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Microscopie du tissu neuronal par IRM:

accélération des acquisitions, modélisation et

validation expérimentale de la diffusion de l'eau

Résumé

La technique d'acquisition comprimée ou compressed sensing (CS) exploite la compressibi-

lité de di�érents types d'images pour reconstruire des données sous-échantillonnées sans perte

d'informations. Cette technique peut être appliquée à l'IRM pour réduire les temps d'acqui-

sition. CS est basée sur trois composantes majeures : (1) la représentation parcimonieuse du

signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une méthode

de reconstruction non-linéaire avec une contrainte de parcimonie. Si le nombre total de points

dans une image est plus grand que quatre fois le nombre de coe�cients de décomposition alors

la reconstruction de données sous-échantillonnées est réalisable. Dans la partie IV de cette

thèse, nous proposons un nouveau modèle de sous-échantillonnage basé sur la théorie de l'agré-

gation limitée par la di�usion (DLA) et montrons qu'il est plus performant que la méthode

de sous-échantillonnage aléatoire. Le modèle de sous-échantillonnage DLA a été utilisé pour

implémenter la technique de CS pour l'imagerie haute résolution pondérée T2 et T1 sur un

champ magnétique très intense (17.2T). Pour chacune des pondérations, le temps d'acquisition

a été réduit de 50 % tout en conservant la qualité des images en termes de résolution spa-

tiale, rapport contrast sur bruit et quanti�cation de l'intensité du signal. Les deux nouvelles

séquences d'impulsions CS (csRARE et csFLASH) ont été implémentées sur le logiciel commer-

cial ParaVision 5.1. La partie V de la thèse est centrée sur l'étude de la dépendance en temps

de la di�usivité dans le ganglion abdominal de l'Aplysia californica. Le ganglion abdominal

de l'aplysie a été choisi pour cette étude d'imagerie car l'IRM à haute résolution permet la

description anatomique �ne du réseau cellulaire (taille des neurones individuels et orientation

des axones). Utiliser les tissus neuronaux de l'aplysie pour étudier la relation entre la structure

cellulaire et le signal d'IRM de di�usion peut permettre de comprendre cette relation pour

des organismes plus complexes. Le signal d'IRM de di�usion (IRMd) a été mesuré à di�érents

temps de di�usion dans le ganglion abdominal et des simulations de la di�usion de l'eau dans

des géométries obtenues à partir de la segmentation d'images haute résolution pondérées T2

et l'incorporation d'informations sur la structure cellulaire trouvées dans la littérature ont été

réalisées. Pour comparer le signal d'IRMd dans des neurones composés d'une seule cellule avec

le signal des simulations numériques, des cellules de grande taille ont été segmentées à partir

d'images anatomiques pondérées T2. A l'intérieur des cellules, un noyau à forme irrégulière a

été généré manuellement (environ 25-30% en fraction volumique). Les petites cellules ont été

modélisées comme des petites sphères avec un petit noyau sphérique concentrique (environ 25%

en fraction volumique). Le nerf a été modélisé en combinant des axones (cylindres) de di�érents

diamètres en cohérence avec la littérature. Le signal numérique d'IRMd a été simulé en résol-

vant l'équation de Bloch-Torrey pour les domaines géométriques décris ci-dessus. En �ttant le

signal expérimental avec le signal simulé pour di�érents types de cellules comme les grandes

cellules neuronales (diamètre entre 150 et 420 µm), des agrégats de petites cellules neuronales

ayant la forme d'un sac (jusqu'à 400 cellule chez l'aplysie adulte dans chaque sac avec une taille

cellulaire entre 40 et 100 µm de diamètre), des nerfs (groupes d'axones de forme cylindrique

avec un diamètre de moins de 1 à 25 µm) pour une grande gamme de temps de di�usion,

nous avons obtenu des estimations du coe�cient de di�usion intrinsèque dans le noyau et le

cytoplasme (pour les neurones) et le coe�cient de di�usion intrinsèque dans les axones (pour

les nerfs). Nous avons aussi évalué la pertinence d'utiliser une formule préexistante décrivant

la dépendance en temps du coe�cient de di�usion pour estimer la taille des cellules.

Mots-clefs : imagerie par résonance magnétique (IRM) , échantillonnage compressif, micro-

scopie par résonance magnétique (MRM), segmentation cellulaire, agrégation limitée par la
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di�usion (DLA), variation totale.

Abstract

Compressed sensing (CS) exploits the compressibility of di�erent types of images to recon-

struct undersampled data without loss of information. The technique can be applied to MRI

to reduce the acquisition times. The CS is based on three major components: (1) sparsity

representation of the signal in some transform domain, (2) incoherent measurements, and (3)

sparsity-constrained nonlinear reconstruction method. If the total number of points in the

image is larger than four times the number of sparse coe�cients then the reconstruction of

undersampled data is feasible. In the part IV of this thesis, we propose a new undersampling

model based on the di�usion limited aggregation (DLA) theory and show that it performs

better than the random variable undersampling method. The DLA undersampling model was

used to implement the CS for T2-weighted and T1-weighted high resolution imaging at the

ultra-high magnetic �eld (17.2T). In both cases, the acquisition time was reduced by 50%

while maintaining the quality of the images in terms of spatial resolution, contrast to noise ra-

tio, and signal intensity quanti�cation. Both new CS pulse sequences (csRARE and csFLASH)

were implemented in ParaVision 5.1 commercial software.

In the part V of the thesis is focused on the study of the time-dependent di�usivity in the

abdominal ganglion of Aplysia californica. The Aplysia abdominal ganglion was chosen in this

imaging study because high resolution MR imaging allows the �ne anatomical description of

the cellular network (size of individual neurons and orientation of axons). Using the Aplysia

ganglia to study the relationship between the cellular structure and the di�usion MRI signal can

shed light on this relationship for more complex organisms. We measured the dMRI signal at

several di�usion times in the abdominal ganglion and performed simulations of water di�usion

in geometries obtained after segmenting high resolution T2-weighted images and incorporating

known information about the cellular structure from the literature. To match the dMRI signal

in the single cell neurons with numerical simulations signal, the large cell outline was segmented

from the anatomical T2 weighted image. Inside this cell shape, an irregularly shaped nucleus

was manually generated (around 25-30% volume fraction). The small cells were modeled as

small spheres with a smaller concentric spherical nucleus (around 25% volume fraction). The

nerve was modeled by combining axons (cylinders) of di�erent diameters consistent with the

literature. The numerical dMRI signal can be simulated by solving Bloch-Torrey equation under

the geometries domain described above. By �tting the experimental signal to the simulated

signal for several types of cells such as: large cell neurons (diameter between 150 µm and 420

µm); cluster of small neuron cells gathered in the shape of a bag (up to 400 cells in adult Aplysia

in each bag with cell size between 40 µm to 100 µm in diameter); and nerves (group of axons

cylindrical shape diameter from less than 1 µm to 25 µm) at a wide range of di�usion times,

we obtained estimates of the intrinsic di�usion coe�cient in the nucleus and the cytoplasm

(for cell neurons) and the intrinsic di�usion coe�cient in the axons (for the nerves). We also

evaluated the reliability of using an existing formula for the time-dependent di�usion coe�cient

to estimate cell size.

Keywords : magnetic resonance imaging (MRI), compressed sensing (CS), magnetic resonance

microscopy (MRM), cell segmentation, di�usion limited aggregation (DLA), total variation

(TV) .



iii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisors Dr. Luisa CIOBANU
and Dr. Jing-Rebecca LI for their patience and motivation, for sharing their immense
knowledge with me and for their continuous support during those years of Ph.D. Their
guidance helped me at all times of the research work and the writing of the thesis. I
could not have imagined having better advisors and mentors for my Ph.D. study.

Besides my advisors, I would like to thank the rest of my thesis committee: Dr. Clair
POIGNARD and Dr. Samuel GRANT for reviewing and correcting my thesis; Dr.Jean-
Christophe GINEFRI and Dr. Demian WASSERMANN for examining my thesis. I
would like to acknowledge Dr. Jean-Christophe GINEFRI from Ecole doctoral EOBE
for his guidance.

My sincere thanks also goes to Mrs. Jessica GAMEIRO (assistante d'Equipes de
Recherche INRIA), Mrs. Valérie BERTHOU (Départment des ressources humaines,
INRIA-Saclay), and Mrs. Laurence STEPHEN (Ecole doctoral EOBE), who always
helped me and answered my questions about the administrative, visa, and the registra-
tion procedures.

I would like to thank my labmates in the NeuroPhysics Team: Pavel SVEHLA,
Dr. Gabrielle FOURNET, Dr. Tangi ROUSSEL, Dr. Tomokazu TSURUGIZAWA, Dr.
Yoshifumi ABE, and Dr. Denis LE BIHAN for the stimulating discussions during the
monthly team meetings. I would like to thank Gabrielle and Tangi for their help with
translating the thesis abstract and thesis summary to French. I gratefully acknowledge
Dr. Guillaume RADECKI for his support in the early stages of experiments of this
work. I thank all the researchers in NeuroSpin, CEA-Saclay for all the fun we had in
the past three years. I would like to acknowledge Boucif DJEMAI for his assistance
with the husbandry of Aplysia. I would also like to thank my friends Dr. Van Dang
NGUYEN and Dr. Tuan Hang NGUYEN for their support when I arrived in Paris.

Last but not the least, I would like to thank my parents, my brothers and my sister,
my nephews, and especially my wife Khanh Nga and her parents for supporting me
�spiritually� during those years of research, during the writing of this thesis and during
my life in general. This accomplishment would not have been possible without them. I
want to thank my wife for loving me the way I am. Thank you.

This Ph.D. thesis is dedicated to my parents and my wife
for their love, endless support and encouragement.



iv



CONTENTS v

Contents

List of Abbreviations ix

Thesis summary (in French) 1

General introduction 16

I Important Concepts in Magnetic Resonance Imaging 19

1 NMR 20

1.1 Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Signal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 MRI 26

2.1 Gradient encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 k-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Fourier transform and image reconstruction . . . . . . . . . . . . . . . . 29

2.4 Frequence encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 2D imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 3D imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Resolution and FOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Acquisition time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 MRI pulse sequences 36

3.1 Spin Echo sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 RARE: T2-weighted images . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Gradient Echo sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 FLASH: T1-weighted images . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 FISP sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Di�usion MRI in the Aplysia neuronal tissue 41

4 Water di�usion in biological tissue 42



vi CONTENTS

5 Di�usion-encoding 42

6 Bloch-Torrey equation model 43

7 The relation between the ADC and the cell size 44

8 Aplysia animal model 45

9 Fast dMRI sequences 48

9.1 The Echo-planar imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.2 DP-FISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III Accelerated acquisition techniques 51

10 Acceleration by partial Fourier imaging and Parallel imaging 52

10.1 Partial Fourier imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.2 Parallel imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Non-Cartesian trajectories 53

12 Compressed sensing 54

12.1 Sparsity of MR images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

12.2 Incoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12.3 Polynomial undersampling patterns . . . . . . . . . . . . . . . . . . . . . 58

12.4 Image reconstruction: Discrete Fourier Transform . . . . . . . . . . . . . 59

12.5 CS image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13 Measuring the quality of accelerated acquisition 67

13.1 Image error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

13.2 Pearson's Correlation Coe�cient . . . . . . . . . . . . . . . . . . . . . . . 67

IV Compressed sensing for high resolution MRI 68

14 k-space undersampling patterns 69

14.1 DLA undersampling patterns . . . . . . . . . . . . . . . . . . . . . . . . 69

14.2 DLA vs polynomial undersampling . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS vii

15 The implementation of CS on T2w and T1w pulse sequences 72

16 Image reconstruction 73

17 Cell segmentation algorithm 74

18 CS in T2-weighted imaging: CS-RARE 76

18.1 The choice of undersampling ratio for generating undersampling patterns 76

18.2 Sample preparation and data acquisition . . . . . . . . . . . . . . . . . . 76

18.3 Signal to noise ratio and spatial resolution . . . . . . . . . . . . . . . . . 76

19 CS in T1-weighted imaging: CS-FLASH 78

19.1 Undersampling pattern generation . . . . . . . . . . . . . . . . . . . . . . 80

19.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

19.3 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

19.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

19.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

20 Conclusion and discussion 85

V Di�usion magnetic resonance imaging in the Aplysia 87

21 Introduction 88

22 Materials and methods 89

22.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

22.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

22.3 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

22.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

23 Results 97

23.1 Experimental time-dependent ADC . . . . . . . . . . . . . . . . . . . . . 97

23.2 Estimating cell size using short time ADC formula . . . . . . . . . . . . . 100

23.3 Simulation of a two compartments model of large cell neurons . . . . . . 103

23.4 Simulations of the ADC in bag cell neurons and nerves . . . . . . . . . . 104



viii CONTENTS

24 Conclusion 107

VI Summary and future directions 108

25 Summary 109

26 Future directions 110

26.1 Future work on DLA-CS strategy applications . . . . . . . . . . . . . . . 110

26.2 Future work on optimizing the CS image reconstruction and dMRI sim-
ulation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

26.3 Future work on combining dMRI experiment, simulation and histology
imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

List of publications 112

List of Figures 117

List of Tables 118

List of Algorithms 119

Index 120

Index 122

Bibliography 123



List of Abbreviations ix

List of Abbreviations

2D Two dimensional.
3D Three dimensional.

ADC Apparent Di�usion Coe�cient.
ASW Arti�cial Sea Water.

BW Bandwidth.

CS Compressed sensing.
CS-FLASH Compressed sensing-FLASH sequence.
CS-RARE Compressed sensing-RARE sequence.

DLA Di�usion Limited Aggregation.
dMRI Di�usion magnetic resonance imaging.
DP-FISP Di�usion prepared-FISP.
DTI Di�usion Tensor Imaging.

EPI Echo Planar Imaging.

FISP Fast Imaging with Steady-state free Precession.
FLASH Fast Low Angle Shot.
FOV Field of View.
FSE Fast Spin Echo.
FT Fourier transform.

GRAPPA GeneRalized Autocalibrating Partially Parallel Acquisitions.
GRE Gradient Echo.

ID Inner diameter.

MEMRI Manganese Enhanced Magnetic Resonance Imaging.
MR Magnetic Resonance.
MRI Magnetic Resonance Imaging.
MRM Magnetic Resonance Microscopy.

NMR Nuclear Magnetic Resonance.

OGSE Oscillating-Gradient Spin Echo.

PBS Phosphate-Bu�ered Saline.
PCC Pearson's Correlation Coe�cient.
pdf probability density function.
PGSE Pulsed-Gradient Spin Echo.
PI Parallel Imaging.
PSF Point Spread Function.



x List of Abbreviations

RARE Rapid Acquisition with Refocused Echoes.
RE Relative Errors.
RF Radio frequency.
RMSE Root Mean Square Error.
RSE Rapid Spin Echo.

SE Spin Echo.
SENSE Sensitivity encoding.
SMASH Simultaneous acquisition of spatial harmonics.
SNR Signal-to-noise ratio.

T1w T1-weighted image.
T2w T2-weighted image.
TE Echo time �rst.
TPSF Transform Point Spread Function.
TSE Turbo Spin Echo.
TV Total variation.



Thesis summary (in French) 1

Thesis summary (in French)

Résumé

Les objectifs de ces travaux de thèse sont (1) l'implémentation de l'acquisition com-
pressée ou compressed sensing (CS) pour la réduction du temps d'acquisition d'images
haute-résolution par résonance magnétique et (2) l'étude du signal d'IRM de di�usion
(IRMd) et de ses dépendances avec la micro-structure du tissue observé, en utilisant
particulier l'information obtenue avec l'acquisition de plusieurs temps de di�usion. Le
modèle animal choisi pour ces études est l'Aplysia californica et plus particulièrement
ses ganglions car ces derniers sont constitués de neurones de grande taille (plusieurs
centaines de micromètre de diamètre) comparés aux neurones de mammifères (5 à 10
micromètre de diamètre). Ces neurones de grande taille peuvent être identi�és sur des
images anatomiques en utilisant l'imagerie par résonance magnétique (IRM). Toutes les
données présentées dans cette thèse ont été acquises sur l'IRM ultra-haut champ 17.2T
à NeuroSpin, CEA, Saclay. Les antennes radio-fréquences utilisées pour la détection
sont de type solénoïde avec un diamètre interne de 2.4 mm et leur conception a été
précédemment décrit [Jelescu IO et al., Neuroimage 2013].

Ce projet a été �nancé par l'ANR (ANR-13-BSV5-0014-01, project ANImE) et par
l'école doctorale EOBE, Université Paris Sud, Orsay, France.

Partie I : Principes de l'imagerie par résonance magnétique

L'IRM est une technique d'imagerie couramment utilisée qui se base sur la résonance
magnétique nucléaire (RMN). Le principe consiste à polariser l'objet à imager en em-
ployant un puissant champ magnétique présent dans le scanner IRM. L'aimantation
magnétique obtenue peut alors être manipulée à l'aide d'ondes radio-fréquences et de
gradients de champ magnétique pour obtenir une image. Suivant le type d'encodage et
de séquence d'acquisition, l'image obtenu peut dépendre de certains paramètres physio-
logiques comme par exemple la perfusion ou la di�usion. Dans le domaine de l'IRM cli-
nique, les images sont générées en détectant le signal provenant des atomes d'hydrogènes
(1H). D'autres noyaux peuvent être détectés tels que le sodium (23Na) ou le phosphore
(31P). Toutefois, le noyau d'hydrogène (1H), qui n'est constitué que d'un proton, est
le plus étudié en IRM car il est très abondant dans les tissues biologiques (sous forme
d'eau) et possède le rapport gyromagnétique (relatif à la sensibilité du noyau) le plus
important. Le premier chapitre présente les principes de l'IRM tels que le k-space, l'en-
codage de l'espace par les gradients, le champ de vue ou �eld-of-view (FOV), le rapport
signal-sur-bruit (RSB), l'imagerie 2D et 3D ainsi que la reconstruction d'image IRM en
utilisant la transformée de Fourier. Les séquences d'acquisition RARE, FLASH et FISP
utilisées lors de ces travaux de thèse et le contraste qu'elles génèrent, respectivement en
T2, en T1 et en di�usion, sont expliquées.



2 THESIS INTRODUCTION

Partie II : IRM de di�usion dans les tissus neuronaux de l'Aplysia

L'IRM de di�usion (IRMd) est une méthode dérivée de l'IRM. C'est une technique
d'imagerie non-invasive qui permet de mesurer les caractéristiques de di�usion des mo-
lécules d'eau dans les tissues biologiques. La di�usion moléculaire est restreinte dans les
tissus car les molécules d'eau rencontrent de nombreux obstacles telles que des �bres
ou des membranes. La technique IRMd permet de mettre en évidence des détails dans
la micro-structure du tissue en mesurant et en caractérisant la di�usion des molécules
d'eau qui s'y trouvent. Toutefois, les relations entre cette micro-structure complexe
du tissue et le signal IRMd sont mal connues et nécessitent des approches combinant
données expérimentales, modélisations mathématiques et numériques. Le ganglion ab-
dominal de l'Aplysia a été choisi pour cette étude car l'imagerie haute-résolution permet
une description anatomique du réseau cellulaire (taille des neurones et orientation des
axones). Les observations et résultats de cette étude sur les tissues de l'Aplysia pourront
potentiellement s'étendre par la suite à des tissues et des organismes plus complexes.

Dans cette partie, nous présenterons les concepts majeurs de l'IRMd, les équations
qui s'y rapportent et les travaux précédents. La relation entre le coe�cient de di�usion
apparent (ADC) et la taille des cellules et le modèle animal choisi pour ces simulations
de signaux IRMd seront également présentés. En e�et, l'Aplysia possède des cellules
neuronales de grande taille qui constitue un modèle idéal des neurones présents chez
les mammifères. Le système nerveux de l'Aplysia possède une structure simple consti-
tuée de grandes cellules de forme ronde, de cellules plus petites également rondes et
disposées sous forme d'agrégats ayant la forme d'un sac et en�n de groupes d'axones
non myélinisés de forme cylindrique. Cette structure sert de modèle pour l'étude du
système neuronales des mammifères (soma, groupe d'axones et dendrites). Étant donné
la taille importante des neurones présents chez l'Aplysia, il est possible de véri�er cer-
taines hypothèses relatives aux temps de di�usion courts (en employant les séquence de
type OGSE [M. D. Does et al. MRM 49(2) 2003]) ou PGSE [B. A. Hargreaves, JMRI,
36, 2012]). Le système nerveux de l'Aplysia californica est constitué de cinq paires de
ganglions : buccale, cérébrales, pédale et abdominale [E. R. Kandel and I. Kupfermann,
Annual Review of Physiology, 32(1), 1970]. Les ganglions abdominales et buccales ont
été choisis pour l'étude IRM car leur réseau de cellules a fait l'objet de nombreuses
études en particulier concernant les neurones et l'orientation des axones [P. Conn and
L. Kaczmarek,Molecular neurobiology, 3(4), 1989]. De plus, le ganglion abdominal et des
neurones individuels y appartenant ont été précédemment étudiés avec des techniques
de microscopie par résonance magnétique (MRM) et de MRM de di�usion. Un schéma
du ganglion abdominal de l'Aplysia est montré en Figure I.
L'étude IRM décrite dans ces travaux de thèse se concentre sur trois types de cellules
et constituants cellulaires :

1. Les neurones de grande taille

2. Les agrégats de neurones regroupés en forme de sac

3. Les nerfs

Les données relatives à la taille des axones et la distribution des nerfs présentés dans le
tableau I ne concerne que le ganglion buccal de l'Aplysia californica ; nous n'avons pas
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Figure I � Le ganglion abdominal de l'Aplysia californica.

Nerf I (> 25µm) II (10− 25µm) III (1− 10µm) IV (≤ 1µm)
1b 0 5.00±0.54 261±50 7144±1044
2b 2.33±0.33 19.41±4.04 235±74 9415±1312
3b 0 15.00±1.58 67±9.6 2191±755
ON 1.67±0.33 8.67±2.03 681±191 10483±691
RN 0 16.00±0.60 1579±326 2692±791
CBC 2.00±0.41 12.00±1.44 196±82 1591±206

Table I � Les di�érents nerfs (1b, 2b, 3b, ON, RN, CBC) présents dans le ganglion
buccal et leur composition respective en termes d'axones. Quatre type d'axones ont été
établis en fonction de leur diamètre : type I, II, III et IV [C. Musio and C. Bedini,
Zoomorphology, 110(1), 1990].

trouvé de données similaires pour le ganglion abdominal.
Les nerfs contiennent des groupes d'axones (de forme cylindrique) avec des diamètres
variant de moins de 1 µm à plus de 25 µm. Un schéma du ganglion buccal présenté
en Figure II montre la disposition symétrique de groupes de neurones tels que B1, B2,
B6, B9 (200-300 µm) [D. Gardner and E. R. Kandel, Science, 176(4035), 1972 ; D.
Gardner, Science, 173(3996), 1971] ainsi que des neurones de petites tailles (<=50 µm)
[J. Ono, Neuroscience, 18, 1986]. La �n de cette seconde partie est dédiée à la description
d'une séquence IRMd rapide intitulée séquence FISP avec préparation pour la di�usion
(DPFISP).

Partie III : Techniques pour l'accélération de l'acquisition IRM

Les avancées technologiques de l'IRM permettent aujourd'hui l'acquisition de signaux
avec un RSB important sans le besoin de moyenner. Toutefois, le temps d'acquisition
reste long car il dépend principalement de la résolution spatiale et du remplissage du
k-space, rendant certaines études inapplicables sur des modèles in vivo. Une approche
pour la réduction du temps d'acquisition consiste à sous-échantillonner le k-space. Cette
approche est utilisée pour l'imagerie parallèle et pour le compressed sensing. Lorsque le k-
space est sous-échantillonné, la reconstruction de l'image par transformée de Fourier peut
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Figure II � Le ganglion buccal de l'Aplysia (schéma de R. Nargeot).

produire des artefacts de repliements. Les stratégies de sous-échantillonnage irrégulier
peuvent réduire ces artefacts mais provoquent également une diminution du RSB de
l'image [G. Marseille et al., JMR series B, 111(1), 1996]. L'imagerie parallèle permet
d'exploiter l'information redondante présente dans le k-space en reconstruisant l'image
à partir de données acquises simultanément avec un réseau d'antennes radio-fréquence
(RF) [K. P. Pruessmann et al.,MRM, 42(5), 1999]. Les antennes RF en réseau phasé pour
l'imagerie microscopique ont récemment fait l'objet de développements en employant les
dernières avancées relatives aux liaisons �laire (wire bonding) [O. G. Gruschke et al.,
Lab Chip, 12, 2012]. Toutefois, ce type d'antenne reste di�cile à construire lorsque
l'objet à imager est de petite taille, ce qui limite toutes application pour la MRM haute-
résolution. Les méthodes basées sur le compressed sensing sont de plus en plus utilisées
pour l'acquisition et la reconstruction des images IRM. Ainsi, des applications pour
l'imagerie cardiaque [M. Lustig et al., MRM, 58(6), 2007], l'imagerie spectroscopique
hyper-polarisée [S. Hu et al., MRM, 63(2), 2010], l'IRM de vélocimétrie [J. Paulsen et
al., JMR, 205(2), 2010] et en�n plus récemment, l'imagerie de tenseur de di�usion [Y.
Wu et al., MRM, 71(2), 2014] ont vu le jour. Cette partie comprendra une description
des méthodes les plus courantes pour pour l'accélération de l'acquisition basées sur
l'acquisition partielle du k-space et l'imagerie parallèle. Les stratégies reposant sur des
trajectoires non-cartésiennes dans le k-space seront également mentionnées. En�n, les
principes du compressed sensing (CS) seront énoncés et son implémentation pour la
réduction des temps d'acquisition en IRM sera détaillé. CS repose sur trois composantes
majeures [M. Lustig et al., MRM, 58(6), 2007] : (1) la représentation parcimonieuse
du signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une
méthode de reconstruction non-linéaire avec une contrainte de parcimonie. Si le nombre
total de points dans une image est plus grand que quatre fois le nombre de coe�cients
de décomposition alors la reconstruction de données sous-échantillonnées est réalisable
[Ricardo Otazo et al., MRM, 64(3), 2010].

La reconstruction des données sous-échantillonnées a été réalisée en employant des
algorithmes existants. Soit Fu l'opérateur de transformée de Fourier et W l'opérateur
de transformée en ondelettes, l'image reconstruite notée m est obtenue en résolvant le
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problème d'optimisation suivant :

minimize ‖Wm‖1 + αTV(m), (I)

avec la condition ‖Fum− y‖2 < ε,

Où α traduit la parcimonie de W en di�érences discrétisées, TV est la variation totale
et y représente le k-space sous-échantillonné. Le paramètre de seuillage ε correspond
au niveau de bruit estimé. L'équation (I) peut se résoudre en utilisant une méthode
de descente de gradient conjugué non-linéaire [M. Lustig et al., MRM, 58(6), 2007] ou
la méthode iterative split de Bregman [T. Goldstein and S. Osher, SIAM Journal on
Imaging Sciences, 2(2), 2009]. D'après nos expériences, la méthode iterative split de
Bregman est l'un des solveurs les plus rapides pour la reconstruction d'image à partir
des coe�cients de Fourier.

Partie IV : L'acquisition compressée ou compressed sensing en

IRM haute-résolution

Cette partie traite de l'application du compressed sensing (CS) à l'IRM haute-résolution.
Le CS est une nouvelle technique de traitement du signal développée par Donoho en
2006 (d'autres nomenclatures existent pour désigner CS : compressive sensing, compres-
sive sampling ou sparse sampling). Entre 2004 et 2006, les auteurs Emmanuel Candes,
Terence Tao et David Donoho ont prouvé à travers plusieurs publications que si la
condition de parcimonie est respectée, le signal peut être reconstruit avec un nombre
d'échantillons inférieur à celui décrit par le critère de Nyquist. Sur le même principe,
une image peut être reconstruite sans perte d'informations en utilisant des données sous-
échantillonnées.
Cette partie débute avec la description d'une nouvelle approche de CS pour la géné-
ration de trajectoires de sous-échantillonnage, reposant sur la théorie de l'agrégation
limitée par la di�usion (DLA) [Witten T and Sander L, Phys. Rev. Lett. 1981]. Le mo-
dèle DLA permet d'extraire un sous-ensemble de points issus d'un k-space échantillonné
régulièrement a�n d'établir un motif de sous-échantillonnage. DLA a été utilisée pour
le sous-échantillonnage d'imagerie haute-résolution pondérée en T2 (séquence RARE)
et en T1 (séquence FLASH). La Figure III illustre l'application de la méthode DLA
avec un sous-échantillonnage de 50% dans la direction de l'encodage de phase, pour des
acquisitions RARE (facteur d'accélération AF = 4) et FLASH.

Nous démontrons que l'approche DLA permet d'obtenir de meilleurs résultats que la
méthode polynomiale pour un sous-échantillonnage supérieur à 25% de données issues
d'acquisition RARE avec AF = 4 (Figure IVa) et AF = 1 (Figure IVb).

La méthode de descente de gradient conjugué a été employé pour la reconstruction
d'image CS dans le cas d'acquisition RARE pondérée en T2 (Figure Va). La méthode
iterative split de Bergman a été employé pour la reconstruction d'image CS dans le cas
d'acquisition pondérée en T1 (Figure Vb). Les performances des deux méthodes sont
similaires.

