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réussissait toujours à me faire prendre du recul. J’ai aussi apprécié l’expérience dans
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Résumé

Au cours des dernières années, les techniques d’imagerie par tomographie se sont diver-
sifiées pour de nombreuses applications. Cependant, des contraintes expérimentales con-
duisent souvent à une acquisition de données limitées, par exemple les scans rapides ou
l’imagerie médicale pour laquelle la dose de rayonnement est une préoccupation majeure.
L’insuffisance de données peut prendre forme d’un faible rapport signal à bruit, peu de
vues, ou une gamme angulaire manquante. D’autre part, les artefacts nuisent à la qualité
de reconstruction. Dans ces contextes, les techniques standard montrent leurs limitations.

Dans ce travail, nous explorons comment les méthodes de reconstruction régularisée
peuvent répondre à ces défis. Ces méthodes traitent la reconstruction comme un problème
inverse, et la solution est généralement calculée par une procédure d’optimisation. L’implé-
mentation de méthodes de reconstruction régularisée implique à la fois de concevoir
une régularisation appropriée, et de choisir le meilleur algorithme d’optimisation pour
le problème résultant.

Du point de vue de la modélisation, nous considérons trois types de régularisations
dans un cadre mathématique unifié, ainsi que leur implémentation efficace : la variation
totale, les ondelettes et la reconstruction basée sur un dictionnaire. Du point de vue
algorithmique, nous étudions quels algorithmes d’optimisation de l’état de l’art sont les
mieux adaptés pour le problème et l’architecture parallèle cible (GPU), et nous proposons
un nouvel algorithme d’optimisation avec une vitesse de convergence accrue.

Nous montrons ensuite comment les modèles régularisés de reconstruction peuvent être
étendus pour prendre en compte les artefacts usuels : les artefacts en anneau et les artefacts
de tomographie locale. Nous proposons notamment un nouvel algorithme quasi-exact de
reconstruction en tomographie locale.

Abstract

In the last years, there have been a diversification of the tomography imaging technique
for many applications. However, experimental constraints often lead to limited data - for
example fast scans, or medical imaging where the radiation dose is a primary concern.
The data limitation may come as a low signal to noise ratio, scarce views or a missing
angle wedge. On the other hand, artefacts are detrimental to reconstruction quality. In
these contexts, the standard techniques show their limitations.

In this work, we explore how regularized tomographic reconstruction methods can
handle these challenges. These methods treat the problem as an inverse problem, and
the solution is generally found by the means of an optimization procedure. Implementing
regularized reconstruction methods entails to both designing an appropriate regularization,
and choosing the best optimization algorithm for the resulting problem.

On the modelling part, we focus on three types of regularizers in an unified mathemat-
ical framework, along with their efficient implementation : Total Variation, Wavelets and
dictionary-based reconstruction. On the algorithmic part, we study which state-of-the-art
convex optimization algorithms are best fitted for the problem and parallel architectures
(GPU), and propose a new algorithm for an increased convergence speed.

We then show how the standard regularization models can be extended to take the
usual artefacts into account, namely rings and local tomography artefacts. Notably, a
novel quasi-exact local tomography reconstruction method is proposed.



Definitions and notations

Typographic conventions

This manuscript follows the following typographic convention regarding the mathematical
entities.

Mathematical entity Typographic convention Example

Scalar Lower case Latin and Greek for i ∈ {0, 1, 2, . . .} and α > 0

Vector Bold lower case The signal x = [x1, . . . , xn]

Discrete operator (matrix) Bold upper case The inverse problem Ax = b

Continuous operator Upper case calligraphic The Fourier Transform F .

Standard sets Upper case Roman N,Z,R,C
Other sets Upper case Greek Ω = {x | Ax = b}

The terminology “continuous”, in this context, is understood as opposed to discrete in
the sense that values are indexed by a “continuum”, generally a subset of R. It does not
mean that the involved functions/operators are continuous in the “regularity‘” sense of
the term.

Discrete functions, signals and images are represented by vectors, as elements of vector
spaces of finite dimension. Continuous functions, signal and images are also represented by
vectors, as elements of vector spaces of infinite dimension. Continuous functions may be
denoted by bold lowercase Greek letters, for example t 7→ ϕ(t). For clarity, the following
abuse of notation is used : the variable dependency is denoted between parenthesis. For
example, a continuous time-dependent signal can be denoted x(t) instead of t 7→ x(t).

The only exceptions are functions from a vector space to a scalar field, for example
objective functions. These functions take a vector as an input and return a scalar value.
For readability, bold will be omitted. For example f(x) will be written, where x is a
signal, and f can be a norm for example.

Adjoint of linear operators are denoted with a star : if M is a linear continuous
operator, M∗ is its adjoint. In the discrete, real case (matrices), the adjoint of M is its
transpose, denoted MT for real matrices.

Transforms

Transforms are operators taking a function as an input, and returning another function as
an output. The transformation of a function f to a function g by a transform T , evaluated
in the variable t0, is denoted

T [f ](t0) = g(t0)

where the brackets stand for the evaluation of an operator in a function, and the paren-
thesis stand for the evaluation of a function in a variable.

The one dimensional Fourier transform of a time-dependent signal f(t) is defined as

F1[f ](ν) =

∫ ∞
−∞

x(t)e−j2πνt dt

7
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where j is the imaginary unit. Generalization to superior dimensions is straightforward
In this manuscript, the two dimensional Fourier Transform of a signal g(x, y) is of special
interest :

F2[g](νx, νy) =

∫∫ ∞
−∞

g(x, y)e−j2π(νxx+νyy) dx dy

Inner products and norms

Vector norms

The inner product between two vectors x and y is denoted 〈x , y〉. The inner product
used in general is the Euclidean inner product, equal to xTy =

∑
i xiyi in the discrete

case or
∫
t x(t)y(t) dt in the continuous case.

The Euclidean norm (or `2 norm), associated to the standard inner product 〈· , ·〉, is
denoted ‖x‖2 =

√
〈x , x〉.

The norm of x with metric R, where R is a positive semi-definite matrix, is defined as
‖x‖R =

√
〈Rx , x〉.

The `1 norm of x is defined as ‖x‖1 =
∑

i |xi|.
The `∞ norm of x is defined as ‖x‖∞ = max

i
|xi|.

The `p,q norm of doubly indexed vector x, is defined as ‖x‖p,q =

[∑
i

(∑
j |xi,j |p

)q/p]1/q

where 1
p + 1

q = 1.
Given a norm ‖·‖, the unit ball of ‖·‖ is the set of all vectors having norm less that one:

B1 = {x, ‖x‖ ≤ 1}

Similarly, the λ ball is defined as

Bλ = {x, ‖x‖ ≤ λ}

Operator norms

A norm ‖·‖ on vector space E “induces” a norm on the operators acting on elements of
E. In general, the induced norm of the operator M is defined as

‖M‖ = sup
x6=0

{
‖Mx‖
‖x‖

}
The spectral norm, which is the norm induced by the `2 norm, is of special interest. It is
equal to

‖M‖2 =
√
λmax(M∗M) = σmax(M)

where λmax and σmax denote the largest eigenvalue and singular value, respectively.



Chapter 0

Introduction

This chapter gives a brief introduction on X-Ray tomography and gives the context and
motivation of this work. It also provides a reading guide of the chapters, and a list of the
main contributions.

0.1 X-Ray tomography

From their discovery of by Wilhelm Röntgen in 1895, X-Rays proved to have applications
in a wide variety of scientific fields. Simply put, X-ray radiation is a light of relatively high
frequency/energy with respect to the visible light. Due to its high energy, X-ray radiation
has a notable penetrating property, which makes it particularly interesting for imaging
applications (Figure 0.1.1).

(a)
(b)

Figure 0.1.1: (a) First radiograph realized by Wilhelm Röntgen in 1895 on the hand of
his wife Anna Ludwig. Image in public domain. (b) Principle of computed tomography.
In this case, moving X-ray source and detector are rotating around a patient. From the
collected data, it is possible to reconstruct an image of the patient’s cross-section. Image
from [Mos12].

X-Ray Computed Tomography (CT) is an imaging technique which can be viewed as an
extension of X-ray radiography (Figure 0.1.1.a). Instead of acquiring a single radiograph,
several projection images are acquired at different angles around the scanned object (Fig-
ure 0.1.1.b). By combining these projections and using a numerical reconstruction method,
the interior of the scanned volume can be rendered. The word tomography comes from
the Greek tomos graphein, literally “writing slices”. Instead of cutting a volume slice by
slice to examine its interior – which is of limited interest in medical imaging – computed
tomography aims at numerically reconstructing the interior of a scanned volume.

This non-destructive imaging technique finds broad applications from industrial char-
acterization to medical imaging. The same imaging principle can be used with other

9



10 CHAPTER 0. INTRODUCTION

modalities (i.e replacing the X-rays photons with other particles) like positron emission
tomography (PET).

0.2 Context and motivations

This work has been funded by a CFR1 at the European Synchrotron Radiation Facility
(ESRF). A synchrotron (Figure 0.2.1) is a large instrument which generates intense X-Rays
for various scientific applications.

Figure 0.2.1: Principle of a synchrotron, here the ESRF. Electron are first produced
by an “electron gun”, and are accelerated in a linear accelerator (Linac). Then, they are
accelerated to in the booster (6 GeV at ESRF), before being sent to the storage ring where
they are kept to the same average energy. By passing through successive magnetic elements
such as bending magnets, the electrons are radially accelerated and emit a radiation. This
X-Ray radiation is collected at Beamlines built around the storage ring. Image credits:
esrf.eu

At ESRF, tomography beamlines can use “hard X-rays” in an energy range from 10
keV (0.124 nm wavelength) to 250 keV (4.96 pm wavelength). In contrast to X-rays
produced at laboratories, synchrotron radiation has many attractive qualities.

Regardless of the X-ray source, the traditional computed tomography process can be
roughly divided in three steps: data acquisition, reconstruction and data analysis. With
a simple model of the data acquisition, efficient reconstruction algorithms were derived in
traditional CT. However, despite the constant progresses made in detectors and recent de-
velopment of more advanced reconstruction algorithms, modern X-ray tomography comes
with several challenges:

• Micro and nano-imaging requires an increase in spatial resolution, sometimes with
“not enough data”

• When radiation dose is a concern, a major challenge is being able to reconstruct
from highly limited data: small number of projection angles or weak signal-to-noise
ratio.

• Fast tomography constraints (in-situ scan) often entail limited data

• Artefacts are detrimental to the reconstruction quality.

• The huge amount of data, produced by new generations of detectors, always over-
whelms the computing power.

1Contrat Formation-Recherche
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Particularly, in the case of limited data, classical reconstruction method do not yield
satisfactory results.

In this work, we explore how advanced reconstruction methods, called regularized
methods, can handle these challenges. Indeed, in many cases, the experimental set-up
cannot be modified to acquire a better data quality; or the data is already acquired and
has to be analysed/further processed. In these cases, the “numerical” reconstruction step
has to catch up for the “experimental” step, in order to get the most out of the data.

This works aims at keeping the best compromise between the modelling part and the
computational part, i.e between the modelling accuracy and practical usability. More
precisely, the reconstruction is treated as an inverse problem and involves regularization;
but ultimately the computational cost is always kept in sight. Importantly, all the methods
are developed on GPU for a high speed data processing, in order to cope with the always
increasing amount of data outputed by modern detectors.

0.3 Reading guide

This dissertation is split in four chapters.

• In the first chapter, we briefly introduce the continuous and numerical tomography.
An emphasis is put on the distinction between the “continuous domain” – the Radon
transform and its mathematical properties – and the “discrete domain” – suitable
for numerical implementations. The usual tomography operators are put in the
form of discrete operators, which brings the convenience of numerical linear algebra,
keeping in mind that some mathematical properties – like the ability to reconstruct
the infinite spectrum of an image – does not hold in the discrete case.

• In the second chapter, classical iterative reconstruction methods are presented in an
unified Bayseian framework. The regularized methods are then naturally introduced
both in the framework of Bayseian reconstruction and compressed sensing. Three
sparsifying frames are considered: the gradient representation (Total Variation),
over-complete learned dictionaries and wavelets. Finally, convex optimization tools
necessary for this work are presented.

• The third chapter deals with the efficient implementation of regularized reconstruc-
tion methods for parallel-beam geometry. An extensive comparison of state-of-the-
art convex optimization algorithms is carried on for the Total Variation reconstruc-
tion; The most promising one is implemented on GPU for high throughput recon-
struction. Then, the parallel implementation of a discrete wavelet transform library
is presented. This library aims at being used for regularized tomographic reconstruc-
tion, and in other regularized inverse problems. Finally, we present a new optimiza-
tion algorithm for `2-`1 minimization, primarily dedicated to a fast convergence of
dictionary-based reconstruction with combined rings artefacts removal.

• In the fourth chapter, we show how the standard regularization models can be ex-
tended to take the usual artefacts into account, namely rings and local tomography
artefacts. Notably, a novel quasi-exact local tomography reconstruction method is
proposed.

0.4 Main contributions

The main contribution of this work can be outlined according to the chapters.
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• Chapter 1. An overview of the properties of the Radon Transform (in parallel
geometry) is carried on with an operator formalism. This approach, seldom adopted
in the literature, allows for much more concise statements and derivations of the
usual properties. We also highlighting the difference between the continuum and
discrete settings, and link the properties to practical implementation issues.

• Chapter 2. The usual reconstruction algorithms are described in a unified math-
ematical framework, explicitly separating the modelling from the optimization. We
also review and classify sparse representation for regularized tomographic recon-
struction and state-of-the-art optimization algorithms.

• Chapter 3. On the algorithmic side, we benchmark the state-of-the-art optimiza-
tion algorithms for Total Variation regularized reconstruction (3.1). The parallel
geometry is fully exploited to improve the convergence rate (3.1.4 and 3.4). We also
propose a new optimization algorithm suited for the LASSO problem (3.3) and show
that it outperforms the current best algorithms. On the implementation side, we
implement all the algorithms and the involved operators on GPU; notably, we pro-
pose a library for a the Discrete Wavelet Transform and all its variant for regularized
inverse problems (3.2).

• Chapter 4. We show that the proposed unified formalism can be further extended
to take artefacts into account. Rings artefacts (4.1) appear as a structured noise in
the sinogram and can be accounted with an additional variable in the optimization
problem, leading to an iterative method which simultaneously reconstructs and cor-
rects artefacts. We then propose a local tomography reconstruction method (4.2)
aiming at correcting the low frequencies artefacts by modifying the forward model.
This method is able to recover quantitativeness if a known zone constraint is satisfied.



Chapter 1

Continuous and numerical
tomography

In this chapter, we review the essential properties of the “X-ray transform” modelling the
acquisition of projection data. These properties are the building blocks of tomographic
reconstruction methods. We adopt an operator approach, which makes the statements
and derivations much more concise.

1.1 Absorption and phase-contrast tomography

1.1.1 Absorption tomography

Absorption tomography aims at measuring how an object absorbs (or, in the complemen-
tary way, transmits) an X-ray beam by measuring both the incoming and transmitted
beam.

The transmission process can be described by the Beer’s law (or Bouguer-Lambert-
Beer’s law) which can be derived as follows. Let us consider a monochromatic X-ray beam
propagating in one direction measured by the coordinate x, having an intensity I(x). The
beam hits an object of thickness dx at the coordinate x. After leaving the object at coordi-
nate x+ dx, the intensity has been attenuated in a proportion that is characteristic of the
object. This attenuation is described by the linear absorption coefficient µ(x). The Beer’s
law states that the infinitesimal intensity decay is linearly linked to the incoming inten-
sity, the object thickness and the linear attenuation coefficient: I(x+ dx) = I(x) + dI(x),
where dI(x) is given by Equation (1.1.1).

dI(x) = −µ(x)I(x) dx (1.1.1)

Ordinary Differential Equation (1.1.1) enables to know the intensity profile I(x) from
arbitrary position x0. Letting I0 = I(x = x0), this leads to Equation (1.1.2).

I(x) = I0 exp

(
−
∫ x

x0

µ(l) dl

)
− ln

(
I(x)

I0

)
=

∫ x

x0

µ(l) dl

(1.1.2)

The tomographic reconstruction problem aims at reconstructing a map µ(x, y) (or

µ(x, y, z) in 3D) of the attenuation coefficient from a set of measurements − ln
(
I(x)
I0

)
–

called sinogram – at various angles. These measurements are modeled, in the Beer’s law
setting, by integrals along lines (Equation (1.1.2)).

1.1.2 Phase contrast tomography

Instead of measuring how an object absorbs the X-rays, Phase Contrast Tomography
(PCT) aims at measuring how an object slows down the X-rays. In the absorption tomog-
raphy setting, the absorption property was characterized by the attenuation coefficient

13
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µ(x, y). In PCT, the rays deviation is measured by the refractive index. Formally, let
n(x, y, z) = 1 − δ(x, y, z) + iβ(x, y, z) be the map of the complex refractive index of an
object. The real part and imaginary part act on the amplitude attenuation and phase
shift of the wave field, respectively. The latter effect is dominant by orders of magnitude
for hard X-rays (with energy > 10 keV); thus, a better contrast is actually obtained from
the phase than from the absorption at these energies.

In this work, we mainly consider propagation-based PCT, which considers a coherent
plane wave. In this setting, the wave in the outgoing plane of the object is given by
[Zan+13]

T (x, y, z) = exp (−B(x, y) + jϕ(x, y)) (1.1.3)

where z is the beam propagation direction, and

B(x, y) =
2π

λ

∫
β(x, y, z) dz =

1

2

∫
µ(x, y, z) dz

ϕ(x, y) =
−2π

λ

∫
δ(x, y, z) dz

(1.1.4)

The term B(x, y), linked to the imaginary part of the refractive index, characterizes the
amplitude attenuation of the beam. The term ϕ(x, y), linked to the (deviation from one of
the) real part of the refractive index, characterizes the phase shift of the beam. Absorption
tomography aims at reconstructing µ from 2B(x, y) =

∫
µ(x, y, z) dz and phase contrast

tomography aims at reconstructing δ from ϕ(x, y) = −2π
λ

∫
δ(x, y, z) dz. The phase ϕ,

however, is not measured directly; and a procedure is needed to retrieve the phase from
the projection images. The phase retrieval is out of the scope of this work, which primarily
focuses on reconstruction. When working in the PCT setting, it is assumed that the phase
is already available.

In any case, it can be seen that the problem boils down to reconstructing a quantity
of interest from a set of line integrals. This motivates the mathematical formalization of
tomography using the Radon Transform.

1.2 The Radon Transform

The ground of computed tomography is a model of the acquisition process. This process
can be characterized by a linear operator called the Radon Transform. On the other
hand, implementing any reconstruction method on processing units entails to perform
a discretization. This chapter addresses two main questions: what is the mathematical
model of the tomography acquisition process and its properties ? What are the numerical
properties of the discretized operators ?

Knowing the mathematical properties of the involved continuous operators enables to
have an insight on the reconstruction problem, its solutions, and the discrete implemen-
tation of the operators. Understanding the numerical properties of the discrete operators
will be useful when it comes to designing reconstruction algorithms.

1.2.1 Definition of the 2D Radon Transform

The Radon Transform, or tomography projector, is the basic operator of tomography. Here
the Radon Transform is defined in two dimensions - generalization to n dimensions can
be found for example in [NW01].
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Definition 1 (Radon Transform)
Let f ∈ `1(R2) be a function. The Radon Transform of f is a function p : [0, 2π]×
R→ R defined by

p(θ, s) = R [f ] (θ, s) =

∫ ∞
−∞

f(sθ + tθ⊥) dt

=

∫ ∞
−∞

f(s cos θ − t sin θ , s sin θ + t cos θ) dt

(1.2.1)

The quantity p(θ, s) is called sinogram.
The Radon Transform of f for angle θ0 ∈ [0, 2π], or “projection for angle θ0” ∈
[0, 2π], is the one-dimensional function equal to the Radon transform evaluated at a
fixed angle:

Rθ0 [f ](s) = s 7→ R [f ] (θ0, s) (1.2.2)

In Definition 1, θ and θ⊥ are the unit vectors of R2 of respective coordinates (cos θ, sin θ)
and (− sin θ, cos θ) in the R2 canonical frame. The summation occurs on the support of f .

Figure 1.2.1 illustrates the definition (1.2.1).

Figure 1.2.1: Schematic of the Radon Transform, where θ and θ⊥ were defined previously.
Image from [Bil07].

The coordinates (θ, s) of the Radon domain [0, 2π]×R have the following geometrical
meaning: s measures the position on the detector, while θ characterizes the rotation of
the object (or, equivalently, the X-ray source) with respect to the reference frame. In the
real world, the function f represents a quantity of interest which can be the map of an
object attenuation coefficient µ(x, y) (in the case of absorption tomography) or refractive
index1 δ(x, y) (in the case of phase contrast tomography).

1more precisely, the deviation from unity of the real part of the refractive index
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In simple words, the Radon Transform consists in computing the integral along lines
crossing f in a given direction. The process is repeated for all the angles in [0, 2π].
Illustrations are provided in section 1.3.2.

The 2D Radon Transform is a special case of the X-ray transform describing a tomo-
graphic setup. This setup has two main components:

• Geometry. The lines along which f is integrated are not always parallel; for example,
they can form a cone whose origin is the X-ray source (cone-beam geometry in 3D,
or fan-beam geometry in 2D).

• Trajectory. Here it is assumed that the object (or X-ray source) is simply rotating
around the origin of the reference frame; but arbitrary trajectories can be considered
[CD10]. For example, translation can be considered at the same time as the rotation:
a vertical translation in the case of a helical scan, or a longitudinal translation in
the case of the conveyor belt setup [Aar+16].

These components make the definition of the X-ray transform – and the associated
reconstruction problem – more complicated. Fortunately, the X-ray light produced by a
synchrotron is highly collimated, enabling to work in the setup of a parallel geometry. On
the other hand, most tomography scans performed on the beamlines use a standard circular
geometry. This provides a rare and convenient case where the 2D Radon Transform can be
used as the X-ray transform. In the parallel setting, the “sinogram space” is the transpose
of the “projections space” (Figure 1.2.2). In this manuscript, the operator R defined in
(1.2.1) will therefore denote the 2D Radon Transform.

Figure 1.2.2: Illustration of the circular parallel geometry. The orange slice of the scanned
object defines a plan perpendicular to the rotation axis. An X-ray beam contained in this
plan goes through the object and reaches the detector at locations indicated by blue lines.
The four grey rectangles illustrate projections at different angles. To reconstruct the
orange slice, all the blue lines are concatenated to form a sinogram. Thus, to reconstruct
a slice at altitude z, a sinogram has to be created by extracting the line at location z in
all the projections. This enables to reconstruct each slice independently.
If the X-ray beam is divergent (cone beam geometry), each volume slice requires several
detector lines to be reconstructed.
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1.2.2 Adjoint operator

It can be shown [Bil07] that the Radon Transform admits an adjoint operator R∗, called
backprojection, defined In Definition 2.

Definition 2 (Backprojection)
The backprojection operator, adjoint of the Radon Transform, is defined2 by Equa-
tion (1.2.3).

R∗ [p] (x, y) =

∫ 2π

0
p(θ,

(
x
y

)
·
(

cos θ
sin θ

)
) dθ

=

∫ 2π

0
p (θ, x cos θ + y sin θ) dθ

(1.2.3)

Simply put, the backprojection of p consists in smearing the curves (p(θ, s))θ on an
infinite support and accumulating them. Illustration is provided in section 1.3.2.

1.2.3 Essential properties

From its definition, it is clear that the Radon Transform is a linear operator. This section
states main properties of the Radon Transform which are used in the reconstruction algo-
rithms. For a comprehensive list of the Radon Transform properties, which is out of the
scope of this manuscript, the reader can refer to [NW01], [Far+03], [Bil07].

Proposition 1.2.1 (Fourier-Slice theorem)
Let f ∈ `1(R2), and θ0 ∈ [0, 2π]. Let Rθ0 [f ] be the Radon transform of f at angle
θ0. The one dimensional Fourier Transform of Rθ0 [f ] is equal to the two dimensional
Fourier transform of f evaluated along a line forming an angle θ0 with respect to
the origin:

F1[Rθ0 [f ]](ν) = F2[f ](ν cos θ0, ν sin θ0) (1.2.4)

The proof can be found in Appendix 6.1.1. Proposition 1.2.1 is useful to prove many
properties of the Radon Transform. It can also be used to design an efficient reconstruction
algorithm described in 1.4.1. The following Proposition is a direct application of the
Fourier-Slice theorem.

Proposition 1.2.2 (Convolution in the image space and in the Radon space)
Let f , g be two functions of `1(R2). Then, Equation (1.2.5) holds

R [f ∗ g] = R [f ] ∗1 R [g] (1.2.5)

meaning that the two dimensional convolution of functions f and g, f ∗ g, consists
in the one dimensional convolution (∗1) in the Radon domain.

The proof can be found in Appendix 6.1.1. Proposition 1.2.2 is used in computed
tomography for the efficient computation of the convolution, notably in the filtered back-
projection algorithm (see 1.4.2).

2In some textbooks, the backprojection is normalized by 1
2π
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It can also be easily seen that the Radon Transform satisfies a symmetric rule given
by Proposition 1.2.3.

Proposition 1.2.3 (Symmetry of the Radon Transform)
Let f ∈ `1(R2). Then Equation (1.2.6) holds

R [f ] (s, θ + π) = R [f ] (−s, θ) (1.2.6)

A practical consequence of proposition 1.2.3 is that the angular range is generally [0, π[
instead of [0, 2π] when working in parallel geometry. Additional properties which are
directly used in reconstruction are detailed in section 1.4.

1.2.4 Singular Value Decomposition

Knowing the analytical form of the Radon Transform and its adjoint, it is possible to
calculate the singular elements of R. In the finite dimension setting, the Singular Value
Decomposition (SVD). of a matrix A ∈ Rm×n is a factorization of A in the form

A = UΣV ∗ (1.2.7)

where U , V ∗ are unitary and Σ is diagonal, containing the singular values of A. The
operator Σ thus consists in multiplying each component of a vector with the singular
values of A. Knowing the SVD of A can be helpful to evaluate the difficulty of inverting
A – which will be of interest for tomographic reconstruction – and can lead to a class of
inverses for A.

The SVD of the (continuous) Radon Transform was derived in [Lou86], [Maa87]. It is
shown that the singular functions of the Radon Transform – or, equivalently, the eigen-
functions of R∗R – involve the Jacobi and Chebyshev polynomials. Explicit formulas are
given in [Bil07], [Ker+10]. Interestingly, the singular value number k (in descending order)
is given by

σRk = 2

√
π

k + 1
(1.2.8)

and notably decay to zero when k → +∞.
The considered SVD holds for functions of bounded support, for example on the unit

disk {x, ‖x‖ ≤ 1}. As the backprojection R∗ “smears” a function on an infinite domain
(R2), it is not surprising that the singular elements ψk of R are relatively complex, as they
should satisfy the property “R∗Rψk has a finite support” – the functions ψk are built in
such a way that the backprojections compensate outside the support of ψk. The SVD is

also built for a particular norm of `2([−1, 1]): ‖f‖2 =

∫ 1

−1
|f(s)|2

√
1− s2 ds making the

operator R compact in the Hilbert space `2([−1, 1]).
However, an eigenvalue decomposition of R∗R can be trivially derived for functions of

unbounded support. If the integral of the Radon Transform are extended to the distribu-
tions, it can be shown (see 1.4.3) that R is actually diagonal in the Fourier domain, i.e
the complex exponentials are the singular elements of R.

1.2.5 Discrete Singular Value Decomposition and condition number

The discretized reconstruction problem amounts to finding an image f0 such that, given
the discrete projection data p0, Pf0 = p0. In its discrete form, the reconstruction problem
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therefore amounts to solving a set of linear equations. Generally speaking, the problem
of finding a vector x given the observation y = Ax for some operator A is called linear
inverse problem, this will be discussed in more details in 2.1.2. The difficulty of solving
a set of linear equations can be measured by a scalar called condition number, defined as
follows.

Definition 3 (Condition number of a matrix)
Let A ∈ RN×M . Let {σ1, . . . , σk} be the set of nonzero singular values of A. The
condition number of A, denoted by κA, is defined by Equation (1.2.9) [Mar73]

κA = ‖A‖ ·
∥∥A+

∥∥ (1.2.9)

Where A+ is the Moore-Penrose pseudoinverse of A. For the norm ‖·‖ = ‖·‖2,
equality (1.2.10) holds

κA =
σmax(A)

σmin(A)
(1.2.10)

where σmin(A) = min
i∈[1,k]

{σi} and σmax(A) = max
i∈[1,k]

{σi}.

The condition number of an operator A is related to the sensitivity of the output
given some input: if there is some error in the input, this error might be amplified after
evaluating the operator. For example, an isometry does not amplify the input error, and
has a condition number of one. A linear inverse problem involving an operator with a
large condition number is said ill-conditioned. Solutions of ill-conditioned problems are
subject to errors whose magnitude is characterized by the condition number.

As seen in 1.2.4, the singular vectors of continuous operator R are relatively complex
and involves modulated Jacobi polynomials. The singular values, however follow a simple
decay as 1/

√
k. Notably, the condition number would be infinite in the case of an infinitely

fine discretization k → +∞. Therefore, in practical purposes, only the truncated SVD is
considered, in the sense that only the first k singular elements corresponding to the largest
singular values are kept.

The project “tomo-tv” [Gou12] provides an implementation of the discretized tomogra-
phy projector as a sparse matrix (see 1.3.3), which is convenient for computing the singular
elements. The scipy Python module [J+01] provides tools for numerical linear algebra on
sparse matrices. As in section 1.3.3, let PN,Q be the projection operator mapping N ×N
images to Q×N sinograms.

From table 1.1, it is clear that decreasing the number of projections for the same
slice width does increase the condition number. In other words, the SVD quantifies how
difficult it is to numerically reconstruct an image/volume from fewer projections.

1.3 Discretization of the space and tomography operators

1.3.1 Space sampling and discretization

Although the mathematics of tomography involve continuous spaces and operators, the
processing units where computed tomography is performed are fundamentally discrete
(digital) entities. On the other hand, the detectors where the projection signal is acquired
have a finite number of bins (pixels). Therefore, a discretization work has to be carried
out.
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Shape σmax σmin κ

(64, 16) 2.98e+01 4.24e-15 7.02e+15

(64, 32) 4.21e+01 7.50e-15 5.61e+15

(64, 64) 5.95e+01 3.98e-04 1.49e+05

(64, 96) 7.29e+01 1.74e-03 4.19e+04

(64, 128) 8.42e+01 2.91e-03 2.89e+04

(128, 32) 5.95e+01 3.57e-15 1.67e+16

(128, 64) 8.46e+01 1.73e-14 4.86e+15

(128, 128) 1.19e+02 2.40e-04 4.95e+05

(128, 192) 1.46e+02 8.88e-04 1.64e+05

(128, 256) 1.68e+02 1.31e-03 1.29e+05

Table 1.1: Evolution of the condition number of P as a function of the number of projec-
tions. The operator P is represented by its shape (N,Np) where N denotes the number of
pixels of the image in one dimension (so the total number of pixels is N2), and Np denotes
the number of projections. Thus, the operator P has N2 lines and Np ×N columns.

The discretization of the tomography operators depend on the way signals themselves
are discretized. The most natural discretization is the standard Cartesian grid (“spikes
basis”), as it is directly connected to an ideal sampling of the continuous world. Let p(θ, s)
be the (continuous) projection data. This function is not measured in practice; instead, a
sampling of p(θ, s) is measured3. The ideal sampling corresponds to the multiplication of
the continuous function p(θ, s) by a Dirac comb (Equation (1.3.1))

III∆θ,∆s(θ, s) =
∑

(k,l)∈Z2

δ(θ − k∆θ)δ(s− l∆s) (1.3.1)

where ∆θ and ∆s are the sampling periods in θ (projection angle) and s (detector width
coordinate) respectively. Let p0(k, l) denote the discrete projection data resulting from
an ideal sampling: p0(k, l) = p(θ, s) · III∆θ,∆s(θ, s)

4 . This sampling is not encountered
in practice, as any detector has a Point Spread Function (PSF) characterizing the signal
spread over other detection elements (pixels). The data actually measured consists in the
convolution of p0(k, l) with the point spread function. This aspect is discussed in section
4.2.9. Until then, we only consider the ideal sampling.

If the ideal sampling is assumed, the values read from the detector bins directly map
to a Cartesian grid: each Dirac delta function is placed at the center of one detector
pixel. In this context, the projection and backprojection operators are implemented by
replacing integrals with finite sums in Definition 1. However, a particular care has to
be taken for modeling the rays passing through the elements of the discretized volume
(voxels). Popular schemes involve splitting the voxels into sub-voxels (supersampling) (for
example in the case of the Matlab R© software, Figure 1.3.1), or linear interpolation (see
for example [Jos82]).

3more precisely, the sinogram p(θ, s) is not directly measured ; instead, radiographies are measured
and the sinogram corresponds to the negative logarithm of the intensity ratio

4 There is an abuse of notation: p(θ, s) is a function of R2 and III∆θ,∆s(θ, s) is a distribution of R2.
The multiplication is a distribution having non-zero values only at locations which are integer multiples
of ∆θ and ∆s. This distribution of R2 is therefore assimilated to a “discrete function” of Z2 keeping only
the nonzero values.
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Figure 1.3.1: Illustration of the implementation of the projector with 4-supersampling.
Source: Matworks

The detailed implementation of the projection and backprojection operators is out of
the scope of this manuscript. In this work, these operators are viewed as building blocks of
reconstruction methods. Many available softwares provide high-performance projectors,
for example the general-purpose ASTRA Toolbox [Aar+16] and OpenRTK [Rit+14], and
the ESRF-tailored PyHST2 program [Mir+14]. A list of reconstruction softwares used at
various institutes is provided in Appendix 6.4.3.

Other space discretization schemes, and therefore operators implementations, can be
considered. The space can be discretized in a Gaussian blob basis [Lew92], spline functions
[Fes93], wavelets [DB95] and finite elements [BYW04]. The Gaussian blob basis can be
of interest for its mathematical properties making it appealing for computed tomography
[Wan11]. In this work, speed is the critical aspect of the tomography operator, espe-
cially when it comes to iterative reconstruction algorithms. For this reason, the standard
discretization was adopted in order to benefit from the speed of the available operators.

1.3.2 Operators discretization

The continuous operators and their properties are a first step to implement reconstruction
algorithms. Although understanding their properties in the continuous world is important,
it is even more crucial to determine the properties of discrete operators which are actually
used in algorithms. Schematically, designing reconstruction algorithms follows these steps:

• Determine what continuous operators are involved and establish their properties

• Discretize the space and operators

• Implement the operators

Each step is subject to some “approximation error” with respect to the previous step. For
example, the Fast Fourier Transform (FFT) is an implementation of a discretization of
the continuous Fourier Transform; it does not verify all the properties of the continuous
Fourier Transform.

In this part, we use the operators discretization to introduce the linear algebra formal-
ism which is used in this manuscript. Discrete linear operators can be represented with
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matrices, even for two dimensional signals. This matrix representation is seldom used in
practical implementations, but it is useful for deriving properties of the discrete opera-
tors. Conveniently, the operator analysis is easier with numerical linear algebra than with
continuous integrals, and it can be check with numerical simulations.

Let f and g be two functions of a continuous space, for example `1(R), with a finite
support. Let f0 and g0 be their discrete counterpart, in the standard “spikes” basis. As
f and g have a finite support, f0 and g0 can be represented as element of a vector space
of finite dimension. If f0 (resp. g0) has N (resp. M) samples, the vector space is RN
(resp. RM ).

The convolution operation has a straightforward discretization, boiling down to re-
placing the (possibly) infinite integral with a sum computed on the support of involved
vectors. The integral (1.3.2)

(f ∗ g)(τ) = 〈f , τ 7→ g(τ − t)〉 (τ) =

∫ ∞
−∞

f(t)g(τ − t) dt (1.3.2)

becomes the finite sum (1.3.3)

(f0 ∗ g0)(k) = 〈f0 , k 7→ g(k − i)〉 (k) =
∑
i

f0(i)g0(k − i) (1.3.3)

where the summation is computed on the support of f0 and g0 with boundaries conditions.
The Fourier Transform operator F has also a straightforward discretization known as

the Discrete Fourier Transform (DFT) (Equation (1.3.4))

F [f0](k) =
N−1∑
i0

f(k)ωi·kN =

 ω0·0
N . . . ω

0·(N−1)
N

...
...

...

ω
(N−1)·0
N . . . ω

(N−1)(N−1)
N

f0 (1.3.4)

where ωN is a primitive N -root of the unity: ωN = e−j2π/N . The DFT has an efficient
implementation known as the Fast Fourier Transform, but it makes the implicit assumption
that f0 is periodic outside of its support.

Replacing the integral with a finite sum actually causes a “scaling” effect in the op-
erator. To invert the DFT, one first needs to scale the Fourier data by dividing with
N ; that is, F−1 = 1

NF
∗. However, the continuous Fourier Transform F defined in the

“Definitions and notations” section benefits from the unitary property: F−1 = F∗, i.e
the inverse transform is simply the adjoint. In order to keep the unitary property in the
discrete case, the DFT can be normalized with the square root of the number of samples;
thus, the operator 1√

N
F defines an unitary DFT.

Linear operators acting on two dimensional signals can also be represented with a ma-
trix by representing 2D signals (images) as stacked one-dimensional vectors. For example,
an operator A mapping f0 ∈ RN1×N2 to g0 ∈ RM1×M2 is a matrix with M1 ×M2 lines
and N1 ×N2 columns.

The discrete Radon Transform, or projection operator, is defined by summing the image
pixels values along straight lines, at different angles. The summation may involve linear
interpolation, which keeps the operator linearity. Let f0 a discrete 2D vector (image).
The projection of f0 on angle θk is defined by Equation (1.3.5)

P [f0](θk, s) =
∑
u

f0(s cos θk − u sin θk , s sin θk + u cos θk) (1.3.5)
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where s denotes a discrete index. The fact that neither s cos θk − u sin θk nor s sin θk +
u cos θk are not integer in general, even for integer (s, u), justifies the need for interpolation.
Figures 1.3.2 and 1.3.3 illustrate the effect of the projector. In this manuscript, the
projection operator is denoted by P .

(a) (b)

Figure 1.3.2: (a) Image of 512× 512 pixels containing a uniform disk or radius 35 pixels,
centered in (x, y) = (235, 375) (origin on top left). (b) Four projection lines corresponding
to four projection angles.

(a) (b)

Figure 1.3.3: (a) Sample test image Cookie, 1080× 1080 pixels. (b) Sinogram of Cookie
with 1500 projection angles. The vertical axis denotes the angle number, and the horizontal
axis denotes the detector bin number.

The backprojection operator, adjoint of the discrete Radon Transform, can be defined
by Equation (1.3.6)

P T [p0](i, j) =

Np−1∑
k=0

p0(θk, i cos θk + j sin θk) (1.3.6)
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where p0 is the discretization of p(θ, s) with Np projection angles. In this manuscript, the
backprojection operator is denoted by P T .

(a) (b)

Figure 1.3.4: (a) Backprojection of the disk of Figure 1.3.2. Each projection line of
Figure 1.3.2a is smeared on all the image support according to the corresponding angle.
The result is the sum of all the projections contributions. (b) Backprojection of the
sinogram in Figure 1.3.3b.

The projection-backprojection pair suffer from the same “scaling problem” as the DFT.
Although the continuous Radon Transform do not verify any unitary property like the
Fourier Transform, a scaled backprojection can be defined by multiplying with π

Np
where

Np denotes the number of projections. This scaled backprojection is notably used in
the Filtered Back-Projection algorithm (section 1.4.2). The scaling step comes from the
sampling of the angular range: the interval [0, π] sampled with Np projections gives a step
π
Np

. In the case of an angular range [0, 2π] sampled with Np projections, the angular step

is 2π
Np

. In this case, the backprojection can still be multiplied with π
Np

due to the symmetry

of the Radon Transform, as each projection is accounted twice (the projections at angles
θ + π provide the same information as the projections at angles θ). More details can be
found in [NW01], Theorem 4.4 and Section 5.1.1.

1.3.3 Sparse representation

Let PN,Q be the projection operator mapping N ×N pixels images to a sinogram with Q
angles. In the matrix representation, the images are (N2, 1) vectors (N2 lines uni-column
vector), the sinograms are (Q × N, 1) vectors and PN,Q is a (Q × N,N2) matrix. This
matrix quickly becomes impossible to store when N (and, consequently, Q) gets large. For
example, 1.0 GigaBytes of memory is required for N = Q = 128 pixels, and 70 TeraBytes
for N = Q = 2048 pixels – which is a routinely used image size.

Fortunately, many entries of the matrix PN,Q are actually zero. Indeed, a ray passing
through a given pixel will hit the detector at a certain position (θ, s). The contribution of
this pixel is usually smeared on a small neighborhood around (θ, s), as this position does
not have integer coordinates in general. Let ρ > 0 be the average neighborhood size for
an image pixel contribution to the sinogram. Then, in average, each pixel in an image is
projected on ρ detector bins for each projection. This means that the matrix PN,Q has at
most ρ ·N2 ×Q nonzero entries. PN,Q is said to be sparse; efficient representations and
numerical methods exists for such matrices.
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1.4 Analytical reconstruction

The reconstruction problem consists in reconstructing f ∈ `1(R2) from its Radon Trans-
form p(θ, s) = R [f ] (θ, s). In this section, methods hereby called “analytical reconstruc-
tion methods” are considered. The name comes from the fact that these methods come
from an analytical formula. Three main reconstruction methods are considered: Fourier-
slice theorem, Filtered Back-Projection and Lambda tomography.

1.4.1 Fourier reconstruction

The Fourier-Slice theorem (Proposition 1.2.1) provides directly the reconstruction algo-
rithm 1.4.1.

Algorithm 1.4.1 Fourier Reconstruction

p(θ, s): Radon Transform of function f to reconstruct

1: p̂(θ, ν) = F1[p(θ, s)] . Compute the 1D Fourier Transform of each projection θ
2: Place (p̂(θ, ν))θ on a Cartesian Grid
3: f(x, y) = F−1

2 [p̂(θ, ν)] . Compute the inverse 2D transform

Algorithm 1.4.1 seems appealing, as it only involves 1D and 2D Fourier Transforms
of the projection data p(θ, s), which can be efficiently computed with the FFT. However,
this method suffers from a major drawback: once the 1D Fourier Transform (FT) of
each projection angle is performed, the Fourier data has to be placed from a polar grid
(series of 1D FT) to a Cartesian grid (2D FT, Figure 1.4.1). This entails to interpolate
between polar to Cartesian in the Fourier space, which is known to be cumbersome, as
any interpolation error in the Fourier space results in an error in all the real space after
the inverse transform.

Figure 1.4.1: The series of 1D FT of each projection angle samples the plan according
to a polar grid. To perform the reconstruction, this set of 1D FT have to be placed
on a Cartesian grid. Unfortunately, low frequencies components (near the center) are
over-represented with respect the high frequency components (far from the center), which
makes the interpolation difficult.

Reconstruction algorithms using the Fourier-Slice theorem and interpolating between
polar grid to a Cartesian grid are called regridding (or “gridrec”) algorithms. The in-
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terpolation can be done with truncated cardinal sine function [Shk+15] with minimal
reconstruction artifacts if carefully performed. However, the interpolation is still costly
as the sinc function has a very slow decay: many neighbouring Fourier points have to be
involved in order to compute one interpolated point. Other interpolating function such
as the prolate spheroidal wavefunctions can be used [MS12]. These functions form the
eigenfamily of the windowed Fourier Transform operator, and notably converge to the
Gaussian function when iterating infinitely many windowed Fourier Transforms. Such in-
terpolating functions are interesting because they are optimally localized in the Fourier
domain – meaning they involve relatively few neighbouring points in the interpolation
process – and in the spatial domain – meaning that the interpolation kernel is limitedly
spread in the spatial space.

Interestingly, Fourier-based reconstruction used to be deserted in favour of the Filtered
Back-Projection method 1.4.2, as the delicate interpolation step was difficult to perform
both accurately and efficiently. Recently, the increase of computational power and the
work on Fourier interpolation methods revived the interest for Fourier-based techniques.
Fourier-based methods are particularly interesting if GPU devices cannot be used (i.e
only CPU are available) as they are intrinsically faster. Notably, gridrec is the default
reconstruction algorithm of the TomoPy package [Gür+14].

1.4.2 Filtered Back-Projection

The Filtered Back-Projection (FBP) is the standard algorithm used for 2D tomographic
reconstruction. It involves two steps: a filtering of the projection data, and a backprojec-
tion step, i.e the application of the adjoint operator of the Radon Transform.

Proposition 1.4.1 (Filtered Back-Projection)
Let p(θ, s) be the projection data (Radon Transform) of f ∈ `1(R2). Letting v(s)
be a function of one variable verifying F1[v](ν) = v̂(ν) = |ν|, Equation (1.4.1) holds.

f(x, y) = R∗[p(θ, s) ∗1 v(s)]

=

∫ 2π

0
p′(θ, x cos θ + y sin θ) dθ

where p′(θ, s) =

∫ ∞
−∞
F1[p](θ, ν)|ν|e+j2πνs dν

(1.4.1)

The proof can be found in Appendix 6.1.1.
Proposition 1.4.1 highlights that f ∈ `1(R2) can be exactly reconstructed from its

Radon Transform. Thus, the FBP can be seen as the inverse of the continuous Radon
Transform5. However, in practice, the functions to be reconstructed have a compact
support in the spatial domain, since they correspond to a quantity of interest in a scanned
object which has a finite size. Thus, the Fourier Transform of f has a theoretically infinite
support. This means that the multiplication with |ν| of the 1D FT of the projections has
to be performed far in the high frequencies, which is practically inconvenient.

In [NW01], the FBP is derived by natively taking into account the essential bandwidth
of f . A function f has an essential bandwidth Ω if most of its energy in the Fourier
domain is contained in Ω ⊂ C2. Instead of being multiplied with v̂(ν) = |ν|, the 1D
FT of the projection p̂(θ, ν) are multiplied with |ν|ŵΩ(ν) where ŵΩ vanishes outside Ω.

5some software packages like Matlab or scikit-image use the term iradon for “inverse Radon”
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Thus, the multiplication with |ν| is not carried out on an infinitely supported domain, but
only on a domain containing most of the energy of f . This is equivalent, in the spatial
domain, to reconstructing qΩ ∗f instead of f , where qΩ is the spatial domain counterpart
of |ν|ŵΩ(ν) in the “1D-Fourier-Radon” domain. Indeed, Proposition 1.4.1 is a particular
case of Theorem 2.3 in [NW01] which is stated in Equation (1.4.2)

f ∗ R∗[h] = R∗ [Rf ∗1 h] (1.4.2)

In our case, Rf = p is the projection data, and h = v ∗1 wΩ is the filter, meaning that
qΩ = R∗[h] acts as a “point spread function” hampering the reconstruction of f . In
practical applications, the two dimensional function qΩ should be as close as possible to
a 2D Dirac in order to faithfully approximate f .

Equation (1.4.3) sums up the setting in our case. The left column is the image space,
the right column is the Radon space, and the bottom line is the Fourier space.

f ∗ qΩ
R−−−−−→ p(θ, s) ∗1 v(s) ∗1 wΩ(s)

↓ F1

p̂(θ, ν) · |ν| · ŵΩ(ν)

(1.4.3)

In the case where ŵΩ = 1, meaning thatwΩ is a 1D Dirac delta function δ1, the continuous
FBP is recovered (it is easily seen that applying Proposition 1.4.1 with p(θ, s) = δ1(s)
yields qΩ = R∗[v] = δ2, a 2D Dirac). As previously mentioned, this perfect reconstruction
is not possible in practice due to the infinite support of the Fourier transform of f ; practical
implementations of the FBP reconstruct f∗qΩ instead of f . The function qΩ is determined
by the filter applied to the 1D Fourier Transform of the projections. A popular choice is
the Ramachandran-Lakshminarayanan (Ram-Lak) filter corresponding to ŵΩ(ν) = 1 for
ν ∈ Ω and ŵΩ(ν) = 0 for ν /∈ Ω. The discretized form of the corresponding filter is given
by Equation (1.4.4)

(v ∗1 wΩ)(l) =
1

∆2
s


1/4 l = 0
0 l 6= 0, l is even
−1/(π2l2) l is odd

(1.4.4)

where ∆s is the spatial sampling step (see [Hsi03], Chapt. 3). Other popular filters use a
smoother apodization function instead of a rectangle, for example a cosine or a Hamming
window. The high frequencies are therefore dampened, which can be of interest when
noise hinders the reconstruction quality of f .

