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Compressed sensing (CS) exploits the compressibility of dierent types of images to reconstruct undersampled data without loss of information. The technique can be applied to MRI to reduce the acquisition times. The CS is based on three major components: (1) sparsity representation of the signal in some transform domain, (2) incoherent measurements, and (3) sparsity-constrained nonlinear reconstruction method. If the total number of points in the image is larger than four times the number of sparse coecients then the reconstruction of undersampled data is feasible. In the part IV of this thesis, we propose a new undersampling model based on the diusion limited aggregation (DLA) theory and show that it performs better than the random variable undersampling method. The DLA undersampling model was used to implement the CS for T2-weighted and T1-weighted high resolution imaging at the ultra-high magnetic eld (17.2T). In both cases, the acquisition time was reduced by 50% while maintaining the quality of the images in terms of spatial resolution, contrast to noise ratio, and signal intensity quantication. Both new CS pulse sequences (csRARE and csFLASH) were implemented in ParaVision 5.1 commercial software.

In the part V of the thesis is focused on the study of the time-dependent diusivity in the abdominal ganglion of Aplysia californica. The Aplysia abdominal ganglion was chosen in this imaging study because high resolution MR imaging allows the ne anatomical description of the cellular network (size of individual neurons and orientation of axons). Using the Aplysia ganglia to study the relationship between the cellular structure and the diusion MRI signal can shed light on this relationship for more complex organisms. We measured the dMRI signal at several diusion times in the abdominal ganglion and performed simulations of water diusion in geometries obtained after segmenting high resolution T2-weighted images and incorporating known information about the cellular structure from the literature. To match the dMRI signal in the single cell neurons with numerical simulations signal, the large cell outline was segmented from the anatomical T2 weighted image. Inside this cell shape, an irregularly shaped nucleus was manually generated (around 25-30% volume fraction). The small cells were modeled as small spheres with a smaller concentric spherical nucleus (around 25% volume fraction). The nerve was modeled by combining axons (cylinders) of dierent diameters consistent with the literature. The numerical dMRI signal can be simulated by solving Bloch-Torrey equation under the geometries domain described above. By tting the experimental signal to the simulated signal for several types of cells such as: large cell neurons (diameter between 150 µm and 420 µm); cluster of small neuron cells gathered in the shape of a bag (up to 400 cells in adult Aplysia in each bag with cell size between 40 µm to 100 µm in diameter); and nerves (group of axons cylindrical shape diameter from less than 1 µm to 25 µm) at a wide range of diusion times, we obtained estimates of the intrinsic diusion coecient in the nucleus and the cytoplasm (for cell neurons) and the intrinsic diusion coecient in the axons (for the nerves). We also evaluated the reliability of using an existing formula for the time-dependent diusion coecient to estimate cell size.

i Microscopie du tissu neuronal par IRM: accélération des acquisitions, modélisation et validation expérimentale de la diffusion de l'eau Résumé La technique d'acquisition comprimée ou compressed sensing (CS) exploite la compressibilité de diérents types d'images pour reconstruire des données sous-échantillonnées sans perte d'informations. Cette technique peut être appliquée à l'IRM pour réduire les temps d'acquisition. CS est basée sur trois composantes majeures : (1) la représentation parcimonieuse du signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une méthode de reconstruction non-linéaire avec une contrainte de parcimonie. Si le nombre total de points dans une image est plus grand que quatre fois le nombre de coecients de décomposition alors la reconstruction de données sous-échantillonnées est réalisable. Dans la partie IV de cette thèse, nous proposons un nouveau modèle de sous-échantillonnage basé sur la théorie de l'agrégation limitée par la diusion (DLA) et montrons qu'il est plus performant que la méthode de sous-échantillonnage aléatoire. Le modèle de sous-échantillonnage DLA a été utilisé pour implémenter la technique de CS pour l'imagerie haute résolution pondérée T2 et T1 sur un champ magnétique très intense (17.2T). Pour chacune des pondérations, le temps d'acquisition a été réduit de 50 % tout en conservant la qualité des images en termes de résolution spatiale, rapport contrast sur bruit et quantication de l'intensité du signal. Les deux nouvelles séquences d'impulsions CS (csRARE et csFLASH) ont été implémentées sur le logiciel commercial ParaVision 5.1. La partie V de la thèse est centrée sur l'étude de la dépendance en temps de la diusivité dans le ganglion abdominal de l'Aplysia californica. Le ganglion abdominal de l'aplysie a été choisi pour cette étude d'imagerie car l'IRM à haute résolution permet la description anatomique ne du réseau cellulaire (taille des neurones individuels et orientation des axones). Utiliser les tissus neuronaux de l'aplysie pour étudier la relation entre la structure cellulaire et le signal d'IRM de diusion peut permettre de comprendre cette relation pour des organismes plus complexes. Le signal d'IRM de diusion (IRMd) a été mesuré à diérents temps de diusion dans le ganglion abdominal et des simulations de la diusion de l'eau dans des géométries obtenues à partir de la segmentation d'images haute résolution pondérées T2 et l'incorporation d'informations sur la structure cellulaire trouvées dans la littérature ont été réalisées. Pour comparer le signal d'IRMd dans des neurones composés d'une seule cellule avec le signal des simulations numériques, des cellules de grande taille ont été segmentées à partir d'images anatomiques pondérées T2. A l'intérieur des cellules, un noyau à forme irrégulière a été généré manuellement (environ 25-30% en fraction volumique). Les petites cellules ont été modélisées comme des petites sphères avec un petit noyau sphérique concentrique (environ 25% en fraction volumique). Le nerf a été modélisé en combinant des axones (cylindres) de diérents diamètres en cohérence avec la littérature. Le signal numérique d'IRMd a été simulé en résolvant l'équation de Bloch-Torrey pour les domaines géométriques décris ci-dessus. En ttant le signal expérimental avec le signal simulé pour diérents types de cellules comme les grandes cellules neuronales (diamètre entre 150 et 420 µm), des agrégats de petites cellules neuronales ayant la forme d'un sac (jusqu'à 400 cellule chez l'aplysie adulte dans chaque sac avec une taille cellulaire entre 40 et 100 µm de diamètre), des nerfs (groupes d'axones de forme cylindrique avec un diamètre de moins de 1 à 25 µm) pour une grande gamme de temps de diusion, nous avons obtenu des estimations du coecient de diusion intrinsèque dans le noyau et le cytoplasme (pour les neurones) et le coecient de diusion intrinsèque dans les axones (pour les nerfs). Nous avons aussi évalué la pertinence d'utiliser une formule préexistante décrivant la dépendance en temps du coecient de diusion pour estimer la taille des cellules.

Mots-clefs : imagerie par résonance magnétique (IRM) , échantillonnage compressif, microscopie par résonance magnétique (MRM), segmentation cellulaire, agrégation limitée par la MRM,42(5), 1999]. Les antennes RF en réseau phasé pour l'imagerie microscopique ont récemment fait l'objet de développements en employant les dernières avancées relatives aux liaisons laire (wire bonding) [O. G. Gruschke et al., Lab Chip, 12,2012]. Toutefois, ce type d'antenne reste dicile à construire lorsque l'objet à imager est de petite taille, ce qui limite toutes application pour la MRM hauterésolution. Les méthodes basées sur le compressed sensing sont de plus en plus utilisées pour l'acquisition et la reconstruction des images IRM. Ainsi, des applications pour l'imagerie cardiaque [M. Lustig et al., MRM,58(6), 2007], l'imagerie spectroscopique hyper-polarisée [S. Hu et al., MRM,63(2), 2010], l'IRM de vélocimétrie [J. Paulsen et al., JMR,205(2), 2010] et enn plus récemment, l'imagerie de tenseur de diusion [Y. Wu et al., MRM,71(2), 2014] ont vu le jour. Cette partie comprendra une description des méthodes les plus courantes pour pour l'accélération de l'acquisition basées sur l'acquisition partielle du k-space et l'imagerie parallèle. Les stratégies reposant sur des trajectoires non-cartésiennes dans le k-space seront également mentionnées. Enn, les principes du compressed sensing (CS) seront énoncés et son implémentation pour la réduction des temps d'acquisition en IRM sera détaillé. CS repose sur trois composantes majeures [M. Lustig et al., MRM,58(6), 2007] : (1) la représentation parcimonieuse du signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une méthode de reconstruction non-linéaire avec une contrainte de parcimonie. Si le nombre total de points dans une image est plus grand que quatre fois le nombre de coecients de décomposition alors la reconstruction de données sous-échantillonnées est réalisable 

Conclusion

Ces travaux de thèse ont permis d'aboutir sur deux aspects : images to reduce the acquisition time while maintaining the quality of image in term of resolution and signal quantication. We proposed a cell segmentation algorithm and its application in order to compare the fully encoding and DLA-CS images. Part 5 is dedicated to diusion MRI both in terms of data acquisition and modeling. The conclusion and future directions are presented in part 6.

In briey, the main outcomes of this thesis are:

1. We proposed a new undersampling model based on the diusion limited aggregation (DLA) and have successfully implemented the DLA-CS strategies for T2 and T1-weighted images, with a reduction of the acquisition time of 50% while maintaining the quality of the images both in terms of spatial resolution and signal intensity quantication. The DLA undersampling patterns introduced here are not limited to be subsets of Cartesian k-space points, but it can also be extended to non-Cartesian imaging and for other type of sequences. Such developments are benecial to magnetic resonance microscopy studies by reducing the notoriously long acquisitions to more reasonable times, thus enabling the expansion of the technique to dynamic investigations. In addition, we proposed a simple cell segmentation algorithm as a tool for image analysis in MR microscopy.

2. We investigated dependence of the ADC on the diusion time in three dierent structures within the abdominal ganglia of Aplysia. We found that by increasing the diusion time from 5 to 25 ms, the ADC dropped by 20.8%, 9.45% and 14.98%

for bag cell neurons, large cell neurons and the nerve ROI, respectively. The dierent behavior in the three dierent regions can be explained by the dierent sizes and shapes of the cellular components. By analyzed the diusion time-

THESIS INTRODUCTION

dependent ADC using a well-known analytical formula that is valid in the short diusion time regime, we found that it is not sucient to approximate the large cell size by using the predicted one compartment model. We went on to perform numerical simulation of the ADC for several cell types of the abdominal ganglia.

To create the simulation geometries, for the largest cells, we segmented a high resolution T2-weighted images and incorporated a manually generated nucleus.

For small cells and nerve cells, we created spherical and cylindrical geometrical domains that are consistent with known information about the cellular structures from the literature. Using the library of simulation results, we tted for the intrinsic diusivities of the small cells and the nerve cells. Based on the results from numerical simulation (by solving the Bloch-Torrey equation on specic domains of large neurons) and evidence from experimental data, we established that it is necessary to include a nucleus region embedded in a cytoplasmic region in order to t the large drop in ADC observed when varying the diusion time from 5 to 25 ms. In agreement to the literature we found that the intrinsic diusivity in the nucleus is higher than in the cytoplasm. Moreover, both shape and nucleus volume fraction were found to signicantly inuence the ADC behavior, while the position of the nucleus did not seem to be important. This results suggests that dMRI can be used as a diagnostic tool as the shape and size of cell nuclei can reveal cellular abnormalities. Regarding the bag cell neurons, we observed a linear relationship between the intrinsic diusivities in the cytoplasm and the nucleus for which the tting of ADC was successful. Moreover, we found regarding the nerve that the extracted intrinsic diusivity of axons depends signicantly on the axons diameter distribution we chose.

All the solution creation (articial sea water), sample preparation as well as experimental in this thesis were performed by me, except for the sample preparation, solution creation and experimental protocol mentioned in section 19 (CS in T1-weighted imaging: CS-FLASH) were processed by my colleague, Pavel Svehla, the co-authorship in a preparation manuscript. The daily tending for the Aplysia was shared by our team members and not to mentioned in this thesis.

This work was funded by grant ANR- nuclear magnetic resonance (NMR). The principle is to magnetize the object of interest by a strong magnetic eld present in the scanner. Subsequently, the magnetization is manipulated using radio waves and magnetic eld gradients in order to generate images. Using specic encoding schemes and acquisition parameters one can sensitize MR images to various physiologically relevant parameters such as perfusion status and water diusion among others. In general, in medical MRI, the images are generated by using the signal from the nuclei of hydrogen atoms ( 1 H), however other nuclei can also be used ( 23 Na, 31 P, 13 C, etc) [START_REF] Brown | Magnetic Resonance Imaging: Physical Principles and Sequence Design[END_REF]. This chapter will introduces MRI concepts relevant to this thesis such as k-space, gradient encoding, eld-of-view (FOV), signal-to-noise ratio (SNR), as well as the basic image reconstruction principles based on the Fourier transform. In addition, we describe the main pulse sequences used during this thesis and the contrast they generate: the RARE pulse sequence for T2-weighted imaging, the FLASH pulse sequence for T1-weighted imaging, and the FISP pulse sequence. For more detail about MRI as well as the pulse sequences, one can refer to the literature [START_REF] Brown | Magnetic Resonance Imaging: Physical Principles and Sequence Design[END_REF][START_REF] Bernstein | Handbook of MRI Pulse Sequences[END_REF][START_REF] Westbrook | MRI in Practice[END_REF][START_REF] Dale | MRI: Basic Principles and Applications[END_REF][START_REF] Prince | Medical Imaging Signals and Systems[END_REF]. Note that, in this thesis, vectors are usually denoted using bold-face font, scalar numbers or complex numbers using regular font.

NMR

Neutrons and protons have the intrinsic quantum property of spin, characterized by the nuclear spin quantum number s (for more details see [START_REF] Eisberg | Quantum physics of atoms, molecules, solids, nuclei, and particles. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles[END_REF]). The absolute value of the spin angular momentum is

S = h 2π s(s + 1), (1) 
where h = 6.626 × 10 

S z = m s h 2π . (2) 
The 1 H nucleus has one proton and it has spin value s = 1 2 , associated with a magnetic moment µ = γS,

where γ is the gyromagnetic ratio, a characteristic specic to the considered nucleus (for proton γ = 2.68 × 10 8 rad s -1 T -1 ). In the presence of an external homogeneous magnetic eld B this results in a torque

T = µ × B, (4) 
where µ is the magnetic moment, with a related potential energy equal to

E = -µ • B. (5) 
The 1 H nucleus can have one of two spin states, referred to as spin-up (m s = 1 2 , also referred to as parallel state) and spin-down (m s = -1 2 , also referred to as anti-parallel state). The two states have equal energy and at thermal equilibrium, the number of spin in the spin-up state is approximately equal to the number of spins in the spin-down state. In the presence of an external magnetic eld B 0 , directed along a particular direction, conventionally denoted by z, B 0 = B 0 z, the interaction between the nuclear magnetic moment and the external magnetic eld splits the energy level into two levels (for an arbitrary nucleus the energy level splits into (2s + 1) levels called Zeeman levels).

Then the z-component of a nuclear magnetic moment in (3) becomes µ z = γm h 2π and the energy level of each state is

E m = -µ z B 0 = -γm h 2π B 0 . (6) 
Therefore, for proton, the dierence in the energy levels for the two states is ∆E = γ h 2π B 0 . The excess of spins in the lower energy state gives the equilibrium magnetization M 0 which is oriented along the external eld (direction z). The dierence in the energy levels can be rewritten as:

ν = ω 0 2π = ∆E h = γ 2π B 0 , (7) 
where ω 0 is called the Larmor angular frequency. ω 0 is proportional to the strength of the magnetic eld B 0 and can be calculated using the Larmor equation:

ω 0 = γB 0 . (8) 
The Larmor frequency ω 0 is measured in megahertz (MHz), the gyromagnetic ratio γ is in MHz/T and the magnetic eld strength B 0 is in Tesla (T). Following the Boltzmann distribution, the net magnetization is given by

M 0 = M 0 z = ρ γ 2 4kT h 2π 2 B 0 z, (9) 
where k is the Boltzmann constant and T is the temperature in Kelvin. The unit vector z = (0, 0, 1) gives the direction of the external magnetic eld. The spin density ρ is a characteristic of the object being imaged and depends on its chemical content and structure.

Bloch Equations

To detect a NMR signal the bulk magnetization vector must be tipped away from the z-direction by applying another magnetic eld (i.e B 1 eld) perpendicular to B 0 . When the macroscopic magnetization interacts with this time-varying external magnetic eld B(t), its evolution can be described by the equation of motion in completely classical terms, which is the approach we will pursue in what follows. The equation of motion is known as the Bloch equation for the magnetization is the simple equation:

dM dt = γ (M × B) , ( 10 
)
where B is the total magnetic eld. For the case B = B 0 = (0, 0, B 0 ), the coordinate form of ( 10) is

dM x dt = γB 0 M y , dM y dt = -γB 0 M x , (11) 
dM z dt = 0.

Under an initial condition

M(t = 0) = [M x (0), M y (0), M z (0)],
these equation have the solution (see [START_REF] Hinshaw | An introduction to NMR imaging: From the Bloch equation to the imaging equation[END_REF])

M x (t) = M x (0) cos(-ω 0 t) -M y (0) sin(-ω 0 t), M y (t) = M x (0) sin(-ω 0 t) + M y (0) cos(-ω 0 t), (12) 
M z (t) = M z (0), in which ω 0 = γB 0 , the Larmor angular frequency, represents the precession frequency of spins located in a magnetic eld (Figure 1). Following the application of a radio-

0 Figure 1
In presence of a static magnetic eld, the spin magnetic moments and the resulting bulk magnetization precesse at the Larmor frequency.

frequency (RF) pulse (a magnetic eld, the direction of which is oscillating at the Larmor frequency), the equilibrium magnetization is deviated from the B 0 direction (z-direction) by an angle α (the ip angle) given by:

α = γ τ 0 B 1 (t)dt, ( 13 
)
where τ is the length of time the eld with the magnitude B 1 (t) is turned ON.

In the case B = B 0 = (0, 0, B 0 ) and initial conditions M(t = 0) = M 0 (sinα, 0, cosα), the solutions of (10) are:

M x = M 0 sinα cos(-ω 0 t), M y = M 0 sinα sin(-ω 0 t), M z = M 0 cosα.
The complex transverse component of M is a single complex value M ⊥ given by M ⊥ = M x + iM y = M 0 sin(α) e -iω 0 t , where i = √ -1 is the imaginary unit.

If the magnetization vector is tipped (nutated) to the x -y plane, then the RF pulse is called a 90 degree pulse and the duration of the pulse must satisfy γB 1 τ = π/2, where B 1 is the magnitude of the RF eld and τ is the width of the pulse. The nutation magnetization by the angle 90 degree is described in equation (10) with B = (B 1 cos(ωt), 0, B 0 ).

After the RF pulse has been turned o, the magnetization vector starts to return back to the direction of the static magnetic eld. It is most advantageous to analyze the magnetization and its dierential equations in terms of parallel and perpendicular components relative to the static main magnetic eld, B = B 0 z. For the case of non-interacting spins, the parallel, or longitudinal, component of the magnetization satises:

dM z dt = 0, (14) 
and the transverse component M ⊥ = M x x + M y y satises:

dM ⊥ dt = γM ⊥ × B, (15) 
where

B =   0 0 B 0   .
Due to the interactions between the spins and the lattice there are terms in equations ( 14) and ( 15) which depend on dierent decay parameters. Specically, for equation [START_REF] Körner | Fourier Analysis[END_REF] the magnetic moments tend to align with the external magnetic eld in order to reach their minimum energy state. As a result, the rate of the change of the longitudinal magnetization dM z dt is proportional to the dierence M 0 -M z . The proportionality constant, T 1 , is empirically determined and represents the inverse of the growth rate.

The equation ( 14) becomes:

dM z dt = 1 T 1 (M 0 -M z ) , (16) 
T 1 is the called spin-lattice relaxation time . Immediately after the RF pulse is turned o, the time decay of longitudinal magnetization, with initial value M z (0), to the equilibrium value M 0 is described by:

M z (t) = M z (0) e -t/T 1 + M 0 1 -e -t/T 1 . ( 17 
)
The solution for an arbitrary starting point t 0 can be written as:

M z (t) = M z (0) e -(t-t 0 )/T 1 + M 0 1 -e -(t-t 0 )/T 1 . (18) 
For equation [START_REF] Schröder | vivo NMR Imaging: Methods and Protocols[END_REF], the characterization of the overall rate of reduction in the transverse magnetization brings forward another experimental parameter, the spin-spin or NMR transverse relaxation time T 2 . The equation ( 15) can be rewritten including the T 2 term as:

dM ⊥ dt = γM ⊥ × B - 1 T 2 M ⊥ . (19) 
The Bloch equation (10) with T 1 and T 2 relaxation becomes

dM dt = γ (M × B) - (M x x + M y y) T 2 - (M z -M 0 ) z T 1 . (20) 
Under an initial condition M(t = 0) = [M x (0), M y (0), M z (0)], the solution is (see [START_REF] Hinshaw | An introduction to NMR imaging: From the Bloch equation to the imaging equation[END_REF])

M x (t) = e -t/T 2 (M x (0) cos(-ω 0 t) -M y (0) sin(-ω 0 t)) , M y (t) = e -t/T 2 (M x (0) sin(-ω 0 t) + M y (0) cos(-ω 0 t)) , (21) 
M z (t) = M z (0) e -t/T 1 + M 0 1 -e -t/T 1 .

The longitudinal component decays from its initial value of M z (0) toward its equilibrium value of M 0 . The transverse component rotates at frequency ω 0 and decays towards zero.

The complex transverse component of the magnetization

M xy = M x + iM y becomes M xy (t) = M xy (0) e -t/T 2 e -iω 0 t , = |M xy (0)| e -iω 0 t+iφ 0 e -t/T 2 , (22) 
where φ 0 and |M xy (0)| are the phase and the module of the complex number M xy (0), respectively.

Signal detection

To detect the NMR signal it is necessary to have an RF coil which is in the transverse plane, that is, perpendicular to the B 0 eld. The receiver coil, which usually surrounds the sample, is an antenna which picks-up the voltage V (t) induced by the precessing of the magnetization. The voltage induced in the receive coil is given by

V (t) = - d dt (M(r, t) • B rf (r))dr, (23) 
where B rf (r) describes the sensitivity of the receiver coil at dierent points in space. More specically, B rf (r) is the ratio of the magnetic eld produced by the receiver coil to the current in the coil (magnetic eld per unit current). B rf (r) can be measured in a given coil, or calculated from for a particular coil geometry. The primary objective of the receiver coil design is to prescribe wire placements so that B rf (r) has the largest possible transverse component. The longitudinal component of B rf (r) contributes little to the output voltage, and can be ignored. This is a result of the fact that the time derivative of M z (t, r) is much smaller than that of the transverse component. M z (r, t) decays exponentially with the time constant T 1 , typically hundreds to thousands milliseconds, while the transverse component oscillates with a period of relaxation T 2 on the order of tens to hundreds of milliseconds for protons in most live tissue. The magnetic resonance (MR) signal measured by some electronics system is proportional to (23) and it depends 

Note that the solutions M x (r, t), M y (r, t), M z (r, t), and the transverse component M xy (r, t) are determined by equations ( 21) and (22). For static elds with magnitudes of several tesla, the Larmor frequency ω 0 for proton is at least four orders-of-magnitude larger than typical values of

1 T 1 and 1 T 2 .
Hence the time derivative of the e -t/T 1 and e -t/T 2 can be neglected, compared with the derivative of the e -iω 0 t factor. The time derivative of transverse component is

dM xy dt (r, t) = -|M xy (r, 0)| 1 T 2 (r)
+ iω 0 e -t/T 2 (r)-iω 0 t+iφ 0 (r) . the MR signal can be approximation by

s(t) ∝ ω 0 e -t/T 2 (r) |M xy (r, 0)| Re ie -iω 0 t+iφ 0 (r) B rf x (r) + Im ie -iω 0 t+iφ 0 (r) B rf y (r) dr ∝ ω 0 e -t/T 2 (r) |M xy (r, 0)| sin(ω 0 t -φ 0 (r))B rf x (r) + cos(ω 0 t -φ 0 (r))B rf y (r) dr. (26) 
By denoting the magnitude B rf ⊥ and the phase θ B of the complex number B rf xy = B rf x + iB rf y = B rf ⊥ e iθ B , it implies that B rf x = B rf ⊥ cosθ B and B rf y = B rf ⊥ sinθ B and thanks to the trigonometric identity sin(a + b) = sina cosb + cosa sinb, the equation ( 26) can be simplied as

s(t) ∝ ω 0 e -t/T 2 (r) |M xy (r, 0)| B rf ⊥ (r) sin(ω 0 t -φ 0 (r) + θ B (r)) dr. (27) 
Assume that the sample volume is V s , for the limit case where all quantities in [START_REF] Oppelt | FISP a new fast MRI sequence[END_REF] do not depend on in the spatial position r, then

s(t) ∝ ω 0 V s e -t/T 2 |M xy (0)| B rf ⊥ sin(ω 0 t -φ 0 + θ B ). (28) 
In practice, the signal is measured through two channels, which are called real and imaginary, corresponding to the multiplication of the signal by a sinusoid or a cosinusoid with a frequency of ω = ω 0 + δ ω near ω 0 , where δ ω is the oset frequency. Through some mathematical approximation with low pass ltering, the real signal is determined by

s re (t) ∝ 1 2 ω 0 e -t/T 2 (r) |M xy (r, 0)| B rf ⊥ (r) cos(δ ω t + φ 0 (r) -θ B (r)) dr, (29) 
and the imaginary signal is determined by

s im (t) ∝ 1 2 ω 0 e -t/T 2 (r) |M xy (r, 0)| B rf ⊥ (r) sin(δ ω t + φ 0 (r) -θ B (r)) dr. (30) 
Now, the complex signal s(t) = s re (t

) + i s im (t) becomes s(t) ∝ 1 2 ω 0 e -t/T 2 (r) |M xy (r, 0)| B rf ⊥ (r) e i(δωt+φ 0 (r)-θ B (r)) dr ∝ 1 2 ω 0 e -t/T 2 (r) |M xy (r, 0)| B rf ⊥ (r) e i[(ω-ω 0 )t+φ 0 (r)-θ B (r)] dr ∝ 1 2 ω 0 M xy (r, t) B rf xy (r) e iωt dr. (31) 
Since the usual computer is digital and not analog, it is necessary to convert from the analog complex signal to two arrays of digital signal numbers s n (corresponding with real and imaginary signal sampling) given by

s n ∝ ω 0 M xy (r, t) B rf xy (r) e iωn∆t dr, (32) 
where the sampling time interval is ∆t.

MRI

As explained before, inside the MRI scanner, there is a strong static magnetic eld of magnitude B 0 applied along what is conventionally called the positive z-direction, resulting in a net magnetization in the positive z-direction. When a time-varying magnetic eld (much weaker than the static magnetic eld) is applied for a short time at the resonance frequency, ω 0 = γB 0 , where γ/(2π) = 42.576 MHz/Tesla is the gyromagnetic ratio of the water proton, the net magnetization is tipped away from the z-axis. For simplicity, we assume that the net magnetization is tipped onto the x -y plane, then the oscillating magnetic eld will be called a 90 degree pulse. The magnetization vector will precess around the z-axis, inducing a voltage in the receiver coil (see Figure 2). The net magnetization will realign along the z-direction, due to two relaxation eects: the spin-lattice relaxation (recovery the net magnetization along the z-direction to its original value), and the spin-spin relaxation (the decay of the net magnetization in the x -y plane to zero). The rate constant of the rst relaxation is called T 1 and the rate constant of the second kind of relaxation is called T 2 . Both T 1 and T 2 vary according to the tissue environment and depend on the external magnetic eld B 0 . The MR signal also depends on the spin density varies with the tissue environment.

