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ABSTRACT 

 

In this work, a speaker recognition approach using a contact microphone is developed and 

presented. The contact passive element is constructed from a piezoelectric material. In this 

context, the position of the piezoelectric transducer on the individual’s neck may greatly affect 

the quality of the collected signal and consequently the information extracted from it. Thus, the 

multilayered medium in which the sound propagates before being detected by the transducer is 

modeled. The best location on the individual’ neck to place a particular transducer element is 

determined by implementing Monte Carlo simulation techniques and consequently, the 

simulation results are verified using real experiments. 

The recognition is based on the signal generated from the vocal cords’ vibrations when an 

individual is speaking and not on the vocal signal at the output of the lips that is influenced by 

the resonances in the vocal tract. Therefore, due to the varying nature of the collected signal, the 

analysis was performed by applying the Short Term Fourier Transform technique to decompose 

the signal into its frequency components. These frequencies represent the vocal folds’ vibrations 

(50-1000 Hz). The features in terms of frequencies’ interval are extracted from the resulting 

spectrogram. Then, a 1-D vector is formed for identification purposes. The identification of the 

speaker is performed using two evaluation criteria, namely, the correlation similarity measure 

and the Principal Component Analysis (PCA) in conjunction with the Euclidean distance. The 

results show that a high percentage of recognition is achieved and the performance is much 

better than many existing techniques in the literature. 

 

Keywords: Biometric Identification, collar, contact microphone, correlation, diagnostic, 

laryngophone, non acoustic sensor, piezoelectric transducer, PCA, physiological microphone (P-

mic), recursive stiffness matrix, speaker identification, speaker recognition, STFT, time-

frequency analysis, throat microphone.    
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RÉSUMÉ 

 

Dans ce travail, une approche de reconnaissance de l’orateur en utilisant un microphone de 

contact est développée et présentée. L'élément passif de contact est construit à partir d'un 

matériau piézoélectrique. La position du transducteur piézoélectrique sur le cou de l'individu 

peut affecter grandement la qualité du signal recueilli et par conséquent les informations qui en 

sont extraites. Ainsi, le milieu multicouche dans lequel les vibrations des cordes vocales se 

propagent avant d'être détectées par le transducteur est modélisé. Le meilleur emplacement sur le 

cou de l’individu pour attacher un élément transducteur particulier est déterminé en mettant en 

œuvre des techniques de simulation Monte Carlo et, par conséquent, les résultats de la simulation 

sont vérifiés en utilisant des expériences réelles. 

La reconnaissance est basée sur le signal généré par les vibrations des cordes vocales 

lorsqu'un individu parle et non sur le signal vocal à la sortie des lèvres qui est influencé par les 

résonances dans le conduit vocal. Par conséquent, en raison de la nature variable du signal 

recueilli, l'analyse a été effectuée en appliquant la technique de transformation de Fourier à court 

terme pour décomposer le signal en ses composantes de fréquence. Ces fréquences représentent 

les vibrations des cordes vocales (50-1000 Hz). Les caractéristiques en termes d'intervalle de 

fréquences sont extraites du spectrogramme résultant. Ensuite, un vecteur 1-D est formé à des 

fins d'identification. L'identification de l’orateur est effectuée en utilisant deux critères 

d'évaluation qui sont la mesure de la similarité de corrélation et l'analyse en composantes 

principales (ACP) en conjonction avec la distance euclidienne. Les résultats montrent qu'un 

pourcentage élevé de reconnaissance est atteint et que la performance est bien meilleure que de 

nombreuses techniques existantes dans la littérature. 

 

Mots clés: Analyse temps-fréquentielle, capteur non acoustique, corrélation, diagnostique, 

identification biométrique, matrice de rigidité récursive, microphone de contact, microphone de 

la gorge, laryngophone, reconnaissance de l’orateur, transducteur piézoélectrique, transformée de 

Fourier de courte durée (STFT). 
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INTRODUCTION 

 

Human beings need to communicate with each other. The human process of 

communication has passed through many phases until the creation of the alphabet and the 

beginning of the speaking languages known nowadays. For each language, the different sounds 

emitted by the pronunciation of each letter enable the distinction and the detection of words and 

consequently, the corresponding phrases [1].  

From physical perspective, the human voice is generated by the coordination of three main 

processes: the breathing, the phonation and the resonance [2]. The breathing of air out of the 

lungs generates the necessary power supply for the voice. This airflow from the lungs causes the 

vocal cords (or vocal folds) in the larynx to vibrate. The latter vibrations produce the 

fundamental sound of the voice. This process is called the ‘Phonation’. Since the sound 

generated by the vocal folds is too weak to be heard, it is modified into the known human voice’s 

sound as it propagates from the larynx through the throat, the mouth and the nose. This process is 

referred to as the resonance. The normal voice depends on how well the three fundamental 

components (breathing, phonation and resonance) are synchronized.   

The vocal cords’ vibrations in the larynx constitute the main source of the human sound 

[2]. The measurement of these vibrations and the analysis of their respective frequencies have 

been at the core of the researchers’ interest for many years and for various reasons. The latter 

concept is implemented in various applications such as the speech signal de-noising, the speech 

recognition, the speaker recognition and diagnostics.  

The diagnosis of voice’s disorders was one of the main objectives of many acoustic and 

non acoustic detection tools of the vocal cords’ vibrations. Diseases related to the vibrator device 

(i.e. mainly the larynx and the vocal cords) are among the most common voice disorders. The 
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acute laryngitis (inflammation of the vocal cords) is one of the most known diseases. It may in 

particular cause what is commonly called the "loss of voice". It could happen to a teacher or a 

professional singer and may lead to the total loss of the voice. This disorder usually lasts few 

days and disappears completely. Other more serious pathologies can cause greater damage i.e. 

some forms of laryngeal cancer. These forms of cancer are frequently directly related to smoking 

(chronic) and are often associated with the excessive consumption of alcohol. These diseases 

influence the voice’s vibrator device and subsequently, the frequencies of the vocal folds’ 

vibrations [1].  

The frequencies of the vocal cords’ vibrations can also be analyzed to differentiate between 

persons and to create a voice stamp that is specific to each individual. The speaker recognition, 

an important biometric recognition mean, has been studied by researchers for many years. 

Numerous network models and signal processing techniques have been developed and have been 

tested for recognition and identification purposes [3]. The majority of the existing speaker 

identification techniques is based on the individuals’ voices acquired usually using a 

microphone. The approach that is presented in this thesis depends on the frequencies of the vocal 

cords’ vibrations to identify the individuals and not the actual voices.   

 

Objective 

During the phase of phonation, the vocal folds vibrate with frequencies ranging from 50 Hz 

to 1000 Hz. Such oscillations can be detected using technical devices only since the temporal 

resolution of the human visual perception is limited to frequencies of about 20 Hz [4]. In this 

context, the goal of this work is to build a non invasive tool that is able to detect the signal of 

theses vibrations and consequently, to perform further processing on the collected signal in order 
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to extract some useful information. This tool consists of a piezoelectric transducer element that is 

built and attached to a collar. The latter collar is wrapped around the neck of the person. The 

transducer’s piezoelectric material generates a charge when a pressure is applied and it vibrates 

when a voltage is applied across the element. It basically transforms a mechanical energy into an 

electrical energy and vice versa. When a mechanical vibration is applied, a current signal of 

proportional intensity and of the same frequency will be generated.  

In this work, a full theoretical study of the concept is developed and is presented. Then, a 

set of measurements and experiments were conducted with the designed prototype device. The 

developed device can be categorized as a contact microphone (throat microphone or 

physiological microphone). It has shown a high level of efficiency and accuracy in a vital field 

i.e. the speaker identification. 

 

Outline  

The human vocal system is explained in detail in Chapter 1. Then, a review of related 

studies about the measurement of vocal folds’ vibrations using non acoustic sensors is presented. 

At the end, numerous applications of the throat microphone in the speaker recognition area are 

discussed.   

The developed approach and the methodology of the proposed technique are presented and are 

explained in Chapter 2. 

In Chapter 3, the propagation of the sound through the multilayered medium from the vocal folds 

to the surface of the neck is investigated and studied. 
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Chapter 4 presents the results of the new developed speaker identification system which has 

achieved a high degree of accuracy. The corresponding results are analyzed and are compared 

with the results of other time-frequency techniques implemented in this work. 

Finally, the conclusion section presents a summary of the presented work and its main 

achievements as well as the prospects of future research in this area. 
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CHAPTER 1 

STATE OF ART 

 

1.1 Introduction 

‘You are how you sound’! That is, the voice’s tone tells the listeners a lot about the 

character, emotions, feelings; as well as the actual thoughts of the speaker. Also, it can reveal a 

great deal about his/her educational knowledge, social background, health and intellectual 

awareness. Besides, the way he/she speaks has also the influence to make the listeners trust 

him/her or to be viewed doubtfully. Unless there is a major physical disability in the voice 

apparatus, each person is able to produce the type of voice that can serve his/her daily 

communication needs [2]. 

 

1.2 Fundamentals of Voice Production 

 As stated earlier, the production of human voice passes through three main phenomena 

which are the breathing, the phonation and the resonance. Each phenomenon will be discussed 

below in details [2].  

 

1.2.1 Breathing 

The intent to produce a voice, as any other physical activity, starts from the brain. The 

latter send impulses to the responsible components of the body. The body’s first response to 

these signals is “breathing”. The air will enter into the lungs to power the voice. The breath is 

ingested through the mouth and the nose, passes down the trachea (or windpipe) and is sniffed 

into the lungs. The ribcage needs to inflate in order to let the air be inhaled into the lungs. Also, 

the dome-like diaphragm which forms the base of the chest needs to extend downwards. After 
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breathing successfully, most of the extension in the area of the lower ribs can be felt by the 

individual. Having the lungs reached their maximum capacity from the air being inhaled, their 

elastic tissues rebound and the air is exhaled or breathed out.  The exhaled air comes up through 

the trachea and then through the larynx where it confronts the closing vocal folds.   

 

1.2.2 Phonation 

During the breathing phase (without speaking), the vocal folds in the larynx are open 

allowing the air to pass through the lungs easily. However, when the individual wants to speak, 

the impulses sent from the brain directs the muscles of the larynx to close the vocal folds. When 

the air returning up from the lungs confronts the closed vocal folds, the pressure and the flow of 

the air overcome the resistance of the vocal folds which will be in a rapid vibration mode. These 

rapid vibrations create the sound waves which propagate in the air and are the basic tones of the 

person’s voice. Therefore, the vocal cords constitute the main source of the human voice.  

The larynx is located on the top of the trachea. Its two vocal folds are approximately 20 

mm in length. They are extended from the front of the neck to the back of the larynx. They have 

a complex structure that is made up of four main layers. The outer layer is the mucous membrane 

(or epithelium). An elastic layer filled with liquid is located below the outer layer. This layer is 

known as the Reinke’s space. The mucous membrane and the Reinke’s space constitute both 

what is known as the vocal cords’ ‘cover’. This cover must stay wet and flexible so that it can 

move freely in a wave-like motion (the ‘mucosal wave’) over the profounder layers of the cords. 

If it becomes dry or hard, the voice will become gruff and the person may experience throat 

ache. 
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Under the vocal folds’ cover, the vocal ligament is located. The latter is made up of 

expandable tissues which enable the vocal cords to change shape easily when the deepest and the 

least flexible layer, the muscle, changes its shape. The tone of the basic voice varies in diverse 

ways and is depending on the vocal cords and other components of the voice mechanism. The 

main aspects of the voice that can vary are: the pitch, the loudness and the quality. 

1- Pitch: The pitch refers to the voice’s volume. It is determined primarily by the speed of 

the vocal folds’ vibrations, the thickness of their edges and their lengths. When the rate 

of the vocal cords’ vibrations goes faster, the voice becomes higher. The pitch will also 

be higher as the vocal cords’ edges become more extended and thinner. On the other 

hand, if the edges become thicker and shorter and the vocal cords vibrate at a slower 

rate, the pitch will be lower. The variations of the pitch during the speech can indicate 

the sense and the feeling and is referred to as the intonation. 

2- Loudness: The loudness points to how sharp or quiet a voice is. The quantity of air 

weight from the lungs and the muscle’s strains in the vocal folds are the two main 

factors that control the loudness. The greater the air pressure is and the tenser the vocal 

folds are the louder is the sound. A change in the loudness during a speech can also 

show feelings and emotions and is referred to as stress. For example, the loudness of 

the voice is increased sometimes when a particular word is spoken in order to show its 

importance and to make the audience pay a particular attention.  

3- Quality: The quality refers to the voice’s clearness. It is influenced by many factors. 

The main factors are: the amount of relaxation of the larynx muscles, the degree of 

humidity of the vocal cords’ cover, the amount of softness of the vocal folds’ vibrations 

and the ability of the vocal cords to close properly during the phonation phase. The 
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voice will sound gruff, tired and/or breathy if the muscles of the larynx are extremely 

tough, the cover is dry, the folds move irregularly, and/or they cannot close properly. 

 

1.2.3 Resonance 

The vocal folds in the larynx produce sound waves known as the basic tone. The latter is 

too weak to be recognized as a ‘voice’. Thus, it is amplified as it passes through the throat, the 

mouth and the nose. The size, the shape and the muscle’s strain of these organs will define the 

ultimate sound of the voice that is heard. Since the structures of the throat, the mouth and the 

nose are different for each human being; the tone of the basic voice is different for each 

individual. Therefore, each person has a clear unique timbre of voice. It is similar to what is 

observed in musical instruments. That is, the size and the shape of a musical device, such as 

trumpet, characterize the basic unique tone of the instrument. As the resonance process in a 

trumpet makes it possible to control its sound throughout a concert hall, the resonance in the 

human voice enables the control of its power and its projection. 

 

1.3 Other Physical Factors 

Besides the fundamental building blocks of the voice (breathing, phonation and resonance), 

the efficiency of the voice is also influenced by two other main factors: the body position and the 

relaxation of the muscles of the body and the larynx. Figure 1.1 shows the anatomy of the organs 

responsible to produce a voice i.e. anatomy of the vocal tract [2]. 

