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Résumé de la Thése (English version below)

Dans cette thése nous explorons les aspects de la gravité d’Einstein qui sont propres
a la dimension quatre. L’une des propriétés surprenantes liées a cette dimension est la
possibilité de formuler la gravité de maniére 'Chirale’. Dans ce type de reformulations,
typiquement, la métrique perd son role centrale. La correspondance entre espace-temps
et espace des twisteurs est un autre aspect propre a la dimension quatre. Ces formula-
tions, Chirale et Twistorielle, semblent trés différentes. Dans la premiére partie de cette
thése nous montrons qu’elles sont en fait intimement liées: en particulier nous proposons
une nouvelle preuve du ‘théoréme du graviton non-linéaire’, due & Penrose, dont le coeur
est la géométrie des SU(2)-connections (plutdt qu’une métrique). Dans la seconde partie
de cette thése nous montrons que la gravité en trois et quatre dimensions est liée a des
théories d’une nature complétement différentes en dimension six et sept. Ces théories,
due & Hitchin, sont des théories de trois-formes différentielles invariantes sous difféomor-
phismes. En dimensions sept, nous rencontrons seulement un succés partiel puisque la
théorie 4D qui en résulte est une version modifiée de la gravité. Cependant nous prou-
vons au passage que les solutions d’une déformation particuliére de la gravité ont, en 7D,
linterprétation de variétés avec holonomies G2. Par contre, en réduisant la théorie de
six a trois dimensions nous obtenons précisément la gravité 3D. Nous présentons aussi
de nouvelles fonctionnelles pour les formes différentielles en six dimensions. Toutes sont
invariantes sous difféomorphismes et deux d’entre elles sont topologiques

Summary of the Thesis

In this thesis we take Einstein theory in dimension four seriously, and explore the
special aspects of gravity in this number of dimension. Among the many surprising
features in dimension four, one of them is the possibility of ‘Chiral formulations of gravity’
- they are surprising as they typically do not rely on a metric. Another is the existence of
the Twistor correspondence. The Chiral and Twistor formulations might seems different in
nature. In the first part of this thesis we demonstrate that they are in fact closely related.
In particular we give a new proof for Penrose’s ‘non-linear graviton theorem’ that relies
on the geometry of SU(2)-connections only (rather than on metric). In the second part of
this thesis we describe partial results towards encoding the full GR in the total space of
some fibre bundle over space-time. We indeed show that gravity theory in three and four
dimensions can be related to theories of a completely different nature in six and seven
dimension respectively. This theories, first advertised by Hitchin, are diffeomorphism
invariant theories of differential three-forms. Starting with seven dimensions, we are
only partially succesfull: the resulting theory is some deformed version of gravity. We
however found that solutions to a particular gravity theory in four dimension have a
seven dimensional interpretation as G2 holonomy manifold. On the other hand by going
from six to three dimension we do recover three dimensional gravity. As a bonus, we
describe new diffeomorphism invariant functionnals for differential forms in six dimension
and prove that two of them are topological.
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Introduction

Name the problem: Quantum Gravity

The essential field equations of the general theory of relativity |Einstein, 1915] are now
more than one hundred years old. Less than a year after the celebration of this centenary,
the LIGO cooperation offered the theory its most triumphal confirmation with the first
detection of gravitational waves [Abbott et al., 2016]. The other pillar of contemporary
physics, quantum field theory, emerged through a longer and more chaotic development
but finally attained an impressive maturity. The most salient evidence for this surely was
the detection of the Higgs boson in 2012 that crowned the standard model [Chatrchyan
et al., 2012, Aad et al., 2012]. This is however only the tree that hides the forest of
succeeding high precision tests and large range of application from particles to condensed
matter physics. Established on such firm basis, general relativity (GR) and quantum
mechanics (QM) altogether form the bedrock of contemporary physics.

There is a sense in which the overall paradigm of quantum mechanics is, for now, our
fundamental theory of dynamics. It tells us what sort of evolution our theories should
predict: with the quantum revolution that take place at the beginning of the 20th century
- and propagated since then- the very meaning of ‘determinism’ changed. Physicists
progressively evolved from an all-mighty dream where they could hope to predict the
past and future -were they given precise enough initial data- to a more humble position
where evolution is probabilistic. In its trail the quantum revolution however triggered a
wave of questions about the respective status of observers and observables which are still
unsettled. What is a state?” What do we mean by ‘probing’ it 7

On the other hand, general relativity might just appear as our fundamental kinematical
theory. The essential message of the theory is indeed that physics is intrinsically relational.
In the framework of general relativity, ‘observables’ only make sense with respect to each
others. Put abruptly it just gives a precise sense to the obvious fact that one never
measures space or time : One measures correlations between events, e.g between the
ticking of a clock, a ruler and the positions of a falling stone. In technical jargon, this is
implemented by the diffeomorphism invariance of the theory.

It is already fair to say that the above discussion, as for what parts of QM or GR
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are fundamental aspects of nature, surely is a polemical one and that many would have
argued differently. It is also easy to come to the conclusion that these types of discussions
are ‘just words’, i.e words to which one cannot give a precise content, and there would
definitely be some truth in this. In our opinion however, just because the discussion cannot
be settled by words - but rather will have to wait for the experimental confirmation of
an hypothetical unifying framework for both QM and GR - it does not make it idle.
The different answers to this question - what aspects of QM and GR are fundamental
principles and what are artefacts of a particular theory? - indeed organise the work of
the community towards a theory of quantum gravity.

The mere discrepancy in the description of the world that both theories give might
indeed be a sufficient motivation for trying to develop an unifying framework: From the
QM perspective, matter fields are quantised and there is a subtle distinction between
observers and states. From the GR one, the gravity field is a field just like the others and
observables are of relational types. There is certainly a tension between these different
statements and it leads to problematic questions - What is quantum space-time? What
does it mean to observe it? It is hard not to think that solving this tension will have drastic
implications as for our understanding of nature. From a more pragmatic perspective, the
different infinities (or singularities) that plague both theories are another motivation:
singularities seems to be ubiquitous to GR [Penrose, 1965, Hawking and Penrose, 1970]
and even though in QFT most infinities were tamed during the tortuous development
of the standard model, when it is applied to gravity they proliferate to the point of
making the theory non-predictive at high energy (or non-renormalisable, see [Goroff and
Sagnotti, 1985, van de Ven, 1992| for the traditional result, |Bern et al., 2015] for a modern
perspective). What is more, it is unclear whether the standard model itself makes any
sense beyond perturbation theory.

One could argue that ‘quantum gravity already exists’ in the form of an effective field
theory. From this perspective, non-renormalizability, is just the statement that we do
not understand the high-energy behaviour of the theory. Accordingly the problem of
‘quantum gravity’ is to be taken in a broader sense: this is a way to point to the fact
that GR and QFT are partly inconsistent. In particular, both singularities in classical
GR and the non-renormalisability of its QFT version signal that there is something we
are missing at a fundamental level.

In fact, nearly as old as GR was the task to quantize gravity: Einstein himself indeed
thought in his paper on gravitational waves [Einstein, 1918] that gravity should be modi-
fied by quantum effects. The history of quantum gravity [Rovelli, 2000, Carlip et al., 2015]
is long and painful for many technical problems were to be overcome. Many approaches
have been developed (see [Woodard, 2009, Nicolai, 2014] for reviews) with more or less
partial success.

Gravity, Quantum and a Matter of attitude

Even though not directly tied up to quantum gravity the work presented in this thesis
took its motivation from this problem and we thus wish to take some more time to consider
the different possible attitudes towards it.



One of the few essential aspects they all agree on is that something new should happen
at a fundamental length scale, the so-called ‘Planck length’ [, ~ 1073"m. The relevance
of the Planck length for quantum gravity can be motivated by an elementary argument:
Let’s consider a lump of matter of mass m. For any usual values of mass the Compton
wavelength A\c = i/ (cm) is much larger then the Schwarzschild radius r¢ = Gm/c* and
thus quantum mechanical effects will massively predominate on any gravitational ones.
As we increase the mass, however, the two lengths evolve towards another and eventually
gravitational effects must end up to be of the same order of magnitude than the quantum
ones. This is realised for the Planck mass m, = /hc/G. At this scale, both the Compton
wavelength and the Schwarzschild radius equal the Planck length Ip = \/Gh/c3. Infinities
proliferating both in GR and QFT are thought to be the result of our assumption that
space-time is continuous and the related description of matter as point-like objects. The
hope is therefore that they will disappear once the new physics popping in around this
Planck scale is taken into account.

The history of physics has seen many situations where different theoretical or empiri-
cal frameworks were contradicting each others and lead to conceptual revolutions. The
solutions always came from a mixture of conservatism -aspects of the preceding theories
where preserved and raised to the status of fundamental principles- and a revolutionary
attitude -some aspects that were though to be carved in stones were dismissed as artefact
given by a limiting procedure.

Accordingly, special relativity was born from the tension between Galilean invariance
and Maxwell equations. In the resulting theory both were reconciled but at the cost
of loosing an absolute notion of time that had been unquestioned for centuries. General
relativity emerged from the contradiction between special relativity and Newton theory at
the price of a definitive disappearance of the space-time fabric for a completely relational
description of physics. Finally quantum mechanics appeared as a mean to solve the
incompatibility of classical electrodynamics with the new theory of matter. What it took
to overcome this contradiction, the introduction by Bohr of discrete orbits for the electron
of the hydrogen atoms, cannot possibly be overstated. Not only, physicists, had to learn
to deal with discreteness, but they also had to renounce to the, century old, notions of
point particles and trajectories. Surprisingly, however, the framework of Hamiltonian
and Lagrangian mechanics that were developed in the preceding century turned up to be
crucial insights for developing the newborn theory.

Any succeeding theory of quantum gravity is likely to see the same phenomenon appear.
With some aspects of quantum theory and gravity to be preserved and other dismissed.
It is enlightening to have a look at the different approach to quantum gravity in fashion
today from this perspective.

In this respect the asymptotic safety scenario for gravity [Weinberg, 1980, Niedermaier,
2007] certainly takes the most conservative approach. In this approach it is suggested that
despite its non-renormalizability the QFT version of GR might be a consistent theory at
all energies after all. Accordingly the renormalization group flow of perturbative GR could
have a UV fixed point which would allow to make sense of the theory at any scale. What
is more, if this space of ‘asymptotically safe’ theories is small enough -and if one assumes
that our world is described by such a theory- only a finite number of measurement might
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be enough to know the theory at any scale. In fact this is probably the only approach
to quantum gravity were essentially nothing particular happens at the Planck scale. In
some sense the hidden radical implication here is that all high energy physics is already
contained at low energy. This might sounds a bit disappointing but it also has its own
charm.

Next in line, as far as conservatism is concerned, is Loop Quantum Gravity [Rovelli,
2004, Thiemann, 2008]. Here, only the perturbative framework tied up with QFT is re-
jected. It is indeed advocated that trying to quantize gravity as a perturbation around
Minkowski space is inherently in contradiction with its relational nature and that this is
responsible for the non-renormalisability of the theory. Apart from this, both the empha-
sise on general covariance and on canonical quantization are in line with the fundamentals
of GR and QM and makes it a ‘narrow path to quantum gravity’. That it is so constrained
is probably one of the most appealing feature of this approach.

String theory [Green et al., 1988, Polchinski, 2007|, which trades point particles for
extended objects, is in some sense the smallest possible modification of QFT that makes it
UV finite. The motivation for this modification is that, just like the non-renomalizability
of Fermi’s theory of the weak interaction pointed towards the Weinberg-Salam model of
electroweak interaction, the non-renormalizability of GR is a sign that it is not a fun-
damental theory. The beauty of the string theory lies in the fact that such a small
modification -considering QFT of extended objects- has tremendous and unexpected im-
plications: gravity seems to be built-in and, in order for the theory to make sense, is
inevitably tied up with other interactions and particles (via super-symmetry) and higher
dimensional geometry. In string theory the fundamental aspects pertaining to gravity
(its field equations, diffecomorphism invariance but also the mere idea of space-time) are
taken as secondary or ‘emergent’ just as the Navier-Stokes equation can be derived from
a microscopic description of fluids. In that respect String theory definitely sides with QM
against GR.

A third attitude, most vividly propounded py Penrose [Penrose, 1999, Penrose, 2014]
sides with GR against QM. This is made clear by the slogan ‘gravitization of quantum
mechanics’, versus the more usual ‘quantization of gravity’. It is here advocated that
quantum mechanics is not a complete theory and needs to be modified in order to fit with
gravity. This was the original aim of twistor theory to provide a description of gravity
that would suggest how to do this.

Each of these approaches! faces its own problems. Penrose’s twistor program could not
overcome the ‘googly problem’ i.e describing the two polarisations of gravity in twistorial
terms; one still doesn’t know if there exists a limit where loop quantum gravity can
describe ordinary space-time; and this is still unclear whether or not string theory can
describe our world (the standard model) nor what the theory really is beyond many
of its perturbative versions -related by various non-perturbative dualities. Finally the
asymptotic safety of gravity is still an open -interesting- problem. As for now -and once

!There are certainly more approaches to quantum gravity than those we discussed here e.g Causal
Sets, Dynamical Triangulation, Non-Commutative geometry, Relative Locality etc. We are obviously
biased by our taste and work. This is however an enjoyable (but polemical as it turned out) game to try
to decide for any strategy towards quantum gravity what is taken as fundamental principles both in GR
and QM and what is played down. We urge the reader to play this game with his favourite theory.



again- ‘Quantum gravity’ is therefore less the name of a theory to come than the name of
a problem.

Following Penrose and Hitchin: Geometry as a guiding
line

This thesis is not about quantum gravity. Rather, its most obvious unifying theme
is the description of classical® gravity in terms of unusual geometrical structures. The
motivation for looking for and studying such alternative descriptions of gravity however
takes its root in the ‘Penrose’s approach’ to quantum gravity presented above. The hope
is that, in the same spirit that the Hamiltonian formulation of classical mechanics first
appeared as a technical trick but turned out to give significant insights in developing
the quantum theory, the change of perspective on gravity suggested in this thesis might
contribute to the collective task of quantizing gravity (or maybe gravitazing quantum
mechanics). We however make no claim that significant steps have been achieved in this
respect.

Another encouragement for considering geometrical reformulation of gravity is the
example of twistor theory itself. Twistor theory proposed a radical change of perspective
on space-time and, even thought it felt far apart from its original aim of providing a
complete framework for quantizing gravity, proved to be very fruitful both on the physical
and mathematical sides (see [Atiyah et al., 2017| for an overview).

In the Lorentzian signature context and for flat space-time, the twistor space T can
be thought as the space of null lines in Minkowski space M. One the one hand, lines in
Minkowski space corresponds to points in twistor space. On the other hand, a point in
space-time can be equivalently described by its null cone. In the twistor space, the set of
null lines forming this cone will trace a (projective complex) line. This is the essence of
the twistor correspondence: lines correspond to points and reciprocally. Another crucial
fact here is that the flat twistor space has a natural complex structure T ~ C*.

In broader terms, twistor theory relates physical objects on some space-time M to
geometrical holomorphic structure on its associated twistor space T(M). As far as gravity
is concerned, the main result of the theory is the non-linear-graviton theorem |Penrose,
1976, Ward, 1980|. This theorem demonstrates an equivalence between self-dual Einstein
space-times and integrable complex structures on the associated twistor space. This is
a deep theorem as it describe complicated solutions to differential equations on space-
time as essentially free data on the twistor-space. However, the only Lorentzian self-dual
Einstein space-times is Minkowski space so that, as far as physics is involved, this does
not really helps. The problem of describing full gravity in twistorial term turned to be
one of the main stumbling block for twistor theory and is commonly referred to as the
‘googly problem’.

A second unifying theme of this thesis is the emphasis on special geometry appearing
in low dimension. Accordingly this thesis is made up of three parts respectively dealing
with dimension four, six and seven.