Usually, in which addition to T 2 (spin-spin) relaxation, local eld inhomogeneities also contribute to the signal decay, this eect is called T * 2 and can be cancelled by a refocusing 180 degree pulse, applied at t = TE/2 after the 90 degree pulse, producing an echo at T E, that gives a measured signal that will have only the contribution from T 2 . Such a sequence of applied RF pulses is called a spin echo sequence.

Gradient encoding

The spatial encoding of the signal is obtained by applying additional magnetic elds in all three directions called magnetic eld gradients or gradient elds G x (t), G y (t) and G z (t). The gradient elds are produced by a set of three independently computercontrolled coils. These coils are referred as the x-gradient, y-gradient and z-gradient coils. In the presence of the magnetic eld gradient, G, the local magnetic eld is given by:

B(r, t) = (B 0 + G(t) • r)z.
The spatial varying magnetic eld B(r) is generated by applying magnetic eld gradients in all three directions G = (G x , G y , G z ). The magnetic eld gradients are given by:

G x = dB z dx G y = dB z dy (33) 
G z = dB z dz no gradient z y x
x-gradient on y-gradient on z-gradient on In this case, the Larmor frequency ω 0 in all the equations mentioned in the previous section will be replaced by the precession frequency of the transverse magnetization M xy (r), which is the Larmor frequency plus a frequency oset due to imaging gradient G(t):

ω(r, t) = ω 0 + ω G (r, t) = γB 0 + γG(t) • r,
where ω G (r, t) = γG(t) • r and B 0 is the main magnetic eld. The accumulated phase oset due to the applied gradient, at time t, is

φ G (r, t) = -γ t 0 G(t ) • r dt . (34) 
In a reference frame rotating at frequency ω 0 , the complex transverse magnetization in the x -y plane, M (r, t) := M x (r, t) + iM y (r, t), obeys the Bloch equation:

∂M (r, t) ∂t = -iγ r • G(t)M (r, t) - M (r, t) T 2 (r) , (35) 
where T 2 (r) is the local spin-spin relaxation rate. The solution of equation ( 35) is

M (r, t) = ρ(r) e -t/T 2 (r) e -ir•(γ t 0 G(s) ds) , (36) 
where t = 0 is the start of the 90 degree pulse and ρ(r) is the spin density.

k-space

One of the most important concepts in MRI is the k-space, which was introduced in 1981 by Likes [START_REF] Likes | Moving gradient zeugmatography[END_REF] and in 1983 by Ljunggren [START_REF] Ljunggren | A simple graphical representation of fourier-based imaging methods[END_REF] and Twieg [10]. Briey, k-space is an array of numbers representing spatial frequencies associated with the MR image. In MRI, k-space is the two dimensional (2D) or three dimensional (3D) Fourier transform of the MR image. The k-space points or Fourier data (complex values) are collected during the MR acquisition. Each k-space point contains spatial frequency and phase information about every pixel in the nal image. Conversely, each pixel in the image maps to every point in k-space. The individual points in k-space do not correspond one-to-one with individual pixels in the image.

For a general gradient G, the k-space coordinate is dened as:

k(t) = γ 2π t 0 G(s) ds. ( 37 
)
Some authors omit the factor of 2π in the denominator from the denition of k-space, this factor is absorbed it into the denition of γ. The k-space has units of inverse distance, typically inverse centimeters (cm

-1 ). For a time-constant gradient G x , G y , G z , we get k x (t) = γ 2π G x t, (38) 
k y (t) = γ 2π G y t, (39) 
k z (t) = γ 2π G z t. (40) 
Using the k-space denition, the magnetization located at position r (Equation ( 36)) becomes M (r, t) = ρ(r) e -t/T 2 (r) e -i2πk(t)•r , and the MRI signal can be written as

S(k(t)) = µ(r) e -i2πk(t)•r dr, (41) 
where µ(r) is the eective spin density, which is proportional to the magnitude of the external magnetic eld, the spin density and the relaxation constants (see more [START_REF] Brown | Magnetic Resonance Imaging: Physical Principles and Sequence Design[END_REF]).

Fourier transform and image reconstruction

The Fourier transform is one of the most important theories in signal processing, especially in MRI. It is thoroughly described in several textbooks [START_REF] Ernst | Principles of Nuclear Magnetic Resonance in One and Two Dimensions[END_REF]12,13,[START_REF] Körner | Fourier Analysis[END_REF]. In what follows I will briey introduce the concept of Fourier transform and its application to MRI.

The Fourier transform denes a relationship between the image domain and its representation in the frequency domain. The original signal can be recovered from knowing the Fourier transform, and vice versa, without loss of information. Theoretically, the Fourier transform is dened by:

S(k) = µ(r) e -i2π r•k dr, (42) 
and the inverse Fourier transform is dened by:

µ(r) = S(k) e i2π r•k dk, (43) 
where S(k) is called Fourier transform of µ(r) and vise versa µ(r) is called inverse Fourier transform of S(k). Briey, we denote Fµ for Fourier transform of µ and F -1 S for inverse Fourier transform of S. Note that, there are some other forms of Fourier transform denitions. Following the helpful summary provided by T. W. Körner in his book Fourier Analysis [START_REF] Körner | Fourier Analysis[END_REF]. We can dene

S(k) = 1 A µ(r) e iB r•k dr, where A = √ 2π, B = ±1; A = 1, B = ±2π.
In this thesis we have chosen A = 1 and B = -2π.

Equation [START_REF] Lavdas | A phantom for diusion-weighted MRI (DW-MRI)[END_REF] implies that the MRI signal, acquired at echo time t = TE, is the Fourier transform of the eective spin density S(k) = µ(r) e -i2πk•r dr = Fµ(k), [START_REF] Pullens | Ground truth hardware phantoms for validation of diusion-weighted MRI applications[END_REF] and vice versa the eective spin density is the inverse Fourier transform of the MRI signal µ(r) = S(k) e i2πk•r dk = F -1 S(r). [START_REF] Khan | 3D structure tensor analysis of light microscopy data for validating diusion MRI[END_REF] The 2D and 3D Fourier transform (and inverse Fourier transform) formulas will be mentioned in the following sections in the content of image reconstruction in 2D and 3D.

MRI

Frequence encoding

In 2D and 3D MR imaging, the most straightforward type of gradient encoding is the frequency encoding. Keep in mind that the frequency encoding only on one direction. If a gradient G x (t) is applied to the sample, the precessing frequency will change linearly with the location r = (x, 0, 0),

ω(r, t) = γG(t) • r = γG x (t)x (46) 
If the signal is read out while this gradient is on, contributions from dierent locations along the x axis will exhibit dierent frequencies. This process is called frequency encoding, and corresponding gradient is called frequency encoding gradient (or read gradient). Note that the frequency encoding gradient strength does not change during the acquisition.

2D imaging 2.5.1 Slice selection

When performing 2D MRI, the image is acquired in a sub-volume of the sample. Slice selection is used to selectively excite the spins in a dened plane. The space dependence of the Larmor frequency in the presence of a gradient can be used to selectively excite the spins within a slice perpendicular to the gradient direction. Since only the excited spins generate a signal, this is used to restrict the imaged volume of sample. As described before, the resonance frequency of the spins during the z gradient is:

ω(z) = γB 0 + γG z z = ω 0 + ω G (z).
Note that at z = 0 (isocenter) the frequency ω = γB 0 = ω 0 . The z location of the excited spins and thus the slice plane will be z = ω G (z) γG z (see Figure 4). If a gradient is applied in the z direction during an RF excitation pulse of bandwidth W = ∆ω with single frequency ω, only the spins in a thin slice (thickness ∆z) are excited :

∆z = W γG z . ( 47 
)
After the excitation pulse, the selected transverse magnetization in the sample is essentially a two dimensional distribution.

Phase encoding

If a magnetic eld gradient is applied in the y direction for a given time interval ∆t y , the Larmor frequency will vary in this direction during that time interval, so that the signal at dierent positions will accumulate a dierent phase. After the gradient has been switched o, the precession frequency will return to a constant value, while the G z imposes a space dependence on the main magnetic eld. An RF pulse with the single frequency ω will excite only the spins at the appropriate position. Thus, the slice position depends on the strength of the gradient and the pulse frequency.

imprinted phase remains proportional to y. This process is called phase encoding.

φ(r) = (ω(r) -ω 0 (r)) ∆t y = γG y y∆t y = 2π k y y, (48) 
where k y = γ 2π G y ∆t y .

2D image reconstruction

Suppose z ∈ [ z 0 -1 2 ∆z , z 0 + 1 2 ∆z ] are the limits of the slice of interest. By choosing G(t) = (0, G y , 0) (phase) for a time interval ∆t y and then choosing G(t) = (G x , 0, 0) (read) for a time interval ∆t x , then since the z component of gradient encoding G(t) equal zeros, the magnetization at r at TE is M (r, t) = ρ(x, y, z) e -TE/T 2 (r) e -i2π (kxx+kyy) ,

where k x = γ 2π G x ∆t x and k y = γ 2π G y ∆t y . The MRI signal in equation ( 44) can be rewritten as

S (k x , k y ) = (z0+ 1 2 ∆z) (z0-1 2 ∆z)
µ(x, y, z)dz e -i2π(kxx+kyy) dxdy.

(

) 49 
The eective spin density in slice l is:

µ l (x, y) = (z0+ 1 2 ∆z) (z0-1 2 ∆z) µ(x, y, z) dz . ( 50 
)
It is clear that the MRI signal in equation ( 49) is the 2D Fourier transform of the contrast function in equation ( 50): y). As mentioned in section 2.2, the eective spin density µ(x, y, z) is proportional to the magnitude of the external magnetic eld, the spin density and the relaxation constants, thus µ l (x, y) proportional these parameters as well. By the appropriate choice of G x , G y , and ∆t x and ∆t y the Fourier transform can be obtained for a set of 2D Fourier points. Then the inverse Fourier transform can be performed and then sampled at physical space points to obtain the image intensity in each voxel, V i,j,l where

S (k x , k y ) = µ l (x, y)e -i2π (kxx+kyy) dx dy = F 2D [µ l (x, y)](k x , k y ). MRI Therefore, µ l (x, y) = S (k x , k y ) e i2π (kxx+kyy) dk x dk y = F -1 2D [S (k x , k y )](x,
V i,j,l := i - 1 2 ∆x, i + 1 2 ∆x × j - 1 2 ∆y, j + 1 2 ∆y × z 0 - 1 2 ∆z , z 0 + 1 2 ∆z .
An average value of the eective spin density function for V i,j,l :

μl (i, j, z 0 ) ≈ V i,j,l µ(x, y, z) dx dy dz, ≈ (j+ 1 2 )∆y (j-1 2 )∆y (i+ 1 2 )∆x (i-1 2 )∆x (z0+ 1 2 ∆z) (z0-1 2 ∆z) µ(x, y, z) dz dx dy, ≈ (j+ 1 2 )∆y (j-1 2 )∆y (i+ 1 2 )∆x (i-1 2 )∆x µ l (x, y) dx dy, (51) 
can be displayed in an image.

3D imaging

In 3D imaging, instead of using slice selection, a second phase encoding gradient will be applied in z direction. This second phase encoding axis is typically called phase 2.

Phase 2 encoding

As for the primary phase encoding, if the gradient eld in the z direction is applied for a given time interval ∆t z , the Larmor frequency will vary in this direction during that time interval, so that the signal at dierent positions accumulates a dierent phase.

After the gradient has been switched o, the precession frequency returns to a constant value, while the imprinted phase remains proportional to z:

φ(r) = (ω(r) -ω 0 (r)) ∆t z = γG z z∆t z (52) = 2π k z z,
where

k z = γ 2π G z ∆t z .

3D image reconstruction

By choosing G(t) = (0, 0, G z ) for a time interval ∆t z , then choosing G(t) = (0, G y , 0) for a time interval ∆t y , and nally choosing G(t) = (G x , 0, 0) for a time interval ∆t x , the magnetization at r at TE is M (x, y, z) = ρ(x, y, z) e -TE/T 2 (x,y,z) e -i2π (kxx+kyy+kzz) ,

where

k x = γ 2π G x ∆t x , k y = γ 2π G y ∆t y and k z = γ 2π G z ∆t z .
The MRI signal in equation ( 44) can be rewritten as the 3D Fourier transform:

S (k x , k y , k z ) = µ(x, y, z) e -i2π (kxx+kyy+kzz) dx dy dz = F 3D [µ(x, y, z)](k x , k y , k z ). (53) 
Therefore, the eective spin density is the inverse Fourier transform of the signal:

µ(x, y, z) = S (k x , k y , k z ) e i2π(kxx+kyy+kzz) dk x dk y dk z = F -1 3D [S (k x , k y , k z )](x, y, z). (54) 
Then the inverse Fourier transform can be performed and then sampled at physical space points to obtain the image intensity in each voxel, V i,j,l where

V i,j,l := i - 1 2 ∆x, i + 1 2 ∆x × j - 1 2 ∆y, j + 1 2 ∆y × l - 1 2 ∆z, l + 1 2 ∆z .
An average value of the eective spin density function for V i,j,l :

μl (i, j, l) ≈ V i,j,l µ(x, y, z) dx dy dz, (55) 
that can be displayed in an image.

Resolution and FOV

The FOV is dened as the size of the two or three dimensional spatial encoding area of the image. We denote F OV x , F OV y and F OV z the size of the image in x (read), y (phase 1) and z (phase 2) directions, respectively. The FOV is typically divided into several picture elements (pixels). The number of points in each direction, N x , N y and N z for x, y and z direction, respectively, give the acquisition matrix size. The nominal

resolution of image (pixel width) is determined by ∆x = F OV x N x , ∆y = F OV y N y and ∆z = F OV z N z .
In the case of 2D imaging, N z = 1 and ∆z = F OV z is slice thickness as mentioned in the slice selection section.

As shown in Figure 5, the FOV is inversely proportional to the encoding steps (the spacing) samples in k-space (see more [START_REF] Bernstein | Handbook of MRI Pulse Sequences[END_REF][START_REF] Schröder | vivo NMR Imaging: Methods and Protocols[END_REF]):

∆k i = 1 F OV i = 1 N i ∆i , ∀i = x, y, z.
Alternatively, this relation can be based on the spatial resolution:

∆i = 1 K i = 1 2k i max , ∀i = x, y, z
where K i is the width of the k-space region in i direction, i = x, y, z, that is sampled in the entire experiment.

-k ymax

-k xmax k xmax k ymax Figure 5
Diagram of the k-space and the relationships between k-space FOV and resolution. The sampled k-space points are ploted as dots; the arrows show the trajectories during one frequency encoding scan corresponding to one phase encoding step.

SNR

The SNR was introduced by Edelstein et al. in 1986 [START_REF] Edelstein | The intrinsic signal-to-noise ratio in NMR imaging[END_REF]. The SNR is measure of how much true signal versus how much noise a particular image has. In MRI imaging, the SNR is then dened by

SNR = mean(signal) std(noise) . ( 56 
)
The SNR is proportional to the volume of the voxel and to the square root of the number of averages and phase steps (assuming constant sized voxels). Since averaging and increasing the phase steps takes time, the SNR is depends on the square root of the acquisition time:

SNR ∝ ∆x ∆y ∆z T acq ,
where the product of the three pixel dimensions (without zero-lling interpolation)

∆x ∆y ∆z is the voxel volume, and T acq is the total acquisition time. The total acquisition times is proportional to number of phase encoding steps, so we have for 3D imaging, SNR 3D ∝ ∆x ∆y ∆z N y N z TRN a , and for 2D imaging

SNR 2D ∝ ∆x ∆y ∆z N y TRN a ,
where N a is the number of averages, TR is the time between the acquisition of two read lines and it is called repetition time. In addition, the SNR does not only depend on the acquisition parameters as mentioned above but also depend on the others parameters as [START_REF] Hoult | The signal-to-noise ratio of the nuclear magnetic resonance experiment[END_REF][START_REF] Ocegueda | A simple method to calculate the signal-to-noise ratio of a circular-shaped coil for MRI[END_REF]:

SNR = γ 3 2 B 2 0 B 1 ρ∆x∆y∆z 4kT s • 1 8kT ef f BWR ef f ,
where ρ is the spin density, = 1.05457 × 10 -34 Js is the reduced Planck constant, k = 1.38 × 10 -23 J/K is Boltzmann's constant, B 0 is external eld gradient strength, B 1 is RF gradient strength, T s is the temperature of the sample, T ef f is the temperature characterizing the noise of the system, BW is the bandwidth of receiver coil and R ef f is the eective resistance.

Glyn Johnson and colleagues reported in [START_REF] Johnson | 2D multislice and 3D MRI sequences are often equally sensitive[END_REF] that the 2D multislice and 3D MRI sequences are often equally sensitive in terms of SNR per unit imaging time. Moreover, the major advantage of 3D imaging is improved the resolution while the 2D sequences provides higher reliability for image quality as reported in [START_REF] Balu | Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically signicant atherosclerosis[END_REF] by Niranjan Balu and colleagues. As shown in equation ( 47), the higher gradient strength in slice direction is necessary to get the lower slice thickness. Therefore, in high-resolution MRI, the 3D MRI sequences usually used instead of 2D multislice due to the limited of gradient strength.

Finally, the SNR can be improved by tweaking scan parameters (note however that there is an interdependence between the acquisition parameters). Assuming all other factors remain the same, the SNR can be improved by

Reducing resolution

Decreasing TE

Increasing the acquisitions times by increasing the number of averages, N a , to reduce the standard deviation of noise Decreasing the bandwidth.

Acquisition time

Let us consider a 3D k-space data collection and let N y , N z denote the number of phase encoding steps for two directions perpendicular to the read axis. Basically, each unique pair of phase encoding gradients is acquired during one TR. Therefore, the total acquisition time for a 3D imaging method is given by

T acq = N y N z TR. ( 57 
)
For a 2D imaging experiment, the total acquisition time is

T acq = N y TR. (58) 
In practice, in order to increase the SNR, one can increase the number of averages, that we denote N a , it means that the data is collected N a times and then averaged. In this case the total acquisition time is increased by a factor N a .

MRI pulse sequences

A pulse sequence is a series of events comprising of RF pulses, gradient waveforms, and data acquisition. The purpose of the pulse sequence is to manipulate the magnetization in order to produce the desired signal. A wide variety of sequences are used in MRI. The most basic ones are Spin Echo (SE) sequences and the Gradient Echo (GRE) sequences.

There are several basic steps which constitute an MR pulse sequence.

Slice selection (in 2D imaging): Turn on the slice-selection gradient; Excitation pulse (RF pulse); and then turn o slice-selection gradient.

Phase encoding: Turn on the phase encoding gradient repeatedly with a dierent strength.

Read: Turn on the frequency encoding gradient repeatedly during the acquisition with the same strength.

Generate echo (or FID) and collection of the MR signal.

Spin Echo sequence

The most common pulse sequence used in MR imaging is based on the detection of a spin echo or Hahn echo [START_REF] Hahn | Spin echoes[END_REF]. A 90 degree radio frequency pulse is applied to excite the magnetization and one or more 180 degree pulses are applied to refocus the spins and to generate signal echoes named spin echoes (SE). In the pulse sequence timing diagram (Figure 6), the simplest form of a spin echo sequence is illustrated. The 90 degree excitation pulse rotates the longitudinal magnetization (Mz) into the xy-plane and the dephasing of the transverse magnetization (Mxy) starts. The application of a 180 degree refocusing pulse (rotates the magnetization in the x-plane) generates signal echoes. The purpose of the 180 degree pulse is to rephase the spins, causing them to regain coherence and thereby to recover transverse magnetization, producing a spin echo. The recovery of the z-magnetization occurs with the T 1 relaxation time and typically at a much slower rate than the T 2 -decay, because in general T 1 is greater than T 2 for biological tissues and is usually in the range of 503000 ms. (Note that T 1 depends on the magnetic eld, example at ultra-high magnetic eld at 17 T, T 1 can be reach 2800 ms while T 2 around 50 ms.) The SE pulse sequence was devised by Carr and Purcell [22] and exists now in many forms: the multi echo pulse sequence using single or multislice acquisition, the fast spin echo (FSE/TSE) pulse sequence, spin echo planar imaging (EPI) pulse sequence; all are basically spin echo sequences. In the simplest form of SE imaging, the pulse sequence has to be repeated many times as only one k-space line is acquired in one TR. 

Gradient Echo sequence

A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse sequence timing diagram, the basic gradient echo sequence is illustrated (see Figure 8).

There is no refocusing 180 degree pulse and the data are sampled during a gradient echo, which is achieved by dephasing the spins with a negatively pulsed gradient before they the gradient echo diagram, the excitation pulse is termed the alpha pulse a • . It tilts the magnetization by a ip angle a • , which is typically between 0 and 90 degrees. Due to the small ip angle there is a reduction in the value of transverse magnetization that will be used to form the image. The contrast and signal generated by a gradient echo depend on the size of the longitudinal magnetization, the ip angle and the echo time. When a = 90 • the sequence is identical to the so-called partial saturation or saturation recovery pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many times as the number of phase encoding points (k-space lines). Additional gradients or radio frequency pulses are introduced with the aim to spoil the xy-magnetization at the moment when the spin system is subject to the next pulse. As a result of the short repetition time, the z-magnetization cannot fully recover and after a few initial pulses there is an equilibrium established between the z-magnetization recovery and the zmagnetization reduction due to the pulses (steady-state). Gradient echo sequences are often use for T1-weighted image (T1w) imaging and the contract depend on TR and ip angle. T * 2 weighting can be minimized by keeping the TE as short as possible, but pure T2 weighting is not possible. By using a reduced ip angle, some of the magnetization value remains longitudinal (less time needed to achieve full recovery). For a certain T 1 and TR, there exist one ip angle that will give the most signal, known as the "Ernst angle" [START_REF] Ernst | Application of fourier transform spectroscopy to magnetic resonance[END_REF].

FLASH: T1-weighted images

The FLASH (Fast Low Angle SHot) sequence is a basic gradient-echo sequence with two typical features [START_REF] Frahm | Rapid three-dimensional MR imaging using the FLASH technique[END_REF]. The TR is generally shorter than the T 1 of the sample, meaning the longitudinal magnetization has not fully recovered between two successive excitation pulses. After a given number of pulse repetitions, the longitudinal magnetization available before each pulse reaches a steady-state level. The transverse magnetization remaining at the end of the read-out block is spoiled by a gradient, ensuring that M xy = 0 before the following excitation pulse (see Figure 9). Thus no coherent mag-RF Gx Gy Gz netization will be tipped from the transverse plane onto the longitudinal axis by the next RF pulse. This spoiling is required for instance if TR < 5T 2 . Combining these conditions the FLASH signal equation in steady-state is:

S = M 0 1 -e -TR/T 1 sin(α) e -TE/T * 2 1 -cos(α) e -TR/T 1 .
The steady-state therefore depends on the choice of TE, TR and ip angle (usually 5 30

• ). Ideally, all of the data in k-space should be acquired when the system is in steady-state, hence the need for dummy scans (all the pulses and gradients are played but the data is not acquired) to reach steady-state prior to the actual acquisition start.

In practice, if k-space is acquired linearly starting from the edge, dummy scans are less crucial since steady-state will likely be reached before the center of k-space (which determines the main signal level) is acquired. The advantage of the FLASH sequence is a short acquisition time via a short TR. The short TR will generally introduce T1

weighting, although T * 2 weighting is also possible through a choice of relatively long TE.

FISP sequence

The Fast Imaging with Steady-state free Precession (FISP) is a fast imaging sequence using a refocusing gradient in the phase encoding direction during the end module to maximize (refocus) remaining transverse magnetization at the time when the next excitation is due the balanced (Figure 10). The FISP is usually performed with a short TR (20-50 ms). Most often this technique is used to generate T * 2 -weighted images, although other weightings sequence are possible. This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, there is transverse magnetization still present at the time of application of the next RF pulse. Because there is still some remaining transverse magnetization at the time of the RF pulse, an RF pulse of the degree ips the spins less than the degree from the longitudinal axis. With small ip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, ip angle 30-45

RF Gx

• )

eliminates T * 2 eects, so that the images become proton density weighted. As the ip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large ip angles and short TRs that FISP exhibits a vastly dierent contrast compared to the FLASH sequence. More detail about FISP and some related sequences, one can refer to the literatures [START_REF] Hargreaves | Rapid gradient-echo imaging[END_REF][START_REF] Oppelt | FISP a new fast MRI sequence[END_REF].

Water diusion in biological tissue

Besides the spin density and relaxation contrasts, incoherent spin displacement can be another source of contrast in MRI. Such displacement are due to the Brownian motion of water molecules in tissue which is hindered by the presence of biological cell membranes as well as cell nuclei and macro-molecules.

Diusion-encoding

The incoherent spin displacement is encoded by the application of additional magnetic eld gradients, called diusion-encoding gradients, which are turned ON for very short durations during the sequence gradient pulses. The most commonly used diusionencoding pulse sequence is the Pulsed-Gradient Spin Echo (PGSE) [START_REF] Stejskal | Spin Diusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF] sequence. For the PGSE sequence, the eective gradient time prole is:

f (t) =      1 t s < t ≤ t s + δ, -1 t s + ∆ < t ≤ t s + ∆ + δ, 0 otherwise, ( 59 
)
where t s is the starting time of the rst gradient pulse, δ is the duration of the pulses and ∆ the delay between the start of the pulses (see Figure [START_REF] Ernst | Principles of Nuclear Magnetic Resonance in One and Two Dimensions[END_REF]). The signal is measured at the echo time T E. Note that the time of the application of the -1

0 1 t f(t) δ TE ∆ δ Figure 11
The PGSE time prole for t s = 0, consisting of two rectangular pulses (duration δ, separated by a time interval ∆ Under the assumption that spins experience a homogeneous (or homogenized) isotropic diusion environment characterized by the diusion coecient D hom inside the voxel V (and neglecting edge eects at the boundary of V ), the spins starting at position r 0 ∈ V at t s diuse according to the probability density function:

P (r, t) = e -r-r 0 2 /4D hom (t-ts) (4πD hom (t -t s )) d 2 , d = 3.
Furthermore, under the assumption that δ ∆ (narrow pulse assumption) the eect of the rst diusion-encoding magnetic eld gradient pulse on spins starting at (r 0 , t s ) is a gain of a complex phase e -iγg•r 0 δ between t s and t s + δ, where g ∈ R 3 is the diusion-encoding gradient vector, γ is the gyromagnetic ratio of the water proton. If spins move from r 0 to a dierent position, say r, at the start of the second pulse, then the cumulative eect of the PGSE sequence is e -iγg•(r-r 0 ) δ . Thus, the eect on the MRI signal, compared to having no diusion-encoding gradient g, is an attenuation (loss) of the signal:

r 0 ∈V ρ(r 0 ) r∈V e -r-r 0 2 /4D hom ∆ (4πD hom ∆) d 2 e -iγg•(r-r 0 ) δ dr dr 0 = e -γ 2 δ 2 g 2 D hom ∆ r 0 ∈V ρ(r 0 ) dr 0 ,
where we used the formula for the Fourier transform of the Green's function of the heat or diusion equation. Note that the eective spin density at r 0 , denoted by ρ(r 0 ), is proportional to the external magnetic eld and relaxation constants (e -TE/T 2 (r) and e -TR/T 1 (r) ).