The body components that are responsible of the voice’s production are connected to other 

components of the body’s muscular and skeletal system. Therefore, how the body is aligned and 

the amount of the muscle’s strain or relaxation will affect the voice. For example, the overloaded 
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stress in the larynx muscles can cause a tired and a gruff voice. Also, if an individual stands with 

his/her knees braced and the pelvis pressed, difficulties in coordinating his/her relaxed breathing 

with phonation will be observed [2].    

 

Figure 1.1: Anatomy of the Vocal Tract [2] 

 

1.4 Vocal Signal Measurement Equipments 

Actually, the microphone constitutes the most common tool to acquire the speech signals. 

However, the quality of the recorded signals is highly affected by the interference of the 

background noise. Since the speech signal and the noise have the same frequency’s band, it is 

very difficult to separate them and to perform a 100% extraction of the speech. This issue has 

been the researchers’ interest and has gained more and more attention. Many algorithms have 
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been developed in order to eliminate or to reduce to a large extent the embedded noise and the 

majority have yielded good results. Besides, the research has been conducted to develop non 

acoustic means to acquire the speech. Any sensor which is able to collect the speech before it 

leaves the speaker’s lip/oral cavity is immune to the ambient environment noise [5, 6]. 

Non-acoustic measurement devices are usually robust and resistant to noise interference. In 

the past two decades, experiments using non-acoustic sensors have revealed that it is feasible to 

measure the glottal excitation and the articulator movements of the vocal cords in real-time as an 

acoustic speech signal is generated. The non-acoustic sensors can be classified into two 

categories: the physical instruments and the microwave devices. The physical instruments 

include mainly the ElectroGlottoGraph (EGG), the Tuned Electromagnetic Resonator Collar 

(TERC) sensor and the throat microphone. Among the microwave devices, the General 

Electromagnetic Micro-Power Sensor (GEMS) has played an important role in this area. It was 

used to measure the vocal folds’ vibrations during a speech. In addition, equipments such as the 

transnasal flexible endoscopy, the rigid endoscopy, the stroboscopy and the high speed video 

endoscopy have been designed to detect and to visualize the motion of the vocal folds [5-8].    

 

1.4.1 ElectroGlottoGraph 

The EGG (ElectroGlottoGraph) is a device that measures the Vocal Folds’ Contact Area 

(VFCA) [9]. That is, it measures the variations in the electrical resistance between two electrodes 

attached to the individual’s neck on each side of the thyroid cartilage (Figure 1.2). An electrical 

signal in the MHz range is sent through the neck of the subject. The VFCA is determined by 

observing the variations of the electrical impedance between the two electrodes when the vocal 

cords are in a vibration mode (individual speaking). The EGG provides a physiological measure 
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of the fundamental frequency (Fo) of the vocal cords’ vibrations at the laryngeal source’s level. 

Compared to the acoustic signal, the EGG signal is much easier to analyze and to process [9-11].  

 

Figure 1.2: Principle of the Electroglottograph [11] 

 

 The EGG has been implemented in many domains such as the speech recognition, the 

speaker authentication and medical applications. However, since the EGG provides a measure of 

the vocal cords’ contact, the sensor does not necessarily enable the observation of interesting 

phenomena during the open phase of the glottis. It can be noted here that the EGG is not an exact 

indicator of VFCA [9-11]. For example, during the transition to the open phase of the glottis, the 

mucus can “short out” the machine. That is, the glottis is closed when it is actually not the case 

i.e. the mucus bridging effect [12].  
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1.4.2 Tuned Electromagnetic Resonator Collar 

The Tuned Electromagnetic Resonator Collar (TERC) sensor is a non acoustic speech 

sensor that is designed, as other non acoustic sensors, to measure the glottal activity during a 

voiced speech [13]. However, the TERC has resolved many shortcomings of the existing 

technology. First, the TERC sensor does not necessitate a direct skin contact. Second, it does not 

require a critical positioning or alignment and is potent to the complex reflective environment of 

the neck. Finally, unlike the ECG, the TERC sensor does not send any voltage or current through 

the speaker.  

The objective of the TERC sensor is to measure the variations of the relative permittivity 

of the larynx as an alternative approach to measure the movement of the glottis. A common way 

to determine the relative permittivity of a specific material is to create an electric field through 

the material by building a capacitor (or an array of capacitors) and computing the resulting 

capacitance. Figure 1.3 illustrates the concept of how a TERC speech sensor can be applied [13].  

 

Figure 1.3: TERC Speech Sensor Basic Concept [13] 

 

One or several capacitors are built around the neck’s tissues by attaching two or several 

conductive plates on a collar that is wrapped around the speaker’s neck. There is no need for the 
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collar to be in contact with the neck. However, it is suggested by the authors [13] to be worn as 

shown in Figure 1.3 for convenience. Moreover, there is an insulation between the exposed 

conductive plates and the speaker’s neck in order to prevent the skin’s contact and an unwanted 

electrical conduction. 

 

1.4.3 Throat Microphone 

The Throat Microphone (TM), known also as the Physiological Microphone (PMIC), is a 

non-acoustic sensor that captures the speech via the skin’s vibrations. The sensor is placed in 

contact with the throat’s skin and close to the larynx. It detects the signals of the anatomical 

vibrations that are generated during the speech along with the “buzz” tone of the larynx. Unlike 

the standard microphone that gleans the variations of the air pressure and hence the background 

noise; the throat microphone is more robust against the interference of the surrounding noise due 

to its contact with the skin [6, 15]. People in different work environments could benefit from the 

throat microphone to ensure a reliable voice communication. Fire fighters, law enforcement 

officers and aircraft pilots are some relevant examples. In such environments, the noise 

robustness of the throat microphone exceeds that of the normal microphone [6].  

However, even though the throat’s microphone has a robust design against the background 

noise, it is vulnerable to other noise interference and signal corruption such as the body 

movement near the contact surface. Moreover, the improper placement of the sensor will lead to 

the collection of a poor and corrupted signal. Therefore, there is a need to overcome these 

shortcomings in order to have good results that can be properly analyzed [6].      
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1.4.4 Glottal Electromagnetic Micro-Power Sensor 

The GEMS (Glottal Electromagnetic Micro-power Sensor) is a non acoustic sensor that 

measures the opening and the closing of the glottis and the vocal cords’ movements based upon 

transmitting ElectroMagnetic (EM) waves into the glottal region. In other words, it measures the 

tissues’ movements in the human’s vocal tract during the phonation (Figure 1.4), including the 

vocal folds’ vibrations [5, 7, 9]. 

The old measurements with GEMS consist of strapping an antenna on the throat at the 

laryngeal notch or at other facial locations. This set up can make the subjects discomfort and 

sometimes may cause a skin irritation [5]. Subsequently, the radar technology has attracted a 

great interest in different domains, such as medical monitoring, speech and speaker recognition.  

 

Figure 1.4: Basic Concept of the Radar to detect the Signal of the Vocal Folds’ Vibrations [5] 

 

 Several studies have proved the efficiency of the radar sensor in the detection and the 

measurement of the signal generated by the vibrations of the human vocal cords [15-17]. 

However, there are many shortcomings in these studies. For example, the radar sensor has to be 

placed close to the individual’s larynx and consequently, this will cause discomfort and tension 

to the individual. Also, the radar’s detection sensitivity is in some cases low and some 

information embedded in the signal of the vocal folds’ vibrations might be lost or altered. Thus, 



15 

 

these shortcomings have limited the development of new techniques for the noncontact 

measurement of the signal of the human vocal folds’ vibrations until the appearance of the 

millimeter-wave radar sensor’s technology. 

The millimeter-wave radar sensor’s technology represents another area of interest in this 

domain. In [7], a 94-GHz millimeter-wave radar is used to detect the vibrations of the 

individuals’ vocal cords. The high operating frequency has shown an improvement in the skin’s 

penetration and the detection of the vocal folds’ vibrations.  

 

1.4.5 Transnasal Flexible Endoscopy 

The transnasal flexible endoscopy has the privilege of being the only laryngeal 

examination technique that enables the examiner to closely visualize the nasopharynx/velum, the 

larynx, and the pharynx [18]. It is performed while the patient performs a variety of phonatory, 

respiratory, and vegetative activities. Thus, a complete evaluation of the vocal apparatus is 

achieved. The required tools are an elastic endoscope and a light source (Figure 1.5) [19].  
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Figure 1.5: Flexible Endoscope for Vocal Cords’ Inspection [19] 

 

This examination has shown good diagnostic and therapeutic results. However, it has 

certain limitations related to the image quality. The latter is affected by the light source and the 

relatively high cost of the endoscope. A stroboscopic light source may be connected to the elastic 

nasopharyngoscope. Yet, the image quality may be suboptimal due to the visual limitations of 

the fibers of the device. A high-quality light source and a high-quality fiber optic laryngoscope 

(preferably 4 mm in diameter) will ensure a good laryngeal videostroboscopy. It should be noted 

that the maintenance of the flexible nasal endoscopy is of extreme importance. A poor care of the 

scope will degrade the image quality in a relatively short time [18]. 

 

1.4.5 Rigid Endoscopy 

It is performed by using a rigid endoscope that is passed peroral in order to visualize the 

pharynx and the larynx (Figure 1.6) [19]. The patient should be in a sniffing position. This 

method provides a significantly clear view of the larynx and a good magnification of the vocal 
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cords. Also, the vocal cords’ atrophy or subtle lesions can be easily identified. In some cases, 

patients may require minimal topical anesthesia to be applied to the oropharynx for a complete 

check. Moreover, this examination is not well suited to some patients due to the anatomical 

limitations of the soft palate, the base of the tongue, or the hyper-reflexive gag reflex. Also, the 

functional diagnosis, such as muscle tension dysphonia, could not be evaluated due to the non 

physiological position during the examination. However, a light source and a rigid endoscope 

tend to be most of the times less expensive than a high-quality elastic endoscope [18]. 

 

Figure 1.6: Rigid Endoscope to inspect the Vocal Cords [19] 

 

1.4.6 Stroboscopy 

The stroboscopic imaging of the vocal cords’ vibrations during the phonation phenomenon 

is one of the most reliable examination techniques of voice disorders. It plays a major role in 

therapeutic, diagnostic and surgical decisions. Even though stroboscopic imaging is not able to 
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detect cycle-to-cycle details of vocal cords’ vibrations due to sampling frequency limitations, it 

enables the detection of many prominent features that cannot be observed at typical video frame 

rates. Recent developments in coupling stroboscopic systems with high-definition (HD) video 

camera sensors give an unprecedented spatial resolution of the vocal cords’ synthesis involved in 

the phonatory vibrations (e.g., mucosa, superficial vasculature, etc.) [18, 20].   

Even though the video endoscopy using the stroboscopy is considered as one of the most 

common clinical practices for the laryngeal’s visualization, it still has several limitations. First, it 

cannot be applied to individuals that have a voice disorder which leads to a non periodic 

movement of their vocal folds [21]. Second, the classification of the functional voice disorders is 

very hard when the stroboscopy is the sole assessment technique [22]. Finally, the scientific and 

the diagnostic study of the onset and the offset of the cords’ vibrations are limited with the 

stroboscopy. The diagnostic of the onset of the phonation is very useful in classifying the vocal 

cords’ functionality [23].  

 

1.4.7 High Speed Video Endoscopy  

High-Speed Videoendoscopy (HSV) is the only technique which is able to detect the true 

intracycle vibratory behavior of the vocal cords by providing a full image of the latter. Therefore, 

HSV overcomes the limitations of the stroboscopy technique and enables a more accurate 

diagnostic of the vocal cords’ vibratory function. That is, the enhanced temporal resolution 

provided by the HSV enables the assessment of voice disorders that affect the mechanism of the 

vocal folds’ vibrations and makes it non periodic [21, 24].  

During the phonation, the fundamental frequency of the vocal folds’ vibrations is around 

100 Hz for men and around 200 Hz for women. Thus, the current clinical use of the HSV 
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systems is restricted to the measurements of the irregularity in the cords’ vibrations and the 

correlation of these measurements with some acoustic parameters. Therefore, the research is 

geared towards more detailed investigations in the link between the acoustic and the HSV- based 

parameters [24-26]. 

It is important to mention that the use of high-speed motion films to visualize and to study 

the movement of the vocal cords has started a long time before the development of commercial 

systems for laryngeal videostroboscopy. The development of the videostroboscopy constituted a 

technological breakthrough shortcutting the long cycle required by the technology to respond to 

the demand. Ultimately, HSV devices began commercially in the 1990s [21]. 

 

1.5 Throat Microphone 

The focus in this thesis is on the contact sensors that measure the signal generated from the 

vocal cords (due to their vibrations) when a person is speaking. The generated vibrations often 

provide a robust signal where useful information can be extracted. The latter information is 

related to the underlying physiological mechanisms of the voice and the speech production.  

 

1.5.1 Diagnostic  

Contact microphones, known also as throat microphones or laryngophones, have a long 

and a rich history in the medical domain [27-30]. Many authors have developed devices to 

monitor the vocal activity. The NCVS (National Center for Voice and Speech) [31] and the APM 

(Ambulatory Phonation Monitor) [32] are two examples of the most recent and documented 

work in this area. While the NCVS dosimeter is developed by the National Center for Voice and 

Speech, the APM device is developed by the Massachusetts General Hospital. The latter devices 
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are based on measuring the Skin Acceleration Level (SAL) due to the vibrations of the vocal 

folds. This is done by attaching an accelerometer to the neck of the person under monitoring (the 

speaker) using a surgical adhesive or a necklace. The extracted parameters after processing the 

acquired signal are the sound pressure’s level, the fundamental frequency, and the time dose. 

These parameters and others that are derived from them were used for medical analysis and 

diagnostic. They are the most suitable parameters for the identification of the vocal disorders and 

the prevention of an improper use of the voice [33-34]. 

Also, a low-cost platform to monitor the human vocal activity is proposed in [33-35]. The 

platform is composed of a wearable data-logger and a processing program that extracts the vocal 

parameters from the collected signal. The data-logger contains a contact microphone that is 

attached to the jugular notch of the person under examination using a surgical band. The contact 

microphone is an Electret Condenser Microphone (ECM), not an accelerometer as described in 

the previous paragraph. The ECM senses the Skin Acceleration Level (SAL) when a person is 

speaking. Then, the acquired signal is conditioned through a custom circuitry and sent to a 

micro-controller based board. By further processing the collected signal, the Sound Pressure 

Level, the fundamental frequency and the Time Dose can be estimated.  

