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Part I

C O N C E P T S , S TAT E O F T H E A RT A N D
R E L AT E D W O R K

This first part introduces all the basic knowledges required
to appreciate the work gathered in this thesis. The first
chapter serves as an introduction to the whole manuscript.
Chapter 2 is a brief introduction to the general framework
of molecular imaging techniques. Chapter 3 describes the
NMR imaging technique and one of its improvement: the
NMR of hyperpolarized gases. Chapter 4 focuses on the
process required to conduct molecular imaging studies
with hyperpolarized gases. Finally chapter 5 presents NMR
sequences adapted to hyperpolarized gases in exchange.
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1
A N I N T E R D I S C I P L I N A RY P R O J E C T

This project is an interdisciplinary work that unites three recognized
teams for research and innovation. Bringing physicists, chemists and
biologists together leads to a thoughtful and comprehensive project.
The latter comes within medical approach, well upstream of diagno- Collaboration

between Laboratoire
Structure et
Dynamique par
Résonance
Magnétique at CEA
Saclay, Service de
Chimie Bioorganique
et de Marquage at
CEA Saclay and
Laboratoire Chimie
Physique at Orsay.
These laboratories
now belong to
University
Paris-Saclay.

sis and therapy. Long before curing a pathology, we need to fully
understand molecular processes that occur. In most cases, these in-
tracellular mechanisms are monitored by fluorescence labels such as
fluorescent proteins[1]. Unfortunately, such an heavy construct does
not allow molecular level information and might induce biased mea-
surements.

The very ambitious goal of this project is to enable the tracking of in
cellulo mechanisms by combination of the properties of fluorescence
imaging with those of another advanced imaging technique, nuclear
magnetic resonance (NMR). This approach will not only highly pre-
cisely locate protein of interest but also bring a structural resolution for
comprehension of unknown biological processes at the molecular level.

Its uniqueness is its combination between the latest technical ad-
vances in NMR and fluorescent labeling. NMR suffers from a very
low intrinsic detection sensitivity due to the low energies involved.
The use of xenon is of increasing interest for sensitive MRI, owing to
its large nuclear spin hyperpolarization afforded by optical pumping[2]
that enhances the NMR signal by several orders of magnitude. The
biosensor that is conceived in this project consists in two moieties:

• a cage-molecule that reversibly encapsulates xenon

• a small fluorogenic ligand that is activated after complexation
with its target[3]

This target is a 6-amino-acid motif easily incorporated into the se-
quence of the protein of interest.

This molecular association enables simultaneous acquisition of very
specific NMR and fluorescence signals upon detection of the targeted
protein. Thus, the doubly responsive probe combines all character-
istics of the two imaging techniques, allowing sensitive detection and
longitudinal follow-up of the intracellular mechanism of interest.

3
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2
S TAT E O F T H E A RT

2.1 molecular imaging

Modern molecular imaging techniques supposedly lead to revo-
lutionary paradigm shift in health care and clinical practice. As it ren-
ders information that cannot be provided by conventional radiologi-
cal imaging, it desperately needs integration of anatomy and function
to be fully understood. From simple photograph of the inside of the
human body, providing information on bone structure or form and
abnormalities of various organs, imaging now offers a dynamic view
of those organs and allows visualizing up to cellular metabolism. The
development of these imaging techniques is the key to earlier diagno-
sis of disease, best follow-up treatments and also biomedical research
tools. Thus the physician can not only locate the pathology (anatom-
ical imaging), but also assess the activity of processes within it and
provide information to improve the suitable treatment. These tech-
niques developed particularly in the 21th century form part of the
molecular imaging concept. This concept requires two elements:

1. molecular probes whose physical properties are altered by the
studied biological process

2. a sensitive technique to detect these molecular probes

Within the spectrum of macroscopic medical imaging, sensi-
tivity ranges from the detection of millimolar to micromolar concen-
trations with computed tomography (CT) and magnetic resonance
imaging (MRI) respectively, to picomolar concentrations in single-
photon emission computed tomography (SPECT) and positon emis-
sion tomogrraphy (PET). All the techniques presented in Table 1 and
Figure 1 have different characteristics and purposes that may be com-
plementary according to the nature and symptoms of the disease.

PET/SPECT X-ray Optical MRI Ultrasound

Spatial resolution 1-10mm 100µm 1-5mm 10-100 µm 30µm

Temporal resolution 60-1000s 10-100ms 1-200ms 10-100ms 1-100ms

Penetration +++ +++ + +++ ++

Radiation ++ ++ - - -

Sensitivity pM µM fM-nM µM-mM µM-mM

Cost +++ ++ + +++ +

Table 1: Performance of different imaging techniques for in vivo detection.[1]

7
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Figure 1: Most popular medical imaging modalities and their main applica-
tions.

Optical imaging has unparalleled sensitivity but the strong
light scattering by heavy tissues limits their observation to thicknesses
of less than 1-2 mm, which is not suitable for in vivo experiments.
This penetration depth may be increased up to 10 cm using fluores-
cent semiconductor nanocrystals (quantum dots)[2], photon migra-
tion measurements in the frequency domain[3] or semiconducting
polymer nanoparticles[4] (Figure 2).

Figure 2: In vivo systemic persistent luminescent imaging of a mouse before
(Bkg) and after intravenous injection of nanoparticles which had
been excited prior to injection and imaged at 2, 12, 20 and 60 min-
utes to excitation light.

Ultrasound imaging is relatively inexpensive, widely avail-
able, portable and has a higher penetration depth than optical tech-
niques. It is the most physiological modality, able to image structure
and function with less sedation than other modalities. This means
that function is minimally disturbed, and multiple repeat studies can
easily be assessed. However ultrasound has received less attention
than other imaging modalities because it has a very low sensitivity.
More recently, the development of microbubble contrast agents has
opened many new opportunities, including new functional imaging
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methods, the ability to image capillary flow and the possibility of
molecular targeting using labelled microbubbles.[5]

Positron emission tomography and single photon emission
computed tomography (PET and SPECT) have the advantage of being
functional imaging techniques (probing the function and metabolism
of the entire human body), but are limited by their spatial and tempo-
ral resolutions (1-2 mm in clinical scanners). Furthermore, the short
life of the required radioligands, such as 2-[18F]fluoro-2-deoxy-D-
glucose, does not allow the long-term monitoring of the biological
process of interest. The X-ray modality is, for its part, heavily lim-
ited to bone and solid tumors. The latter three techniques are also
subjected to the use of ionizing radiation which also implies the man-
agement of radioactive wastes.

Finally, magnetic resonance imaging is a good compromise
to achieve functional imaging in vivo in real time and without any
radiation. It is notable that the major advantage of MRI is its high
spatial resolution (25-100 µm level) and the excellent tissue contrast.
In this context, MRI overruns other molecular imaging approaches
up to date and is available for both morphological and functional
assessments. However, this technique suffers from very low sensitiv-
ity due to the very low population differences between energy levels
at Boltzmann equilibrium. We will focus specifically on this method
thereafter.

2.2 mri probes

When placed in a magnetic field, nuclear magnetic moments
precess at a given frequency and are able to accept energy from a ra-
diofrequency wave applied at this resonance frequency. The behavior
of the energy inserted into the system is described by two relaxation
constants: the T2 or transverse relaxation time and the T1 or longitu-
dinal relaxation time.
The interest of MRI for molecular imaging has experienced a renewed
enthusiasm 20 years ago with the development of the first activatable
contrast agents that act as biosensors in response to a specific biolog-
ical activity. There are different types of biosensors (contrast agents,
hyperpolarized endogenous and exogenous substances. . . ) which may
reflect a physiological alteration due to a pathology : extracellular
pH,[6] partial pressure of O2 in tumor cells,[7] lactate,[8] Ca2+ ions,[9]
Zn2+ ions,[10] temperature etc.

Most of the agents fall into four classes, based on the MRI contrast
mechanisms they engage: (1) longitudinal relaxation time (T1) agents,
detected by T1 relaxation-weighted MRI [11]; (2) transverse relaxation
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time (T2) agents, usually based on superparamagnetic iron oxide
(SPIO), and detected by T2 relaxation-weighted MRI;[12](3) chemical
exchange saturation transfer (CEST) agents, monitored by a variant
of magnetization transfer imaging;[13] and (4) heteronuclear agents,
detected by nuclear magnetic resonance (NMR) signals from nuclei
other than protons, most prominently 19F[14] or hyperpolarized 31P[15]
and 129Xe.

The main classes (Figure 3) of these sensors and the major applica-
tions highlighted will be presented in this chapter.

Figure 3: Main classes of MRI constrast agents (in purple and dark blue)
and MRI tracers (in light blue).

2.2.1 Relaxation contrast agents

Contrast agents are designed to accelerate the magnetic relaxation
rates 1/T1 and 1/T2 of protons of water molecules, that is, to shorten
the time during which the populations of protons return to their ini-
tial state after excitation by radio frequency wave. The ability of these
contrast agents to accelerate those speeds and therefore increase the
contrast is measured by their relaxivity (expressed in mM−1s−1). Ide-
ally, a biosensor has a great relaxivity when it reaches its target ("on"
state) and a relaxivity near zero the rest of the time ("off" state).

2.2.1.1 Transverse relaxation time agents

T2 agents are capable of shortening the T2/T∗2 of water protons in
their vicinity through a local magnetic field effect. Thus, their pres-
ence in the MRI image is witnessed by a signal loss (darkening).
Nanoparticles are often used to modify the local magnetic suscep-
tibility. Iron oxide nanoparticles are the best known agents of this
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class. SPIOs (Superparamagnetic iron oxides) were first utilized to la-
bel and track transplanted cells in the rat brain (see Figure 4).[16, 17]

Their relaxivity can be modified by playing with the strength of
the induced magnetic field. It can be achieved by changing the size of
the agent, for example by controlled agglomeration. This gives rise to
higher relaxivities and enables more efficient intracellular labeling.[18,
19]

Figure 4: Magnetic Resonance images of a rat head 6 days following trans-
plantation of magnetically labeled rat fetal striatal tissue (one of
the nuclei in the subcortical basal ganglia of the forebrain). The
transplanted tissue was prior incubated with super-paramagnetic
ferrite particles coupled to wheat germ agglutinin. Labeled tissue
was injected unilaterally into the striatum. The images represent
adjacent coronal 2.5 mm thick sections through a rat head (from
A to D). The brain appears as an area of relative high signal inten-
sity in the dorsomedial aspect of the images indicated by the open
arrows in panels A and B. The transplanted tissue appears as an
area of very low signal intensity indicated by an arrow in panel C.
Adapted from [17].

A limitation to the use of these SPIO nanoparticles is their occa-
sional extracellular deposition in tissues, either by active exocytosis
or passive release through the death of transplanted cells. Further-
more these agents are often considered not to be the candidates of
choice for designing smart agents, due to the difficulty to modulate
the T2/T∗2 contrast as a function of the microenvironment character-
istics. Also, the signal loss is not desirable when the target has an
intrinsically low signal, which is the case for lungs for example.

2.2.1.2 Longitudinal relaxation time agents

T1 agents, however, require direct interaction with the water protons.
For modulating the relaxivity of these agents, the three main param-
eters are :

1. hydration (q) : number of water molecules bound to the agent

2. exchange kinetics of water (1/τm) : rate at which the water
molecules bind to and detach from the agent

3. rotational correlation time of the agent (τR).
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Gadolinium complexes are the most common agents of this
class. This metal ion has a symmetric electron distribution (Gd(III) f7).
This means Gd(III) has a long electron relaxation time and operate on
the relaxation of close nuclei.
Their relaxivity may be modified by specifically modulating the num-
ber of available sites.
Achieving responsive biosensors based on gadolinium combines this
concept to the use of a ligand or a conformational change to target
a specific receptor or a physiological parameter. This permits for ex-
ample, pH detection[6]. In this example, 7 of the 9 coordination sites
of gadolinium are held by a chelator, 1 site is held by a nitrophenol
group and the last one by a water molecule. Once nitrophenol group
is protonated, it dissociates from gadolinium and leaves free access to
a water molecule. The hydration number goes from q=1 to q=2 that
increases the relaxivity of the agent. The biosensor therefore has an
"off" state with low relaxivity and an "on" state with a high relaxivity
corresponding to the protonation or low pHs.

As a research tool, Gd3+ has been used to label and track different
types of stem cells, such as hematopoietic progenitor cells, monocytic
cells, endothelial progenitor cells and mesenchymal stem cells in cell
transplantation studies in small animals.[20, 21] This strategy can be
extended to the study of many physiological parameters, but the tox-
icity of free gadolinium strongly limits the contrast agent doses. This
has been reported for patients with impaired kidney function, caus-
ing severe fibrosis and even death.

In addition to Gd3+, manganese (Mn II) is another potentially use-
ful positive contrast agent for T1-weighted MRI. As the kinetics and
behavior of Mn2+ ions inside the cell mimic those of calcium ions,
Mn2+-enhanced MRI has been used to study neuronal activity.[22]

2.2.2 Chemical Exchange Saturation Transfer agents

A new class of magnetic resonance contrast agents called chemical ex-
change saturation transfer (CEST) agents, introduces image contrast
in a fundamentally different way. Their action is not based on proton
relaxation; instead, CEST contrast relies on the existence of at least
two pools of protons with different NMR chemical shifts. One pool
is made up of the exchangeable protons of the contrast agent (pool
A). The second pool is bulk water (pool B). If proton spins in pool A
are saturated by a continuous frequency-selective RF saturation pulse,
exchange of protons from pool A to pool B during this saturation pe-
riod decreases the intensity of pool B spins (see Figure 5).
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Figure 5: Illustration of the CEST mechanism showing the Boltzmann dis-
tribution of proton spins and the simulated NMR spectra for two
chemically distinct pools of protons. Application of a frequency se-
lective RF pulse causes saturation of the NMR signal, which is then
transferred to the bulk water proton pool by chemical exchange.

There are two main classes of CEST agents: diamagnetic and para-
magnetic agents. Diamagnetic agents are based on amino acids, pro-
teins and sugars. They rely on exchanging protons belonging to –NH
and –OH groups whose signals are usually separated by 2-5 ppm
from the water signal. They are referred to as DIACEST agents. They
can be used to image their own presence, or environmental factors
such as pH, temperature and transplanted cells.[23, 24, 25]
PARACEST agents, however, contain paramagnetic metals with a high
magnetic moment that do not affect T1 but instead induce large fre-
quency difference (∆ω) between the exchanging proton (or water
molecule) with respect to the bulk water frequency. Unlike Gd((III),
PARACEST agents has unpaired f electrons. The electron relaxation
time is then shorter and therefore does not induce a nuclear relaxation
but a dipolar shift. The most common of these agents are derived
from paramagnetic lanthanide ion complexes with either exchange-
able –NH protons or lanthanide ion-bound water molecules. The
large frequency difference allows much easier RF saturation of the
paramagnetically shifted proton without indirect partial saturation
of bulk water protons. Similar to diaCEST agents, these paraCEST
agents exhibit characteristics strongly dependent on physicochemical
parameters such as temperature or pH. They can therefore be used to
map these parameters.[26, 27]
Figure 6 shows the thermometry images obtained by locating the 1H
chemical shift of a Eu3+-based paraCEST agent.

Although the amplification factor reached is promising (FA ≈ 10
5

to 10
6), the recorded detection threshold is 60 µM in vitro. In order
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Figure 6: Temperature maps of a phantom containing a solution of
paraCEST agent Eu(L)−. Tair on images indicates the tempera-
tures of the air flowing over the sample, while those reported by
imaging are shown by the color bar in units of ◦C. Adapted from
[27].

to counter this lack of sensitivity, Silvio Aime’s group worked on
the concentration of paraCEST agents into liposomes. These new con-
trast agents are called lipoCEST.[28] However, at such concentrations,
these paramagnetic metal agents might become toxic when present
in the body for prolonged periods, as in the case for Gd3+ described
above.

2.2.3 Heteronuclear tracers

Heteronuclear agents are technically not "contrast" agents (be-
cause there is no water signal to contrast with) and can be referred
to as MRI "tracers". Among them, two classes have shown promising
results for humans: 19F agents and hyperpolarized probes.

2.2.3.1 19F agents

19F nuclei are the most sensitive spins after protons. They can there-
fore be detected by MRI without any enrichment. Also, 19F is an
exogenous nucleus which avoids background noise. The detection
sensitivity is similar to CEST agents (mM range of fluorine atoms)
and the advantage is the proportionality between the concentration
of the 19F and the signal intensity. The signal can thus be quantified
directly from the acquired images. Perfluorocarbons (PFCs), which
contain many fluorine atoms with identical chemical shifts, are most
commonly used for 19F MRI in vivo cell tracking applications and
neural stem cells labeling.[29, 30]

Figure 7 shows a transplanted tissue experiment as in Figure 4,
using PFCs labeling.[30]

The high spatial resolution of 19F MRI allows the two cell clusters
in the left hemisphere to be clearly distinguished, demonstrating the
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Figure 7: 1H, 19F merged MR images of human neural stem cells labeled
with 19F (C) 2 days and (E) 6 days after implantation in the mouse
striatum. The animal received two deposits of 19F-labeled cells in
the left striatum and one deposit in the right striatum. Reproduced
from [30].

potential of this technique for the detection of small numbers of cells
in vivo within a restricted area.

2.2.3.2 Hyperpolarized probes

A newer class of biosensors that can help to achieve molecular imag-
ing is MRI using hyperpolarized endogenous substances.[31] Despite
the relatively long time of preparation of hyperpolarized species with
DNP (30-90 minutes), DNP substrates have shown the greatest promise
for oncological applications in vivo and summarize the bio-chemical
mechanisms responsible for label transfer from pyruvate to other
metabolites in tumors (see Figure 8).[32]

To date, [1-13C]pyruvate has been the most commonly used metabo-
lite for DNP. Intravenous injection of[1-13C]pyruvate can result in the
appearance of [1-13C]lactate, [1-13C]alanine, and 13CO2 resonances.
In tumors, lactate labeling is increased and this can be used to help
distinguish tumor from normal tissue[33]. Pyruvate-lactate exchange
can be also used to identify tumor grade.[32] We can now produce
more easily the same metabolites (pyruvate, succinate, etc.) by using
parahydrogen-induced polarization.[34]

At the atomic scale, hyperpolarized gases (e.g., 3He and 129Xe) are
clinically used for imaging the respiratory apparatus as shown in
Figure 9.[35]

But for molecular imaging, a very promising combination between
hyperpolarized and CEST agents has been proposed using 129Xe
NMR-based sensors. The contrast arising from these agents called
HyperCEST agents relies on the reversible binding of hyperpolarized
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(a) Overlay of 1H and interpolated
hyperpolarized 13C lactate im-
age.

(b) Visualization of the hyperpolarized
lactate levels in the prostate.

(c) Selection of one voxel from the
primary tumor.

(d) Spectrum of the voxel shows
prominent signals from lactate and
pyruvate and smaller signals from
alanine and pyruvate hydrate.

Figure 8: Axial T2-weighted 1H image depicting the primary tumor from a
mouse with a low-grade primary tumor following the injection of
350 µL of hyperpolarized [1-13C] pyruvate. Adapted from [32].

Figure 9: Two hyperpolarized 3He MR images of a healthy volunteer dur-
ing inhalation (left) and breath hold (right). Adapted from [35].

xenon with a molecular host, as described in Chapter 4. The large
chemical shift difference between the exchanging free and encapsu-
lated species allows the generation of a CEST contrast where the
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presence of very small amounts of host molecules can be detected
through saturation of their resonance frequency and detection of the
free xenon.

The enhanced sensitivity of these MRI probes allows to take advan-
tage of the good spatial and temporal resolution of the magnetic reso-
nance imaging modality, increasing its competitiveness in the molec-
ular imaging field.

2.3 optical probes

Optical imaging is a molecular imaging modality available in a va-
riety of techniques that take advantage of absorption, reflection, flu-
orescence or bioluminescence of a tissue or an imaging agent such
as fluorochromes, fluorescent proteins or fluorescent quantum dots.
(Figure 10).

Figure 10: Main classes of optical imaging agents.

2.3.1 Endogenous contrast of tissues

Absorption of light in the near infrared range is mainly due to te
hemo- and myo-globin content, which is dependent on the vascular-
ization in the tissue. Scattering, however, is dependent on intracelullar
composition. Spectral dependence measurement of tissue absorption
and scattering provides additional information concerning tissue con-
tents - water, lipids, deoxyhemoglobin - which is useful in breast dis-
ease imaging.[36]

In addition, tissues inherently exhibit autofluorescence since all tis-
sues contain low amounts of fluorophores which absorb light and
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subsequently emit light. Nicotinamide (NAD[H]), flavins, collagen,
and elastin are commonly known tissue fluorophores. An abnormal
tissue therefore presents a change in the spectroscopic properties
based likely on changes in the concentration of these components.[37]
For instance, protoporphyrins IX are fluorescent molecules that have
been shown to accumulate in pre-malignant tissue and may be used
for early cancer detection.

2.3.2 Fluorochromes

most of fluorochromes have non specific localization in live cell - such
as cyanine dyes. Depending on their structure, they can stain the cell
membrane, the cytosol or organelles. For a more specific targeting, it
is required to conjugate them with specific ligands. Since many can-
cers overexpress various receptors, conjugating fluorochromes to spe-
cific ligands leads to selective tumor visualization. For example, func-
tionalized by a somatostatin analog, cyanine dye revealed promising
results for optical tumor imaging.[38]

Nevertheless, this approach operates with a relatively low signal-
to-noise ratio, since non-bound probes are fully fluorescent and thus
contribute to background noise. In order to counter this background
noise, activatable fluorochromes were developed. The first genera-
tion of activatable fluorochromes consisted in a poly-lysine backbone
shielded by multiple methoxy-polythylene-glycol sidechains. Several
cyanine dyes were loaded onto this macromolecule, resulting in an
absence of fluorescence signal due to quenching among the fluo-
rochromes. Non-fluorescent in its native state, fluorochromes were
released after enzymatic cleavage. This led to a strong fluorescence
signal enabling detection of a protease, as shown in Figure 11.[39]

Another generation of fluorogenic probes consisting in fluorescein
derivative bearing trivalent arsenic atoms has been developed by Tsien’s
group in 1998 and will be discussed in Chapter 6.

2.3.3 Fluorescent proteins

Fluorescent proteins (FPs) of the Green Fluorescent Protein (GFP)
family consist of 220–240 amino acid residues (25 kDa), which fold
into a barrel formed by 11 β-sheets that accommodates an internal
distorted helix. The chromophore is formed by a posttranslational
modification of the three amino acid residues of the helix at positions
65–66-67. The resulting chromophore is located in the very center of
the β-barrel and therefore is well protected from contact with the sol-
vent by the surrounding protein shell. In addition, the barrel of FPs
is stabilized by multiple noncovalent interactions that ensure its ex-
tremely high stability to thermal or chemical denaturation as well as
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Figure 11: Fluorescence microscopy images of cells incubated with the
macromolecular structure bearing multiple cyanine dyes. A A
phase contract image. B immediately after injection of the activat-
able fluorochrome, no fluorescence signal is observed. C After 15

min of incubation, the probe is internalized and degraded result-
ing in a fluorescent signal. D Light (left) and near infrared range
fluorescence (right) images these same tumor cells implanted into
mammary fat pad of a mouse. Adapted from [39].

resistance to proteolysis.

The gene coding for the FP can be fused to the gene of a protein
of interest or a targetting sequence. The resulting fusion can then be
transfected in isolated live cell, tissues or animals. This makes it possi-
ble to study in situ the expression and the distribution of this protein
by fluorescence. This discovery was rewarded by the Nobel Chem-
istry Prize in 2008 attributed to Chalfie, O. Shimomura and R.Tsien.

GFP and its variants and homologs of different colors are used in a
variety of applications to study the organization and function of liv-
ing systems. FPs encoded in frame with proteins of interest make it
possible to observe their localization, movement, turnover, and even
“aging” (i.e., time passed from protein synthesis).[40] Nucleic acids
also can be labeled via RNA- or DNA-binding protein domains. FPs
targeted to cell organelles by specific protein localization signals en-
able visualization of their morphology, fusion and fission, segregation
during cell division, etc. FPs are essential tools for individual cell and
tissue labeling to visualize morphology, location, and movement. For
instance Figure 12 shows the in vivo visualization of a colon cancer
cells inside a living mouse.[41]
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Figure 12: Lateral whole-body image of metastatic liver lesions of a GFP-
expressing human colon cancer in the left (thick arrow) and right
lobes (fine arrow) of a live nude mouse at day 21 after surgical
orthotopic transplantation. Adapted from [41].

2.3.4 Fluorescent quantum dots

In the past 15 years a whole range of functionalizable fluorescent
nanoparticles were developped. Among them the quantum dots familly
already proved its suitability of fluorescence imaging. They are nanocrys-
tals of semiconductor material whose dimensions are less than 10

nm.These nanoparticles posses an excellent stability, a high molar ex-
tinction coefficient and quantum yield. Their size controls their emis-
sion wavelength. This fine tuning make it possible to follow several
molecular targets simultaneously.

Their main advantage resides in their resistance to bleaching over
long periods of time (minutes to hours). This increased photostability
is especially useful for three-dimensional optical sectioning, where
a major issue is bleaching of fluorophores during acquisition. Since
their excitation wavelength is localized in the near infrared range, it
also allows greater penetration into the tissue. Quantum dots can
be utilized as contrast agents for optical imaging, particularly for
deep tissue imaging. Deep tissue imaging provides more information
about the pathological status of the disease, which makes the treat-
ment more effective and efficient.

2.3.5 Bioluminescence

Luciferases are enzymes that emit light in the presence of oxygen
and a substrate (luciferin). They have been used for real-time, low-
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light imaging of gene expression in cell cultures, individual cells,
whole organisms, and transgenic organisms. Oxidation of luciferin
by luciferase leads to a photon emission: this process is called biolu-
minescence. Luciferase can act like an internal sensor that emits light
wherever luciferase is expressed.

2.4 toward multimodal molecular imaging

The main challenge in molecular imaging is that modalities with the
highest sensitivity have relatively poor spatial resolution, while those
with high resolution have relatively poor sensitivity. The idea of com-
bining multiple modalities has grown in the past few years and re-
searchers have come to realize that complementary abilities of differ-
ent imaging techniques could be exploited by using them in tandem.

In late 80’s and early 90’s, researchers from the University of Cal-
ifornia San Francisco, pioneered the development of hybrid SPEC-
T/CT devices which could record both SPECT and x-ray CT data
for correlated functional/structural imaging. Since, this new technol-
ogy has been exploited leading to various multimodal systems which
combine two or even three of the molecular imaging techniques. In
this work, we present the combination of optical and MR imaging
techniques for a bimodal fluorescence-129Xe NMR probe.
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3
S P I N - H Y P E R P O L A R I Z AT I O N

3.1 nmr sensitivity

Any charged particle in motion has a magnetic moment and produces
a magnetic field. Nuclear magnetic moments in a magnetic field take
different orientations that corresponds to distinct energy levels. The
initial populations of the energy levels are determined by thermody-
namics, as described by the Boltzmann distribution (1):

Nupper

Nlower
= e−∆E/kT = e−hν/kT = e−γh̄B0/kT (1)

where Nupper and Nlower represent the population of nuclei in
upper and lower energy states, respectively, k is the Boltzmann con-
stant, T is the absolute temperature (K), h̄ is the Planck’s constant
divided by 2π, γ the gyromagnetic ratio and B0 the magnetic field.
∆E represents the required energy to induce flipping and to obtain
an NMR signal (see Figure 13).

Figure 13 represents the distribution of a small number (ten mil-
lions) of hydrogen nuclei, calculated from (1) for protons in a 11.4 T
magnetic field (ν = 500 MHz). At thermal equilibrium at room tem-
perature, the population ratio will be 0,999921713. That means for
every 5,000,000 nuclei in the upper energy state, there are 5,000,391

nuclei in the lower energy state.
Such a small population difference leads to a significant sensitivity

problem for NMR because only the difference in populations - 805 of
2,000,805 nuclei) is detected. The magnetization, defined in (2), em-
anating from a real sample is simply the sum of all the individual
nuclear magnetic moments (spins). It will be the total magnetization
that determines an NMR signal – not the magnetic moment of an
individual nucleus.

M =
γh̄N

2
P (2)

where γ denotes the nuclear gyromagnetic ratio, h̄ is the Planck’s
constant divided by 2π, N is the total number of spins, and P is the
nuclear polarization, defined in (3).

P =
Nlower −Nupper
Nlower +Nupper

=
Nlower −Nupper

N
(3)

29
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Figure 13: . Dependence on magnetic field strength B0 of the separation of
nuclear energy levels (∆ E) for spin I= 1/2 and the relative popu-
lations of the energy levels assuming one has approximately ten
million protons in the sample.

where Nlower and Nupper are the number of spins in low and high
energy states, respectively.

It is then possible to determine the polarization P at thermal equi-
librium ((4)):

P =
Nlower −Nupper
Nlower +Nupper

=
exp(γh̄B02kT ) − exp(−γh̄B02kT )

exp(γh̄B02kT ) + exp(−γh̄B02kT )
= tanh(

γh̄B0
2kT

)

(4)

At physiologically relevant temperatures, P is extremely small even
at very high applied fields, therefore P ≈ γh̄B0

2kT (high temperature
approximation). For instance, the 1H percent polarization in a 1,000

MHz NMR spectrometer is only 0.008% and for other relevant biomed-
ically relevant nuclei such as 13C, 15N or 129Xe, polarization P re-
mains relatively low (10

−6 - 10
−4). The low sensitivity of NMR is

probably its greatest limitation for applications to biological systems.
However, in some cases P can be artificially increased well above

its low thermal equilibrium level. This can be performed by polar-
ization transfer from a more ordered state: it can be photons,[1] or
electrons.[2] This significant (usually orders-of-magnitude) increase
in nuclear spin polarization above the thermal-equilibrium level was
later called hyperpolarization.
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3.2 main xenon hyperpolarization methods

Hyperpolarization consists in transiently imbalancing the nuclear spin
repartition of the energy level populations initially at the Boltzmann
distribution, by polarization transfer from a more ordered system. In
the case of xenon, it can be done via Optical Pumping (OP) or Dy-
namic Nuclear Polarization (DNP).

3.2.1 Dissolution Dynamic Nuclear Polarization

The d-DNP technique relies on unpaired electrons as the source of
large spin polarization, by transferring their polarization to the nu-
clear spins. Indeed, when electrons are subjected to sufficiently low
temperatures in a static magnetic field of several Tesla, their polar-
ization at Boltzmann equilibrium is 660 times higher than the one of
protons.

In liquid state, the predominant transfer phenomenon is the Over-
hauser Effect. During this process, the huge Boltzmann polarization of
unpaired electrons is transfered to vicinal nuclear spins by saturation
of the corresponding electron spin resonance (ESR) transitions.This is
possible via the spontaneous electron-nucleus cross relaxation (flip-
flop mechanism in Figure 14) .

Figure 14: . Zeeman energy levels of an electron-nucleus system presenting
the Electron Spin Resonance (ESR) transitions, Nuclear Magnetic
Resonance (NMR) transitions and flip-flop transitions.

As a result, the main parts of a DNP polarizer are its cryostat,
where the sample doped with radicals is usually immersed in a su-
perfluid helium bath, a superconducting magnet that provides a suffi-
cient field to achieve optimal electron spin polarization P(e), and a mi-
crowave irradiation device (typically power about 100 mW) operating
at a frequency suitable for the saturation of electron spin resonance
(ESR) transitions (see Figure 15). After this first step, the sample is
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warmed and quickly (some seconds) transported in the NMR magnet
for detection.

Figure 15: . In a dynamic nuclear polarization experiment, MR-active nu-
clei (here 13C) are mixed with a low concentration of unpaired
electrons in a glass matrix. The sample is then irradiated with
high-power microwaves at the electron resonance frequency in a
high magnetic field (≈ 3 T) and at low temperatures (≈ 1 K). This
enables 13C hyperpolarization via polarization transfer from free
electrons. Adapted from [3].