2i.e non-quantum
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Four dimensional space-times (we here consider complexified space-time for more gene-
rality) are specials in many respects. First this is the lowest dimension for which Einstein
equations do not completely constrain the local form of the metric but rather leaves pro-
pagating degrees of freedom. Second in four dimension the local isometry group is not
simple

SO(4,C) = (SL(2,C) x SL(2,C)) /Z*. (1)
This is the only dimension where such a phenomenon appear and it has some interesting
applications. The main one is the existence of chiral formulations of four-dimensional
gravity, i.e formulation making use of only one half of (1). In the physics community,
these formulations are usually associated to Ashtekar’s ‘new variables’ [Ashtekar, 1986].
Associated with these chiral formulations is a natural family of chiral deformations of GR,
that were first studied by Bensgtsson (see e.g [Bengtsson, 1991|) and dubbed ‘neighbours
of GR’. We prefer the term ‘chiral deformations of gravity’ to emphasis the following
facts: all those theories describe spin-2 particles with only 2 propagating degrees of free-
dom [Krasnov, 2008] and they differ from GR in a chiral way. All ‘chiral deformations of
GR’ indeed share the anti-self-dual sector of gravity (i.e , very schematically, the sector
where the first half of the decomposition (1) is turned off) but they differ when incorpo-
rating the self-dual sector. Both chiral formulations of gravity and their associated chiral
deformations are reviewed in the first chapter of this thesis and will serve as a life-line all
along this thesis.

Now, the identity (1) is just one of the many exceptional isomorphism of Lie group
that happens in four dimensions. Another interesting one is

Conf(4,C) = SO(6,C) = SL(4, C). 2)

The existence of this isomorphism is the starting point of twistor theory that associates
with the conformal compactification of Minkowski space-time M an auxiliary space, the
twistor space T ~ C*, on which the (complexified) conformal group, SL(4, C), acts linearly.
In Lorentzian signature, the representation of the conformal group on the twistor space
means that null lines are sent to null lines under conformal transformations which, by
itself, is a beautiful consequence of the correspondence. In Euclidean signature, the null
line interpretation disappears and the twistor correspondence is less drastic (the twistor
space is then a fibre bundle over space-time). However the above isomorphism of Lie
group persist in an Euclideanized version. What’s more this isomorphism then has a
beautiful interpretation in terms of quaternions. This makes it all clear that the twistor
correspondence have to do with the magic of the geometry in low dimensions.

The twistor correspondence and non-linear graviton theorem are well-known and rig-
htfully celebrated results. It is however not always realised that twistor theory has a very
nice interplay with chiral formulations of gravity. The main point of Part 1 of this thesis
is to clarify this fact. In particular we present a new-proof of the non-linear graviton
theorem with a strong ‘chiral’ flavour. In some sense this version of the theorem allows
to think of twistor theory as a far reaching consequence of chiral formulations of gravity.

The material of this Part is mainly taken from [Herfray, 2016] as well as from [Herfray
et al., 2015, Herfray and Krasnov, 2015, Fine et al., 2015].



Six and seven dimensions are also special but for a very different reason. In any
even-number of dimensions there is a well known notion of non-degeneracy for two-forms.
A global choice of such two-form then restrict the structure group of the manifold to
Sp(2n,R). In dimensions six and seven one can define a similar notion for three-forms.
Such three-forms are then called stable after Hitchin [Hitchin, 2000, Hitchin, 2001]. Just as
for two-forms, a global choice of stable 3-forms reduces the structure group: to SL(3,C) x
SL(3,C) in 6D and the special group G5 in 7D. In [Hitchin, 2000|, Hitchin proposed
variational principle for these three-forms in six and seven dimension.

In Euclidean signature, the twistor space of a Riemannian manifold is a two-sphere
bundle. That self-dual gravity is so nicely described in these terms, by Penrose’s theorem,
suggests that also the full GR might be encoded into fields on the total space of bundles
over space-time. This is our motivations for considering dimensional reduction of Hitchin
theory from six to three and seven to four dimension. Accordingly we will consider fibre
bundle over 3D and 4D manifold such that the total space is a 6D or 7D manifold.

In the second part of this thesis we show that the dimensional reduction of 6D Hitchin
theory from 6D to 3D is 3D gravity(coupled with a constant scalar field). We also propose
new variational principles for two and three forms in 6D and show that two of them are
topological theories. These results were originally described in [Herfray et al., 2016a,
Herfray and Krasnov, 2017].

In the third part of this thesis we turn to the 7D case. We first show that solutions
to a certain chiral deformation of GR in 4D are associated with G5 holonomy manifold
in 7D. This is however not a dimensional reduction but rather a lift of some 4D theory
to a 7D one. When we consider the dimensional reduction per say we are less successful:
Starting with a particular theory of 3-forms in 7D the 4D resulting theory turns out to
be some sort of scalar-tensor theory based on one of the chiral deformations of gravity -
rather than usual GR. The original material of this part can be found in [Herfray et al.,
2016b] and [Krasnov, 2016, Krasnov, 2017|.

Finally, a striking example of geometrical structures that only exist in low dimension
are division algebra i.e complex numbers, quaternions and octonions, see [Baez, 2002 for
a beautiful review. They will follow us all along this thesis and form another, somewhat
hidden, unifying theme. Complex numbers and quaternion are indeed closely tied up
with the Euclidean version of twistor theory. Three forms in six dimensions manifold
defines almost complex structure and the G, structure appearing in seven dimension is
best thought as the group of automorphism of octonions.
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Introduction to Part 1:
Chiral and Twistor Formulations
of Four Dimensional Gravity

It is well known that gravity can be given ‘chiral formulations’ 3, i.e formulations where
the full local isometry group

SO(4,C) = SL(2,C) x SL(2,C) /Z? (1)

looses its central role for one of the ‘chiral’ (left or right) subgroup SL(2,C). Note that,
for generality, we here consider complexified gravity: in Lorentzian signature the two
SL(2,C) groups are complex conjugated while in Euclidean signature they are replaced
by two independent SU(2) groups.

This shift in the local symmetries corresponds to a shift in the hierarchy of fields:
in ‘chiral formulations’ of GR the role of the metric is usually played down for other
alternative variables with natural SL(2,C) internal symmetries. Typically, the metric
appears as a derived object and its associated local isometry group SO(4,C) comes as an
‘auxiliary symmetry’ that was somewhat hidden in the first place.

It’s probably safe to say that the interest of the physics community for such refor-
mulations started with Ashtekar ‘new’ variables [Ashtekar, 1986] and the appealing form
of the related diffeomorphism constraints. In subsequent works [Jacobson and Smolin,
1988], |Capovilla et al., 1991b| it was understood that the (ten year older!) Plebanski’s
action [Plebanski, 1977] gave a covariant description of Ashtekar variables. In Pleban-
ski’s pioneering work the metric completely disappears for SL(2, C)-valued fields. In both
points of view, canonical and covariant, SL(2, C)-connections play a crucial role.

That SL(2, C)-connections appear is no surprise: In the more traditional metric per-
spective, the Levi-Civita connection comes as an SO(4, C)-connection. The decomposition
of Lie group (1) then corresponds to a splitting of the Levi-Civita connection into Left(or
self-dual) and Right(or anti-self-dual) SL(2, C)-connections, which are in some sense the
most natural ‘chiral’ objects one can construct from the metric. The ‘chiral formulations’
of GR essentially reverse this construction: they take SL(2,C) fields (e.g connections) as
a building block for the metric. This culminates in the so called ‘pure connection of GR’
pursued in [Capovilla et al., 1991a| and finally achieved in [Krasnov, 2011¢| where the
only field that appears in the Lagrangian is an SL(2, C)-connection. Chiral formulations
of GR will be reviewed from a general perspective in Chapter 1.

On the other hand, it is not always apparent that twistor theory, at least in its original
Penrose’s program directed towards gravity |Penrose, 1999|, has a nice interplay with
these reformulations and is in fact part of ‘chiral formulations’ of GR in a broad sense.
This is more clearly seen by taking a closer look at the main result of twistor theory on
the gravity side, the ‘non-linear graviton theorem’ [Penrose, 1976], [Ward, 1980].

The ‘non-linear graviton theorem’ takes as a starting point an eight dimensional real
manifold (the twistor space) equipped with an almost complex structure. This reduces

3For the most striking ones see [Plebanski, 1977], [Jacobson and Smolin, 1988], [Krasnov, 2011c]. See
also section 1.3.2 for a review of chiral Lagrangians for gravity
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the group of local symmetries to SL(4, C) which is also the 4d (complex)conformal group
SO(6,C) ~ SL(4,C)/Z* and indeed the first half of the non-linear graviton theorem
asserts that, under some generic conditions, integrability of this almost complex structure
is equivalent to a 4d complexified conformal anti-self-dual space-time (i.e such that self-
dual part of Weyl curvature vanishes). That this theorem only describes anti-self-dual
space-times clearly points in the direction of the intrinsic chirality of twistor theory, but
there is more.

The second half of the theorem requires additional data on twistor space in the form
of a complex one-form up to scale, usually denoted as 7. This is essentially equivalent
to a 4d real distribution® at every point (the kernel of 7). This one-form is taken to be
‘compatible’ with the almost complex structure so that its kernel is in turn almost complex
and identifies with C?. The restriction of the symmetry group SL(4, C) to this distribution
thus brings us down to the ‘chiral’ group SL(2,C): In fact such a one-form is naturally
associated with a ‘chiral’ SL(2, C)-connection on space-time (This is especially clear in
the Euclidean context and we will come back to this in what follows). As connections are
not conformally invariant, it fixes a scale in the conformal space-time. The second part of
the Non-Linear-Graviton Theorem then essentially asserts that this scale is such that the
resulting metric is anti-self-dual Einstein if one is given a ‘good enough’ (holomorphic)
one-form.

The usual approach to twistor theory generally emphasizes the metric aspect of the
theorem and tend to overlook the fact that this one-form, which crucially fixes the scaling
to give Einstein equations, is directly related to a SL(2, C)-chiral connection thus putting
twistor theory in the general framework of ‘chiral formulations of gravity’. In Chapter
IT we will review the basics of the curved twistor construction with an emphasis on the
relation between the chiral connection and the O(2)-valued one-form on twistor space 7.

It is in fact well known to specialists that there is an interplay between, for example,
Plebanski formulation of GR and twistor theory as can be seen from the introduction
of twistor variables in some recent spin-foam models [Livine et al., 2012, Speziale and
Wieland, 2012] or in the conjoint use of Plebanski action and twistor theory [Mason and
Skinner, 2010| to investigate the structure of MHV gravity amplitudes. However, it is
possible that not all consequences have been drawn from this overlapping.

Now, one of the ‘most radical’ chiral formulations of GR is the pure connection for-
mulation where only a SL(2,C)-connection is considered to be a fundamental field, the
metric being a derived object. In this context Einstein equations take the form of second
order field equations on the connection.

In the first part of this thesis we wish to emphasize the change of perspective on
twistor theory that this extreme chiral reformulation of gravity suggests: We already
stated that, on twistor space, the equivalent of this chiral connection on space-time is a
complex one-form, 7. In usual twistor theory this is just taken to be some additional data
that complements the almost complex structure, the latter being fundamental. However
the pure connection formulation of GR suggests that it is the one-form 7 ( loosely related
again to the chiral connection) that should be taken as the starting point, with the almost
complex structure (related the conformal structure) arising as a derived objects.

4In order to describe space-times with non-zero cosmological constant, which is our main concerned
in this paper, this distribution should also be non-integrable 7 A dr # 0.
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We demonstrate in chapter II that, at least in the Euclidean signature context, it is
a valuable point of view and that it allows to reproduce nicely the results from the non-
linear-graviton theorem while putting twistor theory firmly into the ‘chiral formulations’
framework of gravity:

For a Riemannian manifold M (i.e equipped with a metric of Euclidean signature)
the associated twistor space T(M) is simply taken to be the 2-spinor bundle®. Then an
SU(2)-connection, A4 5 € su(2), allows to define the one-form on T(M):

T = Ta (dﬂ'A/ + A(Jf)A/B/WB/)

related to the preceding discussion.
We first show that this is enough to construct a Hermitian structure on PT(M), thus
making contact with usual Euclidean twistor theory:

Proposition 1. Almost Hermitian structure on PT(M)
If A is a definite connection (see below for a clarification of this notion) then PT(M)
can be given an almost Hermitian structure, i.e a compatible triplet (Ja,wa, ga) of almost
complex structure, two-form, and a Riemannian metric.

In general this triplet is neither Hermitian (Ja is not integrable) nor almost Kdhler
(wa is non degenerate but generically not closed). In fact integrability of Ja is equivalent
to the statement that A is the self-dual connection of a self-dual Finstein metric with non
zero cosmological constant. The metric on twistor space can be made Kdihler if and only
if A is the self-dual connection of a self-dual Einstein metric with positive cosmological
constant (ie if the definite connection is of ‘positive sign’ ).

Further more, the integrability condition is equivalent to 7 N dt N dr = 0.

The main difference with the traditional results from [Atiyah et al., 1978| is that
integrability is not only related to anti-self-duality but is irremediably linked to Einstein’s
equations. This is because in the construction described in [Atiyah et al., 1978] one is only
interested in a conformal class of metrics while here the use of connections automatically
fixes the ‘right scaling’ that gives Einstein equations.

The fact that the connection needs to be ‘definite’ refers to a natural non-degeneracy
condition. Such connection can be assigned a sign. This terminology first appeared in
[Fine and Panov, 2008| and we will review it in chapter I. The possibility of associating a
symplectic structure on PT(M) with a definite SU(2)-connection on M was already poin-
ted out in [Fine and Panov, 2008]. However, only in the integrable case does the symplectic
structure described in this reference coincides with our wy. SL(2,C)-connections which
are the self-dual connection of a self-dual Einstein metric with non zero cosmological con-
stant were called ‘perfect’ in [Fine, 2011] and are the one such that their curvature verify
F' A F7 o §%. This well known (see e.g [Capovilla et al., 1990]) description of Einstein
anti-self-dual metric in terms of connection will also be reviewed in chapter I.

On the other hand, starting with a certain 6D manifold P7T, the projective twistor
space, together with a one-form valued in a certain line bundle 7, we have a variant of
the non linear graviton theorem:

5(mas,z) will be coordinates adapted to the fibre bundle structure C? — T(M) — M.
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Proposition 2. Pure connection Non-Linear Graviton Theorem
If 7 is a definite one-form then PT can be given an almost complex structure J..
Together with some compatible conjugation operation on PT this is enough to give PT

the structure of a fibre bundle over a 4d manifold M: CP' — PT — M.
Integrability of J. is then equivalent to the possibility of writing T as

T=Tu (dﬂ'A/ + AA/B/WB/>

with A the self-dual connection of a Finstein anti-Self-Dual metric on M with non zero
cosmological constant.
What is more the integrability condition reads T A dr A dr = 0.

Bits and pieces of this last proposition were already known and developed in [Mason,
2005],|Wolf, 2007] and [Adamo and Mason, 2014| as part of a strategy to obtain twistor
actions for conformal gravity, anti-self-dual gravity and gravity (the latter being still
missing). However, we here give a new proof that emphasises the role of the connection
as a fundamental object and we hope that by framing them in the general perspective
of chiral approaches to gravity they will appear in a new light, i.e as more than just
clever trick to construct twistor action. In particular we hope to make it clear that
one can effectively think of the (euclidean)non-linear-graviton theorem as a far reaching
generalisation of the description of Einstein anti-self-dual metric in terms of connections.

Our long term view in developing what could be called a ‘connection approach’ to
twistor theory, with the one-form 7 being the main field instead of the almost complex
structure, was to open new strategies to construct twistor action for gravity. However one
faces difficulties that we could not overcome. We briefly explain in section I1.3 our work
in this direction and why it does not seem to offer a way to a twistor action for gravity.

In this whole part we stick to the Euclidean signature. This is for coherence with our
results concerning twistor theory which only apply to this signature.

