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Introduction

M

ultiferroics represent an appealing class of multifunctional materials that simultaneously exhibit several ferroic orders such as ferroelectricity, ferromagnetism and ferroelasticity. The class of these multiferroics is also extended to include antiferroic orders such as antiferroelectricity and antiferromagnetism. They are considered as multifunctional materials because they possess physical properties that are useful in applications. The importance of these multifunctional materials is the existence of a cross-coupling between the magnetic and electric orders, termed magnetoelectric coupling. This coupling enables the control of the ferroelectricity by magnetic fields and also the tuning of magnetization by electric fields. Such magnetoelectric coupling is very important for device applications such as storing information in non-volatile memories.

It has been argued that the presence of electrons in the d-orbitals in some transition metal oxides (favorable for magnetism) inhibits hybridization with the p-orbitals of the surrounding oxygen-anions and thus a cation displacement (necessary for ferroelectricty).

On the other hand, a ferroelectric material has to be a good insulator so that mobile charges do not neutralize ferroelectric polarization, but most ferromagnets are said to be conductor. Thus it is not obvious to find ferroelectric-magnets which present a direct magnetoelectric coupling. However, it was found that the transition metal oxide CuCrO 2 has a strong magnetoelectric coupling which attracts a lot of researchers attentions in the last few years. CuCrO 2 with the delafossite structure is considered as a prototype quasi two dimensional antiferromagnetic triangular lattice. It is a p-type transparent semiconductor which exhibits high electric conductivity as well as thermoelectric properties.

In this fundamental work, we investigate the magnetoelectric properties of CuCrO 2 by means of Monte Carlo simulations and ab initio calculations. The validity of the results presented in this thesis was verified through their qualitative agreements with the experimental measurements.

This thesis consists of four chapters organized as follows

• Chapter 1 is devoted to give a brief background on magnetism as well as descriptions about the multiferroic CuCrO 2 and what is done in literature on this system.

• Chapter 2 describes the principle of Monte Carlo method and the physical models used in our simulations. • Chapter 4 presents the Monte Carlo simulation results of the effect of magnetic dilution on the magnetoelectric properties of CuCr 1-x Ga x O 2 (0 ≤ x ≤ 0.3).

•
• Finally, we sum up the main results presented in this dissertation in a general conclusion, ending with some perspectives that could be done on this system.

CHAPTER

Generalities

T ransition metal oxides are compounds composed of oxygen atoms bound to transition metals. They are commonly used for catalytic activities and semiconductors. In particular, the transition metal oxide CuCrO 2 has recently received a lot of attention after the discovery of its p-type transparent conductivity and magnetically driven ferroelectricity controlled by an applied magnetic field. This chapter is devoted to a general overview about some physical bases in magnetism. Then we present detailed explanations about CuCrO 2 and its magnetic and ferroelectric properties.

Background

Materials are said to be magnetic if they have a response to an applied external magnetic field. The origin of magnetism in these materials lies in the orbital and spin momentum of electrons. Magnetism can be divided into two main groups. The first group consists of magnetic materials where there is no interaction between their magnetic moments known as paramagnets and diamagnets. The second group includes magnetic materials like ferromagnets, antiferromagnets, ferrimagnets, speromagnets, sperimagnets . . . in which their magnetic moments are coupled to each others. This coupling is known as the exchange interaction and is rooted to the overlap of electrons orbitals in conjunction with Pauli's exclusion principle. Whether it is a ferromagnet, antiferromagnet or ferrimagnet, exchange interactions order the individual moments with their neighboring atoms below a certain temperature called the critical temperature. This ordering is parallel in ferromagnetic materials, producing a net non-zero magnetization below the critical temperature called Curie temperature T C . However, in the case of antiferromagnetism, the ordered magnetic moments give a net zero magnetization below the critical temperature termed Néel temperature T N .

Magnetic moment

By definition, the magnetic moment ( m) is a vector quantity which results from the motion of the electric charge (orbital angular momentum L) and the spin angular momentum

( S) defined as m = -g J µ B J (1.1)
where g J is the Landé factor, µ B is the Bohr magneton and J being the total angular momentum defined by

J = L + S (1.2) 
In transition metal (TM) oxides such as CuCrO 2 , the orbital angular momentum for the 3d Cr 3+ ions is quenched L = 0 , and therefore the magnetic moment of each magnetic ion is

m = -g s µ B S (1.3)
with g s (≡ g) = 2.

Magnetic interactions

The magnetic energy is divided into different contributions such as exchange energy E ex , dipolar interaction energy E dip , anisotropic energy E a , and Zeeman energy E Z associated to an applied external magnetic field. Thus globally, total energy E tot can be written as

E tot = E ex + E dip + E a + E Z (1.4)
In the following, we will define each contribution of this energy.

Exchange interactions

Exchange interactions are the couplings responsible for the magnetic ordering below the critical temperature in a magnetic material. Such interactions directly enter into competition with the thermal agitation. Above the critical temperature (T C or T N ), the effect of temperature becomes more important than any order imposed by the effect of these interactions and therefore the magnetic ordering is lost (paramagnetic state).

Exchange interactions exist in different mechanisms depending on the material under consideration (metals differ from insulators). The most important mechanisms are explained below.

Direct exchange interaction (Metals)

Direct exchange interaction arises from a direct overlap of the electronic wave functions of the neighboring atoms (ions) in metals. It gives a strong but short range coupling which decreases rapidly as the ions are separated.

RKKY interaction (Metals)

RKKY interaction named after Ruderman, Kittel, Kasuya and Yosida [START_REF] Ruderman | Indirect exchange coupling of nuclear magnetic moments by conduction electrons[END_REF][START_REF] Kasuya | A theory of metallic ferro-and antiferromagnetism on zener's model[END_REF][START_REF] Yosida | Magnetic properties of cu-mn alloys[END_REF] is an indirect exchange interaction which couples magnetic moments over relatively large distances.

It is the dominant exchange interaction in rare-earth metals where there is little or no direct overlap between the wave functions of the neighboring electrons. In this case, the interaction between two magnetic moments is mediated by the polarization of the conduction electrons.

Super-exchange interaction (Insulators)

Super-exchange or Kramers-Anderson super-exchange interaction [START_REF] Anderson | Antiferromagnetism. theory of superexchange interaction[END_REF] is an another form of the indirect exchange interaction which is dominant in insulators especially in TM oxides. It describes the interaction between magnetic cations of the same charge that are far from each other to be connected by a direct exchange interaction, but coupled over a larger distance through a non-magnetic anion. Accordingly, in the present study of the TM oxide CuCrO 2 , all the exchange interactions are of the super-exchange type taking place between Cr 3+ ions through the intermediary non-magnetic oxygen and copper ions.

Let S i and S j be the spins of two neighboring magnetic atoms i and j, then the exchange energy can be expressed as

E ex = - i,j J ij S i • S j (1.5)
with J ij stands for the exchange interaction between interacting spins S i and S j . J ij > 0 indicates a ferromagnetic interaction, which tends to align the spins parallel; J ij < 0 indicates an antiferromagnetic interaction, which tends to align the spins anti-parallel.

Eq. (1.5) is known as the Heisenberg Hamiltonian if S i and S j are 3D vectors.

Dzyaloshinskii-Moriya exchange interaction (Insulators)

Some antiferromagnetic materials possess a lowering symmetry (inversion symmetry breaking) resulting from a canted magnetic ordering below T N . Such symmetry breaking leads to an additional kind of exchange interaction called the Dzyaloshinskii-Moriya (DM) interaction or the antisymmetric exchange interaction [START_REF] Crépieux | Dzyaloshinsky-moriya interactions induced by symmetry breaking at a surface[END_REF]. This antisymmetric DM interaction is the relativistic correction of the usual super-exchange interactions and its strength is proportional to the spin-orbit coupling. The energy contribution of this interaction can be expressed as

E DM = - i,j D ij • ( S i × S j ) (1.6)
with D ij being the DM interaction vector as shown in Fig. 1.1. This energy is minimized when S i is perpendicular to S j within a plane perpendicular to D ij . Thus this antisymmetric exchange interaction favors canted spin structures. Such interaction is important for understanding the mechanism of induced electric polarization in the recently discovered classes of multiferroics. 

Biquadratic exchange interaction (Insulators)

This is another type of the indirect exchange interaction that generally exists in rareearths and considered to be a correction term to the super-exchange interaction when extending the calculations of Kramers [START_REF] Kramers | L'interaction entre les atomes magnétogènes dans un cristal paramagnétique[END_REF] from third to fifth-order perturbation theory as proposed by Anderson [START_REF] Anderson | Antiferromagnetism. theory of superexchange interaction[END_REF][START_REF] Anderson | New approach to the theory of superexchange interactions[END_REF]. Its energy contribution can be represented by

E Biq = -β i,j S i • S j 2 (1.7)
with β being the strength of the biquadratic term.

Dipolar interaction

Considering two magnetic moments m i and m j separated by a distance r ij as shown in Fig. 1.2, their dipolar energy can be expressed as

E ij = µ 0 4πr 3 ij m i • m j - 3 r 2 ij ( m i • r ij ) ( m j • r ij ) . (1.8) 
Such energy pair is minimized when both m i and m j are aligned parallel to each others along the direction of r ij . However for an ensemble of magnetic dipoles, dipolar interaction induces frustration in the system because it is not possible to satisfy all the energy pairs. Note that dipolar interaction is small between two magnetic moments of few µ B compared to the exchange energy -like in our case of CuCrO 2 : m Cr 3+ = 3µ B -and can be neglected. However, it becomes more important between ferromagnetic nanoparticles owning magnetic moments of 10 3 -10 5 µ B .

FIG. 1.2. Schematic representation of the dipolar interaction between two magnetic dipoles m i and m j separated by a distance r ij .

Magnetic anisotropy

Magnetic anisotropy is the direction dependence of the magnetic energy. The magnetic moments of magnetically anisotropic materials will tend to align along an easy axis, which is an energetically favorable direction. In bulk materials, the magnetic anisotropy is a resultant of magnetocrystalline anisotropy, magnetoelastic anisotropy and the shape anisotropy in ferromagnets.

Magnetocrystalline anisotropy

Magnetocrystalline anisotropy results from the spin-orbit coupling and the crystal field interaction. One of the forms of the magnetocrystalline anisotropy is the single ion anisotropy. The single ion contribution is essentially due to the electrostatic interaction of the orbital state of a magnetic ion and the surrounding crystalline field which is very strong. The crystal field interaction tends to stabilize particular orbitals and is transferred to the spin moments via the spin-orbit coupling which tends to align the magnetic moments along a particular crystallographic direction. For a uniaxial crystal with an easy axis anisotropy along the z direction (or the c direction), the single ion anisotropic energy is defined as

E a = -D z i S 2 z (1.9)
with D z is the single ion anisotropy constant.

Magnetocrystalline anisotropy has a great influence on industrial uses of ferromagnetic materials. Materials with high magnetocrystalline anisotropy usually have high coercivity; i.e., they are hard to demagnetize. These are called "hard" ferromagnetic materials, and are used to make permanent magnets. Single-ion anisotropy is the major source of magnetocrystalline anisotropy in hard ferromagnetic materials. On the other hand, materials with low magnetocrystalline anisotropy usually have low coercivity, and hence their magnetization can be easily changed. These materials are called "soft" ferromagnets used to make magnetic cores for transformers and inductors. In general, the anisotropic energy found in TM bulk compounds is dominated by the magnetocrystalline anisotropy [START_REF] Daalderop | Magnetocrystalline anisotropy and orbital moments in transition-metal compounds[END_REF].

Magnetoelastic anisotropy

Magnetoelastic energy results from magnetostriction, i.e., a deformation in the crystal along a certain direction. If the lattice is changed by a strain [START_REF] Kittel | Physical theory of ferromagnetic domains[END_REF], the distances between the magnetic atoms are modified and hence the interaction energies are different. This produces magnetoelastic anisotropy. Such lattice deformation can be due to magnetic interactions in a given material and thus magnetic and elastic properties depend on each other. Consider a crystal under a certain strain σ. The magnetostriction constant or the magnetoelastic coupling constant, λ, is defined along the deformation direction. Then, the magnetoelastic energy per unit volume is given by

E σ = - 3 2 λσsin 2 θ (1.10)
with θ being the angle between the magnetization direction and the strain direction. The magnetoelastic energy is said to be zero in non-deformed lattices.

Zeeman energy

Zeeman energy is the energy of the magnetic moments under the effect of an applied external magnetic field B which is expressed as

E Z = -B • i m i (1.11)
where it tends to align the magnetic moments along its direction.

Geometric magnetic frustration

Magnetic frustration exists in a magnetic material when all the magnetic interactions cannot be fully satisfied. It requires antiferromagnetic exchange interactions to exist.

There are several ways in which magnetic frustration can arise. When it arises purely from the geometry of the lattice, it is then called geometric magnetic frustration. Such kind of magnetic frustration is mainly found in TM oxides which crystallize in certain lattices which are prone to frustration due to their topologies such as triangular lattices or tetrahedra with shared corners, edges or faces. A simple example that can explain this phenomenon is a triangular plaquette as shown in Fig. 1.3a. Three magnetic ions are located at the corners of the triangle with antiferromagnetic interactions between them; the energy pair is minimized when each spin is aligned opposite to its neighbors.

Once the first two spins align anti-parallel, the third spin cannot simultaneously be anti-parallel with the two other spins. Consequently, it is impossible to find a minimal energy state in which all the interactions are fully satisfied. Then the spins will tend to organize themselves in a minimal energy state where the antiferromagnetic interactions are not fully satisfied. Such minimal energy state is not unique, frustration usually increases the degeneracy of the ground state (GS) giving rise to different physics. In such triangular lattices, the frustrated spin configuration possesses a minimal energy state that corresponds to two degenerate states of 120 • (Fig. 1.3b) and 240 • (Fig. 1.3c). In order to measure the degree of geometric magnetic frustration, one can define a parameter F written as

F = 1 - E GS E min (1.12)
where E GS is the energy of the GS and E min is the magnetic energy if all the exchange interactions can be fully satisfied, and is given by

E min = - 1 2 S 2 (z 1 |J 1 | + z 2 |J 2 | + z 3 |J 3 | + 2|D z |) (1.13)
with z 1 , z 2 and z 3 are the numbers of first, second and third nearest neighbors, respectively.

In the non-frustrated systems, E GS = E min and therefore F = 0 while E GS > E min in frustrated systems which yields to F > 0. F -→ 1 reflects the fact that the magnetic configuration of a given system is highly frustrated.

Antiferromagnetic triangular lattices

The Heisenberg antiferromagnet on a triangular lattice is one of the prototype examples of frustrated magnetic systems which has been studied for several decades. The magnetic properties of the triangular antiferromagnetic lattice with an easy axis anisotropy can be described through the following Hamiltonian

H = - i,j J ij S i • S j -D z i (S z i ) 2 (1.14)
where D z > 0 is the single ion anisotropy constant for an easy axis along the z axis.

In the presence of applied external magnetic fields, the system exhibits a rich magnetic phase diagram consisting of exotic phases [START_REF] Yun | Classical heisenberg antiferromagnet on a triangular lattice in the presence of single-ion anisotropy[END_REF]. At low temperatures, successive magnetic phase transitions occur as the applied magnetic field is increased.

Ground state magnetic configuration without anisotropy

A magnetic configuration can be commensurate or incommensurate with respect to the crystal periodicity. An incommensurate magnetic configuration is a non periodic magnetic structure unlike a commensurate one. In general, a magnetic configuration is defined by a propagation vector q = (h, k, l) expressed in the reciprocal lattice which can be determined by neutron diffraction experiments. The magnetic moment can be expressed as function of q through the following relation [START_REF] Herpin | Théorie du magnétisme[END_REF] 

m = A exp(i q • R ) (1.15)
with A being a complex vector and R is the position of m in the lattice.

Since m is real, Eq. (1.15) can be expressed as

m α = λ α cos( q • R -ϕ α ) (α = x, y, z) (1.16)
It can be shown that, in helimagnetic structures, all the magnetic moments lie in the same plane known as the spiral plane. In our case of CuCrO 2 , a hard axis anisotropy exists along the x axis ([110] direction) and consequently the yz plane is the spiral plane, and therefore we can write

       m x = 0 m y = λ y sin( q • R ) (1.17) m z = λ z cos( q • R -ϕ)
And since all magnetic moments have the same magnitude, we can write

m( R ) 2 = m(-R ) 2 = m( 0) 2 (1.18)
which gives

λ 2 y sin 2 ( q • R ) + λ 2 z cos 2 ( q • R -ϕ) = λ 2 y sin 2 ( q • R ) + λ 2 z cos 2 ( q • R + ϕ) = λ 2 z cos 2 (ϕ) (1.19) 
This provides

sin(2 q • R ) sin(2ϕ) = 0 (1.20)
But q • R can take any value whatever the vector R . Then we remain with sin(2ϕ) = 0 =⇒ ϕ = 0 and λ y = λ z = m and consequently the solution in the helimagnetic structure can be written as

       m x = 0 m y = m sin( q • R ) (1.21) m z = m cos( q • R )
Now, in the triangular antiferromagnet CuCrO 2 , the propagation vector is found to be along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction such that h = k and l = 0 [START_REF] Soda | Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO 2 with proper-screw order[END_REF][START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Frontzek | Magnetic structure of CuCrO 2 : a single crystal neutron diffraction study[END_REF][START_REF] Poienar | Structural and magnetic properties of CuCr 1-x Mg x O 2 by neutron powder diffraction[END_REF][START_REF] Poienar | Spin dynamics in the geometrically frustrated multiferroic CuCrO 2[END_REF] providing that q = (k, k, 0).

Thus it is very important to provide an analytical verification of these observations (h = k) before proceeding in further explanations. Consider a magnetic configuration with a propagation vector q = (h, k, 0) propagating along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] interaction J 1 . The exchange energy per spin due to the first nearest neighbors is then written as

E ex (h, k) = -S 2 {J 1 cos(2πh) + J 1 cos(2πk) + J 1 cos (2π(h + k))} (1.22)
Thus the minimization of Eq. (1.22) w.r.t h and k gives Therefore, assuming that this formalism holds true for small J 2 and J 3 , we can express the GS exchange energy per spin due to the first, second and third nearest neighbors as a function of q = (k, k, 0) in the following expression

     ∂E ex (h, k) ∂h = 0 =⇒ J 1 sin (2π(h + k)) + J 1 sin (2πh) = 0 (1.23) ∂E ex (h, k) ∂k = 0 =⇒ J 1 sin (2π(h + k)) + J 1 sin (2πk) = 0 (1.
E ex (k) = -S 2 [2J 1 cos(2πk) + J 1 cos(4πk) + 2J 2 cos(6πk) + J 2 + 2J 3 cos(4πk) + J 3 cos(8πk)] (1.30)
where J 1 , J 2 and J 3 are the isotropic exchange interactions up to the 3 rd nearest neighbors as illustrated in Fig. 1.4.