In the liquid state DNP experiment, three steps can be distinguished:

1. Polarization of the sample by microwave irradiation at low tem-
perature (of the order of 1K)

2. Dissolution of the sample in a hot solvent and transport to the
spectrometer or imager.

3. Transferring the solution into an NMR tube or injecting it into
an animal.

The method can be applied to a wide variety of molecules, in-
cluding xenon.[4] The procedure for hyperpolarizing xenon via DNP
includes a first production of an amorphous solid pellet containing
xenon in an adequate frozen solvent doped with free radicals. In this
solid state, the high electron spin polarization due to the combined
use of low temperature and high static magnetic field is transferred
in part to the nuclear spins by microwave irradiation in some tens of
minutes. Then a fast sublimation step ensures separation of the noble
gas from the radicals.

The polarization of xenon is about 100 times higher than its polar-
ization in Boltzmann equilibrium.[4] The characteristic time for pro-
ducing hyperpolarized xenon via DNP, according to Capozzi et al. is
about 1 hour and half for a 80-mL batch.[5]

The polarization produced then decays back to thermal equilibrium
through relaxation at a rate dependent on the inherent properties
of the molecule under study (typically 1-2 minutes). Thus, a current
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limitation of the method is that the enhanced signal is only available
for a short period of time.

Another hyperpolarization technique that generates hyperpolarized
noble gases (3He, 129Xe, 83Kr, etc.) with high nuclear spin polariza-
tion has been implemented: Spin-Exchange Optical Pumping (SEOP).

3.2.2 Spin-Exchange Optical Pumping

This technique requires the intervention of photons and an alkali
metal. Indeed, a photon beam can be fully circularly polarized (spin
+1 or -1), and therefore can be the ideal polarization source. However,
as optical transitions do not influence the nuclear spins directly (only
the rearrangement of the orbital motion of an electron can be respon-
sible for photon absorption), the experiment is a two-step process.
The Spin-Exchange Optical Pumping (SEOP) experiment involves an
alkali metal that is heated so that the gas phase absorbs circularly
polarized photons at the wavelength corresponding to the transition
between its ground state and its first excited state (795 nm for rubid-
ium). The principle is based on the use of selection rules governing
the light-atom interaction and on the conservation of the angular mo-
mentum of the photons. The selection rules for an electronic transi-
tion are ∆S = 0, ∆L = 0,± 1 and ∆J = 0, ± 1. Let us remind that atomic
states are described by term symbols of the form:

2S+1LJ

where

• L is the orbital angular momentum of the electron (in spectro-
scopic notation)

• S its spin angular momentum. 2S+1 represents the spin multi-
plicity or the number of possible states of J for a given L and
S

• J the total electron angular momentum as described in Figure 16.

Rubidium, as an alkali metal has only one electron on its 5s layer.
But it has also a nuclear spin that is neglected here. Rubidium has a
ground state 2S1/2 - [...]4p6 5s1 - described by s = 1/2 l = 0 and j =
1/2. It also has two excited states 2P1/2 and 2P3/2 - [...]4p5 5s2 leads
to s = 1/2 l = 1 and j = 1/2, 3/2. In the presence of a static magnetic
field, degeneracy of the spin levels occurs: each of the energy levels is
subdivided into Zeeman sub-levels. 2S1/2 and 2P1/2 levels split into
two states each (mj = 1/2, -1/2) and 2P3/2 level into four states (mj
= 3/2, 1/2, -1/2, -3/2). At thermal equilibrium, the two sub-levels of
the ground state are populated (with the Boltzmann distribution for
electrons).
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Figure 16: Scheme of orbital and spin angular momenta and the spin-orbit
coupling J.

When irradiating with a left polarized light - photons have an angu-
lar momentum of ∆mj = +1 - only the transitions which retain the
angular momentum are possible. This means that photons can only
be absorbed by atoms in the 2S1/2 state with mj = -1/2. The state
2P1/2 with mj = + 1/2 is then populated as seen in Figure 17.

Consequently to collisions with gas atoms in the cell, the excited
level mj = + 1/2 of 2P1/2 is depopulated and populates each of
the sub-levels mj = ± 1/2 of the ground state with equiprobable de-
excitation rates between the levels mj = - 1/2 and mj = + 1/2 of the
2S1/2 state.
Thus the level mj = +1/2 of the ground state is not excited due to the
constraints imposed by the selection rules and it is populated as the
upper state is depopulated. This results in a hyperpolarization of the
ground state of the spins of the valence electrons of the rubidium as
seen in Figure 17.

This first step is extremely fast and complete hyperpolarization of
the electron spins occurs in microsecond to millisecond time scale de-
pending on the experimental conditions. As the cell also contains the
noble gas, a second step occurs, consisting in polarization transfer
from the electron spins of the alkali metal to the xenon nuclear spins.
This second step, based on cross-relaxation phenomenon during the
transient formation of van der Waals Rb-Xe pairs or during xenon-
alkali metal collisions, is obviously less efficient and slower than the
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Figure 17: Spin-Exchange Optical Pumping setup requires an optical cell
containing a noble gas - xenon -, buffer gases (N2 and He), and a
small quantity of vaporized alkali metal (typically Rb). Nuclei are
irradiated by a laser light (795 nm for Rb D1 transition). Photons
fully circularly polarized (∆mj = +1) are absorbed. Since angular
momentum is conserved, this leads to an absorption from one
of two Rb ground electronic (mj = -1/2) states. After collisions
with gas atoms, the ground states are repopulated at effectively
equal rates. However, since only one ground state is depleted by
the laser, ground-state population accumulates on the other mJ
= 1/2 state, leaving the Rb electronically spin-polarized. A weak
magnetic field along the direction of laser propagation (drawn in
green) enables the degeneracy of the spin levels. Gas-phase colli-
sions then allow spin exchange between the polarized Rb electron
spins and the noble gas nuclear spins.

first one (see Figure 17).
In our experimental conditions (non-narrowed laser diodes, pressure
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inside the pumping cell beyond 1 bar) the typical time scale for ob-
taining a fully hyperpolarized nuclear spin system is on the order of
one to five minutes for a 12-mL batch.

Thus, time to produce hyperpolarized xenon via SEOP advanta-
geously compares with the characteristic time scale of DNP. While
for DNP it is easier to increase the hyperpolarized xenon quantities
by increasing the solid-state sample volume, the SEOP experiment is
cheaper and prone to provide in a short time xenon with a polariza-
tion exceeding 0.2, in quantities enabling in vitro and in vivo (mainly
for small animals) NMR/MRI studies.
As an example, Figure 18 shows the difference between between ther-
mic and hyperpolarized 129Xe NMR spectra on a 11.4 T magnet.

Figure 18: 129Xe NMR spectrum (in blue) obtained after 15 hours of ac-
quisition and exhibiting a polarization of 10

−5. Hyperpolarized
129Xe NMR spectrum (in red) obtained after only 1 s of acqui-
sition. Polarization has been enhanced by more than 5 orders of
magnitude.

For biomedical applications using laser-polarized xenon, a concern
has to be addressed dealing with the chemical species other than
xenon inside the optical pumping cell. In addition to the noble gas,
the cell contains some droplets of the alkali metal, a few hundred
torrs of nitrogen (a quenching gas designed to avoid radiative de-
excitation susceptible to give rise to photons with opposite polariza-
tion) and some bars of helium (the pressure broadening enables a
better matching between the emission and absorption bandwidths).
Xenon can easily be separated from nitrogen and helium via con-
densation in liquid nitrogen in the presence of a strong static mag-
netic field for avoiding fast nuclear relaxation. This step enables hy-
perpolarized xenon accumulation through multiple optical pumping
batches or in flow mode. A concern could appear for the presence
of the alkali metal with xenon. At this step, let us mention that in-
side the cell, at the temperature used during OP (usually < 100

◦C),
the pressure vapor of, for instance, rubidium, is only 0.2 mTorr. The
residual traces of rubidium can thus easily be trapped by passing
the mixture through a getter cooled at -98

◦C by a methanol/liquid
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nitrogen mixture placed between the OP cell outlet and the storage
reservoir.

The advantage of DNP technique compared to optical pumping is
that the required instruments can be found near imagers. With this
in mind, we designed a mobile spin-exchange optical pumping setup
that enables production of laser-polarized noble gases in a standalone
mode, in close proximity to hospitals or research laboratories.

3.2.3 Our recent contribution: optical pumping in a van

Figure 19 displays the schematic drawing of the experimental setups. This work was
published in [6]Its additional particularity lies in the removable wheels that enable us

to move it easily and place it inside a dedicated van, equipped with
a double wall and anoxia detectors. With this setup, xenon optical
pumping can be performed in the near vicinity of the imagers or
spectrometers, which reduces the handling risks.

Figure 19: Production of laser-polarized xenon. Top: Photograph of our
SEOP setup; bottom: schematic drawing. BE: beam expander; BS:
beam splitter; λ/4: quarterwave plates; PW: powermeter. B: mag-
netic field (100 G) colinear to the light beam.

The device has been conceived in two parts, the coils being sep-
arated from the rest of the setup (pumping cell, optics, gas distri-
bution system, pump, power supply, etc.). With this principle, at
the difference of the other transportable polarizers proposed in the
literature,[7, 8, 9] it becomes possible by keeping only the latter part
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to use the fringe field of a horizontal MRI magnet to perform in the
same place SEOP and imaging.

An ensemble of four coils with diameter of 620 mm for the two
central ones and of 440 mm for the two outer ones creates a unidirec-
tional magnetic field of 100 G when supplied with a DC current of 8

A (Electric supply, Delta Electronika), with a field homogeneity bet-
ter than 10

−4 in a volume of 120 cm3. An aluminum frame supports
these coils. Four foldaway wheels have been added in order to easily
move it. At the rear extremity of the frame, a large plastic beaker that
slides along a vertical rod enables collection of hyperpolarized noble
gas in a removable receptacle. The second part (in blue in Figure 20

of the device is contained on a chariot. It contains the laser diodes (1),
the electric supply for the coils (2), the heating system (3), the pump-
ing group (4), the plate containing the gas reservoirs and the tubing
(5), the polarizer (6), and the SEOP cell (7).

Figure 20: Drawing of the SEOP setup, side and front views. For explana-
tion of the indicated numbers, see the main text.

The latter is placed on a plateau, which is retractable, thanks to a
system of rails and wheels placed under it. While in the transport
mode it is in retracted position, it is extended to reach the center of
the coils during operation. When the wheels of the device containing
the coils are folded away, vertically the two parts fit perfectly together
through the sliding plateau and the SEOP cell comes at the exact cen-
ter of the coils.

The light source consists in a fibered laser diode (Coherent Duo
FAP, 2 x 30 W maximal power (1)) entering in a circular polariz-
ing unit (Coherent) (6) after having crossed a homogenizer in which
the bundle consisting of two 800 µm diameter solid-core fibers is
transformed into a unique randomly polarized beam with Gaussian
shape. The circular polarizing unit essentially consists in a polar-
ization beamsplitter cube, a mirror, and two adjustable quarterwave
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plates. Photons with one polarization cross the cube and then a quar-
terwave plate, while photons with the other polarization are reflected
by the face of the cube, then by a mirror and cross the other quarter-
wave plate.

The large uniform collimated beams converge at the SEOP cell
front face situated 130 cm away from the polarizer. Behind the cell,
a LM- 100-HTD powermeter connected to a FieldMaster-GS display
unit (Coherent) measures the light intensity that has not been ab-
sorbed by the alkali vapors. Heating is performed by a flow of hot air
in a double envelope. The temperature of the air is regulated via a
Eurotherm B-VT 2000 unit. In the cell however the input of the gases
is different from the exit not only for the heating gas (outer compart-
ment) but also for the inner compartment. The front face of the SEOP
cell is a borosilicate glass disk treated to be transparent at 795 nm
(Fichou), corresponding to the D1 line of rubidium. This disk is fixed
onto the rest of the cell, thanks to Teflon rings.
Grains of metallic rubidium are introduced into it in a glove box un-
der argon. Then, it is connected to the tubing: upstream to Swagelok
plastic tubes, downstream to a glass coil placed just at its output.
This glass coil is intended to be thermalized at -98

◦C by a methanol-
nitrogen cooling bath in order to trap potential rubidium traces dur-
ing the transfer of the gas mixture to the storage reservoir. After-
wards, the SEOP cell is filled with xenon, nitrogen, and helium, se-
quentially, or from a 1.8 L bottle containing the mixture already pre-
pared (opposite face of the plate). Typical values for the pressures
inside the SEOP cell are 0.1 bars xenon, completed with nitrogen to
reach 0.4 bars and then with helium to reach 3.5 bars at room tem-
perature. An aluminum plate contains several valves and reservoirs.
For the arrival of helium from the bottle, a quarter-turn ball valve
is sufficient (this gas is used at a super-atmospheric pressure), while
for nitrogen and for xenon, quarter-turn ball valves are completed
by precision valves. Between the quarter-turn valves and the preci-
sion valves, the gases cross Sertronics filters (Air Liquide) in order to
be purified from O2 or H2O traces (opposite side of the plate). Two
reservoirs contain natural abundance and 83% 129Xe-enriched xenon,
while a third one having an output pipe different from the inlet pipe
serves to separate xenon from other gases by condensation.

A dry scroll vacuum pump (model SH110 from Agilent) enables to
reach a primary vacuum in all the gas tubes and serves to separate
xenon from helium and nitrogen after optical pumping. When neces-
sary, it can be completed by a turbo-pumping group (model VLP70

fromVarian). Pressure is measured in different points of the device
through diaphragm gauges (Varian CDG-500) and vacuum gauge
controllers (Varian AGC100-DV100). In such a SEOP setup, the lim-

[ November 06, 2017– PhD thesis by Emilie Mari ]



40 spin-hyperpolarization

iting factor for producing quickly hyperpolarized xenon is the time
required to heat the cell. In order to save time, a derivation system us-
ing a hose continuously heated at 70

◦C (Kenovel) has been installed
on the heating circuit. It is connected each time a new SEOP experi-
ment starts and disconnected before polarized xenon is collected. The
complete SEOP experiment can then be achieved in less than 5 min.
Thanks to the wheels both parts of the device can be easily trans-
ported to the interior of a van equipped with a power liftgate.

In addition to the SEOP setup, during operation, the van compart-
ment contains two chariots. One of these chariots supports the ni-
trogen and helium gas bottles (20 l-bottles of N2 quality BIP and
helium quality Premier XSS, from Air Products, both equipped with
manometer and pressure reducer), and the second one is a home-built
chariot for the transport of polarized xenon. In this chariot, xenon is
stored frozen in a glass coil inside a solenoid immersed in liquid ni-
trogen. The cold solenoid, driven by a car battery, delivers a magnetic
field of 5 kG. Although no precise measurement was done, the xenon
relaxation in these conditions is on the order of hours.

The simplicity of use and the robustness of our mobile SEOP setup
providing milliliters of xenon per minute with high useful polariza-
tion - xenon production rates of 5 ml/min with polarization of 0.15

were obtained for instance. pave the way to numerous experiments
and collaborations. The lightweight of the device (that could be fur-
ther miniaturized), the operating flexibility, and the production rate
of the hyperpolarized species contrast with other techniques such as
dynamic nuclear polarization and give versatility to the approach.

3.3 details of the xenon seop experiment

For each optical pumping and NMR experiment on a sample of hy-
perpolarized 129Xe, the protocol is carried out in the following way:

• First, paramagnetic species (especially O2) are removed from
the solution in the NMR tube thanks to a helium flow. This step
is crucial for xenon experiments, paramagnetic species being
the most important cause of xenon relaxation. Vacuum is then
made into the tube using a static pump.

• Establishment of the vacuum in the circuit. Indeed, like all alka-
line, rubidium reacts very violently in the presence of oxygen, it
is therefore essential to guarantee a good vacuum in the whole
circuit arriving and leaving the optical cell. For this purpose, a
primary pump provides a vacuum the order of 10

−5 bar inside
the optical cell and throughout the assembly circuit.

• Filling of the optical cell with the gas mixture (xenon, then ni-
trogen to prevent from radiative de-excitations, then helium 4
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providing the pressure necessary to widen the absorption line
of rubidium).

• Heating of the optical cell at the chosen temperature.

• Once the temperature is reached, switching on the magnetic
field surrounding the optical cell.

• Optical pumping time (around 5 minutes).

• During pumping, insert the Dewar containing the solenoid and
liquid nitrogen bath around the coil. Establishment of a pres-
sure greater than 1 bar of nitrogen (of the order of 1.5 bar on
average) in the circuit between the outlet of the cell and the
vacuum pump. This is for avoiding a too sudden expansion be-
tween the high pressure cell and the rest of the circuit, which
could cause a fast xenon relaxation by a fast diffusion in too ef-
ficient field gradients. This is also to prevent leakage and, there-
fore, oxygen in the assembly.

• Once pumping is complete, the optical cell is cooled by turn-
ing off the heating resistor and the heating ribbon so that the
rubidium returns to the solid state and remains inside the op-
tical cell. At the output of the optical cell is a first tank cooled
by a 175K "liquid nitrogen-methanol" mixture whose function is
to trap the possible rubidium vapors that would have escaped
from the optical cell.

• Then the first transfer is made: the cell is opened and the vac-
uum pump is switched on: the xenon is stored in solid form in
a glass coil. To trap xenon, the glass coil that serves as storage
tank is immersed in a 77K liquid nitrogen bath in a Dewar. At
this temperature, xenon is condensed (condensation from 163K)
and nitrogen and helium remaining in the gaseous state are
evacuated by the vacuum pump. The cold storage tank of hyper-
polarized xenon was designed as a glass coil to maximize the
contact surface with liquid nitrogen and thus trap more xenon
(see Figure 21).

• When xenon is stored in the glass coil, the valves allowing the
gas inlet inlets are closed and the plugs making the connection
with the rest of the assembly are unscrewed while the assembly
is insulated from the air of the room by means of Swagelok
valves before the assembly coil is disconnected.

• The Dewar is then disconnected from its support and the chariot
containing the glass coil, the solenoid delivering a field of 300

mT immersed in the liquid nitrogen and the battery, is brought
to the spectrometer. Once the rare gas is condensed in the glass
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Figure 21: Photograph of the chariot that enables us to transport the hyper-
polarized xenon toward the magnet.

coil, the xenon T1 in the solid phase is several hours thanks to
the field supplied by the solenoid.

• The xenon transfer between the glass coil and a vacuumed NMR
tube is carried out some centimeter from the magnet of the spec-
trometer in a leakage field of about one hundred gauss. The
transfer of xenon in gas phase is permitted by a glass bridge
which is connected to a pump which establishes the vacuum
between the NMR tube and the glass coil, as displayed in Fig-
ure 22.

Figure 22: Photograph of the glass bridge permitting the hyperpolarized
xenon transfer from the glass coil to the NMR tube.

Thus, xenon condensates from the glass coil (which is heated
with hot water) to the NMR tube by a cold point with liquid ni-
trogen. According to Henry’s law, at constant temperature and
equilibrium, the quantity of gas dissolved in a liquid is propor-
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tional to the partial pressure exerted by this gas on the liquid.
This leads to this equation (5):

cLi = pik
H
i (5)

Where pi is the partial pressure of a pure gaseous body i in
bar, cLi its gas concentration (mol/L) in a solvent L and kHi the
Henry’s constant of the given gas i in mol.L−1bar−1 at 298.15

K.

As an example, Henry’s constant for xenon at 298.15 K in wa-
ter solution is 0.0043 mol.L−1bar−1. This means that 1 bar of
gaseous xenon inside the NMR tube corresponds to 4.3 mM of
dissolved xenon in water solution.

In order to increase the molar fraction of xenon inside the aque-
ous solution, the NMR tube is shaken and then introduced into
the spectrometer and the NMR experiment can begin.

[ November 06, 2017– PhD thesis by Emilie Mari ]



[ November 06, 2017– PhD thesis by Emilie Mari ]



B I B L I O G R A P H Y

[1] M. A. Bouchiat, T. R. Carver, and C. M. Varnum. Nuclear polariza-
tion in he3 gas induced by optical pumping and dipolar exchange.
Phys. Rev. Lett., 5:373–375, Oct 1960.

[2] T. R. Carver and C. P. Slichter. Polarization of nuclear spins in
metals. Phys. Rev., 92:212–213, Oct 1953.

[3] Panayiotis Nikolaou, Boyd M. Goodson, and Eduard Y.
Chekmenev. NMR Hyperpolarization techniques for biomedicine.
Chemistry – A European Journal, 21(8):3156–3166, 2015.

[4] E. L. Hahn. Spin echoes. Phys. Rev., 80:580–594, Nov 1950.

[5] Andrea Capozzi, Jean-Noël Hyacinthe, Tian Cheng, Tim R. Eich-
horn, Giovanni Boero, Christophe Roussel, Jacques J. van der
Klink, and Arnaud Comment. Photoinduced nonpersistent
radicals as polarizing agents for X-nuclei dissolution Dynamic
Nuclear Polarization. The Journal of Physical Chemistry C,
119(39):22632–22639, 2015.

[6] C. Chauvin, L. Liagre, C. Boutin, E. Mari, E. Léonce, G. Carret,
B. Coltrinari, and P. Berthault. Note: Spin-exchange optical pump-
ing in a van. Review of Scientific Instruments, 87(1):016105, 2016.

[7] Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Bro-
gan M. Gust, Nicholas Whiting, Hayley Newton, Iga Muradyan,
Mikayel Dabaghyan, Kaili Ranta, Gregory D. Moroz, Matthew S.
Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev,
and Boyd M. Goodson. XeNA: An automated ‘open-source’
129Xe hyperpolarizer for clinical use. Magnetic Resonance Imaging,
32(5):541 – 550, 2014.

[8] Samuel Patz, F. William Hersman, Iga Muradian, Mirko I. Hrovat,
Iulian C. Ruset, Stephen Ketel, Francine Jacobson, George P. Top-
ulos, Hiroto Hatabu, and James P. Butler. Hyperpolarized 129Xe
MRI: A viable functional lung imaging modality? European Journal
of Radiology, 64(3):335 – 344, 2007.

[9] Sergey E. Korchak, Wolfgang Kilian, and Lorenz Mitschang. Con-
figuration and performance of a mobile 129Xe polarizer. Applied
Magnetic Resonance, 44(1):65–80, Feb 2013.

45

[ November 06, 2017– PhD thesis by Emilie Mari ]



[ November 06, 2017– PhD thesis by Emilie Mari ]



4
X E N O N B I O S E N S O R S

4.1 xenon : a spy with multiple facets

Among the species that can be spin-hyperpolarized, xenon is of high
interest, due to its exogenous nature (leading to the absence of back-
ground noise) and the fact that it can act as a spy of biological events
without interfering on them. Moreover, it can be endlessly reloaded
and simply removed from the sample exposing no ionizing radiation
for the patient - for 129Xe isotope. Finally, owing to the high deforma-
bility of its large electron cloud xenon is deeply sensitive to its local
environment and constitutes a perfect probe for various biological
interactions. Soluble in most biological fluids, xenon can cross the
plasma membrane in a few tens of milliseconds without losing its
hyperpolarization.[1]

The first initial applications of hyperpolarized 129Xe NMR in biol-
ogy were the anatomical imaging of the lung whereas the vast major-
ity of work in human images has been performed using hyperpolar-
ized 3He instead. Unfortunately, the price of helium skyrocketed due
to the emergence of neutron detectors after the 9/11 terrorist attacks.
This demand far exceeded the replenishment rate from the primary
source, leading to a strict regulation of the supply of 3He. Even if it
has a lower gyromagnetic ratio, xenon was a perfect candidate since
it is naturally abundant on Earth and its cost is relatively low. As
a matter of fact, there are more than 29 isotopes of xenon of which
9 are stable and 2 have non-zero spins that are therefore detectable
in NMR. Those two candidates are isotope 129Xe with spin 1/2 and
natural abundance 26.44% and isotope 131Xe with spin 3/2 and nat-
ural abundance 21.24%. Xenon 129 is the isotope with the highest
gyromagnetic ratio (γ129Xeγ1H

= 0.278) and the longest relaxation time,

it is a gas of choice for NMR. More than being an alternative to 3He,
129Xe permits exploration of lung function, such as gas exchange and
uptake which can not be accessed using hyperpolarized 3He due to
its lack of chemical shift variability. Actually, following inhalation,
a dynamic equilibrium is quickly established between xenon in the
airspaces and xenon dissolved in the parenchyma and blood, result-
ing in diffusion-driven exchange of xenon between the airspaces (blue
Xe atoms in Figure 23C) and dissolved-phase compartments (red and
gold Xe atoms Figure 23C). A fraction of dissolved xenon is trans-
ported to other organs by the bloodstream. Figure 23A shows the
tremendous improvement of the quality of 129Xe images and com-

47
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parison to 3He images, as well as anatomical 129Xe images of lung
diseases. Figure 23B focuses on the different hyperpolarized xenon
distribution profiles associated with different pathologies. Ventilation
defects associated with functional abnormalities from pulmonary dis-
ease are therefore clearly depicted with 129Xe.[2]

Figure 23: A.129Xe (upper and lower row) and 3He (middle row) imaging of
healthy human lungs, hyperpolarized gas distributed uniformly
throughout the ventilated airspaces of the lung. B. 129Xe imag-
ing of diseased human lung with asthma (upper row), Chronic
Obstructive Pulmonary Disease (middle row) and cystic fibrosis
(lower row). C. 129Xe exchange between lung airspaces and tis-
sue. Reproduced from [2].

Since the probe is quite lipophilic, the investigation of hydrophobic
binding pockets in proteins is also one of the applications of 129Xe
NMR. In this last domain, xenon provides information both through
direct observation of its NMR spectrum and via transfer of its en-
hanced polarization to surrounding spins. In the original experiment,
Navon et al. observed a transient enhancement of the proton signal
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by dissolving hyperpolarized xenon in benzene, without the need of
radio-frequency irradiation of the 129Xe spins.[3] This spontaneous
enhancement was interpreted as a consequence of cross-relaxation
and polarization transfer between the dissolved hyperpolarized gas
and the surrounding spins in solution. The idea was then to use this
effect, so called SPINOE, to ‘light-up’ the NMR spectra of the pro-
tein sites visited by xenon and provide a powerful tool to study hy-
drophobic cavities of proteins. Since the solubility of xenon in water
is a factor of 30 smaller than in organic solvents like benzene or chlo-
roform, the observation of SPINOE enhancements for molecules dis-
solved in water is particularly challenging. The first proton-enhanced
spectrum of a protein was observed by Landon et al. in 2001 and
revealed that ns-LTP from wheat presents a large hydrophobic cav-
ity with a volume of 400Å3.[4] A third tool for determination of the
structure of a protein hydrophobic cavity is the observation of chem-
ical shift changes of the protein nuclei (1H, 15N, or 13C) induced
by xenon atoms in the hydrophobic cavity, leading to chemical shift
mapping useful to extract the thermodynamics parameters of the
interaction.[5]

In medical applications xenon is, at this stage, employed as tracer in
ventilation scintigraphy (with the radioactive isotope 133Xe)[6] and as
anaesthetic for high-risk patients since 2007 in Europe and perceived
as “the anaesthetic gas of the future”.[7] Even though the mechanism
is unclear, the inhibition of N-methyl-D-aspartate (NMDA) receptors
by xenon has been viewed as a primary cause of xenon anaesthesia.
Except this, xenon has no affinity for any given receptor which means
that it will disperse over the entire body, which is far from ideal for
obtaining a contrast and studying a particular pathology or biological
event of interest. To avoid this, hyperpolarized xenon can be targeted
toward specific biological receptors or analytes through the design
of functionalized molecular systems whose the principle is shown in
Figure 24.

These systems are composed of two parts: a molecular system or
assembly reversibly trapping the noble gas and a tethered ligand de-
signed to recognize a given biological function or chemical group.
This chapter presents the recent applications of these 129Xe NMR-
based sensors and the prerequisites of vectorization systems.

Figure 24 presents the common 129Xe NMR spectrum where free
dissolved hyperpolarized xenon has a specific resonance frequency
depending and xenon bound to a host molecule has another. Values
of the resonance frequency of free xenon in different media are listed
in tables and can be calibrated on this spectrum. All experiments
in this work were performed in water at room temperature so the
resonance frequency of free dissolved xenon was calibrated at 196

ppm.
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Figure 24: Principle of the 129Xe NMR-based biosensing approach.

4.2 xenon carriers

Recent biomolecular magnetic resonance imaging biosensors such
as superparamagnetic iron oxide nanoparticles (SPIO) require suffi-
cient quantity - i.e. for contrast signal - for efficient diagnosis and
treatment and therefore deal with biocompatibility and cytotoxicity
exposure.[8] Comparatively, this new concept of xenon carriers pro-
vides numerous benefits for in vitro and in vivo applications since
only a small quantity of host molecule is required in the sample or tis-
sues, which may drastically decrease the toxicity of the method. Only
a small quantity of host molecule is required in the sample or tissues,
which may drastically decrease the toxicity of the method compared
to traditional imaging techniques using magnetic resonance contrast
agents.[9]
Furthermore, xenon is a noble gas that is de facto inert to most com-
mon chemical reactions. As a result, quantities of xenon can be intro-
duced and may lead to repetitive measures, enabling a longitudinal
follow-up of biological events, provided that the interaction with the
carrier is reversible. Moreover, the powerful benefit of this concept
is that a dedicated molecular host specifically alters the resonance
frequency of the encapsulated xenon nuclei. For instance, for crypto-
phanes, due to the large shielding created by the aromatic rings, the
129Xe NMR signal corresponding to the caged xenon is shifted from
the dissolved xenon signal by more than 18 kHz, giving it a unique
spectral signature even at moderate magnetic field.
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For 129Xe NMR-based biosensing applications, the main challenge
is to design xenon carriers with suitable properties toward the hyper-
polarized gas. Their first role is to slow down the exchange between
two states (free and bound xenon) at the NMR timescale, helped in
that by the frequency separation between their signals. The crucial
parameter for these host molecules is the in-out xenon exchange rate
that must be lower than this frequency separation, but fast enough to
enable constant replenishment of the cage in hyperpolarized xenon.
Also, the large non-equilibrium spin polarization of xenon has to be
maintained by using host systems in which the relaxation time is not
too fast.

For the design of 129Xe NMR-based biosensors, the host systems
need to be easily functionalized so that xenon can be addressed to a
specific biological target. An important concern can also be the abil-
ity of the biosensor to cross the cell membrane. Considering all these
requirements, various host structures have been synthesized through
the recent years: cryptophanes,[10] cucurbiturils,[11] cucurbituril-based
rotaxanes,[12] pillararenes,[13] Fe4L6 cages[14] (respectively 1 to 5 in
Figure 25), cyclodextrines,[15] calixarenes.[16]

Figure 25: Carriers encapsulating hyperpolarized xenon and targeting ana-
lytes of interest leading to density-based and smart sensors.

For trapping multiple xenon atoms, zeolites,[17] gas vesicles,[18]
nano emulsions,[19] bacteriophages[20] (respectively 6 to 9 in Fig-
ure 25), nanodroplets[21] or genetically-encoded proteins[22] have
been proposed. These xenon nanocarriers have the particular fea-
ture of encapsulating a high number of hyperpolarized xenon atoms,
thereby condensing the NMR signal. These different structures are
the elementary bricks of this powerful generation of 129Xe NMR-
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based biosensors. In our works, we have use cryptophanes as xenon
host systems, since these cage-molecules are the specialty of our col-
laborators and have many properties for the 129Xe NMR-based biosens-
ing approach. Cryptophanes consist of an assembly of two cup-shaped
CTV (cyclotriveratrylene) units linked by three O-(CH2)n-O chains
and having various substituents on the aromatic rings of the two CTV
units (Figure 26).
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Figure 26: Generic structure of the cryptophane cores.

