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Preface

This thesis deals with properties of Jacobians of genus two curves that cover
elliptic curves, over number fields.

If C is a genus two curve and C → E is an optimal covering of degree n, i.e.
a covering that does not factor through a non-trivial isogeny, then, possibly
after extending the base field, there exist an elliptic curve Ẽ and an optimal
covering C → Ẽ of degree n, such that both curves can be embedded into
the Jacobian Jac(C) of C so that they have precisely their n-torsion points in
common. Moreover, the abelian surface Jac(C) is isogenous to E × Ẽ via an
isogeny whose kernel is precisely the image of E[n] under the embedding into
the Jacobian. The curves E and Ẽ are said to be glued along their n-torsion,
while Jac(C) is said to be (n, n)-split.

The thesis is organized into two chapters, each of which contains an intro-
duction into the topics discussed, making the chapters relatively self-contained.

Chapter 1 contains a detailed exposition of different approaches to con-
structing (n, n)-split Jacobians. A geometric description of the case n = 2 is
a classical result, attributed to Jacobi. A modern approach to the topic can
be found in [Kuhn], where a parametrization of the curves is given for n = 3.
This description omits exactly one isomorphism class, which we find. The
case n = 4 is treated in [Br-Do]. We build upon these ideas and give a
general description of the procedure that yields the modular invariants of the
two elliptic curves, at least in principle. We also revisit the cases n = 2
and n = 3 from a different perspective, starting with two elliptic curves E1
and E2, and an isomorphism α : E1[n]→ E2[n] whose graph we denote by Γα.
The divisor Θ := E1 × {0E2} + {0E1} × E2 induces a principal polarization
of E1 × E2. For some isomorphisms α, this polarization will descend to a

i



principal polarization on the quotient J := (E1 × E2)/Γα. We ask when the
surface J is defined over K and when it is a Jacobian of a genus two curve,
as above. For n = 2, we obtain several simple results (Propositions 1.4 – 1.8).
Our analysis of the case n = 3 is focused on the Hesse pencil and yields a cri-
terion that, for odd n, distinguishes between the cases where J is a Jacobian
and the cases where it is a product of two elliptic curves (Proposition 1.9).
This criterion is practical if one can explicitly find the divisor D on E1 × E2
that is linearly equivalent to nΘ and whose image in J defines the principal
polarization. We find this divisor in all cases when n = 3. The Appendix
contains details concerning the computations involved.

Chapter 2 deals with canonical heights on abelian varieties. Historically,
height functions have played a very important role in the study of rational
points on abelian varieties, most notably in the proof of the famed Mordell-
Weil theorem that establishes that the group of rational points of an abelian
variety defined over a number field is finitely generated. A major inspiration
for the thesis is a paper by Frey and Kani [Fr-Ka], where several conjec-
tures concerning heights are compared for Jac(C) and E × Ẽ in the scenario
described in Chapter 1, one notable exception being the Lang-Silverman con-
jecture. This conjecture estimates the height of a non-torsion point on an
abelian variety in terms of an invariant of the variety, namely its Faltings
height. Some recent results by Pazuki towards the Lang-Silverman conjecture
in the case of abelian surfaces can be found in [Paz2]. We overview the theory
of heights in the modern setting in great detail and the chapter concludes with
a result that compares this conjecture for Jac(C) and E × Ẽ, adding it to the
list found in [Fr-Ka] (Theorems 2.38 and 2.39).
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Partial list of notations

Z the integers

Q the rationals
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C the complex numbers

H the upper half-plane {x+ iy | x, y ∈ R and y > 0}

Hg the Siegel upper half-space of g × g symmetric complex
matrices with positive definite imaginary part

#S the cardinality of a set S

char(K) the characteristic of a field K
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(with X often omitted)
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Ωr
X the sheaf of differential forms of order r on X

ωX the dualizing (or canonical) sheaf

F(n) F ⊗O(n)

Rf the ramification divisor of a morphism f

K(X) the function field of X

X(K) the K-rational points of a variety X
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isomorphism classes of invertible sheaves on X
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[D] the (linear) equivalence class of a divisor

D1 ·D2 the intersection of two divisors

L (D) the invertible sheaf associated to a Cartier divisor D

L(D) the K-vector space of global sections of L (D),
given as {0} ∪ {f ∈ K(X)× | (f) +D ≥ 0}

pa(X) the arithmetic genus of X

pg(X) the geometric genus X
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A/K an abelian variety A defined over a field K
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an abelian variety A (with A sometimes omitted)

j(E) the modular invariant j of an elliptic curve E

[n] : A→ A multiplication by n ∈ Z on an abelian variety A

A[n] the kernel of [n] (usually with the base extended
to an algebraic closure)

en the Weil pairing on A[n]

ϕ∨ : B∨ → A∨ the isogeny dual to ϕ : A→ B

µn the group scheme of n-th roots of unity

Gm the multiplicative group scheme
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tP : A→ A translation by P on an abelian variety A

Γf the graph of a morphism f : X → Y

H i(X,F) the i-th sheaf cohomology group of F

hi(X) the dimension of H i(X,OX)

Sn the group of permutations of n elements

[L : K] the degree of a field extension L/K

Frac(R) the field of fractions of an integral domain R

NL/K the ideal norm in a field extension L/K

OK the ring of integers of a number field K

∆E the minimal discriminant of an elliptic curve E

FE the conductor of an elliptic curve E

x� y x ≥ c1y + c2 for some c1, c2 ∈ R>0
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Chapter 1

Genus two curves with split
Jacobians

Throughout the thesis, by a variety over a fieldK we mean aK-scheme of finite
type, separated, and geometrically integral. By a curve we mean a variety of
dimension one and by a surface we mean a variety of dimension two. By an
abelian variety, we mean a complete group variety. In this chapter, unless
stated otherwise, by K we mean a field of char(K) 6= 2, by K we mean an
algebraic closure of K, and we assume that all varieties and morphisms are
defined over K. By a model of a curve, we mean a birational plane model.
This is in contrast with the second chapter, where a model of a curve is a type
of a fibred surface whose generic fibre is isomorphic to the curve.

1.1 Hyperelliptic curves

We recall some definitions and facts, referring to Chapter IV of [HAG] and
Chapter 7 of [Liu].

A hyperelliptic curve C is a smooth projective curve of genus g ≥ 2 that
is equipped with a finite separable morphism π : C → P1 of degree 2. In other
words, the curve C is a double cover of P1 and π is a 2-to-1 covering map; this
means that the corresponding function fields satisfy

[K(C) : π∗K(P1)] = 2.
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Chapter 1. Genus two curves with split Jacobians

Hence K(C) is of the form K(x, y), where y2 = h(x)y+ f(x) and f, h ∈ K[x].
Since char(K) 6= 2, we can complete the square and therefore assume, without
loss of generality, that y2 = f(x). Hence C admits an affine planar model given
by y2 = f(x). We can and do assume that this model is regular, i.e. that f
has distinct roots, because if y2 = g(x)2f(x), we can change the variables by
putting y = g(x)y′. In the affine model, the map π corresponds to (x, y) 7→ x
and induces an involution ι on C, which is given by ι : (x, y) 7→ (x,−y) and
is called the hyperelliptic involution. It is the unique involution, up to auto-
morphisms, with a quotient of genus zero and it corresponds to the generator
of Gal(K(C)/K(x)) ∼= Z/2Z.

The fixed (geometric) points of ι are the ramification points of π and are
called the Weierstraß points1 of C. They lie above the roots of f and possibly
also above ∞. Under our assumptions, the Hurwitz formula holds, i.e. the
canonical divisors KC and KP1 of C and P1, respectively, are related by the
linear equivalence

KC ∼ π∗(KP1) +R

where R is the ramification divisor of π. Note that every ramification index eP
such that eP > 1 necessarily equals 2 and, since char(K) 6= 2, all ramification
is tame. Therefore R = ∑

P∈C (eP − 1)P is the sum of the Weierstraß points.
Recall that KP1 ∼ −2∞ so that KC ∼ −2π∗(∞) + R. In case π does not
ramify above ∞, applying Riemann-Roch yields

degKC = 2g − 2 = −4 + degR = −4 + deg f

which means deg f = 2g + 2. If, on the other hand, π ramifies above ∞, then
Riemann-Roch yields

degKC = 2g − 2 = −4 + degR = −4 + deg f + 1

which means deg f = 2g + 1. To simplify, we introduce d = deg f if deg f is
even and d = deg f+1 if deg f is odd so that Riemann-Roch yields d = 2g+2.
In either case, the ramification divisor R consists of 2g + 2 distinct geometric
points. We will always assume that the degree of f is even so that ∞ is not a
branch point of π. If ∞ is a branch point, it is K-rational and we can apply
an automorphism of P1 to make sure that it is not a branch point in the new
coordinates.

1 More generally, a Weierstraß point of a smooth projective curve X of genus g (over an
algebraically closed field) is defined to be a point P ∈ X s.t. `(gP ) ≥ 2.
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1.1. Hyperelliptic curves

So far, we have only mentioned an affine model of a hyperelliptic curve C.
To build the actual curve C, it will not suffice to take the projective closure
of the affine model y2 = f(x) because it is not smooth at infinity. Instead, we
first observe that v2 = udf(u−1) is also a smooth affine model of C and we
glue the two affine models via (x, y) = (u−1, u−d/2v). Another way is to use
the functions x, y ∈ K(C) and embed C into Pg+1 via

P 7→ [1 : x(P ) : x2(P ) : · · · : xg(P ) : y(P )].

Every smooth projective curve of genus two is hyperelliptic. This follows
from Riemann-Roch because degKC = 2 = `(KC) implies that the canonical
map, defined by the linear system |KC |, is a 2-to-1 map from C to P1 (given
by P 7→ [1 : x(P )] for a non-constant x ∈ L(KC)). Curves of higher genera
are “generically” not hyperelliptic. One can see this by an argument based on
dimensions of moduli spaces. See also the remark below.

Remark 1.1 Most of the notions mentioned above are just as valid for curves
of genus 0 or 1 and some authors include them in the definition of hyperelliptic
curves. For a curve of genus 0 (resp. 1) in this context, we usually also assume
that it has at least one K-rational point so that it is isomorphic to P1 (resp. an
elliptic curve), whereas for curves of higher genera we make no such assump-
tion. Some authors define a hyperelliptic curve to be a smooth projective curve
that is a double cover of a smooth conic. Over an algebraically closed field,
this coincides with our definition for g ≥ 2. Under this definition, a smooth
projective curve C of genus g ≥ 2 is hyperelliptic if and only if the canonical
map to Pg−1 is not an embedding, in which case its image is a rational normal
curve. In other words, among smooth projective curves, hyperelliptic curves
of genus g ≥ 2 are characterized by the fact that their canonical divisor KC

is ample, but not very ample. Its ampleness is a consequence of Riemann-
Roch, since degKC = 2g − 2 > 0 under our assumptions. To see that it is
not very ample, we first note that, by Riemann-Roch and Proposition IV.3.1
of [HAG], the divisor KC is very ample if and only if `(P + Q) = 1 for any
two points P and Q. However, on hyperelliptic curves we have `(P +Q) = 2
for any two points P and Q in the same fibre of the 2-to-1 covering map. If
the canonical map sends two different points P and Q to the same image, then
by Riemann-Roch

`(P +Q) = `(KC − P −Q)− g + 3 = `(KC − P )− g + 3 = 2

and |P + Q| defines the 2-to-1 map. This map is unique up to actions of
automorphisms of P1 and C. When the canonical map is injective, it is also

3



Chapter 1. Genus two curves with split Jacobians

E

πE

P1

Figure 1.1: A genus one curve as a double cover of the projective line with the
ramification points marked.

an embedding because we can take P = Q just as well. Moreover, 2KC is very
ample if and only if g ≥ 3 and 3KC is very ample if and only if g ≥ 2. See IV.3
and IV.5 in [HAG] and 7.4 in [Liu].

We depict finite separable coverings between curves with a diagram of the
kind that is shown in Fig. 1.1 above. In case the degree of the covering is
greater than 2, we depict only the fibres containing the ramification points,
denoting unramified points by , doubly ramified points by , triply ramified
points by etc.

Remark 1.2 The case of char(K) = 2 is excluded from the very beginning
because it allows for wild ramification of the covering map. That is to say
that char(K) divides the ramification indices of the Weierstraß points and
the multiplicity of each ramification point in the ramification divisor is ≥ eP .
In this setting, hyperelliptic curves are a special case of the so-called Artin-
Schreier curves, which are curves in characteristic p that are covers of P1 of
degree p. Such a curve C admits an affine model of the form yp − y = f(x)
where f ∈ K(x) is not of the form g(x)p − g(x) for any g ∈ K(x) and deg f is
coprime to p. Here deg f = deg f1 − deg f2 if f = f1/f2, with f1, f2 ∈ K[x],
in lowest terms. If (x, y) ∈ A2 satisfies yp − y = f(x), then so does (x, y + 1)
because (y+1)p−y−1 = yp−y = f(x). We therefore have an automorphism σ
of the curve, defined by σ(y) = y + 1, which is of order p. This implies
that Gal(K(C)/K(x)) is cyclic of order p. It also implies that the ramification
points can only occur above ∞ and the poles of f . The relation between f
and the genus of the curve is more complicated in this case and we omit it
here (see Lemma 2.2.3 in [Farn]).
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1.2. Curves of genus two covering curves of genus one

1.2 Curves of genus two covering curves of genus
one

Let C be a curve of genus two that covers a curve E of genus one via φ : C → E
of degree n. Let ι denote the hyperelliptic involution on C. Recall that we
had assumed that the curves and the maps are defined over a field K of
characteristic char(K) 6= 2.

Lemma 1.1 The hyperelliptic involution ι of C induces an involution of E,
also denoted by ι, such that φ commutes with the involutions and such that
the quotient E/ι is of genus zero. In particular, the map φ sends fixed points
on C to fixed points on E (under ι).

Proof Naturally, we make an argument over K. Let W ∈ C(K) be a Weier-
straß point. We embed C into its Jacobian via P 7→ [P − W ] and E into
its Jacobian via P 7→ [P − φ(W )]. The choice of the embedding guarantees
that ι on C is compatible with −1 ∈ Aut(Jac(C)), i.e. ι = −1 when restricted
to the image of C inside its Jacobian. The morphism φ induces a morph-
ism φ∗ between the Jacobians of the two curves and we have the following
commutative diagram:

C Jac(C)

E Jac(E)

φ φ∗

∼

(1.1)

Since −1E ◦ φ∗ = φ∗ ◦ (−1C) (φ∗ is a group morphism) and E ∼= Jac(E) (geo-
metrically), the involution on C induces an involution on E, that we also
denote by ι. The morphism φ clearly respects the involutions, therefore it
sends fixed points to fixed points, under ι. Furthermore, it induces a morph-
ism Jac(C)/−1 → Jac(E)/−1 that, when restricted to C, gives a morph-
ism f : C/ι → E/ι. Since C/ι is of genus zero, so is E/ι, and from the
construction it follows that f and the involutions are defined over K.

In view of the lemma, we have the following commutative diagram:

C E

C/ι E/ι

φ

πC πE

f

(1.2)

5



Chapter 1. Genus two curves with split Jacobians

Remark 1.3 By our definition, we have C/ι ∼= P1 and since f is K-rational,
we also have E/ι ∼= P1. Some authors define a hyperelliptic curve more
generally by requiring only that C/ι is of genus zero.

We now consider, over K, the ramification of each map in diagram (1.2).
Let W1, . . . ,W6 denote the ramification points of πC and let T1, . . . , T4 de-
note the ramification points of πE , i.e. the points fixed by ι. Let w1, . . . , w6
and t1, . . . , t4 denote their respective images under the corresponding projec-
tion maps πC and πE . Lemma 1.1 tells us that φ({Wi}) ⊆ {Tj}. From the
commutativity of the diagram, we have deg f = deg φ = n and f({wi}) ⊆ {tj}.

Lemma 1.2 ([Kuhn]) With the notations as above, for every i ∈ {1, 2, . . . , 6}
the divisor f∗(∑4

j=1 tj) contains wi with odd multiplicity and any other points
with even multiplicity.

Proof We assume, without loss of generality, that

K(C) = K(x)[y]/(y2 − P (x))

for some P ∈ K[x] of degree 6, which is an extension of degree two of K(x),
the function field of the underlying projective line. Similarly, we assume

K(E) = K(t)[s]/(s2 −Q(t))

for some Q ∈ K[t] of degree 4, which is an extension of degree two of K(t),
the function field of the other underlying projective line, where t = f(x). We
may view all these fields as subfields of K(C). That being said, we observe
that the hyperelliptic involution ι fixes K(x) and K(t). Furthermore, we
have ι(y) = −y and ι(s) = −s, whence ι(s/y) = s/y. Being fixed by the
involution, s/y must be an element of K(x), say s/y = A(x)/B(x) for some
coprime A,B ∈ K[x]. This implies

Q(t) = s2 = y2A(x)2

B(x)2 = P (x)A(x)2

B(x)2 .

The roots of the right-hand side are exactly the points that lie above the tj ,
i.e. they are the roots of Q(t). Since P is square-free with wi as roots, we are
done.

Applying Riemann-Hurwitz to φ yields degRφ = 2, therefore either φ
doubly ramifies at two distinct points or it has one triple ramification point.

6



1.2. Curves of genus two covering curves of genus one

We distinguish two cases – either this ramification occurs above some Tj (the
“special” case) or it does not (the “generic” case). As ι acts on Rφ, if there
are two distinct ramification points, they cannot lie above two distinct Tj .

In the generic case, the map πE ◦ φ = f ◦ πC ramifies at 4n double points
that lie above the Tj . Since πC ramifies at six double points, we have that f
ramifies at

1
2(4n− 6) = 2n− 3

double points above the tj , none of which is any of the wi. Applying Riemann-
Hurwitz to f yields degRf = 2n−2 which means that there is one more doubly
ramified point that does not lie above the tj . In the special case, all of the
ramification lies above the tj .

Since f is finite and between smooth varieties, it is flat and every fibre of f
has exactly n = deg f points over K, counting with multiplicities. More pre-
cisely, we have that f∗OC/ι is a locally freeOE/ι-module of rank n. Lemma 1.2
implies that above each tj there is an odd number of the wi if n is odd and an
even number of the wi if n is even, thus limiting the ramification of f above
the tj to four cases. This is by virtue of the simple fact that 6 has a unique
decomposition as a sum of four odd non-negative integers and exactly three
decompositions as a sum of four even non-negative integers. The four cases
are depicted in Fig. 1.2, where the unramified points, i.e. the wi, are denoted
by and doubly ramified points are denoted by .

Remark 1.4 From now on, we will assume that the points are indexed as in
Fig. 1.2. In the generic case, we will denote by t0 the image under f of the
ramification point that does not lie above {t1, t2, t3, t4}, and we will call special
the ramification point above t0 (in the generic case) and the ramification point
with ramification index ≥ 3 (in the special case).

Theorem 1.3 ([Kuhn]) Let i and j run through {1, . . . , 6} and {1, . . . , 4},
respectively. If φ : C → E is unramified above the Tj, then the ramification
of f : C/ι → E/ι consists of 2n − 3 doubly ramified points above the tj that
are distributed as in Fig. 1.2 and one other doubly ramified point that does not
lie above any of the tj. If φ ramifies above the Tj, then the entire ramification
of f occurs above the tj and its distribution is the same except that either:

(1) One of the wi has ramification index 3; or

(2) There is a unique point, not one of the wi, with ramification index 4.

7



Chapter 1. Genus two curves with split Jacobians

Corollary 1.4 The point t4 is K-rational. Consequently, so is T4.

Proof We again assume, without loss of generality, that even degree mod-
els are given for both curves. First we observe that the divisors w1 + · · ·+ w6
and t1 + · · ·+ t4 are K-rational because they correspond to roots of polynomi-
als with K-rational coefficients. That is to say that the absolute Galois action
permutes {w1, . . . , w6} and it also permutes {t1, t2, t3, t4}. Moreover, the ab-
solute Galois action permutes the fibres of f because this map is K-rational
and therefore commutes with Gal(K/K). In particular, the absolute Galois
group Gal(K/K) permutes the four fibres of f above {t1, t2, t3, t4}.

Suppose n is odd. Let w1, w2, w3 be the three points above t4. Since the
fibre f−1(t4) is the only fibre with three of the wi, it must be that the absolute
Galois action permutes {w1, w2, w3}, i.e. w1 + w2 + w3 is K-rational. Hence
its image under f , namely t4, is K-rational.

Suppose n is even. We consider each case separately. In case (1), we have
that t1+t2+t3 is the image of w1+· · ·+w6 under f and is thereforeK-rational,
which implies that t4 is K-rational. In case (2), the argument is analogous
to the one above, for odd n, and shows that t4 and t3 are K-rational. In
case (3), the K-rationality of t4 is immediate as t4 is the image of w1 + · · ·+w6
under f .

Corollary 1.5 The special ramification point of the map f is K-rational.
Consequently, so is its image under f .

Proof In the generic case, the fibre f−1(t0) is the unique one containing a
single ramification point and none of the wi. In the special case, the special
point is the unique point with ramification index ≥ 3. Thus the absolute
Galois action fixes the special point in both cases.

Remark 1.5 Given that the highest possible ramification index is 4, wild
ramification of f can only occur if char(K) ∈ {2, 3}. We always assume that
this is not the case so that the ramification is tame.

Remark 1.6 Corollary 1.4 shows that the covering φ : C → E induces a
structure of an elliptic curve on E where T4 is the identity element of the
group structure.
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1.2. Curves of genus two covering curves of genus one

. . . .

. . . .

. . . .

f

t1 t2 t3 t4

odd degree

. . . .

. . . .

. . . .

. . . .

f

t1 t2 t3 t4

even degree, case (1)

. . . .

. . . .

. . . .

. . . .

. . . .

f

t1 t2 t3 t4

even degree, case (2)

. . . .

. . . .

. . . .

f

t1 t2 t3 t4

even degree, case (3)

Figure 1.2: Generic picture of the possible ramification of f above the tj .
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Chapter 1. Genus two curves with split Jacobians

Example 1.1 If deg f = 2, only case (1) can occur (Fig. 1.3).

w1 w3 w5

w2 w4 w6

f

t1 t2 t3t0 t4

Figure 1.3: Ramification of f when deg f = 2.

Example 1.2 If deg f = 3, there are two possible cases (Fig. 1.4).

f

t0 t1 t2 t3 t4

generic case

f

t1 t2 t3 t4

special case

Figure 1.4: Ramification of f when deg f = 3.

Proposition 1.1 A given finite separable map f : P1 → P1 with ramification
as described in Theorem 1.3 lifts to a finite separable map φ : C → E that
makes the diagram (1.2) commute. Moreover, the curves C and E are unique
up to isomorphisms and the map φ is unique up to compositions with auto-
morphisms.
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1.3. Optimal coverings

Proof Let w1, . . . , w6 and t1, . . . , t4 be the geometric points defined by rami-
fication of f as in Fig. 1.2 (with the analogous definition for the special case).
Let B1 = w1 + · · ·+w6 and let B2 = t1 + · · ·+ t4. By the above argument, the
ramification behaviour of f implies K-rationality of B1 and B2. Therefore B1
corresponds to O(6) ∈ Pic(P1) ∼= Z and B2 corresponds to O(4) ∈ Pic(P1).
Both are uniquely divisible by two and are therefore respectively branch di-
visors of 2-to-1 separable coverings πC : C → P1 and πE : E → P1 (see §I.17
in [B-H-P-V], for example), where C is a curve of genus two and E is a curve
of genus one, by Riemann-Hurwitz. Since B1 is contained in f∗B2, we have
an injection O(B1) ↪→ O(f∗B2) and, by the functoriality of the constructions,
this gives the desired covering φ : C → E.

Remark 1.7 Note that, in the previous proposition, if deg f /∈ {2, 5}, then
the ramification of f implies that t4 is K-rational and therefore E is elliptic
with T4 as the identity, where T4 is the point whose image is t4 under πE .
If deg f ∈ {2, 5}, then f∗(t4) and f∗(t0) have the same ramification indices for
their points.

1.3 Optimal coverings

Definition 1.1 Let C be a curve of genus two and let E be an elliptic curve.
We say that a covering map φ : C → E is optimal2 if whenever there exists
another elliptic curve E′ such that φ decomposes (over K) as

C E

E′

φ

η

then η : E′ → E is an isomorphism. In other words, if φ factors through an
isogeny, then the isogeny is trivial.

Definition 1.2 Let λA : A→ A∨ and λB : B → B∨ be polarizations of abelian
varieties. Let ϕ : A → B be an isogeny and let ϕ∨ denote the dual isogeny.

2 Some authors use the term maximal or minimal.
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Chapter 1. Genus two curves with split Jacobians

We say that the isogeny ϕ is polarized with respect to λA and λB if the
following diagram commutes:

A A∨

B B∨

λA

ϕ

λB

ϕ∨

The central claim of the following lemma is well known, but here we give
a complete formal proof.

Lemma 1.6 Let C be a curve of genus two and let φ : C → E be an optimal
covering of an elliptic curve E with deg φ = n. Then there exists an elliptic
curve Ẽ, an optimal covering φ̃ : C → Ẽ, and an isogeny ϕ : E× Ẽ → Jac(C),
possibly after extending the base field, such that:

(1) deg φ̃ = n;

(2) ϕ = φ∗ + φ̃∗;

(3) degϕ = n2;

(4) Ker(ϕ) ∼= E[n] ∼= Ẽ[n];

(5) ϕ is polarized with respect to the polarizations [n] ◦ λΘ of E × Ẽ and λC
of Jac(C), where λΘ and λC denote the usual principal polarizations,
respectively induced by L (Θ) and L (C), and Θ := {0E}×Ẽ+E×{0

Ẽ
}.

Proof Let D be a geometric divisor of degree 1 on C that is invariant under
the hyperelliptic involution. We embed C into Jac(C) via ε : P 7→ [P − D].
We consider all schemes over the extended base K. Recalling that E ∼= Jac(E)
and denoting K := Ker(φ∗), we consider the following exact sequence of com-
mutative group schemes:

0 K Jac(C) E 0 .φ∗ (1.3)

Note that dimK = 1 because φ∗ is surjective, but not an isogeny. Let K0
denote the connected component of the identity of K. We claim that K = K0,
i.e. K is connected.

12



1.3. Optimal coverings

To see this, consider the following commutative exact diagram in the cat-
egory of commutative finite type group schemes over K:

0

0 0 Ker(γ)

0 K0 Jac(C) F 0

0 K Jac(C) E 0

G 0 0

0

γ

φ∗
(1.4)

where F := Jac(C)/K0 and G := K/K0. The map γ : F → E is the in-
duced map and the unlabeled arrows denote the canonical inclusions and quo-
tients. Note that G is finite and that F is connected, being a quotient of the
connected Jac(C). Since our category is abelian (see [SGA3] exposé VIA,
Thm 5.4.2), the Snake Lemma gives an isomorphism Ker(γ) ∼= G. Since γ
is surjective and has a finite kernel, it is an isogeny (see 8.1. in [Miln1]).
Restricting to ε(C) ⊂ Jac(C), we see that φ factors as

C E

F

φ

γ

However, by our optimality assumption, it must be that γ is an isomorphism.
Therefore G is trivial and K = K0, making K an elliptic curve. We accordingly
adopt a new notation for it, namely Ẽ.
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Chapter 1. Genus two curves with split Jacobians

Consider now, in the category of abelian varieties, the exact sequence

0 Ẽ∨ Jac(C)∨ E∨ 0 ,η φ∗ (1.5)

that is dual to the sequence (1.3). Using the fact that elliptic curves are
canonically isomorphic to their Jacobians and that Jacobians are canonically
self-dual (see §6 in [Miln2]), we can write

Ẽ Jac(C)

C

η

ε

and define φ̃ : C → Ẽ as the composition η ◦ ε. Since Ker(φ̃∗) = E is connected,
it follows that φ̃ is likewise optimal. Thus the curve C is a degree n cover of
both E and Ẽ, and the latter two are complementary in the sense that one
is the quotient of Jac(C) by the other. That is to say that the following two
sequences

0 E Jac(C) Ẽ 0φ∗ φ̃∗ (1.6)

0 Ẽ Jac(C) E 0φ̃∗ φ∗ (1.7)
are exact.

Now let ϕ : E × Ẽ → Jac(C) denote the map φ∗ + φ̃∗. By the exactness
of the sequences and the fact that φ∗ and φ̃∗ are embeddings into Jac(C), we
have

Ker(ϕ) ∼= φ∗(E) ∩ φ̃∗(Ẽ)
= Im(φ∗) ∩Ker(φ∗)
∼= Ker(φ∗ ◦ φ∗)
= Ker([n])
= E[n].

In particular, we have that degϕ = n2. The same argument also shows
that Ker(ϕ) ∼= Ẽ[n]. Since Ker(ϕ) is finite, we have that ϕ is an isogeny
of abelian surfaces and we have the following exact sequence:

0 Ker(ϕ) E × Ẽ Jac(C) 0.ϕ

14



1.3. Optimal coverings

It is now clear that the two diagrams

E × Ẽ (E × Ẽ)∨

Jac(C) Jac(C)∨

[n] ◦ λΘ

φ∗+φ̃∗

λC
∼

λΘ ◦ (φ∗,φ̃∗) ◦ λ−1
C

(1.8)

Jac(C) Jac(C)∨

E × Ẽ (E × Ẽ)∨

[n] ◦ λC

(φ∗,φ̃∗)

λΘ
∼

λC ◦ (φ∗+φ̃∗) ◦ λ−1
Θ

(1.9)

are commutative, so that ϕ and its dual ϕ∨ are polarized. This completes the
proof.