 

1.5.2 Speaker/Speech Recognition  

The contact microphones have been recently gaining attention in the speech and speaker 

recognition domains because they constitute resistive tools to the high background noise. The 

captured aspects during the phonation are different from the speech’s aspects captured by the 

normal microphones. This distinction was used by researchers as a complimentary to the spectral 

characteristics extracted from the normal speech signals in order to improve the performance of 
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the speaker recognition systems [8]. Recently, many such hybrid speaker recognition systems 

appeared in the literature [9, 14, 36] and consequently, acceptable rates were obtained. 

In [9], three non acoustic sensors were examined and they are: the Glottal Electromagnetic 

Micro-power Sensor (GEMS), the Electroglottograph (EGG) and the physiological microphone 

(PMIC). The input signal that is acquired using a particular sensor is divided into frames and a 

normalization procedure is in occurrence. After it, the phase is eliminated from each frame and 

the delta parameters are calculated and are used as features for identification purposes. The 

features extraction method is similar to the standard filter bank approach for generating mel-

cepstral coefficients. Having extracted the features, the Gaussian Mixture Models (GMM) was 

implemented to model the speaker specific distribution for each type of the acquired signals. The 

Support Vector Machines (SVM) was used for classification and the late integration technique 

was used for the fusion of the modalities. Two databases, the Lawrence Livermore GEMS corpus 

and the DARPA Advanced Speech Encoding Pilot corpus, were used in the experiments. The 

group of utterances that were used is composed of 10 items that are “T 60 YES 3 U R E 8 W P”. 

Different percentages of identification’s accuracy were obtained for the different types of sensor. 

The P-mic yielded the highest percentage among the non acoustic sensors tested i.e. 55 % under 

noisy conditions. However, it was demonstrated that the non acoustic sensors have a great 

potential in increasing the system’s accuracy since by combining the models (i.e. normal 

microphone signal and non acoustic sensors’ signals), a percentage of 89.4% of identification’s 

accuracy is reached under noisy conditions.   

In [14], the characteristics of a particular speaker were extracted from the signal’s spectral 

components of the standard microphone’s speech and were combined with the other speaker’s 

characteristics extracted from the speech collected by the throat microphone in order to improve 
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the performance of the proposed speaker identification system. The spectral characteristics 

extracted from the two acquired signals are distinct and are complimentary to one another. This 

distinction is due to the different locations of placement of the two microphones. The standard 

microphone was placed in front of the individual. However, the throat microphone was attached 

around the individual’s neck. Two minutes of speech data were collected from each individual of 

a group of 36 speakers and were used to train the speaker’s model. The Auto associative neural 

networks models, which are feed forward neural networks, were used to model the specific 

characteristics of the speaker. The latter characteristics were based on the features of the system 

that are computed by the weighted linear prediction cepstral coefficients. Two models were built 

for each individual: the first model is associated with the signal collected by the standard 

microphone and the second model is for the signal acquired by the throat microphone. The 

percentage of accuracy of the speaker identification system that is based on the spectral features 

extracted from the signal acquired by the throat microphone is 80.2%. This is slightly less than 

the percentage of identification’s accuracy of the system that is based on the features extracted 

from the signal collected by the standard (or normal) microphone i.e. 84.9%. However, by 

combining the features extracted from both signals, a clear improvement in the performance of 

the system is observed i.e. the percentage of accuracy becomes 88.7%.  

In [36], a speaker verification system based on a dual signal acquisition (using both an 

acoustic microphone and a throat microphone) is developed and presented. Samples were 

collected from 38 subjects under both clean and noisy conditions. The Mel-Frequency Cepstral 

Coefficients (MFCCs) were computed for all the acquired signals. These coefficients were 

considered as spectral features representing both types of signals. The speaker verification was 

performed using the Gaussian Mixture Model with the Universal Background Model (GMM-
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UBM) and using the i-vector based system. It was proved that the speech that is collected by the 

throat microphone is more resistant to the additive noise. Also, the combination of the features 

extracted from the two signals has increased the performance of the verification system.  

Moreover, the throat microphone has an important impact in the speech recognition area. 

In [37], a robust method for speech recognition is presented. It is based on combining the 

acquired signals from a standard microphone and a throat microphone under noisy environments. 

The Probabilistic Optimum Filter (POF) formulation was extended to map and combine the 

features extracted from the noisy speech acquired by the standard microphone to the speech 

collected by the throat microphone.  The proposed technique showed a significant error rate 

reductions in the word’s recognition compared to the single microphone approach. Thus, the 

proposed combined-microphone approach has yielded a better performance than the single-

microphone approach.  

Similarly, a new framework that is based on a joint analysis of the signals collected from 

both a throat microphone and an acoustic microphone to improve the accuracy of the speech 

recognition that is based only on the throat microphone is presented in [38]. The proposed 

approach is based on learning joint sub-phone patterns of the signals acquired from the throat 

and the acoustic microphones through a parallel branch HMM structure. The multimodal speech 

recognition that relies on the features extracted from the two types of signals has outperformed 

the throat-only microphone approach and has significantly increased the performance of the 

speech recognition. Accuracy’s rate of 52.58% is achieved by the combined approach compared 

to 46.81% of accuracy by using the throat-only microphone approach. 
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1.6 Conclusion 

In this chapter, the fundamentals of the human’s voice production phenomenon are 

discussed in details. The vocal cords’ vibrations in the larynx constitute the main source of the 

human sound. Also, the most common non acoustic sensors and other equipments that are 

designed to detect and to visualize the motion of the vocal folds are presented. Each of the 

presented techniques has its own advantages and disadvantages. The focus in this thesis is on the 

throat microphone. Therefore, the several applications of the throat microphone in different 

domains such as the speech/speaker recognition and the diagnostic are illustrated.   

In this thesis, a non-invasive measurement technique of the vocal folds’ vibrations is 

developed and presented. It can be considered as a new throat microphone approach. The 

acquired signal from the constructed prototype throat microphone served as the input to a new 

developed “text-dependent” speaker identification system. The text-dependent speaker 

recognition is a biometric identification method that provides a high degree of security and has 

been used in a wide variety of applications. In the next chapter, the developed speaker 

identification approach is discussed and presented.  
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CHAPTER 2  

DEVELOPED APPROACH 

 

2.1 Introduction 

The biometric recognition technology has been gaining lately a tremendous popularity due 

to its importance as a robust security measure. Biometric security systems are favorable and 

convenient to users because the persons are not required to remember long passwords or to carry 

any identification cards. Furthermore, the biometric recognition consists of the extraction of a 

feature vector based on a physiological characteristic, which is exclusive and unique to each 

individual, such as the retina, the iris, the face, the voice, etc. Therefore, the identification 

methods provide a high degree of security and have been implemented in a wide variety of 

applications [39-40]. 

The speaker or voice recognition is a biometric approach that uses a person’s voice for 

identification purposes [41]. It depends on characteristics that are affected by both the physical 

structure of the individual’s vocal tract and its behavioral characteristics. It is a common 

authentication technique due to the availability of devices capable of collecting easily the voice 

samples (e.g., microphones) [42]. It has been studied by researchers for many years. Numerous 

network models and signal processing techniques have been developed and have been tested for 

recognition and identification purposes [3] such as the Choi-Williams Distribution (CWD) [43], 

the linear predictive coding (LPC) technique [44], the Mel Frequency Cepstral Coefficient 

(MFCC) [45], the Wavelet Transform (WT) [46] and the Wigner-Ville Distribution (WVD) [40]. 

The field of speaker recognition can be divided into two categories: speaker verification and 

speaker identification. The first category involves the comparison of an individual’s sound with 

an existing sound’s sample to decide if he/she is who he/she claims to be. However, speaker 
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identification involves the matching of the input sound with known sounds stored in the 

database. The latter category can be divided into two branches: text-dependent identification and 

text-independent identification. While the text-dependant identification system has a prior 

knowledge of the spoken text by the user, the text-independent identification system has to 

recognize the user from any spoken text [43, 47-49]. In other words, a text-dependent voice 

recognition system requires the person to speak a fixed phrase. The generated signal is analyzed 

and the corresponding features are extracted in order to be compared with the set of features 

(templates) that are stored in the system. This may lead to the improvement of the system 

performance, especially with cooperative users [50]. The text-dependent speaker identification is 

more appropriate for access monitoring such as the physical access (e.g., entrance to a preserved 

region) or the logical access (e.g., tele-banking, secure services over the internet) [36].  

Most of the existing speaker identification systems have as input the individuals’ sounds 

acquired by normal microphones. However, these systems have poor performance under some 

circumstances such as the signal is embedded in a high background noise, speakers are not 

speaking clearly or speakers are having a strong accent [51].  Therefore, researchers have been 

working on improving the performance of the traditional speaker recognition systems by using 

alternative speech acquisition means [14].   

 

2.2 Developed Speaker Identification Approach  

In this work, a new text-dependent speaker identification system is presented. Its novelty is 

in the fact that the data used for identification are acquired by a new measurement technique. 

Unlike the existing techniques, the identification is based on the frequencies of the vocal cords’ 

vibrations of the individuals and not on their voices acquired usually using a microphone. 
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Moreover, the system is totally dependent on the features extracted from the acquired signal (no 

combination with other acoustic or non acoustic signals) and has yielded competitive results. The 

collected signal constitutes a vocal signature specific to each individual. Besides its good 

percentage of accuracy, the main advantage of the new system is that the recognition procedure 

is based only on the utterance of a vowel which gives the system a very high classification speed. 

Besides, the new system is resistant to pitch variation (or prosody) that affects long spoken 

sentences. Also, it is resistant to the factors that cause variability to the speech production’s 

phenomenon such as the accent, the dialect and the language difference [6]. 

The basic steps of the developed speaker identification system are shown in Figures 2.1 

and 2.2. The system can be summarized as follows [52, 53]: First, the signal is acquired. The 

acquisition system consists of a transducer element attached to the neck of the individual using a 

collar that is wrapped around his/her neck. The collected signal reflects the glottal excitation due 

to the vibrations of the vocal cords while he/she is uttering the requested vowel. Second, the 

Short Time Fourier Transform (STFT) is applied on the collected signal to transform it into the 

time frequency domain. Third, a normalization procedure and the Removal of noise and 

undesired information are performed. Then, the appropriate features are extracted from the 

spectrogram. These features were compared with a set of features of the various individuals that 

are stored in the database (training set) for identification purposes. Finally, the identification of 

the speaker is performed using two evaluation criteria, namely, the correlation similarity measure 

[52] (Figure 2.1) and the Principal Component Analysis (PCA) in conjunction with the Euclidean 

distance [53] (Figure 2.2). The latter procedure (PCA) is implemented to perform a 

dimensionality reduction and hence to decrease the processing time for identification purposes. 
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The results are compared with the results of other time-frequency techniques implemented in this 

work. 
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Figure 2.1: The Overall Block Diagram of the Proposed Correlation Based Speaker Identification System  
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Figure 2.2: The Overall Block Diagram of the Proposed PCA Based Speaker Identification System 
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2.2.1 Signal Acquisition 

The prototype device was developed to collect the signals of the utterance of individuals. 

That is, the signal of the vocal cords’ vibrations is acquired from each individual using a 

piezoelectric transducer element that was attached to a collar which was wrapped around the 

individual’s neck. The individual was requested to utter the vowel “/a/”. In other words, he/she is 

not requested to speak a word or a particular text for identification purposes. The vocal folds’ 

mechanical vibrations were detected by the attached transducer and were converted into an 

electrical signal to be analyzed. The material’s characterization and the experimental setup are 

explained in details.  

 

2.2.1.1 Introduction 

By definition, a piezoelectric material produces an electric current when a pressure is 

applied on its surface and shows a change in volume when an electrical voltage is applied across 

it. In other words, the piezoelectric material functionally can be summarized in two major effects 

[54]:  

1- The direct effect is when the transducer element acts as a generator. It generates an 

electric charge (polarization) when a mechanical stress (force) is applied on its 

surface.   

2- The converse effect is when the transducer element acts as a motor. A mechanical 

movement is generated upon the application of an electric field across the 

transducer.        

Both of these effects are illustrated in Figure 2.3.  
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Figure 2.3: Piezoelectric Effects (a) Direct and (b) Converse in Piezoceramics 

 

2.2.1.2 History 

The piezoelectricity is a property relative to a certain group of materials. The piezoelectric 

activity was first discovered in 1880 by Jacques and Pierre Curie during their study on the 

influence of the pressure exercised on the crystals and the produced electric field. The examined 

crystals were the quartz, the zincblende, and the tourmaline. In 1921, the ferroelectricity was 

discovered in the Rochelle salt and in 1935 it was discovered in the Potassium phosphate 

(KH2PO4). However, the detection of the ferroelectricity and the piezoelectricity in ceramic 

materials began in the early 1940s under a cloud of mystery because of the World War II. In 

1946, after the end of the war, the work on the Barium titanate (BaTiO3) as a high dielectric 

constant appeared publicly and it was proved [55-56] that the source of this high dielectric 

constant emerges from the ferroelectric properties of the BaTiO3. 

The ferroelectric and the piezoelectric properties of the ceramic BaTiO3 have led to an 

electromechanically active material that was deployed in many industrial and commercial 
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applications. The two main points that have led to the discovery of the ferroelectricity and the 

piezoelectricity in ceramics were [57-58]: 

1- The detection of the prodigious high dielectric constant of BaTiO3. 

2- The detection of the electrical poling phenomenon that aligns the internal dipoles of 

the crystallites within the ceramic and makes it acts like a single crystal.  

Before the development of BaTiO3, the dominant opinion was that the ceramic materials could 

not be piezoelectrically active because the felted and randomly oriented crystallites would cancel 

out each others.  

The history of piezoelectric applications using ferroelectric ceramics has been highly 

influenced by the BaTiO3 which was the first ceramic piezoelectric transducer ever developed. 

However, in the past decades, the BaTiO3 has been replaced by the Lead zirconate titanate 

(PZTs) and the Lead lanthanum zirconate titanate (PLZTs) in the transducer applications. This is 

due to the compositions of the PZT and the PLZT (i.e. several advantages over the BaTiO3) [57]: 

1- Higher electromechanical coupling coefficients 

2- Higher curie temperature (Tc) which enables them to work under higher 

temperatures and to bear higher temperatures of processing during the 

manufacturing of equipments 

3- Easier poling process 

 

2.2.1.3 Domain of Application 

Piezoelectric ceramics are used in many applications and in different domains due to their 

outstanding characteristics such as a high sensitivity, an ease of manufacturing in different 
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shapes and in different sizes, the ease of the poling process and the ability of poling the ceramic 

in any direction. Few examples of devices that have piezoelectric ceramics are [57, 59]:  

- Industrial equipments and sensors that are based on ultrasound: Level control, 

detection, and identification. 

