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Apprentissage ciblé et Big Data: contribution à la 
réconciliation de l'estimation adaptative et de l’inférence 

statistique!

Résumé!
!

Cette thèse porte sur le développement de méthodes semi-paramétriques 
robustes pour l'inférence de paramètres complexes émergeant à l'interface de 
l'inférence causale et la biostatistique. Ses motivations sont les applications à 
la recherche épidémiologique et médicale à l'ère des Big Data. Nous 
abordons plus particulièrement deux défis statistiques pour réconcilier, dans 
chaque contexte, estimation adaptative et inférence statistique. !
Le premier défi concerne la maximisation de l'information tirée d'essais 
contrôlés randomisés (ECRs) grâce à la conception d'essais adaptatifs. Nous 
présentons un cadre théorique pour la construction et l'analyse d'ECRs 
groupes-séquentiels, réponses-adaptatifs et ajustés aux covariable (traduction 
de l'expression anglaise « group-sequential, response-adaptive, covariate-
adjusted », d'où l'acronyme CARA) qui permettent le recours à des 
procédures  adaptatives d'estimation à la fois pour la construction dynamique 
des schémas de randomisation et pour l'estimation du modèle de réponse 
conditionnelle. Ce cadre enrichit la littérature existante sur les ECRs CARA 
notamment parce que l'estimation des effets est garantie robuste même 
lorsque les modèles sur lesquels s'appuient les procédures adaptatives 
d'estimation sont mal spécificiés. !
Le second défi concerne la mise au point et l'étude asymptotique d'une 
procédure inférentielle semi-paramétrique avec estimation adaptative des 
paramètres de nuisance. A titre d'exemple, nous choisissons comme 
paramètre d'intérêt la différence des risques marginaux pour un traitement 
binaire. Nous proposons une version cross-validée du principe d'inférence 
par minimisation ciblée de pertes (« Cross-validated Targeted Mimum Loss 
Estimation » en anglais, d'où l'acronyme CV-TMLE) qui, comme son nom le 
suggère, marie la procédure TMLE classique et le principe de la validation 
croisée. L'estimateur CV-TMLE ainsi élaboré hérite de la propriété typique 
de double-robustesse et aussi des propriétés d'efficacité du TMLE classique. 
De façon remarquable, le CV-TMLE est linéairement asymptotique sous des 
conditions minimales, sans recourir aux conditions de type Donsker.!
!
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Targeted Learning in Big Data: Bridging data-
adaptive estimation and statistical inference!

!

Summary!
!

!

This dissertation focuses on developing robust semiparametric methods for 
complex parameters that emerge at the interface of causal inference and 
biostatistics, with applications to epidemiological and medical research in 
the era of Big Data. Specifically, we address two statistical challenges that 
arise in bridging the disconnect between data-adaptive estimation and 
statistical inference. The first challenge arises in maximizing information 
learned from Randomized Control Trials (RCT) through the use of adaptive 
trial designs. We present a framework to construct and analyze group 
sequential covariate-adjusted response-adaptive (CARA) RCTs that admits 
the use of data-adaptive approaches in constructing the randomization 
schemes and in estimating the conditional response model. This framework 
adds to the existing literature on CARA RCTs by allowing flexible options 
in both their design and analysis and by providing robust effect estimates 
even under model mis-specifications. The second challenge arises from 
obtaining a Central Limit Theorem when data-adaptive estimation is used to 
estimate the nuisance parameters. We consider as target parameter of interest 
the marginal risk difference of the outcome under a binary treatment, and 
propose a Cross-validated Targeted Minimum Loss Estimator (TMLE), 
which augments the classical TMLE with a sample-splitting procedure. The 
proposed Cross-Validated TMLE (CV-TMLE) inherits the double 
robustness properties and efficiency properties of the classical TMLE , and 
achieves asymptotic linearity at minimal conditions by avoiding the Donsker 
class condition.!
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Chapter 1

Introduction

1.1 Background and Motivation

The current Big Data revolution is marked by the unprecedented volume, diversity and

velocity of data being collected across public and private sectors. This, coupled with

dramatic increases in computing power, presents revolutionary opportunities to improve

population and individual-level well-being. This deluge of data can yield real insight

into today’s most critical social and health problems across the globe, but statistical ad-

vances from the traditional paradigms are needed to fully realize its potential. Tradi-

tional statistical approaches that rely on finite-dimensional (parametric) modeling of the

data-generating process cannot keep up with the increasing complexity and diversity of

data, missing real opportunities to uncover previously unknown interactions and relations.

While recent advances in machine learning methods inject the much needed flexibility to

maximize the predictive power of Big Data, these methods often lack inferential capabil-

ity as they do not provide formal statistical inferences on the underlying data generating

distribution, and hence fail to produce actionable information to inform treatment devel-

opment or policy planning. This disconnect between breakthrough in machine learning

methods and the inferential power of classical statistics translates into missed potentials

to deliver solutions for todays most urgent social and health problems. In this disserta-

tion, we address two statistical challenges that arise in bridging this disconnect between

data-adaptive prediction and statistical inference.

The first challenge arises in maximizing information learned from Randomized Con-

trol Trials (RCT). RCTs are the gold standard for causal effect inference and are ubiquitous

in health and social science research. Traditionally, the designs for these trials are fixed,

in the sense that all key aspects of the trial are set before the start of the data collection,

usually based on assumptions that are yet unsure at the design stage. Adaptive trial de-
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sign methods, by contrast, allows pre-specified modifications of the ongoing trial based

on accruing data, while preserving the validity and integrity of the trial. This flexibility

potentially translates into more tailored studies: the study could be more efficient, e.g.,

have shorter duration, or involve fewer subjects; the study could have greater chance to

answer the clinical questions of interest, e.g., detect a treatment effect if one exists, or

gather broader dose-response information. For this reason, adaptive trial designs have

garnered growing attention in recent years. We focus here on the study of the so-called

covariate-adjusted response-adaptive (CARA) randomized controlled trials (RCTs). In

a CARA RCT, the randomization schemes are allowed to depend on the patient’s pre-

treatment covariates, and the investigators can adjust/adapt the randomization schemes

during the course of the trial based on accruing information, including previous responses,

in order to meet the pre-specified optimal design criteria. Inherently, since the random-

ization scheme is response-adaptive, how successfully it approximates the desired design

optimality would critically depend on how well we can model the response of interest. In

a heterogeneous patient population, responses may be affected by a wide array of baseline

individual characteristics in manners unknown to the investigators. Therefore, for the goal

of achieving design optimality without compromising trial integrity, we need to 1) do the

best we can in estimating the outcome model, 2) produce unbiased estimates of the pri-

mary study parameter, regardless of the specification of outcome model, thus preserving

the robust hallmark of an RCT. This requires a design and analysis framework to that al-

lows robust inference of the study parameter of interest with data-adaptive estimators. The

statistical challenge here, compare to classical fixed design, lies in the non-independently

and non-identically distributed nature of the observed data. As a result, many empiri-

cal process theories essential to robust estimation and inferences under independent and

identically distributed (i.i.d.) observations need to be extended to the CARA RCT sam-

pling scheme. Chapter 2 proposes a framework for design and analysis of CARA RCT

that incorporates the use of data-adaptive estimators (e.g. machine learning techniques)

in modeling the response and in estimating the optimal design, and, using the Targeted

Minimum Loss Estimation methodology (TMLE, van der Laan and Rubin 2006), pro-

vides robust inference of the study parameter under an arbitrarily misspecified response

model. We call this framework a targeted CARA RCT in the sense that it targets both the

unknown optimal randomization scheme by data-adaptively modifying the randomization

schemes using accruing data, and the study parameter of interest by providing unbiased

effect estimate.

The second challenge this dissertation addresses arises from obtaining a Central Limit

Theorem when data-adaptive estimation is used to estimate the nuisance parameters. Con-

sider a target parameter of interest that is a path-wise differentiable function of the data-

generating distribution. Given an asymptotically linear estimator of this target parameter,

we can use Central Limit Theorem to obtain an Influence Curve-based variance estimate
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for this estimator, and therefore produce valid confidence intervals for formal hypothesis

testing. In many applications, the asymptotic linearity relies on Donsker class conditions

on the empirical processes related to the estimators of the nuisance parameters. These

conditions effectively restrict how data-adaptive such nuisance parameter estimates can

be, and thereby excluding the use of a large class of machine learning techniques that may

help reduce the bias of the target parameter estimate. In Chapter 3, we consider as target

parameter of interest the marginal risk difference of the outcome under a binary treatment,

and propose a Cross-validated Targeted Minimum Loss Estimator, which augments the

classical TMLE with a sample-splitting procedure. The classical TMLE provides a dou-

bly robust substitution estimator for the target parameter of interest by updating the initial

estimators of the response model using a least favorable submodel. TMLE produces un-

biased estimate of the target parameter if the response or the treatment assignment are

consistently estimated. It is asymptotically linear if Donsker class conditions are satis-

fied, which case if all nuisance parameters are correct, it is also asymptotically effiicent.

The proposed Cross-Validated TMLE (CV-TMLE) inherits the double robustness proper-

ties and efficiency properties, and achieves asymptotic linearity at minimal conditions by

avoiding the Donsker class condition.
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Chapter 2

When Adaptive CARA RCT meets

Data-Adaptive Estimation: Targeted

Maximum Likelihood Estimation for

Adaptive Randomized Controlled Trial

Designs

2.1 Introduction

Covariate-adjusted, response-adaptive randomized clinical trials

Adaptive clinical trial design methods have garnered growing attention in recent years. In

a fixed trial design, all key aspects of the trials are set before the start of the data collection,

usually based on assumptions that are yet unsure at the design stage. By contrast, an adap-

tive trial design allows pre-specified modifications of the ongoing trial based on accruing

data, while preserving the validity and integrity of the trial. This flexibility potentially

translates into more tailored studies. The study could be more efficient, e.g., have shorter

duration, or involve fewer subjects. The study could have greater chance to answer the

clinical questions of interest, e.g., detect a treatment effect if one exists, or gather broader

dose-response information.

Once they have defined the primary study objective of the trial (e.g., testing the effect

of a treatment), the investigators may wish to accommodate additional design objectives

(e.g., minimizing sample size or exposure of patients to inferior treatment) without com-

promising the trial. To do this, they may use an adaptive randomization trial design. We
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focus here on the study of the so-called covariate-adjusted response-adaptive (CARA)

randomized controlled trials (RCTs). In a CARA RCT, the randomization schemes are al-

lowed to depend on the patient’s pre-treatment covariates, and the investigators can adjust

the randomization schemes during the course of the trial based on accruing information,

including previous responses, in order to meet the pre-specified design objectives. Such

adjustments take place at interim time points given by sequential inclusion of blocks of c

patients, where c≥ 1 is a pre-specified integer. We consider the case of c= 1 for simplicity

of exposition, though the discussions generalize to any c > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of

interest (the primary study objective), analysis methods, and a criterion characterizing an

optimal randomization scheme (the design objective). Here, baseline covariates and a

primary response of interest are measured on each patient. The primary study objective is

the marginal treatment effect. The design objective is captured by an optimality criterion

that is a function of the unknown conditional response.

Contrary to a fixed design RCT, a CARA RCT produces non-independent and non-

identically distributed observations, therein lie the subtleties in its theoretical study. Tradi-

tionally, covariate-adjusted analysis of a fixed design RCT is carried out using a parametric

model for the conditional response (or distribution) given treatment and covariates. Un-

der correct specification, the maximum likelihood estimator for this model is consistent

and asymptotically Gaussian. The extension of this non-robust inference to CARA RCTs

has been established and discussed in (Zhang, Hu, Cheung, and Chan, 2007) and (Hu and

Rosenberger, 2006). A recent development in the analysis of fixed design RCTs is the use

of doubly robust methods like the targeted minimum loss estimation (TMLE, van der Laan

and Rubin 2006) to obtain consistent, asymptotically Gaussian estimators under arbitrarily

mis-specified models (Moore and van der Laan, 2009, Rosenblum, 2011). A first exten-

sion of this robust inference to CARA RCTs has been proposed by Chambaz and van der

Laan (2013). They showed that, when the treatment assignment is conditioned only on a

discrete summary measure of the covariates, it is possible to derive a consistent and asymp-

totically Gaussian estimator of the study parameter which is robust to mis-specification of

an arbitrary parametric response model.

Despite the above developments, several gaps remain to be addressed to fully real-

ize the promise of CARA RCTs. We focus on two of them. Firstly, because the robust

inference provided by Chambaz and van der Laan (2013) relies on assigning treatment

based on discrete covariate summaries, its application is perhaps limited in real-life RCTs

where response to treatment may be correlated with a large number of a patient’s baseline

characteristics, some of which being continuous. Secondly, even though under robust in-

ference, the choice of the response model does not compromise consistent estimation of

the study parameter, it may still affect the estimation of the optimal randomization scheme.

Specifically, since the randomization scheme is response-adaptive, a more data-adaptive
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estimator of the conditional response model can more effectively steer the randomization

schemes towards the unknown optimal randomization scheme. Moreover, since a patient’s

primary response is often correlated with many individual characteristics, greater latitude

in adjusting for these baseline covariates, in both treatment assignment and conditional

response estimation, allows the investigators to better account for heterogeneity in the pa-

tients population. Traditional parametric regression techniques are often too restrictive in

such a high-dimensional scenario. While the use of data-adaptive techniques is very com-

mon in the independent and identically distributed (i.i.d.) context, its applicability in an

adaptive RCT remains rather uncharted.

In this article, we aim to bridge the two aforementioned gaps in the study of CARA

RCTs. Firstly, we achieve robust inference of the study parameter without restrictions on

the covariate measures used in the treatment randomization. Secondly, we adopt the use of

loss-based data-adaptive estimation over general classes of functions (which may change

with sample size) in constructing the treatment randomization schemes and in predict-

ing the unknown conditional response. This allows one to target general randomization

optimality criteria that may not have a closed form solution, and it may potentially im-

prove the estimation of the unknown optimal randomization schemes. We establish that,

under appropriate entropy conditions on the classes of functions, the resulting sequence

of randomization schemes converges to a fixed randomization scheme, and the proposed

estimator is consistent (even under a mis-specified response model), asymptotically Gaus-

sian, and gives rise to valid confidence intervals of given asymptotic levels. Moreover,

the limiting randomization scheme coincides with the unknown optimal randomization

scheme when, simultaneously, the response model is correctly specified and the optimal

randomization scheme belongs to the limit of the user-supplied classes of randomization

schemes. Our theoretical results benefit from recent advances in maximal inequalities for

martingales by van Handel (2011).

For concreteness, our parameter of interest here is the marginal risk difference, ψ0, and

our design objective is to maximize the efficiency of the study (i.e., to reach a valid result

using as few blocks of patients as possible). As we shall see, the optimal randomization

scheme is, in this case, the so-called covariate-adjusted Neyman design, which minimizes

the Cramér-Rao lower bound on the asymptotic variances of a large class of estimators of

ψ0. We emphasize that the results presented here are not limited to the marginal risk dif-

ference or the Neyman design, and can be easily modified to other study objectives/effect

measures and other design objectives/optimality criteria.

To illustrate the proposed framework, we consider the LASSO to estimate the condi-

tional response given treatment and baseline covariates and to target the unknown optimal

randomization scheme. This example essentially encompasses the parametric approach in

(Chambaz and van der Laan, 2013) as a special case. The asymptotic results ensue under

minimal conditions on the smoothness of the LASSO basis functions. The performance of
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the procedure is evaluated in a simulation study.

In the next section, we give a bird’s eye view of the literature on CARA RCTs and put

our contribution in context.

Literature review

Adaptive randomization has a long history that can be traced back to the 1930s. We re-

fer to (Rosenberger, 1996, Rosenberger, Sverdlov, and Hu, 2012), (Hu and Rosenberger,

2006, Section 1.2) and (Jennison and Turnbull, 2000, Section 17.4) for a comprehensive

historical perspective. Many articles are devoted to the study of response-adaptive ran-

domizations, which select current treatment probabilities based on responses of previous

patients (but not on the covariates of the current patients). We summarize some represen-

tative works below, but refer to (Hu and Rosenberger, 2006, Chambaz and van der Laan,

2011b, Rosenberger et al., 2012) for a bibliography on that topic. The first methods are

based on urn-models (e.g. Wei and Durham (1978), Ivanova (2003)). There, treatment

allocation is represented by drawing balls of different colors from an urn, and the urn

composition is updated based on accruing responses, with the ethical goal of assigning

most patients to the superior treatment arm. Since there is no formal criterion governing

how skewed the treatment allocation should be, significant loss of power can arise when

the effect size between treatment arms is large (Rosenberger and Hu, 2004). A formal

“optimal allocation approach” was proposed by Hu and Rosenberger (2003). There, an

optimal allocation is defined as a solution to a possibly constrained optimization problem,

such as minimizing sample size (yielding the so-called Neyman allocation), or minimizing

failure while preserving power. This optimal allocation is a function of unknown param-

eters of the conditional response, which are estimated using a parametric model based on

available responses. Consistency and asymptotic normality of the maximum likelihood

estimator for this model were established in Hu and Rosenberger (2006).

In a heterogeneous population where response is often correlated with the patient’s in-

dividual characteristics, covariates are often accounted for in treatment assignment. CARA

randomization extends response-adaptive randomization to tackle heterogeneity by dy-

namically calculating the allocation probabilities based on previous responses and current

and past values of certain covariates. Compared to the broader literature on response-

adaptive randomization, the advances in CARA randomization are relatively recent, but

growing steadily. Among the first approaches, (Rosenberger, Vidyashankar, and Agarwal,

2001, Bandyopadhyay and Biswas, 2001) considered allocations that are proportional to

the covariate-adjusted treatment difference, which is estimated using generalized linear

models for the conditional response. Though these procedures are not defined based on

formal optimality criteria, their general goal is to allocate more patients to their corre-

sponding superior treatment arm. Atkinson and Biswas (2005) presented a biased-coin
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design with skewed allocation, which is determined by sequentially maximizing a func-

tion that combines the variance of the parameter estimator, based on a Gaussian linear

model for the conditional response, and the conditional treatment effect given covariates.

Up till here, very little work had been devoted to asymptotic properties of CARA designs.

Subsequently, Zhang et al. (2007) established the asymptotic theory for CARA designs

converging to a given target covariate-adjusted allocation function when the conditional

responses follow a parametric model. Zhang and Hu (2009) proposed a covariate-adjusted

doubly-adaptive biased coin design whose asymptotic variance achieves the efficiency

bound. In these optimal allocation approaches, the challenge remains that the explicit

form of the target covariate-adjusted allocation function is not known. To overcome this,

it has often been derived as a covariate-adjusted version of the optimal allocation from

a framework with no covariates (Rosenberger et al., 2012). Chang and Park (2013) pro-

posed a sequential estimation of CARA designs under generalized linear models for the

conditional response. This procedure allocates treatment based on the patients’ baseline

covariates, accruing information and sequential estimates of the treatment effect. It uses

a stopping rule that depends on the observed Fisher information. With regard to hypothe-

ses testing, Shao, Yu, and Zhong (2010), Shao and Yu (2013) provided asymptotic results

for valid tests under generalized linear models for the conditional responses in the con-

text of covariate-adaptive randomization. Most recently, progress has also been made in

CARA designs in the longitudinal settings, see for example (Biswas, Bhattacharya, and

Park, 2014, Huang, Liu, and Hu, 2013, Sverdlov, Rosenberger, and Ryeznik, 2013).

The above contributions have established the validity of statistical inference for CARA

RCTs under a correctly specified model, thus extending many of the classical non-robust

inference methods from the fixed design setting into the CARA setting. Doubly robust

approaches like TMLE allow to go beyond correctly specified models by leveraging the

known treatment randomization to provide the necessary bias reduction over the mis-

specified response model. Moore and van der Laan (2009), Rosenblum (2011) address

the fixed design setting and Chambaz and van der Laan (2013) provide the first extension

to the adaptive design setting.

Finiteness conditions were at the core of (Zhang et al., 2007) (correctly specified para-

metric response model) and (Chambaz and van der Laan, 2013) (arbitrary parametric re-

sponse model and treatment assignment based on discrete covariates). They were instru-

mental in the asymptotic study based on Taylor approximations. Recent advances by van

Handel (2011) on maximal deviation bounds for martingales allow us to apply more gen-

eral empirical processes techniques, thus opening the door for the use of data-adaptive

estimators to target the optimal randomization scheme while preserving valid inference.

More specifically, we extend the robust inference framework of Chambaz and van der Laan

(2013) to allow for the use of general classes of conditional response estimators and ran-

domization schemes. Moreover, we adopt a loss-based approach to defining and targeting
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the optimal randomization scheme, thereby also extending applicability of CARA RCT to

optimal randomization criteria that may not have a closed form solution.

Organization of the article

The remainder of this article is organized as follows. Section 2.2 presents the statistical

challenges, and describes the proposed targeted, adaptive sampling scheme and inference

method to address them. The section also states our main assumptions and principal result.

Section 2.3 provides contextual comments for content of Section 2.2. Section 2.4 presents

the building blocks of the main result, therefore shedding light on the inner mechanism of

the procedure. Section 2.5 illustrates the procedure using the LASSO methodology both

to target the optimal randomization scheme and to estimate the conditional response given

baseline covariates and treatment. The performance of the LASSO-based CARA RCT is

assessed in a simulation study in Section 2.6. The article closes on a discussion in Section

2.7. All proofs and some useful, technical results are gathered in the appendix.

2.2 Targeted inference based on data adaptively drawn

from a CARA RCT using loss-based estimation

At sample size n, we will have observed the ordered vector On ≡ (O1, . . . ,On), with con-

vention O0 ≡ /0. For every 1 ≤ i ≤ n, the data structure Oi writes as Oi ≡ (Wi,Ai,Yi). Here,

Wi ∈ W consists of the baseline covariates (some of which may be continuous) of the ith

patient, Ai ∈ A ≡ {0,1} is the binary treatment of interest assigned to her, and Yi ∈ Y is

her primary response of interest. We assume that the outcome space O ≡ W ×A ×Y is

bounded. Without loss of generality, we may then assume that Y ≡ (0,1), i.e., that the

responses are between and bounded away from 0 and 1.

Section 2.2 presents the target statistical parameter and optimal randomization scheme.

It also lays out the foundations to describe the proposed CARA RCT. The description is

completed in Sections 2.2 and 2.2, where we present our adaptive sampling scheme and

targeted minimum loss estimator. Section 2.2 states our main assumptions and result.

Likelihood, model, statistical parameter, optimal randomization

scheme

Let µW be a measure on W equipped with a σ -field, µA = Dirac(0)+Dirac(1) be a mea-

sure on A equipped with its σ -field, and µY be the Lebesgue measure on Y equipped with

the Borel σ -field. Define µ ≡ µW ⊗ µA ⊗ µY , a measure on O equipped with the product



CHAPTER 2. TMLE FOR CARA RCT 10

of the above σ -fields. In an RCT, the unknown, true likelihood of On with respect to (wrt)

µ⊗n is given by the following factorization of the density of On wrt µ⊗n:

Lf0,gn
(On) ≡

n

∏
i=1

fW,0(Wi)× (Aigi(1|Wi)+(1−Ai)gi(0|Wi))× fY,0(Yi|Ai,Wi)

=
n

∏
i=1

fW,0(Wi)×gi(Ai|Wi)× fY,0(Yi|Ai,Wi), (2.1)

where (i) w 7→ fW,0(w) is the density wrt µW of a true, unknown law QW,0 on W (that we

assume being dominated by µW ), (ii) {y 7→ fY,0(y|a,w) : (a,w)∈A ×W } is the collection

of the conditional densities y 7→ fY,0(y|a,w) wrt µY of true, unknown laws on Y indexed

by (a,w) (that we assume being all dominated by µY ), (iii) gi(1|Wi) is the known (given

by user) conditional probability that Ai = 1 given Wi, and (iv) gn ≡ (g1, . . . ,gn), the or-

dered vector of the n first randomization schemes. One reads in (2.1) (i) that W1, . . . ,Wn

are independently sampled from QW,0, (ii) that Y1, . . . ,Yn are conditionally sampled from

fY,0(·|A1,W1)µY , . . . , fY,0(·|An,Wn)µY , respectively, and (iii) that each Ai is drawn condi-

tionally on Wi from the Bernoulli distribution with known parameter gi(1|Wi).
Let F be the semiparametric collection of all elements of the form

f = (fW , fY (·|a,w),(a,w) ∈ A ×W )

where fW is a density wrt µW and each fY (·|a,w) is a density wrt µY . In particular, we

define f0 ≡ (fW,0, fY,0(·|a,w),(a,w) ∈ A ×W ) ∈ F. In light of (2.1) define, for every

f ∈ F, Lf,gn
(On) ≡ ∏

n
i=1 fW (Wi)× gi(Ai|Wi)× fY (Yi|Ai,Wi). The set {Lf,gn

: f ∈ F} is a

semiparametric model for the likelihood of On. It contains the true, unknown likelihood

Lf0,gn
.

For the sake of illustration, we choose the marginal treatment effect on an additive

scale as our parameter of interest. Thus, let ϒ : F → [−1,1] be the mapping such that, for

every f = (fW , fY (·|a,w),(a,w) ∈ A ×W ),

ϒ(f) =
∫
(QY,f(1,w)−QY,f(0,w))fW (w)dµW , (2.2)

where QY,f(a,w) =
∫

yfY (y|a,w)dµY is the mean of fY (·|a,w)µY . The true marginal treat-

ment effect on an additive scale is ψ0 ≡ ϒ(f0). Of particular interest in medical, epidemi-

ological and social sciences research, it can be interpreted causally under assumptions on

the data-generating process (Pearl, 2000).

We have not specified yet what is precisely the sequence of randomization schemes

gn ≡ (g1, . . . ,gn). Our CARA sampling scheme “targets” a randomization scheme g0

which minimizes a user-supplied optimality criterion. By targeting g0 we mean estimating



CHAPTER 2. TMLE FOR CARA RCT 11

g0 based on past observations, and relying on the resulting estimator to collect the next

block of data, as seen in (2.1). For the sake of illustration, we consider the case that g0 is

the following minimizer

g0 ≡ argmin
g

EPQ0,g

((
Y −QY,f0

(A,W )
)2

g2(A|W )

)
(2.3)

across all randomization schemes g. We emphasize that the above definition of g0 involves

the unknown f0, so it is unknown too. We will comment on (2.3) and motivate our interest

in g0 in Section 2.3. As we shall see, g0 minimizes a generalized Cramér-Rao lower bound

for ψ0. Known in the literature as the Neyman design (Hu and Rosenberger, 2006), g0

actually has a closed-form expression as a function of f0. We do not use this closed-form

expression in order to illustrate the generality of our framework which allows to target any

randomization scheme defined as a minimizer of an optimality criterion.

Notation

Let O ≡ (W,A,Y ) be a generic data-structure. Every distribution of O consists of two com-

ponents: on the one hand, the marginal distribution of W and the conditional distribution

of Y given (A,W ), which correspond to a f ∈ F; on the other hand, the conditional distri-

bution of A given W , or randomization scheme. To reflect this dichotomy, we denote the

distribution of O as PQ,g, where Q equals the couple formed by the marginal distribution

of W and the conditional distribution of Y given (A,W ), and g equals the randomization

scheme. We denote Q0 the true couple Q in our population of interest, which corresponds

to f0 and is unknown to us. For a given Q, we denote QW the related marginal distribution

of W and QY the related conditional expectation of Y given (A,W ). If Q = Q0, then QW

and QY are denoted QW,0 and QY,0, respectively.

We denote G and QY the set of all randomization schemes and the set of all conditional

expectations of Y given (A,W ), respectively. Thus, for any Q and g, PQ0,g is the true,

partially unknown distribution of O when one relies on g, and EPQ,g(Y |A,W ) = QY (A,W ),
PQ,g(A = 1|W ) = g(1|W ) = 1−g(0|W ) PQ,g-almost surely.

With this notation, ψ0 can be rewritten

ψ0 =
∫
(QY,0(1,w)−QY,0(0,w))dQW,0(w)

and satisfies ψ0 = EPQ0,g
(QY,0(1,W )−QY,0(0,W )) whatever is g ∈ G .
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Loss functions and working models

Let gb ∈ G be the balanced randomization scheme wherein each arm is assigned with

probability 1/2 regardless of baseline covariates. Let gr ∈ G be a randomization scheme,

bounded away from 0 and 1 by choice, that serves as a reference. This can be simply be

the balanced scheme. In addition, let L be a loss function for QY,0 and Q1,n be a working

model for the conditional response

Q1,n ≡ {QY,β : β ∈ Bn} ⊂ QY .

These working models can be a series of LASSO models that increase with sample size n.

One choice of L is the quasi negative-log-likelihood loss function Lkl. For any QY ∈ QY

bounded away from 0 and 1, Lkl(QY ) satisfies

−Lkl(QY )(O)≡ Y log(QY (A,W ))+(1−Y ) log(1−QY (A,W )) . (2.4)

Another interesting loss function L for QY,0 is the least-square loss function Lls, given by

Lls(QY )(O)≡ (Y −QY (A,W ))2. (2.5)

Likewise, let LQY
be a loss function for g0, which may depend on QY ∈ QY , and let

G1,n ⊂ G be a working model for the optimal randomization scheme. These can be a series

of LASSO models that increase with sample size n. In this context, a loss function for g0

may be given, for any QY ∈ QY , by

LQY
(g)(O)≡ (Y −QY (A,W ))2

g(A|W )
. (2.6)

We explain the motivation and justification for this loss function in section 2.3.

As suggested by the notation, the sets Q1,n and G1,n may depend on n. In that case,

the two sequences of sets must be non-decreasing. Moreover, the specifications must

guarantee that the elements of Q1 ≡ ∪n≥1Q1,n and those of G1 ≡ ∪n≥1G1,n be uniformly

bounded away from 0 and 1.

Targeted adaptive sampling and inference

The estimation of g0 involves the estimation of QY,0. At each step, the current estimators

of QY,0 and g0 are also used to craft a targeted estimator of ψ0.

We initialize the sampling scheme by setting g1 ≡ gb. Consider 1 < i < n. Since

g0 = argmin
g∈G

EPQ0,g

(
LQY,0

(g)(O)

g(A|W )

)
and QY,0 = argmin

QY∈Q

EPQ0,g
(L(QY )(O)),
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we define

gi ∈ argmin
g∈G1,i

1

i−1

i−1

∑
j=1

LQY,βi
(g)(O j)

g j(A j|Wj)
, (2.7)

where

βi ∈ argmin
β∈Bi

1

i−1

i−1

∑
j=1

L(QY,β )(O j)
gr(A j|Wj)

g j(A j|Wj)
. (2.8)

These weights will play an important rule in establishing the convergence of the random-

ization schemes. The reference scheme in the numerator is necessary to obtain the con-

vergence of the outcome models before establishing the convergence of the randomization

schemes. By specifying the sequence of randomization schemes, this completes the defi-

nition of the likelihood function, hence the characterization of our sampling scheme.

To estimate ψ0 based on On, we introduce the following one-dimensional parametric

model for QY,0:

{
QY,βn

(ε)≡ expit
(
logit(QY,βn

)+ εH(gn)
)

: ε ∈ E
}
, (2.9)

where E ⊂ R is a closed, bounded interval containing 0 in its interior and H(g)(O) ≡
(2A− 1)/g(A|W ). The optimal fluctuation parameter is one that minimizes an empirical

risk

εn ∈ argmin
ε∈E

1

n

n

∑
i=1

Lkl(QY,βn
(ε))(Oi)

gn(Ai|Wi)

gi(Ai|Wi)
. (2.10)

We set Q∗
Y,βn

≡ QY,βn
(εn) and define

ψ∗
n ≡ 1

n

n

∑
i=1

Q∗
Y,βn

(1,Wi)−Q∗
Y,βn

(0,Wi). (2.11)

We show in Section 2.4 that ψ∗
n consistently estimates ψ0, and that

√
n/Σn(ψ

∗
n −ψ0)

is approximately standard normally distributed, where Σn is an explicit estimator (2.20).

This enables the construction of confidence intervals of desired asymptotic level. As for

the optimal randomization scheme g0, we show that it is targeted indeed, in the sense that

gn converges to the projection of g0 onto ∪n≥1G1,n. The assumptions under which our

results hold are typical of loss-based inference. They essentially concern the existence and

convergence of projections, as well as the complexity of our working models, expressed in

terms of bracketing numbers and integrals. In Section 2.5, we develop and study a specific

example based on the LASSO.
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Further notation

Consider a class F of real-valued functions and φ :R→R. If φ ◦ f is well-defined for each

f ∈ F , then we note φ(F ) ≡ {φ ◦ f : f ∈ F}. Set a semi-norm ‖ · ‖ on F and δ > 0.

We denote N(δ ,F ,‖ · ‖) the δ -bracketing number of F wrt ‖ · ‖ and J(δ ,F ,‖ · ‖) ≡∫ δ
0

√
logN(ε,F ,‖ · ‖)dε the corresponding bracketing integral at δ .