By abuse of notation, we also denote by ι the involution on Ẽ induced by
the hyperelliptic involution on C.

Definition 1.3 We say that Ẽ, φ̃, and f̃ are complementary to E, φ, and f ,
respectively.

Definition 1.4 A Jacobian Jac(C) of a genus two curve C is said to be split
if it is isogenous to a product E× Ẽ of two elliptic curves; more specifically, if
the isogeny is induced by an optimal covering C → E of degree n, then Jac(C)
is said to be (n, n)-split.

Remark 1.8 The curve Ẽ is defined over K, given that C, E, and φ are. The
extension of the base field is only required to define the divisor D. If D is
rational over the base field, then so are all the constructions that follow. In
view of Lemma 1.6, we say that Jac(C) can be obtained by “gluing together”
the two elliptic curves along their n-torsion. Moreover, as we shall see later,
the induced isomorphism E[n] ∼= Ẽ[n] inverts the Weil pairing (Lemma 1.14).

1.3.1 The Weil pairing on the 2-torsion

The cases of odd and even degree of an optimal covering φ : C → E differ in one
other important aspect. Since T1, T2, T3, T4 ∈ E(K) are the 2-torsion points
on E, they are in the kernel Ker(ϕ) ∼= E[n] of the isogeny ϕ : E × Ẽ → Jac(C)
if and only if the degree n is even.

15



Chapter 1. Genus two curves with split Jacobians

Let (i, j) := [Wi − Wj ] = [Wj − Wi] for 1 ≤ i < j ≤ 6, denote the 15
distinct linear equivalence classes that are the points of order two on Jac(C).
Then for distinct indices i, j, k, l,m, n, in the group structure of Jac(C) we
have

(i, j) + (i, j) = 0, (i, j) + (k, l) = (m,n), (i, j) + (i, k) = (j, k),

and the Weil pairing on Jac(C)[2] is given by (see [Tata1] and [Tata2]):

e2((i, j), (i, j)) = 1, e2((i, j), (k, l)) = 1, e2((i, j), (i, k)) = −1. (1.10)

1.3.2 Optimal coverings of odd degree

We have established that when the degree of φ : C → E is odd, there is
a unique ramification point on E denoted by T4 such that exactly three of
the Wi, that we index as W1,W2,W3, lie above it. Moreover, the point T4
is K-rational. Likewise, the points w1, w2, w3 map to the K-rational t4 ∈ P1

under the induced f . Both w1 + w2 + w3 and W1 +W2 +W3 are K-rational.
Thus we can and do assume that C is given by a model y2 = P (x)Q(x),
where P,Q ∈ K[x] are cubics with roots {w1, w2, w3} and {w4, w5, w6}, re-
spectively. Since the canonical divisor KC ∼ 2Wi is K-rational, so is the di-
visor W1 −W2 +W3. Moreover, the latter determines a unique linear equival-
ence class [Wi −Wj +Wk] for {i, j, k} = {1, 2, 3} or {4, 5, 6}. Thus φ induces
a canonical K-rational embedding C ↪→ Jac(C), given by

P 7→ [P −W1 +W2 −W3], (1.11)

which is compatible with the canonical isomorphism E ∼= Jac(E), that is given
by P 7→ [P − T4], and the involutions. Therefore we still have (1.1) and we
could have assumed this embedding a priori.

Theorem 1.7 ([Kuhn]) In the case of optimal coverings of odd degree, the
roles of the divisors w1 +w2 +w3 and w4 +w5 +w6 are exchanged between the
two complementary maps f and f̃ . We have f∗(w1 +w2 +w3) = πE∗(0E) and
f̃∗(w4+w5+w6) = π

Ẽ∗(0Ẽ), and hence also f∗(w4+w5+w6) = πE∗(E[2]\{0E})
and f̃∗(w1 + w2 + w3) = π

Ẽ∗(Ẽ[2] \ {0
Ẽ
}), where the identity element 0E is

given by T4.
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1.3. Optimal coverings

Proof Note that under the canonical embedding (1.11), a Weierstraß pointWi

maps to (j, k) for {i, j, k} = {1, 2, 3} or {4, 5, 6}. Since the degree is odd, the
isogeny ϕ = φ∗ + φ̃∗ induces an isomorphism of the 2-torsion subgroups, with
inverse ϕ−1 = (φ∗, φ̃∗). The fact that φ({W1,W2,W3}) = T4 implies

Ker(φ∗) ∩ Jac(C)[2] = {0, (1, 2), (1, 3), (2, 3)}.

We are done if we show that

Ker(φ̃∗) ∩ Jac(C)[2] = {0, (4, 5), (4, 6), (5, 6)}.

Suppose (i, j) ∈ Ker(φ∗) and (k, l) ∈ Ker(φ̃∗) are two points of order two.
Applying the isomorphism ϕ−1 between the 2-torsion subgroups of the two
abelian surfaces and comparing the Weil pairings, which are preserved under
polarized isogenies (Lemma 16.2(c) in [Miln1]), we obtain

e2((i, j), (k, l)) = e2((φ∗(i, j), φ̃∗(i, j)) , (φ∗(k, l), φ̃∗(k, l)))
= e2(φ∗(i, j), φ∗(k, l)) · e2(φ̃∗(i, j), φ̃∗(k, l))
= e2(0E , ·) · e2(·, 0

Ẽ
)

= 1 · 1 = 1.

This, together with (1.10), implies

(k, l) ∈ {(4, 5), (4, 6), (5, 6)} ∪ {(1, 2), (1, 3), (2, 3)}.

However, there can be no point of order two in Ker(φ∗)∩Ker(φ̃∗) because ϕ−1

would map such a point to 0 ∈ (E× Ẽ)[2], which is impossible since ϕ induces
a group isomorphism on Jac(C)[2].

1.3.3 Optimal coverings of even degree

The case of even degree is quite different because we do not necessarily have
a K-rational embedding C ↪→ Jac(C) that would be compatible with the ca-
nonical elliptic curve structure of E (with T4 as the identity element). In
this case, we have (E × Ẽ)[2] ⊂ Ker(ϕ). The map φ∗ ◦ φ∗ : E → E is mul-
tiplication by the even n and therefore identically zero on E[2]. Therefore
we have Im(φ∗) ∩ Jac(C)[2] = Ker(φ∗) ∩ Jac(C)[2] = Ẽ[2] so that Ẽ[2] is a
subgroup of Jac(C)[2] of order 4.
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Chapter 1. Genus two curves with split Jacobians

Let (i, j) ∈ Ker(φ∗). Suppose that also (i, k) ∈ Ker(φ∗). Then the
equality (i, j) + (i, k) = (j, k) implies that Ker(φ∗) = {0, (i, j), (i, k), (j, k)},
and under the embedding of C into Jac(C), given by P 7→ [P −Wi], we
have {Wi,Wj ,Wk} ⊆ φ−1(0), which contradicts Theorem 1.3, given the op-
timality of φ. Indeed, in cases (2) and (3) of Fig. 1.2, there are more than four
points in Ker(φ∗) ∩ Jac(C)[2], so that Ker(φ∗) is not connected.

Hence we can assume, reindexing the points if necessary, that

Ker(φ∗) ∩ Jac(C)[2] = {0, (1, 2), (3, 4), (5, 6)}.

Thus for each choice of the embedding P 7→ [P −Wi] of C into its Jacobian
(and the induced isomorphism P 7→ [P − φ(Wi)] of E and its Jacobian), we
have precisely two Weierstraß points of C mapped to 0 ∈ Jac(E) ∼= E. Since

Ẽ[2] ∼= Ker(φ∗) ∩ Jac(C)[2] and E[2] ∼= Ker(φ̃∗) ∩ Jac(C)[2],

we have the following theorem.

Theorem 1.8 ([Kuhn]) Let φ : C → E be an optimal covering of even degree.
Then the ramification diagram of f : C/ι → E/ι is the one depicted in case (1)
of Fig. 1.2 and the complementary φ̃ : C → Ẽ induces a map f̃ : C/ι → Ẽ/ι
with the same ramification diagram and the same indexing of the Weierstraß
points.

1.4 Characterization of split Jacobians

Given an optimal covering φ : C → E, Theorems 1.7 and 1.8 may allow us
to algorithmically determine the complementary optimal covering φ̃ : C → Ẽ.
Before delving into specifics, we will state several useful lemmas, starting with
an important result of elimination theory.

Let K be any field and K an algebraic closure of K. For any non-negative
integer m, let K[x, y]m denote the K-vector space of all homogeneous poly-
nomials in K[x, y] of degree m. We fix a basis for this space that is given
by the monomials xm, xm−1y, . . . , xm−iyi, . . . , xym−1, ym. Let F ∈ K[x, y]m
and G ∈ K[x, y]n with m,n ≥ 1 and consider the map

µF,G : K[x, y]n−1 ⊕K[x, y]m−1 → K[x, y]m+n−1, (A,B) 7→ AF +BG.
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1.4. Characterization of split Jacobians

This is a linear map between two K-vector spaces, both of dimension m+ n.
The resultant Res(F,G) ∈ K of F and G is defined to be the determinant
of µF,G with respect to the monomial bases. We recall some well known
properties of resultants, that will be of use to us.

Lemma 1.9 Res(F,G) = 0 if and only if the polynomials F and G have a
common root in P1(K).

Proof If F and G have a common root in P1(K), then they must have a
common linear factor L ∈ K[x, y]. Suppose F = LF1 and G = LG1. Then
it is clear that (−G1, F1) ∈ K[x, y]n−1 ⊕ K[x, y]m−1 is a non-trivial element
of Ker(µF,G), i.e. µF,G is not injective, whence Res(F,G) = 0.

Suppose Res(F,G) = 0. Then µF,G is not injective and there exists a
non-trivial (A,B) ∈ K[x, y]n−1 ⊕K[x, y]m−1 such that AF + BG = 0. Now
suppose, without loss of generality, that A 6= 0. Then G divides AF in K[x, y].
Since degA < degG, it must be that F and G have a common factor.

Remark 1.9 Res(F,G) is a polynomial in the coefficients of F and G. More
precisely, if F (x, y) = ∑m

i=0 aix
m−iyi and G(x, y) = ∑n

j=0 bjx
n−jyj , then the

resultant of F and G is the determinant of their Sylvester matrix

Res(F,G) = det



a0 a1 . . . . . . am 0 . . . . . . . . . . . . 0
0 a0 a1 . . . . . . am 0 . . . . . . . . . 0
0 0 a0 a1 . . . . . . am 0 . . . . . . 0

...
0 0 . . . . . . . . . 0 a0 a1 . . . . . . am
b0 b1 . . . bn 0 . . . . . . . . . . . . . . . 0
0 b0 b1 . . . bn 0 . . . . . . . . . . . . 0
0 0 b0 b1 . . . bn 0 . . . . . . . . . 0

...
0 0 . . . . . . . . . . . . 0 b0 b1 . . . bn



.

We denote this matrix by SF,G. It has n rows with the coefficients of F
and m rows with the coefficients of G. Given two polynomials f, g ∈ K[x], we
define their resultant to be the resultant of their homogenizations ydeg ff(xy )
and ydeg gg(xy ). The resultant Res(f, d

dxf(x)) is denoted by Disc(f) and is
called the discriminant of f . By Lemma 1.9, the discriminant Disc(f) vanishes
if and only if f has a double root in K.
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Chapter 1. Genus two curves with split Jacobians

Given F,G ∈ K[x0, x1, . . . , xr] for some integer r ≥ 1, we index their res-
ultant with the appropriate variable(s) in order to clarify in which polynomial
ring we consider them to be, e.g. Resx0(F,G) for F,G ∈ K(x1, . . . , xr)[x0].
Lemma 1.10 Let F ∈ K[x, y]m, let G ∈ K[x, y]n, let H ∈ K[x, y]k, and
let F ∗ and G∗ denote F (y, x) and G(y, x), respectively. Then the following
hold:

(1) Res(F,G) = (−1)mnRes(G,F );

(2) Res(F ∗, G∗) = Res(G,F );

(3) Res(xF,G) = bnRes(F,G);

(4) Res(yF,G) = b0Res(F,G);

(5) Res(F,GH) = Res(F,G)Res(F,H).

Before proceeding with the proof of each claim, we note that (1) implies
analogous results when the two polynomials, whose resultant is under consid-
eration, have their roles reversed.

Proof SG,F can be obtained from SF,G by a permutation of rows that is
of parity (−1)mn, therefore det SF,G = (−1)mn det SG,F . This implies (1).
We can obtain SF ∗,G∗ by reversing the order of the rows and the columns
of SG,F . Hence det SF ∗,G∗ = det SG,F , which implies (2). Laplacian expan-
sion of det SxF,G along the (m+ n+ 1)-th column gives (3), while (4) follows
from (3) by applying (2).

To prove (5), we first note that, by (4) and (1), we can and do assume
that y does not divide F,G, or H. Under this assumption, we will infer the
claim by proving that

Res(F,G) = an0b
m
0

m∏
i=1

n∏
j=1

(αi − βj),

where α1, . . . , αm ∈ K and β1, . . . , βn ∈ K are the roots, not necessarily
distinct, of F (x, 1) and G(x, 1), respectively. Since

F (x, 1) = a0

m∏
i=1

(x− αi),

G(x, 1) = b0

n∏
j=1

(x− βj),
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this is equivalent to

Res(F,G) = an0

m∏
i=1

G(αi, 1) = (−1)mnbm0
n∏
j=1

F (βi, 1). (1.12)

We prove this by induction on m+ n. If m = n = 1, we have

Res(a0x+a1y, b0x+b1y) = det
[
a0 a1
b0 b1

]
= a0b1−a1b0 = a0b0

(
−a1
a0

+ b1
b0

)
,

where a0b0 6= 0, so (1.12) holds in this case. Now suppose that it holds for
any two polynomials whose sum of degrees is smaller than m + n. By (1),
we can and do suppose that m ≤ n. By the Euclidean algorithm, there
exist Q,R such that G = FQ + R and either R = 0 or degR < degF = m.
If R = 0, then F (x, 1) and G(x, 1) have a common root, whence Res(F,G) = 0
and (1.12) holds. If R 6= 0, let l = degR and note that l < n.

Also note that Res(F,G) = Res(F, yn−lR). The reason is that SF,yn−lR can
be obtained from SF,G by elementary row operations that do not change the
determinant. Namely, if Q = ∑n−m

j=0 cjx
n−m−jyj , then for each i ∈ {1, . . . ,m}

and each j ∈ {0, 1, . . . , n−m}, we multiply the (i+ j)-th row by −cj and add
it to the (n+ i)-th row.

By (4) and (1), we have Res(F,G) = Res(F, yn−lR) = an−l0 Res(F,R) and,
by the induction hypothesis, we have

Res(F,R) = al0

m∏
i=1

R(αi, 1).

Together, this gives

Res(F,G) = an0

m∏
i=1

G(αi, 1)

since G = FQ + R and F (αi, 1) = 0 for each i ∈ {1, . . . ,m}. This product
formula, along with (1) and (4), finally implies

Res(F,GH) = Res(F,G)Res(F,H),
Res(FH,G) = Res(F,G)Res(H,G)

for any three homogeneous polynomials in K[x, y].
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Chapter 1. Genus two curves with split Jacobians

Suppose that f : P1 → P1 is a finite K-morphism given as

[x : y] 7→ [F (x, y) : G(x, y)]

and let D be a K-rational divisor on P1 that is given as the zero locus of a
polynomial P ∈ K[x, y]. We have the following two corollaries of the preceding
two lemmas.

Corollary 1.11 The K-rational divisor f∗D is given as the zero locus of

Res (zG(x, y)− wF (x, y), P (x, y)) ∈ K[z, w],

where the two polynomials are considered as elements of K(z, w)[x, y].

Corollary 1.12 The K-rational divisor f∗f∗D−D is given as the zero locus
of

Res
(
F (x, y)G(z, w)− F (z, w)G(x, y)

xw − yz
, P (z, w)

)
∈ K[x, y],

where the two polynomials are considered as elements of K(x, y)[z, w].

Proof The case when D is a point follows easily by Lemma 1.9 and the
general case follows by induction, by applying Lemma 1.10.

These two corollaries play an important role in the following subsections.
Another tool we shall use is Gröbner bases, for which [IVA] is a useful refer-
ence. We now revert back to the notations of the previous sections.

1.4.1 (2,2)-split Jacobians

Let φ : C → E be an optimal covering of degree 2. The two ramification points
of f lie above the K-rational points t0 and t4. It follows that the ramification
points of f (and hence those of φ) are likewise both K-rational. We assume,
without loss of generality, that t0 = 0, t4 = ∞, f(0) = 0, and f(∞) = ∞, by
applying an automorphism of P1 if necessary. In other words, we may assume
that f is given as x 7→ x2 = t where t is the local parameter on E/ι ∼= P1,
implying the ramification picture for f that is shown in Fig. 1.5, where ti = w2

i .

Therefore the curve C is given by a model of the form

y2 = x6 + ax4 + bx2 + c ∈ K[x].
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1.4. Characterization of split Jacobians

w1 w2 w3

−w1 −w2 −w3

0 ∞

f : x 7→ x2

t1 t2 t30 ∞

Figure 1.5: Ramification of f : P1 → P1

The elliptic curve E is determined by the branch points {t1, t2, t3,∞}, from
which we immediately obtain a model, namely

s2 = t3 + at2 + bt+ c ∈ K[t].

By Theorem 1.8, we know that f̃(±w1), f̃(±w2), f̃(±w3) are three pairwise
distinct points. Moreover, we know that f̃ doubly ramifies above 0 and ∞.
Given that we fixed f(x) = x2, there is exactly one choice for f̃ , up to multi-
plication by a nonzero scalar, namely f̃(x) = 1/x2. Thus the elliptic curve Ẽ is
determined by the branch points {1/t1, 1/t2, 1/t3,∞} and we obtain a model
of Ẽ as s2 = Resz(1 − tz, t3 + at2 + bt + c) = ct3 + bt2 + at + 1 ∈ K[t]. From
this, we can directly calculate

j(E) = 28(a2 − 3b)3

a2b2 − 4b3 − 4a3c+ 18abc− 27c2 , (1.13)

j(Ẽ) = 28(b2 − 3ac)3

c2(a2b2 − 4b3 − 4a3c+ 18abc− 27c2) . (1.14)

The symmetry between the two is perhaps better appreciated if one homogen-
izes and views them as functions on P3. We also note that the denominators
do not vanish. Indeed, the fact that the tj are pairwise distinct is equivalent
to the nonvanishing of

Discx(x3 + ax2 + bx+ c) = a2b2 − 4b3 − 4a3c+ 18abc− 27c2,

while the fact that none of the wi is zero is equivalent to c 6= 0.
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Chapter 1. Genus two curves with split Jacobians

The curve C has an extra automorphism σ : (x, y) 7→ (−x, y), which, along
with the hyperelliptic involution ι, generates a Klein four-group. Then, taking
quotients, we have C/σ ∼= E and C/σ ◦ ι ∼= Ẽ.

Remark 1.10 The two j-invariants are algebraically independent, meaning
that there is no Zariski closed subset of A1×A1 that contains the j-invariants
of all pairs (E, Ẽ) of elliptic curves that admit an optimal covering of degree 2
by the same curve C of genus two. We will come back to this later and see
that it is expected.

Remark 1.11 The case of (2, 2)-split Jacobians is classically known. Kuhn
attributes the solution to Legendre and Jacobi.

1.4.2 (3,3)-split Jacobians

Let φ : C → E be an optimal covering of degree 3. We treat the generic case
first (recall Fig. 1.4). Once more, we have that t0 and t4 are K-rational. Also,
in view of Corollary 1.5, both points in f−1(t0) are K-rational. Hence we can
and do assume that t0 = 0, t4 = ∞, and f∗(0) = 2 · 0 +∞. This yields the
following ramification picture for f :

∞

0

f

0 t1 t2 t3 ∞

That is to say that we assume, without loss of generality, that

f(x) = x2

x3 + ax2 + bx+ c
,

where the denominator, denoted by P (x), has roots w1, w2, w3. Moreover,
the wi are pairwise distinct and none of them equals zero. We can express this
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1.4. Characterization of split Jacobians

fact as

Resx(x2, P (x)) = c2 6= 0, (1.15)
Discx(P (x)) = a2b2 − 4b3 − 4a3c+ 18abc− 27c2 6= 0. (1.16)

The pullback of t1 + t2 + t3 corresponds to roots of D(x)2Q(x) for some two
cubics D(x), Q(x) ∈ K[x], where the roots of D(x) are the ramification points
distinct from 0, and the roots of Q(x) are w4, w5, w6. Now

df
dx (x) = −x(x3 − bx− 2c)

P (x)2

so we can take D(x) = x3 − bx − 2c because the roots of the numerator are
precisely the doubly ramified points of f . These are again pairwise distinct
points so we have

Discx(D(x)) = 4(b3 − 27c2) 6= 0. (1.17)

From this we calculate, again via resultants, the nonic D(x)2Q(x) whose roots
are f∗f∗(d1 + d2 + d3), where the di are the roots of D(x). We have

Resy(x2P (y)− y2P (x), D(y)) = c(x3 − bx− 2c)2(4cx3 + b2x2 + 2bcx+ c2),

whence Q(x) = 4cx3 + b2x2 + 2bcx + c2. Therefore the genus two curve C
admits a model

y2 = P (x)Q(x) = (x3 + ax2 + bx+ c)(4cx3 + b2x2 + 2bcx+ c2).

In view of Theorem 1.7, we have

f̃(x) = (x+ d)2(x+ e)
4cx3 + b2x2 + 2bcx+ c2

for some d, e ∈ K such that d 6= e and Q(−d), Q(−e) 6= 0, i.e.

Resx(x+ d, x+ e) 6= 0, Resx(x+ d,Q(x)) 6= 0, Resx(x+ e,Q(x)) 6= 0.

Condition Discx(Q(x)) = 16c4(b3 − 27c2) 6= 0 is superfluous because of (1.15)
and (1.17). It remains to find d and e. To this end, we repeat the argument
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Chapter 1. Genus two curves with split Jacobians

used to obtain Q(x) from f to the map f̃ . In doing so, we must obtain a mul-
tiple of P (x) and this imposes algebraic conditions from which we determine d
and e. We have

df̃
dx (x) = (x+ d)D̃(x)

Q(x)2 ,

where

D̃(x) = (b2 − 8cd− 4ce)x3 + (4bc− b2d− 12cde)x2

+ (3c2 + 2bce− 2b2de)x+ c2d+ 2c2e− 2bcde.

Now we calculate that

Resy
(
(x+ d)2(x+ e)Q(y)− (y + d)2(y + e)Q(x), D̃(y)

)
equals Q(−d)Q(−e)D̃(x)2R(x), where R(x) is the polynomial

16c(2c2d− bcd2 + cd4 + c2e− 2bcde+ b2d2e− 4cd3e)x3

+ 4(−bc3 + 2b2c2d− b3cd2 + 18c3d2 − 8bc2d3 + 2b2cd4

+ b2c2e− 2b3cde+ 12c3de+ b4d2e− 12bc2d2e− 12c2d4e)x2

+ (−3c4 + 10b2c2d2 − 8b3cd3 + 48c3d3 + b4d4 + 4bc3e− 4b2c2de

− 4b3cd2e+ 72c3d2e+ 4b4d3e− 64bc2d3e− 8b2cd4e)x− 4c4d+ 8bc3d2

− 4b2c2d3 + 16c3d4 + c4e− 2b2c2d2e+ 32c3d3e+ b4d4e− 32bc2d4e.

Dividing R(x) by P (x), we obtain the remainder

(−4bc3 + 8b2c2d− 32ac3d− 4b3cd2 + 16abc2d2 + 72c3d2 − 32bc2d3 + 8b2cd4

− 16ac2d4 + 4b2c2e− 16ac3e− 8b3cde+ 32abc2de+ 48c3de+ 4b4d2e

− 16ab2cd2e− 48bc2d2e+ 64ac2d3e− 48c2d4e)x2 + (−3c4 − 32bc3d

+ 26b2c2d2 − 8b3cd3 + 48c3d3 + b4d4 − 16bc2d4 − 12bc3e+ 28b2c2de

+ 4b4d3e− 8b2cd4e)x− 36c4d+ 24bc3d2 − 4b2c2d3 − 15c4e+ 32bc3de

− 20b3cd2e+ 72c3d2e− 18b2c2d2e+ 96c3d3e+ b4d4e− 32bc2d4e.
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1.4. Characterization of split Jacobians

Equating it with zero, we obtain three polynomial equations from which we
determine

d = 3c
b
, e = b2c− 3ac2

b3 − 4abc+ 9c2 , (1.18)

by a Gröbner basis computation. More precisely, we consider d and e as
unknowns and solve over the field K(a, b, c), by computing a Gröbner basis
for the ideal I ⊂ K(a, b, c)[d, e] that is generated by the three polynomials that
define our three equations. Alternatively, we can factor the polynomials, note
that 3c− db is a factor in two of them (making one equation superfluous), and
then show that there are no other solutions than the one above. Either way,
this finally gives

f̃(x) = (bx+ 3c)2((b3 − 4abc+ 9c2)x+ b2c− 3ac2)
4cx3 + b2x2 + 2bcx+ c2 .

A model for E can be determined by requiring that the set of branch
points of the quotient map πE is {t1, t2, t3,∞}, i.e. ∞ and the image under f
of the three roots of Q(x). A model for Ẽ is similarly determined by re-
quiring that π

Ẽ
ramifies above ∞ and the image under f̃ of the three roots

of P (x). We can find the corresponding cubics from Resx(tP (x)− x2, Q(x))
and Resx(tQ(x)− (x+ d)2(x+ e), P (x)), but we omit them here. The mod-
ular invariants of the two elliptic curves can be obtained from the two cubics
by a direct calculation. We find that

j(E) = 24(a2b4 + 12b5 − 126ab3c+ 216a2bc2 + 405b2c2 − 972ac3)3

(b3 − 27c2)3(a2b2 − 4b3 − 4a3c+ 18abc− 27c2)2 ,

j(Ẽ) = 28(a2 − 3b)3

a2b2 − 4b3 − 4a3c+ 18abc− 27c2 .

If b = 0, then ∞ is the doubly ramified point of f̃ above 0. In this case,
we obtain, by the same argument, the following:

f(x) = x2

x3 + ax2 + c
, f̃(x) = 3x− a

4x3 + c
,

j(E) = 21036a3c

(4a3 + 27c)2 , j(Ẽ) = − 28a6

c(4a3 + 27c) .
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Chapter 1. Genus two curves with split Jacobians

If b3− 4abc+ 9c2 = 0, then∞ is the unramified point of f̃ above 0. In this
case, we obtain:

f(x) = x2

4bx3 + (b3 + 9)x2 + 4b2x+ 4b , f̃(x) = (bx+ 3)2

4x3 + b2x2 + 2bx+ 1 ,

j(E) = b3(b3 − 24)3

b3 − 27 , j(Ẽ) = −(b3 − 27)(b3 − 3)3

b3
.

Remark 1.12 This is what [Kuhn] obtains. It is, at least in part, also
classically known, albeit not in a modern setting (see [Kraz]).

Remark 1.13 The factors in the numerator and the denominator of f and f̃
are unique up to multiplication by non-zero constants. Recall that we have
assumed (Remark 1.5) that char(K) /∈ {2, 3} so that our resultants, including
the leading and the tailing terms of the polynomials etc, are not identically
zero.

1.4.3 Special cases of (3, 3)-split Jacobians

Unlike with (2, 2)-split Jacobians, the (3, 3)-split case allows for special cases
(recall Fig. 1.4). There are two possibilities, namely either one map is special
and the other is not, or they are both special. Suppose that f is special and f̃
is not. Then we can and do assume that 0 is the special, triply ramified point
of f so that, by the same arguments as in the previous subsection, we have

f(x) = x3

x3 + ax2 + bx+ c
, f̃(x) = (x+ d)2(x+ e)

(−b2 + 4ac)x3 + 2bcx2 + 3c2x
.

Solving for d and e, by imposing the generic ramification picture on f̃ and
using Theorem 1.7, we again obtain

d = 3c
b
, e = b2c− 3ac2

b3 − 4abc+ 9c2 ,

whence
f̃(x) = (bx+ 3c)2((b3 − 4abc+ 9c2)x+ b2c− 3ac2)

(−b2 + 4ac)x3 + 2bcx2 + 3c2x
.
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We ultimately obtain

j(E) = 16(−16b6 + 144ab4c− 405a2b2c2 − 108b3c2 + 324a3c3 + 486abc3 − 729c4)3

729c4(−b2 + 3ac)3(−a2b2 + 4b3 + 4a3c− 18abc+ 27c2)2 ,

j(Ẽ) = 28(b2 − 3ac)3

c2(a2b2 − 4b3 − 4a3c+ 18abc− 27c2) .

