6 0 79.50 0
998 50.97 30.82 80 83 83
1002 7200.71 7200.71 0 135.50 0
1061 510.77 510.77 0 148 148
1109 7200.03 1155.24 164 130.64 0
1146 5788.61 5788.61 0 163 163
1227 35.13 32.96 14 121 121
1280 7203.56 7203.56 0 170.50 0
1330 194.72 194.72 0 185 185
1396 7214.45 7214.45 0 201.00 0
1444 7200.38 7200.38 0 179.09 0
1495 7202.4 7202.4 0 203.50 0
1514 7204 7204 0 212.50 0
1557 7200.57 7200.57 0 220.50 0
1645 7200.11 7200.11 0 233.00 0
1671 7201.56 7201.56 0 229.50 0
1762 7200.44 7200.44 0 247.50 0
1796 7200.99 7200.99 0 236.00 0
1833 7207.66 7207.66 0 255.50 0
1894 7202.57 7202.57 0 271.50 0
1905 7208.02 7208.02 0 257.50 0
1983 7201.6 7201.6 0 277.50 0

Table 7.10: Test results with BRTPxy, 10 - 199 nodes

For the algorithmic aspect, since it has been proved that the MBrT problem can be
solved in polynomial time on cactus graphs, one may extend it to possibly other classes
of graphs such as series-parallel graphs and outerplanar graphs. Alternatively, it is also
worth trying to devise algorithms for some classes of graphs with simple and exploitable
structures such as wheels and fans.

Moreover, although the integrality proof of the polyhedron defined by the proposed for-
mulation for Bxy(G, r, c) is given in this dissertation, the TDI-ness of the formulation
has yet to be proved. We obtained some examples that showed the insufficiency of the
current formulation to be TDI. Thus, some redundant inequalities should be included in
the formulation in order to obtain a TDI system. Besides, for Bx(G, r, c) and Rx(G, r),
based on the study on trees and cycles, it is tempting to claim that a complete description
is obtainable on cactus graphs, or to a wider extent, on series-parallel graphs.

On the other hand, the MBrT problem can be extended to a more generalized version,
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which is called the Maximum Bounded r-Tree Packing (MBrTP) problem. The MBrTP
problem, instead of finding one r-tree, consists of finding a packing of K ≥ 2 r-trees
which satisfies the overall capacity constraints. The study on the MBrT problem can
be considered as the first step of the study on the MBrTP problem. There also exist
corresponding applications of the MBrTP problem in various fields, hence it is worth
studying its algorithms and polyhedral structure.

In fact, we have done some preliminary research on the polyhedral structure and compu-
tational tests for the MBrTP problem considering both edge- and node-indexed variables.
On the polyhedral aspect, we have characterized the fractional extreme points in the case
where K = 2 and the graph G is a star with r being the central node. The said extreme
points can be cut by the following two new valid inequalities

x1(F1) + x2(F2) + y1r − y2r ≤ cr ∀F1, F2 ⊆ E, |F1|+ |F2| > cr, |F1| < cr,

x1(F1) + x2(F2)− y2r ≤ cr − 1 ∀F1, F2 ⊆ E, |F1|+ |F2| > cr, |F1| = cr − 1,

where xi and yi contain the variables associated with edges and nodes in the i-th bounded
r-tree, i ∈ {1, 2}. Nonetheless, we have devised a polynomial combinatorial algorithm
for the MBrTP problem on trees with K = 2 (Vinhas de Lima [2016]).

On the other hand, as BRTxy has shown the strongest performance among all the ap-
proaches we have tested, and even without any primal heuristic, it still solved the instances
on dense graphs in a matter of seconds, so we have implemented a multi-tree version of it,
which we refer to as BRTPxy. We haved tested it on dense graphs having nodes between
10 and 199 with K = 2. The simulation results are reported in Table 7.10. The column
tr contains the time BRTPxy took to solve the linear relaxation at the root node of the
branch-and-cut tree, whereas the column NB&C indicates the number of nodes that have
been gone through in the branch-and-cut tree. BRTPxy has solved most of the instances
with 10 to 99 nodes, but cannot solved most of the instances with 100 to 199 nodes within
two hours. There is a significant performance deficit comparing with the performance
of BRTxy in the case of K = 1 which has solved all the instances with 10 to 199 nodes
within 10 seconds.

To summarize, the results obtained so far suggest that the polyhedral structure and the
computational complexity of the MBrTP problem are much more complicated than the
MBrT problem, even in the presumably easiest cases (e.g., K = 2, on stars).

Another direction to explore is b-matching and the related polyhedra. Despite it is a
well-studied topic in the literature, the extended formulation for b-matching has not
been brought up as a research topic as far as we know. We have found a representation of
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an extended version of the well-know blossom inequality which might be worth studying.

x(E[S]) + x(F )−
∑
u∈W

(
⌈cu
2

⌉
yu) ≤

⌊1
2
(c(S \W ) + |F |)

⌋
∀W ⊆ S ⊆ V.

Besides, as the simple b-matching problem can be seen as a relaxation of the MBrT
problem, the blossom inequality is actually valid for Bx(G, r, c). We have implemented
its separation algorithm and have tested in the computational simulation. However, it did
not improve the overall performance. On the contrary, in many cases it actually slowed
down the process by generating too many cuts at each node of the branch-and-cut tree,
eventually resulted in a large number of iterations at each node as well as an obese model
for the LP solver to solve at each iteration.

Aside from the blossom inequality, we also experimented with some lifted-projection
inequalities in the computational test regarding Bx(G, r, c) (similar to the last heuristic
we introduced for matching-partition inequalities in Subsection 7.2.4). More precisely,
we generated cuts by first lifting a solution x ∈ RE to a point

[
x
y

]
in RE+V , finding

some violated inequalities regarding
[
x
y

] ∈ RE+V and Bxy(G, r, c), and then projecting
it down to a valid inequality for Bx(G, r, c). This approach can effectively generate
cuts in the branch-and-cut process. However, similar to the blossom inequality, this
approach did not improve the computational results, as it might not be as effective as
the other inequalities. Nevertheless, these inequalities deserve more of our attention, as
one can potentially either lift them to a tighter version, or determine their facet-defining
conditions, in order to generate cuts that are more effective.