This part is organised as follows: In the beginning of chapter I, see section 1.1, we
review chiral formulations of gravity with an emphasis on the general geometric setting
underlying any formulation of this type rather than on a particular Lagrangian. In section
[.2, we especially stress how to write equations for self-dual gravity (i.e Einstein anti-
self-dual metric) in this framework and review the pure connection field equations for
Einstein metric. This will serve as a model for our ‘connection version’ of the non-linear-
graviton theorem. At the end of this chapter, see section 1.3 we take some time to discuss
‘chiral deformations of GR’. This is an infinite family of spin-two theories with only two
propagating degrees of freedom which is naturally related with chiral formulations of
gravity. This lies somewhat out of the main line of development of this part but will
be useful for Part 3. We also describe variational principles associated with these ‘chiral
deformations’ and their relation with GR. This is in part a review of the existent literature
but we also discuss some original results.

In chapter IT we come to twistors. We first review the construction of the flat twistor
space, its ‘curved’ version and some essential results of the theory. This is done in Eucli-
dean signature (see [Atiyah et al., 1978|, [Woodhouse, 1985] for Euclidean twistor theory)
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for coherence with the rest of the part but also because most physics literature logically
emphasises the Lorentzian case and we believed the Euclidean twistor construction, with
its beautiful relation to quaternions, deserves more attention. In section I1.2 we come
back on the ‘curved’ twistor theory, again in Euclidean signature but from an unusual
connection perspective, i.e we take a SU(2)-connection to be the main field instead of a
metric. From this data only we show how to construct very natural structures on twistor
space, namely the one-form 7, some associated connection on O(n) bundle and the tri-
plet (J,w, g) of compatible almost complex structure, two-form and Euclidean metric on
twistor space of Prop 1. We also review, from [Fine and Panov, 2008|, some symplectic
structure that is naturally constructed from the connection. Finally we investigate the
condition for integrability of the almost complex structure as well as the condition for
which the triplet (J,w,g) is Kéhler. These cases turn out to be given by the self-dual-
gravity equations and therefore make contact with the usual Kéhler structure on twistor
space constructed from an instanton (i.e an anti-self-dual Einstein metric).

We then state and give a new proof for the non linear graviton theorem from a pure
connection point of view (cf Prop 2).

Finally in section I1.3 we explain how ideas from the previous sections suggest new
ansitze for constructing twistor action for gravity. However this section will remain
inconclusive and ideas described there should be seen as a few more elements on the chase
(cf [Mason, 2005], [Adamo and Mason, 2014], [Mason and Wolf, 2009|, and [Adamo, 2013])
for this elusive (if existing) action.
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Chiral Gravity

In this chapter we review ‘chiral formulations of gravity’. In section 1.1, we tried to
adopt a broad perspective and describe the conceptual elements that are common to all
these formulations rather than describe a particular Lagrangian. We also tried to avoid
hiding the simplicity of the geometrical concepts involved under a debauchery of indices.
We however provide appendix B.1 for the reader interested in the massive display of tensor
indices that are sometimes required for precise calculations and proofs.

The main objective of this chapter is to introduce in a natural way the description
of self-dual gravity in terms of SU(2)-connections and the related notion of definite con-
nections. This is achieved at the end of section 1.2. We also review how to write Einstein
equations in terms of SU(2)-connections only.

Naturally associated with these ‘chiral formulations’ there is an infinite family of ‘chiral
deformations of GR’, which are spin-two theories with only two propagating degrees of
freedom. Even thought they are not directly relevant for the rest of this part, they are so
much interwoven with the ‘chiral formulations’ that we thought it was best to describe
them here, see section [.3. These chiral deformations will be a central theme of part 3.

I.1 Chiral Formulations of Gravity : Geometrical Foun-
dations

Chiral formulations of gravity exploit the fact that Einstein equations can be stated
using only ‘one half’ of the decomposition SO(4,C) = SL(2,C) x SL(2,C)/Z?. We here
briefly review why this is possible.

The whole discussion in this section could be treated in complexified terms but for
clarity and coherence with the other sections we will restrict to the real form SO(4,R) =
SU(2) x SU(2)/Z?, i.e Euclidean signature.

I.1.1 Chiral decomposition of the curvature tensor

Let us consider a Riemannian manifold (M, g). We note {61}160“3 an orthonormal
frame and {e;},., 5 @ dual co-frame, they are defined up to SO(4) transformations. In
order to see that Einstein equations can be stated using only one half of the decomposition
SO(4) = SU(2) x SU(2)/Z?, the quickest way is to split the Riemann curvature tensor



1.1. CHIRAL FORMULATIONS OF GRAVITY : GEOMETRICAL FOUNDATIONS

into self-dual/anti-self-dual pieces. This is classically done in spinor notation (see e.g
[Penrose and Rindler, 1985]) or more directly as in [Atiyah et al., 1978]. We here make a
presentation along the line of the second reference with an emphasise on the necessity of
using a torsion-free connection in order for chiral formulations of gravity to be possible.
See also [Capovilla et al., 1991b, Krasnov, 2011b] for pedagogical expositions.

As a starting, point let us consider a 2n-dimensional manifold. A crucial remark is
that the hodge duality *: QF(M) — Q>*~*(M) sends n-forms on n-forms. Self-dual (resp
anti-self-dual) n-forms are then eigenvectors with eigenvalues +1 (resp —1) for the hodge
duality®. The case 2n = 4 it thus the only situation where two-forms can be decomposed
in self-dual Q1 and anti-seld-dual QF two-forms. This is a happy accident that has several
implications.

By using the metric, two-forms at a point x € M can be identified with anti-self-adjoint
transformations of Q'(M), and thus with so(2n):

el Net
2
Where b[J = bIKgKJ.

bry eP(M), =~ bile®e’ €End() =~ beso(2n) (I.1.1)

The ‘accidental’ split of Lie algebra
s0(4) = su(2) & su(2) (1.1.2)

then directly corresponds to the decomposition of two-forms into self-dual and anti-self-
dual two-forms,
Q* =02 Q% (1.1.3)

Another accident is that curvature forms are two-forms. In four dimensions curvatures
can thus be decomposed into smaller elementary bits. This is useful both for Yang-Mills
type theories but also for gravity. We now turn to the decomposition of the Riemann
tensor:

Consider a connection V on the tangent bundle compatible with the metric, this is
a SO(4)-connection (Note that, at this stage, we do not assume that the torsion of this
connection vanishes). It splits into two SU(2)-connections D and D,

V=D+D. (1.1.4)

They naturally act as connections on the bundle of self-dual two-forms and anti-self-dual
two-forms respectively.
As a consequence of (I.1.4) the curvature V2 two-form can be rewritten

V2= D>+ D (L1.5)

At this point we only made use of the first ‘accident’, the Lie algebra split (I.1.2). We
can now make use of the second ‘accident’ the two-form decomposition (I.1.3): As we

already pointed out, the curvature-forms D2, D? are indeed su(2)-valued two-forms or
equivalently Q7 (resp Q) -valued two-forms,

D*€ Q* (M,su(2)) ~ Q* (M,Q%),  D? e Q*(M,su(2)) ~Q*(M,02)

'In fact for a generic dimension and signature the eigenvalues are either +1 or +i. Here we already
have in mind the application to Euclidean four dimension.
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It follows from the decomposition, Q* = Q% & Q2 that we can write them as bloc
matrices:

D? = (F G), D? = (é, ﬁ) (1.1.6)
where F € End (02), G € Hom (Q2,Q2), F € End (Q%), G € Hom (Q2,02).
Putting this altogether, the curvature of V can be written as a bloc matrix:

V2 = ( g % ) € O (M,s0(4)) ~ End (%) (1.1.7)

It is also convenient to introduce the self-dual and anti-self-dual part of the Weyl tensor:

U=F-— %trF I, U=F- %trﬁ I (1.1.8)

Without any further assumptions this is as far as we can get. However, in the special

case of the Levi-Civita connection, i.e if one assumes that the connection is torsion-free,

we get a simpler picture: V2: Q2 — Q2 is then the usual Riemann curvature tensor and

has some further symmetries. The torsion-free condition indeed implies that V?2 has to

be symmetric, i.e B B B

Gt =G, Ul =, U=, (I.1.9)

What is more, for the torsion-free connection trf" = trF. Using coordinates, one can

indeed immediately see that this last identity is equivalent to the first Bianchi identity.
See Appendix B.1 for more details.

From these considerations, we obtain the celebrated decomposition of the Riemann
tensor into irreducible components:

- I 0 0 G v o0
V?=trF (0 H>+ (Gt ol T 1o ) (1.1.10)
. R ,

VvV Vv
Scalar Curvature  Ricci Traceless  Weyl Curvature

Let us now turn to Einstein equations. From the above decomposition it stems that,
g is Einstein if and only if G =0 (I.1.11)

and then the scalar curvature is 4A = 4trF.

In particular one sees from D? = F + G that Einstein equations can be stated in term
of D only: The metric is Einstein if and only if D is a self-dual gauge connection, i.e if
D? is a self-dual su(2)-valued two-form.

Note however that, in order to achieve this ‘chiral formulation’, the symmetries (I.1.9)
were crucial. In case one does not assume the connection to be torsion-free the Riemann
tensor does not enjoy the symmetries (I1.1.9) and Einstein equations look much more
complicated:

trF —i—trﬁ B

G:—ét, Ul =, U=, and 5

cst = A. (I.1.12)

See Appendix B.1 for a derivation in coordinates.



1.1. CHIRAL FORMULATIONS OF GRAVITY : GEOMETRICAL FOUNDATIONS

As opposed to (I.1.11) this last set of equations involve the whole of the Riemann
tensor and are therefore not ‘chiral’ at all. One easily checks however that equations
(I.1.12) together with the symmetries (I.1.9) give back the chiral formulation of Einstein
equations (I.1.11), as it should.

From this presentation we hope to make it clear that the general phenomenon allowing
for chiral formulations of Einstein equations stems from the internal symmetries of the
Riemann tensor, related to torsion-freeness, and not from a particular choice of signature.

1.1.2 Urbantke metric

In the above, we explained how Einstein equations can be stated in an essentially
chiral way, i.e in terms of su(2)-valued fields. This general principle underlies any chiral
formulation of gravity. However this was still very classical in spirit as we considered
the metric as the fundamental field. We now describe an essential observation due to
Urbantke [Urbantke, 1984| that allows to obtain a metric as a derived object from chiral
(i.e su(2)-valued) fields.

Suppose that we have a su(2)-valued two-forms B, using a basis of su(2), (0);c; 53

this gives us a triplet of real two-form (B’) such that B = B'o;

i€1,2,3

Now, given such a triplet of two-forms (B’) there is a unique conformal structure

i€1,2,3’
that makes the triplet (B*, B?, B%) self-dual. We will refer to this conformal structure as
the Urbantke metric associated with B and write it as gm). There is even a way to make
this conformal structure explicit through Urbantke formula [Urbantke, 1984|,

1 S
Urbanke metric: Iy = — E?m‘seijszwB%BBkw. (I.1.13)

Obviously, if the B’s do not span a 3 dimensional vector-space this cannot hold. In fact
the ‘metric’ (I.1.13) will then be degenerated in the sense that it will not be invertible. A
more precise statement, again from [Urbantke, 1984], is the following: given the triplet of
two forms (B', B?, B%), defines the conformal ‘internal metric’ X = B' A\ B /d*z then
Urbantke metric g, is invertible if and only if X is. When Urbantke metric is invertible
X is just the metric on the space of self-dual two-forms given by wedge product.?.

As we started with a triplet (Bi)iem’3 of real two-forms, the associated Urbantke

metric (I1.1.13) is also real. One the other hand, its signature is undefined: self-dual
two-forms in Lorentzian signature are complex so this signature is excluded but without
further restriction it can still be either Euclidean or Kleinian. The signature of the internal
metric X however is enough information to fix this ambiguity: for an Euclidean conformal
metric § the metric X on self-dual two-forms given by wedge product is Euclidean while
for a Kleinian signature it would be Lorentzian.

Thus if we start with a triplet (Bi)iel..fﬂ of real two-form such that the internal metric

X% = B! A B? /d*x is definite, we are then assured that the associated Urbantke metric,
G is non degenerate (invertible) and of Euclidean signature. This suggests to introduce
the following definition:

2As a side remark, on self-dual two-forms the ‘wedge’ internal product B A B? /d*x coincide to the
‘metric’ internal product B A xB7 /d*z



CHAPTER 1. CHIRAL GRAVITY

Definition 1.1. Definite Triplet of two-forms
A triplet (B, B B®) of real two-forms is called definite if the conformal metric con-

structed from the wedge product X% = B A B/ /d'z is definite.
As we just explained this is a useful definition because of the following:

Proposition I.2. Urbantke metric
The Urbantke metric (1.1.13) associated with a definite triplet of two-forms is non dege-
nerate and of Fuclidean signature.

Proof. The equivalence between the non-degeneracy of g, and the non-degeneracy of
X can be found in [Urbantke, 1984]. This reference also shows that the B’s are self-dual
for G- As already discussed above the 3D wedge product metric on self-dual two-forms
X can only be real definite for a (conformal) Euclidean four dimensional metric. O

In this section we made two distinct but complementary observations, first Einstein
equations can be stated in a chiral way (cf equation (I.1.11)) ie using su(2)-valued fields,
second a (definite) su(2)-valued two-form is enough to define a metric. Lagrangians that
realise ‘chiral formulations’ of GR all rely on some mixture of these two facts each with
its own flavour and fields. See section 1.3.2 for some explicit variational principles.

However, for the most of this part, we won’t be interested by a particular action
but rather by how the general framework that we just describe intersects with twistor
theory. Our main guide will be the description of anti-self-dual Einstein metric in terms
of connections.

Before we come to this it is useful to introduce two new tensors.

I1.1.3 Two useful tensors: the sigma two-forms

We already made the remark that a metric allows to identify the Lie algebra so(4)
with the space of two-forms Q2. We denote by

D:s0(4) =su(2) Bsu(2) > =02 0 (I1.1.14)

this isomorphism.
We choose a basis (o,0")
and such that

ic1.2.3 0f 50(4) = su(2) @ su(2) adapted to the decomposition

[Uijaj} — ik gk [51‘7&3} = ¢likGk, [0251] = 0. (I.1.15)

Then one can define the sigma two-forms:

1, . 1~ .
—y:@<1» —y:®<ﬂ) 111
5 o 5 o (I.1.16)
Thus (ZZ) (resp <§Z> ) form a basis of self-dual two-forms Q2 (resp anti-self-
i€1,2,3 i€1,2,3

dual two-forms Q2). This basis is also defined (up to SU(2) transformations) by the
orthogonality relations

SIAY = —SIASS =269Vol,,  SIAY =0, (1.1.17)
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The awkward factor of one half in the definition is there for it to fit with the definition
in terms of a tetrad that frequently appears in the literature:

, 0 . R . L
Y'=—e /\61—76]/\6 : Y'=e /\61—76]/\6 . (L1.18)
i€1,2,3 i€1,2,3

The sigma two-forms are naturally su(2)*-valued two-forms or, using the Killing metric
on su(2), su(2)-valued two-forms:*

Y=Y €O (Msu?2), Z=35¢c0(Msu?). (1.1.19)

Importantly they are compatible with the connections D = d + A , D=d+ AV, in the
following sense:

Proposition I.3.

Let 3 (resp X) be the su(2)-valued self-dual (resp anti-self-dual) two-forms constructed
from a metric as (1.1.18), let D = d+ A be the self-dual part of the Levi-Civita connection
associated with this metric. Then D is the SU(2) connection satisfying

da <2> —dS+[AX] =0, dj <i> —dS+ AT =0. (1.1.20)
Proof. See Appendix B.1 for a direct proof in coordinates. m

This compatibility relations are important as they can be used as alternative definition
for the chiral connection D and D.