Le sous-échantillonnage DLA a été employé pour implémenter l'acquisition CS pour
l'imagerie haute-résolution pondérée en T2 et T1 à ultra-haut champ magnétique (17.2
T). Les performances des méthodes d'acquisitions DLA-CS RARE (Figure IV) et DLA-
CS FLASH (Figure VI) ont été évaluées pour di�érents taux de sous-échantillonnage.
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Figure III � Exemples de sous-échantillonnages DLA de 50% (a) et 3D DLA (b) em-
ployés pour l'encodage de phase pour une acquisition RARE avec AF = 4 (haut).
Exemples de sous-échantillonnages DLA de 50% (c) et 3D DLA (d) employés pour
l'encodage de phase pour une acquisition FLASH (bas).
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Figure IV � Erreurs relatives obtenues entre les images de référence (idéalement échan-
tillonnées) et les images CS obtenues par sous-échantillonnage DLA (bleu) et par sous-
échantillonnage polynomiale (rouge) pour des données acquises avec la séquence RARE
avec AF = 4 (a) et AF = 1 (b). Les barres d'erreur représentent les écart-types (n = 300).

Dans les deux cas, un taux de sous-échantillonnage de 50% permet un compromis idéal
entre résolution spatiale, rapport contraste-sur-bruit et intensité du signal. Ces deux
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Figure V � Images de ganglions buccaux (résolution isotropique de 25 µm) acquises
avec un échantillonnage complet (bas) et un sous-échantillonnage CS de 50% (haut).
Deux types de séquence d'acquisition et de reconstruction ont été employés : (a) une
acquisition RARE pondérée en T2 reconstruite avec une méthode de descente de gradient
conjugué ; la durée d'acquisition est de 1h52 minutes pour l'échantillonnage complet et
de 56 minutes pour le sous-échantillonnage CS de 50% ; (b) une acquisition pondérée en
T1 reconstruite avec la méthode iterative split de Bergman ; la durée d'acquisition est de
48 minutes pour l'échantillonnage complet et de 24 minutes pour le sous-échantillonnage
CS de 50%.

séquences d'acquisition CS (csRARE et csFLASH ) ont été implémentées sur le logiciel
commercial Bruker Paravision 5.1 ; la reconstruction des images est réalisée sur Matlab.

La séquence d'acquisition csRARE a été utilisé pour imager des tissues neuronaux
in vivo avec une résolution spatiale et un rapport contraste-sur-bruit su�sant pour iden-
ti�er la majorité des neurones présent dans le ganglion de l'Aplysia. Ces dernières ont
été identi�ées automatiquement à l'aide d'un algorithme de segmentation développé du-
rant les travaux de thèse. La séquence d'acquisition csFLASH a permis de quanti�er
avec précision l'intensité du signal lors d'expériences d'imagerie du manganèse MEMRI
(Manganese Enhanced MRI ). En moyenne, une di�érence de 1.37% en intensité de si-
gnal provenant d'un neurone a été estimée entre les images échantillonnées de manière
idéale et les images CS acquises avec un sous-échantillonnage déterminé pré-acquisition
(Figure VII). En comparaison, le sous-échantillonnage post-acquisition de données idéa-
lement échantillonnées produit une erreur plus faible (0.50%). Cette erreur di�érente
suivant le scénario suivi pour le sous-échantillonnage pourrait être due à plusieurs in-
stabilités expérimentales telles que le changement de position de l'échantillon à imager
dans le champ B0 (suite à des vibrations dues aux gradients) ou le changement de
certaines propriétés physiologiques de l'échantillon dans le temps. L'estimation du coef-
�cient de corrélation de Pearson (PCC) entre les données idéalement échantillonnées et
les données sous-échantillonnées a montré que les performances de la méthode DLA-CS
sont in�uencée par le rapport signal-sur-bruit de l'image, ce qui est en accord avec une
étude récente [Prieto C et al., JMRI, 36(6), 2012]. Des taux d'accélérations et donc
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des réductions importantes des durées d'acquisition sont à prévoir lorsque le rapport
signal-sur-bruit est important.

Figure VI � Évaluation des performances de la méthode CS-DLA pour di�érents taux
de sous-échantillonnage : (a) Coe�cient PCC estimé entre les images idéalement échan-
tillonnées et les images CS en fonction du taux de sous-échantillonnage pour une ré-
pétition (rouge) et deux répétitions (bleu). Le coe�cient PCC a été calculé pour une
région d'intérêt couvrant approximativement 50000 voxels. (b) Di�érence en intensité
entre les images idéalement échantillonnées et les images CS en fonction du taux de
sous-échantillonnage (2 acquisitions moyennées) pour une région d'intérêt contenant de
l'eau (rouge) et du tissu neuronal (bleu). Les barres d'erreur représentent les écart-types.
Ces données sont issues d'une étude contenant N=6 échantillons.

Figure VII � Représentation de Bland-Altman montrant la di�érence de l'intensité du
signal entre les images échantillonnées de manière idéale et : (a) les images CS acquises
avec un sous-échantillonnage déterminé pré-acquisition (prospective CS ) (a) et (b) les
images CS acquises avec un sous-échantillonnage post-acquisition de données idéalement
échantillonnées (retrospective CS ). Chaque point représente l'intensité du signal mesuré
dans un neurone (2 ganglions, 10 neurones par ganglion).

Alors que le sous-échantillonnage DLA a été implémenté pour les acquisitions RARE
avec un facteur d'accélération de 4, l'implémentation pour d'autres facteur d'accélération
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est directe. Toutefois, nous avons démontré que l'approche DLA est plus performante
pour des acquisitions RARE sans accélération, protocole habituellement utilisé pour
imager des tissus dont les temps de relaxation T2 sont courts. En�n, cette approche
n'est pas limitée aux acquisitions RARE ou FLASH et peut aisément s'étendre à d'autres
types de séquences.

Pour résumer, les résultats présentés dans cette partie démontrent que la méthode
DLA est une excellente alternative aux stratégies de sous-échantillonnage polynomial et
est capable de ramener à à des durées acceptables certains protocoles d'imagerie exigeant
habituellement de longs temps d'acquisition. En conséquence, ce type d'approche peut
grandement béné�cier à la microscopie par résonance magnétique en permettant l'étude
d'échantillons in vivo. Les résultats obtenus avec la stratégie DLA-CS ont montré la
possibilité d'accélérer l'acquisition des images haute-résolution et quantitative MEMRI
pour l'étude de tissu neuronal. Alors que les temps d'acquisition obtenus ne sont pas plus
courts en comparaison avec certaines techniques d'imagerie ultra-rapides telle que Echo
Planar Imaging (EPI) ou l'imagerie spirale, l'approche DLA-CS reste prometteuse à très
haut champ lorsqu'on désire une importante résolution spatiale et que les acquisitions
de type single shot ne sont pas réalisables. En�n, DLA-CS ne se limite pas au domaine
de la microscopie par résonance magnétique et peut tout à fait être employé dans les
domaines d'imagerie préclinique et clinique où la réduction des temps d'acquisitions sont
toujours appréciables.

Partie V : IRM de di�usion pour l'Aplysia

La cinquième partie de cette thèse traite de la di�usivité dans le ganglion abdominal de
l'Aplysia californica. L'étude de la relation entre la structure cellulaire et le signal en
IRM de di�usion dans les tissus neuronaux de l'Aplysia permet une meilleure compré-
hension de cette relation pour des organismes plus complexes. Des expériences d'IRMd
ont été réalisées sur des échantillons chimiquement �xés de ganglions abdominaux pour
une plage de temps de di�usion où l'évolution du signal IRMd est considérée comme
étant mono-exponentielle et peut être décrite de manière �able par le coe�cient ADC.
L'analyse de ces données ADC en fonction du temps de di�usion a été réalisée pour
les cellules de grande taille à l'aide de formules analytiques connues et valides pour les
temps de di�usion courts. Il est intéressant de noter qu'une analyse grossière employant
ces formules analytiques peuvent échouer du fait de la présence des noyaux cellulaires,
rendant l'estimation de la taille des cellules inexacte et très inférieure à leur taille réelle.

Des simulations numériques du coe�cient ADC ont été réalisées pour plusieurs types
de cellules présentes dans le ganglion abdominal. Pour simuler la géométrie des cellules
les plus grandes, ces dernières ont été segmentées à partir d'images anatomiques pon-
dérées en T2 et un noyau a été généré manuellement (Figure VIII). Les petites cellules
ont été modélisées à l'aide de géométrie sphérique et cylindrique en accord avec les don-
nées relatives à la structure cellulaire présentes dans la littérature. Cette bibliothèque
de résultats de simulation a alors été employée a�n d'ajuster notre modèle de di�usivité
intrinsèque aux données acquises sur des cellules de petite taille et des nerfs.

Le signal d'IRMd a été mesuré pour di�érents temps de di�usion dans des régions
d'intérêt (ROI) comprenant des neurones de grande taille, des agrégats de neurones et
des nerfs (Figure IX et X).
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Figure VIII � Rendu géométrique 3D d'un neurone de grande taille. Le contour du
neurone a été estimé à partir d'images pondérées en T2 (a). Un noyau de forme irrégulière
a été ensuite généré manuellement (b) puis inséré dans le neurone (c). Le noyau est
représenté en rouge alors que le cytoplasme est en vert. Des cellules de taille di�érente
ont ainsi été modélisées en augmentant la taille du noyau Re� (par exemple Reff = 60
µm (d) et Reff = 40 µm (e) ).
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Figure IX � Le signal d'IRMd acquis pour plusieurs temps de di�usion sur des neurones
de grande taille (a) et des agrégats de neurones (b). Pour chaque graphique, les signaux
sont représentés de haut en bas pour des valeurs respectives de temps de di�usion ∆
allant 5 à 25 ms. Les couleurs représentent la direction des gradients (rouge pour x, bleu
pour y et noir pour z).

Le logarithme du signal IRMd acquis évolue de manière linéaire avec le b-value
pour une plage allant de 70 à 700 s/mm2 ; le coe�cient ADC décrit donc le signal de
manière �able pour cette plage. Les signaux acquis suivant les composantes x, y et z ne
montrent pas d'anisotropie signi�cative pour les neurones de grande taille et les agrégats
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Figure X � Le signal IRMd acquis sur la composante nerveuse du neurone pour plu-
sieurs temps de di�usion : (a) l'orientation générale du nerf est suivant la direction x,
les composantes y et z étant similaires ; (b) l'orientation du nerf est telle que les trois
composantes x, y ,et z sont identiques ; (c) l'orientation du nerf suit majoritairement les
directions x et z (la composante y est la plus faible). Pour chaque graphique, les signaux
sont représentés de haut en bas pour des valeurs respectives de temps de di�usion ∆
allant 5 à 25 ms. Les couleurs représentent la direction des gradients (rouge pour x, bleu
pour y et noir pour z).

de neurones. Lorsque le temps de di�usion augmente de 5 à 25 ms, le coe�cient ADC
moyen diminue de 9.45% pour les neurones de grande taille, de 20.8% pour les agrégats
de neurones ; la di�usivité moyenne (MD) diminue de 14.98% dans les nerfs (Figure XI).

Avec l'hypothèse d'une di�usivité libre de 2.0 µm2/ms, le déplacement moyen due
à la di�usion est de 7.7 à 17.3 µm pour des temps de di�usion entre 5 et 25 ms. En
conséquence, il est possible d'utiliser les modèles mathématiques développés par Mitra
et al [P. P. Mitra et al., Phys. Rev. Lett., 68,1992] pour estimer le coe�cient ADC pour
un temps de di�usion court et ainsi estimer les rayons des cellules (Rest) et les comparer
aux mesures expérimentales (Re�) (Figure XII).
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Figure XI � Coe�cient ADC moyen en fonction du temps de di�usion pour les agré-
gats de neurones (cercles, N=11 ROIs), pour les neurones de grande taille (triangles,
N=22 ROIs) et pour les nerfs (losanges, N=12 ROIs). Les données ont été ajustées par
régression linéaire. Le coe�cient ADC diminue de 9.45% et 20.8% pour les neurones de
grande taille et les agrégats de neurones respectivement ; MD diminue de 14.95% dans
les nerfs. Les barres d'erreur correspondent aux écart-types des données expérimentales.
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Figure XII � La taille de la cellule est largement sous-estimée : Rest représente en
moyenne 25% de Re�.

Nous avons étendue l'analyse en procédant à des simulations basées sur un modèle du
neurones à deux compartiments avec un échange limitée entre le noyau et le cytoplasme.
Nous avons ainsi généré quatre géométries basées sur trois types de forme pour le noyau
et sur la position de ce dernier dans la cellule (Figure XIII).

Nous avons étudié les dépendances entre le coe�cient ADC, la forme du noyau et la
fraction en volume en simulant les valeurs ADC(∆, R) pour une di�usivité intrinsèque
dans le cytoplasme de Dc = 1 µm2/ms et une di�usivité intrinsèque dans le noyau de
Dn = 2 µm2/ms (∆ variant entre 5 et 25 ms). En ajustant les valeurs ADC obtenues
suivant le modèle ADC(∆, R) = A(R)×

√
∆ + B(R), nous avons observé que la pente

A(R) dépend majoritairement de la forme du noyau ; les dépendances avec la fraction
en volume ou la position du noyau dans le neurone sont plus faibles (Figure XIV).

Nous avons également comparé l'évolution de l'ADC en fonction du temps de di�u-
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(a) Modélisation 1 (b) Modélisation 2 (c) Modélisation 3

(d) Modélisation 4 (e) Modélisation 5

Figure XIII � Cinq géométries di�érentes de neurones ayant la même taille et le même
contour, mais ayant une forme de noyau di�érente (en rouge, a-e) et une position dif-
férente du noyau dans la cellule (b, c). Le contour du neurone est le même pour les
cinq géométries et a été généré à partir des images pondérées en T2. La fraction en
volume du noyau dans la cellule est approximativement de 25%. Les géométries 1 (a)
et 5 (e) possèdent la même forme de noyau mais la fraction en volume est di�érente
(respectivement 25% et 29%).
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Figure XIV � Pente A(R) en fonction du rayon de cellule R pour di�érentes fractions
en volume.

sion par simulation pour les agrégats de neurones et les nerfs, et extrait les paramètres
de di�usion intrinsèque pour le cytoplasme (Dc), pour le noyau (Dn) et les axones (Da).
Les résultats de simulations ADC pour Dc variant de 0.50 à 1.00 µm2/ms et Dn variant
de 1.25 à 2.00 µm2/ms sont représentées Figure XVa. La �gure XVb montre les couples
(Dc, Dn) qui permettent d'obtenir une erreur d'ajustement minimale. Les courbes en
trait pointillé représentées en Figure XVa sont les résultats de simulation du coe�cient
ADC réalisée pour le couple (Dc, Dn) de même couleur en Figure XVb.
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Figure XV � (a) Coe�cient ADC moyen acquis en fonction du temps de di�usion
(cercles) et ajustements optimaux (lignes pointillées). (b) Couples solution (Dc, Dn)
optimaux (cercles colorés). Les di�usivités intrinsèques sont corrélées : Dc+0.26×Dn =
1.1. Chaque ajustement numérique représenté en (a) correspond à un couple solution
(Dc, Dn) en (b) et est repéré par le même code couleur. Les barres d'erreur correspondent
aux écart-types des données expérimentales.

Nous avons en�n simulé les valeurs de MD pour Da variant de 0.85 à 2.00 µm2/ms
pour 6 distributions d'axones (Tableau I). En comparant les valeurs de MD simulées
aux valeurs expérimentales, nous avons extrait des plages de valeurs pour Da (Tableau
II).
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Nerf 1b 2b 3b ON RN CBC
Plage Da

(µm2/ms)
1.85-2.00 1.55-1.65 1.30-1.40 1.80-1.95 1.75-1.90 1.40-1.50

Table II � Les plages de di�usivité intrinsèque Da (µm2/ms) permettant d'obtenir
un ajustement optimal des données expérimentales de MD pour les 6 types d'axones
présents dans les nerfs du ganglion buccal (1b, 2b, 3b, ON, RN, CBC).

Conclusion

Ces travaux de thèse ont permis d'aboutir sur deux aspects :

1. Les stratégies DLA-CS ont été implémentées avec succès pour l'imagerie pondérée
en T2 et T1 avec une réduction du temps d'acquisition de 50% tout en conservant
une qualité d'image satisfaisante en termes de résolution spatiale et d'intensité du
signal. De plus, ce type de sous-échantillonnage DLA peut également être employé
pour l'imagerie reposant sur l'acquisition d'un k-space non cartésien. Le dévelop-
pement de telle méthode est capable de ramener à des durées acceptables certains
protocoles d'imagerie exigeant habituellement de longs temps d'acquisition. En
conséquence, ce type d'approche peut grandement béné�cier à la microscopie par
résonance magnétique en permettant l'étude d'échantillons in vivo.

2. Nous avons étudié l'évolution du coe�cient ADC suivant le temps de di�usion et
évalué sa dépendance avec trois structures di�érentes présentes dans le ganglion
abdominal de l'Aplysia. Nous avons observé qu'une augmentation du temps de
di�usion de 5 à 25 ms provoque une diminution du coe�cient ADC de 20.8%,
9.45% et 14.98% respectivement pour les agrégats de neurones, les neurones de
grande taille et les nerfs. Le coe�cient ADC varie de manière di�érente suivant les
éléments neuronaux observés du fait de leur taille et de leur forme di�érente. Notre
étude a permis de constater que le modèle mono-compartimental n'est pas su�sant
pour modéliser de manière adéquate les neurones de grande taille. En se basant sur
des résultats de simulation et des données expérimentales, nous avons pu établir un
modèle à deux compartiments, par ajout d'un noyau dans la région cytoplasmique
du neurone, a�n de permettre un ajustement numérique satisfaisant de l'évolution
du coe�cient ADC sur une plage de temps de di�usion allant de 5 à 25 ms. Nous
avons ainsi observé, en accord avec la littérature, que la di�usivité intrinsèque du
noyau est plus élevée que celle présente dans le cytoplasme. De plus, la forme et
la fraction en volume du noyau in�uencent grandement l'évolution du coe�cient
ADC contrairement à sa position dans la cellule. Ces observations démontrent que
la méthode d'imagerie IRMd pourrait potentiellement être employée comme ou-
til de diagnostic pour révéler des anomalies cellulaires relatives à la forme et la
taille des noyaux cellulaires [M. Webster et al., Journal of Cell Science, 122(10),
2009]. Nous avons également observé une dépendance linéaire entre les di�usivités
intrinsèques dans le cytoplasme et le noyau pour les agrégats de neurones. En�n,
la di�usivité intrinsèque dans les nerfs et plus particulièrement dans les axones
dépend de manière signi�cative du diamètre de ces derniers. Des études supplé-
mentaires combinant simulation et expérimentation sur l'Aplysia permettrait de
déterminer plus précisément la relation entre la géométrie et le signal IRMd.
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General introduction

Magnetic Resonance Imaging (MRI) is a widely used imaging technique based on Nu-
clear Magnetic Resonance (NMR). MRI is based on the interaction between an applied
strong magnetic �eld present in the scanner and a nucleus that possesses spin (con-
taining an odd number of protons and/or neutrons). The principle is to �magnetize�
the object of interest by a strong magnetic �eld present in the scanner. Using speci�c
encoding schemes and acquisition parameters one can sensitize MR images to various
physiologically relevant parameters (perfusion status and water di�usion among others).
In general, in clinical and research MRI, the images are generated by using the signal
from the nuclei of hydrogen atoms (1H), however other nuclei can also be used (23Na,
31P, 13C, etc). The 1H nucleus is the most-often used in MRI because of many reasons.
The 1H nucleus, consisting of a single proton, has a spin of 1/2 and is the most abundant
isotope of hydrogen, and exists naturally in biological tissues (as it is present in water).
In addition, the 1H has the highest gyromagnetic ratio (a measure of the MRI sensitivity
to detect a particular species) among all nuclei.

Magnetic Resonance Microscopy (MRM) refers to high resolution MRI, higher than
100 µm3 down to the scale of 5-10 µm3. The MRM imaging technique is useful for the
study of fundamental aspects of the nervous system at the level of single neurons or small
size networks. In this thesis we use the Aplysia califonica animal model because of the
relatively simple nervous structure with cell sizes much larger compared with mammalian
neurons, e.g. several hundred microns in diameter versus 5-10 microns. Given their
size, it is possible to image and identify individual neurons from the MR anatomical
images (typically acquired with 25 µm isotropic resolution). In order to achieve high
resolutions, we use a high magnetic �eld (17.2 T) and custom built solenoidal coils (2.4
mm diameter) developed by our team.

High resolution MRI experiments require long acquisition time. Acceleration meth-
ods are therefore highly desirable. Parallel imaging techniques are successfully used to
reduce the acquisition time in clinical and preclinical imaging, however they are less
popular in MR microscopy due to the limited space available for placing multiple coil
elements. The compressed sensing (CS) approach another technique used to accelerate
MR acquisitions time by reducing the number of points acquired in k-space. The �rst
objective of this thesis was to implement compressed sensing (CS) strategies to reduce
the acquisition time in high resolution magnetic resonance. Speci�cally, we proposed
and validated a new undersampling model based on the di�usion limited aggregation
(DLA). We applied this undersampling method to T2-weighted (starting from RARE
sequence) and T1-weighted images (starting from FLASH sequence).

A speci�c application of MRI is di�usion MRI. Di�usion MRI (dMRI) is a non-
invasive imaging technique that gives a measure of the di�usion characteristics of water
in biological tissues. The molecular di�usion in tissues is restricted, i.e. water molecules
interact with many obstacles such as �bers and membranes. By measuring how wa-
ter molecules di�use through the tissue, the dMRI technique can be reveal microscopic
details about its microstructure. However, understanding the relationship between the
complex tissue microstructure and the dMRI signal is not easy task on one needs to
make use of mathematical modeling and numerical simulations the dMRI signal tools is
very importance. The Aplysia nervous tissue facilitates the dMRI studies because high
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resolution MR imaging allows the �ne anatomical description of the cellular network
(size of individual neurons and orientation of axons). Using the Aplysia neuronal tis-
sues to study the relationship between the cellular structure and the di�usion MRI signal
can shed light on this relationship for more complex organisms. Therefore the second
objective of this thesis was to develop and validate a di�usion model in the abdomi-
nal ganglion of Aplysia californica. We measured the dMRI signal at several di�usion
times and performed simulations of water di�usion in cellular geometries obtained after
segmenting high resolution T2-weighted images and incorporating known information
about the cellular structure from the literature. We have validated certain relationships
between the cellular geometry and the dMRI signal in the Aplysia neurons and nerves.

This thesis is organized into six main parts as follows. In part 1, we introduce the
MRI concepts relevant to this thesis such as k-space, gradient encoding, �eld-of-view
(FOV), signal to noise ratio (SNR), 2D and 3D imaging, as well as the basic image
reconstruction principles based on the Fourier transform. In addition, we describe the
main pulse sequences used during this thesis and the contrast they generate: the RARE
pulse sequence for T2-weighted imaging, the FLASH pulse sequence for T1-weighted
imaging. In part 2, we brie�y introduce dMRI concepts as well as related equations and
existing works. The relation between apparent di�usion coe�cient and cell size, the ani-
mal model used in dMRI simulations are also introduced here. Furthermore, we describe
a fast dMRI sequence, the di�usion prepared FISP sequence. Several accelerated acqui-
sition techniques are presented in part 3. In part 4, we propose a new undersampling
scheme based on the DLA model. We detail the development, implementation, valida-
tion and the application DLA-CS to T2-weighted (RARE) and T1-weighted (FLASH)
images to reduce the acquisition time while maintaining the quality of image in term of
resolution and signal quanti�cation. We proposed a cell segmentation algorithm and its
application in order to compare the fully encoding and DLA-CS images. Part 5 is dedi-
cated to di�usion MRI both in terms of data acquisition and modeling. The conclusion
and future directions are presented in part 6.

In brie�y, the main outcomes of this thesis are:

1. We proposed a new undersampling model based on the di�usion limited aggrega-
tion (DLA) and have successfully implemented the DLA-CS strategies for T2 and
T1-weighted images, with a reduction of the acquisition time of 50% while main-
taining the quality of the images both in terms of spatial resolution and signal
intensity quanti�cation. The DLA undersampling patterns introduced here are
not limited to be subsets of Cartesian k-space points, but it can also be extended
to non-Cartesian imaging and for other type of sequences. Such developments
are bene�cial to magnetic resonance microscopy studies by reducing the notori-
ously long acquisitions to more reasonable times, thus enabling the expansion of
the technique to dynamic investigations. In addition, we proposed a simple cell
segmentation algorithm as a tool for image analysis in MR microscopy.

2. We investigated dependence of the ADC on the di�usion time in three di�erent
structures within the abdominal ganglia of Aplysia. We found that by increasing
the di�usion time from 5 to 25 ms, the ADC dropped by 20.8%, 9.45% and 14.98%
for bag cell neurons, large cell neurons and the nerve ROI, respectively. The
di�erent behavior in the three di�erent regions can be explained by the di�erent
sizes and shapes of the cellular components. By analyzed the di�usion time-
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dependent ADC using a well-known analytical formula that is valid in the short
di�usion time regime, we found that it is not su�cient to approximate the large
cell size by using the predicted one compartment model. We went on to perform
numerical simulation of the ADC for several cell types of the abdominal ganglia.
To create the simulation geometries, for the largest cells, we segmented a high
resolution T2-weighted images and incorporated a manually generated nucleus.
For small cells and nerve cells, we created spherical and cylindrical geometrical
domains that are consistent with known information about the cellular structures
from the literature. Using the library of simulation results, we �tted for the
intrinsic di�usivities of the small cells and the nerve cells. Based on the results from
numerical simulation (by solving the Bloch-Torrey equation on speci�c domains
of large neurons) and evidence from experimental data, we established that it is
necessary to include a nucleus region embedded in a cytoplasmic region in order
to �t the large drop in ADC observed when varying the di�usion time from 5 to
25 ms. In agreement to the literature we found that the intrinsic di�usivity in
the nucleus is higher than in the cytoplasm. Moreover, both shape and nucleus
volume fraction were found to signi�cantly in�uence the ADC behavior, while the
position of the nucleus did not seem to be important. This results suggests that
dMRI can be used as a diagnostic tool as the shape and size of cell nuclei can
reveal cellular abnormalities. Regarding the bag cell neurons, we observed a linear
relationship between the intrinsic di�usivities in the cytoplasm and the nucleus
for which the �tting of ADC was successful. Moreover, we found regarding the
nerve that the extracted intrinsic di�usivity of axons depends signi�cantly on the
axons diameter distribution we chose.

All the solution creation (arti�cial sea water), sample preparation as well as experi-
mental in this thesis were performed by me, except for the sample preparation, solution
creation and experimental protocol mentioned in section 19 (CS in T1-weighted imag-
ing: CS-FLASH) were processed by my colleague, Pavel Svehla, the co-authorship in
a preparation manuscript. The daily tending for the Aplysia was shared by our team
members and not to mentioned in this thesis.

This work was funded by grant ANR-13-BSV5-0014-01 (project ANImE) and by the
doctoral school EOBE, University Paris Sud, Orsay, France.
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Magnetic resonance imaging (MRI) is a widely used imaging technique based on
nuclear magnetic resonance (NMR). The principle is to �magnetize� the object of interest
by a strong magnetic �eld present in the scanner. Subsequently, the magnetization
is manipulated using radio waves and magnetic �eld gradients in order to generate
images. Using speci�c encoding schemes and acquisition parameters one can sensitize
MR images to various physiologically relevant parameters such as perfusion status and
water di�usion among others. In general, in medical MRI, the images are generated by
using the signal from the nuclei of hydrogen atoms (1H), however other nuclei can also
be used (23Na, 31P, 13C, etc) [1]. This chapter will introduces MRI concepts relevant
to this thesis such as k-space, gradient encoding, �eld-of-view (FOV), signal-to-noise
ratio (SNR), as well as the basic image reconstruction principles based on the Fourier
transform. In addition, we describe the main pulse sequences used during this thesis
and the contrast they generate: the RARE pulse sequence for T2-weighted imaging,
the FLASH pulse sequence for T1-weighted imaging, and the FISP pulse sequence. For
more detail about MRI as well as the pulse sequences, one can refer to the literature
[1, 2, 3, 4, 5]. Note that, in this thesis, vectors are usually denoted using bold-face font,
scalar numbers or complex numbers using regular font.

1 NMR

Neutrons and protons have the intrinsic quantum property of spin, characterized by the
nuclear spin quantum number s (for more details see [6]). The absolute value of the
spin angular momentum is

S =
h

2π

√
s(s+ 1), (1)

where h = 6.626 × 10−34Js is the Planck constant. The magnetic quantum number is
denoted bym and can have 2s+1 values: m = −s,−s+1, · · · , s−1, s. The z-component
of the spin angular momentum vector is

Sz = ms
h

2π
. (2)

The 1H nucleus has one proton and it has spin value s = 1
2
, associated with a magnetic

moment
µ = γS, (3)

where γ is the gyromagnetic ratio, a characteristic speci�c to the considered nucleus
(for proton γ = 2.68 × 108 rad s−1 T−1). In the presence of an external homogeneous
magnetic �eld B this results in a torque

T = µ×B, (4)

where µ is the magnetic moment, with a related potential energy equal to

E = −µ ·B. (5)

The 1H nucleus can have one of two spin states, referred to as spin-up (ms = 1
2
, also

referred to as �parallel� state) and spin-down (ms = −1
2
, also referred to as �anti-parallel�

state). The two states have equal energy and at thermal equilibrium, the number of
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spin in the spin-up state is approximately equal to the number of spins in the spin-down
state. In the presence of an external magnetic �eld B0, directed along a particular
direction, conventionally denoted by z, B0 = B0z, the interaction between the nuclear
magnetic moment and the external magnetic �eld splits the energy level into two levels
(for an arbitrary nucleus the energy level splits into (2s+1) levels called Zeeman levels).

