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Introduction

The endeavour to find a potential application of the counterintuitive aspects of quantum
mechanics has intrigued physicists for several decades. Although quantum informa-
tion, from quantum computers [1, 2] to quantum cryptography [3], seems to be a very
promising path, the use of quantum mechanical systems as sensors for various physical
properties has emerged in recent years. Quantum sensors essentially exploit what could
be seen as a weakness of quantum systems: their strong sensitivity to their environment.

Quantum sensing has become a rapidly growing field of quantum technology, using a
large variety of experimental platforms, from atoms or ions to superconducting qubits or
solid state spins. In the following we give a brief overview of a few quantum mechanical
sensors that measure physical quantities from electric and magnetic fields, times and
frequencies, to rotations, temperatures and pressures [4].

Examples of quantum sensors

Photons have been the first system where the interest of quantum entanglement [5] to
improve the sensitivity of a measurement was demonstrated [6]. Vacuum squeezed states
have been employed in a proof-of-principle experiment to improve the sensitivity of
gravitational wave detectors [7, 8]. Non-classical states of light are also used to improve
imaging [9–12].

Phonons, quantized energy levels of vibration, have recently become accessible in
the field of optomechanics [13, 14]. Since the mechanical degrees of freedom couple to
various external fields, optomechanical sensors can be used to detect small forces [15],
accelerations [16], masses [17], magnetic fields [18], spins [19] and voltages [20].

Neutral atoms are widely used as quantum sensors. A thermal vapour of alkali atoms
can serve as a quantum sensor for magnetic fields [21, 22]. Atomic magnetometers with
large volumes achieve sensitivities in the range of 100 aT/

p
Hz [23]. Maybe the most

advanced application of vapour cells is the detection of cerebral [24, 25] and even neural
activity [26, 27]. The advent of laser cooling opened the way to the development of
quantum sensors based on ultra-cold atoms. Their reduced velocity enables to obtain
longer interaction times, which improved the sensitivity of atomic clocks [28], but also
lead to the development of gravimeters [29, 30] and gyrometers [31, 32]. Trapped atoms
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Introduction

are used to detect and image magnetic fields at microscales [33, 34].

Trapped ions can be used as quantum sensors for electric or magnetic fields. The
measurement of the electric field based on spectroscopy of the quantized motional levels
is predicted to have a sensitivity of 500 nV/m/

p
Hz [35]. Ions have also been used to study

electric field noise above surfaces [36]. The ground state spin sublevels can be used for
magnetometry, with a sensitivity of the order of pT/

p
Hz [37, 38]. Single ion atomic clocks

are the most advanced atomic clocks today [39].

Rydberg atoms are very sensitive to the electric field due to the strong Stark shift [40,41].
Rydberg states in vapour cells [42] can be applied to sense weak electric fields in the radio-
frequency and microwave frequency range with a sensitivity up to 100 µV/m/

p
Hz [43,44].

In our group, Rydberg atoms have been used to detect single microwave photons stored
in a superconducting cavity [45–47].

In the field of solid state spins, on the one hand, the nuclear magnetic resonance
(NMR) devices were the earliest quantum sensors based on an ensemble of nuclear
spins [48, 49] with a sensitivity to the magnetic field of 10 pT/

p
Hz. Due to their simplicity

and robustness they are used in geology, archaeology, and space missions. On the other
hand, the nitrogen-vacancy (NV) centres, which are electronic spin defects in diamonds,
combine the strong magnetic moment of the spin and the efficient read-out of atomic
vapour cells. Their sensitivity to the magnetic field is of 1 nT/

p
Hz for single spins [50]

and can reach 1 pT/
p

Hz for spin ensembles [51], several orders of magnitude above the
predicted sensitivity of a few fT/

p
Hz [52] due to technical challenges. At the single spin

level, NV centres or optically active quantum dots can be used to sense the change of
the electric field corresponding to the fluctuation of a charge located tens of nanometres
away [53, 54].

Superconducting quantum interference devices (SQUID) are one of the most sensi-
tive types of magnetic sensor [55, 56]. SQUIDs use the Aharonov-Bohm phase which is
accumulated by the superconducting wave-function on a closed loop in the presence
of a magnetic field and can be read out by a circuit of phase-sensitive Josephson junc-
tions. They are used for example to measure small stray fields (in the order of 100 fT)
created by the electric currents in the brain. Superconducting qubits [57–61] prepared in
superpositions of supercurrents or charge eigenstates have very large magnetic or electric
moments, making them of great interest for quantum sensing. Magnetometers based on
persistent current qubits can reach a sensitivity of 3.3 pT/

p
Hz [62].

Single electron transistors measure the tunnel current across a small conducting island
located between source and drain, connected by tunnel junctions. Due to the Coulomb
blockade, tunnelling is only allowed if the charge eigenstate of the island lies in a small
energy range. Since the energy of this eigenstate is very sensitive to the electric field, the
tunnel current is highly field-dependent [63–65] allowing the single electron transistor to
reach a very good charge sensitivity of ∼ 10−6e/

p
Hz [64, 66].
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Sensitivity of quantum sensors

As the sensitivity of devices keeps improving, a question arises: What it is the limit to
the precision of the measurement? In fact, most experiments today are not limited by
classical technical noise, but by the quantum nature of the sensor and the intrinsic
quantum fluctuations due to the probabilistic nature of the measurement.

The aim of quantum metrology is to measure a classical quantity A that can be, for
instance, a field or a frequency, by using a meter system whose evolution depends on A.
The meter system is initially prepared in the state |ψ0〉. After the evolution, the final state
|ψA〉 of the meter is read out by measuring a certain observable B . The precision on the
estimation of A is set by the quantum uncertainty on the measurement of B .

If the meter system is a harmonic oscillator or a large angular momentum [67–75], pre-
pared in a classical state, its quantum fluctuations are directly related to the Heisenberg
uncertainty principle [76]. Classical states of a system are described in quantum me-
chanics by coherent states that are minimum uncertainty states for which the quantum
fluctuations are distributed equally between conjugated observables [77]. The minimum
sensitivity attainable by measurement strategies involving only classical states is therefore
set by the uncertainty principle and is called the standard quantum limit [78, 79].

We consider the case where the meter is made up of a large angular momentum J ,
and the classical quantity A is the angle by which the angular momentum has rotated
around the vertical axis. The Heisenberg inequality in this case derives from the non-
commutation of the Cartesian spin components [80, 81],

∆ Ĵy∆ Ĵz ≥ ~
2

〈
Ĵx

〉
.

As a minimum uncertainty state, the spin coherent state along the x-direction verifies
∆ Ĵy =∆ Ĵz = ~

p
J/2. These fluctuations correspond to an uncertainty on the direction of

the spin ∆φ= 1/
p

2J , limiting the precision with which one can determine the rotation
angle A and define the standard quantum limit for this measurement.

The standard quantum limit, however, is not the fundamental limit of the achievable
measurement precision. By using non-classical states, it is possible to go beyond this
limit. It is possible to calculate the lowest achievable uncertainty according to the laws of
quantum mechanics, called the Heisenberg limit [82], using estimation theory [83]. For a
given state |ψA〉 and a given positive operator valued measure (POVM) [84], the Fisher
information F (A) [85] allows to quantify how much information on A one can extract
from the measurement described by the POVM. The uncertainty of the determination
of A, as first demonstrated by Cramér [86] and Rao [87], is given by the Cramér-Rao
bound [88, 89] as

∆A ≥ 1p
F (A)

.

However, this relation depends on the choice of the POVM, which is not necessarily
the measure that provides the best possible uncertainty. The lowest uncertainty of the
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measurement with a given state is determined with the quantum Cramér-Rao bound [88]
which is obtained by optimizing the above relation with respect to all possible POVMs [84,
88–91]. Finally, the Heisenberg limit is obtained by further optimizing the quantum
Cramér-Rao bound with respect to all available possible initial states.

In the case of the angular momentum, the final state is |ψA〉 = e−i Ĵz A |ψ0〉 and the
quantum Cramér-Rao bound takes the simple form

∆A ≥ 1

2∆ Ĵz
.

The smallest uncertainty is obtained for states with the largest value of ∆ Ĵz . If we restrict
the optimization to spin coherent states, the maximum value of ∆ Ĵz is

p
J/2 and the

quantum Cramér-Rao bound gives the standard quantum limit. However, if we consider
all possible states, the maximum value of ∆ Ĵz is J , obtained for a quantum superposition
of the two eigenstates of Ĵz corresponding to ±J , and we find the Heisenberg limit that
scales like 1/2J .

If the large spin J is an effective spin describing symmetric the states of N two-level
systems, the standard quantum limit corresponds to the 1/

p
N shot-noise of N indepen-

dent measurements. To go beyond the standard quantum limit, it is necessary to entangle
the N particles.

Measurements beyond the standard quantum limit have been performed employing
non-classical states such as squeezed states [92] prepared via interactions [34, 68, 93–95]
or optical non-destructive measurement [67, 69, 96–102], The Heisenberg limit can then
be approached and even be reached with Schrödinger cat states [70–73]. The latter are
however difficult to prepare [103–106], and so far experiments with cat states have been
restricted to J ≈ 5 (with three ions [71], four photons [72], or ten spins [73]).

Beating the standard quantum limit with Schrödinger cat states in Rydberg atoms

In our experiment, the meter consists of a large spin J ≈ 25 carried by a single rubidium
Rydberg atom, which we use to measure electric or magnetic fields. The Rydberg atom can
be described in good approximation by the model of the hydrogen atom. In the absence
of external fields, the energy of the eigenstates of the Rydberg atom only depends on the
principal quantum number n. In the presence of a static electric field, the degeneracy
is partially lifted and the Stark levels of the manifold can be sorted by their magnetic
quantum number m and form a triangular structure for m ≥ 0 (Fig. 1). The energy
difference between adjacent levels is proportional to the amplitude of the electric field.

When the atom, initially in the circular state (the state of maximum m, green level
in Fig. 1) is coupled to a resonant σ+ polarized radio-frequency field, the dynamics of
the atom is restricted to the ladder made up of the lowest energy level of each m (blue
levels in Fig. 1). The atom can be described as an effective angular momentum J evolving
on a generalized Bloch sphere (Fig. 2). In this representation, the initial circular state
corresponds to a spin coherent state pointing to the north pole (Fig. 2a). The precession
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n manifold  

Magnetic quantum number m 

. . . 

Energy 

n  

n+1  

n-1  

n-2  

Figure 1: Stark levels of the manifold with principal quantum number n sorted by the
magnetic quantum number m. The levels with highest (orange) and lowest (blue) energy
for each m are highlighted. The two diagonals overlap in the circular state (green), state
with maximum angular momentum.
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addressing the |J, J〉→|R〉 transition, with an adjustable phase ϕmw. We 
finally measure whether the atom is in the state |J, J〉 or not (Methods).

The probability of finding the atom in |J, J〉 oscillates as a function 
of Φ. This oscillation is sensitive to small variations of F, since the 
atomic system is cast during the interrogation time τ in a quantum 
superposition of two states with different classical orbits, |R〉 and |θ, ϕ〉 
which have quite different electric dipoles (Methods), and is an atomic 
cat state29. The interference phase Φ depends upon the exact spin tra-
jectory on ℬ and thus upon F and ϕrf (Methods). The amplitude of 
the interference pattern is proportional to |〈ψf|J, J〉|. It is maximum 
for ϕrf ≈ 0 when the field F is close to the reference field F0 such that 

ω(F0) = ωrf. Then, Φ can be expanded to first order in a small field 
variation dF = F − F0 as:

Φ Φ θ ω τ≈ + ( − )



∂
∂


 ( )J

F
F1 cos d 20

where Φ0 is the total phase accumulated for the reference field F0 
(Methods). This leads to a single-shot measurement sensitivity:

σ
τ θ

ω=
( − )

∂
∂

( )
−

J F
1

1 cos
3F

1
1

Radio frequency

| J,J–1〉
(F ) 

a

n = 51 

n = 50 

|J,–J 〉

. . . 

. . . 

. . . 

Microwave

m

E

b

c

i ii iii iv 

. 

. 

. | J,J 〉

50 49 48 47 0 

|

|J′,–J′〉

. . . 

. 

. 

. 

46 

|J′,J′–1 〉
J′,J′〉

i ii iii iv 

Figure 1 | Atomic levels and measurement sequence. a, Energies (E) of 
the Stark levels in the n = 50 and 51 manifold sorted by their magnetic 
quantum number, m (not to scale). The m ≥ 0 levels of each manifold 
form a triangular structure with the circular state at its tip: this state is 
not displaced to first order by the electric field. The J spin states in the 
50 manifold are depicted by the thick red lines. The reference state is the 
circular state |J′, J′〉 in the 51 manifold belonging to the J′ state ladder 
(green lines). b, Evolution of the J spin in the Ramsey sequence (Stark 
effect to first order in F). Shown are successive plots of the spin state  
Q-function in the rotating frame for F = F0 + ΔF. Initial |J, J〉 circular state 
(i). State after the first radio-frequency pulse inducing a θ = π/2 rotation 
(ii). State after the interrogation time τ, before the second radio-frequency 
pulse (iii). Final state after the second radio-frequency pulse with ϕrf = 0 
(iv). The green dotted line shows the trajectory on the Bloch sphere ℬ. The 
red line corresponds to the spin trajectory for F = F0. The classical Ramsey 
scheme measures ΔF through the final position of the spin in iv, and is 
therefore limited by the quantum fluctuations of the SCS. In the cat-state-
based scheme, we deduce ΔF from the global phase accumulated during 
the complete evolution, proportional to the dashed area. c, Simulation 
of a realistic sequence for τ = 56 ns and ΔF = 1.7 mV cm−1, taking into 
account the second-order Stark effect and the finite duration of the radio-
frequency pulses (184 ns). The phase ϕrf is chosen so that the trajectory 
is closed for F = F0. The Q-function and the green line correspond to 
F = F0 + ΔF. The red line corresponds to the spin trajectory for F = F0. 
The value of ΔF is deduced from the difference of the global phases 
accumulated along the red and green trajectories.
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Figure 2 | Classical and cat-state-based field measurements. a, Simple 
Ramsey measurement. Shown is the probability P(ϕrf) of the spin ending 
up in |J, J〉. The radio-frequency pulses (blue bars in the timing inset), 
separated by the interrogation time τ = 56 ns, have duration t2 = 184 ns and 
correspond to Ωrft2 = 1.86 rad (Methods). The red and black experimental 
points correspond respectively to the field values F0 + δF/2 and F0 − δF/2, 
with δF = 566 μV cm−1. The two signals are shifted by δφ = 82 mrad.  
The reference phase ϕrf

0  is determined as the average of the centres of these 
curves. The error bars reflect the s.e.m. over 3,100 realizations of the 
experiment. The solid lines result from numerical simulations of the full 
experiment. The dashed line is a Gaussian with a width determined by  
the SQL. b, Results of 950 realizations of the same experiment including 
the microwave pulses. The timing is in the inset (green, microwave pulses; 
blue, radio-frequency pulses). The data points are experimental, with 
s.e.m. error bars every tenth point, with solid lines to guide the eye.  
The signals corresponding to F0 + δF/2 and F0 − δF/2 are shifted by about 
the same δφ as in a. The spacing between interference fringes being much 
smaller than the width of the Gaussian in a, the cat-state-based 
measurement is much more sensitive to variations of the electric field.  
The background probability for ϕrf far from ϕrf

0  is 1/4. When the spin does 
not return close to the initial state, the n = 50 manifold does not contribute 
to the signal. However, half of the 50% population stored in n = 51 returns 
to n = 50 after the final microwave pulse.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

(a) (b) (c) (d)

Figure 2: Evolution of the angular momentum state during the measurement sequence. Its
quantum state is represented by a phase space distribution that shows the intrinsic quan-
tum fluctuations of the direction of the angular momentum. The classical determination
of the angle φ is therefore limited by the latter. In the quantum scheme, we deduce the
rotation angle from the global phase accumulated by the quantum state as it returns to the
north pole.

frequency of the effective angular momentum is proportional to the electric field, and
can be used to measure the latter. To that end, a first radio-frequency field pulse prepares
a spin coherent state along the direction (θ,φ= 0) of the Bloch sphere (Fig. 2b). During a
chosen interaction time, the angular momentum follows a precession around the vertical
axis in the rotating frame of the radio-frequency and accumulates a classical phase φ
that depends on the amplitude of the electric field (Fig. 2c). The intrinsic quantum
fluctuations in the direction of the angular momentum set a limit on the precision of the
determination of φ. To overcome this limitation, we can apply a second radio-frequency
pulse at the end of the interrogation time that brings the spin coherent state back to the
north pole (Fig. 2d). The spin coherent state accumulates a quantum phaseΦ during its
evolution, which is J(1−cos(θ))-times larger than φ. Measuring this phase provides a
much more precise determination of the precession frequency. However, Φ is a global
phase, so we need to prepare a quantum superposition of the spin state and a reference
state to measure it. This requires the atom to be in a Schrödinger cat state during the
interrogation time.
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During the first part of my PhD we have implemented this quantum-enabled measure-
ment method. We demonstrated that we are able to reach a sensitivity −7 dB below the
standard quantum limit. We reach a single-atom sensitivity of 102 mV/m. At the ∼3 kHz
repetition rate of our experiment, this corresponds to a sensitivity of 3 mV/m/

p
Hz. This

is two orders of magnitude better than the sensitivity reached by NV-centres [54] or quan-
tum dots [53,107,108]. It competes with the best electro-mechanical resonators [109,110]
or single electron transistors [64, 66], which reach sensitivities in the order of 10−6e/

p
Hz

at distances in the µm range, corresponding to 1.4 mV/m/
p

Hz. The results are published
in [111] and described in the PhD thesis of A. Facon [112].
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Figure 3: Single atom sensitivity of our electrometer as a function of the interrogation time
compared to the standard quantum limit (green) and the Heisenberg limit (orange).

Improving the Schrödinger-cat-electrometer

This first experiment suffered from several limitations. The quantum phase accumulated
by the atom and, therefore, the sensitivity depends on the latitude θ that is reached by the
spin coherent state after the rotation on the Bloch sphere. Here, the static electric field
applied to lift the degeneracy of the Rydberg manifold was very large ∼500 V/m in order
to limit the effect of stray electric fields perpendicular to the quantisation axis [112]. The
amplitude of the radio-frequency drive was not large enough to compensate the effect
of the second order Stark shift, which tends to make the energy ladder of the effective
angular momentum anharmonic. As a result, the trajectory of the angular momentum
barely exceeded the equator. In the experiment θ was limited to 102◦. Furthermore, the
inhomogeneity of the radio-frequency field caused a reduction of the visibility of the
Ramsey interference, which further limited the sensitivity.

The first objective of this work was therefore to improve the performance of the
electrometer to obtain a sensitivity as close as possible to the Heisenberg limit. Reducing
the electric field gradient in the experiment allowed us to work at a lower electric field,
decreasing the effect of the quadratic Stark shift. We also modified the experimental
set-up in order improve not only the maximum power that can be applied, but also the
homogeneity of the radio-frequency field seen by the Rydberg atom.
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These technical upgrades of the experimental set-up lead to the creation of larger
and thus more sensitive Schrödinger cat states of the Rydberg atom. We nearly reach
an angle of θ = π, only limited by the energy structure of the rubidium Rydberg atom.
As a result, for small interrogation times, we now reach a sensitivity four times smaller
than before, very close to the Heisenberg limit. This demonstrates that the Rydberg atom
is a very sensitive, non-invasive microscopic electrometer. Combined with trapping
techniques [113–116], it could be used to locally probe very small variations of the electric
field or measure the surface charge of a test object [36, 107, 117–122].

Noise spectroscopy with the AC-electrometer

Up to here, we have assumed that the signals are static and deterministic. However,
sensing a time-dependent signal is important for many applications, to measure the
frequency spectrum of the electric field or to detect charge fluctuations in the vicinity
of the atom. As it is, our electrometer acts as a sampling oscilloscope, able to detect
variations of the electric field over a very short time interval (∼100 ns), but with a very
low (∼3 kHz) repetition rate. It does not allow us to measure short time variations of a
random signal. This is why we developed a method to use our electrometer to measure
the correlation function of the electric field with a high bandwidth.

Measuring the correlation function provides a better characterization of the field noise
seen by the electrometer, which is essential to implement better protocols to decouple
the sensor from its environment. The reconstruction of the frequency spectrum can
provide insights into external signals and intrinsic noise of the quantum sensor. Noise
spectroscopy experiments usually reconstruct the spectrum of the noise by analysing the
coherence decay of the quantum sensor. The contrast of standard Ramsey interferences,
for instance, is sensitive to noise from DC to a frequency 1/t where t is the duration
of the Ramsey sequence. A Hahn-echo sequence [123] has a sensitivity peaked at f ∼
1/t [124] and gives access to the spectral density of the noise at this frequency. Multi-pulse
sequences [125–128] allow for an even sharper frequency response and enable to sample
noise spectra with a better frequency resolution [129–133].

In our case, we take advantage of the complex structure of the Rydberg manifold to
implement a method that directly measures the noise correlation in the time domain. We
combine σ+ and σ− polarized radio-frequency drives to make the accumulated quantum
phase shiftΦ sensitive only to the variation of the electric field amplitude at two different
times.

Measuring short time correlations also opens the way to detect phenomena that
are not synchronized with the experiment. This is especially important if we want to
use the electrometer to probe the dynamics of mesoscopic physics devices. Measuring
current fluctuations provides information about the dynamics and the interaction of
the charge carriers that are complementary to that obtained by the measurement of the
average current [134–137]. The development of high-bandwidth charge detectors [65,
138–141] that resolve individual electrons to access the full counting statistics [142–148]
of tunnelling charges has thus received a large interest. In these experiments, the typical
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dynamics occur on time scales between 0.5 µs and 1 ms and could be resolved by our
electrometer.

Magnetometry employing Schrödinger cat states

The manipulation of the atom with a combination ofσ+ andσ− polarized radio-frequency
fields paves the way to the generation of more complex Schrödinger cat states. In par-
ticular, we investigate the experimental preparation of a superposition of circular levels
with opposite magnetic quantum number m. This states is conceptually interesting as
it corresponds to an electron rotating on the same orbit both clockwise and counter-
clockwise. Moreover, this state has a high sensitivity to the magnetic field, while, for
symmetry reasons, being protected from all electric field fluctuations.

However, its preparation involves an evolution through levels that are highly sensitive
to variations of the electric field. The Rydberg electrometer can be used to characterize
the electric field noise of the experiment, allowing us to implement basic dynamical de-
coupling [126, 149, 150] enabling the generation of the superposition of opposite circular
states. The final state has a magnetic moment of ∼100 µB , which is much larger than
the magnetic moment of ions, atoms or NV-centres, making this superposition of great
interest to measure fast variations of the magnetic field.

Outline of this work

Chapter 1 presents the Rydberg atom and provides the basis on how the state of the
atom can be manipulated. The symmetry of the hydrogen atom allows to describe the
Rydberg states in terms of two independent angular momenta that couple to orthogonal
polarizations of the resonant radio-frequency field. Therefore, in the presence of a purely
σ+ polarized radio-frequency field, the atom can be described by a single effective angular
momentum. The state of this angular momentum can be represented on a generalized
Bloch sphere. Finally, the difference between the hydrogen model and the rubidium atom,
used in our experiment, is discussed. We introduce the quantum defect which allows to
describe the energy eigenvalues of the states of low angular momentum in the rubidium
atom. We present numerical simulations of the latter which help us to understand the
behaviour of the atomic states throughout this work.

Chapter 2 describes the experimental tools necessary to prepare, manipulate and
detect the Rydberg atoms. In particular, we discuss the optimization of the well-defined
polarization of the radio-frequency fields, as well as the control of the spatial inhomo-
geneity of the electric field, both crucial in our metrology experiments.

Chapter 3 introduces our electrometer. The metrological signal is obtained by creating
a superposition of two very distinct states of the Rydberg atom. Our method relies on
the great sensitivity of the relative quantum phase between the two components of the
superposition due to their very different polarizabilities. We present that our single atom
sensitivity is far beyond the standard quantum limit, close to the fundamental Heisenberg
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limit. We discuss the sensitivity of the superposition to the electric field is ultimately
limited by the electric field noise in the experiment.

Chapter 4 presents a method to measure the correlation function of the electric field
noise by exploiting the richness of the Rydberg manifold structure. This allows us to
characterize the correlation function of different applied artificial electric field noises as
well as to recover asynchronous signals with a bandwidth of up to 5 MHz. Additionally,
an adapted version of the Rydberg electrometer allows to measure the intrinsic electric
field noise of the experimental set-up.

Chapter 5 shows the preparation of even larger quantum superpositions, this time
of opposite circular states, extremely sensitive to variations in the magnetic field, while
unaffected by the electric field noise. We describe the preparation scheme of this state
and present its high sensitivity to the magnetic field.

9





Chapter 1

Rydberg atoms

The Rydberg atom is an atom with a valence electron that is excited in states with very high
principal quantum numbers n [151]. These atoms exhibit small binding energies, long
decay rates, a large electric dipole, and a high sensitivity to electric and magnetic fields.
The electron wave-function is mostly located far from the nucleus. The valence electron
therefore feels an hydrogen-like Coulomb potential from the ionic core, consisting of
Z protons and Z −1 core electrons. The Rydberg atom can thus be described by the
hydrogen model, which has the great advantage to be solvable analytically.1 The effect of
the ionic core in the case of alkali atoms, instead of hydrogen atoms, can be described as
a correction to the hydrogen model.

In the first part of this chapter (Sec. 1.1) we discuss the description of the eigenstates of
the hydrogen atom. A natural choice is the spherical coordinates (Sec. 1.1.1.a). However,
in the presence of a static electric field, the spherical symmetry is broken and the parabolic
basis becomes more appropriate to describe the atomic states (Sec. 1.1.2). We show that
the hydrogen atom can be described in terms of two angular momenta (Sec. 1.1.4),
which is convenient to describe the coupling of the atom to a resonant radio-frequency
field (Sec. 1.1.6) and provides a description of semi-classical states as a product of spin
coherent states (Sec. 1.1.7).

In the second part (Sec. 1.2) we discuss the rubidium atom. Here, the energy eigenval-
ues of the atom in the presence of a static electric field have to be calculated numerically
(Sec 1.2.2) due to the quantum defect, which takes the spatial extension of the ionic core
into account (Sec 1.2.1). Finally, the distinctions and similarities between the hydrogen
and the rubidium atom are illustrated and explain why we can use the hydrogen-approach
for Rydberg atoms for states with wave-functions located far from the nucleus (Sec 1.2.3).

1A Rydberg atom can also consist of two (or more) highly excited electrons with similar principal
quantum numbers. In this work we restrict the description to alkali atoms. In the case where more than
one electron is in an excited state, the hydrogen potential has to be corrected significantly by a term which
takes the electron-electron interaction into account.
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Chapter 1. Rydberg atoms

1.1 The Hydrogen atom

The appearance of Rydberg atoms was first demonstrated in 1885 when Johann Balmer
discovered a mathematical description of the spectral line emissions of the hydrogen
atom. In 1888, Johannes Rydberg generalized this description in his Rydberg formula [151]

1

λ
= Ry

(
1

n2
i

− 1

n2
f

)

where λ is the wavelength of the emitted electromagnetic radiation, Ry is the Rydberg
constant and ni and n f are integers greater or equal to 1.

The empirical Rydberg formula was known long before Niels Bohr’s theory [152] in
1913 that describes the Rydberg formula as the energy of transitions, or quantum jumps,
between the energy levels of different orbits. Bohr showed that the energy difference can
be expressed in terms of the most fundamental constants of nature, including the elec-
tron’s charge e, the electron mass me , Planck’s constant h, and the vacuum permittivity
ε0, as

∆E = h∆ν=− me

2~2

(
e

4πε0

)2
(

1

n2
i

− 1

n2
f

)
.

By comparison we find the Rydberg energy,

ERy = hcRy = me

2~2

(
e

4πε0

)2

≈ 13.6eV. (1.1)

Finally, in 1926, Schrödinger introduced the Schrödinger equation [153] providing a
fully quantum mechanical description of the hydrogen atom, which predicts that wave-
functions of the electron can form standing waves, or stationary states, also called atomic
orbitals, which are a solution of the time-independent Schrödinger equation,

ĤΨ= EΨ, (1.2)

where Ĥ is the Hamiltonian operator acting on a wave-functionΨ, and E the energy of
the stateΨ.

The hydrogen atom consists of a single positively charged proton, the nucleus, and
a single negatively charged electron. Electron and proton are bound together by the
Coulomb force.

The Hamiltonian of the electron is

Ĥ0 = p̂2

2me
+ V̂ (r̂ ), (1.3)

with the potential V̂ (r̂ ) that describes the Coulomb interaction between electron and
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1.1. The Hydrogen atom

proton, and with p̂2/2me being the kinetic energy, where p̂ is the momentum of the
electron. The proton is assumed to be motionless due to the mass ratio between electron
and proton. In principle, we have to take into account the reduced mass instead of
the electron mass, µ= (me mp )/(me +mp ), as well as, the relative momentum operator
p̂ =µ(

p̂e /me + p̂p /mp
)
. However, due to the mass ratio between electron and proton we

neglect the motion of the heavy proton.

The Schrödinger equation (Eq. 1.2) can be solved by choosing a set of coordinates to
get the analytical expression of the wave-function.

1.1.1 Wave-function of the hydrogen atom

1.1.1.a Spherical basis

Since the Coulomb potential V̂ (r̂ ) = V̂ (r̂ ) is a central potential, depending only on the
distance r̂ between electron and proton, the angular momentum operator L̂ is conserved.

The Schrödinger equation of the hydrogen atom is usually solved by employing the
spherical coordinates (r,θ,φ). This choice seems natural due to the spherical symmetry
of the Coulomb potential. Since L̂ commutes with the Hamiltonian, we look for wave-
functions written as

ψ(r ) = R(r )Y m
l (θ,φ), (1.4)

product of a radial part R(r ) and the spherical harmonics Y m
l (θ,φ) with angular quantum

number l and magnetic quantum number m. The Schrödinger equation thus becomes a
one-dimensional radial differential equation(

− ~2

2me r

∂2

∂r 2
r + l (l +1)~2

2me r 2
− e2

4πε0r

)
R(r ) = ER(r ), (1.5)

where the first term describes the kinetic energy and the two remaining terms act as an
effective potential, which contains a centrifugal part ∝ r−2 and the attractive Coulomb
potential ∝ r−1.

The eigenfunctions Rnl (r ) of the radial Schrödinger equation in Eq. 1.5 are given by
the Laguerre polynomials. The eigenstates of the system can therefore be fully described
by the quantum numbers n, l , and m and can be written as |n, l ,m〉 (or |n, l ,m,ms〉 with
ms =±1/2 when considering the electron spin s). The energy eigenvalues follow from the
solution of the radial equation and are given by the Bohr formula,

En =−ERy

n2
, (1.6)

where ERy is the Rydberg energy (Eq. 1.1) leading to the ground state energy of the
hydrogen atom E1 ≈−13.6 eV. We restrict ourselves to bound states throughout this work.
The energy eigenvalues are independent of l and m leading to an n2-fold degeneracy of
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Figure I.2 – Fonctions d’onde de quelques états sphériques de l’hydro-
gène : |n = 21, l = 12,m = 0〉, |n = 21, l = 12,m = 9〉, |n = 21, l = 12,m = 12〉 et
|n = 21, l = 20,m = 20〉. Sur la première ligne sont représentées les fonctions d’onde à 3
dimensions. L’axe vertical est l’axe de quantification (Oz). L’unité des axes est 103a0.
Nous avons représenté les surfaces où la densité de probabilité devient supérieure à
1, 5 · 10−9a−3

0 . Sur la deuxième ligne est tracée la projection dans le plan (zOρ), où ρ est
le rayon en coordonné cylindrique (ρ, ϕ, z) de l’espace réel. La couleur varie de 0 (fond
bleu) à 5 · 10−9a−3

0 (blanc). La variable ϕ n’intervient qu’à travers un terme de phase
eimϕ, la densité de probabilité |ψ|2 est donc invariante avec ϕ. Les fonctions d’onde à
trois dimensions ne reprennent pas tous les motifs de leur projection à cause de l’effet du
seuil, choisi pour donner assez de lisibilité.

autour de l’axe (Oz) traduit le fait que |ψ〉 est vecteur propre de L̂z. On remarque que
l’orbite électronique devient de plus en plus confinée autour du plan z = 0 à mesure que la
projection du moment cinétique m tend vers l. Plus ce nombre quantique azimutal l aug-
mente, plus la densité de probabilité de l’électron est grande loin du centre de l’atome. La
dernière fonction d’onde représente l’état circulaire. L’électron y est entièrement localisé
dans un tore centré sur le noyau atomique, d’où son nom d’état circulaire.

La base sphérique impose à toutes les solutions d’être symétriques par rapport aux
plans x = 0, y = 0 et z = 0. En conséquence, celles-ci possèdent toutes un dipôle d̂ = qr̂
moyen nul

〈n, l,m|qr̂|n, l,m〉 = 0. (I.14)

Or, ce dernier joue un rôle déterminant dans l’interaction avec des champs électriques
extérieurs. Il peut donc être intéressant de trouver les solutions de l’atome d’hydrogène
dans la base propre du dipôle atomique. Celle-ci est la base parabolique.

(a)

(b)

Figure 1.1: Wave functions of some spherical states of the hydrogen atom for n = 21:
(from left to right) |n, l ,m〉 = |21,12,0〉, |n, l ,m〉 = |21,12,9〉, |n, l ,m〉 = |21,12,12〉, and
|n, l ,m〉 = |21,20,20〉. (a) The wave-functions in three dimensions are represented with
the quantization axis (Oz) in the vertical z-direction. The units of the axis are 103a0. The
represented surface corresponds to a probability density of 1.5 ·10−9a−3

0 . (b) The projection
of the wave-function in the (zOρ) plane, where ρ is the radius in cylindrical coordinates
(ρ,φ, z) in real space. The colors vary from 0 (blue background) to 5 ·10−9a−3

0 (white). The
probability density |ψ|2 does not depend onφ, since the latter only shows up in a term e i mφ.
The pictures are taken from [154].

the levels.

Fig. 1.1 shows the probability density of some of the spherical orbitals. We can clearly
observe the symmetry with respect to the x = 0, y = 0 and z = 0 planes. As a result the
expectation value of the dipole operator d̂ = q r̂ for any state |n, l ,m〉 is zero.

1.1.1.b Parabolic basis

In a static electric field the spherical symmetry is broken and it is useful to work in the
parabolic basis. The relationship between the parabolic coordinates (ξ,η,φ) and the
Cartesian coordinates is given by

x =√
ξηcos(φ),

y =√
ξηsin(φ),

z = 1
2 (ξ−η),

↔
ξ= r + z = r (1+cos(θ)),
η= r − z = r (1−cos(θ)),
φ= tan(y/x).

(1.7)

where r = 1
2 (ξ+η) and r = (x2 + y2 + z2)1/2. The azimuthal angle φ is defined as in the

spherical coordinates, reflecting the cylindrical symmetry, which is not broken by a
static electric field in z-direction. Surfaces with a constant value of ξ or η correspond
to rotational paraboloids around the z-axis with their focus point at the origin of the
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Figure I.4 – Fonctions d’onde de quelques états paraboliques de l’atome d’hydrogène
pour n = 21, dans l’ordre |n, n1 = 0,m = 16〉, |n, n1 = 2,m = 16〉, |n, n1 = 4,m = 16〉 et
|n, n1 = 2,m = 7〉. Les représentations présentes les mêmes caractéristiques que sur la
figure I.2. Les trois premiers exemples montrent l’influence du nombre quantique n1 à m
constant. L’effet du nombre quantique m est illustrée avec le dernier exemple.

I.1.1.d Relation entre les bases sphériques et paraboliques

La base parabolique repose sur les quatre observables Ĵ1, Ĵ1z, Ĵ2 et Ĵ2z et peut être
notée |j1,m1, j2,m2〉. La théorie de l’addition des moments cinétiques montre qu’on peut
construire une base alternative sur les observables Ĵ2

1 , Ĵ2
2 ,
(
Ĵ1 + Ĵ2

)2
et
(
Ĵ1z + Ĵ2z

)
.

Puisque Ĵ1 + Ĵ2 = L̂, cette base n’est autre que la base sphérique |j1, j2, l,m〉, noté aussi
|n, l,m〉 puisque j1 = j2 = (n − 1)/2. Ces deux bases sont liées par les coefficients de
Clebsch-Gordan 〈j1,m1, j2,m2|j1, j2, l,m〉 [74]

|n, l,m〉 =
∑

m1m2

|n,m1,m2〉〈j1,m1, j2,m2|j1, j2, l,m〉. (I.41)

Les nombres quantiques utiles de la base parabolique sont donc n, m1 et m2. Le nombre
quantique principal n est le seul dont dépend l’énergie. Il peut prendre toutes les valeurs
entières strictement positives. m1 et m2 renseignent sur la forme de l’orbite atomique. Ils
évoluent entre −(n−1)/2 et (n−1)/2 et sont entiers ou demi-entiers selon la parité de n.
Comme nous l’avons vu, il existe une autre description de la base parabolique à l’aide des
nombres quantiques n1 et n2. Ce sont ces nombres-là qui sont traditionnellement utilisés
pour décrire les états paraboliques. Des équations (I.39) et (I.40), on déduit la relation

n = n1 + n2 + |m|+ 1. (I.42)

La base parabolique peut ainsi s’exprimer sous la forme |n, n1,m〉, une écriture que nous
utiliserons par la suite.

(a)

(b)

Figure 1.2: Wave functions of some parabolic states of the hydrogen atom for n = 21:
(from left to right) |n1,n2,m〉 = |0,4,16〉, |n1,n2,m〉 = |2,2,16〉, |n1,n2,m〉 = |4,0,16〉 and
|n1,n2,m〉 = |2,10,7〉. The wave-functions are represented with the same characteristics as
in Fig. 1.1. The first three examples show the influence of the parabolic quantum number
n1 at a constant magnetic quantum number m. The last example shows the influence of
m. The pictures are taken from [154].

Cartesian coordinate system.

The Schrödinger equation can also be separated in parabolic coordinates. Because of
the cylindrical symmetry, L̂z commutes with the Hamiltonian and we look for solutions
which are also eigenstates of L̂z , of the form,

ψ(r ) = u1(ξ)u2(η)e i mφ. (1.8)

As a result we obtain two differential equations for ξ and η that can be solved by introduc-
ing two new quantum numbers, the parabolic quantum numbers n1 and n2 which are
non-negative integers and fulfil

n = n1 +n2 +|m|+1.

From this condition we infer that n1 and n2 take values between 0 and n −|m|−1.

The two parts in the wave-function (Eq. 1.8) correspond to the respective parabolic
quantum numbers, u1(ξ) = un1,m(ξ) and u2(η) = un2,m(η). The parabolic states are fully
described by |n1,n2,m〉 (or |n1,n2,m,ms〉when considering the spin2). In some situations
it might be more convenient to use the notation |n,n1,m〉, |n,n2,m〉 or |n,n1,n2,m〉.

In Fig. 1.2 the probability density of some of the parabolic orbitals are shown. In
contrast to the spherical wave-functions, the parabolic ones are asymmetric with respect

2We omit the spin most of the time, since the electromagnetic radiation we consider throughout this
work does not change the spin, and the spin state does not change the transition frequency.
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Chapter 1. Rydberg atoms

to the z = 0-plane, leading to a non-zero expectation value of the dipole operator. For
a given m, the dipole moment of the orbital varies by changing the parabolic quantum
number n1 (and by consequent n2). Exchanging the values of n1 and n2 corresponds to a
symmetry with respect to the horizontal plane.

The parabolic quantum numbers determine the degree of the Laguerre polynomial
and the shape of the orbital. The parabolic eigenstates are linear superpositions of
spherical eigenstates and vice versa. There are only two states that are identical in
both bases, |n1 = 0,n2 = 0,m =±mmax〉 = |n, l = n −1,m =±mmax〉. Due to their torus-
like wave-function these states are called circular Rydberg states. The wave-function
of these states is shown in the fourth column in Fig. 1.1. Theses states correspond to
semi-classical states for which the wave-function is localized around classical Bohr orbits.

1.1.2 The hydrogen atom in the presence of an electric field

In the presence of an external static electric field F = F uz , the Hamiltonian can be written
as

Ĥ = Ĥ0 + V̂DC,

where the first term represents the free hydrogen Hamiltonian (Eq. 1.3) and the second
term the additional potential due to the static electric field,

V̂DC =−d̂ ·FDC =−q r̂ ·FDC = eẑF, (1.9)

breaking the spherical symmetry. The cylindrical symmetry around the field axis, however,
remains and the magnetic quantum number m is still a good quantum number.

The potential V̂DC leads to a shift in the energy eigenvalues which is called the Stark
shift. An analytical solution to this problem has not been found a yet, but it is possible
to calculate the energy eigenvalues with very high precision using perturbation theory
[155–157].

The first order energy correction, or the first order Stark shift, can be calculated
by diagonalizing ẑ in the restriction of a given manifold of principal quantum number
n [158]. In principle we can use any of the bases presented before, but since we can
express z = 1

2 (ξ−η), the Schrödinger equation remains separable in parabolic coordinates
in the presence of the electric field, making the parabolic basis the appropriate choice.
Knowing the analytical expressions of un2,m(η) and un1,m(ξ), one can compute

〈n1,n2,m|ẑ |n′
1,n′

2,m′〉 =∫
u∗

n1,m(ξ)u∗
n2,m(η)

[
1

2
(ξ−η)

]
un′

1,m′(ξ)un′
2,m′(η)e i (mφ−m′φ)d 3r.

We find that ẑ is diagonal in the |n1,n2,m〉-basis with the matrix elements

〈n1,n2,m| ẑ |n′
1,n′

2,m′〉 = 3

2
a0n(n1 −n2)δn1n′

1
δn2n′

2
δmm′ , (1.10)
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𝑛1 = 𝑛 − 2 
𝑛2 = 1 

𝑛1 = 1 
𝑛2 = 0 

𝑛1 = 1 
𝑛2 = 0 

𝑛1 = 0 
𝑛2 = 0 

𝑛1 = 0 
𝑛2 = 0 

Figure 1.3: Energy levels of the hydrogen atom in a static electric field F are shifted from their
zero-field energy En . For each value of the magnetic quantum number m, the respective
n −|m| levels split into equidistant vertical ladders, called m-ladders. In this sketch, the
levels are sorted by their energy for each value of m and are labelled with the parabolic
quantum numbers n1 (orange) and n2 (blue).

where a0 is the Bohr radius. The new eigenstates remain the parabolic states and the new
energy eigenvalues can be written as

E = En +E (1)
n , with E (1)

n = 3

2
ea0n(n1 −n2)F, (1.11)

where En are the unperturbed energy eigenvalues given by Bohr’s formula (Eq. 1.6), and
E (1)

n the first order Stark shift. The linear Stark shift, proportional to n and to the applied
electric field strength F , partially lifts the degeneracy of the n2 levels of the n-manifold.
However, the degeneracy of levels with same (n1 −n2) value remains. For each value of
m, the states split into equidistant ladders of n −|m| states, also called m-ladders, which
are distributed symmetrically with respect to the unperturbed energy En . In Fig. 1.3,
the energy eigenvalues of the eigenstates |n1,n2,m〉 are sketched over the respective
magnetic quantum number m.