In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W )
is a deterministic function of g and O. Note that Z should be interpreted as a weight

associated with O and will be used as such. Therefore, we can augment O with Z, i.e.,

substitute (O,Z) for O, while still denoting (O,Z)∼ PQ0,g. In particular, during the course

of our trial, conditionally on Oi−1, the randomization scheme gi is known and we can

substitute (Oi,Zi) = (Oi,gi(Ai|Wi))∼ PQ0,gi
for Oi drawn from PQ0,gi

. The inverse weights

1/gi(Ai|Wi) are bounded because G1 is uniformly bounded away from 0 and 1.

The empirical distribution of On is denoted Pn. For a function f : O × [0,1] → R
d ,

we use the notation Pn f ≡ n−1 ∑
n
i=1 f (Oi,Zi). Likewise, for any fixed PQ,g ∈ M , PQ,g f ≡

EPQ,g( f (O,Z)) and, for each i = 1, . . . ,n, PQ0,gi
f ≡ EPQ0,gi

[ f (Oi,Zi)|Oi−1], and PQ0,gn
f ≡

n−1 ∑
n
i=1 EPQ0,gi

[ f (Oi,Zi)|Oi−1].

The supremum norm of a function f : O× [0,1]→R
d is denoted ‖ f‖∞. If d = 1 and f

is measurable, then the L2(PQ0,gr)-norm of f is given by ‖ f‖2
2,P2

Q0,g
r
≡ PQ0,gr f 2. If f is only

a function of W , then we denote ‖ f‖2,QW,0
its L2(PQ0,gr)-norm, to emphasize that it only

depends on the marginal distribution QW,0. With a slight abuse of notation, if f is only

a function of (A,W ), then ‖ f‖2
2,QW,0

is the L2(PQ0,gr)-norm of w 7→ f (1,w). In particular,

for QY ,Q
′
Y ∈ QY and g,g′ ∈ G , ‖QY −Q′

Y‖2
2,PQ0,g

r
= EPQ0,g

r (QY (A,W )−Q′
Y (A,W ))2

, and

‖g−g′‖2
2,QW,0

= EQW,0

(
(g(1|W )−g′(1|W ))2

)
.

Asymptotics

Our main result rely on the following assumptions.

A1. The conditional distribution of Y given (A,W ) under Q0 is not degenerated.

Existence and convergence of projections.

A2 For each n ≥ 1, there exists QY,βn,0
∈ Q1,n satisfying

PQ0,grL(QY,βn,0
) = inf

QY,β∈Q1,n

PQ0,grL(QY,β ).
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There also exists QY,β0
∈ Q1 such that, for all δ > 0,

PQ0,grL(QY,β0
)< inf{

QY∈Q1:‖QY−QY,β0
‖2,PQ0,g

r ≥δ
}PQ0,grL(QY ).

A3. For each n ≥ 1, there exists gn,0 ∈ G1,n satisfying

PQ0,grLQY,β0
(gn,0)/gr = inf

g∈G1,n

PQ0,grLQY,β0
(g)/gr. (2.12)

There also exists g∗0 ∈ G1 such that, for all δ > 0,

PQ0,grLQY,β0
(g∗0)/gr < inf{

g∈G1:‖g−g∗0‖2,QW,0
≥δ

}PQ0,grLQY,β0
(g)/gr. (2.13)

A4. Assume that QY,β0
from A2 and g∗0 from A3 exist. For each ε ∈ E , introduce

QY,β0
(ε)≡ expit

(
logit(QY,β0

)+ εH(g∗0)
)
, (2.14)

where H(g∗0)(O)≡ (2A−1)/g∗0(A|W ). Then, there is a unique ε0 ∈ E such that

ε0 ∈ argmin
ε∈E

PQ0,g
∗
0
Lkl(QY,β0

(ε)). (2.15)

Reasoned complexity.

A5. J(1,Q1,n,‖ · ‖2,PQ0,g
r ) = o(

√
n) and J(1,L(Q1,n),‖ · ‖2,PQ0,g

r ) = o(
√

n).

A5*. If {δn}n≥1 is a sequence of positive numbers, then δn = o(1) implies J(δn,Q1,n,‖ ·
‖2,PQ0,g

r ) = o(1).

A6. The entropy condition J(1,G1,n,‖ · ‖2,QW,0
) = o(

√
n) holds.

A6*. If {δn}n≥1 is a sequence of positive numbers, then δn = o(1) implies J(δn,Gn‖ ·
‖2,QW,0

) = o(1).

Theorem 2.1 (Asymptotic study of the targeted CARA RCT). Assume that A2, A3, A5 and

A6 are met. Then, the targeted CARA design converges in the sense that ‖gn−g∗0‖2,QW,0
→

0 in probability as n → ∞. If, in addition, A4 holds, then the TMLE ψ∗
n consistently

estimates ψ0. Moreover, if A1, A5* and A6* also hold, then
√

n/Σn(ψ
∗
n −ψ0) is approxi-

mately standard normally distributed, where Σn is the explicit estimator given in (2.20).

The last statement in the above theorem underpins the statistical analysis of the pro-

posed targeted CARA RCT. In particular, denoting ξ1−α/2 the (1−α/2)-quantile of the

standard normal distribution, the interval
[
ψ∗

n ±ξ1−α/2

√
Σn/n

]
is a confidence interval of

asymptotic level (1−α).
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2.3 Comments on Section 2.2

A closer look at the parameter of interest and the optimal

randomization scheme

Central to our approach is formulating ψ0 as the value at f0 of the mapping ϒ : F→ [−1,1]
given by (2.2). Let M denote the set of all possible distributions of O. Because we slightly

changed perspective and now think in terms of distributions PQ,g ∈ M instead of f ∈ F, it

is convenient to introduce the mapping Ψ : M → [−1,1] characterized by

Ψ(PQ,g)≡
∫
(QY (1,w)−QY (0,w))dQW (w) = EPQ,g (QY (1,W )−QY (0,W )) .

Since Ψ only depends on PQ,g through Q, we will now on systematically write Ψ(Q) in

place of Ψ(PQ,g) to alleviate notation.

The mapping Ψ is pathwise differentiable. Its efficient influence curve sheds light

on the asymptotic properties of all regular and asymptotically linear estimators of ψ0 =
Ψ(Q0). The latter statement is formalized in the following lemma —we refer the reader

to (Bickel, Klaassen, Ritov, and Wellner, 1998, van der Laan and Robins, 2003, van der

Vaart, 1998) for definitions and proofs.

Lemma 2.1. The mapping Ψ : M → [−1,1] is pathwise differentiable at every PQ,g ∈ M

wrt the maximal tangent space. Its efficient influence curve at PQ,g, denoted D(PQ,g),
orthogonally decomposes as D(PQ,g)(O) = DW (Q)(W )+DY (QY ,g)(O) with

DW (Q)(W ) ≡ QY (1,W )−QY (0,W )−Ψ(Q),

DY (QY ,g)(O) ≡ 2A−1

g(A|W )
(Y −QY (A,W )) .

The variance VarPQ,g(D(P)(O)) is a generalized Cramér-Rao lower bound for the asymp-

totic variance of any regular and asymptotically linear estimator of Ψ(Q) when sampling

independently from PQ,g.

Moreover, if either QY = Q′
Y or g = g′ then EPQ,g(D(PQ′,g′)(O)) = 0 implies Ψ(Q) =

Ψ(Q′).

The last statement of Lemma 2.1, often referred to as a “double-robustness” property,

assures that D can be deployed to safeguard against model mis-specifications when esti-

mating ψ0. This is especially relevant in an RCT setting, since the randomization scheme

g is known whenever one samples an observation from PQ,g.
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By Lemma 2.1, the asymptotic variance of a regular, asymptotically linear estimator

under independent sampling from PQ0,g is lower-bounded by

min
g∈G

VarPQ0,g
(D(PQ0,g)(O)) = min

g∈G
EPQ0,g

(
(Y −QY,0(A,W ))2

g2(A|W )

)
.

In this light, targeting g0 defined by (2.3) means that the goal of adaptation is to reach

a randomization scheme of higher efficiency, i.e., to obtain a valid estimate of ψ0 using

as few blocks of patients as possible. As mentioned in section 2.2 , though not used in

our approach, g0 actually has a closed form expression g0(1|W ) = σ0(1,W )/(σ0(1,W )+
σ0(0,W )), where σ2

0 (A,W ) is the conditional variance of Y given (A,W ) under Q0. Under

this randomization scheme, the treatment arm with higher probability for a patient with

baseline covariates W is the one for which the conditional variance of the response is

higher.

On the data-adaptive loss-based estimation of QY,0

The reference randomization scheme gr offers the opportunity to differentially weight each

observation in (2.8). This action impacts the convergence of QY,βn
and thus that of gn, as

seen in Sections 2.2 and 2.2 (the limit g∗0 depends on gr).

As we already emphasized, the working model Q1,n may depend on sample size n. If

it does, then the sequence of working models must be non-decreasing and Q1 ≡∪n≥1Q1,n

can be interpreted as the limiting working model for QY,0. We would typically recommend

to start with Q1 = . . . = Qn0
all equal to a small set, with a user-supplied, deterministic

n0, then to let the complexity grow with n. It is known, however, that such a growth

must remain tethered. Assumptions A5 and A5* provide appropriate conditions on the

complexity of Q1,n. We refer to Section 2.3 for a discussion of their meaning.

The combined choice of loss function L and working model Q1,n determines the tech-

nique used to estimate QY,0. For instance, in the traditional parametric approach, the

working model Q1,n does not depend on n and is indexed by a fixed, finite-dimensional

parameter set. Under the LASSO methodology, which we carefully describe and study in

Section 2.5, logit(Q1,n) is the linear span of a given basis, with constraints on the linear

combinations imposed through the definition of Bn.

On the data-adaptive loss-based estimation of g0

The optimal randomization scheme g0 is defined as a minimizer of a certain criterion over

the class G of all randomization schemes, see (2.3). Thus, our loss-based estimation of

g0 based on On consists of defining gn+1 as the minimizer in g of an estimator of the
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optimality criterion over the user-supplied class of randomization schemes G1,n, see (2.7)

and the next paragraph. This approach is applicable in the largest generality. Alternatively,

if W is discrete, then g0 takes finitely many values and gn+1 can be defined explicitly based

on QY,βn
and On. This is also the case if one is willing to assign treatment only based on

a discrete summary measure V of W . In this context, g0 is defined as in (2.3), where the

argmin is over the subset of G consisting of those randomization schemes which depend

on W only through V . We refer the readers to (Chambaz and van der Laan, 2013) for

details. Note that assigning treatment based on such summary measures is perhaps too

restrictive in real-life RCTs where response to treatment may be correlated with a large

number of a patient’s baseline characteristics, some of which being continuous.

We now turn to the joint justification of (2.6) and (2.7). The key point is the following

equality, valid for every g′ ∈ G :

g0 = argmin
g∈G

EPQ0,g
′

(
(Y −QY,0(A,W ))2

g(A|W )g′(A|W )

)
. (2.16)

Equality (2.16) tells us that g0 can be estimated using observations drawn from PQ0,g′ based

on the loss function LQY
provided it is weighted by 1/g′. Our observations O1, . . . ,On are

drawn from PQ0,g1
, . . . ,PQ0,gn

, respectively. In this light, (2.16) also validates (2.7). At each

step of our modification, we are given a data-generating scheme g′, and if we were also

given QY,0, what would be the optimal randomization scheme. Therefore, an estimator

(subsequent randomization) that targets this g0 using observations generated by g1, . . . ,gn

would give us a step closer to g0.

Like Q1,n, the working model G1,n ⊂ G may depend on sample size n. If it does,

then the sequence must be non-decreasing and G1 ≡ ∪n≥1G1,n can be interpreted as the

limiting working model for g0. The additional constraint that G1 be uniformly bounded

away from 0 and 1 is important. It implies the following pivotal property: no mat-

ter how gr ∈ G is chosen in Section 2.2, there exists some constant κ > 0, such that

max(‖gr/g‖∞ ,‖g/gr‖∞) ≤ κ , for all g ∈ G1. For ease of reference, we call it the domi-

nated ratio property of G1.

Using a fixed working model for g0, i.e., setting G1 = G1,n for every n ≥ 1, is a valuable

option. However, in some situations, e.g. if the population is very heterogeneous, using

a fixed, large working model G1 may delay, sample size-wise, the adaptation, thereby

depriving the trial of the advantages of an adaptive design. By allowing G1,n to depend on

n, one gains the flexibility to enrich the working model for g0 according to the modesty

or generosity of the sample size. Similar to what we suggested for Q1,n in Section 2.3,

we would recommend to start with G1 = . . . = Gn0
all equal to a small set, typically the

singleton {gb}, then to let the complexity of G1,n augment with n, though not too abruptly.

Assumptions A6 and A6* provide appropriate conditions on the complexity of G1,n. We
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refer to Section 2.3 for a discussion of their meaning. The assumptions are mild, and allow

us to use the LASSO to target the optimal randomization scheme g0, just like we can use

the LASSO to estimate QY,0, see Section 2.5.

On targeted minimum loss estimation

The conception of ψ∗
n defined in (2.11) follows the paradigm of targeted minimum loss

estimation. In the setting of a covariate-adjusted RCT with a fixed design and a fixed

working model Q1, a TMLE estimator is unbiased and asymptotically Gaussian regardless

of the specification of Q1. Chambaz and van der Laan (2013) show that unbiasedness and

asymptotic normality still hold in a framework very similar to that of the present article

when the randomization schemes depend on W only through a summary measure taking

finitely many values and when Q1 is a simple linear model. Such a configuration can be

obtained as a particular case of the example developed in Section 2.5.

Although using a mis-specified parametric working model Q1 for QY,0 does not hinder

the consistency of the estimator of ψ0, it may affect its efficiency and the convergence of

the CARA design to the targeted optimal design. By relying on more flexible randomiza-

tion schemes and on more adaptive estimators of QY,0, we may better adapt to the optimal

randomization scheme g0 through better variable adjustments and the targeted construc-

tion of the instrumental loss function LQY
. Because g0 is the Neyman design, our approach

yields greater efficiency through better variable adjustments and more accurate estimation

of the variance of the estimator.

Consider now (2.9) and (2.11). The model (2.9) goes through QY,βn
at ε = 0 and satis-

fies the score condition ∂
∂ε Lkl(QY,βn

(ε))|ε=0 =DY (QY,βn
,gn). If we set Q∗

βn
≡ (QW,n,Q

∗
Y,βn

),

where QW,n is the empirical marginal distribution of W , then ψ∗
n = Ψ(Q∗

βn
), assuring that

ψ∗
n is indeed a substitution estimator of ψ0 = Ψ(Q0). The use of substitution principle

allows one to preserve global information embedded in the parameter map, such as the

bounds of the parameter space, and this may provide further finite sample gain, though

would not make a difference in asymptotic behavior.

On the assumptions

Assumption A2 stipulates the existence of a projection QY,βn,0
of QY,0 onto every working

model Q1,n. In other words, on every working model, there is a limiting function minimiz-

ing the true risk within this model. In particular, one does not assume that these working

models converge to the unknown true response model QY,0. It may depend on the user-

supplied reference randomization scheme gr. If QY,0 ∈ Q1, i.e., if Q0 is well-specified,

then the existence of QY,β0
= QY,0 is granted. If QY,0 6∈ Q1, i.e., if Q1 is mis-specified,
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then A2 also stipulates the existence of a projection QY,β0
of QY,0 onto Q1. It may also

depend on gr.

Similar comments apply to A3. Note that each gn,0 and the limiting randomization

scheme g∗0 depend on gr only through QY,β0
: replacing gr with any arbitrarily chosen

g ∈ G in (2.12) or (2.13) does not alter the values of gn,0 and g∗0. Furthermore, (2.6) and

(2.13) yield that

g∗0 = argmin
g∈G1

{
VarPQ0,g

(DY (QY,0,g)(O))+PQ0,g

(
QY,0 −QY,β0

)2

g2

}
.

This shows that if QY,β0
= QY,0 and g0 ∈ G1, then g∗0 = g0, the optimal randomization

scheme. In general, g∗0 minimizes an objective function which is the sum of the Cramér-

Rao lower bound and a second-order residual. This underscores the motivation for using

a flexible estimator in estimating QY,0: by minimizing the second-order residual, we get

closer to adapting towards the desired optimal randomization criterion.

Recall that QY,βn
is characterized by (2.8) and that QW,n is the empirical marginal

distribution of W . Heuristically, if the equality QY,β0
= QY,0 holds then one should be able

to prove that Ψ((QW,n,QY,βn
)) is a consistent estimator of ψ0. Since QY,β0

= QY,0 also

yields that ε0 = 0 is the unique solution to (2.15) in A5, one understands that updating

QY,βn
to Q∗

Y,βn
≡ QY,βn

(εn) and Ψ((QW,n,QY,βn
)) to ψ∗

n as described in (2.10) and (2.11)

should preserve the consistency in the initially well-specified framework. In the more

likely situation where Q1 is mis-specified, hence QY,β0
6= QY,0 and ε0 6= 0, there is no

reason to believe that Ψ((QW,n,QY,βn
)) should be a consistent estimator of ψ0. In this

light, the updating procedure bends the inconsistent initial estimator into a consistent one

by drawing advantage from the double-robustness of D that we presented in Lemma 2.1.

In Sections 2.3 and 2.3, we commented on the interest of letting the working models

Q1,n and G1,n depend on sample size n. Assumptions A5 and A6 put very mild constraints

on how the complexities of the working models should evolve with n to guarantee the con-

vergence of gn and consistency of ψ∗
n . The constraints are expressed in terms of bracketing

integral. We refer the reader to (van der Vaart, 1998, Examples 19.7-19.11, Lemma 19.15)

for typical examples. They include “well-behaved” parametric and Vapnik-Cervonenkis

(VC) classes. Assumptions A5* and A6* should be interpreted as more stringent condi-

tions imposed upon Q1,n and G1,n. Indeed, for instance,

J(1,G1,n,‖ · ‖2,QW,0
)/
√

n ≤ J(1/
√

n,G1,n,‖ · ‖2,QW,0
)

because the entropy with bracketing is non-increasing, so that A6* does imply A6 (take

δn = 1/
√

n). The need for more stringent conditions arises when studying the convergence

in law of ψ∗
n .
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2.4 Building blocks of Theorem 2.1

We now carry out the theoretical study of the targeted CARA design and its corresponding

estimator described in Section 2.2. All proofs are relegated to Section 2.8.

We first focus on the convergence of the estimators QY,βn
. The counterpart to this result

in the i.i.d. setting is well established (Pollard, 1984, van der Vaart, 1998, among others).

The following proposition revises those results for the current statistical setting.

Proposition 2.1 (convergence of QY,βn
). Under A2, A5,

∥∥QY,βn
−QY,β0

∥∥
2,PQ0,g

r
→ 0 in

probability as n → ∞.

We now turn to the convergence of the sequence of randomization schemes.

Proposition 2.2 (convergence of the targeted CARA design). Under A2, A3, A5 and A6,

it holds that ‖gn −g∗0‖2,QW,0
→ 0 in probability as n → ∞.

The following corollary of Proposition 2.2 will also prove useful.

Corollary 2.1. Assume the setting of Proposition 2.2.

It also holds that ‖gn − g∗0‖2,QW,0
→ 0 in L1 as n → ∞, and that

∥∥1/gn −1/g∗0
∥∥

2,QW,0
,∥∥n−1 ∑

n
i=1 gi −g∗0

∥∥
2,QW,0

, and
∥∥n−1 ∑

n
i=1 1/gi −1/g∗0

∥∥
2,QW,0

converge to 0 in probability

and in L1 as n → ∞.

At this stage, the consistency of ψ∗
n can be established. The proof relies on the con-

vergence of Q∗
Y,βn

to a limiting conditional distribution, which is a fluctuation of the limit

QY,β0
of QY,βn

, see Proposition 2.1.

Proposition 2.3 (consistency of ψ∗
n ). Suppose that A2, A3, A4, A5 and A6 are met. Define

Q∗
Y,β0

≡ expit
(
logit(QY,β0

)+ ε0H(g∗0)
)
, (2.17)

with H(g∗0)(O) ≡ (2A − 1)/g∗0(A|W ) and Q∗
β0

≡ (QW,0,Q
∗
Y,β0

). It holds that ‖Q∗
Y,βn

−
Q∗

Y,β0
‖2,PQ0,g

r → 0 in probability as n → ∞. Moreover, Ψ(Q∗
β0
) = ψ0 and ψ∗

n consistently

estimates ψ0.

We need further notation to state our last building block. For both β = β0 and β = βn,

introduce d∗
Y,β given by

d∗
Y,β (O,Z)≡ 2A−1

Z

(
Y −Q∗

Y,β (A,W )
)
. (2.18)
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Define also

Σ0 ≡ PQ0,g
∗
0

(
d∗

Y,β0
+DW (Q∗

β0
)
)2

= PQ0,g
∗
0

(
D(PQ∗

β0
,g∗0)
)2

, (2.19)

Σn ≡ 1

n

n

∑
i=1

(
d∗

Y,βn
(Oi,Zi)+DW (Q∗

βn
)(Wi)

)2

, (2.20)

where we recall that Q∗
βn

≡ (QW,n,Q
∗
Y,βn

).

Proposition 2.4 (asymptotic linearity and central limit theorem for ψ∗
n ). Assume that A1–

A6* are met. Then Σn = Σ0 +oP(1) with Σ0 > 0, and

ψ∗
n −ψ0 =

(
Pn −PQ0,gn

)(
d∗

Y,β0
+DW (Q∗

β0
)
)
+oP(1/

√
n). (2.21)

Moreover,
√

Σn/n(ψ∗
n −ψ0) converges in law to the standard normal distribution.

Equality (2.21) is an asymptotic linear expansion of ψ∗
n under our targeted, adaptive

sampling scheme. It is the key to the central limit theorem for
√

n(ψ∗
n −ψ0). It is important

to note that this expansion does not rely on consistent estimation of QY,0, as we shall see

in the derivations.

2.5 Example: targeted LASSO-based CARA RCT

In Sections 2.2, 2.3 and 2.4, we have presented a general framework for constructing and

analyzing CARA RCTs using data-adaptive loss-based estimators for the nuisance param-

eters, coupled with the TMLE methodology to estimate the study parameter of interest.

As described in Section 2.1, high-dimensional settings are increasingly common in clini-

cal trials working with heterogeneous populations. A popular device in high-dimensional

statistics, due to its computational feasibility and amenability to theoretical study, is the

LASSO methodology. In a nutshell, the LASSO is a shrinkage and selection method for

generalized regression models that optimizes a loss function of the regression coefficients

subject to constraint on the L1 norm. It was introduced by Tibshirani (1996) for obtaining

estimators with fewer nonzero parameter values, thus effectively reducing the number of

variables upon which the given solution is dependent. In this section, we illustrate the

application of the proposed framework using the LASSO to estimate the conditional re-

sponse and the optimal randomization scheme. The methodology introduced in Chambaz

and van der Laan (2013) is a special case of this targeted LASSO-based CARA RCT.

For simplicity, we assume that all components of W are continuous. With a little extra

work, discrete components could be handled as A is handled in (2.23).
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Let ℓ1 ≡{β ∈R
N : ∑ j∈N |β j|<∞}. Consider {bn}n≥1, {b′n}n≥1, {dn}n≥1, and {d′

n}n≥1

four non-decreasing, possibly unbounded sequences over R+ and, for some M,M′ > 0 and

every n ≥ 1, introduce the sets

Bn ≡
{

β ∈ ℓ1 : ‖β‖1 ≤ min(bn,M) and ∀ j > dn, β j = 0
}

(2.22)

and B′
n defined like Bn with b′n, d′

n and M′ substituted for bn, dn, and M, respectively.

Let
{

φ j : j ∈ N
}

be a uniformly bounded set of functions from W to R. Without loss of

generality, we may assume that ‖φ j‖∞ = 1 for all j ∈N. By choice, the functions φ j ( j ∈N)

share a common bounded support W , and all belong to the class of sufficiently smooth

functions, in the sense that there exists α > dim(W )/2 such that all partial derivatives up to

order α of all φ j exist and are uniformly bounded (see van der Vaart, 1998, Example 19.9).

For each β and ω ∈ ℓ1, we denote QY,β : A ×W → R and γω : A ×W → R the

functions characterized by

QY,β (A,W ) ≡ expit

(

∑
j∈N

(
β 2 jA+β 2 j+1(1−A)

)
φ j(W )

)
, (2.23)

γω(1|W ) = 1− γω(0|W ) ≡ expit

(

∑
j∈N

ω jφ j(W )

)
.

The LASSO-based CARA RCT design corresponds to a special choice of working

models {Q1,n}n≥1, {G1,n}n≥1, and loss function L for QY,0. We take Q1,n ≡ {QY,β :

β ∈ Bn} with M a deterministic upper-bound on | logit(Y )| and the quasi negative-log-

likelihood loss function L = Lkl (2.4). Note that the elements of Q1 ≡ ∪n≥1Q1,n are

uniformly bounded away from 0 and 1. We also take G1,n ≡ {γω : ω ∈ B′
n}. The elements

of G1 ≡ ∪n≥1G1,n are randomization schemes uniformly bounded away from 0 and 1 by

expit(−M′) and expit(M′), respectively (M′ ≃ 4.6 provides the lower- and upper-bounds

0.01 and 0.99).

Based on On, we estimate QY,0 with QY,βn+1
, where βn+1 is given in (2.8) (set i = n+1

in the formula). Then we target g0 with gn+1 given in (2.7) (set i = n+1 in the formula),

i.e.

gn+1 ∈ argmin
ω∈B′

n

1

n

n

∑
i=1

LQY,βn
(γω)(O j)

g j(A j|Wj)
. (2.24)

The minimization (2.8) with the constraint ‖β‖1 ≤min(bn,M), see (2.22), can be rewritten

as a minimization free of the latter constraint by adding a term of the form λn‖β‖1 to the

empirical criterion, where λn depends on bn. Note that when dn or d′
n is held constant

and M or M′ is infinite by choice, then (2.8) or (2.24) should be interpreted as a standard

parametric procedure rather than as a LASSO.

Theorem 2.1 has the following corollary.
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Corollary 2.2 (asymptotic study of the targeted LASSO-based CARA RCT). Assume that

A1, A2, A3, and A4 are met. Then, the targeted LASSO-based CARA design converges

in the sense that ‖gn − g∗0‖2,QW,0
→ 0 in probability as n → ∞. Moreover, the TMLE ψ∗

n

consistently estimates ψ0, and
√

n/Σn(ψ
∗
n −ψ0) is approximately standard normally dis-

tributed, where Σn is the explicit estimator given in (2.20).

The conditions on the L1 norms and dimensions (bn,b
′
n,dn,d

′
n) are in the assumptions

on existence of the limits of the estimators. Beyond that, we only require that the basis

functions be smooth. This corollary teaches us with minimal conditions on the smooth-

ness of the basis functions, the targeted LASSO-based CARA RCT produces a convergent

design and a consistent and asymptotically Gaussian estimator for the study parameter.

2.6 Simulation study

In this section, we exemplify the theoretical results from the previous sections with a brief

simulation study. Specifically, we wish to (i) illustrate the robustness of the proposed

TMLE estimator for the study parameter ψ0, under possibly grossly mis-specified con-

ditional response models, (ii) show the use of data-adaptive LASSO estimators to learn

the conditional response in the construction and analysis of the targeted CARA RCT, and

(iii) evaluate the performances of the different strategies. The simulation study is con-

ducted using R (R Core Team, 2014).

Data-generating distribution

Under Q0, W = (U,V,Z1, . . . ,Z20) consists of 22 independent random variables, where

U,Z1, . . . ,Z20 are all uniformly distributed on [0,1], and V ∈ {1,2,3} is such that V = 1,

V = 2 and V = 3 with probabilities 1/2, 1/3, and 1/6, respectively. Moreover, under Q0

and conditionally on (A,W ), Y is drawn from the Gamma distribution with conditional

mean

QY,0(A,W )≡ 2AV +(1−A)V/2

and conditional variance

σ2
0 (A,W )≡

(
AV

3(1+Z1)
+

4(1−A)

3(1+Z1)

)2

.

It is easy to check that ψ0 = 2.5 and that the optimal randomization scheme g0 is given by

g0(1|W )≡V/(4+V ).
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Loss functions and working models

To simplify the language, we refer to a model that accounts for the relevant covariates as

a correctly specified model, even though the functional form may not be correct.

Estimation of the conditional response

Because Y is continuous and unbounded, we perform a linear transformation before the

estimation procedures to scale Y within (0,1), then apply the reverse transformation to the

final TMLE estimate of ψ0 and the corresponding variance estimates. We use the quasi

negative-log-likelihood loss function Lkl given by (2.4).

At sample size n, we consider two working models Q1,n for the conditional response.

One is the following mis-specified logistic regression model:

Q
p
1,n ≡

{
Q

p

Y,β (A,W )≡ expit(β1A+β2U) : β ∈ R
2
}
.

Contrary to what the notation suggests, it does not change as the sample size grows. It is

fitted using the glm function in R with the weights as given in (2.8). Note that the model

fails to take into account the covariate V which drives the response in the underlying data-

generating process. The second one, denoted Qℓ
1,n, is a LASSO logistic working model.

Let dn ≡ min(20,⌊√n/4⌋). If n is such that dn ≤ 5, then Qℓ
1,n consists of

Qℓ
Y,β (A,W )≡ expit

(
β (A,U,Z1, . . . ,Zdn

,AU,AZ1, . . . ,AZdn
)⊤
)

(all β ∈ Bn ≡ R
2dn+3).

If n is such that dn > 5, then Qℓ
1,n consists of

Qℓ
Y,β (A,W )≡ expit

(
β (A,U,V,Z1, . . . ,Zdn

,AU,AV,AZ1, . . . ,AZdn
)⊤
)

(all β ∈ Bn ≡ R
2dn+5).

The resulting sequence of working models is non-decreasing in sample size. The models

is fitted using the cv.glmnet function from the package glmnet (Friedman, Hastie, and

Tibshirani, 2010), with weights given in (2.8) and the option "lambda.1se".

Estimation of the optimal randomization scheme g0

We also consider two working models G1,n = G1 for the optimal randomization scheme.

The first one, denoted G m
1 , is a mis-specified logistic model given by

gm
β (A = 1 |W )≡ expit(β0 +β1U) (all β ∈ R

2).

The second one, denoted G c
1 , is a correctly specified logistic model given by

gc
β (A = 1 |W )≡ expit(β0 +β1U +β2V ) (all β ∈ R

3).
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The models are fitted using numerical methods to optimize the user-chosen adaptation cri-

terion in (2.6). We implement this fitting using the optim function with a quasi-Newton

method (method="BFGS"). To satisfy the boundedness conditions, the resulting probabil-

ity estimates are pre-specified to be truncated to lie within [0.05,0.95]. However, in the

actual simulation runs, all estimates lying comfortably within this interval, and hence no

truncation took place.

Study designs

For each pair of working models for the conditional response and for the optimal random-

ization scheme, we construct a CARA RCT by initializing at a sample size of n = 300, and

then sequentially recruiting patients in blocks of size 200, up to n = 3100. For the initial

sample of n = 300, treatment is randomly assigned based on the balanced randomization

scheme gb. Subsequently, given n observations, we estimate the conditional response and

use this to construct the treatment randomization scheme gn+1 used for the next block of

200 patients. We also use this conditional response estimate and the sequence of random-

ization schemes used so far to obtain a TMLE estimate ψ∗
n of ψ0.

In addition to these CARA RCTs, we also consider a fixed design RCT with treatment

randomly assigned based on the balanced randomization scheme gb. We obtain the corre-

sponding TMLE estimates by fluctuating the initial conditional response estimates based

on the logistic model {Q
p

Y,β : β ∈ R
2}.

Results

For each trial design proposed in Section 2.6, we run 500 independent simulated trials.

Three figures summarize the results of the simulation study. Each of them consists of

two similar graphics, the LHS graphic corresponding to the simulated trials based on the

mis-specified model G m
1 for the optimal randomization scheme, and the RHS graphic to

the simulated trials based on the correctly specified model G c
1 . The subtitles “A~U” and

“A~U+V” are the R formulas that encode for G m
1 and G c

1 , respectively.

Figure 2.1 depicts the performance of ψ∗
n in terms of bias (first row), sample vari-

ance (second row) and mean squared error (MSE, third row). We note that, despite the

mis-specified response models, all TMLE estimators are consistent for the treatment ef-

fect parameter ψ0. It appears that the LASSO-based estimator may converge at a faster

rate. This may be due to its increased efficiency (i.e., smaller sample variance) and more

aggressive bias reduction. Recall that the optimality criterion for our adaptive randomiza-

tion aims at maximizing efficiency of the trial through the minimization of the asymptotic

variance of the estimators. The increased efficiency of the LASSO-based CARA RCT,

despite a larger working model for the conditional response (increasing with sample size),
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suggests that a flexible data-adaptive response model coupled with CARA design could

indeed better achieve the optimality criterion, compared to a CARA design based on a

parametric response model, at least in situations where the parametric model fails to ac-

count for important confounding variables. We also note that, under the data-generating

process described in Section 2.6, the working model for the optimal randomization scheme

has little effect on the efficiency of the TMLE estimators. Yet, comparing the LHS and

RHS graphics in Figure 2.1 suggests that G m
1 , the smaller, mis-specified model for the op-

timal randomization scheme allows for slightly more aggressive bias reduction at smaller

sample sizes than G c
1 , its larger, correctly specified counterpart.

Let us turn now to the coverage of our CLT-based, 95%-confidence intervals (CIs).

