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I N T R O D U C T I O N

Microfluidics is defined as the science of manipulation of fluids in small volumes

(nanoliters to attoliters) in channels having at least one dimension between 10µm and

100µm[1, 2]. Born in the 80s, the field has known a seemingly unstoppable growth

so far, motivated by its great applicative potential. Indeed, artificial systems that can

produce chemical reactions automatically, with a great degree of control over each

parameter and consuming a ridiculous amount of reactant are dreams in many criti-

cal fields. These include chemical analysis, cellular biology, drug research, medicine,

DNA sequencing and even aerospace engineering. However, despite having so many

attractive applications in both academia and industry, microfluidics still has trouble

finding its way out of specialized laboratories. In 2013, Whitesides attributed this fact

to the complexity still required to produce and use this technology[3], which would

scare off potential users away. A recent study from the French directorate General for

Enterprise (Direction Générale des Entreprises)[4] deems that the future of the field

relies in a reduction of both cost and complexity of the use and fabrication of microflu-

idic systems. Thus, the investigation of new design and fabrication methods remain

a critical challenge to overcome for microfluidic technology, in order to get out of the

lab and inside the realm of industry.

In this context, the ambitious challenge of this thesis is to propose, comprehend

and establish new processes of fabrication of microchannels. The initial idea and the

guideline of this work is the use of the phenomenon of self-rolling of certain polymer

films to produce capillaries. More precisely, under appropriate chemical, thermal or

mechanical stimulation, some thin films of material will spontaneously bend. If the

film bends on a long length, a closed tube is formed. In this work, we aim at using

this mechanism to produce microfluidic capillaries with a non lithographic method.

A great advantage is that prior to rolling, what is to become the inner surface of the

tube is completely accessible and can be fully functionalized and characterized.

This introductive chapter focuses on the context of this work. In a first part, the field

of microfluidics, its history, applications, and the method of fabrication of microfluidic

systems are reviewed. In a second part, we will detail the field of self-rolled systems,

its inspirations, method designs and applications.

1
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(a) A very simple chip. (b) A more complex one.

Figure 1: Some examples of LoC devices. (a) Reproduced from [6]. (b) Reproduced from [7].

1 Microfluidics in technology

1.1 The potential of microfluidic applications

One of the greatest applications of microfluidics field is the micro total analytical

system(µTAS) or lab-on-a-chip (LoC). It is an artificial system that integrates one or

several laboratory functionnalities on a small, centimeter-large device, the "chip". It

can be considered as the fluidic branch of microelectromechanical systems (MEMS)

technology. These devices can be better understood by analogy with printed circuit

board from the field of microelectronics1. In place of conductive tracks, a LoC device

has fluidic channels with a typical width of a few tenth to a few hundreds of microns

in which fluid is transported at a few mLmin−1, and instead of logical operations, it

performs fluidic operations such as droplet generation or mixing. Some examples of

chips are shown in Figure 1.

LoC systems have many unique features that make them extremely attractive to

many fields.

• They can handle minute quantities of fluid, performing multiple tests and anal-

ysis from a single drop of sample. Moreover, the small size of the system is very

useful for its transport or integration. In particular, in the medical field, the de-

velopment of devices that can perform analysis without the need of a laboratory,

the so-called Point of Care (PoC) devices, has become a crucial challenge[8, 9, 10].

Surveillance of patients is also a crucial issue, and connected microfluidic objects

are envisioned [11, 12].

• The time scale associated with heat and mass transfer is considerably shorter,

which offers the possibility of higher efficiency and accuracy in microreactors[13,

1 This analogy runs deep and can actually be used practically for the fabrication of fluidic components [5]
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14]. In general, LoC devices allow a great degree of control because the circula-

tion of fluids is laminar. Conditions such as temperature, pH, ionic force or

concentrations can be finely tuned. This is particularly useful in sensitive appli-

cations such as protein crystallization [15, 16] or cellular biology [17, 18].

• In principle, one chip can handle hundreds of reactions per second automati-

cally2. This is of particular interest for fields requiring the screening of many

parameters such as drug research[19].

• Finally, many particular effects arise due to the increased influence of the surface.

For example, if a fluid is contained in a channel with fixed charges on its surface,

and if a difference of potential is applied, the fluid will advance as a "plug" i. e.

the fluid moves at the same speed everywhere in the channel. This is the electro

osmotic flow. This was used to greatly enhance the sensitivity of electrophoresis

and is one of the factors of success of microfluidics today[20, 21].

In addition to the previous example, many emerging fields are developing on the

basis of LoC technology, such as controlled emulsion fabrication[22, 23], genomic and

proteomic[24], organ-on-a-chip[25] or double emulsion fabrication[26].

The microfluidic technology is making its way to the industry. Among many suc-

cessful young companies, we can cite Elveflow, Fluigent, Dolomite and ChipShop, who

propose devices to handle microfluidic chips, but also companies selling products out-

side of the field. For example, Millidrop and HiFiBio propose products to automate

and parallelize reactions for drug screening. In another domain, MicroBrainBT devel-

ops a device that can be used to test neural treatments. The field of DNA sequencing

and manipulation is also very active, with the recent success of Depixus and DNA

Script.

1.2 A brief history of lab-on-a-chip technology

The middle of the 20
th century was marked by the invention of the first transistor.

In the 60s, the development of the photolithographic processes allowed to integrate

a number of devices that grew exponentially each year, following the well-known

Moore’s law. In 2017, leading industrial actors can produce chips which pack as much

as 100 million transistors per square millimeter! This led to the numerical revolution

that took place at the end of the century.

This never ending quest for miniaturization did not stop to electronic components.

At the end of the 70s, technology which can produce mobile micro-elements was de-

veloped. The resulting systems were called MEMS and were rapidly used in industry

as sensors and actuators.

2 Note that this is still considered as insufficient in synthesis applications as the amount of product per
reaction is small.
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Simultaneously, applications based on the manipulation of fluids at the microscale

were published.

In 1979, Terry et al.[27] produced a miniaturized column for gas chromatography. A

channel, 1.5m long and with a cross-section of 30x200µm, could be integrated on a

5 cm large silicon wafer. This device could be used to perform gas analysis in a matter

of seconds, which is typically three orders of magnitude faster than with devices

available at the time.

In 1981, Tuckerman et al.[28] used liquid coolant brought in microchannels to greatly

increase the efficiency of heat sinks on chips used for numerical calculus.

The development of the inkjet technology, i. e. the ability to produce microscale

ink drops on demand for printing applications, also took place on the same year, for

example with the work of Bassous et al.[29] in 1977 and Petersen et al.in 1979[30].

A decade later, the first reviews containing the word "microfluidic" were first published[31,

32, 33]. The idea of a system that would perform various chemical operations on a

small surface with a high throughput emerged. Those artificial systems were then

called micro liquid handling devices (MLHD) ,which quickly transformed into micro

total analysis system (µTAS)[34] or lab-on-a-chip (LoC).

LoC technology enjoyed a quick growth in the 2000s thanks to the so-called soft

lithography technique[35] brought by Georges Whiteside. Based on this method, a lot

of research followed to produce the very basic components required to create com-

plex their systems such as valves, micropumps, drop generators, micromixers, etc...

In particular, Stephen Quake developed microvalves and demonstrated there integra-

tion in large numbers on a single system[7, 36]. The generation of drops in two-phase

flow was also largely developed by Piotr Garstecki [37]. At this point, hopes that mi-

crofluidics would bring the same kind of revolution in chemistry and biology than the

transistor had in electronics were already high.

We can consider different indicators of growth of the field of microfluidics. Firstly,

in Figure 2 is displayed the number of publications per year containing the term "mi-

crofluidics" or "lab on a chip". The raise of interest for the domain is pretty clear.

Secondly, we can note that microfluidics attracted considerable attention in the in-

dustrial world. The French directorate General for Enterprise (Direction Générale des

Entreprises) regularly publishes a report about key technologies which are considered

as key actors of the economic growth. In the report published in 2012[38], the word

"microfluidic" appeared in a side note in the field of analytical chemistry. Only four

years later[4], it appears clearly in the summary and five pages of market analysis are

dedicated to it. Almost 600 start-ups were created during the past few years closely

related to the field of microfluidics. The market already represents billions3 of dollars

and enjoys a steady growth of 17% per year.

3 More than 10 billions of dollars in 2013



1 microfluidics in technology 5

1995 2000 2005 2010 2015

0

1000

2000

3000

4000

5000

6000

N
um

be
r 

of
 p

ub
lic

at
io

ns

Year
Figure 2: Number of published paper containing the term "microfluidic" over the years.

Many alternative methods have been proposed to produce LoC systems, but soft

lithography is still the most common fabrication technique nowadays. If the field

growth does not seem to slow down, the method is still a mostly manual process,

complex to apprehend for non specialists. This is considered by many as the main

factor limitating the expansion of microfluidic technology and today, a lot of hope is

directed towards alternate methods such as 3D printed microfluidic chips[39]. In the

next section, we review the existing methods with their pros and cons.

1.3 Methods of fabrication of LoC devices

a) Channel fabrication

Two categories of materials are mainly used to produce microfluidic channels.

The first one is silicon and glass. Many techniques can be directly inherited from the

mature field of microelectronics. Channels can be produced by etching processes and

can then be closed by glass bonding techniques. However, the use of these materials

is limitated by many disadvantages. Firstly, it is hard to produce thick structures,

which limitates the cross-section of the channels. Secondly, those materials are brittle

and silicon is not transparent which are serious problems in many cases. Finally, the

etching and bonding of glass or silicon are complicated and often require the use of

complex equipment and hazardous chemicals. Although we do not focus on these

materials in this work, more information can be found in a useful review by Abgrall

et al.[40].

A second category of materials, by far more popular and widely spread is polymers.

Cheap, easy to manipulate and with a broad range of properties, polymers have at-
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tracted considerable efforts to be used as material for LoC devices in the past ten years.

A common scheme is producing open grooves in a material, and sealing it against a

flat substrate. As explained in the previous section, the most common technique is

replica molding of polydimethylsiloxane or soft lithography[35]4. The steps of fabri-

cation of LoC devices by soft lithography are illustrated in Figure 3. The negative of

the desired channels, so-called the master, is produced by conventional photolitog-

raphy techniques, generally using a commercially available epoxy resin called SU8.

Polydimethylsiloxane(PDMS) is a viscous transparent polymer, liquid at room tem-

perature, which can be cross-linked irreversibly. PDMS is thus poured on the master

and cross-linked. It can then be unmolded easily thanks to its softness. The device is

generally sealed by activating the surface of PDMS and of a glass slide with plasma

technique and pressing them together, producing a very strong covalent bonding of

the surfaces. This method had a remarkable success in microfluidic laboratories, as it

is considerably simpler to implement than silicon based methods. However, it requires

a non negligible amount of manual work and has not convinced the industrial world5.

Figure 3: Steps of fabrication of LoC devices by soft lithography. Image from Elveflow’s web-
site.

In order to produce more industrially relevant, high throughput methods of fabri-

cation, considerable effort have been made for the use of thermoplastics. A notable

example is cyclic olefin copolymer (COC), which can be molded by hot embossing

4 The term soft lithography actually refers to a more general class of fabrication methods which couple
the use of soft polymers and photolithography.

5 Moreover, the use of organic or polymeric materials is not adapted to a use in the facilities that produce
silicon technology, mainly because of risks of contamination.
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against a machined metal master. The channels can then be closed by thermal or

chemical bonding on another piece of COC[41]. A lot of other processes follow the

same idea: first, grooves are defined by molding or etching, and then the channels

are closed. The methods of fabrication are numerous. Apart from replica molding

and embossing, microdrilling and laser ablation were successfully implemented. A lot

of research was also done to extend the range of usable materials. Notably, chips in

polymethylmethacrylate, polycarbonate, polyimide[42], teflon[43] and thiolene based

optical glue[44] can now be fabricated. However, those methods still require to close

the channel, which is still mostly done by hand.

The bonding step to close the chip is a major hindrance and one of the primary

source of failure of LoC systems. Hence, other methods were proposed that directly

produce closed channels. Multiple step lithographic methods were demonstrated, no-

tably based on the recent appearance of the so-called dry films[45] i. e. photosensitive

resin that can be applied by lamination. 3D printing is another alternative process

that also attracts considerable attention[39]. Finally, some methods based on sacrifi-

cial materials have been proposed. More details on these methods can be found in

Chapter IV.

b) Fluidic operations

Once the transport of the fluid is ensured, fluidic operations must be performed in

the channels. Typically, the shape of the channels6 can be used to alter the fluid flow

in the desired way. For example, a cross junction can be used to produce droplets

and a Y-junction can be used to produce a stable gradient. The surface state of the

channels is essential in most operations. For example, the production of oil droplets in

water requires hydrophilic channels. This is often a limitation when different surface

treatments are required in different part of the chip.

The functionalization of the surface is often a direct tool to perform various opera-

tions. For example, topographical patterns i. e. grooves can be used to alter fluid flow

in micromixing applications. Localized protein fouling or cell adhesion promoters can

be crucial for biological applications. Finally, integrating sensors and other electronic

components is an important issue in many cases. For example, electro-osmotic flow

generation or capacitive sensing require electrodes[46, 47].

Whereas tuning the shape only requires design effort during the lithography step,

functionalizing and patterning the small non flat surface of the channel afterward

proves quite difficult.

6 In the 2D plane of the lithography
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(a) Venus fly trap. (b) Asbestos rolled-up
crystals.

(c) Micelles in an emulsion.

Figure 4: (a) Mechanism of snapping of the carnivorous plant called the Venus fly trap. The
shape of the leave changes abruptly from convex into concave due to the swelling of
its external surface. Reproduced from [48](b) Rolled up asbestos crystals. The curva-
ture arises from mismatch in the crystal lattice. Reproduced from [49](c) Emulsions
of oil and water. Reproduced from [50]

c) Perspectives

Microfluidics is a growing and promising field which now seems just mature enough

to finally reveal its full potential. However, some challenges still remain to overcome.

One of them is to develop fabrication methods that will satisfy both research and in-

dustry. In particular, being able to build more complex systems with simpler processes

is a crucial issue for the development of the field.

2 Self-rolled systems

What do the carnivorous plants called the Venus fly trap, asbestos and emulsions have

in common ? They are few of the many occurrences of spontaneous bending in nature

(see Figure 4).

Spontaneous bending is one case of spontaneous deformation that result from stress

gradients in a film. For example, if a rigid film is fixed on a shrinking substrate, the

surface of the system will exhibit wrinkles[51, 52] or creases[53, 54]. The different types

of deformation are summed up in Figure 5 for the case of a bilayer system. The case

of spontaneous curvature deserves a particular attention as it does not just produce

surface modifications, but can actually be used to obtain three dimensional systems

from an initially flat shape. Although this phenomenon has been known for centuries,

with the invention of the bimetal thermostat by John Harrisson in 1759 [55], it was

only in the 90s that the mechanism started to be used as a biomimetic self-assembly

process for technology.

2.1 Rolling mechanisms

Spontaneous curvature occurs in thin films that undergo some mechanical stress gra-

dient. Most of the time, this stress does not arise from the actual application of an ex-
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Figure 5: In the case of a bilayer system, the expansion of the active layer can either lead to
wrinkling or creasing of the surface, or to bending of the whole system. Reproduced
from [56].

ternal mechanical stress but from other stimuli. For example, in 1909, Stoney studied

the deformation of silicon substrate on which metal had been deposited by electrol-

ysis [57]. In this case, residual stress due to the fabrication process remained in the

deposited metal, leading to the bending of the substrate. This stress field usually can-

not be modeled as a continuous mechanical deformation. Hence, it is often qualified

as "incompatible stress". More details will be given on this concept in Chapter II.

The mechanisms that can generate this stress field are numerous.

The stress can come from surface tensions. For example, Py et al.[58] have placed

a drop of water on a piece of paper and left it to evaporate. If the surface tension

overcomes the bending stiffness of the sheet, it will spontaneously wrap around the

drop. After partial evaporation of the liquid, the final shape of the system is controlled

by the initial shape cut in the film, leading to the concept of "capillary origami".

Lattice mismatch between crystalline planes is another phenomenon which can lead

to bending at the nanometric scale. This is the driving mechanism for the formation of

nanotubes and other curved structures in many minerals. Typically, in haloysite[59],

asbestos chrysotile[49] and imogolites[60], the surface of the tube is composed of two

layers with similar structures. However, the lattice parameter is smaller for the layer

inside the tube, leading to the generation of incompatible stress and ultimately to the

formation of tubes. This mechanism was later exploited to produce semi-conductor

based tubes. An example is the famous indium galium arsenide/galium arsenide tube

initially obtained by Prinz et al.[61].
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Another mechanism of stress at the nanoscale is steric hindrance. In interfaces such

as emulsions stabilized by surfactant[62, 50] or in particular lipid membranes[63],

molecules are packed densely. Asymmetries between the population of each layer or

orientation of the molecules can lead to spontaneous curvature.

Stress can be embedded in the material due to the fabrication procedure. This occurs

for example in thin layers of metal deposited by evaporation on a substrate[64]. It is a

usual fabrication process in the field of inorganic self-rolled systems.

Finally, the stress is most commonly generated by volume expansion or reduction

due to some external stimulus. Many stimuli are available: thermal expansion, pH,

humidity, piezoelectric effect, volume expansion due to phase change, inner pressure

field (e. g. pressure in embedded channels) and even illumination7.

If rolled-up technology is to be produced, an important issue to consider is the re-

versibility of the rolling procedure, which depends on the causal origin of the strain.

Reversible strain fields, which can be turned on and off, are suitable for the fabrica-

tion of actuators. On the other hand, irreversible strain can be used as a self-assembly

fabrication process because the equilibrium shape of the system changes permanently.

A third intermediate category regroups the deformations that undergo some incom-

patible strain reversibly but are maintained in their final position by a separate phe-

nomenon such as adhesion. This final configuration is the one that will be mainly

exploited in that work.

2.2 Self-rolled systems in technology

Spontaneous rolling, folding and bending lead to a great deal of applications in tech-

nology. Originally, self-rolled systems were mainly used to build miniaturized devices

using inorganic materials. A more recent trend and challenge is the fabrication of tube

in polymeric materials and hydrogels[66, 67, 68] in order to combine the numerous

possibilities of chemical functionalisation and the wide range of available properties

of polymeric materials with the easiness of the fabrication process [69]. In this section,

we propose a non exhaustive review of the most iconic technological development

over the past 20 years.

a) Inorganic materials

One of the oldest and most important application of spontaneous curvature is the

design of biosensor systems based on the deformation of a cantilever[70, 71, 72]. Flex-

ible cantilevers can be deflected or curved due to the effect of adsorbed molecules.

They were used to produce remarkably sensitive sensors to monitor, for example, the

mechanism of digestion of DNA or the diagnosis of prostate cancer[73].

7 A very useful review of well-known stimuli on polymeric materials was proposed by Liu et al.in 2016[65].
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(a) Self-rolled metamaterial. (b) Quantum dot. (c) Lithium enriched
C/Si/C tubes.

Figure 6: (a) Chiral metamaterial made of an array of rolled-up InGaAs/GaAs/Ti/Au micro-
helices. Reproduced from [81]. (b) Self rolled quantum dot. Reproduced from [82].
(c) Self-rolled Si/C/Si tubes enriched with lithium for the fabrication of high perfor-
mance batteries. Reproduced from [77].

As a method of fabrication, the tubular geometry of rolled-up systems can be used

to produce miniaturized electronic components such as inductors[74], capacitors[75,

76] or for the fabrication of high performance batteries[77]. The shape of the tube

can also be used to confine an electromagnetic wave in three dimensions. As such,

self rolled systems were used to produce electromagnetic resonators[78, 79], optical

metamaterials[80, 81] and quantum dots[82, 83, 84]. In some cases, rolled systems can

also be used for their magnetic properties [85].

In more exotic applications, rolled-up systems were used to guide nerve growth in

order to produce artificial neural circuit[86, 89]. The production of micro-needles[87]

was also proposed, as the integration of tubes in microfluidic devices[90]. Many fea-

tures could be integrated in the tube prior to its rolling, allowing hopes to use self-

rolled micro tubes both for the sampling and analysis of microorganisms, leading to

the concept of "lab-in-a-tube"[91]. Note, however, that the use of inorganic tubes in

(a) Neuron growth
guided by tubes.

(b) Microneedle filled
with DNA

(c) Catalytic motor.

Figure 7: (a) Time lapse pictures of a neuron growth guided by an array of silicon nitride tubes.
The growth cone of the axon is shown by the white arrow. Reproduced from [86]. (b)
Transmission optical microscopy of a tube made of InAs/GaAS filled with DNA
solution. Reproduced from [87]. (c) Self-rolled tube coated with platinum in oxigen
peroxide. The decomposition of the solution generates oxygen bubbles, propulsing
the tube. Reproduced from [88].
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fluid applications can be difficult because they are brittle and might break due to

capillary stress.

Finally, a last striking example in nanotechnology was initially proposed by Solovev

et al.[88, 92] : prior to rolling, the inside of a tube can be coated with platinum. When

these tubes are immersed into hydrogen peroxide, the solution decomposes, produc-

ing gaseous oxygen that propels the tube. These catalytic propulsor systems can in

principle be used to accomplish various tasks, such as transporting cargo, at the nano

scale !

b) Organic materials

Due to the available methods of fabrication of films, the rolled-up systems obtained

in polymers are larger than those in inorganic materials. Typically, while the latter

can produce tubes with diameters smaller than 10µm at most, the former can pro-

duce systems which diameters vary between a few tenths of microns[93] and several

millimeters[94].

Polymers are particularly attractive for biological applications. In particular, biodegrad-

able self-rolled systems were produced for tissue engineering applications[95](see Fig-

ure 8a). Self-rolled polymer tubes are considered as promising tools for microbiology

and drug-delivery systems[69, 96].

When spontaneous rolling occurs at a localized position on the film, it can turn

to spontaneous folding. This was used in various processes to produce controlled

origami like structures that spontaneously fold(see Figure 8b nad 8c). The careful

control of the order of folding and bending can lead to the control fabrication of

(a) Biodegradable
tubes.

(b) Thermoresponsive
polymer origami.

(c) Shape memory polymer
origami.

Figure 8: (a) Encapsulated yeast cells in a biodegradable self-rolled tube. Scale bar is 100µm.
Reproduced from [95]. (b) Folding of a polymeric film made of a layer of ther-
moresponsive hydrogel and a seconde layer of polymethylmethacrylate. Scale bar
is 200µm. The star shape of the film leads to the fabrication of pyramids. Repro-
duced from [97]. (c) Folding of a shape memory material by local light absorption.
When the film is illumninated by infrared light, only the surface of the tip below
the black region is heated above the glass transition temperature of the shape mem-
ory material, which then shrinks, provoking the local rolling i. e. the folding of the
structure. Reproduced from [98].
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(a) Curvature in elastomeric film. (b) A soft robotic hand.

Figure 9: Examples of soft robotic bending compounds pneumatically triggered. (a) Repro-
duced from [102]. (b) Reproduced from [101].

(a) Gold strips in a
rolled-up P4VP/PS
films.

(b) Rolled-up channels in PDMS with printed electrodes.

Figure 10: Examples of patterned self-rolled systems. (a)Reproduced from [66]. (b) Repro-
duced from [105].

very complex structures for various applications, such as encapsulation and release of

objects or origami robots fabrications[56, 97, 99, 98].

Soft robotics is another very active field that draws on spontaneous deformations.

It is the subfield of robotics which deals with the construction of robots in highly

deformable materials, aiming at mimicking living organisms such as octopuses or

worms[100]. For example, as illustrated in Figure 9, robotic soft "hands" or tentacles

can be produced and controlled by pneumatic actuation[101, 102].

Finally, a last important application is the ability to pattern and functionalize the

inner walls of the tube prior to rolling. Although partially adressed by inorganic rolled-

up technology, this is of particular interest in the case of polymeric tubes for microflu-

idic applications[66](see Figure 10). In particular, the research has at this point mainly

been focused on electrodes integration [66, 103, 104, 105].
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3 About this thesis

As was shown above, a recent and essential challenge for the spreading of microflu-

idic technology is the elaboration of new versatile fabrication methods. One of the

main issues to be addressed is to simplify the functionalization of the inner surface of

channels. The mechanism of spontaneous rolling seems to have a great potential, as

tubes can be obtained from flat surfaces that can be treated and characterized prior to

rolling.

The standard channel in lab-on-chip devices has a typical width of 100µm. Hence,

the use of self-rolled polymer films seems more appropriate in this case. Moreover, the

wide range of properties available for polymeric materials make them great candidates

for biological applications. As PDMS is the most widespread material in the academic

field of microfluidic nowadays, we use this material as the basis of our systems, in the

hope to make our device compatible with other technologies. The basis of this work

is an article published by Gomez et al.[105].

Rollin
g dire

cti
on

CHCl3

Capping
PDMS

P4VP

Figure 11: Stages of the rolling process.

The rolling process is described in Figure 11 and will be described in more detail in

Chapter III. Briefly, a thin layer of PDMS is produced by spin-coating. The surface of

the film is hardened by depositing another material or by oxidizing the surface. The

PDMS is then selectively swollen by exposure to solvent vapors, leading to rolling of

the film8.

In a first theoretical and numerical chapter, we dwell on the different aspects of

rolling. In particular, the relation between the curvature of the system and its different

parameters is examined numerically. An interesting feature of rolled systems is that

the swelling of the film is isotropic in-the-plane, while the curvature is in only one

direction i. e. the film rolls as a tube. We try to understand the influence of that isotropy

on the "standard" model proposed by Timoshenko[106].

The experimental parameters of the system are very ill-known. In particular, the

thickness of the thin layer of oxide at the surface of PDMS is not known at all. The

8 In the work published by Gomez et al.[105], the film is only oxidized and the solvent is chloroform.
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second chapter is dedicated to the measurement of this value. Measuring the thickness

of a fragile 100nm film on a soft insulating substrate by imaging techniques is difficult.

Hence, we probe the mechanical properties of the system by AFM nanoindentation.

These measurements must be interpreted carefully due to the composite nature of the

system.

In a third chapter, the rolling of PDMS films is finally investigated in detail. We

measure the inner diameter of the obtained capillaries as a function of thickness of

the film for different types of capping and solvent and confront it to the theory. In a

second part, we demonstrate the functionalization of the surface before rolling. Meth-

ods for topographical and chemical patterning are investigated. Finally, we propose

an alternate rolling method based on shape memory polymers.

Functionalized capillaries can thus be produced with self-rolling methods. However,

connecting the tubes and actually using them in microfluidic applications remained

challenging. Hence, in a fourth chapter, we propose an innovative method based on

inkjet printing of a sacrificial mold that allows the versatile fabrication of microfluidic

system while embedding fluidic systems such as rolled tube in the chip.





I
T H E O R E T I C A L B A S I S A N D T O O L S

This chapter deals with multiple theoretical aspects of spontaneous rolling. One of

the most important parameters to control is the final diameter of the rolled-up sys-

tem. The different aspects which can produce or influence spontaneous curvature are

first dwelled on in a first section. In particular, the widely-used formula proposed by

Timoshenko to predict the curvature of bilayer systems is introduced. This formula

considers unidirectional bending, which is not the case of the systems investigated in

this work. Hence, in a second section, a numerical study is used to assess the relevance

of the previous formula in more complex cases.

I.1 Some aspects of spontaneous rolling of thin films

I.1.1 Incompatible strains

As explained in the introduction chapter, large out-of-plane deformation of films can

be triggered by different stimuli. For example, a stress field can occur in the film due

to the differential swelling of the material; a strain can also be inherently present in

the film because of the drying of a layer. Most of the time, these strain fields do not

respect the compatibility condition of mechanics and are thus qualified as incompatible.

An incompatible strain tensor field is a strain field that does not derive from a contin-

uous, single-valued displacement field. Less formally, it can be understood as a strain

field that cannot be modeled as a virtual mechanical deformation (and a fortiori can-

not be caused by an actual mechanical action either). Formulated differently, it means

that there exists no rest position of the material in which the strain is uniformely zero.

An example of swelling which does not lead to incompatible strain is the swelling of

a beam between two walls. Indeed, even if the stress is caused by thermal expansion,

the problem can be modeled as the compression of the beam between the two walls.

However, if only the core of the beam swells, a discontinuous displacement field would

be necessary to model the problem mechanically (i. e. the compression of the core

only). This strain field would therefore be incompatible.

The general formalism used to describe incompatible strain is relatively complex[107,

108] and is out of the scope of this work. We will only use a very basic description in

which the strain can be finite in undeformed material.

Since the integration of a constant strain field is trivial, an incompatible strain field

will have some spatial variation. In a very crude and incomplete way, three types of

variations can occur in films, some examples of which are displayed in figure 12:

17
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• The strain gradient can either be in the plane of the film or normal to it (the

intermediate case will not be discussed here). In the former case, the length

scale of the variation l (which is approximately the inverse of the norm of the

gradient of the strain field) has to be compared to the size of the film L.

– If l is of the same order of magnitude as L, the deformation will be de-

termined mainly by the shape of the film. Bidirectional curvature is not

forbidden[109, 68, 110]. An example is displayed in figure 12b: A originally

flat disk is constrained to keep a constant perimeter while its surface will

change. If it expands, its surface to perimeter ratio changes and it will tend

to deform into a section of a sphere. If it shrinks, it will tend to deform

into a section of a hyperbola. (Note that other solutions can exist if non

homogeneous curvature is allowed.)

– If l� L, the strain field can be viewed as a pattern on the film, where some

regions expand (or shrink) and some do not. Large deformations can occur

in some cases, in particular if the regularity of this pattern induces long

scale correlation of the local deformation. For example, this is not the case

of an array of disks with constrained perimeters: if the surface of all those

disks expands, each disk can either bend in a section of a sphere by raising

its center or lowering it. Hence on average, the film will stay flat. However,

if the pattern is made of bands of material that will alternatively expand

and keep their area, as shown on figure 12c, the film will deform into a

tube with oscillating diameter with its axis perpendicular to the bands. This

allows the regions with a larger diameter to expand more than the regions

with a smaller diameter. This method was actually used to produced rolled-

up systems[111].

