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Abstract

The logistics performance of the enterprises and the optimization of transporta-

tion have become a great issue in recent years. Field force planning and optimiza-

tion is a new challenge for the service sector especially for utility companies in the

energy, telecommunications and water distribution areas. It generates new varia-

tions of combinatorial optimization problems in the fields of manpower scheduling

and vehicle routing. The challenges are many: to increase productivity and re-

duce costs, by increasing the number of visited clients, while reducing the time

and cost of transportation and to achieve an efficient internal organization and

appropriate human resources planning.

In the literature, most of the work deals with problems involving deliveries of

goods. In this thesis, we focus on the service tours, which constitute a less studied

problem. We address the problem of the planning and routing of technician visits

to customers in the field, for maintenance or service logistics activities undertaken

by utilities. The plan must be designed over a multi-period horizon.

This dissertation focuses on the optimization of field service routing problem

with meta-heuristics. The addressed problem is abstracted from the realistic

problem. This problem can be assimilated to a multi-depot and multi-period

routing problem with time window. Various constraints were taken into consider

to simulate the real problem.

First, we consider the local search heuristics for solving the problem. Initial

feasible solutions are obtained by a constructive heuristic. Several heuristics of

local search are adapted to improve the solutions which permit us to obtain a fea-

sible solution in a very short computing time. Second, we consider using genetic

algorithm to find the near-optimum solution. The genetic algorithm is applied

with new representation of chromosome and new genetic operators to adapt the

force constraints of the real-world problem. Third, we consider a genetic algo-

iii



ABSTRACT

rithm with diversity control to deal with large scale problems. Infeasible solutions

are taken account in the population and the diversity contribution is part of the

evaluation to avoid the premature of search. Experiments are done to a series of

instances which come from the actual production activity. Results showed that

these methods’ performance meets the demand of real world situation.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vehicle Routing Problem . . . . . . . . . . . . . . . . . 4

1.3 Presentation of Problem Studied . . . . . . . . . . . . 8

1.4 Contributions of the Dissertation . . . . . . . . . . . . 9

1.5 Organization of the Dissertation . . . . . . . . . . . . 10

1.1 Motivation

Logistics has attracted enormous attention from researchers. The definition of

logistics is: the process of planning, implementing, and controlling procedures for

the efficient and effective transportation and storage of goods including services,

and related information from the point of origin to the point of consumption

for the purpose of conforming to customer requirements. In the last ten years,

logistics finally became recognized as an area that was key to overall business

success. It has great importance in the economy, in industry and in environment

protection.

Logistics is an importance activity making extensive use of human and mate-

rial resources that affect a national economy. Figure 1.1 shows that in European

Union, logistics represented about 9% of GDP in the last decades. Figure 1.2

tells that this number is significantly higher in developing countries (about 20%

1



1. INTRODUCTION

in China) than in developed countries (about 7% in Germany). The routing opti-

mization can give savings of 5% (Hasle et al., 2007) to a company as transporta-

tion is usually a significant component of the cost of a product (10%) (Rodrigue

et al., 2013). Logistics efficiency has become a main thing that manufacturers

need to focus on. Transportation and logistics related costs as a percentage of

sales range from 9% to 14% depending on industry sector for companies who do

not adopt a logistics efficiency management approach. Transportation costs alone

comprise the vast majority of this expense for most companies. By adopting a

logistics efficiency management approach, logistics related costs as a percentage

of sales drops from 5% to 7% depending on industry sector. For a company with

sales of $10,000,000, that’s a contribution to corporate profitability of $500,000

to $700,000. Consequently, any savings created by the logistics, even less than

5%, are significant.

Figure 1.1: Logistics Cost As A Percent of GDP in EU (Source: State of Logistics
Report 2014/CSCMP)

When looking at industry and company level, it is essential to be aware that

the above costs are average figures taken across a number of companies. The

relative make-up of these costs can vary quite significantly between different in-

dustries. In general, small companies tend to have proportionately higher logistics

costs than large companies because large companies can benefit from economies

of scale.

2





1. INTRODUCTION

this vehicle routing problem is beneficial not only to the company, but also to the

society.

On one hand, it helps improve the efficiency of delivery or service of the

company, make full use of its vehicle resources and increase economic efficiency.

More importantly, reasonable routing plan ensures the arrival to customers’ at

the appointed time which will bring better service to the customers. On the

other hand, for the society, rational routing planning can save vehicle resources,

alleviate traffic congestion and reduce environmental pollution.

With the development of economic, more and more enterprises need provide

low-cost and high-level services. Logistics and other transportation industries are

also increasingly inclined to short-distance and short-term transport. Therefore,

the problem of vehicle routing problem (VRP) is very worthy of study.

According to the State of Third-Party Logistics Study (Consulting, 2016),

the top logistics challenges facing today is shown in figure 1.3. A majority of

the study’s respondents indicated "cutting transportation cost" as a top chal-

lenge, followed by the "business process improvement" and "improved customer

service". The enterprises are demanding greater innovation and technology ad-

vances while simultaneously remaining cost-conscious.

1.2 Vehicle Routing Problem

VRP is one of the most analyzed problem in the fields of transportation, distri-

bution and logistics. It calls for the determination of the optimal set of routes

to be performed by a fleet of vehicles to serve a given set of customers (Toth

& Vigo, 2014). It was introduced by Dantzig and Ramser (Dantzig & Ramser,

1959) in 1959, modeling how a fleet of homogeneous trucks could serve the de-

mand for oil of a number of gas stations from a central hub and with a minimum

traveled distance. In 1964, Clarke & Wright (1964) generalized this problem to a

linear optimization problem which is known as the VRP, one of the most widely

studied topics in the field of operation research (Braekers et al., 2015). The

VRP has been widely studied during the past decades and it is one of the most

important combinatorial optimization problems. It is an integer NP-complete

programming problem. So the size of problems that can be solved optimally is

limited. The main objective is to minimize the cost of distributing the goods and
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Figure 1.3: Top Logistics Challenges (Source: State of Third-Party Logistics
Study)

find the shortest path between two points. It generalizes the well-known traveling

salesman problem (TSP).

As the development of technology and production, new challenges are brought

to researchers. On one hand, new techniques such as Electronic Commerce (EC),

Global Positioning System (GPS), Intelligence Transport System (ITS), Geo-

graphic Information System (GIS) and Global System of Mobile communication

(GMS) provide much more information to solve the problem. On the other hand,

demands from customers become various. VRP could be applied to the pick-up

of courier mail or packages, the dispatching of buses for the transportation of

elderly and handicapped people, distribution of oil to private households and so

on. There exists many variants in the family VRP.

The standard VRP is the Capacitated Vehicle Routing Problem (CVRP). In

the CVRP, there is limitation to the loading capacity of each vehicle. This is the

most basic VRP, and all other variants of the VRP are based on the standard

problem.

The VRP can be represented as the following graph-theoretic problem. Let
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Figure 1.5: A Vehicle Routing Problem

mathematical model of CVRP is given below. To each arc (i, j), we define the

variables:

xijv =

{

1 if vehicle v travels from i to j

0 otherwise

yiv =

{

1 if customer i is served by vehicle v

0 otherwise

The mathematical model of CVRP can be represented as below:

Minimize F (x) = M

n
∑

i=1

m
∑

v=1

x0iv +
n

∑

i=0

n
∑

j=0

m
∑

v=1

xijvcij (1.1)

s.t.

m
∑

v=1

n
∑

i=0

xijv ≥ 1 ∀j ∈ V
′

(1.2)

n
∑

i=0

xipv −
n

∑

j=0

xpjv = 0 ∀p ∈ V, ∀v ∈ R (1.3)

m
∑

v=1

yiv = 1 ∀i ∈ V
′

(1.4)
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n
∑

i=1

diyiv ≤ Q ∀v ∈ R (1.5)

yiv =
n

∑

i=1

∀j ∈ V
′

, v ∈ R (1.6)

In the formula, F (x) represents the objective function, and M is an infinite

integer. During solving the problem, adding M in the target function can ensure

the number of vehicles as first goal and the cost as second goal. A solution

with less vehicles is better than a solution with more vehicles but smaller travel

distance. Equation 1.2 indicates each customer is at least served by a vehicle

once. Equation 1.3 is a traffic constraint that requires a vehicle must leave the

customer after service. Equation 1.4 means customer i can only be served by one

vehicle. Equation 1.5 is a vehicle capacity constraint that represents the sum of

demand for the all customers by vehicle v on its service route can not be greater

than the vehicle’s loading capacity Q. Equation 1.6 indicates that the customer

j can only be served by one of the vehicles from customers i.

1.3 Presentation of Problem Studied

As we all know, except for the delivery of goods, another important logistics ac-

tivity is to offer on-site services to customers. Many companies regard providing

good on-site service as an important factor to enhance the influence of enter-

prises. The problem we study in the thesis is a field service routing problem.

This is a practical problem from the real production management. There is a

time horizon consisting a number of period. A company, for example, a water

conservancy company, should carry out different kind of service tour. Instead of

delivering merchandises, it need to perform on-site service door to door, such as

repair, equipment maintenance or examination. Different missions ask for various

abilities. Technicians who are capable to finish the missions are sent to complete

the works.

In this problem, customers are divided into two categories: obligatory cus-

tomers and optional customers. The obligatory customers are the demands de-

clared by the their clients. Each obligatory customer is associated with a time

window. Technicians should arrive at customers’ during certain periods of time
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fixed by the customer to offer the service. Obligatory customers are not available

beyond its compatible periods or exceeding its time window. The other type of

customer is optional customer. These customers are the maintenance operations

planned by the company, for example, the renewal of water meter and other pre-

ventative interventions. These demands have no time window. Technicians are

allowed to drop in anytime during the time horizon. It is important to notice

that there is a difference in priority of these two kinds of customers. Obligatory

customers are considered more importance than the other.

For a consideration of both service quality and economic reason, company

would like to carry out all the missions with a minimum cost.

1.4 Contributions of the Dissertation

This dissertation considers the optimization of real world field service routing

problem. The aim is to find optimized routing plan for companies to offer quality

service with minimum cost.

We developed our research by investigating two categories of algorithms:

heuristics and genetic algorithms. The main contributions of this dissertation

are summarized as follows:

• The field service routing problem is an important problem in the modern

industry. Yet the research done to the real-world problem is very limited.

Realistic problems are usually more constrained and complicated. Problem

studied in this dissertation is modeled for further investigation. Various

constraints were taken into consider to simulate the realistic problem so as

to apply to solve real problem.

• Exact methods and meta-heuristic methods are all widely used to general

VRP. However, there is not many which can be applicable to the proposed

real-world field service routing problem. We adopted genetic algorithm

to solve the problem with new designed chromosome representation and

operators to adapt to the problem. These components forms a new genetic

algorithm which is suitable to the problem addressed. This method solves

the problem by getting desired effect.

9
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• Evolutionary algorithms often meet the problem of premature. To deal with

this problem, a new genetic algorithm which allows the exploration in the

infeasible solution is used. A diversity control procedure helps avoid the pre-

mature. Infeasible solutions are repaired by a repair operator. This method

can solve large scale field service routing problem with good efficiency.

1.5 Organization of the Dissertation

This dissertation is organized as follows.

• Chapter 1 gives the motivation of research and a general introduction to

the problem that we studied in this dissertation.

• Chapter 2 reviews the literature on VRP and the similar problems of our

field service routing problem. The review includes the classification of vehi-

cle routing problem and the existed solution methodologies. In particular,

literatures on the multi-period VRP, the multi-depot VRP and the VRP

with time window are studied for a deeper understand of the problem stud-

ied.

• Chapter 3 begins the discussion on the multi-period and multi-depot field

service routing problem with time window. Neighbourhood searches are

applied to obtain feasible solutions. First, we formalized the problem with

its objective and constraints. Then a mathematical model is given for a

more comprehensive sight and to be used in the dissertation. Heuristics of

construction and heuristics of improvement are proposed to get reasonable

solutions. Experiments are carried out to test the methods.

• Chapter 4 proposes a genetic algorithm for the problem addressed. A new

chromosome representation is described and new crossover operators are

presented which improve the rate of feasible offspring. We test the algo-

rithm on a set of instances. The crossover operators are compared. Then we

discuss the diversity controlling genetic algorithm for the addressed prob-

lem. Diversity contribution is taken as a part of the fitness to evaluate

the individual in a population. Infeasible solutions are allowed into the

population and a repair procedure is proposed to make infeasible solutions
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feasible. Experiments are realized with the new genetic algorithm with

diversity control to evaluate its performance.

• To conclude, Chatper 5 summaries the key points of our research and out-

lines avenues for further research.
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In the precedent chapter, we have presented the standard vehicle routing

problem. In fact, VRP has many different variants. In this chapter, we introduces

the general context and constituents to the variants of VRP. A literature review

on VRP is conducted. The researches on problems related to our problem are

concluded.
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2.1 Classification of Vehicle Routing Problem

In this section, the main characteristics and constituent elements of VRP are

presented. On this basis, we introduce the different variants of VRP.

2.1.1 Constituent Elements of Vehicle Routing Problem

A typical VRP includes the below elements: road network, customer, depot, vehi-

cle, side constraint and operational objective. An introduction to each constituent

is given below.

Road Network

The road network is the basis of the carriage of goods, which is one of the most

important elements of VRP. A road network is usually represented by a weighted

graph consisting of vertexes and arcs. The vertex represents the depot or the

customer, and the arc represents the road connection between the customer and

the depot or the customer. According to the different characteristics of the road

connecting two points in the transport network, the arc can be divided into

directed arc and undirected arc. The directional arc refers to the road where the

vehicle can only travel in one direction, and a typical example is the one-way

road in the urban transport network. The undirected arc refers to the two-way

road where the vehicle can travel in both directions. Each arc can be given a

non-negative cost weight. According to the actual needs of the study, it can be

given different meanings. For example, it can represent the travel distance or the

travel time and so on.

Customer

The customer can represent any type of service object in the actual VRP, and its

typical characteristic attributes include the following aspects:

- Customer corresponds to a vertex in the road network diagram.

- The customer point has a service demand, which can be the amount of

goods delivered from the depot to the customer, or the amount of goods

that need to be collected from the customer to the depot.
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- Customer service time. It indicates the unloading time or cargo collection

time of the customer.

- Customer service time window or time period. Some certain types of cus-

tomers may have a service time window, which refers to the time interval

during which the vehicle can start service to the customer, including the

earliest allowed service time and the latest allowed service time.

Depot

The depot is the starting point or end point of each vehicle route. The vehicles

deliver goods from the depot to the customer or collect goods from the customer

to the depot. The depot is stationed with a group of vehicles to complete the

delivery or collection service to the customers. In the general literature, VRP is

assumed to have only one depot.

Vehicle

A group of vehicles complete the distribution or collection of goods for customers

in VRP. The typical features include the following aspects:

- Type.

- Loading capacity.