The second order energy correction, or second order Stark shift, is given by [159]

E (2)
n = ∑

n′ 6=n,n′
1,m′

| 〈n′,n′
1,m′|V̂DC |n,n1,m〉 |2

En −En′
. (1.12)

Note that the ẑ commutes with L̂z so we can restrict this sum to m′ = m. Once no longer
restricted to a given manifold, the operator ẑ is no longer diagonal in the parabolic
basis. The parabolic states are therefore no longer the eigenstates. However, we continue
to use the parabolic quantum numbers to label the states, keeping in mind that their
wave-functions are no longer fully described by Eq. 1.8.
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Figure 1.4: Analytical calculation of the energy levels of the hydrogen atom with n = 51 in
an electric field F = 234.5 V/m taking into account the first and second order Stark effect.
The chosen reference energy is En for n = 51 (Eq.1.6)

The second order Stark effect can be interpreted as a polarisation of the atom by the
electric field leading to an induced dipole δd whose amplitude is proportional to the
electric field amplitude F . The interaction of this dipole with the electric field −δd ·F
results in an energy shift proportional to F 2.

The quadratic Stark shift is given by [159, 160]

E (2)
n =− 1

32

(ea0F )2

ERy
n4(17n2 −3(n1 −n2)2 −9m2 +19), (1.13)

with ERy the ground state energy of the hydrogen atom (Eq. 1.1). The second order
correction depends on the magnetic quantum number m (which is not the case for
the first order correction) but is independent of its sign. The term (n1 −n2)2 leads to a
shift independent of the orientation of the orbital. Only levels with identical quantum
numbers n1 and n2 and opposite values of m remain degenerate.

In Fig. 1.4 the energy eigenvalues with n = 51 of the hydrogen atom are shown in a
static electric field of F = 234.5 V/m, sorted by their magnetic quantum number m. The
energy eigenvalues are calculated analytically taking into account the linear and quadratic
Stark shift. The chosen reference energy is En for n = 51 (Eq.1.6). The predominant linear
Stark effect leads to an almost equidistant energy difference for each vertical m-ladder.
However, we notice that even states with n1 −n2 = 0, for example the two circular states
at the extreme right and left of the level structure, are slightly shifted away from the
reference energy En .

18



1.1. The Hydrogen atom

In a static electric field of F = 234.5 V/m, used in Fig. 1.4, the linear Stark shift in
the n = 51 manifold is of about ωat/2π =230 MHz between all adjacent levels. Higher
order Stark shifts remain small energy corrections as compared to the linear Stark shift.
In the same static electric field, the quadratic Stark shift of the transition between
the circular state |51c〉 = |n = 51,n1 = n2 = 0,m = 50〉 and its two elliptical neighbours,
|51e1〉 = |n = 51,n1 = 0,n2 = 1,m = 49〉 and |51e1′〉 = |n = 51,n1 = 1,n2 = 0,m = 49〉, are
no longer degenerate since they are shifted by ±0.5 MHz away from the linear Stark shift
of 230 MHz.

The notation |51c〉 for the circular state (with m > 0) and |51ex〉 , x = n2 for the elliptical
states on the lowest diagonal with n1 = 0, or m2 = j2, is used throughout this thesis.
The first elliptical state |n = 51,n1 = 0,n2 = 1,m = 49〉 is called |51e1〉, the second one
|n = 51,n1 = 0,n2 = 2,m = 48〉 is called |51e2〉, and so forth.

1.1.3 The hydrogen atom in the presence of a magnetic field

The presence of a magnetic field B shifts the energy of the atomic states due to the
interaction between the applied magnetic field and the magnetic moment of the atom.
The total Hamiltonian of the atom in a magnetic field is

ĤM = Ĥ0 + V̂M

where V̂M is the perturbation due to the B-field. The latter can be expressed as

V̂M =−µ̂ ·B , with µ̂=−µB

~
(
gLL̂ + gS Ŝ

)
,

with µ̂ being the magnetic moment of the atom which contains the Bohr magneton
µB = e~

2me
, the orbit angular momentum L̂ and the spin angular momentum Ŝ, each

multiplied by the appropriate gyromagnetic ratio, gL = 1 and gS ≈ 2. The expression of
V̂M can be simplified by taking into account that the applied magnetic field B = Buz is
along the z-direction:

V̂M = µB B

~
(
gLL̂z + gS Ŝz

)
.

In the case of an unperturbed Hamiltonian Ĥ0, the magnetic quantum number m and
the spin quantum number ms are good quantum numbers and the eigenstates are the
|n1,n2,m,ms =±1/2〉 states.

In the presence of the magnetic field, the energy of the state |n,n1,m,ms〉 are shifted
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Chapter 1. Rydberg atoms

by3

EM = 〈n1,n2,m,ms |V̂M |n1,n2,m,ms〉 =µB B(gLm + gSms),

with, in particular, the relative energy shift of two levels with m and m′ and same spin
quantum number ms as

∆EM =µB B gL(m −m′).

For a transition with ∆m the shift in frequency is

∆νM = gLµB B

h
∆m (1.14)

with gLµB /h ≈ 1.4 MHz/G.

1.1.4 The Runge-Lenz vector

It is also possible to solve the Schrödinger equation inside a given manifold using only
algebraic arguments based on the symmetry of the Coulomb problem [161]. This is an al-
ternative method to find the parabolic basis, but it provides a more insightful description
of the parabolic states.

In classical mechanics, the Runge-Lenz vector is a constant of motion and was initially
defined for planetary orbits. In the case of a 1/r potential, the Runge-Lenz vector A lies
in the plane of motion and points from the focus to the perihelion (the nearest point of
the orbit to its focus).

In quantum mechanics, the Runge-Lenz vector is associated to an operator Â defined
by

Â = 1

2

(
p̂ × L̂ − L̂ × p̂

)−meκ
r

r
,

with κ = e2/4πε0 for the Coulomb force. Already in 1926, Pauli obtained the energy of
the bound states of the hydrogen atom algebraically by making use of the Lie algebra
generated by the conserved quantities of the orbital angular momentum operator L̂ and
the Runge-Lenz operator Â [153].

Inside a given manifold with principal quantum number n and energy eigenvalue En <
3In principle, for small electric fields, where states with |n1,n2,m,ms =+1/2〉 and

|n1,n2,m +1,ms =−1/2〉 are degenerate, we also have to take into account the spin orbit coupling,
expressed as an additional term V̂LS ∝ L̂ · Ŝ in the Hamiltonian. This leads to the fact that m and ms

are no longer good quantum numbers and the above mentioned eigenstates are not eigenstates of the
Hamiltonian Ĥ0 + V̂M + V̂LS , but rather the states |n, l , j ,m j 〉 where Ĵ = L̂ + Ŝ. However, in practice, we
always work in a large enough electric field so that the states mentioned before are not degenerate. In
this case, m and ms remain good quantum numbers and the term V̂LS introduces at most a slight shift
of the energy levels. The eigenstates |n,n1,m,ms〉 therefore remain the eigenstates of the Hamiltonian
Ĥ0 + V̂M + V̂LS + V̂DC and the simplified description in the main text holds.
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1.1. The Hydrogen atom

0, the Runge-Lenz operator can be normalized. The normalized Runge-Lenz operator
â = Â/

p−2me En has the same dimension as L̂. We can introduce two new angular
momentum operators [158],4

Ĵ1 = 1

2

(
L̂ − â

)
and Ĵ2 = 1

2

(
L̂ + â

)
. (1.15)

The eigenvalues of Ĵ 2
1 and Ĵ 2

2 are of the form j1( j1 +1)~2 and j2( j2 +1)~2, with j1 = j2 =
(n −1)/2 ≡ j being integers or half-integers.

The new angular momentum operators Ĵ1 and Ĵ2 commute and are therefore two
independent angular momenta. Inside a given n-manifold Ĵ 2

1 , Ĵ1z , Ĵ 2
2 , and Ĵ2z form a

complete set of commuting observables where Ĵ 2
1 and Ĵ 2

2 are constant. The hydrogen
levels can be represented as the states | j1,m1, j2,m2〉 where m1~ are the eigenvalues of
Ĵ1z and m2~ the eigenvalues of Ĵ2z .5 We can formally write

| j1,m1, j2,m2〉 = | j1,m1〉⊗ | j2,m2〉 .

1.1.4.a Connection of the Runge-Lenz basis to the parabolic basis

From the definition of the two new angular momenta Ĵ1 and Ĵ2 (Eq. 1.15) we find that

L̂z = Ĵ1z + Ĵ2z and âz = Ĵ2z − Ĵ1z .

Therefore,

L̂z | j1,m1, j2,m2〉 = ~(m1 +m2) | j1,m1, j2,m2〉
âz | j1,m1, j2,m2〉 = ~(m2 −m1) | j1,m1, j2,m2〉 .

The action of L̂z in the parabolic basis is already known,

L̂z |n1,n2,m〉 = ~m |n1,n2,m〉 .

To calculate the action of âz on the parabolic basis, we use the Pauli replacement, a link
introduced by Pauli [161] between the position operator r̂ and the Runge-Lenz operator
â [158, 160],

r̂ =−3

2

a0n

~
â. (1.16)

Then Eq. 1.10 becomes

âz |n1,n2,m〉 = ~(n2 −n1) |n1,n2,m〉 .

Since L̂z and âz are linear combinations of Ĵ1z and Ĵ2z , they also form a complete set

4Please note that the definitions of Ĵ1 and Ĵ2 are slightly different in Englefield [158].
5Since j1 = j2 = (n −1)/2 ≡ j , the eigenstates can also be expressed as | j ,m1, j ,m2〉. Both notations are

used throughout this work.
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Chapter 1. Rydberg atoms

of commuting observables inside a given manifold. We can thus identify |n1,n2,m〉 =
| j1,m1, j2,m2〉 with n1 = j −m2 and n2 = j −m1 for m ≥ 0, and n1 = j −m1 and n1 = j −m2

for m ≤ 0 where j = j1 = j2 = (n −1)/2.6

1.1.4.b Connection of the Runge-Lenz basis to the spherical basis

This description also provides an easy way to connect the spherical basis and the parabolic
basis. To express the eigenstates of the spherical basis |n, l ,m〉 as a function of the
eigenstates of the Runge-Lenz basis | j1,m1, j2,m2〉, we use that inside a given manifold
with principal quantum number n, the two new angular momenta operators Ĵ1 and Ĵ2 can
be composed to the orbital angular momentum L̂ = Ĵ1+ Ĵ2. In the spherical basis, |n, l ,m〉
can formally be written as | j1, j2, l ,m〉. Using the rules for addition of angular momenta,
the eigenstates |n, l ,m〉 and the eigenstates | j1,m1, j2,m2〉 are connected through the
Clebsch-Gordan coefficients 〈 j1,m1, j2,m2| j1, j2, l ,m〉 by

|n, l ,m〉 = ∑
m1,m2

| j1,m1, j2,m2〉〈 j1,m1, j2,m2| j1, j2, l ,m〉 . (1.17)

1.1.5 Stark shift in the Runge-Lenz basis

The Stark shift due to the presence of a static electric field can also be expressed in terms
of the operators Ĵ1 and Ĵ2 since we have identified |n1,n2,m〉 and | j1,m1, j2,m2〉. The
first order Stark shift (Eq. 1.11) is found by diagonalizing V̂DC, proportional to the position
operator ẑ, in the parabolic basis. We can just as well diagonalize V̂DC in the Runge-Lenz
basis using the Pauli replacement.

The perturbation V̂DC restricted to the n-manifold, can be expressed as

V̂ (1)
DC = ~ωat( Ĵ1z − Ĵ2z), (1.18)

with the frequency

ωat(F ) = 3

2

ea0n

~
F. (1.19)

This Hamiltonian describes the energy of two angular momenta of frequencies +ωat

and −ωat. Even in the presence of an electric field, the system can be described as two
independent angular momenta. The Stark energy shift can be separated as

E (1)(| j1,m1, j2,m2〉) = E(| j1,m1〉)+E(| j2,m2〉).

In Fig. 1.5, the energy eigenvalues of the eigenstates | j1,m1, j2,m2〉 (with j1 = j2 = j )

6By comparing the eigenvalues of the orbital angular momentum L̂z and the eigenvalues of the normal-
ized Runge-Lenz operator âz , we find m = m1+m2 and n2−n1 = m2−m1. Together with the relation of the
parabolic quantum numbers with the principal quantum number, n = n1 +n2 +|m|+1, we can calculated
the above equivalences.
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1.1. The Hydrogen atom

J1z 

J2z 

E 

0 

Figure 1.5: Energy levels of the hydrogen atom in a static electric field F are shifted from their
zero-field energy En . For each value of the magnetic quantum number m, the respective
n −|m| levels split into equidistant vertical ladders, as in Fig. 1.3. In this sketch, the levels
are labelled with the eigenvalues of Ĵ1z (in red) and Ĵ2z (in yellow) being m1 and m2.

are sketched over the respective magnetic quantum number m. The states are labelled
by the quantum numbers m1 and m2. Levels of same m1 form diagonal ladders along
the direction of Ĵ2z , levels of same m2 form diagonal ladders along the direction of Ĵ1z .
The two diagonal ladders that intercept at the circular state with | j1,m1 = j1, j2,m2 = j2〉
at m = mmax = n −1 are highlighted. The only difference between Figs. 1.5 and 1.3 is the
labelling of the levels.

To calculate the second order Stark shift in terms of Ĵ1 and Ĵ2, one can replace n1 −n2

by m1 −m2 and m by m1 +m2 in Eq. 1.13 to find

E (2)(| j1,m1, j2,m2〉) =− 1

72

(~ωat)2

ER y
n2 (

19+17n2 −12(m2
1 +m2

2 +m1m2)
)

,

Due to coupling to states of manifolds with n′ 6= n, the two angular momenta Ĵ1 and
Ĵ2 are not independent any more and the energy eigenvalue of the state | j1,m1, j2,m2〉
cannot be written as the sum E(| j1,m1〉)+E(| j2,m2〉). The second order perturbation
term in the Hamiltonian can be written as

V̂ (2)
DC =− 1

72

ω2
at

ER y
n2 (

(19+17n2)1−12( Ĵ 2
1z + Ĵ 2

2z + Ĵ1z Ĵ2z)
)

, (1.20)

where the terms proportional to Ĵ 2
1z and Ĵ 2

2z can be interpreted as self-Kerr effects and the
term proportional to Ĵ1z Ĵ2z as a cross-Kerr effect.
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Chapter 1. Rydberg atoms

In a qualitative description of the hydrogen atom in the following sections, we restrict
the Stark shift to a purely linear one.

1.1.6 Coupling Hamiltonian

The eigenstates of the manifold of principal quantum number n of the hydrogen atom in
the presence of a static electric F can be described as a product states of the eigenstates
| j1,m1〉 and | j2,m2〉 of two angular momenta Ĵ1 and Ĵ2 (Sec. 1.1.4). The energy of the
eigenstates plotted as a function of the magnetic quantum number m (see Fig. 1.4) form
sets of parallel diagonal ladders separated by ~ωat (Eq. 1.19). The typical frequency
difference between adjacent levels, ωat, is, for the static electric fields we apply in our
experiments, in the radio-frequency domain. By applying a radio-frequency field with
ωrf, at resonant with the atomic frequency ωat, we can drive transitions between adjacent
levels on the diagonal ladders

We consider the interaction of the hydrogen atom with a radio-frequency field in the
horizontal x y-plane. The coupling Hamiltonian can be written as

V̂rf =−qFrf(t ) · r̂ ,

where Frf(t) is the time dependent radio-frequency electric field, which can be decom-
posed into

Frf(t ) = F+
rf (t )+F−

rf (t ),

with F+
rf (t) corresponding to the σ+ polarized component of the radio-frequency field,

and F−
rf (t ) to the σ− polarized component. The σ± polarized radio-frequency field can be

written as

F±
rf (t ) = F±

rf

(
cos(ωrft )ux ± sin(ωrft )uy

)
= 1

2
F±

rf

(
(ux ∓ i uy )e iωrft + (ux ± i uy )e−iωrft

)
,

leading to coupling Hamiltonians for the σ+ and σ− polarized radio-frequency field of
the form

V̂ ±
rf (t ) = 1

2
eF±

rf

(
(x̂ ∓ i ŷ)e iωrft + (x̂ ± i ŷ)e−iωrft

)
. (1.21)

We can use the Pauli replacement (Eq. 1.16) to rewrite

x̂ ± i ŷ = 3

2

a0n

~
(

Ĵ±1 − Ĵ±2
)

, (1.22)
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1.1. The Hydrogen atom

introducing the ladder operators7 Ĵ±1 and Ĵ±2

Ĵ±1 = (
Ĵ1x ± i Ĵ1y

)
and Ĵ±2 = (

Ĵ2x ± i Ĵ2y
)

. (1.23)

The x̂±i ŷ operators only couple states with∆m1 = 0 and∆m2 =±1 or states with∆m2 = 0
and ∆m1 =±1. We find [158]

〈 j1,m1 ±1, j2,m2| x̂ ± i ŷ | j1,m1, j2,m2〉 = 3

4
a0n

√
n2 −4m2

1 ±4m1 −1 and (1.24)

〈 j1,m1, j2,m2 ±1| x̂ ± i ŷ | j1,m1, j2,m2〉 = 3

4
a0n

√
n2 −4m2

2 ±4m2 −1. (1.25)

Using Eq. 1.22, we can rewrite Eq. 1.21 as

V̂ ±
rf (t ) = 1

2
Ω±

rf

((
Ĵ−1 − Ĵ−2

)
e±iωrft + (

Ĵ+1 − Ĵ+2
)

e∓iωrft
)

, with Ω±
rf =

3

2

ea0

~
nF±

rf , (1.26)

whereΩ±
rf is the Rabi frequency of the radio-frequency field. The operator Ĵ+1 , for example,

corresponds to a transition ∆m1 = +1 towards a level with higher energy. The term
Ĵ+1 e+iωrft is thus non-resonant. This is also the case for the term Ĵ−2 e+iωrft (due to the
negative value of the frequency of Ĵ2, a decrease of the value of m2 corresponds to a gain
in energy). If ωrf ≈ωat, those terms and their hermitian conjugate can be neglected. The
expression in Eq. 1.26 can therefore be simplified using the rotating frame approximation.
We find

V̂ +
rf (t ) = 1

2
Ω+

rf

(
Ĵ+1 e−iωrft + Ĵ−1 e iωrft

)
and (1.27)

V̂ −
rf (t ) = 1

2
Ω−

rf

(
Ĵ+2 e iωrft + Ĵ−2 e−iωrft

)
. (1.28)

A σ+ polarized radio-frequency field induces transitions on the Ĵ1 spin ladder, whereas a
σ− polarized radio-frequency field induces transitions on the Ĵ2 spin ladder, each leaving
the other spin unaltered.

1.1.7 Spin coherent states

The total Hamiltonian Ĥ = Ĥ0 + V̂DC + V̂ +
rf + V̂ −

rf is a sum of the unperturbed Hamiltonian
Ĥ0, of the perturbation due to the static electric field V̂DC and of the coupling to the σ+

and σ− polarized radio-frequency fields, V̂ +
rf and V̂ −

rf . Inside a given manifold, neglecting
the second order Stark effect, the terms V̂DC, V̂ +

rf , and V̂ −
rf can all be expressed in terms of

7The action of a ladder operators are defined by

Ĵ± | j ,m〉 = ~
√

j ( j +1)−m(m ±1) | j ,m ±1〉 = ~
√

( j ∓m)( j ±m +1) | j ,m ±1〉 .
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Chapter 1. Rydberg atoms

the angular momentum operators Ĵ1 and Ĵ2 (Eqs. 1.18, 1.27, 1.28):

V̂DC = ~ωat( Ĵ1z − Ĵ2z),

V̂ +
rf =

1

2
Ω+

rf

(
Ĵ+1 e−iωrft + Ĵ−1 e iωrft

)
,

V̂ −
rf =

1

2
Ω−

rf

(
Ĵ+2 e iωrft + Ĵ−2 e−iωrft

)
.

Inside a given manifold, the total Hamiltonian can therefore be rewritten as Ĥ = Ĥ0 +
Ĥ1 + Ĥ2, with

Ĥ1 = ~ωat Ĵ1z + 1

2
Ω+

rf

(
Ĵ+1 e−iωrft + Ĵ−1 e iωrft

)
,

Ĥ2 =−~ωat Ĵ2z + 1

2
Ω−

rf

(
Ĵ+2 e iωrft + Ĵ−2 e−iωrft

)
,

and Ĥ0 is constant inside a given manifold. The Hamiltonian Ĥ1 acts only on | j1,m1〉,
whereas Ĥ2 acts only on | j2,m2〉. If initially the atom is prepared in a product state, the
state of the hydrogen atom remains in a product state,

|Ψ(t )〉 = |Ψ1(t )〉⊗ |Ψ2(t )〉 , (1.29)

where |Ψ1(t )〉 is the state of Ĵ1 and |Ψ2(t )〉 the state of Ĵ2. To study |Ψ1(t )〉 and |Ψ2(t )〉, it is
convenient to represent the state of the spin in the rotating frame at the radio-frequency
ωrf. The evolution is then given by the time-independent Hamiltonian,

H̃i = ~δ Ĵi z + 1

2
Ω±

rf

(
i Ĵ+i e+iφ− i Ĵ−i e−iφ

)
, (1.30)

where we introduce the phase φ of the radio-frequency drive.

Starting with the circular state | j1, j1〉⊗ | j2, j2〉 and applying a radio-frequency pulse
creates the state

|Ψ(t )〉 =
(
e−i H̃1t/~ | j1, j1〉

)
⊗

(
e−i H̃2t/~ | j2, j2〉

)
. (1.31)

1.1.7.a Spin coherent states on the generalized Bloch sphere

In case the radio-frequency is resonant with the frequency between adjacent levels,
ωrf =ωat, the detuning vanishes, δ= 0, and Eq.1.30 becomes

H̃i =Ω±
rf

(−sin(φi ) Ĵx +cos(φi ) Ĵy
)

.

We restrict the following description to the Ĵ1 operator. The exponent of the time-
evolution operator e−i H̃1t/~ can be replaced by H̃1t = θ1 Ĵ1 ·n1, product of rotation angle
θ1, the angular momentum operator Ĵ1 and the rotation axis n1 = (−sin(φ1),cos(φ1),0).
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1.1. The Hydrogen atom

We introduce the rotation operator for a σ+ polarized radio-frequency field as

R̂1(θ1,φ1) = e
i
~θ1 Ĵ1·n1 = e− iθ1

~ (−sin(φi ) Ĵx+cos(φi ) Ĵy ). (1.32)

If applied on the state | j1, j1〉, the rotation operator generates the state |θ1,φ1〉,

|θ1,φ1〉 = R̂1(θ1,φ1) | j1, j1〉 ,

which is called a spin coherent state (SCS) or Bloch state. The spin coherent state can be
expressed in the basis of the states {| j1,m1〉} as [80, 162]

|θ1,φ1〉 =
j1∑

m1=− j1

cm1 | j1,m1〉 (1.33)

with the coefficients

cm1 =
(

2 j1

j1 +m1

)1/2

cos

(
θ1

2

) j1+m1

sin

(
θ1

2

) j1−m1

e i ( j1−m1)φ1 .

The state | j1, j1〉 = |θ1 = 0,φ1〉 consists of a single state of the {| j1,m1〉} basis. After
a rotation of the initial circular state, the spin coherent state is centred around the
coordinates (θ1,φ1). For rotation angles θ1 > 0, the spin coherent state is a superposition
of an increasing number of states of the {| j1,m1〉} basis, reaching its maximum at θ1 =π/2.
For further increasing rotation angles, the number of states involved in the superposition
decreases until the rotation angle θ1 =π for which the spin coherent state consists again
in the single state | j1,− j1〉 = |θ1 =π,φ1〉. The projections of the spin are

〈 Ĵ1x〉 = J sin(θ1)cos(φ1)

〈 Ĵ1y〉 = J sin(θ1)sin(φ1)

〈 Ĵ1z〉 = J cos(θ1).

The overlap of two spin coherent states |θ1,φ1〉 and |θ′1,φ′
1〉 can be expressed as [80]

| 〈θ1,φ1|θ′1,φ′
1〉 |2 = cos4 j1

(
Θ

2

)
, (1.34)

whereΘ is the angle between the two vectors of directions (θ1,φ1) and (θ′1,φ′
1) of the two

spin coherent states and is given by

cos(Θ) = cos(θ1)cos(θ′1)+ sin(θ1)sin(θ′1)cos(φ1 −φ′
1).

The representation of a large spin with j1 = (n−1)/2 is closely related to representation
of a spin 1/2 on a Bloch sphere. In the Hilbert space of a spin 1/2, the state of the system
can be represented by a vector (x, y, z) evolving on the surface of a three-dimensional
sphere, called Bloch sphere. If j = 1/2, a given point of the Bloch sphere (θ,φ) fully
characterizes the state of the spin.
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Figure 1.6: The Q-function of a spin coherent state in the direction (θ1,φ1) with θ1 = 60◦

and φ1 = 0◦. The color scale is linear from 0 to 1 and the contour lines are every 0.1.

If j > 1/2, the representation of the state of spin on a Bloch sphere is more complex.
The states | j1,m1〉, for example, have a well-defined projection of Ĵ1z . However, since
they are eigenstates of the operator Ĵ1z they are invariant under the action of this operator
and therefore are invariant under rotations around the Z -axis. Consistently, the values of
Ĵ1x and Ĵ1y are completely undetermined (〈 Ĵ1x〉 = 〈 Ĵ1y〉 = 0).

The state of a spin with j > 1/2 must be represented as a quasi-probability distribution
on a generalized Bloch sphere of radius 〈 Ĵ 2〉1/2 = ~

√
j1( j1 +1). In the case of a spin

coherent state, this distribution is localized around the direction (θ,φ). For a | j1,m1〉 state
this distribution is around a circle at the intersection of the generalized Bloch sphere and
the horizontal plane Z = m1~.

In order to describe the state of the spin Ĵ1 quantitatively we introduce two quasi-
probability functions defined on the whole sphere: the Q-function and the Wigner-
function. The Q-function for an angular momentum Ĵ1 is defined by [163–165]

Q(θ1,φ1) = 2 j1 +1

4π
〈 j1, j1|R†

1(θ1,φ1)ρ1R1(θ1,φ1) | j1, j1〉 , (1.35)

where ρ1 is the density matrix of the angular momentum. The Q-function can be inter-
preted as the overlap of the state | j1,m1 = j1〉 and the spin coherent state |θ1,φ1〉. As a
result Q(θ1,φ1) is positive and ≤ 1.

If j is an integer, we can also generalize the Wigner-function, useful to characterize
the quantum nature of a state, for an angular momentum Ĵ1, [165, 166]

W (θ1,φ1) =
2 j1∑
p=0

p∑
q=−p

ρpq Y q
p (θ1,φ1), (1.36)

where Y q
p are the spherical harmonics and ρpq the matrix elements that can be expressed

as ρpq = Tr[ρ̂T̂ †
pq ], with the multipole operator T̂ †

pq defined in [166]. The Wigner-function
W (θ1,φ1) can have positive and negative values.

The quasi-probability distribution associated to R̂(θ,φ) |Ψ〉 is obtained by a rotation
R̂(θ,φ) applied on the quasi-probability distribution associated to |Ψ〉.
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1.1. The Hydrogen atom

Fig. 1.6 presents the Q-function of the spin coherent state |θ1,φ1〉. The width of the
Gaussian-shaped quasi-probability distribution is related to the quantum fluctuations.
If we define ( Ĵn1 , Ĵθ1 , Ĵφ1 ) as a set of orthogonal components of Ĵ1, where Ĵn is along the
direction (θ1,φ1), the spin coherent states fulfil the uncertainty relation of Heisenberg,

〈
∆ Ĵ 2

θ1

〉〈
∆ Ĵ 2

φ1

〉
= ~2

4

〈
Ĵn1

〉2
,

with the minimum uncertainty equally distributed in the directions perpendicular to
(θ1,φ1) of the Bloch sphere. The uncertainty in the direction of the spin coherent state is
given by

∆θ1 =
∆ Ĵθ1〈
Ĵn1

〉 = 1p
2J

. (1.37)

1.1.7.b Spin coherent states with off-resonant radio-frequency drive

In case the radio-frequency is not resonant with the frequency between adjacent levels,
ωrf 6=ωat, the detuning becomes non-zero δ 6= 0 and the Hamiltonian in the rotating frame
approximation becomes H̃ =Ω · Ĵn . The state |Ψ1(t )〉 is a spin coherent state along the
direction given by of the vector J1(t ) that rotates with frequency |Ω| around Ĵn . However,
due to its global phase this state is only proportional to |θ1,φ1〉,

e−i H̃1t/~ | j1, j1〉∝ |J1(t )〉 = |θ1,φ1〉 .

1.1.7.c Spin coherent states in the n-manifold

Up to here, we only consider the operator Ĵ1. If, however, the state |Ψ(t )〉 in Eq. 1.31 is a
product state of the spins Ĵ1 and Ĵ2, the state can be decomposed as

|Ψ(t )〉 = R1(θ1,φ1)⊗R2(θ2,φ2) | j1, j1, j2, j2〉 = R1(θ1,φ1) | j1, j1〉⊗R2(θ2,φ2) | j2, j2〉 .

The state of the atom is therefore described as a product of two spin coherent states
(Eq. 1.33),

|Ψ(t )〉 = |θ1,φ1〉⊗ |θ2,φ2〉 =
∑
m1

∑
m2

cm1 cm2 |m1,m2〉 .

The probability to be in the state | j1,m1, j2,m2〉 is given by P (|m1,m2〉) = |cm1 |2|cm2 |2
and is depicted in Fig. 1.7.
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Figure 1.7: Sketched population of Stark levels after rotation from the circular state.

1.1.7.d Semi-classical states

The spin coherent states are states for which the direction of the spin is defined as
precisely as allowed by quantum mechanics. They are the closest state to a classical
angular momentum J0 such that 〈 Ĵ〉 = J0.

The product states of two spin coherent states of Ĵ1 and Ĵ2 are the closest states to a
classical localization of the electron. They correspond to a wave-function that is localized
around the Kepler orbit defined by the angular momentum L = 〈 Ĵ1〉+〈 Ĵ2〉 and ellipticity
a = 〈 Ĵ2〉−〈 Ĵ1〉. They are therefore semi-classical states, justifying the name of "coherent
states" [167–169].

Fig. 1.8 shows the wave-functions of some spin coherent states |θ1,φ1〉⊗ | j2, j2〉, the
latter being superpositions of states with | j1,m1〉⊗ | j2, j2〉, shown in Fig. 1.9. Some of the
properties of the orbits of these elliptical states, like their dimension or their polarizability,
can be deduced from the classical orbit parameters.
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Figure I.12 – Fonction d’onde des états cohérents de spin, engendré par l’action de
Ĵ1x. (a) Etat |Θ = 0,Φ = 0〉 = |j1, j1〉. (b) Etat |π/3, 0〉. (c) Etat |2π/3, 0〉. (d) Etat
|π〉 = |j1,−j1〉. Sur la première ligne est schématisée la fonction Q de l’état cohérent. La
deuxième et la troisième ligne représentent les fonctions d’onde respectivement en trois
ou deux dimensions. Les seuils sont identiques à ceux de la figure I.9.

Kepler. On parle de ce fait d’états elliptiques [69, 89, 90]. Les fonctions d’ondes présentées
sur la figure I.12 mettent en évidence l’aspect elliptique des fonctions d’onde. En fait, ces
orbites correspondent à celles décrites par le modèle semi-classique de Sommerfeld qui
prédit déjà leurs propriétés caractéristiques (dimension de l’orbite, polarisabilité, etc.).

I.1.3.c Analogie avec l’oscillateur harmonique

A travers les notions présentées ici se dégage une analogie entre le spin atomique et
l’oscillateur harmonique qui décrit les modes du champ électromagnétique [68]. L’oscil-
lateur harmonique est décrit par les opérateurs conjugués (q̂, p̂) vérifiant la relation de

Figure 1.8: Wave functions of some coherent spin states (SCS) of the hydrogen atom for
n = 21 with m2 = j2: (from right to left) |θ,φ〉 = |0,0〉 = | j1,m1 = j1〉, |θ,φ〉 = |π/3,0〉,
|θ,φ〉 = |2π/3,0〉 and |θ,φ〉 = |π,0〉 = | j1,m1 =− j1〉. In the first row, the Q-function of the
SCS is sketched. The wave-functions in rows two and three are represented with the same
characteristics as in Fig. 1.1. Example (a) and (d) correspond to the same wave-function as
example 4 and 1, respectively, in Fig. 1.9. These two states are the extema in the spin ladder
with m2 = j2 and occupy therefore the south (a) and north pole (d) of the generalized Bloch
sphere. The pictures are taken from [154].
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De même, le Hamiltonien de couplage avec un champ polarisé σ− s’écrit

V̂ −(r, t) = V l11 ⊗ Ĵ−2 e−iωrf t + h.c. (I.62)

Ainsi, la polarisation σ+ du champ radiofréquence se couple au spin Ĵ1 et la composante
σ− au spin Ĵ2. Il est donc possible d’adresser uniquement l’un des deux spins par le choix
de la polarisation du champ radiofréquence.

Dans les expériences décrites dans ce manuscrit, l’atome est toujours couplé à un
champ radiofréquence polarisé σ+. De plus, l’état initial occupera toujours l’un des états de
la plus basse échelle de spin pour laquelle m2 = j2. L’évolution sera donc restreinte à cette
échelle de spin (niveaux en rouge sur la figure I.6). L’état atomique ne sera en conséquence
noté qu’en terme de spin J1, c’est-à-dire par l’état |j1,m1〉. Quelques fonctions d’onde de
ces états |j1,m1〉 sont présentées sur la figure I.9.

 

Figure I.9 – Fonctions d’onde des états paraboliques de l’échelle de spin m2 = j2 de
l’atome d’hydrogène, pour n = 21. Les niveaux sont dans l’ordre : |j1 = 10,m1 = −10〉
(m = 0), |10,m1 = −2〉 (m = 8), |10,m1 = 6〉 (m = 16) et l’état circulaire |10,m1 = 10〉
(m = 20). Les fonctions d’onde à 3 dimensions sont tracées pour une densité supérieure
à 3 · 10−9a−3

0 . Leur projection dans le plan (zOρ) sont tracées entre 0 et 1, 5 · 10−8a−3
0 .

Remarquons que l’état circulaire est le seul état commun aux bases sphériques et parabo-
liques. Dans l’état m1 = −10, la fonction d’onde est concentrée sur l’axe (Oz) : l’orbite
est très elliptique (|n1 − n2| est maximal) et le moment cinétique est nul (m = 0). Dans
l’état circulaire m = 20, la fonction d’onde est un tore centré sur le noyau, d’ellipticité
nulle (n1 = n2) et de moment cinétique maximal (m = n− 1).

Figure 1.9: Wave functions of some states in the Runge-Lenz basis of the hydrogen
atom for n = 21 with fixed m2 = j2: (from left to right) | j1,m1, j2,m2〉 = |10,−10,10,10〉,
| j1,m1, j2,m2〉 = |10,−2,10,10〉, | j1,m1, j2,m2〉 = |10,6,10,10〉 and | j1,m1, j2,m2〉 =
|10,10,10,10〉. The wave-functions are represented with the same characteristics as in
Fig. 1.1. In the first wave-function, with m1 = 10, the orbital is very elliptical and localized
along the Oz-axis. In the fourth example, with m1 = j1 = 10, we find the circular state
being the only one which is also an eigenstate in the spherical basis with |n, lmax,mmax〉.
The pictures are taken from [154].

1.2 The rubidium Rydberg atom

The rubidium atom is an alkali atom with a single valence electron with principal quan-
tum number n = 5 for the ground state. This electron can be excited to a Rydberg state,
a state with high principal quantum number n À 5 close to the ionisation limit. The
higher the electron is excited the smaller the energy difference gets between manifolds of
adjacent principal quantum numbers. In our experiments we use Rydberg states of mani-
folds of principal quantum number around n ∼ 50. In this regime the energy difference
between adjacent manifolds is around 50 GHz and therefore in the microwave range.

In this section, the difference between the hydrogen and the rubidium atom is dis-
cussed. Unlike the Hamiltonian for the hydrogen atom, the one for the rubidium atom
cannot be solved analytically even in zero field. It is nevertheless possible to calculate
the energy eigenvalues of the rubidium atom by introducing a correction that takes into
account the non-negligible spatial extension of the ionic core. This correction is called
the quantum defect and is discussed in Sec. 1.2.1. We discuss the numerical calculation
of the energy eigenvalues of the rubidium atom in the presence of a static electric field
(Sec. 1.2.2) and of the dipole matrix elements for transitions driven in the presence of a
resonant radio-frequency field (Sec. 1.2.3).
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1.2.1 Energy corrections due to the quantum defect

The main difference between the hydrogen and the rubidium atom is the point-like
nucleus of the hydrogen, made up of a single proton, in contrast to the ionic core of the
rubidium, made up of 36 electrons, 37 protons and 48 neutrons.8 In Rydberg states with
principal quantum number n ∼ 50, the valence electron is most of the time located at
a great distance from the ionic core with respect to the core’s dimension. For electron
orbitals located far away from the nucleus, the protons’ charge is completely screened by
the inner electrons’ charge and the ionic core can be considered as a point-like positive
charge +e. However, for electron orbitals with low l quantum number and therefore
high ellipticity, the valence electron penetrates the charge cloud of the ionic core. The
assumption of a point-like core is therefore no longer valid, as the positive charge of the
core’s protons is no longer perfectly screened by the core electrons. The attraction of
the core on the valence electron becomes stronger, which leads to a tighter binding and
therefore energetically lower lying states compared to the respective levels in a hydrogen
atom.

The ionic core made up of an electron cloud interacting with the nucleus is also
susceptible to be polarized when interacting electrostatically with the valence electron.
This effect modifies the potential seen by the valence electron and provokes a change in
the energy eigenvalues and eigenstates. The effect of the polarizability of the ionic core
also decreases with a higher angular momentum quantum number l [151].

As a result, the e2/r -potential of a single point-like charge (of the screened ionic core
or of the hydrogen atom) tends to become a deeper Z e2/r -potential when the electron
comes close to the nucleus. The Runge-Lenz operator Â based on the pure 1/r -symmetry
of the potential is no longer conserved, leading to the fact that the parabolic basis is not
the most natural one to treat the correction of core polarizability and core penetration.
The spherical symmetry, however, is still conserved. The angular momentum operator L̂
commutes with the Hamiltonian making the spherical basis naturally more adapted to
describe these energy corrections [159].

The effect of the finite size of the ionic core is taken into account by introducing an
effective principal quantum number neff for low angular momentum states. The energy
of the states becomes

Enl j =−ER y

n2
eff

, with neff = n −δnl j , (1.38)

where δnl j is called the quantum defect constant

δnl j = δ0 + δ2

(n −δ0)2
+ δ4

(n −δ0)4
+ ... (1.39)

This phenomenological constant does not only depend on l , but also slightly on the
principal quantum number n and the total angular momentum quantum number j
associated to the total angular momentum Ĵ = L̂ + Ŝ with orbital momentum operator L̂

8We consider 85Rb throughout this thesis.
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and electron spin operator Ŝ. The fine structure has to be taken into account for low l
states since the rubidium atom, due to its higher atomic number Z , is more sensitive to
relativistic effects than the hydrogen atom.

For high principal quantum numbers n, the first two terms in Eq. 1.39 are sufficient to
yield the quantum defect to a good approximation. The explicit values for δ0 and δ2 are
given by [170–172] and are summed up in Appendix A.1. For the f state, with l = 3, the
quantum defect constant is δnl j ≈ 0.016. However, for l ≤ 2, the quantum defect constant
δnl j can be greater than 1. States with l > 3 have very small quantum defect constants
and can therefore be assumed to be hydrogen-like. The quantum defect of high-l states
is important to describe the structure at very low electric field.9 At larger electric fields
(F ≈ 200 V/m), however, the energy shift due to the quantum defect of the levels with
l > 4 is very small compared to the Stark shift and can therefore be neglected.

1.2.2 Energy levels in a static electric field

In the absence of external fields, the energy eigenvalues of the hydrogen atom of manifold
n are all degenerate (Sec. 1.1.1.b). In the rubidium atom, however, due to the quantum
defect, the energy eigenvalues of some states with low angular momentum quantum
number l are shifted away from the manifold.

1.2.2.a Numerical calculation of the energy levels

The Hamiltonian of the rubidium atom in the presence of a static electric field is given by

ĤRb = Ĥ0,Rb −eF ẑ, (1.40)

with the dipole matrix element d̂ = eẑ. To calculate the energy diagram in a non-zero
electric field, we need to numerically diagonalize this Hamiltonian. The energy eigenval-
ues of the rubidium atom depend through the quantum defect on the quantum numbers
n, l and j . We therefore choose to use the {|n, l , j ,m j 〉}-basis for the calculation.

The matrix describing Ĥ0,Rb in the {|n, l , j ,m j 〉}-basis is a diagonal matrix with the
elements Enl j (Eq. 1.38). The values of Enl j are calculated from the hydrogen model
corrected by the quantum defect for l ≤ 4 states. We used the first two terms of Eq. 1.39
for l ≤ 3 and only the first term for l = 4.

In order to calculate the matrix elements of the second term eF ẑ in the Hamiltonian
ĤRb (Eq. 1.40), we separate the wave-function in its angular and radial part (Eq. 1.4),

〈n, l , j ,m j | r̂ |n′, l ′, j ′,m′
j 〉 = 〈l , j ,m j | r̂ /r |l ′, j ′,m′

j 〉
∫

RRb,nl (r )r R ′∗
Rb,n′l ′(r )(r 2dr ). (1.41)

The angular part 〈l , j ,m j | r̂ /r |l ′, j ′,m′
j 〉 can be calculated with the Clebsch-Gordan coef-

9In [173] show that for low static electric fields strengths F we also have to take the quantum defect up
to l = 4 into account in order to describe the energy levels properly.
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Figure 1.10: (a) Analytical calculation of the energy levels of the hydrogen atom for m = 0
and m = 1 as a function of the electric field F . (b) Numerical calculation of the energy levels
with m j = 1/2 of the rubidium atom as a function of the electric field F . In both cases, the
chosen reference energy is the energy of the |52c〉 states at zero electric field.

ficients (Eq. 1.17). A lot of those terms are zero due to the selection rules. The radial inte-
gral

∫
Rnl (r )r R ′∗

n′l ′(r )(r 2dr ) is calculated numerically using the Numerov method [174],
a numerical algorithm to solve ordinary second-order differential equations which are
independent of the first order derivative. The algorithm integrates the Schrödinger equa-
tion at the energy that is the one corrected by the quantum defect. Applications of the
Numerov method to Rydberg atoms can be found in [151] and [159].

The influence of manifolds with n′ 6= n on the manifold of interest n, decreases with
increasing difference between n′ and n. We therefore restrict the numerical calculation to
a window of En ±hν with ν= 200 GHz if not stated otherwise. Finally, since Ĵz commutes
with z, we can diagonalize separately states with different m j .