When referring to a cryptophane, we usually precise the n and m
numbers and the groups carried by the aromatic rings. Considering
this notation, cryptophane-222 corresponds to cryptophane-A (with
n = m = 2 and bearing six methoxy groups on the aromatic rings)
and abbreviated Cr-A. Water-soluble cryptophane-AM (Cr-AM) is Cr-
A bearing six carboxylate groups on the aromatic rings.[23]

From these xenon carriers, 129Xe NMR-based sensors have been
conceived following two strategies. Either they will give rise to a sig-
nal intensity corresponding to their local density or interaction with
their target will lead to a new signal, distinct from the initial one. The
concept of vectorized and smart biosensors will now be described.

4.2.1 Vectorized biosensors

To reach biological receptors, the xenon carriers have to be chemically
or biologically functionalized with antennas that are able to recognize
a specific target.

A first proof-of-principle has been achieved in vitro by the group of
Alexander Pines in 2001, detecting avidin using xenon functionalized
by a biotinylated supramolecular cage.[24]
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Figure 27: Structure of the first biosensor molecule designed to bind xenon
to a protein with high affinity and specificity. Below, the 129Xe
NMR spectrum shows the binding of the biosensor to avidin,
thanks to the biotin moiety attached on the host molecule.
Adapted from [24].

Figure 27 shows the full 129Xe NMR spectrum of the hyperpolar-
ized xenon in the absence (a) or in the presence (b) of the protein
of interest, avidin. If different chemical shifts are observed in the ab-
sence of avidin, corresponding to xenon caged in cryptophane-A and
functionalized xenon, an additional signal arose when adding small
quantities of avidin. This 2.3 ppm downfield peak corresponds to
functionalized xenon bound to the protein and represents the first
demonstration of this technique, paving the way to sensors that ex-
ploits the chemical shift of functionalized xenon on binding to an
analyte.
At that time, the investigation about the mechanism of the chemical
shift change on binding was babbling and hypotheses were implicat-
ing a contact between the cryptophane cage and the protein leading
to cage deformation and distortion of the xenon electron cloud as
well as changes in the rotational and vibrational motions of the cryp-
tophane affecting the xenon chemical shift. It is specifically for that
reason that it is surprising to observe only one signal corresponding
to Xe@biosensor bound to an enantiopur chiral protein (avidin) while
using a racemic mixture of two cryptophanes. In this configuration,
the two created diastereomers should exhibit two different resonance
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frequencies. In any event, it is what we will observe in the present
research.

Typically, cryptophane-A has been the xenon host of choice and
has been subsequently functionalized with peptides for detection of
human carbonic anhydrase,[25] α2bβ3 integrins,[26] and major histo-
compatibility complex (MHC) class II protein.[27]
Due to the difficult synthesis of cryptophanes, the low synthetic yields
and most of the time the unavoidable presence of diastereomers, re-
cent studies have turned to cucurbiturils (mainly cucurbit[6]uril =
CB6). They present a xenon in-out exchange rate faster than crypto-
phanes, but they are however difficult to chemically substitute and
to date no cucurbituril decorated with a ligand has been synthesized.
An approach where cucurbituril is used as a molecular relay is rather
proposed in Figure 28, where compertition between xenon complexa-
tion and that of a two-faced guest is used to detect interaction of this
guest with the target protein.[28, 29] Such an original strategy unfor-
tunately has an uncertain future for in vivo development, due to the
extreme quantity of competitors that can interfere. Furthermore, this
structure is only water-soluble in low pH.

Figure 28: Structure of the molecular relay consisting in a two-faced guest
that is a xenon binding competitor. Reproduced from [28].

Since xenon can cross the plasma membrane without any signifi-
cant polarization loss, the targeted receptors can be situated either on
the cell surface or inside the cell. Proving that xenon biosensors can
be addressed to intracellular markers is a real challenge for in cellulo
molecular imaging and can promote the development of intracellular
sensors. The first detection via hyperpolarized 129Xe NMR of the cell
uptake of a biosensor was made with the transferrin system.[30] This
construction is based on the non specific grafting of cryptophane pre-
cursors on the primary amines of a protein interacting with a specific
receptor. This new strategy gives versatility to the approach and en-
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ables further gain in sensitivity by the multiplicity of xenon hosts on
the protein. Distinct xenon NMR signals corresponding to the biosen-
sor in the lipidic part and the aqueous compartment could be evi-
denced. Other biosensors were also designed to distinguish between
different cell types based on their surface markers, such as specific
binding and detection of lymphoma[20] and cancer cells.[31]

Because in vivo molecular imaging application is the Holy grail, this
new 129Xe NMR technology requires a versatile biosensor. Schröder
et al. developed a modular construction (see Figure 29) that allows for
quick and easy adaptation of the biosensor to any cell surface target
for which there is a specific antibody.[32] A commercially available
avidin conjugation kit is used in addition to cryptophane-A monoacid,
fluorescein and the antibody corresponding to the chosen receptor. It
is possible to adapt this system to a variety of biological targets and
to detect concentrations of cryptophane-based biosensors as low as
20 nM, paving the way to innovative xenon MRI applications.

Figure 29: Modular construction of a sensor based on avidin-conjugated an-
tibody and a set of biotin-conjugated read-out moieties for dual
- NMR and fluorescence - functionality. CrA: Cryptophane-A.
Adapted from [32].

The spatial resolution of magnetic resonance imaging in its cur-
rent implementation is limited by the pulsed gradient strength and
by xenon transverse relaxation. For a 129Xe gyromagnetic ratio ca.
4 times lower than this of proton, reaching a sub-cellular resolution
is illusory. Therefore, in order to be able to localize a biosensor in-
side the cell, bimodal fluorescence - 129Xe NMR biosensors have been
conceived.[30, 32, 33]
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4.2.2 Smart sensors

One of the most impressive properties of xenon is its extreme sensitiv-
ity towards tiny disruption of its local environment. This sensitivity
translates into a very large range of NMR parameter values. In par-
ticular the chemical shift of the monoatomic species can span values
ranging from 0 ppm (gas phase) to more than 310 ppm (xenon in
metalated cryptophanes).
This property can be used to detect small analytes or variation of the
physiological environment (pH, temperature), which are markers of
major interest for various applications: studying the role of proteins,
understanding biological processes, detecting cancer cells, diseases,
etc. Today there is a strong demand for highly sensitive analytical
methods aiming at the selective and ratiometric detection of these
markers.

In analogy to what was developed for MRI contrast agents,[34] the
concept of smart or responsive sensor consists in net modification of
the 129Xe NMR spectrum when the sensor and its target are in con-
tact, behaving in that as an actuator facilitating detection: instead of
(or in addition to) a density-based signal, now the signals of the ’free’
sensor and of the sensor in interaction with its target are distinct.
Conception of various responsive sensors have allowed specific de-
tection of physical parameter changes (pH,[35, 36] temperature[37]),
of cations,[38, 39, 40] or of chemical species (H2O2,[41] rhodamine
6G,[42] dithiols[43]). The design of molecular systems that enable
variation of the bound xenon chemical shift upon complexation of
the analyte or variation of the external medium can be achieved by
different ways. The use of ionisable groups close to the cavity of
cryptophanes leads to pH-sensitive sensors, the caged xenon chem-
ical shift experiencing a large variation in the region of the pKa of
these groups.[35] Also, the grafting of chemical functions that will
react with the targeted analyte may lead to significant chemical shift
variations for caged xenon (Figure 30).[41]

[ November 06, 2017– PhD thesis by Emilie Mari ]



4.2 xenon carriers 57

Figure 30: Time evolution of the 129Xe NMR spectrum (high-field region) of
xenon caged in a biosensor let in the presence of oxygenated wa-
ter. Each arylboronate group transformed into phenol group by
action of H2O2 leads to a high field shift variation of the Xe@cage
signal by ca. 10 ppm. Such an effect has been understood thanks
to DFT calculation including relativistic terms for the interaction.
Adapted from [41].

A third category consists in cage-molecules bearing a generic func-
tional group, such as ethylenediaminetetraacetic acid (EDTA), nitrilo-
triacetic acid (NTA),... designed to non-specifically chelate metal cations.
An hydrophilic cryptophane core bearing a NTA group was shown in
Figure 31 to be able to chelate Pb2+, Zn2+ and Cd2+ ions, giving rise
to a unique 129Xe spectral signature for each of these ions.[38] De-
tection of Pb2+ ions at a concentration of 10 nM was shown possible
with a single hyperpolarized xenon batch.

Another design based on cage molecules bearing a nucleotide strand
enables detection of the complementary DNA sequence, extending
the sensor concept to complex systems, such as DNA hybridization
which deals with much weaker associations (K≈10

6 M−1) than the
previously studied systems.[44]
A detailed understanding and a reliable modeling of the interactions
responsible for such effects on the resonance frequency of caged xenon
are therefore of high value. Being able to precisely predict the chem-
ical shift variation of xenon caged in a 129Xe NMR-based sensor in
response to a specific analyte is a powerful tool for this field. By tak-
ing into account the relativistic effects of the interaction with xenon
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Figure 31: Approach combining the use of hyperpolarized 129Xe NMR of a
cage-molecule functionalized by a ligand able to chelate different
cations, showing simultaneous detection of lead, zinc, and cad-
mium ions at nanomolar concentration. Reproduced from [38].

in DFT calculation, a high precision can be achieved in the prediction
or simulation of caged xenon chemical shift. In particular, it has been
possible to understand the chemical shift evolution of xenon encaged
in a cryptophane bearing groups reacting with H2O2, in clusters sepa-
rated by 10 ppm according to the progression of the chemical reaction
(Figure 30).[41]
The variations of the caged xenon chemical shift upon activation of
the sensor can however be poor, and in case of sample heterogeneity
or of broad 129Xe signals, be difficult to detect. Therefore the quest for
new molecular constructions with which there is modification of an-
other NMR parameter upon target binding is of importance. Some re-
cent works have proposed sensors in which the xenon transverse[45]
or longitudinal[46] relaxation rates are modified when the biosensor
encounters the target. However, as they give rise to a negative con-
trast (the signal disappears faster when the target is reached) their
applicability for inhomogeneous samples such as cell suspensions or
in vivo is not yet demonstrated.

Another modular platform, based on cucurbituril rotaxanes,[47]
has been developed by Pines et al.[12, 48] For detection of a given
enzyme, the terminal part of a peptidic motif known to be cleaved
by the enzyme is grafted to a triazole diammonium moiety and a
bulky group R1. When left in the presence of cucurbit[6]uril (CB6),
it constitutes a rotaxane, which can then be sealed by another bulky
group R2 (see Figure 32). At this stage, as xenon cannot enter the cav-
ity of CB6, there is no Xe@CB6 signal. This one appears only when
CB6 is released by action of the protease on the peptidic motif, which
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constitutes a selective activation. This platform can be diversified and
developed towards in situ detection of biological events of interest.

Figure 32: Molecular relay produces an 129Xe NMR signal upon analyte
detection. Reproduced from [48].

4.2.3 Strategies for water-soluble xenon carriers

For in vitro and in vivo applications, xenon carriers must be water-
soluble to avoid the formation of self-assemblies such as micelles
or vesicles.[44] Quite a few strategies are usually employed: either
changing the xenon carrier surface interaction or suitably choosing
the recognition antenna. In this domain, a first strategy was to re-
place the methyl groups of cryptophane-A by suitable hydrophilic
groups such as carboxylate groups.[23] This strategy will be exten-
sively discussed in Figure 6.1. Another strategy was the metalation
of the six arene rings of cryptophane-111 by [Cp*Ru]+ moieties lead-
ing to cryptophane salts which exhibit a very high water solubility
at physiological pH and the highest xenon affinity ever reported.[10]
The resonance frequency of xenon encapsulated into this new cryp-
tophane, as seen in Figure 33 proves the extreme sensitivity of xenon
toward its environment and the extensive range of chemical shifts
that arises therefrom. Study of further functionalization of Cp* moi-
eties for multiplexed sensing applications are underway.
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Figure 33: Structure of the permetalated water-soluble crytophane-111 and
its peculiar 129Xe NMR chemical shift. Reproduced from [10].

More recently, a new cryptophane skeleton has been developed :
cryptophane with two ethylenedioxy linkers and the third linker of
the propylenedioxy type bearing a unique secondary alcohol (Fig-
ure 34).[49] A second solubilizing or functional group can therefore
be selectively introduced, facilitating the synthesis of new molecular
platforms.

Figure 34: Generic structure of the new molecular platform : a cryptophane
with two different reaction sites. Reproduced from [49].
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4.3 a fluorescence-129xe nmr probe for biological inhi-
bition of egfr in non-small cell lung cancer

The construction of this bimodal fluorescence-129Xe NMR biosensor
is a collaborative effort of three groups : Bernard Rousseau’s group
who synthesized the probe, Eric Deutsch’s group who analyzed the
fluorescence properties in cellulo and finally our group for the 129Xe
NMR detection of the biosensor. This work led to a

paper which is
currently under
submission.

The approach, that can be applied to any other antibody-receptor
couple, is here engineered for detection of Non-Small Cell Lung Can-
cer (NSCLC). Although other constructions for antibody-based xenon
biosensors have been proposed in the literature,[32, 31] the driving
force of our work was to use an antibody daily used for patient treat-
ment in order to build a theranostic tool.
To date, the high mortality rate of NSCLC is mainly owed to its detec-
tion at late stages of development. Hence, the limited knowledge and
improvement in characterization of NSCLC predictive biomarkers
highlights the unmet medical need for a more efficient and a highly
sensitive non-invasive imaging technique. We therefore worked on
the development of a biosensor based on a therapeutic antibody that
constitutes a powerful theranostic tool and molecular imaging agent.
It enables highly sensitive detection and follow-up of NSCLC by
129Xe NMR and fluorescence.

4.3.1 Structure of the biosensor

It should be noted that I was not involved in the synthesis of the
biosensor, only in the129Xe NMR experiments and characterization
discussed in Section 4.3.4. The biosensor is constructed by biocon-
jugation of a cryptophane-fluorescein adduct to the therapeutic anti-
EGFR monoclonal antibody called cetuximab, as depicted in Figure 35.

The 129Xe NMR-based biosensor has been designed with three
functional components. The first one is cetuximab, a FDA approved
chimeric mouse-human IgG1 monoclonal antibody for cancer treat-
ment. Indeed, the antibody is directed toward the EGFR overexpressed
in many cancer cells with a high affinity and specificity. The second
one is the water-soluble hexacarboxylic acid cryptophane-222 (Cr-
AM) in order to prevent anchoring of the biosensor into cell mem-
bra nes[30] and formation of self-organized systems in biological
media.[44] The third part is a fluorescein moiety, essential to con-
firm interaction of the biosensor with cells overexpressing EGFR and
to quantify the biosensor uptake by fluorescence spectroscopy or mi-
croscopy.

A ratio of 4 cryptophane moieties per antibody has been measured
using mass spectrometry.
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Figure 35: Synthesis and generic structure of the bimodal fluorescence-
129Xe NMR biosensor.

4.3.2 129Xe NMR characterization

Before the multi-grafting on the antibody (intermediate I), we have
checked through hyperpolarized 129Xe NMR experiments that the
xenon exchange in and out of the cryptophane cavity is preserved.
Precisely, direct detection methods[50] and indirect detection meth-
ods of the HyperCEST type[51] have been successfully employed and
will be discussed in Chapter 5. As expected - and discussed in Sec-
tion 4.2.1, the presence of a racemic cryptophane moiety and asym-
metrical sites on the peptidic linker gives rise to two major signals
in the Xe@cryptophane spectral region at 65.3 ppm and 65.7 ppm, as
displayed in Figure 36.

Experiment on Figure 36B proves that there exists a continuous in-
out xenon exchange that can be used to enhance the NMR sensitivity
in HyperCEST-type sequences, but contrarily to direct detection, in
the current experimental conditions, does not reveal two signals for
encapsulated xenon corresponding to the presence of two diastere-
omers.

[ November 06, 2017– PhD thesis by Emilie Mari ]



4.3 a fluorescence-129xe nmr probe for biological inhibition of egfr in non-small cell lung cancer 63

Figure 36: Direct (A.) and indirect (B.) 129Xe NMR detection of biosensor
before multigrafting (intermediate I) in PBS at 11.7 T. A. spec-
trum recorded in 1 scan for a 46 µM solution. B. ultra-fast Z spec-
troscopy on the same sample. In this last experiment, for one scan
(in red) CW saturation is applied at an offset ∆ν of -18 kHz from
the main xenon signal with a rf strength B1 of 20 µT for 4 s. For
the second scan (in blue), no rf saturation is applied.

Other hyperpolarized 129Xe NMR experiments have then been per-
formed to ensure that the grafting of the cryptophane scaffold on the
antibody did not affect the xenon encapsulation properties. Figure 37

displays the hyperpolarized 129Xe NMR spectrum of the biosensor II
in PBS.

Figure 37: Hyperpolarized 129Xe NMR spectrum of II at 3 µM in PBS ob-
tained in one scan. Insert: sub-spectrum obtained by 64 fast repe-
titions of the sequence soft 90deg - Gaussian pulse centered at 60

ppm - acquisition (inter-scan delay: 93 ms).
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While the signals of the gas and of dissolved xenon appear at 0 ppm
and 196 ppm, respectively, the signal of Xe caged in II resonates at 63

ppm. Although the racemic cryptophane moiety has been used, it is
not possible to observe two distinct peaks because of the broadness
of the signal (FWMH ca. 200 Hz). This is due to the presence of the
antibody that decreases the xenon T2 relaxation time and therefore
broadens the signal. Also, the non specificity of the grafting leads to
several signals.

4.3.3 Biological activity asssays

For in cellulo fluorescence and 129Xe NMR detection, we have chosen
two cell lines that express low level (A549 pulmonary cells) and high
level of EGFR (HCC827) and they display inhibited proliferation in
response to the cetuximab treatment. It should be noted that these flu-
orescence experiments have been performed by Eric Deutsch’s group
at Institut Gustave Roussy.
Both types of cells have been treated with II at various serial dilutions:
1/100th, 1/1000th and 1/10000th of 0.29 mg/mL (Figure 38). Signif-
icant fluorescence intensity arising from the fluorescein moiety have
been found for the HCC827 (Figure 38A) and A549 (Figure 38B) cells
upon treatment with the biosensor in dose-related manner. These
data confirm that the fixation of the bimodal sensor is correlated
with EGFR expression into cells. Moreover, immunofluorescence has
revealed its fixation on the HCC827 cell membrane (Figure 38C).

4.3.4 129Xe NMR-based detection of the biosensor in cell samples

The biosensor has been incubated in parallel with HCC827 cells and
A549 cells according to the protocol developed for a precedent trans-
ferrin 129Xe NMR-based biosensor enabling separation of the cell clot
and the supernatant. 80 million HCC827 cells and 80 million A549

cells were detached by incubating cells with Accutase during 5 min-
utes at 37degC in order to preserve EGF receptors. Cells were washed
with complete medium and incubated with 25 µg/mL of biosensor
in complete medium during 2h at 37

◦C. After centrifugation, the su-
pernatant was separated from the cell pallet. Cells were washed twice
in phosphate buffer saline (PBS, pH 7.4) and finally re-suspended in
600 µL of PBS and 50 µL of D2O. Viability of the cells was controlled
by trypan blue exclusion. Prior to the NMR experiments, the cell sus-
pensions were introduced into NMR tubes equipped with J. Young
valves. The quantity of biosensor internalized in each cell line was
evaluated to 2 ng/mL in HCC827 cells and to 0.45 ng/mL in A549

cells by measuring the fluorescence emission at 496 nm on a plate
reader.
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Figure 38: A. Flow cytometry experiments on HCC827 cells and B. A549

cells incubated with bimodal biosensor, and C. immunofluores-
cence experiments on HCC827 cells incubated with the same
probe.

Immediately after introduction of laser-polarized xenon into the
NMR tubes, several experiments taking benefit of the fast in-out xenon
exchange have been performed. Thoses sequences will be discussed
in Chapter 5. As displayed in Figure 39 , for the two cell lines we have
been able to detect the biosensor in the supernatants, but not in the
cell suspensions.

Finally, we have used HyperCEST depolarization monitoring. This
was employed principally by the Dmochowski’s group to identify
xenon biosensor at low concentration.[36, 52] This detection method
will be discussed in Chapter 5.

Figure 40 compares for each cell line (A: HCC827 cells; B: A549

cells) the loss of polarization of the main 129Xe signal as a function
of the saturation time when saturation is applied on-resonance (at 67

ppm, i. e. 18 kHz upfield to this signal) or off-resonance (at 327 ppm,
i. e. 18 kHz downfield to this signal). Clearly, in contrast to the A549

cells, a significant difference in the depolarization curves appears for
the HCC827 cells. In order to comfort this result, the sequence was
applied at different frequencies around 67 ppm, giving rise to the Z-
subspectrum displayed in Figure 40C. Note that a 4 ppm downfield
chemical shift with respect to the signal of Xe@biosensor in PBS (Fig-
ure 36) is observed, likely due to a different local environment.
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Figure 39: 129Xe NMR spectra obtained with selective excitation at the ex-
pected Xe@biosensor frequency (at ca. 70 ppm, i. e. 130 ppm up-
field from the dissolved xenon signal), at 308 K. For these ex-
periments the same experimental conditions were used both for
HCC827 cells (green) and A549 cells (red): 80 million cells were
incubated at 310 K during 2 hours with II at 25 µg/mL. After
centrifugation the supernatant was separated from the cell clot
(bottom spectra). The cells were washed two times in phosphate
buffer saline (PBS, pH 7.4) and re-suspended in 600 µL of PBS and
50 µL of D2O (top spectra). The NMR subspectra shown were ob-
tained with a succession of sequences (frequency-selective Gaus-
sian 90deg pulse - acquisition) with an inter-scan delay of 93 ms.

Figure 40: HyperCEST depolarization curves for (A) biosensor in HCC827

cells, (B) biosensor in A549 cells. Filled symbols: on-resonance
saturation, empty symbols: off-resonance saturation. In (C), Z-
spectrum obtained for the sample ofb biosensor in HCC827 cells
(the abscissa indicates the frequency offset from the free xenon
signal).

Detection of the biosensor in cells over-expressing EGFR through
129Xe NMR is thus successful. This study aimed at evaluating the use
of hyperpolarized 129Xe NMR to detect non-small cell lung cancer. In
this purpose, a biosensor made by the grafting of xenon hosts onto an
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antibody targeting the EGFR present on NSCLC cells has been con-
ceived. Flow cytometry and immunofluorescence experiments with
cells overexpressing or not the EGFR have shown that the biosensor
reaches the receptors, and that the biological and therapeutic activi-
ties are maintained. In cellulo 129Xe NMR detection of the biosensor
has been successfully performed. The xenon in-out exchange proper-
ties are maintained upon binding of the biosensor to the EGFR, en-
abling sensitive NMR detection at realistic concentration, and using
a moderate rf power used during saturation.

This biosensor belongs to the latest generation of bimodal probes
conceived in order to be localized inside the cell. However, many
avenues have to be pursued to improve the detection capability of
such a biosensor in order to envision in vivo applications: grafting of
more xenon hosts per antibody, use of a more flexible linker between
the xenon host and the antibody, etc.

4.4 future directions

The new generation of sensors trends towards host systems, com-
bining complementary molecular imaging techniques, able to target
a specific receptor and furthermore to be activated by its presence.
That is my overall job, designing, synthesizing and characterizing a
doubly responsive biosensor and detecting proteins. Another doubly
smart construction based on the same principle has been developed
by Zhou and co-workers for biothiols in-cell detection.[53]

Finally, biosensors leading to multiplexed detection should be in-
vestigated in the future in order to simultaneously visualize multiple
markers and therefore be a powerful tool for disease diagnosis.

Xenon has amazing properties and its combination with host molecules
makes it the unique system allowing longitudinal follow-up of the
sample, by simply adding hyperpolarized xenon over time. As for
the final objective which is to follow pathology in vivo through this
approach, 129Xe NMR-based sensors offer a huge potential and ap-
plications are finally at hand.
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5
N M R S E Q U E N C E S O P T I M I Z E D F O R 129X E
N M R - B A S E D S E N S O R S

This chapter aims at demonstrating how tough it is to work with hy-
perpolarized species and to what extent it is necessary to reinvent
adequate NMR sequences. Xenon loses its hyperpolarization either
progressively via longitudinal relaxation (129Xe relaxation times from
5 s to 700 s have been reported when the noble gas is dissolved in the
blood and in deuterated water, respectively) or more suddenly when
a coherent rf pulse is applied. In a closed system where only a bolus
of xenon is considered, the polarization returns totally to the equilib-
rium defined by the Boltzmann distribution after a single 90

◦ pulse :
hyperpolarization is lost all at once.
A powerful property of xenon is its high diffusivity combined to its
propensity to take a specific chemical shift for every local environ-
ment, which makes that xenon is constantly in exchange on the NMR
frequency time scale. For cryptophanes, the xenon in-out exchange,
on the order of a few tens of milliseconds, induces a strong constraint
on sequence parameters such as pulse length or shape. Optimized
sequences for encapsulated hyperpolarized xenon have been imple-
mented in order to take advantage of this exchange and further in-
crease the detection sensitivity. The methods used to detect a small
reservoir of hyperpolarized xenon in exchange with a large reservoir
can be sorted in two classes: direct and indirect detection. These terms
refer to the fact that either the small reservoir signal or variations on
the large signal are observed. Without this exchange, none of these
sequences would be usable. The goal of this chapter is to define these
two classes, present the different detection sequences and their speci-
ficity toward hyperpolarized gas in exchange and discuss their appli-
cations.

5.1 direct detection methods

5.1.1 1D Frequency-Selective excitation sequence

In the direct detection methods, fast repetition of spectrally-selective
pulses around the small reservoir resonance frequency (and detec-
tion after each pulse) uses the chemical exchange between the two
environments to gradually increase the signal-to-noise ratio. The rep-
etition rhythm is chosen according to the exchange rate of xenon be-
tween the two environments.

75

[ November 06, 2017– PhD thesis by Emilie Mari ]



76 nmr sequences optimized for
129

xe nmr-based sensors

Figure 41 shows the direct method where a series of rf pulses is selec-
tively applied at the frequency of encapsulated xenon.

Figure 41: Frequency-selective rf pulse sequence used for the direct detec-
tion of encapsulated xenon in its cage (with n the number of
times the sequence is repeated).

The main limitation of this technique remains in the low spectral
resolution due to the kinetics of the system. As a matter of fact, the
typical xenon in-out exchange rate considering a cryptophane-222 is
about 30 ms at room temperature, which suits perfectly the acquisi-
tion time in MRI but induces strong limitations in spectroscopy: very
low number of points for the FID which can pose problem for the sig-
nal oversampling and the spectral resolution, constraints on the pulse
length which induces a lack of spectral selectivity of the rf pulse. For
this sequence, we chose a pulse length of 500 µs, which is not very
selective and which is no longer negligible before the exchange rate
of xenon. With such a delay between excitation pulses, many acquisi-
tions can be done before the pool of hyperpolarized xenon is depleted
and must be refreshed.

In the sequence using fast repetitions of soft pulses centered on
the encaged xenon resonance frequency region, in some cases the sig-
nals can be distorted and their shapes no longer appear as Lorenzian.
Zeroth-order (not dependent on frequency) and first-order (linearly
dependent on frequency) phase corrections are sometimes not suf-
ficient, and a non-flat baseline can also appear. As far as I know,
the NMR literature has already treated the case of semi-selective
(i.e. covering a large frequency bandwidth) excitation. Based on mag-
netization trajectory computations, several pulse shapes have been
proposed, to provide a nearly uniform excitation in amplitude and
phase for all the signals. In particular, the goal here was to minimize
the phase difference between peaks due to evolution of the magne-
tization during the pulse under chemical shift and scalar coupling
effects.[1, 2]

Here the situation is different: due to the in-out xenon exchange
which characteristic timescale is not drastically longer than the pulse
length, during the soft pulse in a incoherent processus some freshly
hyperpolarized xenon atoms take the place of other xenon atoms in
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the cages. Thus for all these xenon spins having experienced differ-
ent flip angle pulses at different moments, the delay separating their
flipping in the transverse plane and the start of the acquisition is not
constant. At first glance, we can simulate this effect by considering
that the FID is the sum of several time-shifted FIDs. It is thus obvious
that this will lead to i) superposition of signals with different phases,
ii) some truncature effect due to the fact that for one xenon spin the
FID can be suddenly interrupted.

A Bruker automation program has been written to simulate - at
least qualitatively - this effect. Figure 42 shows in red the Xe NMR
spectrum obtained with a fast succession of soft pulse - acquisition
sequences on a mixture of four water-soluble cryptophanes differing
by the length of their linkers.

80 60 40 20 ppm

Figure 42: Comparison between 129Xe NMR spectra obtained with a fast
succession of soft pulses (in red) and a simulation of the exchange
effect (in blue) of a sample containing a mixture of four different
cryptophanes, differing by the length of their linkers: Cr-AM, Cr-
223M, Cr-233M, Cr-EM.

Parameters for the simulation:

Cage Intensity (A.U.) Freq (Hz) 1/T2 (Hz) kex (Hz)

Cr-AM 300 2300 20 7

Cr-223M 6000 1127 20 10

Cr-233M 4280 -548 20 110

Cr-EM 4000 -1806 20 350

Comparatively, Figure 43 displays the same simulation in the ab-
sence of xenon exchange.

Following this line of reasoning, it can easily be remarked that a
pulse which has maximal action close to the acquisition, (i.e. maxi-
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80 60 40 20 ppm

Figure 43: Comparison between 129Xe NMR spectra obtained with a fast
succession of soft pulses (in red) and a simulation in the absence
of xenon exchange (in green) of the same mixture of 4 crypto-
phanes.

mal intensity in the time domain close to its end) would induce less
spectral distortions. This is simulated in Figure 44, where compari-
son between the previous spectrum (in red) and a spectrum obtained
by higher weighting coefficient for the FIDs arriving last (in blue) is
displayed.

This is also observed experimentally when comparing the results
obtained with a Gaussian excitation and a Half-Gaussian excitation
of the same duration.

80 60 40 20 ppm

Figure 44: Comparison between two simulations of the exchange effect
without (in red) and with higher weighting coefficient for the
FIDs arriving last (in blue) of the same mixture of 4 cryptophanes.
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Finally, the last drawback of this method is to add noise at each
scan which is an obstacle to reach detection thresholds even lower.

In contrast, advantages of this method lie in the simplicity of the se-
quence, the good selectivity in frequency, the ease of implementation
and adaptation in imaging. It also offers the possibility of multiplex-
ing i.e. simultaneous detection of several biosensors, as displayed in
Figure 42.

This method allowed our group to reach a detection threshold of
2.10

12 spins (4pm), representing a concentration of 12.8 nM of cryp-
tophane at 11.7 T and 310 K with n = 3600 scans and a sequence
duration of 154 s.[3]

5.1.2 2D Frequency-selective excitation sequence

The pulse sequence can be written so as to provide a 2D data matrix,
enabling measurement of the apparent relaxation rate in the second
dimension and thereby adapting the number of experiments to be
summed for obtaining a spectrum with optimized signal-to-noise ra-
tio.
In Figure 45 the 2D spectrum of xenon encapsulated in a Cr-AM at
1.1 µM obtained with selective excitation at the Xe@Cr-AM frequency
is reported as well as the 1D spectra corresponding to the sum of the
first 128 and 51 rows. When adding only scans with signal, the signal
to noise ratio of the obtained spectrum is 14.26 whereas when adding
the 128 scans - i.e 77 scans of noise - the signal to noise ratio drops to
10.30. It is then possible to circumvent the problem of noise accumu-
lation and to reach lower detection thresholds.
Also, this 2D sequence allows us to access parameters such as xenon
in-out exchange rate and its relaxation time T1.