1.1.4.2 Energy of the 120 • GS configuration with a uniaxial anisotropy It was shown that the GS configuration of an antiferromagnetic triangular magnet in the Heisenberg model is the degenerate 120 • (or 240 • ) structure with three magnetic sublattices [START_REF] Greedan | Geometrically frustrated magnetic materials[END_REF] as shown in Fig. 1.5a. For three dimensional vector spins and isotropic exchange interactions, the degeneracy of the 120 • GS configuration is infinity because these three sublattices can freely rotate within the spiral plane of the system. However, if the Hamiltonian has an easy axis anisotropy, the spiral plane will contain this easy axis and therefore the degeneracy of the 120 • GS configuration decreases. Then if we assume that one of the three sublattices, S 1 , is making an angle θ with the easy axis (z axis) as seen in Fig. 1.5b, then S 2 makes an angle 120 • -θ and S 3 makes an angle 120 • + θ with the z axis. Hence, the anisotropic energy for the three spins can be expressed as

E a = -D z (S z 1 ) 2 + (S z 2 ) 2 + (S z 3 ) 2 (1.31) with S z 1 = Scosθ, S z 2 = Scos(120 • -θ) and S z 3 = Scos(120 • + θ). Then E a = -D z S 2 cos 2 θ + cos 2 (120 • -θ) + cos 2 (120 • + θ) = - 3 2 D z S 2 (1.32)
which is independent of θ. Therefore, in the perfect 120 • configuration, the spins can still rotate freely in a spiral plane containing the easy axis without constraints that one sublattice should follow this easy axis. Then in this case, i.e. k = 1/3, Eq. (1.30) is now written as

E 120 • = S 2 3 2 J 1 -3J 2 + 3 2 J 3 - 1 2 D z (1.33)

Curie-Weiss law

In paramagnetic materials, the magnetization (M ) is only induced under the effect of an applied magnetic field ( B). If B is small enough, then M is approximately proportional to B. For a given value of B, M is inversely proportional to the temperature (T ) of the system. Such behavior is illustrated in Fig. 1.6 and is described by the Curie law given by

M = C H T (with H = B/µ 0 ) (1.34)
where C is the Curie constant given as

C = µ 0 N m 2 ef f 3k B (1.35)
with N being the number of magnetic moments per unit volume, µ 0 is the vacuum permeability, k B is the Boltzmann constant and m ef f = g J µ B J(J + 1) is the effective magnetic moment.

By definition, the linear magnetic susceptibility is given by

χ = ∂M ∂H H=0 (1.36)
which is equal to M/H when H is sufficiently small and M (H = 0) = 0. Therefore the paramagnetic linear susceptibility is written as

χ = C T (Curie law) (1.37)
The plot of 1/χ versus temperature is linear as shown in Fig. 1.7. From such a plot we can extract the characteristic properties of the system such as the effective magnetic moment per atom. However, in ferromagnetic, antiferromagnetic or ferrimagnetic materials 1/χ deviates from such linear behavior due to the spin ordering that takes place below the critical temperature (T C or T N ). In these materials, the system becomes paramagnetic above T C or T N and obeys the Curie-Weiss law given by

χ = C T -θ CW (1.38)
where θ CW is known as the Curie-Weiss temperature. According to the molecular field theory, θ CW = T C in ferromagnetic materials. However, θ CW = -T N in non-frustrated antiferromagnets while θ CW < -T N in frustrated antiferromagnets as illustrated in C. According to the molecular field theory [START_REF] Smart | Effective Field Theories of Magnetism[END_REF][START_REF] Coey | Magnetism and Magnetic Materials. EngineeringPro collection[END_REF], the molecular fields acting on each sublattice can be written as

H i A = n AA M A + n AB M B + n AC M C + H H i B = n BA M A + n BB M B + n BC M C + H H i C = n CA M A + n CB M B + n CC M C + H (1.39)
where

n AA = n BB = n CC = n intra > 0 and n AB = n BA = n AC = n CA = n BC =
n CB = n inter < 0 are the intrasublattice and intersublattice molecular field constants, respectively, and H is an applied magnetic field. In the paramagnetic region above T N and

under small H, M α = χH i α with χ = C /T such that C = µ 0 (N/3)m 2 ef f /3k B = C/3.

Hence we get

M A = (C /T )(n intra M A + n inter M B + n inter M C + H) M B = (C /T )(n inter M A + n intra M B + n inter M C + H) M C = (C /T )(n inter M A + n inter M B + n intra M C + H) (1.40)
The condition for the appearance of a spontaneous sublattice magnetization is that these equations have a nonzero solution when H = 0. This means that the determinant of the system (1.40) must be zero. This yields to

C T = 1 n intra -n inter (1.41)
and consequently T N = C (n intra -n inter ). The paramagnetic linear susceptibility above T N is evaluated by Eq. (1.37) where

M = M A + M B + M C . By solving Eq. (1.40), i.e. by making (M A -M B ) and (M B -M C ), we get M A = M B = M C . Therefore Eq. (1.37) becomes χ = 3M A H (1.42)
However, by substituting

M A = M B = M C in the equation of M A in (1.40) we obtain M A = C T -C (n intra + 2n inter ) (1.43) Hence Eq. (1.42) becomes χ = C T -C (n intra + 2n inter ) (1.44)
Therefore by the analogy of Eq. (1.44) with Eq. (1.38) we obtain the theoretical value of the Curie-Weiss temperature written as

θ CW = C (n intra + 2n inter ) = C 3 (n intra + 2n inter ) (1.45)
It is important to note that the molecular field constants, n intra and n inter , can be related to the Heisenberg super-exchange interaction J through the following formula [START_REF] Coey | Magnetism and Magnetic Materials. EngineeringPro collection[END_REF] 

n intra , n inter = zJ µ 0 (N/3)g 2 µ 2 B (1.46)
where z is the number of nearest neighbor interactions. In our case of CuCrO 2 , Fig. 1.4 shows that n intra results from the 6 second neighbors and n inter results from 3 first neighbor interacting spins and 3 third neighbor interacting spins. Hence

n intra = 6J 2 µ 0 N g 2 µ 2 B = J 2 C 2S(S + 1) k B n inter = 3J 1 + 3J 3 µ 0 N g 2 µ 2 B = J 1 + J 3 C S(S + 1) k B (1.47)
Therefore, Eq. (1.45) becomes

θ CW = 2S(S + 1) k B (J 1 + J 2 + J 3 ) (1.48)

A brief overview of spin glasses

Detailed explanations on spin glasses can be found in Refs. [START_REF] Cannella | Magnetic ordering in gold-iron alloys[END_REF][START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF][START_REF] Maletta | Chapter 84 spin glasses[END_REF].

A spin glass is a disordered frustrated magnet, where its magnetic moments are localized and not ordered in a regular pattern so that no long range order can be established. Nevertheless these compounds are characterized by a spin glass freezing temperature denoted by T SG which refers to a kind of a second order phase transition from a paramagnetic phase to a freezing phase where all the spins freeze into random directions. This freezing state is characterized by a very slow equilibration after perturbation and a high dependency on its magnetic history.

Magnetic configurations in spin glasses below T SG are out-off-equilibrium configurations known as "metastable" states because they are "stuck" in stable configurations other than the lowestenergy configuration which makes them infinitely degenerate. Spin glass magnets can be classified into metallic and insulating spin glasses according to their conduction properties. Till now, there is neither a unique experiment nor a solvable analytical realistic model which are able definitely to identify a sample as a spin glass. Thus before classifying any material as a spin glass, it is very important to know several characteristic properties that should exist. Basically, two important and necessary ingredients should coexist: frustration and disorder. Additionally, many other features should be seen like:

(i) A clear sharp peak in the linear a.c. susceptibility (χ a.c. ) curve under very small magnetic fields indicating the spin glass freezing temperature T SG .

(ii) No magnetic Bragg peaks can be seen in neutron diffraction spectrum. That means the freezing state below T SG is accompanied with no long-range ordering. The most two commonly used thermomagnetic histories are the zero-field-cooled (ZFC) and the field-cooled (FC) measurements. The procedure of the ZFC-FC measurements goes as follows: the sample is cooled down from an initial state at T > T SG to a measuring temperature T < T SG , then the sample is heated starting from T under a small applied magnetic field to a given temperature T > T SG in which the ZFC magnetic measurements (M, χ . . . ) are collected during the heating process. Now, starting from the magnetic configuration obtained at T , the system is then cooled down to T under the same magnetic field where the FC magnetic measurements are collected during the cooling process. The spin glass d.c. susceptibility deduced from these measurements in a low magnetic field is illustrated Fig. 

Dielectric polarization

Dielectrics are materials that have no free charges; i.e., all electrons are localized and associated to the nearest atoms. When a dielectric is subjected to an external electric field, its molecules or atoms gain electric dipole moments due to the separation of the center of gravity of the positive and negative electrical charges within the system. Each electric dipole moment is proportional to the applied electric field such as 

p = α E (1.

Multiferroics

More details on multiferroics can be found in Ref. [START_REF] Tokura | Multiferroics with spiral spin orders[END_REF][START_REF] Tokura | Multiferroics of spin origin[END_REF][START_REF] Terada | Spin and orbital orderings behind multiferroicity in delafossite and related compounds[END_REF][START_REF] Cheong | Multiferroics: a magnetic twist for ferroelectricity[END_REF][START_REF] Arima | Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems[END_REF][START_REF] Fiebig | The evolution of multiferroics[END_REF] Multiferroics are materials that exhibit magnetoelectric (ME) properties in the same phase. In other words, when there exists a magnetic response to an electric field or an electric response to a magnetic field (Fig. 1.11), the material is said to be a multiferroic. In general, multiferroics can be divided into two classes as introduced by D. Khomskii [START_REF] Khomskii | Classifying multiferroics: Mechanisms and effects[END_REF]. Class-I of the multiferroic family is older and numerous. It consists of multiferroics possessing distinct magnetic and ferroelectric transition temperatures where they can be well above the room temperature such as in BiFeO 3 (T F E ≈ 1100 K and T N ≈ 643 K) [START_REF] Cheong | Multiferroics: a magnetic twist for ferroelectricity[END_REF][START_REF] Khomskii | Classifying multiferroics: Mechanisms and effects[END_REF]. However, the coupling between magnetism and ferroelectricity is weak in these materials. Class-II of multiferroics also termed magnetic multiferroics, has been recently discovered and is more interesting than class-I. It consists of materials in which ferroelectricity emerges only in the magnetically ordered state -i.e. the ordering temperature of the ferroelectric phase coincides with that of the magnetic FIG. 1.11. Schematic illustration of the magnetic and electric responses in ferromagnetic, ferroelectric and multiferroic materials [START_REF] Khomskii | Classifying multiferroics: Mechanisms and effects[END_REF].

phase -and is caused by a particular type of magnetism [START_REF] Kimura | Magnetic control of ferroelectric polarization[END_REF][START_REF] Wang | Epitaxial BiFeO 3 multiferroic thin film heterostructures[END_REF]. Many multiferroics are transition metal oxides of the spiral type and mostly belong to class-II. Spiral magnetic ordering in dielectrics is mainly caused by magnetic frustration leading to having frustrated multiferroics of class-II [START_REF] Khomskii | Classifying multiferroics: Mechanisms and effects[END_REF]. Boracites were the first well known multiferroics [START_REF] Schmid | Magnetic susceptibilities of some 3d transition metal boracites[END_REF][START_REF] Ascher | Some properties of ferromagnetoelectric nickel-iodine boracite, Ni 3 B 7 O 13 I[END_REF], and soon several other multiferroics were either found in nature or synthesized artificially [35]. Cr 2 O 3 was also a typical example of multiferroics which shows fascinating ME properties [START_REF] Schmid | Multi-ferroic magnetoelectrics[END_REF][START_REF] Fiebig | Revival of the magnetoelectric effect[END_REF][START_REF] Rivera | On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr -Cl boracite[END_REF]; an electric field induces macroscopic magnetization (ferromagnetism) [START_REF] Astrov | The magnetoelectric effect in antiferromagnetics[END_REF] and a magnetic field generates macroscopic electric polarization (ferroelectricity) [START_REF] Folen | Anisotropy of the magnetoelectric effect in Cr 2 O 3[END_REF]. However, its ME properties were not sufficient to be used for applications in magnetic memory devices for example. Since the discovery of Cr 2 O 3 , many other compounds have been discovered to exhibit multiferroic properties such as TbMnO 3 [START_REF] Kimura | Magnetic control of ferroelectric polarization[END_REF].

1.2 About the transition metal oxide CuCrO 2

The delafossite structure

Delafossite minerals of general formula ABO 2 is a group characterized by a sheet of linearly coordinated A cations stacked between edge-shared octahedral layers BO 6 as shown in Fig. 1.12.

Delafossite group has been recognized for its electrical properties from insulation to metallic conduction. Materials with this crystal structure generally have high p-type conductivity because of the low formation energy of Cu vacancies which are hole producing defects [START_REF] Raebiger | Origins of the p-type nature and cation deficiency in Cu 2 O and related materials[END_REF]. Through the discovery of the CuFeO 2 mineral in 1873, Friedel opened the door to the delafossites ABO 2 [START_REF] Friedel | A combination of natural iron oxides and copper and reproduction of actamides[END_REF][START_REF] Shannon | Chemistry of noble metal oxides. i. syntheses and properties of ABO 2 delafossite compounds[END_REF][START_REF] Shannon | Chemistry of noble metal oxides. ii. crystal structures of platinum cobalt dioxide, palladium cobalt dioxide, coppper iron dioxide, and silver iron dioxide[END_REF][START_REF] Shannon | Chemistry of noble metal oxides. iii. electrical transport properties and crystal chemistry of ABO 2 compounds with the delafossite structure[END_REF]. Such a family crystallizes in the layered R 3m space group (Fig. 1.12). For instance, for A in a d 9 configuration, e.g., A = Pd or Pt, highly metallic compounds with anomalous temperature dependence of the resistivity have been reported [START_REF] Takatsu | Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO 2[END_REF][START_REF] Hicks | Quantum oscillations and high carrier mobility in the delafossite PdCoO 2[END_REF][START_REF] Hicks | Quantum oscillations and magnetic reconstruction in the delafossite PdCoO 2[END_REF][START_REF] Kushwaha | Nearly-free electrons in a 5d delafossite oxide metal[END_REF]. Moreover, the discovery of simultaneous transparency and p-type conductivity in CuAlO 2 by Kawazoe et al. [START_REF] Kawazoe | P-type electrical conduction in transparent thin films of CuAlO 2[END_REF], laid ground for the development of transparent optoelectronic devices. Furthermore, depending on the chemical composition, a plethora of behaviors can be evidenced. The diversity of properties they exhibit raises up an ever increasing interest in this class of compounds. The transport in these compounds has been found to be strongly anisotropic, with a degree of anisotropy that may reach 10 3 [START_REF] Takatsu | Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO 2[END_REF][START_REF] Hicks | Quantum oscillations and high carrier mobility in the delafossite PdCoO 2[END_REF][START_REF] Daou | Large anisotropic thermal conductivity of the intrinsically two-dimensional metallic oxide PdCoO 2[END_REF]. For A in a d 10 configuration, the semi-conducting materials CuBO 2 , with B = Cr, Fe, Rh, may be turned into promising thermoelectric ones through hole doping [START_REF] Okuda | Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1-x Mg x O 2 (0 x 0.04)[END_REF][START_REF] Nozaki | Thermoelectric properties of delafossite-type oxide CuFe 1-x Ni x O 2 (0 x 0.05)[END_REF] -in particular, an especially high power factor has been found in

CuRh 1-x Mg x O 2 FIG. 1.
12. Delafossite structure of ABO 2 with A = Cu + and B = Cr 3+ .

[54], which transport coefficients served as a basis for the Apparent Fermi Liquid scenario [START_REF] Kremer | Thermoelectric transport properties of an apparent fermi liquid: Relation to an analytic anomaly in the density of states and application to hole-doped delafossites[END_REF].

Regarding the magnetic compounds CuFeO 2 and CuCrO 2 , many studies point towards a strong coupling of the magnetic and structural degrees of freedom [START_REF] Soda | Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO 2 with proper-screw order[END_REF][START_REF] Mekata | Magnetic ordering in delafossite CuFeO 2[END_REF][START_REF] Mekata | Successive magnetic ordering in CuFeO 2 -a new type of partially disordered phase in a triangular lattice antiferromagnet[END_REF][START_REF] Petrenko | Highmagnetic-field behavior of the triangular-lattice antiferromagnet CuFeO 2[END_REF][START_REF] Kimura | Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO 2[END_REF][START_REF] Ye | Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO 2[END_REF][START_REF] Eyert | Long-range magnetic order and spin-lattice coupling in delafossite CuFeO 2[END_REF][START_REF] Maignan | On the strong impact of doping in the triangular antiferromagnet CuCrO 2[END_REF][START_REF] Xue-Fan | Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO 2 using first principles[END_REF] which pave the way to multiferroelectricity. 

Exchange interactions in

E 180 • ex = S 2 (J 1 + J 2 -3J 3 ) (1.50)
providing that E 180 • ex = -6.84 meV. However, the energy of the 120 • configuration correspond-

ing to k = 1/3 is E 120 • ex = S 2 3 2 J 1 -3J 2 + 3 2 J 3 (1.51)
which gives

E 120 • ex = -6.48 meV > E 180 • ex .
Therefore we can say that the ND estimates of the exchange interactions cannot represent the real exchange interactions presented in CuCrO 2 .

On the other hand, another estimates for the same exchange interactions using the density functional theory calculations were given in Ref. [START_REF] Xue-Fan | Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO 2 using first principles[END_REF] (Table 1.1). It was found that J 2 is FM in nature while J 3 is AFM such that J 2 /J 1 ≈ -0.030 and J 3 /J 1 ≈ 0. presented in CuCrO 2 .

The question arises now is that, what is the true magnetic natures and order of magnitudes of J 2 and J 3 in this multiferroic? To answer that we minimize Eq. (1.30) for various values of J 2 and J 3 in both cases AFM and FM as shown below.

1.2.2.2 Nature and order of magnitude of J 2

Here we take the ND set of exchange interactions. We fix J 1 and J 3 and we make varying J 2 /J 1 for J 2 being AFM and FM.