In the hydrogen atom, the Stark effect lifts the degeneracy between states of same val-
ues of magnetic quantum number m and the states split linearly into equidistant ladders
of n −|m| states which are distributed symmetrically with respect to the unperturbed
energy En , shown in Fig. 1.10a.

Fig. 1.10b shows the numerically calculated energy eigenvalues for the rubidium atom
plotted for m j = 1/2 as a function of the electric field amplitude F . The levels of the
manifold are shifted linearly with increasing electric field amplitude, whereas the states
which are shifted to lower energies due to the quantum defect show a quadratic Stark shift
until they join the manifold. Mathematically this corresponds to the moment where the
matrix element of eF ẑ becomes larger than the energy shift due to the quantum defect.
This is the electric field where the levels becomes "hydrogen-like". As soon as the Stark
shift is larger than the fine structure, m j is not longer a good quantum number and the
m j states become |m = m j −1/2,ms =+1/2〉 and |m = m j +1/2,ms =−1/2〉 states.

In Fig. 1.11, the energy levels of the rubidium atom with principal quantum number
n = 51 are shown. The energy eigenvalues are calculated for an electric field F = 234.5 V/m.
We recognize the irregularities in the level structure caused by the missing states in the
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Figure 1.11: Numerical calculation of the energy levels of the rubidium atom with n = 51
in an electric field F = 2.345 V/cm. For states with |m| < 4 we recognize the missing levels in
the horizontal m-ladders resulting from the quantum defect for low l states. The reference
energy is the |51c〉 states at zero electric field.

horizontal m-ladders with |m| ≤ 3 with respect to the hydrogen atom (see Fig. 1.4). In
the hydrogen atom, the number of levels in each m-ladder decreases for each time m
increases by one for ∆m = 1 (for m ≥ 0). In the rubidium atom, since the l = 0, l = 1 and
l = 2 levels have not joined the manifold (see Fig. 1.10b) some m levels are missing. This
means that the m = 0, |m| = 1 and |m| = 2 ladders have the same number of levels as
|m| = 3.

1.2.3 Numerical calculation of the coupling Hamiltonian

The coupling Hamiltonian induced by the radio-frequency fields V̂ +
rf and V̂ −

rf (Eqs. 1.27
and 1.28) is found by numerically calculating the dipole matrix elements 〈n,n1,n2,m|
x̂ ± i ŷ |n′,n′

1,n′
2,m′〉10 depending on the polarization of the radio-frequency field.11

We focus on the lowest diagonalσ+ spin ladder (see Fig. 1.5). We numerically calculate
the dipole matrix elements dm−1,m of this diagonal ladder between adjacent m-states
with m − 1 and m. In Fig. 1.12, the matrix elements are plotted in units of ea0 as a
function of the magnetic quantum number m together with the analytically calculated
elements for the hydrogen atom. For the latter the dipole matrix elements have the form

10We keep the same notation |n,n1,n2,m〉 for the Stark levels in the rubidium atom.
11We no longer restrict the calculation to a single value of m j but two adjacent values, m j and m j +1.
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1.2. The rubidium Rydberg atom
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Figure 1.12: Dipole matrix elements of the rubidium atom (red) and hydrogen (blue)
between the levels of magnetic quantum number m −1 and m of the lowest σ+ diagonal
ladder.

(Eqs. 1.24, 1.25)12

dm−1,m = 〈n1 = 0,n2,m −1| x̂ − i ŷ |n1 = 0,n2,m〉 = 3

2
a0n

√
m(n −m).

The dipole matrix elements for hydrogen and rubidium overlap very well for values of
m > 3 meaning that the rubidium atom is "hydrogen-like" as expected. The values of d0,1

and d1,2 differ significantly for hydrogen and rubidium due to the quantum defect which
shifts the low-l levels away from the manifold.

To compare the energy calculated for the rubidium atom and for the hydrogen atom,
we compute the energy of the bare states |n,n1 = 0,n2,m〉⊗|Nrf〉, the energy in the rotating
frame of the atomic states of the lowest σ+ diagonal. Fig. 1.13 shows the energy of the
bare states of the lowest σ+ diagonal where the energy of Nrf = 50−m radio-frequency
photons polarized σ+ are added to the energy eigenvalues. The bare energy eigenvalues
are calculated in an electric field of F = 234.5 V/m and are then added to radio-frequency
photons with ωrf = 2π ·230 MHz.

The bare energy eigenvalues of the rubidium atom is compared to the bare energy
eigenvalues calculated for the hydrogen atom by taking into account the first and second
order Stark effect. In Fig. 1.13a we see that the bare energy eigenvalues for the rubidium
and the hydrogen atom are very close for levels between the circular state and the state
with m = 3. The difference between rubidium and hydrogen increases for decreasing m
below m = 3. The state with m = 0 is more than h ·200 MHz above the corresponding
state in the hydrogen atom.

In the close up in Fig. 1.13b, we see the signature of the quadratic Stark shift in the
parabolic curvature of the bare levels. For levels close to the circular state we see a very
good agreement between numerical calculations for the rubidium atom and the analytical

12Here we use the relations m1 = j1 −n1 and n = n1 +n2 +|m|+1, with n2 = 0, and j1 = (n −1)/2.
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Chapter 1. Rydberg atoms
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Figure 1.13: Bare states of the lowest σ+ diagonal ladder for hydrogen and rubidium
in an energy range of ∆E = h· 300 MHz (a) and a close up in an energy range of ∆E =
h· 30 MHz (b).

one for the hydrogen atom. We see a small, increasing discrepancy in the energy levels
between m > 4 and m . 40, where the numerical simulations for the rubidium atom
should give the same behaviour as for the hydrogen atom. This mismatch cannot be
explained by higher order Stark shifts not taken into account for the hydrogen energies.
It rather gives the limit of the precision of our numerical simulation, in particular the
program that calculates the radial overlap.

1.3 Discussion

In this chapter we discussed that the Rydberg state of the hydrogen atom in the presence
of a static electric field can be described as two independent angular momenta Ĵ1 and Ĵ2.
They can be addressed independently using two orthogonal polarizations of the radio-
frequency field. The circular state corresponds to the state | j1, j1〉⊗ | j2, j2〉.

When the atom, initially in the circular state, is driven by a purely σ+ polarized radio-
frequency field, it behaves like an angular momentum and its state can be represented on
a generalized Bloch sphere. If driven by a radio-frequency field with arbitrary polarization,
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1.3. Discussion

the state of the atom evolves as a product state of two spin coherent states associated to
the angular momenta Ĵ1 and Ĵ2.

In the case of an alkali atom, in our case rubidium, the Rydberg state can still be
described by the model of the hydrogen atom. The size of the ionic core is taken into
account in this model by introducing the quantum defect that modifies the energy of
states with a low angular momentum quantum number. As a result, in the presence of a
static electric field, the energy structure of the rubidium atom is only hydrogen like for a
magnetic quantum number m ≥ 3. The energy and dipole moment involving states with
m ≤ 2 have thus to be calculated numerically.

In the next chapter we describe the preparation of the circular state and how we can
manipulate the spin coherent state of the atom.
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Chapter 2

The Experiment

The manipulation of the state of the Rydberg atom inside a Stark manifold by circular
polarized radio-frequency fields is performed in an experimental set-up consisting of
three parts: the oven that creates the atomic beam, the experimental zone in which the
Rydberg atom is prepared and manipulated, and the detection zone in which the state of
the atom is read out.

In this chapter we begin with the description of the mechanical part of the experimen-
tal set-up, the electrode structure in which the atomic state is prepared and manipulated
(Sec. 2.1). We show how we transfer the atom from its ground state to the circular Ryd-
berg state (Sec. 2.2), the initial state for our metrology sequences. We discuss how we
generate the radio-frequency pulses that allow us to coherently manipulate the atom
inside the Rydberg manifold (Sec. 2.3). Finally, we present techniques to optimize the
spatial homogeneity of the electric field which improves the coherence time of the atoms
(Sec. 2.4).

2.1 The experimental set-up

The atomic beam consists of fast atoms effusing from an oven in which rubidium metal
is heated to about 200 ◦C. The beam, collimated by several diaphragms to a diameter of
about 0.7 mm, crosses the experimental set-up and the detector with a thermal velocity
distribution with average speed of about 300 m/s.1

Once the atomic beam is collimated it enters the electrode structure, schematically
depicted in Fig. 2.1a. Two electrodes with flat horizontal surfaces create the static electric
field whose amplitude defines the frequency ωat. The ring electrodes surrounding them
are used to apply the radio-frequency field with well defined polarization. The holes in
the ring electrodes provide optical access for the laser beams to excite the atom into the

1The oven of our experiment has been described in several PhD theses. During this thesis no significant
changes were made, we therefore invite the interested reader to consult [112, 154] for details.
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(a) 

(b) 

(c) 

Figure 2.1: Experimental set-up. (a) The sketch of the electrode structure shows the atomic
beam (blue) that intersects with the laser beams (green and red) in the center of the ex-
perimental zone made up of two round plane electrodes (blue) and four ring electrodes
(yellow, only two shown in the sketch) before it enters the detector (brown) where the state
of the atom is read out by ionisation. (b) A picture of the electrode structure shows the ring
electrodes as well as the plane electrodes holders made of sapphire (transparent). (c) The
whole set-up is placed in a cryogenic environment at 4 K.

Rydberg state. All electrodes are made of copper and coated by a thin layer of gold (see
Fig. 2.1b).

The ring electrodes are separated by a gap of 1 mm to limit capacitive coupling between
the electrodes and to reduce cross-talk. They are mounted on insulating blocks made of
Araldite and are held in place by brass screws and springs. The springs ensure that the
ring electrodes do not become loose when the insulating blocks contract slightly more
than the brass screws in the cryogenic environment.

Finally, the plane capacitor electrodes are mounted on sapphire discs, insulated elec-
trically from the ground plates. The choice of sapphire is due to the material’s hardness
and good thermal conductance.

During this work we implemented several modifications to the experimental set-up.
In the initial version of the experimental set-up [112, 154], the radio-frequency field
was generated by eight ring electrodes that were connected to pairs by short copper
wires. In this work, we replaced the pairs of electrodes with four ring electrodes in
order to limit electrical resonances in the radio-frequency circuit. Also, initially, all
electrodes were made of gold coated copper to avoid the patch effect due to the copper
oxidation. However, covering the electrodes with graphite is known to reduce stray
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2.2. Preparation and detection of the atoms

electric fields [175]. We have thus covered all surfaces in direct "view" of the atom with
Aquadag, a colloidal graphite suspended in a solution. However, the gain in coherence
time was limited if not non-existent, leading to the conclusion that the graphite is either
not working or that the coherence time is limited by noise instead of the stray charges.

52f m=2 

5D5/2 F=5 mF=5 

5P3/2 F=4 mF=4 

5S1/2 F=3 mF=3 

 σ+   776nm 

 π   1258nm 

 σ+    780nm 

Optical excitation to the Rydberg state 

n1=0 

n1=0 

n1=1 n1=0 
n1=0 
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.   .   .   .   .   .    

.  .  .  . 
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Adiabatic passage to the circular Rydberg state 

52C 

49 radio-frequency photons 

m=4 

𝜎+ 

n=52 manifold 

Stark  
switching 

Figure 2.2: Preparation scheme of the circular Rydberg state. The atom is first excited in the
52 f Rydberg state by three optical photons (red and green, the colors correspond to the laser
beams in Fig 2.1) in the presence of a small electric field: The 85Rb atom is excited from
the hyperfine level |5S1/2,F = 3,mF = 3〉 of the ground state to the |5P3/2,F = 4,mF = 4〉
state by a first σ+ photon with a wavelength of 780 nm. A second σ+ photon with a
wavelength of 776 nm brings the atom in the |5D5/2,F = 5,mF = 5〉 state. A π photon with
a wavelength of 1258 nm excites the atom to the final optical excited state |52, l = 3,m = 2〉.
In the second step, after increasing the electric field so that the laser accessible 52 f state
can join the n = 52 manifold, the state of the atom is adiabatically transferred to the |52c〉
by 49 radio-frequency photons.

2.2 Preparation and detection of the atoms

For most of the experiments presented in this work the atom is initially prepared in the
circular Rydberg state |52c〉. In order to prepare this state, the atom needs to be provided
with both energy and angular momentum. To this end, the atom in the ground state
has to absorb three optical photons with well chosen polarizations and 49 σ+ polarized
radio-frequency photons in an adiabatic passage. The excitation scheme is shown in
Fig. 2.2. The two essential steps, the optical excitation and the radio-frequency adiabatic
passage are described in the following sections. We then describe the detection of the
atomic state by ionization.
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Figure 2.3: (a) Numerical calculation of the energy levels of the lowest σ+ diagonal with
m = 0,1,2,3 of the rubidium atom with n = 52 as a function of the electric field F , where
the |52 f ,m = 2〉 state is highlighted (red). (b) The energy difference for selected ∆m =
+1 transitions (see inset for color code): m = 0 ↔ 1 (black) and m = 1 ↔ 2 (blue) are
very different from the hydrogen-like transitions (green, yellow, dashed); m = 2 ↔ 3 (red)
becomes resonant with the hydrogen-like transitions for an electric field ∼200 V/m.

2.2.1 Laser excitation

The first step of the preparation is the laser excitation to the Rydberg state. The choice of
the level that are prepared is due to two conditions. First, we need to excite a level whose
energy is close to the manifold. Due to the quantum defect, the s, p and d states have
energy eigenvalues far from the manifold. The f state, however, is relatively close to the
manifold (only E/h = 773 MHz below the energy of the degenerated n = 52 manifold) so
that this state adiabatically connects to the nearly hydrogen-like states when the electric
field is increased, shown in Fig. 2.3a.

Second, we need to prepare a state that can be easily transferred into the circular
state. As we have seen, states with m < 3 of the rubidium atom are not hydrogen-like.
However, as shown in Fig. 2.3b, at F ≈ 230 V/m, the transition frequency of the lowest
m = 2 state to the lowest m = 3 state of the manifold is very similar to the frequency of the
hydrogen like transition of the manifold (level structure in inset of Fig. 2.3b). This is why
we initially prepare the |52, l = 3,m = 2〉 state, noted as "52 f ". Each photon can add one
unit of orbital angular momentum |∆l | = 1. Since the atom is initially in an s ground state,
we can reach a p state with one, a d state with two and an f state with three photons.

To prepare the 52f state the polarization of the laser photons plays an important role.
We need a σ+ polarized photon with a wavelength of λ = 780.24 nm, a σ+ polarized
photon with λ= 775.97 nm and a π polarized photon with λ= 1258.38 nm (see Fig. 2.2).

In order to have a pure σ+ polarization, the quantization axis has to be along the
direction of the laser beam of the σ+ polarized photons. Therefore, the optical excitation
is performed in a small electric field applied on the ring electrodes along the axis of the
780 nm & 776 nm laser beam direction, shown in Fig. 2.4a. The electric field is small
enough so that the 52 f state is still far away from the manifold, but large enough to lift
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Figure 2.4: Top view (a) and side view (b) of the electrode structure and chronological
sequence (c) of the preparation process. The laser beams, σ+ (red) and π (green) intersect
with the atomic beam (black) in the center of the electrode structure in a small electric field
Fring applied between electrodes E2 and E4 (step (1) in (c)). The quantization axis is then
turned from the horizontal to the vertical direction with the plane capacitor electrodes C1
and C2 (step (2) in (c)). The adiabatic passage transfers the state of the atom in the circular
state by applying an σ+ polarized radio-frequency field (blue) with electrodes E1 and E2
while slowly reducing the static electric field F (step (3) in (c)).

the degeneracy between the states with different values of |m| (see Fig. 2.3a). We typically
use an electric field of ∼23 V/m. This ensures that we excite only the m =+2 or m =−2
state, making it more fault tolerant to imperfections in the laser polarization.

The applied static electric field defines the quantization axis of the Rydberg state.
Therefore, the directing electric field must not be changed too quickly, otherwise the
initially well-defined Rydberg state mixes up with other states. However, when the electric
field is changed slowly enough, the atomic state adiabatically follows the direction of
the electric field and remains in its well-defined Rydberg state with respect to the new
quantization axis. During the "Stark switching", we not only increase the electric field to
typically ∼200 V/m but also change its direction by reducing the electric field amplitude
applied on the ring electrodes and increasing the one applied between the plane elec-
trodes during 1 µs. As a result the atom goes from the |52 f ,m = 2〉 state with respect to
the horizontal axis to the |52,n1 = 1,m = 2〉 state with respect to the vertical axis.

To conclude the description of the laser excitation of the Rydberg atom, the lasers of
wavelength 780 nm and 776 nm are continuous, whereas the laser of wavelength 1258 nm
is pulsed with a duration of 1 µs. The angle between the laser beams and the atomic
beam allow us to select the velocity of the atoms due to the Doppler effect. The typical
speed of the atoms is ∼ (2502±7) m/s. A detailed description of the optical set-up can be
found in [173].

2.2.2 Adiabatic passage to the circular Rydberg state

The circular Rydberg state |51c〉 is reached through an adiabatic passage in which the
atom absorbs 49 radio-frequency photons of ωrf = 2π ·230 MHz, each adding ∆m =+1
to the magnetic quantum number. In order to only drive ∆m =+1 transitions the radio-
frequency field has to be polarized purely σ+. In the case of an applied radio-frequency
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Figure 2.5: Numerically calculated rubidium levels dressed by the radio-frequency photons
without (a) and with applied radio-frequency field (b). The horizontal level is the |52c〉 state.
The levels with the highest Stark shift, and therefore largest slope, are the |52,n1 = 1,m = 2〉
state and the |52,n1 = 2,m = 1〉 state. The latter is separated from the manifold and not
involved in the adiabatic passage. The bare states in (a) cross at ∼ 230 V/m. The dressed
states in (b) show a large anti-crossing where the m = 2 state at high electric field connects
to the circular state at low electric field.

field with σ+ and σ− polarized components, we would also drive ∆m =−1 transitions
and would not reach the circular state (see Fig. 2.2).

In an electric field ∼200 V/m, the transitions to the m = 1 and m = 0 states can be
neglected, since this electric field amplitude the transitions m = 1 ↔ 2 and m = 0 ↔ 1 are
far from the resonant transitions m = 2 ↔ 3, m = 3 ↔ 4, etc. (see Fig. 2.3b). The lowest
level in the adiabatic passage is therefore the initial |52,n1 = 1,m = 2〉 state.

The energy eigenvalues of the involved levels can now be represented using the dressed
state picture. The bare states are |52,n1,m, Nrf +51−m〉, where Nrf+51−m is the number
of radio-frequency photons. Fig. 2.5a shows the bare states of the lowest σ+ diagonal
where the energy of Nrf radio-frequency photons of ωrf = 2π ·230 MHz is added to the
atomic energy. When the radio-frequency field is applied the dressed states form a huge
anti-crossing in which the two extremal levels, the initial |52,n1 = 1,m = 2〉 and the final
|52c〉 state, are connected, shown in Fig. 2.5b.

In order to drive the adiabatic passage we set the electric field to F = 240 V/m so that
δ=ωat −ωrf = 2π ·10 MHz. The radio-frequency field power is increased in 0.5 µs. The
electric field F is then ramped down linearly in 1.5 µs to 220 V/m so that δ=−2π ·10 MHz.
During this frequency ramp, the atomic frequency ωat crosses the resonance. Finally,
the radio-frequency is switched off in 0.5 µs (see Fig. 2.4c). The ramping of the radio-
frequency field in 0.5 µs allows, first, that the |52,n1 = 1,m = 2〉 state at δ= 2π ·10 MHz
from the anti-crossing to connect to the radio-frequency dressed state

|52,n1 = 1,m = 2, Nrf +49〉+ε |52,n1 = 0,m = 3, Nrf +48〉+ . . .

with ε¿ 1. Second, after the adiabatic passage, this allows to connect the radio-frequency
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dressed state

|52,n1 = 0,m = 51, Nrf +0〉+ε |52,n1 = 0,m = 50, Nrf +1〉+ . . .

to the final state |52,n1 = 0,m = 51〉 = |52c〉. The typical Rabi frequency of the radio-
frequency field is ofΩrf ≈ 2π ·3 MHz. With this method we can reach a transfer efficiency
larger than 98% [176].

Finally, a microwave π pulse ("purification") transfers the population of the |52c〉 state
in the |51c〉 state.

2.2.3 Detection by ionization

Due to the proximity of the energy of the states to the continuum, the atoms can be
ionized in a relatively small electric field.

The detection zone itself consists up of two conducting plates on which the ionization
voltage is applied. The plate on which the positive voltage is applied has a small hole.
The plate on which the negative voltage is applied has a small ramp facing the hole. This
creates an electric field gradient that ensures that only the states for which the ionization
threshold corresponds to the electric field at the position of the hole ionize in front of
the hole (states with ionization thresholds smaller or larger ionize before or after). The
free electron is then accelerated through the hole towards the channeltron, where it is
detected. To obtain the ionization signal, the experiment is repeated while scanning the
voltage applied on the detector. Then, we set the voltage to the value corresponding to
the state we want to detect. The width of the hole and the slope of the ramp determine
the resolution of our detector.

The electric field required to separate the electron from the ionic core depends on
the state of the atom [177]. For states with similar wave-functions, for instance circular
states with different principal quantum numbers n, the states with higher n get ionized
at smaller electric fields, since they have a smaller binding energies, as shown in Fig 2.6a.
However, the ionization threshold does not only depend on n. For instance, the circular
state |52c〉 ionizes at a much higher ionization field than the lower energy state 52 f , or
more accurately the state |52,n1 = 1,m = 2〉, shown in Fig 2.6b.

We can understand this semi-classically by looking at the potential seen by the electron
in the presence of an electric field, which adds a eF z term to the e2/r Coulomb potential,
as shown in Fig. 2.7. This creates a saddle point in the potential, opening a way for the
electron to leave the attraction of the core. When the electric field is ramped up, the 52 f
state evolves adiabatically into the state |52,n1 = 1,m = 2〉 whose wave-function is mostly
localized in the z < 0 region (see Fig. 1.9 for wave functions). Since this is the region
where the saddle point is, this makes it easier for the electron to ionize. The circular
wave-function, on the other hand, is localized in the z = 0 plane and does not explore the
region of the saddle point where the electron can escape, making it harder to ionize this
state with respect to the 52 f state. The ionization threshold of the 52 f states is therefore
lower than that of the circular state.
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Figure 2.6: (a) The ionization signals of different circular Rydberg states are shown as a
function of the voltage applied on the detector plate with the ramp. Since the detector plate
with a hole is at 0 V, the ionization field is proportional to the applied voltage. The circular
states shown are |49c〉 (black), |50c〉 (red), |51c〉 (green) and |52c〉 (blue). (b) The ionization
signal of the circular Rydberg state |52c〉 (blue) and the elliptic state 52 f (orange). The
difference in height is due to the lifetime of the state and the detection parameters which
are optimized for the circular states.
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Figure 2.7: (a) The Coulomb potential e2/r plotted as a function of the vertical direction z.
(b) The applied electric field adds a eF z term which tilts the potential.

The 52 f state lies on the σ+ diagonal connected to the |52c〉 state. Levels on this
diagonal are more localized in the z < 0 region when m decreases (see Fig. 1.9). Therefore,
the necessary electric field to let the electron escape from the core potential gradually
decreases from the circular to the m = 2 state.

The effect is reversed for the levels on the σ− diagonal connected to the |52c〉 state.
The levels above the circular state have wave-functions which are localized in the z > 0
region, leading to an ionization threshold higher than that of the circular state.

The ionization thresholds for states with similar energy eigenvalues are close and can-
not be resolved properly by our detector, as shown in Fig. 2.8 for |49c〉, |49e1〉 and |49e1′〉.
Therefore, we employ microwave probe pulses which selectively transfer the population
of a given state into another manifold, which can then be resolved by ionization. The
selectivity of the microwave probes comes from the differential Stark shift between two
manifolds, shown in Fig. 2.9. The differential Stark shift between adjacent transitions
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Figure 2.8: (a) The ionization signal of Rydberg states close to the circular state is shown as a
function of the voltage applied on the detector plate with the ramp. Since the detector plate
with a hole is at 0 V, the applied voltage is proportional to the ionization field. The Rydberg
states shown are |49c〉 (black), |49e1〉 (pink) and |49e1′〉 (dark green). The difference in
height is due to the different preparation methods.

between manifold n and n′ is given in first order by (Eq. 1.11)

∆ωat = 3

2

ea0

~
(n −n′)F.

The difference in differential Stark shift for n = 52 and n′ = 51 in an electric field of
F ≈ 235 V/m is ∆ωat ≈ 2π·4.5 MHz. This frequency difference can easily be resolved by
the microwave pulses we apply usually, which have a spectral width of ∼ 500 kHz for
a ∼ 2µs pulse duration.

It is in principle possible to resolve states with the same linear Stark shift, due to the
second order Stark shift using longer microwave probe pulses and an increased electric
field amplitude [176]. This technique, however, is not used in this manuscript.

2.3 Manipulation of the atomic state

There are different tools available to manipulate the state of the atom. Microwave pulses
allow us to transfer the population from one state of manifold n to another state of
manifold n′ 6= n (Sec. 2.3.1). Radio-frequency pulses allow us to drive transitions between
levels of a given manifold. By controlling the polarization of the radio-frequency field we
can selectively drive ∆m =+1 or ∆m =−1 transitions. The optimization process of the
σ+ polarized radio-frequency will be described in Sec. 2.3.2.

49



Chapter 2. The Experiment

𝑚 

𝐸 

48 47 49 50 51 

𝑛 = 52 

𝑛 = 51 

Figure 2.9: Due to the differential Stark shift, the blue and green transitions have different
frequencies, which allows to selectively transfer the population from a given state to a
different manifold.

2.3.1 Microwave field

Frequency sources in the microwave range, offering a sub-Hz precision, are infinitely
narrow compared to the atomic transitions. The microwave field therefore offers a
powerful tool to manipulate and analyse the state of the atom.

In order to generate frequencies around 50 GHz, the typical transition frequency
between adjacent manifolds for n ≈ 50, we use a synthesizer Anritsu-MG3692 which
produces a signal of about 12.5 GHz. A non-linear element, called a mixer, then generates
higher order harmonics of the microwave radiation. The frequency of the initial signal is
adjusted so that the fourth order harmonics corresponds to the frequency resonant with
the targeted transition of the atom.

We then have two options to bring the microwave radiation inside the cryostat:

With a first source, installed in [154], the microwave radiation is coupled into a coaxial
cable by an adapter that is single mode for frequencies between 50 GHz and 75 GHz. The
microwave field is brought inside the cryostat by coaxial cables, with a cut-off frequency of
60 GHz. Finally, it is coupled to an antenna that radiates into a circular wave-guide which
ends far from the experimental zone. From there on, the microwave field gets reflected
from all copper surfaces and creates stationary modes with a random polarization. This
leads to stationary microwave modes polarized π, σ+ and σ−. The amplitude of each
polarization seen by the atom varies with the applied frequency but also with the position
along the atom trajectory.

With a second source, installed in this work, the microwave radiation is coupled in a
second coaxial cable by an adapter that is single mode for frequencies between 40 GHz
and 60 GHz. Once inside the cryostat, the microwave radiation is coupled out of the
coaxial cable with a second adapter (40 GHz to 60 GHz) close to one of the free entry
holes between the ring electrodes, much closer to the experimental zone. The coax-to-
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Figure 2.10: (a) The radio-frequency signals A and B is applied on two ring electrodes. (b)
To improve the homogeneity of the radio-frequency field the Rf signal A and −A, and B
and −B are applied on opposite electrodes.

waveguide adapter generates a microwave field with a well defined linear polarization.
We hoped that placing the adapter closer to the experimental set-up would allow us
to have a microwave field with a more controlled polarization. The anticipated better
homogeneity of the microwave field was unfortunately not observed. However, having
two different sources provides us with two different stationary wave structures along the
trajectory of the atoms at a given frequency, which can be useful when optimizing the
microwave pulses, since we have no control over the stationary mode structures.

Additionally, the lower frequency in the second source allows, in principle, transitions
to higher Rydberg manifolds.2 We currently work in a frequency range between 47 GHz
and 54 GHz which corresponds to transitions between the n = 49 and n = 52 manifolds.

2.3.2 Radio-frequency field optimization

To control which transition we drive with the radio-frequency field, we need to apply
a well-defined polarization. The radio-frequency field is created by connecting radio-
frequency synthesizer outputs to the ring electrodes. In principle, each electrode, when
driven by an radio-frequency signal, creates a radio-frequency field with linear polariza-
tion. By applying radio-frequency signals of same amplitude shifted in phase by ±π/2 on
two neighbouring electrodes, we can generate a σ± polarized radio-frequency field, see
Fig. 2.10a.

However, the situation is more complex in practice. On the one hand, due to the
difference in the transmission of the line that brings the radio-frequency signal down to
the electrodes inside the cryostat, we need to optimize the relative phase and amplitude
of the drive of the electrodes by using the atoms as microscopic probes of the polarization.
On the other hand, a single electrode creates a radio-frequency field with a gradient
in its amplitude along the trajectory of the atoms. In order to create a homogeneous
radio-frequency field, it is better to apply a radio-frequency signal with opposite phase
on opposite electrodes, see Fig. 2.10b.

In order to be able to apply radio-frequency fields with different frequency or different

2The transitions to higher Rydberg manifolds were not a success so far.
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phases on the atoms, each electrode is connected to two or three different radio-frequency
synthesizer outputs. The full radio-frequency circuit is shown in Fig. 2.11. The σ+

radio-frequency field used for the adiabatic passage to circularize the Rydberg atoms is
generated by a PCI RF card with two outputs, shown in Fig. 2.11a, which are connected to
two ring electrodes. The amplitude of the radio-frequency field is controlled by mixers. A
first DC power supply allows us to vary the relative amplitude between the two signals.
Then a pair of mixers controlled by the same arbitrary waveform generator (AWG) allows
us to vary the pulse shape of both radio-frequency signals.

The radio-frequency field used for the metrology experiments are generated by two
radio-frequency synthesizer "H" and "N" with four outputs each, shown in Fig. 2.11b,
connected to the four ring electrodes. Here, the amplitude is controlled by the experi-
ment control software and the shape of the radio-frequency pulses is created by a high-
resolution AWG which allows us to create very short radio-frequency pulses. The signal of
the AWG is applied on three mixers, which are used as switches.

The power and phase of each radio-frequency signal has to be optimized on the atomic
signal. However, the optimization procedure itself depends on the final purpose of the
radio-frequency field.

During this work we implemented several improvements: We added a second synthe-
sizer to have two independent radio-frequency outputs per electrode for the metrology
experiments. We installed a new arbitrary waveform generator (Tektronix AWG5012B)
with a time resolution of down to 0.8 ns,3 compared to 10 ns in the previous version. We
developed a program to integrate this device in our experiment control software which
was not the case with the former AWG.

2.3.2.a Optimization of the radio-frequency for the adiabatic passage

The radio-frequency field generated by the PCI RF cards is directly optimized on the
adiabatic passage. We first roughly equalize the amplitudes created by each PCI RF card
output by balancing the Rabi frequency induced by a radio-frequency field on a two-
level system of two low-m states. The full method can be found in [176]. We then scan
the relative phase of the signal applied on the two electrodes until we see a peak at the
ionization threshold of the |52c〉 circular state. Once we have a significant amount of
atoms near the circular state, we apply a microwave π pulse that selectively transfers
the |52c〉 to the |51c〉 state. We optimize the relative phase and amplitude of the two PCI
RF card outputs to maximize the number of atoms transferred to the |51c〉 state. This
transfer is at its maximum when the adiabatic passage from the 52 f to the |52c〉 state is
the most effective and only the |52c〉 state is populated. We then have a pure σ+ polarized
radio-frequency field.

3Tektronix AWG5012B with 1.2 GS/s, two independent analogue outputs, four independent digital
"marker" outputs, bandwidth up to 370 MHz.
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Figure 2.11: Cabling of the radio-frequency circuit for the adiabatic passage (a) and for
the metrology sequence (b): (a) The radio-frequency signal is generated by a PCI RF card.
The pulses are shaped by an arbitrary waveform generator. (b) The radio-frequency signal
is generated by two synthesizers with four outputs each. The pulses are shaped by a high-
resolution arbitrary waveform generator. All signals applied on the same electrode are
combined through 3 dB couplers before they are amplified and passed through a circulator.
We add the DC field via Bias-T. The signal is then applied to the electrodes by coaxial cables.

2.3.2.b Optimization of the radio-frequency for the metrology sequence

The polarization of the signal generated by the PCI RF cards is optimized on a 2.2 µs
long radio-frequency pulse. In the metrology experiment we use much shorter radio-
frequency pulses and need a more homogeneous radio-frequency field. We therefore
implemented a different method to optimize the polarization of the radio-frequency field
for the metrology sequences. We developed a technique that allows us to optimize the
polarization using much shorter radio-frequency pulses with the power that is used in
the experiment.4

We optimize the polarization of the radio-frequency field at a given frequency, ωrf =
2π ·230 MHz resonant in the n = 51 manifold in a static electric field of F = 234.5 V/m.

4It is possible to globally change the radio-frequency power by changing the amplitude of the signal of
the AWG applied on the mixers. However, the non-linearity of the mixers might degrade the polarization.
This is why we optimize the polarization at the final power that is used in the experiment.
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If the atom is initially in the |51c〉 circular state, the state of the Rydberg atom after a
radio-frequency field pulse of duration trf is (Eq. 1.29)

|Ψ(trf)〉∝ |θ1,φ1〉⊗ |θ2,φ2〉 = |J1(trf)〉⊗ |J2(trf)〉 ,

where |θ1,φ1〉 and |θ2,φ2〉 are the spin coherent states due to the rotation induced by
the σ+ and σ− polarized radio-frequency field respectively and where J1(trf) and J2(trf)
correspond to the vectors pointing at the (θ1,φ1) and (θ2,φ2) direction of the Bloch sphere.

In principle, in the presence of both σ+ and σ− polarizations, the dynamics of the
atom explores the full manifold. As a result we would have to measure the population of
a lot of levels to characterize the relative amplitude of σ+ and σ−. However, it is possible
to narrow down the number of levels whose population we need to measure by using an
off-resonant drive. If the radio-frequency is detuned with respect to the atomic frequency,
the dynamics is that of off-resonant Rabi oscillations.

Since the radio-frequency field has a fixed frequency, we prepare the atom in the
n = 50 manifold instead of the n = 51 manifold, so that the atomic frequency is detuned
with respect to the radio-frequency. The time-independent Hamiltonian inside a the
n = 50 manifold is given by (see Sec. 1.1.7)

H̃ = ~δ+ Ĵ1z −~δ− Ĵ2z +Ω+
rf Ĵ1x +Ω−

rf Ĵ2x (2.1)

where Ω+
rf and Ω−

rf are the Rabi frequencies of the σ+ and σ− polarized components of
the radio-frequency field (Eq. 1.26). The detuning δ+ and δ− are calculated from the
difference of the radio-frequency to the transition frequency between the |50c〉 circular
state and its two nearest neighbours. The transition frequency between the states |50c〉
and |50e1〉 = |50,n1 = 0,n2 = 1,m = 48〉 (|50e ′1〉 = |50,n1 = 1,n2 = 0,m = 48〉 respectively)
is 225.49 MHz (224.56 MHz) for an electric field of F = 234.5 V/m. The difference is due to
the quadratic Stark effect. This leads to two different detunings δ+ = 2π ·4.51 MHz and
δ− = 2π ·5.44 MHz for a radio-frequency of ωrf = 2π ·230 MHz.

The detuning between atomic frequency and radio-frequency leads to an off-resonant
dynamics where the vectors J1(trf) and J2(trf) rotate around an axis (Ω±,0,δ±) close to
the vertical direction, with rotation frequency (Ω2

±+δ2
±)1/2. The vectors therefore return

periodically to the north pole of the Bloch sphere. The probability to find the atom in the
circular state |50c〉 = | j1,m1 = j1〉⊗ | j2,m2 = j2〉, after a radio-frequency pulse applied for
time trf, is given by

P|50c〉(trf) = |〈50c|Ψ(trf)〉 |2 = |〈 j1, j1|J1(trf)〉 |2 · | 〈 j2, j2|J2(trf)〉 |2, (2.2)

consisting in two independent terms for |J1(trf)〉 and |J2(trf)〉. The analytical expression is
given in Appendix B.1.

The left column of Fig. 2.12 shows the trajectory of the vectors J1(trf) and J2(trf) on the
Bloch sphere. The right column Fig. 2.12 presents the probability to return to the north
pole for the J1(trf) and J2(trf) vectors, given by the overlaps P1(trf) = |〈 j1, j1|J1(trf)〉 |2 and
P2(trf) = |〈 j2, j2|J2(trf)〉 |2, as a function of the radio-frequency duration trf. Due to the
quadratic Stark shift, δ+ and δ− are different and therefore J1(trf) and J2(trf) do not have
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Figure 2.12: Left column: Trajectory of the vectors J1(trf) (blue) and J2(trf) (orange) on
the Bloch sphere. The red dot indicates the position of the vector J2(trf) at the radio-
frequency pulse duration corresponding to the third time that the J1(trf) vector returns to
the circular state (green circle at the north pole of Bloch sphere). Right column: Analytical
calculations of the probabilities P1(trf) (blue) and P2(trf) (orange), as well as the probability
to find the state in the circular state P|50c〉(trf) = P1(trf)P2(trf) (green, shaded), plotted as
a function of the radio-frequency pulse duration trf. Each line corresponds to a different
ratio R = (Ω+−Ω−)/(Ω++Ω−) withΩ++Ω− = 2π ·5 MHz between the Rabi frequencies for
the σ− and the σ+ component of the field. For R = 0 (a), the two components are equally
balanced between (Ω+ =Ω−), for R = 0.2 (b) and R = 0.8 (c) the σ+ component becomes
dominant Ω+ > Ω− until R = 1 (d), the σ− vanishes completely (Ω− = 0). The analytic
expressions used in this graph are given in Appendix B.1.
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the same rotation frequencies. Therefore J1(trf) and J2(trf) do not return to the north
pole at the same time. Every time J1(trf) returns to the north pole, the probability to find
the atom in the circular state depends on the direction of J2(trf). To find the atom in the
circular state, both vectors have to point to the north pole. Since the two vectors do not
rotate with the same frequency, this is only the case if the vector J2(trf) remains at the
north pole all the time. This implies that the σ− component of the radio-frequency field
can be minimized by maximizing the probability to return to the circular state at a well
chosen radio-frequency duration.

The principle of the optimization can be understand from Fig. 2.12. We first generate
an arbitrary radio-frequency field by driving to neighbouring electrodes with two inde-
pendent output of a synthesizer and generate a pulse of duration trf that correspond to a
the third blue peak of Fig. 2.12. We then vary the relative phase and relative amplitude
between the two radio-frequency driving signals in order to maximize the the proba-
bility to find the atom in the |50c〉 state (green line). We can see on the figure that the
smaller the σ− polarized component is, the higher the probability to find the atom in
|50c〉 becomes. This gives us a quantitative criteria for the optimization process. In the
limit whereΩ± ¿ δ±, the oscillation frequency only depends on δ± and J1(trf) or J2(trf)
return to the north pole every 1/δ+ or 1/δ− respectively, see Fig. 2.12a. However, the Rabi
frequencies of the σ± components,Ω+ andΩ−, are related. When we minimizeΩ−, we
increase Ω+. With the typical radio-frequency power used in the experiment, we then
reach a regime whereΩ+ is no longer negligible with respect to δ+. The position of the
peak of the probability P1(trf) = |〈 j1, j1|J1(trf)〉 |2 to return to the north pole (blue line in
Fig. 2.12b,c,d) is no longer independent ofΩ+. Maximizing the probability of return to
the |50c〉 circular state for a given radio-frequency duration trf is dangerous, since we end
up optimizing the power of the σ+ component to have the peak of the P1(trf) probability
at the chosen duration trf instead of minimizing the σ− component. In other words, with
this method we have to optimize on a "moving peak". We therefore have to develop a
more efficient method.

2.3.2.c New method to optimize of the radio-frequency for the metrology sequence

Our optimization method is based on a Ramsey-like experiment, shown in Fig. 2.13a.
We first apply a short radio-frequency pulse (∼40 µs) that rotates the J1 and J2 vectors
away from the north pole. We then wait for a time tdelay. We finally apply a second
short radio-frequency pulse with the same duration and phase. During the waiting time
the angular momenta J1 and J2 precess around the z axis at the frequencies δ+ and δ−
respectively in the rotating frame. Periodically, the angular momentum vectors J1 and J2

pass through the position where the second radio-frequency pulse brings the state back
to the north pole, as shown in Fig. 2.13bc.

The probabilities P1(tdelay) = |〈 j1, j1|J1(tdelay)〉 | and P2(tdelay) = |〈 j2, j2|J2(tdelay)〉 | to
return to the north pole for the vectors J1(tdelay) and J2(tdelay) as a function of the delay
tdelay between the two radio-frequency pulses are shown in Fig. 2.14. We see that the
probabilities have peaks which are regularly spaced in time as a function of tdelay. The
position of the peaks is roughly half integer of (δ±)−1. This position depends a lot less on
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Figure 2.13: (a) Chronological sequence of the optimization method as a function of the
time. The two radio-frequency pulses (blue) are applied with a variable delay tdelay (orange).
(b,c) The trajectory of the vectors J1 (blue) and J2 (orange) on the Bloch sphere is shown
for two values of tdelay. A first radio-frequency pulse brings J1 and J2 away from the north
pole. During a time delay, they rotate around the vertical axis at the frequencies δ+ and δ−.
Then we apply the second radio-frequency pulse. By carefully choosing tdelay, we can make
sure that the second radio-frequency pulse brings J1 back to the north pole. However, since
δ+ 6= δ−, the second radio-frequency pulse does not bring back J2 to the north pole (b). By
choosing tdelay ∼ 1

2 (δ+−δ−)−1, we can ensure that the second radio-frequency pulse brings
J2 even further away from the north pole (c).

the Rabi frequencyΩ± as can be seen in Fig. 2.14.

To optimize the polarization of the radio-frequency field, the duration of delay is fixed
on a peak of the probability P1(tdelay) (blue line in Fig. 2.14) close to topt = 1

2 (δ−−δ+)−1 =
538 ns. This corresponds to the third peak at t3 = 504 ns. After this waiting time, the
vectors J1 and J2 are in phase opposition, since J2 has accumulated half a turn more with
respect to J1 (see Fig. 2.13c). The probability to find the atom in the circular state (green
line in Fig. 2.14) after a delay corresponding to the third peak, is thus extremely sensitive
to the presence of a small σ− component.