- Devices used for drilling and welding of metals and plastics. 

- Transducers made for non destructive testing (NDT). 

- Micro positioning instruments such as the scanning tunneling microscopes. 

- Military equipments such as the movements’ detectors, the underwater communication 

devices, etc. 

- Acoustic emission transducers 

- Medical imaging devices such as the Intravascular Ultrasound (IVUS), the High 

Intensity Focused Ultrasound (HIFU) and the devices to clean the blood veins.  

 

2.2.1.4 Material’s characterization 

The device that is developed in this work for the measurement of the vocal cords’ 

vibrations is constructed from a ceramic piezoelectric material. The electrical aligning or what is 

called the “poling process” is the key element to turn a ceramic into an electromechanically 

active material. In other words, it is not possible to benefit from the piezoelectric effects of a 

ceramic without poling even though every crystallite in a ceramic is piezoelectric by itself. 

However, during the poling process, the ceramic should not be heated above its curie 

temperature Tc. At that temperature, the crystal structure of the ceramic material changes, it loses 

its polarization and consequently, all the piezoelectric properties will be lost [59]. 
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The piezoelectric functionality is summarized as the transform of an applied mechanical 

force into an electric charge and vice versa. The ratio of the electric field generated to the 

mechanical force applied (or the inverse) is known as the piezoelectric voltage coefficient (g) 

and is calculated as follows [59]: 

  
 

  
        (2.1) 

Where q is the piezoelectric charge coefficient and ε is the dielectric constant (permittivity at 

constant stress (F/m)). The piezoelectric charge coefficient (q) represents the ratio of electric 

charge generated per unit area to an applied force (C/N) or vice versa, the strain developed to an 

applied electric field (m/V). It is determined by the following equation [59]: 

               (2.2) 

Where k is the coupling factor and    (m
2
/N) is the elastic compliance.  

The coupling coefficient k represents the ratio of the electrical energy stored in response to 

the mechanical energy applied or vice versa. It is calculated differently for each transducer mode 

of vibration. The electric compliance is the inverse of the Young’s modulus (Y). The latter 

reflects the attributes of the mechanical stiffness and is defined as the ratio of the stress to the 

strain. In a piezoelectric material, the mechanical stress generates an electrical response that 

counters the resultant strain. The value of the Young’s modulus predicates on the direction of the 

stress and the strain and on the electrical circumstances. The inverse of the Young’s modulus is 

calculated as follows [59]: 

   
 

 
 

 

   
        

(2.3) 

Where           is the density of the material and         is the sonic velocity. 



36 

 

Furthermore, the dielectric loss factor and the mechanical quality factor are also two main 

factors that characterize a piezoceramic material. The first factor is defined as the ratio of the 

conductance to the susceptance of a parallel equivalent circuit of the ceramic element. It is 

referred to as the tangent of the loss angle (       ). The second factor (the mechanical quality 

factor   ) is defined as the ratio of the reactance to the resistance of the series equivalent circuit 

symbolizing the piezoelectric resonator. It is calculated as follows [59]: 

   
  
 

                
  

(2.4) 

Where    and    represent the resonance frequency (Hz) and the anti-resonance frequency (Hz), 

respectively. The variable C refers to the capacitance (in Farad) and    is the minimum 

impedance (Ohm) at    .  

In this work, the material is the Ferroperm Piezoceramic Pz26. This material is 

characterized by a high electromechanical coupling coefficient, a high mechanical quality factor 

(   ) and a low dielectric loss. It has a high power and is a low loss material. The transducer 

element that is used has a length (L) =2.2cm, width (W) = 0.4cm, thickness (Th) = 0.1 cm and a 

transverse length vibration mode (Th, W < L/5) (see Figure 2.4). 

 

Figure 2.4: Transducer Mode of Vibration 

 

Polarization direction 

Direction of displacement 
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For the transverse mode, the frequency constant (Fc) that represents the product of the 

resonance frequency and the linear dimension governing the resonance is calculated as follows 

[59]: 

                (2.5) 

Where L is the length of the transducer element. The piezoelectric coupling coefficient (k), for 

the transverse length vibration mode, is expressed as follows [59]: 

   
   

      
   

      
   
   

 
  

(2.6) 

Finally, the elastic compliances are calculated for the transverse mode using the following 

equation [59]: 

   
 

       
         

(2.7) 

Table 2.1 shows a list of all the material’s characteristics i.e. the electrical properties, the 

electromechanical properties and the mechanical properties. All the measurements were done at 

a temperature T= 25
o
C and after 24 hours of the poling process. The tolerances are      for the 

electrical properties,     for the electromechanical properties and       for the mechanical 

properties and are based on the factory calibration settings [59].    
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Table 2.1: Electrical, Electromechanical and Mechanical Properties of PZ26  

Dielectric loss factor at 1 KHz (       ) 3 x 10
-3

 

Curie temperature (Tc)           > 330 
o
C 

Coupling factor (K) 33% 

Piezoelectric charge coefficient (q) 130 x 10
-12

 C/N 

Piezoelectric voltage coefficient (g) 11 x 10
-3

 Vm/N 

Frequency constant (Fc) 1500 Hz.m 

Density (  ) 7.7 x 10
3
 Kg/m

3
 

Elastic compliance (S
E
) 13 x 10

-12
 m

2
/V 

Mechanical quality factor (Qm) > 1000 

 

2.2.1.5 Methodology 

The source of the acoustic energy for the human voice is the glottal cycle [13]. It can be 

described as follows: When a person breathes (without speaking), his/her vocal cords in the 

larynx are open and the air passes through the lungs easily. However, when he/she speaks, 

impulses are transmitted from the brain to the muscles of the larynx conveying a signal to close 

the vocal cords. The returning air from the lungs hits the closed vocal cords. The pressure of the 

air flow overcomes the resistance of the vocal cords which will be in a rapid vibration state. This 

rapid vibration creates the sound waves which propagate in the air and are the basic tones of the 

person’s voice [2]. Therefore, the vocal cords constitute the main source of the human voice. In 
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this context, the piezoelectric transducer element is attached to a collar that is wrapped around 

the subject’s neck. Each individual was requested to utter the vowel “\a\”.  

The vocal cords’ vibrations (and the resultant glottal flow signal) constitute the main sound 

source for the vocal tract’s excitation during the vowel production [60]. In other words, when 

uttering a vowel, the source of the generated sound is mainly the vibrating vocal cords that 

transform the steady (DC) airflow from the lower respiratory system into a periodic series of 

flow pulses. The latter pulses, known as the glottal flow, are acoustically filtered by the vocal 

tract resonances. The latter process harmonizes the frequency components of the source signal 

and leads to the generation of the vowel sound. Moreover, the vowel “\a\” reflects the most of 

the vocal folds’ vibrations [61].  

Having uttered the vowel “\a\”, the vocal cords’ mechanical vibrations were detected by 

the transducer attached to the collar and were transformed into an electrical signal to be 

processed. The transducer element was connected to the input port of a NI Elvis II+ board (16-bit 

resolution). The resulting electrical signal was read by Labview using a sampling frequency of 

2500 Hz. Thus, the individual’s signal of the vocal cords’ vibrations is detected and can be 

processed.  

 

2.2.2 Short Time Fourier Transform 

The acquired signal of a particular individual is a non-stationary signal. Its properties 

change substantially over time and the changes are usually of primary interest for analysis and 

differentiation purposes. The spectral analysis techniques such as the Fourier Transform provide 

a good description of the frequencies’ contents of the waveform but not their timing. The latter 

information is encoded in the phase portion of the resulted transform. However, the encoding is 
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difficult to interpret and to recover. Therefore, many techniques have been developed to extract 

both the time and the frequency information from a waveform. They are known as time-

frequency methods and include the Short Term Fourier Transform (STFT), the Choi-Williams 

Distribution (CWD) and the Wigner-Ville Distribution (WVD) [52, 62-63].  

The STFT technique was applied to the collected signal to decompose the latter into its 

frequency components. It consists of segmenting the signal into time intervals and applying the 

Fourier transform on each segment. A window function must be applied on the collected signal 

x(t) to isolate the segment of data and consequently to perform the STFT on the extracted data. 

Thus, the window’s length (interval’s size) and the time step have to be defined as illustrated in 

Figure 2.5 [52].  

 

Figure 2.5: The Interval Size and the Time Step using a Window 

 

The STFT is defined by [63]: 

                          
  

  

 
(2.8) 

 Where w(t-τ) is the window function and τ is the variable that indicates the window’s shift 

across the original acquired waveform x(t). The selection of a window’s type and its size can be 

crucial. The window’s type and the window’s size have a big influence on the results. While a 

W(n) 

W(n) 

Window Length 

Time Step 

W(n) 



41 

 

small window’s size improves the time resolution, the frequency resolution will be reduced and 

vice versa. Moreover, low frequencies might be lost when the size of the window is very small 

because they will not be included in the data segment to be analyzed. Different windows 

(rectangular, triangular, hanning …) can be applied in conjunction with the STFT. The Hamming 

window has been incorporated and can be defined as follows [52]:  

                  
   

 
   

   

 
     

   

 
 

                                                                             
  

(2.9) 

 

2.2.3 Normalization and Noise Removal 

The frequencies’ magnitudes are affected by the loudness of the voice i.e. they vary from 

one time to another even if the phrase or the word is spoken by the same person.  Therefore, they 

were normalized by dividing each value by the highest value in order to have the same level for 

all subjects under examination.  

Having performed the normalization procedure, the magnitudes corresponding to the low 

frequencies affect the accuracy of the identification system. They can be considered as noise that 

needs to be eliminated or reduced. Therefore, all frequencies which are below a threshold value 

are eliminated i.e. their corresponding magnitudes are set to a value of zero.    

 

2.2.4 Features’ extraction 

The next step involves the extraction of meaningful signal’s frequencies for identification 

purposes. A threshold value is selected to be a certain percentage of the maximum amplitude. 

The frequencies that are characterized by magnitudes’ values greater than the threshold value are 

extracted. Therefore, there is no need to keep the whole spectrum. The intervals that contain the 
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necessary information (i.e. the frequencies) are only kept and are stored for comparison and 

identification purposes. The extracted features were transformed into a 1-D array for 

classification purposes.   

 

2.2.5 Database 

The identification process requires the existence of a database in which a template of the 

features’ vector of each individual to be identified is stored. In this work, the database consists of 

the features’ vectors of N (50) individuals. Actually, each person utters the vowel “a” and the 

corresponding signal of the vocal cords’ vibrations is collected. This experiment is repeated three 

times for each individual. Thus, 3N signals were collected and each is processed as outlined 

before in order to obtain the features’ vector.  Then, one features’ vector per individual is stored 

in the database and the remaining 2N features’ vectors are used to evaluate the proposed 

approach. 

 

2.2.6 Correlation 

The linear correlation coefficient Corr(X, Y) between two vectors X and Y is expressed as 

[64]:  

             
 

   
 

         

    
             

     

   
 

(2.10) 

Where X (a collected features’ vector) and Y (a template features’ vector) are the vectors to be 

compared, µx and µy are the mean values of X and Y, respectively, σx and σy are the standard 

deviations of X and Y, respectively and rxc is the length of the extracted  vector X (or Y). In 

each case, the correlation coefficient is calculated between the collected features’ vector and 

each one of the N features’ vectors stored in the database. For any two vectors, the closer the 
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coefficient’s value is to 1; the higher the similarity is between the two vectors. Then, the highest 

correlation value identifies the desired person. 

 

2.2.7 Principal Component Analysis (PCA) 

PCA is one of the most famous statistical methods applied for data analysis and 

dimensionality reduction. This approach consists of approximating the original vectors of 

features by vectors with a lower dimension (i.e. eigenspaces) [65-66]. Thus, the principal idea of 

this algorithm is that the new space (i.e. reduced features’ vectors) is characterized by a 

dimension that is lower than the dimension of the original extracted features’ vectors. 

Consequently, the recognition of the individuals is accomplished in the space of the reduced 

dimension. The approach assumes that a training set (database) and a projection matrix (contains 

the elements for dimensional reduction) are available. The latter matrix is computed from the 

features’ vectors that are stored in the database. The implementation of PCA involves two main 

steps: Initialization and Recognition [65].  

The initialization step consists of calculating the eigenspaces of the features stored in the 

database (training set). The eigenvectors of the covariance matrix highlight the variation that 

exists among these features. Thus, each features’ vector of the training set has its respective 

contribution or variation incorporated in the computed eigenvectors. Therefore, each vector can 

actually be represented as a linear combination of the eigenspaces with the highest eigenvalues. 

Then, the weight space of each of the known individuals in the database is calculated by 

projecting its corresponding features’ vector on to the eigenspaces. As new measurements are 

performed, the computed eigenspaces need to be updated. 
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Having initialized the system, the next step involves the classification. The weight of an 

input signal is calculated by projecting the input features’ vector onto the stored eigenspaces. 

Then, the differences between the new weight and each of the stored weights are calculated. The 

smallest difference indicates the highest similarity between the two vectors and the desired 

person is identified. 

The latter process can be explained mathematically. Let N training features’ vectors be F1, 

F2 … FN. Each vector is of dimension (Sx1). The average of the training set is computed by: 

       
 

 
   

 

   

 

(2.11) 

The ith feature vector (  ) differs from the average by the vector: 

            (2.12) 

Having adjusted the mean of each vector of the training set, the corresponding covariance matrix 

is calculated using the following formula:  

    
 

 
     

 

 

 

     

(2.13) 

 Where  

                    (2.14) 

The size of the computed covariance matrix C is (SxS). Since the approach requires the 

determination of the Eigen values and the corresponding eigenvectors, the complexity of the 

computation will be tremendous. Consequently, an alternative covariance matrix that will result 

in the same most significant eigenvectors and Eigen values would be more practical to 

implement. That is, a computationally feasible method is suggested by Turk and Pentland [67]. 