J 2 AFM
When J 2 is AFM, it can be seen that the E ex (k) plot exhibits two minima at k = 1/3 and It is clear that the GS configuration is the 120 • whenever J 2 /J 1 < 0.16. However when 1.2.2.3 Nature and order of magnitude of J 3

k = 2/3 if J 2 /J 1 < 0.
J 2 /J 1 ≥ 0.16, E ex (k) follows E 180 •
Here, for the set of exchange interactions extracted from the DFT calculations, we fix J 1 and J 2 and we make varying J 3 /J 1 for both cases J 3 AFM and FM.

J 3 AFM
When J 3 has an AFM nature, it can be seen that whatever the ratio The zone of interactions where the 120 • configuration exists is schematically illustrated in Fig. 1.18. We conclude that the FM nature of J 2 and the AFM nature of J 3 stabilize the 120 • GS configuration. However if J 2 is AFM, its value should be greater than -0.16|J 1 | otherwise the 

J 3 /J 1 , E ex (k)

Magnetoelectric properties of CuCrO 2

CuCrO 2 is a very good example of the spin-driven ferroelectricity. In this compound, ferroelectric polarization starts to appear just below the magnetic ordering temperature T N [START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF][START_REF] Poienar | Revisiting the properties of delafossite CuCrO 2 : A single crystal study[END_REF][START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF]. It was found that the magnetic ordering in single crystals of CuCrO 2 occurs in two stages with two transition temperatures T N 1 ≈ 23.6 K and T N 2 ≈ 24.2 K [14, 64, 65, 68]. These observations were described as follows: at T N 2 , the system enters a 2D ordered antiferromagnetic collinear state, while a fully three dimensional magnetic ordering is achieved below T N 1 . However, such scenario was contrary to other experimental studies [START_REF] Okuda | Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1-x Mg x O 2 (0 x 0.04)[END_REF][START_REF] Poienar | Revisiting the properties of delafossite CuCrO 2 : A single crystal study[END_REF][START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF] performed also on single crystals of CuCrO 2 where they showed that CuCrO 2 undergoes a single phase transition to an ordered antiferromagnetic proper-screw configuration at T N = 24 -26 K. Knowing that physical properties of single crystals are highly dependent on the nature of the defects (twin boundaries, dislocations, impurities) as well as on their concentrations [START_REF] Wang | Anomalous magnetization peak effect in spiral-grown Bi 2 Sr 2 CaCu 2 O y crystals[END_REF][START_REF] Timofeev | Growth defects in {BSCCO} (2212) single crystal whiskers[END_REF][START_REF] Oussena | Vortex channeling along twin planes in YBa 2 Cu 3 O 7-x[END_REF][START_REF] Monot-Laffez | Correlation between structural defects and properties in large {La-Sr-Mn-O} single crystals[END_REF], and based on the results of experimental studies performed on polycrystalline samples of CuCrO 2 [START_REF] Poienar | Structural and magnetic properties of CuCr 1-x Mg x O 2 by neutron powder diffraction[END_REF][START_REF] Okuda | Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1-x Mg x O 2 (0 x 0.04)[END_REF][START_REF] Kadowaki | Neutron powder diffraction study of the twodimensional triangular lattice antiferromagnet CuCrO 2[END_REF] showing a unique T N , it is more confident to believe that CuCrO 2 possesses a single magnetic phase transition.

Early neutron diffraction experiment [START_REF] Kadowaki | Neutron powder diffraction study of the twodimensional triangular lattice antiferromagnet CuCrO 2[END_REF] showed that the magnetic configuration of CuCrO 2 below the ordering temperature T N is a proper-screw (Fig. 1. [START_REF] Smart | Effective Field Theories of Magnetism[END_REF]) commensurate configuration with a propagation vector q = (1/3, 1/3, 0) pointing along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. However, recent neutron diffraction experiments [START_REF] Soda | Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO 2 with proper-screw order[END_REF][START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Frontzek | Magnetic structure of CuCrO 2 : a single crystal neutron diffraction study[END_REF][START_REF] Poienar | Structural and magnetic properties of CuCr 1-x Mg x O 2 by neutron powder diffraction[END_REF][START_REF] Poienar | Spin dynamics in the geometrically frustrated multiferroic CuCrO 2[END_REF] showed that the magnetic configuration of CuCrO 2 below T N is a proper-screw with an incommensurate propagation vector q = (0.329, 0.329, 0)

propagating along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. The origin of such incommensurability was discussed in

Ref. [START_REF] Kimura | Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO 2[END_REF] where they showed that the deviation from the commensurate configuration is due to a tiny in-plane lattice distortion that takes place below T N along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. The equilateral triangular plaquettes with isotropic exchange interaction, J 1 , above T N (Fig. become isosceles triangular plaquettes upon distortion below T N leading to the appearance of distinct exchange interactions, J 1 and J 1 , through the neighboring spins as illustrated in Fig. 1.20b. The fact of the appearance of the lattice distortion below T N confirms its strong coupling with the spiral magnetic ordering in CuCrO 2 [START_REF] Kimura | Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO 2[END_REF]. The question arises now is why the in-plane lattice distortion occurs. Two hypotheses may answer this question. First hypothesis suggests that spin-lattice coupling may force the lattice to distort slightly leading to high spin degeneracy [START_REF] Kimura | Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO 2[END_REF]. Second hypothesis assumes that the present inter-plane interaction causes a slightly incommensurate structure which can be a driving force for the lattice distortion [START_REF] Kadowaki | Double-Q 120 degrees structure in the heisenberg antiferromagnet on rhombohedrally stacked triangular lattice LiCrO 2[END_REF][START_REF] Rastelli | The rhombohedral heisenberg antiferromagnet: infinite degeneracy of the ground state and magnetic properties of solid oxygen[END_REF].

Although these answers are still hypotheses and more detailed investigations are needed for further understanding.

Even though, the presence of the tiny in-plane lattice distortion doesn't totally break all the symmetry elements of the crystal [START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF]. The crystal still possesses a twofold rotation axis along the q direction and a threefold rotation axis along the c axis. The threefold symmetry allows the existence of three equivalent magnetic domains denoted by A, B and C as illustrated in Fig. 1.21.

The remaining unbroken symmetry operation allows the appearance of ferroelectric polarization only along the perpendicular direction of each spiral plane.

Ferroelectricity induced by proper-screw and cycloid structures

Nowadays, the term ME multiferroic is used not only for ferromagnetic-ferroelectric materials, but also for ferroelectric with some other magnetic order such as antiferromagnets. In particular, ferroelectrics induced by spin ordering is very important in developing a novel ME phenomenon.

FIG. 1.22. Proper-screw spin configuration with q perpendicular to the spiral plane and cycloidal spin configuration with q inside the spiral plane.

From the microscopic point of view, several scenarios of spin-driven ferroelectricity were proposed [START_REF] Curie | Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique[END_REF][START_REF] Dzyaloshinskii | On the magneto-electrical effect in antiferromagnets[END_REF]. Indeed, intensive experimental studies have confirmed that these scenarios really induce electric polarization.

Most of the spiral induced multiferroics have the cycloidal spin structures whose magnetic propagation vectors q lie in the spiral plane (Fig. 1.22) and whose magnetic symmetries allow the systems to be polar and ferroelectric [START_REF] Mostovoy | Ferroelectricity in spiral magnets[END_REF]. The microscopic origin of such a ferroelectricity can be successfully explained by the spin current model or the inverse DM interaction [START_REF] Katsura | Spin current and magnetoelectric effect in noncollinear magnets[END_REF][START_REF] Sergienko | Role of the dzyaloshinskii-moriya interaction in multiferroic perovskites[END_REF]. More precisely, within this model, the electric polarization P ij produced between two canted spins S i and S j , located at sites i and j, respectively, is given by

P ij ∝ e ij × ( S i × S j ) ≡ p 1 (1.52)
where e ij is a unit vector joining the sites i and j. However, recent multiferroics such as CuFeO 2

and CuCrO 2 show a spin-driven ferroelectricity that cannot be explained by such a model. This is because in these multiferroics, the spiral-spin structure is a proper-screw one where the propagation vector q is perpendicular to the spiral plane [START_REF] Tokura | Multiferroics with spiral spin orders[END_REF][START_REF] Tokura | Multiferroics of spin origin[END_REF][START_REF] Terada | Spin and orbital orderings behind multiferroicity in delafossite and related compounds[END_REF] as shown in Fig. 1.22. In this configuration, S i × S j is parallel to e ij ( e ij is along the q direction due to symmetry considerations [START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF]), and hence Eq.(1.52) will lead to a net zero polarization. Thus the microscopic origin of this ferroelectric polarization can be actually described by the variation in the metal-ligand (d -p) hybridization with spin-orbit coupling [START_REF] Jia | Bond electronic polarization induced by spin[END_REF][START_REF] Jia | Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides[END_REF] as proposed by Arima [START_REF] Arima | Ferroelectricity induced by proper-screw type magnetic order[END_REF]. Accordingly, based on symmetry considerations, Kaplan and Mahanti [START_REF] Kaplan | Canted-spin-caused electric dipoles: A local symmetry theory[END_REF] introduced an additional contribution total polarization is given by

p 2 ∝ ( S i × S j )
P = p 1 + p 2 (1.53)
Therefore, now the direction of P is determined by the sum of the two orthogonal components, p 1 and p 2 . Hence, the extended inverse DM model is now applicable to the proper-screw structure in CuCrO 2 , which shows ferroelectric polarization consisting with only p 2 .

In frustrated magnetic systems, the GS energy is highly degenerate corresponding to several magnetic configurations. This leads to the possibility of occurrence of magnetic phase transition under a weak applied magnetic field. Large ME effect can be seen in these multiferroics when applying an external magnetic field, resulting in a sudden change in the ferroelectric polarization direction due to a flop of the spiral plane [START_REF] Aliouane | Flop of electric polarization driven by the flop of the Mn spin cycloid in multiferroic TbMnO 3[END_REF]. When applying an external magnetic field perpendicular to the screw axis, the spiral spin structure would vary from proper-screw type to a cycloidal one with the spiral axis parallel to the magnetic field. Such kind of magnetic field induced ferroelectric transition was reported in some hexaferrites [START_REF] Kimura | Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures[END_REF][START_REF] Taniguchi | Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba 2 Mg 2 Fe 12 O 22[END_REF][START_REF] Ishiwata | Low-magnetic-field control of electric polarization vector in a helimagnet[END_REF][START_REF] Tokunaga | Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity[END_REF]. Frustrated triangular antiferromagnet CuCrO 2 undergoes first order magnetic phase transition from proper-screw to cycloidal structure when applying a magnetic field B f lop ≈ 5. Such flop is very crucial in CuCrO 2 since it corresponds to a change in the nature of the magnetic structure from proper-screw to cycloidal structure preserving the same q modulation vector. Even though, not only magnetic control of ferroelectricity can be seen in CuCrO 2 , but also electric control of magnetism exists at the same time. In the absence of electric ( E) and magnetic ( B)

fields, the 120 • configuration is triply degenerate, i.e. three magnetic domains A, B and C exist equiprobable in a crystal of CuCrO 2 (Fig. 1.21). Taking also into account the doubly degenerate spin chirality, we remain with six magnetic domains that coexist under zero field as described in

Refs. [START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF][START_REF] Kimura | Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO 2[END_REF]. Since these six domains are degenerate, they occupy the same volume in a crystal of CuCrO 2 , leading to a net zero ferroelectric polarization. Hence by applying a poling electric field, one can quite easily select a ferroelectric domain that corresponds to a magnetic domain leading to the detection of a finite ferroelectric polarization along the applied field. Such control of ferroelectric domains within the same ferroelectric state is very important for the reversal of polarization. This good ME tunability in CuCrO 2 , using both B and E fields, makes it a very important member in the multiferroic family of class-II.

Magnetically diluted CuCrO 2

Motivated by the study of the collective behavior in conventional magnets, researchers turned their attention to diluted magnets that exhibit novel promising characteristic properties. When a pure magnet exhibits frustrated interactions, its associated diluted magnet may present novel characteristic properties such as spin-glass behavior [START_REF] Nowak | Diluted antiferromagnets in a magnetic field: A fractal-domain state with spin-glass behavior[END_REF][START_REF] Soukoulis | Irreversibility in diluted antiferromagnets[END_REF]. Beside this new behavior, the diluted magnet or the diluted semiconductor may possess better magnetic and electric properties [START_REF] Okuda | Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1-x Mg x O 2 (0 x 0.04)[END_REF][START_REF] Daniel | Photovoltaic performance of (Al, Mg)-doped CuCrO 2 for p-type dye-sensitized solar cells application[END_REF] than the pure one. In particular, doping CuCrO 2 by Ga 3+ * (S = 0) in the Cr 3+ sites results in a material that may combine the good performances from both semiconductors CuCrO 2 and

CuGaO 2 [START_REF] Han | Structural, electronic band transition and optoelectronic properties of delafossite CuCr 1-x Ga x O 2 (0 x 1) solid solution films grown by the sol-gel method[END_REF]. It was shown that CuCr 1-x Ga x O 2 exhibits better optical transmittance properties than both CuCrO 2 and CuGaO 2 [START_REF] Xiong | Use of delafossite oxides CuCr 1-x Ga x O 2 nanocrystals in p-type dye-sensitized solar cell[END_REF]. Also CuCr 1-x Ga x O 2 is used as a photocathode in the p-type dye sensitized solar cells (DSSCs) where it shows the best performance after optimizing the composition and the thickness of the photocathode film [START_REF] Xiong | Use of delafossite oxides CuCr 1-x Ga x O 2 nanocrystals in p-type dye-sensitized solar cell[END_REF].

Due to the very close radii of Cr 3+ (r Cr 3+ = 61.5 pm) and Ga 3+ (r Ga 3+ = 62 pm), no significant changes in the structural parameters of the unit cell of CuCrO 2 were detected upon doping [START_REF] Pachoud | Magnetic dilution and steric effects in the multiferroic delafossite CuCrO 2[END_REF]. Also it was found that CuCr 1-x Ga x O 2 , with small concentrations of Ga 3+ , preserves its antiferromagnetic nature while at higher concentrations the system turned to be disordered evidencing the possibility of the existence of spin-glass-like behavior [START_REF] Elkhouni | Effect of Ga substitution on the magnetic state of delafossite CuCrO 2 with antiferromagnetic triangular sublattice[END_REF]. However, such spinglass-like behavior is still a prediction and no rigorous investigations were done to characterize well such phenomenon. Neutron powder diffraction experiments performed on CuCr 0.9 Ga 0.1 O 2

showed that the magnetic peaks observed at 1.8 K correspond to a propagation vector q = (0.329, 0.329, 0) where they are significantly broadened compared to that of CuCrO 2 which evidenced the presence of a disorder in the magnetic structure [START_REF] Pachoud | Magnetic dilution and steric effects in the multiferroic delafossite CuCrO 2[END_REF]. Thus, for the moment the two main ingredients of the spin-glass state (disorder + frustration) are presented but still alone not * Gallium was discovered in Paris by Paul-Émile Lecoq de Boisbaudran in 1875. Since its discovery, gallium has been used to make alloys with low melting points as well as it has been used as a good dopant in semiconductor substrates.

sufficient to speak precisely about the existence of such complex frozen state. Based on that, we aim in this work to investigate the effect of such magnetic dilution (Ga 3+ doping) on the magnetic properties of the delafossite CuCrO 2 by means of a combination of ab initio (Appendix A) calculations and Monte Carlo simulations presented in Chapter 4. We try to characterize well the magnetic states for various concentrations of Ga 3+ (x = 0, 0.02, 0.05, 0.1, 0.15, 0.2 and 0.3) to provide better understanding for such diluted antiferromagnet.

CHAPTER

Model and Monte Carlo method T his chapter presents the physical models and the numerical simulation technique used to investigate the magnetoelectric properties of CuCrO 2 .

Model description

As previously mentioned, CuCrO Cr 3+ (a/3, 2a/3, c/6), Cr 3+ (0, 0, c/2) and Cr 3+ (2a/3, a/3, 5c/6). The coordination numbers for the 1 st , 2 nd , 3 rd and 4 th neighbors of each Cr 3+ ion are identical with z = 6. the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF], [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and [001] directions, respectively. Then, our magnetic Hamiltonian is given by

A box of L a × L b × L c unit cells is built. Note that L a = L b = L,
H m = - i,j J ij S i • S j -D x i S 2 ix -D z i S 2 iz -B • i m i (2.1)
where J ij represents the exchange interactions up to the fourth neighbors (Fig. 2.2), D x < 0 and D z > 0 are the single ion anisotropy constants of the hard and easy axes along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and

[001] directions, respectively, and B is the applied magnetic field. This Hamiltonian was first used in the DFT calculations to extract the values of the exchange interactions and single ion anisotropy constants in the non-distorted and the distorted crystal structure, and it is then used in our FORTRAN code based on the Monte Carlo (MC) method.

In the presence of an electric field E, the coupling between the spins and E is defined as

H e = -A 0 E • i,j S i × S j (2.2) FIG. 2.2.
Intralayer and interlayer super-exchange interactions in CuCrO 2 with J 1 = J 1 in the non-distorted crystal structure, and J 1 > J 1 in the distorted one.

where the sum runs over the magnetic bonds along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction, and A 0 is a coupling constant related to the spin-orbit and spin exchange interactions [START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF].

Therefore the total Hamiltonian will be H m + H e given as

H = - i,j J ij S i • S j -D x i S 2 ix -D z i S 2 iz +gµ B B • i S i -A 0 E • i,j S i × S j (2.3)

Monte Carlo method 2.2.1 Generalities

In the recent years, numerical simulation tools have been developed considerably by increasing the capacity of super computers and improving the algorithms. Numerical simulations can be considered as a bridge between theoretical and experimental studies. They allow to study various physical phenomena where usually the analytical solution is impossible, like the problem of understanding phase transitions in systems with many competing Heisenberg interactions. Also numerical simulations can replace some difficult or very expensive experimental measurements and provide the desired outcomes. An important advantage of numerical simulations is that, they deal with fully pure isolated systems unlike real systems where different physical effects simultaneously exist such as chemical impurities, synthesize environment. . . Also by numerical simulations, one can study the effect of varying one physical parameter on the properties of a given system which is not possible experimentally.

MC method is a broad class of computational algorithms based on random number sequences.

It is a stochastic method that can be used in many scientific disciplines like physics, chemistry, biology. . . The basis of the MC method is the theory of Markov chains which is a process that allows one to make predictions for the future of a system based on its present state only.