• If the strain variation is normal to the plane, its length scale has to be of the order

of magnitude of the thickness of the film or smaller. Curvature can be induced

as long as the symmetry about the film plane is broken, either because of the

strain field or of the material parameters. An example of this case is displayed

in figure 12d. This is the most common configuration used in literature, and in

particular in most examples of the introduction chapter.

Each of the many options presented above can be used for different applications.

However, in this work, emphasis is given to simplicity of system fabrication and small

scale. Since the curvature radius in the deformed film should scale linearly with l,

small in-plane strain field gradients (as in fig.12b) are less likely to produce large

curvatures. Large in plane strain field gradients (as in fig.12c) might require complex

lithographic fabrication methods. On the other hand, producing bilayer systems (as

in fig.12d) can often easily be done by material deposition techniques such as spin
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Before stimulus After stimulus

Material that 
can change 
volume

Material that 
cannot change 
volume

Expanded 
material

Shrinked 
material

Unchanged 
material

(a) Legend (b) Deformation of a disk with constant
perimeter

(c) Deformation of a striped film (d) Deformation of a bilayer

Figure 12: Different kinds of incompatible strain fields lead to different kinds of deformation.
(a) Legend of the following sketches. Grey parts can either swell (red) or shrink
(blue) while dark regions have their equilibrium size unchanged. (b) Example of
deformation induced by an in-plane strain inhomogeneity with l ∼ L: disk with
unchanging perimeter. (c) Example of deformation induced by in-plane strain in-
homogeneity with l � L: material swelling on bands. (d) Example of deformation
induced by normal strain inhomogeneity: Bilayer system.

coating, dip coating or Dr.Blade[112] methods. Moreover, the strain gradient must be

large for strong curvatures to be obtained. Thus, this last case will be studied in the

rest of this work.

I.1.2 Rolling of a bilayer - a simple approach

Among the previous configurations, the simplest problem of a bilayer system, most

relevant in practice, has been originally studied by Stoney et al.[57]. He proposed

Equation 1 for the bending curvature CStoney of a rigid substrate of thickness hs,

plane elastic modulus Ys due to the unidirectional swelling or shrinking of a thin film

of thickness hf and plane elastic modulus Yf. Note that Y = E
1−ν2

(see Section I.2.1)

where E and ν are the Young’s modulus and the Poisson’s ratio of the material. The

strain in the film is homogeneous1 and noted ε0. In the limit where hf � hs, Stoney

showed that the curvature can be expressed as:

CStoney =
6ε0(1+m)

Hnm2
(1)

where n = Yf
Ys

, m = hf
hs

and H = hs + hf is the total thickness.

1 In the previous section, we insisted on the fact that the incompatible strain field must have some vari-
ations. Note that in this case the strain is homogeneously equal to ε0 in the thin film and zero in the
substrate, so that there is indeed a variation.
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εxx

z z

εxx

Figure 13: Left: Initial distribution of the incompatible strain. Right: Strain distribution after
relaxation by bending. Note that on these sketches the origin of z is arbitrary for
clarity. However, in most expressions of this chapter, the origin of z is taken between
the two layers.

Timoshenko et al.[106] generalized this formula for films of comparable thicknesses.

Keeping the same notations as before, the initial situation is illustrated in Figure 13: a

bilayer system has its top layer (the film) at rest while the bottom layer (the substrate)

expands so that in the initial flat position, it undergoes a constant strain ε0. The film

is allowed two degrees of liberty. Firstly, the film can swell in-plane by a factor (1+ δ).

Secondly, the film can bend with a constant curvature radius R (and C its inverse)

taken at the origin of the normal axis (z = 0). In the limit of a thin plate, εzz, εxz and

εyz can be neglected2. Deformations in the y directions are neglected. Hence, only

the εxx component of the strain tensor is finite. In the limit of small curvature and

deformations, we write:

εxx(z) =

(
(1+ δ)(R− z)

R
− 1

)
− H(−z)ε0 ≈ −zC+ δ− H(−z)ε0 (2)

where H is the Heaviside function3. Note that the origin of z is taken between the two

layers.

The energy per surface area is given by E = 1
2

∫hf
−hs

dzYε2xx. The minimization of E

with respect to δ and C leads to:

1

2

(
−Yfh

2
s + Ysh

2
s

)
C+ (Yfhf + Yshs) δ = Yshsε0 (3)

−
1

3

(
Yfh

3
s + Ysh

3
s

)
C+

1

2

(
Yfh

2
s − Ysh

2
s

)
δ = −

1

2
Ysh

2
sε0 (4)

After a few manipulations, the solution can then be written:

C0 =
6ε0
H
F(n,m)

with F(n,m) =
(1+m)2

n−1m−1 +nm3 + 4m2 + 6m+ 4

(5)

which is Timoshenko formula.

2 or alternatively σzz,σxz and σyz. The choice of the approximation defines the value of the plane modulus
Y. See Section I.2.1 for more details.

3 H(z) = 1 if z > 0 and 0 otherwise.
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The function F(n,m) is called the Timoshenko function. It has a minimum inm = 1/
√
n.

Another interesting property is that F(n,m) = F(n−1,m−1), which just means that the

problem is identical if we turn the system over.

In the rest of this work, we will often use indifferently Timoshenko curvature C0 or

Timoshenko radius R0 = C−1
0 .

I.1.3 Influence of the substrate

The previous discussion is only valid for free films. The adhesion of the film on a

substrate (be it deformable or not) can have a substantial influence, even if the film

detaches itself during the rolling process.

Figure 14: Reproduced from Cendula et al.[113]. Strain relaxation modes for free hanging films.

If adhesion to the substrate is strong, the problem faced becomes a three layers one.

Depending on the substrate’s thickness and mechanical parameters, bending or wrin-

kling can occur. If the film detaches from the substrate on one side, we obtain a bilayer

film with one border clamped. The film cannot expand nor bend in the direction of

that border and wrinkling can therefore occur to change the effective length of the

film in that direction. This secondary relaxation mode competes with rolling. Cendula

et al.[113] provided a complete energetic analysis of these different possibilities and

showed that this competition can be responsible for the interruption of rolling. Fig.14

sums up the possibilities for free films with a clamped border. Finally, the presence

of the substrate can strongly alter the direction of rolling. This is discussed in more

detail in section Section I.2.4.d).

I.1.4 Why would there be only one rolling direction ?

A striking feature of bilayer systems is that they bend most of the time as tubes, i. e.

anisotropic structures, even if they are isotropic in the plane. The reason for that is

quite intuitive: a film cannot be mapped on a sphere without important elastic de-

formations. More precisely, if the lateral size of the film L is small compared to the

equilibrium Timoshenko radius R0, the cost of this mapping is negligible. However,

as L increases, the cost of producing an isotropic curvature will increase to the point

when it is less costly to bend in only one direction. Although this answer is quali-

tatively satisfying, it shows that the interactions between the two dimensions of the
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film are not negligible. The shape of the transition itself, and in particular the critical

size at which it occurs, can be of great importance for the synthesis of nanotubes [60]

or if structures which contains bidirectional curvatures (such as bent pipes) must be

fabricated.

This problem was analytically investigated in the case of a lens-shaped circular or

elliptical thin plate by Mansfield[114, 115] and Freund[116]. However, strong assump-

tions on the form of the displacement field are made. More recently, numerical inves-

tigations of the problem were proposed by Alben et al.[117] and Pezulla et al.[118],

focusing in particular on the direction of curvature. However, considering the transi-

tion as the comparison between two lengths has not been done yet.

In the context of this work, the next section is dedicated to a numerical investigation

of the transition between isotropic and anisotropic bending and aims, in particular, at

answering the following questions :

1. To what extent is Timoshenko’s formula still correct when tubes are obtained

from an isotropic stimulus4 ?

2. Can the transition be understood with reasonably simple scaling laws ?

3. Is the transition experimentally observable with the parameters of the PDMS

rolled tubes produced in Chapter III ?

I.2 Anisotropic and isotropic rolling

Simulations of the transition between isotropic and anisotropic bending have been

implemented. Many strategies can be considered. Molecular dynamics simulations can

be effectively used to simulate a network of springs which can be used to approximate

the bilayer[60]. Finite element softwares, such as Comsol Multiphysics, can be used to

solve mechanical equilibrium equations. However, both methods are typically very

slow.

In order to vary the many parameters of the transition, the chosen approach must

have a good computational efficiency.

In order to reduce greatly the size of the problem, we model it by a 2D energy

function from standard plate theory[119], adding a contribution due to incompatible

strain. A conjugate gradient descent algorithm is then used to minimize that energy

and find the rest positions of the plate.

I.2.1 Plate deformation model

In the following expressions, roman indices can take the values x,y or z and greek

letters indices can take the value x or y. The comma denotes derivation. For example,

4 We recall that considering only one component of the strain tensor, i. e. allowing deformations in only
one direction, was one of the major hypotheses of the demonstration in Section I.1.2.
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ui,j is the partial derivative of the i-coordinate of the field u respective to the j axis.

This can also be written ∂ui/∂xj.

The general expression of purely elastic mechanical energy E[120] is 5:

E =
1

2

∫∫∫
V

εijσijdV (6)

where V is the spatial domain of the system, ε and σ are the strain and stress tensors.

For isotropic continuous media, they are related by:

ε =
1+ ν

E
σ−

ν

E
tr(σ)1 (7)

where 1 is the identity tensor, E is the Young’s modulus and ν is the Poisson’s ratio

of the material. In that problem, the strain is the sum of two terms. An incompatible

strain, which cannot be related to a displacement field, and an elastic contribution.

The former is simply assumed to be a constant homogeneous equilibrium strain ε0 in

the top layer6 and zero in the bottom layer. The latter is related to the displacement

field uij using the definition of the strain tensor[120]:

εij = ε
incompatible
ij + εelasticij (8)

ε
incompatible
ij = −ε0H(z)δij (9)

εelasticij =
1

2
(ui,j + uj,i + uk,iuk,j) (10)

This volumetric integral is heavy to compute, and the 3D displacement field is heavy

to store. Following the work of Alben et al.[117], we integrate the above expression on

the normal axis7:

A first step of plate mechanics is to consider either a case of plane stress (σzz,σxz,σyz <<

σxx,σxy,σyy) or plane strain (εzz, εxz, εyz << εxx, εxy, εyy). In the former case, Equa-

tion 7 becomes : 
σxx

σyy

σxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν



εxx

εyy

εxy

 (11)

εzz = −
ν

E
(σxx + σyy); εxz = εyz = 0 (12)

5 As we consider a case with incompatible strain, the reference configuration is not a rest configuration.
The integrand shall be multiplied by

√
|g| where g is the metric tensor of the embedded deformation.

However, because if the incompatible strain is small compared to unity we have |g| ≈ 1.
6 In Section I.1.2, the substrate was expanding, while in the following demonstration the film is shrinking.

These situations are almost identical, ignoring a small homothetic planar deformation. This change was
done for a reason of comparison with existing data detailed in Section I.2.3.e).

7 Most details about the following demonstration in this section can be found in the reference book by
Audoly and Pomeau[121]. The only difference here is the inclusion of the incompatible strain term 9
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and in the latter case:
σxx

σyy

σxy

 =
E

(1− 2ν)(1+ ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2ν



εxx

εyy

εxy

 (13)

The second necessary step is to obtain a relation between the displacement and the

strain. In Kirchhof Love plate theory, the hypothesis is made that any vector normal to

the surface in its rest configuration remains normal after deformation (which means

again that εαz is neglected). The displacement field u can then be written at the lowest

order as:

uα = u0α − zuz,α (14)

uz = u
0
z (15)

where z ∈ [−hs;hf] and the superscript 0 refers to the displacement field in the plane

z = 0 i.e. u0(x,y) = u(x,y, 0). In the rest of the chapter, the superscript 0 is removed

to simplify the notation.

Using the formulation of strain in Equation 10, we obtain :

εαβ = εincompatibleαβ + εelasticαβ (16)

ε
incompatible
αβ = −ε0H(z)δαβ (17)

εelasticαβ = −zuz,αβ +
1

2
(uα,β + uβ,α) +

1

2
uz,αuz,β (18)

Note that some second order terms are neglected in Equation 18. Kirchhof Love plate

theory is built by neglecting all second order terms, leading to a linear model. How-

ever, it is valid only for very small out-of-plane deflections of the plate. In the above

expression, the quadratic term in uz is kept. Not neglecting this term leads to the

so-called Föppl von Karman model and allows the modeling of slightly larger defor-

mations. The necessity of this term while be discussed in the next section.

As a summary, we consider a bilayer with the following parameters:

• A surface domain Ω of surface S

• An unconstrained bottom layer of thickness hs, elastic modulii Es and νs

• A top layer of thickness hf, elastic modulii Ef and νf undergoing the incompat-

ible strain ε0.
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Its energy in a configuration described by the displacement field u0 (written only u in

the following discussions) is calculated with:

E =
1

2

∫∫
Ω

(∫hf
z=−hs

εαβσαβdz

)
dS (19)

where ε is obtained with equations 18, and σ is obtained with either equation 11 or

13. In the former case, which is used in this work, we have:

E =
1

2

∫∫
Ω

(∫hf
z=−hs

E

1− ν2
(ε2xx + ε

2
yy) +

2Eν

1− ν2
εxxεyy +

E

1+ ν
(ε2xy)dz

)
dS (20)

I.2.2 Minimal rolling model

The Equation 18 of strain has three components:

• The first term, proportional to the second derivative of uz corresponds to strain

induced by curvature of the plane.

• The second term, proportional to the first gradient of ux and uy, is the first

order term corresponding to the in-plane deformation of the bilayer. The non

linear term is also part of the in-plane deformation term and accounts for the

tangential deformation caused by a change in uz. These two terms form the

so-called membrane term.

• The last term is the incompatible strain contribution and accounts for the fact

that the undeformed position of the bilayer is not a rest position.

"Classical" plate theory usually considers either only the bending term or only the

first order terms in displacement. As the non linear term also introduces more com-

plexity in the calculation, it is natural to verify that it carries the physics we look

for.

Hence, we compare the expression of elastic strain in the case of the pure bending

as a cylinder and as a sphere, both of curvature C. In the former case the lowest order

expressions for the displacement field are:

x or r

z ux

uz
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uz =
1

2
Cx2 (21)

ux = −
1

6
C2x3 (22)

uy = 0 (23)

In the latter case, the cartesian coordinate x just has to be replaced by the radial

coordinate r:

uz =
1

2
Cr2 (24)

ur = −
1

6
C2r3 (25)

uθ = 0 (26)

with r2 = x2 + y2and uxα = ur
xα

r
(27)

The value of εxx can then be calculated as a function of coordinate and curvature

using different terms from Equation 18. The results are summed up in table 1. From

top to bottom are successively taken into account the curvature term, then the first

order term of membrane deformation and finally the non linear term. For the model

to be satisfying, we expect that only the curvature term is finite in the case of cylindri-

cal rolling, while isotropic bending as a sphere shall have an additional unfavorable

axisymmetric membrane contribution.

εxx Cylindrical rolling spherical rolling

−zuz,xx −zC -zC

−zuz,xx + ux,x −zC− 1
2C
2x2 −zC− 1

2C
2x2 − 1

6C
2y2

−zuz,xx + ux,x +
1
2u
2
z,x −zC −zC− 1

6C
2y2

Table 1: Expressions of the strain for pure rolling around a cylinder and around a sphere
taking different terms into account.

We can observe that taking only the curvature term into account (first line of Ta-

ble 1) does not make any difference between rolling as a cylinder or as a sphere. It is

therefore not enough to observe a transition.

On the other hand, he model taking only the first order part of the membrane term

(second line of Table 1) differentiates the two cases. However, we expected the mem-

brane term to be zero for the case of bending as a cylinder, since only pure bending

was considered. However, the cylinder case has a finite membrane term. Hence, it is

not consistent.

However, once the non linear term is added(third line of Table 1), rolling around

a cylinder corresponds to pure bending, while rolling around a sphere induces the

expected unfavorable term. Let’s note that as expected, the compression term in the

case of spherical bending has a radial symmetry : tr(ε) = εxx + εyy = −2zC− 1
6C
2r2.
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Finally, the necessity of this model can be understood when comparing the order of

magnitude of the different terms. The three main hypotheses are:

• The plate is thin, hence hs,hf, z << x,y, r

• The system mainly relaxes by curving, hence ux,uy << uz

• The deformation being smooth, the previous relation is conserved under deriva-

tion.

Note that this implies u2z,α << uz,αα, which is why the non linear term is usually ne-

glected, but not u2z,α << zuz,αα. In particular, as the radial size of the system increases,

the non linear term can dominate the curvature term.

I.2.3 Practical implementation

The energy given in equation 19 was minimized using a conjugate gradient algorithm[122].

Most of the code was written in C. Some utilitarian programs were written in Python

or Sage for easier use.

a) Discretization

The surface domain Ω was a rectangle of small side length L and aspect ratio A. It is

approximated by a regular mesh of size (2M+ 1)× (2N+ 1). We will note ∆x = L/2N

and ∆y = AL/2M. To each point of the mesh is assigned a 3D displacement vector

ui(x,y). The derivatives with respect to x and y are approximated by symmetrical

finite difference approximation so that the error is of second order in the size of the

mesh. The formulas with respect to x are shown below, but are identical for derivation

with respect to y. On borders, the first derivative is quadratically approximated while

the second derivative is approximated by its nearest neighbor. The second derivative

with respect to x and y is just seen as two successive finite differences:

∂ui
∂x

=


− 3
2ui(x)+2ui(x+∆x)−

1
2ui(x+2∆x)

∆x if x is on left border
1
2ui(x−2∆x)−2ui(x−∆x)+

3
2ui(x)

∆x if x is on right border
ui(x+∆x)−ui(x−∆x)

2∆x

∂2ui
∂x2

=


∂2ui
∂x2

(x+∆x)if x is on left border
∂2ui
∂x2

(x−∆x)if x is on right border
ui(x+∆x)−2ui(x)+ui(x−∆x)

∆x2

∂2ui
∂xy

=
∂∂ui∂y

∂x

(28)

The components of this vector field are the variables of the energy to be minimized.

However, some conditions need to be added to avoid degeneracy of the solution. In
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order to consider a solution without translation, the origin of each component of u

has to be fixed. In order to consider a solution without rotation, we require rot(u) = 0.

The latter can be written:

∂uz

∂xα
= 0 (29)

∂ux

∂y
=
∂uy

∂x
(30)

These conditions can be ensured by requiring :

ux(0,−∆y) = 0

uy(−∆x, 0) = 0

uz(0,∆y) = 0

uz(0,−∆y) = 0

uy(∆x, 0) =
∆x

∆y
ux(0,∆y)

uz(−∆x, 0) = uz(∆x, 0)

(31)

b) Energy value, gradient and Hessian

The conjugate gradient algorithm requires being able to evaluate the value of energy

and its gradient in a given configuration. Optionally, the Hessian can be used to im-

prove the convergence. The energy given in Equation 20, once the surface integral is

discretized, is of the form:

E =
∑

(x,y)∈mesh
E(ui(x,y),ui,α(x,y),uz,αβ(x,y)) (32)

In principle, using Equation 28, it shall be approximated in the form :

E =
∑

(x,y)∈mesh
f(ui(x,y)) (33)

The user would have to furnish an analytical expression of the coefficients ∂f/∂ui(x,y).

However, because of the many derivatives and quadratic terms in equations 18 and 19

the expression of f is very complex. Although the relation between f and E is trivial, f

is such a large polynomial that formal calculus library and software such as Sagemath

or Mathematica fail to return a valid C expression of its derivatives. Hence, the chain

rule used to calculate the derivatives of energy must be performed numerically. Note

that although it is very simple, it has a lot of particular cases. This step is one of the

most tedious parts of the code.
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Noting (Vk)k=1..12 the variables which can be either ui, ui,α or uz,αβ, only the

derivatives ∂E
∂Vk

, ∂2E
∂VkVk ′

and ∂Vk
∂ui(x,y) have to be known analytically, most of them being

zero. These coefficients are simple enough to be automatically calculated. A Sagemath

based Python program was written to automatically write a energy.c and energy.h file

containing all the required expressions and functions.

c) Energy minimization

The main code, written in C, is based on the conjugate gradient algorithm given in

Numerical recipe. The code has been edited to use double precision and the possibility

to use a preconditionner matrix every n steps has been added. In practice, the Hessian

of the energy is used every 100 steps.

The code executes the following steps :

• Read the parameters of the system (thicknesses, size, elastic moduli) and an

initial condition.

• Create a 2D array of double pointers variables and a double vector. The latter is the

vector on which the conjugate gradient will be applied, while the former is the

2D representation of the plate. Taking conditions 31 into account, the variable

contained in the former point to the different elements of the latter.

• From the knowledge of E contained in energy.c and energy.h, and from the defini-

tions 28 and their derivatives with respect to the variables ui(x,y), produce an

energy function, its gradient and hessian coefficients.

• Apply the conjugate gradient algorithm. Return and save the displacement field

at equilibrium.

This code has been optimized using standard C optimization[123].

In order to simplify the use of this code, a python routine has been implemented, to

automate the launching of the same code on a large set of parameters.

d) Initial condition

In the cases where one preferred bending direction was chosen, the only solutions

returned by the algorithm are bending in the x or y direction. The case of bending

along a diagonal, as numerically observed by Pezzulla et al.[118], was never observed8.

x or y can be forced to be the bending direction by starting with an initial condition

already curved in the desired axis. In order not to influence the result too much, the

radius was chosen to be ten times the Timoshenko radius, so that this initial condition

was reasonably far from the equilibrium. The obtained optimum value of the energy

could be used to verify that long-side bending is only a local minimum.

8 It could not be observed either with initial condition already bent in the diagonal direction.
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e) Reference parameters

In this work, the experimental system of interest spontaneously bends due to the

swelling of polydimethylsiloxane in solvent vapors. The corresponding ε0 can be as

large as 40% and at least of 5%. The radius of curvature is typically only ten times

larger than the thickness of the film. However, the energy function discussed above

is valid only for moderate curvature9 and small strains. This poses problems both in

terms of convergence speed and validity of the model.

We decided to carry these simulations using the same parameters as Alben et al.[117].

In that case, the simulations can be performed without trouble and their results can

be used as a base of comparison to assess the relevance of our results. We aim at

obtaining tendencies and scaling laws that could then be used to obtain orders of

magnitude in the case of the more complex system of this work.

Hence, in these simulations we use the following reference parameters:

• (hs,Es,νs) = (0.1, 83, 0.4)

• (hf,Ef,νf) = (0.45, 0.2, 0.4)

• ε0 = 0.02%

I.2.4 Results and discussion

The raw result of a simulation is a displacement field which minimizes the elastic

energy of the system. An example of final configuration of the film can be seen in the

top line of Figure 16 for various values of ε0. The curvature tensor field Cαβ can easily

be obtained from the Hessian of the normal displacement field uz.

A way to visualize the transition has to be chosen. Comparing the horizontal and

vertical curvatures Cxx and Cyy is a good and visual way to do so. However, as

this choice does not take Cxy into account, it is not independent from the choice of

referential and can lead to some misinterpretations. For example, an isotropic rolling

and an anisotropic rolling along direction (1,1) could be confused. A less visual but

more natural measure would make use of the matrix invariant i. e. the trace of C and

its determinant10. A natural choice is thus to consider the mean curvature M and

isotropy factor α defined as:

M = tr(C)/2 (34)

α = 4
det(C)

tr(C)2
(35)

9 More precisely, the radius of curvature shall be large compared to the lateral size of the film.
10 The determinant of the curvature matrix is simply the gaussian curvature of the film.
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Note that α = 1 implies that the curvature is isotropic while α = 0 implies that

it vanishes in one direction. In all further graphs, the average of these values are

considered without changing the notation to simplify it. In order to quantify the ho-

mogeneity of these values on the plate, the "standard deviation" of a variable V is

often noted : σV =< V2 > − < V >2. Of course, this is not a standard deviation in

a statistical sense (V is not a random variable). In order to avoid confusions, the term

"variations" will be used.

a) Transition in ε0
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Figure 15: Typical transition in ε0. The parameters are the same than in figure 16 with in
particular C0 = 1.61ε0 and L = 100. Top : Cyy (full) and Cxx (dashed). Bottom Left:
Isotropy factor α (full) and its variation σα(dashed). Bottom right : Average curvature
M(full) and its variation σM(dashed)

In Figure 16 are displayed 3D views and maps of Cxx, Cyy, M and α on 100x100

square plates for different values of ε0. The first result is that a transition is indeed

observed: For very small values of ε0, the curvature is completely homogeneous and

the isotropy factor α equals 1. When ε0 is increased, a transition occurs. Cyy remains

more or less homogeneous while Cxx goes down to zero, except on the left and right

borders where a double curvature region is observed. The complete transition is dis-
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Figure 16: Simulations of a 100x100 plate for different ε0 around the transition. In this case,
C0 = 1.61ε0 with (hf,Ef,νf) = (0.45, 0.2, 0.4) and (hs,Es,νs) = (0.1, 83, 0.4). The
circled zone is a double curvature region near the border.
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played both in term of Cii and of (M,α) in Figure 15. We note that the transition

occurs both in terms of the values of the parameters and in terms of their homogene-

ity on the plate.

b) Transitions in length
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Figure 17: Typical transition in L. The parameters are the same as in figure 18 with in particular
C0 = 3.23 × 10−4 and L = 100. Top : Cyy (full) and Cxx (dashed). Bottom Left:
Isotropy factor α (full) and its variation σα. Bottom right : Average curvature M and
its variation σM

As explained earlier, the transition must occur because of competition between the

isotropic incentive to bend and the membrane compressive strain induced by bending

a plane on a sphere. The former is related to Timoshenko curvature radius R0 and

the second to the size of the plate L. If L � R0, then bending the plane into a sphere

is not too energetically unfavorable. On the contrary if L � R0, then the bending

will preferably occur in only one direction. When ε0 is increased, C0 varies, causing

the transition. Here we examine the other transition i. e. keeping ε0 constant and

increasing L. Such a transition is displayed in color maps in figure 18. The complete

transition is displayed both in terms of Cii and of (M,α) in figure 17. As expected,

the curvature field before, during and after the transition looks very similar when



34 theoretical basis and tools

25
0

25 25
0
25

0.1

0.2

L = 59

20 0 20

20

0

20

Y
 c

u
rv

a
tu

re

20 0 20

20

0

20

X
 c

u
rv

a
tu

re

20 0 20

20

0

20

M
e
a
n
 c

u
rv

a
tu

re

20 0 20

20

0

20

Is
o
tr

o
p

y

0.
00

e+
00

3.
43

e-
04

0 1

25
0

25 25
0
25

0.1

0.2

0.3

L = 69

25 0 25

25 0 25

25 0 25

25 0 25

0.
00

e+
00

3.
51

e-
04

0 1

250 25
25
0
25

0.1
0.2

0.3

L = 79

25 0 25

25 0 25

25 0 25

25 0 25

0.
00

e+
00

3.
57

e-
04

0 1

250 25
25
0
25

0.2

0.4

L = 89

25 0 25

25 0 25

25 0 25

25 0 25

0.
00

e+
00

3.
93

e-
04

0 1

50
0

50 50
0

50

0.2

0.4

L = 99

50 25 0 25 50

50 25 0 25 50

50 25 0 25 50

50 25 0 25 50

0.
00

e+
00

4.
24

e-
04

0 1

Double curvature region

Figure 18: Simulations of a plate for different L around the transition. In this case, C0 = 3.23×
10−4 with (hf,Ef,νf) = (0.45, 0.2, 0.4) and (hs,Es,νs) = (0.1, 83, 0.4), ε0 = 0.0002.
The circled zone is a double curvature region near the border.
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Figure 19: Transition in ε0 for square plates of size 200x200 (red), 100x100 (black) and for a
rectangle of aspect ratio A = 2, 100x200(blue). As can be seen on the left, there is not
much difference in terms of average curvature for the different shapes. However,
as can be seen on the right, the transition occurs earlier for bigger systems. The
rectangular film is an intermediate case between the two sizes of square film.

compared to the transition in ε0. This is a clue to confirm that there exists a unique

transition parameter describing both transitions in ε0 and in L. A critical value of size

at which the transition occurs is defined by α(Lc) = 0.911.

A transition triggered by length can also be reached by changing only one length of

the plate i. e. by changing the aspect ratio. Such a transition is displayed in figure 20.

This is not stricto sensu a transition in length, because the shape of the plate is actually

changing. The transition occurs when the long length equals than the transition length

for the square. However, the transition is smoother since the surface of the plate which

is far away from the center (the most unfavorable one) is not as important.

On figure 19, the transition in ε0 is displayed for square plates of size 100x100,

200x200, and for a rectangle of aspect ratio A = 2, 100x200. We observe that the latter

is an intermediate case between the formers: the transition occurs at the same value

of L for the rectangle and the large square, but is smoother for the rectangle. This

transition is complicated and depends strongly of the small side length. It was not

studied in detail in this work. However, it raises the question of the influence of the

shape of the plate on the chosen bending direction.

c) Border width and critical size

On figures 16, 18 and 20, a region of double curvature at the edge of the film which

is parallel to the bending direction12 can be seen. This region is the part of the plate

which is not too influenced by the 2D nature of the system due to the proximity of

11 The value 0.9 is arbitrary and was chosen for better computational results.
12 We recall that the bending direction is y in all those simulations, this double curvature region is thus

visible in the maps of curvature along x.
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Figure 20: Simulations of a 100x(100A) plate for different A around the transition. In this case,
(hf,Ef,νf) = (0.45, 0.2, 0.4) and (hs,Es,νs) = (0.1, 83, 0.4), ε0 = 0.0001. The circled
zone is a double curvature region near the border.