The FBP algorithm can be summarized by Algorithm 1.4.2.

Algorithm 1.4.2 Filtered Back-Projection

p(θ, s): Radon Transform of function f to reconstruct

1: q(θ, s) = p(θ, s) ∗1 h(s) . 1D filtering of each projection
2: f ' R∗(q) . Apply the backprojection operator to obtain an approximate of f

The filtering step can be performed after the backprojection (“backproject-then-filter”)
rather than before the projection (“filter-then-backproject”). However, this approach
has two drawbacks: the two dimensional filtering is computationally more costly, and
the filtering has to be performed on a large grid as the backprojection operator has a
theoretically infinite support.
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Figure 1.4.2 shows an example of the FBP with the Ram-Lak filter (1.4.4).

(a) (b)

Figure 1.4.2: (a) Sinogram of figure 1.3.3 after filtering. Each line undergoes a high-
pass filtering with the Ram-Lak filter (1.4.4). (b) Filtered backprojection after scaling the
backprojection with π

1500 .

1.4.3 Lambda tomography

Lambda tomography consists in reconstructing an approximation of f ∈ `1(R2) instead of
f . In the case of the FBP, the approximation Lambda tomography traditionally aims at
reconstructing the high frequencies of f in the context of local tomography [Far+03]. The
topic of local tomography is discussed in a greater extent in 4.2. The Calderón’s operator,
defined in Definition 4 plays a central role in Lambda tomography. The definitions and
formula proposed in this work hold in the context of parallel geometry. Generalization
to more general 3D geometries like cone beam is not straightforward, although works in
this direction are proposed for example in [YYW06], although assuming a nonstandard
trajectory.

Definition 4 (Calderón’s operator)
The Calderón’s operator Λ is defined in the Fourier domain by Equation (1.4.5)

F2[Λf ](νx, νy) =
√
ν2
x + ν2

y · F2[f ](νx, νy) (1.4.5)

where it is assumed that f is a function of two variables. In other words, the

Calderón’s operator is a multiplication by the frequency magnitude

∣∣∣∣(νxνy
)∣∣∣∣ in the

frequency domain.
In ambiguous statements, the Calderón’s operator will be denoted by Λ2 (resp.

Λ1) when it acts on two variables (resp. one variable) of a function.

From basic Fourier properties, it is clear that Λ2 = −∆, i.e applying twice the
Calderón’s operator yields the opposite of the Laplacian. A general reconstruction for-
mula [Far+03], which is a generalization of 1.4.1 (and Theorem 2.3 in [NW01]) is given by
Equation (1.4.6)

q ∗ Λm2 f = R∗
[
(Λm+1

1 Rq) ∗1 Rf
]

m ≥ −1 (1.4.6)
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where Λ1 is only applied on the second component when used in the Radon domain.
Taking q = δ2 in (1.4.6), the case m = 0 yields the Filtered Back-Projection. The

case m = 1 boils down to backprojecting the (opposite) Laplacian of the sinogram. The
case m = −1 boils down to backprojecting the sinogram. Lambda tomography consists
in approximating f by a linear combination of Λf and Λ−1f in order to mix the high
frequencies and low frequencies of f , respectively.

Lambda tomography was not investigated further in this work. We however give an
essential property derived from Lambda tomography, stated by Equation (1.4.7), which is
essential in section 3.4.

R∗R = Λ−1 (1.4.7)

meaning that in the frequency domain, R∗R consists in dividing by the frequency mag-

nitude

∣∣∣∣(νxνy
)∣∣∣∣ – hence the “blurring” effect of the plain backprojection rather than the

filtered backprojection. This can be put into the form of Equation (1.4.8)

R∗R = F∗2DΛ−1
2
F2 (1.4.8)

where DΛ−1
2

is the diagonal operator consisting in multiplying element-wise by the inverse

of the frequency magnitude. Equation (1.4.8) means that R∗R is diagonal in the Fourier
domain, providing immediately a SVD of the operator R. However, this SVD holds for
functions with infinite support, as the complex exponentials of the basis F2 have an infinite
support. The SVD mentioned in 1.2.4 holds for functions with finite support. It can be
noted that the singular values, which are given by the square root of the values of the

diagonal operator DΛ−1
2

, are proportional to 1/
√
ν2
x + ν2

y , in accordance with the decay as

1/
√
k in 1.2.4.

Equations (1.4.7) and (1.4.8) still provide a useful ground for understanding the link
between FBP and the minimum norm solution. In the discrete setting, the minimum norm
solution is given by the following proposition.

Proposition 1.4.2 (Minimum norm solution of a linear inverse problem)
Let y = Ax be an inverse problem. The minimum norm solution of a linear inverse
problem is a solution xm given by Equation (1.4.9)

xm = AT
(
AAT

)−1
y (1.4.9)

It is the solution of Problem (1.4.10)

argmin
x

{‖x‖2}

s. t. Ax = y
(1.4.10)

The proof can be found in Appendix 6.1.1. Now in the continuous setting, the operator
PP T becomes RR∗. On the other hand, Equation (1.4.7) states that R∗R = Λ−1

2 , i.e a
low-pass frequency filter in the image domain. It can then be shown that RR∗ = Λ−1

1 , a
1D low-pass filter in the Radon domain. Indeed, from Equation (1.4.7) and the the FBP
theorem, we have {

R∗R = Λ−1
2

R−1 = R∗Λ1

(1.4.11)



Using the first equality (i.e Equation (1.4.7)) yields

Λ2R∗R = I ⇒ R−1 = Λ2R∗ (1.4.12)

as R−1 = R∗Λ1 from the FBP theorem, we then have

R∗Λ1 = Λ2R∗ (1.4.13)

which justifies the equivalence between the “backproject-then-filter” and “filter-then-
backproject” approaches. Multiplying the previous equality with Λ−1

1 yields

R∗ = Λ2R∗︸ ︷︷ ︸
R−1

Λ−1
1

RR∗ = Λ−1
1

(1.4.14)

Proposition 1.4.2 applied to the operator R exactly means that the FBP is also the mini-
mum norm solution of Rf = p. In the discrete case, using the ramp filter is equivalent to
approximate (PP T )−1 with its continuous version (RR∗)−1.

The equalities R∗R = Λ−1
2 and RR∗ = Λ−1

1 also mean that R∗R (or RR∗) is a shift-
invariant operator, as it is diagonalized by the Fourier basis (i.e it is a simple filter in the
frequency domain). In the discrete case, it might not be the case anymore, but still be a
good approximation. Thus, modifying the “ramp filter” Λ−1

1 to approximate (PP T )−1 (or,
equivalently, (P TP )−1) for the “subsampled” version P of R leads to a computationally
efficient minimum norm solution computation (an iterative process is approximated by a
filtering process). An extensive work in this direction can be found in [Pel16].
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Chapter 2

Regularized iterative
reconstruction methods

In this chapter, we briefly review the long-lived reconstruction algorithms and present the
regularized methods. We use the Bayesian formalism to regroup all the reconstruction
methods in a common framework. This approach makes explicit the assumptions made
on the noise/volume properties, and decouples the model from the algorithm needed to
solve the optimization problem.

We then review more recent reconstruction methods based on the compressed sensing
framework. As they lead to problems which are more difficult to solve than usual methods,
we also review state-of-the-art convex optimization algorithms.

2.1 From analytical to iterative reconstruction

In this section, we present the motivation to use iterative reconstruction algorithms rather
than the direct methods presented in 1.4.

2.1.1 Limits of analytical reconstruction

Reconstruction with direct method (FBP, direct Fourier reconstruction) requires that the
discrete operator P accurately represents the continuous operator R. More precisely, to
accurately reconstruct the frequency support of an image of N pixels width, at least Np

projections are needed, where [KS88] [NW01]

Np ≥
π

2
N (2.1.1)

which can be seen as a consequence of the Shannon-Nyquist sampling criterion. In practice,
Np ' N is sufficient in most cases without causing subsampling artefacts. In fact, the
number of projections Np essentially depends on the frequency range of the object of
interest to reconstruct. For example, an object of 300×300 pixels support contained in an
image of 1024× 1024 pixels (filled with zeros otherwise) will not need π

2 · 1024 projections
to be accurately reconstructed, but rather π

2 · 300.
However, practical cases can involve highly limited data where Np < N significantly

due to various experimental constraints (fast tomography, radiation dose concern). In
these cases, the standard analytical methods do not yield a satisfactory reconstruction.
Another such case is where the projection images have a low Signal to Noise Ratio (SNR).
In this case, more advanced methods are required to improve the SNR of the recon-
structed volume. Lastly, a direct reconstruction method might be lacking in some geome-
tries/trajectories.

2.1.2 Tomographic reconstruction as an inverse problem

In signal processing, an inverse problem consists in finding a latent signal x giving the
observed data y after the effect of some process H. The operator H and the noise model
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fully characterize the inverse problem. The acquisition model is formally

y = H(x) (2.1.2)

up to the acquisition noise.
For example, a measure with a detector involves some spill of the signal over the

detector imaging elements (pixels), i.e a feature smaller than a pixel might yield a signal
across several neighbouring pixels. This spill can be modelled as a point spread function;
in this case, operator H in Equation (2.1.2) is a convolution. The problem of finding a
“sharp” signal x from a “blurred” observed data y is called deconvolution.

An inverse problem can be described by its well-posedness properties. More precisely,
an inverse problem is well-posed in the Hadamard sense [Han10] if

• A solution exists

• The solution is unique

• The solution depends continuously on the initial conditions

An interesting subset of problem (2.1.2) is given when the operator H is linear, this
corresponds to linear inverse problems. In this case, H can be modelled as a matrix H,
so that (2.1.2) becomes

y = Hx (2.1.3)

up to the acquisition noise. Linear Inverse problems are convenient with respect to non-
linear inverse problems: powerful mathematical frameworks and numerical solvers can
be used. Fortunately, a large class of signal processing problems can be modelled by
Linear Inverse Problem (LIP)s; for example deconvolution, denoising, inpainting, motion
estimation, segmentation, source separation and tomography [CP11] [SF09].

Formally, solving a LIP amounts to solving a set of linear equations. Thus, from the
matrix H, the Hadamard conditions are easy to determine:

• A solution exists if and only if the set of equations formed by H is consistent

• The solution is unique if and only if H has full rank (there are exactly as many
equations as unknowns)

• The solution always depends continuously on the initial conditions, as H is a linear
operator in a finite vector space

The third condition is actually of little help in practice. Indeed, despite the continuous
behaviour of the solution(s) with respect to the initial conditions, the solution may vary
with a great extent given the data. This behaviour is given by the condition number of H
(see Definition 3). In general, LIP are both ill-posed (there are more or fewer measurements
than needed, i.e no solution or infinitely many solutions) and ill-conditioned.

With the proper assumptions 1, tomographic reconstruction is a special instance of
LIP. In absorption tomography, if the X-rays are “sufficiently monochromatic” (i.e the
relative energy range ∆E/E is thin), the measurement model can be given by the Beer’s
law. The logarithm of the incoming/outgoing intensities ratio yields the sinogram, which
is linearly linked to the linear absorption coefficient map of the scanned volume. The same

1Beer’s law modelling the X-ray transmission process, leading to a linear forward projector



2.2. ITERATIVE RECONSTRUCTION IN A BAYESIAN FRAMEWORK 35

holds for phase contrast tomography, replacing the absorption coefficient map with the
refractive index map2.

The tomography reconstruction problem is then modelled as the LIP

d = Px (2.1.4)

up to the acquisition noise, where d is the acquired sinogram, x is the latent volume to
reconstruct, and P is the projection operator (in our working case, the discretized Radon
Transform).

As problem (2.1.4) is ill-posed, a common strategy is to solve a related surrogate prob-
lem. In general, the surrogate problem is designed to satisfy the following requirements:

• Well-posed

• Consistent with the original problem: the solution should belong to the solution
space of the original problem

• Computationally tractable to solve

The surrogate problem associated with a LIP often have the form

argmin
x

{f(x,y) + g(x)} (2.1.5)

where f(x,y) is a data fidelity term, measuring the distance between the (projection of
the) solution and the acquired data; and g(x) is a function encoding some prior knowledge
on the solution, if any. More details on what f, g can be will be given in the next section.
On the other hand, the well-posedness of Problem (2.1.5) follows from the choice of f, g.
First, the solution exists and is unique for convex functions f, g defined on a convex space.
Second, the solution continuously depend on the input, as in general f, g are Lipschitz
functions in a finite dimensional space, hence continuous functions. More details are given
in the section 2.6.

2.2 Iterative reconstruction in a Bayesian framework

2.2.1 The Maximum Likelihood approach

Let x be a latent signal to recover (here, a digital volume or image). The vector x is not
directly observed in practice ; what is observed is

y = Px (2.2.1)

in a noiseless setting. As any observation is corrupted with noise, let n be a random
variable modelling the acquisition noise. In a first approach, the noise is modelled as an
additive noise – this assumption is further discussed in 2.4.4. The observed vector is then

y = Px+ n (2.2.2)

As n is a random variable, the observed data y is also a random variable which depends
on the noise n. Let pθ(n) denote the Probability Density Function (PDF) of the random
variable n; this function depends on several parameters θ. In the case of a normal distri-

bution, only two parameters fully characterize the PDF: θ =

(
µ
σ

)
. By a slight abuse of

2more precisely, the deviation from unity of the real part of the complex refractive index
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notation, the fact that the random variable n has the PDF pθ(n) will be simply denoted
by n ∼ pn(n).

As n ∼ pn(n), it is easily shown3 that y ∼ py(y) where py(y) = pn(y − Px) if x
is assumed to be known. The assumption that x is known obviously does not holds in
practice ; the previous equality is then denoted by Equation (2.2.3)

y ∼ pn(y − Px | x) (2.2.3)

which is to be read “probability of observing y given x”.
The quantity pn(y − Px | x) is called likelihood of observing y. The idea of the

Maximum Likelihood (ML) algorithm is to maximize this quantity with respect to the
unknown x, so that the acquired data y corresponds to the most probable observed sig-
nal. The rather natural underlying hypothesis of this framework is the likelihood of the
observation, i.e the assumption that the data does not correspond to a rare event.

Let us now assume that the noise is a zero-mean white Gaussian noise independent
from the data. This hypothesis is discussed further in 2.4.4. Then:

pn(n) =
1

σ
√

2π
exp

(
− 1

2σ2
‖n‖22

)
(2.2.4)

where σ = σn is the noise standard deviation (here a scalar, as the noise is assumed
uncorrelated). The likelihood can then be written

py(y) =
1

σ
√

2π
exp

(
− 1

2σ2
‖y − Px‖22

)
(2.2.5)

The ML algorithm boils down to

argmax
x

{py(y)} = argmin
x

{
‖y − Px‖22

}
(2.2.6)

where the negative logarithm was applied in Equation (2.2.6), so that the ML algorithm
is equivalent to minimizing the negative log-likelihood. It can be noted that all the mul-
tiplicative factors involving σ were dropped, as they do not depend on x.

To sum up, the ML algorithm applied with a white Gaussian noise assumption to
recover x is nothing but a least-squares solution. As the observation model y = Px is
linear, a closed-form formula can be given4:

xML = (P TP )−1P Ty (2.2.7)

which corresponds to the (left) Moore-Penrose pseudoinverse of P . In a statistics per-
spective, the ML solution xML is a linear combination of the data y, as the operator
(P TP )−1P T is clearly linear. Thus, xML is a linear estimator of y. The fact that xML

is obtained through a least squares minimization can then be viewed as a consequence of
the Gauss-Markov theorem.

In a signal processing perspective, xML is obtained by filtering the backprojected data
P Ty, the filter being (P TP )−1. Here, the notion of filter is to be understood in the
general setting of the application of a linear operator. In the continuous case and in
parallel geometry, (P TP )−1 is nothing but the ramp filter in the spatial domain (see

3 the random variable y ∼ py(y) depends on the random variable n ∼ pn(n) through a deterministic
relation y = g(n) = a + n where a = Px is deterministic. Applying the change of variable theorem to
g(n) = a + n yields py(y) = pn(y − a).

4provided that P has linearly independent columns
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1.4.3), so that (P TP )−1P Ty exactly corresponds to the filtered backprojection method.
Thus, the ML estimator with a white Gaussian noise assumption converges to the inverse
of P (or R) in the continuous setting and parallel geometry.

In the case of a correlated (non-white) Gaussian noise, the correlation between the
noise samples can be modelled with a covariance matrix Σ. The entry (i, j) of Σ is the
covariance between ni and nj . The PDF of n becomes

pΣ(x) =
1√

|det 2πΣ|
exp

(
−1

2
xTΣ−1x

)
(2.2.8)

where it is still assumed that the noise is zero-mean. It is easily seen that Equation
(2.2.8) leads to the same optimization problem as (2.2.6) replacing the Euclidean distance
‖x‖22 = xTx with a weighted Euclidean distance ‖x‖2Σ−1 = xTΣ−1x.

Now, let us assume that the noise is actually data-dependent. In imaging applications,
fluctuation of photon counts on the detector creates a “shot noise”. As the data is itself
related to the photon count, the noise is data dependent. The Poisson statistics is mostly
used for modelling this noise, especially for low number of detector counts (for example
in electron tomography). For a Gaussian noise, the probability py(y | x) was a normal
distribution of mean Px. Now, it is a Poisson distribution of mean Px:

py(y | x) =
∏
i

(Px)i
yie−(Px)i

yi!
(2.2.9)

where it is assumed that all the samples follow the same distribution Poisson(Px). Mini-
mizing the negative log-likelihood leads to

argmin
x

{∑
i

[(Px)i − yi log(Px)i]

}
(2.2.10)

In the signal processing context, the objective function in Equation (2.2.10) is called the
Kullback-Leibler “distance”5 between Px and y. This model is of course computationally
more complicated since it involves the computation of log((Px)i): for example, positivity
constraints on x have to be added provided that P is a positive operator.

2.2.2 The Maximum A Posteriori approach

From Equation (2.2.3), the ML approach was derived assuming that x is a deterministic
quantity. However, this quantity is not known, or at least only some statistical properties
of x are known. The vector x is then modelled as another random process having some
probability density function px(x). This function is the prior knowledge (or Gibbs prior)
available on x.

As x in unknown and y is observed, the aim is to recover x from y. In a probabilistic
point of view, one would like to know which values x are the most likely given observed
data y, that is, px(x | y). The Bayes formula gives px(x | y) (the quantity of interest) as
a function of py(y | x) (which can be computed from the noise model):

px(x | y) =
py(y | x)px(x)

py(y)
(2.2.11)

5The Kullback-Leibler function is not a distance strictly speaking, as the triangle inequality does not
hold. It is nevertheless used to measure a similarity between two distributions.
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The quantity px(x | y) is called posterior probability while px(x) is called prior proba-
bility corresponding to the prior knowledge on x. Maximum A Posteriori (MAP) methods
aim at finding x which maximizes the quantity (2.2.11): given the observed data y, which
latent vector x has the higher probability of giving y through the forward model y = Px
(up to the noise). Again, as it is equivalent but simpler, the negative log-likelihood is min-
imized. The quantity py(y) does not depend on x and can be omitted of the optimization
procedure.

If the latent signal x is assumed to be normally distributed with a standard devia-

tion σx, i.e x ∼ px(x) = (σx
√

2π)−1 exp
(
−(2σ2

x)−1 ‖x‖22
)

, then it is easily shown that

maximizing (2.2.11) amounts to solving

argmin
x

{
1

2σ2
n

‖y − Px‖22 +
1

2σ2
x

‖x‖22
}

(2.2.12)

In the same fashion, if the data x is known to follow a Laplace distribution with parameter
λ > 0, the MAP estimator is given by

argmin
x

{
1

2σ2
n

‖y − Px‖22 + λ ‖x‖1
}

(2.2.13)

The case where the noise model pn(n) follows a Poisson distribution can be formalized
by replacing the `2 norm with a Kullback-Leibler divergence, as previously shown.

2.3 Classical iterative reconstruction methods

In this section, several classical iterative reconstruction algorithms are briefly reviewed.
These algorithms were proposed relatively early in CT and are well understood. However,
these are often described simply by their update rule, which can seem artificial. Instead,
we describe these method from a statistical perspective, for example making explicit the
assumptions on the noise.

2.3.1 Algebraic Reconstruction Technique

The Algebraic Reconstruction Technique (ART) is the only method which is not directly
related to a noise model, although it converges to a minimum norm solution of (2.2.1).
ART is based on the Projection Onto Convex Sets (POCS) method based on the fact that
the inverse problem d = Px consists in a set of linear equations. More precisely, if the
latent signal x has N samples (the total number of pixels of an image, or the total number
of voxels of a volume), and if the acquired data d has M samples, then d = Px is a set
of M linear equations of N unknowns. Geometrically, each equation defines a hyperplane
of RN characterized by the coefficients of the corresponding line of the matrix P . The
POCS method applied to the particular case of solving the set of linear equations d = Px
is called the Kaczmarz method.

This method iterates by successively projecting (in the mathematical sense of the term)
an estimate solution xn on each hyperplane. For example, x1 is obtained by projecting x0

on the hyperplane formed by the first line of d = Px; x2 is obtained by projecting x1 on
the second hyperplane, and so on. It can be shown [GPR67] that the method converges
to the intersection of the hyperplanes, which is nothing but the solution of d = Px.
Theoretically, the intersection is a point for a full rank system. However, in practice, the
method is used when there are fewer measurements than needed, i.e M < N . In this case,



2.3. CLASSICAL ITERATIVE RECONSTRUCTION METHODS 39

the intersection of the hyperplanes is not a single point, but a vector subspace of RN of
dimension at least N −M , containing infinitely many points (solutions). The point of this
set reached by the ART depends on a relaxation factor λ ∈ [0, 1] which is a parameter of
this method [KS88]. From an initial estimate x0 of the reconstructed volume, the update
rule if ART is given by Equation (2.3.1)

xi+1 = xi − λ
Pi

Txi − di
‖Pi‖22

Pi (2.3.1)

where Pi is the vector equal to the line number i of the projector.
As the projection matrix P often model a smooth trajectory, the successive lines define

equations that are “very close”. For example, the first line models the acquisition at angle
0, and the second line models the acquisition at angle ∆θ; if ∆θ is relatively small, the two
equations are highly correlated. Thus, a faster convergence rate is obtained by randomly
selecting the hyperplanes where the solution is projected onto.

A refinement of the ART is the Simultaneous Algebraic reconstruction Technique
(SART) which notably updates the estimate with all the rays in a projection at each
iteration [KS88]. It therefore yields a better convergence rate, at the expense of a higher
cost per iteration.

As it can be highlighted, the (S)ART methods converge to one among many solutions
of d = Px, depending on a damping parameter of the algorithm. In the following sec-
tions, algorithms based on the minimization of an objective function are presented. The
considered objective functions have exactly one global minimum, meaning that there is
exactly one solution. This can be seen as an advantage of these methods.

2.3.2 Least Squares Reconstruction Technique

The least squares reconstruction, as seen previously, corresponds to the maximum likeli-
hood solution of the acquisition problem d = Px with a white Gaussian noise (see 2.2.1).
Although a closed-form solution is given by xML = (P TP )−1P Td, this solution is never
computed directly. The reason is that the matrix P TP is too huge to be stored in memory
– even if a sparse representation of P TP is considered, its inverse is not sparse. For this
reason, the maximum likelihood solution is computed iteratively.

Fortunately, efficient optimization algorithms for solving argmin
x

{
‖Px− d‖22

}
are

available. For example, the ASTRA Toolbox [Aar+15] provides an efficient implementa-
tion of the least squares reconstruction “CGLS” based on the Conjugate Gradient opti-
mization method (more details are given in section 3.3.2).

This algorithm converges extremely fast to the (least squares) solution. However, as
mentioned in the introduction of section 2.4.1, the least-squares solution (which is obtained
numerically by running the optimization algorithm until its convergence, i.e no decreasing
of the objective function) is likely to be noisy due to the problem being ill-conditioned.
In other words, although the least squares reconstruction works well on noiseless data,
it does amplify the noise that might be present in the input data, even in tiny amounts.
To prevent this, the user would often tune the number of iterations as a parameter of
the reconstruction algorithm. On the other hand, the least squares solution obtained by
the conjugate gradient does not allow for constraints like the positivity constraint: the
reconstructed volume is a map of a quantity of interest which is often positive (linear
attenuation coefficient, refraction index decrement).
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2.3.3 Simultaneous Iterative Reconstruction Technique

The Simultaneous Iterative Reconstruction Technique (SIRT) is often defined by the means
of its update rule (Equation (2.3.2))

xk+1 = xk +CP TR(d− Pxk) (2.3.2)

where C and R are the diagonal matrices6 given by Equation (2.3.3) [Aar+15]

1/Cj,j =
∑
i

Pi,j

1/Ri,i =
∑
j

Pi,j
(2.3.3)

It can be shown [GB08] that this method corresponds to solving

argmin
x

{
‖Px− d‖2R

}
(2.3.4)

Thus, SIRT is a method for finding a weighted least-squares solution. The standard
Euclidean distance has been replaced with a metric ‖d‖2R = dTRTd, which corresponds
to a correlated Gaussian noise model of covariance matrix Σ = R−1 (see 2.2.1).

In practice, a volume reconstructed with SIRT bears minor differences with a volume
reconstructed with “CGLS”, although it is more stable when used with many iterations.
Unlike Conjugate Gradient (CG), the SIRT algorithm allows for constraints, but converges
slower as it is an instance of Landweber iteration (see section 2.7.1).

2.3.4 Expectation Maximization algorithm

Generally speaking, the Expectation Maximization (EM) method aims at computing the
maximum likelihood estimate from incomplete data [DLR77]. In the context of a linear
inverse problem with a Poisson noise model, EM simply boils down to the maximization
of the log-likelihood. From 2.2.1, the objective function to maximize is

log pn(d | x) = −
∑
i

[(Px)i − di log(Px)i] (2.3.5)

Applying the Kuhn-Tucker condition of Equation (2.3.5) with the non-negativity con-
straint x ≥ 0 yields

0 = xP T

(
1− d

Px

)
(2.3.6)

where the vector operations are understood component-wise. Equation (2.3.6) suggests
for an iterative fixed-point scheme

xk+1 =
1

P T1
xkP

T d

Pxk
(2.3.7)

(here 1 is a vector filled with ones) which indeed converges to the maximum likelihood
solution xML [NW01]. In the signal processing community, when P is replaced by a con-
volution operator, iteration (2.3.7) is called the Richardson-Lucy deconvolution algorithm.
Contrarily to previous methods, the update is multiplicative; notably, the initial estimate
should be filled with ones rather than with zeros.

As a multiplicative algorithm, EM always provides positive solutions, at the price of a
slower convergence.

6 R and C are mistakenly called “inverse row sum” and “inverse column sum” in [GB08], and the
summation indices i and j in [Aar+15] should be inverted
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2.4 Regularized reconstruction methods

The classical reconstruction methods (ART, SIRT, EM) are linked to the maximum like-
lihood (ML) estimate given a noise model. Notably, they do not account for any prior
knowledge on the latent signal. This section presents regularized reconstruction meth-
ods, which are linked to the maximum a posteriori (MAP) estimate given a probability
distribution on the latent signal.

In sections 2.4.1, 2.4.2, 2.4.3, we explain what is regularization and how it works.
Section 2.4.5 explains why `1 regularization works well for signal retrieval in linear inverse
problems, introducing the compressive sensing framework.

2.4.1 Motivation of regularization

The inverse problem Px = d is ill-posed in general; notably, it can have infinitely many
solutions. The previous section described methods providing one unique solution of a sur-

rogate problem, for example argmin
x

{
‖Px− d‖22

}
. The probabilistic framework provides

a way to make explicit the assumptions on the noise model, and to know what kind of
solution is reached.

However, although the surrogate problem is well-posed (the solution exists, is unique,
and depends continuously on the input data), the operator P makes the solution computa-
tion sensitive to deviation in the input data: the problem is ill-conditioned. For example,
it is well known that applying the Landweber iteration (for example SIRT reconstruction)
until convergence can yield an amplification of noise [VRU08].

For this reason, a regularization is considered. Regularizing a problem consists in
incorporating prior knowledge on the solution, that is, computing a MAP solution rather
than the ML solution. Considering Problem (2.1.5) and section 2.2.2, the data-fidelity
distance f is based on the noise model, and the function g is based on the prior knowledge
available on the latent signal.

2.4.2 Tikhonov regularization

The simplest regularization method is known as the Tikhonov regularization. Problem
(2.1.5) becomes

argmin
x

{
f(x,d) + ‖Dx‖2Γ

}
(2.4.1)

i.e the prior knowledge is encoded as g(x) = ‖Dx‖2Γ. From a Bayesian perspective, it
means that for a certain transform D, the transformed signal Dx is normally distributed
with a covariance matrix Γ−1. In the case where the noise is also assumed normally
distributed with a covariance matrix Σ, Equation (2.4.1) becomes

argmin
x

{
‖Px− d‖2Σ−1 + ‖Dx‖2Γ

}
(2.4.2)

A complete proof of Equation (2.4.2) can be found in Appendix 6.1.2. For the sake of
simplicity, the covariance matrix Γ is often diagonal, i.e Γ = λI for some γ > 0, so that

the optimization problem is argmin
x

{
‖Px− d‖2Σ−1 + λ ‖Dx‖22

}
Intuitively, the Tikhonov regularization enforces some smoothness in the solution. In-

deed, the non-regularized least-squares problem amounts to minimizing the distance be-
tween the projection of the solution and the acquired data; while the regularized approach
entails to minimize two terms. If D = I, the second term is proportional to the sum of the
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squared magnitudes of the solution; thus, large component values will have a significant
contribution. Therefore, this prior will penalize outliers in the solution components.

A closed-form solution of problem (2.4.2) can be found by applying the first-order
optimality condition. Setting to zero the gradient of the total objective function gives

0 = P TΣ−1(PxMAP − d) +DTΓDxMAP

xMAP =
(
P TΣ−1P +DΓD

)−1 (
P TΣ−1d

) (2.4.3)

which is a regularized pseudo-inverse of P . The solution of a Tikhonov-regularized least-
squares problem is therefore obtained by a filtering (linear) process.

On the statistical point of view, Tikhonov regularization is equivalent to assuming that
Dx is normally distributed (possibly with a covariance matrix). The operator D is often
chosen as the spatial gradient ∇ (Defined in Appendix 6.2.1). In this case, the appropri-

ate assumption would be a Rayleigh distribution (when using
√
g2
x + g2

y to compute the

magnitude of the gradient components (gx, gy)) or the sum of half-normal distributions
(when using |gx|+ |gy| to compute the gradient magnitude).

2.4.3 `1 regularization

Another regularization type consists in replacing the `2 norm with the `1 norm. Problem
(2.4.2) becomes

argmin
x

{
‖Px− d‖2Σ−1 + λ ‖Dx‖1

}
(2.4.4)

which corresponds, in the Bayesian framework, to the MAP estimator when the latent
signal is known to follow a Laplace distribution with parameter λ > 0 in the basis D7.
Problem (2.4.4), sometimes called basis pursuit, admits no closed-form solution because
of the non-differentiable `1 term. Compared to the Tikhonov regularization, `1 regular-
ization is less sensitive to large components values in the solution, as the regularization is
proportional to the absolute value of the components rather than their squares.

If D = ∇ is the gradient operator, mapping one image to two images (the derivative
along both axes), the regularization ‖∇x‖1 is known as the Total Variation: it is the sum of
the derivatives magnitudes. Using the `1 norm has found many successful applications for
inverse problems, which can partly be explained with the compressive sensing framework.
Simply put, using the `1 regularization both brings stability in the reconstruction process8

and promotes sparsity of the solution in some basis.

2.4.4 The case for using `2 norm for the data fidelity term

As seen in section 2.2.1, using a squared `2 norm for the data fidelity term makes the
underlying assumption that the noise is Gaussian. When acquiring projection data, how-
ever, the statistical process of “photon counting” is known to follow a Poisson distribution.
Therefore, one might think that a Kullback-Leibler divergence should be used to measure
the distance between the data and the projection of the estimate. However, using the
Gaussian law has two crucial advantages:

• Mathematical advantage: derivations are easier, and in fact, the Gaussian distri-
bution is almost the only one for which all the results can be derived analytically.

7this can easily be seen from Proof (2.4.2) by replacing the Gaussian prior on x with a Laplace prior
8in the sense that running an optimization algorithm until convergence will not amplify the noise

present in the input data
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The quadratic term resulting of the (negative) log-likelihood differentiates nicely to
a successive evaluation of linear operators.

• Computational advantage: optimization algorithms can be very efficient to minimize
a quadratic term rather than, for example, the sum of logarithmic terms. Besides,
the quadratic term does not have pitfalls like non-differentiability or divergence be-
haviour near zero.

Having this in mind, there are also reasons supporting the fact that it is not statistically
valid to use a Poisson distribution as an underlying process for Px− d.

The first reason is that the sinogram d is defined as − log(p/p0) (elementwise) where
p is the projection data9 and p0 is a measure of the incoming beam (“flat-field”). The
projection data p might follow a Poisson distribution, but it does not need to be true for
the negative logarithm of p/p0. If the photon count of the projection data p is similar
to the photon count of the incoming beam p0 (which is usually true), then p/p0 ∼ 1, so
− log(p/p0) ∼ 1 − p/p0. Therefore, what matters is the distribution of the ratio p/p0

rather than p itself. Assuming that both p and p0 follow a Poisson distribution, the ratio
is more complicated.

The second reason is that the projection data itself might not follow a Poisson dis-
tribution. Although direct photon counting detectors yield a Poisson statistics, detectors
used with scintillators may follow another distribution. Measurements of the Fano factor10

on various scintillators found that the statistical process is actually sub-Poisson [Bou+10]
[Bor+16].

The third reason is that the noise model (f(x) in Equation 2.1.5) is much less impor-
tant, in practice, than the choice of the prior (g(x)). For example, the SIRT method often
provides results similar to those of a (non-weighted) least-squares reconstruction, and using
the EM method does not bring significant differences (except for the positivity constraint).
A thorough study of the noise factors for CT [Nuy+13] suggest that noise models more
complicated than Gaussian-Poisson are intractable and do not bring significant improve-
ment in iterative reconstructions. By contrast, choosing a Tikhonov regularization or a
total variation regularization (see section 2.5.1) yields in very different results. Advanced
works on the modelling of iterative regularized reconstruction (see for example [WMG17]
and references therein) focus on the estimating the regularization parameter of the prior,
rather than on non-Gaussian noise priors, which gives confidence in our approach.

For these reasons, the `2 norm will always be used in this work in the data fidelity
term, which is consistent with goal of having the best compromise between the modelling
accuracy and the computational tractability.

2.4.5 The Compressed Sensing framework

Compressive Sensing (CS) is a framework dealing with both the acquisition and the re-
construction of a signal with few measurements. CS was formalized from 2004 mainly by
Donoho, Candes, Romberg and Tao [CRT06b] [CRT06a] [Don06]. The starting point of
this formalization was a “puzzling numerical experiment” where it was observed that an
image could be exactly reconstructed from very few of its tomographic projections using
the Total Variation regularization; that is, solving 2.4.4 with D = ∇ (Figures 2.6.1, 2.4.2).

9 more precisely, the line k0 of the sinogram d corresponds to the (negative logarithm of) concatenation
the line k0 of all projections. In parallel geometry, the 3D sinogram is the transpose of the projection data.

10the ratio between the variance and the mean, being 1 for a Poisson process
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(a) (b)

Figure 2.4.1: (a) Shepp-Logan phantom, 512×512 pixels (b) Least-squares reconstruction
of noiseless sinogram d = Px acquired with 22 projection angles

(a) (b)

Figure 2.4.2: (a) Reconstruction of noiseless sinogram d = Px by solving 2.4.4 with
D = ∇ and λ = 8 · 10−3 (b) Difference between the TV reconstruction and the Shepp-
Logan phantom

The main contribution of the CS framework was to understand why such exact re-
coveries are possible, despite being in contradiction with the Nyquist sampling criterion,
and to provide theoretical guarantees and conditions. Let y = Ax be a LIP where y
is the observed data, A is the acquisition matrix and x is the latent signal to recover.
Loosely, the CS theory states that if both the sensing matrix A and the latent signal x
have particular properties, then x can be accurately recovered with a convex optimization
program involving the `1 regularization.

More precisely, a sufficient condition on the recovery guarantee of x is given by con-
sidering the sparsity of x and the restricted isometry constraint of A. A vector c is said
to be s-sparse with s ≥ 0 if it has at most s nonzero components. A matrix A is said to
verify the Restricted Isometry Constraint with constant δs > 0 if

∀ T ≤ s, ∀ c, (1− δs) ‖c‖22 ≤ ‖ATc‖22 ≤ (1 + δs) ‖c‖22 (2.4.5)

where AT denotes the sub-matrix formed from A by keeping T columns. Equation (2.4.5)
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characterizes how the matrix A behaves like an isometry, i.e how it shrinks or expands
the distances.

The sparsity of a signal simply the measure of its number of non-zero components. A
signal is said to be s-sparse if it has at most s non-zero components. It was shown that
in general, minimizing the `0 norm is a hard combinatorial problem. Fortunately, this
“norm” can be replaced by a convex relaxation, the `1 norm. Theoretical guarantees were
stated that for large underdetermined systems of linear equations, the minimal `1 norm
solution is also the sparsest solution [Don06]. Other sparsity-inducing norms (`p norms
with p > 1 and a kink at the origin) can also be used [Bac+12].

Then, given the s-sparsity of a signal x, Equation (2.4.5) states that a sufficient δs
exist for A in order to recover x with a convex optimization program [CT06] [CR07]. This
guarantee is however difficult to check in practice. On the one hand, signal of interest
are seldom sparse, even in a basis, as the numerical equality to zero is hard to reach. On
the other hand, the restricted isometry constraint is hard to compute, as it involves a
combinatorial search. For this reason, CS guarantees are refined by involving compressible
signals rather than sparse signals, and by providing another sufficient condition on the
matrix A called coherence. These two notions will be discussed in more details.

Definition 5 (Compressibility of a signal)
Let c denote a signal, or the coefficients of a signal in some representation. Without
loss of generality, we will suppose that the components of c are sorted by decreasing
order of magnitude. The weak `p ball of radius R > 0 is defined as{

c, |c|k ≤ R · k−1/p
}

(2.4.6)

Then, c is said to be compressible if it belongs to a weak `p ball for some radius
R > 0 and 0 < p < +∞.

The notion of compressibility measures how the entries of a signal (or signal representation)
decay following a power law. For example, it is well-known that given a one-dimensional
n-differentiable signal, the Fourier Transform samples magnitudes decay as 1/kn. The
same holds for wavelet coefficients of piecewise-smooth signals [CT06].

The compressibility can be characterized by the approximation error of a signal rep-
resentation) reconstructed from K > 0 largest coefficients in terms of magnitude. More
precisely, letting cK the vector containing the first K (sorted) coefficients and zeros oth-
erwise, the `2 difference between c and cK is bounded by

‖c− cK‖2 ≤ Cp ·R ·K
1/2−1/p (2.4.7)

where Cp is a constant depending on p. If the coefficients c are obtained from a signal x
through an orthonormal transform or a tight frame (see 2.5.2), then the approximation
error of the signal is bounded by

‖x− xK‖2 ≤ C̃p ·R ·K
1/2−1/p (2.4.8)



46 CHAPTER 2. REGULARIZED ITERATIVE RECONSTRUCTION METHODS

Figure 2.4.3: Comparison between the reconstruction error ‖x− xK‖2 and the bound
C̃p ·R ·K1/2−1/p for the “ascent” test image in the Haar wavelet representation. For this
image and this representation, p = 1.397, R = 44.8 · 103 and C̃p = 1.3. This figure can be
reproduced with the jupyter notebook in [Pal17].

To summarize, compressible signals are signal that can be accurately approximated
from few coefficient of a transform/frame, the approximation error decay following a power
law as a function of the number of coefficients. Thus, compressible signals are a faithful
approximation of sparse signals: setting to zero all except K coefficients results in an
approximation error decaying very fast.

The coherence between two matrices, according to Definition 6, is the largest correla-
tion coefficient between the lines 11 of two matrices.

Definition 6 (Coherence between two matrices)
Let A ∈ Rm×n and D ∈ Rp×n be two matrices. The coherence between A and D is
defined by

µ(A,D) = max
1≤j≤p
1≤i≤m

{
|〈Ai , Dj〉|
‖Ai‖2 ‖Dj‖2

}
∈ [1,

√
n] (2.4.9)

where Ai and Dj are the lines i and j of A and D, respectively.

A theoretical recovery guarantee for sparse signals is then given by Theorem 2.4.1.

Theorem 2.4.1 ([CR07])
Let y = Ax] be a linear inverse problem. If the coefficient vector w of the latent

11the coherence is usually defined with columns of basis. The fact that the signal x is represented by
the coefficients c in a basis Ψ is often denoted in a synthesis formulation x = Ψc. In this manuscript, we
adopt a analysis formulation, meaning that matrices denote transforms rather than bases. What is written
is therefore c = Dx. For orthonormal transforms, it means that D = ΦT . Working with the lines of a
transform is thus equivalent to working with the columns of the corresponding basis/frame.
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signal x] ∈ Rn is s-sparse in the basis DT , the solution of

argmin
w

{∥∥ADTw − y
∥∥2

2
+ λ ‖w‖1

}
(2.4.10)

enables the unique and exact recover of x] with high probability, provided that
m ≥ mmin measurements are acquired uniformly at random, where

mmin = C · s · µ2(A,D) · log(n) (2.4.11)

The coherence enables to avoid the computation of the restricted isometry constraint.
Practically, a low coherence pair (A,D) is desirable for reconstructing a signal from few
measurements. Theorem 2.4.1 somehow extends the Nyquist sampling criterion: instead
of reconstructing a signal from all its Fourier coefficients by the means of a linear process,
CS aims at reconstructing a signal from few of its coefficients (in some basis) by the means
of a nonlinear process.

More recent refinements of CS involve over-complete dictionaries (frames) rather than
basis for the representation of the latent signal [Can+11], and do not rely on coherence.
However, CS guarantees still rely on some randomness in the acquisition process, which
can be impracticable in some contexts, especially in CT. Yet, good results are obtained in
practice, suggesting that the theory needs to be completed.

2.4.6 How to choose the regularization parameter λ ?

Taking in consideration sections 2.4.4 and 2.4.5, the regularized inverse problem Px] = d
(up to noise) is solved using the optimization program given by Equation (2.4.4). The
use of a `2 norm in the data fidelity term has been discussed in section 2.4.4. The use
of a `1 norm in the regularization term finds its justification in the compressed sensing
framework (section 2.4.5), as the `1 norm acts as a proxy of the `0 “norm” for finding
a sparse solution in a representation basis (section 2.5). Now, a question often raised in
the context of regularized tomographic reconstruction is: how to choose the regularization
parameter λ in Equation (2.4.4) ? Intuitively, choosing a too high λ results in a solution
with too many regularization (for example a piecewise-constant solution in the case of
total variation), while choosing a λ too small results in the solution not being regularized
properly.

Several strategies were proposed to automatically find the optimal regularization pa-
rameter (henceforth denoted λ). The “L-curve” method [HO93] [Yan+15] consists in
plotting the `1 norm of a solution as a function of its residual, parametrized with λ. More
precisely, given a solution xλ1 of Equation (2.4.4) with λ = λ1, the quantities ‖Pxλ1 − d‖

2
2

(residual) and ‖xλ1‖1 (regularization norm) are computed. Then, another solution xλ2 is
computed with λ = λ2, and the two aforementioned quantities are computed. The same is
done for several values of λ, and a curve of the `1 regularization as a function of the residual
is plotted. Heuristically, this curve is shaped like a “L”, and the inflexion point corresponds
to the best value of λ. This method entails to perform several reconstruction in order to
estimate λ, which is a drawback. Besides, the L-curve is only a heuristic, and we saw it
fail in many cases. A similar criterion is given [Mir+14]: given a solution x0 computed
with a very small regularization, the optimal λ is λ] = argmin

λ
{cos(xλ − x0,xλ)}.

Another family of strategy is the use of Stein Unbiaised Risk Estimator (SURE). It

consists of estimating the (unknown) mean square error E
[∥∥xλ − x]∥∥2

2

]
where E [·] denotes
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the mathematical expectation. This method is out of the scope of this work, a derivation
in the case of the Iterative Shrinkage-Thresholding algorithm can be found in Appendix
6.4.1. We did not pursue this strategy as, like the L-curve method, it involves further
computational burden.

Lastly, another approach consists in building a fully Bayesian model by considering λ as
another random variable. A probability distribution function should therefore be assigned
to λ. It can be shown that for the exponential family, the priors over λ such as the posterior
probability also belongs to the exponential family (thus making the computations more
convenient), called conjugate priors, is the Gamma distribution family. This approach is
interesting as only one reconstruction is performed – instead of several reconstructions in
the case of the L-curve, although the additional prior makes the objective function more
complicated. An example of Joint Maximum A Posteriori (JMAP) technique solving the
fully Bayesian inference is proposed in [WMG17]. A complete review of sparsity-enforcing
priors and parameter selection in the Bayesian framework is proposed in [Moh12].

Ultimately, we did not pursue the automatic parameter selection goal for the following
reasons:

• The regularization parameter value depends on the features the user wants to pro-
mote in the final reconstruction. As there is no universal automatic metric for this
aim, the reconstruction is therefore user-tuned. For example, the regularization can
be chosen to a unusually high value when the user knows that the reconstructed
volume has to be segmented. One might argue that parameter selection is cum-
bersome, but the whole experiment (setup, scan, phase retrieval, reconstruction)
involves user-tuned parameters.

• It entails more computational burden, when the iterative reconstruction is already
in itself a costly process.

However, in order for the user to have an initial estimate of λ, we use the following
empirical formula based on the Donoho universal threshold (in the context of wavelets
regularization):

λ̂ = arcsinh
(
σ̂
√

2 logN
)

(2.4.12)

where N is the total number of pixels in an image, and σ̂ is an estimate of the standard
deviation of the noise of an initial FBP reconstruction, using the estimator described in
[Imm96]. Formula (2.4.12) does not have a rigorous mathematical justification, the ratio-
nale is to adapt λ as a function of the noise that might be present in a FBP reconstruction
(the higher noise level, the higher λ should be). The purpose of the inverse hyperbolic
sine is to shrink the Donoho threshold which is often overestimated in this context.

2.5 Sparse representations for tomography reconstruction

2.5.1 Gradient and Total variation

The gradient representation has been used for a long time in the context of signal and
image denoising, based on the ROF model [ROF92]. Roughly, this model considers the
Total Variation (TV) of a function f , which is equal to the sum of the norms of its gradient:
‖∇f‖1. Formally, the TV is defined for functions of bounded variations, which is out of
the scope of this work. We first define the spatial gradient operator ∇ and its adjoint.
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The definition of the discrete gradient and divergence operators can be found in Ap-
pendix 6.2.1. Notably, the spatial gradient is not centered, i.e the corresponding one-
dimensional discrete convolution kernel is [−1, 1] rather than [−1, 0, 1]. The reason is that
the centered spatial gradient is less sensitive to the high frequencies (image edges); and
edges are particularly important in total variation regularization.

Now that the gradient and divergence operators are defined, the TV operator can be
defined.