Finally, to optimize the polarization experimentally, we measure not only the prob-
ability to find the atom in the circular state |50c〉, but also in the elliptical state |50e1′〉.
Fig. 2.15 demonstrates analytically the robustness of this method to experimental imper-
fections. Fig. 2.15a presents the expected probability P|50c〉(t3) as we simulate optimizing
the relative phase between the two electrodes, both creatingσ+ andσ− of the same ampli-
tude,Ω+ =Ω− (R = 0). Fig. 2.15c presents the expected probability P|50c〉(t3) at optimized
relative phase (ϕ=ϕopt), but varying the ratio R = (Ω+−Ω−)/(Ω++Ω−) betweenΩ+ and
Ω−, by scanning the amplitude of the signal applied on one of the electrodes. In each
case the maximum of the probability P|50c〉(t3) corresponds to the optimal setting for
the driving signal. If the delay t3 is chosen incorrectly (see Figs. 2.15b and 2.15d), the
maximum of P|50c〉(t3) as a function of the relative amplitude does not coincide exactly
with the setting that provides a pure σ+ radio-frequency field. However, the minimum of
the probability of P|50e1′〉(t3) always coincides with the optimum of the polarization.
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Figure 2.14: Left column: Trajectory of the vectors J1 (blue) and J2 (orange) on the Bloch
sphere for a delay tdelay such that P1(tdelay) = 1 (third blue peak in right column). Right
column: Analytical calculations of the probabilities P1(tdelay) (blue) and P2(tdelay) (orange),
as well as the probability P|50c〉(tdelay) (green shaded) to find the atom in the circular state
|50c〉 = | j1, j1〉⊗ | j2, j2〉, are shown as a function of the delay tdelay between the two radio-
frequency pulses for different ratios between σ+ and σ−: equally balanced R = 0 (a), σ+

component increasingly dominates R = 0.5 (b) and R = 0.8 (c) until σ− has completely
vanished R = 1 (d). R is defined as in Fig. 2.12. The analytic expressions used in this graph
are given in Appendix B.2.
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Figure 2.15: The probabilities P1(tdelay = t3) (blue), P2(t3) (yellow), P1,e1(t3) (green),
P2,e1′(t3) (red) and the probabilities P|50c〉(t3) (violet shaded), P|50e1〉(t3) (orange shaded)
and P|50e1′〉(t3) (turquoise shaded) to find the atom in the states |50c〉, |50e1〉 and |50e1〉
respectively, plotted as a function the difference from the optimal radio-frequency phase
∆ϕ=ϕ−ϕopt (a) and value of R (c) for the optimum tdelay = t3 = 504 ns and over the phase
difference ∆ϕ (b) and value of R (d) for a slightly longer tdelay = t ′3 = 511 ns. We consider
two electrodes A and B on which two radio-frequency signals with tunable phase and
amplitude are applied. The pure σ+ polarized field is created when the amplitudes are the
same (R = 1) and the phase is ϕopt =π/2. The analytic expressions used in this graph are
given in Appendix B.2.
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2.3.2.d Experimental optimization of the radio-frequency

The radio-frequency is generated by two synthesizer labelled "H" and "N". Both synthe-
sizer have four outputs with independent phase and amplitude. The four outputs of each
synthesizer are each connected to one ring electrode as shown in Fig 2.11. Output H1 and
N1 are connected to electrode E1, outputs H2 and N2 to electrode E2, etc. In a first step,
we tune the relative phase and amplitude between the two outputs of each pair H1&H2,
N1&N2, H3&H4 and N3&N4, so that each of them, independetly, creates a purely σ+ po-
larized radio-frequency field when they drive the respective electrodes. We choose to pair
together electrodes E1&E2 and electrodes E3&E4 because of their position with respect
to the atomic beam. The second step consists of equalizing the relative radio-frequency
power of the four σ+ polarized radio-frequency fields created by the four pairs of output
signals, so that the radio-frequency field created when H1&H2&H3&H4 (respectively
N1&N2&N3&N4) are simultaneously driving the electrodes is the most homogeneous.
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Figure 2.16: Optimization of the radio-frequency polarization of the H3&H4 outputs. (a)
The probability to find the atom in the states |50c〉 (green) and |50e1′〉 (red) as a function of
the relative phase between the two signals that generate the σ+ polarized radio-frequency
field. The analytical calculations of the probability (full lines) fit qualitatively. The dis-
crepancy is probably due to the efficiency of the microwave probe. (b) Local zoom of
(a) shows the probability to find the atom in the |50e1′〉 (red) fitted by a Gaussian (red
dashed), together with the analytical calculations (full red line). The black line shows
estimated number of |50c〉 atoms that are wrongly transferred in the n = 49 manifold by
the |50e1′〉→ |49e1′〉 probe and therefore counted as |50e1′〉 atoms.

Fig. 2.16a shows the probability to find the atom in the |50c〉 and |50e1′〉 state as a
function of the relative phase between the two signals applied on electrodes E3&E4 as a
final step of the optimization process. The probability to return to the elliptic state e1′

is minimum at the optimum phase, while the probability to return to the circular state
reaches a maximum. The population of each state is measured by selectively transferring
the population from the |50c〉 or |50e1′〉 state to the |49c〉 or |49e1′〉 state respectively and
detecting the population in the n = 49 manifold. Fig. 2.16b is a local zoom allowing us to
estimate in principle, the purity of the σ+ polarization purity from the minimum value
of the probability P|50e1〉. This is, however, limited by the selectivity of the microwave
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probes. The probability to find the atom in the |50e1′〉 state does not vanish completely
at the optimum phase ϕ = ϕopt. This is due to the false detection caused by the off-
resonant transfer of the population of the |50c〉 state in the n = 49 manifold when we
apply the microwave pulse for the |50e1′〉→ |49e1′〉 transfer. As a result, the minimum
value of the probability P|50e1〉 only provides a very pessimistic estimation of the ratio
Ω−/(Ω2++Ω2−)1/2 ≈ 2.75% limited by the background of the measurement.

Fig. 2.17a shows off-resonant Rabi oscillations for an optimized σ+ polarized radio-
frequency field, and for a slightly degradedσ+ polarization in Fig. 2.17b. We also recorded
the Ramsey-like sequence with two short off-resonant radio-frequency pulses as a func-
tion of the delay tdelay between the radio-frequency pulses for an optimized σ+ polarized
radio-frequency field, shown in Fig. 2.17c, and for a slightly degraded σ+ polarization
in Fig. 2.17d. In the optimized case we see small peaks of the probability |50e1′〉 at the
position of the peaks of the probability |50c〉. If the probability |50e1′〉 was due to the
residualσ− component of the radio-frequency field, we would expect a modulation of the
height of these peak as a function of the different peaks. Instead, they all have the same
height. This confirms that the peaks in the probability to find the atom in the |50e1′〉 state
are certainly atoms in the |50c〉 state wrongly detected as |50e1′〉 state.

The second step is the optimization of the homogeneity of the radio-frequency field.
After theσ+ polarization of the radio-frequency field generated by each of the output pairs
H1&H2, H3&H4, N1&N2 and N3&N4 is optimized, the power of theσ+ field created by the
different pairs has to be equalized in order to assure a homogeneous radio-frequency field.
This is done by no longer preparing the atom in the |50c〉 state but in the |51c〉 state. Once
in the n = 51 manifold, the atom undergoes resonant Rabi oscillations in the presence of
the resonant radio-frequency field. We apply a σ+ polarized radio-frequency field created
by two pairs, for example H1&H2 and H3&H4, for a long duration (∼200 ns). We scan the
phases ϕ3 and ϕ4 of the H3&H4 pair, while keeping the relative phase between ϕ3 and ϕ4

constant, to maximize the probability P|51c〉(trf = 200 ns) to measure the atom in the |51c〉
state. The analytical expression is given in Appendix B.3. We iterate between scanning the
relative phase and power of the pair H3&H4 until the atom does not leave |51c〉 any more.
This is when we reach the point where the σ+ field created by H1&H2 and H3&H4 have
exactly the same amplitude and interfere destructively. We then shift the phases ϕ3 and
ϕ4 by 180◦ to have the field created by the H1&H2 and H3&H4 interfere constructively.
This technique is then repeated to adapt the power of N1&N2 and N3&N4.5

2.4 Electric field gradient compensation

The static electric field allows to Stark shift the levels and to control the detuning between
the atomic frequency and the radio-frequency. Since the atoms are excited in an atomic
packet of non-zero volume, we are sensitive to spatial inhomogeneities of the electric
field at the position in the experimental zone where we apply the radio-frequency pulses.
However, it is possible to locally compensate the electric field gradient.

5In fact, we equalize two by two the power of all pairs.
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Figure 2.17: (a,b) Off-resonant Rabi oscillations as a function of the radio-frequency
duration trf. The probabilities to find the atom in the circular state |50c〉 (black) or in
the elliptical states |50e1〉 (red) or |50e1′〉 (green) are shown in the case of an optimized σ+

polarized radio-frequency field with Rabi frequencyΩ+
rf = 2π ·2.16 MHz in the optimized

case (a) and in the degraded case (the relative RF phase is detuned by 20◦) (b). (c,d)
Probability of the Ramsey-like sequence with two short RF pulses as a function of the delay
tdelay between the RF pulses in the optimized case (c) and in the degraded case (the relative
RF phase is detuned by 20◦) (d). The analytic expressions used in this graph are given in
Appendices B.1 and B.2. The parameters are chosen from the fits of the black line in (a)
and (b).
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Figure 2.18: (a) The differential Stark shift between the levels |50c〉 and |51e1〉 (green)
is in first order the same as the atomic frequency ωat in the n = 51 manifold. (b) The
contrast of the microwave Ramsey fringes between |50c〉 and |51e1〉 is shown as a function
of the gradient compensation voltage applied on the four electrodes during the process of
compensating the gradient in the following order: E4 (black), E2 (red), E1 (green), E3 (blue)
(see Fig. 2.11 for the electrode structure).

Throughout this work we find that the electric field gradients are a source of decoher-
ence in the contrast of the Ramsey interference signals. To compensate for electric field
gradients we can apply static offset voltages on the ring electrodes.

The optimization of the compensation of the electric field gradients is done by per-
forming microwave Ramsey fringes between the |50c〉 and the |51e1〉 states, see Fig. 2.18a.
The choice of the states |50c〉 and |51e1〉 is due to their differential Stark shift which is in
first order ωat = 3

2 ea0F /~. This transition experiences the same Stark inhomogeneous

broadening as the angular momenta Ĵ1 and Ĵ2 precession frequency. We apply a first
π/2-pulse to create a superposition between the two states and recombine them after a
time tmw by a second π/2-pulse. When varying the phase between the two pulses we get
the typical sine-shaped Ramsey interference signal. In our set-up it is convenient to vary
the frequency νmw in order to vary the phase ϕmw = 2πνmwtmw.

The contrast of the Ramsey fringes depends on the homogeneity of the electric field
in the volume of the atomic packet. By compensating the electric field gradients the
homogeneity can be improved and the contrast of the fringes be increased.

Fig. 2.18b shows the contrast of the microwave Ramsey fringes with a delay of tmw =
10 µs between the two π/2 Ramsey pulses as a function of the voltage applied on the
four ring electrodes. We see that the contrast depends on the electric field created by
the ring electrodes. The maximum contrast is reached when the electric field gradient is
compensated in all four directions. In order to optimize the electric field gradient we also
vary the voltage applied in opposite electrodes symmetrically and asymmetrically. This,
however, has only a small impact on the measured contrast.

In order to further reduce the sensitivity to spatial inhomogeneities on the size of
the atomic packet, we implemented several improvements, which we discuss briefly in
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the following.

2.4.1 Attempt to reduce stray charges

In the past we saw a drastic change in the value of stray electric fields over time. We find
a drift of ∼10 mV/m per day measured over 2 months [112]. We suspect a deposition of
stray charges on the electrodes or other parts in the vicinity of the experimental zone
which might originate from hotter parts of the experiment. Since the thermal shield at
4 K helium temperature has holes for the optical access of the laser excitation, we decided
to cover the holes with coated SF56 windows in order to prevent potential stray charges
from entering the experimental zone.

We had the impression that the zero electric field was more stable than before. Unfor-
tunately, we observed a slow deposition on the windows which diffused the laser light
until the transmitted laser power dropped to only 10%. We therefore decided to remove
the windows.

2.4.2 Reduction of atomic sample size

The size of the atomic packet is defined by the focus of the laser beams which intersect
the atomic beam in the center of the experimental zone and is estimated to be in the
order of ∼0.5 mm3. By reducing the diameter of the laser beams by a factor 10 the size of
the atomic packet can be reduced by about a factor of 100, potentially making the atomic
packet less susceptible to electric field gradients.

We can reduce the diameter of the laser beam by a tighter focus, which is achieved
by first enlarging the diameter of the beam and then focussing it by a lens with focus at
the position of the intersection between laser and atomic beam. In order to widen the
diameter, we change the lens of the fibre output coupler which brings the laser beam near
the optical access of the cryostat. This allows us to broaden the beam to a diameter of
about 1 cm. At the same time, we install lenses with 300 mm focus at the optical accesses
of the cryostat.

Fig. 2.19 shows the contrast of the 50c −51e1 microwave fringes as a function of the
delay between two π/2 Ramsey pulses. We see that the coherence time, defined by the
width of the Gaussian fit of the contrast, is higher when the electric field gradient is
compensated, ∼36 µs for the initial ∼0.5 mm3 atomic packet size. After a few days, the
coherence time gets reduced to ∼31 µs, but can be compensated by again optimizing the
electric field gradient compensation.

We estimate that we reduced the diameter of the 1258 nm beam from ∼530 µm
to ∼88 µm. This only leads to an increased coherence time of ∼43 µs, corresponding to
an improvement factor of ∼43 µs/31 µs ≈ 1.4 in the coherence time.

We proceeded to reduce the diameter of the 780/776 nm beams to ∼65 µm and to
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Figure 2.19: The contrast of the 50c − 51e1 microwave Ramsey fringes are shown as a
function of the delay between the π/2 pulses for different conditions: electric field gradient
compensated on day A, measured on day A (black) and day B (red); electric field compen-
sated on day B, measured on day B (green), day C (cyan) and day D with tighter focus of
the 1258 nm beam (blue). The days A, B, C, and D lie within a window of about two weeks.
The width of the Gaussian fits gives the coherence times ∼36 µs (black and green), ∼31 µs
(red and cyan) and ∼43 µs (blue).

optimize the power of the laser beams to be sure that the effective excitation volume was
limited by the size of the beams. However, we did not see a significant improvement.
This could be a first indication that the inhomogeneous broadening is rather due to the
electric field noise than to the electric field gradient.

Besides, the reduced size of the laser beams leads to a reduced number of atoms
that are excited per pulse by a factor of 3. So finally we decided that the small gain in
the coherence time was not enough to overcome the loss in the atom number and we
returned to the previous optical elements for all laser beams.6

2.5 Discussion

In this chapter we described how to prepare and detect the circular Rydberg states. We
described the radio-frequency circuit that allows us to generate the well polarized radio-
frequency field to manipulate that atoms and the methods we use to tune the phase and
amplitude of the ten independent radio-frequency synthesizer. A first pair is dedicated to
the radio-frequency field that we need to adiabatically transfer the atom from the low-l
laser-accessible Rydberg state to the circular state at the beginning of each sequence. The
other eight channels, all phase coherent, are connected to the four ring electrodes around
the center of the experimental set-up and allow us to manipulate the state of the atom
inside a given manifold once the atom is prepared in the circular state. This provides us

6The moment when we returned to the large laser beams, we prepared Schrödinger cat states of the
metrology sequence and observed that the contrast of the fringes as a function of the delay between the
radio-frequency pulses was of the same order of magnitude with small or large beams.
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with the essentials to perform very sensitive measurements of the electric and magnetic
fields.
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Chapter 3

Quantum-enabled electrometry

The Rydberg atom driven by a σ+ polarized radio-frequency field can be described as
a large J -spin system, whose free precession frequency is directly proportional to the
amplitude of the electric field F . The aim of this experiment is to measure the amplitude
F of the electric field.

We consider the lowest spin ladder of Ĵ1, corresponding to m2 =+ j2. This means that
we do not have to consider m2 and we call j1 = J and m1 = M throughout this chapter.
The initial state |J , M =+J〉 is the circular state |51c〉 at the north pole of the generalized
Bloch sphere on which the spin evolves.

We begin this chapter with the introduction of the precision limits of the classical and
quantum-enabled strategies in the case of a perfect spin J (Sec. 3.1). We describe the
experimental realization in the case of the rubidium atom (Sec. 3.2). The experimental
results show that the sensitivity of the single-atom electrometer reaches the Heisenberg
limit when the spin undergoes a non-classical evolution through Schrödinger cat states
(Sec. 3.3). Finally, the sensitivity of this method can be improved by a echo-like sequence
(Sec. 3.4).

3.1 Measurement precision limits

The atom is described by a spin whose free precession frequency is proportional to the
electric field amplitude F . Measuring this precession frequency allows to measure F .

3.1.1 Classical methods

Classically, to measure the precession frequency one measures the angle by which the
system has rotated during a time τ. Starting from an angular momentum aligned in
the vertical direction, we apply a first radio-frequency pulse to induce a rotation R̂(θ,0),
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Figure 3.1: The analytically calculated probability to find the atom in the |J , J〉 state after
the full sequence in the case of the classical method for θ =π/2 as a function of the radio-
frequency phase ϕrf for φ= 0.

bringing the system to the spin coherent state |θ,0〉 centred around the direction (θ,0).
We then let the system evolve freely for a time τ, during which it precesses (in the rotating
frame of the radio-frequency) at the frequency δω=ωat −ωrf, ending in the state |θ,φ〉,
where φ = (ωat −ωrf)τ. One way to detect a variation of φ is to rotate the spin with a
second radio-frequency pulse, with an adjustable phase ϕrf, and measure the probability
to find the final state of the spin |ψ f 〉 in the |J , J〉 state.

However, the intrinsic quantum fluctuations of |ψ f 〉 limit the precision with which
one can determine the angle φ. The probability Pc (ϕrf) to detect the system in the state
|J , J〉 at the end of the sequence as a function of the phase difference φ−ϕrf is given by,1

Pc (ϕrf) = |〈J , J |ψ f 〉 |2 = |〈θ,ϕrf|θ,φ〉 |2 ≈ exp(−J sin2(θ)(φ−ϕrf)
2/2), (3.1)

where we use that

〈J , J |ψ f 〉 = 〈J , J | R̂(θ,π+ϕrf) |θ,φ〉 = 〈θ,ϕrf|θ,φ〉 .

It is a Gaussian centred around ϕrf =φ, with a width 1/
p

J for θ =π/2 that corresponds to
the quantum fluctuations in the direction of the spin that limit the precision with which
one can determine the value of φ.

Fig. 3.1 presents the probability Pc (ϕrf) for φ = 0. The best strategy to measure φ
is to set the phase ϕrf at the point of maximum slope at ϕ′

rf = ±1/
p

J and measure the
probability Pc (ϕ′

rf). If φ 6= 0, the center of the Gaussian is shifted and the probability
Pc (ϕrf) changes by an amount

δPc = ∂Pc

∂φ
φ.

1| 〈θ,ϕrf|θ,φ〉 |2 = cos4J (Θ/2) ≈ exp(−4J (Θ/2)2/2) withΘ≈ sin(θ)(ϕrf −φ) for ϕrf −φ≈ 0.
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Since Pc (ϕrf) is a Gaussian of width 1/
p

J , the maximum slope is given by

∂Pc

∂φ
=

√
J

e
.

If the experiment is repeated k times, we can estimate the value of Pc with an uncertainty
given by the standard deviation of the binomial distribution of [178]

σ(k)
P =

p
Pc (1−Pc )p

k
= σ(1)

Pp
k

,

and the uncertainty in the direction of the spin coherent state is given by

σ(k)
φ = σ(1)

Pp
k

(
∂Pc

∂φ

)−1

=
σ(1)
φp
k

.

The precision with which the electric field can be measured with this method is

σ(1)
F =σ(1)

φ

(
∂φ

∂F

)−1

=σ(1)
P

(
∂Pc

∂φ

)−1 (
∂φ

∂F

)−1

=σ(1)
P

(
∂Pc

∂φ

)−1 (
∂φ

∂ωat

)−1 (
∂ωat

∂F

)−1

.

Since σP ≈ 1/2 and ∂Pc /∂φ= (J/e)1/2 and ∂φ/∂ωat = τ, we find

σ(1)
F =

√
e

2

1p
2J

1

τ

(
∂ωat

∂F

)−1

.

This method is not the optimal method to determine the electric field F . Nevertheless,
the intrinsic quantum fluctuations of the direction of the spin coherent state σφ = (2J )1/2

(Eq. 1.37) means that any method using a spin coherent state is not able to determine the
electric field F with a uncertainty better than

σ(1)
F =σ(1)

φ

(
∂φ

∂F

)−1

=σ(1)
φ

(
∂ωat

∂F

)−1 (
∂φ

∂ωat

)−1

= 1p
2J

1

τ

(
∂ωat

∂F

)−1

=σ(1)
F,SQL. (3.2)

This sets a bound to the achievable sensitivity using a classical method (based on a spin
coherent state) called the standard quantum limit (SQL).

This limit only holds if the method uses spin-coherent states. To go beyond, one needs
to prepare the system in a non-classical state. In this case, the sensitivity is bounded by
the Heisenberg limit which gives, for a given resource, the lowest sensitivity that can be
reached by the measurement according to the laws of quantum mechanics [83].

3.1.2 The quantum-enabled method

In order to beat the SQL, we measure, instead of φ, the global quantum phaseΦwhich is
accumulated by the spin J during its evolution on the Bloch sphere, when it comes back
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to the |J , J〉 state.

3.1.2.a The global quantum phase

The global quantum phaseΦ is defined from the overlap between the initial state |J , J〉
and the final state |ψ f 〉,

〈J , J |ψ f 〉 = |〈J , J |ψ f 〉 |e−iΦ,

where 〈J , J |ψ f 〉 = 〈θ,ϕrf|θ,φ〉 and where Φ is the argument of 〈θ,ϕrf|θ,φ〉. With the ex-
pression of the scalar product of two spin coherent states [80] we find2

Φ= J [φ−ϕrf +2Atan[cos(θ) tan((φ−ϕrf)/2)]], (3.3)

function of φ and ϕrf, but depending only on the difference (φ−ϕrf).

To measure this global phaseΦ, we need a reference state |R〉 with the same sensitivity
to the electric field as the state |J , J〉 while being unaffected by the applied radio-frequency
pulses. The atom is initially prepared in the superposition of the circular state |J , J〉 and
the reference state |R〉,

1p
2

(|J , J〉+ |R〉),

by a first π/2 pulse. The |J , J〉 state then undergoes successive transformations of the
spin J . Finally, after a second π/2 pulse with an adjustable phase ϕmw [179],

|J , J〉→ 1p
2

(|R〉+e iϕmw |J , J〉) and

|R〉→ 1p
2

(−e−iϕmw |R〉+ |J , J〉),

the probability to find the atom in the |J , J〉 state is given by

Pq (ϕrf,ϕmw) = 1

4
+ 1

4
Pc (ϕrf)+

1

2

√
Pc (ϕrf)cos(Φ−ϕmw), (3.4)

withΦ given by Eq. 3.3. The probability to find the atom in |J , J〉 therefore oscillates with
the global quantum phase Φ, which is a function of θ and φ−ϕrf, with an amplitude
proportional to

√
Pc (ϕrf).

The probability Pq (ϕrf,ϕmw) is shown in the right column of Fig. 3.2 as a function
of the relative radio-frequency phase ϕrf for different values of θ and fixed φ ≈ 0. The
probability in the case of the quantum-enabled method presents much steeper features
than the classical method with spin coherent states, shown in comparison in the plotted
probability Pc (ϕrf) in left column of Fig. 3.2. To assess the sensitivity to a small variation
of φ, each time the probability is plotted for two slightly different values of the classical

2〈θ,ϕrf|θ,φ〉 = exp(i J (ϕrf −φ))
[
cos((ϕrf −φ)/2)− i cos(θ)sin((ϕrf −φ)/2)

]2J .

70



3.1. Measurement precision limits
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Figure 3.2: The analytically calculated probability to find the atom in the |J , J〉 state after the
full sequence in the case of the classical (left) and the quantum-enabled method (right) as
a function of the radio-frequency phase ϕrf for two slightly different accumulated classical
phases φ= 0 (blue) and φ= 0.05 rad (yellow), for θ =π/2 (a,b), θ = 138.4◦ (c,d), θ = 148.2◦

(e,f), θ = 162.4◦ (g,h) and θ = 2π (i,j). The relative microwave phase is ϕmw = 0◦.
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Chapter 3. Quantum-enabled electrometry

phases φ, corresponding to two different precession frequencies during the interrogation
time τ.

The optimum for the classical strategy is for the angle θ =π/2, for which the width of
the Gaussian is 1/

p
J (Eq. 3.1), shown in Fig. 3.2a. As θ increases above π/2, the Gaussian

gets broader leading to a worse sensitivity of the classical strategy. On the contrary, the
sensitivity of the quantum strategy becomes better, as the oscillations in probability
become more and more narrow.

3.1.2.b Single-atom sensitivity

The single-atom sensitivity of the quantum-enabled method is given by

σ(1)
F =σP

(
∂Pq

∂F

)−1

=σP

∣∣∣∣∂Pq

∂Φ

∣∣∣∣−1 ∣∣∣∣∂Φ∂F

∣∣∣∣−1

(3.5)

with Pq = Pq (ϕrf,ϕmw) given in Eq. 3.4 and σP being the standard deviation of a single
atomic state detection.

The best sensitivity is obtained when we set the phase ϕrf =ϕrf,0 that maximizes the
contrast of the fringes. We assume here that the electric field F is close to the reference
field F0, for which ωat(F0) =ωrf, and therefore ϕrf,0 = 0. For small variations of the electric
field dF = F −F0, the classical probability is maximum, Pc (ϕrf,0) = 1, and the probability
Pq (ϕrf,0,ϕmw) becomes (Eq. 3.4)

Pq (ϕrf,0,ϕmw) = 1

2

(
1+cos(Φ−ϕmw)

)
.

By varying the relative microwave phase ϕmw between the two π/2 pulses, we can record
Ramsey fringes whose phase depends on the quantum phase Φ. In order to have the
maximum sensitivity to variations ofΦ induced by variations of the electric field F , we
set the microwave phase ϕmw at a point of maximum slope so that Pq (ϕrf,0,ϕmw) = 1/2.
Therefore, σP =√

Pq (1−Pq ) = 1/2 is maximum and ∂Pq /∂Φ= 1/2.

The quantum phaseΦ can be expanded to first order in a small electric field variation
dF = F −F0 as

Φ(F ) ≈ J (1−cos(θ))(F −F0)τ
∂ωat

∂F
= ηφ(F ), (3.6)

where we introduce the enhancement factor η= J (1−cos(θ)). The quantum phaseΦ(F )
is η times larger than the classical phase φ(F ). The enhancement factor can be written
as η = J −〈M〉 indicating the difference in latitude between the projection of the spin
coherent state and the initial |J , J〉 state.

We introduce the phase sensitivity

α= ∂Φ

∂F
= J (1−cos(θ))τ

∂ωat

∂F
, (3.7)
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Figure 3.3: The enhancement factor η= J (1−cos(θ)) (black) in comparison with the
p

2J
(red) as a function of the angle θ. The quantum strategy becomes more sensitive than the
SQL for θ > 44.2◦, where η exceeds

p
2J .

which leads to a theoretical single-atom measurement sensitivity of (Eq. 3.5)

σ(1),th
F = 1

J (1−cos(θ))τ

∣∣∣∣∂ωat

∂F

∣∣∣∣−1

, (3.8)

which scales as 1/J . The quantum-enabled sensitivity becomes smaller than the SQL
(Eq. 3.2), σ(1),th

F <σ(1)
F,SQL, when the enhancement factor η= J(1−cos(θ)) becomes larger

than
p

2J . This is the case for θ > 44.2◦, as shown in Fig. 3.3.

The single-atom sensitivity is at its optimum for θ =π,

σ(1)
F,HL =

1

2Jτ

∣∣∣∣∂ωat

∂F

∣∣∣∣−1

= 1p
2J
σ(1)

F,SQL, (3.9)

where it reaches the Heisenberg limit (HL) which is the best achievable sensitivity achieve
due to the laws of quantum mechanics for a given resource [83].

3.2 Experimental realization

3.2.1 Experimental sequence of the quantum-enabled method

To measure the quantum phaseΦ, we need a reference state |R〉. We use the |49c〉 state,
which, like the |51c〉 state, has no linear Stark shift. Since the |49c〉 state belongs to a
different manifold, it is not resonantly coupled to the applied radio-frequency field. The
detuning is δ49 = ωat,49 −ωrf ≈ 2π · 9 MHz. However, due to the off-resonant drive, it
is slightly affected by the radio-frequency field, but as seen in Sec. 2.3.2, if we choose
the duration of the radio-frequency pulse correctly, the part of the wave-function in the
n = 49 manifold has returned to the |49c〉 state at the end of each radio-frequency pulse.

The quantum-enabled method can also be described by a Ramsey interferometer,
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 49𝑐  
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Figure 3.4: The quantum-enabled method represented as a Ramsey interferometer. The
Ramsey π/2 pulses (red) create a superposition of the |51c〉 and |49c〉 states. The radio-
frequency pulses (blue) transfer the |51c〉 component of the superposition into a state with
very different polarizability between the radio-frequency pulses.

shown in Fig. 3.4, where one branch accumulates a phase with respect to the other due
to the different polarizabilities of the two states between the applied radio-frequency
pulses.
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Figure 3.5: Experimental sequence of the quantum-enabled strategy. The initial state |51c〉
is prepared in step (1) by an adiabatic passage and a microwave π pulse (turquoise). The
main experiment (2) consist in a first microwave π/2 pulse (red), a double radio-frequency
pulse (blue) and a second microwave π/2 pulse. The final population of the state |51c〉 is
read out either directly by ionization or by a first selective transfer of the population of the
|51c〉 state to the n = 49 manifold followed by ionization. The time t = 0 is defined by the
laser pulse.

The experimental sequence of the quantum-enabled strategy is shown in Fig. 3.5.
The moment of the laser pulse defines the time zero of the experimental sequence. The
electric field of 234.5 V/m is reached at 7 µs after the atom is prepared in the |52c〉
state by the adiabatic passage between 4.3 µs and 5.8 µs. The first microwave π pulse,
also called "purification" pulse, to prepare the |51c〉 state is applied at 10 µs and has a
duration of 1.25 µs. A first two-photon Ramsey microwave π/2 pulse at 12 µs prepares
the superposition 1p

2
(|51c〉+ |49c〉). The first radio-frequency pulse is applied at 13.4 µs

with a duration trf. Due to the off-resonant drive, the part of the wave-function in the
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3.2. Experimental realization

n = 49 manifold is slightly affected by the radio-frequency field. Therefore, we choose
a radio-frequency pulse duration of trf ≈ δ−1

49 to ensure that the n = 49 part of the wave-
function returns to the |49c〉 state after trf. After an interrogation time τ between 10 ns and
600 ns, we apply a second radio-frequency pulse. The second microwave pulse at 15 µs
recombines the two parts of the superposition. The two microwave π/2 pulses have a
duration in the order of 0.46 µs and 0.49 µs. The difference is due to the stationary modes
of the microwave field in the experimental zone. We regularly optimize the duration to
compensate for long time drifts of the microwave power seen by the atoms.

For the quantum-enabled measurement, we detect the atoms in |51c〉 and |49c〉 states
directly at their ionization threshold. To record the measurement data, we play the
sequence twice, once measuring the number of atoms in the |51c〉 state, N (51c), once of
those in the |49c〉 state, N (49c). We also measure the number of atoms initially prepared
in the |51c〉 state, N (51n), by only playing a sequence with the preparation part (see (1)
in Fig. 3.5). The main drawback of the determination of the probability to find the atom
in the |51c〉 state, P (51c) = N (51c)/N (51n), is that it is possible to count as |51c〉 atoms
which are in states different than the |51c〉 state but with similar ionization thresholds.
In principle, it is also possible to deduce the contrast of the interference of the states
|51c〉 and |49c〉 from the measurement of the probability to find the atom in the |49c〉
state, P (49c) = N (49c)/N (51n). Here, the background due to non-|49c〉 states should
be lower, since the n = 49 manifold is less affected by the applied radio-frequency field.
However, P (49c) suffers from the difference in detection efficiency between the state
|51c〉 for the normalization and the state |49c〉 for the signal. The uncertainty on the ratio
of the detection efficiency directly affects the estimation of the sensitivity. We therefore
prefer to use the probability P (51c).

Finally, we repeat the three sequences twice for two different electric fields Fup =
F0 +∆F /2 and Fdown = F0 −∆F /2 in order to measure the effect of a change ∆F of the
electric field.

In the next section, we describe how we calibrate the radio-frequency power, how we
precisely determine the duration trf of the radio-frequency pulses, and how we calibrate
the variation of the electric field ∆F .

3.2.2 The radio-frequency field power

The sensitivity of the measurement depends on the maximum angle θ reached by the
spin coherent state. In the spin approximation, where we neglect that not all levels are
hydrogen-like, the angle θ is the Rabi angle

θrf =Ωrftrf,

with the Rabi frequencyΩrf and the pulse duration trf. We thus need to calibrateΩrf.

The Rabi frequencies of the radio-frequency applied in the experiments can be ob-
tained from a fit of the depopulation of the |51c〉 state as a function of the programmed
pulse width, shown in Fig. 3.6a. Since the |51c〉 state couples resonantly to the applied
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Figure 3.6: Resonant Rabi oscillations in the n = 51 manifold. The population of the |51c〉
state is plotted as a function of the radio-frequency duration. The probability is measured
using a selective probe between the levels |51c〉 and |49c〉 to ensure that we only measure the
population in the circular state. (a) The Rabi frequencyΩ+

rf is fitted with Eq. 3.10 (dashed
line) from the depopulation of the initial state. (b) The full Rabi oscillations with numerical
simulations for the rubidium atom (full line) and the Gaussian-fitted maximum of return
(dashed line).

radio-frequency field, the oscillation frequency is directly given by the Rabi frequencyΩrf.
The probability to find the atom in the |51c〉 state is given by (Eq. B.6)

P|51c〉(trf) = cos2(n−1)

(
Ω+

rf(trf − t0)

2

)
, (3.10)

where n = 51 and t0 is the offset radio-frequency duration to take into account the rise
and fall time of the radio-frequency. From the fit in Fig. 3.6a, we find the Rabi frequency
Ωrf = (4.55±0.11) MHz for the radio-frequency field we apply, together with the offset
t0 = (1.83±0.30) ns. We choose this method to calibrate the Rabi frequency, since at
the beginning of the Rabi oscillation the atom only populates high-m states which are
hydrogen-like. Our fit-function thus does not depend on the correct description of the
rubidium atom. Even the differential quadratic Stark effect, in the order of tens of kHz for
neighbouring m-levels, can be neglected at this time scale.

It is also possible to record the full Rabi oscillation. In Fig. 3.6b we see that after a radio-
frequency pulse duration of trf ≈ 200 ns the atom returns to the |51c〉 state. We then use
the fitted Rabi frequencyΩrf to numerically simulate the evolution of the Rabi oscillation
in the n = 51 manifold taking into account the energy eigenvalues of the Stark levels of
the rubidium atom. In fact, due to the quantum defect, we have a truncated Bloch sphere
where the southernmost levels cannot be reached by a radio-frequency Rabi-π pulse from
the north pole. When consulting Fig. 1.13, we see that the levels m = 0 and m = 1 are
shifted far away from the radio-frequency ωrf. As a result, the duration trf for which the
atom returns to the |51c〉 state is not exactly 2π ·Ω−1

rf and the return probability does not
reach 100%. The simulations are in good agreement with the data shown in Fig. 3.6b. This
confirms the value of the fit in Fig. 3.6a. However, these simulations rely on the numerical
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Figure 3.7: Off-resonant Rabi oscillations in the n = 49 manifold. The population of
the |49c〉 state is plotted as a function of the radio-frequency duration. The probability is
measured using a selective probe from the level |49c〉 to |51c〉 to ensure that we only measure
the population in the circular state |49c〉. The duration of the final radio-frequency pulse
trf is fitted from the first peak. The dashed line corresponds to the analytical formula for
off-resonant Rabi oscillations (Eq. B.2 adapted for n = 49) with the detuning and the Rabi
frequency as free fit parameters. The numerical simulation of the experiment (full line)
with the Rabi frequency fitted from Fig. 3.6a is plotted in comparison.

simulation of the energy eigenvalues and the precise determination of the value of the
electric field. For this reason we do not use them to calibrate the Rabi frequency but as a
verification of the fit. The horizontal error bar indicates the error in the position of the
maximum of P|51c〉(trf) due to the uncertainty on the fitted value ofΩrf.

3.2.3 Determination of the radio-frequency pulse duration

The Rabi frequency is typicallyΩrf ≈ 2π ·4 MHz. In the electric field F = 234.5 V/m, the
detuning between the radio-frequency and the atomic frequency in the n = 49 manifold
is δ49 = 2π · 9.06 MHz. In the n = 49 manifold the radio-frequency field still induces
off-resonant Rabi oscillations between the Stark levels. The part of the wave-function in
the n = 49 manifold can be represented as a spin coherent state of another effective spin
Ĵ ′ that rotates at a frequency of Ω̃rf = (Ω2

rf +δ2
49)1/2 ≈ 2π ·9.9 MHz. This means that the

oscillation frequency in the n = 49 manifold depends much less on the radio-frequency
power than the oscillation frequency in the n = 51 manifold. The pulse duration is
therefore basically given by trf ≈ δ−1

49 .

Fig. 3.7 presents the probability to return to the state |49c〉 for an atom initially pre-
pared in the |49c〉 state as a function of the programmed radio-frequency pulse duration
trf. We choose the duration of the radio-frequency pulse so that the effective spin Ĵ ′

performs exactly one rotation and the atom is back in the |49c〉 state at the end of the
radio-frequency pulse.

The optimum phase sensitivity is reached for θ =π. However, for angles θ close to π,
we reach the south pole where the atom does not behave like a perfect spin any more. To
test the sensitivity of the method for different Rabi angles, we choose three different Rabi
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frequenciesΩrf.

Table 3.1 summarizes the values of the Rabi frequencies Ωrf, the offset t0, the pulse
duration trf and the estimated latitudeΩrf(trf − t0) reached by the spin coherent state in
the n = 51 manifold. The offset is consistently t0 ≈ 2 ns. The estimated latitude ranges
from 138.4◦ to 162.4◦. Note that the angle 162.4◦ is below the latitude corresponding to
m = 2.

Label Ωrf t0 trf Ωrf(trf − t0)

a 2π · (3.74±0.10) MHz (2.35±0.41) ns 105 ns (138.4±3.7)◦

b 2π · (4.01±0.14) MHz (1.45±0.49) ns 104 ns (148.2±5.2)◦

c 2π · (4.55±0.11) MHz (1.83±0.30) ns 101 ns (162.4±4.0)◦

Table 3.1: The Rabi frequency Ωrf and the offset t0 are fitted from the resonant Rabi os-
cillations in the n = 51 manifold. The applied radio-frequency duration trf is fitted from
off-resonant Rabi oscillations in the n = 49 manifold. The Rabi angle is estimated as
Ωrf(trf−t0). The mean radio-frequency offset duration is t0 = 1.88 ns. The curves in Figs. 3.6
and 3.7 corresponds to setting a. The value of trf has no error bar since it is the pulse
duration we program in the sequence.

3.2.4 Applying the electric field

The aim of this experiment is to measure a change in the electric field amplitude F with a
sensitivity close to the Heisenberg limit. To measure the sensitivity of our measurement to
variations of the electric field, we alternate between the two amplitudes Fup = F0 +∆F /2
and Fdown = F0 −∆F /2.

The electric field F0 is applied with an arbitrary waveform generator (AWG) with two
outputs connected to the two plane electrodes. The voltage is ramped up and down
during the preparation of the atoms, but is maintained at a constant value of ±3.258 V
during part (2) of the sequence in Fig. 3.5. The value is chosen so that the atomic frequency
between the levels |51c〉 and |51e1〉 is ωat = 2π ·230 MHz. Experimentally, we measure
an atomic frequency of ωat = 2π · (230.06±0.01) MHz which is the long-time average of
the measured transition frequency in the weeks around the day when the data was taken.
This corresponds to an electric field of F = 234.5 V/m.

In order to apply a small change in amplitude ∆F of the electric field without being
limited by the voltage resolution of the arbitrary waveform generator with which we apply
the voltage on the plane capacitor electrodes,3 we connect an additional AWG through
a R1 = 100 kΩ resistor to one of the plane electrodes, as shown in Fig. 3.8. This resistor,
together with the output resistor R2 = 50Ω of the (green) AWG acts as a voltage divider.
The voltage applied on the plane electrode ∆Vout is proportional to the voltage output

3The voltage resolution of the arbitrary waveform generator was a limitation in the previous experiment
and is described in [112].
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Figure 3.8: The cabling for the DC voltage applied on the capacitor plates C1 and C2. The
auxiliary arbitrary waveform generator (blue AWG) is used for small resolution electric
field variations. It is connected to the principal DC voltage by a voltage divider and a 5 m
long cable.

∆Vin of the additional (blue) AWG,

∆Vout = R2

R1 +R2
∆Vin ≈ 5 ·10−4∆Vin.

Experimentally, we find

∆Vout = 5.1 ·10−4∆Vin.

As a result, applying ∆Vin = 1 V with the additional AWG corresponds to a voltage change
of ∆Vout = 0.51 mV. We expect that applying ∆Vin = 1 V leads to a change in the electric
field amplitude in the order of

∆F = 0.51 mV

2 ·3.258 V
·234.5 V/m = 18.35 mV/m.

3.2.5 Calibration of the electric field

The above calculation gives a rough estimate4 of the calibration of the electric field.
We verify this calibration by measuring the frequency shift induced by the electric field
variation∆F on the |50c〉−|51e1〉 transition using Ramsey spectroscopy, shown in Fig. 3.9.

The Ramsey fringes are recorded as a function of the microwave frequency for two
different electric fields corresponding to a given difference of applied voltage of ∆Vout,
shown in Fig. 3.9b. We perform the experiment for a change of ∆Vout = 0.51 mV on
electrode C1 leading to a frequency shift ∆νmw = (18.1±0.8) kHz of the |50c〉− |51e1〉
transition.

We use the hydrogen model with linear and quadratic Stark shift to calculate to which
variation in the electric field corresponds the change ∆νmw = 18 kHz of the |50c〉− |51e1〉
transition at an electric field around F0 = 234.5 V/m. We find ∆F = 18.31 mV/m in good

4In particular, it does not take into account stray electric fields.
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Figure 3.9: (a) The transition between the levels |50c〉 and |51e1〉 (green) involved in the
Ramsey fringes. (b) Recorded Ramsey fringes for two electric fields corresponding to a
difference∆Vout = 0.51 mV. The measured difference between the fringes at Fup = F0+∆F /2
(black) and Fdown = F0 +∆F /2 (red) is ∆νmw = (18.1±0.8) kHz.

agreement with the previous estimation.

3.3 Experimental results

3.3.1 Experimental results for the classical method

We first record the probability Pc (ϕrf) to find the atom in the |J , J〉 state after the classi-
cal sequence is recorded as a function of the radio-frequency phase ϕrf. The classical
sequence, is very similar to the one for the quantum-enabled strategy shown in Fig. 3.5.
The main difference is that there is no π/2 microwave pulse. The state therefore only
populates the n = 51 manifold. After the two radio-frequency pulses, a microwave π pulse
transfers the population of the |51c〉 in the |49c〉 state to ensure that we only measure the
population that returns to the circular state |51c〉.