Symmetry (Ostrowski et al. [2011], Fischetti and Liberti [2012], Fischetti et al. [2017])
is another potential issue in the problem that can be further addressed. In fact for
Bx(G, r, c), the i-articulation inequalities, especially capacity-i inequalities are symmetry-
breaking inequalities to some extent. More specifically, capacity-i inequalities prevent all
the symmetric solutions with respect to a set of nodes that have the same capacity and
are incident with nodes in O.



220 Conclusion



REFERENCES 221

References

R. P. Anstee. A polynomial algorithm for b-matchings: an alternative approach. Infor-
mation Processing Letters, 1987.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. A compendium of np optimization problems. In Complexity and Approximation:
Combinatorial optimization problems and their approximability properties. Springer,
1999.

E. Balas. Projection, lifting and extended formulation in integer and combinatorial opti-
mization. Annals of Operations Research, pages 125–161, 2005.

M. O. Ball. Heuristics based on mathematical programming. Surveys in Operations
Research and Management Science, page 21âĂŞ38, 2011.

S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient overlays using multi-
cast. ACM/IEEE Transactions on Networking, 2005.

M. Behle, M. Jünger, and F. Liers. A primal branch-and-cut algorithm for the degree-
constrained minimum spanning tree problem. Experimental Algorithms - Lecture Notes
in Computer Science, pages 379–392, 2007.

F. Bendali, I. Diarrassouba, M. Didi-Biha, A. R. Mahjoub, and J. Mailfert. The k-edge
connected subgraph problem: Valid inequalities and branch-and-cut. In 6th Interna-
tional Workshop on Design and Reliable Communication Networks, pages 1–8, 2007.

E. Brosh and Y. Shavitt. Approximation and heuristic algorithms for minimum delay
application-layer multicast trees. In Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, INFOCOM, pages 2697–2707, 2004.

T. N. Bui, X. Deng, and C. M. Zrncic. An improved ant-based algorithm for the degree-
constrained minimum spanning tree problem. IEEE Transactions on Evolutionary
Computation, 16:266–278, 2012.

J. Byers, M. Luby, and M. Mitzenmacher. Fine-grained layered multicast. In Proc. IEEE
INFOCOM, 2001.

J. Cao, J. Xie, and F. Chen. Dsd-d: A distributed algorithm for constructing high-
stability application-layer multicast tree. In Fifth International Conference on Frontier
of Computer Science and Technology (FCST), pages 122–128, 2010.



222 REFERENCES

J. Chakareski, P. Frossard, H. Kerivin, J. Leblet, and Simon G. A note on the data-driven
capacity of p2p networks. Technical Report EPFL-LTS-2009-008, École Polytechnique
Fédérale de lausanne, 2009.

Y. H. Chan, W. S. Fung, L. C. Lau, and C. K. Yung. Degree bounded network design with
metric costs. In IEEE 49th Annual Symposium on Foundations of Computer Science,
pages 125–134, 2008.

J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning
subgraphs via matching. In IEEE 37th Annual Symposium on Foundations of Computer
Science, pages 292–301, 1996.

J. Cheriyan and L. A. Vegh. Approximating minimum-cost k-node connected subgraphs
via independence-free graphs. In IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 30–39, 2013.

S. Chopra and M. R. Rao. The steiner tree problem i: Formulations, compositions and
extension of facets. Mathematical Programming, 64:209–229, 1994a.

S. Chopra and M. R. Rao. The steiner tree problem ii: properties and classes of facets.
Mathematical Programming, 64:231–246, 1994b.

S. Chopra, E. Gorres, and M. R. Rao. Solving a steiner tree problem on a graph using
branch and cut. ORSA Journal on Computing, 4:320–335, 1992.

V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, pages 305–337, 1973.

Cisco. Cisco visual networking index: Forecast and methodology, 2013-2018. http:
//bit.ly/LVhmuL, June 2014.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

D. Cornaz, Y. Magnouche, and A. R. Mahjoub. On minimal two-edge-connected graphs.
In Proceedings of International Conference on Control, Decision and Information Tech-
nologies, pages 251–256, 2014.

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

M. Didi-Biha, H. Kerivin, and A. R. Mahjoub. Steiner trees and polyhedra. Discrete
Applied Mathematics, 112:101–120, 2001.

M. Didi-Biha, H. Kerivin, and P. Ng. Polyhedral study of the connected subgraph prob-
lem. Discrete Mathematics, pages 80–92, 2015.

R. Diestel. Graph Theory. Springer-Verlag New York, 2000.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959.



REFERENCES 223

S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1:195–207,
1971.

J. Edmonds. Covers and packings in a family of sets. Bulletin of the American Mathe-
matical Society, pages 494–499, 1962.

J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of Research
of the National Bureau of Standard, 69 B:125–130, 1965.

J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Structures and Their Applications, pages 69–87, 1970.

J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, pages
127–136, 1971.

J. Edmonds. Some well-solved problems in combinatorial optimization. In B. Roy, ed-
itor, Combinatorial Programming: Methods and Applications, pages 285–301. Reidel,
Dordrecht, 1975.

J. Edmonds and R. Giles. A min-max relation for submodular functions on graphs.
Annals of Discrete Mathematics, pages 185–204, 1977.

G. Farkas. A Fourier-féle mechanikai elv alkamazása [Hungarian]. Mathematikai és
Természettudományi Értesítö, pages 457–472, 1894.

M. Fischetti and L. Liberti. Orbital shrinking. In ISCO’12 Proceedings of the Second
international conference on Combinatorial Optimization, pages 48–58. IEEE, 2012.

M. Fischetti, L. Liberti, D. Salvagnin, and T. Walsh. Orbital shrinking. Discrete Applied
Mathematics, pages 109–123, 2017.

H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, pages 448–456. The Association for Computing Machinery,
1983.

D. Gale. Optimal assignments in an ordered set: an application of matroid theory. Journal
of Combinatorial Theory, pages 176–180, 1968.

D. Gale, H. W. Kuhn, and A. W. Tucker. Linear programming and the theory of games.
In Activity Analysis of Production and Allocation - Proceedings of a Conference, pages
317–329, 1951.

M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, pages 826–834, 1977.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. New York, 1979.

A. M. H. Gerards. Matching. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L.
Nemhauser, editors, Handbooks in Operations Research and Management Science, vol-



224 REFERENCES

ume 7, chapter 3, pages 134–224. Elsevier, Amsterdam, 1995.