Definition 7 (Total Variation)
Let c ∈ Rn, for example an image. The TV of c is defined by the norm of its
gradient:

TV(c) = ‖∇c‖1
For signal with two dimensions or more, the norm computation can be done in two
ways. The isotropic total variation computes the `2,1 norm of the gradient:

TViso(c) =
∑
i,j

√
(g1
i,j)

2 + (g2
i,j)

2

where (gi,j)
k denotes the component k of the gradient of c at the pixel location (i, j).

The anisotropic total variation computes the `1 norm of the gradient:

TVaniso(c) =
∑
i,j

|g1
i,j |+ |g2

i,j |

The tomographic reconstruction problem with TV regularization is defined by

argmin
x

{
1

2
‖Px− d‖22 + λ ‖∇x‖1

}
(2.5.1)

where d is the acquired sinogram and P is the projection operator. Problem (2.5.1)
can be extended to any LIP by replacing P with any linear operator. The penalization
term λ ‖x‖1, as a convex relaxation of the `0 norm, promotes solutions such that ∇x
is sparse. Thus, solutions of Problem (2.5.1) are piecewise-constant signals. The higher
regularization parameter λ > 0, the more piecewise-constant will be the solution.

The TV regularization has been successfully used for tomographic reconstruction for
more than a decade, with a theoretical root given by the compressed sensing framework
(see section 2.4.5).

2.5.2 Dictionary-based reconstruction

Regularized LIP, and particularly tomographic reconstruction, aim at solving problems of
the form

argmin
x

{
1

2
‖Px− d‖22 + λ ‖Dx‖1

}
(2.5.2)

where D is a linear operator. It promotes sparse coefficients of the transform D (or “in
the DT basis, see footnote 11). Problem (2.5.2) is in the form called analysis formulation
of the reconstruction problem. Another form is the synthesis formulation

argmin
w

{
1

2
‖PD∗w − d‖22 + λ ‖w‖1

}
(2.5.3)
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where the minimization holds on the coefficients w in the transform domain. It can
be shown that formulations (2.5.2) and (2.5.3) are equivalent if and only if D is an or-
thonormal (or unitary) transform, i.e D∗D = I. In general, however, these form are not
equivalent.

Of particular interest is the case where the coefficients w have more component than
the signal x, meaning that D represented as a matrix has more rows than column. The
transform D is said over-complete, as it maps n ∈ N components of the signal x to n2 > n
components in the “D domain”. In this case, the representation D∗ is called a dictionary
in the image processing terminology. Mathematically, D∗ is called a redundant frame,
defined as follows.

Definition 8 (Frame)
LetD ∈ Rn2×n be a linear operator mappings signals x ∈ Rn to coefficientsw ∈ Rn2 .
Let dk ∈ Rn denote the n2 lines of D. The operator D represents a frame if there
exists 0 < µ1 ≤ µ2 satisfying

∀x ∈ Rn, µ1 ‖x‖22 ≤
∑
k

|〈x , dk〉|2 ≤ µ2 ‖x‖22 (2.5.4)

and this fact will be denoted by “DT is a frame”.
If n2 > n1, the frame DT is said to be redundant.
If µ1 = µ2, the frame DT is said to be tight. If µ1 = µ2 = 1, we recover a “Parseval’s
identity”, i.e a signal has the same energy (`2 norm) in the identity basis as in the
DT frame.

The frames were defined over Rn, but can be defined for a general Hilbert space
replacing the transpose with the adjoint.

A frame can be seen as a generalization of a linear algebra basis, as the vectors dk of
D need not to be linearly independent. For example, in the redundant case, the columns
of DT are clearly linearly linked. In this setting, the output space of the operator D (Rn2)
is bigger than its input space (Rn). In particular, there can be vectors w which are not
the transform Dx of any signal x. This means that after solving Problem (2.5.3), the
optimal ŵ might not correspond to any signal x̂ !

Fortunately, for a tight frame, a signal can always be obtained from coefficients. Indeed,
as the frame bounds are equal to µ > 0, differentiating twice the Parseval’s identity
‖Dx‖22 = µ ‖x‖22 yields

D∗D = µI (2.5.5)

thus, the operator D is semi-orthogonal. The non-square matrix µ−1D∗ can be viewed as
a pseudo-inverse of D according to Equation (2.5.5)12.

Dictionary-based reconstruction aims at solving Problem 2.5.3 whereD∗ is a dictionary
(i.e redundant frame). The core idea is that a dictionary has been “learned” over a signal
similar to the latent signal to reconstruct. Formally, if a good quality reconstructed volume
x0 is available, for example after a scan with many views and a good SNR, a dictionary
D∗ is built based on x0 by the means of a learning procedure. This learning step can be
viewed as a sparse SVD of the image (or volume) x0 in the sense that the most significant
“atoms” of x0 are used to compute the dictionary D∗.

12It is indeed easy to show that it corresponds to the minimum norm Moore-Penrose pseudo-inverse of
D, since (D∗D)−1D∗ = µ−1ID∗
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The signal x is first split into subsets of smaller sizes. For example, if x is an image,
it can be tiled as N (non-overlapping) patches of n pixels each. Let X denote the matrix
obtained by stacking the N signals of size n. Each signal xi has a representation as a
coefficient vector wi with M components. If D is the dictionary and gi is the column i of
D, the representation readsx1 . . . xN


︸ ︷︷ ︸
X : (n,N)
N signals

of n components

=

g1 . . . gM


︸ ︷︷ ︸
D : (n,M)
M atoms

of n components

·

w1 . . . wN


︸ ︷︷ ︸
W : (M,N)

N coefficient vectors
of M components

(2.5.6)

Every signal xi is a linear combination of the M dictionary atoms, as illustrated on Figure
2.5.1.

Figure 2.5.1: Left: image, Right: dictionary atoms. The image (signal) is split into a set
of patches. Every image patch is a linear combination of the atoms. Image: [MBC14]

A commonly used dictionary learning algorithm is the K-SVD algorithm, or its “en-
hanced version” EK-SVD [MG08]. It consists in solving

argmin
D,W

{
‖X −DW ‖22

}
s.t. ‖wi‖0 ≤ T0 for i ∈ [1, N ] (2.5.7)

i.e finding a sparse approximation of the set of signals X in the dictionary D for the
matrices W and X defined above. Problem 2.5.2 is non-convex and is usually solved with
a greedy algorithm like the Matching Pursuit method.

Once the dictionary is built from a learning set of signals, the reconstruction problem
(2.5.3) is solved with a standard convex optimization algorithm. A non-convex problem
with the `0 norm can also be solved with a greedy algorithm [Xu+12].

In the work [MBC14], the formulation (2.5.3) is extended to overlapping image patches,
with similar patches in the overlapping region, to yield a better reconstruction quality.
This work is part of the PyHST reconstruction software [Mir+14].

2.5.3 Wavelets frames

A brief introduction to Wavelets in signal processing, with useful references, can be found
in Appendix 6.2.2/ This work primarily focuses on two dimensional Wavelet transforms,
i.e Discrete Wavelet Transform (DWT) of images. In this work, W denotes the forward
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wavelet transform (wavelet analysis) 13 andW ∗ denotes its adjoint, which is also its inverse
(possibly up to a multiplicative constant, see section 2.5.2). Wavelet transforms basically
fall into two categories: the critically-sampled wavelet transform and undecimated wavelet
transform. The former is often called DWT by default, whereas the latter is generally
called Stationary Wavelet Transform (SWT) (or undecimated wavelet transform).

The DWT has many interesting properties:

• Most “natural” signals/images are compressible (in the sense of subsection 2.4.5) in
a wavelet basis.

• It is a non-redundant transform: it maps a signal with n components (eg. image
with n pixels) to a set of n coefficients. Therefore, this transform is not memory
demanding.

• It can be implemented in a very efficient way, the “fast wavelets transform” (Mallat’s
multi-resolution method), a O(n) algorithm.

• In certain conditions (see section 3.2), the transform W is orthonormal: W ∗W = I,
which is of interest in optimization algorithms (see subsection 2.6.2).

The DWT, however, suffers from a drawback: the lack of shift invariance, meaning
that the coefficients of a shifted version of a signal are not equal to the shifted version
of the coefficients of the original signal. This lack of translation invariance can lead to
artifacts when the wavelet coefficients are modified, i.e as soon as they are used in a
regularized inverse problem. To address this issue, the redundant SWT can be used. It
maps n components of a signal to n2 > n coefficients in the wavelet domain. In general,
the SWT satisfies the tight frame condition

W ∗W = µI (2.5.8)

i.e is a semi-orthogonal transform. This transform is however more computationally ex-
pensive and memory demanding. The implementation and capabilities will be discussed
in section 3.2.

2.6 Notions of convex optimization

The previous sections described how the modelling of tomographic reconstruction as an
inverse problem, with a model on the noise and the latent signal, leads to an optimization
problem. The following sections will now deal with the actual solving of these optimization
problems by considering state-of-the-art non-smooth minimization algorithms compatible
with an efficient implementation.

This section 2.6 introduces the mathematical tools required for the optimization algo-
rithms used in this work.

2.6.1 Convex functions and convex sets

Definition 9 (Convex function and convex set)
Let f be a function from some vector space E to R. The function f is said to be
convex if

∀x1,x2 ∈ E, ∀ t ∈ [0, 1], f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

13in many other works, W rather denotes the wavelet synthesis, corresponding to W T ∗ in this context
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The set E is said to be convex if

∀x1,x2 ∈ E, ∀ t ∈ R, t ∈ [0, 1] =⇒ tx1 + (1− t)x2 ∈ E

(a) (b)

Figure 2.6.1: (a) 1D illustration of a convex function. For any couple of points x, y, the
straight line between x and y is always above the curve of the function. (b) Example of
a convex set (left) and a non-convex set (right). For a convex set E, any straight line
between x,y ∈ E is contained in E. Images: [BV09]

The minimization of a convex function over a convex set is called a convex problem.
Proposition 2.6.1 lists useful properties of convex functions. Proofs and further properties
can be found in chapter 3 of [BV09].

Proposition 2.6.1 (Properties of a convex function)
Let f be a function defined on a convex set. The following properties hold:

• If f is differentiable, then f is convex if and only if it is greater than its affine
approximation:

∀x,y, f(y) ≥ f(x) +∇f(x)T (y − x) (2.6.1)

• If f is a twice differentiable, then f is convex if and only if its Hessian is positive
semi-definite:

∀x, ∇2f(x) � 0 (2.6.2)

• If f is convex, any local minimum of f is a global minimum.

• If f is convex, the set of global minima of f is convex.

Convex functions are of special interest in optimization, as converging to a local min-
imum is equivalent to converging to a global minimum. In many problems, a physical
model entails the minimization of an energy, or objective function, which is generally
convex. More specifically, linear inverse problems involve a data fidelity term which is
the norm of an affine function (the difference y −Ax between the observations and the
projected estimate), which is convex for any norm.

The (unconstrained) linear Least Squares minimization

argmin
x

{
‖y −Ax‖22

}
(2.6.3)
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is a convex problem, as the squared `2 norm is convex14. Its solution, if any, is then unique.
Problem (2.6.3) happens to have a solution (even when A does not have full rank), which
makes the least squares approach appealing. The same holds for weighted `2 norms ‖·‖Γ
provided that Γ is positive semi-definite, which is the case for covariance matrices.

Linear Least Squares problems regularized with the `1 norm in some basis

argmin
x

{
1

2
‖y −Ax‖2Γ + λ ‖Dx‖1

}
λ > 0 (2.6.4)

are also convex, since the objective function is the sum of the convex (weighted) `2 norm
and the convex `1 norm. Therefore, problem (2.6.4) also has an unique solution. More
generally, the problem

argmin
x

{
1

2
‖y −Ax‖2Γ +

n∑
k=0

λkϕk(x)

}
λk > 0 (2.6.5)

where ϕk are convex functions encoding some constraints, is convex.
Apart from being regularized, optimization problems can be constrained, meaning that

the solution can be involved in an equality or inequality constraint. Such problems can be
written under the form

argmin
x

{f(x)}

s. t. x ∈ Ω
(2.6.6)

where Ω is a convex set. The constraint x ∈ Ω can be encoded by a function called
indicator function.

Definition 10 (Indicator function of a set)
Let Ω be a set. The indicator function of Ω is defined by

iΩ(x) =

{
0 if x ∈ Ω
+∞ otherwise

(2.6.7)

It can be shown that indicator functions of convex sets are convex. Problem (2.6.6)
can be rewritten

argmin
x

{f(x) + iΩ(x)} (2.6.8)

Lastly, we give the definition of a Lipschitz function. Lipschitz functions are not
directly linked to convex functions, but this property is frequently used in optimization
algorithms.

Definition 11 (Lipschitz function)
Let f be a vectorial function. f is said to be β-Lipschitz if

∀x,y, ‖f(x)− f(y)‖ ≤ β ‖x− y‖ (2.6.9)

14 he least squares problem ‖y −Ax‖22, where A is not linear, is not convex in general. In this case,
this problem suffers from the non-convexity drawback: lack of convergence guarantees and local minima.
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2.6.2 The proximity operator

Before defining the proximity operator, we introduce the Fenchel conjugate which is a tool
commonly used in convex optimization.

Definition 12 (Fenchel conjugate)
The Fenchel conjugate of a function f is defined by

f∗(y) = sup
x∈domf

{
yTx− f(x)

}
(2.6.10)

The function f∗ is convex, even if f is not. The mapping f 7→ f∗ for differentiable
f is called Legendre Transform.

If f is a convex function then f∗∗ = (f∗)∗ = f . Other properties and examples of
Fenchel conjugate are given in [BV09]. Of special interest are Fenchel conjugate of `p
norms, which are given by Proposition (2.6.2).

Proposition 2.6.2 (Fenchel conjugate of power `p norms)
Let 1 < p < +∞ and q such that 1

p + 1
q = 1.

The Fenchel conjugate of x 7→ 1
p ‖x‖

p
p is x 7→ 1

q ‖x‖
q
q. Notably, the half squared `2

norm is self-conjugate.
For p = 1, the conjugate of x 7→ ‖x‖1 is the indicator of the `∞ unit ball.
For p = +∞, the conjugate of x 7→ ‖x‖∞ is the indicator of the `1 unit ball.
For 1 < p < +∞, the conjugate of x 7→ ‖x‖p is the indicator of the `q unit ball.

The Fenchel conjugate is closely linked to the dual problem. Let the optimization
problem

min
x
{f(x) + g(Kx)} (2.6.11)

In many applications, both f and g are convex. Since g is convex, we have (g∗)∗ = g, so
we can write

g(Kx) = max
y
{〈Kx , y〉 − g∗(y)}

= max
y
{〈x , K∗y〉 − g∗(y)}

The optimization problem is thus

min
x

{
max
y
{〈x , K∗y〉 − g∗(y) + f(x)}

}
(2.6.12)

Problem (2.6.12) is called saddle-point formulation of Problem (2.6.11). Under assump-
tions on the original problem (2.6.11) (Slater’s conditions [BV09]), the min and max
operators can be exchanged. These conditions are usually met, for example if f is convex
(which is the case for the squared `2 norm), the strong duality holds. The problem is then

max
y

{
min
x
{〈x , K∗y〉 − g∗(y) + f(x)}

}
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Now having a closer look on the term

min
x
{〈x , K∗y〉+ f(x)} = min

x
{− 〈x , −K∗y〉+ f(x)}

= −max
x
{〈x , −K∗y〉 − f(x)}

∆
= −f∗(−K∗y)

the problem becomes max
y
{−f∗(−K∗y)− g∗(y)}, also written

min
y
{f∗(−K∗y) + g∗(y)} (2.6.13)

which is the dual problem of (2.6.11).
The last concept we need to define the proximal operator is the subgradient, which is

a generalization of the gradient of a differentiable function.

Definition 13 (subgradient)
Let f : E → R be a convex function where E is a Hilbert space. The vector gx ∈ E
is a subgradient of f at x if

∀y, f(y) ≥ f(x) + gTx (y − x)

If the set of all subgradients of f is denoted ∂f , thus, ∂f is a set-valued function.
If ∂f at x has only one vector gx, then f is differentiable at x and its gradient at x
is gx.

Subgradient are set-valued at points where a function is not differentiable. A notable
example is given the `1 norm:

(∂ ‖·‖1)(x)i =

{
sign (xi) xi 6= 0
[−1, 1] xi = 0

(2.6.14)

Intuitively, the subgradient generalizes the gradient of a differentiable function, ac-
cording to the first point of Proposition (2.6.1). For a differentiable function f , the first
order optimality condition (or Fermat rule) is ∇f = 0. Now, if f is not differentiable,
we have to consider its subgradient instead of its gradient. If 0 ∈ gx = ∂f , then from
the definition: ∀y, f(y) ≥ f(x), i.e x is a global minimizer of f . Thus, the first order
optimality condition is extended to the subgradient.

The subgradient and the following notion of proximal mapping of an operator are part
of the modern theory of convex analysis and monotone operators theory. This theory is
out of the scope of this manuscript, only notions of interest for this work will be given. An
comprehensive presentation can be found in [BC11a]. Many theoretical guarantees hold for
convex functions that are lower semi-continuous (l.s.c), i.e having a closed epigraph15. As
it is the case in practice for many functions of interest (for example continuous functions
and indicator of convex sets), convex functions will also be assumed to be lower
semi-continuous, unless explicitly indicated.

The proximity operator can now be defined.

15The epigraph of a function f is defined by {(x,y) ∈ domf × R, f(x) ≤ y}
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Definition 14 (Proximity operator)
Let f be a convex function. The proximity operator (or proximal mapping) of f is
defined by

proxf (x̃) = (∂f + I)−1 (x̃)

For convex functions, the proximal is well-defined and unique, and equal to

proxf (x̃) = argmin
x

{
1

2
‖x− x̃‖+ f(x)

}

Proof. Only the equivalence between the proximal formulas is proved. The first order

optimal condition of argmin
x

{
1

2
‖x− x̃‖+ f(x)

}
is :

0 ∈ x− x̃+ ∂f(x)⇐⇒ x̃ ∈ (I + ∂f) (x)⇐⇒ x = (I + ∂f)−1 (x̃)

Where the last equivalence uses the fact that f is convex, so its subgradient defines
an injective mapping, which is invertible on its proper domain. Hence the argument
of minx

{
1
2 ‖x− x̃‖+ f(x)

}
is proxf (x̃).

Computation rules (like translation and scaling) exist for the Fenchel conjugate and
the proximity operator, but they will only be stated when needed.

The alternative form of the proximal mapping of f(x) as a minimization problem brings
the following insight: computing the proximal mapping amounts to solving a denoising
problem regularized with f(x). If a function f(x) is such that proxf (x) is easily computed,
then the denoising problem regularized with f(x) can be solved efficiently (and conversely).
A particular case is the combination of the last two lines of the following Proposition
(2.6.3), which lists some useful proximity operators. A table of closed-form proximal
mapping can be found in [CP09].

Proposition 2.6.3 (Table of common proximity operators)
This proposition gives a table of the proximal mappings of common functions.

f(x) proxf (x)
γ
2 ‖Ax− y‖

2
2

γ > 0
(I + γA∗A)−1 (x+ γA∗y)

iΩ(x) PΩ(x)

ϕ(Ax)
AA∗ = µI

x+ µ−1A∗
(
proxµϕ (Ax)−Ax

)
λ ‖x‖1 (Sλ(x))i = max(|xi| − λ, 0) sign (xi)

where PΩ(x) denotes the Euclidean projection onto Ω, and the operator Sλ is called
soft thresholding.

An interesting prox is given by combining the last two lines of Proposition 2.6.3. Let W
be an orthogonal (or unitary) transform, i.e W ∗W = I. Then, the prox of x 7→ ‖Wx‖1
is

proxγ‖W ·‖1 (x) = W ∗Sγ(Wx) (2.6.15)
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In words, the prox consists in transforming x into the W domain, soft-thresholding the
coefficients, and then transforming the thresholded coefficients back in the “x domain”.
This method has been used for a long time in the context of the Wavelets denoising. The
denoising problem is an instance of a LIP

argmin
x

{
1

2
‖x− y‖22 + λ ‖Wx‖1

}
(2.6.16)

where y is the signal to denoise. Problem (2.6.16) is a least-squares approximation of
x under the regularization of sparse coefficients in the W domain. The solution is, by
definition, the proximal of x 7→ ‖Wx‖1. Thus, the denoising problem regularized with an
orthonormal Wavelets transform has a closed-form, one-step solution which is the proximal
(2.6.15).

The proximal operator has numerous interesting properties. Appendix 6.2.3 gives
properties which are used in this work; for a more comprehensive list, the reader might
refer to [CP09].

The proximal operator is useful to generalize the Banach-Picard fixed point theorem:
given a contraction operator T and two distances d, d′

∃0 ≤ ν < 1, ∀x,y, d (T (x), T (y)) ≤ d′ν (x, y) (2.6.17)

the operator T admits a fixed point x̃ such that T (x̃) = x̃, and the sequence defined
by xn+1 = T (xn) converge to x̃16. Building such an operator in practice from a given
problem is difficult, and raises the need to extend the principle. It can be shown that the
proximal mapping of a convex function f is a firmly nonexpansive mapping in the sense∥∥proxf (x)− proxf (y)

∥∥2

2
≤
〈
x− y , proxf (x)− proxf (y)

〉
(2.6.18)

This property enables to define a proximal point algorithm defined by the iterates xn+1 =

proxγnf (xn). If

+∞∑
n=0

γn = +∞, then these iterates converge (weakly) to a global minimizer

of f , provided that f is convex ([BC11b], Theorem 27.1 p. 399).
Proximal point algorithms can be further extended to proximal splitting algorithms

aiming at minimizing the sum of convex functions. Convergence guarantees of such meth-
ods is out of the scope of this manuscript, many such methods are described in [CP09].

2.7 Proximal optimization algorithms

Proximal algorithms aim at solving non-smooth optimization problems by using the prox-
imal mapping. More precisely, let the optimization problem

argmin
x

{f(x) + g(x)} (2.7.1)

where f and g are both convex. In the regularized inverse problem setting, f can be the
data fidelity term and g can be the regularization term. Proximal method can mainly be
split into three types, as summarized in Table 2.1

16the underlying space should be complete, which is the case for our usual setting of a finite dimensional
vector space over Rn
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Name Operators needed Assumptions

Proximal gradient ∇f and prox(g) f is differentiable, prox(g) is simple

Douglas-Rachford prox(f) and prox(g) Prox of f and g are simple

Primal-dual
prox(F ) and prox(G∗)

for some F and G
Problem is re-formulated

Table 2.1: Categories of optimization algorithms depending on the use of proximal

These categories, described in the following parts, have their own assumptions, advan-
tages and drawbacks. Depending on the problem setting (the form of f and g), different
algorithms should be used.

2.7.1 Gradient descent and first order methods

In optimization, first order methods are methods using only information on the gradient
of the objective function to optimize. Before studying proximal methods, the gradient
descent is briefly reviewed as an introduction. Gradient descent is one of the simplest
optimization methods. Let f be a differentiable convex function to minimize, the gradient
descent is defined by the iteration 17

xk+1 = xk − γn∇f(xk) (2.7.2)

where γn is the step in the (opposite) direction of the gradient. Intuitively, ∇f(xk) locally
is the steepest direction of f at x, pointing to an increasing of f , hence the negative sign
for the minimization. Under assumptions on the sequence (γk)k, iteration (2.7.2) converges
to the global minimizer of f .

The step size is usually chosen with a fixed value γk = γ. It can be shown that if ∇f
is β-Lipschitz (see Definition 11), then iteration (2.7.2) with constant step size γk = γ
converges if 0 < γ < 2/β. If f is twice differentiable, the Lipschitz constant of ∇f is equal
to the operator norm of its Hessian matrix ∇2f (i.e its largest eigenvalue for the standard
Euclidean distance):

β = sup
x

{∥∥∇2f
∥∥} (2.7.3)

which can be efficiently computed with the power method given in Appendix 6.2.4.
An extension of the gradient descent called projected gradient descent is given by the

following iteration
xk+1 = PΩ(xk − γk∇f(xk)) (2.7.4)

It aims at solving
argmin

x
{f(x)}

s.t. x ∈ Ω
(2.7.5)

where Ω is a convex set.
Although simple, the gradient descent is notably slow. If x] denotes the minimizer of

f , it can be shown [DT14] that at iteration n, the “inaccuracy” f(xn)− f(x]) is bounded

by
‖x0−x]‖2

2
4n+2 , i.e is O(1/n). A Fast Gradient method was introduced by Nesterov with

17 in this context, the notation xk denotes the iterate number k of the vector x, and not the component
number k of x. The ambiguity can be cleared by noticing that the estimate xk is a vectorial entity (bold
notation), while a component xi is a scalar entity (non-bold notation).
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iteration (2.7.6) 

xk+1 = yk − γ∇f(yk)

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
yk+1 = xk+1 +

tk − 1

tk+1
(xk+1 − xk)

(2.7.6)

Intuitively, the Nesterov method adds a “momentum” term: the estimate xk do not only
follows the opposite gradient of f , it uses the information of the previous gradient. For
example, the minimization of a quadratic form can be seen geometrically as rolling a ball
in a “bowl” (ellipsoid). The gradient descent with a relaxation step is comparable to a
“heavy momentum rolling ball” model.

This method has an inaccuracy decaying as O(1/n2), which can be shown to be optimal
for any first-order method. In particular, any iteration using the information of the Q

previous gradients xk+1 = xk − γ
Q−1∑
q=0

hk+1,q∇f(xk) , for some factor hk+1,q, will also have

an inaccuracy bounded by O(1/n2) – which is a “good news”, as storing many previous
gradients would be expansive in terms of memory.

Further practical accelerations18 of this method involve changing the relaxation step
[CD15] or adding an new momentum term [KF16].

2.7.2 Proximal gradient algorithm

The proximal gradient method is directly linked to the gradient descent. While the gradi-
ent descent aims at minimizing a differentiable function f , the proximal gradient method
aims at minimizing the sum of a differentiable function f and a convex (possibly non-
differentiable) function g (Problem (2.7.1)).

One iteration of the basic proximal gradient method reads

xk+1 = proxγg (xk − γ∇f(xk)) (2.7.7)

where γ > 0 is the descent step. It can be shown that this method converges when γ
is chosen as the inverse of the Lipschitz constant of ∇f . When the function g encodes
the constraint x ∈ Ω for some convex set Ω, i.e g(x) = iΩ(x), then the proximal of g
is proxγg (x) = PΩ(x), the Euclidean projection onto Ω19. Thus, the proximal gradient
algorithm can be seen as an extension of the projected gradient descent (2.7.4).

When the function g encodes a regularization about the sparsity of the coefficients of
some orthogonal transform W , i.e g(x) = ‖Wx‖1, then (see (2.6.15)) the prox consists
in thresholding the coefficients of the W transform. As the gradient step xk − γ∇f(xk)
is a “shrinkage” step, iteration (2.7.7) is therefore called Iterative Shrinkage-Thresholding
Algorithm (ISTA).

Like the gradient descent, iteration (2.7.7) has a slow convergence rate in the sense
that the inaccuracy decays as O(1/n). Based on the Nesterov idea to add a “momentum
term”, accelerations were proposed, leading to a “two steps ISTA” (TwIST) [BF07] or
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [BT09] which have a O(1/n2)

18practical means by a multiplicative constant, as these constants are omitted by the big O notation
19notably, the prox does not depend on γ
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convergence rate. One iteration of FISTA reads20

xk+1 = proxγg (yk − γ∇f(yk))

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
yk+1 = xk+1 +

tk − 1

tk+1
(xk+1 − xk)

(2.7.8)

Algorithm (2.7.8) is especially interesting when the prox of g is simple to compute, as
in Equation (2.6.15). Otherwise, the prox of g has to be computed iteratively, which is
the case for example for the TV regularized inverse problem

argmin
x

{
‖Ax− y‖22 + λ ‖Dx‖1

}
(2.7.9)

2.7.3 Douglas-Rachford splitting algorithms

The proximal gradient algorithm uses the gradient of f and the proximal of g, i.e is adapted
when g has a simple prox and f is differentiable. Douglas-Rachford splitting methods make
use of the prox of both f and g, with f and g possibly non-differentiable. The idea is to
minimize a function F which has not a simple proximal, but can be written as F = f + g
where both prox of f and g are simple. One Douglas-Rachford iteration reads [OV14]{

xk+1 = proxγf (yk)

yk+1 = yk + ρ
(
proxγg (2xk+1 − yk)− xk+1

) (2.7.10)

where 0 < ρ < 2 is a relaxation step. Again, iteration-dependent step sizes can be chosen,
with similar convergence conditions (for example [BC11b], Corollary 27.4 p. 401).

A well-known instance of the Douglas-Rachford algorithm is the Alternating Direction
Method of Multipliers (ADMM), which aims at solving the problem

min
x1,x2

{f(x1) + g(x2)}

s.t. A1x1 +A2x2 = c
(2.7.11)

by solving its dual version

max
z

{
−f∗(AT

1 z)− g∗(AT
2 z) + cTz

}
(2.7.12)

It is mainly used to virtually decouple variables, for example when the function to mini-
mize has the form f(x) + g(Kx). Without constraints, the generic ADMM iteration for
minimizing f + g is defined by [P+14]

xk+1 = proxγf (zk − uk)
zk+1 = proxγg (xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

(2.7.13)

ADMM is also called the Split-Bregman method. It is based on the augmented Lagrangian,
as the variables decoupling is made by adding an extra term in the Lagrangian to enforce
the equality of the split variables. Interestingly, Douglas-Rachford/ADMM only access
the functions f and g through their proximal.

20 the accelerated version proposed in [KF16] uses yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk) + tk
tk+1

(xk+1 − yk)
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When the problem has constraints, the ADMM algorithm for solving

argmin
x1,x2

{f(x1) + g(x2)}

s. t. Gx1 = x2

(2.7.14)

is given by [ABF10] 
xk+1 = argmin

x

{
f(x) +

µ

2
‖Gx− zk − uk‖22

}
zk+1 = proxg/µ (Gxk+1 − uk)
uk+1 = uk −Gxk+1 + zk+1

(2.7.15)

which, by definition of the proximal, is clearly equivalent to (2.7.13) when G = I (no
constraints) by replacing the variable u with −u and the step size γ = 1/µ.

2.7.4 Primal-Dual methods

Primal-Dual methods aims at solving the problem

min
x
{F (x) +G(Kx)} (2.7.16)

or its equivalent alternative versions (dual and saddle-point, respectively, see Equation
2.6.12 in section 2.6.2)

max
z
{−F ∗(−K∗z)−G∗(z)}

max
z

{
min
x
{〈Kx , z〉+ F (x)−G∗(z)}

} (2.7.17)

In this context, the functions F , G are possibly different from the functions “f , g” previ-
ously given. The reason is that primal-dual methods allow an important flexibility when it
comes to re-writing a problem “minimize f+g” (possibly with constraints) to an equivalent
problem (2.7.16) (or (2.7.17)).

A review of primal, primal-dual and dual splitting techniques can be found in [OV14].
In this work, we focus on a recent primal-dual algorithm proposed by Chambolle and Pock
[CP11]. Its basic form is given by

yk+1 = proxσG∗ (yk + σKx̃k)

xk+1 = proxτF
(
xn − τK∗yk+1

)
x̃k+1 = xk+1 + θ(xk+1 − xk)

(2.7.18)

where θ ∈ [0, 1] is a “momentum step”. At each iteration, the Chambolle-Pock (C-P)
algorithm makes one “primal step” by computing proxF (x) with step τ , and one “dual
step” by computing proxG∗ (z) with step σ. This algorithm can be shown to converge
when τσ < 1/ ‖K‖2 where ‖K‖2 is the squared operator norm of K (in our setting, it is
the maximum eigenvalue of KTK which is efficiently computed with the power method,
see Algorithm 6.2.1).

Algorithm (2.7.18) is of special interest when proxF (x) and proxG∗ (y) are easy to
compute: each iteration boils down to evaluating these operators and the forward and
adjoint operators K, K∗. As seen in section 3.1, this algorithm enables an important
flexibility for rewriting a problem where the prox of f and g are not simple to a problem
(2.7.16) or (2.7.16), where the prox of F and G are simple. A relaxation step can be added



to this algorithm [Con13], which can yield a faster convergence rate. A generalization of
the C-P algorithm was proposed in [Con14] for solving more general problems.

The convergence rate of primal-dual methods is less well-understood than proximal
point algorithms. In [CP11], the authors prove the O(1/N) convergence of the C-P algo-
rithm, but a behavior similar to O(1/N2) is often observed in practice.

Conclusion

In this chapter, we presented an unified mathematical framework describing all the known
reconstruction algorithms. The advantage of the Bayesian modelling is that assumptions
on the noise and volume prior knowledge are made explicit. All these methods are “statis-
tical”, and regularized methods naturally fit in this framework. There is sometimes some
confusion among the “users” of reconstruction methods; in summary, all iterative meth-
ods are “statistical”21, the only changing aspect is the noise/volume model. Regularized
methods, which corresponds to the MAP rather than ML in the Bayesian framework, also
bring stability: these methods do not suffer from the “noise amplification (when using too
many iterations)” problem encountered with the standard least squares reconstruction.
The optimization algorithms described previously can therefore be run until convergence,
without choosing the number of iterations as a parameter.

The explicit separation between the modelling and the optimization process is the
starting point of choosing the best algorithm for an efficient implementation, which is
addressed in the next chapter.
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Chapter 3

Efficient implementation of
regularized reconstruction
methods

In the previous chapter, regularized reconstruction method were formalized in a common
Bayesian framework, as an extension of classical reconstruction algorithms. On the other
hand, some modern convex optimization algorithms adapted to the reconstruction problem

were reviewed. These aim at tackling a minimization problem argmin
x

{
1
2 ‖Px− d‖

2
2 + λ ‖Dx‖1

}
involving the non-differentiable regularization term ‖Dx‖1 while being reasonably fast.

In this chapter, we go in more detail and present the actual efficient implementation
of these methods on Graphical Processing Unit (GPU). A high speed data processing is
critical to cope with the always increasing amount of data outputed by modern detec-
tors. The reconstruction methods are designed to be integrated in the PyHST2 software
[Mir+14], the tomographic reconstruction program used at ESRF.

3.1 Fast Total Variation regularized tomographic
reconstruction

Tomographic reconstruction with Total Variation regularization has been practically used
for over a decade, and was given a theoretical ground with the CS framework [CRT06].
However, efficient and exact algorithms solving the TV reconstruction problem were
only proposed quite recently with proximal algorithms mentioned in the previous chapter
([BF07], [BT09], [CP11]). Prior methods either involved to modify the objective function,
thus solving a different problem, or to use a slowly convergent optimization algorithm.

In this section, we present an efficient implementation of the Chambolle-Pock algo-
rithm for the TV reconstruction problem in the parallel geometry setting. Numerical
experiments and comparison with states-of-the-art optimization algorithms show that C-
P is attractive for the TV reconstruction problem. Notably, the GPU implementation is
able to reconstruct 2k×2k and 4k×4k slices in a few seconds.

3.1.1 Considerations on optimization algorithms

The least-squares tomographic reconstruction problem with TV regularization is

argmin
x

{
1

2
‖Px− d‖22 + λ ‖∇x‖1

}
(3.1.1)

where x is the latent image/volume to reconstruct, d is the acquired data (sinogram),
λ > 0 the regularization parameter and∇ is the image/volume gradient operator. Problem
(3.1.1) is an instance of optimization problems discussed in previous chapter with f(x) =
1
2 ‖Px− d‖

2
2 and g(x) = λ ‖∇x‖1. The spatial gradient operator ∇ has been defined in
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Definition 15. It can be shown that with this definition, the operator norm of the spatial
gradient ∇ is ‖∇‖ =

√
λmax (−div∇) =

√
8.

Two methods are traditionally used to solve (3.1.1). On the one hand, the TV is
“smoothed” by replacing the `1 norm with the Huber function

(ψµ(x))i =

{
|xi| if |xi| ≥ µ
x2
i

2µ + µ
2 otherwise

(3.1.2)

so that the smoothed TV is [WBA09]

‖∇x‖1 ' Jµ(x) =
∑
i

ψµ(|(∇x)i|) (3.1.3)

so that the gradient of Jµ with respect to x is

∇xJµ(x) = −div Ψ where Ψi =

{
(∇x)i
|(∇x)i| if |(∇x)i| ≥ µ
(∇x)i
µ otherwise

(3.1.4)

Smoothing the TV yields a differentiable objective function which is “almost quadratic”,
enabling to use a fast gradient method (conjugate gradient/BFGS).

However, this method appears to be less reliable in presence of moderate to high noise.
Figures 3.1.1 and 3.1.2 illustrate the reconstruction performances on a phantom, where the
sinogram was corrupted with noise. Even without noise, the subsampling artefacts remain
on the reconstruction. Nevertheless, this method yields better results than non-regularized
methods (SIRT).

Figure 3.1.1: Reconstruction of the Brain phantom from 40 views, noiseless case.
(a): Approximated TV replacing the `1 norm with the Huber function, (b): Exact TV
using the C-P algorithm
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Figure 3.1.2: Reconstruction of the Brain phantom from 40 views, noisy case.
(a): Approximated TV replacing the `1 norm with the Huber function, (b): Exact TV
using the C-P algorithm

On the other hand, the traditionally used method for solving (3.1.1) is the Split-
Bregman algorithm (ADMM). Using this method requires to compute the prox of 1

2 ‖Px− d‖
2
2

at each iteration. Unfortunately, this computation entails an iterative process, as the op-
erator (I + γP TP ) is not easily inverted (see Proposition 2.6.3). This means that the
ADMM method is implemented as two nested loops: the outer loop for solving Problem
(3.1.1), the inner loop for computing the prox of the quadratic data fidelity term. The
computation of prox(g) might be simple for g = ‖·‖1, provided that the alternative version
of ADMM (2.7.15) is used with the constraint “∇x1 = x2”.

An alternative could be to change the optimization algorithm. As the data fidelity term
is quadratic, an appealing algorithm for solving Problem (3.1.1) is the proximal gradient
method (FISTA). This algorithm needs the computation of ∇f and prox(g). However,
this time, the computation of prox(g) is not simple for the 2D/3D total variation. The
usual way to compute the prox of TV is the Chambolle’s algorithm [Cha04a], which is
iterative.

In both cases of ADMM and FISTA, at least one outer loop is needed to compute a
proximal. To implement an algorithm where iteration only require “matrix-vector multi-
plications” (i.e evaluation of linear operators), the C-P algorithm was considered.

3.1.2 TV reconstruction with the Chambolle-Pock algorithm

The first step is to cast the problem into a generic saddle-point problem:

min
x

max
y
{〈Kx , y〉+ F (x)−G∗(y)} (3.1.5)

as in Problem (2.7.17), where K is a linear operator. This is done by dualizing the data
fidelity term, as the squared `2 norm is its own conjugate :(

1

2
‖Px− d‖22

)∗
= max

q

{
〈Px− d , q〉 − 1

2
‖q‖22

}
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where q is the dual variable of Px. The same dualization can be done for the total
variation term, using another dual variable z:

λ ‖∇x‖1 = max
‖z‖∞≤1

{〈∇x , λz〉}

= max
‖z‖∞≤λ

{〈∇x , z〉}

= max
z

{
〈∇x , λz〉 − iBλ∞(z)

}
= max

z

{
〈x , −div z〉 − iBλ∞(z)

}
where iBλ∞ is the indicator function of the `∞ ball of radius λ. The primal-dual problem

is then

min
x

max
z,q

{
〈Px− d , q〉 − 1

2
‖q‖22 + 〈x , −div z〉 − iBλ∞(z)

}
= min

x
max
z,q

{〈
x , −div z + P Tq

〉
− 〈d , q〉 − iBλ∞(z)− 1

2
‖q‖22

}
which is easily identifiable with (3.1.5) with

G∗(z, q) = iBλ∞(z) +
1

2
‖q‖22 + 〈d , q〉

F (x) = 0

K∗ =
(
−div , P T

)
⇔ K =

(
∇
P

) (3.1.6)

In this approach, the term F is null ; and the operator K is made of two operators ∇ and
P . We then have

proxσG∗ (z, q) =

(
PBλ∞(z) ,

q − σd
1 + σ

)
proxτF (x) = x

(3.1.7)

since G∗(z, q) is separable with respect to z and q [CP11]. The previous proximal oper-
ators in (3.1.7) and the operator K in (3.1.6) are the two only objects required to write
the Chambolle-Pock algorithm – here the dual variable y in (3.1.5) is made of two dual
variables z, q. The final algorithm for tomographic reconstruction with TV regularization
is given by Algorithm 3.1.1
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Algorithm 3.1.1 Chambolle-Pock algorithm

n : number of iterations
d: data (sinogram)
λ: regularization parameter
τ : step size in the primal domain (default: 1/L)
σ : step size in the dual domain (default: 1/L)
θ : relaxation parameter (default: 1)

1: procedure ChambollePock(n, τ , σ, θ)
2: for k ← 1 . . . n do
3: . Update dual variables (z, q): yk+1 = proxσG∗ (yk + σKx̃k)
4: zk+1 = PBλ∞(zk + σ∇x̃k)
5: qk+1 = (qk + σP x̃k − σd) /(1 + σ)
6: . Update primal variable x: xk+1 = proxτF

(
xk − τK∗yk+1

)
7: xk+1 = xk − τP Tqk+1 + τ div zk+1

8: . Relaxation step
9: x̃k+1 = xk+1 + θ(xk+1 − xk)

10: end for
11: return xn
12: end procedure

The Chambolle-Pock algorithm converges if στ ≤ 1
L2 where L is the norm of the

operator K. We have L2 = ‖K‖2 = λmax (div∇) + λmax

(
P TP

)
, where

∥∥P TP
∥∥ depends

on the geometry (like the number of projection angles). This is readily done with the
power method (see 6.2.1).

Interestingly, this problem reformulation with F (x) = 0 leaves room for constraints
on the primal variable x. Indeed, a constraint x ∈ Ω for some convex set Ω can be
encoded as F (x) = iΩ(x) in (3.1.5), resulting in proxτF (x) = PΩ(x). For example, the
positivity constraint “xi ≥ 0” can be added in Algorithm 3.1.1 with a single instruction
“xi = max(xi, 0)” (see Proposition 6.2.2), which is a minor and inexpensive modification.
Adding a positivity constraint is known to improve the reconstruction quality [OV14] while
improving the convergence rate.

3.1.3 Numerical experiments

The C-P method is now compared to the aforementioned competing methods (ADMM
and FISTA) for the tomography reconstruction problem with TV regularization (3.1.1).
More precisely, the algorithms used are the following: the unconstrained version of ADMM
(iteration 2.7.13), FISTA with the “Optimized Gradient Method” proposed in [KF16], and
a preconditioned version of C-P [PC11]. The comparison is performed according to three
criteria:

• The convergence rate, i.e how many iterations are required to solve the Problem
(3.1.1)

• The cost per iteration, which will also determine the total execution time

• The accuracy of the solution

The rationale of the last criterion is that algorithms involving the resolution of a subprob-
lem in each iteration may suffer from inaccuracies when the number of inner loops is too
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low. More precisely, when a proximal mapping has to be computed at each iteration with
an iterative algorithm, a sufficient number of (sub-)iterations should be chosen in order to
ensure the convergence to the “true” proximal at the current point. Returning an early
solution might accumulate errors, which can yield an inaccurate solution at the end of
the algorithm run. In theory, ADMM is rather error-tolerant in the sense that the errors
on the proximal computation should be summable with an infinite number of iterations
(see for example the Eckstein-Bertsekas theorem recalled in [ABF10]), but this condition
is rather difficult to check in practice.

The number of iterations to reach convergence is measured in terms of value of the
objective function 1

2 ‖Px− d‖
2
2 + λ ‖∇x‖1. The faster this value decays, the higher is

the convergence rate. As in [CP11], the “accuracy” of the solution is measured in terms
of Mean Squared Error (MSE) between the result x̂ of one algorithm and a reference x]

obtained by running an algorithm for a very long time. As x] is a ground truth solution
of Problem (3.1.1), any algorithm should converge to x], thus, the MSE makes sense in
this application.

The experiments were performed on a machine with a Intel Xeon E5-2643 v3 CPU
(12 cores, 3.40GHz), and a Nvidia GeForce Titan X (Maxwell generation). The involved
image is a 256× 256 brain phantom proposed in [Gue+12]; the dimensions being small to
make the tests faster. The fast GPU implementation of the ASTRA toolbox [Aar+16] is
used for the projection and backprojection operators. Except for these operators, all the
code targets CPU for a faster prototyping. This numerical experiment is available as a
Jupyter notebook at [Pal17].

For each algorithm, the number of iterations was chosen so that a higher number
of iterations would not bring significant change in the reconstruction MSE. Figure 3.1.3
shows a logarithmic plot of the (normalized) objective function for the different algorithms.
Figure 3.1.4 shows the reconstruction result for these algorithms, along with the ground-
truth solution of Problem (3.1.1). Table 3.1 shows the metrics for the three criteria
discussed above.
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Figure 3.1.3: Comparison of the convergence rate between different optimization algo-
rithms. For each algorithm, E denotes the objective function 1

2 ‖Px− d‖
2
2 + λ ‖∇x‖1,

and EN is its value at the last iteration. The ADMM curve is cut early, as it is the first
to reach the best precision; in this case the quantity log10( E−E0

EN−E0
) is ill-defined.

When needed, the proximal of f(x) is computed with 40 iterations of the conjugate
gradient method, and the proximal of g(x) is computed with 40 iterations of Chambolle’s
dual algorithm [Cha04b]. This number of iterations ensures a convergence to the proximal.)
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(a) (b)

(c) (d)

Figure 3.1.4: Results of the different optimization algorithms. (a) ADMM after 100
iterations. (b) FISTA after 250 iterations (c) C-P after 500 iterations. (d) Ground-truth
solution, computed with C-P with 2000 iterations.

Iterations MSE Total time

ADMM 100 8.9e1 21.4s

FISTA 250 1.1e2 23.6s

C-P 500 9.29e0 4.4s

Table 3.1: Results for the three criteria involved in the comparison of the optimization
algorithms. For each algorithm, the number of iterations N was chosen such that running
with more than N iterations does not significantly improves the reconstruction MSE.

From these simulations, we can draw the following conclusions:

• Regarding the convergence rate, ADMM is better than FISTA, which is better than
Chambolle-Pock.

• Regarding the cost per iteration: ADMM has the higher cost, followed by FISTA,
then by Chambolle-Pock.
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• It is important to have an accurate proximal computation for ADMM and FISTA.
Not using enough iterations in the inner loops leads to a reconstruction without the
“compressed sensing” benefit (i.e the reconstruction bears subsampling artefacts).

• As commonly observed, ADMM provides an extremely fast convergence in the be-
ginning of the optimization process, then is slower to reach an accurate solution. For
imaging applications, it can make sense to use a few iterations if only an approximate
solution is needed. However, in the context of limited data (scarce views, low SNR),
many iterations are needed to remove the noise and the subsampling artefacts.

The first two points are easy to justify. Computing the prox of f in ADMM is equivalent
to inverting the (regularized) Hessian at each iteration, yielding a second-order method
with a faster convergence than first-order methods 1 . FISTA uses the fact that f is
differentiable for the computation of the “gradient step”. Chambolle-Pock does not use
any assumption, except that P is a positive operator for using its preconditioned ver-
sion. Computing a prox at each iteration is costly, except for C-P where the problem is
reformulated to only involve matrix-vector multiplications at each iteration.

The cost per iteration is dominated by the number of calls to P and P T at each itera-
tion, these correspond to the most computationally expansive operator to apply. Letting
Nf and Ng denote the number of inner iterations to compute prox(f) and prox(g) respec-
tively, the number of calls to P or P T is 2Nf + 2Ng for ADMM, 2 + 2Ng for FISTA and
2 for C-P.

The third and fourth points can be illustrated with Figure 3.1.5, which shows the
reconstruction result with ADMM after 500 iterations instead of 100.

(a) (b)

Figure 3.1.5: Reconstruction results with 500 iterations of ADMM, where different num-
ber of inner iterations Nf and Ng were used to compute prox(f) and prox(g), respectively.
(a) Nf = 10, Ng = 20 (MSE = 1.78e2, total time = 44.7 s). (b) Nf = Ng = 40 (MSE =
1.92e0, total time = 125 s).