- Cost. The vehicle cost here mainly refers to the fixed cost for use of the

vehicle fixed costs and the variable cost. The variable cost refers to the cost

for per kilometer or per hour.

- Duration. The vehicle used for goods delivery or collection has a maximum

allowable travel distance or time. In the actual problem it indicates the

maximum daily working hours of the vehicle driver.

Side Constraint

There are several types of side constraints for a typical standard VRP.

- The sum of the demands for all customers on each vehicle route cannot be

greater than the loading capacity of the vehicle.
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- The distance or travel time of a vehicle traveling on each vehicle route

cannot be greater than its maximum duration.

- The demand for each customer must be met.

- The demand for each customer can only be completed by one vehicle and

can only be accessed once.

Operational Objective

According to the characteristics of VRP, the optimal operational objectives can be

divided into two categories: multiple-objective and single-objective. The typical

single-object optimization functions are:

- Minimize the travel distance.

- Minimize the number of vehicles

- Minimize the total costs, including the fixed costs, variable costs and so on.

- Hierarchical optimization of the objective function. The number of vehicles

is the primary optimization goals, and then the corresponding vehicle travel

distance will be optimized.

The multi-object optimization mainly refers to the VRP that has more than

one object needs to be optimized at the same time. In the actual distribution

management, many vehicle routing problems are multi-objective decision-making

optimization problems.

2.1.2 VRP Extended Criteria

The previous chapter has given definitions and mathematical models of stan-

dard VRP. The standard VRP is the simplest and most popular type of VRP

in the field of operations research. Compared with standard VRP, VRP in the

actual production operation management has new attributes and characteristics,

such as service time window, undetermined quantity of demand, undetermined

quantity of travel time and so on. The model and framework of standard VRP

obviously cannot be used to model and analyze the new VRP. In order to meet

the actual needs of production management, operational research studies the new
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VRP extensions by relaxing the assumptions of standard VRP and introducing

new constraints to the standard VRP. These new expansion problems gradually

broaden the breadth and depth of study for VRP.

We have two ways to relax standard VRP according to the constitutive ele-

ments of VRP:

• By relaxing the assumptions of the standard VRP to generate new extended

problems;

• By introducing new side constraints and integrating new service elements

in the standard VRP based on the actual needs of production management.

The new VRP will gradually adapt to the actual needs of production management.

Combining these extended elements with the standard VRP can build different

types of VRP. The extended criteria are shown below.

Objective Function

This extension criterion mainly considers whether the VRP studied is a single-

objective problem or a multi-objective problem (MOP). A MOP can be stated as

follows:

(MOP ) =

{

min F (x) = (f1(x), f(x), ..., fn(x))

s.t. x ∈ D
(2.1)

where n ≥ 2 is the number of objective functions; x = (x1, x2, ..., xr), the

decision variable vector; D the feasible solution space and F (x) the objective

vector.

The multi-objective routing problems are mainly used in three ways:

• to extend classic academic problems in order to improve their practical

application;

• to generalize classic problems;

• to study real-life cased in which the objectives have been clearly identified

by the decision-maker and are dedicated to a specific real-life problem.
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Service Characteristics of Customer

This extended criterion describes the typical characteristics of the customer, in-

cluding six sub-criteria.

• The time attribution, which describes whether the customer has time con-

straints for service. It can be divided into time window constraint and time

limit constraint.

• The source of demand, which mainly describes whether the demand for ser-

vice of the customer is allowed to be split. The customer must be served

only by one car in standard VRP. However, in actual distribution man-

agement, transportation costs can be saved in situations where customer

demand is split.

• The service time period, which mainly describes whether the service time

is across more than one day. The service time period is one day in the

standard VRP, but in the cycled VRP, it’s a multi-day period.

• Demand characteristics. The customer’s demand can be determined in

advance, but also can be a random variable, and for some situations, the

customer also needs to send goods and collect goods in the same time.

• The existence of the customer. The standard VRP assumes that all the

customers exist, but the customer demand is not fixed corresponding to the

increasingly competitive market economy. It may be a certain probability

of random existence.

• The priority constraint, which is used to describe whether the service of

the customer in VRP has the order of precedence. For the actual VRP, the

customer may be divided into different levels, and the preferred customer

can be given priority to the delivery service or collection service.

Vehicle Route Characteristics

The vehicle route characteristic criterion mainly describes whether the vehicle

route is a closed Hamiltonian tour or a non-closed Hamiltonian path.
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Road Network Characteristics

The road network extended criterion mainly includes the network travel cost and

the network symmetry attribute. The standard VRP assumes that travel costs

are known as fixed constants in advance. But in actual road networks, travel

costs are a random variable subject to traffic conditions.

Depot Characteristics

This extended criterion gives the information on whether the depot is unique.

Vehicle Characteristics

It mainly includes four sub-criteria.

• Vehicle type, which describes whether the vehicle used for distribution and

collection is homogeneous or shaped.

• Vehicle service type, which describes whether the vehicle is allowed to serve

multiple routes. The vehicle in standard VRP can serve only in one route.

In the actual production management, the number of vehicles may be lim-

ited and the service period may be shorter, so at this time allowing the

vehicle to serve multiple routes may be the only viable option.

• The number of vehicles. The number of vehicle is unlimited in the standard

VRP. In fact, the limited number of vehicles can reflect the actual situation

of distribution management much better.

2.1.3 Vehicle Routing Problem Extensions

Combined different extended criteria with the standard VRP, we can get different

types of VRP extensions. The main types are discussed below.
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- Vehicle Routing Problem with Soft Time Window (VRPSTW). VRPSTW

refers to the service for each customer cannot be completed in the time

window. If the service time is beyond the time window, the solution of the

objective function will be punished.

Vehicle Routing Problem with Split Deliveries

Vehicle Routing Problem with Split Deliveries (VRPSD) is an important relax-

ation problem for standard VRP. In the standard VRP, the delivery service of

each customer can only be completed by one car. In VRPSD, the customer’s

demand can be divided by several vehicles at the same time. When considering

the split deliveries, the number of vehicles and travel costs can be reduced, as

described by an example below.

Assume the demands of each customer are: d1 = 3, d2 = 4, d3 = 3. Assume

the distances between customer and depot are: c0i = 10, i = 1, 2, 3; c12 = c23 = 1,

c13 = 2. The loading capacity of the vehicle is 5. The corresponding optimized

solution for the standard VRP is: the number of vehicles is 3, and the sum of

distance is 60. When considering the split deliveries, the optimized solution is:

the number of vehicles is 2, and the sum of distances is 42. The VRPSD can save

vehicle numbers and travel distances.

Figure 2.2: Example of VRPSD

Multiple Depot Vehicle Routing Problem

In the standard VRP, there is only one depot. All the vehicles start from the

depot to the customers, and ultimately return to the depot. If a company has a

number of depots, the demands of customers can be completed by vehicles form
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any depots. If the customers are clustered into different depot, the corresponding

sub-issues are independent standard VRP. If the depots and the customers are

mixed together, the problem is translated into a Multiple Depot Vehicle Routing

Problem (MDVRP).

Period Vehicle Routing Problem

In the standard VRP, the planned delivery period of the vehicle is one day. Unlike

the standard VRP, in Period Vehicle Routing Problem (PVRP), the planning pe-

riod of the vehicle service is extended to several days, during which each customer

is serviced at least once, and the set of dates is not fixed The visiting schedule of

each customer is a table. If the period is one day, it is converted to a standard

VRP.

Open Vehicle Routing Problem

The biggest difference between Open Vehicle Routing Problem (OVRP) and the

standard VRP is that, the vehicle route is a Hamiltonian tour in the standard

VRP but a Hamiltonian path in OVRP. In OVRP the vehicles does not need to

be back to the departure depot. If they are asked to return to the depot, they

must return along the same route. There are many applications in actual situa-

tions, especially in the economic activities with the characteristics of outsourcing

business, such as newspaper distribution, milk distribution, etc. In such issues,

the enterprises do not own vehicles, but outsource their distribution business to

other vehicles or fleets. These companies do not need the vehicles to get back to

the depot after serving the last customer, and the expenses paid for vehicles are

affected by the travel distance. The figure shows an example of an OVRP.

Dynamic Vehicle Routing Problem

Thanks to recent advances in information and communication technologies, vehi-

cle fleets can now be managed in real-time. Real-time data such as current vehicle

locations, new customer requests, and periodic estimates of road travel times can

be offered by some new devices and systems. In this context, dynamic vehi-

cle routing problems (DVRP) are getting increasingly important. The dynamic

vehicle routing problem is defined as below:
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Stochastic Vehicle Routing Problem

Stochastic Vehicle Routing Problem (SVRP) belongs to DVRP. It has the below

characteristics.

- Random customers. Each customer i exists at probability pi, with proba-

bility 1− pi absent.

- Demand of customers. The demand of customer i is a random variable di.

- Random time. The random time here mainly refers to the random service

hours and travel costs.

Vehicle Routing Problem with Backhauls

Vehicle Routing Problem with Backhauls (VRPB) is an extension of the standard

VRP. In this type of problem, the customers are divided into two subsets. The

first subset is the set of outset customers, that is, the vehicles need to send a

certain amount of goods to the customers from the depot. The second subset is

the set of inset customers, that is, the vehicles need to return a certain amount

of goods to the depot from the customers. In VRRB, there is an important

assumption for order. All the customers in the first subset must be served before

the customers in the second subset. The demands of customers in both subsets

are known and fixed.

Vehicle Routing Problem with Multiple Trips

Vehicle Routing Problem with Multiple Trips (VRPMT) is a relaxation problem

for the the standard VRP. In the standard VRP, the number of vehicles is usually

assumed to be infinite and each vehicle can only serve one route. However, the

assumption is unreasonable in many practical applications. The actual number

of vehicles is limited. When the loading capacity is very small or the planning

period is very long, making a car to serve multiple routes may be the unique

feasible choice.
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Laporte (1992) provide six representative examples of exact algorithms for VRP

including two direct tree search methods based on different relaxations, a dynamic

programming formulation and three integer programming algorithms.

The most effective exact algorithm for VRP is branch-and-cut (BC) algorithm

based on a two-commodity network folw formulation of the problem (Baldacci

et al., 2008). The method of Fukasawa et al. (2006) proposed a new branch-and-

cut-and-price (BCP) algorithm based on the two-index and the set partitioning

(SP) formulations. The lower bound is computed with a column-and-cut genera-

tion method that uses k-cycle-free q-routes instead of feasible CVRP routes and

the valid inequalities.The first exact algorithm for the VRPTW based on the SP

formulation was the branch-and-price (BP) algorithm of Desrochers & Laporte

(1991). In general, any exact algorithm for the VRPTW based on the SP model

can be easily adapted to solve the CVRP by simply relaxing the time window

constraints in the pricing algorithm.

2.2.2 Heuristics

Classical heuristics for the VRP are naturally divided into constructive heuris-

tics and improvement heuristics. The descent heuristics always proceed from a

solution to a better one in its neighbourhood until no further gain is possible.

In contrast, methheuristics allow the consideration of non-improving and even

infeasible intermediate solutions.

Construction heuristics mainly includes savings algorithm, route-first cluster-

second, cluster-first route-second and insertion heuristics. Two types of improve-

ment algorithms can be applied to VRP solutions: intra-route heuristics and

inter-route heuristics.

Several heuristics are introduced below.

Savings Heuristic

Savings heuristic was proposed by Clarke & Wright (1964) to solve the problem

of which the number of vehicles is not fixed. The saving heuristic is succes-

sive approximation algorithm based on saving criteria. The main idea of sav-

ing heuristic is to generate n routes consisted of only one depot and one cus-

tomer point. Then calculate the saving cost for combing each of the two routes

sij = ci0 + coj − cij, (i, j = 1, 2, ..., nandi 6= j) and sort the values. According
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chosen point. All other nodes are joined to the depot and then aligned by in-

creasing the angles which are formed by the segment that connects the nodes to

the depot. It consists of two parts:

- Split: Feasible clusters are initiated formed rotating a ray centered at the

depot based on their capacity (figure 2.6);

- TSP: A vehicle routing is then obtained for each cluster by solving a TSP.

Figure 2.6: Clustering Process of Sweep Algorithm

2-Phase Algorithm

The problem is decomposed into its two natural components: (1) clustering of

vertices into feasible routes then use k − opt to optimize the routes respectively

and (2) reduce the total travel cost by swapping between routes and optimize

the routes with k − opt. The other 2-phase algorithm is proposed by Fisher &

Jaikumar (1981). The main idea is to solve a Generalized Assignment Problem

(GAP) to decide the feasible cluster and solve the TSP in each route.

Insertion Heuristics

Insertion heuristics are popular methods for solving a variety of vehicle routing

and scheduling problems. The main principle of insertion heuristics is to start

from a single node that is usually called a seed node and that forms the initial
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route from the depot. Other nodes are inserted one by one evaluating certain

functions to select a node and the place in the route for insertion.

2.2.3 Meta-heuristics

The field of metaheuristics for the application to combinatorial optimization prob-

lems is a rapidly growing field of research. In Blum & Roli (2003), the authors

give a thorough presentation of mateheuristic. To understand metaheuristic, we

first give a formal definition of deterministic combinatorial optimization problem

(DCOP)

Definition (Deterministic Combinatorial Optimization Problem) Given a fi-

nite set S of feasible solutions x, and a real valued cost function G(x), find

min
x∈S

G(x) (2.2)

The set S is usually called search space. Its structure may be made com-

plex by the presence of constraints on solutions. The solution x∗ with minimal

objective function value, that is, G(x∗) <= G(x)∀x ∈ S, is called a globally opti-

mal solution. For many DCOPs belonging to the class of NP-hard optimization

problems, algorithms that guarantee to find the optimal solution within bounded

time (exact algorithms) may require exponential computation time. Even for

small instances of a problem, exact algorithms may require too much computa-

tion time for practical purposes. That is why there is a great interest in designing

algorithms that find in a reasonable computation time a solution that is as good

as possible, but not necessarily optimal. We call these algorithms approximate

algorithms. Heuristics and metaheuristics are typical approximate algorithms.

Heuristics are basic approximate algorithms that search the solution space to

find a good solution. There are two types of heuristics: constractive algorithms

and local search algorithms. Constructive algorithms build a solution by joining

together pieces until a solution is complete. Local search algorithms start from a

pre-existent solution and try to improve it by modifying some of its components

in an appropriately defined neighborhood of current solution. The neighborhood

is defined as follows:

Definition A neighborhood structure is a function N : S → 2S that assigns

to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is called the neighborhood of
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s.

After knowing the definition of neighborhood, we can define the concept of

locally minimal solutions.

