
HAL Id: tel-01731019
https://theses.hal.science/tel-01731019

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Direction on Low Complexity Implementation of
Probabilistic Gradient Descent Bit-Flipping Decoder

Khoa Le Trung

To cite this version:
Khoa Le Trung. New Direction on Low Complexity Implementation of Probabilistic Gradient Descent
Bit-Flipping Decoder. Signal and Image Processing. université de cergy-pontoise, 2017. English.
�NNT : �. �tel-01731019�

https://theses.hal.science/tel-01731019
https://hal.archives-ouvertes.fr

THÈSE

présentée

à l'Université de Cergy Pontoise
École Nationale Supérieure de l'Électronique de ses Applications

pour obtenir le grade de :

Docteur en Science de l'Université de Cergy Pontoise
Spécialité : Sciences et Technologies de l'Information et de la

Communication

Par

LE TRUNG Khoa

Équipes d'accueil :
Équipe Traitement des Images et du Signal (ETIS) � CNRS UMR 8051
École Nationale Supérieure de l'Électronique et de ses Applications

Titre de la thèse

New Direction on Low Complexity Implementation
of Probabilistic Gradient Descent Bit-Flipping

Decoder

Soutenue le 03/05/2017 devant la commission d'examen composée de :

Emmanuel Boutillon Professeur, Lab-STICC, Université Bretagne Sud Rapporteur
Chris Winstead Professeur, Utah University, USA Rapporteur
Christophe Jégo Professeur, IMS, Institut Polytechnique de BordeauxExaminateur
Charly Poulliat Professeur, INP-ENSEEIHT Toulouse Examinateur
Valentin Savin Dr., CEA-LETI, MINATEC, Grenoble Examinateur
Fakhreddine Gha�ari MCF, Université de Cergy Pontoise Encadrant
David Declercq Professeur, ENSEA, Université de Cergy Pontoise Directeur de thèse

Dành cho Ba Má thân yêu của con,
Ba Lê Trung Nhân và Má Nguyễn Thị Kim Chấn

Dành cho Chị và các em,

Dành cho vợ và con gái yêu dấu,

Cho tình thương của bố, mẹ dành cho con
Cho tình yêu của Chị và các em,

Cho tình yêu của Vợ và con

To my parents,
To my brothers and sisters,

To my wife and daughter,
For your love,

À mes parents,
À mes frères et soeurs,

À ma femme et ma pettite fille,

Acknowledgment

I would like to express my deep gratitude to my advisors, Prof. David Declercq and
Assoc. Prof. Fakhreddine Gha�ari, for their continuously guidance, support and
corrections throughout the duration of my PhD work. In particular, I would like
to thank them for believing in my potential and agreeing to become my doctoral
advisors, for providing meaningful ideas, for initiating fruitful collaborations with
partners which enabled me to �nish my thesis successfully.

I would like to thank Prof. Emmanuel Boutillon and Prof. Chris Winstead for
acting as my thesis reviewers, Prof. Christophe Jégo for serving as the president of
the PhD committee and Prof. Charly Poulliat, Dr. Valentin Savin for being the ex-
aminers. The comments and corrections from the committee helped me signi�cantly
improve my thesis as well as my future career.

During my PhD study, I had the opportunities of doing some research visits to
Error Correction Coding Laboratory in University of Arizona, USA, under super-
vision of Prof. Bane Vasíc. I would like to thank him for all of his supports, for
providing me with very interesting ideas and discussions. I want to thank Xin Xiao,
Nithin, Mohsen for discussing with me. For the research visit to University Po-
litehnica Timisoara, Romania, I would like to thank Oana Boncalo and Alexandru
Amaricai for their help and discussions .

I extend my thanks to all the colleagues in ETIS, ENSEA for their friendship,
funs and encouragements especially Lam Nguyen, Hong Phan, Diouf Madiagne,
Alexandre Marcastel.. and Truong Nguyen-Ly from CEA-LETI, Grenoble. The
administrate assistant of our laboratory, Annick Bertinoti, and administrative assis-
tant of the doctoral school, Emmanuelle Travet, Naima Chalabi, were always very
helpful. Many thanks go to them for taking care of the administrative issues.

I would like to express my sincere gratitude to my colleagues in University of
Technology (Bach Khoa University), Viet Nam National University Ho Chi Minh
City, especially Ho Trung My, Huynh Thu, Hoang Trang, Do Hong Tuan, Duong
Hoai Nghia for encouraging me to pursue the PhD study.

Last, but not least, my profound gratitude to my family, especially my beloved
parents, Le Trung Nhan and Nguyen Thi Kim Chan, my brothers and sisters, Thanh
Huong, Ngoc Lan, Minh Tuong, Trung Nghia, my wife, Van Nga and especially
my lovely daughter, Sophie Vinh An, for their moral supports and encouragement
throughout my life. They have inspired me and given me strength throughout my
whole life.

Cergy - France, May 2017
LE TRUNG KHOA

i

ii

Author's publications related to the

PhD

Published papers

[J1] K. Le, F. Gha�ari, D. Declercq and B. Vasi¢, �E�cient Hardware Implemen-
tation of Probabilistic Gradient Descent Bit-Flipping�, IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp. 1-12, 2016.

[C1] K. Le, D. Declercq, F. Gha�ari, C. Spagnol, E. Popovici, P. Ivanis and B.
Vasíc, �E�cient realization of probabilistic gradient descent bit �ipping de-
coders�, 2015 IEEE International Symposium on Circuits and Systems (IS-
CAS), pp. 1494-1497, May 2015.

[C2] K. Le, F. Gha�ari, D. Declercq and B. Vasi¢, �Hardware Optimization of the
Perturbation for Probabilistic Gradient Descent Bit Flipping Decoders�, 2017
IEEE International Symposium on Circuits and Systems (ISCAS), May 2017
(accepted).

[C3] B. Vasi¢, P. Ivanis, D. Declercq and K. Le, �Approaching Maximum Likeli-
hood Performance of LDPC Codes by Stochastic Resonance in Noisy Iterative
Decoders�, Information Theory and Applications Workshop (ITA 2016), San
Diego, CA, Feb. 2016.

Participation to research projects

The author participated to the research project �Innovative Reliable Chip Designs
from Low-Powered Unreliable Components� (i-RISC), supported by the Euro-
pean Commission under the Seventh Framework Programme (Grant agreement
number 309129) and the research project �Message passing Iterative Decoders
based on Imprecise Arithmetic for Multi-Objective Power-Area-Delay Opti-
mization� (DIAMOND) supported by the Agence National de la Recherche
(ANR) under the Franco-Romanian (ANR-UEFISCDI) Join Research Pro-
gram.

iii

iv

Résumé

L'algorithme de basculement de bits à descente de gradient probabiliste (Probabi-
listic Gradient Descent Bit Flipping - PGDBF) est récemment introduit comme un
nouveau type de décodeur de décision forte pour le code de contrôle de parité à faible
densité (Low Density Parity Check - LDPC) appliqué au canal symétrique binaire.
En suivant précisément les étapes de décodage du décodeur déterministe Gradient
Descent Bit-Flipping (GDBF), le PGDBF intègre en plus la perturbation aléatoire
dans l'opération de basculement des N÷uds de Variables (VNs) et produit ainsi une
performance de décodage exceptionnelle qui est meilleure que tous les décodeurs à
basculement des bits (Bit Flipping - BF) connus dans la littérature, et qui approche
les performances du décodeur de décision souple. Nous proposons dans cette thèse
plusieurs implémentations matérielles du PGDBF, ainsi qu'une analyse théorique de
sa capacité de correction d'erreurs. Avec une analyse de chaîne de Markov du déco-
deur, nous montrons qu'en raison de l'incorporation de la perturbation aléatoire dans
le traitement des VNs, le PGDBF s'échappe des états de piégeage qui empêchent sa
convergence. De plus, avec la nouvelle méthode d'analyse proposée, la performance
du PGDBF peut être prédite et formulée par une équation de taux de trames erro-
nées en fonction du nombre des itérations, pour un motif d'erreur donné. L'analyse
fournit également des explications claires sur plusieurs phénomènes de PGDBF tels
que le gain de re-décodage (ou de redémarrage) sur un motif d'erreur reçu. La pro-
blématique de l'implémentation matérielle du PGDBF est également abordée dans
cette thèse. L'implémentation classique du décodeur PGDBF, dans laquelle un gé-
nérateur de signal probabiliste est ajouté au-dessus du GDBF, est introduite avec
une augmentation inévitable de la complexité du décodeur. Plusieurs procédés de
génération de signaux probabilistes sont introduits pour minimiser le surcoût maté-
riel du PGDBF. Ces méthodes sont motivées par l'analyse statistique qui révèle les
caractéristiques critiques de la séquence aléatoire binaire requise pour obtenir une
bonne performance de décodage et suggérer les directions possibles de simpli�ca-
tion. Les résultats de synthèse montrent que le PGDBF déployé avec notre méthode
de génération des signaux aléatoires n'a besoin qu'une très faible complexité sup-
plémentaire par rapport au GDBF tout en gardant les mêmes performances qu'un
décodeur PGDBF théorique. Une implémentation matérielle intéressante et particu-
lière du PGDBF sur les codes LDPC quasi-cyclique (QC-LDPC) est proposée dans
la dernière partie de la thèse. En exploitant la structure du QC-LDPC, une nouvelle
architecture pour implémenter le PGDBF est proposée sous le nom d'architecture
à décalage des N÷uds de Variables (Variable-Node Shift Architecture - VNSA). En
implémentant le PGDBF par VNSA, nous montrons que la complexité matérielle
du décodeur est même inférieure à celle du GDBF déterministe tout en préservant
la performance de décodage aussi élevée que celle fournie par un PGDBF théorique.
En�n, nous montrons la capacité de cette architecture VNSA à se généraliser sur
d'autres types d'algorithmes de décodage LDPC.

v

vi

Abstract

Probabilistic Gradient Descent Bit Flipping (PGDBF) algorithm have been recently
introduced as a new type of hard decision decoder for Low-Density Parity-Check
Code (LDPC) applied on the Binary Symmetric Channel. By following precisely the
decoding steps of the deterministic Gradient Descent Bit-Flipping (GDBF) decoder,
PGDBF additionally incorporates a random perturbation in the �ipping operation
of Variable Nodes (VNs) and produces an outstanding decoding performance which
is better to all known Bit Flipping decoders, approaching the performance of soft
decision decoders. We propose in this thesis several hardware implementations of
PGDBF, together with a theoretical analysis of its error correction capability. With
a Markov Chain analysis of the decoder, we show that, due to the incorporation
of random perturbation in VN processing, the PGDBF escapes from the trapping
states which prevent the convergence of decoder. Also, with the new proposed anal-
ysis method, the PGDBF performance can be predicted and formulated by a Frame
Error Rate equation as a function of the iteration, for a given error pattern. The
analysis also gives a clear explanation on several phenomenons of PGDBF such as
the gain of re-decoding (or restarting) on a received error pattern. The implementa-
tion issue of PGDBF is also addressed as a main part in this thesis. The conventional
implementation of PGDBF, in which a probabilistic signal generator is added on top
of the GDBF, is shown with an inevitable increase in hardware complexity. Several
methods for generating the probabilistic signals are introduced which minimize the
overhead complexity of PGDBF. These methods are motivated by the statistical
analysis which reveals the critical features of the binary random sequence required
to get good decoding performance and suggesting the simpli�cation directions. The
synthesis results show that the implemented PGDBF with the proposed probabilistic
signal generator method requires a negligible extra complexity with the equivalent
decoding performance to the theoretical PGDBF. An interesting and particular im-
plementation of PGDBF for the Quasi-Cyclic LDPC (QC-LDPC) is shown in the
last part of the thesis. Exploiting the structure of QC-LDPC, a novel architecture
to implement PGDBF is proposed called Variable-Node Shift Architecture (VNSA).
By implementing PGDBF with VNSA, it is shown that the decoder complexity is
even smaller than the deterministic GDBF while preserving the decoding perfor-
mance as good as the theoretical PGDBF. Furthermore, VNSA is also shown to be
able to apply on other types of LDPC decoding algorithms.

vii

viii

Contents

1 Introduction 1
1.1 Context and motivations . 1
1.2 Main contributions and thesis outline 3

2 Hard decision decoders 7
2.1 Low-Density Parity-Check codes and channel models 8

2.1.1 Low-Density Parity-Check codes 8
2.1.2 LDPC decoding concepts . 9
2.1.3 The channel models of LDPC decoding 10
2.1.4 Quasi-cyclic Low-Density Parity-Check codes 10

2.2 Bit-Flipping-based Decoders . 12
2.2.1 Energy computation in BF decoders 13
2.2.2 Flipping strategies . 16
2.2.3 Probabilistic Bit Flipping . 18
2.2.4 Performance comparisons . 18

2.3 Other Diversities of Hard decision Decoders 20
2.3.1 Gallager-A/Gallager-B decoders 20
2.3.2 Majority voting decoder . 21
2.3.3 Di�erential Decoders . 22

2.4 The noise-aided BF decoders . 23
2.4.1 Noisy Gradient Descent Bit-Flipping decoding algorithm . . . 24
2.4.2 Probabilistic Gradient Descent Bit-Flipping decoding algorithm 24

2.5 Hardware complexity of BF-based decoders 26
2.6 Conclusion . 28

3 Theoretical analysis of Probabilistic Gradient Descent Bit Flipping 29
3.1 Introduction . 29
3.2 Markov Chain representation of the decoding process 30

3.2.1 Markov Chain of hard decision decoding process 30
3.2.2 Markov chain representation: GDBF and PGDBF illustrations 31

3.2.2.1 Error patterns weight-1 and weight-2 31
3.2.2.2 Weight-3 error pattern 33
3.2.2.3 Weight-4 error pattern 34

3.3 Frame Error Rate Evaluation . 35
3.3.1 Markov Chain, algebraic and graph-theoretic considers 35

ix

3.3.2 Classi�cation of the states . 36
3.3.3 Frame Error Rate Computation 39

3.4 Performance of Probabilistic Gradient Descent Bit Flipping Decoder . 40
3.4.1 The asymptotic decoding performance of PGDBF 40
3.4.2 The decoding performance of PGDBF in �nite number of it-

eration . 44
3.5 Conclusion . 45

4 E�cient hardware implementation of Probabilistic Gradient De-
scent Bit Flipping 47
4.1 Introduction . 47
4.2 The statistical analysis of PGDBF decoder 47

4.2.1 Waterfall analysis . 48
4.2.2 Error-�oor analysis . 49

4.3 The optimized hardware implementation 52
4.3.1 PGDBF global architecture 52
4.3.2 Implementation of the perturbation block 53

4.3.2.1 Cyclically-shift truncated sequences 53
4.3.2.2 Initialization with Linear Feedback Shift Register . . 55
4.3.2.3 Initialization with The Intrinsic-Valued Random Gen-

erator . 57
4.3.3 The optimized architecture of the maximum �nder 59

4.4 Synthesis results . 60
4.4.1 PGDBF Synthesis Results . 60
4.4.2 PGDBF Performance . 64

4.5 Conclusion . 68

5 A Quasi-Cyclic friendly architecture for LDPC decoders : the
Variable-Node Shift Architecture 69
5.1 Introduction . 69
5.2 The Variable-Node Shift Architecture 70

5.2.1 The Conventional Architecture of QC-LDPC decoders 70
5.2.2 The Variable-Node Shift Architecture for QC-LDPC decoders 72

5.3 The Variable-Node Shift Architecture for edge-type memory LDPC
decoders: �ooding MS and layered MS implementation illustrations . 74

5.4 The Variable-Node Shift Architecture for node-type memory LDPC
decoders: GDBF implementation illustration 76

5.5 The advantages of VNSA-based LDPC decoders with di�erent type
of VNUs . 80

5.6 Implementations of PGDBF with Variable-Node Shift Architecture . 82
5.6.1 The implementation of PGDBF with Variable-Node Shift Ar-

chitecture . 82
5.6.2 An imprecise implementation of PGDBF with Variable-Node

Shift Architecture . 86
5.7 The synthesis results and decoding performance 87

x

5.7.1 Synthesis results . 87
5.7.2 Decoding performance . 88

5.8 Conclusion . 90

6 Conclusion and perspectives 93

appendix 95

A 97
A.1 Some LDPC codes used in the thesis 97

A.1.1 The Tanner QC-LDPC code (dv, dc)= (3, 6), R = 0.4,M = 93,
N = 155 and Z = 31 . 97

A.1.2 The QC-LDPC code (dv, dc)= (3, 6), R = 0.5, M = 648, N =
1296 and Z = 54 . 97

A.1.3 The QC-LDPC code (dv, dc)= (4, 8), R = 0.5, M = 648, N =
1296 and Z = 54 . 98

A.2 Min Sum decoding algorithms in �ooding and layered scheduling . . . 98
A.2.1 Flooding Min Sum decoding algorithm 98
A.2.2 Layered Min Sum decoding algorithm 99

A.3 3 weight-20 codewords in Tanner code 102
A.3.1 Type I . 102
A.3.2 Type II . 102
A.3.3 Type III . 103

Bibliography 108

xi

xii

List of Figures

1.1 An illustrating system where LDPC code is applied. 1

2.1 An example of the parity check matrix H. 8
2.2 The Tanner graph presentation of a parity matrix H. 9
2.3 The Binary Symmetric Channel model. 10
2.4 The Additive White Gaussian Noise channel model. 10
2.5 A main diagonal Z × Z matrix and one of its circulant shift version

used in the construction of QC-LDPC code. The zero entries are not
shown for the sake of simplicity. 11

2.6 An example of the parity check matrix H of a QC-LDPC code. 11
2.7 The cyclic shift of 6x6 diagonal matrix with shift factor is 0 (a) and

2 (b) and the corresponding connections between the VNs and CNs. . 12
2.8 A full connection of Z VNs in a column of the base matrix with dv = 3

to their neighbor CNs. 12
2.9 The BF decoders development since the bit �ipping decoding skim in-

troduced by Gallager in 1963. These BF decoders can be found at the
following references: BF[1], WBF[2], MWBF[3], PBF[4], IMWBF[5],
PWBF[6], IPBF[7], GDBF[8], Multi-bit-GDBF[9], RRWGDBF[10],
AT-GDBF[11], WCBBF[12], TB-BF[13], NGDBF[14], PGDBF[15],
MM-WBF[16], MTBF[17], DWBF[18], RECWBF[19], TSWBF[20],
HGDBF[21], MBF[22]. 13

2.10 Performance comparison between hard decision BF decoders of the
regular LDPC code (dv = 3, dc = 6), (N = 1008,M = 504) (PE-
GReg504x1008), the maximum iteration: M-esc-GDBF, Itmax = 300
; for MS decoder, Itmax = 100 and Itmax = 5 are used; Itmax = 100
for all other decoders. 19

2.11 Performance comparison between LDPC decoders: BF, Gallager-B
(Gal-B), GDBF, PGDBF (p0 = 0.9), Quantized MS, Quantized O�set
Min-Sum (OMS) with o�set factor of 1 of the regular QC-LDPC code
(dv = 4, dc = 8, Z = 54), (N = 1296,M = 648). 19

2.12 The di�erence in the �ipping operator between GDBF and PGDBF
algorithms. 25

2.13 Performance-complexity comparison of some typical BF-based de-
coders on the PEGReg504x1008, regular dv = 3, dc = 6 LDPC code. . 27

xiii

2.14 Performance-complexity comparison of some typical BF-based de-
coders on BSC channel for the regular dv = 3, dc = 6, M = 648,
N = 1296 QC-LDPC code. The PGDBF implementations in the red
cycle are the one proposed in this thesis. 28

3.1 Trapping Set TS(5,3) in the Tanner Code. 31
3.2 The weight-1 (a), weight-2 (b) error patterns and the corresponding

Markov chain representation of GDBF and PGDBF decoders. The
dashed red arrows are the transitions of GDBF, the solid red arrows
are the transitions of PGDBF. 32

3.3 2 erroneous bits located in Tanner graph of Tanner code. The 2
erroneous bits are either a). sharing a CN or b). separating from
each other . 33

3.4 The weight-3 error pattern and the corresponding Markov chain rep-
resentation of GDBF and PGDBF decoders. The dashed red arrows
are the transitions of GDBF, the solid red arrows are the transitions
of PGDBF. 34

3.5 The weight-4 error pattern and the corresponding Markov chain rep-
resentation of PGDBF decoder. 35

3.6 . 37
3.7 An uncorrectable error pattern of PGDBF since the converging state

S0 is not in the induced Markov chain of e. 41
3.8 Performance of PGDBF (p0 = 0.7) and GDBF by simulation and

theoretical prediction on the Tanner code. 44
3.9 Performance of PGDBF as a function of the number of iterations in

3-bits error pattern in Figure 3.4 and 4-bits error patterns in Figure
3.5 and 3.10. 45

3.10 An weight-4 partial-uncorrectable error pattern of PGDBF. 45

4.1 Performance comparison between LDPC decoders: BF, GDBF, PGDBF
(p0 = 0.7), Quantized MS of the regular QC-LDPC code (dv = 3, dc =
6, Z = 54), (N = 1296,M = 648). 48

4.2 Frame Error Rate versus p0 in the waterfall region (α = 0.01) of
Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93). 49

4.3 Error con�gurations with (a) 3 erroneous bits and (b) 4 erroneous bits
located on a TS(5, 3). Black/white circles denote erroneous/correct
variable nodes, and black/white squares denote unsatis�ed/satis�ed
check nodes. 50

4.4 Frame Error Rate versus p0 in the error �oor region with 3 erroneous
bits of Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93). . . . 51

4.5 Frame Error Rate versus the p0 in the error �oor region with 4 erro-
neous bits of Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93). 51

4.6 The global architecture of the PGDBF. The PGDBF follow precisely
the data �ow of GDBF with di�erence coming from the random gen-
erator and the AND-gates. 52

xiv

4.7 Generation of the random signals, (a) corresponds to the use of trun-
cated sequences, and (b) to the use of full sequences. 54

4.8 Decoding performance of CSTS-PGDBF as a function of the size S
of R(0)

t . 55
4.9 A LFSR unit to generate 1 random bit. 56
4.10 The LFSR RG module . 56
4.11 A block diagram of the Intrinsic-Valued Random Generator module

for S = M = N/2. The CNs values are copied into the R(0)
t at the

�rst iteration, then cyclically shifted at each iteration. 58
4.12 The distribution of p0 for the IVRG-PGDBF and a (dv = 3, dc =

6, N = 1296) QC-LDPC code, for α = 0.02 and α = 0.04. 59
4.13 Detailed circuits of implemented Energy Computation and Maximum

Indicator blocks for dv = 3 LDPC codes, (a) Energy Computation
block, (b) Maximum Indicator block. 60

4.14 Average number of iterations for GDBF, PGDBF and MS decoders
on the dv3R050N1296 regular LDPC code. In Figure (a), randomness
is applied at the beginning of decoding process in PGDBF decoders.
In Figure (b). PGDBF decoders are with S = 4Z and p0 = 0.7 in
LFSR-PGDBF . 63

4.15 Decoding performance of GDBF, LFSR-PGDBF, IVRG-PGDBF and
MS decoders on the LDPC code dv = 3, dc = 6, N = 1296 (dv3R050N1296). 65

4.16 E�ect of the RS length S on the decoding performance for the dv4R050N1296
code: (a). LFSR-PGDBF decoders (p0 = 0.9), (b). IVRG-PGDBF . . 66

4.17 E�ect of the RS length S on the decoding performance for the dv3R050N1296
code: (a). LFSR-PGDBF decoders (p0 = 0.7), (b). IVRG-PGDBF. . 66

4.18 E�ect of the RS length S on the decoding performance for the dv4R075N1296
code: (a). LFSR-PGDBF decoders (p0 = 0.9), (b). IVRG-PGDBF. . 67

4.19 Decoding performance of GDBF, PGDBF (Itmax = 300) and MS
(Itmax = 20) decoders on a QC-LDPC code with dv = 4, Rate = 0.88,
Z = 140, M = 1120 and N = 9520. 67

5.1 The conventional architecture of QC-LDPC. 71
5.2 The Tanner graph of a QC-LDPC code. 71
5.3 The generic QC-LDPC decoder architectures: Figure 5.3(a) the con-

ventional architecture. Figure 5.3(b) the proposed Variable-Node
Shift Architecture (VNSA). 73

5.4 With non-memory cyclically shift (a) and with memory cyclically shift
(b), the messages are both well conveyed to a common CNU thank
to the constructive implemented connections in QC-LDPC decoders. . 74

5.5 When a cyclic shift is applied on the memory of VNU, the messages
from CNUs are also sent to the corresponding cyclic shift VNU. . . . 74

5.6 VNSA application on Flooding MS. Figure 5.6(a): 2 consecutive
VNUs in the conventional �ooding MS implementation. Figure 5.6(b):
Z consecutive VNUs in a base-column of base matrix in VNSA-based
implementation where the memory elements are cyclically shifted. . . 75

xv

5.7 VNSA application on Layered MS. Figure 5.7(a): 2 consecutive VNUs
in the conventional layered MS implementation. Figure 5.7(b): Z
consecutive VNUs in a base-column of base matrix in VNSA-based
implementation where the memory elements are cyclically shifted. . . 77

5.8 Performance comparison between BF, GDBF, Quantized �ooding MS
LDPC decoders both conventional and VNSA-based implementations
for the regular QC-LDPC code (dv = 4, dc = 8, Z = 54), (N =
1296,M = 648). 78

5.9 VNSA application on GDBF decoder. Figure 5.9(a): 2 consecutive
VNUs in the conventional GDBF implementation. Figure 5.9(b): 2
consecutive VNUs in a base-column of base matrix where the node
memory elements are cyclically shifted. 79

5.10 An implementation example of LDPC decoding algorithms where
multiple functions are implemented in each VNU (Figure 5.10(a))
and an application of VNSA by distributing required functions in dif-
ferent VNUs and cyclically shift the VNs through these implemented
VNU (Figure 5.10(b)). 81

5.11 The hardware e�ciency of VNSA over the conventional implementation. 81
5.12 The implementation of VNSA-PGDBF decoder. 83
5.13 The conventional implementation of PGDBF. 83
5.14 The optimized probabilistic signals generator proposed in Chapter 4. 84
5.15 The probabilistic signals generator proposed in Chapter 4 with the

hardwire shu�ed. 84
5.16 Figure 5.16(a) Decoding performance comparison of PGDBF decoder

implemented in Chapter 4 with the hardwire connections in random
generator shu�ed. Figure 5.16(b) The statistical on decoding perfor-
mance of VNSA-PGDBF and VNSA-IM-PGDBF as a function of p0
on the ((dv, dc) = (4, 8), Z = 54, N = 1296 and M = 648) LDPC code. 85

5.17 The statistical on decoding performance of VNSA-PGDBF and VNSA-
IM-PGDBF as a function of p0 on the ((dv, dc) = (3, 6), Z = 54,
N = 1296 and M = 648) LDPC code. 85

5.18 Figure 5.18(a): the trivial VNU type (type 3 VNU) proposed for
VNSA-IM-PGDBF. Figure 5.18(b): the Maximum Indicator in VNSA-
IM-PGDBF. 87

5.19 The decoding performance of the VNSA-PGDBF and VNSA-IM-
PGDBF on di�erent LDPC code. Figure 5.19(a) for the ((dv, dc) =
(3, 6), Z = 54, N = 1296 and M = 648) LDPC code. Figure 5.19(b)
for the ((dv, dc) = (4, 8), Z = 54, N = 1296 and M = 648) LDPC code. 89

5.20 The decoding performance of the VNSA-PGDBF and VNSA-IM-
PGDBF with the variation of p0 on the ((dv, dc) = (3, 6), Z = 54,
N = 1296 and M = 648) LDPC code. 90

5.21 The decoding performance comparison on the ((dv, dc) = (4, 34), Z =
140, N = 9520 and M = 1120) LDPC code. 90

xvi

List of Tables

2.1 The complexity of some typical hard decision decoders. 26

3.1 Number of codeword weight-20 and TS(5,3) in Tanner code [23]. . . . 42
3.2 Error correction ability of LDPC decoders on the Type I codeword

of Tanner code. The numbers in the brackets are (number of uncor-
rectable - number of partial-uncorrectable) error patterns. 43

3.3 Error correction ability of LDPC decoders on the Type II codeword
of Tanner code. The numbers in the brackets are (number of uncor-
rectable - number of partial-uncorrectable) error patterns. 43

3.4 Error correction ability of LDPC decoders on the Type III codeword
of Tanner code. The numbers in the brackets are (number of uncor-
rectable - number of partial-uncorrectable) error patterns. 43

4.1 Hardware resource used to implement the PGDBF decoders as a func-
tion of S. The percentages in brackets indicate the additional hard-
ware compared to the GDBF. 61

4.2 Hardware resource used to implement GDBF and PGDBF decoders
for di�erent LDPC codes from short to very long codeword lengths
and di�erent code rates. The values in brackets are percentage of
additional hardware compared to GDBF 62

4.3 Frequency and throughput comparison between GDBF decoder, PGDBF
decoders, and MS decoders [24, 25]. QC-LDPC (dv, dc) = (3, 6),
R = 1/2, N = 1296, Z = 54. 63

4.4 Frequency and throughput comparison between GDBF, PGDBF de-
coders and MS decoder from [26]. QC-LDPC (dv, dc) = (4, 34),
R = 0.88, N = 9520, Z = 140. 64

5.1 Comparison on hardware resource used to implement the GDBF and
PGDBF decoders by using the conventional and the VNSA archi-
tectures. The percentages in brackets indicate the additional/saving
hardware compared to the GDBF. 88

5.2 Frequency and throughput comparison between GDBF decoder, PGDBF
decoders, and MS decoders [24, 25]. 88

xvii

xviii

Glossary

APP: A Posteriori Probability

AWGN: Additive White Gaussian Noise

BER: Bit Error Rate

BI-AWGN: Binary-Input Additive White Gaussian Noise

BP: Belief-Propagation

BSC: Binary Symmetric Channel

CN: Check Node

CNU: Check Node Processing Unit

DE: Density Evolution

EM: Edge-Memory

FER: Frame Error Rate

LDPC: Low Density Parity Check

LLR: Log-Likelihood Ratio

LSB: Least Signi�cant Bit

ML: Maximum Likelihood

MP: Message Passing

MS: Min-Sum

NMS: Normalized Min-Sum

OMS: O�set Min-Sum

QC: Quasi-Cyclic

SNR: Signal-to-Noise Ratio

VN: Variable Node

VNU: Variable Node Processing Unit

xix

xx

Chapter 1

Introduction

1.1 Context and motivations
Figure 1.1 illustrates an application system where the LDPC coding is employed.

A vector of K information bits is sent through a noisy channel in which errors may
occur. The noisy channel could be any communication channel such as wire, wireless
communication system... where errors may appear during the transmission or the
noisy storage medium such as �ash memory... where errors happen during the
storing, writing to or reading out of the memory. With targeting to detect and
correct the errors, LDPC is deployed by adding the LDPC encoder and decoder to
the system as in Figure 1.1. LDPC encoder forms a N -bits codeword by adding M
parity bits to the K information bits sequence before sending through the channel.
At the channel output, N received bits are processed by an LDPC decoder targeting
to accurately recover K information bits.

LDPC encoder

K bits N= K + M bits

Noisy Channel

N bits

LDPC decoder

K bits

Figure 1.1: An illustrating system where LDPC code is applied.

LDPC codes have attracted high attention in the past several years due to their
excellent performance under iterative decoding process. These studies focus either
on improving the error correction performance of the LDPC codes or on reducing the
implementation complexity of the decoders for practical applications. Soft decision
iterative decoding, such as Belief Propagation (BP) or Min-Sum (MS) algorithms
o�ers the best error correction performance, close to the theoretical coding bounds,
but comes along with an intensive computation cost [27]. On the contrary, the class
of hard-decision iterative decoders is often seen as a very low-complexity solution,

1

2 Chapter 1. Introduction

very fast in computation, with an associated performance loss. This work focuses on
the class of A Posteriori Probability (APP) based hard decision decoders, belonging
to the family of Bit-Flipping (BF) decoders where, contrary to message-passing
decoders, both the extrinsic and the intrinsic information are exchanged between
the nodes of the Tanner graph [3][28].