The covariance matrix of size N by N can be computed. That is, the covariance matrix X
T
X 
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instead of XX
T
 is considered and it is an N by N matrix. This matrix yields the same most 

significant eigenvectors as the previous covariance matrix. Thus, a L matrix is formed as: 

             (2.15) 

The N eigenvectors are calculated from the L matrix and are stored in a vector U of size (NxN) 

according to the corresponding eigenvalues organized in descending order. Then, the 

eigenspaces vector V is calculated by: 

                     (2.16) 

Finally, the weight space is computed as follows: 

                      (2.17) 

Similarly, the weight of each new input features’ vector (Finput) is calculated i.e.: 

                               (2.18) 

In order to compute the similarity between the input weight vector and the weight of each vector 

in the training set, the euclidean distance is used: 

                       (2.19) 

Where K = 1, 2….N. The minimum Euclidean distance indicates the highest similarity. 

 

2.3 Conclusion 

A non-invasive technique to measure the vocal folds’ vibrations is presented. The 

technique consists of attaching a piezoelectric transducer element on a collar and the latter is 

wrapped around the person’ neck. The acquired signal is the input to a new developed “text-

dependent” speaker identification system. The developed approach can be summarized as 

follows: The Short Time Fourier Transform (STFT) is applied on the collected signal to 

decompose it into its frequencies’ contents. Then, the magnitudes of the frequencies are 
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normalized by dividing each value by the highest value in order to have a maximum level of 1 

for all the subjects under examination. The noise interference is eliminated and the appropriate 

features (frequencies) are extracted from each spectrogram. The identification of the speaker is 

performed using two evaluation criteria, namely, the correlation similarity measure and the 

Principal Component Analysis (PCA) in conjunction with the Euclidean distance. 

However, the position of the transducer on the individual’s neck may greatly affect the 

quality of the collected signal and consequently the extracted information (i.e. frequencies). 

Thus, the search for the best position to place a particular transducer on the individual’s neck is 

in accordance. Subsequently, this will ensure to receive the best signal for analysis purposes. 

Thus, in the next chapter, the multilayered medium in which the sound propagates before 

reaching the surface of the neck is modeled. The structure was assumed to be composed of two 

main layers: the fat and the skin.  The position of the transducer is examined using Monte Carlo 

simulation techniques and consequently, the simulation results are verified using real 

experiments. 
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CHAPTER 3 

MODEL OF THE LAYERS OF THE HUMAN NECK 

 

3.1 Introduction 

The vocal cord consists of three main layers: the mucosa, the vocal ligament and the 

underlying muscle. The composite microanatomy allows the soft and the flexible superficial 

mucosal layers to vibrate freely over the stiffer structural underlayers. The mucosa of the vocal 

cord is characterized by its vibratory role and is composed of several layers: the squamous 

epithelium, the most superficial layer, and the three layers of lamina propria, each with an 

increasing stiffness. The Superficial layer of the Lamina Propria (SLP) is mostly acellular and 

consists of extracellualar matrix proteins, water, and loosely arranged fibers of collagen and 

elastin. It has a gelatinous nature. The potential space between the SLP and the Intermediate 

layer of Lamina Propria (ILP) is the Reinke’s space. The ILP and the Deep layer of the Lamina 

Propria (DLP) are composed mostly of elastin and collagen fibers. The densest DLP layer is 

formed of tightly arranged collagen fibers. Both, the ILP and the DLP layers constitute the vocal 

ligament. The gelatinous superficial layer of the lamina propria and the squamous epithelium, 

move freely over the underlying vocal ligament and the muscle to generate the vibrations which 

produce the sound [68]. The produced sound propagates as an audible mechanical wave of 

pressure and displacement through the layered media of the human neck.  

The topic of elastic wave’s propagation in a layered media is widely discussed in the 

literature and has been the interest of researchers for many decades. This is due to the large 

number of its applications in different domains such as the seismology, the science of acoustics, 

and the Non Destructive Examination (NDE) processes [69]. In this context, several methods 

have been developed such as the transfer matrix method [70], the delta matrix method [71], the 
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global matrix method [72], the recursive stiffness matrix method [69], etc. These methods are 

based on different concepts to study the wave propagation in a layered medium and to calculate 

the reflection and transmission coefficients. 

The recursive stiffness matrix method, defined in [69], is a robust method. The recursive 

algorithm is developed to construct the total stiffness matrix as a global banded matrix. The 

algorithm deals with the total stresses and the displacements at the interfaces between the layers 

instead of building the reflection/transmission matrices. The method’s computation time is 

proportional to the number of layers N (same as the standard transfer matrix approach).  

However, the limitations of the transfer matrix method with respect to the instability of the 

layers’ thicknesses of several wavelengths are addressed. Thus, the recursive stiffness matrix 

method is implemented in this work. However, it is adjusted since the medium under study is 

considered an isotropic medium (not anisotropic).  The simulated model consists of a multilayer 

media: a fluid layer, a solid layer and a fluid layer. The layers’ interfaces are assumed to be 

perfect (continuity of displacement and stress). The method implemented is unconditionally 

stable and is time efficient to simulate the work at hand.  

 

3.2 System Model 

The generated sound passes through a multilayer media before reaching the surface of the 

neck where it is detected by a transducer. The structure of the neck consists of two main layers: 

the fat and the skin. The fat is considered to be a fluid layer and the skin is assumed to be an 

elastic solid layer. The signal of the vocal cords’ vibrations is assumed to be an elastic wave that 

is incident on the layered structure as shown in Figure 3.1. The variable I is the incident wave 

amplitude forming an angle    with the perpendicular to the interface. The variable R refers to 
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the component of the incident signal (“I”) which is reflected at the level Zo (the interface 

between the Fat and the Skin). The remaining component of the signal is transmitted into the 

skin (layer 1). The skin is a solid layer where two types of waves propagate: the longitudinal 

waves (L waves) and the transverse or shear waves (T waves). A similar behavior is observed in 

the skin to the wave which is propagating until the interface between the skin and the gel (Z1) i.e. 

reflection and transmission. Subsequently, Tr is the transmitted signal that is propagating in a 

fluid medium (Layer 2) representing the gel that is placed on the human’s neck to enhance the 

signal’s detection. This layer (Layer 2) is assumed to have the same properties as the Fat Layer 

(Layer 0).    

 

Figure 3.1: A Representation of the Multilayered Structure 

  

The analysis of the propagation of the wave and consequently, the computation of the 

reflection and the transmission components is based on the stiffness matrix method, as defined in 

[69]. The displacement vector u
m

 at the layer m can be written as the summation of partial 
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waves, where the number of partial waves (n) propagating in a medium depends on the nature or 

the type of the medium:  

            
   

     
             

   
     

          

 

   

                
(3.1) 

Where 

      
    

    
   ,  

T refers to the transpose,  

  
 
  refers to the displacement’s amplitude.  

The positive and the negative superscripts refer to the wave propagated in the (+z) and the (-z) 

directions, respectively. 

The parameter   
 
      

 
    

 
    

 
   

    represents the j’th unit displacement polarization vector 

that corresponds to the wave vector    
 
   . The wave vector   

  refers to the x projection of the 

wave number of the incident wave and is calculated, for all types of partial waves and all types 

of mediums, using Snell’s law ( i.e.   
    

    m), as follows: 

  
    

             (3.2) 

The coordinate system, as shown in Figure 3.1, is chosen so that the (x, z) plane coincides with 

the incident plane and consequently,     . 

The stress vector                
 in the (x-y) plane, parallel to the layer surface, is 

expressed as follows: 

       
   

     
             

   
     

          

 

   

                
(3.3) 
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Where   
 
      

 
    

 
    

 
   

   is related to   
 
  by a constant C that depends on the type of each 

layer. 

A displacements-constraints column vector    is formed in order to express the 

parameters of each medium (m). It includes the components of the total displacement vector    

and the components of the stress vector   . It is represented as follows: 

                                (3.4) 

Where 

     is a square characteristic matrix describing the medium, 

        is a diagonal square matrix whose diagonal elements are      
          ,     

         

   is a column vector containing the displacement amplitudes. 

The components of the vector    vary according to the type of the medium m. 

A medium can be bounded by two interfaces i.e. an interface at the top of the medium and 

an interface at the bottom of the medium (Solid layer, Figure 3.1). Subsequently, the 

displacements at the top layer’s surface (z=zm-1) and at the lower layer’s surface (z=zm) can be 

expressed as: 

  
   

  
 
 
   

               

                
 
 
  

 

  
 
 
             

              
(3.5) 

Similarly, the stresses at the top and bottom surfaces of each layer are related to the displacement 

amplitudes as follows: 

        
   

  
 
 
   

             

               
 
  

 

  
 
 
             

              
(3.6) 

Where 

     and      are matrices whose columns are the displacement polarization normalized vectors 

of the plane waves propagating in the layer m along the    and    directions, respectively, 
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     and      are calculated from      and      respectively, for each type of medium, 

   and    are square diagonal matrices whose elements are          
  
    and 

          
  
    respectively, 

             represents the thickness of the m
th

 layer. 

Since   
  
    

  
, the following terms of the diagonal matrices are similar i.e.      

  
   

    
  
  . Consequently, the corresponding matrices are the same i.e.        . 

The layer stiffness matrix Km that relates the stress vector to the displacement vector is 

obtained by substituting the amplitude vector    from eq. 3.5 into eq. 3.6 i.e.: 

              
   

  
 
 
   

    
            

   

  
 
 

 
(3.7) 

The stiffness matrix varies from one medium to another since it depends on the type of the 

medium. The layer compliance matrix relates the displacement vector to the stress vector and is 

expressed as follows: 

       
     

    
     (3.8) 

As it is stated earlier, the structure through which the wave is propagating is composed of 

three layers: a fluid layer, a solid layer and a fluid layer (i.e. the gel).  In order to compute the 

reflection and the transmission coefficients of the simulated model, the stiffness matrix of the 

solid layer needs to be calculated. The characteristic matrix of the fluid layer(s) is needed. 

Moreover, the boundary conditions between the mediums have to be taken into account.    
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3.2.1 Fluid Layer 

The waves which are propagating in the fluid are only of longitudinal type [73]. Therefore, 

two longitudinal waves propagate in the (+z) and the (-z) directions. The wave number k
m

 of the 

fluid is expressed as: 

                       
 

  
   (3.9) 

And, according to eq. 3.2: 

                 
    

             (3.10) 

Then,  

                     
     

         
  

    
    

    
(3.11) 

Where 

  is the angular frequency, 

Cf is the speed of sound in the fluid. 

The boundary conditions at the interface of a fluid layer express the continuity of the vertical 

displacement and the continuity of the fluid pressure [73]. Then, the displacement-constraint 

column vector of a fluid is expressed as: 

            
  
   

 
 
 (3.12) 

The z component of the displacement vector is expressed as follows: 

                 
       

     
              

     
                       (3.13) 

The unit displacement polarization vectors in the fluid are: 

                  and                        

Moreover, the dilatation or the pressure (Pr) in the fluid can be defined as: 
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                                  (3.14) 

Where 

       
     represents the bulk modulus of the fluid,  

   is the density of the fluid, 

      is the divergence of the vector    . 

Then, eq 3.4 becomes: 

  

                    
  
   

 
 
      

    
                    
             

       
 
 

  
 

  
 
 
           

(3.15) 

Where      is called the 2x2 characteristic matrix of the fluid.  

After performing certain manipulations and simplifications, the characteristic matrix is 

represented as follows: 

      
           
        

  
(3.16) 

Where    is the fluid impedance, and is equal to     . 

 

3.2.2 Solid Layer 

Two types of waves can propagate in an isotropic elastic solid layer: the longitudinal waves 

(L waves) and the transverse or shear waves (T waves) [73]. The longitudinal wave number is 

expressed as: 

                
    

     
 

  
 

(3.17) 

Where    refers to the speed of the longitudinal wave in the solid. It is computed as follows: 
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(3.18) 

Where 

   is the density of the solid, 

µ and   are the Lamé coefficients. 

Then, according to eq. 3.2: 

                
       

               (3.19) 

Thus, 

                 
        

             
  

   
     

(3.20) 

Similarly, the wave number of the transverse wave is given by: 

                
    

     
 

  
 

(3.21) 

Where    is the speed of the transverse wave in the solid i.e. 

    
 

  
 

(3.22) 

According to eq. 3.2, the wave numbers of the transverse wave become: 

   
       

               (3.23) 

And 

    
        

             
  

   
     

(3.24) 

The boundary conditions at the interface of a solid layer express the continuity of the x and 

z components of the displacement and the continuity of each of the (x,z) and (z,z) components of 

the stress tensor [73]. Then, the displacements-constraints column vector of a solid is defined as: 
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(3.25) 

The x and z components of the displacement vector can be expressed as follows: 

                  
      

    
    

   
             

    
    

   
                      

     

 
(3.26) 

And 

                  
      

    
    

   
             

    
    

   
                      

     

 (3.27) 

Where 

  
                    

  
                   

  
                   

  
                  

The two angles    and    refer to the angle of the longitudinal wave and the angle of the 

transverse wave with respect to the normal to the interface, respectively. 

The stress tensor is expressed as follows: 

                                             (3.28) 

Where 

i and j refer to the axis of the coordinate system (x, y, z),  

    refers to the Kronecker delta: 

                     
            
           

  
(3.29) 

    is the strain tensor and is given by: 
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(3.30) 

Then, similar to the fluid layer, the displacements-constraints column vector of a solid can be 

formed and is given by: 

  

            

  
  
   
   

 

 

  

    

 
 
 
  

    
              

      
             

       
          

        
          

 
 
 
 

  
 

  
 

  
 

  
 

  

(3.31) 

Where      is called the 4x4 characteristic matrix of the solid. 

After having performed certain manipulations and simplifications, the characteristic matrix can 

be reduced to: 

     = 

       

 
 
 
 
 
 
 

                     
                     

   

  
       

   

  
       

   

  
       

   

  
      

    

  
       

  
   

  

   

  
      

    

  
       

  
   

  
 
   

  
       

 
 
 
 
 
 

 

(3.32) 

To simplify the presentation for further calculations, the latter characteristic matrix is divided 

into 4 equal (2x2) sub matrices i.e.: 

  

      
         
         

 
 

 
(3.33) 
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The solid layer’s stiffness matrix is formed by relating the (x, z) and the (z, z) components 

of the stress tensor to the x and z components of the displacement vector, respectively: 

                                                             

 
 
 
 
 
   
 

   
 

   
 

   
  
 
 
 
 

 

   

 
 
 
 
 
  
 

  
 

  
 

  
  
 
 
 
 

 

                                                       

(3.34) 

Based on eq. 3.7,    is given by: 

                    
      

   
    

              
             

  
             
            

 
  

 
(3.35) 

Where 

            
           

       ,  

      i.e. the thickness of the solid layer (Figure 3.1). 