Then the z-component of a nuclear magnetic moment in (3) becomes µz = γm
h

2π
and

the energy level of each state is

Em = −µzB0 = −γm h

2π
B0. (6)

Therefore, for proton, the di�erence in the energy levels for the two states is ∆E =

γ
h

2π
B0. The excess of spins in the lower energy state gives the equilibrium magnetization

M0 which is oriented along the external �eld (direction z). The di�erence in the energy
levels can be rewritten as:

ν =
ω0

2π
=

∆E

h
=

γ

2π
B0, (7)

where ω0 is called the Larmor angular frequency. ω0 is proportional to the strength of
the magnetic �eld B0 and can be calculated using the Larmor equation:

ω0 = γB0. (8)

The Larmor frequency ω0 is measured in megahertz (MHz), the gyromagnetic ratio γ is
in MHz/T and the magnetic �eld strength B0 is in Tesla (T). Following the Boltzmann
distribution, the net magnetization is given by

M0 = M0z = ρ
γ2

4kT

(
h

2π

)2

B0z, (9)

where k is the Boltzmann constant and T is the temperature in Kelvin. The unit vector
z = (0, 0, 1) gives the direction of the external magnetic �eld. The spin density ρ is
a characteristic of the object being imaged and depends on its chemical content and
structure.

1.1 Bloch Equations

To detect a NMR signal the bulk magnetization vector must be tipped away from the
z-direction by applying another magnetic �eld (i.e B1 �eld) perpendicular to B0. When
the macroscopic magnetization interacts with this time-varying external magnetic �eld
B(t), its evolution can be described by the equation of motion in completely classical
terms, which is the approach we will pursue in what follows. The equation of motion is
known as the Bloch equation for the magnetization is the simple equation:

dM

dt
= γ (M×B) , (10)



22 NMR

where B is the total magnetic �eld. For the case B = B0 = (0, 0, B0), the coordinate
form of (10) is

dMx

dt
= γB0My,

dMy

dt
= −γB0Mx, (11)

dMz

dt
= 0.

Under an initial condition

M(t = 0) = [Mx(0),My(0),Mz(0)],

these equation have the solution (see [7])

Mx(t) = Mx(0) cos(−ω0t)−My(0) sin(−ω0t),

My(t) = Mx(0) sin(−ω0t) +My(0) cos(−ω0t), (12)

Mz(t) = Mz(0),

in which ω0 = γB0, the Larmor angular frequency, represents the precession frequency
of spins located in a magnetic �eld (Figure 1). Following the application of a radio-

0

Figure 1 � In presence of a static magnetic �eld, the spin magnetic moments and the
resulting bulk magnetization precesse at the Larmor frequency.

frequency (RF) pulse (a magnetic �eld, the direction of which is oscillating at the
Larmor frequency), the equilibrium magnetization is deviated from the B0 direction
(z-direction) by an angle α (the �ip angle) given by:

α = γ

∫ τ

0

B1(t)dt, (13)

where τ is the length of time the �eld with the magnitude B1(t) is turned ON.
In the case B = B0 = (0, 0, B0) and initial conditions M(t = 0) = M0(sinα, 0, cosα),
the solutions of (10) are:

Mx = M0 sinα cos(−ω0t),

My = M0 sinα sin(−ω0t),

Mz = M0 cosα.
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The complex transverse component of M is a single complex value M⊥ given by

M⊥ = Mx + iMy = M0 sin(α) e−iω0t,

where i =
√
−1 is the imaginary unit.

If the magnetization vector is tipped (nutated) to the x − y plane, then the RF
pulse is called a 90 degree pulse and the duration of the pulse must satisfy γB1τ =
π/2, where B1 is the magnitude of the RF �eld and τ is the width of the pulse. The
nutation magnetization by the angle 90 degree is described in equation (10) with B =
(B1 cos(ωt), 0, B0).

After the RF pulse has been turned o�, the magnetization vector starts to return
back to the direction of the static magnetic �eld. It is most advantageous to analyze
the magnetization and its di�erential equations in terms of parallel and perpendicu-
lar components relative to the static main magnetic �eld, B = B0z. For the case of
non-interacting spins, the parallel, or �longitudinal�, component of the magnetization
satis�es:

dMz

dt
= 0, (14)

and the transverse component M⊥ = Mxx+Myy satis�es:

dM⊥

dt
= γM⊥ ×B, (15)

where

B =

 0
0
B0

 .
Due to the interactions between the spins and the lattice there are terms in equations
(14) and (15) which depend on di�erent decay parameters. Speci�cally, for equation (14)
the magnetic moments tend to align with the external magnetic �eld in order to reach
their minimum energy state. As a result, the rate of the change of the longitudinal

magnetization
dMz

dt
is proportional to the di�erence M0 − Mz. The proportionality

constant, T1, is empirically determined and represents the inverse of the growth rate.
The equation (14) becomes:

dMz

dt
=

1

T1

(M0 −Mz) , (16)

T1 is the called �spin-lattice relaxation time�. Immediately after the RF pulse is turned
o�, the time decay of longitudinal magnetization, with initial value Mz(0), to the equi-
librium value M0 is described by:

Mz(t) = Mz(0) e−t/T1 +M0

(
1− e−t/T1

)
. (17)

The solution for an arbitrary starting point t0 can be written as:

Mz(t) = Mz(0) e−(t−t0)/T1 +M0

(
1− e−(t−t0)/T1

)
. (18)

For equation (15), the characterization of the overall rate of reduction in the trans-
verse magnetization brings forward another experimental parameter, the �spin-spin� or
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transverse relaxation time T2. The equation (15) can be rewritten including the T2 term
as:

dM⊥

dt
= γM⊥ ×B− 1

T2

M⊥. (19)

The Bloch equation (10) with T1 and T2 relaxation becomes

dM

dt
= γ (M×B)− (Mxx+Myy)

T2

− (Mz −M0) z

T1

. (20)

Under an initial condition M(t = 0) = [Mx(0),My(0),Mz(0)], the solution is (see [7])

Mx(t) = e−t/T2 (Mx(0) cos(−ω0t)−My(0) sin(−ω0t)) ,

My(t) = e−t/T2 (Mx(0) sin(−ω0t) +My(0) cos(−ω0t)) , (21)

Mz(t) = Mz(0) e−t/T1 +M0

(
1− e−t/T1

)
.

The longitudinal component decays from its initial value ofMz(0) toward its equilibrium
value ofM0. The transverse component rotates at frequency ω0 and decays towards zero.
The complex transverse component of the magnetization Mxy = Mx + iMy becomes

Mxy(t) = Mxy(0) e−t/T2e−iω0t,

= |Mxy(0)| e−iω0t+iφ0e−t/T2 , (22)

where φ0 and |Mxy(0)| are the phase and the module of the complex number Mxy(0),
respectively.

1.2 Signal detection

To detect the NMR signal it is necessary to have an RF coil which is in the transverse
plane, that is, perpendicular to the B0 �eld. The receiver coil, which usually surrounds
the sample, is an antenna which �picks-up� the voltage V (t) induced by the precessing
of the magnetization. The voltage induced in the receive coil is given by

V (t) = − d

dt

∫
(M(r, t) ·Brf (r))dr, (23)

where Brf (r) describes the sensitivity of the receiver coil at di�erent points in space.
More speci�cally, Brf (r) is the ratio of the magnetic �eld produced by the receiver coil
to the current in the coil (magnetic �eld per unit current). Brf (r) can be measured in a
given coil, or calculated from for a particular coil geometry. The primary objective of the
receiver coil design is to prescribe wire placements so that Brf (r) has the largest possible
transverse component. The longitudinal component of Brf (r) contributes little to the
output voltage, and can be ignored. This is a result of the fact that the time derivative
of Mz(t, r) is much smaller than that of the transverse component. Mz(r, t) decays
exponentially with the time constant T1, typically hundreds to thousands milliseconds,
while the transverse component oscillates with a period of relaxation T2 on the order of
tens to hundreds of milliseconds for protons in most live tissue. The magnetic resonance
(MR) signal measured by some electronics system is proportional to (23) and it depends
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on ampli�er gain and other system characteristics. The MR signal can be written in
terms of the space components, r, as

s(t) ∝ − d

dt

∫ [
Mx(r, t)B

rf
x (r) +My(r, t)B

rf
y (r) +Mz(r, t)B

rf
z (r)

]
dr. (24)

Note that the solutions Mx(r, t), My(r, t), Mz(r, t), and the transverse component
Mxy(r, t) are determined by equations (21) and (22). For static �elds with magnitudes
of several tesla, the Larmor frequency ω0 for proton is at least four orders-of-magnitude

larger than typical values of
1

T1

and
1

T2

. Hence the time derivative of the e−t/T1 and

e−t/T2 can be neglected, compared with the derivative of the e−iω0t factor. The time
derivative of transverse component is

dMxy

dt
(r, t) = −|Mxy(r, 0)|

(
1

T2(r)
+ iω0

)
e−t/T2(r)−iω0t+iφ0(r). (25)

Since
1

T1

and
1

T2

are very small compared to ω0, andMx = Re(Mxy) andMy = Im(Mxy),

the MR signal can be approximation by

s(t) ∝ ω0

∫
e−t/T2(r)|Mxy(r, 0)|

[
Re
(
ie−iω0t+iφ0(r)

)
Brf
x (r) + Im

(
ie−iω0t+iφ0(r)

)
Brf
y (r)

]
dr

∝ ω0

∫
e−t/T2(r)|Mxy(r, 0)|

[
sin(ω0t− φ0(r))Brf

x (r) + cos(ω0t− φ0(r))Brf
y (r)

]
dr.

(26)

By denoting the magnitude Brf
⊥ and the phase θB of the complex number Brf

xy = Brf
x +

iBrf
y = Brf

⊥ e
iθB , it implies that Brf

x = Brf
⊥ cosθB and Brf

y = Brf
⊥ sinθB and thanks to

the trigonometric identity sin(a + b) = sina cosb + cosa sinb, the equation (26) can be
simpli�ed as

s(t) ∝ ω0

∫
e−t/T2(r)|Mxy(r, 0)| Brf

⊥ (r) sin(ω0t− φ0(r) + θB(r)) dr. (27)

Assume that the sample volume is Vs, for the limit case where all quantities in (27) do
not depend on in the spatial position r, then

s(t) ∝ ω0 Vs e
−t/T2 |Mxy(0)| Brf

⊥ sin(ω0t− φ0 + θB). (28)

In practice, the signal is measured through two channels, which are called real and
imaginary, corresponding to the multiplication of the signal by a sinusoid or a cosinusoid
with a frequency of ω = ω0 +δω near ω0, where δω is the o�set frequency. Through some
mathematical approximation with low pass �ltering, the real signal is determined by

sre(t) ∝
1

2
ω0

∫
e−t/T2(r) |Mxy(r, 0)| Brf

⊥ (r) cos(δωt+ φ0(r)− θB(r)) dr, (29)

and the imaginary signal is determined by

sim(t) ∝ 1

2
ω0

∫
e−t/T2(r) |Mxy(r, 0)| Brf

⊥ (r) sin(δωt+ φ0(r)− θB(r)) dr. (30)
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Now, the complex signal s(t) = sre(t) + i sim(t) becomes

s(t) ∝ 1

2
ω0

∫
e−t/T2(r) |Mxy(r, 0)| Brf

⊥ (r) ei(δωt+φ0(r)−θB(r)) dr

∝ 1

2
ω0

∫
e−t/T2(r) |Mxy(r, 0)| Brf

⊥ (r) ei[(ω−ω0)t+φ0(r)−θB(r)] dr

∝ 1

2
ω0

∫
Mxy(r, t) B

rf
xy(r) e

iωt dr. (31)

Since the usual computer is digital and not analog, it is necessary to convert from the
analog complex signal to two arrays of digital signal numbers sn (corresponding with
real and imaginary signal sampling) given by

sn ∝ ω0

∫
Mxy(r, t) B

rf
xy(r) e

iωn∆t dr, (32)

where the sampling time interval is ∆t.

2 MRI

As explained before, inside the MRI scanner, there is a strong static magnetic �eld
of magnitude B0 applied along what is conventionally called the positive z-direction,
resulting in a net magnetization in the positive z-direction. When a time-varying mag-
netic �eld (much weaker than the static magnetic �eld) is applied for a short time at the
resonance frequency, ω0 = γB0, where γ/(2π) = 42.576 MHz/Tesla is the gyromagnetic
ratio of the water proton, the net magnetization is tipped away from the z-axis. For
simplicity, we assume that the net magnetization is tipped onto the x − y plane, then
the oscillating magnetic �eld will be called a 90 degree pulse. The magnetization vector
will precess around the z-axis, inducing a voltage in the receiver coil (see Figure 2).
The net magnetization will realign along the z-direction, due to two relaxation e�ects:

xy

B0
z

(a)

0 200 400 600 800 1000
Mz

|Mxy|

Time (ms)

M
a
g
n
e
ti
z
a
ti
o
n

(b)

Figure 2 � E�ects of relaxation on the magnetization vector after a 90 degree excitation
pulse. (a) The magnetization vector precesses around the z-axis. (b) The measured net
magnetization in the x − y plane (Mxy) and the z-component of the relaxing magneti-
zation. In both sub�gures, T2 = 200 ms, T1 = 500 ms.
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the spin-lattice relaxation (recovery the net magnetization along the z-direction to its
original value), and the spin-spin relaxation (the decay of the net magnetization in the
x− y plane to zero). The rate constant of the �rst relaxation is called T1 and the rate
constant of the second kind of relaxation is called T2. Both T1 and T2 vary according to
the tissue environment and depend on the external magnetic �eld B0. The MR signal
also depends on the spin density varies with the tissue environment.

Usually, in which addition to T2 (spin-spin) relaxation, local �eld inhomogeneities
also contribute to the signal decay, this e�ect is called T ∗2 and can be cancelled by a
refocusing 180 degree pulse, applied at t = TE/2 after the 90 degree pulse, producing
an echo at TE, that gives a measured signal that will have only the contribution from
T2. Such a sequence of applied RF pulses is called a spin echo sequence.

2.1 Gradient encoding

The spatial encoding of the signal is obtained by applying additional magnetic �elds
in all three directions called magnetic �eld gradients or gradient �elds Gx(t), Gy(t)
and Gz(t). The gradient �elds are produced by a set of three independently computer-
controlled coils. These coils are referred as the x-gradient, y-gradient and z-gradient
coils. In the presence of the magnetic �eld gradient, G, the local magnetic �eld is given
by:

B(r, t) = (B0 + G(t) · r)z.

The spatial varying magnetic �eldB(r) is generated by applying magnetic �eld gradients
in all three directions G = (Gx, Gy, Gz). The magnetic �eld gradients are given by:

Gx =
dBz

dx

Gy =
dBz

dy
(33)

Gz =
dBz

dz

no gradient

z

y

x

x-gradient on y-gradient on z-gradient on

Figure 3 � Diagram of gradient �eld e�ects on the main magnetic �eld B0.

In this case, the Larmor frequency ω0 in all the equations mentioned in the previous
section will be replaced by the precession frequency of the transverse magnetization
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Mxy(r), which is the Larmor frequency plus a frequency o�set due to imaging gradient
G(t):

ω(r, t) = ω0 + ωG(r, t)

= γB0 + γG(t) · r,

where ωG(r, t) = γG(t) · r and B0 is the main magnetic �eld. The accumulated phase
o�set due to the applied gradient, at time t, is

φG(r, t) = −γ
∫ t

0

G(t′) · r dt′. (34)

In a reference frame rotating at frequency ω0, the complex transverse magnetization in
the x− y plane, M(r, t) := Mx(r, t) + iMy(r, t), obeys the Bloch equation:

∂M(r, t)

∂t
= −iγ r ·G(t)M(r, t)− M(r, t)

T2(r)
, (35)

where T2(r) is the local spin-spin relaxation rate. The solution of equation (35) is

M(r, t) = ρ(r) e−t/T2(r) e−ir·(γ
∫ t
0 G(s) ds), (36)

where t = 0 is the start of the 90 degree pulse and ρ(r) is the spin density.

2.2 k-space

One of the most important concepts in MRI is the k-space, which was introduced in
1981 by Likes [8] and in 1983 by Ljunggren [9] and Twieg [10]. Brie�y, k-space is an
array of numbers representing spatial frequencies associated with the MR image. In MRI,
k-space is the two dimensional (2D) or three dimensional (3D) Fourier transform of the
MR image. The k-space points or Fourier data (complex values) are collected during the
MR acquisition. Each k-space point contains spatial frequency and phase information
about every pixel in the �nal image. Conversely, each pixel in the image maps to every
point in k-space. The individual points in k-space do not correspond one-to-one with
individual pixels in the image.

For a general gradient G, the k-space coordinate is de�ned as:

k(t) =
γ

2π

∫ t

0

G(s) ds. (37)

Some authors omit the factor of 2π in the denominator from the de�nition of k-space,
this factor is absorbed it into the de�nition of γ. The k-space has units of inverse
distance, typically inverse centimeters (cm−1). For a time-constant gradient Gx, Gy,
Gz, we get

kx(t) =
γ

2π
Gxt, (38)

ky(t) =
γ

2π
Gyt, (39)

kz(t) =
γ

2π
Gzt. (40)
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Using the k-space de�nition, the magnetization located at position r (Equation (36))
becomes

M(r, t) = ρ(r) e−t/T2(r) e−i2πk(t)·r,

and the MRI signal can be written as

S(k(t)) =

∫
µ(r) e−i2πk(t)·r dr, (41)

where µ(r) is the e�ective spin density, which is proportional to the magnitude of the
external magnetic �eld, the spin density and the relaxation constants (see more [1]).

2.3 Fourier transform and image reconstruction

The Fourier transform is one of the most important theories in signal processing, espe-
cially in MRI. It is thoroughly described in several textbooks [11, 12, 13, 14]. In what
follows I will brie�y introduce the concept of Fourier transform and its application to
MRI.

The Fourier transform de�nes a relationship between the image domain and its rep-
resentation in the frequency domain. The original signal can be recovered from knowing
the Fourier transform, and vice versa, without loss of information. Theoretically, the
Fourier transform is de�ned by:

S(k) =

∫
µ(r) e−i2π r·k dr, (42)

and the inverse Fourier transform is de�ned by:

µ(r) =

∫
S(k) ei2π r·k dk, (43)

where S(k) is called Fourier transform of µ(r) and vise versa µ(r) is called inverse
Fourier transform of S(k). Brie�y, we denote Fµ for Fourier transform of µ and F−1S
for inverse Fourier transform of S. Note that, there are some other forms of Fourier
transform de�nitions. Following the helpful summary provided by T. W. Körner in his
book Fourier Analysis [14]. We can de�ne

S(k) =
1

A

∫
µ(r) eiB r·k dr,

where A =
√

2π, B = ±1; A = 1, B = ±2π. In this thesis we have chosen A = 1 and
B = −2π.

Equation (41) implies that the MRI signal, acquired at echo time t = TE, is the
Fourier transform of the e�ective spin density

S(k) =

∫
µ(r) e−i2πk·r dr = Fµ(k), (44)

and vice versa the e�ective spin density is the inverse Fourier transform of the MRI
signal

µ(r) =

∫
S(k) ei2πk·r dk = F−1S(r). (45)

The 2D and 3D Fourier transform (and inverse Fourier transform) formulas will be
mentioned in the following sections in the content of image reconstruction in 2D and
3D.
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2.4 Frequence encoding

In 2D and 3D MR imaging, the most straightforward type of gradient encoding is the
frequency encoding. Keep in mind that the frequency encoding only on one direction. If
a gradient Gx(t) is applied to the sample, the precessing frequency will change linearly
with the location r = (x, 0, 0),

ω(r, t) = γG(t) · r
= γGx(t)x (46)

If the signal is read out while this gradient is on, contributions from di�erent locations
along the x axis will exhibit di�erent frequencies. This process is called frequency
encoding, and corresponding gradient is called frequency encoding gradient (or read
gradient). Note that the frequency encoding gradient strength does not change during
the acquisition.

2.5 2D imaging

2.5.1 Slice selection

When performing 2D MRI, the image is acquired in a sub-volume of the sample. Slice
selection is used to selectively excite the spins in a �de�ned plane�. The space dependence
of the Larmor frequency in the presence of a gradient can be used to selectively excite the
spins within a slice perpendicular to the gradient direction. Since only the excited spins
generate a signal, this is used to restrict the imaged volume of sample. As described
before, the resonance frequency of the spins during the z gradient is:

ω(z) = γB0 + γGzz = ω0 + ωG(z).

Note that at z = 0 (isocenter) the frequency ω = γB0 = ω0. The z location of the

excited spins and thus the slice plane will be z =
ωG(z)

γGz

(see Figure 4). If a gradient is

applied in the z direction during an RF excitation pulse of bandwidth W = ∆ω with
single frequency ω, only the spins in a thin slice (thickness ∆z) are excited :

∆z =
W

γGz

. (47)

After the excitation pulse, the selected transverse magnetization in the sample is essen-
tially a two dimensional distribution.

2.5.2 Phase encoding

If a magnetic �eld gradient is applied in the y direction for a given time interval ∆ty,
the Larmor frequency will vary in this direction during that time interval, so that the
signal at di�erent positions will accumulate a di�erent phase. After the gradient has
been switched o�, the precession frequency will return to a constant value, while the
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Figure 4 � Diagram of the slice selection when applying an excitation pulse. A gradient
Gz imposes a space dependence on the main magnetic �eld. An RF pulse with the
single frequency ω will excite only the spins at the appropriate position. Thus, the slice
position depends on the strength of the gradient and the pulse frequency.

imprinted phase remains proportional to y. This process is called phase encoding.

φ(r) = (ω(r)− ω0(r)) ∆ty

= γGyy∆ty

= 2π kyy, (48)

where ky =
γ

2π
Gy∆ty.

2.5.3 2D image reconstruction

Suppose z ∈ [
(
z0 − 1

2
∆z
)
,
(
z0 + 1

2
∆z
)
] are the limits of the slice of interest. By choosing

G(t) = (0, Gy, 0) (phase) for a time interval ∆ty and then choosing G(t) = (Gx, 0, 0)
(read) for a time interval ∆tx, then since the z component of gradient encoding G(t)
equal zeros, the magnetization at r at TE is

M(r, t) = ρ(x, y, z) e−TE/T2(r) e−i2π (kxx+kyy),

where kx =
γ

2π
Gx∆tx and ky =

γ

2π
Gy∆ty. The MRI signal in equation (44) can be

rewritten as

S (kx, ky) =

∫ ∫ [∫ (z0+ 1
2

∆z)

(z0− 1
2

∆z)
µ(x, y, z)dz

]
e−i2π(kxx+kyy)dxdy. (49)

The e�ective spin density in slice l is:

µl(x, y) =

(∫ (z0+ 1
2

∆z)

(z0− 1
2

∆z)
µ(x, y, z) dz

)
. (50)

It is clear that the MRI signal in equation (49) is the 2D Fourier transform of the
contrast function in equation (50):

S (kx, ky) =

∫ ∫
µl(x, y)e−i2π (kxx+kyy) dx dy

= F2D[µl(x, y)](kx, ky).
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Therefore,

µl(x, y) =

∫ ∫
S (kx, ky) e

i2π (kxx+kyy) dkx dky

= F−1
2D [S (kx, ky)](x, y).

As mentioned in section 2.2, the e�ective spin density µ(x, y, z) is proportional to the
magnitude of the external magnetic �eld, the spin density and the relaxation constants,
thus µl(x, y) proportional these parameters as well.
By the appropriate choice of Gx, Gy, and ∆tx and ∆ty the Fourier transform can be
obtained for a set of 2D Fourier points. Then the inverse Fourier transform can be
performed and then sampled at physical space points to obtain the image intensity in
each voxel, Vi,j,l where

Vi,j,l :=

[(
i− 1

2

)
∆x,

(
i+

1

2

)
∆x

]
×
[(
j − 1

2

)
∆y,

(
j +

1

2

)
∆y

]
×
[(
z0 −

1

2
∆z

)
,

(
z0 +

1

2
∆z

)]
.

An average value of the e�ective spin density function for Vi,j,l:

µ̄l(i, j, z0) ≈
∫
Vi,j,l

µ(x, y, z) dx dy dz,

≈
∫ (j+ 1

2)∆y

(j− 1
2)∆y

∫ (i+ 1
2)∆x

(i− 1
2)∆x

(∫ (z0+ 1
2

∆z)

(z0− 1
2

∆z)
µ(x, y, z) dz

)
dx dy,

≈
∫ (j+ 1

2)∆y

(j− 1
2)∆y

∫ (i+ 1
2)∆x

(i− 1
2)∆x

µl(x, y) dx dy, (51)

can be displayed in an image.

2.6 3D imaging

In 3D imaging, instead of using slice selection, a second phase encoding gradient will be
applied in z direction. This second phase encoding axis is typically called phase 2.

2.6.1 Phase 2 encoding

As for the primary phase encoding, if the gradient �eld in the z direction is applied
for a given time interval ∆tz, the Larmor frequency will vary in this direction during
that time interval, so that the signal at di�erent positions accumulates a di�erent phase.
After the gradient has been switched o�, the precession frequency returns to a constant
value, while the imprinted phase remains proportional to z:

φ(r) = (ω(r)− ω0(r)) ∆tz

= γGzz∆tz (52)

= 2π kzz,

where kz =
γ

2π
Gz∆tz.
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2.6.2 3D image reconstruction

By choosing G(t) = (0, 0, Gz) for a time interval ∆tz, then choosing G(t) = (0, Gy, 0)
for a time interval ∆ty, and �nally choosing G(t) = (Gx, 0, 0) for a time interval ∆tx,
the magnetization at r at TE is

M(x, y, z) = ρ(x, y, z) e−TE/T2(x,y,z) e−i2π (kxx+kyy+kzz),

where kx =
γ

2π
Gx∆tx, ky =

γ

2π
Gy∆ty and kz =

γ

2π
Gz∆tz. The MRI signal in equation

(44) can be rewritten as the 3D Fourier transform:

S (kx, ky, kz) =

∫ ∫ ∫
µ(x, y, z) e−i2π (kxx+kyy+kzz) dx dy dz

= F3D[µ(x, y, z)](kx, ky, kz). (53)

Therefore, the e�ective spin density is the inverse Fourier transform of the signal:

µ(x, y, z) =

∫ ∫ ∫
S (kx, ky, kz) e

i2π(kxx+kyy+kzz) dkx dky dkz

= F−1
3D [S (kx, ky, kz)](x, y, z). (54)

Then the inverse Fourier transform can be performed and then sampled at physical
space points to obtain the image intensity in each voxel, Vi,j,l where

Vi,j,l :=

[(
i− 1

2

)
∆x,

(
i+

1

2

)
∆x

]
×
[(
j − 1

2

)
∆y,

(
j +

1

2

)
∆y

]
×
[(
l − 1

2

)
∆z,

(
l +

1

2

)
∆z

]
.

An average value of the e�ective spin density function for Vi,j,l:

µ̄l(i, j, l) ≈
∫
Vi,j,l

µ(x, y, z) dx dy dz, (55)

that can be displayed in an image.

2.7 Resolution and FOV

The FOV is de�ned as the size of the two or three dimensional spatial encoding area
of the image. We denote FOVx, FOVy and FOVz the size of the image in x (read), y
(phase 1) and z (phase 2) directions, respectively. The FOV is typically divided into
several picture elements (pixels). The number of points in each direction, Nx, Ny and
Nz for x, y and z direction, respectively, give the acquisition matrix size. The nominal

resolution of image (pixel width) is determined by ∆x =
FOVx
Nx

, ∆y =
FOVy
Ny

and

∆z =
FOVz
Nz

. In the case of 2D imaging, Nz = 1 and ∆z = FOVz is slice thickness as

mentioned in the slice selection section.



34 MRI

As shown in Figure 5, the FOV is inversely proportional to the encoding steps (the
spacing) samples in k-space (see more [2, 15]):

∆ki =
1

FOVi
=

1

Ni∆i
, ∀i = x, y, z.

Alternatively, this relation can be based on the spatial resolution:

∆i =
1

Ki

=
1

2kimax

, ∀i = x, y, z

where Ki is the width of the k-space region in i direction, i = x, y, z, that is sampled in
the entire experiment.

-kymax

-kxmax kxmax

kymax

Figure 5 � Diagram of the k-space and the relationships between k-space FOV and reso-
lution. The sampled k-space points are ploted as dots; the arrows show the trajectories
during one frequency encoding scan corresponding to one phase encoding step.