As a conclusion, considering the trade-off between convergence rate, accuracy and
time-per-iteration, it seems that C-P is the better algorithm to use in this case. This
conclusion would certainly be different in other settings. For example, in deblurring or

1 a similar benchmark with the same conclusion can be found in [RF12]
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inpainting applications, the prox of f can be computed in one step. With orthogonal
Wavelet regularization, the prox of g is also very simple to compute. An additional
advantage of C-P over FISTA and ADMM is that it is not required to tune the number
of sub-iterations, which is a notable usability benefit.

3.1.4 Improving the convergence rate with iterative FBP

The previous section showed that C-P seems to be an interesting optimization algorithm
for TV reconstruction. The primal-dual splitting scheme avoids to solve a subproblem at
each iteration, resulting in a much lesser cost per iteration. However, the convergence rate
is slower compared to FISTA or ADMM. The question is: can we have the “best of the
two worlds”, i.e modify the C-P algorithm in order to speed-up convergence ?

In section 1.4.3, it was stated that in the continuous (parallel) setting, the Radon trans-
form R satisfies R∗R = Λ−1 (Equation 1.4.7). It immediately follows that (R∗R)−1 = Λ,
where Λ is the Calderón’s operator consisting in multiplying with the frequency magnitude
in the (2D) Fourier domain.

Now recall that for minimizing a smooth function f , a simple gradient descent step
(section 2.7.1) is given by xk+1 = xk − γk∇f(xk), where γk > 0 is the descent step at
iteration k. The Newton’s method, on the other hand, has the following iteration:

xk+1 = xk −
(
∇2f(xk)

)−1
(∇f(xk)) (3.1.8)

i.e the Newton’s method is a gradient descent with a “matrix step size” equal to the inverse
of the Hessian of f at xk. Computing the Hessian is cumbersome in general. However, if
the objective function is quadratic, f(x) = 1

2 ‖Px− d‖
2
2, then the Hessian of f is constant

and given by P TP . Computing the previous descent step then amounts to inverting P TP ,
which is only possible with an iterative process in general.

The idea of iterative FBP is to replace P TP by its continuous approximation R∗R, so
that (P TP )−1 ' Λ. This approximation only works for parallel geometry. The Newton
iteration (3.1.8) becomes

xk+1 = xk − ΛP T (Pxk − d) (3.1.9)

for a quadratic f . The operator ΛP T is exactly the FBP, thus, iteration (3.1.9) is an iter-
ative FBP. In practice, ΛP T = Λ2P

T is implemented as a filter-then-backproject approach
with P TΛ1 (see subsection 1.4.3). As commonly observed, using the filtered backprojec-
tion instead of the plain backprojection in an iterative algorithm dramatically improves
the convergence rate [LT94]. The previous derivation gives an insight: the plain gradient
descent becomes a fast Newton method [Cli+93]. Using much fewer iterations, with al-
most the same cost (the filtering process is efficiently performed with FFT) is a valuable
gain for an iterative reconstruction.

From another point of view, the operator Λ in iteration (3.1.9) can also be seen as a
preconditioner. Indeed, as seen in the first chapter, the forward projector fills more points
in the low frequencies of the Fourier space. The operator Λ counter-balances this unequal
density tiling of the Fourier space by weighting the frequencies.

3.1.5 On the matching of the projection and backprojection operators

In practice, implementations of the projector and backprojector are usually such that
these operators are not matched2 . Formally, if P and B denote the (implementation of)

2 two linear operators A and B are said to be matched if for all x,y belonging to the appropriate
vector spaces, 〈A(x) , y〉 = 〈x , B(y)〉. In finite dimension, it means that B is the transpose (or hermitian
adjoint) of A.
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forward projection and backprojection operators respectively, then B 6= P T in general.
This contrasts with the design of optimization algorithms where one naively assumes that
the backprojection is the adjoint of P . The mispatch between B and P is mostly due
to performance reasons, as implementing the exact match of P might be computationally
costly. For example, the forward projector used in PyHST uses the Joseph slice interpo-
lation scheme [Jos82], so using the exact same interpolation weights in the backprojection
as in the projection is cumbersome. In general, GPU implementations use a ray-driven
approach for the forward projector and a voxel-driven approach for the backprojector
[XM06], as it is preferable to have a SIMD-friendly write access pattern.

The work [ZG00] shows that for the Landweber iteration, the sign of the smallest
eigenvalue3 of BP determines the long-term convergence (a negative smallest eigenvalue
causes divergence issues). The authors advise to use fast but unmatched (P ,B) and reg-
ularization to stabilize the process. In [MM16], it is emphasized that using an unmatched
projector-backprojector pair causes convergence issues in the long run, regardless of the
objective function (regularized or not). It is observed, however, that using a ray-driven
projector with a voxel-driven backprojector (which is the case in PyHST) does not make
the process diverge, although the optimization algorithm might not converge to the “true”
solution. The latter conclusion was also noticed from our side, although we found that
geometry is far more critical for convergence: for example, an incorrect rotation center
(even slightly) or mismatched 0 degrees and 180 degrees projections4 .

3.1.6 GPU implementation

The previous numerical experiment motivated the efficient implementation of the C-P TV
solver on GPU. These devices are specialized in executing many simple tasks in parallel.
The last three highlighted words have a precise meaning:

• Many tasks usually means processing big data volumes.

• Simple tasks means that few branching (loops, conditional jumps) instructions should
be performed. Central Processing Unit cores are typically designed for tasks in-
volving complex branching, while GPU cores are designed for a regular instruction
pipeline.

• Parallelism comes with several different degrees. Each GPU core can process its
data independently of the other, or collaborate with other cores.

The architecture and programming model of GPU is out of the scope of this manuscript.
A noteworthy introduction to the basic and advanced subjects of GPU programming in
the context of scientific computing can be found in [Not17]. The PyHST2 software uses
the CUDA framework [Nvi15].

As stated in the derivation of this algorithm, the main ingredient are the operators
P , ∇ and their adjoints. The PyHST2 software already provides an efficient GPU im-
plementation of P and P T . The other main ingredients are the proximal maps of F
and G∗ defined in 3.1.7. Lastly, the “vector-vector operations” (addition, subtraction,
multiplication with a scalar, norm computation) are handled with the CUBLAS library
[NVi17].

3in terms of magnitude
4 “usual” scans span an angular range of [0, 180[ degrees where 180 degrees is not reached ; but some

scans might include it
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Interestingly, the choice of the total variation (isotropic or anisotropic, see Definition
7) can be made by simply modifying the proximal of G∗. Here, the dual variable z is
projected onto the `∞ ball, which corresponds to the anisotropic TV (which involves a `1
norm). Choosing the isotropic TV amounts to projecting z onto the `2 ball.

Table 3.2 shows the comparison between the GPU implementations of FISTA and C-
P, where the test have been performed on the aforementioned machine. The number of
iterations and the regularization parameter λ were chosen to obtain a visually appealing
reconstruction without subsampling artefacts. For most configurations, a given algorithm
is run with two different number of iterations in order to measure how it is close to
convergence. For example, in the case of 512× 512-40 projections, increasing the number
of iterations does not bring significant improvements for C-P while it does for FISTA.

The MSE metric was chosen to assess the reconstruction quality. The reason is that
this metric is more sensitive to the undersampling artefacts (“star” structure in the whole
image) than small local noise, and thus will measure how the reconstruction is close to
the ground truth with the undersampling. Therefore, we believe that MSE is a reasonable
choice in this setting.

From these results, it appears that C-P is at least several times faster than FISTA
for the TV reconstruction problem. It can be noted that the convergence rate of C-P
is comparable with FISTA when using the iterative FBP described in 3.1.4 – in some
settings, the former even has a better convergence rate. For example, on the 2048× 2048
setting, 50 iterations of C-P yield a MSE of 4.91 in 0.97 second, while it requires 100
iterations if FISTA to yield a MSE of 10.3 in 6.00 seconds. Interestingly, the MSE results
are better for large images with fewer iterations. An explanation could be that for this
test image, there is fewer information in the high frequencies for the large versions (as
the phantom is piecewise-constant). Thus, for a given image width/number of projections
ratio, the accurate recovery of the large versions only involves a small fraction of the
spectrum contrarily to the recovery of small versions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1.6: TV reconstruction results with 50 iterations of FISTA (a,c,d) and
Chambolle-Pock (b,d,f) on a 4096 × 4096 brain phantom with 320 views. (a,b): recon-
structed slice. (c, d): zoom in the upper right quadrant with an indication of a line profile
(yellow). (e, f): line profile in the reconstruction.

3.1.7 Reconstruction results

In this subsection, the TV reconstruction capabilities is assessed on real datasets.
The first dataset (Figures 3.1.7 ) is a real imaging phantom scanned with the Edge

Illumination method at the phase contrast imaging group of the University College London
(UCL). The 2000× 2000 slices are to be reconstructed from 720 projection angles. Here,
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Slice width Views Method Iterations Total time (s) MSE

512 40

CP 200 0.54 4.81e+01
FISTA 200 2.07 6.00e+01

CP 400 0.74 4.11e+01
FISTA 400 3.55 2.56e+01

1024 80

CP 100 0.58 9.76e+00
FISTA 100 2.05 2.36e+01

CP 200 0.90 3.93e+00
FISTA 200 3.74 2.25e+00

2048 160

CP 50 0.97 4.91e+00
FISTA 50 3.60 2.55e+01

CP 100 1.57 9.51e-01
FISTA 100 6.00 1.03e+01

4096 320

CP 50 5.04 1.04e+00
FISTA 50 13.2 1.59e+01

CP 100 8.9 6.88e-02
FISTA 100 24.9 8.83e+00
FISTA 150 32.3 2.77e+00

Table 3.2: Benchmark of TV reconstruction for FISTA and C-P algorithms with different
slice sizes and number of projections.

only the absorption data is used, so the projections SNR is low (Edge Illumination is
normally a phase contrast method). Choosing a FBP filter dampening the high frequencies
somewhat improves the result, but the image is still very noisy. The SIRT algorithm
partly removes the noise and enhances the contrast, but even with a small number of
iterations, the slice is still noisy. The TV reconstruction manages to remove the noise
and to yield a better contrast than the SIRT reconstruction. The sharp edges can also be
easily distinguished.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1.7: Reconstructed slice of a real imaging phantom (projection data courtesy:
Charlotte Hagen, UCL). (a, b): reconstruction with FBP using the Ram-Lak and Ham-
ming filters, respectively. (c, d): respective line profiles of the reconstructions in (a, b).
(e, f): reconstruction with SIRT (100 iterations) and TV-C-P (150 iterations, λ = 0.1,
positivity constraint), respectively. (g, h): respective line profiles of the reconstructions
in (e, f).



84
CHAPTER 3. EFFICIENT IMPLEMENTATION OF REGULARIZED

RECONSTRUCTION METHODS

The second dataset (Figure 3.1.8) is a scan of a snow core (ESRF ID11). The slices
are 700× 700 pixels and are to be reconstructed from 120 projections.

(a) (b)

(c) (d)

Figure 3.1.8: Reconstructed slice of a snow core scan acquired at the ESRF ID11 beamline.
(a, b): reconstructions with FBP and TV-C-P, respectively.
(c, d): profiles corresponding to the yellow lines on (a, b) for FBP and TV-C-P (300
iterations, λ = 0.12), respectively. As it can be noted, a positivity constraint was enforced.

3.2 Wavelet regularized reconstruction

The motivation of using wavelets in regularized tomographic reconstruction comes from the
TV and dictionary-based reconstruction. On the one hand, TV performs well for piecewise-
constant images, which corresponds to relatively simple samples. On the other hand,
dictionary-base reconstruction yields prominent reconstruction capabilities [Mir+14], but
a dictionary has to be learnt on a good-quality reconstruction beforehand. Besides the
computational burden of this method (slow convergence due to the synthesis prior, and
expensive forward/adjoint operators), a good quality reconstruction is not always avail-
able. A trade-off in terms of both reconstruction speed and quality can be achieved with
wavelets, as most natural images are compressible in a wavelets domain, so there is no
need to learn a dictionary.
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In this second section, we present the use of wavelets as a sparsifying transform for
regularized tomographic reconstruction. Although the discrete wavelet transform is re-
portedly used in some projects and research works (see for example [Rit+14], [Gua+16]),
a work covering both the principles and implementation was lacking. As it turns out
when using wavelets, implementation details – like translation invariance or thresholding
functions – are crucial to get acceptable results.

The main contribution of this part is the development of an open-source, plug and play
library for GPU DWT handling many transform types and their inverses for arbitrary
signals (1D) and images (2D) shapes. We also review why wavelets are an interesting
regularizer and what wavelet type is likely to be the best in the framework of CS; and
address related optimization and reconstruction issues.

3.2.1 Theoretical performances of wavelets in the CS framework

As stated in subsection 2.4.5, the basic ingredients of compressive sensing are incoherence
(between the acquisition and representation operators) and compressibility of the latent
signal in the representation basis. This subsection is a numerical experiment aiming at
measuring these two concepts in the tomography context.

The compressibility was defined in 2.4.5 (Definition 5). In the CS framework, a signal
x is compressible in a basis DT (for some “sparsifying transform” D) if there exists R > 0
such thatDx belongs to the weak `p ball of radius R for some 0 < p < +∞. In other words,
the sorted coefficients (Dx)k of x in the basis (or frame) DT , decay as Rk−1/p, a power
law. The compressibility in the sense of Definition 5 can be easily computed: for sorted
coefficients c, the radius R of the weak `p ball can be chosen as R = |c1| = maxk {|ck|},

and p can be computed as p = max
k>1

{
log k

log |c1| − log |ck|

}
. Unfortunately, this may yield

high values of p if the first largest coefficients have a similar value.
Another measure of compressibility was proposed in [Gua+16] in the context of Elec-

tron tomography. The compressibility ratio with threshold ρ > 0 of a coefficients vector c
is defined as

compressibilityρ(c) =
1

n2
·# {i , |ci| > ρ · cmax} (3.2.1)

where n2 is the number of components of c, and # denotes the cardinality of a set.
The compressibility ratio measures the proportion of components larger than ρ times the
maximum value (in terms of magnitude). If an image is compressible (in some frame), its
coefficients will have a small compressibility ratio. The underlying idea is the same as for
Definition 5: a compressible signal is characterized by a coefficient vector having a few
large values, and many small values 5 . The work [Gua+16] reports a positive correlation
between the reconstruction error and this definition of compressibility, which will be used
from now.

The first numerical experiment available in Jupyter notebook [Pal17] measures the
compressibility ratio in various representations. In Figures 3.2.1, 3.2.2 and 3.2.3, the
names “Haar”, “Coif1” and “Db5” denote Wavelet filter banks names characterizing the
DWT. The gradient representation simply consists in taking the spatial gradient of an
image, as done in the Total Variation approach.

5 it can be noted that the basis function should be scaled to have the same norm (energy), which is
the case for the considered representations
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(a)
(b)

Figure 3.2.1: Compressibility of the Shepp-Logan phantom in various representations. (a)
Shepp-Logan phantom. (b) Compressibility ratio as a function of the threshold. Given a
threshold, a small compressibility ratio indicates a compressible image.

(a) (b)

Figure 3.2.2: Compressibility of the brain phantom in various representations. (a) Brain
phantom. (b) Compressibility ratio as a function of the threshold. Given a threshold, a
small compressibility ratio indicates a compressible image.
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(a)
(b)

Figure 3.2.3: Compressibility of a head CT slice image in various representations. (a)
Head CT slice scanned at ESRF ID17. (b) Compressibility ratio as a function of the
threshold. Given a threshold, a small compressibility ratio indicates a compressible image.
The gradient representation was omitted as it yields too large values to be represented
together with the other representations.

The spatial gradient representation shows good compressibility results for the Shepp-
Logan phantom (Figure 3.2.1), which was expected due to the piecewise-constant nature of
this image. On a more elaborate model like the brain phantom (Figure 3.2.2), the gradient
does not perform so well. The wavelets representations, on the other hand, show interesting
compressibility properties, and also for the image of a real reconstruction (Figure 3.2.3).
The Haar wavelets transform can be seen as a multi-resolution gradient, including the
“approximation coefficient” (which is not a gradient but an “average image”).

The Wavelets decompositions thus offer a compressibility which is more interesting
than the spatial gradient representation, as compressibility holds not only for piecewise-
constant images. This first experiment shows that the Haar Wavelets offer the most
interesting compressibility for the tested images. The DWT is often referred as a sparsify-
ing transform for natural images. The concept of natural image6 can be loosely defined as
follows: given a gray value at pixel coordinates (i, j), vi,j , the gray values of neighbouring
pixels (i± ε, j± ε) are correlated with vi,j . In words, in an image of a given scene, a bright
pixel value at one location is likely to have bright pixel values in its neighbourhood. This
is in contrast with random signals, where neighbouring samples are uncorrelated. Random
images do not have any structure that can be interpreted; thus, in imaging applications,
these are non-natural images.

The Wavelet transform exploits this correlation between adjacent samples. The more
a signal is correlated (“natural”), the more its samples can be predicted from few samples
7 and the more it can be encoded efficiently by a Wavelet transform – or, in the gen-
eral context of information theory, by some encoder. The DWT is therefore adapted to
piecewise-smooth signals, although sharp edges can be preserved by choosing the wavelet.

6the concept is straightforwardly extended to other dimensions
7this interpretation of the DWT, based on series of “predict-update” is at the roots of the lifting

scheme, an efficient implementation of DWT
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The second numerical experiment available in [Pal17] measures the coherence between
the projector and the aforementioned representations. To make the computation of the
coherence easier, the operators were represented as dense matrices, which limited the size
of the input/output spaces to 256 × 256 images. However, the coherence seems to follow
a trend with respect to the representations. Results are reported in Table 3.3.

32 64 128 256

I 10.1 (31.6%) 14.8 (23.2%) 21.3 (16.6%) 30.3 (11.8%)

Haar 10.9 (34.2%) 16.1 (25.2%) 25.6 (20.0%) 39.3 (15.4%)

Coif1 13.5 (42.3%) 22.0 (34.4%) 34.4 (26.9%) 50.3 (19.7%)

Db2 12.6 (39.2%) 20.4 (31.8%) 30.2 (23.6%) 44.7 (17.5%)

Grad 6.6 (20.5%) 9.6 (15.0%) 13.9 (10.8%) X

Table 3.3: Coherence between the projection operator P and a representation, for various
sizes of P . Horizontally, the coherence is computed as a function of the number of pixels
in the image width (32 × 32, 64 × 64, ...). The coherence of operators acting on N ×
N images has a maximum value of

√
N ·N = N ; thus, the coherence percentage with

respect to this maximum value is also indicated. It was found that the coherence does not
depend on the number of projections. Computing the coherence for sizes above 256 would
entail to implement all the involved operators with a sparse representation, which was not
undertaken. The “X” symbol on the last entry indicates that the computation failed due
to an insufficient amount of memory.

From Table 3.3, it appears that the gradient has the best incoherence with the projec-
tion operator. This observation is compatible with the early success of TV in tomographic
reconstruction. The identity I (“spikes basis”) shows the second best incoherence; how-
ever, most images are not sparse in the natural representation (identity basis). The Haar
wavelet transform comes third in terms of incoherence. The fact that the Haar wavelets
has the best incoherence among all wavelets is not surprising, as it is relatively close to
the Gradient representation8.

The conclusion of these two numerical experiments is that the Haar Wavelet decomposi-
tion in the theoretical framework of CS, as it offers the best trade-off between compressibil-
ity and incoherence with the tomography projector. This motivates the high-performance
implementation of the DWT for being integrated in tomography reconstruction projects.

3.2.2 The Discrete Wavelet Transform

In this subsection, we recall how the computation of the discrete wavelet transform is per-
formed – the reader familiar with DWT might skip it. Let S be a signal, one dimensional
(time-dependent) for clarity. In practice, the signal is represented by discrete samples
(S1, . . . , SN ), hereafter denoted S(n). One stage of the Discrete Wavelet Transform maps
the signal S(n) to two signals Sa(k) and Sd(k): the approximation coefficients and the
detail coefficients, respectively.

To obtain the approximation coefficients, the input signal S(n) is convolved with a
low-pass filter g(n). Conversely, the detail coefficients are computed with a convolution
with a high-pass filter h(n). These filters are related to the scaling and wavelet function

8 the Haar representation can be seen as a multi-scale gradient representation, with an extra gradient
direction (diagonal)
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through the two-scale relations [She96]. A multi-resolution analysis can be carried out by
repeating the process on the approximation coefficients Sa(k), as depicted on Figure 3.2.4.

Figure 3.2.4: Discrete Wavelet transform of a signal based on a filter bank. h is the
high-pass filter and g is the low-pass filter. The operation ↓ 2 denotes the subsampling
by a factor of two. Ak and Dk are the vectors of approximation and detail coefficients at
scale k, respectively.

This approach for computing the discrete wavelet transform uses a filter bank, and
is sometimes called two-channel subband coder. The reconstruction process, i.e comput-
ing the signal x(n) from its approximation and detail coefficients at various scales, fol-
lows the same principle by replacing the convolution-subsampling steps with upsampling-
convolution steps, where the filters g(n) and h(n) are replaced with reconstruction filters
g̃(n) and h̃(n).

Comparing with the definition of CWT, it can be shown [Dau+92] that DWT boils
down to computing CWT choosing dilation steps a = 2ja0 and time shifts τ = k2jτ0 for
j, k ∈ N. The DWT then follows a dyadic sampling of the frequency axis, as the scales
are a power of two. Since the analysis frequency is halved at each scale, it is unnecessary
to keep all the signal samples, hence the decimation steps (↓ 2) in the DWT process. The
standard DWT is said to be dyadic (or critically sampled): at each level, the number of
coefficients is halved by subsampling the convolution results. For example given a signal
of length N decomposed with three scales, the detail coefficients have length N/2, N/4
and N/8 at scales 1, 2, 3, respectively.

Another crucial property of the DWT is perfect reconstruction, i.e the ability to re-
construct the signal up to numerical error from the coefficients. These two properties,
combined with the fact that only linear operations – convolution and subsampling – are
involved, make the DWT a linear and invertible transform.

Applying the filter-based process (Figure 3.2.4) to two dimensional images outputs
yields four coefficients vectors: the approximation coefficients, and the detail coefficients
corresponding to three orientations: horizontal, vertical, and diagonal. These coefficients
are hereby denoted (A,H,V ,D). The number of coefficients per dimension is halved,
meaning that each of the coefficient vectors (A,H,V ,D) at level one has four times less
values than the input image. In the second level, the filter bank is applied on A, and
each vector of the output (A2,H2,V 2,D2) has four times less values than A, and so on.
Figure 3.2.5 illustrates the computation of one step of the 2D DWT.
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(a) (b)

Figure 3.2.5: 2D separable Discrete Wavelet Transform. For clarity, the subsampling
steps ↓ 2 have been omitted. (a) LL, LH, HL and HH are the filters computing the
approximation coefficients (A) and the horizontal (H), vertical (V), diagonal (D) detail
coefficients respectively. (b) When the filters are separable, convolutions can be advanta-
geously computed by first performing one dimensional convolutions on each line, then one
dimensional vertical convolutions on each column. Formally, for separable convolution, we
have LL = ggT , LH = ghT , HL = hgT and HH = hhT .

From this filter bank implementation of DWT, it is clear that convolution is the key
operation of DWT. The convolution of a two dimensional image I(x, y) with a kernel
K(x, y) is defined by equation (3.2.2), where the summations actually take place on the
support of I(x, y) with boundary conditions.

(I ∗K) (x, y) =

∞∑
u=−∞

∞∑
v=−∞

I(u, v)K(x− u, y − v) (3.2.2)

The DWT, despite its attractive properties, lacks of translation invariance in the sense
that the wavelet coefficients of a translated signal x(t − τ) will not be the translated
coefficients of x(t). This lack of translation invariance can lead to artifacts when the
wavelet coefficients are modified. Translation invariance can be achieved by averaging the
results of DWT with all possible shifts (much less in practice), or by computing a stationary
wavelet transform (SWT) [CD95]. The SWT is computed by increasing the “distance
between the samples” at each level when convolving: this is done by both removing the
downsampling after the convolution, and inserting zeros between filter coefficients. For this
reason, this method is called the a-trous algorithm [She92]. This transform is redundant:
the total number of output coefficients is higher than the number of input samples. It
involves more computations and a larger memory consumption, but achieves exact shift
invariance.

3.2.3 Implementation of the Discrete Wavelet Transform

The interesting theoretical properties of the Wavelet Transform motivated a high perfor-
mance GPU implementation. In order to re-use this implementation for other regularized
inverse problems (not only tomography), this project was implemented as a library called
PDWT (Parallel Discrete Wavelet Transform). At the time (2016), to the best of our
knowledge, no GPU implementation of the DWT provided the following wanted features:

• Source code freely and publicly available, with a permissive license
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• Easy to integrate in an existing project

• DWT decomposition and reconstruction, with arbitrary image shapes (not only pow-
ers of two)

• Availability of different filter banks, not only the Haar transform

• Translation invariance, either by cycle spinning (see 3.2.5) or stationary wavelet
transform

The implementation of PDWT targets modern Nvidia GPUs and uses the CUDA
programming language. The library is primarily designed to handle two dimensional (2D)
transforms, although it can handle one dimensional transforms as well.

In the following, the parallel stencil access pattern necessary for convolution is de-
scribed. Then, the GPU implementation of different transforms is detailed with the CUDA
terminology. The description of CUDA execution model is out of the scope of this paper;
the reader can refer to [Nvi15] for example.

Parallel convolution and stencil pattern

The key operation of DWT, as described in 3.2.2, is convolution. The standard filter
kernels involved in most Wavelet Transforms have a relatively small support (less than
per 40 samples per dimension), therefore, convolution is more efficiently implemented in
the direct domain (i.e without Fast Fourier Transform). The parallel implementation of
the convolution follows a stencil memory access pattern: each output sample at location
(x, y) is a weighted sum on a square neighborhood centered on (x, y), the weights being
the coefficients of the kernel K.

Figure 3.2.6: Convolution stencil pattern. The blue (top-left) square is a subset of the
input image, the green (bottom-left) square is the (mirrored) 3×3 convolution kernel, and
the white (right) square is the corresponding subset of the output image. Each output
sample is the sum of the element-wise multiplications of the mirrored kernel and the

corresponding subset of the image. On this example, we have R2,2 =
3∑
j=1

3∑
i=1

Ki,jIi,j .

This memory access pattern is especially interesting, especially in one dimension, for
it enables coalesced memory access. A memory access is said to be coalesced if adjacent
work items (cuda threads in this implementation) access to contiguous memory locations.
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On GPUs, memory transactions are done by group of work items (warps in CUDA ter-
minology): each memory read/write entails to actually process T bytes, where T = 128
for modern Nvidia GPUs. Thus, aligning the memory access is essential for performances.
For example, accessing 32 values of a float32 image line can be done in one memory
transaction, while accessing 32 values of an image column requires 32 memory transac-
tions. The reason is that GPU languages (CUDA, OpenCL) are a row-major: the image
values are stored row-wise. Thus, successive elements in a row are contiguous in memory,
while successive elements in a column are not.

The convolution can be computed as a separable convolution if the convolution kernel
is separable. In two dimensions, the kernel K is separable if it is the outer product of two
one dimensional kernels Kx and Ky. The convolution is then computed by performing a
one dimensional convolution on all the lines, then a one dimensional convolution on all the
columns. Separable convolution has a notable computational advantage over nonseparable
convolution. If the image size is n2 and the kernel size is k2, nonseparable convolution
requires n2 × k2 operations while separable convolution requires 2× n2 × k operations.

In separable convolution, the stencil pattern is one dimensional. Memory access are
coalesced for horizontal convolution, and one might think that the access are not coalesced
for vertical convolution. However, for Nvidia cards from the Fermi generation, benchmarks
show that horizontal convolution and vertical convolution take the same amount of time.
We believe that the reason is that “smarter” caching mechanism, friendly with SIMD lines
in whatever direction, occur from this generation. This hypothesis is substantiated by the
fact that kernels involving both horizontal and vertical access patterns (at the same time)
have a much slower execution time. Thus, parallel separable convolution has a major
computational advantage over parallel nonseparable convolution.

Overall execution model

The functions compiled and executed on the GPU device are called kernels (CUDA ker-
nel in this implementation), which are not to be confused with the convolution kernels
like g(n), h(n). Ensuring good performances entails to carefully analyze two main possi-
ble bottlenecks: input/output (IO) and computations. A program is said IO-limited or
compute-limited when the bottleneck is the IO throughput or the computational power,
respectively.

The IO limitations are alleviated by using coalesced memory accesses when possible,
and by storing the convolution kernels coefficients in a cached memory called constant
memory. Besides, all devices buffers, where the image and coefficients are stored, are
pre-allocated in a structure. All the device operations like forward transform, inverse
transform and thresholding are performed on the buffers of this structure, so that memory
allocations and copies do not interfere with the actual computing.

The computations are optimized by a careful design of the kernels, which is the object
of the following sections.

Discrete Wavelet Transform

The separable forward discrete wavelet transform (DWT) is implemented following the
Mallat multiresolution algorithm [Mal89] with the following principle. The input image
has a size (Nc, Nr) where Nc and Nr are the number of columns and rows of the image,
respectively. After the first level of the transform, each coefficients image (A,H,V ,D)
has a size (Nc/2, Nr/2).
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In the first stage, horizontal convolution with the wavelet kernel is performed on all
the lines of the input image. This convolution is merged with the subsampling step, which
means that it does not consists in computing the convolution and then the subsampling the
result. Instead, the sample k of the output current line is computed from a neighborhood
centered on sample 2 × k in the input. Thus, an intermediary image has to be created
for the result of horizontal convolution and horizontal subsampling. Therefore, a grid of
(Nc/2, Nr) threads is launched; each thread computes the value of a pixel (for the four
images A,H,V ,D).

In the second stage, the intermediary image of size (Nc/2, Nr) is taken as an input
for the vertical convolution and vertical subsampling. A grid of (Nc/2, Nr/2) threads is
launched, each thread computing the value of one sample of each four image coefficients
A,H,V ,D. This principle is illustrated on Figure 3.2.7.

Figure 3.2.7: Illustration of the two-stage separable convolution-subsampling with a 6×6
image and a 3× 3 filter kernel. In the first stage (top), the output current line at index 1
(blue) is computed from the subset of 3 input samples (green), centered on index 1×2 = 2.
The result (right) has half the number of columns of the input. The same principles goes
for the second stage, replacing lines with columns.

The output of the first level of DWT consists in four coefficient images A,H,V ,D;
each having size (Nc/2, Nr/2). To compute a second level of the transform, the process
previously described is applied on approximation coefficients A.

Two temporary arrays need to be allocated for this separable transform. Indeed, the
DWT consists in convolving the image with four directional 2D filters (LL, LH, HL, HH).
In the separable case, these filters are generated from two 1D filters g(n) and h(n), as de-
scribed on Figure 3.2.5. The first stage is an horizontal convolution and subsampling with
filter g(n), which creates a temporary image of size (Nc/2, Nr); and an horizontal convolu-
tion and subsampling with filter h(n), which creates another such temporary image. These
two images are then vertically convolved-subsampled with filters g(n) and h(n) to create
the four possible combinations of operations, yielding the coefficients A,H, V,D. This
is detailed in Algorithm 3.2.1 where tmp1 and tmp2 are the aforementioned temporary
arrays, and pdwt pass1, pdwt pass2 are kernels computing the horizontal convolution-
subsampling and vertical convolution-subsampling, respectively.
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Algorithm 3.2.1 Forward separable DWT

I: input image
q: number of decomposition levels

1: procedure dwt(I, q) . First level
2: pdwt pass1(I, tmp1, tmp2) . Horizontal convolution and subsampling
3: pdwt pass2(tmp1, tmp2, A,H1, V1, D1) . Vertical convolution and subsampling
4: . Other levels
5: for k ← 2, q do
6: pdwt pass1(A, tmp1, tmp2) . Horizontal convolution and subsampling
7: pdwt pass2(tmp1, tmp2, A,Hk, Vk, Dk) . Vertical convolution and

subsampling
8: end for
9: end procedure

10: return (A, H1, V1, D1, . . ., Hq, Vq, Dq)

The two kernels implementing the two steps of the transform can be used for all the
wavelets, as the wavelets are fully determined by the filter coefficients g(n) and h(n).
The DWT with the Haar wavelet has a dedicated kernel which does not need to handle
boundary conditions, and is thus faster.

The extension of the principle depicted on Figure 3.2.7 for non-separable convolution is
straightforward. Instead of performing a two stages convolution-subsampling reducing the
number of lines and columns, all the steps are merged in a single pass. As highlighted in
section 3.2.3, this transform will not benefit from the line/columns cache mechanism, mak-
ing it slower. However, non-separable convolution has been implemented for extensibility,
as it enables to add non-separable user-defined wavelets.

Inverse Discrete Wavelet Transform

The (two dimensional) inverse wavelet transform maps a set of coefficient images
(A,H1,V 1,D1, . . . ,Hq,V q,Dq) back to an image. Under certain properties, the wavelet
transform satisfies the perfect reconstruction property : the reconstructed image is equal to
the image which gave the coefficients, up to numerical errors.

The inversion follows the same principle depicted on Figures 3.2.4 and 3.2.5, except
that the convolution-subsampling operation is replaced with an upsampling-convolution
operation. Let S(n) be a sampled signal (1D for simplicity), and A(n), D(n) be its ap-
proximation and detail coefficients resulting of one level of DWT. These coefficients were
formally obtained with

A = (S ∗ g) ↓ 2

D = (S ∗ h) ↓ 2
(3.2.3)

where g,h are the low-pass and high-pass filter kernels, respectively. Then, the signal
S(n) can be reconstructed (up to numerical error) with

S = (A ↑ 2) ∗ g̃ + (D ↑ 2) ∗ h̃ (3.2.4)

where g̃, h̃ are the low-pass and high-pass filter kernels used for the reconstruction, re-
spectively. The inversion (3.2.4) bears similarities with the algebraic transpose of (3.2.3).
If Cg and Ch denote the Toeplitz matrix associated to filter kernels g(n) and h(n), the
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forward transform can be algebraically expressed as(
A
D

)
=

[
D2Cg
D2Ch

]
S (3.2.5)

where the input and output signals are stacked as 1D vectors, and D2 denotes the down-
sampling ↓ 2. The inverse DWT operation can then be written as

S =
[
Cg̃DT2 ; Ch̃D

T
2

](A
D

)
=
(
Cg̃DT2 D2Cg + Ch̃D

T
2 D2Ch

)
S (3.2.6)

where the filters g̃ and h̃ are designed so that the forward-inverse process is the identity :

Cg̃DT2 D2Cg + Ch̃D
T
2 D2Ch = Id (3.2.7)

From equations (3.2.5) and (3.2.6), it is clear that in the case where Cg̃ = CTg and Ch̃ = CTh
(i.e g̃, h̃ are the matched filters of g, h), then the inverse is exactly the algebraic transpose.
The transform is said to be orthogonal: if W denotes the whole wavelet transform, then
WTW = Id.

Understanding that the inverse transform is almost the algebraic transpose of the
forward transform (exactly in case of orthogonal wavelet transform), the implementation
of the inverse transform is straightforward. Figure 3.2.8 depicts the inverse 2D separable

DWT. The forward DWT operator

[
D2Cg
D2Ch

]
depicted on Figure 3.2.5 splits, convolves and

subsamples the input signal. The transpose
[
Cg̃DT2 ; Ch̃D

T
2

]
upsamples, convolves and

sums the input coefficients.

Figure 3.2.8: 2D separable Inverse Discrete Wavelet Transform. For clarity, the upsam-
pling steps ↑ 2 have been omitted. The diagram reads from right to left: the coefficients
(A,H,V ,D) are column-convolved with filters g̃(n) and h̃(n). The results are summed
according to the splitting made in forward DWT: H ∗ h̃ is added to A ∗ g̃ and D ∗ h̃ is
added to V ∗ g̃. The result are line-convolved again and summed to get the reconstructed
image.

The parallel separable inversion follows the same two-stages process as the separable
forward transform. Given the four coefficients sets (A,H,V ,D) each of size (Nc/2, Nr/2),
upsampled convolutions are performed along the columns. Upsampled convolution here
consists in convolving with an upsampled input, which is the transpose operation of down-
sampling the result of a convolution. In the forward transform, the downsampling of the
convolution result was achieved by launching a thread grid with twice less threads than
input samples (per dimension), performing the convolution with a “step” (stride) of 2 for



96
CHAPTER 3. EFFICIENT IMPLEMENTATION OF REGULARIZED

RECONSTRUCTION METHODS

a 2-downsampling. Here, for the first stage of the inversion, a grid of (Nc/2, Nr) threads
is launched. Each thread will write a sample in two temporary buffers of size (Nc/2, Nr):
one for A ∗ g̃ +H ∗ h̃ and one for V ∗ g̃ +D ∗ h̃ as described on Figure 3.2.8.

The upsampled convolution is done with two separate convolutions with the even and
odd samples indexes of the filters. If A =

(
a1 , a2 , . . . , aM

)
is the approximation

coefficient and A =
(
a0 , 0 , a1 , 0 , . . . , aM−1 , 0

)
denotes the upsam-

pled version of A, then the convolution with g̃ =
(
g̃0 , . . . , g̃P−1

)
is

(
A ∗ g̃

)
(k) =

P−1∑
i=0

g̃P−1−iak−P/2+i where ai =

{
ai/2 if i is even

0 otherwise

=



P/2−1∑
j=0

(g̃e)P/2−1−jak/2−P/4+j if i is even

P/2−1∑
j=0

(g̃o)P/2−1−jak/2−P/4+j otherwise

(3.2.8)

where (g̃e) and (g̃o) denote the filters extracted from g̃ by retaining only even and odd
coefficients, respectively. This convolution thus consists in alternating between two con-
volutions with the even-indexed and odd-indexed samples of g̃. If P = 4, then g̃ =(
g̃1 , g̃2 , g̃3 , g̃4

)
and the first output samples are :

1: g̃2a0 + g̃0a1 2: g̃3a0 + g̃1a1

3: g̃2a1 + g̃0a2 4: g̃3a1 + g̃1a2
(3.2.9)

As there are twice more threads launched than samples in the input coefficient, threads
with even (resp. odd) indexes will take part in the computation of the first (resp. second)
convolution.

Figure 3.2.9: Illustration of the first stage of the separable inversion. The input coefficient
(left) has a size (Nc/2, Nr/2) and the temporary buffer (right) has a size (Nc/2, Nr) due
to the vertical oversampling. Even-indexed threads write at the even-indexed samples
locations of the output buffer (red) by performing a convolution with the even-indexed
filter samples (top-center orange box). The same goes for odd-indexed threads, performing
a convolution with the odd-indexed filter samples (bottom-center orange box) to write at
odd-indexed output locations (blue).

Stationary Wavelet Transform

Although providing a fast and memory-efficient representation, the standard discrete
wavelet transform suffers from shift variance in the sense that the wavelet coefficient
of a shifted version S(t− τ) of a signal S(t) are not directly related to the shifted wavelet
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coefficients of S(t). Even the energy by scale is not the same for the coefficients of S(t−τ)
and S(t) [SBK05]. This sensitivity to translation is detrimental to applications like signal
analysis or denoising.

To overcome this limitation of the DWT, a redundant version of the transform has
been proposed [CD95]. The principle is to remove the subsampling steps in the for-
ward transform (Figure 3.2.4), and conversely the upsamplers in the “inverse” transform.
This library implements the Undecimated Wavelet Transform, also known as Stationary
Wavelet Transform (SWT) following the à trous algorithm [She92] [SF09b].

The SWT is an over-complete transform, which means that the transform output has
more samples than the input. More precisely, given a discrete one-dimensional signal of
length N > 0, applying l ≥ 1 decomposition levels yields (l + 1)N samples as there is no
subsampling. In two dimensions, applying l ≥ 1 decomposition levels on a Nc×Nr image
yields (3l+1)Nr×Nc samples. In q dimensions, the redundancy factor of level l ≥ 1 SWT
is (2q − 1)l + 1. This high redundancy comes at the expense of memory. More recent
transforms like the complex wavelet transform were designed to achieve both translation
invariance and a lower redundancy [SBK05].

The implementation is similar to the standard DWT described in 3.2.3, except for two
points. First, there is no subsampling during the transform. As convolution and subsam-
pling were performed at the same time by one CUDA kernel for DWT, new CUDA kernels
had to be written for SWT. Second, the wavelet low-pass and high-pass filters are upsam-
pled by a factor of two at each scale in the à trous algorithm [She92]. For example, for
a filter g =

(
g0, g1, . . . , gn

)
, the filter used at scale two is (g ↑ 2) =

(
g0, 0, g1, 0, . . . , gn, 0

)
,

the filter used at scale three is (g ↑ 4) =
(
g0, 0, 0, 0, . . . , gn, 0, 0, 0

)
and so on. Upsampling

the filter is equivalent to read the data with a strided access, so there is no need to allocate
new filters. Here the stride is 2l−1 where l is the current decomposition level, starting from
one.

The memory read footprint is higher for SWT, as for a filter of length n, 2l−1 · n data
samples have to be read at decomposition level l ≥ 1 for each output sample. The memory
write, however, is still coalesced by design: thread number k write the convolution result
sample at location k (see subsection 3.2.3).

As the SWT is an over-complete transform, a given set of coefficients is not necessarily
the result of the SWT of some input data – the output space is bigger than the input space.
Hence, the inverse of the SWT is not unique. However, a canonical inversion is given by the
tight frame property: for well chosen filter pairs, the SWT is a semi-orthogonal transform
in the sense of Equation 3.2.10.

STS = (2q)l Id (3.2.10)

where S denotes the forward SWT, q is the transform number of dimensions and l ≥ 1
is the number of decomposition levels. The inverse SWT implemented in this library,
denoted by I, is chosen to be I = 2−q·lS. From this choice of I, for all signals A,B of
respective SWT coefficients CA, CB, Equation 3.2.11 holds.

〈S ·A , CB〉 = (2q)l 〈A , I · CB〉 (3.2.11)

where 〈· , ·〉 denotes the Euclidean inner product. Notably, the energy is larger in the
coefficients domain. The inverse SWT hence follows the same principle as the inverse
DWT, except that no upsampling is done and the filters are modified following the à trous
algorithm.
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Nonseparable Wavelet Transform

Although the standard 2D DWT is computed with a separable approach (see subsec-
tion 3.2.3), the PDWT library also supports nonseparable transforms, which can be in-
teresting for defining a set of custom filters. Instead of performing two transforms steps
(horizontal convolution/subsampling, then vertical convolution/subsampling), all the pro-
cess is performed by one kernel. As highlighted in subsection 3.2.3, the implementation
will not benefit from an efficient cache mechanism and the transform will be slower than
a separable transform. The nonseparable transform is also implemented for SWT.

3.2.4 Speed performances assessment of PDWT

Comparison with CPU implementations

In the speed comparisons, the reference we chose is PyWavelets [Fil06], a Python package
for wavelet transform following the same syntax and conventions as Matlab. PyWavelets
has a Python interface, but the core calculations are implemented in C. Another reference
candidate could be Matlab, but PyWavelets makes the comparison easier as both our
library and PyWavelets are interfaced in Python. Tests carried on the R2016a version of
Matlab show that the computation times of Matlab and PyWavelets are comparable.

The first benchmark series was run on a “workstation” machine with a Intel Xeon
E5-1607 v2 - 3.00GHz CPU (4 physical cores) and a Nvidia GeForce GTX 750 Ti GPU.
This machine is hereafter denoted by “machine 1”. The second series was run on a high
performance machine with a Intel Xeon E5-2643 v3 - 3.40GHz CPU (12 physical cores)
and a Nvidia GeForce GTX Titan X GPU. This machine is hereafter denoted by “machine
2”.

Two wavelets were tested: the Haar wavelet and the Daubechies wavelet with 20
vanishing moments. The reason is that the former has the minimal convolution kernel
size (2 pixels per dimension), while the latter has the maximum convolution kernel size
supported by PDWT (40 pixels per dimension), theoretically giving extremal computation
times. As the convolutions are computed in the image domain, convolution with larger
kernel sizes entail more computations, hence larger execution times are expected. Image
sizes vary from (128, 128) to (4096, 4096) pixels, and the maximum decomposition levels
are computed for each size. It can however be noted that PDWT does not require the
image to have dimensions which are power of two; and that the image size is only limited
by the GPU memory.

Three transforms types were tested: the standard DWT (Figure 3.2.10), its inverse
(Figure 3.2.11) and SWT (Figure 3.2.12). The inverse SWT was not tested as PyWavelets
currently does not have a native implementation of it.

As the PDWT aims at being used on GPU only, these benchmark do not take CPU-
GPU memory transfers times into account. For completeness, Figures 3.2.13 and 3.2.14
show the execution times with the CPU-GPU memory transfers times. The computation
performances are hidden by the memory transfer times, which depend only on the image
size; thus there is little difference between the ‘haar” and “db20” wavelets. It shows that
even with explicit CPU-GPU transfers – which make little sense for iterative solving of
regularized inverse problem as shown in the Applications part – speed-ups of the order of
10 can be expected with respect to a CPU implementation.

The “db20” decomposition might be faster than the “haar” decomposition on small
image sizes. The reason is that the maximum decomposition level on a (128, 128) image

is blog2

(
128
2−1

)
c = 7 for “haar” and blog2

(
128

40−1

)
c = 1 for “db20”. The convolution with
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the “haar” kernel, although faster, will be performed 7 times when the convolution with
the “db20” kernel will only be performed once.

(a) (b)

Figure 3.2.10: Execution time results for forward 2D DWT. (a) Machine 1. (b) Machine
2.

(a) (b)

Figure 3.2.11: Execution time results for forward Inverse 2D DWT. (a) Machine 1. (b)
Machine 2.
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(a) (b)

Figure 3.2.12: Execution time results for forward 2D SWT. (a) Machine 1. The maximal
size is (2048, 2048) as there is not enough memory for storing the SWT of a (4096, 4096)
image on a GTX 750 Ti (2 GB memory). (b) Machine 2.

(a) (b)

Figure 3.2.13: Execution time results for forward 2D DWT, taking the CPU-GPU mem-
ory transfer time into account. (a) Machine 1. (b) Machine 2.
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(a) (b)

Figure 3.2.14: Execution time results for forward 2D SWT, taking the CPU-GPU memory
transfer time into account. (a) Machine 1. (b) Machine 2.

Comparison with a GPU implementation of the 5/3 and 9/7 transforms

Many GPU implementation works of the discrete wavelet transform are published in the
literature (see for example [Fra+10]); however, these works seldom provide the source
codes. Moreover, implementations usually focus on specific wavelets, for example Haar
or Daubechies-Feauveau. Thus, it was difficult to compare our general-purpose wavelet
transform with other GPU implementations.

The only publicly available GPU code we could find is “GPUDWT” [Mat09]. It imple-
ments the LeGall (LeGall 5/3) and Cohen Daubechies-Feauveau (CDF 9/7) transforms,
used in the JPEG2000 standard [TM12]. The transforms are implemented following a lift-
ing scheme [Swe98]. These transforms can be implemented with the classical filter bank
approach using the filters defined in Equations 3.2.12 and 3.2.13 for LeGall 5/3 and CDF
9/7, respectively [Bar06].

g53 =
1

8

(
−1 , 2 , 6 , 2 , −1

)
h53 =

1

2

(
−1 , 2 , −1

)
g̃53 =

1

2

(
1 , 2 , 1

)
h̃53 =

1

8

(
−1 , −2 , 6 , −2 , −1

)
(3.2.12)
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g97 =



0.026748757411
−0.016864118443
−0.078223266529
0.266864118443
0.602949018236
0.266864118443
−0.078223266529
−0.016864118443
0.026748757411


h97 =



0.091271763114
−0.057543526229
−0.591271763114

1.11508705
−0.591271763114
−0.057543526229
0.091271763114



˜g97 =



−0.091271763114
−0.057543526229
0.591271763114

1.11508705
0.591271763114
−0.057543526229
−0.091271763114


h̃97 =



0.026748757411
0.016864118443
−0.078223266529
−0.266864118443
0.602949018236
−0.266864118443
−0.078223266529
0.016864118443
0.026748757411



(3.2.13)

Built-in 5-3 and 9-7 biorthogonal filters pairs could have been used (bior2.2 and
bior4.4 respectively), but the PDWT library enables to define and use custom filters.