In physics, MC simulation do well treat the equilibrium properties of many-particle interacting systems. To study these interacting systems, one should define a reference space known as the phase space which represents, in case of a spin system, the set of spin configurations. Each possible spin configuration is represented as

X = S 1 , S 2 , ..., S i , ..., S N -1 , S N (2.4)
where N is the number of spins in the system.

The transition probability per unit time that corresponds to the transition from a configuration X to a configuration X is denoted by W (X, X ). The important property of a Markov chain is the existence of an equilibrium distribution of states. A sufficient condition for having a stationary probability distribution is

W (X, X )P (X) = W (X , X)P (X ) (2.5)
which is called the detailed balance condition.

Now, the approach is to separate the transition in two sub-steps; the proposal and the acceptancerejection steps. The proposal distribution g(X, X ) is the conditional probability of proposing a state X given X, and the acceptance distribution A(X, X ) is the conditional probability to accept the proposed state X . Therefore, the transition probability W (X, X ) can be written as

W (X, X ) = g(X, X )A(X, X ) (2.6) 
with g(X, X ) = g(X , X).

MC method in the canonical ensemble

In the canonical ensemble, the probability distribution at a given temperature T is defined as

P T (X) = exp(-E(X)/k B T ) Z(T ) (2.7)
where E(X) is the energy of a given configuration X, k B is the Boltzmann constant and

Z(T ) = X exp(-E(X)/k B T
) is the partition function at a given temperature T . Therefore, Eq. (2.5) will be re-written as

W (X, X ) W (X , X) = P (X ) P (X) = exp(-∆E/k B T ) (2.8)
which depends only on the energy variation ∆E = E(X ) -E(X) during the transition

X -→ X .
Thermal averages, or Gibbs averages, are defined by

A T = X A(X)exp(-E(X)/k B T ) X exp(-E(X)/k B T ) (2.9)
with A being any thermodynamic quantity.

Metropolis algorithm

The Metropolis algorithm [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] is a single spin rotation algorithm, i.e., the transition from a configuration X to a configuration X is associated with a change in the orientation of one spin S i -→ S i and thus X = S 1 , S 2 , ..., S i , ..., S N -1 , S N . It has an acceptance probability A(X, X ) or simply A( S i , S i ) defined as

A( S i , S i ) = min 1, e -∆E/k B T (2.10)
Note that the probability to accept a new configuration, which increases the energy of the system, decreases with the decrease of temperature (it is approximately 1 at high T in the disordered state, and almost null in the low T region when the system is almost ordered). Therefore, for a given initial random magnetic configuration X 0 , the Metropolis algorithm at each temperature T goes as follow:

1. Choose randomly a spin S i and suggest for it a new random orientation S i .

2. Calculate the energy variation ∆E associated to this rotation according to Eq. (2.3).

3. If ∆E < 0 =⇒ accept the new orientation.

Else, choose a random number 0 < r < 1 with uniform distribution, and check if r ≤ exp(-∆E/k B T ) accept the new orientation, otherwise reject.

4. Choose another spin randomly (back to step 1).

N repetitions of the steps 1 to 4 is known as a MC step (MCS), with N being the number of spins in the system. A large number of MCS (n M CS = 10 5 for e.g.) is performed at each temperature, so that each spin is examined n M CS times in average.

Time Step Quantified Monte Carlo method

The standard Metropolis algorithm is known to be efficient in finding one of the lowest energy configurations and calculating the equilibrium quantities at each temperature. It minimizes the free energy of the system at each temperature without "seeing" the different energy barriers that should be overcome when going from a configuration X to another one X . Nevertheless, the standard Metropolis algorithm exhibits the problem of having no physical time associated with each MC step, resulting in unquantified dynamic behavior. It was found that Langevin dynamics is a very good approach for studying the dynamic behaviors, but unfortunately it is limited to time scales of the order of few ns. And because the MC approach is less time consuming, U.

Nowak et al. [START_REF] Nowak | Monte carlo simulation with time step quantification in terms of langevin dynamics[END_REF] succeeded to quantify each MCS and associate it to a real physical time.

The trial step of this algorithm is a random movement of each spin S i within a cone of a given size. For this purpose, a random vector u with a uniform probability distribution is chosen within a sphere of radius R (Fig. 2.3). After that, u is added to S i and subsequently the resulting vector is normalized to obtain

S i = S S i + u S i + u
. The radius of the sphere (cone) R affects the physical time associated to 1 MCS [START_REF] Nowak | Monte carlo simulation with time step quantification in terms of langevin dynamics[END_REF]. Indeed, R cannot take any value, it should satisfy the condition R < 1, but at the same time it should not be too small since then the algorithm becomes inefficient. The procedure of this new algorithm, in our case, is the same as the standard Metropolis in terms of the acceptance-rejection principle.

Within this algorithm, 1 MCS is associated to a real time interval ∆t through the following relation

R 2 = 20αγk B T (1 + α 2 )m ∆t (2.11)
where α is a damping constant chosen to be ≥ 1 for the validity of the formula [START_REF] Nowak | Monte carlo simulation with time step quantification in terms of langevin dynamics[END_REF], γ = 1.76 × 10 11 (T s) -1 is the gyromagnetic ratio, k B is the Boltzmann constant, and m is the theoretical magnetic moment (3µ B in our case).

FIG. 2.3. Schematic illustration of the principle of the time step quantified Monte

Carlo method with R < 1.

Thus, from Eq. (2.11), one has to choose either a value for ∆t (usually it is of the order of 10 -12 s) to find R, or to choose a reasonable value of R (0.1 for example) and find ∆t to be the real time interval corresponding to 1 MCS. Thus for example, if one takes R = 0.1 and α = 1 for T = 10 K, Eq. (2.11) gives us ∆t = 1.15 × 10 -15 s associated to 1 MCS.

With this new technique, the algorithm is able to see the energy barriers in the phase space, and thus it allows us to simulate the hysteresis loops at various temperatures (but not too small) within reasonable computer time.

Although, this new technique doesn't succeed in all systems and still faces some limitations. For example, if one consider a ferromagnetic system with very strong exchange couplings and at very low temperatures, single spin rotations are not possible because the system can only rotate uniformly.

Simulated annealing -Calculation of different thermodynamic quantities

The algorithm of simulated annealing was proposed by S. Kirkpatrick et al. [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF][START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF]. During the annealing process, the system which is initially at high temperature and in a paramagnetic phase is slowly cooled so that the system achieves its thermodynamic equilibrium at each temperature after a time interval n 0 called the equilibration time. As the cooling proceeds, the system becomes more ordered and its energy decreases (Fig. 2.4) to approach its minimum near 0 K. The magnetic configuration at 0 K is known as the ground state configuration which can be degenerate in some systems. In frustrated systems, if the initial temperature of the system is below its ordering temperature (T N or T C ), or if the cooling process is not sufficiently slow the system may be frozen in a metastable state (i.e. trapped in a local minimum energy state at low temperatures) and doesn't achieve one of its ground state configurations. In order to calculate thermal averages, the system should explore all the phase space. However, in our MC simulations, we make time averaging (over the number of MCS at equilibrium) which is equivalent to the Gibbs averaging (Eq. 2.9), if n M CS is large enough, according to the choice of our transition probability. This is known as the ergodicity principle.

To estimate n 0 , it is possible to plot any thermodynamic quantity versus n M CS (i.e., versus time)

and to see when the system reaches its equilibrium, see Fig. A is calculated as

A T 1 n M CS -n 0 n M CS =n 0 +1 A(X ) (2.12)
with X is the spin configuration at the end of the th MCS. Note that A in our simulations is one of the different thermodynamic quantities such as internal energy, chirality of spins, spin-spin correlation functions, and a magnetic order parameter P related to the ferroelectric polarization.

Internal energy U (T ) per spin

U (T ) = H T N = 1 N (n M CS -n 0 ) n M CS =n 0 +1 H(X ) (2.13)
where N is the number of spins in the system.

Chirality of spins κ(T ) per magnetic bond

To characterize the nearly 120 • GS configuration we considered the spin chirality defined as

κ p = 1 S 2 2 3 √ 3 ( S 1 × S 2 + S 2 × S 3 + S 3 × S 1 ) (2.14)
where 1, 2 and 3 refer to the spins at the corners of each elementary triangular plaquette p in an ab plane (Fig. p κ p where n b is the number of magnetic bonds per plane, and finally the order parameter of the whole system was defined as κ = λ T where λ is the average of λ over the ab planes.

And finally,

κ(T ) = 1 n M CS -n 0 n M CS =n 0 +1 λ(X ) (2.15)
Spin-spin correlation functions G(R, T ) per magnetic bond

In order to characterize more precisely the magnetic configurations, we calculated the temperature dependence of the spin-spin correlation functions along the a-direction ( [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] direction) defined as

G(R, T ) = 1 N a (n M CS -n 0 ) n M CS =n 0 +1   1 S 2 i,j S i • S j   (2.16)
where N a is the number of pairs S i , S j separated by a distance R along the a-direction.

P associated to the ferroelectric polarization per magnetic bond

As proposed by Kaplan and Mahanti [START_REF] Kaplan | Canted-spin-caused electric dipoles: A local symmetry theory[END_REF], Eq.(1.53) describes the electric polarization in CuCrO 2 . And since P is allowed only along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction due to symmetry considerations [START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF], we then calculate

P(T ) = 1 N x (n M CS -n 0 ) n M CS =n 0 +1   e x • i,j S i × S j  
(2.17) to be the projection of P along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. The sum of i, j runs along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction and N x = (L -1) 2 is the number of first nearest neighbor magnetic bonds counted along that direction in each ab plane. Then we average P over the atomic planes to finally obtain

P [110] (T ) = 1 3L z 3Lz i=1 P i (T ) (2.18)
with 3L z represents the number of the ab planes found in the system.

Specific heat C(T ) per spin

The specific heat per spin is calculated as

C(T ) = ∂U ∂T = H 2 T -H 2 T N k B T 2 (2.19)
Linear magnetic susceptibility χ(T ) per spin Because CuCrO 2 is an antiferromagnetic system, magnetization can be derived only under an applied external magnetic field B. Thus the associated linear magnetic susceptibility measured along the direction of B is defined as

χ(T ) = M B (T ) H (2.20) 
with

M B (T ) = -g N (n M CS -n 0 ) e B • n M CS =n 0 +1 i S i (2.21)
being the magnetization in µ B calculated along the direction of B and e B = B B is a unit vector along the magnetic field direction.

Finite size and boundary effects

In order to reduce finite size effects, we implement the periodic boundary conditions (PBCs) in all directions. However, it is well known that PBCs can affect the simulated magnetic configuration near 0 K when the GS configuration is incommensurate. Thus, to characterize well the effect of the PBCs on the energy and magnetic configuration of the GS in CuCrO 2 , we calculate the exchange energy per spin of a finite system as function of the size L and the propagation vector q = (k, k, 0) with only the first nearest neighbor interactions in the distorted 2D crystal structure according to

E ex (k, L) = -S 2 L 2 ( L 2 -2L + 1 J 1 cos(4πk) + 2L(L -1)J 1 cos(2πk) + 2(L -1)J 1 cos [2πk(L -2)] + J 1 cos [4πk(L -1)] + 2LJ 1 cos [2πk(L -1)]) (2.22)
In the infinite system (L -→ ∞), Eq. (2.22) becomes

E ex (k) = -S 2 J 1 cos(4πk) + 2J 1 cos(2πk) (2.23)
The minimization of Eq. (2.23) w.r.t k gives

cos(2πk inf ) = -J 1 2J 1 (2.24)
with k inf denotes the value of the propagation vector in one of the GS configurations of the infinite lattice. In the non-distorted structure, Eq. (E inf /k B = -98.08838 K).

Therefore, based on what mentioned, we can say that these PBCs perturb the magnetic configuration in the case of incommensurate helimagnetic structures like in CuCrO 2 . Thus the choice of L is very sensitive and has an effect on the GS configuration of the simulated system.

To verify the effect of PBCs in our MC simulations, we test various system sizes and see their corresponding GS configuration for the same J 1 = -2.383 meV and J 1 = -2.709 meV. To characterize well the simulated magnetic configuration at a very low temperature we calculate the propagation vector q = (h, k, 0) such that h and k are calculated along the a and b directions, respectively. Given two spins S i and S j along the a or b directions, the angle between S i and S j is given by θ ij = 2πh or θ ij = 2πk. Also, θ ij is calculated from the scalar product of S i and S j according to

cos(θ ij ) = S i • S j S 2 (2.25)
Consequently, one can write

h or k = 1 2π arcos S i • S j S 2 (2.26) 
The simulations start from random spin configurations at a sufficiently high initial temperature T i = 35.01 K. We then cool down to a final temperature T f = 0.01 K with a constant temperature step ∆T = 1 K. At each temperature we perform n M CS = 1.05 × 10 5 with discarding n 0 = 5 × 10 3 for thermal equilibration. Since the value of k is expected to be close to 1/3 or 2/3, we then choose L to be a multiple of 3 to compare the deviation of our results from the commensurate configuration of k = 1/3 or 2/3. The simulated values of q = (h, k, 0)

for the different sizes are given in Table 2.1. We find that PBCs favor the closest commensurate spin configuration for L = 15 with a propagation vector q ≈ (0.3333, 0.3333, 0). However, when L = 30, 45 or 60 the simulation chooses a GS configuration with a propagation vector q = (h, k, 0) with h = k as shown in Table 2.1. For L = 90, q ≈ (0.3222, 0.3222, 0) which is very close to q inf ≈ (0.3225, 0.3225, 0) in agreement with the calculations done for L = 90

and shown in Fig. 2.8. However, it is very important to note that for L = 120 (> L = 90) with h = k doesn't exist. Similar demonstration is found in the incommensurate configuration and hence we can say that the simulation results with h = k are not physical but rather perturbations induced by PBCs. Thus to characterize well the real GS state configuration, we have to take much more care of the choice of L regarding all the previous effects.

It is important to note that the use of free boundary conditions (FBCs) perturb more the results due to the significant effects of the free boundaries in finite sizes. These perturbations could be minimized if a very large simulation box is considered and the results are averaged only inside its bulk which is difficult within the available computer resources.

Statistical and systematic errors

The time of a MC simulation is directly proportional to n M CS , to the number of spins (N ) in the system and also to the number of simulated temperature steps (n T emp ). Thus we can write

t sim ∝ n M CS × N × n T emp (2.27)
Within the limited computational budgets, one should choose between performing simulations with large n M CS of small system sizes or small n M CS of larger sizes. These limitations are the sources of errors known as statistical and systematic errors [START_REF] Ferrenberg | Statistical and systematic errors in monte carlo sampling[END_REF].

Statistical errors [START_REF] Binder | Monte Carlo Simulation in Statistical Physics[END_REF][START_REF] Heermann | Computer Simulation Methods in Theoretical Physics[END_REF] The autocorrelation function of a physical quantity A is defined by

ϕ A (t) = A(0)A(t) -A 2 A 2 -A 2 (2.28)
where it verifies that ϕ A (0) = 1 and ϕ A (t) -→ 0 when t -→ ∞.

The autocorrelation time of A is defined as

τ A = ∞ 0 ϕ A (t)dt (2.29)
Suppose that we make n successive independent measurements {A 1 , . . . , A i , . . . , A n } of this quantity A. We define the expectation value of the square of the statistical error on the measure of A as

(δA) 2 = 1 n n i (A i -A ) 2 (2.30)
It can be shown that, in a MC simulation, the above expectation value is related to the autocorrelation function ϕ A (t) by 

(δA) 2 = A 2 -A 2 n 1 + 2 δt tn 0 (1 -t/t n ) ϕ A (t
(δA) 2 ≈ A 2 -A 2 2τ A + δt nδt (2.32)
Moreover, if we have δt τ A , we can simplify Eq. (2.32) to

(δA) 2 ≈ A 2 -A 2 2τ A nδt (2.33)
The relative statistical error is then given by

ρ A = (δA) 2 A ≈ 2τ A nδt A 2 -A 2 A 2 (2.34)
It can be seen that the relative statistical error is independent of the time interval δt between two successive measurements, but depends essentially on the ratio between the autocorrelation time (τ A ) and the number of MC steps (nδt) at thermal equilibrium. Therefore, to reduce statistical errors we need to increase n M CS performed at each temperature. However, when the system is large enough, it is often impossible to increase enough n M CS due to the constraints on the available computer resources. These limitations are sources of the statistical errors in MC simulations. Another source for the statistical errors is the disorder induced, for example, by chemical impurities introduced in the system. This requires to average over a large enough number of random configurations to decrease its contributions.

Systematic errors

Systematic errors in a MC simulation, like the statistical errors, arise from the finite number of measurements n performed on the physical quantity A during the simulation. Systematic errors are particularly significant on the estimation of the specific heat and magnetic susceptibility since they are proportional to the variance of the probability distribution. For that, the specific heat and the magnetic susceptibility are systematically underestimated during a MC simulation because the estimate of a variance from a finite sample is systematically smaller than that in an infinite sample. A possible solution to reduce these systematic errors is to increase the number of measurements done by increasing n M CS as much as possible.

In this work, we tried as much as possible to limit these errors. Thus we tried to simulate systems as large as possible and perform large enough number of MC steps with averaging the final results over several different simulations (parallel calculations).

CHAPTER Magnetoelectric properties of CuCrO 2

O ver the past few years, structural and magnetoelectric properties of CuCrO 2 were experimentally studied by neutron diffraction experiments and other techniques. However, till now, there is no clear and enough understanding of its magnetoelectric properties and its complex spin structure. Based on that, we aim to revisit this compound from the numerical simulation side. In order to model the magnetoelectric properties of this complex oxide, we calculate its exchange interactions and single ion anisotropy constants using DFT calculations in the non-distorted and distorted lattice structure presented in Sec. 

DFT calculations

These calculations were done by Y. O. Kvashnin at the "Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Sweden".

We have performed a series of DFT calculations in order to investigate the electronic and magnetoelectric properties of CuCrO 2 . Knowing that the conventional DFT calculations underestimate the value of the energy band gap, we have applied the DFT + U method to improve the estimation of the energy band gap compared to the experimental data. However, we note that the calculated value of the energy band gap depends on the choice of Hubbard U parameters for Cu and Cr 3d states. In addition, we also investigate in details the effect of different double-counting correction schemes. Finally, for all different computational setups, we extract the effective inter-atomic exchange interactions (J ij ) -illustrated in Fig. 2.2 -using the magnetic force theorem [START_REF] Liechtenstein | Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys[END_REF][START_REF] Katsnelson | First-principles calculations of magnetic interactions in correlated systems[END_REF].