2.8 SNR

The SNR was introduced by Edelstein et al. in 1986 [16]. The SNR is measure of how
much true signal versus how much noise a particular image has. In MRI imaging, the
SNR is then de�ned by

SNR =
mean(signal)

std(noise)
. (56)

The SNR is proportional to the volume of the voxel and to the square root of the
number of averages and phase steps (assuming constant sized voxels). Since averaging
and increasing the phase steps takes time, the SNR is depends on the square root of the
acquisition time:

SNR ∝ ∆x ∆y ∆z
√
Tacq,
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where the product of the three pixel dimensions (without zero-�lling interpolation)
∆x ∆y ∆z is the voxel volume, and Tacq is the total acquisition time. The total ac-
quisition times is proportional to number of phase encoding steps, so we have for 3D
imaging,

SNR3D ∝ ∆x ∆y ∆z
√
NyNzTRNa,

and for 2D imaging
SNR2D ∝ ∆x ∆y ∆z

√
NyTRNa,

where Na is the number of averages, TR is the time between the acquisition of two �read�
lines and it is called repetition time. In addition, the SNR does not only depend on the
acquisition parameters as mentioned above but also depend on the others parameters
as [17, 18]:

SNR =
γ3~2B2

0B1ρ∆x∆y∆z

4kTs
· 1√

8kTeffBWReff

,

where ρ is the spin density, ~ = 1.05457 × 10−34 Js is the reduced Planck constant,
k = 1.38×10−23 J/K is Boltzmann's constant, B0 is external �eld gradient strength, B1

is RF gradient strength, Ts is the temperature of the sample, Teff is the temperature
characterizing the noise of the system, BW is the bandwidth of receiver coil and Reff

is the e�ective resistance.
Glyn Johnson and colleagues reported in [19] that the 2D multislice and 3D MRI se-
quences are often equally sensitive in terms of SNR per unit imaging time. Moreover,
the major advantage of 3D imaging is improved the resolution while the 2D sequences
provides higher reliability for image quality as reported in [20] by Niranjan Balu and
colleagues. As shown in equation (47), the higher gradient strength in slice direction
is necessary to get the lower slice thickness. Therefore, in high-resolution MRI, the
3D MRI sequences usually used instead of 2D multislice due to the limited of gradient
strength.

Finally, the SNR can be improved by tweaking scan parameters (note however that
there is an interdependence between the acquisition parameters). Assuming all other
factors remain the same, the SNR can be improved by

� Reducing resolution

� Decreasing TE

� Increasing the acquisitions times by increasing the number of averages, Na, to
reduce the standard deviation of noise

� Decreasing the bandwidth.

2.9 Acquisition time

Let us consider a 3D k-space data collection and let Ny, Nz denote the number of
phase encoding steps for two directions perpendicular to the read axis. Basically, each
unique pair of phase encoding gradients is acquired during one TR. Therefore, the total
acquisition time for a 3D imaging method is given by

Tacq = NyNz TR. (57)
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For a 2D imaging experiment, the total acquisition time is

Tacq = Ny TR. (58)

In practice, in order to increase the SNR, one can increase the number of averages, that
we denote Na, it means that the data is collected Na times and then averaged. In this
case the total acquisition time is increased by a factor Na.

3 MRI pulse sequences

A pulse sequence is a series of events comprising of RF pulses, gradient waveforms, and
data acquisition. The purpose of the pulse sequence is to manipulate the magnetization
in order to produce the desired signal. A wide variety of sequences are used in MRI. The
most basic ones are Spin Echo (SE) sequences and the Gradient Echo (GRE) sequences.
There are several basic steps which constitute an MR pulse sequence.

� Slice selection (in 2D imaging): Turn on the slice-selection gradient; Excitation
pulse (RF pulse); and then turn o� slice-selection gradient.

� Phase encoding: Turn on the phase encoding gradient repeatedly with a di�erent
strength.

� Read: Turn on the frequency encoding gradient repeatedly during the acquisition
with the same strength.

� Generate echo (or FID) and collection of the MR signal.

3.1 Spin Echo sequence

The most common pulse sequence used in MR imaging is based on the detection of a
spin echo or Hahn echo [21]. A 90 degree radio frequency pulse is applied to excite the
magnetization and one or more 180 degree pulses are applied to refocus the spins and
to generate signal echoes named spin echoes (SE). In the pulse sequence timing diagram
(Figure 6), the simplest form of a spin echo sequence is illustrated. The 90 degree
excitation pulse rotates the longitudinal magnetization (Mz) into the xy-plane and the
dephasing of the transverse magnetization (Mxy) starts. The application of a 180 degree
refocusing pulse (rotates the magnetization in the x-plane) generates signal echoes. The
purpose of the 180 degree pulse is to rephase the spins, causing them to regain coherence
and thereby to recover transverse magnetization, producing a spin echo. The recovery
of the z-magnetization occurs with the T1 relaxation time and typically at a much slower
rate than the T2-decay, because in general T1 is greater than T2 for biological tissues
and is usually in the range of 50�3000 ms. (Note that T1 depends on the magnetic �eld,
example at ultra-high magnetic �eld at 17 T, T1 can be reach 2800 ms while T2 around
50 ms.) The SE pulse sequence was devised by Carr and Purcell [22] and exists now in
many forms: the multi echo pulse sequence using single or multislice acquisition, the fast
spin echo (FSE/TSE) pulse sequence, spin echo planar imaging (EPI) pulse sequence;
all are basically spin echo sequences. In the simplest form of SE imaging, the pulse
sequence has to be repeated many times as only one k-space line is acquired in one TR.
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Figure 6 � Spin echo pulse diagram.

3.2 RARE: T2-weighted images

The Rapid Acquisition with Refocused Echoes (RARE) sequence, also called Rapid Spin
Echoes (RSE) or Fast Spin Echo (FSE) or Turbo Spin Echo (TSE) depending on the
manufacturer, was introduced by Jurgen Hennig in 1986 [23] and it is based on the
multiple-echo sequence. Over the years, RARE has mostly replaced the conventional
multiple spin-echo pulse sequence, which was the most common sequence used in clinical
imaging. RARE speeds up the image acquisition by acquiring multiple lines in k-space
per repetition (determined by RARE factor parameter, AF ). The RARE sequence
starts with a 90◦ pulse excitation and then repeatedly plays 180◦ refocusing pulses at
TE intervals (Figure 7). The number of refocusing pulses determines the rare-factor and
therefore the reduction in the acquisition time. However, the amplitude of the successive

90o 180o

Gz

Gy

Gx

RF

ADC

signal

AF times

Figure 7 � RARE pulse diagram.

echoes naturally decays with T2 implying that each line in k-space has a di�erent T2
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weighting. The e�ective echo time of such acquisition depends on the time when the
central line in k-space is acquired, hence the choice of phase-encoding steps ordering is
very important. The RARE sequence typically provides excellent T2-weighted image
(T2w) contrast but is improper for T2 quanti�cation because of the mixed T2 weighting
within a single k-space plane [23].

3.3 Gradient Echo sequence

A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse
sequence timing diagram, the basic gradient echo sequence is illustrated (see Figure 8).
There is no refocusing 180 degree pulse and the data are sampled during a gradient echo,
which is achieved by dephasing the spins with a negatively pulsed gradient before they
are rephased by a gradient with opposite polarity to generate the echo. As shown in

signal

ADC

Gz

Gy

Gx

RF

Figure 8 � Gradient echo pulse diagram.

the gradient echo diagram, the excitation pulse is termed the alpha pulse a◦. It tilts the
magnetization by a �ip angle a◦, which is typically between 0 and 90 degrees. Due to the
small �ip angle there is a reduction in the value of transverse magnetization that will be
used to form the image. The contrast and signal generated by a gradient echo depend
on the size of the longitudinal magnetization, the �ip angle and the echo time. When
a = 90◦ the sequence is identical to the so-called partial saturation or saturation recovery
pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many
times as the number of phase encoding points (k-space lines). Additional gradients or
radio frequency pulses are introduced with the aim to spoil the xy-magnetization at the
moment when the spin system is subject to the next pulse. As a result of the short
repetition time, the z-magnetization cannot fully recover and after a few initial pulses
there is an equilibrium established between the z-magnetization recovery and the z-
magnetization reduction due to the pulses (steady-state). Gradient echo sequences are
often use for T1-weighted image (T1w) imaging and the contract depend on TR and �ip
angle. T ∗2 weighting can be minimized by keeping the TE as short as possible, but pure
T2 weighting is not possible. By using a reduced �ip angle, some of the magnetization
value remains longitudinal (less time needed to achieve full recovery). For a certain T1
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and TR, there exist one �ip angle that will give the most signal, known as the "Ernst
angle" [24].

3.4 FLASH: T1-weighted images

The FLASH (Fast Low Angle SHot) sequence is a basic gradient-echo sequence with two
typical features [25]. The TR is generally shorter than the T1 of the sample, meaning
the longitudinal magnetization has not fully recovered between two successive excita-
tion pulses. After a given number of pulse repetitions, the longitudinal magnetization
available before each pulse reaches a steady-state level. The transverse magnetization
remaining at the end of the read-out block is �spoiled� by a gradient, ensuring that
Mxy = 0 before the following excitation pulse (see Figure 9). Thus no coherent mag-

RF

Gx

Gy

Gz

Figure 9 � FLASH pulse diagram.

netization will be tipped from the transverse plane onto the longitudinal axis by the
next RF pulse. This spoiling is required for instance if TR < 5T2. Combining these
conditions the FLASH signal equation in steady-state is:

S = M0

(
1− e−TR/T1

)
sin(α) e−TE/T

∗
2

1− cos(α) e−TR/T1
.

The steady-state therefore depends on the choice of TE, TR and �ip angle (usually 5
� 30◦). Ideally, all of the data in k-space should be acquired when the system is in
steady-state, hence the need for �dummy scans� (all the pulses and gradients are played
but the data is not acquired) to reach steady-state prior to the actual acquisition start.
In practice, if k-space is acquired linearly starting from the edge, dummy scans are
less crucial since steady-state will likely be reached before the center of k-space (which
determines the main signal level) is acquired. The advantage of the FLASH sequence
is a short acquisition time via a short TR. The short TR will generally introduce T1
weighting, although T∗2 weighting is also possible through a choice of relatively long TE.



40 MRI pulse sequences

3.5 FISP sequence

The Fast Imaging with Steady-state free Precession (FISP) is a fast imaging sequence
using a refocusing gradient in the phase encoding direction during the end module to
maximize (refocus) remaining transverse magnetization at the time when the next exci-
tation is due the �balanced� (Figure 10). The FISP is usually performed with a short TR

RF

Gx

Gy

Gz

Figure 10 � FISP pulse diagram.

(20-50 ms). Most often this technique is used to generate T ∗2 -weighted images, although
other weightings sequence are possible. This sequence is very similar to FLASH, except
that the spoiler pulse is eliminated. As a result, there is transverse magnetization still
present at the time of application of the next RF pulse. Because there is still some
remaining transverse magnetization at the time of the RF pulse, an RF pulse of the
degree �ips the spins less than the degree from the longitudinal axis. With small �ip
angles, very little longitudinal magnetization is lost and the image contrast becomes
almost independent of T1. Using a very short TE (with TR 20-50 ms, �ip angle 30-45◦)
eliminates T ∗2 e�ects, so that the images become proton density weighted. As the �ip
angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is
in the domain of large �ip angles and short TRs that FISP exhibits a vastly di�erent
contrast compared to the FLASH sequence. More detail about FISP and some related
sequences, one can refer to the literatures [26, 27].
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4 Water di�usion in biological tissue

Besides the spin density and relaxation contrasts, incoherent spin displacement can be
another source of contrast in MRI. Such displacement are due to the Brownian motion of
water molecules in tissue which is hindered by the presence of biological cell membranes
as well as cell nuclei and macro-molecules.

5 Di�usion-encoding

The incoherent spin displacement is encoded by the application of additional magnetic
�eld gradients, called di�usion-encoding gradients, which are turned ON for very short
durations during the sequence gradient �pulses�. The most commonly used di�usion-
encoding pulse sequence is the Pulsed-Gradient Spin Echo (PGSE) [28] sequence. For
the PGSE sequence, the e�ective gradient time pro�le is:

f(t) =


1 ts < t ≤ ts + δ,

−1 ts + ∆ < t ≤ ts + ∆ + δ,

0 otherwise,

(59)

where ts is the starting time of the �rst gradient pulse, δ is the duration of the pulses and
∆ the delay between the start of the pulses (see Figure (11)). The signal is measured at
the echo time TE. Note that the time of the application of the 180◦ refocusing pulse,
TE
2
, satis�es ts + δ ≤ TE

2
< ts + ∆ [29, 30].

−1

0

1

t

f(
t)

δ

TE

∆

δ

Figure 11 � The PGSE time pro�le for ts = 0, consisting of two rectangular pulses
(duration δ, separated by a time interval ∆

Under the assumption that spins experience a homogeneous (or homogenized)
isotropic di�usion environment characterized by the di�usion coe�cient Dhom inside
the voxel V (and neglecting edge e�ects at the boundary of V ), the spins starting at
position r0 ∈ V at ts di�use according to the probability density function:

P (r, t) =
e−‖r−r0‖

2/4Dhom(t−ts)

(4πDhom(t− ts))
d
2

, d = 3.

Furthermore, under the assumption that δ � ∆ (narrow pulse assumption) the e�ect
of the �rst di�usion-encoding magnetic �eld gradient pulse on spins starting at (r0 ,
ts) is a gain of a complex phase e−iγg·r0 δ between ts and ts + δ, where g ∈ R3 is the
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di�usion-encoding gradient vector, γ is the gyromagnetic ratio of the water proton. If
spins move from r0 to a di�erent position, say r, at the start of the second pulse, then
the cumulative e�ect of the PGSE sequence is e−iγg·(r−r0) δ. Thus, the e�ect on the MRI
signal, compared to having no di�usion-encoding gradient g, is an attenuation (loss) of
the signal:∫

r0∈V
ρ(r0)

∫
r∈V

e−‖r−r0‖
2/4Dhom∆

(4πDhom∆)
d
2

e−iγg·(r−r0) δdr dr0 = e−γ
2δ2‖g‖2Dhom∆

∫
r0∈V

ρ(r0) dr0,

where we used the formula for the Fourier transform of the Green's function of the
heat or di�usion equation. Note that the e�ective spin density at r0, denoted by ρ(r0),
is proportional to the external magnetic �eld and relaxation constants (e−TE/T2(r) and
e−TR/T1(r)).

If δ is not small compared to ∆, then, in fact, the signal attenuation is [31]:

S(b,TE) = e−D
hom b

∫
r0∈V

ρ(r0) dr0,

where the b-value is a weighting factor as de�ned in [32]:

b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) , (60)

for the PGSE sequence. The replacement of ∆ by ∆− δ/3 accounts for pulses that are
not narrow.

To obtain the di�usion coe�cient from the MRI signal, one can acquire the MRI
signal with a di�usion weighting g and another one without di�usion weighting, g = 0,
and use the formula:

Dhom =
logS(g)− logS(g = 0)

−b
.

Because biological tissue is not a homogeneous di�usion environment due to the presence
of cell membranes and other cell components (nucleus, macro-molecules) the quantity
obtained using the above formula is called the Apparent Di�usion Coe�cient (ADC)
and it is smaller than the free di�usion coe�cient.

6 Bloch-Torrey equation model

The mathematical description of the complex transverse magnetization including e�ects
of di�usion is called the Bloch-Torrey equation [31]:

∂M(r, t)

∂t
= −iγ r · gf(t)M(r, t) +∇ · (D(r)∇M(r, t)) , (61)

where f(t) ∈ R contains the e�ective time pro�le information of the di�usion-encoding
gradient. In the above equation, we have neglected relaxation e�ects and imaging gra-
dients. The intrinsic di�usion coe�cient D(r) depends on the tissue micro-structure.
In this thesis, we will neglect permeability e�ects between cells and cell components so
that spins always stay inside any geometrical con�nement, Ω. In this case, we will add
the homogeneous Neumann boundary condition to the PDE above:

(D(r)∇M(r, t)) · n(r) = 0, r ∈ ∂Ω, (62)

to complete the mathematical problem, where n(r) is the outward pointing normal
vector to Ω.
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7 The relation between the ADC and the cell size

Di�usion magnetic resonance imaging (dMRI) has shown tremendous promise in a wide
range of brain imaging applications. The correlation of dMRI-derived metrics with
brain micro-structure properties such as axon size, myelin thickness, neurite orientation
distribution, is an active area of research. To explain the correlations between the
dMRI metrics (the ADC value, signal, etc) and the geometrical parameters, there have
been numerous biophysical models (usually subdividing the tissue into compartments
described by spheres, ellipsoids, cylinders, and the extra-cellular space) [33, 34, 35, 36,
37, 38, 39]. However, it is di�cult to connect the geometrical parameters contained in
these models to ground truth values due to the complexity of brain tissue.

To get closer to the ground truth, experiments performed on various arti�cial phan-
toms have been conducted including: carrot slices [40], spheres �lled with a gel in each
cell compartment [41], physical phantoms constructed from resected rat spinal cord
[42], poly�l �bers wound on a spherical polyamide spindle [43], straight X-crossings of
polyester �bers [44]. Other authors performed histological analysis of the tissue of inter-
est by manual alignment with MRI data [45], co-registration of di�usion tensor imaging
(DTI) and Golgi data [46] to get independent information of the microstructure of the
imaged object and verify their models described in [39, 47, 48, 46, 45, 49]. This informa-
tion was then compared with model predictions extracted from the experimental dMRI
data. This comparison procedure can be useful in evaluating the quality and usefulness
of the proposed dMRI models.

A well-known approximation for the ADC in the short time regime is the following
[50, 51]:

ADCshort = D0

(
1− 4

√
D0

3 dim
√
π

√
∆
S

V

)
, (63)

where
S

V
is the surface to volume ratio. In the above formula the pulse duration δ is

assumed to be very small compared to ∆. A recent correction to the formula in (63)
taking into account the �nite pulse duration δ [52] is the following:

ADCshort = D0

[
1− 4

√
D0

3 dim
√
π
Cδ,∆

S

V

]
, (64)

where

Cδ,∆ =
4

35

(∆ + δ)7/2 + (∆− δ)7/2 − 2
(
δ7/2 + ∆7/2

)
δ2 (∆− δ/3)

=
√

∆

(
1 +

1

3

δ

∆
− 8

35

(
δ

∆

)3/2

+ · · ·

)
.

When δ � ∆, the value Cδ,∆ becomes
√

∆.

For spheres (three dimensions) or disks (two dimensions), the surface to volume ratio
S

V
is

dim
R

, where R is the radius. From the experimental ADC for multiple di�usion

times we can �t the experimental ADC as the linear function of
√

∆ or Cδ,∆, and the
radius can be estimated.
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8 Aplysia animal model

In this thesis we propose another approach for dMRI model validation, using the much
larger neural cells of the Aplysia californica as a surrogate phantom. The advantages
of this choice lies in the simple structure of the neural system, consisting of large round
cells, smaller round cells gathered in bags, and cylindrical bundles of unmylinated axons.
These cell components can be surrogates for mammalian brain cell components (the
soma, axon bundles, dendrites). In particular, the large size of the Aplysia neural cells
make it possible to test claims about short time di�usion imaging (usually implemented
with OGSE [53] sequences) using the PGSE [28] sequence.

At moderate b-values that we will consider in this thesis, the mono-exponential be-
havior is su�cient to describe the dMRI signal. Thus, we consider only the relationship
of the ADC, which contains �rst order dependence of the signal on the b-value, to ge-
ometrical information on the con�ning domain Ω. This relationship is not completely
understood from a theoretical point of view except for some simple geometries. Geomet-
rical models (spherical and oriented cylindrical cells embedded in extra-cellular space
[33, 39]). In these case, the dMRI signal is decomposed as the sum of the signals from two
di�erent tissue compartments: the signal from the spherical cells and the extra-cellular
space being Gaussian with an e�ective di�usion tensor.

The neural system of the Aplysia californica consists of �ve pairs of ganglia: buccal,
cerebral, pleural, pedal, and abdominal ganglia [54]. The abdominal and buccal ganglia
were chosen in this imaging study because the cellular network is very well known in
terms of single cell neurons and axonal orientation [55, 56]. Moreover, the abdominal
ganglion or single neurons from the abdominal ganglion have been investigated using
magnetic resonance microscopy (MRM) and di�usion MRM studies. The abdominal
ganglia diagram is shown in Figure 12.

giant cell
big cell

bag cells
L. connective n.

Siphon n.

Gential-pericardial n. Branchial n.

R. connective n.

Figure 12 � The Aplysia abdominal ganglion diagram.

Several authors have reported ADC values in the cytoplasm and in the nucleus of the
L7 neurons of the Aplysia abdominal ganglia. The results showed that the ADC values
in the cytoplasm are smaller than in the nucleus. For example Grant et al. reported
in [57] by using a biexponential signal �t that the average ADC in the cytoplasm is
0.30± 0.09× 10−3 mm2/s; while the average ADC in the nucleus is 1.17± 0.29× 10−3
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mm2/s. Using monoexponential �ts, Schoeniger and colleagues [58] found ADCs of
0.28× 10−3 and 1.47−3 mm2/s in the cytoplasm and nucleus, respectively. These results
are in good agreement with recent reports by Choong H. Lee and colleagues [59], which
also found that the ADC in the nucleus is larger than in the cytoplasm, as shown
in Figure 13. In addition, in a study validating cellular di�usion, Grant et al. [57]

N

C

Figure 13 � The ADC in the nucleus (N) is larger than it in the cytoplasm
(C) of L7 Aplysia neuron. (7.8µm in-plane resolution, source: Lee et al. [59]:
www.nature.com/articles/srep11147 )

demonstrated that the nuclear di�usion is monoexponential while cytoplasm di�usion
appears non-monoexponential. In a previous study Hsu et al. [60] concluded that
the apparent di�usion isotropy came from sub-cellular di�usion isotropy rather than
averaging e�ects over multiple cells.

In this thesis, we focus on the following three types of cells and cell components for
imaging study.

1. Large neuron cells;
There are many large neuron cells in the abdominal ganglion with a diameter of at
least 150 µm that are visible by inspection in the high resolution (26 µm isotropic)
T2w images. Some of these include neurons L2 to L9, L11, R2 to R8, R14 and
R15 (labeled L or R for left or right hemiganglion, e.g. see in [61]). The single cell
neurons with diameter less than 150 µm are not included in this group. We note
that the sizes of these identi�ed neurons are not �xed, they vary as a function of
the age and the weight of the animal. The large cell neurons contain a nucleus,
cytoplasm and are probably surrounded by small satellite (glial) cells [59]. The
satellite cells are very small cells, 6 µm maximum in diameter, without a nucleus
[55, 56, 59].

Several large cell neurons of diameter greater than 150 µm (up to 420 µm) that
are easily identi�able from the T2w image will be selected for this study.

2. Clusters of neuron cells gathered in the shape of a bag;
The bag shaped clusters comprise of hundreds of neurons that are located on the
rostral end of the abdominal ganglion [55]. The actual number and sizes of these
neurons depend on the animal age and weight [62]. For example, in young Aplysia,
there are probably fewer than 100 small (about 10 µm in diameter) cell neurons
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in each bag; in adult Aplysia the number of cells grows to 400 in each bag with
cell sizes between 40 to 100 µm in diameter [55, 63, 64, 65].

There are two clusters of bag cells in each abdominal ganglion. When the abdom-
inal ganglion is slid inside the small imaging capillary (as it will be later described
in chapter V), only one cluster of bag cells is easy to identify from the T2w im-
age, the other cluster is usually close to the abdominal body making it harder to
identify from the T2w image. Therefore, only the one clearly identi�able cluster
of bag cells in each ganglion is selected for this study.

3. Nerve;
These are groups of (cylindrically shaped) axons. There are �ve groups of nerves
in the abdominal ganglion: the left/right connective nerves, siphon nerve, gential-
pericardial nerve and branchial nerve [61] (see Figure 12). The siphon nerve and
left/right connective nerves are of interest in this study because they remain intact
as the ganglion is inserted inside the imaging capillary whereas other nerves are
cut.

The information of the axon sizes and distributions for the nerves shown in Table
1 are for the buccal ganglia of Aplysia californica because we could not �nd analo-
gous information about the abdominal ganglia. The nerves contain groups of axons
(cylindrically shaped) with diameters ranging from very small (less than 1 µm) to large
(greater than 25 µm). Based the axonal area con�guration, small distribution, these

Nerve I (> 25µm) II (10− 25µm) III (1− 10µm) IV (≤ 1µm)
1b 0 5.00±0.54 261±50 7144±1044
2b 2.33±0.33 19.41±4.04 235±74 9415±1312
3b 0 15.00±1.58 67±9.6 2191±755
ON 1.67±0.33 8.67±2.03 681±191 10483±691
RN 0 16.00±0.60 1579±326 2692±791
CBC 2.00±0.41 12.00±1.44 196±82 1591±206

Table 1 � The nerves (1b, 2b, 3b, ON, RN, CBC) of buccal ganglia. There are four type
of axons with di�erent range of axons diameter: type I , II , III and IV. The distribution
of axons type of each nerve [56] were shown.

nerve mentioned above can be separated to three groups [56]:

� Nerves consisting of many semicircular-shaped bundles of small axons (nerve 1b).

� Nerves subdivided into two separated regions: the �rst group mainly contains
large-sized axons and the second group contains small and medium sized axons
(nerves 2b and ON).

� Nerves which uniform distribution of axons (the separation of axonal areas is
missing) (nerve 3b and CBC).

As shown in Figure 14, the buccal ganglia contains several bilaterally symmetrical groups
of neurons such as B1, B2, B6, B9 (200 - 300 µm) [66, 67] as well as small neurons
(≤ 50µm) [68].
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Figure 14 � The Aplysia buccal ganglion diagram realized by R. Nargeot.

9 Fast dMRI sequences

This section will brie�y introduce two fast dMRI sequences: the Echo Planar Imaging
(EPI) sequence and di�usion-prepared FISP sequence.

9.1 The Echo-planar imaging

EPI is one of the early magnetic resonance imaging sequences, used in numerous appli-
cations including di�usion, perfusion, and functional magnetic resonance imaging. EPI
uses a di�erent strategy for data collection than what we had presented in chapter I.
When the echo planar imaging acquisition strategy is used, a complete image is formed
from a single data sample (all k-space lines are measured in one repetition time). EPI
can be employed either with a gradient echo or spin echo sequence depending on the
contrast desired. Figure 15 shows the pulse sequence timing diagram of a spin echo EPI
with eight echo train pulses. In the case of a gradient echo based EPI sequence the
initial part (before the acquisition) is very similar to a standard gradient echo sequence.
By periodically fast reversing the readout or frequency encoding gradient, a train of
echoes is generated. A �blipped� phase encoding technique used on most modern sys-
tems applies a small amplitude gradient phase encoding pulse (equal to ∆ky) prior to
each sampling period. No phase encoding gradient is applied during signal detection
so that the phase encoding for each echo is constant. When used in the gradient echo
mode, EPI sequences are very sensitive to T ∗2 e�ects. The advantage of EPI is its fast
data collection, however, it is extremely sensitive to image artifacts and distortions due
to the magnetic susceptibility di�erences at tissue-air interfaces, making their use prob-
lematic in some anatomical regions. Modern gradient ampli�ers may be required for
single-shot EPI imaging because of the rapid switching of the readout gradient polar-
ity necessary to acquire all the echoes. These artifacts can be reduced by employing
segmented or multishot acquisitions to the detriment of increasing the acquisition time
which becomes TR × number of segments. Segmented techniques acquire a subset of
phase-encoding steps following each excitation pulse. A segmented loop structure with
multiple excitation pulses is used to acquire all phase encoding steps. EPI is not very
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Figure 15 � Echo planar imaging pulse sequence timing diagram. A spin echo exitation
scheme and an echo train length of 8 are illustrated.

popular in microscopy studies because the reduced �elds of view and voxel sizes lead to
severe artifacts related to susceptibility di�erences, eddy currents, mechanical vibration
and errors in gradient trajectory.

9.2 DP-FISP

The main limitations of di�usion measurements are long acquisition times and low res-
olution. Recently, Lu et al. have developed a rapid di�usion prepared-FISP (DP-FISP)
MRI acquisition for in vivo preclinical imaging [69] (single slice 0.3 × 0.3 × 2 mm3

resolution). Brie�y, the main idea is to combine a slice-selective di�usion preparation
(90x − 180y − 90−x) with a single-shot, centric encoding FISP imaging readout. The
di�usion preparation was designed with bipolar di�usion gradients to limit cardiac and
respiratory motion artifacts. Gradient spoilers were applied after the di�usion prepa-
ration to avoid spurious echoes. Our group extended the DP-FISP sequence proposed
by Lu to a 3D DP-FISP version with centric encoding for high resolution microscopy
imaging [70] (see Figure 16). More details about the DP-FISP and 3D DP-FISP pulse
sequence designs can be found in [69, 71]. The results show that this sequence is much
more time-e�cient than standard DW-SE and less prone to artifacts than EPI. 3D DP-
FISP can be used in the low b-value range for ADC measurements. Higher b-value
introduce non-negligible signal recovery from T1 relaxation. The limiting feature of the
total acquisition time in a 3D DP-FISP is the long TR between planes in k-space. This
is required to obtain complete longitudinal relaxation before the next di�usion prepared
module [71].

