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Also I thank Dr. Sylvie Hébert, Dr. Ivan Labaye and Prof. Raymond Frésard for accept-

ing to participate in the jury of my defense and providing me with their very interesting

discussions.

I also offer my gratitude to the Centre Régional Informatique et d’Applications Numériques

de Normandie (CRIANN) for giving me the opportunity to access their computational

resources and to perform all the simulations presented in this work.

Of course I would like to thank the project LABEX EMC3 for their financial support

which was the basis to accomplish this work.

Finally, I would like to thank my family, my friends and all the members of GPM.

v





Contents

List of Figures ix

List of Tables xiii

Abbreviations xv

Physical Constants xvii

Symbols xix

Introduction 1

1 Generalities 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Magnetic interactions . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2.1 Exchange interactions . . . . . . . . . . . . . . . . . 5
1.1.2.2 Dipolar interaction . . . . . . . . . . . . . . . . . . . 7
1.1.2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . 8
1.1.2.4 Zeeman energy . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Geometric magnetic frustration . . . . . . . . . . . . . . . . . 9
1.1.4 Antiferromagnetic triangular lattices . . . . . . . . . . . . . . . 11

1.1.4.1 Ground state magnetic configuration without anisotropy 11
1.1.4.2 Energy of the 120◦ GS configuration with a uniaxial

anisotropy . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.5 Curie-Weiss law . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.6 A brief overview of spin glasses . . . . . . . . . . . . . . . . . 19
1.1.7 Dielectric polarization . . . . . . . . . . . . . . . . . . . . . . 21
1.1.8 Multiferroics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 About the transition metal oxide CuCrO2 . . . . . . . . . . . . . . . . 23
1.2.1 The delafossite structure . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Exchange interactions in CuCrO2 . . . . . . . . . . . . . . . . 24

1.2.2.1 Validity of proposed sets of exchange interactions
(literature) . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.2.2 Nature and order of magnitude of J2 . . . . . . . . . 26
1.2.2.3 Nature and order of magnitude of J3 . . . . . . . . . 27

vii



Contents viii

1.2.3 Magnetoelectric properties of CuCrO2 . . . . . . . . . . . . . . 29
1.3 Ferroelectricity induced by proper-screw and cycloid structures . . . . . 31
1.4 Magnetically diluted CuCrO2 . . . . . . . . . . . . . . . . . . . . . . . 34

2 Model and Monte Carlo method 37
2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 MC method in the canonical ensemble . . . . . . . . . . . . . . 40

2.2.2.1 Metropolis algorithm . . . . . . . . . . . . . . . . . 41
2.2.2.2 Time Step Quantified Monte Carlo method . . . . . . 41
2.2.2.3 Simulated annealing − Calculation of different ther-

modynamic quantities . . . . . . . . . . . . . . . . . 43
2.3 Finite size and boundary effects . . . . . . . . . . . . . . . . . . . . . 46
2.4 Statistical and systematic errors . . . . . . . . . . . . . . . . . . . . . . 50

3 Magnetoelectric properties of CuCrO2 53
3.1 DFT calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Computational details . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Band gap and electronic structure . . . . . . . . . . . . . . . . 54
3.1.3 Exchange interactions and anisotropy: computational details . . 55

3.1.3.1 Non-distorted crystal structure . . . . . . . . . . . . 56
3.1.3.2 Distorted crystal structure . . . . . . . . . . . . . . . 57

3.2 Monte Carlo simulation results . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 Study without an external magnetic field . . . . . . . . . . . . . 59

3.2.1.1 Ground state configuration and phase transition . . . 59
3.2.1.2 Ferroelectric properties . . . . . . . . . . . . . . . . 65

3.2.2 Study under applied magnetic fields . . . . . . . . . . . . . . . 67
3.2.2.1 Antiferromagnetic nature of CuCrO2 . . . . . . . . . 67
3.2.2.2 Curie-Weiss behavior . . . . . . . . . . . . . . . . . 68

3.2.3 Domain stability under the effect of applied magnetic fields . . 70

4 Effect of Ga doping in CuCrO2 73
4.1 Study without applied magnetic fields . . . . . . . . . . . . . . . . . . 74

4.1.1 Ground state configuration and phase transition . . . . . . . . . 74
4.1.2 Ferroelectric properties . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Study under a small applied magnetic field . . . . . . . . . . . . . . . . 86
4.3 Magnetic history in CuCr1−xGaxO2: d.c. ZFC−FC measurements . . . 89

Conclusions and perspectives 93

A DFT calculations in CuCr1−xGaxO2 95

Bibliography 99



List of Figures

1.1 Schematic illustration of the DM interaction. . . . . . . . . . . . . . . . 6
1.2 Schematic representation of the dipolar interaction between two mag-

netic dipoles ~mi and ~mj separated by a distance rij . . . . . . . . . . . . 7
1.3 Geometric magnetic frustration arising from triangular arrangement of

magnetic moments coupled antiferromagnetically (a), two degenerate
ground states 120◦ (b) and 240◦ (c). . . . . . . . . . . . . . . . . . . . 10

1.4 Schematic representation of the triangular antiferromagnet CuCrO2

illustrating a commensurate spin configuration represented in the ab
plane with a propagation vector ~q = (1/3, 1/3, 0) taking into account
isotropic exchange interactions up to the 3rd nearest neighbors. . . . . . 13

1.5 Antiferromagnetic triangular lattice with 120◦ ground state configuration. 15
1.6 Thermal variation of the magnetization in paramagnetic materials. . . . 16
1.7 Thermal variation of the inverse magnetic susceptibility in paramagnetic

materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Schematic illustration of the thermal variation of the inverse magnetic

susceptibility in antiferromagnetic materials: the left hand side corre-
sponds to a non-frustrated AFM system with θCW = −TN and the right
hand side corresponds to a frustrated AFM system with θCW � −TN . . 17

1.9 Schematic representation of the thermal variation of the d.c. ZFC-FC
magnetic susceptibility measured in a spin glass showing the freezing
temperature TSG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 Schematic representation of a dielectric subjected to an applied electric
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 Schematic illustration of the magnetic and electric responses in ferro-
magnetic, ferroelectric and multiferroic materials [30]. . . . . . . . . . 22

1.12 Delafossite structure of ABO2 with A = Cu+ and B = Cr3+. . . . . . . 24
1.13 Variation of the exchange energy as function of the propagation vector k

for two sets of exchange interactions extracted from neutron diffraction
experiments (left), and from DFT calculations (right) in CuCrO2. . . . 25

1.14 Variation of the exchange energy as function of the propagation vector
k for various rations of J2/J1 (left), and the variation of the minimal
energy of Eex(k) versus J2/J1 for J2 AFM compared to the theoretical
energy of the 120◦ and the 180◦ (right) in CuCrO2. . . . . . . . . . . . 26

ix



List of Figures x

1.15 Variation of the exchange energy as function of the propagation vector
k for various rations of J2/|J1| (left), and the variation of the minimal
energy of Eex(k) versus J2/|J1| for J2 FM compared to the theoretical
energy of the 120◦ and the 180◦ (right) in CuCrO2. . . . . . . . . . . . 27

1.16 Variation of the exchange energy as function of the propagation vector
k for various rations of J3/J1 (left), and the variation of the minimal
energy of Eex(k) versus J3/J1 for J3 AFM compared to the theoretical
energy of the 120◦ and the 180◦ (right) in CuCrO2. . . . . . . . . . . . 28

1.17 Variation of the exchange energy as function of the propagation vector
k for various rations of J3/|J1| (left), and the variation of the minimal
energy of Eex(k) versus J3/|J1| for J3 FM compared to the theoretical
energy of the 120◦ and the 180◦ (right) in CuCrO2. . . . . . . . . . . . 28

1.18 Schematic representation of the zone of interactions where the 120◦

configuration persists in CuCrO2. . . . . . . . . . . . . . . . . . . . . 29
1.19 Schematic representation of a proper-screw spin structure with its corre-

sponding propagation vector ~q. . . . . . . . . . . . . . . . . . . . . . . 30
1.20 Atomic plane of Cr3+ ions at T > TN with equilateral triangular pla-

quettes and isotropic exchange interaction J1 (a), distorted atomic plane
of Cr3+ ions below TN with anisotropic first nearest-neighbor exchange
interactions with J1/J

′
1 < 1 (b). . . . . . . . . . . . . . . . . . . . . . 30

1.21 Schematic representation of the three types of domains with different
spiral planes in CuCrO2 showing their corresponding propagation vector
~q. Thick lines denote the spiral plane for the three degenerate domains
A, B and C at zero fields. . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.22 Proper-screw spin configuration with ~q perpendicular to the spiral plane
and cycloidal spin configuration with ~q inside the spiral plane. . . . . . 32

1.23 Flop of domain A to domain D under Bflop ≈ 5.3 T applied along the
[11̄0] direction in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 L× L triangular lattice representing each plane of Cr3+ ions. . . . . . . 38
2.2 Intralayer and interlayer super-exchange interactions in CuCrO2 with

J ′1 = J1 in the non-distorted crystal structure, and J ′1 > J1 in the
distorted one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Schematic illustration of the principle of the time step quantified Monte
Carlo method with R < 1. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Time variation of the internal energy during the cooling process. . . . . 44
2.5 Triangular plaquette p. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Theoretical curves of the variation of the exchange energy as function of

size L (multiples of 3) in a 2D system compared to that in the infinite
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Theoretical curves of the variation of exchange energy versus k (left),
and its corresponding zoom in the minimal energy regime (right) in a 2D
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Theoretical curves of the variation of the exchange energy versus k for
L = 90 in comparison with that of the infinite system. . . . . . . . . . . 48



List of Figures xi

3.1 Thermal variation of the internal energy simulated with the set of d =
0.003 in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 GS spin configuration at Tf = 0.01 K. We plot each spin as (Sz, Sy, 0)
in the ab plane of CuCrO2 for simplicity. . . . . . . . . . . . . . . . . 61

3.3 Variation of the spin-spin correlation function versus the distance (in a
units) simulated with the set of d = 0.003 along the [100] direction at
Tf = 0.01 K in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Temperature dependence of the order parameter simulated with the set
of d = 0.003 in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Thermal variation of the specific heat per spin simulated with the set of
d = 0.003 in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Size dependence of the thermal variation of the specific heat per spin
simulated with the set of d = 0.003 for various system sizes in CuCrO2. 63

3.7 Size dependence of the thermal variation of the internal energy per spin
simulated with the set of d = 0.003 for various system sizes in CuCrO2. 64

3.8 Temperature dependence of the ferroelectric polarization simulated along
the [110] direction with the set of d = 0.003 in CuCrO2. . . . . . . . . 65

3.9 P -E hysteresis loops simulated at T = 5 K with the set of d = 0.003
for different values of R in CuCrO2. . . . . . . . . . . . . . . . . . . . 66

3.10 P -E hysteresis loops simulated with the set of d = 0.003 at different
temperatures in CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Magnetic field dependence of the magnetization simulated with the set
of d = 0.003 at T = 5 K in CuCrO2. . . . . . . . . . . . . . . . . . . . 68

3.12 Temperature dependence of the magnetization per spin and the inverse
susceptibility simulated with the set of d = 0.003 under B = 0.3 T in
CuCrO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Temperature dependence of the spin-spin correlation functions simulated
with the set of d = 0.003 along the [100] direction in CuCrO2. . . . . . 69

3.14 Schematic representation of the three magnetic domains A, B and C
under an applied magnetic field: along the [110] direction (a), and the
magnetic field directions with respect to the A domain in our simulations
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Thermal variation of the internal energy per spin of the A-domain under
an applied magnetic field along the [110], [010] and [11̄0] directions. . . 72

4.1 Thermal variation of the internal energy per spin simulated in CuCr1−xGaxO2. 75
4.2 Variation of the GS energy per spin compared to EICY as function of x

in CuCr1−xGaxO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Variation of the degree of magnetic frustration of the GS in CuCr1−xGaxO2. 75
4.4 Thermal variation of the specific heat per spin simulated in CuCr1−xGaxO2. 76
4.5 Variation of the spin-spin correlation functions versus the distance simu-

lated with the set of d = 0.003 along the [100] direction at Tf = 0.01 K
in CuCr1−xGaxO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 One of the simulated GS spin configurations of CuCr0.8Ga0.2O2. . . . . 77
4.7 One of the simulated GS spin configurations of CuCr0.7Ga0.3O2. . . . . 78



List of Figures xii

4.8 Thermal variation of the specific heat per spin simulated with the set of
d = 0.003 for various x in CuCr1−xGaxO2. . . . . . . . . . . . . . . . 80

4.9 Thermal variation of the spin chirality κ and its corresponding com-
ponents κx,y,z simulated with the set of d = 0.003 for various Ga3+

fractions in CuCr1−xGaxO2. . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 Thermal variation of the average value of the x, y, z components of the

spins simulated with the set of d = 0.003 for various Ga3+ fractions in
CuCr1−xGaxO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Thermal variation of the chirality susceptibility χκ shows a peak at
the ordering temperature (left panel), and the variation of the ordering
temperature versus x deduced from χκ and C (right panel) simulated
with the set of d = 0.003 for various Ga3+ fractions in CuCr1−xGaxO2. 83

4.12 Thermal variation of the ferroelectric polarization simulated along the
[110] direction with the set of d = 0.003 in CuCr1−xGaxO2. . . . . . . 84

4.13 Variation of P[110] versus Ga3+ fraction in comparison with PICY calcu-
lated in the ICY state in CuCr1−xGaxO2. . . . . . . . . . . . . . . . . 84

4.14 Thermal variation of the electric susceptibility simulated with the set of
d = 0.003 for various x in CuCr1−xGaxO2. . . . . . . . . . . . . . . . 85

4.15 P -E hysteresis loops simulated with the set of d = 0.003 along the [100]
direction at T = 5 K for various fractions x in CuCr1−xGaxO2. . . . . 85

4.16 Thermal variation of the magnetization per spin simulated with the set
of d = 0.003 under B = 0.3 T magnetic field for various fractions x in
CuCr1−xGaxO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Introduction

Multiferroics represent an appealing class of multifunctional materials that simul-

taneously exhibit several ferroic orders such as ferroelectricity, ferromagnetism

and ferroelasticity. The class of these multiferroics is also extended to include anti-

ferroic orders such as antiferroelectricity and antiferromagnetism. They are considered

as multifunctional materials because they possess physical properties that are useful in

applications. The importance of these multifunctional materials is the existence of a

cross-coupling between the magnetic and electric orders, termed magnetoelectric cou-

pling. This coupling enables the control of the ferroelectricity by magnetic fields and

also the tuning of magnetization by electric fields. Such magnetoelectric coupling is very

important for device applications such as storing information in non-volatile memories.

It has been argued that the presence of electrons in the d-orbitals in some transition

metal oxides (favorable for magnetism) inhibits hybridization with the p-orbitals of the

surrounding oxygen-anions and thus a cation displacement (necessary for ferroelectricty).

On the other hand, a ferroelectric material has to be a good insulator so that mobile

charges do not neutralize ferroelectric polarization, but most ferromagnets are said to be

conductor. Thus it is not obvious to find ferroelectric-magnets which present a direct

magnetoelectric coupling. However, it was found that the transition metal oxide CuCrO2

has a strong magnetoelectric coupling which attracts a lot of researchers attentions in the

last few years. CuCrO2 with the delafossite structure is considered as a prototype quasi

two dimensional antiferromagnetic triangular lattice. It is a p-type transparent semicon-

ductor which exhibits high electric conductivity as well as thermoelectric properties.

In this fundamental work, we investigate the magnetoelectric properties of CuCrO2

by means of Monte Carlo simulations and ab initio calculations. The validity of the

1
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results presented in this thesis was verified through their qualitative agreements with the

experimental measurements.

This thesis consists of four chapters organized as follows

• Chapter 1 is devoted to give a brief background on magnetism as well as de-

scriptions about the multiferroic CuCrO2 and what is done in literature on this

system.

• Chapter 2 describes the principle of Monte Carlo method and the physical models

used in our simulations.

• Chapter 3 is divided into two main parts. The first part presents the DFT calcula-

tions that estimate the values of the exchange interactions and single ion anisotropy

constants in CuCrO2. The second part shows our Monte Carlo simulation results

of the magnetic and ferroelectric properties in CuCrO2 based on the extracted

DFT parameters.

• Chapter 4 presents the Monte Carlo simulation results of the effect of magnetic

dilution on the magnetoelectric properties of CuCr1−xGaxO2 (0 ≤ x ≤ 0.3).

• Finally, we sum up the main results presented in this dissertation in a general

conclusion, ending with some perspectives that could be done on this system.
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Generalities

Transition metal oxides are compounds composed of oxygen atoms bound to transition

metals. They are commonly used for catalytic activities and semiconductors. In

particular, the transition metal oxide CuCrO2 has recently received a lot of attention after

the discovery of its p-type transparent conductivity and magnetically driven ferroelectric-

ity controlled by an applied magnetic field. This chapter is devoted to a general overview

about some physical bases in magnetism. Then we present detailed explanations about

CuCrO2 and its magnetic and ferroelectric properties.

1.1 Background

Materials are said to be magnetic if they have a response to an applied external magnetic

field. The origin of magnetism in these materials lies in the orbital and spin momentum

of electrons. Magnetism can be divided into two main groups. The first group consists

of magnetic materials where there is no interaction between their magnetic moments

known as paramagnets and diamagnets. The second group includes magnetic materials

like ferromagnets, antiferromagnets, ferrimagnets, speromagnets, sperimagnets . . . in

which their magnetic moments are coupled to each others. This coupling is known as the

exchange interaction and is rooted to the overlap of electrons orbitals in conjunction with

Pauli’s exclusion principle. Whether it is a ferromagnet, antiferromagnet or ferrimagnet,

exchange interactions order the individual moments with their neighboring atoms below

3



Generalities 4

a certain temperature called the critical temperature. This ordering is parallel in ferromag-

netic materials, producing a net non-zero magnetization below the critical temperature

called Curie temperature TC . However, in the case of antiferromagnetism, the ordered

magnetic moments give a net zero magnetization below the critical temperature termed

Néel temperature TN .

1.1.1 Magnetic moment

By definition, the magnetic moment (~m) is a vector quantity which results from the mo-

tion of the electric charge (orbital angular momentum ~L) and the spin angular momentum

(~S) defined as

~m = −gJµB ~J (1.1)

where gJ is the Landé factor, µB is the Bohr magneton and ~J being the total angular

momentum defined by

~J = ~L+ ~S (1.2)

In transition metal (TM) oxides such as CuCrO2, the orbital angular momentum for

the 3d Cr3+ ions is quenched
(
〈~L〉 = ~0

)
, and therefore the magnetic moment of each

magnetic ion is

~m = −gsµB ~S (1.3)

with gs(≡ g) = 2.

1.1.2 Magnetic interactions

The magnetic energy is divided into different contributions such as exchange energy

Eex, dipolar interaction energy Edip, anisotropic energy Ea, and Zeeman energy EZ

associated to an applied external magnetic field. Thus globally, total energy Etot can be

written as

Etot = Eex + Edip + Ea + EZ (1.4)

In the following, we will define each contribution of this energy.
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1.1.2.1 Exchange interactions

Exchange interactions are the couplings responsible for the magnetic ordering below

the critical temperature in a magnetic material. Such interactions directly enter into

competition with the thermal agitation. Above the critical temperature (TC or TN ), the

effect of temperature becomes more important than any order imposed by the effect

of these interactions and therefore the magnetic ordering is lost (paramagnetic state).

Exchange interactions exist in different mechanisms depending on the material under

consideration (metals differ from insulators). The most important mechanisms are

explained below.

Direct exchange interaction (Metals)

Direct exchange interaction arises from a direct overlap of the electronic wave functions

of the neighboring atoms (ions) in metals. It gives a strong but short range coupling

which decreases rapidly as the ions are separated.

RKKY interaction (Metals)

RKKY interaction named after Ruderman, Kittel, Kasuya and Yosida [1–3] is an indirect

exchange interaction which couples magnetic moments over relatively large distances.

It is the dominant exchange interaction in rare-earth metals where there is little or no

direct overlap between the wave functions of the neighboring electrons. In this case,

the interaction between two magnetic moments is mediated by the polarization of the

conduction electrons.