If δ is not small compared to ∆, then, in fact, the signal attenuation is [START_REF] Torrey | Bloch equations with diusion terms[END_REF]:

S(b, TE) = e -D hom b r 0 ∈V ρ(r 0 ) dr 0 ,
where the b-value is a weighting factor as dened in [START_REF] Bihan | MR imaging of intravoxel incoherent motions: application to diusion and perfusion in neurologic disorders[END_REF]:

b(g, δ, ∆) = γ 2 g 2 δ 2 (∆ -δ/3) , (60) 
for the PGSE sequence. The replacement of ∆ by ∆ -δ/3 accounts for pulses that are not narrow.

To obtain the diusion coecient from the MRI signal, one can acquire the MRI signal with a diusion weighting g and another one without diusion weighting, g = 0,

and use the formula:

D hom = log S(g) -log S(g = 0) -b .
Because biological tissue is not a homogeneous diusion environment due to the presence of cell membranes and other cell components (nucleus, macro-molecules) the quantity obtained using the above formula is called the Apparent Diusion Coecient (ADC)

and it is smaller than the free diusion coecient.

6 Bloch-Torrey equation model

The mathematical description of the complex transverse magnetization including eects of diusion is called the Bloch-Torrey equation [START_REF] Torrey | Bloch equations with diusion terms[END_REF]:

∂M (r, t) ∂t = -iγ r • gf (t) M (r, t) + ∇ • (D(r)∇M (r, t)) , (61) 
where f (t) ∈ R contains the eective time prole information of the diusion-encoding gradient. In the above equation, we have neglected relaxation eects and imaging gradients. The intrinsic diusion coecient D(r) depends on the tissue micro-structure.

In this thesis, we will neglect permeability eects between cells and cell components so that spins always stay inside any geometrical connement, Ω. In this case, we will add the homogeneous Neumann boundary condition to the PDE above:

(D(r)∇M (r, t)) • n(r) = 0, r ∈ ∂Ω, (62) 
to complete the mathematical problem, where n(r) is the outward pointing normal vector to Ω.

The relation between the ADC and the cell size [START_REF] Hinshaw | An introduction to NMR imaging: From the Bloch equation to the imaging equation[END_REF] The relation between the ADC and the cell size Diusion magnetic resonance imaging (dMRI) has shown tremendous promise in a wide range of brain imaging applications. The correlation of dMRI-derived metrics with brain micro-structure properties such as axon size, myelin thickness, neurite orientation distribution, is an active area of research. To explain the correlations between the dMRI metrics (the ADC value, signal, etc) and the geometrical parameters, there have been numerous biophysical models (usually subdividing the tissue into compartments described by spheres, ellipsoids, cylinders, and the extra-cellular space) [START_REF] Assaf | Composite hindered and restricted model of diusion (charmed) MR imaging of the human brain[END_REF][START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diusion MRI[END_REF][START_REF] Zhang | Axon diameter mapping in the presence of orientation dispersion with diusion MRI[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diusion MRI[END_REF][START_REF] Fieremans | White matter characterization with diusional kurtosis imaging[END_REF][START_REF] Panagiotaki | Compartment models of the diusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Jespersen | Modeling dendrite density from magnetic resonance diusion measurements[END_REF]. However, it is dicult to connect the geometrical parameters contained in these models to ground truth values due to the complexity of brain tissue.

To get closer to the ground truth, experiments performed on various articial phantoms have been conducted including: carrot slices [START_REF] Dietrich | Imaging cell size and permeability in biological tissue using the diusion-time dependence of the apparent diusion coecient[END_REF], spheres lled with a gel in each cell compartment [START_REF] Lavdas | A phantom for diusion-weighted MRI (DW-MRI)[END_REF], physical phantoms constructed from resected rat spinal cord [START_REF] Campbell | Flowbased ber tracking with diusion tensor and q-ball data: Validation and comparison to principal diusion direction techniques[END_REF], polyl bers wound on a spherical polyamide spindle [START_REF] Moussavi-Biugui | Novel spherical phantoms for q-ball imaging under in vivo conditions[END_REF], straight X-crossings of polyester bers [START_REF] Pullens | Ground truth hardware phantoms for validation of diusion-weighted MRI applications[END_REF]. Other authors performed histological analysis of the tissue of interest by manual alignment with MRI data [START_REF] Khan | 3D structure tensor analysis of light microscopy data for validating diusion MRI[END_REF], co-registration of diusion tensor imaging (DTI) and Golgi data [START_REF] Jespersen | Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diusion tensor imaging[END_REF] to get independent information of the microstructure of the imaged object and verify their models described in [START_REF] Jespersen | Modeling dendrite density from magnetic resonance diusion measurements[END_REF][START_REF] Schilling | Comparison of 3D orientation distribution functions measured with confocal microscopy and diusion MRI[END_REF][START_REF] Jelescu | In vivo quantication of demyelination and recovery using compartment-specic diusion MRI metrics validated by electron microscopy[END_REF][START_REF] Jespersen | Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diusion tensor imaging[END_REF][START_REF] Khan | 3D structure tensor analysis of light microscopy data for validating diusion MRI[END_REF][START_REF] Wang | Structure tensor analysis of serial optical coherence scanner images for mapping ber orientations and tractography in the brain[END_REF]. This information was then compared with model predictions extracted from the experimental dMRI data. This comparison procedure can be useful in evaluating the quality and usefulness of the proposed dMRI models.

A well-known approximation for the ADC in the short time regime is the following [START_REF] Mitra | Diusion propagator as a probe of the structure of porous media[END_REF][START_REF] Mitra | Short-time behavior of the diusion coecient as a geometrical probe of porous media[END_REF]:

ADC short = D 0 1 - 4 √ D 0 3 dim √ π √ ∆ S V , (63) 
where S V is the surface to volume ratio. In the above formula the pulse duration δ is assumed to be very small compared to ∆. A recent correction to the formula in [START_REF] Coggeshall | A light and electron microscope study of the abdominal ganglion of Aplysia californica[END_REF] taking into account the nite pulse duration δ [START_REF] Schiavi | Correcting the short time ADC formula to account for nite pulses[END_REF] is the following:

ADC short = D 0 1 - 4 √ D 0 3 dim √ π C δ,∆ S V , (64) 
where

C δ,∆ = 4 35 (∆ + δ) 7/2 + (∆ -δ) 7/2 -2 δ 7/2 + ∆ 7/2 δ 2 (∆ -δ/3) = √ ∆ 1 + 1 3 δ ∆ - 8 35 
δ ∆ 3/2 + • • • . When δ ∆, the value C δ,∆ becomes √ ∆.
For spheres (three dimensions) or disks (two dimensions), the surface to volume ratio

S V is dim

R

, where R is the radius. From the experimental ADC for multiple diusion times we can t the experimental ADC as the linear function of √ ∆ or C δ,∆ , and the radius can be estimated.

In this thesis we propose another approach for dMRI model validation, using the much larger neural cells of the Aplysia californica as a surrogate phantom. The advantages of this choice lies in the simple structure of the neural system, consisting of large round cells, smaller round cells gathered in bags, and cylindrical bundles of unmylinated axons.

These cell components can be surrogates for mammalian brain cell components (the soma, axon bundles, dendrites). In particular, the large size of the Aplysia neural cells make it possible to test claims about short time diusion imaging (usually implemented with OGSE [START_REF] Does | Oscillating gradient measurements of water diusion in normal and globally ischemic rat brain[END_REF] sequences) using the PGSE [START_REF] Stejskal | Spin Diusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF] sequence.

At moderate b-values that we will consider in this thesis, the mono-exponential behavior is sucient to describe the dMRI signal. Thus, we consider only the relationship of the ADC, which contains rst order dependence of the signal on the b-value, to geometrical information on the conning domain Ω. This relationship is not completely understood from a theoretical point of view except for some simple geometries. Geometrical models (spherical and oriented cylindrical cells embedded in extra-cellular space [START_REF] Assaf | Composite hindered and restricted model of diusion (charmed) MR imaging of the human brain[END_REF][START_REF] Jespersen | Modeling dendrite density from magnetic resonance diusion measurements[END_REF]). In these case, the dMRI signal is decomposed as the sum of the signals from two dierent tissue compartments: the signal from the spherical cells and the extra-cellular space being Gaussian with an eective diusion tensor.

The neural system of the Aplysia californica consists of ve pairs of ganglia: buccal, cerebral, pleural, pedal, and abdominal ganglia [START_REF] Kandel | The functional organization of invertebrate ganglia[END_REF]. The abdominal and buccal ganglia were chosen in this imaging study because the cellular network is very well known in terms of single cell neurons and axonal orientation [START_REF] Conn | The bag cell neurons of aplysia. a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors[END_REF][START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF]. Moreover, the abdominal ganglion or single neurons from the abdominal ganglion have been investigated using magnetic resonance microscopy (MRM) and diusion MRM studies. The abdominal ganglia diagram is shown in Figure 12.
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R. connective n. in [START_REF] Grant | MR microscopy of multicomponent diusion in single neurons[END_REF] by using a biexponential signal t that the average ADC in the cytoplasm is 0.30 ± 0.09 × 10 -3 mm 2 /s; while the average ADC in the nucleus is 1.17 ± 0.29 × 10 -3 mm 2 /s. Using monoexponential ts, Schoeniger and colleagues [START_REF] Schoeniger | Relaxation-time and diusion NMR microscopy of single neurons[END_REF] found ADCs of 0.28 × 10 -3 and 1.47 -3 mm 2 /s in the cytoplasm and nucleus, respectively. These results are in good agreement with recent reports by Choong H. Lee and colleagues [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF], which also found that the ADC in the nucleus is larger than in the cytoplasm, as shown in Figure 13. In addition, in a study validating cellular diusion, Grant et al. In this thesis, we focus on the following three types of cells and cell components for imaging study.

Large neuron cells;

There are many large neuron cells in the abdominal ganglion with a diameter of at least 150 µm that are visible by inspection in the high resolution (26 µm isotropic) T2w images. Some of these include neurons L2 to L9, L11, R2 to R8, R14 and R15 (labeled L or R for left or right hemiganglion, e.g. see in [START_REF] Kupfermann | Local, reex, and central commands controlling gill and siphon movements in aplysia[END_REF]). The single cell neurons with diameter less than 150 µm are not included in this group. We note that the sizes of these identied neurons are not xed, they vary as a function of the age and the weight of the animal. The large cell neurons contain a nucleus, cytoplasm and are probably surrounded by small satellite (glial) cells [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF]. The satellite cells are very small cells, 6 µm maximum in diameter, without a nucleus [START_REF] Conn | The bag cell neurons of aplysia. a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors[END_REF][START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF][START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF]].

Several large cell neurons of diameter greater than 150 µm (up to 420 µm) that are easily identiable from the T2w image will be selected for this study.

Clusters of neuron cells gathered in the shape of a bag;

The bag shaped clusters comprise of hundreds of neurons that are located on the rostral end of the abdominal ganglion [START_REF] Conn | The bag cell neurons of aplysia. a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors[END_REF]. The actual number and sizes of these neurons depend on the animal age and weight [START_REF] Blankenship | The abdominal ganglion of aplysia brasiliana: A comparative morphological and electrophysiological study, with notes on a. dactylomela[END_REF]. For example, in young Aplysia, there are probably fewer than 100 small (about 10 µm in diameter) cell neurons in each bag; in adult Aplysia the number of cells grows to 400 in each bag with cell sizes between 40 to 100 µm in diameter [START_REF] Conn | The bag cell neurons of aplysia. a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors[END_REF][START_REF] Coggeshall | A light and electron microscope study of the abdominal ganglion of Aplysia californica[END_REF][START_REF] Frazier | Morphological and functional properties of identied neurons in the abdominal ganglion of Aplysia californica[END_REF][START_REF] Haskins | A light and electron microscopic investigation of the neurosecretory bag cells of Aplysia[END_REF].

There are two clusters of bag cells in each abdominal ganglion. When the abdominal ganglion is slid inside the small imaging capillary (as it will be later described in chapter V), only one cluster of bag cells is easy to identify from the T2w image, the other cluster is usually close to the abdominal body making it harder to identify from the T2w image. Therefore, only the one clearly identiable cluster of bag cells in each ganglion is selected for this study.

Nerve;

These are groups of (cylindrically shaped) axons. There are ve groups of nerves in the abdominal ganglion: the left/right connective nerves, siphon nerve, gentialpericardial nerve and branchial nerve [START_REF] Kupfermann | Local, reex, and central commands controlling gill and siphon movements in aplysia[END_REF] (see Figure 12). The siphon nerve and left/right connective nerves are of interest in this study because they remain intact as the ganglion is inserted inside the imaging capillary whereas other nerves are cut.

The information of the axon sizes and distributions for the nerves shown in Table nerve mentioned above can be separated to three groups [START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF]:

Nerves consisting of many semicircular-shaped bundles of small axons (nerve 1b).

Nerves subdivided into two separated regions: the rst group mainly contains large-sized axons and the second group contains small and medium sized axons (nerves 2b and ON).

Nerves which uniform distribution of axons (the separation of axonal areas is missing) (nerve 3b and CBC).

As shown in Figure 14, the buccal ganglia contains several bilaterally symmetrical groups of neurons such as B1, B2, B6, B9 (200 -300 µm) [START_REF] Gardner | Diphasic postsynaptic potential: A chemical synapse capable of mediating conjoint excitation and inhibition[END_REF][START_REF] Gardner | Bilateral symmetry and interneuronal organization in the buccal ganglia of aplysia[END_REF] as well as small neurons (≤ 50µm) [START_REF] Ono | Localization and identication of neurons with cholecystokinin and gastrin-like immunoreactivity in wholemounts of aplysia ganglia[END_REF]. When the echo planar imaging acquisition strategy is used, a complete image is formed from a single data sample (all k-space lines are measured in one repetition time). EPI can be employed either with a gradient echo or spin echo sequence depending on the contrast desired. Figure 15 shows the pulse sequence timing diagram of a spin echo EPI with eight echo train pulses. In the case of a gradient echo based EPI sequence the initial part (before the acquisition) is very similar to a standard gradient echo sequence.

By periodically fast reversing the readout or frequency encoding gradient, a train of echoes is generated. A blipped phase encoding technique used on most modern systems applies a small amplitude gradient phase encoding pulse (equal to ∆k y ) prior to each sampling period. No phase encoding gradient is applied during signal detection so that the phase encoding for each echo is constant. When used in the gradient echo mode, EPI sequences are very sensitive to T * 2 eects. The advantage of EPI is its fast data collection, however, it is extremely sensitive to image artifacts and distortions due to the magnetic susceptibility dierences at tissue-air interfaces, making their use problematic in some anatomical regions. Modern gradient ampliers may be required for single-shot EPI imaging because of the rapid switching of the readout gradient polarity necessary to acquire all the echoes. These artifacts can be reduced by employing MRI acquisition for in vivo preclinical imaging [START_REF] Lu | Diusion-prepared fast imaging with steady-state free precession (DP-FISP): A rapid diusion mri technique at 7 T[END_REF] (single slice 0.3 × 0.3 × 2 mm 3 resolution). Briey, the main idea is to combine a slice-selective diusion preparation (90 x -180 y -90 -x ) with a single-shot, centric encoding FISP imaging readout. The diusion preparation was designed with bipolar diusion gradients to limit cardiac and respiratory motion artifacts. Gradient spoilers were applied after the diusion preparation to avoid spurious echoes. Our group extended the DP-FISP sequence proposed by Lu to a 3D DP-FISP version with centric encoding for high resolution microscopy imaging [START_REF] Jelescu | 3D DP-FISP for diusion measurements in MR microscopy at ultra-high eld[END_REF] (see Figure 16). More details about the DP-FISP and 3D DP-FISP pulse sequence designs can be found in [START_REF] Lu | Diusion-prepared fast imaging with steady-state free precession (DP-FISP): A rapid diusion mri technique at 7 T[END_REF][START_REF] Jelescu | Magnetic resonance microscopy of Aplysia neurons : studying neurotransmitter-modulated transport and response to stress[END_REF]. The results show that this sequence is much more time-ecient than standard DW-SE and less prone to artifacts than EPI. 3D DP-FISP can be used in the low b-value range for ADC measurements. Higher b-value introduce non-negligible signal recovery from T 1 relaxation. The limiting feature of the total acquisition time in a 3D DP-FISP is the long TR between planes in k-space. This is required to obtain complete longitudinal relaxation before the next diusion prepared module [START_REF] Jelescu | Magnetic resonance microscopy of Aplysia neurons : studying neurotransmitter-modulated transport and response to stress[END_REF].

The 3D DP-FISP will be used during this thesis for the study of time-dependent ADC measurements in multi-diusion directions with multiple b-values and validation with numerical simulation of time-dependent ADCs. Acceleration by partial Fourier imaging and Parallel imaging Despite the fact that the modern magnetic resonance imaging hardware available today often results in suciently high SNR without signal averaging, the total experimental time, dictated only by the requirement for sucient k-space coverage, can be extremely long, prohibiting the very high resolution imaging of live biological systems.

One way to reduce the data acquisition time is by undersampling the k-space, a strategy proposed by several methods including parallel imaging and compressed sensing (CS).

When the k-space is undersampled Fourier reconstructions produce aliasing artifacts.

Non-uniform undersampling strategies can reduce these artifacts but often with a loss in image signal to noise ratio [START_REF] Marseille | Nonuniform phase-encode distributions for MRI scan time reduction[END_REF][START_REF] Scheer | Reduced circular eld-of-view imaging[END_REF][START_REF] Tsai | Reduced aliasing artifacts using variable-density k-space sampling trajectories[END_REF][START_REF] Peters | Undersampled projection reconstruction applied to MR angiography[END_REF][START_REF] Greiser | Ecient k-space sampling by density-weighted phase-encoding[END_REF]. Parallel imaging exploits redundancy in k-space reconstructing the image from data acquired simultaneously with an array of radio frequency coils [START_REF] Griswold | Generalized autocalibrating partially parallel acquisitions (GRAPPA)[END_REF][START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF]. Using the latest developments in wire bonding technology phase array microcoils have been recently reported [START_REF] Gruschke | Lab on a chip phased-array MR multi-platform analysis system[END_REF][START_REF] Göbel | Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T[END_REF]. However, the small sample size renders the construction of such micro-arrays dicult and limits the applicability of parallel imaging to high resolution MR microscopy. The use of CS methods in the acquisition and reconstruction of magnetic resonance images has been reported for cardiac imaging [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Wech | Accelerating cine-MR imaging in mouse hearts using compressed sensing[END_REF][START_REF] Wech | Accurate infarct-size measurements from accelerated, compressed sensing reconstructed cine-MRI images in mouse hearts[END_REF][START_REF] Wech | Highly accelerated cardiac functional MRI in rodent hearts using compressed sensing and parallel imaging at 9.4T[END_REF], hyper-polarized spectroscopic imaging [START_REF] Hu | 3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer[END_REF] and more recently, diusion tensor imaging [START_REF] Wu | Accelerated MR diusion tensor imaging using distributed compressed sensing[END_REF] and MRI velocimetry [START_REF] Paulsen | Compressed sensing of remotely detected MRI velocimetry in microuidics[END_REF].

In the following we will briey describe the most common methods of acceleration by partial Fourier imaging and parallel imaging. The non-Cartesian k-space trajectory will be also introduced. The next sections will discuss the principles of CS for MRI. The principle of partial Fourier imaging is based on the property that the Fourier transformation of a purely real function has complex conjugate symmetry in k-space [START_REF] Feinberg | Halving MR imaging time by conjugation: demonstration at 3.5 kG[END_REF][START_REF] Constantinides | Magnetic Resonance Imaging: The Basics[END_REF].

In theory this means that the fully k-space signals can be extrapolated from only half of the k-space points. When applied to the phase encoding direction, this will reduce the acquisition time by half. In practice, in order to provide robust phase correction slightly more than half (commonly approximation 60%) of the phase encodes are acquired. The resulting image has the same FOV and spatial resolution as that using a full data matrix. The problems associated with partial Fourier imaging are a loss in SNR due to the reduced number of measured lines and an enhanced sensitivity to artiacts due to the articial replication of the information. It is also possible to apply this technique in the read direction to reduce the echo time, which may permit a slight reduction in repetition time per phase encode [START_REF] Hollingsworth | Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[END_REF][START_REF] Constantinides | Magnetic Resonance Imaging: The Basics[END_REF]; however the scan time is not signicantly aected. The spatial data yielded by the array of coil elements can be used for partial phase encoding only, to speed up acquisition. Using this technique, the number of phase encoding lines is reduced by increasing the distance between the lines in k-space, eectively reducing the eld of view corresponding with phase encoding for the image (see more [START_REF] Dale | MRI: Basic Principles and Applications[END_REF][START_REF] Constantinides | Magnetic Resonance Imaging: The Basics[END_REF]). The image reconstructed from each coil contains aliasing artifacts, however a correct image can be obtained by using extra information regarding coil positions and sensitivities. The PI techniques can be classied into image-based and k-space based techniques depending on the reconstruction algorithms. Among the image-based techniques the most popular one is Sensitivity encoding (SENSE) [START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF] which reconstruct the image after Fourier transformation, in the image domain. There are two k-spaces based techniques commonly used: Simultaneous acquisition of spatial harmonics (SMASH) [START_REF] Sodickson | Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays[END_REF] and GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [START_REF] Griswold | Generalized autocalibrating partially parallel acquisitions (GRAPPA)[END_REF].

In the k-space based techniques, the nal (unaliased) signals are measured by merging the coils signals prior to image reconstruction. The other dierence between these two methods is in the calibration scans are acquired. The calibration data for the volume explored by each coil element and the signal produced is subsequently used to map the spatial sensitivity of each coil elements. SMASH acquires the calibration scans separately from primary scan, so that the main scan time reduction is directly proportional to the number of coils. GRAPPA technique acquires the calibration scans as a part of the primary scan, so the scan time savings but presents better the SNR.

Non-Cartesian trajectories

Almost all MR imaging is performed by acquiring the k-space points along a Cartesian grid, or rectilinear trajectories, however, k-space can also be sampled in an arbitrary non-Cartesian manner. The limiting factor in data acquisition speed is the time needed to play out gradient waveforms. Moreover, the maximum gradient strengths and slew rates in MRI scanner are constrained by physiological considerations. Therefore, imaging speed can only be further improved by increasing the eciency of gradient waveforms or by reducing the amount of gradient encoding. Non-Cartesian parallel imaging seeks to use both of these approaches simultaneously to signicantly reduce the amount of time required to collect MRI data (see in [START_REF] Wright | Non-cartesian parallel imaging reconstruction[END_REF]). Many non-Cartesian trajectories have been explored such as radial [START_REF] Glover | Projection reconstruction techniques for reduction of motion eects in MRI[END_REF][START_REF] Lauterbur | Image formation by induced local interactions. Examples employing nuclear magnetic resonance[END_REF], spiral [START_REF] Meyer | Fast spiral coronary artery imaging[END_REF][START_REF] Ahn | High-speed spiral-scan echo planar NMR imaging-I[END_REF], rosette [START_REF] Noll | Multishot rosette trajectories for spectrally selective MR imaging[END_REF] and stochastic [START_REF] Scheer | Frequency resolved single-shot MR imaging using stochastic k-space trajectories[END_REF], etc.

The most common non-Cartesian trajectories are radial and spiral trajectories. The common feature is that sampling is more dense near the center of k-space than near the edges. As a result, a re-gridding of the raw data must be done prior to performing the Fourier transformation in order to produce images without phase artifacts. Radial sampling uses a constant magnitude gradient for each line while the spiral sampling uses variable G. The central points of k-space are usually acquired at the beginning of sequence. Re-gridding in spatial encoding is necessary to ensure a constant density kspace. More detail about non-Cartesian trajectories can be found in references [START_REF] Constantinides | Magnetic Resonance Imaging: The Basics[END_REF][START_REF] Wright | Non-cartesian parallel imaging reconstruction[END_REF].

The radial and spiral k-space trajectories diagrams shown in Figure 17. 12 Compressed sensing 

f (t) = ∞ n=-∞ f n sin π(2W t -n) π(2W t -n) , where f n = f n 2W
is the n th sample, for all positive and negative integer values of n.

However, the exactly reconstruction may still be possible when the Nyquist criterion is not satised. Extensions of Shanon sampling theorem can be found in reference [START_REF] Jerri | The shannon sampling theorem: Its various extensions and applications: A tutorial review[END_REF].

Basically, if the signal is sparse in the Fourier domain then it can recovered from far fewer samples than required by the Nyquist limit [START_REF] Jerri | The shannon sampling theorem: Its various extensions and applications: A tutorial review[END_REF][START_REF] Landau | Necessary density conditions for sampling and interpolation of certain entire functions[END_REF][START_REF] Doneva | Advances in compressed sensing for magnetic resonance imaging[END_REF]. CS is a novel signal processing technique introduced by Donoho in 2006 [START_REF] Donoho | Compressed sensing, Information Theory[END_REF] (for MRI) which exploits this property.

Other nomenclatures used for CS are: compressive sensing, compressive sampling, or sparse sampling. Through papers published between 2004 and 2006, Emmanuel Candès, Terence Tao, and David Donoho proved that, provided the sparsity condition is satised, the signal can be recovered with fewer samples than the Nyquist criterion requires and therefore dierent types of images can be reconstructed from undersampled data without loss of information [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing, Information Theory[END_REF][START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. The technique can be applied to MRI to reduce the acquisition times. CS is based on three major components [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]:

(1) a sparse representation of the signal in some transform domain (such as Fourier transform (FT) domain, Wavelet transform domain ...),

(2) the aliasing artifacts due to k-space undersampling be incoherent (noise like) in that transform domain, and

(3) a sparsity-constrained nonlinear reconstruction method.

If the total number of points in the image is larger than four times the number of sparse coecients then the reconstruction of undersampled data is feasible. As discussed in [START_REF] Candès | An introduction to compressive sampling[END_REF], sparsity expresses the idea that the information rate of the continuous time signal may be much smaller than suggested by its bandwidth (BW) (i.e. compressible), and the incoherence expresses the idea that objects having a sparse representation in some known transform domain must be spread out in the acquired domain. Luckily, most of signal are sparse in known transform domain such as Wavelet domain.

Nowadays, CS in MRI is just one of the way application of CS such as imaging compressive, digital camera, astronomy, geophysics and high speed analogue to digital conversion signal, etc.

Starting from the requirement for undersampling k-space data and considering the MR hardware constrains several ways of generating undersampling patterns have been proposed. The most commonly used undersampling schemes, either Cartesian or non-Cartesian, consist of variable-density random undersampling [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Lustig | Compressed sensing MRI[END_REF] based on a probability density function.

As mentioned above, the CS based on three fundamental premise: sparsity, incoherence and non-linear reconstruction. In this section we will dedicated the sparsity and incoherence in MRI.

Almost image are not sparse in image domain, but it would be sparse in a transform domain via a sparsity transform operator. A sparsity transform operator is an operator mapping a vector of image data to a sparse vector [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. For example, a piece wise constant images (example Shepp-Logan image in Figure 18) can be sparsely represented under nite dierence operator. The nite dierence operator here mean computing the dierences between neighbouring pixels and is often referred to as total variation (TV) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. Actually, the MR images are not piecewise constant, but in case of images in which the boundaries contain the most important information, like angiograms images, will be sparsely presented in a nite dierences transform. Nowadays, the multi-scale 

Sparsity of MR images

The MRI image can be sparsely presented by applying the sparsity transform to the fully encoded image. An approximation image can be reconstructed from a subset of the largest transform coecients. The sparsity of an image is measured by the percentage of transform coecients that are sucient for an acceptable of reconstruction. In practice, we can measure the sparsity of image by trying reconstructions from some arbitrary small percentages of transform coecients and estimations the relative errors between the sparse approximation image and the fully encoded image. For example, in our study, two experimental T2w images of the abdominal ganglia and buccal ganglia of Aplysia califonica were used. We applied the nite dierent transform and wavelet transform on these images and then reconstructing from 7%, 10% and 20% of the largest transform coecients. The results are shown in Figure 19. By investigation the relative error between the sparsity reconstructed images from a subset of the largest sparse transform and the fully encoded image, we found that the Wavelet transform performs better than the nite dierent transform on the sparsify the abdominal ganglia and buccal ganglia T2w images. The relative error formula will be described in equation [START_REF] Glover | Projection reconstruction techniques for reduction of motion eects in MRI[END_REF] 

Incoherence

In practice some undersampling pattern perform better than others. We need a metric to evaluate the incoherence of the aliasing interference to make sure that the choice of sampling is incoherent and evaluate which undersampling pattern is best. The Point Spread Function (PSF) proposed by Lustig et al [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] is a natural tool to measure incoherence.