(a) (b)

Figure 3.2.15: Execution time results for LeGall 5/3 transform (a) Machine 1. (b)
Machine 2.
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(a) (b)

Figure 3.2.16: Execution time results for Cohen-Daubechies-Feauveau 9/7 transform (a)
Machine 1. (b) Machine 2.

From Figures 3.2.15 and 3.2.16, the GPUDWT implementation beats the PDWT im-
plementation. We can highlight two reasons. First, GPUDWT has dedicated kernels
for each transform, while PDWT uses generic convolution-downsampling kernels. Second,
GPUDWT uses a lifting scheme, which is theoretically more computationally efficient than
the convolution-based approach. It is interesting to note, however, that the filter bank
approach outperforms GPUDWT for small image sizes, and then becomes less efficient
for larger sizes. The turning point depends on the amount of cache of the GPU; here the
GTX Titan X has more cache (384.0 KiB) than the GTX 750 Ti (80.0 KiB).

3.2.5 Iterative reconstruction with wavelets regularization

This section discusses practical issues when using wavelets as a regularization for tomo-
graphic reconstruction. The DWT/SWT were implemented on GPU to provice an efficient
evaluation of the operator W for the wavelets-regularized tomographic reconstruction
problem

argmin
x

{
1

2
‖Px− d‖22 + λ ‖Wx‖1

}
(3.2.14)

which is a special instance of the usual reconstruction problem (2.4.4) with D = W .

Shift invariance and thresholding artefacts

It is known that when regularizing inverse problems – even denoising – with wavelets, the
reconstruction can bear thresholding artefacts. These artefacts appear as “salt and pepper
noise” in the result, and are due to aliasing and lack of shift invariance of the regular DWT
(see 3.2.2). These two effects have no consequences when inverting the wavelet transform
on noiseless coefficients, as the DWT is carefully designed to yield a perfect reconstruction.
However, wavelets processing entails to modify the coefficients (usually by thresholding);
and both aliasing and shift variance artefacts can occur [SBK05]. These issues can be
addressed in two ways:

• using a technique called cycle spinning, which aims at reducing these effects by
averaging reconstructions of shifted versions of the image
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• using another transform with better shift invariance and aliasing cancellation proper-
ties, like the undecimated wavelet transform [CD95] or the dual tree complex wavelet
transform [SBK05]

Examples are illustrated on Figure 3.2.17.
Let x be a N × N pixels image to reconstruct. The principle of the first technique

is to reconstruct circular shifts of x (there are N2 such images), and to average them
[CD95]. This approach is of course intractable, as reconstructing x is in itself a costly
process in the context of iterative tomographic reconstruction. Instead, the circular shifts
are performed between the iterations: given a reconstruction estimate at iteration k, xk,
the next estimate is computed on a circular shift of xk. Formally, if ϕ defines the abstract
process of computing xk+1 from xk, then xk+1 = σ−1(ϕ(σ(xk))), where σ is a function
performing a circular shift of the image. A random shift is used at each iteration, so
that many different shifts are made after hundred(s) of iterations. A drawback is that
the objective function is not monotonically decreasing: because of the shifts, some low-
amplitude jumps can be observed. Fortunately, the algorithm is still globally converging
experimentally, although we did not investigate further the convergence guarantees.

The second approach consists in replacing the DWT with an undecimated transform
(SWT, see 3.2.3). Although it completely solves the aliasing and shift invariance issues,
this approach has two downsides. First, the memory consumption is much higher: while
DWT is an invertible transform, SWT is redundant by a factor of 3l where l ∈ N is the
number of decomposition levels. In other words, the decomposition of x yields 3 × l + 1
coefficients images of N × N pixels. In our parallel geometry setting, this approach is
tractable. For other 3D geometries where a 3D transform has to be performed, the problem
is worse: there are 8 coefficient images per level. This also implies a longer processing time,
although in practice the bottleneck of iterative tomographic reconstruction are usually the
projection and backprojection operators. The second drawback is on the optimization side.
The optimization problem for (analysis) wavelets regularized tomographic reconstruction
is

argmin
x

{
1

2
‖Px− d‖22 + λ ‖Wx‖1

}
(3.2.15)

with the usual notations (see for example 3.1.1). Recall from 2.6.2 that the proximal map-
ping of x 7→ λ ‖Wx‖1 is straightforward to compute if W is an orthogonal transform, as
it is the case for DWT with orthogonal filters. In this case, proximal algorithms solving
(3.2.15) can directly use the proximal mapping of the regularization term in this case. For
example, FISTA is the algorithm of choice as Problem (3.2.15) has a simple (quadratic)
smooth term and a regularization term with simple proximal (see the discussion on prox-
imal algorithms in 3.1.1). Generally, when ϕ is a scalar function, the prox of x 7→ ϕ(Lx)
can be expressed as a function of proxϕ (x) if the linear transform L is semi-orthogonal, i.e

LLT = νI for some ν > 0 [CP09]. If (n2, n) denote the number of lines and columns of L
respectively, the previous equality implies n2 ≤ n, i.e L cannot be an over-complete trans-
form 9. In other words, if W is the (overcomplete) SWT, the equality WW T = νI never
holds for any ν > 0. This precludes the fast computation of the prox of x 7→ λ ‖Wx‖1.

A first solution could be to use the synthesis formulation, as in the dictionary-based
reconstruction

argmin
w

{
1

2

∥∥PW Tw − d
∥∥2

2
+ λ ‖w‖1

}
(3.2.16)

9it can easily be seen with the matrix rank. Assume n2 > n. Since LLT = νI, we have rank(LLT ) =
rank(L) = n2. On the other hand, rank(L) ≤ min(n, n2), so n2 ≤ min(n, n2) = n, which contradicts the
initial assumption. Hence, L cannot be an overcomplete transform
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However, it is not clear whether the synthesis formulation yields results as least as good as
the analysis formulation in terms of quality10. Numerical experiments from our side sug-
gest that the analysis formulation is actually better, which is supported by [SF09a]. This
question nevertheless does not have a clear answer in the general inverse problem setting
[EMR07]. Optimization considerations on this issue can be found in [Cha+09]. On the
implementation side, the synthesis formulation also entail to implement operations (addi-
tion, scalar multiplication) in the coefficient domain, which involves more computations
for an overcomplete transform.

In order to keep the analysis formulation, we can re-write Problem (3.2.15) as for TV
in 3.1.2 to use the Chambolle-Pock algorithm. Another possibility is to solve Problem
(3.2.16) with the extra constraint w ∈ range(W ), which makes it equivalent to (3.2.15).
This constraint is encoded as a convex indicator function, and the proximal operator is
the projection onto the set {w, ∃x, w = Wx}. We chose the first approach. Let us note
that a trade-off between redundancy and shift invariance can be achieved with the dual
tree complex wavelet transform [SBK05]. This transform has recently be implemented and
used for clinical CT imaging [Not17] and shows promising results for 3D reconstruction.

Figure 3.2.17: Reconstructions of a noisy sinogram of the 512 × 512 “Brain” phantom
from 40 views.
Top-left: FBP. Top-Right: Haar wavelets DWT regularization. The image bears downsam-
pling (“blocky regions”) and shift variance (“salt and pepper noise”) artefacts. Bottom-
left: Haar wavelets DWT regularization with cycle spinning. The shift variance artefacts
are mostly gone, but the aliasing remains. Bottom-right: Haar wavelets SWT regulariza-
tion. Both shift variance and aliasing artefacts are gone.

10they are not equivalent since W is no more an orthonormal transform
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Reconstruction of real datasets

The reconstruction performances are assessed on real datasets acquired at ESRF tomog-
raphy beamlines. Figures 3.2.18 and 3.2.19 shows how regularized reconstruction can
enhance the contrast and thus facilitate the segmentation. In this context, the dataset has
few projections (250 views for 2048× 2048 pixels), with a low SNR.

(a) (b)

(c) (d)

Figure 3.2.18: Reconstruction results for a PCT micro-scan of a drosophila (data courtesy:
Alexandra Pacureanu, ID16-a), 2048× 2048 pixels, from 250 views.
(a) FBP, (b) Wavelets (DWT) reconstruction after a rings correction method (see 3.2.6).
The Daubechies 2 (“db2”) wavelet was chosen to enforce some smoothness.
(c, d): close-up of (a, b), respectively.
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(a) (b)

Figure 3.2.19: Line profiles corresponding to Figure 3.2.18. (a) FBP, (b) Wavelets
reconstruction after a rings correction method (see 3.2.6). The Daubechies 2 (“db2”)
wavelet was chosen to enforce some smoothness.

Figure 3.2.20 shows reconstructions of an in-vivo alveoli scan in a rabbit lungs in
the context of the study of the Acute Respiratory Distress Syndrome. In this setting,
the scan is cumbersome because the heart and respiratory movements can induce motion
artefacts, thus, a fast scan has to be performed. With wavelets regularization, reducing the
number of projections is possible without sacrificing the reconstruction quality allowing
for faster scans. The Wavelets regularization somehow smooths the reconstruction, but a
less smooth reconstruction can be obtained with a “sharp” wavelet family like Haar.
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(a) (b)

(c) (d)

Figure 3.2.20: Reconstruction results for a PCT scan of rabbit lungs (data courtesy:
Ludovic Broche, ID17), 2048× 2048, from 150 views.
(a): FBP, (b): wavelets (SWT/Coifman 1) reconstruction.
(c, d): line profiles corresponding to (a, b), respectively.

Figure 3.2.21 shows the reconstruction of the phase counterpart of Figures 3.1.7.As
the Edge Illumination method yields a differential sinogram (the refraction angle is pro-
portional to the spatial gradient of the X-ray transform of the refractive index δ), the
usual reconstruction algorithms for absorption data cannot be used. Instead, the inverse
problem is reformulated to include the differential nature of the data11

argmin
x

{
1

2
‖∇Px− d‖22 + λ ‖Wx‖1

}
(3.2.17)

11this idea was proposed by Daniël Pelt at a workshop, and is formalized for example in [Hah+15]



3.2. WAVELET REGULARIZED RECONSTRUCTION 109

(a) (b)

(c) (d)

Figure 3.2.21: Reconstructed slice of a real imaging phantom (projection data courtesy:
Charlotte Hagen, UCL), with subsampled data. (a): Hilbert transform and backprojec-
tion, (b): Iterative reconstruction with the Haar wavelets regularization, using the gradient
in the forward model. (c, d): line profiles corresponding to (a, b), respectively.

Reconstruction timings

This part gives reconstruction times for various data sizes. Table 3.4 gives some recon-
struction times for various slice size in the case of undersampled data. The convergence is
relatively fast, and can benefit from the same trick as in 3.1.4. The synthetic dataset and
the timing methods are the same as for Table 3.2, so the execution times can be compared.
It appears that the wavelets reconstruction is indeed competitive with TV-C-P in terms
of speed. The MSE is also similar, although TV appears to converge faster to a better
solution, which is not surprising as the phantom is a piecewise-constant image.

Width Views Iterations MSE (DWT) MSE (SWT) Time (DWT) Time (SWT)

512 40 250 5.14e+01 4.72e+01 0.623 s 0.778 s

1024 80 100 8.92e+00 5.22e+01 0.620 s 0.951 s

2048 160 50 1.97e+00 1.12e+01 0.922 s 2.01 s

4096 320 50 5.59e-01 2.55e-01 5.60 s 10.4 s

Table 3.4: Iterative reconstruction times for DWT (with cycle spinning) and SWT as a
function of the data size.
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3.2.6 Application to sinogram filtering

Rings artefacts come from a measurement problem giving rise to spurious vertical lines
in the sinogram. This issue is discussed more in depth in chapter 4.1. In this part, we
briefly show how the implemented wavelets library can be used for efficient rings artefacts
removal. More specifically, the work [Mün+09]. describes a rings artefacts removal method
based on singoram filtering, before reconstructing the slice. It consists in detecting and
removing vertical lines in the sinogram by the means of the discrete wavelet transform.
To do so, the vertical coefficients are filtered at each scale by a high-pass (complementary)
Gaussian filter in the vertical direction. Indeed, as rings artefacts are modelled as vertical
lines, the sinogram at the corresponding locations bears essentially low frequencies. A
Python implementation of this method can be found in the Tomopy project [Gür+14].

Having a general-purpose GPU DWT is very helpful, as all the other operations (fourier
transform, filtering) already have available GPU implementations. Moreover, practical use
of the method [Mün+09] suggests that that some wavelets are more efficient to isolate the
artefacts depending on the context; thus, it is valuable to have a GPU transform where
the wavelet can be tuned.

Figures 3.2.22 and 3.2.23 show the rings artefacts removal capability of the Fourier-
Wavelets method. In some cases, post-processing of the data like segmentation is not
possible without a rings artefacts removal procedure. Using this sinogram filtering method
can give back the possibility of post processing.

(a) (b)

Figure 3.2.22: Rings artefacts correction on a PCT micro-scan of a drosophila (data
courtesy: Alexandra Pacureanu, ID16-a).
(a): FBP, (b): Münch Et Al rings correction followed by a SIRT reconstruction



3.3. A CONJUGATE SUBGRADIENT FOR `2-`1 OPTIMIZATION 111

(a) (b)

Figure 3.2.23: (data courtesy: Julie Villanova, ID16-b) (a): FBP, (b): Münch Et Al rings
correction followed by FBP

3.3 A conjugate subgradient for `2-`1 optimization

In section 3.1.1, we reviewed state-of-the-art convex optimization algorithms in the context
of TV tomographic reconstruction, which is an analysis formulation. Dictionary-based re-
construction, on the other hand, corresponds to a synthesis formulation. From the previous
considerations, it appears that FISTA is the algorithm of choice for the synthesis problem,
as the gradient of the fidelity term only involves evaluations of the operators (and their
adjoints), and the prox of w 7→ λ ‖w‖1 is straightforward. However, as observed in prac-
tice, the convergence is relatively slow, especially with over-complete dictionaries. This
section describes a new efficient optimization algorithm tailored for the “`2-`1 problem”,
or LASSO problem, aiming at solving

argmin
w

{
1

2
‖Aw − b‖22 + λ ‖w‖1

}
(3.3.1)

In our setting, problem (3.3.1) corresponds to the synthesis formulation of a regularized
tomographic reconstruction problem, but the applications of this algorithm are broader.

This section presents a new algorithm dedicated to problem (3.3.1). This work was
published in [MP17].

3.3.1 Introduction

The dictionary-based tomographic reconstruction problem is

argmin
w

{
1

2

∥∥PDTw − d
∥∥2

2
+ λ ‖w‖1

}
(3.3.2)

where d is the acquired data (sinogram), P the projection operator, DT is a dictio-
nary (a redundant frame, see 2.5.2), and w is the vector of coefficients of the underlying
slice/volume in the dictionary domain. The non-differentiable `1 term ‖w‖1 precludes
from using fast methods like the conjugate gradient.



112
CHAPTER 3. EFFICIENT IMPLEMENTATION OF REGULARIZED

RECONSTRUCTION METHODS

Many state-of-the-art non-smooth convex optimization algorithms can be unified in
the framework of proximal algorithms (see 2.6.2) which roughly replace a gradient step
with a proximal step. However, the `1 term ‖w‖1 is very simple, as the variables in w are
not coupled by an operator inside the norm. Its subgradient is straightforward:

(∂ ‖·‖1 (x))i =


−1 xi < 0

[−1, 1] xi = 0
1 xi > 0

(3.3.3)

As the regularization term is simple, Problem (3.3.2) deviates only “slightly” from
a quadratic minimization, for which efficient algorithms are available. This motivated
the extension of the CG algorithm to `2-`1 problems like (3.3.2), where a simple12 `1
term is added to the `2 term. The resulting algorithm is called Conjugate Subgradient
(CSG) algorithm, as it replaces the gradient a (differentiable) objective function with a
subgradient if a (non-differentiable) `2-`1 objective function.

In the next section, after a brief recall of the conjugate gradient algorithm, we derive the
CSG. We then show how this new algorithm is adapted to ill-conditioned `2-`1 problems.

3.3.2 The nonlinear conjugate gradient algorithm

In this section, we settle the notations by recalling the standard conjugate gradient algo-
rithm. The derivation of the conjugate gradient algorithm from Krylov subspaces is out of
the scope of this section; instead, we give the principle and pseudo-code of CG assuming
that the underlying concepts are known.

Let x denote the (vector) variable of the function F . For the remainder of this section,
the function to minimize is F (x) = f(x) + g(x) with f(x) = 1

2 ‖Ax− b‖
2
2 and g(x) =

β ‖x‖1, so the optimization problem is13

argmin
x

{
F (x) =

1

2
‖Ax− b‖22 + β ‖x‖1

}
(3.3.4)

The CG algorithm builds a set of conjugate directions (pk)k=1...n where n is the num-
ber of iterations. Once the conjugate direction pk is calculated at iteration k, the variable
is updated with xk+1 = xk + αkpk. The scalar αk is the step size at iteration k, com-
puted with a line search. The gradient of F is then evaluated in xk+1 to compute the
next conjugate direction pk+1. The computation of pk+1 actually only depends on the
previous direction, which makes the conjugate gradient algorithm practically usable. For
a differentiable function F , the standard conjugate gradient is given in its numerical form
by Algorithm 3.3.1.

12no variables coupling by an operator
13in the context of tomographic reconstruction, the variable was denoted w as it corresponds to coef-

ficients in a frame. In this general context, no assumption are made, hence the different variables names
A, x and b
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Algorithm 3.3.1 Conjugate gradient

F : differentiable function
n: number of iterations

1: procedure conjGrad(F , n)
2: Compute an initial guess x0

3: g0 = −∇F (x0) . Steepest direction at iteration 0
4: p0 = g0

5: for k ← 0, n do
6: αk = argmin

α
{F (xk + αpk)} . Line search

7: xk+1 = xk + αkpk . Update variable
8: gk+1 = −∇F (xk+1) . Update Steepest direction

9: βk =
gTk+1(gk+1 − gk)

gTk gk
. Update β, for ex. with the Polak-Ribiere rule

10: pk+1 = gk+1 + βkpk . New conjugate direction
11: end for
12: return xn
13: end procedure

3.3.3 From conjugate gradient to conjugate subgradient

In the basic subgradient method

xk+1 = xk − γkpk pk ∈ ∂F (xk) (3.3.5)

the direction pk is any subgradient ∂F (xk), which is a drawback of this method since there
is no indication of which subgradient should be chosen. As a result, the conjugate subgra-
dient is not a descent method: the objective function can increase during the optimization
process [SM03].

To build an algorithm based on the conjugate gradient, one has to define an unique
descent direction at each iteration, which means choosing between all the possible subgra-
dients ∂F when F is not differentiable. The basic idea is to rely on the quadratic part ∇f
of the gradient. Once the gradient of the smooth part ∇f(x) is calculated, the subgradient
of the L1 part g is evaluated with :

∂g(x) =

{
sign (x) if x 6= 0

sign (∇f(x)) if x = 0
(3.3.6)

where the sign function is applied componentwise. With this particular choice of subgra-
dient (3.3.6), the subderivative of F = f + g is always single-valued. The motivation of
such a choice is that when the variable x comes near the singularity of g = ‖·‖1, every
direction (subgradient) is possible; the ambiguity is removed by relying on the derivative
of the quadratic term f .

When using the CG method, using a preconditioner can dramatically improve the con-
vergence rate. In our method, the preconditioner relies on the magnitude of the quadratic
part of the gradient ∇f .
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From the variables xk+1, pk, qk (see Algorithm 3.3.1), three new preconditioned vari-
ables xk+1, pk+1, qk+1 are built with the following preconditioner :

D =

{
1 if |∇f(Mk � xk+1)| < β and xk · xk+1 < 0

0 otherwise

Mk+1 = min (Mk · (1− γD + δ(1−D)) , 1)

Sk+1 =

{
0 if |∇f(Mk � xk+1)| < β and |x| < ε

1 otherwise

V k+1 =
Mk+1

Mk

(3.3.7)


xk+1 =

xk+1

V k+1
· Sk+1

pk+1 = pk · V a
k+1 · Sk+1

qk+1 = qk · V k+1 · Sk+1

(3.3.8)

where all the vector-vector operations are componentwise, and the symbol � denotes a
componentwise (diagonal) matrix-vector multiplication. For example, the matrix Mk is
a matrix, and Mk � xk+1 denotes the multiplication of all the components of x with the
diagonal of Mk.

The rationale of this preconditioner can be summarized as follows:

• When the gradient magnitude of the quadratic part∇f is important, the components
of the variables are updated as in the conjugate gradient method – without variable
substitution – since the quadratic part is predominant over the non-smooth part.

• When |∇f | is small, the standard conjugate gradient method would be disturbed by
frequent crossings of regions where the gradient of g is discontinuous. The used rule
is that the preconditioning factors are increasingly shrunk by a factor γ < 1 as long
as they should be updated. The criterion is to check if the previous preconditioned
variable (xk) and the variable updated after the line search (xk+1) have an opposite
sign. This variable substitution is implemented by the coefficient vector (or diagonal
matrix) Mk. We note that, although our problem is not constrained, there is some
similarity between our idea of choosing descent directions that try to avoid gradi-
ent discontinuities, and the Conditional Gradient Descent method [Bub14] which
chooses the descent direction which maximizes the decrease of the linearized objec-
tive function within the domain borders.

• The exponent a, used in the determination of the vector pk+1 is a tunable number.
The vector pk+1 is used in the composition of the pk+1 descent direction (see Al-
gorithm 3.3.1). By using a number a > −1 we tend to avoid constructing descent
directions which bring us too fast to non-smooth regions. Keeping a = −1 corre-
sponds to using the previous descend direction as in standard conjugate gradient
method.

• Another rule is that during this phase (small quadratic gradient), the components
which are “small enough” (below a threshold ε) are set – and will remain as long
as the force on them is weak– to zero. This rule is especially important for the
convergence toward solutions with high sparsity. This rule is implemented by the
matrix Sk.
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The conjugate subgradient algorithm for LASSO optimization is given by Algorithm
3.3.2

Algorithm 3.3.2 Conjugate subgradient

F : function to optimize, F (x) = f(x) + g(x) with f the quadratic part and g the L1 part
γ, δ, ε: parameters for update the preconditioner (see (3.3.7))
n: number of iterations

1: procedure conjSubGrad(F , (γ, δ, ε), n)
2: Compute an initial guess x0

3: g0 = −∇F (x0) . Steepest direction at iteration 0
4: p0 = g0

5: M0 = 1 . Element-wise
6: for k ← 0, n do
7: qk = Mk �ATA(Mk � pk)
8: Compute αk = argmin

α
{F (Mk � (xk + αpk))}

9: xk+1 = xk + αkpk
10: Update preconditioners (Mk+1, Sk+1, V k+1) using (3.3.7)
11: Update (xk+1, pk+1, qk+1) using (3.3.8)
12: gk+1 = −∇F (xk+1 �Mk+1)� Sk+1 �Mk+1

13: β = −
qTk+1gk+1

qTk+1pk+1

14: pk+1 = gk+1 + βpk+1

15: end for
16: return xn
17: end procedure

where the multiplications with A and AT are “regular” matrix-vector multiplications.

3.3.4 Line search

The line search is a crucial step of gradient methods. The variables are updated with the
previously computed conjugate direction pk. The step αk in this direction should be such
as

αk = argmin
α

{F (Mk+1 � xk+1)} where xk+1 = xk + αpk (3.3.9)

The computation of (3.3.9) can be done “blindly” with a generic line search, but here one
can benefit from both the quadratic nature of f and the convex property of g. We discuss
how to do it in this session, discarding for conciseness, and without loss of generality, the
preconditioner M .

Regarding the quadratic part f , it is easily shown that

f(xk + αpk) =
1

2
‖A(xk + αpk)− b‖

2
2 = a2α

2 + a1α+ a0 (3.3.10)

where a2 =
1

2
pTkA

TApk, a1 = pTkA
T (Axk − b) , a0 =

1

2
‖Axk − b‖22

The coefficients a2 and a1 can be computed once for all before the line search; actually,
they are also used elsewhere in the algorithm so they have to be computed anyway. The
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evaluation of df
dα , the derivative of f with respect to the scalar α, only requires these two

coefficients, and thus has virtually no cost.
An interesting property of smooth quadratic function f(x) = ‖Ax− b‖22 is

∇f(xk+1) = ∇f(xk) + αkA
TApk (3.3.11)

The vector ATApk is already known from the computation of pTkA
TApk. Hence the

update of the gradient ∇f(xk+1) from the previous gradient ∇f(xk) is cheap.
Therefore, for a smooth quadratic function, the line search is straightforward:

0 =
df

dα
(xk+1) = ∇f(xk+1)T · d

dα
xk+1

= pTk
(
∇f(xk) + αATApk

)
using (3.3.11)

which gives

αk =
−pTk∇f(xk)

pTkA
TApk

(3.3.12)

Now, getting back to the whole function F = f + g, a one-step line search like (3.3.12)
is not possible since one cannot extract α from ∂g(xk+1). However, due to the convexity
of g, an upper bound of αk can be computed using the following property :

Proposition 3.3.1
For all k, we have pTk ∂g(xk+1) ≥ pTk ∂g(xk).

Proof. In this proof, The superscript denotes a component of a vector. Since g is convex,
every component ∂gi of its subgradient is increasing. Thus, we have ∂g(xk+1)i ≥ ∂g(xk)

i

if and only if xik+1 ≥ xik, i.e pik ≥ 0 (since αk ≥ 0). Thus :

• If pik ≥ 0, then xik+1 = xik + αkp
i
k ≥ xik, so ∂g(xk+1)i ≥ ∂g(xk)

i, so pik · ∂g(xk+1) ≥
pik · ∂g(xk).

• Similarly, if pik ≤ 0, then ∂g(xk+1)i ≤ ∂g(xk)
i so pik · ∂g(xk+1)i ≥ pik · ∂g(xk)

i.

Doing the scalar product, we have in any case pTk ∂g(xk+1) ≥ pTk ∂g(xk)

Using this property, we can derive the same calculation as for (3.3.12) :

0 =
dF

dα
(xk+1) =

df

dα
(xk+1) +

dg

dα
(xk+1)

= pTk∇f(xk) + αpTkA
TApk + pTk ∂g(xk+1)

≥ pTk (∇f(xk) + ∂g(xk)) + αpTkA
TApk

(3.3.13)

Thus

αk ≤ αuk =
−pTk ∂F (xk)

pTkA
TApk

(3.3.14)

For the last inequality in (3.3.13), property 3.3.1 has been applied. The upper bound αuk is
convenient for a line search using the bisection method. For example, the line search can
be done using the regula falsi method at the beginning when the differentiable L2 part is
predominant, and then the bisection method when the L1 part becomes more important.
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3.3.5 Applications

In this section, numerical examples are provided to compare the convergence of this new
method with FISTA and ADMM which are state-of-art convex non-smooth optimization
methods.

Example on ill-conditioned matrix

This example illustrates the convergence rate of the conjugate subgradient algorithm for
problem (3.3.4), where the matrix A is built to be ill-conditioned. The code to compute
this example can be found at [MP]. In this example A is a 500× 1k matrix and ATA is
a 1k× 1k symmetric matrix, with a large condition number. The eigenvalues of ATA are
plotted on Figure 3.3.1.

Figure 3.3.1: Logarithmic plot of the eigenvalues of the matrix ATA

The regularization parameter, in the LASSO objective function, was β = 0.1. The
CSG algorithm was run with the parameters γ = 0.85 and δ = 0.04, and the exponent for
direction p was a = 1. The FISTA algorithm was applied in its restarted variant: we reset
the acceleration parameter each time the step would increase the objective function. The
best scaling parameter of ADMM was found to be ρ = L/350 where L is the maximum
eigenvalue of ATA.

Figure 3.3.2 shows the objective function values F (x)− F (x∞) for 2000 iterations for
the three methods: CSG, FISTA and ADMM.

It can be seen that CSG achieves the solution in about 800 iterations, while FISTA
needs much more iterations to converge. Also, the objective function values are always
smaller for CSG.

We see that our CSG method is competitive also compared to ADMM. Although
ADMM converges in half the number of steps required by CSG, one must consider that, for
large systems, the matrix (ATA+ ρI)−1 cannot always be computed. This is particularly
true in tomography where, A and AT (projection and back-projection operators) are
sparse, but (ATA)−1 is dense. One should, in such case, calculate the action of (ATA+
ρI)−1 by an iterative method like the conjugate gradient, which has a high cost per
iteration.
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Figure 3.3.2: Logarithmic plot of objective function values for CSG, FISTA, ADMM
algorithms

Tomographic reconstruction with the dictionary regularization and
ring-artifacts correction

We now examine how the CSG algorithm performs for iterative tomographic reconstruction
with dictionary regularization and rings artefacts correction. The rings artefacts correction
is incorporated in the objective function (3.3.15), more details are given in 4.1.

argmin
w,r

{
F (w) =

∥∥PDTw +Ur − d
∥∥2

2
+ β ‖w‖1 + βr ‖r‖1

}
(3.3.15)

where a ring vector r is added to each projection line of the sinogram – the rings artifacts
are modeled, in the sinogram, as constant values along the projection angle axis. The
sinogram has dimensionality (Np, N) where Np is the number of projections and N is the
number of pixels in one dimension of the slice. The operator U repeats the ring variables
on each line of the sinogram. It was observed that the additional variable r slows down
the convergence rate for standard algorithms like FISTA, which notably motivated the
design of CSG.

In this example, the standard 512× 512 test image Lena was used, and 80 projections
were used to generate the sinogram. Additionally, rings artifacts were simulated by adding
lines in the sinogram.

The functional (3.3.15) was minimized with two techniques implemented in the PyHST2
code [Mir+14]: FISTA algorithm and the conjugate subgradient algorithm (CSG). In this
test, an over-complete dictionary has been used, resulting in an ill-conditioned problem
which is a difficult setting for optimization algorithms. Moreover we observed that, for
this kind of problem, the “energy transfer” from the reconstructed image to the auxiliary
variables capturing the spurious artifacts (r) occurs in the final part of the convergence
and is slow with FISTA. With CSG, the best convergence properties were obtained with
a = 0.

Figure 3.3.3 shows the plot of the normalized objective function F (w) − F (w∞) for
8000 iterations. Both methods converge to the same final value since the same functional
F (w) is minimized, but the last stage of the optimization process is much faster for
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the conjugate subgradient algorithm. Figure 3.3.4 shows the reconstructed images with
Filtered Back Projection and the Dictionary Learning technique, for parameters β = 0.7
and βr = 10. It can be noted that the rings artifacts are almost entirely removed.

Figure 3.3.3: Logarithmic plot of the values of the objective function for both methods.

(a) (b)

(c)

Figure 3.3.4: Phantom of Lena reconstructed with 80 projection angles. Lines were added
to the sinogram to simulate ring artifacts. (a) Phantom of Lena (b) FBP (c) DL
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The CSG algorithm is therefore successfully adapted for the iterative rings artefacts
correction which will be developed in section 4.1.

3.4 Filter-based proximal computation for ADMM

In parallel geometry, the operator R∗R is shift invariant (see section 1.4.3). As a con-
sequence, the least squares inversion can be computed efficiently, leading to a “filter-
ing” process instead of a whole iterative process. A comprehensive work exploiting this
property can be found in [Pel16]. In this section, we use the approach of this work
to efficiently compute the proximity operator of x 7→ γ

2 ‖Px− d‖
2
2, which is given by(

I + γP TP
)−1 (

x+ γP Td
)
. This prox is required in algorithms like ADMM in the con-

text of TV regularization, and computing it usually requires another iterative solving. In
this case, we show that similarly to deconvolution, the previous prox can be computed
efficiently, leading to an interesting speed-up of the ADMM algorithm.

3.4.1 Least-squares inversion of shift-invariant operators

Let A be a shift invariant linear operator – more details on these operators can be found
in Appendix 6.3.2. There exists a vector hA, hereby simply h, such that evaluating A on
a vector x can be computed as h�x, or even more efficiently as F ∗ ((Fx)� (Fh)) where
F is the unitary DFT14 and � is the vector-vector elementwise multiplication operation.
For example, A can be the model of a spatial blur; in this case, h is called the point
spread function. Given an observed blurry image b, the least-squares deblurring is a LIP
instance

argmin
x

{
1

2
‖Ax− b‖22

}
(3.4.1)

whose (maximum likelihood) solution is given applying the pseudo-inverse x̂ = (ATA)−1ATb.
In general, the pseudo-inverse (ATA)−1AT cannot be computed or even stored, as for a
N pixels image x, this operator has N2 components. In this case, however, A can be
represented by a simple vector h. It can then be shown (see Appendix 6.3.3) that the
pseudo-inverse can be computed as

(ATA)−1AT = F ∗D−1
A F (3.4.2)

where DA is the diagonal matrix containing the FT of h on the diagonal. Applying the
pseudoinverse (3.4.2) on a vector x boils down to “dividing by the PSF in the Fourier
domain”.

This approach has of course numerical issues, which is why regularized pseudoinverse
are used instead. An example of regularized pseudoinverse is (I + γATA)−1AT , which is
the solution mapping of

γ

2
‖Ax− b‖22 +

1

2
‖x‖22 (3.4.3)

It can be shown (see Appendix 6.3.3) that the inversion can be computed as

(I + γATA)−1 = F ∗H−1F (3.4.4)

where H = I + γ|DA|2 is the diagonal matrix where the diagonal component k equals
1 + γ|(Fh)(k)|2. There again, the whole inversion can be efficiently computed and stored
as an operator (meaning that it is computed once and can be re-applied on any vector),
since it is characterized by a vector h (the impulse response).

14 in practice, computing the convolution through FT is not beneficial when the kernel h has a few
non-zero components
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3.4.2 Least-squares inversion in tomography

In the continuous case, it was shown in 1.4.3 that the Radon transform R satisfies

R∗R = Λ−1
2

RR∗ = Λ−1
1

(3.4.5)

where Λ2 and Λ1 are the two-dimensional and one-dimensional Calderón’s operator (i.e
elemenwise multiplication with ν 7→ |ν| in the Fourier domain), respectively15. In this
context, the FBP can be seen as a least-squares inversion described in section 3.4.1, where
A = P is the discretization of the Radon transform. More importantly, Equation (3.4.5)
shows that the Radon transform is a shift-invariant operator, so its least-squares inverse
can be efficiently computed – at least in the continuous case.

In the computed tomographic reconstruction setting, the operator P is a discretiza-
tion of R. The operator P TP is only approximatively translation invariant in pararallel
geometry. Therefore, the “transfer function” is not the inverse Calderón’s operator Λ2

anymore, but the multiplicative inverse of the FT of P TPδ2 (where δ2 is a discrete 2D
Dirac/Kronecker function) which notably depends on the number of projections16. Still,
the matrix P TP has an almost-circulant structure, which seems promising for an efficient
least-squares inversion. In the following, we investigate two approaches.

Direct least-squares inversion

When the data has few projection angles, the FBP does not provide a satisfactory recon-
struction: there is a large mismatch between the continuous case (R∗R)−1 = Λ2 (infinitely
many angles) and the discrete case (P TP )−1 (scarse angles). In this part, we test the
“divide by the transfer function” method described in Appendix 6.3.3.

More precisely, we consider (PP T )−1 instead of (P TP )−1 in order to follow a “filter-
then-backproject” (P T (PP T )−1) approach rather than a “backproject-then-filter” ((P TP )−1P T )
approach (the equivalence in the continuous case is given by Equation (1.4.13)). Indeed,
the backprojection operation should theoretically be carried on an infinite image support;
practical truncation to the reconstructed image support entails strong convolution arte-
facts at the edges. Using the “filter-then-backproject” approach avoids this numerical
issue.

The goal is to compute the operator (PP T )−1 in the discrete setting. The transfer
function of PP T is angle-dependent in contrast with the continuous case. To compute
it, we generate a sinogram where each line (angle) is a 1D Kronecker function δ1. This
sinogram is backprojected and forward projected to get the impulse response17 denoted h.
The DFT of h is then computed: hF = F 1h, giving the transfer function18. The “least-
squares filter” is the elementwise inverse of this transfer function. Figure 3.4.1 shows
examples of inverted transfer functions.

15 one-dimensional Calderón’s operator means that the filtering is applied on only one variable of the
sinogram, as in the FBP

16if the projections are uniformly distributed in [0, π]
17the convolution in the sinogram domain consists in 1D convolutions with each line
18 The Fourier transform F 1 in the sinogram domain consists in computing the 1D FT of each line
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Figure 3.4.1: Angle-dependent filter 1/|hF | computed with two settings: Setting 1 is a
projector on 512×512 grid with 300 angles, Setting 2 is a projector on 512×512 grid with
30 angles. The four quadrants show a line of 1/|hF | at two different angles for the two
settings. The horizontal axes are the numerical frequencies, where the zero frequency is in
the middle. With more projections, the filter gets closer to the Calderón’s filter ν 7→ |ν|.

Given a sinogram d, the least-squares reconstruction is then simply computed as

xML = P TF ∗1(F 1d � hF−1) (3.4.6)

where hF
−1 is the elementwise inverse of the sinogram-like vector hF . Figure 3.4.2 shows

reconstructions of noisy sinograms using this method. Although it yields results similar
to an iterative least squares reconstruction (SIRT/CG), it cannot prevent “noise amplifi-
cation”. This noise amplification can be avoided when using iterative reconstructions by
setting a small number of iterations, giving a trade-off between a blurry solution (few iter-
ations) and a noisy solution (many iterations). This approach does not take into account
a number of iterations, so the noise amplification cannot be avoided.



3.4. FILTER-BASED PROXIMAL COMPUTATION FOR ADMM 123

Figure 3.4.2: Reconstruction of the noisy 512 × 512 MRI phantom from 30 projection
angles. The noise std is 1% and 3% of the noiseless sinogram maximum value for the top
row and bottom row, respectively.

Iterative least-squares inversion

Instead of dividing by the transfer function in order to perform the least squares inversion,
one might also use an approximated version of (P TP )−1. Indeed, iterative algorithms
minimizing f(x) = 1

2 ‖Px− d‖
2
2 converge to (P TP )−1P Td (see Appendix 6.3.4). As the

latter quantity is ill-defined, iterations are stopped early to numerical issues in the solution.
Therefore, the impulse response h of the previous section becomes hn, an impulse response
depending on the number of iterations n.

An iterative least-squares inversion in the context of iterative tomographic reconstruc-
tion is proposed in the work [PB15]. It starts from the standard Landweber iteration for
minimizing f :

xk+1 = xk − α∇f(xk)

= xk − αP T (Pxk − d)

= (I − αP TP )xk + αP Td

(3.4.7)

where α > 0 is the gradient step. Equation (3.4.7) defines an arithmetico–geometric
sequence. If x0 = 0, the iterate N is straightforwardly given by

xn =

[
n−1∑
n=0

(I − αP TP )k

]
(αP Td)

=

[
α
n−1∑
n=0

(I − αP TP )k

]
P Td

(3.4.8)

which is a backproject-then-filter approach, the “filter” depending both on the projector
P (number of projections) and the number of iterations n. As the matrix P TP is almost
shift-invariant, it has an “almost-circulant” structure, which is also the case for I−αP TP ,
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and all the iterates
∑

k(I−αP
TP )k. Thus, for a given number of iterations n, the operator

G =
[
α
∑n−1

n=0(I − αP TP )k
]

is a “filter” and can be characterized by a single vector, its

impulse response. In other words, n iterations of the SIRT/least squares reconstruction
can be pre-computed as a filter [PB15].

To implement this “least-squares filter”, n iterations (3.4.7) (without the term αP Td)
are applied on a 2D Kronecker function δ2, yielding an impulse response hn which can
be used as a filter in the image domain. However, for the same reason as described
previously19, a “filter-then-backproject” approach is followed based on Equation (1.4.2):
the impulse response in the image domain hn is forward projected to obtain an impulse
response in the sinogram domain Phn. A one dimensional convolution is performed at
each angle (sinogram lines), and the result is backprojected.

This “sirt-filter” method is more numerically stable than the previous one, as it ac-
counts for a number of iterations, thus preventing the instability of the inversion process.
Successful applications are reported in [Pel16], which is a promising basis for the fast
computation of the regularized pseudoinverse (I + γP TP )−1.

3.4.3 Fast filter-based proximal computation

The aim of this section is to build a filter approximating the operator(
I + γP TP

)−1 (
x+ γP Td

)
(3.4.9)

In the non-iterative case (“dividing with the psf in the Fourier domain”), the inverse is
given by Equation 3.4.4 where A = P . In the iterative case, the filter after n iterations is
computed with the same fashion as for Equation 3.4.8. It can be shown (Appendix 6.3.4)
that the appropriate iterate is

xn = α

n−1∑
k=0

((1− α)I − αγP TP )k (3.4.10)

where α is the gradient descent step which should satisfy α < 1/(1 + γ
∥∥P TP

∥∥).

For the reason given previously, the operator (I + γPP T )−1 is computed instead.
However, the resulting filter should be applied on an image in contrast to the “SIRT-filter”
which is applied on a sinogram. In the latter case, the filter approximating (P TP )−1 could
be projected to be convolved (line-wise) with the sinogram to reconstruct (consequence of
Equation (1.4.2)). In this case, the proximal given by Equation (3.4.9) has to be applied
on an image x, so we cannot apply the “filter-then backproject rather than backproject-
then-filter” principle. Fortunately, we can use the Woodburry matrix identity which gives
in our case (

I + γP TP
)−1

= I − P T
(
γ−1 + PP T

)−1
P

= I − γP T
(
I + γPP T

)−1
P

(3.4.11)

where the identity matrices domains differ depending on the context. Thus, we can still

compute
(
I + γPP T

)−1
instead of

(
I + γP TP

)−1
even if it has to be applied on an

image.
The reference proximal computation is done with the CG algorithm (see Section 3.1.1).

The “prox-filter” hn is computed with n (several hundreds) iterations of the gradient

19 the operator R∗ theoretically backprojects the images on an infinite grid, which is not the case in
the discrete setting, so convolution border effect occur
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descent {
h̃k+1 = (1− α)h̃k − αγPP T h̃k

hk+1 = hk + h̃k+1

(3.4.12)

where h̃0 = δ1 is a Dirac in the sinogram domain. The proximal is then applied on images

with Equation (3.4.11) where
(
I + γPP T

)−1
is replaced with a (series of 1D) convolution

with hn.
Figure 3.4.3 shows an example of result of proximal applied on an image with the two

methods (CG and prox-filter). When applying the prox
(
I + γP TP

)−1
(x+ γP Td), the

sinogram d is the sinogram of the 256× 256 MRI phantom with 40 projection angles, and
the image x is the “ascent” image from the scipy Python module – this image was chosen
so that the “mixing” effect between sinogram and image can be seen. These figures can be
computed with the Jupyter notebook [Pal17]. From these figure, the “prox-filter” provides
very good approximation of the true proximal.

Figure 3.4.3: Comparison of the results with two methods for computing the proximal:
conjugate gradient and “prox-filter”. Top row: comparison of image results with both
methods. Bottom row: middle line profile of the images: prox-filter (blue) and true prox
(orange).

The prox-filter is then “plugged” in the ADMM algorithm used in section 3.1.1 (instead
of CG), making the overall process run more than twice faster. Figure 3.4.4 compares the
reconstruction results of the 256× 256 MRI phantom with 40 projection angles, with two
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version of ADMM. One is using CG to compute the prox (hereby “ADMM-CG”), and the
other is using the proposed prox-filter to compute the prox (hereby “ADMM-prox-filter”).
Although the “ADMM-prox-filter” reconstruction is not as good as the ADMM-CG, the
result is still promising, and benefits from the “compressed sensing property” (there is no
subsampling artefacts).

Figure 3.4.4: Reconstruction results with ADMM using “prox-filter” (left column) and
the CG algorithm (right column) respectively.

In the numerical experiments, we nevertheless found a limitation to this approach: it
appears that when computing the prox-filter through Equations (3.4.11) and (3.4.12), a
“zero mask” had to be applied to the resulting image. This mask sets to zero all the



pixels outside the circle ζ inscribed in the image support. The ADMM algorithm fails to
converge if this mask is not applied. We believe that the reason why the “masking” is
necessary is that in the discrete setting, the “valid” support of the (regularized) inversion
of P TP is precisely the circle ζ inscribed in the image support. Indeed, the set of image
pixels which have a projection hitting all the angles is ζ; therefore, P TP is only invertible
in this support.

The fast computation of the proximal of x 7→ γ
2 ‖Px− d‖

2
2 with this proposed method

enables to use ADMM with a lesser cost per iteration, as tens of iterations of CG are
replaced with a series of 1D convolutions. If the constrained version of ADMM is used
(Equation (2.7.15) of section 2.7.3), the algorithm gets rid of all its sub-iterations. Another
application is the regularization with orthogonal wavelets transform: as the proximal of
the regularization term is straightforward, both proximal are computed quickly, leading to
an algorithm with fast convergence and low cost per iteration.

Conclusion

In this chapter, we presented efficient implementations of iterative reconstruction methods.
On the algorithmic side, we analyzed competing algorithms for TV reconstruction (3.1.1),
and we fully exploited the property of parallel geometry to speed-up both the convergence
rate (3.1.4) and execution time (3.4). We also proposed a new algorithm to speed-up
the convergence rate of dictionary reconstruction (3.3). On the computational side, we
implemented the relevant operators on GPU for a fast processing (3.1.6 and 3.2)

From the work in this chapter, we can propose the following combination of model/algorithms
depending on the setting:

• Sample with few well-defined phases: TV regularization with C-P algorithm

• More complex/biological samples where a good quality reconstruction of a similar
dataset is available: dictionary-based reconstruction with CSG algorithm

• Complex samples where no similar datasets are available: wavelets regularization
with FISTA or ADMM algorithms.

The combination of state-of-the-art optimization algorithms and high-throughput GPU
implementation of the operators provide reconstruction methods that are fast enough to
be used in production on beamlines.
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Chapter 4

Artefacts removal and local
tomography

In this chapter, we explore how the classical optimization-based reconstruction algorithms
can be extended to account for artefacts. In general, real-world acquired data is often
degraded with “noise” sources linked to the acquisition process. These effects lead to
what is called artefacts in the reconstructed data, in the sense of those are features we do
not want or expect to see. Thus, if the artefacts source can be accurately described in the
forward model, the reconstruction process can hopefully eliminate them.

In the first section, the forward model is modified to take rings artefacts into account.
A structured noise r is added to the sinogram Px, leading to the optimization problem1

argmin
x, r

{
1

2
‖Px− d‖22

}
+ β ‖Dx‖1 + βr ‖r‖1

In the second section, we describe a correction algorithm for local tomography artefacts
removal.

argmin
w

{∥∥∥CP̃Gw − d∥∥∥2

2
+ φ(w)

}
where the slice x̃ = Gw is the synthesis of variables in a coarse image basis, P̃ is a
projection operator on a larger grid, and C is a truncation operator simulating the local
tomography acquisition. The function φ encodes a known zone constraint.

In both cases, the problem differ from the standard reconstruction problem by variables
and/or operators, but are still in the unified mathematical framework developed in the
second chapter.

4.1 Rings artefacts

In this part, we show that the forward model can account for rings artefacts by handling
them as a structured noise. This work was published in [PM15].

4.1.1 Rings artefacts in tomographic reconstruction

During a tomographic acquisition process, some flaws in the experimental setup can lead to
unwanted artefacts appearing on the reconstructed slice. Ring-shaped features are a well-
known example of such artefacts. Even after preprocessing steps like flat-field correction
and median filtering, these artefacts can remain and are detrimental to the reconstruction
quality. Therefore, multiple techniques have been developed to tackle this problem.