Definition A locally minimal solution (or local minimum) with respect to a

neighbourhood structure N is a solution ŝ such that ∀s ∈ mathcalNŝ : f(ŝ) <=

f(s). We call ŝ a strict locally minimal solution if f(ŝ) < f(s) ∀s ∈ N (ŝ)

In Bianchi et al. (2009), the authors give a definition of metaheuristic: In

computer science and mathematical optimization, a metaheuristic is a higher-

level procedure or heuristic designed to find, generate or select a heuristic that

may provide a sufficiently good solution to an optimization problem, especially

with incomplete or imperfect information of limited computation capacity. In re-

cent years, metaheuristics are emerging as successful alternatives to more classical

approaches also for solving optimization problems that include in their mathe-

matical formulation uncertain, stochastic, and dynamic information.

Blum & Roli (2003) lists the properties that characterize most metaheuristics:

- Metaheuristics are strategies that guide the search process.

- The goal is to efficiently explore the search space in order to find near-

optimal solutions.

- Techniques which constitute metaheuristic algorithms range from simple

local search procedures to complex learning processes.

- Metaheuristic algorithms are approximate and usually non-deterministic.

- Metaheuristics are not problem-specific.

There are a wide variety of metaheuristics. Some properties are use to classify

them, such as local search or global search, single-solution or population-based,

hybridization or memetic algorithms, parallel metaheuristcs and mature-inspired

metaheuristcs.

The most common and studied metaheuristics include Ant Colony Optimiza-

tion, Simulated Annealing , Tabu Search and Evolutionary Algorithm. Genetic

algorithm, evolutionary programming and memetic algorithm belong to EA. The

classification and main metaheuristics in each class is showed in figure 2.7.
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Figure 2.7: Classification of Metaheuristics

Tabu Search

Tabu Search was proposed by Glover (1989). The basic principle of TS is to

pursue local search whenever it encounters a local optimum by allowing non-

improving moves; cycling back to previously visited solutions is prevented by the

use of memories, called tabu lists, that record the recent history of the search, a

key idea that can be linked to Artificial Intelligence concepts.

Tabu search enhances the performance of local search by relaxing its basic

rule. First, at each step worsening moves can be accepted if no improving move

is available (like when the search is stuck at a strict local minimum). In addition,

prohibitions (henceforth the term tabu) are introduced to discourage the search

from coming back to previously-visited solutions.

The implementation of tabu search uses memory structures that describe the

visited solutions or user-provided sets of rules. If a potential solution has been
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routing problem. The algorithm combines the strengths of the well-known Nearest

Neighbor Search and Tabu Search into a two-stage procedure. More precisely,

Nearest Neighbor Search is used to construct initial routes in the first stage and

the Tabu Search is utilized to optimize the intra-route and the inter-route in

the second stage. Ngueveu et al. (2009) presents a hybridization of a perfect b-

matching within a tabu search frame-work for the m-Peripatetic Vehicle Routing

Problem. Liu et al. (2014) proposed a tabu search method combined with different

local search schemes including both feasible and infeasible local searches. Khalifa

et al. (2011) and Khalifa et al. (2010) applied tabu search to indoor navigation

problem to solve the itinerary optimization problem inside hypermarkets.

Simulated Annealing

SA is a stochastic relaxation technique, which has its origin in statistical me-

chanics. It is based on an analogy from the annealing process of solids, where

a solid is heated to a high temperature and gradually cooled in order for it to

crystallize in a low energy configuration. SA can be seen as one way of trying

to allow the basic dynamics of hill-climbing to also be able to escape local op-

tima of poor solution quality. SA guides the original local search method in the

following way. The solution S is accepted as the new current solution if ∆ ≤ 0,

where ∆ = f(x) − f(xi). To allow the search to escape a local optimum, moves

that increase the objective function value are accepted with a probability e−∆/T

if ∆ > 0, where T is a parameter called the ‘temperature’. The value of T varies

from a relatively large value to a small value close to zero. These values are con-

trolled by a cooling schedule, which specifies the initial, and temperature values

at each stage of the algorithm.

At iteration t of Simulated Annealing, a solution x is drawn randomly in

N(xi).

xi+1 =

{

x with probability pi

xi with probability 1− pi

where pi is usually a decreasing function of t and of ∆. It is common to define

pi as e−∆/T .

There are three common stopping criteria:
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- The value f ∗ of the incumbent x∗ has not decreased by at least π1% for at

least k1 consecutive cycle of T iterations;

- The number of accepted moves has been less than π2% of T for k2 consec-

utive cycles of T iterations;

- k3 of T iterations have been executed

In the literature, SA has been used to solve VRP and its variants since

1990s, such as Osman (1993) and Chiang & Russell (1996). Vincent et al. (2010)

proposed a SA based heuristic for solving location routing problem. Tavakkoli-

Moghaddam et al. (2011) proposed a new mathematical model for solving VRPTW

with SA. In BañOs et al. (2013), the author deals with a multi-objective variant

of the VRPTW and proposed a multi-objective procedure based on SA called

Multiple Temperature Pareto Simulated Annealing.

Ant Colony Algorithm

The first ant system for VRP has been designed very recently by Chen & Ting

(2006), who considered the most elementary version of the problem: CVRP.

For more complex versions of VRP, Gajpal & Abad (2009) have developed

a multiple ant colony system for VRPTW (MACS-VRPTW) which is organized

with a hierarchy of artificial ant colonies designed to successively optimize a

multiple objective function: the first colony minimizes the number of vehicles

while the second colony minimizes the traveled distances. Cooperation between

colonies is performed by exchanging information through pheromone updating.

There are two basic ant system phases: construction of vehicle routes and

trail update. The AS algorithm is explained here.

• Ant System Algorithm

After initializing the AS, the two basic steps construction of vehicle routes

and trail update, are repeated for a number of iterations. Concerning the initial

placement of the artificial ants it was found that the number of ants should be

equal at each customer at the beginning of an iteration. The 2-opt-heuristic (it

is an exhaustive exploration of all the permutations obtainable by exchanging

2 cities) is used to shorten the vehicle routes generated by the artificial ants,

considerably improves the solution quality. In addition to this straight forward
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local search we also introduce candidate lists for the selection of customers which

are determined in the initialization phase of the algorithm. For each location dij

we sort V − {vi} according to increasing distances dij to obtain the candidate

list. The proposed AS for the CVRP can be described by the following schematic

algorithm:

• Initialize.

• For Imax iterations do:

– For all ants generate a new solution using Formula 2.3 and the candi-

date lists

– Improve all vehicle routes using the 2-opt-heuristic

– Update the pheromone trails using Formula 2.4

• Construction of Vehicle Routes.

To solve the VRP, the artificial ants construct solutions by successively choosing

cities to visit, until each city has been visited. Whenever the choice of another

city would lead to an unfeasible solution for reasons of vehicle capacity or total

route length, the depot is chosen and a new tour is started. For the selection

of a (not yet visited) city, two aspects are taken into account: how good was

the choice of that city, an information that is stored in the pheromone trails τij

is associated with each arc (vi, vj), and how promising is the choice of that city.

This latter measure of desirability, called visibility and denoted by ηij, is the local

heuristic function mentioned above.

With Ω = {vj ∈ V : vj is feasible to be visited}
⋃

{v0}, city vj is selected to

be visited as follows:

pij =

{

[τij ]
α[ηij ]

β

∑
k∈Ω[τik]α[ηik]β

if vj ∈ Ω

0 otherwise
(2.3)

This probability distribution is biased by the parameters α and β that de-

termine the relative influence of the trails and the visibility, respectively. The

visibility is defined as the reciprocal of the distance, and the selection probability

is then further extended by problem specific information. There, the inclusion of

savings and capacity utilization both lead to better results. On the other hand,
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the latter is relative costly in terms of computation time (as it has to be calcu-

lated in each step of an iteration) and will therefore not be used in this paper.

Thus, we introduce the parameters f and g, and use the following parametrical

saving function for the visibility: ηij = di0 + d0jgdij + f |di0d0j|.

• Trail Update

After an artificial ant has constructed a feasible solution, the pheromone trails

are laid depending on the objective value of the solution. This update rule is as

follows:

τnewij = pτ oldij +
σ1
∑

µ=1

∆τµij + σ∆τ ∗ij (2.4)

where p is the trail persistence (with 0 ≤ ρ ≤ 1), thus the trail evaporation is

given by (1− ρ). Only if arc (vi, vj) was used by the µ-th best ant, the pheromone

trail is increased by a quantity ∆τµij which is then equal to (σµ)/Lµ, and zero

otherwise (cf. second term in 2.4). In addition to that, all arcs belonging to the

so far best solution (objective value L∗) are emphasized as if σ elitist ants had

used them. Thus, each elitist ant increases the trail intensity by an amount ∆τ ∗ij

that is equal to 1/L∗ if arc (vi, vj) belongs to the so far best solution, and zero

otherwise (cf. third term in 2.4).

There are a large number of literature using ant colony algorithm to solve

VRP. Yu & Yang (2011) proposed an improved ant colony optimization to solve

period vehicle routing problem with time window and get better results than best-

know solutions. Gajpal & Abad (2009) use a multi-ant colony system to solve

vehicle routing problem with backhauls with a new construction rule and two

multi-route local search schemes. Yu et al. (2009) use an ant colony optimization

possessing a new strategy to update the increased pheromone. Rizzoli et al.

(2007) discusses the applications of ACO to the different real-world problem such

as supermarket chain, distribution company and freight distribution.

Evolutionary Algorithms

Among the set of search and optimization techniques, the development of Evolu-

tionary Algorithms has been very important in the last decades. EA is a set of
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the results show the advantages of EA in large-scale Combinatorial optimization

problem.

GA is the most important and most applied algorithm in the family of EA.

We will give a detailed description of GA in chapter 4.

2.3 Similar Variants to Our Problem

In this section, we focused on the variants of VRP that share characteristics with

our problem, including the priority of customers, limitation of fleet, multi-depot

and multi-period VRP. We will present the problem which are similar to ours in

one or more respects.

2.3.1 Multi-Period Vehicle Routing Problem

In classical VRPs, typically the planning period is a single day. VRP of multi-

period considers a planning horizon consisted of many period. In this way, the

vehicles should execute many tours in the plan. There are two main types of

MPVEP: the Periodic Vehicle Routing Problem (PVRP) and the Inventory Rout-

ing Problem (IRP). In the PVRP, each customer may be served more than once.

The objective is to minimize the cost while serve all customers for a certain num-

ber of times. IRP has become a spot of research during last decades. It is a more

global approach than the PVRP. It integrates inventory management, vehicle

routing and delivery scheduling decisions (Coelho et al., 2013).

Prodhon (2008) combines the Location-Routing Problem (LRP) and PVRP

into the Periodic LRP and proposed a metaheuristic based on Randomized Ex-

tended Clarke and Wright Algorithm and tried to take into consideration several

decision levels when making a choice during the construction of a solution. Alonso

et al. (2008) and Prodhon (2011) both choose tabu search for PVRP. Exact al-

gorithms are often used for multi-period VRP in the literature. Mourgaya &

Vanderbeck (2007) use a truncated column generation procedure followed by a

rounding heuristic to find approximate solutions. This method can only deal with

problems with 50-80 customers over five working days. Dayarian et al. (2015) pro-

posed a mathematical model based on a two-stage a priori optimization paradigm.

The first stage is solved by a branch-and-price approach and the subproblem is

solved by a dynamic programming based label-correcting algorithm. The PVRP
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is reviewed in Francis et al. (2008). Exact methods Baldacci et al. (2011) are

able to solve some instances with up to 100 customers and 6 time periods. Sev-

eral efficient neighborhood-centered searches have been designed Cordeau et al.

(2001) and Cordeau & Maischberger (2012). The population-based approach of

Alegre et al. (2007) dedicated to large temporal horizons, focuses on assignment

optimization, while using constructive methods to create routes.

2.3.2 Multi-Depot Vehicle Routing Problem

A company may have several depots from which the vehicle can serve its cus-

tomers. If the customers are clustered around depots, then the distribution prob-

lem should be modeled as a set of independent VRPs. However, if the customers

and the depots are intermingled then a Multi-Depot Vehicle Routing Problem

should be solved. The MDVRP deals with a number of depots. Each vehicle is

assigned to a single depot, which is generally both the origin and the destination

of the vehicle’s route.

A review on MDVRP is given in Montoya-Torres et al. (2015). Exact algo-

rithms and heuristics are used to solve the MDVRP. For example, branch-and-cut

algorithms were proposed by Benavent & Martínez (2013) and Braekers et al.

(2014).

Salhi & Sari (1997) proposed a multi-level composite heuristic which sharply

decrease the computing time. This method was tested on different problems in

Salhi & Nagy (1999) and Nagy & Salhi (2005). Jin et al. (2004) modeled the

MDVRP as a binary programming problem and proposed a two-stage approach

that decomposes and solves the problem into two independent subproblems: as-

signment and routing. A variable neighborhood search has been applied into

MDVRP for the first time in Polacek et al. (2004). Most of the existed approach

for multi-depot can be divided into two stage called ’cluster first, route second’:

assignment and routing, then solve the two subproblems separately. Lim & Wang

(2005) proposed a one-stage methodology and compared to the traditional two-

stage method and the results show that the new one-stage algorithm outperforms

the two-stage methods.

Various meta-heuristics have been studied for MDVRP. Among them, we can

highlight the SA algorithms in Wu et al. (2002) and Lim & Zhu (2006), the

Variable Neighborhood Search in Polacek et al. (2004), Tabu Search algorithm
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of Lim & Wang (2005) and Aras et al. (2011). GA has been proposed in Hwang

(2000) and Villegas et al. (2010). Yu et al. (2011) developed a parallel improved

ant colony optimization.

2.3.3 Vehicle Routing Problem with Time Window

VRP with time windows (VRPTW) is the most extensively studied VRP vari-

ant. Each depot or customer is associated to an available time duration. Due

to the restriction on problem scale that the exact methods can solve, a lot of

researches have been done to heuristics for VRPTW. Garcia-Najera & Bullinaria

(2011) proposed and analyzed a novel multi-objective evolutionary algorithm,

which incorporates methods for measuring the similarity of solutions, to solve

the VRPTW. Macedo et al. (2011) considers the VRP with time windows and

multiple routes. The authors proposed a new exact algorithm for the problem

relies on a pseudo-polynomial network flow model. A Tabu Search method is pro-

posed in Taş et al. (2013) to solve a VRP with soft time windows and stochastic

travel times with a post-optimization method.

As for limited fleet number, there is little research in this type of VRP. In a

typical VRP, the objective is to minimize the vehicle used to fulfill all the cus-

tomer visits. In a variant with limited fleet, the number of vehicles is limited.

The primary objective is to maximize the number of visited customers. There

are not many researches which combine the above characteristics together. To

our information, Tricoire (2007) solve the multi-period and multi-depot routing

problem for service technicians with memetic algorithm; Vidal et al. (2013) in-

troduces a hybrid genetic search with advanced diversity control which can be

applied to solve MDVRPTW and MPVRPTW.

A lot of researches have been done to solve VRP variants focused on the prac-

tical usage of the real world problems. Results from these researches show that

compared to other metaheuristic algorithms, GA has advantages in both aspect

of performance and final result on time constraints and limited compute ability.