Let F u = M F is the undersampled Fourier operator, where M is the undersampling pattern, and denote F H u is the adjoint operator. The PSF is dened as:

P SF (i, j) = F H u F u (i, j) . ( 65 
)
The PSF measures the contribution of a unit-intensity pixel at the (i, j) position. In case fully Nyquist sampling there is no interference between pixels and P SF (i, j) = δ(i, j).

Where delta function δ(i, j) = 1 if and only if i = j and δ(i, j) = 0 in otherwise.

Undersampling causes aliasing which shows the correlations between dierent pixels.

The MR images are usually sparse in a transform domain rather than in the image domain. Let W denote the sparsifying transform and W H is the adjoint operator. The Transform Point Spread Function (TPSF) (see more [START_REF] Doneva | Advances in compressed sensing for magnetic resonance imaging[END_REF][START_REF] Lustig | SPARSE MRI[END_REF][START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Lustig | Compressed sensing MRI[END_REF]) is dened as:

T P SF (i, j) = W H F H u F u W(i, j). (66) 
The maximum value of T P SF (i, j) where i = j are used to measure the coherence of a undersampling pattern. The small coherence, that means incoherence, is desirable.

Basically, the lower value of T P SF corresponding with the undersampling pattern M will gives the small reconstruction error. However, the undersampling patterns with the same incoherent measure, which one higher correlations between all coecients will lead a large error in reconstruction [START_REF] Doneva | Advances in compressed sensing for magnetic resonance imaging[END_REF]. Therefore in practice we applied the undersampling patterns which the same small value of TPSF to a data library and calculating the reconstruction error to evaluate the best pattern.

Polynomial undersampling patterns

Lustig et al [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] suggested to make use of quasi-random patterns following a Monte Carlo procedure based on a variable probability density function (pdf ) :

pdf = (1 -r) p if |r| ≥ rad, 1 if |r| < rad, ( 67 
)
where p is the arbitrary polynomial degree (usually chosen p = 2), and rad is the maximum distance measured from center of k-space which we always samples. The pdf assigned dierent sampling probabilities for dierent region of k-space. There are two parts, in the central of k-space which will be always sampled, and the otherwise which will be sampled under the selected probability decay rate user-selected by polynomial degree p. By this way, the undersampling less near the k-space boundary and more in the central of k-space. The problem is how many samples should be acquire? By theoretical, the number of Fourier sample points that need be collected with respect to the number of sparse coecients is derived in references [START_REF] Donoho | Compressed sensing, Information Theory[END_REF] and [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. In practical, the number of k-space samples should be roughly two to ve times the number of sparse coecients [START_REF] Candes | Signal recovery from random projections[END_REF][START_REF] Tsaig | Extensions of compressed sensing[END_REF][START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. On the other hand, the random sampling selected by polynomial scheme described about often gives a good results, incoherent and nearoptimal solution. In order to optimal sampling scheme that maximizes the incoherence, Lustig et al suggested the use of TPSF to select appropriate undersampling patterns.

Because of the TPSF measures propagation error, the best pattern is the lowest TPSF.

The procedure shown as bellow:

1. Generate pdf function gives the probability of sampling points based on the desired resolution and FOV.

2. Randomly sampling of k-space based on pdf construction gives the sampling pattern S.

3. Measure the peak interference in the PSF or TPSF of the sampling pattern S.

4. Repeat 2-3 several times and choose the pattern with the lowest peak interference.

The sampling pattern generated can be used for future scans. 

For simplicity in present, the two dimensional case is considered, k = (k x , k y ), r = (x, y),

and the imaging equation ( 68) can be written as

S(k x , k y ) = ∞ -∞ ∞ -∞
I(x, y)e -i2π(kxx+kyy) dx dy.

In MRI practice, S(k x , k y ) is collected at a discrete set of k-space points. There are many ways to sampling data, the two most popular data collection is rectilinear sampling and polar sampling, are shown in Figure 20. It is easy to see that

k x = m∆k x k y = n∆k y (70) 
for rectilinear sampling, and

k x = m∆k cos(n ∆Φ) k y = m∆k sin(n ∆Φ) (71) 
for polar sampling, where m and n take integer numbers.

In this thesis, we focus on rectilinear sampling (Cartesian sampling), thus we following briey introduce about the reconstruction formula for rectilinear sampling and skip for According to the sampling theorem, we have [START_REF] Yan | Signal Processing for Magnetic Resonance Imaging and Spectroscopy. Signal processing and communications[END_REF],

-k xmax k xmax -k ymax k ymax (a) k x k y (b)
∆k x ≤ 1 FOV x , ∆k y ≤ 1 FOV y
The image function I(x, y) reconstructed from collected signal S(m∆k x , n∆k y ) by:

I(x, y) = ∆k x ∆k y Nx 2 -1 m= -Nx 2 Ny 2 -1 n= -Ny 2 S(m∆k x , n∆k y ) e i2π (m∆kxx+n∆kyy) , (72) 
where |x| ≤ 1 2∆k x and |y| ≤ 1 2∆k y . Equation ( 72) is known as inverse Discrete Fourier transform. And therefore equation ( 69) can be written as Discrrete Fourier transform: (73)

S(k x , k y ) = Nx 2 -1 m= -Nx

CS image reconstruction

The fully encoded images reconstruction were processed directly in Paravision. For the sparse MRI reconstruction, the general form for the reconstruction problem is presented 12.5.1 Nonlinear conjugate-gradient descent method: SpareMRI toolbox

In this section, we followed the algorithm provided by Lustig et al. in the SparseMRI toolbox [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF], which we extended to a 3D version.

Equation ( 77) can be rewritten in the unconstrained problem form as following:

arg min m J(m), (79) 
where

J(m) = F u m -y 2 2 + λ 1 Wm 1 + λ 2 T V (m) , (80) 
and λ 1 , λ 2 are two regularization constants. A large λ 2 tends to suppress image gradients and make the reconstructed image smooth, losing point-like features [START_REF] Zhu | Compressed Sensing-based MRI Reconstruction Using Complex Double-density Dual-tree DWT[END_REF]. In this thesis, we suggest to using the TV as a penalty because it was shown that it is ecient in suppressing the noise in the reconstructed image [START_REF] Ma | An ecient algorithm for compressed MR imaging using total variation and wavelets[END_REF]. The optimized choose of regularization parameter λ 1 and λ 2 will be an interested work, but it will not covered during this thesis.

The iterative algorithm starts with a zero-lling Fourier reconstruction, m 0 . The conjugate gradient requires the computation of the gradient of the cost function,∇J (m) , which is:

∇J(m) = 2F H u (F u m -y) + λ 1 ∇ Wm 1 + λ 2 ∇T V (m). (81) 
As the 1 norm is the sum of absolute values. However, the absolute values are not smooth functions, then the equation ( 81) is not well dened. while

J(m k + t∆m k ) > J(m k ) + αt • Real(g * k ∆m k ) and k < Iter do t = βt; end m k+1 = m k + t∆m k g k+1 = ∇J(m k+1 ) γ = g k+1 2 2 g k 2 2 ∇m k+1 = -g k+1 + γ∆m k k = k + 1
end Algorithm 1: Nonlinear conjugate-gradient descent with backtracking line search for 1 reconstruction.

We have wrote several C-MEX function les, the function written in C or C++ code that are callable from Matlab, to signicantly improve the calculation time.

Split Bregman method

Split Bregman method for fast CS image reconstruction provided by Tom Goldstein in 2009 [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF] with TV penalty and the Haar wavelet transform. The Split Bregman method is a technique for solving a variety of 1 -regularized optimization problems, and is particularly eective for problems involving TV regularization. Split Bregman is one of the fastest solvers for total variation de-noising, image reconstruction from Fourier coecients, convex image segmentation, and many other problems. The method is a re-interpretation of the alternating direction method of multipliers that is specially adapted to 1 problems. During this thesis, we keep follow the algorithm proposed by Tom Goldstein in [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF] for an isotropic TV model which can be easy extended to 3D version for our studies. The original 2D code can be found in reference [START_REF] Goldstein | [END_REF].

A complete technical explanation of the Split Bregman method can be found in the paper [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF]. To apply the Split Bregman method to this problem, rst we notation w = Wm, d x = ∇ x m, d y = ∇ y m, and d z = ∇ z m, the Equation ( 78) is rewritten by:

min m w 1 + (d x , d y , d z ) 2 , (82) s.t. F u m -y 2 2 < σ 2 , where (d x , d y , d z ) 2 = i,j,k |d x,i,j,k | 2 + |d y,i,j,k | 2 + |d z,i,j,k | 2 .
As shown previously in [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Osher | An Iterative Regularization Method for Total Variation-Based Image Restoration[END_REF], by applying the Bregman iterations the following uncontrained equations converges iteratively to Equation ( 82): min m,dx,dy,dz,w

w 1 + (d x , d y , d z ) 2 + w 1 + µ 2 F u m -y h 2 2 + λ 2 d x -∇ x m -b h x 2 2 + λ 2 d y -∇ y m -b h y 2 2 + λ 2 d z -∇ z m -b h z 2 2 (83) 
+ γ 2 w -Wm -b h w 2 2 , y h+1 = y h + y -F u m h+1 , (84) 
where λ, µ, and γ are three constant penalty weighting parameters, the proper value of b h

x , b h y , b h z , b h w and y h are chosen through Bregman iteration. At each iteration h + 1, using split Bregman method, Equation ( 83) can be split to following equations (see more [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF]):

m h+1 = min m µ 2 F u m -y h 2 2 + λ 2 d h x -∇ x m -b h x 2 2 + λ 2 d h y -∇ y m -b h y 2 2 (85) 
+ λ 2 d h z -∇ z m -b h z 2 2 + γ 2 w -Wm -b h w 2 2 . d h+1 i = max s h - 1 λ , 0 ∇ i m h + b h x s h , i = x, y, z, (86) 
b h+1 i = b h i + ∇ i m h+1 -d h+1 i , i = x, y, z (87) 
w h+1 = shrink Wm h+1 + b h w , 1 γ , ( 88 
) b h+1 w = b h w + W m h+1 -w h+1 , (89) (90) 
where the variable b h i , d h i , b h w (i = x, y, z) are initialized by 0, y 0 = y, the standard shrinkage formula [START_REF] Wang | A fast algorithm for image deblurring with total variation regularization[END_REF][START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF] is

shrink (x, γ) = x |x| max (|x| -γ, 0) , (91) 
and the generalized shrinkage formula [START_REF] Wang | A fast algorithm for image deblurring with total variation regularization[END_REF][START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF]:

s h = |∇ x m h + b h x | 2 + |∇ y m h + b h y | 2 + |∇ z m h + b h z | 2 . ( 92 
)
Because of the Equation ( 85) is dierentiable (see [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Osher | An Iterative Regularization Method for Total Variation-Based Image Restoration[END_REF][START_REF] Montesinos | Application of the compressed sensing technique to self-gated cardiac cine sequences in small animals[END_REF]), by dierentiating with respect to m and setting the result equal to zeros, we can obtain the update rule:

µF T u F u + λ∇ T x ∇ x + λ∇ T y ∇ y + λ∇ T z ∇ z + γW T W m h+1 = r h , (93) 
where

r h = µF T u y h + λ∇ T x (d h x -b h x ) + λ∇ T y (d h y -b h y ) + λ∇ T z (d h z -b h z ) + γW T (w k -b h w ), (94) 
represent the right hand side in the above equation. Remember that F u = M F, so the F T u = F T M T . On the other hand, ∇ T ∇ = -∆, W T W = I and F T = F -1 , so the equation ( 93) can be simplied by:

µF T u F u -λ∆ + γI m h+1 = r h . ( 95 
)
This equation must be inverted to solve m h+1 in circulant that make costly for computational. To avoid this limited, we can thus write the system as F -1 HF, where H now is the diagonal operator:

H = (µM T M -λF∆F -1 + γI). (96) 
The Equation ( 95) becomes

m h+1 = F -1 H -1 Fr h . ( 97 
)
The full split Bregman algorithm for 1 reconstruction problem ( 78) is described by following.

Data:

y: undersamplied k-space data F: Fourier transform operator M : undersampling matrix W: Haar orthogonal wavelet transform operator σ: expected variance of the noise constants µ, λ, γ: regularization terms N : stopping criteria by number of iterations Result: m the numerical approximation to equation ( 78) 

% Initialization h = 0; y 0 = y; m 0 = F -1 y; and d 0 x = d 0 y = d 0 z = w 0 = b 0 x = b 0 y = b 0 z = b 0 w = 0; % Iterations do for i = 1 to N do r h := µF T M T y h +λ∇ T x (d h x -b h x )+λ∇ T y (d h y -b h y )+λ∇ T z (d h z -b h z )+γW T (w h -b h w ) m h := F -1 H -1 Fr h s h := |∇ x m h + b h x | 2 + |∇ y m h + b h y | 2 + |∇ z m h + b h z | 2 d h x := max s h - 1 λ , 0 ∇ x m h + b h x s h d h y := max s h - 1 λ , 0 ∇ y m h + b h y s h d h z := max s h - 1 λ , 0 ∇ z m h + b h z s h w h := shrink Wm h + b h w , 1 γ b h x := b h x + ∇ x m h -d h x b h y := b h y + ∇ y m h -d h y b h z := b h z + ∇ z m h -d h z b h w := b h w + Wm h -w h
y k+1 = y k + y -M Fm k+1 h := h + 1 while M Fm h -y 2 2 > σ 2 ;
Algorithm 2: Split Bregman algorithm for 1 reconstruction.

13 Measuring the quality of accelerated acquisition

In our study, it is important to compare the two fully encoded and CS encoded images.

The 2 relative errors (RE) can be used to calculate the relative errors between CS and fully encoded images, beside, the Pearson's Correlation Coecient (PCC) can be used to measure the strength of a linear relationship between CS and fully encoded images.

Image error

In order to compare the two undersampling strategies we computed the 2 relative error (RE) between the CS and fully encoded images:

RE = n i=1 (y i -ŷi ) 2 n i=1 y 2 i , (98) 
where y i and ŷi are the signal intensities corresponding to voxel i in the fully encoded image and the undersampled image, respectively. n is the number of voxels.

Moreover, root mean square error (RMSE) can be used for measured the dierent between two images:

RMSE = 1 n n i=1 (y i -ŷi ) 2 . ( 99 
)

Pearson's Correlation Coecient

The PCC is a statistical measure of the strength of a linear relationship between two paired data. It is described as [START_REF] Mendenhall | Introduction to Probability and Statistics[END_REF][START_REF] Bulusu | Determination of secondary ow morphologies by wavelet analysis in a curved artery model with physiological inow[END_REF]:

P CC = n i=1 (y i -y mean ) (ŷ i -ŷmean ) i (y i -y mean ) 2 n i=1 (ŷ i -ŷmean ) 2 , ( 100 
)
where {y i : i = 1, .., n} and {ŷ i : i = 1, .., n} are two sample datasets with the mean sample are y mean and ŷmean , respectively. In this thesis, y i and ŷi represent signal inten- sities of voxel i in the fully encoded image and the undersampled image, respectively, and y mean and ŷmean are the corresponding mean signal intensity values over all voxels. n is the number of voxels.

Part IV

Compressed sensing for high resolution MRI Summary [START_REF] Witten | Diusion-Limited Aggregation, a Kinetic critical phenomenon[END_REF] and present its application to the undersampling of T2w and T1w high resolution images.

14 k-space undersampling patterns CS undersampling patterns are subsets of frequency domain points which are incoherent with respect to the sparsifying transform and satisfy hardware constraints. The most commonly used CS designs are obtained by generating quasi-random patterns following a Monte Carlo procedure based on a variable probability density function [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Montesinos | Application of the compressed sensing technique to self-gated cardiac cine sequences in small animals[END_REF][START_REF] Montesinos | Compressed Sensing for Cardiac MRI Cine Sequences: A Real Implementation on a Small-Animal Scanner[END_REF] (called polynomial undersampling). Here we will briey describe the polynomial undersampling and compare it with the method we called DLA undersampling method [START_REF] Nguyen | DLA based compressed sensing for high resolution MR microscopy of neuronal tissue[END_REF]. The description of polynomial undersampling scheme presented below is taken from Lustig et al [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. The DLA undersampling method is adapted from our paper [START_REF] Nguyen | DLA based compressed sensing for high resolution MR microscopy of neuronal tissue[END_REF].

DLA undersampling patterns

We propose a new way of producing undersampling patterns employing the DLA random growth model. The DLA was proposed, for the rst time, by T.A. Witten and L.M. Sander in 1981 [START_REF] Witten | Diusion-Limited Aggregation, a Kinetic critical phenomenon[END_REF]. The basic DLA growth process in two dimensions is relatively simple. An initial particle, the "seed", is placed at the origin of the lattice. A second particle, the "walker", is added at a random position far away from the seed and undergoes random walk in the plane until it reaches a site neighboring the seed when it becomes part of the cluster. Subsequently, other walkers are introduced, one by one, at dierent random locations and allowed to walk randomly until they join the cluster.

The basic DLA undersampling process consists in the following steps:

1. An initial particle, the seed, is placed at the origin of a 2-dimensional lattice containing M × N points.

2. A kill circle, whose radius is much larger than the linear size of the lattice and centered on the seed, is dened.

3. A walker is launched at a random position on a birth circle with radius R i dened by:

R i = 1 100 × max(M, N ) × 1 + 49 × i -1 P , (101) 
k-space undersampling patterns with i = 1 to P , where P is the desired nal number of particles in the cluster, dictated by the undersampling ratio. If the radius of the birth circle is smaller than a predened R min (here we chose R min = 2) then R i = R min .

4. The walker walk randomly until one of three outcomes is reached:

(a) The walker escapes the kill circle. A new walker is placed on the same birth circle and the random walk is restarted.

(b) The walker hits a lattice point which is a nearest neighbor to one member of the cluster. The walker then becomes part of the cluster and the index i is incremented to i + 1.

(c) The walker diuses a long time without neither joining the cluster nor leaving the kill circle. The index i is incremented to i + 1, and there will be no contribution to the cluster from this walker. NOTE: If i reaches P while the number of particles in the cluster is smaller than P , the counter is reset to i = 1 (i.e. restart from the smallest birth circle).

5.

Steps 3 and 4 are repeated until the desired cluster size is reached.

As in Lustig et al we also use PSF (or TPSF) to select the appropriate undersampling patterns. However, we propose to use many undersampling patterns with lower enough PSF (or TPSF, respectively) and apply them to a library of a priori acquired fully sampled data sets in order to choose which ones gives the lowest relative error between the CS and fully encoded images. The procedure is briey described below:

1. Generate DLA undersampling patterns.

2. Measure the peak interference in the PSF (or TPSF) of the DLA undersampling patterns. Select the DLA undersampling pattern with lowest PSF (or TPSF, respectively).

3. Repeat step 1-2 many times, to produce a set of DLA undersampling pattern candidates.

4. Apply each undersampling pattern in candidate set to the library of priori acquired fully sampled data. Choose the undersampling pattern with the lowest relative error between CS and fully encoded images.

DLA vs polynomial undersampling

In our case the 2D lattices sampled belong to a 3D Cartesian k-space grid, predened for a given eld-of-view (10 × 2.2 × 2.2 mm 3 ) and spatial resolution (25µm isotropic), with the undersampling being done along the two phase encoding directions. Figure21a

shows the proposed undersampling for one phase encoding plane. Such undersampling can be applied to a RARE acquisition with an acceleration factor A F = 4 by generating subsampling patterns for k-space points subsets corresponding to one echo time, and repeating this sampling patterns A F times to cover the entire k-space, resulting therefore in repeating the pattern in Figure 21a four times (Figure 21b). The 2D patterns obtained are repeated for each point in the read direction to generate the 3D undersampling pattern (Figure 21c). Eleven undersampling ratios were chosen between 80% and 30%.

For each undersampling ratio 300 sets consisting of 100 undersampling masks were generated and from each set the mask with the lowest PSF was selected [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. The 300 × 11 = 3300 masks produced were then applied to a library of a priori acquired fully sampled data sets consisting of six images of abdominal and buccal ganglia of Aplysia californica (three of each). Undersampling patterns based on the polynomial probability density function, with A F = 1 (Figure 21d), A F = 4 (Figure 21e) and extended to a 3D RARE acquisition with A F = 4 (Figure 21f), were also generated as in [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] and were applied to the same library of images. In order to compare the two undersampling strategies we computed the RE between the CS and fully encoded images (see Equation ( 98)). In addition, the performances of DLA and polynomial schemes when applied to RARE acquistions with A F = 1 were similarly evaluated this time As seen in Figure 22, in the case of RARE acquisitions with A F = 4 , and Figure 23 The implementation of CS on T2w and T1w pulse sequences in the case of RARE acquisitions with A F = 1 the mean relative errors between the CS and the fully encoded images are smaller for DLA than for polynomial patterns for both the buccal and the abdominal ganglia. Moreover, the DLA method is more stable as the standard deviation of the relative error is smaller than for the polynomial scheme.

The dierence in performance between the two undersampling schemes is even larger for A F = 1 than for A F = 4. The compressed sensing-FLASH sequence (CS-FLASH) is created using the same procedure but a dierent undersampling pattern was implemented.

We successful implemented the CS version of RARE and FLASH pulse sequences in Paravision 5.1, Bruker Biospin. [START_REF] Edelstein | The intrinsic signal-to-noise ratio in NMR imaging[END_REF] 

Image reconstruction

The fully encoded images were processed directly in Paravision. For the T2w, CS undersampled data we followed the algorithm provided by Lusting et al. [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF], which we extended to 3D version (see section 12.5.1). For the T1w, CS undersampled data were reconstructed following the Split-Bregman algorithm provided by Goldstein and Osher in 2009 [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF], which was extended for this study to a 3D version with total variation (TV) penalty and Haar wavelet transform (see section 12.5.2). The comparison of two reconstruction method is interesting works, but during this thesis we did not Cell segmentation algorithm compare two methods. For our experience, the Split-Bregman method running faster than the nonlinear conjugate-gradient descend method. Both Split-Bregman and nonlinear conjugate-gradient descend methods can be used for T2w and T1w CS.

The following sections will summarize some results of DLA-CS strategy for high resolution T2w and T1w imaging. [START_REF] Hoult | The signal-to-noise ratio of the nuclear magnetic resonance experiment[END_REF] 

Cell segmentation algorithm

Due to failure when using some cell segmentation packages for T2w images, in this section we introduce a simple algorithm for automatic cell segmentation on MR T 2 weighted images, which will be used to quantify the spatial resolution of CS and fully encoded RARE image. The main steps are as follows:

1. Dierent signal intensity levels (C1, C2, C3, etc) contour maps are created from a given image data, C0.

2. The area for each contour map is computed and maps with areas larger than a predened maximum are removed. This step removes the water region around the ganglia and the inner part of the ganglia not containing cells.

3. The contour maps are then thresholded several times in order to separate isolated cells or cell clusters. The thresholding stops when repeating the algorithm will lead to unwanted cell elimination.

4. The cells within the clusters are further separated (Figure 25):

(a) 1s are assigned to pixels corresponding to cell regions and 0s to all the others. The 1s located on the cluster boundary are removed. (One pixel is considered as part of the boundary if connected with at least two 0 pixels.) (b) 1s and 0s are inverted.

(c) The boundary pixels are removed again.

(d) The 1s and 0s are inverted.

(e) Steps 4a-4d are repeated two or three times.

Two connected cells

Separated cells

Remove cell boundaries invert invert

Remove boundary of the red part 5. The cells detected in all the contour maps are combined. To avoid false detection one cell is considered "true" if it is detected in at least two maps.

This cell segmentation algorithm was implemented in Matlab.

CS in T2-weighted imaging: CS-RARE

In this section we will present results obtained using the CS-RARE pulse sequence.

18.1 The choice of undersampling ratio for generating undersampling patterns

By results from section 14.2, as seen in Figure 22, the DLA method performs better than the polynomial undersampling method. In addition, asking for an upper limit of 25% for the relative error we nd a maximum undersampling ratio of 0.5 which was therefore used for the rest of this study.

Sample preparation and data acquisition

All experiments were performed at 19 Neuronal tissue: Four Aplysia californica (National Resource for Aplysia, Miami, FL, USA) were used for this study. Three animals were used for generating the library necessary to optimize the undersampling trajectories, and one was used to acquire the fully encoded and CS encoded images. The animals were anaesthetized by injection of an isotonic magnesium chloride solution (MgCl 2 , 360 mM; HEPES, 10 mM; pH = 7.5).

The buccal and abdominal ganglia were resected and inserted into a 2.0 mm ID glass capillary lled with ASW and then slid inside the transceiver for imaging.

Signal to noise ratio and spatial resolution

The reconstructed MR image of an ASW phantom acquired with the newly modied CS-RARE sequence was compared to the fully sampled MR image acquired with the conventional RARE sequence (Fig. 26). The signal to noise ratios obtained, calculated by dividing the mean signal value from a water region to the standard deviation of the noise in an ROI outside the sample, were found 19.9 and 14.6 for the CS and fully encoded data sets, respectively. The CS data set presents higher SNR than the fully encoded acquisition due to the reduction of noise in the CS reconstructed image.

Specically, the standard deviation of the noise (measured in the blue ROI in Fig. 26 was found to be 165 and 120, respectively, for the two data sets, while the mean signal levels were similar (∼2400). SNR = 19.9 SNR = 14.6 To test the eect of CS undersampling on the spatial resolution we compared fully encoded and undersampled images of buccal and abdominal ganglia. For this particular comparison the undersampling was performed starting from the same fully sampled data set in order to avoid possible confounds such as coil instability or sample deterioration.

Signal intensity proles drew across the sample (Fig. 27) demonstrate that no spatial or intensity information is lost. This was further conrmed by the Pearson correlation coecients [START_REF] Neto | Image processing using Pearson's correlation coecient: Applications on autonomous robotics[END_REF] between the fully and CS encoded images, calculated within a region containing the ganglia and consisting of approximately 180 000 voxels, which were found to be 0.90 and 0.91 for the buccal and abdominal samples, respectively.

To complete the CS performance assessment the automatic cell segmentation algorithm described in the Methods section was applied in each slice of the 3D fully encoded and CS images. The segmentation produced similar results for CS and fully encoded images, with an identical number of cells detected for abdominal ganglia and one false positive for the CS image (out of 31 cells) of the buccal ganglia (Figure 28).

To conclude, the new acquisition schemes CS-RARE cuts back the experimental time by a factor of two (50%) while preserving the signal to noise ratio, spatial resolution, and image contrast. The CS-RARE image quality is assessed by comparing fully encoded and undersampled images of water phantoms and biological tissues. An automatic cell segmentation algorithm applied to 3D images of buccal and abdominal ganglia of Aplysia californica (25µm isotropic resolution) allowed us to further evaluate the performance of the CS-RARE acquisition. We nd that DLA based compressed sensing is applicable to imaging live neuronal tissues, allowing signicantly shorter acquisition times while providing the image quality necessary for identifying the majority of neurons. 