Figure 45: 2D 129Xe NMR spectrum obtained with selective excitation at the
expected Xe@biosensor frequency of a solution of 1.1 µM of Cr-
AM at 293 K. 1D spectra correspond to the sum of the first 51

or 128 scans of the 2D experiments. Signal to noise ratios of each
condition are indicated.
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.

5.2 indirect detection methods

The indirect detection methods - originally proposed by the Pines’
group under the acronym HyperCEST - consist in saturation at the
small reservoir frequency and detection of the reduction of the large
reservoir signal intensity induced by the chemical exchange.[4] It be-
longs to the CEST (Chemical Exchange Saturation Transfer) techniques[5],
represented for instance by PARACEST in 1H MRI using paramag-
netic species.[6]

In order to perform this experiment, two approaches are possible :

• Alternating a saturation sequence at the Xe@Biosensor frequency
and off-resonance (ideally symmetrically with respect to the fre-
quency of the free xenon signal). The residual signal obtained af-
ter subtraction of the two spectra is the witness of the exchange
between the dissolved xenon reservoir (or the gas phase reser-
voir) and the reservoir of xenon in the cryptophane cavity.

• Using a saturation pulse at different frequencies resulting in
variation of the free xenon signal intensity as a function of the
frequency. The series of peaks is thus obtained and draws an
envelope testifying the presence of the biosensor and revealing
its resonance frequency. This spectrum is called a z-spectrum.

Even if the first approach is sufficient to detect the presence of the
small reservoir, it can also be interesting to recover the whole spec-
trum through varying the saturation frequency and acquiring data
points over a large spectral range (Figure 46).

The HyperCEST scheme, available in several sequences (vide infra),
has been used by several authors to detect trace amounts of xenon
hosts. Two sequences have recently been implemented and will be
discussed in the following paragraph.

5.2.1 Depolarization sequence

When sensitivity is a concern, the most straightforward sequence is
to record depolarization curves - i.e. acquiring spectra for different
saturation times - with saturation applied at a frequency close to
the bound xenon resonance frequency (on resonance) and far from
the free- and bound xenon resonance frequencies (off-resonance). Be-
cause of xenon exchange, the selective depolarization results in a con-
comitant loss from the free dissolved xenon peak, which is readily
monitored. This signal is compared with a reference measurement in
which an "off-resonance" saturation is applied to account for the nat-
ural self-relaxation of free dissolved xenon over time.
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Figure 46: A. The 129Xe NMR spectrum of a 50 µM solution of crypto-
phane displays a weak resonance from encapsulated xenon at δ3
corresponding to Xe@biosensor. Chemical exchange with free Xe
outside the cage (resonance δ1) enables sensitivity enhancement
by depolarizing the δ3 nuclei and detecting at δ1 B. Selective
saturation of Xe@biosensor (green) and chemical exchange with
the free xenon (blue) allows accumulation of depolarized nuclei
(red). This corresponds to the continuous depolarization of caged-
related magnetization that can be measured indirectly after sev-
eral cycles by the difference between initial and final bulk magne-
tization. Adapted from [4].

Indirect detection via Hyper-CEST is performed by applying a loop
of 100 DSnob-shaped radiofrequency saturation pulses as displayed
in Figure 47. This pulse sequence provides a 2D matrix with each row
corresponding to a saturation time tsat.

Figure 47: 129Xe HyperCEST depolarization sequence: pulse sequence pro-
viding a 2D matrix with each row corresponding to a saturation
time tsat.

As an example, a solution of 478 µM of xenon biosensor was pre-
pared and the depolarization sequence was performed in PBS with a
maximum field strength of 12 µT in Figure 48. For each saturation off-
set, the sample has to be removed from the magnet, shaken in order
to dissolved hyperpolarized xenon into the solvent and placed again
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inside the magnet for the pulse sequence to run. Each curve consists
in consecutive data points that are separated by 0.5 s of tsat. When
the saturation offset corresponds to Xe@biosensor (dark blue), signal
intensity of free dissolved xenon consequently decreases. After being
transformed, phased in and normalized by off-resonance saturation
(pale blue), those curves can be fitted by monoexponential functions
and depolarization rates can be extracted. When plotting the depolar-
ization rate against the saturation offset, a dip corresponding to the
Xe@biosensor signal is obtained.

Figure 48: 129Xe HyperCEST depolarization curves: Example of pulse se-
quence (providing a 2D matrix with each row corresponding to
a saturation time tsat) and plots of the xenon magnetization as a
function of tsat off-resonance (pale blue) and on-resonance (dark
blue). Consecutive data points are separated by 0.5 s; saturation:
repetition of 100 D-SNOB pulses, max. saturation field strength
of 12 µT. The sample was a xenon biosensor at 478 µM in PBS.

The only drawback of this approach is that each saturation fre-
quency requires an experiment.
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5.2.2 Ultrafast Z spectroscopy

A single-shot acquisition method would be preferred to achieve re-
producible and mutually compatible results. Ultrafast Z-spectroscopy
(UFZ) sequence was implemented by Xu and his group in 1H.[7] The
UFZ method uses spatial encoding of the Z-spectrum as other ultra-
fast NMR spectroscopic approaches.[8] A pulsed field gradient Gsat
operating during the continuous wave irradiation enables a satura-
tion of the small reservoir signal in a given region of the NMR tube
(slice in the sample). The profile of the sample subsequently obtained
via another gradient during the acquisition, called Gacq enables the
recording of the Z-polarization of the large reservoir signal.

This technique enables recording of the Z-spectrum in only two
scans: comparison of the profiles obtained without saturation (as a ref-
erence) and on-resonance saturation directly leads to the Z-spectrum.
It then has been adapted for hyperpolarized 129Xe NMR spectroscopy
by our group (Figure 49).[9] Due to the large resonance frequency dif-
ference between the signals of free xenon and encapsulated xenon,
the sequence had to be improved by applying the saturation in the
middle of the high field region corresponding to caged xenon, while
for detection the offset is placed at the resonance frequency of free
xenon. This new version enables the use of much lower gradient val-
ues covering only a spectral window of 30 ppm instead of 200 ppm.

Figure 49: 129Xe Ultra-Fast Z-spectroscopy used pulse sequence. Both ar-
rows indicate offset changes, from the Xe@biosesnsor region (O1)
to the free xenon signal (O1

′
). A field gradient is applied during

saturation (enabling saturation of a slice in the sample) and, after
the rf read pulse, another field gradient is applied during detec-
tion (giving the profile of the sample). The dashed part is op-
tional, but enables the recording of several successive FIDs with
only one excitation thanks to a multiple spin echo. Reproduced
from [9].

This is illustrated in Figure 50 on a cryptophane internalized in
biological cells. A solution of 200 µM of Cr-AM was incubated 2 hours
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in 80 millions of eucaryotic cells A549 at 37
◦C in DMEM medium

containing 30% of Fetal bovine serum (FBS). This technique highly
helps the cellular uptake of the biosensor and will be discussed in
Chapter 9. Cells were then rinsed 3 times in PBS and put in NMR tube
for 129Xe UltraFast Z-spectroscopy. The presence of the cryptophane
into pulmonary A549 cells (green) is revealed in only two scans, by
comparison of the profiles obtained without saturation Soff (blue)
and with on-resonance saturation (red). The on-resonance spectrum
(Son) was recorded with a saturation field of 2.4 µT and a saturation
time of 1 s, in the presence of a 4 G.cm−1 gradient (Gsat) along Z axe.
For both spectra, the acquisition gradient Gacq was 4 G.cm1. The
green spectrum in Figure 50 is the normalized 129Xe UFZ spectrum
obtained by computing (Soff - Son)/Soff.

Figure 50: Z-spectrum revealing the presence of cryptophane Cr-A (200 µM)
into pulmonary A549 cells (green) is extracted in only two scans
: a reference with no saturation Soff (blue) and an on-resonance
saturation Son (red).

We applied 129Xe Ultra-Fast Z-spectroscopy on a 23 times diluted
version of the mixture of four different cryptophanes prepared in Sec-
tion 5.1.1, so that cryptophanes are now at a concentration of 745 nM
(see Figure 51). We can easily detect at sub-micromolar concentration
as well as distinguish each one of the four Xe@cryptophanes signals.
Moreover, the apparent separation of multiple xenon signals can be
modified through the ratio between the two gradients Gsat and Gacq.
With ∆ν the frequency separation between two signals, the gap dis-
played in the Z-spectrum will be ∆νGacq/Gsat. Figure 52A displays
the direct detection spectrum of a system of two biosensors separated
by 1.3 ppm. Optimization of Gacq/Gsat ratio - we kept Gacq = - 8%
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that is to say 16 G.cm−1 and applied different values of Gsat from 0.6
to 6 G.cm−1 - on Ultra-Fast Z-spectra Figure 52B allows us to obtain
an apparent frequency separation up to 35.7 ppm between both dips.

Figure 51: UFZ-spectrum of a mixture of four cryptophanes (745 nM) in
PBS obtained with Bsat = 12 µT during tsat = 6 s.

Figure 52: A 129Xe direct detection spectrum showing two Xe@biosensors
signals separated by ∆ν = 1.3 ppm. B Ultra-Fast Z-spectra of the
same mixture acquired with an acquisition gradient of 16 G.cm−1

and a saturation gradient varying from 0.6 to 6 G.cm−1. The ap-
parent frequency separation between both Xe@biosensors dips is
∆νGacq/Gsat. These spectra were obtained using Bsat = 12 µT
and tsat = 6 s.

This Ultra-Fast Z-spectrum sequence is a powerful method that en-
ables extremely low detection threshold and enhanced separation of
multiple signals in complex systems.
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The fact that saturation at the Xe@biosensor frequency occurs only in
a minor part of the NMR tube means that only a small part of the
biosensor present in the tube can be detected. That is the main defect
of this approach.

5.3 conclusions about direct and indirect - ufz and de-
polarization - methods

5.3.1 Discussion of the methods

These three detection methods, displayed in Figure 53 are based on
different principles.

Figure 53: Comparison between principles, spectra and saturated region of
the NMR tube with direct and indirect - UFZ or depolarization -
detection methods.

The frequency-selective and depolarization sequences both have
the whole tube as detection region whereas UFZ approach only tar-
gets a slice of the tube. The direct detection method is based on satu-
rations (N times) immediately followed by detection around the res-
onance frequency of the Xe@biosensor while indirect methods rely
upon saturation around the Xe@biosensor and afterwards detection
on the reservoir of free dissolved xenon. In UFZ case, two satura-
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tions are needed : on-resonance (on Xe@biosensor frequency) and
off-resonance, usually applied at an offset symmetrical with respect
to the signal of free xenon. The depolarization method needs as much
saturations as desired number of data points on the Z-spectrum, ap-
plied at different offsets in the vicinity of the Xe@biosensor frequency.

For the HyperCEST-type methods, a simplistic view would con-
sider that the faster the xenon in-out exchange and the stronger the
saturation the more sensitive the detection. However several other
parameters must be taken into account. Denoting I the spin of free
xenon and S the spin of encapsulated xenon, of relative proportions
FI and FS = 1- FI, respectively, and the exchange rates kin and kout,
one has: kin FI = kout FS . An rf irradiation of amplitude ω1 applied
at a frequency ω0 tilts the magnetization of the two species by an an-
gle θI,S from the static field axis in the rotating frame:

θI,S = arctan( ω1
ωI,S−ω0

).

The effective longitudinal relaxation rates along this axis are: ρI =
cos2θI R1I + sin2θI R2I

ρS = cos2θS R1S + sin2θS R2S

where R1I,S and R2I,S are the pure longitudinal and transverse re-
laxation rates of spins I or S.[10] Studying the dynamics of the mag-
netization can be simplified by considering the secular approxima-
tion. The six magnetization components (IX, IY , IZ, SX, SY , SZ) can
be reduced to the two aligned with the effective field axes. They are
coupled by the exchange rates kin and kout:

dIZ
dt = -(ρI + kin)IZ + kout SZ

dSZ
dt = -(ρS + kout)SZ + kin IZ

Here we have considered that the thermal equilibrium magnetiza-
tion values are negligible with respect to hyperpolarized magnetiza-
tion.
For an rf saturation applied exactly at the resonance of the small reser-
voir signal (ω0 = ωS) and assuming no spillover effects on the large
xenon pool, they simplify to:

dIZ
dt = -(R1I + kin)IZ + kout SZ

dSZ
dt = -(R2S + kout)SZ + kin IZ

Considering the evolution of the global xenon magnetization d(IZ+SZ)
dt

= -R1IIZ-R2SSZ it is notable that important parameters are the longi-
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tudinal relaxation rate of free xenon and the transverse relaxation
rate of bound xenon. The HyperCEST experiments work in transient
mode and take benefit of the exchange for observing differential de-
cay rates of the I spins according to the on- and off-resonance satura-
tion of the S magnetization. Considering that kout » R2S » R1I so that
we can neglect the relaxation terms, then the Hyper-CEST efficiency
is expressed as:[11, 12]

HYPERCEST(ω1,ω0,tsat) = 1 - e−kout
FS
FI
α(ω1,ω0)tsat

where α(ω1,ω0) = ω21
(ω21+k

2
out+(ωS−ω0)2)

is the saturation efficiency.

Logically, the faster the xenon exchange - the lower the residence
time of xenon in its host -, the less efficient the saturation for a given
rf strength. From this Lorentzian shape with a full width at half max-
imum equal to (2(ω21 + k2out))

1/2, it follows that using an intense
B1 field has the advantage of maximizing the saturation efficiency,
but enlarges the spectral dip which is detected.[13] In relation with
this potential issue, let us mention an experimental problem that can
easily occurs with high saturation strength with the most rudimen-
tary version of HyperCEST consisting in simply comparing the depo-
larization response as a function of saturation duration applied on-
resonance and off-resonance (at a frequency offset symmetrical with
respect to the free xenon signal). Considering the expression of ρI as
a function of ω1, the large difference between longitudinal and trans-
verse xenon relaxation and the fact that temperature increase and
Bloch-Siegert effects can slightly shift the free xenon signal, this can
easily induce a difference between the on- and off-resonance cases
even in the absence of xenon host. This is for this particular reason
that we do not exceed 15-20 µT of saturation strength in our experi-
ments.

Actually for most of the xenon hosts and particularly cryptophanes,
it has been observed that the line width of the caged xenon signal is
influenced by the xenon concentration,[14, 15] which is the signature
of a degenerate exchange[16] (or kick-out) mechanism, where a caged
xenon atom is expelled by another xenon atom (see Figure 54). The
shortening of the caged xenon lifetime depends on the ratio of the
noble gas concentration over the concentration of the host. Therefore,
the Hyper-CEST efficiency will strongly depend on this ratio, and the
saturation strength and duration will need to be adjusted according
to the previous expressions.[14]

Finally, while for the same experiment time and for a large range of
exchange rates the HyperCEST-type methods are more sensitive than
the direct detection methods (due to the fact that noise is acquired
only once), they only provide a dip in the large reservoir signal de-
pendent on the amount of small reservoir but also on the duration of
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Figure 54: Kickout mechanism for the in-out xenon exchange.

saturation, the relaxation and chemical exchange rates. HyperCEST
sequence directly alters the magnetization amplitude and is conse-
quently not a phase encoding sequence: the notion of phase is lost. It
means that the generation of pulse sequences beyond simple signal
observation is less straightforward. For instance, this prevents local-
ized spectroscopy or spectroscopic imaging which are wished to ob-
serve the space distribution in the case of several 129Xe NMR-based
sensors or a smart biosensor delivered in vivo.

5.3.2 Chemical Shift Imaging

1H spectroscopic imaging (or Chemical Shift Imaging CSI) consists
in recording the spectroscopic data for a group of slices (1D), pixels
(2D), or voxels (3D). The common sequences are of the STEAM and
PRESS types.[17] The number and direction of phase encoding gradi-
ents depend on the number of dimensions selected (1D, 2D or 3D).
For a hyperpolarized 129Xe CSI experiment, these two sequences are
not adapted. Actually handling hyperpolarized xenon in exchange
hinders the use of several pulses for volume selection. Not only mag-
netization trajectories after succession of 90

◦ and/or 180
◦ pulses are

difficult to predict (inversion of a polarized system can lead to ra-
diation damping and mixture of positively and negatively polarized
region in the tube),[18] but also rapid xenon exchange during this vol-
ume selection comes to complicate the situation. We therefore devel-
oped a simple method using the xenon in-out exchange in the direct
detection scheme: addition of two phase gradients after the initial
excitation pulse provides a 3D experiment with two spatial dimen-
sions and one spectral dimension, in which it is possible to observe
the 129Xe NMR (sub)spectrum on Figure 55. The excitation pulse can
be applied simultaneously with a gradient to obtain a slice selection.
However there is a limitation for the slice gradient strength, arising
from the fact that the large reservoir signal should not be excited. But
it is not stringent in most of the cases, given the large spectral separa-
tion between the free and caged xenon signals.
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Figure 55 displays such an experiment, performed with a single bo-
lus of hyperpolarized xenon before the NMR experiment, where it is
possible to localize pixels containing different distributions of water-
soluble cryptophanes, at micromolar concentration. Performing such
an experiment in the indirect mode would have been much more
cumbersome.

Figure 55: Hyperpolarized 129Xe CSI experiment. The sample was an aque-
ous mixture of two cryptophanes at 100 µM in an 8 mm-o.d. NMR
tube. The axial imaging is divided in 32x32 points in the spatial
dimensions (experiment time 1 min 40 s).

We then extended this approach to a more complicate system that
are under development in the lab : an 129Xe-NMR based pH sensor .This work is

currently under
submission
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Part II

D E T E C T I O N O F R E C O M B I N A N T P R O T E I N S

This second part presents the bimodal biosensor from its
conception, its synthesis, its optical and 129Xe NMR prop-
erties to its biological applications. Chapter 6 describes the
function and the synthesis of each unit of the biosensor.
Chapter 7 focuses on the first in vitro results, being the
dual detection of tagged peptides. Chapter 8 is a proof
of concept of in vitro dual-detection of tagged-proteins. It
also describes the five molecular constructions based on
fluorescent proteins that we have developed. Preliminary
results presented in chapter 9 proves that the bimodal re-
sponsive biosensor is suitable for in cellulo detection of
tagged-proteins. Finally, chapter 10 serves as a brief con-
clusion to 129Xe NMR-based biosensors and their future
in vivo directions.
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6
B I M O D A L S E N S O R

The study of intracellular biological mechanisms requires sensitive
and non-invasive techniques. The combined use of several methods
of analysis makes it possible to overcome the disadvantages of each
of them and combine their respective advantages. This is the view-
point of multimodal approaches, highly developed in recent years.
Within this frame, our project aims at the conception of a bimodal flu-
orescence and NMR sensor. Fluorescence has a high sensitivity and
a good spatial resolution, but does not allow the study of deep tis-
sues. NMR, which has this property, suffer from low sensitivity. The
strategy is to combine the recent developments in both fluorescence
and NMR techniques in order to obtain a doubly responsive sensor.
This biosensor consists in 2 moieties, an NMR and a fluorescence de-
tection parts linked by an organic spacer. The fluorescence detection
part consists itself in two partners: an organic ligand fused to the cage
and a peptide being the target that can be fused to the protein of in-
terest (Figure 56).

Figure 56: Structure of the bimodal biosensor.

In order to facilitate the understanding of the bimodal construction,
each moiety - NMR detection part, spacer and both partners of the
fluorescence detection part - will be schematized in the margins of
this chapter and then drawn in synthesis diagrams.
This chapter aims to define possible candidates known in the litera-
ture for each part and to explain, considering the requirements spec-
ification implied by the combination of all these entities, which ones
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were of best interest.

6.1 objectives

The objectives of the sensor is to detect a recombinant protein which
is tagged. In this purpose, two different modalities will be used to
witness the binding:

• A strong fluorescence has to appear upon binding.

• A specific 129Xe signal should appear.

Figure 57 shows the principle of the bimodal detection of the
first doubly smart biosensor in 129Xe NMR and fluorescence.

6.2 nmr detection part

As described in Chapter 4, 129Xe NMR-based sensors belong to a new
generation of tracers. For this approach, let us recall that the chosen
host molecule has to be water-soluble.

Cr-AM is obtained by the use of a lithium base (PPh2Li) on Cr-A
(Figure 58). It leads to a cryptophane having six phenol functions,
cryptophanol-A. Nucleophilic substitution reactions with methyl bro-
moacetate at each of these phenols subsequently leads to a crypto-
phane carrying six ester functions, whose hydrolysis produces the six
carboxylic acid functions. Synthesis of this water-soluble cryptophane
was performed by Thierry Brotin and his group and is described in
Figure 58.

As CTV moieties are chiral, two configurations are possible for
cryptophanes. If the two attached CTV units are identical, the con-
figuration anti will be obtained. On the contrary, if the two CTV units
are enantiomers, the cryptophane will be syn (Figure 59).[1]

Cr-AM was synthesized from two identical CTV, leading to the anti
racemic mixture. Since previous investigations have demonstrated
that two enantiomers related to the helicity of the linkers (see (M,M)
and (P,P) in Figure 59 can produce different 129Xe NMR signals upon
binding to structures bearing stereogenic centers,[2] the two enan-
tiomers (M,M) and (P,P) have been synthesized separately by a multi-
step procedure from enantiopure cryptophanol-A in Thierry Brotin’s
laboratory.[3]

6.3 fluorescence detection part

Fluorescence techniques are the most commonly used in the field of
cellular and molecular imaging as they have a high sensitivity and
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Figure 57: Doubly responsive probe for recombinant protein detection.

spatio-temporal resolution. A fluorophore commonly used in the last
twenty years for the study and in cellulo monitoring of proteins of
interest is the Green Fluorescent Protein (GFP). This genetically en-
coded probe was isolated from the jellyfish Aequorea victoria.[4, 5] The
gene of this fluorescent protein can be fused to the gene of the pro-
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Figure 58: Synthesis of water-soluble cryptophane-AM (Cr-AM).

Figure 59: Three constitutional isomers of cryptophane.

tein of interest to produce a fluorescent probe in situ.[6] However, the
non-negligible size of this fluorescent protein (238 amino acids) can
disrupt or constrain the studied protein behavior. Efforts have been
made with the conception of small fluorophores. One strategy is dis-
cussed in the following paragraph.

6.3.1 Small ligand : biarsenical dye

Griffin et al. worked in 1998 on the development of two partners: a
peptidic target consisting of only 6 amino acids that can be genet-
ically incorporated into the sequence of the studied protein, and a

[ November 06, 2017– PhD thesis by Emilie Mari ]



6.3 fluorescence detection part 99

small synthetic fluorogenic ligand (<700 Dalton).[7] This partnership
is based on the reversible formation of covalent bonds between the
two pairs of thiol groups present in the peptide target, called the tetra-
cysteine motif CCXXCC (TC) and two atoms of arsenic of the ligand
as displayed in Figure 60.[8, 9]. The main advantage of this system
is that the ligand has very low fluorescence until it binds its target.
Upon binding, it becomes strongly fluorescent, leading to a ligand
that is not only a fluorophore but a fluorogenic probe (or a respon-
sive probe). This has a particular advantage concerning the signal to
noise ratio as the system switches between dark and fluorescent. An-
other advantage of this system is that the ligand has relatively few
binding sites in mammalian cells. It binds to the peptide target with
a nanomolar or even lower dissociation constant.

Figure 60: Comparison between GFP and FlAsH sizes. On this scheme, the
fluorescent protein features the protein of interest.

Its small size, displayed in Figure 60, also minimizes the perturba-
tion of activity of the tagged protein. Notably, the biarsenical ligand is
membrane-permeable and does not require complicated procedures
such as microinjection. The small size increases the versatility, in par-
ticular it is easily grafted on different positions on the protein of inter-
est. The peptide target can, depending on its three-dimensional struc-
ture, be genetically incorporated on the N-terminal part, C-terminal
part, inside an α helix or a β strand of the protein, demonstrating its
numerous possibilities.[7]

In the past, this method has been widely used to study a number
of in vivo cellular events and subcellular structures in animal cells
such as β-tubulin dynamics,[10] Ebola virus matrix protein,[11] con-
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formational changes in a G protein-coupled receptor[12] and protein
misfolding in vivo.[13]

Figure 61 presents an example of an experiment with cells express-
ing different surface receptor constructions and labeled with the first
version of this ligand: a fluorescein derivative called FlAsH (Fluo-
rescein ArSenical Hairpin binder).[12] Let us mention that these re-
ceptors have been fused with Cyan Fluorescent Protein (CFP) in C-
terminus and with FlAsH binding motif (peptidic sequence) either
at the C-terminus, at the third intracellular loop (Figure 61A). The
experiment in Figure 61B shows that cells expressing the FlAsH bind-
ing motif exhibits a strong FlAsH fluorescence at the cell membrane
(intracell). Indeed, this ligand is known to exhibit a fluorescence mul-
tiplied by more than 100 when it binds the 6 amino acids sequence.
The FlAsH-peptide target complex has demonstrated Förster reso-
nance energy transfer (FRET) from fluorescent proteins such as CFP
(Figure 61C) or GFP (a phenomenon that will be explained in Chap-
ter 8.[14] We can also note a background fluorescence inside the cells
owing to non-specifically bound FlAsH to thiol-rich endogenous pro-
teins but this remains very low. Several versions of this ligand were
synthesized in order to optimize such parameters.
This demonstrates the high versatility of this method.

6.3.1.1 Bis-arsenical ligand variant

The modification of the fluorescein moiety (see Figure 62) allows mul-
ticolor analysis in the same way as the large panel of fluorescent
proteins that are available to date. After the development of green-
fluorescent FlAsH (λex = 508 nm, λem = 528 nm), several deriva-
tives including red-fluorescent ReAsH (λex = 593 nm, λem = 608 nm)
and blue-fluorescent CHoXAsH (λex = 380 nm, λem = 430 nm) were
also reported.[14] An environment-sensitive nile red-based biarseni-
cal dye, BArNile, was synthesized and successfully imaged the con-
formational changes of tetracysteine-fused calmodulin upon Ca2+ in-
crease in living cells.[15]

In order to improve the fluorescent character of FlAsH, two deriva-
tives, difluorinated F2FlAsH and tetrafluorinated F4FlAsH were de-
veloped by Jares-Erijman et al. (Figure 62). F2FlAsH exhibits a higher
absorbance, quantum yield, photostability, a larger Stokes shift and
a reduced pH dependence compared to FlAsH. F4FlAsH exhibits a
fluorescence emission in a region intermediate to that of FlAsH and
ReAsH, allowing a new color and an excellent brightness.[16]

In all the FlAsH derivatives a 6Å interatomic distance is conserved
between the two arsenic moieties. This constrains the nature of the flu-
orophore and the structure of the peptide. This therefore complicates
the selective labeling of multiple proteins with different reporters. To
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Figure 61: A. Schematic representation of cell surface receptor construc-
tions, modified as indicated either at the C-terminus, or at
the third intracellular loop. B. Confocal microscopy images of
the three receptor constructions transiently expressed in Hela
cells and labeled with FlAsH. Top row shows CFP fluorescence
whereas bottom row shows FlAsH fluorescence. Cells expressing
constructs containing the FlAsH binding motif (center and right)
show a strong yellow fluorescence at the cell surface. C. FRET be-
tween CFP and FlAsH in cell constructions. Adapted from [12].

achieve that, Mayer et al. designed a new Cy3-based biarsenical probe,
AsCy3, with a large 14.5Å interatomic distance between the two ar-
senics enabling a high-affinity binding with other type of motif with
5 amino acids between the double pair of cyteines such as Cy3Tag
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Figure 62: Biarsenical dyes and their fluorescence emission wavelength.

(CCKAEAACC).[17]

To limit the undesirable binding observed in Figure 61B, a carboxy-
FlAsH (CrAsH) that is less hydrophobic had been synthesized by
Tsien’s group.[14] CrAsH exhibits indeed a lower non-specific bind-
ing to hydrophobic proteins than FlAsH although the affinity of CrAsH
with tetracysteine sequence is one order of magnitude weaker than
FlAsH.

Finally, although various biarsenical probes were reported, struc-
tural requirements for both fluorescence and the rigid display of ar-
senic atoms strictly limit the range of possible fluorophores. More-
over, since the scope of compatible dyes is both narrow and difficult to
predict, a modular approach wherein the biarsenical targeting moiety
is separated from the fluorophore in order to remove any restriction
on its structure has been developed by Miller et al.[18] In the latter
case, the biarsenical targeting moiety is the non fluorescent SplAsH
(Spirolactam Arsenical Hairpin binder). It can be conveniently at-
tached with a variety of fluorophores for various applications. De-
spite the advantage of being a versatile technique, this platform is no
longer a responsive dye, as it is always fluorescent.

6.3.1.2 Carboxy-FlAsH : CrAsH

For the bimodal 129Xe NMR-fluorescence probe, some features were
required for the choice of the fluorescent ligand. Since the long-term
goal is to detect protein of interest in cellulo, we needed a dye that
is optimized for biological conditions. Then, the fluorogenic ligand
should be easily attached to Cr-AM by for instance a non-hindered
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carboxyl group. The CrAsH moiety qualifies for all these require-
ments and its synthesis is well described in the literature.[19, 20]
I conducted this four-step synthesis (see Figure 63).

Figure 63: 4-steps synthesis of 5- and 6-carboxyFlAsH or CrAsH, the small
ligand.

The mixture of anhydride 9 and 2 equivalents of resorcinol 10 leads
to an equimolar mixture of 5 and 6-carboxyfluorescein 11 and 12. At
this step, it is possible to isolate those two structural isomers through
consecutive crystallizations but since the yields of this additional step
are very low, we decided to pursue the reaction on the mixture. In the
presence of mercury oxide in trifluoroacetic acid, these compounds
give derivatives 13 and 14 with 72% yield. Then they undergo a
transmetallation which makes it possible to introduce the two arsenic
which are complexed with ethanedithiol to give the two isomers of
the dye CrAsH 15 and 16 with 42% yield after a column chromatogra-
phy. Detailed protocol and characterization are given in Appendix A.
These two separated isomers will allow us to develop different sen-
sors that may have different properties.

Purified CrAsH dye, which is an orange powder, is water-soluble at
any pH. It has an unique pKa calculated to be 5.8. This means a fluo-
rescence stability of CrAsH above pH≈6.8, which is in the physiolog-
ical range. Compared to FlAsH that has two distinct pKas, CrAsH is
then the preferred probe for quantitative fluorescence measurements,
especially for labeled proteins which move between different cellular
environments.[21]

When excited at 480 nm, CrAsH-peptide exhibits a fluorescence
emission spectrum centered at 536 nm. Parameters such as fluores-
cence increasing or binding constant are strictly peptide-dependent
and will be discussed in this chapter for the most common tetracys-
teine sequences.
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6.3.2 Peptidic target: tetracysteine tag sequences

6.3.2.1 Binding process

The trivalent arsenic atoms form particularly stable compounds with
dithiols whose S-H bonds are arranged to form a ring, the most stable
ring consisting in 5 bonds (see Figure 64).

Figure 64: Interaction between a trivalent arsenic atom and a dithiol leading
to a 5-bond ring. Reproduced from [22].

Thus, they can complex and reduce the adjacent cysteine pairs of
proteins.[22] This affinity explains in particular the high retention
of the organoarsenical compounds in the rat blood, complexed with
Cys13α of the hemoglobin.[23] In fact, the absence of this amino acid
in the human sequence of hemoglobin allows a faster blood removal
of arsenic. Such binding, which is responsible for much of the tox-
icity of arsenic compounds is completely reversed by small vicinal
dithiols such as 1,2-ethanedithiol (EDT), which form tighter com-
plexes with the organoarsenical than do cellular dithiols : they act
like antidote.[24] For the bimodal project, the peptidic target needs
to have an affinity higher than the antidotes for the organoarsenical
ligand in order to bind the ligand in the presence of an excess of
antidote and to specifically bind the desired peptide target without
poisoning other proteins.