The empirical coverage probabilities are depicted in Figure 2.2. On the one hand, we see

that the empirical coverages are often below the nominal coverage when using the mis-

specified working model G m
1 for the optimal randomization scheme and either Q

p
1,n or Qℓ

1,n
as working models for the conditional response (LHS graphic in Figure 2.2). On the other

hand, the coverage improves drastically when using the correctly specified working model

G c
1 for the optimal randomization scheme and either Q

p
1,n or Qℓ

1,n as working models for

the conditional response (RHS graphic in Figure 2.2). For a more precise assessment, we

frame the coverage evaluation in terms of hypotheses testing. For a given design (and its

resulting CLT-based CIs) and at each intermediate sample size n, let C be the number of

times in the 500 simulations when the CI covers the parameter of interest ψ0. The random

variable C is distributed from the Binomial distribution with parameter (500,π). For a

given significance level 0 < α < 1, introduce the null hypotheses H1−α
0 : “π ≥ 1−α”

and its one-sided alternative H1−α
1 : “π < 1−α”. We perform one-sided tests of H1−α

0

against H1−α
1 and display the p-values for α = 5% (Figure 2.3, first row) and α = 6%

(Figure 2.3, second row). On the one hand, the LHS graphic in Figure 2.3 reveals that

95% coverage is often not guaranteed when using the mis-specified working model G m
1,n

for the optimal randomization scheme and either Q
p
1,n or Qℓ

1,n as working models for the

conditional response, but also that 94% coverage cannot be ruled out. On the other hand,

the RHS graphic in Figure 2.3 suggests that 95% coverage cannot be ruled out when using

the correctly specified model G c
1,n for the optimal randomization scheme and either Q

p
1,n

or Qℓ
1,n as working models for the conditional response.

2.7 Discussion

We have presented in this article a new group-sequential CARA RCT design and cor-

responding analytical procedure that admits the use of flexible data-adaptive techniques.

The proposed method extends the work of Chambaz and van der Laan (2013) by provid-
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ing robust inference of the study parameter under the most general settings. Our frame-

work adopts a loss-based approach in estimating the optimal randomization scheme, and

hence can target general optimality criteria that may not have a closed-form solutions.

Moreover, our use of loss-based data-adaptive estimation over general classes of functions

(which may change with sample size), both in constructing the treatment randomization

schemes and in predicting the unknown conditional response, may potentially improve the

randomization adaptation towards the optimality criterion.

The covariate adjustments take place in the estimation of the response, which has an

effect in both constructing the randomization schemes, each depends on covariates through

these outcome estimators, and in the estimation of the effect parameter itself, which di-

rectly uses the response estimator. Therefore adjustments can contribute to efficiency of

the estimator in two folds: accounting for modifiers of the treatment effect during treat-

ment assignment, as well as moving towards a consistent estimator of the response and

hence achieving the efficiency bound.

We established that, under appropriate entropy conditions on the classes of functions,

the resulting sequence of randomization schemes converges to a fixed scheme, and the pro-

posed treatment effect estimator is consistent (even under a mis-specified response model),

asymptotically Gaussian, giving rise to valid confidence intervals of given asymptotic lev-

els. Moreover, the limiting randomization scheme coincides with the unknown optimal

randomization scheme when, simultaneously, the response model is correctly specified

and the optimal randomization scheme belongs to the limit of the user-supplied classes

of randomization schemes. We illustrated the applicability of these general theoretical re-

sults with a LASSO-based CARA RCT. In this example, both the response model and the

optimal treatment randomization are estimated using a sequence of LASSO logistic mod-

els that may increase with sample size. It follows immediately from our general theorems

that this LASSO-based CARA RCT converges to a fixed randomization scheme and yields

consistent and asymptotically Gaussian effect estimates, under minimal conditions on the

smoothness of the basis functions in the LASSO logistic models.

We conducted a simulation study to evaluate the performance of the proposed meth-

ods. It confirmed the robustness of the TMLE estimators under mis-specified response

models. Coverage of the CLT-based confidence intervals are assessed through by hypothe-

ses testing. Overall there is no evidence (across 500 independent simulations) that the

95%-confidence intervals would have coverages that are less than 94%. In addition, we

do observe improved coverage when using the correct working model for the optimal ran-

domization scheme. In this work, we have provided an empirical assessment of the Type

1 error rate, but that is not often done in simulation studies on estimators of novel exper-

iment designs. As preserving Type 1 error rate is a strong emphasis for many regulatory

bodies, a more thorough simulation study should be performed to assess the empirical

coverage of the proposed, as well as other traditional designs, under various experimen-
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tal conditions. In this simulation study, the increased efficiency of CARA design with a

LASSO-based response model, compared to the CARA (or balanced) design with a para-

metric response model, demonstrates that the use of data-adaptive response models can

indeed more effectively steer the adaptation towards the optimality criterion (which was

chosen to be efficiency in our example). More comprehensive empirical studies are needed

to generalize these facts to other simulation scenarios.

We will soon make available a R package to allow interested readers to test the pro-

cedure. In the future, we will also consider alternative strategies to randomly assign suc-

cessive patients to the treatment arms in such a way that the overall empirical conditional

distribution of treatment given baseline covariates be as close as possible to the current

best estimator of the targeted optimal randomization scheme. This will require both new

theoretical developments and simulation studies.

2.8 Appendix

The expression “a . b” means that there exists a universal, positive constant c such that

a ≤ c× b. We use 1{C } to denote the indicator function of the set C . We denote the

uniform norm of a real-valued operator Π on F as ‖Π‖F ≡ sup f∈F |Π( f )|. Given two

measurable functions f ,λ of (O,Z) and the random variable Λ= λ (O,Z), we find it conve-

nient to use shorthand notation PQ0,g f Λ ≡ EPQ0,g
( f (O,Z)Λ) and Pn f Λ ≡ EPn

( f (O,Z)Λ) =

n−1 ∑
n
i=1 f (Oi,Zi)λ (Oi,Zi). From here onward, the uncountable supremum is interpreted

as the essential supremum.

Section 2.8 presents the proofs of Propositions 2.1, 2.2, 2.3, 2.4, Corollary 2.1, The-

orem 2.1 and Corollary 2.2. Technical results underpinning the proofs of Section 2.8 are

gathered in Section 2.8.

Main proofs

Proof of Proposition 2.1. We apply Lemma 2.4 with Θ ≡ Q1, Θn ≡ Q1,n, d the distance

induced on Θ by the norm ‖ · ‖2,PQ0,g
r , M and Mn characterized over Θ by M(QY ) ≡

PQ0,grL(QY ) and Mn(QY ) ≡ PnL(QY )g
r/Z = n−1 ∑

n
i=1 L(QY )(Oi)g

r(Ai |Wi)/Zi. Assump-

tion A2 implies that (a) and (b) from Lemma 2.4 are met. It remains to prove that (c) also

holds or, in other terms, that ‖Mn −M‖Q1,n
= oP(1).

For any QY ∈ Θ, characterize ℓ(QY ) by setting ℓ(QY )(O,Z) ≡ L(QY )(O)gr(A|W )/Z.

Then we can rewrite ‖Mn −M‖Q1,n
as follows:

‖Mn −M‖Q1,n
= ‖Pnℓ−PQ0,grL‖Q1,n

= ‖(Pn −PQ0,gn
)ℓ‖Q1,n

= ‖Pn −PQ0,gn
‖ℓ(Q1,n).
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The dominated ratio property implies that J(1, ℓ(Q1,n),‖ · ‖2,PQ0,g
r ) = O(J(1,L(Q1,n),‖ ·

‖2,PQ0,g
r ) = o(

√
n), by A5. Since ℓ(Q1) is uniformly bounded by construction, Lemma 2.8

applies and yields ‖Pn −PQ0,gn
‖ℓ(Q1,n) = oP(1).

Thus, we can apply Lemma 2.4. It yields that ‖QY,βn
−QY,β0

‖2,PQ0,g
r = oP(1), which is

the desired result.

The next proof goes along similar lines.

Proof of Proposition 2.2. We apply Lemma 2.4 with Θ ≡ G1, Θn ≡ G1,n, d the distance

induced on Θ by the norm ‖ · ‖2,QW,0
. Over Θ, we define M(g) ≡ PQ0,grLQY,β0

(g)/gr and

Mn(g)≡ PnLQY,βn
(g)/Z = n−1 ∑

n
i=1 LQY,βn

(g)(Oi)/Zi. Assumption A3 implies that (a) and

(b) from Lemma 2.4 are met. It remains to prove that (c) also holds or, in other terms, that

‖Mn −M‖G1,n
= oP(1).

Let ℓ and ℓn be characterized over G1 by ℓ(g)(O,Z)≡ LQY,β0
(g)(O)/Z on the one hand

and ℓn(g)(O,Z) ≡ LQY,βn
(g)(O)/Z on the other hand. A simple decomposition and the

triangle inequality yield the following inequality:

‖Mn −M‖G1,n
= ‖(Pnℓ−PQ0,grLQY,β0

/gr)+Pn(ℓn − ℓ)‖G1,n

≤ ‖Pnℓ−PQ0,grLQY,β0
/gr‖G1,n

+‖Pn(ℓn − ℓ)‖G1,n

= ‖(Pn −PQ0,gn
)ℓ‖G1,n

+‖Pn(ℓn − ℓ)‖G1,n

= ‖Pn −PQ0,gn
‖ℓ(G1,n)+‖Pn(ℓn − ℓ)‖G1,n

. (2.25)

Consider the first RHS term in (2.25). Because Y and QY,β0
are bounded, and because

G1 is bounded away from 0 and 1 by construction, it holds that J(1, ℓ(G1,n),‖ · ‖2,QW,0
) =

O(J(1,1/G1,n,‖ ·‖2,QW,0
)) = o(

√
n) by A6. Since ℓ(G1) is uniformly bounded, Lemma 2.8

applies and yields ‖Pn −PQ0,gn
‖ℓ(G1,n) = oP(1).

We now turn to the second RHS term in (2.25). Note |Lls(QY,βn
)− Lls(QY,β0

)| .
|QY,βn

− QY,β0
| because Y is bounded and G1 is uniformly bounded. This justifies the

second inequality below, the first one being a consequence of the uniform boundedness of

G1,n, and the last one a consequence of the fact that gr is bounded away from 0:

‖Pn(ℓn − ℓ)‖G1,n
. Pn|Lls(QY,βn

)−Lls(QY,β0
)|/Z

. Pn|QY,βn
−QY,β0

|/Z

= PQ0,gn
|QY,βn

−QY,β0
|/Z +(Pn −PQ0,gn

)|QY,βn
−QY,β0

|/Z

. PQ0,gr |QY,βn
−QY,β0

|+(Pn −PQ0,gn
)|QY,βn

−QY,β0
|/Z.

Cauchy-Schwarz inequality implies that PQ0,gr |QY,βn
−QY,β0

| ≤ ‖QY,βn
−QY,β0

‖2,PQ0,g
r =

oP(1) by Proposition 2.1, whose assumptions are met. For any QY ∈ Q1, introduce h(QY )
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characterized by h(QY )(O,Z)≡ |QY,βn
(A,W )−QY,β0

(A,W )|/Z. Obviously,

|(Pn −PQ0,gn
)|QY,βn

−QY,β0
|/Z| ≤ ‖(Pn −PQ0,gn

)h‖Q1,n
= ‖Pn −PQ0,gn

‖h(Q1,n).

Since Q1 and G1 are uniformly bounded away from 0 and 1 by construction, it holds that

h(Q1) is uniformly bounded and that J(1,h(Q1,n),‖ · ‖2,PQ0,g
r ) = O(J(1,{|QY −QY,β0

:

QY ∈ Q1,n|},‖ ·‖2,PQ0,g
r ) = o(

√
n) by A5. Therefore, Lemma 2.8 applies and yields ‖Pn −

PQ0,gn
‖h(Q1,n) = oP(1).

We thus have showed that both ‖Pn − PQ0,gn
‖ℓ(G1,n) = oP(1) and ‖Pn(ℓn − ℓ)‖G1,n

=

oP(1), hence ‖Mn − M‖G1,n
= oP(1) in light of (2.25). Consequently, we can apply

Lemma 2.4. It yields that ‖gn −g∗0‖2,QW,0
= oP(1), which is the desired result.

Proof of Corollary 2.1. Since G1 is uniformly bounded, ‖gn − g∗0‖2,QW,0
= oP(1) implies

‖gn − g∗0‖2,QW,0
→ 0 in L1 as n → ∞. Since (i) 1/gn − 1/g∗0 = (g∗0 − gn)/gng∗0, and (ii) G1

is uniformly bounded away from 0 and 1, ‖1/gn − 1/g∗0‖2,QW,0
→ 0 follows from ‖gn −

g∗0‖2,QW,0
→ 0, both in probability and in L1 as n → ∞. Consider now the L1-convergence

of ‖n−1 ∑
n
i=1 gi −g∗0‖2,QW,0

. By convexity,

E



∥∥∥∥∥

1

n

n

∑
i=1

gi −g∗0

∥∥∥∥∥
2,QW,0


≤ 1

n

n

∑
i=1

E
(
‖gi −g∗0‖2,QW,0

)
.

We already know that E(‖gn−g∗0‖2,QW,0
) = o(1); Cesaro’s lemma yields n−1 ∑

n
i=1 E(‖gi−

g∗0‖2,QW,0
) = o(1). From this, we deduce that ‖n−1 ∑

n
i=1 gi − g∗0‖2,QW,0

→ 0 in L1 as n →
∞. This implies that the convergence also holds in probability because G1 is uniformly

bounded. Likewise,

E



∥∥∥∥∥

1

n

n

∑
i=1

1/gi −1/g∗0

∥∥∥∥∥
2,QW,0


≤ 1

n

n

∑
i=1

E
(
‖1/gi −1/g∗0‖2,QW,0

)
,

where E(‖1/gn − 1/g∗0‖2,QW,0
) = o(1) is already known. Thus, the same argument as

above yields that ‖n−1 ∑
n
i=1 1/gi − 1/g∗0‖2,QW,0

→ 0 in L1 and in probability as n → ∞.

This completes the proof.

Proof of Proposition 2.3. This is a three-part proof. First, we show that |εn − ε0|= oP(1).
Second, we prove that ‖Q∗

Y,βn
−Q∗

Y,β0
‖2,PQ0,g

r = oP(1). Third, we show that Ψ(Q∗
β0
) = ψ0,

then that ψ∗
n consistently estimates ψ0.

We apply (van der Vaart, 1998, Theorem 5.9) (substituting Mn and M for Ψn and

Ψ) with Θ ≡ E , d the Euclidean distance, M and Mn characterized over Θ by M(ε) =
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PQ0,g
∗
0
DY (QY,β0

(ε),g∗0), and Mn(ε) = PnDY (QY,βn
(ε),gn)gn/Z, see (2.14) and (2.9) for the

definitions of QY,β0
(ε) and QY,βn

(ε). From the differentiability of ε 7→ Lkl(QY,β (ε)), va-

lidity of the differentiation under the integral sign, and definition of ε0 (2.15), we deduce

that M(ε0) = 0. By definition of εn (2.10), Mn(εn) = 0 too. Assumption A4 implies that

the second condition of the theorem is met. Therefore it suffices to check that the first one

holds too, i.e. to prove that ‖Mn −M‖E = oP(1).
Introduce F = { fε : ε ∈ E } with fε(O,Z)≡ (2A−1)(Y −QY,β0

(ε)(A,W ))/Z for each

ε ∈ E . We start with the following derivation:

‖Mn −M‖E = sup
ε∈E

∣∣∣∣Pn

(
fε +

2A−1

Z

(
QY,β0

(ε)−QY,βn
(ε)
))

−PQ0,gn
fε

∣∣∣∣

≤ ‖Pn −PQ0,gn
‖F + sup

ε∈E

∣∣∣∣Pn
2A−1

Z

(
QY,β0

(ε)−QY,βn
(ε)
)∣∣∣∣ . (2.26)

Consider the first RHS term in (2.26). Set ε1,ε2 ∈ E . Because the expit function is

1-Lipschitz and G1 is uniformly bounded, it holds that ‖ fε1
− fε2

‖∞ . |ε1 − ε2|. Since

E is a bounded set by construction, the uniformly bounded, parametric class F satisfies

J(1,F ,‖ · ‖2,PQ0,g
r ) < ∞ (see van der Vaart, 1998, Example 19.7). Consequently, we can

apply Lemma 2.8 (with a fixed class) and conclude that ‖Pn −PQ0,gn
‖F = oP(1).

The second term in the RHS of (2.26) is upper-bounded by ∆n ≡ supε∈E Pn|QY,β0
(ε)−

QY,βn
(ε)|/Z. Since (i) expit is 1-Lipschitz, (ii) Q1,n is bounded away from 0 and 1, and

logit is Lipschitz on any compact subset of ]0,1[, it holds that

∆n ≤ sup
ε∈E

Pn

∣∣logit(QY,β0
)− logit(QY,βn

)+ ε(H(gn)−H(g∗0))
∣∣/Z

. Pn|QY,β0
−QY,βn

|/Z +Pn|1/gn −1/g∗0|/Z

= (Pn −PQ0,gn
)|QY,β0

−QY,βn
|/Z +PQ0,gn

|QY,β0
−QY,βn

|/Z

+(Pn −PQ0,gn
)|1/gn −1/g∗0|/Z +PQ0,gn

|1/gn −1/g∗0|/Z. (2.27)

While studying the second RHS term of (2.25) in the proof of Proposition 2.2, we proved

the following facts: PQ0,gn
|QY,β0

− QY,βn
|/Z . PQ0,gr |QY,β0

− QY,βn
| = oP(1) and (Pn −

PQ0,gn
)|QY,β0

−QY,βn
|/Z = oP(1) (the assumptions of Proposition 2.2 are met here too).

Therefore, it only remains to study the two rightmost terms in the RHS of (2.27). Since G1

is uniformly bounded away from 0, (Pn−PQ0,gn
)|1/gn−1/g∗0|/Z = O(‖Pn−PQ0,gn

‖1/G1,n
).

Moreover, Lemma 2.8 applies because 1/G1 is uniformly bounded and A5 is met, hence

‖Pn −PQ0,gn
‖1/G1,n

= oP(1) and (Pn −PQ0,gn
)|1/gn −1/g∗0|/Z = oP(1). Finally,

PQ0,gn
|1/gn −1/g∗0|/Z . PQ0,gr |1/gn −1/g∗0| ≤ ‖1/gn −1/g∗0‖2,QW,0

= oP(1)

by Cauchy-Schwarz and Corollary 2.1, whose assumptions are met here too. In summary,

∆n = oP(1).
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We have show that the RHS expression in (2.26) converges to 0 in probability as n→∞,

hence ‖Mn −M‖E = oP(1). Thus, all assumptions of Lemma 2.4 hold, from which we

deduce that εn converges to ε0 as n → ∞. This completes the first part of the proof.

Let QY ×G ×E be equipped with the norm ‖(QY ,g,ε)‖= ‖QY‖2,PQ0,g
r +‖g‖2,QW,0

+

|ε|. Propositions 2.1, 2.2 and the first part of the proof imply that (QY,βn
,gn,εn) converges

to (QY,β0
,g∗0,ε0) in probability wrt ‖ · ‖ as n → ∞. Let f : QY ×G ×E → QY be charac-

terized by

f (QY ,g,ε)(O)≡ expit(logit(QY (A,W ))+ ε(2A−1)/g(A|W )) (2.28)

Set (QY,1,g1,ε1),(QY,2,g2,ε2) ∈ QY ×G ×E . Because (i) expit is 1-Lipschitz, (ii) Q1,n is

bounded away from 0 and 1, and logit is Lipschitz on any compact subset of ]0,1[, (iii) G1

is uniformly bounded away from 0, (iv) E is a bounded set, it holds that

‖ f (QY,1,g1,ε1)− f (QY,2,g2,ε2)‖2,PQ0,g
r

≤ ‖ logit(QY,1)− logit(QY,2)‖2,PQ0,g
r +‖ε2(1/g1 −1/g2)‖2,QW,0

+‖(ε1 − ε2)/g1‖2,QW,0

.
∥∥QY,1 −QY,2

∥∥
2,PQ0,g

r
+‖g1 −g2‖2,QW,0

+ |ε1 − ε2|= ‖(QY,1,g1,ε1)− (QY,2,g2,ε2)‖

( f is Lipschitz). Therefore, the convergence ‖(QY,βn
,gn,εn)− (QY,β0

,g∗0,ε0)‖= oP(1) and

equalities Q∗
Y,βn

= f (QY,βn
,gn,εn), Q∗

Y,β0
= f (QY,β0

,g∗0,ε0), entail ‖Q∗
Y,βn

−Q∗
Y,β0

‖2,PQ0,g
r =

oP(1), hence our first claim. This completes the second part of the proof.

The second claim follows from the double-robustness of D. Indeed, it follows from the

first part of this proof that M(ε0) = PQ0,g
∗
0
DY (Q

∗
Y,β0

,g∗0) = 0, and PQ0,g
∗
0
DW (Q∗

β0
) = 0 from

the definitions of Ψ and DW , hence PQ0,g
∗
0
D(PQ∗

β0
,g∗0) = 0. Thus, Lemma 2.1 guarantees

that Ψ(Q∗
β0
) = Ψ(Q0) since PQ0,g

∗
0

and PQ∗
β0
,g∗0 share the same g∗0. We now turn to the third

and last claim. For both β = β0 and β = βn, introduce q∗
Y,β characterized by

q∗Y,β (W )≡ Q∗
Y,β (1,W )−Q∗

Y,β (0,W ). (2.29)

Define also Q∼
βn

≡ (QW,0,Q
∗
Y,βn

) and ψ∼
n ≡ Ψ(Q∼

βn
). Since gr is bounded away from 0, the

Cauchy-Schwarz inequality yields

|ψ∼
n −ψ0|= |ψ∼

n −Ψ(Q∗
β0
)|= |PQ0,gr(Q∗

Y,βn
−Q∗

Y,β0
)(2A−1)/gr|

. PQ0,gr |Q∗
Y,βn

−Q∗
Y,β0

| ≤ ‖Q∗
Y,βn

−Q∗
Y,β0

‖2,PQ0,g
r = oP(1).

Furthermore, ψ∗
n −ψ∼

n = (Pn−PQ0,gn
)(q∗

Y,βn
−q∗

Y,β0
)+(Pn−PQ0,gn

)q∗
Y,β0

. By similar argu-

ments as before, we establish that (Pn−PQ0,gn
)(q∗

Y,βn
−q∗

Y,β0
) = oP(1). In addition, the law
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of large numbers (for independent, identically distributed random variables, since q∗
Y,β0

is

a bounded function of W only) guarantees that (Pn −PQ0,gn
)q∗

Y,β0
= oP(1). In summary,

ψ∗
n −ψ0 = (ψ∗

n −ψ∼
n )+(ψ∼

n −ψ0) = oP(1), as stated. This completes the proof.

The asymptotic linear expansion (2.21) in Proposition 2.4 is a by-product of the exact

linear expansion that we state and prove below. Recall the definitions of d∗
Y,β and q∗

Y,β

(β = β0 or β = βn) given in (2.18) and (2.29).

Lemma 2.2 (exact linear expansion of ψ∗
n ). It follows from the definition of ψ∗

n that

ψ∗
n −ψ0 = −PQ0,g

∗
0
D(PQ∗

βn
,g∗0) (2.30)

= (Pn −PQ0,gn
)(d∗

Y,β0
+DW (Q∗

β0
))

+(Pn −PQ0,gn
)
(
(d∗

Y,βn
−d∗

Y,β0
)+(q∗Y,βn

−q∗Y,β0
)
)
. (2.31)

Proof of Lemma 2.2. Consider (2.30). By Lemma 2.1, D decomposes as D(PQ∗
βn
,g∗0) =

DY (Q
∗
Y,βn

,g∗0) +DW (Q∗
βn
). Define qY,0(W ) ≡ QY,0(1,W )−QY,0(0,W ). Firstly, we note

PQ0,g
∗
0
DW (Q∗

βn
) = PQ0,g

∗
0
q∗

Y,βn
−ψ∗

n . Secondly, PQ0,g
∗
0
DY (Q

∗
Y,βn

,g∗0) = PQ0,g
∗
0
(2A− 1)(Y −

Q∗
Y,βn

)/g∗0 = PQ0,g
∗
0
(qY,0 − q∗

Y,βn
). Adding these two equalities yields PQ0,g

∗
0
D(PQ∗

βn
,g∗0) =

PQ0,g
∗
0
qY,0 −ψ∗

n = ψ0 −ψ∗
n , which is the desired result.

We now turn to (2.31). Denote Pn,gn
the empirical distribution of On weighted by

gn(Ai|Wi)/gi(Ai|Wi). By construction of the fluctuation (2.9) and definition of εn (2.10), it

holds that Pn,gn
DY (Q

∗
Y,βn

,gn) = 0. Moreover, (2.11) can be rewritten as PnDW (Q∗
βn
) = 0.

Therefore, (2.30) is equivalent to

ψ∗
n −ψ0 = (Pn −PQ0,g

∗
0
)DW (Q∗

βn
)+
(

Pn,gn
DY (Q

∗
Y,βn

,gn)−PQ0,g
∗
0
DY (Q

∗
Y,βn

,g∗0)
)
. (2.32)

Adding and subtracting (Pn −PQ0,g
∗
0
)DW (Q∗

β0
) to the first term in the RHS expression of

(2.32) implies

(Pn −PQ0,g
∗
0
)DW (Q∗

βn
) = (Pn −PQ0,g

∗
0
)DW (Q∗

β0
)+(Pn −PQ0,g

∗
0
)(DW (Q∗

βn
)−DW (Q∗

β0
))

= (Pn −PQ0,g
∗
0
)DW (Q∗

β0
)+(Pn −PQ0,g

∗
0
)(q∗Y,βn

−q∗Y,β0
)

= (Pn −PQ0,gn
)DW (Q∗

β0
)+(Pn −PQ0,gn

)(q∗Y,βn
−q∗Y,β0

), (2.33)

where the last equality is valid because DW (Q∗
β0
), q∗

Y,βn
, q∗

Y,β0
are functions of W only. As
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for the second term in the RHS expression of (2.32), it equals

1

n

n

∑
i=1

(
gn(Ai|Wi)

gi(Ai|Wi)

2Ai −1

gn(Ai|Wi)
(Yi −Q∗

Y,βn
(Ai,Wi))−PQ0,g

∗
0

2A−1

g∗0(A|W )
(Y −Q∗

Y,βn
)

)

=
1

n

n

∑
i=1

(
2Ai −1

gi(Ai |Wi)
(Yi −Q∗

Y,βn
(Ai,Wi))−PQ0,gi

2A−1

gi(A |W )
(Y −Q∗

Y,βn
)

)

= (Pn −PQ0,gn
)d∗

Y,βn

= (Pn −PQ0,gn
)d∗

Y,β0
+(Pn −PQ0,gn

)(d∗
Y,βn

−d∗
Y,β0

). (2.34)

The equalities (2.32), (2.33) and (2.34) imply (2.31).

It appears that the second term in the RHS expression of (2.31) is asymptotically neg-

ligible at rate
√

n. Indeed,

Lemma 2.3. It holds that (Pn −PQ0,gn
)
(
(d∗

Y,βn
−d∗

Y,β0
)+(q∗

Y,βn
−q∗

Y,β0
)
)
= oP(1/

√
n).

Proof of Lemma 2.3. The key to this proof is Lemma 2.10.

Introduce Q∗
1,n ≡ { f (QY,β ,g,ε) : QY,β ∈ Q1,n,g ∈ G1,n,ε ∈ E }, where f is given by

(2.28), and set δ > 0. The elements of Q∗
1,n are uniformly bounded away from 0 and

1. By A5, A6 and Lemma 2.11, the bracketing numbers N(δ , logit(Q1,n),‖ · ‖2,PQ0,g
r )

and N(δ ,1/Q1,n,‖ · ‖2,PQ0,g
r ) are finite. Obviously, the bracketing number N(δ ,E , | · |)

is finite too. Choose arbitrarily three collections of δ -brackets of smallest possible car-

dinality that cover logit(Q1,n), 1/G1,n, and E . Given f (QY,β ,g,ε) ∈ Q∗
1,n, let [lQ,uQ],

[lg,ug] and [lε ,uε ] be δ -brackets from these collections and containing logit(QY,β ), 1/g

and ε , respectively. We can assume without loss of generality that the uniform lower-

and upper-bounds of logit(Q1,n) (respectively, 1/G1,n) are also lower- and upper-bounds

on lQ, uQ, (respectively, lg, ug). We can also assume that |lε |, |uε | ≤ supε∈E |ε|. Char-

acterize λ and γ by setting λ (O) ≡ AlεH(ug)(O) + (1 − A)uεH(lg)(O) and, similarly,

γ(O)≡AuεH(lg)(O)+(1−A)lεH(ug)(O). Then [expit(lQ+λ ),expit(uQ+γ)] is a bracket

containing f (QY,β ,g,ε). Since expit is 1-Lipschitz, it follows that

(expit(uQ + γ)− expit(lQ +λ ))2 ≤ ((uQ − lQ)+(γ −λ ))2 ≤ 2(uQ − lQ)
2 +2(γ −λ )2

where (γ −λ )2 . (uε − lε)
2 +(H(ug)−H(lg))

2 . (uε − lε)
2 +(ug − lg)

2. Consequently,

there exists a universal constant c ≥ 1 such that [expit(lQ + λ ),expit(uQ + γ)] be a cδ -

bracket. Thus, N(δ ,Q∗
1,n,‖·‖2,PQ0,g

r )≤N(δ/c, logit(Q1,n),‖·‖2,PQ0,g
r )×N(δ/c,1/G1,n,‖·

‖2,QW,0
)× N(δ/c,E , | · |) hence, by Lemma 2.11, J(δ ,Q∗

1,n,‖ · ‖2,PQ0,g
r ) . J(δ ,Q1,n,‖ ·

‖2,PQ0,g
r ) + J(δ ,G1,n,‖ · ‖2,QW,0

) + J(δ ,E , | · |). Therefore, A5* and A6* imply that if
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δn = o(1) then J(δn,Q
∗
1,n,‖ · ‖2,PQ0,g

r ) = o(1) as well. Now, we use this to prove the

lemma.

For each QY ∈ Q∗
1,n, characterize dY (QY ) by setting dY (QY )(O,Z) ≡ (2A− 1)(Y −

QY (A,W ))/Z. By uniform boundedness of ∪n≥1Q
∗
1,n, Y and Z, the existence of a sequence

of envelope functions satisfying (a) in Lemma 2.10 is granted. Moreover, Lemma 2.11

yields that there exists c > 0 such that J(δ ,dY (Q
∗
1,n),‖ ·‖2,PQ0,g

r )≤ cJ(δ ,Q∗
1,n,‖ ·‖2,PQ0,g

r )

for all δ > 0. Thus, δn = o(1) implies J(δn,dY (Q
∗
1,n),‖ · ‖2,PQ0,g

r ) = o(1), and condition

(b) in Lemma 2.10 is met too. Now, the convergence ‖Q∗
Y,βn

− Q∗
Y,β0

‖2,PQ0,g
r = oP(1),

established in Proposition 2.3, implies PQ0,gr(dY (Q
∗
Y,βn

)−dY (Q
∗
Y,β0

))2 = oP(1) by Cauchy-

Schwarz, since |dY (Q
∗
Y,βn

)−dY (Q
∗
Y,β0

)|. |Q∗
Y,βn

−Q∗
Y,β0

|. We apply Lemma 2.10 to obtain√
n(Pn −PQ0,gn

)(d∗
Y,βn

−d∗
Y,β0

) = oP(1).

Now, for each QY ∈ Q∗
1,n, define qY (QY )(W ) ≡ QY (1,W )−QY (0,W ). Choose a col-

lection of N(δ ,Q∗
1,n,‖ · ‖2,PQ0,g

r ) δ -brackets [lk,uk] covering Q∗
1,n. For a given QY ∈ Q∗

1,n,

assume without loss of generality that QY ∈ [l1,u1] and define l′1(W )≡ l1(1,W )−u1(0,W )
and u′1(W ) ≡ u1(1,W )− l1(0,W ). It holds that qY (QY ) ∈ [l′1,u

′
1] and PQ0,gr(u′1 − l′1)

2 ≤
2δ 2/c for 0 < c ≡ min(infgr,1− supgr) < 1. Therefore, N(δ ,qY (Q

∗
1,n),‖ · ‖2,PQ0,g

r ) ≤
N(
√

2/cδ ,Q∗
1,n,‖ · ‖2,PQ0,g

r ), and thus J(δn,qY (Q
∗
1,n),‖ · ‖2,PQ0,g

r ) = o(1) whenever δn =

o(1). Therefore, condition (b) in Lemma 2.10 is met. Condition (a) in the same lemma is

also met since ∪n≥1qY (Q
∗
1,n) is uniformly bounded. Moreover, ‖Q∗

Y,βn
−Q∗

Y,β0
‖2,PQ0,g

r =

oP(1) implies ‖qY (Q
∗
Y,βn

)−qY (Q
∗
Y,β0

)‖2,PQ0,g
r = oP(1) as PQ0,gr(qY (Q

∗
Y,βn

)−qY (Q
∗
Y,β0

)2 ≤
2PQ0,gr(Q∗

Y,βn
(1,W )−Q∗

Y,β0
(1,W ))2 + 2PQ0,gr(Q∗

Y,βn
(1,W )−Q∗

Y,β0
(1,W ))2 and, for both

a = 0,1, PQ0,gr(Q∗
Y,βn

(a,W )−Q∗
Y,β0

(a,W ))2 = PQ0,gr(Q∗
Y,βn

−Q∗
Y,β0

)21{A = a}/gr(a|W ).