Super-exchange interaction (Insulators)

Super-exchange or Kramers-Anderson super-exchange interaction [4] is an another form

of the indirect exchange interaction which is dominant in insulators especially in TM

oxides. It describes the interaction between magnetic cations of the same charge that are

far from each other to be connected by a direct exchange interaction, but coupled over a

larger distance through a non-magnetic anion. Accordingly, in the present study of the

TM oxide CuCrO2, all the exchange interactions are of the super-exchange type taking

place between Cr3+ ions through the intermediary non-magnetic oxygen and copper

ions.



Generalities 6

Let ~Si and ~Sj be the spins of two neighboring magnetic atoms i and j, then the exchange

energy can be expressed as

Eex = −
∑
〈i,j〉

Jij ~Si · ~Sj (1.5)

with Jij stands for the exchange interaction between interacting spins ~Si and ~Sj . Jij > 0

indicates a ferromagnetic interaction, which tends to align the spins parallel; Jij < 0

indicates an antiferromagnetic interaction, which tends to align the spins anti-parallel.

Eq. (1.5) is known as the Heisenberg Hamiltonian if ~Si and ~Sj are 3D vectors.

Dzyaloshinskii-Moriya exchange interaction (Insulators)

Some antiferromagnetic materials possess a lowering symmetry (inversion symmetry

breaking) resulting from a canted magnetic ordering below TN . Such symmetry breaking

leads to an additional kind of exchange interaction called the Dzyaloshinskii-Moriya

(DM) interaction or the antisymmetric exchange interaction [5]. This antisymmetric

DM interaction is the relativistic correction of the usual super-exchange interactions and

its strength is proportional to the spin-orbit coupling. The energy contribution of this

interaction can be expressed as

EDM = −
∑
〈i,j〉

~Dij · (~Si × ~Sj) (1.6)

with ~Dij being the DM interaction vector as shown in Fig. 1.1. This energy is minimized

when ~Si is perpendicular to ~Sj within a plane perpendicular to ~Dij . Thus this antisymmet-

ric exchange interaction favors canted spin structures. Such interaction is important for

understanding the mechanism of induced electric polarization in the recently discovered

classes of multiferroics.

FIG. 1.1. Schematic illustration of the DM interaction.
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Biquadratic exchange interaction (Insulators)

This is another type of the indirect exchange interaction that generally exists in rare-

earths and considered to be a correction term to the super-exchange interaction when

extending the calculations of Kramers [6] from third to fifth-order perturbation theory as

proposed by Anderson [4, 7]. Its energy contribution can be represented by

EBiq = −β
∑
〈i,j〉

(
~Si · ~Sj

)2

(1.7)

with β being the strength of the biquadratic term.

1.1.2.2 Dipolar interaction

Considering two magnetic moments ~mi and ~mj separated by a distance rij as shown in

Fig. 1.2, their dipolar energy can be expressed as

Eij =
µ0

4πr3
ij

(
~mi · ~mj −

3

r2
ij

(~mi · ~rij) (~mj · ~rij)
)
. (1.8)

Such energy pair is minimized when both ~mi and ~mj are aligned parallel to each

others along the direction of ~rij . However for an ensemble of magnetic dipoles, dipolar

interaction induces frustration in the system because it is not possible to satisfy all the

energy pairs. Note that dipolar interaction is small between two magnetic moments of

few µB compared to the exchange energy — like in our case of CuCrO2: mCr3+ = 3µB

— and can be neglected. However, it becomes more important between ferromagnetic

nanoparticles owning magnetic moments of 103 − 105 µB.

FIG. 1.2. Schematic representation of the dipolar interaction between two magnetic
dipoles ~mi and ~mj separated by a distance rij .
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1.1.2.3 Magnetic anisotropy

Magnetic anisotropy is the direction dependence of the magnetic energy. The magnetic

moments of magnetically anisotropic materials will tend to align along an easy axis,

which is an energetically favorable direction. In bulk materials, the magnetic anisotropy

is a resultant of magnetocrystalline anisotropy, magnetoelastic anisotropy and the shape

anisotropy in ferromagnets.

Magnetocrystalline anisotropy

Magnetocrystalline anisotropy results from the spin-orbit coupling and the crystal field

interaction. One of the forms of the magnetocrystalline anisotropy is the single ion

anisotropy. The single ion contribution is essentially due to the electrostatic interaction

of the orbital state of a magnetic ion and the surrounding crystalline field which is

very strong. The crystal field interaction tends to stabilize particular orbitals and is

transferred to the spin moments via the spin-orbit coupling which tends to align the

magnetic moments along a particular crystallographic direction. For a uniaxial crystal

with an easy axis anisotropy along the z direction (or the c direction), the single ion

anisotropic energy is defined as

Ea = −Dz

∑
i

S2
z (1.9)

with Dz is the single ion anisotropy constant.

Magnetocrystalline anisotropy has a great influence on industrial uses of ferromagnetic

materials. Materials with high magnetocrystalline anisotropy usually have high coerciv-

ity; i.e., they are hard to demagnetize. These are called ”hard” ferromagnetic materials,

and are used to make permanent magnets. Single-ion anisotropy is the major source

of magnetocrystalline anisotropy in hard ferromagnetic materials. On the other hand,

materials with low magnetocrystalline anisotropy usually have low coercivity, and hence

their magnetization can be easily changed. These materials are called ”soft” ferromagnets

used to make magnetic cores for transformers and inductors. In general, the anisotropic

energy found in TM bulk compounds is dominated by the magnetocrystalline anisotropy

[8].
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Magnetoelastic anisotropy

Magnetoelastic energy results from magnetostriction, i.e., a deformation in the crystal

along a certain direction. If the lattice is changed by a strain [9], the distances between

the magnetic atoms are modified and hence the interaction energies are different. This

produces magnetoelastic anisotropy. Such lattice deformation can be due to magnetic

interactions in a given material and thus magnetic and elastic properties depend on each

other. Consider a crystal under a certain strain σ. The magnetostriction constant or the

magnetoelastic coupling constant, λ, is defined along the deformation direction. Then,

the magnetoelastic energy per unit volume is given by

Eσ = −3

2
λσsin2θ (1.10)

with θ being the angle between the magnetization direction and the strain direction. The

magnetoelastic energy is said to be zero in non-deformed lattices.

1.1.2.4 Zeeman energy

Zeeman energy is the energy of the magnetic moments under the effect of an applied

external magnetic field ~B which is expressed as

EZ = − ~B ·
∑
i

~mi (1.11)

where it tends to align the magnetic moments along its direction.

1.1.3 Geometric magnetic frustration

Magnetic frustration exists in a magnetic material when all the magnetic interactions

cannot be fully satisfied. It requires antiferromagnetic exchange interactions to exist.

There are several ways in which magnetic frustration can arise. When it arises purely

from the geometry of the lattice, it is then called geometric magnetic frustration. Such

kind of magnetic frustration is mainly found in TM oxides which crystallize in certain

lattices which are prone to frustration due to their topologies such as triangular lattices

or tetrahedra with shared corners, edges or faces. A simple example that can explain
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FIG. 1.3. Geometric magnetic frustration arising from triangular arrangement of
magnetic moments coupled antiferromagnetically (a), two degenerate ground states

120◦ (b) and 240◦ (c).

this phenomenon is a triangular plaquette as shown in Fig. 1.3a. Three magnetic ions

are located at the corners of the triangle with antiferromagnetic interactions between

them; the energy pair is minimized when each spin is aligned opposite to its neighbors.

Once the first two spins align anti-parallel, the third spin cannot simultaneously be

anti-parallel with the two other spins. Consequently, it is impossible to find a minimal

energy state in which all the interactions are fully satisfied. Then the spins will tend to

organize themselves in a minimal energy state where the antiferromagnetic interactions

are not fully satisfied. Such minimal energy state is not unique, frustration usually

increases the degeneracy of the ground state (GS) giving rise to different physics. In such

triangular lattices, the frustrated spin configuration possesses a minimal energy state that

corresponds to two degenerate states of 120◦ (Fig. 1.3b) and 240◦ (Fig. 1.3c). In order

to measure the degree of geometric magnetic frustration, one can define a parameter F

written as

F = 1− EGS
Emin

(1.12)

where EGS is the energy of the GS and Emin is the magnetic energy if all the exchange

interactions can be fully satisfied, and is given by

Emin = −1

2
S2 (z1|J1|+ z2|J2|+ z3|J3|+ 2|Dz|) (1.13)

with z1, z2 and z3 are the numbers of first, second and third nearest neighbors, respectively.

In the non-frustrated systems, EGS = Emin and therefore F = 0 while EGS > Emin in

frustrated systems which yields to F > 0. F −→ 1 reflects the fact that the magnetic
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configuration of a given system is highly frustrated.

1.1.4 Antiferromagnetic triangular lattices

The Heisenberg antiferromagnet on a triangular lattice is one of the prototype examples

of frustrated magnetic systems which has been studied for several decades. The magnetic

properties of the triangular antiferromagnetic lattice with an easy axis anisotropy can be

described through the following Hamiltonian

H = −
∑
〈i,j〉

Jij ~Si · ~Sj −Dz

∑
i

(Szi )2 (1.14)

where Dz > 0 is the single ion anisotropy constant for an easy axis along the z axis.

In the presence of applied external magnetic fields, the system exhibits a rich magnetic

phase diagram consisting of exotic phases [10]. At low temperatures, successive magnetic

phase transitions occur as the applied magnetic field is increased.

1.1.4.1 Ground state magnetic configuration without anisotropy

A magnetic configuration can be commensurate or incommensurate with respect to

the crystal periodicity. An incommensurate magnetic configuration is a non periodic

magnetic structure unlike a commensurate one. In general, a magnetic configuration is

defined by a propagation vector ~q = (h, k, l) expressed in the reciprocal lattice which

can be determined by neutron diffraction experiments. The magnetic moment can be

expressed as function of ~q through the following relation [11]

~m` = ~A exp(i~q · ~R`) (1.15)

with ~A being a complex vector and ~R` is the position of ~m` in the lattice.

Since ~m` is real, Eq. (1.15) can be expressed as

mα
` = λα cos(~q · ~R` − ϕα) (α = x, y, z) (1.16)
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It can be shown that, in helimagnetic structures, all the magnetic moments lie in the same

plane known as the spiral plane. In our case of CuCrO2, a hard axis anisotropy exists

along the x axis ([110] direction) and consequently the yz plane is the spiral plane, and

therefore we can write 
mx
` = 0

my
` = λy sin(~q · ~R`) (1.17)

mz
` = λz cos(~q · ~R` − ϕ)

And since all magnetic moments have the same magnitude, we can write

∣∣∣~m(~R`)
∣∣∣2 =

∣∣∣~m(−~R`)
∣∣∣2 =

∣∣∣~m(~0)
∣∣∣2 (1.18)

which gives

λ2
y sin2(~q · ~R`)+λ2

z cos2(~q · ~R`−ϕ) = λ2
y sin2(~q · ~R`)+λ2

z cos2(~q · ~R`+ϕ) = λ2
z cos2(ϕ)

(1.19)

This provides

sin(2~q · ~R`) sin(2ϕ) = 0 (1.20)

But ~q · ~R` can take any value whatever the vector R`. Then we remain with sin(2ϕ) =

0 =⇒ ϕ = 0 and λy = λz = m and consequently the solution in the helimagnetic

structure can be written as 
mx
` = 0

my
` = m sin(~q · ~R`) (1.21)

mz
` = m cos(~q · ~R`)

Now, in the triangular antiferromagnet CuCrO2, the propagation vector is found to be

along the [110] direction such that h = k and l = 0 [12–16] providing that ~q = (k, k, 0).

Thus it is very important to provide an analytical verification of these observations

(h = k) before proceeding in further explanations. Consider a magnetic configuration

with a propagation vector ~q = (h, k, 0) propagating along the [110] direction as shown

in Fig. 1.4. Let us start with the simple case with only first nearest neighbor exchange
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FIG. 1.4. Schematic representation of the triangular antiferromagnet CuCrO2 illustrat-
ing a commensurate spin configuration represented in the ab plane with a propagation
vector ~q = (1/3, 1/3, 0) taking into account isotropic exchange interactions up to the

3rd nearest neighbors.

interaction J1. The exchange energy per spin due to the first nearest neighbors is then

written as

Eex(h, k) = −S2 {J1cos(2πh) + J1cos(2πk) + J1cos (2π(h+ k))} (1.22)

Thus the minimization of Eq. (1.22) w.r.t h and k gives


∂Eex(h, k)

∂h
= 0 =⇒ J1sin (2π(h+ k)) + J1sin (2πh) = 0 (1.23)

∂Eex(h, k)

∂k
= 0 =⇒ J1sin (2π(h+ k)) + J1sin (2πk) = 0 (1.24)

Subtracting Eq. (1.24) from Eq. (1.23) gives

sin(2πh) = sin(2πk) (1.25)

which means that either

h = k (1.26)
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or

2πh = π − 2πk =⇒ h+ k =
1

2
(1.27)

Therefore replacing Eq. (1.27) in Eq. (1.23) and Eq. (1.24) gives

{
sin (2πh) = 0 =⇒ h = n/2 with n ∈ Z (1.28)

sin (2πk) = 0 =⇒ k = m/2 with m ∈ Z (1.29)

which is valid if and only if h = 0 and k = 0.5 or vice versa with h and k ∈ [0, 1[.

However, this solution corresponds to a maximum in the Eex(h, k) curve which cannot

refer to one of the ground states in triangular lattices. Therefore the only possible solution

which minimizes Eq. (1.22) is when h = k and hence ~q = (k, k, 0). Hence, by replacing

h = k in Eq. (1.23) we obtain: cos(2πk) = −1/2 =⇒ k = 1/3 or k = 2/3 which

correspond to the 120◦ and the 240◦ configurations shown in Fig. 1.3b and Fig. 1.3c.

Therefore, assuming that this formalism holds true for small J2 and J3, we can express

the GS exchange energy per spin due to the first, second and third nearest neighbors as a

function of ~q = (k, k, 0) in the following expression

Eex(k) = −S2[2J1cos(2πk) + J1cos(4πk) + 2J2cos(6πk) + J2

+ 2J3cos(4πk) + J3cos(8πk)] (1.30)

where J1, J2 and J3 are the isotropic exchange interactions up to the 3rd nearest neighbors

as illustrated in Fig. 1.4.

1.1.4.2 Energy of the 120◦ GS configuration with a uniaxial anisotropy

It was shown that the GS configuration of an antiferromagnetic triangular magnet in

the Heisenberg model is the degenerate 120◦ (or 240◦) structure with three magnetic

sublattices [17] as shown in Fig. 1.5a. For three dimensional vector spins and isotropic

exchange interactions, the degeneracy of the 120◦ GS configuration is infinity because

these three sublattices can freely rotate within the spiral plane of the system. However, if

the Hamiltonian has an easy axis anisotropy, the spiral plane will contain this easy axis

and therefore the degeneracy of the 120◦ GS configuration decreases. Then if we assume

that one of the three sublattices, ~S1, is making an angle θ with the easy axis (z axis) as
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FIG. 1.5. Antiferromagnetic triangular lattice with 120◦ ground state configuration.

seen in Fig. 1.5b, then ~S2 makes an angle 120◦− θ and ~S3 makes an angle 120◦ + θ with

the z axis. Hence, the anisotropic energy for the three spins can be expressed as

Ea = −Dz

(
(Sz1)2 + (Sz2)2 + (Sz3)2

)
(1.31)

with Sz1 = Scosθ, Sz2 = Scos(120◦ − θ) and Sz3 = Scos(120◦ + θ). Then

Ea = −DzS
2
(
cos2θ + cos2(120◦ − θ) + cos2(120◦ + θ)

)
= −3

2
DzS

2 (1.32)

which is independent of θ. Therefore, in the perfect 120◦ configuration, the spins can

still rotate freely in a spiral plane containing the easy axis without constraints that one

sublattice should follow this easy axis. Then in this case, i.e. k = 1/3, Eq. (1.30) is now

written as

E120◦ = S2

(
3

2
J1 − 3J2 +

3

2
J3 −

1

2
Dz

)
(1.33)

1.1.5 Curie-Weiss law

In paramagnetic materials, the magnetization (M) is only induced under the effect of an

applied magnetic field ( ~B). If B is small enough, then M is approximately proportional

to B. For a given value of B, M is inversely proportional to the temperature (T ) of the

system. Such behavior is illustrated in Fig. 1.6 and is described by the Curie law given
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FIG. 1.6. Thermal variation of the
magnetization in paramagnetic mate-

rials.

FIG. 1.7. Thermal variation of the in-
verse magnetic susceptibility in param-

agnetic materials.

by

M = C
H

T
(with H = B/µ0) (1.34)

where C is the Curie constant given as

C =
µ0Nm

2
eff

3kB
(1.35)

with N being the number of magnetic moments per unit volume, µ0 is the vacuum

permeability, kB is the Boltzmann constant and meff = gJµB
√
J(J + 1) is the effective

magnetic moment.

By definition, the linear magnetic susceptibility is given by

χ =

(
∂M

∂H

)
H=0

(1.36)

which is equal to M/H when H is sufficiently small and M(H = 0) = 0. Therefore the

paramagnetic linear susceptibility is written as

χ =
C

T
(Curie law) (1.37)

The plot of 1/χ versus temperature is linear as shown in Fig. 1.7. From such a plot we can

extract the characteristic properties of the system such as the effective magnetic moment

per atom. However, in ferromagnetic, antiferromagnetic or ferrimagnetic materials 1/χ
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FIG. 1.8. Schematic illustration of the thermal variation of the inverse magnetic
susceptibility in antiferromagnetic materials: the left hand side corresponds to a non-
frustrated AFM system with θCW = −TN and the right hand side corresponds to a

frustrated AFM system with θCW � −TN .

deviates from such linear behavior due to the spin ordering that takes place below the

critical temperature (TC or TN). In these materials, the system becomes paramagnetic

above TC or TN and obeys the Curie-Weiss law given by

χ =
C

T − θCW
(1.38)

where θCW is known as the Curie-Weiss temperature. According to the molecular field

theory, θCW = TC in ferromagnetic materials. However, θCW = −TN in non-frustrated

antiferromagnets while θCW < −TN in frustrated antiferromagnets as illustrated in

Fig. 1.8. Therefore, in a frustrated antiferromagnetic system, |θCW | /TN > 1 and

increases as much as the frustration increases. According to Refs. [17, 18], one can

consider f = |θCW | /TN as a frustration parameter that gives complementary information

about the frustrated nature of the system.

Let us now determine the relation between θCW and the exchange interactions. Consider

a frustrated antiferromagnet with 3 sublattices as shown in Fig. 1.4 denoted by A, B and

C. According to the molecular field theory [19, 20], the molecular fields acting on each
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sublattice can be written as

H i
A = nAAMA + nABMB + nACMC +H

H i
B = nBAMA + nBBMB + nBCMC +H

H i
C = nCAMA + nCBMB + nCCMC +H

(1.39)

where nAA = nBB = nCC = nintra > 0 and nAB = nBA = nAC = nCA = nBC =

nCB = ninter < 0 are the intrasublattice and intersublattice molecular field constants,

respectively, andH is an applied magnetic field. In the paramagnetic region above TN and

under small H , Mα = χH i
α with χ = C ′/T such that C ′ = µ0(N/3)m2

eff/3kB = C/3.