Fig. 3.10 shows the probability Pc (ϕrf) for different interrogation times τ and different
settings a, b, c from Table 3.1. The probability is measured for two different electric fields,
Fup = F0+∆F /2 and Fdown = F0−∆F /2, with a difference in amplitude of∆F = 73.2 mV/m.

For the smallest Rabi frequencyΩrf =Ωa the atom behaves nearly as expected for a
spin (see Fig. 3.10, first column). The distance between the center of the signals corre-
sponding to the two different electric fields increases with increasing interrogation time τ.
The absolute position also slightly moves due to the quadratic Stark effect. The effective
frequency of the spin is different when the spin coherent state is in a lower latitude, which
leads to a smaller detuning between the atomic frequency and the radio-frequency. The
fact that the width increases and the height decreases with increasing interrogation time τ
(see Fig. 3.10, first column, from top to bottom), can also be due to this anharmonicity.

We numerically calculated the level structure and dipole matrix elements of the ru-
bidium atom as introduced in chapter 1 (Sec. 1.2.2). The numerical simulations (solid
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lines in Fig. 3.10) confirm the increase of the width and the reduction of the height of
the signals and globally agree with the measured signal. However, the absolute position
of the numerically simulated peaks is shifted. This is either due to a numerical error in
the value of the energy eigenvalues, indicated by the discrepancy between hydrogen and
rubidium for high-m states discussed in Sec. 1.2.3, or due to an error in the determination
of the electric field F0. Nevertheless, within a small correction, in the case ofΩrf =Ωa , the
rubidium atom behaves like a spin.

Fig. 3.11 shows the Q-functions centred around the south pole of the Bloch sphere
corresponding to Fig. 3.10 for the settings a, b, c of Table 3.1 and for the different interro-
gations times τ. In the case of setting a (see Fig. 3.11, first column), the Q-function of the
spin is slightly deformed but still has a population distribution of a spin coherent state,
shown in Fig. 3.12a.

For the intermediate Rabi frequency Ωrf = Ωb , setting b of Table 3.1 (see Fig. 3.10,
second column), we see a peak for short interrogation times τ. But since the spin starts
to populate the m = 2 level, see Fig. 3.12b, we observe a beat between the population
of the hydrogen-like and the non-hydrogen-like levels that leads to the appearance of a
second peak. This behaviour is qualitatively reproduced by the numerical simulations,
especially at short interrogation times. At longer interrogation times, there seems to be a
discrepancy in the beat frequency which could be due to the already mentioned error in
the simulation of the energy eigenvalues.

For the largest Rabi frequency Ωrf = Ωc , setting c of Table 3.1 (see Fig. 3.10, third
column), the signal gets very broad. Due to the quantum defect leading to a truncated
Bloch sphere, the southernmost levels, with m = 0 and m = 1, cannot be reached by a
radio-frequency π-pulse from the north pole, since they are shifted out of resonance.
The first radio-frequency pulse thus transfers the atom into a state where most of the
population is found in the level m = 2, see Fig. 3.12c. Since the |J , M〉 state has phase, the
state is spread around the latitude corresponding to m = 2 and a pulse with any relative
radio-frequency phase ϕrf brings back the state close to the north pole. The probability
Pc (ϕrf) therefore varies very slowly. However, unlike the state m = 0, the m = 2 state
cannot be brought back to the north pole with an efficiency of 100%, and the probability
Pc (ϕrf) is limited to ∼ 70%.

To determine the radio-frequency phase ϕrf =ϕrf,0 for which the probability Pc (ϕrf) is
maximum, we record the curves of Fig. 3.10 for F = F0. ForΩrf =Ωa , the radio-frequency is
fitted by a simple Gaussian function. ForΩrf =Ωb , we follow the left peak for consistency.
ForΩrf =Ωc , we fit the signal with two Gaussian peaks in order to phenomenologically
reproduce the shape of the signal and determine the position of the maximum probability.

Note that the experiment forΩrf =Ωa can be used as a first method to measure the
electric field F . The sensitivity in this case is given by

σ(1)
F = 1

2

p
e

w

H

∆F

∆φ
,

where w is the Gaussian width of the probability Pc (ϕrf) (as defined in Eq. 3.1) and H is
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Figure 3.10: The measured classical probabilities for two electric fields Fup (black) and
Fdown (red) separated by∆F = 73.2 mV/m for the settings a (first column), b (second column)
and c (third column) of Table 3.1 and for increasing interrogation times from top to bottom,
i.e. τ =10 ns (first row), τ =50 ns (second row), τ =100 ns (third row), τ =200 ns (fourth
row), τ=400 ns (fifth row) as a function of the relative radio-frequency phase ϕrf +π.
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Figure 3.11: Numerical simulations for the Q-function of the state just before the second
radio-frequency pulse centred around the south pole of the Bloch sphere for the settings
a (first column), b (second column) and c (third column) of Table 3.1 and for increasing
interrogation times from top to bottom, i.e. τ =10 ns (first row), τ =50 ns (second row),
τ=100 ns (third row), τ=200 ns (fourth row), τ=400 ns (fifth row). The color scale is linear
from 0 to 1 and the contour lines are every 0.1 (see Fig. 1.6 for the color scale).
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Figure 3.12: Numerical simulation of the population distribution of the states after the
first radio-frequency pulse for the Rabi frequenciesΩrf =Ωa (a),Ωrf =Ωb (b),Ωrf =Ωc (c),
corresponding to settings a,b,c in Table 3.1 as a function of the level m. The theoretical
distribution (Eq. 1.33) expected for a spin coherent state corresponding to the estimated
Rabi angle in Table 3.1 is shown as the full black lines.

the height of the peak.

3.3.2 Experimental results for the quantum-enabled method

We then repeat the same sequence after adding the two Ramsey π/2 microwave pulses.
Fig. 3.13 shows the measured probability Pq (ϕrf,ϕmw) to find the atom in the |51c〉 state
after the quantum-enabled method for an interrogation time of τ= 10 ns. In comparison
we plot the results of the corresponding numerical simulations.

In the quantum-enabled method, the probability to return to the |J , J〉 state shows fast
oscillations inside an envelope

√
Pc (ϕrf) defined by the classical probability. This can

be observed for the numerical simulations and for the measured data. In principle, the

envelope can be calculated directly from the classical probability as
(
1/2±1/2

√
Pc (ϕrf)

)2

(Eq. 3.4). We see that the experimental data does not reach the lower envelope. This is
due to imperfections of the Ramsey π/2 pulses in the quantum-enabled method which
transfer a little less the 50% from the |51c〉 to the |49c〉 state.

By increasing the Rabi frequency fromΩrf =Ωa toΩrf =Ωc , the oscillation frequency
increases. However, at the same time the contrast decreases since the amplitude is ulti-
mately determined by Pc (ϕrf). In order to assess this trade-off we calculate the sensitivity
of this method in the following section.

3.3.3 Experimental single-atom sensitivity

The optimum radio-frequency phase ϕrf =ϕrf,0 differs for each Rabi frequencyΩrf and
interrogation time τ. We record the probability Pq (ϕrf,0,ϕmw) as a function of the mi-
crowave phase ϕmw of the Ramsey π/2 pulses.

Fig. 3.14a shows Ramsey fringes without applied radio-frequency pulses for the two
different electric fields separated by ∆F = 18.3 mV/m. The two fringes overlap to the
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Figure 3.13: The probability Pq (ϕrf,ϕmw) is shown as a function of the radio-frequency
phase ϕrf for the three Rabi frequenciesΩrf =Ωa (a,b),Ωb (c,d) andΩc (e,f) for an inter-
rogation time τ = 10 ns and an electric field variation of ∆F = 73.2 mV/m between Fup

(black) and Fdown (red). In the left column are shown the experimental data (full) together
with the envelope (hollow points, dashed line) calculated from the measured probability
Pc (ϕrf) as

(
1/2±1/2

√
Pc (ϕrf)

)2
(Eq. 3.4). In the right column are shown the numerical

simulations of a rubidium atom for Pq (ϕrf,ϕmw) (full lines) and the envelope from Pc (ϕrf)
(dashed lines).
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Figure 3.14: (a) The Ramsey fringes between the levels |51c〉− |49c〉 with no applied radio-
frequency pulse. (b) The measured quantum-enabled probability Pq (ϕrf,0,ϕmw) as a
function of νmw ∝ ϕmw for two electric fields Fup (black) and Fdown (red) separated by
∆F = 18.3 mV/m forΩrf =Ωa for an interrogation time τ=10 ns. (c) Same for an interroga-
tion time τ=200 ns.
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Figure 3.15: (a) Experimental results of the ratio ∆Φτ/∆ν, together with the respective
linear fit, for the Rabi frequenciesΩa (blue), Ωb (red) andΩc (black). The orange line is
the accumulated classical phase ∆φ/∆ν= 2πτ. (b) Enhancement factor η= J −〈M〉 (slope
plotted in (a) divided by 2π) as a function of the Rabi angle, together with the numerical
simulation (green) of the rubidium atom of J − 〈M〉 for a radio-frequency duration of
trf = 103.33 ns and the ideal enhancement factor (dashed) given by J (1−cos(θ)). The grey
area corresponds to an unattainable enhancement factor > 2J beyond the Heisenberg limit.

precision of our measurement.5 The contrast C is almost 100%. The reduction is due to
imperfections in the π/2 pulses.

Fig. 3.14b shows Ramsey fringes with applied radio-frequency pulses for Ωrf = Ωa

and an interrogation time of τ = 10 ns. The shift between the two fringes gives the
variation of the global quantum phase ∆Φ induced by the change of the electric field of
∆F = 18.3 mV/m. The contrast of the fringes is still almost 100%. For a larger interrogation
time, i.e. τ = 200 ns in Fig. 3.14c, the phase global quantum phase ∆Φ is larger and
the two fringes are shifted farther. During the longer interrogation time, however, the
superposition between two states of very different polarizabilities is exposed to electric
field fluctuations over a longer time leading to a blurring of the fringes and therefore a
reduced contrast.

5The superposition of the states |51c〉 and |49c〉 still has a differential quadratic Stark shift. For F0 =
234.5 V/m and ∆F = 18.3 mV/m, the differential quadratic Stark shift corresponds to 0.85 kHz. The two
Ramsey pulses are separated by 3 µs, the accumulated phase shift is therefore ∆ϕmw = 0.016 rad.
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We fit the quantum phase shift ∆Φ and the contrast C for the recorded Ramsey fringes
with a sine-function. The results are shown in Fig. 3.15a. Since we expect the global
quantum phase shift to be proportional to the electric field variation ∆F , we plot ∆Φ/∆ν
as a function of τ, where ∆ν= 1

2π
∂ω
∂F ∆F is the variation of the spin frequency due to ∆F .

The experimental points form a line which can be fitted by

∆Φ

∆ν
= 2πητ+ ∆Φ0

∆ν

The offset phase ∆Φ0/∆ν at τ= 0 ns is due to the global phase accumulated during the
finite duration of the radio-frequency pulses. The expected slope has the form 2πη, where
η= J −〈M〉 is the dimensionless enhancement factor.

Fig. 3.15b shows the fitted enhancement factor η as a function of the estimated Rabi
angleΩrf(trf−t0). For an ideal spin, η should follow J (1−cos(θ)) (dashed line in Fig. 3.15b).
For θ = π the enhancement factor would be maximum, 2J , which corresponds to the
Heisenberg limit. The points corresponding to Ωrf =Ωa (blue) and Ωrf =Ωb (red) are
slighty below the theoretical curve and we observe a saturation effect forΩrf =Ωc (black
in Fig. 3.15b). This saturation can be explained by the energy structure of the rubidium
atom. The numerical simulation of the latter (green line in Fig. 3.15b) leads to the value
of J −〈M〉 in the case of the rubidium atom as a function of the Rabi angle Ωrftrf. In
the simulation, we fix the radio-frequency pulse duration to trf = 103.33 ns, mean value
of the settings a, b, c in Table 3.1, and vary the Rabi frequency Ωrf. We observe the
saturation also in the numerical simulation. However, there is a discrepancy between the
measured points and the numerically simulated curve. This can be due to experimental
imperfections, for example a residual σ− component in the radio-frequency field, or to
a more fundamental reason: as we start to populate the non-hydrogen-like levels, the
model of the rotation of a spin is no longer valid and the enhancement factor is not simply
given by J −〈M〉.

The experimental single-atom sensitivity corresponding to the interrogation time τ is
calculated from Eq. 3.5 assuming that ∂Φ/∂F ≈∆Φ/∆F . We also have to take into account
that the term ∂P/∂Φ=C /2 is reduced by the finite contrast C of the interference fringes.
Therefore, the single-atom sensitivity becomes (Eq. 3.5)

σ
(1),exp
F = 1

C

∆F

∆Φ
. (3.11)

In order to asses the sensitivity of the method during the interrogation time τ, we calculate

σ
(1),exp
F,τ = 1

C

∆F

∆Φτ
, (3.12)

with the reduced global quantum phase shift ∆Φτ =∆Φ−∆Φ0.

Fig. 3.16a presents the single-atom sensitivity during the interrogation time as a
function of τ. The setting with a Rabi frequency of Ωrf = Ωa shows the overall lowest
sensitivity. Naively, we would expect that the setting with the largest estimated Rabi
angle leads to the lowest sensitivity. However, the enhancement factor η (see Fig. 3.15b)
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Figure 3.16: (a) Sensitivity as a function of the interrogation time τ, the delay between the
two radio-frequency pulses in comparison with the standard quantum limit (green) and
the Heisenberg limit (orange), forΩa (blue),Ωb (red) andΩc (black). (b) Total sensitivity
as a function of the total duration or the double radio-frequency pulses trf +τ+ trf.

in the case of Ωrf =Ωc is not much larger than for Ωa . Additionally, the contrast of the
fringes in the case ofΩc is reduced because a smaller fraction of the population returns
to the north pole. This is even worse in the case ofΩrf =Ωb , although the enhancement
factor η is larger than for Ωa . Here, due the anharmonicity in the low-m states, the
probability to return to the |51c〉 state drops drastically when we increase the interrogation
time. In all cases, the sensitivity that we measure is eventually limited by electric field
inhomogeneities when increasing the interrogation time. For small interrogation times
τ < 200 ns, the sensitivity, inversely proportional to the product C∆Φτ, scales like τ−1.
For interrogation times τ > 200 ns the contrast reduction becomes too large and the
sensitivity saturates.

The sensitivity σ(1),exp
F,τ can now be compared to the standard quantum limit (SQL,

Eq. 3.2) and the Heisenberg limit (HL, Eq. 3.9). For a very short interrogation time
of τ = 10 ns, the sensitivity we measure for Ωrf = Ωa is σ(1),exp

F,τ = (418 ± 133) mV/m.

When comparing with the HL at τ = 10 ns, σ(1)
F,HL = 325 mV/m, and the SQL σ(1)

F,SQL =
2297 mV/m, we find that the measured sensitivity lies by a factor of ∼5.5 (or by -14.8 dB)
below the SQL.6 We reach the lowest sensitivity at τ = 200 ns interrogation time with
σ

(1),exp
F,τ = (30.4±0.8) mV/m forΩa . With our repetition rate of frep = 1/311µs this yields a

integrated sensitivity of

σ
exp
F,τ,int =

σ
(1),exp
F,τ√
frep/2

=√
2 ·311µs (30.4±0.8) mV/m = (0.76±0.02) mV/m/

p
Hz.

In comparison we also calculate the total sensitivity over the full duration of the double

6The ratio in dB is calculated by GdB = 20 · log

(
σ

(1),exp
F

σ(1)
F,SQL

)
=−14.80 dB. The ratio between the HL and the

SQL in dB is GdB = 20 · log

(
σ(1)

F,HL

σ(1)
F,SQL

)
= 20 · log

(
1p
2J

)
=−16.99 dB.
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radio-frequency pulses trf +τ+ trf. In this case the experimental single-atom sensitivity
is calculated with the full global quantum phase shift ∆Φwithout subtracting the phase
accumulated during the radio-frequency pulses. The single-atom sensitivity given by
Eq. 3.11 is therefore smaller than the single-atom sensitivity when taking into account
only the accumulated phase shift during the interrogation time τ (Eq. 3.12). The total
sensitivity is shown in comparison in Fig. 3.16b. The lowest sensitivity for Ωrf =Ωa at
τ= 200 ns interrogation time is now σ

(1),exp
F = (22.2±0.4) mV/m for an overall duration of

trf +τ+ trf = 410 ns, where trf = 105 ns. The integrated sensitivity becomes

σ
(1),exp
F,int = σ

(1),exp
F√
frep/2

=√
2 ·311µs (22.2±0.4) mV/m = (0.55±0.01) mV/m/

p
Hz.

The results presented here show a significant improvement with respect to the previous
version of this experiment [111, 112] developed and performed during the first part of
my PhD thesis where we measured a best overall sensitivity of 120 mV/m, compared
to the recent experiments with 30.4 mV/m, both during interrogation time of 200 ns.
Thanks to a smaller quadratic Stark effect, a higher radio-frequency field power and a
better homogeneity of the radio-frequency field, we are now able to reach an angle of
θ ≈π, limited now by the energy structure of the rubidium atom. Nevertheless, for small
interrogation times, we now reach a sensitivity very close to the Heisenberg limit, which
represents the maximum achievable performance allowed by quantum mechanics for
this system. The sensitivity we reach is ∼14.8 dB below the standard quantum limit
comparable to what is reached in the state-of-the-art squeezing experiments (∼20 dB
in [69]). The integrated sensitivity, when considering the total duration of the radio-
frequency pulses, of 0.55 mV/m/

p
Hz is comparable to the state-of-the-art electrometry

experiments [64, 66, 124].

3.3.4 Experimental decoherence

The contrast C of the fringes is, in theory, given by the classical probability as
√

Pc (ϕrf).
However, due to the electric field noise and inhomogeneity, the atoms see a slightly
different electric field in each realization of the experiment. We can write the electric field
as F +δF where F is the mean electric field averaged over all repetitions of the experiment
and δF is the difference between the electric field in the i -th repetition and the average
electric field, δFi = Fi −F . Since we average over several repetitions to measure the
interference fringes, the electric field fluctuations lead to a reduction of the contrast of
the fringes. When assuming a Gaussian noise, this reduction of the contrast is a function
of the phase sensitivity α and the standard deviation σF of the electric field noise. We
therefore expect the normalized contrast C /

√
Pc (ϕrf) to scale like

C√
Pc (ϕrf)

∝ e− 1
2α

2σ2
F . (3.13)

89



Chapter 3. Quantum-enabled electrometry

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0
 C o n t r a s t / s q r t ( h e i g h t  m a i n )  ( - 1 0 )
 C o n t r a s t / s q r t ( h e i g h t  s m a l l )  ( - 1 0 )
 e x p ( - 2 * ( x / 2 / p i ) ^ 2 / ( 0 , 0 3 5 8 ) ^ 2 ) * 0 , 9 3 8 7
 C o n t r a s t / s q r t ( h e i g h t  m a i n )  ( - 2 0 )
 - 4 7 / + 2 8 / - 1 2 / - 2 6 8  3 6 µ s
 G a u s s  F i t  o f  B o o k 4 5 _ D

No
rm

aliz
ed

 co
ntr

as
t

∆Φ/∆ F  ( r a d ( m V / m ) - 1 )

M o d e l G a u s s
E q u a t i o n y = y 0  +  ( A / ( w * s q r t ( P I / 2 ) ) ) * e x p ( -

2 * ( ( x - x c ) / w ) ^ 2 )
P l o t C o n t r a s t / s q r t ( h e i g h t  m a i n )  ( - 2 0

)
y 0 0  ±  0
x c 0  ±  0
w 0 , 1 6 9 2 8  ±  0 , 0 1 2 0 5
A 0 , 2 0 0 8 9  ±  0 , 0 1 1 8 9
R e d u c e d  C h i - S q r 0 , 0 0 3 8 9
R - S q u a r e ( C O D ) 0 , 9 7 1 7 4
A d j .  R - S q u a r e 0 , 9 6 4 6 7

Figure 3.17: The normalized contrast (C /
√

Pc (ϕrf,0)) of the Ramsey fringes of the quantum-
enabled sequence with radio-frequency pulses withΩa (blue) andΩb (red) as a function
of the phase sensitivity α=∆Φ/∆F . In comparison we add the contrast of the microwave
Ramsey fringes between the states |50c〉−|51e1〉 (see Fig. 2.19) as a function of∆φmw/∆F =
2πt ∆ν∆F , where t is the delay between the Ramsey pulses (black, hollow). The black line
corresponds to the Gaussian fit of the microwave data with a standard deviation of σF =
9.0 mV/m, the blue line to the Gaussian fit of the two radio-frequency Ramsey fringes with
a standard deviation of σF = 12.0 mV/m.

In Fig. 3.17, we plot C /
√

Pc (ϕrf) as a function of α and can thus deduce the standard
deviation σF = (12.0±0.9) mV/m of the electric field noise from the Gaussian fit of the
normalized contrast.

We can compare C /
√

Pc (ϕrf) to the contrast reduction observed for the Ramsey fringes
of the |50c〉 to |51e1〉 transition. In this case, the phase sensitivity is given by

αmw = τ∂ωat

∂F
.

This allows us to convert the coherence time of (35.8±2.9) µs (see Fig. 2.19) into the
standard deviation of the electric field noise of σF = (9.0±0.7) mV/m.

The discrepancy between the two values of σF can be explained by the bandwidth of
each measurement. For the Ramsey fringes of the |50c〉 to |51e1〉 transition, the delay
between the two pulses is of the order of a few µs filtering out the high frequency noise.
The quantum-enabled method probes the electric field with a much higher bandwidth
since the delay between the two radio-frequency pulses is much shorter and is there-
fore sensitive to electric field noise with higher frequency, leading to a larger standard
deviation σF .
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3.4 Improved sensitivity with echo-like sequence

It seems that the contrast of the fringes is due to inhomogeneous broadening due to the
electric field noise. This causes the sensitivity to increase for large interrogation times.
The dispersion can be a result of spatial inhomogeneity or of temporal noise. The low-
frequency part of the temporal electric field noise can be suppressed by using spin-echo
techniques [123], allowing us to get an even lower sensitivity.

We thus implement an echo-like sequence, represented as an Ramsey interferometer
in Fig. 3.18. We first apply a microwave π/2 pulse to prepare the superposition 1p

2
(|51c〉+

|49c〉). At time t , we apply a first radio-frequency pulse, followed after an interrogation
time τ by a second radio-frequency pulse, the phase of which is chosen to bring back the
part of the wave-function in the n = 51 manifold to the circular state |51c〉, as described
in the previous part of this chapter. Here, however, instead of directly applying the second
π/2 microwave pulse, we change the amplitude of the electric field, so that the radio-
frequency is now resonant with the Stark transitions in the n = 49 manifold. At time t ′, we
apply a third radio-frequency pulse, of duration t ′rf, that rotates the angular momentum

Ĵ1 associated to the n = 49 manifold. After an interrogation time τ, we apply the fourth
radio-frequency field pulse that brings back the part of the wave-function in the n = 49
manifold in the corresponding circular state |49c〉. This echo-sequence can be written as

|51c〉+ |49c〉 t−→ e−iΦ51(F+δF ) |51c〉+ |49c〉 (3.14)

t ′−→ e−iΦ51(F+δF ) |51c〉+e−iΦ49(F ′+δF ′) |49c〉 .

After the first pair of radio-frequency pulses, the spin associated to the n = 51 manifold
has accumulated a phase (Eq. 3.6)

Φ51(F +δF ) =α51 · (F +δF ) =Φ51(F )+α51δF

where F is the average value of the electric field, δF the value of the electric field noise at
time t , and α51 the phase sensitivity associated to the n = 51 manifold which depends on
the Rabi frequencyΩrf, the duration of the radio-frequency pulses trf and the interrogation
time τ. The phase Φ49 is expressed similarly by Φ49(F ′+δF ′) =Φ49(F ′)+α49δF ′ where
α49 is the phase sensitivity associated to the n = 49 manifold.

We assume that the electric field noise is correlated over a time scale of at least ∆t =
t ′− t which is the minimum time we need to perform the echo sequence. The electric
field noise at times t and t ′ is therefore the same, δF = δF ′. In this case, the final state of
the echo-sequence in Eq. 3.14 can be written as

e−i [Φ49(F ′)+α49δF ]
[

e−i [Φ51(F )−Φ49(F ′)+(α51−α49)δF ] |51c〉+ |49c〉
]

,

where the phase e−i [Φ49(F ′)+α49δF ] can be omitted since it is a global phase. We are only
interested in the relative phase between |51〉 and |49〉, called the total accumulated
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Figure 3.18: The Echo-like sequence of the quantum-enabled method represented as a
Ramsey interferometer. The Ramsey π/2 pulses (red) create a superposition of the |51c〉 and
|49c〉 states. During the first pair of radio-frequency pulses (blue), the n = 51 component of
the superposition accumulates a global quantum phase, during the second pair of radio-
frequency pulses, the n = 49 component accumulates ideally the same global quantum
phase.

quantum phase,

Φ=Φ51(F )−Φ49(F ′)+ (α51 −α49)δF.

Since the radio-frequency acts similarly on the spin associated to n = 51 and n = 49, the
phase sensitivities are approximately the same, α51 ≈α49,7 and the total quantum phase,
Φ≈Φ51(F )−Φ49(F ′), is insensitive to the electric field noise δF , while having the same
sensitivity to the electric field F as the fringes without echo for a variation that occurs on
a time scale that is short compared to t ′− t . Like all echo techniques, this method is only
sensitive to variations of the electric field and actually measures the difference F −F ′ of
the electric field at times t and t ′. The echo fringes therefore have the same sensitivity
to a change ∆F in the electric field at time t as the fringes without echo, as long as the
electric field at t ′ is constant. However, the reduction of contrast of the Ramsey fringes
due to the electric field noise is

C ∝ e− 1
2 (α51−α49)2σ2

F ≈ 1,

if α51 ≈α49, which is much smaller than in the case without echo, where C ∝ e− 1
2α

2σ2
F .

3.4.1 Experimental realization

The experimental sequence is similar to the case of the quantum-enabled method pre-
sented in the last section. The main difference is that we add a second radio-frequency
pulse pair and an electric field step in order to be resonant with the n = 49 manifold
during this second radio-frequency pulse pair. The experimental sequence is shown in
Fig. 3.19.

The Ramsey pulses in this experiment are at 12 µs (as before) and 35 µs (much
later than before), from the initial laser pulse at 0 µs, and have a duration of 0.48 µs
and 0.65 µs.8

7In principle, the phase sensitivities can be adapted by changing the interrogation time τ between the
n = 49 radio-frequency pulses. However, this is not done in this experiment.

8The duration of the Ramsey pulses differ from the duration of the previous section. The duration is
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Figure 3.19: The experimental sequence for the echo method. The first radio-frequency
pulse pair, applied at t51, is resonant in the n = 51 manifold, whereas the second radio-
frequency pulse pair, applied at t49 during a slightly increased electric field amplitude, is
resonant in the n = 49 manifold. The time t = 0 is defined by the laser pulse.

The first radio-frequency pair is applied in an electric field F51 ≈ 234.5 V/m making
the radio-frequency field (ωrf = 2π· 230 MHz) resonant with the atomic frequencyωat,51 =
2π· 230.06 MHz. We use a radio-frequency field with the Rabi frequency Ωrf,51 =Ωa =
2π · (3.74±0.10) MHz and a radio-frequency duration trf,51 = 105 ns corresponding to a
complete period of oscillation of the off-resonant Rabi oscillations in the n = 49 manifold.
This corresponds to setting a in Table 3.1.

The second radio-frequency pair is applied in the electric field F49 ≈ 244.1 V/m where
the atomic frequency in the n = 49, measured to be ωat,49 = 2π· 229.99 MHz, becomes
resonant with the radio-frequency field. The Rabi frequency can be fitted on the depopu-
lation of the |49c〉 state. The measured value ofΩ+

rf,49 = 2π · (3.67±0.23) MHz is in good

agreement with the expected value of 49/51 ·Ω+
rf,51 ≈ 2π ·3.59 MHz.9 The radio-frequency

duration is chosen from the period of the off-resonant Rabi oscillations in the n = 51
manifold. We measure trf,49 = 101 ns.

The interrogation time τ = 400 ns (τ = 600 ns) is the same for both pairs of radio-
frequency pulses. The electric field is switched from F51 to F49 at 14.1 µs (14.3 µs) during
100 ns, reaching the new value at 14.2µs (14.4µs). The first radio-frequency pulse starts at
13.4 µs, the third radio-frequency pulse at 14.3 µs (14.5 µs depending on the interrogation
time τ).

regularly adjusted due to the long-term drift of the microwave power seen by the atom.
9For a given amplitude of the radio-frequency field, the Rabi frequency in different manifold scales with

principal quantum number n.
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Figure 3.20: The measured quantum-enabled probability as a function of the MW frequency
ϕmw for two electric fields Fup (black) and Fdown (red) separated by ∆F = 183µV/cm forΩa

for an interrogation time τ=400 ns with (a) a single radio-frequency pulse pair and (b)
two radio-frequency pulse pairs. The echo-sequence (b) shows an increased contrast and
the same phase shift ∆Φ.

We choose the relative radio-frequency phase between the two pulses of the first
radio-frequency pair ϕrf,51 =ϕrf,0 so that the probability Pc (ϕrf,51) to return to the |51c〉
state after the second radio-frequency pulse is maximum.

In principle, we would tune the relative radio-frequency phase between the two pulses
of the second radio-frequency pair in the same manner to optimize the probability of the
part of the wave-function in the n = 49 manifold to return to the |49c〉 state after the last
radio-frequency pulse. Unfortunately, we do not have enough radio-frequency sources to
have three radio-frequency fields with independent phases. To circumvent this problem,
the electric field F49 is fine-tuned to ensure that the same relative phase ϕrf optimizes the
return probability for both parts of the wave-function, in n = 49 and n = 51. Changing
the electric field by 1 mV/m allows us to tune ϕrf,49 by (0.19±0.02)◦, allowing us to get
ϕrf,49 ≈ϕrf,51 ≈ϕrf,0.

To measure the phase sensitivity of the echo-fringes we apply an electric field pulse
with amplitude ∆F only during the first radio-frequency pulse pair, since the fringes
would otherwise be insensitive to the DC change of the electric field. In the experimental
sequence the electric field pulse alternates between amplitude ∆F ("Fup") and amplitude
zero ("Fdown").

Fig. 3.20 shows the measured Ramsey fringes for the sequence with a single radio-
frequency pulse pair and the echo-sequence with two radio-frequency pulse pairs for an
interrogation time of τ= 400 ns. The quantum phase shift∆Φ is the same for both fringes.
However, the contrast of the echo-fringes is increased due to the reduced sensitivity to
the electric field noise.

The single-atom sensitivity for the echo-sequence is calculated as before from the
contrast C and the accumulated quantum phase ∆Φτ (during τ) and plotted in Fig. 3.21
as a function of the interrogation time τ. The sensitivity is shown in comparison with
the sensitivity measured with a single radio-frequency pair withΩrf =Ωa . We added the
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Figure 3.21: Single-atom sensitivity as a function of the interrogation time τ forΩrf =Ωa in
the case of the echo-like sequence (full points) and in the case without echo (hollow points,
see Fig. 3.16a) in comparison with the standard quantum limit (green) and the Heisenberg
limit (orange). The analytical model of the sensitivity is plotted for σF = 12 mV/m (pink)
and σF = 9 mV/m (bright green).

analytical model to describe the behaviour of the sensitivity calculated as (Eq. 3.12)

σ
(1),exp
F,τ = 1

C

∆F

∆Φτ

with C = C0e− 1
2α

2σ2
F (Eq. 3.13) and ∆Φτ/∆F = α = ητ(∆ωat/∆F ) (Eq. 3.7). The only free

parameters are the contrast C0 and the standard deviation of the electric field noise σF .
With this model we can fit the sensitivity in the case without echo for σF = 12 mV/m and
C0 ≈ 0.77. In the case of the echo sequence, the model fits best for σF = 9 mV/m.

We see that we can further reduce the sensitivity by performing the echo-sequence.
The lowest sensitivity is now reached for τ = 400 ns with σ

(1),exp
F,τ = (18.6±0.3) mV/m,

leading to an integrated sensitivity of σ(1),exp
F,int = (0.46±0.01) mV/m/

p
Hz. However, we

also have to assert that, especially for longer interrogation times τ= 600 ns, we cannot
fully compensate the reduction of contrast due to the electric field noise. We assume that
this is mainly due to electric field noise which varies faster then the time delay between
the first and the second pair of radio-frequency pulses.

3.5 Discussion

In this chapter we presented the sensitivity of the single-atom electrometer. By measuring
the accumulated quantum phase, we are able to reach a sensitivity very close to the
fundamental Heisenberg limit. For short interrogation times of 10 ns, the sensitivity
is by a factor of 5.5 below the standard quantum limit, which corresponds to -14.8 dB,
comparable to the state-of-the-art of -20 dB obtained by employing squeezed states [69].
The single-atom sensitivity of 30.4 mV/m for an interrogation time of 200 ns corresponds
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to the electric field of a single charge located at 218 µm making this method interesting
to measure condensed matter devices.

We explored the limitations of the electrometer to electric field noise and inhomo-
geneities and showed that by using an echo technique, the effect of the electric field noise
is reduced leading to an even lower overall sensitivity of 18.6 mV/m for an interrogation
time of 400 ns.

Our system provides an unprecedented single-atom sensitivity. Its limitation is the
repetition rate of the experimental sequence which only allows to probe the electric field
every 311 µs. This drastically limits the bandwidth and impairs our integrated sensitivity.

To be able to use our electrometer to explore physics of mesoscopic devices, we need
to find a way to measure faster phenomena. In the next chapter we present a method
derived from this measurement which allows us to measure variations of the electric
field on a time scale that is only limited by the duration of the radio-frequency pulses
themselves and not by the repetition rate of the experiment. This opens the way to much
faster dynamics with potential applications in condensed matter physics.
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Chapter 4

Correlation measurements

At the end of the previous chapter we discussed that the use of spin-echo techniques in the
metrology measurement sequence makes our electric field measurement less sensitive to
slowly varying electric field fluctuations. The phase we measure is now sensitive to the
difference of the electric field at two different moments in time. This paves the way to
correlation measurements. However, the techniques used in chapter 3 involve a switching
of the electric field during the Ramsey pulse sequence in order to use the radio-frequency
pulses first resonant in the n = 51 manifold and thereafter in the n = 49 manifold. In this
chapter we discuss a technique in which we make use of both angular momenta, Ĵ1 and Ĵ2,
coupled to σ+ and σ− radio-frequency pulses respectively, to alternately generate states
inside a given manifold that have opposite polarizabilities. This allows us to accumulate
a quantum phase that depends on the difference of the amplitude of the electric field
between the times when the σ+ and σ− polarized radio-frequency fields are applied. As
this method does not require to switch the amplitude of the electric field between the
radio-frequency pulses, it enables the measurement of electric field correlations for very
short time delays only limited by the duration of the radio-frequency pulses. To reduce
this time to the minimum, we make use of the quantum phase accumulated during the
radio-frequency pulses themselves reducing the delay to nearly zero.

In this chapter, we introduce the AC-electrometer (Sec. 4.1) and describe the exper-
imental implementation with σ+ and σ− polarized radio-frequency pulses (Sec. 4.2).
We assess the bandwidth of the AC-electrometer and discuss the linear regime of the
measurement of the AC electric field (Sec. 4.3). We discuss how to measure the correlation
function of an electric field noise by using the quadratic regime of the AC-electrometer
(Sec. 4.4), before concluding with the measurement of the intrinsic noise of the experi-
ment (Sec. 4.5).
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Figure 4.1: The energy eigenvalues of the rubidium atom. In the presence of a σ+ polarized
radio-frequency field, the population, initially in the |51c〉 state will evolve along the blue
arrow. In the case of a σ− polarized radio-frequency field, the population evolves along the
orange arrow.

 51𝑐  

 49𝑐  

 51𝑐  

 49𝑐  

 51𝑐  

 49𝑐  

Figure 4.2: The fast correlation sequence of the quantum-enabled method represented as a
Ramsey interferometer. The Ramsey π/2 pulses (red) create a superposition of the |51c〉 and
|49c〉 states. During the first pair of radio-frequency pulses (blue) the n = 51 component
of the superposition accumulates a global quantum phaseΦ+, during the second pair of
radio-frequency pulses (orange) the n = 51 component accumulates a global quantum
phaseΦ−, with opposite sign with respect toΦ+.

4.1 Principles of AC electric field variation measurements

In the previous chapter we show how the preparation of a superposition of the reference
state |49c〉 and a spin coherent state of Ĵ1 in the manifold n = 51 along the lowest σ+

diagonal (blue diagonal in Fig. 4.1) allows us to get a very good sensitivity to the electric
field. Due to the large difference in polarizability between the |49c〉 reference state and
the spin coherent state, the superposition acquires a relative phaseΦ+ that is extremely
sensitive to variations of the electric field.

If, instead of using σ+, we use σ− polarized radio-frequency pulses, the spin coherent
state we prepare is a spin coherent state of Ĵ2 in the manifold n = 51, quantum superposi-
tion of states along the highest σ− diagonal (orange diagonal in Fig. 4.1). The difference
of polarizability between this state and the |49c〉 reference state is still very large, but this
time the relative phaseΦ− has the opposite sign with respect toΦ+, as represented as a
Ramsey interferometer in Fig. 4.2.

We can then use a combination of σ+ and σ− radio-frequency pulses to perform a
measurement that is sensitive to the difference of the electric field between the times t+
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Figure 4.3: Experimental sequence of the AC-electrometer. We use two pulses of σ+ and
two σ− polarized radio-frequency fields. The first (σ+ polarized) radio-frequency pair
is applied at t+ = 13.4 µs. The second (σ− polarized) radio-frequency pair is applied at
t− = 22.4 µs, or 9 µs after the first pair. The two microwave π/2 pulses are applied at 9 µs
and 35 µs. The time t = 0 is defined by the laser pulse.

and t−. The experimental sequence is described in Fig. 4.3. The atom is initially prepared
in the |51c〉 state. First, a microwave π/2 pulse prepares a superposition of the states |49c〉
and |51c〉. At time t+, a σ+ polarized radio-frequency pulse prepares the n = 51 part of
the wave-function in a spin coherent state of the lowest σ+ diagonal. A subsequent σ+

radio-frequency pulse, whose phase is chosen to maximize the probability P+
c (ϕ+

rf) for the
atom to return to the |51c〉 state is applied. Under the effect of these two radio-frequency
pulses the atom accumulates a relative phase

Φ+ =α+(F (t+)−F0).

Here, instead of applying the second microwave π/2 pulse to read out the phaseΦ+, like
in chapter 3, we apply two σ− polarized radio-frequency pulses (with a relative phase ϕ−

rf
chosen to maximize the probability P−

c (ϕ−
rf) to return to the |51c〉 state) at time t−, which

imprints the second phase accumulated during the σ− polarized radio-frequency pulse
pairs

Φ− =α−(F (t−)−F0),

leading to the total quantum phase

Φ=Φ++Φ−.

By carefully choosing the power and delay between the radio-frequency pulses, we can
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ensure that α+ =−α− ≡α and

Φ=α(F (t+)−F (t−)).

Finally, we apply a second π/2 pulse resonant with the |49c〉− |51c〉 transition that
recombines the two parts of the interferometer (see Fig. 4.2). The probability to find the
atom in the |51c〉 state after this sequence can be calculated by (Eq. 3.4)

Pq (ϕ+
rf,ϕ

−
rf,ϕmw) = 1

4
+ 1

4
P+

c (ϕ+
rf)P−

c (ϕ−
rf)+

1

2

√
P+

c (ϕ+
rf)P−

c (ϕ−
rf)cos(Φ−ϕmw), (4.1)

which is a function of the total accumulated quantum phaseΦ, the relative radio-frequency
ϕ±

rf phase between the σ± polarized radio-frequency pulse pairs, the relative phase of the
microwave π/2 pulses ϕmw, and the probability P±

c (ϕ±
rf) to return to the |51c〉 state when

only the σ+ (only σ− respectively) pulses are applied.

In this experiment, we choose to detect the atom in the |49c〉 state at the end of the
sequence. As we have seen in the previous chapter, the probability Pc (ϕrf) to return to
the |J , J〉 state of the angular momentum after the radio-frequency pulses is limited by ex-
perimental imperfections (examples are the quadratic Stark effect and the anharmonicity
due to the quantum defect) and is less than 100%. We thus expect that at the end of the
sequence a non-negligible population in the elliptical states close to the |51c〉 state. Since
the |51e ′1〉 elliptic state1 has nearly the same ionization threshold as the |51c〉, we want to
avoid that the detection signal of the |51c〉 state is contaminated by a residual population
of atoms in states other than |51c〉 that are detected as |51c〉. Even if the |49c〉 state is also
affected by the radio-frequency pulses, its dynamics is an off-resonant Rabi oscillation
and it remains closer to the north pole. It is therefore less affected by the imperfections
mentioned before and we expect the ionization signal at the threshold of the |49c〉 state
to be less contaminated by non-|49c〉 states. We thus record the number of atoms N (49c)
in the |49c〉 and normalize by the number of atoms N (51c) in the |51c〉 that we initially
prepare. To calculate the probability P (49c), however, we have to take into account the
ratio of detection efficiency η between |51c〉 and |49c〉,

P (49c) = ηN (49c)

N (51c)
.

The |49c〉 state is the second output of the Ramsey interferometer in Fig. 4.2. The
probability to find the atom in the |49c〉 state after the full sequence is very similar to Pq

(Eq. 4.1) and is given by

P ′
q (ϕ+

rf,ϕ
−
rf,ϕmw) = 1

4
+ 1

4
P+

c (ϕ+
rf)P−

c (ϕ−
rf)−

1

2

√
P+

c (ϕ+
rf)P−

c (ϕ−
rf)cos(Φ−ϕmw). (4.2)

We see that the contrast of the Ramsey fringes is the same whether we measure the
probability to find the atom in the |51c〉 state or in the |49c〉 state.

1The |51e ′1〉 level is the level closest to the |51c〉 level on the highest σ− diagonal spin-ladder.
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4.2 Experimental implementation

4.2.1 Calibration of the phase sensitivityα+

In this section we present how the σ+ radio-frequency pulses are generated and how the
phase sensitivity α+ is calculated.

In this experiment we use two electrodes to generate each radio-frequency pulse. To
optimize the polarization of the σ+ polarized radio-frequency pulses, we use the proce-
dure as described in details in Sec. 2.3.2, where the radio-frequency field is optimized for
the signals applied on two electrodes at a time. We choose electrodes E1&E2, connected
to outputs H1&H2 and N1&N2 (see Fig. 2.11 for the radio-frequency circuit), to generate
the σ+ polarized radio-frequency field.

The duration of the radio-frequency pulses is determined by the period of the off-
resonant Rabi oscillations in the n = 49 manifold. The part of the population stored in
the n = 49 manifold needs to return to the circular state |49c〉 before being recombined
with the population in the n = 51 manifold (Sec. 3.2.2).