PQ0,gr(Q∗
Y,βn

−Q∗
Y,β0

)2 because gr is bounded away from 0 and 1. We apply Lemma 2.10

to obtain
√

n(Pn −PQ0,gn
)(q∗

Y,βn
−q∗

Y,β0
) = oP(1).

This completes the proof.

The proof of Proposition 2.4 is now at hand.

Proof of proposition 2.4. We first note that (2.21) follows straightforwardly from Lem-

mas 2.2 and 2.3.

Set f0 ≡ d∗
Y,β0

+DW (Q∗
β0
) and fn ≡ d∗

Y,βn
+DW (Q∗

βn
). With this notation, Σ0 =PQ0,g

∗
0

f 2
0 ,

Σn = Pn f 2
n . Introduce also Sn ≡ PQ0,gn

f 2
0 . For either ( f ,β ) = ( f0,β0) or ( f ,β ) = ( fn,βn),
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it holds that

PQ0,gn
f 2 =

1

n

n

∑
i=1

PQ0,gi
f 2

= PQ0,g
∗
0

(
DW (Q∗

β )
2 +2DY (Q

∗
Y,β ,g

∗
0)DW (Q∗

β )
)
+

1

n

n

∑
i=1

PQ0,g
∗
0

(Y −Q∗
Y,β )

2

g∗0gi

= PQ0,g
∗
0

(
DW (Q∗

β )
2 +2DY (Q

∗
Y,β ,g

∗
0)DW (Q∗

β )
)
+PQ0,g

∗
0

(Y −Q∗
Y,β )

2

g∗0

1

n

n

∑
i=1

1/gi.

Now, because (Y −Q∗
Y,β )

2 ≤ 1 and g∗0 is bounded away from 0 and 1, the Cauchy-Schwarz

inequality yields

|PQ0,gn
f 2 −PQ0,g

∗
0

f 2|=
∣∣∣∣∣PQ0,g

∗
0

(Y −Q∗
Y,β )

2

g∗0

(
1

n

n

∑
i=1

1/gi −1/g∗0

)∣∣∣∣∣

. PQ0,g
∗
0

∣∣∣∣∣
1

n

n

∑
i=1

1/gi −1/g∗0

∣∣∣∣∣≤
∥∥∥∥∥

1

n

n

∑
i=1

1/gi −1/g∗0

∥∥∥∥∥
2,QW,0

. (2.35)

Thus, taking f = f0 and applying corollary 2.1, we obtain E(Sn) = Σ0 + o(1) and Sn =
Σ0 + oP(1) ( Note that Σ0 > 0 by A1. Let us show now that Σn = Σ0 + oP(1) by proving

Σn −Sn = oP(1). We use the following decomposition:

Σn −Sn = (Pn −PQ0,gn
)( f 2

n − f 2
0 )+(Pn −PQ0,gn

) f 2
0 +PQ0,gn

( f 2
n − f 2

0 )

= (Pn −PQ0,gn
)( f 2

n − f 2
0 )+(Pn −PQ0,gn

) f 2
0 +PQ0,g

∗
0
( f 2

n − f 2
0 )+oP(1),(2.36)

where the second equality holds because PQ0,gn
f 2 = PQ0,g

∗
0

f 2 + oP(1) for both f = f0

and f = fn (by (2.35) and Corollary 2.1). Because f0 and all fn’s (n ≥ 1) are uniformly

bounded, the first term in the RHS expression of (2.36) satisfies

|(Pn −PQ0,gn
)( f 2

n − f 2
0 )| . |(Pn −PQ0,gn

)( fn − f0)|
= |(Pn −PQ0,gn

)(d∗
Y,βn

−d∗
Y,β0

)+(q∗Y,βn
−q∗Y,β0

)|= oP(1/
√

n)

by Lemma 2.3 (see (2.29) for the definition of q∗
Y,β ). Since f0 is bounded, the Kolmogorov

strong law of large numbers (Sen and Singer, 1993, Theorem 2.4.2) guarantees that the

second term in the RHS expression of (2.36) converges to 0 P-almost-surely, hence (Pn −
PQ0,gn

) f 2
0 = oP(1). Consider now the third term in the RHS expression of (2.36). Note

that ( fn− f0)(O,Z) = (2A−1)(Q∗
Y,β0

−Q∗
Y,βn

)(A,W )/Z+(q∗
Y,βn

−q∗
Y,β0

)(W )− (ψ∗
n −ψ0),

hence | fn − f0|. |Q∗
Y,β0

−Q∗
Y,βn

|+ |q∗
Y,βn

−q∗
Y,β0

|+ |ψ∗
n −ψ0| because Z is bounded away
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from 0 and 1. Using again (i) that f0 and all fn’s (n ≥ 1) are uniformly bounded, and (ii)

the Cauchy-Schwarz inequality and the dominated ratio property, we get

|PQ0,g
∗
0
( f 2

n − f 2
0 )| . |PQ0,g

∗
0
( fn − f0)|

. PQ0,g
∗
0
|Q∗

Y,βn
−Q∗

Y,β0
|+PQ0,g

∗
0
|q∗Y,βn

−q∗Y,β0
|+ |ψ∗

n −ψ0|
. ‖Q∗

Y,βn
−Q∗

Y,β0
‖2,PQ0,g

r +‖q∗Y,βn
−q∗Y,β0

‖2,PQ0,g
r + |ψ∗

n −ψ0|.

We know that ‖Q∗
Y,βn

−Q∗
Y,β0

‖2,PQ0,g
r = oP(1) by Proposition 2.1, we showed at the end of

the proof of Lemma 2.3 that this implies ‖q∗
Y,βn

−q∗
Y,β0

‖2,PQ0,g
r = oP(1), and Proposition 2.3

guarantees that ψ∗
n −ψ0 = oP(1). Consequently, |PQ0,g

∗
0
( f 2

n − f 2
0 )|= oP(1). We have thus

proven that all terms in the RHS expression of (2.36) are oP(1), hence Σn − Sn = oP(1)
and Σn = Σ0 +oP(1), as we claimed earlier.

We show now that (2.21), which we rewrite here ψ∗
n −ψ0 =(Pn−PQ0,gn

) f0+oP(1/
√

n),

implies that
√

n/Σ0(ψ
∗
n −ψ0) converges in law to the standard normal distribution. This is

a consequence of (Sen and Singer, 1993, Theorem 3.3.7) because (i) Sn/E(Sn)−1= oP(1),
and (ii) for each α > 0, E(Pn f 2

0 1{ f 2
0 ≥ α2nE(Sn)}) = o(E(Sn)) trivially holds since f0 is

bounded and E(Sn) = Σ0 +o(1) with Σ0 > 0. Then Slutsky’s lemma and Σn = Σ0 +oP(1)
yield the convergence in law of

√
n/Σn(ψ

∗
n −ψ0) to the same limiting distribution. This

completes the proof.

The proof of Corollary 2.2 boils down to (i) showing that A5, A5*, A6, A6* are met

and (ii) applying Theorem 2.1.

Proof of Corollary 2.2. We show below that A5 and A5* are met. A parallel argument

can be used to show that A6 and A6* hold too. Since A1–A4 are satisfied by assumption,

Theorem 2.1 thus applies and yields the stated result.

Fix δ > 0, a sequence {δn}n≥1 of positive numbers such that δn = o(1), and n ≥ 1.

By construction, the functions φ j ( j ∈ N) all belong to a class C of smooth functions over

the bounded support W such that all partial derivatives up to order α > dim(W )/2 of all

f ∈ C exist and are uniformly bounded by a constant C > 0. By (van der Vaart, 1998,

Example 19.9), it holds that logN(δ ,C ,‖ · ‖2,PQ0,g
r ). δ−V for V ≡ dim(W )/α < 2.

Note that F ≡ {∑ j∈Nβ jφ j = ∑
dn

j=0 β jφ j : β ∈ Bn} is a subset of C , provided that the

constant C in the definition of C is large enough (if not, it suffices to replace C with

MC, with M the constant involved in (2.22)). We apply three times Lemma 2.11 to

obtain that J(δ ,F ,‖ · ‖2,PQ0,g
r ) & J(δ , logit(Q1,n),‖ · ‖2,PQ0,g

r ) & J(δ ,Q1,n,‖ · ‖2,PQ0,g
r ) &

J(δ ,Lkl(Q1,n),‖ · ‖2,PQ0,g
r ): from left to right, the inequalities follow from (i) the third

claim of Lemma 2.11 with h,h′ given by h(O)≡ A and h′(O)≡ (1−A), (ii) from the sixth
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claim with φ ≡ expit, which is increasing and 1-Lipschitz, and (iii) from the seventh claim

with h given by h(O)≡ Y . Therefore,

J(δn,L
kl(Q1,n),‖ · ‖2,PQ0,g

r ) . J(δn,Q1,n,‖ · ‖2,PQ0,g
r )

. J(δn,C ,‖ · ‖2,PQ0,g
r ).

∫ δn

0
ε−V/2dε = o(1),

and A5* is fulfilled. Choosing δn = 1/
√

n yields that A5 is also fulfilled. This completes

the proof.

Useful technical results

Convergence of M-estimators.

The following lemma is a simple adaptation of (van der Vaart and Wellner, 1996a, Corol-

lary 3.2.3).

Lemma 2.4 (convergence of M-estimators). Let Mn be a real-valued, stochastic processes

indexed by a metric space (Θ,d), and let M : Θ → R be a real-valued, deterministic

function over Θ. Consider a sequence of subsets Θn ⊂ Θ and the following assumptions:

(a) There exists θ0 ∈ Θ such that M(θ0) < infθ /∈T M(θ) for every open set T ⊂ Θ con-

taining θ0.

(b) For each n ≥ 1, there exists θ ∗
n ∈ Θn such that M(θ ∗

n ) = infθ∈Θn
M(θ). Moreover,

M(θ ∗
n )−M(θ0) = o(1).

(c) It holds that ‖Mn −M‖Θn
= oP(1).

Under the above three assumptions, if θn ∈Θn satisfies Mn(θn)−Mn(θ
∗
n )≤ 0 for all n≥ 1,

then d(θn,θ0) = oP(1).

Proof of Lemma 2.4. Set n ≥ 1. By (a), it holds that

0 ≤ M(θn)−M(θ0)

= (M(θn)−Mn(θn))+(Mn(θn)−Mn(θ
∗
n ))+(Mn(θ

∗
n )−M(θ ∗

n ))+(M(θ ∗
n )−M(θ0)) .

The above first and third RHS terms are both upper-bounded by ‖Mn−M‖Θn
. The second

RHS term is non-positive by definition of θn. The fourth RHS terms is o(1) by (b). Thus,

it actually holds that 0 ≤ M(θn)−M(θ0)≤ 2‖Mn −M‖Θn
+o(1) = oP(1) by (c).

Set ε > 0. By (a), there exists δ > 0 such that d(θn,θ0)≥ ε implies M(θn)−M(θ0)≥
δ . Since we have shown that M(θn)−M(θ0) = oP(1), we can therefore conclude that

d(θn,θ0) = oP(1) too.
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Maximal inequalities and convergence of empirical processes.

In this article, we repeatedly exploit uniform laws of large numbers. They are derived from

maximal inequalities for martingales by van Handel (2011) that also played an important

role in (Chambaz and van der Laan, 2011a,c). For completeness, we now state these

results.

Let φ : R → R+ be such that φ(x) = ex − x − 1. Let F be a class of measurable

functions, n ≥ 1 be an integer, K > 0 and δ > 0 be two positive constants. For each

f ∈ F , n(Pn −PQ0,gn
) f = ∑

n
i=1( f (Oi,Zi)−PQ0,gi

f ) is a discrete martingale sum.

Set N = N(δ ,F ,‖ · ‖2,PQ0,g
r ), the δ -bracketing number of F wrt ‖ · ‖2,PQ0,g

r . Follow-

ing van Handel (2011), we define a (δ ,n,F ,K)-bracketing set as a collection {(Λ j
i ,Γ

j
i ) :

i ≤ n} j≤N of random variables such that (i) for each f ∈ F , there exits j ≤ N satisfying

Λ
j
i ≤ f (Oi,Zi)≤Γ

j
i for all i≤ n, and (ii) for all j ≤N, 2K2n−1 ∑

n
i=1 PQ0,gi

φ(|Λ j
i −Γ

j
i |/K)≤

δ 2. Let N (δ ,n,F ,K) denote the cardinality of the smallest (δ ,n,F ,K)-bracketing set.

Finally, define for each f ∈F the random variable Rn,K( f )= 2K2n−1 ∑
n
i=1 PQ0,gi

φ(| f |/K).

Lemma 2.5 (Proposition A.2 by van Handel (2011)). There exists an universal constant

C > 0 such that, for all R > 0,

P

(
sup
f∈F

1{Rn,K( f )≤ R}max
i≤n

i

n

(
Pi −PQ0,gi

)
f ≥ α

)
≤ 2exp

(
− nα2

C2(c1 +1)R

)
,

for any α,c0,c1 > 0 such that c2
0 ≥C2(c1 +1) and

c0√
n

∫ √
R

0

√
logN (ε,n,F ,K)dε ≤ α ≤ c1R

K
.

Lemma 2.6 (Corollary A.8 by van Handel (2011)). Suppose the class F is finite. For all

R > 0 and any event C,

E

(
max
f∈F

1{nRn,K( f )≤ R}max
i≤n

i(Pi −PQ0,gi
) f

)
≤
√

2R log

(
1+

|F |
P(C)

)
+8K log

(
1+

|F |
P(C)

)
.

If, in addition, max f∈F ‖ f‖∞ ≤ U, then K can be replaced with U/3 in the second term

of the above RHS expression.

Importantly, van Handel (2011)’s proofs of Lemmas 2.5 and 2.6 remain valid when the

class F is allowed to depend on n. To use lemmas 2.5 and 2.6, it is necessary to get a grip

on N (δ ,n,F ,K) and the random variables Rn,K( f ), f ∈ F . The next lemma is helpful

in this regard.

Recall that, by the dominated ratio property of G1, ‖g/gr‖∞ ≤ κ for all g ∈ G1.
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Lemma 2.7 (L2-norm version of lemma 7 by Chambaz and van der Laan (2011c)). Assume

that U ≡ sup f∈F ‖ f‖∞ is finite. Then, for all f ∈ F , Rn,4U( f ) ≤ 4/3n∑
n
i=1 PQ0,gi

| f |2.

Moreover, it holds that N (
√

2κδ ,n,F ,4U)≤ N(δ ,F ,‖ · ‖2,PQ0,g
r ).

Proof of Lemma 2.7. Set f ∈ F , i ≤ n, and m ≥ 2. It holds that

PQ0,gi
| f |m ≤Um−2PQ0,gi

| f |2 ≤ m!

2
Um−2PQ0,gi

| f |2 .

Therefore, for K = 4U ,

2K2PQ0,gi
φ(| f |/K) = 2(4U)2 ∑

m≥2

PQ0,gi
| f |m

m!(4U)m

≤ 2(4U)2 ∑
m≥2

m!
2

Um−2PQ0,gi
| f |2

m!(4U)m
= 16 ∑

m≥2

PQ0,gi
| f |2

4m
= 4PQ0,gi

| f |2/3.

The monotone convergence theorem guarantees the first equality. Summing up the above

inequalities for i = 1, . . . ,n yields the first bound.

Let (ℓ j,u j) j≤N be a set of N = N(δ ,F ,‖ · ‖2,PQ0,g
r ) δ -brackets covering F wrt ‖ ·

‖2,PQ0,g
r . Let Λ

j
i = max(ℓ j(Oi,Zi),−U) and Γ

j
i = min(u j(Oi,Zi),U) for all i ≤ n, j ≤ N.

Set f ∈F and j ≤ N such that f ∈ [ℓ j,u j]. Then, for all i ≤ n, (i) Λ
j
i ≤ f (Oi,Zi)≤ Γ

j
i , (ii)

−U ≤ Λ
j
i ≤ Γ

j
i ≤U , and (iii) ℓ j ≤ Λ

j
i ≤ Γ

j
i ≤ u j. Thus, for all m ≥ 2,

PQ0,gi
|Λ j

i −Γ
j
i |m ≤ (2U)m−2PQ0,gi

|Λ j
i −Γ

j
i |2 ≤ (2U)m−2κPQ0,gr |Λ j

i −Γ
j
i |2

≤ (2U)m−2κPQ0,gr |ℓ j −u j|2 ≤ (2U)m−2κδ 2 ≤ m!

2
(2U)m−2κδ 2.

Consequently, still using K = 4U , it holds that

2K2PQ0,gi
φ(|Λ j

i −Γ
j
i |/4U) = 2(4U)2 ∑

m≥2

PQ0,gi
|Λ j

i −Γ
j
i |m

m!(4U)m
≤ 32U2 ∑

m≥2

m!
2
(2U)m−2κδ 2

m!(4U)m
= 2κδ 2.

Again, the monotone convergence theorem validates the first equality. Summing up the

above inequalities for i = 1, . . . ,n yields 2K2n−1 ∑
n
i=1 PQ0,gi

φ(|Λ j
i −Γ

j
i |/K)≤ 2κδ 2, hence

{(Λ j
i ,Γ

j
i ) : i ≤ n} j≤N is a (

√
2κδ ,n,F ,K)-bracketing set and N (

√
2κδ ,n,F ,4U) ≤

N(δ ,F ,‖ · ‖2,PQ0,g
r ). This completes the proof.

By combining Lemmas 2.5 and 2.7, we now establish a uniform law of large numbers.
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Lemma 2.8. Let {Fn}n≥1 be a sequence of sets of measurable functions such that U ≡
sup f∈∪n≥1Fn

‖ f‖∞ be finite. If J(
√

2/3κU,Fn,‖ · ‖2,PQ0,g
r ) = o(

√
n), then for all α > 0

there exists c > 0 and n0 ≥ 1 such that, for every n ≥ n0,

P

(
sup
f∈Fn

(
Pn −PQ0,gn

)
f ≥ α

)
≤ 2e−nc.

Consequently, sup f∈Fn
|(Pn −PQ0,gn

) f | converges to 0 P-almost surely.

Lemma 2.8 modifies Theorem 8 in Chambaz and van der Laan (2011c) to use an L2-

metric and allow the classes of functions to change with n.

Proof of Lemma 2.8. Set α > 0, and let K = 4U , R = 4/3U2, c1 = αK/R, c0 =C
√

c1 +1,

where C is the universal constant from Lemma 2.5. Note that
√

R/2κ =
√

2/3κU . By

assumption, there exists n0 ≥ 1 such that, for all n ≥ n0, J(
√

R/2κ,Fn,‖ · ‖2,PQ0,g
r ) ≤√

nα/c0

√
2κ .

Set n ≥ n0. By Lemma 2.7, N (
√

2κδ ,n,Fn,4U)≤ N(δ ,Fn,‖ · ‖2,PQ0,g
r ). Therefore,

c0√
n

∫ √
R

0

√
logN (ε,n,Fn,4U)dε ≤

√
2κc0√

n

∫ √
R/2κ

0

√
logN(ε,Fn,‖ · ‖2,PQ0,g

r )dε

=

√
2κc0√

n
J(
√

R/2κ,Fn,‖ · ‖2,PQ0,g
r )≤ α =

c1R

K
.

Lemma 2.5 applies and yields here

P

(
sup
f∈Fn

(Pn −PQ0,gn
) f ≥ α

)
≤ P

(
sup
f∈Fn

max
i≤n

i

n
(Pi −PQ0,gi

) f ≥ α

)
≤ 2e−nc,

with c = α2/c2
0R. This completes the proof.

Lemma 2.5 also allows us to adapt the maximal inequality of (van der Vaart, 1998,

Lemma 19.34), valid under independent, identically distributed sampling, to our targeted,

adaptive sampling. We state and prove this result in lemma 2.9. We introduce the function

Log given by Log(x)≡ max(1, log(x)) (all x > 0).

Lemma 2.9. Let F be a class of measurable, real-valued functions and δ > 0 be such

that PQ0,gr f 2 ≤ δ 2 for every f ∈ F . Let F be an envelope function of F . Define a(ε) =

ε/
√

LogN(ε,F ,‖ · ‖2,PQ0,g
r ) for all ε > 0. For each n ≥ 1, it holds that
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√
nE(‖Pn −PQ0,gn

‖F )

. J(δ ,F ,‖ · ‖2,PQ0,g
r )+

√
nE
(
PQ0,gn

F1
{

F >
√

na(δ )
})

(2.37)

≤ J(δ ,F ,‖ · ‖2,PQ0,g
r )+

√
nκPQ0,grF1

{
F >

√
na(δ )

}
. (2.38)

Proof of Lemma 2.9. The proof parallels that of (van der Vaart, 1998, Lemma 19.34).

Preliminary. Inequality (2.38) follows readily from (2.37) because F1{F >
√

na(δ )}
is non-negative and G1 is endowed with the dominated ratio property. To understand the

sum of two terms on the RHS of (2.37), first note that E(‖Pn−PQ0,gn
‖F ) is upper-bounded

by

E

(
sup
f∈F

|(Pn −PQ0,gn
) f 1{F ≤

√
na(δ )}|

)
+E

(
sup
f∈F

|(Pn −PQ0,gn
) f 1{F >

√
na(δ )}|

)
.

(2.39)

Now, for every f ∈ F ,

|(Pn −PQ0,gn
) f 1{F >

√
na(δ )}| ≤ (Pn +PQ0,gn

)F1{F >
√

na(δ )},

hence, by the tower rule, the second term in (2.39) is smaller than E((Pn+PQ0,gn
)F1{F >√

na(δ )}) = 2E(PQ0,gn
F1{F >

√
na(δ )}). Thus, to prove (2.37), it remains to show that√

n times the first term in (2.39) is smaller than J(δ ,F ,‖ · ‖2,PQ0,g
r ), up to a universal,

multiplicative constant.

Before proceeding, note that N(ε,{ f 1{F ≤√
na(δ )} : f ∈F},‖·‖2,PQ0,g

r )≤N(ε,F ,‖·
‖2,PQ0,g

r ) for all ε > 0. Therefore, we may assume that sup f∈F ‖ f‖∞ ≤√
na(δ ). What fol-

lows is based on a chaining technique to replace F with a finite class.

Chaining. We now define a nested sequence of partitions on F , then deduce a finite

representation of F from it. Fix q0 such that δ ≤ 2−q0 ≤ 2δ . For each integer q ≥ q0,

denote Ñq ≡ N(2−q,F ,‖ · ‖2,PQ0,g
r ). Since ε 7→ N(ε,F ,‖ · ‖2,PQ0,g

r ) is non-decreasing, it

holds that

∑
q≥q0

2−q
√

Log Ñq .

∫ δ

0

√
LogN(ε,F ,‖ · ‖2,PQ0,g

r )dε. (2.40)

1. For each q ≥ q0, cover F with Ñq many brackets [lq,i,uq,i]i≤Ñq
such that PQ0,gr∆2

q,i ≤
2−2q for all i ≤ Ñq. Note that we may assume, without loss of generality, that ∆q,i ≡
uq,i− lq,i ≤ 2F ≤ 2

√
na(δ ) for all i ≤ Ñq. Define Fq,1 ≡ [lq,1,uq,1] then, recursively,

Fq,i ≡ [lq,i,uq,i]
⋂(⋃

j<i[lq, j,uq, j]
)c

for 2 ≤ i ≤ Ñq. We have our first partition: F =
⋃Ñq

i=1 Fq,i, which we call partition of F at level q.
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From the sequence of partitions {{Fq,i : i ≤ Ñq}}q≥q0
, we derive a nested sequence

of partitions as follows. The first partition is {Fq0,i : i ≤ Ñq0
} itself. Then, re-

cursively, at a level q such that {Fq,i : i ≤ Ñq} is not a successful refinement of

{F(q−1),i : i ≤ Ñq−1}, we replace each partitioning set at level q by its intersection

with all partitioning sets at level (q−1). All partitioning sets derived in this fashion

from Fq,i are associated with the same ∆q,i. For a given q ≥ q0, the possibly new

partition consists of at most Nq = ∏
q

q′=q0
Ñq′ partitioning sets. Using the inequality

√
LogNq ≤ ∑

q

q′=q0

√
Log Ñq′ , we see that (2.40) is preserved in the sense that

∑
q≥q0

2−q
√

LogNq ≤ ∑
q≥q0

2−q
q

∑
q′=q0

√
Log Ñq

. ∑
q≥q0

2−q
√

Log Ñq ≤
∫ δ

0

√
LogN(ε,F ,‖ · ‖2,PQ0 ,g

r )dε. (2.41)

2. At each level q ≥ q0 and for each Fq,i (i ≤ Nq), fix a representative fq,i ∈ Fq,i.

For every f ∈ F , if f ∈ Fq,i, then we set πq f ≡ fq,i and ∆q f ≡ ∆q,i. Introduce

aq0
≡ 2a(2−q0) = 2−q0+1/

√
LogNq0

and, for each q > q0, f ∈ F , Bq0
f ≡ 0,

aq ≡ 2−q+1/
√

LogNq,

Aq−1 f ≡ 1
{

∆q0
f ≤

√
naq0

, . . . ,∆q−1 f ≤
√

naq−1

}
,

Bq f ≡ 1
{

∆q0
f ≤

√
naq0

, . . . ,∆q−1 f ≤
√

naq−1,∆q f >
√

naq

}
.

By nestedness of the sequence of partitions, f 7→ Aq f and f 7→ Bq f are constant

over each Fq,i (i ≤ Nq). Moreover, Bq f +Aq f = Aq−1 f for all q > q0 and f ∈F . In

addition, since ε 7→ a(ε) is non-decreasing, ∆q0
f ≤ 2F ≤ 2

√
na(δ )≤ 2

√
na(2−q0)=√

naq0
, hence Aq0

f = 1.

Using these facts, any f ∈ F decomposes as

f = πq0
f + ∑

q≥q0+1

( f −πq f )Bq f + ∑
q≥q0+1

(πq f −πq−1 f )Aq−1 f . (2.42)

To see this, note first that either (i) Bq f = 0 for all q ≥ q0, which implies, by recur-

sion, that Aq f = 1 for all q ≥ q0, or (ii) there exists q1 ≥ q0 such that Bq1
f = 1, in

which case Bq f = 0 for all q ≥ q0,q 6= q1, and Aq f = 1 for all q0 ≤ q < q1, Aq f = 0

for all q ≥ q1. If (i) holds, then we deal with a telescopic sum and (2.42) boils down

to f = πq0
f + limq→∞ πq f −πq0

f . The above equality is valid because both πq f and

f are in the bracket [lq,uq], whose size ‖uq − lq‖2,PQ0,g
r → 0 as n → ∞. If (ii) holds,

then f = πq0
f +( f −πq1

f )+∑
q1

q=q0+1(πq f −πq−1 f ) is evidently true.
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Define Fa = {πq0
f/
√

n : f ∈F}, Fb = {∑q≥q0+1( f −πq f )Bq f/
√

n : f ∈F}, and

Fc = {∑q≥q0+1(πq f −πq−1 f )Aq−1 f/
√

n : f ∈ F}. Each sum in the definition of

Fb consists of at most one single term. Each sum in the definition of Fc is either

finite, or telescopic, with a limit, in which case the dominated convergence the-

orem guarantees that PQ0,gn ∑q≥q0+1(πq f − πq−1 f )Aq−1 f = ∑q≥q0+1 PQ0,gn
(πq f −

πq−1 f )Aq−1 f . Therefore, (2.42) yields

E(‖(Pn −PQ0,gn
)‖F )/

√
n ≤ E(‖(Pn −PQ0,gn

)‖Fa
)

+E(‖(Pn −PQ0,gn
)‖Fb

)+E(‖(Pn −PQ0,gn
)‖Fc

). (2.43)

We shall study in turn each term in the RHS expression of (2.43).

Class Fa. For every f ∈ F , (i) |πq0
f | ≤ √

na(δ ) ≤ √
na(2−q0) =

√
naq0

/2, hence

suph∈Fa
‖h‖∞ ≤ aq0

/2, and (ii) PQ0,gr(πq0
f )2 ≤ δ 2 (true by assumption). Apply Lemma 2.6

with F =Fa, C the whole probability space, U = aq0
/2, K = 4U , R = 4κδ 2/3 (an upper-

bound on nRn,4U(πq0
f/
√

n) valid uniformly in f ∈ F by Lemma 2.7): it holds that

nE
(
‖Pn −PQ0,gn

‖Fa

)
. δ

√
LogNq0

+aq0
LogNq0

≤ 2−q0
√

LogNq0
+2−q0+1 LogNq0√

LogNq0

≤ ∑
q≥q0

2−q
√

LogNq. (2.44)

Class Fb. For every q > q0, f ∈ F , | f −πq f | ≤ ∆q f implies

|(Pn −PQ0,gn
)( f −πq f )| ≤ (Pn +PQ0,gn

)∆q f ≤ |(Pn −PQ0,gn
)∆q f |+2PQ0,gn

∆q f .

Thus, by using repeatedly the triangle inequality and the dominated convergence theorem,

we obtain

E(‖Pn −PQ0,gn
‖Fb

)

≤ ∑
q≥q0+1

E

(
sup
f∈F

|(Pn −PQ0,gn
)∆q f Bq f/

√
n|
)
+2 ∑

q≥q0+1

E

(
sup
f∈F

PQ0,gn
∆q f Bq f/

√
n

)
.

(2.45)

Consider the first term in the RHS expression of (2.45). Fix q > q0. Note that f , f ′ ∈
Fq,i implies ∆q f Bq f = ∆q f ′Bq f ′. So, the supremum sup f∈F |(Pn −PQ0,gn

)∆q f Bq f/
√

n|
is actually a maximum over a set of cardinality Nq. Moreover, for each f ∈ F , (i) 0 ≤
∆q f Bq f ≤ ∆q−1 f Bq f ≤√

naq−1, hence suph∈Fb
‖h‖∞ ≤ aq−1, and (ii) PQ0,gr(∆q f Bq f )2 ≤
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2−2q. Apply Lemma 2.6 with F =Fb, C the whole probability space, U = aq−1, K = 4U ,

R = 4κ2−2q/3 (an upper-bound on nRn,4U(∆q f Bq f/
√

n) valid uniformly in f ∈ F by

Lemma 2.7): it holds that

nE

(
sup
f∈F

|(Pn −PQ0,gn
)∆q f Bq f/

√
n|
)

. 2−q
√

LogNq +aq−1 LogNq

= 2−q
√

LogNq +2−q+2 LogNq√
LogNq

. 2−q
√

LogNq. (2.46)

Consider now the second term in (2.45). Fix q > q0 and f ∈ F . Since Bq f = 1 only if√
naq < ∆q f , it follows that

√
naqPQ0,gi

∆q f Bq f ≤ PQ0,gi

(
∆q f

)2
Bq f ≤ 2−2q

for every 1 ≤ i ≤ n. Therefore,

sup
f∈F

PQ0,gn
∆q f Bq f/

√
n ≤ 2−2q/naq . 2−q

√
LogNq/n. (2.47)

By (2.45), summing up (2.46) and (2.47) over q > q0 finally yields

nE(‖Pn −PQ0,gn
‖Fb

). ∑
q≥q0+1

2−q
√

LogNq. (2.48)

Class Fc. Fix q > q0. Note that f , f ′ ∈ Fq,i implies (πq f − πq−1 f )Aq f = (πq f ′−
πq−1 f ′)Aq f ′. So, the supremum ‖Pn − PQ0,gn

‖Fc
is actually a maximum over a set of

cardinality Nq. Moreover, for each f ∈ F , (i) |πq f − πq−1 f |Aq−1 f ≤ ∆q−1 f Aq−1 f ≤√
naq−1, hence suph∈Fc

‖h‖∞ ≤ aq−1, from which we also deduce that (ii) PQ0,gr((πq f −
πq−1 f )Aq−1 f )2 ≤ PQ0,gr(∆q f )2 ≤ 2−2q. Therefore, the same reasoning as the one which

lead us to (2.48) applies again, and we obtain

nE(‖Pn −PQ0,gn
‖Fc

). ∑
q≥q0+1

2−q
√

LogNq. (2.49)

Combining (2.43), (2.44), (2.48), (2.49), and (2.41) completes the proof.

To prove Proposition 2.4, we must study the convergence in probability of empirical

processes indexed by estimated functions. Lemma 2.10 below provides sufficient con-

ditions to derive such convergences. The version of this lemma under a i.i.d. sampling

scheme is given by (van der Vaart and Wellner, 2007, Theorem 2.2). Here, we provide

its extension to the current targeted adaptive sampling scheme. The proof of Lemma 2.10

hinges on Lemma 2.9.
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Lemma 2.10 (convergence of empirical processes indexed by estimated functions). For

each n ≥ 1, let Fn = { fθ ,η : θ ∈ Θ,η ∈ Tn} be a class of measurable, real-valued func-

tions, with envelope function Fn. Suppose the following holds:

(a) The sequence {Fn}n≥1 satisfies the Lindeberg condition: PQ0,grF2
n = O(1) and, for

every δ > 0, PQ0,grF2
n 1{Fn > δ

√
n}= o(1).