Computational details

DFT calculations were performed using the full-potential linear muffin-tin orbital (FP-LMTO) method as implemented in RSPt [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] software. An experimental crystal structure was taken from Ref. [START_REF] Ono | Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr 1-x Mg x O 2 (0 x 0.05[END_REF]. No ionic relaxation was done within our DFT calculations. The electronic structure of CuCrO 2 has been calculated before using the DFT + U method. In literature, we found several different choices of the Hubbard U parameters for this system:

1. Choice U 1 . In Refs. [START_REF] Arnold | X-ray spectroscopic study of the electronic structure of CuCrO 2[END_REF][START_REF] Scanlon | Effect of Cr substitution on the electronic structure of CuAl 1-x Cr x O 2[END_REF] the values of U ef f = U -J H for Cu and Cr were set to 5.2 eV and 4.0 eV, respectively. This choice of the parameters is motivated by the fact that it gives a good description valence-band photo-emission spectra of Cu 2 O and Cr 2 O 3 [START_REF] Raebiger | Origins of the p-type nature and cation deficiency in Cu 2 O and related materials[END_REF][START_REF] Rohrbach | Ab initio[END_REF].

2. Choice U 2 . In Ref. [START_REF] Xue-Fan | Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO 2 using first principles[END_REF] the authors applied Hubbard U correction on Cr 3d only. The adopted values of the Hubbard U and the Hund's exchange J H were 2.3 and 0.96 eV, respectively, by which they were extracted from first principle calculations for a similar system LiCrO 2 [START_REF] Mazin | Electronic structure and magnetism in the frustrated antiferromagnet LiCrO 2 : First-principles calculations[END_REF].

For most of the calculations we have adopted Fully Localized Limit (FLL) [START_REF] Czyzyk | Local-density functional and on-site correlations: The electronic structure of La 2 CuO 4 and LaCuO 3[END_REF][START_REF] Petukhov | Correlated metals and the LDA + U method[END_REF] form of the double counting (DC) correction, which is suitable for insulators. In addition to that, for the U 2 choice we have also tried another widely used type of the DC -Around Mean Field (AMF).

This form of DC is usually used for relatively small U values, which is justified in the U 2 case, but not in U 1 .

Band gap and electronic structure

Electronic structure of CuCrO 2 was calculated using LDA and LDA+U methods. We have considered two magnetic configurations: ferromagnetic (FM) state where all Cr spins point in the same direction and another collinear antiferromagnetic (AFM) state. The latter phase has a lower total energy compared to the FM one, but according to the calculated values of the exchange interactions, this configuration is not the ground state of the system. This will be discussed in detail in the next section. The main computed quantities are summarized in Table 3.1. Note that the magnetic moments values on every site are calculated by projecting the magnetization density onto the muffin-tin (MT) sphere. Therefore, there is also some magnetization in the interstitial, which contributes to the total magnetic moment value. In FM state there is also a small induced magnetization on Cu and O.

As one can see, for all computational methods the magnetic moment of Cr was calculated to be close to its nominal value of 3µ B , expected for a purely ionic picture. In reality, due to hybridization with oxygen p-states, the projected magnetic moment of Cr is slightly reduced. What is quite remarkable is that the change of the assumed magnetic order for the same computational method results in a small difference in the values of m Cr by no more than 3.5%. Similar comparison of the band gap values reveals that the stabilization of an AFM order always leads to an increase of the E g as compared with that in FM state.

Exchange interactions and anisotropy: computational details

Exchange couplings were calculated using the magnetic force theorem (i.e. the so-called Lichtenstein's formula) [START_REF] Liechtenstein | Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys[END_REF][START_REF] Katsnelson | First-principles calculations of magnetic interactions in correlated systems[END_REF]. The DFT electronic structure is mapped on the classical Heisenberg model of the following form

H ex = - i =j J ij S i • S j (3.1)
where S i denotes the vector spin along the direction of the magnetization of the site i (S = 3/2).

With this sign convention, positive J ij corresponds to the ferromagnetic coupling. Note that also with this notation of the summation of the Hamiltonian, each bond is counted twice. Our calculations take into account the exchange interactions up to the third neighboring spins (J 1 , TABLE 3.2. Chosen MT radii in a.u.

Cu

Cr O 1.80 2.00 1.65 J 2 and J 3 ) within the ab plane, and the interlayer interaction J 4 between Cr 3+ atomic planes as show in Fig. 2.2, as well as the single ion anisotropy constants. The various parameters calculated with this method may depend on the spin configuration used to extract them. This is something normal because the electronic structure (e.g. density of states) may depend on the magnetic order.

The differences are known to be large for metals and are signatures of non-Heisenberg behavior of the system. In oxides, these differences are usually much smaller. We investigate this point for CuCrO 2 in details below.

The exchange coupling is computed between 3d states of Cr. The latter are constructed performing the "MT-heads" projection scheme [START_REF] Kvashnin | Exchange parameters of strongly correlated materials: Extraction from spin-polarized density functional theory plus dynamical mean-field theory[END_REF]. The wave functions are projected onto the MT spheres, whose radii are listed in Table 3.2.

For the magnetocrystalline anisotropy, the following form of energy was assumed

H M AE = -D x i (S x i ) 2 -D z i (S z i ) 2 (3.2)
with D x < 0 and D z > 0 being the single ion anisotropy constants for a hard and an easy axes anisotropy along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and the [001] directions, respectively. Our DFT calculations provide the estimations of the exchange interactions and single ion anisotropy constants for the perfect crystalline structure without distortion, and for the distorted lattice as shown in the following sections.

Non-distorted crystal structure

For the non-distorted crystal structure, the calculated parameters are listed in Table 3 increases when d increases reflecting the fact that this type of anisotropy results from the lattice distortion (magnetostriction) associated with the spiral magnetic ordering below T N .

To fit our goal and model the magnetoelectric properties of CuCrO 2 , we need a complete set of exchange interactions and single ion anisotropy constants that is able to give an incommensurate GS configuration and to reproduce experimental results. However, we found that the sets of d = 0.0001, d = 0.001 and d = 0.002 can't reproduce the incommensurate magnetic configuration for a reasonable size within the available computer resources due to the effect of PBCs. They require large systems (L > 90) to see the small deviation from the perfect 120 • configuration. On the other hand, we know that the hard axis anisotropy in our system is very important to fix a spiral plane and to speak about spontaneous ferroelectricity. But it can be seen that the sets of exchange interactions and single ion anisotropy constants corresponding to the d = 0.0001, d = 0.001 and d = 0.002 can't fit our goal because D x ≈ 0. Therefore, we will take the set of d = 0.003 to launch our simulations.

Monte Carlo simulation results

Based on the discussions we made in Sec. 2.3, we choose the size L = 90, whatever the value of L z , in all our MC simulations to model the true GS configuration in CuCrO 2 .

Study without an external magnetic field

We start our simulations from random spin configurations at a high enough temperature (T i = 35.01 K) above the transition temperature of the system. We then cool down to a final temperature (T f = 0.01 K) to characterize the GS configuration of the system. The cooling process follows an algebraic sequence such that T i+1 = T i -∆T . At each temperature step, we perform n M CS = 1.05 × 10 5 MCS by which n 0 = 5 × 10 3 MCS is discarded for thermal equilibration.

Note that we average our results over 28 simulations with different random configurations

(n conf = 28) to reduce statistical errors. The parameters of simulations are listed in Table 3.5.

Note that these simulations of size 90 × 90 × 3 with such parameters require t sim ≈ 253 hours. TABLE 3.6. Energy contribution per spin of each term of the Hamiltonian of Eq. ( 2.3) at T f = 0.01 K simulated with the set of d = 0.003 for a size 90 × 90 × 3 in CuCrO 2 .

Simulation parameters

Size N T i (K) ∆T (K) T f (K) n T emp n conf n M CS n 0 90 
E J 1 /k B (K) E J 2 /k B (K) E J 3 /k B (K) E J 4 /k B (K) E Dx /k B (K) E Dz /k B (K)
-98.079 -0.931 -10.235 -0.183 0.000 -0.427 U (T f ) are given in Table 3.6. It can be seen that the dominant contribution comes from the first nearest neighbors and the smaller contribution is that of J 4 which gives evidence about the quasi-two dimensional nature of the system. The simulated value of the propagation vector at T f = 0.01 K is found to be q sim (0.322, 0.322, 0) which is close to that reported in experimental studies q = (0.329, 0.329, 0) [START_REF] Soda | Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO 2 with proper-screw order[END_REF][START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Frontzek | Magnetic structure of CuCrO 2 : a single crystal neutron diffraction study[END_REF][START_REF] Poienar | Structural and magnetic properties of CuCr 1-x Mg x O 2 by neutron powder diffraction[END_REF][START_REF] Poienar | Spin dynamics in the geometrically frustrated multiferroic CuCrO 2[END_REF]. The fact that q sim = (1/3, 1/3, 0) reflects the incommensurability of the magnetic configuration. Now in the presence of lattice distortion and by ignoring the energy contribution due to J 4 , Eq. (1.30) becomes

E ex (k) = -S 2 [2J 1 cos(2πk) + J 1 cos(4πk) + 2J 2 cos(6πk) + J 2 + 2J 3 cos(4πk) + J 3 cos(8πk)] (3.3) 
and therefore to compare our simulated GS energy with the theoretical one, we calculate

E ex (k sim )/k B with k sim = 0.322 and compare it to U ex (T f )/k B = (U (T f )-E J 4 -E Dz )/k B = -109.246 K. By putting k sim in Eq. (3.3) we got E ex (k sim )/k B = -109.247 K which is ex- actly U ex (T f )/k B .
Now to see the deviation of the simulated GS energy from the commensurate 120 • GS configuration, we calculate

E 120 • = S 2 J 1 + 1 2 J 1 -3J 2 + 3 2 J 3 - 1 2 D z (3.4) 
Note that in the perfect 120 • configuration, the energy contribution due to J 4 is null. Thus, for the set of exchange interactions and single ion anisotropy constants corresponding to d = 0.003,

Eq. (3.4) gives us E 120 • /k B = -109.368 K > U (T f )/k B .
This confirms that the GS state configuration in the presence of lattice distortion is no more the 120 • configuration, but rather an incommensurate spin structure known as the ICY state close to the 120 • configuration. 

G theo (R, T ) = cos(2Rπk inf ) (3.5) 
with k inf = 0.3225 calculated by Eq. (2.24) with neglecting the effect of J 2 and J 3 . Concerning the degree of geometric magnetic frustration of the simulated GS, the simulated value of Eq. (1.12)

at T f = 0.01 K gives F sim = 0.541 which reflects a highly frustrated magnetic configuration. To characterize more precisely the magnetic ordering and the nearly 120 • GS configuration, we consider the spin chirality defined in Eq. (2.15) to be the order parameter in our system. Fig. 3.4

shows the thermal variation of the order parameter where we can see that spin ordering starts to take place below T N ≈ 28.5 K. At T = T f , κ ≈ 0.995 indicates a small deviation from the commensurate (120 • ) configuration of κ = 1. We compare κ(T f ) with the theoretical value κ theo -assuming all the spins are in the same spiral plane in the regular magnetic configuration -corresponding to k sim = 0.322 according to the following formula

κ theo = 2 3 √ 3 {2sin(2πk sim ) -sin(4πk sim )} (3.6) 
We find that κ theo ≈ 0.995 which corresponds exactly to κ(T f ). This means that our simulations converge toward the true magnetic configuration having the yz plane as the spiral plane of the system.

On the other hand, within our MC simulations, we simulate the temperature dependence of the specific heat per spin based on Eq.(2.19) to estimate precisely the transition temperature in CuCrO 2 . Fig. 3.5 shows the simulated temperature profile of the specific heat per spin where it shows a peak at T N = 28.5 ± 0.5 K that corresponds to a phase transition from a paramagnetic state to an antiferromagnetic state which is in a very good agreement with that reported experimentally (T N = 24-26 K) [START_REF] Okuda | Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1-x Mg x O 2 (0 x 0.04)[END_REF][START_REF] Poienar | Revisiting the properties of delafossite CuCrO 2 : A single crystal study[END_REF][START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF]. To characterize well this phase transition it is very important to study the size effect on the peak of the specific heat. thermal variation of the specific heat per spin for various system sizes. We study the effect of varying L for a fixed L z = 3 (left panel of Fig. 3.6) where we can clearly see the increase in the peak of C as L increases which indicates the presence of long range ordering within the ab plane.

However, the C-peak is not affected (within statistical errors) by the variation of L z for a given L = 90 as shown in the right panel of Fig. 3.6. This confirms the quasi-two dimensional behavior CuCrO 2 and confirms that the magnetic ordering in this delafossite is found to be within the ab plane. Thus it is also important to study the size effect on the energy of the system at the GS as well as at finite temperatures. κ(T f ), q = (h, k, 0) for each size at T f = 0.01 K as well as their corresponding T N . From the simulation results presented in Table 3.7, one can see that U (T f )/k B as well as q slightly vary with varying L while they are roughly not affected by the variation of L z . The simulated value of the order parameter κ at T f = 0.01 K shows no significant L or L z dependence. About the transition temperature T N , a small shift of the peak of the specific heat curves (Fig. 3.6) can be seen but remains within the limit of 1 K. Therefore, we can say that there exists no significant size dependence of our results at finite temperatures while the GS configuration is sensitive to the choice of L.

Finally, we conclude that the choice of the simulation box can't be arbitrary when one aims to study the true GS configuration of CuCrO 2 due to the significant effect of PBCs on the magnetic configuration of the GS ( q). Thus the choice of L that corresponds to one of the minima in Fig. 2.6

is very important for the convergence of the simulated GS toward the theoretical one whatever the choice of L z . Also, from the accordance of the simulation results with the theoretical calculations (GS energy and chirality) as well as the experimental observations, we can deduce the validity of our DFT estimates for the exchange interactions and single ion anisotropy constants. TABLE 3.7. Size effects on the GS configuration and the phase transition in CuCrO 2 . 

Size

N U (T f )/k B (K) κ(T f ) q = (h, k, 0) T N ± 0.5 (K) 30 

Ferroelectric properties

To study the ferroelectric properties in CuCrO 2 , we apply the extended inverse DM model given by Eq.(1.53). As discussed in Sec. 1.3, only the second term of Eq.(1.53) ( p 2 ) contributes to the ferroelectric polarization in the proper-screw configuration. Thus, we simulate the thermal variation of the projection of p 2 along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction (P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] ) to describe the ferroelectric nature of CuCrO 2 . To measure a spontaneous ferroelectric polarization, we apply a poling electric field E x = ±450 kV/m along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction during the first 3 × 10 3 MCS (n elec )

to fix a unique helicity of all atomic planes, and then we turn it off to let the system relax to its equilibrium position during the remaining 2 × 10 3 MCS of the equilibration time (n 0 ). Fig. 3.8

shows the thermal variation of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] which starts to emerge at T N . Also it can be seen that by switching the direction of the poling electric field, P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] is reversed. This confirms the electric control of spin helicity discussed in Ref. [START_REF] Soda | Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO 2 with proper-screw order[END_REF]. Further insight into the ferroelectric nature of our system may be gained through the study of the P -E hysteresis loops. The simulations of the hysteresis loops are done using the time step quantified MC method with the Metropolis algorithm as explained in Sec. 2.2.2.2. Before proceeding in explaining the ferroelectricity in our system, it is very important to investigate the effect of the physical time ∆t corresponding to 1 MCS. To do so, we simulate the P -E hysteresis loops at T = 5 K for various values of R.

As usual, the system is cooled from T for all the planes. At T = T loop , we apply E poling at every MCS and we start decreasing E progressively by a constant field step ∆E = 10 kV/m to reach E = -E poling and then we increase this field by the same field step ∆E to reach again E poling . At each field step, we perform 5.5 × 10 4 MCS with discarding n 0 = 5 × 10 3 for equilibrium considerations. Fig. 3.9 shows the hysteresis loops simulated at T = 5 K for various values of R. It shows that the reversal field of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] decreases as R increases. Table 3.8 shows the values of the simulated reversal electric field (E r ) for P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] for various R with their corresponding measuring time associated to 1 MCS calculated according to Eq. (2.11). As expected, the reversal field increases as the measuring time decreases, i.e., R decreases. This is because the probability to rotate the spins at each field step decreases with the decrease of the measuring time. However, decreasing R too much will make the algorithm inefficient. We find that the loop that corresponds to R = 0.09 shows an electric coercive field E r ≈ 5.3 × 10 -2 MV/m very close to that measured experimentally

(E r = 5.1 × 10 -2 MV/m [91]
). Therefore we fix R = 0.09 in our simulations for further investigations. It is worth noting that the reversal of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] results from the reversal of the helicity of each ab atomic plane.

After that we simulate the P -E hysteresis loops at different temperatures (Fig. 3.10) for a better understanding of the induced ferroelectricity in CuCrO 2 . P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] shows a linear E dependence without hysteresis above T N because the system is in the paraelectric phase, while clear hystereses are seen for temperatures below T N . Also one can see that the reversal electric field as well as the saturation electric field are roughly independent of the temperature below T N . Here we investigate the M -B hysteresis loops for B applied along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and [1 10] directions.

Study under applied magnetic fields

As usual, we start our simulations from initial random spin configurations at T i = 35 K. antiferromagnetic nature of CuCrO 2 and is consistent with the magnetic measurements done in

Refs. [START_REF] Seki | Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO 2 (A = Cu, Ag, Li or Na)[END_REF][START_REF] Kimura | Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO 2[END_REF].

Curie-Weiss behavior

We start this set of simulations from random spin configurations at T i = 300 K and we then cool down to T f = 2 K with a constant temperature step ∆T = 2 K. Thus each curve of these simulations is composed of n T emp = 150 temperatures. Then it is impossible to use the same size as before (90 × 90 × 3) because we cannot exceed t sim = 300 hours * . Therefore we need to decrease either n M CS or N . And because decreasing n M CS would increase the statistical errors, we then choose to decrease N through decreasing L z preserving the same L. Magnetic properties under 0.3 T applied along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction were simulated between 300 K and 2 K to estimate the Curie-Weiss temperature θ CW of CuCrO 2 . The simulation parameters are given in Table 3.9. Fig. 3.12 shows the variation of the magnetization and inverse susceptibility measured along the applied magnetic field. It can be seen that 1/χ obeys well * The maximum simulation time available at CRIANN is 300 hours. antiferromagnetic correlations start to develop below ∼ 100 K, which leads to the deviation from the Curie-Weiss law seen in Fig. 3.12. Furthermore, these correlation functions exhibit inflection points close to T N estimated from the specific heat curve (Fig. 3.5). Besides, an anomaly in the magnetization curve (Fig. 3.12) appears at 30 ± 2 K consistent with our estimate of T N from the specific heat curve (Fig. 