 

3.2.3 Fluid-Solid Interface 

The continuity conditions at the fluid-solid interface are given by [73]: 

                              

   
       

   

    
        

   

     
               

                       

(3.36) 

The same conditions apply at the second interface (solid-fluid):  

                              

   
       

   

    
        

   

     
               

                       

(3.37) 

 

3.2.4 Reflection and Transmission Coefficients 

The reflection coefficient (R) in the first layer (Layer 0) and the transmission coefficient 

(Tr) in the third layer (Layer 2) are calculated (Figure 3.1). It is to be noted here that the 
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refracted angles in the various mediums are related, according to Snell’s law [74-75], by the 

following equation: 

     
     
  

 
        

  
 
        

  
 
     
  

 
(3.38) 

Since Layer 0 and Layer 2 are identical,      .  Also, they have the same characteristic matrix 

[G]. Furthermore, before proceeding with the calculations, it is to be noted that the term 

           is omitted since it will be simplified in the calculations.  

The fist layer (Layer 0) is a fluid. The amplitude of the incident wave (I) is assumed to be 

equal to one. The terms (      and     ) are neglected at the first layer and at the last layer 

(known also as the first semi space and the last semi space) since they are not bounded by two 

interfaces [69]. Then, eq. 3.15 becomes at Z0=0 (origin of the Z axis) as follows:  

 
   

  
 

    
  

 

   
       
        

  
     
     

  
 
 
  

(3.39) 

This will give: 

 
   

  
 
         

    
  

 
         

  
(3.40) 

Since layer 2 is the last layer, it is the layer in which the signal is detected i.e. the transmitted 

wave (Tr). Therefore, there is no reflection (i.e.    ). Then, at layer 2 (Z=Z1) eq. 3.15 yields: 

 
   

  
 

    
  

 

   
       
        

  
     
     

  
  
 
  

(3.41) 

 

Consequently, eq. 3.41 can be written as: 

 
   

  
 
       

    
  

 
       

  
(3.42) 
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Moreover, the displacements and stresses at the top interface of the solid layer (at Z=Z0) 

are related to the displacements and stresses at the bottom interface of the layer (Z=Z1) by the 

solid stiffness matrix      described earlier. The compliance matrix of the solid layer (denoted 

by      ) is equal to      
  (eq. 3.8). By using the compliance matrix instead of the stiffness 

matrix, eq. 3.34 leads to:   

                                                            

 
 
 
 
 
   

   
   

   
   

   
   

  
  
 
 
 
 

      

 
 
 
 
 
    

   
    

   
    

   
    

  
  
 
 
 
 

                                                

(3.43) 

After applying the boundary conditions (eq 3.36 and eq. 3.37), the following equations can be 

extracted from eq. 3.43: 

 
   

  
 
        

  
 
        

  
 

   
  

 
        

  
 
        

  
 

  
(3.44) 

The substitution of eq. 3.40 and eq. 3.42 into eq. 3.44 yields:  

 
                                  
                                

  
(3.45) 

The above system can be written in a matrix form i.e.: 

 
                      
                       

  
 
  
   

          
      

  
(3.46) 

It is a linear system that can be solved using linear algebra for a unique solution i.e. of the 

transmission and the reflection coefficients: 

   
 
  
   

                      
                       

 
  

 
          

      
  

(3.47) 

3.2.5 Results 

The signal of the vocal cords is generated when an individual speaks. It propagates in the 

multilayered medium illustrated in Figure 3.1. It is a non-stationary signal and it contains 
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different frequencies. Moreover, its range of frequencies varies from an individual to another. 

The signal of the vocal cords’ vibrations is acquired by attaching the transducer to the subject’s 

neck using a collar. Subsequently, the collected signal is processed and analyzed. The position of 

the transducer may greatly affect the collected signal and consequently the results for 

identification and classification purposes in medical and non medical applications. Thus, there is 

a need to find the best position on the individual’s neck to place a particular transducer in order 

to receive the best signal for analysis and/or diagnostic purposes. In this context, the position of 

the transducer is investigated using Monte Carlo simulation techniques and the simulation results 

are verified using real experiments. It is to be noted that the position of the transducer can be 

defined in terms of the angle with respect to the normal at the interface i.e. the longitudinal axis 

(Z-axis). 

In order to examine the best location, an incident acoustic signal with a particular 

frequency and a particular incident angle   is generated. Then, the generated beam propagated 

through the fat medium, the skin medium and another liquid medium (gel). At this point, the 

transmission coefficient or/and the corresponding reflection coefficient are computed. Then, 

another sound signal is generated with a different frequency and the same incident angle. The 

corresponding transmission coefficient or/and reflection coefficient are estimated as it is 

illustrated earlier. This Monte-Carlo (MC) simulation experiment is performed for a range of 

frequencies for the same angle  .  

Having completed the experiments with a particular incident angle   and for a range of 

frequencies, the MC experiments are repeated for a different incident angle   and the same range 

of frequencies. Actually, the MC experiments are performed for a range of incident angles. For 

each simulated experiment, the corresponding transmission coefficient is computed. Thus, a set 
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of values of the transmission coefficient is obtained for a range of   and a range of frequencies. 

Table 3.1 shows the values of the main parameters that were taken into consideration in the MC 

simulation experiments for the fluid medium and the solid medium [76-77]. The best incident 

angle   (i.e. the angle that yields the highest transmission coefficients for all frequencies) will be 

the best angle at which the signal of the vocal cords’ vibrations can be acquired. Consequently, 

the best transmission angle    (since       as illustrated earlier, eq. 3.38). Thus, that will be 

the best position to attach the transducer on the neck using a collar.   

Table 3.1: Basic Parameters of the Fluid and the Solid layers 

Fluid Density (  ) 920 Kg.m
-3

 

 Speed of sound in fluid (Cf) 1450 m.s
-1

 

Solid Thickness (h) 2 mm 

 Density (  ) 1050 Kg.m
-3

 

 µ 2.1 Mpa 

   50.4 Mpa 

 

The incident angle   is assumed to vary from 0
o
 to 90

o
 with an increment of 1

o
. Similarly, 

the frequency of the generated sound is assumed to vary from 0 to 2 KHz with an increment of 1 

Hz. Even though the frequencies of the vocal cords’ vibrations are normally within the range 

50Hz-1000Hz, the maximum frequency is equal to a value of 2 KHz for consistency and 

completeness of the work.   

Figure 3.2 shows the reflection/transmission coefficients in function of the incidence angle 

  and the frequency f for various MC simulation experiments. It shows an intensity plot of the 
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incident angle   (i.e. the transmission angle in layer 2) versus the frequency of the generated 

signal. The pure black color indicates a maximum transmission while the pure white color 

indicates a total reflection (zero transmission). The results show that there is practically a good 

transmission for almost all the incident angles. However, if the incident angle is between 70
o
 and 

90
o
, the transmission is low for high frequencies. In other words, the frequencies that are above 

300 Hz might be altered or even are not detected. Moreover, there is no transmission of the 

incident signal if the incident angle is between 87
o
 and 90

o
 for all range of frequencies which are 

simulated in these experiments. Therefore, it is not recommended to attach a transducer inside 

that region (i.e. [70
o 
90

o
]). The latter point is illustrated experimentally in the next section.  

Furthermore, it can be noted that for a given incident angle (     for example), the 

intensity of the transmission (intensity of the black color) decreases as the frequency increases 

for frequencies above 1 KHz. Similarly, for a given frequency (f = 0.8 KHz for example), the 

intensity of the transmission decreases as the incident angle increases for incident angles 

above    . However, if the incident angle is in the range [50
o
 70

o
], the black color stills the 

dominant color and consequently, a good transmission can be achieved.   

The highest transmission coefficients which are observed correspond to an incident angle 

in the range of [0
o
 70

o
]. This can be referred to as the safe region in which the transducer element 

can be attached. These theoretical MC simulations were performed to locate the regions of 

maximum sensitivity (in terms of frequency and incident angle) in order to detect the signal of 

the vocal cords’ vibrations after its propagation through the multilayered structure of the 

human’s neck. 
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Figure 3.2: Reflection/Transmission Coefficients in function of [f, θ] for a Multilayer of 3 Layers 

  

3.3 Experimental Evaluation 

As it is mentioned earlier, a piezoelectric transducer element is built and is attached on a 

collar that is wrapped around the neck of subjects. The transducer that is constructed from a 

piezoelectric material generates a charge when a pressure is applied on its surface. The person is 

requested to utter the vowel ‘a’. The vocal cords’ vibrations at the moment of uttering the vowel 

were detected by the transducer element and were transformed into an electrical energy. The 

transducer element was connected to the input port of a NI Elvis II+ board (16-bit resolution). 

The resulting electrical signal was read through the software labview using a sampling frequency 

of 2500 Hz. 
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For each individual, three signals (speaker uttering the vowel ‘a’) were recorded. The first 

signal was collected by attaching the transducer around the neck inside the region that is defined 

by the angle 20
o
 and the angle 30

o
 with respect to the normal to the laryngeal prominence. The 

second measurement was collected by placing the transducer around the neck inside the region 

that is defined by the angle 50
o
 and the angle 60

o
. The third measurement was performed with 

the transducer located in the region bounded by the angles 75
o
 and 85

o
. The collected signals are 

non stationary signals. They are analyzed using the proposed time-frequency approach (i.e. 

STFT) in order to extract the existing frequencies and their respective time of occurrence. Figure 

3.3 and Figure 3.4 show three detected signals of an individual “A” and an individual “B”, 

respectively, as well as the corresponding spectrograms using the Short Time Fourier Transform 

(STFT) in conjunction with a Hamming window of size 64 and a time step of 5. The frequencies 

shown in each spectrogram represents the frequencies of the vocal cords’ vibrations (50Hz-

1000Hz) of the individual which are detected by attaching the transducer on the subject’s skin in 

the corresponding defined bounded region.  



66 

 

 

                                                   (a)                                                                            (b) 

 

(c)                                                                                  (d) 

 

(e)                                                                                  (f) 

Figure 3.3: Three Signals for an Individual “A” are acquired by placing the Transducer in the Region 

bounded by (a) the Angles 20
o
 and 30

o
, (c) the Angles 50

o
 and 60

o
and (e) the Angles 75

o
 and 85

o
. The 

Corresponding Spectrograms are illustrated in the plots (b), (d) and (f), respectively.  
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                                                   (a)                                                                            (b) 

 

(c)                                                                                  (d) 

 

(e)                                                                                  (f) 

Figure 3.4: Three Signals for an Individual “B” are acquired by placing the Transducer in the Region 

bounded by (a) the Angles 20
o
 and 30

o
, (c) the Angles 50

o
 and 60

o
and (e) the Angles 75

o
 and 85

o
. The 

Corresponding Spectrograms are illustrated in the plots (b), (d) and (f), respectively.  
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The results show:  

(i) The spectrograms shown in the subplots (b) and (d) of Figures 3.3 and 3.4 contain more 

information than the spectrograms shown in the subplots (f) of Figures 3.3 and 3.4. They show 

ranges of frequencies that are associated with the person’s voice and were not detected in the 

spectrograms of Figure 3.3-f and Figure 3.4-f.  

(ii) In the latter context, the high frequency components (>400 Hz) that were detected in 

the two spectrograms of Figures 3.3-b and 3.3-d are not detected (or weakly or improperly 

detected) in the spectrogram of Figure 3.3-f. Similarly, the frequencies around 600 Hz in Figures 

3.4-b and 3.4-d are not detected in Figure 3.4-f.  

(iii) The real experimental results are in accordance with the theoretical study that is 

performed using Monte Carlo simulation techniques. That is, the transducer should be attached 

in the region corresponding to    ]0o
 70

o
] and the region above 70

o
 should be avoided. 

Subsequently, the high frequencies’ components existing in a signal might be lost when the 

incident angle is in the interval [70
o
 90

o
]. 

 

3.4 Conclusion 

In this chapter, Monte Carlo simulation techniques were performed in order to determine 

the best transmission area on the human neck i.e. the best area to place a transducer in order to 

have a good detection of the vibrations’ signal of the human vocal cords. The layers of the 

human neck were modeled and the reflection/transmission coefficients of the transmitted signal 

were computed. The results have shown that there is practically a good transmission for almost 

all incident angles. However, if the incident angle is in the interval [70
o
 90

o
], the transmission is 

low for the frequencies that are above 300 Hz. Therefore, it is not recommended to attach a 
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transducer in that location or region. The above results are further proven by performing real 

experiments i.e. by collecting the vocal cords’ signal by placing the transducer in various 

regions. As result, the region bounded by the angles [0
o
 70

o
] with respect to the normal to the 

laryngeal prominence is proved to be the best location to place a transducer.   

Since the detected frequencies of the speaker’s voice are different for different individuals, 

they can be a basis to identify the person by analyzing the collected signals. Furthermore, they 

can be used for the recognition of a specific pathology in the speaker’s (patient) voice since 

several pathologies affect the frequencies of the vocal cords’ vibrations.  
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CHAPTER 4 

RESULTS AND PERFORMANCE EVALUATION  

 

4.1 Introduction 

In this chapter, the performance of the proposed text-dependent speaker identification 

system is being evaluated quantitatively by studying its accuracy using the correlation similarity 

measure and also using the PCA in conjunction with the Euclidean distance as a similarity 

measure. Besides, the effect of the window’s type, the window’s size and the time step on the 

identification accuracy is also investigated. Also, other time-frequency techniques are 

implemented and the results are compared with the results of the developed approach. 