(b) If δn = o(1), then it holds that J(δn,Fn,‖ · ‖2,PQ0,g
r ) = o(1).

If ηn ∈ Tn is such that supθ∈Θ PQ0,gr( fθ ,ηn
− fθ ,η0

)2 = oP(1) for some η0 ∈ ∩p≥1 ∪n≥p Tn,

then supθ∈Θ |√n(Pn −PQ0,gn
)( fθ ,ηn

− fθ ,η0
)|= oP(1).

Proof of lemma 2.10. Define the random class F̃ 0
n ≡ { fθ ,ηn

− fθ ,η0
: θ ∈ Θ}. We wish

to prove that
√

n‖Pn − PQ0,gn
‖

F̃ 0
n
= oP(1). Set arbitrarily α > 0,ε > 0, and introduce

F 0
n ≡ { fθ ,η − fθ ,η0

: θ ∈ Θ,η ∈ Tn}, which admits 2Fn as an envelope function. For every

δ > 0, it holds that J(δ ,F 0
n ,‖ · ‖2,PQ0,g

r ) . J(δ ,Fn,‖ · ‖2,PQ0,g
r ). Consequently, by (b)

and (ii) in Lemma 2.12 below, there exists δ0 > 0 and n0 ≥ 1 such that, for all n ≥ n0,

J(δ0,F
0
n ,‖ ·‖2,PQ0,g

r )≤ αε . Define T 0
n (δ0)≡ {η ∈ Tn : supθ∈Θ PQ0,gr( fθ ,η − fθ ,η0

)≤ δ 2
0 },

and F 0
n (δ0) ≡ { fθ ,η − fθ ,η0

: θ ∈ Θ,η ∈ T 0
n (δ0)} ⊂ F 0

n . By assumption, there exists

n1 ≥ 1 such that P(ηn 6∈ T 0
n (δ0))≤ ε whenever n ≥ n1.

Set n ≥ max(n0,n1). By the Markov inequality, and because ηn ∈ T 0
n (δ0) implies

F̃ 0
n ⊂ F 0

n (δ0), it holds that

P
(√

n‖Pn −PQ0,gn
‖

F̃ 0
n
≥ α

)

≤ P
(
ηn 6∈ T 0

n (δ0)
)
+α−1E

(√
n‖Pn −PQ0,gn

‖
F̃ 0

n
1{ηn ∈ T 0

n (δ0)}
)

(2.50)

≤ ε +α−1E
(√

n‖Pn −PQ0,gn
‖F 0

n (δ0)
1{ηn ∈ T 0

n (δ0)}
)

≤ ε +α−1E
(√

n‖Pn −PQ0,gn
‖F 0

n (δ0)

)
. (2.51)

By Lemma 2.9, whose conditions are met,

E
(√

n‖Pn −PQ0,gn
‖F 0

n (δ0)

)

. J(δ0,F
0
n (δ0),‖ · ‖2,PQ0,g

r )+
√

nPQ0,grFn1{Fn >
√

nan(δ0)/2} (2.52)

. J(δ0,F
0
n ,‖ · ‖2,PQ0,g

r )

+an(δ0)
−1PQ0,grF2

n 1{Fn >
√

nan(δ0)/2}, (2.53)
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where an(δ0) ≡ δ0/
√

LogN(δ0,F 0
n (δ0),‖ · ‖2,PQ0,g

r ). By (i) in Lemma 2.12 below, m 7→
J(δ0,F

0
m(δ0),‖ · ‖2,PQ0,g

r ) is a bounded function. We also know that, for all m ≥ 1,

J(δ0,F
0
m(δ0),‖ · ‖2,PQ0,g

r )≥ δ0

√
LogN(δ0,F 0

m(δ0),‖ · ‖2,PQ0,g
r ) = δ 2

0 /am(δ0).

In particular, m 7→ am(δ0) must be bounded away from 0. Let c> 0 be such that am(δ0)≥ c

for all m ≥ 1. With this in mind, (2.53) implies

E
(√

n‖Pn −PQ0,gn
‖F 0

n (δ0)

)
≤ J(δ0,F

0
n ,‖ · ‖2,PQ0,g

r )+ c−1PQ0,grF2
n 1{Fn >

√
nc/2},

where J(δ0,F
0
n ,‖ · ‖2,PQ0,g

r ) ≤ αε by construction. Assumption (b) guarantees that there

exists n2 ≥ 1 such that m ≥ n2 implies PQ0,grF2
m1{Fm >

√
mc/2} ≤ αcε . In summary,

provided that n≥max(n0,n1,n2), (2.51) and (2.53) yield P(
√

n‖Pn−PQ0,gn
‖

F̃ 0
n
≥α)≤ 3ε .

In other words,
√

n‖Pn −PQ0,gn
‖

F̃ 0
n
= oP(1). This completes the proof.

The next two lemmas proved useful in our demonstrations.

Lemma 2.11. Let F be a uniformly bounded class of measurable, real-valued functions.

Let h, h′ be two measurable, bounded, real-valued functions. We do not assume that

h,h′ ∈ F . Set δ > 0.

• Define F ′ equal either to { f − h : f ∈ F}, or { f |h| : f ∈ F}, or { f |h|+ f ′|h′| :

f , f ′ ∈ F}, or {| f | : f ∈ F}, or { f 2 : f ∈ F}, or {φ( f ) : f ∈ F} where φ is non-

decreasing and Lipschitz, or {h log( f )+(1−h) log(1− f ) : f ∈F} if the functions

in F and h take their values in [0,1] and are uniformly bounded away from 0 and

1. It holds that J(δ ,F ′,‖ · ‖2,PQ0,g
r ). J(δ ,F ,‖ · ‖2,PQ0,g

r ).

• Define F ′ = {√ f : f ∈ F} if the functions in F are non-negative. It holds that

J(δ ,F ′,‖ · ‖2,PQ0,g
r ). J(

√
δ ,F ,‖ · ‖2,PQ0,g

r ).

Proof of Lemma 2.11. Fix δ > 0 and M > 0 such that sup f∈F ‖ f‖∞ ≤ M < ∞. Let N ≡
N(δ ,F ,‖ · ‖2,PQ0,g

r ), and consider a collection of δ -brackets {[li,ui] : i ≤ N} that covers

F .

• Case F ′ = { f −h : f ∈ F}. The collection of δ -brackets obtained by substituting

[li −h,ui −h] for [li,ui], all i ≤ N, covers F ′. This proves the first claim.

• Case F ′ = { f |h| : f ∈ F}. The collection of δ‖h‖∞-brackets obtained by substi-

tuting [li|h|,ui|h|] for [li,ui], all i ≤ N, covers F ′. This proves the second claim.
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• Case F ′ = { f |h|+ f ′|h′| : f , f ′ ∈ F}. The collection of brackets consisting of

[li|h|+ l j|h′|,ui|h|+u j|h′|], all i, j ≤ N, covers F ′. Consider i, j ≤ N, and set γi j ≡
ui|h|+ u j|h′|, λi j ≡ li|h|+ l j|h′|, c ≡ 2

√
‖h‖2

∞ +‖h′‖2
∞: it holds that PQ0,gr(γi j −

λi j)
2 ≤ c2δ 2.

Therefore, N(δ ,F ′,‖ · ‖2,PQ0,g
r ) ≤ N(δ/c,F ,‖ · ‖2,PQ0,g

r )
2, from which the third

claim follows.

• Case F ′ = {| f | : f ∈ F}. Set f ∈ F , and assume without loss of generality that

f ∈ [l1,u1]. Define F+ ≡ 1{ f > 0}, F− ≡ 1{ f < 0}, G+ ≡ 1{l1 > 0}, G− ≡ 1{u1 <
0}, and G0 ≡ 1{l1 ≤ 0 ≤ u1}. Then

F+(l1)++F−(u1)− ≤ | f | ≤ F+u1 −F−l1

with

F+(l1)++F−(u1)− = G+l1 −G−u1 ≡ λ1,

and

F+u1 −F−l1 = G+u1 −G−l1 +G0 (F+u1 −F−l1)

≤ G+u1 −G−l1 +G0(u1 − l1)≡ γ1.

Thus λ1 ≤ | f | ≤ γ1, where γ1 −λ1 = u1 − l1, hence PQ0,gr(γ1 −λ1)
2 ≤ δ 2.

Therefore, N(δ ,F ′,‖·‖2,PQ0,g
r )≤ N(δ ,F ,‖·‖2,PQ0,g

r ), from which the fourth claim

follows.

• Case F ′ = { f 2 : f ∈ F}. Set f ∈ F , and assume without loss of generality that

f ∈ [l1,u1]. Let [λ1,γ1] be the bracket that we just built. The inequalities λ1 ≥ 0

and f 2 ≤ M2 imply that λ 2
1 ≤ f 2 ≤ min(γ2

1 ,M
2). Set λ2 ≡ λ1, γ2 ≡

√
min(γ2

1 ,M
2)

so that λ 2
2 ≤ f 2 ≤ γ2

2 . Obviously, γ2
2 − λ 2

2 ≤ 2γ2(γ2 − λ2) ≤ 2M(γ1 − λ1), hence

PQ0,gr(γ2
2 −λ 2

2 )
2 ≤ 4M2δ 2.

Therefore, N(δ ,F ′,‖ · ‖2,PQ0,g
r ) ≤ N(δ/2M,F ,‖ · ‖2,PQ0,g

r ), from which the fifth

claim follows.

• Case F ′ = {φ( f ) : f ∈F}. Say that φ is c-Lipschitz. The collection of cδ -brackets

obtained by substituting [φ(li),φ(ui)] for [li,ui], all i ≤ N, covers F ′. This proves

the sixth claim.

• Case F ′ = {h log( f )+(1−h) log(1− f ) : f ∈F}. Set f ∈F , and assume without

loss of generality that f ∈ [l1,u1] and 0< inf f∈F f ≤ l1 ≤ u1 < sup f∈F f < 1. Define

λ3 ≡ h log(l)+(1−h) log(1− l) and γ3 ≡ h log(u)+(1−h) log(1−u). It holds that
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λ3 ≤ h log( f )+(1−h) log(1− f )≤ γ3. Moreover, 0 ≤ γ3 −λ3 . (u1 − l1) because

log is Lipschitz on any compact subset of (0,1). Consequently, there exists c ≥ 1

such that PQ0,gr(γ3 −λ3)
2 ≤ c2δ 2.

Therefore, N(δ ,F ′,‖ · ‖2,PQ0,g
r ) ≤ N(δ/c,F ,‖ · ‖2,PQ0,g

r ), from which the seventh

claim follows.

• Case F ′ = {√ f : f ∈ F}. Set f ∈ F , and assume without loss of generality that

f ∈ [l1,u1] and l1 ≥ 0. Then
√

l1 ≤
√

f ≤√
u1. Moreover, (

√
u1 −

√
l1)

2 ≤ (
√

u1 −√
l1)(

√
u1+

√
l1) = u1− l1. The Cauchy-Schwarz inequality yields PQ0,gr(u1− l1)≤√

PQ0,gr(u1 − l1)2 ≤
√

δ .

Therefore, N(δ ,F ′,‖ · ‖2,PQ0,g
r ) ≤ N(

√
δ ,F ,‖ · ‖2,PQ0,g

r ), from which the eighth

claim follows.

This completes the proof.

Lemma 2.12. For each n ≥ 1, let Fn be a class of measurable, real-valued functions

such that δn = o(1) implies J(δn,Fn,‖ · ‖2,PQ0,g
r ) = o(1). Then (i) J(δ ,Fn,‖ · ‖2,PQ0,g

r ) =

O(1) for every δ > 0, and (ii) for every ε > 0, there exist δ > 0 and n1 ≥ 1 such that

J(δ ,Fn,‖ · ‖2,PQ0,g
r )≤ ε for all n ≥ n1.

Proof of Lemma 2.12. We prove (i) and (ii) by contradiction.

Suppose there exists δ > 0 such that limsupn→∞ J(δ ,Fn,‖ · ‖2,PQ0,g
r ) = ∞. Without

loss of generality, we can assume that J(δ ,Fn,‖ · ‖2,PQ0,g
r )≥ 22n for each n ≥ 1. Now,

J(δ ,Fn,‖ · ‖2,PQ0,g
r ) = J(δ/2,Fn,‖ · ‖2,PQ0,g

r )+
∫ δ

δ/2

√
logN(ε,Fn,‖ · ‖2,PQ0,g

r )dε,

with

2J(δ/2,Fn,‖ · ‖2,PQ0,g
r ) ≥ δ

√
logN(δ/2,Fn,‖ · ‖2,PQ0,g

r )

≥ 2

∫ δ

δ/2

√
logN(ε,Fn,‖ · ‖2,PQ0,g

r )dε.

Therefore, J(δ ,Fn,‖ · ‖2,PQ0,g
r ) ≥ 22n implies J(δ/2,Fn,‖ · ‖2,PQ0,g

r ) ≥ 22n/2 hence, by

recursion,

J(δ/2n,Fn,‖ · ‖2,PQ0,g
r )≥ 22n/2n = 2n.

The sequence {δn}n≥1 given by δn = δ/2n satisfies δn = o(1) and limn→∞ J(δn,Fn,‖ ·
‖2,PQ0,g

r ) = ∞, in contradiction with the assumption of the lemma. This completes the

proof of (i).
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Now, assume that there exists ε > 0 such that, for all δ > 0, there exists n1 ≥ 1 for

which J(δ ,Fn1
,‖ · ‖2,PQ0,g

r ) > ε . In particular, we can construct by recursion an increas-

ing sequence {ϕ(n)}n≥1 such that, for all n ≥ 1, J(1/n,Fϕ(n),‖ · ‖2,PQ0,g
r ) > ε . This in-

duces the existence of a sequence {δn}n≥1 such that δn = o(1) and limsupn→∞ J(δn,Fn,‖·
‖2,PQ0,g

r )> ε , in contradiction with the assumption of the lemma. This completes the proof

of (ii).
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Figure 2.1: Performance TMLE across 500 simulations. Each row corresponds to a performance

measure (top: bias, middle: sample variance, bottom: MSE). Each column corresponds to a work-

ing model for the optimal randomization scheme (left: mis-specified working model G m
1 , right:

correctly specified working model G c
1 ). The red and green dots correspond to our CARA RCT

with different working models for the conditional response (red: LASSO working model Qℓ
1,n,

green: parametric working model Q
p
1,n). The blue dots correspond to a RCT with a fixed design

set to the balanced randomization scheme gb and Q
p
1,n as (fixed) parametric working model for the

conditional response.
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Figure 2.2: Empirical coverage of CLT-based 95% CIs across 500 simulations. Each column

corresponds to a working model for the optimal randomization scheme (left: mis-specified working

model G m
1 , right: correctly specified working model G c

1 ). The red and green dots correspond to our

CARA RCT with different working models for the conditional response (red: LASSO working

model Qℓ
1,n, green: parametric working model Q

p
1,n). The blue dots correspond to a RCT with a

fixed design set to the balanced randomization scheme gb and Q
p
1,n as (fixed) parametric working

model for the conditional response. The yellow lines indicate the confidence levels 95% and 94%.
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Figure 2.3: Hypotheses testing to assess, across 500 simulations, the quality of coverage guar-

anteed by the CLT-based 95%-CI. Each row corresponds to a null hypothesis H1−α
0 : “π ≥ 1−α”

(top: α = 5%, bottom: α = 6%), where π is the actual coverage guaranteed by each CI, which

should satisfy by construction π ≥ 95%. Each column corresponds to a working model for the

optimal randomization scheme (left: mis-specified working model G m
1 , right: correctly specified

working model G c
1 ). The red and green colors correspond to our CARA RCT with different working

models for the conditional response (red: LASSO working model Qℓ
1,n, green: parametric working

model Q
p
1,n). The blue color correspond to a RCT with a fixed design set to the balanced random-

ization scheme gb and Q
p
1,n as (fixed) parametric working model for the conditional response. The

yellow line indicates the threshold 0.05.

A~U A~U+V

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

H
0

:c
o

v
e

ra
g

e
≥

9
5

%
H

0
:c

o
v
e

ra
g

e
≥

9
4
%

300 700 1100 1500 1900 2300 2700 3100 300 700 1100 1500 1900 2300 2700 3100

sample size n

LASSO Q CARA PARAM Q CARA Balanced Design with PARAM Q



55

Chapter 3

Asymptotic Theory for Cross-validated

Targeted Maximum Likelihood

Estimation

3.1 Introduction

Current practice in statistics often involves fitting parametric or stringent semi-parametric

regression models and using statistical inference for the regression coefficients in these

models. These models are always wrong, and as a consequence the point estimates and

confidence intervals are biased. Large sample sizes are not reducing this bias, but enhances

false rejections of null hypotheses. In addition, this parametric approach does not focus

on carefully translating the scientific question of interest in terms of a target parameter of

the probability distribution of the data.

In van der Laan and Rubin (2006) we introduced targeted maximum likelihood esti-

mation (TMLE) in semiparametric models, which incorporates adaptive estimation (e.g.,

loss based super learning) of the relevant part of the data generating distribution, and sub-

sequently carries out a targeted bias reduction by maximizing the log-likelihood (or other

loss function for the relevant part) of a ”clever” parametric working-model through the

initial estimator, treating the initial estimator as off-set, and possibly iterates this targeted

updating step till convergence. The target parameter of the resulting updated estimator

is then evaluated, and is called the TMLE of the target parameter of the data generating

distribution. This estimator is, by definition, a substitution estimator, and, under regularity

conditions, is a double robust semiparametric efficient estimator. We refer the reader to

van der Laan, Rose, and Gruber (September, 2009) for applications of TMLE.

The use of adaptive estimators raises the question till what degree we can still rely



CHAPTER 3. CVTMLE 56

on the central limit theorem for statistical inference. Our previous theorems show that

under empirical process conditions and rate of convergence conditions, one can indeed

still prove asymptotic linearity, and thereby obtain CLT-based inference. The empirical

process conditions puts some bounds on how adaptive the initial estimator can be. Indeed,

we have experienced that using as initial estimator an adaptive regression algorithm that

overfits the data such as the machine learning algorithm Random Forest can negatively

impact the bias reduction performance of the subsequent TMLE-step. In this paper we

present a version of targeted MLE that uses V-fold sample splitting. We refer to this

as the cross-validated targeted MLE (CV-TMLE). We formally establish its asymptotics

under stated conditions that avoid such empirical process conditions. The implications

of this theorem for the role of super learning (i.e., adaptive estimation) in construction of

semiparametric efficient estimators of target parameters is discussed. We also present a

direct application of this version of targeted MLE to the estimation of the additive causal

effect of a binary treatment on an outcome. We shall see that under mild conditions (e.g.

initial estimators need not be consistent), the resulting estimator is of the form

ψ∗
n −ψ0 = (Pn −P0)IC(P0)+Rn,

where the remainder is second order. The conditions for asymptotic linearity of ψ∗
n thus

follow from the analysis of this second order term.

The organization of this article is as follows. In section 2 we formally present the

TMLE using V-fold sample splitting for the initial estimator (CV-TMLE). In section 3 we

focus on the one-step CV-TMLE and present a theorem establishing its asymptotics. The

conditions and implications of the theorem are discussed. We also present an extension

of the theorem with more practical implications. In section 4 the theorem is demonstrated

for the cross-validated TMLE of the causal effect of a binary treatment on a continuous

or binary outcome. We discuss the implications of the theorem in strategies for estimat-

ing the target parameter of the data generating distribution using data adaptive estimators

combined with CV-TMLE. In section 5 we present a theorem for the general iterative CV-

TMLE, and its conditions are discussed. We end this article with a discussion. Technical

derivations are put in the Appendix.

3.2 The TMLE using V-fold sample splitting for initial

estimator.

Let O ∼ P0 and the probability distribution P0 is known to be an element of a statistical

model M . We observe n i.i.d. copies O1, . . . ,On of O and wish to estimate a particular

multivariate target parameter Ψ(P0). Let Pn denote the empirical probability distribution
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of O1, . . . ,On so that estimators can be represented as mappings from an empirical distri-

bution to the parameter space of the parameter it is estimating: for example, Pn → Ψ̂(Pn)
denotes an estimator of ψ0 = Ψ(P0).

We assume that Ψ is pathwise differentiable along a class of 1-dimensional sub-models

{Ph(ε) : ε} indexed by a choice h in an index set H : i.e., there exists a fixed d-variate

function D(P) = (D1(P), . . . ,Dd(P)) so that for all h ∈ H

d

dε
Ψ(Ph(ε))

∣∣∣∣
ε=0

= PD(P)S(h),

where S(h) is the score of {Ph(ε) : ε} at ε = 0. Here we used the notation PS=
∫

S(o)dP(o)
for the expectation of a function S of O.

We assume that a parameter Q : M → Q is chosen so that Ψ(P0) = Ψ1(Q(P0)). For

convenience, we will refer to both mappings with Ψ, so we will abuse notation by using

interchangeably Ψ(Q(P)) as well as Ψ(P). Let g : M → G be so that for all P ∈ M ,

D∗(P) = D∗(Q(P),g(P)).

In other words, the canonical gradient only depends on P through a relevant part Q(P) of

P and a nuisance parameter g(P) of P.

Let L ∞(K) be the class of functions of O with bounded supremum norm over a set of

K so that P0(O ∈ K) = 1, endowed with the supremum norm. We assume there exists an

uniformly bounded loss function L : Q → L ∞(K) so that

Q(P0) = arg min
Q∈Q

P0L(Q),

where, we remind the reader that P0L(Q) =
∫

L(Q)(o)dP0(o). In addition, we assume that

for each P∈M , for a specified d-dimensional (hardest) parametric model {P(ε) : ε}⊂M

through P at ε = 0 and with score D∗(P) at ε = 0,

〈 d

dε
L(Q(P(ε)))

∣∣∣∣
ε=0

〉 ⊃ 〈D∗(P)〉.

We are now ready to define a targeted maximum likelihood estimator. Let Pn → Q̂(Pn)
be an initial estimator of Q0 = Q(P0). Let Pn → ĝ(Pn) be an initial estimator of g0 = g(P0).
Given Q̂, ĝ, let Pn → Q̂(Pn)(ε) be a family of estimators indexed by ε chosen so that

〈 d

dε
L(Q̂(Pn)(ε))

∣∣∣∣
ε=0

〉 ⊃ 〈D∗(Q̂(Pn), ĝ(Pn))〉. (3.1)

Here we used the notation 〈h〉 for the linear span spanned by the components of h =
(h1, . . . ,hk). One can think of {Q̂(Pn)(ε) : ε} ⊂ M as a submodel through Q̂(Pn) with
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parameter ε , chosen so that the derivative(or score) at ε = 0 yields a function that equals

or spans the efficient influence curve at the initial estimator (Q̂(Pn), ĝ(Pn)). Note that this

submodel for fluctuating Q̂(Pn) uses the estimator ĝ(Pn) in its definition.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample: T = {i : Bn(i) = 0} and V = {i : Bn(i) = 1}. Let P0
n,Bn

, P1
n,Bn

be the

empirical probability distributions of the training and validation sample, respectively. For

a given cross-validation scheme Bn ∈ {0,1}n, we now define

ε0
n = ε̂(Pn)≡ argmin

ε
EBn

P1
n,Bn

L(Q̂(P0
n,Bn

)(ε)).

This now yields an update Q̂(P0
n,Bn

)(ε0
n ) of Q̂(P0

n,Bn
) for each split Bn.

As a side-note, it is of interest to point out that this cross-validated selector of ε equals

the cross-validation selector among the library of candidate estimators Pn → Q̂(Pn)(ε) of

Q0 indexed by ε . As a consequence, we can apply the results for the cross-validation

selector that show that it is asymptotically equivalent with the so called oracle selector.

Formally, consider the oracle selector

ε̃0
n ≡ argmin

ε
EBn

P0L(Q̂(P0
n,Bn

)(ε)).

If, in addition to uniform boundedness, we assume that the loss function also satisfies

M2 = sup
Q∈Q

VAR{L(Q)−L(Q0)}
E0{L(Q)−L(Q0)}

< ∞,

then the results in van der Laan and Dudoit (2003) and van der Vaart, Dudoit, and van der

Laan (2006) imply that we have the following finite sample inequality:

0 ≤ EEBn
P0{L(Q̂(P0

n,Bn
)(ε0

n ))−L(Q̂(P0
n,Bn

)(ε̃0
n ))}

≤ 2
√

c
1√
n

√
EEBn

P0{L(Q̂(P0
n,Bn

)(ε̃0
n ))−L(Q0)}.

Here c can be explicitly bounded by M2 and an upper bound of L. This finite sample

inequality gives us insight in the benefit of using cross-validation to select the amount of

fluctuation ε , since it shows that ε0
n will be close to the oracle selector ε̃0

n for any choice

of initial estimators (even if the initial estimator is extremely data adaptive).

One could now iterate this updating process of the training sample specific estima-

tors: define Q̂1(P0
n,Bn

) = Q̂(P0
n,Bn

)(ε0
n ), define the family of fluctuations Pn → Q̂1(Pn)(ε)

satisfying the derivative condition (3.1), and set

ε1
n = argmin

ε
EBn

P1
n,Bn

L(Q̂1(P0
n,Bn

)(ε)),
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resulting in another update Q̂1(P0
n,Bn

)(ε1
n ) for each Bn. This process is iterated till εk

n = 0

(or close enough to zero). The final update will be denoted with Q̂∗(P0
n,Bn

) for each split

Bn. The targeted MLE is now defined as

Ψ̂(Pn)≡ EBn
Ψ(Q̂∗(P0

n,Bn
)).

We refer to this as the cross-validated TMLE (CV-TMLE).

In a variety of examples, the convergence occurs in one step (i.e., ε1
n = 0 already). In

this case, we write εn ≡ ε0
n and

Ψ̂(Pn) = EBn
Ψ(Q̂(P0

n,Bn
)(εn)).

Cross-validated TMLE when one of the components is linear in data

generating distribution

The CV-TMLE presented above can be generalized to the case where only one component

of the initial estimator Q̂(Pn) should be updated using a parametric working fluctuation

model, while the other component can be estimated using a substitution estimator plug-

ging in the empirical probability distribution function (i.e., an NPMLE). In this case, it

is not necessary to target the second component since it is already an unbiased estimator.

Formally, consider a decomposition of Q into (Q1,Q2), such that Q2 → Ψ(Q1,Q2) is lin-

ear, and Q2(P) is linear in P itself so that it is sensible to estimate it with an empirical

probability distribution. Suppose that the canonical gradient D∗ can be decomposed as

D∗(P) = D∗
1(P)+D∗

2(P),

where D∗
1(P0) is the canonical gradient of the map

P → Ψ(Q1(P),Q2(P0))

at P = P0. Assume also that D∗
1(P) does not depend on Q2(P).

Under these assumptions we can apply the CV-TMLE algorithm to obtain a targeted

estimator of Q1(P0), while not updating the initial estimator of Q2(P0). In this case, the

parametric fluctuation model satisfies

〈 d

dε
L(Q̂1(Pn)(ε))

∣∣∣∣
ε=0

〉 ⊃ 〈D∗
1(Q̂1(Pn), ĝ(Pn))〉,

where L() is now a loss function for Q1(P0) only. For a given cross-validation scheme

Bn ∈ {0,1}n, we define

ε0
n = ε̂(Pn)≡ argmin

ε
EBn

P1
n,Bn

L(Q̂1(P
0
n,Bn

)(ε)).
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This now yields an update Q̂1(P
0
n,Bn

)(ε0
n ) of Q̂1(P

0
n,Bn

) for each split Bn. One could now

iterate this updating process of the training sample specific estimators: define Q̂1
1(P

0
n,Bn

) =

Q̂1(P
0
n,Bn

)(ε0
n ), define the family of fluctuations Pn → Q̂1

1(Pn)(ε) satisfying the derivative

condition (3.1), and set

ε1
n = argmin

ε
EBn

P1
n,Bn

L(Q̂1
1(P

0
n,Bn

)(ε)),

resulting in another update Q̂1
1(P

0
n,Bn

)(ε1
n ) for each Bn. This process is iterated till εk

n = 0

(or close enough to zero). The final update will be denoted with Q̂∗
1(P

0
n,Bn

) for each split

Bn. The resulting CV-TMLE of ψ0 is given by

Ψ̂(Pn) = EBn
Ψ
(
Q̂∗

1(P
0
n,Bn

), Q̂2(P
1
n,Bn

)
)
.

We will illustrate this estimator with an application to the additive causal effect of a binary

treatment on a continuous or binary outcome in section 4.

3.3 Asymptotics for the one-step cross-validated TMLE

In this section we analyze the cross-validated targeted MLE that converge in one step.

The theorem carries relevance in general since it establishes the theoretical behavior of

the targeted MLE updating algorithm. For convenience, in this section and the next ε0
n

is simply denoted with εn. In the following theorem, convergence in probability always

refers to convergence when n converges to infinity.

Definition 3.1. For a class of functions, F , whose elements are functions f that map O

into a real number, we define the entropy integral

Entro(F )≡
∫ ∞

0

√
logsup

Q

N(ε ‖ F ‖Q,2,F ,L2(Q))dε,

where N(ε,F ,L2(Q)) is the covering number, defined as the minimal number of balls of

radius ε > 0 needed to cover F , using the L2(Q)-norm when defining a ball of radius ε .

In addition, F is defined as the envelope of F which is a function F so that | f |≤ F for

all f ∈ F .

We refer to van der Vaart and Wellner (1996b) for empirical process theory. We state

the following lemma (Lemma 2.14.1 in van der Vaart and Wellner (1996b)) for ease of

reference.
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Lemma 3.1. Let F denote a class of measurable functions of O. Let Gn =
√

n(Pn −P0).
Then

E
(
sup f∈F |Gn f |

)
≤ Entro(F )

√
P0F2.

The following result is an immediate application of lemma 3.1.

Lemma 3.2. Suppose ‖ εn − ε0 ‖ P→ 0. For each sample split of Bn, we condition on P0
n,Bn

and consider a class of measurable functions of O:

F (P0
n,Bn

)≡
{

fε(P
0
n,Bn

)≡ f (ε,P0
n,Bn

)− f (ε0,P0) : ε
}
,

where the index set contains εn with probability tending to 1. For a deterministic sequence

δn → 0, define the subclasses

Fδn
(P0

n,Bn
)≡

{
fε ∈ F (P0

n,Bn
) :‖ ε − ε0 ‖< δn

}
.

If for deterministic sequence δn → 0, we have

E
{

Entro(Fδn
(P0

n,Bn
))
√

P0F(δn,P
0
n,Bn

)2
}
→ 0 as n → ∞,

where F(δn,P
0
n,Bn

) is the envelope of Fδn
(P0

n,Bn
), then

√
n(P1

n,Bn
−P0)

{
f (εn,P

0
n,Bn

)− f (ε0,P0)
}
= oP(1).

Theorem 3.1. Let Q̂(Pn), ĝ(Pn) be an initial estimator of Q0, g0, respectively. In the

following, Q̂(P0) and ĝ(P0) denote the limits of these estimators, not necessarily equal to

Q0 and g0, respectively.

Uniformly bounded loss function: We assume that {Q̂(Pn)(ε) : ε} ∈ Q with probability

1, the loss function L(Q) for Q0 is uniformly bounded in Q ∈ Q, and over a support of

O ∼ P0:

M1 = sup
Q

sup
O

| L(Q)(O) |< ∞.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample. Suppose Bn is uniformly distributed over a finite support.

Consider the estimator defined above

Ψ̂(Pn) = EBn
Ψ(Q̂(P0

n,Bn
)(εn)).

If the parameter P → Ψ(Q(P)) satisfies

A1:

Ψ(Q(P))−Ψ(Q0) =−P0D∗(Q(P),g0)+OP(‖ Ψ(Q(P))−Ψ(Q0) ‖2).
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Then

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)

+ EBn
P0

{
D∗ (Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)
−D∗ (Q̂(P0

n,Bn
)(εn),g0

)}

− EBn
P0

{
D∗ (Q0, ĝ(P

0
n,Bn

)
)
−D∗ (Q0,g0)

}

+ OP(‖ Ψ̂(Pn)−ψ0 ‖2). (3.2)

Consider ε0 = ε(P0) such that ‖ εn − ε0 ‖ P→ 0. Suppose the following assumption also

holds:

A2: (Given ‖ εn − ε0 ‖ P→ 0)

For each sample split Bn, condition on P0
n,Bn

and define the class of functions

F (P0
n,Bn

)≡ {O → D∗ (Q̂(P0
n,Bn

)(ε), ĝ(P0
n,Bn

)
)
−D∗ (Q̂(P0)(ε0), ĝ(P0)

)
: ε},

where the set over which ε varies is chosen so that it contains εn with probability

tending to 1. In addition, for a deterministic sequence δn converging to zero as

n → ∞, we also define the sequence of sub-classes

Fδn
(P0

n,Bn
)≡

{
fε ∈ F (P0

n,Bn
) :‖ ε − ε0 ‖< δn

}
.

Assume that for deterministic sequence δn converging to 0, we have

EEntro(Fδn
(P0

n,Bn
))
√

P0F2(δn,P
0
n,Bn

)→ 0 as n → ∞,

where F(δn,P
0
n,Bn

) is the envelope of Fδn
(P0

n,Bn
).