I.2 anisotropic and isotropic rolling 37

30 40 50 60 70 80 90 100
Size L

10

15

20

25

30

35

40

45

50

Bo
rd

er
 re

gi
on

 th
ick

ne
ss

 
c

(a) Transition in size.
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(b) Transition in ε0.

Figure 21: Width of the double curvature border region λc as a function of the transi-
tion parameter. In these cases, (hf,Ef,νf) = (0.45, 0.2, 0.4) and (hs,Es,νs) =
(0.1, 83, 0.4).(a) Transition in size for ε0 = 0.01(blue), 0.02(red) and 0.04(black). The
size of the plate is 100x100. (b) Transition in ε0 for a square plate of size 200x200.

the edge. It seems legitimate to expect that its width λc is related to the critical size Lc
defined in Section I.2.4.b) and that it should thus not depend on L.

We define this value as λc = L/2 − r∗ with Cxx(r∗) = C0/2
13.Of course, before

and immediately after the transition, this value is not well defined. In Figure 21a,

this value is measured for different transitions in size with different values of ε0. Far

enough from the critical size, λc seems to converge to a constant value, hinting that,

as expected, it depends only on ε0. This dependency is displayed in Figure 21b. A

discussion in Section I.2.4.e) shows that one shall expect λc ∝ ε0−
1
2 . However, this is

not observed here. Note that the measurement of λc far from the transition, and in

particular at large ε0, is limited by the resolution of the mesh. Hence in this case, it

is possible that the measured values are strongly influenced by the proximity of the

transition.

d) Some digression on aspect ratio and bending direction

The bending direction after the transition as a function of aspect ratio of the film

was studied by Alben et al.[117] on rectangles and by more recently by Pezzulla et

al.[118]. Similarly to these studies, we obtained that short-side rolling is energetically

more favorable14, as can be seen on Figure 20. Alben et al.[117] had already observed

the double curvature border region. Thus, they postulated that an equivalent negative

line energy existed on borders parallel to the bending direction. The preferred bending

direction would thus be the one which minimizes that line energy.

13 Note that here Cxx is the local function and not the average of the curvature along the x direction. The
factor of 2 is arbitrary.

14 In these simulations, only vertical or horizontal bending could be observed. All other directions of bend-
ing were unstable. For aspect ratios close to one, Pezzulla et al.[118] observed bending in the direction of
diagonals. This was not the case in these simulations.
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Figure 22: Effect of borders orientation. The shape of the film is a rectangle with irregularily
cut borders. The amplitude of the irregularity is b. A region of double curvature can
exist in a region close to the border of thickness λc (in blue). This result in an equiv-
alent line energy carried by the borders of a smoothed shape shown in green on the
initial shapes and on their side. Double curvature can only be carried by borders
parallel to the bending direction. On the smoothed shape is shown the configu-
ration that minimizes the system energy. Red borders are double curved borders,
blue borders are curved only in the global bending direction. In (a), lambdac > b
so that the smoothed shape is mainly a rectangle and the border irregularities have
no influence. However, on (b), lambdac < b so that the actual border orientation is
taken into account to determine the bending direction.

If that last point is correct, it is not the aspect ratio of the shape which is related

to the bending direction but the orientation of the borders. Note however, that as

explained in the previous paragraph those "borders" actually have a width λc which

decreases when ε0 increases. The orientation of the borders to be considered are there-

fore the border of an approximated shape, neglecting small features of the border. This

is illustrated in Figure 22. The real shape of the film is a rectangle with its borders cut

as irregular triangles of typical size b. In Figure 22a, λc > b, hence these irregular fea-

tures of the border will not have any influence. More precisely, the "smoothed" shape

is still a rectangle, and we expect it to bend in the long side direction. However, in

Figure 22b, λc < b so that the smoothed shape still contains the irregularities. This

should considerably change the preferred bending direction, or at least change the

relevant notion of line energy. As λc is a function of ε0, this feature could lead to

interesting transitions in the bending direction of such systems.

However, the previous discussion is only fully relevant in the absence of effects

related to the presence of a substrate. For example, Stoychev et al.[124] showed that

an hydrogel-based bilayer shaped as a rectangle would prefer long-side rolling due to

effects of diffusion from the border.
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In the context of that work, the influence of the substrate cannot be neglected. More-

over, the simulation of small features of the border is complicated. Thus, this aspect

was not further investigated.

e) Parameters and scaling laws

In this section, the influence of other parameters on the transition is investigated.

We aim at obtaining qualitative information and, if possible, some scaling laws. More

precisely, we are looking for the relevant scaled parameters that describe the transition

as universally as possible.
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Figure 23: Transition in L, plotted in terms of Cxx, Cyy for square plates of size 100x100

with (right) and without(left) the scaled variables (Ĉ, L̂). In this case, (hf,Ef,νf) =
(0.45, 0.2, 0.4) and (hs,Es,νs) = (0.1, 83, 0.4), ε0 = 0.0001.(black),0.0002(blue) or
0.0004 (red)

influence of ε0

Changing ε0 for a transition in L is equivalent to changing Timoshenko curvature

C0 . As can be seen of figure 23, and as expected, the larger the value of ε0 the larger

the curvature. These curves can be interpreted as such :

• If L is very small, the elastic cost to deform the plate on a sphere is negligible.

Hence we have, Cxx,Cyy −−−→
L→0

C0 .

• The transition occurs because of the competition of two terms in equation 18:

the curvature term and the membrane term. In the case of isotropic bending, as

shown in Figure 23, the orders of magnitude of these terms are respectively HC0
and C20L

2

Hence we naturally use the following scaled variables:



40 theoretical basis and tools

Ĉ =
C

C0
(36)

L̂ = L

(
C0
H

) 1
2

(37)

As can be seen in figure 23, all three curves collapse in one, which validates the

proposed scaling for ε0. Note that no other parameter has been modified yet.

influence of compressibility

The previous scaling (Ĉ, L̂) does not take compressibility into account. Indeed, as

shown in Figure 24a, the limit curvature for small L is not Timoshenko curvature C0
in the case were the compressibility of the film and substrate is not the same. Moreover,

for identical Poisson’s ratios and large L, the final unidimensional curvature seems to

depend strongly on the Poisson’s ratio of the system, as can be seen in Figure 24b.
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Figure 24: Transition in L, plotted in term of Cxx, Cyy for square plates of size 100x100 with
the scaled variables (Ĉ, L̂). (a) The blue curve is the curvature of a film with νs =
νf = 0.4while the green curve is the curvature for νs = 0, νf = 0.4 i. e. the substrate
is compressible in the second case. As can be seen on the left the curvature does not
converge to C0 for small L in the latter case. (b) The blue curve is the curvature of
a film with νs = νf = 0.4 while the black curve is the curvature for νs = νf = 0
i. e. the film is compressible in the second case. The value of the unidimensional
curvature after the transition seems to be greatly influenced by the compressibility
of the system. In all cases, ε0 = 0.0002, (hf,Ef) = (0.45, 0.2) and (hs,Es) = (0.1, 83),
(νs,νf) = (0, 0.4), (0.4, 0.), (0, 0) or (0, 0.4)

In order to define more relevant order parameters which take the effect of compress-

ibility into account, the limit values of curvature are required. We first obtain the limit

value for small L:

Timoshenko curvature is obtained in the 1D limit case i. e. all the components of the

strain tensor are zero except for εxx. Hence it is the curvature of the system which

minimizes:
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E =

∫∫
Ω

dxdy

∫hf
−hs

dzYε2yy (38)

where Y = E
1−ν2

. (Remember that Y changes between the film and the substrate. We

recall that the factor n in the expression of C0 is n = Yf
Ys

.)

The complete expression of energy is:

E =

∫∫
Ω

dxdy

∫hf
−hs

dzY(ε2xx + ε
2
yy) + 2Y(1− ν)ε

2
xy + 2Yνεxxεyy (39)

where equations 19 and 11 have been used.

In the limit case L→ 0, we have εxy ≈ 0 and εxx = εyy, hence equation 39 becomes

:

E =

∫∫
Ω

dxdy

∫hf
−hs

dz2Y(1+ ν)(ε2yy) (40)

This equation is identical to equation 38. Hence the solution is C2D0 = C0(neff,m)

with : neff = n1−νf1−νs
.

Secondly, we examine the case of completely anisotropic bending case. Hence, εxy =

0 and εxx has no elastic contribution i. e. εxx = ε01z>0.Equation 39 becomes :

E =

∫∫
Ω

dxdy

∫hf
−hs

dzY(εyy + νε01z>0)
2 + (1− ν2)ε201z>0 (41)

Hence, when L is large Cyy = C∞ = (1+ νf)C0.

The scaling (Ĉ, L̂) shall be corrected to take those result into account. However, there

are now two choices for the curvature: C02D and C∞. As the transition approaches,

the ratio C∞/C2D0 should also appear. We propose a first definition:

C =
C

C2D0
(42)

L = L

((
C2D0

)2
C∞h

) 1
2

(43)

The transition with various compressibility with these scaled variables are displayed

in Figure 25a. With this scaling, the curves before the transition collapse in one. This

is a clue that the decrease of isotropic curvature is closely related to the ratio C∞/C2D0 .

However, the transition occurs earlier for incompressible curves.

The early decrease in curvature is cubic i. e. C ≈ 1−KL3 in the limit of small L as is

shown in grey on Figure 25a. The value of K does not depend on ε0, H, νf or νs, and

its value is 0.048 in this case.
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Figure 25: Transition in L, plotted in terms of Cxx, Cyy for square plates of size 100x100 with
the scaled variables (a) (C,L) described by equations 42 and 43, (b) (C,L) described
by equations 44 and 45. The dotted lines are the limit values C∞ of unidimensional
curvature for large L. In this case, ε0 = 0.0002, (hf,Ef) = (0.45, 0.2) and (hs,Es) =
(0.1, 83), (νs,νf) = (0, 0.4)(green), (0.4, 0.)(red), (0, 0)(black) or (0.4, 0.4)(blue). In (a),
the grey line is the fitted function C = 1−KL

3, with K=0.048.

A second definition is possible, where the ratio C∞/C2D0 plays an inverse role:

C =
C

C2D0
(44)

L = L

(
C2D0 C∞
C2D0 h

) 1
2

= L

(
C∞
h

) 1
2

(45)

As can be seen in Figure 25b, with this new scaling, the transition occurs nearly

simultaneously. This defines another quantity which does not depend on ε0, H, νf or

νs: a scaled critical size Lc = 2.7.

Each of the two scalings seem to be appropriate candidates to take satisfyingly

into account the effects of compressibility. More precisely, (C,L) seems to be relevant

before the transition, while (C,L) seems to be a better choice to describe the critical

length. Unfortunately, no universal order parameter could be obtained which takes

into account compressibility before, during and after the transition.

Finally, the last two relevant variables that have not been considered yet are the

ratios n and m.

influence of ratios n and m

Finally, the effect of n and m15 are observed. Figure 26 and 27 display the transition

in size for different values of these parameters with and without the scaling proposed

in equations 42 and 43. It can be observed that scaling is only partially successful in

15 We recall that n = Yf
Ys

is the ratio of reduced elastic moduli and m = hf
hs

is the ratio of thicknesses of the
film and substrate.
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the region of the transition. However, the limit values C02D and C∞ do not seem to

depend on n and m.
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Figure 26: Transition in L, plotted in terms of Cxx, Cyy for square plates of size 100x100 with
and without the scaled variables described by equations 42 and 43. Three values of n
are displayed: n = 2.4× 10−3(blue), n = 1.2× 10−3(black) and n = 4.8× 10−3(red).
In this case, ε0 = 0.0002, hf = 0.45 and hs = 0.1, (νs,νf) = (0.4, 0.4), and (Es,Ef) =
(83., 0.2) (blue), (83., 0.1) (black) or (41.5, 0.2) (red).
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Figure 27: Transition in L, plotted in terms of Cxx, Cyy for square plates of size 100x100

with (right) and without(left) the scaled variables described by equations 42 and 43.
Three values ofm are displayed, keeping H constant:m = 4.5(blue),m = 2.25(black)
and m = 9(red). In this case, ε0 = 0.0002, Ef = 0.2 and Es = 83, (νs,νf) = (0.4, 0.4),
and (hs,hf) = (0.1, 0.45) (blue), (0.17, 0.38) (black) or (0.055, 0.495) (red)

In order to characterize what happens in the transition, the previous parameters K

and Lc have been measured for many values of m and n, and for all four possible

choices of νs and νf. The results are plotted in Figure 28 as functions of either, m, n

or F(n,m)16. It can be seen that there is no evident universal relation that define K and

Lc as functions of n or m. However, due to the definition of K, a natural variable to

consider is KLc3. Indeed, the isotropic curvature at small L can be written:

16 We recall that F(n,m) is the Timoshenko function defined in Equation 5. Note that F(n,m) ∈ [0; 0.25] so
that the horizontal scale in Figure 28 could not be wider.
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C

C0
2D

= 1−KLc
3

(
L

Lc

C0
2D

C∞
)3

(46)

As can be seen in Figure 28c, the value of KLc3 is almost constant. This is a hint that

this value is an actual universal constant of this transition. In particular, its value shall

depend only on the shape of the film.
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Figure 28: Values of Lc and K for many couples of n and m. Here, H = 0.55, ε0 = 0.0002, and
both νf and nus can be either 0.5 or 0. No clear dependency can be seen when the
two variables are considered separately. However, as can be seen in (c), the value of
KLc

3 is almost constant.
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I.2.5 Conclusion

In this chapter, it was shown that the large out-of-plane deformation of thin films

driven by incompatible strain is a rich problem which can arise in various config-

urations. We focused on the case of a bilayer system, with one layer expanding or

shrinking. The famous formula proposed by Timoshenko was presented giving a rela-

tion between the radius of curvature of such a bilayer at equilibrium and its various

parameters. This formula is obtained in a relatively simple configuration, in particular

by reducing the problem to one dimension. However, in this work, the material that

expands does so isotropically. In this more complicated case a transition can occur

between isotropic and anisotropic bending of the film i. e. bending as a sphere or as a

tube.

Numerical simulations have been performed in order to better understand this tran-

sition. The set of parameters of the system is chosen close to values used in [117] for

the purpose of comparison. The three questions raised in Section I.1.4 can now be

answered:

1. Timoshenko’s formula is still relevant far from the transition i. e. when the film

bends as a tube up to a small correction factor. If the Poisson’s ratio ν of the

material is not zero, the actual curvature has to be multiplied by a factor (1+ ν).

However, note that this was only shown for a film which is free of substrate. The

relevance of this correction factor in the presence of a substrate would have to

be investigated.

2. By varying the parameters, different scaling variables that describe the transition

were successfully exhibited. In a scope wider than this work, we have demon-

strated the existence of a universal constant KLc3 which seems to depend only

on the shape of the film.

3. It is difficult to perform simulations for ε0 as large as for the fabrication of PDMS

rolled up tubes as in Chapter III. However, the numerical results obtained in

this chapter and the demonstrated scaling law can be used to affirm that the

critical size above which a PDMS film will bend as a tube is only a few times

its thickness. The validity of the model in that case is of course limited. But it

shows that in the context of this work, no transition should be observed.





II
M E C H A N I C A L I N V E S T I G AT I O N O F T H E H A R D C O AT I N G O F A

S O F T S U B S T R AT E B Y A F M N A N O I N D E N TAT I O N

As will be shown in Chapter III, the emphasis in this work is put on the rolling of

thin PDMS films covered by a thinner layer of oxide or chitosan. It was explained

in Chapter I that this process depends on the thickness and elastic moduli of this

hard capping. These values are not well known. The thickness of the oxide layer, in

particular, is still being a source of debate in the community. This chapter is dedicated

to its determination, independently of the rolling process. The typical thickness of this

film stands between a few tens to a few hundreds of nanometers, making it hard to

probe by conventional imaging techniques. We present a new method to measure the

thickness of this layer by nanoindentation.

II.1 Choice of the method

Due to the rise of PDMS based microtechnology, and of soft lithography in particular,

the surface alteration of PDMS by exposure to oxygen plasma has been investigated

from a chemical point of view by many methods, such as contact angle measurement

or X-ray spectroscopy [125, 126, 127]. However, measuring the mechanical character-

istics and thickness can be more challenging, especially due to the influence of the

substrate[128, 129].

Direct imaging of the thickness of the oxidized layer has been performed by trans-

mission electron microscopy[130]. However, this method requires the use of challeng-

ing techniques such as cryomicrotomy. Scanning electron microscopy has also been

attempted as shown in Section II.4.1.c), but the insulating nature of PDMS makes the

experiment difficult and the measurement unreliable.

In the case of soft substrate coated or covered with a harder surface, wrinkling tech-

niques have been implemented to investigate the layer properties [130, 131, 132]. If a

mechanically expanded soft material is coated by a harder material, wrinkles will form

at the surface when the stress is released as the lower layer shrinks. The wavelength of

these wrinkles is directly related to the ratio of the elastic moduli of the materials and

its measurement enables one to deduce the thickness of the top layer. A first issue of

this method is that it requires a good integrity of the layer on a quite large scale com-

pared to the wavelength of the wrinkle. In the particular case of oxidized PDMS, for

example, the appearance of surface cracks prevents the use of this method for larger

than ten minutes plasma exposure times at 30W [130]. A second problem is that the

47
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wrinkles method cannot be used as a simple non-destructive preliminary step to an-

other experiment. Indeed, the samples have to be dedicated to these measurements as

they will keep the wrinkles stigmata.

An alternative non destructive method for the nanoscale investigation of materials is

AFM nanoindentation [133], often coupled to the use of Hertz model [134]. It has been

demonstrated to be a valid approach in the case of thin homogeneous polymer films

[135, 136, 137]. During the last twenty years, it has also been used to study material

properties for various non-homogeneous systems such as microbubbles [138, 139, 140,

141], microcapsules [142, 143, 144], hollow colloidal particles [145, 146], nanotubes

[147], thin virus shells [148], polymer brushes, [149, 150] and even living cells [151,

152, 153]. The composite nature of the materials, either due to their shapes or to the

multiplicity of their compounds, complicates the interpretation of these measurements.

In that respect, computed elasticities determined from force-indentation curves are

only effective values, that need to be carefully interpreted.

The case of hard coating on a soft substrate has mainly been studied in the fields

of flexible electronics [154] and biological systems such as cells [155]. However these

approaches rely solely on the existence of two regimes: at very small indentation com-

pared to the layer thickness, only the surface is probed, whereas at large indentation,

only the bulk is probed. The transition not being understood very well, every piece of

information in it is lost. Hence, finding an easy way to interpret this apparent modulus

remains the critical challenge for the AFM nanoindentation reliability when composite

systems are probed.

As a first solution, finite element simulation has proven itself valid for the numerical

investigation of bilayers, coated materials or membranes, but this method can be de-

manding to implement for experimental purpose and costly in terms of computation

time[156, 157].

Alternatively, the particular case of a thin layer of material on a thick substrate in-

dented punctually was solved analytically by Li and Chou [158]. Based on their work,

Perriot and Barthel [159] proposed an exact integral formulation of the problem, gener-

alized to axisymetric indenter, which can be semi-analytically solved1. In this chapter,

we reformulate this model as a function of experimental parameters and call the re-

sulting method Coated Half-space Indentation Model of Elastic Response (CHIMER).

This model provides a relation between the geometrical parameters of the system (tip

geometry and film thickness), indentation depth and elastic moduli of the materials.

One can in principle extract the capping layer thickness from an indentation profile.

The advantages of the method are the non-necessity of dedicated samples and the

easiness and repeatability of measurements after a proper calibration is performed.

Moreover, the relevant scale of the measurement is the nanometer, which often re-

1 Note that this method is not restricted to the case of hard coating of a soft substrate.
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mains a limit for the usual imaging methods. Despite all these attractive features, this

model has never been tested experimentally to our knowledge.

This method is first applied here to measure the thickness of chitosan films on

PDMS substrate. As the chitosan thickness can be controlled by other means, this

system can be used as a model test to assess the validity of CHIMER. In a second

step, we use this method to measure the thickness of the oxidized layer of PDMS as a

function of exposure time up to one hour.

II.2 Theoretical considerations

II.2.1 AFM Nanoindentation and Hertz model

When performing AFM nanoindentation, an AFM cantilever is used as a force probe,

deflecting itself by interaction with the surface and indenting the sample if the latter is

soft enough. Typically, AFM nanoindentation provides deflection (D) vs. displacement

(z) of the cantilever as on Figure 29a. For a spherical tip of radius R, the relevant

quantities to describe the contact are the indentation δ i. e. the actual penetration of

the material by the AFM tip and the contact radius a as displayed in Figure 29b.

D
is

pl
ac

em
en

t
z

D
efl

ec
ti

on
D

(a) Displacement and deflection of a can-
tilever.

δ

F

(b) Indentation δ and contact radius a of the
tip on the indented material under a load
F.

Figure 29: Indentation of a material by spherical cantilever.

The indentation (δ) is calculated from (Equation 47):

δ = |z− z0|− |D−D0| (47)

where z0 and D0 are, respectively, the piezo-displacement and the cantilever deflec-

tion at the position where the tip-surface contact occurs. Note that the determination

of this contact point is very delicate and can lead to many difficulties in curve inter-

pretation. These aspects will be discussed in Section II.4.1.a).
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The loading force F is determined from the Hookean equation (48):

F = k(D−D0) (48)

where k is the spring constant of the AFM cantilever.

II.2.2 Indentation of homogeneous materials

a) Purely elastic contact

On homogeneous isotropic materials, in the purely elastic regime, the relation between

F and δ should only depend on the elastic properties of the material and the geom-

etry of the problem. In indentation problems, traditionally, the Young’s modulus E

and Poisson’s ratio ν are used. The former is the intensive analogous of a spring con-

stant and describes the relation between uniaxial stress and strain. The latter defines

a material’s compressibility and describes the deformation that occurs in a direction

perpendicular to the applied load.

The elastic contact of two spheres was initially solved by Hertz in 1882 [134]. A

detailed and very general derivation of the problem can be found in the book of

Landau and Lifchitz Theory of elasticity [120]. We provide below the derivation in the

simple case of the indentation of a planar material of elastic moduli E and ν by a rigid

sphere of radius R with a total load F under Hertz hypothesis:

• The contact radius a is small compared to the sphere radius i. e. a� R.

• There is no tangential stress i. e. the force and displacement are normal to the

plane.

• There is no traction force i. e. the substrate can only be pushed by the indenter.

In particular, this implies that there is no adhesion.

The vertical displacement of a point M of the surface is noted uz, its distance to

the origin is noted r and its cartesian coordinates are x and y. The vertical axis z is

taken downwards. The indentation is the displacement at the origin i. e. δ = uz(0).

Notations are summarized in Figure 30. The sphere is approximated by a paraboloid

(which is justified by the first hypothesis) so that in the contact area:

∀r < a,uz(r) = δ−
1

2R
r2 (49)

We consider the displacement ůz of a planar homogeneous material under a punc-

tual normal load F̊ at the origin, as described by Landau in the same course [120]:

ůz =
1− ν2

πE

F̊

r
(50)
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r

z

a uz(r)

Figure 30: Notations for the problem of an flat elastic substrate indented by a sphere.

The two last Hertz’s hypotheses justify the use of this function as the Green function

of the system. Hence, noting q(r) or q(x,y) the normal pressure field in the contact

area:

uz(x,y) =
1− ν2

πE

∫∫
q(x ′,y ′)√

(x− x ′)2 + (y− y ′)2
dx ′dy ′ (51)

where the integration is only taken in the contact region. Combining Equation 49 and

Equation 51, the following equality is obtained :

1− ν2

πE

∫∫
q(x ′,y ′)√

(x− x ′)2 + (y− y ′)2
dx ′dy ′ = δ−

1

2R
r2 (52)

A solution for q(r) must have the form2:

q(r) ∝
√
1−

r2

a2
(53)

where a is the contact radius. The constant is obtained by the identity:

F =

∫∫
q(r)dS (54)

which leads to:

q(r) =
3F

2πa2

√
1−

r2

a2
(55)

We can then note that:

∫∫ √
1− r2

a2√
(x− x ′)2 + (y− y ′)2

dx ′dy ′ =
π2a

2
−
π2

4a
r2 (56)

2 A complete justification is available in [120]



52 afm nanoindentation

Using 52 and 56 and because this relation shall is true for any r < a :

δ =
3F(1− ν2)

4aE
(57)

1

R
=
3F(1− ν2)

4a3E
(58)

from which we obtain the usual Hertz relations:

a =
√
Rδ (59)

F =
4

3

E

1− ν2
δ
3
2 (60)

Commonly, the reduced modulus E∗ is introduced :

E∗ =
E

1− ν2
(61)

The relation in Equation 60 can be used to determine E∗ if the force and indentation

are known. In particular, this requires the knowledge of the origin of indentation i. e.

of the contact point.

II.2.3 Beyond pure elasticity

The hypothesis of a purely elastic deformation often fails to describe the contact. Many

more complex models were thought to take other phenomena into account.

• Plasticity in the material is indicated by the hysteresis of the force-indentation

measurements when the load is too large. Oliver and Pharr proposed a method

to separate the elastic and the plastic part of the indentation process and still

recover the value of E from the retraction curve[160]. This is particularly relevant

for microindentation, where applied forces can reach fractions of newtons on

micrometric tips.

• Visco-elasticity corresponds to a coexistence of viscous and elastic phenomena

in the same material leading to time or frequency dependent behaviors, which

can typically be interpreted by Maxwell or Kelvin-Voigt models [161].

• Finally, adhesion and attractive forces can play an important role. If the tip is

attracted by the surface, a negative load is possible so that traction by the surface

occurs, which is opposed to one of Hertz’s hypotheses. In particular, the tip will

jump into contact with the surface when it is approached close enough so that an

effective negative indentation occurs. These phenomena are particularly relevant

at small scale and thus in the context of nanoindentation. Different models with

different predicted behaviors have been proposed 3.

3 A complete and synthetic review was written by Barthel [162]
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(a) Effect of adhesion at constant δ (b) Effect of adhesion at constant a.

Figure 31: Gap between the tip and surface as a function of distance to origin with and without
adhesion in the JKR model. Reproduced from [162]

L.Johnson, K. Kendall and A.D. Roberts proposed that adhesion can be understood

via the introduction of an energy contribution proportional to the contact area. As

illustrated in Figure 31, at a given indentation, energy is gained by increasing the

contact radius compared to the purely elastic case. In order to keep the contact area

constant, the tip must thus be raised by a certain amount δfp. The assumption of the

model was to model this retraction as a flat punch contribution. The relations4 of the

so called JKR model are:

F =
4E∗a3

3R
− 2
√
2πE∗γa3 (62)

δ =
a2

R
−

√
2πaγ

E∗
(63)

where γ is the adhesion energy per unit area.

The minimal force, usually understood as the pull out force necessary to detach the

tip from the sample is:

Fpo = −
3

2
πγR (64)

which allows the experimental determination of the parameter γ.

In practice, Chizhik et al.[163] proposed the following expression which suppresses

the variable a: 
E∗ =

3F1

4R
1
2 δ

3
2

[
1−

2

3

(
6πRγ

F1

) 1
2

] 1
3

F1 = F+ 3γπR+
√
6γπRF+ (3γπR)2

(65)

This model is particularly adapted to describe compliant and strongly adhesive sub-

strate at small indentation (see Figure 32).

4 A complete derivation can be found in [162].
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Another model was later on proposed by B.V.Derjaguin, V.Muller and Y.P.Toporov

(DMT), which considers the long range attractive forces outside the contact area. This

model, which will not be detailed here, is adapted to hard and poorly adhesive sub-

strates.

The relevance of the model for a given indentation process can be understood in

terms of the Tabor parameter µ [164]:

µ3 =
16Rγ2

9(E∗)2Z0
(66)

where Z0 is the distance of the tip to the surface at the equilibrium between elastic

and attractive forces. µ can be understood as a way to compare short range and long

range interactions. JKR is valid for µ > 10 while DMT is a better choice for µ < 0.1.

The transition regime in between was described by Maugis in 1992[165]. In any case,

for important loads, those corrections can be neglected5 and Hertz’s model is relevant.

The domain of validity of the different models is summed up in Figure 32.

Figure 32: Domains of validity of adhesion models reproduced from Johnson and Greenwood
work[166].

In this work, only the JKR and Hertz’s models will be discussed.

II.2.4 The case of coated half-space: inefficiency of a naive approach

If a layer of material is added in the problem, one has to consider one more length

scale (the thickness T of the layer) and one set of elastic properties. A crucial differ-

ence with the homogeneous case is that the Green function of the deformation will

not proportionally depend of these parameters. More precisely, when the purely elas-

tic punctual indentation of a homogeneous material is considered, Equation 50 shows

that uz(r) = uz(1)/r. This relation does not depend on the elastic parameters of the

material. This means that the shape of the deformation is purely dominated by ge-

5 If plasticity does not occur.
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ometrical considerations i. e. a harder material indented by a given load will look

identical to a twice harder material with twice the load. However, if there is a layer of

material at the surface, the shape of the deformation can strongly depend on its elastic

moduli (relative to the elastic moduli of the underlying bulk material.) and thickness.

(a) Two identical materials. (b) Top layer stiffer than the
substrate.

(c) Limit case of an infinitely
hard top layer.

Figure 33: Reduction of the contact radius with the increment of the top layer modulus. (a)In
the case of two layers of identical elastic moduli, the indentation is described by a
standard hertzian relation. However, if the top layer is (b)harder or even (c)infinitely
stiff, the deformation occurs mainly in the soft substrate so that the contact area is
effectively reduced.

An illustration of the problem is shown in fig. 33: in the case of the indentation of

an infinitely rigid layer on top of a soft substrate, the layer will uniformly be trans-

lated downwards, effectively transporting all of the deformation in the soft layer. In

that case, the contact radius with the top layer vanishes while the bulk is effectively

indented by a sample-size flat punch.