Figure 65 describes the reversible complexation of the biarsenical
probe on the tetracysteine motif leading to either a great enhancement
of the fluorescence -i.e. when bound to the tetracysteine motif and
called FlAsH-peptide- or a very low fluorescent compound -i.e. when
bound to two molecules of antidote EDT and called FlAsH-EDT2.

The small size of EDT probably permits rotation of the aryl-arsenic
bond and excited state quenching by vibrational deactivation or pho-
toinduced electron transfer, whereas the peptide complex may evade
such quenching because its more rigid conformation should hinder
conjugation of the arsenic lone pair electrons with the fluorescein
orbitals.[22]

The equilibrium reaction FlAsH-EDT2 + peptide = FlAsH-peptide +
2 EDT favored FlAsH-peptide at 6 10 µM EDT and FlAsH-EDT2 at >
1 mM EDT, so that labeling is reversed by millimolar concentrations
of EDT. Griffin and his group also proved that monothiols such as β-
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mercaptoethanol or glutathione are helpful to catalyze equilibration
but do not compete themselves.[7]

Figure 65: Reversible complexation of biarsenical dye on a tetracysteine mo-
tif in the presence of an excess of EDT.

Several peptides have been chosen in such a way that the distance
between the two pairs of cysteines matches the spacing between the
two arscenics so that the two dithiol-arsenic interactions are highly
cooperative and entropically favorable. Let us present now peptide
targets designed for FlAsH dye that may be extended for CrAsH lig-
and.

Table 2: Tetracysteine tags for Biarsenical Probes

Tag Sequence Kd app ∆Φ Ref

RE-tag WEAAAREACCRECCARA 4.0 120 [7]

PG-tag AREACCPGCCK 0.25 170 [14]

HRW-PG-tag HRWCCPGCCKTF 0.10 140 [25]

FLN-PG-tag FLNCCPGCCMEP 0.15 100 [25]

YRE-PG-tag YRECCPGCCMWR 0.25 n/a [25]

KA-tag CCKACC 0.85 150 [26]

SlyD GCCGGSGNDAGGCCGG 0.25 280 [27]

The apparent dissociation constant (Kd app in µM) and increase in
fluorescent quantum yield (∆Φ) of the FlAsH-tetracysteine tags are
in the presence of 200 µM EDT. To calculate the real Kd, one has to
take into account the other species present into the sample. The four
peptide target highlighted in yellow in Table 2, will be discussed in
this work. They have been synthesized by Biomatik.
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6.3.2.2 Optimized tetracysteine peptides

6.3.2.2.1 weaaareaccreccara This peptide, studied by Roger Tsien
and his group in 1998, has two pairs of cysteines spaced by an argi-
nine and a glutamic acid.[7] This peptide was selected for its ability
to promote the formation of an α helix - due to the the EAAAR se-
quence -, the four thiols then forming a parallelogram on one of its
faces: positions i, i+1, i+4 and i+5. It is then possible to envisage two
complexing pathways: either an arsenic attaches to two adjacent thiol
groups or it binds to two thiols groups separated by one turn of an
helix of the peptide (see Figure 66).

Figure 66: Two complexing pathways of biarsenical probe towards tetracys-
teine motif.

FlAsH dye is capable of complexing this tetracysteine sequence
with dissociation constants a the picomolar range (without EDT) and
the fluorescence of the complex is 120 times brighter than that of the
free molecule.[7]
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6.3.2.2.2 flnccpgccmep This second peptide, studied seven years
later by the same group, was chosen for its three-dimensional hair-
pin structure, brought by the presence of a proline and a glycine
between the two pairs of cysteines.[25] The complex thus formed be-
tween this peptide and the biarsenical molecule has a fluorescence
20 times greater than that generated by the α helical peptide. Recent
NMR studies have shown the non-traditional β-hairpin structure of
the ligand-peptide complex.[28] On Figure 67, arsenic atoms are fixed
to the cysteines (colored in red) at a distance of 2.25 Å. The three
amino acids before and after the two pairs of cysteines have shown
their influence on the complexation properties. This optimal sequence
leads to a lower dissociation constant than the previous RE-tag by
more than an order of magnitude. It may form a β-turn as Pro-Gly is
a known type-I and type-II β-turn sequence.

Figure 67: Structure calculation of the peptide bound to ReAsH, based on
NOESY-derived distance constraints. Reproduced from [25].

6.3.2.2.3 areaccpgcck This is the PG-tag version optimized for
CrAsH dye which is well known for having lower affinities for tetra-
cysteine motifs than other variants. Bound to this flexible strand,
CrAsH-peptide complex has an apparent dissociation constant of 407

nM compared to 250 nM for FlAsH, which is the same order of mag-
nitude. Its small size (only 11 amino acids) is an advantage for protein
labeling.

6.3.2.2.4 gccggsgndaggccgg The last peptide, studied by Uljana
Mayer and her group, has vicinal pairs of cysteines separated by 9

residues and an approximately twofold increase in fluorescence with
FlAsH over the FLNCCPGCCMEP TAG. The sequence exists in the
C-terminal domain of the SlyD protein, a peptidylpropyl isomerase
playing a primordial role in protein folding. This chain of amino
acids creates a flexible loop promoting the formation of intramolec-
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ular disulfide bridges within the uncomplexed peptide. After reduc-
tion, these sites are available for complexation with the biarsenical
molecule with dissociation constants in the picomolar range. This
structure thus provides more stable complexations and a fluorescence
gain due to the flexibility of the loop which protects the fluorophores
from the deactivation of the solvent. Despite its great spectral prop-
erties, to date their characteristics have not been demonstrated in vivo.

6.4 biosensor synthesis

Once we determined the NMR and fluorescence detection parts, the
next step is to find a strategy to combine those two moieties. Cr-AM
and CrAsH bearing respectively six and two carboxy groups, can be
linked by a diamine spacer through a peptide bond. Some studies
have shown that the linker between the host molecule and the ligand
has a crucial importance.[29] If the ligand and/or the biological recep-
tor have high molecular weights, too short or too rigid linkers have
strong consequence on the NMR signal. Indeed, the moiety hosting
xenon can take the same correlation time as the macromolecule. This
leads to accelerated xenon transverse relaxation, which has the main
consequence of broadening the signal of bound xenon. To achieve
this, we chose ethylene diamine as the spacer between the cage and
the ligand.

For the synthesis, both carboxylic acid groups of compounds 15
and 16 are activated to form hydroxysuccinimide esters, which in the
presence of an excess of ethylene diamine lead to compounds 17, 18,
19 and 20 in Figure 68. Compounds 17 and 18 are separated from 19
and 20 by HPLC and both mixtures are coupled to Cr-AM through
the same strategy than the previous step.

Cr-AM is activated by 1.0 equivalent of N-hydroxysuccinimide (NHS)
and 1.1 equivalents of EDCI (1-Ethyl-3-(3-dimethylamino propyl) car-
bodiimide). EDCI is a carboxyl activating agent commonly used for
the coupling of primary amines. It is combined with NHS for the im-
mobilisation of large molecules. After 5 hours of activation, a follow-
up by LC/MS reveals that the mixture consists in mono-activated Cr-
AM (predominant product), di and tri-activated Cr-AM. Compounds
17 and 18 are solubilized in DMSO and in the N,N-Diisopropylethyl
amine (DIEA) base and then introduced in the reaction mixture. In
parallel, we do the same with compounds 19 and 20. Reactions are
left under stirring at room temperature for 12 hours. Biosensors 21
and 22 are obtained, as well as residual Cr-AM, 17 and 18.

[ November 06, 2017– PhD thesis by Emilie Mari ]



6.4 biosensor synthesis 109

Figure 68: Synthesis of CrAsH linked to etylene diamine : compounds 17
and 18.

Isomers 21 and 22 are separated by HPLC and isolated with re-
spectively 15 and 9 % of yield (see Figure 69). For the second reaction
mixture, only Cr-AM and compounds 19 and 20 were found, con-
firming the hypothesis that this carboxy group is too hindered for
the addition of a macromolecular structure such as a cryptophane.

Figure 69: Coupling reaction between Cr-AM and compounds 17 and 18:
synthesis of the bimodal biosensors 21 and 22.
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Starting with the enantiomeric and isomeric forms of each moiety,
we obtained four different sensors, shown in Figure 70. It was unfortu-
nately impossible to properly isolate PP-2 due to the low yield of the
reaction coupling (6%). For some experiments, the racemic mixture -
MM-1 + PP-1 - has been employed in order to keep some precious
enantiopure biosensors.

Figure 70: Structure of four different bimodal sensors

Unfortunately, we did not synthesize enough biosensor quantities
to perform conformational analysis of each compound.

Even if we could read in the literature that biarsenical dyes are non
fluorescent, it occurred to us that CrAsH does have a significant fluo-
rescence when bound to two molecules of EDT. Thus, the other vari-
ants might as well have this property. We investigated the effect of the
grafting of a cryptophane on the CrAsH moiety. To achieve this, we
compared the fluorescence spectra of CrAsH and MM-1 with an ex-
citation wavelength of 480 nm. Interestingly, without peptide, MM-1
exhibits a 4.5 times lower fluorescence than single CrAsH (Figure 71).

This initial non-fluorescent state is in favor of our approach.

Furthermore we investigated the evolution of the fluorescence of
the biosensor MM-1 in the presence of an excess of an external heavy
atom such as xenon. Indeed, it was highlighted in 1966 that such
nuclei can act like a stabilizer of a quencher of the singlet energy
of a molecule, significantly depending on the energy of the exciting
quantum.[30]
For this experiment, the glassblower of the CEA built an NMR tube
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Figure 71: Comparison of the fluorescence spectra (excitation wavelength
at 480 nm) of the CrAsH moiety (green) and MM-1 (blue).

fused to a fluorescence spectroscopic cuve as seen in Figure 72A. 100

µL of biosensor MM-1 at 2.5 µM were introduced into the "NMR
tuve" (tube-cuve). Fluorescence spectrum was monitored and pre-
sented in blue in Figure 72B. 2 Bar of xenon are then added to the
"NMR-tuve" and the latter is shaken. Modification of the fluorescence
spectrum of the biosensor is presented in red in Figure 72B.

Figure 72: A Photograph of the "NMR-tuve". B Fluorescence spectra of MM-
1 (2.5 µM) with (red) and without (blue) xenon.

Probably because of a compensation between stabilization and quench-
ing of the singlet energy of MM-1, xenon does not influence the fluo-
rescence spectrum of the biosensor.
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7
I N V I T R O D U A L D E T E C T I O N O F T E T R A C Y S T E I N E
P E P T I D E S

Several systems of the cryptophane-CrAsH/TC-tag type have been
studied via 129Xe NMR and fluorescence and their properties are
discussed in this chapter in order to select the best candidate for in
cellulo detection of proteins.

7.1 experimental conditions

It is important for in vitro experiments to adopt conditions that
reproduce the in cellulo environment, notably the presence of endoge-
nous proteins. Tsien et al. prepared for their first in cellulo experiments
with FlAsH in 1998 a mixture consisting in:[1]

• A denaturating and especially a reducing agent triscarboxyethylphos-
phine (TCEP) at 1 mM.

Figure 73: Triscarboxyethylphosphine (TCEP) structure.

Cysteines participating in complexation with the arsenic ligand
have to be completely reduced since CrAsH moiety does not
react with disulfides.

• β-mercaptoethanol at 1 mM.
Tsien and his group observed that the complexation was more

Figure 74: β-mercaptoethanol structure.

effective in the presence of 1 mM of monothiols. The latter has
a low affinity for arsenoxides and appears to promote complex-
ation with peptide by orienting the arsenic atoms in the correct
position.

117
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Figure 75: 1,2-Ethanedithiol structure.

• 1,2-Ethanedithiol (EDT 10 µM for 1µM of biosensor).
Pairs of endogenous cysteines are protected by this antidote,

which is in reversible exchange with thiols present on the arsen-
ics of the ligand. Such strategy prevents non-specific complexa-
tion and the toxicity that is related to it.

In order to guarantee that the cysteines are in the thiolate form,
the pH of the medium should be in the region of 7. Indeed, pKa
of thiols in cysteines is 8.3. All experiments have been performed in
Phosphate-Buffered Saline (PBS) solution at pH = 7.4.

7.2 study of various detection partners

All the 129Xe NMR spectra were recorded using the same buffer (PBS
pH = 7.4), in diluted concentration of peptides (micromolar concen-
trations) inducing no interaction or ionic strength modification. In
fact, it has been proved during our experiments that small modifica-
tion of salt concentrations -and therefore the ionic strength - can alter
significantly the resonance frequency of dissolved xenon. They were
all recorded in 64 scans, with a Lorentzian broadening of 10 Hz. In
these conditions, the spectra were calibrated with the single peak cor-
responding to the free dissolved xenon into PBS at δ = 196 ppm. The
spectra can then be compared to each other.

7.2.1 Influence of the environment on the NMR response

Due to the extreme responsiveness of xenon towards perturba-
tion in its environment, every modification of the structure of biosen-
sor results in new NMR properties.

We first analyzed the xenon resonance frequency of 3 of the 4 differ-
ent structures of the biosensor - MM-1 (25µM), MM-2 (15µM), PP-1
(8µM) (the last one PP-2 is not pure) - in the absence of any peptide
(Figure 76). We also verified through these 129Xe NMR spectra that
the xenon exchange in and out of the cryptophane cavity is not al-
tered by the linker and the CrAsH moiety.

Xenon resonates at 67.1 ppm in MM-1 and at 66.7 in PP-1 as shown
in (Figure 76A). Compounds MM-1 and MM-2 are both products of
the same chemical reaction and due to a difficult HPLC separative
technique, some traces are still remaining in both compounds. It is
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Figure 76: One-scan 129Xe NMR spectra of A. MM-1 in blue at 25 µM, B.
MM-2 in red at 15 µM, C. PP-1 at 8 µM in the absence of peptide
and D. Hexacarboxylate Cryptophane-A : Cr-AM at 30 µM).

confirmed by 129Xe spectra in Figure 76B, where the minor peak in
the MM-1 spectrum corresponds to xenon in MM-2 and vice versa.
They are both separated by less than 1 ppm. It shows the high envi-
ronment sensitivity of 129Xe NMR.
The Xe@Cr-AM signal at δ = 64 ppm is displayed in Figure 76C. We
verified that the biosensor is still intact and functionalized. If there
was an alteration of the biosensor during the experiment, the corre-
sponding caged xenon signal would appear at 64 ppm.

The 129Xe NMR signals allow us to differienciate the 3 different
biosensors but still, the signals are confined in the same frequency
region.

[ November 06, 2017– PhD thesis by Emilie Mari ]



120 in vitro dual detection of tetracysteine peptides

However, when the biosensor is bound to the peptidic target, the
129Xe NMR response is strongly modified (see Figure 77).

Figure 77: 129Xe NMR spectra of xenon in A. MM-1 bound to different
target peptides : flexible strand (AREACCPGCCK), β-hairpin
(GCCGGSGNDAGGCCGG) and α-helix peptide (WEAAAREAC-
CRECCARA). Yellow balls represent cystein residues. B. MM-1
and MM-2 bound to the same target peptide. The only difference
between these two structures is that cryptophane is grafted to the
C5 or C6 of the CrAsH moiety. C. MM-1 and PP-1 bound to the
same target peptide. These two biosensors have been synthesized
from the two enantiomeric forms of the cryptophane.

The chemical shift of xenon inside the various systems of the
cryptophane-CrAsH/TC-tag type are, however, spread out on a

large range of ppm.
We observed that when the biosensor is bound to three differents

peptides - flexible strand, β-hairpin, or α-helix peptide - encapsulated
xenon exhibits a resonance frequency of δ= 67.6 ppm, δ= 71.5 ppm
and δ= 74.1 ppm respectively (see Figure 77A). Even if caged xenon
is distant from the peptide, a slight modification of the structure of
the peptide leads to a different chemical shift of xenon. The variation
of xenon chemical shift between these three peptides is 6.5 ppm.
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What happens to xenon chemical shifts if the modification is closer
to xenon ? We therefore underwent further investigations by com-
paring two biosensors bound to the same peptide but with different
cryptophane anchor point C5 and C6. Grafting cryptophane moiety to
the C5 or C6 of the fluorescein derivative leads to a xenon resonance
frequency of δ= 74.1 ppm and δ= 83.5 ppm (see Figure 77B). This
huge xenon chemical shift of 9.4 ppm could be explained by the fact
that the environment modification is closer to caged xenon.

Finally, the modification position that interferes the most with xenon
magnetic shielding is on the cage itself. Using one or the other enan-
tiomeric form of the hexa-carboxylate cryptophane leads to a 129Xe
chemical shift of δ= 77.6 ppm for enantiomer (P;P) and δ= 67.6 ppm
for enantiomer (M;M) when bound to the flexible strand (see Fig-
ure 77C). The two biosensors PP-1 and MM-1 detect the flexible
strand by exhibiting two xenon chemical shifts different by 11 ppm.

The closer the structural modification is to xenon, the higher is the
variation of the chemical shift. This phenomenon is not well under-
stood yet. The biosensor that we have designed leads thus not only
to a high detection sensitivity but also to responsiveness to peptide
conformation.

Each of these modifications creates many different systems whose
properties can easily be estimated and optimized, considering the po-
sition of this modification. It is then possible to choose the combina-
tion of a biosensor and a peptide - complex - for a desired resonance
frequency.

It appears that all those different constructions of the biosensor be-
come conformation sensitive while detecting their tetracysteine target,
but their free form have resonance frequency confined in the same
caged xenon frequency region. This localized spectral region for the
free biosensor, very different from the one upon peptide binding, is a
particularly crucial property for our biosensor.

7.2.2 "RE" tetracysteine-tag

7.2.2.1 Fluorescence experiments

In this experiment, 10 µM of MM-1 with EDT (100 µM), β-mercaptoethanol
(1mM) and TCEP (1mM) were illuminated in PBS at pH 7.4 at 480

nm. Then 0.1 to 10 equivalents of the RE tetracysteine-tag peptide
(α-helix: WEAAAREACCRECCK in Table 2) were added and fluores-
cence emission was monitored as displayed in Figure 78A.

Fluorescence increases 27 times upon binding "RE" tetracysteine-
tag and reach its maximum at 10 equivalents (Figure 78A). Those
curves reach a plateau after 50 minutes of reaction and since it re-
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Figure 78: A. 0.1 to 10 equivalents of WEAAAREACCRECCARA peptide
(from the brightest to the darkest blue color) were added to 10

µM MM-1 and illuminated at 480 nm in biotek SynergyH1 Multi-
Mode Plate Reader. Maxima of fluorescence intensity between
λem = 505 nm and λem = 650 nm were monitored at 37

◦C for 90

minutes after 30 seconds of mechanical shaking in a 96-well plate.
B. Saturation binding curve : Fluorescence intensity maxima at
the end of the experiment (90 minutes) plotted against concentra-
tion of peptide. A non linear fit of specific binding was applied
following the equation Y = BmaxX

(Kd app+X)
with Bmax the maximum

specific binding, Kd app the equilibrium binding constant. This
fit was obtained with a correlation coefficient of 0.9945.

flects the formation of covalent bonds, fluorescence remains steady
after. The apparent dissociation constant of this reaction is fitted by
a saturation binding curve: Kd app = 13 ± 4 µM (Figure 78B). This
is slightly higher than the 4 µM binding constant corresponding to
FlAsH binding to RE tetracysteine-tag described in the literature.[1]
This micromolar binding constant indicates that this system can be
employed for the detection of abundant proteins in live cell.
We performed the same fluorescence experiment with MM-2 and ob-
tained comparable results.

All these results prompted us to evaluate the biosensor MM-1 for
hyperpolarized 129Xe NMR applications.

7.2.2.2 Hyperpolarized 129Xe NMR experiments

In order to save some precious biosensor MM-1, a 600 µL solution of
biosensor synthesized from a racemic mixture of Cr-AM (both enan-
tiomers (M,M) and (P,P) leading to a mixture of MM-1 and PP-1 at 25

µM) was first prepared. This solution as well as the reducing mixture
inspired by Tsien’s group was added in a screw-capped NMR tube.
The present 129Xe NMR spectroscopy study was conducted at pH 7.4
in a phosphate buffer.
Xenon is hyperpolarized and transfered into the NMR tube as de-
scribed in Section 3.3. Xe is dissolved into the degassed solution by
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strongly shaking the tube. A first 90
◦pulse sequence is performed in

1 scan in order to see the signal of dissolved xenon, xenon gas and
encapsulated xenon. (Figure 79)

Figure 79: One-scan 129Xe NMR spectrum of a racemic mixture of MM-1
and PP-1 (25 µM) in phosphate buffer, after a 90

◦impulsion se-
quence. Insert: sub-spectra obtained by 64 fast repetitions of the
sequence soft 90

◦Gaussian pulse centered at 67 ppm and acquisi-
tion (inter-scan delay: 47 ms) without (blue) and with 10 equiva-
lents of "RE" tetracysteine-tag (red).

Then, series of frequency selective pulses are performed to directly
detect encapsulated xenon in its cage (sub-spectrum in Figure 79).
We then added 10 equivalents of "RE" tetracysteine-tag to the sam-
ple, since it appears to be the optimal condition. We ensured that
the grafting of the biosensor on the peptide did not affect the xenon
encapsulation properties. All these experiments were conducted at
302K.

On both spectra, an intense xenon peak was observed at 196 ppm,
corresponding to free dissolved xenon. In the absence of peptide, a
single signal of xenon encapsulated in biosensors MM-1 and PP-1
is observed at 67.1 ppm. When 10 equivalents of peptide are added,
this peak at 67.1 ppm disappears and two new massifs at 68.1 and
72.1 ppm appear. As discussed in Section 4.2.1, the presence of the
two massifs could be explained by the presence of two diastereomers:
a racemic mixture of biosensors is bound to an enantiopure chiral
peptide. We therefore undertook synthesis of biosensors from enan-
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tiopures (M,M) and (P,P) to escape from these massifs upon complex-
ation. We then performed the same 129Xe NMR experiment with 25

µM of biosensor MM-1 and 10 equivalents of peptide (see Figure 80).

Figure 80: One-scan 129Xe NMR spectrum of MM-1 (25 µM) in phosphate
buffer, after a 90

◦readout pulse sequence. Blue box: sub-spectra
obtained by 64 fast repetitions of the sequence soft 90

◦Gaussian
pulse centered at 67 ppm and acquisition (inter-scan delay: 47

ms) of MM-1 without (black) and with 10 equivalents of "RE"
tetracysteine-tag (green).

In the same manner as above, in the absence of the tetracysteine
sequence, the 129Xe NMR spectrum of MM-1 at 302 K exhibits two
distinct signals: the signal of xenon free in the buffer calibrated at δ =
196 ppm and the signal of encapsulated xenon at δ = 67.1 ppm (Fig-
ure 80). The addition of an excess of "RE" peptide to MM-1 causes the
disappearance of the signal at 67.1 ppm and leads to the appearance
of a new and unique signal at δ = 74.1 ppm.
Even if the synthesis of an enantiopure biosensor is more time con-
suming, it strongly simplifies the spectrum.

Given the α-helix structure of the peptide and the different binding
possibilities mentioned in paragraph 6.3.2.2.1, we undertook more de-
tailed 129Xe NMR studies to investigate the interactions between the
biosensor and the tetracysteine tag. We therefore sequentially added
0.5, 1 and 10 equivalents of peptide on a 25 µM MM-1 solution. It
appears in Figure 81 that addition of 0.5 equivalents of peptide to
MM-1 causes the appearance of not one but two new caged xenon
signals at 69.3 and 74.1 ppm.

We were not able to unambiguously determine the structure of the
intermediate compounds that give the sharp signal at 69.3 ppm. Some
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Figure 81: Sub-spectra obtained by 64 fast repetitions of the sequence soft
90
◦Gaussian pulse centered at 67 ppm and acquisition (inter-scan

delay: 47 ms) of MM-1 without (black) and with 0.5 (orange), 1

(blue) and 10 (green) equivalents of "RE" tetracysteine-tag.

assumptions can be made. The peak at 69.3 ppm (indicated by * in
Figure 81) could be due to the transient presence of a biosensor at-
tached to the peptide by only one arsenic atom. Its sharpness indi-
cates that caged xenon retains sufficient mobility [2], which supports
this hypothesis. It is unlikely that this signal corresponds to other
pairs of arsenic bridges with the cysteines at the residue i–i + 1 and i
+ 4–i + 5 locations instead of the most probable situation of the i–i +
4 and i + 1–i + 5 positions, as described in paragraph 6.3.2.2.1. If such
forms exist, they would rather contribute to the broadening (FWMH
ca. 110 Hz) of the signal at 74.1 ppm.
The addition of ten equivalents of peptide enables the complete for-
mation of the complex involving two arsenic atoms as confirmed by
fluorescence.

In conclusion, the enantiopure biosensor MM-1 exhibits a strong These results have
been published :
Chem. Commun.,
2015, 51, 11482[3]

fluorescence signal as well as a 129Xe NMR signal highly specific
for caged xenon and 7 ppm different from that of the free biosensor,
when bound to the "RE" tetracysteine-tagged peptide.
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We extended our research to optimize our fluorogenic biosensor
and fully understand its interactions.

To achieve this, we performed the same 129Xe NMR experiments
with 15 µM of a solution of MM-2 (Figure 82).

10 equivalents of the same peptide were added and gave rise to a
single peak at δ = 83.5 ppm and the total disappearance of the peak
at δ = 66.7 ppm corresponding to free biosensor. This outstanding
down-field shift of 17.2 ppm clearly demonstrates again the extreme
sensitivity of xenon towards its environment and hence of our biosen-
sor towards its target. This peak also appeared thinner (FWMH ca. 85

Hz) than the one arising from MM-1. Only one population is ob-
served when adding 10 equivalents of peptide, attesting a reversible
complexation that statistically promotes one grafting position, maybe
due to the sterically hindered arsenics of this second biosensor.

Figure 82: One-scan 129Xe NMR spectrum of MM-2 15 µM) in phosphate
buffer, after a 90

◦impulsion sequence. Blue box exhibits selective
spectra of MM-2 without (black) and with 10 equivalents of "RE"
tetracysteine-tag (green).
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The only downside of this system is the poor chemical yield of
the MM-2 synthesis (9%) that can not allow us to consider in cellulo
experiments. We therefore need a new combination biosensor-peptide
that does not include MM-2. Also we avoid an α-helix peptide (due
to the possibility of different grafting or monoarsenical complexation)
that may add more possible structures and hence signals.

7.3 fln-pg- and slyd- tetracysteine tags

In the literature, two more peptides have drawn our attention (FLN-
PG-tag and SlyD in Table 2) by their structure and sequence:

• Another PG sequence : FLNCCPGCCMEP (FLN-PG in Figure 83)

• A new generation where 9 amino acids are positioned between
the two pairs of cysteins : GCCGGSGNDAGGCCGG (SlyD in
Figure 83)

In order to save some precious enantiomeric cryptophane quanti-
ties, we decided to engage a sensor synthesized from the racemic
mixture of the cage, leading to a combination of MM-1 and PP-1 (Fig-
ure 83).

Figure 83: 129Xe NMR spectra of a racemic mixture of MM-1 and PP-1 (25

µM) with 10 equivalents of SlyD peptide (upper spectrum) and
10 equivalents of an other FLN-PG peptide (lower spectrum).

As expected, the complexation of this racemic mixture and the
tetracysteine sequences leads to multiple massifs but it is still pos-
sible to see that even if we had used an enantiopure biosensor, the
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resonance frequency shift would not be as high as expected. We de-
cided to stop the experiments with these two sequences.

7.3.1 "PG" tetracysteine-tag

7.3.1.1 Hyperpolarized 129Xe NMR experiments

Finally, we chose a flexible strand peptide (PG-tag in Table 2) with
different amino acids surrounding the two pairs of cysteines, to per-
form the same experiment as described in Section 7.2.2.2. This new
scenario should not involve different grafting complexes anymore.
Inter-peptide complexation was nevertheless described in the litera-
ture that can be overcame by using an excess of peptide.[4]
129Xe NMR spectra recorded with frequency selective pulses cen-

tered on the region of xenon encapsulated in biosensor MM-1 are
shown in Figure 84 without and with 10 equivalents of "PG" tetracysteine-
tag.

Figure 84: One-scan 129Xe NMR spectrum of MM-1 (8 µM) in phosphate
buffer, after a 90

◦impulsion sequence. Blue box: sub-spectra ob-
tained by 64 fast repetitions of the sequence soft 90

◦Gaussian
pulse centered at 67 ppm and acquisition (inter-scan delay: 93

ms) of MM-1 without (black) and with 10 equivalents of "PG"
tetracysteine-tag (green)

Surprisingly, the signal of encapsulated xenon only shifts by 0.6
ppm, which renders difficult any further study.
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We therefore decided to conduct the same experiment with the
other enantiomeric form of the cryptophane: PP-1. 129Xe NMR spec-
tra with and without 10 equivalents of "PG" tetracysteine-tag are
shown in Figure 85.

Figure 85: One-scan 129Xe NMR spectrum of PP-1 (8 µM) in phosphate
buffer, after a 90

◦impulsion sequence. Blue box: sub-spectra ob-
tained by 32 fast repetitions of the sequence soft 90

◦Gaussian
pulse centered at 67 ppm and acquisition (inter-scan delay: 93

ms) of PP-1 without (black) and with 10 equivalents of "PG"
tetracysteine-tag (green).

Using the PP-1 form of the cage, we observed a huge down-field
shift of 10.9 ppm. Furthermore, the peak at δ = 77.6 ppm is clearly
thinner (FWMH ca. 50 Hz) than the previous signals obtained with
MM-1 and MM-2 with RE peptide, supporting once again our hy-
pothesis on multiple grafting configurations broadening the signal:
in this case, only one grafting position is promoted. Let us not forget
that the goal of this sensor is to detect proteins inside the cells, signif-
icantly broadening and complicating the signal. For this reason, it is
crucial to get a sharp and unique signal in these in vitro experiments.

Finally, this 10.9 ppm chemical shift is an excellent settlement be-
tween the chemical shifts obtained for MM-1-RE tetracysteine-tag (7
ppm) and the MM-2-RE tetracysteine-tag (17.2 ppm) signals. Since
PP-1 is easier to synthesize (better production yield) than MM-2, the
combination of PP-1 and PG-peptide is the best candidate for further
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applications.

7.3.1.2 Fluorescence experiments

Once we proved that this combination was our best candidate, fluo-
rescence properties were explored. Thus, we performed the same ex-
periment as described in Section 7.2.2.1, using PP-1 at 10 µM. 0.1 to
10 equivalents of peptide AREACCPGCCK were added and fluores-
cence emission of the product was monitored. The maximum fluores-
cence intensities of each condition plotted against time are displayed
in Figure 86A.

Figure 86: A. 0.1 to 10 equivalents of AREACCPGCCK peptide (from the
brightest to the darkest blue color) were added to 10 µM PP-1
and illuminated at 480 nm. The fluorescence intensity maxima
were monitored and reported at 37

◦C for 90 minutes after 30 sec-
onds of mechanical shaking in a 96-well plate between λem = 510

nm and λem = 650 nm. B. Saturation binding spectrum : Fluores-
cence intensity maxima at the end of the experiment (90 minutes)
plotted against concentration of peptide. The same non linear spe-
cific binding fit was employed here with a correlation coefficient
of 0.9989. C. Evolution of the emission wavelength of normalized
fluorescence spectra under addition of equivalents of peptide. D.
Relation between the wavelength of the maximum fluorescence
emission the and proportion of bound biosensors.

As shown in Figure 86A fluorescence increases 19 times upon bind-
ing to the peptide bearing the PG tetracysteine-tag. Although smaller
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than for the "RE" construction (27 times more fluorescent upon bind-
ing), this fluorescence enhancement is still remarkable. It also has
comparable affinity for the tetracysteine-tag with Kd app = 9 ± 3 µM
( Figure 86B).