Now suppose that both f and f̃ are special. We assume that 0 is the triply
ramified point of f above 0 and that ∞ is the unramified point of f above ∞,
that is

f(x) = x3

x2 + ax+ b
, (1.19)

with b 6= 0 and a2 − 4b 6= 0. The argument above, applied to (1.19), implies
that ∞ is the triply ramified point of f̃ above 0, which gives f̃(x) = 1/Q(x).
We find Q(x) = (−a2 + 4b)x3 + 2abx2 + 3b2x, using Corollary 1.12 and The-
orem 1.7. Applying the same argument to f̃(x) yields

(3a4 − 24a2b+ 48b2)x2 + (−4a3b+ 16ab2)x− 16a2b2 + 48b3,

that must be divisible by x2 + ax+ b. Dividing the two, we obtain

−a(3a2 − 8b)(a2 − 4b)x− a2b(3a2 − 8b) (1.20)

as remainder. Given that b 6= 0 and a2 − 4b 6= 0, equating (1.20) with zero
yields two possible solutions, namely a = 0 and b = 3a2/8. The first solution
gives

f(x) = x3

x2 + b
, f̃(x) = 1

4x3 + 3bx, j(E) = j(Ẽ) = 1728.

Kuhn obtained this solution with b = 4/3. However, it would seem that he
missed the second solution, namely a 6= 0, b = 3a2/8, which gives

f(x) = x3

8x2 + 8ax+ 3a2 , f̃(x) = 1
32x3 + 48ax2 + 27a2x

,

j(E) = j(Ẽ) = −873722816
59049 = −26 · 2393

310 .
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Chapter 1. Genus two curves with split Jacobians

Before dealing with the cases of higher degree split Jacobians and gener-
alizing the above, we introduce some prerequisites in the next subsection.

1.4.4 Powers of polynomials

Lemma 1.13 Let F be a field, let m,n be two positive integers with m coprime
to char(F ), and let A(x) = ∑mn

i=0 aix
i ∈ F [x] be a polynomial of degree mn

that is an m-th power of a polynomial B(x) = ∑n
j=0 bjx

j ∈ F [x] of de-
gree n. Then B(x) is uniquely determined, up to multiplication bym-th roots of
unity, by coefficients amn, amn−1, . . . , amn−n. Consequently, these coefficients
uniquely determine A(x).

Proof It is clear that bmn = amn so the claim is true for the leading coefficient
of B(x). Expanding B(x)m, we note that for each j ∈ {0, . . . , n− 1} we have

amn−n+j = mbjb
m−1
n + (terms independent of bj). (1.21)

To see this, note that if bjxj is one of the contributing factors to a sum-
mand of amn−n+jx

mn−n+j in the expansion, then the other m− 1 factors are
all bnxn because their product is the only possible one of the required degree.
Moreover, no coefficient of B(x) of index lower than j can appear in amn−n+j .
Since we assumed that m is not zero in F , we can divide equation (1.21) for
each j by m and, starting with j = n− 1, recursively express the bj in terms
of amn−1, amn−2, . . . , amn−n and bn.
Remark 1.14 With notations as in the preceding lemma, let char(F ) = p.
Then if m = prm′ for some r,m′ ∈ Z>0 such that gcd(p,m′) = 1, we can
reduce this to the case in the lemma by introducing a new variable X = xp

r .
Remark 1.15 For any polynomial of degree mn with a fixed non-zero leading
coefficient, Lemma 1.13 provides (m − 1)d equations that the coefficients of
the polynomial satisfy if and only if it is an m-th power. One can take B(t)
defined over F if and only if F contains an m-th root of amn. Another
way of obtaining the same equations is computing a Gröbner basis of the
ideal I ⊂ F [a0, . . . , amn, b0, . . . , bn, u] generated by uamn − 1 and the coeffi-
cients of A(t)−B(t)m, and then eliminating the variables b0, . . . , bn.
Example 1.3 (n = 3) Let a, b, c, d ∈ F , where a 6= 0, and let m ≥ 2 be an
integer coprime to char(F ). Let A(x) ∈ F [x] be a polynomial given as

A(x) = amx3m + bx3m−1 + cx3m−2 + dx3m−3 + . . . .
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1.4. Characterization of split Jacobians

If A(x) is an m-th power of a cubic B(x) = αx3 + βx2 + γx+ δ ∈ F [x], then
we have

α = a (up to mult. by m-th roots of unity),

β = b

mαm−1 ,

γ =
c−

(m
2
)
αm−2β2

mαm−1 ,

δ =
d− 2

(m
2
)
αm−2βγ −

(m
3
)
αm− 3β3

mαm−1

(1.22)

whence, up to multiplication by an m-th root of unity, B(x) equals

ax3 + b
mam−1x

2 + m2amc−(m2 )b2
m3a2m−1 x+

m4a2md−2m2(m2 )ambc+
(

2(m2 )2−m(m3 )
)
b3

m5a3m−1 .

For each m ∈ Z>0, by expanding B(x)m, we can obtain the remaining coef-
ficients of A(x) in terms of the leading four, which gives us the form of any
polynomial of degree 3m that is an m-th power of a cubic.

Example 1.4 Over a field F with char(F ) 6= 2, every sextic in F [x] that is a
square has the form

ax6 + bx5 + cx4 + dx3 + 5b4 − 24ab2c+ 16a2c2 + 32a2bd

64a3 x2

+ (−b2 + 4ac)(b3 − 4abc+ 8a2d)
64a4 x+ (b3 − 4abc+ 8a2d)2

256a5

for some a, b, c, d ∈ F with a 6= 0.

The goal of the following two subsections is to generalize Subsections 1.4.1
and 1.4.2 and describe how one could obtain a parametrization of the modular
invariants of the two complementary elliptic curves in the general case.

1.4.5 The odd degree generic case of split Jacobians

Let, as before, f : C/ι → E/ι be the map induced by an optimal cover-
ing. If n = deg f > 3 is odd, we suppose that the curve C of genus two
is given by a model y2 = P (x)Q(x), where P (x), Q(x) ∈ K[x] are cubics
and P (x) = x3 + ax2 + bx+ c.
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A(x) D(x) B(x)

∞

P (x)

Q(x)

0

f

0 t1 t2 t3 ∞

Figure 1.6: Ramification of f in the case of odd degree.

In view of Theorem 1.3, we also suppose that the induced map is given as

f(x) = x2A(x)
P (x)B(x)2 , (1.23)

where

A(x) = xn−2 +
n−3∑
i=0

aix
i ∈ K[x],

B(x) = x(n−5)/2 +
(n−7)/2∑
j=0

bjx
j ∈ K[x].
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In doing so, we assume that 0 and ∞ are points of ramification index 2 in
the fibres f∗(0) and f∗(∞), respectively. To make the ramification of f fit
Fig. 1.6, we also must have

r1 := Resx(x, P (x)) 6= 0, r2 := Resx(x,B(x)) 6= 0,
r3 := Resx(A(x), P (x)) 6= 0, r4 := Resx(A(x), B(x)) 6= 0,
r5 := Resx(x,A(x)) 6= 0, r6 := Resx(P (x), B(x)) 6= 0,
d1 := Discx(P (x)) 6= 0, d2 := Discx(A(x)) 6= 0,
d3 := Discx(B(x)) 6= 0.

The coefficients a, b, c, ai, bj are not all free; not all maps of the form (1.23)
fit the ramification picture of Fig. 1.6. The imposed distribution of the double
points in the fibres above t1, t2, t3 means that we must have

f∗(t1 + t2 + t3) = Z(Q) + 2Z(D),

where Z(·) denotes the zero locus and

D(x) = 2A(x)B(x)P (x) + x
dA
dx (x)B(x)P (x)

− 2xA(x)dB
dx (x)P (x)− xA(x)B(x)dP

dx (x),

which is a polynomial of degree 3
2(n−1). This follows from computing the de-

rivative of f with respect to x. The ramification picture imposes an additional
restriction, namely that

f∗(Z(D)) = n− 1
2 Z(U)

for some cubic U . By Corollary 1.11, we have that the divisor f∗(Z(D)) is the
zero locus of

M(t) := 1
r1r2

2r3r4
Resx

(
tP (x)B(x)2 − x2A(x), D(x)

)
. (1.24)

In view of Lemma 1.9, the resultant in (1.24) is divisible by r1r
2
2r3r4 be-

cause P (x)B(x)2, x2A(x) and D(x) have a common factor whenever any of
the ri vanish. Note that r2 appears with an exponent 2 because if it vanishes,
the common factor is x2. It is also worth noting that the factors of the leading
(resp. tailing) coefficient of M(t) are d1, d3, r4, r6 (resp. r1, r5, d2). Indeed,
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Chapter 1. Genus two curves with split Jacobians

by Lemma 1.9, the vanishing of any of these resultants corresponds to com-
mon factors of P (x)B(x)2 (resp. x2A(x)) and D(x), and a common root of
the two is clearly mapped to ∞ (resp. 0) under f , so the claim follows by
Corollary 1.11.

In order to determine the unknowns {ai, bj}i,j , of which there are 3
2(n− 3),

in terms of a, b, c, we impose the condition that the polynomial M(t) divided
by its leading coefficient equals a 1

2(n − 1)-th power of a cubic U(t) that,
up to multiplication by a non-zero constant, equals (t− t1)(t− t2)(t− t3).
Equivalently, M(t) is divisible by U(t)n−1

2 . By Subsection 1.4.4, we get pre-
cisely 3

2(n− 3) equations by imposing the said condition. We obtain the ai
and the bj in terms of a, b, c, by computing a Gröbner basis of the ideal

I ⊂ K(a, b, c)[ai, bj ]i,j
that is generated by the 3

2(n− 3) corresponding polynomials. Having determ-
ined the form of f in terms of parameters a, b, c, we compute the expression

R(x) := 1
r1r2

2r3r4
Resy

(
f1(x)f2(y)− f1(y)f2(x)

x− y
,D(y)

)
∈ K(a, b, c)[x],

where f1 = x2A(x) and f2 = P (x)B(x)2. This resultant is a polynomial of
degree 3

2(n− 1)2 and, by Corollary 1.12, it determines the divisor

f∗(f∗(Z(D)))−Z(D) = f∗
(
n− 1

2 Z(U)
)
−Z(D) = n− 1

2 Z(Q)+(n−2)Z(D).

Therefore R(x) must be divisible by Q(x)n−1
2 D(x)n−2. Let T (x) denote the

result of Euclidean division of R(x) by D(x)n−2. To obtain Q(x) from T (x),
we first divide T (x) by its leading coefficient, which is not zero under our
restrictions, and then we use (1.22). Since Q(x) is only unique up to multi-
plication by a non-zero constant, we can clear the denominators and choose
that form for Q(x). Having determined Q(x), Theorem 1.7 implies that we
can write

f̃(x) = (x+ u)2Ã(x)
Q(x)B̃(x)2

, (1.25)

with

A(x) = xn−2 +
n−3∑
i=0

ãix
i ∈ K[x],

B(x) = x(n−3)/2 +
(n−5)/2∑
j=0

b̃jx
j ∈ K[x],
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where u, ãi, b̃j ∈ K are all to be determined. Note that the number of the un-
knowns is now increased by two. We repeat the exact same procedure as above,
this time starting with (1.25), and obtain the 3

2(n−3) equations that must be
satisfied by its coefficients because this map has the same ramification picture
as f . In the process, we obtain a polynomial D̃(x) of degree 3

2(n− 1), that
is a factor of df̃/dx(x) and whose zero locus consists of the doubly ramified
points of f̃ above t1, t2, t3. We also obtain a polynomial M̃(t) that corresponds
to f̃∗(Z(D̃)), that must be divisible by V (t)n−1

2 , where V (t) ∈ K[t] is a cubic.
We find the corresponding resultant

Resy
(
f̃1(x)f̃d(y)− f̃2(y)f̃d(x)

x− y
, D̃(y)

)
∈ K(a, b, c)[u, ãi, b̃j ][x],

that must be divisible by r̃1r̃2
2r̃3r̃4P̃ (x) 1

2 (n−1)D̃(x)n−2, where

r̃1 = Resx(x+ u,Q(x)), r̃2 = Resx(x+ u, B̃(x)),
r̃3 = Resx(Ã,Q(x)), r̃4 = Resx(Ã, B̃(x)),

and P̃ (x) ∈ K(a, b, c)[u, ãi, b̃j ][x] is a cubic. We divide by r̃1r̃2
2r̃3r̃4D̃(x)n−2

and express P̃ (x) using (1.22) again. Three additional equations are obtained
by imposing the condition that P (x) ∈ K[x] is divisible by P̃ (x). Finally,
we solve for u, ãi, b̃j in terms of a, b, c, by computing a Gröbner basis of the
ideal J ⊂ K(a, b, c)[u, ãi, b̃j ]i,j that is generated by these three equations and
the 3

2(n− 3) equations we had already obtained.

With all the coefficients in f and f̃ known, we determine U(t) and V (t)
using (1.22) and we directly determine the j-invariants of E and Ẽ, in terms of
the parameters a, b, c, from the models s2 = U(t) and s2 = V (t), respectively.

1.4.6 The even degree generic case of split Jacobians

If deg f = n > 3 is even, virtually nothing changes in the approach so we go
through it briefly. We suppose that the curve C of genus two is given by a
model y2 = P (x), where P (x) ∈ K[x] is a sextic, and we suppose that the
map f : C/ι → E/ι is given as

f(x) = x2A(x)
B(x)2 ,
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f

0 t1 t2 t3 ∞

A(x) D(x) B(x)

P (x)

0 ∞

Figure 1.7: Ramification of f in the case of even degree.

where

A(x) = xn−2 +
n−3∑
i=0

aix
i ∈ K[x],

B(x) = x(n−2)/2 +
(n−4)/2∑
j=0

bjx
j ∈ K[x].

It follows from the ramification picture of f in Fig. 1.7 that we must have

r1 := Resx(x,A(x)) 6= 0, r2 := Resx(x,B(x)) 6= 0,
r3 := Resx(A(x), B(x)) 6= 0, r4 := Resx(x(x), A(x)) 6= 0,
d1 := Discx(A(x)) 6= 0, d2 := Discx(B(x)) 6= 0.
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As opposed to the case of odd n, we use a different set of three parameters,
namely a1, a0, b0. We are left with 3

2(n − 4) unknowns. The ramification
behaviour of f also forces f∗(t1 + t2 + t3) = Z(P ) + 2Z(D), where

D(x) = −2A(x)B(x)− xdA
dx (x)B(x) + 2xA(x)dB

dx (x) ∈ K[x],

which is of degree 3
2(n−2) and is a factor of df(x)/dx. As before, we calculate

M(t) := 1
r1r2

2
Resx

(
tB(x)2 − x2A(x), D(x)

)
and impose the conditions on its coefficients that make it divisible by U(t)n−2

2 ,
where U(t) ∈ K[t] is a cubic. In view of Example 1.3, this provides us
with 3

2(n− 4) equations that we solve for ai, bj in terms of a1, a0, b0, by com-
puting a Gröbner basis of the ideal I ⊂ K(a1, a0, b0)[ai, bj ]i 6=0,1, j 6=0 that is
generated by the equations.

The defining equation y2 = P (x) of C is found by calculating

1
r1r2

2
Resy

(
f1(x)f2(y)− f1(y)f2(x)

x− y
,D(y)

)
∈ K[x], (1.26)

where f1(x) = x2A(x) and f2(x) = B(x)2. We obtain a polynomial of de-
gree 3

2(n − 1)(n − 2) that must be divisible by P (x)n−2
2 D(x)n−3. Performing

Euclidean division of (1.26) by D(x)n−3, we obtain some polynomial T (x).
We obtain P (x) from T (x), up to multiplication by a non-zero constant, by
using the same principle from Subsection 1.4.4 that we applied in the case of
odd degree, only this time for a sextic.

By Theorem 1.8, the map f̃ must have the same ramification picture as f and
therefore it must be of the form

f̃(x) = (x+ u)2Ã(x)
B̃(x)2

,

where

Ã(x) = xn−2 +
n−3∑
i=0

ãix
i ∈ K[x],

B(x) = xn/2 +
(n−2)/2∑
j=0

b̃jx
j ∈ K[x].
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Again, we find D̃(x) = 2A(x)B(x) + (x+ u)dA
dx (x)B(x)− 2(x+ u)A(x)dB

dx (x),
the factor of df̃(x)/dx whose zero locus consists of the double ramification
points of f̃ above t1, t2, t3, whence we also obtain the polynomial M̃(t) that
corresponds to f̃∗(Z(D̃)). We obtain 3

2(n− 4) polynomial equations that the
coefficients of M̃(t) must satisfy, by imposing that M̃(t) is divisible by V (t)n−2

2

where V (t) ∈ K[t] is a cubic. To obtain additional equations, we compute
the resultant analogous to (1.26), that corresponds to f̃∗(f̃∗(Z(D̃)))− Z(D̃).
This yields a polynomial of degree 3

2(n − 1)(n − 2) that must be divisible
by Q(x)n−2

2 D̃(x)n−3. From this we determine Q(x). Theorem 1.8 implies
that Q(x) divides P (x), and imposing this condition on the coefficients gives
six additional equations. Finally, we solve all the equations in terms of a1, a0, b0
for the remaining coefficients, by computing a Gröbner basis of the ideal

J ⊂ K(a1, a0, b0)[u, ãi, b̃j ]

that they generate.

Remark 1.16 If n = deg φ = deg f is a prime, then φ and φ̃ are necessarily
optimal because if they factor through an isogeny, the isogeny must be of de-
gree 1. However, for composite n, one must also impose additional conditions
on the final forms of f and f̃ in order to make sure that the corresponding
coverings do not factor through non-trivial isogenies. Moreover, the choice of
the parameters is not canonical. While in the case of odd n it might seem
logical to begin with P (x) = x3 + ax2 + bx + c just as in the case of n = 3,
the choice is less clear in the case of even n, except when n = 4 when there
is only one choice. Unfortunately, the suggested computations are unfeasible
in practice, even for small degrees, due to the complexity of Gröbner bases
algorithms over the field F (a, b, c), even for F finite. Computing symbolic
determinants also becomes unfeasible as the dimension increases.

1.5 A different point of view

In Section 1.3 we started with an optimal covering map C → E1 of degree n
and constructed the complementary curve E2. In this section, we present an
alternative point of view. We start instead with two elliptic curves and a
particular kind of K-isomorphism between their n-torsions, and construct the
curve C of genus two from this data. This approach can be found in [Fr-Ka].
We begin by recalling some definitions and an important lemma.
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1.5. A different point of view

Let A be an abelian variety overK and λ : A→ A∨ a polarization. Suppose
that m ∈ Z is coprime to char(K) and such that Ker(λ) ⊂ A[m], and let

em : A[m](K)×A∨[m](K)→ µm

be the Weil pairing. Then we can associate to λ a skew-symmetric pairing

eλ : Ker(λ)×Ker(λ)→ µm

that is defined for geometric points P,Q as eλ(P,Q) = em(P, λ(R)), for any R
such that [m]R = Q. This does not depend on R or m (see §16 in [Miln1]).

Lemma 1.14 (Mumford) Let ϕ : A→ B be an isogeny whose degree is coprime
to char(K) and let λ : A → A∨ be a polarization. Then λ = ϕ∗(λ′) for some
polarization λ′ : B → B∨ if and only if Ker(ϕ) ⊂ Ker(λ) and eλ is trivial
on Ker(ϕ)×Ker(ϕ).

Proof See Proposition 16.8 in [Miln1] or Theorem 2 and its Corollary in §23
in [MumAV].

Corollary 1.15 Let φ : C → E1 be an optimal covering of an elliptic curve by
a curve of genus two, such that deg φ = n is coprime to char(K), and let E2
be the complementary elliptic curve. Let α : E1[n] ∼−→ E2[n] be the induced
canonical isomorphism (with respect to an embedding of C; recall Lemma 1.6).
Then α inverts the Weil pairing, i.e.

en(P,Q) = en (α(P ), α(Q))−1

for any P,Q ∈ E1[n](K).

Proof By Lemma 1.6, we have an isogeny ϕ : E1 × E2 → Jac(C) that is
polarized with respect to [n] ◦ λΘ and λC , i.e. ϕ∗(L (C)) = L (nΘ). Moreover,
we have Ker(ϕ) ∼= Γα. Lemma 1.14 implies Ker(ϕ) ⊂ (E1 × E2)[n]. It follows
that for any geometric point of Ker(ϕ) × Ker(ϕ) that corresponds to a point
of the form ((P,Q), (α(P ), α(Q))), we have

1 = en ((P,Q), (α(P ), α(Q))) = en(P,Q) · en(α(P ), α(Q)).

This completes the proof.
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Chapter 1. Genus two curves with split Jacobians

In view of Lemma 1.14, we begin with two elliptic curves E1 and E2.
Let n ≥ 2 be an integer coprime to char(K) and let α : E1[n] ∼−→ E2[n] be
an isomorphism of K-group schemes between the n-torsion subgroups of the
two curves, such that

en(α(P ), α(Q)) = en(P,Q)−1 (1.27)

for any P,Q ∈ E1[n](K). In other words, the isomorphism α is anti-symplectic
with respect to the Weil pairing.

Let λΘ be the usual principal polarization of E1 × E2, namely the one
induced by the divisor Θ = {0E1} × E2 + E1 × {0E2}, let Γα ⊂ (E1 × E2)[n]
denote the graph of α, and let

ϕ : E1 × E2 → (E1 × E2)/Γα =: J

be the canonical map. The map ϕ is an isogeny, being surjective and of finite
kernel. We also let ηi : Ei → E1 × E2 denote the canonical embeddings and
we let pi : E1 × E2 → Ei denote the canonical projections.

Lemma 1.16 The isogeny ϕ : E1 × E2 → J induces a principal polarization
of J .

Proof By Lemma 1.14, the condition (1.27) implies that there exists a line
bundle M ∈ Pic(J) such that ϕ∗(M ) = L (nΘ). This bundle naturally
induces a polarization λM : J → J∨ given by

λM : P 7→ t∗PM ⊗M−1.

Now let D ∈ Div(J ⊗K) be any divisor such that M ∼= L (D) and
let D1 := E1 × {0E2} and D2 := {0E1} × E2, so that Θ = D1 +D2. Both D1
and D2 are fibres of projections, namely Di = p∗j (0Ej ). Since any two fibres
of pi are algebraically equivalent, it follows that they are also numerically
equivalent (see [HAG], see pp. 364–367) and we have

D1 ·D1 = D2 ·D2 = 0. (1.28)

Since D1 and D2 meet transversally with D1∩D2 = {(0E1 , 0E2)}, we also have

D1 ·D2 = 1 (1.29)
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(see V.1.3 and V.1.5 in [HAG]). Equalities (1.28) and (1.29) together give

Θ ·Θ = D1 ·D1 + 2D1 ·D2 +D2 ·D2 = 2.

Now the Projection Formula gives

n2Θ ·Θ = nΘ · nΘ = ϕ∗(D) · ϕ∗(D) = degϕD ·D = n2D ·D

whence D ·D = 2. Therefore, by Riemann-Roch (see §16 in [MumAV]), we
have

deg λM = D ·D
2 = 1,

i.e. the polarization λM : J → J∨ is principal.

Remark 1.17 The polarization λM is defined over K and does not depend
on D.

Lemma 1.16 implies that we have the following commutative diagrams,
analogous to (1.8) and (1.9):

E1 × E2 (E1 × E2)∨

J J∨

[n] ◦ λΘ

ϕ

λM

∼

ϕ∨ (1.30)

J J∨

E1 × E2 (E1 × E2)∨

[n] ◦ λM

λ−1
Θ ◦ ϕ∨ ◦ λM

λΘ
∼

λM ◦ ϕ ◦ λ−1
Θ (1.31)

Let ψ := λ−1
Θ ◦ ϕ∨ ◦ λM , for convenience. Then we have the following two exact

sequences:
0 E1 J E2 0,ϕ ◦ η1 p1 ◦ ψ (1.32)

0 E2 J E1 0,ϕ ◦ η2 p2 ◦ ψ (1.33)

that are analogous to (1.6) and (1.7).
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Let S be the set containing the effective divisors D ∈ Div(J ⊗K) such
that ϕ∗(D) ∼ nΘ. For any D1, D2 ∈ S, we have L (D1 −D2) ∈ Ker(ϕ∨). The
polarization λM induces an isomorphism Ker(ϕ∨) ∼= Ker(λ−1

Θ ◦ ϕ∨ ◦ λM ) and
therefore Ker(ϕ∨)(K) acts freely and transitively on S via translation, whence

#S = #Ker(ϕ∨) = #Ker(ϕ) = n2.

Lemma 1.17 If n is odd, then there exists a unique divisor C ∈ S such
that −1J(C) = C. This divisor is K-rational and ϕ∗(C) is the unique divisor
in ϕ∗(Div(J)) that is both linearly equivalent to nΘ and fixed by −1E1×E2.

Proof For any D ∈ S, we have

ϕ∗(−1J(D)) = −1E1×E2(ϕ∗(D)) ∼ −1E1×E2(nΘ) = nΘ

so that −1J acts on S. Since #S = n2 is odd, the action of −1J must fix
some C ∈ S. Suppose that some C ′ ∈ S is also fixed. Then C ′ = tP (C)
for some P ∈ Ker(ψ), which means that C ′ = tP (C) = t−P (C) and there-
fore 2P = 0. This implies that P = 0 since #Ker(ψ) = n2 is odd.

By Riemann-Roch, we have

pa(C) = C · C
2 + 1 = 2

and therefore (pi ◦ ψ)|C : C → Ei are both coverings of degree n. However,
we are not necessarily in the situation described in Section 1.2 because C,
although of arithmetic genus 2, need not be irreducible.

Remark 1.18 The elements of S are either all irreducible or all reducible,
since they are translates of each other.

With Lemmas 1.16 and 1.17 in mind, we recall the following classical result.

Theorem 1.18 (Weil) Let A be a polarized abelian surface with a polarization
induced by L (D) such that D ·D = 2. Then exactly one of the following two
holds:

(1) D is a curve of genus two and A is the canonically polarized Jacobian
of D, with D embedded into A;

(2) A is the product E1 × E2 of two elliptic curves E1 and E2, and D is of
the form {a1} × E2 + E1 × {a2} for some a1 ∈ E1 and a2 ∈ E2.
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Proof This is Satz 2 in [Weil].

Corollary 1.19 If an element D ∈ S is reducible, then we have D = F1 + F2
and J ∼= F1 × F2, where F1 and F2 are elliptic curves. Moreover, the elliptic
curves E1, E2, F1, F2 are all isogenous.

Proof The first claim follows directly from Theorem 1.18. Let

εi := ϕ ◦ ηi : Ei → J

be the induced embeddings, by (1.32) and (1.33). By the same argument as
in the proof of Lemma 1.16, the self-intersection numbers of E1, E2, F1, F2 are
all zero. It is also true that

ε1(E1) · F1 6= 0, ε2(E2) · F1 6= 0,
ε1(E1) · F2 6= 0, ε2(E2) · F2 6= 0.

(1.34)

Indeed, suppose that for some i we have εi(Ei) ·F1 = 0. Then F1 = tP (εi(Ei))
for some point P , and for j 6= i we have

εj(Ej) · F1 = εj(Ej) · εi(Ei) = #Ker(ϕ) = n2,

which implies

n = Ej · nΘ = εj(Ej) ·D = εj(Ej) · (F1 + F2) ≥ n2,

which is a contradiction. The same argument shows that εi(Ei) · F2 6= 0. It
now follows that ε1(E1) and ε2(E2) are not translates of F1 and F2 in J and
since ϕ : E1 × E2 → F1 × F2 is an isogeny, all four curves are isogenous.

Proposition 1.2 ([Fr-Ka]) There exist examples where the elements of S are
reducible.

Proof Let γ : E1 −→ E2 be an isogeny of two elliptic curves, of degree n− 1.
Let α : E1[n] ∼−→ E2[n] be the anti-symplectic isomorphism that is the restric-
tion of γ to the n-torsion and let Γα denote its graph. Then the map

φ : E1 × E2 → E1 × E2, (P,Q) 7→ (nP,Q− γ(P ))

is an isogeny with kernel Ker(φ) = Γα and therefore

J := (E1 × E2)/Γα ∼= E1 × E2.

Frey and Kani (see §2 in [Fr-Ka]) also give the following “irreducibility cri-
terion”.
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Proposition 1.3 Let n ∈ Z>0 be odd, let E1 and E2 be two elliptic curves
without K-rational points of order two, and let α : E1[n] ∼−→ E2[n] be an
anti-symplectic isomorphism. Then the induced curve C, that polarizes the
quotient J := (E1 × E2)/Γα, is irreducible if and only if 0J /∈ C.

Proof First suppose that C is reducible, say C = F1 + F2. Then we
have F1 ∩ F2 = {P} for some point P ∈ J [2](K). Since ϕ induces an iso-
morphism between J [2] and (E1 × E2)[2], we have J [2](K) = {0J} and there-
fore P = 0J . On the other hand, if C is irreducible, the configuration of
the Weierstraß points of C when degϕ = n is odd (Theorem 1.3) implies
that 0J /∈ C(K), having embedded C into J via P 7→ [P −W1 + W2 −W3]
(or P 7→ [P −W4 +W5 −W6]).

1.5.1 Gluing two elliptic curves along their 2-torsion

In this subsection, we will consider in more detail the special case of n = 2.

Example 1.5 Let E1 and E2 be elliptic curves and let α : E1[2] ∼−→ E2[2]
be an isomorphism. Then α is necessarily anti-symplectic because the Weil
pairing takes values in {−1, 1}, meaning that the two curves can always be
glued (over K) along their 2-torsion to form a (principally polarized) abelian
surface.

Proposition 1.4 If n = 2, then the elements of S are reducible if and only
if α is induced by an isomorphism γ : E1

∼−→ E2. Moreover, with notations as
above, if n = 2 and J ∼= F1 × F2, then E1 ∼= E2 ∼= F1 ∼= F2.