Hence we get

MA = (C ′/T )(nintraMA + ninterMB + ninterMC +H)

MB = (C ′/T )(ninterMA + nintraMB + ninterMC +H)

MC = (C ′/T )(ninterMA + ninterMB + nintraMC +H)

(1.40)

The condition for the appearance of a spontaneous sublattice magnetization is that these

equations have a nonzero solution when H = 0. This means that the determinant of the

system (1.40) must be zero. This yields to

C ′

T
=

1

nintra − ninter
(1.41)

and consequently TN = C ′(nintra−ninter). The paramagnetic linear susceptibility above

TN is evaluated by Eq. (1.37) where M = MA + MB + MC . By solving Eq. (1.40),

i.e. by making (MA −MB) and (MB −MC), we get MA = MB = MC . Therefore

Eq. (1.37) becomes

χ =
3MA

H
(1.42)

However, by substituting MA = MB = MC in the equation of MA in (1.40) we obtain

MA =
C ′

T − C ′(nintra + 2ninter)
(1.43)
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Hence Eq. (1.42) becomes

χ =
C

T − C ′(nintra + 2ninter)
(1.44)

Therefore by the analogy of Eq. (1.44) with Eq. (1.38) we obtain the theoretical value of

the Curie-Weiss temperature written as

θCW = C ′(nintra + 2ninter) =
C

3
(nintra + 2ninter) (1.45)

It is important to note that the molecular field constants, nintra and ninter, can be related

to the Heisenberg super-exchange interaction J through the following formula [20]

nintra, ninter =
zJ

µ0(N/3)g2µ2
B

(1.46)

where z is the number of nearest neighbor interactions. In our case of CuCrO2, Fig. 1.4

shows that nintra results from the 6 second neighbors and ninter results from 3 first

neighbor interacting spins and 3 third neighbor interacting spins. Hence

nintra =
6J2

µ0Ng2µ2
B

=
J2

C

2S(S + 1)

kB

ninter =
3J1 + 3J3

µ0Ng2µ2
B

=
J1 + J3

C

S(S + 1)

kB

(1.47)

Therefore, Eq. (1.45) becomes

θCW =
2S(S + 1)

kB
(J1 + J2 + J3) (1.48)

1.1.6 A brief overview of spin glasses

Detailed explanations on spin glasses can be found in Refs. [21–23].

A spin glass is a disordered frustrated magnet, where its magnetic moments are localized and

not ordered in a regular pattern so that no long range order can be established. Nevertheless

these compounds are characterized by a spin glass freezing temperature denoted by TSG which

refers to a kind of a second order phase transition from a paramagnetic phase to a freezing
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phase where all the spins freeze into random directions. This freezing state is characterized

by a very slow equilibration after perturbation and a high dependency on its magnetic history.

Magnetic configurations in spin glasses below TSG are out-off-equilibrium configurations known

as “metastable” states because they are “stuck” in stable configurations other than the lowest-

energy configuration which makes them infinitely degenerate. Spin glass magnets can be classified

into metallic and insulating spin glasses according to their conduction properties. Till now, there

is neither a unique experiment nor a solvable analytical realistic model which are able definitely

to identify a sample as a spin glass. Thus before classifying any material as a spin glass, it is very

important to know several characteristic properties that should exist. Basically, two important and

necessary ingredients should coexist: frustration and disorder. Additionally, many other features

should be seen like:

(i) A clear sharp peak in the linear a.c. susceptibility (χa.c.) curve under very small magnetic

fields indicating the spin glass freezing temperature TSG.

(ii) No magnetic Bragg peaks can be seen in neutron diffraction spectrum. That means the

freezing state below TSG is accompanied with no long-range ordering.

(iii) No clear cusp at TSG in the magnetic specific heat curve, however a broad peak exists at

T ' (1.2− 1.3)TSG.

(iv) Severe magnetic history dependence below TSG in the magnetization measurements

(discussed below).

FIG. 1.9. Schematic representation of the thermal variation of the d.c. ZFC-FC
magnetic susceptibility measured in a spin glass showing the freezing temperature TSG.
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The most two commonly used thermomagnetic histories are the zero-field-cooled (ZFC) and

the field-cooled (FC) measurements. The procedure of the ZFC-FC measurements goes as

follows: the sample is cooled down from an initial state at T > TSG to a measuring temperature

T ′ < TSG, then the sample is heated starting from T ′ under a small applied magnetic field

to a given temperature T ′′ > TSG in which the ZFC magnetic measurements (M,χ . . . ) are

collected during the heating process. Now, starting from the magnetic configuration obtained at

T ′′, the system is then cooled down to T ′ under the same magnetic field where the FC magnetic

measurements are collected during the cooling process. The spin glass d.c. susceptibility deduced

from these measurements in a low magnetic field is illustrated Fig. 1.9. It can be seen that

ZFC-χd.c. differs from FC-χd.c. below TSG, and that FC-χd.c. is reversible while heating and

cooling the sample whereas ZFC-χd.c. is not. Such irreversibility provides potentially useful

information on the low temperature properties of spin glasses. TSG can be identified by the cusp

observed in the ZFC-χd.c. plot, and plenty metastable states below TSG are expected to exist.

1.1.7 Dielectric polarization

Dielectrics are materials that have no free charges; i.e., all electrons are localized and associated

to the nearest atoms. When a dielectric is subjected to an external electric field, its molecules or

atoms gain electric dipole moments due to the separation of the center of gravity of the positive

and negative electrical charges within the system. Each electric dipole moment is proportional to

the applied electric field such as

~p = α~E (1.49)

where α is called the polarizability factor. As a consequence of the polarity gained by the dielectric

FIG. 1.10. Schematic representation of a dielectric subjected to an applied electric
field.
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due to the applied electric field ( ~Eapplied), an induced dipole field called the depolarizing field

( ~Edep) that opposes the applied field is created at each dipole moment (see Fig. 1.10). The type

of the induced dielectric polarization on the microscopic scale is determined by the dielectric

itself. Dielectrics can be classified in two types: polar dielectrics and non-polar dielectrics. Polar

dielectrics are materials that possess permanent dipole moments which are randomly oriented,

but under the effect of an applied ~E-field these electric dipole moments become more oriented

thus inducing a net spontaneous dielectric polarization. Non-polar dielectrics are materials that

possess electric dipole moments only when subjected to external electric fields.

1.1.8 Multiferroics

More details on multiferroics can be found in Ref. [24–29]

Multiferroics are materials that exhibit magnetoelectric (ME) properties in the same phase. In

other words, when there exists a magnetic response to an electric field or an electric response to

a magnetic field (Fig. 1.11), the material is said to be a multiferroic. In general, multiferroics

can be divided into two classes as introduced by D. Khomskii [30]. Class-I of the multiferroic

family is older and numerous. It consists of multiferroics possessing distinct magnetic and

ferroelectric transition temperatures where they can be well above the room temperature such

as in BiFeO3 (TFE ≈ 1100 K and TN ≈ 643 K) [27, 30]. However, the coupling between

magnetism and ferroelectricity is weak in these materials. Class-II of multiferroics also termed

magnetic multiferroics, has been recently discovered and is more interesting than class-I. It

consists of materials in which ferroelectricity emerges only in the magnetically ordered state

– i.e. the ordering temperature of the ferroelectric phase coincides with that of the magnetic

FIG. 1.11. Schematic illustration of the magnetic and electric responses in ferromag-
netic, ferroelectric and multiferroic materials [30].



Generalities 23

phase – and is caused by a particular type of magnetism [31, 32]. Many multiferroics are

transition metal oxides of the spiral type and mostly belong to class-II. Spiral magnetic ordering

in dielectrics is mainly caused by magnetic frustration leading to having frustrated multiferroics

of class-II [30]. Boracites were the first well known multiferroics [33, 34], and soon several other

multiferroics were either found in nature or synthesized artificially [35]. Cr2O3 was also a typical

example of multiferroics which shows fascinating ME properties [36–38]; an electric field induces

macroscopic magnetization (ferromagnetism) [39] and a magnetic field generates macroscopic

electric polarization (ferroelectricity) [40]. However, its ME properties were not sufficient to be

used for applications in magnetic memory devices for example. Since the discovery of Cr2O3,

many other compounds have been discovered to exhibit multiferroic properties such as TbMnO3

[31].

1.2 About the transition metal oxide CuCrO2

1.2.1 The delafossite structure

Delafossite minerals of general formula ABO2 is a group characterized by a sheet of linearly

coordinated A cations stacked between edge-shared octahedral layers BO6 as shown in Fig.1.12.

Delafossite group has been recognized for its electrical properties from insulation to metallic

conduction. Materials with this crystal structure generally have high p-type conductivity because

of the low formation energy of Cu vacancies which are hole producing defects [41]. Through

the discovery of the CuFeO2 mineral in 1873, Friedel opened the door to the delafossites ABO2

[42–45]. Such a family crystallizes in the layered R3̄m space group (Fig. 1.12). For instance,

for A in a d9 configuration, e.g., A = Pd or Pt, highly metallic compounds with anomalous

temperature dependence of the resistivity have been reported [46–49]. Moreover, the discovery

of simultaneous transparency and p-type conductivity in CuAlO2 by Kawazoe et al. [50], laid

ground for the development of transparent optoelectronic devices. Furthermore, depending on

the chemical composition, a plethora of behaviors can be evidenced. The diversity of properties

they exhibit raises up an ever increasing interest in this class of compounds. The transport in

these compounds has been found to be strongly anisotropic, with a degree of anisotropy that

may reach 103 [46, 47, 51]. For A in a d10 configuration, the semi-conducting materials CuBO2,

with B = Cr, Fe, Rh, may be turned into promising thermoelectric ones through hole doping

[52, 53] – in particular, an especially high power factor has been found in CuRh1−xMgxO2
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FIG. 1.12. Delafossite structure of ABO2 with A = Cu+ and B = Cr3+.

[54], which transport coefficients served as a basis for the Apparent Fermi Liquid scenario [55].

Regarding the magnetic compounds CuFeO2 and CuCrO2, many studies point towards a strong

coupling of the magnetic and structural degrees of freedom [12, 56–63] which pave the way to

multiferroelectricity.

1.2.2 Exchange interactions in CuCrO2

1.2.2.1 Validity of proposed sets of exchange interactions (literature)

Since CuCrO2 is an antiferromagnet, thus obviously the first nearest neighbor exchange inter-

action (J1) is negative. Looking for the second and third nearest neighbor in-plane exchange

interactions, it is not obvious to predict their nature (FM or AFM). Frontzek et al. [64] proposed

a set of exchange interactions for CuCrO2 extracted from neutron diffraction (ND) experiments

given in Table 1.1. He found that all the in-plane exchange interactions are antiferromagnetic

such that J2/J1 ≈ 0.171 and J3/J1 ≈ 0.029. In order to know the minimal energy state that

corresponds to this set of exchange interactions, we plot the variation of Eq. (1.30) as function of

k as shown in the left side of Fig. 1.13. It is clear that the plot of Eex(k) exhibits a minimum at
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TABLE 1.1. Estimated values of the in-plane exchange interactions in CuCrO2 using
neutron diffraction experiments and density functional theory calculations. The values

are given in meV.

J1 J2 J3

ND −2.8 −0.48 −0.08

DFT −2.972 0.09 −0.163

k = 1/2 which corresponds to the 180◦ configuration of energy

E180◦
ex = S2 (J1 + J2 − 3J3) (1.50)

providing that E180◦
ex = −6.84 meV. However, the energy of the 120◦ configuration correspond-

ing to k = 1/3 is

E120◦
ex = S2

(
3

2
J1 − 3J2 +

3

2
J3

)
(1.51)

which gives E120◦
ex = −6.48 meV > E180◦

ex . Therefore we can say that the ND estimates of the

exchange interactions cannot represent the real exchange interactions presented in CuCrO2.

On the other hand, another estimates for the same exchange interactions using the density

functional theory calculations were given in Ref. [63] (Table 1.1). It was found that J2 is FM in

nature while J3 is AFM such that J2/J1 ≈ −0.030 and J3/J1 ≈ 0.055. The plot Eex(k) shows

two minima at k = 1/3 and k = 2/3 (Fig. 1.13) which correspond to the 120◦ and to the 240◦

configurations of CuCrO2. Then E120◦
ex = −11.19 meV < E180◦

ex = −5.38 meV. Therefore,

we can say that the DFT set of exchange interactions can refer to the true exchange interactions

FIG. 1.13. Variation of the exchange energy as function of the propagation vector k
for two sets of exchange interactions extracted from neutron diffraction experiments

(left), and from DFT calculations (right) in CuCrO2.
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FIG. 1.14. Variation of the exchange energy as function of the propagation vector k
for various rations of J2/J1 (left), and the variation of the minimal energy of Eex(k)
versus J2/J1 for J2 AFM compared to the theoretical energy of the 120◦ and the 180◦

(right) in CuCrO2.

presented in CuCrO2.

The question arises now is that, what is the true magnetic natures and order of magnitudes of J2

and J3 in this multiferroic? To answer that we minimize Eq. (1.30) for various values of J2 and

J3 in both cases AFM and FM as shown below.

1.2.2.2 Nature and order of magnitude of J2

Here we take the ND set of exchange interactions. We fix J1 and J3 and we make varying J2/J1

for J2 being AFM and FM.

J2 AFM

When J2 is AFM, it can be seen that the Eex(k) plot exhibits two minima at k = 1/3 and

k = 2/3 if J2/J1 < 0.16 as shown in the left side of Fig. 1.14. However when J2/J1 ≥ 0.16,

the Eex(k) plot possesses a minimum at k = 1/2 which means that the magnetic configuration

does no more refer to the 120◦ configuration. For each value of J2/J1, we record the minimum

energy of Eex(k) and we compare it to that calculated for E120◦
ex and E180◦

ex . The variation of

Eex(k), E120◦
ex and E180◦

ex versus J2/J1 is shown in the right side of Fig. 1.14.

It is clear that the GS configuration is the 120◦ whenever J2/J1 < 0.16. However when

J2/J1 ≥ 0.16, Eex(k) follows E180◦
ex and thus the 120◦ GS configuration is broken and turns to

become a colinear state.
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FIG. 1.15. Variation of the exchange energy as function of the propagation vector k
for various rations of J2/|J1| (left), and the variation of the minimal energy of Eex(k)
versus J2/|J1| for J2 FM compared to the theoretical energy of the 120◦ and the 180◦

(right) in CuCrO2.

J2 FM

For the set of exchange interactions extracted from ND experiments, we now take J2 FM and

repeat the same previous calculations. It can be seen that whatever the ratio J2/J1, Eex(k)

always has two minima at k = 1/3 and k = 2/3 (left side of Fig. 1.15) which means that the

minimal energy state always refers to the 120◦ or 240◦ configurations. Moreover we can see

that as much as J2/J1 increases, as much as Eex(k) decreases and follows E120◦
ex (right side of

Fig. 1.15) which means that the 120◦ GS configuration becomes more and more stable.

1.2.2.3 Nature and order of magnitude of J3

Here, for the set of exchange interactions extracted from the DFT calculations, we fix J1 and J2

and we make varying J3/J1 for both cases J3 AFM and FM.

J3 AFM

When J3 has an AFM nature, it can be seen that whatever the ratio J3/J1, Eex(k) always

possesses two minima at k = 1/3 and k = 2/3 as shown in Fig. 1.16 (left side). This means that

the minimal energy state always refers to the 120◦ or 240◦ configurations. Also Fig. 1.16 (right

side) shows that as much as J3/J1 increases, as much as Eex(k) decreases and follows E120◦
ex

reflecting the fact that the AFM nature of J3 stabilizes the 120◦ GS configuration.

J3 FM

For a FM nature of J3, we can see that Eex(k) has two minima at k = 1/3 and k = 2/3 if
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FIG. 1.16. Variation of the exchange energy as function of the propagation vector k
for various rations of J3/J1 (left), and the variation of the minimal energy of Eex(k)
versus J3/J1 for J3 AFM compared to the theoretical energy of the 120◦ and the 180◦

(right) in CuCrO2.

FIG. 1.17. Variation of the exchange energy as function of the propagation vector k
for various rations of J3/|J1| (left), and the variation of the minimal energy of Eex(k)
versus J3/|J1| for J3 FM compared to the theoretical energy of the 120◦ and the 180◦

(right) in CuCrO2.

J3/|J1| < 0.14 as shown in Fig. 1.17 (left side). When J3/|J1| ≥ 0.14, Eex(k) possesses a

single minimum located at k = 1/2. The variation of the minimum of Eex(k) versus J3/|J1|

is given in Fig. 1.17 (right side). It can be seen that Eex(k) coincides with E120◦
ex whenever

J3/|J1| < 0.14, but it deviates from it at J3/|J1| = 0.14 and then follows E180◦
ex . Then the FM

nature of J3 destabilizes the 120◦ GS configuration.

The zone of interactions where the 120◦ configuration exists is schematically illustrated in

Fig. 1.18. We conclude that the FM nature of J2 and the AFM nature of J3 stabilize the 120◦ GS

configuration. However if J2 is AFM, its value should be greater than −0.16|J1| otherwise the
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FIG. 1.18. Schematic representation of the zone of interactions where the 120◦

configuration persists in CuCrO2.

120◦ GS configuration is broken. Similarly if J3 is FM, its value should be smaller than 0.14|J1|

otherwise the 120◦ GS configuration is broken. Due to this conflict in the estimated values of

the exchange interactions and their magnetic natures, we look to estimate our own set of these

interactions in the real crystal to provide a better understanding of the magnetic and ferroelectric

properties of CuCrO2 (chapter 3).

1.2.3 Magnetoelectric properties of CuCrO2

CuCrO2 is a very good example of the spin-driven ferroelectricity. In this compound, ferroelectric

polarization starts to appear just below the magnetic ordering temperature TN [13, 65–67]. It

was found that the magnetic ordering in single crystals of CuCrO2 occurs in two stages with two

transition temperatures TN1 ≈ 23.6 K and TN2 ≈ 24.2 K [14, 64, 65, 68]. These observations

were described as follows: at TN2, the system enters a 2D ordered antiferromagnetic collinear

state, while a fully three dimensional magnetic ordering is achieved below TN1. However, such

scenario was contrary to other experimental studies [52, 66, 67] performed also on single crystals

of CuCrO2 where they showed that CuCrO2 undergoes a single phase transition to an ordered

antiferromagnetic proper-screw configuration at TN = 24 − 26 K. Knowing that physical

properties of single crystals are highly dependent on the nature of the defects (twin boundaries,

dislocations, impurities) as well as on their concentrations [69–72], and based on the results of

experimental studies performed on polycrystalline samples of CuCrO2 [15, 52, 73] showing

a unique TN , it is more confident to believe that CuCrO2 possesses a single magnetic phase
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FIG. 1.19. Schematic representation of a proper-screw spin structure with its corre-
sponding propagation vector ~q.

transition.

Early neutron diffraction experiment [73] showed that the magnetic configuration of CuCrO2

below the ordering temperature TN is a proper-screw (Fig. 1.19) commensurate configuration

with a propagation vector ~q = (1/3, 1/3, 0) pointing along the [110] direction. However, recent

neutron diffraction experiments [12–16] showed that the magnetic configuration of CuCrO2

below TN is a proper-screw with an incommensurate propagation vector ~q = (0.329, 0.329, 0)

propagating along the [110] direction. The origin of such incommensurability was discussed in

Ref. [74] where they showed that the deviation from the commensurate configuration is due to a

tiny in-plane lattice distortion that takes place below TN along the [110] direction. The equilateral

triangular plaquettes with isotropic exchange interaction, J1, above TN (Fig. 1.20a) turned to

FIG. 1.20. Atomic plane of Cr3+ ions at T > TN with equilateral triangular plaquettes
and isotropic exchange interaction J1 (a), distorted atomic plane of Cr3+ ions below
TN with anisotropic first nearest-neighbor exchange interactions with J1/J

′
1 < 1 (b).
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FIG. 1.21. Schematic representation of the three types of domains with different
spiral planes in CuCrO2 showing their corresponding propagation vector ~q. Thick lines

denote the spiral plane for the three degenerate domains A, B and C at zero fields.

become isosceles triangular plaquettes upon distortion below TN leading to the appearance

of distinct exchange interactions, J1 and J ′1, through the neighboring spins as illustrated in

Fig. 1.20b. The fact of the appearance of the lattice distortion below TN confirms its strong

coupling with the spiral magnetic ordering in CuCrO2 [74]. The question arises now is why the

in-plane lattice distortion occurs. Two hypotheses may answer this question. First hypothesis

suggests that spin-lattice coupling may force the lattice to distort slightly leading to high spin

degeneracy [74]. Second hypothesis assumes that the present inter-plane interaction causes a

slightly incommensurate structure which can be a driving force for the lattice distortion [75, 76].

Although these answers are still hypotheses and more detailed investigations are needed for

further understanding.

Even though, the presence of the tiny in-plane lattice distortion doesn’t totally break all the

symmetry elements of the crystal [67]. The crystal still possesses a twofold rotation axis along

the ~q direction and a threefold rotation axis along the c axis. The threefold symmetry allows the

existence of three equivalent magnetic domains denoted by A, B and C as illustrated in Fig. 1.21.

The remaining unbroken symmetry operation allows the appearance of ferroelectric polarization

only along the perpendicular direction of each spiral plane.