We further investigated the evolution of the fluorescence emission
band upon addition of the peptide to PP-1 in Figure 86C. The shape
and the wavelength of the maximal fluorescence depend on the frac-
tion of bound PP-1. Indeed, when we added a few equivalents of
peptide, three populations coexisted as discussed at the end of Sec-
tion 8.3.2.2 :

• free PP-1 (whose emission wavelength is centered at 520 nm)

• PP-1-peptide (whose emission wavelength is centered at 540

nm)

• intermediate structures between 1 and 2 equivalents (free PP-
1, PP-1-peptide, mono arsenical complexes, complexation inter-
peptide etc)

First, the shape widens due to the simultaneous presence of these
3 populations. The shifts depend on the proportion of PP-1-peptide.
When there is a significant excess of peptide, intermediate structures
disappear and the final population is homogeneous. This induces a
sharpening of the fluorescence emission spectrum. Since we have a
very thin peak at 10 equivalents of peptide, we hypothesized that
only one population was present. We estimated that this population
must be the complex biosensor-peptide. We therefore made the as-
sumption of a complete binding where 100% of the biosensor PP-1
is bound to the tetracysteine tag. Knowing that the amount of bound
molecules is proportional to the fluorescence, Figure 86A allows us to
determine the proportion of bound PP-1 for each condition. We plot-
ted the wavelength of the maximum of fluorescence intensity against
this apparent ratio PP-1-peptide/PP-1 in Figure 86D. The linear func-
tion fitted with a correlation coefficient of 0.9928 proves that more
than being a fluorescent sensor that can be switched on, the fluores-
cence intensity indicates the proportion of bound biosensor.

This new partnership PP-1-AREACCPGCCK has similar kinetic
and fluorescence properties as the "RE" tag recently published by
Kotera et al.[3] However its 129Xe NMR properties are more interest-
ing and for that reason, we chose to expand this system for in cellulo
protein detection.

7.4 conclusion

We proved that combining the CrAsH moiety to the cryptophane
slightly altered the CrAsH dissociation binding constant and its abil-
ity to fluoresce. Indeed, KCrAsH−PG

d app = 0.4 µM while KPP-1−PG
d app = 9
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µM and the fluorescence multiplication is only ca. 20 instead of ZZ.
Nevertheless, our sensors still remain highly specific considering that
the dissociation constant for endogenous thiols is in millimolar range.
Also a factor 20 in the fluorescence increase upon binding is sufficient
since the initial states of our (unbound) biosensors have a far lower
fluorescence than CrAsH.

For the use of smart 129Xe NMR-based biosensors, the PG-peptide
is better than the RE-peptide.

We succeeded to design a biosensor that presents also a net change
in frequency for encapsulated xenon in the presence of the biological
target and hence allows a further gain in sensitivity, even in low or
inhomogeneous magnetic fields such as those encountered in MRI.

Finally, we successfully synthesized and described smart biosen-
sors with dual properties and capacity to detect tetracysteine-tagged
peptides. The extension to recombinant proteins will now be assessed.
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8
I N V I T R O D U A L D E T E C T I O N O F
T E T R A C Y S T E I N E - TA G G E D P R O T E I N S

8.1 conception of a tagged-protein

For this proof of concept we needed a well-known protein,
readily expressed and purified in large quantities and largely ex-
pressed in mammalian cells (µM range). We decided to use a fluores-
cent protein from the GFP family. The engineering of these proteins
is widely documented, and the Orsay’s laboratory owns a real know-
how. Furthermore having a tetracysteine-tagged fluorescent protein
greatly simplifies its in cell detection by fluorescence. In addition,
concentration of fluorescent proteins expressed in mammalian cells
is in the micromolar range, corresponding to the Kd app value of the
interaction between PP-1 and the peptide. And last but not least, us-
ing a fluorescent protein as a target protein, enables Förster resonance
energy transfer (FRET) between the protein and the CrAsH moiety as
described for FlAsH and ECFP by Tsien et. al.[1]

8.1.1 Förster resonance energy transfer: Conditions

Fluorescence is, together with phosphorescence, a luminescence phe-
nomenon. The excitation is initiated by absorption of a photon. The re-
laxation from the excited state happens via radiative and non-radiative
processes - internal conversion, vibrational relaxation, intersystem
conversion, phosphorescence and fluorescence. FRET is an additional
de-excitation pathway. It denotes the energy transfer via long-range
dipole-dipole transition between a so-called donor fluorophore and
an acceptor fluorophore.
To form a good couple of fluorophores for FRET, it is necessary to
have a donor and a energy acceptor with optimal optical and physi-
cal properties:

• It can only take place when the donor emission spectrum over-
laps with the acceptor excitation spectrum.

• The distance R between the fluorophores has to be small, usu-
ally below 10 nm.

• The spatial orientation of the fluorophores towards each other
must be favourable.

135

[ November 06, 2017– PhD thesis by Emilie Mari ]



136 in vitro dual detection of tetracysteine-tagged proteins

It is possible to evaluate the FRET efficacy defined as (6). E depends
on the donor-to-acceptor separation distance R with an inverse 6th-
power law due the dipole-dipole coupling mechanism.

E =
1

1+ ( RR0 )
6

(6)

With R0 being the Förster distance of the pair of donor-acceptor,
or the distance at which the energy transfer efficiency is 50% and
defined as (7) :

R0 = (10−3κ2η−4QY J)1/6 ∗ 9730 (7)

with η the refractive index of the medium, QY the fluorescence
quantum yield of the donor in the absence of the acceptor, J the spec-
tral overlap integral and κ2 the dipole orientation factor which is a
function of the relative orientation of the donor and acceptor dipoles.

A fluorophore can be described by several parameters and one the
most important is the fluorescence quantum yield (QY), that gives the
efficiency of the fluorescence process. It is defined as the ratio of the
number of photons emitted to the number of photons absorbed, as
seen in (8).

QY =
photons emitted

photons absorbed
(8)

The QY of a fluorophore can also be determined relative to a ref-
erence compound of known QY. If the same excitation wavelength,
gain and slit bandwidths are applied for the two samples then the
QY is calculated as seen in (9) where QYref is the quantum yield of
the reference compound, η is the refractive index of the solvent, I is
the integrated fluorescence intensity and A is the absorbance at the
excitation wavelength.[2]

QY = QYref
η2

η2ref

I(λ)

A(λ)

Aref(λ)

Iref(λ)
(9)

When both dyes are freely rotating and can be considered to be
isotropically oriented during the excited state lifetime, the average
κ2 is 2/3. This condition is generally satisfied for the fluorophores
attached to biomolecules because they can have a certain freedom
of rotation.[3] Note that this dynamic average assumption is not ap-
propriate for fluorescent proteins because they do not undergo much
rotational diffusion (≈15–20 ns) during the short excited state lifetime
(≈5 ns) because of their relatively large molecular weights (27 kDa).
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For FRET detection, absorption spectra of the donor and the accep-
tor must be sufficiently separated so that the acceptor is not excited
directly by the donor excitation light source. In addition, the acceptor
must emit at wavelengths where donor has no emission. This corre-
sponds to spectral selectivity, or spectral leak.

8.1.2 Two strategies for the tagged-protein construction

Since there is no tabulation of force fields for cryptophanes, semi-
empirical simulations are not an option to describe the molecular
system. The good position of the tetracysteine tag (TC), the correct
distance and orientation with respect to the fluorescent protein barrel
cannot be calculated by docking experiments.
Moreover, even if we could understand the phenomenon of 129Xe
chemical shift variation upon binding of the biosensor on a peptidic
motif, we are unable to predict the value of this variation according to
the tagged-protein system. The flexibility, the position of the TC and
its distance to the barrel could interfere with our detection scheme
and then have an impact on the 129Xe signal. For this reason, we de-
signed five constructions presenting different lengths of spacer and
different locations of the tetracysteine tag.

The three constructions that have been created are: Aquamarine: T65S
and H148G Mutant
of Cyan Fluorescent
Protein

• Construction I : Histag-Aquamarine-Tetracysteine tag (Figure 87A)

• Construction II : Histag-Tetracysteine tag-Aquamarine (Figure 87B)

• Construction III : Histag-Tetracysteine tag-Linker-Aquamarine
(Figure 87C)

Figure 87: A. Construction I with the tetracysteine tag at the C-term of
Aquamarine. B. Construction II with the tetracysteine tag at the
N- term of Aquamarine. C. Construction III with the tetracysteine
tag at the N-term of the Aquamarine separated by a 17-aminoacid
spacer.
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The Histag is designed to allow purification of the recombinant
protein.

Two strategies have been employed for these constructions, either
having the fluorescent protein as the donor(D) or as the acceptor (A).

8.1.2.1 Fluorescent protein (D) - Biosensor (A)

The first configuration consists in a fluorescent protein as the donor
and PP-1 as the acceptor. One appropriate fluorescent protein would
be a cyan fluorescent protein variant named Aquamarine.[4]

It should be noted that Aquamarine has 2 cysteines in its sequence,
but they are not accessible and too far to form an heterocycle with an
arsenic atom.

Figure 88 displays the normalized absorption and emission spectra
of the construction I (as an example). The overlap integral J is shown
in pale red. Due to the high spectral overlap, the optimal excitation
wavelengths for both fluorophores were chosen at 405 nm and 480

nm and are marked with grey lines.

Figure 88: Normalized absorption (dotted lines) and emission spectra (solid
lines) of Histag-Aquamarine-tetracysteine tag (in cyan) and PP1
(in green). This system is excited at λ = 405 nm, which cor-
responds to the half-maximum of fluorescent protein absorp-
tion. Overlap between donor emission and acceptor absorption
is drawn in pale red.

These spectra prove that the overlap condition of FRET is veri-
fied. In addition, the fact that both donor and acceptor are covalently
linked together induces a short distance between both entities, less
than 10 nm. Finally, the flexibility of the construct allows a whole set
of orientations between the PG TC-tag and the fluorescent protein
and ensure the spatial orientation condition κ2. All conditions have
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been met to observe a resonance energy transfer with these three con-
structions.

8.1.2.2 Biosensor (D) - Fluorescent protein (A)

Another strategy consists in choosing PP-1 as the donor and the flu-
orescent protein as the acceptor. In this configuration, a good candi-
date for the fluorescent protein is the red fluorescent protein mCherry.
mCherry derives from a protein isolated from the coral Discosoma sp..
This is a monomeric fluorescent construct with the same shape (bar-
rel) but a different amino acid sequence that confers a different stabil-
ity. There is no cysteine in its sequence. We have designed two more
tagged proteins, based on the same approach than for constructions
II and III:

• Construction IV: Histag-Tetracysteine tag-mCherry (Figure 89A)

• Construction V: Histag-Tetracysteine tag-Linker-mCherry (Fig-
ure 89B)

Figure 89: A. Construction IV with the tetracysteine tag at the NH2 terminal
part of mCherry. B. Construction V with the tetracysteine tag at
the NH2 terminal part of mCherry separated by 17 aminoacids.

Absorption and fluorescence emission spectra of PP-1 and tagged-
mCherry prove that they are potentially good partners for FRET (Fig-
ure 90).
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Figure 90: Normalized absorption (dotted lines) and emission spectra (solid
lines) of Histag-Tetracysteine tag-mCherry (in red) and PP1 (in
green). This system is excited at λ = 480 nm, which corresponds
to the half-maximum of fluorescent protein absorption. Overlap
between donor emission and acceptor absorption is drawn in pale
red.

8.1.3 Direct consequences on the 129Xe NMR and fluorescence signals

Detection of the tetracystein-tagged protein can therefore be now
monitored by:

• The chemical shift of encapsulated xenon (Figure 91B).

• The direct fluorescence detection of CrAsH moiety upon inter-
action with the tetracysteine tag (as seen in Figure 91B). The
fluorescence intensity increases and its maximum is shifted to
higher wavelengths.

• The direct consequences of FRET:

– Decrease of the fluorescence intensity of the donor and in-
crease of the fluorescence intensity of the acceptor upon
excitation of the donor.

The concept is described for construction I in Figure 91.

It is possible to evaluate the FRET efficiency defined as
(10) where F’D and FD are the integrals of the fluorescence
spectrum of the donor with and without the acceptor.

E = 1−
F ′D
FD
x100 (10)
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Figure 91: Principle of the functioning of the biosensor with construction I
(Histag-Aquamarine-TC). A. Free PP-1 gives rise to the original
encapsulated xenon chemical shift and a very low fluorescence.
B. PP-1 bound to TC-tag of construction I gives rise to a chemical
shift variaton for encapsulated xenon and a fluorescence increase.
B’. The same molecular construct gives rise to Förster Resonance
Energy Transfer from the fluorescent protein to PP-1, diminishing
the fluorescence signal and lifetime of the protein and increasing
the fluorescence of PP-1.

This equation can be applied for constructions I, II and III
when the modification of the fluorescence intensity of the
donor is only resulting from the FRET phenomenon.
For constructions IV and V, the donor is also the ligand that
is turned on upon reaction with the tetracysteine tag. The
fluorescence of the donor increases upon complexation to
the tetracysteine tag but is also modulated by FRET. We
can not evaluated the FRET efficiency by comparing the
fluorescence emission spectra of the donor with and with-
out acceptor as in (10). However it is possible to measure
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energy transfer from acceptor emission, following (11):[5]

E =
IADAAA − IAAAAD

IAAADD
x100 (11)

where IAD is the acceptor intensity following the donor
excitation, IAA is the acceptor intensity following the ac-
ceptor excitation, AAA is the acceptor absorbance at the ac-
ceptor excitation wavelength, and AAD and ADD are the
acceptor and donor absorbances, respectively, at the donor
excitation wavelength. To achieve this, we need the fluores-
cence intensity and the absorbance of the tagged-protein at
wavelength where the acceptor does not absorb.

– Decrease of the donor fluorescence lifetime.

It is also possible to evaluate the FRET efficiency using the lifetime
of the donor that decreases in the presence of FRET. The decrease
of the donor fluorescence lifetime can be measured by fluorescence
lifetime imaging microscopy (FLIM). When excited by a photon, the
fluorescent sample - the biosensor attached to construction I, II, III,
IV or V - will return to the ground state with a certain probability
based on the decay rates through a number of different radiative or
non radiative pathways including FRET. To observe fluorescence, one
of these pathways must be by the spontaneous emission of a pho-
ton. The emitted fluorescence will decay with time according to (12),
where I0D is the initial fluorescence, t the time , C a constant back-
ground and τD, fluorescence lifetime.

ID(t) = I
0
De

−t/τD +C (12)

The fluorescence lifetime of a fluorophore affected by FRET tends
to decrease as an additional de-excitation pathway is added. There-
fore the fluorescence curve decay is described by a biexponential fit
function(13). αlong and αshort correspond to the proportion of free
and bound donor, τD and τDA correspond to the fluorescence life-
times of the donor and the donor bound to the acceptor respectively.

IDA(t) = I
0(αlonge

−t/τD +αshorte
−t/τDA) +C (13)

More than attesting a fluorescence resonance energy transfer be-
tween two fluorophores, FRET-FLIM experiments allow one to de-
termine the fraction of molecules with short lifetime compared to
molecules with long lifetime. The mean fluorescence lifetime τmean
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of the sample is thus defined.

FRET efficiency E is the ratio of the number of times the excited
donor returns to the ground state by transferring energy to the num-
ber of times the excited molecules returns to the ground state by any
process. In terms of the lifetimes of the donor, this is (14):[6]

E =
τD − τDA

τD
x100 = 1−

τDA
τD

x100 (14)

where τD and τDA are the fluorescence lifetimes of the donor and
of the donor in the presence of the acceptor.

8.2 plasmid construction and purification

The full procedure aims at the modification of the protein of interest
by insertion of a tetracysteine site.

To genetically encode the tetracysteine motif (TC), we employed 3

strategies.

• For the construction I, we designed a codon sequence where
the tetracysteine tag starts right after the COOH-terminus of
the Aquamarine sequence as shown in Figure 123A (in Ap-
pendix A).[1] This choice was motivated by the experimental
procedure of FRET experiments conducted by Griffin et. al. in
1998.

• For the constructions II and III, we designed a sequence where
the tetracysteine tag starts after a 17-amino acid spacer (TFGS-
FTDVMSTGTGSTG) at the NH2-terminus of the Aquamarine
sequence (construction III). We introduced the same restriction
sites before and after the spacer that allowed us to remove the
latter by a simple digestion. We then obtained the short version:
construction II.

In these constructions, the tetracysteine tag was fused between
the histag and the fluorescent protein, in such a way that all flu-
orescent proteins after purification necessarily contain the tetra-
cysteine tag (Figure 87B and C).

• We proceeded the same way for constructions IV and V, with
mCherry fluorescent protein. We obtained the long (construc-
tion V) and the short (IV) version of TC tagged mCherry (Fig-
ure 89A and B) .

Thanks to the polyhistidine-tag, the constructions were expressed
in TOP10 bacteria and purified on a nickel-nitriloacetic acid agarose
(Ni–NTA) column. A brief description of the protocol of the plasmid

[ November 06, 2017– PhD thesis by Emilie Mari ]



144 in vitro dual detection of tetracysteine-tagged proteins

construction and the purification can be found in Section A.1.5.4.

UV-Vis absorption spectra of these 5 constructions were measured
in Figure 92.

Figure 92: UV-Vis absorption spectrum of A. Histag-Aquamarine-
tetracysteine tag (in black) with a maximum absorbance at 430

nm. C. Histag-tetracysteine tag-Aquamarine (in purple) and
Histag-tetracysteine tag-Linker-Aquamarine (in black). The or-
ange dotted line represents the shape of the UV-Vis absorption
spectrum of the native Aquamarine, serving as a reference for
the double band. D. Histag-tetracysteine tag-mCherry (in yellow)
and Histag-tetracysteine tag-Linker-mCherry (in black). The max-
imum absorbance is at 560 nm. The green dotted line represents
the UV-Vis absorption spectrum of the native mCherry. B. Poly-
acrilamide gel electrophoresis of both TC-tagged Aquamarine
and Aquamarine, the first column being the molecular weight
marker.
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The absorption spectrum of the fluorescent proteins consists in two
bands. The first band (280 nm) corresponds to the absorption of aro-
matic residues present in the fluorescent protein, principally trypto-
phane and tyrosine and also a minor contribution of the chromophore
when the protein is mature. The second band (430 nm for Aquama-
rine and 560 for mCherry) is due to absorption of the mature chro-
mophore. Measuring the ratio between absorption at 280 nm and 430

nm (or 560 nm) gives information about protein maturation.
UV-Vis absorption spectra of native Aquamarine and TC tagged

Aquamarine are similar. We obtained a ratio of A280nm
A430nm

= 1.40 for
Aquamarine and 1.3 for construction I.[7] Fusing the tetracystein tag
on the COOH-terminal part of the fluorescent protein did not inter-
fere with its bacterial expression and maturation.

A Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) shows the respective weights of native Aquamarine and Aqua-
marine fused to the tetracystein tag (Figure 92B). We calculated using
a routine in ImageJ software, that Histag-Aquamarine-tetracysteine
tag was 94% pure. The molecular weight of the TC tagged-protein is
slightly higher than the protein itself, as expected.

The shape of the absorption spectrum of constructions II and III
are different from the native Aquamarine. Indeed curves are shoul-
dered at 420 nm (Figure 92C). It is characteristic of a denatured fluo-
rescent protein. In addition, constructions II and III have a very low
proportion of mature proteins as shown by their A280A430

ratios that are
respectively 3.1 and 3.6 (against 1.40 for the native fluorescent protein
Aquamarine).

Fusion of the tetracysteine tag at the C-terminal part of the Aqua-
marine seems to alter the folding and the maturation of the protein.

Finally, absorption spectra of both constructions VI and V are very
similar to the absorption spectrum of the reference, native mCherry.
Furthermore, maturation rates determined by the ratio A280

A560
are 0.7

for construction IV and 1 for construction V against 0.7 for native
mCherry. If maturation of construction V seems to be slightly altered
by the linker, we proved that properties of the Histag-Tetracysteine
tag-mCherry are equivalent to the ones of native mCherry.

For QY calculation ((9)), we took Aquamarine as a reference, QYref=
QYAquamarine = 0.89. We measured the absorbance corresponding
to λ = λexc and the area under the curve of the fluorescence emission
spectra of Aquamarine and construction I. We found QYI = 0.91.[7]
For constructions IV and V, we took mCherry as a reference, QYref=
QYmCherry = 0.22 and found QYIV = 0.20 and QYV = 0.16. We did
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not undertake this measurement for constructions II and III since they
appear to be denatured.

Figure 93 presents the summary of the maturation rate influence,
the structure modification and the quantum yield of the different TC-
fusing strategies.

Figure 93: A280
A430

or A280
A560

ratios and structure modification of the five
constructions compared to the two references Histag-Aqua and
Histag-mCherry.

All together, these results demonstrate that the expression, folding
and maturation of constructions I, IV and V are not significantly al-
tered by the presence of the tetracysteine tag.

8.3 proof of concept of the detection of recombinant

proteins

8.3.1 Construction I

8.3.1.1 Fluorescence signal

We prepared 6 samples with 2µM of Aqua-tetracysteine tag in which
we added 0, 0.1, 0.5, 1, 2 and 5 equivalents of PP-1, in the presence of
EDT (100µM) and β-mercaptoethanol (1mM). We also prepared 5 ref-
erence samples where the same amounts of PP-1 were bound to 2µM
of model "PG" peptide with the same concentration of EDT and β-
mercaptoethanol. These reference samples will help us to determine
the fraction of fluorescence due to FRET and the one due to direct
excitation.The reaction is allowed to proceed at room temperature for
50 minutes and then the 11 samples are illuminated at λ = 405 nm.

An example of the contribution of this direct illumination is shown
in orange. It corresponds to the sample containing 2 µM of model
"PG" TC-tag and 5 equivalents of PP-1 excited at 405 nm. At this
excitation wavelength the contamination of the acceptor fluorescence
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directly excited was evaluated at less than 1 h. We were able to evalu-
ate this contribution by comparing the fluorescence intensities at 540

nm (emission of PP-1) in both samples - PP-1 without and with 2 µM
of "PG" TC-tag.
The contribution of direct illumination of the PP-1 was subtracted
from emission fluorescence spectra of the sample in Figure 94A.

Figure 94: A. Fluorescence emission spectra of 0 to 5 equivalents of PP-1
(from the darkest to the brightest green color) added to a 2µM
Aquamarine-tetracysteine tag solution after illumination at 405

nm. The orange curve corresponds to the fluorescence emission
of PP-1 bound to 5 equivalents of model "PG" peptide illuminated
by a 405 nm light. The red box focuses on the decrease of fluores-
cence intensity of the donor. B. Normalized fluorescence emission
spectra at 405 nm, showing two modified regions. The blue box
focuses on the increase of fluorescence intensity of the acceptor.
The yellow box highlights the modification of the fluorescence
spectrum of the donor. C. Normalized fluorescence emission spec-
tra of samples containing 0.5 to 5 equivalents of PP-1 illuminated
with a 480 nm source. The orange and purple curves are used as
a reference of free PP-1 and PP-1 bound to 5 equivalents of model
"PG" peptide.

The fluorescence emission of Aquamarine-tetracysteine tag is dras-
tically decreasing when adding PP-1, which is the acceptor here (red
box). According to the FRET theory, fluorescence emission of PP-1
should be simultaneously rising even if the light source is not its own
excitation wavelength. Appearance of the fluorescence transfer to the
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acceptor can be seen as the concentration increases, in normalized
fluorescence spectra in Figure 94B (blue box).

Fluorescence emission wavelengths of the CrAsH moiety illumi-
nated at 480 nm confirmed this hypothesis (Figure 94C). Indeed, PP-1
has now the same wavelength for maximal emission as the reference
spectrum of bound sensor (orange dotted line).

We then performed fluorescence lifetime measurements on these
sample using the FLIM set-up, as explained in Appendix A.

The wavelength of the excitation laser is 440 nm on the experiment
setup. As observed in Figure 88, PP-1 alone absorbs some light at 440

nm even if this wavelength is at the edge of its absorption band. This
could lead to a direct excitation of the biosensor and may contribute
to the fluorescent lifetime measurement. With this in mind, we per-
formed the experiments in parallel on the complex PP-1-Aquamarine-
tetracysteine tag and PP-1 bound to the "PG" TC-tag in order to evalu-
ate the fluorescence crosstalk. Fluorescence intensities were compared
and the contribution of bound PP-1 at this wavelength has been eval-
uated at less than one per cent.

Fluorescence lifetime of Aquamarine-tetracysteine tag was mea-
sured: τAquamarine−tetracysteinetag = 4.02 ns. A complex involv-
ing the tagged fluorescent protein and PP-1 having FRET exchanges
should exhibit a very different mean fluorescence lifetime.

FLIM experiments of samples containing Aquamarine-tetracysteine
tag with increasing concentration of PP-1 showed a severe decrease of
their mean fluorescence lifetime τmean upon binding of the biosensor
when excited at 440 nm (Figure 95A).

Each condition showed two fluorescence lifetimes τshort ≈ 1.5 ns
and τlong ≈ 4.1 ns corresponding to the donor and the donor bound
to the receptor. But when increasing the concentration of PP-1, the
proportion of free donor αlong decreased and the proportion of donor
bound to the receptor αshort increased. This showed that more than
three quarters of construction I in the sample are bound to PP-1 when
adding 2 equivalents of the latter (Figure 95B). This corresponds to
the stoichiometry observed in NMR experiments.

According to the equation of the FRET efficiency (10), we measured
the integral of fluorescence spectra of the donor alone (sample of con-
struction I with 0 equivalents of biosensor) and of the donor with
5 equivalents of acceptor from Figure 94 experiments. It should be
noted that both samples were prepared with the same concentration
of donor and that their absorption spectra were identical. This donor-
acceptor pair exhibits a very high FRET efficacy of 70%, which is a
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Figure 95: A. Mean fluorescence lifetimes of 0 to 5 equivalents of PP-1
added to a 2µM Aquamarine-tetracysteine tag solution after illu-
mination at 450 nm. B. Proportion of bound fluorescent proteins
(αshort), after analysis of the biexponential decay functions.

consequence of an extensive overlap between the emission spectrum
of Aquamarine-tetracysteine tag and the excitation spectrum of PP-1.

We calculated the same FRET efficiency E via fluorescence lifetimes
measurements, according to (14). Considering τshort and τlong val-
ues for each condition, we calculated FRET efficiencies between 62%
and 70%. Both strategies enabled us to evaluate a highly efficient
FRET for this couple of fluorophores.

All these experiments tend to prove that these two fluorophores are
in very close interaction, for a efficient FRET to be possible.

However, there is a fluorescence spectrum modification pointed out
inside the yellow box Figure 94B. The alteration of this double band,
highly characteristic of the fluorescent protein, is attesting a structural
perturbation and thus strong interactions between PP-1 and the barrel
of the fluorescent protein. If so, it could dramatically complicate the
xenon NMR signals.
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8.3.1.2 129Xe NMR signal

We investigated the magnetic aspect of this construction by perform-
ing 129Xe NMR experiments on a sample of 2µM of PP-1 in the pres-
ence of 20 µM of Aquamarine-tetracysteine tag, 1mM βmercaptoethanol
and 50µM EDT in PBS pH = 7.4 (Figure 96) . The reaction is allowed
to proceed for 1 hour in a water bath at 37

◦C. The NMR signature of
the solution shows several signals, likely corresponding to the mul-
tiple interactions that encapsulated xenon has with the barrel. These
signals are also broaden by T2 relaxation, due to the big size of the
system and probable hindering of the cage-molecule motion.

Figure 96: 129Xe NMR selective spectra of free PP-1 (2µM) and bound to 10

equivalents of Aquamarine-tetracysteine tag.

Despite its promising fluorescence properties, the way we designed
our tetracysteine tag detection is not suitable for xenon NMR exper-
iment. Indeed, the linewidth of the signal is unfortunately not suit-
able for the detection of a 129Xe chemical shift variation. In addition,
the corresponding correlation time in cellulo should be increased and
leads to even broader signals.

8.3.2 Constructions II and III

8.3.2.1 Fluorescence signal

Considering the denaturation and maturation alteration of the two
constructions, these fluorescence experiments have not been performed.

8.3.2.2 Hyperpolarized 129Xe NMR signal

The same 129Xe NMR experiments was conducted on two solutions
of 2µM of PP-1 in Figure 97.
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Figure 97: 129Xe NMR sub-spectra of free xenon in PP-1 (2µM) and
bound to 2 equivalents of tetracysteine tag-Aquamarine and
tetracysteine tag-linker-Aquamarine. Sub-spectra obtained by 2D
Frequency-selective excitation sequence, when adding the 30 first
scans.

In both cases, when 2 equivalents of tagged protein were added,
the peak at δ = 66.7 ppm has totally disappeared, suggesting that all
sensors are bound to their target. However, the only peak that appears
at δ = 65.8 ppm likely corresponds to the residual PP-2 which does Reminder

PP-2 is the sensor
with the
cryptophane moiety
grafted on the C6 of
CrAsH moiety

not seem to react. Again, we do not observe an unique signal for en-
capsulated xenon, it could be multiple as in the case of Aquamarine-
tetracysteine tag, or extremely wide due to the alteration of the in-out
exchange of xenon or the large increase of the xenon correlation time.
We could optimize the detection sequence for this type of system and
be able to differentiate these signal. But we have to keep in mind that
the 129Xe NMR signal will be broaden and even more complicate in
the in cellulo experiments. Thus, at this stage, we need a clear and
simple signal to be detected.

8.3.3 Constructions IV and V

8.3.3.1 Fluorescence signal

An upstream 129Xe NMR experiment was performed with PP-1 and
the construction V. There was no signal attesting the detection of the
tagged-protein. We decided not to pursue fluorescent experiments
with this construction.
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With these constructions, the biosensor is the donor and the tagged
fluorescent protein mCherry is the acceptor. The consequence is that
the fluorescence of the biosensor gained after complexation on the
tetracysteine sequence may be decreased or compensated by the loss
of fluorescence due to the FRET phenomenon.

We prepared 7 samples with 2µM of PP-1 in which we added 0, 0.1,
0.5, 1, 2, 4 and 5 equivalents of Histag-tetracysteine tag-mCherry, in
the presence of EDT (100µM) and β-mercaptoethanol (1mM). We also
prepared 7 reference samples with the same amounts of construction
IV alone, in order to evaluate contribution of the direct illumination
of the tagged-protein. The reaction is allowed to proceed at room
temperature for 50 minutes and then the 14 samples are excited at λ
= 480 nm (see Figure 98).

Figure 98: A. Fluorescence emission spectra of 0 to 5 equivalents of Histag-
Tetracysteine tag-mCherry (from the darkest to the brightest
green color) added to a 2µM PP-1 solution after illumination at
480 nm. Spectra have been corrected by the fluorescence emission
of construction IV directly illuminated by the 480 nm light and
displayed in red dotted line (contribution of 1%). B. Normalized
fluorescence emission spectra at 480 nm demonstrating a FRET
transfer from the biosensor to the tagged-protein. C. Normalized
fluorescence emission spectra of samples containing 0 to 5 equiva-
lents of Histag-Tetracysteine tag-mCherry illuminated with a 480

nm source, showing the spectral shift of the emission spectrum
upon binding.

Fluorescence emission intensities between λem = 508 nm and λem
=700 nm are corrected by the fluorescence contribution of the con-
struction IV directly excited (displayed in red dotted line and corre-
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sponding to 1% of the signal). They are plotted in Figure 98A for
each concentration of tagged-mCherry. We observe an increase of the
direct fluorescence emission of PP-1 at 540 nm attesting the detection
of the tetracysteine sequence on mCherry by PP-1. The apparent rise
of fluorescence visible on the spectrum corresponds to an underesti-
mation of fluorescence gained by the fluorogenic biosensor. Indeed,
as a donor, the fluorescence intensity of PP-1 tends to decrease in
favour of the increase of the fluorescence intensity of the construc-
tion IV. PP-1 is 3.3 times more fluorescent when detecting the tagged-
protein.