From the recent literature, it can be seen that the hard decision decoding algo-
rithms are an attractive research topic due to their low complexity and fast com-
putation. In the next generation of communication systems, throughput and power
consumption are the key challenges. The high throughput system is required to
support the continuously increasing demand of tra�c volume, while power con-
sumption, especially in the mobile devices, becomes a signi�cant concern. LDPC
error correction modules are a part of the system and so, need to be optimized to
ful�ll these high throughput and energy saving targets. From this point, hard deci-
sion decoders, i.e. Bit Flipping decoders, with their advantages of simple and fast
computation, become promising candidates provided that their error correction abil-
ity is improved. Indeed, hard decision decoders require very simple computations
which may lead to an extremely high throughput. Also, the simple computations
with very low decoder complexity may result less energy consumption in hard de-
cision decoders than the soft decision decoders. The problem is that the decoding
performance of hard decision decoders is usually weak and need to be improved in
order to cope with error correction demand.

In the direction of improving BF decoding performance by modifying the algo-
rithm computations, the recent study of iterative LDPC decoders implemented on
faulty-hardware has led to the counter-intuitive conclusion that the noisy decoders
could perform better than their noiseless versions. In other words, the random
perturbation on algorithm computations, in some case, helps improving the error
correction capability. This random perturbation (probabilistic) e�ect on decoding
performance appears to be very attractive and worth to study. The reason of this
is twofold. First, since random perturbation improves the decoding performance, it
seems simpler to inject the randomness to the computation than modifying the de-
coding algorithm with the same decoding gain. The probabilistic algorithms studied
in this thesis are, actually, better than all similar deterministic decoders in term of
performance. Second, with the understanding on the improving principle of pertur-
bation on decoding performance, it facilitates the design of fault-tolerant decoders.

This thesis focuses on a newly proposed probabilistic BF-based decoder which is
a random perturbation version of Gradient Descent Bit Flipping (GDBF) [8], called
as Probabilistic Gradient Descent Bit Flipping (PGDBF) proposed by Rasheed et
al. in [15], applied on BSC channel. PGDBF provides the best error correction
compared to all known BF-based decoders and approaches the soft information de-
coding performance such as Min-Sum. Although the very promising performance
capability, several issues of PGDBF were left unexplored so far. First, the out-
standing performance of PGDBF is observed by simulation. There is lack of an
analytic method to analyse and explore its asymptotic performance gain.
Second, the advantage of PGDBF comes from the presence of a probabilistic sig-
nal generator on top of the deterministic decoder. One of our preliminary work

1.2. Main contributions and thesis outline 3

in [29] showed that the additional cost for this probabilistic signal generator is too
large and becomes the bottleneck of PGDBF. The e�cient implementation of
PGDBF is, therefore, needed to minimize the complexity overhead while
maintaining its performance gain.

1.2 Main contributions and thesis outline

The main contributions of this thesis are:

• Propose an analytic method to analyze the PGDBF decoding algorithm. This
analyzing method can be extended to other hard decision decoders.

• Propose an e�cient hardware realization of PGDBF decoder for generic LDPC
codes that minimizes the complexity overhead.

• Propose a novel, hardware e�cient architecture for LDPC decoding suitable
for QC-LDPC algorithms demonstrated by the PGDBF proof-of-concept im-
plementation.

We brie�y summarize in the following the content of each chapter of the thesis
correspondingly to the above contributions.

Chapter 2: Hard decision decoders

Chapter 2 starts by providing a brief introduction of LDPC codes and LDPC de-
coding concept. The channel models, i.e. Binary Symmetric Channel and Additive
White Gaussian Noise channel, in which the distortion a�ects on the transmitted
signals, are also presented. The Quasi-Cyclic construction of LDPC codes is intro-
duced by highlighting its structure which is used in the proposed architecture called
Variable-Node Shift Architecture in Chapter 5. The second part of this chapter
provides a literature review on the development of the hard decision decoders. We
�rst discuss the BF-based decoders. BF decoder family is a type of A Posteriori
Probability propagation decoders and several solutions have been proposed in the
litterature to modify and improve the original BF decoder [2][8][14][15]. From the
recent literature, it is clear that BF decoders made a big evolution from a �toy�
algorithm with a very weak in error correction capability to very powerful decoder
that can be competitive with the soft decision decoders. Extrinsic message passing
decoders such as Gallager-A, Gallager-B... are also presented in this chapter to-
gether with the new type of noise-added BF decoders - Noisy Gradient Descent Bit
Flipping decoder applied on AWGN and Probabilistic Gradient Descent Bit Flip-
ping decoder applied on BSC channel. The noise-added BF decoders share the same
principle that adds a random perturbation to the selection of the �ipped bits, helps
the decoders to escape from the trapping points which prevent the convergence of
the decoders. Beside the good decoding performance of these noise-added BF de-
coders, their hardware complexity becomes the emerging issue which comes from

4 Chapter 1. Introduction

the exhaustive implementation of the randomness generation. Smart implementa-
tions are required such that the performance gain is preserved while minimizing the
additional hardware overhead.

Chapter 3: Theoretical analysis of Probabilistic Gradient Descent Bit
Flipping

Chapter 3 introduces an analysis method for hard decision decoders denoted as Fi-
nite State Tracking (FST). Although FST is shown to be able to apply on di�erent
type of hard decision decoders, we limit the FST presentation in this chapter only on
PGDBF decoder. FST represents the PGDBF decoding process from an iteration
to another as a state transition in a Markov Chain (MC). A state of PGDBF decod-
ing is represented as a state in this MC and by analyzing the MC, the closed-form
expression of Frame Error Rate as a function of number of iteration can be derived.
The uncorrectable and partial-uncorrectable error pattern de�nition is newly intro-
duced in this chapter in order to indicate correspondingly the error pattern that
can not be corrected and the one which can be corrected with some probability
by PGDBF. The uncorrectable and partial-uncorrectable error pattern can be also
determined by analyzing the MC. We illustrate the utilization of FST by analyzing
the performance of PGDBF decoder and compare it with other BF decoders. It
is �rstly shown that the number of uncorrectable error patterns of PGDBF on the
tested LDPC code is signi�cantly reduced compared to GDBF and conventional BF
decoders. The predictive performance curves on the error �oor are then derived,
based one the estimated number of uncorrectable and partially correctable error
patterns and are �nally con�rmed by the simulation results. The improvement of
PGDBF is clearly explained by showing that many transitions leading to the zero-
error state in PGDBF do not appear in deterministic GDBF. Furthermore, FST
provably shows that for some given error patterns, the PGDBF can converge to the
zero-error state only if some speci�c transitions occur. Getting into these transitions
depends on the realization of the random signal. This explains the decoding gain
phenomenon of re-initialization (or restarting, rewinding) of the PGDBF decoding
from the beginning with new random realizations.

Chapter 4: E�cient hardware implementation of Probabilistic Gradient
Descent Bit Flipping

Chapter 4 presents an e�cient hardware (HW) implementation of the PGDBF de-
coder which minimizes the resource overhead needed to implement the random per-
turbations and the maximum �nder of the PGDBF. In Section 4.2, the conducted
statistical analysis in PGDBF is presented in order to show the precise characteriza-
tion of its key parameters, especially the values of the random generator parameters
that lead to the maximum coding gains. This analysis is performed through Monte
Carlo simulations in both the waterfall and the error �oor regions. Section 4.3 shows
the optimized HW architecture for the PGDBF decoder. The proposed architecture
is based on the use of a short random signals that are duplicated to fully apply the

1.2. Main contributions and thesis outline 5

PGDBF decoding rules on the whole codeword. Two di�erent initialization solu-
tions are proposed with equivalent HW overheads, but with di�erent behaviors on
di�erent LDPC codes. An optimization of the maximum �nder unit of the PGDBF
algorithm is also presented in order to reduce the critical path and improve the de-
coding throughput. Finally, Section 4.4 shows the synthesis results on ASIC 65nm
technology, and Monte-Carlo simulations with a bit-accurate C implementation of
the proposed PGDBF architecture on LDPC codes with various rates and lengths.

Chapter 5: A Quasi-Cyclic friendly architecture for LDPC decoders : the
Variable-Node Shift Architecture

Chapter 5 introduces a new decoding architecture for the QC-LDPC codes, called as
Variable-Node Shift Architecture (VNSA). The VNSA takes advantage of the struc-
ture of the QC-LDPC codes to shift the memory of the decoders while preserving
the exact decoding operations. It is shown in this chapter that the VNSA-based
decoders signi�cantly reduce the complexity and achieve the better decoding perfor-
mance compared to the conventional decoder implementations. These advantages
come from the fact that by shifting the memory of the decoders, the variable node
computations can be processed di�erently when di�erent types of variable nodes are
implemented. This dynamical processing helps the decoder break some trapping
states and converge while the decoder with conventional implementation does not.
The hardware savings also come from the fact that some variable node implementa-
tions in VNSA are simpler than those of the conventional implementation making
the global complexity reduced. The chapter is presented as follows. The VNSA
principle is �rstly presented in the generic form in Section 5.2 since it can be ap-
plied to di�erent decoding algorithms. The illustrations of VNSA applications on
di�erent types of LDPC decoders are presented in the next sections (Section 5.3 and
5.4) for the edge-type memory and node-type memory decoders in which the VNSA
is shown to be well adapted for all of these decoders. The VNSA becomes trully
advantageous when di�erent functions are required for the VNU or the CNU imple-
mentations. These advantages are either expressed in terms of performance gain,
or in HW complexity savings which is discussed in Section 5.5. We illustrate the
interest of this new architecture with the implementation of the Probabilistic Gra-
dient Descent Bit Flipping basing on the VNSA (called VNSA-PGDBF) in Section
5.6. It is shown that the outstanding decoding performance of PGDBF is preserved
in VNSA-PGDBF while the decoder complexity is signi�cantly reduced and even
smaller than the deterministic GDBF. A further simpli�ed version of VNSA-PGDBF
is also introduced, called as the imprecise VNSA-PGDBF (VNSA-IM-PGDBF). This
VNSA-IM-PGDBF not only reduces the complexity compared to the VNSA-PGDBF
but also improves the decoding performance.

6 Chapter 1. Introduction

Chapter 2

Hard decision decoders

This chapter starts by providing a brief introduction of LDPC codes and LDPC
decoding concept (Section 2.1). The channel models, i.e. Binary Symmetric Chan-
nel and Additive White Gaussian Noise channel, in which the distortion a�ects on
the transmitted signals, are also presented. The Quasi-Cyclic construction of LDPC
codes is introduced by highlighting its structure which is used in the proposed ar-
chitecture called Variable-Node Shift Architecture in Chapter 5. The second part
of this chapter provides a literature review on the development of the hard decision
decoders. We �rst discuss the BF-based decoders in Section 2.2. BF decoder fam-
ily is a type of A Posteriori Probability propagation decoders and several solutions
have been proposed in the litterature to modify and improve the original BF decoder
[2][8][14][15]. From the recent literature, it is clear that BF decoders made a big evo-
lution from a �toy� algorithm with a very weak in error correction capability to very
powerful decoder that can be competitive with the soft decision decoders. Extrinsic
message passing decoders such as Gallager-A, Gallager-B... are also presented in
this chapter (Section 2.3) together with the new type of noise-added BF decoders -
Noisy Gradient Descent Bit Flipping decoder applied on AWGN and Probabilistic
Gradient Descent Bit Flipping decoder applied on BSC channel (Section 2.4). The
noise-added BF decoders share the same principle that adds a random perturbation
to the selection of the bits to be �ipped, helps the decoders to escape from the
trapping points which prevent the convergence of the decoders. Beside the good
decoding performance of these noise-added BF decoders, their hardware complexity
becomes the emerging issue which comes from the exhaustive implementation of
the randomness generation. E�cient implementations are required such that the
performance gain is preserved while minimizing the additional hardware overhead.
The hardware complexity of BF decoders is reviewed in Section 2.5. Section 2.6
concludes this chapter.

7

8 Chapter 2. Hard decision decoders

2.1 Low-Density Parity-Check codes and channel

models

2.1.1 Low-Density Parity-Check codes

A binary LDPC code is de�ned by a sparse parity-check matrix H with size (M ×
N), where N > M . Each row of H represents a parity check function, computed
by a Check Node (CN), on the bits so-called Bit Nodes or Variable Nodes (VN)
represented by the columns of H. The CN cm (1 ≤ m ≤ M) checks the VN vn
(1 ≤ n ≤ N) if the entry hm,n = 1. An example of the parity-check matrix H is
illustrated in Figure 2.1.

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

N

M

Figure 2.1: An example of the parity check matrix H.

A codeword is a vector x = (x1, x2, . . . xN) ∈ {0, 1}N which satis�es HxT = 0.
This codeword x is produced by the LDPC encoder (see Figure 1.1) and is sent
through a transmission channel. The output of the channel is denoted by y =
{y1, y2, . . . , yN}. Depending on the channel model, the value of yn could be only a
binary value (0 or 1) in Binary Symmetric Channel or a higher level of precision
as in the Additive White Gaussian Noise (AWGN) channel. An introduction of the
channel models is presented in the next section.

Another alternative representation of an LDPC code is a bipartite graph called
Tanner graph composed of two types of nodes, the VNs vn, n = 1, . . . , N and the
CNs cm, m = 1, . . . ,M as in Figure 2.2 where the cycles represent the VNs and
squares represent the CNs. In the Tanner graph, a VN vn is connected by an edge
to a CN cm if the entry hm,n = 1.

The set of CNs connected to the VN vn is called the neighbor set of this VN and
denoted as N (n). Similarly, the set of VNs connected to the CN cm is the neighbor
set of this CN and referred as N (m). The connection degree is de�ned by the size of
the neighbor set, i.e. the VN degree dvn = |N (n)| and the CN degree dcm = |N (m)|.
An LDPC code is called as regular code when its connection degrees are equal for
all nodes, i.e. dcm = dc,∀m and dvn = dv,∀n.

2.1. Low-Density Parity-Check codes and channel models 9

v11 …vN v6

y1

v1 v2 v3 v4 v5 v7 v8 v9

y2 y3 y4 y5 y6 y7 y8 y9

c1 c2 c3 c4 c5 …cM

y10 y11 …yN

v10

c6 c7

N= Z* nc

Z

Z

M= Z*nr

Figure 2.2: The Tanner graph presentation of a parity matrix H.

2.1.2 LDPC decoding concepts

LDPC decoding process is de�ned by the iterative updating and passing the com-
puted messages between the VNs and CNs on the edges of the Tanner graph through
decoding iteration. A decoding iteration is typically composed by the following steps:

• 1. VNs computation: The VNs compute the messages to send to the CNs
basing on the channel received values and the messages from the CNs.

• 2. VNs to CNs: Computed messages are sent to the CNs.

• 3. CNs computation: The CNs compute the new messages basing on their
incoming messages.

• 4. CNs to VNs: The new CNs messages are sent to the VNs.

During the decoding process, the codeword validity is always veri�ed basing on the
intermediate values by the syndrome check computation. The decoding process is
terminated when either a valid codeword is found, in which case the decoding success
is declared or the number of iterations reach to the maximum allowed value, Itmax,
in which case the decoding failure is declared.

The nature of passed messages de�nes di�erent types of LDPC decoding algo-
rithms. In soft decision message passing algorithms such as Belief Propagation (BP)
or Min-Sum (MS) [27], the probability of a given bit to be 0 or 1 is passed back and
forth along the edges of the Tanner graph. These soft messages require a very com-
plex computations in the VNs and CNs and the large interleaver (or interconnection)
network to exchange them. However, they provide the best decoding performance
approaching the decoding bounds. Another type of LDPC decoding algorithms is
hard decision decoders in which only binary hard decision values are exchanged
between VNs and CNs. The computations in VNs and CNs of hard decision de-
coders are, therefore, usually simple and the interconnection network is small. This
makes the hard decision decoders usually lower in complexity, faster in computation
compared to soft decision decoders. However, a non-negligible performance loss is
observed in hard decision decoders resulting in not being the �rst option for practical
applications.

10 Chapter 2. Hard decision decoders

xn= 1 1-


1-



xn= 0

yn= 1

yn= 0

Figure 2.3: The Binary Symmetric Channel model.

xn= 1 1-


1-



xn= 0

yn= 1

yn= 0

x’n  yn



Figure 2.4: The Additive White Gaussian Noise channel model.

2.1.3 The channel models of LDPC decoding

Depending on the transmission channel model, the decoder input value, yn, can be
di�erently de�ned. In Binary Symmetric Channel (BSC) model, each bit xn in x
is �ipped with a probability α called channel crossover probability as described in
Figure 2.3 forming yn, i.e. yn = xn with p = 1− α and yn = not(xn) with p = α.

In Additive White Gaussian Noise (AWGN) channel, xn is polarized (x′n = 1−2∗
xn) before being transmitted and yn is a real number de�ned by y=x′n+η where η is a
zero-mean Gaussian noise. Typically, in the hardware realization of LDPC decoder
for this type of channel model, yn is usually quantized by a quantizing function Q,
yn = Q(x′n + ηn) to qt > 1 bits precision.

2.1.4 Quasi-cyclic Low-Density Parity-Check codes

The LDPC code is conventionally designed by a random locating the entries 1 in the
initial all-zero matrix H forming a sparse matrix. With this conventional design, the
hardware implementation is shown to be complex and less �exible. The QC-LDPC
code was proposed to facilitate the decoder implementation. A QC-LDPC code is
a speci�cally construction method of H in which each vertex in a small base matrix
HB (nr × nc) is replaced by either a circulant shift of main diagonal Z × Z matrix
or Z×Z all-zero matrix, (N = nc ∗Z, M = nr ∗Z). An example of a main diagonal
Z ×Z matrix and one of its circulant shift version are illustrated in Figure 2.5. An
extended matrix H from HB is shown in Figure 2.6.

A well-known LDPC code which is used in several works, is the Tanner (N = 155,
M = 93), (dv = 3, dc = 5) LDPC code [30] presented below in which nr = 3, nc = 5
and circulant size Z = 31. A vertex in this base matrix indicates the cyclic shift
factor of 31x31 diagonal matrix.

2.1. Low-Density Parity-Check codes and channel models 11

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1

1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1

Z

Z

Figure 2.5: A main diagonal Z×Z matrix and one of its circulant shift version used
in the construction of QC-LDPC code. The zero entries are not shown for the sake
of simplicity.

v11 …vN v6

y1

v1 v2 v3 v4 v5 v7 v8 v9

y2 y3 y4 y5 y6 y7 y8 y9

c1 c2 c3 c4 c5 …cM

y10 y11 …yN

v10

c6 c7

N= Z* nc

Z

Z

M= Z*nr

Figure 2.6: An example of the parity check matrix H of a QC-LDPC code.

HB =

 1 2 4 8 16
5 10 20 9 18
25 19 7 14 28


By design, the connections between the VNs and CNs in QC-LDPC codes are

very constructive as illustrated in Figure 2.7. Indeed, the CNs connected to VNs are
arranged in a constructive order. The Z consecutive VNs in a column of the base
matrix will connect to Z consecutive CNs in a row. The only di�erence is on the
connecting order. Z CNs are connected straightly to Z VNs when shift weight is 0
(Figure 2.7a) while they are are cyclically shifted by the cyclic-shift-weight before
being connected (Figure 2.7b). Another example of the connections between Z VNs
in a base column with dv = 3 to all neighbor CNs is illustrated in Figure 2.8.

12 Chapter 2. Hard decision decoders

Z

1 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

Z

Z

(a) (b)

Figure 2.7: The cyclic shift of 6x6 diagonal matrix with shift factor is 0 (a) and 2
(b) and the corresponding connections between the VNs and CNs.

Z

Z

1 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

0 0 1 0 0 0
0 0 1 0 0 0

Z

Figure 2.8: A full connection of Z VNs in a column of the base matrix with dv = 3
to their neighbor CNs.

2.2 Bit-Flipping-based Decoders
The �rst hard decision decoding skim, referred as bit �ipping decoding, was in-

troduced by Gallager in [1] in 1963 and works as follows:

• 1. All the parity checks are computed and all the VN that have more than a
�x number of unsatis�ed CNs will be �ipped.

• 2. The new values of VNs are used to recompute the parity checks, the process
is repeated until all parity checks are satis�ed or the maximum number of
iterations is reached.

This hard decoding skim was left unexplored for around 4 decades until the redis-
covery introduced in 2001 by Y. Kou et al. [2] with the Weighted Bit Flipping
(WBF) decoding algorithm. From the WBF introduction to today, a long list of
BF decoders was introduced which either improved the decoding performance or
accelerated the decoding speed while keeping the decoding principle introduced by
Gallager. The BF decoders development is summarized in Figure 2.9.

The introduced BF decoders share the same principle that exchanging only 1 bit
information between CNs and VNs and that the CNs compute the parity check on

2.2. Bit-Flipping-based Decoders 13

BF

1963

WBF

2001

MWBF

2002

GDBF

2010

2012

Multi-bit-GDBF, RRWGDBF

PBF, IMWBF

2005
2007

PWBF

2008

IPBF

2014

 TB-BF, NGDBF, PGDBF, MM-WBF
AT-GDBF, WCBBF

2013

2015

MTBF, DWBF, RECWBF, TSWBF

2016

HGDBF

2017

MBF

Figure 2.9: The BF decoders development since the bit �ipping decoding
skim introduced by Gallager in 1963. These BF decoders can be found
at the following references: BF[1], WBF[2], MWBF[3], PBF[4], IMWBF[5],
PWBF[6], IPBF[7], GDBF[8], Multi-bit-GDBF[9], RRWGDBF[10], AT-GDBF[11],
WCBBF[12], TB-BF[13], NGDBF[14], PGDBF[15], MM-WBF[16], MTBF[17],
DWBF[18], RECWBF[19], TSWBF[20], HGDBF[21], MBF[22].

all the connected VNs as described in Equ. 2.1 then send the result equally to all
the connected VNs. In the equations in this chapter, we denote by v(k)n the hard
decision value of the VN vn at the k-th iteration. We denote correspondingly by
c
(k)
m the binary value of the CN cm at iteration k, which indicates whether the m-th
parity-check equation is satis�ed (being 0) or not (being 1). The main di�erences
between these BF decoders are on the formulation of the computed value so-called
inversion function or energy function in each VN and on the mechanism to choose
the VN to �ip.

c(k)m =
⊕

n∈N (m)

v(k)n (2.1)

2.2.1 Energy computation in BF decoders

Each VN in BF decoders computes the energy value during the decoding process
and basing on this value, a VN is decided to be �ipped or not. Gallager introduced a
simple sum of binary checksums in the energy computation in VN n at the iteration
k as in Equ. 2.2 in which an unsatis�ed neighbor CN contributes −1 to the energy
value while a satis�ed one adds a +1.

E(k)
n =

∑
m∈N (n)

(1− 2 c(k)m) (2.2)

14 Chapter 2. Hard decision decoders

By taking into account the soft value of channel information in AWGN channel,
WBF and its variants then modi�ed the energy formulation as following. The WBF
in [2] added the weights, ωWBF

m,n , to the checksum in energy function described in
Equ. 2.3. The weight value of CNm to compute energy of VN n, ωWBF

m,n , was de�ned
as in Equ. 2.4.

E(k)
n =

∑
m∈N (n)

ωWBF
m,n (1− 2 c(k)m) (2.3)

ωWBF
m,n = ωMWBF

m,n = min
n′∈N (m)

|yn′ | (2.4)

The modi�ed WBF (MWBF) in [3] followed the same manner of energy compu-
tation of WBF and further incorporated the channel output value of the VN scaled
by a empirical optimized factor α (Equ. 2.5).

E(k)
n =

∑
m∈N (n)

ωMWBF
m,n (1− 2 c(k)m) + α|yn| (2.5)

The improved MWBF (IMWBF) in [5] modi�ed the checksum weights compu-
tation by excluding the channel value of a VN to compute the weight of a CN for
this VN as in Equ. 2.6.

ωIMWBF
m,n = min

n′∈N (m)\n
|yn′ | (2.6)

The authors of the proposed modi�ed WBF decoders above suggested that the
computations of the checksum weights in Equ. 2.4 and 2.6 are proceeded before
the decoders actually start (in the initialization phase). The multiplication element,
α ∗ yn, in the energy equation of MWBF and IMWB can also be computed at that
initialization phase. The computations of these BF decoders, therefore, were shown
to be simple and fast since they are only the additions on the real values.

Many other BF-based decoders have been proposed recently such as Mixed Modi-
�ed WBF (MM-WBF) [16] in 2014, Two State WBF (TSWBF) [20], Multi-threshold
BF (MTBF) [17], Dynamic Weighted Bit Flipping (DWBF) [18], Recursive WBF
(RECWBF) [19] in 2015 and Multi-Bit Flipping (MBF) [22] at the beginning of
2017. These proposed decoders either continued to modify the computed weight
values such as DWBF [18], RECWBF [19] or proposed the new approach MM-WBF
[16], TSWBF [20], MTBF [17], MBF [22]. The modi�cation on energy computa-
tion, in general, improved the decoding performance at the cost of an increment
of decoder complexity. In MM-WBF and TSWBF, the authors suggested to mix
the formulation of energy computations of di�erent BF-based decoders into a sin-
gle decoder and the decoding process is divided into di�erent phases with respect
to the number of iterations. One phase uses an energy formulation while another

2.2. Bit-Flipping-based Decoders 15

phase uses another formulation. MTBF [17], MBF [22] changed the bit �ip selection
mechanisms, provided a better converging speed and will be discussed in the next
section.

The Gradient Descent Bit Flipping (GDBF) algorithm introduced by Wadayama
et al. in [8] proposed another approach. The authors considered the decoding as
an optimization process by de�ning an objective function described in Equ. 2.7.
The energy computation function of GDBF algorithm was derived from a gradient
descent formulation and GDBF principle consisted of �nding the most suitable bits
to be �ipped in order to maximize this pre-de�ned objective function. The derived
energy computation function in GDBF is described in Equ. 2.8.

f (k) =
N∑
n=1

(1− 2v(k)n)yn +
M∑
m=1

(1− 2 c(k)m) (2.7)

E(k)
n = (1− 2v(k)n)yn +

∑
m∈N (n)

(1− 2 c(k)m) (2.8)

The sign correlation between the tentative hard decision of a VN at iteration k,
v
(k)
n , to its channel value, yn, contributes to the VN energy by the �rst term of Equ.
2.8. The bit at iteration k having the same sign between v(k)n and yn tends to have
the larger energy E(k)

n . The second term in Equ. 2.8 is only the sum of all parity
check values from all neighbor CN (with weights ωGDBFm,n = 1). The GDBF energy
computation was even simpler than the WBF-based decoders by adding a real value
to the binaries. GDBF provided the best decoding performance to all known BF
decoders at the introducing time.

GDBF algorithm was �rstly modi�ed to apply on the BSC channel by Rasheed et
al. in 2014 in [15] . Since there is no soft information in BSC, the bit energy can be
seen as the discrete energy and computed in Equ. 2.9 where ⊕ is the Exclusive-OR
operation. The GDBF on BSC provided also better performance compared to other
BF decoders.

E(k)
n = v(k)n ⊕ yn +

∑
m∈N (n)

c(k)m (2.9)

Several modi�cations of GDBF decoders were then introduced with even better in
decoding performance and some of them approached soft-decision decoders. Others
modi�cations are at the target of improving the converging speed. These typical
GDBF variants can be selectively listed as Multi-Bit type GDBF [9] and Reliability
Ratio Weight GDBF [10] in 2012, Adaptive Threshold BF [11] in 2013, Noisy GDBF
[14] and Probabilistic GDBF [15] in 2014, Hibrid GDBF [21] in 2016.

The Reliability Ratio Weight GDBF (RRWGDBF) in [10] added the weight
ωRRWGDBF
m,n on the neighbor CN values as in Equ. 2.10 and 2.11. The RRWGDBF

was shown to have better in converging speed with the equivalent decoding perfor-
mance to GDBF.

16 Chapter 2. Hard decision decoders

E(k)
n = (1− 2v(k)n)yn +

∑
m∈N (n)

ωRRWGDBF
m,n (1− 2 c(k)m) (2.10)

ωRRWGDBF
m,n =

1

|yn|
∑

n′∈N (m)

|yn′ | (2.11)

The HGDBF in [21] proposed in 2016 recommended not to keep the channel
value yn constantly but update it during the decoding process. HGDBF used the
same energy function of GDBF decoder while the channel reliability yn at the k-
th iteration is updated as in Equ. 2.12 where α1 is a simulation optimized factor.
The HGDBF o�ered 0.4 dB better in decoding gain compared to GDBF with an
additional complexity overhead for updating the yn.

y(k+1)
n = y(k)n + v(k)n .α1.

N0

Eb
E(k)
n (2.12)

The Multi-Bit type GDBF [9], Adaptive Threshold BF (ATBF) were introduced
by modifying the bit �ip selection and is described in the next section. The Noisy
GDBF [14] and Probabilistic GDBF [15] also modi�ed on the bit �ip selection by a
very particular method that incorporated randomness in the selection. This random
incorporation turned the GDBF to the most powerful decoder compared to all in-
troduced BF decoders, approached to soft decision decoders such as Min-Sum [14].
These two decoders are discussed in the noise-aided decoders section (Section 2.4).

2.2.2 Flipping strategies

Di�erent BF decoders also di�er on the mechanism of choosing the �ipped bits in
each iteration. It can be classi�ed into the single �ip type where only 1 bit is �ipped
in an iteration i.e. the �ipping set B: |B| = 1 and the multiple �ip type where
multiple bits are �ipped in an iteration i.e. |B| > 1.

In the serial �ip decoders, only the bit that has the smallest energy in N energy
values will be �ipped as described in Equ. 2.13, i.e. |B| = 1. The single �ip concept
comes from the fact that the bit that receives the most unsatis�ed CNs is likely to
be the erroneous bit and should be �ipped. When the large number of iterations is
allowed, the single �ip decoders o�ers the very good decoding performance, while the
number of iteration is limited, single �ip decoders perform worse than the multiple
�ip decoders. This comes from the fact that they �ip only 1 VN at an iteration and
therefore, converge very slow to the correct codeword. WBF, MWBF, IMWBF and
decoders with the pre�x �S-� such as S-RRWGDBF in this work, are the single �ip
BF decoders. Another limitation of single BF decoders is that they require a global
sorting over all energy values which is high complexity and slow especially in the
case of large N.

2.2. Bit-Flipping-based Decoders 17

B(k) = {vn|n = argmin
n′∈[1...N]

(E
(k)
n′)} (2.13)

In the multiple �ip decoders, all the bits that have the energy smaller than a
threshold τ < 0, are �ipped in parallel. The �ipped set is determined by Equ.
2.14. Typically, the multiple �ip BF decoders provided a better convergence speed
compared to the serial. Note that, when |τ | is set too large, few VNs are �ipped in
an iteration and decoders tend to behave as serial �ip mode. When |τ | is set too
small, many bits are likely to be �ipped in an iteration, the decoders may oscillate
and fail to converge to a correct codeword as observed the performance loss in [8].