Finally we can write the Einstein equations in terms of those two-forms. If D =d+ A
is the ‘left’ or ‘self-dual’ connection and D? = F its curvature, then we can rewrite the
first half of the bloc decomposition (1.1.10) as

D?=Figh= (F“Ej + Gijiﬂ‘) o' (L.1.21)
Then, as we already discussed, the self-dual part of Weyl curvature is
U = F — %trFéij : (1.1.22)
the scalar curvature is 4A = 4trF and

g is Binstein if and only if D? = MY%7 o' (I1.1.23)

[.2 Definite Connections and Gravity

We review here how to write equations for Einstein-anti-self-dual metric in terms of
connections. This is a well known construction (cf [Capovilla et al., 1990]) and we here use
the terminology of [Fine and Panov, 2008|,[Fine, 2011]. We also briefly recall how to write
equations for full Einstein gravity in terms of connections from [Krasnov, 2011c|,[Fine
et al., 2014].

We now take A = A’c" to be the potential in a trivialisation of a SU(2)-connection
D=d+ A and D> =F = F' o' its curvature.

3In this thesis bold notation will indicate su(2)-valued objects.
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1.2.1 Definite Connections

We mainly consider definite connections, i.e connections such that the curvature two-
form is a definite triplet:

Definition 1.4. Definite Connections )
A SU(2)-connection D = d + A'c’, is called definite if the conformal metric, X% =
Fi A FJ [d*z, constructed from its curvature, D? = F' ¢, is definite.

For any SU(2)-connection with potential A®o?, there is a unique conformal class of
metric g, such that the curvature F* o’ is self-dual. The definiteness of the connection
then ensures that this conformal metric is invertible and of Euclidean signature (cf Def
[.1 and Prop 1.2 ). Thus definite connections are associated with a ‘good’ metric.

A definite connections also defines a notion of orientation. It is done by restricting
to volume form gy such that X% = F' A F7/u, is positive definite. In the following
whenever there is a need for an orientation, we will always take this one.

We can also assign a sign to a connection as follows: We consider co-frame (e] ) 1€0..3”
orthonormal with respect to the Urbantke metric and oriented with the convention that
we just described. They are defined up to Lorentz transformations and rescaling by a
positive function. From this tetrad we can construct a basis of self-dual two-form (Ei)

through the relation (1.1.18). Again (Ei)i€1,2,3 o
rescalings by positive functions. By construction, the curvature D? = Fo? is self-dual
for the associated Urbantke metric and we can thus write

D*=Flgt = MY o (1.2.1)

i€1,2,3
is defined up to SU(2) transformations and

The sign of the connection is then defined as s = sign (det (M)) Note that this notion
of sign makes sense as a result of {FZ} being defined up to SU(2) transformations

and {Zi}iel,ZS

We now have two SU(2) transformations independently acting on (F ")i6123 and

(Zi)iel 5 5> the first as a result of changing the trivialisation of the SU(2) principal bundle
of whom D = d+ A is a connection, the second as a result of changing the trivialisation of
the bundle of self-dual two-forms associated with the Urbantke metric. Those two bundles
can be identified (at least locally) by requiring M% to be a definite symmetric matrix.
Finally we also have two scaling transformations, one acting on X and the other one on
¥, we identify them by requiring that F* A [V = X% %Z’“ A XF.

In what follows these identifications will always be assumed unless we explicitly specify
otherwise. B

As a result of X% being definite we can make sense of its square root. In fact there is
a slight ambiguity in this definition: we fix it by requiring v/ X to be positive definite, i.e
we take the positive square root.

With these choices of square root and identifications, we have

i€1,2,3
being defined up to SU(2) transformations and positive rescaling.

FiesVX'S o Y—sJX R VYiel,23. (1.2.2)

1.2.2 Anti-self-dual gravity and Perfect Connections

A metric is said to be ‘anti-self-dual’ if the self-dual part of its Weyl curvature vanishes
ie, if W, = 0in (I.1.10). As Weyl curvature is conformally invariant, this is a property of
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the conformal class of the metric rather than from the metric itself.
A metric is Einstein-anti-self-dual if it is Einstein and anti-self-dual, ie if W, = 0 ,
G = 01in (1.1.10). Alternatively, using (1.1.21), if
. A
F' = 521, Viel,2,3. (1.2.3)
(then 4A is the scalar curvature). Note in particular that for A #£ 0, F* A F7 /d*z oc §%.
This motivates the following definition,

Definition 1.5. Perfect Connections
A definite connection is perfect if F* A F7 = 5”%.

The relevance of this definition comes from the following;:

Proposition 1.6.

The Urbantke conformal metric associated with a perfect connection is anti-self-dual.
What is more the representative with volume form %F’“ A F¥ is anti-self-dual-Finstein
with cosmological constant s |A|, where s is the sign of the connection.

Proof.

Consider the Urbantke metric with volume form p = 53; F¥ A F*. It is associated with a
orthonormal basis of two-form {Ei}iel,Z,S as in (I.1.18). By construction, they are such
that ' A3/ = 269 p. Together with our identification of the scaling transformations,
FiNFI = X35k ASF it gives

F'AFI=2X9,.

Now by hypotheses,
2

FINFI = —FFANFF =250,
3 9
from which we read X% = %25” and
) i ’A| )
Fl=s VX9 = s 05 (1.2.4)

From this last relation we see that Bianchi identity, d4F' = 0, is now equivalent to
da¥ = dX¥+[A, Y] = 0 which is the defining equation (I.1.20) of the self-dual connection.
It follows that D = d+ A is the self-dual connection of the Urbantke metric with volume
form p = 535 F¥AF*. With this observation (I.2.4) are just the field equations for Einstein
anti-self-dual gravity (I.2.3) with cosmological constant s |A|. O

1.2.3 Pure connection formulation of Einstein equations

At this point it is hard to resist writing down the pure connection formulation of Ein-
stein equations.

Consider a definite SU(2)-connection D = d+ A with curvature F = F'o’. As already
explained, it is associated with an orientation, a sign s and conformal class of metric g
We again denote F* A F9 = X¥d*z and define the following volume form,

1 2 1 -\ 2
e (Tm/F A F) =33 <Tr\/§) d*z. (1.2.5)
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This is a well defined expression as a result of the following facts: the definiteness of the
connection together with the orientation make X% positive definite and thus we can take

its square root, what is more (T r\/% )2 being homogeneous degree one in X the overall
expression does not depends on the representative of the density X.

However there are signs ambiguity in this choice of square root. They amount to the
choice of signature of the conformal metric v X Y. We will always take this choice of
square root such that det (ﬁ) > (, then the only signatures that remains are (+,+, +)

and (4, —, —). We thus need to make a choice for our definition of square root once and
for all: either we stick with the ‘definite square root’ or with the ‘indefinite square root’.

Definition 1.7. Finstein Connections
If A’ is a definite connection, define X% by the relation

) ) ] 2
FiNFT = 2X9— <Tr\/F A F) . (1.2.6)

Then we will call it Einstein if
e
d <(\/Y) ”Fﬂ) —0. (1.2.7)

Again, the two square roots in this definition need to be taken with the same con-
vention, ie such that the resulting matrices have the same signature: either (+,+,+) (
‘definite square root’) or indefinite (+, —, —) (‘indefinite square root’). Note that for per-
fect connections, X% = 5”%2, as a result of which perfect connections are special case of
Einstein connections with the ‘definite square root’ convention (note that perfect connecti-

-1
ons are not Einstein connections for the ‘indefinite square root” as d 4 <(\/X > K FJ) #0

for VX = diag (1,—1,—1)).
The Definition 1.7 is motivated by the following,

Proposition 1.8. Krasnov [Krasnov, 2011c|

2
For an Einstein connection, the Urbantke metric with volume form # <TT’\/F A F) I8

Finstein with cosmological constant |A|Sign (s TrvE N F) What is more such a con-
nection coincides with the self-dual Levi-Civita connection of the metric.

Proof.
2
The metric in Urbantke conformal class with volume form v = # (TT\/ FAF ) 18

associated with an orthonormal basis of self-dual two-form {Ei}iel g B AYT =200

It is defined up to SU(2) transformation. By definition, {Fi}iel , 5 18 @ basis of self-dual

two-forms for Urbantke metric and F* = M%7 Vi € {1,2,3}.

As was already pointed out, a priori F' and X are valued in two different associated
SU(2) bundle: D = d+ A is a SU(2) connection on a SU(2) principal bundle P and
the curvature naturally takes value in the adjoint bundle P X gy (2) su(2), on the other
hand {Zi}iel , 5 18 a trivialisation of the bundle of self-dual two-forms associated with the
Urbantke metric.
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We now come again to the subtle question of identifying the two: this can be done
(at least locally) by requiring M% to be a symmetric matrix. Once this is done, however
there is still the possibility of acting with the diagonal transformation (X', %2, %) —
(3!, —¥%, —%3) and we thus have two possible identifications. We call them the ‘definite
identification” and the ‘indefinite identification’ depending whether or not the resulting
matrix M% is definite or not.

As a rule, we now take the identification corresponding to the square root that we
chose, ie if one chooses the ‘definite square root’, we take the ‘definite identification’; on
the other hand, if one takes the ‘indefinite square root’ one should use the ‘indefinite
identification’. B

Finally, just as in the case of perfect connections, we identify rescaling of X and
rescaling of ¥ by imposing that F'AF7 = X 13FAYF. Together with the choice of volume
form, ¥' A 37 = 20%v, this completely fixes all the scaling freedom: F' A FV = 2XYp.
Note that this gives the same result as in definition 1.7.

As a consequence of these different choices we have

FiesVX'Y o  Si=sVX WR (1.2.8)

The field equations (1.2.7) now read daX = 0 which are just the the defining equations
(I.1.20) of the self-dual connection. It follows that D = d + A is the self-dual connection

of the Urbantke metric with volume form v. Having this in mind, F? = svX U5 , are
Einstein equations (I.1.23) with cosmological constant s T'r (ﬁ) . Finally, from (1.2.6),

one gets |Tr (\/Y) | = |Al O

Note that one of the weakness of this formulation is that a particular choices of square
root (ie ‘definite’ or ‘indefinite’) can only describe a particular subspace of Einstein metric,
those such that the self-dual Weyl curvature F'/ is respectively definite or indefinite.

2

Interestingly, the integral of the volume form ﬁ <T rvFANF ) also gives the correct
variational principle for Einstein connections. This is the pure connection action for GR
|Krasnov, 2011¢|. It can be obtained by integrating fields successively from the Plebanski

action, see also next section.

I.3 Chiral Deformations of Gravity

While chiral formulations of GR described above are certainly known to differential ge-
ometers specialising in Einstein manifolds, the related ‘chiral deformations’ of the Einstein
theory are almost completely unknown to the community. It is however an interesting
fact that the four-dimensional Finstein condition can be non-trivially deformed in a chiral
way.

On the one hand, it is well-known that GR can be modified, the simplest example of
such a modification being the R? gravity, of relevance, e.g., as a good model of inflation
[Starobinsky, 1980, Ade et al., 2016|. However, this model is equivalent to GR coupled to
an additional scalar field, and so propagates not just the two polarisations of the graviton,
as in GR, but also a scalar. One can then consider more involved modifications of GR
with higher powers of the curvature added to the Lagrangian. However, one can quickly
convince oneself that, because of the higher derivatives present in these modified theories,
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they all propagate more degrees of freedom than does GR. Following this logic, if one
insists on second-order field equations then GR is the unique theory of metric, at least in
four dimensions. This is the content of several GR uniqueness theorems available in the
literature.

Consequently, it comes as a big surprise that it is indeed possible to modify GR without
adding extra degrees of freedom if one starts from one of its chiral descriptions. The
resulting chiral deformations of GR continue to have second-order field equations and
a count of the number of degrees of freedom by the Hamiltonian analysis shows that
they just describe the two propagating polarisations of the graviton. What is more and as
will be reviewed below, there is an infinite-parametric class of such chiral modified gravity
theories, in which GR is just a special member. The reason why it does not contradict the
above discussion is that these theories, when rewritten in metric terms, exhibit an infinite
number of higher derivative terms with precise coefficients. Each of these terms taken
individually would lead to extra degrees of freedom, but taken altogether they ‘conspire’
to forbid these extra propagating modes.

We should also stress that the type of modifications of gravity we are interested in here
is unique in the following sense: One can inspect the proofs of the GR uniqueness, notably
the modern proofs that deal with the scattering amplitudes, and note the particular
assumptions in those proofs that are violated by these chiral deformations. Removing
those assumptions, one can see that there results a new ‘uniqueness’ theorem stating
that these chiral modifications are the only ones that describe propagating gravitons with
second-order field equations; see |Krasnov, 2015].

In this section, we first review the description of this infinite family of gravity theories
in 4D can be described in terms of SU(2)-connections. This description will be useful in
Part 2 of this thesis. The material discussed here is mainly from [Krasnov, 2011a, Krasnov,
2011c], see also [Fine et al., 2014] for a more mathematical exposition. We then describe
alternative action principles for these chiral deformations. Some of them appeared in the
literature in the last ten years |Krasnov, 2009b, Krasnov, 2009a, Krasnov, 2011a| but
some of them are related to more recent work, see [Herfray and Krasnov, 2015, Herfray
et al., 2015] and [Herfray, 2016].

1.3.1 Chiral Deformations of Gravity

We here describe chiral deformations of gravity in their most concise form, the pure
connection formulation. It generalises the pure connection formulation of Einstein equa-
tions described above (see 1.2.3).

Pure connection formulation of the Chiral Deformations of GR

Let again A = A'c" be a definite SU(2)-connection for a SU(2) principal bundle over
a 4-dimensional manifold M,

SU(2) =P —- M (I.3.1)

and F' = F'c’ be its curvature two-form. The definiteness of the connection, as defined
in 1.2.1, amounts to the definiteness of X% € M3 (R) defined by

FINFI = Xd's. (1.3.2)
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A choice of chiral deformation of GR now amounts to a choice of SU(2)-invariant
function

f: Ms(R) x QY(M) — QYM). (1.3.3)

We can indeed evaluate such function on (1.3.2) to get a volume form
FAF— f(FAF)QY M), (1.3.4)

integrating this form against our manifold we obtain a functional:

:/fwAF) (13.5)

Let us call the above functions ‘deformation function’, for practical purpose the follo-
wing (equivalent) definition is more convenient:

Definition I.9. Deformation function A deformation function is a SU(2)-invariant function
f from three by three symmetric matrices to real numbers satisfying the following pro-
perties:

1. gauge invariance f(OXOT) = f(X), where O € SO(3),
2. homogeneity of degree one, f(aX) = af(X) for any « € R .

By construction any deformation function gives a functional for connections, see (1.3.5):
the two above property ensure that it is gauge invariant and well defined.

Clearly, there are many deformation functions. As a count one can diagonalise the
matrix X, deformations functions are then homogeneity degree one function of the eigen-
values. There are as many such functions as functions of two variables. We already saw

that GR is given by
2
SbRLA]:L/ (Tr( pm«pj) (1.3.6)
M

see however 1.2.3 for a discussion on the precise choice involved in taking the square root.
Critical points of (1.3.5) are SU(2)-connections satisfying the following second order

PDE’s 5
L)
d =0. 1.3.7

A(an (1.3.7)

Note that the matrix of derivatives of the function f with respect to X is homogeneity
degree zero in X and is hence well-defined even though X is really volume-form valued.

Discussion

The anti-self-dual sector: Instanton solutions In general, solutions to (I.3.7)
strongly depend on the theory. There is however a sector which is shared by all Chi-
ral deformations, mainly the anti-self-dual sector of gravity i.e anti-self dual Einstein
metrics:

As we already discussed in 1.2.2 perfect connection i.e satisfying X% ~ §% give rise to
metrics that are self-dual Einstein.
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It can be checked that, for any f, these connections are extremal points of (I.3.5),
i.e satisfy (I.3.7). For perfect connection the field equations (I1.3.7) indeed reduce to the
Bianchi identity for the curvature and are thus automatically satisfied.

As a result anti-self-dual Einstein metrics, which correspond to perfect connections,
are solutions of (1.3.7) for any f.