M. X. Goemans. The steiner tree polytope and related polyhedra. Mathematical Pro-
gramming, pages 157–182, 1994.

M. X. Goemans. Minimum bounded degree spanning trees. In Proc. of IEEE FOCS,
pages 273–282, 2006.

M. X. Goemans and Y. Myung. A catalog of steiner tree formulations. Networks, 23:
19–28, 1993.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, pages 275–278, 1958.

R. E. Gomory. Solving linear programming problems in integers. In Proceedings of
Symposia in Applied Mathematics X, American Mathematical Society, pages 211–215,
1960.

M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, Chichester, 1984.

V. Goyal. Multiple description coding: Compression meets the network. IEEE Signal
Processing Magazine, 18(5):74–93, 2001.

V. Goyal, J. Kovacevic, R. Arean, and M. Vetterli. Multiple description transform coding
of images. In Proc. IEEE International Conference on Image Processing, 1998.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, pages 169–197, 1981.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, 1988.

S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks, 1:113–133,
1971.

A. J. Hoffman. A generalization of max flow-min cut. Mathematical Programming, pages
352–359, 1974.

K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
In Proceedings of 39th Annual Symposium on Foundations of Computer Science, pages
448–457, 1998.

E. L. Johnson. Network Flows, Graphs and Integer Programming. PhD thesis, Operations
Research Center, University of California, Berkeley, California, 1979.

P. Jurc̆ík and Z. Hanzalek. Construction of the bounded application-layer multicast
tree in the overlay network model by the integer linear programming. In 10th IEEE
Conference on Emerging Technologies and Factory Automation, pages 503–510, 2005.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
pages 373–395, 1984.



REFERENCES 225

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

R. M. Karp and C. H. Papadimitriou. On linear characterizations of combinatorial opti-
mization problems. SIAM Journal on Computing, page 620âĂŞ632, 1982.

H. Kerivin and G. Simon. Exploring the dark side of live streaming. Preprint, 2012.

H. Kerivin, J. Leblet, G. Simon, and F. Zhou. Models for the maximal bounded r-tree
packing problem. Preprint, 2011.

H. Kerivin, J. Leblet, G. Simon, and F. Zhou. Maximum bounded rooted-tree packing
problem. Preprint submitted to Elsevier, 2014.

L. G. Khachiyan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk
SSSR, pages 1093–1096, 1979.

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, pages 53–72, 1980.

T. Koch, A. Martin, D. Rehfeldt, and S. Voss. Steinlib testdata library. http:
//steinlib.zib.de/, 2017.

B. Korte and J. Vygen. Combinatorial Optimization - Theory and Algorithms. Springer,
2012.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. In Proceedings of the American Mathematical Society, volume 7, pages 48–50,
1956.

E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, pages 31–56,
1975.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, 1976.

A. N. Letchford and A. Lodi. Primal separation algorithms. 4OR - A Quarterly Journal
of Operations Research, pages 209–224, 2003.

S. Li, R. Melhem, and T. F. Znati. An efficient algorithm for constructing delay bounded
minimum cost multicast trees. Journal of Parallel and Distributed Computing, 64:
1399âĂŞ1413, 2004.

X. Li, M. Ammar, and S. Paul. Layered video multicast with retransmission (lvmr):
Evaluation of hierarchical rate control. In Proc. IEEE INFOCOM, 1998.

F. Liu, J. Huang, X. Lu, and Y. Peng. An efficient distributed algorithm for construct-
ing delay- and degree-bounded application-level multicast tree. In 8th International
Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), 2005.

S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A. Chou. P2p streaming capacity



226 REFERENCES

under node degree bound. In IEEE INFOCOM, 2010.

L. Lovász. Graph theory and integer programming. Annals of Discrete Mathematics,
pages 141–158, 1979.

A. Lucena. Tight bounds for the steiner problem in graphs. Technical Report TR- 21/93,
Dipartimento di Informatica. Univesitat degli Studi di Pisa, Pisa, Italy, 1993.

N. Magharei, R. Rejaie, and Yang Guo. Mesh or multiple-tree: A comparative study of
live p2p streaming approaches. In INFOCOM 2007. 26th IEEE International Confer-
ence on Computer Communications., pages 1424–1432. IEEE, 2007.

M. Malik. Bees algorithm for degree-constrained minimum spanning tree problem. In
National Conference on Computing and Communication Systems (NCCCS), pages 1–8,
2012.

III Marsh, A. B. Matching Algorithms. PhD thesis, The Johns Hopkins University,
Baltimore, Maryland, 1979.

L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez. Randomized decentralized
broadcasting algorithms. In Proc. of IEEE INFOCOM, 2007.

S. McCanne, V. Jacobson, and M. Vettereli. Receiver-driven layered multicast. In Proc.
ACM SIGCOMM, 1996.

K. Menger. Zur allgemeinen kurventheorie. Fund. Math., pages 96–115, 1927.

H. Minkowski. Geometrie der Zahlen. Leipzig : Teubner, 1896.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience New York, 1988.

C. A. S. Oliveira, P. M. Pardalos, and M. G. C. Resende. Optimization problems in
multicast tree construction. In Handbook of Optimization in Telecommunications, pages
701–731. Springer, 2006.

J. Ostrowski, J. Linderoth, F. Rossi, and F. Smriglio. Orbital branching. Mathematical
Programming, pages 147–178, 2011.

M. Padberg. Linear Optimization and Extensions. Springer, 1999.

M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, pages 67–80, 1982.

M. W. Padberg and L. A. Wolsey. Trees and cuts. Annals of Discrete Mathematics, pages
511–517, 1983.

V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing
streaming media content using cooperative networking. In Proc. ACM NOSSDAV,
2002.



REFERENCES 227

C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

D. Papageorgiou, M. Cheon, S. Harwood, F. Trespalacios, and G. Nemhauser. Recent
progress using matheuristics for strategic maritime inventory routing. Book chapter
in forthcoming Springer Volume: "Modelling, Computing and Data Handling Method-
ologies for Maritime Transportation.", 2016.

A. Passarella. A survey on content-centric technologies for the current internet: Cdn and
p2p solutions. Computer Communications, 35(1):1–32, 2012.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Tech-
nical Journal, 36:1389âĂŞ1401, 1957.

W. R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, Department of Combina-
torics and Optimization, Faculty of Mathematics, University of Waterloo, 1973.