There exist some other metaheuristics able to find better solution than GA. How-

ever, GA make a balance between the solution quality and computing time. Vaira

& Kurasova (2014) proposed a genetic algorithm based on insertion heuristics for

the vehicle routing problem with constraints. The author uses random insertion

heuristic to get initial solutions and to reconstruct the existing ones. Tasan &
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Gen (2012) proposes a GA based approach to solve the VRP with simultaneous

pick-up and deliveries. A genetic algorithm for the multi-compartment vehicle

routing problem with continously flexible compartment sizes is proposed in Koch

et al. (2016). The paper Lau et al. (2010) deals with the optimization of VRP

of multi-depot, multi-customers and multi-products. They propose a stochastic

search technique to dynamically adjust the crossover rate and mutation rate af-

ter a certain generations. Genetic algorithm is frequently used to solve VRPTW

thanks to its ability to always find feasible solution. Genetic algorithms for multi-

objective VRPTW are discussed in Ombuki et al. (2006) and Ghoseiri & Ghan-

nadpour (2010). The former takes advantage of the Pareto ranking technique for

evaluating the solution in a balanced way. The latter presents a new model and

combined goal programming with genetic algorithm.

Concerning the multi-period multi-depot vehicle routing problem with time

window, not many works appear in the literature. Chiu et al. (2006) presented a

two-phase heuristic method. Bostel et al. (2008) solve the problem of the planning

and routing of technician visits to customers in the field, for maintenance or

service logitics acivities undertaken by utilities by a memetic algorithm and a

column generation/branch and bound heuristic.

2.4 Conclusion

This chapter has presented the variants of vehicle routing problem. The main

variants of VRP are presented and the existed algorithms are introduced for

solving the problem. The similar problems to our problem studied are discussed

to get a clear vision for the addressed problem. There are many studies on

different variants of VRPs in the literature. However, few of these studies can be

used directly to solve the multi-depot and multi-period VRP with time window.

Therefore, it is necessary to carry out a more in-depth study of the question raised

in this dissertation.
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3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

In this chapter, we first give a thorough presentation of the addressed prob-

lem, including the description of real-world problem and the mathematical model.

Then an investigation of local search is done to solve the problem as the basic

knowledge for the following research. We will present a series of heuristics to con-

struct and improve the multi-depot and multi-period field service routing problem

with time window and fixed fleet. These heuristics could produce the feasible so-

lutions which could serve as the start point for the metaheuristics search for the

following chapter. In addition, we need a quick heuristic for get a reasonable and

feasible solution in the actual production life.

3.1 Problem Formalization

Real-life VRPs arise daily in a variety of different contexts and applications, and

they usually introduce certain complications to the basic VRP that has been

addressed extensively in the literature. Most of the complications are related to

the following aspects:

• Planning horizon: in basic VRP, a single time period is addressed while in

real-life problems, routes are planned for a given planning horizon that may

consist of multiple periods. A customer may be served only over a subset

of these periods or over more than one period.

• Customer: in real-life problems, different types of services are requested

from the customers.

• Depot: there can be multiple depots in a large distribution network. A

customer may be served by all the depots or only by a subset.

• Driver: in most real-life problems, distributors need to consider the drivers’

working regulations for example the working shift and breaks. In addition,

specific qualifications may be required to drive particular vehicles.

As the problem we study is a practical problem, it has differences in the above

points with the basic problem. In the following part of this section, details will

be given to understand the problem we studied.
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3.1.1 Problem Description

We address the problem of the planning and routing of technician visits to cus-

tomers in the field, for maintenance or service logistics activities undertaken by

utilities. Field service routing planning and optimization is a new challenge in

logistics for the service sector and especially for utility companies in the energy

(gas, electricity), telecommunications and water distribution areas. It generates

new variations of combinatorial optimization problems in the fields of manpower

scheduling and vehicle routing. This activity consists in planning the work allo-

cations and schedules of commercial or technical personnel in the field, over a set

of time periods (usually workdays) to visit industrial facilities or customers for

different types of activity: contracting, equipment maintenance or replacement,

customer surveys. The challenges are many: to increase productivity and reduce

costs, by increasing the number of visited clients, while reducing the time and

cost of transportation to reach them; to increase customer service by setting ap-

pointments for home visits and to achieve an efficient internal organization and

appropriate human resources planning. The demand for services may result from

various processes and be generated by the company itself (for example the main-

tenance of equipment), or by the clients through a call center (for example repair

of emergency reasons). The overall objectives of the company are:

• to provide and improve a good customer service, by adequately answering

the customer requests for visits and meeting customer appointments;

• to satisfy the internal needs for customers visits for maintenance or com-

mercial activities;

• to achieve a better productivity by reducing transportation time and costs

and increasing time spent by technicians at customer sites;

• to implement an efficient company organization , involving better technician

schedules.

The formal description of the problem is given as follows:

We consider a multiperiod planning horizon composed of a given number of

subsequent days. For each day, a given number of technicians is available for

service, each with a known starting and ending location. Demands for visits to
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customers are known at the beginning of the horizon. They may have been gen-

erated by the company or by customer requests. Technicians undertake routes

between their starting and ending points to visit a number of clients with their

vehicle. The goal concerns the minimization of transportation distances while

satisfying all the demands for visits over the planning horizon, and meeting other

constraints such as time windows and compatible period. The duration of tech-

nician visits at the customer sites is considered as deterministic and known.

This problem can be assimilated as a VRP. It is related but not identical to

several variations such as multiple traveling salesman problem or the periodic

vehicle routing problem. The characteristics will be presented below.

- In our problem, what vehicles delivery is service instead of merchandise.

Therefore, the constraint of capacity is out of consideration. However, the

total duration of each tour is limited by the length of a working day. and

this is in practice a strong constraint. In addition, some work on capacity

problems also considers the available time. Nevertheless, the capacity is

generally the strongest constraint, and measuring the time consumed serves

mainly to verify that the windows of time are respected.

- We deal with the case of multi-period with a planning horizon of several

days. However, these trips are service rounds, and each request must be

satisfied only once. It is different to the traditional multi-period problems

such as the IRP. A validity period is here associated with each request, and

represents a set of days of the horizon during which the demand can be

satisfied.

- The size of the fleet is limited, and this limit is a strong constraint. When

a tour is performed by a technician, the number of technicians available on

day t is the upper bound of the number of tours associated with day t. The

availabilities of technicians are known a priori, the total number of possible

tours over the whole horizon is known. We introduce here the notion of

“resource” (Tricoire, 2006), associated with one day and one technician (ve-

hicle). It represents the availability of one technician in one work period.

Each resource can be used at most once. It means that each technician

carries out no more than one tour every work day. The total number of
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available resources is the upper bound of the total number of tours in a

solution.

- The depot is not unique. Each vehicle has its start point and end point and

potentially different to others’.

- The customers are of different categories: obligatory customers and optional

customers as explained in section 1.3.

We differentiate the constraints according to two categories: constraints on

demands, and constraints on resources, which must be respected by a tour so

that it can be realized.

3.1.2 Constraints on Demands

We are going to give an exhaustive list of the constraints that are applied to

demands:

- Each obligatory demands should be served once and only once within the

planning horizon.

- For sufficient problems, the optional request should served once and only

once during the whole time horizon. For insufficient problems, each optional

request should be met at most once.

- Each request is associated to a period of validation. The customer cannot be

met unless we serve him within the given periods. This period is determined

respectively to each request. It can be vary from one working day to the

whole horizon.

- Some requests have a time window during their available period.

3.1.3 Constraints on Vehicles and Periods

The constraints on resources ensure that the tours are realizable.

- Each resource vehicle - working day can be used at most once. It means

that each technician carries out no more than one tour every day.
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- The depart point and the arrival point are the same. That is to say, a

technician should return to the depot where he start after the tour to cus-

tomers’.

- The duration of one period is limited by the work time of technicians. It

could be seen as the time window of the arrival point.

3.2 Mathematical Model

We have presented the problem we focus in this thesis in previous sections. For

having a more clear view and perceive, we will give the mathematical description

to both the two situations (sufficient fleet and insufficient fleet) stated above.

The mathematical model is associated to the real problem and the notations in

it will be used in the following chapters.

Let G = (V,A) be a directed graph. A set of vehicles K offer service to

customers. There are two types of customers: obligatory customers with time

windows and optional customers without time windows. There are some points

we should pay attention to:

- There is no arc between two depart points or two arrival points.

- There is no arc whose destination is a depart point or start from an arrival

point.

- Every arrival point is associated to a time window with is the working time

limitation of the resource.

- For those optional customers who have no time windows, it can be seen

that they have a time window of the total working time of the period.

We now give the notations for the mathematical model of the problem. They

will be used all through this thesis.

- K set of vehicles (technicians) to serve customers, |K| = m.

- L set of periods consisting in the time horizon, |L| = w.

- N set of all customer requests.
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- A set of obligatory customers.

- Q set of optional customers.

- O set of departure points and arrival points; the departure point and arrival

point of vehicle k is ok.

- V set of all nodes in the graph of the problem. V = A ∪Q ∪O.

- [ei, li] time window of customer i.

- σi service time of customer i.

- τij travel time from customer i to j.

- cij transportation cost from customer i to j.

- qli binary constant, the value is 1 if customer i is compatible with period l,

0 if not.

- M a large number, M ∈ R+.

We define variables:

- xkl
ij binary decision variables, take value 1 if and only if vehicle k in period

l visits vj immediately after vi.

- ykli binary decision variables, take value 1 if and only if vehicle k visits vi

in period l.

- tkli arrival time at customer i by technician k in time period l.

- bkli service starting time at customer i by technician k in time period l.

For the situation of sufficient fleet, the objective is to minimize the total cost

of the tours.

Minimize
∑

vi∈V

∑

vj∈V

m
∑

k=1

w
∑

l=1

cijx
kl
ij (3.1)

Subject to:

∑

i∈V

xkl
oki −

∑

i∈V

xkl
iok = 0 ∀k ∈ K, ∀l ∈ L (3.2)
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3. HEURISTICS OF CONSTRUCTION AND IMPROVEMENT

∑

k∈K,l∈L

ykli = 1 ∀i ∈ N (3.3)

yklj −
∑

i∈V

xkl
ij = 0 ∀k ∈ K, ∀l ∈ L, ∀j ∈ N (3.4)

yklj −
∑

i∈V

xkl
ji = 0 ∀k ∈ K, ∀l ∈ L, ∀j ∈ N (3.5)

ykli ≤ qli ∀i ∈ A, k ∈ K (3.6)

bkli + σi + τij −M(1− xkl
ij ) ≤ bklj ∀i, j ∈ V (3.7)

bkli +M(1− ykli ) ≥ ei ∀i ∈ V (3.8)

bkli −M(1− ykli ) ≤ li ∀i ∈ V (3.9)

∑

i∈V/S

∑

j∈S

xkl
ij ≥ yklv ∀v ∈ S, ∀S ⊆ V, ∀k ∈ K, ∀l ∈ L (3.10)

xkl
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K, ∀l ∈ L (3.11)

yklij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K, ∀l ∈ L (3.12)

bkli , t
kl
i ≥ 0 ∀i ∈ V, ∀k ∈ K, ∀l ∈ L (3.13)

Equation 3.2 ensures that if an arc depart from a depart point of a certain

resource, there must be an arc enter the same point as arrival point of a tour.

Equation 3.3 impose the satisfaction of every customer request. Equation 3.4 and

equation 3.5 are the in-degree and out-degree constraints. The compatibility be-

tween customer request and the period of resource is guaranteed by equation 3.6.

Equation 3.7 impose restriction on the start time at each customer’s. Equation

3.8 and equation 3.9 assure the respect of time window of each customer request.

Equation 3.10 ensure the elimination of subtour.
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3.3 Heuristic of Construction

For the situation with insufficient number of vehicles, the objective is to max-

imize the number of intervention during the tour:

Maximize
∑

i∈Q

m
∑

k∈K

w
∑

l∈L

ykli (3.14)

We modified the constraint 3.3 into two constraints that ensure the obligatory

customer is served exactly one time and the optional customer is serve no more

that one time.

∑

ykli = 1, ∀i ∈ A (3.15)

∑

ykli ≤ 1, ∀i ∈ Q (3.16)

The other constraints will not change in the insufficient situation.

3.3 Heuristic of Construction

Heuristic approaches have been well studied over the last decade in the operation

research and artificial intelligence fields. With the increase in computing power,

the heuristics become more complex and more advanced. In this section, we will

present a family of heuristics for construction and improvement of solutions for

the addressed multi-period field service vehicle routing problems with time win-

dow and limited fleet. These heuristics permit to obtain the solutions which are

the base for the meta-heuristics in the following chapters. The meta-heuristics

require a very fast heuristic for the intensive use when generating new solutions.

Furthermore, in an industrial context, the enterprises appreciate having a very

fast method (a few seconds at most) of solving this problem. These are the three

reasons that the study of heuristics is necessary. The simple heuristics proposed

between 1960 and 1990 are used to the standard construction and improvement

procedures today. These methods perform a relatively limited exploration of

search space and generally produce good quality solutions within modest com-

puting time. Most of these heuristics can be extended to adapt to the diverse

constraints encountered in real-life contexts.
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3. HEURISTICS OF CONSTRUCTION AND IMPROVEMENT

We will start with the heuristic we use to construct the solution. Then we

will give the details for a variety of improve heuristics for the generated solutions.

All of the methods have been tested and the result of experiments are discussed

in the last section.

The main techniques for constructing VRP solutions are savings criterion and

insertion cost. The former merges existing routes and the latter assign vertices

to each vehicle routes (Laporte et al., 2000).

Most of the existed methods for a multi-period VRP divide the problem into

two problems. The first problem is to assign all the customers to each day. The

second problem is to solve the sub-problems in each period of the horizon. In this

section, we propose a global method of construction the solutions for multi-period

vehicle routing problem based on best insertion methods.

Insertion heuristics are popular methods for solving a variety of vehicle routing

and scheduling problem. Insertion heuristics were first introduced for a travelling

salesman problem and belong to a group of route construction algorithms (Camp-

bell & Savelsbergh, 2004). Insertion heuristics construct a feasible solution, for

example, a set of feasible routes, by repeatedly and greedily inserting unarranged

customer into a partially constructed feasible solution. This approach is popular

because it is fast, it produces decent solutions and can be easily extended to

handle complication constraints.

The basic insertion heuristic for the standard vehicle routing problem has

a time complexity of O(n3) (Laporte et al., 2000). The main principle of an

insertion heuristic is to start from a single node that is usually called a seed

node and that forms the initial route from depot. Other nodes are inserted one

by one evaluating certain functions to a select node and the place in the route

for insertion. The insertion heuristic approaches are categorized by the methods

used for the node selection to be inserted: random insertion, nearest insertion,

farthest insertion and cheapest insertion.