1.3 Ferroelectricity induced by proper-screw and cycloid

structures

Nowadays, the term ME multiferroic is used not only for ferromagnetic-ferroelectric materials,

but also for ferroelectric with some other magnetic order such as antiferromagnets. In particular,

ferroelectrics induced by spin ordering is very important in developing a novel ME phenomenon.
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FIG. 1.22. Proper-screw spin configuration with ~q perpendicular to the spiral plane
and cycloidal spin configuration with ~q inside the spiral plane.

From the microscopic point of view, several scenarios of spin-driven ferroelectricity were pro-

posed [77, 78]. Indeed, intensive experimental studies have confirmed that these scenarios really

induce electric polarization.

Most of the spiral induced multiferroics have the cycloidal spin structures whose magnetic

propagation vectors ~q lie in the spiral plane (Fig. 1.22) and whose magnetic symmetries allow the

systems to be polar and ferroelectric [79]. The microscopic origin of such a ferroelectricity can

be successfully explained by the spin current model or the inverse DM interaction [80, 81]. More

precisely, within this model, the electric polarization ~Pij produced between two canted spins ~Si

and ~Sj , located at sites i and j, respectively, is given by

~Pij ∝ ~eij × (~Si × ~Sj) ≡ ~p1 (1.52)

where ~eij is a unit vector joining the sites i and j. However, recent multiferroics such as CuFeO2

and CuCrO2 show a spin-driven ferroelectricity that cannot be explained by such a model.

This is because in these multiferroics, the spiral-spin structure is a proper-screw one where the

propagation vector ~q is perpendicular to the spiral plane [24–26] as shown in Fig. 1.22. In this

configuration, ~Si×~Sj is parallel to ~eij (~eij is along the ~q direction due to symmetry considerations

[67]), and hence Eq.(1.52) will lead to a net zero polarization. Thus the microscopic origin of this

ferroelectric polarization can be actually described by the variation in the metal-ligand (d− p)

hybridization with spin-orbit coupling [82, 83] as proposed by Arima [84]. Accordingly, based

on symmetry considerations, Kaplan and Mahanti [85] introduced an additional contribution

~p2 ∝ (~Si × ~Sj) to the macroscopic polarization which contributes in both cycloid and proper-

screw configurations unless a mirror plane containing ~eij or twofold rotation axis perpendicular

to ~eij exists. Therefore, within this model, now referred to as extended inverse DM model, the
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FIG. 1.23. Flop of domain A to domain D under Bflop ≈ 5.3 T applied along the
[11̄0] direction in CuCrO2.

total polarization is given by

~P = ~p1 + ~p2 (1.53)

Therefore, now the direction of ~P is determined by the sum of the two orthogonal components,

~p1 and ~p2. Hence, the extended inverse DM model is now applicable to the proper-screw structure

in CuCrO2, which shows ferroelectric polarization consisting with only ~p2.

In frustrated magnetic systems, the GS energy is highly degenerate corresponding to several

magnetic configurations. This leads to the possibility of occurrence of magnetic phase transition

under a weak applied magnetic field. Large ME effect can be seen in these multiferroics when

applying an external magnetic field, resulting in a sudden change in the ferroelectric polarization

direction due to a flop of the spiral plane [86]. When applying an external magnetic field

perpendicular to the screw axis, the spiral spin structure would vary from proper-screw type to

a cycloidal one with the spiral axis parallel to the magnetic field. Such kind of magnetic field

induced ferroelectric transition was reported in some hexaferrites [87–90]. Frustrated triangular

antiferromagnet CuCrO2 undergoes first order magnetic phase transition from proper-screw to

cycloidal structure when applying a magnetic field Bflop ≈ 5.3 T along [11̄0] [13, 91, 92]. Such

transition leads to the flop of the spiral plane from A to D domain (Fig. 1.23) seen through the

significant decrease of the ferroelectric polarization measured along the [110] direction [65].

Such flop is very crucial in CuCrO2 since it corresponds to a change in the nature of the magnetic

structure from proper-screw to cycloidal structure preserving the same ~q modulation vector. Even

though, not only magnetic control of ferroelectricity can be seen in CuCrO2, but also electric

control of magnetism exists at the same time. In the absence of electric ( ~E) and magnetic ( ~B)

fields, the 120◦ configuration is triply degenerate, i.e. three magnetic domains A, B and C exist

equiprobable in a crystal of CuCrO2 (Fig. 1.21). Taking also into account the doubly degenerate

spin chirality, we remain with six magnetic domains that coexist under zero field as described in

Refs. [65, 91]. Since these six domains are degenerate, they occupy the same volume in a crystal
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of CuCrO2, leading to a net zero ferroelectric polarization. Hence by applying a poling electric

field, one can quite easily select a ferroelectric domain that corresponds to a magnetic domain

leading to the detection of a finite ferroelectric polarization along the applied field. Such control

of ferroelectric domains within the same ferroelectric state is very important for the reversal of

polarization. This good ME tunability in CuCrO2, using both ~B and ~E fields, makes it a very

important member in the multiferroic family of class-II.

1.4 Magnetically diluted CuCrO2

Motivated by the study of the collective behavior in conventional magnets, researchers turned

their attention to diluted magnets that exhibit novel promising characteristic properties. When

a pure magnet exhibits frustrated interactions, its associated diluted magnet may present novel

characteristic properties such as spin-glass behavior [93, 94]. Beside this new behavior, the diluted

magnet or the diluted semiconductor may possess better magnetic and electric properties [52, 95]

than the pure one. In particular, doping CuCrO2 by Ga3+∗ (S = 0) in the Cr3+ sites results in

a material that may combine the good performances from both semiconductors CuCrO2 and

CuGaO2 [96]. It was shown that CuCr1−xGaxO2 exhibits better optical transmittance properties

than both CuCrO2 and CuGaO2 [97]. Also CuCr1−xGaxO2 is used as a photocathode in the

p-type dye sensitized solar cells (DSSCs) where it shows the best performance after optimizing

the composition and the thickness of the photocathode film [97].

Due to the very close radii of Cr3+ (rCr3+ = 61.5 pm) and Ga3+ (rGa3+ = 62 pm), no significant

changes in the structural parameters of the unit cell of CuCrO2 were detected upon doping

[98]. Also it was found that CuCr1−xGaxO2, with small concentrations of Ga3+, preserves

its antiferromagnetic nature while at higher concentrations the system turned to be disordered

evidencing the possibility of the existence of spin-glass-like behavior [99]. However, such spin-

glass-like behavior is still a prediction and no rigorous investigations were done to characterize

well such phenomenon. Neutron powder diffraction experiments performed on CuCr0.9Ga0.1O2

showed that the magnetic peaks observed at 1.8 K correspond to a propagation vector ~q =

(0.329, 0.329, 0) where they are significantly broadened compared to that of CuCrO2 which

evidenced the presence of a disorder in the magnetic structure [98]. Thus, for the moment the two

main ingredients of the spin-glass state (disorder + frustration) are presented but still alone not

∗Gallium was discovered in Paris by Paul-Émile Lecoq de Boisbaudran in 1875. Since its discovery,
gallium has been used to make alloys with low melting points as well as it has been used as a good dopant
in semiconductor substrates.
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sufficient to speak precisely about the existence of such complex frozen state. Based on that, we

aim in this work to investigate the effect of such magnetic dilution (Ga3+ doping) on the magnetic

properties of the delafossite CuCrO2 by means of a combination of ab initio (Appendix A)

calculations and Monte Carlo simulations presented in Chapter 4. We try to characterize well the

magnetic states for various concentrations of Ga3+ (x = 0, 0.02, 0.05, 0.1, 0.15, 0.2 and 0.3) to

provide better understanding for such diluted antiferromagnet.
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Model and Monte Carlo method

This chapter presents the physical models and the numerical simulation technique used to

investigate the magnetoelectric properties of CuCrO2.

2.1 Model description

As previously mentioned, CuCrO2 crystallizes in the layered R3̄m space group in the delafossite

structure. Such delafossite structure with trigonal system and hexagonal axes is formed of edge

shared CrO6 layers alternatively stacked between Cu+ layers along the vertical direction (c

axis) as shown in Fig. 1.12 [with a = 2.9746(1) Å and c = 17.1015(3) Å in the hexagonal

structure]. Each layer of ions forms a two dimensional triangular lattice. Within the different

ions of CuCrO2, we are just concerned in the magnetic ones (Cr3+, S = 3/2) to model its

magnetic and ferroelectric properties. A model based on triangular lattices stacked vertically is

used to build the crystal. In this crystal, a single unit cell contains three chromium ions located as:

Cr3+(a/3, 2a/3, c/6), Cr3+(0, 0, c/2) and Cr3+(2a/3, a/3, 5c/6). The coordination numbers

for the 1st, 2nd, 3rd and 4th neighbors of each Cr3+ ion are identical with z = 6.

A box of La × Lb × Lc unit cells is built. Note that La = Lb = L, thus in the following we will

use L for La and Lb, and Lz for Lc. The simulation box is then composed of N = 3× L2 × Lz

spins located at the corners of the triangular plaquettes within each ab plane (Fig. 2.1) stacked

vertically in a rhombic system as in the real crystal. Since simulations were performed on finite

size systems, we implemented periodic boundary conditions in all direction to reduce finite

size effects which will be discussed later in Sec. 2.3. Each Cr3+ ion is represented by a three

dimensional vector ~S = (Sx, Sy, Sz) that rotates freely in all directions with x, y and z follow

37
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FIG. 2.1. L× L triangular lattice representing each plane of Cr3+ ions.

the [110], [1̄10] and [001] directions, respectively. Then, our magnetic Hamiltonian is given by

Hm = −
∑
〈i,j〉

Jij ~Si · ~Sj −Dx

∑
i

S2
ix −Dz

∑
i

S2
iz − ~B ·

∑
i

~mi (2.1)

where Jij represents the exchange interactions up to the fourth neighbors (Fig. 2.2), Dx < 0 and

Dz > 0 are the single ion anisotropy constants of the hard and easy axes along the [110] and

[001] directions, respectively, and ~B is the applied magnetic field. This Hamiltonian was first

used in the DFT calculations to extract the values of the exchange interactions and single ion

anisotropy constants in the non-distorted and the distorted crystal structure, and it is then used in

our FORTRAN code based on the Monte Carlo (MC) method.

In the presence of an electric field ~E, the coupling between the spins and ~E is defined as

He = −A0
~E ·
∑
〈i,j〉

~Si × ~Sj (2.2)

FIG. 2.2. Intralayer and interlayer super-exchange interactions in CuCrO2 with
J ′1 = J1 in the non-distorted crystal structure, and J ′1 > J1 in the distorted one.
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where the sum runs over the magnetic bonds along the [110] direction, and A0 is a coupling

constant related to the spin-orbit and spin exchange interactions [67].

Therefore the total Hamiltonian will be Hm +He given as

H = −
∑
〈i,j〉

Jij ~Si · ~Sj −Dx

∑
i

S2
ix −Dz

∑
i

S2
iz

+gµB ~B ·
∑
i

~Si −A0
~E ·
∑
〈i,j〉

~Si × ~Sj (2.3)

2.2 Monte Carlo method

2.2.1 Generalities

In the recent years, numerical simulation tools have been developed considerably by increasing

the capacity of super computers and improving the algorithms. Numerical simulations can be

considered as a bridge between theoretical and experimental studies. They allow to study various

physical phenomena where usually the analytical solution is impossible, like the problem of

understanding phase transitions in systems with many competing Heisenberg interactions. Also

numerical simulations can replace some difficult or very expensive experimental measurements

and provide the desired outcomes. An important advantage of numerical simulations is that,

they deal with fully pure isolated systems unlike real systems where different physical effects

simultaneously exist such as chemical impurities, synthesize environment. . . Also by numerical

simulations, one can study the effect of varying one physical parameter on the properties of a

given system which is not possible experimentally.

MC method is a broad class of computational algorithms based on random number sequences.

It is a stochastic method that can be used in many scientific disciplines like physics, chemistry,

biology. . . The basis of the MC method is the theory of Markov chains which is a process that

allows one to make predictions for the future of a system based on its present state only.

In physics, MC simulation do well treat the equilibrium properties of many-particle interacting

systems. To study these interacting systems, one should define a reference space known as the

phase space which represents, in case of a spin system, the set of spin configurations. Each

possible spin configuration is represented as

X =
(
~S1, ~S2, ..., ~Si, ..., ~SN−1, ~SN

)
(2.4)



Model and Monte Carlo method 40

where N is the number of spins in the system.

The transition probability per unit time that corresponds to the transition from a configuration X

to a configuration X ′ is denoted by W (X,X ′). The important property of a Markov chain is the

existence of an equilibrium distribution of states. A sufficient condition for having a stationary

probability distribution is

W (X,X ′)P (X) = W (X ′, X)P (X ′) (2.5)

which is called the detailed balance condition.

Now, the approach is to separate the transition in two sub-steps; the proposal and the acceptance-

rejection steps. The proposal distribution g(X,X ′) is the conditional probability of proposing

a state X ′ given X , and the acceptance distribution A(X,X ′) is the conditional probability to

accept the proposed state X ′. Therefore, the transition probability W (X,X ′) can be written as

W (X,X ′) = g(X,X ′)A(X,X ′) (2.6)

with g(X,X ′) = g(X ′, X).

2.2.2 MC method in the canonical ensemble

In the canonical ensemble, the probability distribution at a given temperature T is defined as

PT (X) =
exp(−E(X)/kBT )

Z(T )
(2.7)

where E(X) is the energy of a given configuration X , kB is the Boltzmann constant and

Z(T ) =
∑

X exp(−E(X)/kBT ) is the partition function at a given temperature T . Therefore,

Eq. (2.5) will be re-written as

W (X,X ′)

W (X ′, X)
=
P (X ′)

P (X)
= exp(−∆E/kBT ) (2.8)

which depends only on the energy variation ∆E = E(X ′) − E(X) during the transition

X −→ X ′.

Thermal averages, or Gibbs averages, are defined by

〈A〉T =

∑
X A(X)exp(−E(X)/kBT )∑

X exp(−E(X)/kBT )
(2.9)
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with A being any thermodynamic quantity.

2.2.2.1 Metropolis algorithm

The Metropolis algorithm [100] is a single spin rotation algorithm, i.e., the transition from a

configuration X to a configuration X ′ is associated with a change in the orientation of one spin(
~Si −→ ~S′i

)
and thus X ′ =

(
~S1, ~S2, ..., ~S

′
i, ...,

~SN−1, ~SN

)
. It has an acceptance probability

A(X,X ′) or simply A(~Si, ~S
′
i) defined as

A(~Si, ~S
′
i) = min

{
1, e−∆E/kBT

}
(2.10)

Note that the probability to accept a new configuration, which increases the energy of the system,

decreases with the decrease of temperature (it is approximately 1 at high T in the disordered

state, and almost null in the low T region when the system is almost ordered). Therefore, for a

given initial random magnetic configuration X0, the Metropolis algorithm at each temperature T

goes as follow:

1. Choose randomly a spin ~Si and suggest for it a new random orientation ~S′i.

2. Calculate the energy variation ∆E associated to this rotation according to Eq. (2.3).

3. If ∆E < 0 =⇒ accept the new orientation.

Else, choose a random number 0 < r < 1 with uniform distribution, and check if

r ≤ exp(−∆E/kBT ) accept the new orientation, otherwise reject.

4. Choose another spin randomly (back to step 1).

N repetitions of the steps 1 to 4 is known as a MC step (MCS), with N being the number of spins

in the system. A large number of MCS (nMCS = 105 for e.g.) is performed at each temperature,

so that each spin is examined nMCS times in average.

2.2.2.2 Time Step Quantified Monte Carlo method

The standard Metropolis algorithm is known to be efficient in finding one of the lowest energy

configurations and calculating the equilibrium quantities at each temperature. It minimizes the

free energy of the system at each temperature without ”seeing” the different energy barriers that

should be overcome when going from a configuration X to another one X ′. Nevertheless, the
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standard Metropolis algorithm exhibits the problem of having no physical time associated with

each MC step, resulting in unquantified dynamic behavior. It was found that Langevin dynamics

is a very good approach for studying the dynamic behaviors, but unfortunately it is limited to

time scales of the order of few ns. And because the MC approach is less time consuming, U.

Nowak et al. [101] succeeded to quantify each MCS and associate it to a real physical time.

The trial step of this algorithm is a random movement of each spin ~Si within a cone of a given

size. For this purpose, a random vector ~u with a uniform probability distribution is chosen

within a sphere of radius R (Fig. 2.3). After that, ~u is added to ~Si and subsequently the resulting

vector is normalized to obtain ~S′i = S
~Si+~u

‖~Si+~u‖
. The radius of the sphere (cone) R affects the

physical time associated to 1 MCS [101]. Indeed, R cannot take any value, it should satisfy

the condition R < 1, but at the same time it should not be too small since then the algorithm

becomes inefficient. The procedure of this new algorithm, in our case, is the same as the standard

Metropolis in terms of the acceptance-rejection principle.

Within this algorithm, 1 MCS is associated to a real time interval ∆t through the following

relation

R2 =
20αγkBT

(1 + α2)m
∆t (2.11)

where α is a damping constant chosen to be ≥ 1 for the validity of the formula [101], γ =

1.76 × 1011 (Ts)−1 is the gyromagnetic ratio, kB is the Boltzmann constant, and m is the

theoretical magnetic moment (3µB in our case).

FIG. 2.3. Schematic illustration of the principle of the time step quantified Monte
Carlo method with R < 1.
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Thus, from Eq. (2.11), one has to choose either a value for ∆t (usually it is of the order of 10−12

s) to find R, or to choose a reasonable value of R (0.1 for example) and find ∆t to be the real

time interval corresponding to 1 MCS. Thus for example, if one takes R = 0.1 and α = 1 for

T = 10 K, Eq. (2.11) gives us ∆t = 1.15× 10−15 s associated to 1 MCS.

With this new technique, the algorithm is able to see the energy barriers in the phase space, and

thus it allows us to simulate the hysteresis loops at various temperatures (but not too small) within

reasonable computer time.

Although, this new technique doesn’t succeed in all systems and still faces some limitations. For

example, if one consider a ferromagnetic system with very strong exchange couplings and at

very low temperatures, single spin rotations are not possible because the system can only rotate

uniformly.

2.2.2.3 Simulated annealing − Calculation of different thermodynamic quanti-

ties

The algorithm of simulated annealing was proposed by S. Kirkpatrick et al. [102, 103]. During

the annealing process, the system which is initially at high temperature and in a paramagnetic

phase is slowly cooled so that the system achieves its thermodynamic equilibrium at each

temperature after a time interval n0 called the equilibration time. As the cooling proceeds, the

system becomes more ordered and its energy decreases (Fig. 2.4) to approach its minimum near

0 K. The magnetic configuration at 0 K is known as the ground state configuration which can

be degenerate in some systems. In frustrated systems, if the initial temperature of the system is

below its ordering temperature (TN or TC), or if the cooling process is not sufficiently slow the

system may be frozen in a metastable state (i.e. trapped in a local minimum energy state at low

temperatures) and doesn’t achieve one of its ground state configurations. In order to calculate

thermal averages, the system should explore all the phase space. However, in our MC simulations,

we make time averaging (over the number of MCS at equilibrium) which is equivalent to the

Gibbs averaging (Eq. 2.9), if nMCS is large enough, according to the choice of our transition

probability. This is known as the ergodicity principle.

To estimate n0, it is possible to plot any thermodynamic quantity versus nMCS (i.e., versus time)

and to see when the system reaches its equilibrium, see Fig. 2.4. After that, time averaging is

done over (nMCS − n0) MCS. Thus, the thermal average 〈A〉T of any thermodynamic quantity
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FIG. 2.4. Time variation of the internal energy during the cooling process.

A is calculated as

〈A〉T '
1

nMCS − n0

nMCS∑
`=n0+1

A(X`) (2.12)

with X` is the spin configuration at the end of the `th MCS. Note that A in our simulations is one

of the different thermodynamic quantities such as internal energy, chirality of spins, spin-spin

correlation functions, and a magnetic order parameter ~P related to the ferroelectric polarization.

I Internal energy U(T ) per spin

U(T ) =
〈H〉T
N

=
1

N(nMCS − n0)

nMCS∑
`=n0+1

H(X`) (2.13)

where N is the number of spins in the system.