W. R. Pulleyblank. Total dual integrality and b-matchings. Operations Research Letters,
pages 28–30, 1981.

R. Rado. Note on independence functions. In Proceedings of of the London Mathematical
Society, volume 7, pages 300–320, 1957.

G. R. Raidl. An efficient evolutionary algorithm for the degree-constrained minimum
spanning tree problem. In Proceedings of the 2000 Congress on Evolutionary Compu-
tation, pages 104–111, 2000.

R. L. Rardin, R. G. Parker, and M. B. Richley. A polynomial algorithm for a class of
steiner tree problems on graphs. Technical Report Industrial and Systems Eng. Report
J-82-5, Georgia Inst. of Technology, Atlanta, 1982.

A. Schrijver. Polyhedral proof methods in combinatorial optimization. Discrete Applied
Mathematics, pages 111–133, 1986a.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc. New
York, 1986b.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag
Berlin Heidelberg, 2003.

M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing (STOC ’07), pages 661–670, 2007.

E. Steinitz. Bedingt konvergente reihen und konvexe systeme. Journal für die reine und
angewandte Mathematik, pages 1–52, 1916.

T. Stockhammer. Dynamic adaptive streaming over http - standards and design princi-
ples. In MMSys ’11 Proceedings of the second annual ACM conference on Multimedia
systems, pages 133–144, 2011.

R. Sweha, V. Ishakian, and A. Bestavros. Angelcast: Cloud-based peer-assisted live



228 REFERENCES

streaming using optimized multi-tree construction. In MMSys, 2012.

D. A. Tran, K. A. Hua, and T. T. Do. A peer-to-peer architecture for media streaming.
IEEE Journal on Selected Areas in Communications, 22:121–133, 2004.

C. Vinhas de Lima. Le Problème du Packing Borné Maximal de r-Arbre: Etude polyé-
drale pour le cas du graphe étoile avec 2 arbres. Master’s thesis, Institut Supérieur
d’Informatique, de Modélisation et de leurs Applications (ISIMA), 2016.

A. Vitali. Multiple description coding - a new technology for video streaming. EBU
Technical Review, Oct 2007.

J. von Leeuwen. Handbook of theoretical computer science: Algorithms and complexity.
Elsevier & The MIT Press, 1990.

J. von Neumann. Discussion of a maximum problem. Institute for Advanced Study,
Princeton, New Jersey, November 1947.

J. A. Wald and C. J. Colbourn. Steiner problem in outerplanar graphs. Congressus
Numerantium, 36:15–22, 1982a.

J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum ifi networks.
Networks, 13:159–167, 1982b.

H. Weyl. Elementare theorie der konvexen polyeder. Commentarii Mathematici Helvetici,
pages 290–306, 1934.

H. Whitney. Non-separable and planar graphs. Transactions of the American Mathemat-
ical Society, pages 339–362, 1932.

H. Whitney. On the abstract properties of linear dependence. American Journal of
Mathematics, pages 509–533, 1935.

P Winter. Steiner problem in halin networks. Discrete Applied Mathematics, 17:281–294,
1987.

L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

R. T. Wong. A dual ascent approach for steiner tree problems on a directed graph.
Mathematical Programming, pages 271–287, 1984.

W. Yiu, X. Jin, and S. Chan. Challenges and approaches in large-scale peer-to-peer media
streaming. In IEEE Multimedia, volume 14(2), pages 50–59, 2007.

J. Zhao. Optimal distribution of video streams in large peer-to-peer networks. Master’s
thesis, Institut Supérieur d’Informatique, de Modélisation et de leurs Applications
(ISIMA), 2012.



Numéro d’Ordre : D.U. 2816

EDSPIC : 799

Université Clermont Auvergne

École Doctorale : Sciences Pour l’Ingénieur de
Clermont-Ferrand

THÈSE
Présentée par

Jinhua ZHAO

pour obtenir le grade de

Docteur d’Université
Spécialité : Informatique

Le Problème de l’Arbre Enraciné Borné Maximum :
Algorithmes et Polyèdres

(Résumé Francais)

Soutenue publiquement le 19 juin 2017 devant le jury

M. ou Mme Mohamed DIDI-BIHA Rapporteur et examinateur
Sourour ELLOUMI Rapporteuse et examinatrice
Ali Ridha MAHJOUB Rapporteur et examinateur
Fatiha BENDALI Examinatrice
Hervé KERIVIN Directeur de Thèse
Philippe MAHEY Directeur de Thèse





TABLE DES MATIÈRES iii

Table des matières

1 Introduction 1

2 Algorithmes combinatoires pour le problème MBrT 5

3 Etude polyédrique sur un polytope étendu pour le problème MBrT 9

4 Etude polyédrique sur un polytope pour le problème MrT 11

5 Etude polyédrique sur un polytope pour le problème MBrT 13

6 Étude expérimentale 15

Conclusion 19





1

Chapitre 1

Introduction

Étant donnés un graphe simple non orienté G = (V,E) et un sommet particulier r ∈ V

appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul (∅, ∅) soit un
arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe
de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal
à sa capacité. Soit w un vecteur de poids sur les arêtes dans RV et p un vecteur de profits
sur les sommets dans RE. Le problème du r-arbre borné maximum (MBrT, de l’anglais
Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F ) de G tel que
f(T ) =

∑
e∈F

we+
∑
v∈U

pv soit maximisé. Si la contrainte de capacité du problème MBrT est

relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l’anglais Maximum
r-Tree). Cette thèse contribue à l’étude des problèmes MBrT et MrT.

Tout d’abord, il a été prouvé que ces deux problèmes sont NP-difficiles.

Théorème 1.0.1. Le problème MrT est NP-difficile.

Théorème 1.0.2. Le problème MBrT est NP-difficile.

L’enveloppe convexe des vecteurs d’incidence des r-arbres de G s’appelle le polytope
étendu pour r-arbre et est notée par

Rxy(G, r) = conv({
[
xF

yU

]
∈ {0, 1}E × {0, 1}V : (U, F ) est un r-arbre}).

La formulation suivante est proposée pour le polytope étendu pour r-arbre .

On note Pxy(G, r) le polyèdre de RE+V défini par

x(E)− y(V \ {r}) = 0, (1.1)

x(E[S])− y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (1.2)

yr ≤ 1, (1.3)
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xe ≥ 0 ∀e ∈ E. (1.4)

Cette formulation a été prouvée pour décrire complètement le polytope étendu pour r-
arbre sur les graphes série-parallèles, donc le théorème suivant est valable.