B(k) = {vn|E(k)
n < τ} (2.14)

Several solutions were proposed in order to compensate this performance loss
such as the adaptive threshold procedure as in ATBF [11], the �xing of number
�ipped bits in an iteration in MBF [22]. In adaptive threshold BF (ATBF) decoder,
at the initialization stage, each VN is set with a threshold τ (0)n = τ (0)∀n. An adap-
tive factor θ which is a simulation optimized factor is also set. During the decoding
process, if a VN has energy lower than threshold, it will be �ipped, otherwise, the
threshold is updated by τ

(k+1)
n = θ.τ

(k)
n . The bene�cial consequence of threshold

scaling at the VN level is that the decoders start with multiple bit �ipped and pro-
gressively limit the fewer �ipped bit as most CN satis�ed. The adaptive threshold
moves decoders from parallel �ip to serial �ip intrinsically [11]. The threshold adap-
tive process maintains the good decoding performance while improving signi�cantly
the converging speed which is interpreted as improving the decoding throughput.

The MBF in [22] proposed a multiple �ip process by limiting to a �xed number
of �ipped bits, ϑ, in each iteration for all decoding iteration. A global sorting block
indicates ϑ VNs which have the smallest energy and �ip them in parallel. This
method o�ered a good decoding performance. However the complexity of the global
sorting is high especially with large value of N .

The GDBF [8] decoding algorithm proposed a method to choose the bit to �ip
in order to maximize the objective function described in Equ. 2.7. GDBF also came
up with a single �ip (Equ. 2.13) which provided a good decoding performance but
slow in converging speed and the multiple �ip (Equ. 2.14) with higher converging
speed.

The authors in [8] proposed a hybrid method by using the multiple �ip mode for
fast error correction at the beginning and switching to the single �ip mode to avoid
the oscillation in the later phase of decoding process. The objective function is eval-
uated at each iteration and the mode switching is proceeded whenever the objective
function does not increases. This GDBF decoder is denoted as M-GDBF. The au-
thors further proposed a modi�cation called as �M-GDBF with escape� denoted as
M-esc-GDBF. Two thresholds τ1 and τ2 are used where τ1 is used for the multiple
mode at the beginning of decoding process. After several iterations, the multiple

18 Chapter 2. Hard decision decoders

mode is changed to the single mode, and the search point may eventually arrive to
a local-maximum which is not a codeword. In this case, the decoder changes to the
multiple mode again with the threshold τ2 in only the �rst iteration and then τ1 is
used. The M-esc-GDBF is comparable to the MS decoder as described in Figure
2.10.

For the GDBF decoder on BSC channel [15], the bits that has the maximum en-
ergy, are �ipped (see energy in Equ. 2.9). Due to the integer energy representation,
many bits are likely to have the maximum energy and the �ipping set is de�ned in
Equ. 2.15

B(k)
GDBF = {vn|E(k)

n = E(k)
max} [BSC] (2.15)

2.2.3 Probabilistic Bit Flipping

Another interesting bit �ip selection mechanism is the probabilistic �ip in the mul-
tiple �ip mode. Its principle is that, instead of �ipping all the bits selected in the
deterministic decoders, the probabilistic decoders �ip these bits with some probabil-
ity p0 < 1. The probabilistic bit �ip selection was �rstly proposed by Miladinovic et
al. in 2005 in [4] . The proposed decoder was called probabilistic BF (PBF). PBF
follows precisely the decoding steps of BF proposed by Gallager. However, PBF
�ips only a random part of the �ipping candidates indicated by conventional BF
decoders as described in Equ. 2.16 where p(k)n is the realization of a uniform random
variable over the interval [0,1].

B(k)
PBF = {n ∈ B(k)

BF |p
(k)
n < p0} (2.16)

The probabilistic �ip manner helped PBF decoder improve the error correction
capability compared to conventional BF decoder as shown in [4]. This probabilistic
�ip also inspired to Rasheed et al. to propose the Probabilistic Gradient Descent Bit
Flipping in [15] which was known as the best BF decoder compared to all introduced
BF decoders on BSC channel. The Noisy GDBF [14] is also a type of probabilistic
�ip selection which o�ers good decoding performance, and it is competitive to soft
decoding algorithms in AWGN channel.

2.2.4 Performance comparisons

We make the comparison between di�erent BF decoders in term of decoding perfor-
mance both in AWGN (Figure 2.10) and BSC channel (Figure 2.11). It can be seen
that the BF decoders progressively improved the error correction ability and some
decoders are comparable or even surpass the soft decision decoders. Among these
decoders, it is also noticed that the noise-aided decoders (N-GDBF in AWGN and
PGDBF in BSC, described in Section 2.4) have best error correction gain.

2.2. Bit-Flipping-based Decoders 19

2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

WBF
MWBF
AT−BF
S−GDBF
M−GDBF
M−esc−GDBF
MS, Itmax=5

MS
S−NGDBF
M−NGDBF
SM−NGDBF

Figure 2.10: Performance comparison between hard decision BF decoders of the
regular LDPC code (dv = 3, dc = 6), (N = 1008,M = 504) (PEGReg504x1008), the
maximum iteration: M-esc-GDBF, Itmax = 300 ; for MS decoder, Itmax = 100 and
Itmax = 5 are used; Itmax = 100 for all other decoders.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

BF, 300 Iterations
Gal−B, 300 Iterations
GDBF, 300 Iterations
PGDBF, 300 Iterations
MS, 20 Iterations
OMS, 20 Iterations

Figure 2.11: Performance comparison between LDPC decoders: BF, Gallager-B
(Gal-B), GDBF, PGDBF (p0 = 0.9), Quantized MS, Quantized O�set Min-Sum
(OMS) with o�set factor of 1 of the regular QC-LDPC code (dv = 4, dc = 8, Z = 54),
(N = 1296,M = 648).

20 Chapter 2. Hard decision decoders

2.3 Other Diversities of Hard decision Decoders

2.3.1 Gallager-A/Gallager-B decoders

The Gallager-A, Gallager-B are the type of hard decision extrinsic message passing
decoders in which the message sent to a node (VN or CN) by its neighbor is computed
based on all neighbor incoming messages except the one comes from that node. In
other words, di�erent neighbors of a node may receive di�erent messages. We denote
the message sent from VN n to CN m at iteration k as v(k)n,m and the message sent
from a CN m to VN n at iteration k as c(k)m,n. The hard decision of VN n at iteration
k is denoted as v(k)n . We also denote γn as the a priori information of VN n which is
computed from the channel output yn. The a posteriori information of the VN n at
iteration is referred as γ(k)n which is computed as a function of the γn and messages
received from neighbors. γ(k)n is used to make the hard decision v(k)n .

In order to ease the discussion, it is more convenient to consider the exchanged
messages taking values as {+1, -1} rather than {0,1}. The VN hard decision value
at iteration k, v(k)n , takes the value 1 when a posteriori information, γ̃n, is −1 and 0
when γ̃n = +1. The sum modulo 2 of binary values in {0,1} in the CN operation is
substituted by the product of the corresponding values in {+1, -1}.

The detail of Gallager-B decoder is presented in Algorithm 1. In the initialization
step, the priori information, γn, is obtained from the binary channel output. The
initialized values of VN n to all CN messages are set as the priori information γn.
The decoder starts to decode as the following steps.

• 1. CN to VN messages: for any CN m and VN n ∈ N (m), the messages c(k)m,n
are the producta of the incoming messages v(k)n′,m, ∀n′ ∈ N (m) \ n.

• 2. VN to CN messages: for any VN n and CN m ∈ N (n), the decoder
computes the E(k)

n,m of the priori γn and the incoming messages c(k)m′,n, ∀m′ ∈
N (n) \m. E(k)

n,m represents the di�erence between two possible values +1 and
−1 among the group {γn, c

(k)
m′,n,∀m′ ∈ N (n) \ m}. If the absolute value of

E
(k)
n,m is less than a threshold value τ , the messages v(k)n,m are set as the priori

information γn, otherwise, v
(k)
n,m is set as the sign of E(k)

n,m.

• 3. A posteriori update: for any VN n, the sum E
(k)
n of γn and all incoming

messages is computed. When E(k)
n = 0 in the case when the number of vote

for +1 and −1 is equal, γ̃n is set to the initial value γn, otherwise, γ̃n is set to
the value of majority voted.

• 4. Hard decision: for any VN n, the hard decision v
(k)
n is computed bas-

ing on the posteriori information. The decoder stops when the codeword is
found indicated by the syndrome check or the maximum number of iteration
is reached.

2.3. Other Diversities of Hard decision Decoders 21

Algorithm 1 Gallager-B (Ga-B) decoding

Input: y = (y1, . . . , yN) ∈ 0, 1N . received word
Output: v = (v1, . . . , vN) ∈ {0, 1}N . estimated codeword
Initialization

for all n = 1, . . . , N do γn = 1− 2yn;
for all n = 1, . . . , N and m ∈ N (n) do v

(0)
n,m = γn;

Iteration Loop
for all m = 1, . . . ,M and n ∈ N (m) do . CN-processing

c
(k)
m,n =

∏
n′∈N (m)\n

v
(k)
n′,m

for all n = 1, . . . , N and m ∈ N (n) do . VN-processing

E
(k)
n,m = γn +

∑
m′∈N (n)\m

c
(k)
m′,n;

v
(k)
n,m =

{
γn, if |E(k)

n,m| < τ

sign(E
(k)
n,m), otherwise.

for all n = 1, . . . , N do . AP-update

E
(k)
n = γn +

∑
m′∈N (n)

c
(k)
m′,n;

for all n = 1, . . . , N do

γ̃
(k)
n =

{
γn, if E

(k)
n = 0

sign(E
(k)
n), otherwise.

for all n = 1, . . . , N do . hard decision

v
(k)
n =

(1− γ̃(k)n)

2
;

if v(k) = {v(k)1 , v
(k)
2 . . . v

(k)
N } is a codeword then exit the iteration loop .

syndrome check
End Iteration Loop

The threshold value τ is the optimizing factor. It may vary and depend on
iteration, on VN or even be di�erent for each CN neighbor in the same VN. Several
works proposed to optimize τ by tracking the error probability of vn,m messages
throughout the decoding process such as [1][31]. Gallager-A is a particular case
when Gallager-B process with τ set as τ = dv − 2 all during decoding process.

The Gallager-A,B are shown to provide a good decoding performance. However,
these decoder may require higher complexity due to the extrinsic computations.

2.3.2 Majority voting decoder

In the case that the Gallager-B decoder uses the threshold τ = 1 all during the
decoding process, the VN to CN message computation is only the majority voting
rule and the initial value from channel is only used when E

(k)
n,m = 0. This type

22 Chapter 2. Hard decision decoders

of decoding algorithm is referred as Majority-Voting decoding. Majority-Voting
decoder requires a lower complexity than Gallager-B since only the simple majority
block is implemented in each VN. However, a small performance lost is observed.

2.3.3 Di�erential Decoders

Di�erential decoder with binary message passing (DD-BMP) was proposed by Mobini
et al. in [32] and implemented by Cushon et al. in 2014 in [33]. DD-BMP is an
extrinsic message passing decoder deploying memories to update the log-likelihood
ratios (LLRs). Each edge in the Tanner graph is allocated a memory element. The
DD-BMP algorithm operates as in algorithm 2. In the initialization, the LLR mem-
ory is initialized by the LLR value, γn, received from channel. The binary sent
from VN n to CN m, v(k)n,m, in the initialization, k = 0, as well as during decoding
process, k > 0, is the sign of the corresponding LLR memory γ̃(k)n derived by the
signum function, sgnr(.) where sgnr(0) = 1. In each decoding iteration, similar to
the Gallager-A, Gallager-B decoders, CN value c(k)m,n is the extrinsic product of the
incoming messages v(k)n′,m, ∀n′ ∈ N (m) \ n. In each VN, the LLR memory value

used for the next iteration, γ̃(k+1)
n,m , is updated by the sum of the current value, γ̃(k)n,m,

and the CN values extrinsic sum weighted by factor ω, ω.
∑

m′∈N (n)\m c
(k)
m′,n. The

hard decision of each VN is de�ned by the majority vote of sign of its LLR mem-
ories and channel value. DD-BMP is shown to have a good decoding performance,
comparable to Min-Sum algorithm in some particular LDPC codes. However, the
DD-BMP complexity is dramatically increased compared to BF-based decoders due
to the large allocated memory blocks. In each VN, dv memory elements are required
and are updated independently by the implemented adders. Also, in each CN, the
extrinsic message is computed for each connected edge leading to higher complexity
than CNs in the BF decoders.

In order to reduce the decoder complexity, authors in [33] proposed to use only
1 memory element in each VN and to send the same message to connected CNs.
This modi�cation eliminates the extrinsic feature in VN computation. The LLR
memory update rule is modi�ed as in Equ. 2.17 and the proposed decoder is called
as modi�ed di�erential decoding with binary message passing (MDD-BMP). The
decoder complexity is shown to be signi�cantly reduced with a small performance
loss observed.

γ̃(k+1)
n = γ̃(k)n + ω

∑
m∈N (n)

c(k)m,n (2.17)

Authors further proposed a modi�cation in the updating function of MDD-BMP
by adding/subtracting an adjusting factor d in the updated value of γ̃(k+1)

n as in
Equ. 2.18 and named the decoder as improved di�erential binary (IDB). IDP added
small complexity with gain in performance. In general, the DD-BMP and its variants
provided a good decoding performance but are high in complexity [33].

2.4. The noise-aided BF decoders 23

γ̃(k+1)
n = γ̃(k)n + ω

∑
m∈N (n)

c(k)m,n − d ∗ sgnr(γ̃(k)n) (2.18)

Algorithm 2 Di�erential Decoding with Binary Message Passing algorithm - (DD-
BMP)

Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: v = (v1, . . . , vN) ∈ {0, 1}N . estimated codeword
Initialization

for all n = 1, . . . , N do γn = log
Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
;

for all n = 1, . . . , N do γ̃
(0)
n = γn;

for all n = 1, . . . , N and m ∈ N (n) do v
(0)
n,m = sgnr(γ̃

(0)
n);

Iteration Loop
for all m = 1, . . . ,M and n ∈ N (m) do . CN-processing

c
(k)
m,n =

∏
n′∈N (m)\n

v
(k)
n′,m

for all n = 1, . . . , N and m ∈ N (n) do . VN-processing

γ̃
(k+1)
n,m = γ̃(k)n,m + ω.

∑
m′∈N (n)\m

c
(k)
m′,n;

v
(k)
n,m = sgnr(γ̃

(k)
n,m)

for all n = 1, . . . , N do . hard decision

v
(k)
n =

0, if sgnr(γn) +
∑

m∈N (n)

sgnr(γ̃
(k)
m,n) ≥ 0

1, otherwise.
;

if v(k) = {v(k)1 , v
(k)
2 . . . v

(k)
N } is a codeword then exit the iteration loop .

syndrome check
End Iteration Loop

2.4 The noise-aided BF decoders
In 2014, two modi�cations of GDBF decoder were proposed which provided the

best error correction ever of hard decision decoders and were shown to approach
the soft decision decoders. The two proposed method shared the same concept
that introduces the perturbation in VN computation. The Noisy GDBF (NGDBF)
[14] decoder is applied on AWGN channel and Probabilistic GDBF (PGDBF) [15]
is applied on BSC. We denote these modi�cations noise aided GDBF decoders as
NA-GDBF.

sgnr(0) = 1.

24 Chapter 2. Hard decision decoders

2.4.1 Noisy Gradient Descent Bit-Flipping decoding algorithm

The NGDBF modi�ed the energy function described in Equ. 2.19. In NGDBF,
all parity check values are weighted by the same weight factor ωNGDBF which is a
real number and is optimized empirically. The speciality of NGDBF comes from
the random-added value ς which is the normal-distributed random value with equal
variant of channel noise σ. Although the NGDBF requires a channel noise estimator
(to evaluate σ) which required an additional complexity, its decoding performance
is considerably improved and is comparable to MS decoder [14].

E(k)
n = (1− 2v(k)n)yn + ωNGDBF .

∑
m∈N (n)

(1− 2 c(k)m) + ς (2.19)

NGDBF also comes up with the single mode in which the bit that has the smallest
energy will be �ipped (denoted as S-NGDBF). The multiple mode of NGDBF is
denoted as M-NGDBF in which the threshold τ is adapted from one iteration to
another as in ATBF [11]. In M-NGDBF, there is possibility that a bit has a small
value of energy even if its connected CNs are satis�ed due to the random added
value, ς, to the energy value. This bit is �ipped unintendedly. To avoid this negative
e�ect, authors of [14] proposed to proceed a majority vote on the value of VN in
decoding iterations at the end of decoding process whenever the decoder reaches the
maximum iteration without �nding the correct codeword. This operation is called
as smoothing operation and this NGDBF decoder is denoted as SM-NGDBF.

It can be seen in Figure 2.10 that NGDBF decoders provided a very promising
results. M-NGDBF was equivalent to M-esc-GDBF and MS decoder with Itmax =
5. SM-NGDBF was even better than M-NGDBF and became the best BF-based
decoders in AWGN.

2.4.2 Probabilistic Gradient Descent Bit-Flipping decoding
algorithm

In GDBF decoder working on BSC channel, the energy value of each VN is com-
puted as in Equ. 2.9 and is integer-valued, varies from 0 to (dv + 1), and the bits
which have the maximum value E(k)

max = maxn(E
(k)
n) are �ipped. Due to the integer

representation of the energy function, many bits are likely to have the maximum
energy, leading to the parallel (multiple) �ip mode. Let us use an indicator variable
to indicate the VNs which have the maximum energy at iteration k, i.e. I(k)n = 1
if E(k)

n = E
(k)
max, and I

(k)
n = 0 otherwise. The fact that the number of bits to be

�ipped cannot be precisely controlled, induces a negative impact to the convergence
of the GDBF, as the analysis of [15] shows. To avoid this e�ect, the authors in
[15] proposed the PGDBF algorithm in which, instead of �ipping all the bits with
maximum energy function value, only a random fraction of those bits are �ipped.
The random fraction is �xed to a pre-de�ned value p(k)n , which could be di�erent
for each VN and each iteration. In this work, we restrict ourself to the case for
which p(k)n are constant for all iterations and all VNs, denoted p0 ∈ [0, 1] hereafter.

2.4. The noise-aided BF decoders 25

The �ipping set of PGDBF is de�ned as in Equ. 2.20 where p(k)n is the realization
of a uniform random variable over the interval [0,1]. PGDBF o�ers the best error
correction compared to all BF-based decoders on BSC channel (see Figure 2.11).
However, the required additional complexity for generating the randomness is too
large (see Figure) and becomes the bottleneck of PGDBF decoder.

B(k)
PGDBF = {n ∈ B(k)

GDBF |p
(k)
n < p0} (2.20)

The large additional complexity of PGDBF comes from the probabilistic signal
generator. Indeed, the main di�erence between GDBF and PGDBF is only the
probabilistic signal block. PGDBF can be implemented using a sequence of N
random bits, generated following a Bernoulli distribution with parameter p0, with
di�erent realizations at each iteration. We denote the random signal (RS) sequence
at the k-th iteration by R(k) = {R(k)

n |1 ≤ n ≤ N} in which the random signal
R

(k)
n is triggered correspondingly to VN n-th. Other small di�erence in �ipping

implementation between GDBF and PGDBF is the added AND gate described in
Figure 2.12. In the GDBF algorithm, a VN v

(k)
n at iteration k is �ipped (is XOR-ed

by '1') when its energy function is a maximum (the indicator variable is I(k)n = 1)
while in PGDBF, a VN v

(k)
n is �ipped if and only if the two conditions I(k)n = 1 and

R
(k)
n = 1, are both satis�ed. One of our naïve implementation of PGDBF [29] shows

that PGDBF requires more than 8 times the complexity of GDBF decoder.

Rn
(k)

vn
(k)

In
(k) vn

(k+1)

GDBF:
In

(k)= 1 if En
(k)= Emax

(k) else In
(k)= 0

vn
(k)

In
(k)

vn
(k+1)

PGDBF:
In

(k) = 1 if En
(k)= Emax

(k) else In
(k)= 0.

Rn
(k)= 1 with probability of p0

Figure 2.12: The di�erence in the �ipping operator between GDBF and PGDBF
algorithms.

It is remarked that the perturbation in BF decoding process helps greatly to
improve the decoding performance, approach or even surpass soft decision decoders.
Indeed, in AWGN, with a random variable added in computed energy value, the
versions of NGDBF provided the best error correction compared to all introduced
BF decoders and are even comparable to MS algorithm. In BSC, PGDBF decoder is
also the best BF decoder ever in BSC channel. All the advantages in error correction
were observed through simulation. The need of understanding the e�ect of
perturbation on decoding performance is critical due to twofold. First, the
understanding reveals the perturbation optimization strategy as well as direct to
optimized realization architecture which guarantees the maximum decoding gain
at the minimum hardware cost. Second, the understanding suggest to design the
faulty tolerant decoders. However, there was no analytic method to analyse
the perturbation e�ect on BF decoders.

26 Chapter 2. Hard decision decoders

2.5 Hardware complexity of BF-based decoders
In order to make more comparison of the proposed BF decoders, we present in

Tabble 2.1 the computation operations of some typical BF decoders. For being fair
in comparison, we assume all BF decoders perform 1 iteration in 1 clock cycles, the
memories are only to store the channel soft value, the adaptive threshold and the
tentative hard decision codeword, the rest of the decoders is combinatory logic. We
count all addition (ADD), multiplication (MUL) and comparison (COM) modules
needed to implement the VN operations for each type of BF decoders. We also
count the number of comparison module for the global sort in single �ip decoders.
Some BF-based decoders which require the initialization computation block, i.e.
for the channel soft information computation before the BF decoders start decod-
ing, we count, therefore, the number of addition (ADD), multiplication (MUL) and
comparison (COM) modules need for this block. Note that, since the multiplication
implementation is more complex compared to the addition, in MWBF and IMWBF,
the element α|yn| should be proceeded at the channel output scale processing step
to avoid multiplication implementation. The results are shown in the Table 2.1. It
can be seen that the adaptive threshold decoder such as ATBF, M-NGDBF, SM-
NGDBF have no operation for the global sorting but the require N multiplication
blocks to update the adaptive thresholds. Also, these decoders need 2N real mem-
ory elements to store the channel soft values and adaptive thresholds while other
decoders require only N .

VN computation Comparison for Start-up initialization Memory Additional block

ADD MUL COM the global sorting ADD MUL COM real-value 1-bit

WBF [2] N(dv − 1) 0 N N − 1 0 0 M(dc − 1) N N -

MWBF [3] N.dv 0 N N − 1 0 0 M(dc − 1) N N -

IMWBF [5] N.dv 0 N N − 1 0 0 M(dc − 2).dc N N -

S-GDBF [8] N (1) 0 N N − 1 0 0 0 N N -

M-GDBF [8] N (1) 0 2N (2) N − 1 0 0 0 N N A global objective function computation

M-GDBF with escape [8] N (1) 0 2N (3) N − 1 0 0 0 N N A global objective function computation

S-RRWGDBF [10] N.dv 0 N N − 1 M(dc − 1) M.dv 0 N N -

M-RRWGDBF [10] N.dv 0 2N (2) N − 1 M(dc − 1) M.dv 0 N N A global objective function computation

ATBF [11] N.dv N N 0 0 0 0 2N N -

S-NGDBF [14] 2N 0 N N − 1 0 0 0 2N N a RRG(4)

M-NGDBF [14] 2N N N 0 0 0 0 2N N a RRG

SM-NGDBF [14] 2N N N 0 0 0 0 2N N a RRG and N 0-to-(log2(Itmax) + 1) counters

Table 2.1: The complexity of some typical hard decision decoders.

By taking into account the decoding performance, we plot in Figure 2.13 the
performance-complexity comparison between some typical BF decoders on the PE-

(1) Summation between a real value with an integer.

(2) Comparison between the computed energy with either parallel �ip threshold τ
(k)
n in parallel

�ip mode or the minimum value sorted by the minimum sorter in serial �ip mode (equivalent to 2
single comparators and a 2-to-1 binary multiplexer in each VN).

(3) Comparison between the computed energy with either parallel �ip threshold τ
(k)
n and τ̃

(k)
n

in parallel �ip mode or the minimum value sorted by the minimum sorter in serial �ip mode
(equivalent to 2 single comparators, a 2-to-1 real multiplexer and a 2-to-1 binary multiplexer in
each VN).

(4) RRG: Real-value random generator.

2.5. Hardware complexity of BF-based decoders 27

0 1 2 3 4 5 6 7 8 9 10
10

-8

10
-7

10-6

10
-5

10
-4

10-3

10-2

10
-1

WBF
MWBF

IMWBF

S-GDBF

S-RRWGDBF

S-NGDBF

Decoder complexity nomalized by the complexity of S-GDBF

E
rro

r c
or

re
ct

io
n

ab
ili

ty
 (B

E
R

 @
 E

b/N
0(d

B
)=

 4
.0

)

M-GDBF

M-GDBF-with-Escape

M-RRWGDBF

ATBF

M-NGDBF

SM-NGDBF

Single Multiple Mixed

Figure 2.13: Performance-complexity comparison of some typical BF-based decoders
on the PEGReg504x1008, regular dv = 3, dc = 6 LDPC code.

GReg504x1008, regular dv = 3, dc = 6 LDPC code. Note that, because the cost of
the real-number random generator (RG) was not evaluated, we plot the complexity
of NGDBF without RG implemented and relatively shift to the right by a period
representing the additional hardware of RG (see the arrows in Figure 2.13). It can
be seen that the S-GDBF requires the smallest hardware to implement while the
type of RRWGDBF and IMWBF are most heavy decoders with relatively equiv-
alent performance. The SM-NGDBF provides the best in error correction with 4
decades gain compared to S-GDBF but is 4.3 times more in decoder complexity. It
is interesting that, with a small modi�cation between M-GDBF and M-GDBF with
Escape, a negligible complexity required but a large gain in performance obtained.
This interesting remark is also observed in M-NGDBF and SM-NGDBF.

On performance-complexity comparison of the BF-based decoders on BSC chan-
nel (Figure 2.14a), GDBF provides 2 dB in correction gain compared to BF decoders
while requiring 40% additional hardware complexity. Especially, the PGDBF with
naïve implementation provides 3 dB gain in error correction compared to GDBF
while it needs 8 times complexity of GDBF to implement. We propose several im-
plementations in this work (marked in the red circle) which provide an equivalent
error correction ability of PGDBF with naïve implementation while requiring the
equivalent complexity of GDBF. More specially, some of our architecture have even
smaller complexity than GDBF decoder (see Figure 2.14(b)).

28 Chapter 2. Hard decision decoders

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

GDBF

CSTS−PGDBF

VNSA−PGDBF

VNSA−IM−PGDBF

Decoder complexity nomalized by the complexity of GDBF

E
rr

or
 c

or
re

ct
io

n
ab

ili
ty

 (
F

E
R

 @
 α

=
 0

.0
1)

BF

(b)

Figure 2.14: Performance-complexity comparison of some typical BF-based decoders
on BSC channel for the regular dv = 3, dc = 6, M = 648, N = 1296 QC-LDPC
code. The PGDBF implementations in the red cycle are the one proposed in this
thesis.

2.6 Conclusion
In the next chapters, we propose a novel method called Finite State Tracking

(FST) method to analyse the hard decision decoders on the BSC channel model.
This proposed method is, in general, applicable for all BF decoders and more e�cient
to analyse the decoder with probabilistic feature. With this new analytic method,
one can formulate and compute the decoding error probability. Furthermore, many
decoding behavior of PGDBF such as the improvement of re-initialization can be
clearly explained by FST. For the implementation of PGDBF, we propose an op-
timized architecture to implement the probabilistic signal generator as well as the
PGDBF decoder called Cyclic Shift Truncated Sequence PGDBF (CSTS-PGDBF).
The proposed CSTS-PGDBF requires a negligible additional hardware compared
to GDBF while preserves the decoding as good as the theoretical PGDBF. We
further propose an e�cient architecture for LDPC decoding on QC-LDPC code
called Variable Node Shift Architecture (VNSA). Applying VNSA for PGDBF im-
plementation called as VNSA-PGDBF, the decoding performance is maintained as
theoretical PGDBF while the complexity is even smaller than GDBF. A further
simpli�ed version of VNSA-PGDBF called VNSA-IM-PGDBF reduces even more
in complexity and approaches to the complexity of the simplest BF decoder. These
advantages in area, throughput and decoding performance make our PGDBF de-
coders a competitive hard-decision LDPC decoding solution for current and future
standards.

Chapter 3

Theoretical analysis of Probabilistic

Gradient Descent Bit Flipping

3.1 Introduction
In this chapter, we introduce an analysis method for hard decision decoders

denoted as Finite State Tracking (FST). Although FST is shown to be able to apply
on di�erent type of hard decision decoders, we limit the FST presentation in this
chapter only on PGDBF decoder. FST represents the PGDBF decoding process
from an iteration to another as a state transition in a Markov Chain (MC). A state
of PGDBF decoding is represented as a state in this MC and by analyzing the MC,
the closed-form expression of Frame Error Rate as a function of number of iteration
can be derived. The uncorrectable and partial-uncorrectable error pattern de�nitions
are newly introduced in this chapter in order to indicate correspondingly the error
patterns that can not be corrected and those which can be corrected with some
probability by PGDBF. The uncorrectable and partial-uncorrectable error pattern
can be also determined by analyzing the MC. We illustrate the utilization of FST
by analyzing the performance of PGDBF decoder and compare it with other BF
decoders. It is �rstly shown that the number of uncorrectable error patterns of
PGDBF on the tested LDPC code is signi�cantly reduced compared to GDBF and
conventional BF decoders. The predictive performance curves on the error �oor
are then derived, based one the estimated number of uncorrectable and partially
uncorrectable error patterns and are �nally con�rmed by the simulation results.
The improvement of PGDBF is clearly explained by showing that many transitions
leading to the zero-error state in PGDBF do not appear in deterministic GDBF.
Furthermore, FST provably shows that for some given error patterns, the PGDBF
can converge to the zero-error state only if some speci�c transition occur. Getting
into these transitions depends on the realization of the random signal. This explains
the decoding gain phenomenon of re-initialization (or restarting) of the PGDBF
decoding from the beginning with new random realizations.

29

30
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

3.2 Markov Chain representation of the decoding

process

3.2.1 Markov Chain of hard decision decoding process

The principle behind the PGDBF improvement is to perturb the dynamics of the
decoder by randomly modifying the �ipping sets as in Equ. 2.20. Also, PGDBF
is shown to be able to correct the error patterns where error bits are allocated on
support of a subgraph called trapping set while the deterministic GDBF could not
correct. The proposed method will consider and analyse the behavior of PGDBF
decoder on this subgraph.

Let consider a subgraph g composed by L VNs and v(k) = {v(k)` }[`=1...L] be
the ordered set of all values of VNs at iteration k and de�ne a dynamical system
expressed by Equ. 3.1 where function Υ is the updating function of deterministic
GDBF decoding algorithm and the binary vector r(k) of length L is the realization
of the probabilistic part a�ecting on the values of v(k).

v(k) = Υ(v(k−1))⊕ r(k) = Υ̃(v(k−1)) (3.1)

At iteration k, all elements ` of r(k), (` = 1 . . . L), that E(k)
` = E

(k)
max, are determin-

istic functions of Bernoulli distribution random variables such that, if E(k)
` = E

(k)
max,

r
(k)
` = 0 with p = p0 and r

(k)
` = 1 with p = 1− p0, otherwise r(k)` = 0. The random

process {v(`)}`≥0 is a Markov chains in �nite state spaces {0, 1}L.
We de�ne e = {e`}[`=1...L] as the error pattern a�ecting on the part of the code-

word x = {x`}[`=1...L] induced by subgraph g to form v(0) such that v(0) = x ⊕ e.
When all zero codeword is sent, v(0) = e.

For a given subgraph g and error pattern e, the formed Markov chain is denoted
asMe in the state space S = {0, 1}L, and corresponds to the transition probability
matrix P = (pε,δ)ε,δ∈S where the transition probabilities pε,δ = Pr{v(k) = δ|v(k−1) =
ε}.