I Chirality of spins κ(T ) per magnetic bond

To characterize the nearly 120◦ GS configuration we considered the spin chirality defined

as

~κp =
1

S2

2

3
√

3
(~S1 × ~S2 + ~S2 × ~S3 + ~S3 × ~S1) (2.14)

where 1, 2 and 3 refer to the spins at the corners of each elementary triangular plaquette

p in an ab plane (Fig. 2.5). κp = 1 for the perfect 120◦ configuration. Then we defined



Model and Monte Carlo method 45

FIG. 2.5. Triangular plaquette p.

the order parameter per plane to be λ = 1
nb
‖
∑

p ~κp‖ where nb is the number of magnetic

bonds per plane, and finally the order parameter of the whole system was defined as

κ = 〈λ̄〉T where λ̄ is the average of λ over the ab planes.

And finally,

κ(T ) =
1

nMCS − n0

nMCS∑
`=n0+1

λ̄(X`) (2.15)

I Spin-spin correlation functions G(R, T ) per magnetic bond

In order to characterize more precisely the magnetic configurations, we calculated the

temperature dependence of the spin-spin correlation functions along the a-direction ([100]

direction) defined as

G(R, T ) =
1

Na(nMCS − n0)

nMCS∑
`=n0+1

 1

S2

∑
〈i,j〉

~Si · ~Sj


`

(2.16)

where Na is the number of pairs ~Si, ~Sj separated by a distance R along the a-direction.

I ~P associated to the ferroelectric polarization per magnetic bond

As proposed by Kaplan and Mahanti [85], Eq.(1.53) describes the electric polarization

in CuCrO2. And since ~P is allowed only along the [110] direction due to symmetry

considerations [67], we then calculate

P(T ) =
1

Nx(nMCS − n0)

nMCS∑
`=n0+1

~ex ·∑
〈i,j〉

~Si × ~Sj


`

(2.17)

to be the projection of ~P along the [110] direction. The sum of 〈i, j〉 runs along the [110]

direction and Nx = (L − 1)2 is the number of first nearest neighbor magnetic bonds

counted along that direction in each ab plane. Then we average P over the atomic planes
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to finally obtain

P[110](T ) =
1

3Lz

3Lz∑
i=1

Pi(T ) (2.18)

with 3Lz represents the number of the ab planes found in the system.

I Specific heat C(T ) per spin

The specific heat per spin is calculated as

C(T ) =
∂U

∂T
=
〈H2〉T − 〈H〉2T

NkBT 2
(2.19)

I Linear magnetic susceptibility χ(T ) per spin

Because CuCrO2 is an antiferromagnetic system, magnetization can be derived only under

an applied external magnetic field ~B. Thus the associated linear magnetic susceptibility

measured along the direction of ~B is defined as

χ(T ) =
MB(T )

H
(2.20)

with

MB(T ) =
−g

N(nMCS − n0)
~eB ·

nMCS∑
`=n0+1

(∑
i

~Si

)
`

(2.21)

being the magnetization in µB calculated along the direction of ~B and ~eB =
~B
‖ ~B‖

is a unit

vector along the magnetic field direction.

2.3 Finite size and boundary effects

In order to reduce finite size effects, we implement the periodic boundary conditions (PBCs) in all

directions. However, it is well known that PBCs can affect the simulated magnetic configuration

near 0 K when the GS configuration is incommensurate. Thus, to characterize well the effect

of the PBCs on the energy and magnetic configuration of the GS in CuCrO2, we calculate the

exchange energy per spin of a finite system as function of the size L and the propagation vector

~q = (k, k, 0) with only the first nearest neighbor interactions in the distorted 2D crystal structure
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according to

Eex(k, L) =
−S2

L2
(
[
L2 − 2L+ 1

]
J ′1cos(4πk) + 2L(L− 1)J1cos(2πk)

+ 2(L− 1)J ′1cos [2πk(L− 2)] + J ′1cos [4πk(L− 1)]

+ 2LJ1cos [2πk(L− 1)]) (2.22)

In the infinite system (L −→∞), Eq. (2.22) becomes

Eex(k) = −S2
(
J ′1cos(4πk) + 2J1cos(2πk)

)
(2.23)

The minimization of Eq. (2.23) w.r.t k gives

cos(2πkinf ) =
−J1

2J ′1
(2.24)

with kinf denotes the value of the propagation vector in one of the GS configurations of the

infinite lattice. In the non-distorted structure, Eq. (2.24) gives kinf = 1/3 or kinf = 2/3. To

simplify the discussion we will work in one of the GS configurations of CuCrO2. In the distorted

crystal structure with J1 = −2.383 meV and J ′1 = −2.709 meV (see Chapter 3), Eq. (2.24)

gives kinf ≈ 0.3225. Then the energy of the infinite system corresponding to kinf ≈ 0.3225

is Einf/kB = −98.08838 K. Fig. 2.6 shows the variation of Eex(k, L) as functions of L for

kinf ≈ 0.3225. It can be seen that the energy of the finite system with PBCs does well depend

FIG. 2.6. Theoretical curves of the variation of the exchange energy as function of size
L (multiples of 3) in a 2D system compared to that in the infinite system.
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FIG. 2.7. Theoretical curves of the variation of exchange energy versus k (left), and its
corresponding zoom in the minimal energy regime (right) in a 2D system.

on L and approaches that of the infinite system when L is very large as well as for particular

values of L which correspond to the minima of Eex(k, L) in Fig. 2.6. Such sinusoidal damping

shape is due to the excess of energy at the boundaries of the system due to the PBCs because of

the incommensurability of the magnetic configuration.

Now for a given finite system of size L, we can see the effect of the PBCs on the magnetic

configuration of the GS by plotting Eex(k, L) versus k as shown in Fig. 2.7. For example, if

L = 600 kGS ≈ 0.3217 is close to kinf while for L = 60, kGS ≈ 0.3167 which reflects a

significant deviation from kinf . However for the finite system of size L = 90 that corresponds

to the first minimum of Eex(k, L) (Fig. 2.6), kGS ≈ 0.3222 is very close to kinf . Inspite of

the k-dependence of Eex(k, L = 90) shown in Fig. 2.8, it can be clearly seen that the mini-

mum of Eex(k, L = 90) (EGS/kB = −98.088 K) is very close to that of the infinite system

FIG. 2.8. Theoretical curves of the variation of the exchange energy versus k for
L = 90 in comparison with that of the infinite system.
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(Einf/kB = −98.08838 K).

Therefore, based on what mentioned, we can say that these PBCs perturb the magnetic configura-

tion in the case of incommensurate helimagnetic structures like in CuCrO2. Thus the choice of

L is very sensitive and has an effect on the GS configuration of the simulated system.

To verify the effect of PBCs in our MC simulations, we test various system sizes and see their

corresponding GS configuration for the same J1 = −2.383 meV and J ′1 = −2.709 meV. To

characterize well the simulated magnetic configuration at a very low temperature we calculate

the propagation vector ~q = (h, k, 0) such that h and k are calculated along the a and b directions,

respectively. Given two spins ~Si and ~Sj along the a or b directions, the angle between ~Si and ~Sj

is given by θij = 2πh or θij = 2πk. Also, θij is calculated from the scalar product of ~Si and ~Sj

according to

cos(θij) =
~Si · ~Sj
S2

(2.25)

Consequently, one can write

h or k =
1

2π
arcos

(
~Si · ~Sj
S2

)
(2.26)

The simulations start from random spin configurations at a sufficiently high initial temperature

Ti = 35.01 K. We then cool down to a final temperature Tf = 0.01 K with a constant

temperature step ∆T = 1 K. At each temperature we perform nMCS = 1.05 × 105 with

discarding n0 = 5× 103 for thermal equilibration. Since the value of k is expected to be close

to 1/3 or 2/3, we then choose L to be a multiple of 3 to compare the deviation of our results

from the commensurate configuration of k = 1/3 or 2/3. The simulated values of ~q = (h, k, 0)

for the different sizes are given in Table 2.1. We find that PBCs favor the closest commensurate

spin configuration for L = 15 with a propagation vector ~q ≈ (0.3333, 0.3333, 0). However,

when L = 30, 45 or 60 the simulation chooses a GS configuration with a propagation vector

~q = (h, k, 0) with h 6= k as shown in Table 2.1. For L = 90, ~q ≈ (0.3222, 0.3222, 0) which

is very close to ~qinf ≈ (0.3225, 0.3225, 0) in agreement with the calculations done for L = 90

and shown in Fig. 2.8. However, it is very important to note that for L = 120 (> L = 90)

TABLE 2.1. Simulated values of the propagation vector ~q = (h, k, 0) for various
system sizes in a 2D lattice of CuCrO2.

L 15 30 45 60 90 120

h 0.3333 0.3003 0.3332 0.3186 0.3222 0.3251

k 0.3333 0.3330 0.3112 0.3167 0.3222 0.3251
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the simulation chooses again a GS configuration of propagation vector ~q ≈ (0.3251, 0.3251, 0)

which is different from that of the infinite system due to the effects of PBCs as shown in Fig. 2.6.

However, we have shown in Sec. 1.1.4.1 that the commensurate GS configuration in CuCrO2

with h 6= k doesn’t exist. Similar demonstration is found in the incommensurate configuration and

hence we can say that the simulation results with h 6= k are not physical but rather perturbations

induced by PBCs. Thus to characterize well the real GS state configuration, we have to take

much more care of the choice of L regarding all the previous effects.

It is important to note that the use of free boundary conditions (FBCs) perturb more the results

due to the significant effects of the free boundaries in finite sizes. These perturbations could be

minimized if a very large simulation box is considered and the results are averaged only inside its

bulk which is difficult within the available computer resources.

2.4 Statistical and systematic errors

The time of a MC simulation is directly proportional to nMCS , to the number of spins (N) in the

system and also to the number of simulated temperature steps (nTemp). Thus we can write

tsim ∝ nMCS ×N × nTemp (2.27)

Within the limited computational budgets, one should choose between performing simulations

with large nMCS of small system sizes or small nMCS of larger sizes. These limitations are the

sources of errors known as statistical and systematic errors [104].

Statistical errors [105, 106]

The autocorrelation function of a physical quantity A is defined by

ϕA(t) =
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
(2.28)

where it verifies that ϕA(0) = 1 and ϕA(t) −→ 0 when t −→∞.

The autocorrelation time of A is defined as

τA =

∫ ∞
0

ϕA(t)dt (2.29)

Suppose that we make n successive independent measurements {A1, . . . , Ai, . . . , An} of this

quantity A. We define the expectation value of the square of the statistical error on the measure
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of 〈A〉 as 〈
(δA)2

〉
=

〈[
1

n

n∑
i

(Ai − 〈A〉)

]2〉
(2.30)

It can be shown that, in a MC simulation, the above expectation value is related to the autocorre-

lation function ϕA(t) by

〈
(δA)2

〉
=
〈A2〉 − 〈A〉2

n

(
1 +

2

δt

∫ tn

0
(1− t/tn)ϕA(t)dt

)
(2.31)

where δt is the time interval (in MCS) between two successive measurements of A, tn = nδt

with δt � tn. In addition, if we assume that the autocorrelation function is almost null when

τA � tn, the main contribution in the integral of Eq. (2.31) is obtained for t� tn. Hence we

can neglect t/tn in front of 1 and replace the upper bound of the integral by∞ in Eq. (2.31) and

using Eq. (2.29) we obtain

〈
(δA)2

〉
≈
(
〈A2〉 − 〈A〉2

) 2τA + δt

nδt
(2.32)

Moreover, if we have δt� τA, we can simplify Eq. (2.32) to

〈
(δA)2

〉
≈
(
〈A2〉 − 〈A〉2

) 2τA
nδt

(2.33)

The relative statistical error is then given by

ρA =

√
〈(δA)2〉
〈A〉

≈

√(
2τA
nδt

)
〈A2〉 − 〈A〉2
〈A〉2

(2.34)

It can be seen that the relative statistical error is independent of the time interval δt between

two successive measurements, but depends essentially on the ratio between the autocorrelation

time (τA) and the number of MC steps (nδt) at thermal equilibrium. Therefore, to reduce

statistical errors we need to increase nMCS performed at each temperature. However, when the

system is large enough, it is often impossible to increase enough nMCS due to the constraints

on the available computer resources. These limitations are sources of the statistical errors in

MC simulations. Another source for the statistical errors is the disorder induced, for example,

by chemical impurities introduced in the system. This requires to average over a large enough

number of random configurations to decrease its contributions.

Systematic errors

Systematic errors in a MC simulation, like the statistical errors, arise from the finite number of
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measurements n performed on the physical quantity A during the simulation. Systematic errors

are particularly significant on the estimation of the specific heat and magnetic susceptibility

since they are proportional to the variance of the probability distribution. For that, the specific

heat and the magnetic susceptibility are systematically underestimated during a MC simulation

because the estimate of a variance from a finite sample is systematically smaller than that in an

infinite sample. A possible solution to reduce these systematic errors is to increase the number of

measurements done by increasing nMCS as much as possible.

In this work, we tried as much as possible to limit these errors. Thus we tried to simulate systems

as large as possible and perform large enough number of MC steps with averaging the final results

over several different simulations (parallel calculations).
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Magnetoelectric properties of CuCrO2

Over the past few years, structural and magnetoelectric properties of CuCrO2 were experi-

mentally studied by neutron diffraction experiments and other techniques. However, till now,

there is no clear and enough understanding of its magnetoelectric properties and its complex spin

structure. Based on that, we aim to revisit this compound from the numerical simulation side. In

order to model the magnetoelectric properties of this complex oxide, we calculate its exchange

interactions and single ion anisotropy constants using DFT calculations in the non-distorted and

distorted lattice structure presented in Sec. 3.1. Using these extracted parameters, we model the

magnetoelectric properties of CuCrO2 using the classical Monte Carlo method. The results of

this chapter have been published in Physical Review B [107].

3.1 DFT calculations

These calculations were done by Y. O. Kvashnin at the ”Department of Physics and Astronomy,

Division of Materials Theory, Uppsala University, Sweden”.

We have performed a series of DFT calculations in order to investigate the electronic and magne-

toelectric properties of CuCrO2. Knowing that the conventional DFT calculations underestimate

the value of the energy band gap, we have applied the DFT + U method to improve the estimation

of the energy band gap compared to the experimental data. However, we note that the calculated

value of the energy band gap depends on the choice of Hubbard U parameters for Cu and Cr

3d states. In addition, we also investigate in details the effect of different double-counting

correction schemes. Finally, for all different computational setups, we extract the effective

53
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inter-atomic exchange interactions (Jij) — illustrated in Fig. 2.2 — using the magnetic force

theorem [108, 109].

3.1.1 Computational details

DFT calculations were performed using the full-potential linear muffin-tin orbital (FP-LMTO)

method as implemented in RSPt [110] software. An experimental crystal structure was taken

from Ref. [111]. No ionic relaxation was done within our DFT calculations. The electronic

structure of CuCrO2 has been calculated before using the DFT + U method. In literature, we

found several different choices of the Hubbard U parameters for this system:

1. Choice U1. In Refs. [112, 113] the values of Ueff = U − JH for Cu and Cr were set to

5.2 eV and 4.0 eV, respectively. This choice of the parameters is motivated by the fact

that it gives a good description valence-band photo-emission spectra of Cu2O and Cr2O3

[41, 114].

2. Choice U2. In Ref. [63] the authors applied Hubbard U correction on Cr 3d only. The

adopted values of the Hubbard U and the Hund’s exchange JH were 2.3 and 0.96 eV,

respectively, by which they were extracted from first principle calculations for a similar

system LiCrO2 [115].

For most of the calculations we have adopted Fully Localized Limit (FLL) [116, 117] form of

the double counting (DC) correction, which is suitable for insulators. In addition to that, for the

U2 choice we have also tried another widely used type of the DC — Around Mean Field (AMF).

This form of DC is usually used for relatively small U values, which is justified in the U2 case,

but not in U1.

3.1.2 Band gap and electronic structure

Electronic structure of CuCrO2 was calculated using LDA and LDA+U methods. We have

considered two magnetic configurations: ferromagnetic (FM) state where all Cr spins point in the

same direction and another collinear antiferromagnetic (AFM) state. The latter phase has a lower

total energy compared to the FM one, but according to the calculated values of the exchange

interactions, this configuration is not the ground state of the system. This will be discussed in

detail in the next section.
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TABLE 3.1. Calculated magnetic moments and values of the indirect band gaps Eg
obtained for different computation setups and magnetic orders.

Setup magnetic configuration mCr (µB) mtotal (µB) Eg (eV)

LDA FM 2.63 3.00 0.76

LDA+U [U1, FLL] FM 2.68 3.00 2.25

LDA+U [U2, FLL] FM 2.62 3.00 1.5

LDA+U [U2, AMF] FM 2.52 3.00 1.16

LDA AFM ±2.54 0.00 1.1

LDA+U [U1, FLL] AFM ±2.65 0.00 2.38

LDA+U [U2, FLL] AFM ±2.56 0.00 1.78

LDA+U [U2, AMF] AFM ±2.46 0.00 1.5

The main computed quantities are summarized in Table 3.1. Note that the magnetic moments

values on every site are calculated by projecting the magnetization density onto the muffin-tin

(MT) sphere. Therefore, there is also some magnetization in the interstitial, which contributes to

the total magnetic moment value. In FM state there is also a small induced magnetization on Cu

and O.

As one can see, for all computational methods the magnetic moment of Cr was calculated to be

close to its nominal value of 3µB , expected for a purely ionic picture. In reality, due to hybridiza-

tion with oxygen p-states, the projected magnetic moment of Cr is slightly reduced. What is quite

remarkable is that the change of the assumed magnetic order for the same computational method

results in a small difference in the values of mCr by no more than 3.5%. Similar comparison of

the band gap values reveals that the stabilization of an AFM order always leads to an increase of

the Eg as compared with that in FM state.

3.1.3 Exchange interactions and anisotropy: computational details

Exchange couplings were calculated using the magnetic force theorem (i.e. the so-called Lichten-

stein’s formula) [108, 109]. The DFT electronic structure is mapped on the classical Heisenberg

model of the following form

Hex = −
∑
i 6=j

Jij ~Si · ~Sj (3.1)

where ~Si denotes the vector spin along the direction of the magnetization of the site i (S = 3/2).

With this sign convention, positive Jij corresponds to the ferromagnetic coupling. Note that

also with this notation of the summation of the Hamiltonian, each bond is counted twice. Our

calculations take into account the exchange interactions up to the third neighboring spins (J1,
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TABLE 3.2. Chosen MT radii in a.u.

Cu Cr O

1.80 2.00 1.65

J2 and J3) within the ab plane, and the interlayer interaction J4 between Cr3+ atomic planes as

show in Fig. 2.2, as well as the single ion anisotropy constants. The various parameters calculated

with this method may depend on the spin configuration used to extract them. This is something

normal because the electronic structure (e.g. density of states) may depend on the magnetic order.

The differences are known to be large for metals and are signatures of non-Heisenberg behavior

of the system. In oxides, these differences are usually much smaller. We investigate this point for

CuCrO2 in details below.

The exchange coupling is computed between 3d states of Cr. The latter are constructed perform-

ing the ”MT-heads” projection scheme [118]. The wave functions are projected onto the MT

spheres, whose radii are listed in Table 3.2.

For the magnetocrystalline anisotropy, the following form of energy was assumed

HMAE = −Dx

∑
i

(Sxi )2 −Dz

∑
i

(Szi )2 (3.2)

with Dx < 0 and Dz > 0 being the single ion anisotropy constants for a hard and an easy axes

anisotropy along the [110] and the [001] directions, respectively. Our DFT calculations provide

the estimations of the exchange interactions and single ion anisotropy constants for the perfect

crystalline structure without distortion, and for the distorted lattice as shown in the following

sections.

3.1.3.1 Non-distorted crystal structure

For the non-distorted crystal structure, the calculated parameters are listed in Table 3.3. It can

be seen that there is no single computational setup (among the ones considered here) which

provide excellent agreement for both Eg and the Jij’s. The best estimate of the band gap value

was obtained using LDA+U [U1, FLL] setup. However, this choice of U results in strongly

suppressed exchange parameters. In turn, LDA+U [U2, FLL] setup underestimates the band gap

value. On the other hand, it provides more reasonable values Jij’s. The values of Jij’s depend

not only on the choice of U parameters, but also on the employed double-counting correction.