However, for 0.1 equivalents of tagged-mCherry, FRET transfer con-
tribution is higher than the gain of fluorescence leading to a trend
reversal.

The absence of evolution of the fluorescence intensity of PP-1 with
5 equivalents of construction IV, indicates that the binding is complete
(Figure 98A) after the addition of four equivalents of tagged-protein.

Importantly, the fluorescence emission spectra of construction IV
alone and bound to PP-1 are very similar (red dotted line in Fig-
ure 98B). Contrary to construction I, there is no interaction between
construction IV and PP-1. This is promising for 129Xe NMR experi-
ments, as it means less xenon signals.

Finally, positions of the fluorescence emission maxima do not evolve
as the previous construction. Figure 98C shows a binary complexa-
tion, leading to only two wavelength positions: 518 nm (free biosen-
sor) and 542 nm (bound biosensor). In the previous construction
(with Aquamarine), evolution of the wavelength of the maximal flu-
orescence intensity was progressive as concentration of biosensor in-
creased. We assumed that the complexation of the two partners does
not undergo intermediate complexes, which is also an advantage.

For FRET efficiency evaluation, we need the fluorescence intensity
and the absorbance of the tagged-protein at wavelength where the
acceptor does not absorb, according to (11). We therefore excited our
samples with λex = 580 nm. By this method, we obtained a FRET ef-
ficiency of 73%, which is similar to the previous construction.

Unfortunately, due to a lack of time, we did not perform FLIM ex-
periments with this pair of fluorophores.

Considering all these results, we undertook 129Xe NMR experi-
ments on this construction IV.
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8.3.4 Hyperpolarized 129Xe NMR experiments

We investigated the NMR properties of the construction IV by per-
forming 129Xe NMR experiments on a sample of 2µM of PP-1 in the
presence of 8 µM of Histag-Tetracysteine tag-mCherry, 1mM βmercaptoethanol
and 50µM EDT in PBS pH = 7.4. The reaction is allowed to proceed
for 1 hour in a water bath at 37

◦C. A frequency-selective excitation
sequence in 2D was employed to detect the Xe@biosensor signals as
displayed in Figure 99.

Figure 99: 129Xe NMR spectra of free PP-1 (2µM) and bound to 4 equiva-
lents of Histag-Tetracysteine tag-mCherry. Spectra were obtained
with a frequency-selective excitation sequence (2D) with an half-
gaussian pulse.

When the 4 equivalents of tagged protein were added, the peak at
δ = 66.7 ppm totally disappeared, confirming the assumption made
after fluorescence experiments: complexation between the biosensor
and its target is complete after only a small excess of tagged-protein.
The peak at δ = 65.8 ppm, corresponding the the residual PP-2 still re-
mains after addition of the target, confirming the hypothesis that this
biosensor does not interact much with the tetracysteine tag. However,
an additional large but unique peak appears at δ = 74 ppm, result-
ing from xenon caged in biosensor PP-1 bound to the tetracysteine
tagged-mCherry.

This peak, separated by 7.3 ppm from the free Xe@PP-1, demon-
strated that the biosensor that we have built, is a smart 129Xe NMR-
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based biosensor that allows tagged-proteins detection.

8.4 conclusion

The construction of our system required some optimizations - struc-
ture of protein, position of the tetracysteine tag and its distance from
the barrel - in order to limit interactions between the biosensor and
the protein. We finally succeeded to detect a tetracysteine tagged
protein by both 129Xe NMR and fluorescence modalities. The 129Xe
NMR chemical shift variation of 7.3 ppm and the - at least - 3.3-fold
increase of fluorescence are also supported by an energy transfer.
This first proof of concept has furthermore been proved on a very
large protein (236 amino acids), and will be intuitively more easily
applicable to small proteins.
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9
I N - C E L L D E T E C T I O N O F T E T R A C Y S T E I N - TA G G E D
P R O T E I N S

The proof of concept of the dual detection of a recombinant protein
via fluorescence and 129Xe NMR has been assessed. The next step of
this project is then to detect the recombinant proteins in situ.

In order to achieve this, a lot of parameters had to be studied
knowing that 129Xe NMR experiments require some adjustments: the
cells must be in suspension and in sufficient quantity so that there is
enough spins to detect. Very preliminary results will be presented in
this chapter, more efforts remain to be made in order to fully extent
this proof of concept to in cellulo.

9.1 internalization in bacteria

3.10
8 E.coli cells (DH5-α) were incubated 2 hours with 26 µM of

racemic biosensor in phosphate buffer (pH = 7.4). They were then
rinsed 3 times with PBS. The cells were resuspended in 160 µL of
a solution containing 50 mM of dithiothreitol (DTT) in TE buffer, a
redox reagent that reduces disulfide bonds. DTT forms a stable six-
membered ring with an internal disulfide bond via two sequential
thiol-disulfide exchange reactions displayed in Figure 100. This step
allows the removal of the non specifically bound biosensor. The lat-
ter reaction was allowed to process for 15 minutes at 32

◦C , then the
cells were centrifuged, rinsed and resuspended in 200 µL of water:
Figure 101B and D (green curve).

Figure 100: Reduction of a -SS- bond by DTT.

The cells were then studied by fluorescence microscopy and spec-
troscopy, as can be seen in Figure 101A and D (pink curve).

159
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Figure 101: Fluorescence microscopy of DH5α cells incubated with 26 µM
of racemic biosensor for 2 hours, A. rinsed in PBS, B. treated
with DTT reagent, C. electroporated and then treated with DTT.
D. Fluorescence spectra of the biosensor in the three conditions,
illuminated at λex = 470 nm and observed between λem = 490

nm and λem = 570 nm. The spectrum of electroporated bacteria
is used as a blank. The red and blue areas enlighten maximum
of fluorescence emission: 518 nm for incubated biosensor, 534

nm for incubated biosensor in electroporated bacteria.

Fluorescence observed and measured in DH5α cells incubated with
biosensors totally disappeared with the DTT treatment, suggesting
that the biosensor was never internalized into bacteria.

We therefore employed a technique in which an electrical field is
applied to bacteria in order to increase the permeability of the cell
wall. This technique, named electroporation, allows chemicals or even
DNA to be introduced into the cell.[1] A new batch of 3.10

8 cells
were pipetted into a glass cuvette in the presence of 26 µM of racemic
biosensor. Immediately after electroporation, 1 mL of culture medium
was added to bacteria and they were allowed to recover at 37

◦C for 30

minutes.The bacteria were then rinsed and underwent the same DTT
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treatment than before. Fluorescence was observed and monitored in
Figure 101C and D (blue curve).

Even after reducing all -SS- bonds at the cell surface, bacteria in-
cubated with the biosensor were still highly fluorescent when they
underwent electroporation (Figure 101C). The areas under the blue
and pink spectra in Figure 101D show that 24% of the fluorescence
of bacteria electroporated with the biosensor actually resulted from
fluorescence of the biosensor internalized inside the cells. Moreover,
both fluorescent profiles - before and after electroporation - are sig-
nificantly different. The first one has the typical profile of the free
biosensor (λFmax = 518 nm) whereas the second one, corresponding
to the biosensor inside bacteria, has a maximum of fluorescence cen-
tered on 534 nm. This proves that the racemic biosensor has been
taken up by bacteria and that it is bound to endogenous thiols.

Bacteria could be a good model for NMR as their culture is quite
simple and huge quantities can be obtained in a few days. This is
an important parameter for hyperpolarized 129Xe NMR, where the
required minimal number of spins is 10

13. However, studies in mam-
malian cells are of higher biological interest.

9.2 protocol for eukaryotic cell uptake

9.2.1 Surface coating method

The protocols for expression of fluorescent proteins are well described
in the COS7-cell line, as they are a common mammalian production
cell used for recombinant proteins. COS-7 cells derived from kidney
tissue of the African green monkey, Cercopithecus aethiops. This cell
line is adherent to glass and plastic surfaces.
The protocols that I used for cells culture are displayed in Appendix A.

The biosensor is a small molecule that is likely internalized by the
cells. Also, as it is slightly hydrophobic, it may interact with the mem-
branes. This can lead to a distribution in membrane whereas fluores-
cent proteins have a cytosolic distribution. An usual protocol for in-
creased nanoparticles uptake consists in adding fetal bovine serum
(FBS) into the incubation medium.[2] Studies showed that serum pro-
tein adsorption reduces the aggregate size distribution of titanium
dioxide nanoparticles and especially affect the particles’ interactions.
Particles were shown to adopt the physiochemical properties of the
protein absorption layer (a. k. a. the "protein corona") that forms on
the surface of the particles. In order to assess this protocol, we chose
to perform this experiment in a 96-well plate. This system was cho-
sen to reduce the required quantity of biosensor for an homogeneous
incubation. In each well, 30.000 adherent cells were incubated with:
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• 10 µM of racemic biosensor, the reducing mixture - EDT, TCEP
and β-mercaptoethanol - and Dulbecco’s Modified Eagle Medium
(DMEM).The reducing

mixture: 100 µM of
EDT, 1 mM of

β-mercaptoethanol
and 1 mM of TCEP.

• 10 µM of racemic biosensor, the reducing mixture, DMEM and
30% FBS.

• The reducing mixture, DMEM and 30% FBS.

The solutions were incubated for 1 hour, then rinsed 3 times with
PBS and fluorescence emission spectra were recorded (Figure 102A).

Figure 102: A. Fluorescence emission spectra of 30.000 COS7-cells incu-
bated 1 hour with 10 µM of racemic biosensor with or without
protein corona (via FBS). Spectra were recorded after an excita-
tion at λexc = 480 nm using a plate reader. B. Fluorescence mi-
croscopy images of COS7-cells incubated with 10 µM of biosen-
sor and 30% FBS and illuminated via the biosensor filter cube
during texp = 2 s.

Spectral selection of
the biosensor filter

cube: 485 nm <
λexc < 515 nm and

525 nm < λem <
560 nm.

Even if the signal is very low, due to the low amount of cells in each
well, FBS coating improved the biosensor uptake - 2-fold increase of
the signal. The emission band, centered at 540 nm, corresponds to the
bound biosensor.
Wide field fluorescence microscopy images of these cells are displayed
in Figure 102B. With this method, there is no z-selection: the fluores-
cence of the whole thickness of the sample is collected. The fluores-
cence of the cell is observed upon illumination and detection via a
filter cube adapted for the biosensor. It will be called in the following
"biosensor filter cube". The distribution of the biosensor is mainly in
the cytosol but there are some bright spots. Indeed, when the load-
ing is important, the biosensor tends to accumulate in bright spots,
supposedly imprisoned in vesicles, ready to be released from the cell.
As a matter of fact, some residual fluorescence is observed after a
few hours in the external medium. The fact that we can distinguish
the non-fluorescent nucleus of the cell (white asterisk in Figure 102B)
suggests a cytosolic distribution.
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9.2.2 Optimization of conditions for cell uptake

The next objective is to internalize a maximum of biosensor - for
an improved signal in fluorescence and in 129Xe NMR. We had in
mind to perform this step without spending too much biosensor. We
studied the influence of the time of incubation and the concentration
of biosensor on fluorescence intensity inside the cells. Four samples
with four concentrations of biosensor were prepared. Each sample
is placed in four wells and then incubated at 37

◦C. The incubation
of each well will be stopped at the desired time, rinsed and imaged.
This protocol tends to minimize the loss of the cells. The mean fluores-
cence intensities of 10 cells in 10 different fields of view are reported
in Figure 103.

Figure 103: Influence of the incubation time and biosensor concentration on
incubated quantities. The cells were incubated for 15, 45, 75 and
115 minutes with 0.47, 2.8, 24 and 55µM of racemic biosensor.
After being rinsed 3 times with PBS, fluorescence microscopy
images of the cells in PBS were recorded with the biosensor filter
cube. A region of interest (ROI) of the size of a cell was chosen
and mean fluorescence intensities of 10 cells in 10 different fields
of view were measured using a routine in ImageJ software. The
mean values for each sample are reported here, as well as the
standard deviation.

Complete internalization is quickly reached - after about an hour.
Figure 103 shows that the greater the biosensor concentration, the
more it is internalized. However, the error bars demonstrate that het-
erogeneity of cell uptake is higher with high concentration of biosen-
sor.
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We investigated the optimal concentration of EDT and β-mercaptoethanol
for cell uptake of a constant biosensor concentration and TCEP (Fig-
ure 104A and B).

Figure 104: A. and B. Influence of EDT and β-mercaptoethanol concen-
tration and cell condition -adhered or suspended - on the cell
uptake of the racemic biosensor at 1 mM of TCEP. Cells in
sample E,F and G were prior detached from the surface with
200µL of trypsin, a protease that hydrolyses proteins. They
are centrifuged, resuspended into DMEM (30% FBS) and incu-
bated with biosensor for 1 hour at 37

◦C. After being rinsed 3

times with PBS, fluorescence microscopy images of the cells in
PBS with different concentration of β-mercaptoethanol and EDT
were recorded. A region of interest (ROI) of the size of a cell was
chosen and mean fluorescence intensity of 10 cells in 10 fields
of view was measured using a routine in ImageJ software. The
mean value for each sample is reported here, as well as the stan-
dard deviation. C. Transmission microscopy image of cells in
U conditions. D. Fluorescence microscopy images of the same
cells.
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Also, 129Xe NMR experiments require suspended cells. Of course,
it is possible to incubate the biosensor on adherent cells and then get
them detached with trypsin but it would be more stressful for the
the cells. Working with suspended cells also minimizes the surface of
solution and therefore the required quantity of biosensor. We verified
that internalization of the biosensor was possible when the cells were
in suspension in a tube (samples E and F in Figure 104A and B).

The biosensor is internalized by both types of cells - adhered and
suspended.

For adhered cells, the best cell uptake is obtained with the highest
concentrations of β-mercaptoethanol. cell uptake is not EDT quantity-
dependent. This concentration of EDT is however higher than the
threshold beyond which there is an exclusive exchange between the
biosensor and two molecules of EDT (1.38 mM against 1 mM). These
conditions therefore need to be adapted so that EDT is no longer a
competitor to the tetracysteine tag. Fluorescence microscopy image
in Figure 104D shows the high fluorescence signal of the cells. Again,
this indicates a cytosolic distribution. Figure 104C and D prove that
biosensor has been uptaken in a large majority of cells.

The optimal conditions for cells in suspension are quite different.
They require a lower level of β-mercaptoethanol and EDT in the in-
cubation medium than that employed for in vitro experiments. An
excess of monothiols (1mM) is not favorable for the cell uptake of the
biosensor. Since only two conditions were performed, it is difficult to
compare the effect of EDT and β-mercaptoethanol on the cell uptake.

Finally, cell uptake is higher in adhered cells than suspended cells.
Since COS7-cells are adherent cells, we can formulate the hypothesis
that they are in better conditions when adhered, favoring the cell up-
take.

9.2.3 Proof of cell uptake and quantification

We defined the best conditions to observe the cell uptake of the biosen-
sor. Let us remind that in this paragraph, there is no TC tag in the
cells. In order to verify the cytosolic distribution assertion, we per-
formed confocal microscopy, a technique that makes use of optical
sectioning. The fluorescence intensity observed on this confocal im-
age is collected from a single plan while it is collected by the whole
thickness of the cell in wide field. This technique enables the record- This experiment was

performed in the
imaging platform in
Gif-sur-Yvette.

ing of stack of images to reconstruct 3D projection.
COS7-cells incubated for 1 hour with 140 µM of racemic biosensor,

reducing mixture and DMEM (30% FBS) were imaged in PBS (see
Figure 105).
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Figure 105: Confocal images of COS7-cells incubated for 1 hour at 37
◦C

with 140 µM of biosensor, reducing mixture and DMEM (30%
FBS). After after being rinsed 2 times with PBS, cells were illu-
minated with a laser at 488 nm and detected between 500 and
550 nm and imaged in PBS. 36 slices corresponding to 36 differ-
ent depths (z = 130 nm) of the cells are displayed as well as the
projection of the fluorescence and the mean fluorescence of each
depth.

The 36 different slices corresponding to 36 different depths of the
cell, displayed in Figure 105, show a signal of fluorescence. Indeed,
analysis of the images (bottom of Figure 105) shows a maximum of
fluorescence intensity in the center of the cell. This is the formal proof
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of the biosensor uptake and its cytosolic distribution.

Through all these microscopy images, we estimated that biosensor
was uptaken in most of the mammalian cells of the sample. We fur-
ther investigated the percentage of the fluorescent cells by flow cytom-
etry. COS7-cells were incubated with or without racemic biosensor. In
this set-up, the cells are brought into a flowing stream of liquid. That
is why cells were incubated in suspension. This setup analyses one
cell at a time and measures the specific light scattering and fluores-
cence characteristics of each cell.

Figure 106A and B show the distribution of cell fluorescence inten-
sity for both samples.

Figure 106C and D display - with the same contrast treatment- flu-
orescence microscopy images of both samples. The intensity profiles
obtained along the yellow line using a routine in ImageJ are presented
in Figure 106E and F.

Cells incubated with the racemic biosensor exhibit a fluorescence
intensity two orders of magnitude higher than the auto-fluorescence
intensity of referenced cells. More importantly, 99.6% of the cells are
fluorescent - thus have uptaken the biosensor. Distribution of this cell
uptake is large (2 logs in Figure 106A) but the majority of the sam-
ple is homogeneous, as proved by the Gaussian shape (from 1 to 10).
A small amount of cells present higher fluorescence intensities (from
10 to 100) and likely corresponds to cells having bright spots. The
amount of these bright spots has highly decreased inside the cells,
demonstrating a more homogeneous distribution of biosensor when
incubating the biosensor with suspended cells. This is confirmed by
the intensity profile of the cell in Figure 106E.

Finally, the last essential parameter to define for 129Xe NMR experi-
ments is the internalized quantity of biosensor. Indeed, since we know
the minimal number of spins that we can detect with this method,
we need to define the concentration of biosensor in one cell and the
corresponding number of cells required for the experiment. For this,
we performed an experiment of concentration calibration. First, flu-
orescence spectroscopic properties of the incubated cells were mea-
sured. Figure 107A shows that the biosensor which has been uptaken
inside the cells was in its bound form (wavelength of the maximal
fluorescence intensity at λem = 542 nm). Knowing that there is no
TC-tag inside the cells, it is likely due to unspecific binding of en-
dogenous cysteines. Moreover, the experiment is performed in the
presence of a high concentration of FBS, which mainly consists in
bovine serum albumin. This protein is very cysteine-rich and notably
possesses CCXXC sequences. This unspecific labeling should there-
fore be overcome in the presence of PG TC-tags.
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Figure 106: Flow cytometry experiments (Gain = 280) of suspended
COS7-cells incubated for 1 hour at 37

◦C with 100 µM of β-
mercaptoethanol, 1 mM of TCEP, 500 µM of EDT, DMEM (30%
FBS) and A. 70 µM of racemic biosensor, B. without biosensor.
Fluorescence microscopy images using an YFP filter cube of C.
suspended cells incubated with racemic biosensor and D. sus-
pended cells as a reference. The yellow lane corresponds to the
intensity profile of a cell incubated E. with biosensor and F. with-
out biosensor.

For the calibration curve, we prepared four concentrations of a solu-
tion of racemic biosensor with an excess of PG-tetracysteine tag. We
measured the maximum of fluorescence intensity for each dilution
and plotted it against the concentration.

This calibration curve gave access to the ratio α = 7972 µM−1

which allows us to calculate the concentration from a fluorescence
value (Figure 107B). We then incubated 150 000 cells with 15.4 µM of
racemic biosensor for an hour. Cells were washed and maximum flu-
orescence intensity was measured in the same conditions. With Icellfluo

the maximum fluorescence intensity measured in the sample of cells,
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Figure 107: A. The fluorescence emission spectrum of cells incubated with
70 µM of the racemic biosensor. B. The maximum fluorescence
intensities (gain = 90) of four dilutions - 0.06, 0.18, 0.36 and 0.72

µM - of racemic biosensor. The linear regression fit indicates a
slope α = 7972 µM−1.

Vwell the volume of the sample, Vcell the mean volume of a cell, α
the calibration factor and Ntot the number of cells in the sample, we
are able to estimate Ccellbiosensor, the biosensor concentration in a cell.
Details of (15) are shown in Appendix A.

Ccellbiosensor =
IcellfluoVwell

αVcellNtot
(15)

This led to an estimation of Ccellbiosensor = 14.5 µM and mcellbiosensor

= 0.06 pg. This result demonstrates that it exists a thermodynamic
equilibrium of the biosensor between the extracellular and the intra-
cellular medium. Indeed, the concentration inside the cell is almost
that of the incubation medium.

Considering this result, 129Xe NMR were performed with 80 mil-
lions of cells, with a concentration of biosensor in the µM range - as
well as the fluorescent proteins concentration.
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9.3 129
xe nmr detection of the sensor inside the cells

80 millions of COS7-cells were grown during two weeks and then
detached with 10 mL of trypsin. The cells were collected in a 50 mL
Falcon tube, centrifuged, and resuspended in 500 µL of DMEM con-
taining 30% FBS, 140 µM of PP-1, 200 µM of β-mercaptoethanol, 900

µM of EDT and 1 mM of TCEP. The cells were incubated during 1h30

at 37
◦C and the incubation medium was removed and collected in an

NMR tube with 900 µL of PBS and 100 µL of D2O. The cells were
washed two times with PBS and resuspended in 1.4 mL of PBS and
100 µM of D2O in another NMR tube.

HyperCEST depolarization curves and corresponding Z-spectra were
measured for the supernatant (Figure 108A) and for the cells (Fig-
ure 108B).

Figure 108: Z-spectra of A. the supernatant containing 140 µM of PP-1 and
B. cells incubated with 140 µM of PP-1. Data were fitted with
a Lorentzian curve using OriginPro software. Both experiments
were performed with these parameters: Consecutive data points
are separated by 0.5 s; saturation: repetition of 100 D-SNOB
pulses, max. saturation field strength of 12 µT.

With this very sensitive indirect detection method, the signal of
xenon in the biosensor inside the cells can be detected. Even if it has
been proved that the biosensor was bound to endogenous motifs of
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cysteines, the 129Xe NMR signal of encapsulated xenon in the biosen-
sor in the cell has the same chemical shift as xenon in the biosen-
sor in the supernatant. Indeed, Lorentzian fits obtained using Orig-
inPro software demonstrate a resonance frequency of -17875 Hz (su-
pernatant) and -17922 Hz (in cells) from the resonance frequency of
dissolved free xenon. As expected, the signal of xenon in the biosen-
sor is broader in cells than in supernatant (Full-Width Half-Maximum
= 1304 Hz in cellulo against 445 Hz in vitro. This can be explained by
an increase of the correlation time of the encapsulated xenon in the in-
tracellular medium. Fluorescence and 129Xe NMR experiments both
confirm that biosensor is internalized inside the eukaryotic cells

The cells must now contain a tetracysteine tagged protein in or-
der to detect in cellulo the 129Xe NMR signal of the noble gas in the
biosensor bound to the protein as well as the corresponding fluores-
cence modifications. Some preliminary experiments that have been
performed are described in the following paragraph.

9.4 detection of the sensor inside cells expressing tetra-
cysteine tagged proteins

Since construction I was the first tagged-protein system that we built
and since it showed promising results in fluorescence, this prelimi-
nary study was performed on this contruction. Unfortunately we did
not have time either to repeat the experiment previously performed
with construction IV or to perform the corresponding 129Xe NMR
experiments.

For this experiment, we transfected (see Appendix A for protocol
details) two samples of COS7-cells with two different DNAs:

• DNA coding for TC-tagged Aquamarine (construction I)

• DNA coding for Aquamarine

A 40 µM solution of PP-1 was added on both samples, as well
as 1 mM TCEP, 1 mM of β-mercaptoethanol and 500 µM of EDT.
Cells were imaged by fluorescence microscopy using the appropriate
spectral selection: the Aquamarine excitation in Figure 109A and the
biosensor excitation in Figure 109B and C.

In a second experiment, an excess of EDT (2 mM) was added on
cells expressing TC-tagged Aquamarine and incubated with PP-1 in
Figure 109D.

The fluorescence intensities of cells were evaluated by measuring
the intensity of a ROI in approximatively 40 cells.

The sample of cells transfected with DNA coding for TC-tagged
Aquamarine exhibits two populations when exciting in range of the
Aquamarine absorption. This means that all cells were not transfected.
The transfection efficiency was estimated around 80% (blue frame
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Figure 109: Fluorescence microscopy images of PP-1 incubated on cells ex-
pressing A. TC-tagged Aquamarine (Aquamarine excitation), B.
TC-tagged Aquamarine (biosensor excitation), C. Aquamarine
and D. TC-tagged Aquamarine with an excess of EDT. The chart
displays mean fluorescence intensities measured in a ROI in 40

cells.

in Figure 109) so there are 20 % of cells that do not express any
tagged-fluorescent protein (red frame in Figure 109A). When excit-
ing at the wavelength of the biosensor absorption, we observe fluo-
rescence emission of the biosensor only from the cells that exhibited
Aquamarine fluorescence intensity (blue frame in Figure 109B) PP-
1 bound to the construction I in cellulo led to a 7-fold fluorescence
increase with respect to PP-1 in cellulo.

The sample of cells transfected with DNA coding for Aquamarine
exhibits two populations when exciting in range of the Aquamarine
absorption as well since the transfection is not totally homogeneous.
The fluorescence intensity of PP-1 in the presence of Aquamarine in
cellulo was similar to the one of PP-1 alone in the cells.

Finally, adding 2 mM of EDT on the cells containing PP-1 and con-
struction I led to a total disappearance of the fluorescence. This means
that PP-1 is unbound from construction I and binds two molecules of
EDT.

We successfully detected in cellulo a TC-tagged protein by fluores-
cence modality but considering the poor 129Xe NMR in vitro results
of construction I, we decided not to go through the NMR experiment.
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9.5 conclusion

Some preliminary studies in eukaryotic cells have been performed in
this work. The main objectives were the study of the cell uptake of the
biosensor and determination of concentration and optimal conditions
enabling its unambiguous detection in 129Xe NMR in cellulo. Finally
a first step was performed in the in cellulo detection of a recombinant
protein via our TC-tag and biosensor.

Some additional experiments should be performed in order to ex-
tent this proof of concept to in cellulo detection of a recombinant pro-
tein by 129Xe NMR modality. To achieve this, a higher number of
cells (80 millions) must be transfected by a DNA coding for construc-
tion IV. In parallel, the same number of cells must express native
mCherry. Fluorescence and 129Xe NMR experiments must be per-
formed of these two samples, assessing the proof of concept of the
dual in cellulo detection of a recombinant protein by a smart biosen-
sor.
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O U T L O O K A N D C O N C L U S I O N

The study of a dual biosensor has allowed us to appreciate the chal-
lenging properties of xenon as a probe of in cellulo events. When en-
capsulated in the biosensor it has a different response whether the
biosensor binds its target or not. Moreover, experiments proved that
129Xe NMR is sensitive enough to differentiate two different targets.
We have observed caged xenon chemical shift variation up to 17.2
ppm when the biosensor is bound to a tagged peptide.
In addition, the biosensor exhibits a 24-times fluorescent enhance-
ment and a fluorescence emission shift upon binding. This fluoro-
genic capability has provided valuable assistance for the study of the
in cellulo internalization and distribution.

This approach has been extended to detection of recombinant pro-
teins with the example of the fluorescent protein family. This system
was particularly interesting as it added more information about the
binding thanks to the FRET phenomenon.

New 129Xe NMR detection schemes have been implemented in
order to lower the detection threshold. We were able to detect the
biosensor internalized in mammalian cells. This is paving the way for
intracellular detection of 129Xe NMR-based biosensors.

It should be pointed out that this project is a proof of concept. How-
ever, some criteria constrain its application as it is:

• Its synthesis, starting from the enantiopure cryptophane to the
functionalization by the ligand is complex and time consum-
ing. In addition the reaction yield is very poor due to the last
step consisting in grafting the ligand on only one COOH group
of the cryptophane moiety. The quantities obtained during this
study are not sufficient for performing many in cellulo experi-
ments.

• The biosensor contains two arsenic atoms that we need to deal
with. Even if it is outweighed by the presence of an antidote
preventing binding to endogenous proteins, residual non spe-
cific binding could lead to a slight toxicity for patients.

• Since the targeted peptidic sequence does not exist in endoge-
nous proteins, in vivo protein detection is not possible with the
actual design. Indeed, the tag sequence cannot be biologically
inserted in protein genes.
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The biosensor is a precursor of a new generation of multimodal
probes. Some improvements can already be envisioned:

• On the xenon host synthesis. Recently, we have reported a new
approach for the preparation of cryptophanes for 129Xe NMR
biosensing applications. [1] This strategy is based on a chemical
transformation of the cryptophane-223 skeleton. The originality
of this approach comes from the possibility of introducing a re-
active group different from the six reactive groups attached on
the phenyl rings on the central carbon of the propylenedioxy
linker. The secondary alcohol can then be used as a handle
for the synthesis of new reactive cryptophane derivatives. This
strategy also allows the synthesis of larger quantities of biosen-
sors.
This would be an appropriate solution for the poor reaction
yield of the bimodal biosensor. Indeed, with this strategy, we
can expect almost all cryptophanes to be mono-functionalized
by the CrAsH ligand. 129Xe NMR experiments should be con-
ducted first in order to verify that the exchange of the xenon is
not altered.
This way, the six other groups of the cryptophane moeity could
be functionalized by other chemical groups in order to modify
its interaction with the cell. A cell penetrating peptide can even
be grafted for an internalization optimization.

• On the ligand. The CrAsH ligand is an example of responsive
ligand among several other examples. It can therefore be inter-
changed with any other ligand that does not contain arsenic.
It is the case, for instance, for RhoBo biosensor where arsenic
atoms are replaced by boron atoms which are less toxic.[2]

Even if the biosensor is not designed for in vivo protein detection,
it can serve as a bimodal sensor for drug bio-distribution studies. It
is also possible to choose another ligand that binds endogenous pep-
tidic sequence. For instance, again the RhoBo responsive probe could
be employed for detection of tetraserine-containing proteins on the
carbohydrate-rich cell surface in the cytosol, as in [2].

This project takes benefit of a new generation of 129Xe NMR-based
biosensors.[3] Hyperpolarized xenon has outstanding properties, andA mini-review on

129Xe NMR-based
biosensors has been

published in
Analyst.

its combination with host molecules constitutes unique systems for
the longitudinal follow-up of biological events. The principle is rather
different from the strategies based on the delivery of species that have
been hyperpolarized by DNP or by parahydrogen, which are limited
by the longitudinal relaxation time of their nuclei. Our approach in-
cludes a first step for the delivery of the xenon biosensor, which will
hopefully reach its target. Then, in a second step completely distinct
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from the first step, hyperpolarized xenon can be introduced and imag-
ing can be performed. The latter operation can be repeated many
times. With regard to the final objective, namely, to monitor patho-
logical processes in vivo via this approach, 129Xe NMR-based sensors
offer huge potential and applications are under way.

This interdisciplinary project allowed me to work on each step of
the study. I had the chance to discover organic synthesis, purification
methods and chemical analysis. Then I was actively involved in the
optimization of the spin exchange optical pumping setup and the con-
ception of hyperpolarized 129Xe experiments. Research and improve-
ment on the SEOP setup are sill ongoing. Since this is not a standard
analysis tool - but an experimental research topic - the setup con-
stantly needs optimization, tailor-made technical implementations,
reparations etc. I was also involved in the creation of a transportable
setup, enabling hyperpolarized xenon transfers in the vicinity of med-
ical imagers (see Figure 110) and preliminary in vivo experiments in
Orléans. Collaboration with

Sandra Meme,
William Meme and
Frederic Szeremeta
(CBM Orléans).

Figure 110: Photographs of: A. the van transporting the hyperpolarization
setup. B. Hyperpolarization setup in the van.