We proposed a method for a global construction of the solutions for our

problems, based on best insertion (Solomon, 1987). The procedure is easy and

straightforward. The method tries to insert the customer between all the edges

in the current route. It selects the edge that has the lowest additional insertion

cost. To adapt our addressed multi-depot and multi-period problem with time
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3.3 Heuristic of Construction

window, the feasibility check will be executed before each insertion for all con-

straints. Only feasible insertions will be accepted. We will present the adaptation

that we made to the best insertion approach.

3.3.1 Adapt to Compatibility Between Requests and Pe-

riod

What our problem studied in this dissertation mainly differs from the traditional

VRPTW is that our problem is multi-period and multi-depot. In best insertion

algorithm, we try to insert each customer into every tour so that we can find the

insertion with minimum cost, which is the ‘best insertion’. In our situation, it is

essential to consider the constraint on the period for each request. There exist

available periods for requests. In addition, a vehicle has not to execute a service

tour in every period during the horizon. This incompatibility between certain

requests and certain tours is a very strong constraint.

We call the pair of {vehicle-period} a resource. It represents the availability

of one technician in one work period. Each resource can be used at most once.

It means that each technician carries out no more than one tour every work day.

We note the resource executed by the vehicle k in the period l Rk
l . It can be also

called a tour. We define the compatibility between a tour and a customer request:

the tour Rk
l is compatible with the customer request v if the period l is included

in the available periods of the customer v. For a customer request v of which the

available periods during the planning horizon is E, the list of compatible tour is

the set {Rk
l |l ∈ E}. The method then extends very simply. In classic version of

best insertion, we calculate the cost of insertion of a request into each tour. Here

we consider only the insertions in its compatible tour. At each step, the least

costly feasible insertion is carried out, and compatibility constitutes one of the

feasibility criteria. In addition to this, there are two other criterion of feasibility:

- Respect of the time window.

- Non-exceeding of the maximum duration of a tour (working hours of a work

day), which can be assimilated to a time window on the arrival point.

These two conditions should be confirmed before a feasible insertion.
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3.3.2 Adapt to Priority of Customers

In our problem, there are two categories of customers: obligatory customers who

are more important and optional customers who are less important. That is to

say, missing an obligatory customer needs to pay more price than missing an

optional customer. With the traditional best insertion method, if we insert first

the optional customers, it is possible that the obligatory customers can not be

inserted in its right period and time interval. However, the obligatory customers

must be inserted. For not missing the critic requests, we propose a heuristic

with two steps. Firstly, we insert the obligatory customers into the tours with

the constructive heuristic based on best insertion. Secondly, we execute a second

time insertion heuristic for the optional customers which are less constrained and

easier to insert to complete the tours.

Algorithm 1 describe the pseudo-code of the method we use. An insertion

is determined by for variables: customer, vehicle, period, location in a tour,

I = I(c, d, p, l). Before execute an insertion, its feasibility should be determined.

We consider here the compatibility of period, the respect of time window and the

duration when return to the depot.

Figure 3.1 shows the insertion steps of a problem with two depots (two ve-

hicles) and the planning horizon consists two periods. In this figure, square

represents the depot; circle in solid line represents the customer location that

already inserted; dotted circle is the customer need to be inserted here and now.

Step a shows the current solution which is not complete. Step b shows all the

possible insertions among all arcs in current solution. After found the insertion

with minimum cost, the unplanned customer is inserted to the planning tours in

step c.

3.3.3 Algorithm for Construction

The algorithm of constructive heuristic is shown in Algorithm 1. R(dR, pR) rep-

resents the resource of depot dR and period pR. Insertion(d,R) is the insertion

to position d in tour R. To determine whether a solution is feasible, we need

to verify: (1) all customers are served on their compatible period qli = 1; (2)

violating time of time window tw(r) = 0; (3) duration of each vehicle for each

period dt(r) < duration the maximum working time for a period. Insertions
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Figure 3.1: Best Insertion Process
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which meet these conditions are feasible insertions. This procedure is executed

two times: firstly, we insert the obligatory customers then we execute a second

time insertion heuristic for the optional customer.

Algorithm 1 Heuristic of Construction Based on Best Insertion
1: Au = A set of unassigned obligatory customers
2: Qu = Q set of unassigned optional customers
3: while Au 6= ∅ do
4: a = select a random customer from Au

5: BestInsertion(a) ← FirstFeasibleInsertion(a)
6: BestCost ← Cost(BestInsertion)
7: for a ∈ Au do
8: for R ∈ CompatibleResource(a) do
9: for d location in R do

10: if Cost(FeasibleInsertion(d,R))<BestCost then
11: BestInsertion(a) ← FeasibleInsertion(d, T )
12: BestCost ← Cost(BestInsertion)
13: end if
14: end for
15: end for
16: end for
17: Execute BestInsertion of a
18: Au ← Au − a
19: end while
20: Repeat the heuristic for Qu

3.4 Heuristic for Improvement

Most constructive procedures are followed by an improvement phase. In this

section, we define several kinds of neighborhood search operators, then we will

use these neighborhood to compose the improvement heuristics.

Improvement heuristics for VRP operate on each vehicle route taken sepa-

rately, or on several routes at a time. The improvement heuristics start from

any feasible solution and improve it by successive small changes. We can see

these improvements as a neighbourhood search process, where each route has an

associated neighbourhood of adjacent routes.
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3.4 Heuristic for Improvement

3.4.1 Local Search Heuristic

An improvement heuristics is a compound heuristic, in which the improvement

algorithm is the second phase of the overall compound heuristic. The neighbour-

hood of a given solution is the set of feasible solutions that are alike the given

solution. For example, in TSP, it is possible to define as a neighbourhood of a

given tour all the tours that can be generated from that one by applying a 2-

opt iteration. For a multi-depot and multi-period VRP, there are more than one

potential routes, so we will classify the neighborhood into two types: inter-route

improvement and intra-route improvement.

3.4.1.1 Intra-route improvement

2-opt Search

Most improvement procedures can be described in terms of λ−opt mechanism. λ

edges are removed from the tour and the λ remaining segments are reconnected in

all possible ways. This local search changes at most λ components of the solution.

If any profitable reconnection (the first or the best) is identified, it is implemented.

The procedure stops at a local minimum when no further improvements can be

obtained. We choose the 2− opt for the intra-route improvement. Checking the

λ− optimality of a solution can be achieved in O(nλ) time (Laporte, 1992). The

neighbors considered by 2− opt are not too large to compute. The computation

time is reasonable. The 3− opt is not suitable to our problem because the results

of a 3 − opt change a lot of the direction and the sequence of the arcs in the

routes. It is very easy to cause the violation to the time windows. In addition

,the running time will be substantially grow.

We use 2−optSwap(route, i, k) to represent a swap of 2−opt. In this function,

route is the route whose neighbors we are searching, i and k are two arcs to

exchange. Figure 3.2 gives a example of a 2-opt swap in which i = 3, k = 5. That

means the exchange to change the arc C→D and arc E→F to arc C→E and arc

D→F. On account of the direction of arcs, arc D→E is reversed to arc E→D.

Each (i, k) determines a neighbour.

The algorithm of the 2 − opt neighbor search is presented in Algorithm 2.

It is worth noted that feasibility check should be verified before every move is
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accepted. Otherwise, there will be violations to the constraints during the search

process.

Figure 3.2: A 2-opt swap with i = 3, k = 5

Algorithm 2 2-opt Local Search Algorithm
1: repeat
2: BestExchange ←FirstPossibleExchange
3: BestCost ←Cost(BestExchange)
4: for route ∈ T do
5: for i ∈ arcs(T ) do
6: for k ∈ arcs(T ) do
7: if 2-optSwap(route, i, k) is a feasible move and Cost(2-

optSwap(route, i, k))<BestCost then
8: BestExchange ←2-optSwap(route, i, k)
9: end if

10: end for
11: end for
12: end for
13: if BestCost<CurrentCost then
14: Execute BestExchange
15: end if
16: until No more improvement is made

λ-interchange

λ-interchange mechanism was introduced for the capacitated clustering problem.

It is based on customer interchange between sets of vehicle routes and has been

successfully implemented. The local search procedure is conducted by interchang-

ing customer nodes between routes. For a chosen pair of routes, the searching
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order for the customers to be interchanged needs to be defined, either systemat-

ically or randomly. We consider the case of λ = 2. For example, the operator

(1,2) on routes (r1, r2) indicates a shift of two customers from r1 to r2 and one

customer from r2 to r1. The other operators are defined similarly. For a given

operator, the customers are considered sequentially along the routes. In both

the shift and interchange process, only improved solutions are accepted if the

moves results in the reduction of the total cost. There are two strategies to select

between candidate solutions:

- The first-best (FB) strategy will select the first solution in Nλ(S), the neigh-

bourhood of the current solution, that results in a decrease in cost.

- The gloabl-best (GB) strategy will search all solutions in Nλ(S), where

Nλ(S) means the neighbourhood of current solution under λ-interchange

operation. GB will select the one, which will result in the maximum decrease

in cost.

The procedure of the λ-interchange local search descent is shown in algorithm

3. The result is dependent on the initial solution and GB usually achieves better

results than FB because it keeps track of all the improving moves but incurs more

expensive computation time.

Algorithm 3 Local Search Descent Method
1: Obtain a feasible solution S.
2: repeat
3: Select a solution S ′ ∈ Nλ(S).
4: if Cost(S ′) < Cost(S) then
5: Accept S ′ as S.
6: end if
7: until Neighbourhood of S Nλ(S) has been completely searched

3.4.1.2 Inter-routes improvement

Van Breedam (1994) classifies the improvement operations as string cross, string

exchange, string relocation and string mix. String cross exchanges two arcs from

two different routes. Two strings of vertices are exchanged by crossing two edges

of two different routes. This operation is not suitable to our problem because each
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vehicle has its own depart point and arrival point. String exchange exchanges the

sequences of k nodes between two routes. In our problem, the constraint on

the period require the nodes can only be exchanged to their compatible routes.

String relocation transfer a sequence of k nodes from a route to another route

and string mix selects the best possible movement between string exchange and

string relocation. To evaluate these moves, two local improvement strategies are

used: first improvement (FI) which consists of implementing the first move that

improves the objective function and best improvement (BI) which evaluates all

the possible moves and implements the best one.

Figure 3.3: Operation Classification of Van Breedam

In (Kindervater & Savelsbergh, 1997), tours are not considered in isolation,

so paths and customers are exchanged between different tours. The heuristics

include customer relocation, crossover and customer exchange.

- A customer located at on route is changed to another one.

- Two routes are mixed at one point.

- Two customers of two different routes are interchanged between the two

routes.

Figure 3.4, figure 3.5 and figure 3.6 show the heuristics of customer relocation,

customer crossover and customer exchange.

3.4.2 Local Search Heuristics for MDMPVRPTW

We proposed a series of local search heuristics for the problem studied in this

dissertation based on the local search heuristics discussed in the previous section.

The heuristic is very essential for a fast progression toward high-quality solutions.
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Figure 3.4: Customer Relocation

Figure 3.5: Customer Crossover

Figure 3.6: Customer Exchange

These procedures hold up the majority of the overall computational effort, such

that high computational efficiency is required. We need a suitable choice of

neighbourhood, restricted to relevant moves while being large enough to allow

some structural solution changes.

Taking into account the specificity of our problem, in addition to the com-

monly used methods, we propose a procedure focus on the improvement of routes

and periods. A routing plan of the problem is a set of routes for each vehicle-

period combination. Let v be a customer request and T (v) is the route containing

v in the current solution. For customer v1, let v2 be a neighbor customer of v1.

The neighborhood of v1 is defined as the gn closest customers of v1. g is a gran-

ularity threshold which g ∈ [0, 1] restricting the search to nearby customers. Let

v3 and v4 represent respectively the successors of v1 in T (v1) and v2 in T (v2) if

exist. We propose nine moves to apply on the solutions. Figure 3.13 to figure

3.15 shows the neighborhood searches in the routes.
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- H1: If v1 is a customer visit, remove v1 and place it after v2.

- H2: If v1 and v3 are customer visits, remove them, then place v1 and v3

after v2.

- H3: If u and x are customer visits, remove them, then place v3 and v1 after

v2.

- H4: If v1 and v2 are customer visits, swap v1 and v2.

- H5: If v1, v2 and v3 are customer visits, swap v1 and v3 with v2.

- H6: If v1, v2, v3 and v4 are customer visits, swap v1 and v3 with v2 and v4.

- H7: If T (v1) = T (v2), replace (v1, v3) and (v2, v4) by (v1, v2) and (v3, v4).

- H8: If T (v1) 6= T (v2), replace (v1, v3) and (v2, v4) by (v1, v2) and (v3, v4).

- H9: If T (v1) 6= T (v2), replace (v1, v3) and (v2, v4) by (v1, v4) and (v3, v2).

Figure 3.7: H1

Figure 3.8: H2

Figure 3.9: H3
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Figure 3.10: H4

Figure 3.11: H5

Figure 3.12: H6

Figure 3.13: H7

Figure 3.14: H8

The first three moves are insertions. H4 to H6 are swaps. H7 is the 2 − opt

intra-route search while H8 and H9 are 2− opt inter-route searches. The aim of

these heuristics is to determine an efficient heuristic with reasonable calculation

times for intensive use in metaheuristics. We will compare the different neigh-
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Figure 3.15: H9

borhood search methods and to determine if there exists one or several heuristics

that perform better than others. The most efficient heuristics can be use very

quickly (mode of emergency use in the company). Finally, obtaining more dif-

ferent solutions allows us to give several starting points to a metaheuristic, and

thus to generate a population of different solutions of small size.

The aim of these various heuristics is to obtain good solutions in a rational

computing time.

3.5 Experiment Results

We conducted the experiments to evaluate the performance of the methods in

this chapter. The algorithms are implemented in JAVA and the experiments are

executed on a processor Intel Core i5 1.8 GHz.

Tests will be done to the methodology of construction and the improvement

heuristics we propose in this chapter.

3.5.1 Experimental Data

In this dissertation, we use the instances proposed in Tricoire (2006) since there

are little data correspond to the multi-period, multi-depot vehicle routing problem

with time window without capacity limits. In these instances, there are three

vehicles and the planning horizon is consisted of 5 days. There are ten instances

in total. The number of customers and the number of obligatory customers of

each instance are shown in Table 3.1. The time horizon is consisted of 5 periods

of 8 hours to simulate the 5 workdays during a week. The number of vehicles

is 3. The number of potential routes is numberofvehicles ∗ numberofperiods.