Because Equation 50 is not valid anymore, Equation 60 is not either. Note that this

implies that the relation between a and δ is also modified.

II.2.5 A semi-analytical method

a
δ

P

E∗bulk

E∗surface
T

(a) Indentation of a thin layer on a half-
space.

aeq
δ

F

E∗eq

(b) Indentation of an equivalent homoge-
neous material

Figure 34: Indentation of the real layered system and its equivalent homogeneous system. The
latter is defined by an equivalent modulus and a new contact radius, as the com-
pliance of the surface is different. The latter radius follows the standard Hertzian
relation aeq =

√
δR



56 afm nanoindentation

We consider the case of a semi-infinite substrate of material with Young’s modulus,

Poisson’s ratio and reduced modulus Ebulk, νbulk and E∗bulk respectively, covered

by a layer of thickness T of different Young’s modulus, Poisson’s ratio and reduced

modulus Esurface, νsurface and E∗surface respectively. The force measured as a func-

tion of mechanical displacement of a material probed by a well-defined tip can be

interpreted in terms of an equivalent modulus E∗eq i.e. the modulus measured with

the same indentation δ and load F with Equation 60) on an analogous homogeneous

material as in Figure 34:

E∗eq =
3F

4R
1
2 δ

3
2

(67)

Note that E∗eq does not have to be a constant during the indentation process.

If the top layer is very thick compared to the indentation depth all the effort is re-

leased in it and the equivalent modulus amounts to the reduced modulus E∗surface.

On the opposite, if it is extremely thin, most of the effort is dissipated in the under-

lying material and the equivalent modulus is the reduced modulus E∗bulk. Hence, the

measurement of an effective modulus can in principle be used to determine the ratio

δ/T by performing an interpolation between the two bulk moduli. This transition can

be understood thanks to a numerical model proposed by Perriot and Barthel [159]

which provides E∗eq and ∆ = δ(
a2

R

) as a function of a/T . This model is referred to as a

Coated Half-space Indentation Model of Elastic Response (CHIMER).

To describe the transition, we introduce a weight function Φ and a normalized

indentation ∆:

E∗eq = E∗bulk +Φ(E∗surface − E
∗
bulk) (68)

∆ =
δ(
a2

R

) (69)

With the hypothesis of Hertz model given in Section II.2.2.a), Li and Chou [158]

obtained the Green function C of a coated half-space system in axisymmetric loading

which replaces Equation 50. However, the relation is expressed between the Hankel

transform of the functions, defined in Equation 70.

∀f, f(k) =
∫∞
0

drrJ0(kr)f(r) (70)

where J0 is the 0
th order Bessel function. Note that f = f.
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The relation is then:

kūz(k) = C(kt)q̄(k) (71)

C(kt) =
2

E∗1

1+ 4bkte−2kt − abe−4kt

1− [a+ b+ 4b(kt)2]e−2kt + abe−4kt
(72)

a =
αγ3 − γ1
1+αγ3

,b =
α− 1

α+ γ1

α =
Efilm(1+ νsubstrat)

Esubstrat(1+ νfilm)

The relation 71 can be expressed in real space by performing an inverse Hankel

transform as:

uz(r) =

∫∞
0

q̄(k)dkJ0(kr)C(kt) (73)

Thus in principle, if the pressure field is known, the displacement can be calculated

and reciprocally. However, the boundary conditions of the problem are mixed. For

example for a spherical indenter: ∀r < a,uz(r) = δ−
1

2R
r2

∀r > a,q(r) = 0
(74)

Perriot and Barthel proposed the introduction of auxiliary fields g and θ defined as

cosine transforms of Hankel transforms of the initial functions:

g(s) =

∫∞
0

dkq̄(k)cos(ks) (75)

θ(s) =

∫∞
0

dkkū(k)cos(ks) (76)

which can be rewritten in real space as:

g(s) =

∫∞
s

dr
rq(r)√
(r2 − s2)

(77)

θ(s) =
d

ds

∫s
0

dr
ru(r)√
s2 − r2

(78)

The Equation 71 can then be rewritten as:

θ(s) =
2

π

∫∞
0

g(r)K(r, s)dr (79)

K(r, s) =
(∫∞
0

dkC(kT)cos(kr)cos(ks)

)
(80)
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Note that thanks to Equation 74, θ(s) is known for s < a and g(s) is zero when

s > a. We can write for any particular a:

∀a > 0, ∀s < a,
d

ds

∫s
0

dr
r
(
δ− 1

2Rr
2
)

√
s2 − r2

=
2

π

∫a
0

g(r)K(r, s)dr (81)

In this integral equation, the unknowns are δ and the function g(r) on the finite domain

[0;a]. It can then be numerically discretized and solved as a simple linear system of

equations. Using Equation 54 and 67 this effectively provides the couple of functions

E∗
(
λ, aT

)
and ∆

(
λ, aT

)
where λ is the set of all parameters considered as constant in

the previous demonstration (e. g. the thickness of the film, the radius of the tip and

the different elastic moduli of the bulk and surface).

In practice, the measured value is the indentation δexp so that the latter relation has

to be inverted to obtain a
(
δ
T

)
. This is done numerically using a simple dichotomic

search algorithm to solve δ
(
λ, aT

)
= δexp.

This model has been computed in Python and reproduces the transition of the

equivalent modulus as the ratio between the contact radius a and surface thickness T

evolves. The functions Φ
(
a
T

)
, Φ

(
δ
T

)
, a
(
δ
T

)
are displayed in Figure 35a, 35b and 35c

for different ratios Esurface/Ebulk.

One may note that the transition occurs over many orders of magnitude of inden-

tation, so that probing the whole transition seems unrealistic. However, if the system

is probed within the transition, the reduced modulus has a strong dependence on the

parameters of the system. Thus, if the reduced modulus and indentation are measured

experimentally as (
(
E∗eq

)
exp

, δexp), any variable from the subset λ (in particular the

thickness of the film T if all elastic moduli and the radius of the tip are known) can be

measured by solving:

E∗eq

(
λ,
a

T

(
δexp

T

))
=
(
E∗eq

)
exp

(82)

In theory, this last equation can be used to fit the measured data. In practice this

is numerically heavy, so that other fitting methods are preferred to obtain only one

couple of values (
(
E∗eq

)
exp

, δexp) on which the CHIMER algorithm is applied. These

fitting methods are discussed in the next section.

II.3 Experimental

II.3.1 Atomic Force Microscopy

We used an AFM Dimension V (Digital Instruments / Veeco-Bruker , Santa Barbara,

CA, USA) equipped with an optical microscope(x10). All force measurements are per-

formed in air. Particular attention is paid to cantilever calibration and tip geometry

measurement as described in the following section. Three different AFM cantilevers

have been used in order to probe mechanical properties from 1 MPa to 10 GPa: DNP
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Figure 35: Transition as predicted by CHIMER for different modulus mismatch.
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(Bruker, 0.06-0.7 N.m−1), FESPA (Bruker, 1-5 N.m−1) and B1-NCHR (Nanotools, 42

N.m−1). For indentation use, the tip can be viewed as a paraboloid of radius precisely

characterized using deconvolution algorithms and found to be in between 10 to 20

nm.

a) Calibration of the Cantilever Spring Constant k

Measurement of the mechanical response of the cantilever to thermal noise is used to

compute the spring constant (Lorentzian fit of the frequency spectrum). The cantilever

stiffness calibration procedure can be described as follows: force curve on hard surface

is performed and the slope of approaching curve is measured to obtain the sensitivity

of the cantilever. The frequency spectrum of the thermal noise in the lever is measured

far from the surface. The resonant frequency can then be determined, which is directly

linked to the lever stiffness[167].

b) AFM Tip Geometry

Indirect measurement using a deconvolution algorithm has been used to determine

the radii of AFM tips. A well known characterization surface is imaged with the tip of

interest. Because the tip is not perfectly punctual, the measured image is a convolution

of the surface and tip geometry. A blind deconvolution algorithm [168] is applied to

this picture and allows to get back to the tip shape. Deconvolution is computed using

Gwyddion software (David Nečas and Petr Klapetek, Department of Nanotechnology,

Czech Metrology Institute). The characterization surface used for blind deconvolution

of our tips consists of randomly oriented pyramidal hard sharp nanostructures (PA

series from Mikromasch, NanoAndMore GmbH).

II.3.2 Sample fabrication

a) Bulk material

Silicon wafer substrates are cleaned by bath of hydrogen peroxide and chlorhydric

acid, UV-Ozone and plasma to get reproducible wetting and surface state[169]. Syl-

gard polydimethylsiloxane is mixed with the provided cross-linker with a ratio 10:1

and spin-coated on the substrate at 3000 RPM for one minute with an acceleration of

500 RPM.s−1. The samples are then placed on a hot plate at 150 ◦C for 15 minutes to

ensure a complete cross-linking of the material.

b) Hard layer material

Oxidized PDMS samples are prepared in a Harrick’s plasma cleaner. Oxygen is sup-

plied to the chamber where the pressure is regulated by the equilibrium between the

oxygen entrance flow rate (monitored with a microvalve) and a fixed outflow. The



II.4 results and discussion 61

pressure is set to 4.10−1 mbar and the plasma is powered on at 29.6 W for a given

time.

Chitosan from Sigma Aldrich is dissolved in chlorhydric acid (pH = 1). The dissolu-

tion process is slow and can be accelerated by one hour sonication in a standard sonic

bath. In order to prepare chitosan on PDMS samples, the latter are exposed to plasma

for one minute to make the surface hydrophilic. The chitosan solution can then be

spin-coated on the substrate for one minute with an acceleration of 500 RPM.s−1 and

adapted rotational speeds. The samples are then dried for one hour at 80 ◦C on a hot

plate.

c) Thicknesses control

The thickness of the substrate PDMS layer has been measured to be 10µm± 2µm with

an optical interferometer. As the surface of oxidized PDMS resembles that of silica

[126], the thickness of a spin-coated layer of chitosan is not expected to change much

if the substrate is clean silicon or oxidized PDMS. Hence, chitosan was spin-coated on

clean silicon wafers with relevant parameters. A scratch was formed on the film with

a razor blade and the thickness of the layer was measured by standard AFM imaging

techniques.

II.4 Results and discussion

This study dwells on two bilayer systems. Their common point is a thick (10µm)

substrate of PDMS covered by a hard layer of another material.

In the first case, chitosan - a biocompatible polysacharide - is spun-coated on the

surface of PDMS6. This layer can be produced similarly on any substrate so that its

thickness and modulus can be measured independently from the PDMS. This system

is thus suitable to test the CHIMER model.

In the second case, the surface of PDMS is oxided by exposure to oxygen plasma,

effectively producing a glassy layer at its surface. This system is practically very useful

in the context of self-rolling as will be explained in Chapter III. However, the mechan-

ical parameters of the top layer are not well-known.

II.4.1 Characterization of the system materials

a) Bulk material - Fit strategies on homogeneous materials

The transition of the equivalent modulus strongly depends on the ratio of the two

materials moduli. It is thus of utmost importance to measure the reduced modulus

of the bare PDMS. In order to avoid errors due to tip parameter error, this measure-

6 Slightly oxidized
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ment must be done with every tip and must be considered as a second calibration

procedure.

As a cross-linked elastomer, the elasticity of PDMS depends mainly on the ratio

between cross-linker and PDMS, but also on the cross linking temperature[170, 171].

However, it was shown by Carillo et al.[172] that the measured value depends on

the measurement technique. This is particularly true for nanoindentation as many

phenomena can influence the result.
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Figure 36: Advance and retraction curve on bare PDMS with a 10nm tip.

The bare force-displacement curve of a sample of bare PDMS is displayed in Fig-

ure 36. The pull-out force varies from one sample to the other, but does however not

depend on the maximal indentation if the measurement is performed twice at the

same place. This shows that plasticity does not play a strong role here, i. e. the PDMS

is strongly elastic.

Different routes are available to interpret this data in terms of Young’s modulus.

In Figure 37a are displayed the experimental values of load and indentation with the

origin of both taken at the lowest point of the advance curve and the different fit

strategies described below. In Figure 37b are displayed the local values of the reduced

modulus (value measured at each data point). Ideally, those values shall be constant

functions. All fit are performed between 10% and 70% of the maximal applied load7.

The former limit is important in order to reduce the influence of adhesion and errors

7 The real load, without origin shift.
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in the definition of the origin. The latter limit is useful to get rid of plasticity and

end-course effects. Three main strategies are possible:

• The adhesion is considered as a simple shift in force. Hence the origin of force

and indentation is taken at the lowest point of the advance curve. The Equa-

tion 60 is simply fitted to the data to extract a value of the reduced modulus.

The instantaneous values of the Young’s modulus can be calculated directly with

Equation 60 whiçh defines the non adhesive Hertz’s model. Note that the result

is equivalent to what is obtained with the DMT model[162]. We will later on

refer to this approach as a "Shifted Hertz " fit.

• As the adhesion is obviously important in this measurement, it seems relevant

to implement an adhesive model. The Tabor parameter of PDMS is large (µ > 5)

which suggests that JKR is a good candidate. Note that the contact point is badly

defined in this model ! Indeed, at the physical contact point i. e. when the tip

jumps on the surface due to attractive forces, the deflection is negative, which

means that Z0 is negative (and unknown). From JKR equation, the indentation

at the minimum force is known:

δ(P = Ppo) =

(
2πγ
√
R

E∗

) 2
3
((

3

4

) 4
3

−

(
3

4

) 1
3

)
(83)

with δ = δmeasured − δ0 Note that this value of the indentation at minimum

force depends on the fitted value of E∗ and γ and reciprocally, which complicates

slightly the fitting procedure.

• When a Shifted Hertz fit is performed between 10% and 70% of the maximal

applied load, the origin is constrained. In order to improve the fit quality, the

origin of indentation δ0 can be left as a fit parameter. In practice, the linearized

version of Equation 60 is usually linearly fitted:

F
2
3 =

(
4E∗
√
R

3

) 2
3

(δ− δ0) (84)

After the fit is done, the local reduced modulus is calculated with the shifted

origin. This approach is usually referred to as "Linearized Hertz" fit.

As can be seen in Figure 37b, the main effect of adhesion seems to be an increase of

the reduced modulus predicted by the shifted Hertz approach in the early regime, so

that the observed power law is effectively lower than 3/2. The shifted Hertz approach

seems indeed unsatisfying, as the local reduced modulus varies a lot and the fit quality

is bad. Due to its constrained origin, this scheme fails to neglect adhesion effects.

As expected, the JKR scheme fits best the curve and produces a nearly constant local

reduced modulus (except in the very early regime where the error in origin definition
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Figure 37: Fitting and interpretation of the measurement presented in Figure 36 with Shifted
Hertz, Linearized Hertz and JKR models. The fit is performed on the advance curve
between 10 and 70% of the maximal load in the two former cases. δ0 = −4.93nm in
the case of linearized Hertz and δ0 = 3.60nm in the case of JKR. The experimental
data displayed is the advance curve.
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may be at cause). The measured value with JKR is E∗ = 3.16MPa and is slightly lower

than literature (ν = 0.5 and E = 2.6MPa, hence E∗ = 3.46MPa) [170, 173]. This can

be explained by the values of indentation. Indeed, as this calibration is done with tips

meant to indent harder substrates, the indentation is very large compared to the tip

radius, which can imply a deviation from Hertz’s model. This model predicts that the

indentation is 3.60nm at the contact point.

Finally, the linearized Hertz strategy fits very well with the data. The fitted shift

of origin in the linearized Hertz case is δ0 = −4.93nm. The local reduced modulus

becomes constant quickly, although its value is slightly lower than the measurement

with JKR (E∗ = 2.79MPa). Hence, the linearized Hertz method seems to be reasonably

successful to avoid most adhesive effects, while it is much simpler than JKR.

Fitting curves when the contact is not purely elastic is the main difficulty of nanoin-

dentation, as is illustrated by the already difficult case of the indentation of an ho-

mogeneous material. In the case of adhesive effects, the key point seems to be able to

adjust the origin of indentation which is not identical to the physical contact point any-

more. Note that the correction can be physical, as in JKR, where the shift illustrates the

tip jumping on the surface due to attractive forces, or purely virtual, as in linearized

Hertz, where the shift barely improves the fit quality. Although both tendencies work

in opposite directions, their predictions are in reasonable agreement.

b) Hard layer material - chitosan

Chitosan is a biocompatible polysaccharide extracted from shrimp shells[174]. It is

soluble in aqueous chlorhydric acid at intermediately low pH and can be deposited

by spin coating on any hydrophilic substrate. It can thus be used as the hard layer

material on a PDMS substrate which was briefly8 exposed to plasma.

As the surface of oxidized PDMS ressembles that of glass, the thickness of a layer

deposited on glass is expected to be similar to the thickness obtained on PDMS in

the same spin coating conditions. A scratch made with a knife on the surface of the

film on glass can be imaged with standard AFM techniques and its depth measured

as displayed in Figure 38. These results are very reproducible and provide a reliable

way to calibrate the thickness of those films as a function of the rotation speed9, as

displayed in Figure 39. Note that the usually accepted relation is that the thickness of

the obtained film is inversely proportional to the speed of rotation, while in our case

the power law is slightly lower.

The elastic modulus of chitosan is too high to be measured with any cantilever at

our disposal. Hence, microindentation has been performed on the thickest films at our

disposal (>400nm). Plasticity often plays a dominant role in these experiments and

8 The exposure is necessary as an adhesion promoter but must be brief in order to ensure that the oxide
layer it produces is considerably thinner than the chitosan layer.

9 at constant rotation time.
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(a) Topographic picture of the
scratch.
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(b) Height profile of the scratch.

Figure 38: Topographic image and height profile of a scratch made with a razor blade on the
surface of a chitosan film depositated on glass measured by AFM.
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Figure 39: Thickness of a chitosan film measured on a glass substrate for different speeds of
rotation. The straight line is a linear interpolation of the data and has a slope of -0.8.
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Hertz model fails at high loads. The Oliver and Pharr model is more suitable and was

used in this case. The measured modulus with this method is E = 3.0± 0.2GPa which

corresponds well with what is found in literature in similar experimental conditions

[175].

It is difficult to predict the Poisson’s ratio of chitosan. We chose to use the value ν =

0.3 which corresponds to a glassy polymer and can be found in other studies[176].10

c) Hard layer material - PDMS oxide

When exposed to plasma, the surface of PDMS becomes harder and more hydrophilic.

Some studies based on X-ray scattering characterization have revealed that the oxi-

dized surface is richer in SiOx groups[125]. Hence, the surface material can be consid-

ered as an intermediary state between glass and PDMS. Many studies have attempted

to measure to elastic modulus of the surface. The method of oxidation seems to have

a non negligible influence. Air plasma or UV/Ozone oxidation leads to modulus of a

few tens to a few hundreds of Megapascals[177, 178, 179, 180] while oxygen plasma

leads to modulus of the order of the Gigapascal[181, 130] or even the modulus of

the glass E = 70GPa[131]. AThe alteration of the surface at long exposure times is a

limitation to most studies. Many of the above mentioned measurements were made

with wrinkling techniques. However, as explained in the introduction, this method

requires a flat surface of several square millimeters. After a few minutes of oxidation,

cracks appear on the surface of the sample, preventing any apparition of the expected

deformation.

In any case, studying the hard layer requires supposing that it has a clearly de-

fined thickness and elastic modulus i. e. that the boundary between the oxide and

the material is sharp. This hypothesis is supported by electron spectroscopy con-

trast analysis[180] and X-ray reflectivity studies[131]. We provide scanning electron

microscopy image of a sample with reasonable and very long oxidation time in Fig-

ure 40. A PDMS sample was oxided for a given time, then cut and imaged from the

side. Imaging such a sample by scanning electron microscopy is rendered difficult by

the insulating nature of PDMS. However, in Figure 40a, although the resolution of the

picture is too poor to clearly measure the thickness of the layer, a clear difference is

observable between the dark grey layer (oxide) and the clearer region (PDMS). This

supports the hypothesis that the layer has a well-defined thickness, which can be esti-

mated between 150µm and 250µm after 30min of oxidation. Note that at very long

oxidation times (>3h) a third layer, thick and darker, appears as in Figure 40b. Hence,

it is possible that at long oxidation times, a new type of hard layer develops.

Theoretical models were proposed by Nania et al.[182] and Bayley et al.[131] based

on a model of frontal polymerization [183]. However, this model was developed to

10 However, their value was found for chitosan prepared in different condition which result in a lower
Young’s modulus.
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(a) (b)

Figure 40: Left : SEM picture of a slice of PDMS oxidized 30 minutes. The thickness of the grey
region is approximately 150µm to 250µm. Right: SEM picture of a slice of PDMS
oxidized 17 hours. A very dark layer and a clearer one can be observed.

predict the curing process of polymers exposed to UV radiation. We believe that the

process is different in the case of plasma treatment and propose the following correc-

tion of the model.

We consider the profile of the concentration of unreacted PDMS CPDMS(x, t) and

intensity i(x, t) as a function of depth x and time t. Note that in the case of UV

irradiation[183], i is the light intensity while in the cases of Nania et al., Bayley et al.,

and in this work, the energy is brought by exposure to plasma. Therefore, i is the

concentration of oxygen reactant. With a reaction rate K, a first relation is given:

∂CPDMS
∂t

= −KCPDMSi (85)

In the case of UV light irradiation, the light profile is given by the light attenuation

coefficient µ, which can vary as CPDMS changes:

∂i

∂t
= −µ(x, t)i (86)

Nania et al.and Bayley et al.use the same two equations with a constant µ. They

predict a logarithmic growth of the layer thickness and confirms its homogeneity. At

shorter times, a non logarithmic regime was attributed by Nania et al.[182] to the

initial construction of the layer. However, we do not believe that Equation 86 with

constant µ is adapted to the case of plasma oxidation for two reasons. First, UV ir-

radiation is a directional flux of energy i. e. the flux is simply proportional to i. The

balance of this flux with material attenuation leads to Equation 86. However, in the

case of exposure to plasma, the flux of concentration has no particular direction and

is thus dominated by diffusion. Moreover, a great source of attenuation of i might

be the interaction with the unreacted PDMS. This latter point is incompatible with

the hypothesis that µ does not vary with CPDMS. Noting ΦPDMS = CPDMS
CPDMS(0,0) we
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thus define µ = µSiOx(1−ΦPDMS) + µPDMSΦPDMS and expect µPDMS � µSiOx .

We then replace Equation 86 by:

∂2i

∂x2
= µ(ΦPDMS)i (87)

We introduce the normalized variables I = i/i(0, 0), T = Ki(0, 0)t, X = x
√
µSiOx and

A = µPDMS−µSiOx
µSiOx

:

∂ΦPDMS
∂T

= −ΦPDMSI

∂2I

∂X2
= (1+AφPDMS) I (88)

The thickness can then be obtained by solving:

Φ(T) =
1

2
(89)

Note that this model differs from previous ones because the oxygen in the plasma

can be consumed by the reaction, effectively reducing the penetration depth of plasma

in the PDMS.

A numerical resolution of the above equations is displayed in Figure 41 for A =

50 and A = 200. On the left, plasma intensity and PDMS fraction profile for early

times (t < 0.1 and t < 0.025) and longer time (t < 50) are respectively displayed

in red and blue. The tendency at long times is the growth of a homogeneous layer

whose thickness increases logarithmically with time. However, contrarily to the work

of Bayley et al., we observe a non logarithmic thickness increase profile in the early

regime as displayed on the right. Contrarily to what Nania et al.claim, this behavior

cannot be related to the early generation of a homogeneous layer. Indeed, after the

dashed line in Figure 41, the layer is clearly formed but the logarithmic regime has

not been attained yet. This tendency is increased with larger A, as can be observed by

comparing Figure 41b and 41d.

As can be seen in Figure 41a and 41c, the range of x on which the transition between

fully reacted (CPDMS = 0) and unreacted (CPDMS = 1) PDMS occurs gets narrower

for larger values of A. Expecting that the main source of attenuation of i is the reaction

with PDMS, we also expect large values of A. This supports the hypothesis of a well-

defined layer.

In the next section, we will attempt to measure the thickness of the oxide layer

with the CHIMER model. We will therefore assume the existence of a well-defined

layer with a constant Young’s modulus equal to 1.5GPa. This is the value obtained by

Befahy et al., which is to our knowledge the only study which measures both the thick-

ness and the elastic modulus in these conditions of oxidation. Hence, we find it to be
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Figure 41: Numerical resolution of equations 88 at many times. ((a) and (b)) A = 50, red
curves and points are separated by 0.02 time unit while blue curves and points
are separated by 2.5 time units. ((c) and (d))A = 200, red curves and points are
separated by 0.05 time unit while blue curves and points are separated by 2.5 time
units.Left : Evolution of plasma intensity and fraction of PDMS profiles in depth at
different times. Right : Thickness of PDMS layer as a function of time.

the more reliable. The effect of an eventual error will be discussed afterwards. Finally,

the Poisson’s ratio of PDMS is taken to be ν = 0.5 as an elastomeric material[170].

II.4.2 Indentation of bilayer systems

According to the previous discussion, the system of interest is a bilayer system with

a ratio of the hard layer modulus on the bulk material modulus of approximately

103. The thickness of the top layer is a few tens to a hundreds of nanometers. As

E∗surface � E∗bulk, we have E∗eq ≈ ΦE∗surface. The shape of the function Φ
(
δ
T

)
provided by CHIMER is displayed in logarithmic scale in Figure 42. For indentations

of a few tens of nanometers, Φ is very similar to an inverse square root function of δ

i. e. Φ ∝
(
δ
T

)− 1
2 .

Hence, the equation 60 becomes :

F = Sδ with S =
4

3

√
RδE∗eq (90)
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Figure 42: Power dependance of Φ
(
δ
T

)
. Simulated evolution of the apparent modulus with a

top layer thickness T = 12 nm and radius of tip R = 20 nm. The fitted slope in the
gray zone is -0.48.

where S is now a constant in δ. The S value can be used with CHIMER to obtain the

value of the thickness of the top layer. As S is a slope, this model can seem indepen-

dent of the contact point. However, we recall that assumes a purely elastic contact is

assumed. Note that in the following experiments, indentations twice as large as the

tip radius will be performed. However, the top layer being hard, the contact radius

will stay smaller than the tip radius as illustrated on Figure 35b.

Typical indentation curves on oxidized and chitosan coated PDMS are provided

in Figure 43. Two things can be directly observed in these curves. Firstly, they seem

extremely linear11. Secondly, there is a visible influence of attractive forces or adhesion.

Two strategies are relevant in this situation.

A first approach is to make a direct use of Equation 90, hoping that a purely elastic

model is valid12.

A second approach would be to use a model which takes into account or success-

fully neglect adhesion. Such a model is not available for bilayers. The only solution is

therefore to use a model for homogeneous material and to interpret the results never-

theless. We recall that the Tabor parameter of PDMS is about 40 to 5000 [184]. In the

cases of oxided PDMS and PDMS capped with chitosan, the system is stiffer and less

adhesive; the Tabor parameter should therefore be smaller. However, larger forces are

also applied during the indentation experiment. Considering the adhesion model map

in Figure 32, one can hope that these materials behave in such a way that adhesion

11 Due to Equation 47, D ∝ Z implies F ∝ δ.
12 More precisely, that it can be considered as a simple shift in force origin.
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(a) Indentation of a chitosan film spin coated at 4000RPM
on a PDMS substrate with a 10nm tip.
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(b) Indentation of a PDMS substrate exposed to oxygen
plasma for 30 minutes.

Figure 43: Example of indentation curves of a thin hard layer on a soft PDMS substrate.
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can be treated as a perturbation by the linearized Hertz model. As was shown in Fig-

ure 35c, the range of indentation is very small compared to the scale of the transition.

We therefore approximate the modulus to be an average value E∗. A corresponding

average indentation δ is required to make use of CHIMER. As the fit is performed

from 10 to 70% of the maximal indentation δmax, we define δ = 0.4δmax.

These two approaches will first be tested on advance indentation curves obtained

on chitosan coated PDMS, then used to measure the thickness of the oxide layer on

plasma exposed samples.

a) Indentation of PDMS coated with chitosan

In Figure 44a, some advance curves on chitosan coated samples are displayed. The real

thicknesses are measured as explained in Section II.4.1.b). As shown in Figure 44c, a

purely linear fit seems more successful than a hertzian fit. However, this is mostly

a visual effect. In reality the fit is equally good between 10 and 70% of maximal

indentation.

Using both approaches described above, we attempted to predict the thickness of

the layers with CHIMER. The results are displayed in Figure 45. We observe a sys-

tematic bias of the purely elastic model of approximately 70%. On the other hand,

the interpretation of the values obtained with linearized hertz fit procedure provides

results which are remarkably close to the expectation. The agreement between the

measured values and this model is within 5%.

If luck is ruled out, an interpretation of this result is that while the apparent mod-

ulus is well described by CHIMER, the adhesion dominates the determination of the

area of contact. The apparent modulus must thus be obtained by methods which tak-

ing adhesion into account, at least partially:

On homogeneous materials, the linearized Hertz model fits both the elastic modulus

and the contact point, thus compensating experimental effects like adhesion. We insist

on the fact that the fitted δ0 is purely virtual and has absolutely no "real" signification.

Indeed, the physical contact point corresponds to the moment when the tip jumps on

the substrate due to adhesive force. The indentation at the physical contact point is

therefore negative. On the contrary, linearized hertz fit procedure generally requires the

indentation to be finite and positive at the physical contact point in order to improve

the fit quality.