Proof Let D ∈ S and suppose D = F1 + F2, where F1 and F2 are elliptic
curves. Let ϕ : E1×E2 → F1×F2 be the isogeny with kernel Ker(ϕ) = Γα. We
denote by ηi the canonical embeddings Ei ↪→ E1×E2 and Fi ↪→ F1×F2, and
we denote by pi the canonical projections E1 × E2 → Ei and F1 × F2 → Fi.
Slightly abusing notation, we also denote by Ei and Fi the images of the
corresponding curves under ηi. We claim that the composition

γij : Ei
ηi−→ E1 × E2

ϕ−→ F1 × F2
pj−→ Fj

is an isomorphism, where i, j ∈ {1, 2}. With εi = ϕ ◦ ηi, we have

n = 2 = εi(Ei) ·D = εi(Ei) · (F1 + F2)

44



1.5. A different point of view

and εi(Ei) · Fj 6= 0, whence εi(Ei) · Fj = 1. Therefore εi(Ei) has precisely
one point in common with Fj and all its translates (in J) and it follows that
the projection of εi(Ei) to Fj is an isomorphism. It remains to show that the
isomorphisms

γ1i ◦ γ
−1
2i : E1 → E2, i ∈ {1, 2}

agree with α on the 2-torsion. Let P ∈ E1[2] and note that

(P, 0) + Γα = {(P + T, α(T )) | T ∈ E1[2]}
= {(T, α(T − P )) | T ∈ E1[2]}
= (0,−α(P )) + Γα
= (0, α(P )) + Γα,

where the last equality follows from the fact that α(P ) is a 2-torsion point.
It follows that ε1(P ) = ε2(α(P )) ∈ J and therefore γ1i ◦ γ

−1
2i (P ) = α(P ). The

other direction follows from Proposition 1.2.

E1

E2

F2 and its translates
F

1
an

d
its

tr
an

sla
te
s

0J

Figure 1.8: An illustration of E1 and E2 glued along 2-torsion inside
J ∼= F1 × F2; the marked points denote J [2].
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Proposition 1.5 Let E1 and E2 be two isomorphic elliptic curves with a
modular invariant j(Ei) /∈ {0, 1728}. Then they can be glued over K along
the 2-torsion if and only if at least one of the following two conditions holds:

(1) E1 (and therefore E2) has a K-rational point of order two;

(2) The minimal discriminant of E1 (and E2) is a square in K.

Proof Note that j(Ei) /∈ {0, 1728} implies that Aut(Ei) = {±1} and that
both automorphisms fix the 2-torsion pointwise. We choose a model

E : y2z = x3 + ax2z + bxz2 + cz3

for both curves, where a, b, c ∈ K. In particular, we have 0E = [0 : 1 : 0]. In
addition to this point, the 2-torsion consists of three more geometric points,
namely

[r : 0 : 1], [s : 0 : 1], [t : 0 : 1],

where r, s, t ∈ K are the three distinct roots of x3 +ax2 + bx+ c ∈ K[x]. Since
any isomorphism α : E1[2] ∼−→ E2[2] is necessarily anti-symplectic, we only
need to show precisely when the possible automorphisms α : E[2] ∼−→ E[2]
are K-rational (the identity map being excluded, by Proposition 1.4). It is
readily seen that α can be realized as

α : [x : y : z] 7→ [ux2 + vxz + wz2 : y2 : z2]

for some u, v, w ∈ K. We distinguish two cases:

(1) α is an odd permutation of the points of order two, i.e. it fixes exactly
one point of order two;

(2) α is an even permutation of the points of order two, i.e. it fixes none of
the points of order two.

We deal with case (1) first. Suppose, without loss of generality, that [r : 0 : 1]
is fixed by α. Then under α we have

[s : 0 : 1] 7→ [t : 0 : 1], [t : 0 : 1] 7→ [s : 0 : 1],
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which implies that ux2 + vx+w ∈ K[x] must equal the Lagrange polynomial

r
x− s
r − s

x− t
r − t

+ t
x− r
s− r

x− t
s− t

+ s
x− r
t− r

x− s
t− s

= 2r − s− t
(r − s)(r − t)x

2

+ −r
2 + s2 + t2 − rs− rt+ st

(r − s)(r − t) x+ r2s− rs2 + r2t− rt2

(r − s)(r − t) .

Treating u, v, w, a, b, c, r, s, t as variables, let Iq ⊂ K[q, a, b, c, r, s, t] denote the
ideal generated by four elements, namely the three polynomials

a+ r + s+ t, −b+ rs+ rt+ st, c+ rst,

and the fourth polynomial

− u(r − s)(r − t) + 2r − s− t for q = u,

− v(r − s)(r − t)− r2 + s2 + t2 − rs− rt+ st for q = v,

− w(r − s)(r − t) + r2s− rs2 + r2t− rt2 for q = w.

Eliminating the variables s and t from each Iq, we obtain

u = 3r + a

3r2 + 2ra+ b
, v = 2ra+ a2 − b

3r2 + 2ra+ b
, w = r3 − ra2 + 3rb+ c

3r2 + 2ra+ b
. (1.35)

It follows that u, v, w ∈ K whenever r ∈ K. On the other hand, we verify
easily that

r = 1− au+ v

u

if u 6= 0. If u = 0 and char(K) 6= 3, then v = −1 and r = −a/3, and if u = 0
and char(K) = 3, then v = −1 and r = −a. Hence it also follows that r ∈ K
whenever u, v, w ∈ K. We conclude that an automorphism α : E[2] ∼−→ E[2]
that fixes a point of order two is K-rational if and only if the said point
is K-rational.

To deal with case (2), suppose that α ([r : 0 : 1]) = [t : 0 : 1], for example.
Then ux2 + vx+ w ∈ K[x] must equal the Lagrange polynomial

t
x− s
r − s

x− t
r − t

+ r
x− r
s− r

x− t
s− t

+ s
x− r
t− r

x− s
t− s

= r2 − rs+ s2 − rt− st+ t2

(r − s)(s− t)(t− r) x2

+−r
3 + r2s− s3 + s2t+ rt2 − t3

(r − s)(s− t)(t− r) x+−r
2s2 + rs3 + r3t− r2t2 − s2t2 + st3

(r − s)(s− t)(t− r) .
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In the same manner as before, let Iq ⊂ K[q, a, b, c, d, r, s, t] denote the ideal
generated by five elements, namely the four polynomials

a+ r + s+ t, −b+ rs+ rt+ st, c+ rst, d− (r − s)(s− t)(t− r),

and the fifth polynomial

− u(r − s)(s− t)(t− r) + r2 + s2 + t2 − rs− rt− st for q = u,

− v(r − s)(s− t)(t− r)− r3 − s3 − t3 + r2s+ rt2 + s2t for q = v,

− w(r − s)(s− t)(t− r) + r3t+ rs3 + st3 − r2t2 − r2s2 − s2t2 for q = w.

Eliminating r, s, t gives

u = a2 − 3b
d

, v = 2a3 − 7ab+ 9c− d
2d , w = a2b− 4b2 + 3ac− ad

2d , (1.36)

where d = (r− s)(s− t)(t− r). Therefore we have u ∈ K if and only if d ∈ K
and, since ∆E = (d2) modulo twelfth powers, the claim follows.

Remark 1.19 Proposition 1.5 also follows by equating (1.13) and (1.14).
Factoring the difference of the two expressions and equating it with zero gives

(b3 − a3c)(b3 + a3c− 9abc+ 27c2) = 0.

Equating the first term with zero gives c = b3/a3. As one of the curves was
given by s2 = f(t), where f(t) = t3 + at2 + bt+ c, this corresponds to case (1)
because f(−b/a) = 0. If the second term is zero, then we obtain case (2) since

Disc(f) = Disc(f) + 4(b3 + a3c− 9abc+ 27c2) = (ab− 9c)2.

We deal separately with the remaining two cases.

Proposition 1.6 Let E1 and E2 be two elliptic curves with j(E1) = j(E2) = 0.
Then they can be glued along the 2-torsion if and only if every P ∈ Ei[2]
is K-rational.

Proof We fix a model

E : y2z = x(x2 −Bz2)
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for both curves, where B = b2 ∈ K for some b ∈ K \ {0}. Then the two
automorphisms (over K) of E[2] given by

[x : y : z] 7→
[ 3

2bx
2 ∓ 1

2xz − bz
2 : y2 : z2

]
fix no points of order two and fix [b : 0 : 1], respectively. They are defined
over K if and only if b ∈ K. The automorphism that fixes [0 : 0 : 1] is given
by

[x : y : z] 7→ [−x : y : z]

and is induced by automorphisms [x : y : z] 7→ [−x : ±iy : z], where i2 = −1.
Therefore the claim follows.

Proposition 1.7 Let E1 and E2 be two elliptic curves whose j-invariants
satisfy j(E1) = j(E2) = 1728 6= 0. Then they can be glued along the 2-torsion
if and only if Ei has at least one K-rational point of order two.

Proof We fix a model
E : y2z = x3 − Cz3

for both curves, where C = c3 ∈ K for some c ∈ K \ {0}. Let ζ be a primitive
third root of unity. Then the automorphisms of E[2] given by

[x : y : z] 7→
[
ζix : y : z

]
, i ∈ {0, 1, 2}

fix no points of order two and are induced by automorphisms of E, whereas
automorphisms

[x : y : z] 7→
[ 1
ζic

x2 : y2 : z2
]
, i ∈ {0, 1, 2}

fix a single point of order two and are defined over K if and only if ζic ∈ K.

Proposition 1.8 Let E1 and E2 be two elliptic curves with j(E1) 6= j(E2).
Suppose that:

(1) Both curves have a K-rational point of order two;

(2) The product of their minimal discriminants is a square in K.

Then E1 and E2 can be glued over K along the 2-torsion.
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Proof First of all, suppose char(K) 6= 3 and choose two models

E1 : y2z = x3 +B1xz
2 + C1z

3,

E2 : y2z = x3 +B2xz
2 + C2z

3.

Let ri, si, ti ∈ K be the roots of x3 + Bix + Ci ∈ K[x], for i ∈ {1, 2}.
Then α : E1[2] ∼−→ E2[2] such that

[r1 : 0 : 1] 7→ [r2 : 0 : 1], [s1 : 0 : 1] 7→ [s2 : 0 : 1], [t1 : 0 : 1] 7→ [t2 : 0 : 1]

may be given as [x : y : z] 7→ [Ux2 + V xz +Wz2 : y2 : z2], where U, V,W ∈ K
are such that Ux2 + V x+W equals the polynomial

r2
x− s1
r1 − s1

x− t1
r1 − t1

+ s2
x− r1
s1 − r1

x− t1
s1 − t1

+ t2
x− r1
t1 − r1

x− s1
t1 − s1

.

Let Di = (ri−si)(si−ti)(ti−ri) and note that the assumption (2) is equivalent
to D = D1D2 ∈ K. A simple calculation gives

D1U = −r2s1 + r1s2 + r2t1 − s2t1 − r1t2 + s1t2,

D1V = r2s
2
1 − r2

1s2 − r2t
2
1 + s2t

2
1 + r2

1t2 − s2
1t2,

D1W = −r2s
2
1t1 + r2

1s2t1 + r2s1t
2
1 − r1s2t

2
1 − r2

1s1t2 + r1s
2
1t2.

The same elimination procedure from the previous proofs gives, among others,
the following equations

2D(3r2
1 +B1)U = 3(−12r3

1r
4
2 + 8r3

1B
2
2 + 6r4

2C1 − 4B2
2C1 − 30r3

1r2C2

+ 15r2C1C2 + r2D),
2D(3r2

1 +B1)V = 12r4
2B

2
1 − 8B2

1B12 − 54r1r
4
2C1 + 36r1B

2
2C1 + 30r2B

2
1C2

− 135r1r2C1C2 + 3r1r2D,

D(3r2
1 +B1)W = 12r5

1r
4
2 − 8r5

1B
2
2 + 12r2

1r
4
2C1 + 6r4

2B1C1

− 8r2
1B

2
2C1 − 4B1B

2
2C1 + 30r5

1r2C2 + 30r2
1r2C1C2

+ 15r2B1C1C2 + r2B1D.

Therefore U, V,W ∈ K if r1, r2, D ∈ K. An analogous argument yields the
same result for char(K) = 3.
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1.5.2 The Hesse pencil and the (3,3)-split case

In this subsection, we will assume thatK satisfies char(K) 6= 3 andK = K(ζ),
where ζ ∈ K denotes a primitive third root of unity, i.e. 1 + ζ + ζ2 = 0. The
one dimensional family of curves given by

E[λ:µ] : µ(x3 + y3 + z3) + λxyz = 0

for [λ : µ] ∈ P1 is called the Hesse pencil. Exactly four members of the pencil
are singular, namely the curves corresponding to [−3 : 1], [−3ζ : 1], [−3ζ2 : 1],
and [1 : 0]. We will also consider the family H, given by

Eλ : x3 + y3 + z3 + 3λxyz = 0, (1.37)

that we will refer to by the same name.

Any elliptic curve over K with K-rational 3-torsion admits a model of
the form (1.37) (see Lemma 1 in [Ar-Do], for example). With the excep-
tion of λ3 = −1, each λ ∈ K defines an elliptic curve Eλ, with the identity
element [1 : −1 : 0], that is isomorphic to the elliptic curve given by

Y 2Z = X3 − 3λ(λ3 − 8)XZ2 − 2(λ6 + 20λ3 − 8)Z3, (1.38)

via the following linear transformation:
X

Y

Z

 =


3λ2 3λ2 λ3 + 4

4(λ3 + 1)(ζ − ζ2) −4(λ3 + 1)(ζ − ζ2) 0
1 1 −λ



x

y

z

. (1.39)

Each of the four singular elements of H is a union of three lines, namely:

E∞ : xyz = 0,
E−1 : (x+ y + z)(ζx+ ζ2y + z)(ζ2x+ ζy + z) = 0,
E−ζ : (x+ ζy + z)(ζx+ y + z)(ζ2x+ ζ2y + z) = 0,
E−ζ2 : (x+ ζ2y + z)(ζ2x+ y + z)(ζx+ ζy + z) = 0.

Let F = µ(x3 + y3 + z3) + λxyz. Then the Hessian of E[λ:µ] is given by

det


∂F
∂2x

∂F
∂x∂y

∂F
∂x∂z

∂F
∂y∂x

∂F
∂2y

∂F
∂y∂z

∂F
∂z∂x

∂F
∂z∂y

∂F
∂2z

 = 3µλ2(x3 + y3 + z3)− (108µ3 + λ3)xyz.
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We note that this gives another element of H. Restricting to (1.37), the
Hessian of Eλ corresponds to the curve given by

x3 + y3 + z3 − λ3 + 4
λ2 xyz = 0 if λ 6= 0.

In case λ = 0, the Hessian corresponds to the three lines xyz = 0.

We assume from now on that λ3 6= −1 so that E = Eλ is an elliptic curve
with 0E = [1 : −1 : 0]. For P = [x : y : z] ∈ E one has

−P = [y : x : z],
2P = [y(x3 − z3) : x(z3 − y3) : z(y3 − x3)],
3P = [F1 : F2 : F3],

(1.40)

where

F1 = x6y3 + y6z3 + z6x3 − 3x3y3z3,

F2 = x6z3 + y6x3 + y3z6 − 3x3y3z3,

F3 = xyz(x6 + y6 + z6 − x3y3 − y3z3 − z3x3).

Also, for P1, P2 ∈ E with Pi = [xi : yi : zi] one has

P1 + P2 = [y2
1x2z2 − y2

2x1z1 : x2
1y2z2 − x2

2y1z1 : z2
1x2y2 − z2

2x1y1]. (1.41)

The curve E and its Hessian meet at nine points that are the flexes of E and
satisfy xyz = 0. These are the points of E[3] for every elliptic curve in the
pencil and the pencil consists precisely of the cubic curves that pass through
these nine points. It is easy to see that these nine points are given in the
following table.

[1 : 0 : −ζ] [1 : −ζ2 : 0] [0 : 1 : −ζ2]
[1 : 0 : −1] [1 : −1 : 0] [0 : 1 : −1]
[1 : 0 : −ζ2] [1 : −ζ : 0] [0 : 1 : −ζ]

Table 1.1: points of E[3] in the Hessian model

Letting S = [1 : 0 : −1], T = [−ζ : 1 : 0], and O = 0E , we choose a partic-
ular isomorphism η : E[3] ∼−→ (Z/3Z)2, setting S 7→ (1, 0) and T 7→ (0, 1).
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Hence Table 1.1 can be rewritten as:

S + T T 2S + T

S O 2S
S + 2T 2T 2S + 2T

∼=
(1, 1) (0, 1) (2, 1)
(1, 0) (0, 0) (2, 0)
(1, 2) (0, 2) (2, 2)

Table 1.2: Table 1.1 under the chosen isomorphism E[3] ∼= (Z/3Z)2

The Weil pairing on E[3] is completely determined by 〈S, T 〉, which we
find directly. Let P ∈ E(K) be any point such that 3P = S. By a direct
computation for a specific curve (e.g. P = [− 3√2ζ : 3√4ζ2 : 1] for λ = 1/2)
or by a Gröbner basis computation for the ideal (F1 + F3, F2) ⊂ K[x, y, z],
combined with the fact that [3][x : y : z] = [1 : 0 : −1] implies xyz 6= 0
and y 6= z, we obtain that x2z + y2x + z2y vanishes on {P + R | R ∈ E[3]}.
Since we already know that E[3] is determined by lines xyz = 0, we conclude
that

g = x2z + y2x+ z2y

xyz
∈ K(E)

is such that
div(g) =

∑
R∈E[3]

(P +R)−R,

and therefore
〈S, T 〉 = g(X + T )

g(X) = ζ

regardless of the choice of X ∈ E(K)\ (E[3]∪ tP (E[3])) (see III §8 in [AEC]).
It follows that

〈P1, P2〉 = ζdet(η(P1),η(P2)) for any P1, P2 ∈ E[3],

and we can interpret the Weil pairing on E[3] as the determinant map

det : Z/3Z× Z/3Z→ Z/3Z.

This correspondence is unique up to sign, i.e. up to multiplication by units
of Z/3Z; it could also be given as −det for a different choice of S and T .

We note that Aut(E[3]) ∼= GL2(Z/3Z), which is a group of order 48. Its
action on E[3], with respect to Table 1.1, is depicted in Figures 1.9 and 1.10.
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[ 1 0
0 1
] [ 2 0

0 2
] [ 1 0

1 1
] [ 1 0

2 1
]

[ 1 1
0 1
] [ 1 2

0 1
] [ 0 1

2 2
] [ 2 2

1 0
]

[ 2 1
2 0
] [ 0 2

1 2
] [ 0 1

2 0
] [ 0 2

1 0
]

[ 1 1
1 2
] [ 2 2

2 1
] [ 2 1

1 1
] [ 1 2

2 2
]

[ 2 0
1 2
] [ 2 0

2 2
] [ 2 1

0 2
] [ 2 2

0 2
]

[ 0 1
2 1
] [ 1 2

1 0
] [ 1 1

2 0
] [ 0 2

1 1
]

Figure 1.9: Normal subgroup SL2(Z/3Z)
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[ 0 1
1 0
] [ 0 2

2 0
] [ 1 1

1 0
] [ 2 1

1 0
]

[ 0 1
1 1
] [ 0 1

1 2
] [ 2 2

0 1
] [ 1 0

2 2
]

[ 2 0
2 1
] [ 1 2

0 2
] [ 2 0

0 1
] [ 1 0

0 2
]

[ 1 2
1 1
] [ 2 1

2 2
] [ 1 1

2 1
] [ 2 2

1 2
]

[ 1 2
2 0
] [ 2 2

2 0
] [ 0 2

2 1
] [ 0 2

2 2
]

[ 2 1
0 1
] [ 1 0

1 2
] [ 2 0

1 1
] [ 1 1

0 2
]

Figure 1.10: Coset [ 0 1
1 0
]SL2(Z/3Z)
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We recall some basic properties of these groups. We have SL2(Z/3Z) ∼= Q8oC3
with

Q8 = 〈−1, I, J | (−1)2 = 1, I2 = J2 = (IJ)2 = −1〉,
C3 = 〈G | G3 = 1〉.

Here −1 =
[ 2 0

0 2
]
and we can take, for example,

I =
[
0 1
2 0

]
, J =

[
1 1
1 2

]
, G =

[
1 0
1 1

]
.

Moreover, the group SL2(Z/3Z) is generated by I and G. The corresponding
isomorphisms are given by

−1 7→ [y : x : z]
I 7→ [ζ2x+ ζy + z : ζx+ ζ2y + z : x+ y + z]
J 7→ [ζx+ y + z : x+ ζy + z : ζx+ ζy + ζ2z]
G 7→ [x : y : ζz].

Therefore the elements of SL2(Z/3Z) correspond to automorphisms of E[3],
each of which is induced by an isomorphism (of elliptic curves) between E and
another element of H. This defines an action of SL2(Z/3Z) on H. Since we
have Aut(E) = {±1} for a generic Eλ ∈ H, each element of

PSL2(Z/3Z) = SL2(Z/3Z)/{±1} ∼= A4

corresponds to a pair of isomorphisms between E and a unique element of H
(exceptions being λ(λ3 − 8) = 0 and λ6 + 20λ3 − 8 = 0).

One can easily determine from (1.38) that the j-invariant of Eλ is

j(Eλ) = −27λ3(λ3 − 8)3

(λ3 + 1)3 . (1.42)

We can therefore conclude that j : H → P1 is 12-to-1, except above j = 0
and j = 1728, where it is 4-to-1 and 6-to-1, respectively. Every element of
{
λ, λζ, λζ2,

−λ+ 2
λ+ 1 ,

−λ+ 2
λ+ 1 ζ,

−λ+ 2
λ+ 1 ζ2,

−λ+ 2ζ
λ+ ζ

,
−λ+ 2ζ2

λ+ ζ2 ,
−ζλ+ 2
λ+ ζ2 ,

−ζ2λ+ 2
λ+ ζ

,
−λ+ 2ζ
ζ2λ+ 1 ,

−λ+ 2ζ2

ζλ+ 1

}

defines the same isomorphism class.
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The set {−1, I, J,G,H}, where H =
[ 0 1

1 0
]
, generates GL2(Z/3Z). It is

readily checked that H corresponds to the 3-torsion isomorphism [h1 : h2 : h3],
where

h1 = x(y2 + z2)ζ2 + y(x2 + z2)ζ + z(x2 + y2),
h2 = x(y2 + z2)ζ + y(x2 + z2)ζ2 + z(x2 + y2),
h3 = x(y2 + z2) + y(x2 + z2) + z(x2 + y2).

Therefore the anti-symplectic 3-torsion isomorphisms for curves in H are pre-
cisely those corresponding to the coset HSL2(Z/3Z) and they can be written
down explicitly.

We conclude by analysing a specific example.
Example 1.6 Suppose that we have 1 + 3λt2 + 2t3 = 0 for some t ∈ K, such
that (t3 − 1)(8t3 + 1) 6= 0. Then the elliptic curve

Eλ : x3 + y3 + z3 − 1 + 2t3
t2

xyz = 0

has a rational point [t : t : 1] of order two. Applying the isomorphism (1.39),
Vélu’s formula for 2-isogenies (and applying a suitable isomorphism), we ob-
tain as the image a curve that is given by a model of type (1.38) with the
parameter µ = (1− 4t3)/(3t). We omit the details and give only the final map

γ : Eλ → Eµ, [x : y : z] 7→ [f1(x, y, z) : f2(x, y, z) : f3(x, y, z)],

where

f1 = x(−2t2y2 − t2xy + t2x2 − yz + 2t3xz + tz2),
f2 = y(−2t2x2 − t2xy + t2y2 − xz + 2t3yz + tz2),
f3 = tz(x+ y + tz)(x+ y − 2tz).

Thus γ is an isogeny whose kernel is the cyclic group of order two that is
generated by the point [t : t : 1]. Restricting γ to the 3-torsion, we obtain
the isomorphism α : Eλ[3]→ Eµ[3] that corresponds to

[ 1 0
0 2
]
∈ GL2(Z/3Z). It

follows from the proof of Proposition 1.2 that J := (Eλ × Eµ)/Γα is isomorphic
to Eλ × Eµ.

Suppose that Eλ ∼= Eµ and suppose that
√
−2 ∈ K, extending K if neces-

sary. To determine the isomorphism classes of such curves, we may suppose,
without loss of generality, that λ = µ. This implies

0 = 4t4 − 2t3 − t− 1 = (t− 1)(2t+ 1)(2t2 + 1).
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Hence t = ±
√
−2
2 and λ = 2±

√
−2

3 . Both values of λ correspond to the same
isomorphism class since for each one, the other is given by −λ+2

λ+1 . Hence Eλ is
an elliptic curve defined over K = K(ζ,

√
−2), with j-invariant j(Eλ) = 8000

and with complex multiplication by Z[
√
−2].

We note that λ and µ satisfy

3λ2µ2 + λ3 + µ3 − 3λµ+ 2 = 0, (1.43)

describing a singular curve of genus zero.

We now consider the case α =
[ 1 0

0 2
]
in more generality. Let Eλ and Eµ

be two elliptic curves in H and let A and G respectively denote the images
of Eλ × Eµ and Γα in P8 under the Segre embedding

σ : ([x : y : z], [u : v : w]) 7→ [xu : xv : xw : yu : yv : yw : zu : zv : zw].

The identity element of A is OA = [1 : −1 : 0 : −1 : 1 : 0 : 0 : 0 : 0] and the
inversion morphism −1A is given as

[X1 : X2 : · · · : X9] 7→ [X5 : X4 : X6 : X2 : X1 : X3 : X8 : X7 : X9]. (1.44)

Lemma 1.20 Let W1 and W2 denote the set of (geometric) points of order
two on σ(Eλ × {0Eµ}) and the set of points of order two on σ({0Eλ} × Eµ),
respectively. Then any hyperplane section on A that is invariant under −1A
contains either W1 ∪W2 or its complement in A[2](K).

Proof The two eigenspaces of (1.44) are respectively generated by the sets

S1 = {X1 +X5, X2 +X4, X3 +X6, X7 +X8, X9},
S2 = {X1 −X5, X2 −X4, X3 −X6, X7 −X8}.

We find that A[2](K) consists of six points that are in the zero locus of the ideal
generated by S1 and ten points that are in the zero locus of the ideal generated
by S2. Since any linear form that is fixed by −1A is a linear combination of
the elements of exactly one of these two sets, we are done.

It is a fact that the translations by points of A[3] can be extended to
automorphisms of P8 and this is crucial to our analysis because there exist
algorithms (see [Ke-St]) that compute invariants of K[X1, . . . , X9], of a given
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degree, under an action by a finite matrix group. The computations involved
were done in Magma. The details are given in the Appendix.

We find that the vector space of degree 3 invariants (under the action of G)
is of dimension 21, with an explicitly given basis, while there are no invariants
of degree 1 or 2. We then use a Gröbner basis computation to reduce the
elements of this basis to elements of the coordinate ring of A and we find that
there are exactly 9 linearly independent ones, say F1, . . . , F9. Using another
Gröbner basis computation, we solve the equation

d1F1 + · · ·+ d9F9 − (c1X1 + · · ·+ c9X9)3 = 0

for c1, . . . , c9. The solution set has exactly nine points and they give us linear
forms that are invariant under the translations by points of G. In particular,
we find that the linear form X1 + X5 + X9 is the one that is also invariant
under −1A. Therefore we find the divisor D := ϕ∗(C) from Lemma 1.17
explicitly. Moreover, the divisor D does not contain OA and, as expected, the
remaining 8 divisors are obtained as translates of D by the points of A[3]/G.
Analogous results can be obtained for all choices of anti-symplectic α. We
summarize with the following proposition.
Proposition 1.9 Let n ≥ 3 be an odd integer, let E1 and E2 be two elliptic
curves, let Θ := E1 × {0E2} + {0E1} × E2, and let α : E1[n] → E2[n] be an
anti-symplectic isomorphism. Let D be the unique divisor on E1 × E2 that
is linearly equivalent to nΘ, invariant under the translations by points of Γα,
and invariant under −1E1×E2. Then (E1 × E2)/Γα is not a Jacobian if and
only if D contains a 2-torsion point of E1 × E2 that is not a point of order
two on E1 × {0E2} or a point of order two on {0E1} × E2.

Proof As before, let J and C respectively denote the images of E1 × E2
and D under the isogeny ϕ : E1 ×E2 → (E1 ×E2)/Γα. By Theorem 1.18, the
divisor C is either a curve of genus two or a sum of two elliptic curves that
meet in a rational 2-torsion point. Since −1J induces an involution ι on C,
we conclude that C(K) contains exactly six points fixed by ι if and only if it
is irreducible and that it contains exactly seven points fixed by ι if and only
if it is reducible. Since n is odd, the restriction of ϕ to the 2-torsion is an
isomorphism and there is exactly one geometric point of (E1 × E2)[2] above
each point of C(K) that is fixed by ι. Therefore D(K) cannot contain more
than seven 2-torsion points. Lemma 1.20 shows that D(K) contains at least
the six points of (E1[2] × {0E2} ∪ {0E1} × E2[2]) \ {0E1×E2} and the claim
follows.
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Chapter 1. Genus two curves with split Jacobians

Remark 1.20 If the divisor D can be given explicitly, the condition in Pro-
position 1.9 is not difficult to check. For n = 3, we can compute this divisor,
given the datum (Eλ, Eµ, α) as above. In particular, if α is given by

[ 1 0
0 2
]
with

respect to our choice of bases for Eλ[3] and Eµ[3], we find that (Eλ×Eµ)/Γα is
not a Jacobian if and only if (1.43) holds (see the Appendix for more details).
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Chapter 2

Heights on abelian varieties

In this chapter, we deal with the theory of heights on abelian varieties, using
mostly [Liu] and [DG] as references. Height functions lie at the heart of
some well known finiteness results in Diophantine geometry, some of which
are mentioned below. We begin by giving a short overview of the theory of
heights and recalling some prerequisites, without going into full detail.