Then we have:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q̂(P0)(ε0), ĝ(P0)
)
+oP(1/

√
n)

+ EBn
P0

{
D∗ (Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)
−D∗ (Q̂(P0

n,Bn
)(εn),g0

)}

− EBn
P0

{
D∗ (Q0, ĝ(P

0
n,Bn

)
)
−D∗ (Q0,g0)

}

+ OP(‖ Ψ̂(Pn)−ψ0 ‖2). (3.3)

Furthermore, suppose ĝ(Pn) = g0, that is g0 is known, as in the case of an RCT. Then

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q̂(P0)(ε0),g0

)
+oP(1/

√
n). (3.4)
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If, in addition to ĝ(Pn) = g0, we also have Q̂(P0)(ε0) = Q0, then Ψ̂(Pn) is in fact asymp-

totically efficient:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q0,g0)+oP(1/
√

n). (3.5)

More generally, suppose ĝ(P0) = g0. Let Q̃ denote the limit of Q̂(Pn)(εn) which is not

necessarily Q0. Assume in addition

A3:

EBn
P0

{
D∗ (Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)
−D∗ (Q̂(P0

n,Bn
)(εn),g0

)}

−EBn
P0

{
D∗ (Q̃, ĝ(P0

n,Bn
)
)
−D∗ (Q̃,g0

)}

= oP(1/
√

n).

A4: For some mean zero function IC′(P0) ∈ L2
0(P0), we have

EBn
P0

{
D∗ (Q̃, ĝ(P0

n,Bn
)
)
−D∗ (Q̃,g0

)}

−EBn
P0

{
D∗ (Q0, ĝ(P

0
n,Bn

)
)
−D∗(Q0,g0)

}

= (Pn −P0) IC′(P0)+oP(1/
√

n).

NOTE: If Q̂(Pn)(εn) converges to Q0 then A4 is automatically true with IC′ ≡ 0.

Then Ψ̂(Pn) is asymptotically linear

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗ (Q̂(P0)(ε0),g0

)
+ IC′(P0)

}
+oP(1/

√
n).

Note that the choice of the initial estimator of the Q-function affects the update es-

timator Q̂(P0
n,Bn

)(εn) and its subsequent limit. In our expansion in (3.3), this choice

would play out in the influence curve D∗ (Q̂(P0)(ε0), ĝ(P0)
)
, which is a function of this

limit, and hence would affect the efficiency bound, as well as the quadratic residual term

OP(‖ Ψ̂(Pn)−ψ0 ‖2). The TMLE update will not alter consistent of the Q-function it-

self, only the consistency of the target parameter estimate, which is a function of this

Q-function.

Proof of Theorem 3.1:

From definition of εn and the one-step convergence of Q̂(P)(εn), we have that

EBn
P1

n,Bn
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)) = 0.
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The double robustness of D∗ guarantees P0D∗(Q0,g) = 0 for all g. Combining this result

with A1, we readily have (3.2):

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)) (3.6)

+EBn
P0

{
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(εn),g0)
}

(3.7)

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

(3.8)

+OP(‖ Ψ̂(Pn)−ψ0 ‖2).

We may rewrite (3.6) as

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

){
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0)(ε0), ĝ(P0))
}

+EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0)(ε0), ĝ(P0)).

An application of lemma 3.2 and A2 implies that for each sample split Bn,

(
P1

n,Bn
−P0

){
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0)(ε0), ĝ(P0))
}

= oP(1/
√

n).

Since Bn is uniformly distributed on a finite support, it now follows that indeed

EBn

(
P1

n,Bn
−P0

){
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0)(ε0), ĝ(P0))
}

= oP(1/
√

n).

In other words, the term (3.6) is given by

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0)(ε0), ĝ(P0))+oP(1/

√
n).

This result and the established equality in (3.2) now prove (3.3).

Now, if ĝ(Pn) = g0, then the (3.7) and (3.8) are exactly 0. Consequently, (3.3) becomes

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(ε0),g0)

+ oP(1/
√

n)+OP(‖ Ψ̂(Pn)−ψ0 ‖2).

However, taking ‖‖ on both sides of the equality above yields ‖ Ψ̂(Pn)−ψ0 ‖= oP(1/
√

n).
We thereby have asymptotically linearity of Ψ̂(Pn):

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(ε0),g0)+oP(1/
√

n).



CHAPTER 3. CVTMLE 65

If, in addition, Q̂(P0)(ε0) = Q0, then the influence curve is indeed the efficient influence

curve D∗(Q0,g0).
Next we consider a more general case where ĝ(P0) = g0. Let Q̃ be the limit of

Q̂(Pn)(εn). It is not necessarily the case that Q̃ = Q0. We now rewrite the established

equality (3.3) to account for Q̃:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q̂(P0)(ε0), ĝ(P0)
)
+oP(1/

√
n)

+EBn
P0

{
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(εn),g0)
}

−EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

+EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+OP(‖ Ψ̂(Pn)−ψ0 ‖2).

From A3, the term

EBn
P0

{
D∗(Q̂(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(εn),g0)
}

−EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

= oP(1/
√

n).

From A4, the term

EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

= (Pn −P0)IC
′(P0)+oP(1/

√
n).

Therefore (3.3) becomes

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗ (Q̂(P0)(ε0), ĝ(P0)
)
+ IC′(P0)

}
+oP(1/

√
n)

+OP(‖ Ψ̂(Pn)−ψ0 ‖2).

Taking ‖‖ on both sides again yields ‖ Ψ̂(Pn)−ψ0 ‖= oP(1/
√

n). We thereby have the

desired result

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗ (Q̂(P0)(ε0), ĝ(P0)
)
+ IC′(P0)

}
+oP(1/

√
n).

�
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Remarks about conditions of Theorem 3.1

To understand assumption A1 we note the following. By general property of the efficient

influence curve, we have

Ψ(P)−Ψ(P0) =−P0D∗(P)+R(P,P0),

where the specifics of the behavior of the remainder R as a function of P,P0 depend on the

particular data structure, semiparametric model, and target parameter. For example, for

linear parameters on convex models we have Ψ(P)−Ψ(P0) =−P0D∗(P) exact, as shown

in van der Laan (2006).

Under no conditions on the estimators, we determined an exact identity (3.2) for the

cross-validated TMLE minus its target ψ0, which already provides the main insights about

the performance of this estimator. It shows that the analysis of the CV-TMLE involves a

cross-validated empirical process term applied to the efficient influence curve, and a re-

mainder term (In many examples we shall see that this remainder is second order). The

cross-validated empirical process term is nice because it involves, for each sample split,

an empirical mean over a validation sample of an estimated efficient influence curve that

is largely estimated based on the training sample. Based on this, one would predict that

one can establish a CLT for this cross-validated empirical process term without having to

enforce restrictive entropy conditions on the support of (i.e., class of functions that con-

tains) the estimated efficient influence curve (and thereby limit the adaptiveness of the

initial estimators). This is formalized by A2 and our second result (3.3), which replaces

the cross-validated empirical process term by an empirical mean of mean zero random

variables D∗(Q̂(P0)(ε0), ĝ(P0)) plus a negligible oP(1/
√

n)-term. This result only requires

the positivity assumption, and that the estimators converge to a target. That is, under es-

sentially no conditions beyond the positivity assumption, the CV-TMLE minus the true

ψ0, behaves as an empirical mean of mean zero i.i.d. random variables (which thus con-

verges to a normal distribution, by CLT), plus a specified remainder term. In particular,

we control bias of the estimator by making this remainder term as small as possible.

Regarding assumption A2 we note the following. Combined with lemma 3.2, A2 im-

plies that the cross-validated empirical process term minus an empirical mean of mean

zero random variables converges to 0 at root-n rate. The entropy-term in A2 concerns the

entropy of a class of functions that are indexed by a finite dimensional parameter. Such

entropies are bounded under very weak conditions, mainly that the class of functions are

uniformly bounded. As a consequence, to obtain the wished convergence, one first simply

provides a bound on the entropy of F (P) for a fixed P uniformly in all P. In this way, it

remains to show that

EP0F2(δn,P
0
n,Bn

)→ 0 as n → ∞.
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In other words, one shows that the L2(P0)-norm of the envelope converges to zero for

δn → 0 and P0
n,Bn

converging to P0. Again, this is mainly a consistency condition on

Q̂(Pn)(εn) (with respect to its limit, which is not necessarily Q0). More importantly, we

do not require that the entropy of the space of initial estimator Q̂(Pn), and thereby also the

entropy of ĝ(Pn), is controlled. The latter are typical conditions putting strong restrictions

on how data adaptive the estimators Q̂ and ĝ can be, but these conditions are now com-

pletely avoided. This result allows us to fully utilize data adaptive estimators to make the

remainder term negligible.

Moreover, in an RCT g0 is known, and one might set ĝ(Pn) = g0, so that the remainder

term is exactly equal to zero, giving us the asymptotic linearity (3.4) of the CV-TMLE

under no other conditions than the positivity assumption and convergence of ˆ̄Q(Pn) to

some fixed function. This teaches us the remarkable lesson that in an RCT, one can use

very aggressive super learning without causing any violations of the conditions, and one

will approximate the efficiency bound at smaller sample sizes than otherwise. In particular,

in an RCT in which we use a consistent estimator ˆ̄Q the CV-TMLE is asymptotically

efficient, as stated in (3.5). That is, in an RCT, this theorem teaches us that CV-TMLE

with adaptive estimation of Q̄0 is the way to go.

In more general types of studies, when ĝ(Pn) 6= g0, the remainder may not be exactly

zero. But its form, as described in (3.3), will allow us to identify the necessary conditions

and general strategies for estimation of Q0 and g0 to make this term negligible. We will

illustrate this in our example with estimation of additive causal effect of binary treatment

on an outcome.

Implication for the use of super learning The importance of using super learning for

estimation of both Q0 and g0 is now clear. Super learning is essential to make the remain-

der as small as possible, for controlling bias. Interestingly, at least asymptotically, there

seems to be no price for using super learning, but only benefits: one wants the remain-

der term in (3.3) to be small, and that requires approximating the true Q0 and g0 well,

and simultaneously, the use of very data adaptive estimators did not affect the conditions

required for the analysis of the asymptotically linear term in (3.3), due to the V-fold sam-

ple splitting. Therefore, to control the bias term asymptotically, the utilization of super

learning is essential, while it also improves the efficiency of the first order term. Further

investigation of the required conditions for the bias-term will have to teach us if there

will be any trade-off between obtaining a good rate of convergence and the entropy of the

estimators. We will return to this issue in our example and its following remarks.
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Asymptotics for CV-TMLE when one of the components is linear in

data generating distribution

We now study the asymptotics of the CV-TMLE described in section 3.2 when the algo-

rithm converges in one step.

Consider a decomposition of Q into Q = (Q1,Q2), such that Q2 7→ Ψ(Q1,Q2) is linear,

and Q2(P) is linear in P itself. Suppose we can decompose the canonical gradient D∗ as

D∗(Q1(P),Q2(P),g(P)) = D∗
1(Q1(P),g(P))

+ D∗
2(Q1(P),g(P))+D∗

3(Q1(P),Q2(P),g(P)),

where D∗
1(P0) is the canonical gradient of the map

P 7→ Ψ(Q1(P),Q2(P0))

at P = P0. In our additive causal effect example in next section, Q2 plays the role of

the marginal distribution of the baseline covariates and Q1 = E(Y |1,W )− E(Q|0,W ).
Since Ψ(Q0) only involves taking an average w.r.t. the covariate distribution, Q2,0 is

naturally estimated with its empirical distribution. In our example, D∗
2(Q1,g) = Q1 and

D∗
3(Q1,Q2,g) =−Ψ(Q1,Q2).

Under certain conditions on D∗
2 and D∗

3, the asymptotic results of previous theorem

extend naturally to the CV-TMLE where Q1,0 is estimated using a fluctuation model and

Q2,0 is estimated using a substitution estimator plugging in the empirical distribution.

Theorem 3.2. Consider a decomposition of Q into Q=(Q1,Q2), such that Q2 7→Ψ(Q1,Q2)
is linear and Q2(P) is linear in P.

Suppose the canonical gradient D∗ can be decomposed into

D∗(Q1(P),Q2(P),g(P)) = D∗
1(Q1(P),g(P))

+ D∗
2(Q1(P),g(P))+D∗

3(Q1(P),Q2(P),g(P)),

where D∗
1(P0) is the canonical gradient of the map

P 7→ Ψ(Q1(P),Q2(P0))

at P = P0. Denote D
′∗ ≡ (D∗

1 +D∗
2)

Let Q̂1(Pn), Q̂2(Pn), ĝ(Pn) be estimators of Q1,0, Q2,0, g0, respectively. We will denote

their limits with Q̂1(P0),Q̂2(P0), and ĝ(P0), which are not necessarily equal to Q1,0,Q2,0

and g0, respectively.

Uniformly bounded loss function: We assume that {Q̂1(Pn)(ε) : ε} ∈ Q with probability
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1, the loss function L(Q1) for Q1,0 is uniformly bounded in Q1 ∈ Q, and over a support of

O ∼ P0:

M1 = sup
Q

sup
O

| L(Q1)(O) |< ∞.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample. Suppose Bn is uniformly distributed over a finite support.

Denote Q̂(Pn,Bn)(εn)≡
(

Q̂1(P
0
n,Bn

)(εn), Q̂2(P
1
n,Bn

)
)

, and let

Ψ̂(Pn)≡ EBn
Ψ
(
Q̂1(P

0
n,Bn

)(εn), Q̂2(P
1
n,Bn

)
)
.

If the parameter P → Ψ(Q(P)) satisfies

A1:

Ψ(Q(P))−Ψ(Q0) =−P0D∗(Q(P),g0)+OP(‖ Ψ(Q(P))−Ψ(Q0) ‖2),

and

A2:

EBn
P1

n,Bn
D∗

2(Q̂1(P
0
n,Bn

)(εn), ĝ(P
0
n,Bn

))

+EBn
P1

n,Bn
D∗

3(Q̂(Pn,Bn)(εn), ĝ(P
0
n,Bn

))

= 0.

Then

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))

+EBn
P0

{
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(Pn,Bn)(εn),g0)
}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+OP(‖ Ψ̂(Pn)−ψ0 ‖2), (3.9)

Let ε0 = ε(P0) be such that ‖ εn − ε0 ‖ P→ 0.

Suppose the following assumptions also hold

A3: For each sample split Bn

√
n(P1

n,Bn
−P0)

{
D∗

3

(
Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)
−D∗

3

(
Q̂(P0)(ε0), ĝ(P0)

)}

= oP(1),

where Q̂(P0)(ε0) =
(
Q̂1(P0)(ε0), Q̂2(P0)

)
.
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A4: (Given ‖ εn − ε0 ‖ P→ 0,)

Conditional on each P0
n,Bn

, define the class of functions

F (P0
n,Bn

)≡ {O → D∗′(Q̂1(P
0
n,Bn

)(ε), ĝ(P0
n,Bn

))−D∗′(Q̂1(P0)(ε0), ĝ(P0)) : ε},

where the set over which ε varies is chosen so that it contains with probability

tending to 1 εn. In addition, for a deterministic sequence δn converging to zero as

n → ∞, we also define the sequence of sub-classes

Fδn
(P0

n,Bn
)≡

{
fε ∈ F (P0

n,Bn
) :‖ ε − ε0 ‖< δn

}
.

Assume that for deterministic sequence δn converging to 0, we have

EEntr(Fδn
(P0

n,Bn
))
√

P0F(δn,P
0
n,Bn

)2 → 0 as n → ∞,

where F(δn,P
0
n,Bn

) is the envelope of Fδn
(P0

n,Bn
).

Then we have:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q̂1(P0)(ε0), Q̂2(P0), ĝ(P0))+oP(1/
√

n)

+EBn
P0

{
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(Pn,Bn)(εn),g0)
}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+OP(‖ Ψ̂(Pn)−ψ0 ‖2), (3.10)

Furthermore, suppose ĝ(Pn) = g0. Then

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q̂1(P0)(ε0), Q̂2(P0),g0

)
+oP(1/

√
n).

If, in addition to ĝ(Pn) = g0, we also have Q̂1(P0)(ε0) = Q1,0 and Q̂2(P0) = Q2,0, then

Ψ̂(Pn) is in fact asymptotically efficient

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗ (Q0,g0)+oP(1/
√

n).

More generally, suppose ĝ(P0) = g0. Let Q̃1 denote the limit of Q̂1(Pn)(εn) which is

not necessarily Q1,0. Assume in addition

A5:

EBn
P0

{
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))−D∗(Q̂(Pn,Bn)(εn),g0)
}

−EBn
P0

{
D∗(Q̃1, Q̂2(P0), ĝ(P

0
n,Bn

))−D∗(Q̃1, Q̂2(P0),g0)
}

= oP(1/
√

n).
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A6: For some mean zero function IC′(P0) ∈ L2
0(P0), we have

EBn
P0

{
D∗(Q̃1, Q̂2(P0), ĝ(P

0
n,Bn

))−D∗(Q̃1, Q̂2(P0),g0)
}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

= (Pn −P0) IC′(P0)+oP(1/
√

n).

NOTE: If Q̂1(Pn)(εn) converges to Q1,0 and Q̂2(Pn) converges to Q2,0 then A6 is

automatically true with IC′ ≡ 0.

Then Ψ̂(Pn) is asymptotically linear

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗ (Q̂1(P0)(ε0), Q̂2(P0),g0

)
+ IC′(P0)

}
+oP(1/

√
n).

Proof of Theorem 3.2:

From definition of εn and one-step convergence of Q̂1(P)(εn), we have that

EBn
P1

n,Bn
D∗

1(Q̂1(P
0
n,Bn

)(εn), ĝ(P
0
n,Bn

)) = 0.

Combining this result with A1, A2 and the double robustness of D∗, which guarantees

P0D∗(Q0,g) = 0 for all g, we readily have (3.9):

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(Pn,Bn

)(εn), ĝ(P
0
n,Bn

)) (3.11)

+EBn
P0

{
D∗(Q̂(Pn,Bn

)(εn), ĝ(P
0
n,Bn

))−D∗(Q̂(Pn,Bn
)(εn),g0)

}
(3.12)

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

(3.13)

+OP(‖ Ψ̂(Pn)−ψ0 ‖2),

On the other hand, we may rewrite (3.11) as

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

){
D∗′(Q̂1(P

0
n,Bn

)(εn), ĝ(P
0
n,Bn

))−D∗′(Q̂1(P0)(ε0), ĝ(P0))
}

+(Pn −P0)D∗′(Q̂1(P0)(ε0), ĝ(P0))

+EBn
(P1

n,Bn
−P0)

{
D∗

3(Q̂(Pn,Bn)(εn), ĝ(P
0
n,Bn

))−D∗
3(Q̂(P0)(ε0), ĝ(P0))

}

+(Pn −P0)D∗
3(Q̂(P0)(ε0), ĝ(P0))

Applying the lemma 3.2 with A4 we have that

EBn

(
P1

n,Bn
−P0

){
D∗′(Q̂1(P

0
n,Bn

)(εn), ĝ(P
0
n,Bn

))−D∗′(Q̂1(P0)(ε0), ĝ(P0))
}

= oP(1/
√

n).
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It follows from this result and A3 that the term (3.11) becomes

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

)
D∗′(Q̂1(P0)(ε0), ĝ(P0))

+(Pn −P0)D
∗
3(Q̂1(P0)(ε0), Q̂2(P0), ĝ(P0))+oP(1/

√
n)

= EBn

(
P1

n,Bn
−P0

)
D∗(Q̂1(P0)(ε0), Q̂2(P0), ĝ(P0))+oP(1/

√
n)

These results and the established equality in (3.9) now prove (3.10).

Similar steps as in the proof of Theorem 3.1 now complete this proof. �

Remark on conditions of Theorem 3.2

For some parameters, it is more efficacious to only target one component of Q0 while es-

timating the other component using a substitution estimator plugging in the empirical dis-

tribution. Theorem 3.2 teaches us that the resulting CV-TMLE, under this partial-targeting

scheme, has all the desired properties of its full-targeting counterpart. The analysis of the

theoretical behavior of Ψ̂ in Theorem 3.1 can be extended natural to obtain the results in

Theorem 3.2 if D∗
2 and D∗

3 satisfy A2 and A3. These two conditions give us insight into

when it is sensible to use this partial-targeting CV-TMLE for Q.

Condition A2 implies that one may still solve the estimation equation by only targeting

Q1 and estimating Q2 using the validation set, i.e.

EBn
P1

n,Bn
D∗ (Q̂1(P

0
n,Bn

)(εn), Q̂2(P
1
n,Bn

), ĝ(P0
n,Bn

)
)
= 0.

This suggests that it’s sensible to employ this partial-targeting scheme only if the estimator(
Q̂1(P

0
n,Bn

)(εn), Q̂2(P
1
n,Bn

)
)

will be as good as its full-targeting counterpart in terms of

solving the cross validated estimating equation.

In our examples, D∗
3(Q1,Q2,g) =−Ψ(Q1,Q2), in which case A3 is automatically true

since (Pn − P0)D
∗
3(Q1,Q2,g) = 0 for all Q1,Q2,g. In such instances, no requirements

are imposed on the estimators, and thus the partial-targeting scheme is highly effective.

However, when that is not the case, A3 implies that one will need to control the entropy

of the class of estimators Q̂2, since they will be evaluated at the training set P1
n,Bn

. In these

cases, the partial-targeting scheme may not be as effective as the full-targeting one.

3.4 Application of Theorem 3.2 to estimation of additive

causal effect in nonparametric model

Let O = (W,A,Y ), W be a vector of baseline covariates, A a binary treatment variable, and

Y an outcome of interest. Let M be the class of all probability distributions for O. We
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consider the parameter Ψ : M → R

Ψ(Q(P)) = EP [EP(Y |W,A = 1)−EP(Y |W,A = 0)] .

Several estimators, in addition to TMLE, have been proposed for the estimation of this

parameter: the G-comp estimator (Robins (1986)), the IPTW estimator (Hernan, Brum-

back, and Robins (2000); Robins (1999)), the DR-IPTW estimator (Robins and Rotnitzky

(2001); Robins (2000); Robins, Rotnitzky, and van der Laan (2000)). We refer to van der

Laan et al. (September, 2009), Gruber and van der Laan (2010), Stitelman and van der

Laan (2010), and Petersen, Porter, S.Gruber, Wang, and van der Laan (2010) for compar-

isons of performance between TMLE and these various estimators.

Let Q(P) = (Q̄(P),QW (P)), where Q̄(P)(W,A) ≡ EP(Y |W,A) and QW (P) is the den-

sity of the marginal probability distribution of W . For convenience, we will use Q̄(P)(W )
to denote EP(Y |W,A = 1)−EP(Y |W,A = 0). The distinctions will be clear from the argu-

ments given to the function or from context. Let g(P)(A|W ) ≡ PrP(A|W ). We also adopt

the notations Q̄0 ≡ Q̄(P0), QW,0 ≡ QW (P0), and g0 ≡ g(P0).
Our parameter of interest is Ψ evaluated at the distribution P0 ∈ M of the observed O:

ψ0 ≡ Ψ(Q0) = EW,0 [E0(Y |W,A = 1)−E0(Y |W,A = 0)] .

The canonical gradient of Ψ at P ∈ M is

D∗(Q(P),g(P))(O) =
{

H∗
g(P)(A,W )

(
Y − Q̄(P)(A,W )

)}

+
{

Q̄(P)(W )−QW (P)Q̄(P)
}

≡ D∗
Y (Q̄(P),g(P))+D∗

W (Q̄(P),QW (P)),

where

H∗
g (A,W ) =

(
A

g(1|W )
− 1−A

g(0|W )

)
.

For convenience, we will also use the notation

H∗
g (W )≡ H∗

g (1,W )−H∗
g (0,W ).

Firstly, note that the map QW 7→Ψ(Q̄,QW ) is linear and QW (P) is linear in P. Secondly,

D∗
Y (Q̄0,g0) is the canonical gradient of the map P 7→ Ψ(Q̄(P),QW (P0)) at P = P0, and

does not depend on QW (P0). In the following we present a TMLE of Q0 where only

the initial estimator ˆ̄Q(Pn) of Q̄0 is updated using a parametric working model ˆ̄Q(Pn)(ε),
while the marginal distribution of W is estimated with the empirical distribution which is

not updated. Given an appropriate loss function L(Q̄) and initial estimators ˆ̄Q and ĝ of Q̄0
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and g0, respectively, the parametric working model { ˆ̄Q(Pn)(ε) : ε} will be selected such

that
d

dε
L( ˆ̄Q(Pn)(ε))

∣∣∣
ε=0

= D∗
Y (

ˆ̄Q(Pn), ĝ(Pn)).

We consider here two possible loss functions for binary outcome or continuous out-

comes Y ∈ [0,1].
Squared error loss function: The squared error loss function is given by

L(Q̄)(O)≡ (Y − Q̄(A,W ))2,

with the parametric working model

ˆ̄Q(Pn)(ε) =
ˆ̄Q(Pn)+ εH∗

ĝ(Pn)
.

Quassi-log-likelihood loss function: The quasi-log-likelihood loss function is given by

L(Q̄)(O)≡−
(
Y log(Q̄(W,A))+(1−Y ) log(1− Q̄(W,A))

)
,

with parametric working model

ˆ̄Q(Pn)(ε) =
1

1+ e
−logit( ˆ̄Q(Pn))−εH∗

ĝ(Pn)

.

We note that we would use this loss function if Y is binary or Y is continuous with values

in (0,1). If Y is a bounded continuous random variable with values in (a,b), then we can

still use this loss function by using the transformed outcome Y ∗ = (Y − a)/(b− a) and

mapping the obtained TMLE of the additive treatment effect on Y ∗ (and confidence inter-

vals) into a TMLE of the additive treatment effect on Y (and confidence intervals).

It is important to point out that the TMLE of Q̄0 corresponding with both fluctuation

models will converge in one step, since the clever covariate H∗
ĝ(Pn)

in the update of ˆ̄Q does

not involve ˆ̄Q.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training

and validation sample: T = {i : Bn(i) = 0} and V = {i : Bn(i) = 1}. Let P0
n,Bn

, P1
n,Bn

be

the empirical probability distributions of the training and validation sample, respectively.

Given the parametric working model, the optimal εn is selected using cross validation:

εn = argmin
ε

EBn
P1

n,Bn
L( ˆ̄Q(P0

n,Bn
)(ε)).
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In particular, the one-step convergence implies that εn satisfies

0 = EBn
P1

n,Bn
D∗

Y (
ˆ̄Q(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)). (3.14)

At each sample split Bn, we define the TMLE of Q0 at (Pn,Bn) as

Q̂(Pn,Bn)(εn)≡
(

ˆ̄Q(P0
n,Bn

)(εn), Q̂W (P1
n,Bn

)
)
.

The TMLE of ψ0 is defined as

Ψ̂(Pn)≡ EBn
Ψ
(
Q̂(Pn,Bn)(εn)

)
= EBn

Ψ

(
ˆ̄Q(P0

n,Bn
)(εn), Q̂W (P1

n,Bn
)
)
.

Next, we illustrate the theoretical advantages of this estimator under both loss functions.

We will show that under a natural rate condition on the initial estimators ˆ̄Q and ĝ, the

resulting TMLE Ψ̂(Pn) is asymptotically linear, and when ĝ and ˆ̄Q are consistent, its influ-

ence curve is indeed the efficient influence curve.

Squared error loss for Q̄

Let the loss function for Q̄0 be:

L(Q̄)(O)≡ (Y − Q̄(A,W ))2,

and consider the parametric working model through Q̄(P) for any P ∈ M :

Q̄(P)(ε) = Q̄(P)+ εH∗
g(P).

Then, for given initial estimators ĝ and Q̂, we have

ˆ̄Q(Pn)(ε) =
ˆ̄Q(Pn)+ εH∗

ĝ(Pn)
. (3.15)

The cross validation selector of ε in (3.15) is defined as

εn ≡ argmin
ε

EBn
P1

n,Bn
L
(

ˆ̄Q(P0
n,Bn

)(ε)
)

= argmin
ε

EBn ∑
i,Bn(i)=1

(
Yi − ˆ̄Q(P0

n,Bn
)(ε)(Ai,Wi)

)2

.

At each sample split Bn, we define the TMLE of Q0 at (Pn,Bn) as

Q̂(Pn,Bn)(εn)≡
(

ˆ̄Q(P0
n,Bn

)(εn), Q̂W (P1
n,Bn

)
)
,
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where Q̂W (P1
n,Bn

) is the marginal empirical distribution of W in the validation set. The

TMLE of ψ0 is defined as

Ψ̂(Pn)≡ EBn
Ψ

(
ˆ̄Q(P0

n,Bn
)(εn), Q̂W (P1

n,Bn
)
)
.

We will now apply the main Theorem 3.2 to Ψ̂(Pn) which provides us with the follow-

ing result.

Theorem 3.3. Consider the setting above under the squared error loss function.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample. Suppose Bn is uniformly distributed on a finite support.

Let ˆ̄Q and ĝ be initial estimators of Q̄0 and g0. In the following, ˆ̄Q(P0) and ĝ(P0)
denote limits of these estimators, not necessarily equal to Q̄0 and g0, respectively.

The cross-validated TMLE satisfies

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
. (3.2)

Suppose now that there exists a constant L > 0 such that P0(|Y |< L) = 1.

Consider the following definition:

ε0 ≡ argmin
ε

P0L( ˆ̄Q(P0)(ε)).

Suppose that this minimum exists and satisfies the derivative equation

0 = P0DY (P0,ε0),

where

DY (P,ε) ≡ d

dε
L( ˆ̄Q(P)(ε))(O)

=
(

Y − ˆ̄Q(P)(A,W )− εH∗
ĝ(P)(A,W )

)
H∗

ĝ(P)(A,W )

= D∗
Y

(
ˆ̄Q(P)(ε), ĝ(P)

)
.

If there are multiple minima, then it is assumed that the argmin is uniquely defined and

selects one of these minima.

Suppose that ˆ̄Q and ĝ satisfy the following conditions:
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1. There exists a closed bounded set K ⊂ R
k containing ε0 such that εn belongs to K

with probability 1;

2. For some δ > 0, P(1−δ > ĝ(Pn)(1 |W )> δ ) = 1;

3. For some K > 0, P(| ˆ̄Q(Pn)(A,W )|< K) = 1;

4. ∫

W
(ĝ(Pn)(1|W )− ĝ(P0)(1|W ))2

dQW,0(w)→ 0 in probability;

5. For a = 0,1,

∫

W

(
ˆ̄Q(Pn)(a,w)− ˆ̄Q(P0)(a,w)

)2

dQW,0(w)→ 0 in probability.

Then,

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗
Y

(
ˆ̄Q(P0)(ε0), ĝ(P0)

)
+ ˆ̄Q(P0)(ε0)

}

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}

(3.3)

+oP(1/
√

n).

Furthermore, If ĝ(Pn) = g0, the TMLE estimator Ψ̂(Pn) is asymptotically linear esti-

mator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(ε0), ĝ(P0))+oP(1/
√

n), (3.4)

where Q̂(P0)(ε0) = ( ˆ̄Q(P0)(ε0),QW,0).

If, in addition to ĝ(Pn) = g0, ˆ̄Q(P0) = Q̄0, which implies that ˆ̄Q(P0)(ε0) = Q̄0, then

Ψ̂(Pn) is an asymptotically efficient estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q0,g0)+oP(1/
√

n). (3.5)

More generally, if the limits satisfy ĝ(P0) = g0 and ˆ̄Q(P0) = Q̄0, and if the convergence

satisfies

√√√√
EBn

P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)2

= oP(1/
√

n), (3.16)
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then Ψ̂(Pn) is an asymptotically efficient estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q0,g0)+oP(1/
√

n).

Consider now the case that ĝ(P0) = g0, but ˆ̄Q(P0) 6= Q̄0. If the convergence satisfies

√√√√
EBn

P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)2

= oP(1/
√

n), (3.17)

and P0

{
H∗

ĝ(Pn)

(
ˆ̄Q(P0)(ε0)− Q̄0

)}
is an asymptotically linear estimator of the function

P0

{
H∗

ĝ(P0)

(
ˆ̄Q(P0)(ε0)− Q̄0

)}
with influence curve IC′, then Ψ̂(Pn) is an asymptotically

linear estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)

{
D∗(Q̂(P0)(ε0),g0)+ IC′

}
+oP(1/

√
n).

For convenience of reference, we state several simple but useful results in the proof of

the theorem.

Lemma 3.3. If Xn converges to X in probability, and there exists η > 0 such that P(|Xn|<
η) = 1, then E|Xn −X |r → 0 for r ≥ 1.

Lemma 3.4. Suppose ĝ is such that for some δ > 0, P(1−δ > ĝ(Pn)(1 |W )> δ ) = 1. If

for a = 0,1, ĝ satisfies PW,0 (ĝ(Pn)− ĝ(P0))
2 P→ 0, then we have that P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)4

,

P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)2

, P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)
and P0

(
(H∗

ĝ(Pn)
)2 − (H∗

ĝ(P0)
)2
)

also converge

to zero in probability.