Generally speaking, ring artefacts have various possible causes. The presence of defec-
tive pixels in the detector leads to sharp artefacts, while dust on scintillator crystal can

1in the case of an analysis formulation where D can be the gradient operator ∇ or a forward wavelets
transform
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form large artefacts. Experimental flaws can also include vibration of the monochromator
or tilt of the rotation axis. In almost all cases, the defects appear as lines in the sino-
gram since there are independent of the projection angle. These spurious lines give raise
to ring-shaped artefacts in the reconstructed object. Due to the nature of the sinogram,
these rings are always centered in the image.

Various techniques have been proposed in the literature to reduce or suppress the
rings artefacts. As reported in [RLH12], these techniques can be classified into two groups
: sinogram preprocessing and reconstructed images post-processing. The preprocessing
methods aim at detecting and correcting the spurious lines in the sinogram before applying
the reconstruction process, thus, rings do not form if the method succeeds. A recent work
[EB14] reports a regularized approach for rings artefacts reduction using a total variation
denoising of the sinogram before calling the reconstruction routine. It is a generalization
of the algorithm proposed in [Tit+10] which consists in a regularization of the sinogram.
This can also be classified in the sinogram pre-processing techniques.

On the other hand, post-processing techniques work directly on the reconstructed
image, trying to extract the concentric circles and filter them. These methods often
perform a transformation into polar coordinates to transform the concentric circles into
straight lines [PKK09].

A comprehensive comparison of ring artefact removal methods can be found in [RLH12].
Although these methods certainly provide satisfactory results in their limited framework,
the authors report that no existing method is really suitable for reliably correcting all
rings, since they always introduce other distortions. Thus, the ring removal problem
cannot be considered as solved and is subject to continual efforts. In this work, a new
approach to correct the ring artefacts in a compressed-sensing framework is presented.
In this technique, the correction is intrinsically part of the reconstruction process, hence
can be neither be viewed as sinogram pre-processing nor slice post-processing. The basic
idea is to split the sinogram into two components, one containing the genuine sinogram
and the other containing the artefacts component. This approach bears some similarities
with a recent work [Moh+14] where the artefacts model is also included in the objective
function which is optimized in a non homogeneous iterative coordinate descent. However,
the aforementioned method uses a `2 minimization, while regularized methods typically
use a prior like TV, which is adapted for undersampled data.

In this work, we use two rings artefact removal methods for comparison purpose:
one sinogram filtering and one slice processing approach. The reference sinogram pre-
processing technique is the wavelet-Fourier filtering [Mün+09], hereby denoted Fourier-
Wavelets (FW). This methods first compute the wavelet decomposition at a level L of the
sinogram. The vertical detail coefficients Vi at level i ∈ [[1, L]] emphasize the spurious
lines that give raise to rings artefacts. In these coefficients, a spurious line is nearly
constant along the projection angle, thus, it has only low frequencies in the Fourier domain.
Filtering these few low frequencies in the Fourier domain enables to suppress the line after
taking the inverse Fourier transform. The filter used is a high-pass Gaussian filter whose
standard deviation σ tunes the bandwidth. Then, the sinogram is reconstructed from these
filtered wavelet coefficients. In the tests, σ denotes the standard deviation of the Gaussian
filter and L is the number of levels of the wavelet decomposition. The reference image
correction technique used here is Rings Correction in Polar Coordinates [PKK09], hereby
denoted Rings Correction in Polar Coordinates (RCP). It transforms the image into polar
coordinates and performs a low-pass filtering in the radial direction. The filtered image is
then subtracted from the original image, and a threshold is applied to ignore non-artefact
structures. The result is filtered in the azimuthal direction. After a transformation into
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Cartesian coordinates, the image should only contain rings artefacts ; these are subtracted
from the original image. A C++ implementation can be found at [Bla14].

4.1.2 Simultaneous iterative reconstruction and correction of rings
artefacts

In this section, we present how rings correction can be handled directly in the recon-
struction process by integrating additional variables in the functional to minimize. This
approach is independent of the regularization used and can therefore be applied in var-
ious frameworks like total variation and dictionary-based reconstruction. In the general
framework of regularized reconstruction, let f(x,d) denote the data fidelity term (where
d is the acquired sinogram and x is the latent image/volume to be reconstructed), and
g(x) denote the regularization term (see section 2.1.2).

In this approach, the rings correction consists in splitting the sinogram into two com-
ponents: the “genuine” sinogram, and the spurious straight lines giving rings after back-
projection. Indeed, although ring artefacts have various causes, they often appear in the
sinogram as lines which are almost constant along the projection angle (see Figure 4.1.1).
These artefacts form a structured noise which can be taken into account in the forward
model. Thus, a natural approach is to model the rings by constant lines in the sinogram.

Figure 4.1.1: Sinogram of a CT scan of dendritic crystals (data courtesy: Daniil Kazant-
sev, University of Manchester / Diamond I13). The rings artefacts appear as vertical
stripes.

In iterative techniques, the rings correction can be handled by an additional variable
vector r in the fidelity term f(y,x): rings variables are added to the sinogram for each
projection. For a Gaussian noise prior, the fidelity term for one projection reads

f(x,d, r) =
1

2
‖Px+Ur − d‖22 (4.1.1)

If N is the number of pixels of one dimension of the image x, then x is a (N2, 1) vector
(see section 1.3.2). The sinogram d is a (Np × N, 1) vector, where Np is the number
of projection angles. The rings vector r is a (N, 1) variable, where each component is
repeated along all the Np angles according to Figure 4.1.3. The operator U , which is a
(Np ×N,N) matrix, implements the operation illustrated on Figure 4.1.3.

Interestingly, the adjoint of the “tiling operator” U is a “summation operator”. The
evaluation of UTu, where u has the dimensionality of a sinogram, consists in performing
the sum of u along the lines. It means that the component k of v = UTu (v is has the
dimensionality of a sinogram line) is the sum of the column k of u. Summing a sinogram
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along its lines is sometimes used as a sinogram pre-processing technique, as the rings
artefacts are more prominent after the summation (see Figure 4.1.2). Normalizing the
sinogram with this sum sometimes corrects the artefacts, although the quantitativeness is
lost. In the proposed optimization-based framework, the rings variables are often updated
through the gradient of the fidelity term, which involves this summation step UT .

Figure 4.1.2: Profile of the summation along the lines of the singoram in Figure 4.1.1

We emphasize the fact that the sinogram decomposition into a genuine sinogram Px
and spurious rings r is not a pre-processing technique ; the rings removal is intrinsically
part of the reconstruction process. At each iteration, the image x and the rings variables
r are adapted to minimize the energy F (x, r).

Figure 4.1.3: Principle of the rings separation. θ is the projection angle and s is the
detector bin index. The vertical orange and green lines represent spurious lines giving
raise to ring artefacts. The decomposition Px + r forces the ring values to be captured
in the vector r (independent of the projection angle). In the end, only the part without
the rings r is returned.

This splitting is done in the reconstruction process, so the two components are updated
after each iteration. In the end, only the valid sinogram component is kept while the rings
variables are discarded.

By incorporating the rings correction in the reconstruction process, a consistence be-
tween the reconstructed slice and the estimated rings artefacts is maintained. Sinogram
pre-processing techniques modify the acquired data to filter the unwanted lines, which
often introduces new artefacts. On the other hand, image correction techniques can also



4.1. RINGS ARTEFACTS 137

add new artefacts when circular features are detected as artefacts; and the forward and
backward Cartesian-polar coordinate transforms lead to a loss of precision even with in-
terpolation. When the rings correction is done in the reconstruction process, the data is
not modified, and the rings artefacts are estimated in the forward model as a structured
noise.

The inclusion of rings correction into the iterative reconstruction is reviewed for three
types of regularization: Total Variation, Dictionary and Wavelets. We then illustrate the
rings removal capability of the proposed methods on synthetic and real data.

4.1.3 Iterative rings correction in the TV framework

When the sparsity-inducing prior is the total variation, the functional f̃(x, r) is

f̃(x, r) = f(x, r) + β TV (x) + βr ‖r‖1 (4.1.2)

where β is a parameter weighting the relative importance of spatial regularization, and βr
is a penalization parameter for the rings.

While sinogram preprocessing techniques filter the lines parallel to the projection angle,
this approach forces the sinogram to be decomposed as a sinogram Px and rings variables
r. The sparsity constraint βr ‖r‖1 forces the rings variables to have only a few not null
components, since the `1 norm is a convex relaxation of the sparsity-inducing `0 norm.

The minimum of f̃(x, r) can be found with various convex optimization algorithms.
In the context of TV regularization, we use the Chambolle-Pock algorithm (see section
3.1.2).

Most of the time, the fidelity term is a `2 squared distance (see section 2.4.4). The
explicit function to minimize is then given by Equation (4.1.3)

argmin
x

{
1

2
‖Px+Ur − d‖22 + λ ‖∇x‖1 + λr ‖r‖1

}
(4.1.3)

There are at least two ways of building a C-P algorithm instance from (4.1.3), but we will
choose the most “straightforward”. We have:

1

2
‖Px+Ur − d‖22 + λ ‖∇x‖1

= max
q

{
〈Px+Ur − d , q〉 − 1

2
‖q‖22

}
+ max

z

{
〈∇x , z〉 − i λ∞(z)

}
= max

q,z

{〈[
P U
∇ 0r

](
x
r

)
,

(
q
z

)〉
− 1

2
‖q‖22 − 〈d , q〉 − i λ∞(z)

} (4.1.4)

Including the term λr ‖r‖1, problem (4.1.3) corresponds to the saddle point problem (3.1.5)
with

K =

[
P U
∇ 0r

]
F (x, r) = λr ‖r‖1

G∗(q, z) =
1

2
‖q‖22 + 〈d , q〉+ i λ∞

(z)

(4.1.5)

As the above functions are separable with respect to their variables, the corresponding
proximal operators are given by

proxτF (x, r) = (x , Sτλr(r))

proxσG∗ (q, z) =

(
q − σb
1 + σ

, PBλ∞(z)

)
(4.1.6)
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where S is the soft thresholding operator (see Proposition 2.6.3). This approach has the
advantage of not adding a third dual variable. Operator K in Equation 4.1.5 and proximal
maps in Equation 4.1.6 are all what is needed to implement the C-P algorithm.

4.1.4 Iterative rings correction in Dictionary-based reconstruction

Similarly to total variation (4.1.3), the proximal operator is separable with respect to
patch variables w and rings variables r. The optimization problem becomes

argmin
w,r

‖PD∗w +Ur − d‖22 + βDL ‖w‖1 + βr ‖r‖1 + ρ · h(w) (4.1.7)

where w denotes the dictionary coefficients in the frame D∗, and ρ · h(w) is a (differ-
entiable) function promoting overlap between patches [Mir+14]. The scalar parameters
βDL, βr and ρ weight the influence of the dictionary regularization, rings regularization
and patches overlapping, respectively. In this case, the non-smooth term is a simple `1
norm which has a closed-form proximal operator (the soft thresholding operator). Thus,
the FISTA algorithm can be advantageously used. As the regularization is separable in
βDL and βr, the proximal simply consists in an additional soft threshold, which does not
add a significant complexity to the algorithm. The function to optimize has two (vector)
variables. The gradient of the fidelity term is

∇f(w, r) =

(
∇wf(w, r)
∇rf(w, r)

)
=

(
DP Te

UTe

)
+ ρ

(
∇wh(w)

0

)
(4.1.8)

where e = PD∗w +Ur − d is the “error term” (operand of the norm) at each iteration.
FISTA, which is based on a (projected) gradient descent scheme (see ), has a step size
1/L where L > 0 is the largest eigenvalue of the Hessian of the data fidelity term. This
Hessian is given by Equation (4.1.9)

[
∇2
w ∇w∇r

∇r∇w ∇2
r

]
(f + h) =

[
DP TPD∗ UTPD∗

DP TU UTU

]
+

[
∇2
wh(w) 0

0 0

]
(4.1.9)

and is, as usual, computed with several tens of iterations of the power method.

4.1.5 Iterative rings correction in the Wavelets framework

In the wavelets framework, the analysis formulation of the reconstruction problem with
rings correction is

argmin
x,r

1

2
‖Px+Ur − d‖22 + β ‖Wx‖1 + βr ‖r‖1 (4.1.10)

In the case of the standard DWT2, the proximal of β ‖Wx‖1 is straightforward; thus, the
FISTA method can be used (the differentiable term gradient is easy to compute and the
prox is simple). The proximal, separable in x and r, is given by

proxβ‖Wx‖1+βr‖r‖1 (x, r) =
(
W TSβ(Wx), Sβr(r)

)
(4.1.11)

which, in words, consists in thresholding the wavelets coefficients of x (with threshold β)
before transforming them back, and thresholding the rings variable r (with threshold βr).

In the case of SWT, the equality W TW = µI does not hold anymore, so the prox
cannot be simply computed. Instead, a strategy similar to the splitting done for the
Chambolle-Pock TV solver can be adopted. The Equations 4.1.5 and 4.1.6 can be used
by replacing the operator ∇ with the SWT.

2with orthogonal filters
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4.1.6 Results - simulated data

We present here results on simulated data, and compare our method with two mainstream
techniques of rings correction: FW, a sinogram pre-processing based on Fourier-Wavelet
de-striping [Mün+09]; and RCP, an image correction using polar coordinates transforma-
tion [PKK09]3 We also present the results on simulated undersampled data, on which our
method is well adapted.

In simulated data, we use the standard test image “Lena” containing both smooth
components and texture details, making it more challenging to reconstruct than usual
phantoms like Shepp-Logan phantom. For all these tests, the image size is 512 × 512
pixels and 800 projections were used for the reconstructions ; except for the fourth test
(Figure 4.1.13) where only 80 projections were used. The tests are divided in increasing
levels of difficulty for rings removal methods.

In some figures, we drew red arrows to indicate the location of faint rings which can
still be seen after correction.

First test case - small constant lines

In the first test, constant lines are added in the sinogram. These lines independent from the
projection angle give raise to rings artefacts in the reconstructed slice. Since the spurious
lines have a constant value, they should be well handled by pre-processing techniques.

Figure 4.1.4 shows the results for the first test case. The rings are reduced by the
sinogram pre-processing technique (4.1.4.c), but they do not totally disappear. Besides,
additional artefacts appear after the correction. The RCP performs slightly better (4.1.4.e)
; a strong artefact is added to the right but the result is qualitatively better. The Total
Variation regularization entirely removes the rings (4.1.4.g). It can be seen on 4.1.4.h that
other rings were actually added to the slice, but their amplitude is very small according
to the scale (color bar), so they are not detrimental to the reconstruction quality. The
Dictionary Learning reconstruction (4.1.4.i) removes the rings, but the difference image
4.1.4.j shows that the slice is slightly blurred: the very fine details are smoothed.

3 In the case of RCP, the thresholding parameters are set so that all the image pixels can be considered
as possibly part of an artefact. The important remaining parameters are the maximum ring width W , and
the maximum angular arc θ0 we expect the rings to have.
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Figure 4.1.4: First test case.
(a) Original phantom. (b) Result of filtered backprojection after adding constant lines
in the sinogram. (c) Image back-projected after applying the Munch et al. de-striper
algorithm with σ = 3.5, L = 2 and the “Daubechies 15” wavelet. (d) Difference between
the phantom and the corrected image. The PSNR is 26.6.
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Figure 4.1.5: First test case (continued).
(e) Result of the correction with the RCP technique with W = 10 and θ0 = 10. (f)
Difference between the phantom and the corrected image. The PSNR is 29.6. (g) Result
of the reconstruction using the Total Variation regularization, with parameters β = 0.5,
βr = 0.05. (h) Difference between the phantom and the corrected image. The PSNR is
39.0.

Figure 4.1.6: First test case (continued).
(i) Result of the reconstruction using the Dictionary Learning technique with β = 0.3,
βr = 0.5, ρ = 1 (j) Difference between the phantom and the reconstructed image. The
PSNR is 29.2.

Second test case - varying lines

In the second test, lines with variable intensity are added to the sinogram. This makes the
correction more difficult for pre-processing techniques, especially if the lines have sharp
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variations (i.e high frequencies components).
Figure 4.1.7 shows the results for the second test case. The sinogram filtering adds

many spurious rings (4.1.7.c). The RCP technique removes most of the rings, but small
rings details remain. The difference image 4.1.7.f shows some artefifacts which may be
the result of the different transformations between Cartesian and polar coordinates. The
Total Variation regularization (4.1.7.g) entirely removes the rings artefacts ; the result
is qualitatively very close to the original phantom. On the other hand, the Dictionary
Learning reconstruction does not manage to perfectly correct the slice: a remaining ring
can be seen on Lena’s cheek (Figures 4.1.7.i and 4.1.7.j). A solution can be to increase
the value of the parameter β (i.e βDL in eq. (4.1.7)), but it would lead to a more blurry
image. This suggests that the Total Variation is more suited that Dictionary Learning to
correct the rings on a image containing many texture components.

Figure 4.1.7: Second test case.
(a) Original phantom. (b) Result of filtered backprojection after adding lines of variable
width and intensity in the sinogram. (c) Image back-projected after applying the Munch
et al. de-striper algorithm, with σ = 1.5, L = 2 and the “Daubechies 15” wavelet. (d)
Difference between the phantom and the corrected image. The PSNR is 29.2.
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Figure 4.1.8: Second test case (continued).
(e) Result of the correction using the RCP technique with W = 10 and θ0 = 10. (f)
Difference between the phantom and the corrected image. The PSNR is 25.1. (g) Result
of the reconstruction using the Total Variation regularization, with parameters β = 0.5,
βr = 0.05. (h) Difference between the phantom and the corrected image. The PSNR is
39.4.

Figure 4.1.9: Second test case (continued).
(i) Result of the reconstruction using the Dictionary Learning technique with β = 0.7,
βr = 0.5, ρ = 1 (j) Difference between the phantom and the reconstructed image. The
PSNR is 30.6.

Third test case - circular features

In the third test, circular features are added in the phantom before adding spurious lines in
the sinogram. This case is more challenging because correction methods should not remove
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any feature coming from the phantom (they belong to the “true” image), while actually
removing rings coming from the sinogram (they come from a flaw in the experimental
setup).

Figure 4.1.10 shows the results for the third test case. Here two features are added
to the original phantom (4.1.10.a): a black disk and a circular “ring”. These features are
part of the phantom, they should not be filtered by rings correction techniques. Lines
added to the sinogram are not constant along the projection angle, and their width can
be several pixels. This leads to a back-projected image (4.1.10.b) with large rings. The
RCP technique (4.1.10.e) is more efficient than the sinogram preprocessing (4.1.10.c).

The Total Variation (4.1.10.g) removes the rings, but also nearly remove the circular
feature of the phantom 4.1.10.a, which gives the blue circle in the difference image 4.1.10.h.
The black disk is well preserved.

The Dictionary Learning technique (4.1.10.i) does no gives as good results as the Total
Variation regularization. The black disk is blurred, and the rings are not entirely corrected.

Figure 4.1.10: Third test case.
(a) Original phantom. (b) Result of filtered backprojection after adding lines of variable
width and intensity in the sinogram. (c) Image back-projected after applying the Munch
et al. de-striper algorithm, with σ = 2.5, L = 5 and the “Daubechies 20” wavelet. (d)
Difference between the phantom and the corrected image. The PSNR is 23.2.
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Figure 4.1.11: Third test case (continued).
(e) Result of the correction using the RCP technique, with W = 10 and θ0 = 10. (f)
Difference between the phantom and the corrected image. The PSNR is 21.2 (g) Result
of the reconstruction using the Total Variation regularization, with parameters β = 0.5,
βr = 0.05. (h) Difference between the phantom and the corrected image. The PSNR is
29.9.

Figure 4.1.12: Third test case (continued).
(i) Result of the reconstruction using the Dictionary Learning technique with parameters
β = 0.05, βr = 3 ·10−3, ρ = 10 (j) Difference between the reconstruction and the phantom.
The PSNR is 28.3.

Fourth test case - undersampled data

Iterative reconstruction with regularization is especially interesting when it comes to re-
construct a volume from few projections. In the previous test cases, the 512× 512 image
needed π

2 512 ' 800 projections to be accurately reconstructed with the filtered back-
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projection. Figure 4.1.13 shows the result of the third test case with 80 projections instead
of 800. Filtered backprojection (Figure 4.1.13.a) leads to star artefacts due to the data
undersampling. The reconstruction is much more satisfactory with Dictionary Learning or
TV regularisation. In these iterative methods, the ring artefacts correction can be turned
off (Figure 4.1.13.b) or on by simply adjusting one parameter. In all cases, the black
disk is preserved and the ring artefacts correction did not suffer from the few number of
projections. One can notice that in this case, DL produces smoother results than TV, but
does not entirely remove the rings (Figure 4.1.13.c) while TV is able to entirely remove
the rings (Figure 4.1.13.d).

Figure 4.1.13: Reconstruction of the third case phantom (4.1.10.a) with 80 projections
instead of 800. (a) Result of the reconstruction using the Filtered Back-Projection. (b)
Result of the reconstruction using the Dictionary Learning technique, without rings cor-
rection, with parameters β = 0.05, ρ = 10. (c) Result of the reconstruction using the
Dictionary Learning with rings correction, with parameters β = 0.05, βr = 3 · 10−3,
ρ = 10. (d) Result of the reconstruction using the Total Variation regularization with
parameters β = 1, βr = 0.05.

A plot of the rings variables during the total variation reconstruction shows that the
rings are actually captured by the ring vector r. The six peaks representing the detected
lines in the sinogram are clearly visible in Figure 4.1.14. Their location correspond to the
actual locations where the rings were added in the sinogram.
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Figure 4.1.14: Vector of rings variables for second test case (Figure 4.1.7.b). The hori-
zontal axis goes from zero to the number of bins of the detector (512). The peaks location
correspond to the actual position of the rings added in the simulated data, which were 65-
70, 100-110, 125-130, 165-175, 201-202, 321-323 (in pixels). This setting was a 180 degrees
scan, so for each location b ∈ [0, 511], a line was added at the “complementary” bin index
511−b in order to have full rings (otherwise, only half rings appear in the reconstruction).
This complementarity is correctly captured by the optimization procedure, as each peak
has the same height as its “complementary peak”.

Beside the visual aspect of the corrected image, we use the Peak Signal to Noise Ratio
(PSNR) as a measure of the correction quality. Although PSNR gives a score to the overall
similarity between the corrected image and the original phantom, it is inconsistent with
the eye perception of quality. For example, RCP performed better than sinogram filtering
in these tests, but got a lowest PSNR for cases 2 and 3. The structural similarity index
gives the same kind of results. The reasons of this inconsistence can be the following.
The Munch filter has a blurring effect – since it modifies the wavelet detail coefficients –
which is detrimental to the image overall quality. However, the blurring effect is averaged
in the MSE/SSIM calculation. On the other hand, the Polar filter does less blurring, but
there are strong local errors, leading to a high MSE. Quantitative quality assessment is a
difficult issue in tomographic reconstruction, and to our knowledge, no satisfactory metric
adapted to tomographic reconstruction has been proposed yet.

For these tests, sinogram pre-processing technique did not yield good results. This can
be due to the fact that the sinogram lines were captured by the wavelet approximation
coefficients rather than by the detail coefficients, making the filtering ineffective. By trying
with lines of smallest amplitude, the Fourier-Wavelet method actually worked without
adding big artefacts in the reconstructed image.

4.1.7 Results - real data

We give here some results for reconstructions performed on real data.
Figure 4.1.15 shows the reconstruction results on a syntactic foam sample. The slice

is 2048 × 2048 pixels, and 2449 projections were used. In this case, the rings are “large”
in the extent that the radius difference between the exterior and the interior of the ring
is several pixels. This means that the spurious lines in the sinogram have several pixel of
width along the detector bins axis, forming “bands”. However, the intensities of the lines
forming a band has too many variations to be efficiently filtered by sinogram pre-processing
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techniques. This case is also difficult for slice-correction algorithms which detect circular
features, since the sample itself have circular features which should not be removed. The
RCP technique (4.1.15.b), however, only detects circular features whose center is the image
center. The Total Variation technique (4.1.15.c) removes most of the rings, but a relatively
high β had to be chosen, which led to a somewhat blurred result. The Dictionary-based
reconstruction (4.1.15.d) performs a better correction. Note that the dictionary has been
learned offline on Lena image, and yet provided a satisfactory reconstruction.

Figure 4.1.15: Syntactic foam sample (credits: Elodie Boller, ESRF ID19). (a) Filtered
back-projection. (b) Correction with RCP technique, using the parameters W = 60 and
θ0 = 60. (c) Reconstruction with Total Variation technique, using the parameters β =
0.35 and βr = 1 · 10−6 (d) Reconstruction with Dictionary Learning technique, using the
parameters βr = 0.1, βDL = 0.035 and ρ = 20.

Figure 4.1.16 shows the reconstruction results on rhynie chert fossil sample. The slice
is 2048×2048 pixels, and 2000 projections were used. This situation is almost the opposite
of the previous case: the rings artefacts have a small intensity in the reconstructed slice,
and the sample borders form a nearly circular polygonal shape. These border have a huge
amplitude with respect to the rest of the sample, and the transition between the border
and the interior/exterior is very sharp. Thus, slice correction techniques would try to
remove the borders before any other feature in the slice depending on the thresholding
parameters.

The rings correction was difficult for the total variation reconstruction: the procedure
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added rings tangent to one of the slice borders. It turned out that the problem was due to
the rotation center for (back)projection improperly set, leading to accumulating errors in
the iterative reconstruction. Indeed, total variation and dictionary learning reconstruction
require to compute the projection for the functional, and the back-projection for the
functional gradient. If the rotation center for these operations is not the same that the
one used for actually rotate the sample, slight errors appear in the (back)projection ;
these error accumulate with the number of iterations and take the form of circular features
(Figure 4.1.16.c).

After setting the correct rotation center, we were able to remove the ring artefacts
(Figure 4.1.16.d), especially the one near the center of Figure 4.1.16.a. In this case, the
RCP technique did quite well (Figure 4.1.16.b).

Figure 4.1.16: Rhynie chert fossil sample (credits: Paul Tafforeau, ESRF ID19). (a)
Filtered back-projection with the correct rotation axis. (b) Correction with the RCP
technique, using the parameters W = 10 and θ0 = 10. (c) Reconstruction with the
Total Variation regularization using the incorrect rotation axis. (d) Reconstruction with
the Total Variation regularization using the correct rotation axis. The parameters were
β = 3 · 10−3 and βr = 3 · 10−4.

Figure 4.1.17 shows the reconstruction results on dendritic crystals. The slice is 1265×
1265, scanned with 360 projections.
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(a) (b)

Figure 4.1.17: Reconstruction and rings artefacts correction on a dendritic crystals scan
(data courtesy: Daniil Kazantsev, University of Manchester/Diamond I13). (a) FBP. (b)
Reconstruction with TV regularization and rings artefacts correction. The TV regulariza-
tion enhanced the contrast, and the rings were corrected.

4.1.8 Execution time and convergence rate

In this section we measure the execution time required to obtain an acceptable reconstruc-
tion. All the tests are performed on a machine with an Intel Xeon CPU E5-1607 v2 @ 3.00GHz

processor and a GeForce GTX 750 Ti graphic card.

Figure 4.1.18: Execution time as a function of the number of projections for 1000 it-
erations. The image used is the 512 × 512 test image “Lena” corrupted with the rings
presented in the second test case.

We measured that the execution time is the same with rings correction and without
rings correction: including the ring artefacts correction in the functional has no additional
cost in the reconstruction. The execution time is proportional to the number of projections,
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as it can be guessed with Figure 4.1.18, since more data has to be processed by the
operators.

The values of the objective function as a function of the number of iterations is an
illustration of the convergence rate. For Total Variation reconstruction, the objective
function is given by (4.1.2), it includes both the fidelity term (Euclidean distance) and the
regularization term (L1 norm of the image gradient). For Dictionary Learning, it is given
by (4.1.7).

(a)

Figure 4.1.19: Energy as a function of the number of iterations for the Total Variation
tomographic reconstruction. The energy is normalized by the energy of the last iteration
in order to have the same scale in the two cases. The image used is the 512 × 512 test
image “Lena” corrupted with the rings presented in the second test case. Evolution of
energy with 800 projections.

Figure 4.1.19 shows the evolution of the objective function (4.1.2) as a function of
the number of iterations. With rings correction, the reconstruction process needs more
iterations to converge. For simulated and real data, it turned out that a satisfactory
reconstruction can be achieved with less than 1000 iterations without rings correction.
When the rings correction is activated, it takes about 2000 iteration to correctly remove
the ring artefacts. Thus, while the rings correction has no additional cost per iteration,
it takes nevertheless more iterations to converge to an image with removed ring artefacts.
The “energy transfer” between the fidelity term ‖y − (Px+ r)‖22 and the L1 norm of the
rings ‖r‖1 is actually quite slow.

The reconstruction parameters like the total variation penalization and rings correction
weight depend on the data. For most data in parallel geometry, the same parameters can
be used for all the slices. Thus, one single slice can be used for the parameters optimization.
The parameters are chosen manually to have a good reconstruction quality. An approach
towards automatic parameters optimization might be the L-curve method [HO93], which
is not used here.

4.1.9 Conclusion

A new way to correct the rings artefacts has been proposed. This techniques does fit
well in the scope of iterative regularized reconstruction, since it is especially adapted
when the number of projection is limited. Including the rings artefacts correction in the
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iterative reconstruction process has shown to be efficient while requiring no extra pre or
post-processing steps. Besides, additional artefacts are less likely to appear thanks to the
regularization. This method can be adapted to any regularized approach, since the only
things to do are modifying the functional and the iterative correction step accordingly.

Although a simultaneous reconstruction and rings correction is appealing, there are
some limitations: first, the method is less powerful for very large rings artefacts (in this
case, the Fourier-Wavelet method yields better results), and the convergence rate is slower
when the rings correction is enabled. This slower convergence speed motivated the design
of the conjugate subgradient algorithm (see section 3.3).
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4.2 Local tomography

In this section, we propose an interior tomography reconstruction method based on a
known subregion, compatible with a high efficient implementation. This method iteratively
refines a reconstruction, aiming at reducing the local tomography artefacts To cope with
the ever increasing data volumes, this method is highly optimized on two aspects: firstly,
the problem is reformulated to reduce the number of variables, and secondly, the operators
involved in the optimization algorithms are efficiently implemented. Results show that
40962 slices can be processed in tens of seconds, while being beyond the reach of equivalent
exact local tomography method. The method and implementation used in this work was
published in [PDM17] and [PM17].

4.2.1 Introduction

Region of Interest (ROI) tomography, also called local tomography, naturally arises when
imaging objects that are too large for the detector field of view (FOV), as depicted on
Figure 4.2.1. It notably occurs in medical imaging, where only a small part of a body is
imaged for radiation dose concerns.

Figure 4.2.1: Local tomography setup when the detector covers only a ROI of the object.
Image: [Zen10]

Since the projection data does not cover the entire object, it is said to be truncated
with respect to a scan that would cover the entire object. The aim is then to reconstruct
the ROI from this “truncated” data.

However, due to the nature of the tomography acquisition, the acquired data is not
sufficient to reconstruct the ROI in general: for each angle, rays go through the entire
object, not only the ROI. Thus, the data does not only contain information on the ROI,
but also contribution from the parts of the object external to the ROI. For example, on
Figure 4.2.1, the detector gets data from parts of the object located at the left of the ROI.
These contributions from the external parts actually preclude from reconstructing exactly
the ROI from the acquired data in general.

The problem of reconstructing the interior of an object from truncated data is referred
as the interior problem. It is well known that the interior problem does not have a unique
solution in general. If P denotes the projection operator, d the acquired data and x a
solution of the problem P (x) = d, then x is defined up to a set of ambiguity functions u
such that P (x+ u) = d. An example is given in [CD10] where u is non-zero in the ROI,
but P (u) = 0 in the detector zone corresponding to the ROI: two solutions differing by u
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would produce the identical interior data. In [WY13], it is emphasized that the ambiguity
is an infinitely differentiable function whose variation increases when going outside the
ROI. The non-uniqueness of the solution of the interior problem prevents quantitative
analysis of the reconstructed slices.

Methods tackling the ROI tomography problem can mainly be classified in two cat-
egories. The first category methods aim at completing the data by extrapolating the
sinogram. These are often oriented toward easy and practical use, although having no
theoretical guarantees. The second category of methods rely on prior knowledge on the
object. Many theoretical efforts were made on these methods, providing for example
uniqueness and stability results.

Other works use wavelets to localize the Radon transform [Ras+97] [SD05] or focus
on the detection of discontinuities, the best known being probably Lambda-tomography
[YW06]. An extensive work in local methods for reconstructing discontinuities of an object
was conducted in [Bil07].

4.2.2 Sinogram extrapolation methods

In a classical tomography acquisition, the whole object is imaged. If nothing is surrounding
the object, the rays are not attenuated by the exterior of the object; thus the sinogram
values for each angle go to zero on the left and right parts (after taking the negative
logarithm of the normalized intensity, and ignoring the various imperfections). In a local
tomography acquisition, however, the data is “truncated” with respect to what would have
been a whole scan. The incompleteness of the data induces artefacts on the reconstructed
image. The first obvious artefact is visible as a bright rim on the exterior of the image. This
bright rim is the result of the abrupt transition in the truncated sinogram: the filtration
process suffers from a Gibbs phenomenon. Another artefact is referred as the cupping
effect : an unwanted background appears in the reconstructed image, which makes further
analysis like segmentation challenging. These two artefacts occur simultaneously, but they
have different causes. The bright rim comes from the truncation, while the cupping comes
from the contribution of the external part.

Figure 4.2.2 and 4.2.3 illustrates these artefacts. A synthetic slice is projected, and
the resulting sinogram is truncated to simulate a ROI tomography setup. The filtering
step enhances the transition between the ROI and the truncated part which is set to zero.
The difference between the filtered whole sinogram and the filtered truncated sinogram
also shows the cupping effect, which appears as a low-frequency bias.

Figure 4.2.2: Illustration of the truncation artefacts on a line of the sinogram of the
Shepp-Logan phantom. (a): Whole sinogram corresponding to a scan where all the object
is imaged (green), and truncated sinogram (blue). (b): After the ramp-filtering.



4.2. LOCAL TOMOGRAPHY 155

(a)

(b)

Figure 4.2.3: (a): Reconstruction of the truncated sinogram with filtered back-projection.
The contrast has been modified to visualize the interior of the slice. (b): Line profile of
the reconstruction

Sinogram extrapolation methods primarily aim at eliminating the bright rim resulting
from the truncation by ensuring a smooth transition between the ROI and the external
part. Besides, efforts have been put into the estimation of the missing data in order
to reduce the cupping effect. These techniques are referred as sinogram extrapolation
methods: the external part is estimated from the truncated data with some extrapolating
function.

Extrapolating function can be for example constant (the outermost left/right values are
replicated), polynomial, cos2. In [SY11], a mixture of exponential and quadratic functions
are used to estimate the external part, possibly iteratively. Projection of a circle, for which
a closed-form formula is known, can also be used [Van09]. A common approach is using
the values of the left/right part of the sinogram to estimate the external part, that is,
replicating the borders values.

In general, sinogram extrapolation methods do not take into account the sinogram
theoretical properties. For example, given an object being nonzero only inside a circle of
a given radius, the sinogram decreases to zero at the left and right boundaries. Generally
speaking, a sinogram of complete measurements satisfies the Helgason-Ludwig consistency
conditions (4.2.1) [Van09]:

Hn(θ) =

∫ ∞
−∞

snp(θ, s) ds (4.2.1)

is a homogeneous polynomial of degree n in sin θ and cos θ, for all n ≥ 0. An alternative
formulation is given by equation (4.2.2) :

Hn,k(θ) =

∫ π

0

∫ ∞
−∞

snejkθp(θ, s) dsdθ = 0 (4.2.2)

for k > n ≥ 0 and k−n even. In [VDV06], (4.2.2) is used as a quantitative measure of the
sinogram consistency, and is optimized as an objective function. Figure 4.2.4 illustrates
the Helgason-Ludwig order zero condition, i.e the sum of a sinogram along the detector
bins (columns) should be independent of the projection angle.
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(a)

(b)

(c)
(d)

Figure 4.2.4: Comparison of sinograms sums along columns, in nonlocal and local settings.
(a) Sinogram resulting of the scan of a Catphan 600 medical phantom, non-local setting
(courtesy: ID17) (b) Sum of along the columns (c) Sinogram corresponding to the slice
on Figure 3.2.22, local setting (d) Sum along the columns

For many applications, constant extrapolation provides acceptable results [Kyr+11],
although cupping artefact makes the segmentation challenging.

4.2.3 Prior knowledge based interior tomography

It was long believed that ROI tomography cannot be solved exactly, because of the nature
of Radon inversion through FBP: the reconstruction of each voxel requires the knowledge
of all the (complete) lines passing through this voxel. However, in the last decade, it has
been shown that multiple nonequivalent reconstruction formulas allow partial reconstruc-
tion from partial data in the 2D case [CD10]. Alternatively to Filtered Back Projection
reconstruction, which requires complete data, Virtual Fan Beam (VFB) and Differentiated
Back-Projection (DBP) were developed based on the Hilbert projection equality [Cla+09].

Moreover, uniqueness theorems based on analytical continuation of the Hilbert Trans-
form were stated and progressively refined in [Noo+02], [Cla+04], [NCP04], [ZPS05],
[Def+06], [Ye+07], [Kud+08], [TYT12]. They ensure an exact and stable reconstruction
of the ROI given some assumptions. These assumptions can be of geometric nature, or in
the form of a prior knowledge.
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(a) (b)

Figure 4.2.5: (a): Setup where the DBP can reconstruct the ROI. As the scanner field of
view extends the ROI on both sides, the finite inverse Hilbert Transform can be computed.
(b): Setup of interior tomography when the FOV does not extend the object. Only the
knowledge of a sub-region can provide an exact reconstruction. Images: [Zen10]

Geometry-based prior knowledge is related to the acquisition geometry. For example,
in DBP based reconstruction, a point can be reconstructed if it lies on a line segment
extending outside the object on both sides, and all lines crossing the segment are measured
[CD10], as shown in Figure 4.2.5 (a). Similar results were obtained under less restrictive
assumptions, for example the field of view extending the ROI on only one side [Ye+07].

These geometry-based methods do not work, however, when the FOV does not extend
the object (Figure 4.2.5 (b)). In this case, it has been shown [Cou+08] that a prior
knowledge on the function inside the ROI enables exact and stable reconstruction of the
ROI. This knowledge can be in the form of the function values inside a sub-region of the
ROI [Kud+08] or can be about the properties of the function to reconstruct, for example
sparsity in some domain.

This latest kind of knowledge has led to compressive sensing based ROI tomography.
In [Yan+10], [YW09], [Lee+15], Total Variation method is used to reconstruct the ROI. In
[NSK07], the function is assumed to be sparse in the wavelet domain, and a multi-resolution
scheme reduces the number of unknown by keeping only fine-scale wavelet coefficients
inside the ROI. In [KQR15], it is shown that piecewise constant functions are determined
everywhere by their ROI data, the underlying hypothesis being formulated as sparsity in
the Haar domain.

4.2.4 Local tomography and artefacts

The most common local tomography reconstruction method is extrapolating the sinogram
before computing the filtered backprojection (FBP), hereafter denoted padded FBP. The
extrapolation is usually done by replicating the sinogram boundary values. This prevents
truncation artefact (Gibbs phenomenon) from occurring, and often provides acceptable
results [Kyr+11].

However, this technique can fail when the ROI is surrounded by anisotropic and/or
strongly absorbing material, or when the reconstruction has intrinsically low contrast (for
example different parts with the same linear absorption coefficient).

The notable local tomography artefact is the cupping effect. On a reconstructed image,
local tomography artefacts appear as a varying contrast. The gray values are typically
higher far from the center than close to the center, forming a “cup”. The cupping is also
visible when plotting an image line passing through the center, as a function of the pixel
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location. Such lines are hereby called profiles; for example, the vertical line profile is the
vertical line of the image passing through the center.

Figure 4.2.6 shows the Shepp-Logan phantom with a region of interest. Figure 4.2.7
shows the reconstruction with padded FBP and Figure 4.2.8 shows line profile of the
reconstruction. The cupping effect is clearly visible in both the reconstruction image and
profile. This cupping effect can be detrimental for the post-reconstruction analysis, for
example segmentation.

Figure 4.2.6: Shepp-Logan phantom, 2562 pixels. The right bar indicates the gray values,
which for real data can be the linear attenuation coefficient values. The blue circle is the
region of interest covered by the detector field of view.

Figure 4.2.7: Zoom on the region of interest defined by the blue circle on Figure 4.2.6. The
support is 1362 pixels. Left: ground-truth zoom. Right: reconstruction with padded FBP.
The image is brighter close to the center than far from the center, which is characteristic
of the cupping effect. Contrast was adapted with respect to the center of the images.
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Figure 4.2.8: Horizontal line profile in the region of interest. Blue: ground truth. Green:
padded FBP reconstruction. The error on the padded FBP reconstruction appears as a
low frequency mean bias.

In this work, we examine a family of exact reconstruction methods based on a known
subregion. We implement a method handling a reduced number of unknowns by expressing
the image in a coarse basis in order to correct the cupping effect.

4.2.5 Standard iterative reconstruction

Iterative methods in tomography are based on optimization algorithms solving problem
(4.2.3)

Px = d (4.2.3)

with the usual notations. In this context, the reconstructed slice x is an image of support
N ×N = N2, where N is the number of pixels of the detector horizontally. The sinogram
d support is N × Np, where Np is the number of projections. Thus, the projector is
theoretically an operator of dimensions (N × Np, N

2), assuming that slices are stacked
as one dimensional N2 vectors, and sinograms are stacked as one dimensional N × Np

vectors.
As (4.2.3) is ill-posed in general, a surrogate problem is solved instead, for example

problem (4.2.4).

argmin
x

{
‖Px− d‖22 + φ(x)

}
(4.2.4)

where ‖·‖22 is the squared Frobenius norm and φ(x) is a function bringing stability to
the solution. In local tomography, problem (4.2.3) is even more ill-posed due to the
incompleteness of the data d, as explained in the introductory part. In order for the
solution to be acceptable, the exterior of the ROI has to be estimated. This can be done
by extending the support of x to iteratively estimate the exterior by solving (4.2.5)

argmin
x̃

{∥∥∥CP̃ x̃− d∥∥∥2

2
+ φ(x̃)

}
(4.2.5)
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where x̃ is an image with extended support N2 × N2 = N2
2 , where N2 > N , and P̃ is a

wider projector adapted to this new geometry. To compute the data fidelity term (here
the Euclidean distance between P̃ x̃ and d), the size of the projected solution has to be
consistent with the acquired data. Thus, the projection is cropped by the means of an
operator C to recover the original local geometry. The cropping operator C maps an
extended sinogram of support N2 × Np to a sinogram of support N × Np, by keeping
only the N central columns. This models the truncation in the local tomography setup,
where the detector is not large enough to image the entire object support N2. In practice,
the cropping operation is implemented inside the projector P̃ by simply restricting the
projection to the detector limited field of view N . In the formulas, the cropping operator
C is explicitly separated from the projector P̃ to highlight the local setup in the forward
model.

Efficient implementations of the projection and backprojection operators enable to
solve problem (4.2.5). The ASTRA toolbox [Aar+16], for example, has versatile geometry
capabilities and built-in algorithms for solving (4.2.5) for φ(x) = 0.

In this work, we consider the case where a subregion is known. This prior knowledge
on the volume can be used to constrain the sets of solutions. A uniqueness theorem
was stated in [Kud+08] along with a reconstruction algorithm based on differentiated
backprojection and projection onto convex sets to invert the finite Hilbert transform. This
algorithm, however, is difficult to implement; and no implementation is readily available
for experiments.

We focus on a simpler approach based on formalism (4.2.5). In this formulation, the
prior knowledge can be encoded in several ways. The first is to enforce the values of x̃ in
the known region, for example using an indicator function. The second is to add a term
penalizing the distance between the values of x̃ in the known region and the actual values.
We adopt the latter approach, which was proposed for example in [RK10].

Let Ω denote the domain where the values of the volume are known. It is a subset
(possibly a union of subsets) of the image support N2, and we denote NΩ its cardinality,
that is, the total number of known pixels. Let x|Ω denote the values of x inside the known

region. The prior knowledge is encoded by φ(x) = λ
∥∥x|Ω − u0

∥∥2

2
where u0 denotes the

known values inside Ω and λ ≥ 0 is a parameter weighting the fidelity to the known zone.
Both x|Ω and u0 have NΩ components.

Figures 4.2.9 and 4.2.10 shows the reconstruction result on the Shepp-Logan phantom
with such choice of φ(x). The cupping effect is almost removed, but the reconstructed
slice is also noisy, which is a known effect of least squares minimization on an ill-posed
problem when running too many iterations [VRU08]. On the other hand, many iterations
are required to reduce the cupping effect.
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Figure 4.2.9: Result of iterative reconstruction with standard least squares minimization.
Contrast was adapted with respect to the center of the image.

Figure 4.2.10: Line profiles of reconstructions of the Shepp-Logan phantom in a local
tomography setup. Top line: reconstruction profiles for padded FBP (blue) and iterative
least squares (green). Left: middle line of the reconstructed image. Right: middle column
of the reconstructed image. Bottom line: difference profiles between the ground truth x]

and the reconstructions with padded FBP x0 (blue) and iterative least squares x̂ (green).
Left: middle line of the difference image, Right: middle column of the difference image.
The iterative least squares reconstruction almost removes the cupping effect, but a high
frequency noise can be seen in the profiles.

A workaround on this problem is adding a regularization term to stabilize the solution.
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In the case of TV regularization, the function φ(x) in (4.2.5) can then be written φ(x) =

λ
∥∥x|Ω − u0

∥∥2

2
+ β ‖∇x‖1 where β ≥ 0 weights the regularization. Figures 4.2.11 and

4.2.12 show the result of reconstruction with this method. The reconstruction is much
more accurate and bears almost no difference with respect to the ground truth, which is
an illustration of the uniqueness theorem stated in [Kud+08].

Figure 4.2.11: Result of iterative reconstruction with total variation regularization. Con-
trast was adapted with respect to the center of the image.

Figure 4.2.12: Line profiles of differences between reconstructions and ground truth.
Blue: difference between padded FBP x0 and ground truth x]. Green: difference between
iterative total variation minimization x̂ and ground truth x]. Left: line profile, Right:
column profile. Total Variation minimization removes both high and low frequency errors,
exactly recovering the region of interest.

This approach, hereby denoted Standard Iterative Reconstruction (SIR), has two draw-
backs. The first is using a prior which might not be accurate: in this example, Total
Variation promotes piecewise-constant images and is thus not adapted for complex sam-
ples. The second drawback is on the computational side. Adding a non-differentiable
prior involves to change the optimization algorithm for another probably less efficient in
the sense that more iterations are required to reach convergence. In the examples, the
preconditioned Chambolle-Pock algorithm described in [PC11] was used for the TV min-
imization. Approximatively 3 000 iterations are required to approximately get rid of the
cupping effect (when approximatively 500 are required in the case of a complete scan), and
more than 10 000 iterations are required to get the line profiles shown on Figure 4.2.12.
This approach is impracticable for modern datasets with increasing amount of data: on
the one hand, projection and backprojection become costly operations, on the other hand
even more iterations are required due to the higher number of variables.
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4.2.6 An iterative correction algorithm for local tomography

In the proposed method, we also use an iterative algorithm, but only for correction, not
for reconstruction. Based on the observation that FBP with extrapolation provides satis-
factory reconstruction of medium and high frequencies of the slice, the proposed method
aims at improving the reconstructed slice by removing the local tomography artefacts vis-
ible as low frequencies (cupping effect). This correction is performed by representing the
reconstruction error in a coarse basis, reducing the number of degrees of freedom of the
problem.