Théorème 1.0.3. Soit G un graphe série parallèle, Rxy(G, r) = Pxy(G, r).

Lorsque nous considérons uniquement les arêtes, nous disons qu’un ensemble d’arêtes
F ⊆ E induit un r-arbre si le graphe GF = (V [F ] ∪ {r}, F ) est un r-arbre. On peut dire
que l’ensemble vide induit le r-arbre G∅ = ({r}, ∅).
L’enveloppe convexe des vecteurs d’incidence des ensembles des arêtes induit r-arbre de
G s’appelle le polytope r-arbre et est notée par

Rx(G, r) = conv({xF ∈ {0, 1}E : GF est un r-arbre}).

De même, les polyèdres pour r-arbre borné peuvent être définis comme suit.

L’enveloppe convexe des vecteurs d’incidence des r-arbres bornés de G s’appelle le poly-
tope étendu pour r-arbre borné et est notée par

Bxy(G, r, c) = conv({
[
xF

yU

]
∈ {0, 1}E+V : (U, F ) est un r-arbre borné}).

L’enveloppe convexe des vecteurs d’incidence des ensembles des arêtes induit r-arbre
borné de G s’appelle le polytope pour r-arbre borné et est notée par

Bx(G, r, c) = conv({xF ∈ {0, 1}E : GF est un r-arbre borné}).

Il convient de noter que, pour le problème MBrT, un ensemble de noeuds qui se dis-
tinguent par le développement de l’algorithme et l’étude polyédrique sont les nœuds
dotés de la capacité unité. On peut remarquer que ces nœuds (à l’exception de r) ne four-
nissent aucune connectivité aux autres noeuds, c’est-à-dire qu’ils ne peuvent apparaître
que comme feuilles dans tout r-arbre borné. L’ensemble de ces nœuds est noté par

O := {v ∈ V \ {r} : cv = 1}. (1.5)

En raison de l’existence de O, on peut remarquer que, même si G est connecté, il peut y
avoir des nœuds ou des arêtes de G de sorte qu’ils ne peuvent être atteints par un r-arbre
borné de G. Nous disons qu’un nœud v (arête e, respectivement) de G est inaccessible de-
puis la racine r s’il n’existe aucun chemin dans G contenant r et v (e, respectivement) qui
n’a aucun nœud dans O comme un nœud interne. On note Vu et Eu les ensembles compo-
sés des noeuds et des arêtes inaccessibles de G, respectivement. Tout vecteur d’incidence
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d’un r-arbre borné de G satisfait directement aux équations suivantes

xe = 0 ∀e ∈ Eu, (1.6)

yv = 0 ∀e ∈ Vu. (1.7)

En fait, pour les études algorithmiques et polyédriques, les noeuds et arêtes inaccessibles
sont insignifiants. Nous supposons donc que

Vu = ∅,
Eu = ∅.

Cette thèse est consacrée à l’étude polyédrique, algorithmique et numérique des problèmes
MBrT et MrT. Dans ce résumé, une série de résultats est présentée brièvement sur chaque
aspect. De plus amples détails sont disponibles dans la version anglaise.
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Chapitre 2

Algorithmes combinatoires pour le
problème MBrT

Dans ce chapitre, nous présentons des algorithmes de temps polynomial pour le problème
MBrT sur trois différentes catégories de graphes : arbres, cycles et cactus. Nous définissons
OptG(r) comme la valeur de f(T ) associée à un r-arbre borné maximum de G, où l’indice
G peut être omis lorsque le graphie est dégagé du contexte. OptG peut également être
utilisé à la place de OptG(r) lorsque la racine est dégagée du contexte.

Si le graphe G est un arbre, nous présentons une approche de programmation dynamique
pour résoudre le problème MBrT.

Étant donné tout nœud v ∈ V , on note g(v) comme la valeur d’un arbre borné maximum
non vide arraché à v du sous-graphe G[	v
] de G induit par la fermeture-en-haut (up-
closure, en anglais) de v, où le vecteur de capacité cv ∈ Z

�v�
+ satisfait cvv = cv − 1 si v = r,

cvv = cv si v = r, et cvs = cs pour s ∈ 	v
 \ v. En d’autres termes,

g(v) = max{f(T ) : T est un arbre de G[	v
] avec v ∈ V (T ) et borné par cv}.

Nous avons
OptG(r) = max{0, g(r)}.

Pour toute feuille v ∈ V \ {r}, il est facile de voir que

g(v) = pv. (2.1)

Pour un nœud non-feuille v ∈ V , nous définissons Nu(v) = {v1, · · · , vq} et

h(vk) = wvvk + g(vk).
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Nous avons alors

g(v) = pv +

j∑
k=1

h(vk). (2.2)

Sur la base de ces résultats, l’algorithme suivant résout le problème MBrT avec la com-
plexité de O(n). Ainsi, le théorème suivant tient.

Algorithm 2.1: Algorithme pour calculer g(r) sur les arbres
Input : Tree G = (V,E), w ∈ RE and p ∈ RV .
Output: g(r).
begin

1 Set S as the set of the leaves in V \ {r}.
2 Compute g(v) for each v ∈ S according to (2.1).

while S = {r} do
3 Set S as the node set such that for each v ∈ S, g(v) is unknown and g(vk)

is known for all k ∈ {1, · · · , q}.
4 Compute g(v) for each v ∈ S according to (2.2).

Théorème 2.0.1. Le problème MBrT peut être résolu en temps linéaire sur un arbre.

Comme résultat immédiat, nous avons également le corollaire suivant.

Corollaire 2.0.2. Le problème MBrT sur un graphe contenant un seul cycle peut être
résolu au temps de O(n2).

Sur les cycles, nous devons traiter le problème MB r T dans plusieurs cas différents selon
le nombre de nœuds en O et la valeur de cr. Nous prenons le cas de cr = 2 à titre
d’exemple.

Désignons le chemin entre v1 et vn−1 sans passer par r par

Pr = E \ {e1, en}.

Un uv-chemin de G[Pr] est notée par P Pr
uv . Étant donné un chemin non vide Puv entre u

et v, nous définissons
ζ(Puv) := f(G[Puv])− pu − pv,

et
ζMin(Pr) := min{ζ(P Pr

uv ) : |P Pr
uv | ≥ 1, |P Pr

uv ∩ δ(O)| ≥ |O|}.
Algorithme 2.2 résout le problème MBrT dans ce cas en calculant la valeur de ζMin(Pr).