The best sensitivity is reached for the maximum angle θ between the north pole of the
Bloch sphere and the direction of the spin coherent state after the first radio-frequency
pulse. At the same time, the spin coherent state should not enter the part of the spin-
ladder where the low-m states are shifted by the quantum defect. In the previous chapter
we find that the trade-off lies at an angle θ of the order of 140◦. This is the angle that
we aim to reach in this experiment. We measure a Rabi frequency of the σ+ polarized
radio-frequency field ofΩ+

rf = 2π · (3.97±0.07) MHz. The duration of the radio-frequency
pulses is determined by the off-resonant Rabi oscillations in the n = 49 manifold. We find
t+rf = (102.0±0.2) ns. This corresponds to a Rabi angle θ+ =Ω+

rf(t+rf − t0) ≈ 143.8◦ where
t0 = (1.37±0.23) ns takes into account the finite rise time of the radio-frequency pulses.

We determine the optimum radio-frequency phase ϕ+
rf to maximize the probability

P+
c (ϕ+

rf) to return to the |51c〉 state by recording P+
c as a function of the relative radio-

frequency phase when we only applying the two σ+ polarized radio-frequency pulses,
shown in Fig. 4.4. Here, the two pulses are applied consecutively without any delay
(τ+ = 0 ns). The maximum probability which can be reached is P+

c (ϕ+
rf) ≈ 95%.

In order to calibrate the phase sensitivityα+, we record Ramsey fringes at two different
electric field amplitudes Fup and Fdown separated by ∆F =73.2 mV/m as a function of the
relative microwave frequency. They are shown in Fig. 4.5a. The sequence includes the first
π/2 microwave pulse, the two σ+ polarized radio-frequency pulses with relative phase
ϕ+

rf, and a second π/2 microwave pulse. However, since the two π/2 pulses are separated
by ∼24 µs, the contribution of the differential Stark effect of the |51c〉− |49c〉 transition is
no longer negligible. The phase shift in Fig. 4.5a is thus the sum of the variation of the
quantum phase ∆Φ+, accumulated during the radio-frequency pulses, and a phase shift
∆ϕmw due to the differential Stark shift between the levels |49c〉 and |51c〉. The contri-
bution ∆ϕmw can be independently be measured by recording the same Ramsey fringes
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Figure 4.4: The probability to return to the |51c〉 state after theσ+ polarized radio-frequency
pulses are applied as a function of the absolute phase of the N1&N2 synthesizer output.
The appearance of a small peak on the left shows that the spin coherent state nearly reaches
the anharmonic region of the Stark levels. The Gaussian fit of the right peak to find the
maximum return is shown (dashed).
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Figure 4.5: (a) Ramsey microwave fringes between |51c〉 and |49c〉 in two different electric
fields, Fup (black) and Fdown (red) separated by ∆F =73.2 mV/m with the σ+ polarized
radio-frequency pulses, lead to a phase shift of ∆ϕmw +∆Φ+. (b) The phase shift between
the fringes for Fup and Fdown without applied radio-frequency pulses is ∆ϕmw.

in the same conditions but without applying the radio-frequency pulses (see Fig. 4.5b).
From the two measurements we find α+ = ∆Φ+/∆F = (0.0198±0.0001) rad(mV/m)−1.
The value is the average of several identical measurements performed over several days.

4.2.2 Calibration of the phase sensitivityα−

We generate the σ− polarized radio-frequency field with the electrodes E3&E4, connected
to the synthesizer outputs H3&H4 and N3&N4. So far, the phases and amplitudes of all
the synthesizer outputs are optimized to generate σ+ polarized radio-frequency fields.
To optimize the σ− polarized radio-frequency pulses, we use the same optimization
method (see Sec. 2.3.2.c), but we initially prepare the atom in the |−50c〉 state, the circular
state with m = −(n − 1). To that end, we first invert the direction of the electric field
that we apply during the laser excitation, so that the polarization of the 780 nm and
776 nm laser are now σ− with respect to the new quantization axis. As a result we prepare
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Figure 4.6: The probability to return to the |51c〉 state after theσ− polarized radio-frequency
pulses are applied with an interrogation time of τ− = 12 ns.

the |52 f ,m =−2〉 state. We then optimize the relative phase of the PCI RF card (see
Sec. 2.3.2.a) used for the adiabatic passage, in order to create a radio-frequency field
with σ− polarization that transfers the state of the atom into the |−52c〉 state. We can
then use the same transition frequencies and techniques, as for the σ+ optimization, to
tune the phase and amplitude of the outputs H3&H4 and N3&N4 to generate a pure σ−

polarized radio-frequency field.2 Since we generate the radio-frequency field using only
two electrodes, the field amplitude is very inhomogeneous. During the optimization
process, we apply the radio-frequency pulses at t− = 22.4 µs, which is the time at which
the radio-frequency pulses occurs in the final sequence.

We choose the power of theσ− polarized radio-frequency field to have a Rabi frequency
similar to the one of the σ+ polarized radio-frequency field, Ω−

rf ≈Ω+
rf. To measure the

Rabi frequency Ω−
rf, we measure the depopulation of the |+51c〉 state as a function of

the duration of the radio-frequency pulse that we apply on the atom. We measure
Ω+

rf = 2π · (3.90±0.07) MHz with a radio-frequency duration offset t0 = (1.61±0.23) ns.
We choose t−rf to ensure that it corresponds to exactly one period of the off-resonant Rabi
oscillation in the n = 49 manifold. We find t−rf = (96.8±0.2) ns. The Rabi angle can be
estimated as θ− =Ω−

rf(t−rf − t0) ≈ 136.8◦ which is slightly smaller than θ+. The smaller Rabi
angle leads to a smaller sensitivity. This can, however, be counterbalanced by increasing
the delay τ− between the two σ− polarized radio-frequency pulses.

To adjust the phase sensitivitiesα+ ≈α−, we measure the sensitivityα− as a function of
the delay τ−. For each value of τ−, we record the probability P−

c to return to the |51c〉 state
after the two σ− radio-frequency pulses as a function of the relative phase between the
two pulses, shown for τ− = 12 ns in Fig. 4.6, in order to find the optimum phase ϕ−

rf. The
maximum probability which can be reached is P−

c (ϕ−
rf) ≈ 91%. We then record the Ramsey

fringes where we apply a first π/2 microwave pulse, the two σ− polarized radio-frequency
pulses and the second π/2 microwave pulse for two different values of the static electric
field in order to measure the accumulated quantum phase ∆Φ− (here again, we take into
account the phase shift ∆ϕmw), shown for τ− = 12 ns in Fig. 4.7a. Fig. 4.7b shows the

2We can use exactly the same experimental sequences except for the microwave pulses. Since the
microwave transitions now have polarizations of σ− instead of σ+, we have to adjust the duration of the
pulses to account for the polarization dependent standing wave structure.
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Figure 4.7: (a) Ramsey microwave fringes between |51c〉 and |49c〉 in two different electric
fields, Fup (black) and Fdown (red) separated by ∆F =73.2 mV/m. The σ− polarized radio-
frequency pulse pair lead to a phase shift of ∆Φ=∆ϕmw +∆Φ−. (b) The phase sensitivity
α− = ∆Φ−/∆F as a function of the interrogation time τ− (black) follows the linear fit
(black dashed). The same absolute value of the phase sensitivity of the σ+ polarized radio-
frequency pulses α+ = ∆Φ+/∆F for an interrogation time of τ+ = 0 ns (red dashed) is
attained for τ− = 12 ns.

phase sensitivity α− = ∆Φ−/∆F as a function of the interrogation time τ−. The phase
sensitivity α+ = ∆Φ+/∆F is met for τ− = 12 ns. We find a phase sensitivity for the σ−

polarized radio-frequency pulse pair of α− =∆Φ−/∆F = (0.0198±0.0002) rad(mV/m)−1.
The value is the average of several measurements performed over a few days.

4.3 AC electric field measurement

4.3.1 Sensitivity of the AC-electrometer

We finally record the Ramsey fringes corresponding to the full sequence, as depicted
in Fig 4.3, including the first π/2 microwave pulse, the σ+ followed by the σ− polarized
radio-frequency pulse pairs, and the second π/2 microwave pulse. The result is shown
in Fig. 4.8. The contrast of the fringes is C = (64.1±0.3)%. The phase of the fringes is
proportional to the difference in the electric field F (t+)−F (t−) applied at times t+ and t−.
By setting the phase of the interferometer at the point of maximum slope, the variation of
the probability is

δPq = C

2
α(F (t+)−F (t−))

and the sensitivity of the AC-electrometer is determined by (Eq. 3.11),

σ
exp
F = 1

Cα
.

We find a single-shot sensitivity of σexp
F = (79.4±0.9) mV/m. This sensitivity is -2.9 dB

below the standard quantum limitσ(1)
F,SQL = 111.5 mV/m calculated for the whole duration
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Figure 4.8: Ramsey fringes with the σ+ and σ− radio-frequency pulse pairs at t+ = 13.4 µs
and t− = 22.4 µs respectively, with interrogations times of τ+ = 0 ns and τ− = 12 ns.

of the pulse pair of t = 2t−rf +τ− = 206 ns. The Heisenberg limit is σ(1)
F,HL = 15.8 mV/m. The

atom acts as an electrometer that is sensitive to AC variations of the electric field beyond
the standard quantum limit.

4.3.2 High frequency bandwidth measurement

In addition to the sensitivity, it is important to assess the bandwidth of our AC-electrometer
as this determines the spectrum of the noise that the electrometer is sensitive to. The
electrometer is by construction insensitive to low-frequency variations of the electric
field. However, the value of the low cut-off frequency can be reduced by increasing the
time delay T = t−− t+ between the two pairs of radio-frequency pulses (until the atom
exits the electrode structure). This limitation is purely technical and could be avoided
using stationary atoms [113–116]. The high frequency bandwidth is determined by the
duration of the pair of radio-frequency pulses, which in our case is 204 ns for the first
radio-frequency pair or 206 ns for the second radio-frequency pair. We thus expect to be
able to measure frequencies up to a few MHz.

4.3.2.a Time response of the AC-electrometer

To characterize the bandwidth, we measure the response of the AC-electrometer to a step
of electric field, as sketched in Fig. 4.9.

First, we record Ramsey fringes as a function of the microwave frequency at a constant
electric field, shown in Fig. 4.10a. We set the frequency of the microwave generator to be
at the point of maximum slope and use the auxiliary AWG to generate a small additional
time varying electric field ∆F (t ). We choose for ∆F (t ) a pair of electric field pulses with a
duration of 1 µs, edge times of 100 ns, starting times separated by 8.5 µs, and an electric
field amplitude step of∆F = 36.6 mV/m. The signal is triggered by an independent digital
pulse. By varying the time at which the trigger pulse is sent, we can vary the time at which
the pulses occur, and the radio-frequency pulses can sample the time varying electric
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Figure 4.9: The experimental sequence of the bandwidth assessment with the first (σ+

polarized) radio-frequency pulse pair (blue) and the second (σ− polarized) radio-frequency
pulse pair (orange). The electric field waveform (red) consists in two pulses of 1 µs pulse
width whose starting time is separated by 8.5 µs. This waveform is scanned through the
radio-frequency pulse pairs separated by 9 µs.

field at different times, as shown in Fig. 4.9. The trigger of the AWG is scanned over 3 µs.
The corresponding measured probability as a function of the trigger delay is shown in
Fig. 4.10b.

Since the microwave is chosen to be at the point of maximum slope of the interference
signal, shown in Fig. 4.10a, the probability, given by

P ′
q = P0 + C

2
sin(∆Φ++∆Φ−),

becomes, in the limit of small total accumulated phases (∆Φ++∆Φ−) ≈ 0,

P ′
q = P0 + C

2
∆Φ++ C

2
∆Φ−,

where ∆Φ± are the additional accumulated quantum phases during the σ± pulses due to
the electric field steps.

Far from the transitory regimes, the probability is given by

P ′
q = P0 + C

2
α(F (t+)−F (t−)) = P0 +G0(F (t+)−F (t−)),

where G0 =C /(2α) is the "DC" response of the electrometer.

We observe different regimes in Fig. 4.10b, depicted in Fig. 4.11:

• Both radio-frequency pulse pairs happen when the electric field is Fdown (DD in
Fig. 4.11).3 The probability P ′

q remains at the inflection point of the Ramsey fringes,
up to 12.3 µs trigger delay in Fig. 4.10b.

• The first radio-frequency pulse pair happens during the first electric field pulse
with Fup (UD). The probability P ′

q increases proportional to ∆Φ+ =α+∆F between
12.4 µs and 12.8 µs.

3DD stands for Fdown for the first radio-frequency pulse pair and Fdown for the second radio-frequency
pulse pair, DU for Fdown for the first radio-frequency pulse pair and Fup for the second radio-frequency
pulse pair, etc.
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Figure 4.10: (a) Ramsey fringes in the electric field Fdown (DD). The green dashed line
indicates the phase chosen to record the bandwidth measurement. (b) The probability P ′

q
to find the atom in the |49c〉 state is plotted as a function of the trigger delay of the AWG.
The dashed line correspond to the numerical simulation of the bandwidth experiment for
a pair of perfect square electric field pulses (blue: only σ+ polarized radio-frequency pulse
pair, orange: only σ− polarized radio-frequency pulse pair, black: both). While for the first
pair of radio-frequency pulses with phase sensitivity α+ > 0 the measured probability is
increased in a higher electric field (blue shaded area), for the second pair of radio-frequency
pulses with phase sensitivity α− < 0, the probability is decreased (orange shaded area). The
axis on the right corresponds to the electric field deduced from the probability P ′

q using
∆F = (P ′

q −P0)/(|α|C /2).
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Figure 4.11: The electric field pulses are moved through the two pairs of radio-frequency
pulses, σ+ (blue) and σ− polarized (orange). Depending on the trigger time of the AWG
generating the electric field pulses, we pass through the following regimes: DD: first radio-
frequency pulse pair in Fdown, second pair in Fdown (first line), UD: first pair in Fup, second
pair in Fdown (second line), UU (third line), DU (fourth line) and back to DD (fifth line).
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• The second radio-frequency pulse pair happens during the second electric field
pulse, while the first radio-frequency pulse happens still during the first electric
field pulse (UU). The probability P ′

q decreases proportional to ∆Φ− =α−∆F and
the two phase shifts, ∆Φ− and ∆Φ+ cancel each other between 13.0 µs and 13.3 µs.
The fact that the probability P ′

q is exactly the same as in the DD-regime, shows that
the phase sensitivities α+ and α− are very well adjusted.

• The first radio-frequency pulse pair does no longer happen during the first electric
field pulse, while the second radio-frequency pulse pair still happens during the
second electric field pulse (DU). The probability P ′

q decreases proportionally to
∆Φ− =α−∆F between 13.4 µs and 13.8 µs.

• The second radio-frequency pulse pair does no longer happen during the second
electric field pulse (DD) and the probability P ′

q returns to its initial value of the first
regime at the inflection point from 14.0 µs onwards.

To explain the transitory regimes we numerically simulate ∆Φ+ and ∆Φ−. We take into
account the fitted Rabi frequencies, radio-frequency pulse duration and the interrogation
times for the σ+ and the σ− pulse pairs. However, in the simulation we do not take into
account the 100 ns edge time of the electric field pulses, but use an infinitely steep slope.
The only free parameter to fit the numerical simulation to the experimental data is the
contrast C ≈ 63%. The measured data and the simulation are in good agreement. We see
that the rise time of the experimental signal is in the order of ∼100 ns, which sets already
a lower bound on the cut-off frequency. However, this measurement is limited by the
edge time of the electric field pulses. To go beyond, we need to look at the response of the
AC-electrometer to an electric field pulses with sharper edges. Unfortunately, we observe
that with shorter edge times we excite a resonance of the electric circuit that drive the
electrode C1.

4.3.2.b Time and frequency response of the electric circuit

In the previous section, we apply electric field pulses with edge times of 100 ns making it
difficult to distinguish the contributions to the rise time of ∆Φ due to the bandwidth of
the AC-electrometer and due to the edge time of the electric field pulses.

However, when applying an electric field waveform with a shorter edge time, we
observe on the oscilloscope oscillations with a frequency of about 8 MHz. Fig. 4.12
presents the voltage on the electrode C1 as recorded on the oscilloscope when we apply
an electric field pulse of 1 µs duration with different edge times. For the shortest possible
edge time of 5 ns, we see very strong oscillations. For an edge time of 70 ns the oscillations
are still visible, and for 100 ns edge time they start to vanish.

Fig. 4.13a shows the Fourier transform h̃(ν) of the oscilloscope signal of the 5 ns edge
time pulse, as well as the Fourier transform f̃ (ν) of a perfect square pulse of 1 µs pulse
duration. We observe the characteristic shape of the Fourier transform of the square
pulse, the normalized sinc function, with vanishing frequency components at multiples
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Figure 4.12: The response of the experiment to different electric field steps of 1 µs pulse
duration with different edge times of 5 ns (black), 70 ns (red) and 100 ns (blue). The trigger
signal is sent at 11.5 µs.

of 1 MHz, being the inverse of the electric field pulse duration. The Fourier transform h̃(ν)
also vanishes every 1 MHz, but we see that there are additional resonances. We observe a
clear resonance at about νres ≈ 8 MHz as well as several resonances at higher frequencies
around ∼25 MHz, ∼43 MHz, ∼60 MHz etc. In order to extract the frequency response of
the system, we can simply divide the Fourier transform of the output, h̃(ν), by the Fourier
transform of the input, f̃ (ν). The result is shown in Fig. 4.13b.4

To confirm this measurement, we use the auxiliary AWG to apply sine-shaped wave-
forms of different frequencies and record the response of the plane electrode C1 with the
oscilloscope (see Fig. 3.8 for the electric circuit). Fig. 4.13b shows the amplitude of the
signal on the oscilloscope normalized by the amplitude of the signal generated by the
AWG (divided by the factor 5.1 ·10−4 that takes into account the voltage divider created by
the 100 kΩ resistor at the output of the AWG, described in Sec. 3.2.4). We recover the ratio
of the Fourier transform and again see a resonance in the response of the experiment at
around νres ≈ 8 MHz.

4.3.2.c Frequency response of the AC-electrometer

We record the response of the electrometer to a sinusoidal variation of the electric field.
This allows us to compensate for the resonance of the plane electrode driving circuit in
order to get the response of the AC-electrometer.

Instead of a time response of the AC-electrometer to a sudden change of the electric
field, discussed at the beginning of this section, we now investigate the response to a
sine-shaped variation of the electric field. This allows us to measure directly the response
in the frequency domain.

4In Fig. 4.13b, we removed all points for which the Fourier transform of the input, f̃ (ν), lies below a
certain threshold (in our case 1 ·10−6) since they correspond to points for which we effectively divide a very
small number by zero.
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Figure 4.13: (a) Fourier transform f̃ of a perfect 1 µs square signal (black) and h̃ of the
oscilloscope trace for the pulse with 5 ns edge time (see Fig. 4.12 for time response) (red). (b)
The frequency response is calculated from h̃/ f̃ (red). It is compared to a direct recording of
the response of the electric circuit at different fixed frequencies (black).

Frf 

Faux 

𝑡 
𝑡𝑡𝑟𝑖𝑔 

Figure 4.14: The experimental sequence to measure the bandwidth of the AC-electrometer.
A sine-shaped waveform is moved through the second radio-frequency pulse pair at t− =
t++9 µs while the first radio-frequency pulse pair at t+ = 13.4 µs is at a constant electric
field. This allows us to measure the response of the σ− polarized radio-frequency pulse pair
in the frequency domain.

In order to measure the frequency response of the AC-electrometer and to deduce its
cut-off frequency, we now use a sequence sketched in Fig. 4.14. We apply a flat electric
field at time t+, when the first (σ+ polarized) radio-frequency pulse pair is applied,
followed by several oscillations of the electric field at a given frequency ν, triggered by
an independent digital pulse at time ttrig. By scanning the time of the trigger pulse with
respect to the time t−, we vary the phase of the sinusoidal oscillation sampled by the
second (σ− polarized) radio-frequency pulse pair.

First, we record Ramsey fringes with both radio-frequency pulse pairs applied, but
without a modulation in the electric field, in order to set the phase of the interferometer at
the point of maximum slope, see Fig. 4.15a. At this point, the variation of the probability
P ′

q is directly proportional to the phase ∆Φ−. Fig. 4.15b presents two signals of the
recorded probability P ′

q as a function of the time of ttrig for two different frequencies ν
of the applied electric field oscillations. For each value of ν we fit the contrast of the
oscillations, δP (ν), shown in Fig. 4.16a as a function of the frequency ν.

The amplitude of Fig. 4.15b is the product of the response of the electrometer at a
given frequency, G(ν), and the amplitude of the electric field δF (ν) that we apply. This
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Figure 4.15: (a) Ramsey fringes (plotted as the P ′
q to find the atom in the |49c〉 state) in

the electric field F0 (δF = 0). The relative microwave phase is chosen to be at the point
of maximum slope (green dashed line). (b) The probability P ′

q is measured for different
sine-periods, here 0.12 µs (8.33 MHz, black) and 0.35 µs (2.86 MHz, red), as a function of
the trigger time of the AWG. The 8.33 MHz signal is at the limit of the sampling rate that we
can achieve with our experiment control hardware, forcing us to measure the oscillations
stroboscopically. The amplitude of the sine-wave generated by the AWG is Vout = 1.02 mV.

leads to a frequency response

G(ν) = δP (ν)

δF (ν)
.

The amplitude δF (ν) is calculated using the frequency response of the electric circuit
driving the electrode C1, which is measured in the previous section (see Fig. 4.13b).
For low frequencies ν, we expect that the frequency response follows G(ν) ≈G0, where
G0 =C /(2α) as introduced in the previous section.

Fig 4.16b shows the normalized frequency response G(ν)/G0 of the AC-electrometer as
a function of the frequency of the electric field waveform. The frequency response of the
AC-electrometer is in good agreement with the numerical simulation of the experiment,
corresponding to a cut-off frequency of ∼5 MHz.

4.3.3 Charge correlation measurement

Up to here, we have considered the linear response of the electrometer, by setting the
phase of the interferometer at a point of maximum slope. In this section, we show that
by setting the phase of the interferometer at a point of minimum slope [4, 180], we can
access the correlation function of the electric field. This could be interesting for example
to observe the dynamics of a charge in a quantum dot [181–183].

We consider an electron placed at ∼95µm from the Rydberg atom. It creates an electric
field of ∆F ≈ 160 mV/m at the position of the atom. This corresponds to the electric field
difference that leads to a shift in the accumulated quantum phase of α∆F =π, shown in
Fig. 4.17a. If the electron is not present, the electric field seen by the atom is Fdown. If
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Figure 4.16: (a) The contrast δP (ν) of the Ramsey fringes as a function of the frequency of
the applied sine-signal. The dashed line corresponds to the contrast of the Ramsey fringes
in Fig. 4.15a. The amplitude of the sine-wave generated by the AWG is Vout = 1.02 mV.
(b) The frequency response of the AC-electrometer G(ν)/G0 (blue points). Theblue line
corresponds to the frequency response of the σ− polarized radio-frequency pulse pair
simulated numerically.

the electron is present, the electric field is Fup = Fdown +∆F . Measuring the average value
of the electric field only gives the probability of the presence of the electron. To access
the dynamics [134, 135], we need to measure the correlation function 〈Σt+Σt−〉 where
Σt =±1 depending whether the electron is present or not at t .

Fig. 4.17b presents the result of an experiment which simulates the measurement of
the correlation of a presence of a charge. The sequence is similar to the one presented in
Sec. 4.3.2.a, with the important difference that this time the phase of the interferometer
is set to a point of minimum slope of the probability P ′

q to find the atom in the |49c〉 state
for a constant electric field. We then scan the double electric field pulse, consisting in
two electric field pulses of 1 µs duration, starting time separated by 8.5 µs and amplitude
of ∆F ≈ 160 mV/m, across the two radio-frequency pulse pairs by changing the time ttrig

of the digital pulse that triggers the electric field pulses (similar to Fig. 4.9).

If we compare Fig. 4.10 to Fig. 4.17, we see that here, the probability P ′
q to find the

atom in the |49c〉 state is the same whether the interference fringes are shifted by +α∆F
(corresponding to the electric field pulse occurring during the first radio-frequency pulse
pair and not during the second, UD) or by −α∆F (corresponding to the electric field
pulse occurring during the second radio-frequency pulse pair and not during the first,
DU). Therefore, there are only two possible outcomes of the interferometer: either the
probability P ′

q is low (DD and UU) or high (DU and UD). If the variation of the electric
field is created by the presence or absence of a charge, the probability P ′

q is directly related
to Σ+

t Σ
−
t . In the case where α∆F = π, the atom exits the interferometer mostly in the

|49c〉 state if Σt+Σt−=+1 and mostly in the |51c〉 state if Σt+Σt−=−1. This allows us to
measure the correlation function of the presence of the charge at times t+ and t− with a
very high signal to noise ratio.
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Figure 4.17: (a) Ramsey fringes for DD (both radio-frequency pairs in Fdown) (black) and UD
(first radio-frequency pair in Fup, second in Fdown) (red) with ∆F = 160 mV/m matching
exactly a π phase shift. The relative microwave frequency is chosen to be in one of the
extrema of the fringes (green). (b) The probability to detect the atom in the |51c〉 state (blue)
and in the |49c〉 state (orange), together with the sum (hollow black) and the predicted
behaviour (dashed). The measured probabilities do not add up to 100% but only to 90%.
This is mainly due to the reduced probability to return to the |51c〉 state after the two σ+

and the two σ− radio-frequency pulse pairs (see Figs. 4.4 and 4.6).

4.4 Noise correlation function measurement

So far we have used our electrometer to detect deterministic electric field signals syn-
chronized with the experiment. However, if we want to demonstrate that the atom can be
used as an electrometer to characterize other condensed matter devices, we need to be
able to measure phenomena that are not synchronous with the experiment.

In this section, we show how it is possible to use our experiment to measure the time
correlation of the electric field in order to characterize the electric field noise, or detect
asynchronous deterministic variations of the electric field.

4.4.1 Theory of noise measurement

The probability to return to the initial |51c〉 state is given by Eq. 4.1 as

Pq = Pq (ϕ+
rf,ϕ

−
rf,ϕmw) = 1

2
+ C0

2
cos(αF (t+)−αF (t−)−ϕmw),

where F (t±) is the electric field when the σ± polarized radio-frequency pulse pairs are
applied at time t±. We assume that the phase sensitivities are equal for both radio-
frequency pulse pairs, α+ =−α− =α and where C0 is the intrinsic contrast of the Ramsey
fringes. If there is electric field noise δF (t ) and the electric field is F (t ) = F0 +δF (t ) with
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〈δF (t )〉 = 0, then the observed probability is the average

Pq =
〈

1

2
+ C0

2
cos(αF (t+)+αF (t−)−ϕmw)

〉
= 1

2
+ C0

2

〈
ℜ

(
e i (α(δF (t+)−δF (t−))e−iϕmw

)〉
= 1

2
+ C0

2
ℜ

(〈
e i (α(δF (t+)−δF (t−))

〉
e−iϕmw

)
.

We define〈
e i (α(δF (t+)−δF (t−))

〉
=Cr e iΦC ,

introducing the phase ΦC and the contrast reduction Cr of the Ramsey fringes. The
probability to return to the circular state is now given by

Pq = 1

2
+ C0Cr

2
cos(ΦC −ϕmw),

where

Cr =
∣∣∣〈e i (α(δF (t+)−δF (t−))

〉∣∣∣= ∣∣∣〈e iδΦ
〉∣∣∣ , (4.3)

which depends on the difference in the electric field fluctuations at times t+ and t−

leading to a phase noise δΦ=α(δF (t+)−δF (t−)).

4.4.1.a Taylor expansion of a stationary random noise

If the differential phase variations are small, δΦ¿ 1, the contrast reduction can be
expanded to second order in δΦ as

Cr ≈
∣∣∣∣1+ i 〈δΦ〉− 1

2

〈
δΦ2〉∣∣∣∣ ,

where the term i 〈δΦ〉 vanishes since 〈δF 〉 = 0 making 〈δΦ〉 = 〈α(δF (t+)−δF (t−))〉 = 0
and the above expression becomes

Cr ≈ 1− 1

2
α2

〈(
δF (t+)−δF (t−)

)2
〉

(4.4)

= 1− 1

2
α2 (〈

δF (t+)2〉+〈
δF (t−)2〉−2

〈
δF (t+)δF (t−)

〉)
,

where 〈δF (t+)2〉 and 〈δF (t−)2〉 take into account the noise at times t+ and t− and where
〈δF (t+)δF (t−)〉 accounts for the correlations of the noise between times t+ and t−. Ex-
pansions to higher order can be found in Appendix C.

Since the electric field fluctuations are stationary, the mean noise measured at two
different times are the same, 〈δF (t+)2〉 = 〈δF (t−)2〉, and the contrast in terms of electric
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field fluctuations becomes

Cr ≈ 1−α2 (〈
δF (t+)2〉−〈

δF (t+)δF (t−)
〉)

.

In the case of uncorrelated electric field fluctuations at t+ and t−, the correlation term
can be separated, 〈δF (t+)δF (t−)〉 = 〈δF (t+)〉〈δF (t−)〉 = 0, and vanishes, leading to

Cr ≈ 1−α2〈δF (t+)2〉. (4.5)

4.4.1.b Stationary uncorrelated Gaussian random noise

In most cases, the noise distribution is Gaussian. It is then possible to calculate the exact
expression of the contrast reduction Cr . The probability density for the electric field
fluctuation δF (t ) is given by

S [δF (t ) = δF ] = 1

σF
p

2π
e
− δF (t )2

2σ2
F ,

which is the Gaussian probability density with average value 〈δF 〉 = 0 and standard
deviation σF . The probability densities for δF (t+) and δF (t−) have the same standard
deviation since the electric field fluctuations are assumed to be stationary.

The contrast reduction of the Ramsey fringes (Eq. 4.3) is now found by integrating over
the electric field fluctuations,

Cr =
∣∣∣〈e iα(δF (t+)−δF (t−))

〉∣∣∣
=

∣∣∣∣∫ ∫
e iα(δF (t+)−δF (t−))S[δF (t+) = δF+,δF (t−) = δF−]d(δF+)d(δF−)

∣∣∣∣ . (4.6)

Since we assume uncorrelated noise or a delay between the times t+ and t− larger
than the correlation time tcorr, we can separated the Gaussian distribution

S[δF (t+) = δF+,δF (t−) = δF−] = S[δF (t+) = δF+] S[δF (t−) = δF−]

and we can treat the two integrals independently. We use∫
e iαδF (t ) 1

σF
p

2π
exp(−δF 2

2σ2
F

)d(δF ) = e− 1
2α

2σ2
F

and find

Cr = e−α2σ2
F . (4.7)
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4.4.1.c Stationary correlated Gaussian random noise

The calculation can be generalized to the case where the noise is correlated, but the
probability density S[δF (t+)−δF (t−)] of the difference between the noise at t+ and t−

remains Gaussian. This means it is still possible to calculate the integral in Eq. 4.6. We
find

Cr = e− 1
2α

2〈(δF (t+)−δF (t−))2〉 = e−α2(〈δF (t+)2〉−〈δF (t+)δF (t−)〉).

4.4.2 Noise measurement

To demonstrate that the contrast of the fringes can give access to the correlation function
of the electric field noise, we have recorded Ramsey fringes in the presence of a well
known artificial noise. We measure the contrast of the Ramsey fringes as a function of the
standard deviation σF of artificially applied electric field fluctuations. The experimental
sequence is sketched in Fig. 4.18. As before we have a first radio-frequency pulse pair at
time t+ which is σ+ polarized and a second at t− = t++9 µs which is σ− polarized.

Frf 

Faux 

𝑡 

Figure 4.18: The experimental sequence to measure the contrast of the Ramsey fringes
with double radio-frequency pulse pair (blue and orange) as a function of the standard
deviation of the applied electric field fluctuations (red).

4.4.2.a Characteristics of the artificial electric field noise

We programme a sequence of artificial noise applied by the auxiliary AWG that is con-
nected to the plane electrodes through the 100 kΩ resistor (see Fig. 3.8). The sequence is
a waveform of 217 = 131072 points that is run at a 100 MSample/s rate, corresponding
to a total duration of ∼1.3 ms. The waveform is run continuously in a loop. Since the
sequence is much longer than the duration of the experimental sequence of 311 µs and
its duration is not a multiple of the latter, the radio-frequency pulse pairs will happen at
random times during the noise sequence as we repeat the experiment, and will eventually
explore the full noise sequence.

To create the sequence, we first generate 217 values y0(i ) randomly chosen with a
Gaussian distribution. We then apply a numerical low-pass filter with a time constant of
tcorr = 1.5 µs to generate the sequence y(i ) with

y(i ) =
131071∑

j=0
e− j /150 y0(i − j )
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Figure 4.19: (a) Noise sequence with a numerical low-pass filter with time constant of 1.5µs.
(b) Histogram of the probability to find an electric field fluctuation value δF (histogram)
with Gaussian fit (red) yielding a variance of σF = 47.787 mV/m.
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Figure 4.20: The correlation function calculated for the generated electric field noise with
tcorr = 1.5 µs as a function of the delay T (black) follows the theoretical behaviour e−T /tcorr

(red). The difference is due to the finite length of the noise sequence.

taking y0(i ) = y0(i + 131072) when i < 0 since the sequence is played in a loop. This
transforms the initial Gaussian white noise into a signal with an exponentially decaying
correlation. We then convert this signal into a 16-bit digital waveform by scaling the
sequence so that the largest value |y(i )| is 215. After loading the waveform in the AWG
memory, we can choose the amplitude with which the AWG runs the sequence.

The electric field noise sequence for the maximum amplitude of the AWG is shown
in Fig. 4.19a as a function of time. Fig. 4.19b shows the probability to find a certain
value of the electric field fluctuation δF . The Gaussian fit yields a standard deviation of
σF = 47.8 mV/m.

Fig. 4.20 presents the autocorrelation function GF (T ) = 〈F (t+)F (t++T )〉/〈F (t+)2〉 as
a function of the delay T . For short delay T ≈ 0, the correlation function GF (0) = 1. It
decreases for increasing delay with a time constant tcorr = 1.5 µs. The correlation function
calculated for the actual noise follows the theoretical value e−t/tcorr . The difference is due
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to the finite length of the noise sequence.

We create a second artificial noise sequence with a correlation time constant of tcorr =
0.5 µs with the same techniques as described here.

Finally, we create a sequence which simulates white noise. To this end, we generate 217

random values and average them on a sliding window with a length corresponding to
200 ns. This means that the sequence has no correlations for T > 200 ns. However,
this averaging filters out frequency components above 5 MHz to assure that there is no
electric field noise component at a frequency of the resonance of the cryostat at ∼8 MHz,
discussed in Sec. 4.3.2.

4.4.2.b Measurement of the artificial electric field noise

We record the Ramsey fringes for the noise with tcorr = 1.5 µs applied with different
amplitudes, corresponding to different values of σF . The radio-frequency pulses are
applied at t+ and t− such that T = t−− t+ = 9 µs. At this delay, no correlation is observed
in Fig. 4.20.

Fig. 4.21 shows the Ramsey fringes for different amplitudes of the applied artificial
noise. The fitted contrast is presented in Fig. 4.22a as a function of the standard deviation
σF of the noise. For small values of σF the contrast is high and follows the second-order
approximation C ∝ 1−α2σ2

F (Eq. 4.5). As σF increases the second order approximation
is not valid any more and the contrast follows C ∝ exp(−α2σ2

F ) (Eq. 4.7).
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Figure 4.21: Ramsey fringes with radio-frequency pulse with delay T = 9 µs for differ-
ent standard deviations σF of the applied electric field noise: σF = 47.8 mV/m (black),
36.1 mV/m (red), 24.1 mV/m (green), 12.0 mV/m (blue), 0 mV/m (cyan).

Since 〈δF 〉 = 0, the phase of the fringes does not move. It is therefore as well possible
to deduce the standard deviation of the noise σF by fixing the phase of the interferometer
at a point at minimum slope. Fig. 4.22b shows the recorded probability Pq for different
values of σF .
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Figure 4.22: (a) Contrast of the Ramsey fringes of Fig. 4.21 (same colours) as a function
of the amplitude of the applied artificial noise, corresponding to the standard deviation
σF . The second order approximation C =C0(1−α2σ2

F ) holds for small σF (green dashed).
For larger σF we have to use C =C0 exp(−α2σ2

F ) (black dashed). C0 is the contrast without
applied noise. (b) The probability at the fixed microwave frequency at a minimum of
Ramsey fringes (indicated as green dashed line in Fig. 4.21) as a function of σF .

4.4.3 Measure the correlation of noise

The correlation function of the applied electric field noise is accessible by changing the
delay T between the radio-frequency pulse pairs. However, we have to ensure that the
phase sensitivity α− of the pair of radio-frequency pulses which we move stays constant
to achieve the best result. This is not trivial as the atoms fly at about 250 m/s through
the experimental set-up meaning that the distance between the atom and the electrodes
that create the radio-frequency field changes. We need to assure that the polarization is
optimized at each position and that the amplitude of the radio-frequency field seen by
the atoms is constant.

4.4.3.a Calibration of time varying radio-frequency pulses

The second radio-frequency pulse pair is applied at different times from t− = 11.4 µs to
22.4 µs after the initial laser pulse at 0 µs. A range of 11 µs corresponds to a distance of
2.8 mm at the speed of the atom. This length is not negligible with respect to the distance
from the center of the experimental zone to the ring electrodes of 25 mm. Therefore, the
polarization of the σ− polarized radio-frequency field is optimized for each time t−. This
is done by varying the phase of the signal applied on electrode E4, while the phase of the
signal applied on electrode E3 is fixed, in order to find the relative phase that optimizes
the σ− polarization, for each time t− corresponding to each position of the atom. The
optimum phase of the signal applied on electrode E4 as a function of the time t− is shown
in Fig. 4.23.

The amplitude of the radio-frequency field seen by the atoms increases as they move
towards the electrodes. We therefore need to reduce the amplitude of the radio-frequency
drive to keep the Rabi frequencyΩ−

rf at a constant value while varying t−. To that end, we
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Figure 4.23: Variation of the phase of the radio-frequency signal applied on electrode E4
that optimizes the σ− polarized radio-frequency field as a function of the time t−. The
dashed line is the linear fit.

first record a resonant Rabi oscillation in the n = 51 manifold: we measure the probability
P (51c) to find the atom in the |51c〉 state as a function of the duration t−rf of aσ− polarized
radio-frequency pulse for the correct Rabi frequencyΩ−

rf, shown in Fig. 4.24a. We observe
that the atom returns to the |51c〉 state after a radio-frequency pulse duration of t−rf,ref =
237 ns.
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Figure 4.24: (a) Resonant Rabi oscillation in the n = 51 manifold for a σ− polarized radio-
frequency field. The probability is plotted as a function of the radio-frequency duration.
The maximum return is fitted (black dashed) and the maximum is indicated at 237 ns
(green dashed). (b) The probability to return to the initial |51c〉 state after a σ− polarized
radio-frequency pulse of duration t−rf = 237 ns at different times t− = 11.4 µs (black), 12.4 µs
(red), 13.4 µs (green), 13.8 µs (grey), 14.4 µs (blue), 15.4 µs (cyan), 16.4 µs (pink), 17.4 µs
(orange), 19.4 µs (navy), 22.4 µs (violet).

For each value of t−, we record the probability to return to the |51c〉 state after a pulse
of duration trf,ref as a function of the amplitude of the radio-frequency signal sent to
electrodes E3 and E4. This amplitude is measured on the oscilloscope which monitors
the radio-frequency signal reflected back from the cryostat (see Fig. 2.11 for the radio-
frequency circuit). The result of this experiment is shown in Fig. 4.24b. For each time
t−, we observe a peak in the probability P (51c) as a function of the radio-frequency
signal amplitude. The maximum for each time t− occurs when the amplitude of the
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radio-frequency drive is such that the atom sees a radio-frequency field with correct Rabi
frequency Ω−

rf. We observe that when t− is larger, we need to apply a radio-frequency
signal with smaller amplitude on the electrodes to get the same Rabi frequency since the
atoms are closer to the field-creating electrodes.

Finally, we verified that the Ramsey fringes for theσ− polarized radio-frequency pulses
have the same phase sensitivity over time t−. Fig. 4.25 shows the phase sensitivity α− as a
function of the time t−. The results are constant within 3% and all very close to the value
of the phase sensitivity α+ averaged over several days.
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Figure 4.25: The phase sensitivity α− (black) plotted as a function of the moment when
the σ− radio-frequency pulse pair is applied compared to the phase sensitivity α+ (red) at
t+ = 13.4 µs averaged over several days.

4.4.3.b Measure the correlation of a random Gaussian noise

We now move on to measure the correlation function of the noise we artificially apply. The
experimental sequence is sketched in Fig. 4.26. The σ+ polarized pair of radio-frequency
pulses happen at 13.4 µs after the laser pulse. The σ− polarized pair of radio-frequency
pulses is applied for various t− > t+ but also for two values of t− < t+. For each value of
t− we record Ramsey fringes and fit their contrast.

The results are shown in Fig. 4.27. The contrast of the Ramsey fringes is plotted as a
function of the delay between the two pairs of radio-frequency pulses T = t−− t+. In the

Frf 
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𝑡 

Figure 4.26: The experimental sequence to measure the contrast of the Ramsey fringes with
double radio-frequency pulse pair (blue and orange) in the presence of applied electric
field fluctuations (red) as a function of the delay between the σ+ (blue) and the σ− (orange)
polarized pulse pair.
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Figure 4.27: The contrast of the Ramsey fringes as a function of the delay between the two
radio-frequency pulse pairs for no applied electric field fluctuations (black) and applied
electric field fluctuations with tcorr = 1.5 µs (red) for t+ = 13.4 µs (full dots) and t+ = 15.4 µs
(hollow dots). The calculated contrast from the applied noise (red line) is normalized by
the mean contrast without electric field fluctuations (dashed line).

case where no artificial electric field noise is applied the contrast is constant around an
average value of C0 = (63.5±0.3)%. When the artificial electric field noise with correlation
time constant tcorr = 1.5 µs is applied, the contrast depends on the delay T between
the two radio-frequency pulse pairs. Here, we set the amplitude of the AWG in order to
generate a noise with standard deviation σF = 36.4 mV/m. For very short delays T the
contrast is high, since the noise at times t+ and t− is highly correlated. For increasing
delay T the contrast decreases as the correlation of the artificial noise decreases. Since
the correlation function is symmetric around T = 0 µs, the contrast for values with t− < t+

behave the same way as for t− > t+.

To exclude any systematic effects associated to t−, we repeated the measurement for
t ′+ = t++2 µs = 15.4 µs and two values of t−. We see in Fig. 4.27 that the behaviour of
the contrast does not depend on the absolute value of t+, but that the signal we measure
does only depend on the delay between the radio-frequency pulse pairs. The measured
contrast fits extremely well with the value of the simulation calculated from the noise and
the intrinsic contrast C0 deduced from the measurement without applied noise.

Fig. 4.28 presents, in addition to the curves presented in Fig. 4.27, the contrast of the
Ramsey fringes in the presence of the noise with correlation time constant tcorr = 0.5 µs
as a function of the delay T between the two radio-frequency pulse pairs. Since the
correlation time constant is shorter, the contrast decreases faster than in the case of
tcorr = 1.5 µs. We also record the contrast for our artificial white noise with tstep = 200 ns.
Here, we see that the contrast we measure experimentally is systematically higher than
the one expected from our numerical model. This is probably due to the high frequency
components close to ∼5 MHz of the noise which are not well seen by the interferometer.