From now on, unless stated otherwise, the base field K is assumed to be a
number field, although there are analogues for most of the statements when K
is the function field k(C) of a smooth curve C defined over a finite field k.
As before, we let K be an algebraic closure of K and we suppose that all
varieties and morphisms are defined over K unless stated otherwise. The ring
of integers of K will be denoted by OK .

Given a variety X, we are interested in functions

h : X(K)→ R≥0

that satisfy certain finiteness properties. In particular, given a bound B ∈ R,

#{P ∈ X(K) | h(P ) < B} (2.1)

should be finite. This finiteness property is a key component in proving, for
example, the Thue-Siegel-Roth theorem(s), the Mordell-Weil theorem, and the
Faltings’s theorem.
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Chapter 2. Heights on abelian varieties

2.1 Naive height in a projective space

Let P ∈ Pn(Q) and choose x0, x1, . . . , xn ∈ Z such that gcd(x0, x1, . . . xn) = 1
and P = [x0 : x1 : · · · : xn]. We define the naive height of the point P as

H(P ) := max {|x0|, |x1|, |x2|, . . . , |xn|} . (2.2)

For any a/b ∈ Q with gcd(a, b) = 1, we define H(a/b) := H([a : b]). The
finiteness condition (2.1) is obviously satisfied for H. This simple function
features in the classical Diophantine theorems, e.g. the approximation the-
orems of Dirichlet and Liouville, and Roth’s theorem (see [DA]). When the
number of points in a subset of Pn(Q) is not known to be finite, the asymp-
totic behaviour of a point counting function is an arithmetic datum that is
of interest. For example, the behaviour of the point counting function of Pn
is well understood (see Schanuel’s Theorem, [III, §5] in [Lang1] for a general
statement and proof).

As a motivation for the general theory of this chapter, we consider an
explicit example. Let E/Q be an elliptic curve given by

y2z = x3 − xz2 + z3

and let P = [1 : −1 : 1]. The points [n]P for n ∈ {1, 2, . . . , 26} are listed in
Figure 2.1. The parabolic shape formed by the digits would seem to suggest
that the number of digits required to write [n]P increases quadratically with n.
This is formalized in the following sections.

2.2 More general height functions

It is natural to extend the notion of a height to all number fields. Let K be
a number field of degree [K : Q] = d = r1 + 2r2 and let MK denote the set of
places of K. Recall that MK = M0

K ∪M∞K , where

M0
K = {maximal ideals of OK},

M∞K = {σ1, . . . , σr1 , τ1, . . . , τr2},

and σi : K ↪→ R and τj , τ j : K ↪→ C are the real and the complex embeddings
of K, respectively.
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2.2. More general height functions

[1 : −1 : 1]
[1 : 1 : −1]
[0 : 1 : 1]
[3 : 5 : 1]
[5 : −11 : 1]
[2 : −7 : 8]
[−33 : 17 : 27]
[95 : 103 : 125]
[56 : 419 : 1]
[1749 : −1861 : 1331]
[−4845 : −7981 : 6859]
[−6244 : 24655 : 21952]
[300245 : 399083 : 148877]
[1338189 : −4231459 : 132651]
[5232472 : −8824453 : 11089567]
[−180611015 : 13919407 : 136590875]
[1441793001 : 2068194649 : 2633789341]
[8246188998 : 30795303833 : 588480472]
[516748560445 : −640700244397 : 289723287113]
[−3375972447067 : −9902960463475 : 8578614947111]
[−51055373209680 : 101098481076377 : 85923747076383]
[5084973401787721 : 5668823512883159 : 3486845747330119]
[51706401333034393 : −284766785698664807 : 1702936561884713]
[1796402375990961480 : −2098030206970736191 : 2631958890650432000]
[−165839455909553978217 : −58989499830306034583 : 130151721705221306663]
[3141659240481142325561 : 7943031662998736010841 : 9462748411719641574199]

Figure 2.1: Positive integer multiples of [1 : −1 : 0] on E : y2 = x3 − x+ 1
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Chapter 2. Heights on abelian varieties

For v ∈MK , one defines the corresponding absolute value as

| · |v : K → R≥0, |x|v =
{
p−ordp(x)/ep if v is a maximal ideal p ⊂ OK ,
|σ(x)| if v is an embedding σ ∈M∞K ,

where ep = ordp(p) is the ramification index of p in K and | · | is the usual
archimedean absolute value on C. By convention, we set |0|v = 0. These
absolute values are extensions of the usual (p-adic and archimedean) absolute
values on Q and they are unique, up to equivalence1, as is the case with the
absolute values on Q (a theorem of Ostrowski). If L/K is a field extension
and w ∈ML and v ∈MK are such that the restriction of | · |w to K equals | · |v,
we say that w divides v (or lies above v) and write w|v.

To extend our definition of a height, it is necessary to first normalize
the absolute values so that the Product Formula holds. To that end, for
any v ∈ MK , let Kv denote the completion of K with respect to | · |v. We
define the local degree of v to be nv := [Kv : Qv] and we define the normalized
absolute value associated to v as

||x||v := |x|nvv .

Equivalently, for a prime ideal p ⊂ OK above p ∈ Z, we have

||x||p = (NK/Q(p))−ordp(x) = p−ordp(x)fp (for x 6= 0),

where fp is the residue degree of p, and for an embedding σ ∈M∞K we have

||x||σ =
{
|σ(x)| if σ is real,
|σ(x)|2 if σ is complex.

Definition 2.1 Let P = [x0 : x1 : · · · : xn] ∈ Pn(K) with xi ∈ K. The relative
height function HK : Pn(K)→ R≥1 is given by

HK(P ) =
∏

v∈MK

max{||x0||v, ||x1||v, . . . , ||xn||v}.

That this is well defined (independent of the choice of homogeneous co-
ordinates for P ) follows from the following theorem.

1 Two norms are called equivalent if they define the same topology.
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2.2. More general height functions

Theorem 2.1 (Product Formula) Let K be a number field and let x ∈ K\{0}.
Then ∏

v∈MK

||x||v = 1.

Proof This is obvious for K = Q. The general case follows from the so called
Degree Formula for number field extensions L/K:

[L : K] =
∑

w∈ML
w|v

[Lw : Kv] for every v ∈MK (2.3)

(see Theorem 2 and its Corollaries in Chapter II of [Lang2]).

One can show, using the Degree Formula (2.3), that if L/K is an extension
of number fields and P ∈ Pn(K), then

HL(P ) = HK(P )[L:K].

This leads to a new definition of a height function that is independent of the
underlying field.

Definition 2.2 Let P = [x0 : x1 : · · · : xn] ∈ Pn(Q). The absolute height
function is the function

H : Pn(Q)→ R≥1, H(P ) := HK(P )1/[K:Q]

for any K such that P ∈ Pn(K). As before, one defines the relative (resp.
absolute) height of a ∈ K to be the relative (resp. absolute) height of the
point [a : 1] ∈ P1(K).

Note that this definition of H is reduced to (2.2) when K = Q. Being
independent of the field, the absolute height is Galois invariant.

Proposition 2.1 For every P ∈ Pn(Q) and every σ ∈ Gal(Q/Q), one has

H(P ) = H(σ(P )).

Proof Let K = Q(P ). Since σ restricts to an isomorphism K
∼−→ σ(K),

it induces a bijection between MK and Mσ(K), where σ(v) is defined by the
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Chapter 2. Heights on abelian varieties

equality |x|v = |σ(v)|σ(v). Moreover, one has [kv : Qv] = [σ(K)σ(v) : Qv]
since σ induces an isomorphism on completions, and therefore∏

v∈MK

max
i
{|xi|nvv } =

∏
w∈Mσ(K)

max
i
{|σ(xi)|nww }

and the claim follows.

The absolute height satisfies several very useful properties that are outlined
in the remaining statements of this subsection.

Theorem 2.2 (Northcott) For any D,B > 0, the set

{P ∈ Pn(Q) | H(P ) ≤ B and [Q(P ) : Q] ≤ D}

is finite.

Proof For P = [x0 : x1 : · · · : xn] ∈ Pn(Q) one has H(P ) ≥ H(xi) ≥ 1, so it
suffices to prove the case n = 1 for all 1 ≤ d ≤ D. For any x ∈ Q of degree d,
the Galois conjugates of x have the same height as x, by Proposition 2.1.
Therefore the bound H(x) ≤ B implies a bound, in terms of B and d, on the
height of the coefficients of the minimal polynomial Fx ∈ Q[T ] of x. Since
there are finitely many points of bounded height in Pd(Q) and Fx has rational
coefficients, there are finitely many possibilities for Fx and therefore for x. See
the proof of Theorem B.2.3 in [DG] for the precise bound.

Let X be a projective variety over the number field K. If φ : X ↪→ Pn is an
embedding, one is tempted to define the height of a point P ∈ X as H(φ(P )).
However, height functions defined so far are not stable under embeddings;
composing φ with an automorphism of Pn or an embedding Pn ↪→ Pm may
give different values for H. For example, we have the following

Lemma 2.3 Let P ∈ Pn(K) and Q ∈ Pm(K). Let d ∈ N and let N =
(d+n
n

)
.

Let φd denote the d-uple embedding, given as

φd : Pn → PN , [x0 : · · · : xn] 7→ [M1 : · · · : MN ],

where the Mi are the monomials of degree d in x0, . . . , xn, and let Sm,n denote
the Segre embedding, given as

Sm,n : Pm × Pn → P(m+1)(n+1)−1, ([xi], [yj ]) 7→ [xiyj ].
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2.3. Heights on varieties

Then the following two equalities hold:

H(φd(P )) = H(P )d,
H(Sm,n(P,Q)) = H(P )H(Q).

(2.4)

Proof This follows immediately from the definitions.

In general, the absolute height does not behave as nicely under morphisms
(or, more generally, rational maps). However, its “bad behaviour” is bounded
and this is the key property that allows us to proceed in our endeavor.

Theorem 2.4 Let φ : Pn → Pm be a rational map of degree d, given as

x = [x0 : x1 : · · · : xn] 7→ [F0(x) : F1(x) : · · · : Fm(x)],

where degFi = d for every i = 0, . . . ,m. Let Z = ∩mi=0Z(Fi) be the zero locus
of the Fi. Then the following hold:

(1) There is a constant c1 = c1(φ) > 0 such that for all P ∈ Pn(Q) \ Z, we
have

H(φ(P )) ≤ c1H(P )d;

(2) If X is a subvariety of Pn such that X ∩Z = ∅, so that φ : X → Pm is a
morphism, then there exists a constant c2 = c2(φ) > 0 such that for all
P ∈ X(Q), we have

H(φ(P )) ≥ c2H(P )d.

Proof See Theorem B.2.5 in [DG].

Remark 2.1 The constants do not depend on the point P and are effective.
The constant c is obtained directly by the triangle inequality, while obtaining
the constant c′ requires an application of an effective version of the Nullstellen-
satz. In general, the opposite inequality does not hold in (1).

2.3 Heights on varieties

For convenience, we introduce the (absolute) logarithmic height

h : Pn(Q)→ R≥0, h(P ) = logH(P ).
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Chapter 2. Heights on abelian varieties

We call H the multiplicative height. We will omit these adjectives and refer to
them simply as heights when the context makes it clear what we are referring
to.

Let X be a projective variety and let φ : X → Pn be a morphism (not
necessarily an embedding), all defined over Q. We refer to the function

hφ : X(Q)→ R≥0, hφ(P ) = h(φ(P ))

as the height on X relative to φ.

If φ : Pn → Pm is a morphism of degree d, Theorem 2.4 gives

hφ(P ) = dh(P ) +O(1).

Since deg φ = d, one has φ∗O(1) = O(d), which leads to the following gener-
alization of Theorem 2.4.

Theorem 2.5 Let X be a projective variety over Q and let φ : X → Pn
and ψ : X → Pm be morphisms (over Q) such that φ∗O(1) = ψ∗O(1). Then

hφ(P ) = hψ(P ) +O(1)

holds for every P ∈ X(Q). The constant depends on X, φ, and ψ, but not
on P .

Proof Let L = φ∗O(1) = ψ∗O(1) and choose a basis {s0, . . . , sN} for
the Q-vector space H0(X,L ). There are linear combinations

fi =
N∑
j=0

aijsj for i = 0, . . . , n

gi =
N∑
j=0

bijsj for i = 0, . . . ,m

such that φ = [f0 : f1 : · · · : fn] and ψ = [g0 : g1 : · · · : gm]. Let

γ = [s0 : s1 : · · · : sN ] : X → PN

be a morphism associated to L and let α : PN → Pn and β : PN → Pm be the
linear maps determined by the matrices (aij) and (bij), respectively. Then the
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2.3. Heights on varieties

following diagram is commutative:

X

Pn PN Pm
φ

γ
ψ

α

β

Applying Theorem 2.4 to α and β gives

h(α(Q)) = h(Q) +O(1),
h(β(Q)) = h(Q) +O(1)

for every Q ∈ γ(X(Q)). Hence for every P ∈ X(Q) we have

h(φ(P )) = h(α(γ(P ))) = h(γ(P )) +O(1)
= h(β(γ(P ))) +O(1) = h(ψ(P )) +O(1)

and we are done.

The preceding theorem is the first step in constructing the so-called Weil
Height Machine.

Let X be a projective variety over K and let φ : X ↪→ Pn be an embed-
ding. Then L = φ∗O(1) ∈ Pic(X) is a very ample line bundle. Conversely,
if L ∈ Pic(X) is a very ample line bundle, we can choose a basis {s0, . . . , sn}
of the space H0(X,L ) of the global sections and define

φL ,s0,...,sn : X → Pn, x 7→ [s0(x) : · · · : sn(x)].

This map depends on the choice of the basis and is uniquely defined up
to Aut(Pn). Theorem 2.5 implies that, modulo a bounded function, we may
define a height function associated to L , namely hL = h ◦ φL , because it
does not depend on the choice of a morphism (that is, the choice of sec-
tions), up to O(1). If L1,L2 ∈ Pic(X) are two very ample line bundles
and φLi

: X → Pni for i = 1, 2 are two associated morphisms, we can compose
their product with the Segre embedding and obtain a morphism

φL1 ⊗ φL2 : P 7→ Sn1,n2(φL1(P ), φL2(P )) (2.5)

that corresponds to the line bundle L1 ⊗ L2, since S∗n1,n2(O(1)) = O(1, 1).
The following classical result of algebraic geometry allows us to extend this
definition of a height to arbitrary line bundles.
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Chapter 2. Heights on abelian varieties

Lemma 2.6 Let X be a projective Noetherian scheme. Then for every line
bundle L there exist very ample line bundles L1,L2 such that L = L1⊗L −1

2 .

Proof Recall that, by a theorem of Serre (see II.5.17 in [HAG]), there exists
a positive integer n such that L (n) = L ⊗ O(n) is ample. Therefore, for
all sufficiently large integers m, the line bundle L ⊗m⊗O(mn) is very ample.
Since O(n) is very ample, we have

L = (L ⊗O(n))m+1 ⊗ (Lm ⊗O(mn+ n))−1

and we are done.

We may now associate a height to any line bundle.

Definition 2.3 Let X be a projective variety over K and let L = L1⊗L −1
2 ,

with L1,L2 ∈ Pic(X) very ample. The Weil height associated to L is the
function

hL : X(K)→ R, hL = h1 ◦ φL1 − h2 ◦ φL2 , (2.6)

where h1 and h2 are the logarithmic heights on the corresponding projective
spaces.

The height hL is well defined up to a bounded function (by Theorem 2.5);
it does not depend on the decomposition of L . The Weil height has some
very useful properties, all up to a bounded function, as summarized in the
following theorem (see Theorem B.3.2 in [DG], where the statement is given
in terms of divisors).

Theorem 2.7 Let X be a projective variety over the number field K. For
any line bundle L ∈ Pic(X), the Weil height function hL has the following
properties:

(1) For X = Pn, the function hO(1) : Pn(K) → R “extends” the absolute
logarithmic height, that is

hO(1)(P ) = h(P ) +O(1) for all P ∈ Pn(K)

(2) (additivity) Let L ,M ∈ Pic(X). Then

hL⊗M (P ) = hL (P ) + hM (P ) +O(1) for all P ∈ X(K).
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2.3. Heights on varieties

(3) (functoriality) Let ϕ : X → Y be a morphism of projective varieties
over K and let L ∈ Pic(Y ). Then

hϕ∗L (P ) = hL (ϕ(P )) +O(1).

(4) (positivity) Suppose L ∈ Pic(X) is effective, i.e. h0(X,L ) > 0, and
let B = ∩s∈H0(X,L )Z(s) be the base locus of L . Then

hL (P ) ≥ O(1) for all P ∈ (X \ B)(K).

(5) (finiteness) Let L ∈ Pic(X) be an ample line bundle and let L/K be a
finite number field extension. Then for every B > 0, the set

{P ∈ X(L) | hL (P ) ≤ B}

is finite.

Proof Property (1) follows immediately from the definition, using the height
function hO(1) = h ◦ φO(1), where φO(1) is taken to be the identity morphism.

Let L ,M ∈ Pic(X) be such that L = L1 ⊗L −1
2 and M = M1 ⊗M−1

2
for some very ample Li,Mj ∈ Pic(X). Then L1⊗M1 and L2⊗M2 are very
ample and therefore for every P ∈ X(K) we have

hL⊗M (P ) = hL1⊗M2⊗(L2⊗M2)−1(P )
= hL1⊗M2(P )− hL2⊗M2(P ) +O(1)
= hL1(P ) + hM1(P )− hL2(P )− hM2(P ) +O(1)
= hL (P ) + hM (P ) +O(1)

The third equality follows by using (2.5) and Lemma 2.3, that together imply
additivity for very ample line bundles. We therefore have (2).

To prove functoriality (3), suppose that L = L1 ⊗L −1
2 ∈ Pic(X), where

the line bundles L1,L2 are very ample. Let φ1 ◦ ϕ and φ2 ◦ ϕ be two morph-
isms that are associated to ϕ∗L1 and ϕ∗L2, respectively. Then we have

hϕ∗L (P ) = hϕ∗L1(P )− hϕ∗L2(P ) +O(1)
= (h ◦ φ1 ◦ ϕ)(P )− (h ◦ φ2 ◦ ϕ)(P ) +O(1)
= (hL1 ◦ ϕ)(P )− (hL2 ◦ ϕ)(P ) +O(1)
= (hL ◦ ϕ)(P ) +O(1)

for every P ∈ X(K) and (3) follows.
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Now suppose that L = L1 ⊗ L −1
2 is effective with L1,L2 very ample.

Let {s0, . . . , sn} be a basis for H0(X,L2). Since L is effective, it follows that

si ∈ H0(X,L2 ⊗L ) = H0(X,L1) for each i.

We then extend this basis to a basis {s0, . . . , sn, sn+1, . . . sm} of H0(X,L1)
and define morphisms

φL1 = [s0 : · · · : sm] : X → Pm,
φL2 = [s0 : · · · : sn] : X → Pn.

Now, since L2 is base-point free, the base locus of L1 coincides with the base
locus B of L and for every P ∈ X(K) \ B, we have

hL (P ) = hL1(P )− hL2(P ) +O(1)
= h(φL1(P ))− h(φL1(P )) +O(1)
= h([s0(P ) : · · · : sm(P )])− h([s0(P ) : · · · : sn(P )]) +O(1)
≥ O(1) (since m ≥ n).

This establishes positivity (4).

To show finiteness (5), it suffices to consider the case of a very ample L
because if L is ample, then L ⊗m is very ample for some positive integer n and,
by additivity, we have hL⊗m = mhL +O(1). Suppose that L is very ample so
that φL : X ↪→ Pn is an embedding. Then we have hL (P ) = h(φL (P ))+O(1),
and property (5) follows by Theorem 2.2.

Remark 2.2 For each L ∈ Pic(X), the Weil height function hL is uniquely
determined, up to O(1), by properties (1), (2) and (3). In fact, it suffices to
restrict (3) to embeddings ϕ : X ↪→ Pn.

2.4 Canonical heights on abelian varieties

It is possible to further refine the Weil height. Under certain assumptions,
there exists a function in the same equivalence class (modulo bounded func-
tions) as a given Weil height function hL , that satisfies very nice properties,
as we will see below.
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Theorem 2.8 (Néron & Tate) Let X be a projective variety over K and
let L ∈ Pic(X). Suppose that φ : X → X is an endomorphism such that

φ∗L = L ⊗d for some d ∈ Z≥2.

Let φn = φ ◦ φ ◦ · · · ◦ φ denote the n-th self-composition of φ. Then the func-
tion ĥφ,L : X(K)→ R given by

ĥφ,L : P 7→ lim
n→∞

hL (φn(P ))
dn

(2.7)

is well defined and it is the unique function satisfying:

(1) ĥφ,L (P ) = hL (P ) +O(1);

(2) ĥφ,L (φ(P )) = dhL (P ).

We refer to ĥφ,L as the canonical height associated to L and φ.

Proof We show that the sequence

n 7→ hL (φn(P ))d−n (2.8)

is Cauchy and therefore convergent. Since φ∗L = L ⊗d, by assumption,
linearity of the Weil height implies

hL (φ(P )) = dhL (P ) +O(1) for every P ∈ X(K).

More precisely, there exists a constant C ≥ 0, independent of P , such that

|hL (φ(P ))− dhL (P )| ≤ C for every P ∈ X(K). (2.9)

Hence for any two positive integers m ≥ n, we have∣∣∣∣hL (φm(P ))
dm

− hL (φn(P ))
dn

∣∣∣∣ =
∣∣∣∣∣
m−1∑
i=n

1
di+1

(
hL (φi+1(P ))− dhL (φi(P ))

)∣∣∣∣∣
≤

m−1∑
i=n

1
di+1

∣∣∣hL (φi+1(P ))− dhL (φi(P ))
∣∣∣

≤
m−1∑
i=n

1
di+1C (applying (2.9))

= d−n − d−m

d− 1 C.

(2.10)
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The last expression converges to zero as m,n → ∞ and therefore (2.8) con-
verges and ĥφ,L is well defined. Now putting n = 0 and m → ∞ in (2.10)
gives (1), while property (2) follows directly from the definition (2.7). Given
two functions that satisfy both said properties, it follows that their difference
is bounded and satisfies property (2) and is therefore zero.

Theorem 2.8 allows us to associate a height function to a pair (A,L ) in a
canonical way. We first recall the following lemma.

Lemma 2.9 (Mumford’s Formula) Let A be an abelian variety over any field
and let n ∈ Z. Then for any L ∈ Pic(A), the map [n] : A→ A satisfies

[n]∗L = L
n2+n

2 ⊗ ([−1]∗L )
n2−n

2 .

In particular,

[n]∗L = L n2 if L is symmetric, i.e. if [−1]∗L = L ;
[n]∗L = L n if L is anti-symmetric, i.e. if [−1]∗L −1 = L .

Proof This ultimately follows from the Theorem of the Cube for abelian
varieties. See Corollary 6.6 in [Miln1].

The following statements describe the corresponding relations for heights.

Corollary 2.10 Let A be an abelian variety over the number field K and
let L ∈ Pic(A) be a symmetric line bundle on A. Then there is a unique
function ĥL : A(K) → R in the equivalence class of hL (modulo bounded
functions) that satisfies

ĥL ([m]P ) = m2ĥL (P ) for all m ∈ Z and all P ∈ A(K) (2.11)

Moreover, the function ĥL satisfies the parallelogram law. That is to say that
for all P,Q ∈ A(K) we have

ĥL (P +Q) + ĥL (P −Q) = 2ĥL (P ) + 2ĥL (Q). (2.12)

Proof Let ĥL : A(K)→ R be the function

ĥL : P 7→ lim
n→∞

1
4nhL ([2n]P ).
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Then equality in (2.11) follows immediately from the equality [m]∗L = Lm2

and Theorem 2.8. The same two also imply that for any integer m ≥ 2, we
have

ĥL ([m]P ) = m2ĥL (P ) +O(1) for any P ∈ A(K).

Note that the definition of ĥL uses the doubling map and does not depend
on m. Hence when dealing with ĥL (P ), we can always replace P by [2n]P
and divide by 4n. This gives

ĥL ([m]P ) = lim
n→∞

1
4nhL ([2nm]P )

= lim
n→∞

1
4nhL ([m2n]P )

= lim
n→∞

1
4n (m2hL ([2n]P ) +O(1))

= m2ĥL (P )

(2.13)

and (2.11) follows for any m. By Theorem 2.8, the function ĥL is unique and
independent of our initial choice of m = 2.

We recall that, again, it follows ultimately from the Theorem of the Cube
that [−1]∗L = L if and only if

s∗L ⊗ d∗L = (π∗1L )2 ⊗ (π∗2L )2, (2.14)

where s, d, π1, π2 : A× A→ A are the sum, the difference, and the projection
morphisms, respectively. Equation (2.14) implies the parallelogram law up
to O(1) for hL , and hence also for ĥL because they are in the same equivalence
class modulo bounded functions. Indeed, we have

ĥL (P +Q) + ĥL (P −Q) = 2ĥL (P ) + 2ĥL (Q) +O(1) for all P,Q ∈ A(K).

We can now replace P and Q by [2n]P and [2n]Q, respectively, divide by 4n
and let n → ∞. This yields (2.12) because the O(1) does not depend on P
and Q.

Remark 2.3 The parallelogram law implies that we can associate to ĥL a
bilinear pairing A(K)×A(K)→ R, called the canonical height pairing, defined
as

〈P,Q〉 = 1
2
(
ĥL (P +Q)− ĥL (P )− ĥL (Q)

)
, (2.15)

which together with (2.11), makes ĥL a quadratic form on A(K).
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Remark 2.4 It is possible to choose L ∈ Pic(A) that is ample and symmet-
ric and this is usually sufficient for applications. In this case, the canonical
height ĥL has the nice property that ĥL (P ) = 0 if and only if P ∈ A(K)
is a torsion point. Indeed, it is clear from (2.11) that ĥL sends torsion
points on A(K) to zero. On the other hand, suppose that ĥL (P ) = 0 for
some P ∈ A(K). Then for every n ∈ Z, we have

hL (nP ) = ĥL (nP ) +O(1) = n2ĥL (P ) +O(1) = O(1).

It follows that the Weil height is bounded on the set {P, 2P, 3P, . . . } and
therefore the set must be finite by Northcott’s Theorem.

There is an analogous result for anti-symmetric line bundles. In this case,
the canonical height is linear.

Corollary 2.11 Let A be an abelian variety over the number field K and
let L ∈ Pic(A) be an anti-symmetric line bundle on A. Then there is a unique
function ĥL : A(K) → R in the equivalence class of hL (modulo bounded
functions) that satisfies

ĥL (P +Q) = ĥL (P ) + ĥL (Q) for all P,Q ∈ A(K), (2.16)

and it is therefore a group homomorphism.

Proof Define ĥL : A(K)→ R to be the function

ĥL : P 7→ lim
n→∞

1
2nhL ([2n]P ).

The proof of linearity is now analogous to the proof of Corollary 2.10. Any two
homomorphisms A(K) → R whose difference is bounded must be equal be-
cause the image of their difference is a bounded and therefore trivial subgroup
of R. Hence (2.16) uniquely determines ĥL within its class.

Now we can extend the canonical height to arbitrary line bundles, but first
we recall a useful definition. Let G and H be two abelian groups, written
additively, and suppose that H is such that [2] : H → H is invertible. We say
that a function f : G→ H is quadratic if for all P,Q,R ∈ G, we have

f(P+Q+R)−f(P+Q)−f(P+R)−f(Q+R)+f(P )+f(Q)+f(R)−f(0) = 0.
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Theorem 2.12 Let A be an abelian variety and let L ∈ Pic(A) be a line
bundle on A. Then the following hold:

(1) There is a unique quadratic function ĥL : A(K)→ R in the equivalence
class of hL (modulo bounded functions) such that ĥL (0) = 0;

(2) For all L ,M ∈ Pic(A), we have ĥL⊗M = ĥL + ĥM ;

(3) For any morphism φ : B → A of abelian varieties, we have

ĥφ∗L = ĥL ◦ φ− ĥL (φ(0)).

We call ĥL the canonical height associated to L or the Néron-Tate height
associated to L .

Proof Let L1 = L ⊗ [−1]∗L and L2 = L ⊗ ([−1]∗L )−1. Then L1 is
symmetric and L2 is anti-symmetric. We can therefore define

ĥL := 1
2
(
ĥL1 + ĥL2

)
.