 

4.2 Method 

The prototype equipment was wrapped around each individual’s neck and the individual 

was requested to utter the vowel “\a\”. The transducer element was connected to the input port of 

a NI Elvis II+ board (16-bit resolution). The resulting electrical signal was read by labview and 

was stored in a file for analysis and comparison purposes. Samples were collected from N (=50) 

individuals, under noisy conditions (people talking in the background), and using a sampling 

frequency of 2500 Hz. Figure 4.3 shows the detected signals of eight different individuals 

uttering the vowel “\a\”. It is clearly evident that the collected signals in time domain show a 

certain variation between them.  

Having acquired the signal of the vocal cords’ vibrations, the signal is processed using the 

STFT technique in conjunction with the Hamming window. The corresponding spectrograms of 

the eight individuals are illustrated in Figure 4.2. The window’s size is selected to be 64 with a 

time step of 5. The amplitudes of the existing frequencies are represented by different colors. 
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                                                      (a)                                                                                  (b) 

 

                                                      (c)                                                                                  (d) 

 

                                                        (e)                                                                            (f) 

 

                                                         (g)                                                                           (h) 

Figure 4.1: Acquired Signals for eight different Individuals  
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                                              (a)                                                                                   (b) 

 

                                              (c)                                                                                   (d) 

 

                                             (e)                                                                                   (f) 

 

                                             (g)                                                                                   (h) 

Figure 4.2: Corresponding Spectrograms of the Eight Acquired Signals in Figure 4.1 
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It is clearly evident that the eight spectrograms are different. That is, the frequencies’ 

content of each spectrogram does not resemble any other. Therefore, this observation highlights 

the possibility of differentiating between the various individuals and consequently, the extracted 

features should form the basis of the identification between them. Besides, a difference in 

frequencies’ magnitudes between the spectrograms can be observed. That is, the amplitudes’ 

range of the frequencies is from 100 atto to 100 nano in Figure (4.2-a), while the amplitudes’ 

range is in the interval [20 atto, 20 nano] in Figure (4.2-b). Similarly, the magnitudes of the 

frequencies in each of the remaining spectrograms vary within a certain interval which is 

completely different from the other intervals. Thus, a normalization procedure is in accordance 

in order for all spectrograms to have the same maximum magnitude and consequently, to 

eliminate the effect of the magnitude on the identification’s accuracy. The normalization 

procedure is achieved by dividing the values of each spectrogram by the corresponding 

maximum amplitude. At this stage, the frequencies’ magnitudes of each spectrogram have a 

maximum value of one.  

The next step is to eliminate the noise. The low frequency components that are observed at 

the bottom of some spectrograms are mostly the result of noise interference (such as body 

movement near the contact surface of the collar) and consequently, they should be eliminated in 

order to achieve a better accuracy, even though these components might have a quite high 

magnitude’s value. These frequency components are not the results of the utterance of the vowel 

“\a\” i.e. frequencies associated with. This phenomenon is evident in the spectrograms illustrated 

in Figure 4.2-b and Figure 4.2-g i.e. the values near or close to the frequency of zero. The 

corresponding normalized spectrograms after removing the “noise” are shown in Figure 4.3. 



74 

 

 

                                               (a)                                                                              (b) 

 

                                               (c)                                                                              (d) 

 

                                                (e)                                                                             (f) 

 

                                               (g)                                                                               (h) 

Figure 4.3: Spectrograms of the acquired signals in Figure 4.1 after Normalization and Noise Removal  
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At this point, the eight spectrograms have the same range of frequencies’ amplitudes and 

the low frequency components (i.e. “noise”) are removed. Each spectrogram is effectively a 2-D 

array containing the magnitudes’ values of the frequencies. There is no need to keep the whole 

array since these frequencies exist only in certain ranges of the spectrogram. Therefore, the 

frequencies of interest existing in each spectrogram are extracted. A threshold value 

corresponding to 20% of the maximum amplitude is selected. Then, the extraction is performed 

by selecting a range from the 2-D array bounded by two vertical lines. While the first line 

corresponds to the first sample’s index associated with the frequency component having a 

magnitude value greater than the threshold value, the second line corresponds to the last 

sample’s index associated with the frequency component having a magnitude value greater than 

the threshold value. All the frequencies of interest will be inside the selected range of the 

spectrogram. The results are shown in Figure 4.4. Furthermore, the latter figure illustrates clearly 

the difference in frequencies’ contents among the eight individuals. Subsequently, the extracted 

features that are associated with each individual can form the basis for identification purposes.  
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                                               (a)                                                                             (b) 

 

                                               (c)                                                                               (d) 

 

                                                (e)                                                                             (f) 

 

                                               (g)                                                                             (h) 

Figure 4.4: Corresponding Extracted Features of the Acquired Signals in Figure 4.1 
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Each resulting spectrogram (2-D array) is transformed (row by row) into a 1-D vector of 

length S= rxc (r=502, c=1002). The length of the feature vector will be the same for all 

individuals. By referring to Figure (4.4-a) as an example, the first entries of the feature vector are 

filled with the extracted information (length 88x1002) and the remaining entries are padded with 

zeros. One feature vector for each individual was stored in the database (training set) and the 

remaining acquired feature vectors (or signals) were used to study the performance of the 

proposed approach. The system can be referred to as a closed set speaker identification system, 

i.e. N speakers with N alternative decisions [78]. The input speech is classified as one of the N 

speakers. The classification is achieved using the correlation similarity measure and also by 

implementing the PCA algorithm along with the Euclidean distance. The results show that the 

proposed PCA based approach achieved a precision of 92% in identifying the right individual in 

comparison with a 91% for the correlation based approach.  

 

4.3 Effect of the Window 

As it is already stated earlier, the proposed time-frequency based approach involves the 

implementation of STFT in conjunction with a particular window. Subsequently, different 

windows can be incorporated and their effects can be studied and evaluated i.e. the dependence 

of the performance of the proposed approach on the window’s type and its size. In this context, 

various windows, namely, the Bartlett, the Blackman, the Hamming, the Hanning and the 

Rectangular are implemented in conjunction with the proposed technique and their effects on the 

precision of the developed approach and the accuracy in the identification of the desired 

individuals were studied. The various windows are presented before proceeding to the 

quantitative analysis. 
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The Bartlett window is defined as follows [79]: 

               

 
 
 

 
 

  

   
                        

   

 

  
  

   
    
   

 
       

                                                
 
 

 
 

 

(4.1) 

The Blackman window is given by [79-80]: 

                            
   

   
          

   

   
         

                                                                                                
  

(4.2) 

The Hamming window is defined in equation (2.9): 

                  
   

 
   

   

 
     

   

 
 

                                                                             
  

 

The Hanning window is expressed by [79-80]:  

                          
   

 
           

                                                               
  

(4.3) 

Finally, the Rectangular window can be considered as the simplest window. It is represented by 

the following weighted function [79]: 

                            
      

 
   

   

 
                                               

  
(4.4) 

Table 4.1 [79] shows a summary of the main differences between the various implemented 

windows in terms of the main lobe’s width, the amplitude of the peak side lobe with respect to 

the main lobe and the error associated with the peak’s estimation. 
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Table 4.1: Comparison of Windows’ Parameters  

Window Type 

Approximate 

Amplitude of the 

Peak Side Lobe 

Approximate Main 

Lobe’s Width 

Peak Estimation 

Error (dB) 

Barlett -25 
  

 
 -25 

Blackman -57 
   

 
 -74 

Hamming -41 
  

 
 -53 

Hanning -31 
  

 
 -44 

Rectangular -13 
  

   
 21 

 

The main parameter that affects the efficiency of a window is the width of the main lobe. 

The latter is directly related to the frequency resolution of the windowed signal. Therefore, the 

ability to distinguish two closely spaced frequency components increases as the main lobe of the 

window becomes narrower. However, as the main lobe of the window becomes narrower and the 

spectral resolution improves, the window’s energy spreads into the side lobes. This increases the 

spectral leakage and decreases the amplitude accuracy [81]. Then, a trade-off between the 

amplitude’s accuracy and the spectral resolution should be taken into consideration when 

choosing the appropriate window to implement. Moreover, it can be noted from Table 4.1 that as 

the amplitude of the peak side lobe with respect to the main lobe decreases, the error associated 

with the peak’s estimation decreases.   

Table 4.2 illustrates the accuracy of the proposed technique in conjunction with the 

different windows’ types, namely, the Barlett, the Blackman, the Hamming, the Hanning and the 

Rectangular and using various windows’ sizes, namely, 32, 64, 128, 256, and 512. The step size 

is selected to be 5. The accuracy is measured in terms of the number of individuals that are 
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identified correctly (i.e. the percentage of correct identification). The identification of the 

individuals is based on the PCA and the Euclidean distance as a similarity measure. Similarly, 

Table 4.3 shows the results of the correlation based approach i.e. the correlation similarity 

measure is used to recognize a desired person. It is to be noted that the two tables are the results 

of the implementation of the proposed approaches illustrated in Figures 2.1 and 2.2, respectively.  

Table 4.2: Percentage of Accuracy of the Proposed Technique Using PCA and Euclidean Distance in 

Identifying the Desired Individual for Different Window’s Types and Window’s Sizes  

                                              Window’s Type 

      Window’s Size 
32 64 128 256 512 

Barlett 73 86 79 71 66 

Blackman 65 86 83 74 69 

Hamming 77 92 79 70 62 

Hanning 73 86 81 71 69 

Rectangular 89 83 75 68 65 

 

Table 4.3: Percentage of Accuracy of the Proposed Technique Using the Correlation Similarity Measure in 

Identifying the Desired Individual for Different Window’s Types and Window’s Sizes  

                                           Window’s Type 

     Window’s Size 
32 64 128 256 512 

Barlett 76 88 79 70 66 

Blackman 62 85 85 72 69 

Hamming 77 91 79 69 64 

Hanning 73 87 81 70 66 

Rectangular 88 86 74 67 65 
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The results that are presented in both tables show: 

i) The implementation of the STFT technique in conjunction with a Hamming window of 

size 64 yields the best performance i.e. 91% with correlation and 92% with PCA.   

ii) For a given window, the accuracy of the proposed approach in identifying the 

individuals decreases as the size of the window increases (for window’s size ≥ 64). The decrease 

that is observed might be due to the fact that as the size of the window is increased, the varying 

nature of the collected signal might be affected in the frequency domain.  

iii) For a window’s size of 32, the precision of the approach using the various windows is 

not high. This might be due to the fact that the small window’s size does not contain enough 

information that leads to a higher percentage of identification. 

iv) The percentages obtained using the correlation and the PCA are comparable and a 

better performance is achieved by the PCA based approach. That is, it is clear that the PCA has 

yielded a higher percentage of accuracy for 11 cases (i.e. combinations of window’s type and 

window’s size); while the correlation based approach has achieved a better performance for 6 

cases. In 8 cases, both approaches had the same percentage of accuracy in correctly identifying 

the individuals. However, the best performance is achieved by the proposed PCA based approach 

as illustrated in (i). 

The above conclusion can be further proved qualitatively i.e. a qualitative analysis can be 

performed with respect to the window’s size by simply visualizing the spectrogram of an 

individual using a particular window for various sizes of the window. Figures 4.5, 4.6, 4.7, 4.8 

and 4.9 show the spectrograms of two individuals (individual ‘A’ and individual ‘B’), after the 

procedures of the normalization and the noise removal are implemented, using a hamming 

window with various sizes, namely, 32, 64, 128, 256 and 512, respectively.     
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                                            (a)                                                                                   (b) 

Figure 4.5: Spectrograms after Normalization and Noise Removal using a Hamming Window of Size 32 

 

 

                                                (a)                                                                             (b) 

Figure 4.6: Spectrograms after Normalization and Noise Removal using a Hamming Window of Size 64 

 

 

                                              (a)                                                                                   (b) 

Figure 4.7: Spectrograms after Normalization and Noise Removal using a Hamming Window of Size 128 
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                                             (a)                                                                                   (b) 

Figure 4.8: Spectrograms after Normalization and Noise Removal using a Hamming Window of Size 256 

 

 

                                            (a)                                                                                   (b) 

Figure 4.9: Spectrograms after Normalization and Noise Removal using a Hamming Window of Size 512 

 

The results seen in the spectrograms are in accordance with the quantitative analysis that is 

performed earlier. First, the frequency’s contents in each spectrogram are not the same when 

varying the window’s size. That explains the different percentages of accuracy obtained earlier. 

Second, for small window’s size (window of size 32), the frequency resolution is very poor. In 

other words, there is interference between the magnitudes of the frequencies’ components of the 

signal.  Third, for large window’s sizes (window of size 256 and window of size 512), the 

spectrograms are not clear and the frequencies of the signal are not well represented. 

Subsequently, this justifies the low percentage of identification’s accuracy when these window’s 

sizes are implemented. Fourth, it seems that a window’s size of 64 provides a good frequency 
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and temporal resolution and consequently, a high percentage in the identification of individuals 

is obtained.   

 

4.4 Effect of the Time Step 

In the previous section, various windows with various sizes were incorporated in 

conjunction with the proposed time frequency approach to identify the desired person. The best 

performance was reached when the size of the window is 64 and 128. In this section, the effect of 

the time step on the identification accuracy is investigated and studied. Since the best results 

were achieved with the Hamming window, the experiments performed in this section will be 

restricted to the latter window. Thus, the proposed approach in conjunction with the Hamming 

window with a size of 64 and a size of 128 is examined. The time steps are selected to be 1, 5, 

10, 32 and 64. Table 4.3 and Table 4.4 show the performance of the proposed algorithm using 

the PCA based approach and the correlation based approach, respectively.  

Table 4.4: Percentage of Accuracy of the Proposed Technique (Using the Hamming Window of Sizes 64 and 

128) Using PCA and Euclidean Distance as a function of the Time Step 

Window 1 5 10 32 64 

Hamming of size 64 91 92 91 92 87 

Hamming of size 128 79 79 81 78 79 

  

Table 4.5: Percentage of Accuracy of the Proposed Technique (Using the Hamming Window of Sizes 64 and 

128) Using the Correlation Similarity Measure as a Function of the Time Step 

Window 1 5 10 32 64 

Hamming of size 64 90 91 89 90 85 

Hamming of size 128 79 79 80 78 78 
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The results show that: 

i) In each table, the best precision for identification purposes is achieved when the size of 

the window is 64. This observation is true for all the tested time steps.  

ii) In each table, the precision is decreased when the size of the window is increased for a 

given time step. 

iii) For a given approach and a given window’s size, the accuracy of identification is 

comparable as the step size is increased i.e. the percentages are very close (the difference is less 

than 2%). However, the accuracy has shown a certain remarkable decrease as the step size is 

increased from 32 to 64 in some cases.  

iv) For a given window and a given size, the PCA based proposed approach usually yields 

a better accuracy than the correlation based approach and particularly when the window size is 

64.  

v) In each table, the highest percentage is observed when the window’s size is 64 and the 

time step is 5.  