Pour chaque cas sur les cycles, nous avons conçu un algorithme linéaire pour résoudre
le problème MBrT. Pour les détails des algorithmes et des preuves, veuillez référer la
version anglaise. Par conséquent, le théorème suivant est valable.
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Algorithm 2.2: Algorithme pour obtenir ζMin(Pr) sur les cycles
Input : Cycle G = (V,E), w ∈ RE and p ∈ RV

Output: ζMin(Pr).
begin

1 Set ζ
vn−2

Min (P
Pr
vn−2vn−1

) = ζ({en−1}) = wen−1 .
2 Set i = n− 3.

while i ≥ 1 do
3 Set ζviMin(P

Pr
vivn−1

) = min{wei+1
, wei+1

+ pvi+1
+ ζ i+1

Min(P
Pr
vi+1vn−1

)}.
4 Set i = i− 1

5 ζMin(Pr) = min{ζviMin(P
Pr
vivn−1

) : i ∈ {1, · · · , n− 2}}.

Figure 2.1 – Un cactus basis

Théorème 2.0.3. Le problème MBrT peut être résolu en temps linéaire sur un cycle.

Considérons maintenant le problème MBrT sur un cactus G.

Un cactus basis comme illustré dans la Figure 2.1 peut être développé pour résoudre le
problème MBrT sur les cactus. Il est composé d’un cycle où chaque nœud, à l’exception
du noeud racine, est incident avec des arêtes en attente. Comme il contient un seul cycle,
Corollary 2.0.2 implique que le problème MBrT sur les cactus basis peut être résolu en
temps polynomial.

Noter OptiG(r) comme le maximum poids d’un r-arbre borné T = (U, F ) de G tel que
|δ(r) ∩ F | = i, i ≤ cr. OptiG est également utilisé pour simplifier si le noeud racine est
dégagé du contexte.

La équation suivante est valable.

Opt1G − pr ≥ Opt2G −Opt1G.

Sur la base de ces résultats, nous transformons chaque composant d’arbre en une arête et
chaque composant de cycle en deux arêtes de manière récursive. Les poids de ces arêtes
sont attribués selon les sous-problèmes résolus sur les composants respectifs. À la fin, le
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cactus se transforme en un arbre, puis le problème MBrT peut être résolu pour obtenir
la solution optimale, comme décrit dans Algorithme 2.3.

Algorithm 2.3: Algorithme pour le problème MBrT sur les cactus
Input : Cactus G = (V,E), w ∈ RE and p ∈ RV

Output: Solution to the MBrT problem on G.
begin

while there exists some cycle C attached at a hinge h such that GC only
contains one cycle do

if GC is already transformed into a cactus basis then
1 Transform GC into two edges.

else if GC contains some tree branch Gvb attached at a hinge h′ then
2 Transform GC into an edge.

3 Solve the MBrT problem on the transformed graph using Algorithm 2.1.

Par conséquent, nous avons le théorème suivant.

Théorème 2.0.4. Le problème MBrT sur un cactus peut être résolu en temps polynomial.
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Chapitre 3

Etude polyédrique sur un polytope
étendu pour le problème MBrT

La formulation initiale proposée pour ce polytope est la suivante.

x(E)− y(V \ {r}) = 0, (3.1)

x(E[S])− y(S \ {v}) ≤ 0 ∀v ∈ S ⊆ V, |S| ≥ 2, (3.2)

x(δ(v))− cvyv ≤ 0 ∀v ∈ V, (3.3)

yr ≤ 1, (3.4)

xe ≥ 0 ∀e ∈ E. (3.5)

Cependant, au cours de notre travail, deux familles de nouvelles équations valides ont été
découvertes.

Étant donné un noeud vo ∈ O,

x(δ(vo))− yvo = 0 (3.6)

est valable pour Bxy(G, r, c).

Soit (V1, E1), · · · , (Vq, Eq), q ≥ 1, représentent les blocs du graphe Gr = G[V \ O]. Pour
tout bloc (Vi, Ei), i ∈ {1, · · · , q},

x(Ei)− y(Vi \ {vai}) = 0 (3.7)

est valable pour Bxy(G, r, c).

Avec ces équations, la dimension de Bxy(G, r, c) peut être décidée comme dans le théorème
suivant.
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Théorème 3.0.1. dimBxy(G, r, c) = |E|+ |Vr| − q.

En outre, nous avons également prouvé que le polytope peut être décomposé par 1-somme.
Dénoter

PC(G, r, c) ={[ xy ] :
[
x1

y1

]
∈ Bxy(G1, r1, c

1),
[
x2

y2

]
∈ Bxy(G2, r2, c

2),

x(δ(va))− cvayva ≤ 0}.

Nous prouvons que PC(G, r, c) et Bxy(G, r, c) sont égaux. On peut prouver que les deux
polytopes ont le même ensemble de points intégrés, et puis PC(G, r, c) n’a pas de point
extrême fractionnaire. Ainsi, on a la proposition suivante.

Théorème 3.0.2. Bxy(G, r, c) = PC(G, r, c).

En outre, nous pouvons prouver que le polytope Bxy(G, r, c) peut être caractérisé sur les
arbres et les cycles. Nous utilisons la formulation suivante.

PCac(G, r, c) = {[ xy ] ∈ RE+V : [ xy ] satisfait (3.2) − (3.5) and (3.6), (3.7)}.

Théorème 3.0.3. Soit G un arbre ou un cycle, PCac(G, r, c) = Bxy(G, r, c).

En le combinant avec Théorème 3.0.2, on a le résultat suivant.

Théorème 3.0.4. Soit G un cactus, PCac(G, r, c) = Bxy(G, r, c).

Outre les résultats susmentionnés, les conditions nécessaires et suffisantes pour que les
inégalités valides soient facettes définissantes sont également examinées. Les résultats et
les preuves peuvent être trouvés dans la version anglaise de cette thèse.
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Chapitre 4

Etude polyédrique sur un polytope
pour le problème MrT

La formulation initiale proposée pour Rx(G, r) est la suivante.

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (4.1)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3, (4.2)

xe ≤ 1 ∀e ∈ E, (4.3)

xe ≥ 0 ∀e ∈ E. (4.4)

Rx(G, r) est en fait en pleine dimension dans l’hypothèse d’aucun élément inaccessibles.