LDA+U in conjunction with AMF DC results enhanced the values of the Jij’s with respect to
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TABLE 3.3. Exchange interactions (in meV) extracted from different calculations
with their corresponding transition temperatures (TN ) simulated by MC simulations.

Negative sign corresponds to an AFM coupling.

Setup State J1 J2 J3 J4 TN (K)

LDA FM −4.197 0.033 −0.508 −0.048 47.87

LDA+U [U1, FLL] FM −0.411 0.024 −0.157 −0.030 7.82

LDA+U [U2, FLL] FM −2.407 0.012 −0.266 −0.060 27.39

LDA+U [U2, AMF] FM −4.922 −0.024 −0.339 −0.133 49.96

LDA AFM −3.556 0.109 −0.508 −0.073 41.11

LDA+U [U1, FLL] AFM −0.556 0.036 −0.169 −0.036 9.93

LDA+U [U2, FLL] AFM −2.395 0.046 −0.266 −0.073 28.03

LDA+U [U2, AMF] AFM −4.632 0.024 −0.339 −0.133 50.07

those extracted from the LDA method. Even though the values of the Jij’s differ for various

setups, they are qualitatively comparable concerning the sign of the exchange coupling for each

neighboring spin. All of the obtained sets of the Jij’s indicate a geometrical frustration of Cr

spins on the hexagonal lattice. We can see clearly that both sets of exchange interactions extracted

from the LDA+U [U2, FLL] starting from either FM or AFM states are nearly similar, and

both give the perfect 120◦ GS configurations with the good transition temperature compared to

experimental data. Thus the choice of the calculation setup is very important with no significant

effect of the initial magnetic configuration (FM or AFM). Based on that, we will base our next

calculations on the LDA+U [U2, FLL] method starting from FM configuration for simplicity.

Based on the Hamiltonian given in Eq. (3.2), the values of the single ion anisotropy constants

are: Dx = 0 meV and Dz = 0.033 meV correspond for the hard and easy axes anisotropy,

respectively.

3.1.3.2 Distorted crystal structure

Kimura et al. [74] have reported experimentally a tiny in-plane lattice distortion in CuCrO2

that takes place below its ordering temperature (TN ) along the [110] direction. In this part of

our study, we have considered this experimental lattice distortion d = (a2 − a1)/a1 = 0.0001

illustrated in Fig. 1.20 to calculate again the Jij’s and the single ion anisotropy constants. Beside

d = 0.0001, we have tested several values of d to understand the effect of such lattice distortion

on the extracted parameters and therefore on the properties of CuCrO2. The dependence of the

magnetization on the considered values of d was found to be negligible. A magnetic moment

of about 2.62 µB per Cr atom has been obtained. The a2 parameter was set to the experimental
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TABLE 3.4. Exchange interactions and single ion anisotropy constants (in meV)
extracted from different structures corresponding to different values of lattice distortion.

Negative sign corresponds to an AFM coupling.

d J1/J
′
1 J ′1 J1 J2 J3 J4 Dx Dz

0.0001 0.995 −2.419 −2.407 0.012 −0.266 −0.060 −0.000 0.033

0.001 0.952 −2.516 −2.395 0.012 −0.266 −0.060 −0.000 0.033

0.002 0.917 −2.612 −2.395 0.012 −0.266 −0.060 −0.000 0.033

0.003 0.879 −2.709 −2.383 0.012 −0.266 −0.060 −0.001 0.033

lattice constant and was kept fixed in the calculations. a1 was varied, such that a1 is always

smaller than a2. J ′1 corresponds to the shorter distance to the neighboring spin. From Table 3.4,

we can see that the distortion primarily affects the 1st nearest neighbor couplings, while its effect

on the remaining neighboring interactions is negligible. For the experimental lattice distortion

d = 0.0001, we note that our values of J1, J ′1 and Dz are very close to the ones reported

experimentally in Ref. [92] which confirm that our DFT calculations provide good estimates. It

is very important to note that the magnitude of the in-plane single ion anisotropy constant (Dx)

increases when d increases reflecting the fact that this type of anisotropy results from the lattice

distortion (magnetostriction) associated with the spiral magnetic ordering below TN .

To fit our goal and model the magnetoelectric properties of CuCrO2, we need a complete set of

exchange interactions and single ion anisotropy constants that is able to give an incommensurate

GS configuration and to reproduce experimental results. However, we found that the sets

of d = 0.0001, d = 0.001 and d = 0.002 can’t reproduce the incommensurate magnetic

configuration for a reasonable size within the available computer resources due to the effect of

PBCs. They require large systems (L > 90) to see the small deviation from the perfect 120◦

configuration. On the other hand, we know that the hard axis anisotropy in our system is very

important to fix a spiral plane and to speak about spontaneous ferroelectricity. But it can be seen

that the sets of exchange interactions and single ion anisotropy constants corresponding to the

d = 0.0001, d = 0.001 and d = 0.002 can’t fit our goal because Dx ≈ 0. Therefore, we will

take the set of d = 0.003 to launch our simulations.

3.2 Monte Carlo simulation results

Based on the discussions we made in Sec. 2.3, we choose the size L = 90, whatever the value of

Lz , in all our MC simulations to model the true GS configuration in CuCrO2.
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3.2.1 Study without an external magnetic field

We start our simulations from random spin configurations at a high enough temperature (Ti =

35.01 K) above the transition temperature of the system. We then cool down to a final temperature

(Tf = 0.01 K) to characterize the GS configuration of the system. The cooling process follows

an algebraic sequence such that Ti+1 = Ti − ∆T . At each temperature step, we perform

nMCS = 1.05× 105 MCS by which n0 = 5× 103 MCS is discarded for thermal equilibration.

Note that we average our results over 28 simulations with different random configurations

(nconf = 28) to reduce statistical errors. The parameters of simulations are listed in Table 3.5.

Note that these simulations of size 90× 90× 3 with such parameters require tsim ≈ 253 hours.

TABLE 3.5. MC simulation parameters used in the study of phase transition and GS
configuration in CuCrO2.

Simulation parameters
Size N Ti (K) ∆T (K) Tf (K) nTemp nconf nMCS n0

90× 90× 3 72 900 35.01 0.5 0.01 71 28 1.05× 105 5× 103

3.2.1.1 Ground state configuration and phase transition

Fig. 3.1 shows the temperature dependence of the internal energy per spin. It shows an inflection

point around 28.5 K, which suggests a phase transition at this temperature. The simulated

GS energy per spin is U(Tf )/kB ' −109.856 K. The energy contributions of each term of

FIG. 3.1. Thermal variation of the internal energy simulated with the set of d = 0.003
in CuCrO2.
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TABLE 3.6. Energy contribution per spin of each term of the Hamiltonian of Eq. (2.3)
at Tf = 0.01 K simulated with the set of d = 0.003 for a size 90× 90× 3 in CuCrO2.

EJ1/kB (K) EJ2/kB (K) EJ3/kB (K) EJ4/kB (K) EDx/kB (K) EDz/kB (K)

−98.079 −0.931 −10.235 −0.183 0.000 −0.427

U(Tf ) are given in Table 3.6. It can be seen that the dominant contribution comes from the

first nearest neighbors and the smaller contribution is that of J4 which gives evidence about

the quasi-two dimensional nature of the system. The simulated value of the propagation vector

at Tf = 0.01 K is found to be ~qsim ' (0.322, 0.322, 0) which is close to that reported in

experimental studies ~q = (0.329, 0.329, 0) [12–16]. The fact that ~qsim 6= (1/3, 1/3, 0) reflects

the incommensurability of the magnetic configuration. Now in the presence of lattice distortion

and by ignoring the energy contribution due to J4, Eq. (1.30) becomes

Eex(k) = −S2[2J1cos(2πk) + J ′1cos(4πk) + 2J2cos(6πk) + J2

+ 2J3cos(4πk) + J3cos(8πk)] (3.3)

and therefore to compare our simulated GS energy with the theoretical one, we calculate

Eex(ksim)/kB with ksim = 0.322 and compare it toUex(Tf )/kB = (U(Tf )−EJ4−EDz)/kB =

−109.246 K. By putting ksim in Eq. (3.3) we got Eex(ksim)/kB = −109.247 K which is ex-

actly Uex(Tf )/kB .

Now to see the deviation of the simulated GS energy from the commensurate 120◦ GS configura-

tion, we calculate

E120◦ = S2

(
J1 +

1

2
J ′1 − 3J2 +

3

2
J3 −

1

2
Dz

)
(3.4)

Note that in the perfect 120◦ configuration, the energy contribution due to J4 is null. Thus, for

the set of exchange interactions and single ion anisotropy constants corresponding to d = 0.003,

Eq. (3.4) gives us E120◦/kB = −109.368 K > U(Tf )/kB . This confirms that the GS state

configuration in the presence of lattice distortion is no more the 120◦ configuration, but rather an

incommensurate spin structure known as the ICY state close to the 120◦ configuration. Fig. 3.2

shows the spin configuration of the ICY state where we can clearly see the lack of periodicity in

the spin structure. Precise knowledge about the magnetic ordering in the ICY state can be gained

by calculating the spin-spin correlation function G(R, T ) defined in Eq. (2.16). Fig. 3.3 shows

the variation of G(R, T ) as function of the distance R along the [100] direction (1 ≤ R ≤ L/2)

simulated at Tf = 0.01 K. It can be clearly seen that the spin is in a continuous rotation as R

increases. This confirms the incommensurability of the spin configuration due to the distorted
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FIG. 3.2. GS spin configuration at Tf = 0.01 K. We plot each spin as (Sz, Sy, 0) in
the ab plane of CuCrO2 for simplicity.

crystal structure. Our simulated G(R, T ) is very close to that calculated theoretically in the

infinite lattice according to the following formula

Gtheo(R, T ) = cos(2Rπkinf ) (3.5)

with kinf = 0.3225 calculated by Eq. (2.24) with neglecting the effect of J2 and J3. Concerning

the degree of geometric magnetic frustration of the simulated GS, the simulated value of Eq. (1.12)

at Tf = 0.01 K gives Fsim = 0.541 which reflects a highly frustrated magnetic configuration.

FIG. 3.3. Variation of the spin-spin correlation function versus the distance (in a
units) simulated with the set of d = 0.003 along the [100] direction at Tf = 0.01 K in

CuCrO2.
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FIG. 3.4. Temperature dependence of the order parameter simulated with the set of
d = 0.003 in CuCrO2.

To characterize more precisely the magnetic ordering and the nearly 120◦ GS configuration, we

consider the spin chirality defined in Eq. (2.15) to be the order parameter in our system. Fig. 3.4

shows the thermal variation of the order parameter where we can see that spin ordering starts

to take place below TN ≈ 28.5 K. At T = Tf , κ ≈ 0.995 indicates a small deviation from the

commensurate (120◦) configuration of κ = 1. We compare κ(Tf ) with the theoretical value

κtheo — assuming all the spins are in the same spiral plane in the regular magnetic configuration

— corresponding to ksim = 0.322 according to the following formula

κtheo =
2

3
√

3
{2sin(2πksim)− sin(4πksim)} (3.6)

We find that κtheo ≈ 0.995 which corresponds exactly to κ(Tf ). This means that our simulations

converge toward the true magnetic configuration having the yz plane as the spiral plane of the

system.

On the other hand, within our MC simulations, we simulate the temperature dependence of

the specific heat per spin based on Eq.(2.19) to estimate precisely the transition temperature

in CuCrO2. Fig. 3.5 shows the simulated temperature profile of the specific heat per spin

where it shows a peak at TN = 28.5 ± 0.5 K that corresponds to a phase transition from a

paramagnetic state to an antiferromagnetic state which is in a very good agreement with that

reported experimentally (TN = 24−26 K) [52, 66, 67]. To characterize well this phase transition

it is very important to study the size effect on the peak of the specific heat. Fig. 3.6 shows the
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FIG. 3.5. Thermal variation of the specific heat per spin simulated with the set of
d = 0.003 in CuCrO2.

thermal variation of the specific heat per spin for various system sizes. We study the effect of

varying L for a fixed Lz = 3 (left panel of Fig. 3.6) where we can clearly see the increase in the

peak of C as L increases which indicates the presence of long range ordering within the ab plane.

However, the C-peak is not affected (within statistical errors) by the variation of Lz for a given

L = 90 as shown in the right panel of Fig. 3.6. This confirms the quasi-two dimensional behavior

CuCrO2 and confirms that the magnetic ordering in this delafossite is found to be within the

ab plane. Thus it is also important to study the size effect on the energy of the system at the

GS as well as at finite temperatures. Fig. 3.7 shows the temperature dependence of the internal

energy per spin simulated for different choices of L and Lz . It is clearly seen that the internal

energy is insensitive for size variation. Table 3.7 presents the simulated values of U(Tf )/kB ,

FIG. 3.6. Size dependence of the thermal variation of the specific heat per spin
simulated with the set of d = 0.003 for various system sizes in CuCrO2.
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FIG. 3.7. Size dependence of the thermal variation of the internal energy per spin
simulated with the set of d = 0.003 for various system sizes in CuCrO2.

κ(Tf ), ~q = (h, k, 0) for each size at Tf = 0.01 K as well as their corresponding TN . From the

simulation results presented in Table 3.7, one can see that U(Tf )/kB as well as ~q slightly vary

with varying L while they are roughly not affected by the variation of Lz . The simulated value

of the order parameter κ at Tf = 0.01 K shows no significant L or Lz dependence. About the

transition temperature TN , a small shift of the peak of the specific heat curves (Fig. 3.6) can be

seen but remains within the limit of 1 K. Therefore, we can say that there exists no significant

size dependence of our results at finite temperatures while the GS configuration is sensitive to the

choice of L.

Finally, we conclude that the choice of the simulation box can’t be arbitrary when one aims to

study the true GS configuration of CuCrO2 due to the significant effect of PBCs on the magnetic

configuration of the GS (~q). Thus the choice of L that corresponds to one of the minima in Fig. 2.6

is very important for the convergence of the simulated GS toward the theoretical one whatever the

choice of Lz . Also, from the accordance of the simulation results with the theoretical calculations

(GS energy and chirality) as well as the experimental observations, we can deduce the validity of

our DFT estimates for the exchange interactions and single ion anisotropy constants.

TABLE 3.7. Size effects on the GS configuration and the phase transition in CuCrO2.

Size N U(Tf )/kB (K) κ(Tf ) ~q = (h, k, 0) TN ± 0.5 (K)

30× 30× 3 8 100 −109.329 0.999 (0.333, 0.333, 0) 27.0

60× 60× 3 32 400 −109.753 0.995 (0.333, 0.317, 0) 27.5

90× 90× 3 72 900 −109.856 0.995 (0.322, 0.322, 0) 28.5

90× 90× 2 48 600 −109.868 0.995 (0.322, 0.322, 0) 28.5

90× 90× 1 24 300 −109.790 0.995 (0.322, 0.322, 0) 28.0
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3.2.1.2 Ferroelectric properties

To study the ferroelectric properties in CuCrO2, we apply the extended inverse DM model given

by Eq.(1.53). As discussed in Sec. 1.3, only the second term of Eq.(1.53) (~p2) contributes to

the ferroelectric polarization in the proper-screw configuration. Thus, we simulate the thermal

variation of the projection of ~p2 along the [110] direction (P[110]) to describe the ferroelectric

nature of CuCrO2. To measure a spontaneous ferroelectric polarization, we apply a poling

electric field Ex = ±450 kV/m along the [110] direction during the first 3× 103 MCS (nelec)

to fix a unique helicity of all atomic planes, and then we turn it off to let the system relax to its

equilibrium position during the remaining 2× 103 MCS of the equilibration time (n0). Fig. 3.8

shows the thermal variation of P[110] which starts to emerge at TN . Also it can be seen that by

switching the direction of the poling electric field, P[110] is reversed. This confirms the electric

control of spin helicity discussed in Ref. [12]. Further insight into the ferroelectric nature of

our system may be gained through the study of the P -E hysteresis loops. The simulations of

the hysteresis loops are done using the time step quantified MC method with the Metropolis

algorithm as explained in Sec. 2.2.2.2. Before proceeding in explaining the ferroelectricity in

our system, it is very important to investigate the effect of the physical time ∆t corresponding

to 1 MCS. To do so, we simulate the P -E hysteresis loops at T = 5 K for various values of R.

As usual, the system is cooled from Ti = 35 K to T = Tloop = 5 K under a poling electric field

Epoling = 300 kV/m applied during the first 3 × 103 MCS of n0 to choose a unique helicity

FIG. 3.8. Temperature dependence of the ferroelectric polarization simulated along the
[110] direction with the set of d = 0.003 in CuCrO2.
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FIG. 3.9. P -E hysteresis loops simulated at T = 5 K with the set of d = 0.003 for
different values of R in CuCrO2.

for all the planes. At T = Tloop, we apply Epoling at every MCS and we start decreasing E

progressively by a constant field step ∆E = 10 kV/m to reach E = −Epoling and then we

increase this field by the same field step ∆E to reach againEpoling. At each field step, we perform

5.5× 104 MCS with discarding n0 = 5× 103 for equilibrium considerations. Fig. 3.9 shows the

hysteresis loops simulated at T = 5 K for various values of R. It shows that the reversal field

of P[110] decreases as R increases. Table 3.8 shows the values of the simulated reversal electric

field (Er) for P[110] for various R with their corresponding measuring time associated to 1 MCS

calculated according to Eq. (2.11). As expected, the reversal field increases as the measuring

time decreases, i.e., R decreases. This is because the probability to rotate the spins at each field

step decreases with the decrease of the measuring time. However, decreasing R too much will

make the algorithm inefficient. We find that the loop that corresponds to R = 0.09 shows an

electric coercive field Er ≈ 5.3 × 10−2 MV/m very close to that measured experimentally

(Er = 5.1 × 10−2 MV/m [91]). Therefore we fix R = 0.09 in our simulations for further

TABLE 3.8. The effect of varying R on the reversal electric field of P[110] simulated at
T = 5 K.

R ∆t (s) Er (MV/m) at T = 5 K

0.22 1.12× 10−14 2.7× 10−2

0.10 2.29× 10−15 4.6× 10−2

0.09 1.72× 10−15 5.3× 10−2

0.07 1.15× 10−15 6.1× 10−2
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FIG. 3.10. P -E hysteresis loops simulated with the set of d = 0.003 at different
temperatures in CuCrO2.

investigations. It is worth noting that the reversal of P[110] results from the reversal of the helicity

of each ab atomic plane.

After that we simulate the P -E hysteresis loops at different temperatures (Fig. 3.10) for a better

understanding of the induced ferroelectricity in CuCrO2. P[110] shows a linear E dependence

without hysteresis above TN because the system is in the paraelectric phase, while clear hystereses

are seen for temperatures below TN . Also one can see that the reversal electric field as well as

the saturation electric field are roughly independent of the temperature below TN .

3.2.2 Study under applied magnetic fields

3.2.2.1 Antiferromagnetic nature of CuCrO2

Here we investigate the M -B hysteresis loops for B applied along the [110] and [11̄0] directions.

As usual, we start our simulations from initial random spin configurations at Ti = 35 K. We then

cool down to Tloop = 5 K with a constant temperature step ∆T = 1 K. At T = Tloop, we apply

a magnetic field B = 5 T and we start decreasing B with a constant field step ∆B = 0.5 T

to reach B = −5 T. At B = −5 T, we then increase B by the same field step to reach again

B = 5 T. At each field step we apply nMCS = 5.5 × 104 with discarding n0 = 5 × 103

for equilibrium considerations. Note that each hysteresis is an average of 10 different random

configurations. It can be seen that the magnetization measured along the applied magnetic field

shows a linear dependence without hysteresis whatever the direction of B. This confirms the
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FIG. 3.11. Magnetic field dependence of the magnetization simulated with the set of
d = 0.003 at T = 5 K in CuCrO2.

antiferromagnetic nature of CuCrO2 and is consistent with the magnetic measurements done in

Refs. [67, 91].