In instance C1, there are 5 instances with 100 customers. About 50 of them are
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Table 3.1: Number of different type of customers for each instance
Instance All customer Obligatory customer

C1_1 100 56

C1_2 100 44

C1_3 100 49

C1_4 100 48

C1_5 100 48

C2_1 180 90

C2_2 180 87

C2_3 180 80

C2_4 180 109

C2_5 180 88

Table 3.2: Duration of different types of service
Type of service Percentage Min duration Max duration

1 20 10 20

2 20 20 20

3 20 15 60

4 15 5 15

5 10 10 20

6 10 15 45

7 5 30 30

obligatory customers with time window. In instance C2, there are 5 instances

with 180 customers of which about half are obligatory customers.

The customers are located randomly on a square of 1000 kilometers. The

distance between two nodes is the euclidean distance. The transport time is

calculated by a factor 0.07 to the distances. This is because we set the speed

of vehicles is 35 kilometers per hour. The service time is designed by the real

situation in a water company. The type of service (numbered from 1 to 7), its

percentage of total service and the duration are presented in Table 3.2.

The instances offer data of location, service time, periods pattern and time

window of each nodes.
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Table 3.3: Results of Cplex
N = 20 N = 30 N = 40

Instance Cost Time Cost Time Cost Time

C1_1 5438.69 47s 9623.31 539s – > 24h

C1_2 5776.17 126s 7878.29 2468s – > 24h

C1_3 5048.70 98s 7746.35 1335s – > 24h

C1_4 4850.00 60s 8665.4 803s 9144.34 19h

C1_5 5093.02 187s 8689.29 2386s – > 24h

C2_1 4894.90 91s 8678.75 3048s – > 24h

C2_2 5592.41 80s 9615.45 1229s – > 24h

C2_3 4465.35 86s 8896.28 1086s – > 24h

C2_4 4405.09 46s 7751.06 338s 9807.23 22h

C2_5 4844.56 55s 7112.50 241s 8543.31 15h

3.5.2 Results of Cplex

The model is implemented in the Java programming language use CPLEX with

Concert Technology in the Eclipse. We do the experiments on new instances

extracted from the ten instances above. The number of extracted customers N

is 20, 30 and 40 for each original instances. Results are shown in Table 3.3.

We can tell from the results that for our addressed problem, it is not a good

choice to use the mixed integer programming to solve it. For a instance of 20

customers, the optimal solution can be computed in a time around 100 seconds.

For a instance of 30 customers, the computing time is up to 1 hour to get the

optimal solution. We can also observe that on a regular computer, it is not

capable to solve a problem with more than 40 customers in a acceptable running

time. Taking into account the situation of the actual operation, the problem must

be solved within one day to decide the schedule of the next week. In general, the

number of customers for a enterprise is between 100 and 200 as in our instance

C1 and C2. It is not possible to solve the problem with exact algorithm. As a

result, we should ask for help in heuristics.
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Table 3.4: Results of Randomly Generated Solutions
Random Construction

Instance Cost Time(ms) Violation TW Feasibility

C1_1 58717.3 25 10.2 0

C1_2 55949.4 25 9.38 0

C1_3 57657.3 27 11.55 0

C1_4 58328.1 22 12.37 0

C1_5 54297.5 27 12.13 0

C2_1 102150.8 46 77.17 0

C2_2 97626.2 50 84.04 0

C2_3 99204.9 46 77.05 0

C2_4 99561.7 56 80.8 0

C2_5 96973.9 50 80.36 0

3.5.3 Results of Construction Heuristics

We compare the results of randomly generation of solution and the algorithm with

our proposed constructive approach. We run each algorithm 100 times and we

compare the 100 solutions obtained from the two different methods. The results

are shown in table 3.4 and table 3.5.

Table 3.4 are results of solutions randomly generated. We can tell that none

of the 100 solutions are feasible. For instances in C1, the average number of time

window violation is 11.13; for instances in C2, the number is up to 79.88, which

means almost all customers with time window don not respect their time window.

The more the customers are, the harder to find feasible solutions with a random

method.

Table 3.5 shows the results of solutions generated by our proposed method

based on best insertion. For instances in C1, 100% of solutions are feasible. For

instances in C2, the average number of feasible solutions out of 100 runs is 54.

For an instance with 100 customers, out method can guarantee to find a feasible

solution. For an instance with 180 customers, the number of feasible results varies

a lot. But for sure, we can get adequate feasible solutions by multiple runs of the

algorithm. Moreover, costs in table 3.5 are far less than those in table 3.4. The

running time of method based on best insertion is greater than that of random
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Table 3.5: Results of Solutions with Adapted Best Insertion
Best Insertion

Instance Cost Time(ms) Missed Customer Feasibility

C1_1 23035.4 255 0 100

C1_2 20652.4 271 0 100

C1_3 20662.6 270 0 100

C1_4 22305.2 271 0 100

C1_5 19475.6 267 0 100

C2_1 41101.0 794 1.32 48

C2_2 38361.1 769 2.69 29

C2_3 38581.9 786 1.11 60

C2_4 41166.6 746 1.63 38

C2_5 37120.1 757 0.08 96

method by about 10 times. Considering that the total computing time is very

fast, these gaps are not big problems.

3.5.4 Results of Improvement Heuristics

Tests will be done to the 9 different local search heuristics proposed in this chap-

ter. The results are shown in table 3.6 and 3.7. We compare the computing time

and the best results of the different heuristics. All the heuristics can improve

the result in a short running time. We generate 100 feasible solutions with the

proposed constructive heuristic proposed in this chapter and execute for each so-

lution the nine heuristics we proposed one by one. We compare the average costs

of each heuristic. Table 3.6 shows the average costs of each heuristics. H1 per-

forms better and obtained better results in 5 of the ten instances. Other heuristics

perform average. In table 3.7, we can tell that H1 is the most efficient heuristic

among the nine methods. However, there is no dramatic differences between all

the heuristics, hence they all may be apply to the metaheuristics in the following

chapter.
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Table 3.6: Costs of Local Search
Travel Cost

Instance H1 H2 H3 H4 H5 H6 H7 H8 H9

C1_1 20407.69 20412.39 20442.95 20443.11 20412.39 20412.39 20443.11 20627.99 20627.99

C1_2 18067.53 18008.43 18034.49 18134.73 18063.93 18008.43 18134.73 18204.51 18089.69

C1_3 18096.1 18129.17 18213.94 18108.28 18091.54 18108.28 18236.4 18108.28 18108.28

C1_4 19571.15 19587.33 19514.38 19552.95 19568.86 19540.26 19552.95 19823.07 19759.37

C1_5 16984.52 17039.09 17029.57 17029.57 17081.86 17081.05 17029.57 17081.05 17097.68

C2_1 35223.49 35064.6 35255.85 35230.74 35197.33 35230.74 35262.27 35230.74 35230.74

C2_2 33032.86 33130.62 33032.86 33032.86 32997.44 33036.23 33032.86 33105.07 32942.01

C2_3 32816.34 33225.34 33060.05 33040.12 33036.28 33148.64 33040.12 33229.5 33210.08

C2_4 36238.38 36245.59 36006.33 36009.83 36155.86 36245.63 36046.84 36009.83 36030.73

C2_5 32046.37 32306.64 32319.99 32122.79 32181.6 32122.79 32340.27 32122.79 32122.79

69



3
.

H
E
U

R
IS

T
IC

S
O

F
C

O
N

S
T

R
U

C
T

IO
N

A
N

D
IM

P
R

O
V

E
M

E
N

T

Table 3.7: Running Time of Local Search
Running Time(ms)

Instance H1 H2 H3 H4 H5 H6 H7 H8 H9

C1_1 10626 10948 10970 10617 12084 11697 12694 11610 12011

C1_2 9902 10365 10426 9742 11247 10840 12608 10940 11324

C1_3 10430 10767 10862 10283 11743 11261 12736 11282 11675

C1_4 9748 10285 10284 9911 11492 11056 12629 11074 11396

C1_5 10303 10704 10734 10212 11750 11306 12510 11261 11724

C2_1 30035 33093 32737 33842 38298 39503 42561 38652 40548

C2_2 28388 31336 31075 31574 35725 35702 36456 34558 39076

C2_3 34581 37794 37450 39377 44131 41994 50096 46039 46572

C2_4 28861 31816 31427 31980 35695 35922 36460 34467 36747

C2_5 50447 54988 53632 57480 64989 59663 79689 66400 64324
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3.6 Conclusion

3.6 Conclusion

In this chapter, we formulated the problem of field service routing. We presented

a family of heuristics for construction and improvement of the multi-period and

multi-depot field service routing problem with time window. Experiments are

done to test the algorithms. Construction heuristic is capable to find feasible

solution with good cost for the two instances. The heuristics of improvement are

compared and all of them are capable to find better solutions. These heuristics

will be used in the following chapters.

71



3. HEURISTICS OF CONSTRUCTION AND IMPROVEMENT

72



Chapter 4

Genetic Algorithm for Solving

Multi-period and Multi-depot

Vehicle Routing Problem with Time

Window

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Genetic Algorithm for MDMPVRPTW . . . . . . . . 78

4.3.1 Overview of the Proposed Genetic Search Algorithm . 78

4.3.2 Search Space . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Chromosome Representation . . . . . . . . . . . . . . 81

4.3.4 Population Initialization . . . . . . . . . . . . . . . . . 82

4.3.5 Evaluation and Selection Based on Fitness . . . . . . . 84

4.3.6 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.7 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Genetic Algorithm with Diversity Control for MDM-

PVRPTW . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Overview of the Genetic Algorithm with Diversity Control 95

4.4.2 Search Space . . . . . . . . . . . . . . . . . . . . . . . 95

73



4. GENETIC ALGORITHM FOR SOLVING MULTI-PERIOD AND
MULTI-DEPOT VEHICLE ROUTING PROBLEM WITH TIME
WINDOW

4.4.3 Population Diversity Measure . . . . . . . . . . . . . . 97

4.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.5 Repair Procedure . . . . . . . . . . . . . . . . . . . . . 101

4.4.6 Population Management . . . . . . . . . . . . . . . . . 102

4.5 Computational results . . . . . . . . . . . . . . . . . . . 102

4.5.1 Computational experiments of proposed GA . . . . . . 103

4.5.2 Results of GA with Diversity Control . . . . . . . . . . 109

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1 Introduction

GA is a metaheuristic inspired by the process of natural selection. It belongs to

the larger class evolutionary algorithms. We will give a general introduction of

genetic algorithm.

Genetic algorithm is a metaheuristic inspired by the process of natural selec-

tion. It is one of the best ways to solve a problem for which little is known. They

are a very general algorithm and so will work well in any search space. Stadler

(2013) gives a detailed presentation of all heuristics and metaheuristcs methods

for optimization in engineering science including the GA.

In GAs, we have a pool or a population of possible solutions to the given

problem. These solutions then undergo recombination and mutation (like in

natural genetics), producing new children, and the process is repeated over various

generations. Each individual (or candidate solution) is assigned a fitness value

(based on its objective function value) and the fitter individuals are given a

higher chance to mate and yield more “fitter” individuals. This is in line with the

Darwinian Theory of “Survival of the Fittest”.

In this way we keep “evolving” better individuals or solutions over generations,

till we reach a stopping criterion.

Genetic Algorithms are sufficiently randomized in nature, but they perform

much better than random local search (in which we just try various random

solutions, keeping track of the best so far), as they exploit historical information as

well.GA is an algorithm that have the ability to deliver a “good-enough” solution

“fast-enough”. This makes GA attractive in solving optimization problems.
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Now it is essential to know some basic component for a GA.

• Population - It is a subset of all the possible solutions to the given problem.

It is composed of candidate solutions.

• Chromosomes - A chromosome reprensents one solution to the given prob-

lem.

• Gene - A gene is one element position of a chromosome.

• Fitness Function - A fitness function is a function which takes the solution

as input and produces the suitability of the solution as the output. In some

cases, the fitness function and the objective function may be the same, while

in others it might be different based on the problem.

• Genetic operators - The genetic operators alter the genetic composition

of the offspring, including crossover, mutation, selection, etc.

- Selection which equates to survival of the fittest;

- Crossover which represents mating between individuals;

- Mutation which introduces random modifications.

To execute a GA, we start with an initial population (which may be generated

randomly or seeded by other heuristics), select parents from this population for

mating. Apply crossover and mutation operators on the parents to generate

new off-springs. Finally, those off-springs with high quality replace the existing

individuals in the population. The procedure is shown in figure 4.1. A generalized

pseudo-code for a basic GA is explained in algorithm 4.

4.2 Related Work

A lot of researches have been done to solve VRP variants, especially focused on the

practical usage of the real world problems. Results from these researches show

that compared to other metaheuristic algorithms, GA has advantages in both

aspect of performance and final result on time constraints and limited compute

ability. There exist some other metaheuristics able to find better solution than
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Figure 4.1: Procedure of Basic Genetic Algorithm

GA. However, GA make a balance between the solution quality and computing

time.

(Vaira & Kurasova, 2014) proposed a genetic algorithm based on insertion

heuristics for the vehicle routing problem with constraints. The author uses

random insertion heuristic to get initial solutions and to reconstruct the existing

ones. (Tasan & Gen, 2012) proposes a GA based approach to solve the VRP

with simultaneous pick-up and deliveries. A genetic algorithm for the multi-

compartment vehicle routing problem with continously flexible compartment sizes
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Algorithm 4 Basic Genetic Algorithm
1: Initialize population
2: Find fitness of population
3: while termination criteria is not reached do
4: Select parent solutions P1 and P2

5: Create offspring C from P1 and P2 (crossover) with probability pc
6: Mutate C with probability pm
7: Fitness calculation
8: Survivor selection
9: Find best

10: end while
11: Return best solution

is proposed in (Koch et al., 2016). The paper (Lau et al., 2010) deals with the

optimization of VRP of multi-depot, multi-customers and multi-products. They

propose a stochastic search techinique to dynamically adjust the crossover rate

and mutation rate after a certain generations.

VRPTW is one of the most studied VRP variant. Time window is a relative

strong constraints in VRP. Genetic algorithm is frequently used to solve these

sort of VRP thanks to its ability to always find feasible solution. A comparison

of various GA for solving VRPTW before the year 2001 (Bräysy & Gendreau,

2001) is presented. Genetic algorithms for multi-objective VRPTW are discussed

in(Ombuki et al., 2006) and (Ghoseiri & Ghannadpour, 2010). The former takes

advantage of the Pareto ranking techinique for evaluating the solution in a bal-

anced way. The latter presents a new model and combined goal programming

with genetic algorithm.

An other variants of VRP: multi-depot VRP is solved by a lot of adapted

GA. (Karakatič & Podgorelec, 2015) presents a survey of GA designed for solv-

ing multi-depot vehicle routing problem by evaluating the efficiency of different

existing genetic methods and between GA and other approaches, including both

exact algorithms and heuristics for solve benchmark problems. (Thangiah) de-

scribe a GA heuristic for solving VRPTW called GIDEON who consists of a

global customer clustering method and a local post-optimization method.
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4.3 Genetic Algorithm for MDMPVRPTW

As mentioned earlier, GA has already been used to solve various VRP. However,

the existed algorithms can not be applied to solve our problem. Firstly, this

problem is a problem with multi-period and multi-depot, it is important to find a

suitable chromosome representation. The coding structure plays a crucial role in

the GA and consequently, this may have a profound impact on the performance.