CS in T1-weighted imaging: CS-FLASH

The use of manganese ions (Mn2+) as an MRI contrast agent was introduced in studies of Mn2+ toxicity in anesthetized rats [START_REF] London | Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride[END_REF]. Manganese Enhanced Magnetic Resonance Imaging (MEMRI) works based on three main properties of Mn2+ (see more in [START_REF] Massaad | Manganese-enhanced magnetic resonance imaging (MEMRI)[END_REF]):

(1) it is a paramagnetic ion that shortens the T1 (spin lattice relaxation time constant) of tissues, where it accumulates and hence functions as an T1 contrast agent; (2) it is a calcium (Ca2+) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca2+ channels; and (3) once in the cells Mn2+ can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. Because of chronic exposure to manganese can lead to a toxic condition referred to as manganism, Mn2+ is not used as an MR contrast agent in humans.

High resolution MEMRI has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. CS techniques oer the opportunity to signicantly reduce the imaging time. Recent advances in the static magnetic eld strength of magnetic resonance scanners and in the radio-frequency (RF) detector designs has allowed magnetic resonance microscopy (MRM) to reach spatial resolutions suitable for functional imaging of single cells [START_REF] Jelescu | Highlighting manganese dynamics in the nervous system of aplysia californica using MEMRI at ultra-high eld[END_REF][START_REF] Radecki | Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica[END_REF][START_REF] Baxan | Microcoil-based MR phase imaging and manganese enhanced microscopy of glial tumor neurospheres with direct optical correlation[END_REF]. However, in order to reach the full potential of functional MRM it is necessary to reduce the currently long acquisition times required for obtaining high resolution images. The CS method has been previously utilized for the acceleration of T1 weighted acquisitions for knee cartilage quantication [START_REF] Pandit | Accelerated t1ρ acquisition for knee cartilage quantication using compressed sensing and data-driven parallel imaging: A feasibility study[END_REF] as well as for MEMRI [START_REF] Li | Fast cardiac t1 mapping in mice using a modelbased compressed sensing method[END_REF]. In case of the MEMRI study, CS with random k-space undersampling patterns was employed for fast cardiac T1 mapping in mice [START_REF] Li | Fast cardiac t1 mapping in mice using a modelbased compressed sensing method[END_REF], demonstrating the feasibility and performance of this approach. Both studies used random undersampling schemes in the high frequency domain while fully sampling the low frequency domain, which has been shown to reach a similar performance to that of the polynomial undersampling algorithms [START_REF] Li | Fast cardiac t1 mapping in mice using a modelbased compressed sensing method[END_REF]. In this section we present the implementation of DLA-CS for T1 weighted acquisitions in order to perform high-resolution quantitative functional MEMRI and we evaluate its performance.

Undersampling pattern generation

The undersampling pattern generation followed the description in section 14.1. Briey, the two phase encoding directions in a Cartesian 3D trajectory were undersampled using an acquisition pattern based on the diusion limited aggregation random growth model [START_REF] Witten | Diusion-Limited Aggregation, a Kinetic critical phenomenon[END_REF] with the k-space points in the resulting patterns always being restricted to be a subset of the fully sampled Cartesian k-space points. In this study, following the same procedure, acquisition patterns were generated for seven undersampling ratios ranging from 30% to 90% for a T1 weighted FLASH (Fast Low Angle Shot) acquisition.

For each undersampling ratio, 300 sets of undersampling patterns, each consisting of 100 candidates, were created. From each set, the one pattern (out of 100) with the lowest Point Spread Function was selected. Hence, 300 patterns were produced for each undersampling ratio, making a total of 300 × 7 = 2100 patterns. The 2100 patterns were applied to a library of six fully sampled T1 weighted images of Aplysia californica buccal ganglia. In order to compare the CS and fully sampled images, the RMSE between the voxels signal intensities of fully encoded image and the undersampled image were calculated. In order to compare the CS and fully sampled images, the RMSE were calculated (see equation ( 98)).For each undersampling ratio, the averaged RMSE over the six images in the library was computed. The DLA undersampling pattern with the lowest average RMSE was selected for each of the seven undersampling ratios (Table 2 ) and implemented in Paravision 5.1 starting from the standard FLASH pulse sequence. 2 The RMSE of each winning DLA pattern for the library data.

Examples of k-space undersampling patterns are shown in Figure 29. The k-space was undersampled along the two phase encoding directions and the pattern was repeated for every point in read direction.

Data acquisition

All MRI acquisitions were performed at 19 • C on the 17. Since the FOV size was not found to inuence the DLA performance, the two groups were pooled together.

Sample preparation

A total of fourteen Aplysia californica were used in this study. Images acquired on ganglia from six animals were used for generating the library necessary to optimize the DLA based CS trajectories. Six other animals were used for acquiring fully sampled data sets. Besides providing reference images, these data sets were retrospectively undersampled in order to determine the optimal undersampling ratio. Finally, two animals were used to acquire both fully encoded and CS images. These data were also retrospectively undersampled. For all experiments the animals were food deprived for 48h prior to the beginning of the experiment in order to increase their food seeking behavior and maximize the intracellular Mn2+ accumulation as described previously [START_REF] Radecki | Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica[END_REF]. On the day of the experiment, the animals were injected with 100 mM MnCl2 solution (500µl per 100g body weight; NaCl 345 mM, KCl 10mM, MgCl2 25mM, MnCl2 100mM, pH = 7.5) and were left in the aquarium for 45 minutes with unrestricted access to food (seaweed). The animals were then anesthetized with isotonic MgCl2 solution. Buccal ganglia were resected and inserted in 1.5 mm ID borosilicate glass capillaries containing ASW and then slid inside the transceiver for MRI. The Aplysia buccal ganglia contain large neurons, some of which are up to 200 µm in diameter [START_REF] Gardner | Bilateral symmetry and interneuronal organization in the buccal ganglia of aplysia[END_REF][START_REF] Gardner | Diphasic postsynaptic potential: A chemical synapse capable of mediating conjoint excitation and inhibition[END_REF] and can therefore be resolved with the spatial resolution employed here.

Image analysis

In order to evaluate the extent of resolution loss between the fully encoded and under- The signal intensity quantication was performed by normalization against the water signal. To correct for possible RF inhomogeneities, the images were normalized in a position-dependent manner: the signal intensity of each voxel in the transverse plane (perpendicular to the longitudinal axis of the receiver coil) was normalized against the mean signal intensity of all voxels corresponding to ASW in this plane [START_REF] Radecki | Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica[END_REF].

Results

Examples of fully encoded and retrospectively DLA-CS undersampled T1 weighted images of the buccal ganglia are shown in Figure 31. In a rst step we estimated the performance of the DLA-CS approach for seven dierent undersampling ratios both in terms of image resolution (characterized by PCC expressing relative resolution loss between the two image sets) and relative signal intensity error (Figure 32). As can be seen in Figure 32a, the PCC between the CS and fully encoded images for undersampling ratios higher than 50% drops to values below 0.8, generally considered as the threshold for a strong correlation [START_REF] Mukaka | Statistics corner: A guide to appropriate use of correlation coefcient in medical research[END_REF]. We observe an increase in PCC when averaging the signal over two repetitions. The relative signal intensity error was calculated according to: where S mean and S mean are average signal intensities, for a given ROI, in the nonnormalized fully encoded images and CS images retrospectively undersampled from the same raw data set, respectively. Measurements were performed in water (water ROI) and neuron bodies (cells ROI). For the latter the signal intensities were measured in the ve biggest cells (B1, B2, B3, B6 and B9) and averaged. The relative error between the average signal intensities of fully encoded and CS images, for all the undersampling ratios considered, are displayed in Figure 32b. We notice that this error is inferior to 6% for all undersampling ratios considered. However, for undersampling ratios larger than 60% the error corresponding to the cells ROI and the water ROIs diverge, which could introduce a bias in the signal intensity quantication. The dierent behavior of the signal intensity error in water versus cell bodies at large undersampling ratios is most likely due to the loss in spatial resolution (increased blurring) as indicated by the PCC results. Surprisingly, the signal intensity error did not show SNR dependence (no dierence between one and two repetitions). However, not only does the standard deviation of the error for the cell ROIs increase with the undersampling ratio (Figure 32b) but we also found it to be signicantly higher for one repetition when compared to two repetitions (see Table 3). Specically, a student t-test showed a statistical signicance (p = 0.0005) while for the water ROI no dierence was found (p = 0.26).

SI di = 100 × S mean -S mean S mean , (102) 
Based on the results presented above we chose an undersampling of 50% (determined by signal intensity error divergence and above-threshold PCC value) for our next experiments which aimed at evaluating the performance of DLA-CS acquisitions for single neuron signal intensity quantication. The dierence in the normalized signal intensity 

Conclusion and discussion

We introduced a new way of generating CS undersampling trajectories based on the DLA pattern and applied it to the undersampling of RARE and FLASH encoding acquisition schemes. Our results demonstrate that the DLA pattern performs better than the standard polynomial pattern for undersampling superior to 25%. In addition, we show that when applied to imaging live neuronal tissue the proposed CS acquisitions maintain the spatial resolution and contrast to noise ratio necessary to the identication of the majority of neurons within Aplysia ganglia while reducing the acquisition time to 50%. For the RARE we applied the DLA undersampling for an acceleration factor 4, however, the implementation to acquisitions with dierent acceleration factors, or without acceleration for species with short T 2 relaxation times, is straightforward. Moreover, this undersampling is not limited to RARE acquisitions and can be easily extended to other types of sequences.

The performance of the DLA-CS FLASH acquisitions was also evaluated at various undersampling ratios. We found an undersampling ratio of 50% acceptable both in terms of image resolution and signal intensity quantication. Regarding single neuron signal intensity quantication we found, on average, a 1.37% percentage error between the fully sampled and prospectively undersampled data. This error was observed to be higher than the error measured using retrospective undersampling of the fully encoded data, which was found to be 0.50%. The dierence between the two undersampling scenarios can be due to experimental errors such as hardware instability, subtle changes in the sample position in the B 0 eld (resulting from vibrations associated with the strong encoding gradients), or slight sample modication.

It should be also noted that one of the reasons the retrospective CS outperforms prospective CS is that the retrospective datasets share the noise realization with the full encoded dataset. When evaluating the Pearson Correlation Coecient between the fully encoded and the undersampled images we notice that the performance of the DLA-CS technique is inuenced by the image signal to noise ratio, in agreement with earlier studies [START_REF] Prieto | Accelerating three-dimensional molecular cardiovascular MR imaging using compressed sensing[END_REF], suggesting that higher accelerations are possible for higher SNR data. The spatial resolution employed in this study was 25 µm isotropic. The impact of using DLA-CS approach at dierent spatial resolutions will likely show strong SNR dependence: decreasing the resolution will result in higher SNR, therefore allowing for greater accelerations and vice versa [START_REF] Li | Fast cardiac t1 mapping in mice using a modelbased compressed sensing method[END_REF].

In conclusion, the results presented here suggest that DLA pattern is a promising alternative to the standard polynomial CS undersampling pattern and may be benecial to magnetic resonance microscopy studies by reducing the notoriously long acquisitions to more reasonable times, thus enabling the expansion of the technique to the study of living specimens and eventually to dynamic investigations. Even though the acquisitions times remain long when compared to fast techniques, such as EPI or spiral imaging, the DLA-CS appears to be a promising approach at high magnetic elds and high spatial resolutions, where single shot acquisitions are not feasible. Moreover, the DLA-CS is not limited to magnetic resonance microscopy and could be also applied to preclinical and clinical studies, where shortening the acquisition time is equally desirable.

Introduction

The nerve cells of the Aplysia are much larger than mammalian neurons. Using the Aplysia ganglia to study the relationship between the cellular structure and the diusion MRI signal can potentially shed light on this relationship for more complex organisms. We measured the dMRI signal of chemically-xed abdominal ganglia of the Aplysia at several diusion times. At the diusion times measured, the dMRI signal is mono-exponential and can be accurately represented by the parameter ADC.

We analyzed the diusion time-dependent ADC using a well-known analytical formula that is valid in the short diusion time regime. We performed this analysis for the largest sized cells of the ganglia to satisfy the short diusion time requirement. We noted that a naive application of the short time formula is not adequate because of the presence of the cell nucleus, making the eective cell size much smaller than the actual cell size.

We went on to perform numerical simulation of the ADC for several cell types of the abdominal ganglia. To create the simulation geometries, for the largest cells, we segmented a high resolution T2-weighted images and incorporated a manually generated nucleus. For small cells and nerve cells, we created spherical and cylindrical geometrical domains that are consistent with known information about the cellular structures from the literature. Using the library of simulation results, we tted for the intrinsic diusivities of the small cells and the nerve cells.

The results presented here are used for the preparation of a manuscript which we plan to submit.

Introduction

To adequately study diusion time dependence of the dMRI signal and discover if the additional information the measurements at multiple diusion times provides can give worthwhile information about the tissue microstructure, we image the Aplysia abdominal ganglia at high resolution and multiple diusion times. Given that this requires very long experimental times, we decided not to image living Aplysia neurons, which deteriorates rather quickly. Instead, we used chemically-xed nervous tissues which are well suited for high resolution, time-intensive MRI acquisitions. However, one should keep in mind that the aldehyde xatives used may signicantly alter tissue MRI properties.

Shepherd and colleagues reported in [START_REF] Shepherd | Aldehyde xative solutions alter the water relaxation and diusion properties of nervous tissue[END_REF] that the rat cortical slices xed by immersion in 4% formaldehyde solution demonstrated 21% and 81% reductions in tissue T 1 and T 2 , respectively. By washing xed tissues with phosphate-buered saline (PBS) to remove free formaldehyde solution T 2 can be recovered. In addition, the membrane permeability was increased after xation with 4% formaldehyde [START_REF] Shepherd | Aldehyde xative solutions alter the water relaxation and diusion properties of nervous tissue[END_REF]. In this study, we followed the protocol in reference [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF] and we xed abdominal ganglia in 4% formaldehyde.

In dMRI, the incoherent motion of water molecules during the diusion encoding time causes a signal attenuation from which the ADC can be calculated [START_REF] Hahn | Spin echoes[END_REF][START_REF] Stejskal | Spin Diusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF][START_REF] Bihan | MR imaging of intravoxel incoherent motions: application to diusion and perfusion in neurologic disorders[END_REF].

For unrestricted diusion , the mean squared displacements of molecules is given by x = √ 2dD 0 t [START_REF] Berg | Random Walks in Biology[END_REF][START_REF] Zhong | Studies of restricted diusion in heterogeneous media containing variations in susceptibility[END_REF] where d = 1, 2, 3 for one, two and three dimension, D 0 is the intrinsic diusion coecient, and t is the diusion time.

In biological tissue, the diusion is usually hindered or restricted (e.g. by cell mem-branes) and the mean squared displacement is smaller than in the case of unrestricted diusion. Intuitively, more hinderance or restriction will occur for more molecules as the diusion time increases, so we expect the experimentally determined ADC will decrease with increasing diusion time [START_REF] Stejskal | Spin Diusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF][START_REF] Tanner | Restricted Self-Diusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method[END_REF][START_REF] Grebenkov | NMR survey of reected Brownian motion[END_REF]. As a result, the extent of the ADC decrease potentially can be used to gather information about the tissue micro-structure, for example, by acquiring several diusion weighted images with dierent diusion times and tting the data to a model [START_REF] Dietrich | Imaging cell size and permeability in biological tissue using the diusion-time dependence of the apparent diusion coecient[END_REF][START_REF] Weber | Measurement of apparent cell radii using a multiple wave vector diusion experiment[END_REF]. Numerous biophysical models have been proposed, usually subdividing the tissue into compartments described by spheres, ellipsoids, cylinders, and the extra-cellular space [START_REF] Assaf | Axcaliber: A method for measuring axon diameter distribution from diusion MRI[END_REF][START_REF] Zhang | Axon diameter mapping in the presence of orientation dispersion with diusion MRI[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diusion MRI[END_REF][START_REF] Fieremans | White matter characterization with diusional kurtosis imaging[END_REF][START_REF] Panagiotaki | Compartment models of the diusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Jespersen | Modeling dendrite density from magnetic resonance diusion measurements[END_REF]. However, it is dicult to connect the geometrical parameters contained in these models to the ground truth values due to the complexity of brain tissue.

In this work, we use much larger neural cells of the Aplysia californica as the animal model. The advantages of this animal model is that the cellular structure is relatively simple, some of the largest cells even can be visualized in the T2w images we acquire along with the diusion images. This animal model exhibits simpler and more direct links between the geometrical structure, intrinsic diusivity in the cell components, and the ADC, making this a good model problem and eases a lot of the experimental and modeling challenges. For example, the large size of the biggest Aplysia neural cells can be used to test short time diusion models while keeping the PGSE [START_REF] Stejskal | Spin Diusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF] sequence, instead of resorting to more specialized sequences such as Oscillating-Gradient Spin Echo (OGSE) [START_REF] Does | Oscillating gradient measurements of water diusion in normal and globally ischemic rat brain[END_REF] sequences. 22 Materials and methods

Sample preparation

Six Aplysia californica (National Resource for Aplysia, Miami, FL, USA) were used in this study. The animals were anesthetized by injection of an isotonic magnesium chloride solution (MgCl 2 , 360 mM; HEPES, 10 mM; pH = 7.5). All chemicals were purchased from Sigma-Aldrich (Saint Luis, MO, USA). The abdominal ganglion was resected and xed by PFA 4% by immersion for 10 minutes and then washed three times in PBS pH = 7.4. For imaging, the abdominal ganglion was inserted into a 2.0 mm ID glass capillary lled with uorinert and then slid inside the transceiver.

Image acquisition

All experiments were performed at 19 • C on a 17.2 T system (Bruker BioSpin, Ettlingen, Germany) equipped with 1.0 T/m gradients. RF transceivers were home-built microcoils with inner diameters of 2.4 mm, the design of which has been described in [START_REF] Jelescu | Highlighting manganese dynamics in the nervous system of aplysia californica using MEMRI at ultra-high eld[END_REF][START_REF] Radecki | Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica[END_REF].

Typically, a T2 weighted image and ve to seven diusion weighted images were acquired for each sample. The T2 weighted image was acquired with the following parameters TR = 1500 ms, TE = 20 ms, acceleration factor A F = 8, isotropic spatial resolution 26 µm, matrix size of 400 × 88 × 88, 8 averages for the a acquisition time of 3 hours 14 minutes. The acquisition parameters for the diusion-weighted images (DP-FISP pulse sequence [START_REF] Lu | Diusion-prepared fast imaging with steady-state free precession (DP-FISP): A rapid diusion mri technique at 7 T[END_REF]) were TE/TR=1.63/1000 ms, 2 averages, isotropic spatial resolution 52µm, 3 directions (x, y, z), four samples acquired with seven diusion encoding times (δ = 2.5 ms, ∆ = [5, 7.5, 10, 12, 15, 20, 25] ms), one sample acquired with six diusion encoding times (δ = 2.5 ms, ∆ = [START_REF] Prince | Medical Imaging Signals and Systems[END_REF]10,12,[START_REF] Schröder | vivo NMR Imaging: Methods and Protocols[END_REF][START_REF] Balu | Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically signicant atherosclerosis[END_REF][START_REF] Frahm | Rapid three-dimensional MR imaging using the FLASH technique[END_REF] ms) and one sample acquired with ve diusion encoding times (δ = 2.5 ms, ∆ = [START_REF] Prince | Medical Imaging Signals and Systems[END_REF]10,[START_REF] Schröder | vivo NMR Imaging: Methods and Protocols[END_REF][START_REF] Balu | Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically signicant atherosclerosis[END_REF][START_REF] Frahm | Rapid three-dimensional MR imaging using the FLASH technique[END_REF] 

Image analysis

The T2w images were manually co-registered with the diusion-weighted images. We are interested in studying three types of cells in the abdominal ganglia: 1) large cell neurons; 2) bag cell neurons; 3) nerves. For each of the six imaged ganglia, several three dimensional ROIs of these three types of cells were manually segmented slice by slice from the T2w image. We show in Figure 34 the T2w image and the physical locations of 5 ROIs from ganglion number 2. In total, we have selected for further analysis 22

ROIs of large cell neurons; 11 ROIs of bag cell neurons; 13 ROIs of nerves.

1) Large cell neurons:

For large cell neurons, the ROIs were manually segmented so that each ROI contains only the voxels associated with one large cell neuron. There are many large cell neurons in each abdominal ganglia, we usually, however, select the cells which are clearly visualized in T2w image based on the signal intensity, contrast, and the position within the ganglion (see diagram in Figure 12). In Table 4 we listed the information about the ROIs, including the number of voxels in each ROI. To dene an eective size for each large cell neuron, we computed an eective radius R e in the following way. Assuming a spherical shape and knowing the total volume, we dene

R e = 3 ∆x × ∆y × ∆z × 3 × (#voxels) 4π ,
where ∆x × ∆y × ∆z = 26µm × 26µm × 26µm is the resolution of T2w images.

2) Bag cell neurons:

For bag cell neurons, we made sure to draw the ROI within the bag cell region, but we did not try to cover all the bag cell neurons inside the ROI (Figure 34). There are two bag cell neurons in each abdominal ganglia (see diagram in Figure 12), one on the left side (Bag L) and one on the right side (Bag R). However, often not both are clearly visible in the T2w image and we only included which one visible in the T2w image in the ROI. There are 11 ROIs of the bag cell neurons (see Table 5) selected for analysis.

3) Nerve -A group of axons:

There are 13 ROIs of the nerve (see Table 6) selected for analysis. For each nerve, the ROI of the nerve was selected where the nerve is approximately straight. The nerve's ROI direction (parallel direction) shown in Table 6 was estimated by selecting two points inside the nerve's ROI and calculating the unit vector direction via these two points.

The dMRI signals corresponding to the ROIs were processed to compute the experimental ADC using a linear t of the log of the signal versus the b-value. For the nerve, the diusion is anisotropic due to the cylindrical shape of the axons. Because in this study only three diusion directions were measured, it is not possible to compute the eective diusion tensor for the nerve regions. Besides, the nerve ROI direction estimated above could be slightly o from the real direction due to errors in the visualization. Even for large cell neurons and bag cell neurons, there might be, although less pronounced, some anisotropy due to the shape of the cells as well as the shape and position of the nucleus. For these reasons we decided to average the ADC's in the three directions x, y, and z to obtain the mean diusivity, MD [START_REF] Le Bihan | Diusion tensor imaging: Concepts and applications[END_REF][START_REF] Mori | Diusion Tensor Imaging (DTI)[END_REF][START_REF] Basser | MR diusion tensor spectroscopy and imaging[END_REF][START_REF] Kingsley | Introduction to diusion tensor imaging mathematics: Part I. tensors, rotations, and eigenvectors[END_REF]:

MD = ADC x + ADC y + ADC z 3 .

Simulations

In diusion MRI, the complex transverse water proton magnetization M (x, t) is a function of position x and time t, and depends on the diusion-encoding gradient magnetic eld G(t) = gf (t). The amplitude and direction information of the diusion-encoding gradient is contained in the vector g ∈ R 3 , the time prole of the eective gradient magnetic eld is f (t). For the PGSE sequence, the eective time prole is dened by:

f (t) =      1 0 < t ≤ δ, -1 ∆ < t ≤ ∆ + δ, 0 otherwise,
where δ is the duration of the pulses and ∆ the delay between the start of the pulses. The signal is measured at the echo time TE, 2δ ≤ TE < 2∆. In this study, we use δ = 2.5 ms and ∆ = [5, 7.5, 10, 12, 15, 20, 25] ms. 

∂ ∂t M (x, t) = -ıγf (t)g • xM (x, t) + ∇ • D l ∇M (x, t) , x ∈ ∪Ω l , ( 103 
)
where ı is the imaginary unit, D l is the intrinsic diusion coecient in the geometrical compartment Ω l , and γ is the gyromagnetic ratio of the water proton. We solve the above equation subject to impermeable boundary conditions on ∂Ω l :

D l ∇M (x, t) • ν = 0, x ∈ ∂Ω l , ( 104 
)
where ν is the outward normal vector. We impose the initial condition

M (x, 0) = 1, x ∈ Ω l , (105) 
meaning uniform spin density in all Ω l . There are many numerical methods can be used to solving equations ( 103)-( 105) such as spatial nite elements method coupled to the adaptive explicit Runge-Kutta-Chebychev time-stepping method under the assumption of periodic for boundary domain condition [START_REF] Nguyen | A nite elements method to solve the blochtorrey equation applied to diusion magnetic resonance imaging[END_REF]; a parametric nite element method for arbitrary domains [START_REF] Beltrachini | A parametric nite element solution of the generalised blochtorrey equation for arbitrary domains[END_REF], etc. In this thesis, we use the nite volume method coupled to the explicit Runge-Kutta-Chebychev time-stepping method for solving equations ( 103)-( 105). This method is adapted from [START_REF] Li | Numerical simulation of diffusion MRI signals using an adaptive time-stepping method[END_REF].

The diusion MRI signal is the integral of magnetization at TE:

S = l x∈Ω l M (x, TE)dx. ( 106 
)
Under the assumption that there is no exchange (or impermeable boundaries) between the compartments, the total signal, S total , can be determined by the summation of the signal weighted by the volume fraction of each compartment [START_REF] Jespersen | Modeling dendrite density from magnetic resonance diusion measurements[END_REF]:

S total = l V l S l , (107) 
where V l and S l is the volume fraction and the signal of compartment Ω l , respectively. The b-value [START_REF] Bihan | MR imaging of intravoxel incoherent motions: application to diusion and perfusion in neurologic disorders[END_REF], in case of the PGSE sequence is b(g, δ, ∆) = γ 2 g 2 δ 2 (∆ -δ/3).

The apparent diusion coecient (ADC ) is

ADC = - ∂ ∂b log S(b) S(0) b=0 . ( 108 
)
Note that, during this thesis, the relationship between the logarithm of dMRI signals and b-values (in the observed range of b-value from 0 to 700 s/mm 2 ) is a linear relationship.

So the equation ( 108) can be rewritten by select b 1 = 10 s/mm 2 :

ADC = - log S(b 1 ) -log S(b = 0) b 1 .
Moreover, in order to avoid the numerical truncated error, the b 1 value should not be so small. Due to these reasons, the ADC obtained from the numerically simulated dMRI signal was computed by

ADC simul = - log S(b = 10) -log S(b = 0) 10 , (109) 
and compared to the ADC values found from the experimental data.

Following we will describe the simulations performed for the three geometry domains considered: large cell neurons, bag cell neurons, and nerve.

Large cell neurons

To create a computational domain to perform numerical simulations of Large cell neurons, we segmented the cell outline of only one particular large cell neuron. The cell outline geometry (denoted by Ω cell ) used for all later simulations of large cell neurons was segmented from the anatomical T2w image of large cell neuron ROI#7 (Aplysia number 2) (see Table 4, Figure 35a). We note Ω cell is a slightly elongated ellipsoid.

Inside Ω cell , an irregularly shaped nucleus, Ω n , was manually generated (approximately 25-30% volume fraction) (Figure 35b). The shape of the nucleus was inspired by the high resolution images in [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF]. Even though not visible in the T2w images, there may be a small volume (up to 5%) of satellite cells (very small cells, 6µm maximum diameter, without nucleus [START_REF] Conn | The bag cell neurons of aplysia. a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors[END_REF][START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF][START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF]) surrounding the single cell neurons (Figure 35f ). Since the volume of the satellite cells are small and to simplify the study, we did not include the satellite cells in the simulations.