Domain stability under the effect of applied magnetic fields

In this part of our study, we are going to investigate the effect of applied magnetic fields ( B) on the stability of magnetic domains in CuCrO 2 . As explained in Sec. 1.2.3, the nearly 120

•
spin configuration is triply degenerate, and those three magnetic domains coexist in the system with three corresponding spiral-planes making an angle about 120 • between each others. In the absence of any external field, these three magnetic domains, denoted by the A, B and C, are equiprobable to exist with the same volume and the same energy. It was supposed that an applied magnetic field in the ab plane can stabilize one kind of the domains more than the others depending on the direction of the applied magnetic field [START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF][START_REF] Kimura | Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO 2[END_REF]. Accordingly, it was predicted that when B is applied along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction, the domain with the spiral plane parallel to the (110) plane is stabilized, i.e., the A-domain. Such prediction of domains rearrangement can explain the increase of the ferroelectric polarization measured along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction reported in Ref. [START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF]. On the other hand, it was supposed that when B is applied along the [1 10] direction, the A-domain will become less stable and that at a certain value of Therefore, to discuss all the above mentioned predictions quantitatively, we need to consider the domain configuration of our spin structure (Fig. 1.21). However, it is still difficult to model such spin structure in the presence of lattice distortion. This is because we need to have the three types of domains and thus three distorted directions corresponding to three hard axes in the same simulation which is very complicated to implement in our model. However, instead of taking the three domains at the same time and study the effect of applying B along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction for e.g., we will deal only with the A-domain and study its stability under the effect of changing the direction of B as shown in Fig. 3.14. Based on this model, we apply B along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and the is equivalent to the stability of B or C-domains under B [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] (Fig. 3.14b). The simulations pursue the following procedure: we take the system from a random spin configuration at T i = 35 K and we slowly cool down to T f = 0.01 K according to T i+1 = αT i with α = 0.95 under a field of 20 T. With this cooling process, the system stays longer time at low temperatures than at high ones providing a better accuracy on the GS energy but with longer simulation time. Because in this study we are not interested in studying the phase transition in the system, we are able to decrease n M CS than that used in the previous investigations. The parameters of the simulations are given in Table 3.10.

B [ 1 
The thermal variation of the internal energy of the A-domain under the effect of an applied magnetic field along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF], [010] and [1 10] directions is shown in Fig. 3.15. Despite of the small difference in the energies, but it still can be seen that the internal energy of the A-domain under the effect of B [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] is slightly lower than that under the effect of B [010] . Thus, in terms of three domains interpretations, we could say that the A-domain is more stable than B and C-domains under the effect of B [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] as predicted in Refs. [START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF][START_REF] Kimura | Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO 2[END_REF]. On the other hand, it can be also seen that the internal energy of the A-domain under the effect of B [1 10] is slightly higher than that under the effect of B [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] which could give an evidence of the possibility of the destabilization of A-domain under the effect of the application of B along the [1 10] as assumed in Refs. [START_REF] Soda | Domain rearrangement and spin-spiralplane flop as sources of magnetoelectric effects in delafossite CuCrO 2[END_REF][START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF][START_REF] Kimura | Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO 2[END_REF]. Table 3.11 shows the values of the internal energy and the chirality of the A-domain at T f = 0.01 K simulated under the effect of the various directions of the applied magnetic field. It can be seen that κ(T f ) doesn't respond to the direction of the applied field. It preserves the same value whatever is the direction of B. This shows that the magnetic field may stabilize one type of domains than the others without altering the magnetic configuration. Such magnetic field effect on the magnetic domains and consequently on the measured ferroelectric polarization measured along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction makes CuCrO 2 a rare example in terms of the magnetoelectric tunability by both magnetic and electric fields. because it allows us to investigate the effect of pure magnetic dilution (for small Ga fractions)

without steric effect like the other dopants. With our results we try to explain some experimental predictions and provide better understandings of the magnetoelectric properties of the diluted

CuCrO 2 .
Because DFT calculations (Appendix A) show no pronounced effect of Ga 3+ doping on the exchange interactions in the system as well as no structural modifications, we safely replace a certain fraction x of Cr 3+ by S = 0 sites randomly through the whole system.

With the set of exchange interactions and single ion anisotropy constants corresponding to d = 0.003, we simulate the magnetic and ferroelectric properties of CuCr 1-x Ga x O 2 for x = 0, 0.02, 0.05, 0.1, 0.15, 0.2, and 0.3. Since we showed in chapter 3 that the effect of J 4 is very small and that the system has a quasi-two dimensional behavior, we will perform these sets of simulations on 2D lattices for time considerations. Note that our MC simulations are performed with and without applied magnetic fields to get a more clear picture on the diluted CuCrO 2 as discussed below. x. It can be seen that the internal energy per spin of the system increases as x increases due to the loss in the magnetic interactions caused by the introduced defects. In particular, it can be seen that starting from x = 0.2 the inflection point in the internal energy curve disappears. Fig. 4.2

shows the variation of the internal energy per spin versus x at T f = 0.01 K where it shows a linear x-dependence of U (T f ). To compare the simulated GS configuration with the ICY state,

we calculate E ICY in the infinite system of CuCr 1-x Ga x O 2 such as

E ICY (k inf ) = -S 2 (1 -x)[2J 1 cos(2πk inf ) + J 1 cos(4πk inf ) + 2J 2 cos(6πk inf ) + J 2 + 2J 3 cos(4πk inf ) + J 3 cos(8πk inf ) + 1 2 D z ] (4.1) 
where k inf = 0.3225 as given in Sec. 2.3. It can be seen that U (T f ) is below E ICY for x = 0.

This means that the ICY state presented in the pure CuCrO 2 is no more the stable configuration in CuCr 1-x Ga x O 2 . On the other hand, we calculate the parameter F -the degree of magnetic frustration given in Eq. (1.12) -which shows that the frustration of the GS configuration slightly decreases with increasing x but remains high in the system as shown in Fig. 4.3.

Then the question arises now is that, what is the nature of these diluted antiferromagnets? To describe more precisely, we simulate the thermal variation of the specific heat per spin for the different fractions x (Fig. 4.4). It can be seen that the specific heat peak is rounded and shifts toward low temperatures with the increase of x up to 0.15. Starting from x = 0.2, no clear peak can be identified, but rather a broaden peak which suggests a loss in the long range magnetic ordering in the system. Hence it is very important to calculate the correlation functions for the various fractions. However at x ≥ 0.2, the specific heat peak doesn't increase with increasing the size which is consistent with the loss of the long range ordering seen in Fig. 4.5. Therefore at this stage we can say that the magnetic configurations for x ≥ 0.2 are disordered (no more long range order). Thus in the presence of both frustration and disorder in the system (for x ≥ 0.2) -the necessary ingredients for having a spin glass behavior -one can think about spin-glass-like behavior in the system and hence try to find some features that are able to describe such a freezing state.

First of all, we can see that the low temperature part of the specific heat curve for x = 0.3 (Fig. 4.8f) varies quite linearly with T unlike that of x = 0.2 (Fig. 4.8e), which is a signature of a spin-glass-like behavior in diluted magnets [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF]. Because the low temperature region of the specific heat curve in CuCr 0.7 Ga 0.3 O 2 may reflect a spin-glass-like behavior, and because its peak is broadened and doesn't respond to size variation, then the specific heat cannot characterize the phase transition and consequently the freezing temperature of the system.

On the other hand, it is curious to know where does the disorder of the spins take place. Do the system still possesses a spiral plane? To answer this question, we simulated the thermal variation of the spin chirality given in Eq. (2.15) and the components κ x , κ y and κ z of Eq. (2.14) along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF], [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] and [001] directions, respectively. It can be seen that at T f = 0.01 K for x ≤ 0.2, κ y = κ z ≈ 0 and κ = κ x (Fig. 4.9a-4.9e) which suggests that the spins are still confined within the yz spiral plane due to the effect of the hard-axis anisotropy. However, when x = 0.3 there exists a nonzero component of κ y and that κ x < κ (Fig. 4.9f) which reflects the fact that the spins are no more confined in the same spiral plane.

To verify our previous interpretations, we calculate the thermal variation of the average of the absolute value of S x , S y and S z according to we define the parameter χ κ = κ 2 -κ 2 according to Ref. [START_REF] Zagoulaev | Electronic structure and magnetic properties of the spin-peierls compound cugeo 3[END_REF] to be the chiral susceptibility which shows a peak at the spiral plane ordering temperature of the system. Finally, we can say that CuCr 1-x Ga x O 2 is antiferromagnetic when x ≤ 0.15, disordered within the same spiral plane (yz plane) at x = 0.2 and shows a spin-glass-like behavior for x = 0.3.

|S u | T = 1 N (n M CS -n 0 ) n M CS =n 0 +1 N i=1 S i u (4.

Ferroelectric properties

As we show in the previous section, CuCr 1-x Ga x O 2 preserves its spiral nature up to x = 0.2.

Also since short range correlations still exist in the system, we can still apply the extended inverse DM model given by Eq.(1.53) to describe the emergence of spontaneous ferroelectricity in CuCr 1-x Ga x O 2 . For the same simulation parameters given in Table 4.1, we simulate the thermal variation of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] for the system when x ≤ 0.2. Because here we perform our simulations on 2D lattices, it is not important to apply a poling electric field since the lattice will have a unique helicity. But since we average our results over many configurations, we then choose to average the absolute value of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] to avoid sum cancellations. Fig. 4.12 shows the temperature profile of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] simulated for each fraction x. It can be seen that P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] decreases as x increases in the system. This decrease is caused by the loss of magnetic bonds and the destabilization of the ICY state presented in the pure system. This can be seen clearly through the variation of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] (T f ) versus x in comparison to the theoretical value of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] in the infinite system as shown in Fig. 4.13. Denote by P ICY , P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] calculated in the ICY state of the infinite system according to

P ICY = S 2 (1 -x) |sin(4πk inf )| (4.3) 
with k inf = 0.3225 is the value of propagation vector calculated in the infinite lattice as given in Sec. 2.3. Thus P ICY represents the polarization in CuCr 1-x Ga x O 2 assuming that magnetic dilution doesn't perturb the ICY state. However, we can clearly see that P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] decreases linearly with x but it is well below P ICY when x = 0. This reflects the fact that magnetic dilution destabilizes the ICY state of CuCrO 2 as previously seen.

Not only a decrease in the polarization is obtained, but also a decrease in the temperature at which ferroelectricity starts to emerge. Such temperature is directly related to the spiral plane ordering temperature T * . Thus to confirm the values of T * extracted from χ κ , we calculate the electric susceptibility χ e -the derivative of P [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] with respect to an applied electric fieldthrough the following relation

χ e = ∂P [110] ∂E E=0 = P 2 [110] T -P [110] 2 T N x k B T 2 (4.4)
where N x is the number of magnetic bonds counted along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. The thermal variation of χ e for each x ≤ 0.2, given in Fig. properties even when it loses its magnetic properties.

Study under a small applied magnetic field

In order to know the magnetic nature of each composition of CuCr 1-x Ga x O 2 we investigate its magnetic properties under a small applied magnetic field. We start these sets of simulations from random spin configurations at T i = 300 K and then we cool down to T On the other hand, the extrapolation of the high temperature parts of the 1/χ curves gives us the Curie-Weiss temperature θ CW of each composition. It can be seen that θ CW increases with the increase of x in the system due to the effect of magnetic dilution which is comparable to the experimental ones [START_REF] Pachoud | Magnetic dilution and steric effects in the multiferroic delafossite CuCrO 2[END_REF] as shown in the right panel of Fig. 4.19. MCS for thermal equilibration.

Magnetic history in CuCr

It can be seen that the magnetization is reversible for x ≤ 0.05 and thus it doesn't depend on the magnetic history of the system as shown in Fig. 4.20. This is because the system is long range ordered at these fractions as proved by the correlation functions given in Fig. 4.5. Also we previously said that the system preserves its antiferromagnetic nature up to x = 0.15. Then for x = 0.1 and x = 0.15, the long range magnetic ordering persists in the system with a small decrease from that of x ≤ 0.05. This small decrease comes from the presence of some disorder in the system introduced by the defects. Such disorder increases the number of metastable states at low temperatures resulting in the irreversibility of the ZFC-FC magnetization measurements below T * and thus a small magnetic history dependence exists as shown in Fig. 4.20. For x = 0.2, it is well known that the system is disordered (loss of long range ordering) and therefore the magnetic history dependence of the magnetization measurements seen in Fig. 4.20 is expected. However for x = 0.3, we have seen many features that suggest the presence of a spin-glass-like behavior in the system (frustration, disorder, loss of long range ordering, broadening of the specific heat peak, linear behavior of the low temperature part of the specific heat curve...). In addition, we can see a severe magnetic history dependence of the magnetization where the ZFC magnetization starts near zero and increases under the FC process. The temperature where the irreversibility takes place may give us an idea about the freezing temperature of the system which is around T SG ≈ 7.5 K. Further investigations such as the a.c. ZFC-FC meaurements are necessary to characterize well the freezing temperature of CuCr 0.7 Ga 0.3 O 2 .

At the end of this work, we can say that if one aims to benefit from the good performance of the diluted semiconductor CuCr 1-x Ga x O 2 with preserving its magnetic and ferroelectric properties, Ga 3+ fraction should not exceed 0.15 otherwise the system is turned to become disordered with the possibilty of the appearance of a spin-glass-like behavior at higher fractions of Ga 3+ .

Conclusions and perspectives

The aim of this thesis was to study the magnetoelectric properties of the multiferroic CuCrO We found that lattice distortion is the responsible of the incommensurate spin configuration and that it induces a weak in-plane hard-axis anisotropy along the distorted direction. We confirm that the CuCrO 2 has an incommensurate spin configuration with a propagation vector q = (0.322, 0.322, 0) pointing along the [START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction in agreement with the experimental spin configuration of q = (0.329, 0.329, 0). Also we showed that CuCrO 2 possesses a Néel temperature T N ≈ 28.5 K and a Curie-Weiss temperature |θ CW | ≈ 173.92 K which are in a very good agreement with the experimental ones. We have also simulated the spontaneous ferroelectric polarization which can be described through the extended inverse DM model. The P -E hysteresis loop simulated at T = 5 K has an electric coercive field E r = 5.3 × 10 -2 MV/m consistent with that measured experimentally. Also our simulated P -E hysteresis loops at various temperatures confirm the electric control of spin helicity as reported experimentally.

On the other hand, DFT calculations showed that magnetic dilution by Ga 3+ cations doesn't significantly affect the exchange interactions presented in the pure CuCrO 2 due to the close radii of Cr 3+ and Ga 3+ . This allowed us to investigate the effect of pure magnetic dilution without structural deformations. We found that CuCr 1-x Ga x O 2 (x ≤ 0.15) still possess antiferromagnetic ordering where T N decreases as the fraction of Ga 3+ increases in the system, while it turns to become disordered states for x ≥ 0.2. We also found that Ga 3+ substitution destabilizes the ICY state presented in the pure system. The spins in CuCr 1-x Ga x O 2 for x ≤ 0.2 lie in a unique spiral plane while that for x = 0.3 go out of the spiral plane and randomly oriented in all directions. Spin-glass-like behavior was expected for x = 0.3 due to the loss in the long range magnetic ordering in the system, the broadening and the linear behavior of the low temperature part of the specific heat curve and the presence of the main two ingredients of spin glasses: magnetic disorder and frustration. Also severe magnetic history dependence was seen in the magnetization measurements of x = 0.3 below T SG ≈ 7.5 K.

Further investigations are very important to have a complete and clear picture on the magnetoelectric properties of the multiferroic CuCrO 2 . DM and biquadratic exchange interactions can be taken into account. Also the study of the high magnetic field phase diagram of CuCrO 2 is very important to understand the magnetization as well as exchange interaction dependences on high magnetic fields.

Within the study of magnetic dilution, it is very important to improve the ZFC-FC investigations in CuCr 1-x Ga x O 2 and to model the a.c. magnetic susceptibility to characterize the spin glass transition temperature T SG . Also it is important to study the effect of magnetic dilution by Al 3+

and compare it with that of Ga 3+ .

On the other hand, the effect of Ni 3+ substitution in the Cr 3+ sites was studied experimentally.

It was found that Ni 3+ enhances both ferroelectric and ferromagnetic properties in This part of the work aims to study the effect of replacing some Cr 3+ ions by Ga 3+ on the exchange interactions presented in CuCr 1-x Ga x O 2 using the DFT calculations. DFT calculations were performed using full-potential linear muffin-tin orbital (FP-LMTO) method as implemented in RSPt [START_REF] Wills | Full-Potential LMTO Total Energy and Force Calculations[END_REF] software. The computational details are the same as those presented in Sec. 3.1.1.

The Hubbard-U correction was applied on Cr 3d states. The U and J H values were set to 2.3 and 0.96 eV, respectively. The FLL double-counting correction has been adopted. We construct a 3 × 3 × 1 super-cell of CuCrO 2 , which accommodates 9 formula units. Having 9 Cr atoms, we substitute one, two or three Cr atoms by Ga ones, which corresponds to the following dopant fractions: x = 1/9, x = 2/9, x = 1/3. Replacing some Cr sites with non-magnetic elements can affect the magnetic properties in two ways. First, it can cause a renormalization of the remaining Cr-Cr exchange couplings. Second, if the impurity ion has different effective radius compared to the host one, it can also distort the lattice, thus changing the positions of oxygen atoms. The latter can influence the crystal field splitting and other electronic structural properties of the adjacent Cr ions. In order to be able to disentangle the two mentioned contributions, we have considered two crystal structures:

1. Experimental crystal structure is taken from Ref. [START_REF] Ono | Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr 1-x Mg x O 2 (0 x 0.05[END_REF]. Here we just substitute certain Cr atoms with Ga ones. The effect of the lattice relaxation is not taken into account.

2. Here we make a full ionic and lattice relaxation of the undoped CuCrO 2 structure. For this purpose, we use another DFT code (VASP) and adopt a GGA functional, which usually provides lattice constant values closer to experimental ones. Then, within the relaxed structure, we substitute one Cr atom by a Ga one (corresponding to x = 1/9) and relax the structure again. Note that experimental lattice constants might not correspond to the equilibrium structure within DFT calculations and thus it can contain forces acting on the atoms. Thus, in order to properly simulate the structural changes due to doping, one first needs to relax the structure of the parent compound.