Given a subgraph g, an error pattern e and a state ε ∈ S (corresponding to the
iteration k), we de�ne the function d′(ε, e, g) =

∑
`=1...L 1(E

(k)
` = E

(k)
max). d′(ε, e, g)

counts the number of bits that have the maximum energy and are the �ip candidates.
These �ip candidates are �ipped automatically in GDBF while only a random part
are �ipped in PGDBF. In PGDBF, given d′(ε, e, g) �ip candidates, there are 2d

′(ε,e,g)

�ip possibilities corresponding to 2d
′(ε,e,g) transitions from a state ε to 2d

′(ε,e,g) �next
states� inMe. These next state set is denoted as S(k+1), |S(k+1)| = 2d

′(ε,e,g). Let δ
be the state of these next states reached from the state ε (δ ∈ S(k+1)), then

pε,δ = p
dε,δ
0 (1− p0)d

′(ε,e,g)−dε,δ (3.2)

where dε,δ is the Hamming distance between the binary vectors ε and δ. For any
state ε,

∑
∀δ∈S(k+1) pε,δ = 1. The state space S of Markov Chain Me is composed

as S = {S(k)}k≥0. In GDBF, S(k+1) = 1 since from a given state ε, there is only
the possibility to �ip all candidates to form next state δ, pε,δ = 1. For graphical

3.2. Markov Chain representation of the decoding process 31

presentation in the next section, we describe the state v(k) in the form of Si such

that i =
L∑
`=1

2`−1v` and the initial state as Se, Se = Sj where j =
L∑
`=1

2`−1e`.

3.2.2 Markov chain representation: GDBF and PGDBF il-
lustrations

This section aims to illustrate our representation of decoding process by the Markov
chain. The GDBF, PGDBF decoding process are used to serve in the examples.
These examples are also selectively chosen to highlight the property of PGDBF over
GDBF such as (1). Both PGDBF and GDBF correct the errors but the probabilistic
part slows the converging speed of PGDBF by visiting the intermediate states (with
weight-1 or weight-2 error patterns, weight-1 error pattern has 1 bit in error). (2).
GDBF fails to correct while PGDBF corrects all errors (with weight-3 error pattern)
and (3). GDBF again fails to correct while PGDBF can correct errors with some
probability (with weight-3 error pattern). We use the Tanner code (N = 155,M =
93) and (dv = 3, dc = 5) and the error patterns used are the one that error bits
are located in a subgraph called Trapping Set TS(5,3) as in �gure 3.1. We assume
the all-zero codeword is sent. We represent the white (black) circles as the correct
(erroneous) VNs and white (black) squares as the satis�ed (unsatis�ed) CNs in the
subgraphs. For the comparison on the Markov chain of PGDBF and GDBF, the
state transitions in Markov chain of PGDBF decoder are shown as solid black arrows
along with those of GDBF as dashed red arrows respectively.

v5

v1

10101

(1-po)2

po
2 (1-po)

S8

(1-po)

po
po

po
(1-po)

S16

S21

S0

S1 28 states
S11

13

8

13
6

v4

v1 v2

v3

v5

v6

v4

v2

v3

Figure 3.1: Trapping Set TS(5,3) in the Tanner Code.

3.2.2.1 Error patterns weight-1 and weight-2

When there is 1 error happened, there are 3 unsatis�ed CNs which connect to the
error VN. This erroneous VN then has the energy 3 while all VN which connect to the
unsatis�ed CNs have energy 1 and all the other VNs are 0. The girth of Tanner code
(the minimum cycle in the Tanner graph) is g = 8, so there is no VN connecting to
more than 1 unsatis�ed CNs. Therefore, the erroneous VN is the energy maximum
VN and is the only �ipping candidate. Let assume VN v1 in the TS(5,3) is in error
shown in Figure 3.2a, forming the error pattern e = e5e4e3e2e1 = 00001 (the initial
state Se = S1). The GDBF will �ip this �ipping candidate and decoding process

32
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

stop while PGDBF either �ips this �ipping candidate with probability p0 or does
not �ip with 1 − p0. The PGDBF eventually �ips this VN since the probability of
not �ip v1 is (1− p0)` → 0 when `→∞.

S1

S0

(1-po)

po

S3

S0

(1-po)2

po
2

(1-po)
S1

(1-po)

S2

po po

(1-po)po (1-po)po

v5

v4

e= e5e4e3e2e1=00001, (S1)

v1 v2

v3

v5

v4

e= e5e4e3e2e1=00011, (S3)

v1 v2

v3

a) b)

c) d)

v5

v2

v4

v1

v3 A

S15

S0
S31

e=v5v4v3v2v1= 01111= S15

Figure 3.2: The weight-1 (a), weight-2 (b) error patterns and the corresponding
Markov chain representation of GDBF and PGDBF decoders. The dashed red ar-
rows are the transitions of GDBF, the solid red arrows are the transitions of PGDBF.

The Markov chain of PGDBF and GDBF decoders for this error pattern are
shown in Figure 3.2c. The error correction behavior of GDBF is described as the
state transition in the Markov chain as following. The next state of the initial
state Se is determined by applying the deterministic function Υ(Se) = 00000 = S0.
The Markov chain of GDBF decoder moves from the initial state Se = S1 to the
next state S0. The stopping condition of the Markov chain is corresponding to the
satisfaction of syndrome check. Since the state S0 in the Markov chain corresponds
to value ′0′ to all VNs which lead to satis�ed syndrome check, the state transition is
halted, therefore, there is no transition from S0 to other states in the Markov chain.
S0 is called converging state and marked by the second dashed circles in �gure 3.2c.
In the Markov chain of PGDBF decoder, S(1) = Υ̃(S1) = {S0, S1}, there are two
possibilities of transitions from the initial state S1: to move to converging state S0

with probability p0 or to stay in S1 with probability (1 − p0). The Markov chain
stops when it is on the state S0 and continues to move when it is in S1. It eventually
stops due to the fact that probability to be at S1 of the Markov chain, (1− p)` → 0,
`→∞.

When there are 2 erroneous bits happened, these 2 bits could either share 1 CN
(Figure 3.3a) or separate (do not share any common CN, Figure 3.3b).

3.2. Markov Chain representation of the decoding process 33

a) b)

Figure 3.3: 2 erroneous bits located in Tanner graph of Tanner code. The 2 erroneous
bits are either a). sharing a CN or b). separating from each other

It can be seen that in both cases, the 2 bits are the energy maximum VNs
and are �ipping candidates. Flipping any 1 of 2 erroneous bits does not create
any new �ipping candidate. Without loss of generality, let assume 2 erroneous
bits be v1 and v2 in the TS(5,3) in Figure 3.2b (Se = S3). With these 2 �ipping
candidates, the GDBF decoder certainly �ips both of them, leading to all-zero VNs.
The GDBF decoder stops after 1 iteration. In the corresponding Markov chain
(Figure 3.2d), the 2 erroneous bits form initial state S3. The chain moves from S3

to Υ(S3) = S0 (the dashed red transition) then stops at this converging state. The
PGDBF decoder, with 2 �ipping candidates and due to the �ipping randomness,
has 22 = 4 possibilities: 1. �ips all of the candidates with probability of p20, then has
all-zero VNs and stops, 2. does not �ip any bit with probability of (1− p0)2, stays
with the same 2 erroneous bits and in the next iteration, the decoder has again 4
possibilities to proceed, 3. �ips v1; and v2 is still in error with probability of p0(1−p0),
4. �ips v2; and v1 is still in error with probability of (1− p0)p0. In the 2 later cases,
the decoder eventually converges similarly to the previous example with 1 error
happened. This PGDBF decoder behavior can be expressed by the Markov chain in
�gure 3.2d (with solid back transitions). The next states from the initial state S3 can
be determined by the probabilistic function Υ̃(S3) = {S0, S1, S2, S3}. Thus, there are
4 possibilities with the corresponding probability{p20, p0(1−p0), (1−p0)p0, (1−p0)2}.
Similarly, by expressing all states Υ̃(S0) = {∅}, Υ̃(S1) = {S0, S1}, Υ̃(S2) = {S0, S2},
Υ̃(S3) = {S0, S1, S2, S3}, it forms the Markov chain with determinable transitions
probabilities s in Figure 3.2d.

It can be seen that in weight-1 and weight-2 error patterns, both GDBF and
PGDBF will �nally converge. However, PGDBF has more states leading to slower
convergence as shown in [15].

3.2.2.2 Weight-3 error pattern

Next, we show an example that PGDBF can correct the error pattern with 3 bits in
error while GDBF could not. We consider the example shown in Figure 3.4a in which
{v1, v3, v5} are in error ({v1, v2, v3} and {v1, v3, v4} produce the same behavior). The
3 erroneous bits located in Figure 3.4 form the initial state Se = S21.

For GDBF decoding process, the fact that Υ(S21) = S26 and Υ(S26) = S21 shows
the oscillation in the Markov chain between these 2 states as in Figure 3.4c (the
dashed red arrows). There is no (dashed red) transition to the converging state S0,

34
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

the GDBF decoder, therefore, fails to correct the error pattern regardless of number
of iteration.

v2 v1
v2

v4
v3

v5

v4

v1

v3

v5

b) a)

S21

S0

S16
S26

13

5

13
6

8

e= e5e4e3e2e1=10101, (S21)

c)

16 states

v= v5v4v3v2v1=11010, (S26)

Figure 3.4: The weight-3 error pattern and the corresponding Markov chain repre-
sentation of GDBF and PGDBF decoders. The dashed red arrows are the transitions
of GDBF, the solid red arrows are the transitions of PGDBF.

For PGDBF, there are 16 possibilities of transitions from the initial state S21

due to |Υ̃(S21)| = 16. The Markov chain can follow S21 → S16 → S0 as the shortest
converging path as described in Figure 3.4c. Also, in order to be at S0, there are
5 others states in the set of 20 total states of S in the Markov chain leading to
S0. Despite non detailed transition shown in Figure 3.4, the fact that from any
state Si ∈ S, Si 6= S0, Si → S0 and the Markov chain stops only at S0, the Markov
chain is eventually at the converging state. The speed to S0 obviously depends
on the transition paths. This example shows that, by deliberating randomness in
transitions, it o�ers the converging possibilities which is not the case of deterministic
decoder.

3.2.2.3 Weight-4 error pattern

We illustrate another example of Markov chain representation of PGDBF decod-
ing with weight-4 error pattern with which GDBF fails to correct the errors while
PGDBF can correct with a probability. The state transitions of PGDBF decoding
are illustrated in Figure 3.5 (some states are removed to ease the discussion). It can
be seen �rstly that from the initial state, S58, there are the transitions leading to the

3.3. Frame Error Rate Evaluation 35

converging state S0. PGDBF, therefore, can correct the given error pattern. There
are, however, 3 special states, marked by the dashed cycles, that whenever the state
get into this group, it never get out of them. In other words, the transitions will be
locally in these 3 states and will never reach to converging state S0. We name this
group as the isolated group or absorbing group. With p0 = 0.7, the probability of
getting into this isolated group, pe, is evaluated by FST at pe = 0.485 which means
PGDBF fails to correct the error pattern at around 50% the cases.

v1
v2

v4 v3

v5

v6

S0

S58

Figure 3.5: The weight-4 error pattern and the corresponding Markov chain repre-
sentation of PGDBF decoder.

3.3 Frame Error Rate Evaluation

3.3.1 Markov Chain, algebraic and graph-theoretic considers

Suppose thatM is a homogenous �nite-state Markov chain with the state space S
and the transition probability matrix P = pε,δ. The probability that M proceeds
from state ε to state δ after k transitions is denoted by pkε,δ and the k steps transitions
probability matrix P (k) = [pkε,δ] is computed as P (k) = P k.

Let GM = (S,E) be a directed graph associated with the Markov chain M
having the set of nodes S and a set of edges E. Each node corresponds to a state
in S and GM contains edge (ε, δ) ∈ E if and only if pε,δ > 0. The quantity pkε,δ > 0
means there is a directed path Q of length l(Q) = k from node ε to node δ in GM.
The node δ is said to be reachable from ε if pkε,δ > 0 holds for some k ≥ 0 (written
as ε → δ). If there is no path in GM between ε and δ then ε 6→ δ. If both ε → δ
and δ → ε then it is said that ε and δ communicate (written as ε↔ δ). A circuit is
a path joining a node to itself and if there is no repeat node in this circuit, it forms
a cycle.

36
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

A strongly connected subgraph (or a strong component) of GM is induced by a
subset of nodes Ss such that for all ε, δ ∈ Ss then ε ↔ δ. A condensed or reduced
graph ĜM is formed by grouping all of nodes in a strong connected subgraph into
1 new "supernode". It can be seen that there is no path connecting two arbitrary
nodes in a strong component in which there exists a node not including in this strong
connected subgraph. For this reason, there is no cycle in the condensed graph Ĝ
which governs the supernodes of a graph GM. Identifying the strong connected
subgraph and creating the condensed Ĝ of G can done e�ciently by Depth-First
Search Algorithm [34].

3.3.2 Classi�cation of the states

We denote above the converging state S0 which is the state where all parity check are
satis�ed and all VN decisions form all-zero codeword. Se is the initial state formed
by the error pattern. We denote heres S∼0 as the set of states for which all parity
checks are satis�ed, and the variable node decisions form a non-zero codeword. The
set S∼C includes all states for which the variable node decisions are not codewords.
Thus, the above three disjoint sets partition the set of states S = S0 ∪ S∼0 ∪ S∼C.

In general, given a BF decoder with an error vector e, the associate Markov
chainMe contains all the possible states could be of the decoder induced from the
initial state Se. More precisely, all states inMe satisfy that ∀Si ∈ S then Se → Si.
The cardinality of S could be smaller than 2L due to the fact that there exists the
state (or states) in {0, 1}L but never appears in S. We show in the section 3.4 that
by considering the presence or absence of some states in S, it can reveal the error
correction properties of the decoder.

We further categorize the states in S∼C as either transient or recurrent. A state
is a recurrent state once start from it, will return to that state with probability of
1. On the contrary, for a transient state, there exists a positive probability that the
chain will never to it. By using the graph-theoretic concepts, ε is a transient state if
there exists at least one state δ for which ε→ δ but δ 6→ ε, otherwise, ε is a recurrent
state. For an example, in the weight-4 error pattern illustration in Section 3.2, 3
states marked in dashed cycle are the recurrent states, all other states are transient
states. It can be shown that the descendants of a recurrent state are also the re-
current states and all together, they form a strongly connected component inMe.
More precisely, all states in this strong component do not reach to any other state
outside (strong close component). In fact, if they did, they were not recurrent states.

The fact that a recurrent state and its descendants form a strong close component
attracts our consideration. When the Markov chain is in a state of this strong close
component, it continues to move to the next state (since the syndrome is unsatis�ed).
However, the Markov chain is always in the states of strong component due to the
closeness and never to the converging state. It is a kind of absorbing in the Markov
chain and by tracking this strong close component appearance and/or probability
being in its of the Markov chain, it reveals the the decoding failure and/or failure

3.3. Frame Error Rate Evaluation 37

probability.
We denote T as the set of all transient states and R = S∼C \ T as the set of

recurrent nodes. Moreover, let R1, R2, ..., Rr (R1∪R2∪ ...∪Rr = R) are the subsets
of R which form r strong components inMe then,

S = S0 ∪ S∼0 ∪ ST ∪ SR1 ∪ ... ∪ SRr . (3.3)

During the decoding process, the syndrome check is operated after each iteration,
and if the Markov chain is in the state β ∈ S0∪S∼0, the decoding is terminated, and
the Markov chain stays in β. Thus, the states in S0 and S∼0 are absorbing. Also,
if β ∈ SRi (i = 1...r) the decoder is allowed to keep running due to the unsatis�ed
syndrome check. However, β is only the states of the strong component SRi , for
that reason, we also consider that strong components SRi , i = 1...r, are absorbing
(the state transition diagram is shown in Figure 3.6).

ST

S0

S~0 SR

Figure 3.6: .

Probability of Absorption De�ne now the matrices PT,0, PT,∼0, PT,T with di-
mensions |ST | × 1, |ST | × 1, |ST | × |ST | respectively, and r matrices PT,Ri , i = 1...r,
with dimensions |ST | × 1, as follows:

PT,0 =
(
Pr{v(`) = S0|v(`−1) = β}

)
β∈ST

PT,∼0 =

(∑
δ∈S∼0

Pr{v(`) = δ|v(`−1) = β}

)
β∈ST

PT,T =
(
Pr{v(`) = ε|v(`−1) = β}

)
β,ε∈ST

PT,Ri =

∑
ξ∈SRi

Pr{v(`) = ξ|v(`−1) = β}


β∈ST

, i = 1...r.

The matrix

38
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

P =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
PT,0 PT,∼0 PT,SR1

. . . PT,SRr PT,T

 =

(
Ir+2 0
J Q

)
(3.4)

de�nes the transition probability matrix of the Markov chain Me. In Me, S0 is
an absorbing state. All the states in S∼0 are lumped into a single state. With a
moderate abuse of notation, this new state is labeled as S∼0. The r absorbing states
(with lumped states from SRi , (i = 1...r), is labeled as SRi , (i = 1...r). The matrix
Q in Eq. 3.4 is a transition probability matrix between the transient states in ST ,
and Ir+2 is the (r + 2)× (r + 2) identity matrix.

By separating into r absorbing states Ri, (i = 1...r), it allows to compute the
probability in which absorbing state that the Markow chain is absorbed. However, if
one only consider the probability of absorbing, it is more compact by lumping all the
absorbing states SRi , i = 1...r, into only 1 new absorbing state SR with probability
matrix computed as in Equ. 3.5 where

PT,R =

(
r∑
i=1

{PT,Ri}

)
.

P =


1 0 0 0
0 1 0 0
0 0 1 0
PT,0 PT,∼0 PT,R PT,T

 =

(
I3 0
J ′ Q

)
(3.5)

The probability distribution ofMe at iteration k can be written as

π(k) = (π
(k)
0 , π

(k)
∼0 , π

(k)
R ,π

(k)
T), (3.6)

where π(k)
0 = Pr{β(k) = 0}, π(k)

R = Pr{β(k) = SR}. π(k)
T = (π

(k)
β)β∈ST is the

probability vector of transient states, and the probability π(k)
∼0 is obtained by sum-

ming up the probabilities of the corresponding states: π(k)
∼0 =

∑
β∈S∼0

πβ. The initial

distribution π(0) is determined as: π(0)
β = 1 if β = Se and π

(0)
β = 0 if β 6= Se,∀β ∈ S.

The transition probabilities from transient to absorbing states S0, S∼0 and SR
are given by the matrix J ′ = (PT,0, PT,∼0, PT,R). The transition probabilities from
transient to transient states is determined by Q = PT,T .

The transition probabilities between states in k iterations are given by

P k =

(
I3 0
B(k) Qk

)
, (3.7)

3.3. Frame Error Rate Evaluation 39

where

B(k) =

(
k−1∑
i=0

Qi

)
J ′ = (I −Q)−1(I −Qk+1)J ′. (3.8)

When the number of iterations is very large

lim
k→∞

B(k) = (I −Q)−1J ′. (3.9)

The fundamental matrix of the absorbing chain N = (I − Q)−1 determines the
average times to absorption from di�erent transient states. More speci�cally, if
Se 6∈ {S0 ∪ S∼0 ∪ SR} then

∑
(π

(0)
T N) is the average time to absorption from the

initial state Se.

3.3.3 Frame Error Rate Computation

For a given decoder and error pattern e, the frame error rate (FER), the miscor-
rection probability, (i.e. miscorrection error rate (MER)) and correction failure
probability (FaER) in the iteration k can be de�ned as:

FER(k)
e = Pr{v(k) ∈ S∼0 ∪ SR ∪ ST} (3.10)

MER(k)
e = Pr{v(k) ∈ S∼0} = π

(k)
∼0 (3.11)

FaER(k)
e = Pr{v(k) = SR} = πkR (3.12)

Theorem 1. For PGDBF on a subgraph g of any LDPC code C, ∃L∗ and ∆, which
depends on L∗, such that ∀L > L∗

FER(L)
e −MER(L)

e − FaER(L)
e < ∆. (3.13)

Proof. When the Markov chain is in the states of the three disjoint sets S∼0, SR, ST ,
i.e. β ∈ {S∼0∪SR∪ST}, at iteration k as in Equ. 3.10, it forms the decoding frame
error. We can write the FER at iteration k as: FER(k)

e = π
(k)
∼0 + π

(k)
R +

∑
π

(k)
T =

π
(k)
∼0 + π

(k)
R +

∑
π

(0)
T .Qk.

When k becomes larger (let say k →∞), Qk → 0, and π(k)
T = 0, which leads to

FER
(k)
e = MER

(k)
e + FaER

(k)
e .

40
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

Average FER Performance The Markov chain model allows to compute the
FER associating with an error pattern e located in a subgraph g at iteration k,
FER

(k)
e . By averaging all the error patterns and the graph g in the whole LDPC

graph, we obtain the average FER of the decoder at k as

FER(k) =
∑

e∈{0,1}N
Pr{e} × FER(k)

e . (3.14)

The probability of the error pattern e, Pr{e}, depends on the error weight w(e)
and the number of graph g, Ng, in the whole graph. For the Binary Symmetric
Channel (BSC) with crossover probability α, the probability of e, Pr{e} can be
expressed as

Pr{e} = Ng.α
w(e)(1− α)N−w(e). (3.15)

In general, FST completely determines the FER on an entire code graph. How-
ever, the state space becomes very large and is the drawback of this method. In
this work, the decoding behavior is analysed on the subgraphs of an LDPC code
and the appeared limitation is known to come from the isolation assumption [35].
We partially diminish the e�ect of this isolation assumption on the performance
formulation by analyzing on the subgraphs which are a codeword and have the size
L much larger than the error weight w(e).

3.4 Performance of Probabilistic Gradient Descent

Bit Flipping Decoder
We apply the FST for analysing the performance of PGDBF in 2 cases: the

asymptotic decoding performance and the �nite number of iteration decoding per-
formance. We �rst consider the decoding performance of PGDBF in which the
number of iteration is assumed to in�nity. In the asymptotic decoding performance,
we only consider the presence of states in the Markov chain rather than the quantity
value of transition probability. In the �nite number of iteration decoding process,
we show that the average number of iteration needed to converge is �nite and de-
terminable as shown in previous section.

We present the analysis results on the 3 subgraphs induced by the minimal
codewords of weight-20 of the Tanner code [36][37] and put on the comparison with
other BF decoders as well as Min-Sum. As shown in [36][37], by using the results on
these subgraphs, the results are predictive when running on the whole graph. We
present the 3 subgraphs in the appendix of the thesis.

3.4.1 The asymptotic decoding performance of PGDBF

We classify an error pattern e into 3 categories: uncorrectable, partial-uncorrectable
and correctable. An uncorrectable error pattern e is the error pattern which can
not be corrected by the decoder regardless of number of iterations. More precisely,
FER

(k)
e = 1, k → ∞. Similarly, an partial-uncorrectable e is the one that has

3.4. Performance of Probabilistic Gradient Descent Bit Flipping Decoder 41

0 < FER
(k)
e < 1, k →∞ and if FER(k)

e = 0, k →∞ then e is said as correctable to
the decoder.

We use the following propositions in order to determine the error correction
capability of the PGDBF decoder.

Proposition 1. The error pattern e is uncorrectable to decoder D in the subgraph
g of LDPC code C if there is no state S0 in its induced Markov chainMe.

Proof. This proposition can be proven by using the result of the theorem 1 when
` → ∞. Due to the absence of S0, FER

(∞)
e = MER

(∞)
e + FaER

(∞)
e = 1 − π(∞)

0 =
1.

The error pattern and the induced Markov chain in �gure 3.7 illustrate an uncor-
rectable error pattern e of PGDBF decoder. In this case, there are only 2 states in
S (S = {S15, S31}), Se = S15 and S0 6∈ S, the PGDBF decoder then cycles between
these two states S15 and S31 and has no chance to converge (to be in state S0).

S1

S0

(1-po)

po

S3

S0

(1-po)2

po
2

(1-po)
S1

(1-po)

S2

po po

(1-po)po (1-po)po

v5

v4

e= e5e4e3e2e1=00001, (S1)

v1 v2

v3

v5

v4

e= e5e4e3e2e1=00011, (S3)

v1 v2

v3

a) b)

c) d)

v5

v2

v4

v1

v3 A

S15

S0
S31

e=e5e4e3e2e1= 01111= S15

Figure 3.7: An uncorrectable error pattern of PGDBF since the converging state S0

is not in the induced Markov chain of e.

Proposition 2. An error pattern e is said as a partial-uncorrectable to decoder D
in the subgraph g of LDPC code C when there exist S0 and state (or states) Si ∈ S
where Si 6→ S0 in the induced Markov chainMe.

Proof. Let separate S into 3 subsets: S0, Ŝ1, (∀Si ∈ Ŝ1, Si → S0) and Ŝ2, (∀Sj ∈ Ŝ2,
|Ŝ2| ≥ 1, Sj 6→ S0). Due to the fact that, all states in Ŝ2 do not communicate to S0

so they do not communicate to any states in Ŝ1. In other words, the states in Ŝ2

communicate only to state in Ŝ2. Thus, they form an absorbing state in the reduced

42
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

Markov chain Me. Therefore, when k → ∞, 0 < MER
(∞)
e + FaER

(∞)
e < 1 so

0 < FER
(∞)
e < 1.

An example of partial-uncorrectable error pattern of PGDBF is the weight-4 error
pattern illustration of Section 3.2. It can be seen in the Markov chain representation
that the converging state, S0, exists leading the possibility to correct all the errors.
There are also 3 states (in the dashed cycle) with no transitions to S0 with which
the PGDBF fails to correct the errors.

We apply the FST on the 3 subgraphs induced by the minimal codewords of
weight-20 of the Tanner code for BF, GDBF and PGDBF decoders and compare
to the quantized Min-Sum (3 bits for LLR and 4 bits for APP information). The
numerical quantity in the bracket of tables 3.2, 3.3, 3.4 is number of uncorrectable
followed by the partial-uncorrectable error patterns of decoding algorithms corre-
sponding to 3 subgraphs. We choose to evaluate we (the number of erroneous bits)
from we = 2 to we = 5. The number of tested error patterns are computed as the
total combinations of w(e) in the subgraph length L = 20. It is shown that PGDBF
is obviously better than BF and GDBF in term of error correction. PGDBF can cor-
rect all weight-3 error patterns while GDBF fails to correct 3 weight-3 error patterns
in Type I and 3 weight-3 error patterns in Type II. With weight-4 error patterns,
GDBF fails to correct correspondingly 75, 77 and 20 in 3 types of the subgraph
while PGDBF fails to correct only 3 weight-4 error patterns in Type I and 3 weight-
4 error patterns in Type II. PGDBF also partially fails to correct 9 in Type I and
5 in Type II weight-4 error patterns. Min-Sum decoder is the best error correction
by correcting all weight-4 error patterns and fails only with 3 in total weight-5 error
patterns.

Table 3.1: Number of codeword weight-20 and TS(5,3) in Tanner code [23].

Type I Type II Type III TS(5,3)
465 465 93 155

By using the number of uncorrectable, partial-uncorrectable error patterns and
the codeword weight-20 distribution in Tanner code in Table 3.1, one can produce
the predictive decoding performance of GDBF, PGDBF decoders on the error �oor
using Equ. 3.14. For Tanner code, it is particularly noted that the failure error
patterns of GDBF and PGDBF on Tanner code concentrate on the TS(5,3). GDBF
fails to correct the weight-3 error patterns located in TS(5,3) as in Figure 3.4a and
for each TS(5,3), there are 3 compositions of error bits in the TS(5,3) that GDBF
fails ({v1, v2, v3}, {v1, v3, v4} and {v1, v3, v5}). The performance of GDBF in error
�oor is, therefore, lower-bounded by: FERGDBF = NTS(3,5)∗3∗α3(1−α)(N−3) where
NTS(3,5) denotes the number of TS(5,3) in Tanner code.

3.4. Performance of Probabilistic Gradient Descent Bit Flipping Decoder 43

Table 3.2: Error correction ability of LDPC decoders on the Type I codeword of
Tanner code. The numbers in the brackets are (number of uncorrectable - number
of partial-uncorrectable) error patterns.

Nb of erroneous bits BF GDBF PGDBF MS(3,4)
- Nb of tested error patterns

2 - 190 (6,0) (0,0) (0,0) (0,0)
3 - 1140 (124,0) (3,0) (0,0) (0,0)
4 - 4845 (1166,0) (75,0) (3,9) (0,0)
5 - 15504 (6554,0) (846,0) (67,189) (2,0)

Table 3.3: Error correction ability of LDPC decoders on the Type II codeword of
Tanner code. The numbers in the brackets are (number of uncorrectable - number
of partial-uncorrectable) error patterns.

Nb of erroneous bits BF GDBF PGDBF MS(3,4)
- Nb of tested error patterns

2 - 190 (10,0) (0,0) (0,0) (0,0)
3 - 1140 (185,0) (3,0) (0,0) (0,0)
4 - 4845 (1560,0) (77,0) (3,5) (0,0)
5 - 15504 (7980,0) (925,0) (73,97) (1,0)

Table 3.4: Error correction ability of LDPC decoders on the Type III codeword of
Tanner code. The numbers in the brackets are (number of uncorrectable - number
of partial-uncorrectable) error patterns.

Nb of erroneous bits BF GDBF PGDBF MS(3,4)
- Nb of tested error patterns

2 - 190 (10,0) (0,0) (0,0) (0,0)
3 - 1140 (210,0) (0,0) (0,0) (0,0)
4 - 4845 (1886,0) (20,0) (0,0) (0,0)
5 - 15504 (9704,0) (480,0) (20,0) (0,0)

44
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

10
−4

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Channel Crossover Probability, α

F
ra

m
e

E
rr

or
 R

at
e,

 (
F

E
R

)

PGDBF Theory predict
PGDBF MC simulation
GDBF Theory predict
GDBF MC simulation

Figure 3.8: Performance of PGDBF (p0 = 0.7) and GDBF by simulation and theo-
retical prediction on the Tanner code.

3.4.2 The decoding performance of PGDBF in �nite number
of iteration

The FER performance of the decoder can be computed as a function of iterations by
using Equ. 3.14. Also, the average number of iteration is determined by the average
absorbing time shown in previous section.

We show in Figure 3.9 tracked FER to follow the decoding iterations of the
weight-3 bit error pattern (Figure 3.4) and the 2 weight-4 error patterns with which
PGDBF only partially corrects (Figure 3.5 and Figure 3.10) in Tanner code. It
can be seen in Figure 3.9 that PGDBF can correct error pattern in Figure 3.5
with FER = 0.5. This means that half of the generated random sequences R(k)

can correct this weight-4 error pattern, while the other half does not improve the
performance. PGDBF performance gains depend on the realizations of R(k), and in
some situations requires the concept of PGDBF decoder restarting (or rewinding)
[38], that is to start again the decoder from the initial values, but with di�erent
random sequences R(k). For the example of the weight-4 error patterns of Figure 3.5,
a PGDBF with re rewinding stages would correct the error patterns with probability
1− (0.5)re .

3.5. Conclusion 45

Figure 3.9: Performance of PGDBF as a function of the number of iterations in
3-bits error pattern in Figure 3.4 and 4-bits error patterns in Figure 3.5 and 3.10.

v6

v4

v1 v2

v3

v5
B

A

v1 v2

v4
v3

v5

Figure 3.10: An weight-4 partial-uncorrectable error pattern of PGDBF.

3.5 Conclusion
In this chapter, we introduce an analysis method for hard decision decoders de-

noted as Finite State Tracking. FST represents the decoding process from an itera-
tion to another as a state transition in a Markov Chain (MC). A state of the decoder
is represented as a state in this MC and by analyzing the MC, the closed-form ex-
pression of Frame Error Rate as a function of number of iteration can be derived. We
illustrate the utilization of FST by analyzing the performance of PGDBF decoder
and compare it with other BF decoders.