Accordingly all this theories coincide on the anti-self-dual sector of gravity and only
differ when the self-dual sector is ‘turned on’. Thus the name ‘chiral deformations of GR’.
In particular the De Sitter solution, which is arguably the simplest anti-self-dual Einstein
solution, is shared by all the chiral deformations.

Metric interpretation. As already discussed in Proposition 1.2, a SU(2)-connection
that satisfies the rather weak requirement of being definite defines a conformal Riemannian
metric on M. As already discussed, the triple of curvature two-forms is anti-self-dual with
respect to this (conformal) metric and this property defines it uniquely.

A choice of deformation function (1.9) defines a volume form (1.3.4). We can make use
of this volume to fix the conformal freedom of Urbantke metric. When the connection
satisfies (1.3.7), the metric defined by A is constrained. We already saw Einstein connecti-
ons can be obtained by a proper choice of f cf section 1.2.3 and in particular Proposition
[.8. In this case the Urbantke metric with volume form (1.3.4) is Einstein and its self-dual
connection is A.

In general however the metric interpretation of (1.3.7) is unclear. In particular, A has
no reasons to be the self-dual connection of Urbantke metric and nothing forces us to take
(I.3.4) as the volume of the Urbantke metric. There are indeed many other volume forms
at hand e.g TrF' A F.

Note that on the ‘anti-self-dual’ sector,

Tr (F A F)

3

f(FAF)Zf(5M>

. — £(5) (1.3.8)

so that it does not really matter which volume form we choose we consider.

More general solutions and propagating degrees of freedom. Even though we
are far from understanding all Einstein metrics on 4-manifolds, some intuition as to how
many solutions exist comes from the Lorentzian version of the theory. Indeed, GR with
Lorentzian signature is a theory with local degrees of freedom, and so the space of solutions
is infinite-dimensional. For example, solutions can be obtained by evolving initial data.

A similar description is also possible in the Riemannian context, in particular in the
setting of asymptotically hyperbolic metrics. As is well known from |Fefferman and Gra-
ham, 1985|, one can indeed solve for asymptotically hyperbolic Einstein metrics in the
form of an expansion in powers of the ‘radial’ coordinate. The free data for this expansion
are a conformal class of metric on the boundary (modulo boundary diffeomorphisms), to-
gether with a symmetric traceless transverse tensor. This second piece appears as free
data in some higher order of the expansion. There are 2 + 2 free functions on the boun-
dary as free data, and this is the Riemannian analogue of the statement that GR has 2
propagating degrees of freedom.

We developed a similar expansion in the language of connections in [Fine et al., 2015].
One outcome of the analysis of this paper is that the expansion is universal for the whole
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class of theories (I1.3.5) i.e whatever the function f is. Only the details of the expansion
at sufficiently high order in the radial coordinate start to depend on f. In the first few
orders, the expansion is completely independent of f. In particular, the count of free data
that seeds the expansion is f-independent. This means that the free data to be prescribed
to get an asymptotically hyperbolic solution of theory (I.3.5) (locally near the boundary)
are 2 + 2 free functions on the 3-dimensional asymptotic boundary. This illustrates the
statement that the theory (I.3.5) has as many solutions as GR.

Lorentzian signature and the physical significance of these deformations. Once
GR gets embedded into an infinitely large class of gravity theories all with similar proper-
ties, one is forced to ask a number of questions: What makes GR unique as compared to
all these other theories? In fact, as all the chiral deformations of GR approximately look
the same around DeSitter space could it be that the world we live is only approximately
described by GR? The very fact that such chiral modified gravity theories exist forces us
to understand them.

Isotropic cosmological solutions are anti-self dual Einstein solutions and, as such shared
by all the chiral deformations of GR. In the other hand, anisotropic cosmological solutions
will depend on the particular theories considered. In [Herfray et al., 2015] we considered
the influence of simple modification terms on the cosmological singularity of ‘Kasner’
cosmological model. This is interesting because such solutions are believed to encode the
behaviour of a generic space-like singularity. We considered a simple type of deformation
with the following property: as long as the Weyl curvature is small in Planck units
solutions essentially behave like GR. Typically, there is then a regime ‘far away in time’
from the would-be singularity where the solutions all look the same and approximate the
Kasner solutions. As the Weyl curvature increase, the modification start to show up and
the deformed solutions run further and further away from GR. In simple case it is easy to
choose these modifications in such a way that there is no singularity at all. Then ‘far away
in time’ before the would-be singularity the solution again approximate another Kasner
solution.

In general, however, one faces the following difficulty. In the Euclidean case, the use
of definite SU(2)-connections ensured the existence of an Euclidean Urbantke metric.
On the other hand, when dealing with Lorentzian metric one should rather consider
SL(2, C)-valued connection, i.e complex valued field. One then needs appropriate ‘reality
conditions’ to ensure the reality of the associated Urbantke metric. When considering
GR, this procedure is (reasonably) well understood. In the case of chiral modifications of
GR this is however not understood how to modify these ‘reality conditions’. In a sense,
since the connection is the central field in these formulations and the metric interpretation
of the field equation is generically obscure, one could take the position that whether or
not the derived metric is real does not matter. Weather or not this attitude makes sense
can only be decided by coupling those deformed theories with matter, which, as far as we
are aware as never been seriously probed.

Whatever the attitude one takes, this is clear that finding reality conditions for SL(2, C)-
connection that adapted to a generic chiral deformation as such that the resulting Ur-
bantke metric is real with Lorentzian signature is an open question.

Having said that, we should also remark that there are many situations where the chiral
deformations behave perfectly sensibly and admit the usual interpretation in terms of a
real-valued space-time Lorentzian metric. This is typically the case when one considered
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solutions with particular symmetries, see for spherically symmetric solutions [Krasnov
and Shtanov, 2008| and |[Herfray et al., 2015] for anisotropic cosmological solutions. In
these situations the physical effects of the modification can be studied unambiguously,
and have been studied, in particular in a paper [Herfray et al., 2015] including the author
of this thesis. We refrained from describing the results of this paper here because it would
take us too far from the main line of development of this thesis

1.3.2 Variational Principles

In the above we gave a pure connection formulation of the Chiral deformation of GR
(I.3.5). This deformations where parametrised by a choice of deformation-function f, GR
itself being given by a particular representative (1.3.6). We chose this presentation as it
is the most compact one but many other descriptions of these chiral deformation exists.
In fact, there are just as many way of describing these deformations as there are chiral
formulations of GR. We now take some time to describe these formulations.

These different actions are easily seen to be equivalent to the above pure connection
action by integrating the relevant fields. As for for the GR ones, having the tools from
section I.1 and section 1.2 in hand it should be easy to the reader to convince himself
that they indeed describe GR metrics. For more details, see however the reference given
below.

Plebanski-like actions, S[A, V¥, B]:

The most basic way to describe these chiral deformations is in terms of the following

Lagragian

S[A, B,¥] = /Bi ANF'— (\IN + @5”) %Bi A B (1.3.9)
It is not a very economical action as is contains a lot of fields: a SU(2)-connection A
(which does not need to be a definite connection at this stage), a su(2)-valued two-form
B (again we do not need to require this triplet of two-forms to be a definite triplet) and
a symmetric traceless field: W) = i

Here A (V) is any function of U, it parametrise the chiral deformations.

In this form GR is simply the special case where A = cst. One then obtain the
Plebanski action for General Relativity see [Plebanski, 1977], [Capovilla et al., 1991b] for
the original references.

Despite the large number of fields involved, this formulation of the chiral deformation
of GR is however interesting for the intuitive picture it gives of these otherwise unintuitive
theories: For solutions to the Plebanski’s action, i.e A = cst, U¥ is just the self-dual part
of the curvature of the Einstein metric and A its cosmological constant. Accordingly one
can think of chiral deformations as theories where the cosmological constant in not a
constant any more but rather a function of the Weyl curvature. This also makes it clear
that any of these ‘chiral deformations’ will behave as GR in the regime of not too high
Weyl curvatures. In this regime one can indeed expand the function lambda of psi and
keep only the constant part. This shows that the chiral deformations are UV modifications
of GR that keep the number of its propagating DOF unchanged.
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Intermediate actions of the type S[A, V] :

Starting from the Plebanski-like action (1.3.9), the straightest way to see the equiva-
lence with the pure connection action (1.3.5) is to integrated out B and W in this order.
The resulting intermediate action is

S[A, V] = %/ ((\11 + @5)77‘ F'AFI (1.3.10)

Here again A (V) parametrise the deformation and GR is recovered for A = cst.
As an interesting variant, that was first described in [Herfray et al., 2015], one can use
a Lagrange multiplier u € Q*(M):

S[A, ju, M] = /Miﬂ'Fi ANFI4+ g (MU) (1.3.11)

Each constraint g (M g ) = 0 will give a different theory. In particular, one can recover
GR by considering
g(U)=Tr (M™")—A. (1.3.12)

Where A is a constant. Interestingly one can easily describe ‘anti-self-dual gravity’ in this
formulation. Taking as a constraint g (¢) = TrM, one indeed finds that the field equation
for M forces the connection to be perfect.

At this point, the equations obtained by varying M and p can formally be solved by
taking M = f(FAF) and p = f'(F A F) where f and f’ are some functions that can
in principle be computed from g (M). The resulting volume is of the form f”(F A F)
where f” is some function that can in principle be computed from the above action and
parametrizes the family of chiral deformations.

Intermediate actions of the type S[A, B

There is a longer, but just as interesting, way to obtain the pure connection formulation
of chiral deformations from (1.3.9). Instead of integrating out B one can indeed try to
integrate out W. The equations obtained by varying ¥ can indeed be formally solved as
U = f (B A B), where f is some function constructed from A (¢)) that we leave implicit.
The resulting action then is of the form

S[A, B] :/Tr(B/\F)+V(B/\B). (1.3.13)

This action reads like a ‘BF plus potential’ type of action. Once again the ‘potential’
V (B A B) is a free function parametrising the possible chiral deformations of GR. This
action was first discussed in [Krasnov, 2009a].

The particular potential necessary to describe GR is however not so easy to derive
from the Plebanski-like action and was rather guessed and first discussed in [Herfray and
Krasnov, 2015|(see however [Celada et al., 2016| for a derivation from a more complicated
Lagrangian):

) . — A1 2 . .
Ser[A, B] = /BZ AFi4 S =3 (Tr\/B A B) - %B’ A B (1.3.14)
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For generic € and A this action describes Einstein metrics with scalar curvature 4A. As
described in [Herfray and Krasnov, 2015], this action also has the following nice property:
for e = 0 one recovers again anti-self-dual gravity. Thus full gravity can be obtained from
self-dual gravity by the addition of the simple B A B term.

By formally integrating out the B field one recovers the pure connection formulation
of chiral deformations of GR. There is however an interesting intermediary step that is
worth considering.

It is indeed convenient to parametrise the B field in terms of the tetrad (eI )Ie0..3 asSOCi-

ated with its Urbantke metric 75 and symmetric traceless square-matrix M = MY 0, ®0;
such that .
B-— <M” + (w) S (e) oy (1.3.15)

where

, . ik
(Zz(e) =—e"Nel — %63 A ek> (1.3.16)
i€1,2,3

Note that there was an overall scaling freedom in the choice of the metric that we fixed

by taking the factor in front of the delta function to be one. (One can always choose \/ﬁ/
to be symmetric as it amounts to a particular identification of the SU(2)-bundle with the
bundle of self-dual two-forms for gg).

With this parametrisation, the above action reads,

S [A, M, e} - /zi(e) AF 4 MOSIAFI 4V (M) Vol(e). (1.3.17)

The self-dual Palatini-like action S[A, ¢

In order to integrate out M from (I.3.17), it is convenient to introduce the following
parametrisation for the curvature F(A),

F= (x/?jzi n Gijij) o (1.3.18)

Where X is again a square-matrix X = X%o; @ o;. Inserting this definition into (1.3.17)
we obtain,

S [A, M, e} - /zi(e) AF 4Tt ((1\7@) vV (1\7)) Vol(e). (1.3.19)

Varying with respect to M , one obtains a set of equations that can be formally solved as
M=f (X ) Vol(e), where again f is some function left implicit. The resulting action is
of the general form

S[A,e] = / Sie) A F 4 A (5(’) Vol(e) (1.3.20)
where A(X) is the free function parametrising the chiral deformations of GR. For A = cst

one recovers the self-dual Palatini action for GR with cosmological constant A. The
self-dual Palatini action (or Ashtekar action) really is the covariant side of the canonical
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description of gravity in terms of Ashtekar variables (see [Jacobson and Smolin, 1988],
[Peldan, 1994| for a precise derivation of the constraints).

From this formulation, one again recovers the interpretation that chiral deformation
of GR morally correspond to allowing the cosmological constant to be a function of the
(self-dual) weyl curvature.

Integrating out the tetrad gives the pure connection formulation. One the other hand,
integrating out A from (I1.3.20) gives a pure metric formulation of the chiral deformations.
This last formulation was discussed in [Krasnov, 2010]. In the case of GR this is however
easy and one obtains the usual Einstein Hilbert action.

Intermediate action of type S[A, M|

Starting back at (I.3.17) one can instead integrate out the metric. The resulting field
equations say that e is a tetrad for the Urbantke metric gg constructed from the curvature

and with volume form <Trm>2:

S [A, 1\7} - /MJ Sy AFI+V (]\7) (Tr F A F)2 . (1.3.21)
GR can be obtained as

S[|A, M] = / T g Te(M?) <Trm)2. (1.3.22)

For € # 0 this action describes gravity. In the case where ¢ = 0 this action describes
anti-self-dual gravity. See section 11.3.3 for a direct proof that this action indeed describe
gravity.



Twistors

In this chapter, we wish to clarify that twistor theory is closely related to the above
chiral formulations of GR. In particular, the description of self-dual Einstein metrics
in terms of SU(2)-connections has a very nice twistor counterpart in the form of the
Non-Linear-Graviton theorem. This perspective leads to a new proof on the Euclidean
version of this theorem. In turn this suggests new (though unsuccessful) approaches to
constructing a twistor action for GR. We first review the Euclidean Twistor space of a
Riemannian four dimensional manifold. This is done from a rather traditional ‘metric’
perspective. We then come back on these results and reinterpret them from a ‘connection’
point of view. Finally we close this chapter with a discussion on the still on-going chase
for a twistor action for full GR.

The twistor/space-time correspondence is usually presented in complexified terms, we
here decided to stick with the Euclidean signature. One the one hand this is coherent
with the preceding chapter where we saw that chiral description of GR accommodate most
easily this signature: then the relatively simple notion of definite connection (see definition
[.4) was enough to construct Euclidean metric. On the other hand, the Euclidean Twistor
space naturally has the structure of fibre bundle with structure group SU(2) and thus is
most suited to a description in terms of SU(2) connections.

II.1 Euclidean Twistor Space: Traditional Approach

We now review the geometry of the Twistor space T(M) associated with a Riemannian
manifold (M, g). In this Euclidean signature setting, this is just the primed spinor bundle
over M:

ma = T(M) 5 M. (IL.1.1)

The correspondence between space-time points and twistor-space points is then just a
projection: To any space-time z point corresponds a complex line P~1(z) ~ C? (parame-
trised by a spinor 74/) but a twistor-space point z is sent by the projection on a unique
space-time point x = P(z). This is as opposed to the complexified case where a point in
twistor-space was associated to a two-dimensional surface in (complexified)space-time. In
some sense the Euclidean perspective weaken the non-locality of the twistor construction.
This is unsatisfactory as non-locality was the most prominent feature of the theory. On
the other hand the twistor-space of a general complexified space-time only exists for anti-
self-dual metric while Euclidean twistor space always makes sense. It is then natural to
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start building up one’s intuition with the Euclidean case with the hope that new insight
obtained here can be generalised to other signatures.

What is more there is some beauty of its own to twistor theory in the Euclidean setting
(see e.g [Atiyah et al., 1978], [Woodhouse, 1985], [Lebrun, 2004] for nice expositions). First
in the (conformally) flat case, it is tightly tied up to the geometry of quaternions via the
Hopf bundle construction,

H— H?~T — HP' ~ 8§ (11.1.2)

Second, the Euclidean twistor space can be understood as the bundle of all possible (metric
compatible) almost complex structures on M. This leads to the possibility of constructing
a complex structure on T(M). We now briefly review how this works.