Théorème 4.0.1. Rx(G, r) est en pleine dimension, c’est-à-dire, dimRx(G, r) = |E|.

En outre, nous présentons également deux familles de nouvelles inégalités valables pour
Rx(G, r).

Soit π = {S0, S1, · · · , Sk}, k ≥ 1, une partition de V avec r ∈ S0 et M = {e1, · · · , ek} un
couplage (ou matching, en anglais) de G avec ei ∈ E[Si] pour tous i ∈ {1, · · · , k}. La paire
(M,π ) s’appelle matching-partition de G. Noter par MP(G) l’ensemble composé de toutes
les partitions correspondantes de G et par Eπ l’ensemble des arêtes ayant leurs extrémités
dans différentes classes de partition π. Avec un matching-partition (M,π ) ∈ MP(G), on
peut associer l’inégalité matching-partition

x(M)− x(Eπ) ≤ 0. (4.5)

Étant donné W ⊆ S ⊆ V \ {r}, |W | ≥ 2, l’inégalité acyclicité-connectivité est définie
comme suit.

x(E[W ])− (|W | − 1)x(δ(S)) ≤ 0 (4.6)
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Les conditions nécessaires et suffisantes pour que les inégalités valides, tant dans la formu-
lation initiale que nouvellement découverte, soient facettes définissantes sont également
examinées. Les résultats et les preuves peuvent être trouvés dans la version anglaise de
cette thèse.

De plus, L’étude polyédrique pour Rx(G, r) ne peut pas être simplement limitée aux
graphes 2-connexes sur la base de la décomposition par 1-somme, qui peut être prouvée
dans certains cas simples. Toutefois, nous montrons dans le prochain chapitre qu’il existe
des décompositions possibles pour certains cas spéciaux, et Rx(G, r) peut être caractérisé
sur les arbres et les cycles.
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Chapitre 5

Etude polyédrique sur un polytope
pour le problème MBrT

La formulation initiale pour Bx(G, r, c) est donnée comme suit.

xe − x(δ(S)) ≤ 0 ∀e ∈ E[S], S ⊆ V \ {r}, (5.1)

x(E[S]) ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 3, (5.2)

x(δ(v)) ≤ cv ∀v ∈ V, (5.3)

xe ≤ 1 ∀e ∈ E, (5.4)

xe ≥ 0 ∀e ∈ E. (5.5)

Comme Rx(G, r), nous pouvons également prouver que Bx(G, r, c) est en pleine dimen-
sion.

Théorème 5.0.1. Bx(G, r, c) est en pleine dimension, c’est-à-dire, dimBx(G, r, c) =

|E|.

Quelques critères généraux ont été découverts pour que les inégalités soient facettes dé-
finissantes. Nous donnons les deux lemmes suivants comme exemples.

Lemme 5.0.2. Soit une inégalité valide aTx ≤ b pour Bx(G, r, c) qui est différent de
xe ≥ 0 pour certains e ∈ E. aTx ≤ b est facette définissante pour Bx(G, r, c) seulement
si elle satisfait ae ≥ 0 pour tout arête e ∈ δ(O).

Lemme 5.0.3. Soit cr = 1 et une inégalité valide aTx ≤ b pour Bx(G, r, c) qui est dif-
férent de x(δ(r)) ≤ cr. Alors, aTx ≤ b est facette définissante pour Bx(G, r, c) seulement
si b = 0.

Comme pour Rx(G, r), nous avons également trouvé quelques familles de nouvelles in-
égalités valides pour Bx(G, r, c). En fait, les deux familles de nouvelles inégalités pour
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Rx(G, r) peuvent être adaptées aux inégalités valables pour Bx(G, r, c).

On note par Eπ l’ensemble des arêtes ayant leurs extrémités dans différentes classes de un
matching-partition (M,π ) ∈ MP(G). Avec (M,π ), on peut associer l’inégalité matching-
partition suivante

x(M)− x(Eπ \ δ(O)) ≤ 0. (5.6)

Étant donné W ⊆ S ⊆ V \ {r}, |W | ≥ 2, l’inégalité acyclicité-connectivité est définie
comme suit.

x(E[W ])− (|W | − 1)x(δ(S) \ δ(O)) ≤ 0 (5.7)

En outre, il existe quelques autres inégalités valides pour Bx(G, r, c). Nous donnons deux
exemples dans la partie suivante.

Étant donné S ⊆ V \ {r} avec v ∈ S \O, l’inégalité capacité de téléchargement est

x(δ(v))− cvx(δ(S) \ δ(O)) ≤ 0. (5.8)

Nous définissons

Si = {v ∈ V \ {r} : cv = i, i ≥ 2}.

Étant donné S ⊆ Si, on note R = V \ (S ∪O). L’inégalité capacité-i est

x(δ(O) \ δ(R))− (i− 2)x(E[S])− (i− 1)x(δ(R) \ δ(O)) ≤ 0. (5.9)

Avec les inégalités matching-partition et les inégalités capacité de téléchargement, nous
montrons que Bx(G, r, c) peut être caractérisé sur les arbres et les cycles d’un système
linéaire qui est totalement dual intégré (TDI).

Théorème 5.0.4. Sur les arbres, le système linéaire

xe − xfe ≤ 0 ∀e ∈ E \ δ(r), (5.10)

x(δ(v))− cvxfv ≤ 0 ∀v ∈ V \ {r}, (5.11)

x(δ(r)) ≤ cr, (5.12)

xe ≤ 1 ∀e ∈ δ(r), (5.13)

xe ≥ 0 ∀e est un arête de feuille, (5.14)

est TDI, et caractérise complètement Bx(G, r, c).

Des résultats similaires sont obtenus sur les cycles concernant TDI, mais sont prouvés
dans quatre cas différents.
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Chapitre 6

Étude expérimentale

Nous étudions les problèmes de séparation pour toutes les inégalités que nous avons trou-
vées jusqu’ici. Des algorithmes polynomiaux de séparation sont présentés, et lorsqu’un
problème de séparation est NP-dificile, nous donnons des heuristiques de séparation.
Tous les résultats théoriques développés dans ce travail sont implémentés dans plusieurs
algorithmes de coupes et branchements auxquels une matheuristique est également jointe
pour générer rapidement des solutions réalisables. Des expérimentations intensives ont été
menées via le logiciel CPLEX afin de comparer les formulations renforcées et originales.
Les résultats obtenus montrent de manière convaincante la force des formulations renfor-
cées. Puis, avec CPLEX et la technologie Concert, nous avons mis en place quatre cadres
de l’algorithme de coupe, CPLEXx, CPLEXxy, BRTx, BRTxy. Tableau 6.1 donne les
options choisies pour chaque cadre.