The idea behind the CHIMER model is that when a composite material is indented,

constant parameters in Hertz’s model become functions of indentation (or contact

area). In particular, the virtual contact point which is required to overcome adhesive

effects should evolve too. When performing a linearized Hertz fit on a narrow range

of indentation, we obtain an average elastic modulus E∗ and an average virtual instan-

taneous contact point δ0. The linear model takes the variations of E∗eq(δ) into account,
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Figure 44: Indentation of chitosan coated PDMS sample with different spin coating speeds.
The stiffness of the cantilever is k = 2.8Nm−1. and its radius is R = 10nm.
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Figure 45: Measured and calculated thicknesses of a chitosan layer on PDMS. Measured values
(blue circles) are previously measured on silicon wafers. CHIMER is used to calcu-
late thicknesses from measured apparent modulus using linearized Hertz fit with
0.5 δmax indentation (red circles) and the purely elastic model (linear fit) which
does not require indentation(black circles).

but this model is independent of the contact point. More precisely, it assumes the

contact point to be the same for each δ and well-defined. In our opinion, the failure

of the linear model strongly hints that in order to adapt a standard contact model to

a composite system, the mechanical properties and contact point must both evolve

during indentation. A summary of the different models is proposed in Figure 46.

While a lot of uncertainties remain on the model, we still use it in an attempt to

measure the thickness of an oxide layer.

b) Indentation of plasma oxidized PDMS

In Figure 47, some advance curves on oxidized PDMS samples are displayed. The lin-

earized Hertz method was used to determine the thickness of the oxide for plasma

exposure times between 30 s and 90 min at 29.6W. The results are displayed on Fig-

ure 48.

The thicknesses measured for short times of oxidation match well with literature

[131, 130]. Note that these two studies have used very different Young’s modulus of

the surface in their model and still find similar thicknesses !
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Figure 46: Different routes for the fit of the Hertzian contact model on composite materials.
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(c) Advance curves with a hard lever.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

Lo
ad

 F
 (

n
N

)

Indentation δ (nm)

(d) Indentation curves with a hard lever.

Figure 47: Indentation of Oxidized PDMS for different exposure times with a soft and a lever.
The stiffness of the soft cantilever is k = 0.36Nm−1 and its radius R = 20nm. The
stiffness of the hard cantilever is k = 3.1Nm−1 and its radius R = 15nm. Note
that the measurement with the softer lever saturates for times of exposure above 30

minutes. Hence the harder lever is used for longer times.

Apparent moduli larger than 1.5 GPa where found for exposure doses larger than

160 kJ, which correspond to 80 minutes of exposition (not displayed on Figure 48).

This and the SEM picture displayed in Figure 40b are clues that a second, slower,

process could take place after an hour of exposure, generating another harder layer
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Figure 48: Thickness of oxidized PDMS films using CHIMER.

of denser material13. This could also be a manifestation of the non logarithmic initial

regime exposed in Section II.4.1.c)14.

The most uncertain parameters in these measurements is the Young’s modulus of

the surface. The extreme values found in literature are 0.75GPa and 70GPa. We pro-

vide the measurement of thickness for these different parameters in Figure 49a. We

observed that the result is not too sensitive to an underestimation of the modulus.

Note however that E1 = 70GPa leads to unrealistically 15 small thicknesses. On the

contrary, it is quite sensitive to overestimation. Moreover, equivalent moduli larger

than 0.75GPa have been measured. Within the hypothesis that the hard layer has not

started to grow, this value for the modulus of the top layer is also thus ruled out.

The ratio of the moduli of the two materials has a strong influence on the transition.

We also provide the measurement of thickness for different E0 in Figure 49b. The

values chosen are the extreme values found in literature for the modulus of PDMS.

We find that the method is equivalently sensitive to this parameter.

13 Note however that the model was not tested in this regime (i. e. very thick layer compared to the inden-
tation depth). More evidence are still required to assess the validity of the model in that regime.

14 In Section II.4.1.c), we qualify this regime of "early time", carrying the idea that it shall quickly vanish.
However, we recall that the "time" in the simulation is only a dimensionless variable. It is entirely possible
that the non logarithmic lasts many hours.

15 In particular those thicknesses would not be observed on SEM pictures in Figure 40a



78 afm nanoindentation

10
1

10
2

10
3

10
1

10
2

10
3

Time of exposure (s)

O
xi

de
th

ic
kn

es
s

T
(n

m
)

E1= 70 GPa
E1= 1.5 GPa
E1= 0.5 GPa

(a) Influence of E1.

10
1

10
2

10
3

10
1

10
2

10
3

Time of exposure (s)

O
xi

de
th

ic
kn

es
s

T
(n

m
)

E0 = 4.2 GPa
E0 =2.6 GPa
E0 = 1.0 GPa

(b) Influence of E0.

Figure 49: Influence of errors in the evaluation of Young’s moduli on the evaluation of the
thickness of the hard layer.
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II.5 Conclusion and outlook

AFM nanoindentation experiments were performed on PDMS soft substrates covered

by two kinds of hard materials: chitosan and PDMS oxide. The so-called apparent

measured modulus of these composite samples can be interpreted using a new semi-

analytical approach called CHIMER. The main difficulty is the interpretation of the

measurement in order to obtain this equivalent modulus. Two different methods have

been attempted.

The chitosan layer thickness is measured by other means, so that the relevance of

the models can be put at test. A very good agreement between measured and ex-

pected thicknesses is found with the linearized Hertz method. On the other hand, the

linear model displays an overestimation of approximately 70% of the thickness. This

mismatch of the linear model through CHIMER may be an interesting field of inves-

tigation, especially regarding the necessity to depict a virtual contact point during

multilayer indentation experiments.

In the oxidized PDMS case, the thicknesses are unknown. They were measured for

oxidation times between 30 s and 1h. This type of measurement is typically impossi-

ble with other methods due to the cracking of the PDMS surface. These measurements

could be performed for the first time thanks to the nanoscale feature of this method.

We observed that the layer seems to grow faster than the logarithmic behavior pre-

dicted in literature. This could be either due to a hardening of the surface at long

time scale, or to an intrinsic feature of the layer growth that we attempted to under-

stand. In the particular conditions used for the rolling of thin films in Chapter III, we

conclude that the oxide layer is well described by a layer with a thickness of 175nm

and a modulus of 1.5GPa. However, due to the many uncertainties of the model, this

should only be considered as an order of magnitude and the influence of eventual

errors should be discussed.

AFM nanoindentation is a very tempting route for the investigation of the properties

of thin films or coatings. However, the influence of the substrate is a major problem

that is hard to avoid in practice. The CHIMER approach is a potentially viable option,

as it can decorrelate the contribution of the layer from that of the substrate. However,

its main weakness is that it requires a good knowledge of the different materials

existing in the system beforehand, which can be challenging.

In order to definitely validate the CHIMER model, macroscopic experiments should

be performed in order to optimize its fit procedure, and adhesive models should be

developed. This, however, is out of the scope of this work.





III
P D M S R O L L E D U P C A P I L L A R I E S W I T H F U L LY

F U N C T I O N A L I Z E D I N N E R S U R FA C E

This chapter is dedicated to the rolling process itself.

In Section III.1, thin films of PDMS are fabricated and capped with the thin hard

layers that have been studied in Chapter II. These films spontaneously roll up after

immersion in different solvent vapours. The inner diameter of those tubes is measured

and confronted to the theory presented in Chapter I using the measurements of Chap-

ter II. In Section III.2, in an attempt to extend the toolbox of microfluidics, we take

advantage of the process by patterning and characterizing the inner surface of the

tube prior to rolling. We demonstrate three kinds of patterns: chemical, topographical

and embedded channels. As far as we know, the type of capillaries we obtained can-

not be obtained by other methods. Finally, in Section III.3, we propose a new process

to create self-rolled tubes based on shrink film and polyimide. The systems obtauned

are extremely robust and can be manipulated easily. Metal can be deposited on those

tubes, making them promising for applications.

III.1 Fabrication of self-rolled PDMS microtubes

III.1.1 General fabrication procedure

This process aims at the fabrication of PDMS-based microtubes. Hence, all of the

following processes are based on a thin layer of cross-linked PDMS on a glass substrate

treated to reduce its adhesion. Typically, this treatment consists in a thin layer of

poly-4-vinyl pyridine (P4VP) or polyacrylic acid (PAA). Alternatively, the bare glass

substrate can also be functionalized with fluorinated trichlorosilanes.

Rollin
g dire

cti
on

CHCl3

Capping
PDMS

P4VP

Figure 50: Stages of the rolling process.
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A second layer of material is produced on the surface of the PDMS film. The sim-

plest solution is to harden the surface by oxidation, which can be obtained by exposure

to a plasma of oxygen. Plasma treatment results in a silica-like layer of approximately

100nm (see Chapter II). A second solution is to coat the film with an additional hard

material. However, a very strong adhesion between the PDMS surface and the mate-

rial is required in order to avoid delamination during the rolling process. Chitosan can

be used. It is a biocompatible polysaccharide, soluble in weak acid, with reasonable

adhesion on slightly oxidized PDMS. It can be spin-coated in order to produce a hard

layer with a thickness of a few hundreds of nanometers.

Subsequently, a cut is done in the film in order to define the borders of the area to

be rolled. The whole system is then exposed to a selective solvent in vapour phase

that swells PDMS but not the hard layer. In our case, chloroform or pentane is used.

As illustrated in figure 50, the solvent will preferentially enter through the cut where

the free PDMS is exposed and the rolling process occurs.

Once the system is taken out of the solvent, the swelling stimulus quickly disap-

pears. Thick films 1, that would be used to produce tubes with an inner diameter of

several hundreds of micrometers, will unroll. However, if the film is thin enough1, the

adhesion of the rolled film on itself is able to hold the tube enclosed.

III.1.2 Experimental

Material

PDMS elastomer was purchased from Dow Corning (Sylgard 184). P4VP, chitosan,

(1H,1H,2H,2H-perfluorooctyl)trichlorosilane (PFTS), solvents were purchased from Sigma

Aldrich.

Film fabrication

Glass slides or silicon wafers can be used as substrates. They are first cleaned up by

baths of hydrogen peroxide and chlorhydric acid, UV-Ozone and plasma in order to

obtain reproducible wetting and surface state[169].

In order to reduce the adhesion of the substrate, one of the following techniques

can be used:

• A solution of P4VP in ethanol (1 g.L−1) can be spin-coated on the substrate at

3000 RPM for 30 seconds with an acceleration of 500 RPM.s−1.

• A similar protocol can be used with an aqueous solution of PAA (1 g.L−1) which

is then dried by heating it at 80 ◦C for 5 minutes on a hot plate.

1 It is difficult to define a clear threshold of thickness of the film above which the film unrolls. However,
the tube remains rolled most of the time when the film is thinner than 20µm and unrolls most of the
time when it is thicker than 40µm.
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• The surface of the substrate is activated with oxygen plasma for 2 minutes. It is

then placed for 12 hours in a closed 4 inches wide petri dish with 10 µL of PFTS

in small aluminium containers. PFTS will evaporate and form an antiadhesive

layer on the surface of the substrate[185].

Sylgard PDMS is mixed up with the provided cross-linker with a ratio 10:1. After

degazing, this mixture was either directly spin-coated for the fabrication of layers

thicker than 10 µm, or further diluted in toluene in proportion 3:1, 1:1 and 1:3 (in

order to reduce the viscosity of the solution) for the fabrication of thinner layers.

Films thicker than 7micrometers are obtained by spin-coating of pure PDMS on

the substrate with the following steps: First, a 30 second step at 500 RPM is processed

to uniformly spread PDMS on the substrate. Second, a five minute step at various

speeds takes place in order to adjust the thickness of the film (typically a thickness

of 12.8 µm is obtained with a speed of 3000 RPM). If necessary, a 2 second pulse at

5000 RPM is used to remove the edge bead. The acceleration is 3000 RPM.s−1

Thinner films are obtained by spin-coating of diluted PDMS on the substrate at

various speeds between 3000 RPM and 10000 RPM for one minute with an acceleration

of 500 RPM.s−1.

The samples are then placed on a hot plate at 150 ◦C for 15 minutes to ensure a

quick evaporation of toluene and a complete cross-linking of the material.

Capping fabrication

Oxidized PDMS samples are prepared in a Harrick’s plasma cleaner. Oxygen is sup-

plied to the chamber where the pressure is regulated by the equilibrium between the

oxygen entrance flow (monitored with a microvalve) and a fixed outflow. The pressure

is set at 0.4mbar and the plasma is powered on at 29.6 W for 40 minutes.

In the case of chitosan-coated samples, chitosan is dissolved in chlorhydric acid

(pH = 1) at a concentration of 1 g L−1. The dissolution process is slow and can be ac-

celerated by one hour sonication in a standard sonic bath. In order to prepare chitosan

coated samples, the PDMS films are exposed to plasma for one minute to make the

surface hydrophilic. Then, the chitosan solution can be spin-coated on the substrate at

500 RPM for one minute with an acceleration of 500 RPM.s−1. The samples are then

dried for one hour at 80 ◦C on a hot plate. This results in a film with a thickness of

270± 4nm.

Rolling

The film is first cut with a carbon coated razor blade in order to release the borders of

the future tube. It is then placed in a closed glass Petri dish filled with a few milliliters

of solvent. Two small pillars maintain the system a few millimeters away from the
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Chloroform
Rolling tube

Figure 51: The set-up used for the rolling process. The sample is placed upside down above a
pool of solvent.

solvent, the film directly facing its surface as shown in Figure 51. In those conditions,

the rolling occurs within minutes.

In the case of thicker films, the system often rolls back once taken out of the solvent.

However, the stability of the tube can be improved by leaving it in the same solvent in

liquid or gas phase for a few hours. We suppose it makes the deformation only par-

tially reversible. This step was never performed for the measurement of inner diameter

as a function of experimental parameters in Section III.1.3.b). It is typically required

for the rolling of films thicker than 40 µm. However, in this case, reproducibility is

limited, and it is unclear whether the laws discussed in the following parts are still

valid.

Size measurements and imaging

Tubes were covered with PDMS and imaged with an optical transmission microscope

(see Section III.1.3.b)). The images were treated with the software ImageJ to measure

simultaneously the film thickness and the tube diameter. The surface roughness of

the systems prior to rolling was measured and imaged with an AFM Dimension V

(Digital Instruments / Veeco-Bruker , Santa Barbara, CA, USA) in contact mode.

III.1.3 Results and discussion

The previous process produces tubes, from films with a thickness of 1µm to 50µm,

with typical inner radii between 10µm to 500µm. The length of the tube is only limited

by the size of the substrate.

a) Steps of the rolling process

The rolling process could be recorded in a glass observation cell under an atmosphere

with pentane. It has to be noted that for experimental reasons, the recording conditions

differ from the usual fabrication conditions. (In particular, the observation cell has a

larger volume and is less leak-proof than the usual chamber.) Different steps can be

observed.

early stage

Once the chamber is closed, the film does not deform for the first 30 s to 60 s while
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Figure 52: Early stage of rolling. On the first picture, the dashed line shows the cut line and
the arrows illustrate the direction of rolling. The glass chamber was closed approxi-
mately 40 s before this first picture was taken. The first line lasts approximately 1 s
(Only 83ms between the first two images.) and shows a transition from a wrinkling
regime to a rolling regime. The second line lasts approximately 4.5 s and shows the
early rolling steps of the tube. Between the last image of the second line and the first
image of the third line, the glass chamber was opened. This triggers the unrolling
process which is observed on the third line. It lasts approximately 0.5 s.

the atmosphere is progressively loaded with solvent. Then, as displayed in Figure 52,

the border of the film deforms in a mixed state of creased and rolled. The very reg-

ular period of the creases is a hint that this regime is related to the wrinkled regime

evoked in Section I.1.3 and is thus due to the presence of the substrate. The different

oscillations of the border combine while the rolling continues until only one rolling

front exists. The transformation of a crease point into a regular point of the tube can

lead to defects. This whole early stage of deformation is fully reversible. Indeed, if the

chamber is opened at this stage, the whole process reverses quickly. The duration of

each step is not consistently reproducible. However, it can be seen that the creasing

to rolling transition and the unrolling process are both quick (less than 1 s), while the

rolling is quite slow (5 s on the video in Figure 52).

late stage

A video of a tube after 45 s of rolling is shown in Figure 53. Many bubbles can be

observed in the unrolled areas, which indicates that the surface of the film is slightly

permeable to the solvent. It provokes irregular deformations of the films. At some

point, the film does not look flat any more and the rolled layer looks completely
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Figure 53: Late stage of rolling. On the first picture of the first and second line, the arrow shows
the direction of rolling. On the first picture of the third line, the arrow shows the
direction of unrolling. 45 s of rolling occurred before the first image. The first line
lasts approximately 5 s and shows a transition from a clean rolling regime to a crum-
pled regime. The second line lasts approximately 5 s and shows a continuation of
the rolling of the crumpled film. (Note that the picture has been reframed between
the last picture of the first line and the first picture of the second line, in order to
follow the tube.) Between the last image of the second line and the first image of
the third line, the glass chamber is opened. This triggers the unrolling process of
the crumpled layers which can be observed in the third line. It lasts approximately
1 s. The last image is the final state of the system. It can be seen that only the tightly
rolled parts of the film are stable.
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crumpled. The contact area is small and unrolling of the crumpled parts occurs as

soon as the chamber is opened. However, the layers that rolled before the crumpling

of the film have good contact with one another and their adhesion is sufficient to

prevent the unrolling. This is the final state of the system obtained with this process.

b) Influence of the parameters on the diameter of the tube

After rolling, these tubes can be embedded in a PDMS matrix enabling their manipula-

tion, cutting and imaging. A cross section of such a tube is displayed in Figure 54a. As

the optical index does not vary at the external surface of the tube, the inner air/PDMS

interfaces can be imaged from above by optical transmission microscopy. Such a lateral

view of a tube is displayed in Figure 54b. This type of pictures allows the measurement

of both the local inner radius of the tube and local thickness of the film. In some cases,

for the thicker films, we observed a variation in the thickness of the different layers (as

displayed in Figure 54c), which might be due to a secondary relaxation mode, such

as a wrinkling phenomenon. If such variation was observed, only the thickness of the

first layer was measured. If not, the average over all layers was measured.

(a) Cross section. (b) Lateral view (c) Lateral view with changing
thickness

Figure 54: (a) Cross section of a tube embedded in PDMS and cut by optical microscopy. The
unstuck film in the center is believed to be due to the cutting. (b) Lateral view of
a tube embedded in PDMS typically obtained and used for measurement. (c) Rare
case of tube with varying thickness.

The inner diameters of tubes is plotted as a function of total thickness of the bilayer

in Figure 55 for the different processes.

In Figure 55a, we compare the diameters obtained in gaseous pentane and chlo-

roform for oxidized systems2. Rolling in diisopropylamine has also been attempted

(the swelling of PDMS in liquid diisopropylamine is approximately 83%[186]), but the

tubes are so irregular that no reproducible result could be obtained.

The influence of the capping on the diameter in the case of rolling in pentane is

compared in Figure 55b.

In order to smoothen the curves, the data was averaged over thickness intervals of

1µm. Each point displayed represents the average of 3 to 15 measurements. Hence,

2 The swelling of free PDMS in liquid pentane or chloroform is approximately 40% in both cases[186].
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(a) Diameters of oxidized systems obtained with gaseous chloroform and
pentane.
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(b) Diameters of oxidized and chitosan coated films rolled in pentane gas.

Figure 55: Inner diameters of rolled tubes as a function of total bilayer thickness for different
processes. The plain line is the theoretical fit from formula 91 with parameters in
Table 2.
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the displayed error bars must be understood as an indicator of the dispersion of the

measured value and not as a standard deviation.

In order to confront those results with the predictions of formula formula 91
3, we

need to define several parameters:

C0 =
6ε0
H

(1+m)2

n−1m−1 +nm3 + 4m2 + 6m+ 4
(91)

• The differential strain is ε0 = S − 1 where S is the in-plane swelling ratio of

PDMS when the rolling process occurs.

• The thickness of the top layer, its elastic modulus E and Poisson’s ratio ν are

obtained from the work of Chapter II. For the oxidized PDMS capping layer we

used E = 1.5GPa, ν = 0.5 and hf = 175nm. For the chitosan capping layer we

used E = 3GPa, ν = 0.3 and hs = 270nm.

• As the film swells, the elastic modulus is known to scale as (1+ ε0)
−1[187].

• When using the Timoshenko formula, the relevant thickness is the swollen thick-

ness of the film, while the thickness optically measured is unswollen. As the film

is initially constrained in both plane direction and PDMS is incompressible, the

value to be used is hswollen = (1+ 3ε0)hdry.

The only unknown parameter is the swelling ratio itself.An order of magnitude can

be obtained as follows. First, the swelling ratio of a free PDMS film as a function of

exposure time to solvent vapour is recorded. Second, the result is compared with the

time needed of an oxidized PDMS film to start rolling. With this method we found

that ε0 is in the range of 5 to 10%[188]. This only is an order of magnitude as the

constraints on the film during the rolling process are very different from those on the

free film.

In Figure 55, we tested the hypothesis that ε0 is not a function of the thicknessH and

adjusted its value to fit at best the experimental curve. With values of ε0 within our

estimation, the formula matches very nicely our experimental result. The parameters

used with formula 5 to plot the plain line in Figure 55 are summed up in Table 2.

Note that for a given n, the maximum of curvature in formula 91 is κ = 3
2
ε0
H with

m = 1/
√
n. The value of m which results in this largest curvature stands between

0.03 and 0.05. As the optimum is very shallow, an error of up to a factor 3 on m

leads to a change in curvature of only 10% in this range of n. In this work, m spans

an experimental range between 0.15 and 0.01 so that those systems are close to the

minimal radius of curvature to thickness ratio.

However, the fitted values of ε0 are below values found in literature[186] or gas[189]

phase. Different hypotheses can be made in order to explain this fact:

3 Already defined in Chapter I.
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Capping Oxide Chitosan

n 448(1+ε0) 824(1+ε0)

hf 175± 45nm 270± 20nm

Solvent Chloroform Pentane

ε0 9.4% 5.3%

Table 2: Summary of parameters used for the evaluation of formula 5 for the different pro-
cesses.

1. The swelling ratios given by Lee et al.[186] are measured in liquid phase while the

rolling process occurs in gas phase, which can influence the swelling ratio. The

volume change of PDMS in a gas saturated atmosphere was recently studied by

Rumens et al.[189]. A comparison of the results in these two studies shows that

the swelling ratios can be very different in gas phase compared to liquid phase,

but that it is not always the case. For example, the swelling ratio in gaseous

and liquid hexane is the same. However, PDMS swells twice as much in liquid

toluene as in gaseous toluene. A second aspect observed in Rumens et al.is that

the swelling of PDMS in gas can last several hours. In our case, the swelling

at the instant of rolling could thus be considerably smaller than its final value.

PDMS swells similarly in liquid chloroform and pentane. However, there is no

particular reason for the swelling ratio to be the same in each of these solvents

in gas form. This could, at least partially, explain the difference observed in

Figure 55a.

2. The diameter could be actually dominated by a balance between bending stiff-

ness and adhesion or friction of the film on itself after the system has been taken

out of the solvent. As we have not observed diameter change after the tube has

been removed of the solvent (as seen in Figure 53), we reject this hypothesis.

3. The film could be only partially swollen. Note that the diffusion time of a gas

in the thin porous PDMS film (10µm) is very short (fractions of second at most)

so that the amount of chloroform can still be considered as homogeneous in the

film. The value of ε0 depends on the time of exposure to the solvent before the

film closes. It can depend either on a balance between adhesion on the substrate

and bending stiffness or on mechanical inertia of the rolling process. In both

cases, this leads to a dependency of ε0 in the thickness H. This would lead to

the failure of the fits made in Figure 55 which assume a constant ε0. Hence we

reject this hypothesis.

4. The film could be saturated in solvent but that for another reason, the saturation

limit is lowered. It could be - at least partially - explained by the large stress that

the rolled system undergoes as it is prevented to swell in-plane [190] due to the
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presence of the hard layer. In the stress free case, the swelling ratio is determined

by a balance between a mixing free energy of the polymer in the solvent and an

elastic energy due to the extension of the polymer chains in the cross-linked

network. In the case where in-plane deformations are prevented, the system un-

dergoes forces which make the system expansion even less favorable, preventing

the solvent to enter the material. Moreover, since PDMS is porous, poromechan-

ics states in general that solvent will migrates away from compressed areas. As

the swelling ratio of the material is directly related to the proportion of solvent

it contains, its effective value is lowered.

5. Finally, secondary relaxation modes can also explain the apparent lowering of

the swelling ratio. For example, wrinkling of the film can participate to some

extent to the dissipation of elastic energy.

A direct prediction of the swelling ratio in this particular case is a difficult prob-

lem. The solvent concentration in the film is unknown and delicate to measure. This

problem remains an open question.

c) Influence of incertitude on the thickness and modulus of the hard layer

The thickness and the elastic modulus of the hard layer are very difficult to estimate.

Hence, the values measured in Chapter II should be considered only as orders of

magnitude. In order to test the influence of an error of our estimation, in Figure 56, the

same fit than previously used is performed for the case of tubes rolled in chloroform

vapours with values of thickness and elastic modulus of the top layer twice larger

and twice smaller than in the previous fit. It can be seen that this change has a minor

influence and only in the left part of the curves.
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(b) Different Young’s modulus

Figure 56: Experimental data and theoretical fit as displayed in Figure 55 for tubes rolled in
chloroform for different thicknesses and elastic moduli of the top layer.

The layer is both very stiff and very thin. In orders of magnitude, the stretching

and bending moduli of a plate with a Young’s modulus E and a thickness h scale
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respectively like Eh and Eh3. These values are summed up in the table below for the

PDMS and the hard oxide layers:

Thickness

h(µm)

Young’s

modulus E (MPa)
Eh (Pam−1) Eh3(Pam−3)

PDMS 1-10 2.6 2.6 - 26 2.6× 10−12 - 2.6× 10−9

Oxide 0.175 1500 263 8× 10−12

We can observe that the stretching modulus of the layer of PDMS is at least ten

times smaller than the one of the oxide layer. On the contrary, the bending modulus

of the oxide layer is mostly negligible compared to the PDMS layer. Hence, the system

is close to the asymptotic case where the top layer is infinitely thin, can freely bend

and cannot stretch. This explains why errors on the thickness or elastic modulus of

the oxide layer do not have too much influence.

Note that in Chapter I, we demonstrated that, in the absence of substrate, the effec-

tive swelling ratio would be4 (ε0)eff = ε0(1+ νbulk). However, because the influence

of the substrate on our correction is unclear, we chose to use the original Timoshenko

formula for the fit.

d) Orientation of the tube

Figure 57: Rolling at the intersection of two cuts.

The rolling direction of the tube is determined by the border orientation. However,

because of the substrate or because of the softness of PDMS, the film does not have a

uniform bending direction on more than a few tenth of diameter, which results often

in bended tubes. A more problematic consequence is the rolling at the intersection

of two cuts, defining an angle in the film. As illustrated in Figure 57, no particular

direction of bending is preferred. It is thus hard to define a clear opening of the tube.

This will make the fluidic connexion of that tube difficult. Many attempts have been

done to prevent the bending of one border.

A first approach is to take advantage of the angular edge of the glass substrate. A

spin-coated film is slightly more attached to this edge than to the rest of the substrate,

which makes rolling of the film from the border of the substrate slightly less favored.

4 In Chapter I, the film was shrinking, so that the effective formula was (ε0)eff = ε0(1+ νfilm)
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Hence, when a cut is done from one edge to the other, rolling of the cut border is

preferred, as can be seen on Figure 58a. However, the presence of the substrate edge

can be a limitation when the tube must be connected for further use.

If the border which should not roll is very short (a few tens of times the diameter)

the rolling direction will also be well defined. This can be accomplished by patterning

the substrate with only thin bands of low adhesion material. However, in practice, the

obtained tube will often unroll when taken out of the solvent.

The rolling process can be done in two steps. First, the border that should roll is cut

and the system is immersed in solvent vapours. After rolling, the border that should

not roll is cut and the system is put into solvent again. As the first border rolling

is already partially done, it is reasonable to hope that it will prevent the concurrent

rolling of the other one. Sadly, the success of this method is lowly reproducible. A

successful and a failed attempt of this method are shown in Figure 58b and 58c.

Tu
be

Edge

(a) Rolling at the edge of the
substrate

(b) Success of a two step
rolling

(c) Failure of a two step
rolling

Figure 58: Attempts to force the rolling of only one border. In (a), the cut is done from one
edge to the other, the rolling of the film border on the edge is prevented. In (b) and
(c), the border that should roll is cut and exposed to solvent first. Then the system
is taken out of solvent, the other border is cut and the system is immersed again.

Finally, in order to obtain a tube with a well-defined opening in the middle of a sub-

strate, the only practical solution is to cut the tube after the rolling process. Although

this can be quite destructive for very small systems, tube with inner diameter larger

than 40µm are seldom destroyed by this step.

e) Other non-influential parameters

Many experimental parameters are disregarded in the previous discussion. Their po-

tential influence is discussed in this paragraph.

The oxidation conditions for oxidized samples should modify the thickness of the

oxide layer, which could have some influence in formula 91. However, no rolling is

observed for too short (<30min) or too long (>55min) times of oxidation. An oxida-

tion time of 30min corresponds to the appearance of cracks on the surface. Those

might play an important role by increasing the permeability of the oxide layer. After
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one hour of oxidation, the oxide layer has so many cracks that its mechanical behavior

must be altered. However, no observable difference was found between those limits.

The adhesion energy on the substrate could play a role if the final diameter is at

least partially determined by the dynamics of the rolling. However, no clear difference

was observed when using P4VP, PAA and silanized substrates.

Rolling in liquid phase was confronted to rolling in gaseous phase, thus changing

in principle the solvent diffusion rate in the film (and to some extent its swelling

equilibrium [189]). Yet no particular difference in diameter was observed. However,

the rolling occurred faster in liquid phase and the quality of the final tubes was lower.

The amount of solvent compared to the volume of the rolling chamber might influ-

ence the partial pressure of that solvent. But it seems to have little influence. However,

the rolling does not occur if this ratio is too small. We believe that the rolling occurs

as soon as a minimal partial pressure threshold is reached.