To calculate the new values of the exchange interactions, we consider the Hamiltonian of Eq. 3.1 in a FM state. For simplicity we make our calculations in the non-distorted crystal structure.

As a first step, we start with the first approach of the un-relaxed experimental crystal structure.

The considered structural models are shown in interaction in the system is J 1 and the others are very small compared to it, we will neglect these small fluctuations around the mean values of J ij 's in our MC simulations. It is important to note that these calculations were repeated for the relaxed crystal structure where we found roughly the same results with no pronounced effects of the Ga ions on the exchange interactions of CuCr 1-x Ga x O 2 (the results are not shown here).

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Magnetic interactions . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2.1 Exchange interactions . . . . . . . . . . . . . . . . . 5 1.1.2.2 Dipolar interaction . . . . . . . . . . . . . . . . . . . 7 1.1.2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . 8 1.1.2.4 Zeeman energy . . . . . . . . . . . . . . . . . . . . 9 1.1.3 Geometric magnetic frustration . . . . . . . . . . . . . . . . . 9 1.1.4 Antiferromagnetic triangular lattices . . . . . . . . . . . . . . . 1.1.4.1 Ground state magnetic configuration without anisotropy 1.1.4.2 Energy of the 120 • GS configuration with a uniaxial anisotropy . . . . . . . . . . . . . . . . . . . . . . . 1.1.5 Curie-Weiss law . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.6 A brief overview of spin glasses . . . . . . . . . . . . . . . . . 1.1.7 Dielectric polarization . . . . . . . . . . . . . . . . . . . . . . 1.1.8 Multiferroics . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 About the transition metal oxide CuCrO 2 . . . . . . . . . . . . . . . .

2 4 . 1 3 . 1

 4131 Study without applied magnetic fields . . . . . . . . . . . . . . . . . . 4.1.1 Ground state configuration and phase transition . . . . . . . . . 4.1.2 Ferroelectric properties . . . . . . . . . . . . . . . . . . . . . . 4.2 Study under a small applied magnetic field . . . . . . . . . . . . . . . . 4.3 Magnetic history in CuCr 1-x Ga x O 2 : d.c. ZFC-FC measurements . . . Conclusions and perspectives A DFT calculations in CuCr 1-x Ga x O 2 Bibliography List of Figures 1.1 Schematic illustration of the DM interaction. . . . . . . . . . . . . . . . 1.2 Schematic representation of the dipolar interaction between two magnetic dipoles m i and m j separated by a distance r ij . . . . . . . . . . . . 1.3 Geometric magnetic frustration arising from triangular arrangement of magnetic moments coupled antiferromagnetically (a), two degenerate ground states 120 • (b) and 240 • (c). . . . . . . . . . . . . . . . . . . . 1.4 Schematic representation of the triangular antiferromagnet CuCrO 2 illustrating a commensurate spin configuration represented in the ab plane with a propagation vector q = (1/3, 1/3, 0) taking into account isotropic exchange interactions up to the 3 rd nearest neighbors. . . . . . 1.5 Antiferromagnetic triangular lattice with 120 • ground state configuration. 1.6 Thermal variation of the magnetization in paramagnetic materials. . . . 1.7 Thermal variation of the inverse magnetic susceptibility in paramagnetic materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Schematic illustration of the thermal variation of the inverse magnetic susceptibility in antiferromagnetic materials: the left hand side corresponds to a non-frustrated AFM system with θ CW = -T N and the right hand side corresponds to a frustrated AFM system with θ CW -T N . . 1.9 Schematic representation of the thermal variation of the d.c. ZFC-FC magnetic susceptibility measured in a spin glass showing the freezing temperature T SG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Schematic representation of a dielectric subjected to an applied electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Schematic illustration of the magnetic and electric responses in ferromagnetic, ferroelectric and multiferroic materials [30]. . . . . . . . . . 1.12 Delafossite structure of ABO 2 with A = Cu + and B = Cr 3+ . . . . . . . 1.13 Variation of the exchange energy as function of the propagation vector k for two sets of exchange interactions extracted from neutron diffraction experiments (left), and from DFT calculations (right) in CuCrO 2 . . . . 1.14 Variation of the exchange energy as function of the propagation vector k for various rations of J 2 /J 1 (left), and the variation of the minimal energy of E ex (k) versus J 2 /J 1 for J 2 AFM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 . . . . . . . . . . . . ix List of Figures x 1.15 Variation of the exchange energy as function of the propagation vector k for various rations of J 2 /|J 1 | (left), and the variation of the minimal energy of E ex (k) versus J 2 /|J 1 | for J 2 FM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 . . . . . . . . . . . . 1.16 Variation of the exchange energy as function of the propagation vector k for various rations of J 3 /J 1 (left), and the variation of the minimal energy of E ex (k) versus J 3 /J 1 for J 3 AFM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 . . . . . . . . . . . . 1.17 Variation of the exchange energy as function of the propagation vector k for various rations of J 3 /|J 1 | (left), and the variation of the minimal energy of E ex (k) versus J 3 /|J 1 | for J 3 FM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 . . . . . . . . . . . . 1.18 Schematic representation of the zone of interactions where the 120 • configuration persists in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . 1.19 Schematic representation of a proper-screw spin structure with its corresponding propagation vector q. . . . . . . . . . . . . . . . . . . . . . . 1.20 Atomic plane of Cr 3+ ions at T > T N with equilateral triangular plaquettes and isotropic exchange interaction J 1 (a), distorted atomic plane of Cr 3+ ions below T N with anisotropic first nearest-neighbor exchange interactions with J 1 /J 1 < 1 (b). . . . . . . . . . . . . . . . . . . . . . 1.21 Schematic representation of the three types of domains with different spiral planes in CuCrO 2 showing their corresponding propagation vector q. Thick lines denote the spiral plane for the three degenerate domains A, B and C at zero fields. . . . . . . . . . . . . . . . . . . . . . . . . . 1.22 Proper-screw spin configuration with q perpendicular to the spiral plane and cycloidal spin configuration with q inside the spiral plane. . . . . . 1.23 Flop of domain A to domain D under B f lop ≈ 5.3 T applied along the [1 10] direction in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 L × L triangular lattice representing each plane of Cr 3+ ions. . . . . . . 2.2 Intralayer and interlayer super-exchange interactions in CuCrO 2 with J 1 = J 1 in the non-distorted crystal structure, and J 1 > J 1 in the distorted one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Schematic illustration of the principle of the time step quantified Monte Carlo method with R < 1. . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Time variation of the internal energy during the cooling process. . . . . 2.5 Triangular plaquette p. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Theoretical curves of the variation of the exchange energy as function of size L (multiples of 3) in a 2D system compared to that in the infinite system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Theoretical curves of the variation of exchange energy versus k (left), and its corresponding zoom in the minimal energy regime (right) in a 2D system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Theoretical curves of the variation of the exchange energy versus k for L = 90 in comparison with that of the infinite system. . . . . . . . . . . List of Figures xi Thermal variation of the internal energy simulated with the set of d = 0.003 in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 GS spin configuration at T f = 0.01 K. We plot each spin as (S z , S y , 0) in the ab plane of CuCrO 2 for simplicity. . . . . . . . . . . . . . . . . 3.3 Variation of the spin-spin correlation function versus the distance (in a units) simulated with the set of d = 0.003 along the [100] direction at T f = 0.01 K in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Temperature dependence of the order parameter simulated with the set of d = 0.003 in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Thermal variation of the specific heat per spin simulated with the set of d = 0.003 in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Size dependence of the thermal variation of the specific heat per spin simulated with the set of d = 0.003 for various system sizes in CuCrO 2 . 3.7 Size dependence of the thermal variation of the internal energy per spin simulated with the set of d = 0.003 for various system sizes in CuCrO 2 . 3.8 Temperature dependence of the ferroelectric polarization simulated along the [110] direction with the set of d = 0.003 in CuCrO 2 . . . . . . . . . 3.9 P -E hysteresis loops simulated at T = 5 K with the set of d = 0.003 for different values of R in CuCrO 2 . . . . . . . . . . . . . . . . . . . . 3.10 P -E hysteresis loops simulated with the set of d = 0.003 at different temperatures in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 Magnetic field dependence of the magnetization simulated with the set of d = 0.003 at T = 5 K in CuCrO 2 . . . . . . . . . . . . . . . . . . . . 3.12 Temperature dependence of the magnetization per spin and the inverse susceptibility simulated with the set of d = 0.003 under B = 0.3 T in CuCrO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13 Temperature dependence of the spin-spin correlation functions simulated with the set of d = 0.003 along the [100] direction in CuCrO 2 . . . . . . 3.14 Schematic representation of the three magnetic domains A, B and C under an applied magnetic field: along the [110] direction (a), and the magnetic field directions with respect to the A domain in our simulations (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 Thermal variation of the internal energy per spin of the A-domain under an applied magnetic field along the [110], [010] and [1 10] directions. . . 4.1 Thermal variation of the internal energy per spin simulated in CuCr 1-x Ga x O . 75 4.2 Variation of the GS energy per spin compared to E ICY as function of x in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Variation of the degree of magnetic frustration of the GS in CuCr 1-x Ga x O 2 . 75 4.4 Thermal variation of the specific heat per spin simulated in CuCr 1-x Ga x O 2 . 76 4.5 Variation of the spin-spin correlation functions versus the distance simulated with the set of d = 0.003 along the [100] direction at T f = 0.01 K in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 One of the simulated GS spin configurations of CuCr 0.8 Ga 0.2 O 2 . . . . . 4.7 One of the simulated GS spin configurations of CuCr 0.7 Ga 0.3 O 2 . . . . .

xii 4 . 8

 48 Thermal variation of the specific heat per spin simulated with the set of d = 0.003 for various x in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . 4.9 Thermal variation of the spin chirality κ and its corresponding components κ x,y,z simulated with the set of d = 0.003 for various Ga 3+ fractions in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Thermal variation of the average value of the x, y, z components of the spins simulated with the set of d = 0.003 for various Ga 3+ fractions in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Thermal variation of the chirality susceptibility χ κ shows a peak at the ordering temperature (left panel), and the variation of the ordering temperature versus x deduced from χ κ and C (right panel) simulated with the set of d = 0

  1-x Ga x O 2 . . . . . . . . . . . . . . . . . 4.14 Thermal variation of the electric susceptibility simulated with the set of d = 0.003 for various x in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . 4.15 P -E hysteresis loops simulated with the set of d = 0.003 along the [100] direction at T = 5 K for various fractions x in CuCr 1-x Ga x O 2 . . . . . 4.16 Thermal variation of the magnetization per spin simulated with the set of d = 0.003 under B = 0.3 T magnetic field for various fractions x in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.17 Variation of the Néel temperature extracted from the simulated magnetization and specific heat curves from experimental magnetic susceptibility measurements as function of x ≤ 0.15 in CuCr 1-x Ga x O 2 . . . . . . . . 4.18 Thermal variation of the inverse susceptibility per spin simulated with the set of d = 0.003 under B = 0.3 T magnetic field for various fractions x in CuCr 1-x Ga x O 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.19 Variation of the simulated Curie constant compared to the theoretical one (left) and the simulated Curie-Weiss temperature in comparison with the experimental one (right) as function of x in CuCr 1-x Ga x O 2 . . . . . 4.20 d.c. ZFC-FC magnetization temperature dependence simulated under B = 100 Oe for each fraction x of Ga 3+ in CuCr 1-x Ga x O 2 . . . . . . . A.1 Considered structural configurations. Cr (Ga) atoms are represented by blue (green) spheres. Configuration I corresponds to x = 1/9; II, III correspond to x = 2/9; and IV,V,VI correspond to x = 1/3. . . . . . . .

  Chapter 3 is divided into two main parts. The first part presents the DFT calculations that estimate the values of the exchange interactions and single ion anisotropy constants in CuCrO 2 . The second part shows our Monte Carlo simulation results of the magnetic and ferroelectric properties in CuCrO 2 based on the extracted DFT parameters.
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 11 FIG. 1.1. Schematic illustration of the DM interaction.

FIG. 1 . 3 .

 13 FIG. 1.3. Geometric magnetic frustration arising from triangular arrangement of magnetic moments coupled antiferromagnetically (a), two degenerate ground states 120 • (b) and 240 • (c).

  FIG. 1.4. Schematic representation of the triangular antiferromagnet CuCrO 2 illustrating a commensurate spin configuration represented in the ab plane with a propagation vector q = (1/3, 1/3, 0) taking into account isotropic exchange interactions up to the 3 rd nearest neighbors.

  which minimizes Eq. (1.22) is when h = k and hence q = (k, k, 0). Hence, by replacing h = k in Eq. (1.23) we obtain: cos(2πk) = -1/2 =⇒ k = 1/3 or k = 2/3 which correspond to the 120 • and the 240 • configurations shown in Fig. 1.3b and Fig. 1.3c.
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 15 FIG. 1.5. Antiferromagnetic triangular lattice with 120 • ground state configuration.
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 1617 FIG. 1.6. Thermal variation of the magnetization in paramagnetic materials.
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 18 FIG.1.8. Schematic illustration of the thermal variation of the inverse magnetic susceptibility in antiferromagnetic materials: the left hand side corresponds to a nonfrustrated AFM system with θ CW = -T N and the right hand side corresponds to a frustrated AFM system with θ CW -T N .

Fig. 1 . 8 .

 18 Fig. 1.8. Therefore, in a frustrated antiferromagnetic system, |θ CW | /T N > 1 and increases as much as the frustration increases. According to Refs. [17, 18], one can consider f = |θ CW | /T N as a frustration parameter that gives complementary information about the frustrated nature of the system. Let us now determine the relation between θ CW and the exchange interactions. Consider a frustrated antiferromagnet with 3 sublattices as shown in Fig. 1.4 denoted by A, B and

(

  FIG. 1.9. Schematic representation of the thermal variation of the d.c. ZFC-FC magnetic susceptibility measured in a spin glass showing the freezing temperature T SG .

  FIG. 1.10. Schematic representation of a dielectric subjected to an applied electric field.

  FIG. 1.13. Variation of the exchange energy as function of the propagation vector k for two sets of exchange interactions extracted from neutron diffraction experiments (left), and from DFT calculations (right) in CuCrO 2 .

  [START_REF] Poienar | Spin dynamics in the geometrically frustrated multiferroic CuCrO 2[END_REF] as shown in the left side of Fig.1.14. However when J 2 /J 1 ≥ 0.16, the E ex (k) plot possesses a minimum at k = 1/2 which means that the magnetic configuration does no more refer to the 120 • configuration. For each value of J 2 /J 1 , we record the minimum energy of E ex (k) and we compare it to that calculated for E 120 •ex and E 180 • ex . The variation of E ex (k), E 120 • ex and E 180 • ex versus J 2 /J 1 is shown in the right side of Fig. 1.14.

ex and thus the 120 • 2 FM

 1202 FIG. 1.15. Variation of the exchange energy as function of the propagation vector k for various rations of J 2 /|J 1 | (left), and the variation of the minimal energy of E ex (k) versus J 2 /|J 1 | for J 2 FM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 .

3 FM

 3 FIG.1.16. Variation of the exchange energy as function of the propagation vector k for various rations of J 3 /J 1 (left), and the variation of the minimal energy of E ex (k) versus J 3 /J 1 for J 3 AFM compared to the theoretical energy of the 120 • and the 180 • (right) in CuCrO 2 .
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 1 FIG. 1.18. Schematic representation of the zone of interactions where the 120 • configuration persists in CuCrO 2 .
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 119 FIG.1.19. Schematic representation of a proper-screw spin structure with its corresponding propagation vector q.

  FIG.1.20. Atomic plane of Cr 3+ ions at T > T N with equilateral triangular plaquettes and isotropic exchange interaction J 1 (a), distorted atomic plane of Cr 3+ ions below T N with anisotropic first nearest-neighbor exchange interactions with J 1 /J 1 < 1 (b).

  FIG. 1.23. Flop of domain A to domain D under B f lop ≈ 5.3 T applied along the [1 10] direction in CuCrO 2 .

3 T

 3 along[1 10] [13, 91, 92]. Such transition leads to the flop of the spiral plane from A to D domain (Fig.1.23) seen through the significant decrease of the ferroelectric polarization measured along the[START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction[START_REF] Kimura | Magnetoelectric control of spinchiral ferroelectric domains in a triangular lattice antiferromagnet[END_REF].

2

 2 crystallizes in the layered R 3m space group in the delafossite structure. Such delafossite structure with trigonal system and hexagonal axes is formed of edge shared CrO 6 layers alternatively stacked between Cu + layers along the vertical direction (c axis) as shown in Fig.1.12 [with a = 2.9746(1) Å and c = 17.1015(3) Å in the hexagonal structure]. Each layer of ions forms a two dimensional triangular lattice. Within the different ions of CuCrO 2 , we are just concerned in the magnetic ones (Cr 3+ , S = 3/2) to model its magnetic and ferroelectric properties. A model based on triangular lattices stacked vertically is used to build the crystal. In this crystal, a single unit cell contains three chromium ions located as:

  FIG. 2.1. L × L triangular lattice representing each plane of Cr 3+ ions.

2 . 4 .

 24 FIG. 2.4. Time variation of the internal energy during the cooling process.

  FIG. 2.5. Triangular plaquette p.

( 2 .

 2 FIG. 2.6. Theoretical curves of the variation of the exchange energy as function of sizeL (multiples of 3) in a 2D system compared to that in the infinite system.

3 . 1 .

 31 Using these extracted parameters, we model the magnetoelectric properties of CuCrO 2 using the classical Monte Carlo method. The results of this chapter have been published in Physical Review B[START_REF] Albaalbaky | Magnetoelectric properties of multiferroic CuCrO 2 studied by means of ab initio calculations and Monte Carlo simulations[END_REF].

both give the perfect 120 • 3 . 1 . 3 . 2

 1203132 GS configurations with the good transition temperature compared to experimental data. Thus the choice of the calculation setup is very important with no significant effect of the initial magnetic configuration (FM or AFM). Based on that, we will base our next calculations on the LDA+U [U 2 , FLL] method starting from FM configuration for simplicity.Based on the Hamiltonian given in Eq. (3.2), the values of the single ion anisotropy constants are: D x = 0 meV and D z = 0.033 meV correspond for the hard and easy axes anisotropy, respectively. Distorted crystal structure Kimura et al.[START_REF] Kimura | Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO 2[END_REF] have reported experimentally a tiny in-plane lattice distortion in CuCrO 2 that takes place below its ordering temperature (T N ) along the[START_REF] Dreyssé | Electronic structure and physical properties of solids: the uses of the LMTO method[END_REF] direction. In this part of our study, we have considered this experimental lattice distortion d = (a 2 -a 1 )/a 1 = 0.0001 illustrated in Fig.1.20 to calculate again the J ij 's and the single ion anisotropy constants. Beside d = 0.0001, we have tested several values of d to understand the effect of such lattice distortion on the extracted parameters and therefore on the properties of CuCrO 2 . The dependence of the magnetization on the considered values of d was found to be negligible. A magnetic moment of about 2.62 µ B per Cr atom has been obtained. The a 2 parameter was set to the experimental
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 33211 Ground state configuration and phase transition

Fig. 3 .