Most of the properties follow by arguments analogous to the ones in Corol-
laries 2.10 and 2.11. That ĥL = hL + O(1) is quadratic and ĥL (0) = 0 is
clear from the construction. Let h1 and h2 be two quadratic functions in the
class of hL that satisfy h1(0) = h2(0) = 0. Then f = h1 − h2 is a bounded
quadratic function and f(0) = 0. This implies that the associated bilinear
pairing A(K)×A(K)→ R given by

〈P,Q〉 = 1
2 (f(P +Q)− f(P )− f(Q) + f(0))

is also bounded and therefore identically zero, whence f(P+Q) = f(P )+f(Q).
This, along with the fact that f is bounded, implies that f is identically
zero, proving (1). Applying (1) to the function ĥL + ĥM = ĥL⊗M + O(1)
proves (2), while (3) follows from the fact that every morphism of abelian vari-
eties is a group homomorphism composed with a translation (see Corollary 2.2
in [Miln1]).
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2.5 Relation to intersection theory on arithmetic
surfaces

Let S be a Dedekind scheme, i.e. a normal, irreducible, locally Noetherian
scheme of dimension 0 or 1. Following the notations in [Liu], let η denote the
generic point of S and let s denote a closed point of S, with residue field k(s).
Let C be a smooth, projective, geometrically connected curve of genus g > 0
over the function field K(S) of S.

Definition 2.4 A model of C over S is a pair (C, f), where φ : C → S is an
integral, normal, projective, flat, Noetherian S-scheme of dimension 2 with
generic fibre Cη, and f : C ∼−→ Cη is an isomorphism.

We usually omit the isomorphism f from the notation and talk about a
model C, with the understanding that a particular isomorphism is fixed.

Definition 2.5 A fibre Cs is called the reduction of C at s. If C has a smooth
model over Spec(OS,s), it is said to have good reduction at s, otherwise it is
said to have bad reduction.

A morphism C → C′ of models is a morphism of S-schemes that respects
the isomorphisms Cη ∼= C and C′η ∼= C. We are particularly interested in
regular models. A regular model C → S, with S one-dimensional, is usually
called an arithmetic surface.

A regular model C is called relatively minimal if every proper birational
morphism C → C′ (as S-schemes), where C′ → S is a regular model of C, is
an isomorphism. It is called minimal if every birational map C′ 99K C is a
birational morphism. A minimal model is relatively minimal.

Theorem 2.13 With S and C/K(S) defined as above and with dimS = 1,
there exists a minimal regular model C → S of C.

Proof See 9.3.3 and its preceding sections in [Liu].

Concrete cases that we have in mind are S = Spec(R), where R is the ring
of integers of a valuated field k with a discrete valuation v, that is

R = {x ∈ k | v(x) ≥ 0}.
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Therefore, let k denote a field with a discrete valuation, let C denote a smooth,
projective, geometrically connected curve of genus g > 0 over k, and let C
denote the minimal regular model of C (over the corresponding Dedekind
scheme).

2.5.1 The non-archimedean case

Suppose k is a local non-archimedean field with a discrete valuation v. Let Ov
denote the ring of integers of k and let S = Spec(Ov). The residue field k(s)
at s will also be denoted by the conventional k(v).

For a prime divisor D ∈ Div(C), let D ∈ Div(C) denote the prime divisor
that is the Zariski closure of D in C and extend the association D 7→ D by
linearity. For any closed point x ∈ Cv and any two distinct prime divisorsD,E,
respectively defined locally at x by f, g ∈ OC,x, we define their intersection
multiplicity at x as

ix(D,E) := length(OC,x/(f, g)) (as an OC,x −module). (2.17)

This definition extends by linearity to all divisors D,E with no common com-
ponent. The total intersection multiplicity of D,E is defined as

iv(D,E) :=
∑
x

ix(D,E)[k(x) : k(v)],

where the sum is over closed points x ∈ Cv. We refer to the divisor

D · E :=
∑
x

ix(D,E)[x]

as the intersection of D and E. If D ·E is a single point with some multiplicity,
the multiplicity is sometimes also denoted by D · E.

We denote by Divv(C) the group freely generated by the (finitely many)
irreducible components of Cv.

Theorem 2.14 (Hriljac [Hri]) For every D ∈ Div0(C), there exists a di-
visor Φv(D) ∈ Divv(C)⊗Q such that D + Φv(D) is orthogonal to, i.e. it has
trivial intersection with, all elements of Divv(C).

This theorem provides justification for the following definition.
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Definition 2.6 Let D,E ∈ Div0(C) be two divisors with disjoint supports.
Then their local Néron symbol is defined as

〈D,E〉v := iv(D + Φv(D), E) log(#k(v)).

Proposition 2.2 The local Néron symbol is well defined and does not depend
on the choice of the regular model C or on the choice of the divisor Φv(D).

Proof See Theorem III.5.2 in [Lang2].

Let f ∈ k(C)× and let D = ∑
i niPi ∈ Div0(C) be coprime to (f). Then

we define
f(D) :=

∏
i

f(Pi)ni .

Theorem 2.15 Suppose C(k) is Zariski dense in C. Then for any pair of
divisors D,E ∈ Div0(C) with disjoint supports, one can define in a unique
way a real number 〈D,E〉v such that:

(1) The pairing is bilinear;

(2) The pairing is symmetric;

(3) If D = (f), then 〈D,E〉v = v ◦ f(E), where v(z) = − log ||z||v;

(4) Fix any P0 ∈ C(k)\ supp(D). Then the map C(k)\ supp(D)→ R given
by

P 7→ 〈D,P − P0〉v
is continuous and locally bounded.

Proof See Theorem III.5.1 in [Lang2].

Remark 2.5 Let k′/k be a field extension and let w ∈ Mk′ be an absolute
value dividing v. Then restricting 〈D,E〉w to k gives the symbol 〈D,E〉v
if D,E ∈ Div0(C(k)). Therefore, by taking an appropriate field extension,
one can drop the assumptions of k-rationality and Zariski density.

Lemma 2.16 Let ϕ : X → Y be a projective surjective morphism of arithmetic
surfaces. Let D ∈ Div(X) be a prime divisor and let E ∈ Div(Y ), such that D
is not contained in ϕ−1(supp(E)). Then

∑
x

ix(D,ϕ∗E)[k(x) : k(y)] =
{

0 if ϕ(D) is a point,
[k(D) : k(ϕ(D))]iy(ϕ(D), E) otherwise.
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Proof See Theorem III.4.1 in [Lang2] or Theorem 9.2.12 and its succeeding
remark in [Liu].

Corollary 2.17 (Projection Formula) With notations as in the preceding
lemma, we have

ϕ∗(D · ϕ∗E) = (ϕ∗D) · E.

2.5.2 The archimedean case

We will now deal with the local archimedean case and modify the definitions
accordingly. Since kv = C, we have that X := C(kv) is a compact connected
Riemann surface of genus g ≥ 1. In the archimedean setting, the definitions
are complex-analytic and it is the Arakelov-Green function that plays the role
of the intersection multiplicity defined by (2.17). We recall some necessary
prerequisites first.

Let Ω1
X denote the sheaf of holomorphic 1-forms on X . The holomorphic

differentials H0(X ,Ω1
X ) are a g-dimensional vector space, equipped with a

hermitian inner product:

〈ω, η〉 = i

(2π)2

∫
X
ω ∧ η. (2.18)

Let {ω1, . . . , ωn} be an orthonormal basis of H0(X ,Ω1
X ) with respect to (2.18).

Then one defines a canonical fundamental (1,1)-form µ as

µ := i

(2π)2g

g∑
j=1

ωj ∧ ωj , (2.19)

which does not depend on the choice of the basis.

Theorem 2.18 (Arakelov [Ara]) There exists a unique function

G : X × X → R≥0,

called the Arakelov-Green function, such that the following hold for all P ∈ X :

(1) For all Q ∈ X , the function logG(P,Q) is C∞ if Q 6= P ;

(2) Locally at P ∈ X , we have logG(P,Q) = log |z(Q)|+ f(Q), where z is a
local coordinate at P with z(P ) = 0 and f ∈ C∞(P );
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(3) For all Q ∈ X , we have ∂Q∂Q logG2(P,Q) = 2πiµ(Q) if Q 6= P ;

(4) For all Q ∈ X , we have
∫
X logG(P,Q)µ(Q) = 0.

It follows from the Theorem of Stokes that the Arakelov-Green function
is symmetric, i.e. for all P,Q ∈ X , we have G(P,Q) = G(Q,P ) if P 6= Q
(see [Falt1] for example).

For every D ∈ Div(X ), the Arakelov-Green function induces a Hermitian
metric on L (D). It suffices to consider the case of points P ∈ X as the general
case then follows by taking tensor products of line bundles. If P ∈ X , then
we define a smooth Hermitian metric on L (P ) as

||1||P : Q 7→ G(P,Q),

where 1 denotes the constant section of L (P ). We refer to a line bundle with
a smooth Hermitian metric as a metrized line bundle.

Let f be a non-zero meromorphic function on X and assume the standard
Hermitian metric on C. For a local coordinate z, we have

∂∂ log ||f(z)||2 = ∂∂ log(f(z)f(z))
= ∂∂(log f(z) + log f(z)) = 0

away from the zero-poles of f . Therefore if L is a metrized line bundle on X ,
with a metric || · ||, we can define its curvature, that is the following (1,1)-form:

curvL = 1
2πi∂∂ log(||s||2) = 1

2πi
∂2 log(||s||2)

∂z∂z
dz ∧ dz,

where s is a local generating section of L and z is a local coordinate. For
a line bundle L , a metric is called admissible if curvL with respect to the
metric is a multiple of the canonical fundamental form µ (recall (2.19)).

Example 2.1 The holomorphic cotangent bundle Ω1
X is metrizable with an

admissible metric. Let ∆ denote the diagonal on X × X . By the Adjunction
Formula (cf. [PAG] pp. 146–148), there is a canonical isomorphism

L (−∆)|∆
∼−→ Ω1

X . (2.20)

The line bundle L (∆) is metrizable by ||1||(P,Q) := G(P,Q). The Arakelov
metric || · ||Ar is the unique metric on Ω1

X that makes the isomorphism (2.20)
an isometry. It was proved by Arakelov in [Ara] that || · ||Ar is admissible.
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For D ∈ Div(X ) and P ∈ X , let G(D,P ) := ∏
Q∈DG(P,Q), taking multi-

plicities in D into account.

Theorem 2.19 (Analytic projection formula) Let X and X ′ be Riemann sur-
faces of genus one and let GX and GX ′ denote their Arakelov-Green func-
tions, respectively. Let ϕ : X → X ′ be a non-constant holomorphic map and
let D ∈ Div(X ′). Then the canonical isomorphism

ϕ∗L (D) ∼−→ L (ϕ∗D)

is an isometry and for any P ∈ X , we have

GX (ϕ∗D,P ) = GX ′(D,ϕ(P )).

Proof See Propositions 3.1 and 3.2 in [dJ].

Definition 2.7 Let D,E ∈ Div(X ) be two divisors with disjoint supports.
Then their local Néron symbol is defined as

〈D,E〉v := −εv logG(D,E),

where

εv =
{

1 if kv = R,

2 if kv = C.

Remark 2.6 Let f be a non-zero meromorphic function on the Riemann
surface X . Then for any point P /∈ div(f), we have

∂P ∂P logG2(div(f), P ) = 0

because div(f) ∈ Div0(X ). Outside div(f), we have ∂∂ log |f |2 = 0 since f is
holomorphic there. It follows that

G(div(f), P ) = ea|f(P )|

for some real number a, independent of P . Taking the logarithm and integ-
rating over X (with respect to µ), and using the fact

∫
X logG(P,Q)µ(Q) = 0,

one finds that
a = −

∫
X

log |f |µ.
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2.5.3 Adding the infinite places

Let K be a number field and let MK be its set of places. We denote by Kv

the v-adic completion of K at v and we denote by Ov the ring of integers
at v if v is a prime. Let X → Spec(OK) be an arithmetic surface whose
generic fibre is isomorphic to a smooth, projective, geometrically connected
curve over K, of positive genus.

Definition 2.8 An Arakelov divisor on X is a formal sum of a divisor
in Div(X) and a sum∑

σ ασXσ, where σ : K ↪→ C are the archimedean places,
ασ ∈ R, and Xσ = Xη⊗σC is a Riemann surface with the corresponding com-
plex structure. Arakelov divisors form a group, denoted by D̂iv(X). The Xσ

are referred to as the fibres of X at infinity.

For D ∈ D̂iv(X) we usually write D = Dfin + Dinf , where Dfin ∈ Div(X)
and Dinf = ∑

σ ασXσ.

Now let f be a non-zero rational function on X. We define the principal
Arakelov divisor associated to f as the sum

(f) = div(f) +
∑
σ

aσ(f)Xσ, (2.21)

where div(f) is the usual principal divisor of f and aσ(f) := −
∫
Xσ

log |f |σ µσ,
where µσ denotes the canonical form on Xσ, as defined above. We define two
divisors in D̂iv(X) to be linearly equivalent if their difference is a principal
Arakelov divisor and we denote the group of Arakelov divisors modulo linear
equivalence by Ĉl(X).

We are now ready to extend the definition of intersections and the Néron
pairing. Recall that a divisor D ∈ Div(X) is called vertical if its support is
contained in a fibre of the structure morphism X → Spec(OK), and that it is
called horizontal if the restriction of the structure morphism to D is surjective.
For D,E ∈ D̂iv(X) and v, v′ ∈M∞K we define:

(1) If D is vertical and E = Xv, then 〈D,E〉v = 0;

(2) If D is horizontal and E = Xv, then 〈D,E〉v = εv[K(D) : K];

(3) If D = Xv and E = Xv′ , then 〈D,E〉v = 0;

(4) If D,E are horizontal, then 〈D,E〉v = −εv logGσ(Dσ, Eσ).
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By linearity, this extends to a pairing D̂iv(X)× D̂iv(X)→ R as

〈D,E〉 =
∑
v∈MK

〈D,E〉v. (2.22)

Proposition 2.3 Let (f) ∈ D̂iv(X) be a principal divisor. Then for any
divisor D ∈ D̂iv(X), we have 〈(f), D〉 = 0.

Proof The only interesting case to prove is when D is a horizontal divisor
because the other cases follow directly from the definitions. We have

〈(f), D〉 = 〈div(f) +
∑
σ

aσXσ〉

=
∑
v∈M0

K

〈div(f), D〉v +
∑

v∈M∞K

εv〈div(f), D〉v +
∑

v∈M∞K

εvav

−
∑
v∈M0

K

log ||f(D)||v −
∑

v∈M∞K

log(eεvav ||f(Dv)||v) +
∑

v∈M∞K

εvav.

The middle sum follows from Remark 2.6. Now all the terms with av cancel
out and the remaining sum is zero by the product formula.

Theorem 2.20 ([Ara]) The pairing defined by (2.22) respects linear equival-
ence and therefore induces a canonical pairing Ĉl(X)× Ĉl(X)→ R.

A line bundle L on X is called admissible if its restrictions to Xσ are
metrized line bundles equipped with admissible metrics, as defined above. The
group of admissible line bundles modulo isomorphisms is denoted by P̂ic(X).

To every Arakelov divisor D = Dfin + Dinf , we associate the metrized
line bundle L (Dfin), equipped with e−av/εv || · ||, where || · || is the canonical
Hermitian metric, induced by (2.18). In fact, this association induces an
isomorphism on divisor classes.

Theorem 2.21 ([Ara]) There exists a canonical group isomorphism

Ĉl(X) ∼−→ P̂ic(X).

As we have already indicated, this allows one to define intersections of
(admissible) line bundles, which is an essential part of intersection theory (see
the papers of Arakelov and Faltings). Likewise, it allows us to define a new
notion of a degree of a (metrized) line bundle. We will return to these notions
and deal with specific cases in a slightly more general setting.
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2.5.4 Global Néron symbol

Recall the definition of C/K from the beginning of the section. For v ∈ MK

and D ∈ Div(C), we let Dv := D ⊗K Kv. If D,E ∈ Div0(C) are two divisors
with disjoint supports, then we define their local Néron symbol as

〈D,E〉v := 〈Dv, Ev〉v

and we define their global Néron symbol as the sum of the local symbols over
all places, i.e.

〈D,E〉 :=
∑
v∈MK

〈Dv, Ev〉v. (2.23)

Remark 2.7 The sum (2.23) has only finitely many non-zero terms. Recall
that C has only finitely many places of bad reduction (see 10.1.2 in [Liu]). For
any place v ∈M0

K of good reduction, the curve C extends to a smooth proper
model over Spec(Ov), for which Φv(Dv) = 0.

Remark 2.8 It follows from the previous subsection that the global Néron
pairing depends only on linear equivalence classes of the divisors. We can
therefore define the bilinear, symmetric Néron pairing

〈·, ·〉 : Pic0(C)(K)× Pic0(C)(K)→ R. (2.24)

Since Pic0(C) ∼= Jac(C) can be equipped with the structure of an abelian
variety, the following theorem, although not obvious, is not entirely surprising.

Theorem 2.22 ([Falt1], [Hri]) Let Θ be a symmetric theta divisor on Jac(C)
and let M = L (Θ). Let D,E ∈ Div0(C) and let [D], [E] ∈ Pic0(C) denote
their linear equivalence classes, respectively. Then

1
[K : Q]〈D,E〉 = −1

2
(
ĥM ([D] + [E])− ĥM ([D])− ĥM ([E])

)
.

Proof See §5 in [Lang2].

Remark 2.9 This result has been successfully used in computing and es-
timating heights of points on Jacobians of curves (see, for example, [Holm]
and [Müll] and references therein).
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2.6 The Mordell-Weil group

Let A/K be an abelian variety (over the number field K). The following
theorem is a classical result, first proved for elliptic curves over Q by Mordell
and later generalized by Weil to Jacobians over number fields.

Theorem 2.23 (Mordell-Weil) The group A(K) of K-rational points of A is
a finitely generated abelian group.

Proof See Part C of [DG].

The proof is based on first proving the so-called Weak Mordell-Weil The-
orem, i.e. that for an integer m ≥ 2, the quotient A(K)/mA(K) is finite, and
then applying the following lemma (see Lemma C.0.3 in [DG]).

Lemma 2.24 Let G be an abelian group that is equipped with a quadratic
form q : G→ R such that for any c > 0, the set {x ∈ G | q(x) < c} is
finite. Suppose that for some integer m ≥ 2, the group G/mG is finite and
let {y1, . . . , yn} ⊆ G be a set of representatives of the cosets in G/mG. Then
the group G is finitely generated by the finite set {x ∈ G | q(x) < maxi q(yi)}.

The lemma is applied to A(K) with the quadratic form ĥL for some sym-
metric ample line bundle L . Establishing that A(K)/mA(K) is finite involves
constructing a short exact sequence of groups

0→ A(K)/mA(K)→ Sel(m)(A/K)→X(A/K)[m]→ 0, (2.25)

where the group Sel(m)(A/K) is shown to be finite. We will discuss these
groups in more detail in the next section.

It follows from Theorem 2.23 that A(K) = ZP1 ⊕ · · · ⊕ ZPr ⊕ A(K)tors
for some non-zero P1, . . . Pr ∈ A(K), where A(K)tors is a finite abelian group.
The integer r is called the rank of A over K. It is a relatively easy task
to determine A(K)tors for a particular variety A. For example, if v ∈ M0

K

is a place of good reduction and m ≥ 1 is an integer that is not divisible
by char(k(v)), then the reduction morphism A[m](K) → A(k(v)) is injective
(see Theorem C.1.4 in [DG]). Then choosing two places v, w of good reduction
such that the characteristics of the residue fields k(v), k(w) are coprime, yields
an embedding

A(K)tors ↪→ A(k(v))×A(k(w)).
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In particular, the torsion subgroup of A(K) is finite and it can be determined.
There are also general results for elliptic curves (theorems of Mazur, Kamienny,
and Merel; see Theorem F.4.1.1 in [DG]). It is conjectured2 that for all abelian
varieties of dimension g ≥ 1 over K, there exists a constant c = c(g,K)
such that #A(K)tors ≤ c. However, computing the rank of A(K) or a set
of generators is considerably more difficult, to say the least. Only finitely
many cases are known, over Q and some number fields, with results achieved
using algorithms based on modularity (see Cremona [Cre] and the [LMFDB]
database).

If one could a priori bound the projective height of a set of generators,
one could obtain the generators by an exhaustive search of points of bounded
height. In view of Lemma 2.24, one could find a set of generators for the
group A(K)/A(K)tors if one could find a set of representatives for cosets
of A(K)/mA(K) for some m ≥ 2. However, there is currently no known
algorithm that accomplishes the latter. We sketch briefly the only known
approach.

Let L be a symmetric ample line bundle on A. Then A(K) is equipped
with a positive definite quadratic form ĥ = ĥL : A(K) → R, and a corres-
ponding bilinear symmetric pairing 〈·, ·〉 : A(K) × A(K) → R (recall (2.15)).
Tensoring with R, we obtain an induced pairing which makes A(K)⊗R ∼= Rr

a euclidean space. For P ∈ A(K) ⊗ R, let |P | :=
√
〈P, P 〉. We now have

a lattice in a euclidean space and we can use the following classical result of
Hermite.

Theorem 2.25 Let V be a real vector space of dimension r, equipped with a
euclidean norm | · |, and let Λ ⊂ V be a lattice. Let Vol(Λ) denote the volume
of a fundamental domain of Λ. Then there exists a basis u1, . . . , ur of Λ such
that

Vol(Λ) ≤ |u1| · · · |ur| ≤
(4

3

)r(r−1)/2
Vol(Λ), (2.26)

where |u1| ≤ |u2| ≤ · · · ≤ |ur| with |u1| = min
x∈Λ,x 6=0

|x|.

Proof The first inequality is a classical result in linear algebra, known as
Hadamard’s inequality. For the proof of the second inequality, see Theorem 7.7
and its corollary in [Lang1].

2 This is known as the (Weak) Torsion Conjecture.
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If {P1, . . . , Pr} is a Z-basis of A(K)/A(K)tors, the real number

Reg(A/K) := | det(〈Pi, Pj〉)|, 1 ≤ i, j ≤ r

is called the regulator of A over K. In view of the preceding theorem, there
exists a constant c > 0 and a basis P1, . . . , Pr for A(K)/A(K)tors such that

Reg(A/K) ≤ ĥ(P1) · · · ĥ(Pr) ≤ cr
2Reg(A/K),

where P1 ∈ A(K) is a non-torsion point of minimal height and the Pi are
indexed so that ĥ(P1) ≤ · · · ≤ ĥ(Pr). It therefore follows that

ĥ(Pr) ≤ cr
2 Reg(A/K)
ĥ(P1)r−1

.

Therefore, an upper bound for the height of the Pi can be obtained by first
obtaining a lower bound for the minimal height of non-torsion points and an
upper bound for the regulator. There are some results known about the former,
but the latter is conjectural; it is based on the famous Birch and Swinnerton-
Dyer Conjecture, that links the regulator (and the size of the Tate-Šafarevič
group) to coefficients in the expansion of a certain L-series.

Remark 2.10 As we mentioned in Chapter 1, discussing a specific case, if L
is an ample line bundle on an abelian variety A, we can associate to it a
polarization

λL : A→ A∨, P 7→ t∗PL ⊗L −1.

If (A, λL ) is an abelian variety with a fixed polarization λL , we sometimes
omit the L from the notation and write ĥ for ĥL . However, if (A, λ) is a
principally polarized abelian variety, there is what may be called a canon-
ical way of choosing a line bundle for the purpose of introducing heights,
the regulator, etc, namely via the Poincaré line bundle P on A × A∨ (see
Remark 9.3 in [Miln1]). Then all heights on A can be obtained from the
canonical height ĥP on A×A∨. In particular, if L is symmetric, then

2ĥL (P ) = ĥP(P, λL (P )).

In general we need not have a principal polarization on A. However, a trick of
Zarhin (see Remark 16.12 in loc. cit.) guarantees that (A×A∨)4 is principally
polarized.
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2.7 The Selmer group and the Tate-Šafarevič group

In this section, we give only a brief overview of the Galois cohomology defin-
itions required to introduce these groups and we sketch a proof of the finite-
ness of the Selmer group. For the full proof of the Mordell-Weil theorem, see
Part C of [DG]. A simple introduction to group cohomology can be found in
Appendix B of [AEC] and more details can be found in [At-Wa].

Let G be a profinite group acting on an abelian group M , with action
denoted by σ : x 7→ xσ for σ ∈ G and x ∈M . We call M a G-module if

x1 = x, (x+ y)σ = xσ + yσ, (xσ)τ = xστ

for every x, y ∈ M and σ, τ ∈ G. A homomorphism of G-modules is a group
homomorphism that commutes with the action of G.

The 0-th cohomology group associated to the action of G on M is the
subgroup of G-invariant elements of M , that is

H0(G,M) := {x ∈M | xσ = x for all σ ∈ G}.

A map φ : G→M is called a cocycle if it satisfies

φ(στ) = φ(σ)τ + φ(τ) for all σ, τ ∈ G.

Note how this differs from a homomorphism (unless the action of G is trivial).
We define the sum of two cocycles φ1, φ2 to be the map given by

(φ1 + φ2)(σ) = φ1(σ) + φ2(σ),

which is also a cocycle sinceM is abelian. Thus cocycles form a group, denoted
by Z1(G,M).

A map δ : G→M is called a coboundary if it satisfies

δ(σ) = xσ − x for some x ∈M.

Every coboundary is a cocycle and the sum of two coboundaries is again
a coboundary so they form a subgroup B1(G,M) ⊂ Z1(G,M). The first
cohomology group associated to the action of G on M is then defined as the
quotient

H1(G,M) := Z1(G,M)/B1(G,M).
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Remark 2.11 The first cohomology group is functorial. A continuous ho-
momorphism f : G → G′ induces a homomorphism H1(G′,M)→ H1(G,M)
via [φ] 7→ [φ ◦ f ]. Likewise, if f : M → M ′ is a G-homomorphism, it induces a
homomorphism H1(G,M)→ H1(G,M ′) via [φ] 7→ [f ◦ φ].

The case of particular interest to us is that of absolute Galois action on
a subgroup M of an abelian variety, with the additional condition that all
cocycles are continuous maps if M is equipped with the discrete topology.

Let m ≥ 2 be an integer, let GK := Gal(K/K), and let A/K be an abelian
variety. Let x ∈ A(K) be a K-rational point and let y ∈ A(K) be any point
such that [m]y = x. The map

κy : G→ A[m], σ 7→ yσ − y

is a cocycle in H1(GK , A[m]), satisfying κy(στ) = κy(σ)τ +κy(τ). If z ∈ A(K)
is also a point such that [m]z = x, then let w = z − y. For every σ ∈ GK we
have

κy(σ)− κz(σ) = (zσ − z)− (yσ − y) = (z − y)σ − (z − y) = wσ − w.

Noting that w ∈ A[m], we conclude that κy − κz is a coboundary. It follows
that we can associate a well-defined class in H1(GK , A[m]) to every x ∈ A(K).

Remark 2.12 If A[m] is fully K-rational, then the map defined above gives
rise to what is called the Kummer pairing

κ : GK ×A(K)→ A[m], (σ, x) 7→ yσ − y,

where y ∈ A(K) is such that [m]y = x. It is analogous to the classical Kummer
pairing for number fields (cf. [ANT1]), namely

κ : GK ×K× → µm, (σ, x) 7→ σ(y)/y,

where y = m
√
x and a primitive m-th root of unity ζm is assumed to be in K.

More generally, we have the following theorem for any isogeny.

Theorem 2.26 Let ϕ : A → B be an isogeny of abelian varieties over K.
Then the short exact sequence

0 −→ Ker(ϕ) ↪→ A(K) ϕ−→ B(K) −→ 0
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induces a long exact sequence

0 Ker(ϕ)(K) A(K) B(K)

H1(GK ,Ker(ϕ)) H1(GK , A(K)) H1(GK , B(K)),

ϕ

ϕ ◦
δ

where the homomorphism δ : B(K) → H1(GK ,Ker(ϕ)) is defined as follows.
Let x ∈ B(K) and let y ∈ A(K) be such that ϕ(y) = x. Then the cocycle δ(x)
is defined as

δ(x) : σ 7→ yσ − y.

This long exact sequence induces the short exact sequence

0→ B(K)/ϕ(A(K)) δ−→ H1(GK ,Ker(ϕ)) −→ H1(GK , A(K))[ϕ]→ 0,
(2.27)

where H1(GK , A(K))[ϕ] := Ker
(
H1(GK , A(K)) ϕ ◦−→ H1(GK , B(K))

)
.

Now let v ∈ MK be a place of K and let Gv := Gal(Kv/Kv). We can
view Gv as a subgroup of GK in a natural way and therefore we have a natural
restriction homomorphism H1(GK , ·)→ H1(Gv, ·). This induces a local short
exact sequence, analogous to (2.27), and we have the following commutative
diagram:

0 B(K)/ϕ(A(K)) H1(GK ,Ker(ϕ)) H1(GK , A(K))[ϕ] 0

0 B(Kv)/ϕ(A(Kv)) H1(Gv,Ker(ϕ)) H1(Gv, A(Kv))[ϕ] 0

δ

δv

Finally, we are able to define the two groups in the subsection title.

Definition 2.9 Let ϕ : A→ B be an isogeny of abelian varieties overK. Then
the Selmer group of A, with respect to ϕ, is the group

Sel(ϕ)(A/K) :=
⋂

v∈MK

Ker
(
H1(GK ,Ker(ϕ))→ H1(Gv, A(Kv))[ϕ]

)
,

whereas the Tate-Šafarevič group of A is the group defined as

X(A/K) :=
⋂

v∈MK

Ker
(
H1(GK , A(K))→ H1(Gv, A(Kv))

)
.
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From the preceding definition and theorem one deduces the following short
exact sequence (recall (2.25)):

0→ B(K)/ϕ(A(K))→ Sel(ϕ)(A/K)→X(A/K)[ϕ]→ 0. (2.28)

Now the finiteness of Sel(ϕ)(A/K) implies the finiteness of B(K)/ϕ(A(K))
and X(A/K)[ϕ], which in turn implies the Mordell-Weil theorem. That the
Selmer group is finite follows from the fact that it can be embedded in a finite
subgroup of H1(GK ,Ker(ϕ)) (which itself is not finite). Before stating the
theorem, we need some definitions.