The 3D DP-FISP will be used during this thesis for the study of time-dependent
ADC measurements in multi-di�usion directions with multiple b-values and validation
with numerical simulation of time-dependent ADCs.
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Despite the fact that the modern magnetic resonance imaging hardware available
today often results in su�ciently high SNR without signal averaging, the total exper-
imental time, dictated only by the requirement for su�cient k-space coverage, can be
extremely long, prohibiting the very high resolution imaging of live biological systems.
One way to reduce the data acquisition time is by undersampling the k-space, a strategy
proposed by several methods including parallel imaging and compressed sensing (CS).
When the k-space is undersampled Fourier reconstructions produce aliasing artifacts.
Non-uniform undersampling strategies can reduce these artifacts but often with a loss
in image signal to noise ratio [72, 73, 74, 75, 76]. Parallel imaging exploits redundancy
in k-space reconstructing the image from data acquired simultaneously with an array of
radio frequency coils [77, 78]. Using the latest developments in wire bonding technology
phase array microcoils have been recently reported [79, 80]. However, the small sample
size renders the construction of such micro-arrays di�cult and limits the applicability
of parallel imaging to high resolution MR microscopy. The use of CS methods in the ac-
quisition and reconstruction of magnetic resonance images has been reported for cardiac
imaging [81, 82, 83, 84], hyper-polarized spectroscopic imaging [85] and more recently,
di�usion tensor imaging [86] and MRI velocimetry [87].

In the following we will brie�y describe the most common methods of acceleration
by partial Fourier imaging and parallel imaging. The non-Cartesian k-space trajectory
will be also introduced. The next sections will discuss the principles of CS for MRI.

10 Acceleration by partial Fourier imaging and Paral-
lel imaging

10.1 Partial Fourier imaging

The principle of partial Fourier imaging is based on the property that the Fourier trans-
formation of a purely real function has complex conjugate symmetry in k-space [88, 89].
In theory this means that the fully k-space signals can be extrapolated from only half of
the k-space points. When applied to the phase encoding direction, this will reduce the
acquisition time by half. In practice, in order to provide robust phase correction slightly
more than half (commonly approximation 60%) of the phase encodes are acquired. The
resulting image has the same FOV and spatial resolution as that using a full data ma-
trix. The problems associated with partial Fourier imaging are a loss in SNR due to the
reduced number of measured lines and an enhanced sensitivity to arti�acts due to the
arti�cial replication of the information. It is also possible to apply this technique in the
read direction to reduce the echo time, which may permit a slight reduction in repetition
time per phase encode [90, 89]; however the scan time is not signi�cantly a�ected.

10.2 Parallel imaging

Parallel imaging (PI) is based on parallel signal detection employing several surface
coils placed side by side (so called coil arrays) to reduce the total imaging acquisition
time. Most modern human scanner systems employ 8-16 receiver channels capable of
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accommodating phased arrays with 8-16 coils elements. The new generation of scanners
can allow tens to hundreds of channels, with the limiting factor being the prohibitively
high cost of receiver units [91, 92, 93, 89]. Parallel methods do not reduce the acquisition
time per spatial phase encoding step such as fast sequences, but instead reduces their
number [94].

Phased-array coils were initially developed to improve SNR in MR imaging by re-
ducing coil size and improving the sensitivity, which e�ectively reduces the amplitude
of the noise detected. Multiple overlapping small coils can cover the same volume as a
larger coil, and when the signals from individual coils are combined, the noise is sub-
stantially reduced and SNR is signi�cantly improved [95]. The basis of PI techniques is
the concept that acquisition time is proportional to the number of phase encoding lines
reduced by sampling the MR signal in a parallel fashion. Each RF element is associated
with a dedicated RF channel whose signals can be processed and combined together.
The spatial data yielded by the array of coil elements can be used for partial phase
encoding only, to speed up acquisition. Using this technique, the number of phase en-
coding lines is reduced by increasing the distance between the lines in k-space, e�ectively
reducing the �eld of view corresponding with phase encoding for the image (see more
[4, 89]). The image reconstructed from each coil contains aliasing artifacts, however a
correct image can be obtained by using extra information regarding coil positions and
sensitivities. The PI techniques can be classi�ed into image-based and k-space based
techniques depending on the reconstruction algorithms. Among the image-based tech-
niques the most popular one is Sensitivity encoding (SENSE) [78] which reconstruct the
image after Fourier transformation, in the image domain. There are two k-spaces based
techniques commonly used: Simultaneous acquisition of spatial harmonics (SMASH)
[96] and GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [77].
In the k-space based techniques, the �nal (unaliased) signals are measured by merging
the coils signals prior to image reconstruction. The other di�erence between these two
methods is in the calibration scans are acquired. The calibration data for the volume
explored by each coil element and the signal produced is subsequently used to map the
spatial sensitivity of each coil elements. SMASH acquires the calibration scans sepa-
rately from primary scan, so that the main scan time reduction is directly proportional
to the number of coils. GRAPPA technique acquires the calibration scans as a part of
the primary scan, so the scan time savings but presents better the SNR.

11 Non-Cartesian trajectories

Almost all MR imaging is performed by acquiring the k-space points along a Cartesian
grid, or rectilinear trajectories, however, k-space can also be sampled in an arbitrary
non-Cartesian manner. The limiting factor in data acquisition speed is the time needed
to play out gradient waveforms. Moreover, the maximum gradient strengths and slew
rates in MRI scanner are constrained by physiological considerations. Therefore, imaging
speed can only be further improved by increasing the e�ciency of gradient waveforms or
by reducing the amount of gradient encoding. Non-Cartesian parallel imaging seeks to
use both of these approaches simultaneously to signi�cantly reduce the amount of time
required to collect MRI data (see in [97]). Many non-Cartesian trajectories have been
explored such as radial [98, 99], spiral [100, 101], rosette [102] and stochastic [103], etc.
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The most common non-Cartesian trajectories are radial and spiral trajectories. The
common feature is that sampling is more dense near the center of k-space than near
the edges. As a result, a re-gridding of the raw data must be done prior to performing
the Fourier transformation in order to produce images without phase artifacts. Radial
sampling uses a constant magnitude gradient for each line while the spiral sampling
uses variable G. The central points of k-space are usually acquired at the beginning of
sequence. Re-gridding in spatial encoding is necessary to ensure a constant density k-
space. More detail about non-Cartesian trajectories can be found in references [89, 97].
The radial and spiral k-space trajectories diagrams shown in Figure 17.

a b

Figure 17 � Non-Cartesian sampling: a) Spiral k-space trajectory and b) Radial trajec-
tory.

12 Compressed sensing

In the �eld of digital signal processing, the Nyquist�Shannon sampling theorem is the
fundamental theory connecting between continuous signal and discrete signals in time
domain. The Nyquist�Shannon sampling theorem states [104]:

Theorem 12.1 If a function f(t) contains no frequencies higher than W cycles per
second (cps), then it is completely determined by giving its ordinates at a series of

points spaced
1

2W
seconds apart.

A su�cient sample-rate is therefore greater than or equal to 2W samples per seconds.
Equivalently, for a given sample rate fs, perfect reconstruction is guaranteed possible
for a bandlimit W < fs/2. 2W and fs/2 are respectively called the Nyquist rate and
Nyquist frequency. The notation T = 1/fs is usually used to represent the interval
between samples and is called the sample period or sampling interval. The Nyquist-
Shannon sampling theorem (well know as Nyquist rate) propose the su�cient condition
for sampling the continuous signal to discrete signal for which one can be maintain all
information from continuous-time signal. The Shannon sampling theorem states that
the sampling rate must be at least twice the highest frequency present in the signal of
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interest [104]. The theorem also provides a formula for the reconstruction of the original
signal by sinc-interpolation:

f(t) =
∞∑

n=−∞

fn
sin π(2Wt− n)

π(2Wt− n)
,

where fn = f
( n

2W

)
is the nth sample, for all positive and negative integer values of n.

However, the exactly reconstruction may still be possible when the Nyquist criterion is
not satis�ed. Extensions of Shanon sampling theorem can be found in reference [105].
Basically, if the signal is sparse in the Fourier domain then it can recovered from far fewer
samples than required by the Nyquist limit [105, 106, 107]. CS is a novel signal processing
technique introduced by Donoho in 2006 [108] (for MRI) which exploits this property.
Other nomenclatures used for CS are: compressive sensing, compressive sampling, or
sparse sampling. Through papers published between 2004 and 2006, Emmanuel Candès,
Terence Tao, and David Donoho proved that, provided the sparsity condition is satis�ed,
the signal can be recovered with fewer samples than the Nyquist criterion requires and
therefore di�erent types of images can be reconstructed from undersampled data without
loss of information [109, 110, 108, 81]. The technique can be applied to MRI to reduce
the acquisition times. CS is based on three major components [81]:

(1) a sparse representation of the signal in some transform domain (such as Fourier
transform (FT) domain, Wavelet transform domain ...),

(2) the aliasing artifacts due to k-space undersampling be incoherent (noise like) in
that transform domain, and

(3) a sparsity-constrained nonlinear reconstruction method.

If the total number of points in the image is larger than four times the number of sparse
coe�cients then the reconstruction of undersampled data is feasible. As discussed in
[111], sparsity expresses the idea that the information rate of the continuous time signal
may be much smaller than suggested by its bandwidth (BW) (i.e. compressible), and
the incoherence expresses the idea that objects having a sparse representation in some
known transform domain must be spread out in the acquired domain. Luckily, most of
signal are sparse in known transform domain such as Wavelet domain.

Nowadays, CS in MRI is just one of the way application of CS such as imaging
compressive, digital camera, astronomy, geophysics and high speed analogue to digital
conversion signal, etc.

Starting from the requirement for undersampling k-space data and considering the
MR hardware constrains several ways of generating undersampling patterns have been
proposed. The most commonly used undersampling schemes, either Cartesian or non-
Cartesian, consist of variable-density random undersampling [81, 112] based on a prob-
ability density function.

As mentioned above, the CS based on three fundamental premise: sparsity, incoher-
ence and non-linear reconstruction. In this section we will dedicated the sparsity and
incoherence in MRI.
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Almost image are not sparse in image domain, but it would be sparse in a transform
domain via a sparsity transform operator. A sparsity transform operator is an opera-
tor mapping a vector of image data to a sparse vector [81]. For example, a piece wise
constant images (example Shepp-Logan image in Figure 18) can be sparsely represented
under �nite di�erence operator. The �nite di�erence operator here mean computing the
di�erences between neighbouring pixels and is often referred to as total variation (TV)
[113]. Actually, the MR images are not piecewise constant, but in case of images in
which the boundaries contain the most important information, like angiograms images,
will be sparsely presented in a �nite di�erences transform. Nowadays, the multi-scale

Figure 18 � Shepp-Logan image (left) is sparsely presented under �nite di�erence oper-
ator (middle) and Wavelet transform (right).

representation of images, the Wavelet transform, becomes an image compression stan-
dard in JPEG-2000 image [114]. Almost all images are spare in the Wavelet transform
domain.

12.1 Sparsity of MR images

The MRI image can be sparsely presented by applying the sparsity transform to the
fully encoded image. An approximation image can be reconstructed from a subset of the
largest transform coe�cients. The sparsity of an image is measured by the percentage of
transform coe�cients that are su�cient for an acceptable of reconstruction. In practice,
we can measure the sparsity of image by trying reconstructions from some arbitrary
small percentages of transform coe�cients and estimations the relative errors between
the sparse approximation image and the fully encoded image. For example, in our study,
two experimental T2w images of the abdominal ganglia and buccal ganglia of Aplysia
califonica were used. We applied the �nite di�erent transform and wavelet transform on
these images and then reconstructing from 7%, 10% and 20% of the largest transform
coe�cients. The results are shown in Figure 19. By investigation the relative error
between the sparsity reconstructed images from a subset of the largest sparse transform
and the fully encoded image, we found that the Wavelet transform performs better than
the �nite di�erent transform on the sparsify the abdominal ganglia and buccal ganglia
T2w images. The relative error formula will be described in equation (98) in section
13.1 below.
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Figure 19 � The sparsity of abdominal ganglia (a) and buccal ganglia (b) T2w images of
Aplysia. The fully encoded image (right column) and the reconstructed images (three
left column) from a subset of 7%, 10% and 20% of the largest wavelet transform and
�nite di�erent transform coe�cients.
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12.2 Incoherence

In practice some undersampling pattern perform better than others. We need a metric to
evaluate the incoherence of the aliasing interference to make sure that the choice of sam-
pling is incoherent and evaluate which undersampling pattern is best. The Point Spread
Function (PSF) proposed by Lustig et al [81] is a natural tool to measure incoherence.
Let Fu = MF is the undersampled Fourier operator, where M is the undersampling
pattern, and denote FHu is the adjoint operator. The PSF is de�ned as:

PSF (i, j) = FHu Fu (i, j) . (65)

The PSF measures the contribution of a unit-intensity pixel at the (i, j) position. In case
fully Nyquist sampling there is no interference between pixels and PSF (i, j) = δ(i, j).
Where delta function δ(i, j) = 1 if and only if i = j and δ(i, j) = 0 in otherwise.
Undersampling causes aliasing which shows the correlations between di�erent pixels.
The MR images are usually sparse in a transform domain rather than in the image
domain. Let W denote the sparsifying transform and WH is the adjoint operator. The
Transform Point Spread Function (TPSF) (see more [107, 115, 81, 112]) is de�ned as:

TPSF (i, j) =WHFHu FuW(i, j). (66)

The maximum value of TPSF (i, j) where i 6= j are used to measure the coherence of
a undersampling pattern. The small coherence, that means incoherence, is desirable.
Basically, the lower value of TPSF corresponding with the undersampling pattern M
will gives the small reconstruction error. However, the undersampling patterns with the
same incoherent measure, which one higher correlations between all coe�cients will lead
a large error in reconstruction [107]. Therefore in practice we applied the undersampling
patterns which the same small value of TPSF to a data library and calculating the
reconstruction error to evaluate the best pattern.

12.3 Polynomial undersampling patterns

Lustig et al [81] suggested to make use of quasi-random patterns following a Monte
Carlo procedure based on a variable probability density function (pdf) :

pdf =

{
(1− r)p if |r| ≥ rad,

1 if |r| < rad,
(67)

where p is the arbitrary polynomial degree (usually chosen p = 2), and rad is the
maximum distance measured from center of k-space which we always samples. The pdf
assigned di�erent sampling probabilities for di�erent region of k-space. There are two
parts, in the central of k-space which will be always sampled, and the otherwise which
will be sampled under the selected probability decay rate user-selected by polynomial
degree p. By this way, the undersampling less near the k-space boundary and more
in the central of k-space. The problem is how many samples should be acquire? By
theoretical, the number of Fourier sample points that need be collected with respect to
the number of sparse coe�cients is derived in references [108] and [110]. In practical,
the number of k-space samples should be roughly two to �ve times the number of
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sparse coe�cients [116, 117, 81]. On the other hand, the random sampling selected
by polynomial scheme described about often gives a good results, incoherent and near-
optimal solution. In order to optimal sampling scheme that maximizes the incoherence,
Lustig et al suggested the use of TPSF to select appropriate undersampling patterns.
Because of the TPSF measures propagation error, the best pattern is the lowest TPSF.
The procedure shown as bellow:

1. Generate pdf function gives the probability of sampling points based on the desired
resolution and FOV.

2. Randomly sampling of k-space based on pdf construction gives the sampling pat-
tern S.

3. Measure the peak interference in the PSF or TPSF of the sampling pattern S.

4. Repeat 2-3 several times and choose the pattern with the lowest peak interference.

The sampling pattern generated can be used for future scans.

12.4 Image reconstruction: Discrete Fourier Transform

In MRI, the desired image function I(·) can be encoded in the measured data S(·). Note
that I(·) representing spin density distributions weighted by relaxation e�ects, di�usion
e�ects, etc. Basically, the signal S(·) is the Fourier transform of I(·):

S(k) = F [I(r)] =

∫
I(r) e−i2π k·r dr. (68)

For simplicity in present, the two dimensional case is considered, k = (kx, ky), r = (x, y),
and the imaging equation (68) can be written as

S(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

I(x, y)e−i2π(kxx+kyy) dx dy. (69)

In MRI practice, S(kx, ky) is collected at a discrete set of k-space points. There are many
ways to sampling data, the two most popular data collection is rectilinear sampling and
polar sampling, are shown in Figure 20. It is easy to see that{

kx = m∆kx

ky = n∆ky
(70)

for rectilinear sampling, and {
kx = m∆k cos(n∆Φ)

ky = m∆k sin(n∆Φ)
(71)

for polar sampling, where m and n take integer numbers.
In this thesis, we focus on rectilinear sampling (Cartesian sampling), thus we following
brie�y introduce about the reconstruction formula for rectilinear sampling and skip for
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Figure 20 � Two most popular k-space sampling schemes: (a) rectilinear sampling and
(b) polar sampling.

other samplings (non-Cartesian sampling). Readers interested in non-Cartesian sam-
pling is referred to literatures [1, 2, 3, 4, 5, 118].

In MRI experiments, the image usually measured inside an rectangle region (for 2D
imaging) or a box region (for 3D imaging). The limit bounded by this rectangle or
box is called �eld-of-view (FOV). The original coordinate usually placed to central FOV
region. The image function I(x, y) satisfy:

I(x, y) = 0 for |x| ≥ FOVx

2
and |y| ≥ FOVy

2
.

According to the sampling theorem, we have [118],

∆kx ≤
1

FOVx

, ∆ky ≤
1

FOVy

The image function I(x, y) reconstructed from collected signal S(m∆kx, n∆ky) by:

I(x, y) = ∆kx∆ky

Nx
2
−1∑

m=−Nx
2

Ny
2
−1∑

n=
−Ny

2

S(m∆kx, n∆ky) e
i2π (m∆kxx+n∆kyy), (72)

where |x| ≤ 1

2∆kx
and |y| ≤ 1

2∆ky
. Equation (72) is known as inverse Discrete Fourier

transform. And therefore equation (69) can be written as Discrrete Fourier transform:

S(kx, ky) =

Nx
2
−1∑

m=−Nx
2

Ny
2
−1∑

n=
−Ny

2

I(m∆x, n∆y) ei2π (mkx∆x+nky∆y). (73)

12.5 CS image reconstruction

The fully encoded images reconstruction were processed directly in Paravision. For the
sparse MRI reconstruction, the general form for the reconstruction problem is presented
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in [81, 119, 120, 121]. Brie�y, if we denote the undersampled Fourier transform cor-
responding to the k-space undersampled pattern Fu, and W the spare transform, the
reconstructed image m is obtained by solving the following constrained optimization
problem:

minimize ‖Wm‖1, (74)

s.t. ‖Fum− y‖2 < ε,

where y is the measured undersampled k-space data. The norms, `1 and `2, are de�ned
as ‖x‖1 =

∑
i |xi| and ‖x‖2 =

√∑
i |xi|2, respectively. The thresholding parameter ε

is the expected noise level. The undersampling Fourier transform operator Fu can be
expressed as the product of a full Fourier transform operator F and a undersampling
matrix M : Fu = MF . The undersampling matrix M de�ne the role is to select the
points of k-space that will be sampled or preserved.

When �nite di�erence is used as a sparse transform, W = ∇, the objective in
equation (74) becomes ‖∇m‖1 which is called TV penalty and usually written as TV (m).
The spatial TV can be used as the isotropic TV model [122, 123, 124, 125] which is
de�ned by:

TV (m) =
∑
i

√
|∇xmi|2 + |∇ymi|2 + |∇zmi|2, (75)

where ∇kmi representing the gradient of image m at voxel index i in the direction k
(k = x, y, z). The gradient (or �nite di�erence) of 3D image m at index (i, j, k) is
de�ned by:

∇xm(i, j, k) = m(i+ 1, j, k)−m(i, j, k),

∇ym(i, j, k) = m(i, j + 1, k)−m(i, j, k), (76)

∇zm(i, j, k) = m(i, j, k + 1)−m(i, j, k).

When using the other sparsifying transform operator in the objective, the TV penalty
usually included in the objective as well [117, 81, 122, 126]. In this case, the equation
(74) is rewritten as:

minimize ‖Wm‖1 + αTV (m) , (77)

s.t. ‖Fum− y‖2 < ε,

where α trades W sparsity with �nite di�erences sparsity. The following nonlinear
conjugate-gradient decent method for CS reconstruction problem will be focus on this
form.

Some authors write the spare MRI reconstruction problem in the following form (see
[125, 122, 121]):

minimize ‖Wm‖1 + TV (m) , (78)

s.t. ‖Fum− y‖2
2 < σ2,

where the σ represents the variance of the signal noise. The Split Bregman method for
CS reconstruction problem will be focus on this form.
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12.5.1 Nonlinear conjugate-gradient descent method: SpareMRI toolbox

In this section, we followed the algorithm provided by Lustig et al. in the SparseMRI
toolbox [81], which we extended to a 3D version.

Equation (77) can be rewritten in the unconstrained problem form as following:

arg min
m

J(m), (79)

where

J(m) = ‖Fum− y‖2
2 + λ1‖Wm‖1 + λ2TV (m) , (80)

and λ1, λ2 are two regularization constants. A large λ2 tends to suppress image gradients
and make the reconstructed image smooth, losing point-like features [126]. In this
thesis, we suggest to using the TV as a penalty because it was shown that it is e�cient
in suppressing the noise in the reconstructed image [127]. The optimized choose of
regularization parameter λ1 and λ2 will be an interested work, but it will not covered
during this thesis.

The iterative algorithm starts with a zero-�lling Fourier reconstruction, m0. The
conjugate gradient requires the computation of the gradient of the cost function,∇J(m)
, which is:

∇J(m) = 2FHu (Fum− y) + λ1∇‖Wm‖1 + λ2∇TV (m). (81)

As the `1 norm is the sum of absolute values. However, the absolute values are not
smooth functions, then the equation (81) is not well de�ned. Lustig et al proposed an
approximation of the absolute value by a smooth function, |x| ≈

√
xHx+ ξ, where ξ

is a positive smoothing parameter. Then the gradient becomes
d|x|
dx
≈ x√

xHx+ ξ
. In

practice, a smoothing factor ξ ∈ [10−15, 10−6]. Following we shall describe the algorithm
for solving (79) using a nonlinear conjugate-gradient descent with backtracking line
search taken from [81].



12.5 - CS image reconstruction 63

Data:
y: undersamplied k-space data
Fu: undersampled Fourier transform operator
W : wavelet transform operator
λ1, λ2: data consistency tuning constants
Optional parameter:
Tol: stopping criteria by gradient magnitude (default 10−4 )
Iter: stopping criteria by number of iterations (default 100)
α, β: line search parameters (defaults α = 0.01, β = 0.6)
Result: m the numerical approximation to equation (79)
% Initialization
k = 0; m0; g0 = ∇J(m0); ∆m0 = −g0

% Iterations
while ‖gk‖2 > Tol do

% Backtracking line search
t = 1;
while J(mk + t∆mk) > J(mk) + αt · Real(g∗k∆mk) and k < Iter do

t = βt;
end
mk+1 = mk + t∆mk

gk+1 = ∇J(mk+1)

γ =
‖gk+1‖2

2

‖gk‖2
2

∇mk+1 = −gk+1 + γ∆mk

k = k + 1
end

Algorithm 1: Nonlinear conjugate-gradient descent with backtracking line search for
`1 reconstruction.

We have wrote several C-MEX function �les, the function written in C or C++ code
that are callable from Matlab, to signi�cantly improve the calculation time.

12.5.2 Split Bregman method

Split Bregman method for fast CS image reconstruction provided by Tom Goldstein
in 2009 [122] with TV penalty and the Haar wavelet transform. The Split Bregman
method is a technique for solving a variety of `1-regularized optimization problems, and
is particularly e�ective for problems involving TV regularization. Split Bregman is one
of the fastest solvers for total variation de-noising, image reconstruction from Fourier
coe�cients, convex image segmentation, and many other problems. The method is
a re-interpretation of the alternating direction method of multipliers that is specially
adapted to `1 problems. During this thesis, we keep follow the algorithm proposed by
Tom Goldstein in [122] for an isotropic TV model which can be easy extended to 3D
version for our studies. The original 2D code can be found in reference [128].

A complete technical explanation of the Split Bregman method can be found in the
paper [122]. To apply the Split Bregman method to this problem, �rst we notation
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w =Wm, dx = ∇xm, dy = ∇ym, and dz = ∇zm, the Equation (78) is rewritten by:

min
m

‖w‖1 + ‖(dx, dy, dz)‖2, (82)

s.t. ‖Fum− y‖2
2 < σ2,

where
‖(dx, dy, dz)‖2 =

∑
i,j,k

√
|dx,i,j,k|2 + |dy,i,j,k|2 + |dz,i,j,k|2.

As shown previously in [122, 129], by applying the Bregman iterations the following
uncontrained equations converges iteratively to Equation (82):

min
m,dx,dy ,dz ,w

‖w‖1 + ‖(dx, dy, dz)‖2 + ‖w‖1 +
µ

2
‖Fum− yh‖2

2

+
λ

2
‖dx −∇xm− bhx‖2

2 +
λ

2
‖dy −∇ym− bhy‖2

2 +
λ

2
‖dz −∇zm− bhz‖2

2 (83)

+
γ

2
‖w −Wm− bhw‖2

2,

yh+1 = yh + y −Fumh+1, (84)

where λ, µ, and γ are three constant penalty weighting parameters, the proper value
of bhx, b

h
y , b

h
z , b

h
w and yh are chosen through Bregman iteration. At each iteration h+ 1,

using split Bregman method, Equation (83) can be split to following equations (see more
[122]):

mh+1 = min
m

µ

2
‖Fum− yh‖2

2 +
λ

2
‖dhx −∇xm− bhx‖2

2 +
λ

2
‖dhy −∇ym− bhy‖2

2 (85)

+
λ

2
‖dhz −∇zm− bhz‖2

2 +
γ

2
‖w −Wm− bhw‖2

2.

dh+1
i = max

(
sh − 1

λ
, 0

)
∇im

h + bhx
sh

, i = x, y, z, (86)

bh+1
i = bhi +

(
∇im

h+1 − dh+1
i

)
, i = x, y, z (87)

wh+1 = shrink

(
Wmh+1 + bhw,

1

γ

)
, (88)

bh+1
w = bhw +

(
Wmh+1 − wh+1

)
, (89)

(90)

where the variable bhi , d
h
i , b

h
w (i = x, y, z) are initialized by 0, y0 = y, the standard

shrinkage formula [130, 122] is

shrink (x, γ) =
x

|x|
max (|x| − γ, 0) , (91)

and the generalized shrinkage formula [130, 122]:

sh =
√
|∇xmh + bhx|2 + |∇ymh + bhy |2 + |∇zmh + bhz |2. (92)

Because of the Equation (85) is di�erentiable (see [122, 129, 125]), by di�erentiating
with respect to m and setting the result equal to zeros, we can obtain the update rule:(

µFTu Fu + λ∇T
x∇x + λ∇T

y∇y + λ∇T
z∇z + γWTW

)
mh+1 = rh, (93)
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where

rh = µFTu yh + λ∇T
x (dhx − bhx) + λ∇T

y (dhy − bhy) + λ∇T
z (dhz − bhz ) + γWT (wk − bhw), (94)

represent the right hand side in the above equation. Remember that Fu = MF , so the
FTu = FTMT . On the other hand, ∇T∇ = −∆, WTW = I and FT = F−1, so the
equation (93) can be simpli�ed by:

(
µFTu Fu − λ∆ + γI

)
mh+1 = rh. (95)

This equation must be inverted to solve mh+1 in circulant that make costly for compu-
tational. To avoid this limited, we can thus write the system as F−1HF , where H now
is the diagonal operator:

H = (µMTM − λF∆F−1 + γI). (96)

The Equation (95) becomes

mh+1 = F−1H−1Frh. (97)

The full split Bregman algorithm for `1 reconstruction problem (78) is described by
following.
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Data:
y: undersamplied k-space data
F : Fourier transform operator
M : undersampling matrix
W : Haar orthogonal wavelet transform operator
σ: expected variance of the noise constants
µ, λ, γ: regularization terms
N : stopping criteria by number of iterations
Result: m the numerical approximation to equation (78)
% Initialization
h = 0; y0 = y; m0 = F−1y; and d0

x = d0
y = d0

z = w0 = b0
x = b0

y = b0
z = b0

w = 0;
% Iterations
do

for i = 1 to N do
rh := µFTMTyh+λ∇T

x (dhx−bhx)+λ∇T
y (dhy−bhy)+λ∇T

z (dhz−bhz )+γWT (wh−bhw)
mh := F−1H−1Frh
sh :=

√
|∇xmh + bhx|2 + |∇ymh + bhy |2 + |∇zmh + bhz |2

dhx := max

(
sh − 1

λ
, 0

)
∇xm

h + bhx
sh

dhy := max

(
sh − 1

λ
, 0

) ∇ym
h + bhy
sh

dhz := max

(
sh − 1

λ
, 0

)
∇zm

h + bhz
sh

wh := shrink
(
Wmh + bhw,

1
γ

)
bhx := bhx +

(
∇xm

h − dhx
)

bhy := bhy +
(
∇ym

h − dhy
)

bhz := bhz +
(
∇zm

h − dhz
)

bhw := bhw +
(
Wmh − wh

)
end
% update variables to next step mh+1 := mh

dh+1
x := dhx
dh+1
y := dhy
dh+1
z := dhz
bh+1
x := bhx
bh+1
y := bhy
bh+1
z := bhz
wh+1 := wh

bh+1
w := bhw
yk+1 = yk + y −MFmk+1

h := h+ 1
while ‖MFmh − y‖2

2 > σ2;
Algorithm 2: Split Bregman algorithm for `1 reconstruction.
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13 Measuring the quality of accelerated acquisition

In our study, it is important to compare the two fully encoded and CS encoded images.
The `2 relative errors (RE) can be used to calculate the relative errors between CS and
fully encoded images, beside, the Pearson's Correlation Coe�cient (PCC) can be used
to measure the strength of a linear relationship between CS and fully encoded images.