Secondly, the determination of initial population and search space is worth of

discussion. Because the constraints in our problem are very strong, it is impossible

to use random initial solutions for searching. At last, the design of crossover

operator is a key to improve the genetic search quality.

We proposed a new genetic algorithm to our addressed problem in this dis-

sertation. This section gives a description of the proposed genetic search for the

problem. Then we provide details of the initial population, solution representa-

tion, fitness evaluation and the operators used in the GA.

4.3.1 Overview of the Proposed Genetic Search Algorithm

The framework of the method of proposed GA is shown in Algorithm 5. The initial

population is constituted with feasible solution. The survivors to the new gen-

eration has three sources:(1) elite member of original population (called elitism),

(2) offspring obtained with crossover and (3) new solutions to add diversity to

the new population. The ratio of each part is determined by the parameters:

Table 4.1: Parameters for Selection of Survivors
Parameters Behavior

Popsize number of individuals of new population
Elitnumber number of elite individuals to new population
CrossoverProportion proportion of individuals obtained by

crossover
CrossoverNumber number of individuals obtained by crossover
MutationProbability rate of mutation
NewSolutionNumber number of new generated solutions to new

population
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Popsize is the size of population; Elitnumber for the number of elite members

and CrossoverNumber for the number of crossover offspring and the rest are the

new solutions. CrossoverProportion is the proportion of crossover offspring in

the new population and CrossoverNumber = Popsize ∗ CrossoverProportion.

The terminate criteria may be a running time, a certain number of generations

which the best solution does not improve or a maximum number of iteration, etc.

Algorithm 5 Genetic Algorithm for MDMPVRPTW
1: Initialize population with feasible solution: pop
2: Find fitness for all individuals in pop
3: while Terminate criteria is not met do
4: Elitism
5: Find Elitenumber best solutions of pop
6: Insert the selected best solutions to new population: newpop
7: Crossover
8: number of crossover = 0
9: for number of crossover < Cnum do

10: Select parent solutions P1 and P2

11: Create offspring C from P1 and P2 by crossover operator
12: Generate a random number in (0, 1)
13: if random(0, 1) < MutationProbability then
14: Mutate C
15: end if
16: if C is feasible then
17: Insert C to newpop
18: number of crossover ++
19: end if
20: end for
21: New Solutions
22: for number of new solution < NewSolutionNumber do
23: newSolution ← generate new feasible solution
24: Insert newSolution to newpop
25: number of new solution++
26: end for
27: end while
28: Return solution with best fitness Best Solution
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4.3.2 Search Space

There are two situations for the determination of search space. One is to explore

only the set of feasible solutions that satisfy the constraints; the other is to

allow a controlled exploration of infeasible solutions that may violent some of

the constraints. Researches (Glover & Hao, 2011) show that the latter may

enhance the performance of the search which may more easily transit between

structurally different feasible solutions. However, in our problem, the constraints

are too strong that if unfeasible solutions are allowed in the population, we need

spend much time to repair it. Therefore, we decide that only feasible solutions

are permitted to the population. Most of existed methods for a multi-period

VRP divide the problem into two problems: assign all customers to each period

then solve the mono-period VRP. Customers are distributed to a certain period

or a certain vehicle before the optimization. Then the problem can be seen as a

multi-traveling salesman problems. The disadvantage of this method is obvious.

The final solution depends largely on the initial clustering. As a consequence, the

range of searching is very limited. In this dissertation, we propose a method of

global search. The routes of all vehicles and all periods are seen as a entirety. We

have introduced our method of a global construction for initial solutions based

on best insertion in chapter 3. These solutions are served as initial solutions to

the genetic search.

In summary, in the genetic algorithm, we define the search space S as a set

of feasible solution s ∈ S. Let s be a solution found in the search space. R(s)

represents the set of routes making up s. Each route r(d, p) ∈ R(s) represents

a tour of a (depot-period) = (d, p), starting from a depot vr0 ∈ O, visiting a

sequence of sr customers vr1, v
r
2, ..., v

r
sr ∈ N then returning to the same depot or.

A resource r(d, p) can be seen as a potential route for the routing problem. It is

available during the optimization process.

Figure 4.2 shows a simple graphical model of a solution. In this solution, there

are three depots and two periods which makes it six routes to complete the plan.

There are six resources r(1, 1), r(2, 1), r(3, 1), r(1, 2), r(2, 2) and r(3, 2).

Let gr= (gr0, ..., g
r
vs+1

) be the arrival times at each customers’, br= (br0, ..., b
r
vs+1

be the begin time of service of each customer request. A route implicitly specifies

the earliest possible arrival time giv, as well as the earliest possible service time brvi
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Figure 4.2: Example of a Routing Solution of VRP with Multi-depot and Multi-
period

of each customer i. These values are computed using simple recursive equations.

brvi =

{

grvi if g > evi
evi if g ≥ evi

grvi+1
= brvi + σr

vi
+ τ rvivi+1

(4.1)

If the vehicle arrives at a customer earlier than the lower bound of its time window

(gvi < evi), there will become a waiting time during which the vehicle cannot do

other jobs but waiting. This waiting time is given by τωvi = max{evi − gvi , 0}.

4.3.3 Chromosome Representation

The scheme for genetic representation of the solution albeit the chromosome

coding structure plans a crucial role in the GA. Consequently, this may have a

profound impact on the algorithm’s performance.

In order to apply the genetic algorithm to a particular problem, the solution

should be represented as an internal string. The choice of this component is one

of the critical aspects to the success of the algorithm. Study compares three

common representations of vehicle routing problem (Xu et al., 2005).

Our problem is particular on account of its multi-period and multi-depot

character. A representation of two-chromosome individual without trip delimiters

is adopted by (Vidal et al., 2013) for the solution of vehicle routing problem

with time windows. The individual chromosome is shown in Figure 4.3. The
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Figure 4.4: Chromosome representation of a problem with 2 depots and 2 periods
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to generate a solution which is both random and compliant with the constraint.

Our problem is complicated because of there are a number of constraints,

especially on the aspect of time. The constraints on time window, duration and

valid period are too strong. Solutions randomly generated are hardly feasible.

It takes much computing time to repair them. The only way to solve this is to

generate the feasible solutions in the first step. In this way, the initial solution

are feasible or approximately feasible. This initial solutions with high quality

improve the possibility to find good solutions with high efficiency of the genetic

search.

In our genetic algorithm, we generate the initial solutions with the method

proposed in chapter 3. We accept only the feasible solutions. Infeasible solutions

are abandoned and continue to execute again the adapted best insertion method

to construct a new solution until the population size is reached.

4.3.5 Evaluation and Selection Based on Fitness

The fitness function allows us to identify the value of each individual. The indi-

vidual with the best fitness value is treated as the best currently known solution

in the population. In our proposed GA: the travel time is in direct proportion to

the travel cost; the infeasible solutions are not accepted to the population; the

number of vehicles is fixed; the objective of optimization is consequently unique:

to minimize the travel cost. Therefore, the fitness function is defined as 4.2, the

sum of the travel cost of all vehicles during the whole horizon.

f(s) =
∑

vi∈V

∑

vj∈V

m
∑

k=1

w
∑

l=1

cijx
kl
ij (4.2)

Parent selection is performed through a binary tournament, which twice ran-

domly (with uniform probability) picks two individuals from the complete popu-

lation and keeps the one with the best fitness.

In tournament selection, a number Tour of individuals is chosen randomly

from the population and the best individual from this group is selected as parent.

This process is repeated as often as individuals must be chosen. These selected

parents produce uniform at random offspring. The parameter for tournament

selection is the tournament size Toursize. Toursize takes values ranging from 2
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to PopulationSize. The loss of diversity is defined as (Blickle & Thiele, 1995):

LossDiv(Tour) = Tour
−1

Tour−1 − Tour
−Tour
Tour−1 (4.3)

According to this formula, about 50% of the population diversity are lost if

the tournament size Toursize = 5.

Apart from the crossover offspring, we keep the elite members of previous

population to the new population. By using this technique, the elite of the

current population is transferred to the next generation. The elite population

includes a number Ne < N of individuals with high fitness that are not involved

in reproduction. The exploration-exploitation trade-off is extremely sensitive to

the elite size Ne. Moreover, N3 has to be chosen with care for each application,

since a general rule does not exist. It is wise to keep at least the best encountered

individual in the elite, for it could be the global optimum itself(Stefanoiu et al.,

2014).

4.3.6 Crossover

The performance of a GA very depends on the crossover operator. It is analo-

gous to reproduction and biological crossover. More than on parent is selected

and one or more off-springs are produced using the genetic material of the par-

ents. It is usually applied in a GA with a high probability. The meaning of

crossover is to preserve the genotype of good parents and to improve the possi-

bility of obtaining good off-springs in next generation. Many crossover operators

are proposed to the VRP, such as Partially Matching Crossover(PMX), Cycle

Crossover(CX), Order Crossover(OX1), Order Based Crossover(OX2), Position

Based Crossover(POX), Alternating Position Crossover (APX), etc (Potvin &

Bengio, 1996).

These crossovers are operators to a simple chromosome representation. For

a problem of multi-period and multi-depot, the crossover could be more com-

plicated. We propose two crossover operators. One is crossover with insertions,

the other one is partially matching crossover based on resources. The chromo-

some is represented by a number of segments for each vehicle-period. During

the crossover, it is important to ensure the maximum guarantee of feasibility

and inherit genotype characteristics from both parents. We proposed a crossover
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methods dedicated to routing problems with multi-depot and multi-period. It is

designed to transmit good sequences of visits, while enabling the recombinations

between customers and depots and periods. We aimed for a versatile crossover,

which would allow for both a wide exploration of the search space and small re-

finements of good solutions. The possibility for the offspring to inherit genetic

material from its parents in nearly equal proportions. It avoids copying most

genotype of one parent and small part of genes of another. To ensure that the

crossover rules are not determined a priori on how much genetic material the

offspring inherits from each parent, the cut-off points are randomly selected.

Crossover Operator PIX

The tours are divided into three sets: one set mainly inherits from parent P1, one

set mainly inherits from P2 and the other set inherits both parents with a certain

rule. The procedure of crossover is shown in algorithm 6. First of all, the |K|∗|L|

tours are numbered from 0 to |K| ∗ |L| − 1. n1 and n2 are random numbers that

n1, n2 ∈ [0, |K| ∗ |L|−1] and n1 < n2. Randomly select n1 tours to form a set X1,

n2 tours to form a set X2 and put the remaining tours into a set X3. Tours in X1

will transmit from parent P1 to child C. Tours in X2 will transmit from parent

P2 to child C. Tours in X3 will be a mixed tour transmit from both parent P1

and P2 to child C. The whole crossover have four steps: inherit from P1, inherit

from P2, combine genotype of P1 and P2 and complete the offspring.

- Inherit from P1: all tours in X1 are copied to the child C in the tour of the

same (vehicle, period).

- Inherit from P2: all tours in X2 are copied to the child C in the tour of the

same (vehicle, period). It is important to skip the customers that already

exist in the child.

- Combine genotype of P1 and P2: for each tour in X3, a delimiter is generated

randomly to divide the tours into two segments. The first segment inherits

from P1, the second segment inherits from P2. It is important to skip the

customers that already exist in the child.

- Complete the offspring: examine if all customers are contained in the child.

If not, insert the customer with the method best feasible insertion.
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An example is presented in figure 4.5. In this example, there are 14 customers

coded from 1 to 14. X1 = {(d1, p1)}, X2 = {(d1, p2)}, X3 = {(d2, p1), (d2, p2)}.

In step 1, genes in tour (1, 1) of parent P1 is copied to tour (1, 1) of child. In

step 2 targets the parent P2 and we want to copy all tours in X2 from parent

P2 to child. The sequence of tour (d2, p2) is {9,11,13,4}. Since customer 9 is

already exist in the child (tour (d1,p1)), we skip this customer and continue to

copy next customers 11,13 and 4. In step 3, the tours are dealt in a random order.

We assume that we started from tour (d1,p2). The delimiter generated is 2, we

therefore copy the first two customers to child after examined their existences.

The delimiter of tour (d2,p1) is randomly selected as 1. The first customer of

parent P1 is 4. However it has already been in the child. As a result, none of

genotype of tour (d2,p1) inherits from parent P1. The tour (d2,p1) of P2 yields

only the subsequence {10} out of {3,8,10} to child, because a visit to customer

8 was copied during the first step. Step 4 find out all customers that are not in

child and insert it to the offspring with feasible best insertion method.
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Algorithm 6 Crossover PIX
1: Pick two random numbers n1, n2 ∈ [0,m ∗ w] according to a uniform distri-

bution. Let n1 < n2

2: Randomly select n1 tours to form a set of tours X1;
3: Randomly select n2−n1 resources in the remaining tours to form a set of X2;
4: The remaining tours form the set X3.
5: Inheritance from P1

6: for Each tour (k,l) belonging to set X1 do
7: Copy the sequence of customer visits from T(k, l)(P1) to T(k, l)(C)
8: end for
9: for Each tour (k,l) belonging to set X2 do

10: Randomly select two chromosome-cutting points αkl, copy the genes before
αkl from T(k, l)(P1) to T(k, l)(C)

11: end for
12: Inheritance from P2

13: for Each tour (k, l) belonging to set X2 do
14: for Each customer v in T(k, l) do
15: if v does not exist in C then
16: Insert v into T(k, l)(C)
17: end if
18: end for
19: end for
20: for Each tour (k,l) belonging to set X3 do
21: for Each customer of index (0, αkl) and (βkl, end) do
22: if v does not exist in C then
23: Copy v to from T(k, l)(P2) to T(k, l)(C) with respect to the sequence
24: end if
25: end for
26: end for
27: Complete the child soluton
28: for each v ∈ V do
29: if v does not exist in C then
30: Insert v to C with best insertion
31: end if
32: end for
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Figure 4.5: Crossover PIX

Crossover Operator 1

Unlike the above method, in order to maximize the inheritance of the character-

istics of excellent parents, this crossover divides the tours into two part. The two

parents involved in the crossover process are P1 and P2. The |K| ∗ |L| tours are

numbered from 0 to |K| ∗ |L| − 1. For each tour, we assign it randomly to the

set X1 or X2. Tours in X1 will transmit from parent P1 to child C; tours in X2

will transmit from parent P2 to child C. Let l1 = |X1| and l2 = |X2|. The steps

of crossover are as follows:

- The tours in the two set are inherited in turn. The sequence of customers

is copied from parent to child if the customer does not exist in the child.

- Repeat the first step until the tours of X1 or X2 is completed.

- Inherit tours in the other set.

- Complete the offspring: examine if all customers are contained in the child.