To further clarify the effect of the time step, Figures 4.10, 4.11, 4.12, 4.13 and 4.14 show the 

spectrograms of the first two acquired signals (individual ‘A’ and individual ‘B’) with a time 

step of 1, 5, 10, 32 and 64, respectively. The proposed technique is implemented in conjunction 

with a Hamming window of size 64. Each figure displays the corresponding spectrograms after 

the procedure of the normalization and the procedure of noise removal are performed.  
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                                            (a)                                                                                   (b) 

Figure 4.10: Spectrograms (after Normalization and Noise Removal Procedure) using a Hamming Window of 

Size 64 and a time step of 1 

 

 

                                            (a)                                                                                   (b) 

Figure 4.11: Spectrograms (after Normalization and Noise Removal Procedure) using a Hamming Window of 

Size 64 and a time step of 5 

 

 

                                             (a)                                                                                   (b) 

Figure 4.12: Spectrograms (after Normalization and Noise Removal Procedure) using a Hamming Window of 

Size 64 and a time step of 10 
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                                             (a)                                                                                   (b) 

Figure 4.13: Spectrograms (after Normalization and Noise Removal Procedure) using a Hamming Window of 

Size 64 and a time step of 32 

 

 

                                            (a)                                                                                   (b) 

Figure 4.14: Spectrograms (after Normalization and Noise Removal Procedure) using a Hamming Window of 

Size 64 and a time step of 64 

 

It is evident that the appearance of the spectrograms deteriorates as the step size is 

increased from 1 to 5, 10, 32 and 64.  Also, it is clearly observed that some important and useful 

information will be lost when the step size is large i.e. 32 and 64. Thus, the quality of the 

spectrograms decreases as is clearly seen in Figure 4.13 and Figure 4.14. Consequently, the best 

quality is obtained when a small step size is selected i.e. a step size of 1 (Figure 4.10), a step size 

of 5 (Figure 4.11) and a step size of 10 (Figure 4.12). However, the quantitative evaluation in 

terms of the precision can further identify the best time step i.e. Table 4.5 and Table 4.6.   
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Furthermore, as the time step decreases, the spectrogram’s size (i.e. matrix size) increases. 

Subsequently, the size of the feature vector will increase. That is, more detailed information will 

be included for identification purposes. However, at some point, the added information might not 

add any new characteristics. In addition, a large matrix could be computationally time 

consuming. Thus, a compromise should be made between the quality of the spectrogram and the 

size of the matrix. In this context, a time step of 5 was adopted in this work. Besides, the highest 

identification’s accuracy is achieved when a step size of 5 is selected for all windows and for 

both proposed approaches i.e. based PCA and based Correlation.  

 

4.5 Evaluation with Other techniques 

Having studied the performance of the proposed technique, a quantitative evaluation is 

performed by comparing the developed approach with other time-frequency methods, namely, 

the Choi-Williams Distribution (CWD) and the Wigner-Ville Distribution (WVD). The time-

frequency analysis is proved to be one of the most effective methods to analyze non-stationary 

signals such as the speech. Moreover, the spectrogram is the most common method for speech 

analysis. In particular, the CWD and the WVD have been used for feature extraction in many 

speaker identification systems existing in the literature [40]. Thus, they were considered for 

performance evaluation against the proposed time-frequency approach.   

 

4.5.1 Wigner-Ville Distribution 

This technique was first invented by Wigner and was implemented in physics. Then, it was 

applied by Ville in signal processing. Hence, the dual name Wigner-Ville Distribution (WVD) is 

associated with the transformation. The WVD technique has gained a considerable attention 
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lately because of its important role in analyzing non-stationary or time-varying signals. It is a 

two-dimensional function that presents the frequency components of a signal as a function of 

time. It provides a good resolution and an instantaneous energy density spectrum in the time and 

frequency domains (spectrogram) [40, 82]. For a given signal x(t), the WVD is expressed as [63] 

: 

                      
 

 
      

 

 
          

  

  

 
(4.5) 

Where x
*
(t) refers to the complex conjugate of x(t). 

The Wigner distribution provides the energy distribution of the signal as a function of time 

and frequency by performing the Fourier transform on the local autocorrelation function of that 

signal. It possesses a high time–frequency resolution. The WVD fulfils the time and the 

frequency marginals and conserves the energy of the original signal. However, the WVD has a 

major shortcoming that occurs when dealing with multi component signals i.e. the cross terms. 

The latter occur due to the bilinear nature of the Wigner-Ville distribution and sometimes it 

hinders the effective energy allocation [63]. 

 

4.5.2 Choi-Williams Distribution 

The Choi-Williams Distribution (CWD) can be referred to as a modified version (or 

filtered version) of the WVD. It has a better readability than the latter but a worse time-

frequency resolution. The CWD eliminates the cross-term interference between two components 

of a signal that have a difference in the central time or the central frequency and keeps the cross-

term interference for two signal’s components that have the same central time or the same central 

frequency. Moreover, the CWD can be considered as an energy distribution function and is 

defined as [63]: 
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(4.6) 

Where        is the kernel function that provides a two-dimensional filtering of the signal’s 

autocorrelation function. The function        is expressed as [63]: 

                    
       

  
(4.7) 

Where σ is a parameter to control the relationship between the resolution and the cross-term 

interference. It should be greater than or equal to zero. A larger value of σ suppresses better the 

cross-term interference. However, it leads to a poorer time frequency resolution. 

 

4.5.3 Results and Discussion 

The WVD is applied to the acquired signal, instead of the STFT, to extract both the time 

and the frequency information from the collected waveform. Then, the procedure of 

Normalization and to remove the noise and the undesired information is performed. Figure 4.15 

shows the spectrograms of the eight acquired signals shown in Figure 4.1 after applying the 

WVD and performing the procedure of the normalization and the noise removal. 

The WVD has many advantages and disadvantages. Its greatest strength is that it produces 

“a remarkably good picture of the time-frequency structure” [83]. However, its most serious 

drawback is the creation of cross products. In other words, it shows energies at time–frequency 

values where they do not exist [83]. This is shown clearly since the range of frequencies existing 

in the spectrograms of the Figure 4.15 is greater than the range of frequencies shown in the 

spectrograms of the Figure 4.3. Furthermore, the WVD is less resistant to noise than other 

methods. Therefore, the noise is spread across all the time-frequency amplitudes including the 

cross products of the noise. 
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                                                 (a)                                                                             (b) 

 

                                                 (c)                                                                            (d) 

 

                                                 (e)                                                                            (f) 

 

                                                 (g)                                                                            (h) 

Figure 4.15: Spectrograms obtained after applying WVD and after performing the procedure of 

Normalization and Noise Removal  
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Similarly, Figure 4.16 shows the spectrograms of the same eight acquired signals using the 

CWD (with σ=0.001). All the spectrograms are displayed after the procedure of the 

normalization and the noise removal is performed. The Choi-Williams distribution has better 

noise characteristics than the WVD and it is clearly observed. 

Since the CWD depends on the parameter σ, it will be of great interest to show its effect, at 

least visually, i.e. its effect on the appearance of the spectrograms. In this context, Figures 4.17, 

4.18 and 4.19 show two spectrograms (belonging to individuals ‘A’ and ‘B’ of Figure 4.16) that 

are obtained using the CWD with σ=0.001, σ=0.1 and σ=1, respectively. The spectrograms are 

displayed after the procedure of the normalization is performed as well as after the noise is 

removed. It can be clearly seen that a larger σ suppresses better the cross-term interference. 

However, it leads to a poorer time frequency resolution which is in accordance with the theory. 

For CWD, the highest identification’s accuracy rates is obtained with σ=0.001. 
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                                                 (a)                                                                          (b) 

 

                                                 (c)                                                                           (d) 

 

                                                 (e)                                                                           (f) 

 

                                                 (g)                                                                           (h) 

Figure 4.16: Spectrograms obtained after applying CWD (σ = 0.001) and after performing the procedure of 

Normalization and Noise Removal 
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                                           (a)                                                                                   (b) 

Figure 4.17: Spectrograms obtained after applying CWD (σ = 0. 001) and after performing the procedure of 

Normalization and Noise Removal 

 

 

                                           (a)                                                                                   (b) 

Figure 4.18: Spectrograms obtained after applying CWD (σ = 0. 1) and after performing the procedure of 

Normalization and Noise Removal 

 

 

                                           (a)                                                                                   (b) 

Figure 4.19: Spectrograms obtained after applying CWD (σ = 1) and after performing the procedure of 

Normalization and Noise Removal 



95 

 

4.5.4 Quantitative Evaluation 

In this subsection, a quantitative evaluation is performed among the three different time-

frequency techniques, namely, the proposed approach in which the STFT is the basis, the CWD 

and the WVD. The identification of the desired individual is achieved by using the correlation as 

a similarity measure and the PCA in conjunction with the Euclidean distance. The proposed 

approaches as outlined in Figures 2.1 and 2.2 and as illustrated in section 4.2 are implemented 

for each of the time-frequency approaches. They are implemented by performing all the 

discussed procedures with the exception that the STFT is replaced by the CWD in one case and 

by the WVD in the other case.  

Figure 4.20 shows the percentage of accuracy of various speaker identification techniques. 

The proposed technique, the CWD and the WVD are referred to as T1, T2 and T3, respectively. 

The results of the Correlation as well as of the PCA in conjunction with the Euclidean distance 

are presented for each technique.    

 

Figure 4.17: Performance of various Speaker Identification Techniques 
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The results show clearly that: 

(i) the proposed approach yields the best performance with an accuracy of 91% and 92% in 

the identification of individuals using the correlation as a similarity measure and the PCA in 

conjunction with the Euclidean distance, respectively.  

(ii) An accuracy of 72% (using correlation) and 70% (using PCA) is achieved using the 

CWD. 

(iii) An accuracy of 60% is achieved when the WVD is implemented using the correlation 

based approach as well as the PCA based approach. 

(iv) The WVD approach has yielded the worst accuracy in the identification of the desired 

individual.  

 

4.6 Conclusion 

A novel approach for speaker recognition was presented. It is based on analyzing the 

frequencies of the vocal cords’ vibrations using the Short Term Fourier Transform. The concept 

of using a transducer element to acquire the signal resulting from the vocal cords’ vibrations for 

automatic speaker identification is relatively new. The results have shown a high degree of 

correct identification (i.e. 92% and 91% using the PCA based approach in conjunction with the 

Euclidean distance and the correlation based approach, respectively). Moreover, the accuracy of 

correct identification using the proposed approach is competitive with respect to the accuracy 

rates of existing speaker identification systems in the literature that have acquired the signal 

using either acoustic sensors or non acoustic sensors.  

The high performance is achieved without the need to use advanced and complicated signal 

processing algorithms that sometimes require advanced computer processors to be able to 
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generate the response in an acceptable time delay. Furthermore, the text bank is only an utterance 

which provides a very high classification speed in comparison with existing techniques that are 

based on words or even sentences as text banks. 
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CONCLUSION 

 

In this work, a new approach for measuring the frequencies of the vocal folds’ vibrations is 

developed and is presented. The tool is simple and non-intrusive. It is composed of a 

piezoelectric transducer element attached to a collar. The collar is wrapped around the 

individual’s neck and the latter was requested to speak a vowel i.e. (vowel ‘a’). When speaking, 

the vocal cords’ mechanical vibrations were detected by the acquisition system and were 

transformed into an electrical signal for further processing and analysis purposes.  

The material’s characterization, the experimental setup and the methodology were 

presented in details. Then, a theoretical study was performed in order to determine the best 

location(s) for the transducer’s placement. Subsequently, the simulated study was supported by 

experimental tests. In other words, the layers of the human’s neck were modeled and the 

transmission coefficients of the sound waves through the various layers were investigated and 

studied. The highest transmission coefficients have identified the region of interest in which the 

transducer can be attached.  

Having collected the vocal cords’ signal, the detected signal was processed through 

different stages to extract the corresponding features (i.e. frequencies) for identification 

purposes. That is, each collected signal will be the input to the new developed “text-dependent” 

speaker identification system. The developed approach can be summarized as follows: The Short 

Time Fourier Transform (STFT) is applied on the collected signal to decompose it into its 

frequencies’ contents. The magnitudes of the frequencies are affected by the loudness of the 

voice.  Therefore, they were normalized by dividing each value by the highest value in order to 

have the same level for all subjects under examination. Then, the noise interference is 

eliminated. Finally, the appropriate features are extracted from each spectrogram. These features 
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are compared with a set of features of the various individuals that are stored in the database 

(training set). The identification of the speaker is performed using two evaluation criteria, 

namely, the correlation similarity measure and the Principal Component Analysis (PCA) in 

conjunction with the Euclidean distance. The proposed system achieved a high degree of 

identification’s accuracy using both evaluation criteria i.e. 92% of accuracy (PCA) and 91% of 

accuracy (correlation) in indentifying the desired individuals.  

 

Recommendations and Future Prospects  

The topic discussed in this thesis is a prominent topic where the research can never reach 

an end. As future work, there are many points that will be worked on in order to further improve 

the presented work:   

(1) A high emphasis will be on the work to improve the accuracy of the implemented 

approach. 

(2) More measurements will be performed with the prototype equipment (collar) in order to 

have a big database. 

(3) The same percentage of accuracy, or even better, for a relatively huge database can lead 

to manufacture a professional and commercial form of the collar that can be used for 

identification purposes in banks, airports, etc.    

(4) The diseases that affect the vocal apparatus highly influence the vocal folds’ vibrations. 

Hence, the frequencies of these vibrations will be affected. Therefore, as a future work, the 

acquisition of the vocal cords’ vibrations will be performed on patients as well as normal 

(healthy) subjects. Then, the signals will be processed and analyzed using the proposed approach 

(PCA as well as the Correlation based) in order to differentiate between the pathological 
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conditions associated with the voice disorders and consequently the ill patients from the normal 

subjects. Thus, this will integrate the proposed technique in the medical domain. 
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