The cutting method is a central point that requires improvement. Indeed, man-

ual cutting is unpractical, irreproducible and probably an important source of de-

fects. Laser cutting has been attempted, but this technique results in poorly defined

borders[191]. Automated blade cutting has also been attempted but gave little result

and proved to be inadequate due to the lower glass substrate. The best results were

still obtained with a sharp carbon coated razor blade or a roller blade.

f) Surface roughness of the films

For practical applications, the state of the inner surface of the capillary is of utmost

importance. We performed AFM measurements of the surface of our systems. The

surface of chitosan is uniform with a root mean square roughness Rq = 1.85nm. The

plasma oxidized surface has a similar roughness Rq = 1.53nm. However, cracking of

the surface occurs as shown in Figure 59. The depth of those cracks is approximately

the thickness of the oxide layer and their width is of some microns. In figure Figure 59,

we also provide the typical profile of one of those cracks.

This cracking of the surface can be a problem for practical applications. However,

it can be circumvented by coating it with a supplementary PDMS layer before rolling

(see next section). As the bending rigidity of a film exhibits a cubic scaling in thickness

and linear in elastic modulus, one can easily make the mechanical impact of this film

negligible by making it thin and soft, for example by diminishing the cross-linker

concentration in PDMS.

III.2 Rolled up systems with patterned surface modification

Many practical applications require the functionalization of the inner surface of capil-

laries. The use of electrodes, cell adhesion enhancement or control of wettability are



III.2 rolled up systems with patterned surface modification 95

(a) Surface of a chitosan film
on PDMS. 5× 5µm surface

(b) Cracks on an oxidized
PDMS surface. 10 × 10µm
surface.

(c) Cracks on an oxidized PDMS 10× 10µm surface. The pic-
ture is taken after rolling.
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(d) Height profile of a crack in PDMS oxide.

Figure 59: AFM images of (a) the surface of chitosan and (b) cracks in the PDMS oxide layer
after 30 minutes of oxidation, (c) optical image of the cracks closed to a rolled tube
and (d) profile of one of those crack measured by AFM.
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few of the many examples where surface engineering is essential. Consequently, the

range of possibilities offered by soft lithography is restricted, because the access to the

inner surface of the system is limited. In general, only uniform functionalities can be

added after the fabrication of the channel.

One great asset of rolled up capillaries is that the inner surface is completely ac-

cessible prior to rolling. Hence in principle, complex surface functions can be inte-

grated, thus producing a system with two levels of detail and only one lithographic

step. So far, most studies reported in the literature focused on electrodes integration

[66, 103, 104, 105] and studies dealing with other kinds of patterning are scarce. In this

section, we establish processes to design other types of patterns. In order to make this

toolbox useful for the greater number, the emphasis is put on simplicity.

III.2.1 Chemical patterning

Chemical patterning can be used to locally alter the wetting behavior, localize cell

adhesion or prevent biofouling. Although the use of patterned structure has many

applications[192], it is difficult to produce anything more complex than a homoge-

neous treatment in channels produced by soft lithography. We propose a method

based on microcontact printing[193].

Fluorescent ink on stamp

Thin PDMS layer on film

(a) Design of a bilayer
and a stamp with flu-
orescent ink.

(b) The stamp is pressed
on the surface of the
bilayer.

(c) Resulting patterned film, ready
to be rolled.

Figure 60: Steps of fabrication of chemical patterns by microcontact printing.

a) Experimental

The steps of fabrication of a film with chemically patterned surface by microcontact

printing are described in Figure 60.

First, a 10µm thick PDMS film with oxidized surface was produced. An additional

2µm thick layer of PDMS was added. The cross-linker to PDMS ratio of the soft layer

was 1:20 to make it twice softer than usual[170, 171].

A stamp was then designed with soft lithography techniques [35]. A few drops of

aqueous solution of fluorescent ink are poured on the stamp and spread by pressing
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a glass slide on top of it. After 5 minutes of infusion, the stamp is dried with nitrogen

until no solvent remains. The surface of the bilayer was then activated by exposure to

oxygen plasma for 2 minutes. The stamp is dropped on the activated surface and left

for 10 minutes before careful removal. Finally, the system can be rolled as previously.

The fluorescent ink was polylysine(20 kDa) grafted with polyethylene glycol(2 kDa)

and labeled with fluorescein isothiocyanate (PLL-g-PEG/FTIC) with a concentration

of 0.1mgL−1 in deionized water, purchased from Susos. FTIC is a green fluorescent

dye that could be imaged with an Olympus Fluoview FV1000 inverted confocal micro-

scope both in optical and fluorescence mode.

b) Results and discussion

Chemical patterns were deposited on the PDMS film prior to rolling by microcontact

printing the method above.

In this work, we the ink is polylysine(PLL) grafted with a green fluorescent molecule

for imaging as a proof of concept. The polycationic nature of the PLL brush in the

ink generates strong electrostatic interactions with the oxidized PDMS surface [194],

which is strongly negatively charged. It allows the stable fabrication of very well de-

fined patterns. Note however, that the pattern is not covalently attached to the surface.

As this process does not put strong chemical or mechanical stress on the fragile film,

it is still possible to initiate the rolling process after patterning. Films which have been

successfully patterned are shown before and after rolling in Figure 61. An excellent

resolution of 10µm was obtained. Note that the encountered limitations are coming

from the lithographic step and not from the stamping itself.

As far as we know, no other method is able to produce channels with inner chemical

patterns.

c) Other attempts

Although PLL adsorption on PDMS surface is strong, it could be beneficial to obtain

covalently bonded treatments. Moreover, few molecules grafted on a PLL brush are

commercially available and those who are are very expensive.

A good approach would be to bond covalentely a generic group on the surface

which can be used to bond a large class of molecules, in the spirit of the recent concept

of "click chemistry".

Based on the work of Abdullah et al.[195], we attempted to stamp silane-terminated

thiol on an oxidized surface of PDMS. Maleimide groups can in principle be bonded

on this pattern. However, we were not able to reproduce the published results in the

same conditions. The reasons are not known and are under investigation.
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(a) Circular holes with a
diameter of 20µm and
10µm wide lines.

(b) Circular holes with di-
ameters of 10 and 40µm
and 40µm wide lines.

(c) Rolled system with
10µm fluorescent lines.

(d) Rolled system with
20µm fluorescent holes.

Figure 61: Fluorescence images of stamped system before and after rolling. (a) and (b) : Ex-
amples of stamped patterns before rolling. (c) and (d) : Rolled up system in visible
and fluorescent imaging. The fluorescence plane of the picture is taken out of the
substrate plane so that only the rolled layers of the tube are visible.

III.2.2 Topographical patterning

Topographical patterning can be used to tune the wetting behavior of a liquid, to in-

crease the area of contact, to locally alter the fluid flow or to influence cell growth. Soft

lithography techniques allow the patterning of only one side of a square channel[196].

However, this requires two-step lithography techniques which can be costly and chal-

lenging in terms of alignment. In the following section, we propose a method based

on micro-embossing.

a) Experimental

The steps of fabrication of a film with topographically patterned surface by microem-

bossing are described in Figure 62.

First, a PDMS 5 mm stamp is fabricated by conventional soft lithography techniques

[35]. The surface of the stamp is activated with oxygen plasma for 2 minutes. The

stamp is then placed for 12 hours in a closed 4 inches wide petri dish with 10 µL of

(1H,1H,2H,2H-perfluorooctyl)trichlorosilane. Before its use, the stamp is degazed at

0.1mbar for at least 10 minutes.
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Stamp with low adhesion
treatment

Thin uncrosslinked layer
on a film

(a) Design of a bilayer
and a stamp with low
adhesion treatment.

(b) The stamp is pressed
on the uncrosslinked
surface.

(c) Resulting patterned film, ready
to be rolled.

Figure 62: Steps of fabrication of topographical patterns by micro-embossing.

Thick patterns can be directly embossed on a thick PDMS layer before oxidation,

while thin patterns must be embossed in an additional layer of PDMS as to not be

erased by the exposure to plasma. This additionnal layer had a thickness between 2µm

and 5µm. Its cross-linker to PDMS ratio was 1:20 to make it twice as soft[170, 171].

Before the cross-linking of the last layer occurs, the stamp is carefully applied

against the film so that large bubbles are avoided (small bubbles will disappear if

the stamp was properly degazed). The system and stamp are then placed on a hot

plate at 80 ◦C for an hour. In order to prevent unsticking of the stamp due to thermal

effects, a weight of 500 grams is put on the sample during the cross-linking process.

After cooling down the system, the stamp is carefully removed. This step is tricky

as the fragile film is weakly adhesive on both the substrate and the stamp. It is greatly

facilitated by adding a few drops of ethanol at the edge of the stamp, which instantly

causes its delamination. One should thus be extra careful: ethanol must not reach the

substrate, as it also has a strong affinity to ethanol5.

Patterned systems were imaged with a Dino-lite numerical microscope. Both the

thickness of the film and the 3-dimensional shape of the patterns were measured with

an optical interferometer before rolling.

b) Results and discussion

Micro embossing could be successfully performed on the films with the protocole

described in the previous section.

In Figure 63 are displayed some successful examples of rolled up systems with em-

bossed patterns. Note that the method is limited to patterns of small height compared

to the tube diameter. This makes the use of this method unrealistic to alter fluid flow,

as the typical depth for such application is 20 to 30% of the channel width. However,

5 This is true for all three low adhesion treatment proposed in this work.
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(a) 2.8µm deep grooves in a 40µm film,
perpendicular to the tube axis.

(b) 11.2µm deep grooves in a 55µm
film, parallel to the tube axis.

(c) 2.8µm pillars with diameter of
10µm and 40µm on a 11µm film.

(d) 2.8µm pillars with diameter of
40µm on a 11µm film and different
densities.

Figure 63: Optical images of tubes with grooves and pillars patterns on their inner surface
with various dimensions. Figures (a) and (b) display films that have been directly
embossed before oxidation and rolling while figures (c) and (d) show tubes obtained
after the embossing of an additional layer as in Figure 62. Note that the cracks in
the latter case are not visible any more as they are filled with PDMS.

these topographical patterns can still be used to alter the surface properties or increase

the surface-to-volume ratio of the channel.

As far as we know, no other method is able to produce channels with inner topo-

graphical patterning on the whole inner surface.

c) Other attempts

Other attempts were made to produce topographical patterns on the surface of the

film prior to rolling, based on etching methods.

In that case, the first problem in that case is to fabricate a mask by photolithography

on the surface of PDMS. Satisfying results could be obtained with Microposit Shipley

S1813 photoresists on the oxidized surface of PDMS. However, the fabrication protocol

is more difficult than on a standard substrate as the mask will crack if dried too fast6.

We attempted to perform dry etching through the mask by prolonged exposure to

UV ozone. This method produces good quality structures on PDMS surfaces as shown

6 It was shown that S1813 could be used on non oxidized substrate with an additive layer of
polydimethylglutarimide[197]. However, due to the high price of the component and the doubts emitted
by the furnisher, this method was not attempted.
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in Figure 64a. However, the etched films cannot be rolled anymore. With that process,

the etching of the film requires many hours of exposure. As UV/ozone treatment is

more widely used to oxidize the surface of PDMS[198], we believe that the etching

process generates a very thick oxide layer, preventing the rolling process.

Reactive ion etching can also be performed on these PDMS surfaces[199]. However,

the high price of the device and complexity of the procedure are against the idea

behind this work. Hence, this method was abandoned.

Finally, we attempted to perform wet etching of PDMS with tetra-butylammonium

fluoride(TBAF) [200]. Two main problems must be overcome with that approach.

Firstly, the solvent of the TBAF must not compromise the integrity of the mask or

the thin PDMS layer nor provoke their delamination. Secondly, the process is very

sensitive to water impurities and temperature. We also suspect that the oxide layer on

the surface of PDMS can act as a passivation layer against the attack of TBAF. Hence,

the oxidation time required for the fabrication of the mask has to be minimized. We

met partial success (an example of which is displayed in Figure 64b), but the low

reproducibility of the result drove us to abandon the method.
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(a) Square pillar obtained by dry-
etching with UV/Ozone of PDMS
surface.
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(b) Linear grooves obtained by wet-
etching of PDMS surface with
TBAF.

Figure 64: Height profiles of PDMS surfaces etched with different methods.

The experimental protocols evoked in this section were the following:

• Fabrication of a mask of S1813 photoresist on PDMS substrate without cracks: The

PDMS surface is oxidized by exposure to oxygen plasma at 29.6W for 5min.

S1813 is spun coated on the surfce for 30 s at 5000 RPM and prebaked at 70 ◦C

for 4min. The system is left to cool down at room temperature for 5min. The

photoresist is then exposed through a plastic mask for 8 s with a power density

of 40mW2 cm−1. It is then immersed in MF-319
7 for 6 s and dried with nitrogen

stream. If undesired traces of photoresist remain, a second immersion was done.

The last traces of solvant were removed with low vaccuum for a few minutes.

The mask can be lifted off with water or acetone.

7 This is the common develloper recommanded by Shipley.
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• PDMS was exposed to UV/ozone for 10h leading to structures with a height of

1.5µm to 2µm with a heavily cracked surface.

• If wet etching is performed through the mask, no alteration of the surface can

be seen. However, if the mask is done with the same process but reducing the

oxidation time to 30 s8, etching is possible. The sample is immersed in a dry

solution of TBAF in toluene with a concentration of 0.17mol L−1 for 30 s. The

reaction is stopped by immersion in deionized water.

III.2.3 Embedded channels

Channels embedded inside the layer could also be produced before rolling using decal

transfer microlithography methods[201].

a) Experimental

The steps of fabrication are detailed in Figure 65 and 66.

(a) Fabrication of a thin film
of PDMS with grooves on
a SU8/Si mould with low
adhesion treatment.

(b) Low adhesion treatment
of the film surface. Ad-
dition of a thick carrier
layer.

(c) Unmoulded system.

Figure 65: Steps of fabrication of a thin layer with grooves carried by a thicker film.

Layer to transfer and
carrier

PDMS layer with
activated surface

(a) Bonding of the thin
patterned layer of the
PDMS film.

(b) The carrier layer is
peeled off and the
surface is oxidized.

(c) Resulting film with embedded
channels, ready to be rolled.

Figure 66: Steps of fabrication of embedded channels by decal transfer.

A thin PDMS layer is fabricated based on conventional soft lithography techniques

[35]: First, a mould is obtained by photolithography of SU8 photoresist on a silicon

wafer. This mould is then treated to reduce its adhesion to PDMS: It is exposed to

8 However, the mask is cracked in that situation
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oxygen plasma for 2 minutes and placed for 12 hours in a closed 4 inches wide petri

dish with 10 µL of (1H,1H,2H,2H-perfluorooctyl)trichlorosilane. Second, a 28µm thick

PDMS layer is spun coated at the surface of the mould and fully cross linked at 150 ◦C

for 5min. This layer is too thin to be manipulated easily. It is thus also treated with

the same low adhesion silane, and a thicker layer of several millimeters is added and

cross-linked. This thicker layer will be called the carrier in the latter parts of the text.

The thin layer can then be unmoulded and manipulated.

In a second step, a thin layer (<10µm) is produced on a P4VP substrate as before and

cross linked. The previous patterned system can be plasma bonded on the surface of

that layer and the carrier can be carefully peeled away. This system now has embedded

channels and can be oxidized and rolled up as before.

This method processes relatively thick layers which often unroll when taken out of

the solvent. In order to avoid that a 3µm thick layer of PDMS is added prior to rolling

and heated for 18 minutes at 65 ◦C. This layer is not fully crosslinked and will stay

very adhesive for several minutes. This increases greatly the stability of the rolled up

systems.

b) Results and discussion

(a) 50µm wide embedded
channels in a rolled up
tube.

(b) Opening of the same tube.
The opening of the embed-
ded channels can be seen.

(c) Zoom on the opening of
an embedded channel af-
ter rolling.

Figure 67: Optical images of tubes with embedded channels. A 28µm thick layer of PDMS with
11.5µm deep grooves was plasma bonded on another 8µm thick layer. In order to
increase adhesion a final 3µm thick and partially cross linked layer was added just
before rolling. The total thickness of the film is thus 40µm.

We could successfully produce 40µm thick PDMS layers with embedded 10µm

square channels by decal transfer. In Figure 67 displays the produced channels and a

zoom of the opening of one of the channels after rolling 9.

III.2.4 Critics of the process

The rolling process described in Section III.1 and III.2 has many advantages. In partic-

ular, many methods exist to pattern PDMS. However, it also carries some flaws. Firstly,

PDMS is extremely soft, which makes the tube hard to manipulate. Secondly, as there

9 This opening results from the cutting of the film prior to rolling.
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is no swelling stimulus in the final system, the tube may unroll. Finally, the process

requires the use of volatile organic solvent, which can pose safety issues if the adapted

equipment is not available. In the next section, we propose a different rolling process,

which is less versatile in terms of functionalization but answers to these problems.

III.3 An alternate rolling method based on shape memory shrink film

In this section, we propose a new process based on shape memory films and lamina-

tion. The resulting system is hard enough to be manipulated and even cut easily and

cannot unroll.

This process is largely inspired by the work of Liu et al.[98]. Their work was based

on the very ingenious use of shape memory material sheets that shrink and thicken

under heat. Inked areas of the sheets were selectively heated by infrared irradiation

which provoked heating on the sole surface of the material, resulting in localized

rolling i. e. folding. This innovative work has simulated many projects in the domain

of spontaneous origami [202, 203, 204, 205]. The material sheets they used was "Shrinky

dink", which are relatively thick layers of material designed as toys. Thinner sheets of

analogous material are found in the packaging industry under the name of shrink film.

Sadly, the process of Liu et al.cannot be reproduced with these 10µm thick films, since

they are so thin that they do not stay flat by themselves. However, these films can be

used as the source of stress required for spontaneous rolling of a bilayer structure.

III.3.1 Fabrication scheme

We used CT303E shrink film from Cryovac. Although the supplier does not give the

exact composition of the film, we know that the material is similar to low density

polyethylene(LDPE). The film is 11µm thick. When heated at 120 ◦C, the film shrinks

in plane by a ratio of approximately 65%. The documentation given by the supplier

states that the film is not isotropic and its mechanical properties and shrinking ratio

can vary slightly with the direction.

The first problem we faced was to produce a hard coating on the shrink film. This

is difficult as polyethylene is a particularly inert material.

Following Liu et al., we tried to deposit ink on the surface of the film. Most of

them do not have a good enough adhesion to LDPE10. However, the ink in Lumocolor

Staedler permanent markers is relatively stable and can be used for rolling purposes.

We covered the surface of the film as homogeneously as possible using a marker

loaded with either black ink, red ink or a dyeless ink offered by the supplier. Once the

ink is dry, it forms a hard layer on the surface of the film, which can then be cut and

heated to obtain the desired curvature.

10 Shrinky dink films is coated with a layer to ensure good adhesion of printer ink. This is not the case of
CT303.
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HDPE Shrink film
Heat

Polyimide

Plasma oxidation of
HDPE

Glue

Heat

Figure 68: Fabrication of self-rolled tube based on shrink film.

A second successful procedure is to simply bond a sheet of another material on

the surface of the film as illustrated on Figure 68. We decided to use Kapton HN

polyimide films from Dupont for its excellent elastic properties. Polyimide was also

recently used as a flexible substrate for electronics, which has a great potential for

applications (see Section III.3.3.b)). Once again, the difficulty is that both materials are

quite inert. The choice of the glue is a critical point, as it must sustain heat and shear

stresses, hold onto plastic, harden without heat and be applyable as a very thin layer.

The surface of LDPE can be activated by exposure to oxygen plasma[206]. It is then

laminated on a sheet of polyimide with a film of glue. Once the latter has dried, the

film can be cut and heated to obtain the desired curvature.

III.3.2 Experimental

Only the detail of the polyimide/LDPE films is given in this section.

LDPE CT303 shrink film from Cryovac and Kapton HN from Dupont with a thick-

ness of 8µm, 12µm and 25µm have been cleaned with isopropanol. The surface of

LDPE is activated by 5 minutes exposure to oxygen plasma with a power of 29.6W.

A layer of glue is then applied on the kapton film. Two different glues have been suc-

cessfully used. UV630 is a UV curable glue from Permabond which can be spin coated

for 1min at 3000 RPM. Araldite 2000+ purchased from Farnell can be applied in very

thin layer using an applicator roller. The glue is spread homogeneously on the roller

and wiped out as much as possible with a dust free tissue. A layer of glue is layed

on aluminium foil and the roller is thoroughly cleaned with solvent. The thin layer on

aluminium can be used to cover the roller and be transfered on the kapton. The two

films are then laminated with a standard desk laminator.

Once the glue has hardened, the film is cut and placed in a cold oven. The tempera-

ture is raised very slowly to avoid overshoot and always controlled with an electronic

thermometer. The tubes are left at least 30 minutes at the final temperature.

The resulting tubes were cut with a pair of scissors and their opening was imaged

using a Dino-Lite numerical microscope.
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III.3.3 Result and discussion

In Figure 69b are displayed the resulting tubes. They are very resistant, can be ma-

nipulated with fingers and even cut with scissors. We also provide the percentage of

contraction of the shrink film alone as a function of temperature in Figure 69a. It can

be seen that non negligible shrinking happens before 100 ◦C. Just below this temper-

ature, the contraction ratio is about 20%. Above 100 ◦C, it raises quickly to 60% and

more. The glue usually fails at this temperature. This is both due to the large contrac-

tion ratio and to the fact that most epoxy-based glues loose their resistance at high

temperatures.
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Figure 69: (a) Contraction of CT303 shrink film as a function of maximal temperature. The
contraction was measured along two orthogonal directions each time in order to
observe the anisotropy of the film. (b) Tubes obtained by heating a kapton/shrink
film bilayer.

a) Influence of the temperature and capping material on the diameter

Nine types of tubes were produced. Three inks (black, red and no dye) were used as

capping. The colored inks produce far smaller tubes, which shows that the dye11 has

a strong influence on the process. Kapton films with three different thicknesses were

laminated on shrink film, producing extremely smooth and regular curvatures. As

expected, the thinner film produce larger curvatures. Aluminium foil was also used,

but the resulting tubes are irregular due to plasticity effects. The glue alone can be

used as capping. However, the surface cracks a lot and most of the tube are extremely

irregular. The diameters can still be measured as a reference of comparison. Finally,

due to stress inhomogeneities in the film itself, the bare film spontaneously rolls when

heated. Of course, the resulting tubes are large and irregular. They can be measured as

11 not indicated by the supplier
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a reference of comparison. All types of tubes are displayed at their maximal sustained

temperature in Figure 70.

1 mm

(a) Nothing - 110 ◦C

1 mm

(b) Aluminium foil - 96 ◦C

50 µm

(c) Glue alone - 110 ◦C

200 µm

(d) 8µm polyimide film -
96 ◦C

200 µm

(e) 12µm polyimide film -
96 ◦C

1 mm

(f) 25µm polyimide film -
96 ◦C

200 µm

(g) No dye ink - 88 ◦C

200 µm

(h) Red ink - 96 ◦C

200 µm

(i) Black ink - 88 ◦C

Figure 70: Optical images of tubes based on shrink film with different capping materials. The
given temperature is the maximal rolling temperature tested with that material.

The obtained diameter of each type of tube as a function of maximal applied tem-

perature is displayed in Figure 71. From an engineering potential point of view, the

greatest success is the tubes obtained with 8µm kapton films which produce very

smooth and resistant tubes with an inner diameter of 280µm.

Note that the adhesion of the film on itself is low, so that the layers can slide on

each other. It is thus highly possible that the number of turns has an effect on the

inner diameter. This question was not investigated yet.
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Figure 71: Inner diameter of shrink film-based films as a function of applied temperature.
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(a) (b)

Figure 72: (a) Two identical darker patterns can be seen one below the other. The pattern at
the top was outlined with a white dashed line. They correspond to the illuminated
regions where silver ions have been reduced in the form of nanoparticules on the
surface of a Kapton film. (b) 200µm squares of deposited copper on the surface of
a Kapton film.

b) Metal pattern deposition on kapton films

A great advantage of polyimide is that it can be used as a substrate for metal deposi-

tion. Two main applications were envisioned.

Firstly, metal could be used to provoke local heating in the unrolled polimide/shrink

film system, either by Joule heating or exposition to electromagnetic microwaves[207].

This could be used to create self folding origami systems.

We postulate that if enough pressure is applied inside it, the tube should partially

unroll i. e. the diameter of the tube is sensitive to the difference of pressure between

the inside and the outside. If sufficiently thick metal can be rolled with the kapton,

capacitive sensors which are sensitive to the relative positions of the layer could be

designed in order to produce cheap pressure sensors.

To simplify the procedure, we used an electroless metal deposition process from

Hoyd-Gigg Ng et al.[208] which requires only a UV lamp and a few chemicals. Briefly,

the surface of the polyimide film is hydrolyzed with concentrated KOH and immersed

in silver nitrate salt which results in a surface loaded with silver ions. Those can be

reduced in nanoparticules using a UV sensitive reductor agent. This last step can be

done through an optical mask12 so that silver nanoparticules can be selectively pro-

duced on desired arrays of the film. As an example, Figure 72a shows darker regions

on a kapton film where silver nanoparticules have been generated. These particules are

suitable as nucleation sites for conventionnal electroless metal deposition. For exam-

ple, Figure 72b displays 200µm squares of copper that could be successfully fabricated

on 25µm polyimide films with the above procedure.

12 Mask printed on a plastic film with a 25µm resolution.
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However, the adaptation of the method on 8µm film is not trivial as the first step

etches strongly the film. The rolling of metalized film is still an ongoing project.

III.4 Connexion of a rolled up tube

Glass substrate Self rolled tube

(a) Entrance of a tube on a
glass substrate.

PDMS chamber

(b) A PDMS chamber with
an external connexion is
placed on the tube end-
ing.

Fluid inlet
Viscous PDMS

(c) The entrance is sealed
with viscous PDMS.

Figure 73: Connexion of a tube by placing a chamber made with soft lithography at its ending.

Even equipped with the most complex functionalities, a microfluidic capillary is

useless if it is not connected to fluidic inlets and outlets. The method implemented

by Gomez et al.[105] was to place a PDMS chamber, designed by soft lithography at

the opening of the tube and to seal the joint with preheated PDMS as illustrated in

Figure 73. The latter is highly viscous and cross-links very quickly when heated, so

that it could be used as a sealant without risking to clog the tube. A great advantage of

that method is that in principle, the chamber could also be part of a more complex mi-

crofluidic system. However, this method has a lot of drawbacks. Placing the chamber

manually and sealing it without clogging the tube is time consuming, requires a lot of

skill and has a low success rate. Hence, we do not believe this method appropriate for

practical use.

Plastic substrate
Self rolled tube

(a) Entrance of a tube on a
plastic substrate.

Water

(b) A drop of water is de-
posited at the entrance of
the tube.

PDMS

(c) The system is immersed
in PDMS. The entrance of
the tube is protected by
the water.

(d) After cross-linking, the
water is evaporated, leav-
ing a chamber at the en-
trance of the tube.

(e) The system is taken of the
plastic and the chamber
can be punched.

Fluid inlet

(f) The system is bonded
onto glass to seal the sys-
tem.

Figure 74: Connexion of a tube using water to protect the entrance.
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We propose a different and simpler approach, illustrated in Figure 74. A piece of

tube embedded in PDMS is properly cut and placed on a hydrophobic substrate 13. A

drop of water is placed at the tube’s endings and the system is immersed in PDMS.

After cross-linking of the latter, the water is evaporated with either heat or vaccuum.

At this point, the tube is connected to two large chambers14. The PDMS is manually

detached with the tube from its substrate, the chambers are punched to produce the

connexions and the whole system is plasma bonded to a glass slide in order to close

the system. This method is much simpler and requires fewer steps15. However, it

can only produce a quite large (2mmto3mm) chamber at the entrance of the tube.

Moreover, this method has a very low success rate if the tube is not initially embedded

in PDMS because the water drop can move when the PDMS is poured. Hence, we

believe this method is only suitable for the study of lone tubes. Images of flux obtained

in self-rolled tubes with this method are displayed in Figure 75.

These two methods of connexion are satisfying as a first approach to produce sim-

ple systems with one single tube. It would be beneficial to be able to produce complex

systems that combine existing microfluidic technology and self-rolled tubes. This prob-

lem is more complex and is solved in Chapter IV.

(a) Water/air interface. (b) Oil in water emulsion.

Figure 75: Flux in single tube obtained with the method described in Figure 74

III.5 Conclusion and outlook

Thin films of PDMS capped by a thin layer of hard material could be rolled up when

exposed to solvent vapours that selectively swell the PDMS. This produces cylindrical

channels with typical inner diameters between 20µm and 500µm that can be mea-

sured. We tested different experimental parameters, in particular the nature of the

13 A low degree of hydrophobicity is enough. Typically, polystyrene petri dish were used
14 The hydrophobicity of the substrate is required to obtain hemispherical chambers. Indeed, water drops

would be flatter on hydrophillic substrates so that, very large drops would be required to protect the
whole opening.

15 In particular, there is no step for the fabrication of the chamber by soft lithography.
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capping and of the solvent, and the thickness of the films was varied. We used the

knowledge of Chapter II to confront this data to the theory in Chapter I and showed

that a good agreement is obtained. However, the swelling ratio of PDMS in that situa-

tion is shown to be very different from unconstrained PDMS.

In a second section, we use the fact that the inner surface of the tube is accessi-

ble prior to rolling in order to produce capillaries with fully patterned inner surfaces.

Three kinds of patterns are proposed. Chemical patterns can be produced by microcon-

tact printing. Topographical patterns can be fabricated by microembossing. Embedded

channels can be obtained by decal transfer. In each case, the system we obtain simply

would be extremely hard, if possible at all, to produce by other means.