We recall some facts from number theory. Details can be found in §9
of Chapters I and II in [ANT2], for example. Let L/K be a finite Galois
extension of number fields with Galois group G = Gal(L/K), let p be a prime
of OK , and let q be a prime of OL that lies above p. We associate to q the
subgroup

Dq := {σ ∈ G | σ(q) = q},

called the decomposition group of q. Note that G acts transitively on primes
of OL that extend p. If q′ is another prime dividing p, then we have q′ = σ(q)
for some σ ∈ G and therefore Dq′ = σDqσ

−1. In other words, all decom-
position groups associated to primes above p are conjugates (in G). Since
every automorphism σ ∈ Dq fixes q, it descends to an automorphism of the
residue field lq := OL/q that fixes k := OK/p. We therefore have a surjective
homomorphism

Dq → Gal(lq/k),
whose kernel Iq is called the inertia group of q. In fact, the inertia group Iq is
normal in Dq and we have the following exact sequence

0 −→ Iq −→ Dq −→ Gal(lq/k) −→ 0.

Let eq denote the ramification index of q and let fq = [lq : k] denote the
residue degree. We therefore have a group Dq of order eqfq and a normal
subgroup Iq ⊂ Dq of order eq, with the quotient Dq/Iq being a cyclic group
of order fq. By a slight abuse of language and notation, we set Dp := Dq

and Ip := Iq and refer to them as the decomposition group of p and the inertia
group of p, with the understanding that the two groups are defined up to
conjugation.

If L/K is an infinite Galois extension, then the inertia group of a prime
ideal p ⊂ OK is taken to be the inverse limit of the inertia groups taken
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overK ′, for every finite Galois subextension L/K ′/K. An equivalent, valuative
definition states that for a Galois extension L/K and a place v ∈ MK , the
inertia group Iv of v (with respect to L) is the subgroup that consists precisely
of those σ ∈ Gal(L/K) for which the implication

v(x) ≥ 0⇒ w(σ(x)− x) > 0

holds for all x ∈ L and all w|v.

Definition 2.10 Let M be a GK-module. A class φ ∈ H1(GK ,M) is called
unramified at v ∈MK if its restriction to H1(Iv,M) is trivial.

Note that this definition is independent of the choice of the conjugate of Iv.
We are now ready to state the theorems that establish the finiteness of the
Selmer group.

Theorem 2.27 Let M be a GK-module, let S ⊂MK be a finite set of places,
and let H1

S(GK ,M) ⊂ H1(GK ,M) denote the subgroup of cohomology classes
that are unramified at places outside S. Then the group H1

S(GK ,M) is finite.

Theorem 2.28 Let ϕ : A → B be an isogeny of abelian varieties over K.
Let S be a set of places that includes:

• the infinite places v ∈M∞K ,

• the places of bad reduction of A and B (these are the same places, in
fact),

• the places that divide deg(ϕ).

Then Sel(ϕ)(A/K) is a subgroup of H1
S(GK ,Ker(ϕ)).

The proof is based on the functorial properties of H1 and a classical res-
ult (Hermite-Minkowski) about the finiteness of the number of number field
extensions of bounded degree, unramified outside a finite set of places. See
Theorem C.4.2 in [DG] for details.

The Selmer group and the Tate-Šafarevič group have an interesting geo-
metric interpretation. Namely, the elements of H1(GK , A(K)) correspond to
principal homogeneous spaces of A (see [La-Ta]). Recall that a principal ho-
mogeneous space of A is aK-varietyX on which A acts3 freely and transitively.

3 Since A is abelian, we make no distinction between left-action and right-action.
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More precisely, the variety X is equipped with a K-morphism X × A → X,
denoted by (x, a) 7→ x · a, such that for all x ∈ X and all a, b ∈ A, we have:

(1) x · 0A = x;

(2) x · (a+ b) = (x · a) · b;

(3) a 7→ x · a defines a K(x)-isomorphism A
∼−→ X.

In particular, the varietyX is a twist of A, i.e. a variety that is isomorphic to A
overK. However, we do not have a marked identity point forX. One can show
(see Chapter X, §3 in [AEC]) that there is a bijection (a group isomorphism,
in fact) between H1(GK , A(K)) and the set of principal homogeneous spaces
of A, modulo K-isomorphisms compatible with the action of A. The latter
is usually denoted by WC(A/K) and called the Weil-Châtelet group4. The
class of X in WC(A/K) is trivial if and only if X contains a K-rational
point. Note that A is in the trivial class, acting on itself via translation.
Therefore the elements of Sel(ϕ)(A/K) correspond to principal homogeneous
spaces that have Kv-rational points for every v ∈MK . Since this definition is
entirely local, the Selmer group can be computed (using Hensel’s Lemma and
estimates for number of points of abelian varieties over finite fields). Likewise,
the (non-trivial) elements of X(A/K) correspond to principal homogeneous
spaces that have Kv-rational points, but do not have any K-rational points,
i.e. they fail the Hasse principle. In contrast, there is no known algorithm that
computes the Tate-Šafarevič group. We have seen above that X(A/K)[n] is
finite for any n ∈ N. It is conjectured that X(A/K) itself is finite, but there
are very few proven cases.

2.8 Néron models and the Faltings height

We mentioned regular models of curves of positive genus in Section 2.5, whose
explicit construction is given in Chapter 9 of [Liu]. No analogous construction
is known for varieties of higher dimensions. However, abelian varieties admit
a different kind of model, with very useful properties.

4 Historically, the group W C(A/K) was described before the group H1(GK , A(K)).
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Definition 2.11 Let S be a one-dimensional Dedekind scheme with function
field K = K(S) and let V be a variety over K. A Néron model of V over S
is a smooth, separated scheme V → S of finite type, whose generic fibre is
isomorphic to V , satisfying the following universal property – for every smooth
scheme X → S with generic fibre isomorphic to X, a morphism f : X → V
extends to a morphism of S-schemes X → V.

The universal property guarantees that if a Néron model exists, it is unique
up to unique isomorphism. Existence of Néron models for abelian varieties was
first proved by Néron in [Nér]. For an overview of the subject, see [Art]. A
more complete treatment can be found in [B-L-R]. The relation between the
minimal regular model and the Néron model for curves of positive genus can
be found in [Li-To].

Let A/K be an abelian variety (over the number field K) of dimension g
and let A be its Néron model (over S = Spec(OK)). Then the addition
morphism A×A→ A lifts to a morphism A×A → A, making A an S-group
scheme. Every point P ∈ A(K), seen as aK-rational morphism Spec(K)→ A,
lifts to a section S → A.

As in Subsection 2.5.2, the line bundle Ωg

A(Kv) of holomorphic g-forms
is equipped with a hermitian inner product with a corresponding hermitian
metric

||η||2v = ig
2

(2π)2g

∫
A(Kv)

η ∧ η. (2.29)

Remark 2.13 The choice of normalization in (2.29) is not canonical and
differs from other choices that appear in literature. Caution is advised in this
regard.

This allows for an analogous construction of Arakelov divisors and metrized
line bundles. Now let L be a metrized line bundle on S = Spec(OK) and
let s ∈ L be a non-zero section. One defines the Arakelov degree of L as

d̂eg(L ) := log #(L /OK · s)−
∑

v∈M∞K

εv log ||s||v.

The product formula guarantees that the definition does not depend on the
choice of s.
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Let ε : S → A denote the zero-section, i.e. the section corresponding to
the identity element 0A ∈ A(K). Pulling back, via ε, the g-forms on A and
the canonical metrics at the archimedean places, we obtain a metrized line
bundle ωA := ε∗Ωg

A on S. Now we can define the Faltings height of A as

hFalt(A/K) := 1
[K : Q] d̂eg(ωA).

It was introduced by Faltings over number fields (see [Falt2]), whereas the
function field case had been previously defined by Paršin. We list some of the
properties of hFalt below.

(1) If L/K is a finite field extension, then hFalt(A/L) ≤ hFalt(A/K). If A/K
is semi-stable, then hFalt(A/L) = hFalt(A/K). We can therefore define
the stable Faltings height, denoted by hFalt(A/K), by first passing to a
finite extension over which A is semi-stable. The existence of such an ex-
tension is the subject of Grothendieck’s Semi-stable Reduction Theorem
for abelian varieties (see [Abb]).

(2) hFalt(A×B/K) = hFalt(A/K) + hFalt(B/K)

(3) hFalt(A∨/K) = hFalt(A/K), where A∨ denotes the dual of A (a result of
Raynaud)

(4) hFalt(A/K) ≥ 0 (a result of Bost, see Corollaire 8.4 in [Ga-Ré])

(5) For every g ∈ N and C ∈ R>0, the set of isomorphism classes of
principally polarized abelian varieties A such that hFalt(A/K) < C and
dimA = g is finite (see Theorem 1 in [Falt2]).

(6) If ϕ : A→ B is an isogeny of degree deg(ϕ) = m, then

|hFalt(A/K)− hFalt(B/K)| ≤ 1
2 logm (2.30)

(see Corollaire 2.1.4 in [Ray]).

The Faltings height can be seen as an intrinsic measure of the arithmetic
complexity of the variety. For Jacobians of dimension g = 1, 2, there are expli-
cit formulas. Let E/K be an elliptic curve with minimal discriminant ∆E/K .
For each archimedean place v, let τv ∈ H be the element of the fundamental
domain such that

E(Kv) ∼= C/(Z + τvZ).
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Then we have (see Proposition 1.1 in [Sil2])

hFalt(E/K) = 1
12[K : Q]

logNK/Q(∆E/K)−
∑

v∈M∞K

εv log
(
|∆(τv)|(Im τv)6

)− log 2
2 .

(2.31)
Here Im z := (z−z)/2i is the imaginary part of z and NK/Q is the ideal norm,
while

∆(τ) := qτ

∞∏
n=1

(1− qnτ )24,

with qτ := e2πiτ , is a modular form of weight 12 for SL2(Z) (see [AEC]).

For A = Jac(C), where C is a curve of genus two, there is a similar formula
(see [Ueno]).

2.9 The Lang-Silverman conjecture

With this background in mind, we are interested in implications of the form

ĥ(P ) > 0⇒ ĥ(P ) > cA

for some cA > 0, where P ∈ A(K). In other words, given that ĥ(P ) > 0 for
every non-torsion point P ∈ A(K), what can be said about a positive lower
bound and how it changes with A? A conjecture by Lang was first formulated
in [Lang3] (p. 92) in the following form:

“It seems a reasonable guess that uniformly for all such models of elliptic
curves over Z, one has

ĥ(P1)� log |∆E |.”
Here P1 is a point that realizes the minimum of ĥ on A(K)\A(K)tors. The con-
jecture was given a more general form by Silverman. Recall that the j-invariant
of an elliptic curve E such that E(Kv) ∼= C/(Z + τZ) is given by a Laurent
series

j(τ) = 1
q

+ 744 + 196884q + 21493760q2 + · · · ,

where q := e2πiτ . Thus |j(τ)| �� |q−1| and log |j(τ)| �� 2πIm τ , and
from (2.31) we have in particular

hFalt(E/K)�� max{h(j(E)), logNK/Q(∆E)}.
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Conjecture 2.29 (Lang-Silverman) Let K be a number field and let A be
an abelian variety over K, of dimension g. Let L be an ample symmetric
line bundle on A. Then there exists a constant C(g,K) > 0 such that for
every P ∈ A(K) for which Z · P is Zariski-dense in A, we have

ĥL (P ) ≥ C(g,K) · hFalt(A/K). (2.32)

In a manner of speaking, the conjecture states that, for a fixed dimension
and a fixed number field, one can uniformly bound the arithmetic complexity
of a non-torsion point in terms of the arithmetic complexity of the variety. No
proof is currently known for any dimension. Some partial results are known
and we will briefly review some of them.

Remark 2.14 If A is an abelian variety, we can embed A ↪→ A×B, for some
abelian variety B, via P 7→ (P, 0B). Since hFalt(A×B) = hFalt(A) + hFalt(B)
and ĥ(P ) = ĥ((P, 0B)), the assumption Z · P = A is justified. Likewise,
if P = [n]Q, we have ĥ(Q) = ĥ(P )/n2, which approaches 0 as n → ∞, so
the constant C in (2.32) must depend on the ground field. There are also ex-
amples that establish that C must depend on the dimension (viz Jac(X0(N)),
see [Paz1]).

Remark 2.15 If we fix the dimension g and consider only a finite set of
(isomorphism classes of) abelian varieties, then (2.32) trivially holds on this
set for some C(g,K). Whether or not the conjecture is true for all abelian
varieties of dimension g, it is certainly of interest to investigate it for infinite
families.

Theorem 2.30 The Lang-Silverman Conjecture holds for elliptic curves E/K
whose j-invariant is integral.

Proof See [Sil1].

Let E/K be an elliptic curve. We let ∆E/K and FE/K denote its minimal
discriminant and its conductor, respectively. These are ideals of OK , obtained
as products of primes of bad reduction of E (with some exponents). See [AEC]
for the exact definitions. We define the Szpiro ratio or the Szpiro quotient
of E/K to be

σE/K :=
logNK/Q(∆E/K)
logNK/Q(FE/K) .
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Conjecture 2.31 (Szpiro) For every ε > 0, there exists a constant C(ε,K)
such that for every elliptic curve E/K, one has

logNK/Q(∆E/K) ≤ (6 + ε) logNK/Q(FE/K) + C(ε,K).

This conjecture is roughly equivalent to the famous abc-conjecture over Q
(Conjecture 2.32); it is implied by it and it implies a weaker version of it, with
a modified exponent (see [Szp] and references therein).

Recall that for n ∈ Z× one defines the radical of n as

rad(n) :=
∏
p|n
p .

Conjecture 2.32 (Masser-Oesterlé [Oes]) For every ε > 0 there exists a
constant Cε > 0 such that if a, b, c ∈ Z are coprime and a+ b+ c = 0, then

max{|a|, |b|, |c|} ≤ Cε(rad(abc))1+ε.

Hindry and Silverman obtained the following result for Conjecture 2.29.

Theorem 2.33 (Hindry-Silverman [Hi-Si]) Let K be a number field of de-
gree d and let E be an elliptic curve over K of Szpiro ratio at most σ. There
exists a constant C = C(d, σ) > 0 such that if P ∈ E(K) \ E(K)tors, then

ĥ(P ) ≥ C · hFalt(E/K).

The constant they obtain depends exponentially on d and σE/K , but im-
provements have been found. For example, one finds in Petsche [Pet] that for
all P ∈ E(K) \ E(K)tors, the following holds:

ĥ(P ) ≥
(
1015d3σ6

E/K log(104613 · d · σE/K)
)−1
· logNK/Q(∆E).

Therefore it follows that the Szpiro Conjecture implies the Lang-Silverman
conjecture for elliptic curves. In fact, Silverman showed that a weaker conjec-
ture (the “prime-depleted” version of the Szpiro Conjecture) also implies the
Lang-Silverman Conjecture (see [Sil3]).

Remark 2.16 These results imply that the Lang-Silverman conjecture holds
for elliptic curves whose j-invariants have a fixed set of primes in the denom-
inator. In particular, Theorem 2.33 implies Theorem 2.30.

100



2.9. The Lang-Silverman conjecture

A result by David [Dav] establishes the conjecture for abelian varieties A
for which h := max{1, hFalt(A/K)} satisfies h � maxi,j |Im τij |, where τ
denotes the element τv ∈ Hg of the fundamental domain that corresponds
to A ⊗v kv, for all v ∈ M∞K . That this applies to infinitely many abelian
varieties of dimension g follows from the work of Masser [Mas2]. We re-
mark here that the opposite relation h � maxi,j |Im τij | is a known result of
Masser [Mas1], known as the Matrix Lemma (see also Autissier [Aut]).

Another result, for principally polarized abelian surfaces, is due to Pazuki.
We introduce some notation first. For v ∈MK let

τv =
[
τ1,v τ12,v
τ12,v τ2,v

]
∈ H2

be the element of the fundamental domain such that

A(Kv) ∼= C2/(Z2 + τv · Z2).

Then the archimedean trace of A is defined as

Tr∞(A) :=
∑

v∈M∞K

εv Tr(Im τv),

and the archimedean simplicity of A is defined as

s∞(A) :=
∏

v∈M∞K

||τ12,v||v.

One has s∞(A) = 0 if and only if A ∼= E1 × E2 as principally polarized
abelian surfaces, where Ei are elliptic curves. Recall from Theorem 1.18 that
therefore s∞(A) 6= 0 if and only if A ∼= Jac(C), where C is a smooth curve of
genus two.

Theorem 2.34 ([Paz2] Théorème 1.8) Let K be a number field of degree d,
let C/K be a curve of genus two, given by an integral model y2 = f(x), and
let A = Jac(C), principally polarized by Θ. Then there exist positive real con-
stants c1(d) and c2(d) such that for every P ∈ A(K), one of the following two
holds:

(1) [n]P = 0A for some n ≤ c1(d);

(2) ĥ2Θ(P ) ≥ c2(d) ·
(

Tr∞(A)− 5
3 log NK/Q(28Disc(f))

s∞(A)

)
.
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Corollary 2.35 The Lang-Silverman conjecture holds for principally polarized
abelian surfaces A ∼= Jac(C) that satisfy Tr∞(A) > 5

3 log NK/Q(D)
s∞(A) .

Let E/K be an elliptic curve such that for v ∈M∞K and the appropriate τv
in the fundamental domain of H, we have E(Kv) ∼= C/(Z+τvZ). We similarly
define the archimedean trace

Tr∞(E) :=
∑

v∈M∞K

εvIm τv.

Theorem 2.36 ([Paz2] Théorème 7.1) Let K be a number field of degree d.
Then there exists a constant c = c(d) > 0 such that for every elliptic curve E
over K and every P ∈ E(K) \ E(K)tors one has

ĥ(P ) ≥ c(d)
(

Tr∞(E)− 1
7 logNK/Q(∆E)

)
.

Combining this result with Theorem 2.33, we obtain the following.

Corollary 2.37 The Lang-Silverman conjecture holds for principally polarized
abelian surfaces A ∼= E1 × E2 such that at least one of the following holds
for i = 1, 2:

(1) Tr∞(Ei) > 1
7 logNK/Q(∆Ei);

(2) The Szpiro ratio σEi is uniformly bounded.

2.9.1 Heights and polarized isogenies

We recall some definitions and facts that will allow us to write more general
statements (see VI §2 in [M-F-C] or the brief summary in §1 of [Mum]).
Let L be an ample line bundle on an abelian variety of dimension g. Then
there is an integer deg(L ), called the degree of L , such that

dimH0(A,L n) = deg(L ) · ng for all n ≥ 1.

If L = L (D) for some D ∈ Div(A), then

(Dg) = deg(L ) · g!,

102



2.9. The Lang-Silverman conjecture

where (Dg) denotes the self-intersection number of D. The degree of the
polarization λL induced by L is then deg(λL ) = deg(L )2.

Now let ϕ : A → B be an isogeny of polarized abelian varieties of dimen-
sion g, where A (resp. B) is equipped with the polarization λ (resp. µ) induced
by a line bundle L (resp. M ). Suppose that ϕ is polarized with respect to λ
and µ, that is

λ = ϕ∨ ◦ µ ◦ ϕ

(recall Definition 1.2). Note that:

(1) deg(L ) = deg(ϕ∗M ) = deg(ϕ) deg(M );

(2) deg(λ) = deg(ϕ∨ ◦ µ ◦ ϕ) = deg(ϕ)2 deg(µ).

Suppose that for some n ∈ N we have λ = [n] ◦ λ̃, where λ̃ : A → A∨ is a
principal polarization, i.e. deg(λ̃) = 1. Then we have

deg(L )2 = deg(λ) = deg([n]) deg(λ̃) = n2g,

whence L = L̃ n, where L̃ is the line bundle corresponding to the principal
polarization λ̃. If we also suppose that µ : B → B∨ is principal, then we have

n2g = deg(L )2 = deg(λ) = deg(ϕ)2

and therefore deg(ϕ) = ng.

Remark 2.17 This is precisely the case in the situation that we described in
Chapter 1, where g = 2 and

ϕ : E1 × E2 → Jac(C)

is a polarized isogeny whose kernel is the graph Γα of an anti-symplectic iso-
morphism α : E1[n] ∼−→ E2[n] and we have ϕ∗(C) ∼ nΘ.

Let ĥA and ĥB denote the canonical heights corresponding to principal
polarizations induced by the line bundles L̃ and M , respectively. By The-
orem 2.12, for every P ∈ A(K), we have

ĥB(ϕ(P )) = ĥM (ϕ(P )) = ĥϕ∗M (P )
= ĥL (P ) = ĥ

L̃ n(P )
= n · ĥA(P ) = deg(ϕ)1/g · ĥA(P ).

103



Chapter 2. Heights on abelian varieties

If A and B are elliptic curves, the same result can be obtained by in-
terpreting the Néron-Tate height as an arithmetic intersection number since
Corollary 2.17 and Theorem 2.19 give us a projection formula. Viewing points
of A and B as sections of the corresponding Néron models, we have

ĥB(ϕ(P )) = d̂eg(ϕ(P )∗M ) = d̂eg(P ∗ϕ∗M )
= d̂eg(P ∗L̃ n) = n · d̂eg(P ∗L̃ )
= deg(ϕ)1/g · ĥA(P )

It follows that P ∈ A(K) is a point of infinite order if and only if ϕ(P ) ∈ B(K)
is one.

Not every point Q ∈ B(K) need be of the form ϕ(P ), that is to say that
the cokernel B(K)/ϕ(A(K)) need not be trivial. However, any isogeny A→ B
induces an isomorphism of real vector spaces

A(K)⊗R ∼= B(K)⊗R ∼= Rr for some r ∈ N.

In particular, the lattices A(K) and B(K) are of the same rank. In fact, as
we have seen in (2.28), we have

B(K)/ϕ(A(K)) 6 Sel(ϕ)(A/K),

where the latter is a finite group. Let eA ∈ N be the exponent of Sel(ϕ)(A/K).
Then for every Q ∈ B(K) we have [eA]Q ∈ ϕ(A(K)). For every P ∈ A(K)
and Q ∈ B(K) such that [eA]Q = ϕ(P ), we have

e2
A
ĥB(Q) = ĥB([eA]Q) = ĥB(ϕ(P )) = n · ĥA(P ),

and therefore
ĥB(Q) = n

e2
A

ĥA(P ). (2.33)

Since A and B are principally polarized, we may also compare the heights as
follows. Let Q ∈ B(K). Then

P := (λ̃−1 ◦ ϕ∨ ◦ µ)(Q) ∈ A(K)

is a point that satisfies ϕ(P ) = [n]Q and we have

ĥB(Q) = 1
n
ĥA(P ). (2.34)
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Proposition 2.4 Let g ∈ N and let I be an infinite index set. Suppose that

ϕi : (Ai, λi)→ (Bi, µi), i ∈ I

is an infinite family of isogenies of g-dimensional principally polarized abelian
varieties over a number field K, such that deg(ϕi) = ngi for ni ∈ N and ϕi is
polarized with respect to [ni] ◦ λi and µi. Suppose that there is a constant c > 0
such that ni ≤ c for all i ∈ I. Then if the family {Ai}i∈I satisfies the Lang-
Silverman conjecture, so does {Bi}i∈I .

Proof Let c1 > 0 be a constant such that for all i ∈ I, one has

ĥAi(P ) ≥ c1hFalt(Ai/K) for all P ∈ Ai(K) \Ai(K)tors.

Then we can take c2 = c1/c and by (2.34) we have

ĥBi(Q) ≥ c2hFalt(Ai/K) for all Q ∈ Bi(K) \Bi(K)tors.

If there exists a constant ce > 0 such that ni/e2
i ≥ ce for all i ∈ I, where ei

denotes the exponent of Sel(ϕi)(Ai/K), then we can take c2 = c1/min(c, ce).

By the theorem of Raynaud (recall (2.30)), we have

|hFalt(Ai/K)− hFalt(Bi/K)| ≤ 1
2 log deg(ϕi) = g

2 logni ≤
g

2 log c

so that for a c3 > 0 and for all Q ∈ Bi(K), we have

ĥBi(Q) ≥ c2hFalt(Bi/K)− c1 ≥ c3hFalt(Bi/K) (2.35)

for all but at most finitely many i ∈ I, because for any c > 0, there are only
finitely many isomorphism classes of abelian varieties A/K of dimension g
such that hFalt(A/K) < c. Let J ⊂ I be the finite index set for which (2.35)
fails and for j ∈ J let Pj ∈ Bj(K) \ Bj(K)tors denote a point for which ĥBj
achieves its minimum. Let

c4 := min
{

ĥBj (Pj)
hFalt(Bj/K)

}
j∈J

.

Then for C := min{c3, c4} we have

ĥBi(Q) ≥ ChFalt(Bi/K) for all Q ∈ Bi(K)

and the claim follows.

We obtain the following two theorems as corollaries, recalling that we had
assumed that all varieties and morphisms are defined over K, a number field.
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Theorem 2.38 For every n ∈ N, the Lang-Silverman conjecture holds for
(n, n)-split Jacobians if and only if it holds for elliptic curves that can be
glued along their n-torsion with another elliptic curve to make an (n, n)-split
Jacobian. In particular, if the Lang-Silverman conjecture holds for elliptic
curves, then it holds for (n, n)-split Jacobians.

Proof It follows from Lemma 1.6 that Proposition 2.4 applies to (n, n)-split
Jacobians.

Theorem 2.39 For every n ∈ N, the Lang-Silverman conjecture holds for
Jacobians that are (n, n)-isogenous to a product E1 × E2 of elliptic curves
such that at least one of the following is satisfied for i = 1, 2:

(1) Tr∞(Ei) > 1
7 logNK/Q(∆Ei);

(2) The Szpiro ratio σEi is uniformly bounded.

Proof This follows from Theorem 2.38 and Corollary 2.37.

Remark 2.18 In the original statement of Theorem 2.34 in [Paz2], it is as-
sumed that Jac(C) is geometrically simple; however, this assumption is not
necessary.
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Appendix

Computations

This appendix contains the source code for some of the software computa-
tions carried out for Chapter 1.