I1.1.1 The Flat Case from Quaternions

We first describe the flat twistor space i.e the twistor space T associated with the
conformal compactification §* of the four dimensional Euclidean space. In the flat case,
the twistor space has a beautiful interpretation in terms of quaternion geometry that we
NOwW review.

Our presentation will be non-standard in the following sense: In the usual (complexi-
fied) approach to twistor theory (see e.g [Huggett and Tod, 1986], [Penrose and Rindler,
1986], [Ward and Wells, 1990, [Mason and Woodhouse, 1991]) one usually goes as follows:
starting with a four dimensional complex vector space T ~ C*, ‘the twistor space’, one
construct the compactified (complex) space-time Mc¢ as the space of two-planes in T. This
gives the twistor correspondence where points in M¢ are planes in T and points in T are
a planes in M¢. Only then does one usually introduce a reality structure that picks up
a particular signature: in the Fuclidean case this is an anti-involution ~: T — T with
no fixed points. Euclidean space-time points [E are then taken to be planes in T that are
left invariant by this anti-involution. It turns out that through any point z in T passes
a unique such plane (this is the plane going through the origine, z an 2) which therefore
gives a projection P: T — [E.

As opposed to this approach, we here take (T, ~) as our starting point and interpret
~ as a quaternionic structure on T. Practically it allows to identify T with H?, then
the four-sphere is directly constructed by taking a quotient §* ~ HP'. This approach
culminates in the explicit realisation of the exceptional isomorphisms

Conf (S*) ~PSL(2,H), Isom (S*)~Sp(2)/{=£l}. (I1.1.3)

Even though the material here is known from experts, the presentation is somewhat
original in the sense that we are not aware that it appears anywhere as such in the
traditional literature on the subject (e.g [Atiyah et al., 1978], [Woodhouse, 1985]). See
however |Baez, 2002| for a general discussion on the division algebras and their relation
to exceptional isomorphisms.

Quaternion Geometry

They are many descriptions of a quaternions H (also called Hamilton’s numbers) : in
terms of matrix, spinors, or in more abstract terms. The most common starting point is
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to describe quaternions as hyper-complex numbers:
g=q+ig+je+kegel (I1.1.4)

Here (qo,q1,q2,q3) € R* while j,k are generalisations of the unit imaginary number i,
satisfying the algebra j> = k? = —1, ijk = —1 and anti-commuting which each others.
The quaternion algebra is synthesized in Table (II.1) and Figure (II.1).

1 i j k
1 1 i j k
i i -1 k 4
jl ] -k -1 i
k k j - -1

Table I1.1: Multiplication Rules for Quaternions. (This table reads from left to right. e.g:

ij =k.)

Figure II.1: A picture mnemonic for the multiplication of unit quaternions. E.g ij = k,
jk =1, etc.

An alternative useful point of view is to think of quaternions H as a complexification
of complex numbers C (by the same procedure octonions @ can be obtained as complexi-
fication of H). A practical way of doing the identification H ~ C? is to rewrite (11.1.4) as

q:a—'—JB) (aaﬁ):<QO+IQ1,Q2—IQ3)EC2 (1115)

One can define a conjugation operation (i.e an involution on H) as

I=q—-iq—j@—kg=a"—jp (I1.1.6)

For any p, ¢ € H, it satisfies pg = ¢p and gives a metric structure on quaternions through?

1

{pq) = 5 (qp +Pa) = podo + Prd1 + P2d2 + Pags. (I1.1.8)

As opposed to complex numbers, quaternions are non-commutative. They, however
preserve associativity (contrary to octonions) this allows for a matrix representation as

'In particular, sy e s ) )
lal = g5 +ai + a3 + a5 = |a|” +[B]". (IL.1.7)

and it follows that ¢~! = q/|q|* = %
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the matrix group U(2,C): In terms of the notation (II.1.5), this is easily done as

g (g _f> e U(2,C). (IL.1.9)

What is more, the isomorphism (II.1.9) also identifies unit quaternions U(1,H) (i.e such
that ¢qg = 1) with SU(2,C) matrices,

U(1,H) ~ SU(2,C). (I1.1.10)

It is also easy to see that the action of SU(2) x SU(2) ~ U(1,H) x U(1,H) on qua-
ternions defined by

(u,v).¢ =uqv, (u,v) € U(1,H) x U(1,H) (I1.1.11)

preserves the metric (I1.1.8) thus giving a concrete realisation of the isomorphism SO(4) ~
(SU(2) x SU(2)) /+I

One the other hand, if one restricts oneself to the left SU(2) action only, quaternions
can be identified with 2-spinors and their natural SU(2) action:

g~ (5) e C. (IL.1.12)

This is then clear that the ‘hat operation’, defined by

g=qj=p0"—ja" (I1.1.13)

is preserved by this action. Clearly the hat operation is an anti-involution.

Because we restricted ourselves to left SU(2) transformations there must be an invariant
hermitian metric. This is constructed as follows. First we define a skew-symmetric ‘dot
product’ on quaternions

2
o= C (I1.1.14)
(z,y) — xy
by the relation
Ty=19y+ jry Va,y € H. (I1.1.15)
In practical terms, if
r=a+jp and y=a+]jb (I1.1.16)
then
r.y = —y.x = ab— Pa. (I1.1.17)

Finally, combining the dot product with the hat operation we obtain the Hermitian
metric on quaternions

.y = a*a+ 5. (I1.1.18)
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Quaternionic Structure

In most situations we will not be working directly with quaternions but rather with
vector spaces equipped with a quaternion structure.

A quaternionic structure on a complex vector space V ~ C?" is given by an operator J
on V which is both anti-linear, J(Av) = A\*J(v),VA € C and an anti-involution J? = —1.
This is also common, and essentially equivalent, to describe a quaternionic structure
on a real vector space V ~ R* in terms of two almost complex structures I and J,
I? = J? = —1, which anti-commute I.J = —.JI. There is then a whole 2-sphere of almost
complex structure as any tensor of the form

xl +yJ + zJI, such that 2% + > + 22 =1

indeed squares to minus identity. We will however here stick to the first point of view.
One can always choose a basis on V ~ C?*" such that the action of J is

o b1
B —o]
X=].leC" » JX)=| .. [eC™ (11.1.19)
an B
571 _a;;

(compare with (I1.1.13)) In effect it realises the identification V ~ C?" ~ H",

a1
Ioh 1 ar + j5
X=]|..]leC — | .|= € H" (11.1.20)
ay, T an + 760
B

(compare with (II.1.5)). This identification really is defined up to the subgroup of
GL(2n,C) preserving J and is clearly isomorphic to GL(n,H). The action of J in the H"
representation is just a left multiplication by j, JX ~ Xj.

As a result a complex vector space V ~ C?" equipped with a quaternionic structure
has both a GL(n, H)-action on the left and a H-action on the right.

Let us now consider more structure in the form of a compatible skew-symmetric
complex-bilinear form on V ~ C?> w € A%*(V). This bilinear product is said to be
compatible with the quaternionic structure J if

w(J(),J() = (w(.,.)". (T1.1.21)
This is a useful condition because then
g(,.) =w(J(.),.) (I1.1.22)

is a Hermitian product on V ~ C?". In general it will not be definite. Through the iden-
tification V ~ C?" ~ H" the compatible metric g then becomes an Hermitian structure
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on H". By a proper choice of basis one can always put this metric in the canonical form
diag(si...sn), si € {—1,0,1}. Practically, in this basis 2,

g(X,Y)=> s (afa;+ b)) € C (11.1.23)
=1
then ‘7
w(X,Y) = s (b — Bia;) € C (I1.1.24)
=1
and altogether A
gXY)+Hjw(X,Y) =) sz € H (I1.1.25)

i=1
The subgroup of GL(2n, C) preserving both a two-form and a hermitian metric is USp(2n,C) =
U(2n,C)NSp(2n,C). From the discussion above it is clearly isomorphic to U(n, H). This
group is more commonly referred to as Sp(n):

Sp(n) ~ U(n,H) ~ U(2n,C) N Sp(2n, C).

Example: Euclidean Spinors The simplest example of quaternion structure is that
of a two dimensional complex vector space S ~ C? together with an anti-linear, anti-
involutive operator J. It is best to think of S as the space of spinors w® € S. In this
context we will write J = ~. Choosing an adapted basis identifies S with H as

S~C? = H
Ao YY) o w=a+ip (I1.1.26)
B
Then the hat operator is just quaternionic multiplication by j on the right,
S — H
oA B* - =] (I1.1.27)
_a* :

Transformations preserving J form the group GL(1,H) ~ C x SU(2,C).
If one makes a choice of compatible two-form € ® we obtain a hermitian product:

€(O,w) =aw? =a*a+ B =ww. (IT.1.28)
Here the compatibility condition (II.1.21) reads
€ap € My (R) (11129)

2Here,
ai

b1 Y1 ap +j b
Y=]|..|leC™m ~ .= € H”
a”rL y’n a'n/ +j b7l

n

3We raise and lower spinor indices according to the usual rules wy = wBepa, wA = eABypg.
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i.e is equivalent to € having real coordinates.

As already discussed the subgroup of GL(1,H) preserving the hermitian metric is
Sp(l) ~U(1,H) ~ SU(2,C).

We will come back rapidly to the next simplest case C* ~ H? as it is just the structure
of the twistor space of the four-sphere S*. Before that, it is best to introduce the last
piece of the puzzle and make a short detour to describe Hopf bundles.

Hopf Bundles

The Hopf bundles are fibre bundles made up of spheres only i.e of the form S? —
S? — S". It turns out that the only possible cases are

St < 8§35 §2
S3s §7 5 84
S” s S 5 88

If one defines S° to be the set of two points {—1,1} one could also add to this list
S0 — 8§t - 8!

but this is a bit of a singular case and we won’t consider it here.

The first of these Hopf bundles, the fibration of S3 by circles S! certainly is the most
famous and is pictured in Figure II.1.1.

That these Hopf bundles exist in finite numbers and for very special dimensions might
seem miraculous at first sight. The miracle will seem however less surprising once one
realises that it is directly related to the existence of complex number C, quaternions H
and octonions O respectively. Indeed Hopf bundles are easily seen to be consequences of
the ‘tautological bundles’ above the following projective spaces

C— C?— CP!
H — H? — HP!
0 — 0? - OP!.

So that there is only one miracle, the existence of division algebras. The existence of the
preceding bundles is also responsible for the existence of numerous ‘accidental isomor-
phisms’ of Lie groups in low dimensions. Of particular importance for us are:

Action on 8" n= 2 n=4
Conformal group SO(3,1) ~ PSL(2,C) SO(5,1) ~ PSL(2,H)
Isometry group  SO(3) = SU(2,C)/11 SO(B) ~ Sp(2)/11 =U(2,H)/ 11

The first and most famous Hopf bundle
St 8% 82

5This nice piece of art is due to Niles Johnson and can be found on the Wikipedia page untitled "Hopf
fibration".
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Figure I1.2: A pictural representation®of the simplest Hopf fibration: the three-sphere 3
is thought as a three-ball where all the points on the boundary are identified (i.e this is
essentially a variant of the stereographic projection). It is fibred by circles of different
colours. The two-sphere in the bottom-right corner represents the base space.

is thus related to complex numbers and its geometry can be nicely described in spinor
notation as we will soon recall. This is the simplest example and it is often illuminating
to keep it in mind when considering its higher dimensional counterpart. The second Hopf
bundle

S3— 8§75 84

is essentially the Euclidean twistor space over the four-sphere and is tied up with quater-
nions and will be our main interest. We will not touch to the last Hopf bundle (over the
eight-sphere).

Example: Euclidean Spinors and the Riemann Sphere As a baby example, let
us briefly consider the simplest case C — C? — CP!. The idea is to construct a metric
(resp a conformal metric) on the quotient space CP? such that the action of the isometry
group SU(2,C) (resp the conformal group PSL(2,C)) acts linearly on the total space C2.
It will serve as a warming up exercise as essentially the same methods will be used in the
slightly less trivial twistor construction.

Here again we take S ~ C? to be a two dimensional complex vector space that we think
of as the space of unprimed spinors. Thus let w? be coordinates on S. The particular
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dimension of S allows to use a skew-symmetric tensor €45 (defined up to a global factor)
to raise and lower indices. We can then construct the following metric (defined up to a
global scaling).6

1
Gopr = 5@.;; dw* ® wg dw®. (11.1.30)

This metric vanishes in the Euler directions (that generates complex rescaling)

0 o \"
_ A * A
E=w EWs E <w _awA) : (I1.1.31)

and what is more the Lie derivative along this directions just rescale the metric. One
therefore obtains a conformal metric on CP!, in fact it is conformally equivalent to the
round metric, see below. The subgroup of GL(2, C) preserving €45 is SL(2,C) ~ Sp(2,C).
As a result, the action of SL(2, C) on spinors preserves the metric (I1.1.30) and thus realises
the isomorphism PSL(2,C) ~ Conf(S?%) ~ SO(3,1).

We now suppose that S is equipped with a quaternionic structure ~: S — S and take
eap to be real so that the two structures are compatible. We then have a hermitian
product on S, (w,w) = Waw? = ©.w. Now consider

do? © wg dw?

WA
1 = 4R?
Jep 2 (d}.w)Q

(11.1.32)

As compare to (I1.1.30), the Lie derivative of this metric in the Euler directions (II1.1.31)
vanishes and it therefore descends to the round metric on CP'. Note that it does not
depend on the precise scaling of . The precise numerical factor in front of this expression
has been chosen so that the radius of §? is R.

Again Sp(1) = U(1,H) ~ SU(2) preserves the hermitian structure on S ~ H. This
thus realises

One could also have directly started with the metric on S ~ H
1, 1. N
gs = édw ®dw = §dw,4 © dw”. (I1.1.34)

playing with indices” this can be rewritten in a form that fit with the bunlde structure
C—C?>—CP!
Oadw? © wpdd®  Gad? © wpdw®

2 W.w 2 w.w

(I.1.35)

gs = —

i.e the first term is a metric along the fibre while the second is proportional to Fubini-Study
metric (I1.1.32) on CPL.

The Twistor space of S*

We now come to the twistor space of the four-sphere S§*. This is just the total space
of the Hopf bundle
H— H* - S*~ HP". (11.1.36)

6Here and thereafter A® B=A® B+ B® A.

TAll one needs is the identity 65 &.w = w? A

(:JB —w wpB.
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Just as in the above example we want to construct a metric (resp a conformal metric)
on HP! such that the isometry group Sp(2) (resp the conformal group SL(2,H)) acts
linearly.

As a starting point, we take the ‘flat twistor space’ T ~ C* to be a four dimensional
complex vector space. What is more, we take T to be equipped with a quaternionic
structure in the form of an anti-linear, anti-involutive, ‘hat’ operator

~: T —T. (I1.1.37)

As previously described, it allows us to identifies T with H? up to an action of GL(2,H) on
the left. We thus introduce quaternionic coordinates on T as (7,w) € H2 We will move
freely from complex coordinates Z* € T ~ C* to quaternionic ones (7,w) € T ~ H?. The
quaternionic structure also allows us to define a quaternion multiplication on the right:

VQ:Oz—I—jBEH, VZOLGT’ ZO‘q 1 ::MT’/B’Q/B: (,n.q 1,wq 1>' (11138)

Quotienting by this action we obtain points on S* ~ HP!. They are best written in terms
of homogeneous coordinates [Z¢] = [r,w].