The generated geometries Ω cell and Ω cell are considered our reference geometries. To consider the eect of the size of the cells on the ADC, we simply scaled the reference geometries so that Ω cell has the desired total volume. In particular, the shape in Figure 35c was scaled so that the eective cell diameter ranging from 160 µm to µm to 420 µm (e.g Figure 35d-e) for the numerical simulations that follow.

The simulated dMRI signal for large cell neurons can be generated by solving the Bloch-Torrey equations in Ω cell with two compartments: the nucleus Ω n and the cytoplasm Ω c = Ω cell -Ω n . The intrinsic diusivities in the cytoplasm and nucleus, Dc and Dn, respectively, were chosen from a range described in the literature [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF]. The total signal in a large cell neuron is:

S cell = (1 -v n )S c + v n S n , (110) 
where v n is the volume fraction of the nucleus, S c and S n are the signals in the cytoplasm and the nucleus, respectively.

Bag cell neurons

In order to match the dMRI signal of the bag cell neurons, the small cells were modeled as small spheres, Ω cell_small , with a smaller concentric spherical nucleus, Ω n_small , (approximately 25% volume fraction).

The cytoplasm compartment is Ω c_small = Ω cell_small -Ω n_small . As all Aplysia used in this study are approximately the same age (late juvenile period), therefore we modeled the small cells as spheres with diameters that varied between 20 and 60 µm, following a normal distribution with mean = 46 µm and std = 6 (see Figure 36 ) (equivalent with cell radius varied between 10 and 30 µm, following a normal distribution with mean = 23 µm and std = 3). The mean and std here were chosen so that 99% of cell diameter is between 20 and 60 µm. 

S bag = i v(d i )S cell (d i ),
where v(d i ) is the fraction of cells with diameter d i determined by the normal distribution with mean = 23 and std = 3, where d i from 20 to 60 µm. Note that the signal in each small cell S cell (d i ) is the total signal of the cytoplasm and the nucleus compartments weighted by volume fraction of the nucleus as described in equation [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. The intrinsic diusivities in the cytoplasm and nucleus, Dc and Dn, respectively, were chosen from a range described in the literature [START_REF] Lee | Investigation of the subcellular architecture of L7 neurons of aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns[END_REF], and are the same for all cell diameter d i .

Nerve: group of axons

We model the nerve by combining axons (cylindrical shapes) of dierent diameters, and again, for simplicity, without the extra-cellular space. The groups of axons range from small (modeled by cylindrical shapes as small as 1 µm in diameter) to large (modeled by cylindrical shapes as large as 25 µm in diameter), consistent with the literature [START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF]. In Table 7 shown the volume fraction of each axon type in dierent buccal nerves mentioned previously in Table 1 with particular choices of diameters in the range mentioned in Section 8: 2R I = 26 µm, 2R II = 18 µm, 2R III = 6 µm, and 2R IV = 1 µm for axon type I, II, III, and IV, respectively. For each nerve, the volume fraction of each axon type V(R i ), i=I, II, III, IV, can be calculated according to:

V(R i ) = N (i) × π × R 2 (i) i N (i) × π × R 2 (i) , (111) 
where N (i) is the number of axons of type i=I, II, III, IV, and R(i) is the choice of radius in the range mentioned in the section 8. 7 The distribution of volume fraction for each axon type in dierent buccal nerves (note that we assumed the same distribution for the abdominal ganglion) estimated from the literature [START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF] with particular choice of diameter in range mentioned before:

Nerve

2R I = 26 µm, 2R II = 18 µm, 2R III = 6 µm, and 2R IV = 1 µm for axon type I, II, III, and IV, respectively. See more in Table 1 regarding the distribution of number of axons of each type within each nerve.

The numerical simulations were performed in one direction perpendicular to the nerve. The simulations were performed in 2D, there is no need to simulate two orthogonal directions perpendicular to the nerve due to the circular shape of the axons. We solved the Bloch-Torrey equation in single disks with the diameter determined by four type of axons (I, II, III, IV). The simulated dMRI signal in the perpendicular direction to the nerve, S perp , is determined after weighing by the diameter distribution:

S perp = i V (R i )S 2D (R i ),
where i = I, II, III, IV four types of axons, S 2D (R i ) is the signal in perpendicular direction of the axons with diameter 2R i (disk radius R i ).

The ADC in the perpendicular direction to the nerve (the transverse ADC), ADC T , is linearly tted from log S perp (b) and the b-value. Knowing that the ADC in the direction parallel to the nerve is close to unrestricted we make the approximation that the parallel ADC is equal to the intrinsic diusivity inside the axons Da. Hence the simulated mean diusivity is obtained using the following formula:

MD = Da + 2 × ADC T 3 , (112) 
23 Results

Experimental time-dependent ADC

The experimental dMRI signals acquired for multiple diusion times on the large cell neurons ROIs, the bag cell neurons ROI and on the nerve ROIs are shown in Figure 37, Figure 38 and Figure 39, respectively. Within the range of b-values where the signals are acquired, from 70 to 700 s/mm 2 , the logarithm of the signal acquired showed a clear linear dependence with b-value, meaning that the ADC is sucient to describe the signal in this range. Higher order eects such as a Kurtosis [START_REF] Chabert | Diusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence[END_REF][START_REF] Frohlich | Eect of impermeable boundaries on diusion-attenuated MR signal[END_REF][START_REF] Jensen | Diusional kurtosis imaging: The quantication of non-gaussian water diusion by means of magnetic resonance imaging[END_REF][START_REF] Jensen | MRI quantication of non-Gaussian water diffusion by kurtosis analysis[END_REF] term need not to be considered. Moreover, the signals in the x, y, and z directions do 8.

We found that, when the diusion time is increased from δ = 2.5 ms, ∆ = 5 ms to δ = 2.5 ms, ∆ = 25 ms, the average experimental ADC drops by 9.45% in large cell neurons; by 20.8% in bag cell neurons; and the MD in nerves drops by [START_REF] Körner | Fourier Analysis[END_REF] 

Estimating cell size using short time ADC formula

Assuming a free diusivity of 2 µm 2 /ms, the average diusion displacement is between 7.7 and 17.3 µm for the diusion times between 5 and 25 ms. Thus from the point of view of diusing water molecules, their diusion displacement is large with respect to some cell features in the bag cell neurons and the nerve but not with respect to the large cell neurons. So, from a theoretical point of view we can use the mathematical models for the ADC in the short diusion time regime proposed by Mitra et al. [START_REF] Mitra | Diusion propagator as a probe of the structure of porous media[END_REF][START_REF] Mitra | Short-time behavior of the diusion coecient as a geometrical probe of porous media[END_REF] (equation ( 63)) and the updated version proposed by Schiavi et al. [START_REF] Schiavi | Correcting the short time ADC formula to account for nite pulses[END_REF] (equation ( 64)) and apply them to large cell neurons to estimate the surface to volume ratio, which when assuming spherical cell shape, can give the estimated cell diameter.

We proceed in the following way. From the experimental ADC, by tting ADC = A √ ∆ + B (corresponding with formula ( 63)) or ADC = AC δ,∆ + B (corresponding with formula ( 64)), we can nd the coecients A and B. By comparing with the short time ADC formula for S V from both equation ( 63) and ( 64), we found that A

= -D 0 4 √ D 0 3 √ π 1 R
, and B = D 0 , implying that,

R est = -D 0 4 √ D 0 3 √ π 1 A . (113) 
We denote by R est the estimated cell radius determined by applying the mathematical formula to the experimental ADC. The R est will be compared to the visually obtained eective radius R ef f of the 22 large cell ROIs. The results are shown in 9.

In Figure 41, we plot the eective radius R ef f against the estimated radius R est from applying the mathematical ADC model. There is a positive correlation between R e of the 22 large cell neuron ROIs and the reference value R est . We show the positive correlation between R est and the tting quantity -A in Figure 41 as well.

However, it is clear that cell size is severely underestimated, R est is on average only 25% of R e . This suggests that a one compartment model is not sucient to model diusion in large cell neurons of the Aplysia. The eective radius (R ef f ) of each cell were estimated from T2w image. The cell radius estimated (R est ) by using the equation (113). The error between tting and data are shown in Err columns. There is not much dierence on cell radius estimated between two prediction models.

Simulation of a two compartments model of large cell neurons

In this part, we simulate a two compartments model of large cell neurons, namely, a nucleus and surrounding cytoplasm, with a limited exchange between them. First, we generated four computational domains based on three types of nucleus shapes and the position of the nucleus inside the cell, as shown in Figure 42. As shown in Figure 43 the slope A(R) depends more on the nucleus shape than on the position of the nucleus inside the cell neurons. Moreover, a more irregular shape of the nucleus gives a larger value of A(R), meaning that the drop of ADC (when increasing ∆ from 5 to 15 ms) is much larger in the case of an irregular shape of the nucleus (Domain 1,2,3) than in a (almost) spherical shape of the nucleus (Domain 4). On the other hand, the coecient B(R) seem not to depend on the radius of the cells and the shape of the nucleus as shown in Figure 43b. The freedom coecient B(R) represents the eective intrinsic diusivity in the cells (see Equation ( 63)). As shown in Figure 44a, the slope A(R) also depends on the volume fraction of the nucleus, VF N . The nucleus shape in domain 5 (Figure 44b) is similar with the nucleus shape in domain 1 (Figure 42a), the volume fraction, however, of the nucleus is around 29% for domain 5 and is around 25% for domain 1. A larger nucleus volume fraction results in a larger drop in the ADC for a given cell size.

Therefore, we can predict that with detailed information regarding the size and shape of the nucleus on can obtain more precise results by combining simulations and experimentation in the Aplysia.

Simulations of the ADC in bag cell neurons and nerves

Because it is not possible to visualize the individual neurons of the bag cell ROIs or the axons in the nerves from the T2w images, we relied on information about the cell structures from the literature to construct the simulation domains, as described in the previous sections. By comparing the time-dependent simulated ADC with the experimental ADC, we extracted the parameters Dc, Dn for the cytoplasm and the nucleus intrinsic diusivities, respectively, and Da for the axons intrinsic diusivity. 

Bag cell neurons:

We simulated the ADC for Dc varied between 0.50 and 2.00 µm 2 /ms and for Dn varied between 1.25 and 2.00 µm 2 /ms. Let us denote

ErrFit = ∆ |ADC t (∆) -ADC(∆)| 2 ∆ |ADC(∆)| 2
, the error when tting the experimental ADC values for each ROI of bag cell neurons, where ADC t = A f it √ ∆ + B f it . The simulated ADC values, ADC simul (Dc, Dn), are compared with the experimental ADC values to extract the information of (Dc, Dn) which will satisfy the following condition: Nerve -group of axons:

∆ |ADC simul (Dc, Dn, ∆) -ADC(∆)| 2 |ADC(∆)| 2 ≤ 2 × ErrFit. ( 114 
The simulation was ran over the range of Da = [0.85 : 0.05 : 2.00] µm 2 /ms for six dierent distribution of the axons (corresponding with six nerves mentioned before).

As shown in Table 1 the number of axons varies, the maximum error of 5% between simulated mean diusivities, MD simul (Da), and experimental mean diusivity, MD, will be used to select the acceptable solutions instead of using 2 × ErrFit as an upper limit (like for bag cell neurons). It means that, for each nerve distribution, we nd all Da such that: The best ts between the simulated mean diusivities and those from experimental data are shown in Figure 46. In Table 10, we shown the range of intrinsic diusivities which yields good tting results for particular types of the nerves. In Figure 46 10.

∆ |MD simul (Da, ∆) -MD(∆)| 2 ∆ |MD(∆)| 2 ≤ 0.05. (115) 

Conclusion

We have acquired and analyzed the time-dependent dMRI data in the Aplysia neuronal network for large cell neurons, bag cell neurons, and nerves. We found that given the large drop of the experimental ADC with increasing diusion time in the large cell neurons, it is not sucient to approximate these cells by a one compartment model.

Using the one compartment model and tting with the short time ADC formula, we found a serious under-estimation of the cell size. In the bag cell neurons, we found that good ADC t can be obtained by a range of solutions of the intrinsic diusivities in the nucleus and the cytoplasm, Dn and Dc, respectively. And the solutions all exhibit a certain linear relationship between Dn and Dc. Base on the simulation results we obtained for large cells, we predict that an irregular nucleus shape of the cells in bag cell neurons will also inuence the range of intrinsic diusivities (Dc, Dn) found.

In the nerves, we found that a range of solutions for the intrinsic diusivity of the axons, Da, depends signicantly on the axon diameter distribution we chose. Further work combining simulations and experimentation in the Aplysia is needed to make the relationship between the geometry and the dMRI signal more precise. the nerve that the extracted intrinsic diusivity of axons depends signicantly on the axons diameter distribution we chose. In addition, by combining dMRI experiment, the numerical simulation and the histology imaging it will be possible to extract the intrinsic diusivity in the nucleus, the cytoplasm and the axons components. Such acquisitions are notoriously time consuming as data for several b values and at least six dierent encoding directions has to be collected. For this reason in vivo acquisitions are usually performed using EPI techniques which have, however, the disadvantages of presenting limited spatial resolution, high sensitivity to eld inhomogeneity, and low signal-to-noise ratio. Our plan is to use DLA-CS to under-sample other types of acquisitions such as diusion prepared FISP (DP-FISP). By using dierent undersampling patterns for dierent b values we anticipate to be able to obtain much higher acceleration factors than those reported in our previous studies, and render these acquisitions applicable to in vivo studies. In addition, since most modern MR systems incorporate multiple receivers, the combination of CS and parallel imaging to shorten even more the acquisition time is foreseeable. While parallel imaging can be dicult to implement in MR microscopy due to the limited space available for placing multiple coil elements, it should be feasible for preclinical and clinical scanners. The reconstruction of combined CS and parallel imaging should be straightforward.

The successful implementation of this DLA-CS-DTI acquisition strategy will allow in vivo DTI investigations with high spatial resolution and free of susceptibility artifacts at high magnetic elds.

Future work on optimizing the CS image reconstruction and dMRI simulation codes

There are two paradigms for parallel computing based on CPU (Central Processor Unit)

and GPU (Graphics Processing Unit). Based on CPU, we can use OpenMP (Open Multi-Processing) for multi-threaded and shared memory machines [START_REF]OpenMP[END_REF] for acceleration. OpenMP consists of a set of compiler directives, library routines and environment variables that inuence run-time behavior [START_REF] Chapman | Using OpenMP: Portable Shared Memory Parallel Programming[END_REF]. The advantage of OpenMP is that is free-usable and portable. The performance of OpenMP parallel programing depends on the number of core existent in the computer. However, it is not the limitation because nowadays almost all computers are multi-core. Another strategy is to use GPU-accelerated computing. The advantage of this approach is using GPU together with a CPU for processing. As known, the GPU computing performs faster than CPU computing due to the fact that the GPU has a massively parallel architecture consisting of thousands of smaller, more ecient cores designed for handling multiple tasks simultaneously while a CPU consists of a few cores optimized for sequential serial processing (Figure 47). However, GPU-accelerated approach is disadvantage in term of cost for The application of parallelized code can be used to implement the CS image reconstruction directly in ParaVision commercial software. For the dMRI simulation nite volume codes, fortunately, since this method coupled the explicit time stepping method, so each compartment can be managed separately and need to be synchronized only once at the beginning of each time-step.

Future work on combining dMRI experiment, simulation and histology imaging

As mentioned before, the closer the geometry domain used in simulations to the true geometry of the tissue leads to more accurate results. As a next step we plan to use histology imaging to extract the exact information of the cell size as well as the shape of the nucleus in specic tissues. Using this information we will generate the geometry domain for simulations. By comparing the numerical simulated time-dependent ADC and with results from experiments we aim to extract the intrinsic diusivity. These results will then be used back to predict the shape of nucleus as well as cell size in other The ranges of intrinsic diusivity Da (µm 2 /ms) which yield good tting between the simulated mean diusivity (MD simul (Da)) In the part V of the thesis is focused on the study of the time-dependent diffusivity in the abdominal ganglion of Aplysia californica. The Aplysia abdominal ganglion was chosen in this imaging study because high resolution MR imaging allows the fine anatomical description of the cellular network (size of individual neurons and orientation of axons). Using the Aplysia ganglia to study the relationship between the cellular structure and the diffusion MRI signal can shed light on this relationship for more complex organisms. We measured the dMRI signal at several diffusion times in the abdominal ganglion and performed simulations of water diffusion in geometries obtained after segmenting high resolution T2weighted images and incorporating known information about the cellular structure from the literature.

To match the dMRI signal in the single cell neurons with numerical simulations signal, the large cell outline was segmented from the anatomical T2 weighted image. Inside this cell shape, an irregularly shaped nucleus was manually generated (around 25-30% volume fraction). The small cells were modeled as small spheres with a smaller concentric spherical nucleus (around 25% volume fraction). The nerve was modeled by combining axons (cylinders) of different diameters consistent with the literature. The numerical dMRI signal can be simulated by solving Bloch-Torrey equation under the geometries domain described above. By fitting the experimental signal to the simulated signal for several types of cells such as: large cell neurons (diameter between 150 µm and 420 µm); cluster of small neuron cells gathered in the shape of a bag (up to 400 cells in adult Aplysia in each bag with cell size between 40 µm to 100 µm in diameter); and nerves (group of axons cylindrical shape diameter from less than 1 µm to 25 µm) at a wide range of diffusion times, we obtained estimates of the intrinsic diffusion coefficient in the nucleus and the cytoplasm (for cell neurons) and the intrinsic diffusion coefficient in the axons (for the nerves). We also evaluated the reliability of using an existing formula for the time-dependent diffusion coefficient to estimate cell size.
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 1 ces travaux de thèse sont (1) l'implémentation de l'acquisition compressée ou compressed sensing (CS) pour la réduction du temps d'acquisition d'images haute-résolution par résonance magnétique et (2) l'étude du signal d'IRM de diusion (IRMd) et de ses dépendances avec la micro-structure du tissue observé, en utilisant particulier l'information obtenue avec l'acquisition de plusieurs temps de diusion. Le modèle animal choisi pour ces études est l'Aplysia californica et plus particulièrement ses ganglions car ces derniers sont constitués de neurones de grande taille (plusieurs centaines de micromètre de diamètre) comparés aux neurones de mammifères (5 à 10 micromètre de diamètre). Ces neurones de grande taille peuvent être identiés sur des images anatomiques en utilisant l'imagerie par résonance magnétique (IRM). Toutes les données présentées dans cette thèse ont été acquises sur l'IRM ultra-haut champ 17.2T à NeuroSpin, CEA, Saclay. Les antennes radio-fréquences utilisées pour la détection sont de type solénoïde avec un diamètre interne de 2.4 mm et leur conception a été précédemment décrit [Jelescu IO et al., Neuroimage 2013]. Ce projet a été nancé par l'ANR (ANR-13-BSV5-0014-01, project ANImE) et par l'école doctorale EOBE, Université Paris Sud, Orsay, France. Partie I : Principes de l'imagerie par résonance magnétique L'IRM est une technique d'imagerie couramment utilisée qui se base sur la résonance magnétique nucléaire (RMN). Le principe consiste à polariser l'objet à imager en employant un puissant champ magnétique présent dans le scanner IRM. L'aimantation magnétique obtenue peut alors être manipulée à l'aide d'ondes radio-fréquences et de gradients de champ magnétique pour obtenir une image. Suivant le type d'encodage et de séquence d'acquisition, l'image obtenu peut dépendre de certains paramètres physiologiques comme par exemple la perfusion ou la diusion. Dans le domaine de l'IRM clinique, les images sont générées en détectant le signal provenant des atomes d'hydrogènes ( 1 H). D'autres noyaux peuvent être détectés tels que le sodium (23Na) ou le phosphore ( 31 P). Toutefois, le noyau d'hydrogène ( 1 H), qui n'est constitué que d'un proton, est le plus étudié en IRM car il est très abondant dans les tissues biologiques (sous forme d'eau) et possède le rapport gyromagnétique (relatif à la sensibilité du noyau) le plus important. Le premier chapitre présente les principes de l'IRM tels que le k-space, l'encodage de l'espace par les gradients, le champ de vue ou eld-of-view (FOV), le rapport signal-sur-bruit (RSB), l'imagerie 2D et 3D ainsi que la reconstruction d'image IRM en utilisant la transformée de Fourier. Les séquences d'acquisition RARE, FLASH et FISP utilisées lors de ces travaux de thèse et le contraste qu'elles génèrent, respectivement en T2, en T1 et en diusion, sont expliquées. Partie II : IRM de diusion dans les tissus neuronaux de l'Aplysia L'IRM de diusion (IRMd) est une méthode dérivée de l'IRM. C'est une technique d'imagerie non-invasive qui permet de mesurer les caractéristiques de diusion des molécules d'eau dans les tissues biologiques. La diusion moléculaire est restreinte dans les tissus car les molécules d'eau rencontrent de nombreux obstacles telles que des bres ou des membranes. La technique IRMd permet de mettre en évidence des détails dans la micro-structure du tissue en mesurant et en caractérisant la diusion des molécules d'eau qui s'y trouvent. Toutefois, les relations entre cette micro-structure complexe du tissue et le signal IRMd sont mal connues et nécessitent des approches combinant données expérimentales, modélisations mathématiques et numériques. Le ganglion abdominal de l'Aplysia a été choisi pour cette étude car l'imagerie haute-résolution permet une description anatomique du réseau cellulaire (taille des neurones et orientation des axones). Les observations et résultats de cette étude sur les tissues de l'Aplysia pourront potentiellement s'étendre par la suite à des tissues et des organismes plus complexes. Dans cette partie, nous présenterons les concepts majeurs de l'IRMd, les équations qui s'y rapportent et les travaux précédents. La relation entre le coecient de diusion apparent (ADC) et la taille des cellules et le modèle animal choisi pour ces simulations de signaux IRMd seront également présentés. En eet, l'Aplysia possède des cellules neuronales de grande taille qui constitue un modèle idéal des neurones présents chez les mammifères. Le système nerveux de l'Aplysia possède une structure simple constituée de grandes cellules de forme ronde, de cellules plus petites également rondes et disposées sous forme d'agrégats ayant la forme d'un sac et enn de groupes d'axones non myélinisés de forme cylindrique. Cette structure sert de modèle pour l'étude du système neuronales des mammifères (soma, groupe d'axones et dendrites). Étant donné la taille importante des neurones présents chez l'Aplysia, il est possible de vérier certaines hypothèses relatives aux temps de diusion courts (en employant les séquence de type OGSE [M. D. Does et al. MRM 49(2) 2003]) ou PGSE [B. A. Hargreaves, JMRI, 36, 2012]). Le système nerveux de l'Aplysia californica est constitué de cinq paires de ganglions : buccale, cérébrales, pédale et abdominale [E. R. Kandel and I. Kupfermann, Annual Review of Physiology, 32(1), 1970]. Les ganglions abdominales et buccales ont été choisis pour l'étude IRM car leur réseau de cellules a fait l'objet de nombreuses études en particulier concernant les neurones et l'orientation des axones [P. Conn and L. Kaczmarek, Molecular neurobiology, 3(4), 1989]. De plus, le ganglion abdominal et des neurones individuels y appartenant ont été précédemment étudiés avec des techniques de microscopie par résonance magnétique (MRM) et de MRM de diusion. Un schéma du ganglion abdominal de l'Aplysia est montré en Figure I. L'étude IRM décrite dans ces travaux de thèse se concentre sur trois types de cellules et constituants cellulaires : Les neurones de grande taille 2. Les agrégats de neurones regroupés en forme de sac 3. Les nerfs Les données relatives à la taille des axones et la distribution des nerfs présentés dans le tableau I ne concerne que le ganglion buccal de l'Aplysia californica ; nous n'avons pas

Figure I

 I Figure I Le ganglion abdominal de l'Aplysia californica.

Figure

  Figure II Le ganglion buccal de l'Aplysia (schéma de R. Nargeot).

[F

  Ricardo Otazo et al., MRM, 64(3), 2010]. La reconstruction des données sous-échantillonnées a été réalisée en employant des algorithmes existants. Soit F u l'opérateur de transformée de Fourier et W l'opérateur de transformée en ondelettes, l'image reconstruite notée m est obtenue en résolvant le problème d'optimisation suivant : minimize Wm 1 + αTV(m), u m -y 2 < , Où α traduit la parcimonie de W en diérences discrétisées, TV est la variation totale et y représente le k-space sous-échantillonné. Le paramètre de seuillage correspond au niveau de bruit estimé. L'équation (I) peut se résoudre en utilisant une méthode de descente de gradient conjugué non-linéaire [M. Lustig et al., MRM, 58(6), 2007] ou la méthode iterative split de Bregman [T. Goldstein and S. Osher, SIAM Journal on Imaging Sciences, 2(2), 2009]. D'après nos expériences, la méthode iterative split de Bregman est l'un des solveurs les plus rapides pour la reconstruction d'image à partir des coecients de Fourier. Partie IV : L'acquisition compressée ou compressed sensing en IRM haute-résolution Cette partie traite de l'application du compressed sensing (CS) à l'IRM haute-résolution. Le CS est une nouvelle technique de traitement du signal développée par Donoho en 2006 (d'autres nomenclatures existent pour désigner CS : compressive sensing, compressive sampling ou sparse sampling). Entre 2004 et 2006, les auteurs Emmanuel Candes, Terence Tao et David Donoho ont prouvé à travers plusieurs publications que si la condition de parcimonie est respectée, le signal peut être reconstruit avec un nombre d'échantillons inférieur à celui décrit par le critère de Nyquist. Sur le même principe, une image peut être reconstruite sans perte d'informations en utilisant des données souséchantillonnées. Cette partie débute avec la description d'une nouvelle approche de CS pour la génération de trajectoires de sous-échantillonnage, reposant sur la théorie de l'agrégation limitée par la diusion (DLA) [Witten T and Sander L, Phys. Rev. Lett. 1981]. Le modèle DLA permet d'extraire un sous-ensemble de points issus d'un k-space échantillonné régulièrement an d'établir un motif de sous-échantillonnage. DLA a été utilisée pour le sous-échantillonnage d'imagerie haute-résolution pondérée en T2 (séquence RARE) et en T1 (séquence FLASH). La Figure III illustre l'application de la méthode DLA avec un sous-échantillonnage de 50% dans la direction de l'encodage de phase, pour des acquisitions RARE (facteur d'accélération A F = 4) et FLASH. Nous démontrons que l'approche DLA permet d'obtenir de meilleurs résultats que la méthode polynomiale pour un sous-échantillonnage supérieur à 25% de données issues d'acquisition RARE avec A F = 4 (Figure IVa) et A F = 1 (Figure IVb). La méthode de descente de gradient conjugué a été employé pour la reconstruction d'image CS dans le cas d'acquisition RARE pondérée en T2 (Figure Va). La méthode iterative split de Bergman a été employé pour la reconstruction d'image CS dans le cas d'acquisition pondérée en T1 (Figure Vb). Les performances des deux méthodes sont similaires. Le sous-échantillonnage DLA a été employé pour implémenter l'acquisition CS pour l'imagerie haute-résolution pondérée en T2 et T1 à ultra-haut champ magnétique (17.2 T). Les performances des méthodes d'acquisitions DLA-CS RARE (Figure IV) et DLA-CS FLASH (Figure VI) ont été évaluées pour diérents taux de sous-échantillonnage.

FigureFigureFigure V

 V Figure III Exemples de sous-échantillonnages DLA de 50% (a) et 3D DLA (b) employés pour l'encodage de phase pour une acquisition RARE avec A F = 4 (haut). Exemples de sous-échantillonnages DLA de 50% (c) et 3D DLA (d) employés pour l'encodage de phase pour une acquisition FLASH (bas).