This fabrication process is great but not flawless. In particular, it is hard to scale

industrially and the softness of the tubes make them hard to manipulate. In a third

section, we propose a different approach based on shrink film and lamination methods

to answer those issue. Very smooth tubes with inner diameters as small as 200µm

could be produced. These tubes can be manipulated very easily, being very hard but

not brittle. Polyimide films can be used in the fabrication process, which holds great

promises in terms of application, as metal can be easily deposited on this material.

The production of microfluidic capillaries by spontaneous rolling of thin films is a

very promising method as new functions can be added by coupling existing methods

to the rolling recipe. However, this only results in a cylindrical channel which has to

be connected to a larger system. This problem can be solved easily if fluidic circuits

made of a single tubes are enough. A more refined method is proposed in Chapter IV

that allows the integration of tubes in a complex microfluidic structure.



IV
M O D U L A R M I C R O F L U I D I C S B Y I N K J E T P R I N T I N G O F A

V O L AT I L E M O L D

In the previous chapter, we showed that self-rolled tubes can be produced and func-

tionalized. We showed simple techniques to produce systems made of a single tube.

However, a further step is the integration of one or several tubes in a wider and more

complex microfluidic system.

In this chapter, we propose an innovative method for the design of microfluidic

systems based on inkjet printing of a volatile mold, solid at room temperature. This

method was designed to be cheap, automatic and versatile. In particular, it naturally

allows the integration of components, fluidic or electronic, in its design.

Firstly, in Section IV.1, we detail the motivation and inspiration of the method. Sec-

ondly, in Section IV.2 we present its practical implementation. Finally, in Section IV.3,

we demonstrate the successful fabrication of systems and present the immense poten-

tial of that process.

IV.1 Motivation and method

IV.1.1 The high stakes behind integration

In this work, we focused on the fabrication of self rolled tubes with inner function-

alities, a very unconventional method for the fabrication of microfluidic capillaries.

Being able to integrate that system in a wider microfluidic device has a much higher

stake. The more general question here is: how to integrate any kind of microfluidic

component purchased or obtained from a colleague ? Defining a general standard to

assemble different components would allow a horizontal fabrication process. More pre-

cisely, different parts of the system can be fabricated and tested separately by different

actors. With only one step required by the end-user to assemble the different pieces

together, this allows the fabrication of very complex systems with few efforts.

Most current fabrication processes are purely vertical. For example, soft lithography

produces the entirety of the chip from pure material. If complex components such as

valves, pumps, electrodes or heaters are required, they have to be produced during the

same process. Hence, the person producing the chip must have a strong knowledge of

all its basic components and must optimize each of them. It is quite the opposite that

happens in the field of microelectronics. Indeed, most end-users of Printed Circuits

Boards (PCB) have little to no knowledge of the process of fabrication of a resistor or

a capacitor. Their knowledge is limited to the calibrated behavior given by specialists

113
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of each component (the suppliers), to the fabrication of the board and to the use of a

soldering iron. The consequence of this difference between the two fields is that micro-

electronics is widely spread and applied while microfluidicsis still relatively confined

to the hands of specialists, limiting strongly its application.

In order to democratize microfluidic, two main ideas coexist in the community.

A lot of hope is put upon 3D printing technology[209, 39]. Indeed, most methods

based on additive manufacturing are mostly automatic, relatively inexpensive, and

dedicated to 3D structures. The hope is that a non-specialist could have his chip design

automatically generated by a software and directly printed. However, the resolution

is still mostly unsatisfying. Typically, the channel width of printed structure with

medium price setup is close to the millimeter. Moreover, each component must be

doable by 3D printing, which is not the case of simple things as electrodes or chemical

patterning.

In the early 2000’s, the idea of modular microfluidics started to develop, leading to

the concept of LEGO microfluidic. Basic fluidic components would be developed in

bricks that would be assembled to generate a larger system. These components could

be fabricated by molding[210, 211, 212] or once again by 3D printing[213, 214, 215,

216]. The problem is once again size related. The components themselves must be

manipulated by hand and are at least several millimeters wide each. Moreover they

are assembled by simply plunging them into each other. These connections are often

unreliable and can leak.

IV.1.2 Specification and inspiration

Largely inspired by the success of the PCB, we envision an in-between solution based

on permanently assembled components. In our vision of the ideal method, fluidic

components of varied sizes, shapes and produced by various means can be used. As

fluidic sub-units, they have inner channels connected to openings that act as input

and output of their operation. The method should produce channels linking these

openings with a width similar to the width of the inner channels. It should be cheap,

and require little knowledge and skill from the end-user. In that sense, automation of

the fabrication process seems essential. Finally, it should be as versatile as possible, in

term of chip material or design for example.

Our strategy to meet these seemingly unreasonable specifications was to improve

the method presented in Figure 74. We recall that in that method, a water drop is used

to protect a chamber at the end of the tube when the whole system is immersed into

PDMS.

The idea to use a material as a removable mold is as old as civilization, with the well-

known lost wax method[217] used in metallurgy. In the field of microfluidics, sacrificial

material methods are not a new idea either. Since 2004, many papers proposed meth-



IV.1 motivation and method 115

(a)

(b)

Figure 76: Processus of fabrication of microfluidic chips by sacrificial inkjet printing proposed
by Su et al.[223]. (a) Sketch of fabrication. (b) Cross-sectional SEM image of the
channel.

ods where sacrificial molds are fabricated by either lithographic techniques[218, 219]

or 3D printing methods [220, 221, 222]. After embedding these structures in the future

chip material, the mold has to be removed, which is usually the most problematic part

of the process. The mold can be dissolved[222, 220, 218], but this usually takes a very

long time 1 as it relies on the very slow process of liquid diffusion. Moreover, the re-

quired time scales quadratically with the channel length so that the method becomes

completely unrealistic for large systems.

Other strategies have been envisioned to circumvent the problem. Sacrificial molds

that can be melted were used. They can then be removed by applying pressure or vac-

uum at the chip opening[221]. However, the material is usually quite viscous and the

pressure required to evacuate it from narrow channels can be very high. This strongly

limits the size of the channel that can be fabricated by that method2. Finally, some

teams have provoked the depolymerization of the mold which can then be evacuated

as gas. Polycarbonate [219] can been used and evacuated at 450 ◦C. It was used as

molds to produce chips in photosensitive polyimide. In order to lower the evacua-

tion temperature, polylactic acid fibers doped with metallic ions can be evacuated at

200 ◦C[224]. Although these process are faster, the high temperatures they require can

be a limitation in a lot of application. Very recently, Su et al.[223] have produced the

mold and the chip simultaneously by inkjet printing (see Figure 76). More precisely,

many layers of material have been printed. Printable SU8 was used where a wall was

desired and soluble material was printed where a channel was wanted. This is a very

tempting approach as metallic inks can also be used to add sensors in the chip. How-

1 Typically several tens of hours for channels of a length of a few centimeters.
2 Note that the same problem is encountered when microfluidics is fabricated by stereo lithography[39].
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ever, the fabrication is also limited by the removal of the sacrificial material and the

wall material is very expensive.

IV.1.3 Inkjet printing of volatile sacrificial material

a) Fabrication process

(a) Ink is deposited on the substrate in liq-
uid phase where it freezes immediately.

(b) Additionnal elements can be added.
Here some elements for the connexions
and a casing to avoid the spreading of
PDMS.

(c) The system is immersed in PDMS which
is cross-linked at a temperature below
the melting point of the ink.

(d) The ink is evaporated, leaving open
channels. The system can be used as
so or removed from the substrate and
plasma bonded to glass.

Figure 77: Process of fabrication of simple microfluidic channels.

We propose the following process, summed up in Figure 77:

First, the material of our mold has to be deposited on a substrate in liquid phase.

We call it the ink in the rest of that chapter. It should quickly solidify to obtain a

good stability of the mold. We find that inkjet printing is the most suitable for this

process. The method consists in generating a pattern by sending droplets of material

on a substrate. Mostly known in our domestic printers, inkjet printing is a mature

and very powerful technique which has been already extensively used and studied

for the deposition of conductive materials[225], polymers[226, 227] and even for tissue

engineering[228]. With resolutions as low as 20µm, it is a very versatile method as

different inks can be used to produce different functions on a same substrate.

At this stage, additional elements can be added on the substrate, such as a casing or

elements for the connexion design (see next sections). A material that can cross-link is

then poured on the mold, we call it the shell in the rest of this work. The cross-linking
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conditions must not provoke the melting of the ink. In this work, PDMS and UV glue

(NOA81 and NOA86) were used.

Once the shell is solid, the channels must be opened. We propose to evacuate the

ink by evaporation or sublimation. Of course, this also involves a diffusive process,

but the constant of diffusion of gas is several orders of magnitudes smaller than that

of liquids. Hence the time of removal of the ink shall be greatly reduced. To ensure a

quick extraction, its evaporation temperature should be relatively low so that it can be

removed by application of reasonable heat and vacuum. This final step is as far as we

know a complete innovation. In order to ensure a complete removal of the ink, a few

minutes of solvent circulation might be necessary.

The shell can be unstuck from the substrate and bonded on another, with plasma

techniques for example. However, if the shell has a good adhesion on the substrate,

the chip can be used directly. We call this method Replication of a Printed Volatile

Mold (RPVM).

(a) A generic substrate with
electronic and fludic com-
ponents can be used.

(b) Ink is deposited above
electronic components
and covers the openings
of fluidic components.

(c) The ink must be evapo-
rated in conditions that
will not damage the com-
ponents.

Figure 78: Process of fabrication of microfluidic channels with integrated electronic and fluidic
components. In the above sketches, the grey part is a connector, the blue part is a
fluidic component and the red and black parts are electronic elements.

Note that inkjet printing does not require a flat substrate. Indeed, the nozzle which

generates the drops can be several millimeters away from the surface. Hence, there are

very few requirements for the substrate to meet. In particular, it does not have to be

flat. One implication of this flexibility is that some part of the substrate can be fluidic

or electronic components, as in Figure 78. In the first case, the opening of the channels

inside the component will be covered by the ink, naturally connecting it to the future

microfluidic layout. In the second case, ink can simply be printed on the component so

that the future channel will be in direct contact with it. Note that this last step might

require 3D structures as the channel will have to "climb" on the component.

In principle, tuning the height of the channels and producing 3D structures can be

done by printing many layers of ink on top of each other.
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b) Choice of the ink

The specifications for the ink are the following:

• The ink must be printable. Hence, it must be liquid and reasonably fluid at a

printing temperature. A reasonable inkjet system could print fluid at 120 ◦C3

with a viscosity smaller than 30mPa s−1.

• The ink must freeze on the substrate and be stable at the cross-linking tempera-

ture of the shell. Ideally, for a practical use with PDMS, the melting point should

be above 40 ◦C. "Stable" also means that the ink does not deteriorate in contact

with its environment. For example, very hygroscopic products will melt due to

the eventual presence of water in the atmosphere which complicates the process.

Finally, note that the thermal capacity of the ink and the heat transfer coefficient

between the ink and the substrate will play an important role in the time re-

quired to freeze the ink. However, it is hard to specify a range on this quantities.

• The ink must also chemically resist the immersion in the shell. In particular, it

must have a negligible solubility in the shell for the cross-linking time. Note that

the volume of the shell is very big compared to the channels volume, so that

"negligible" is a very strong requirement.

• The ink must sublimate or evaporate in favorable conditions in reasonable time.

Typically, the conditions that were accessible in our laboratory were a tempera-

ture T < 170 ◦C on a hot plate at a pressure P ≈ 0.1 bar, or room temperature at

a pressure P < 0.1mbar.

The following candidates have been tried:

• Acetophenon melts at 20 ◦C and cyclohexanol melts at 23 ◦C. NOA81 could be

successfully solidified around droplets of product. The product can be removed

in less than 1 hour at 80 ◦C and 0.1 bar. However, it leaves traces in the form of

coffee rings which can be either a problem of purity or chemical decomposition.

• Dodecanol melts at 24 ◦C. It can be removed completely (at least visually) in less

than 1 hour at 80 ◦C and 0.1 bar. However, its solubility in PDMS is small but

enough for 100µm thick structures to dissolve in a few hours. This product is

thus unsuitable for its use with PDMS as the shell because the cross-linking of

PDMS at 20 ◦C takes more than a day.

• The use 2-pyrolidone and δ-valerolactame were attempted. However, those com-

pounds are so hygroscopic that they partially melt in contact with atmospheric

humidity.

3 This temperature is already quite high for commercial devices. For example, the Dinolite printer from
Fujifilm can heat the nozzle at only 60 ◦C and does not heat the fluid reservoir.



IV.2 implementation of the method 119

• Dimethylsulfoxide has a very low solubility with PDMS and is quite fluid, how-

ever its melting point is below 18.5 ◦C has a tendency to freeze in large crystalline

grains.

Finally, the best candidates we found were linear diols with formula (OH)−(CH2)n−

(OH). In this work, we selected 1,6-hexanediol, which melts at 42 ◦C and can be re-

moved in less than 1 hour at 100 ◦C and 0.1 bar or in less than 6 hours at room tem-

perature and 0.1mbar4. Its viscosity at 60 ◦C is 24mPa s−1[229]. It is very soluble in

water but once solid it remains very stable in open atmosphere for at least two weeks5.

It is absolutely insoluble in PDMS even by heating or mixing. It is slightly soluble in

NOA81 and NOA86 but remains undissolved in solid form for many hours6.

IV.2 Implementation of the method

The entry price of an inkjet printing device for material deposition is the Dimatix

printer from Fujifilm at 50,000$. The specifications of that system are at the limit of

the desired range and the software is proprietary so that the printing procedure cannot

be finely controlled. Hence, it was decided to build a homemade printing setup.

IV.2.1 Fabrication of the inkjet printer

a) XYZ control

The movements of the printer were controlled with a 3-axis positioning table C-Beam

from OpenBuilds with 3 NEMA 23 stepper motors. The system was driven by an

Arduino Uno v1.5 with a gShield v5[230] and grbl v1.5 installed. Speed and posi-

tion instructions can be sent to the electronic card by RS232 in the form of G-Code

instructions[231].

b) Print Head

The core of our printhead was the piezoelectric drop on demand dispensing device

MJ-SF-04-060 from Microfab. It consists into a glass capillary with constricted orifice

of 60µm in diameter (the nozzle) and a piezoelectric element. If a stable liquid front

is present at the tip of the nozzle, a pulse in the piezoelectric element will generate a

pressure wave that can destabilize the front and provoke the ejection of a droplet. This

process depends heavily on the viscosity and the surface tension of the fluid. A lot

4 This last process is considerably accelerated if hexanediol is melted before the application of low pres-
sure.

5 The average temperature was approximately 27 ◦C during day time and the average relative humidity
was 30%.

6 This was tested by leaving a printed 100µm thick demonstration pattern as shown later in Figure 87 and
immersing it in NOA for many hours at room temperature. The change could be visually observed after
3 hours. However the material was fully dissolved after 24 hours of immersion.
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of referenced informations can be found in MicroFab technotes[232]. This particular

device can also withstand temperatures as high as 240 ◦C. We also purchased from

MicroFab a cartridge reservoir and a filter from the PH04a printhead mount7.

The cartridge is equipped with a pressure connector. It is usually necessary to apply

a negative pressure on the system to prevent leakage. Indeed, the pressure due to the

height of fluid in the reservoir is usually enough for the fluid to flow out of the nozzle.

In order to control the temperature of the printhead, KHLV Kapton heaters from

Omega were fixed on the cartridge and the filter along with PT1000 temperature sen-

sor using Kapton tape and thermal paste. The system is mounted in heat resistant

plastic and metallic parts which were respectively 3D printed and machined. They are

used for insulation, assembly on the positioning table and protection of the fragile

nozzle.
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(b) Final printhead with
heaters, sensors and
casing. Wires not
shown.

(c) Printhead mounted on the
XYZ positioning system.

Figure 79: Elements of the print head assembly.

The parts of the printhead are summarized in Figure 79. The required connexions

are the following:

• x1 Negative pressure input

• x2 Heaters (x2 wires each)

• x2 Temperature sensors mounted as 4 point resistors (x4 wires each)

• x1 Pulse for the piezoelectric element.

7 The price of the device with the reservoir and filter is 2,700$. The PH04a assembly already contains
elements for temperature control (heater and sensor) and tip protections but costs 11,000$.
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c) Temperature control and drop generation

The temperature in the printhead is controlled with a Lakeshore 336 temperature

controller which contains a PID system. In order to avoid a power surge in the heaters,

the temperature targets are always ramped at 6 ◦Cmin−1 when increased.

The negative pressure is manually controlled with a CT-PT-21 pressure controller

from MicroFab. The electrical pulse is generated by a JetDriveIII unit also from Mi-

croFab. The pulse parameters are controlled with JetServer from a computer (see Sec-

tion IV.2.1.f)).

The typical waveform of the pulse is shown in Table 3. The typical parameters which

are given are for the generation of droplets of hexanediol at 60 ◦C.
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delay for pressure
wave propagation

delay for pressure
wave propagation

V+

V-

t1 t3 t4 t5t2

Voltage

Time, us
Parameter V+ V- Trise1 Tdwell Tfall Techo Trise2

Expression V+ V- T1 − T0 T2 − T1 T3 − T2 T4 − T3 T5 − T4

Value 32V V- −32V 7µs 4µs 14µs 2µs

Table 3: Parameters of the typical waveform for the generation of drops of hexanediol at 60 ◦C.
The figure was reproduced from MicroFab documentation.

d) Imaging

An additional top view camera8 was added on the printhead. It is useful both for con-

trolling the print quality and defining the origin of the printed path on the substrate.

In order to adjust the pressure and pulse parameters, it is important to be able to

image the droplet ejection from the nozzle. We used a LED strobe supplied by Mi-

croFab, synchronized with the drop ejection frequency aligned with a lateral camera

with long focal optics9. By changing the delay between the strobe and the electrical

pulse, the different stages of the generation of the drop can be imaged as displayed

on Figure 80. The strobe is alimented by the JetDriveIII unit.

8 Digital microscope V160

9 CMOS DCC1645C from Thorlabs equipped with a 12x zoom lens with a working distance of 108mm
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Figure 80: Ejection of a droplet at 100Hz with the parameters given in Section IV.2.1.c).

e) Substrate cooling

In this process, the substrate has to be cooled down in order to tune the freezing time

of the ink. This was done using a 25.5W thermoelectric Peltier element. The advan-

tage of this system is that a very compact and light system can pump out quite a large

amount of heat. The problem is to evacuate that heat. Initial solutions with integrated

air fans have proved to be inefficient. In the final form of the system, the Peltier plate

was sandwiched between a 4 pass liquid heat sink from Thermalloy10 and a 1 cm

thick square of aluminium with thermal paste. The heat sink was connected to a re-

circulating chiller with silicon tubing. A PT1000 temperature sensor was added to the

top aluminium plate, connected to the same Lakeshore 336 used for other temperature

controls. The substrate can be cooled down to −30 ◦C by supplying the Peltier element

with 12V and 10A and with the heatsink cooled at 2 ◦C.

1

0

Drop train
On/Off

1

0

Drop trigger

V+

V-

Electrical pulse

Figure 81: Signal emitted by the main and secondary Arduino and by the pulse generator
when a drop train is required.

10 It is a simple piece of metal with an embedded copper tube used for the circulation of a coolant.
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f) Printing automation

Proprietary softwares can be used to independently control the different elements of

the printer. However, the different parts must act synchronously in order to produce

an actual result.

The first issue is to produce droplets when the nozzle is at the appropriate position.

More precisely, if the nozzle moves at a speed v and if a line of droplets equally

spaced by a distance d must be printed, a drop train at a frequency f = v/d has to be

produced when and only when the nozzle is moving along that line.

The pulse generator can be used in external trigger mode. The Arduino card which

controls the 3D movement can emit an "droplet train on/off" signal with a simple

G-code command. When the drop train signal is on, a second Arduino card acts as a

square signal generator at the desired frequency in order to trigger the pulse generator

for each drop. This is summed up in Figure 81.

Figure 82: Control flow chart of the printer. The pressure supply and control are omitted.

A homemade user interface was coded in Python which operates the different parts.

A control flow chart of the whole system is displayed in Figure 82. This application

communicates in RS232 with the temperature controller, the cameras and the Arduino

cards. A file from the user, containing the desired path to be printed can be read
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and sent in G-code11 form to the main Arduino card12. Only the pulse shape and

the cameras are controlled via proprietary softwares. The final device is displayed in

Figure 83.

Figure 83: The final setup. Some control parts, such as pressure or temperature controllers, are
not shown.

IV.2.2 Further optimization

a) Hygroscopy of the ink - sensitivity to ambient humidity

First printing tests were performed at ambient atmosphere. It was observed that the

hexanediol stayed liquid on hydrophilic substrates (see Figure 84a), even at a relatively

low temperature. This issue is due to the hygroscopy of the molecule in liquid form.

A small amount of water from the atmosphere or adsorbed on the substrate is enough

to lower drastically the freezing point of the very small droplet of ink. This tendency

worsens when the temperature of the substrate is lowered. However, some hydropho-

bic substrates such as polyimide could be used as substrate in ambient conditions (see

Figure 84b).

In order to be able to print on hydrophilic substrates, the setup was put in a glove

box supplied by dry air. The humidity level was maintained below 10% for the rest of

the results presented in this work.

11 Some commands in standard G-code can damage the device, in particular vertical motion commands.
To avoid dangerous behaviors provoked by an unexperienced user, the file is written in some alternate
form and the software is charged with the conversion in readable (and safe) G-code.

12 Note that for synchronization issues, the secondary Arduino is controlled by the main one and not
directly by the computer. There are two potential problems. First, the RS232 protocol is quite slow. Sec-
ond, operational systems such as Windows are only required to "feel" synchronous for a human so that
simultaneity can be off by as much as 10ms.
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(a) Silicon wafer. (b) Kapton HN film.

Figure 84: Print test on a hydrophilic and a hydrophobic substrate at ambient atmosphere with
a substrate temperature of 10 ◦C.

b) Metastability of supercooled phase on hydrophobic materials

The removal of atmospheric humidity gave satisfying results for the printing on hy-

drophilic substrates. However, bad quality prints were obtained on very hydrophobic

substrates such as glass substrate covered by a layer of PDMS as shown on Figure 85a.

The printed liquid lines are completely destabilized before freezing. Therefore, the

freezing time of the ink on PDMS appears to be very long. A good printing quality

can be obtained by cooling the substrate to a much lower temperature, as can be seen

on Figure 85b. The change of the substrate thermal conductivity due to the thin layer

of PDMS is not enough to explain that such a low temperature is required. We demon-

strate below that in Figure 85a the ink stayed in fact in a supercooled state for a long

time while at very low temperature, the freezing of the ink is triggered more easily.

In Figure 86, we show what happens when many droplets are deposited at the same

place on a cold PDMS substrate. At first, nothing happens and a large expanding drop

of ink forms. It remains liquid for a few tens of seconds. But as soon as it touches a

(a) 5 ◦C (b) −24 ◦C

Figure 85: Print tests on a PDMS substrate at low and very low temperature.
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Figure 86: Substrate seen from the side camera. Many drops are sent at the same place on a
substrate of PDMS at 17 ◦C at 100Hz, close to pieces of frozen hexanediol. For the
first 70 s, the drops remain liquid and form an increasingly large drop, as seen on
the first picture. On the second picture, 0.2 s later, the drop touches the frozen ink
and spreads on it. On the third picture, 2.8 s later, a freezing front is clearly visible.
Finally, in the fourth picture, after 0.6 s, the hexanediol is completely solid and the
next drops start to form a column on the right of the frozen drop. This abrupt
freezing is a clear signature of the existence of a supercooled phase.

piece of solidified ink, the whole drop freezes suddenly. This is a clear sign that the

material is in a metastable supercooled phase. This phenomenon greatly enhances

the total time required for the ink to freeze, which explains the destabilized patterns

obtained in Figure 85a.

The situation is indeed the most adequate for the occurrence of supercooling. This

phenomenon occurs when their is a lack of ice seeds i. e. of small impurities or irregu-

larities with which the liquid has a good affinity. Both the ink and the surface are very

clean and smooth at the scale of the droplet. Moreover, the lack of affinity between the

hydrophobic substrate and the ink prevents the use of this interface as a crystal seed.

Metastability issues can typically be overcome by three means.

First, vibrations might induce pressure waves that will trigger the solidification of

the fluid. However, ultrasound had no particular effect on millimeter-large droplets

of ink in a metastable state. We attribute the inefficiency of that approach to the high

viscosity of hexanediol.

Second, impurities that can act as seeds can be introduced. However, this poses

many other issues as the ink must be filtered, used in very small drops and evaporated.

Finally, the only method left is to lower drastically the temperature in order to be

closer to the homogeneous nucleation point13 in order to make the freezing of the ink

more likely. The quality of the print obtained in Figure 85b shows that this approach

is relevant14.

13 Temperature at which the thermal fluctuation are enough to trigger the nucleation of ice crystals. This
temperature is −42 ◦C for water and unknown as far as we know for hexanediol.

14 However, This result has limited reproducibility. We suspect that the relative humidity has some influence
on the required temperature for good quality prints. In particular, destabilized patterns are seen more
often when efforts are made to lower the humidity as much as possible. We could not quantify this effect
as we could not measure the relative humidity below 5%.
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c) Influence of ambient temperature

When tall structures must be produced, many layers of ink can be printed. We ob-

served that the increase in height per layer depends strongly on the substrate temper-

ature or more precisely on the temperature of the last printed layer which now acts as

the substrate. For structures with more than ten layers, this does not only depends on

the substrate temperature but also on the ambient atmosphere temperature. Methods

to circumvent the problem are briefly discussed in Section IV.3.2.a).

IV.2.3 Influence of printing parameters

In the rest of this work, the drop ejection frequency will be set at 100Hz. In this

section, we illustrate the influence of the other printing parameters. Different printings

of the same patterns are displayed in Figure 87, printed initially with non-optimal

parameters which are progressively improved. Two layers were printed on top of each

other every times.

The first result, in Figure 87a, is disastrous. The ambient humidity was not high

enough to prevent the ink from freezing completely, but it took so much time that

the pattern could be completely destabilized. When the atmosphere is dried, as in

Figure 87b, some oscillations of the line width are observable. This is a signature that

the liquid line starts to destabilise before the ink freezes. The freezing time can be

decreased by lowering the temperature, as in Figure 87c. There is no more oscillations

but the lines appear to be discontinuous. It indicates that the drop spacing is too large.

It was decreased in Figure 87d. In this picture, we can see that the line is irregular in

width. It indicates that the two layers are badly aligned, due to a too large distance be-

tween the nozzle and the substrate. A final optimized result is displayed in Figure 87e.

The final parameters are summarized in Section IV.2.6

IV.2.4 Printing artifacts

As opposed to standard inkjet processes where a solvent evaporates, the drop remains

where it was deposited, keeping mostly its spherical shape. Its presence can influence

the behavior of other drops before they freeze. This can lead to different artifacts in

the final pattern. Two artifacts were mainly encountered.

First, when a drop is deposited partially overlapping another (frozen) drop, its en-

ergy is generally reduced if it moves closer to the frozen drop15. The induced shift is

illustrated in Figure 88a. Surprising features can occur when many drops are involved.

For example, if a four line wide channel is printed, the order in which the lines are

printed can lead to very different results as shown in Figure 88b. If the two internal

lines are printed first, the channel may be slightly more compact than expected. How-

15 It is reasonable to assume that the surface tension between the liquid ink and its frozen state is lower
than between two different species. Hence the contact of the frozen drop is preferred.
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(a) Ambient humidity. (b) 24 ◦C in dry atmosphere

(c) 5 ◦C with a drop spacing of 70µm. (d) Drop spacing 40µm, nozzle too far
away.

(e) Final optimized print on glass.

Figure 87: Test pattern printed at 100Hz in non-optimal conditions on glass. Two layers of the
same pattern were printed in this case. In (a), the pattern was printed in ambient
atmosphere (and dried afterward for the picture) with a drop spacing of 70µm, on
a substrate at 24 ◦C with the nozzle 5 cm above the substrate. In (b), the atmosphere
was dried. In (c), the substrate was cooled down to 5 ◦C. In (d), the drop spacing
was decreased to 40µm. Finally, in (e), the nozzle was only 1 cm above the substrate.
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ever, if the two external lines are printed first, the channel can split into two smaller

channels. An illustration of such effect is shown in Figure 90a.

1 2 1 2

Drop displacement

(a)

3 41 2

1 23 4 1 23 4

1 43 2

(b)

Figure 88: Illustration of artifacts due to the attraction of the drop toward another frozen drop
on a flat substrate. The dashed lines represent the desired position of the different
drops. The real drop positions after printing are shown on the right (in different
colors for clarity). (a) Induced drop displacement. (b) The direction of printing is
normal to the picture plan and the numbers must be understood as the order of
printing of each line of a four line channel. The splitting of the structure in its
middle can happen, depending on the order of printing.

Second, the drops freeze fastly enough to hold on the side of another drop before

touching the substrate. If a step is present on the substrate (possibly another printed

channel), a surprising accumulation of ink on top of it will occur as illustrated in

Figure 89. The connexion between the low and the high part of the printed pattern is

usually jeopardized. An illustration of this effect is displayed in Figure 90b.

These artifacts are always a limitation: some advantages can be taken from them,

as will be shown in Section IV.3.2.a). However, they must be taken into account while

designing the printing path. Central lines must be printed first when wide channels

as in the last case of Figure 88 and the crossing of the printed lines must be avoided.

IV.2.5 Maximal resolution

The resolution of RPVM is in great part determined by the sized of the droplets that

can be produced.