Lemma 3.5. Suppose ĝ and ˆ̄Q satisfy the conditions 2-5 in Theorem 3.3. Then, for each

split Bn, for any r ≥ 1,

1. EP0

(
ˆ̄Q(P0

n,Bn
)H∗

ĝ(P0
n,Bn

)
− ˆ̄Q(P0)H

∗
ĝ(P0)

)r

→ 0;

2. EP0

(
(Y − ˆ̄Q(P0

n,Bn
))H∗

ĝ(P0
n,Bn

)
− (Y − ˆ̄Q(P0))H

∗
ĝ(P0)

)r

→ 0;

3. EP0

(
(H∗

ĝ(P0
n,Bn

)
)2 − (H∗

ĝ(P0)
)2

)r

→ 0;

4. EP0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)r

→ 0.
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We are now ready to prove Theorem 3.3.

Proof. Firstly, we wish to establish that

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
,

where Q̂(Pn,Bn)(εn) =
(

ˆ̄Q(P0
n,Bn

)(εn), Q̂W (P1
n,Bn

)
)

.

Note that

−P0D∗(Q(P),g0)

≡−P0

{(
Y − Q̄(P)

)
H∗

g0
+ Q̄(P)−PW (P)Q̄(P)

}

=−
{

P0Y H∗
g0
−P0Q̄(P)H∗

g0
+PW,0Q̄(P)−PW (P)Q̄(P)

}

= PW (P)Q̄(P)−P0Y H∗
g0

= Ψ(Q(P))−Ψ(Q0).

Applying this result to each sample split of Bn and averaging, it follows that

Ψ̂(Pn)−ψ0 ≡ EBn
Ψ
(
Q̂(Pn,Bn)(εn)

)
−Ψ(Q(P0)) =−EBn

P0D∗ (Q̂(Pn,Bn)(εn),g0

)
.

(3.18)

On the other hand,

EBn
P1

n,Bn
D∗

W

(
Q̂W (P1

n,Bn
), ˆ̄Q(P0

n,Bn
)(εn)

)

≡ EBn
P1

n,Bn

{
ˆ̄Q(P0

n,Bn
)(εn)−PW (P1

n,Bn
) ˆ̄Q(P0

n,Bn
)(εn)

}

= EBn

{
PW (P1

n,Bn
) ˆ̄Q(P0

n,Bn
)(εn)−PW (P1

n,Bn
) ˆ̄Q(P0

n,Bn
)(εn)

}
= 0.

Moreover, it follows from the definition of εn and the one-step convergence of the chosen

fluctuation model that
(

ˆ̄Q(P0
n,Bn

)(εn), ĝ(P
0
n,Bn

)
)

satisfies (3.14). Therefore, we have

EBn
P1

n,Bn
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

≡ EBn
P1

n,Bn
D∗

Y

(
ˆ̄Q(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)

+EBn
P1

n,Bn
D∗

W

(
ˆ̄Q(P0

n,Bn
)(εn), Q̂W (P1

n,Bn
)
)

= 0. (3.19)
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Combining (3.18), (3.19) and robustness of D∗, P0D∗(Q0,g) = 0 for all g, we may now

rewrite Ψ̂(Pn)−ψ0 as

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

+EBn
P0

{
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)
−D∗ (Q̂(Pn,Bn)(εn),g0)

)}

−EBn
P0

{
D∗ (Q0, ĝ(P

0
n,Bn

)
)
−D∗ (Q0,g0))

}
.

The last two summands in this equality can be combined as

EBn
P0

{
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)
−D∗ (Q̂(Pn,Bn)(εn),g0

)}

−EBn
P0

{
D∗ (Q0, ĝ(P

0
n,Bn

)
)
−D∗ (Q0,g0))

}

≡ EBn
P0

{
D∗

Y (
ˆ̄Q(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

))+D∗
W (Q̂(Pn,Bn)(εn))

}

−EBn
P0

{
D∗

Y (
ˆ̄Q(P0

n,Bn
)(εn),g0)+D∗

W (Q̂(Pn,Bn)(εn))
}

−EBn
P0

{
D∗

Y (Q̄0, ĝ(P
0
n,Bn

))+D∗
W (Q0)

}

+EBn
P0

{
D∗

Y (Q̄0,g0)+D∗
W (Q0)

}

= EBn
P0

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
H∗

ĝ(P0
n,Bn

)
−H∗

g0

)

= EBn
P0




(

Q̄0 − ˆ̄Q(P0
n,Bn

)(εn)
)
(−1)1+A

(
g0 − ĝ(P0

n,Bn
)
)

g0ĝ(P0
n,Bn

)



 .

Therefore, we indeed have the desired expression (3.2):

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

(3.20)

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
.

(3.21)

We now study each term separately. For convenience, we use the notation DY (P,ε) ≡
D∗

Y (
ˆ̄Q(P)(ε), ĝ(P)).
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The term (3.20) can be written as

EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

= EBn

(
P1

n,Bn
−P0

)
D∗

Y

(
ˆ̄Q(P0

n,Bn
)(εn), ĝ(P

0
n,Bn

)
)

+EBn

(
P1

n,Bn
−P0

){ ˆ̄Q(P0
n,Bn

)(εn)−PW (P1
n,Bn

) ˆ̄Q(P0
n,Bn

)(εn)
}

= EBn

(
P1

n,Bn
−P0

){
DY

(
P0

n,Bn
,εn

)
−DY (P0,ε0)

}
(3.22)

+(Pn −P0)DY (P0,ε0)

+EBn

(
P1

n,Bn
−P0

){ ˆ̄Q(P0
n,Bn

)(εn)− ˆ̄Q(P0)(ε0)
}

(3.23)

+(Pn −P0)
ˆ̄Q(P0)(ε0).

It follows from the following lemma that εn converges to ε0 in probability.

Lemma 3.6. Let εn and ε0 be defined as in Theorem 3.3 and suppose they solve the deriva-

tive equations as stated in the theorem. If ĝ and ˆ̄Q satisfy the conditions 1-5 in Theorem

3.3, then εn converges to ε0 in probability.

Now consider the following lemmas:

Lemma 3.7. If the initial estimators ˆ̄Q and ĝ satisfy the conditions 1-5 in the theorem,

then, on a sample split of Bn,

√
n(P1

n,Bn
−P0)

{
DY

(
P0

n,Bn
,εn

)
−DY (P0,ε0)

}
= oP(1).

Lemma 3.8. If ˆ̄Q and ĝ satisfy conditions 1-5 of the theorem, then, on a sample split of

Bn, √
n(P1

n,Bn
−P0)

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)
= oP(1).

Note that lemmas 3.6, 3.7 and 3.8 follow from lemmas 3.2, 3.4 and 3.5.

Lemmas 3.7 and 3.8 imply that (3.22) and (3.23) are oP(1/
√

n). We thus have estab-

lished that (3.20) is given by

EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

= (Pn −P0)
{

D∗
Y

(
ˆ̄Q(P0)(ε0), ĝ(P0)

)
+ ˆ̄Q(P0)(ε0)

}
+oP(1/

√
n).
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Combining this result with (3.21), we have proved (3.3):

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗
Y

(
ˆ̄Q(P0)(ε0), ĝ(P0)

)
+ ˆ̄Q(P0)(ε0)

}

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}

+oP(1/
√

n).

Note that up till this point we have only used convergence of ˆ̄Q(Pn) and ĝ(Pn) to some

limits, but we assumed neither consistency to the true Q0, g0, nor a rate of convergence for

these initial estimators to such limits.

Finally, we study the remainder term (3.21):

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
.

We consider several cases. Firstly, consider the case, ĝ(Pn) = g0. In this case, term

(3.21) is exactly 0. Therefore, (3.3) now implies that Ψ̂(Pn) is asymptotically linear with

influence curve D∗(Q̂(P0)(ε0),g0). If in addition, the initial estimator ˆ̄Q is consistent for

Q̄0, i.e. ˆ̄Q(P0) = Q̄0, then

ε0 ≡ argmin
ε

P0(Y − ˆ̄Q(P0)− εH∗
ĝ(P0)

)2

= argmin
ε

P0(Y −Q0 − εH∗
ĝ(P0)

)2 = 0.

This implies that ˆ̄Q(P0)(ε0) is simply Q0. Consequently, Ψ̂(Pn) is asymptotically linear

with influence curve D∗(Q0,g0), and is thereby asymptotically efficient.

Let’s now consider the case that ĝ(P0) = g0 and ˆ̄Q(P0) = Q̄0. These imply that (3.21)

converges to 0. However, for Ψ̂(Pn) to be asymptotically linear, it is necessary that the

convergence of this second order term occurs at a
√

n rate, i.e.

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)}

= oP(1/
√

n).

Applying Cauchy-Schwartz inequality, it follows that if
√√√√

EBn
P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)2

= oP(1/
√

n),
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then Ψ̂(Pn) will be asymptotically efficient.

Finally, consider the case that ĝ(P0) = g0, but ˆ̄Q(P0) 6= Q̄0. We reconsider the ex-

pression (3.21) to account for the limit ˆ̄Q(P0)(ε0) of ˆ̄Q(P0
n,Bn

)(εn) which does not equal

Q̄0:

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)}

= EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)}

(3.24)

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0)(ε0)− Q̄0

)}
. (3.25)

Firstly, we require again that the rate of convergence for the second order term in (3.24)

be
√

n, that is,

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)}

= oP(1/
√

n).

Applying Cauchy-Schwartz inequality, it suffices that
√√√√

EBn
P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)2

= oP(1/
√

n).

For (3.25) to be asymptotically linear, stronger requirements on the performance of ĝ

are needed in order to address the inconsistency of ˆ̄Q. For convenience of notation, we

recall that

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}

= EBn
P0

{(
H∗

ĝ(P0
n,Bn

)
−H∗

g0

)(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)}
.

Now, for the given initial estimator ˆ̄Q and ĝ, let

Φ(P)≡ P0

{
H∗

ĝ(P)

(
ˆ̄Q(P0)(ε0)− Q̄0

)}
.
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If ĝ is such that Φ(Pn)−Φ(P0) is asymptotically linear (with some influence curve IC′),
then (3.25) becomes

EBn
P0

{(
H∗

ĝ(P0
n,Bn

)
−H∗

g0

)(
ˆ̄Q(P0)(ε0)− Q̄0

)}

≡ EBn

(
Φ(P0

n,Bn
)−Φ(P0)

)

= EBn

(
P0

n,Bn
−P0

)
IC′+oP(1/

√
n)

= (Pn −P0)IC
′+oP(1/

√
n).

Therefore, if ĝ and ˆ̄Q satisfy the convergence speed condition and Φ(Pn)− Φ(P0)
asymptotically linear, then it follows from (3.24) and (3.25) that the remainder (3.21)

becomes

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
g0 − ĝ(P0

n,Bn
)
)( ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)}

= (Pn −P0) IC′+oP(1/
√

n).

This completes the proof.

Quassi-log-likelihood loss for Q̄

Suppose now that the outcome Y has support in R and is naturally bounded. After a linear

transformation, we may assume without loss of generality that Y has support in (0,1). Let

the loss function be

L(Q̄)(O)≡−
(
Y log(Q̄)+(1−Y ) log(1− Q̄)

)
,

and consider the parametric working model through Q̄(P) for any P ∈ M :

Q̄(P)(ε) =
1

1+ e
−logit(Q̄(P))−εH∗

g(P)

.

Then, for the given initial estimators ĝ and Q̂, we obtain the following parametric working

model:
ˆ̄Q(Pn)(ε) =

1

1+ e
−logit( ˆ̄Q(Pn))−εH∗

ĝ(Pn)

. (3.26)
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The cross validation selector of ε in (3.26) is defined as

εn ≡ argmin
ε

EBn
P1

n,Bn
L( ˆ̄Q(P0

n,Bn
)(ε))

= argmin
ε

−EBn ∑
i,Bn(i)=1

{
Yi log( ˆ̄Q(P0

n,Bn
)(ε)(Ai,Wi))

+(1−Y ) log(1− ˆ̄Q(P0
n,Bn

)(ε)(Ai,Wi))

}
.

At each sample split Bn, we define the TMLE of Q0 at (Pn,Bn) as

Q̂(Pn,Bn)(εn)≡
(

ˆ̄Q(P0
n,Bn

)(εn), Q̂W (P1
n,Bn

)
)
,

where Q̂W (P1
n,Bn

) is the marginal empirical distribution of W in the validation set.

The TMLE of ψ0 is defined as

Ψ̂(Pn)≡ EBn
Ψ(Q̂(Pn,Bn)(εn) = EBn

Ψ

(
ˆ̄Q(P0

n,Bn
)(εn), Q̂W (P1

n,Bn
)
)
.

Asymptotic results for CV-TMLE under the quasi-log-likelihood loss parallel those for

the squared error loss function.

Theorem 3.4. Consider the setting defined above.

Suppose that P0(|Y |< 1) = 1.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample. Suppose Bn is uniformly distributed on a finite support.

Let ˆ̄Q and ĝ be initial estimators of Q̄0 and g0. In the following, ˆ̄Q(P0) and ĝ(P0)
denote limits of these estimators, not necessarily equal to Q̄0 and g0, respectively.

The cross validated TMLE satisfies

Ψ̂(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
. (3.2)

Consider the following definition:

ε0 ≡ argmin
ε

P0L( ˆ̄Q(P0)(ε)).

Suppose that this minimum exists and satisfies the derivative equation

0 = P0DY (P0,ε0),
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where

DY (P,ε) ≡ − d

dε
L(O, ˆ̄Q(P)(ε))

=
(

Y − ˆ̄Q(P)(ε)
)

H∗
ĝ(P)

= D∗
Y

(
ˆ̄Q(P)(ε), ĝ(P)

)
.

If there are multiple minima, then it is assumed that the argmin is uniquely defined and

selects one of these minima.

Suppose that ˆ̄Q and ĝ satisfy the following conditions:

1. There exists a closed bounded set K ⊂ R
k containing ε0 such that εn belongs to K

with probability 1;

2. For some δ > 0, P(1−δ > ĝ(Pn)(1 |W )> δ ) = 1;

3. For some γ > 0, P(1− γ| ˆ̄Q(Pn)(A,W )|< γ) = 1;

4. ∫

W
(ĝ(Pn)(1|w)− ĝ(P0)(1|w))2

dQW,0(w)→ 0 in probability;

5. For a = 0,1,

∫

W

(
ˆ̄Q(Pn)(a,w)− ˆ̄Q(P0)(a,w)

)2

dQW,0(w)→ 0 in probability.

Then,

Ψ̂(Pn)−ψ0 = (Pn −P0)
{

D∗
Y

(
ˆ̄Q(P0)(ε0), ĝ(P0)

)
+ ˆ̄Q(P0)(ε0)

}

+EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}

(3.3)

+oP(1/
√

n).

Furthermore, If ĝ(Pn) = g0, the TMLE estimator Ψ̂(Pn) is asymptotically linear esti-

mator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(ε0), ĝ(P0))+oP(1/
√

n), (3.4)

where Q̂(P0)(ε0) = ( ˆ̄Q(P0)(ε0),QW,0).
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If, in addition to ĝ(Pn) = g0, ˆ̄Q(P0) = Q̄0, which implies that ˆ̄Q(P0)(ε0) = Q̄0, then

Ψ̂(Pn) is an asymptotically efficient estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q0,g0)+oP(1/
√

n). (3.5)

More generally, if the limits satisfy ĝ(P0) = g0 and ˆ̄Q(P0) = Q̄0, and if the convergence

satisfies
√√√√

EBn
P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− Q̄0

)2

= oP(1/
√

n), (3.16)

then Ψ̂(Pn) is an asymptotically efficient estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)D∗(Q0,g0)+oP(1/
√

n).

Consider now the case that ĝ(P0) = g0, but ˆ̄Q(P0) 6= Q̄0. If the convergence satisfies
√√√√

EBn
P0

(
g0 − ĝ(P0

n,Bn
)

g0ĝ(P0
n,Bn

)

)2√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)2

= oP(1/
√

n), (3.17)

and P0

{
H∗

ĝ(Pn)

(
ˆ̄Q(P0)(ε0)− Q̄0

)}
is an asymptotically linear estimator of the function

P0

{
H∗

ĝ(P0)

(
ˆ̄Q(P0)(ε0)− Q̄0

)}
with influence curve IC′, then Ψ̂(Pn) is an asymptotically

linear estimator of ψ0:

Ψ̂(Pn)−ψ0 = (Pn −P0)

{
D∗(Q̂(P0)(ε0),g0)+ IC′

}
+oP(1/

√
n).

The proof of this theorem follows the same steps as that of Theorem 3.3. The two only

differ in the proofs of some of the auxiliary lemmas. We state the following useful results.

For convenience, we adopt the notation CP ≡ 1− ˆ̄Q(P)
ˆ̄Q(P)

.

Lemma 3.9. Suppose ˆ̄Q is such that for some 1 > γ > 0, P(1−γ > ˆ̄Q(Pn)(A,W )> γ) = 1.

If for a = 0,1, ĝ satisfy
∫

W

(
ˆ̄Q(a,w)− ˆ̄Q(P0)(a,w)

)2

dQW,0(w)
P→ 0,

then

P0 (CPn
−CP0

)4 P→ 0. (3.27)
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Lemma 3.10. Suppose ĝ and ˆ̄Q satisfy the conditions 2-5 in Theorem 3.4. Then, on each

split of Bn, for any r ≥ 1,

1. EP0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)r

→ 0;

2. EP0

(
CP0

n,Bn
−CP0

)r

→ 0.

Proof of Theorem 3.4.

The identity in (3.2) is a result of the properties of Ψ(P), its canonical gradient, the

definition of εn and the one-step convergence of ˆ̄Q(P)(εn). Therefore, identical arguments

as in the proof of Theorem 3.3 yield (3.2).

We may express the first summand of (3.2) as

EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

= EBn

(
P1

n,Bn
−P0

){
DY

(
P0

n,Bn
,εn

)
−DY (P0,ε0)

}
(3.28)

+(Pn −P0)DY (P0,ε0)

+EBn

(
P1

n,Bn
−P0

){ ˆ̄Q(P0
n,Bn

)(εn)− ˆ̄Q(P0)(ε0)
}

(3.29)

+(Pn −P0)
ˆ̄Q(P0)(ε0).

It follows from the following lemma that εn converges to ε0 in probability.

Lemma 3.11. Let εn and ε0 be defined as in Theorem 3.4 and suppose they solve the

derivative equations as stated in the theorem. If ĝ and ˆ̄Q satisfy the conditions 1-5 in

Theorem 3.4, then εn converges to ε0 in probability.

The following lemmas 3.12 and 3.13 now prove that (3.28) and (3.29) are oP(1/
√

n).

Lemma 3.12. If the initial estimators ˆ̄Q and ĝ satisfy conditions 1-5 in the theorem, then,

on a sample split of Bn,

√
n(P1

n,Bn
−P0)

{
DY

(
P0

n,Bn
,εn

)
−DY (P0,ε0)

}
= oP(1).

Lemma 3.13. If ˆ̄Q and ĝ satisfy conditions 1-5 of the theorem, then, on each sample split,

√
n(P1

n,Bn
−P0)

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(P0)(ε0)

)
= oP(1).

Lemmas 3.7 and 3.8 imply that (3.22) and (3.23) are oP(1/
√

n).
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We thus have established that

EBn

(
P1

n,Bn
−P0

)
D∗ (Q̂(Pn,Bn)(εn), ĝ(P

0
n,Bn

)
)

= (Pn −P0)
{

D∗
Y

(
ˆ̄Q(P0)(ε0), ĝ(P0)

)
+ ˆ̄Q(P0)(ε0)

}
+oP(1/

√
n).

Combining this result with the (3.2), we have (3.3).

Finally, we study the remainder term:

EBn
P0

{
(−1)1+A

g0ĝ(P0
n,Bn

)

(
Q̄0 − ˆ̄Q(P0

n,Bn
)(εn)

)(
g0 − ĝ(P0

n,Bn
)
)
}
.

Firstly note that if the initial estimator ˆ̄Q is consistent for Q̄0, i.e. ˆ̄Q(P0) = Q̄0, then

ε = 0 is a solution to the derivative equation P0DY (ε,P0) = 0. On the other hand, we have

seen in the proof of lemma 3.11 that the derivative function is monotonic in ε . Hence,

we have ε0 = 0 and ˆ̄Q(P0)(ε0) is simply Q0. Now, identical arguments in the proof of

Theorem 3.3 complete the proof. �.

Discussion of conditions of Theorems 3.3 and 3.4.

Under no conditions, we determined an exact identity (3.2), which shows that the analysis

of the CV-TMLE involves a cross-validated empirical process term applied to the efficient

influence curve, and a second order remainder term. Our second result (3.3) replaces

the cross-validated empirical process term by an empirical mean of mean zero random

variables D∗(Q̂(P0)(ε0), ĝ(P0)) plus a negligible oP(1/
√

n)-term. That is, under essentially

no conditions beyond the positivity assumption, the CV-TMLE minus the true ψ0, behaves

as an empirical mean of mean zero i.i.d. random variables (which thus converges to a

normal distribution, by CLT), plus a specified second order remainder term.

The second order remainder term predicts immediately that to make it negligible we

will need that the product of the rates of convergence for ˆ̄Q(Pn) and ĝ(Pn) to their targets

Q̄0 and g0 is o(1/
√

n). As mentioned before, in an RCT g0 is known, so that one might

set ĝ(Pn) = g0, in which case the second order remainder term is exactly equal to zero,

giving us the asymptotic linearity (3.4) of the CV-TMLE under no other conditions than

the positivity assumption and convergence of ˆ̄Q(Pn) to some fixed function. This teaches

us in particular that in an RCT in which we use a consistent estimator ˆ̄Q the CV-TMLE is

asymptotically efficient, as stated in (3.5). That is, in an RCT, this theorem teaches us that

CV-TMLE with adaptive estimation of Q̄0 is the way to go.

Let’s now consider a study in which g0 is not known, but one has available a correctly

specified parametric model: for example, one knows that A is only a function of a discrete
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variable, and one uses a saturated model. If the initial estimator ˆ̄Q is consistent for Q̄0,

then the rate condition (3.16) holds, so that it follows that the CV-TMLE is asymptotically

efficient. That is, in this scenario there is only benefit in using an adaptive estimator of

Q̄0. If, by chance, the estimator ˆ̄Q is actually inconsistent for Q̄0, then the rate condition

(3.17) still holds, and the asymptotic linearity condition on ĝ will also hold under minimal

conditions, so that we still have that the CV-TMLE is asymptotically linear.

Finally, let’s consider a case in which the assumed model for g0 is a large semiparamet-

ric model. To have a chance of being consistent for g0, one will need to utilize adaptive

estimation to estimate g0 such as a maximum likelihood based super learner respecting

the semiparametric model. There are now two scenarios possible. Firstly, suppose that ˆ̄Q

converges to Q̄0 fast enough so that (3.16) holds. Then the CV-TMLE is asymptotically

efficient. If, on the other hand, ˆ̄Q converges fast enough to a misspecified Q̄ so that (3.17)

holds, then another condition is required. Namely, we now need that ĝ is such that the

smooth functional ΦP0
(ĝ), indexed by P0, is an asymptotically linear estimator of its limit

ΦP0
(g0). This smooth functional can be represented as ΦP0

(g) = P0H∗
g (Q̄

∗−Y ), where

Q̄∗ = ˆ̄Q(P0)(ε0). A data adaptive estimator ĝ of g0, only tailored to fit g0 as a whole, may

be too biased for this smooth functional (the whole motivation of TMLE!). Therefore, we

suggest that the estimator ĝ should be targeted towards this smooth functional. That is,

one might want to work out a TMLE ĝ∗ that aims to target this parameter ΦP0
(g0). We

leave this for future research.

3.5 The iterative targeted MLE using V-fold sample

splitting.

For a given cross-validation scheme Bn ∈ {0,1}n, we defined

ε0
n = ε̂(Pn) = argmin

ε
EBn

P1
n,Bn

L(Q̂(P0
n,Bn

)(ε)).

This now yields an update Q̂(P0
n,Bn

)(ε0
n ) of Q̂(P0

n,Bn
) for each split of Bn. One could now

iterate this updating process of the training sample specific estimators: define Q̂1(P0
n,Bn

) =

Q̂(P0
n,Bn

)(ε0
n ),

ε1
n = argmin

ε
EBn

P1
n,Bn

L(Q̂1(P0
n,Bn

)(ε)),

resulting in another update Q̂1(P0
n,Bn

)(ε1
n ) for each Bn. This process is iterated till εK

n = 0

(or close enough to zero). We denote the k-step estimator Q̂k−1(P)(εk−1
n ) as Q̂(P)(~εn

k)
to reminds us that it is a function of the initial estimators Q̂, ĝ and the fluctuation vector
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~εn
k ≡

(
ε0

n , . . . ,ε
k−1
n

)
. We denote the k-step TMLE of ψ0 as

Ψ̂k(Pn)≡ EBn
Ψ(Q̂(P0

n,Bn
)(~εn

k)).

The final update will be denoted with Q̂(P0
n,Bn

)(~εn
∗) for each split Bn. The targeted MLE

is now defined as Ψ̂∗(Pn) = EBn
Ψ(Q̂(P0

n,Bn
)(~εn

∗)). We assume that, due to the derivative

condition, d
dε L(Q̂(Pn)(ε))

∣∣
ε=0

= D∗(Q̂(Pn), ĝ(Pn)), we have

0 = EBn
P1

n,Bn
D∗(Q̂(P0

n,Bn
)(~εn

∗), ĝ(P0
n,Bn

)).

We note that Q̂(P)(~εn
∗) is itself dependent on the data through the iterative sequence of

selected ε’s: ε0
n , . . . ,ε

K
n .

We are now ready to present the asymptotics of the k-step cross validated TMLE.

Theorem 3.5. Let Q̂(Pn), ĝ(Pn) be initial estimators of Q0, g0, respectively, and we will

denote their limits with Q̂(P0) and ĝ(P0), which are not necessarily Q0 and g0, respectively.

Uniformly bounded loss function: We assume that {Q̂(Pn)(ε) : ε} ∈Q with probability 1,

and that the loss function L(Q) for Q0 is uniformly bounded in Q ∈ Q, and over a support

of O ∼ P0:

M1 = sup
Q

sup
O

| L(Q)(O) |< ∞.

Let Bn ∈ {0,1}n be a random vector indicating a split of {1, . . . ,n} into a training and

validation sample. Suppose Bn is uniformly distributed over a finite support.

Suppose there exists kn = k̂(Pn)> 0 such that P(k̂(Pn)≤ k0)→ 1 for some k0 ≡ k(P0)
and

EBn
P1

n,Bn
D∗
(

Q̂(P0
n,Bn

)(~εn
kn), ĝ(P0

n,Bn
)
)
= oP(1/

√
n). (3.30)

Consider a k0-dimensional random vector ~εn
k0 ≡

(
~εn

kn ,a0, . . . ,a0

)
, where a0 is a con-

stant that depends on the choice of the parametric working model such that Q̂(P)(~εn
k0) =

Q̂(P)(~εn
kn). (e.g. a0 = 0 in most cases) Note that ~εn

kn is a projection of ~εn
k0 onto its first

kn coordinates.

If parameter P → Ψ(Q(P)) satisfies

A1:

Ψ(Q(P))−Ψ(Q0) =−P0D∗(Q(P),g0)+OP(‖ Ψ(Q(P))−Ψ(Q0) ‖2).
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Then

Ψ̂kn(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))

+ EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}

− EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+ oP(1/
√

n)+OP(‖ Ψ̂kn(Pn)−ψ0 ‖2). (3.31)

Let ~ε0
k0 denote the limit of ~εn

k0 as n → ∞, that is, ‖ ~εn
k0 − ~ε0

k0 ‖ P→ 0. Suppose the

following assumption also holds

A2: (Given ‖ ~εn
k0 −~ε0

k0 ‖ P→ 0,)

Define the class of functions

F (P0
n,v)≡ {O → D∗(Q̂(P0

n,Bn
)(~ε), ĝ(P0

n,Bn
))−D∗(Q̂(P0)(~ε0

k0), ĝ(P0)) :~ε},

where the set over which ~ε varies is chosen so that it is a subset of Rk0 and con-

tains ~εn
k0 with probability tending to 1. In addition, for a deterministic sequence δn

converging to zero as n → ∞, we also define the sequence of sub-classes

Fδn
(P0

n,Bn
)≡

{
fε ∈ F (P0

n,Bn
) :‖~ε −~ε0

k0 ‖< δn

}
.

Assume that for deterministic sequence δn converging to 0, we have

EEntro(Fδn
(P0

n,Bn
))
√

P0F2(δn,P
0
n,Bn

)→ 0 as n → ∞,

where F(δn,P
0
n,Bn

) is the envelope of Fδn
(P0

n,Bn
).

Then we can write Ψ̂kn(Pn)−ψ0 as:

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗
(

Q̂(P0)(~ε0
k0), ĝ(P0)

)
+oP(1/

√
n)

+ EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}

− EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+ OP(‖ Ψ̂kn(Pn)−ψ0 ‖2). (3.32)

Furthermore, suppose ĝ(Pn) = g0. Then

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗
(

Q̂(P0)(~ε0
k0),g0

)
+oP(1/

√
n).
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If, in addition to ĝ(Pn) = g0, we also have Q̂(P0)(~ε0
k0) =Q0, then Ψ̂kn(Pn) is in fact asymp-

totically efficient

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗ (Q0,g0)+oP(1/
√

n).

More generally, suppose ĝ(P0) = g0. Let Q̃ denote the limit of Q̂(Pn)(~εn
kn) which is not

necessarily Q0. Assume in addition

A3:

EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}

−EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

= oP(1/
√

n).

A4: For for some mean zero function IC′(P0) ∈ L2
0(P0), we have

EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

= (Pn −P0) IC′(P0)+oP(1/
√

n).

NOTE: If Q̂(Pn)(~εn
kn) converges to Q0 then A5 is automatically true with IC′ ≡ 0.

Then Ψ̂kn(Pn) is asymptotically linear

Ψ̂kn(Pn)−ψ0 = (Pn −P0)
{

D∗
(

Q̂(P0)(~ε0
k0),g0

)
+ IC′(P0)

}
+oP(1/

√
n).

Proof of Theorem 3.5:

From definition of kn, we have that

EBn
P1

n,Bn
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

)) = oP(1/
√

n).

The double robustness of D∗ guarantees P0D∗(Q0,g) = 0 for all g. Combining this result

with A1, we readily have (3.31):

Ψ̂kn(Pn)−ψ0 = EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

)) (3.33)

+EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}
(3.34)

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

(3.35)

+oP(1/
√

n)+OP(‖ Ψ̂kn(Pn)−ψ0 ‖2).
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We may rewrite (3.33) as

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(~εn

kn)P0
n,Bn

), ĝ(P0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

){
D∗(Q̂(P0

n,Bn
)(~εn

k0), ĝ(P0
n,Bn

))−D∗(Q̂(P0)(~ε0
k0), ĝ(P0))

}

+EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0)(~ε0

k0), ĝ(P0))

An application of A2 and lemma 3.2, combined with the fact that Bn is uniformly

distributed over a finite support, we have

EBn

(
P1

n,Bn
−P0

){
D∗(Q̂(P0

n,Bn
)(~εn

k0), ĝ(P0
n,Bn

))−D∗(Q̂(P0)(~ε0
k0), ĝ(P0))

}

= oP(1/
√

n).

In other words, the term (3.33) is given by

EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))

= EBn

(
P1

n,Bn
−P0

)
D∗(Q̂(P0)(~ε0

k0), ĝ(P0))+oP(1/
√

n).

This result and the established equality in (3.31) now prove (3.32).

Now, if ĝ(Pn) = g0, then the (3.34) and (3.35) are exactly 0. Consequently, (3.32)

becomes

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(~ε0
k0),g0)

+ oP(1/
√

n)+OP(‖ Ψ̂kn(Pn)−ψ0 ‖2).

However, note that taking ‖‖ on both sides of the equality above yields ‖ Ψ̂kn(Pn)−ψ0 ‖=
oP(1/

√
n). We thereby have asymptotically linearity of Ψ̂kn(Pn):

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗(Q̂(P0)(~ε0
k0),g0)+oP(1/

√
n).

If, in addition, Q̂(P0)(~ε0
k0) = Q0, then the influence curve is indeed the efficient influence

curve D∗(Q0,g0).
Next we consider a more general case where ĝ(P0) = g0. Let Q̃ be the limit of

Q̂(Pn)(~εn
kn). It is not necessarily the case that Q̃ = Q0. We now rewrite the established
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equality (3.32) to account for Q̃:

Ψ̂kn(Pn)−ψ0 = (Pn −P0)D∗
(

Q̂(P0)(~ε0
k0), ĝ(P0)

)
+oP(1/

√
n)

+EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}

−EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

+EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

+OP(‖ Ψ̂kn(Pn)−ψ0 ‖2).

From A3, the term

EBn
P0

{
D∗(Q̂(P0

n,Bn
)(~εn

kn), ĝ(P0
n,Bn

))−D∗(Q̂(P0
n,Bn

)(~εn
kn),g0)

}

−EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

= oP(1/
√

n).

From A4, the term

EBn
P0

{
D∗(Q̃, ĝ(P0

n,Bn
))−D∗(Q̃,g0)

}

−EBn
P0

{
D∗(Q0, ĝ(P

0
n,Bn

))−D∗(Q0,g0)
}

= (Pn −P0)IC
′(P0)+oP(1/

√
n).