122



4.4. Noise correlation function measurement

- 2 0 2 4 6 8 1 0
0 , 3

0 , 4

0 , 5

0 , 6

0 , 7  C o n t r a s t  n o  n o i s e
 C o n t r a s t  N o i s e 1 5 0
 C o n t r a s t  n o i s e 5 0
 C o n t r a s t  n o i s e 2 0  1 5 , 8 8
 C o n t r a s t  n o i s e 5 0  s + @ 1
 z e r o
 0 , 7 4 7 4 8
 N o i s e 1 5 0 - 1 5 V p p
 N o i s e 1 5 0 - 1 5 V p p
 N o i s e 5 0 - 1 6 , 2 7
 N o i s e 5 0 - 1 6 , 2 7
 N o i s e 2 0 - 1 5 , 8 8
 N o i s e 2 0 - 1 5 , 8 8

Co
ntr

as
t

T  ( µ s )
Figure 4.28: The contrast of the Ramsey fringes as a function of the distance between the two
radio-frequency pulse pairs for no applied electric field fluctuations (black) and applied
electric field fluctuations with tcorr = 1.5 µs (red), tcorr = 0.5 µs (green) and tstep = 0.2 µs
(blue) together with the corresponding calculated expected contrast.

4.4.3.c Detection of a hidden deterministic signal

The AC-electrometer can also be used to detect an underlying asynchronous signal by
measuring the correlation that this signal induces. To demonstrate this, we apply a
sinusoidal electric field without sending a trigger signal to the AWG that generates the
signal. Since the signal is not synchronized with the experimental sequence, measuring it
with a single radio-frequency pulse pair means that we would only see a global contrast
reduction. However, our correlation measurement method allows us to observe the
hidden sine-signal of the noise.

Fig. 4.29 presents the contrast of the Ramsey fringes when we apply a sine-signal
with Tsine = 4.45 µs period and standard deviation σF = 12.94 mV/m. In Fig. 4.22, pre-
sented above, we see that with this chosen variance we can safely use the second-order
approximation of the contrast in the presence of an electric field fluctuation (Eq. 4.4),

C ≈C0

(
1− 1

2
α2〈(δF (t+)−δF (t−))2〉

)
,

where C0 is the intrinsic contrast without artificial electric field noise. When the delay T
between the radio-frequency pulse pairs equal a multiple integer of the period of the sine-
signal, T = nTsine, the electric field at t+ and t− = t++nTsine are the same, so 〈δF (t+)〉 =
〈δF (t−+nTsine)〉, and the contrast is maximum with C =C0. This includes T = t−− t+ =
0 µs, for which the contrast is maximum for any correlated electric field fluctuation. For a
delay T of half-integer multiple of the sine signal, T = (

n + 1
2

)
Tsine, the electric field at t+

and t− = t++ (
n + 1

2

)
Tsine have opposite signs, 〈δF (t+)〉 =−〈

δF
(
t++ (

n + 1
2

)
Tsine

)〉
, and

the contrast is minimum with C =C0(1−2α2〈δF (t )2〉) =C0(1−2α2σ2
F ).

The experimental results are shown together with the expected contrast (see Fig. 4.29).
The expected contrast is calculated with C = C0

(
1−α2σ2

F (1− cos(2πT /Tsine)
)
, where
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Figure 4.29: The contrast of the Ramsey fringes as a function of the distance between the two
radio-frequency pulse pairs for a non-triggered sine-signal with 4.45 µs period (orange).
The expected behaviour of the contrast (orange line) corresponds qualitatively to the fitted
sine (dashed orange). The contrast for no applied electric field fluctuations (black) is shown
for comparison.

C0(1−α2σ2
F ) is the mean value around which the reduced contrast oscillates. When we

fit the recorded sine-signal, we find a period of Tsine = (4.67±0.10) µs and a standard
deviation of σF = (14.48±0.59) mV/m. These values do not correspond exactly to the
expected values, Tsine = 4.45 µs andσF = 12.94 mV/m, but show that we are able to clearly
resolve the sinusoidal period of the applied noise within 5% and its standard deviation
within 12%.

The AC-electrometer can resolve electric field fluctuation with a bandwidth up to
∼5 MHz limited by the duration of the single radio-frequency pulse pairs. After the
proof of principle in the last section, we now investigate the correlation time constant of
the intrinsic electric field fluctuations of the experiment. However, the contrast for no
applied electric field noise in Fig. 4.27 stays at a constant value when scanning the delay
T between the two pairs of radio-frequency pulses. In the next section we describe how it
is nevertheless possible to characterize the intrinsic noise of the experiment.

4.5 Characterization of the noise in the experiment

To measure the intrinsic noise of the experiment, we need to increase the sensitivity of the
electrometer. This can be achieved by increasing the delay τ between the radio-frequency
pulses of both pulse pairs, since the phase sensitivity scales with the latter. Unfortunately,
as we increase the delay τ, the contrast of the Ramsey fringes becomes more sensitive
to the inhomogeneity of the driving radio-frequency field. We were afraid [112] that
the inhomogeneity of the radio-frequency field created by only two electrodes would
not allow us to observe fringes with a good enough contrast at a longer interrogation
time. This is why we decided to characterize the intrinsic noise using a sequence derived
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from the echo-measurement presented in Sec. 3.4.5 Since this sequence only involves
σ+ polarized radio-frequency fields, this allows us to generate each pulse using four
electrodes. To increase the sensitivity we increase the interrogation time of both σ+

radio-frequency pulse pairs to τ51 = τ49 = 400 ns leading to increased phase sensitivities
of α51 ≈−α49 ≈ 0.113 rad/(mV/m).

The experimental sequence is sketched in Fig. 4.30. Both pairs of radio-frequency
pulses are σ+ polarized and generated by four electrodes. All radio-frequency pulses have
the same frequency ωrf = 2π ·230 MHz. The first radio-frequency pulse pair is resonant
with the lowest diagonal in the n = 51 manifold. The static electric field is then ramped
up so that the radio-frequency field is resonant with the lowest diagonal in the n = 49
manifold.
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Figure 4.30: The experimental sequence to measure the contrast of the Ramsey fringes with
double σ+ polarized radio-frequency pulse pair (blue) to obtain the intrinsic electric field
noise of the experiment. The intrinsic noise of the experiment is indicated as an electric
field fluctuation on the applied DC electric field.

However, since there is an electric field step of finite duration between the two radio-
frequency pulse pairs at t+51 and t+49 we cannot bring the pulses as close together as shown
in the previous part of this chapter. This limits the ability to measure the correlation
function for short delays.

Fig. 4.31a presents the contrast of the Ramsey fringes with the two radio-frequency
pulse pairs as a function of the delay T = t+49 − t+51 for two different values of t+51 = 13.4 µs
and t+51 = 15.4 µs. We see a first decrease in contrast which is the same for both values of
t+51. The second decrease in contrast, however, differs for the two curves. In fact, if we plot
the contrast as a function of the time of the second radio-frequency pulse pair t+49 instead
of the delay T , shown in Fig. 4.31b, we see that the second contrast reduction actually
happens at the same time t+49 > 19 µs. Fig. 4.31b also presents the contrast of the Ramsey
fringes when only the second pair of radio-frequency pulses is applied as a function of t+49.
We also observe a decrease of this contrast for t+49 > 19 µs. We thus believe that the second
decrease in contrast in Fig. 4.31a is not due to a variation in the correlation function of
the intrinsic noise, but rather due to an additional noise or imperfection occurring at
times t > 19 µs. This contrast reduction could be due, for example, to a degradation of
the polarization of the radio-frequency field. It could also be caused by the fact that the
electric field gradient is less compensated as the atom moves away from the center of the
electrode structure.

To find the correlation time constant tcorr of the intrinsic electric field noise of the

5In the case of two electrodes, the observed contrast is smaller than in the case of four electrodes, but
might have been enough to observe the intrinsic noise of the experiment.

125



Chapter 4. Correlation measurements

0 2 4 6 8 1 0 1 2
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

M o d e l G a u s s i a n N o i s e G a u s s F i l t e r  ( U s e r )
E q u a t i o n C 0 * e x p ( - 1 / 2 * ( 0 , 1 1 5 * 1 8 / 1 8 , 3 * s i g m a ) ^ 2 * 2 * ( 1 - e x p ( - ( x - x 0 ) ^ 2 / t c o r r ^

2 ) ) )
P l o t C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 1 , 9 C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 4 , 9

C 0 * 0 , 6 4 7 9 8  ±  0 , 0 3 1 0 6 0 , 6 4 7 9 8  ±  0 , 0 3 1 0 6
x 0 * 0  ±  0 0  ±  0
s i g m a * 7 , 4 7 8 3 9  ±  0 , 3 5 6 8 2 7 , 4 7 8 3 9  ±  0 , 3 5 6 8 2
t c o r r * 2 , 0 0 6 3 6  ±  0 , 2 5 9 9 2 , 0 0 6 3 6  ±  0 , 2 5 9 9
R e d u c e d  C h i - S q r * 9 , 8 4 6 3 8
R - S q u a r e ( C O D ) 0 , 9 6 5 2 9 0 , 9 1 4 6 8
R - S q u a r e ( C O D ) * 0 , 9 5 1 8 4
A d j .  R - S q u a r e * 0 , 9 3 8 0 8

 F i t  C u r v e  o f  C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 1 , 9
 F i t  C u r v e  o f  C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 4 , 9
 C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 1 , 9
 C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 4 , 9
 0 , 6 4 7 9 8 * e x p ( - 1 / 2 * ( 0 , 0 2 * 1 8 / 1 8 , 3 * 7 , 4 7 8 3 9 ) ^ 2 * 2 * ( 1 - e x p ( - ( x - 0 ) ^ 2 / 2 , 0 0 6 3 6 ^ 2 ) ) )
 C _ s i g m a = 0 , 3 1 6 8 1  a n d  C 0 = 0 , 6 4 7 9 8

Co
ntr

as
t

T  ( µ s )

(a)

1 4 1 6 1 8 2 0 2 2 2 4 2 6
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0
 C _ s i n g l e = 0 , 4 8 2 4
 C _ s i g m a = 0 , 3 1 6 8 1  a n d  C 0 = 0 , 6 4 7 9 8
 C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 1 , 9
 C o n t r a s t  5 1 + 4 9  -  T e k k i  @ 1 4 , 9
 C o n t r a s t  o n l y 4 9  -  T e k k i  @ 1 1 , 9

Co
ntr

as
t

t +
4 9  ( µ s )

(b)

Figure 4.31: (a) Contrast of the double σ+ radio-frequency Ramsey fringes as a function
of the delay T = t+49 − t+51 between the two radio-frequency pulse pairs for t+51 = 13.4 µs
(black) and t+51 = 15.4 µs (red). The contrast for short delays T can be fitted by the model
of a Gaussian noise with standard deviation σF = 7.48 mV/m (red/black line). The same
noise model with the same σF but with the phase sensitivity α= 0.0198 rad/(mV/m) for
τ= 0 ns shows that the contrast (cyan dashed) stays close to the initial contrast at T = 0
(black dashed). (b) Contrast of the double σ+ radio-frequency Ramsey fringes as a function
of the delay t+49 for t+51 = 13.4 µs (black) and t+51 = 15.4 µs (red). The contrast is reduced
from about t ≈ 6 µs onwards indicated by the contrast of the single σ+ fringes at t+49 (green)
which detaches from its expected value halfway between upper and lower bound of the fit
in (a).

experiment, we fit the contrast C (T ) with the following function

C (T ) ≈C0 exp
(
−α2σ2

F

(
1−e−T 2/t 2

corr

))
,

assuming a Gaussian noise with a Gaussian correlation function, and excluding points
that correspond to t+49 > 19 µs. We find that the intrinsic noise has a correlation time
constant of tcorr = (2.01±0.26) µs and a standard deviation of σF = (7.48±0.36) mV/m.

The value of σF is significantly smaller than σF = 12.01 mV/m, obtained from the
contrast reduction of the microwave fringes in Sec. 3.3.4. The reason may be the different
time scales in the noise correlation function. It is possible that there is a noise compo-
nent whose correlation time constant is so short that it cannot be measured with this
experiment. Or, on the contrary, that there are electric field fluctuations with timescales
much longer than 10 µs which lead to a decrease of the contrast of the fringes of a single
radio-frequency pulse pair, but are cancelled out by the echo measurement.

4.6 Discussion

The rich structure of the Rydberg atom allows us not only to measure very small electric
field changes but also the time correlation of the electric field. Using a combination of
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σ+ and σ− polarized radio-frequency field pulses, we are able to perform Ramsey fringes
whose phase is sensitive to the difference in the electric field amplitude at times t+ and
t−. This makes it possible to create an AC-electrometer able to measure time variations
of the electric field while at the same time cancelling the contribution of DC fluctuations
of the electric field.

If we set the phase of the interferometer at the maximum or minimum of the Ramsey
fringes, we can obtain a non-linear response which allows us to access the time correlation
of the electric field. This could be used for example to measure the correlation function
of the presence of a single charge in a mesoscopic device.

We also presented how we can use the contrast of the interference to deduce in-
formation about the time correlation of the electric field noise seen by the atom and
demonstrated this technique by characterizing an artificial electric field noise.

Finally, we used a similar method to characterize the correlation time of the noise in
our experiment and found a time constant of ∼2 µs. This correlation time constant of
2 µs is very promising for Rydberg quantum engineering experiments. Preparing complex
quantum states of the Rydberg atom often requires to transiently prepare a superposition
of states with very different polarizabilities whose relative phase is very sensitive to the
electric field noise. The relatively long correlation time of electric field fluctuations makes
it possible to compensate the accumulated phase shift by echo-π pulses which reverses
the decoherence process and eventually cancels it. This method is extensively used in the
next chapter.

127





Chapter 5

Quantum-enabled magnetometry

The superposition of two opposite circular Rydberg states is highly sensitive to variations
of the magnetic field, since the difference in the magnetic quantum number is in the
order of ∆m ∼ 100. At the same time, this quantum state is almost insensitive to electric
field fluctuations making it an ideal magnetic sensor.

The preparation of this large quantum state is complex, since we have to cross the
region of the Rydberg manifold with |m| < 3, where the energy difference between the
m-ladder states in the presence of the static electric field is highly irregular.

In this chapter we describe the preparation scheme of this large superposition (Sec. 5.1)
which consists of two steps: the crossing of the low-m region and the fast circularization
of the low-m state. We then show the sensitivity to magnetic field variations of the
superposition state (Sec. 5.2).

5.1 Preparation of the opposite circular superposition

5.1.1 General preparation scheme

The aim is to prepare a superposition between the two circular states |+52c〉 and |−52c〉,
states with opposite maximum magnetic quantum numbers. These states correspond to
the levels at the outermost tips of the manifold (see Fig. 1.11).

In order to prepare this superposition, we choose to prepare a superposition of oppo-
site m =+2 and m =−2 states of the lowest σ+ and σ− spin ladders, respectively, from
which the circularization can be achieved by a fast Rabi π pulse [176]. We decide to
prepare the positive circular state in the n = 52 manifold and the negative circular state
in the n = 50 manifold. By choosing two different manifolds, the σ+ polarized radio-
frequency field, resonant in the n = 52 manifold, and the σ− polarized radio-frequency
field, resonant in the n = 50 manifold, have different frequencies. Therefore, the σ−
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Figure 5.1: The involved levels and transitions in order to prepare a superposition of the
opposite circular states |+52c〉 and |−50c〉 are: (1) radio-frequency π/2 pulse from |52,+2〉
to |52,0′′〉, (2) two-photon microwave π pulse from |52,0′′〉 to |50,0′′〉, (3) radio-frequency
π pulse from |50,0′′〉 to |50,−2〉, (4) Rabi π pulse from |52,+2〉 to |+52c〉, (5) Rabi π pulse
from |50,−2〉 to |−50c〉. (6) By applying an additional microwave pulse resonant with the
|−50c〉− |−52c〉 transition, the atom can finally be excited in a superposition of opposite
circular states of the same manifold.

polarized radio-frequency field used to prepare the |−50c〉 state, does not affect the part
of the wave-function in the n = 52 manifold.

The preparation of a superposition between the |52,+2〉 and the |50,−2〉 states is not
trivial since the low lying m states have very different polarizabilities. The decoherence
of a superposition of states with different Stark shifts is very sensitive to fluctuations of
the electric field. The solution is therefore either to stay as much as possible in levels with
similar Stark shifts or to reach the final superposition of opposite circular states as fast
as possible. Once in the circular states, which are not shifted by the electric field in first
order, the superposition is almost insensitive to electric field fluctuations.

Radio-frequency pulses, with their large Rabi frequency, allow very fast transfers
between the low-m states. This is why we use mostly radio-frequency pulses and only one
microwave pulse to get from the |52,+2〉 to the |50,−2〉 state. Fig. 5.1 shows a sketched
level structure together with the involved microwave and radio-frequency transitions.
The transitions are labelled with a number corresponding to the order with which the
pulses are applied. The atom is initially in the state |52,+2〉. A first two-photon radio-
frequency π/2 pulse brings half of the population into the |52,0′′〉 state (1).1 The |52,0′′〉

1In this chapter "prime" and "second" refer to the different levels of a vertical m-ladder: the lowest level
of the m-ladder is denoted as |n,m〉, the second lowest as |n,m′〉, the third lowest as |n,m′′〉, etc.
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Figure 5.2: (a) The levels |52,+2〉 (black, thick), |52,+1′〉 (blue) and |52,0′′〉 (red) are in-
volved in the first radio-frequency pulse. The applied radio-frequency field (orange) is
polarized σ−. Each population is read out using microwave probe pulses that transfer the
states into another manifold (black arrows). (b) The probability to find the atom in |52,+2〉
(black), |52,+1′〉 (blue) and |52,0′′〉 (red) as a function of the radio-frequency duration.
The duration of the π/2 pulse of 38 ns is chosen by keeping in mind that the population
of the intermediate level should be zero after the radio-frequency pulse. The dotted lines
connect the experimental data points to guide the eye, the dashed blue line is a sine-fit of
the off-resonant oscillation in the population of the |52,+1′〉 state.

state is then transferred by a two-photon microwave π pulse into the |50,0′′〉 state in
the n = 50 manifold (2). A two-photon radio-frequency π pulse brings the population
into the |50,−2〉 state (3). At this point, the superposition of opposite m = ±2 states is
reached. In the next steps both parts of the wave-function are transferred from the m =±2
states to the respective circular states, |+52c〉 and |−50c〉, (4) and (5). To finally reach
a superposition of opposite circular states in the same manifold, another microwave π
pulse is applied to transfer the population from the |−50c〉 to the |−52c〉 state (6). In the
following, the steps involving radio-frequency pulses are discussed in detail.

Since the radio-frequency field has to be optimized at a given frequency, all σ+ polar-
ized radio-frequency pulses are at a frequency of 230 MHz, and all σ− polarized radio-
frequency pulses at 221.64 MHz. We tune the atom to be on resonance with the respective
radio-frequency field by changing the amplitude of the electric field that maintains the
quantization axis.

5.1.2 Preparation of the low-m superposition

The first radio-frequency pulse (1), polarized σ−, drives the two-photon transition from
the initial |52,+2〉 state to the |52,0′′〉 state. Fig. 5.2 shows the probability to find the
atom in the states |52,+2〉, |52,0′′〉, and the intermediate |52,+1′〉 state as a function of
the radio-frequency pulse duration. The applied radio-frequency field is polarized σ−

with a frequency of ω− = 2π ·221.64 MHz. The electric field is set to F1 = 138 V/m and
precisely fine tuned to maximizes the transfer into the |52,0′′〉 state. At this electric field,
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Figure 5.3: (a) The levels |50,0′′〉 (black, thick), |50,−1′〉 (blue) and |50,−2〉 (red) are in-
volved in the second radio-frequency pulse. The applied radio-frequency field (blue) is
polarized σ+. The population in the |52,+2〉 state (green) undergoes off-resonant Rabi
oscillations. The population is read out by microwave probe pulses to another manifold
(black arrows). (b) The probability of an atom to remain in the |52,+2〉 state (top) and
the population of the states |50,0′′〉 (black) and |50,−1′〉 (blue) as a function of the radio-
frequency duration (bottom). For technical reasons the value of the black and the blue
signal cannot be properly normalized. The curves shown are only proportional to the actual
population. This explains why the first point of the black curve is at ∼0.6.

the intermediate state, |52,+1′〉 is detuned from the two-photon transition frequency
of the |52,+2〉 to |52,0′′〉 state. However, the detuning is not completely negligible with
respect to the Rabi frequency, and we observe the off-resonant Rabi oscillations of the
population in the intermediate state as a function of the applied radio-frequency duration
shown in Fig. 5.2b. We choose for the π/2 pulse a duration that corresponds to an integer
number of periods of the |52,+1′〉 Rabi oscillation, to ensure that the population of the
intermediate level is zero after the radio-frequency pulse.

The electric field is changed and the microwave pulse (2) transfers the population of
the |52,0′′〉 to the |50,0′′〉 state by a two-photon π pulse with an efficiency in the order of
80%.

The electric field is then changed again, this time to F3 = 150 V/m so that the σ+ polar-
ized radio-frequency field (3) with frequency ω= 2π ·230 MHz becomes close to resonant
to the two-photon transition from |50,0′′〉 to |50,−2〉. Fig. 5.3 shows the populations of
the initial |50,0′′〉 and the intermediate |50,−1′〉 state as a function of the radio-frequency
pulse duration. We observe the transient population in the |50,−1′〉 state. Here again,
we need to choose a duration of the pulse that is an integer number of the off-resonant
Rabi oscillations. In addition, we see that the σ+ polarized field (at 230 MHz) is also
affecting the part of the wave-function that is left in the |52,+2〉 state, depicted in Fig. 5.3a.
At an electric field of 150 V/m, the frequency ωat of all the transitions m = 2 → 3 → ...
in the n = 52 manifold is in the order of 150 MHz. The 80 MHz detuning is not large
enough compared to the coupling due to the radio-frequency field to protect the part
of the wave-function in the n = 52 manifold, and the radio-frequency field also drives
off-resonant oscillations that take the population out of the |52,+2〉 level. We thus have
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to adapt the radio-frequency power to find a duration of the radio-frequency pulse that
corresponds to both an integer number of oscillations of the blue and the green signal in
Fig. 5.3b, near the duration of the π pulse of the |50,0′′〉→ |50,−2〉 transition.

5.1.3 Circularization to opposite circular states

5.1.3.a Circularization via multiple Rabi pulses

We first restrict the description to the circularization in the n = 52 manifold with a σ+

polarized radio-frequency field. The circularization with a resonant Rabi π pulse has the
advantage to be very fast. However, due to the non-hydrogen-like behaviour of the m = 0
and m = 1 states of the lowest diagonal, we know that the states with m = 2, m = 3 up to
the circular state behave like an angular momentum on a truncated generalized Bloch
sphere, for which the two lowest levels are missing. Therefore, a Rabi pulse applied when
the atom is in the Dicke state m = 2 state never transfers the m = 2 state into the circular
states with 100% probability. In fact, due to the large amplitude of the radio-frequency
field, the m = 1 state is slightly populated during the evolution. We know from chapter 3
(see Sec. 3.3.1) that we cannot transfer the circular state into a single Dicke state with
100% efficiency, even for the largest applied radio-frequency field power. The atom is
always in a coherent superposition involving different m states (see Fig. 3.12c). If it is
not possible to transfer the circular state into the m = 2 state, the time reversal symmetry
imposes that it is not possible to transfer the m = 2 state into the circular state. However,
we can use the time reversal symmetry to optimize the transfer to the circular state.

We label |ψa〉 the state we obtain after applying a radio-frequency pulse of duration trf

on the atom initially in the circular state. If we were able to prepare the conjugate state
|ψa〉∗, we could transfer |ψa〉∗ into the circular state with 100% probability.

To improve the efficiency of the preparation of the circular state, we use a sequence
of two radio-frequency pulses separated by a waiting time tdelay to transfer the atom
from the m = 2 to the circular state. The idea of the method is illustrated in Fig. 5.4.
Fig. 5.4a presents the population of the state |ψa〉 for trf = 98 ns andΩrf = 2π ·4.5 MHz.
We compare it to the state |ψb〉 of the atom initially in the m = 2 state, on which is applied
a 3 ns radio-frequency pulse (see Fig. 5.4b). We see that the distribution of probability
is qualitatively similar at least for m = 1 and m = 2. However, we observe a difference in
phase between the components of states |ψa〉∗ (prepared from the circular state) and
|ψb〉 (black and blue vectors in Fig. 5.4c). The phase of the components with m ≥ 2 of |ψb〉
evolve in the rotating frame, since their transition frequencies are very close to the one of
the radio-frequency. However, the phase of the m = 1 level, whose transition frequency
is detuned from the radio-frequency by ∼50 MHz (see Sec. 1.2.3), evolves very fast. It is
therefore possible to improve the overlap between the state of the atom and |ψa〉∗ by
tuning the delay tdelay (red and blue vectors in Fig. 5.4c).

By optimizing the duration of the first pulse and the duration of the waiting time, it is
possible to gain up to nearly 10% in the transfer probability, reaching a transfer of about
80% for |+52c〉 and |−50c〉.
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Figure 5.4: (a) The population of the m-levels of the state |ψa〉 prepared from the circular
state |+52c〉 by a radio-frequency pulse withΩrf = 2π ·4.5 MHz and duration trf = 98 ns.
(b) The population of the m-levels of the state |ψb〉 prepared from the m = 2 state by a
radio-frequency pulse duration trf = 3 ns (and same Ωrf). (c) The vector describing the
probability amplitude in the complex plane for each m-level: the conjugate |ψa〉∗ of the
state |ψa〉 prepared from the circular state (blue), the state |ψb〉 prepared from the m = 2
state after 0 ns (black) and the same state after 3 ns waiting time (red). The population
of the |ψb〉 in the m = 1 levels accumulates a phase with respect to the m = 2 state which
brings the state |ψb〉 closer to |ψa〉∗ (the red and blue vector for m = 1 and m = 2 now
overlap).

Fig. 5.5 shows the probability to find the atom in the circular state |52c〉 as a function
of the total duration of the σ+ polarized radio-frequency pulse. We find that when a
single radio-frequency pulse is applied, the atom is transferred into the |+52c〉 state with
a maximum probability of ∼74%. In the case of a multiple radio-frequency pulse, we find
that for a first short radio-frequency pulse of 3 ns, a waiting time of 3 ns and a second
radio-frequency pulse of 98 ns, the maximum probability is now 79%.

Fig. 5.6 shows the combination of all radio-frequency and microwave pulses needed
in order to prepare the superposition of opposite circular states |+52c〉 and |−50c〉.

5.1.3.b Circular to circular transition via radio-frequency dressing

In a last step, the part of the wave-function in the |−50c〉 state has to be transferred to
the |−52c〉 state (see step (6) in Fig. 5.1) by a two-photon microwave π pulse. However,
since the transition frequencies between |−50c〉→ |−52c〉 and |+52c〉→ |+50c〉 are the
same, and since we are not able to control the polarization of the microwave field, the
two-photon microwave pulse would also transfer a part of the population of the |+52c〉
state. In order to avoid this, we carefully shift the transition frequencies with respect
to each other, as depicted in Fig. 5.7. We use the σ+ polarized radio-frequency field to
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Figure 5.5: The probability to find the atom in the circular state by applying a single radio-
frequency pulse (black) and by applying a first, preparatory, radio-frequency pulse of 3 ns,
wait for 3 ns and second long pulse, which then transfers the low-m state to the circular
state (red).
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Figure 5.6: The combination of all pulses needed in order to prepare the superposition
of the opposite circular states |+52c〉 and |−50c〉. The numbers correspond to the ones in
Fig. 5.1: (1) radio-frequency π/2 pulse from |52,+2〉 to |52,0′′〉, (2) microwave π pulse from
|52,0′′〉 from |50,0′′〉, (3) radio-frequency π pulse from |50,0′′〉 to |50,−2〉, (4) multiple Rabi
π pulse from |50,−2〉 to |−50c〉, (5) multiple Rabi π pulse from |52,+2〉 to |+52c〉.

induce a different AC-Stark shift [184] on the two transitions.

To this end, we increase the electric field to detune the frequency of the σ+ polar-
ized radio-frequency field from the transitions |+52c〉− |+52e1〉 and |−52c〉− |−52e1′〉
by δ ∼+5 MHz. In the presence of the σ+ polarized radio-frequency field, the |−52c〉
is shifted to lower energies, whereas the |+52c〉 state is shifted to higher energies by
∼ 51Ω2

rf/(4δ2). At the same time, the transitions |+50c〉− |+50e1〉 and |−50c〉− |−50e1′〉
are detuned by δ ∼-5 MHz with respect to the radio-frequency field, leading to a shift
to a higher energy of the |−50c〉 and to lower energy of the |+50c〉 state. As a result, the
transition frequencies between |−50c〉 → |−52c〉 and |+52c〉 → |+50c〉 are shifted with
respect to each other, allowing us to selectively transfer the |−50c〉 state to the |−52c〉
state.

To ensure that the circular states connect to the states shifted by the radio-frequency
field, we adiabatically ramp up in 300 ns the σ+ polarized radio-frequency field, sketched
in step (6) in Fig. 5.7. We then apply the two-photon microwave π pulse, resonant with
the shifted |−50c〉 → |−52c〉 transition, before adiabatically ramping down the radio-
frequency field.

135



Chapter 5. Quantum-enabled magnetometry

𝑚 

𝐸 

48 47 49 50 51 

𝑛 = 52 

𝑛 = 50 

-49 -50 -51 -48 -47 

 52𝑐  

 52𝑒1  

 −52𝑒1′  

 −52𝑐  

 50𝑐  
 −50𝑐  

 −50𝑒1′  

 50𝑒1  

Figure 5.7: The involved levels and transitions for the last step in the preparation process
(see step (6) in Fig. 5.1) for the superposition of the states |+52c〉 and |−52c〉. The radio-
frequency dressing field (blue) is detuned by ∼+5 MHz in the n = 52 manifold and by
∼-5 MHz in the n = 50 manifold. This leads to a shift in the circular levels (resulting levels
in blue) big enough to be resolved by the microwave pulse (violet). We are then able to drive
the |−50c〉 → |−52c〉 transition (violet full line) and not the |+52c〉 → |+50c〉 transition
(violet dashed line).
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Figure 5.8: The combination of all pulses needed in order to prepare the superposition
of the opposite circular states |+52c〉 and |−52c〉. The numbers correspond to the ones in
Fig. 5.1: (1) to (5) are the same as in Fig. 5.6, (6) microwave π pulse in the presence of a
dressing radio-frequency field (ramped up and down adiabatically) from |−50c〉 to |−52c〉.
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Figure 5.9: (a) Microwave spectroscopy of the |−50c〉 → |−52c〉 transition with radio-
frequency dressing (red) and without (black). (b) Microwave spectroscopy in the same
conditions of the |+52c〉 → |+50c〉 transition with radio-frequency dressing (green) and
without (black). The Gaussian-fitted (dashed lines) transition frequency of |−50c〉 →
|−52c〉 transition with radio-frequency dressing is indicated as a red vertical line in both
figures. The transfer presented is shown as a function of the driving microwave frequency,
which is two-times smaller than the |52c〉− |50c〉 transition frequency since we drive a
two-photon transition.

Fig. 5.9a shows the microwave spectroscopy of the transition |−50c〉 → |−52c〉 with
radio-frequency dressing, in comparison we also show the same spectroscopy with-
out applied radio-frequency field. The radio-frequency dressing (Ωrf = 2π ·0.38 MHz)
shifts the transition frequency by ∼980 kHz towards smaller frequencies. Fig. 5.9b shows
the microwave spectroscopy of the transition |+52c〉→ |+50c〉, with and without radio-
frequency dressing. Here, the radio-frequency dressing shifts the transition frequency
to higher frequencies, by ∼1060 kHz. Fig. 5.9a and Fig. 5.9b are recorded in the same
conditions (microwave power and pulse duration). We observe that the transition proba-
bility is smaller in Fig. 5.9b than in Fig. 5.9a. This is due to the standing wave structure of
the microwave modes in the experimental zone. At the moment of the microwave pulse,
the microwave field has a much larger σ+ than σ− component. We also see that, in the
presence of the radio-frequency dressing, the probability to transfer the |+52c〉 to the
|+50c〉 state is almost zero at the frequency of the dressed |−50c〉→ |−52c〉 transition (see
red vertical line in Fig. 5.9b).

We conclude that we transfer the population of the |−50c〉 state with a probability over
90% into the |−52c〉 state, while leaving the |+52c〉 state unaffected.

5.1.4 The superposition of opposite circular states

To have an idea about the coherence of the superposition we need to vary the phase of
the interferometer. The complete sequence in Fig. 5.10a amounts to a complex Ramsey
interferometer with two branches. The first π/2 pulse separates the wave-function in
two parts which each follow a different branch of the interferometer. The part of the
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Figure 5.10: (a) The atom, initially in the |52,+2〉 state (blue), is prepared in a superposition
of the |52,+2〉 and the |52,0′′〉 state (green) by a first π/2 pulse (blue). The superposition
then undergoes several steps to the superposition of opposite circular states and back. The
second π/2 pulse (orange) is scanned over time. (b) In the same sequence as in (a) we add
a π pulse (red) at t = 14.32 µs which exchanges the population between the |52,+2〉 and
the |52,0′′〉 state. The second π/2 pulse is scanned over time. (c) The Ramsey fringes of (a)
without echo pulse (black) and (b) with echo pulse (red) as a function of the timing of the
second π/2 pulse. In the echo sequence, the maximum contrast is reached 1.65 µs after the
echo π pulse (vertical dashed line).

wave-function in |52,+2〉 is transferred to the circular state |+52c〉 and back. The part of
the wave-function in |52,0′′〉 goes into the circular |−52c〉 state through the states |50,0′′〉,
|50,−2〉, and |−50c〉 and back. Finally, the last π/2 pulse recombines the two parts of
the wave-function. The outcome of the interferometer depends on the relative phase
accumulated by each branch.

5.1.4.a Application of echo-techniques

At first, to observe the interference fringes, we choose to vary the time at which we apply
the final π/2 pulse. This induces an additional delay, shown in Fig. 5.10a. Because of the
small detuning between the |52,+2〉 and the |52,0′′〉 transition frequency and the radio-
frequency, the relative phase between the two branches evolves during this additional
delay. This leads to oscillations in the probability to detect the atom in the |52,+2〉 state,
the contrast of which measures the coherence of the superposition.

The black curve in Fig. 5.10c presents the result of this experiment. We clearly see
that the contrast decays very fast on a time scale of 1.64 µs. This is due to the electric
field noise to which the superposition of |52,+2〉 and |52,0′′〉 is very sensitive and which
induces a dispersion of the relative phase. However, we find in Sec. 4.5 that this noise
has a correlation time of tcorr = 2.01 µs. Therefore, it is possible to compensate for a
part of the amplitude reduction by using an echo π pulse [123], shown in Fig. 5.10b.
Instead of immediately applying a π/2 pulse, we insert a π pulse which exchanges the
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population between the |52,+2〉 and the |52,0′′〉 state. This π pulse inverts the roles of the
two branches. The relative phase of the quantum superposition has now the opposite
sensitivity to the electric field reducing the global sensitivity of the superposition to the
electric field noise: the phase accumulated by the superposition between the π and the
π/2 pulse partially cancels the phase induced by the noise before the π pulse.

The red curve in Fig. 5.10c presents the result of the experiment in which we apply a π
pulse and we vary the time of the π/2 pulse. We observe that the contrast first increases as
we increase the delay between the two pulses. The maximum occurs at a delay consistent
with the correlation time of the noise that we measured before. For a delay larger than
2 µs the noise seen by the atom is uncorrelated to the noise the atom has seen before the
π pulse and the contrast decrease again.

We also add an echo pulse to the first π/2 pulse at the beginning of the sequence.
The echo of the first π/2 pulse compensates the noise at the beginning of the sequence,
while the echo of the second π/2 pulse compensates the noise at the end of the sequence.
After optimization we find that the best contrast is obtained for the same ∼400 ns delay
between the π/2 pulse and the π pulse at the beginning and at the end of the sequence.

5.1.4.b Direct detection of the opposite circular states

The state of the atom is read out by ionization (see Sec. 2.2.3). In Fig. 5.11, the red
signal is the ionization signal of the superposition of |+52c〉+ |−52c〉. The peak at −45V
corresponds to the ionization threshold of the n = 52 circular states. The blue signal
corresponds to the ionization signal of the state |+52c〉+ |−50c〉 obtained just before the
(6) pulse. The difference in height at the ionization threshold of the |±52c〉 state (at −45V)
between the red peak and the blue peak directly gives the number of atoms in the |−52c〉
state. Finally, the grey signal is obtained after we have transferred the population of the
|−50c〉 into the |−49c〉 state, and the |+52c〉 into the |+50c〉 state. The residual population
at the ionization threshold of −45V corresponds to atoms in the blue and red signal which
are neither in the |+52c〉 nor in the |−52c〉 state, but ionize at the same threshold. The
difference between the blue and the grey signal thus gives us the population of the |+52c〉
state in the superposition.

We find 0.40 atoms/curve in the |−52c〉 state and 0.53 atoms/curve in the |+52c〉. The
superposition is a bit unbalanced with 43% in the |−52c〉 and 57% in the |+52c〉 state.
In these curve we prepare on average 1.54 atomes/curve. The efficiency to prepare the
superposition, defined as the number of atoms in the |+52c〉 and |−52c〉 levels divided by
the total number of atoms, is therefore ∼60%.

5.1.4.c Coherence of the opposite circular states

We now scan the relative phase between the two parts of the wave-function by varying
the microwave frequency of the two-photon microwave π pulses which drive the |52,0′′〉
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Figure 5.11: (a) Ionization signal of different superpositions of opposite circular states:
|+52c〉 and |−52c〉 (red), |+52c〉 and |−50c〉 (blue), and |+50c〉 and |−49c〉 (black). For
the latter, the population of the |−50c〉 state is transferred into the |−49c〉 state and the
population of the |+52c〉 into the |+50c〉 state. The small peaks on the right side of the
ionization signal corresponds to the residual population in the low-m levels of the n = 52
and n = 50 manifold. (b) The timing of the pulses: radio-frequency σ− (orange), radio-
frequency σ+ (blue), microwave (green), electric field (black).

to |50,0′′〉 transition with [179]

|52,0′′〉→ e iφmw |50,0′′〉 and |50,0′′〉→ e−iφmw |52,0′′〉 ,

where the accumulated phase φmw = 2πνmw∆t depends on the delay ∆t , fixed to about
20.5 µs, between the microwave pulses and on the relative frequency νmw.

Fig. 5.12 shows the Ramsey fringes as a function of the relative microwave frequencyνmw.
The visibility, a measure of coherence of the branches of an interferometer, is given by,

s = Pmax −Pmin

Pmax +Pmin
,

where Pmax and Pmin are the maximum and minimum, respectively, of the measured
probability of the interference signal. From the Ramsey fringes in Fig. 5.12, we find a
visibility of s = (50±1)%, which shows the high degree of coherence of the superposition
and sets a lower bound of the fidelity of the preparation of the superposition of the
opposite circular states.

5.1.4.d Sensitivity to electric field fluctuations

To study the sensitivity of the superposition to the electric field, we vary an electric field
square pulse through the sequence, shown in Fig. 5.13, similar to the bandwidth assess-
ment of the correlation experience (Sec. 4.3.2.a). We alternate a realization where the
electric field pulse is applied from time ttrig and a realization without the electric field
pulse. Because of the electric field step, the superposition accumulates a difference in
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Figure 5.12: (a) The microwave Ramsey fringes of the superposition of |+52c〉 and |−52c〉
as a function of the relative microwave frequency νmw. The fringes are recorded with a
delay of τ2 = 19.942 µs between the circularization pulses. The state is in a superposition
of |+52c〉 and |−52c〉 at t = 7.3 µs. The contrast of the signal, that oscillates around
P0 = (27.0±0.2)%, is C = (27.0±0.6)%. (b) The timing of the pulses: radio-frequency σ−

(orange), radio-frequency σ+ (blue), microwave (green), electric field (black).

phase ∆Φ between the two realizations (with and without the electric field step) depend-
ing on the integral of the differential Stark shift between the two branches from the time
ttrig to the end of the sequence.
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Figure 5.13: The experimental sequence to measure the sensitivity of the superposition to
the electric field.

The difference in phase ∆Φ can be measured in the linear regime of the microwave
Ramsey fringes. We fix the microwave frequency at the point of maximum slope as
indicated in Fig. 5.14 and measure the probability to detect the atom in the |52,+2〉 state
with and without the electric field step. The difference in probability ∆P ≈ C

2∆Φ is in first
order proportional to the difference in phase ∆Φ. Fig. 5.15a presents the value of ∆P as a
function of the time ttrig of the pulse which triggers the electric field step.

The sensitivity of the relative phaseΦ to the electric field varies as a function of time,
as we transfer the atom from one state to the other. Fig. 5.16a presents the sensitivity to
the electric field for each branch of the superposition, obtained by calculating for each
time t the variation of the Stark energy of the state of the atom induced by a variation
of the electric field. The bottom part, Fig. 5.16b, shows the corresponding sequence of
the microwave and radio-frequency pulses. The differential Stark shift between the two
components of the superposition, the difference between the red and the black curve in
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Figure 5.14: (a) The microwave Ramsey fringes as a function of the relative microwave
frequency νmw. The position of the point of maximum slope is marked by the green vertical
line. (b) The timing of the pulses: radio-frequency σ− (orange), radio-frequency σ+ (blue),
microwave (green), electric field (black).

Fig. 5.16a, is most pronounced for low-m states. As soon as the state of the atom reaches
the superposition of circular states, the differential Stark shift is reduced to zero in first
order.

The very interesting feature of our method of preparation is that the sensitivity to the
electric field of the superposition between t = 3.83 µs and t = 5.28 µs, when the atom is
in the low-m state, is compensated by the sensitivity of the superposition to the electric
field when the |52,+2〉 state has been transferred into the |+52c〉 state, but the other part
of the wave-function is still in a low-m state of the n = 50 manifold (Fig. 5.16). As a result,
the phase accumulated between t = 3.83 µs and t = 5.28 µs in Fig. 5.15 is cancelled by the
phase accumulated between t = 5.28 µs and t = 5.53 µs, making the state globally less
sensitive to fluctuations of the electric field. This is the reason why we chose to transfer
|52,+2〉→ |+52c〉 before transferring |50,−2〉→ |−50c〉. The same effect occurs around
t ≈ 14 µs. The fact that the compensation is not perfect is corrected by the spin echo
before and after the sequence.2 The measured value of ∆Φ is in good agreement with the
simulation (solid line Fig. 5.15a) from the calculated energy (see Fig. 5.16a).

5.1.4.e Superposition of opposite circular states in different manifolds

The states |+52c〉 and |−52c〉 have exactly the same Stark shifts to all orders, making them
completely insensitive to electric field variations. However, from Fig. 5.15 we can also see
that the superposition of |+52c〉 and |−50c〉 is already very insensitive to the electric field.