46
Chapter 3. Theoretical analysis of Probabilistic Gradient Descent Bit

Flipping

Chapter 4

E�cient hardware implementation of

Probabilistic Gradient Descent Bit

Flipping

4.1 Introduction
An e�cient hardware (HW) implementation of the PGDBF decoder is proposed

in this chapter, which minimizes the resource overhead needed to implement the
random perturbations and the maximum �nder of the PGDBF. The chapter is or-
ganized as follows. In Section 4.2, the conducted statistical analysis in PGDBF is
presented in order to show the precise characterization of its key parameters, es-
pecially the values of p0 that lead to the maximum coding gains. This analysis is
performed through Monte Carlo simulations in both the waterfall and the error �oor
regions. Section 4.3 shows the optimized HW architecture for the PGDBF decoder.
The proposed architecture is based on the use of a short random signals that is
duplicated to fully apply the PGDBF decoding rules on the whole codeword. Two
di�erent initialization solutions are proposed with equivalent HW overheads, but
with di�erent behaviors on di�erent LDPC codes. An optimization of the maxi-
mum �nder unit of the PGDBF algorithm is also presented in order to reduce the
critical path and improve the decoding throughput. Finally, Section 4.4 shows the
synthesis results on ASIC 65nm technology, and Monte-Carlo simulations with a bit-
accurate C implementation of the proposed PGDBF architecture on LDPC codes
with various rates and lengths.

4.2 The statistical analysis of PGDBF decoder
Several recent works showed that the decoding performance of PGDBF is su-

perior to all known BF algorithms [15] as illustrated in Figure 4.1 for a regular
(dv, dc) = (4, 8) QC-LDPC code of length N = 1296 bits. It can be seen in this
�gure that the PGDBF performs halfway between the GDBF and the Min-Sum

47

48
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

decoder, which is promising in terms of error correction, provided that the extra
hardware complexity to implement the generation of the random sequences R(k) is
small enough.

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

BF
GDBF
PGDBF
MS

Figure 4.1: Performance comparison between LDPC decoders: BF, GDBF, PGDBF
(p0 = 0.7), Quantized MS of the regular QC-LDPC code (dv = 3, dc = 6, Z = 54),
(N = 1296,M = 648).

In order to better understand the impact of the randomness of PGDBF on the
Frame Error Rate (FER), a statistical analysis of PGDBF is conducted using Monte
Carlo simulations. The objective is to identify which features of the probability
density function of the binary random sequence R(k) are the most critical for the
performance improvements.

4.2.1 Waterfall analysis

The statistical analysis focuses on the e�ect of the relative occurrence of zeros and
ones in the sequence R(k) in the waterfall region of the decoder. The simulations
are performed on the BSC channel with cross-over probability α. For each noisy
codeword, a fraction of p0N ones are put in the random sequence R(k), and the
FER of the PGDBF decoder is drawn as a function of p0, for di�erent iteration
and a value of α corresponding to the waterfall region. The results are presented in
Figure 4.2 for the (N = 155,M = 93) Tanner code [30] which is a regular QC-LDPC
code with (dv = 3, dc = 5, Z = 31).

Based on these results, two interesting conclusions can be drawn. First, during
the �rst decoding iterations (k ≤ 10), using randomness does not help. On the

4.2. The statistical analysis of PGDBF decoder 49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

Iter#10
Iter#20
Iter#30
Iter#50
Iter#100
Iter#300

Figure 4.2: Frame Error Rate versus p0 in the waterfall region (α = 0.01) of Tanner
code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93).

contrary, it degrades the decoding performance since the FER of PGDBF is worse
than that of GDBF for almost all values of p0 (note that GDBF corresponds to
PGDBF for p0 = 1). This comes from the fact that the random part of the PGDBF
slows down the convergence speed, since fewer bits are �ipped than what the energy
function indicates. Second, after a su�cient number of iterations, the performance
gain is substantial and does not depend much on p0. This means in particular that
optimizing RS sequence probability p0 does not impact signi�cantly the performance
gain, as was already observed in [15]. Those conclusions have been con�rmed for
several regular LDPC codes with di�erent lengths and values of dv.

4.2.2 Error-�oor analysis

Similar to other iterative LDPC decoders, the GDBF algorithm fails to correct some
low-weight error patterns concentrated on trapping sets (TS) [27, 39], giving rise to
the so-called error �oor region. The PGDBF has been introduced to overcome the
attraction of TS. In this section, a same experiment is conducted as in Section 4.2.1
for the Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93), but in the error
�oor region. The smallest trapping set for this code is composed of 5 VNs and 3
odd-degree CNs, denoted TS(5, 3) (see Figure 4.3).

The minimum number of bits that cannot be corrected by the deterministic
GDBF is three [38], and they are located in the TS(5, 3) of the LDPC code as
indicated in Figure 4.3(a) with black circles. Note that (v1, v2, v3) and (v1, v4, v3) are

50
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

v1
v2

v4
v3

v5
v6

v4

v1 v2

v3

v5

(a)

v1
v2

v4
v3

v5
v6

v4

v1 v2

v3

v5

(b)

Figure 4.3: Error con�gurations with (a) 3 erroneous bits and (b) 4 erroneous bits
located on a TS(5, 3). Black/white circles denote erroneous/correct variable nodes,
and black/white squares denote unsatis�ed/satis�ed check nodes.

also weight-3 error patterns which cannot be corrected by the GDBF. The PGDBF
can potentially help correct these low weight error patterns, resulting in a coding
gain in the error �oor region. Figure 4.3(b) shows also a weight-4 error pattern
which is uncorrectable by the GDBF. In order to analyze the PGDBF in the error
�oor, the channel errors on the positions indicated in Figure 4.3 is �xed, and is
evaluated whether a random sequence R(k) with probability p0 can correct these
error patterns. The results are shown in Figures 4.4 and 4.5.

The �rst remark that can be made is that, contrary to the conclusion of the
waterfall analysis, it is useful to use the random feature of the PGDBF, even during
the �rst decoding iterations. This is veri�ed for both the weight-3 error and the
weight-4 error patterns. The weight-3 error pattern is eventually corrected when
the number of iterations increases, for all values of p0 ∈ [0.3, 0.9]. The weight-4
error patterns can also be corrected by the PGDBF for a wide range of p0 values,
but �attens at a FER equal to 0.5. This means that half of the generated random
sequences R(k) can correct the weight-4 error pattern, while the other half does not
improve the performance. PGDBF performance gains depend on the realizations of
R(k), and in some situations requires the concept of PGDBF decoder rewinding [38],
that is to start again the decoder from the initial values, but with di�erent random
sequences R(k). For the example of the weight-4 error patterns of Figure 4.3(b), a
PGDBF with k rewinding stages would correct the error patterns with probability
1− (0.5)k. Since the work in this chapter deals with low complexity implementation
of the PGDBF decoder and because the PGDBF gain is already signi�cant without
rewinding, decoder rewinding is not considered in this chapter.

As a conclusion of this section, the statistical analysis reveals that the random
generator does not need to have a speci�c value for p0 in order to provide the
performance gains of the PGDBF, as long as it is bounded away from p0 = 1. This
motivated the proposition of a simpli�ed, low complexity hardware realization for
the generation of sequence R(k), which is described in the next section.

4.2. The statistical analysis of PGDBF decoder 51

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

Iter#10
Iter#20
Iter#30
Iter#50
Iter#100
Iter#300

FER= 0

Figure 4.4: Frame Error Rate versus p0 in the error �oor region with 3 erroneous
bits of Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

Iter#10
Iter#20
Iter#30
Iter#50
Iter#100
Iter#300

Figure 4.5: Frame Error Rate versus the p0 in the error �oor region with 4 erroneous
bits of Tanner code (dv = 3, dc = 5, Z = 31), (N = 155,M = 93).

52
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

4.3 The optimized hardware implementation
The random feature of PGDBF plays an important role in improving the decoder

performance as presented in the previous section. However, a hardware overhead
is unavoidable due to the fact that a binary random generator is required on top
of the original GDBF structure. An optimized hardware implementation of the
PGDBF is presented in this Section, with the objective of keeping the coding gain
at a minimum hardware cost.

4.3.1 PGDBF global architecture

The global architecture of the PGDBF decoder is shown in Figure 4.6. The orga-
nization of the blocks and the data �ow follows precisely the organization of the
GDBF decoder, with the di�erence being in the additional block which produces
the random signals R(k).

v(k)
2y2

2

dc

M

2

v(k)
1y1

Connections netw
ork 1

1
2

N

D Q

.

.

.

Connections netw
ork 2

clk

D Q
clk

init

MUX
0

1

MUX

D Q
clk

D Q
clk

init

MUX
0

1

MUX

D Q
clk

D Q
clk

MUX
0

1

MUX

.

.

. .
.
.

v

y

v(k)
2y2

v(k)
NyN

.

.

.

1
2

M*dc

1

CNUM . . .

1

CNU2 . . .

2

dc

1

CNU1 . . .

2

dc

1

Syndrome check

. . . 0 = Stop
decoding

2

1

M

EC1

v(k)
1y1

. . .
2

dv

EC2
1

. . .
2

dv

ECN

v(k)
NyN

. . .

M
axim

um
 Indicator

. . .

I(k)
1

I(k)
2

I(k)
N

1
2

N*dv

.

.

.

Signal
from RG

1
2

dv

. . .
.
.
.

. . .
1

R(k)
yN

y2

y1

E(k)
1

E(k)
2

E(k)
N

Figure 4.6: The global architecture of the PGDBF. The PGDBF follow precisely
the data �ow of GDBF with di�erence coming from the random generator and the
AND-gates.

The operation principle of PGDBF algorithm on this hardware architecture is
brie�y presented as following. Since the PGDBF is introduced in this work for the
BSC channel, two register arrays represented as two sequences of D-Flip Flops (D-
FFs) are required to store the noisy codeword y and the estimated codeword at the
current iteration v(k). At the initialization of the decoder, the signal init triggers the
copy of y into v(0). Then, the CNUs compute the parity of their neighboring bits
in v(k), after properly driven by a �rst connection network. The second connection
network drives the CN values to the energy computation blocks, for each VN. The
maximum indicator module is composed of a maximum �nder component and com-
parators which outputs I(k)n = 1 whenever the corresponding energy is equal to the
maximum, and I(k)n = 0 otherwise. Indicator values I(k)n are propagated to the AND

4.3. The optimized hardware implementation 53

gates, and combined with the RS sequence. This series of AND gates highlights the
di�erence between PGDBF and GDBF. In the GDBF decoder, all bits with I(k)n = 1
are �ipped, while in the PGDBF algorithm, only the bits with I(k)n = 1 and R(k)

n = 1
are �ipped. New values of the bits stored in v(k) are used for the next decoding
iteration.

At each iteration, the syndrome check module performs an OR operation on the
CNs values to verify whether the intermediate sequence v(k) is a codeword, in which
case the decoding process is halted. Another instance when the decoding halts is
when no codeword v(k) has been found, and a predetermined maximum number of
iterations Itmax has been reached, in which case a decoding failure is declared (the
iteration counter is implemented in the controller which controls the system and
is not shown in the above architecture). Note that all components in the decoder
architecture are combinational circuits except the registers v(k) and y. Therefore,
new values of the bits in v(k) are updated after each clock cycle. In order to optimize
the proposed architecture, the following two important issues are focused on. First,
as we identi�ed and published in [29], the hardware overhead induced by the RS is
not negligible with a naïve implementation, and di�erent low complexity methods to
generate the sequences R(k) are proposed in Section 4.3.2.1. Second, the optimized
architecture of the maximum indicator module is presented in order to maximize
the decoding throughput, as explained in Section 4.3.3.

4.3.2 Implementation of the perturbation block

4.3.2.1 Cyclically-shift truncated sequences

It is shown in Section 4.2 that the performance gain in the PGDBF algorithm comes
from the introduction of the random sequence R(k) which makes a perturbation in bit
�ips. In the theoretical description of the PGDBF, for each and every codeword, the
sequences at di�erent iterations

(
R(0), . . . , R(Itmax)

)
are independent and identically

distributed. However, a direct and naïve generation of the sequences R(k) with
linear feedback shift register (LFSR) random generators is costly, and requires many
times more registers than the non-probabilistic GDBF [29]. An approach to reduce
the hardware overhead required to generate the RS sequences is introduced in this
Section.

The �rst modi�cation proposed is to reduce the register requirements by storing
only S ≤ N random values in a shorter sequence denoted as R(k)

t , and produce the
RS sequence R(k) with a hard-wired duplication network. The duplication network
can be restricted to a simple copy and concatenate, as illustrated by the example
in Figure 4.7-a, or can be implemented as a more complex connection network,
allocating S register outputs to N signals. When S = N , the duplication network
is a simple copy of the register outputs, i.e. R(k) = R

(k)
t as shown in Figure 4.7-b.

Although the length S of the truncated sequence can take in principle any value,
in this implementation the possible values of S are restricted to integer multiples of
the QC-LDPC circulant size Z. The duplication network is also reinforced to copy
the register outputs to distinct circulant blocks, such that two copies of the same

54
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

..

….

A

B

s

S

…. 1 N 2

…
…. 1 N 2

R(k)

:

…. 1

N

2

….

1 2 …

1

2

.

.

.
.
.
.

s

LFSR RG Module

3

LFSR

Rt

….

A

B

s

S

…. 1 N 2

…
…. 1 N 2

R(k)

:

…. 1 N 2

….

…

1 2 …
Rt

..

..

R(k)

:

Rt

..

.. ..

..

B 1 2 …. N

..
1 2 …. N

1 2 …. s

..

A …. 1 N 2

R(k)

:

Rt

..

R(k)

:

Rt

..

(a) 1 2 …. N

..
1 2 …. N

1 2 …. s

(b) …. 1 N 2
R(k)

:

Rt

..

..
1 2 …. N

Figure 4.7: Generation of the random signals, (a) corresponds to the use of truncated
sequences, and (b) to the use of full sequences.

random bit do not belong to the same circulant block. The duplication network
comes at very little cost in hardware implementation.

The second modi�cation proposed is to re-use the same sequence of random bits
for all the decoding iterations, instead of generating a new random sequence at each
iteration. However, in order to preserve the performance gains of the PGDBF, the
sequences R(k)

t need to be distinct from one iteration to another. The proposed
solution is to simply rotate cyclically the sequence by one position, as shown in
Figure 4.7, such that:

R
(k+1)
t ((n+ 1) mod S) = R

(k)
t (n) n = 1, . . . , S (4.1)

With these two modi�cations, the objective is to reduce to the maximum the
hardware overhead induced by the RS sequence generation, while maintaining the
necessary randomness of the PGDBF algorithm. The proposed solution, named
Cyclically Shifted Truncated Sequences (CSTS), has also the following two advan-
tages with respect to the desired statistical properties of the random sequence. First,
the initialization step starts with a random truncated sequence R(0)

t having a given
number n0 = p0 S of 1's, the number of 1's in the complete sequence R(0) will be in
the range {cN/Sbn0, . . . , (cN/Sb+1)n0}. This means that the value of p0 �xed by
the statistical analysis in Section 4.2 would be the same for R(0)

t and R(0). Second,
since a cyclically shift on the sequences R(k)

t is proceeded from one iteration to an-
other, the number of 1's is kept constant throughout the decoding iterations if N/S
is an integer, and almost constant if N/S is not an integer.

One of the drawbacks of this reduced complexity method for generating the ran-
dom signals is the induced correlation. In the theoretical PGDBF, the assumption is
that the sequences R(k) should be independent from each others. However, it is ob-
vious that by using the duplication from R

(k)
t to R(k), and by shifting the sequences

from one iteration to another, the independence assumption is no longer valid. It is
also clear that the sequences will be more correlated as S becomes smaller. However,

4.3. The optimized hardware implementation 55

it have been veri�ed through Monte Carlo simulations that the induced correlation
has actually very little impact on the decoder performance. Figure 4.8 shows the
FER performance of the PGDBF with CSTS and the PGDBF with perfect RG.
The simulations are performed on a rate R= 1/2 regular (dv = 3, dc = 6) QC-LDPC
code, with circulant size Z = 54 and length N = 1296 and the BSC channel. It can
be seen in these results that the use of CSTS does not degrade the error correction
performance, except a very small values of S. This behavior has been also observed
for other code rates and lengths.

0 100 200 300 400 500 600 700
10

−6

10
−5

10
−4

10
−3

S

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

PGDBF

Theoretical, α= 0.02
CSTS, α= 0.02
Theoretical, α= 0.012
CSTS, α= 0.012

Figure 4.8: Decoding performance of CSTS-PGDBF as a function of the size S of
R

(0)
t .

4.3.2.2 Initialization with Linear Feedback Shift Register

It is shown in the previous section that once the initial truncated sequence R(0)
t has

been generated, the proposed simpli�ed CSTS architecture can build e�ciently the
RS sequences R(k), k = 0, . . . , Itmax, with no performance loss. In this section, two
solutions to initialize R(0)

t with S random binary values are described, which will
be compared in terms of hardware resource in Section 4.4. The proposed solutions
are based on two random generating methods, namely linear feedback shift register
(LFSR) and intrinsic valued random generator (IVRG). For simplicity, the CSTS
notation in the algorithm names is dropped and these names are then referred as
LFSR-PGDBF and IVRG-PGDBF.

A conventional method to produce pseudo-random bits is by making use of the
LFSR. The outputs of the LFSR registers de�ne an integer number, which is com-

56
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

pared to a pre-determined threshold in order to �nally produce a random bit as in
Figure 4.9. The value of the threshold is tuned so that the appearance probability
of 1's at the comparator output is equal to the desired value, i.e. p0 in our case.
For large enough LFSR memory η, the correlation of the output bit sequence could
be made negligible [40]. An η = 32-LFSR pseudo-random generator is used, to
initialize the truncated sequence R(0)

t for each noisy codeword, described in Figure
4.10. Note that the latency to produce the S random values can be neglected since
the LFSR can produce those values while the previous noisy codeword is decoded.

B

A<B?

A0:31

B0:31
Threshold

A31
A30 A0 A1 A2 A3 A4 A5

LFSR

Random
bit

…

Figure 4.9: A LFSR unit to generate 1 random bit.

1

2

.

.

.
.
.
.

s

LFSR RG Module

3

LFSR
Unit

A

B

s

R(k)

:

…. 1 N 2

…
…. 1 N 2

R(k)

:

…. 1 N 2

….

….

…

1 2 …

Figure 4.10: The LFSR RG module

One drawback of this approach corresponds to the event that R(0)
t contains only

binary ones, in which case all sequences R(k) are also �lled with binary ones, thus

4.3. The optimized hardware implementation 57

reducing the PGDBF to deterministic GDBF. The probability of having R(0)
t = 1

is equal to (p0)
S, which can be considered negligible only if it is smaller than the

target FER in the error-�oor region. For example, with p0 = 0.75 and S = 64,
p(R

(0)
t = 1) = 1e− 8. The LFSR method therefore requires an extra control module

that tests if R(0)
t 6= 0, or by forbidding too large values of p0 and too small values of

S.

4.3.2.3 Initialization with The Intrinsic-Valued Random Generator

In this section, we introduce a novel and speci�c way for generating a sequence of
random bits in an LDPC decoder without relying on an actual random generator.
Our Intrinsic-Valued Random Generator (IVRG) approach was based on the use of
the CN values which are already computed at the output of the CNU (see Figure
4.6). The CNU blocks compute the parity-check node values, and if the estimated
codeword contains errors, they typically contain a fraction of ones. We make use
of the CN values at the �rst iteration k = 0, which depend on the noisy codeword
generated by a random realization of the BSC channel. As a result, the sequence of
CN values will appear as a random-like sequence that can be used to initialize R(0)

t .
To simplify the discussion, let us consider the special case of S = M , the number

of parity-check equations in the LDPC code, such that R(0)
t can be �lled directly

with the complemented outputs of the CNUs at the �rst iteration, as described in
Figure 4.11. With the IVRG approach, we need to complement the CN values since
the number of unsatis�ed check nodes is usually smaller than the number of satis�ed
CNs, and we saw in the statistical analysis of Section 4.2 that the interesting range
of p0 is greater than 0.5.

Also, with the IVRG approach, the number of ones in R(0)
t cannot be controlled

and depends on the channel noise realization. Let us denote by p(c(0) = 1) (respec-
tively p(c(0) = 0)), the probability that a CN c is unsatis�ed (respectively satis�ed),
at the initialization k = 0. Because of the complement after the CN computation,
the probability of the binary ones in the RS sequence in the IVRG approach is equal
to p0 = p(c(0) = 0). For a BSC with crossover probability α, we can approximate
this probability by p0 = p(c(0) = 0) ' 1

2
+ 1

2
(1−2α)dc . For large values of α, as in the

waterfall region of the LDPC decoder, p0 converges to 1/2, and for small values of
α, in the error-�oor region, it converges to p0 = 1, which corresponds to the GDBF.

Contrary to the LFSR method, the case where R(0)
t = 1 is less problematic since

it happens only when the decision at the channel output is already a codeword,
and then no decoding iteration is required. Figure 4.12 shows the distribution of p0
for a (dv = 3, dc = 6, N = 1296) QC-LDPC code and two di�erent channel error
probabilities α. It can seen that p0, although not �xed to a constant value with the
IVRG, falls in the range of interest, predicted by the statistical analysis of Section
4.2.

Another feature of the IVRG initialization is that copying the CN values in the
R

(0)
t registers can be done on-the-�y, and does not induce any extra latency. Note

�nally that, although the discussion in this section has been made for S = M =
N dv/dc, the IVRG technique is also applicable for any value of S ≤M .

58
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

M

1

1

0 = Stop
decoding

2

dcM

M

2

.

.

.

1

CNUM . . .

1

CNU2 . . .
2

dc1

1

CNU1 . . .
2

dc0

1

Syndrome check

. . .

2

M

2

To Connection
network 2

.

.

.
.
.
.

.

.

.
M+1
M+2

N

IVRG Module

.

.

.

init

Figure 4.11: A block diagram of the Intrinsic-Valued Random Generator module for
S = M = N/2. The CNs values are copied into the R(0)

t at the �rst iteration, then
cyclically shifted at each iteration.

4.3. The optimized hardware implementation 59

0.75 0.8 0.85 0.9 0.95 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

p0

P
ro

ba
bi

lit
y

α= 0.02

α= 0.04

Figure 4.12: The distribution of p0 for the IVRG-PGDBF and a (dv = 3, dc = 6, N =
1296) QC-LDPC code, for α = 0.02 and α = 0.04.

4.3.3 The optimized architecture of the maximum �nder

Another important module of the PGDBF decoder is the maximum indicator (MI)
module, which contains the critical path of the global architecture (Figure 4.6), and
therefore limits the achievable working frequency and decoding throughput [41]. A
rigorous survey on the maximum �nder architectures can be found in [41], in which
the authors con�rmed that the implementation of �nding the maximum value out of
a list of N numbers is always a trade o� between computation cost and area/energy
consumption. Since the goal is to get an optimized decoder with respect to multiple
objectives, including hardware cost minimization, but also fast decoding throughput,
the minimization of the critical path for the MI module is focused on, even if it comes
at the cost of an increased hardware resource. This work, therefore, leaves aside the
solutions which minimize the area/consumption, such as the Traditional Binary Tree
(TBT) method, and focuses on the method which maximizes the decoding speed,
i.e. the Leading-zero Counting Topology (LCT) [41]. For simplicity, the iteration
index (k) is omitted in this section.

The timing e�ciency of LCT comes from the principle of processing the bits of
an operand independently from other bits. In order to do this, the LCT method
requires the operand to be represented in a special format called one-hot format
with q = δ + 1 quantization bits, where δ is the maximum value of the operand. In
order to �nd the maximum in a set of N values by LCT, a q-bits vector is produced
by applying N -inputs bit-wise OR operations on the N one-hot-format values. The
maximum value is then sorted out by using a priority encoder on the results of

60
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

these OR operations [41]. The complexity of LCT maximum �nder comes from the
N -inputs OR gates, and a reduction of the number of N -inputs OR gates would
reduce signi�cantly the complexity of decoders. In the proposed LCT-based MI for
PGDBF (δ = dv + 1), since Emax can never be equal to 0 except when y is already
a codeword or v(k) is converging to a codeword, the optimized implementation of
the LCT and reduction of its complexity are obtained by representing the energy
function values in a format with the length of q− 1 bits (instead of q bits) such that
En = Eq−2

n ...E1
nE

0
n, E

j
n = 1 if En = j + 1, Ei

n = 0, ∀i > j and Ei
n are don't-care

otherwise. By doing this, all the operation of LCT is preserved while we can reduce
by 1 N -inputs OR-gate.

We can further reduce by 1 the N -inputs OR-gates by applying logic minimiza-
tion. Indeed, it can easily ignore the case of Emax = 1 and consider only the re-
maining possibilities (i.e En = j, where j = 2, . . . , q−1). The case of Emax = 1 will
be automatically considered when all the other possibilities are discarded. Thus,
the number of N -inputs OR-gate can be �nally reduced to only q − 2 (originally
q). Figure 4.13 shows the detailed circuits for energy computation and MI blocks
of dv = 3 LDPC codes. The energy computation block (Figure 4.13(a)) produces
the energy value, En, for VN vn in the required format by using the neighbor CN
values and XOR-ing results of vn to yn as its inputs. The MI block (Figure 4.13(b))
requires only 3 N -inputs OR gates (instead of 5) and block C2 realizes the logic
minimization process as mentioned above. The In, n = 1, . . . , N , is produced by the
circuit as in Figure 4.13(b) (block C3). In the C3 circuit, In = 1, n = 1 . . . N if and
only if Maj = 1 and Ej

n = 1, 0 ≤ j ≤ q − 1, concurrently, otherwise In = 0.

. . .
C2

. . .

Ma0

Mak
. . .

E(0)
2

Ma0

E(1)
2

Ma1

E(k)
2

Mak

I2

. . .

E(0)
N

Ma0

E(1)
N

Ma1

E(k)
N

Mak

.

IN

ECn

E0
n

E3
n

E2
n

E1
n

v(n)y(n)

cv(n)(1)

cv(n)(2)

cv(n)(3)

E1
1

E1
2

E1
N

E2
1

E2
2

E2
N

E3
1

E3
2

E3
N

. . .

. . .

. . .

. . .

Ma0

Ma1

Ma2

Ma3

E0
1

Ma0

E1
1

Ma1

E2
1

Ma2

I1

E3
1

Ma3

E0
N

Ma0

E1
N

Ma1

E2
N

Ma2

IN

E3
N

Ma3

. . .

C2

C3

(a)

. . .
C2

. . .

Ma0

Mak
. . .

E(0)
2

Ma0

E(1)
2

Ma1

E(k)
2

Mak

I2

. . .

E(0)
N

Ma0

E(1)
N

Ma1

E(k)
N

Mak

.

IN

ECn

E0
n

E3
n

E2
n

E1
n

v(n)y(n)

cv(n)(1)

cv(n)(2)

cv(n)(3)

E1
1

E1
2

E1
N

E2
1

E2
2

E2
N

E3
1

E3
2

E3
N

. . .

. . .

. . .

. . .

Ma0

Ma1

Ma2

Ma3

E0
1

Ma0

E1
1

Ma1

E2
1

Ma2

I1

E3
1

Ma3

E0
N

Ma0

E1
N

Ma1

E2
N

Ma2

IN

E3
N

Ma3

. . .

C2

C3

(b)

Figure 4.13: Detailed circuits of implemented Energy Computation and Maximum
Indicator blocks for dv = 3 LDPC codes, (a) Energy Computation block, (b) Maxi-
mum Indicator block.

4.4 Synthesis results

4.4.1 PGDBF Synthesis Results

In this section, we report the ASIC results at post-synthesis level, of the proposed
PGDBF implementations. The synthesis has been done targeting a 65nm CMOS

4.4. Synthesis results 61

process technology, using Synopsys tools.
For the �rst synthesis comparison, our goal is to demonstrate the area gains that

one can achieve using the CSTS-PGDBF approach, i.e. using short size S for the
random sequence R(0)

t . The results are reported in Table 4.1 for a QC-LDPC code,
with parameters (dv, dc) = (3, 6), R = 1/2, N = 1296 and circulant size Z = 54
(denoted as dv3R050N1296). In this Table, we have constrained the implementations
to run at the same clock frequency, by setting the timing constraint identical for all
decoders, �xed to 8 ns. We choose this strategy to measure precisely the impact of S
on the hardware cost, even if the working frequency is not maximized. We indicate
in brackets the additional cost in percentage compared to the deterministic GDBF
implementation. As a �rst remark, we can see that the LFSR-based and the IVRG-
based implementations have similar costs. So, both solutions for the implementation
of the RS sequence are equally competitive with respect to the hardware resource
usage. As expected, the overhead is roughly proportional to the size of the RS
memory S, and becomes very small (6% − 7%) for small values of S ≤ 4Z. As
we demonstrate in the next section, this small value of S is su�cient to obtain
important error correction gains.

We have veri�ed that the same conclusions could be drawn for di�erent LDPC
codes, with various lengths, rates and values of dv. The synthesis results are reported
in table 4.2. For the same codeword length N and both for dv = 3 and dv = 4, the
overhead is lesser for rate R = 3/4, than for rate R = 1/2. This comes from the
fact that the value of S = M is smaller for larger rates. For the same rate and
length, we can see that the overhead is slightly smaller for dv = 4 than for dv = 3:
10% − 11% against 12% − 13% for R = 1/2, and 6% − 7% against 8% − 9% for
R = 3/4. Our PGDBF implementations are therefore more advantageous as the
rate increases. Finally, for a very long codeword and high rate with parameters
(dv, dc) = (4, 34), R = 0.88, N = 9520, the extra overhead needed to implement the
PGDBF becomes almost negligible, as low as 4%− 5%.

dv3R050N1296 - AREA (µm2)

S = Z = 54 S = 4Z = 216 S = 12Z = 648 S = 24Z = 1296

GDBF 53692 (+0%)

LFSR-PGDBF 55837 (+4.00%) 57342 (+6.80%) 60360 (+12.42%) 64897 (+20.87%)

IVRG-PGDBF 55586 (+3.53%) 57295 (+6.71%) 60815 (+13.27%) N/A

Table 4.1: Hardware resource used to implement the PGDBF decoders as a function
of S. The percentages in brackets indicate the additional hardware compared to the
GDBF.

In the second synthesis comparison, we report maximum working frequency and
throughput in Tables 4.3 and 4.4. Table 4.3 shows the results for the GDBF, PGDBF
and two MS decoders taken from the literature [24, 25]. The code used for the
GDBF, PGDBF and [24] is the (dv, dc) = (3, 6), R = 1/2, N = 1296, Z = 54 LDPC
code, while [25] considers the IEEE 802.11n standard codes with various lengths and

62
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

AREA (µm2)

dv= 3 dv= 4

dc = 5 dc = 6 dc = 9 dc = 8 dc = 12 dc = 34

R040N155 R050N1296 R075N1296 R050N1296 R075N1296 R088N9520

GDBF 6601 53692 54131 66367 67170 493408

(+0.00%) (+0.00%) (+0.00%) (+0.00%) (+0.00%) (+0.00%)

LFSR-PGDBF (S = M) 7777 60360 58526 73042 71561 515061

(17.82%) (12.42%) (8.12%) (10.06%) (6.54%) (4.39%)

IVRG-PGDBF (S = M) 7599 60815 58605 73480 71644 516216

(+15.12%) (+13.27%) (+8.27%) (+10.72%) (+6.66%) (+4.62%)

Table 4.2: Hardware resource used to implement GDBF and PGDBF decoders for
di�erent LDPC codes from short to very long codeword lengths and di�erent code
rates. The values in brackets are percentage of additional hardware compared to
GDBF

rates. In Table 4.4, a large length and high rate LDPC code is considered, and our
decoders are compared with the MS implementation of [26].