In these experiments, 50 mg of hyperpolarized 129Xe - in 5 min-
utes at P = 0.15- 0.25 - were produced with our home-made setup
and delivered into the lungs of a mouse via inhalation. TRUE-FISP
images enabled us to observe a dynamic distribution of xenon into
the three lobes of the lungs (see one image on Figure 111A). We then
instilled 0.15 mmol of an hydrophilic cryptophane (Cr-AM) into the
lungs and recorded the evolution of the xenon signal through time
(see Figure 111B).

After 20 minutes assuring absorption of the cryptophane solution,
we were able to detect the signal of xenon gas into the lung as well as
the dissolved xenon encapsulated into the cryptophane. We repeated
the experiments for the two next hours and observed that the cryp-
tophane was likely to be metabolized through the alveoli of the lung.
Moreover, the signal is slightly shifted, proving that the xenon envi-
ronment has been modified. More work should be done in order to
confirm some hypotheses, such as the small peak next to the xenon

[ November 06, 2017– PhD thesis by Emilie Mari ]



180 outlook and conclusion

Figure 111: A. TRUE-FISP Coronal encoding images of hyperpolarized
129Xe in the lungs of a mouse. FOV 5 x 3 cm; Slice 3 cm; 64

x 64, only 2D-FFT, TE = 1.3 ms, TR = 2.6 ms and 0.5 s per image.
B. 0.15 mmol of Cr-AM were instilled into the lungs and 90

◦

Gaussian pulses of 800 µs centered at 60ppm were implemented
with TR = 73.5 ms, NS = 2 and TD1 = 512.

gas signal, which could correspond to the signal of xenon gas in the
alveoli.

Finally I extended my abilities in molecular biology techniques,
from the culture of bacterial and mammalian cells, the modification,
expression and purification of proteins, to the creation of modified
stable lines. I had the opportunity to compare NMR and optical imag-
ing techniques and even develop optimized 129Xe NMR sequences.

Thanks to the diversity of the research based on the use of xenon,
I was involved in many different projects. We studied with our col-
laborators from the Laboratoire de Chimie de l’ENS Lyon the 129Xe
NMR properties of the new biosensing platform cryptophane-223, in-
troducing a reactive group on the central carbon of the propylene-
dioxy linker. With our partners from Service de Chimie Bioorganique
et de Marquage and Institut Gustave Roussy, we conceived a 129Xe
NMR-based biosensor for detection of Non-Small Cell Lung Cancer.
This work has been performed in cellulo and will - with some im-
provements regarding the synthesized quantities - be extended to in
vivo experiments shortly.
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Efforts are now focused on extending this recent concept of 129Xe
NMR-based biosensing to other in vivo applications, because xenon
can cross the pulmonary alveolar-capillary barrier and other mul-
tilayer barriers such as the blood–brain barrier without significant
loss of hyperpolarization. However, the transition to in vivo experi-
ments requires some adaptations. Both the protocols used to deliver
hyperpolarized xenon and the NMR/MRI methods depend on the
targeted organ. It is expected that the local density of free hyperpo-
larized xenon will be lower than for in vitro situations, and that the
longitudinal relaxation time of xenon outside the host may be short
(shorter than in the host), which will result in a poorer signal-to-noise
ratio. Moreover, many analytes, ions, etc. can compete with xenon in
vivo for interactions with the host molecule. The 129Xe NMR-based
sensors and NMR methods have to be rethought in order to take into
account these changes.

Additional issues such as the delivery of hyperpolarized xenon and
biosensors to the receptors of interest also need to be addressed. For
instance, hyperpolarized xenon can be delivered into the bloodstream
by injection in physiological solutions or into the lung and brain via
inhalation.

To conclude, I was puzzled by the outstanding properties of xenon.
Easily hyperpolarizable by optical pumping, xenon offers a dramatic
increase in sensitivity in NMR and MRI. Another great quality of
xenon is its exceptional responsiveness to its environment which trans-
lates by a large variability of the NMR parameters (chemical shift, re-
laxation time, etc.), which allows a wide range of physical-chemical,
biological and medical applications.
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a.1 materials and methods

a.1.1 Solvents and reagents

All experiments in anhydrous conditions were carried out with dry
glassware under nitrogen dried on sodium carbonate and silica gel.
Anhydrous solvents are obtained by distillation under nitrogen at-
mosphere in presence of dehydrating agents: calcium hydride for
dichloromethane and sodium with benzophenone for diethyl ether
and tetrahydrofurane. If not indicated, commercial products were
used without further purification.

a.1.2 Organic synthesis

a.1.2.1 Compounds 11 and 12

(2.86g, 25.9 mmol) of resorcinol 9 is dissolved in MeSO3H (26 mL) un-
der inert atmosphere and stirring. (2.5g, 13 mmol) of 4-carboxyphtalic
10 is added into the solution. The mixture is not soluble and has a pale
orange color. We installed the refrigerant and the mixture is heated
at 85

◦C. After 20 minutes, the mixture becomes a red solution, and
above 70

◦C it becomes black. The solution is heated and stirred for
24 hours.

The black solution is then precipitated in 7 volumes of iced water:
a brown precipitate appears immediately. The precipitate is left into
a Buchner funnel fitted with a filter connected to a 250 ml flask. The
brown precipitate is placed in a heat chamber at 150

◦C in order to
dry up. The dried product is dissolved in NaOH 4M (30 mL) under
stirring. A solution of concentrated acid HCl is added drop by drop
until the solution precipitates. This precipitate is orange and pH of
the mixture is 1-2. NaOH and HCl are removed via a filtration on a
Buchner funnel where the precipitate is dissolved by ethanol solution.
The filtrate is dried under vacuum over an hour.

MS (ESI-TOF) m/z: 376.3 (100 %, [M+H]+)

187
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Figure 112: HPLC purification and MS analysis of compounds 11 and 12.

a.1.2.2 Compounds 13 and 14

The mixture of 11 and 12 (2 mg, 5.32 mmol) is dissolved in TFA (20

mL) under inert atmosphere. Then HgO is added (2.26 g, 10.4 mmol),
the solution turns yellow. The solution is stirred over night, the glass-
ware being wrapped in aluminum paper in order to prevent any con-
tact with UVs.

TFA is evaporated via rotary evaporator and the mixture is rinsed
with 90 mL of water: an orange precipitate appears. 13 and 14 are
filtrated and dried under vacuum.

MS (ESI-TOF) m/z: 1001.5 (100 %, [M+H]+) A yield of 70% is ob-
tained for this step. This product is not soluble in the common sol-
vents.

a.1.2.3 Compounds 15 and 16

Compounds 13 and 14 (180 mg, 0.18 mmol) is dissolved in N-Méthyl-
2-pyrrolidone ( 1.5 mL) which was prior dried on sieve over night.
AsCl3 (300 µL, 3.4 mmol), DIEA (250 µL, 1.4 mmol) and a solution
of Pd(OAc)2 (0.4 mg in 0.1 mL of NMP) are added. The solution is
stirred over night.

The mixture is poured into a solution of acetone (8 mL) and phos-
phate buffer (8 mL, 5.0 g of KH2PO4 and 4.0 mg of K2HPO4). We add
EDT (0.7 mL, 8.17 mmol), a red precipitate appears in a yellow solu-
tion. An extraction in CHCl3 is performed. A fraction of anhydrous
magnesium sulfate is added as a desiccant. The solution is frozen
for the night. The liquid phase containing NMP is removed and the
product is dissolved in toluene.
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Product is purified on a silica column and eluted by a solution ethyl
acetate (50%)/toluene (40%)/acetic acid (10%).

45 mg of compounds 15 and 16 are obtained. (35 % of yield). MS
(ESI-TOF) m/z: 708.5 (100 %, [M+H]+)

Figure 113: HPLC purification and MS analysis of compounds 15 and 16.

a.1.2.4 Compounds 17 and 18

To a solution of CrAsH isomers 15 and 16 (70 mg, 0.10 mmol) in
THF (15 mL), are added DIC (20 L, 0.13 mmol) and NHS (15 mg,
0.13 mmol). The mixture is stirred for 3 hours (the reaction can be
monitored by TLC or HPLC) then ethylene diamine (66 L, 1.0 mmol)
is added. The solution turns from orange to bright pink and a pre-
cipitate appears. The solvent is evaporated and the residue is passed
through a C18 silica patch. It is first rinsed with water to remove the
excess of ethylene diamine, then the rest of the mixture is eluted with
acetonitrile. The fraction is evaporated and gives 45 mg. After HPLC
purification, a mixture of 17, 18, 19 and 20 is obtained with two reten-
tion times. 17 and 18 (long retention time) are separated from 19 and
20 (short retention time). Both mixtures are invested in the next step,
only 17 and 18 give rise to the good product.
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MS (ESI-TOF) m/z: 750.7 (100 %, [M+H]+) The reaction yield is
20%.

Figure 114: HPLC purification and MS analysis of compounds 17, 18, 19 and
20.

a.1.2.5 Compounds MM-1 and MM-2

N-hydroxysuccinimide (1.0 mg, 8.6 mol) and N’-ethyl-Ndimethyl amino-
propylcarbodiimide (1.8 mg, 9.4 mol) were added under argon atmo-
sphere to a stirred solution of (M;M) (10 mg, 8.6 mol) in DMSO (0.1
mL). The mixture was stirred for 5 hours at room temperature. Then
a solution of crude 17 and 18 (4.5 mg) dissolved in DMSO (0.1 mL)
and triethylamine were added. The solution was then stirred for an
additional 16 hours at room temperature. The excess of triethylamine
was removed under reduced pressure. The solution was then directly
injected for purification on preparative HPLC chromatography (Luna
PFP column. Size: 150x21, gradient: 95/5 to 30/70 H2O/AcCN + 0.1
%HCOOH) to give MM-1 (2.4 mg, 15%) and MM-2 (1.4 mg, 9%) as
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orange solids.

• Compound MM-1:

1H NMR (700 MHz, D2O): δ 7.91 (d, 1H, J = 8.0 Hz), 7.78 (d, 1H,
J = 8.0 Hz), 7.37 (s, 1H), 6.98 (d, 1H, J = 9.2 Hz), 6.94 (d, 1H, J
= 9.2 Hz), 6.76-6.48 (m, 12H), 6.46 (d, 2H, J = 9.2 Hz), 4.60-4.18

(m, 24H), 4.16-3.89 (m, 4H), 3.84-3.46 (m, 8H), 3.37-3.22 (m, 6H),
3.21-3.03 (m, 6H).

Figure 115: Purity check of MM-1 on Luna PFP. Gradient H2O/AcCN 95:5
to 30:70.

Retention time for MM-1 is 20.12 min, the peak at 18.28 min
corresponds to the product without one arsenic. MS (ESI-TOF)
m/z: 1892.3 (100%, [M+H]+).

• Compound MM-2:

After HPLC purification, this compound was obtained as a mix-
ture of MM-1 and MM-2 (1:8). 1H NMR (700 MHz, D2O): δ 8.21

(s, 1H), 7.52 (d, 1H, J = 7.6 Hz), 7.12-7.05 (m, 3H), 6.89- 6.50 (m,
12 H), 6.46 (d, 1H, J = 9.2 Hz), 6.42 (d, 1H, J = 9.2 Hz), 4.73-4.20

(m, 22H), 4.18- 3.98 (m, 6H), 3.96-3.52 (m, 8H), 3.50-3.22 (m, 8H),
3.21-3.01 (m, 4H).

Retention time for MM-2 is 20.60 min, the peak at 20.05 min
corresponds to the isomer MM-1.

MS (ESI-TOF) m/z: 1892.5 (100%, [M+H]+).
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Figure 116: Purity check of MM-2 on Luna PFP. Gradient H2O/AcCN 95:5
to 30:70.

a.1.2.6 Compound PP-1

N-hydroxysuccinimide (1.0 mg, 8.6 mol) and N’-ethyl-Ndimethylamino
propylcarbodiimide (1.8 mg, 9.4 mol) were added under argon atmo-
sphere to a stirred solution of (P;P) (10 mg, 8.6 mol) in DMSO (0.1
mL). The mixture was stirred for 5 hours at room temperature. Then
a solution of crude 17 and 18 (4.5 mg) dissolved in DMSO (0.1 mL)
and triethylamine were added. The solution was then stirred for an
additional 16 hours at room temperature. The excess of triethylamine
was removed under reduced pressure. The solution was then directly
injected for purification on preparative HPLC chromatography (Luna
PFP column. Size: 150x21, gradient: 95/5 to 30/70 H2O/AcCN + 0.1
%HCOOH) to give PP-1 (17 %) as an orange solid.

1H NMR (700 MHz, D2O): δ 7.91 (d, 1H, J = 8.0 Hz), 7.78 (d, 1H,
J = 8.0 Hz), 7.37 (s, 1H), 6.98 (d, 1H, J = 9.2 Hz), 6.94 (d, 1H, J = 9.2
Hz), 6.76-6.48 (m, 12H), 6.46 (d, 2H, J = 9.2 Hz), 4.60-4.18 (m, 24H),
4.16-3.89 (m, 4H), 3.84-3.46 (m, 8H), 3.37-3.22 (m, 6H), 3.21-3.03 (m,
6H).

Figure 117: Purity check of PP-1 on Luna PFP. Gradient H2O/AcCN 95:5 to
30:70.
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Retention time for PP-1 is 20.07 min, the peak at 18.18 min corre-
sponds to the product without one arsenic.

MS (ESI-TOF) m/z: 1892.3 (100%, [M+H]+).

a.1.3 DNA Sequencing

DNAs have been sequenced by Genewiz company. Aquamarine is
represented in cyan, mCherry in purple, TC-tag in red and the spacer
in yellow.

Figure 118: DNA sequencing of construction I.

Figure 119: DNA sequencing of construction II.
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Figure 120: DNA sequencing of construction III.

Figure 121: DNA sequencing of construction IV.
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Figure 122: DNA sequencing of construction V.

a.1.4 Buffers

All concentrations are given in mM.

1. PBS (pH 7.4):

• KCl 2.7

• KH2PO4 1.5

• Na2HPO4 8.1

• NaCl 137

2. TE buffer

• Tris HCl (pH 8) 10

• EDTA 1

3. Buffer P1

• Tris HCl (pH 8) 25

• EDTA 10

• RNAse 20 µg/ml

4. Buffer P2

• NaOH 200
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• SDS 1%

5. Buffer P3

• K2CH−3CO2 5000

• CH3CO2H 1700

Commercial kit buffer are not described here.

a.1.5 Methods

a.1.5.1 Bacterial cell culture

Bacterial cell lines (DH5α and TOP10) were purchased from Invitro-
gen (Thermo Fisher Scientific, Waltham, MA). Bacteria were grown
from a single colony-forming unit over night in LB-broth (bacterial
medium) containing the corresponding selection antibiotics with shak-
ing (150 rpm) at 37

◦C.

a.1.5.2 Plasmid preparation

Plasmids were prepared either with a non-commercial protocol (in
the following called standard protocol) or with a commercial endo-
toxin free preparation kit (EndoFree Plasmid Maxi Kit, QIAGEN,
Venlo, Netherlands). After preparation, the plasmid solutions were
aliquoted and stored at -20

◦C.

A.1.5.2.1 standard protocol (mini-preparation) Bacteria
were grown over night in 5 ml LB broth. The suspension was cen-
trifuged (8 min at 3000 g) and the supernatant discarded. The re-
maining pellet was resuspended with 200 µl buffer P1 by vortexing.
For lysing the bacteria 200 µl of buffer P2 were added and mixed by
gentle inversion of the tube, then incubated for 5 min at room temper-
ature. The reaction was stopped by the addition of 200 µl of buffer P3,
which results in a fluffy white precipitation. After another centrifuga-
tion step (15 min, 13,000 rpm), the supernatant was transferred to a
fresh tube. The containing DNA was precipitated by the addition of
420 µl of pure isopropanol and gentle shaking. This step is followed
two more centrifugation steps (5 min, 13,000 g) and an intermediate
washing step with 420 µl of 70 % ethanol. The received DNA palled
was dried (approximately 5 – 10 min, 65

◦C) and resuspended with 40

µl water. The protocol gave a typical yield of 40 µg DNA.

A.1.5.2.2 endotoxin-free protocol (maxi-preparation) The
supplier’s protocol was followed: A bacteria pre-culture was started
from a single colony-forming unit and 5 ml LB broth containing the
appropriate selective antibiotic (shaking incubation at 300 rpm for 8 h
at 37 C). 200 µl of the pre-culture was used to inoculate 100 ml of fresh
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LB medium containing the selective antibiotic, which was incubated
over night at 37

◦C and shaking at 300 rpm. The next day, the bacteria
suspension was centrifuged at 3,000 g for 30 min at 4

◦C. The received
pellet was resuspended with 10 ml of the kit buffer P1 by vortexing,
then 10 ml of the kit lysis buffer P2 was added and mixed by inver-
sion. After an incubation of 5 min at RT, 10 ml of pre-cooled (4◦C) kit
buffer P3 was added and gently mixed by inversing. The suspension
was poured into the barrel of the QIAfilter Cartridge and incubated
for 10 min. Afterwards, the suspension was filtered through the car-
tridge. 2.5 ml of the kit buffer ER was added to the filtrate, mixed by
inversion, and then incubated on ice for 30 min. This solution was
filtered through an equilibration buffer QBT QIAGEN-tip by gravity
flow. The flowthrough was discarded. The tip was washed two times
with 30 ml of wash buffer QC. Importantly, the following steps were
performed using endotoxin-free plastic ware. The DNA was eluted
from the tip with 15 ml buffer QN and precipitated by adding 10.5
ml isopropanol. After a centrifugation step (3,000 g, 1 h, 4

◦C), the re-
ceived pellet was washed with 40 ml of 70% ethanol and centrifuged
again (3,000 g, 20 min). The final DNA pellet was air-dried for 5 –
10 min and redissolved in 500 µl of endotoxin-free buffer TE. The
protocol gave a typical yield of 400 µg DNA.

a.1.5.3 Plasmid cloning

The cloning conception has been achieved thanks to SnapGene soft-
ware.

The tetraCysteine tag gene was synthesized by Eurofins Genomics.
In the design of the sequence, we added two restriction sites in order
to be able to insert this DNA sequence into the host vector, directly
either at the N-terminal part or the C-terminal part. Also we placed
another chosen restriction site (unique) inside the sequence that al-
lows easy screening for positive clones. When digesting with the cor-
responding enzyme, only vectors containing the tetracysteine motif
are cut.

The bacterial vector of fluorescent proteins and insert (TC-tag) were
digested with the selected restriction enzymes (BsrGI and HindIII).
DNA vectors and fragments were purified on 0.8% agarose gels (DNA
gel extraction performed with E.Z.N.A.r Gel Extraction Kit (Omega
Bio-Tek, Norcross, GA)) and ligated using a T4 DNA ligase (all en-
zymes were purchased from New England Biolabs, Ipswich, MA).

As an example, Figure 123 shows the TG-tag sequence inserted into
the pProHex-Histag-Aquamarine vector at BsrGI and HindIII restric-
tion sites, in such a way Aquamarine is directly fused to Histag in
NH2-term and tetraCysteine tag in COOH-term.
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Figure 123: A Designed sequence of the insert coding for tetracystein core,
fused at the end of the Aquamarine sequence with NdeI restric-
tion site. B Map of the designed vector coding for Aquamarine
fused to Histag in NH2-terminal part and tetraCysteine tag in
COOH-terminus

a.1.5.4 Protein production and purification

Production and purification of His-tagged recombinant Aquamarine
and mCherry tagged with a tetracysteine sequence was performed
using Top10 bacterial cells. Competent cells were transformed with
the corresponding vector. A starter culture which was grown o.n.
was used (25 ml) to inoculate the 1.5 l of Luria-Bertani medium con-
taining 100 µg/ml selecting antibiotic ampicillin. At an OD600 =
0.6, protein production was induced by adding isopropyl-β-d-thio-
galactopyranoside (IPTG, 1 mM) and cultured for 18 h at 30

◦C. This
suspension was centrifuged and frozen. The cells were resuspended

[ November 06, 2017– PhD thesis by Emilie Mari ]



A.1 materials and methods 199

in lysis buffer (30 ml; 50 mM Tris–HCl, 5 mM 2-mercaptoethanol, 1

mM phenylmethylsulphonyl fluoride and 0.02 mg/ml DNase), and
sonicated. A centrifugation step (120,000 g, 1 h 30, 6

◦C) was per-
formed to remove debris. The received supernatant was filtered with
a 0.22 µm filter and diluted by a factor 2 with phosphate buffer
(30 mM NaH2PO4, 700 mm NaCl and 30 mm imidazole, pH 7.5).
A nickel-nitriloacetic acid agarose (Ni–NTA) column (15 ml; Sigma)
was loaded with this dilution and incubated for 1 h. Afterwards, the
protein was eluted (30 mM NaH2PO4, 100 mM NaCl and 150 mM im-
idazole, pH 7.5) and further concentrated. After a final dialysis step
(dialysis buffer: 30 mM phosphate, pH 7.4), the concentration of the
purified protein solution was measured by absorption and stored at
-20
◦C.

a.1.5.5 Eukaryotic cell culture

Eukaryotic cell line COS7 was obtained from American Type Culture
Collection, Manassas, VA. COS7 cells were cultured at 37

◦C and 5%
CO2 in DMEM containing 10% FBS, using 75 cm2 cell culture flasks.
For passaging, COS7 cells were washed three times with PBS and
incubated with 2 ml trypsin for 5 min at 37

◦C. Reaction was stopped
by adding 8 ml of growth medium. Cells were diluted 1/5 to 1/7,
the maximum passage number was P20. For 6-well plates cells were
counted with the aid of a Malassez counting chamber and diluted
to 4.5.10

5 cells/well, for 24-well plates cells were diluted to 1.0.10
5

cells/well.

a.1.5.6 Transient transfection of COS cells

The transfection efficiency was monitored with Flow Cytometry. We
tested different transfection reagents and finally decided to change
from Lipofectamine R© 2000 (Thermo Fisher Scientific, Waltham, MA),
which was routinely used in our group, to X-tremeGene HP DNA
transfection reagent (Roche Diagnostics GmbH, Germany) since the
latter provides a strongly increased cell viability after transfection, the
efficiency of the transfection was similar, though. Afterwards, the op-
timal ratio of DNA to transfection reagent was determined and found
to be 1 : 3 (DNA (µg) : XtremeGene HP (µl)). In the following, the
general procedure of the transfection will be explained: Cells were
seeded in 8-well Labtek plates the day prior transfection and trans-
fected following the suppliers’ instructions. For the X-tremeGene HP
based transfection, DNA was diluted with 200 µl OptiMEMr (Gibco,
life technologies) to a final total concentration of 0.2 µg/well together
with three times more transfection reagent (i.e. 1 µg DNA needs 3

µl transfection reagent). After an incubation of 30 min at 37
◦C, the

dilution was added to the cells containing 2 ml of regular growth
medium. Cells were used 24 to 48 h after transfection.
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a.1.5.7 Electrophoresis

Solutions of purified proteins were thawed on ice. Samples were
prepared by adding Laemli buffer (4% SDS, 20% glycerol, 10% 2-
mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris HCl,
pH approx. 6.8. at 1 : 1) to a final loading mass of 50 ng of puri-
fied protein. The solutions were denatured at 95

◦C for 5 min and
loaded to a Novexr NuPAGE Bis-Tris SDS-PAGE gel of 10% acry-
lamide (Thermo Fisher Scientific Inc., Waltham, MA). Elecrophoresis
was performed at 175 V for 30 – 45 min (buffer: NuPAGEr MES SDS
Running Buffer, Thermo Fisher Scientific).

a.1.5.8 Flow cytometry

Flow cytometry allows the measurements of fluorescence intensities
of microscopic particles (beads, yeast, bacteria eukaryotic cells. . . ). In
this method a liquid stream is transporting the particles through a
flow cell, where they are hit by one or several laser beams. The veloc-
ity of the stream is adjusted in a way which allows only the passage
of one cell at a time thus allowing a detection in a cell by cell manner.
Within minutes, several 10,000 to 100,000 cells can be detected and
counted, which gives statistically relevant results about the composi-
tion of a cell population. The flow cytometer is equipped with sev-
eral lasers, pinholes, dichroic mirrors, selection filters, and detectors
allowing the simultaneous detection of multi-coloured fluorescent la-
bels in the same cell. A cell passing through the laser beam scatters
light, which is detected by forward (FSC) and side scattered light
(SSC) detectors, respectively. The FSC (diffraction) is proportional to
the volume of the cell, the SSC (refraction) depends on the composi-
tion of the cell, e.g. its granulosity, size/composition of the nucleus,
and its vesicles. A dot plot of FSC against SSC allows the discrimina-
tion of live cells from debris or necrotic/apoptotic cells, and even a
differentiation of distinct cell types. The flow cytometer used in this
study is furnished with three lasers (405/488/561 nm) and detectors
for CFP, YFP (Yellow Fluorescent Protein), mCherry and FRET.

For this experiment, cells were transfected 20 – 24 h prior. The next
day, cells were incubated with biosensor for 1 hour at 37

◦C and rinsed.
Cells were detached with trypsin, washed with PBS, and kept in PBS
on ice. Aliquots of few ten thousands of cells were diluted in PBS and
passed through the cytometer.

For data analysis, the Summit software (Daco Colorado, Inc., Fort
Collins, CO) was used. We set a limit between auto-fluorescence and
fluorescence using non-transfected cells sample.
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a.1.5.9 Fluorescence microscopy

The FloRa wide field microscope is based on an inverted 4-port Leica
DM18 equipped with a Sola source (Lumencor), a universal stage, 6

filter cubes and a Hamamatsu Orca Flash 4 camera. It is controlled by
Metamorph software.

Confocal microscopy was performed on an inverted Leica DMI
6000 equipped with a 405 nm laser and a white light laser (470-670

nm), 4 filter cubes and 2 photomultiplier tubes (Hamamatsu 6357)
and 2 Hybride detectors (Hamamatsu). Photomultiplier tubes were
set at 800 V and power of laser at 20 %. We chose 512 x 512 the num-
ber of pixels and 400 Hz for the scan speed. It is controlled by LAS-X
software. We used the Hyb3 filter cube that allows us to observe the
fluorescence emission between 500 and 550 nm.

For fluorescence microscopy experiments, COS7 cells were cultured
in 8-well LabTek and incubated with biosensor for 1 hour in DMEM
and 30 % FBS. The cells were rinsed and imaged.

a.1.5.10 Fluorescence lifetime imaging

The FLIM setup is working with pulsed laser diodes at 440 nm for
samples with a cyan donor and at 466 nm for samples with a yel-
low donor (PicoQuant GmbH, Berlin, Germany) driven by a PDL 800

driver ( 100 ps FWHM, 20 MHz of repetition rate, PicoQuant GmbH,
Berlin, Germany). The excitation sources are coupled to a C1 scanning
head (Nikon) with a optical fiber. The scanning head was controlled
by the EZ-C1 software (Nikon). The excitation beam crossed an empty
position of the epi-fluorescence filter turret and was focused on the
sample through the microscope’s objective lens. The scanning head
probed a 100 x 100 µm maximum field of view with a laser pixel
dwell time of 61.44 µs. The TCSPC detection was inserted in the colli-
mated section just below the microscope objective. The pathway was
composed of a cube containing a dichroic mirror positioned at 45

◦

from the optical path (SWP-500, Lambda Research Optics, Inc. Costa
Mesa, CA), a focusing lens (f =20cm, Thorlabs, Newton, NJ), a set of
filters to select the FP fluorescence and remove the excitation light
and a detector (MCP-PMT, Hamamatsu). For CFPs, the dichroic mir-
ror is a SWP-500 filter (Lambda Research Optics, Inc. Costa Mesa,
CA) and the set of filters is composed of one 480AF30 filter (Omega
Optical Inc., Brattleboro, VT) and two 458 nm Razor Edge Longpass
filters (Semrock, Rochester, NY). The signal was then amplified by a
fast pulse preamplifier (Phillips Scientific, Mahwah, NJ) before reach-
ing the PicoHarp300 TCSPC module (PicoQuant).The counting rate
of the recording was routinely between 50,000 and 100,000 cts.s−1.
Lifetime measurements were analysed by the SymPhoTime software
(v5.3.2, PicoQuant), which calculates the intensity image and the fluo-
rescence lifetime image of the observed field of view. The fluorescence
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decay of a chosen ROI was calculated by SymPhoTime and exported
for further analysis in IGOR Pro (Wavemetrics, Lake Oswego, OR).
Each field of view was scanned enough times to accumulate 1 – 6.10

6

cts per decay.

a.1.5.11 Evaluation of the biosensor quantity internalized in the cells

With Ccellbiosensor the biosensor concentration internalized in the cells,
we can define Ncell = Ccellbiosensor Vcell which corresponds to the
number of molecules of bisoensor in the cell.

Let us define Ntot the total number of fluorescent cells inside the
well of a 8-well LabTek plate. We can then express the concentration
of biosensor in the well Ctot.

Ctot =
NcellNtot

Vwell
=
CcellbiosensorVcellNtot

Vwell
(16)

We then conducted a calibration experiment with different concen-
tration of biosensor bound to PG peptide (from 200 nM to 15 µM)
in a 8-well LabTeck plate (V = 150 µl). We measured the maximal
fluorescence intensity (at λ = 542 nm) and plotted it against the con-
centration of biosensor. We obtained the ratio α that allows us, in the
same condition experiment, to evaluate the biosensor concentration
from a given intensity of fluorescence.

When Ntot cells in a well, the corresponding fluorescence of the
well is:

Icellfluo = αCtot = α
CcellbiosensorVcellNtot

Vwell
(17)

Finally:

Ccellbiosensor =
IcellfluoVwell

αVcellNtot
(18)
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Résumé : Le marquage, la détection et l’étude 

de protéines in cellulo sont essentiels pour la 

compréhension au niveau moléculaire des 

mécanismes biologiques. Des techniques 

sensibles et qui engendrent peu de perturbations 

sur le système étudié sont indispensables. Hélas 

les techniques de pointe historiquement utilisées 

telles que l’optique font déplorer une forte 

perturbation du système en raison de la taille 

imposante des fluorophores utilisés. L’IRM 

quant à elle possède une sensibilité de détection 

très faible. Ce projet propose une méthode 

innovante de détection de protéines en 

combinant ces deux techniques prometteuses et 

hautement complémentaires pour une étude 

moléculaire de processus intracellulaires.  

Les deux avancées techniques permettant 

l’élaboration d’un tel projet sont l’utilisation 

d’un fluorophore activable de très petite taille et 

l’exploitation de la grande sensibilité d’un gaz 

non toxique, le xénon, dont le spin nucléaire est 

hyperpolarisé. Combiner ces deux techniques 

d’imagerie novatrices permet d’obtenir des 

informations au niveau moléculaire. Ce projet 

sera une percée dans le suivi de protéines 

recombinantes et l’étude des mécanismes 

intracellulaires associés. In fine, le but est de 

créer le premier traceur capable de détecter sa 

cible et de s’activer à la fois en fluorescence et 

en IRM.  
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Abstract Full understanding of intracellular 

phenomena involves sensitive and non-invasive 

detection. A less disruptive method than 

labeling with fluorescent proteins uses binding 

between a tag of only six natural amino acids 

that can be genetically incorporated into the 

protein of interest and a small molecule called 

FlAsH. This molecule has the ability to 

fluoresce only when it binds to its tetracysteine 

target. Another technique based on 
129

Xe NMR 

has emerged. Xenon is hyperpolarized to 

enhance the NMR signal by orders of 

magnitude and its reversible 

encapsulation in functionalized host systems 

gives it a specific spectral signature. Capability 

of the noble gas to cross cell membranes 

without losing its polarization enables in 

cellulo investigations.This doubly smart probe 

is highly promising for monitoring, studying, 

detecting recombinant proteins.  Structural, 

chemical and lateral resolutions are combined 

by the bimodality of this new concept, which 

can be extended to in cellulo detection. 
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