Conformal Structure on S§* The four-sphere can now be given a conformally flat me-
tric as follows. Making use of the four dimensional skew-symmetric tensor €,5.5 (defined
up to a scale), we introduce a metric (also defined up to a global rescaling) on T as

st = €apys207Pd 27 @ dZ°. (I1.1.39)
Now this metric has four degenerate directions
0 L0 L0 0
A Z%— zZ , LY—. I1.1.40
oz’ oz’ oz YA ( )

These vector fields generate the action on the right of H on T (cf eq (I1.1.38)). What is
more it can be checked that the Lie derivative of (I1.1.39) along the two first vector fields
of (I1.1.40) just rescale the metric while the Lie derivative along the last two is zero. As
a result this metric descends to a non degenerate conformal metric on S* ~ HP"'.

This is clear that the GL(2,H) action on H? preserves this conformal metric. We will
see shortly that it is in fact the usual conformally flat metric on S*. It follows that the
action of PSL(2,H) on HP' ~ S* is just the action of the conformal group of the four
sphere Conf(4) ~ SO(5,1), thus realizing the exceptional isomorphisms

PSL(2,H) ~ SO(5,1). (I1.1.41)

It is now convenient to introduce stereographic coordinates on S* ~ HP'. Let us
choose a point I* € HP!, and take a properly adapted quaternionic coordinate system
such that I* = [0,1]. We can then write any point of HP'\{I} as [r,w] = [1, X]. Here
X € H are the stereographic coordinates on HP!'\{I} ~ R*. By construction, we have
the euclidean version of the incidence relation:

w=Xm. (I1.1.42)

The incidence relation relates point ‘space-time’ with points of the twistor space. Ma-
king use of this coordinates and restricting (I1.1.39) to m = ¢st, one indeed obtains the
conformally flat metric on S*,

ds* o< dX © dX. (I1.1.43)
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Infinity Twistor If, on top of the quaternionic structure, one is given an ‘infinity
twistor’ i.e a compatible complex-bilinear form on T, I € A%(T) such that I(V,Z) =
(1(Y, Z))>k one obtains an hermitian structure ¢(X,Y) = I(X,Y) on T. In a suitable
basis,

9(Z,2) = 1,32°7° = Tr + A Gw. (I1.1.44)
Here A € R is a parameter whose sign characterises the signature of the metric.

As a general rule we will write the contraction by the infinity twistor with a dot

product:

ZW = Z2W*°I,s, ~ VZ,WeT. (I1.1.45)

We can use the infinity twistor to fix the conformal scaling in (II.1.39)

Eaﬁv(;ZAaZBdZA’Y ® dZa

(2.2)2

This is indeed straightforward to check that the Lie derivative of this metric along the four
directions (II.1.40) vanishes. In other terms this metric is invariant under quaternionic
multiplication and therefore gives a proper metric on HLP!. In stereographic coordinates,

dX ©dX
2(1+A[X[]2)*

ggs =12 (I1.1.46)

gst = (I1.1.47)

Here the precise numerical factor has been chosen such that the scalar curvature is con-
stant with value 4A.

In general the metric (I1.1.46) is only well defined where Z.Z # 0. Points on HP' such
that Z.Z = 0 are then ‘at infinity’, thus the name of the infinity twistor. There are three
different possibilities:

For A = 0, the infinity twistor is degenerate and therefore factorises [,5 = f[afﬁ].
There is a unique point at infinity written [/®] and the metric (I1.1.46) is the flat metric
on R* ~ HP!'\{I}.

For A < 0, the infinity twistor has signature (1, 1) and there are "null directions". The
metric (I1.1.46) is the hyperbolic metric on the four-dimensionnal Poincarré ‘four-ball’.
Then the action of U (1, 1;H) on H? preserves this metric and it follows that U (1,1, H) /4
is the group of isometry of the hyperbolic space H?, i.e U (1,1, H) /15 ~ SO(4,1).

For A > 0, (I1.1.44) is the usual hermitian metric on H? and the metric (I1.1.46) is the
round metric on the four-sphere with radius R* = 3/A. The action of Sp(2) = U(2, H)
on T preserves this structure and thus the metric (I1.1.46). It follows that the action of
Sp(2)/+1r on HP! ~ S are isometries of S, thus realising the exceptional isomorphism

Sp(2) /41 = SO(5). (I1.1.48)

Note the very nice relationship between the sign of the curvature of the base space metric
(I1.1.47) and the signature of the quaternionic metric on the total space (I1.1.44). Inte-
restingly this says that the twistor space above H* naturally comes with a metric of split
signature (4,4).

Finally the ‘infinity twistor’ allows to define a metric on T,

gr = Lg dZ2° ©dZP = d7 © dr + A do © dw. (I1.1.49)
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In order to make sense of this metric, let us consider the patch
H— T~{Z st Z = (0,w)} — HP{I} (I1.1.50)
together with the following trivialisation

T{ZstZ=(0,w)} — HxHP\{I}

¢ (I1.1.51)
A — X
- /—1+A\X|2 X = ( ™, )

Then we can put the above metric in a form adapted to the fibre bundle structure,®

1 AdX ©dX
gr = =D7 ® D + ©

. II.1.52
2 2 (1+AlX[2)* ( )

Accordingly, the first term is just the flat metric on the fibre and the second term is the
conformally flat metric on the base with scalar curvature sgn (A) 4 x 12. When A > 0
this is the round metric with radius R? = 1/4.° Note that the signature of (I1.1.52) is
coherent with the signature of (I1.1.49) as it should.

Projective Twistor Space

We just described the essential geometry of the twistor space T ~ H? of §*. One
crucial feature here is that T ~ C* naturally is a four dimensional complex manifold.
Even more interesting is the projective Twistor space of S*, the space of complex lines of
T ~ C*ie PT ~ CP3.

The Fubini-Study metric gpr on CP? is defined from (I1.1.49) as follows:

2426 Z.dZ

I 7.7

+ (ZZ) - (I1.1.53)

This expression has the following interpretation, the twistor space T is the total space of
a complex line bundle over PT,
C—T— PT. (I1.1.54)

The metric on T (I1.1.53) accordingly split into a fibre metric and a base part.
Because we have a quaternionic structure, PT ~ CP? itself is fibre bundle

CP!' — CP? — §* (I1.1.55)
and the Fubiny-Study metric on PT can be refined into

Zd7 & ZdZ A

gpr = - — + ﬁgs[h (11.1.56)
2 (Z.Z)
8Here D7 = dr + iAm where A = %% is the self-dual part of the Levi-Civita connection.

%In general, the radius R? of the n-sphere is related to its scalar curvature through S = n(n —1)/R2.
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With the second term given by (I1.1.46). In stereographic coordinates:

7.Dr @ 7.D7 AdX ©dX
NV 5
2 (m.7) 2 (1+AIX]?)

gpr = (I1.1.57)

In the following, this metric will serve as a model for our curved twistor space con-
structions.

I11.1.2 4D Euclidean Space-Time, Complex structure and Spinor
Conventions

We now consider a general 4D Riemannian manifold (M, g). Let (61)160123 be a
orthonormal co-frame and (er);cq,,3 be a dual orthonormal frame. Everywl{e}é Latin
indices are raised and lowered with the Euclidean metric 7;; = diag (1,1,1,1).

One here wishes to establish the following point: A choice of spinor 74/ at a point x on
M amounts to a choice of almost complex structure on the tangent space at this point.
This will serve as a motivation for introducing, in the next section the twistor space T(M)
associated with M as the total space of the primed spinor bundle 74 — T(M) — M.
Indeed the twistor space can then be understood as the bundle of all possible almost
complex structure.

In our way to prove this (rather elementary) fact we will review the spinor notation
and elements of complex geometry, essentially with a view of fixing our conventions.
See for example [Penrose and Rindler, 1985] for more on spinors in four dimensions and
[Huygbrechts, 2005, Wells, 2008| for the geometry of complex manifolds.

Spinor notation

We already described in the previous sections how the isomorphism SO (4) ~ SU(2) x
SU(2)/41 can be made explicit by using identification H ~ R*. Then SU(2) actions
are just multiplications by unitary quaternions on the right and left respectively. It is
sometimes convenient to use this isomorphism in the most explicit way possible i.e in a
tensorial notation. This is the role of spinors.

Let V be a vector field on M

V=Ve. (I1.1.58)
In order to convert space-time indices into spinor ones let us introduce the tensor e’;‘A/
defined by the convention:

R S N TR e e
Vi = ( Vg2 —ivo - v3> ' (TT.1.59)

As we already discussed, the action of the orthogonal group on vector indices V! amounts
to an action of SU(2) x SU(2)/41 respectively acting on primed and unprimed indices.
Spinors indices are lowered and raised with the skew symmetric tensor

AB — g = NP =y = (_01 é) (IL.1.60)
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according to the usual convention:
as =aPegs, ot =Pag. (I1.1.61)

(with similar convention for primed spinors)
Altogether, this is such that

V2=V, = VAV (11.1.62)
Contraction of primed and unprimed spinors are treated on an equal footing,
B = axyp?, a.f = a Bt (I1.1.63)
(a, B) = G Y = 6.8 >0, (o, B) = @t = 4.8 > 0. (I1.1.64)
Now, let VA4 be in M, (C). In general,
V=V u € TeM (I1.1.65)

will describes a vector of the complezified tangent bundle. It will be of the form (I1.1.59)
and thus describe a real tangent vector if and only if for any 74" € S’ there exists w? € S

such that 1
— (wAfrA/ - @AWA’) . (IL.1.66)

/
yAA
.

Accordingly a choice of primed spinor 74 € S’ at a point + € M defines an almost

complex structure on 7'M, in the form of an identification of T'M, with S ~ C?:
TM, — S
Vo wh = VA, (I1.1.67)

Almost Complex Structure

We here very briefly recap some standard results of complex geometry that we will
need in the following.

Definition I1.1. An almost complex structure on a differentiable manifold M is a diffe-
rentiable endomorphism in the tangent bundle, J: TM — TM, such that J* = —Id.

A differentiable manifold with some fixed almost complex structure is called an almost
complex manifold.

We can extend J to the complexification of T'"M, Tc M and define the holomorphic
tangent bundle and anti-holomorphic tangent bundle as the eingenspaces of eigenvalues
+i and —1:

TW ={V eTcM|JV =iV} , T ={V €TcM | JV = —iV}.
An almost complex structure is thus equivalent to a decomposition:
TeM =T @ 7% (I11.1.68)
It also induces a decomposition of k-forms on M : QEM = @@ QPIM.

p+q=Fk

We will note 774 the projection QEM +— QP9M (here p + ¢ = k), most of the time we
will simply write this projection with a bar e.g if a € Q*(M),

al,, =7"%(a). (T1.1.69)

This is useful to define the Dolbeault operators:
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Definition I1.2. Dolbeault operators
Q= mPthiod: QPINM s QPTLIN and 0= Pt od: QPIM — QPITIDL

What is essential here is that we only used the almost complex structure to make
sense of these definitions. In particular we did not suppose that M has the structure of
a complex manifold. There are a priori no holomorphic coordinates. Of course if M is a
complex manifold with holomorphic coordinates {z'} then

0 0
Lons — 01ns — 1,0 _ I 0,1 _ I
T M_{azf}’ T M {821}’ O (M) {dz}, 0% (M) {dz}
but not every almost complex manifold is a complex manifold.

Definition I1.3. An almost complex manifold is called integrable if it is induced by a
complex structure.

The Newlander-Nirenberg theorem tells us when an almost complex structure is inte-
grable:

Theorem I1.4. Newlander-Nirenberg
The following statements are equivalent:

o The almost complex manifold M is integrable

[TOYM, T M) C TOYM, i.e T M is integrable as a distribution
=0
da=0a+0a,YVaecA k#£0

do = 0o+ 0a , ¥ a € A%

o T2 0da=0,VaecA%

One easily shows that the last five points are equivalent (cf e.g [Huygbrechts, 2005]),
but the highly non trivial part is to prove that they imply the existence of a complex
structure.

Almost complex structure on a Riemannian manifold

We are now interested in the almost complex structures on a Riemannian manifold
that are compatible with the metric structure.

Definition I1.5. An almost complex structure J is said to be compatible with a metric
g if for any vector fields X, Y

g (J(X), J(Y)) =g(X,Y). (I1.1.70)
As J* = —Id, this is equivalent to
w(X,Y) =g (J(X) ,Y) (I1.1.71)

being a two-form, g (J(X),Y) = — (J(Y), X).
In this thesis we will use the following terminology. It is essentially standard but there
seem to be fluctuations.
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Definition II.6.

A differentiable manifold with a compatible triplet (.J, g, w) of almost complex struc-
ture, metric and two-forms will be called and almost Hermitian manifold.

e An almost hermitian manifold with integrable complex structure will be called Her-
mitian.

e An almost hermitian manifold with a closed (symplectic) two-forms w will be called
almost Kahler.

e Finally a Kdhler manifold is an almost hermitian manifold with both integrable
complex structure and a closed two-form.

As any two-form in four dimension, w can be decomposed in terms of the self-dual and
anti-self-dual basis (see Appendix eq (B.1.2)):

w=a'Y + piY, (I1.1.72)

It just takes a direct calculation using the algebra of the sigma matrices (again given in
Appendix see eq(B.1.6)) to see that J* = —Id is equivalent to

w=a'Y with ofai=1 or w=pgY with Big =1. (I1.1.73)

We will call the first a ‘self-dual almost complex structures’ and the second ‘anti-self-dual
almost complex structures’.

We now concentrate on self-dual almost complex structures, these are the one which
preserve the orientation. The above shows that the space Z of almost complex structures
compatible with both the metric and orientation is isomorphic to the two-sphere S

S = AT > Z
mt —> O — 7Y el ®ey

Alternatively, Z ~ S? ~ CP!. We can make this even more explicit: Using spinor
notation every euclidean real two-form w can be written as:'°

. cAA" A BB
w == (ain) eas + Buba exw) — (IL.1.75)
(I.1.76)
= axbp SYP 4 BB 24P (I1.1.77)
19Tn particular in our conventions
saw _ o’ 2 il (IL.1.74)

This is such that it coincides with our convention for the ¥ matrices of the first chapter (see eq (B.1.3))
when one converts spinor indices according to the rule given in appendix (see eq (B.2.1)). This convention
also naturally allows to interpret self-dual two-forms as representation of su(2) see in the appendix eq
(A.2.3) and below.
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So that the isomorphism CP! ~ Z can be rewritten as

CP' AT > Z (I1.1.78)
A~ AB/ N B/

TA TR g LTTATT / AT /

LEvAB — A Qeap +i — A Qeap.

. T . T . T

[77'14/} = 2

It is then clear from (I1.1.78) that the set of (1,0)-vectors associated with a point
m € CP! is: (frA/eA/A> )
A€0,1

This is coherent with what we already saw above, see eq (I1.1.67)), a choice of primed

spinors 7" at a point € M decomposes the tangent space!'® :
TeM, = TYOM, &) T M,
(I1.1.79)
AA! _ yAA #E AA ~ B
Vv €A — Vv A ﬁeAB’ -V A ﬁeAB/.

The bundle over (M, g) of almost complex structures compatible both with the metric
and the orientation is called the projective Twistor bundle and its total space PT(M) is
called the projective Twistor space of M. As we just saw it is isomorphic to the bundle
of projective primed spinors.

11.1.3 The Twistor Space of a General Riemannian 4-manifold;
essential results

We are now in a position to describe the essential structure of the twistor space of a
Riemannian manifold. See [Woodhouse, 1985], [Atiyah et al., 1978| and reference therein
for the original results. We however presents these results in a way that is suitable for
our ‘pure connection’ generalisation.

The Twistor Space of a Riemannian manifold

Given a Riemannian manifold (M, g) the Twistor space of M, T(M), is the total space
of the primed bundle, i.e locally T(M) ~ S’ x M. The associated projective Twistor space
PT(M) is just T(M) with projectivised fibres, locally PT(M) ~ CP! x M.

The discussion from the previous section gives a more geometrical interpretation of the
projective twistor space of a Riemannian manifold as the bundle of the self-dual almost
complex structures over M. In particular a section of PT(M) is the same as a choice of
almost complex structure on M. Somehow working with PT (M) means that we are not
choosing and that we are considering all the possible almost complex structures on M at
the same time.