13.1 Image error

In order to compare the two undersampling strategies we computed the `2 relative error
(RE) between the CS and fully encoded images:

RE =

√∑n
i=1 (yi − ŷi)2√∑n

i=1 y
2
i

, (98)

where yi and ŷi are the signal intensities corresponding to voxel i in the fully encoded
image and the undersampled image, respectively. n is the number of voxels.
Moreover, root mean square error (RMSE) can be used for measured the di�erent be-
tween two images:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (99)

13.2 Pearson's Correlation Coe�cient

The PCC is a statistical measure of the strength of a linear relationship between two
paired data. It is described as [131, 132]:

PCC =

∑n
i=1 (yi − ymean) (ŷi − ŷmean)√∑

i (yi − ymean)
2
√∑n

i=1 (ŷi − ŷmean)
2
, (100)

where {yi : i = 1, .., n} and {ŷi : i = 1, .., n} are two sample datasets with the mean
sample are ymean and ŷmean, respectively. In this thesis, yi and ŷi represent signal inten-
sities of voxel i in the fully encoded image and the undersampled image, respectively,
and ymean and ŷmean are the corresponding mean signal intensity values over all voxels.
n is the number of voxels.



68

Part IV

Compressed sensing for high resolution

MRI

Summary
14 k-space undersampling patterns 69

14.1 DLA undersampling patterns . . . . . . . . . . . . . . . . . . . . . . 69

14.2 DLA vs polynomial undersampling . . . . . . . . . . . . . . . . . . . 70

15 The implementation of CS on T2w and T1w pulse sequences 72

16 Image reconstruction 73

17 Cell segmentation algorithm 74

18 CS in T2-weighted imaging: CS-RARE 76

18.1 The choice of undersampling ratio for generating undersampling patterns 76

18.2 Sample preparation and data acquisition . . . . . . . . . . . . . . . . 76

18.3 Signal to noise ratio and spatial resolution . . . . . . . . . . . . . . . 76

19 CS in T1-weighted imaging: CS-FLASH 78

19.1 Undersampling pattern generation . . . . . . . . . . . . . . . . . . . 80

19.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

19.3 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

19.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

19.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

20 Conclusion and discussion 85



14.1 - DLA undersampling patterns 69

CS produces images from signi�cantly fewer data points than what is required by the
Nyquist criterion using a non-linear reconstruction which enforces both sparsity of the
image representation and consistency with the acquired data. The main requirement
for undesampled k-space CS data is incoherence. Starting from this and considering the
MR hardware constrains several ways of generating undersampling patterns have been
proposed. The most commonly used undersampling schemes, either Cartesian or non-
Cartesian, consist of variable-density random trajectories [81] based on a probability
density function. Here we introduce a new method to generate the undersampling
pattern based on the di�usion limited aggregation (DLA) random growth model [133]
and present its application to the undersampling of T2w and T1w high resolution images.

14 k-space undersampling patterns

CS undersampling patterns are subsets of frequency domain points which are incoherent
with respect to the sparsifying transform and satisfy hardware constraints. The most
commonly used CS designs are obtained by generating quasi-random patterns following
a Monte Carlo procedure based on a variable probability density function [81, 125,
134] (called polynomial undersampling). Here we will brie�y describe the polynomial
undersampling and compare it with the method we called DLA undersampling method
[135]. The description of polynomial undersampling scheme presented below is taken
from Lustig et al [81]. The DLA undersampling method is adapted from our paper [135].

14.1 DLA undersampling patterns

We propose a new way of producing undersampling patterns employing the DLA ran-
dom growth model. The DLA was proposed, for the �rst time, by T.A. Witten and
L.M. Sander in 1981 [133]. The basic DLA growth process in two dimensions is rela-
tively simple. An initial particle, the "seed", is placed at the origin of the lattice. A
second particle, the "walker", is added at a random position far away from the seed and
undergoes random walk in the plane until it reaches a site neighboring the seed when
it becomes part of the cluster. Subsequently, other walkers are introduced, one by one,
at di�erent random locations and allowed to walk randomly until they join the cluster.
The basic DLA undersampling process consists in the following steps:

1. An initial particle, the seed, is placed at the origin of a 2-dimensional lattice
containing M ×N points.

2. A kill circle, whose radius is much larger than the linear size of the lattice and
centered on the seed, is de�ned.

3. A walker is launched at a random position on a birth circle with radius Ri de�ned
by:

Ri =
1

100
×max(M,N)×

(
1 + 49× i− 1

P

)
, (101)
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with i = 1 to P , where P is the desired �nal number of particles in the cluster,
dictated by the undersampling ratio. If the radius of the birth circle is smaller
than a prede�ned Rmin (here we chose Rmin = 2) then Ri = Rmin.

4. The walker walk randomly until one of three outcomes is reached:

(a) The walker escapes the kill circle. A new walker is placed on the same birth
circle and the random walk is restarted.

(b) The walker hits a lattice point which is a nearest neighbor to one member of
the cluster. The walker then becomes part of the cluster and the index i is
incremented to i+ 1.

(c) The walker di�uses a long time without neither joining the cluster nor leaving
the kill circle. The index i is incremented to i + 1, and there will be no
contribution to the cluster from this walker. NOTE: If i reaches P while the
number of particles in the cluster is smaller than P , the counter is reset to
i = 1 (i.e. restart from the smallest birth circle).

5. Steps 3 and 4 are repeated until the desired cluster size is reached.

As in Lustig et al we also use PSF (or TPSF) to select the appropriate undersampling
patterns. However, we propose to use many undersampling patterns with lower enough
PSF (or TPSF, respectively) and apply them to a library of a priori acquired fully
sampled data sets in order to choose which ones gives the lowest relative error between
the CS and fully encoded images. The procedure is brie�y described below:

1. Generate DLA undersampling patterns.

2. Measure the peak interference in the PSF (or TPSF) of the DLA undersampling
patterns. Select the DLA undersampling pattern with lowest PSF (or TPSF,
respectively).

3. Repeat step 1-2 many times, to produce a set of DLA undersampling pattern
candidates.

4. Apply each undersampling pattern in candidate set to the library of priori acquired
fully sampled data. Choose the undersampling pattern with the lowest relative
error between CS and fully encoded images.

14.2 DLA vs polynomial undersampling

In our case the 2D lattices sampled belong to a 3D Cartesian k-space grid, prede�ned
for a given �eld-of-view (10 × 2.2 × 2.2 mm3) and spatial resolution (25µm isotropic),
with the undersampling being done along the two phase encoding directions. Figure21a
shows the proposed undersampling for one phase encoding plane. Such undersampling
can be applied to a RARE acquisition with an acceleration factor AF = 4 by generating
subsampling patterns for k-space points subsets corresponding to one echo time, and
repeating this sampling patterns AF times to cover the entire k-space, resulting therefore
in repeating the pattern in Figure 21a four times (Figure 21b). The 2D patterns obtained
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are repeated for each point in the read direction to generate the 3D undersampling
pattern (Figure 21c). Eleven undersampling ratios were chosen between 80% and 30%.
For each undersampling ratio 300 sets consisting of 100 undersampling masks were
generated and from each set the mask with the lowest PSF was selected [81]. The
300 × 11 = 3300 masks produced were then applied to a library of a priori acquired
fully sampled data sets consisting of six images of abdominal and buccal ganglia of
Aplysia californica (three of each). Undersampling patterns based on the polynomial
probability density function, with AF = 1 (Figure 21d), AF = 4 (Figure 21e) and
extended to a 3D RARE acquisition with AF = 4 (Figure 21f), were also generated as
in [81] and were applied to the same library of images. In order to compare the two
undersampling strategies we computed the RE between the CS and fully encoded images
(see Equation (98)). In addition, the performances of DLA and polynomial schemes
when applied to RARE acquistions with AF = 1 were similarly evaluated this time
applying the generated masks to a fully encoded image of the buccal ganglia acquired
without acceleration.

(a) (b)

Read Phase 1

P
h
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e
 2

(c)

(d) (e)

Phase 1Read
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e
 2

(f)

Figure 21 � Undersampling patterns (50 %) for a RARE acquisition: DLA (a) and poly-
nomial (d) undersampled phase encoding plane for AF = 1; DLA (b) and polynomial
(e) undersampled phase encoding plane for AF = 4. The undersampling patterns was
applied for one group of k-space points corresponding to the �rst echo time, the results
was then repeated AF = 4 times corresponding to all echo time; (c) 3D DLA under-
sampling and (f) 3D polynomial undersampling generated by repeat 2D undersampling
pattern in read direction.

The DLA sampling pattern with the minimum relative error was implemented in
Paravision 5.1 (Bruker BioSpin, Ettlingen, Germany).

As seen in Figure 22, in the case of RARE acquisitions with AF = 4 , and Figure 23
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in the case of RARE acquisitions with AF = 1 the mean relative errors between the CS
and the fully encoded images are smaller for DLA than for polynomial patterns for both
the buccal and the abdominal ganglia. Moreover, the DLA method is more stable as
the standard deviation of the relative error is smaller than for the polynomial scheme.
The di�erence in performance between the two undersampling schemes is even larger
for AF = 1 than for AF = 4.
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Figure 22 � The relative errors between the fully encoded and CS images obtained by
applying DLA and polynomial undersampling schemes to abdominal (a) and buccal
ganglia image libraries (b) as a function of the undersampling ratio. The fully encoded
images were acquired using a standard RARE acquisition with AF = 4. The error bars
represent standard deviations (n=300).

15 The implementation of CS on T2w and T1w pulse
sequences

Programming of ParaVision method is was performed in order to realize actual under-
sampling on the MRI scanner. The structure of programming in ParaVision 5.1 is very
similar for all sequences. As an example we will brie�y show here the way to imple-
ment the CS version starting from the Bruker standard RARE sequence (T2w imaging).
The procedure presented here can be easily to extended to any sequence (including the
FLASH sequence).

The compressed sensing-RARE (CS-RARE) sequence was programmed starting from
the existing RARE sequence distributed by Bruker Biospin. In Paravision, the �les nec-
essary for generating pulse sequences are divided in two parts: the core method written
in C++ language pre-de�nes all the necessary components and de�nes user interface;
and the Pulse program which sends commands to the scanner. It is recommended that
the core method utilizes the internal PVM code structure shown in Figure 24 (taken
from the ParaVision Manual part D, section 8.3.15). The CS-RARE sequence is ini-
tially copied from the standard Bruker RARE sequence using the copyMethod script
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Figure 23 � The relative errors between the fully encoded and CS images obtained
by applying DLA and polynomial undersampling schemes to a fully encoded (RARE
acquistion with AF = 1) image of buccal ganglia. The error bars represent standard
deviations (n=300).

in a terminal. Several �les are created and modi�ed according to Figure 24 where the
name of function highlighted by blue color mean created and/or reprogrammed. First of
all, the variables needed for CS mode are de�ned in three header �les: parsDe�nation.h,
parsRelation.h, parsLayout.h and their relation to new functions are de�ned in the back-
bone() function. Second, a new function named my_set_gradient() for converting the
generated undersampling k-space pattern in gradient parameters is de�ned in a new
header �le called myLib.h. This function is then incorporated in the function SetGradi-
entParameters(). Third, the new option for CS mode and the corresponding graphics
user interface are de�ned in parsRelation.c �le. The successful compilation of the source
code generates object �les and clones the pulse program (.ppg in extension) from the
original sequence. We also needed to modify the pulse program �le csRARE.ppg to
match the encoding steps with the undersampling ratio. The image reconstruction is
done in Matlab.

The compressed sensing-FLASH sequence (CS-FLASH) is created using the same
procedure but a di�erent undersampling pattern was implemented.

We successful implemented the CS version of RARE and FLASH pulse sequences in
Paravision 5.1, Bruker Biospin.

16 Image reconstruction

The fully encoded images were processed directly in Paravision. For the T2w, CS
undersampled data we followed the algorithm provided by Lusting et al. [81], which
we extended to 3D version (see section 12.5.1). For the T1w, CS undersampled data
were reconstructed following the Split-Bregman algorithm provided by Goldstein and
Osher in 2009 [122], which was extended for this study to a 3D version with total
variation (TV) penalty and Haar wavelet transform (see section 12.5.2). The comparison
of two reconstruction method is interesting works, but during this thesis we did not
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Figure 24 � Flow diagram illustrating the outline of created and modi�ed ParaVision
�les.

compare two methods. For our experience, the Split-Bregman method running faster
than the nonlinear conjugate-gradient descend method. Both Split-Bregman and non-
linear conjugate-gradient descend methods can be used for T2w and T1w CS.

The following sections will summarize some results of DLA-CS strategy for high
resolution T2w and T1w imaging.

17 Cell segmentation algorithm

Due to failure when using some cell segmentation packages for T2w images, in this
section we introduce a simple algorithm for automatic cell segmentation on MR T2

weighted images, which will be used to quantify the spatial resolution of CS and fully
encoded RARE image. The main steps are as follows:

1. Di�erent signal intensity levels (C1, C2, C3, etc) contour maps are created from a
given image data, C0.

2. The area for each contour map is computed and maps with areas larger than a
prede�ned maximum are removed. This step removes the water region around the
ganglia and the inner part of the ganglia not containing cells.

3. The contour maps are then thresholded several times in order to separate isolated
cells or cell clusters. The thresholding stops when repeating the algorithm will
lead to unwanted cell elimination.

4. The cells within the clusters are further separated (Figure 25):
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(a) 1s are assigned to pixels corresponding to cell regions and 0s to all the others.
The 1s located on the cluster boundary are removed. (One pixel is considered
as part of the boundary if connected with at least two 0 pixels.)

(b) 1s and 0s are inverted.

(c) The boundary pixels are removed again.

(d) The 1s and 0s are inverted.

(e) Steps 4a-4d are repeated two or three times.

Two connected cells

Separated cells

Remove cell boundaries
invert

invert

Remove boundary of the red part

Figure 25 � Flow diagram illustrating the proposed algorithm for separating cells within
clusters.

5. The cells detected in all the contour maps are combined. To avoid false detection
one cell is considered "true" if it is detected in at least two maps.

This cell segmentation algorithm was implemented in Matlab.
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18 CS in T2-weighted imaging: CS-RARE

In this section we will present results obtained using the CS-RARE pulse sequence.

18.1 The choice of undersampling ratio for generating under-

sampling patterns

By results from section 14.2, as seen in Figure 22, the DLA method performs better
than the polynomial undersampling method. In addition, asking for an upper limit of
25% for the relative error we �nd a maximum undersampling ratio of 0.5 which was
therefore used for the rest of this study.

18.2 Sample preparation and data acquisition

All experiments were performed at 19◦C on a 17.2 T system (Bruker BioSpin, Ettlin-
gen, Germany) equipped with 1 T/m gradients. The RF transceiver was home-built
solenoidal single-microcoil with an inner diameters of 2.4 mm, the design of which has
been described elsewhere ([136, 137]). Two acquisitions were acquired for each sample.
A standard, fully encoded RARE acquisition with a matrix size of 400 × 88 × 88 and
a CS undersampling RARE acquisition CS-RARE with a total acquired data points
reduced to 50%. All the other parameters were identical for the two acquisitions: TR =
3500 ms, TE = 20 ms, RARE acceleration factor AF = 4, FOV = 10× 2.2× 2.2 mm3.
The acquisition times is 1 hour 52 minutes and 56 minutes for fully encoded RARE and
CS-RARE encoded, respectively.

Phantom samples: SNR measurements were performed on images obtained using CS
and fully encoded RARE acquisitions on phantom samples. The latter were 2 mm ID
glass capillaries (VitroCom, Mountain Lakes, NJ, USA) �lled with arti�cial sea water
(ASW) (NaCl, 450 mM; KCl, 10 mM; MgCl2, 30 mM; MgSO4, 20 mM). All chemicals
were purchased from Sigma-Aldrich (Saint Luis, MO, USA).

Neuronal tissue: Four Aplysia californica (National Resource for Aplysia, Miami,
FL, USA) were used for this study. Three animals were used for generating the library
necessary to optimize the undersampling trajectories, and one was used to acquire the
fully encoded and CS encoded images. The animals were anaesthetized by injection of
an isotonic magnesium chloride solution (MgCl2, 360 mM; HEPES, 10 mM; pH = 7.5).
The buccal and abdominal ganglia were resected and inserted into a 2.0 mm ID glass
capillary �lled with ASW and then slid inside the transceiver for imaging.

18.3 Signal to noise ratio and spatial resolution

The reconstructed MR image of an ASW phantom acquired with the newly modi�ed
CS-RARE sequence was compared to the fully sampled MR image acquired with the
conventional RARE sequence (Fig. 26). The signal to noise ratios obtained, calculated
by dividing the mean signal value from a water region to the standard deviation of
the noise in an ROI outside the sample, were found 19.9 and 14.6 for the CS and
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fully encoded data sets, respectively. The CS data set presents higher SNR than the
fully encoded acquisition due to the reduction of noise in the CS reconstructed image.
Speci�cally, the standard deviation of the noise (measured in the blue ROI in Fig. 26
was found to be 165 and 120, respectively, for the two data sets, while the mean signal
levels were similar (∼2400).
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Figure 26 � CS (top) and fully encoded (bottom) images of a water phantom. The
SNR was calculated as the mean of signal intensity (red ROI) divided by the standard
deviation of the noise (white ROI).

To test the e�ect of CS undersampling on the spatial resolution we compared fully
encoded and undersampled images of buccal and abdominal ganglia. For this particular
comparison the undersampling was performed starting from the same fully sampled data
set in order to avoid possible confounds such as coil instability or sample deterioration.
Signal intensity pro�les drew across the sample (Fig. 27) demonstrate that no spatial
or intensity information is lost. This was further con�rmed by the Pearson correlation
coe�cients [138] between the fully and CS encoded images, calculated within a region
containing the ganglia and consisting of approximately 180 000 voxels, which were found
to be 0.90 and 0.91 for the buccal and abdominal samples, respectively.

To complete the CS performance assessment the automatic cell segmentation algo-
rithm described in the Methods section was applied in each slice of the 3D fully encoded
and CS images. The segmentation produced similar results for CS and fully encoded
images, with an identical number of cells detected for abdominal ganglia and one false
positive for the CS image (out of 31 cells) of the buccal ganglia (Figure 28).

To conclude, the new acquisition schemes CS-RARE cuts back the experimental time
by a factor of two (50%) while preserving the signal to noise ratio, spatial resolution, and
image contrast. The CS-RARE image quality is assessed by comparing fully encoded
and undersampled images of water phantoms and biological tissues. An automatic cell
segmentation algorithm applied to 3D images of buccal and abdominal ganglia of Aplysia
californica (25µm isotropic resolution) allowed us to further evaluate the performance
of the CS-RARE acquisition. We �nd that DLA based compressed sensing is applicable
to imaging live neuronal tissues, allowing signi�cantly shorter acquisition times while
providing the image quality necessary for identifying the majority of neurons.
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Figure 27 � Buccal (a , b) and abdominal (d, e) ganglia images acquired with a CS-RARE
(a, d) and a standard RARE sequence (b, e), along with the signal intensity pro�les
(c,f) at locations indicated by the white lines across the images. The hypointense regions
seen in the images correspond to cell bodies.

19 CS in T1-weighted imaging: CS-FLASH

The use of manganese ions (Mn2+) as an MRI contrast agent was introduced in studies
of Mn2+ toxicity in anesthetized rats [139]. Manganese Enhanced Magnetic Resonance
Imaging (MEMRI) works based on three main properties of Mn2+ (see more in [140]):
(1) it is a paramagnetic ion that shortens the T1 (spin lattice relaxation time constant)
of tissues, where it accumulates and hence functions as an T1 contrast agent; (2) it is a
calcium (Ca2+) analog that can enter excitable cells, such as neurons and cardiac cells
via voltage-gated Ca2+ channels; and (3) once in the cells Mn2+ can be transported
along axons by microtubule-dependent axonal transport and can also cross synapses
trans-synaptically to neighboring neurons. Because of chronic exposure to manganese
can lead to a toxic condition referred to as �manganism�, Mn2+ is not used as an MR
contrast agent in humans.

High resolution MEMRI has great potential for functional imaging of live neuronal
tissue at single neuron scale. However, reaching high resolutions often requires long
acquisition times which can lead to reduced image quality due to sample deterioration
and hardware instability. CS techniques o�er the opportunity to signi�cantly reduce
the imaging time.
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(a)

false cell detection

(b)

Figure 28 � Comparison between the cells detected on the fully encoded (red wire-frame)
and CS (solid blue) images of abdominal (a) and buccal ganglia (b). An identical number
of cells was detected on the abdominal ganglion with both acquisitions, while on the
buccal ganglia one false positive was detected on the CS data set.

Recent advances in the static magnetic �eld strength of magnetic resonance scan-
ners and in the radio-frequency (RF) detector designs has allowed magnetic resonance
microscopy (MRM) to reach spatial resolutions suitable for functional imaging of single
cells [136, 137, 141]. However, in order to reach the full potential of functional MRM it
is necessary to reduce the currently long acquisition times required for obtaining high
resolution images. The CS method has been previously utilized for the acceleration of
T1 weighted acquisitions for knee cartilage quanti�cation [142] as well as for MEMRI
[143]. In case of the MEMRI study, CS with random k-space undersampling patterns
was employed for fast cardiac T1 mapping in mice [143], demonstrating the feasibility
and performance of this approach. Both studies used random undersampling schemes
in the high frequency domain while fully sampling the low frequency domain, which
has been shown to reach a similar performance to that of the polynomial undersam-
pling algorithms [143]. In this section we present the implementation of DLA-CS for
T1 weighted acquisitions in order to perform high-resolution quantitative functional
MEMRI and we evaluate its performance.
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19.1 Undersampling pattern generation

The undersampling pattern generation followed the description in section 14.1. Brie�y,
the two phase encoding directions in a Cartesian 3D trajectory were undersampled
using an acquisition pattern based on the di�usion limited aggregation random growth
model [133] with the k-space points in the resulting patterns always being restricted
to be a subset of the fully sampled Cartesian k-space points. In this study, following
the same procedure, acquisition patterns were generated for seven undersampling ratios
ranging from 30% to 90% for a T1 weighted FLASH (Fast Low Angle Shot) acquisition.
For each undersampling ratio, 300 sets of undersampling patterns, each consisting of
100 candidates, were created. From each set, the one pattern (out of 100) with the
lowest Point Spread Function was selected. Hence, 300 patterns were produced for each
undersampling ratio, making a total of 300×7 = 2100 patterns. The 2100 patterns were
applied to a library of six fully sampled T1 weighted images of Aplysia californica buccal
ganglia. In order to compare the CS and fully sampled images, the RMSE between
the voxels signal intensities of fully encoded image and the undersampled image were
calculated. In order to compare the CS and fully sampled images, the RMSE were
calculated (see equation (98)).For each undersampling ratio, the averaged RMSE over
the six images in the library was computed. The DLA undersampling pattern with the
lowest average RMSE was selected for each of the seven undersampling ratios (Table 2 )
and implemented in Paravision 5.1 starting from the standard FLASH pulse sequence.

Undersampling ratios
Dataset 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

1 0.053 0.067 0.067 0.085 0.091 0.108 0.122
2 0.061 0.07 0.068 0.084 0.092 0.1 0.118
3 0.054 0.063 0.074 0.082 0.086 0.099 0.108
4 0.051 0.061 0.08 0.081 0.089 0.098 0.111
5 0.045 0.057 0.066 0.069 0.076 0.089 0.103
6 0.046 0.055 0.069 0.071 0.077 0.087 0.098

Table 2 � The RMSE of each winning DLA pattern for the library data.

Examples of k-space undersampling patterns are shown in Figure 29. The k-space was
undersampled along the two phase encoding directions and the pattern was repeated for
every point in read direction.

19.2 Data acquisition

All MRI acquisitions were performed at 19◦C on the 17.2 T system using RF transceiver
with an ID (inner diameter) of 2.4 mm. The RF transceiver was home-built solenoidal
single-microcoil with an inner diameters of 2.4 mm. Two types of acquisitions were
performed for each sample: a RARE acquisition, providing T2 contrast (TR = 3000 ms,
TE = 20 ms, AF = 4, 25 µm isotropic resolution) and a FLASH acquisition providing
T1 contrast (TR = 150 ms, TE = 2.441 ms, 3 averages, 2 repetitions, 25 µm isotropic
resolution) in fully encoded and CS variants. The FOV was either 10×2.2×2.2 mm3 or
10×2.0×2.0 mm3 corresponding to matrix sizes of 400×88×88 and 400×80×80 and fully
encoded FLASH acquisition times, per repetition, of 58 and 48 minutes, respectively.
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Figure 29 � DLA acquisition patterns for 50%, 70% and 90% undersampling ratios. The
horizontal axis represents the read direction, and the other two axes represent the phase
encoding directions, as shown in the lower right corner.

Since the FOV size was not found to in�uence the DLA performance, the two groups
were pooled together.

19.3 Sample preparation

A total of fourteen Aplysia californica were used in this study. Images acquired on
ganglia from six animals were used for generating the library necessary to optimize the
DLA based CS trajectories. Six other animals were used for acquiring fully sampled
data sets. Besides providing reference images, these data sets were retrospectively un-
dersampled in order to determine the optimal undersampling ratio. Finally, two animals
were used to acquire both fully encoded and CS images. These data were also retrospec-
tively undersampled. For all experiments the animals were food deprived for 48h prior
to the beginning of the experiment in order to increase their food seeking behavior and
maximize the intracellular Mn2+ accumulation as described previously [137]. On the
day of the experiment, the animals were injected with 100 mM MnCl2 solution (500µl
per 100g body weight; NaCl 345 mM, KCl 10mM, MgCl2 25mM, MnCl2 100mM, pH
= 7.5) and were left in the aquarium for 45 minutes with unrestricted access to food
(seaweed). The animals were then anesthetized with isotonic MgCl2 solution. Buccal
ganglia were resected and inserted in 1.5 mm ID borosilicate glass capillaries containing
ASW and then slid inside the transceiver for MRI. The Aplysia buccal ganglia contain
large neurons, some of which are up to 200 µm in diameter [67, 66] and can therefore
be resolved with the spatial resolution employed here.

19.4 Image analysis

In order to evaluate the extent of resolution loss between the fully encoded and under-
sampled images, we computed the Pearson's Correlation Coe�cient (PCC, see equation
100) [132] between the mean signal intensity values over all voxels of the fully encoded
and CS encoded. The PCC was calculated in manually drawn ROIs containing the
ganglia and encompassing approximately 50 000 voxels.

The performance of the DLA-CS strategy was further evaluated by comparing signal
intensities measured in individual neurons and in water in both fully encoded and un-
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dersampled images. Five biggest neurons in the Aplysia's buccal ganglia (B1, B2, B3,
B6 and B9) were identi�ed and manually segmented on RARE (T2 weighted) images
(Figure 30 a). (Note that as the buccal ganglia are bilaterally symmetric, one sam-
ple contains two neurons of each type). The corresponding ROIs were co-registered to
the FLASH (T1 weighted) images and the mean signal intensity for each of them was
calculated (Figure 30 b).

Figure 30 � Schematic representation of the ROI selection for signal intensity quanti�-
cation. Two acquisitions were performed for each sample: a T2 weighted RARE (a),
providing information about the sample anatomy and a T1 weighted FLASH (b) re-
�ecting the intracellularly accumulated Mn2+ ions. Neurons were manually segmented
on the RARE image and the corresponding ROIs were co-registered with the FLASH
image. The drawn ROIs correspond to neurons B9 (red), B6 (orange) and B3 (green).
Spatial resolution: 25 µm isotropic.

The signal intensity quanti�cation was performed by normalization against the water
signal. To correct for possible RF inhomogeneities, the images were normalized in a
position-dependent manner: the signal intensity of each voxel in the transverse plane
(perpendicular to the longitudinal axis of the receiver coil) was normalized against the
mean signal intensity of all voxels corresponding to ASW in this plane [137].

19.5 Results

Examples of fully encoded and retrospectively DLA-CS undersampled T1 weighted im-
ages of the buccal ganglia are shown in Figure 31. In a �rst step we estimated the
performance of the DLA-CS approach for seven di�erent undersampling ratios both in
terms of image resolution (characterized by PCC expressing relative resolution loss be-
tween the two image sets) and relative signal intensity error (Figure 32). As can be seen
in Figure 32a, the PCC between the CS and fully encoded images for undersampling
ratios higher than 50% drops to values below 0.8, generally considered as the threshold
for a strong correlation [144]. We observe an increase in PCC when averaging the signal
over two repetitions. The relative signal intensity error was calculated according to:

SIdi� = 100× Smean − S
′
mean

Smean
, (102)
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90% undersampled70% undersampled

50% undersampledFully encoded

200 μm

Figure 31 � Fully encoded FLASH image (top left) and corresponding undersampled
images after CS reconstruction (50%, 70% and 90% undersampling ratios). The CS
images shown here were obtained by retrospectively undersampling the fully encoded
k-space data.

where Smean and S
′
mean are average signal intensities, for a given ROI, in the non-

normalized fully encoded images and CS images retrospectively undersampled from the
same raw data set, respectively. Measurements were performed in water (water ROI)
and neuron bodies (cells ROI). For the latter the signal intensities were measured in the
�ve biggest cells (B1, B2, B3, B6 and B9) and averaged. The relative error between
the average signal intensities of fully encoded and CS images, for all the undersampling
ratios considered, are displayed in Figure 32b. We notice that this error is inferior to 6%
for all undersampling ratios considered. However, for undersampling ratios larger than
60% the error corresponding to the cells ROI and the water ROIs diverge, which could
introduce a bias in the signal intensity quanti�cation. The di�erent behavior of the signal
intensity error in water versus cell bodies at large undersampling ratios is most likely due
to the loss in spatial resolution (increased blurring) as indicated by the PCC results.
Surprisingly, the signal intensity error did not show SNR dependence (no di�erence
between one and two repetitions). However, not only does the standard deviation of the
error for the cell ROIs increase with the undersampling ratio (Figure 32b) but we also
found it to be signi�cantly higher for one repetition when compared to two repetitions
(see Table 3). Speci�cally, a student t-test showed a statistical signi�cance (p = 0.0005)
while for the water ROI no di�erence was found (p = 0.26).