Figure

  Figure VI Évaluation des performances de la méthode CS-DLA pour diérents taux de sous-échantillonnage : (a) Coecient PCC estimé entre les images idéalement échantillonnées et les images CS en fonction du taux de sous-échantillonnage pour une répétition (rouge) et deux répétitions (bleu). Le coecient PCC a été calculé pour une région d'intérêt couvrant approximativement 50000 voxels. (b) Diérence en intensité entre les images idéalement échantillonnées et les images CS en fonction du taux de sous-échantillonnage (2 acquisitions moyennées) pour une région d'intérêt contenant de l'eau (rouge) et du tissu neuronal (bleu). Les barres d'erreur représentent les écart-types. Ces données sont issues d'une étude contenant N=6 échantillons.

Figure

  Figure VII Représentation de Bland-Altman montrant la diérence de l'intensité du signal entre les images échantillonnées de manière idéale et : (a) les images CS acquises avec un sous-échantillonnage déterminé pré-acquisition (prospective CS ) (a) et (b) les images CS acquises avec un sous-échantillonnage post-acquisition de données idéalement échantillonnées (retrospective CS ). Chaque point représente l'intensité du signal mesuré dans un neurone (2 ganglions, 10 neurones par ganglion).

FigureFigureFigure X

 X Figure VIII Rendu géométrique 3D d'un neurone de grande taille. Le contour du neurone a été estimé à partir d'images pondérées en T2 (a). Un noyau de forme irrégulière a été ensuite généré manuellement (b) puis inséré dans le neurone (c). Le noyau est représenté en rouge alors que le cytoplasme est en vert. Des cellules de taille diérente ont ainsi été modélisées en augmentant la taille du noyau Re (par exemple R e f f = 60 µm (d) et R e f f = 40 µm (e) ).

1 FigureFigure

 1 Figure XII La taille de la cellule est largement sous-estimée : R est représente en moyenne 25% de R e .

5 Figure

 5 Figure XIV Pente A(R) en fonction du rayon de cellule R pour diérentes fractions en volume.

Figure 1 .

 1 Figure XV (a) Coecient ADC moyen acquis en fonction du temps de diusion (cercles) et ajustements optimaux (lignes pointillées). (b) Couples solution (D c , D n ) optimaux (cercles colorés). Les diusivités intrinsèques sont corrélées : D c + 0.26 × D n = 1.1. Chaque ajustement numérique représenté en (a) correspond à un couple solution (D c , D n ) en (b) et est repéré par le même code couleur. Les barres d'erreur correspondent aux écart-types des données expérimentales.
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 2 are very small compared to ω 0 , and M x = Re(M xy ) and M y = Im(M xy ),

Figure 2

 2 Figure 2 Eects of relaxation on the magnetization vector after a 90 degree excitation pulse. (a) The magnetization vector precesses around the z-axis. (b) The measured net magnetization in the x -y plane (M xy ) and the z-component of the relaxing magnetization. In both subgures, T 2 = 200 ms, T 1 = 500 ms.

Figure 3

 3 Figure 3 Diagram of gradient eld eects on the main magnetic eld B 0 .

Figure 4

 4 Figure 4 Diagram of the slice selection when applying an excitation pulse. A gradient

Figure 6 Figure 7

 67 Figure 6 Spin echo pulse diagram.

Figure 8

 8 Figure 8 Gradient echo pulse diagram.

Figure 9 FLASH

 9 Figure 9 FLASH pulse diagram.

Figure 10 FISP

 10 Figure 10 FISP pulse diagram.

Figure 12 The

 12 Figure 12 The Aplysia abdominal ganglion diagram.

Figure 13

 13 Figure 13 The ADC in the nucleus (N) is larger than it in the cytoplasm (C) of L7 Aplysia neuron. (7.8µm in-plane resolution, source: Lee et al. [59]: www.nature.com/articles/srep11147 )

Figure 14

 14 Figure 14 The Aplysia buccal ganglion diagram realized by R. Nargeot.

Figure 15

 15 Figure 15 Echo planar imaging pulse sequence timing diagram. A spin echo exitation scheme and an echo train length of 8 are illustrated.

  Figure 16 DP-FISP pulse sequence timing diagram.

10

  Acceleration by partial Fourier imaging and Parallel imaging 10.1 Partial Fourier imaging

10. 2

 2 Parallel imagingParallel imaging (PI) is based on parallel signal detection employing several surface coils placed side by side (so called coil arrays) to reduce the total imaging acquisition time. Most modern human scanner systems employ 8-16 receiver channels capable of accommodating phased arrays with 8-16 coils elements. The new generation of scanners can allow tens to hundreds of channels, with the limiting factor being the prohibitively high cost of receiver units[START_REF] Blamire | The technology of MRI the next 10 years?[END_REF][START_REF] Keil | A 64-channel 3T array coil for accelerated brain MRI[END_REF][START_REF] Schmitt | A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 tesla[END_REF][START_REF] Constantinides | Magnetic Resonance Imaging: The Basics[END_REF]. Parallel methods do not reduce the acquisition time per spatial phase encoding step such as fast sequences, but instead reduces their number[START_REF] Weishaupt | How does MRI work?: An Introduction to the Physics and Function of Magnetic Resonance Imaging[END_REF].Phased-array coils were initially developed to improve SNR in MR imaging by reducing coil size and improving the sensitivity, which eectively reduces the amplitude of the noise detected. Multiple overlapping small coils can cover the same volume as a larger coil, and when the signals from individual coils are combined, the noise is substantially reduced and SNR is signicantly improved[START_REF] Glockner | Parallel MR imaging: A user's guide[END_REF]. The basis of PI techniques is the concept that acquisition time is proportional to the number of phase encoding lines reduced by sampling the MR signal in a parallel fashion. Each RF element is associated with a dedicated RF channel whose signals can be processed and combined together.

Figure 17

 17 Figure 17 Non-Cartesian sampling: a) Spiral k-space trajectory and b) Radial trajectory.

Figure 18

 18 Figure 18 Shepp-Logan image (left) is sparsely presented under nite dierence operator (middle) and Wavelet transform (right).

Figure 19

 19 Figure 19 The sparsity of abdominal ganglia (a) and buccal ganglia (b) T2w images of Aplysia. The fully encoded image (right column) and the reconstructed images (three left column) from a subset of 7%, 10% and 20% of the largest wavelet transform and nite dierent transform coecients.
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 4 Image reconstruction: Discrete Fourier Transform In MRI, the desired image function I(•) can be encoded in the measured data S(•). Note that I(•) representing spin density distributions weighted by relaxation eects, diusion eects, etc. Basically, the signal S(•) is the Fourier transform of I(•): S(k) = F[I(r)] = I(r) e -i2π k•r dr.

Figure 20

 20 Figure 20 Two most popular k-space sampling schemes: (a) rectilinear sampling and (b) polar sampling.

2 I

 2 (m∆x, n∆y) e i2π (mkx∆x+nky∆y) .

Tol: stopping criteria

  by gradient magnitude (default 10 -4 ) Iter: stopping criteria by number of iterations (default 100) α, β: line search parameters (defaults α = 0.01, β = 0.6) Result: m the numerical approximation to equation (79) % Initialization k = 0; m 0 ; g 0 = ∇J(m 0 ); ∆m 0 = -g 0 % Iterations while g k 2 > Tol do % Backtracking line search t = 1;

end%

  update variables to next step m h+1 := m h

Figure 21

 21 Figure 21 Undersampling patterns (50 %) for a RARE acquisition: DLA (a) and polynomial (d) undersampled phase encoding plane for A F = 1; DLA (b) and polynomial (e) undersampled phase encoding plane for A F = 4. The undersampling patterns was applied for one group of k-space points corresponding to the rst echo time, the results was then repeated A F = 4 times corresponding to all echo time; (c) 3D DLA undersampling and (f ) 3D polynomial undersampling generated by repeat 2D undersampling pattern in read direction.

Figure 22 Figure 23

 2223 Figure 22 The relative errors between the fully encoded and CS images obtained by applying DLA and polynomial undersampling schemes to abdominal (a) and buccal ganglia image libraries (b) as a function of the undersampling ratio. The fully encoded images were acquired using a standard RARE acquisition with A F = 4. The error bars represent standard deviations (n=300).

Figure 24

 24 Figure 24 Flow diagram illustrating the outline of created and modied ParaVision les.

Figure 25 Flow

 25 Figure 25 Flow diagram illustrating the proposed algorithm for separating cells within clusters.

Figure 26

 26 Figure 26 CS (top) and fully encoded (bottom) images of a water phantom. The SNR was calculated as the mean of signal intensity (red ROI) divided by the standard deviation of the noise (white ROI).

Figure 27

 27 Figure 27 Buccal (a , b) and abdominal (d, e) ganglia images acquired with a CS-RARE (a, d) and a standard RARE sequence (b, e), along with the signal intensity proles (c,f ) at locations indicated by the white lines across the images. The hypointense regions seen in the images correspond to cell bodies.

Figure 28

 28 Figure 28 Comparison between the cells detected on the fully encoded (red wire-frame) and CS (solid blue) images of abdominal (a) and buccal ganglia (b). An identical number of cells was detected on the abdominal ganglion with both acquisitions, while on the buccal ganglia one false positive was detected on the CS data set.

2 T

 2 system using RF transceiver with an ID (inner diameter) of 2.4 mm. The RF transceiver was home-built solenoidal single-microcoil with an inner diameters of 2.4 mm. Two types of acquisitions were performed for each sample: a RARE acquisition, providing T2 contrast (TR = 3000 ms, TE = 20 ms, AF = 4, 25 µm isotropic resolution) and a FLASH acquisition providing T1 contrast (TR = 150 ms, TE = 2.441 ms, 3 averages, 2 repetitions, 25 µm isotropic resolution) in fully encoded and CS variants. The FOV was either 10 × 2.2 × 2.2 mm 3 or 10×2.0×2.0 mm 3 corresponding to matrix sizes of 400×88×88 and 400×80×80 and fully encoded FLASH acquisition times, per repetition, of 58 and 48 minutes, respectively.

Figure 29 DLA

 29 Figure 29 DLA acquisition patterns for 50%, 70% and 90% undersampling ratios. The horizontal axis represents the read direction, and the other two axes represent the phase encoding directions, as shown in the lower right corner.

  sampled images, we computed the Pearson's Correlation Coecient (PCC, see equation 100) [132] between the mean signal intensity values over all voxels of the fully encoded and CS encoded. The PCC was calculated in manually drawn ROIs containing the ganglia and encompassing approximately 50 000 voxels. The performance of the DLA-CS strategy was further evaluated by comparing signal intensities measured in individual neurons and in water in both fully encoded and un-dersampled images. Five biggest neurons in the Aplysia's buccal ganglia (B1, B2, B3, B6 and B9) were identied and manually segmented on RARE (T2 weighted) images (Figure 30 a). (Note that as the buccal ganglia are bilaterally symmetric, one sample contains two neurons of each type). The corresponding ROIs were co-registered to the FLASH (T1 weighted) images and the mean signal intensity for each of them was calculated (Figure 30 b).

Figure 30

 30 Figure 30 Schematic representation of the ROI selection for signal intensity quantication. Two acquisitions were performed for each sample: a T2 weighted RARE (a), providing information about the sample anatomy and a T1 weighted FLASH (b) reecting the intracellularly accumulated Mn2+ ions. Neurons were manually segmented on the RARE image and the corresponding ROIs were co-registered with the FLASH image. The drawn ROIs correspond to neurons B9 (red), B6 (orange) and B3 (green). Spatial resolution: 25 µm isotropic.

Figure 31

 31 Figure 31 Fully encoded FLASH image (top left) and corresponding undersampled images after CS reconstruction (50%, 70% and 90% undersampling ratios). The CS images shown here were obtained by retrospectively undersampling the fully encoded k-space data.

Figure 32

 32 Figure 32 Evaluation of the performance of DLA-CS for dierent undersampling ratios. (a). PCC between fully and CS encoded images as a function of undersampling ratio for one (red) and two (blue) repetitions. The PCC was calculated according to equation 100, over the ganglia region containing approximately 50 000 voxels. Error bars represent standard deviations. (b) Percentage signal intensity dierence between the fully encoded and CS images (the data represented is the average over two repetitions). Blue and red marks correspond to cell bodies and water regions, respectively. Error bars represent standard deviations. The data was obtained from 6 samples.

Figure 33

 33 Figure 33 BlandAltman plots showing the dierence in the normalized signal intensity values estimated from the fully sampled dataset and the 50% prospectively undersampled dataset (a) and the 50% retrospectively undersampled dataset (b). Each point corresponds to the signal intensity measured in one single neuron (2 samples, 10 neurons per sample).

  ms). All diusion weighted images were acquired with 8 b-values ([70, 100, 200, • • • , 700] s/mm 2 ), and matrix size 200 × 44 × 44. The diusion acquisition time was 2 hours 05 minutes for one diusion time, 3 directions, 8 b-values. All acquisition were acquired with a FOV of 10.4×2.3×2.3 mm 3 .

Figure 34

 34 Figure 34 Abdominal ganglion T2w image (Aplysia # 2) and ROIs: (a) the 3D representation showing the selected ROIs; (b)-(e) four slices from the T2w image; The information of the ROIs is shown in Tables 4, 5, and 6. The direction of the nerve (# 5) is (-0.993, 0.092, -0.075). The scale bar represents 260 µm.

Figure 35

 35 Figure 35 Large single cell neuron geometry. The cell outline was estimated from cell ROI#7 (see Table4) (a). A nucleus with irregular shape was manually generated (b).

  ) (a). A nucleus with irregular shape was manually generated (b). The nucleus was manually placed inside the cell outline (c): cell nucleus is displayed in red while cytoplasm is displayed in green. Dierent cell sizes were generated by scaling the size of the nucleus to R e for the simulations (e.g R e = 60 µm (d) and R e = 40 µm (e) ). The satellite cell (R=3 µm) (no nucleus) (f ) with volume fraction of 0-5% surrounding the cell neurons (not accounted for in the simulations).

  For

Figure 36

 36 Figure 36 The bag cell neurons diameter histogram.

Figure 37

 37 Figure 37 The dMRI signals for multiple diusion times in: large cell neurons ROI # 1 R e ≈ 164.97 µm (a), large cell neurons ROI # 10 R e ≈ 101.34 µm (b). In each sub gure, from top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms.The dierent colors represent the dierent gradient directions, red, blue, and black for x, y, and z directions, respectively.

Figure 38 Figure 39

 3839 Figure 38 The dMRI signals for multiple diusion times in bag cell neurons ROI # 5. From top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms. The dierent colors represent the dierent gradient directions, red, blue, and black for x, y, and z directions, respectively.

Figure 40

 40 Figure 40 The measured ADC values are shown as colored markers (mean) with error bars (standard deviation) for the bag cell neurons (circle, N=11 ROIs), for the large cell neurons (triangle, N=22 ROIs) and for the nerves (diamond, N=13 ROIs). The solid lines represent linear ts of the measured data. The experimental ADC drops by 20.8%, 9.45% for bag cell neurons and large cell neurons, respectively, and the MD drops by 14.98% in the nerves.

Figure 41 (

 41 Figure41 (a) The positive correlation between eective radius (R e ) and estimated radius (R est ) from 22 large cell neuron ROIs using the formula(63). (b) The relation

Figure 42

 42 Figure 42 Four generated domains of the same cell size and cell outline, based on three dierent shapes of nucleus (red) (a, b-c, and d) and dierent position of nucleus inside the cell neurons (b and c). The cell outlines are the same for the four geometries, which is generated from T2w image (large cell ROI#7). The volume fraction of the nucleus in all four domains is approximate 25%.

Figure 43

 43 Figure 43 Slope A(R) as a function of the cell radius R (a); and the freedom coecient B as a function of the cell radius R (b) for four identical domains with the same nucleus volume fraction (25%). The slope A depends stronger on the shape of the nucleus (Domain 1, 2-3, and 4) than the position of the nucleus inside the cell neurons (Domain 2, 3) while the coecient B seems not to depend on the cell radius and the shape of the nucleus.

Figure 44

 44 Figure 44 (a) Slope A(R) as a function of the cell radius R for dierent nucleus volume fraction, VF N . (b) The geometry domain in which the volume fraction of the nucleus is about 29% and the nucleus shape in this domain is similar with the nucleus shape in domain 1.

)

  Figure 45b displays the range of pairs (Dc, Dn) which satisfy the condition (114) (called solution (Dc, Dn)). The colored dash-lines in Figure 45a represent the simulated ADC curves generated for each pair of the solutions (Dc, Dn) shown in Figure 45b (same color code).

Results

  

Figure 45

 45 Figure 45 Averaged experimental ADC values (marker) with error bars representing the standard deviations (N=11 ROIs), and the optimal obtained simulated ADC (dashed lines) (a). The range of paired solutions (Dc, Dn) are represented as circle in (b), the intrinsic diusivity Dc and Dn are correlated by the formula Dc + 0.26 × Dn = 1.1.The colored line in (a) corresponds to the colored marker represented in (b).

Figure 46

 46 Figure 46 Assumed the axons distribution in the abdominal nerves are the same with the axons distribution in the buccal nerve 1b (a) and the buccal nerve ON (b). For both sub gures, the marker (with errors bar as the standard deviation) represent the averaged experimental MD of the 13 nerve ROIs; while the solid lines represent the good ts simulated mean diusivities. The extracted intrinsic diusivity of these solid lines are presented in table10.

26 Future directions 26 . 1

 261 Future work on DLA-CS strategy applicationsOne of my next projects is to use the DLA-CS method to accelerate DTI acquisitions.

Figure 47

 47 Figure 47 GPUs have thousands of cores to process parallel workloads eciently. Source: http://www.nvidia.com/object/what-is-gpu-computing.html
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 1214 samples. Diagram of the k-space and the relationships between k-space FOV and resolution. The sampled k-space points are ploted as dots; the arrows show the trajectories during one frequency encoding scan corresponding to one phase encoding step. . . . . . . . . . . . . . . . . . . . . . . . . . 6 Spin echo pulse diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 RARE pulse diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Gradient echo pulse diagram. . . . . . . . . . . . . . . . . . . . . . . . . 9 FLASH pulse diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 FISP pulse diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 The PGSE time prole for t s = 0, consisting of two rectangular pulses (duration δ, separated by a time interval ∆ . . . . . . . . . . . . . . . . . Aplysia abdominal ganglion diagram. . . . . . . . . . . . . . . . . . 13 The ADC in the nucleus (N) is larger than it in the cytoplasm (C) of L7 Aplysia neuron. (7.8µm in-plane resolution, source: Lee et al. [59]: www.nature.com/articles/srep11147 ) . . . . . . . . . . . . . . . . . . . . Aplysia buccal ganglion diagram realized by R. Nargeot. . . . . . . . 15 Echo planar imaging pulse sequence timing diagram. A spin echo exitation scheme and an echo train length of 8 are illustrated. . . . . . . . . . 16 DP-FISP pulse sequence timing diagram. . . . . . . . . . . . . . . . . . . 17 Non-Cartesian sampling: a) Spiral k-space trajectory and b) Radial trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Shepp-Logan image (left) is sparsely presented under nite dierence operator (middle) and Wavelet transform (right). . . . . . . . . . . . . . . . The sparsity of abdominal ganglia (a) and buccal ganglia (b) T2w images of Aplysia. The fully encoded image (right column) and the reconstructed images (three left column) from a subset of 7%, 10% and 20% of the largest wavelet transform and nite dierent transform coecients. . . . 57 Two most popular k-space sampling schemes: (a) rectilinear sampling and (b) polar sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Undersampling patterns (50 %) for a RARE acquisition: DLA (a) and polynomial (d) undersampled phase encoding plane for A F = 1; DLA (b) and polynomial (e) undersampled phase encoding plane for A F = 4. The undersampling patterns was applied for one group of k-space points corresponding to the rst echo time, the results was then repeated A F = 4 times corresponding to all echo time; (c) 3D DLA undersampling and (f ) 3D polynomial undersampling generated by repeat 2D undersampling pattern in read direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 The relative errors between the fully encoded and CS images obtained by applying DLA and polynomial undersampling schemes to abdominal (a) and buccal ganglia image libraries (b) as a function of the undersampling ratio. The fully encoded images were acquired using a standard RARE acquisition with A F = 4. The error bars represent standard deviations (n=300). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 The relative errors between the fully encoded and CS images obtained by applying DLA and polynomial undersampling schemes to a fully encoded (RARE acquistion with A F = 1) image of buccal ganglia. The error bars represent standard deviations (n=300). . . . . . . . . . . . . . . . . . . . 73 Flow diagram illustrating the outline of created and modied ParaVision les. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flow diagram illustrating the proposed algorithm for separating cells within clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 CS (top) and fully encoded (bottom) images of a water phantom. The SNR was calculated as the mean of signal intensity (red ROI) divided by the standard deviation of the noise (white ROI). . . . . . . . . . . . . . . 77 Buccal (a , b) and abdominal (d, e) ganglia images acquired with a CS-RARE (a, d) and a standard RARE sequence (b, e), along with the signal intensity proles (c,f ) at locations indicated by the white lines across the images. The hypointense regions seen in the images correspond to cell bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Comparison between the cells detected on the fully encoded (red wireframe) and CS (solid blue) images of abdominal (a) and buccal ganglia (b). An identical number of cells was detected on the abdominal ganglion with both acquisitions, while on the buccal ganglia one false positive was detected on the CS data set. . . . . . . . . . . . . . . . . . . . . . . . . . DLA acquisition patterns for 50%, 70% and 90% undersampling ratios. The horizontal axis represents the read direction, and the other two axes represent the phase encoding directions, as shown in the lower right corner. 30 Schematic representation of the ROI selection for signal intensity quantication. Two acquisitions were performed for each sample: a T2 weighted RARE (a), providing information about the sample anatomy and a T1 weighted FLASH (b) reecting the intracellularly accumulated Mn2+ ions. Neurons were manually segmented on the RARE image and the corresponding ROIs were co-registered with the FLASH image. The drawn ROIs correspond to neurons B9 (red), B6 (orange) and B3 (green). Spatial resolution: 25 µm isotropic. . . . . . . . . . . . . . . . . . . . . . . . 31 Fully encoded FLASH image (top left) and corresponding undersampled images after CS reconstruction (50%, 70% and 90% undersampling ratios). The CS images shown here were obtained by retrospectively undersampling the fully encoded k-space data. . . . . . . . . . . . . . . . . 32 Evaluation of the performance of DLA-CS for dierent undersampling ratios. (a). PCC between fully and CS encoded images as a function of undersampling ratio for one (red) and two (blue) repetitions. The PCC was calculated according to equation 100, over the ganglia region containing approximately 50 000 voxels. Error bars represent standard deviations. (b) Percentage signal intensity dierence between the fully encoded and CS images (the data represented is the average over two repetitions). Blue and red marks correspond to cell bodies and water regions, respectively. Error bars represent standard deviations. The data was obtained from 6 samples. . . . . . . . . . . . . . . . . . . . . . . . . 33 BlandAltman plots showing the dierence in the normalized signal intensity values estimated from the fully sampled dataset and the 50% prospectively undersampled dataset (a) and the 50% retrospectively undersampled dataset (b). Each point corresponds to the signal intensity measured in one single neuron (2 samples, 10 neurons per sample). . . . . 34 Abdominal ganglion T2w image (Aplysia # 2) and ROIs: (a) the 3D representation showing the selected ROIs; (b)-(e) four slices from the T2w image; The information of the ROIs is shown in Tables 4, 5, and 6. The direction of the nerve (# 5) is (-0.993, 0.092, -0.075). The scale bar represents 260 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Large single cell neuron geometry. The cell outline was estimated from cell ROI#7 (see Table 4