3.2.2.2 Curie-Weiss behavior

We start this set of simulations from random spin configurations at Ti = 300 K and we then

cool down to Tf = 2 K with a constant temperature step ∆T = 2 K. Thus each curve of

these simulations is composed of nTemp = 150 temperatures. Then it is impossible to use the

same size as before (90 × 90 × 3) because we cannot exceed tsim = 300 hours∗. Therefore

we need to decrease either nMCS or N . And because decreasing nMCS would increase the

statistical errors, we then choose to decrease N through decreasing Lz preserving the same

L. Magnetic properties under 0.3 T applied along the [110] direction were simulated between

300 K and 2 K to estimate the Curie-Weiss temperature θCW of CuCrO2. The simulation

parameters are given in Table 3.9. Fig. 3.12 shows the variation of the magnetization and inverse

susceptibility measured along the applied magnetic field. It can be seen that 1/χ obeys well

∗The maximum simulation time available at CRIANN is 300 hours.

TABLE 3.9. MC simulation parameters used in the study of the magnetic properties of
CuCrO2 under 0.3 T magnetic field.

Simulation parameters
Size N Ti (K) ∆T (K) Tf (K) nTemp nconf nMCS n0

90× 90× 1 24 300 300 2 2 150 28 1.05× 105 5× 103
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FIG. 3.12. Temperature dependence of the magnetization per spin and the inverse
susceptibility simulated with the set of d = 0.003 under B = 0.3 T in CuCrO2.

the Curie-Weiss law for antiferromagnets (Eq. 1.38) at high temperatures. The extrapolation of

the high temperature part of the 1/χ plot gives |θCW | ≈ 173.92 K which is very close to that

measured experimentally (θCW = 160 − 170 K) [52, 119]. However, by applying Eq. (1.48)

with replacing J1 by (J ′1 + 2J1)/3 and S(S + 1) by S2 (because we treat the spins classically)

we get |θCW | = 140.77 K which is not far from both the simulated and the experimental values

of θCW .

The 1/χ curve starts to deviate from the linear behavior at about 100 K. In order to precise the

origin of this deviation we calculated the temperature dependence of the spin-spin correlation

function according to Eq. (2.16) along the [100] direction. As shown in Fig. 3.13, short-range

FIG. 3.13. Temperature dependence of the spin-spin correlation functions simulated
with the set of d = 0.003 along the [100] direction in CuCrO2.
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antiferromagnetic correlations start to develop below ∼ 100 K, which leads to the deviation from

the Curie-Weiss law seen in Fig. 3.12. Furthermore, these correlation functions exhibit inflection

points close to TN estimated from the specific heat curve (Fig. 3.5). Besides, an anomaly in the

magnetization curve (Fig. 3.12) appears at 30 ± 2 K consistent with our estimate of TN from

the specific heat curve (Fig. 3.5). The ratio f = |θCW | /TN ≈ 6.1 (� 1) confirms the frustrated

nature of CuCrO2 as discussed in Sec. 1.1.5.

3.2.3 Domain stability under the effect of applied magnetic fields

In this part of our study, we are going to investigate the effect of applied magnetic fields ( ~B)

on the stability of magnetic domains in CuCrO2. As explained in Sec. 1.2.3, the nearly 120◦

spin configuration is triply degenerate, and those three magnetic domains coexist in the system

with three corresponding spiral-planes making an angle about 120◦ between each others. In

the absence of any external field, these three magnetic domains, denoted by the A, B and C,

are equiprobable to exist with the same volume and the same energy. It was supposed that

an applied magnetic field in the ab plane can stabilize one kind of the domains more than the

others depending on the direction of the applied magnetic field [13, 65, 91]. Accordingly, it

was predicted that when ~B is applied along the [110] direction, the domain with the spiral

plane parallel to the (110) plane is stabilized, i.e., the A-domain. Such prediction of domains

rearrangement can explain the increase of the ferroelectric polarization measured along the [110]

direction reported in Ref. [65]. On the other hand, it was supposed that when ~B is applied

along the [11̄0] direction, the A-domain will become less stable and that at a certain value of

~B[11̄0] (Bflop ≈ 5.3 T), domain A will flip to become perpendicular to the direction ~B[11̄0], i.e.,

D-domain as illustrated in Fig. 1.23.

Therefore, to discuss all the above mentioned predictions quantitatively, we need to consider

the domain configuration of our spin structure (Fig. 1.21). However, it is still difficult to model

such spin structure in the presence of lattice distortion. This is because we need to have the three

types of domains and thus three distorted directions corresponding to three hard axes in the same

simulation which is very complicated to implement in our model. However, instead of taking the

three domains at the same time and study the effect of applying ~B along the [110] direction for

e.g., we will deal only with the A-domain and study its stability under the effect of changing the

direction of ~B as shown in Fig. 3.14. Based on this model, we apply ~B along the [110] and the

[11̄0] directions to study the stability of A-domain under ~B[110] and ~B[11̄0], respectively. After

that we apply ~B along the [010] direction to study the stability ofA-domain under this field which
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FIG. 3.14. Schematic representation of the three magnetic domains A, B and C under
an applied magnetic field: along the [110] direction (a), and the magnetic field directions

with respect to the A domain in our simulations (b).

is equivalent to the stability ofB or C-domains under ~B[110] (Fig. 3.14b). The simulations pursue

the following procedure: we take the system from a random spin configuration at Ti = 35 K and

we slowly cool down to Tf = 0.01 K according to Ti+1 = αTi with α = 0.95 under a field of

20 T. With this cooling process, the system stays longer time at low temperatures than at high

ones providing a better accuracy on the GS energy but with longer simulation time. Because

in this study we are not interested in studying the phase transition in the system, we are able to

decrease nMCS than that used in the previous investigations. The parameters of the simulations

are given in Table 3.10.

The thermal variation of the internal energy of the A-domain under the effect of an applied

magnetic field along the [110], [010] and [11̄0] directions is shown in Fig. 3.15. Despite of the

small difference in the energies, but it still can be seen that the internal energy of the A-domain

under the effect of B[110] is slightly lower than that under the effect of B[010]. Thus, in terms

of three domains interpretations, we could say that the A-domain is more stable than B and

C-domains under the effect of B[110] as predicted in Refs. [13, 65, 91]. On the other hand, it

can be also seen that the internal energy of the A-domain under the effect of B[11̄0] is slightly

higher than that under the effect of B[110] which could give an evidence of the possibility of the

destabilization of A-domain under the effect of the application of ~B along the [11̄0] as assumed

TABLE 3.10. Simulation parameters used in the study of domain stability under the
effect of magnetic fields in CuCrO2.

Simulation parameters
Size N Ti (K) α Tf (K) nTemp nconf nMCS n0

90× 90× 1 24 300 35 0.95 0.01 159 28 5.5× 104 5× 103
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FIG. 3.15. Thermal variation of the internal energy per spin of the A-domain under an
applied magnetic field along the [110], [010] and [11̄0] directions.

in Refs. [13, 65, 91]. Table 3.11 shows the values of the internal energy and the chirality of the

A-domain at Tf = 0.01 K simulated under the effect of the various directions of the applied

magnetic field. It can be seen that κ(Tf ) doesn’t respond to the direction of the applied field. It

preserves the same value whatever is the direction of ~B. This shows that the magnetic field may

stabilize one type of domains than the others without altering the magnetic configuration. Such

magnetic field effect on the magnetic domains and consequently on the measured ferroelectric

polarization measured along the [110] direction makes CuCrO2 a rare example in terms of the

magnetoelectric tunability by both magnetic and electric fields.

TABLE 3.11. Domain stability under the effect of B = 20 T in CuCrO2.

B = 0 B[110] B[010] B[11̄0]

UGS/kB (K) −109.769 −111.001 −110.993 −110.987

κ(Tf ) 0.995 0.991 0.991 0.991
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Effect of Ga doping in CuCrO2

In this chapter we investigate, by means of MC simulations the effect of magnetic dilution on

the magnetic and ferroelectric properties of CuCrO2. Some of these effects have been studied

experimentally for several series of CuCr1−xMxO2, where M3+ is a non-magnetic cation of

S = 0 (M3+ = Al3+, Ga3+, Sc3+ and Rh3+) [98]. It was shown that the homogeneity of

substitution depends on the dopant M3+. Since both Cr3+ and Ga3+ possess very close radii

(rCr3+ = 61.5 pm and rGa3+ = 62 pm), we choose to study the case of CuCr1−xGaxO2

because it allows us to investigate the effect of pure magnetic dilution (for small Ga fractions)

without steric effect like the other dopants. With our results we try to explain some experimental

predictions and provide better understandings of the magnetoelectric properties of the diluted

CuCrO2.

Because DFT calculations (Appendix A) show no pronounced effect of Ga3+ doping on

the exchange interactions in the system as well as no structural modifications, we safely

replace a certain fraction x of Cr3+ by S = 0 sites randomly through the whole system.

With the set of exchange interactions and single ion anisotropy constants corresponding to

d = 0.003, we simulate the magnetic and ferroelectric properties of CuCr1−xGaxO2 for

x = 0, 0.02, 0.05, 0.1, 0.15, 0.2, and 0.3. Since we showed in chapter 3 that the effect of

J4 is very small and that the system has a quasi-two dimensional behavior, we will perform these

sets of simulations on 2D lattices for time considerations. Note that our MC simulations are

performed with and without applied magnetic fields to get a more clear picture on the diluted

CuCrO2 as discussed below.

73
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4.1 Study without applied magnetic fields

4.1.1 Ground state configuration and phase transition

Typically, we start our simulations from random spin configurations at a high enough temperature

(Ti = 35.01 K) above the transition temperature of the system. We then slowly cool down to

a final temperature Tf = 0.01 K according to Ti+1 = Ti −∆T . We consider a 2D system of

size 90× 90. At each temperature step, we perform nMCS = 1.05× 105 MCS with discarding

the first 5 × 103 MCS for thermal equilibration. Note that our results are averaged over 112

simulations with different random configurations. The parameters of simulations are listed in

Table 4.1.

Fig. 4.1 shows the thermal variation of the internal energy per spin simulated for various fractions

x. It can be seen that the internal energy per spin of the system increases as x increases due to the

loss in the magnetic interactions caused by the introduced defects. In particular, it can be seen

that starting from x = 0.2 the inflection point in the internal energy curve disappears. Fig. 4.2

shows the variation of the internal energy per spin versus x at Tf = 0.01 K where it shows a

linear x-dependence of U(Tf ). To compare the simulated GS configuration with the ICY state,

we calculate EICY in the infinite system of CuCr1−xGaxO2 such as

EICY (kinf ) = −S2(1− x)[2J1cos(2πkinf ) + J ′1cos(4πkinf ) + 2J2cos(6πkinf ) + J2

+ 2J3cos(4πkinf ) + J3cos(8πkinf ) +
1

2
Dz] (4.1)

where kinf = 0.3225 as given in Sec. 2.3. It can be seen that U(Tf ) is below EICY for x 6= 0.

This means that the ICY state presented in the pure CuCrO2 is no more the stable configuration

in CuCr1−xGaxO2. On the other hand, we calculate the parameter F – the degree of magnetic

frustration given in Eq. (1.12) – which shows that the frustration of the GS configuration slightly

decreases with increasing x but remains high in the system as shown in Fig. 4.3.

Then the question arises now is that, what is the nature of these diluted antiferromagnets? To

TABLE 4.1. MC simulation parameters used in the study of phase transition and GS
configuration in CuCr1−xGaxO2.

Simulation parameters
Size N (x = 0) Ti (K) ∆T (K) Tf (K) nTemp nconf nMCS n0

90× 90 8 100 35.01 0.5 0.01 71 112 1.05× 105 5× 103
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FIG. 4.1. Thermal variation of the
internal energy per spin simulated in

CuCr1−xGaxO2.

FIG. 4.2. Variation of the GS energy
per spin compared to EICY as function

of x in CuCr1−xGaxO2.

describe more precisely, we simulate the thermal variation of the specific heat per spin for the

different fractions x (Fig. 4.4). It can be seen that the specific heat peak is rounded and shifts

toward low temperatures with the increase of x up to 0.15. Starting from x = 0.2, no clear peak

can be identified, but rather a broaden peak which suggests a loss in the long range magnetic

ordering in the system. Hence it is very important to calculate the correlation functions for the

various fractions. Fig. 4.5 shows the variation of the spin-spin correlation functions calculated

along the [100] direction at T = 0.01 K according to Eq. (2.16) for each fraction x. It can be

clearly seen that the system preserves its long range ordering up to x = 0.15 and suddenly loses

it at x ≥ 0.2. This accords well with the broadening of the specific heat peak for x ≥ 0.2 shown

in Fig. 4.4. The loss in the long range ordering and hence the disordered spin structures can be

FIG. 4.3. Variation of the degree of magnetic frustration of the GS in CuCr1−xGaxO2.
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FIG. 4.4. Thermal variation of the specific heat per spin simulated in CuCr1−xGaxO2.

seen in Fig. 4.6 and Fig. 4.7. Beside the simulated correlation functions, it is very important to

investigate the size effect on the specific heat peak in order to see whether these diluted systems

still undergo phase transitions or not. For the same simulation parameters given in Table 4.1,

we repeat the same sets of simulation for two different sizes of L = 30 and L = 150 beside the

L = 90. Fig. 4.8 shows the temperature dependence of the specific heat per spin simulated for

each fraction of x. It can be seen that the specific heat peak responds to the size variation till

x = 0.15. Therefore, a long range ordering still exists in these diluted antiferromagnets.

FIG. 4.5. Variation of the spin-spin correlation functions versus the distance simulated
with the set of d = 0.003 along the [100] direction at Tf = 0.01 K in CuCr1−xGaxO2.
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FIG. 4.6. One of the simulated GS spin configurations of CuCr0.8Ga0.2O2.
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FIG. 4.7. One of the simulated GS spin configurations of CuCr0.7Ga0.3O2.
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However at x ≥ 0.2, the specific heat peak doesn’t increase with increasing the size which is

consistent with the loss of the long range ordering seen in Fig. 4.5. Therefore at this stage we can

say that the magnetic configurations for x ≥ 0.2 are disordered (no more long range order). Thus

in the presence of both frustration and disorder in the system (for x ≥ 0.2) — the necessary

ingredients for having a spin glass behavior — one can think about spin-glass-like behavior in

the system and hence try to find some features that are able to describe such a freezing state.

First of all, we can see that the low temperature part of the specific heat curve for x = 0.3

(Fig. 4.8f) varies quite linearly with T unlike that of x = 0.2 (Fig. 4.8e), which is a signature of

a spin-glass-like behavior in diluted magnets [22]. Because the low temperature region of the

specific heat curve in CuCr0.7Ga0.3O2 may reflect a spin-glass-like behavior, and because its

peak is broadened and doesn’t respond to size variation, then the specific heat cannot characterize

the phase transition and consequently the freezing temperature of the system.

On the other hand, it is curious to know where does the disorder of the spins take place. Do the

system still possesses a spiral plane? To answer this question, we simulated the thermal variation

of the spin chirality given in Eq. (2.15) and the components κx, κy and κz of Eq. (2.14) along the

[110], [1̄10] and [001] directions, respectively. It can be seen that at Tf = 0.01 K for x ≤ 0.2,

κy = κz ≈ 0 and κ = κx (Fig. 4.9a–4.9e) which suggests that the spins are still confined within

the yz spiral plane due to the effect of the hard-axis anisotropy. However, when x = 0.3 there

exists a nonzero component of κy and that κx < κ (Fig. 4.9f) which reflects the fact that the

spins are no more confined in the same spiral plane.

To verify our previous interpretations, we calculate the thermal variation of the average of the

absolute value of Sx, Sy and Sz according to

〈|Su|〉T =
1

N(nMCS − n0)

nMCS∑
`=n0+1

(
N∑
i=1

∣∣Siu∣∣
)
`

(4.2)

with u = x, y, z. It can be seen that the 〈|Sx|〉T component falls to zero for x ≤ 0.2 (Fig. 4.10)

which is consistent with disappearance of κy and κz in the same compounds. This confirms that

the spins are located in the yz spiral plane. Thus we can say that the magnetic configuration for

x = 0.2 is disordered (nearly zero correlation) within the yz plane. However at x = 0.3, 〈|Sx|〉T

is now not null which means that the spins go out of the yz plane. This observation is consistent

with the appearance κy component in CuCr0.7Ga0.3O2.

Now we need to characterize the spiral spin ordering temperature for x ≤ 0.2. It can be signaled

at the temperature when κx 6= 0 (x ≤ 0.2) as seen in Fig. 4.9a–4.9e. Since in these cases κ = κx,
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(a) CuCr0.98Ga0.02O2 (b) CuCr0.95Ga0.05O2

(c) CuCr0.9Ga0.1O2 (d) CuCr0.85Ga0.15O2

(e) CuCr0.8Ga0.2O2 (f) CuCr0.7Ga0.3O2

FIG. 4.8. Thermal variation of the specific heat per spin simulated with the set of
d = 0.003 for various x in CuCr1−xGaxO2.

we define the parameter χκ = 〈κ2〉 − 〈κ〉2 according to Ref. [120] to be the chiral susceptibility

which shows a peak at the spiral plane ordering temperature of the system. Fig. 4.11 shows the
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(a) CuCr0.98Ga0.02O2 (b) CuCr0.95Ga0.05O2

(c) CuCr0.9Ga0.1O2 (d) CuCr0.85Ga0.15O2

(e) CuCr0.8Ga0.2O2 (f) CuCr0.7Ga0.3O2

FIG. 4.9. Thermal variation of the spin chirality κ and its corresponding com-
ponents κx,y,z simulated with the set of d = 0.003 for various Ga3+ fractions in

CuCr1−xGaxO2.



Effect of Ga doping in CuCrO2 82

(a) CuCr0.98Ga0.02O2 (b) CuCr0.95Ga0.05O2

(c) CuCr0.9Ga0.1O2 (d) CuCr0.85Ga0.15O2

(e) CuCr0.8Ga0.2O2 (f) CuCr0.7Ga0.3O2

FIG. 4.10. Thermal variation of the average value of the x, y, z components of the spins
simulated with the set of d = 0.003 for various Ga3+ fractions in CuCr1−xGaxO2.
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FIG. 4.11. Thermal variation of the chirality susceptibility χκ shows a peak at the
ordering temperature (left panel), and the variation of the ordering temperature versus x
deduced from χκ and C (right panel) simulated with the set of d = 0.003 for various

Ga3+ fractions in CuCr1−xGaxO2.

thermal variation of χκ for x ≤ 0.2 where we can see a clear peak at T ∗ when the spiral ordering

starts to take place. T ∗ shows a linear variation with x (right panel of Fig. 4.11) which is roughly

coherent with TN deduced from the specific heat curves of Fig. 4.4 up to x = 0.02. At x ≥ 0.05,

TN > T ∗ which perhaps can be referred either to the presence of an antiferromagnetic state

before spiral ordering or the presence of disordered states (for x = 0.2) and thus TN deduced

from C has no meaning. This needs the magnetization measurements to be validated.

Finally, we can say that CuCr1−xGaxO2 is antiferromagnetic when x ≤ 0.15, disordered within

the same spiral plane (yz plane) at x = 0.2 and shows a spin-glass-like behavior for x = 0.3.

4.1.2 Ferroelectric properties

As we show in the previous section, CuCr1−xGaxO2 preserves its spiral nature up to x = 0.2.

Also since short range correlations still exist in the system, we can still apply the extended

inverse DM model given by Eq.(1.53) to describe the emergence of spontaneous ferroelectricity

in CuCr1−xGaxO2. For the same simulation parameters given in Table 4.1, we simulate the

thermal variation of P[110] for the system when x ≤ 0.2. Because here we perform our simulations

on 2D lattices, it is not important to apply a poling electric field since the lattice will have a

unique helicity. But since we average our results over many configurations, we then choose to

average the absolute value of P[110] to avoid sum cancellations. Fig. 4.12 shows the temperature

profile of P[110] simulated for each fraction x. It can be seen that P[110] decreases as x increases

in the system. This decrease is caused by the loss of magnetic bonds and the destabilization
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FIG. 4.12. Thermal variation of
the ferroelectric polarization simulated
along the [110] direction with the set of

d = 0.003 in CuCr1−xGaxO2.