Based on the results presented above we chose an undersampling of 50% (determined
by signal intensity error divergence and above-threshold PCC value) for our next ex-
periments which aimed at evaluating the performance of DLA-CS acquisitions for single
neuron signal intensity quanti�cation. The di�erence in the normalized signal intensity
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Undersampling
ratio (%)

Cells ROI Water ROI
One repetition Two repetitions One repetition Two repetitions
SIdi�(%) SD SIdi�(%) SD SIdi�(%) SD SIdi�(%) SD

30 1.6 0.34 1.6 0.26 1.84 0.07 1.84 0.08
40 1.88 0.52 1.87 0.42 2.12 0.11 2.12 0.11
50 2.4 0.71 2.4 0.56 2.45 0.15 2.45 0.14
60 2.87 0.7 2.87 0.61 2.78 0.12 2.78 0.12
70 3.48 0.84 3.48 0.73 3.11 0.22 3.1 0.21
80 4.25 1.17 4.25 1.07 3.51 0.26 3.51 0.26
90 5.18 1.64 5.19 1.42 3.91 0.25 3.91 0.25

Table 3 � Signal intensity errors (SIdi�) and corresponding standard deviations (SD)
between fully encoded and compressed sensing acquisitions for one and two repetitions
calculated in cells and water ROIs.

Figure 32 � Evaluation of the performance of DLA-CS for di�erent undersampling ratios.
(a). PCC between fully and CS encoded images as a function of undersampling ratio for
one (red) and two (blue) repetitions. The PCC was calculated according to equation 100,
over the ganglia region containing approximately 50 000 voxels. Error bars represent
standard deviations. (b) Percentage signal intensity di�erence between the fully encoded
and CS images (the data represented is the average over two repetitions). Blue and red
marks correspond to cell bodies and water regions, respectively. Error bars represent
standard deviations. The data was obtained from 6 samples.
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between fully encoded and compressed images was calculated for 20 neurons in two
di�erent Aplysia buccal ganglia (10 neurons per ganglia) according to: S∗mean − S∗

′
mean,

with S∗mean and S
∗′
mean being the average signal intensities calculated for a given ROI for

fully encoded and CS images, respectively, after performing image normalization against
water as described in section 19.4. The results for 50% prospectively and retrospectively
undersampled datasets are shown in Figure 33. The average di�erence in the normalized
signal intensity values was 1.37% and 0.50% for the prospectively and retrospectively
undersampled data sets, respectively.

Figure 33 � Bland�Altman plots showing the di�erence in the normalized signal intensity
values estimated from the fully sampled dataset and the 50% prospectively undersam-
pled dataset (a) and the 50% retrospectively undersampled dataset (b). Each point
corresponds to the signal intensity measured in one single neuron (2 samples, 10 neu-
rons per sample).

20 Conclusion and discussion

We introduced a new way of generating CS undersampling trajectories based on the
DLA pattern and applied it to the undersampling of RARE and FLASH encoding ac-
quisition schemes. Our results demonstrate that the DLA pattern performs better than
the standard polynomial pattern for undersampling superior to 25%. In addition, we
show that when applied to imaging live neuronal tissue the proposed CS acquisitions
maintain the spatial resolution and contrast to noise ratio necessary to the identi�ca-
tion of the majority of neurons within Aplysia ganglia while reducing the acquisition
time to 50%. For the RARE we applied the DLA undersampling for an acceleration
factor 4, however, the implementation to acquisitions with di�erent acceleration factors,
or without acceleration for species with short T2 relaxation times, is straightforward.
Moreover, this undersampling is not limited to RARE acquisitions and can be easily
extended to other types of sequences.

The performance of the DLA-CS FLASH acquisitions was also evaluated at various
undersampling ratios. We found an undersampling ratio of 50% acceptable both in
terms of image resolution and signal intensity quanti�cation. Regarding single neuron
signal intensity quanti�cation we found, on average, a 1.37% percentage error between
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the fully sampled and prospectively undersampled data. This error was observed to be
higher than the error measured using retrospective undersampling of the fully encoded
data, which was found to be 0.50%. The di�erence between the two undersampling
scenarios can be due to experimental errors such as hardware instability, subtle changes
in the sample position in the B0 �eld (resulting from vibrations associated with the
strong encoding gradients), or slight sample modi�cation.

It should be also noted that one of the reasons the retrospective CS outperforms
prospective CS is that the retrospective datasets share the noise realization with the
full encoded dataset. When evaluating the Pearson Correlation Coe�cient between
the fully encoded and the undersampled images we notice that the performance of the
DLA-CS technique is in�uenced by the image signal to noise ratio, in agreement with
earlier studies [145], suggesting that higher accelerations are possible for higher SNR
data. The spatial resolution employed in this study was 25 µm isotropic. The impact
of using DLA-CS approach at di�erent spatial resolutions will likely show strong SNR
dependence: decreasing the resolution will result in higher SNR, therefore allowing for
greater accelerations and vice versa[143].

In conclusion, the results presented here suggest that DLA pattern is a promising
alternative to the standard polynomial CS undersampling pattern and may be bene�cial
to magnetic resonance microscopy studies by reducing the notoriously long acquisitions
to more reasonable times, thus enabling the expansion of the technique to the study of
living specimens and eventually to dynamic investigations. Even though the acquisitions
times remain long when compared to fast techniques, such as EPI or spiral imaging, the
DLA-CS appears to be a promising approach at high magnetic �elds and high spatial
resolutions, where single shot acquisitions are not feasible. Moreover, the DLA-CS is
not limited to magnetic resonance microscopy and could be also applied to preclinical
and clinical studies, where shortening the acquisition time is equally desirable.
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88 Introduction

The nerve cells of the Aplysia are much larger than mammalian neurons. Using
the Aplysia ganglia to study the relationship between the cellular structure and the
di�usion MRI signal can potentially shed light on this relationship for more complex
organisms. We measured the dMRI signal of chemically-�xed abdominal ganglia of the
Aplysia at several di�usion times. At the di�usion times measured, the dMRI signal is
mono-exponential and can be accurately represented by the parameter ADC.

We analyzed the di�usion time-dependent ADC using a well-known analytical for-
mula that is valid in the short di�usion time regime. We performed this analysis for
the largest sized cells of the ganglia to satisfy the short di�usion time requirement. We
noted that a naive application of the short time formula is not adequate because of the
presence of the cell nucleus, making the e�ective cell size much smaller than the actual
cell size.

We went on to perform numerical simulation of the ADC for several cell types of the
abdominal ganglia. To create the simulation geometries, for the largest cells, we seg-
mented a high resolution T2-weighted images and incorporated a manually generated
nucleus. For small cells and nerve cells, we created spherical and cylindrical geometri-
cal domains that are consistent with known information about the cellular structures
from the literature. Using the library of simulation results, we �tted for the intrinsic
di�usivities of the small cells and the nerve cells.

The results presented here are used for the preparation of a manuscript which we
plan to submit.

21 Introduction

To adequately study di�usion time dependence of the dMRI signal and discover if the
additional information the measurements at multiple di�usion times provides can give
worthwhile information about the tissue microstructure, we image the Aplysia abdomi-
nal ganglia at high resolution and multiple di�usion times. Given that this requires very
long experimental times, we decided not to image living Aplysia neurons, which deteri-
orates rather quickly. Instead, we used chemically-�xed nervous tissues which are well
suited for high resolution, time-intensive MRI acquisitions. However, one should keep
in mind that the aldehyde �xatives used may signi�cantly alter tissue MRI properties.
Shepherd and colleagues reported in [146] that the rat cortical slices �xed by immersion
in 4% formaldehyde solution demonstrated 21% and 81% reductions in tissue T1 and T2,
respectively. By washing �xed tissues with phosphate-bu�ered saline (PBS) to remove
free formaldehyde solution T2 can be recovered. In addition, the membrane permeability
was increased after �xation with 4% formaldehyde [146]. In this study, we followed the
protocol in reference [59] and we �xed abdominal ganglia in 4% formaldehyde.

In dMRI, the incoherent motion of water molecules during the di�usion encoding
time causes a signal attenuation from which the ADC can be calculated [21, 28, 32].
For unrestricted di�usion , the mean squared displacements of molecules is given by
x̄ =

√
2dD0t [147, 148] where d = 1, 2, 3 for one, two and three dimension, D0 is the

intrinsic di�usion coe�cient, and t is the di�usion time.

In biological tissue, the di�usion is usually hindered or restricted (e.g. by cell mem-
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branes) and the mean squared displacement is smaller than in the case of unrestricted
di�usion. Intuitively, more hinderance or restriction will occur for more molecules as
the di�usion time increases, so we expect the experimentally determined ADC will de-
crease with increasing di�usion time [28, 149, 150]. As a result, the extent of the ADC
decrease potentially can be used to gather information about the tissue micro-structure,
for example, by acquiring several di�usion weighted images with di�erent di�usion times
and �tting the data to a model [40, 151]. Numerous biophysical models have been pro-
posed, usually subdividing the tissue into compartments described by spheres, ellipsoids,
cylinders, and the extra-cellular space [34, 35, 36, 37, 38, 39]. However, it is di�cult
to connect the geometrical parameters contained in these models to the ground truth
values due to the complexity of brain tissue.

In this work, we use much larger neural cells of the Aplysia californica as the animal
model. The advantages of this animal model is that the cellular structure is relatively
simple, some of the largest cells even can be visualized in the T2w images we acquire
along with the di�usion images. This animal model exhibits simpler and more direct
links between the geometrical structure, intrinsic di�usivity in the cell components, and
the ADC, making this a good model problem and eases a lot of the experimental and
modeling challenges. For example, the large size of the biggest Aplysia neural cells
can be used to test short time di�usion models while keeping the PGSE [28] sequence,
instead of resorting to more specialized sequences such as Oscillating-Gradient Spin
Echo (OGSE) [53] sequences.

22 Materials and methods

22.1 Sample preparation

Six Aplysia californica (National Resource for Aplysia, Miami, FL, USA) were used in
this study. The animals were anesthetized by injection of an isotonic magnesium chloride
solution (MgCl2, 360 mM; HEPES, 10 mM; pH = 7.5). All chemicals were purchased
from Sigma-Aldrich (Saint Luis, MO, USA). The abdominal ganglion was resected and
�xed by PFA 4% by immersion for 10 minutes and then washed three times in PBS
pH = 7.4. For imaging, the abdominal ganglion was inserted into a 2.0 mm ID glass
capillary �lled with �uorinert and then slid inside the transceiver.

22.2 Image acquisition

All experiments were performed at 19◦C on a 17.2 T system (Bruker BioSpin, Ettlingen,
Germany) equipped with 1.0 T/m gradients. RF transceivers were home-built micro-
coils with inner diameters of 2.4 mm, the design of which has been described in [136, 137].
Typically, a T2 weighted image and �ve to seven di�usion weighted images were acquired
for each sample. The T2 weighted image was acquired with the following parameters
TR = 1500 ms, TE = 20 ms, acceleration factor AF = 8, isotropic spatial resolution 26
µm, matrix size of 400 × 88 × 88, 8 averages for the a acquisition time of 3 hours 14
minutes. The acquisition parameters for the di�usion-weighted images (DP-FISP pulse
sequence [69]) were TE/TR=1.63/1000 ms, 2 averages, isotropic spatial resolution 52µm,
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3 directions (x, y, z), four samples acquired with seven di�usion encoding times (δ = 2.5
ms, ∆ = [5, 7.5, 10, 12, 15, 20, 25] ms), one sample acquired with six di�usion encoding
times (δ = 2.5 ms, ∆ = [5, 10, 12, 15, 20, 25] ms) and one sample acquired with �ve
di�usion encoding times (δ = 2.5 ms, ∆ = [5, 10, 15, 20, 25] ms). All di�usion weighted
images were acquired with 8 b-values ([70, 100, 200, · · · , 700] s/mm2), and matrix size
200× 44× 44. The di�usion acquisition time was 2 hours 05 minutes for one di�usion
time, 3 directions, 8 b-values. All acquisition were acquired with a FOV of 10.4×2.3×2.3
mm3.

22.3 Image analysis

The T2w images were manually co-registered with the di�usion-weighted images. We
are interested in studying three types of cells in the abdominal ganglia: 1) large cell
neurons; 2) bag cell neurons; 3) nerves. For each of the six imaged ganglia, several three
dimensional ROIs of these three types of cells were manually segmented slice by slice
from the T2w image. We show in Figure 34 the T2w image and the physical locations
of 5 ROIs from ganglion number 2. In total, we have selected for further analysis 22
ROIs of large cell neurons; 11 ROIs of bag cell neurons; 13 ROIs of nerves.
1) Large cell neurons:
For large cell neurons, the ROIs were manually segmented so that each ROI contains only
the voxels associated with one large cell neuron. There are many large cell neurons in
each abdominal ganglia, we usually, however, select the cells which are clearly visualized
in T2w image based on the signal intensity, contrast, and the position within the ganglion
(see diagram in Figure 12). In Table 4 we listed the information about the ROIs,
including the number of voxels in each ROI. To de�ne an e�ective size for each large cell
neuron, we computed an e�ective radius Re� in the following way. Assuming a spherical
shape and knowing the total volume, we de�ne

Re� =
3

√
∆x×∆y ×∆z × 3× (#voxels)

4π
,

where ∆x×∆y ×∆z = 26µm× 26µm× 26µm is the resolution of T2w images.
2) Bag cell neurons:
For bag cell neurons, we made sure to draw the ROI within the bag cell region, but we
did not try to cover all the bag cell neurons inside the ROI (Figure 34). There are two
bag cell neurons in each abdominal ganglia (see diagram in Figure 12), one on the left
side (Bag L) and one on the right side (Bag R). However, often not both are clearly
visible in the T2w image and we only included which one visible in the T2w image in
the ROI. There are 11 ROIs of the bag cell neurons (see Table 5) selected for analysis.
3) Nerve - A group of axons:
There are 13 ROIs of the nerve (see Table 6) selected for analysis. For each nerve, the
ROI of the nerve was selected where the nerve is approximately straight. The nerve's
ROI direction (parallel direction) shown in Table 6 was estimated by selecting two
points inside the nerve's ROI and calculating the unit vector direction via these two
points.

The dMRI signals corresponding to the ROIs were processed to compute the ex-
perimental ADC using a linear �t of the log of the signal versus the b-value. For the
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ROI# Aplysia# #voxels Re� (µm)
1 1 1070 164.97
2 1 539 131.26
3 2 370 115.79
4 2 576 134.20
5 2 314 109.63
6 2 833 151.76
7 2 477 126.02
8 3 424 121.17
9 3 519 129.62
10 3 248 101.34
11 3 800 149.73
12 4 480 126.29
13 4 810 150.35
14 4 985 160.48
15 4 985 160.48
16 5 352 113.88
17 5 366 115.37
18 5 528 130.36
19 5 2138 207.78
20 6 1024 162.57
21 6 900 155.72
22 6 664 140.71

Table 4 � The 22 ROIs of large cell neurons selected for analysis. The e�ective radius
(Re�) estimated from the number of voxels (#voxels) in each ROI.

ROI# Aplysia# Type #voxels
1 1 Bag L 1619
2 1 Bag R 1785
3 2 Bag L 2371
4 2 Bag R 938
5 3 Bag L 2368
6 4 Bag L 1880
7 4 Bag R 680
8 5 Bag L 1744
9 5 Bag R 1659
10 6 Bag L 571
11 6 Bag R 771

Table 5 � The 11 ROIs of bag cell neurons selected for analysis.
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ROI# Aplysia# #voxels Parallel direction
1 1 884 (-0.997, 0.061, 0.045)
2 1 749 (-0.994, 0.047, -0.102)
3 2 865 ( -0.915, -0.346, 0.210)
4 2 524 (-0.965, -0.253, 0.070)
5 2 1106 (-0.993, 0.092, -0.075)
6 2 864 (-0.983, -0.128, 0.128)
7 3 565 ( -0.887, 0.105, -0.450)
8 3 742 (-0.681, -0.515, -0.521)
9 4 2696 (-0.964, -0.039, 0.265)
10 4 1896 (-0.744, -0.329, 0.581)
11 5 1864 (-0.873, 0.442, -0.207)
12 5 1958 (-0.625, 0.743, 0.239)
13 6 2296 (-0.998, 0.004, 0.059)

Table 6 � The selected 13 ROIs of the nerve with the approximate unit vector of the
nerve direction (parallel direction) from visualization on the T2w image.

nerve, the di�usion is anisotropic due to the cylindrical shape of the axons. Because in
this study only three di�usion directions were measured, it is not possible to compute
the e�ective di�usion tensor for the nerve regions. Besides, the nerve ROI direction
estimated above could be slightly o� from the real direction due to errors in the visu-
alization. Even for large cell neurons and bag cell neurons, there might be, although
less pronounced, some anisotropy due to the shape of the cells as well as the shape and
position of the nucleus. For these reasons we decided to average the ADC's in the three
directions x, y, and z to obtain the mean di�usivity, MD [152, 153, 154, 155]:

MD =
ADCx + ADCy + ADCz

3
.

22.4 Simulations

In di�usion MRI, the complex transverse water proton magnetization M(x, t) is a func-
tion of position x and time t, and depends on the di�usion-encoding gradient magnetic
�eld G(t) = gf(t). The amplitude and direction information of the di�usion-encoding
gradient is contained in the vector g ∈ R3, the time pro�le of the e�ective gradient
magnetic �eld is f(t). For the PGSE sequence, the e�ective time pro�le is de�ned by:

f(t) =


1 0 < t ≤ δ,

−1 ∆ < t ≤ ∆ + δ,

0 otherwise,

where δ is the duration of the pulses and ∆ the delay between the start of the pulses.
The signal is measured at the echo time TE, 2δ ≤ TE < 2∆. In this study, we use
δ = 2.5 ms and ∆ = [5, 7.5, 10, 12, 15, 20, 25] ms.
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Figure 34 � Abdominal ganglion T2w image (Aplysia # 2) and ROIs: (a) the 3D
representation showing the selected ROIs; (b)-(e) four slices from the T2w image; The
information of the ROIs is shown in Tables 4, 5, and 6. The direction of the nerve (#
5) is (-0.993, 0.092, -0.075). The scale bar represents 260 µm.

The complex transverse magnetization is governed by Bloch-Torrey equation [31]

∂

∂t
M(x, t) = −ıγf(t)g · xM(x, t) +∇ ·

(
Dl∇M(x, t)

)
, x ∈ ∪Ωl, (103)

where ı is the imaginary unit, Dl is the intrinsic di�usion coe�cient in the geometrical
compartment Ωl, and γ is the gyromagnetic ratio of the water proton. We solve the
above equation subject to impermeable boundary conditions on ∂Ωl:

Dl∇M(x, t) · ν = 0, x ∈ ∂Ωl, (104)

where ν is the outward normal vector. We impose the initial condition

M(x, 0) = 1, x ∈ Ωl, (105)

meaning uniform spin density in all Ωl. There are many numerical methods can be used
to solving equations (103)-(105) such as spatial �nite elements method coupled to the
adaptive explicit Runge-Kutta-Chebychev time-stepping method under the assumption
of periodic for boundary domain condition [156]; a parametric �nite element method for
arbitrary domains [157], etc. In this thesis, we use the �nite volume method coupled to
the explicit Runge-Kutta-Chebychev time-stepping method for solving equations (103)-
(105). This method is adapted from [158].

The di�usion MRI signal is the integral of magnetization at TE:

S =
∑
l

∫
x∈Ωl

M(x,TE)dx. (106)
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Under the assumption that there is no exchange (or impermeable boundaries) between
the compartments, the total signal, Stotal, can be determined by the summation of the
signal weighted by the volume fraction of each compartment [39]:

Stotal =
∑
l

VlSl, (107)

where Vl and Sl is the volume fraction and the signal of compartment Ωl, respectively.
The b-value [32], in case of the PGSE sequence is

b(g, δ,∆) = γ2‖g‖2δ2(∆− δ/3).

The apparent di�usion coe�cient (ADC) is

ADC = − ∂

∂b
log

S(b)

S(0)

∣∣∣∣
b=0

. (108)

Note that, during this thesis, the relationship between the logarithm of dMRI signals and
b-values (in the observed range of b-value from 0 to 700 s/mm2) is a linear relationship.
So the equation (108) can be rewritten by select b1 = 10 s/mm2:

ADC = − logS(b1)− logS(b = 0)

b1

.

Moreover, in order to avoid the numerical truncated error, the b1 value should not be so
small. Due to these reasons, the ADC obtained from the numerically simulated dMRI
signal was computed by

ADCsimul = − logS(b = 10)− logS(b = 0)

10
, (109)

and compared to the ADC values found from the experimental data.

Following we will describe the simulations performed for the three geometry domains
considered: large cell neurons, bag cell neurons, and nerve.

22.4.1 Large cell neurons

To create a computational domain to perform numerical simulations of Large cell neu-
rons, we segmented the cell outline of only one particular large cell neuron. The cell
outline geometry (denoted by Ωcell) used for all later simulations of large cell neurons
was segmented from the anatomical T2w image of large cell neuron ROI#7 (Aplysia
number 2) (see Table 4, Figure 35a). We note Ωcell is a slightly elongated ellipsoid.
Inside Ωcell, an irregularly shaped nucleus, Ωn, was manually generated (approximately
25-30% volume fraction) (Figure 35b). The shape of the nucleus was inspired by the
high resolution images in [59]. Even though not visible in the T2w images, there may be
a small volume (up to 5%) of satellite cells (very small cells, 6µm maximum diameter,
without nucleus [55, 56, 59]) surrounding the single cell neurons (Figure 35f). Since the
volume of the satellite cells are small and to simplify the study, we did not include the
satellite cells in the simulations.

The generated geometries Ωcell and Ωcell are considered our reference geometries. To
consider the e�ect of the size of the cells on the ADC, we simply scaled the reference
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Figure 35 � Large single cell neuron geometry. The cell outline was estimated from cell
ROI#7 (see Table 4) (a). A nucleus with irregular shape was manually generated (b).
The nucleus was manually placed inside the cell outline (c): cell nucleus is displayed in
red while cytoplasm is displayed in green. Di�erent cell sizes were generated by scaling
the size of the nucleus to Re� for the simulations (e.g Re� = 60 µm (d) and Re� = 40
µm (e) ). The satellite cell (R=3 µm) (no nucleus) (f) with volume fraction of 0-5%
surrounding the cell neurons (not accounted for in the simulations).

geometries so that Ωcell has the desired total volume. In particular, the shape in Figure
35c was scaled so that the e�ective cell diameter ranging from 160 µm to µm to 420 µm
(e.g Figure 35d-e) for the numerical simulations that follow.

The simulated dMRI signal for large cell neurons can be generated by solving the
Bloch-Torrey equations in Ωcell with two compartments: the nucleus Ωn and the cyto-
plasm Ωc = Ωcell −Ωn. The intrinsic di�usivities in the cytoplasm and nucleus, Dc and
Dn, respectively, were chosen from a range described in the literature [59]. The total
signal in a large cell neuron is:

Scell = (1− vn)Sc + vnSn, (110)

where vn is the volume fraction of the nucleus, Sc and Sn are the signals in the cytoplasm
and the nucleus, respectively.

22.4.2 Bag cell neurons

In order to match the dMRI signal of the bag cell neurons, the small cells were mod-
eled as small spheres, Ωcell_small, with a smaller concentric spherical nucleus, Ωn_small,
(approximately 25% volume fraction). The cytoplasm compartment is Ωc_small =
Ωcell_small − Ωn_small. As all Aplysia used in this study are approximately the same
age (late juvenile period), therefore we modeled the small cells as spheres with diame-
ters that varied between 20 and 60 µm, following a normal distribution with mean =
46 µm and std = 6 (see Figure 36 ) (equivalent with cell radius varied between 10 and



96 Materials and methods

30 µm, following a normal distribution with mean = 23 µm and std = 3). The mean
and std here were chosen so that 99% of cell diameter is between 20 and 60 µm. For

20 30 40 50 60 70

Histogram of cell diameter

Diameter (µm), mean=46, SD=6

Figure 36 � The bag cell neurons diameter histogram.

simplicity of the simulations, we did not account for the extra-cellular space between
the small cells in bag cell neurons ROI. Thus, the simulated dMRI signal in bag cell
ROI, Sbag, is generated by solving the Bloch-Torrey equation in small cells of various
diameters di to obtain the signal due to that cell, Scell(di), and combining the resulting
signals together weighted by normal distribution as described above:

Sbag =
∑
i

v(di)Scell(di),

where v(di) is the fraction of cells with diameter di determined by the normal distribution
with mean = 23 and std = 3, where di from 20 to 60 µm. Note that the signal in each
small cell Scell(di) is the total signal of the cytoplasm and the nucleus compartments
weighted by volume fraction of the nucleus as described in equation (110). The intrinsic
di�usivities in the cytoplasm and nucleus, Dc and Dn, respectively, were chosen from a
range described in the literature [59], and are the same for all cell diameter di.

22.4.3 Nerve: group of axons

We model the nerve by combining axons (cylindrical shapes) of di�erent diameters, and
again, for simplicity, without the extra-cellular space. The groups of axons range from
small (modeled by cylindrical shapes as small as 1 µm in diameter) to large (modeled by
cylindrical shapes as large as 25 µm in diameter), consistent with the literature [56]. In
Table 7 shown the volume fraction of each axon type in di�erent buccal nerves mentioned
previously in Table 1 with particular choices of diameters in the range mentioned in
Section 8: 2RI = 26 µm, 2RII = 18 µm, 2RIII = 6 µm, and 2RIV = 1 µm for axon type
I, II, III, and IV, respectively. For each nerve, the volume fraction of each axon type
V(Ri), i=I, II, III, IV, can be calculated according to:

V(Ri) =
N(i)× π ×R2(i)∑
iN(i)× π ×R2(i)

, (111)

where N(i) is the number of axons of type i=I, II, III, IV, and R(i) is the choice of
radius in the range mentioned in the section 8.
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Nerve I (2R = 26µm) II (2R = 18µm) III (2R = 6µm) IV (2R = 1µm)
1b 0.0000 0.0892 0.5174 0.3934
2b 0.0612 0.2443 0.3287 0.3658
3b 0.0000 0.5136 0.2549 0.2315
ON 0.0290 0.0721 0.6296 0.2692
RN 0.0000 0.0801 0.8783 0.0416
CBC 0.0974 0.2800 0.5081 0.1146

Table 7 � The distribution of volume fraction for each axon type in di�erent buccal nerves
(note that we assumed the same distribution for the abdominal ganglion) estimated
from the literature [56] with particular choice of diameter in range mentioned before:
2RI = 26 µm, 2RII = 18 µm, 2RIII = 6 µm, and 2RIV = 1 µm for axon type I, II, III,
and IV, respectively. See more in Table 1 regarding the distribution of number of axons
of each type within each nerve.

The numerical simulations were performed in one direction perpendicular to the
nerve. The simulations were performed in 2D, there is no need to simulate two orthog-
onal directions perpendicular to the nerve due to the circular shape of the axons. We
solved the Bloch-Torrey equation in single disks with the diameter determined by four
type of axons (I, II, III, IV). The simulated dMRI signal in the perpendicular direction
to the nerve, Sperp, is determined after weighing by the diameter distribution:

Sperp =
∑
i

V (Ri)S2D(Ri),

where i = I, II, III, IV four types of axons, S2D(Ri) is the signal in perpendicular
direction of the axons with diameter 2Ri (disk radius Ri).