 3 Fig. 3.1 shows the temperature dependence of the internal energy per spin. It shows an inflection point around 28.5 K, which suggests a phase transition at this temperature. The simulated GS energy per spin is U (T f )/k B -109.856 K. The energy contributions of each term of
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 2 FIG.3.2. GS spin configuration at T f = 0.01 K. We plot each spin as (S z , S y , 0) in the ab plane of CuCrO 2 for simplicity.
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 33 FIG. 3.3. Variation of the spin-spin correlation function versus the distance (in a units) simulated with the set of d = 0.003 along the [100] direction at T f = 0.01 K in CuCrO 2 .
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 3 FIG. 3.5. Thermal variation of the specific heat per spin simulated with the set of d = 0.003 in CuCrO 2 .
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 3 FIG. 3.6. Size dependence of the thermal variation of the specific heat per spin simulated with the set of d = 0.003 for various system sizes in CuCrO 2 .

  FIG. 3.8. Temperature dependence of the ferroelectric polarization simulated along the [110] direction with the set of d = 0.003 in CuCrO 2 .

  FIG. 3.11. Magnetic field dependence of the magnetization simulated with the set of d = 0.003 at T = 5 K in CuCrO 2 .
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 312 FIG. 3.12. Temperature dependence of the magnetization per spin and the inverse susceptibility simulated with the set of d = 0.003 under B = 0.3 T in CuCrO 2 .

  3.5). The ratio f = |θ CW | /T N ≈ 6.1 ( 1) confirms the frustrated nature of CuCrO 2 as discussed in Sec. 1.1.5.

  10] (B f lop ≈ 5.3 T), domain A will flip to become perpendicular to the direction B [1 10] , i.e., D-domain as illustrated in Fig. 1.23.

[1 10 ]

 10 FIG. 3.14. Schematic representation of the three magnetic domains A, B and C under an applied magnetic field: along the [110] direction (a), and the magnetic field directions with respect to the A domain in our simulations (b).
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 315 FIG. 3.15. Thermal variation of the internal energy per spin of the A-domain under an applied magnetic field along the [110], [010] and [1 10] directions.
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 1 Fig. 4.1 shows the thermal variation of the internal energy per spin simulated for various fractions
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 4 FIG. 4.3. Variation of the degree of magnetic frustration of the GS in CuCr1-x Ga x O 2 .
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 248 FIG. 4.8. Thermal variation of the specific heat per spin simulated with the set of d = 0.003 for various x in CuCr 1-x Ga x O 2 .
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 42492410 FIG. 4.9. Thermal variation of the spin chirality κ and its corresponding components κ x,y,z simulated with the set of d = 0.003 for various Ga 3+ fractions in CuCr 1-x Ga x O 2 .

FIG. 4 . 12 .

 412 FIG. 4.12. Thermal variation of the ferroelectric polarization simulated along the [110] direction with the set of d = 0.003 in CuCr 1-x Ga x O 2 .

  FIG. 4.14. Thermal variation of the electric susceptibility simulated with the set of d = 0.003 for various x in CuCr 1-x Ga x O 2 .

= 2 K× 10 5 5 × 10 3 FIG. 4 . 16 .

 23416 FIG. 4.16. Thermal variation of the magnetization per spin simulated with the set of d = 0.003 under B = 0.3 T magnetic field for various fractions x in CuCr 1-x Ga x O 2 .

1 -x

 1 Ga x O 2 : d.c. ZFC-FC measurements In this part of the work we investigate the magnetic history dependence for the various fractions ofGa 3+ in CuCr 1-x Ga x O 2 .As usual, we start our simulations from random spin configurations at T i = 35.01 K. The system is then cooled down to T f = 0.01 K with a constant temperature step ∆T = 1 K. Now at T = T f , we apply a magnetic field B = 100 Oe and we then start heating the system with a constant temperature step ∆T = 0.5 K to reach T = 35.01 K. During the heating process, the ZFC magnetic measurements are collected. Now at T = 35.01 K, we start cooling the system again to T = T f with the same temperature step and under the same magnetic field. During the cooling process, the FC magnetic measurements are collected. The simulation parameters are given in Table4.3. Note that during the first cooling where we don't make any magnetic measurements, we just use n M CS = 2.5 × 10 4 MCS with discarding n 0 = 5 × 10 3

TABLE 4 . 3 .

 43 FIG. 4.20. d.c. ZFC-FC magnetization temperature dependence simulated under B = 100 Oe for each fraction x of Ga 3+ in CuCr 1-x Ga x O 2 .

2 and the diluted CuCr 1 -x

 21 Ga x O 2 (0 ≤ x ≤ 0.3) by means of Monte Carlo simulations. By means of ab initio calculations * , we have estimated complete sets of exchange interactions and single ion anisotropy constants in the non-distorted and distorted crystal structures of CuCrO 2 .

  CuCrO 2 . So MC investigations of CuCr 1-x Ni x O 2 with the help of DFT calculations would be very interesting to confirm experimental observations. The subject is still open for many other MC investigations such as the effect of Mg 2+ hole doping in the Cr 3+ sites, Ag + doping in the Cu + sites . . . on the magnetoelectric properties of CuCrO 2 with the help of DFT calculations. A APPENDIX DFT calculations in CuCr 1-x Ga x O 2 These calculations were done by Y. O. Kvashnin at the "Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Sweden".

  FIG. A.1. Considered structural configurations. Cr (Ga) atoms are represented by blue (green) spheres. Configuration I corresponds to x = 1/9; II, III correspond to x = 2/9; and IV,V,VI correspond to x = 1/3.
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  1.9. It can be seen that ZFC-χ d.c. differs from FC-χ d.c. below T SG , and that FC-χ d.c. is reversible while heating and

cooling the sample whereas ZFC-χ d.c. is not. Such irreversibility provides potentially useful information on the low temperature properties of spin glasses. T SG can be identified by the cusp observed in the ZFC-χ d.c. plot, and plenty metastable states below T SG are expected to exist.

  CuCrO 2 extracted from neutron diffraction (ND) experiments given in Table1.1. He found that all the in-plane exchange interactions are antiferromagnetic such that J 2 /J 1 ≈ 0.171 and J 3 /J 1 ≈ 0.029. In order to know the minimal energy state that corresponds to this set of exchange interactions, we plot the variation of Eq. (1.30) as function of

CuCrO 2 1.2.2.1 Validity of proposed sets of exchange interactions (literature) Since CuCrO 2 is an antiferromagnet, thus obviously the first nearest neighbor exchange interaction (J 1 ) is negative. Looking for the second and third nearest neighbor in-plane exchange interactions, it is not obvious to predict their nature (FM or AFM). Frontzek et al. [64] proposed a set of exchange interactions for k as shown in the left side of Fig. 1.13. It is clear that the plot of E ex (k) exhibits a minimum at

TABLE 1 .

 1 1. Estimated values of the in-plane exchange interactions in CuCrO 2 using neutron diffraction experiments and density functional theory calculations. The values are given in meV.

		J 1	J 2	J 3
	ND	-2.8	-0.48 -0.08
	DFT -2.972	0.09	-0.163
	k = 1/2 which corresponds to the 180 • configuration of energy

TABLE 2 .

 2 which is different from that of the infinite system due to the effects of PBCs as shown in Fig.2.6. However, we have shown in Sec. 1.1.4.1 that the commensurate GS configuration in CuCrO 2

	1. Simulated values of the propagation vector q = (h, k, 0) for various
			system sizes in a 2D lattice of CuCrO 2 .	
	L	15	30	45	60	90	120
	h 0.3333 0.3003 0.3332 0.3186 0.3222 0.3251
	k 0.3333 0.3330 0.3112 0.3167 0.3222 0.3251

  )dt(2.31) where δt is the time interval (in MCS) between two successive measurements of A, t n = nδt with δt t n . In addition, if we assume that the autocorrelation function is almost null whenτ A t n ,the main contribution in the integral of Eq. (2.31) is obtained for t t n . Hence we can neglect t/t n in front of 1 and replace the upper bound of the integral by ∞ in Eq. (2.31) and using Eq. (2.29) we obtain

TABLE 3 .

 3 1. Calculated magnetic moments and values of the indirect band gaps E g obtained for different computation setups and magnetic orders. Setup magnetic configuration m Cr (µ B ) m total (µ B ) E g (eV)

	LDA	FM	2.63	3.00	0.76
	LDA+U [U 1 , FLL]	FM	2.68	3.00	2.25
	LDA+U [U 2 , FLL]	FM	2.62	3.00	1.5
	LDA+U [U 2 , AMF]	FM	2.52	3.00	1.16
	LDA	AFM	±2.54	0.00	1.1
	LDA+U [U 1 , FLL]	AFM	±2.65	0.00	2.38
	LDA+U [U 2 , FLL]	AFM	±2.56	0.00	1.78
	LDA+U [U 2 , AMF]	AFM	±2.46	0.00	1.5

TABLE 3 .

 3 .3. It can be seen that there is no single computational setup (among the ones considered here) which provide excellent agreement for both E g and the J ij 's. The best estimate of the band gap value was obtained using LDA+U [U 1 , FLL] setup. However, this choice of U results in strongly suppressed exchange parameters. In turn, LDA+U [U 2 , FLL] setup underestimates the band gap value. On the other hand, it provides more reasonable values J ij 's. The values of J 3. Exchange interactions (in meV) extracted from different calculations with their corresponding transition temperatures (T N ) simulated by MC simulations.Negative sign corresponds to an AFM coupling.

	Setup	State	J 1	J 2	J 3	J 4	T N (K)
	LDA	FM -4.197 0.033 -0.508 -0.048	47.87
	LDA+U [U 1 , FLL]	FM -0.411 0.024 -0.157 -0.030	7.82
	LDA+U [U 2 , FLL]	FM -2.407 0.012 -0.266 -0.060	27.39
	LDA+U [U 2 , AMF] FM -4.922 -0.024 -0.339 -0.133	49.96
	LDA	AFM -3.556 0.109 -0.508 -0.073	41.11
	LDA+U [U 1 , FLL] AFM -0.556 0.036 -0.169 -0.036	9.93
	LDA+U [U 2 , FLL] AFM -2.395 0.046 -0.266 -0.073	28.03
	LDA+U [U 2 , AMF] AFM -4.632 0.024 -0.339 -0.133	50.07

ij 's depend not only on the choice of U parameters, but also on the employed double-counting correction.

LDA+U in conjunction with AMF DC results enhanced the values of the J ij 's with respect to those extracted from the LDA method. Even though the values of the J ij 's differ for various setups, they are qualitatively comparable concerning the sign of the exchange coupling for each neighboring spin. All of the obtained sets of the J ij 's indicate a geometrical frustration of Cr spins on the hexagonal lattice. We can see clearly that both sets of exchange interactions extracted from the LDA+U [U 2 , FLL] starting from either FM or AFM states are nearly similar, and

TABLE 3 .

 3 [START_REF] Anderson | Antiferromagnetism. theory of superexchange interaction[END_REF]. Exchange interactions and single ion anisotropy constants (in meV) extracted from different structures corresponding to different values of lattice distortion.Negative sign corresponds to an AFM coupling. was kept fixed in the calculations. a 1 was varied, such that a 1 is always smaller than a 2 . J 1 corresponds to the shorter distance to the neighboring spin. From Table3.4, we can see that the distortion primarily affects the 1 st nearest neighbor couplings, while its effect on the remaining neighboring interactions is negligible. For the experimental lattice distortion d = 0.0001, we note that our values of J 1 , J 1 and D z are very close to the ones reported experimentally in Ref.[START_REF] Yamaguchi | Spiral-plane flop probed by ESR in the multiferroic triangular-lattice antiferromagnet CuCrO 2[END_REF] which confirm that our DFT calculations provide good estimates. It is very important to note that the magnitude of the in-plane single ion anisotropy constant (D x )

	d	J 1 /J 1	J 1	J 1	J 2	J 3	J 4	D x	D z
	0.0001 0.995 -2.419 -2.407 0.012 -0.266 -0.060 -0.000 0.033
	0.001 0.952 -2.516 -2.395 0.012 -0.266 -0.060 -0.000 0.033
	0.002 0.917 -2.612 -2.395 0.012 -0.266 -0.060 -0.000 0.033
	0.003 0.879 -2.709 -2.383 0.012 -0.266 -0.060 -0.001 0.033
	lattice constant and							

TABLE 3 .

 3 [START_REF] Crépieux | Dzyaloshinsky-moriya interactions induced by symmetry breaking at a surface[END_REF]. MC simulation parameters used in the study of phase transition and GS configuration in CuCrO 2 .

TABLE 3 .

 3 8. The effect of varying R on the reversal electric field of P [110] simulated at T = 5 K. FIG. 3.10. P -E hysteresis loops simulated with the set of d = 0.003 at different temperatures in CuCrO 2 .

	R	∆t (s)	E r (MV/m) at T = 5 K
	0.22 1.12 × 10 -14	2.7 × 10 -2
	0.10 2.29 × 10 -15	4.6 × 10 -2
	0.09 1.72 × 10 -15	5.3 × 10 -2
	0.07 1.15 × 10 -15	6.1 × 10 -2

TABLE 3 .

 3 [START_REF] Kittel | Physical theory of ferromagnetic domains[END_REF]. MC simulation parameters used in the study of the magnetic properties of CuCrO 2 under 0.3 T magnetic field.

				Simulation parameters	
	Size	N	T i (K) ∆T (K) T f (K) n T emp n conf	n M CS	n 0
	90 × 90 × 1 24 300	300	2	2	150	28	1.05 × 10 5 5 × 10 3

TABLE 3 .

 3 [START_REF] Yun | Classical heisenberg antiferromagnet on a triangular lattice in the presence of single-ion anisotropy[END_REF]. Simulation parameters used in the study of domain stability under the effect of magnetic fields in CuCrO 2 .

				Simulation parameters	
	Size	N	T i (K)	α	T f (K) n T emp n conf	n M CS	n 0
	90 × 90 × 1 24 300	35	0.95	0.01	159	28	5.5 × 10 4 5 × 10 3

TABLE 3 .

 3 11. Domain stability under the effect of B = 20 T in CuCrO 2 .I n this chapter we investigate, by means of MC simulations the effect of magnetic dilution on the magnetic and ferroelectric properties of CuCrO 2 . Some of these effects have been studied experimentally for several series of CuCr 1-x M x O 2 , where M 3+ is a non-magnetic cation of S = 0 (M 3+ = Al 3+ , Ga 3+ , Sc 3+ and Rh 3+ )[START_REF] Pachoud | Magnetic dilution and steric effects in the multiferroic delafossite CuCrO 2[END_REF]. It was shown that the homogeneity of substitution depends on the dopant M 3+ . Since both Cr 3+ and Ga 3+ possess very close radii (r Cr 3+ = 61.5 pm and r Ga 3+ = 62 pm), we choose to study the case of CuCr 1-x Ga x O 2

		B = 0	B [110]	B [010]	B [1 10]
	U GS /k B (K) -109.769 -111.001 -110.993 -110.987
	κ(T f )	0.995	0.991	0.991	0.991

TABLE 4 .

 4 1. MC simulation parameters used in the study of phase transition and GS configuration in CuCr 1-x Ga x O 2 . FIG. 4.1. Thermal variation of the internal energy per spin simulated in CuCr 1-x Ga x O 2 . FIG. 4.2. Variation of the GS energy per spin compared to E ICY as function of x in CuCr 1-x Ga x O 2 .

				Simulation parameters		
	Size	N (x = 0) T n M CS	n 0
	90 × 90	8 100	35.01	0.5	0.01	71	112	1.05 × 10 5 5 × 10 3

i (K) ∆T (K) T f (K) n T emp n conf

TABLE A .

 A 1. Statistical averages ( J ij ) and standard deviations from the mean (σ) of the exchange interactions for various considered configurations in CuCr1-x Ga x O 2 .The values are given in meV.ConfigurationJ 1 ± σ 1 J 2 ± σ 2 J 3 ± σ 3 J 4 ± σ 4 I (x = 1/9) -2.708 ± 0.052 -0.007 ± 0.169 -0.340 ± 0.054 -0.068 ± 0.005 II (x = 2/9) -2.680 ± 0.078 -0.204 ± 0.246 -0.354 ± 0.068 -0.054 ± 0.009 III (x = 2/9) -2.708 ± 0.272 -0.245 ± 0.185 -0.367 ± 0.068 -0.054 ± 0.009 IV (x = 1/3) -2.653 ± 0.059 -0.367 ± 0.273 -0.381 ± 0.054 -0.054 ± 0.014 V (x = 1/3) -2.599 ± 0.078 -0.259 ± 0.182 -0.367 ± 0.054 -0.054 ± 0.011 VI (x = 1/3) -2.694 ± 0.083 -0.286 ± 0.411 -0.408 ± 0.054 -0.041 ± 0.012 RKKY), which might have potential contributions. And because the most dominant exchange

FIG. 4.6. One of the simulated GS spin configurations of CuCr 0.8 Ga 0.2 O 2 .

FIG. 4.7. One of the simulated GS spin configurations of CuCr 0.7 Ga 0.3 O 2 .
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Abstract

Transition metal oxides are widely used due to their interesting fundamental properties and important applications. In particular, CuCrO 2 is of special interest because it enters the multiferroic state in zero magnetic fields. In this thesis we model the magnetoelectric properties of CuCrO 2 using Monte Carlo simulations with the help of ab initio calculations. We also investigate the effect of Ga doping on the magnetoelectric properties of CuCr 1-x Ga x O 2 (0 ≤ x ≤ 0.3). Our results are well comparable to the experimental observations. Keywords: Multiferroic, proper-screw, spiral ordering, Monte Carlo simulations, spin glass.

Résumé

Les oxydes de métaux de transition sont largement utilisés en raison de leurs propriétés fondamentales intéressantes et de leurs applications importantes.