Estimating the reconstruction error

Let x0 be a reconstruction of the region of interest with the padded FBP technique, and
x] be the true values of the region of interest. Both are slices of support N2 pixels. The
reconstruction error, unknown in practice, is denoted e = x] − x0. This error mainly
consists in low frequency artefacts (the cupping effect).

The proposed method aims at correcting the low frequencies artefacts by representing
them in a coarse basis, in order to decrease the number of degrees of freedom. The forward
model is

argmin
xe

{∥∥∥CP̃ (x̃0 + xe)− d
∥∥∥2

2
+ φ(xe)

}
(4.2.6)

where xe is a correction term added to the initial reconstruction. Here again, x̃0 denotes
an extension of the support of x0, P̃ is a projection operator adapted to this extended ge-
ometry, and C is a truncation operator. As the initial reconstruction is constant, problem
(4.2.6) can be rewritten

argmin
xe

{∥∥∥CP̃xe − f∥∥∥2

2
+ φ(xe)

}
(4.2.7)

where f = d − CP̃ x̃0. Problem (4.2.7) can be understood as fitting the (approximate)
reconstruction error f . As the reconstruction error in the ROI is e = x] − x0, we can
write

ẽ = x̃] − x̃0

P̃ ẽ = P̃ x̃] − P̃ x̃0

CP̃ ẽ = d− Px0

(4.2.8)

where x̃] denotes the whole volume, so that d = CP̃ x̃] models the local tomography
acquisition. If x0 is extended to x̃0 by inserting zeros, then CP̃ x̃0 = Px0 as there is no
contribution from the external part. However, the quantity of interest is the reconstruction
error (e) in the ROI, not in the whole volume (ẽ). Since the projection of e is different
from the cropped projection of ẽ, the term d−Px0 only approximates the projection of the
reconstruction error in the ROI. This quantity is nevertheless used as an approximation
of the projection of the reconstruction error in the ROI. Once the optimal correction term
x̂e is found, the resulting reconstruction is simply computed as x = C̃(x̃0 + x̂e) where C̃
is a cropping operator in the image domain, mapping images of support N2

2 to images of
support N2.

Reducing the degrees of freedom

The principle of the implemented method is to refine an initial solution of the local to-
mography problem, knowing that middle and high frequency features are usually well
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recovered. By focusing on the low frequencies, the complexity of problem (4.2.5) can be
reduced by solving a simpler problem. Complexity reduction is achieved by expressing the
reconstruction error in a coarse basis.

Gaussian function were chosen as a representation basis, which finds a computational
justification detailed in 4.2.7. The reconstruction error e is estimated by ê as a convolution
between a finite discrete Dirac comb and a two dimensional Gaussian function gσ defined
by Equation (4.2.9)

gσ(u, v) =
1

σ
√

2π
exp

(
−u

2 + v2

2σ2

)
(4.2.9)

where u, v denote discrete indexes in the image, and σ > 0 is the standard deviation
characterizing the Gaussian function. The estimate of the reconstruction error at location
(u0, v0), ê(u0, v0), is then given by Equation (4.2.10)

ê(u0, v0) =
∑
u,v

cu,vgσ(u0 − u · s, v0 − v · s) (4.2.10)

where cu,v are coefficients multiplying the Gaussian functions gσ, and s is the spacing (in
pixels) between points of the Dirac comb. The summation in (4.2.10) actually occurs on
a finite support. In our implementation, the Gaussian function is truncated at 3σ at each
side, so the sum takes place on a b6σ + 1c × b6σ + 1c pixels square.

This representation of correction features as Gaussian blobs is actually not a basis in
the mathematical sense: some images cannot be represented by a linear combination of
Gaussians. However, this representation is very close to a basis for σ ' s [Bal+02]. In
our case, we choose s = 0.65 × σ, meaning that there is a significant overlap between
the Gaussians. The discrete Gaussian kernel is truncated at 3σ, so its length is d6σ + 1e
samples.

Estimation (4.2.10) is done such that projection of ê has minimal Euclidean distance
with d − Px0. Let G denote the operator mapping the coefficients ci,j to the image ê
through convolution formula (4.2.10). The coefficients vector c is estimated by solving
Problem (4.2.11)

argmin
c

{∥∥∥CP̃Gc− f∥∥∥2

2
+ φ(c)

}
(4.2.11)

where f = d−Px0 and φ(c) is a constraint function on the coefficients which is detailed
later.

Thus, Problem (4.2.11) is solved instead of Problem (4.2.5). In Problem (4.2.11), the
unknowns are the coefficients c of the coarse basis. As there are much less coefficients c
in the coarse representation than pixels in the extended image support N2

2 , the degrees of
freedom is accordingly reduced – in a first approximation, by a factor s2.

Solving (4.2.11) requires the computation of the operators C, P̃ , G, and possibly their
adjoints. The implementation of the crop operator C is straightforward, as it consists
in truncating the sinogram to the size of the acquired data. In practice, it consists in
modifying the projector P̃ so that the projections are limited to the reduced detector field
of view N2. The operator G can be described as follows. Coefficients cu,v are placed every
s > 0 pixel on an image of the size of the extended reconstruction x̃0. This image (a two
dimensional Dirac comb in the continuum case) is then convolved by the kernel gσ. Lastly,
an efficient implementation of the projection and backprojection operators is needed to
solve (4.2.11). This is discussed in the implementation section.
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Adding the known zone constraint

The known zone constraint is simply encoded as a distance between the known zone u0 and
the restriction of the estimate to the known zone support, Gc|Ω. The final optimization
problem is

argmin
c

{∥∥∥CP̃Gc− f∥∥∥2

2
+ β

∥∥Gc|Ω − u0

∥∥2

2

}
(4.2.12)

4.2.7 High-performance implementation

After having reduced the number of degrees of freedom for problem (4.2.6), we describe
an efficient implementation of the involved operators based on look-up tables (LUT).

Projection a of Gaussian tiling

The choice of a Gaussian basis for a coarse representation of the correction term is based
on a characteristic of the Gaussian kernel: it is both rotationally invariant and separable
[KS92]. These two properties provide a computational advantage: the order of projection
and convolution can somehow be exchanged.

More precisely, given an image y consisting of the Gaussian coefficients evenly placed
with a spacing s, the standard way to compute P̃Gy is first performing the convolution
Gy defined by (4.2.10) and then projecting with P̃ . An equivalent computation, however,
can be done by first projecting the image of isolated points y, and then convolving each
line of the resulting sinogram by a one dimensional Gaussian function. This is illustrated
in Figure 4.2.13.

This latter approach has two advantages. First, the two dimensional convolution (or
two series of one dimensional convolution in this separable case) is replaced by a series
of one dimensional convolutions. Secondly, the projection here only consists in projecting
isolated points. This operation can be optimized by designing a point projector based on
look-up tables.

Figure 4.2.13: Illustration of the alternative way of computing the projection of a tiling
of Gaussian functions. In the first approach (top line), coefficients are evenly placed on
the image support (left). This image is then convolved by the 2D Gaussian kernel (green
circles), which gives an intermediate image (center). This image is projected to obtain
a sinogram (right). In the second approach (bottom line), isolated coefficients (left) are
projected. Each line of the resulting sinogram (middle) is convolved by a 1D Gaussian
kernel, to obtain the sinogram (right).
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LUT-based point projector

As previously discussed, the operators involved in forward model (4.2.12) are a cropping
operator, a one dimensional convolution and a projector. The convolution can be efficiently
implemented, either in the Fourier space or in the direct space when one of the functions
has a small support. Therefore, a fast projector is essential for solving (4.2.12) in an
iterative fashion. In our case, the object to project has a very special structure, as it
consists in points spaced by several pixels. Thus, standard projectors of tomography
softwares can be replaced by a more efficient implementation, hereby called point projector,
based on look-up tables.

In the remainder, the notations used are the following. The support of the original
image is N2. The number of projections is Np, so the acquired sinogram has size N ×Np.
The size of the extended image is N2

2 where N2 ≥ N . The number of Gaussian functions
used to tile the support is Ng. The spacing between Gaussian blobs on the image is s;

thus we have Ng '
(
N2
s

)2
in a first approximation. We also use the following indexes

convention: Gaussian coefficients are numbered with i ∈ [0, Ng[, and sinogram indexes are
numbered with k ∈ [0, Ns[ where Ns = N2 ×Np is the size of the (extended) sinogram.

Each Gaussian coefficient number i ∈ [0, Ng[ is projected on (at most) Np positions in
the sinogram. Therefore, a look-up table J is built so that for each i, J [i] is the “list”
of locations in sinogram hit by this point after projection. The LUT J is an array of
size Ng × Np. Each entry Ji,j corresponds to a position, in the sinogram, that is hit by
a projected point i ∈ [0, Ng[. For example, entry J0,2 is an index in the sinogram that is
hit by point 0; and entry J5,j are an indexes hit by point 5 for all j. This is illustrated by
Figures 4.2.14, 4.2.15.

Figure 4.2.14: Principle of the point projector. Gaussian basis coefficients are placed on
the image of N2

2 support (left), with even spacing. Each isolated point is projected on at
most Np positions in the sinogram (right).
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Figure 4.2.15: Illustration of the Look-Up Table J . The Gaussian coefficients placed
on the image are stored in a vector of size Ng (top). Each coefficient point (indexed in
[0, Ng[) is projected on at most Np positions in the sinogram. For each i ∈ [0, Ng[, the
structure J [i] = {Ji,0, Ji,1, . . .} (bottom) contains the list of the sinogram positions hit by
projection of i. For example, the Gaussian coefficient number 0 is projected on sinogram
positions J0,0, J0,1 . . ..

When computing the sinogram, however, the look-up table J is best accessed “back-
ward”: for a given position k ∈ [0, Ns[ in the sinogram, we have to determine which points
are hitting it through projection. To this end, two look-up tables J and Pos are built.
For k ∈ [0, Ns[, Pos[k] indicates a position in LUT J , and J [pk] is a coefficient number
i ∈ [0, Ng[ being projected at position k. Therefore, the LUT J does not contain sinogram
indexes anymore, but rather coefficient indexes. This is illustrated in Figure 4.2.16. The
LUT J is re-ordered such that the interval [pk, pk+1 − 1] gives access to an indexes range
in J ; this index range is the set of all coefficients indexes being projected on sinogram
index k.

The point projector is described by Algorithm 4.2.1. The matrix W , indexed in the
same way as J , contains the weights of the projections: depending on the position of a
point in the image and the projection angle, its projection does not exactly fall into a
sinogram pixel. The matrix W thus encodes the geometric contribution of the projection
of the points.

This projection scheme basically consists in storing the explicit projection matrix P̃
with a Compressed Sparse Row (CSR) format [Bar+94], where LUT J corresponds to
“col_ind”, LUT Pos corresponds to “row_ptr” and matrix W contains the values. Stor-
ing the entire “linear-algebra” projection matrix without compression would entail to store
(N2

2 )× (N2 ·Np) elements, which is impracticable (for example more than one terabyte is
required for a 10242 slice). However, as each slice point is projected on at most Np sino-
gram positions, this matrix actually has at most N2

2 ×Np nonzero elements. Additionally,

as the slice is reduced in a coarse basis, there are
(
N2
s

)2 × Np nonzero values to store in
this case. The format described above is used to store these elements. Algorithm 4.2.1 is
thus no more than a matrix-vector multiplication with a sparse matrix in CSR format.
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Figure 4.2.16: Illustration of the LUT-based point projector. To determine which points
are projected on position k ∈ [0, Ns[ of the sinogram, the matrix Pos (bottom) is accessed
at index k, and contains the value Pos[k] = pk. This value pk is a position in LUT J
(middle), so that J [pk] = i1 is the index of one coefficient being projected at index k in
sinogram. The process is repeated for pk + 1, until pk+1 − 1. The corresponding range in
J (shaded orange) indicates coefficient indexes that all are projected on sinogram index
k.

Algorithm 4.2.1 Point projector

sino: sinogram, of size Ns = N2 ×Np

J: LUT, of size Ng ×Np

coeffs: coefficients vector of the Gaussian basis, of size Ng

W: projection weights, of size Ng ×Np

1: procedure pointProjector(sino, J, coeffs, W)
2: for k ∈ [0, Ns − 1] do
3: pos1 = Pos[k]
4: pos2 = Pos[k+1]
5: for j ∈ [pos1, pos2[ do
6: sino[k] += W[j] * coeffs[J[j]]
7: end for
8: end for
9: end procedure

This approach for computing the point projector is friendly in a memory-write point of
view: after accumulating the contributions of all coefficients projected on position k, the
sinogram at index k, sino[k], is updated accordingly. This is especially important for GPU
implementation, as consecutive threads access contiguous memory locations, which is a
coalesced access pattern. On GPUs, each memory transaction actually entails accessing
L bytes, so coalesced access to 32 bits scalars results in a read or write of L/4 addresses
in a single transaction (for example L = 128 for modern NVidia GPUs).

Implementation of the adjoint operators

As a gradient-based optimization algorithm is used for solving (4.2.12), the adjoint of

operator CP̃G has to be computed. This operator GT P̃
T
CT consists in extending
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the sinogram with zeros, point-backprojecting and retrieving the Gaussian components
from the backprojected image. As mentioned above, the operator G can be described
as G = HσU where U is an upsampling operator (here with a factor s), and Hσ is the
convolution with 2D Gaussian kernel (4.2.9). Thus, GT = Hσ

TUT which is a down-
sampling followed by a convolution with kernel (4.2.9). The actual computation is then

GT P̃
T
CT = Hσ

TUT P̃
T
CT = UT P̃

T
H1
σC

T where H1
σ is a one dimensional convolution

on the sinogram rows.

As previously, these operations can be merged. As GT P̃
T
CT returns a Gaussian

coefficients vector from a sinogram, only the coefficients are of interest here. Therefore,

the point-backprojector P̃
T

is merged with the downsampling UT as previously. For a
given coefficient, we have to find which sinogram entries backproject on the coefficient
position. This approach avoids to compute useless Ng × (s − 1)2 backprojections points
on the image, as it is downsampled afterwise.

The point backprojector is implemented, as previously, with a LUT J2 of size Ng×Np

and a LUT Pos2 of size Ng + 1. The matrix J2 is re-ordered so that for all i ∈ [0, Ng[,
the interval [Pos2[i], Pos2[i + 1] − 1] corresponds to an index range in LUT J2. This is
illustrated in Figure 4.2.17.

Figure 4.2.17: Illustration of the LUT-based point backprojector. To determine which
sinogram points are backprojected on coefficient i ∈ [0, Ng[, the matrix Pos2 (bottom), is
accessed at index i, and contains the value Pos2[i] = qi. This value qi is a position in LUT
J2 (middle), so that J2[qi] = k1 is the index of one sinogram entry being backprojected
at index i of the coefficients vector. The process is repeated for qi + 1 until qi+1 − 1.
The corresponding range in J2 (shaded orange) indicates sinogram indexes that are all
backprojected on coefficient index i.

The point-backprojector is given by Algorithm 4.2.2. Again, the backprojection from
a sinogram to a Gaussian coefficients vector corresponds to a matrix-vector multiplication
with a matrix in CSR format. The matrix W 2, containing the geometric weights of the
backprojector, can be viewed as the Column Sparse Storage (CSC) version of the matrix
W .
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Algorithm 4.2.2 Point backprojector

coeffs: coefficients vector of the Gaussian basis, of size Ng

sino: sinogram, of size Ns = N2 ×Np

J2: LUT, of size Ng ×Np

W2: backprojection weights, of size Ng ×Np

1: procedure pointBackProjector(coeffs, sino, J2, W2)
2: for i ∈ [0, Ng − 1] do
3: pos1 = Pos2[i]
4: pos2 = Pos2[i+1]
5: for j ∈ [pos1, pos2[ do
6: coeffs[i] += W2[j] * sino[J2[j]]
7: end for
8: end for
9: end procedure

Parallel implementation

In modern experiments carried on X-ray light sources, the data volumes, produced by
new generations of detectors, always overwhelm the computing power. Simply waiting for
more powerful machines is of little hope, as advances in detectors overruns the Moore’s
law. Instead, an algorithmic work has to be accomplished to exploit parallelism of modern
architectures. In the last decade, the advent of general-purpose GPU (GPGPU) computing
was advantageously used, especially in tomography.

The proposed method has been implemented in the PyHST2 software [Mir+14] used at
ESRF for tomographic reconstruction, with the CUDA language targeting Nvidia GPUs.
The point-projector and point-backprojector, which are the most time-consuming opera-
tors, are implemented as efficient CUDA kernels. As for Algorithms 4.2.1 and 4.2.2, the
CUDA point-projector and point-backprojector are implemented as matrix-vector multi-
plication with a matrix in CSR format.

We describe here the implementation of the point-projector, i.e the computation of the
sinogram values sino[k] for k ∈ [0, Ns[. The point-backprojector follows the same principle.
To compute the sinogram value sino[k], the LUT J has to be accessed from pk to pk+1− 1
as illustrated on Figure 4.2.17. This memory range is accessed in parallel by threads of
the many-cores GPU with the following principle. Each thread reads m ≥ 1 values in the
LUT. With these values J [j], where j = pk, pk + 1, . . ., the coefficients vector is accessed
at coeffs[J [j]]. The threads are grouped in blocks, and each thread updates a temporary
array in shared memory with the contributions read in coeffs[J [j]]. Then, in each block,
the shared array is accumulated by one thread. The result is added to sino[k]. This is
illustrated in Figure 4.2.18.

The parallelization is done on the read of matrix J , as it is the biggest data structure
of the method. As it has been re-arranged so that the inverval [pos[k],pos[k + 1] − 1] is
a contiguous memory range in J , the described implementation has an efficient memory
access pattern.
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Figure 4.2.18: Illustration of the GPU LUT-based point projector. The memory range
[pk, pk+1−1] in LUT J (top, shaded orange) contains all the indexes needed to be accessed
in the coefficients vector to compute sino[k]. In this illustration, each thread reads m = 2
values in the LUT (red rectangles). The threads are grouped in blocks of n threads (blue
rectangles). In the block 1, threads t1,1, . . . , t1,n update a temporary shared array with
their contribution. The same is done in block 2, where another temporary shared array is
used. Then, one thread per block accumulates the results of the shared array, and adds
the results to sino[k]. The addition has to be atomic, as threads from several groups might
access sino[k] at the same time.

Multi-resolution Gaussian basis

The correction term xe in model (4.2.6) is a tiling of Gaussian functions: xe = Gc where
c is the vector of coefficients in the Gaussian basis, and G is the operator previously
described. In a first approach, all the Gaussian functions (4.2.9) have the same variance
σ2, so that operator G is linear and problem (4.2.12) is convex. The coefficients are
placed on a support of size N2

2 before being (theoretically) convolved with a 2D Gaussian
kernel. The spacing between points is s, so that the number of required coefficients is

approximately Ng '
(
N2
s

)2
.

Another approach is using different variances depending on the position in the image.
As only the support N ≤ N2 of the original reconstruction x0 has to be corrected, Gaus-
sians with a larger support (larger σ) can be used on the exterior of the ROI, further
reducing the number of unknowns. By using small Gaussians (small σ) inside the ROI,
local features can be estimated in the correction term xe, while large Gaussians are used
to roughly estimate the contribution of the exterior of the ROI. The new operator G can
be written

G =
∑
j

HσjU j (4.2.13)

where σ1, σ2, . . . is a series of standard deviations for the Gaussians, and U j are upsam-
pling operators with different factors. This representation is similar to a multi-resolution
scheme also used in [NSK07]. This multi-resolution basis allows to further reduce the

number of variables in vector c: in this case, Ng <
(
N2
s

)2
. In our implementation, the

standard deviations are progressively doubled until reaching the diameter of the ROI, and
then remain constant outside the ROI.

Implementation of (4.2.13) is straightforward. The coefficients in vector c are classified
according to the distance to the center, forming subsets of coefficients c1, c2, . . .. Each sub-
set is point-projected, and line-convolved with the corresponding σ1, σ2, . . .. The resulting
sinograms are summed to obtain the projection of Gc.
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Optimization algorithm

Efficient optimization algorithms can be used to solve the quadratic problem (4.2.12). We
use the conjugate gradient (CG) algorithm, requiring the computation of the adjoint of
the involved operators previously described. CG also entail matrix-vector multiplications,
which are efficiently implemented with the CSR representation of point-projector and
back-projector.

In the GPU implementation, all the involved arrays are single precision (float 32 bits)
as most GPUs are relatively not efficient with 64 bits operations. However, the conjugate
gradient algorithm involves scalar products. These operations are implemented by dedi-
cated kernels returning double precision values, as error accumulation is noticeable when
accumulating on large arrays in single precision.

4.2.8 Results and discussion

In this section, we discuss the results of the proposed method for local tomography recon-
struction. Three test cases are used: the Shell-Logan phantom with low contrast, the Lena
image with high contrast but strong absorbing material outside the ROI, and a truncated
sinogram of a real dataset scan. Synthetic sinograms are generated by projecting an object
and truncating the sinogram to the radius of a given region of interest in the image. A
benchmark is also performed for the GPU implementation on the first test case.

The following notations are used: σ is the standard deviation of the Gaussians of the
basis, s is the grid spacing, N2 is the size (width or height in pixels) of the extended image
and R is the radius (in pixels) of the known region. In practice, the size of the “original
image” (which corresponds to the size of an image that would contain the whole object in
practice) is unknown, hence N2 is always chosen different from the width of the original
test image.

In all cases, the input image is projected with a projector covering the entire object.
The resulting synthetic sinogram is then truncated to the radius of the region of interest.
The truncated sinogram is the input of the methods. The proposed method is compared
to the padded FBP.

First test case

The first test involves the standard Shepp-Logan phantom (Figure 4.2.19), 256× 256 pix-
els. The region of interest is embedded inside the “absorbing outer material” (ellipse with
the highest gray values) to simulate a local tomography acquisition. For an easier inter-
pretation of the line profiles in the final reconstructed images, the values of the standard
phantom are multiplied by 250 so that all the values are between 0 and 500. The width
of the extended for reconstruction image is N2 = 260.

This phantom is the “original” Shepp-Logan phantom, not the “modified Shepp-Logan
phantom” where the contrast is improved. In our case, low contrast is important for the
tests, as the cupping effect is stronger and directly visible in the reconstructed slice. For
high contrast images, the cupping effect only affects few low frequency components, and
is thus less detrimental to the reconstruction quality.
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(a) (b)

Figure 4.2.19: (a): Shepp-Logan phantom of size 256×256. The outer circle is the region
of interest, the inner circle is the known subregion. The dashed lines indicate the profiles
which are to be plotted in the reconstructed slice. (b): View of the region of interest (with
adapted contrast).

Figure 4.2.20 shows the result of the reconstruction with padded FBP and with the
proposed method. The Gaussian coefficients were computed with σ = 4 on a grid of
spacing s = 6. The known region radius is R = 20 pixels, and the extended image width
is N2 = 260 pixels.

By visual inspection, this method do not induce new artifacts in the reconstruction.
Figure 4.2.21 shows a line profile of this reconstruction. The cupping effect is visible for the
padded FBP, and it has been removed with the proposed method. More importantly, the
average reconstructed values are distributed around the true interior values. This provides
an illustration of the uniqueness theorem: knowing the values of a subregion of the ROI
enables to exactly reconstruct (up to numerical errors) the ROI. The reconstruction with
the proposed method bears the same high frequencies as the FBP with full data, which
is a good indication that this method do not induce new artifacts. The fact that the
reconstruction has the same mean values than the true interior could enable quantitative
analysis of the reconstructed volume, which is not easily achievable in local tomography.

Figure 4.2.20 shows the reconstruction results for the setup of Figure 4.2.19. As it can
be seen, the cupping effect is mostly removed with respect to the padded FBP technique.
Importantly, the proposed method does not create additional artefacts when correcting
the cupping effect. Figure 4.2.21 shows line profiles of these reconstructions. The known
zone constraint provides a reconstruction with an almost zero mean bias.
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Figure 4.2.20: ROI reconstruction results. Left: padded FBP, right: proposed. For both
images, the contrast was adapted with respect to the center.

Figure 4.2.21: Line profiles of reconstructions with the proposed method and the padded
FBP. The proposed method was executed with Ng = 1345 (left) and Ng = 729 (right),
corresponding to a relatively coarser basis.

The known zone constraint is important to remove the mean bias. As it can be seen
on Figures 4.2.22, the cupping effect remains if no constraint is applied. In this case,
the uniqueness theorem does not apply when there is no constraint, hence there are no
guarantee that the method converge to an acceptable solution.

First test case - benchmark

In this section, we compare the proposed method with the SIR method described in section
4.2.5, in term of speed.

The image size varies in the benchmarks, and the radii of ROI and known zone also
vary accordingly. The known zone has be chosen as a uniform zone.

In the following benchmark, the following notations are used. N is the horizontal
size of the initial reconstruction, i.e the diameter of the acquired ROI, which means that
the acquired sinogram has a size N × Np. N0 is the horizontal size of the whole object
support, unknown in practice (for example N0 = 512 in the case of the 5122 Shepp-Logan
phantom). N2 is the horizontal size of the extended reconstruction (N2 > N), which
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Figure 4.2.22: Reconstruction of the Shepp-Logan phantom without known zone con-
straint

should approximate N0. Lastly, Ng is the number of Gaussian functions used for the
proposed method.

We describe the problem setup and the settings of the proposed algorithm with a series
of “Setting” keywords in Table 4.1:

• Setting 1: N0 = 512, N = 272, N2 = 572, Ng = 1345, iterations = 200

• Setting 1b: Same as Setting 1, except Ng = 729

• Setting 2: N0 = 1024, N = 544, N2 = 1144, Ng = 1345, iterations = 300

• Setting 2b: same as Setting 2, except Ng = 2081

• Setting 3: N0 = 2048, N = 1088, N2 = 2288, Ng = 1345, iterations = 500

• Setting 3b: same as Setting 3, except Ng = 805

• Setting 4: N0 = 4096, N = 2176, N2 = 4576, Ng = 2081, iterations = 500

• Setting 4b: same Setting 3, except Ng = 1037

All the test were performed on a machine with a Intel Xeon CPU E5-2643 12 cores
3.40GHz, and a Nvidia Geforce GTX Titan X GPU. As the LUT can be used for all
the slices of a volume, the computation of the LUT is not taken into account. The
optimizations algorithm used are the preconditioned Chambolle-Pock method [PC11] for
pixel domain exact method, and Conjugate Gradient for the proposed method.

We report both the number of iterations needed to converge to the objective function
minimum, and the total execution time. This gives information on both the efficiency on
the optimization algorithm to converge for the given problem, and on the complexity of
each iteration, as the time for one iteration is roughly the total execution time divided by
the number of iterations.

Table 4.1 summarizes the results of the two methods for various setups. For each
original phantom size, the two methods are tested with two sets of different parameters.
For 5122, 10242, 20482, 40962 original phantom shapes, the number of projections are
respectively 800, 1500, 2500 and 4000.

The Python prototype implementation of this method was run with the parameters
of Table 4.1. It yields the following execution times: 11.3 seconds for a 5122 image, 83.1
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Proposed method SIR method

Settings CPU Time GPU Time PSNR Its Time (s) PSNR

Setting 1 10.2 2.31 35.5 4000 123 36.79

Setting 1b 5.86 2.01 34.93 3000 106 35.94

Setting 2 36.71 5.14 28.03 4000 523 31.56

Setting 2b 60.7 11.4 30.25 8000 1094 37.85

Setting 3 235 33.5 27.73 4000 3570 15.13

Setting 3b 129 19.2 24.75 7000 6237 20.71

Setting 4 1028 109 24.11 4000 N.A. N.A.

Setting 4b 870 97.6 22.74 7000 N.A. N.A.

Table 4.1: Execution time for various local tomography setups. The execution times are
in seconds. The “N.A.” entries mean that the method was not executed until convergence
as it took too much time.

seconds for a 10242 image, 842 seconds for a 20482 image, and 3630 seconds for a 40962

image. Although it is still better than the “pixel domain approach”, it suffers from very
long execution times for large images. The LUT computation time, which is in the order
of several minutes for a 4096× 4096 slice, does not appear in Table 4.1 as the same LUT
can be reused for the whole volume.

In the example of 5122 phantom size, the proposed method is executed with an acquired
sinogram of width 272 pixels. The slice is extended to 572 pixels, and the Gaussian basis
is configured to have 1345 functions in total. 200 iterations yield the reconstruction of
Figure 4.2.20 in 10.2 seconds (without taking the LUT computation time). On the other
hand, the standard pixel-domain method is executed with 4000 iterations and yields a
reconstruction similar to Figure 4.2.11, although of slightly lesser quality, in 123 seconds.
The test is then run for a smaller number of Gaussians: the execution time is reduced, but
the quality is slightly degraded. This is due to the fact that the number of Gaussians is
determined by the spacing s, which itself is linked to the standard deviation σ. Decreasing
the number of unknowns (Ng) speeds up the computations, but also increases the width
of the Gaussians, so the reconstruction error might not be appropriately fitted.

The proposed method essentially has one parameter: the initial value for σ4 A good
estimate of the extended slice size N2 can be obtained by first computing a FBP on
a very large reconstruction grid: in this case, the object support can be inferred from
visual inspection once for all the volume. Given a size N2, small initial σ lead to larger
computation times as there are more functions in the basis, so the LUT are bigger. Larger
initial σ decreases the computation time but might yield coarser results. Figure 4.2.23
shows an example of the influence of the number of Gaussians Ng on the result in the case
of a 10242 original phantom. As seeing the profile, the cupping removal is slightly better
when Ng is bigger (smaller Gaussians) and the error profile is overall closer to zero.

4 as explained in the multi-resolution subsection, the standard deviations are then progressively doubled
until reaching the ROI radius; and then kept to a maximal value outside the ROI.



4.2. LOCAL TOMOGRAPHY 177

Figure 4.2.23: Line profile of reconstruction of a 10242 phantom with 5442 pixels ROI,
with different number of Gaussian functions.

The SIR method (with pixel domain variables) starts to be impracticable from 20482

pixels slices, as thousands of iterations are required to yield an acceptable image quality,
leading to hours of processing per slice. The execution times for 40962 slices could not be
measured as they take too much time; therefore the PSNR are not available in these cases.
This method is actually implemented in Python with the ASTRA Toolbox, meaning that
only the projection and backprojection are performed on GPU, so the implementation
suffers from memory transfers between CPU and GPU. If fully implemented on GPU, one
could expect a 5-10 speed-up for this method; nevertheless the proposed method would
still be ahead.

For both methods the PSNR is progressively decreasing as the size of the slice increase,
yet the reconstructions are satisfying. We believe this is a consequence of the cupping being
not entirely corrected on the slice borders, which brings more and more contribution as
the number of pixels increase.

Second test case

The second test involves the test image “Lena”, 512 × 512 pixels, bearing both smooth
regions and high frequencies textures. Ellipses with strong intensity values has been su-
perimposed in the exterior of the ROI to simulate absorbing material.

Figure 4.2.24 shows the test setup. The known region has be chosen as slowly varying
as possible, as in real acquisitions the known region is likely to be air or coarse features.
The width of the extended image is N2 = 520.

Figure 4.2.25 shows the difference between the true interior and the reconstruction
with the proposed method, with and without the known zone constraint. In this case, the
differences between the proposed reconstruction and the true interior are not significant
enough to display the curves of absolute line profiles, so only the difference profiles are
shown. The parameters σ = s = 3 has been used for these reconstructions. Figure
4.2.26 shows the reconstructed images. As the contrast is high, the cupping effect is not
prominent on the reconstructions ; however, an excessive brightness can be seen on the
bottom side.

It is also interesting to visualize the reconstruction of the whole extended image. As
it can be seen on Figure 4.2.27, the Gaussian basis even yields an approximation of the
exterior. This approximation is actually important for modeling the contribution of the
external part in the acquired sinogram. The bias correction is thus closely related to the
modeling of the external part.
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(a) (b)

Figure 4.2.24: (a) Phantom “Lena”. Ellipses with high gray values has been added to
accentuate the local tomography setup. The outer circle is the ROI, and the inner circle
is the known region. The dashed lines indicate the profiles which are to be plotted in the
reconstructed slice. (b) View of the region of interest with adapted contrast.

(a) (b)

(c) (d)

Figure 4.2.25: Profiles of difference between the reconstruction and the true interior
for the Lena image. x0, x̂ and x] are the padded FBP, the proposed reconstruction and
the true interior, respectively. In blue: difference between the padded FBP and the true
interior. In green: difference between the reconstruction with the proposed method with
σ = s = 3 and the true interior. First row: profiles of the middle line of the image for
(a) R = 35, (b) no constraint (R = 0) Second row: profiles of the middle column for (c)
R = 35, (d) no constraint (R = 0)
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(a) (b)

(c)

Figure 4.2.26: Reconstructions with (a) proposed method, known zone of radius R = 35
(b) proposed method, no known zone (R = 0), (c) padded FBP.

Figure 4.2.27: Extended image after reconstruction, without cropping to the region of
interest. The parameters used were σ = s = 3 and R = 35.
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(a) (b)

Figure 4.2.28: (a) Pencil test image. In red: region of interest. In green: known sub-
region. (b) View of the region of interest.

(a) (b) (c)

(d) (e) (f)

Figure 4.2.29: Profiles of difference between the reconstruction and the true interior for
the pencil image. x0, x̂ and x] are the padded FBP, the proposed reconstruction and
the true interior, respectively. In blue: difference between the padded FBP and the true
interior. In green: difference between the reconstruction with the proposed method with
σ = s = 3 and the true interior. First row: profiles of the middle line of the image for
(a) R = 20, (b) R = 10, (c) R = 40. Second row: profiles of the middle column for (d)
R = 20, (e) R = 10, (f) R = 40

Third test case

The third test involves the image of a pencil resulting from a scan at the ESRF ID19
beamline, 512 × 512 pixels, shown on Figure 4.2.28. The width of the extended image is
N2 = 520.

Figure 4.2.29 shows profiles of the difference between the reconstruction and the true
interior. On this image, a greater radius also improves the cupping removal. The profile
of a line through the reconstructed image is depicted on Figure 4.2.30.
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Figure 4.2.30: Line profiles for the pencil image. The proposed method were applied
with parameters σ = s = 3 and R = 40.

(a) (b)

Figure 4.2.31: Profiles of difference between the reconstruction without known zone
constraint and the true interior for the pencil image. (a) Line profile. (b) Column profile.

As a last remark, Figure 4.2.31 shows the result of this method without using the
known zone constraint, that is, without applying the constraint g|Ωg = g0.As expected,
there is a not-null mean bias, even if it has been reduced with respect to padded FBP.

Beside visual inspection, reconstructions can be quantitatively compared to the true
interior of the test image. Table 4.2 shows the comparison with two image metrics: peak
signal to noise ratio (PSNR) and the structural similarity index (SSIM). As these metrics
are indicators of an average distance between two images, we believe it is well suited for
this purpose of evaluating how the low frequencies are corrected by the proposed method.

These results suggest that the proposed method yield better overall reconstruction
quality than padded FBP. In particular, it does not induce spurious distortion in the
reconstruction. For the “Lena” test case, a similar reconstruction quality was obtained
with (σ, s) = (4, 6) with respect to (σ, s) = (3, 3) ; which indicate that a coarser basis do
not always yield worse reconstruction results.

For all the reconstructions with the proposed methods, the conjugate gradient op-
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Image Reconstruction method Parameters PSNR SSIM

Shepp-Logan Padded FBP 20.09 0.5751

Shepp-Logan Proposed σ = 4, s = 6, R = 20 38.40 0.6362

Shepp-Logan Proposed σ = 5, s = 6, R = 20 33.96 0.6360

Lena Padded FBP 22.65 0.8417

Lena Proposed σ = s = 3, R = 35 35.89 0.9582

Lena Proposed σ = 4, s = 6, R = 35 33.80 0.9588

Pencil Padded FBP 26.41 0.8542

Pencil Proposed σ = s = 3, R = 10 31.15 0.9840

Pencil Proposed σ = 4, s = 6, R = 40 31.91 0.9901

Pencil Proposed σ = s = 3, R = 40 34.22 0.9906

Table 4.2: Metrics of reconstruction quality for the three test images, computed inside
the reconstructed ROI.

timization algorithm was used. The convergence is reached within 400 iterations. The
prototype method available at [Pal16] takes the following execution times on a machine
with a Intel Xeon CPU E5-1607 3.00GHz CPU, and a Nvidia GTX 750 Ti GPU : 7 seconds
for a 260× 260 extended slice, 32 seconds for a 520× 520 extended slice, and 152 seconds
for a 1040× 1040 extended slice.

The proposed method depends on some parameters. The first is the size of the extended
image, which should be big enough to model the contribution of the external part. The
other parameters are the Gaussian standard deviation σ and the spacing s of the grid. Both
are related in a way that the Gaussian functions should slightly overlap to approximate
constant functions: if s value is high, then σ should also be high and conversely. These
parameters essentially tune how coarse is the Gaussian basis: high values would yield fast
convergence but coarse result, while small values would yield slow convergence and fine
result.

Using a Gaussian basis does not yield an exact correction of the error, as Gaussian
functions defined in Equation (4.2.9) do not form a basis. For example, Gaussian functions
do not yield a partition of unity, although a very close approximation of this property can
be achieved [Bal+02]. Thus, the final reconstruction cannot be exact due to the basis
coarseness, but can provide results quite close to FBP with full data.

4.2.9 From simulated data to real data

In this subsection, we measure the quantitativeness of the proposed local tomography
algorithm on a real dataset. We use the Catphan 504 medical imaging phantom [Lab13]
and performed the scans at the ESRF beamline ID17, with a beam energy of 78 keV and
a Germanium detector with direct detection. Two scans were performed: a non-local scan
covering the entire field of view, and a scan were Plexiglas (PMMA) slabs were placed at
some locations before the sample to simulate an additional absorbing material.

Figures 4.2.32 and 4.2.33 show the reconstruction of a slice of the phantom correspond-
ing to the CTP404 module. On the right column, the cupping effect is clearly visible. This
module contains materials of known linear attenuation coefficients at various energies, a
table can be found in [Lab06].
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(a) (b)

(c) (d)

Figure 4.2.32: Reconstructions of the Catphan 504 imaging phantom. (a, b) reconstruc-
tions in non-local and local settings, respectively. (c, d) enhancement of contrast of (a,
b).

(a) (b)

Figure 4.2.33: Line profiles corresponding to Figure 4.2.32. (a) Reconstruction from
global data. (b) Reconstruction from local data.
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The line profiles on Figure 4.2.33 are crossing the following inserts:

• LDPE (Low-density polyethylene) between 0-50 pixels: µ78 = 0.168, reconstruction
gives µ̂78 = 0.17

• Two wire ramps made of teflon: µ78 = 0.346, reconstruction gives µ̂78 = 0.30 for one
ramp and 0.28 for the other. At this scan resolution, the ramps might might be too
thin to give an accurate measurement of the linear attenuation coefficient.

• Delrin (Polyoxymethylene) from pixel 350: µ78 = 0.236, reconstruction gives µ̂78 =
0.23

Figure 4.2.34 shows a line profile of the reconstruction using the proposed local tomography
algorithm, using the Air inserts (black disks on Figure 4.2.32) as a known subregion.
Arguably, the cupping effect is mostly removed, and the reconstruction quantitativeness
is recovered by comparison to Figure 4.2.33.

Figure 4.2.34: Line profile of a reconstructed slice of the CTP404 module, using the
proposed local tomography algorithm.

Although performing quite well on previous datasets, the proposed method failed to
remove the local tomography artefacts on some other datasets. A failure case example
was an Archaeopteryx skull scan. The skull is very elongated, resulting in an almost total
absorption in one direction.

In general, the local tomography artefacts are not the only artefacts, and several other
effects are perturbing the reconstruction. The following parts give insights of the elements
on the experimental side that could impact the reconstruction procedure.

Point Spread Function

An imaging system does not have an infinitely thin point spread function. In other words,
an object having a width of exactly ∆ will results in an image of this object with a width
∆2 > ∆. The spread of objects supports by the imaging system can have different causes:

• The PSF of the detector, due to the response of its sensing elements.

• Light scattering in a scintillator, when one is used.

• Unwanted effects in the optics elements involved in the imaging chain.

All these effects can be combined in an equivalent PSF, which can be space-varying –
although in general, a constant PSF is assumed in order to build a simple convolution-
based model.
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Figure 4.2.35 illustrates the PSF of a Frelon detector5 with a Gadolinium Oxysulfide
(Gadox) scintillator. This detector has a (horizontal) pixel size of 47 microns.

Apart from the non-ideal material used to measure the PSF (the slit is not perfectly
sharp as a step function), it can be seen that the support is several tens of pixels. This
large PSF is certainly essentially caused by the scintillator, as other measurements with a
direct detector (without scintillator) led to a PSF of less than two pixels of 350 microns,
i.e 0.7 mm (for the direct detector) to be compared to 0.94 − 1.13 mm (for the detector
with scintillator).

(a)

(b)

Figure 4.2.35: Measuring the point spread function of the (Frelon/Gadox) detector at 80
keV. (a) A Tungsten slab with a sharp slit is placed in front of the detector. (b) Relative
intensity profile at the edges of the tungsten slit.

The deconvolution of the detector PSF has to be performed as a pre-processing step on
the projections (not the sinogram) before computing the logarithm of the ratio − log(p/p0)
where p is a projection image and p0 is a measurement of the incoming beam (flat-field).
An alternative could be to add the convolution in the forward model. Letting C be the
convolution operator with the (known) PSF, the (unregularized) optimization problem
becomes

argmin
x

{
1

2
‖C(p0 � exp (−Px))− p‖22

}
(4.2.14)

where � denotes an elementwise multiplication, and the exponential is computed elemen-
twise. Here, the measured data p is the set of projections instead of a sinogram. The
convolution takes place in the projection domain, (as the PSF is a detector feature) while
Px is a sinogram. Therefore, several slices have to be projected simultaneously in order to
transpose the obtained stack of sinograms to form a subset of the projections (see Figure
1.2.2). The projection subset has to be large enough to contain the PSF support, i.e suf-
ficiently many slices have to be reconstructed simultaneously. Thus, the vector x denotes
a slab of slices (instead of a single slice) in this context.

Problem (4.2.14) is unfortunately not convex, so the algorithms reviewed in section
2.7 might not converge. We did not investigate further this model as it might be too
cumbersome to solve whereas the gain might not be valuable. Besides, the acquisition
is often followed by a phase retrieval procedure, as most tomography scans at ESRF

5Frelon is a designed at ESRF
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exploit the phase contrast rather than the absorption contrast. In the case of the Paganin
phase retrieval [Pag+02], a band-pass filter is applied to the projection data; thus, any
deconvolution (roughly a high pass filter) will have limited effect.

Scintillator afterglow

Most scintillators are characterized by an afterglow effect, i.e they continue to scintillate
light after the X-ray beam is stopped. The afterglow time ranges from a few to hundreds
microseconds time scale [Nik06].

Figure 4.2.36, illustrates the afterglow of the Frelon/Gadox detector. When acquiring
one image every 50 ms and closing the shutter, the intensity drops to the noise levels
in one frame, i.e in less than 50 ms. Besides, many scans are continuous, meaning that
instead of acquiring the projection images one after the other (“step by step mode”), the
detector acquires the signal over a small angular range. This leads to a slight averaging
effect which can be similar to the afterglow effect. Therefore, we believe that the afterglow
is not a significant issue for most scan settings.

(a)
(b)

(c)
(d)

Figure 4.2.36: Measuring the remanence of the Frelon/Gadox detector. One image is
acquired every 50 ms. (a) Integration time of 10 ms. (b) Zoom of (a) around the 100th
frame. (c) Integration time of 50 ms. (d) Zoom of (c) around the 50th frame.

Other effects

Other effects due to the experimental setup can arise.

• Half tomography: consists in placing the rotation axis near an extremity of the
sample and a performing a 360 degrees scan. The resulting sinogram is then “cut”
in two half sinograms and merged to obtain a sinogram virtually covering twice



the original field of view. By doing so, each projection has an overlapping zone
around the rotation axis (a zone at projection θ is found again at θ + 360 degrees).
This redundant zone should be weighted (for example by 1/2). In any case, half
tomography can induce “transition artefacts”.

• Strong absorption effects and phase retrieval when an object is strongly absorbing,
artefacts arise after the phase retrieval. For example, the Paganin phase retrieval
[Pag+02] assumes that the δ/β ratio is constant in the slice (where δ and β respec-
tively denote the decrement of the real part and the imaginary part of the complex
refractive index), which does not hold when objects have a strong absorption with
respect to the others.

• Large field of view required: if the region of interest is very small with respect to
the rest of the object, the extended slice size (N2) has to be notably greater than
the original ROI size N . This is problematic for performances when the slice size is
already big (more than 4000× 4000 pixels). Even with a smart projector and back-
projector pair, the proposed algorithm starts to be impractical for 10000 × 10000
extended slices. Using a “too small” extended slice might invalidate the quantita-
tiveness guarantee.

We believe that the two latter are the main responsible reasons for the failure of the
proposed local tomography reconstruction algorithm on some datasets. As a possible
improvement of this algorithm, an idea could be to first correct the cupping effect for a
low resolution image (obtained with binned projections) and then applying the upsampled
correction to the reconstruction. This could work because the correction only contains low
frequencies, so it does not suffer significantly from downsampling or upsampling.

Conclusion

In this chapter, we showed how the mathematical framework for regularized tomographic
reconstruction can be extended to take artefacts into account. More precisely, the forward
model is transformed by the means of new operators to simulate either the rings or a local
tomography setup, leading to a new optimization problem.

The iterative rings correction (section 4.1) combines the volume reconstruction with the
ring artefacts removal and is shown to be efficient where other methods do not succeed,
although finding a method successful in every case is still an unsolved problem. The
resulting optimization problem is harder to solve than the usual `1-regularized problem,
which motivated the development of the CSG algorithm (section 3.3).

The proposed local tomography reconstruction algorithm (section 4.2) addresses a
difficult problem by actually solving a simpler related surrogate problem; yet, it yields
promising results as quantitativeness can be recovered.
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Chapter 5

Conclusion

This thesis aimed at investigating how regularized tomography algorithms can address
reconstruction challenges, in particular limited/noisy data and artefacts. These recon-
struction algorithms amount to solve an optimization problem which depends on the noise
model and prior knowledge on the volume. In this work, we brought contributions to three
aspects of regularized reconstruction methods: modelling, algorithmic and computational
sides.

On the modelling side, we developed a unified formalism for all the reconstruction
methods, enabling to properly separate the forward model, operators and optimization
algorithms. The design of a reconstruction method schematically follows three steps:

• A noise model and a prior knowledge on the volume are defined.

• The reconstruction problem is cast in the form of an minimization problem, where
the data fidelity term depends on the noise model and the regularization term comes
from the assumption that the volume can be sparsely represented in some basis.

• The best-suited optimization algorithm is designed and implemented to solve the
resulting minimization problem.

We extended the standard Bayesian framework by incorporating artefacts as new vari-
ables in the corresponding optimization problem, which corresponds to modelling them as
a structured noise. Two applications are given: rings artefacts removal, and local tomog-
raphy reconstruction. The proposed rings removal method simultaneously reconstructs
a volume with regularization and corrects for artefacts, and is shown to compete with
standard correction methods. The proposed interior tomography algorithm, primarily
dedicated at artefact removal, allows for quasi-exact reconstruction.

On the algorithmic side, we used and extended state-of-the art convex optimization
algorithms dealing with non-differentiable objective functions for tomographic reconstruc-
tion. With the recent advances in proximal algorithms, the presence of the `1 term –
necessary to benefit from the robustness to undersampling – is not an issue as it used to
be. Depending on the volume prior (regularization), either Chambolle-Pock, ADMM or
FISTA is a good choice.

• For Total Variation regularization (piecewise-constant images), we showed that the
Chambolle-Pock algorithm is appealing for both its high versatility and the fact that
it does not require to solve inner sub-problems.

• For Wavelets, FISTA and ADMM are simple and efficient, although ADMM re-
quires to tune algorithm parameters for a better convergence. We showed that in
our parallel geometry setting, the least-squares proximal operator can be efficiently
computed, leading to an interesting speed-up of algorithms like ADMM.
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• For Dictionary synthesis reconstruction combined with rings artefacts correction, we
designed a new optimization algorithm tailored for ill-conditioned LASSO problems.