For the GDBF and the PGDBF decoders, we performed the synthesis with the
objective of optimizing the timing constraint, which results in the maximum fre-
quency at which the decoder can operate.

We furthermore considered the following two scenarios: one scenario when the
RS sequence is applied from the beginning of the decoding, and the other scenario
when the deterministic GDBF is used for the �rst 10 iterations, and the RS sequence
used for the remaining iterations. The reason of this later scenario is twofold. First,
our statistical analysis from Figure 4.2 showed that using the random sequences
during the �rst iterations could be detrimental to the decoding performance, and
that it is better to trigger the random feature of the PGDBF after a small number of
iterations. Second, many of the noisy codewords do not require the strength of the
PGDBF, and a simple GDBF could already correct them in a few iterations. Since
the GDBF converges faster than the PGDBF, the average throughput is larger if
we use GDBF, instead of the PGDBF, for the �rst 10 iterations. To support this
claim, we plotted on �gure 4.14 the average number of iterations as a function of α,
for the dv = 3, dc = 6, N = 1296, QC-LDPC code (Note that in Figure 4.14(a), the
randomness is applied at the beginning of decoding process in PGDBF decoders).
It can be seen that when we start using the PGDBF after 10 iterations (see Figure
4.14(b)), the average number of iterations is always lower or equal than the deter-
ministic GDBF. We will use this scenario for the average throughput computations.
The average throughput (θ) of the decoders is computed as θ = fmax∗N

Itave∗Nc where fmax
is the maximum working frequency provided by the synthesizer, Itave is the average
number of iterations and Nc is the number of clock cycles needed for one decoding
iteration.

4.4. Synthesis results 63

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

10

15

BSC crossover probability, α

N
um

be
r

of
 it

er
at

io
ns

 in
 A

ve
ra

ge

GDBF
IVRG−PGDBF S= 4Z
LFSR−PGDBF, S= 4Z, p0=0.9

LFSR−PGDBF, S= 4Z, p0=0.7

LFSR−PGDBF, S= 4Z, p0=0.5

MS

(a)

0 0.005 0.01 0.015 0.02 0.025
1

2

3

4

5

6

7

8

9

10

BSC crossover probability, α

N
um

be
r

of
 it

er
at

io
ns

 in
 A

ve
ra

ge

 GDBF
IVRG−PGDBF from k =0

GDBF for k ≤ 10, IVRG−PGDBF for k>10
LFSR−PGDBF from k =0
GDBF for k ≤ 10, LFSR−PGDBF for k>10
Layered MS

(b)

Figure 4.14: Average number of iterations for GDBF, PGDBF and MS decoders
on the dv3R050N1296 regular LDPC code. In Figure (a), randomness is applied
at the beginning of decoding process in PGDBF decoders. In Figure (b). PGDBF
decoders are with S = 4Z and p0 = 0.7 in LFSR-PGDBF

Code length Code rate AREA kGE fmax Nc FER = 1e− 5 α = 0.01

(µm2) (MHz) Itave θ (Gbit/s) Itave θ (Gbit/s)

GDBF 1296 1/2 87810 75 222 1 2.00 (@α = 0.005) 144.00 2.95 (FER = 3e−4) 97.63

LFSR-PGDBF (S = 4Z = 216) 1296 1/2 100521 (+14.5%) 86 232 1 3.50 (@α = 0.012) 86.11 2.88 (FER = 4e−6) 104.65

IVRG-PGDBF (S = 4Z = 216) 1296 1/2 92645 (+5.5%) 79 232 1 3.50 (@α = 0.012) 86.11 2.88 (FER = 5e−6) 104.65

MS [24] 1296 1/2 720000 615 250 6 2.34 (@α = 0.025) 23.08 1.29 (FER = 1e−7) 41.86

MS [25] 648 - 1944 1/2 - 5/6 1023000 - 400 - 108 - 337 (Mbps) at Itmax = 20− 25 iterations

1.39 - 4.34 (Gbps) at Itave = 1.94

Table 4.3: Frequency and throughput comparison between GDBF decoder, PGDBF
decoders, and MS decoders [24, 25]. QC-LDPC (dv, dc) = (3, 6), R = 1/2, N = 1296,
Z = 54.

As can be seen in Table 4.3, the hardware cost of the MS decoders is a lot
larger than the BF-based decoders, and requires 7 to 10 times more area than the
PGDBF. Our implementation of PGDBF allows to perform one iteration in Nc = 1
clock cycle, which results in a very important throughput gain of GDBF and PGDBF
decoders over MS. We compared the average throughput of the decoders under two
settings. For the same target performance, i.e. at FER= 1e−5, the PGDBFs have
a throughput 4 times larger than the MS of [24], and only 67% lower than the
deterministic GDBF. The second setting corresponds to all decoders working at the
same level of channel noise, i.e. α = 0.01. In this case, the PGDBFs have a larger
throughput than GDBF and a gain of two orders of magnitude in FER. Compared to
MS, the PGDBF have poorer performance (FER= 5e−6 compared to FER= 1e−7),
but with 2 times faster throughput. The conclusions are con�rmed when comparing
with the MS architecture of [25], in which the authors report an architecture for
which the area is 10 times larger than our PGDBF solutions, and with a throughput
smaller than the one in [24].

64
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

Code length Code rate AREA kGE fmax Nc FER = 5e− 7 α = 0.03

(µm2) (MHz) Itave θ (Gbit/s) Itave θ (Gbit/s)

GDBF 9520 0.88 514760 173 100 1 2.1 (@α = 0.001) 453.33 4.73 (FER = 2e−4) 201.27

LFSR-PGDBF (S = M = 8Z = 1120) 9520 0.88 533394 (+3.61%) 182 100 1 3.95 (@α = 0.0025) 241.01 4.68 (FER = 2e−6) 203.42

IVRG-PGDBF (S = M = 8Z = 1120) 9520 0.88 533574 (+3.66%) 121 100 1 3.95 (@α = 0.0025) 241.01 4.68(FER = 2e−6) 203.42

MS [26] 180nm 8192 0.875 11300000 - 317 - Itmax = 15, θ = 5.1

scaled to 65nm 8192 0.875 1470000 - 877.8 - Itmax = 15, θ = 14.12

Table 4.4: Frequency and throughput comparison between GDBF, PGDBF decoders
and MS decoder from [26]. QC-LDPC (dv, dc) = (4, 34), R = 0.88, N = 9520,
Z = 140.

Another demonstration of the advantages of our PGDBF implementations is
presented in Table 4.4, in which we considered LDPC code parameters that are
especially interesting for storage applications. The code used for GDBF and PGDBF
decoders is a QC-LDPC with parameters (dv, dc) = (4, 34), R = 0.88, N = 9520,
Z = 140. The average number of iterations is considered for the GDBF and PGDBF
decoders, while we only have access to the maximum number of iterations for the
MS architecture of [26]. For this long, high rate code, and S = M , the area overhead
of our PGDBF compared to GDBF is slightly smaller than for the shorter code of
Table 4.3, which means that our implementations are more and more e�cient as the
code rate and codeword length increase. Compared with the MS implementation of
[26], we can see that our PGDBF implementations occupy 3 times less area, while
having a throughput at least 4 times faster than the MS (taking into account the
di�erence between Itmax and Itave).

Overall, we can conclude that only with a few percents of hardware overhead
compared to the classical GDBF, our proposed implementations of the PGDBF
represent an interesting and competitive solution for very high throughput decoders.

4.4.2 PGDBF Performance

In this section, we illustrate the di�erence in decoding performance of PGDBF
decoders in comparison with MS and GDBF decoders, on the BSC channel. The
MS decoder is a layered version with 6 quantization bits for the APP-LLR and 4
quantization bits for the extrinsic messages, with a maximum of Itmax = 20 decoding
iterations. We consider the regular LDPC codes for the simulations: a QC-LDPC
code with parameters dv = 3, dc = 6, rate 0.5, N = 1296 (dv3R050N1296), a
QC-LDPC code with dv = 4, dc = 8, rate 0.5, N = 1296 (dv4R050N1296) and a
QC-LDPC code with dv = 4, dc = 12, rate 0.75, N = 1296 (dv4R075N1296). For the
GDBF and the PGDBF, the maximum number of iterations is set to Itmax = 300.

In Figure 4.15, we show the result of testing di�erent implementations of the
PGDBF decoder, i.e. the IVRG-PGDBF and the LFSR-PGDBF with di�erent RS
probabilities p0, on the dv3R050N1296 code. We have also simulated the LFSR-
PGDBF with varying values of the RS probabilities p(k)0 along the iterations, under
the following setting: p0 = 0.9 for the �rst 100 iterations, p0 = 0.7 if 100 < k ≤ 200,
and p0 = 0.5 if 200 < k ≤ 300. We labeled this decoder V-LFSR-PGDBF. It
can be seen that all PGDBF decoders have roughly the same performance, as well

4.4. Synthesis results 65

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
IVRG−PGDBF, S= 4Z
LFSR−PGDBF, S= 4Z, p0= 0.9

LFSR−PGDBF, S= 4Z, p0= 0.7

LFSR−PGDBF, S= 4Z, p0= 0.5

V−LFSR−PGDBF
MS

Figure 4.15: Decoding performance of GDBF, LFSR-PGDBF, IVRG-PGDBF and
MS decoders on the LDPC code dv = 3, dc = 6, N = 1296 (dv3R050N1296).

as the V-LFSR-PGDBF, which con�rms that a wide range of value of p0 achieve
approximately the same coding gain, and also that LFSR and IVRG versions are
both competitive in terms of performance.

The PGDBF decoders perform halfway between the GDBF and the MS decoder.
For the IVRG-PGDBF, the gain compared to GDBF decoder comes at only 6% chip
area overhead and no throughput degradation as shown in Table 4.3. The perfor-
mance loss compared to MS was expected, and could be acceptable for applications
that are very demanding in energy/throughput.

Fig. 4.16(a) and 4.16(b) show the decoding performance of PGDBF decoders for
increasing values of the random sequence length S, for the dv4R050N1296 code. As
expected, the greater value of S, the better decoding performance and S = 12Z is
su�cient to reach the performance of the theoretical PGDBF. The IVRG-PGDBF
with S = 12Z performs even better compared to the theoretical PGDBF at small α.
For example FER = 2e−6 for the IVRG-PGDBF compared to FER = 4e−6 for the
theoretical PGDBF, at α = 0.026. This interesting behavior can be explained by
the fact that IVRG-PGDBF has the feature of adapting the number of ones in the
CN value sequence to the channel noise realization, by producing more ones when
the channel contains many errors, and less ones when it contains only a few errors.
This feature of the IVRG-PGDBF can be interpreted as a PGDBF with adaptive
p0 parameter, the adaptation coming from the channel quality. Another interesting
result is that the PGDBF decoders approach closely the performance of the MS
decoder especially in the waterfall region. This means that for dv = 4 codes, the

66
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
Theoretical PGDBF
LFSR−PGDBF, S= Z
LFSR−PGDBF, S= 4Z
LFSR−PGDBF, S= 8Z
LFSR−PGDBF, S= 12Z
MS

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
Theoretical PGDBF, p0= 0.9

IVRG−PGDBF, S= Z
IVRG−PGDBF, S= 4Z
IVRG−PGDBF, S= 8Z
IVRG−PGDBF, S= 12Z
MS

(b)

Figure 4.16: E�ect of the RS length S on the decoding performance for the
dv4R050N1296 code: (a). LFSR-PGDBF decoders (p0 = 0.9), (b). IVRG-PGDBF

PGDBF solution is even more competitive than for dv = 3 codes. We show more
simulation results in Figure 4.17 of dv3R050N1296 and 4.18 for dv4R075N1296 to
recon�rm all above conclusions.

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

IRISC−dv3−R050−N1296, Itermax300

GDBF
PGDBF ideal RG
LFSR−PGDBF S= 12Z
LFSR−PGDBF S= 8Z
LFSR−PGDBF S= 4Z
LFSR−PGDBF S= Z

(a)

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

IRISC−dv3−R050−N1296, Itermax300

GDBF
PGDBF ideal RG
IVRG−PGDBF S= 12Z
IVRG−PGDBF S= 8Z
IVRG−PGDBF S= 4Z
IVRG−PGDBF S= Z

(b)

Figure 4.17: E�ect of the RS length S on the decoding performance for the
dv3R050N1296 code: (a). LFSR-PGDBF decoders (p0 = 0.7), (b). IVRG-PGDBF.

Finally, we present on �gure 4.19 the performance of our decoders for the (dv, dc) =
(4, 34), R = 0.88, N = 9520, Z = 140 of table 4.4. For this code, the PGDBF
is especially very good as it close to the MS results in the waterfall region, and
starts showing an error �oor at FER < 10e−5. This very good performance results
compared to the deterministic GDBF comes at only 3.5% extra hardware cost, as
indicated in table 4.4.

4.4. Synthesis results 67

10-3 10-2 10-1

BSC crossover probability

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

IRISC-dv4-R075-N1296, Itermax300

GDBF
PGDBF ideal RG
LFSR-PGDBF S= 48Z= N
LFSR-PGDBF S= 12Z= M
LFSR-PGDBF S= 8Z
LFSR-PGDBF S= 4Z
LFSR-PGDBF S= Z

(a)

10-3 10-2 10-1

BSC crossover probability

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

IRISC-dv4-R075-N1296, Itermax300

GDBF
PGDBF ideal RG
IVRG-PGDBF S= 12Z
IVRG-PGDBF S= 8Z
IVRG-PGDBF S= 4Z
IVRG-PGDBF S= Z

(b)

Figure 4.18: E�ect of the RS length S on the decoding performance for the
dv4R075N1296 code: (a). LFSR-PGDBF decoders (p0 = 0.9), (b). IVRG-PGDBF.

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
IVRG−PGDBF, S= 8Z= M
LFSR−PGDBF, S= 8Z= M, p0= 0.9

MS

Figure 4.19: Decoding performance of GDBF, PGDBF (Itmax = 300) and MS
(Itmax = 20) decoders on a QC-LDPC code with dv = 4, Rate = 0.88, Z = 140,
M = 1120 and N = 9520.

68
Chapter 4. Efficient hardware implementation of Probabilistic Gradient

Descent Bit Flipping

4.5 Conclusion
We proposed an e�cient hardware architecture to implement the PGDBF in

this chapter. We have focused on minimizing the resource overhead needed to im-
plement the random perturbations of the PGDBF and on the optimization of the
maximum indicator unit. Our random perturbation block is based on the use of a
short random sequence that is duplicated to fully apply the PGDBF decoding rules.
We also propose two di�erent methods to initialize the short RS, LFSR-based and
IVRG-based, with equivalent hardware overheads but with di�erent behaviours on
di�erent LDPC codes. We showed, by implementing the LFSR-PGDBF and IVRG-
PGDBF decoders on ASIC, that the proposed random perturbations require a very
small extra complexity compared to the GDBF. We further improve the decoding
throughput of our BF decoders by optimizing the Maximum Indicator using the
LCT maximum �nder in order to shorten the critical path. Compared to the MS
decoder, the proposed PGDBF implementation o�er 5 to 7 times faster throughput
and requires 7 to 10 times less chip area, at the cost of a performance degradation,
which is in all our simulations smaller than all the known hard decision decoders.
These advantages in throughput and area make our PGDBF decoders a competitive
hard-decision LDPC decoding solution for current and future standards.

Chapter 5

A Quasi-Cyclic friendly architecture

for LDPC decoders : the

Variable-Node Shift Architecture

5.1 Introduction
This chapter presents a new decoding architecture for the QC-LDPC codes,

called as Variable-Node Shift Architecture (VNSA). The VNSA deploys the ho-
mogeneous construction property of the QC-LDPC codes to shift the memory of
the decoders while preserving the decoding operations properly as the conventional
implementation architecture. It is shown in this chapter that the VNSA-based
decoders signi�cantly reduce the complexity and achieve the better decoding perfor-
mance compared to the conventional decoder implementations. These advantages
come from the fact that by shifting the memory of the decoders, the variable node
computation can be processed di�erently when di�erent types of variable nodes im-
plemented. This dynamical processing helps the decoder break some trapping states
and converges while the decoder with conventional implementation does not. The
advantages also come when some variable node implementations in VNSA are sim-
pler than those of the conventional implementation making the general complexity
reduced. The chapter is presented as following. The VNSA principle is �rstly pre-
sented in the generic form in Section 5.2 since it can be applied to di�erent decoding
algorithms. The major modi�cations of VNSA are highlighted by putting on com-
parison to the conventional implementation. The illustrations of VNSA applications
on di�erent types of LDPC decoders are presented in the next 2 sections (Section
5.3 and 5.4) for the edge-type memory and node-type memory decoders in which
the VNSA is shown to be well adapted for all of these decoding types. Although
the VNSA is an alternative method beside the conventional implementation, its ad-
vantages come when di�erent functions are implemented in di�erent hardware for
VNs or CNs. These advantages are either gain in decoding performance and/or in

69

70
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

the complexity which is brie�y discussed in Section 5.5. In order to more emphasize
the advantages of the VNSA, an interesting example of the VNSA are shown which
is the implementation of the Probabilistic Gradient Descent Bit Flipping basing on
the VNSA (called VNSA-PGDBF) in Section 5.6. It is shown that the outstanding
decoding performance of PGDBF is preserved in VNSA-PGDBF while the decoder
complexity is signi�cantly reduced and even smaller than the deterministic GDBF.
A further simpli�ed version of VNSA-PGDBF is also introduced, called as the impre-
cise VNSA-PGDBF (VNSA-IM-PGDBF). This VNSA-IM-PGDBF not only reduces
importantly the complexity compared to the VNSA-PGDBF but also improves the
decoding performance in some testing case. The synthesis results and decoding
performance are presented in Section 5.7. Section 5.8 concludes the chapter.

5.2 The Variable-Node Shift Architecture
Since this chapter focuses on the decoders for QC-LDPC codes, some modi�ca-

tions on the indexing notations are newly introduced in order to ease the discussion.
In QC-LDPC code, N VNs can be split into nc groups of Z corresponding to nc
columns of HB and similarly, M CNs can also be grouped into nr groups of Z corre-
sponding to nr rows ofHB. We denote the j-th VN (1 ≤ j ≤ Z) belonging to the i-th
column (1 ≤ i ≤ nc) of the base matrix HB as vi,j, similarly the b-th CN (1 ≤ b ≤ Z)
belonging to the a-th row (1 ≤ a ≤ nr) as ca,b. In Tanner graph, a VN vi,j connects
to a CN ca,b when H(a∗Z+b, i∗Z+j) = 1. The set of CNs connected to the VN vi,j
are denoted as N (vi,j) and similarly, N (ca,b) as a set of VNs connected to CN ca,b.
The VN and CN degree are de�ned as |N (vi,j)| = dv and |N (ca,b)| = dc ∀i, j, a, b. A
vector x = {xi,j|1 ≤ i ≤ nc, 1 ≤ j ≤ Z} = {x1,1, x1,2, . . . , xnc,Z−1, xnc,Z} ∈ {0, 1}N
is called a codeword if and only if HxT = 0. x is sent through a BSC channel and
y = {yi,j|1 ≤ i ≤ nc, 1 ≤ j ≤ Z} = {y1,1, y1,2, . . . , ync,Z−1, ync,Z} denotes the output
of this channel.

In order to highlight the novelty of VNSA, in this section, the conventional
architecture of QC-LDPC decoders are �rstly presented. On top of this conventional
architecture, the VNSA is described and analyzed.

5.2.1 The Conventional Architecture of QC-LDPC decoders

LDPC decoders are generally implemented by the connection network blocks con-
necting two groups of implemented processing units, the variable node processing
units (VNUs) and the check node processing units (CNUs). The computed mes-
sages are iteratively passed between the VNUs and CNUs through these connection
networks during the decoding process. The generic and conventional architecture of
LDPC decoders is presented in Figure 5.1 in which the circles represent the VNUs
and squares represent the CNUs. The memory elements are signi�ed by the clock
signals (clk). The main di�erence between QC-LDPC and the general LDPC im-
plementations is that the interconnections are very constructive in QC-LDPC such
that two consecutive VNUs connect to two consecutive CNUs (see in de�nition 1)
as illustrated in the Figure 5.2.

5.2. The Variable-Node Shift Architecture 71

clk clk
C1,Z C1,2 C1,1

 B1,1

VNU1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 B1,Z

… VNU1,2 VNU1,Z

…

…

 B1,1

VNU1,1

 C1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 C1,2

 B1,Z

 C1,Z

… VNU1,2 VNU1,Z

…

…

clk clk clk

clk

clk

clk

clk clk

clk clk
…

…

(k) B1,1
(k) B1,2

(k) B1,Z

(k) Bu1,1
(k) Bu1,2

(k) Bu1,Z (k) Bu1,1
(k) Bu1,2

(k) Bu1,Z

(k) B1,1
(k) B1,2

(k) B1,Z

Figure 5.1: The conventional architecture of QC-LDPC.

…

…

…

…

…

…

Z Z Z

…

…

…

…

…

…

Z Z Z

Figure 5.2: The Tanner graph of a QC-LDPC code.

De�nition 1. Two VNUs vi1,j1 and vi2,j2, 1 ≤ i1, i2 ≤ nc, 1 ≤ j1, j2 ≤ Z (or two
CNUs ca1,b1 and ca2,b2, 1 ≤ a1, a2 ≤ nr, 1 ≤ b1, b2 ≤ Z), are called to be consecutive
if they are in the same column (row) of the base matrix HB, i1 = i2 (a1 = a2), and
are in the positions j1, j2 (b1, b2) such that j2 = j1%Z + 1 (b2 = b1%Z + 1) where
% is the modulus operation.

The memory elements B is implemented to store the intermediate passing mes-
sages and C are allocated to store the channel estimation. The size of these memory
elements and their organization strongly depend on the decoding algorithms as well
as the channel models. For the hard decision decoding algorithms such as GDBF,
PGDBF on the BSC channel [15], B and C are 2 1-bit registers. For the soft deci-
sion decoding algorithms such as quantized MS, Layered MS on the AWGN channel
[25][42], C is a register bank of size q where q is the quantization length while B
contains multiple register banks of size q to store di�erent extrinsic messages. We
index B and C (as in Figure 5.1) to follow the indexing of VNUs and CNUs in
QC-LDPC decoder above. Also, the superscript (k) indicates the values at iteration
k. The organization of B is a�ected by di�erent decoding algorithms and decoder
scheduling can be found more detail in the Section 5.3 and 5.4.

72
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

The operations of LDPC decoding algorithms on the generic architecture are
brie�y described as following. At the decoding initialization phase, B and C are
initialized by the channel estimation. A decoding iteration can be roughly divided
into 2 steps. In the �rst step, the messages stored in B are transmitted to the
CNUs by the connection network 1. The updated messages are computed by these
CNUs. In the second step, the updated messages from CNU are propagated by the
connected network 2 to the corresponding VNU in which the new messages Bu are
produced based on the CNU messages and the channel estimation from C memory.
This updated messages Bu are stored into B memory when clock event occurs
such that B(k+1)

i,j = Bu
(k)
i,j , and the decoder starts a new decoding iteration. Since

the memory B is updated after each clock cycle, one decoding iteration is �nished
by only one clock cycle. Although there are di�erences in the detail of decoder
implementations such as the place to allocate the memory, the nature of stored
messages..., this generic architecture can fully describe the operations of a generic
LDPC decoder and is the generalization of many LDPC decoding implementations
[24][25][42].

To conclude this section, it should be noted that in the generic architecture, the
updated messages Bu(k)i,j is stored in the same memory location Bi,j for all iterations

such that B(k+1)
i,j = Bu

(k)
i,j . This makes each VN (and also, each CN) processed on the

same VNU (CNU) all during the decoding process. The proposed VNSA, presented
in the next section, makes change the storing location of Bu leading the VNs (and
also the CNs) processed on di�erent implemented hardware.

5.2.2 The Variable-Node Shift Architecture for QC-LDPC
decoders

The key feature of the VNSA is that the consecutive memory elements are made
connected to cyclically store the updated messages from one iteration to another
during the decoding process. As described in Figure 5.3(b), the major change of
VNSA compared to the conventional implementation (Figure 5.3(a)) is that the
updated messages Bu of a VNU is stored in the memory element B of the consec-
utive VNU instead of its own memory. In order to do that, the connection doing
B

(k+1)
i,j = Bu

(k)
i,j is replaced by another connection doing B(k+1)

i,(j%Z+1) = Bu
(k)
i,j . After

each iteration, all the intermediate messages of the VNs (in all column of the base-
matrix) are cyclically shifted by 1. The same modi�cation is applied on the channel
estimation storing memory C, i.e. the memory sequence C is also cyclically shifted
after each iteration, C(k+1)

i,(j%Z+1) = C
(k)
i,j . The global VNSA architecture is described

in Figure 5.3(b).
In VNSA, the computation of VNs and CNs are proceeded in di�erent VNUs

and CNUs while preserving the decoding behavior identically to the conventional
implementation. This can be clari�ed as following. In general, a VN is unique to
another by its channel estimation value and its neighbor set. The computation of
a VN is preserved, even in di�erent computing VNU, only when the VNU receives
correctly the value of the VN channel estimation and messages from its own CN

5.2. The Variable-Node Shift Architecture 73

clk clk
C1,Z C1,2 C1,1

 B1,1

VNU1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 B1,Z

… VNU1,2 VNU1,Z

…

…

 B1,1

VNU1,1

 C1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 C1,2

 B1,Z

 C1,Z

… VNU1,2 VNU1,Z

…

…

clk clk clk

clk

clk

clk

clk clk

clk clk
…

…

(k) B1,1
(k) B1,2

(k) B1,Z

(k) Bu1,1
(k) Bu1,2

(k) Bu1,Z (k) Bu1,1
(k) Bu1,2

(k) Bu1,Z

(k) B1,1
(k) B1,2

(k) B1,Z

(a)

clk clk
C1,Z C1,2 C1,1

 B1,1

VNU1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 B1,Z

… VNU1,2 VNU1,Z

…

…

 B1,1

VNU1,1

 C1,1

 CNU1,1 CNU1,2 CNU1,Z …

Connection Network 1

Connection Network 2

…

…

 B1,2

 C1,2

 B1,Z

 C1,Z

… VNU1,2 VNU1,Z

…

…

clk clk clk

clk

clk

clk

clk clk

clk clk
…

…

(k) B1,1
(k) B1,2

(k) B1,Z

(k) Bu1,1
(k) Bu1,2

(k) Bu1,Z (k) Bu1,1
(k) Bu1,2

(k) Bu1,Z

(k) B1,1
(k) B1,2

(k) B1,Z

(b)

Figure 5.3: The generic QC-LDPC decoder architectures: Figure 5.3(a) the con-
ventional architecture. Figure 5.3(b) the proposed Variable-Node Shift Architecture
(VNSA).

neighbors. Similarly, the computation of a CN can be proceeded on di�erent CNU
preserving the same results as the conventional implementation (which does not
change the CNU) provided that the CNU receives accurately the messages from its
own VN neighbors. The VNSA on QC-LDPC satis�es all of these conditions that,
by the cyclic shift of the memory B and C after an iteration, the computation of VNs
and CNs results are identical to the conventional implementation. Indeed, Figure
5.4 illustrates the arriving of messages to a CNU when the memory is cyclically
shifted on a QC-LDPC decoder. The cycles represent the VNUs with memory,
the squares represent the CNUs and the connection edges connects the neighbor
nodes where the neighbor messages are conveyed on. It can be seen that due to the
constructive connection network of QC-LDPC decoder, all the messages arrived to
a CNU before the cyclic shift of the memory (Figure 5.4(a)) will be transmitted to
a common, consecutive CNU after the cyclic shift (Figure 5.4(b)). This common
CNU produces the same results (as the none cyclic shift) given that all CNU are
identically implemented, which is the case of VNSA. For the VN computation, �rst,
by the construction of VNSA, after each iteration, the channel estimation memory C
is cyclically shifted and so, the channel value of a VN is conveyed to the input of the
consecutive VNU. Second, due to the CNU shift in the CNU computation, Figure
5.5 shows that the CNU computed messages are also conveyed to the consecutive
VNU. The VN computation results are therefore similar to those of the conventional
implementation, and di�er only on the computing location.

Along with the conventional implementation, the VNSA is an alternative imple-
mentation method with a negligible extra cost. Indeed, compared to the conventional
implementation, the additional connections are required to cyclically shift the chan-
nel memory C which increase the overall complexity. However, the additional cost
is negligible since this extra connections is much smaller than the interconnection

74
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

D Q

 ∑

 dvi

=? v(k)
1,1

y1,1

D Q

c(k)
a,b

 N(v1,1)
E(k)

max

v(k)
1,1

E(k)
1,1

E(k)
1,1

Z

… … … …

Z Z

Z

… … … …

Z Z

(a)

D Q

 ∑

 dvi

=? v(k)
1,1

y1,1

D Q

c(k)
a,b

 N(v1,1)
E(k)

max

v(k)
1,1

E(k)
1,1

E(k)
1,1

Z

… … … …

Z Z

Z

… … … …

Z Z

(b)

Figure 5.4: With non-memory cyclically shift (a) and with memory cyclically shift
(b), the messages are both well conveyed to a common CNU thank to the construc-
tive implemented connections in QC-LDPC decoders.

…

…

…

…

…

…

Z Z Z

…

…

…

…

…

…

Z Z Z

(a)

…

…

…

…

…

…

Z Z Z

…

…

…

…

…

…

Z Z Z

(b)

Figure 5.5: When a cyclic shift is applied on the memory of VNU, the messages
from CNUs are also sent to the corresponding cyclic shift VNU.

network of the decoder. It is con�rmed by the synthesis results in the Section 5.7.

5.3 The Variable-Node Shift Architecture for edge-

type memory LDPC decoders: �ooding MS and

layered MS implementation illustrations
We show in this section that the VNSA can be applied widely on di�erent type

of LDPC decoding algorithms. Basing on the memory types in the decoder im-
plementations, we classify these decoding algorithms into two types, the edge-type
memory and the node-type memory. In the edge-type memory, the messages sent
to an edge of VNU are di�erent to another edge. Therefore, it is required to have
the memory elements to store these messages between iterations. MS and its vari-
ants are the examples of edge-type memory decoders. In the node-type memory, all
messages sent from a VNU to all connected CNUs are the same. For this reason,
only one memory element is required to store the message for each VN. GDBF and
PGDBF are the examples of node-type memory decoders. We illustrate that VNSA
can be applied on edge-type memory decoders through 2 examples of MS decoder
on di�erent scheduling, �ooding and layered scheduling. All the notations as well
as algorithmic descriptions of MS decoder can be found in the appendix.

5.3. The Variable-Node Shift Architecture for edge-type memory LDPC

decoders: flooding MS and layered MS implementation illustrations 75

1,1

β3 β2

clk 1 2 3



βnew

β1


-


-

 -

~ 1,1

3 1 2

1,2

β3 β2

clk 1 2 3



βnew

β1


-


-

 -

~ 1,2

3 1 2

… …

βnew
1,1

β3 β2

clk 1 2 3



βnew

β1


-


-

 -

~ 1,1

3 1 2

1,2

β3 β2

clk 1 2 3



β1


-


-

 -

~ 1,2

3 1 2

B1,1 B1,2

C1,1 C1,2

(a)

B1,1

1,1

β3 β2

clk 1 2 3



βnew

β1


-


-

 -

~ 1,1

3 1 2

1,2

β3 β2

clk 1 2 3



β1


-


-

 -

~ 1,2

3 1 2

…

1,Z

β3 β2

clk 1 2 3



β1


-


-

 -

~ 1,Z

3 1 2

…

…

βnew βnew

B1,2 B1,Z

C1,1 C1,2 C1,Z

(b)

Figure 5.6: VNSA application on Flooding MS. Figure 5.6(a): 2 consecutive VNUs in
the conventional �ooding MS implementation. Figure 5.6(b): Z consecutive VNUs
in a base-column of base matrix in VNSA-based implementation where the memory
elements are cyclically shifted.