FIG. 4.13. Variation of P[110] ver-
sus Ga3+ fraction in comparison with
PICY calculated in the ICY state in

CuCr1−xGaxO2.

of the ICY state presented in the pure system. This can be seen clearly through the variation

of P[110](Tf ) versus x in comparison to the theoretical value of P[110] in the infinite system as

shown in Fig. 4.13. Denote by PICY , P[110] calculated in the ICY state of the infinite system

according to

PICY = S2(1− x) |sin(4πkinf )| (4.3)

with kinf = 0.3225 is the value of propagation vector calculated in the infinite lattice as given

in Sec. 2.3. Thus PICY represents the polarization in CuCr1−xGaxO2 assuming that magnetic

dilution doesn’t perturb the ICY state. However, we can clearly see that P[110] decreases linearly

with x but it is well below PICY when x 6= 0. This reflects the fact that magnetic dilution

destabilizes the ICY state of CuCrO2 as previously seen.

Not only a decrease in the polarization is obtained, but also a decrease in the temperature at

which ferroelectricity starts to emerge. Such temperature is directly related to the spiral plane

ordering temperature T ∗. Thus to confirm the values of T ∗ extracted from χκ, we calculate the

electric susceptibility χe — the derivative of P[110] with respect to an applied electric field —

through the following relation

χe =

(
∂P[110]

∂E

)
E=0

=
〈P 2

[110]〉T − 〈P[110]〉2T
NxkBT 2

(4.4)

where Nx is the number of magnetic bonds counted along the [110] direction. The thermal

variation of χe for each x ≤ 0.2, given in Fig. 4.14, shows a clear peak at T = T ∗ extracted from

χκ. This validates the value of the spiral plane ordering temperature T ∗ which is comparable
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FIG. 4.14. Thermal variation of the electric susceptibility simulated with the set of
d = 0.003 for various x in CuCr1−xGaxO2.

to TN extracted from the C-curves for small fractions (x ≤ 0.02) while it diverges from it for

larger fractions. To characterize more precisely the ferroelectric nature in CuCr1−xGaxO2, we

simulated the P -E hysteresis loops at T = 5 K for the various fractions of Ga3+ using the time

step quantified MC method with the Metropolis algorithm for R = 0.09 given in Fig. 4.15. It can

be seen that the saturation polarization decreases in the system as x increases which is normal

due to the decrease in the number of magnetic bonds counted along the [110] direction and the

induced disorder. Also, we can say that CuCr1−xGaxO2 for x ≤ 0.3 still possesses ferroelectric

FIG. 4.15. P -E hysteresis loops simulated with the set of d = 0.003 along the [100]
direction at T = 5 K for various fractions x in CuCr1−xGaxO2.
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properties even when it loses its magnetic properties.

4.2 Study under a small applied magnetic field

In order to know the magnetic nature of each composition of CuCr1−xGaxO2 we investigate

its magnetic properties under a small applied magnetic field. We start these sets of simulations

from random spin configurations at Ti = 300 K and then we cool down to Tf = 2 K with a

constant temperature step ∆T = 2 K. At each temperature we perform nMCS = 1.05 × 105

MCS with discarding n0 = 5× 103 MCS for thermal equilibration. The results are averaged over

112 different simulations with different random number sequences. The simulation parameters

are given in Table 4.2. Magnetic properties under 0.3 T applied along the [110] directions were

simulated between 300 K and 2 K to measure the magnetization per spin for each composition

of CuCr1−xGaxO2 and to estimate their Curie-Weiss temperatures θCW . Fig. 4.16 shows the

thermal variation of the magnetization per spin simulated for each fraction x. It can be seen

that the high temperature region of M for all fractions do well obey the Curie-Weiss law and

doesn’t show significant x dependence, while the low temperature part does well depend on x

TABLE 4.2. MC simulation parameters used in the study of the magnetic properties of
CuCr1−xGaxO2 under 0.3 T magnetic field.

Simulation parameters
Size N (x = 0) Ti (K) ∆T (K) Tf (K) nTemp nconf nMCS n0

90× 90 8 100 300 2 2 150 112 1.05× 105 5× 103

FIG. 4.16. Thermal variation of the magnetization per spin simulated with the set of
d = 0.003 under B = 0.3 T magnetic field for various fractions x in CuCr1−xGaxO2.
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FIG. 4.17. Variation of the Néel temperature extracted from the simulated magnetiza-
tion and specific heat curves from experimental magnetic susceptibility measurements

as function of x ≤ 0.15 in CuCr1−xGaxO2.

and more perturbed by statistical fluctuations. For x ≤ 0.15, the magnetization curves possess

a cusp consistent with the peak seen at the specifc heat curves as shown in Fig. 4.17. Below

these cusps, M slightly decreases with temperature. This suggests that CuCr1−xGaxO2 still

undergoes a phase transition to an antiferromagnetic state which is in agreement with the presence

of long range order for x ≤ 0.15 (Fig 4.5). Particularly for x = 0.15, we can say that the system

undergoes a phase transition to an antiferromagnetic state before the spiral plane ordering takes

place (T ∗ < TN Fig. 4.11). Our observations for x ≤ 0.15 are consistent with the experimental

results [98] in terms of the decrease of TN as x increases without losing the antiferromagnetic

nature of the system (Fig. 4.17). At x = 0.2, the small kink seen in the low temperature part of

the M curve doesn’t suggest any kind of a phase transition (but rather a statistical fluctuation)

because its corresponding specific heat peak is broadened and doesn’t respond to the size variation

and that the long range order is lost at this fraction (Fig 4.5). For x = 0.3, the magnetization

continuously increases under the effect of B as T decreases and doesn’t show any cusp as the

other compositions which confirms that a phase transition to an antiferromagnetic state does no

more exist at this fraction. Such observation beside what is seen previously in terms of the loss in

the long range ordering (disordered state), frustration and the quite linear behavior of the low

temperature part of the specific heat curve (Fig. 4.8f) suggests that CuCr0.7Ga0.3O2 possesses a

spin-glass-like behavior.

The 1/χ plots of CuCr1−xGaxO2 for the various fractions x are shown in Fig. 4.18. It can

be seen that the 1/χ curves for all compositions do well obey the Curie-Weiss law at high
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FIG. 4.18. Thermal variation of the inverse susceptibility per spin simulated with
the set of d = 0.003 under B = 0.3 T magnetic field for various fractions x in

CuCr1−xGaxO2.

temperatures. The extracted characteristic properties of the systems are shown in Fig. 4.19.

We find that the Curie constant C per atom linearly decreases with increasing x (left panel of

Fig. 4.19) which is comparable to the theoretical calculations of C. Such decrease is expected

due to the decrease in the number of magnetic atoms per unit volume in the compositions. The

theoretical expression of the Curie constant per atom is given as

Ctheo = (1− x)

(
3µ0µ

2
B

kB

)
(4.5)

FIG. 4.19. Variation of the simulated Curie constant compared to the theoretical one
(left) and the simulated Curie-Weiss temperature in comparison with the experimental

one (right) as function of x in CuCr1−xGaxO2.
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On the other hand, the extrapolation of the high temperature parts of the 1/χ curves gives us

the Curie-Weiss temperature θCW of each composition. It can be seen that θCW increases with

the increase of x in the system due to the effect of magnetic dilution which is comparable to the

experimental ones [98] as shown in the right panel of Fig. 4.19.

4.3 Magnetic history in CuCr1−xGaxO2: d.c. ZFC−FC

measurements

In this part of the work we investigate the magnetic history dependence for the various fractions of

Ga3+ in CuCr1−xGaxO2. As usual, we start our simulations from random spin configurations at

Ti = 35.01 K. The system is then cooled down to Tf = 0.01 K with a constant temperature step

∆T = 1 K. Now at T = Tf , we apply a magnetic field B = 100 Oe and we then start heating

the system with a constant temperature step ∆T = 0.5 K to reach T = 35.01 K. During the

heating process, the ZFC magnetic measurements are collected. Now at T = 35.01 K, we start

cooling the system again to T = Tf with the same temperature step and under the same magnetic

field. During the cooling process, the FC magnetic measurements are collected. The simulation

parameters are given in Table 4.3. Note that during the first cooling where we don’t make any

magnetic measurements, we just use nMCS = 2.5 × 104 MCS with discarding n0 = 5 × 103

MCS for thermal equilibration.

It can be seen that the magnetization is reversible for x ≤ 0.05 and thus it doesn’t depend on

the magnetic history of the system as shown in Fig. 4.20. This is because the system is long

range ordered at these fractions as proved by the correlation functions given in Fig. 4.5. Also

we previously said that the system preserves its antiferromagnetic nature up to x = 0.15. Then

for x = 0.1 and x = 0.15, the long range magnetic ordering persists in the system with a small

decrease from that of x ≤ 0.05. This small decrease comes from the presence of some disorder

in the system introduced by the defects.

TABLE 4.3. MC simulation parameters used in the ZFC-FC study of the magnetic
history dependence in CuCr1−xGaxO2 studied under B = 100 Oe magnetic field.

Simulation parameters
Size N (x = 0) Ti (K) ∆T (K) Tf (K) nTemp nconf nMCS n0

90× 90 8 100 35.01 0.5 0.01 141 280 8.05× 105 5× 103
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FIG. 4.20. d.c. ZFC-FC magnetization temperature dependence simulated under
B = 100 Oe for each fraction x of Ga3+ in CuCr1−xGaxO2.
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Such disorder increases the number of metastable states at low temperatures resulting in the

irreversibility of the ZFC-FC magnetization measurements below T ∗ and thus a small magnetic

history dependence exists as shown in Fig. 4.20. For x = 0.2, it is well known that the system is

disordered (loss of long range ordering) and therefore the magnetic history dependence of the

magnetization measurements seen in Fig. 4.20 is expected. However for x = 0.3, we have seen

many features that suggest the presence of a spin-glass-like behavior in the system (frustration,

disorder, loss of long range ordering, broadening of the specific heat peak, linear behavior of

the low temperature part of the specific heat curve...). In addition, we can see a severe magnetic

history dependence of the magnetization where the ZFC magnetization starts near zero and

increases under the FC process. The temperature where the irreversibility takes place may give

us an idea about the freezing temperature of the system which is around TSG ≈ 7.5 K. Further

investigations such as the a.c. ZFC-FC meaurements are necessary to characterize well the

freezing temperature of CuCr0.7Ga0.3O2.

At the end of this work, we can say that if one aims to benefit from the good performance of the

diluted semiconductor CuCr1−xGaxO2 with preserving its magnetic and ferroelectric properties,

Ga3+ fraction should not exceed 0.15 otherwise the system is turned to become disordered with

the possibilty of the appearance of a spin-glass-like behavior at higher fractions of Ga3+.





Conclusions and perspectives

The aim of this thesis was to study the magnetoelectric properties of the multiferroic CuCrO2

and the diluted CuCr1−xGaxO2 (0 ≤ x ≤ 0.3) by means of Monte Carlo simulations. By

means of ab initio calculations∗, we have estimated complete sets of exchange interactions and

single ion anisotropy constants in the non-distorted and distorted crystal structures of CuCrO2.

We found that lattice distortion is the responsible of the incommensurate spin configuration

and that it induces a weak in-plane hard-axis anisotropy along the distorted direction. We

confirm that the CuCrO2 has an incommensurate spin configuration with a propagation vector

~q = (0.322, 0.322, 0) pointing along the [110] direction in agreement with the experimental

spin configuration of ~q = (0.329, 0.329, 0). Also we showed that CuCrO2 possesses a Néel

temperature TN ≈ 28.5 K and a Curie-Weiss temperature |θCW | ≈ 173.92 K which are in

a very good agreement with the experimental ones. We have also simulated the spontaneous

ferroelectric polarization which can be described through the extended inverse DM model. The

P -E hysteresis loop simulated at T = 5 K has an electric coercive fieldEr = 5.3×10−2 MV/m

consistent with that measured experimentally. Also our simulated P -E hysteresis loops at various

temperatures confirm the electric control of spin helicity as reported experimentally.

On the other hand, DFT calculations showed that magnetic dilution by Ga3+ cations doesn’t

significantly affect the exchange interactions presented in the pure CuCrO2 due to the close

radii of Cr3+ and Ga3+. This allowed us to investigate the effect of pure magnetic dilution

without structural deformations. We found that CuCr1−xGaxO2 (x ≤ 0.15) still possess

antiferromagnetic ordering where TN decreases as the fraction of Ga3+ increases in the system,

while it turns to become disordered states for x ≥ 0.2. We also found that Ga3+ substitution

destabilizes the ICY state presented in the pure system. The spins in CuCr1−xGaxO2 for x ≤ 0.2

lie in a unique spiral plane while that for x = 0.3 go out of the spiral plane and randomly oriented

in all directions. Spin-glass-like behavior was expected for x = 0.3 due to the loss in the

∗Done by Yaroslav Kvashnin at the ”Department of Physics and Astronomy, Division of Materials
Theory, Uppsala University, Sweden”.
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long range magnetic ordering in the system, the broadening and the linear behavior of the low

temperature part of the specific heat curve and the presence of the main two ingredients of spin

glasses: magnetic disorder and frustration. Also severe magnetic history dependence was seen in

the magnetization measurements of x = 0.3 below TSG ≈ 7.5 K.

Further investigations are very important to have a complete and clear picture on the magneto-

electric properties of the multiferroic CuCrO2. DM and biquadratic exchange interactions can

be taken into account. Also the study of the high magnetic field phase diagram of CuCrO2 is

very important to understand the magnetization as well as exchange interaction dependences on

high magnetic fields.

Within the study of magnetic dilution, it is very important to improve the ZFC-FC investigations

in CuCr1−xGaxO2 and to model the a.c. magnetic susceptibility to characterize the spin glass

transition temperature TSG. Also it is important to study the effect of magnetic dilution by Al3+

and compare it with that of Ga3+.

On the other hand, the effect of Ni3+ substitution in the Cr3+ sites was studied experimentally.

It was found that Ni3+ enhances both ferroelectric and ferromagnetic properties in CuCrO2. So

MC investigations of CuCr1−xNixO2 with the help of DFT calculations would be very interest-

ing to confirm experimental observations.

The subject is still open for many other MC investigations such as the effect of Mg2+ hole doping

in the Cr3+ sites, Ag+ doping in the Cu+ sites . . . on the magnetoelectric properties of CuCrO2

with the help of DFT calculations.
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DFT calculations in CuCr1−xGaxO2

These calculations were done by Y. O. Kvashnin at the ”Department of Physics and Astronomy,

Division of Materials Theory, Uppsala University, Sweden”.

This part of the work aims to study the effect of replacing some Cr3+ ions by Ga3+ on the ex-

change interactions presented in CuCr1−xGaxO2 using the DFT calculations. DFT calculations

were performed using full-potential linear muffin-tin orbital (FP-LMTO) method as implemented

in RSPt [121] software. The computational details are the same as those presented in Sec. 3.1.1.

The Hubbard-U correction was applied on Cr 3d states. The U and JH values were set to 2.3

and 0.96 eV, respectively. The FLL double-counting correction has been adopted. We construct a

3× 3× 1 super-cell of CuCrO2, which accommodates 9 formula units. Having 9 Cr atoms, we

substitute one, two or three Cr atoms by Ga ones, which corresponds to the following dopant

fractions: x = 1/9, x = 2/9, x = 1/3. Replacing some Cr sites with non-magnetic elements can

affect the magnetic properties in two ways. First, it can cause a renormalization of the remaining

Cr-Cr exchange couplings. Second, if the impurity ion has different effective radius compared to

the host one, it can also distort the lattice, thus changing the positions of oxygen atoms. The latter

can influence the crystal field splitting and other electronic structural properties of the adjacent

Cr ions. In order to be able to disentangle the two mentioned contributions, we have considered

two crystal structures:

1. Experimental crystal structure is taken from Ref. [111]. Here we just substitute certain Cr

atoms with Ga ones. The effect of the lattice relaxation is not taken into account.

2. Here we make a full ionic and lattice relaxation of the undoped CuCrO2 structure. For this

purpose, we use another DFT code (VASP) and adopt a GGA functional, which usually
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provides lattice constant values closer to experimental ones. Then, within the relaxed

structure, we substitute one Cr atom by a Ga one (corresponding to x = 1/9) and relax

the structure again. Note that experimental lattice constants might not correspond to the

equilibrium structure within DFT calculations and thus it can contain forces acting on the

atoms. Thus, in order to properly simulate the structural changes due to doping, one first

needs to relax the structure of the parent compound.

To calculate the new values of the exchange interactions, we consider the Hamiltonian of Eq. 3.1

in a FM state. For simplicity we make our calculations in the non-distorted crystal structure.

As a first step, we start with the first approach of the un-relaxed experimental crystal structure.

The considered structural models are shown in Fig. A.1. The minimal concentration x = 1/9 is

represented by a single configuration (I). For higher fractions, we construct several inequivalent

models to simulate possible distributions of the impurity sites. For all considered configurations,

the magnetic moments of Cr were close (within 0.02 µB/Cr) to the value obtained for an undoped

system, which was about 2.62 µB/Cr. The calculated mean values of Jij’s as well as the mean

deviations for various Ga fractions are given in Table A.1. It can be seen that the mean values

of J2, J3 and J4 interactions are relatively more affected by the doping as compared to that of

J1. This is because the superexchange paths between Cr ions are not affected by Ga doping.

Ga-doped system seems to remain insulating and thus there are no other mechanisms (e.g.

FIG. A.1. Considered structural configurations. Cr (Ga) atoms are represented by blue
(green) spheres. Configuration I corresponds to x = 1/9; II, III correspond to x = 2/9;

and IV,V,VI correspond to x = 1/3.
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TABLE A.1. Statistical averages (〈Jij〉) and standard deviations from the mean (σ)
of the exchange interactions for various considered configurations in CuCr1−xGaxO2.

The values are given in meV.

Configuration 〈J1〉 ± σ1 〈J2〉 ± σ2 〈J3〉 ± σ3 〈J4〉 ± σ4

I (x = 1/9) −2.708± 0.052 −0.007± 0.169 −0.340± 0.054 −0.068± 0.005

II (x = 2/9) −2.680± 0.078 −0.204± 0.246 −0.354± 0.068 −0.054± 0.009

III (x = 2/9) −2.708± 0.272 −0.245± 0.185 −0.367± 0.068 −0.054± 0.009

IV (x = 1/3) −2.653± 0.059 −0.367± 0.273 −0.381± 0.054 −0.054± 0.014

V (x = 1/3) −2.599± 0.078 −0.259± 0.182 −0.367± 0.054 −0.054± 0.011

VI (x = 1/3) −2.694± 0.083 −0.286± 0.411 −0.408± 0.054 −0.041± 0.012

RKKY), which might have potential contributions. And because the most dominant exchange

interaction in the system is J1 and the others are very small compared to it, we will neglect

these small fluctuations around the mean values of Jij’s in our MC simulations. It is important

to note that these calculations were repeated for the relaxed crystal structure where we found

roughly the same results with no pronounced effects of the Ga ions on the exchange interactions

of CuCr1−xGaxO2 (the results are not shown here).
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Abstract
Transition metal oxides are widely used due to their interesting fundamental properties
and important applications. In particular, CuCrO2 is of special interest because it enters
the multiferroic state in zero magnetic fields. In this thesis we model the magnetoelectric
properties of CuCrO2 using Monte Carlo simulations with the help of ab initio calcula-
tions. We also investigate the effect of Ga doping on the magnetoelectric properties of
CuCr1−xGaxO2 (0 ≤ x ≤ 0.3). Our results are well comparable to the experimental
observations.
Keywords: Multiferroic, proper-screw, spiral ordering, Monte Carlo simulations, spin
glass.

Résumé
Les oxydes de métaux de transition sont largement utilisés en raison de leurs propriétés
fondamentales intéressantes et de leurs applications importantes. En particulier, CuCrO2

est d’un intérêt particulier parce qu’il possède un état multiferroı̈que en absence de champ
magnétique. Dans cette thèse, nous modélisons les propriétés magnéto-électriques de
CuCrO2 par simulations Monte Carlo basées sur des paramètres magnétiques déterminés
par calculs ab initio. Nous étudions également l’effet du dopage du Ga sur les propriétés
magnéto-électriques du composé CuCr1−xGaxO2 (0 ≤ x ≤ 0.3). Nos résultats sont
qualitativement en accord avec les observations expérimentales.
Mots clés: Multiferroı̈que, ordre hélimagnétique, simulations Monte Carlo, verre de spin.
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