Nous testons sur les instances soit sélectionnées dans SteinLib ou générées de façon aléa-
toire, comme le montre le Tableau 6.2.

Dans les Figures 6.1 - 6.4, nous montrons la performance des quatre algorithmes sur
chaque testset.

Sur les plus de 600 instances que nous avons testées, BRTxy a résolu 73,61 % d’entre eux
et BRTx 52.46 %, tandis que CPLEXxy a résolu 47.70 % d’entre eux et CPLEXx 35.08
%. Cela montre, dans une large mesure, que le niveau de force global de chaque cadre

Cadre Variable de nœud Usercut Prétraitement Matheuristic
CPLEXx × × × ×
CPLEXxy

√ × × ×
BRTx × √ √ √
BRTxy

√ √ √ √

Tableau 6.1: Options pour les algorithmes de coupes
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Testset Nombre Nombre de nœuds Capacité Source Densité Classe des graphes
B 18 50-100 1-3 SteinLib clairsemé aléatoire
C 20 500 1-3 SteinLib clairsemé aléatoire
I320 20 320 1-3 SteinLib surtout clairsemé aléatoire
I640 16 640 1-3 SteinLib surtout clairsemé aléatoire
MSM 30 90-5181 1-3 SteinLib clairsemé grille
ran 110 10-499 1-4 généré dense aléatoire
rg_13 198 10-999 1-3 généré clairsemé aléatoire
rg_23 198 10-999 2-3 généré clairsemé aléatoire

Tableau 6.2: Options pour les instances

Figure 6.1 – Pourcentage d’instances résolues sur les testsets SteinLib
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Figure 6.2 – Pourcentage d’instances résolues sur les graphes denses aléatoires

Figure 6.3 – Pourcentage d’instances résolues sur les graphes clairsemés aléatoires
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Figure 6.4 – Pourcentage d’instances résolues sur les graphes clairsemés aléatoires avec
O = ∅

et la mesure de l’amélioration a été apportée en ajoutant les contraintes nouvellement
introduites et les matheuristiques aux formulations originales.
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Conclusion

Dans cette thèse, nous avons abordé le problème MBrT et le problème MrT à partir
de trois directions, des algorithmes, des polyèdres et des étude de calcul. Tout d’abord,
nous avons proposé plusieurs algorithmes combinatoires en temps polynomial pour le pro-
blème MBrT sur les arbres, les cycles et les cactus, respectivement. Ensuite, nous avons
présenté des résultats concernant trois polytopes, Bxy(G, r, c), Rx(G, r) et Bx(G, r, c),
y compris leur dimension, leur décomposition, les nouvelles contraintes, leurs facettes,
leurs caractérisations sur certaines classes de graphes. Avec CPLEX, nous avons mis en
place quatre cadres des algorithmes de coupe différents, à savoir CPLEXx, CPLEXxy,
BRTx et BRTxy, en fonction des formulations pour Bxy(G, r, c) et Bx(G, r, c). Parmi les
quatre cadres, CPLEXx et CPLEXxy correspondent aux formulations originales pour
Bx(G, r, c) et Bxy(G, r, c) sans inclure les contraintes nouvellement introduites, tandis que
BRTx et BRTxy correspondent aux formulations améliorées incorporant les contraintes
nouvellement introduites ainsi qu’un prétraitement et une matheuristique. Le test de
calcul a démontré de manière convaincante la force des formulations améliorées, en par-
ticulier la formulation améliorée pour Bxy(G, r, c).

Certes, il reste beaucoup d’aspects inexplorés et des sujets potentiels de recherche du
problème MBrT. Ensuite, nous énumérons quelques directions que nous estimons utiles
et méritables d’être étudiées à l’avenir.

Pour l’aspect algorithmique, puisqu’il a été prouvé que le problème MBrT peut être
résolu en temps polynomial sur les cactus, on peut l’étendre à éventuellement d’autres
classes de graphes tels que des graphes série parallèles et des graphes plans extérieurs.
Alternativement, il vaut la peine d’essayer de concevoir des algorithmes pour certaines
classes de graphes avec des structures simples et exploitables tels que les roues et les fans.

En outre, bien que la preuve d’intégralité du polyèdre défini par la formulation proposée
pour Bxy(G, r, c) soit donnée dans cette thèse, la totale dual-intégralité (TDI-ness, en
anglais) de la formulation doit encore être prouvée. Nous avons obtenu quelques exemples
montrant que l’insuffisance de la formulation actuelle était TDI. Ainsi, certaines inégalités
redondantes devraient être incluses dans la formulation afin d’obtenir un système TDI.
En outre, pour Bx(G, r, c) et Rx(G, r), en fonction de l’étude sur les arbres et les cycles,
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il est tentant de prétendre qu’une description complète est disponible sur les cactus, ou
dans une large mesure, sur les graphes série parallèles.

D’autre part, le problème MBrT peut être étendu à une version plus généralisée, appelée
le Problème d’emballage de r-arbre borné maximum (MBrTP, de l’anglais Maximum
Bounded r-Tree Packing). Le problème MBrTP, au lieu de trouver un r-arbre, consiste à
trouver un emballage de K ≥ 2 r-arbres qui satisfait les contraintes de capacité globales.
L’étude sur le problème de MBrT peut être considérée comme la première étape de
l’étude sur le problème de MBrTP. Il existe également des applications correspondantes
du problème MBrTP dans divers domaines, d’où il vaut la peine d’étudier ses algorithmes
et sa structure polyédrique.

En fait, nous avons fait des recherches préliminaires sur la structure polyédrique et les
tests de calcul pour le problème MBrTP en tenant compte des variables sur les arêtes et
les nœuds. Les résultats obtenus jusqu’à présent suggèrent que la structure polyédrique
et la complexité computationnelle du problème MBrTP sont beaucoup plus compliquées
que le problème MBrT, même dans les cas vraisemblablement les plus faciles (e.g. K = 2,
sur les étoiles).