Because the space of almost complex structure at a point is itself a complex manifold,
CP!, it is no surprise that T(M) can be given an almost complex structure. Let us see
schematically how it can be done:

The self-dual part of the Levi-Civita connection, being a SU(2)-connection, induces a
connection on twistor space. Suppose we are at a point Z = (z,74/) € T, the Levi-Civita

"This comes again from the identity 64 5/ = -1 (ﬁAlﬂB’ - 7TA’¢B’>-
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connection then splits the tangent space T T in it’s vertical part V, naturally isomorphic
to TS’ ~ C?, and its horizontal part H, isomorphic to T, M:

T;T =V, & Hy ~T,5 & T,M (11.1.80)

We can now choose for 7.5’ ~ C? its canonical almost complex structure and for T, M
the almost complex structure associated with 7= (I1.1.79), all in all it defines an almost
complex on T(M). PT(M) naturally inherits this almost complex structure.

This almost complex structure turns out to be conformally invariant. What is more it
is integrable if and only if the base manifold is a anti-self-dual i.e if the self-dual part of
the Weyl tensor vanishes: W4 p/crpr = 0 (or, in the notations of the first section, ¥% = 0).

Before we come back to this construction in some more details, it is good to take some
time to describe the SU(2)-geometry of the twistor space.

SU(2)-Connection and the Geometry of the Twistor Space

We here emphasise the geometry induced on T(M) by a SU(2)-connection only. It will
serve as a starting point for our ‘connection approach’ to Twistor theory.
Accordingly, we now take ‘space-time’ to be a SU(2)-principal bundle

SU(2) - P —M (I1.1.81)
over a four dimensional manifold M equipped with a SU(2)-connection
D=d+ A. (I1.1.82)

We will describe this connection by its potential in a trivialisation, A = A’ o',
The associated ‘twistor space’ T(M) is simply the spinor bundle over M, this is an
associated vector bundle for our SU(2)-principal bundle:

C? < T(M) — M. (I1.1.83)

We will use adapted local coordinates (x* m4/) to describe this bundle. As always, we
raise and lower spinor indices with the anti-symmetric tensor €4 g (Here this is simply
the metric volume form preserved by the SU(2) action). Having SU(2) structure group,
the C? fibres of this bundle come equipped with a hermitian metric we represent by an
anti-linear, anti-involutive map,

2 2
~ { ¢ = C (I1.1.84)
TA > Ta
such that
a, € C? (a, B) = éua Y (11.1.85)

We already discussed the interpretation of the hat operator as a quaternionic structure
in the previous sections.
Making use of the fundamental representation of SU(2), the SU(2)-connection D =
d + A naturally acts as a connection on twistor space :
if
s{ M= T(M) (I1.1.86)
T = Ta (LU)



CHAPTER II. TWISTORS

is a section of T(M) then its covariant derivative with respect to A is
Vg =dray — AB/A/ T, AA,B/ S 5u(2). (11187)

Now we can also re-interpret this last equality in terms of forms: We define the one-forms
Dra € Q' (T(M)) on the full space of the bundle T(M) as

D’]TA/ = dﬂ'A/ — ABIA/ vz - Ql (T(M)) . (11188)

These are in fact the coordinates of a projection operator, the projection operator on the
vertical tangent space to T(M):

Proj = Dry ® 9 € End (T'T(M)) . (I1.1.89)
67@4/

The kernel of this operator is the horizontal distribution associated with the connection
D =d+ A. Thus (I1.1.87), (I1.1.88) corresponds to the usual dual points of view on con-
nections: either as a differential operators acting on sections or as a horizontal distribution
on the total space of the bundle.

The associated ‘projective twistor space’ PT(M) is the projectivised version of T (M),
with fibres isomorphic to CP*:

CP' — PT(M) — M. (I1.1.90)

We will most frequently use homogeneous coordinates (x“, [WA/]) to describe this bundle.
The main advantage with this notation is that section of O(n, m)-bundle over CP! (and
by extension over PT(M)) are equivalent to functions f(z,7) with homogeneity n in
T A and m in ﬁ'A/ .12

Similarly k-forms on PT(M) with values in O(n,m) are uniquely represented by k-
forms on PT(M) with homogeneity n in 74, m in T4 which vanishes on F = WA/%,

..
E_WA’afrA,'

o € QF (PT, O(n,m))
= (IL.1.91)
acQ(T) st Eia=0, E.ax=0, Lpa=na, Lza=mao.

Here E and E the ‘Euler vectors’, they generate the vertical tangent space of the complex
line bundle C — T(M) — PT(M).
As a concrete example,
7= mu D (I1.1.92)

represents a (O(2)-valued one-form on PT(M) but #,D7m?" does not represent a well
defined object on PT(M) as it does not vanish on Span (E,E)

We can use this fact to define a connection on the O(n,m) bundles. For suppose
f(z,ma) represents a section of the O(n,m) bundle, Lrf =nf, Lz = mf. Then we can
define its covariant derivative as

4 Dt DAY
dinm)f = df +n w f—-m & / (I1.1.93)
T T

12The O (n,m) bundles are ‘natural’ complex line bundle over CP!. Here one can take as a defini-
tion representations of their sections in terms of functions f (7, 7%) on C? with homogeneity n and m
respectively in 7 and 7. See however appendix C.1 for more details.
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It is a simple exercise to verify that £.d, m)f = 0, EJd(mm)f =0, Ledmm) [ =ndnmf,
Lzdmm)f =m dnm f and thus that d(, ) f indeed represents a O(n, m)-valued one-form
on PT(M).

This connection also preserves the following Hermitian metric on the O(n, m)-bundles:

a, € O(n,m), (a, By =a B (m) "™, (I1.1.94)

A simple calculation indeed shows that d, ) (7.@)" = 0. In particular, when restricted
to each CP! this connection is the natural Chern-connection on O(n) bundle induced by
the Kéhler structure.

This connection on O(n, m) bundle over PT(M) extends to a connection on O(n,m)-
valued k-forms in the usual way. It is for example instructive to check that,

diyr = F¥ g man?. (I1.1.95)

We thus see that the SU(2)-connection that we started with induces two natural
geometric objects on PT(M): a O(2)-valued one-form 7 = 74 D7 and a covariant
derivative d, ) on the O(n, m)-bundle over PT(M).

The Almost Complex Structure on T(M)

We now come back to a metric context. We take (M, g) to be a Riemannian manifold
and T(M) the associated twistor space. As we already explained the self-dual part of the
Levi-Civita connection gives a O(2)-valued one-form on PT(M) and a connection on the
O(n, m)-bundle over PT(M).

The almost complex structure on PT(M) can then be defined by the O(4)-valued
(3,0)-form

QS,O = 7TA/D7TA, VAN QOBIﬂ'B/ A 610,71'0/ (11196)

In fact there is another natural almost complex structures on T(M).

1

(7.7)?

QB,O —

(ﬁA,DﬁA’ A VB A elC’wC,) (I1.1.97)

We will respectively refer to these almost complex structures as ‘the integrable almost
complex structure of T(M) and ‘the non-integrable almost complex structure of T(M)’
because the first one can be integrable under certain conditions (c¢f Proposition I1.7) while
the second never is. In this section we will only consider the first one, see however the
end of section TV.2 for a discussion on the ‘non-integrable’ one.

As we already explained, in the presence of almost complex structure we can define
the projection Q" — Q@ (here p+q = r). For practical purpose, we will write this map

as a oz} ) For example,
~A' ~B’ A B
A'B’ _ T A'B’ . A T T
> (2,0) — 2w (m.7)2 % 02) — LT (T 7)2 (I1.1.98)
(A/ ~ B/)
A'B _ LT
by |(1’1) = —2X7T —(7”%)2 ,
(In order to lighten notations here and thereafter Y7 stands for 45 1 mp etc).
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Let us now turn to integrability. A direct calculation gives

d (e“’m> o =0 (I1.1.99)

A A

YT

(mw.7)2’

d7’|072 = F7T7T‘072 = Urnnm (I1.1.100)

so that we have the following

Proposition I1.7. The almost complex strucutre defined by the (3,0)-form (I1.1.96) is
integrable if and only if the metric on the base manifold is anti-self-dual i.e is the self dual
part of the Weyl tensor vanishes WAB'C'P" =0,

It turns out that this almost complex structure is conformally invariant. Because the
Weyl tensor is a conformal invariant the integrability condition of Prop (I.7) also is,
which is reassuring.

The Contact Structure on T(M)

In the context of an almost complex manifold, it is natural to introduce Dolbeault
operators on the space (79 [n, m] of O (n, m)-valued (p, ¢)-forms as

OP4n,m| —  QPFLa[n m) O n,m] — QP n,m]
0 : R
a = (dam@) | i1y a = (dwm@) | gi1)
(IL.1.101)
Then R
or = =2 U % + 11Ggp BAP (I1.1.102)

so that we have the following

Proposition I1.8. The O(2)-valued (1,0)-form 7 = 74 D7 is holomorphic if and only
iof the metric on the base is anti-self-dual Einstein.

Note that while the almost complex structure on PT(M) was conformally invariant, 7
which is directly related to the self-dual part of the Levi-Civita connection is not. This
is in line with the fact that the Einstein condition on metric is not conformally invariant.

The Kéhler Structure on T (M)

Let us now consider the following hermitian structure on PT(M) (compare with the
flat case (I1.1.52))

) N ~ R/
27TA/D7TA ® 7TB/D7TB 1 AA’
2

2 (m.7) 2
! ~ ~ ! ! AN
D ® 7 DB eAB' e ©esC e

— 4R2 ﬂ-A, -
2 (77.7%)2 T

g=4R

(I1.1.103)
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and
4iR? 7TA/D7TA/ /\7ATB/D7ATB/ AeAB/WB/ /\eAC’frc/
W = 41 — 1 —
2 (m.7)? T
A/ ~ ,\B/ B/cl ~
o [ Ta DTt AN Dn 1 X TR

A direct calculation shows the following

Proposition I1.9. The Kdhler form w on PT(M) is closed if and only if the metric on
the base is anti-self-dual Einstein with cosmological constant %.

Example: PT(S?) ~ CP? As we already saw, in the flat case the projective twistor
space is the projective space CP3. The above proposition just says that the Fubini-Study
metric (I1.1.57) is Kéhler. We here recall the form of this metric for convenience

7.DF O 7D dX Y ©dXan
2 (m.7)? 2(1+ |X]2)2 ’

grer = (I1.1.105)

Here the radii of both the 3-sphere (the fibre) and the 4-sphere (the base) is R = 1/2.
Accordingly, the scalar curvature of the base manifold has value 4 x 12.

11.1.4 The Non-Linear Graviton Theorem

In its original form, see [Penrose, 1999|, the aim of twistor theory was to realise solu-
tions of complicated differential equations on space-time in terms of simpler, essentially
free, geometrical data on the associated Twistor space. The key insight was holomorphi-
city. The original success of twistor theory takes the form of three theorems, each of these
being an equivalence, between

e solutions to the zero rest mass equations on Minkowski space and some cohomology
group on the associated twistor space (this is the ‘Penrose Transform’, see [Penrose,
1969])

e solutions to self-dual Yang Mills equations on Minkowski space and holomorphic
fibre bundle on twistor space (this is the ‘Ward transform’, see [Ward, 1977])

e solutions to self-dual Einstein equations and deformations of the complex structure
of the twistor space (this is the ‘non-linear graviton theorem’, see [Penrose, 1976|
and [Ward, 1980]).

In its original form, this program could not overcome the ‘googly problem’ i.e the difficulty
of describing anti-self-dual fields. However, taken in a broader sense, twistor theory have
proved a very fruitful framework, both for physicist and mathematicians, see |[Atiyah
et al., 2017] for an overview of its achievement over the last fifty years.

In this thesis we will be mainly concerned with the non-linear gravitons theorem for
anti-self-dual space-time with non-zero scalar curvature.

Theorem I1.10. Non-Linear Graviton Theorem [Penrose, 1976],|Ward, 1980]
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e There is a natural one-to-one correspondence between holomorphic conformal struc-
tures [g] on some four-dimensional (complex) manifold M whose self-dual Weyl
curvature vanishes, and three-dimensional complex manifolds PT (the twistor space)
containing a rational curve (a CP') with normal bundle N = O(1) & O(1).

o The existence of a conformal scale for which the trace-free Ricci tensor vanishes,
but for which the scalar curvature is non-vanishing, is equivalent to PT admitting a
holomorphic O(2)-valued one-form T such that T A dr # 0.

o What is more, there is a real FEuclidean slice in M if and only if there exrists an
anti-holomorphic involution ~: PT — PT with no fized points.

The topological requirements of the first point can typically be realised by small (but
finite) deformations of the complex structure of the flat twistor space.
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I1.2 Euclidean Twistor Theory Revisited: a Connection
Point of View

We now come back on some of the preceding results but from an unusual ‘connection
point of view’, the presentation and results from this section are taken from [Herfray,
2016].

Accordingly, we now take ‘space-time’ to be a SU(2)-principal bundle

SU(2) =P —-M (I1.2.1)
over a four dimensional manifold M equipped with a SU(2)-connection
D=d+A. (11.2.2)

We will describe this connection by its potential in a trivialisation, A = A’ o".

The associated ‘twistor space’ T(M) is simply the spinor bundle over M. In the
preceding section we already saw that this is enough to define both a O(2)-valued one-
form 7 = 74 D74 and a connection d,,,, on the O (n,m) line bundle.

I1.2.1 Symplectic and Almost Hermitian Structure on PT(M) from
a Definite Connection
We now restrict ourselves to the case of definite connections (I.4), ie the case where

X = F' N\ FJ /g, is a definite 3x3 conformal metric. This is in fact equivalent to the

requirement that no real 3-vector (Ui)iel 5.3 15 such that v* F* is a simple two-form:

A is a definite connection & Vol € R, ' FP A FT = v X d e 0.
A definite connection on PT(M) naturally gives a symplectic structure:

Proposition I1.11. Symplectic structure on PT(M) (Fine and Panov [Fine and Panov,
2008))

If A is a definite connection then ws = (n — m)_1 (d(nﬁm))
structure on PT(M).

? ., no# m, 1s a symplectic

Proof.
As d( ) is a covariant derivative on a line bundle, its curvature two-form

T

it DA — DA
Ws:(n_m)_l(d(n,m))zz(n_m)_ld(nﬁA i SCLES )

is automatically closed. A direct computation shows that,

’ R D! ~
7TA/D7TA /\7TB/D7TB FA/B/T&'A/TFB/

(7r.7Ar)2 T

(11.2.3)

Wg =

and therefore w, is independent of n and m. From this last expression one also sees that
non degeneracy is equivalent to the definiteness of the connection. O]
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We also have an almost Hermitian structure obtained by a modification of the classical
one described in the previous section and due to [Atiyah et al., 1978],[Woodhouse, 1985]:

Proposition I1.12. Almost Hermitian structure on PT (M)

If A is a definite connection then PT(M) can be given an almost Hermitian structure, i.e a
compatible triplet (Ja,wa, ga) of almost complex structure, two-form, and a Riemannian
metric. In general this triplet is neither Hermitian (J4 is not integrable) nor almost
Kihler (w4 is non degenerate but generically not closed).

Proof.

We first describe how to construct the almost complex structure J4 on PT(M) from a
definite connection: Because the connection is definite, one can make sense of the square
root (we take the positive square root) and inverse of X. Define ¥ = X 2% i, By
construction ¥ A ¥ oc §7. It implies that ¥, = 245 17mp is simple, ¥, A 32, = 0.
We now define the almost complex structure by the requirement that Q24 = 7 A X, be a
(3,0)-form. It makes sense as its kernel, {X st XQ4 = 0}, is 3 dimensional and thus
can be identified with the (0, 1)-distribution:

X eT"PT(M) < XJT7AS,=0. (11.2.4)

This construction has a simple metric interpretation: We already explained how to
construct a conformal, non degenerate, Euclidean metric from a definite connection. We
will note e?4" the associated null tetrad. It is then easy to see that the construction
leading to X' is in fact just an alternative way of constructing Y45