Fig. 5.17 shows the Ramsey interference fringes of the sequence where the state of the

2The duration of the time interval between t = 3.83 µs and t = 5.28 µs is not negligible with respect to the
correlation time. As a result, random phase accumulated by the atom at the beginning of this time interval
cannot be completely compensated by the phase accumulated between t = 5.28 µs and t = 5.53 µs. The
echo pulse very likely helps to compensate for the noise seen by the atom at the beginning of the interval
between t = 3.83 µs and t = 5.28 µs.
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Figure 5.15: (a)The probability to detect the atom in the |52,+2〉 state with and without the
applied electric field pulse are measured as a function of the trigger time ttrig of the electric
field step and are subtracted, leading to the relative probability ∆P. (b) The timing of the
pulses: radio-frequency σ− (orange), radio-frequency σ+ (blue), microwave (green).

atom is in the superposition of |+52c〉 and |−50c〉 for τ2 = 19.942 µs. We find a visibility
of s = (66.8±0.6)%, which is higher than the visibility of the sequence where the state
passes through the superposition of |+52c〉 and |−52c〉. It seems that the microwave pulse
which transfers the state to and from the |−52c〉 state leads to a reduced contrast of ∼4.5%.
However, using the |−50c〉 instead of the |−52c〉 state reduces the difference in magnetic
quantum number from ∆m = 102 to ∆m = 100, corresponding to ∼2%. Additionally, we
find that we cannot increase the delay between the two pulses which brings the |−50c〉 in
the |−52c〉 and back, due to the standing wave structure of the microwave field. Overall,
we choose to use the superposition of |+52c〉 and |−50c〉 to perform the magnetometry
measurement.
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Figure 5.16: (a) Stark shift of the two components of the superposition. For low-m states,
the Stark shift is significant, whereas for circular states, the relative Stark shift is almost
zero. (b) The timing of the pulses: radio-frequency σ− (orange), radio-frequency σ+ (blue),
microwave (green).
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Figure 5.17: (a) The microwave Ramsey fringes of the superposition of |+52c〉 and |−50c〉
as a function of the relative microwave frequency νmw. The state is in the superposition
of |+52c〉 and |−50c〉 for τ2 = 19.942 µs. The contrast of the signal, that oscillates around
P0 = (24.9±0.1)%, is C = (33.2±0.3)%. (b) The timing of the pulses: radio-frequency σ−

(orange), radio-frequency σ+ (blue), microwave (green), electric field (black).
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5.2 Magnetic field measurement

5.2.1 The magnetic field coils

To characterizes the influence of the magnetic field on the opposite circular states su-
perposition we need to be able to apply a magnetic field. We therefore installed super-
conducting coils around the experimental zone, shown in Fig. 5.18. The coil consists in a
superconducting wire with 254 µm bare diameter and is installed on the upper and lower
edge of the two sapphire plates which hold the capacitor plates of the experimental zone.
We can see on the picture in Fig. 5.18b, that the material was maximally removed in the
copper plane electrodes to reduce eddy currents which would counteract the switching
of the magnetic field. The radius of the coil is ∼9 cm and the distance between the upper
and the lower loops is ∼8.5 cm. We use the same superconducting wire for all four turns.

(a) (b) 

Figure 5.18: (a) The magnetic field coil (orange) in the sketch of the experiment. (b) Picture
of the electrode structure of the experimental zone. The magnetic field coils are wrapped
around the far edges of the sapphire plates.

The magnetic field created by a current I in the two coils of radius R and n loops
separated by a distance D is calculated by the Biot-Savart law along the coil axis z as

B(z) = 1

2
µ0nI R2

(
R2 +

(
z − D

2

)2)− 3
2

+
(
R2 +

(
z − D

2

)2)− 3
2

 ,

where µ0 is the permeability constant. Since this does not correspond to a Helmholtz
configuration we do not have a flat maximum halfway between the two double-loops but
rather a local minimum in the center of the experimental zone, with a magnetic field of
B = 215 µG for an applied current of I = 1 mA, as shown in Fig. 5.19.

However, the size of the atomic packet defined by the intersection of the two laser
beams of about 0.5 mm3 is very small in comparison to the dimension of the local
minimum and the magnetic field can therefore be assumed homogeneous at the relevant
length scale.
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Figure 5.19: The magnetic field as a function of the distance from the center of the ex-
perimental zone along the axis of the magnetic field coils for the ideal Helmholtz setting
(yellow) and the real setting (blue).

5.2.2 Calibration of the magnetic field

We calibrate the magnetic field by using the superposition of the two circular states |+52c〉
and |+50c〉. The phase of the Ramsey fringes of this superposition is shifted by the applied
magnetic field. Fig. 5.20 shows the absolute phase of these Ramsey fringes as a function
of the magnetic field we apply. We find a conversion factor between the applied current
and the magnetic field of ∆B/∆I = (203±7) µG/mA.
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Figure 5.20: Calibration curve of the magnetic field by employing the superposition of the
two circular states |+52c〉 and |+50c〉. The frequency shift of the Ramsey fringes is shown
as a function of the applied current through the magnetic field coils.

5.2.3 Measurement of the magnetic field

5.2.3.a Sensitivity of the magnetometer

The sensitivity of the quantum superposition of the two opposite circular state |+52c〉 and
|−50c〉 can be assessed by recording Ramsey fringes, described in Sec. 5.1.4, for different
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amplitudes of the applied magnetic field. The sensitivity of a single-shot measurement is
given by

σ(1)
B =σP

(
∂P

∂B

)−1

=σP

(
∂P

∂Φ

)−1 (
∂Φ

∂B

)−1

, (5.1)

where σP = 1/2 is the standard deviation of an atomic state detection3, where the term
(∂P/∂Φ) =C /2 takes into account the contrast of the Ramsey fringes and where (∂Φ/∂B)
is the accumulated quantum phase as a function of the magnetic field.

Fig. 5.21a shows the probability of detecting the atom in the |52,+2〉 state after the
full Ramsey sequence during which the atom is in a superposition of the two opposite
circular states for τ1 = 7.237 µs. Fig. 5.21b shows Ramsey fringes of a sequence where the
atom in the state of opposite circular levels, for a significantly longer time τ2 = 19.942 µs.
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Figure 5.21: (a) Probability of detecting the atom in the |52,+2〉 state after the full Ramsey
sequence, where the atom is in a superposition of the two opposite circular states for
τ = 7.237 µs, is shown as a function of the microwave frequency νmw for B = 0 µG (full)
and B =−324 µG (hollow) together with the respective sine-fit. (b) Same as (a): Here, the
atom is in a superposition of the opposite circular states for τ = 19.942 µs for B = 0 µG
(full) and B =−324 µG (hollow), shown together with the respective sine-fit. Note that the
interference fringes are shifted by almost 2π with respect to each other.

The curves in Fig. 5.21 are fitted by a sine function to deduce their contrast C and their
phase Φ for different values of the magnetic field B . Fig. 5.22 presents the phase as a
function of the applied magnetic field. We see that the slope is much steeper for a longer
interrogation time τ. In principle, the slope follows

∆Φ

∆B
= 2πµBτ∆m

h
.

When we compare the fitted slope with the expected value, we find that the difference in
the magnetic quantum number m, the only free parameter, does not match exactly the
expected ∆m = 100. For the interrogation times of τ1 and τ2, we find ∆m = 106.8±4.7

3We neglect the fact that the fringes oscillate around P ≈ 0.25 and therefore
p

P (1−P ) ≈p
3/4 < 1/2.
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Figure 5.22: The accumulated quantum phase as a function of the applied magnetic field
for a superposition of opposite circular states for a time τ= 7.237 µs (red) and τ= 19.942 µs
(black).

and ∆m = 103.5±4.8 respectively. This is probably due to the magnetic field dependent
phase accumulated by the superposition while it is in the low-m states at the beginning
and at the send of the sequence. However, when we take the difference in slope (of the
red an black line in Fig. 5.22), this corresponds to the relative phase accumulated by
the superposition during a time τ = 19.942−7.237 = 12.705 µs. In this case we find a
difference in magnetic quantum number

∆mcc = 101.6±6.5. (5.2)

The sensitivity of our method is calculated as (Eq. 5.1)

σ(1)
B = 1

2

(
C

2

)−1 (
∆Φ

∆B

)−1

= 1

C

(
∆Φ

∆B

)−1

(5.3)

where (∆Φ/∆B) is fitted from the slopes in Fig. 5.22 and the contrast C from the Ramsey
fringes in Fig. 5.21. We find a contrast of C=(32.7±0.7)% for τ1 and C=(34.3±0.2)% for τ2.

For an interrogation time of τ1 = 7.237 µs, we find a single-atom sensitivity of

σ(1)
B = (450±20) µG.

For an interrogation time of τ2 = 19.942 µs, we find

σ(1)
B = (161±8) µG.

Again, the repetition rate frep of the experiment is limited by the time of flight of the atom
(∼300 µs). The best integrated sensitivity (for τ2 = 19.942 µs) we can get is therefore

σB ,int =σ(1)
B

√
2/ frep = (4.0±0.2) µG/

p
Hz = (400±20) pT/

p
Hz.
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5.2.3.b Comparison to standard quantum limit and Heisenberg limit

Finally, we compare the sensitivity of the single-atom magnetometer to the standard
quantum limit and the Heisenberg limit. In a simple picture, we consider the atom is
described by two angular momenta Ĵ1 of n = 52 and Ĵ2 of n = 50. We therefore expect
classical strategies to have a sensitivity proportional to 1/

p
2× 1/

p
2J = 1/

p
4J . The

standard quantum limit is then given by

σ(1)
SQL =σΦ

(
∂Φ

∂B

)−1

=σΦ
(
∂Φ

∂ωB

)−1 (
∂ωB

∂B

)−1

= 1p
4J

1

τ

(
∂ωB

∂B

)−1

, (5.4)

where (∂ωB /∂B) =µB /~= 2π ·1.4 MHz/G (Eq. 1.14). The Heisenberg limit corresponds to
the best possible strategy, which is in this case a superposition of maximum difference in
the magnetic quantum number ∆m = 100. It therefore scales like 1/(4J ) and is given by

σ(1)
HL = 1

4J

1

τ

(
∂ωB

∂B

)−1

. (5.5)

As in chapter 3, we calculate the sensitivity during the interrogation time τ. We
therefore calculate (Eq. 5.3)

σ(1)
B ,τ =

1

C

∆B

∆Φ−∆Φ0
,

where ∆Φ0 is the phase accumulated during the preparation and recombination part. We
find

∆Φ−∆Φ0

∆B
= 2π

µB

h
∆mccτ,

where∆mcc is the fitted difference in the magnetic quantum number of the superposition
(Eq. 5.2).

For τ2 = 19.942 µs we find

σ(1)
B = (164±11) µG,

which is ∼3.5-times below the standard quantum limit at τ2 ns, σ(1)
SQL = 570 µG, corre-

sponding to -10.8 dB. The sensitivity is at the same time ∼2.9-times above the Heisenberg
limit, σ(1)

HL = 57 µG.

5.3 Discussion

In this chapter we show that we are able to prepare a quantum superposition of the two
opposite circular states |+52c〉 and |−52c〉 using a complex sequence of radio-frequency
and microwave pulses. The efficiency of preparation is 60%. The balance between the two

149



Chapter 5. Quantum-enabled magnetometry

levels |+52c〉 and |−52c〉 is 57%/43%. We demonstrate the coherence of the superposition
by recombining the two branches of the interferometer and observe a visibility of 50%.

The preparation process is highly sensitive to electric field fluctuations since the
involved levels, with low magnetic quantum number m, have a large Stark shift. It is
possible to reduce the sensitivity to the electric field noise in the preparation process
by carefully choosing the sequence of the pulses, so that the differential polarizability
of the two branches is zero in average. Additionally, we add spin-echo sequences at the
beginning and at the end of the sequence to further reduce the effect of the electric field
noise. Once the atom is in a superposition of circular levels, it is much less sensitive to
electric field fluctuations and can remain for a long time in the quantum superposition.

The superposition is very sensitive to the magnetic field and can be used as a mag-
netometer. In fact, we choose to measure the sensitivity of the superposition of the
circular states |+52c〉 and |−50c〉 for two different interrogation times τ = 7.2 µs and
τ= 19.9 µs. We observe a sensitivity of 161 µG corresponding to an integrated sensitivity
of 4 µG/

p
Hz = 400 pT/

p
Hz, which is already comparable to the sensitivity of the best

single spin nitrogen vacancy centres which reach a sensitivity of ∼1 nT/
p

Hz [50].

We observe a reduced contrast due to the preparation and recombination efficiency,
but no additional contrast reduction due to the decoherence between τ = 7.2 µs and
τ = 19.9 µs, as long as we work at night 4. The sensitivity could therefore be further
improved by increasing the interrogation time, limited in our experiment by the time
of flight of the atom. Our method has a sensitivity of −10.8 dB beyond the standard
quantum limit, mainly limited by the preparation efficiency. By improving the transfer
into the circular, we hope to reach the fundamental Heisenberg limit.

4The magnetic field noise is reduced at night during the hours, that seems to correspond to the break of
operation of the Paris public transport.
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In this manuscript, we showed that the state of the hydrogen atom inside the Rydberg
manifold can be described by two angular momenta related to the symmetry of the
Coulomb problem. This picture provides a very simple representation to describe the
coupling of the atom to a radio-frequency field, and is an insightful approach to under-
stand the dynamics of the atom driven by a classical electromagnetic field. In a second
step, we have studied the case of the rubidium Rydberg states, where, due to the size
of the ionic core, the symmetry of the hydrogen-atom model is broken. We have seen,
however, that this only affects the states with low magnetic quantum number, and that as
long as the evolution is restricted to states with m ≥ 3, the dynamics can still be described
by the model of the two angular momenta.

In the second chapter, we described our experimental set-up, especially the electrode
structure that allows us to generate the radio-frequency field with controllable polariza-
tion that we use to manipulate the state of the Rydberg atom inside a given manifold. We
described the procedure we use to optimize the polarization which enables us to create
a well defined σ+ polarization. We discussed that due to the very large coupling of the
Rydberg atom to the static electric field, the inhomogeneous Stark broadening is the main
source of decoherence in our experiment. We then described how we can optimize the
electric field homogeneity inside the electrode structure.

We presented a method to measure very small electric field variations with a precision
below the standard quantum limit, close to the Heisenberg limit, using Schrödinger
cat states. This method measures the quantum phase accumulated by a large angular
momentum evolving on the generalized Bloch sphere. It requires to prepare the atom in
a Schrödinger cat state. The wave-function of this state corresponds to a valence electron
of the Rydberg atom that is in two different classical trajectories at the same time. These
two trajectories have very different polarizabilities, leading to the high sensitivity of the
quantum superposition to the electric field. Our method is transposable [70] to other
experiments that manipulate large angular momenta or ensembles of two-level systems.

Our single-atom electrometer measures an electric field variation of 30 mV/m in 200 ns.
The experimental repetition rate is limited by the duration of the time of flight necessary
for the atom to reach the detector. The integrated sensitivity is therefore 0.76 mV/m/

p
Hz

corresponding to the possible detection, in 1 s, of a single charge located at a 1.4 mm
distance from the atom. This number could be improved by detecting the atom inside the
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electrode structure, which would reduce the repetition rate down to a few microseconds,
leading to an improvement of factor ten of the integrated sensitivity. Nevertheless, the
current achieved sensitivity of our electrometer is already several orders of magnitude
better with respect to nitrogen-vacancy centres (20 kV/m/

p
Hz [185], later improved by

nearly two orders of magnitude [54]) or quantum dots (5 V/m/
p

Hz [107]).

The comparison with solid state electrometers is less straightforward, as the figure
of merit of those devices is usually expressed in term of charge sensitivity. The best
mechanical resonator [109, 110] or single electron transistor [64, 66] have sensitivities in
the 10−6e/

p
Hz range. For a typical distance in the micrometer range, this corresponds to

a sensitivity of 1 mV/m/
p

Hz. Even the sensor described in [124], with its unprecedented
charge sensitivity of 2 ·10−8e/

p
Hz, has also a sensitivity of 1 mV/m/

p
Hz once expressed

in term of electric field. Our Rydberg atom is therefore the electrometer with the best
sensitivity to the electric field and could have practical applications at a quantum sensor.

If we want to use the electrometer for mesoscopic physics applications, we need to
find a way to measure the electric field faster without being limited by the repetition
rate of the experiment. To this end, we developed a correlation measurement using the
richness of the Rydberg manifold. By modulating the polarizability of the components
of the Schrödinger cat state, the electrometer measures the difference in amplitude of
the electric field between two times, with a sensitivity of 80 mV/m, which corresponds to
the electric field created by a single charge at a distance of 140 µm. Using the non-linear
response of the interferometer, we have presented a proof of principle experiment where
we showed that we could use this feature to measure the time correlation of the electric
field. This experiment opens the way to interesting applications, like the characterization
of the dynamics of charge in a quantum dot. Measuring temporal current fluctuations in
conductors are intensely investigated, as it provides insight into the relevant transport
mechanism [134]. The bandwidth of our device, with a time resolution of 200 ns, is already
faster than the typical time scales observed in the experiments that have measured the
full counting statistic of the electron so far (between 0.5 us and 1 ms [142–148]).

In the final part of this thesis, we demonstrated the ability to manipulate the atomic
state across the region affected by the ionic core of the rubidium Rydberg atom. This leads,
in particular, to the generation of the quantum superposition of two opposite circular
states, |−52c〉 and |+52c〉. We measured the preparation efficiency and the coherence of
this superposition. Moreover, we demonstrated a very high sensitivity of this state to the
magnetic field, −11 dB below the standard quantum limit, essentially limited by the prepa-
ration efficiency. With the repetition rate of the experimental sequence, this corresponds
to an integrated sensitivity of 400 pT/

p
Hz. The sensitivity of magnetometers depends

very much on the size of the device. The sensitivity we obtain is better than that of single
nitrogen-vacancy centres (4 nT/

p
Hz [50] or 7 nT/

p
Hz [186]) or magnetic resonance force

microscopes (2.3 nT/
p

Hz [187]). Only magnetometers with 10−100 µm3 volume, like
superconducting quantum interference devices (SQUID) [188] or Bose-Einstein conden-
sates [33, 34] manage to reach sensitivities on the order of 10−100 pT/

p
Hz [68]. Most

notably, the phase measurement proves that we have a sensor with a magnetic moment
of 100 µB . This is nearly two orders of magnitude larger than the best present microscopic
probes, the nitrogen-vacancy centres (with ∼2 µB of magnetic moment). This improves
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the sensitivity by a factor of 50 for a given interrogation time, opening a way to very fast
measurements of the magnetic field.

Perspectives

The quest to find a charge electrometer with very low sensitivity, while at the same time
providing a high bandwidth and ideally being able to be operated without temperature
restrictions, has lead to remarkable progresses in the last three decades [141]. In this
context, our electrometer has several advantages. First of all, it is composed of a single
atom, making it very non-invasive. It does not have to be integrated onto the device.
The atom can be trapped [113–116, 189] and moved, allowing our sensor to perform
spatially resolved measurements of the electric fields at different positions above a surface.
Another advantage is that our experiment works at a temperature of 4 K, much less
demanding than the ∼100 mK required to operate a single electron transistor.

In our proof-of-principle experiment, we showed that we can detect in 200 ns the
electric field created by a single charge at a ∼100 µm distance, leading to a sensitivity of
4·10−4e/

p
Hz. Even though charge sensors can reach sensitivities in the 10−6e/

p
Hz range,

many devices get this level of sensitivity for a much lower bandwidth [65,146]. This is why
the development of new electrometers is still a very active topic of research [124,138–141].
Nevertheless, our electrometer used as a charge sensor is not yet at the state of the art.
The limiting factor is the duration of the applied radio-frequency pulses, due the intrinsic
structure of the Rydberg manifold. The duration of the pulses are constrained to be
on the order of 1/δ, which limits the duration of the shortest measurement time. An
idea could be to use states with low magnetic quantum number subject to the quantum
defect, in order to use as the reference state a level which is more detuned from the
radio-frequency field. This would allow to apply more powerful, shorter radio-frequency
pulses, potentially leading to a higher bandwidth and lower charge sensitivity.

The Rydberg atom magnetometer is also a promising quantum sensor. The results
presented here show that it is possible to create sequences that allow to generate super-
positions of states with m > 0 and m < 0. By using an echo-like sequence, and choosing
wisely the order of the pulses, we can ensure that the average differential Stark shift
between the two parts of the wave-function average to zero on the time scale that corre-
sponds to the correlation function of the noise (2 microseconds in our case). This makes
the relative phase of the superposition much less sensitive to the electric field noise.

The sensitivity of our magnetometer is limited by two factors: the low transfer effi-
ciency of the pulses, mainly due to the anharmonic structure of the energy levels of the
rubidium atom, and the limited interrogation time. To improve the preparation process,
we plan to implement a more complex protocol that should allow us to reach a much
higher transfer between the low-m states and the circular states. To this end, we have a
collaboration with the group of Christiane Koch at the University of Kassel who has devel-
oped a quantum control algorithm to optimize such kind of problems [190]. The second
limitation is the interrogation time in the experiment. We do not see any contrast reduc-
tion as we increase the interrogation time from 7 to 20 µs, which seems to suggest that
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Conclusions

the coherence time of the superposition of the states |+52c〉 and |−50c〉 is much larger
than 10 microseconds. As the sensitivity of the measurement is inversely proportional to
the interrogation time (as long as it remains small compared to the coherence time), it
should be possible to achieve much better sensitivity by increasing the delay between
preparation and recombination. Bose-Einstein condensate or nitrogen vacancy center
experiments use interrogation times in the milliseconds range. This would correspond
for us to a two order of magnitude gain in sensitivity. However, this requires to work with
slower or even trapped atoms.
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Appendix A

The quantum defect constant

Quantum numbers Quantum defect constant δn,l j

l =0 δn,l j = 3.131145+0.195/(n −3.131145)2

l =1, j =1/2 δn,l j = 2.65486+0.280/(n −2.65486)2

l =1, j =3/2 δn,l j = 2.64165+0.318/(n −2.64165)2

l =2, j =3/2 δn,l j = 1.34807−0.603/(n −1.34807)2

l =2, j =5/2 δn,l j = 1.34642−0.545/(n −1.34642)2

l =3, j =5/2 δn,l j = 0.0165192−0.085/(n −0.0165192)2

l =3, j =7/2 δn,l j = 0.0165437−0.086/(n −0.0165437)2

l =4 δn,l j = 0.004
l =5 δn,l j = 0.001
l =6 δn,l j = 0.0006
l =7 δn,l j = 0.0003

Table A.1: Second order quantum defects for Rubidium-85. For l>2 the fine structure is
neglected. The values from l=0 to l=3 are experimental values. The values for l = 0, l = 1
and l = 2 are taken from Meschede [170], l = 3 from Jianing Han et al. [171], l = 4,5,6,7
from Paulo Nussenzveig [172].
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Appendix B

Off-resonant Rabi oscillations -
geometrical derivation

B.1 Off-resonant Rabi oscillation - single RF pulse

We derive geometrically the analytic expression of | 〈 j1, j1|J1(trf)〉 |2 used in Fig. 2.12 in
Sec. 2.3.2. The initial state |J1(trf = 0)〉 = | j1, j1〉 is represented as the vector J1(trf = 0)
pointing along the z-direction to the north pole of the Bloch sphere. The vector J1(trf)
evolves on the Bloch sphere and returns periodically to the north pole. The probabil-
ity to return to the north pole is given by the overlap of the two spin coherent states
|J1(trf = 0)〉 = | j1, j1〉 and |J1(trf)〉 given by [80] (Eq. 1.34) as

P1(trf) = |〈J1(0)|J1(trf)〉 |2 = cos4 j
(
Θ1(trf)

2

)
=

(
1

2
+ 1

2
cos(Θ1(trf))

)2 j

,

where Θ1(trf) is the angle between the vectors J1(0) and J1(trf) and j = (n −1)/2 = 49/2.
The angleΘ1(trf) is derived geometrically from Fig. B.1. The expression for cos(Θ1) can
be found be expressing J1(0) and J1(t) in the new coordinates (x ′, y ′, z ′), see Fig. B.1a,
as J1(0) = [−sin(θ′1),0,cos(θ′1)] and J1(t ) = [−sin(θ′1)cos(Ω̃+t ),−sin(θ′1)sin(Ω̃+t ),cos(θ′1)].
The scalar product of the two then directly yields

cos(Θ) = J1(0) · J1(t ) = cos2(θ′1)+ sin2(θ′1)cos(Ω̃+t ), (B.1)

where θ′1 = Atan(Ω+/δ+) defines the angle of the Rabi vectorΩ+ = (Ω+,0,δ+) with length
Ω̃± = (Ω2

±+δ2
±)1/2.

Similarly, we find P2(trf) = |〈J2(0)|J2(trf)〉 |2. Using Eq. 2.2, the probability to find the
atom in the circular states is

P|50c〉(trf) = P1(trf)P2(trf) =
(

1

2
+ 1

2
cos(Θ1(trf))

)2 j (
1

2
+ 1

2
cos(Θ2(trf))

)2 j

(B.2)
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Figure B.1: (a) Front view and (b) top view of the Bloch sphere is shown for the geometrical
derivation of the angleΘ (red) between the initial state | j , j 〉 (black) at the north pole of the
Bloch sphere. The spin coherent state |θ,φ〉 (red) rotates around the Rabi vectorΩ= (Ω,0,δ)
(green).

with

cos(Θ1) = cos2(θ′1)+ sin2(θ′1)cos(Ω̃+t )

and

cos(Θ2) = cos2(θ′2)+ sin2(θ′2) cos(Ω̃−t ),

where θ′2 = Atan(Ω−/δ−), and j = (n −1)/2 = 49/2.

B.2 Ramsey-like off-resonant Rabi oscillations

In Fig. 2.14 in Sec. 2.3.2 is shown the analytically calculated probability to find the atom in
the |50c〉 state after the sequence with the two short RF pulses as a function of the waiting
time tdelay. The probability P|50c〉(tdelay) can be written as

P|50c〉(tdelay) = P1(tdelay)P2(tdelay), (B.3)

where Pi (tdelay) corresponds to the overlap between the spin coherent state
|Ji (tdelay)〉 and | ji , ji 〉,

Pi (trf, tdelay) =
(

1

2
+ 1

2
cos(Ξi )

)2 j

, (B.4)

where Ξi is the angle between Ji and the vertical z-axis. This angle can be derived
geometrically (see Fig. B.2). The overlap | 〈 j , j |θ1,φ1〉 |2 for J1 can be expressed with

| 〈 j , j |θ1,φ〉 |2 = |〈 j , j |Rrf2RdelayRrf1 | j , j 〉 |2

as a sequence of rotations, where

RdelayRrf1 | j , j 〉 = Rdelay |Θ1,Φ1〉 = |Θ1,Φ1 +δ+tdelay〉
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and Rrf2 | j , j 〉 = |Θ1,−Φ1〉. We can therefore write

〈 j , j |Rrf2RdelayRrf1 | j , j 〉 = 〈Θ1,−Φ1|Θ,Φ1 +δ+tdelay〉 .

The relative angle Ξ between |Θ,0〉 and |Θ,2Φ1 +δ+tdelay〉 follows geometrically by again
using two vectors on the Bloch sphere, this time in terms ofΘ1 andΦ1. The anglesΘ1 and
Φ1 are found geometrically form Fig. B.2. After the first RF pulse the angular momentum
J1 points at the direction with coordinatesΘ1 andΦ1 (depicted in Fig. B.2) which depend
on the RF duration trf. During the waiting time the angular momentum J1 rotates around
the vertical axis and accumulates an azimuthal angle δ+tdelay at a latitude defined by the
polar angleΘ1. Due to the precession along this latitude, the spin coherent state returns
for the first time in the circular state after rotation of an angle 2Φ1. The two vectors are

J1(0) = [sin(Θ),0,cos(Θ)]

for the initial state and

J1(t ) = [sin(Θ1)cos(2Φ1 +δ+tdelay),−sin(Θ1)sin(2Φ1 +δ+tdelay),cos(Θ1)]

for the spin coherent state. The scalar product of the two vectors directly yields

cos(Ξ1) = (1−cos2(Θ1))cos(2Φ1 +δ+tdelay)+cos2(Θ1), (B.5)

with (Eq. B.1)

cos(Θ1) = cos2(θ′1)+ sin2(θ′1)cos(Ω̃+trf)

and

Φ1 = Atan

(
−cot(Ω+trf/2)

cos(θ′1)

)
,

where θ′1, Ω̃+ andΩ+ have been introduced before.

In order to have an even more precise control of the σ− component of the RF field, we
also measure the probability P|50e1′〉(trf, tdelay) to return to the |50e ′1〉 = | j1, j1〉⊗| j2, j2 −1〉
state, which is given as

P|50e1′〉(tdelay) = |〈 j1, j1|J1(trf, tdelay)〉 |2 · | 〈 j2, j2 −1|J2(trf, tdelay)〉 |2,

where the first term P1(tdelay) = |〈 j1, j1|J1(trf)〉 |2 is given by Eq. B.4. The second term is
found with [80] as

P2,e1′(tdelay) = |〈 j2, j2 −1|J2(tdelay)〉 |2

= 2 j2

(
1

2
− 1

2
cos(Ξ2)

)(
1

2
+ 1

2
cos(Ξ2)

)n−2
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Figure B.2: (a) Front view and (b) top view of the Bloch sphere is shown for the geometrical
derivation of the overlap between the initial state | j , j 〉 (black) at the north pole of the
Bloch sphere and the SCS |θ,φ〉 (red), expressed in terms ofΘ (red on left graph) andΦ (red
on center graph). The spin coherent state |θ,φ〉 is rotated with a first RF pulse (1) from
the initial state at the north pole to a certain latitude (orange), where it precesses with δ+
around the z-axis (2) until a second RF pulse is applied (3) to rotate it back to the north
pole. The angleΦ≈π/2 is exaggerated in this picture. (c) The experimental sequence.

with j2 = 49/2 and cos(Ξ2) given by Eq. B.5. The general expression is found as

P2,e1′(tdelay) = |〈 j2,m2|J2(trf, tdelay)〉 |2

=
(

2 j2

j2 +m2

)(
1

2
− 1

2
cos(Ξ2)

) j2−m2
(

1

2
+ 1

2
cos(Ξ2)

) j2+m2

.

B.3 Resonant Rabi oscillation - single RF pulse

In the case of a Rabi oscillation driven by a purely σ+ polarized RF field resonant in the
n = 51 manifold, the detuning of the σ+ component becomes δ+ =ωrf −ωat ≈ 0 and the
Rabi frequency of the σ− component becomesΩ− ≈ 0. Thus, Eq. B.2 reduces to

P|51c〉(t ) =
(

1

2
+ 1

2
cos(Ω+t )

)2 j

= cos4 j
(
Ω+t

2

)
, (B.6)

with j = (n − 1)/2 = 50/2, giving rise to the expected evolution of a resonant Rabi os-
cillation along the n1 = 0 ladder. The period to return to the initial |51c〉 state is given
by 2/Ω+.
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Appendix C

Electric field noise - higher order
contrast reduction

The contrast reduction due to electric field noise (Eq. 4.3 in the main text),

Cr =
∣∣∣〈e i (α(δF (t+)−δF (t−))

〉∣∣∣= ∣∣∣〈e iδΦ
〉∣∣∣ ,

is expanded to second order in Sec. 4.4.1.a (see Eq. 4.4). If we take into account terms up
to the fourth order, the above expression becomes1

Cr ≈ 1− 1

2
〈δΦ2〉+ 1

24
〈δΦ4〉,

which can be simplified in the case of a time-independent random noise with no correla-
tion between the electric field fluctuations at times t+ and t− to

Cr ≈ 1−α2〈δF (t+)2〉+ 1

12
α4 (〈δF (t+)4〉+〈δF (t+)2〉2) .

In this step we use

〈δΦ4〉 =α4(〈δF (t+)4〉+〈δF (t−)4〉−4〈δF (t+)3δF (t−)〉
+2〈δF (t+)2δF (t−)2〉−4〈δF (t+)δF (t−)3〉).

In the case of uncorrelated noise the mean values of 〈δF (t+)3δF (t−)〉 and 〈δF (t+)δF (t−)3〉
can each be evaluated separated and will vanish since 〈δF (t+)〉 = 〈δF (t−)〉 = 0. Since the
noise is time-independent, 〈δF (t+)4〉 = 〈δF (t−)4〉 and 〈δF (t+)2〉 = 〈δF (t−)2〉.

1The contrast becomes in fourth order Cr ≈ |1 − 〈δΦ2〉
2 + 〈δΦ4〉

24 + i (〈δΦ〉 − 〈δΦ3〉
6 )| =√

1−〈δΦ2〉+ 〈δΦ2〉2

4 + 〈δΦ4〉
12 + ... ≈ 1 − 〈δΦ2〉

2 + 〈δΦ4〉
24 + ... where we neglected orders higher than four

in each step.
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Appendix D

Calibration of the magnetic field using a
dark state

The magnetic field is calibrated by the relative Zeeman shift in a superposition of two
low-m states. We choose the superposition of the |51,+1〉 and |51,−1〉 states which is
impervious to electric field fluctuations since both levels are subject to the same Stark
shift. This states can be prepared by via a microwave dark state.

D.1 Preparation of the microwave dark state

The atom is initially in the |52,+2〉 state. A resonant microwave field between the |0〉 =
|50,0〉 and the |51,+1〉 states is at the same time resonant with the |50,0〉 to |51,−1〉
transition, shown in the left panel in Fig. D.1. ThisΛ-level structure results in a dark and a
bright state, |−〉 and |+〉 respectively. The new levels |−〉 and |+〉 are linear superpositions
of |51,+1〉 and |51,−1〉 with |−〉 = 1p

2
(|51,+1〉− |51,−1〉) and |+〉 = 1p

2
(|51,+1〉+ |51,−1〉).

The dark state |−〉 is not coupled to |0〉, however the bright state |+〉 is coupled to the
state |0〉 by a coupling strength

p
2Ωmw, whereΩmw is the coupling strength induced by

the microwave for both transitions |0〉↔ |51,−1〉 and |0〉↔ |51,+1〉, shown in the central
panel in Fig. D.1.

In the presence of the resonant microwave field between |+〉 and |0〉, the dressed states
are 1p

2
(|0〉+ |+〉 and 1p

2
(|0〉− |+〉 while the dark states remains unaffected by the dressing

microwave field, shown in the right panel in Fig. D.1.

Fig. D.2 shows a spectroscopy of the microwave frequency of the transition between
the |52,+2〉 and |51,±1〉 states in the presence of a dressing microwave between |50,0〉 and
|51,±1〉. The central peak corresponds to the microwave field resonant to the transition
to the dark state |−〉. The two side peaks correspond to the two dressed state of the bright
state and the |0〉 state and are separated by

p
2Ωmw ≈ 2π·3.3 MHz. Therefore we see a

population transfer from the n = 52 manifold to the n = 51 manifold at all three peaks,
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Figure D.1: The levels involved in the preparation of the dark state |−〉, superposition of
|51,+1〉 and |51,−1〉. TheΛ-system is made up of |51,+1〉, |51,−1〉, and |50,0〉 (left panel).
After a change of basis (center panel) it is possible to excite only the dark state |−〉 since the
bright state |+〉 and the |0〉 state form dressed states split by the Rabi frequency

p
2Ω (right

panel).

but only a transfer in the n = 50 manifold for the two side peaks.

While the dressing microwave is applied we can easily distinguish between the dark
state and the bright state. Moreover, it is possible to transfer the atom from the initial
|52,+2〉 state to the dark state |−〉, being a coherent superposition of the states |51,+1〉
and |51,−1〉, by a microwave π pulse.

D.2 Calibration of the magnetic field using the dark state

In the presence a magnetic field, the superposition |−〉 becomes 1p
2

(|51,+1〉−e iΦ |51,−1〉),

where the phaseΦ=ωB t depends on the applied magnetic field. ForΦ=π, the superpo-
sition becomes 1p

2
(|51,+1〉− e iΦ |51,−1〉) = 1

2 (|51,+1〉+ |51,−1〉) = |+〉. The state is then

coupled again to the |50,0〉− |51,±1〉 microwave and a microwave π pulse between the
bright state |+〉 and the state |50,0〉 allows to read out the probability to find the atom in
the |+〉 state.

Fig. D.3 shows the probability to find the atom in the bright state |+〉 and as a function
of the applied current through the superconducting magnetic field coils. A full period
of the Ramsey fringes of 2π is recorded for ∆I = (99±2) mA allowing to calibrate the
magnetic field. The relative shift of the levels |51,+1〉 and |51,−1〉 of the superposition
due to the Zeeman effect (see Sec. 1.1.3) leads to an accumulated phase of

Φ= 2π∆νB t

where ∆νB =∆mµB B/h (Eq. 1.14) is the relative Zeeman shift and t the delay of the two
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Figure D.2: Spectroscopy of the dark state (center peak) and the dressed states of the bright
state (side peaks). There is a population transfer from the n = 52 (black) to the n = 51
manifold (red) for all three peaks, however, only the in the dressed states the population
is transferred in the n = 50 manifold (green). From left to right, the peaks correspond to

1p
2

(|0〉+ |+〉, |−〉 and 1p
2

(|0〉− |+〉. The corresponding levels are shown in the right panel of
Fig. D.1.

Ramsey pulses. The superposition accumulates an additional phase of 2π for a change in
the magnetic field which can be written as

∆B = ∆ν

∆mµB /h
.

where∆ν= 1/t . The Ramsey pulses are separated by t = (19.85±1) µs leading to a change
in magnetic field of ∆B = (18.0±0.9) mG. This leads to a conversion factor between the
applied current and the magnetic field seen by the atom of ∆B/∆I = (181±9) µG/mA,
smaller than the theoretical value of ∆B/∆I = 215 µG/mA in Sec. 5.2.1.
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Figure D.3: Calibration curve of the magnetic field. The probability to find the atom in
the |+〉 state is shown as a function of the applied current through the magnetic field coils.
The atom is prepared in the dark state |−〉 superposition of |51,+1〉 and |51,−1〉. The phase
of the superposition varies as a function of the amplitude of the applied magnetic field,
leading to oscillations in the probability to find the atom in the bright state |+〉.
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atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

[100] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood & M. W. Mitchell.
Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev.
Lett. 109, 253605 (2012).

173



Bibliography

[101] Bohnet, J. G., Cox, K. C., Norcia, M. A., Weiner, J. M., Chen, Z. & Thompson, J. K.
Reduced spin measurement back-action for a phase sensitivity ten times beyond
the standard quantum limit. Nat Photon 8, 731–736 (2014).

[102] K. C. Cox, G. P. Greve, J. M. Weiner & J. K. Thompson. Deterministic squeezed states
with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

[103] S. Massar & E. S. Polzik. Generating a Superposition of Spin States in an Atomic
Ensemble. Physical Review Letters 91 (2003).

[104] H. W. Lau, Z. Dutton, T. Wang & C. Simon. Proposal for the Creation and Optical
Detection of Spin Cat States in Bose-Einstein Condensates. Physical Review Letters
113 (2014).

[105] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlan-
der, W. Hänsel, M. Hennrich & R. Blatt. 14-Qubit Entanglement: Creation and
Coherence. Physical Review Letters 106 (2011).

[106] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune
& S. Gleyzes. Confined quantum zeno dynamics of a watched atomic arrow. Nature
Physics 10, 715–719 (2014).

[107] A. N. Vamivakas, Y. Zhao, S. Fält, A. Badolato, J. M. Taylor & M. Atatüre. Nanoscale
Optical Electrometer. Physical Review Letters 107 (2011).

[108] J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno,
A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck & R. J. Warburton. Prob-
ing Single-Charge Fluctuations at a GaAs / AlAs Interface Using Laser Spectroscopy
on a Nearby InGaAs Quantum Dot. Physical Review Letters 108 (2012).

[109] A. N. Cleland & M. L. Roukes. A nanometre-scale mechanical electrometer. Nature
392, 160–162 (1998).

[110] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum,
J. M. Parpia, H. G. Craighead & P. L. McEuen. Electromechanical resonators from
graphene sheets. Science 315, 490–493 (2007).

[111] A. Facon, E.-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune &
S. Gleyzes. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat
state. Nature 535, 262–265 (2016).

[112] A. Facon. Chats de Schrödinger d’un atome de Rydberg pour la métrologie quantique.
Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, Paris (2015).

[113] P. Hyafil, J. Mozley, A. Perrin, J. Tailleur, G. Nogues, M. Brune, J. M. Raimond &
S. Haroche. Coherence-preserving trap architecture for long-term control of giant
ryberg atoms. Phys. Rev. Lett. 93, 103001 (2004).

[114] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-Flannigan & G. Raithel. Ponderomo-
tive optical lattice for rydberg atoms. Phys. Rev. Lett. 85, 5551–5554 (2000).

174



Bibliography

[115] D. A. Anderson, A. Schwarzkopf, R. E. Sapiro & G. Raithel. Production and trapping
of cold circular rydberg atoms. Phys. Rev. A 88, 031401 (2013).

[116] A. Sarlette, Z. Leghtas, M. Brune, J. M. Raimond & P. Rouchon. Stabilization of
nonclassical states of one- and two-mode radiation fields by reservoir engineering.
Phys. Rev. A 86, 012114 (2012).

[117] C. H. Hsu & R. S. Muller. Micromechanical electrostatic voltmeter. In Solid-State
Sensors and Actuators, 1991. Digest of Technical Papers, TRANSDUCERS ’91., 1991
International Conference on, 659–662 (1991).

[118] Measuring isolated surface charge with a noncontacting voltmeter. Journal of
Electrostatics 35, 203 – 213 (1995). Selected papers from the special technical
session.

[119] M. N. Horenstein & P. R. Stone. A micro-aperture electrostatic field mill based on
mems technology. Journal of Electrostatics 51, 515 – 521 (2001). Electrostatics 2001:
9th International Conference on Electrostatics.

[120] D. Taylor. Measuring techniques for electrostatics. Journal of Electrostatics 51, 502
– 508 (2001). Electrostatics 2001: 9th International Conference on Electrostatics.

[121] B. Bahreyni, G. Wijeweera, C. Shafai & A. Rajapakse. Analysis and design of a
micromachined electric-field sensor. Journal of Microelectromechanical Systems
17, 31–36 (2008).

[122] S. Lina, L. Xinxing, Q. Hua & G. Xiaofeng. A sensitive charge scanning probe based
on silicon single electron transistor. Journal of Semiconductors 37, 044008 (2016).

[123] E. L. Hahn. Spin echoes. Phys. Rev. 80, 580–594 (1950).

[124] O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V. Umansky & A. Yacoby. Charge
noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit.
Phys. Rev. Lett. 110, 146804 (2013).

[125] C. P. Slichter. Principles of Magnetic Resonance (Springer-Verlag, 1996).

[126] L. Viola & S. Lloyd. Dynamical suppression of decoherence in two-state quantum
systems. Phys. Rev. A 58, 2733–2744 (1998).

[127] H. Y. Carr & E. M. Purcell. Effects of diffusion on free precession in nuclear magnetic
resonance experiments. Phys. Rev. 94, 630–638 (1954).

[128] K. Khodjasteh & D. A. Lidar. Fault-tolerant quantum dynamical decoupling. Phys.
Rev. Lett. 95, 180501 (2005).
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