76
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

In �ooding scheduling MS decoder, each VNU receives at the same time all
updated messages from its connected CNs, βnew (The bolded lines, such as βnew...,
in Figure 5.6 refer the grouped values from and to neighbor nodes). The VNU
computes the new messages α concurrently and stores all into the message memory
when clock event occurs . In the conventional implementation (see Figure 5.6(a)),
these newly computed α messages are stored to the corresponding VNU messages
memory elements, i.e. α messages computed by V NUi,j are stored in Bi,j, while in
VNSA (see Figure 5.6(b)), they are stored to the consecutive message elements, i.e.
α messages computed by V NUi,j are stored in Bi,j%Z+1. The channel estimation
memory, which stores the channel estimation values γi,j, is also cyclically shifted
such that γ(k+1)

i,j%Z+1 = γ
(k)
i,j . Since memory is assumed to implement only in B and C,

for both implementations, the conventional and VNSA-based MS implementations,
one iteration is �nished in each clock cycle.

Another example of VNSA application on edge-type memory decoders is on the
layered scheduling MS described in Figure 5.7. Di�erent to the �ooding scheduling,
the VNU in layered MS receives only one β message from one connected CNU at
a time. In the layered MS conventional implementation (the VNU architecture is
described in Figure 5.7(a)), in each VNU and each clock cycle, this newly received
β message is stored into the message memory, B, and at the same time, it is also
used to compute the new APP value, γ̃new. The computed γ̃new is stored to the γ̃
memory, C. Note that, at the decoding initialization phase, channel estimation value
γ is initialized in γ̃ memory and β memory elements are reset. In the same clock
cycle, the new α message, αnew - used for the next layer computation, is computed
using the new computed γ̃ and β of the next layer read from B. A decoding iteration
is �nished after all elements in β memory are read and updated by the new values.
This conventional implementation can be found in several works in literature such
as [24][42].

The major change in layered MS VNSA-based implementation is the location to
store the new received β. The new β is redirected to the consecutive memory (see
Figure 5.7(b)) and at the same time, it is also used to produce the γ̃new in the current
VNU. The β values are stored and γ̃ are updated continuously until the β value of
the last layer read. When the value βnew of the last layer is stored in the consecutive
memory, the computed γ̃new is also triggered to store into the consecutive γ̃ memory
by the 2 to 1 multiplexer. The identical decoding behavior between VNSA-based
and conventional implementations is con�rmed by simulations results in the Figure
5.8.

5.4 The Variable-Node Shift Architecture for node-

type memory LDPC decoders: GDBF imple-

mentation illustration
As mentioned above, in the node-type memory decoders, the messages are sent

equally to all connected neighbors from the VNUs (as well as the CNUs). Therefore,
only one memory element is implemented along to each VNU to store the interme-
diate message during the decoding process. This memory element is updated after

5.4. The Variable-Node Shift Architecture for node-type memory LDPC

decoders: GDBF implementation illustration 77

B1,1





clk

clk

-

~ 1,1 β1 β2 β3

βnew

new

~ new





clk

clk

-

~ 1,2 β1 β2 β3

βnew

new

~ new

B1,1 B1,2 C1,1 C1,2

(a)





clk

clk

-

~ 1,1 β1 β2 β3

1 0





clk

clk

-

~ 1,2 β1 β2 β3

1 0

βnew

new new

…





clk

clk

-

~ 1,Z β1 β2 β3

1 0

new

βnew βnew

…

…

A to A

B to B
~ new ~ new ~ new

B1,1 B1,2 B1,Z C1,1 C1,2 C1,Z

(b)

Figure 5.7: VNSA application on Layered MS. Figure 5.7(a): 2 consecutive VNUs in
the conventional layered MS implementation. Figure 5.7(b): Z consecutive VNUs
in a base-column of base matrix in VNSA-based implementation where the memory
elements are cyclically shifted.

78
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

BF, Conventional
BF, VNSA
GDBF, Conventional
GDBF, VNSA
MS, Conventional
MS, VNSA

Figure 5.8: Performance comparison between BF, GDBF, Quantized �ooding MS
LDPC decoders both conventional and VNSA-based implementations for the regular
QC-LDPC code (dv = 4, dc = 8, Z = 54), (N = 1296,M = 648).

each iteration.

We illustrate in the Figure 5.9 that VNSA can also be applied on the node-type
memory LDPC decoder by the implementation of hard-decision GDBF decoder. In
VNU of the conventional implementation of GDBF as in Figure 5.9(a), a register
is implemented as the node memory to store the intermediate decision (vi,j) and a
register is allocated to store the channel estimation (yi,j). The value of vi,j register
is sent to the connected CNs and it is also used to update the new value for the
next iteration. The updated value is computed by XOR-ing the current value to the
equality block output as in Figure 5.9(a) (the detailed operations can be found in
Chapter 4). Note that, this computed value is propagated to store back in the same
(vi,j) register. In VNSA-based implementation (Figure 5.9(b)), the updated value
is directed to the consecutive memory element, (vi,(j%Z+1)). Also, a connection is
built to convey the channel estimation register, (yi,j), to the consecutive register,
(yi,(j%Z+1)).

The decoding behavior of VNSA-based GDBF is recon�rmed to be identical
to the conventional GDBF implementation by simulation as shown in Figure 5.8.
We also show another node-type memory hard decision decoder, the Bit Flipping,
which is also implemented by VNSA and exhibits the similar behavior with the
conventional BF implementation in the same �gure.

5.4. The Variable-Node Shift Architecture for node-type memory LDPC

decoders: GDBF implementation illustration 79

Ei
(k)

vi
(k)

From CNs

From MF Ei
(k)

v(k)
1,1 v(k)

1,2

D Q

 ∑

 dv

=?

y1,2
D Q

c(k)
a,b

 N(v1,2)
E(k)

max

E(k)
1,2

E(k)
1,2

D Q

 ∑

 dv

=? B1,1

y1,1
D Q

c(k)
a,b

 N(v1,1)
E(k)

max

E(k)
1,1

E(k)
1,1

From CNs From MF

To MF To CNs To MF To CNs

From CNs From MF

1,1 v(k+1)

1,1 v(k) 1,2 v(k)

1,2 v(k+1) B1,2

C1,1 C1,2

1,1 v(k) 1,2 v(k)

Emax
(k)

D Q

 ∑

 dv

To MF

=?

D Q

To CNs

Emax
(k)

D Q

 ∑

 dv

To MF

=?

D Q

To CNs

E(k)
1,1

c(k)
a,b

 N(v1,1)
c(k)

a,b

 N(v1,2)
E(k)

max

From CNs From MF

E(k)
max

From CNs From MF

E(k)
1,2

E(k)
1,2 E(k)

1,1

1,1 v(k)

B1,1

y1,1

C1,1

1,1 v(k+1)

y1,1

B1,2

C1,2

y1,2

1,2 v(k)
1,2 v(k+1)

y1,2

1,1 v(k) 1,2 v(k)

1,Z v(k+1)

y1,Z

(a)

Ei
(k)

vi
(k)

From CNs

From MF Ei
(k)

v(k)
1,1 v(k)

1,2

D Q

 ∑

 dv

=?

y1,2
D Q

c(k)
a,b

 N(v1,2)
E(k)

max

E(k)
1,2

E(k)
1,2

D Q

 ∑

 dv

=? B1,1

y1,1
D Q

c(k)
a,b

 N(v1,1)
E(k)

max

E(k)
1,1

E(k)
1,1

From CNs From MF

To MF To CNs To MF To CNs

From CNs From MF

1,1 v(k+1)

1,1 v(k) 1,2 v(k)

1,2 v(k+1) B1,2

C1,1 C1,2

1,1 v(k) 1,2 v(k)

Emax
(k)

D Q

 ∑

 dv

To MF

=?

D Q

To CNs

Emax
(k)

D Q

 ∑

 dv

To MF

=?

D Q

To CNs

E(k)
1,1

c(k)
a,b

 N(v1,1)
c(k)

a,b

 N(v1,2)
E(k)

max

From CNs From MF

E(k)
max

From CNs From MF

E(k)
1,2

E(k)
1,2 E(k)

1,1

1,1 v(k)

B1,1

y1,1

C1,1

1,1 v(k+1)

y1,1

B1,2

C1,2

y1,2

1,2 v(k)
1,2 v(k+1)

y1,2

1,1 v(k) 1,2 v(k)

1,Z v(k+1)

y1,Z

(b)

Figure 5.9: VNSA application on GDBF decoder. Figure 5.9(a): 2 consecutive VNUs
in the conventional GDBF implementation. Figure 5.9(b): 2 consecutive VNUs in a
base-column of base matrix where the node memory elements are cyclically shifted.

80
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

5.5 The advantages of VNSA-based LDPC decoders

with di�erent type of VNUs
Although the decoder with VNSA can be seen as an alternative implementation

method for LDPC decoders, the advantages of using VNSA, in term of decoder com-
plexity and decoding performance, may come when di�erent types of VNUs (and/or
CNUs) are implemented. The VNSA can be seen as a hardware distribution solution
in some decoding methods from which the gain on performance and complexity can
be obtained. Indeed, in order to improve the decoding performance, some decoding
algorithms require the multiple functions implemented in each VNU and during the
decoding process, the decoder switches from one function to another. An motivat-
ing example is the FAID diversity in [36] where the authors applied multiple FAID
functions in each VNU and approached the Maximum Likelihood decoding. The
drawback of this algorithm is that the VNU is a lot bigger since many functions
are implemented while only one of them is used at a time. The VNSA solves this
problem by distributing only 1 function in a VNU and cyclic shift the VNs through
di�erent implemented VNUs. A VN can still be processed by di�erent functions
during the decoding process while the total complexity can be signi�cantly reduced.
An example is illustrated in Figure 5.10. For the sake of simplicity, only 2 func-
tions (marked as 1 and 2 and in 2 di�erent colors) are illustrated. Figure 5.10(a)
shows the conventional implementation with 2 functions implemented in each VNU
leading to a higher complexity. The VNSA is applied in Figure 5.10(b) where only
the function 1 or 2 implemented in each VNU and the VNs are cyclically shifted
through these implemented VNUs.

The VNUs complexity of the VNSA implementation compared to those of the
conventional is expressed as following where p0 is the ratio of function 1 implemented
over all VNUs implemented in VNSA (assuming p0 ≥ 0.5), C12 refers the hardware
complexity to implement the two functions in a VNU (as VNUs in Figure 5.10(a)),
C1 and C2 are the complexity to implement function 1 and 2 separately (as VNUs in
Figure 5.10(b)):

ξ =
CV NSA
Cconventional

=
p0C1 + (1− p0)C2

C12
(5.1)

Due to the hardware reusing, C1 + C2 ≥ C12 then

ξ ≥ p0C1 + (1− p0)C2
C1 + C2

= p0 +
1− 2p0

1 +
C1
C2

(5.2)

Depending on the complexity ratio
C1
C2

and the hardware reutilisation (ratio C1 +

C2 over C12), the useful region of VNSA complexity e�ciency is plotted as the shaded
region in Figure 5.11. It can be seen that with the complexity C1, C2 �xed, the

5.5. The advantages of VNSA-based LDPC decoders with different type of

VNUs 81

…

…

…

…

…

…

Z Z Z

…

…

…

1 2

1 2 1 2 1 2 1 2 …

 …
…

Z Z

…

Z

Z

… …

…

 …
…

Z Z

…

Z

Z

… …
1 2 2 1 2

(a)

…

…

…

…

…

…

Z Z Z

…

…

…

1 2

1 2 1 2 1 2 1 2 …

 …
…

Z Z

…

Z

Z

… …

2 1 2
1’ 2’

…

 …
…

Z Z

…

Z

Z

… …
2 1 2 2 1

(b)

Figure 5.10: An implementation example of LDPC decoding algorithms where mul-
tiple functions are implemented in each VNU (Figure 5.10(a)) and an application of
VNSA by distributing required functions in di�erent VNUs and cyclically shift the
VNs through these implemented VNU (Figure 5.10(b)).

C1
C2



1

p0

1-p0

0 ∞ 1

0.5

Figure 5.11: The hardware e�ciency of VNSA over the conventional implementation.

82
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

complexity gain ξ may be controlled by p0. When there is no hardware reutilisation
in C12, i.e. C1+C2 = C12, ξ is lower pounded. In the particular case where complexity

of function 1 and 2 are equivalent, i.e.
C1
C2

= 1, then ξ = 0.5. It is interesting

to consider the case where a VNU type in VNSA is simpler than the other, i.e.
C1 >> C2, which is the case when VNSA applied in the PGDBF implementation
presented in the next section.

5.6 Implementations of PGDBF with Variable-Node

Shift Architecture
The key feature of VNSA-based PGDBF implementations is that 2 types of

VNUs are implemented and located in an arbitrary order. These 2 types of VNUs
are designed by mimicking the operations of VNUs in the conventional PGDBF
corresponding to 2 possible values of random signal (0 or 1). With the cyclic shift
property of VNSA, each VN can meet one of two VNU types with arbitrary order
during the decoding process which imitates the PGDBF operations. The decoding
behavior is shown to be similar to CSTS-PGDBF in previous chapter while no
random generator is required. Furthermore, the 2 implemented VNUs types are
simpler than the conventional VNU which reduces the decoder complexity even
smaller than the deterministic GDBF.

5.6.1 The implementation of PGDBF with Variable-Node Shift
Architecture

In the implementation of PGDBF using the VNSA (denoted as VNSA-PGDBF), 2
types of VNU are introduced which are illustrated by 2 types of cycles in Figure 5.12.
To ease the discussion, we also reproduce the conventional PGDBF implementation
with CSTS RG in previous chapter in Figure 5.13 with the VNU detailed circuit.
In the this VNU, an AND gate is required to incorporate the random signal to the
result of the equality comparator. When the random signal is 1's, this AND gate
passes the value of the equality comparator to its output since Xand1 = X. When
the random signal is 0's, this AND gate reset its output to 0 regardless the equality
comparator results since Xand0 = 0,∀X.

The VNU type 1 of the VNSA-PGDBF is illustrated by the black solid cycle in
Figure 5.12. The type 1 VNU in VNSA-PGDBF mimics the operation of VNU in
PGDBF with the random signal �xed to 1's. With the �xed by 1's at the random
signal input, R(k)

i,j , the equality comparator output is propagated directly to the
XOR2 input and the AND gate can be removed without changing the VNU behavior
compared to conventional VNU (see Figure 5.12).

The second type (type 2) in VNSA-PGDBF, denoted as the red dashed cycle in
Figure 5.12, is introduced by imitating the operation of the VNU in PGDBF with the
random signal is equal to 0's. In the VNU of conventional PGDBF implementation
(Figure 5.13), the AND gate produces 0's regardless the equality comparison results
when the random input, R(k)

i,j , is 0's (Xand0 = 0,∀X). The VN updated value

for the next iteration, v(k+1)
i,j , is the one of current iteration, v(k)i,j , since v

(k+1)
i,j =

5.6. Implementations of PGDBF with Variable-Node Shift Architecture 83

v
(k)
i,j XOR0 = v

(k)
i,j . The type 2 simply propagates directly the current value v(k)i,j

to the output by removing the XOR2 gate compared to conventional VNU. More
specially, the AND gates and equality comparator can also be removed without
a�ecting to VNU operation (see Figure 5.12).

1,1 v(k)

B1,1

y1,1

C1,1

1,1 v(k+1)

1,1 v(k)

E1,Z
 (k)

v1,Z
(k)

y1,Z

v2,3
(k)

y2,3 E2,3
 (k)

E1,Z
 (k)

V1,2 …
.

From CNs

V1,1

To CNs

To MF

…
.

V1,1 V1,3 V1,Z V1,1

To CNs

…
.

V2,2

Emax
(k)

D Q

 ∑

 dv

To MF

=?

D Q

To CNs

From CNs From MF

V1,1 V2,1 V1,1

To CNs

V2,Z V2,3

From MF

To CNs

To MF

From CNs
From MF

To CNs

To MF

From CNs

To CNs To CNs To CNs

D Q

 ∑

 dv

To MF

D Q

To CNs

From CNs

From CNs From CNs From CNs

XOR2

XOR1 XOR1

1,Z v(k)

B1,1

y1,Z

C1,Z

1,Z v(k+1)

1,Z v(k)

y1,Z

2,3 v(k)

B2,3

y2,3

C2,3

2,3 v(k+1)

2,3 v(k)

y2,3

2,3 E(k)

2,3 E(k)

1,Z E(k)

1,Z E(k)

1,Z-1 v(k+1)

y1,Z-1

2,2 v(k+1)

y2,2

Figure 5.12: The implementation of VNSA-PGDBF decoder.

1,1 v(k)

B1,1

y1,1

C1,1

1,1 v(k+1)

E(k)
max

E(k)
1,1

V1,1 V1,1

Interconnection block

v(k)
1,1

c(k)
1,1 c(k)

1,2 c(k)
1,Z

…
.

c(k)
2,1 c(k)

2,2 c(k)
2,Z

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

c(k)
a,b

 N(v1,1)

Z

E(k)
max

E(k)
1,2

V1,1 V1,2

v(k)
1,2

c(k)
a,b

 N(v1,2)

E(k)
max

V1,1 V1,Z

v(k)
1,Z

c(k)
a,b

 N(v1,Z)

…
.
E(k)

1,Z

dc dc dc dc dc dc

E(k)
max

E(k)
2,1

V1,1 V2,1

v(k)
2,1

c(k)
a,b

 N(v2,1)

E(k)
max

E(k)
2,2

V1,1 V2,1

v(k)
2,2

c(k)
a,b

 N(v2,2)

E(k)
max

V1,1 V2,Z

v(k)
2,Z

c(k)
a,b

 N(v2,Z)

…
.
E(k)

2,Z

…
.

Z
…
.

c(k)
a,b

 N(v1,1)

D Q

 ∑

 dv

=?

D Q

E(k)
max

E(k)
1,1

R(k)
1,1

R(k)
1,1 R(k)

2,Z R(k)
1,2 R(k)

1,Z R(k)
2,1 R(k)

2,2

XOR2

XOR1

1,1 v(k)

E(k)
1,1

Figure 5.13: The conventional implementation of PGDBF.

With the two types of implemented VNUs accompanied by the VNSA principle

84
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

- cyclically shift the VN through di�erent VNUs from iteration to another, the
operations of PGDBF decoding algorithm can be performed. Indeed, we denote
the ratio of type 1 VNUs over all VNUs as p0 and of type 2 as (1 − p0). The
cyclic shift of VNSA makes each VN seeing VNU type 1 with ratio p0 and type 2
of ratio (1 − p0). Although the distribution of type 1 and type 2 VNUs could be
arbitrary, we restrict in our VNSA-PGDBF by having exactly Z ∗ p0 VNUs type 1
and Z ∗ (1− p0) VNUs type 2 in the total of Z VNUs of a base column. It is more
special that the operation of VNSA-PGDBF is identical to the version of Cyclically
Shift Truncated Sequence PGDBF (CSTS-PGDBF) decoder introduced in Chapter
4 with the truncated sequence Rt of size S = Z in Figure 5.14. The speciality
is that instead of cyclic shift the random sequence in CSTS-PGDBF, in VNSA-
PGDBF, the VNs are shifted to the VNUs and are processed by the same operating
function as in CSTS-PGDBF while it does not require the random generator. The
VNSA-PGDBF is even more improving in decoding performance by shu�ing the
type 1 and type 2 VNUs in a base column which operates similarly to the random
generator in CSTS-PGDBF decoder with the the hard-wires shu�ed in Figure 5.15.
Indeed, as shown in Figure 5.16(a), a performance loss is observed when the CSTS
size S = Z with only copy and concatenate (see Figure 5.14) while with the same
sequence but the hardwire shu�ed (see Figure 5.15), the decoding performance is
improved, approaching the theoretical decoder.

…. 1,1 1,2
R(k)

:

Rt 1 2 …. Z

Z Z Z Z

….

….

Figure 5.14: The optimized probabilistic signals generator proposed in Chapter 4.

….
…. 1,1 1,2

R(k)

:

Rt 1 2 …. Z

Z Z Z Z

….

Figure 5.15: The probabilistic signals generator proposed in Chapter 4 with the
hardwire shu�ed.

5.6. Implementations of PGDBF with Variable-Node Shift Architecture 85

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

BF
GDBF
PGDBF, S= Z, Shuffled
PGDBF, S= Z, Conventional
Theoretical PGDBF
MS

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

VNSA−PGDBF, α= 0.034

VNSA−IM−PGDBF, α= 0.034

(b)

Figure 5.16: Figure 5.16(a) Decoding performance comparison of PGDBF decoder
implemented in Chapter 4 with the hardwire connections in random generator shuf-
�ed. Figure 5.16(b) The statistical on decoding performance of VNSA-PGDBF and
VNSA-IM-PGDBF as a function of p0 on the ((dv, dc) = (4, 8), Z = 54, N = 1296
and M = 648) LDPC code.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

VNSA−PGDBF, α= 0.014

VNSA−IM−PGDBF, α= 0.014

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

p0

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

VNSA−PGDBF, α= 0.022

VNSA−IM−PGDBF, α= 0.022

(b)

Figure 5.17: The statistical on decoding performance of VNSA-PGDBF and VNSA-
IM-PGDBF as a function of p0 on the ((dv, dc) = (3, 6), Z = 54, N = 1296 and
M = 648) LDPC code.

86
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

5.6.2 An imprecise implementation of PGDBF with Variable-
Node Shift Architecture

We push further the simpli�cation of VNSA-PGDBF by proposing another trivial
VNU type (type 3) in Figure 5.18(a). The global decoder architecture is similar
to the one in Figure 5.12 where the VNU type 2 are replaced by the VNU type
3. We refer this implementation as VNSA-IM-PGDBF. In the type 3 VNU, all the
computation circuits are all omitted, the VN v

(k)
i,j is preserved to the next iteration

,v(k+1)
i,j = v

(k)
i,j , and its behavior is similar to the VNU in conventional PGDBF having

R
(k)
i,j = 0. The di�erence comes from the fact that, this VNU type does not compute

the energy value and makes the MI even simpler. The MI in VNSA-IM-PGDBF
needs only to �nd the maximum energy in the list of N ∗ p0 input values compared
to N conventionally. We apply the same technique in chapter 4 to implement the
MI for the VNSA-IM-PGDBF decoder. This new MI presented in Figure 5.18(b)
has only N ∗p0 input values which come from N ∗p0 VNU type 1. The energy values
are represented in a one-hot format, dv (N ∗ p0)-inputs (instead of dv (N)-inputs)
OR-gates are used. By eliminating all computation circuits and by having the lower
complexity MI, the decoder complexity is more reduced shown in Section 5.7.

The issue of VNSA-IM-PGDBF decoder is the fact that the founded maximum
value of energy may not the true maximum. However, we have conducted a statistical
analysis on the e�ect of p0 to the decoding performance in Figure 5.16(b) and Figure
5.17. It is surprisingly that for the 2 tested codes, the impreciseness introduced by
the imprecise MI provides a better decoding performance compared to those of the
precise MI implementation. Although the range of p0 maintaining the good decoding
performance of VNSA-IM-PGDBF is narrower to the one of VNSA-PGDBF, the
decoding performance of VNSA-IM-PGDBF on the range of p0 ≥ 0.6 is always better
than VNSA-PGDBF for the ((dv, dc) = (3, 6), Z = 54, N = 1296 and M = 648)
test code (Figure 5.17). In the test code ((dv, dc) = (4, 8), Z = 54, N = 1296 and
M = 648) (Figure 5.16(b)), the performance gap is even more signi�cant and is
on the wider range of p0. Since the value of p0 a�ects to the decoding complexity
reduction as analyzed in Section 5.5, the statistics also reveal that the optimal value
of p0 ≈ 0.7 for the 2 test codes which maximize the decoding performance gain and
the reduced complexity.

Although the theoretical explanation on the superiority of VNSA-IM-PGDBF
over VNSA-PGDBF is still not available, it is coherent to the proposition of decoder-
dynamic shift PGDBF (DDS-PGDBF) with previously computed threshold in [43].
The authors in [43] proposed to used the threshold to �ip a bit which is the maxi-
mum energy of the previous iteration. Despite the �untrue� maximum value thresh-
old used, DDS-PGDBF surpasses the soft decision decoders in performance and
approached the Maximum Likelihood Decoding at the cost of a very large num-
ber of iterations. The VNSA-IM-PGDBF similarly in some case does not use the
true maximum energy value as the threshold since the MI sorts only a part of N
energy values. The VNSA-IM-PGDBF coherently provides the better decoding per-
formance in some testing LDPC codes.

5.7. The synthesis results and decoding performance 87

i,j v(k)

B1,1

yi,j

Ci,j

i,j v(k+1)

yi,j

D Q

D Q

To CNs

i,j v(k)

(a)

ECn

E0
n

E3
n

E2
n

E1
n

v(n)y(n)

cv(n)(1)

cv(n)(2)

cv(n)(3)

E1
1

E1
2

E1
N*p0

E2
1

E2
2

E2
N*p0

E3
1

E3
2

E3
N*p0

. . .

. . .

. . .

. . .

Ma0

Ma1

Ma2

Ma3

E0
1

Ma0

E1
1

Ma1

E2
1

Ma2

I1

E3
1

Ma3

E0
N

Ma0

E1
N

Ma1

E2
N

Ma2

IN*p0

E3
N

Ma3

. . .

C3

(b)

Figure 5.18: Figure 5.18(a): the trivial VNU type (type 3 VNU) proposed for
VNSA-IM-PGDBF. Figure 5.18(b): the Maximum Indicator in VNSA-IM-PGDBF.

5.7 The synthesis results and decoding performance

5.7.1 Synthesis results

In this section, we report the ASIC results at post-synthesis level, of the proposed
PGDBF implementations. The synthesis has been done targeting a 65nm CMOS
technology, using Synopsys tools.

For the �rst synthesis comparison, our goal is to demonstrate the area gains that
one can achieve using the VNSA approach. The results are reported in Table 5.1 for
a QC-LDPC code, with parameters (dv, dc) = (3, 6), Z = 54, M = 648, N = 1296.
In this Table, we have constrained the implementations to run at the same clock
frequency, by setting the timing constraint identical for all decoders, �xed to 8 ns.
We choose this strategy to measure precisely the impact of VNSA on the hardware
cost, even if the working frequency is not maximized. We indicate in brackets the
additional cost in percentage compared to the deterministic GDBF implementation.
As a �rst remark, we can see that the VNSA is an alternative implementation
solution as no extra complexity required to implement VNSA-based GDBF decoder
compared to the conventional GDBF implementation. The second remark is that
VNSA in general, reduces the decoder complexity as expected. The VNSA-PGDBF
requires less than the conventional GDBF implementation, around 5% while the
conventional PGDBF implementation needs 4% extra cost. As also expected, the
VNSA-IM-PGDBF largely reduces the complexity with 15% lower than the GDBF
decoder. We have veri�ed that similar conclusions could be made for LDPC codes
with di�erent parameters, with various lengths, rates and values of dv.

In the second synthesis comparison, we report working frequency and throughput
in Table 5.2. Table 5.2 shows the results for the GDBF, PGDBF and two MS
decoders taken from the literature [24, 25]. The code used for the GDBF, PGDBF
and [24] is the (dv, dc) = (3, 6), R = 1/2, N = 1296, Z = 54 LDPC code, while [25]
considers the IEEE 802.11n standard codes with various lengths and rates.

88
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

dv3R050N1296 - AREA (µm2)

Conventional implementation VNSA-based Imprecise VNSA-based

GDBF 53692 (+0%) 53692 (+0%) N/A

PGDBF 55837 (+4.00%) 51091 (-4.8%) 45487 (-15.3%)

Table 5.1: Comparison on hardware resource used to implement the GDBF and
PGDBF decoders by using the conventional and the VNSA architectures. The
percentages in brackets indicate the additional/saving hardware compared to the
GDBF.

For the GDBF and the PGDBF decoders, we performed the synthesis with the
objective of optimizing the timing constraint, which results in the maximum fre-
quency at which the decoder can operate.

It can be seen that the conclusions drawn from the Table 5.1 are maintained in
which the VNSA reduces the complexity in PGDBF implementation even compared
to the GDBF. The reduction is more signi�cant in the case of VNSA-IM-PGDBF
in Table 5.2 with around 22% complexity reduced. the hardware cost of the MS
decoders is a lot larger than the BF-based decoders, and requires 8.5 to 15 times more
area than the VNSA-based PGDBF. Our implementation of BF decoders allows to
perform one iteration in Nc = 1 clock cycle, which results in a very important
throughput gain of GDBF and PGDBF decoders over MS. The average throughput
is compared with 2 settings. At the same channel noise level, i.e. α = 0.01, the
VNSA-PGDBF is around 1.4 times faster than MS decoder, but in 1.6 times slower
than the GDBF with 2 decades gain in decoding performance. In order to maintain
a target performance, i.e. FER = 1e−5, the VNSA-PGDBF is 2 time faster than
the MS decoder and 2.5 times slower than GDBF. The MS decoder is, of course, the
best in error correction capability.

Code length Code rate AREA kGE fmax Nc FER = 1e− 5 α = 0.01

(µm2) (MHz) Itave θ (Gbit/s) Itave θ (Gbit/s)

GDBF 1296 1/2 87810 (+0.00%) 75 222 1 2.00 (@α = 0.005) 144.00 2.95 (FER = 3e−4) 97.63

LFSR-PGDBF(S = Z = 54), p0 = 0.7 1296 1/2 90589 (+3.3%) 77 232 1 4.83 (@α ≈ 0.01) 62.3 4.83 (FER = 8e−6) 62.3

VNSA-PGDBF, p0 = 0.7 1296 1/2 84045 (-4.2%) 72 222 1 4.83 (@α ≈ 0.01) 59.6 4.83 (FER = 8e−6) 59.6

VNSA-IM-PGDBF, p0 = 0.7 1296 1/2 67917 (-22.7%) 58 222 1 6.30 (@α ≈ 0.013) 45.7 5.32 (FER = 2.6e−6) 54.1

MS [24] 1296 1/2 720000 615 250 6 2.34 (@α = 0.025) 23.08 1.29 (FER = 1e−7) 41.86

MS [25] 648 - 1944 1/2 - 5/6 1023000 - 400 - 108 - 337 (Mbps) at Itmax = 20− 25 iterations

1.39 - 4.34 (Gbps) at Itave = 1.94

Table 5.2: Frequency and throughput comparison between GDBF decoder, PGDBF
decoders, and MS decoders [24, 25].

5.7.2 Decoding performance

In this section, we illustrate the advantage of the implemented PGDBF decoders
in decoding performance in comparison with GDBF decoders on the BSC channel.
The PGDBF decoders are also put in comparison with the quantized MS decoder.

5.7. The synthesis results and decoding performance 89

The compared MS decoder is a layered version with 6 quantization bits for the
APP-LLR and 4 quantization bits for the extrinsic messages, with a maximum of
Itmax = 20 decoding iterations. We consider �rstly two regular LDPC codes for the
simulations: a QC-LDPC code with parameters dv = 3, dc = 6, rate 0.5, Z = 54,
M = 648, N = 1296 (dv3R050N1296), and a QC-LDPC code with dv = 4, dc = 8,
rate 0.5, M = 648, N = 1296 (dv4R050N1296). For the GDBF and the PGDBF,
the maximum number of iterations is set to Itmax = 300.