  ) (a). A nucleus with irregular shape was manually generated (b). The nucleus was manually placed inside the cell outline (c): cell nucleus is displayed in red while cytoplasm is displayed in green.Dierent cell sizes were generated by scaling the size of the nucleus to R e for the simulations (e.g R e = 60 µm (d) and R e = 40 µm (e) ). The satellite cell (R=3 µm) (no nucleus) (f ) with volume fraction of 0-5% surrounding the cell neurons (not accounted for in the simulations). . . .[START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diusion MRI[END_REF] The bag cell neurons diameter histogram. . . . . . . . . . . . . . . . . . . The dMRI signals for multiple diusion times in: large cell neurons ROI # 1 R e ≈ 164.97 µm (a), large cell neurons ROI # 10 R e ≈ 101.34 µm (b). In each sub gure, from top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms. The dierent colors represent the dierent gradient directions, red, blue, and black for x, y, and z directions, respectively. . . 98 The dMRI signals for multiple diusion times in bag cell neurons ROI # 5. From top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms. The dierent colors represent the dierent gradient directions, red, blue, and black for x, y, and z directions, respectively. . . . . . . . . 98 The dMRI signals for multiple diusion times in nerve neurons with different direction. (a) the nerve ROI # 1: the nerve direction is mainly orientated in the x direction, and the y and z component are similar; (b) the nerve ROI # 8: the nerve direction has the same component in x, y, and z directions; (c) the nerve ROI # 10: the nerve direction has a larger component in x and z directions, smaller in y component; In each sub-gure, from top to bottom we represent the signals for∆ from 5 to 25 ms. The dierent colors represent the dierent gradient directions, red, blue, and black for x, y, and z directions, respectively. . . . . . . . . . . . 99 The measured ADC values are shown as colored markers (mean) with error bars (standard deviation) for the bag cell neurons (circle, N=11 ROIs), for the large cell neurons (triangle, N=22 ROIs) and for the nerves (diamond, N=13 ROIs). The solid lines represent linear ts of the measured data. The experimental ADC drops by 20.8%, 9.45% for bag cell neurons and large cell neurons, respectively, and the MD drops by 14.98% in the nerves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 (a) The positive correlation between eective radius (R e ) and estimated radius (R est ) from 22 large cell neuron ROIs using the formula (63). (b) The relation between slope value A and R e . The cell size is severely underestimated, R est is on average only 25% of R e . . . . . . . . . . . . . 101 Four generated domains of the same cell size and cell outline, based on three dierent shapes of nucleus (red) (a, b-c, and d) and dierent position of nucleus inside the cell neurons (b and c). The cell outlines are the same for the four geometries, which is generated from T2w image (large cell ROI#7). The volume fraction of the nucleus in all four domains is approximate 25%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Slope A(R) as a function of the cell radius R (a); and the freedom coefcient B as a function of the cell radius R (b) for four identical domains with the same nucleus volume fraction (25%). The slope A depends stronger on the shape of the nucleus (Domain 1, 2-3, and 4) than the position of the nucleus inside the cell neurons (Domain 2, 3) while the coecient B seems not to depend on the cell radius and the shape of the nucleus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 (a) Slope A(R) as a function of the cell radius R for dierent nucleus volume fraction, VF N . (b) The geometry domain in which the volume fraction of the nucleus is about 29% and the nucleus shape in this domain is similar with the nucleus shape in domain 1. . . . . . . . . . . . . . . . 45 Averaged experimental ADC values (marker) with error bars representing the standard deviations (N=11 ROIs), and the optimal obtained simulated ADC (dashed lines) (a). The range of paired solutions (Dc, Dn) are represented as circle in (b), the intrinsic diusivity Dc and Dn are correlated by the formula Dc + 0.26 × Dn = 1.1. The colored line in (a) corresponds to the colored marker represented in (b). . . . . . . . . . . . 46 Assumed the axons distribution in the abdominal nerves are the same with the axons distribution in the buccal nerve 1b (a) and the buccal nerve ON (b). For both sub gures, the marker (with errors bar as the standard deviation) represent the averaged experimental MD of the 13 nerve ROIs; while the solid lines represent the good ts simulated mean diusivities. The extracted intrinsic diusivity of these solid lines are presented in table 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 GPUs have thousands of cores to process parallel workloads eciently. Source: http://www.nvidia.com/object/what-is-gpu-computing.html . . . Signal intensity errors (SI di ) and corresponding standard deviations (SD) between fully encoded and compressed sensing acquisitions for one and two repetitions calculated in cells and water ROIs. . . . . . . . . . . 84 The 22 ROIs of large cell neurons selected for analysis. The eective radius (R e ) estimated from the number of voxels (#voxels) in each ROI. 91 The 11 ROIs of bag cell neurons selected for analysis. . . . . . . . . . . . 91 The selected 13 ROIs of the nerve with the approximate unit vector of the nerve direction (parallel direction) from visualization on the T2w image. 92 The distribution of volume fraction for each axon type in dierent buccal nerves (note that we assumed the same distribution for the abdominal ganglion) estimated from the literature [56] with particular choice of diameter in range mentioned before: 2R I = 26 µm, 2R II = 18 µm, 2R III = 6 µm, and 2R IV = 1 µm for axon type I, II, III, and IV, respectively. See more in Table 1 regarding the distribution of number of axons of each type within each nerve. . . . . . . . . . . . . . . . . . . . . . . . 97 Mean and standard deviation (SD) of average ADC in bag cell neurons, large cell neurons, and nerve ROIs. The average ADC were observed drop by 20.8%, 9.45% and 14.98% for bag cell neurons, large cell neurons and nerve, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Fitting experimental ADC(∆) by using the equation (63) (ADC = A √ ∆ + B) and using the equation (64) (ADC = AC δ,∆ + B ) for 22 large cell neuron ROIs (ROI#). The eective radius (R ef f ) of each cell were estimated from T2w image. The cell radius estimated (R est ) by us- ing the equation (113). The error between tting and data are shown in Err columns. There is not much dierence on cell radius estimated between two prediction models. . . . . . . . . . . . . . . . . . . . . . . . 102
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  Microscopie du tissu neuronal par IRM: accélération des acquisitions, modélisation et validation expérimentale de la diffusion de l'eau Mots clé: imagerie par résonance magnétique (IRM) , échantillonnage compressif, microscopie par résonance magnétique (MRM), segmentation cellulaire, agrégation limitée par la diffusion (DLA), variation totale Résumé: La technique d'acquisition comprimée ou compressed sensing (CS) exploite la compressibilité de différents types d'images pour reconstruire des données sous-échantillonnées sans perte d'informations. Cette technique peut être appliquée à l'IRM pour réduire les temps d'acquisition. CS est basée sur trois composantes majeures: (1) la représentation parcimonieuse du signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une méthode de reconstruction non-linéaire avec une contrainte de parcimonie. Si le nombre total de points dans une image est plus grand que quatre fois le nombre de coefficients de décomposition alors la reconstruction de données sous-échantillonnées est réalisable. Dans la partie IV de cette thèse, nous proposons un nouveau modèle de sous-échantillonnage basé sur la théorie de l'agrégation limitée par la diffusion (DLA) et montrons qu'il est plus performant que la méthode de sous-échantillonnage aléatoire. Le modèle de sous-échantillonnage DLA a été utilisé pour implémenter la technique de CS pour l'imagerie haute résolution pondérée T2 et T1 sur un champ magnétique très intense (17.2T). Pour chacune des pondérations, le temps d'acquisition a été réduit de 50 % tout en conservant la qualité des images en termes de résolution spatiale, rapport contrast sur bruit et quantification de l'intensité du signal. Les deux nouvelles séquences d'impulsions CS (csRARE et csFLASH) ont été implémentées sur le logiciel commercial ParaVision 5.1. La partie V de la thèse est centrée sur l'étude de la dépendance en temps de la diffusivité dans le ganglion abdominal de l'Aplysia californica. Le ganglion abdominal de l'aplysie a été choisi pour cette étude d'imagerie car l'IRM à haute résolution permet la description anatomique fine du réseau cellulaire (taille des neurones individuels et orientation des axones). Utiliser les tissus neuronaux de l'aplysie pour étudier la relation entre la structure cellulaire et le signal d'IRM de diffusion peut permettre de comprendre cette relation pour des organismes plus complexes. Le signal d'IRM de diffusion (IRMd) a été mesuré à différents temps de diffusion dans le ganglion abdominal et des simulations de la diffusion de l'eau dans des géométries obtenues à partir de la segmentation d'images haute résolution pondérées T2 et l'incorporation d'informations sur la structure cellulaire trouvées dans la littérature ont été réalisées. Pour comparer le signal d'IRMd dans des neurones composés d'une seule cellule avec le signal des simulations numériques, des cellules de grande taille ont été segmentées à partir d'images anatomiques pondérées T2. A l'intérieur des cellules, un noyau à forme irrégulière a été généré manuellement (environ 25-30% en fraction volumique). Les petites cellules ont été modélisées comme des petites sphères avec un petit noyau sphérique concentrique (environ 25% en fraction volumique). Le nerf a été modélisé en combinant des axones (cylindres) de différents diamètres en cohérence avec la littérature. Le signal numérique d'IRMd a été simulé en résolvant l'équation de Bloch-Torrey pour les domaines géométriques décris ci-dessus. En fittant le signal expérimental avec le signal simulé pour différents types de cellules comme les grandes cellules neuronales (diamètre entre 150 et 420 µm), des agrégats de petites cellules neuronales ayant la forme d'un sac (jusqu'à 400 cellule chez l'aplysie adulte dans chaque sac avec une taille cellulaire entre 40 et 100 µm de diamètre), des nerfs (groupes d'axones de forme cylindrique avec un diamètre de moins de 1 à 25 µm) pour une grande gamme de temps de diffusion, nous avons obtenu des estimations du coefficient de diffusion intrinsèque dans le noyau et le cytoplasme (pour les neurones) et le coefficient de diffusion intrinsèque dans les axones (pour les nerfs). Nous avons aussi évalué la pertinence d'utiliser une formule préexistante décrivant la dépendance en temps du coefficient de diffusion pour estimer la taille des cellules. Université Paris-Saclay Espace Technologique/Immeuble Discovery Route de l'Orme aux Merisiers RD 128/91190 Saint-Aubin, France Title: MR microscopy of neuronal tissue: acquisition acceleration, modeling and experimental validation of water diffusion Keywords: magnetic resonance imaging (MRI), compressed sensing (CS), magnetic resonance microscopy (MRM), cell segmentation, diffusion limited aggregation (DLA), total variation (TV) Abstract: Compressed sensing (CS) exploits the compressibility of different types of images to reconstruct undersampled data without loss of information. The technique can be applied to MRI to reduce the acquisition times. The CS is based on three major components: (1) sparsity representation of the signal in some transform domain, (2) incoherent measurements, and (3) sparsity-constrained nonlinear reconstruction method. If the total number of points in the image is larger than four times the number of sparse coefficients then the reconstruction of undersampled data is feasible. In the part IV of this thesis, we propose a new undersampling model based on the diffusion limited aggregation (DLA) theory and show that it performs better than the random variable undersampling method. The DLA undersampling model was used to implement the CS for T2-weighted and T1-weighted high resolution imaging at the ultra-high magnetic field (17.2T). In both cases, the acquisition time was reduced by 50% while maintaining the quality of the images in terms of spatial resolution, contrast to noise ratio, and signal intensity quantification. Both new CS pulse sequences (csRARE and csFLASH) were implemented in ParaVision 5.1 commercial software.
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	1b				0					5.00±0.54			261±50	7144±1044
	2b	2.33±0.33		19.41±4.04		235±74	9415±1312
	3b				0					15.00±1.58		67±9.6	2191±755
	ON	1.67±0.33		8.67±2.03		681±191	10483±691
	RN				0					16.00±0.60	1579±326	2692±791
	CBC	2.00±0.41		12.00±1.44		196±82	1591±206
	Partie III : Techniques pour l'accélération de l'acquisition IRM
	Les avancées technologiques de l'IRM permettent aujourd'hui l'acquisition de signaux
	avec un RSB important sans le besoin de moyenner. Toutefois, le temps d'acquisition

III (1 -10µm) IV (≤ 1µm) Les diérents nerfs (1b, 2b, 3b, ON, RN, CBC) présents dans le ganglion buccal et leur composition respective en termes d'axones. Quatre type d'axones ont été établis en fonction de leur diamètre : type I, II, III et IV [C. Musio and C. Bedini, Zoomorphology, 110(1), 1990]. trouvé de données similaires pour le ganglion abdominal. Les nerfs contiennent des groupes d'axones (de forme cylindrique) avec des diamètres variant de moins de 1 µm à plus de 25 µm. Un schéma du ganglion buccal présenté en Figure II montre la disposition symétrique de groupes de neurones tels que B1, B2, B6, B9 (200-300 µm) [D. Gardner and E. R. Kandel, Science, 176(4035), 1972 ; D. Gardner, Science, 173(3996), 1971] ainsi que des neurones de petites tailles (<=50 µm) [J. Ono, Neuroscience, 18, 1986]. La n de cette seconde partie est dédiée à la description d'une séquence IRMd rapide intitulée séquence FISP avec préparation pour la diusion (DPFISP). reste long car il dépend principalement de la résolution spatiale et du remplissage du k-space, rendant certaines études inapplicables sur des modèles in vivo. Une approche pour la réduction du temps d'acquisition consiste à sous-échantillonner le k-space. Cette approche est utilisée pour l'imagerie parallèle et pour le compressed sensing. Lorsque le kspace est sous-échantillonné, la reconstruction de l'image par transformée de Fourier peut

  Toutefois, nous avons démontré que l'approche DLA est plus performante pour des acquisitions RARE sans accélération, protocole habituellement utilisé pour imager des tissus dont les temps de relaxation T2 sont courts. Enn, cette approche n'est pas limitée aux acquisitions RARE ou FLASH et peut aisément s'étendre à d'autres types de séquences.

	Pour résumer, les résultats présentés dans cette partie démontrent que la méthode
	DLA est une excellente alternative aux stratégies de sous-échantillonnage polynomial et
	est capable de ramener à à des durées acceptables certains protocoles d'imagerie exigeant
	habituellement de longs temps d'acquisition. En conséquence, ce type d'approche peut
	grandement bénécier à la microscopie par résonance magnétique en permettant l'étude
	d'échantillons in vivo. Les résultats obtenus avec la stratégie DLA-CS ont montré la
	possibilité d'accélérer l'acquisition des images haute-résolution et quantitative MEMRI
	pour l'étude de tissu neuronal. Alors que les temps d'acquisition obtenus ne sont pas plus
	courts en comparaison avec certaines techniques d'imagerie ultra-rapides telle que Echo

Alors que le sous-échantillonnage DLA a été implémenté pour les acquisitions RARE avec un facteur d'accélération de 4, l'implémentation pour d'autres facteur d'accélération est directe. Planar Imaging (EPI) ou l'imagerie spirale, l'approche DLA-CS reste prometteuse à très haut champ lorsqu'on désire une importante résolution spatiale et que les acquisitions de type single shot ne sont pas réalisables. Enn, DLA-CS ne se limite pas au domaine de la microscopie par résonance magnétique et peut tout à fait être employé dans les domaines d'imagerie préclinique et clinique où la réduction des temps d'acquisitions sont toujours appréciables.
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 II Les plages de diusivité intrinsèque D a (µm 2 /ms) permettant d'obtenir

	un ajustement optimal des données expérimentales de MD pour les 6 types d'axones
	présents dans les nerfs du ganglion buccal (1b, 2b, 3b, ON, RN, CBC).
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[START_REF] Callaghan | Principles of Nuclear Magnetic Resonance Microscopy[END_REF][START_REF] Price | NMR Studies of Translational Motion: Principles and Applications[END_REF]
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Table 1 The

 1 

	1b	0	5.00±0.54	261±50	7144±1044
	2b	2.33±0.33	19.41±4.04	235±74	9415±1312
	3b	0	15.00±1.58	67±9.6	2191±755
	ON	1.67±0.33	8.67±2.03	681±191	10483±691
	RN	0	16.00±0.60	1579±326	2692±791
	CBC	2.00±0.41	12.00±1.44	196±82	1591±206

1 are for the buccal ganglia of Aplysia californica because we could not nd analogous information about the abdominal ganglia. The nerves contain groups of axons (cylindrically shaped) with diameters ranging from very small (less than 1 µm) to large (greater than 25 µm). Based the axonal area conguration, small distribution, these Nerve I (> 25µm) II (10 -25µm) III (1 -10µm) IV (≤ 1µm) nerves (1b, 2b, 3b, ON, RN, CBC) of buccal ganglia. There are four type of axons with dierent range of axons diameter: type I , II , III and IV. The distribution of axons type of each nerve

[START_REF] Musio | Fine structure and axonal organization in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)[END_REF] 

were shown.

  If a function f (t) contains no frequencies higher than W cycles per second (cps), then it is completely determined by giving its ordinates at a series of points spaced sucient sample-rate is therefore greater than or equal to 2W samples per seconds. Equivalently, for a given sample rate f s , perfect reconstruction is guaranteed possible for a bandlimit W < f s /2. 2W and f s /2 are respectively called the Nyquist rate and Nyquist frequency. The notation T = 1/f s is usually used to represent the interval

	1 2W	seconds apart.

In the eld of digital signal processing, the NyquistShannon sampling theorem is the fundamental theory connecting between continuous signal and discrete signals in time domain. The NyquistShannon sampling theorem states

[START_REF] Shannon | Communication in the presence of noise[END_REF]

: Theorem 12.1 A between samples and is called the sample period or sampling interval. The Nyquist-Shannon sampling theorem (well know as Nyquist rate) propose the sucient condition for sampling the continuous signal to discrete signal for which one can be maintain all information from continuous-time signal. The Shannon sampling theorem states that the sampling rate must be at least twice the highest frequency present in the signal of interest

[START_REF] Shannon | Communication in the presence of noise[END_REF]

. The theorem also provides a formula for the reconstruction of the original signal by sinc-interpolation:

  Lustig et al proposed an approximation of the absolute value by a smooth function, |x| ≈ x H x + ξ, where ξ

	Data:
	y: undersamplied k-space data
	F u : undersampled Fourier transform operator
	W: wavelet transform operator
	λ 1 , λ 2 : data consistency tuning constants Optional parameter:

is a positive smoothing parameter. Then the gradient becomes d|x| dx ≈ x x H x + ξ . In practice, a smoothing factor ξ ∈ [10 -15 , 10 -6 ]. Following we shall describe the algorithm for solving (79) using a nonlinear conjugate-gradient descent with backtracking line search taken from [81].

  Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	CS produces images from signicantly fewer data points than what is required by the
	Nyquist criterion using a non-linear reconstruction which enforces both sparsity of the
	image representation and consistency with the acquired data. The main requirement
	for undesampled k-space CS data is incoherence. Starting from this and considering the
	MR hardware constrains several ways of generating undersampling patterns have been
	proposed. The most commonly used undersampling schemes, either Cartesian or non-
	Cartesian, consist of variable-density random trajectories [81] based on a probability
	density function. Here we introduce a new method to generate the undersampling
	pattern based on the diusion limited aggregation (DLA) random growth model
	20 Conclusion and discussion
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Table 3

 3 Signal intensity errors (SI di ) and corresponding standard deviations(SD) between fully encoded and compressed sensing acquisitions for one and two repetitions calculated in cells and water ROIs.

	Undersampling ratio (%)	Cells ROI One repetition Two repetitions SI di (%) SD SI di (%) SD SI di (%) SD SI di (%) SD Water ROI One repetition Two repetitions
	30	1.6	0.34	1.6	0.26	1.84	0.07	1.84	0.08
	40	1.88	0.52	1.87	0.42	2.12	0.11	2.12	0.11
	50	2.4	0.71	2.4	0.56	2.45	0.15	2.45	0.14
	60	2.87	0.7	2.87	0.61	2.78	0.12	2.78	0.12
	70	3.48	0.84	3.48	0.73	3.11	0.22	3.1	0.21
	80	4.25	1.17	4.25	1.07	3.51	0.26	3.51	0.26
	90	5.18	1.64	5.19	1.42	3.91	0.25	3.91	0.25

Table 5

 5 The 11 ROIs of bag cell neurons selected for analysis.

	ROI#	Aplysia#	#voxels	R e (µm)
	1	1	1070	164.97
	2	1	539	131.26
	3	2	370	115.79
	4	2	576	134.20
	5	2	314	109.63
	6	2	833	151.76
	7	2	477	126.02
	8	3	424	121.17
	9	3	519	129.62
	10	3	248	101.34
	11	3	800	149.73
	12	4	480	126.29
	13	4	810	150.35
	14	4	985	160.48
	15	4	985	160.48
	16	5	352	113.88
	17	5	366	115.37
	18	5	528	130.36
	19	5	2138	207.78
	20	6	1024	162.57
	21	6	900	155.72
	22	6	664	140.71
	Table 4 The 22 ROIs of large cell neurons selected for analysis. The eective radius
	(R e ) estimated from the number of voxels (#voxels) in each ROI.
	ROI#	Aplysia#	Type	#voxels
	1	1	Bag L	1619
	2	1	Bag R	1785
	3	2	Bag L	2371
	4	2	Bag R	938
	5	3	Bag L	2368
	6	4	Bag L	1880
	7	4	Bag R	680
	8	5	Bag L	1744
	9	5	Bag R	1659
	10	6	Bag L	571
	11	6	Bag R	771

Table 6

 6 The selected 13 ROIs of the nerve with the approximate unit vector of the nerve direction (parallel direction) from visualization on the T2w image.

Table 8

 8 .98%. Mean and standard deviation (SD) of average ADC in bag cell neurons, large cell neurons, and nerve ROIs. The average ADC were observed drop by 20.8%, 9.45% and 14.98% for bag cell neurons, large cell neurons and nerve, respectively.

		Bag cells (N=11)	Large cells (N=22)	Nerve (N=13)
	∆ (ms) Mean	SD	Mean	SD	Mean	SD
	5	0.779	0.060	0.974	0.096	0.821	0.083
	7.5	0.755	0.054	0.957	0.085	0.812	0.095
	10	0.705	0.054	0.938	0.087	0.749	0.085
	12	0.687	0.067	0.915	0.080	0.741	0.089
	15	0.660	0.051	0.914	0.080	0.724	0.09
	20	0.632	0.056	0.897	0.081	0.708	0.087
	25	0.617	0.055	0.882	0.087	0.698	0.086
	Drop	20.80%		9.45%		14.98%	

Table 9

 9 Fitting experimental ADC(∆) by using the equation (63) (ADC = A √ ∆+B) and using the equation (64) (ADC = AC δ,∆ + B ) for 22 large cell neuron ROIs (ROI#).

			Fitting by formula (63)	Fitting by formula (64)
	ROI#	R e	A	B	R est	Err	A	B	R est	Err
	1	101.3	-0.0613	1.191	16.0	1.79%	-0.0634	1.212	15.8	2.23%
	2	109.6	-0.0339	1.206	29.4	1.89%	-0.0351	1.218	28.8	2.00%
	3	113.9	-0.0159	0.978	45.7	1.86%	-0.0165	0.983	44.6	1.90%
	4	115.4	-0.0258	0.973	28.0	1.99%	-0.0267	0.982	27.4	2.08%
	5	115.8	-0.0246	1.031	32.0	0.94%	-0.0255	1.039	31.3	1.09%
	6	121.2	-0.0579	1.131	15.6	1.91%	-0.0600	1.150	15.5	2.33%
	7	126.0	-0.0554	1.092	15.5	2.59%	-0.0574	1.111	15.3	2.90%
	8	126.3	-0.0418	1.018	18.5	1.14%	-0.0433	1.032	18.2	1.53%
	9	129.6	-0.0635	1.232	16.2	2.76%	-0.0657	1.253	16.1	3.07%
		130.4	-0.0236	0.946	29.3	1.62%	-0.0244	0.953	28.7	1.72%
		131.3	-0.0077	0.829	73.6	1.16%	-0.0080	0.831	71.5	1.17%
		134.2	-0.0286	1.103	30.5	1.73%	-0.0296	1.113	29.8	1.83%
		140.7	-0.0322	0.957	21.9	1.52%	-0.0333	0.967	21.5	1.71%
		149.7	-0.0524	0.962	13.6	1.69%	-0.0543	0.980	13.5	2.21%
		150.4	-0.0310	1.041	25.7	0.59%	-0.0321	1.051	25.2	0.92%
		151.8	-0.0341	1.175	28.1	2.69%	-0.0354	1.186	27.5	2.78%
		155.7	-0.0299	1.030	26.3	1.41%	-0.0310	1.040	25.8	1.56%
		160.5	-0.0199	1.052	40.8	1.37%	-0.0206	1.059	39.8	1.44%
		160.5	-0.0274	0.961	25.8	1.60%	-0.0284	0.970	25.3	1.74%
		162.6	-0.0173	1.079	48.6	1.59%	-0.0179	1.085	47.4	1.63%
		165.0	-0.0140	1.037	56.6	1.18%	-0.0145	1.042	55.1	1.21%
		207.8	-0.0117	0.853	50.6	0.83%	-0.0121	0.857	49.2	0.88%

). (b) The relation between slope value A and R e . The cell size is severely underestimated, R est is on average only 25% of R e .

Table 10

 10 The ranges of intrinsic diusivity Da (µm 2 /ms) which yield good tting between the simulated mean diusivity (MD simul (Da)) and the experimental mean dif-

	presents

the experimental mean diusivity (MD) (marker) and standard deviation over 13 nerve ROIs and the good tting simulated mean diusivity for the nerve 1b and the nerve ON (dashed line).

  and the experimental mean diusivity MD corresponds to six axons distributions of buccal ganglia nerves (1b, 2b, 3b, ON, RN, CBC). . . . . . . . . . . . . . 106
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Acknowledgments

in [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] He | MR image reconstruction by using the iterative renement method and nonlinear inverse scale space methods[END_REF][START_REF] He | MR image reconstruction from undersampled data by using the iterative renement procedure[END_REF][START_REF] Gopi | MR image reconstruction based on iterative split bregman algorithm and nonlocal total variation[END_REF]. Briey, if we denote the undersampled Fourier transform corresponding to the k-space undersampled pattern F u , and W the spare transform, the reconstructed image m is obtained by solving the following constrained optimization problem:

where y is the measured undersampled k-space data. The norms, 1 and 2 , are dened as

, respectively. The thresholding parameter is the expected noise level. The undersampling Fourier transform operator F u can be expressed as the product of a full Fourier transform operator F and a undersampling matrix M : F u = M F. The undersampling matrix M dene the role is to select the points of k-space that will be sampled or preserved.

When nite dierence is used as a sparse transform, W = ∇, the objective in equation ( 74) becomes ∇m 1 which is called TV penalty and usually written as T V (m).

The spatial TV can be used as the isotropic TV model [START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Wang | A new alternating minimization algorithm for total variation image reconstruction[END_REF][START_REF] Shi | Ecient algorithm for isotropic and anisotropic total variation deblurring and denoising[END_REF][START_REF] Montesinos | Application of the compressed sensing technique to self-gated cardiac cine sequences in small animals[END_REF] which is dened by:

where ∇ k m i representing the gradient of image m at voxel index i in the direction k (k = x, y, z). The gradient (or nite dierence) of 3D image m at index (i, j, k) is dened by:

∇ z m(i, j, k) = m(i, j, k + 1) -m(i, j, k).

When using the other sparsifying transform operator in the objective, the TV penalty usually included in the objective as well [START_REF] Tsaig | Extensions of compressed sensing[END_REF][START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Zhu | Compressed Sensing-based MRI Reconstruction Using Complex Double-density Dual-tree DWT[END_REF]. In this case, the equation ( 74) is rewritten as:

where α trades W sparsity with nite dierences sparsity. The following nonlinear conjugate-gradient decent method for CS reconstruction problem will be focus on this form.

Some authors write the spare MRI reconstruction problem in the following form (see [START_REF] Montesinos | Application of the compressed sensing technique to self-gated cardiac cine sequences in small animals[END_REF][START_REF] Goldstein | The split bregman method for l1-regularized problems[END_REF][START_REF] Gopi | MR image reconstruction based on iterative split bregman algorithm and nonlocal total variation[END_REF]):

where the σ represents the variance of the signal noise. The Split Bregman method for CS reconstruction problem will be focus on this form. 

Summary

One of the goals of this thesis was to implement compressed sensing for magnetic resonance microscopy studies. We proposed a new undersampling model based on the diusion limited aggregation (DLA) which performed better than the commonly used random variable undersampling method [START_REF] Nguyen | DLA based compressed sensing for high resolution MR microscopy of neuronal tissue[END_REF]. We successfully implemented the DLA-CS strategies for undersampling T2-weighted (starting from RARE sequence) and T1weighted images (starting from FLASH sequence). We found 50% undersampling ratio satisfactory not only in terms of image quality (contrast to noise ratio, spatial resolution) but also in terms of intensity quantication (in MEMRI images) [START_REF] Nguyen | DLA based compressed sensing for high resolution MR microscopy of neuronal tissue[END_REF]. In addition, we proposed a simple cell segmentation algorithm as a tool for image analysis in MR microscopy.

We acknowledge the even when using CS the acquisitions times remain relatively long when compared to fast techniques, such as EPI or spiral imaging, the DLA-CS appears to be a promising approach at high magnetic elds and high spatial resolutions, where single shot acquisitions are not feasible. The results presented in this thesis suggest that the DLA-CS is benecial to magnetic resonance microscopy studies, thus enabling the expansion of the technique to the study of living specimens and eventually to dynamic investigations. Moreover, the DLA-CS is not limited to magnetic resonance microscopy and could be also applied to preclinical and clinical studies, where shortening the acquisition time is equally desirable.

The second objective of this thesis was to adequately study diusion time dependence of the dMRI signal and discover if the additional information the measurements at multiple diusion times provides can give worthwhile information about the tissue micro structure, we image the Aplysia abdominal ganglia at high resolution and multiple diusion times.

We investigated dependence of the ADC on the diusion time in three dierent structures within the abdominal ganglia of the Aplysia. We found that by increasing the diusion time from 5 to 25 ms the ADC dropped by 20.8%, 9.35%, and 14.98% for bag cell neurons, large single cell neurons and the nerve ROI, respectively. The dierent behavior in the three dierent regions can be explained by the dierent sizes and shapes of the cellular components. We found that it is not sucient to approximate the large cell size by using the predicted one compartment model. Based on the results from numerical simulation and evidence from experimental data, we established that it is necessary to include a nucleus region embedded in a cytoplasmic region in order to t the large drop in ADC observed when varying the diusion time from 5 ms to 25 ms. In agreement to the literature we nd that the intrinsic diusivity in the nucleus is higher than in the cytoplasm. One possibility is that the protons are more bound in the cytoplasm than in the nucleus, as shown in the reference [START_REF] Gillies | NMR In Physiology and Biomedicine[END_REF] (page 128-129) the cytoplasm region appears darker than the nucleus region in the magnetization transfer images. Moreover, both the shape and the volume fraction of nucleus were found to signicantly inuence the ADC behavior, while the position of the nucleus did not seem to be important.

This results suggests that dMRI can be used as a diagnostic tool as the shape and size of cell nuclei can signify cellular abnormalities [START_REF] Webster | Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly[END_REF]. Regarding the bag cell neurons, we found the linear relationship between the intrinsic diusivities in the cytoplasm and the nucleus for which the tting ADC was successful. Moreover, we found regarding
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