Therefore (3.3) becomes

Ψ̂kn(Pn)−ψ0 = (Pn −P0)
{

D∗
(

Q̂(P0)(~ε0
k0), ĝ(P0)

)
+ IC′(P0)

}
+oP(1/

√
n)

+OP(‖ Ψ̂kn(Pn)−ψ0 ‖2).

Taking ‖‖ on both sides again yields ‖ Ψ̂kn(Pn)−ψ0 ‖= oP(1/
√

n). We thereby have the

desired result

Ψ̂kn(Pn)−ψ0 = (Pn −P0)
{

D∗
(

Q̂(P0)(~ε0
k0), ĝ(P0)

)
+ IC′(P0)

}
+oP(1/

√
n).

�

3.6 Concluding remarks.

We presented a TMLE that allows to learn the truth ψ0, while also providing statistical

inference based on an CLT, under an as large statistical model as possible. For that purpose,
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the combination of adaptive estimation (super learning), targeted maximum likelihood

estimation, and cross-validated selection of the fluctuation parameter in the TMLE, are

essential tools to achieve this goal.

In future work we wish to investigate the extension of CV-TMLE to collaborative tar-

geted maximum likelihood estimation, as in van der Laan and Gruber (2010), and the

incorporation of targeted estimators of g0 to enhance the asymptotic linearity of the CV-

TMLE of ψ0 for the case that the initial estimator of Q0 is inconsistent.

3.7 Appendix

Proof of lemma 3.2: Let G1
n,Bn

=
√

n(P1
n,Bn

−P0). For any δ > 0.

P
(
|G1

n,Bn
fεn

(P0
n,Bn

)|> δ
)
= EP

(
|G1

n,Bn
fεn

(P0
n,Bn

)|> δ

∣∣∣∣∣P
0
n,Bn

)

= EP

(∣∣∣G1
n,Bn

fεn
(P0

n,Bn
)I(‖ εn − ε0 ‖< δn)

∣∣∣> δ

∣∣∣∣∣P
0
n,Bn

)

+EP

(∣∣∣G1
n,Bn

fεn
(P0

n,Bn
)I(‖ εn − ε0 ‖≥ δn)

∣∣∣> δ

∣∣∣∣∣P
0
n,Bn

)

≤ EP

(
sup f∈Fδn

(P0
n,Bn

)

∣∣∣G1
n,Bn

f

∣∣∣> δ

∣∣∣∣∣P
0
n,Bn

)

+EP

(
‖ εn − ε0 ‖≥ δn

∣∣∣∣∣P
0
n,Bn

)

= EP

(
sup f∈Fδn

(P0
n,Bn

)

∣∣∣G1
n,Bn

f

∣∣∣> δ

∣∣∣∣∣P
0
n,Bn

)

+P(‖ εn − ε0 ‖≥ δn) .

By our assumption, P(‖ εn − ε0 ‖≥ δn)→ 0. On the other hand, by Chebysev inequal-

ity, lemma 3.1 and Cauchy-Schwartz inequality

EP

(
sup f∈Fδn

(P0
n,Bn

)

∣∣∣G1
n,Bn

f

∣∣∣> δ

∣∣∣∣∣P
0
n,Bn

)

≤ 1

δ
EE
(

sup f∈Fδn
(P0

n,Bn
)

∣∣G1
n,Bn

f
∣∣
)

≤ 1

δ
EEntro

(
Fδn

(P0
n,Bn

)
)√

P0F(δn,P
0
n,Bn

)2.
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Therefore, G1
n,Bn

fεn
(P0

n,Bn
)

P→ 0 by our assumption. �

Proof of lemma 3.3:

By our assumption, P(|Xn −X |< 2η) = 1. Then for any δ > 0,

E|Xn −X |r = E
{
|Xn −X |rI|Xn−X |≤δ

}
+E

{
|Xn −X |rI|Xn−X |>δ

}

≤ δ rP(|Xn −X | ≤ δ )+(2A)rP(|Xn −X |> δ )

= δ r ·1+((2η)r −δ r)P(|Xn −X |> δ ).

We assumed that P(|Xn−X |> δ )→ 0. Hence the last equality converges to δ r. This holds

for all δ > 0. Thus we must have E|Xn −X |r → 0. �

Proof of lemma 3.4:

First note that

H∗
ĝ(Pn)

(A,W )−H∗
ĝ(P0)

(A,W ) = (−1)A+1

(
ĝ(P0)(A|W )− ĝ(P0

n,Bn
)(A|W )

)

ĝ(P0)(A|W )ĝ(P0
n,Bn

)(A|W )
. (3.36)

The expression P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)4

can be expanded into

P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)4

= ∑
a=0,1

EW,0

(
H∗

ĝ(Pn)
(a,W )−H∗

ĝ(P0)
(a,W )

)4

g0(a|W ).

Applying Cauchy-Schwartz and (3.36), each summand can be bounded as follows:

EW,0

(
H∗

ĝ(Pn)
(a,W )−H∗

ĝ(P0)
(a,W )

)4

g0(a|W )

≤

√√√√
EW,0

(
g0(a|W )

(ĝ(P0)ĝ(Pn)(a|W ))4

)2√
EW,0 {ĝ(P0)(a|W )− ĝ(Pn)(a|W )}8

≤

√√√√
EW,0

(
g0(a|W )

(ĝ(P0)ĝ(Pn)(a|W ))4

)2√
EW,0 {ĝ(P0)(a|W )− ĝ(Pn)(a|W )}2.

Since EW,0

(
g0(a|W )

(ĝ(P0)ĝ(Pn)(a|W ))4

)2

is bounded and, by assumption,

EW,0 (ĝ(P0)(a|W )− ĝ(Pn)(a|W ))2 P→ 0

this inequality implies that

P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)4 P→ 0. (3.37)
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To prove P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)2 P→ 0, we use a simple application of Cauchy-Schwartz

inequality and (3.37). Similarly for P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)
P→ 0.

Finally, to verify P0

(
(H∗

ĝ(Pn)
)2 − (H∗

ĝ(P0)
)2
)

P→ 0, we first bound the expectation using

Cauchy-Schwartz inequality:

∣∣∣P0

(
(H∗

ĝ(Pn)
)2 − (H∗

ĝ(P0)
)2
)∣∣∣

≤
√

P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)2
√

P0

(
H∗

ĝ(Pn)
+H∗

ĝ(P0)

)2

.

By assumption, P0

(
H∗

ĝ(Pn)
+H∗

ĝ(P0)

)2

is bounded; on the other hand, we established that

that P0

(
H∗

ĝ(Pn)
−H∗

ĝ(P0)

)2

converges to 0 in probability. Thus, the above inequality implies

that P0

(
(H∗

ĝ(Pn)
)2 − (H∗

ĝ(P0)
)2
)

converges to 0 in probability.. �

Proof of lemma 3.5:

1. Firstly, note that

EBn
P0

(
ˆ̄Q(P0

n,Bn
)H∗

ĝ(P0
n,Bn

)
− ˆ̄Q(P0)H

∗
ĝ(P0)

)

= EBn
P0

ˆ̄Q(P0
n,Bn

)

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)

+EBn
P0H∗

ĝ(P0)

(
ˆ̄Q(P0

n,Bn
)− ˆ̄Q(P0)

)
.

By our assumptions, P0
ˆ̄Q(Pn)

2 is bounded with probability 1. Hence, it follows

from Cauchy-Schwartz inequality and lemma 3.4 that the first summand converges

to 0 in probability. On the other hand, we assumed that P0(H
∗
ĝ(P0)

)2 is bounded and

P0

(
ˆ̄Q(Pn)− ˆ̄Q(P0)

)2 P→ 0. Therefore, it follows from an application of Cauchy-

Schwartz inequality that the second summand also converge to 0. From these two

results it follows that

EBn
P0

{(
ˆ̄Q(P0

n,Bn
)H∗

ĝ(P0
n,Bn

)
− ˆ̄Q(P0)H

∗
ĝ(P0)

)}
P→ 0. (3.38)

Secondly, note also that our assumptions imply that EBn
P0

ˆ̄Q(P0
n,Bn

)H∗
ĝ(P0

n,Bn
)

is bounded

with probability 1. Hence, by lemma 3.3 we have obtain the desired result.



CHAPTER 3. CVTMLE 99

2. Firstly, note that

EBn
P0

(
(Y − ˆ̄Q(P0

n,Bn
))H∗

ĝ(P0
n,Bn

)
− (Y − ˆ̄Q(P0))H

∗
ĝ(P0)

)

= EBn
P0

{
Y

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)}

−EBn
P0

{(
ˆ̄Q(P0

n,Bn
)H∗

ĝ(P0
n,Bn

)
− ˆ̄Q(P0)H

∗
ĝ(P0)

)}
.

By our assumption, P0Y 2 is bounded. Hence, it follows from Cauchy-Schwartz

inequality and lemma 3.4 that EBn
P0

{
Y

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)}
converges to 0 in

probability. Combining this result and (3.38), we have

EBn
P0

(
(Y − ˆ̄Q(P0

n,Bn
))H∗

ĝ(P0
n,Bn

)
− (Y − ˆ̄Q(P0))H

∗
ĝ(P0)

)
P→ 0.

On the other hand, by our assumption, EBn
P0(Y − ˆ̄Q(P0

n,Bn
))H∗

ĝ(P0
n,Bn

)
is bounded with

probability 1. Hence, an application of lemma 3.3 yields the desired result.

3. By our assumption, EBn
P0(H

∗
ĝ(P0

n,Bn
)
)2 is bounded with probability 1. Hence, by

lemma 3.4 and lemma 3.3, we have EP0

(
(H∗

ĝ(P0
n,Bn

)
)2 − (H∗

ĝ(P0)
)2

)r

→ 0 for any

r ≥ 1.

4. Similarly, by our assumption, EBn
P0H∗

ĝ(P0
n,Bn

)
is bounded with probability 1. Hence

by lemma 3.4 and lemma 3.3, we have

EP0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)r

→ 0

for any r ≥ 1.

�

Proof of lemma 3.6:

By our definition of εn and the one-step convergence of the fluctuation model,

EBn
P1

n,Bn
DY (P

0
n,Bn

,εn) = 0.
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This implies that

−P0DY (P0,εn) = EBn

(
P1

n,Bn
−P0

){
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

(3.39)

+ EBn
P0

{
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

(3.40)

+ EBn

(
P1

n,Bn
−P0

)
DY (P0,εn) (3.41)

The term (3.40) can be expanded into

EBn
P0

{
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

= EBn
P0

{
Y

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)}

−EBn
P0

{(
ˆ̄Q(P0

n,Bn
)H∗

ĝ(P0
n,Bn

)
− ˆ̄Q(P0)H

∗
ĝ(P0)

)}

−εnEBn
P0

{(
(H∗

ĝ(P0
n,Bn

)
)2 − (H∗

ĝ(P0)
)2

)}
.

Note that εn is bounded with probability 1. Therefore, applying the arguments in the

proof of lemma 3.5 to the corresponding summands, we have that (3.40) converges to 0 in

probability.

The term (3.41) can be written as

EBn

(
P1

n,Bn
−P0

)
DY (P0,εn)

≡ EBn

(
P1

n,Bn
−P0

)
(Y − ˆ̄Q(P0)− εnH∗

ĝ(P0)
)H∗

ĝ(P0)

= EBn

(
P1

n,Bn
−P0

)
Y H∗

ĝ(P0)
−EBn

(
P1

n,Bn
−P0

) ˆ̄Q(P0)H
∗
ĝ(P0)

−εnEBn

(
P1

n,Bn
−P0

)
(H∗

ĝ(P0)
)2.

All the empirical differences in the last equality are asymptotically normal with mean 0,

and εn is bounded with probability 1. Therefore, we have that (3.41) converges to 0 in

probability.

It remains to show that (3.39) converges to 0 in probability. By our assumption, there

exists constant M > 0 such that P(|εn|< M) = 1. Conditional on P0
n,Bn

, consider the class

F (P0
n,Bn

) =
{

fε(P
0
n,Bn

) = DY (P
0
n,Bn

,ε)−DY (P0,ε) : |ε|< M
}
.

Lemma 3.1 implies that

√
nE
(

sup f∈F (P0
n,Bn

)|(P1
n,Bn

−P0) f |
)
≤ Entro(F (P0

n,Bn
))
√

P0F(P0
n,Bn

)2,
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where F(P0
n,Bn

) is an envelope of F (P0
n,Bn

). Therefore, after an application of Chebysev

inequality we may write

P
(
|(P1

n,Bn
−P0) fεn

(P0
n,Bn

)|> δ
)

≤ EP

(
sup f∈F (P0

n,Bn
)|(P1

n,Bn
−P0) f |> δ

∣∣∣∣∣P
0
n,Bn

)

≤ 1

δ
EE
(

sup f∈F (P0
n,Bn

)|(P1
n,Bn

−P0) f |
)

≤ 1√
n

1

δ
EEntro(F (P0

n,Bn
))
√

P0F(P0
n,Bn

)2.

Firstly note that fε is bounded per our assumptions. Hence
√

P0F(P0
n,Bn

)2 is bounded.

On the other hand, the entropy of the class is also bounded. Therefore, we indeed have

P
(
|(P1

n,Bn
−P0) f (εn)(P0)|> δ

)
converges to 0 as n → ∞. Consequently, (3.39) converges

to 0 in probability.

Since K is compact, there is a subsequence εnk such that εnk
P→ ε∗ for some ε∗ ∈ K.

This implies that for

g(ε) ≡ P0DY (P0,ε)

= P0Y H∗
ĝ(P0)

−P0
ˆ̄Q(P0)H

∗
ĝ(P0)

− εP0(H
∗
ĝ(P0)

)2,

which is continuous over K, we must have g(εnk)
P→ g(ε∗).

We determined in above that g(εn)
P→ 0, therefore it follows that g(ε∗) = 0. On the

other hand, by definition of ε0 we have that g(ε0) = 0. Since g(ε) is a linear function in

ε , it has unique solution at ε0, therefore we indeed have ε∗ = ε0. This implies that all

convergent subsequences of εn converge to ε0 in probability. Since K is compact, it now

implies that εn converge to ε0 in probability. �

Proof of lemma 3.7: Conditional on P0
n,Bn

, for a deterministic sequence δn converging to

0, consider the class

Fδn
(P0

n,Bn
)≡

{
DY

(
P0

n,Bn
,ε
)
−DY (P0,ε0) :‖ ε − ε0 ‖< δn

}
.

From lemma 3.6, we know that ‖ εn − ε0 ‖ P→ 0. To obtain the proposed result, we will

show that this class satisfies the conditions of lemma 3.2.

For convenience, let AP0
n,Bn

(O) ≡
(

Y − ˆ̄Q(P0
n,Bn

)(A,W )
)

H∗
ĝ(P0

n,Bn
)
(A,W ), HP0

n,Bn
(O)2 ≡

(H∗
ĝ(P0

n,Bn
)
)2, and AP0

,H2
P0

denote the analogous functions trained at P0. Then, we can find
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an envelope for this class of functions as follows:

∣∣DY

(
P0

n,Bn
,ε)
)
−DY (P0,ε0)

∣∣≡
∣∣∣∣(AP0

n,Bn
− εH2

P0
n,Bn

)− (AP0
− ε0H2

P0
)

∣∣∣∣

=

∣∣∣∣(AP0
n,Bn

−AP0
)−H2

P0
n,Bn

(ε − ε0)− ε0(H
2
P0

n,Bn

−H2
P0
)

∣∣∣∣
≤ |AP0

n,Bn
−AP0

|+ |H2
P0

n,Bn

|δn + ε0|H2
P0

n,Bn

−H2
P0
|

≡ Fn.

Now, we study the convergence of EP0(Fn)
2. From the proposed conditions and lemma

3.5, we readily have that:

EP0(AP0
n,Bn

−AP0
)2 → 0,

and

EP0

{
ε2

0 (H
2
P0

n,Bn

−H2
P0
)2

}
= ε2

0 EP0(H
2
P0

n,Bn

−H2
P0
)2 → 0.

On the other hand, the boundedness conditions for ĝ imply that EP0H4
P0

n,Bn

is bounded.

Since δn converges to 0, this now implies that

EP0

{
(HP0

n,Bn
)4δ 2

n

}
→ 0.

Thus, all the square terms of EP0(Fn)
2 converge to 0 as n → ∞. Applying Cauchy-

Schwartz inequality and lemma 3.5 in a similar manner to the cross terms of EP0(Fn)
2

will show that they also converge to 0.

Moreover, this class has bounded entropy since the functions are linear in ε . Therefore,

lemma 3.2 implies that we indeed have the desired result:

√
n(P1

n,Bn
−P0)

{
DY

(
P0

n,Bn
,εn

)
−DY (P0,ε0)

}
= oP(1).

�

Proof of lemma 3.8:

This result can be proved in a similar manner as lemma 3.7 by making use lemma 3.2

and the conditions of the theorem. �

Proof of lemma 3.9: Firstly, rewrite

CPn
−CP0

≡
ˆ̄Q(P0)− ˆ̄Q(Pn)

ˆ̄Q(Pn)
ˆ̄Q(P0)

.



CHAPTER 3. CVTMLE 103

Then

P0 (CPn
−CP0

)4 = P0

(
ˆ̄Q(P0)− ˆ̄Q(Pn)

)4

( ˆ̄Q(Pn)
ˆ̄Q(P0))4

≤
√

P0
1

( ˆ̄Q(Pn)
ˆ̄Q(P0))8

√
P0

(
ˆ̄Q(P0)− ˆ̄Q(Pn)

)8

≤
√

P0
1

( ˆ̄Q(Pn)
ˆ̄Q(P0))8

√
P0

(
ˆ̄Q(P0)− ˆ̄Q(Pn)

)2

,

where the last inequality follows from the assumption that ˆ̄Q(P) are bounded between

0 and 1 with probability 1. This last expression converges to 0 in probability by our

assumption. �.

Proof of lemma 3.10:

1. By our assumption, EBn
P0H∗

ĝ(P0
n,Bn

)
is bounded with probability 1. Cauchy-Schwartz

inequality and lemma 3.4 imply that EBn
P0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)
P→ 0. It now follows

from lemma 3.3 that

EP0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)r

→ 0

for any r ≥ 1.

2. Similarly, By our assumption, EBn
P0CP0

n,Bn
is bounded with probability 1. An ap-

plication of Cauchy-Schwartz inequality and lemma 3.9 implies that EBn
P0(CP0

n,Bn
−

CP0
)

P→ 0. Hence, lemma 3.3 yields

EP0

(
CP0

n,Bn
−CP0

)r

→ 0

for any r ≥ 1.

�

Proof of Lemma 3.11: By our definition,

EBn
P1

n,Bn
DY (P

0
n,Bn

,εn) = 0.
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This implies that

−P0DY (P0,εn) = EBn

(
P1

n,Bn
−P0

){
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

(3.42)

+ EBn
P0

{
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

(3.43)

+ EBn

(
P1

n,Bn
−P0

)
DY (P0,εn). (3.44)

The term (3.43) can be expanded into

EBn
P0

{
DY (P

0
n,Bn

,εn)−DY (P0,εn)
}

= EBn
P0

{(
Y − ˆ̄Q(P0

n,Bn
)(εn)

)
H∗

ĝ(P0
n,Bn

)
−
(

Y − ˆ̄Q(εn)(P0)
)

H∗
ĝ(P0)

}

= EBn
P0

{(
Y − ˆ̄Q(P0

n,Bn
)(εn)

)(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)}

−EBn
P0

{
H∗

ĝ(P0)

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(εn)(P0)

)}
.

By lemma 3.4, EBn
P0

(
H∗

ĝ(P0
n,Bn

)
−H∗

ĝ(P0)

)2
P→ 0. Moreover, Y is bounded by assumption

and ˆ̄Q(P)(ε) is bounded by construction. Hence, an application of Cauchy-Schwartz imply

that the first summand of the last equality converges to zero in probability. On the other

hand the second summand can be bounded by

∣∣∣EBn
P0

{
H∗

ĝ(P0)

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(εn)(P0)

)}∣∣∣

≤
√

EBn
P0(H

∗
ĝ(P0)

)2

√
EBn

P0

(
ˆ̄Q(P0

n,Bn
)(εn)− ˆ̄Q(εn)(P0)

)2

=
√

EBn
P0(H

∗
ĝ(P0)

)2

√√√√√√√EBn
P0

(
CP0

e
−εnH∗

ĝ(P0) −CP0
n,Bn

e
−εnH∗

ĝ(P0
n,Bn

)

)2

(1+CP0
e
−εnH∗

ĝ(P0))2(1+CP0
n,Bn

e
−εnH∗

ĝ(P0
n,Bn

))2

≤
√

EBn
P0(H

∗
ĝ(P0)

)2

√

EBn
P0

(
CP0

e
−εnH∗

ĝ(P0) −CP0
n,Bn

e
−εnH∗

ĝ(P0
n,Bn

)

)2

.

By our assumption EBn
P0(H

∗
ĝ(P0)

)2 is bounded. We now wish to show

EBn
P0

(
CP0

n,Bn
e
−εnH∗

ĝ(P0
n,Bn

) −CP0
e
−εnH∗

ĝ(P0)

)2
P→ 0.
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Let HP0
n,Bn

≡ H∗
ĝ(P0

n,Bn
)
, HP0

≡ H∗
ĝ(P0)

. Firstly, note that by property of the exponential

function for every (a,w) in the support, there is YP0
n,Bn

(a,w) between εnHP0
n,Bn

(a,w) and

εnHP0
(a,w) such that

e
εnH

P0
n,Bn

(a,w)
− eεnHP0

(a,w) = e−εnHP0
(a,w)εn(HP0

n,Bn
−HP0

)(a,w)

+
e

Y
P0
n,Bn

(a,w)

2
ε2

n (HP0
n,Bn

−HP0
)2(a,w).

Boundedness of εn and HP0
n,Bn

implies that YP0
n,Bn

is also bounded with probability 1 over

the support. Therefore, we have:

EBn
P0

(
CP0

n,Bn
e
−εnH

P0
n,Bn −CP0

e−εnHP0

)2

= EBn
P0

{
CP0

n,Bn
(e

−εnH
P0
n,Bn − e−εnHP0 )+ e−εnHP0 (CP0

n,Bn
−CP0

)

}2

= EBn
P0

{
CP0

n,Bn


e−εnHP0 εn(HP0

n,Bn
−HP0

)+
e

Y
P0
n,Bn

2
ε2

n (HP0
n,Bn

−HP0
)2




+e−εnHP0 (CP0
n,Bn

−CP0
)

}2

= EBn
P0C2

P0
n,Bn


e−εnHP0 εn(HP0

n,Bn
−HP0

)+
e

Y
P0
n,Bn

2
ε2

n (HP0
n,Bn

−HP0
)2




2

+2EBn
P0

{
CP0

n,Bn


e−εnHP0 εn(HP0

n,Bn
−HP0

)+
e

Y
P0
n,Bn

2
ε2

n (HP0
n,Bn

−HP0
)2


×

e−εnHP0 (CP0
n,Bn

−CP0
)

}

+EBn
P0

{
e−2εnHP0 (CP0

n,Bn
−CP0

)2
}
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= EBn
P0C2

P0
n,Bn

(
e−2εnHP0 ε2

n (HP0
n,Bn

−HP0
)2
)
+EBn

P0
e

2Y
P0
n,Bn

4
ε4

n (HP0
n,Bn

−HP0
)4

+2EBn
P0



e−εnHP0

e
Y

P0
n,Bn

2
ε3

n (HP0
n,Bn

−HP0
)3





+2EBn
P0

{
CP0

n,Bn


e−εnHP0 εn(HP0

n,Bn
−HP0

)+
e

Y
P0
n,Bn

2
ε2

n (HP0
n,Bn

−HP0
)2


×

e−εnHP0 (CP0
n,Bn

−CP0
)

}

+EBn
P0

{
e−2εnHP0 (CP0

n,Bn
−CP0

)2
}
.

After repeated applications of Cauchy-Schwartz inequality to the summands, the bound-

edness assumptions and lemmas 3.4 and 3.9 imply that indeed

EBn
P0

(
CP0

n,Bn
e
−εnH

P0
n,Bn −CP0

e−εnHP0

)2
P→ 0.

Hence (3.43) converges to 0 in probability.

The term (3.44) can be written as

EBn

(
P1

n,Bn
−P0

)
DY (P0,εn)≡ EBn

(
P1

n,Bn
−P0

)
(Y − ˆ̄Q(εn)(P0))H

∗
ĝ(P0)

= EBn

(
P1

n,Bn
−P0

)
Y H∗

ĝ(P0)
−EBn

(
P1

n,Bn
−P0

) ˆ̄Q(εn)(P0)H
∗
ĝ(P0)

The first summand in the last equality is an empirical difference that is asymptotically nor-

mal with mean zero. In particular, it converges to zero in probability. The second summand

also converges to 0 in probability. To see that, let F (P0) = { fε = ˆ̄Q(P0)(ε)H
∗
ĝ(P0)

: ε},

where ε ranges over K. On a sample split of Bn, lemma 3.1 implies that

√
nE
(
sup f∈F |(P1

n,Bn
−P0) f |

)
≤ Entro(F )

√
P0F2,

where F is an envelope of F . Therefore, we may write

P
(
|(P1

n,Bn
−P0) fεn

(P0)|> δ
)
≤ EP

(
sup f∈F |(P1

n,Bn
−P0) f |> δ

)

≤ 1

δ
EE
(
sup f∈F |(P1

n,Bn
−P0) f |

)
≤ 1√

n

1

δ
EEntro(F )

√
P0F2.

The entropy of this class is bounded. From the boundedness assumptions of ĝ(P0) and the

definition of ˆ̄Q(ε), we see that all the functions the F are also bounded, hence
√

P0F2 is
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bounded. Therefore, the RHS of the last inequality converges to 0 in probability as n → ∞.

This result combined with the fact that Bn is uniformly distributed over a finite support

now imply that EBn

(
P1

n,Bn
−P0

)
ˆ̄Q(εn)(P0)H

∗
ĝ(P0)

indeed converge to 0 in probability.

It remains to show that (3.42) converges to 0 in probability. By our assumption, there

exists constant M > 0 such that P(|εn|< M) = 1. Conditional on P0
n,Bn

, consider the class

F (P0
n,Bn

) =
{

fε(P
0
n,Bn

) = DY (P
0
n,Bn

,ε)−DY (P0,ε) : |ε|< M
}
.

Lemma 3.1 implies that

√
nE
(

sup f∈F (P0
n,Bn

)|(P1
n,Bn

−P0) f |
)
≤ Entro(F (P0

n,Bn
))
√

P0F(P0
n,Bn

)2,

where F(P0
n,Bn

) is an envelope of F (P0
n,Bn

). Therefore, we may write

P
(
|(P1

n,Bn
−P0) fεn

(P0
n,Bn

)|> δ
)

≤ EP

(
sup f∈F (P0

n,Bn
)|(P1

n,Bn
−P0) f |> δ

∣∣∣∣∣P
0
n,Bn

)

≤ 1

δ
EE
(

sup f∈F (P0
n,Bn

)|(P1
n,Bn

−P0) f |
)

≤ 1√
n

1

δ
EEntro(F (P0

n,Bn
))
√

P0F(P0
n,Bn

)2.

Firstly note that fε is bounded per our assumptions and construction of ˆ̄Q(P)(ε). Hence√
P0F(P0

n,Bn
)2 is bounded. On the other hand, the entropy of the class is also bounded.

Therefore, we indeed have P
(
|(P1

n,Bn
−P0) fεn

(P0)|> δ
)

converges to 0 as n → ∞. Conse-

quently, (3.42) converges to 0 in probability. We have thus shown that P0DY (P0,εn)
P→ 0.

Since K is compact, there is a subsequence εnk such that εnk
P→ ε∗ for some ε∗ ∈ K.

This implies that for

g(ε) ≡ P0DY (P0,ε)

= P0Y H∗
ĝ(P0)

−P0

H∗
ĝ(P0)

1+ e
−logit( ˆ̄Q(P0))−εH∗

ĝ(P0)

,

which is continuous over K, we must have g(εnk)
P→ g(ε∗).

Since g(εn)
P→ 0, as determined above, it follows that g(ε∗) = 0. On the other hand,

by definition of ε0 we have that g(ε0) = 0. Note that g′(ε) < 0, hence it’s monotonic in
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ε . Therefore we indeed have ε∗ = ε0. This implies that all convergent subsequences of εn

converge to ε0 in probability. Since K is compact, it now implies that εn converge to ε0 in

probability. �

Proof of Lemma 3.12:

Conditional on P0
n,Bn

, for a deterministic sequence δn converging to 0, consider the

class

Fδn
(P0

n,Bn
)≡

{
DY (P

0
n,Bn

,ε)−DY (P0,ε) :‖ ε − ε0 ‖< δn

}
,

where

DY (P
0
n,Bn

,ε)−DY (P0,ε)

=
(

Y − ˆ̄Q(P0
n,Bn

)(ε)
)

H∗
ĝ(P0

n,Bn
)
−
(

Y − ˆ̄Q(P0)(ε0)
)

H∗
ĝ(P0)

.

From lemma 3.11, we readily have ‖ εn−ε0 ‖ P→ 0. To obtain the desired result, it remains

to show that Fδn
(P0

n,Bn
) satisfies the conditions of lemma 3.2.

For convenience, let HP0
n,Bn

(O) ≡ H∗
ĝ(P0

n,Bn
)
(A,W ), and HP0

its counterpart at P0. Then,

we can find an envelope for this class of functions as follows:

∣∣DY (P
0
n,Bn

,ε)−DY (P0,ε)
∣∣

≤ |Y ||HP0
n,Bn

−HP0
|+ ˆ̄Q(P0)(ε0)|HP0

n,Bn
−HP0

|+ |HP0
n,Bn

|| ˆ̄Q(P0
n,Bn

)(ε)− ˆ̄Q(P0)(ε0)|

≤ |Y + ˆ̄Q(P0)(ε0)||HP0
n,Bn

−HP0
|

+|HP0
n,Bn

|

∣∣∣∣∣∣∣

CP0
n,Bn

e
−εH

P0
n,Bn −CP0

e−ε0HP0

(1+CP0
n,Bn

e
−εH

P0
n,Bn )(1+CP0

n,Bn
e
−εH

P0
n,Bn )

∣∣∣∣∣∣∣

≤ |Y + ˆ̄Q(P0)(ε0)||HP0
n,Bn

−HP0
|+ |HP0

n,Bn
|e−ε0HP0 |CP0

n,Bn
−CP0

|

+|HP0
n,Bn

||CP0
n,Bn

||e
−εH

P0
n,Bn − e−ε0HP0 |

≤ |Y + ˆ̄Q(P0)(ε0)||HP0
n,Bn

−HP0
|+ |HP0

n,Bn
|e−ε0HP0 |CP0

n,Bn
−CP0

|

+|HP0
n,Bn

||CP0
n,Bn

||e−ε0HP0 |εHP0
n,Bn

− ε0HP0
|

+|HP0
n,Bn

||CP0
n,Bn

||e
M′′

2
|εHP0

n,Bn
− ε0HP0

|2
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≤ |Y + ˆ̄Q(P0)(ε0)||HP0
n,Bn

−HP0
|+ |HP0

n,Bn
||e−ε0HP0 ||CP0

n,Bn
−CP0

|

+|HP0
n,Bn

||CP0
n,Bn

|e−ε0HP0 ε0|HP0
n,Bn

−HP0
|

+|HP0
n,Bn

|2|CP0
n,Bn

|e−ε0HP0 δn + |HP0
n,Bn

||CP0
n,Bn

|e
M′′

2
ε2

0 |HP0
n,Bn

−HP0
|2

+|HP0
n,Bn

|3|CP0
n,Bn

|e
M′′

2
δ 2

n

+2|HP0
n,Bn

|2|CP0
n,Bn

|e
M′′

2
ε0|HP0

n,Bn
−HP0

|δn

=
(

Y + ˆ̄Q(P0)(ε0)+ |HP0
n,Bn

||CP0
n,Bn

|e−ε0HP0 ε0

)
|HP0

n,Bn
−HP0

|

+|HP0
n,Bn

||e−ε0HP0 ||CP0
n,Bn

−CP0
|

+|HP0
n,Bn

|2|CP0
n,Bn

|e−ε0HP0 δn + |HP0
n,Bn

||CP0
n,Bn

|e
M′′

2
ε2

0 |HP0
n,Bn

−HP0
|2

+|HP0
n,Bn

|3|CP0
n,Bn

|e
M′′

2
δ 2

n

+2|HP0
n,Bn

|2|CP0
n,Bn

|e
M′′

2
ε0|HP0

n,Bn
−HP0

|δn

≡ Fn.

Applying Cauchy-Schwartz inequality in combination with lemma 3.10 and boundedness

assumptions, we thereby have that EP0(Fn)
2 → 0. Furthermore, the entropy of Fδn

(P0
n,Bn

)
is bounded. Therefore, from lemma 3.2 it follows that

√
n(P1

n,Bn
−P0)

{
DY (P

0
n,Bn

,ε)−DY (P0,ε)
}
= oP(1).

�.

Proof of lemma 3.13: This is proved analogue to the proof of lemma 3.12. �.
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