Figure 5.19 shows the simulation performance of VNSA-PGDBF and VNSA-
IM-PGDBF in comparison with GDBF and MS decoders. It can be seen that
the VNSA-based PGDBF decoders are half way to the MS performance compared
to GDBF. VNSA-IM-PGDBF is considerable better than the VNSA-PGDBF for
both tested LDPC codes. Especially, the VNSA-IM-PGDBF is almost equal to the
theoretical PGDBF performance (represented by the LFSR-PGDBF with optimal
S = 4Z for dv3R050N1296 and S = 12Z for dv4R050N1296, shown in previous
chapter). For the dv3R050N1296 code, the FER of VNSA-IM-PGDBF maintains
closely to theoretical PGDBF decoder to very low error rate (1e−8) while for the
dv4R050N1296, the error �oor appears from the FER = 1e−6. The MS decoder is
the best in error correction at the cost of complexity and throughput as shown in
previous section.

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
VNSA−PGDBF, p0=0.7

VNSA−IM−PGDBF, p0= 0.7

LFSR−PGDBF, S= Z, p0= 0.7

LFSR−PGDBF, S= 4Z, p0= 0.7

MS

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

 GDBF
VNSA−PGDBF, p0= 0.7

VNSA−IM−PGDBF, p0= 0.7

LFSR−PGDBF, S= Z, p0= 0.7

LFSR−PGDBF, S= 12Z, p0= 0.9

MS

(b)

Figure 5.19: The decoding performance of the VNSA-PGDBF and VNSA-IM-
PGDBF on di�erent LDPC code. Figure 5.19(a) for the ((dv, dc) = (3, 6), Z = 54,
N = 1296 and M = 648) LDPC code. Figure 5.19(b) for the ((dv, dc) = (4, 8),
Z = 54, N = 1296 and M = 648) LDPC code.

Figure 5.20 shows the decoding performance of VNSA-based PGDBF decoders
on dv3R050N1296 when the value of p0 is varied. It recon�rms that p0 = 0.7 is the
optimal values in term of decoding performance. Changing the value of p0 slightly
degrade the error correction ability as seen in the �gure.

Finally, we present in Figure 5.21 the decoding performance of the implemented
decoders on another long code in the storage applications, ((dv, dc) = (4, 34), Z =
140, N = 9520 and M = 1120) LDPC code. Coherently with the above remarks,

90
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
VNSA−PGDBF, p0=0.7

VNSA−PGDBF, p0= 0.8

VNSA−PGDBF, p0= 0.9

VNSA−IM−PGDBF, p0= 0.7

MS

(a)

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
VNSA−PGDBF, p0=0.7

VNSA−IM−PGDBF, p0= 0.7

VNSA−IM−PGDBF, p0= 0.8

VNSA−IM−PGDBF, p0= 0.9

MS

(b)

Figure 5.20: The decoding performance of the VNSA-PGDBF and VNSA-IM-
PGDBF with the variation of p0 on the ((dv, dc) = (3, 6), Z = 54, N = 1296
and M = 648) LDPC code.

VNSA-based PGDBF provides a very good decoding gain especially the VNSA-
PGDBF which is close to the theoretical PGDBF (presented here as LFSR-PGDBF,
S = M = 8Z). The only remark is that the VNSA-IM-PGDBF starts the error �oor
very early (FER = 1e−3) which makes VNSA-IM-PGDBF being worse than VNSA-
PGDBF, but the gain over GDBF is maintained.

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

GDBF
VNSA−PGDBF, p0= 0.9

VNSA−IM−PGDBF, p0= 0.9

LFSR−PGDBF, S= Z, p0= 0.9

LFSR−PGDBF, S= 8Z, p0= 0.9

Layered MS

Figure 5.21: The decoding performance comparison on the ((dv, dc) = (4, 34), Z =
140, N = 9520 and M = 1120) LDPC code.

5.8 Conclusion
This chapter describes a new and original architecture for QC-LDPC decoders

named as the Variable-Node Shift Architecture (VNSA). The VNSA deploys the
homogeneous construction property of the QC-LDPC codes to shift the memory of
the decoders while preserving the decoding operations properly as the conventional
implementation architecture. VNSA is shown to be applicable in di�erent types of

5.8. Conclusion 91

LDPC decoders such as edge-type memory decoders, i.e. MS and its variants, and
node-type memory decoders i.e. GDBF, PGDBF. The e�ciency of the proposed
VNSA, in term of complexity as well as in decoding performance, is con�rmed by
the example of PGDBF implementation.

92
Chapter 5. A Quasi-Cyclic friendly architecture for LDPC decoders : the

Variable-Node Shift Architecture

Chapter 6

Conclusion and perspectives

In this thesis, we investigate on the analysis and implementation of the recently pro-
posed Probabilistic Gradient Descent Bit Flipping decoding algorithm. We provide
a method to analyse PGDBF and show the principle that random perturbation helps
improving decoding performance in Chapter 3. With proposed analysis method, we
can formulate the Frame Error Rate of PGDBF as a function of iterations and eval-
uate the asymptotic decoding performance of PGDBF decoder (in�nite number of
iteration). In chapter 4 we propose an e�cient hardware implementation of PGDBF
in which a simpli�cation of the probabilistic signal generator is proposed and an
optimization on the Maximum Indicator is presented. The implementation synthe-
sis results reveal that PGDBF is a very low-complexity, high decoding throughput
decoder while o�ering a powerful decoding performance to be competitive to soft
decision decoders. More specially, in chapter 5 we propose a novel hardware ar-
chitecture for Quasi-Cyclic LDPC decoding algorithms called Variable-Node Shift
Architecture. VNSA is shown to be able to apply on di�erent types of LDPC decod-
ing algorithms in which the advantages can be expressed as the hardware complexity
reduction and/or decoding performance. By implementing PGDBF with VNSA, it
is shown that the decoder complexity is even smaller than the deterministic GDBF
while preserving the decoding performance as good as the theoretical PGDBF.

In the remainder of the chapter, we describe some interesting open problems as
future research directions that we identify for each of the topics that are investigated
in this thesis.

Chapter 3: Theoretical analysis of Probabilistic Gradient Descent Bit
Flipping

The FST method is proposed for analyzing the hard decision decoders and is illus-
trated in this thesis by analyzing the PGDBF decoder. FST is more meaningful for
analyzing the decoder with �probabilistic� such as the decoder with faulty hardware
or decoder with deliberate randomness... since the analysis results are drawn by

93

94 Chapter 6. Conclusion and perspectives

considering all possible state of decoders. The FST can be extended to analyse dif-
ferent types of LDPC decoding such as the soft decision decoders or LDPC decoders
with memory, i.e. DD-BMP, IDP... and provides more practical results. This comes
from the fact that FST analyses on the subgraphs of the practical LDPC code with
no �impractical� requirements such as in�nitive code length or number of iterations
as in Density Evolution method. However, several issues need to be considered such
as the isolation issue, the size state space... FST analyses the decoding behavior
on with the error bits located on the support of a subgraph which is assumed to be
isolated. This may lead to the di�erence results when running on the whole code-
word. Furthermore, the size of state space when applying FST on some decoding
algorithm such as soft decision decoders may be very large leading to the di�culty
on analyzing.

Chapter 4: E�cient hardware implementation of Probabilistic Gradient
Descent Bit Flipping

The statistical analysis and implementation of PGDBF decoder are restricted in
this thesis only on BSC channel and on regular LDPC code in which PGDBF is
shown to be very e�cient in complexity and throughput and the FER approaches
MS decoder. It would be useful to explore the ability of PGDBF on AWGN in term
of error correction performance and its complexity. The conclusions on property of
PGDBF on AWGN will give further information on the PGDBF real applications.

Several standards adopt irregular LDPC codes which outperform the regular
architectures. Another topic which could be interesting to study is the modi�cation
of PGDBF to work on irregular LDPC code. Due to the fact that the VNs have
di�erent degrees leading to di�erent achievable maximum energies, a new �ip bit
selection mechanism need to be proposed to cope with this di�erent maximum energy
level.

Chapter 5: A Quasi-Cyclic friendly architecture for LDPC decoders : the
Variable-Node Shift Architecture

The VNSA architecture is proposed for the QC-LDPC decoding which is shown to
be applicable for di�erent types of decoding algorithms. It would be bene�cial to
deeper explore the VNSA ability in improving decoding performance and/or reduc-
ing decoder complexity. Indeed, the VNSA-PGDBF is an example of using 2 VN
functions with arbitrary distribution in the sequence of implemented VNUs. In dif-
ferent decoders (such as FAID...), the VN functions may be optimized by di�erent
methods providing better error correction. Also, the VNU distribution may fol-
low some dedicated rules such that di�erent �uncorrectable� error patterns become
correctable. For better performance, there may have more than 2 functions imple-
mented with some optimal distributions such that the uncorrectable error patterns
is minimized. Although the decoder global complexity depends on di�erent param-
eters such as the chosen functions, the hardware reusing ratio..., it is expected that
the VNSA-based decoder complexity is not increased or even reduced compared to
the conventional implementation. The conventional implementation in which the

6. Conclusion and perspectives 95

decoder is equipped the ability to process a VN with di�erent functions in di�er-
ent iteration, requires all functions implemented in each VNU and a mechanism to
choose function. This leads to an inevitable increment in hardware complexity as
analysed in the thesis.

96 Appendix 6. Conclusion and perspectives

Appendix A

A.1 Some LDPC codes used in the thesis

A.1.1 The Tanner QC-LDPC code (dv, dc)= (3, 6), R = 0.4,
M = 93, N = 155 and Z = 31

HB =

 1 2 4 8 16
5 10 20 9 18
25 19 7 14 28



A.1.2 The QC-LDPC code (dv, dc)= (3, 6), R = 0.5, M = 648,
N = 1296 and Z = 54

HB =



49 −1 −1 −1 −1 43 −1 −1 −1 −1 50 −1 −1 −1 −1 2 −1 27 −1 −1 −1 −1 −1 49

−1 −1 −1 10 41 −1 −1 −1 −1 52 −1 −1 32 −1 −1 −1 −1 −1 50 −1 50 −1 −1 −1

−1 −1 20 −1 −1 −1 −1 20 −1 −1 −1 51 −1 10 −1 −1 47 −1 −1 −1 −1 −1 33 −1

−1 24 −1 −1 −1 −1 22 −1 53 −1 −1 −1 −1 −1 31 −1 −1 −1 −1 18 −1 47 −1 −1

10 −1 −1 −1 15 −1 −1 −1 −1 −1 2 −1 −1 −1 −1 50 −1 13 −1 −1 −1 −1 −1 53

−1 −1 44 −1 −1 6 −1 −1 −1 −1 −1 29 −1 40 −1 −1 16 −1 −1 −1 13 −1 −1 −1

−1 2 −1 −1 −1 −1 −1 13 41 −1 −1 −1 −1 −1 42 −1 −1 −1 −1 48 −1 49 −1 −1

−1 −1 −1 36 −1 −1 24 −1 −1 50 −1 −1 12 −1 −1 −1 −1 −1 10 −1 −1 −1 48 −1

−1 −1 47 −1 50 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 9 −1 7 −1 −1 −1 −1 −1 28

−1 24 −1 −1 −1 −1 −1 51 −1 38 −1 −1 −1 −1 6 −1 −1 −1 −1 23 −1 16 −1 −1

6 −1 −1 −1 −1 −1 5 −1 −1 −1 −1 13 −1 3 −1 −1 29 −1 −1 −1 16 −1 −1 −1

−1 −1 −1 35 −1 16 −1 −1 37 −1 −1 −1 4 −1 −1 −1 −1 −1 24 −1 −1 −1 29 −1



97

98 Appendix A.

A.1.3 The QC-LDPC code (dv, dc)= (4, 8), R = 0.5, M = 648,
N = 1296 and Z = 54

HB =



11 −1 −1 −1 27 −1 −1 −1 33 16 −1 −1 −1 44 −1 −1 44 −1 8 −1 −1 −1 −1 0

−1 25 −1 −1 −1 31 29 −1 −1 −1 29 −1 −1 −1 36 −1 −1 34 −1 15 −1 −1 17 −1

−1 −1 44 4 −1 −1 −1 11 −1 −1 −1 2 50 −1 −1 52 −1 −1 −1 −1 30 33 −1 −1

27 −1 −1 −1 34 −1 20 −1 −1 20 −1 −1 −1 13 −1 −1 27 −1 4 −1 −1 −1 −1 27

−1 42 −1 22 −1 −1 −1 11 −1 −1 −1 44 −1 −1 4 14 −1 −1 −1 −1 45 17 −1 −1

−1 −1 24 −1 −1 10 −1 −1 10 −1 18 −1 2 −1 −1 −1 −1 19 −1 38 −1 −1 31 −1

−1 −1 40 −1 −1 35 −1 −1 31 19 −1 −1 3 −1 −1 42 −1 −1 −1 42 −1 −1 39 −1

−1 29 −1 0 −1 −1 −1 29 −1 −1 5 −1 −1 −1 47 −1 −1 28 −1 −1 28 41 −1 −1

9 −1 −1 −1 7 −1 20 −1 −1 −1 −1 1 −1 19 −1 −1 5 −1 25 −1 −1 −1 −1 41

−1 −1 53 −1 −1 3 −1 −1 26 −1 3 −1 −1 −1 30 −1 −1 5 −1 35 −1 −1 44 −1

−1 4 −1 −1 4 −1 −1 5 −1 −1 −1 13 42 −1 −1 50 −1 −1 −1 −1 36 38 −1 −1

39 −1 −1 17 −1 −1 36 −1 −1 34 −1 −1 −1 46 −1 −1 12 −1 8 −1 −1 −1 −1 15



A.2 Min Sum decoding algorithms in �ooding and

layered scheduling

A.2.1 Flooding Min Sum decoding algorithm

The �ooding MS decoding algorithm is described in Algorithm 3. We denote all
messages produced by VNs which are sent to the input of the CNs as α. We also
denote all messages produced by CNs which are sent to the input of VNs as β. We
group all values at the inputs and outputs of VNs and CNs as the vector of values as
following. The V Ni,j process on the input vector βi,j

new
and the produced results are

in the vector αi,j. The CNa,b process on the input vector αa,bnew and the produced
results are in the vector β

a,b
. 2 interleaving steps are proceeded during decoding

iterations to produce β
a,b

at CN output to βi,j
new

at the VN input and αi,j at the VN

output to αa,bnew at the CN input. At the initialization steps, all the output vector of
VNs ,αi,j,∀1 ≤ i ≤ nc, 1 ≤ j ≤ Z, are set by the priori information received from
the channel. The �ooding MS operates as following.

• 1. VN to CN interleaving: for any CNa,b, 1 ≤ a ≤ nr, 1 ≤ b ≤ Z, αa,bnew are
formed from αi,j

• 2. CN computation: For any CNa,b, the extrinsic messages are computed by
the formed αa,bnew.

• 3. CN to VN interleaving: for any V Ni,j, 1 ≤ i ≤ nc, 1 ≤ j ≤ Z, βi,j
new

are
formed from β

a,b

• 4. VN computation: For any V Ni,j, the A Posteriori information, γ̃i,j, are
computed �rst by summing all the value in βi,j

new
and γi,j. The extrinsic mes-

sages are computed by eliminating the corresponding value β message in γ̃i,j
forming αi,j.

A.2. Min Sum decoding algorithms in flooding and layered scheduling 99

• 5. The hard decision vector v is formed by the signs of all γ̃i,j.

Algorithm 3 The �ooding Min-Sum (MS) decoding algorithm

Input: y = (y1,1, y1,2, . . . , ync,Z−1, ync,Z), 1 ≤ i ≤ nc, 1 ≤ j ≤ Z . received word
Output: v = (v1,1, v1,2, . . . , vnc,Z−1, vnc,Z) ∈ {0, 1}N . estimated codeword
Initialization

for all i = 1, . . . , nc and j = 1, . . . , Z do γi,j = q(yi,j); . quantization process

for all i = 1, . . . , nc and j = 1, . . . , Z do
for all n = 1, . . . , dv do αn = γi,j; . n: local indexing
αi,j = {αn}n=1...dv ;

Iteration Loop
for all a = 1, . . . , nr and b = 1, . . . , Z do . interleaving
αa,bnew = {αm}m=1...dc :αm ∈ αi,j if H(a ∗ Z + b, i ∗ Z + j) = 1;

. CN-processing
for all m = 1, . . . , dc do

βm =
∏

αm′∈α
a,b
new\αm

sgn(αm′) ∗minαm′∈αa,bnew\αm|αm′ |;

β
a,b

= {βm}m=1...dc

for all i = 1, . . . , nc and j = 1, . . . , Z do . interleaving
βi,j
new

= {βn}n=1...dv :βn ∈ βa,b if H(a ∗ Z + b, i ∗ Z + j) = 1;
. VN-processing

γ̃i,j = γi,j +
∑

βn∈βi,jnew

βn;

for all n = 1, . . . , dv and βn ∈ βi,jnew do
αn = γ̃i,j − βn

αi,j = {αn}n=1...dv

v = {vi,j}: vi,j = sgn(γ̃i,j); . hard decision
if v is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

A.2.2 Layered Min Sum decoding algorithm

We denote l (l = 1, . . . , L) as layer index. The set of VNs belonging to layer l-
th is denoted as MV N(l) and the set of CNs belonging to layer l-th is denoted as
MCN(l). In the initialization step, the γ̃i,j is set by the received information from
channel, i.e. γ̃i,j = γi,j and the message memory is reset, i.e. β

i,j
(n) = 0,∀n =

1; . . . , dv, |βi,j(.)| = dv. We introduce a variable ti,j as a counter for each V Ni,j. The
layered MS decoder at layer l-th operates as following and an iteration includes L
layers computations.

• 1. VN computation: for any V Ni,j ∈ MV N(l) compute the messages αi,j.
Note that, at 1 layer, each VN produces only 1 value of αi,j.

100 Appendix A.

• 2. VN to CN interleaving: for any CNa,b ∈ MCN(l), the input vector, αa,bnew,
is formed from all values of αi,j by the interleaver.

• 3. CN computation: for any CNa,b ∈ MCN(l), the extrinsic vector β
a,b

is
computed

• 4. VN to CN interleaving: for any V Ni,j ∈ MV N(l), the value βi,jnew is identi-
�ed.

• 5. APP and memory update: for any V Ni,j ∈ MV N(l), the value γ̃i,j is
updated and βi,jnew is stored into β

i,j
(.) in the elements ti,j.

• 6. The hard decision vector v is formed by the signs of all γ̃i,j.

A.2. Min Sum decoding algorithms in flooding and layered scheduling 101

Algorithm 4 Min-Sum (MS) Decoding with Layered Scheduling

Input: y = (y1,1, y1,2, . . . , ync,Z−1, ync,Z), 1 ≤ i ≤ nc, 1 ≤ j ≤ Z . received word
Output: v = (v1,1, v1,2, . . . , vnc,Z−1, vnc,Z) ∈ {0, 1}N . estimated codeword
Initialization

for all i = 1, . . . , nc and j = 1, . . . , Z do γi,j = q(yi,j); . quantization process

for all i = 1, . . . , nc and j = 1, . . . , Z do γ̃i,j = γi,j;

for all i = 1, . . . , nc and j = 1, . . . , Z do
for all n = 1, . . . , dv do βi,j(n) = 0; . n: local indexing

for all i = 1, . . . , nc and j = 1, . . . , Z do ti,j = 1; . memory counter

Iteration Loop
for all l = 1, . . . , L do . Layer (check-group) loop

for all V Ni,j ∈MV N(l) do . VN-processing
αi,j = γ̃i,j − βi,j(ti,j);

for all CNa,b ∈MCN(l) do . interleaving
for all n = 1, . . . , dc do

for all V Ni,j ∈MV N(l) do
αn = αi,j if h(a ∗ Z + b, i ∗ Z + j) = 1;

αa,bnew = {αm}n=1...dc ;

for all CNa,b ∈MCN(l) do . CN-processing
for all n = 1, . . . , dc do

βn =
∏

αn′∈α
a,b
new\αn

sgn(αn′) ∗minαn′∈αa,bnew\αn|αn′ |;

β
a,b

= {βn}n=1...dc ;

for all CNa,b ∈MCN(l) do . interleaving
for all n = 1, . . . , dc do

for all V Ni,j ∈MV N(l) do
βi,jnew = β

a,b
(n) if h(a ∗ Z + b, i ∗ Z + j) = 1;

for all V Ni,j ∈MV N(l) do . AP and memory update
γ̃i,j = αi,j + βi,jnew;
β
i,j

(ti,j) = βi,jnew;
ti,j = ti,j + 1;

end (layer loop)
v = {vi,j}: vi,j = sgn(γ̃i,j); . hard decision
if v is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

102 Appendix A.

A.3 3 weight-20 codewords in Tanner code

A.3.1 Type I

c66

v0

v90

c77

v47

c1

c36

c18

v80

v2v142 c3 c89

v21 c22

c38

c57

c47

c67

v139 c74

v11

v76

c26

v111

c84

c87

c48

c83

v100c15v154

c19 v77

c58 v48

c35

v30

c33

c0

c12v151c86

v87c29v28

v55

c34

c63

c45

A.3.2 Type II

v132

c51

v62

v126

c57

c18 c4

v47

c23

v142

v58

v15

c3

c77

c16

c66

c56v109

c24

v131

c92

v28

c1

c84

v117

c33

c29

c37

v3

v81

c67

c88

c39

v104 v77 c35

v0

c87

c36

c19

c69

c2

v124

c71

v91

c90

v1

v119

c49

A.3. 3 weight-20 codewords in Tanner code 103

A.3.3 Type III

v147

c87

v42

c41

c13

v37 c8

c52

v140

v19

v153

c75

c47

c1

c20

v98

c16

v138

c81

c32

v74

c30

c46v88c64v45c55

v1 c37

v121

c88

v63

c2

c34

v118 c70

c5

v35

v78

c6

c36

c92v5

v0

c45

c85

c14

v99c82

c73

104 A.

Bibliography

[1] R. G. Gallager, Low density parity check codes. MIT Press, Cambridge, 1963,
Research Monograph series, 1963.

[2] Y. Kou, S. Lin, and M. P. C. Fossorier, �Low-density parity-check codes based
on �nite geometries: a rediscovery and new results,� IEEE Transactions on
Information Theory, vol. 47, no. 7, pp. 2711�2736, Nov 2001.

[3] J. Zhang and M. P. C. Fossorier, �A modi�ed weighted bit-�ipping decoding of
low-density parity-check codes,� IEEE Communications Letters, vol. 8, no. 3,
pp. 165�167, March 2004.

[4] N. Miladinovic and M. Fossorier, �A improved bit-�ipping decoding of low-
density parity-check codes,� IEEE Transactions on Information Theory, vol. 51,
no. 4, pp. 1594�1606, Apr. 2005.

[5] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, �An improvement on the modi�ed
weighted bit �ipping decoding algorithm for ldpc codes,� IEEE Communica-
tions Letters, vol. 9, no. 9, pp. 814�816, Sep 2005.

[6] X. Wu, C. Zhao, and X. You, �Parallel weighted bit-�ipping decoding,� IEEE
Communications Letters, vol. 11, no. 8, pp. 671�673, August 2007.

[7] G. Li and G. Feng, �Improved parallel weighted bit-�ipping decoding algorithm
for ldpc codes,� IET Communications, vol. 3, no. 1, pp. 91�99, January 2009.

[8] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, �Gradient descent bit �ipping algorithms for decoding ldpc codes,�
IEEE Transactions on Communications, vol. 58, no. 6, pp. 1610�1614, June
2010.

[9] R. Haga and S. Usami, �Multi-bit �ip type gradient descent bit �ipping decoding
using no thresholds,� in 2012 International Symposium on Information Theory
and its Applications, Oct 2012, pp. 6�10.

[10] T. Phromsa-ard, J. Arpornsiripat, J. Wetcharungsri, P. Sangwongngam,
K. Sripimanwat, and P. Vanichchanunt, �Improved gradient descent bit �ip-
ping algorithms for ldpc decoding,� in Digital Information and Communication
Technology and it's Applications (DICTAP), 2012 Second International Con-
ference on, May 2012, pp. 324�328.

105

106 BIBLIOGRAPHY

[11] M. Ismail, I. Ahmed, , and J. Coon, �Low power decoding of ldpc codes,� ISRN
Sensor Networks, vol. 2013, no. 650740, 2013.

[12] Q. Zhu and L. n. Wu, �Weighted candidate bit based bit-�ipping decoding
algorithms for ldpc codes,� in 2013 3rd International Conference on Consumer
Electronics, Communications and Networks, Nov 2013, pp. 731�734.

[13] D. V. Nguyen and B. Vasic, �Two-bit bit �ipping algorithms for ldpc codes and
collective error correction,� IEEE Transactions on Communications, vol. 62,
no. 4, pp. 1153�1163, April 2014.

[14] G. Sundararajan, C. Winstead, and E. Boutillon, �Noisy gradient descent bit-
�ip decoding for ldpc codes,� IEEE Transactions on Communications, vol. 62,
no. 10, pp. 3385�3400, Oct 2014.

[15] O. A. Rasheed, P. Ivanis, and B. Vasi¢, �Fault-tolerant probabilistic gradient-
descent bit �ipping decoder,� IEEE Communications Letters, vol. 18, no. 9, pp.
1487�1490, Sept 2014.

[16] H. Huang, Y. Wang, and G. Wei, �Mixed modi�ed weighted bit-�ipping decod-
ing of low-density parity-check codes,� IET Communications, vol. 9, no. 2, pp.
283�290, 2015.

[17] Y. h. Liu, X. l. Niu, and M. l. Zhang, �Multi-threshold bit �ipping algorithm for
decoding structured ldpc codes,� IEEE Communications Letters, vol. 19, no. 2,
pp. 127�130, Feb 2015.

[18] T. C. Y. Chang and Y. T. Su, �Dynamic weighted bit-�ipping decoding algo-
rithms for ldpc codes,� IEEE Transactions on Communications, vol. 63, no. 11,
pp. 3950�3963, Nov 2015.

[19] S. Imani, R. Shahbazian, and S. A. Ghorashi, �An iterative bit �ipping based
decoding algorithm for ldpc codes,� in 2015 Iran Workshop on Communication
and Information Theory (IWCIT), May 2015, pp. 1�3.

[20] K. Ma, J. Jin, W. Li, and P. Zhang, �Two-staged weighted bit �ipping (wbf)
decoding algorithm for ldpc codes,� in 2015 IEEE 9th International Conference
on Anti-counterfeiting, Security, and Identi�cation (ASID), Sept 2015, pp. 141�
144.

[21] H. Li, H. Ding, and L. Zheng, �Hybrid iterative decoding for ldpc codes based on
gradient descent bit-�ipping algorithm,� in 2016 8th International Conference
on Wireless Communications Signal Processing (WCSP), Oct 2016, pp. 1�3.

[22] J. Jung and I. C. Park, �Multi-bit �ipping decoding of ldpc codes for nand
storage systems,� IEEE Communications Letters, vol. PP, no. 99, pp. 1�1, 2017.

BIBLIOGRAPHY 107

[23] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, �Finite alphabet iterative de-
coders - part ii: Towards guaranteed error correction of ldpc codes via iterative
decoder diversity,� IEEE Transactions on Communications, vol. 61, no. 10, pp.
4046�4057, October 2013.

[24] T. T. Nguyen-Ly, T. Gupta, M. Pezzin, V. Savin, D. Declercq, and S. Cotofana,
�Flexible, cost-e�cient, high-throughput architecture for layered ldpc decoders
with fully-parallel processing units,� in 2016 Euromicro Conference on Digital
System Design (DSD), Aug 2016, pp. 230�237.

[25] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. E. L'Insalata,
F. Rossi, M. Rovini, and L. Fanucci, �Low complexity ldpc code decoders for
next generation standards,� in 2007 Design, Automation Test in Europe Con-
ference Exhibition, April 2007, pp. 1�6.

[26] J. Sha, Z. Wang, M. Gao, and L. Li, �Multi-gb/s ldpc code design and implemen-
tation,� IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 2, pp. 262�268, Feb 2009.

[27] D. Declercq, M. Fossorier, and E. Biglieri, Channel Coding: Theory, Algo-
rithms, And Applications. Academic Press Library in Mobile and Wireless
Communications, Elsevier, ISBN: 978-0-12-396499-1, 2014.

[28] Q. Huang, J. Kang, L. Zhang, S. Lin, and K. Abdel-Gha�ar, �Two reliability-
based iterative majority-logic decoding algorithms for ldpc codes,� IEEE Trans-
actions on Communications, vol. 57, no. 12, pp. 3597�3606, December 2009.

[29] K. Le, D. Declercq, F. Gha�ari, C. Spagnol, E. Popovici, P. Ivanis, and B. Vasíc,
�E�cient realization of probabilistic gradient descent bit �ipping decoders,� in
2015 IEEE International Symposium on Circuits and Systems (ISCAS), May
2015, pp. 1494�1497.

[30] M. Tanner, D. Srkdhara, and T. Fuja, �A class of group-structured ldpc codes,�
in Proc. 5th Int. Symp. Commun. Theory App., July 2001.

[31] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, �Design of capacity-
approaching irregular low-density parity-check codes,� IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 619�637, Feb 2001.

[32] N. Mobini, A. H. Banihashemi, and S. Hemati, �A di�erential binary message-
passing ldpc decoder,� IEEE Transactions on Communications, vol. 57, no. 9,
pp. 2518�2523, September 2009.

[33] K. Cushon, S. Hemati, C. Leroux, S. Mannor, and W. J. Gross, �High-
throughput energy-e�cient ldpc decoders using di�erential binary message
passing,� IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 619�631,
Feb 2014.

108 BIBLIOGRAPHY

[34] A. V. Aho, H. J. E., and U. J. D., The Design and Analysis of Computer
Algorithms. Cambridge: Addison-Wesley, Reading, MA, 1974.

[35] B. VasiÄ�, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, �Trapping
set ontology,� in 2009 47th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sept 2009, pp. 1�7.

[36] D. Declercq, E. Li, B. Vasi¢, and S. K. Planjery, �Approaching maximum like-
lihood decoding of �nite length ldpc codes via faid diversity,� in 2012 IEEE
Information Theory Workshop, Sept 2012, pp. 487�491.

[37] D. Declercq, L. Danjean, E. Li, S. K. Planjery, and B. Vasi¢, �Finite alphabet
iterative decoding (faid) of the (155,64,20) tanner code,� in 2010 6th Interna-
tional Symposium on Turbo Codes Iterative Information Processing, Sept 2010,
pp. 11�15.

[38] B. Vasi¢, P. Ivanis, and D. Declercq, �Approaching maximum likelihood per-
formance of ldpc codes by stochastic resonance in noisy iterative decoders,� in
Information Theory and Applications Workshop, Feb. 2016.

[39] T. Richardson, �Error �oors of ldpc codes,� in 41st Annual Allerton Conf on
Communications Control and Computing, Oct. 2003, pp. 1426�1435.

[40] A. K. Panda, P. Rajput, and B. Shukla, �Fpga implementation of 8, 16 and
32 bit lfsr with maximum length feedback polynomial using vhdl,� in 2012 In-
ternational Conference on Communication Systems and Network Technologies,
May 2012, pp. 769�773.

[41] B. Yuce, H. F. Ugurdag, S. Goren, and G. Dundar, �Fast and e�cient circuit
topologies for�nding the maximum of n k-bit numbers,� IEEE Transactions on
Computers, vol. 63, no. 8, pp. 1868�1881, Aug 2014.

[42] T. Nguyen-Ly, K. Le, F. Gha�ari, A. Amaricai, O. Boncalo, V. Savin, and
D. Declercq, �Fpga design of high throughput ldpc decoder based on imprecise
o�set min-sum decoding,� in 2015 IEEE 13th International New Circuits and
Systems Conference (NEWCAS), June 2015, pp. 1�4.

[43] D. Declercq, C. Winstead, B. Vasic, F. Gha�ari, P. Ivanis, and E. Boutillon,
�Noise-aided gradient descent bit-�ipping decoders approaching maximum like-
lihood decoding,� in 2016 9th International Symposium on Turbo Codes and
Iterative Information Processing (ISTC), Sept 2016, pp. 300�304.