From a theoretical point of view, the capacity to produce droplets of size L is de-

scribed by the Ohnesorge number Oh which relates inertial forces to viscosity and

surface tension. Its expression is:

Oh =
µ√
ρσL

(92)

where ρ, µ and σ are the volumetric mass, viscosity and surface tension of the liquid

respectively. In theory, droplets can be produced if 0.1 < Oh < 1[233]. If Oh > 1, the

fluid might be two viscous to jet. IfOh < 0.1, undesired satellite drops will easily form.
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Printing direction

(a) Expected drop positions. (b) Printing a first layer.

(c) Printing a second layer. (d) Printing a third layer.

Figure 89: Illustration of artifacts due to the attraction of the drop toward another drop on a
step. The drops will eventually stay stuck above the substrate as they are fixed on
the previously printed drop. Note that the drop will also shift horizontally. After
many layers, this leads to an accumulation of drops on top of the step.

2 mm

(a) Drop shift artifact.

500 µm

(b) Step artifact.

Figure 90: (a) Demonstration of the artifact in Figure 88. The central channel was printed as
four parallel lines spaced by 40µm. A split in its center is clearly visible. (b) Demon-
stration of the artifact in Figure 89. In this case the step is another 5 layers channel.
The picture show that at the crossing point, most of the material stays on top of the
channel, preventing the impression of intersections for example.
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For hexanediol, the theoretical minimal size of the droplets is thus 14µm at 60 ◦C, and

2.4µm at 86 ◦C.

In practice, the nozzle used in this work has a diameter of 60µm. The simplest

pulse shape, that we use in that work, produces drops of approximately the same

diameter. If finer resolutions are required, nozzles with a diameter as small as 20µm

are available. Using more complex pulse shapes is another option to produce droplets

smaller than the nozzle [234, 235], but this can affect the stability of the jetting.

In conclusion, an apparatus that aims at jetting droplets with a diameter between

10µm and 20µm can be designed. The Ohnesorge number of such droplets of hexane-

diol at 80 ◦C is between 0.3 and 0.5 so that jetting shall be allowed. This resolution is

similar to what is obtained with soft lithography in most laboratories16.

IV.2.6 Final process

printing

1,6-hexanediol at 60 ◦C is printed in dry atmosphere on a hydrophilic substrate at a

temperature between 5 ◦C and 12 ◦C or on a hydrophobic substrate at a temperature

below −22 ◦C. Electrical or fluidic element can be considered as part of the substrate.

Details on their integration are given in the next section.

The parameters of the electrical pulse sent to the piezoelectric element are those

given in Table 3. Drops are generated at 100Hz and deposited with a spacing of 40µm

between them. The distance between the nozzle and the substrate is between 5mm

and 10mm. The height of the printed pattern can be tuned by printing several layers

on top of each other.

Before retrieving the sample, it is important to let the substrate heat up to room tem-

perature in the dry atmosphere. Otherwise, the condensation can destroy the printed

pattern.

casing and connexions

The following process is done to design the connexion of PDMS chips. A thick17

hollow cylinder was printed wherever a connexion is needed, as can be seen in Fig-

ure 87e. A 1 cm long piece of fused silica tubing is manually introduced in the hole

of the cylinder and sealed with a drop of hexanediol as in Figure 91. These tubes can

be pulled out after removal of the ink, leaving a small hole which can be used as a

connexion.

16 Better resolution are reachable with SU8, but more complex and/or expensive methods have to be im-
plemented, such as laser writing or the use of quartz/chromium masks.

17 Twenty layers
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Figure 91: Typical connexion before molding.

The process is less practical for NOA chips as the tube can’t be pulled out. Long

tubing must be maintained in position during the whole cross-linking process and

will permanently act as a connexion.

Finally, a casing of PDMS can be added as in Figure 77b in order to define the region

of the substrate that will be immersed in PDMS or NOA.

molding

PDMS or NOA is poured on the printed pattern at room temperature.

PDMS-based chips were cured at 35 ◦C overnight and 2 hours at 60 ◦C to ensure a

complete cross-linking.

NOA81 is cured by UV exposure. However, a lot of heat is produced that can melt

the pattern. A pattern was printed on a microscope cover slip. After pouring the

NOA81, the pattern was maintained on a block of ice for the whole curing process.

The NOA81 was cured by alternate steps of exposure to UV at 10mW cm−2 for 2 s

followed by 2 s of relaxation repeated for 5min. A final step of 60 s of exposure at

200mW cm−2 was then performed to ensure a complete curing of the system.

NOA86 can be cured very slowly by exposure to ambient light. However, as for

NOA81, a light too strong will melt the pattern. The system was placed under dim

light for curing times between 2 and 4 hours. In order to ensure complete curing of

the material a last step of exposure at 200mW cm−2 for 60 s was performed.

ink removal

We used three sets of parameters for the evaporation of the ink:

• 30min on a hot plate at 170 ◦C at P ≈ 0.1 bar

• 2h on a hot plate at 100 ◦C at P ≈ 0.1 bar

• 5min at 60 ◦C in a oven and 2h at room temperature at P < 0.1mbar
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Note that in the latter case the melting step is facultative but greatly decreases the

time required for the ink removal.

After the ink removal, the chip can directly be used or, in the case of PDMS chips,

peeled off the substrate and bonded on another one with plasma bonding techniques.

IV.3 Results and discussion

In this section, we first deal with the features of RPVM for the fabrication of stan-

dard chips. The resolution of the method, the available aspect ratio, the resistance to

pressure and the usable substrates are discussed in the first part. In the second part,

we discuss the original features of RPVM, in particular the possibility to produce 3D

structures and the possibility to integrate components.

IV.3.1 Chips fabrication

Chips could be fabricated successfully by RPVM as shown in Figure 92. The central

path in this pattern is a single line, producing 50µm wide channels. Red dye was

flowed in the chip directly after the evaporation of the ink without the need of plasma

bonding. In Figure 93, we reproduce a typical function required in microfluidic device:

the generation of water drops in oil in a T-junction. The 190µm wide channels can be

easily fabricated by printing four parallel lines.

(a) Printed pattern. (b) Final chip.

Figure 92: Demonstration of (a) hexanediol pattern printed on glass and (b) the final chip
filled with red dye. The channel width is 50µm. This chip was used directly after
ink removal, i. e. without plasma bonding.

The height of the channels can be tuned by printing several times the same pattern.

Vertical slices of chips printed with a different number of layers were imaged to ob-

serve the cross-section of the channels, as illustrated in Figure 94. The first layer is

relatively flat, with a width of 83µm for a height of 16µm. However, after the third

layer, each new layer seems deposited in the same way, leading to an increase in height

of 31± 3µm for a channel width of 50µm. The height of the channel as a function of
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Flow direction

Figure 93: Drop generation of water with 0.3% SDS in hexadecane in a T-junction designed by
RPVM.This chip was used directly after ink removal, i. e. without plasma bonding.
The 190µm wide channels were produced by printing four parallel lines separated
by 40µm. Five layers were printed in that device.

the number of layers is displayed in Figure 94j. Note that very large aspect ratios are

trivially obtained, as illustrated in Figure 94i. Indeed, in contrast with soft lithography

techniques, there are no limitations due to diffraction or unmolding. However, we re-

call that this height can depend on other parameters such as substrate or atmosphere

temperature and drop ejection speed. The influence of those parameters is still under

investigation.

Most of the chips shown in that work are produced on a glass substrate and PDMS

walls. The PDMS was directly cured on the glass but it was not covalently bonded. In

order to test the resistance of those chips, a single channel with only one opening was

printed. After molding and evaporation of the ink, the channel18 was filled with water

and put under increasing pressure. We found that the system can withhold 350mbar

of pressure and breaks at 400mbar. This is largely sufficient for most microfluidic

applications.

A final significant point is that RPVM has very few limitations in terms of substrate.

The process can be done on hydrophilic19 and hydrophobic20 substrates with few

restrictions21. There is no limitation on roughness or curvature, as demonstrated in

Figure 95a where the substrate is very rough filter paper, barely maintained flat. There

is even no need to use a solid substrate as demonstrated in Figure 95b, where the

substrate is liquid PDMS.

IV.3.2 Advantages of the method

a) Non-planar designs

In their basic form, most methods of microfluidic channels fabrication only allow

planar structures, i. e. designs where two channels cannot cross each other without

18 This channel was 190µm wide and 5 layers were printed.
19 Tested: glass and silicon wafer
20 Tested: PDMS, polypropylene, polyimide
21 The only detected limitation is the adhesion of the ink on the substrate. The internal stress produced

during the ink solidification can lead to delamination on materials with very low adhesion, such as
Teflon.
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50 µm

(a) 1 layer

50 µm

(b) 2 layers

50 µm

(c) 3 layers

50 µm

(d) 5 layers

50 µm

(e) 10 layers

50 µm

(f) 15 layers

200 µm

(g) 20 layers

200 µm

(h) 40 layers

(i) Printed pattern. (j) Final chip.

Figure 94: (a) to (h) Pictures of a channel cross-section after removal of the ink for a number of
layers between 1 and 40 printed at 5 ◦C.(i) Printed mold with 20 layers. (j) Measured
height of the channel as a function of number of layers printed at 5 ◦C.

(a) Filter paper. (b) Liquid PDMS.

Figure 95: Printed pattern on exotic substrates. (a) Non-flat cellulose acetate filter paper.
(b) Uncross-linked liquid PDMS. Thin layer spun-coated for one minute at 4000

RPM.
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(a) Tilted structures. (b) Bridge.

Figure 96: First examples of 3D structures viewed from the side camera. Those structures are
irregular because their production was not automated.

communicating. The design has to be drawn in 2D because most 3D structures cannot

be unmolded without tearing the material. An abundant literature has been gener-

ated about the many efforts to overcome this limitation for multiple purposes. The

proposed methods are usually demanding. Most of them rely on the fabrication of

layered structures. A first method was proposed, where PDMS was sandwiched be-

tween two molds to obtain 3D structures[236]. In other processes, layers are designed

separately and bonded to each other[237, 238]. The use of so-called dry film[239, 45]

was proposed in processes similar to multiple step photolithography. These methods

are demanding both in time and equipment as they require a careful alignment of

the different layers. Some alternative ideas were proposed, based on actual weaving

of channels[240] or self-repairing properties of PDMS[241]. The biggest hopes come

from the field of 3D printed microfluidics. However, as explained in the introduction

of this chapter, the resolution is still limited.

RPVM can overcome a lot of those difficulties. As demonstrated in Section IV.2.4,

a drop will freeze in contact with another drop before touching the substrate. This

phenomenon allows the fabrication of tilted structures as displayed in Figure 96a. Two

ark-like structures joined together form a bridge, as shown in Figure 96b, and can be

used for the fabrication of crossing channels.

When the tall tilted structures (i. e. the arks) are printed, a great attention must be

given to the printing frequency at which the drops fall at the same place. If drops are

deposited at the same place too fast, a large unfrozen droplet can form. This leads to

instabilities as displayed in Figure 97. On a substrate at 10 ◦C, a single drop column

can be safely printed at 5Hz. When tall structures where printed, the same small

pattern is repeatedly printed at a position slightly shifted each time. We adjusted the

drop frequency so that two drops are deposited on the same spot at a frequency lower

than this value
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Figure 97: Columns of single drops printed from left to right at 10Hz, 100Hz and 5Hz. The
lower larger pattern is a result from the metastability discussed in Section IV.2.2.b).

Once the top of the two arks are very close to each other, the next difficulty in this

process is joining the two structures together. This can be quite difficult as the drops

that should make the connexion will often stick on only one of the two. A strategy

to overcome this problem is to send many drops at a higher frequency and higher

temperature than usual. The freezing time will be increased so that hey will form a

large liquid drop that is more likely to wet both arks. This can greatly favor the success

of the connexion.

A functional example of crossing channel is shown in Figure 98. Note that there is

essentially no difference with the standard RPVM method i. e. this feature is obtained

without extra effort.

1 mm

(a) Printed crossing channels.

1 mm

500 µm

(b) Final chip.

Figure 98: (a) Crossing channels mold made in a single step of printing and (b) the resulting
microfluidic chip in PDMS. The two crossing channels are filled with red and blue
ink.

In the same spirit, it is possible to have the printed channels climb a step on the sub-

strate. Indeed, an ark of hexanediol can simply be connected to a target channel at any

given height. However, two additional difficulties have two be considered compared
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to the previous case. First, uncertainty in the height of the step can be a problem as the

target (i. e. the cross section of the channel on top of the step) is small. This can be cir-

cumvented by adding a tall pyramidal structure at the point of connexion, effectively

increasing the cross section of the channel. Second, as explained earlier, the height

increase per layer can vary strongly between experiments, in particular for structures

thicker than 2mm. In order to solve the issue, we implemented commands to pause

the printing process and give to the user partial control over some parameters. In par-

ticular, the number of layers of the ark and its tilt angle can be controlled visually

and updated during the printing process. As a demonstration of principle, a channel

climbing from a glass slide onto another is shown in Figure 99. Note that once again,

this possibility comes with very few additional effort compared to the original RVPM

method.

(a) Printed structure. (b) Final chip full of red dye.

Figure 99: (a) Channel mold printed on a substrate with a step and (b) the resulting microflu-
idic chip in PDMS filled with red dye. A glass slide was glued on another with a
piece of scotch. This channel goes from the lower one on top of the other and down
again. The width of the channel is 200µm.

b) Integration of fluidic components

As explained in the introduction, RPVM can naturally be used in order to integrate

a fluidic component in the middle of its design. In this section, we connect a PDMS

self-rolled tube as produced in Chapter III as a demonstration of principle. Following

the original inspiration of Figure 74 in Chapter III, the ends of the tube are covered

with a large drop of ink and connected to printed channels.

There are two crucial points of improvement compared to connexion strategies

showed in Chapter III.

First, the "large" drop is produced by sending a lot of small droplets from the printer

nozzle at high frequency and room temperature. The connexion can be very small in

reality, with its lower size limit being the size of only one droplet. Hence, the minimal

size required to cover the end of a tube can be used, greatly limitating the dead volume.
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2 mm

Self rolled tube

(a) Integrated self-rolled tube with blue dye. The shape above the channel is the
shadow of the channel.

Flow direction

Moving droplet Stuck droplet

Self-rolled tube
1 2

3 4

(b) Droplet entering in a self-rolled tube. The channel width is 180µm wide.

Figure 100: Demonstration of the integration of a self-rolled tube in a chip with a printed drop
generator. (a) In the center of the picture is a self-rolled tube connected by two
drops to two printed channels. (b) Entrance of a self-rolled tube (right) connected
to a printed channel (left). The film shows a droplet generated by a printed T-
junction upstream of the channel (out of frame), arriving from the left, deforming
and entering in the tube. The order of the frames is indicated in the top right
corner of each image.

We recall that in comparison, drops deposited by hand with a micro-pipette will have

a volume of at least a few microliters. A self-rolled tube, integrated in a circuit full of

blue ink is displayed in Figure 100a.

Second, this drop can be connected to a larger microfluidic device produced by the

printer, and eventually to other tubes. Thus, RPVM can be considered as the microflu-

idic counterpart of the soldering iron. In Figure 100b, we provide an example of the

entrance of a tube, connected in series with a droplet generator. A train of oil droplets

in water is passing through the tube. This would be extremely difficult to realize with

any other method.
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c) Integration of electronic components

The field of microelectronics is much older than microfluidics. Miniaturized compo-

nents can now be purchased at a ridiculously low price and solve issues with which

microfluidicsgroups are still struggling. Among other examples are temperature con-

trol and sensing, pressure sensing, light emission and detection, impedance probing,

etc... In general, these electronic components can not be used directly in their in-

dustrial common form because the standard techniques lack versatility. Even basic

assembly steps such as bringing a component in contact with a channel can be ex-

tremely difficult. For example, plasma bonding requires clean and flat substrates. This

is incompatible with the presence of millimeter thick electronic components. It leads

researchers to reinvent the wheel by creating completely new technologies.

We show that the extended versatility of RPVM solves those problems, once again

because there is no serious limitation on the substrate. A trivial example is the inte-

gration of electrodes described below.

We purchased golden interdigitated electrodes from NanoSPR on a glass substrate.

They are typically used as biosensors, for example by probing the conductivity of

a solution. There is no additional space on the commercial substrate to produce a

complete microfluidic chip that would integrate the electrodes. Hence, we would have

to make a special order to require a specific substrate size, or perform metal deposition

ourselves.

The size is not a problem with RPVM. We simply glued the glass substrate on a

larger glass slide and made a channel step on and down the electrodes. The device is

shown in Figure 101b and 101c. The complex impedance of one of the two electrodes

as a function of frequency was measured with a lock-in amplifier in serie with a 1MΩ

resistance, when the channel is filled with deionized water and when it is filled with

standard 12 080µS cm−1 buffer solution. The electrodes are made of inert gold, hence

we expect to measure the capacity of an electrical double layer. The buffer solution

has a high concentration in ions so that its Debye length is small. Thus, we expect to

observe a larger capacity. The results are displayed in Figure 101d and 101e. Although

the behavior is not that of a perfect capacity, a clear difference can be seen between

the two solutions and that device can be used to discriminate different products of

reactions.

A further step for the integration of electronic components would be the fabrica-

tion of channels directly on a printed circuit board (PCB). As a proof of concept, we

propose a minimalistic circuit which contains two PT1000 temperature sensors and a

DN505 controlled heater purchased from Radiospare. A circuit is printed that passes

on a temperature sensor before and after passing on the heater. As the three compo-

nents are soldered by hand, they are not perfectly oriented. Hence, a piece of circuit

is printed on each of them separately. The different sections of channel are then con-
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(a) Sketch of the channel and electrodes.

(b) Printed structure. (c) Final chip filled with red dye.
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(e) Phase of the impedance as a function of
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Figure 101: (a) Sketch of the channel printed over commercial electrodes. A lock-in amplifier
is used to apply the alternative voltage U and measure V in order to obtain the
complex impedance of the electrode. Note that there are to set of gold electrodes
on the commercial substrate, but that only one is used. (b) Channel mold printed
on commercial gold electrodes using the possibility to print over a step on the sub-
strate and (c) resulting channel in PDMS filled with red dye. (d) and (e) Complex
impedance of one of the two electrodes when the channel is filled with deionized
water and 12 080µS cm−1 buffer solution.
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Channel
Temperature sensor

Temperature sensor

Heater

(a) Sketch of the structure.

Printed 
channel

(b) Printed structure.

Heater elementTemperature 
sensor

Channel

(c) Final chip in PDMS.

Figure 102: (a) Sketch of the three different components in grey (a heater and two temperature
sensors) and of the channel in red. (b) Channel mold printed on a PCB on the
three components. (c) Channels in PDMS filled with red dye. The system, realized
in PDMS, has a lot of leaks due to the low adhesion of PDMS on the FR4 epoxy
which covers the substrate.

nected to each other as a fluidic component, as in the previous section. The result is

displayed in Figure 102b. Many attempts to obtain the final chip in PDMS were done.

However, the typical PCB is covered by a layer of FR4 epoxy which has a weak adhe-

sion to PDMS. Thus, many leaks occur in the PDMS system, as shown in Figure 102c.

That problem can be solved if the chip is done in NOA86. But the fabrication of the

connexions to the fluid source is brittle and some modifications are required for the

practical use of that system. When this manuscript is written, the integration of PEEK

connectors is in progress.

IV.4 Conclusion

In this chapter, we propose a new method based on inkjet printing of a sacrificial

material that can be removed in gas phase. We call it Replication of a Printed Volatile

Mold (RPVM). Hexanediol, a material which can be printed in liquid phase at 60 ◦C

is deposited on a cold substrate where it solidifies. PDMS or UV glue is then poured

on the system and cured. The hexanediol can then be removed simply and quickly

by evaporation leaving open channels behind it. This last step is a great improvement
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compared to other methods based on sacrificial molds as the removal of the material

is usually extremely long.

A homemade inkjet printing device was built. The different parameters that can

affect the deposition of the ink were investigated. In particular, we showed that relative

humidity, substrate temperature and drop spacing are critical parameters and have to

be optimized. The height of the channels can be tuned by printing several layers on

top of each other. Channels with a minimal width of 50µm and a height between

16µm and 1mm or even more could successfully be fabricated on a broad variety of

substrates. Channels made in PDMS on a glass substrate can withhold as much as

350mbar of pressure, so that plasma bonding is not required for most applications.

RPVM is cheap, simple and mostly automatic.

We also showed that RPVM is extremely versatile. In particular, simple 3D structures

can be realized on any substrate. We used that feature to realize non-planar design

and to integrate fluidic as well as electronic components in a microfluidic chip. This

latter point in particular is of utmost interest as it allows the parallel design of a

system i. e. components can be obtained from different sources and assembled. RPVM

can be considered as the microfluidic counterpart of the printed circuit board used in

microelectronics. In the context of this work, RPVM can be used to integrate self-rolled

tubes in a complex microfluidic system.

The strength of RPVM is that it simplifies greatly the fabrication process. In particu-

lar, it does not require from end-users of other fields to become specialists of microflu-

idics. Thus, we believe in its great potential for the democratization of lab-on-chip

technology.





C O N C L U S I O N

Microfluidics and lab-on-a-chip technology form a quickly growing field with a bright

applicative future. One of the key challenges remaining for its generalized use is to

provide new fabrication methods of microfluidic devices, which are both simpler and

able to produce more complex structures. This is viewed by many actors of the field

as the critical issue still limiting the spread of this technology in other fields and in

industry.

Spontaneous rolling is a natural self-assembly phenomenon already used in many

technological applications. It can be used to produce microcapillaries. This approach

is motivated by the fact that their inner walls can be functionalized prior to rolling,

which solves one of the main limiting issues in current lab-on-chip applications. To

the best of our knowledge, this route has seldom been explored. The spontaneous

rolling of oxidized polydimethylsiloxane thin films in solvent vapors and their use as

channels was the guideline of this work.

The mechanism of spontaneous curvature in systems of two layers has been known

for centuries. However, many of its quantitative features are still not well understood.

Different aspects of the process were first reviewed and investigated numerically. In

particular, the transition from isotropic to anisotropic curvature has been studied. The

system being isotropic in the plane of the film, we could expect the curvature to be

isotropic as well. However, the system curves as a tube. Indeed, when the curvature

is large with respect to the size of the film, the energetic cost of mapping the film

on a sphere becomes higher than that of rolling in only one direction. A transition

then occurs. We investigated numerically this transition and compared it to the sim-

pler unidimenssionnal law given by Timoshenko. We showed that simple scaling laws

can in principle be used to understand most of the phenomenon. Moreover, the Timo-

shenko’s law is still true for anisotropic curvature, within constant correction factors.

The bilayer system consists in a thin film of polydimethylsiloxane oxidized by ex-

posure to oxygen plasma or covered by a harder material, chitosan. However, the

thickness of the oxide layer is little known, and seldom agreed on, in literature. We

investigated the mechanical behavior of the system by AFM nanoindentation. A new

model, called CHIMER for Coated Half-space Indentation - Model for the Elastic Re-

sponse, was used in order to decorrelate the contribution of the hard layer and of the

soft substrate. This model was first successfully tested to predict the known thickness

of chitosan spin-coated on a PDMS substrate. After this validation, the method was

used to measure the thickness of the oxide layer. In particular, we were able to perform

measurements in the experimental conditions used for rolling systems. As far as we
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know, this was not possible with other methods proposed in literature. This method

is promising for the investigation of thin layers and coatings. However, the model still

requires additional experimental proof at different scales to be considered as reliable.

In particular, the contribution of adhesion is still unclear.

Once the different parameters of the layer were known, proper engineering of the

self-rolled tube could be performed. As a first step, the diameter of self-rolled tubes as

a function of experimental parameters was investigated. We showed that the measured

values are theoretically well understood. As a second step, the inner surface of the

tubes were functionalized prior to rolling. We performed topographical and chemical

patterning, and the rolling of films with embedded channels. As far as we know, these

types of systems can typically not be produced easily with other methods. Finally, we

propose an alternate method based on shape memory "shrink film" and polyimide

which has different advantages and disadvantages compared to the previous system.

The methods investigated in this chapter were imagined to extend the toolbox at the

disposal of lab-on-chip engineers in order to produce interesting features. For example,

the ability to produce cylindrical channels and to control the chemistry of the inner

surfaces makes these systems good candidates to produce capillaries similar to blood

vessels.

A last part of this study was motivated by the integration of self-rolled tubes in

microfluidic systems. We propose a new method based on the production of a volatile

sacrificial mold by inkjet printing. We call this method Replication of a Printed Volatile

Mold (RPVM). A homemade printing setup was built and RPVM was showed to have

many advantages. In particular, any fluidic or electronic component can naturally be

embedded in the final device, allowing the collaboration of many actors in the fabri-

cation of one lab-on-chip system. This was typically not easily feasible with any other

methods. RPVM offers great prospects. We do not expect to outperform photolitho-

graphic processes. However, this method requires little knowledge and investment

from the end-user to produce complex systems. This makes RPVM a great candidate

for the widespread use of microfluidic technology.

As it is directly upstream many technological breakthroughs, the everchanging field

of microfabrication is one of the richest and most dynamic environments of the aca-

demic world, where the perpetual challenge is to find the right balance between per-

formance and simplicity. The needs of each end-user are different so that the diversi-

fication of methods is a crucial issue for the development of any kind of technology.

This is especially true for emerging fields such as microfluidics. The direction followed

by this work is only one of the countless existing possibilities but we sincerely hope

and believe that this story will not end here.
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[I pray for] the strength to change what I can, the inability to accept

what I can’t, and the incapacity to tell the difference.

"Calvin" in the comics Calvin & Hobbes by Bill Watterson





P U B L I C AT I O N S

• The work of chapter 2 was published in Soft Matter as first co-author:

B. Sarrazin, R. Brossard, P. Guenoun, and F. Malloggi, “Investigation of pdms

based bi-layer elasticity via interpretation of apparent young’s modulus,” Soft

matter, vol. 12, no. 7, pp. 2200–2207, 2016

• The work of chapter 3 was published in Journal of polymer science as first author:

R. Brossard, V. Luchnikov, P. Guenoun, and F. Malloggi, “Patterning of sponta-
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Titre : Courbure spontanée de films minces de polydimethylsiloxane: mécanismes et
applications.
Une voie nouvelle pour la fabrication de nouvelles fonctions pour la microfluidique.

Mots clefs : Microfluidique, Microfabrication, Courbure spontanée, Polydiméthylsiloxane

Résumé : Nous nous sommes intéressés à l’auto-
enroulement de films de polydimethylsiloxane
(PDMS) oxydés dans des vapeurs de solvant. Briève-
ment, des films minces de PDMS sont obtenus par
enduction sous centrifugation. Ces films sont en-
suite exposés à un plasma d’oxygène, ce qui a pour
conséquence d’oxyder et de rigidifier leurs surfaces.
Lorsque ces systèmes sont exposés à certains solvants
en phase gazeuse, le PDMS non-oxydé gonfle. Cela
mène à l’auto-enroulement des films et donc à la for-
mation de capillaires. Ce mécanisme est intéressant
pour la fabrication de canaux microfluidiques car ce
qui deviendra la surface interne desdits canaux peut-
être caractérisé et fonctionalisé avant l’enroulement.
Dans un premier chapitre, différents aspects de l’auto-
enroulement sont passés en revue théoriquement
et numériquement. Un second chapitre expérimen-
tal est dédié à l’étude de la couche oxydée par
nano-indentation AFM. Les propriétés mécaniques du

système composite (couche dur sur substrat mou)
sont mesurées et interprétées au moyen d’un nou-
veau modèle pour extraire notamment l’épaisseur
du film oxydé. Dans un troisième chapitre, l’auto-
enroulement des tubes lui-même est étudié. Le di-
amètre interne des capillaires obtenus en fonction de
paramètres expérimentaux est examiné et confronté
à la théorie. Plusieurs démonstrations de principe
de tube avec une surface interne fonctionnalisée sont
fournies. Enfin, pour répondre à des problématiques
d’intégration des systèmes dans une structure mi-
crofluidique plus complexe, une méthode innovante
est proposée dans un quatrième et dernier chapitre.
Basée sur l’impression jet d’encre de moules sacrifi-
ciels, la méthode est d’abord mise en place expérimen-
talement. De nombreuses démonstrations de principe
du vaste potentiel de cette idée sont ensuites pro-
posées.

Title : Spontaneous curvature of polydimethylsiloxane thin films: Mechanisms and
applications
A new route for the low cost fabrication of new functionalities for microfluidics

Keywords : Microfluidics, Microfabrication, Spontaneous curvature, polydiméthylsiloxane

Abstract : The guideline of this work is the spon-
taneous rolling of oxidized polydimethylsiloxane
(PDMS) thin films in organic solvant vapors. Briefly,
thin films of PDMS are produced by spin coating.
Those films are then exposed to oxygen plasma which
oxidizes and hardens their surfaces. When those sys-
tems are immersed in appropriate solvent vapors, non
oxidized PDMS selectively swells. This leads to the
spontaneous rolling of the films and thus to the for-
mation of capillaries. This mechanism is of great inter-
est for the fabrication of microfluidic channels because
what is to become the inner surface of those chan-
nels can be characterized and functionalized prior to
rolling.
In a first chapter, different aspects of spontaneous
rolling are reviewed theoretically and numerically. A
second chapter is dedicated to the investigation of the

oxide layer by AFM nanoindentation. The mechanical
properties of the composite system (hard layer on a
soft substrate) are measured and interpreted with a
new model in order to extract in particular the thick-
ness of the oxide layer. A third chapter dwells on engi-
neering of the rolled-up tubes. The inner diameter of
the capillaries as a function of experimental parame-
ters is measured and confronted to theory. We present
tubes with various inner surface functionalizations as
a proof of concept of the method. Finally, in order to
solve the issue of the integration of the system in a
wider structure, an innovative method is proposed in
a final fourth chapter. Based on the fabrication of a sac-
rificial mold by inkjet printing, the method is first es-
tablished and implemented. Several proof-of-concept
systems are then displayed in order to demonstrate
the great potential of that idea.

Université Paris-Saclay
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