On the computational side, we implemented all the regularized methods in the to-
mography software used at ESRF, notably a high-performance Chambolle-Pock Total
Variation solver and a GPU wavelets library. The implementation on GPU of data pro-
cessing algorithm is not an option today, as modern detectors data throughput tend to
overpace the grow of computing power. The software PyHST offers a toolbox of ready-
to-use advanced reconstruction algorithms running on GPU. We also developed a GPU
Wavelets library which is ready to be integrated in other projects of regularized linear in-
verse problems. These regularized methods enable to reconstruct highly subsampled/noisy
data where traditional methods usually fail, while being reasonably fast. Although the
computation time is one reason restraining users to adopt these methods, we believe that
our high-performance implementation efforts make them more usable in practice. Regu-
larized methods indeed start to be used at ESRF beamlines in some cases. However, these
methods are more likely to be used if they are available in several reconstruction softwares.
In this work, we tried to give enough details to implement them, and many prototypes
and codes are publicly available.

Outlooks

Iterative methods, and therefore regularized iterative methods, are still little used in prac-
tice for two main reasons: computation time and usability. On the one hand, these
methods are slower than the plain FBP, so datasets take more time to reconstruct; on
the other hand they involve a parameter selection which can be tricky. Therefore, further
efforts in regularized algorithms should address these two issues.

Computation time: algorithmic

Algorithmic work can be carried out to improve the convergence rate. On the one hand,
it can be valuable to investigate fast converging algorithms like second-order Nesterov-
Bregman methods in the context of tomographic reconstruction. On the other hand,
existing algorithms could be “mixed” together to use a “warm restart” property. For
example, ADMM or conjugate (sub)gradient can be used in the first stage to provide an
initial solution. This solution is then used as a starting point by FISTA or Chambolle-Pock
in a second stage.

Computation time: implementation

This work leaves some outlooks on the computational side. The CSG algorithm, although
fast converging, uses several preconditioners which use a lot of memory. Transferring these
arrays in the GPU kernels functions is actually a bottleneck in the current implementation.
The preconditioners can be merged in one single array, since all of them are “binary” array–
for example, a single “uint8” array is enough to store four binary preconditioners.

The interior tomography algorithm, although it has a GPU implementation, can still be
accelerated. Since only the low-frequencies artefacts should be corrected, the “correction
image” can be computed in a binned space in order to be expanded afterwards. This
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would dramatically speed up the process, as it is computationally expensive to compute
the projection of huge arrays, even with the current implementation.

The “prox-filter” should also be further investigated to see if the constraint to recon-
struct in the inner circle can be alleviated.

Lastly, the projection and backprojection operators can be made more efficient by
using the Fourier slice theorem. As detectors now produce images above 4096 × 4096
pixels, these operators become the bottleneck of the reconstruction process.

Usability

In order to be more used in practice, iterative methods could be made more interactive.
For example, a coarse reconstruction or a reconstruction of a region of interest can be
first carried on before the full reconstruction. The choice of the regularization parameter
is also an issue: should it be automatically computed ? Some users might want to tune
it depending on what feature they actually want to see, but others would just need a
“plug-and-play” algorithm. To this end, we believe that building a fully Bayesian model
is the most mathematically sound approach.

Better regularization and modelling

Lastly apart from the computation time and usability issues, we can think of making
modelling and regularization even “better”. Although the parallel geometry is compu-
tationally very convenient, three-dimensional regularization would certainly improve the
reconstruction results, are correlation between adjacent voxels is taken into account. To
this end, slices can be reconstructed by slabs instead of individually.

Other regularizations can also be considered; for example some works use jointly TV
and Wavelets, or the Dual Tree Complex Wavelets Transform. Group sparsity priors
can also be used in order to further reduce the thresholding artefacts. Constraints like
positivity should always be enforced when possible as it leads to better results with a
significant improvement in the convergence rate.

Operators can also be modified to account for physical effects. For example, the
plain Radon transform assumes a Beer-Lambert transmission, which is true only for a
monochromatic beam. The forward and adjoint operators could therefore be designed for
a polychromatic beam and other effects like Compton scattering.

Lastly, regularization techniques can also be designed from new priors. In most regu-
larized methods, the regularization term is in the form of the `1 norm (or a group norm)
of the image coefficients, which promotes sparsity/compressibility in some basis. The de-
sign of new models can be done the other way around, in order to establish a clearer link
between the prior on the image and the optimization problem.





Chapter 6

Appendix

This appendix contains material which is certainly known by the initiate reader, and
therefore moved to the Appendix for an easier reading.

6.1 Mathematical proofs

6.1.1 First chapter

The following is a proof of Proposition 1.2.1.

Proof. The one dimensional Fourier Transform of the Radon Transform of f at angle θ0

reads

F1[Rθ0 [f ]](ν) =

∫ ∞
−∞

∫ ∞
−∞

f

(
s cos θ0 − t sin θ0

s sin θ0 + t cos θ0

)
dt e−j2πνs ds

Let

(
x
y

)
=

[
cos θ0 − sin θ0

sin θ0 cos θ0

](
s
t

)
be a variable substitution. The Jacobian is equal to 1

and s = x cos θ0 + y sin θ0, giving

F1[Rθ0 [f ]](ν) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2πν(x cos θ0+y sin θ0) dx dy

Which, after rearranging the complex exponential argument, yields the two dimensional
Fourier Transform of f evaluated at frequencies (ν cos θ0, ν sin θ0). The integrals could be
switched as f belongs to `1(R2).

The following is a proof of Proposition 1.2.2.

Proof. Let θ0 ∈ [0, 2π]. Applying the Fourier-Slice theorem 1.2.1 and the convolution
theorem yields

F1Rθ0 [f ∗ g](ν) = F2(f ∗ g)(ν cos θ0, ν sin θ0)

= (f̂ · ĝ)(ν cos θ0, ν sin θ0)

= f̂(ν cos θ0, ν sin θ0) · ĝ(ν cos θ0, ν sin θ0)

= F1[Rθ0 [f ]](ν) · F1[Rθ0 [g]](ν)

Applying the inverse Fourier Transform F−1
1 and the convolution theorem leads to Equa-

tion (1.2.5).

The following is a proof of Proposition 1.4.1.

Proof. The function f(x, y) can be written as the inverse FT of its FT f̂(νx, νy):

f(x, y) =

∫∫
R2

f̂(νx, νy)e
+j2π(νxx+νyy) dνx dνy
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Let ϕ(θ, ν) =

(
ν cos θ
ν sin θ

)
be a polar variable substitution, so that

(
νx
νy

)
= ϕ(θ, ν) =(

ν cos θ
ν sin θ

)
. The Jacobian matrix of ϕ is

[
∂ϕ
∂θ

∂ϕ
∂s

]
=

[
cos θ −ν sin θ
sin θ ν cos θ

]
which has determi-

nant |ν|. Therefore, the previous integral can be written

f(x, y) =

∫ 2π

0

∫ ∞
−∞

f̂(ν cos θ, ν sin θ)e+j2πν(cos θx+sin θy)|ν|dν dθ

Applying the Fourier-Slice theorem (Proposition 1.2.1), we have f̂(ν cos θ, ν sin θ) = F1[p](θ, ν),
yielding

f(x, y) =

∫ 2π

0

∫ ∞
−∞
F1[p](θ, ν)|ν|e+j2πν(cos θx+sin θy) dν dθ

Which yields the second equality in Equation (1.4.1). The term

∫ ∞
−∞
F1[p](θ, ν)|ν|e+j2πν(cos θx+sin θy) dν

is clearly the inverse 1D FT of F1[p](θ, ν)|ν| evaluated in s = cos θx + sin θy. Applying
the convolution theorem leads to first equality in Equation (1.4.1).

The following is a proof of Proposition 1.4.2.

Proof. The vector xm = AT
(
AAT

)−1
y is clearly a solution of y = Ax. Let us show that

xm has the minimum norm among all the solutions of y = Ax. Let xs be one of these
solutions. Then: A(xs−xm) = 0, so xs−xm ∈ Ker (A). From basic linear algebra, we also

have Ker (A) = Im
(
AT
)⊥

(the complement of the image of A), so xs − xm ∈ Im
(
AT
)⊥

.

As xm ∈ Im
(
AT
)
, we have 〈xs − xm , xm〉 = 0. Thus, applying the Pythagorean theorem:

‖xs‖2 = ‖xs − xm + xm‖2 = ‖xs − xm‖2 + ‖xm‖2 ≥ ‖xm‖2

6.1.2 Second chapter

The following is a proof of Equation (2.4.2)

Proof. Problem (2.4.2) will be derived from the beginning in a Bayesian framework. This
derivation is the same for all probability distributions of the exponential family. The
acquisition model is d = Px+n, where n is a zero-mean additive Gaussian noise of PDF

pn(n) = |det 2πΣ|−1/2 exp

(
−1

2
nTΣ−1n

)
The quantity of interest is the probability that the latent signal is equal to x, given that
the observed data is d: px(x | d). The Bayes formula gives this quantity as a posterior
probability:

px(x | d) =
pd(d | x)px(x)

pd(d)

Since d = Px+ n, a change of variable theorem states that the probability of observing
the data d given x, pd(d | x) (likelihood) can be computed from the PDF of n as

pd(d | x) = pn(d− Px | x)
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On the other hand, the prior knowledge on x is encoded as x being normally distributed
with covariance matrix Γ−1 in the “D domain”:

px(Dx) =
∣∣det 2πΓ−1

∣∣−1/2
exp

(
−1

2
(Dx)TΓ(Dx)

)
The posterior probability px(x | d) is to be maximized, as we are looking for the most

probable solution. Therefore, if the covariance matrices of the noise and of Dx are known,

the multiplicative terms |det 2πΣ|−1/2 and
∣∣det 2πΓ−1

∣∣−1/2
can be dropped. Then

px(x | d) ∼ exp

(
−1

2
(d− Px)TΣ−1(d− Px)

)
exp

(
−1

2
(Dx)TΓ(Dx)

)
Maximizing the posterior probability amounts to minimizing its negative logarithm. The
MAP solution is thus given by

argmin
x

{− log px(x | d)} = argmin
x

{
1

2
‖Px− d‖2Σ−1 +

1

2
‖Dx‖2Γ

}

6.2 Definitions and properties

6.2.1 Spatial gradient and divergence

The following is a definition of the discrete spatial gradient.

Definition 15 (Spatial gradient)
Let img be an image with M columns and N lines. Let i, j denote zero-based
integer indexes for the lines and columns, respectively. The gradient of img, without
boundary handling, is a 2×N ×M image defined by

(∇img)y(i, j) =

{
img(i+ 1, j)− img(i, j) if 0 ≤ i < N
0 otherwise

(∇img)x(i, j) =

{
img(i, j + 1)− img(i, j) if 0 ≤ j < M
0 otherwise

where (∇img)y and (∇img)x denote the N×M images corresponding to the gradient
along lines and columns, respectively.
Extension to a volume is straightforward.

The following is a definition of the corresponding divergence operator.

Proposition 6.2.1 (Divergence operator)
The spatial gradient is a linear operator from RN×M to R2×N×M . Its adjoint is given
by the opposite of the divergence operator div. Letting gradimg, be a “gradient img”
(i.e gradimg = ∇img for some img), the divergence of gradimg is defined by

div gradimg(i, j) =

{
gradimgy(i, j)− gradimgy(i− 1, j) if 0 < i

gradimgy(i, j) otherwise

+

{
gradimgx(i, j)− gradimgx(i, j − 1) if 0 < j
gradimgx(i, j) otherwise
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6.2.2 Introduction to the wavelet transform

Wavelet transform is a signal processing tool which found a large range of applications since
it was introduced decades ago. It basically came as a replacement for the Fourier transform
when it comes to analyzing non-stationary signals. The one-dimensional Wavelet trans-

form decomposes a time-dependent signal s(t) in a basis of signals
(
ψ(a,τ)(t)

)
(a,τ)

. Each

basis function is a shifted and dilated version of a mother wavelet ψ: ψ(a,τ)(t) = 1√
a
ψ( t−τa ).

Designing a set of shifts τ and dilations a > 0 enables to analyze both the local discon-
tinuities and long-term trend of a signal. In the time-frequency plane, the possible time
shifts τ define how the time axis is tiled, while the possible dilations a > 0 define how
the frequency axis is tiled. Representing the very low frequencies would entail to choose
s → +∞; thus, in practice, a low-pass scaling function ϕ(t) is designed to complete the
time-frequency analysis.

The time-frequency analysis of s(t) is theoretically performed with the Continuous
Wavelet Transform (CWT), defined as an Hermitian product in the space `2(R) of square
integrable functions:

〈
s(t) , ψa,τ (t)

〉
. By designing a set of particular time shifts and

dilations, and by and representing the set of inner products with a filter bank, an efficient
implementation of the CWT named DWT is defined. The derivation of the Discrete
Wavelet Transform from the Continuous Wavelet Transform is out of the scope of this
paper, the reader can refer to [VH92], [She96], [Val99] and reference therein.

6.2.3 Common proximal mappings and Moreau identity

The Euclidean projection onto a convex set Ω is not straightforward in general. However,
Propositions 6.2.2 and 6.2.3 give particular cases where such a projection is simple.

Proposition 6.2.2 (Euclidean projection onto a hyperrectangle)
The Euclidean projection of a vector x ∈ Rn onto the hyperrectangle

Ωa,b = {x ∈ Rn, ai ≤ xi ≤ bi}

is given by

(PΩa,b
(x))i =


ai if xi < ai
xi if ai ≤ xi ≤ bi
bi if bi < xi

Proposition 6.2.3 (Euclidean projection onto the intersection of hyperplanes)
Let A

∫
Rm×n. The Euclidean projection of a vector x ∈ Rn onto the intersection

of hyperplanes
ΩbA = {x ∈ Rn, Ax = b}

is given by
PΩb

A
(x) = x+A∗(AA∗)−1(b−Ax)

Proposition 6.2.3 is a direct application of the minimum norm solution of a system of
equations (see Proposition 1.4.2).

Lastly, theorem (6.2.4) links the proximal of f and the proximal of its conjugate f∗.
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Theorem 6.2.4 (Moreau identity)
Let f be a convex function and λ > 0. The following property holds

proxγf∗ (x) = x− γ proxγ−1f

(
γ−1x

)
(6.2.1)

This identity can be seen as a generalization of the projection onto orthogonal subspaces.
Indeed, letting f = iΩ, then it can be shown that f∗ = iΩ⊥ . Theorem (6.2.4) gives
prox(f) + prox(f∗) = I, i.e PΩ + PΩ⊥ = I.

6.2.4 The power method

Algorithm 6.2.1 gives the outline of the power method to compute the largest eigenvalue
of a linear operator K.

Algorithm 6.2.1 Power method

K : Operator
n : number of iterations

1: procedure PowerMethod(K, n)
2: x = x0 . Initial vector
3: for k ← 1 . . . n do
4: xk+1 = KTKxk . Apply operator KTK
5: s = ‖xk+1‖2
6: xk+1 = xk+1/s . Normalization step
7: end for
8: return

√
s

9: end procedure

Algorithm 6.2.1 involves KTK instead of K, as Kx may not be in the same space as
x (whereas KTKx is). Fortunately, the largest singular value (in term of magnitude) of

K is linked to the largest eigenvalue of KTK by σmax(K) =
√
λmax(KTK).

6.3 Derivations for section 3.4

This section gives more information and formal derivations for section 3.4 describing a
filter-based proximal computation.

6.3.1 On the (non-)invertible property of ATA

Let A be a N2×N matrix (N2 lines, N columns). Let a1, . . . ,aN be the columns vectors
of A, so A =

[
a1 . . .aN

]
. The matrix ATA is called the Gramian matrix of the vectors

a1, . . . ,aN . It can be shown that det(ATA) 6= 0 if and only if these vectors are linearly
independent. Therefore, conclusions can already be drawn depending on the shape of A:

• If N > N2 (A is “fat”), there are more vectors ai than components of each vector;
thus, the vectors ai are linearly dependent. In this case, ATA is never invertible.

• If N = N2 (A is square), ATA is invertible iff A is, and det(ATA) = det(A)2.
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• If N < N2 (A is “tall”), the vectors might be linearly independent, so ATA might
be invertible.

In the latter case, as A maps vectors with N components to vectors with N2 > N com-
ponents, it is said to be an overcomplete transform in some contexts. Thus, overcomplete
mappings can be inverted provided that its column vectors are linearly independent.

In contrast, tomographic reconstruction from few projections is modelled by an op-
erator P having more columns (number of pixels in the image) than rows (number of
projection angles times number of detector bins horizontally). Therefore, P TP is never
invertible in the context of tomographic reconstruction from few projections. In fact,
numerical experiments suggest that even with N2 ≥ N (i.e with a sufficient number of
projections), P TP is not invertible; thus, PP T is not invertible either in the case of few
projections.

6.3.2 Shift-invariance and convolution

Let A be an operator acting on continuous (1D) functions of R → R. The operator A is
said to be shift invariant if for all τ ∈ R,

A[fτ ](t) = A[f ](t− τ)

where fτ : t 7→ f(t − τ) is the function f delayed by τ . In other words, applying the
operator A on a delayed function results on a delayed output (the “form” of the output
stays the same). The operator therefore somewhat commutes with the “delay” opera-
tor1: operator(delay) = delay(operator). This concept is the same in two or more
dimensions: the time variable becomes spatial coordinates, and a time delay becomes a
spatial shift. The fact that A commutes with the “delay operator” explains the name
“shift invariant operator”.

These operators can be used to model many physical systems. What make them
appealing is that they can be characterized by a single function, the impulse response:
for each linear time-invariant operator A, there exists an impulse response hA such that
A[f ] = hA ∗ f . In other words, these systems are entirely described by the convolution
with a function. Knowing the impulse response hA (which is a function) is knowing the
entire system (modelled by an operator). It can be shown that hA = A[δ] is the response
to an “impulse” Dirac delta function.

Another important property of time-invariant operators is that they are diagonal in
the Fourier basis, in other words, (co)sine functions are the eigenfunctions of such systems.
Given an input function f , the response of the system A can be computed as hA ∗ f , but
also as fF � hFA – where fF and hFA denote the functions f and hA in the Fourier
domain, respectively – which is a simple elementwise multiplication.

In the discrete setting, time/shift-invariant operators are also characterized by (dis-
crete) convolution, and the (discrete) Fourier Transform diagonalizes these operators. In
the (discrete) Fourier basis, the matrix-vector multiplication Ax becomes an elementwise
product hFA � xF with the same notations as previously. This property enables a ma-
jor computational benefit: not only can be the operator A computed efficiently, but its
(regularized) inverse can also be computed.

1 the notion of delay operator can be formalized, for example, with distributions: fτ (t) = f(t)∗δ(t−τ)
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6.3.3 Regularized inversion and Wiener-Hunt deconvolution

This part formally derives the least-squares deconvolution with FT. The operator formal-
ism used here only serves for the derivation; for example, “diagonal matrices” are never
used in practice (they are replaced with vector-vector elementwise multiplications).

Let A be a shift invariant operator and hA = h its associated impulse response (see
section 3.4.1). The DFT of a vector x is denoted xF = Fx. The DFT of h, named
transfer function, is therefore hF .

Since A is diagonal in the Fourier basis, there exists a diagonal matrix DA such that

A = F ∗DAF (6.3.1)

The diagonal matrix DA models the elementwise multiplication with the Fourier Trans-
form of the impulse response h: hF = diag(DA). Since xF = Fx, we have x = F ∗xF ,
so the evaluation of Ax can therefore be computed as

Ax = (F ∗DAF )(F ∗xF ) = F ∗DAxF (6.3.2)

in words: Fourier transform x, multiply elementwise with the transfer function, and in-
verse Fourier transform the result. The pseudoinverse (ATA)−1AT can be therefore be
computed as

(ATA)−1AT = ((F ∗DAF )∗(F ∗DAF ))−1 (F ∗DAF )∗

=
(
F ∗|DA|2F

)−1
(F ∗DAF )∗

=
(
F ∗|DA|−2F

)
(F ∗D∗AF )

= F ∗|DA|−2D∗AF

= F ∗D−1
A F

(6.3.3)

where |DA|2 = D∗ADA. The third line comes from the fact that F ∗ = F−1 and |DA|
is symmetric (since diagonal) and real. Applying the pseudoinverse (6.3.3) on x consists,
in words, in computing the DFT of x, dividing by the FT of the impulse response, and
retuning the inverse FT the result. Although it can be computed efficiently, this pseu-
doinverse has of course numerical issues: most convolution kernels h are such that the
associated operator ATA (and therefore DA) is not invertible. This is why the approach
“divide by the transfer function” is usually not a good approach.

The regularized pseudoinverse (I + γATA)−1 (where γ > 0) can be computed in the
same fashion:

(I + γATA)−1 =
(
I + γF ∗|DA|2F

)−1

=
(
F ∗(I + γ|DA|2)F

)−1

= F ∗H−1F

(6.3.4)

where H = I + γ|DA|2 is the diagonal matrix where the diagonal component k equals
1 + γ|hF (k)|2.

Lastly, we derive the inversion of the commonly used regularized least squares deblur-
ring

argmin
x

{
1

2
‖Ax− b‖22 + γ ‖Rx‖22

}
(6.3.5)

where R is a regularization operator which is assumed to be circulant (i.e implementable
as a convolution) – common choices are the spatial gradient or Laplacian. The optimality
condition is

(ATA+ γRTR)x = ATb
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as R is assumed to be circulant, there exists a vector hR such that for all x: Rx = hR∗x,
andR = F ∗DRF whereDR = diag(FhR). Therefore, the inverse filter can be computed:

(ATA+ γRTR)−1AT =
(
F ∗|DA|2F + γF ∗|DR|2F

)−1
AT

=
(
F ∗(|DA|2 + γ|DR|2)F

)−1
AT

= F ∗H−1DA
∗F

(6.3.6)

where
H = |DA|2 + γ|DR|2 (6.3.7)

is a diagonal matrix. In the context of image deblurring, the computation

x̂ = F ∗H−1DA
∗F (6.3.8)

is called Wiener-Hunt deconvolution. It consists in Fourier transforming b, multiplying
with the Wiener filter H−1DA

∗, and taking the inverse FT. This method is implemented,
for example, in the scikit-image Python module [Wal+14].

6.3.4 Convergence to the pseudoinverse

Let f(x) = 1
2 ‖Ax− b‖

2
2 where ATA is invertible. The minimizer of f is obtained with

the pseudoinverse of A: xML = (ATA)−1ATb. The gradient-descent iteration

xk+1 = xk − α∇f(xk)

= xk − αAT (Axk − b)
(6.3.9)

converges to xML if the gradient step size α is less than 1/
∥∥ATA

∥∥. The latter norm is

equal to
√
λmax((ATA)T (ATA) = λmax(ATA) (the last equality comes from the fact that

ATA is symmetric and positive semi-definite). Iteration (6.3.9) can be rewritten as

xk+1 = (I − αATA)xk + αATb (6.3.10)

which defines an arithmetico geometric sequence; thus, is x0 = 0, we have

xn =

[
α
n−1∑
k=0

(I − αATA)k

]
ATd (6.3.11)

In general, given a symmetric positive semi-definite matrix U such that ‖U‖ < 1, it
is easy to show2 that

∞∑
k=0

Uk = (I −U)−1 (6.3.12)

Therefore, Equation (6.3.12) can be applied to iterate (6.3.11) with U = I − αATA: the
term between square brackets converges to α(I − (I − αAP TA))−1 = α(αATA)−1 =
(ATA)−1, (which is independent from α). Indeed, as the gradient step size α is precisely
chosen so that α < 1/

∥∥ATA
∥∥, we have

∥∥αATA
∥∥ < 1. Now,

∥∥I − αATA
∥∥ = λmax((I −

2 let Sn =
∑n−1
k=0 Uk = I + U + . . . + Un−1, then USn = U + . . . + Un, so Sn − USn = I − Un,

i.e (I − U)Sn = I − Un. As ‖U‖ < 1 and U is symmetric, we have ‖I −U‖ = λmax(I − U). On the
other hand, λmax(I − U) = 1 − λmin(U). As ‖U‖ < 1, the last quantity is strictly positive, so I − U is
invertible. Therefore, Sn = (I −U)−1(I −Un). As ‖U‖ < 1, Un → 0 when n→∞.
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αATA)T (I − αATA)) = λmax(I − αATA)3, which in turn is equal to 1− αλmin(ATA).
This quantity

∥∥I − αATA
∥∥ = 1 − αλmin(ATA) must be less than one in order for∑∞

k=0(I − αATA)k to converge. This means that we must have λmin(ATA) > 0, i.e
ATA invertible, which was assumed to be the case.

In the context of tomographic reconstruction, A = P , and P TP is not invertible. This
means that any iterative least squares algorithm is an unstable process (

∑n
k=0(I−αP TP )k

does not converge as λmin(P TP ) = 0), so iterations should be stopped early to avoid
numerical issues (eg. noise amplification).

In order to compute the inversion of f(x) = γ
2 ‖Px− d‖ + 1

2 ‖x‖
2
2, we can apply

Equation (6.3.12) to U = (1 − α)I − αγP TP . Indeed, writing the gradient descent
iteration xk+1 = xk − α∇f(xk) leads to xk+1 = ((1− α)I − αγP TP )xk + αP Td. To do
so, we must have {

I −U invertible
‖U‖ < 1

The first condition entails that I + γP TP is invertible, which is true for all γ > 04. The
second condition entails that

∥∥I − α(I + γP TP )
∥∥ < 1. If α is chosen such that

α <
1

1 + γ
∥∥P TP

∥∥ (6.3.13)

then U = I − α(I + γP TP ) is (symmetric) positive semi-definite. Therefore, ‖U‖ =
1−αλmin(I+γP TP ) which is less than one since α < 1 and I+γP TP is invertible. The
series α

∑n
k=0U

k of Equation (6.3.11) then converges to α(I − U)−1 = (I + γP TP )−1,
which is independent from α (the only purpose of α is the gradient descent, the limit
should not depend from it).

6.4 Supplementary material

6.4.1 The GSURE method for ISTA

This subsection derives the generalized Stein Unbiaised Risk Estimate (SURE) when solv-
ing the synthesis inverse problem

argmin
w

{
1

2
‖AD∗w − y‖22 + λ ‖w‖1

}
(6.4.1)

with the ISTA. We follow a simplified derivation of [GEE08]. The SURE method aims at
finding the optimal λ so that the risk E

[
wλ −w]

]
is minimized. Although the ground-

truth value w] is unknown in practice, Skein showed that the risk can be estimated with
only known data.

Let Φλ(y) be the abstract reconstruction process with parameter λ, i.e a solution of
(6.4.1). This solution only depends on the data y and the regularization parameter λ. In
[GEE08], the variable substitution u = ATy is done invoking the Rao-Blackwell theorem
(the MSE is smaller or equal for a sufficient statistics of y). The (G)SURE estimate reads
[Eld09]

‖Φλ(u)‖22 − 2xTMLΦλ(u) + 2 div Φλ(u) (6.4.2)

3 since
∥∥αATA

∥∥ < ‖I‖ = 1, so I − αATA is (symmetric) positive semi-definite
4 if λ1, . . . , λp denote the eigenvalues of P TP , then det(I + γP TP ) = (1 + γλ1) . . . (1 + γλp) which

cannot be zero since λi ≥ 0 (P TP is symmetric positive semi-definite).
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where xML = D∗wML is the maximum likelihood solution of Equation (6.4.1). The div
term is not a spatial divergence, it is a temporal divergence, i.e the derivative with respect
u, which makes the computation of (6.4.1) cumbersome.

The divergence is estimated on the fly with the ISTA iteration. Letting Sλ denote the
soft thresholding operator with threshold λ, one step of ISTA is

wn+1 = Sλ
(
(I − γDATAD∗)wn + γATu

)
(6.4.3)

= Sλ
(
Kwn + γATu

)
(6.4.4)

where K = I − γDATAD∗. After n iterations, the reconstruction process is Ψλ(u) =
D∗wn, so

div Ψλ(u) = tr

(
D∗

dwn

du

)
(6.4.5)

Keeping the Jacobian is impracticable: if u has N components (pixels), and wn has
N2 components (coefficients), then dwn

du has N ×N2 components, which cannot be stored.

Instead, a stochastic estimator can be used: E
[
bTD∗ dwn

du b
]

where b is a standard Gaussian
noise. The update equation enabling to compute the trace is :

dwk+1

du
· b = S′λ(Kwk + γATu)

[
K

dwk

du
· b+ γAT · b

]
(6.4.6)

where S′λ is the derivative of the soft thresholding operator – which raise problems at ±λ.
The work [GEE08] proposes a greedy algorithm for minimizing the Stein risk (6.4.2)

using Equations (6.4.5) and (6.4.6). Although this method seems promising, we were not
able to successfully apply this method for tomographic reconstruction. This is likely to
come from a bad estimation of the Jacobian with the stochastic estimate. Nevertheless,
we did not further investigate this problem, as automatic parameter selection was not our
priority considering the discussion of section 2.4.6.

6.4.2 Pseudocode of optimized FISTA

This section provides a pseudocode of an accelerated version of FISTA described in [KF16].
Our numerical experiments showed that it is consistently twice faster than any other ver-
sion of FISTA (original, relaxed, continuation method) for tomographic reconstruction.
As analysed in 2.7, this optimization algorithm is especially interesting for a quadratic
data fidelity term and a penalty which has a simple prox; which is the case for orthog-
onal wavelets regularization. As usual, P denotes the projection operator (P T is the
backprojection), and W is the forward DWT (W T is its inverse).
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Algorithm 6.4.1 FISTA with optimized step size

n : number of iterations
d: data (sinogram)
λ: regularization parameter
L : largest eigenvalue of P TP

1: procedure Fista(n, τ , σ, θ)
2: . Initialize y1 (zeros or initial reconstruction)
3: for k ← 1 . . . n do
4: . Update the gradient of smooth part at yk
5: gk = P T (Pyk − d)
6: . Compute the prox of non-smooth part
7: wk = W (yk − 1

Lgk)
8: xk+1 = W T

(
Sλ/Lwk

)
. S is the soft thresholding operator

9: t = 1
2

(
1 +
√

1 + 4t2
)

10: yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk) + tk
tk+1

(xk+1 − yk)
11: end for
12: return xn
13: end procedure

6.4.3 List of software packages used for tomographic reconstruction

The following is a list of softwares used for tomographic reconstruction at various institutes.
This list is by no means a complete survey. Additional information can be found in
[Aar+16] and at the website tomopedia.github.io/software.

Table 6.1: Tomography software packages

Software Geometries Methods License Institutes
tomopy Parallel Gridrec, ASTRA algo-

rithms
GPLv3 APS, PSI, Elettra

ASTRA Any FBP, FDK, SIRT,
SART, CGLS, EM

GPLv3 APS, PSI, Soleil

PyHST2 Parallel, conic FBP, Gridrec, SIRT,
TV, Wavelets, Dictio-
nary

LGPL ESRF

MMX-I Parallel FBP, ART ? Soleil
TOFU Parallel FBP, Gridrec, SART,

SIRT, TV, POCS
LGPL-3 KIT

CCPI ITR Parallel FBP, Landweber,
CGLS, MLEM, OSEM,
FISTA, Primal-Dual

? Manchester X-ray
facility

RTK Parallel, conic FDK, TV, Wavelets Apache Creatis, ?
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Résumé de la thèse

Cette section résume en Français ce travail de manière plus détaillée.

Chapitre 1 - Tomographie continue et numérique

Dans ce premier chapitre, nous modélisons l’acquisition d’un scan tomographique par un
opérateur mathématique appelé transformée de Radon R. Cette modélisation est valable
sous des conditions relativement contraignantes (faisceau monochromatique, gémoétrie
parallèle) qui sont satisfaites dans notre environnement de travail, le Synchrotron. Le
modèle intégral obtenu s’applique aussi bien pour la tomographie de transmission ou de
contraste de phase.

Comprendre les propriétés de cet opérateur est le point de départ de la conception
des méthodes de reconstruction. Nous donnons ainsi les principales propriétés de la
transformée de Radon en quittant rapidement la modélisation continue pour un formal-
isme discret, compatible avec l’algèbre linéaire numérique et l’implémentation sur ma-
chine. La transformée de Radon continue R devient l’opérateur de projection P qui
conserve la plupart des propriétés, dont la linéarité. Les théorèmes de coupe-projection
et de rétroprojection filtrée sont énoncés de manière concise, et les difficultés pratiques
d’implémentation sont soulignées.

La dernière partie est consacrée à l’opérateur de Calderón Λ, dont l’inverse correspond
à un filtrage passe-haut via la fonction ν 7→ |ν| dans le domaine fréquentiel. La relation
R∗R = Λ−1, qui suggère que l’opérateur R∗R a une structure particulière, est notamment
exploitée dans le chapitre 3.

Chapitre 2 - Méthodes itératives régularisées

Méthodes itératives et problème inverse

Nous présentons d’abord les méthodes itératives classiques. Ces méthodes se sont révélées
nécessaires pour pallier les limitations des méthodes directes (rétroprojection filtrée, coupe-
projection) lorsque les données sont limitées et/ou bruitées, ou lorsque la géométrie ne
permet pas l’utilisation d’une méthode directe. Dans ce cadre, la reconstruction est traitée
comme un problème inverse y = Px avec P l’opérateur (discret) de projection, y les
données acquises (sinogramme) et x l’image (ou volume) à reconstruire. La présence
explicite de l’opérateur P permet de modéliser plus fidèlement le processus d’acquisition,
ce qui n’était pas possible avec les méthodes directes.

Le cadre bayésien est ensuite utilisé pour unifier la présentation des méthodes de
reconstruction. De manière générale, le problème y = Px étant mal posé (au sens de
Hadamard), il s’agit de minimiser une fonction de coût f(y,x) mesurant la distance entre
la projection de la solution Px et les données acquises y. Il est montré que cette fonction
de coût est en fait associée au modèle de bruit, via la minimisation de l’opposé du log-
vraissemblance : c’est l’approche maximum de vraissemblance.

Par exemple, pour un bruit blanc additif gaussien, la fonction de coût f est quadra-
tique : f(y,x) ∼ ‖Px− y‖22, ce qui conduit à un algorithme de reconstruction aux
moindres carrés. Dans le cas d’un bruit additif gaussien caractérisé par une matrice de
covariance diagonale Σ dont chaque composante est égale à l’inverse de la somme de P le
long des lignes, la fonction des coût est f(y,x) ∼ ‖Px− y‖2Σ et l’algorithme SIRT con-
verge vers son minimum. Dans le cas d’un modèle de bruit poissonien, minimiser l’opposé
du log-vraissemblance conduit à l’algorithme EM.
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Méthodes régularisées

Les méthodes itératives classiques revues précédemment souffrent d’un problème de sta-
bilité. Par exemple, il est connu qu’une reconstruction aux moindres carrés sera “bruitée”
si le nombre d’itérations est trop élevé. Ce comportement est lié au fait que la minimisa-
tion de la fonction de coût f est un problème mal conditionné : le processus d’optimisation
amplifie le bruit qui peut être présent dans les données. Afin de “stabiliser” la procédure,
une technique courante consiste à imposer des propriétés de la solution en modifiant la
fonction de coût. Il s’agit alors d’optimiser la somme de deux termes : f(y,x) + g(x)
avec g(x) le terme qui traduit les connaissances a priori sur la solution. Par exemple, la
reconstruction aux moindres carrés avec une régularisation de Tikhonov vise à minimiser
‖Px− d‖22 + ρ ‖x‖22 avec ρ > 0 le paramètre de régularisation.

La méthode de régularisation correspond, dans le cadre bayésien, à l’approche “max-
imum a posteriori”. La fonction g qui encode les propriétés de la solution correspond
en fait à un modèle statistique sur la solution. Outre la régularisation de Tikhonov avec
une “norme 2” (‖x‖22), un choix populaire est la “norme 1” (‖Dx‖1) pour un certain
opérateur D. Le succès de la reconstruction tomographique par minimisation de la norme
1 du gradient (variation totale ‖∇x‖1) est expliqué par le cadre de l’acquisition comprimée.

Dans ce cadre, la régularisation par norme 1 permet une reconstruction exacte à partir
de données très limitées/bruitées, fournissant de nouvelles conditions d’échantillonnage
plus “efficaces” que le critère de Nyquist. De manière générale, un terme g(x) = λ ‖Dx‖1
va promouvoir une solution parcimonieuse (sparse) dans le domaine de la transformation
D. Trois représentations parcimonieuses sont revues dans ce travail: le gradient spa-
tial utilisé pour la variation totale, les ondelettes et les frames (dictionnaires). Les deux
ingrédients principaux de l’acquisition comprimée sont le choix d’une représentation parci-
monieuse D et la résolution d’un problème non différentiable impliquant une “norme 1”
‖Dx‖1.

Algorithmes d’optimisation convexe

Les méthodes régularisées qui nous intéressent dans ce travail, fondées sur le cadre de
l’acquisition comprimée, nécessitent la minimisation d’une fonction non différentiable.
Cette partie fait une revue des algorithmes récents utilisés à cet effet. Le formalisme prox-

imal (mettant en jeu l’opérateur proximal proxf (x̂) = argmin
x

{
1/2 ‖x− x̂‖22 + f(x)

}
)

unifie les algorithmes de l’état de l’art tout en donnant un cadre très adaptable pour de
nombreuses “formes” de fonctions de coût. Trois classes d’algorithmes sont considérées
pour minimiser f +g: forward-backward (FB), Lagrangien augmenté (LA) et Primal-Dual
(PD). Chacune a des conditions d’applications “privilégiées”: pour FB, il est nécessaire que
f soit différentiable et préférable que g soit à proximal simple ; pour (LA) il est préférable
que f et g soient toutes deux à proximal simple. La classe (PD) est plus adaptable, mais
le problème de minimisation doit être ré-écrit.

Chapitre 3 - Implémentation efficace de méthodes régularisées de
reconstruction

Ce chapitre décrit l’implémentation efficace de méthodes régularisées de reconstruction.
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Reconstruction rapide régularisée par variation totale

Cette partie discute de l’implémentation efficace de la méthode de reconstruction régularisée
par variation totale (Total Variation). Le problème d’optimisation associé est

argmin
x

{
1

2
‖Px− d‖22 + λ ‖∇x‖1

}
Afin de résoudre ce problème sans lissage de la norme 1, trois algorithmes d’optimisation
sont analysés: FISTA, ADMM et C-P. L’algorithme C-P a une vitesse de convergence plus
faible que les deux autres, mais il a l’avantage de ne pas nécessiter de sous-itérations pour
résoudre un sous-problème. Cette caractéristique est intéressante car le temps d’exécution
est dominé par le nombre d’opérations “matrice-vecteur”, en particulier projection-rétroprojection.
De plus, nous exploitons la propriété (R∗R)−1 = Λ en géométrie parallèle, ce qui permet
d’accélérer la vitesse de convergence en utilisant à chaque itération la rétroprojection
filtrée (FBP) au lieu de la simple rétroprojection. Nous retenons donc cet algorithme
pour une implémentation sur cible parallèle (GPU), et nous montrons sa versatilité par
l’incorporation de la contrainte de positivité.

La comparaison avec une implémentation de référence de FISTA sur GPU valide la
supériorité de l’algorithme C-P pour la reconstruction par variation totale. La vitesse
obtenue permet de reconstruire des jeux de données standard (volume de 20003 voxels) en
un temps de l’ordre d’une heure. Des exemples d’application sur des données réelles sont
donnés.

Reconstruction régularisée par ondelettes

L’implémentation de la reconstruction régularisée par ondelettes vient du constant suiv-
ant : d’une part, la reconstruction par TV est rapide mais surtout adaptée aux images
constantes par morceaux ; d’autre part la reconstruction par dictionnaire (déjà présente
dans PyHST) est plus lente et nécessite “d’apprendre” un dictionnaire à partir d’une re-
construction de bonne qualitée. Cependant, une telle reconstruction n’est pas toujours
disponible. Ainsi, la régularisation par ondelettes se présente comme un compromis entre
ces deux régularisations. En effet, la transformée en ondelettes est connue pour être une
“transformée parcimonieuse” pour les images naturelles ; autrement dit, les images na-
turelles ont peu de grands coefficients dans une base d’ondelettes du fait de leur corrélation
intrinsèque.

Des expériences numériques montrent que la transformée en ondelettes discrète (DWT),
en particulier la transformée de Haar, est effectivement une bonne transformée pour la re-
construction régularisée. Dans le cadre de l’acquisition comprimée, la DWT présente une
bonne incohérence avec l’opérateur de projection, et “compresse” les images de manière
intéressante. Dans le cadre calculatoire, la DWT est l’une des transformées les plus rapides
en traitement d’image.

Nous présentons l’implémentation d’une bibliothèque de transformée en ondelettes
discrète sur GPU. Le but est de fournir une transformée en ondelettes 2D rapide, adaptable
à toutes les tailles d’images et tous les types de transformées (directe, inverse, décimée, sta-
tionnaire), et facile à intégrer dans un projet. Une telle bibliothèque n’était pas présente au
moment de ce travail, c’est pourquoi il a été entrepris de la développer. L’implémentation
est validée et présente une vitesse d’exécution compatible avec un traitement à haut débit.

Cette bibliothèque est ensuite utilisée pour la tomographie régularisée par DWT en
prenant en compte des considérations pratiques comme les artefacts de seuillage. Des
exemples d’applications sur des données réelles sont donnés. La DWT est aussi utilisée
pour une méthode de correction d’artefacts en anneaux par pré-traitement du sinogramme.
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Algorithme de sous-gradient conjugué

La régularisation par variation totale et par ondelettes correspondent à des formulations
d’analyse, i.e la variable du problème d’optimisation est une image. La reconstruction
par dictionnaire est quant à elle fondée sur une formulation de synthèse, i.e la variable du
problème d’optimisation est un ensemble de coefficients. Nous présentons ici un nouvel
algorithme dédié au problème “LASSO”

argmin
w

{
1

2

∥∥PDTw − d
∥∥2

2
+ λ ‖w‖1

}
où DT (resp. D) est l’opérateur de synthèse (resp. analyse) du dictionnaire, et w est un
ensemble de coefficients tel que DTw est une image. Dans certains cas, en particulier dans
le cas de la correction d’anneaux combinée à la reconstruction (chapitre 4), on remarque
en effet que les algorithmes usuels (FISTA) convergent relativement lentement pour un tel
problème.

L’idée de base de ce nouvel algorithme est d’adapter la méthode du gradient conjugué,
réputée rapide pour un problème de moindres carrés linéaires, au problème LASSO. Nous
utilisons le sous-gradient, la généralisation du gradient, avec une règle délicate en zéro
pour faciliter la convergence vers une solution parcimonieuse. En utilisant cette règle et
des préconditioneurs, nous parvenons à construire un ensemble de directions conjuguées.

Les essais numériques sur un problème très mal conditionné ainsi qu’en tomographie
suggèrent que l’algorithme proposé dépasse les algorithmes de l’état de l’art. Cet algo-
rithme est notamment utilisé pour la méthode de correction des artefacts en anneaux
combinée avec la reconstruction présentée au chapitre 4.

Calcul rapide du proximal de 1/2 ‖Px− d‖22
L’algorithme ADMM présente la meilleure vitesse de convergence parmi les algorithmes
testés pour la reconstruction régularisée. Cependant, le coût par itération est élevée car
il doit calculer le proximal de x 7→ γ/2 ‖Px− d‖22, ce qui revient à évaluer l’inverse de
(I + γP TP ) à chaque itération, ce qui est fait de manière itérative. Dans cette partie,
nous montrons que la propriété (R∗R)−1 = Λ conduit à un calcul rapide de ce proximal.

L’idée est que P TP est (presque) invariant par translation, ce qui permet de car-
actériser cet opérateur par sa seule réponse impulsionnelle. L’inversion de l’opérateur
(I + γP TP ) se réduit ainsi à une succession d’évaluations de cet opérateur sur un Dirac.
Nous montrons que cette approche permet effectivement d’approcher le calcul du vrai
proximal, et donc d’accélérer la minimisation par ADMM.

Chapitre 4 - Correction d’artefacts et tomographie locale

Dans ce chapitre, nous montrons que le formalisme de reconstruction régularisée peut être
étendu pour prendre en compte les artefacts de reconstruction.

Correction d’artefacts en anneaux

Les artefacts en anneaux sont courants en tomographie et rendent les traitement post-
reconstruction difficiles. Quelles que soient leurs causes, ces artefacts apparaissent dans
le sinogramme comme un bruit structuré en lignes verticales quasi-constantes. Dans cette
partie, nous développons une méthode de reconstruction simultanée à la correction de ces
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artefacts. Plus précisément, nous étendons le formalisme de reconstruction régularisée

argmin
x,r

{
1

2
‖Px+Ur − d‖22 + λ ‖Dx‖1 + λr ‖r‖1

}
avec r une nouvelle variable dont le but est de “capturer” les artefacts en lignes, U
l’opérateur qui ajoute une valeur sur chaque ligne du sinogramme, et D une régularisation
spatiale.

Nous implémentons cette méthode pour les trois régularisations présentées dans ce
travail (variation totale, ondelettes et synthèse par dictionnaire). Des expériences sur des
données simulées et réelles montrent que cette méthode est compétitive avec les méthodes
de l’état de l’art.

Tomographie locale

En tomographie locale, le champ de vue du détecteur n’est pas assez large pour couvrir
tout l’objet scanné, résultant en des données “incomplètes”. Des résultats théoriques mon-
trent cependant que sous certaines hypothèses, la région d’intérêt peut être reconstruite.
La FBP avec extension du sinogramme fournit en général des résultats satisfaisants mais
souffre de deux inconvénients : la reconstruction n’est pas quantitative (ce qui est un
problème fondamental de la tomographie locale) et présente un artefact de “coupe” (cup-
ping). Dans cette partie, nous nous focalisons sur une méthode visant à atténuer l’artefact
de cupping caractéristique d’une reconstruction de données locales avec la méthode FBP.

La méthode proposée part de d’une reconstruction FBP r0 et corrige les basses fréquences.
Il s’agit donc de calculer une image c telle que r0 +c corrige l’artefact de cupping. L’image
à reconstruire est étendue afin d’estimer grossièrement l’extérieur de la région d’intérêt.
Afin de réduire le temps de calcul, et comme seule la correction des basses fréquences
nous intéresse, l’image c est représentée dans une base de blobs gaussiens. D’autre part,
pour projeter et rétroprojeter les coefficients de cette représentation, nous utilisons une
représentation des opérateurs de projection et rétroprojection sous forme de matrice creuse
au format CSR.

Nous utilisons une hypothèse de zone connue, peu contraignante en pratique, pour
contraindre la correction des basses fréquences. Des expériences numériques montrent
que l’artefact de cupping est effectivement fortement atténué, et nous retrouvons l’aspect
quantitatif de la reconstruction. La méthode a été également validée sur des données
expérimentales en tomographie d’absorption.


	[-60pt]Contents
	Introduction
	X-Ray tomography
	Context and motivations
	Reading guide
	Main contributions

	Continuous and numerical tomography
	Absorption and phase-contrast tomography
	The Radon Transform
	Discretization of the space and tomography operators
	Analytical reconstruction

	Regularized iterative reconstruction methods
	From analytical to iterative reconstruction
	Iterative reconstruction in a Bayesian framework
	Classical iterative reconstruction methods
	Regularized reconstruction methods
	Sparse representations for tomography reconstruction
	Notions of convex optimization
	Proximal optimization algorithms

	Efficient implementation of regularized reconstruction methods
	Fast Total Variation regularized tomographic reconstruction
	Wavelet regularized reconstruction
	A conjugate subgradient for 2-1 optimization
	Filter-based proximal computation for ADMM

	Artefacts removal and local tomography
	Rings artefacts
	Local tomography

	Conclusion
	Appendix
	Mathematical proofs
	Definitions and properties
	Derivations for section 3.4
	Supplementary material