The ADC in the perpendicular direction to the nerve (the transverse ADC), ADCT , is
linearly �tted from logSperp(b) and the b-value. Knowing that the ADC in the direction
parallel to the nerve is close to unrestricted we make the approximation that the parallel
ADC is equal to the intrinsic di�usivity inside the axons Da. Hence the simulated mean
di�usivity is obtained using the following formula:

MD =
Da+ 2× ADCT

3
, (112)

23 Results

23.1 Experimental time-dependent ADC

The experimental dMRI signals acquired for multiple di�usion times on the large cell
neurons ROIs, the bag cell neurons ROI and on the nerve ROIs are shown in Figure
37, Figure 38 and Figure 39, respectively. Within the range of b-values where the
signals are acquired, from 70 to 700 s/mm2, the logarithm of the signal acquired showed
a clear linear dependence with b-value, meaning that the ADC is su�cient to describe
the signal in this range. Higher order e�ects such as a Kurtosis [159, 160, 161, 162]
term need not to be considered. Moreover, the signals in the x, y, and z directions do
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Figure 37 � The dMRI signals for multiple di�usion times in: large cell neurons ROI #
1 Re� ≈ 164.97 µm (a), large cell neurons ROI # 10 Re� ≈ 101.34 µm (b). In each sub
�gure, from top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms.
The di�erent colors represent the di�erent gradient directions, red, blue, and black for
x, y, and z directions, respectively.
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Figure 38 � The dMRI signals for multiple di�usion times in bag cell neurons ROI #
5. From top to bottom we represent the scaled signals for ∆ from 5 ms to 25 ms. The
di�erent colors represent the di�erent gradient directions, red, blue, and black for x, y,
and z directions, respectively.
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Figure 39 � The dMRI signals for multiple di�usion times in nerve neurons with di�erent
direction. (a) the nerve ROI # 1: the nerve direction is mainly orientated in the x
direction, and the y and z component are similar; (b) the nerve ROI # 8: the nerve
direction has the same component in x, y, and z directions; (c) the nerve ROI # 10: the
nerve direction has a larger component in x and z directions, smaller in y component;
In each sub-�gure, from top to bottom we represent the signals for ∆ from 5 to 25 ms.
The di�erent colors represent the di�erent gradient directions, red, blue, and black for
x, y, and z directions, respectively.
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not show signi�cant anisotropy in large cell neurons and bag cell neurons. The time-
dependent ADC measured over the ROIs of the three cell types are shown in Table 8.
We found that, when the di�usion time is increased from δ = 2.5 ms, ∆ = 5 ms to
δ = 2.5 ms, ∆ = 25 ms, the average experimental ADC drops by 9.45% in large cell
neurons; by 20.8% in bag cell neurons; and the MD in nerves drops by 14.98%.

Bag cells (N=11) Large cells (N=22) Nerve (N=13)
∆ (ms) Mean SD Mean SD Mean SD

5 0.779 0.060 0.974 0.096 0.821 0.083
7.5 0.755 0.054 0.957 0.085 0.812 0.095
10 0.705 0.054 0.938 0.087 0.749 0.085
12 0.687 0.067 0.915 0.080 0.741 0.089
15 0.660 0.051 0.914 0.080 0.724 0.09
20 0.632 0.056 0.897 0.081 0.708 0.087
25 0.617 0.055 0.882 0.087 0.698 0.086

Drop 20.80% 9.45% 14.98%

Table 8 � Mean and standard deviation (SD) of average ADC in bag cell neurons, large
cell neurons, and nerve ROIs. The average ADC were observed drop by 20.8%, 9.45%
and 14.98% for bag cell neurons, large cell neurons and nerve, respectively.
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Figure 40 � The measured ADC values are shown as colored markers (mean) with error
bars (standard deviation) for the bag cell neurons (circle, N=11 ROIs), for the large cell
neurons (triangle, N=22 ROIs) and for the nerves (diamond, N=13 ROIs). The solid
lines represent linear �ts of the measured data. The experimental ADC drops by 20.8%,
9.45% for bag cell neurons and large cell neurons, respectively, and the MD drops by
14.98% in the nerves.

23.2 Estimating cell size using short time ADC formula

Assuming a free di�usivity of 2 µm2/ms, the average di�usion displacement is between
7.7 and 17.3 µm for the di�usion times between 5 and 25 ms. Thus from the point of
view of di�using water molecules, their di�usion displacement is large with respect to
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some cell features in the bag cell neurons and the nerve but not with respect to the
large cell neurons. So, from a theoretical point of view we can use the mathematical
models for the ADC in the short di�usion time regime proposed by Mitra et al. [50, 51]
(equation (63)) and the updated version proposed by Schiavi et al. [52] (equation (64))
and apply them to large cell neurons to estimate the surface to volume ratio, which
when assuming spherical cell shape, can give the estimated cell diameter.

We proceed in the following way. From the experimental ADC, by �tting ADC =
A
√

∆+B (corresponding with formula (63)) or ADC = ACδ,∆ +B (corresponding with
formula (64)), we can �nd the coe�cients A and B. By comparing with the short time

ADC formula for
S

V
from both equation (63) and (64), we found that A = −D0

4
√
D0

3
√
π

1

R
,

and B = D0, implying that,

Rest = −D0
4
√
D0

3
√
π

1

A
. (113)

We denote by Rest the estimated cell radius determined by applying the mathematical
formula to the experimental ADC. The Rest will be compared to the visually obtained
e�ective radius Reff of the 22 large cell ROIs. The results are shown in 9.

In Figure 41, we plot the e�ective radius Reff against the estimated radius Rest from
applying the mathematical ADC model. There is a positive correlation between Re�

of the 22 large cell neuron ROIs and the reference value Rest. We show the positive
correlation between Rest and the �tting quantity −A in Figure 41 as well.

However, it is clear that cell size is severely underestimated, Rest is on average only
25% of Re�. This suggests that a one compartment model is not su�cient to model
di�usion in large cell neurons of the Aplysia.
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Figure 41 � (a) The positive correlation between e�ective radius (Re�) and estimated
radius (Rest) from 22 large cell neuron ROIs using the formula (63). (b) The relation
between slope value A and Re�. The cell size is severely underestimated, Rest is on
average only 25% of Re�.
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Fitting by formula (63) Fitting by formula (64)
ROI# Re� A B Rest Err A B Rest Err
1 101.3 -0.0613 1.191 16.0 1.79% -0.0634 1.212 15.8 2.23%
2 109.6 -0.0339 1.206 29.4 1.89% -0.0351 1.218 28.8 2.00%
3 113.9 -0.0159 0.978 45.7 1.86% -0.0165 0.983 44.6 1.90%
4 115.4 -0.0258 0.973 28.0 1.99% -0.0267 0.982 27.4 2.08%
5 115.8 -0.0246 1.031 32.0 0.94% -0.0255 1.039 31.3 1.09%
6 121.2 -0.0579 1.131 15.6 1.91% -0.0600 1.150 15.5 2.33%
7 126.0 -0.0554 1.092 15.5 2.59% -0.0574 1.111 15.3 2.90%
8 126.3 -0.0418 1.018 18.5 1.14% -0.0433 1.032 18.2 1.53%
9 129.6 -0.0635 1.232 16.2 2.76% -0.0657 1.253 16.1 3.07%
10 130.4 -0.0236 0.946 29.3 1.62% -0.0244 0.953 28.7 1.72%
11 131.3 -0.0077 0.829 73.6 1.16% -0.0080 0.831 71.5 1.17%
12 134.2 -0.0286 1.103 30.5 1.73% -0.0296 1.113 29.8 1.83%
13 140.7 -0.0322 0.957 21.9 1.52% -0.0333 0.967 21.5 1.71%
14 149.7 -0.0524 0.962 13.6 1.69% -0.0543 0.980 13.5 2.21%
15 150.4 -0.0310 1.041 25.7 0.59% -0.0321 1.051 25.2 0.92%
16 151.8 -0.0341 1.175 28.1 2.69% -0.0354 1.186 27.5 2.78%
17 155.7 -0.0299 1.030 26.3 1.41% -0.0310 1.040 25.8 1.56%
18 160.5 -0.0199 1.052 40.8 1.37% -0.0206 1.059 39.8 1.44%
19 160.5 -0.0274 0.961 25.8 1.60% -0.0284 0.970 25.3 1.74%
20 162.6 -0.0173 1.079 48.6 1.59% -0.0179 1.085 47.4 1.63%
21 165.0 -0.0140 1.037 56.6 1.18% -0.0145 1.042 55.1 1.21%
22 207.8 -0.0117 0.853 50.6 0.83% -0.0121 0.857 49.2 0.88%

Table 9 � Fitting experimental ADC(∆) by using the equation (63) (ADC = A
√

∆+B)
and using the equation (64) (ADC = ACδ,∆ +B ) for 22 large cell neuron ROIs (ROI#).
The e�ective radius (Reff ) of each cell were estimated from T2w image. The cell radius
estimated (Rest) by using the equation (113). The error between �tting and data are
shown in Err columns. There is not much di�erence on cell radius estimated between
two prediction models.
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23.3 Simulation of a two compartments model of large cell neu-

rons

In this part, we simulate a two compartments model of large cell neurons, namely, a
nucleus and surrounding cytoplasm, with a limited exchange between them. First, we
generated four computational domains based on three types of nucleus shapes and the
position of the nucleus inside the cell, as shown in Figure 42.

(a) Domain 1 (b) Domain 2

(c) Domain 3 (d) Domain 4

Figure 42 � Four generated domains of the same cell size and cell outline, based on three
di�erent shapes of nucleus (red) (a, b-c, and d) and di�erent position of nucleus inside
the cell neurons (b and c). The cell outlines are the same for the four geometries, which
is generated from T2w image (large cell ROI#7). The volume fraction of the nucleus in
all four domains is approximate 25%.

We studied the dependence of the ADC on the nucleus shape and on the nucleus
volume fraction by simulating ADC(∆, R) for an intrinsic di�usivity in the cytoplasm
of Dc = 1.0 µm2/ms and an intrinsic di�usivity in the nucleus of Dn = 2.0 µm2/ms,
(∆ varied between 5 and 25 ms). By �tting the obtained simulated ADC values using
the model ADC(∆, R) = A(R)×

√
∆ +B(R), we �nd the slope A(R) which represents

how the ADC(∆, R) value drops (when the di�usion time ∆ increases) as a function of
the cell radius R.
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As shown in Figure 43 the slope A(R) depends more on the nucleus shape than on the
position of the nucleus inside the cell neurons. Moreover, a more irregular shape of the
nucleus gives a larger value of A(R), meaning that the drop of ADC (when increasing ∆
from 5 to 15 ms) is much larger in the case of an irregular shape of the nucleus (Domain
1,2,3) than in a (almost) spherical shape of the nucleus (Domain 4). On the other hand,
the coe�cient B(R) seem not to depend on the radius of the cells and the shape of the
nucleus as shown in Figure 43b. The freedom coe�cient B(R) represents the e�ective
intrinsic di�usivity in the cells (see Equation (63)).
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Figure 43 � Slope A(R) as a function of the cell radius R (a); and the freedom coe�cient
B as a function of the cell radius R (b) for four identical domains with the same nucleus
volume fraction (25%). The slope A depends stronger on the shape of the nucleus
(Domain 1, 2-3, and 4) than the position of the nucleus inside the cell neurons (Domain
2, 3) while the coe�cient B seems not to depend on the cell radius and the shape of the
nucleus.

As shown in Figure 44a, the slope A(R) also depends on the volume fraction of the
nucleus, VFN. The nucleus shape in domain 5 (Figure 44b) is similar with the nucleus
shape in domain 1 (Figure 42a), the volume fraction, however, of the nucleus is around
29% for domain 5 and is around 25% for domain 1. A larger nucleus volume fraction
results in a larger drop in the ADC for a given cell size.

Therefore, we can predict that with detailed information regarding the size and
shape of the nucleus on can obtain more precise results by combining simulations and
experimentation in the Aplysia.

23.4 Simulations of the ADC in bag cell neurons and nerves

Because it is not possible to visualize the individual neurons of the bag cell ROIs or
the axons in the nerves from the T2w images, we relied on information about the
cell structures from the literature to construct the simulation domains, as described
in the previous sections. By comparing the time-dependent simulated ADC with the
experimental ADC, we extracted the parameters Dc,Dn for the cytoplasm and the
nucleus intrinsic di�usivities, respectively, and Da for the axons intrinsic di�usivity.
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Figure 44 � (a) Slope A(R) as a function of the cell radius R for di�erent nucleus volume
fraction, VFN. (b) The geometry domain in which the volume fraction of the nucleus
is about 29% and the nucleus shape in this domain is similar with the nucleus shape in
domain 1.

Bag cell neurons:

We simulated the ADC for Dc varied between 0.50 and 2.00 µm2/ms and for Dn varied
between 1.25 and 2.00 µm2/ms. Let us denote

ErrFit =

√∑
∆ |ADC�t(∆)− ADC(∆)|2√∑

∆ |ADC(∆)|2
,

the error when �tting the experimental ADC values for each ROI of bag cell neurons,
where ADC�t = Afit

√
∆ + Bfit. The simulated ADC values, ADCsimul(Dc,Dn), are

compared with the experimental ADC values to extract the information of (Dc,Dn)
which will satisfy the following condition:√∑

∆ |ADCsimul(Dc,Dn,∆)− ADC(∆)|2√
|ADC(∆)|2

≤ 2× ErrFit. (114)

Figure 45b displays the range of pairs (Dc,Dn) which satisfy the condition (114) (called
solution (Dc,Dn)). The colored dash-lines in Figure 45a represent the simulated ADC
curves generated for each pair of the solutions (Dc,Dn) shown in Figure 45b (same color
code).
Nerve - group of axons:

The simulation was ran over the range of Da = [0.85 : 0.05 : 2.00] µm2/ms for six
di�erent distribution of the axons (corresponding with six nerves mentioned before).
As shown in Table 1 the number of axons varies, the maximum error of 5% between
simulated mean di�usivities, MDsimul(Da), and experimental mean di�usivity, MD, will
be used to select the acceptable solutions instead of using 2× ErrFit as an upper limit
(like for bag cell neurons). It means that, for each nerve distribution, we �nd all Da
such that: √∑

∆ |MDsimul(Da,∆)−MD(∆)|2√∑
∆ |MD(∆)|2

≤ 0.05. (115)
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Figure 45 � Averaged experimental ADC values (marker) with error bars representing
the standard deviations (N=11 ROIs), and the optimal obtained simulated ADC (dashed
lines) (a). The range of paired solutions (Dc,Dn) are represented as circle in (b), the
intrinsic di�usivity Dc and Dn are correlated by the formula Dc + 0.26 × Dn = 1.1.
The colored line in (a) corresponds to the colored marker represented in (b).

The best �ts between the simulated mean di�usivities and those from experimental
data are shown in Figure 46. In Table 10, we shown the range of intrinsic di�usivities
which yields good �tting results for particular types of the nerves. In Figure 46 presents

Nerve Da range
1b 1.85-2.00
2b 1.55-1.65
3b 1.30-1.40
ON 1.80-1.95
RN 1.75-1.90
CBC 1.40-1.50

Table 10 � The ranges of intrinsic di�usivity Da (µm2/ms) which yield good �tting
between the simulated mean di�usivity (MDsimul(Da)) and the experimental mean dif-
fusivity MD corresponds to six axons distributions of buccal ganglia nerves (1b, 2b, 3b,
ON, RN, CBC).

the experimental mean di�usivity (MD) (marker) and standard deviation over 13 nerve
ROIs and the good �tting simulated mean di�usivity for the nerve 1b and the nerve ON
(dashed line).
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Figure 46 � Assumed the axons distribution in the abdominal nerves are the same with
the axons distribution in the buccal nerve 1b (a) and the buccal nerve ON (b). For
both sub �gures, the marker (with errors bar as the standard deviation) represent the
averaged experimental MD of the 13 nerve ROIs; while the solid lines represent the good
�ts simulated mean di�usivities. The extracted intrinsic di�usivity of these solid lines
are presented in table 10.

24 Conclusion

We have acquired and analyzed the time-dependent dMRI data in the Aplysia neuronal
network for large cell neurons, bag cell neurons, and nerves. We found that given the
large drop of the experimental ADC with increasing di�usion time in the large cell
neurons, it is not su�cient to approximate these cells by a one compartment model.
Using the one compartment model and �tting with the short time ADC formula, we
found a serious under-estimation of the cell size. In the bag cell neurons, we found
that good ADC �t can be obtained by a range of solutions of the intrinsic di�usivities
in the nucleus and the cytoplasm, Dn and Dc, respectively. And the solutions all
exhibit a certain linear relationship between Dn and Dc. Base on the simulation results
we obtained for large cells, we predict that an irregular nucleus shape of the cells in
bag cell neurons will also in�uence the range of intrinsic di�usivities (Dc,Dn) found.
In the nerves, we found that a range of solutions for the intrinsic di�usivity of the
axons, Da, depends signi�cantly on the axon diameter distribution we chose. Further
work combining simulations and experimentation in the Aplysia is needed to make the
relationship between the geometry and the dMRI signal more precise.
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25 Summary

One of the goals of this thesis was to implement compressed sensing for magnetic res-
onance microscopy studies. We proposed a new undersampling model based on the
di�usion limited aggregation (DLA) which performed better than the commonly used
random variable undersampling method [135]. We successfully implemented the DLA-
CS strategies for undersampling T2-weighted (starting from RARE sequence) and T1-
weighted images (starting from FLASH sequence). We found 50% undersampling ratio
satisfactory not only in terms of image quality (contrast to noise ratio, spatial resolu-
tion) but also in terms of intensity quanti�cation (in MEMRI images) [135]. In addition,
we proposed a simple cell segmentation algorithm as a tool for image analysis in MR
microscopy.

We acknowledge the even when using CS the acquisitions times remain relatively
long when compared to fast techniques, such as EPI or spiral imaging, the DLA-CS
appears to be a promising approach at high magnetic �elds and high spatial resolutions,
where single shot acquisitions are not feasible. The results presented in this thesis
suggest that the DLA-CS is bene�cial to magnetic resonance microscopy studies, thus
enabling the expansion of the technique to the study of living specimens and eventually
to dynamic investigations. Moreover, the DLA-CS is not limited to magnetic resonance
microscopy and could be also applied to preclinical and clinical studies, where shortening
the acquisition time is equally desirable.

The second objective of this thesis was to adequately study di�usion time dependence
of the dMRI signal and discover if the additional information the measurements at
multiple di�usion times provides can give worthwhile information about the tissue micro
structure, we image the Aplysia abdominal ganglia at high resolution and multiple
di�usion times.

We investigated dependence of the ADC on the di�usion time in three di�erent
structures within the abdominal ganglia of the Aplysia. We found that by increasing
the di�usion time from 5 to 25 ms the ADC dropped by 20.8%, 9.35%, and 14.98% for
bag cell neurons, large single cell neurons and the nerve ROI, respectively. The di�erent
behavior in the three di�erent regions can be explained by the di�erent sizes and shapes
of the cellular components. We found that it is not su�cient to approximate the large cell
size by using the predicted one compartment model. Based on the results from numerical
simulation and evidence from experimental data, we established that it is necessary to
include a nucleus region embedded in a cytoplasmic region in order to �t the large drop
in ADC observed when varying the di�usion time from 5 ms to 25 ms. In agreement
to the literature we �nd that the intrinsic di�usivity in the nucleus is higher than in
the cytoplasm. One possibility is that the protons are more �bound� in the cytoplasm
than in the nucleus, as shown in the reference [163] (page 128-129) the cytoplasm region
appears darker than the nucleus region in the magnetization transfer images. Moreover,
both the shape and the volume fraction of nucleus were found to signi�cantly in�uence
the ADC behavior, while the position of the nucleus did not seem to be important.
This results suggests that dMRI can be used as a diagnostic tool as the shape and size
of cell nuclei can signify cellular abnormalities [164]. Regarding the bag cell neurons,
we found the linear relationship between the intrinsic di�usivities in the cytoplasm and
the nucleus for which the �tting ADC was successful. Moreover, we found regarding
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the nerve that the extracted intrinsic di�usivity of axons depends signi�cantly on the
axons diameter distribution we chose. In addition, by combining dMRI experiment,
the numerical simulation and the histology imaging it will be possible to extract the
intrinsic di�usivity in the nucleus, the cytoplasm and the axons components.

26 Future directions

26.1 Future work on DLA-CS strategy applications

One of my next projects is to use the DLA-CS method to accelerate DTI acquisitions.
Such acquisitions are notoriously time consuming as data for several b values and at least
six di�erent encoding directions has to be collected. For this reason in vivo acquisitions
are usually performed using EPI techniques which have, however, the disadvantages of
presenting limited spatial resolution, high sensitivity to �eld inhomogeneity, and low
signal-to-noise ratio. Our plan is to use DLA-CS to under-sample other types of acqui-
sitions such as di�usion prepared FISP (DP-FISP). By using di�erent undersampling
patterns for di�erent b values we anticipate to be able to obtain much higher accelera-
tion factors than those reported in our previous studies, and render these acquisitions
applicable to in vivo studies. In addition, since most modern MR systems incorporate
multiple receivers, the combination of CS and parallel imaging to shorten even more the
acquisition time is foreseeable. While parallel imaging can be di�cult to implement in
MR microscopy due to the limited space available for placing multiple coil elements, it
should be feasible for preclinical and clinical scanners. The reconstruction of combined
CS and parallel imaging should be straightforward.

The successful implementation of this DLA-CS-DTI acquisition strategy will allow
in vivo DTI investigations with high spatial resolution and free of susceptibility artifacts
at high magnetic �elds.

26.2 Future work on optimizing the CS image reconstruction

and dMRI simulation codes

There are two paradigms for parallel computing based on CPU (Central Processor Unit)
and GPU (Graphics Processing Unit). Based on CPU, we can use OpenMP (Open
Multi-Processing) for multi-threaded and shared memory machines [165] for accelera-
tion. OpenMP consists of a set of compiler directives, library routines and environment
variables that in�uence run-time behavior [166]. The advantage of OpenMP is that is
free-usable and portable. The performance of OpenMP parallel programing depends
on the number of �core� existent in the computer. However, it is not the limitation
because nowadays almost all computers are �multi-core�. Another strategy is to use
GPU-accelerated computing. The advantage of this approach is using GPU together
with a CPU for processing. As known, the GPU computing performs faster than CPU
computing due to the fact that the GPU has a massively parallel architecture consisting
of thousands of smaller, more e�cient cores designed for handling multiple tasks simul-
taneously while a CPU consists of a few cores optimized for sequential serial processing
(Figure 47). However, GPU-accelerated approach is disadvantage in term of cost for
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Figure 47 � GPUs have thousands of cores to process parallel workloads e�ciently.
Source: http://www.nvidia.com/object/what-is-gpu-computing.html

hardware.

The application of parallelized code can be used to implement the CS image recon-
struction directly in ParaVision commercial software. For the dMRI simulation �nite
volume codes, fortunately, since this method coupled the explicit time stepping method,
so each compartment can be managed separately and need to be synchronized only once
at the beginning of each time-step.

26.3 Future work on combining dMRI experiment, simulation

and histology imaging

As mentioned before, the closer the geometry domain used in simulations to the true
geometry of the tissue leads to more accurate results. As a next step we plan to use
histology imaging to extract the exact information of the cell size as well as the shape
of the nucleus in speci�c tissues. Using this information we will generate the geometry
domain for simulations. By comparing the numerical simulated time-dependent ADC
and with results from experiments we aim to extract the intrinsic di�usivity. These
results will then be used back to predict the shape of nucleus as well as cell size in other
samples.
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Titre: Microscopie du tissu neuronal par IRM: accélération des acquisitions, modélisation et validation
expérimentale de la diffusion de l’eau
Mots clé: imagerie par résonance magnétique (IRM) , échantillonnage compressif, microscopie par
résonance magnétique (MRM), segmentation cellulaire, agrégation limitée par la diffusion (DLA), vari-
ation totale
Résumé: La technique d’acquisition comprimée ou compressed sensing (CS) exploite la compress-
ibilité de différents types d’images pour reconstruire des données sous-échantillonnées sans perte
d’informations. Cette technique peut être appliquée à l’IRM pour réduire les temps d’acquisition. CS est
basée sur trois composantes majeures: (1) la représentation parcimonieuse du signal dans un domaine
de transformation, (2) des mesures incohérentes et (3) une méthode de reconstruction non-linéaire avec
une contrainte de parcimonie. Si le nombre total de points dans une image est plus grand que quatre fois
le nombre de coefficients de décomposition alors la reconstruction de données sous-échantillonnées est
réalisable. Dans la partie IV de cette thèse, nous proposons un nouveau modèle de sous-échantillonnage
basé sur la théorie de l’agrégation limitée par la diffusion (DLA) et montrons qu’il est plus performant
que la méthode de sous-échantillonnage aléatoire. Le modèle de sous-échantillonnage DLA a été utilisé
pour implémenter la technique de CS pour l’imagerie haute résolution pondérée T2 et T1 sur un champ
magnétique très intense (17.2T). Pour chacune des pondérations, le temps d’acquisition a été réduit de
50 % tout en conservant la qualité des images en termes de résolution spatiale, rapport contrast sur
bruit et quantification de l’intensité du signal. Les deux nouvelles séquences d’impulsions CS (csRARE
et csFLASH) ont été implémentées sur le logiciel commercial ParaVision 5.1. La partie V de la thèse est
centrée sur l’étude de la dépendance en temps de la diffusivité dans le ganglion abdominal de l’Aplysia
californica. Le ganglion abdominal de l’aplysie a été choisi pour cette étude d’imagerie car l’IRM à haute
résolution permet la description anatomique fine du réseau cellulaire (taille des neurones individuels et
orientation des axones). Utiliser les tissus neuronaux de l’aplysie pour étudier la relation entre la struc-
ture cellulaire et le signal d’IRM de diffusion peut permettre de comprendre cette relation pour des
organismes plus complexes. Le signal d’IRM de diffusion (IRMd) a été mesuré à différents temps de dif-
fusion dans le ganglion abdominal et des simulations de la diffusion de l’eau dans des géométries obtenues
à partir de la segmentation d’images haute résolution pondérées T2 et l’incorporation d’informations
sur la structure cellulaire trouvées dans la littérature ont été réalisées. Pour comparer le signal d’IRMd
dans des neurones composés d’une seule cellule avec le signal des simulations numériques, des cellules de
grande taille ont été segmentées à partir d’images anatomiques pondérées T2. A l’intérieur des cellules,
un noyau à forme irrégulière a été généré manuellement (environ 25-30% en fraction volumique). Les
petites cellules ont été modélisées comme des petites sphères avec un petit noyau sphérique concen-
trique (environ 25% en fraction volumique). Le nerf a été modélisé en combinant des axones (cylindres)
de différents diamètres en cohérence avec la littérature. Le signal numérique d’IRMd a été simulé en
résolvant l’équation de Bloch-Torrey pour les domaines géométriques décris ci-dessus. En fittant le
signal expérimental avec le signal simulé pour différents types de cellules comme les grandes cellules
neuronales (diamètre entre 150 et 420 µm), des agrégats de petites cellules neuronales ayant la forme
d’un sac (jusqu’à 400 cellule chez l’aplysie adulte dans chaque sac avec une taille cellulaire entre 40
et 100 µm de diamètre), des nerfs (groupes d’axones de forme cylindrique avec un diamètre de moins
de 1 à 25 µm) pour une grande gamme de temps de diffusion, nous avons obtenu des estimations du
coefficient de diffusion intrinsèque dans le noyau et le cytoplasme (pour les neurones) et le coefficient de
diffusion intrinsèque dans les axones (pour les nerfs). Nous avons aussi évalué la pertinence d’utiliser
une formule préexistante décrivant la dépendance en temps du coefficient de diffusion pour estimer la
taille des cellules.
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Abstract: Compressed sensing (CS) exploits the compressibility of different types of images to recon-
struct undersampled data without loss of information. The technique can be applied to MRI to reduce
the acquisition times. The CS is based on three major components: (1) sparsity representation of the
signal in some transform domain, (2) incoherent measurements, and (3) sparsity-constrained nonlinear
reconstruction method. If the total number of points in the image is larger than four times the number
of sparse coefficients then the reconstruction of undersampled data is feasible. In the part IV of this
thesis, we propose a new undersampling model based on the diffusion limited aggregation (DLA) theory
and show that it performs better than the random variable undersampling method. The DLA under-
sampling model was used to implement the CS for T2-weighted and T1-weighted high resolution imaging
at the ultra-high magnetic field (17.2T). In both cases, the acquisition time was reduced by 50% while
maintaining the quality of the images in terms of spatial resolution, contrast to noise ratio, and signal
intensity quantification. Both new CS pulse sequences (csRARE and csFLASH) were implemented in
ParaVision 5.1 commercial software.
In the part V of the thesis is focused on the study of the time-dependent diffusivity in the abdominal
ganglion of Aplysia californica. The Aplysia abdominal ganglion was chosen in this imaging study
because high resolution MR imaging allows the fine anatomical description of the cellular network (size
of individual neurons and orientation of axons). Using the Aplysia ganglia to study the relationship
between the cellular structure and the diffusion MRI signal can shed light on this relationship for more
complex organisms. We measured the dMRI signal at several diffusion times in the abdominal ganglion
and performed simulations of water diffusion in geometries obtained after segmenting high resolution T2-
weighted images and incorporating known information about the cellular structure from the literature.
To match the dMRI signal in the single cell neurons with numerical simulations signal, the large cell
outline was segmented from the anatomical T2 weighted image. Inside this cell shape, an irregularly
shaped nucleus was manually generated (around 25-30% volume fraction). The small cells were modeled
as small spheres with a smaller concentric spherical nucleus (around 25% volume fraction). The nerve
was modeled by combining axons (cylinders) of different diameters consistent with the literature. The
numerical dMRI signal can be simulated by solving Bloch-Torrey equation under the geometries domain
described above. By fitting the experimental signal to the simulated signal for several types of cells such
as: large cell neurons (diameter between 150 µm and 420 µm); cluster of small neuron cells gathered
in the shape of a bag (up to 400 cells in adult Aplysia in each bag with cell size between 40 µm to
100 µm in diameter); and nerves (group of axons cylindrical shape diameter from less than 1 µm to 25
µm) at a wide range of diffusion times, we obtained estimates of the intrinsic diffusion coefficient in the
nucleus and the cytoplasm (for cell neurons) and the intrinsic diffusion coefficient in the axons (for the
nerves). We also evaluated the reliability of using an existing formula for the time-dependent diffusion
coefficient to estimate cell size.
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