Sage code that outputs the generic (2, 2)-case j-invariants (page 23):

K.<a,b,c> = Frac(PolynomialRing(QQ,’a,b,c’))
R.<x> = PolynomialRing(K,’x’)
S.<y> = PolynomialRing(R,’y’)

P = x^3+a*x^2+b*x+c
Q = x^3+(b/c)*x^2+(a/c)*x+1/c

E1 = EllipticCurve([0, P.coefficients()[2], 0,
P.coefficients()[1],P.coefficients()[0]])

E2 = EllipticCurve([0, Q.coefficients()[2], 0,
Q.coefficients()[1],Q.coefficients()[0]])

#print the j-invariants
print "j(E1) =",factor(E1.j_invariant()),"\n\n"
print "j(E2) =",factor(E2.j_invariant())

Sage code that outputs the generic (3, 3)-case j-invariants (page 27):

K.<a,b,c,d,e> = Frac(PolynomialRing(QQ,’a,b,c,d,e’))
R.<x> = PolynomialRing(K,’x’)
S.<y> = PolynomialRing(R,’y’)
L = Frac(PolynomialRing(QQ,’a,b,c’))
L0 = PolynomialRing(QQ,’a,b,c’)
M = PolynomialRing(QQ,’a,b,c,d,e’)
N = PolynomialRing(L,’d,e’,order=’lex’)

P = x^3+a*x^2+b*x+c
D1 = -2*P + x*P.derivative()
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F1 = S([R(i) for i in
(x^2*P(y)-y^2*P(x)).quo_rem(x-y)[0].coefficients()])

Res1 = F1.sylvester_matrix(D1(y)).det()
AllmostQ = Res1.quo_rem(D1)[0]
#this polynomial is divisible by Res(P(x),x)=-c
Q = AllmostQ/(-c)

T = (x+d)^2*(x+e)*Q(y)-(y+d)^2*(y+e)*Q(x)
F2 = S([R(i) for i in T.quo_rem(x-y)[0].coefficients()])
D2 = -2*(x+e)*Q - Q*(x+d) + (x+e)*(x+d)*Q.derivative()
Res2 = F2.sylvester_matrix(D2(y)).det()

AllmostP = Res2.quo_rem(D2)[0]
#this polynomial must be divisible by P, i.e.
#the following polynomial is identically zero

RemainderP = AllmostP.quo_rem(P)[1]

Equations = [N(M(RemainderP.coefficients()[0])),
N(M(RemainderP.coefficients()[1])),
N(M(RemainderP.coefficients()[2]))]

#the remainder is divisible by Res(Q(x),x+d) and Res(Q(x),x+e)
for i in range(3):

Equations[i]=Equations[i].quo_rem(N(M(Q(-d)*Q(-e))))[0]

#print the equations
print "C is given by y^2=("+str(P)+")("+str(Q)+")"
print "\nThe two P^1->P^1 maps are"
print "f1: x->x^2/("+str(P)+"),\nf2: x->(x+d)^2*(x+e)/("+str(Q)+")"
print "\nd,e are determined by the following:\n"
for i in range(3):

print str(i+1)+")",Equations[i],"= 0\n\n"

#print the Groebner basis
I = N.ideal(Equations)
GB = I.groebner_basis()
print "The solution is found by a Groebner basis computation."
print "The lex Groebner basis has",len(GB),"elements:\n"
for i in range(0,len(GB)):

print "g"+str(i+1)+"=",GB[i],"\n\n"
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#obtain d,e as elements of L
d1 = L(-GB[0]+N(M(d)))
e1 = L(-GB[1]+N(M(e)))
print "Therefore d = "+str(d1)+" and e = "+str(e1)

#the cubic defining E1
U = (x*P(y)-y^2).sylvester_matrix(Q(y)).det()
U = U/U.coefficients()[3]

#the cubic defining E2
V = (x*Q(y)-(y+d1)^2*(y+e1)).sylvester_matrix(P(y)).det()
V = V/V.coefficients()[3]

#print the j-invariants
E1 = EllipticCurve([0, U.coefficients()[2], 0,

U.coefficients()[1], U.coefficients()[0]])

E2 = EllipticCurve([0, V.coefficients()[2], 0,
V.coefficients()[1], V.coefficients()[0]])

print "\nThe two curves have modular invariants:\n"
print "j(E1) =",factor(E1.j_invariant()),"\n\n"
print "j(E2) =",factor(E2.j_invariant())

Sage code that outputs (1.35) (page 47):

R.<u,v,w,a,b,c,r,s,t> =
PolynomialRing(QQ,’u,v,w,a,b,c,r,s,t’,order=’lex’)

Iu = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t,
-u*(r-s)*(r-t)+2*r-s-t)

Iv = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t,
-v*(r-s)*(r-t)-r^2+s^2+t^2-r*s-r*t+s*t)

Iw = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t,
-w*(r-s)*(r-t)+r^2*s-r*s^2+r^2*t-r*t^2)

GBu = Iu.groebner_basis(’singular:std’)._singular_()
Lu = [f.sage_poly(R) for f in GBu.eliminate(prod([s,t]))]
GBv = Iv.groebner_basis(’singular:std’)._singular_()
Lv = [f.sage_poly(R) for f in GBv.eliminate(prod([s,t]))]
GBw = Iw.groebner_basis(’singular:std’)._singular_()
Lw = [f.sage_poly(R) for f in GBw.eliminate(prod([s,t]))]
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print "Ideal Iu with s,t eliminated:"
for g in Lu:

print str(factor(g))

print "\nIdeal Iv with s,t eliminated:"
for g in Lv:

print str(factor(g))

print "\nIdeal Iw with s,t eliminated:"
for g in Lw:

print str(factor(g))

print "\nWe solve the following for u,v,w:"
print Lu[2],"= 0"
print Lv[2],"= 0"
print Lw[2],"= 0"

Sage code that outputs (1.36) (page 48):

R.<u,v,w,a,b,c,d,r,s,t> =
PolynomialRing(QQ,’u,v,w,a,b,c,d,r,s,t’,order=’lex’)

Iu = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t, d-(r-s)*(s-t)*(t-r),
-u*d+r^2+s^2+t^2-r*s-r*t-s*t )

Iv = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t, d-(r-s)*(s-t)*(t-r),
-v*d-r^3-s^3-t^3+r^2*s+r*t^2+s^2*t )

Iw = R.ideal(a+r+s+t, -b+r*s+r*t+s*t, c+r*s*t, d-(r-s)*(s-t)*(t-r),
-w*d + r^3*t+r*s^3+s*t^3-r^2*t^2-r^2*s^2-s^2*t^2)

GBu = Iu.groebner_basis(’singular:std’)._singular_()
Lu = [f.sage_poly(R) for f in GBu.eliminate(prod([r,s,t]))]
GBv = Iv.groebner_basis(’singular:std’)._singular_()
Lv = [f.sage_poly(R) for f in GBv.eliminate(prod([r,s,t]))]
GBw = Iw.groebner_basis(’singular:std’)._singular_()
Lw = [f.sage_poly(R) for f in GBw.eliminate(prod([r,s,t]))]

print "Ideal Iu with r,s,t eliminated:"
for g in Lu:

print str(factor(g))

print "\nIdeal Iv with r,s,t eliminated:"
for g in Lv:

print str(factor(g))
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print "\nIdeal Iw with r,s,t eliminated:"
for g in Lw:

print str(factor(g))

print "\nWe solve the following for u,v,w:"
print Lu[1],"= 0"
print Lv[1],"= 0"
print Lw[1],"= 0"

The following Magma codes give the results on page 59.

Remark A.1 The notations λ, µ, and ζ are replaced by a, b, and z, respect-
ively. The points of G and the corresponding translation morphisms on P8

can be found easily, using formulas (1.40) and (1.41).

RR<x> := PolynomialRing(Integers());
L<z> := NumberField(1+x+x^2);
K<a,b> := FunctionField(L, 2);
/* M is the group of translations by points of the graph of the

3-torsion isomorphism that is given by S->S and T->-T,
where S = [1 : 0 : -1], T = [-z : 1 : 0] */

M := MatrixGroup <9, K | [
0,0,0,0,1,0,0,0,0,
0,0,0,0,0,1,0,0,0,
0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,1,0,0,
0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0
],[
1,0,0,0,0,0,0,0,0,
0,z,0,0,0,0,0,0,0,
0,0,z^2,0,0,0,0,0,0,
0,0,0,z^2,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,
0,0,0,0,0,z,0,0,0,
0,0,0,0,0,0,z,0,0,
0,0,0,0,0,0,0,z^2,0,
0,0,0,0,0,0,0,0,1]>;
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R<X1,X2,X3,X4,X5,X6,X7,X8,X9> := PolynomialRing(K,9);
InvariantsOfDegree(M,R,3);
/* invariants of degree < 3 are no longer invariants if we multiply

the matrices by z or z^2; one could add these matrices to M,
but the degree 3 invariants are the same either way */

We reduce the obtained invariants P1, . . . , P21 modulo the ideal I = I(A).
This can be done by adding Pi(X1, . . . , X9)−Ti to the ideal and computing a
Gröbner basis in K[T1, . . . , T21, X1, . . . , X9].

I := ideal <R |
X1^3 + X2^3 + X3^3 + 3*b*X1*X2*X3,
X1^2*X2 + X4^2*X5 + X7^2*X8 + 3*a*X1*X4*X8,
X1*X2^2 + X4*X5^2 + X7*X8^2 + 3*a*X1*X5*X8,
X2^3 + X5^3 + X8^3 + 3*a*X2*X5*X8,
X1^2*X3 + X4^2*X6 + X7^2*X9 + 3*a*X1*X4*X9,
X1*X2*X3 + X4*X5*X6 + X7*X8*X9 + 3*a*X1*X5*X9,
X2^2*X3 + X5^2*X6 + X8^2*X9 + 3*a*X2*X5*X9,
X1*X3^2 + X4*X6^2 + X7*X9^2 + 3*a*X1*X6*X9,
X2*X3^2 + X5*X6^2 + X8*X9^2 + 3*a*X2*X6*X9,
X3^3 + X6^3 + X9^3 + 3*a*X3*X6*X9,
X1^2*X4 + X2^2*X5 + X3^2*X6 + 3*b*X1*X2*X6,
X1*X4^2 + X2*X5^2 + X3*X6^2 + 3*b*X1*X5*X6,
X4^3 + X5^3 + X6^3 + 3*b*X4*X5*X6,
X1^2*X7 + X2^2*X8 + X3^2*X9 + 3*b*X1*X2*X9,
X1*X4*X7 + X2*X5*X8 + X3*X6*X9 + 3*b*X1*X5*X9,
X4^2*X7 + X5^2*X8 + X6^2*X9 + 3*b*X4*X5*X9,
X1*X7^2 + X2*X8^2 + X3*X9^2 + 3*b*X1*X8*X9,
X4*X7^2 + X5*X8^2 + X6*X9^2 + 3*b*X4*X8*X9,
X7^3 + X8^3 + X9^3 + 3*b*X7*X8*X9,
X2*X4 + -1*X1*X5,
X3*X4 + -1*X1*X6,
X3*X5 + -1*X2*X6,
X2*X7 + -1*X1*X8,
X3*X7 + -1*X1*X9,
X5*X7 + -1*X4*X8,
X6*X7 + -1*X4*X9,
X3*X8 + -1*X2*X9,
X6*X8 + -1*X5*X9>;

This leaves nine linearly independent invariants F1, . . . , F9.
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Computations

F1 := X1*X2*X4 + X3*X7*X9 + X5*X6*X8;
F2 := X1*X3*X7 + X2*X4*X5 + X6*X8*X9;
F3 := X2^2*X7 + X3*X5*X6 + X6*X7^2;
F4 := X3^2*X4 + X3*X8^2 + X4*X5*X7;
F5 := X3^2*X8 + X3*X4^2 + X5*X7*X8;
F6 := X3*X5*X7;
F7 := X2*X3*X5 + X2*X7^2 + X6^2*X7;
F8 := 3*a*X2*X5*X8 + X5^3 + -1*X6^3 + 3*b*X7*X8*X9 + 2*X8^3 + X9^3;
F9 := 3*a*X3*X6*X9 + 3*b*X4*X5*X6 + X5^3 + 2*X6^3 + -1*X8^3 + X9^3;

We reduce the polynomial

P := d1F1 + · · ·+ d9F9 − (c1X1 + · · ·+ c9X9)3 ∈ K(ci, dj)[X1, . . . , X9]

modulo I = I(A) and we eliminate the variables di from the ideal generated
by the coefficients of P mod I.

R2<d1,d2,d3,d4,d5,d6,d7,d8,d9,c1,c2,c3,c4,c5,c6,c7,c8,c9> :=
PolynomialRing(K,18);

I2 := ideal<R2 |
3*c1^2*c5 + 6*c1*c2*c4 - d7,
3*c1^2*c8 + 6*c1*c2*c7,
// many generators are omitted here
-3*c2*c3^2 + 3*c8*c9^2,
c1^3 - c3^3 - c7^3 + c9^3 + d1 + d2

>;
J := EliminationIdeal(I2,9);

Finally, the points of Z(J) are found:

P8<c1,c2,c3,c4,c5,c6,c7,c8,c9> := ProjectiveSpace(K,8);
X := Scheme(P8, [

c8*c9^4,
c8^2*c9^2,
c7*c9^4,
c7*c8*c9^2 + -b*c8^3*c9,
// many generators are omitted here
c3^2*c7*c9 + -1/2*c3*c5^2*c9 + -1*c3*c5*c6*c8,
c1*c3*c6 + 1/2*c3^2*c4 + -1/2*c4^2*c8 + -1*c4*c5*c7

]);
Degree(X) eq 9;
Points(X);
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These solutions define the following nine linear forms:

L1 := z^2*X1 + z*X5 + X9;
L2 := z*X1 + z^2*X5 + X9;
L3 := X3 + X4 + X8;
L4 := z^2*X3 + z*X4 + X8;
L5 := z*X3 + z^2*X4 + X8;
L6 := X2 + X6 + X7;
L7 := z^2*X2 + z*X6 + X7;
L8 := z*X2 + z^2*X6 + X7;
L9 := X1 + X5 + X9;

We note that L9 is the one that is fixed by −1A, so that it defines the divisor D
whose image under A→ A/G principally polarizes A/G. We note that D does
not contain O. Finally, we check under which conditions D contains points
of A[2] that do not correspond to points of order two on Eλ or Eµ:

R3<T,X1,X2,X3,X4,X5,X6,X7,X8,X9,a,b> := PolynomialRing(L,12);
I3 := ideal <R3 |

X5^3 + -9/4*a*b*X5^2*X9 + -3/4*a*X6^2*X9 + -3/4*b*X8^2*X9 +
-1/4*X9^3,

X5^2*X6 + 3/2*a*X5^2*X9 + 1/2*X8^2*X9,
X5*X6^2 + 3/2*a*X5*X6*X9 + 1/2*X8*X9^2,
X6^3 + 3/2*a*X6^2*X9 + 1/2*X9^3,
X5^2*X8 + 3/2*b*X5^2*X9 + 1/2*X6^2*X9,
X5*X8^2 + 3/2*b*X5*X8*X9 + 1/2*X6*X9^2,
X8^3 + 3/2*b*X8^2*X9 + 1/2*X9^3,
X6*X8 + -1*X5*X9,
X1 + -1*X5,
X2 + -1*X5,
X3 + -1*X6,
X4 + -1*X5,
X7 + -1*X8,
X9*T-1,
L9>;

GroebnerBasis(EliminationIdeal(I3,10))[1];

The output is a polynomial that defines a curve of genus zero:

A<a,b> := AffineSpace(Rationals(),2);
Genus(Curve(A, 3*a^2*b^2 + a^3 - 3*a*b + b^3 + 2));
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Summary

This thesis deals with properties of Jacobians of genus two curves that cover
elliptic curves.

Let E be a curve in the plane, given by an equation y2 = F (x), where

F (x) = x3 + a2x
2 + a1x+ a0

is a polynomial with rational coefficients and with three distinct roots. For
historical reasons, such a curve is known as an elliptic curve. It is known
that every elliptic curve E can be equipped with a structure of a commutat-
ive group – its points can be added and subtracted. A point O “at infinity”,
which is contained in all vertical lines (lines of form x = c), is the neut-
ral element. This group structure is described by the condition that three
points P,Q,R ∈ E satisfy P + Q + R = O if and only if they are collinear.
Surfaces with a commutative group structure are called abelian. For example,
a product E1 × E2 of two elliptic curves is an abelian surface in the obvious
way.

Next we consider a planar curve C given by an equation y2 = G(x), where

G(x) = x6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0

is a polynomial with rational coefficients and six distinct roots. The curve C
is called hyperelliptic and it does not have a group structure. However, we can
associate to it, in a natural way, an abelian surface Jac(C), called the Jacobian
of C. Moreover, we can embed C into it.

Some hyperelliptic curves, of the form y2 = G(x) as above, are special
because they cover elliptic curves. For example, consider a curve C given
by y2 = x6 + ax4 + bx2 + c, so that only even powers of x appear. If (x, y)
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is a point on this curve then so is (−x, y) and we can define an algebraic
map f : (x, y) 7→ (x2, y), that is of degree 2, i.e. 2-to-1. Now (X,Y ) = (x2, y)
is a point on the elliptic curve E given by Y 2 = X3 + aX2 + bX + c and we
say that C is a double cover of E.

If E is an elliptic curve, if C is a hyperelliptic curve, and if C → E is
an n-to-1 covering that is not a composition of coverings, then we can embed E
into the surface Jac(C) as a subgroup. Moreover, there exists another elliptic
curve Ẽ and an n-to-1 covering C → Ẽ, such that the surface Jac(C) has a
special property – it can be obtained as the quotient of the surface E × Ẽ by
a finite subgroup.

The first chapter of the thesis deals with the geometric aspects of this
setup. We investigate which curves can form this special relationship and
we focus mostly on the cases n = 2 and n = 3, which have already been
analysed in literature. We also gain some insight into the general case, but a
full description proves to be very difficult computationally.

The second chapter deals with the arithmetic aspects of the setup, via
the theory of height functions, which are a very useful tool in answering
questions about rational points on curves and surfaces. To every rational
number x = a/b, where a and b are coprime integers, one can associate its
height h(x), in a very precise way, as a measurement of its arithmetic com-
plexity – the height roughly tells us how many digits are needed to write down
the integers a and b. Likewise, the height of a rational point on a curve or sur-
face tells us about the number of digits of the coordinates. For example, (3, 5)
and (1749/1331,−1861/1331) are two rational points of rather different com-
plexity on the curve y2 = x3 − x+ 1, while (2,

√
7) is not a rational point. It

is also possible to associate a height to an elliptic curve or an abelian surface
and measure its arithmetic complexity as a whole. A specific relation between
these two heights is conjectured and we investigate it in the context of the
setup above. We show that this relation holds for E× Ẽ if and only if it holds
for Jac(C).
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Samenvatting

Dit proefschrift behandelt eigenschappen van Jacobianen van krommen van
geslacht twee die elliptische krommen overdekken.

Zij E een kromme in het vlak, gegeven door een vergelijking y2 = F (x),
waarbij F (x) = x3 + a2x

2 + a1x + a0 een polynoom is met rationale coëffi-
ciënten en met drie verschillende nulpunten. Om historische redenen wordt
een dergelijke kromme een elliptische kromme genoemd. Het is bekend dat
elke elliptische kromme kan worden voorzien van een commutatieve groeps-
structuur – haar punten kunnen bij elkaar worden opgeteld en van elkaar
worden afgetrokken. Een punt O „op oneindig”, dat bevat is in alle verticale
lijnen (lijnen van de vorm x = c), is het neutrale element. De groepsstruc-
tuur wordt vastgelegd door de voorwaarde dat drie punten P,Q,R ∈ E voldoen
aan P +Q+R = O dan en slechts dan als zij op één lijn liggen. Oppervlakken
met een commutatieve groepsstructuur worden abels genoemd. Bijvoorbeeld
is een product van twee elliptische krommen E1 × E2 op de voor de hand
liggende wijze een abels oppervlak.

Vervolgens beschouwen we een vlakke kromme C gegeven door een verge-
lijking y2 = G(x), waarbij G(x) = x6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0

een polynoom is met rationale coëfficiënten en zes verschillende nulpunten. De
kromme C wordt hyperelliptisch genoemd en heeft geen groepsstructuur. Toch
kunnen we, op een natuurlijke wijze, eraan een abels oppervlak Jac(C) toe-
kennen, dat de Jacobiaan van C wordt genoemd. Voorts kunnen we C hierin
inbedden. Sommige hyperelliptische krommen van de vorm y2 = G(x) zoals
hierboven zijn bijzonder omdat zij elliptische krommen overdekken. Bijvoor-
beeld, beschouw een kromme C gegeven door y2 = x6 + ax4 + bx2 + c, zodat
alleen even machten van x optreden. Als (x, y) een punt is op deze kromme dan
is (−x, y) dat ook en we kunnen een algebraïsche afbeelding f : (x, y) 7→ (x2, y)
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definiëren die van graad 2 is, d.w.z. 2-op-1. Het punt (X,Y ) = (x2, y) ligt op
de elliptische kromme E gegeven door Y 2 = X3 + aX2 + bX + c en we zeggen
dat C een dubbele overdekking is van E.

Als E een elliptische kromme is, C een hyperelliptische kromme, en C → E
een n-op-1 overdekking die niet een samenstelling is van overdekkingen, dan
kunnen we E inbedden in het oppervlak Jac(C) als ondergroep. Bovendien
bestaat er een andere elliptische kromme Ẽ en een n-op-1 overdekking C → Ẽ.
Voorts heeft het oppervlak Jac(C) een bijzondere eigenschap – het kan worden
verkregen als een quotiënt van het oppervlak E × Ẽ naar een eindige onder-
groep.

Het eerste hoofdstuk van dit proefschrift behandelt de meetkundige as-
pecten van deze situatie. We onderzoeken welke krommen in deze bijzondere
verhouding tot elkaar kunnen staan en we concentreren ons hoofdzakelijk op
de gevallen n = 2 en n = 3, die al in de literatuur zijn onderzocht. We ver-
krijgen ook enig inzicht in het algemene geval, maar een volledige beschrijving
blijkt vanuit computationeel oogpunt zeer moeilijk te zijn.

Het tweede hoofdstuk behandelt de aritmetische aspecten van de situatie,
met behulp van de theorie van hoogtes, die een zeer bruikbaar hulpmiddel
vormen bij het beantwoorden van vragen rond rationale punten op krommen
en oppervlakken. Voor elk rationaal getal x = a/b, waarbij a en b gehele
getallen zijn die relatief priem zijn, kan men de hoogte h(x) definiëren, op
een heel precieze manier, als een maat voor diens aritmetische complexiteit –
de hoogte vertelt ons min of meer hoeveel cijfers er nodig zijn om de gehele
getallen a en b op te schrijven. Op eenzelfde manier zegt de hoogte van een
rationaal punt op een kromme of oppervlak ons iets over het aantal cijfers
van zijn coördinaten. Bijvoorbeeld zijn (3, 5) en (1749/1331,−1861/1331)
twee rationale punten van behoorlijk verschillende complexiteit op de krom-
me y2 = x3 − x+ 1. Anderzijds is (2,

√
7) geen rationaal punt. Het is ook

mogelijk om een hoogte toe te kennen aan een elliptische kromme of een abels
oppervlak om zodoende diens aritmetische complexiteit als geheel te meten. Er
wordt een precies verband tussen de twee hoogtes vermoed, en we onderzoeken
dit vermoeden in de context van de situatie zoals boven geschetst. We bewijzen
dat het vermoede verband geldt voor E × Ẽ dan en slechts dan als het geldt
voor Jac(C).
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Cette thèse concerne des propriétés des variétés jacobiennes de courbes de
genre deux qui couvrent des courbes elliptiques.

Soit E une courbe plane, donnée par une équation y2 = F (x), où

F (x) = x3 + a2x
2 + a1x+ a0

est un polynôme à coefficients rationnels, qui a trois racines distinctes. Pour
des raisons historiques, une telle courbe est appelée courbe elliptique. On sait
que toute courbe elliptique E peut être équipée d’une structure de groupe com-
mutatif – on peut additionner et soustraire ses points. Un point O « à l’infini »,
qui est contenu dans toutes les droites verticales (droites de la forme x = c),
est l’élément neutre. Cette structure de groupe est décrite par la condition
que trois points P,Q,R ∈ E satisfont P +Q+R = O si et seulement s’ils sont
alignés. Les surfaces avec une structure de groupe commutatif sont appelées
abéliennes. Par exemple, un produit E1 × E2 de deux courbes elliptiques est
une surface abélienne, de façon évidente.

Considérons maintenant une courbe plane C donnée par y2 = G(x), où

G(x) = x6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0

est un polynôme à coefficients rationnels, qui a six racines distinctes. La
courbe C est appelée hyperelliptique et n’a pas de structure de groupe. Par
contre, nous pouvons lui associer, d’une façon naturelle, une surface abélien-
ne Jac(C), appelée la jacobienne de C. En plus, nous pouvons plonger C
dans Jac(C).

Certaines courbes hyperelliptiques sont spéciales car elles couvrent des
courbes elliptiques. Par exemple, considérons une courbe C donnée par l’équa-
tion y2 = x6 + ax4 + bx2 + c, dans laquelle seulement des puissances paires
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de x apparaissent. Si (x, y) est un point de cette courbe alors de même (−x, y),
et nous pouvons définir une application algébrique f : (x, y) 7→ (x2, y) de
degré 2, c’est-à-dire, de fibre générale à deux points. Alors (X,Y ) = (x2, y)
est un point de la courbe elliptique E donnée par Y 2 = X3 + aX2 + bX + c et
nous disons que C est un revêtement double de E.

Si E est une courbe elliptique, si C est une courbe hyperelliptique, et
si C → E est un revêtement de degré n qui n’est pas une composition de
revêtements, alors nous pouvons plonger E dans la surface Jac(C) comme un
sous-groupe. De plus, il existe une autre courbe elliptique Ẽ et un revête-
ment C → Ẽ de degré n, tel que la surface Jac(C) a une propriété spéciale –
elle peut être obtenue comme quotient de la surface E× Ẽ par un sous-groupe
fini.

Le chapitre 1 de cette thèse traite les aspects géométriques de cette situ-
ation. Nous cherchons à savoir quelles courbes peuvent avoir une telle relation
et nous nous concentrons surtout sur les cas n = 2 et n = 3, qui ont déjà été
analysés dans la littérature. Dans le cas général, nous obtenons quelques résul-
tats, mais une description complète s’avère très difficile de manière explicite.

Le chapitre 2 traite les aspects arithmétiques de la situation, via la théorie
des fonctions hauteurs, qui sont un outil très utile pour répondre à des ques-
tions concernant des points rationnels de courbes et surfaces. Pour tout nom-
bre rationnel x = a/b, avec a et b des entiers premiers entre eux, on définit la
hauteur h(x) de x, de façon très précise, comme une mesure de sa complexité
arithmétique – la hauteur dit approximativement combien de chiffres sont
nécessaires pour écrire les entiers a et b. De la même façon, la hauteur d’un
point rationnel d’une courbe ou surface nous dit combien de chiffres ont les
coordonnées. Par exemple, (3, 5) et (1749/1331,−1861/1331) sont deux points
rationnels de complexités plutôt différentes de la courbe y2 = x3 − x+ 1, tan-
dis que (2,

√
7) n’est pas un point rationnel. Il est possible d’attacher une

hauteur aux courbes elliptiques et aux surfaces abéliennes qui mesure leur
complexité arithmétique totale. Une relation spécifique entre ces deux notions
de hauteur est alors conjecturée et nous étudions cette conjecture dans la situa-
tion décrite plus haut. Nous montrons que cette relation est vraie pour E× Ẽ
si et seulement si elle est vraie pour Jac(C).
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Predmet ove teze jesu svojstva jakobijana krivih roda dva koje pokrivaju elipti-
čke krive.

Neka je E kriva u ravni, data jednačinom y2 = F (x), gdje je

F (x) = x3 + a2x
2 + a1x+ a0

polinom sa racionalnim koeficijentima i sa tri različita korijena. Iz povijesnih
razloga, ovakvu krivu nazivamo eliptičkom. Poznato je da svaka eliptička
kriva E može biti opremljena strukturom komutativne grupe – njene tačke
možemo sabirati i oduzimati. Tačka O „u beskonačnosti”, koja leži na svim
uspravnim pravama (tj. pravama oblika x = c), jeste neutralni element grupe.
Ova struktura grupe je opisana uslovom da za svake tri tačke P,Q,R ∈ E važi
P +Q+R = O ako i samo ako one leže na istoj pravoj. Površi sa strukturom
komutativne grupe zovemo Abelovim. Primjera radi, proizvod dvije eliptičke
krive jeste Abelova površ, sa očevidnom strukturom grupe.

Razmotrimo sada krivu C u ravni, zadatu jednačinom y2 = G(x), gdje je

G(x) = x6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0

polinom sa racionalnim koeficijentima i sa šest različitih korijena. Krivu C
zovemo hipereliptičkom. Ona nema strukturu grupe, ali joj možemo prirodno
pridružiti jednu Abelovu površ Jac(C), koju zovemo jakobijanom krive C.
Takođe, krivu C možemo uložiti u njen jakobijan.

Neke hipereliptičke krive, oblika y2 = G(x) kao gore, jesu posebne jer
pokrivaju eliptičke krive. Primjera radi, razmotrimo krivu C zadatu jed-
načinom y2 = x6 + ax4 + bx2 + c, u kojoj se pojavljuju isključivo parni stepeni
promjenjive x. Ako je (x, y) tačka na krivoj, onda je to i (−x, y), što znači
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da možemo odrediti algebarsko preslikavanje f : (x, y) 7→ (x2, y), koje je ste-
pena 2, tj. 2-na-1. Imamo da je (X,Y ) = (x2, y) tačka na eliptičkoj krivoj E
zadatoj jednačinom Y 2 = X3 + aX2 + bX + c i kažemo da kriva C dvostruko
pokriva krivu E.

Ako je E eliptička kriva, ako je C hipereliptička kriva, i ako je C → E
pokrivanje stepena n, koje nije razloživo, tj. nije sastavljeno od pokrivanja
manjeg stepena, onda krivu E možemo uložiti u površ Jac(C) kao podgrupu.
Štoviše, postoji još jedna eliptička kriva Ẽ i nerazloživo pokrivanje C → Ẽ
stepena n, takvo da površ Jac(C) ima posebno svojstvo – možemo ju dobiti
kao količnik površi E × Ẽ i jedne njene konačne podgrupe.

Prvo poglavlje teze tiče se geometrijskih strana ove postavke. Istražujemo
koje krive se mogu naći u ovoj posebnoj vezi, sa usredsređenjem na sluča-
jeve n = 2 i n = 3, koji su već razmatrani u literaturi. Takođe izvodimo
nekoliko zaključaka o opštem slučaju, ali puni opis nam ostaje nedostupan
uslijed velike računske složenosti.

Drugo poglavlje teze tiče se aritmetičkih strana postavke, putem teorije
visinskih funkcija, koje su veoma korisne u istraživanju pitanja o racional-
nim tačkama krivih i površi. Svakom razlomku x = a/b, gdje su a i b uza-
jamno prosti cijeli brojevi, možemo pridružiti njegovu visinu h(x), koja je
mjera njegove aritmetičke složenosti – visina nam otprilike govori koliko cifara
nam je potrebno da zapišemo brojeve a i b. Slično tome, visina racionalne
tačke na krivoj ili površi govori nam o broju cifara potrebnom za zapis njenih
koordinata. Primjera radi, (3, 5) i (1749/1331,−1861/1331) jesu racionalne
tačke veoma različite složenosti na krivoj y2 = x3 − x + 1, dok (2,

√
7) nije

racionalna tačka. Takođe možemo pridružiti visinu svakoj eliptičkoj krivoj ili
Abelovoj površi i tako mjeriti njenu aritmetičku složenost u cjelini. Postoji
slutnja o određenoj vezi između ovih dvaju visina, koju istražujemo u slučaju
gorenavedene postavke. Dokazujemo da spomenuta veza važi za površi E× Ẽ
ako i samo ako važi za površi Jac(C).
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Errata

Errata for the officially submitted version, added on 15 November 2017:

Pages 48, 49

The statements of Propositions 1.6 and 1.7 should be swapped.

In the proofs of Propositions 1.6 and 1.7 the two elliptic curves should be
assumed more generally to be quadratic twists and not necessarily isomorphic
over K. The proofs then require obvious modifications.
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