If not, insert the customer with the method best feasible insertion.
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Algorithm 7 Crossover 1
1: Pick a random number n1 ∈ [0,m ∗ w] according to a uniform distribution.

Let n2 = m ∗ w − n1

2: Randomly select n1 tours to form a set of tours X1;
3: The remaining tours form the set X2.
4: Let n = minn1, n2

5: for The first n tours of X1 and X2 do
6: for Each tour (k1, l1) belonging to set X1 and (k2, l2) belonging to set X2

do
7: Copy the sequence of customer visits from T(k1, l1)(P1) to T(k1, l1)(C)

by eliminating customers already exist in child C
8: Copy the sequence of customer visits from T(k2, l2)(P2) to T(k2, l2)(C)

by eliminating customers already exist in child C
9: end for

10: end for
11: for Each tour (k, l) in the remaining tours in X1 or X2 do
12: Copy the sequence of customer visits from T(k, l)(P1) or T(k, l)(P2) to

T(k, l)(C) by eliminating customers already exist in child C
13: end for
14: Complete the child solution
15: for each v ∈ V do
16: if v does not exist in C then
17: Insert v to C with best insertion
18: end if
19: end for

The example in figure ?? show the process of crossover2. There are 14

customers numbered from 1 to 14. Suppose that X1 = (d1, p1, d2, p2), X2 =

(d2, p1), (d1, p2). In the first step, genes in tour (d1, p1) ∈ X1 of parents P1 is

copied to tour (d1, p1) of child. In step 2, tour (d2, p1) ∈ X2 is copied from P2

to child. In step 3, tour (d2, p2) ∈ X1 of P1 is copied from P1 to child C by

eliminating customer 6 and 14 because they already exist in child C. In step

4, tour (d1, p2) ∈ X2 is inherit in the same way. At last, customer 2 and 4 are

inserted to the chromosome to complete the solution.

For a chromosome with multiple tours, this crossover method can balanced

the genotype inherited from the two parents. It avoids the case that after we

copy from one parent, a large part of customers in tours to inherit of the other

parent have already been positioned in the child. The gene sequence of the latter

parent will be shattered. As a result, characteristics of the first parent will be
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Figure 4.6: Crossover 1

overwhelming in the child.

The difference between crossover 2 and crossover 1 is that at the last step,

crossover 2 completes the solution with random feasible insertion instead of best

insertion. This could reduce the computing time of the algorithm. For a chro-

mosome with multiple tours, this crossover method can balanced the genotype

inherited from two parents. It avoids the case that after we copy from one par-

ent, a large part of customers in tours which should be inherited from the other

parent have already been positioned in the child. The gene sequence of the latter

parent will be shattered. As a result, characteristics of the first parent will be

overwhelming in the child. For both the two crossover operators, there is the

possibility that the child of crossover is not feasible.

4.3.7 Mutation

Mutation is a genetic operator used to maintain genetic diversity from one genera-

tion of a population of genetic algorithm chromosomes to the next. It is analogous

to biological mutation. The purpose of mutation in GA is preserving and intro-
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ducing diversity. Mutation should allow the algorithm to avoid local minima by

preventing the population of chromosomes from becoming too similar to each

other, thus stop or even stopping evolution. For a GA of TSP, there are some

kinds of methods to mutate chromosomes. We adopted several mutation methods

randomly applied to the chromosome to increase the diversity of population. We

will present the mutations used in our problem.

- Exchange Mutation. Two random positions of the string are chosen and

the gene corresponding to these positions are interchanged.

0 1 2 3 4 5 6 7

We simply choose two genes at random (’2’ and ’6’) and exchange them:

0 1 6 3 4 5 2 7

- Scramble Mutation. A subset of genes is randomly picked and then

randomly rearrange them.

0 1 2 3 4 5 6 7

Choose the subset (position 5 to 8) and scramble the genes:

0 1 2 3 6 5 7 4

- Displacement Mutation. Pick a subset of genes and move it as a group

to a random position from its original position:

0 1 2 3 4 5 6 7

0 4 5 1 2 3 6 7

- Insertion Mutation. On gene is selected. Remove this gene and insert it

back into the chromosome at a random position. This mutation operator

has been shown to be very effective.

0 1 2 3 4 5 6 7

The gene ’2’ is selected. Take the ’2’ out and reinsert it.

0 1 3 4 5 6 2 7

- Inversion Mutation. Pick two alleles at random and then invert the

substring between them. It preserves most adjacency information and only

breaks two links but it leads to the disruption of order information.

0 1 2 3 4 5 6 7

Two alleles (position 4 and 7) are picked at random:

0 1 2 6 5 4 3 7
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- Displaced Inversion Mutation. This method combines inversion mu-

tation and displacement mutation. Select two random alleles, reverse the

gene order between them, and them displace them somewhere along the

length of the original chromosome.

0 1 2 3 4 5 6 7

Position 4 and position 7 are selected.

0 6 5 4 3 1 2 7

The mutation is applied to the child obtained after the crossover with a prob-

ability Pm. The mutation operator is chosen randomly from the above six types.

Various mutation operators contribute to the diversity of population and avoid

the individuals to be similar.

In this section, we present a genetic algorithm for solving the multi-depot and

multi-period field service routing problem with time window. In the following

section, we introduce diversity control to the GA.

4.4 Genetic Algorithm with Diversity Control for

MDMPVRPTW

A major problem in evolutionary algorithms is that simple EAs have a tendency

to converge to local optima. This premature convergence is caused by several al-

gorithmic features. First, a high selection pressure will quickly fill the population

with clones of the better fit individuals, simply because their survival probability

is too high compared to intermediate fit solutions. Diversity declines after a short

while, and, because the population consists of similar individuals, the algorithm

will have difficulties escaping the local optimum represented by the population.

However, lowering the selection pressure is rarely an option because this will of-

ten lead to an unacceptable slow convergence speed. Second, high gene flow is

often determined by the population structure. In simple EAs any individual can

mate with any other individual. Consequently, genes spread fast throughout the

population and the diversity drops quickly with fitness stagnation as a prevalent

outcome.

Diversity is undoubtedly closely related to the performance of evolutionary

algorithms, especially when attempts are made to overcome the problems of
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avoiding premature convergence and escaping local optima. Maintaining high di-

versity is particularly important for optimization of dynamic and multi-objective

problems. Diversity measures are traditionally used to analyze evolutionary al-

gorithms rather than guide them. However, diversity measures have been used

to control EAs in at least three studies. The diversity control oriented genetic

algorithm use a diversity measure based on Hamming distance to calculate a

survival probability for the individuals. A low Hamming distance between the

individual and the current best individual is translated into a low survival prob-

ability. Hence, diversity is preserved through the selection procedure. Another

approach is the shifting-balance genetic algorithm. It calculates a containment

factor between two subpopulations, which is based on Hamming distances be-

tween all members of the two populations. The third approach is the Forking

GA, which used specialized diversity measures to turn a subset of the population

into a subpopulation.

Amount of researchers announced that diversity measure and control can in-

fluence the efficiency of convergence. Various strategies are applied to maintain

or increase the population diversity. Ursem (2002) presented a diversity-guided

evolutionary algorithm (DGEA) using the distance-to-average-point measure to

alternate between mutation and recombination. The method showed remarkable

results on a set of benchmark problems by saving a substantial amount of fit-

ness evaluations compared to a simple EA. Dual-population genetic algorithm

(DPGA) is introduced in Park & Ryu (2010). This is a type of multipopulation

GA uses an additional population as a reservoir of diversity. The DPGA adjusts

the distance dynamically to achieve an appropriate balance between exploration

and exploitation. Laumanns et al. (2002) defined the concept ǫ-dominance and

the corresponding ǫ-Pareto-optimal set as well as the new selection algorithms. It

proposed archiving/selection strategies that guarantee at the same time progress

towards the Pareto-optimal set and a covering of the whole range of the non-

dominated solutions. The diversity-control-oriented genetic algorithm in Shi-

modaira (1999) used a diversity measure based on Hamming distance to calculate

a survival probability for the individuals. A low Hamming distance between the

individual and the current best individual is translated into a low survival proba-

bility. Hence, diversity is preserved through the selection procedure. Oppacher &

Wineberg (1999) proposed the shifting-balance genetic algorithm. This approach
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calculates a so-called containment factor between two subpopulations. The dis-

tance is calculated between each member of first population and all members of

a second population. The factor determines the ration between individuals se-

lected on fitness and individuals selected to increase the distance between the two

populations. Forking genetic algorithm in Tsutsui et al. (1997) used specialized

diversity measures to turn a subset of the population into a subpopulation.

On the basis of the GA we proposed in the previous section, we propose a

genetic algorithm with diversity control for multi-depot and multi-period field

service routing problem with time window.

4.4.1 Overview of the Genetic Algorithm with Diversity

Control

This method evolves feasible and infeasible solutions in the population. Genetic

operators are iteratively applied to select two parents from the population and

combine them into an offspring. If the offspring is infeasible, it will undergo a

local search-based repair procedure. If the offspring is feasible, it will be inserted

directly into the new population.

4.4.2 Search Space

The determination of the search space allowing is important to the search ef-

ficiency. A controlled exploration of infeasible solutions may enhance the per-

formance of the search, which may more easily transition between structurally

different feasible solutions (Vidal et al., 2012). The infeasible solutions can be

obtained by relaxing some constraints. In this approach, the limits on the time

window and the total duration of a vehicle are released to enrich the diversity

of solutions. The constraints on the compatibility between period and customer

request are still respected.

If the beginning time of customer is later than the upper bound of its time

window (bvi > lvi), there will become a violating time of time window: tvvivi+1
=

bvi − lvi . In a route r, the incurred violating time of customer request vri is

given by tvvi = max{brvi − lrvi , 0} . For a determined route, we can calculate its

characteristics:
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Algorithm 8 Genetic Algorithm with Diversity Control
1: Initialize population with feasible solutions and infeasible solutions: pop
2: Find fitness for all individuals in pop
3: while number of iterations without improvement < ItN1, and time < Tmax

do
4: Elitism
5: Find Elitenumber best solutions of pop
6: Insert the selected best solutions to new population: newpop
7: Crossover
8: number of crossover = 0
9: for number of crossover < Cnum do

10: Select parent solutions P1 and P2

11: Create offspring C from P1 and P2 by crossover operator
12: Generate a random number in (0, 1)
13: if random(0, 1) < MutationProbability then
14: Mutate C
15: end if
16: if C infeasible then
17: Repair C
18: Insert C into the new population
19: end if
20: if C feasible then
21: Insert C into the new population
22: end if
23: end for
24: if best solution non improved for Itdiv iterations then
25: Diversify population
26: end if
27: Adjust penalty parameters for infeasible solutions
28: end while
29: Return best feasible solution

- travel time

τ(r) =
sr
∑

i=0

τvri vri+1
(4.4)

- violating time of time window

tw(r) =
∑

i=0,1,...,sr

twvi (4.5)

- total duration of the vehicle
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dt(r) = grsr+1 − gro (4.6)

- waiting time

τω(r) =
∑

i=0,1,...,sr

τωvi (4.7)

These characteristics will help us to evaluate the solution. A solution is composed

of a set of m×w routes. We use penalized cost φ(s) of solution s as the evaluation

function of solution. First, we will defined the penalized cost of one single route

r. It is the total travel time plus the weighted sum of its excess duration and

time window (function 4.8).

φ(r) = τ(r) + ωDmax{0, dt(r)−D}+ ωTW × tw(r) (4.8)

ωD and ωTW are the penalty factors and D is defined as the stated total working

duration each day. The penalized cost of solution s φ(s) is given in function 4.9

by the sum of the penalized costs of all routes it contains.

φ(s) =
∑

r∈R(s)

φ(r) (4.9)

4.4.3 Population Diversity Measure

In different kinds of combinatorial problems, diversity measures are tightly prob-

lems depended. There are two different ways to measure individual diversity in

combinatorial problem. One is measure the difference between two genotypes

while the other is a structural difference measure based on mathematic founda-

tion. Let one of individual chromosomes as the best fitness chromosome denotes

X, and the others chromosomes denote set Y and L is the length of a chro-

mosome. There are four different diversity measure approaches proposed in the

literature and they are listed as follows.

Hamming distance

The hamming distance is used between two strings of equal length which is the

number of positions for which the corresponding symbols are different. We use the

representation as a permutation way in GA to solving the combination problem,
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such as TSP or scheduling problem. To measure the individual diversity, we

compare each gene with the best fitness chromosome and others chromosome. I

is an indicate function which is defined as the total number of positions where

xi 6= yi.

Definition: There are two kinds of diversity measure denote D(X, Y ) by

hamming distance below:

D(X, Y ) =
1

L
, I =

L
∑

j=0

Ij, Ij =

{

xj = yj, 0

xj 6= yj, 1
(4.10)

D(X, Y ) = 1−

∑L
i=0 xi − yi

M
, where M =

{

(L2 − 1)/2, if L is odd

L2/2, if L is even

(4.11)

Euclidien distance

Euclidean distance is used to a real encoding; the concept is the same with ham-

ming distance in permutation encoding

D(X, Y ) =

√

√

√

√

N
∑

i=1

(xi + yi)2 (4.12)

By connection matrix

Considering a TSP problem, each tour represents as a permutation way in GA.

Therefore, the diversity measures by hamming distance cannot reflex a true tour-

ing situation in TSP, and the connection matrix is considered the sequence in

a tour. Although each tour represents as a permutation way differently in GA,

there are still some chances thos touring sequence are the same in connection

matrix

A =











a00 a01 ... a0(n− 1)

a10 a11 ...

...

a(n− 1)0 ... a(n− 1)(n− 1)
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where A is connection matrix of a tour, n is the number of customers.Let a

similarity function S(X, Y ) measure the similarity

S(X, Y ) =
∑

ij

(xij|xij = yij)/n (4.13)

The diversity measure could be defined as follows:

D(X, Y ) = 1− S(X, Y ) (4.14)

By information entropy

In information theory, the Shannon entropy or information entropy is a measure of

the uncertainty associated with a random variable. It quantifies the information

contained in a message, usually in bits or bits/symbol. The locus diversity Hi of

the ith locus (i = 1...n) is defined as follows:

Hi = −
∑

c∈C

pric ln pric, where pric =
naic

pop_size
(4.15)

where naic: the number of appearance of city c at locus I, C is the number of

customers should be visited. We need to translate the individual diversity to a

single colony index to measure the population diversity is low or high. There are

two kinds of method to measure it. The first is arithmetic average defined by

PD =
∑

D(X,Y )
N

. The other is linear scale measure defined by PD = d−dmin

dmax−dmin

where d is the average diversity, dmax is the maximum diversity and dmin is the

minimum diversity of the archive.

4.4.4 Evaluation

The individual-evaluation function in population-based meta-heuristic aims to de-

termine for each individual a relative value with respect to the entire population.

It is often based on the value of objective function of the problem which is called

fitness. This fitness is used to the selections of mating parents or the individuals

to survive to the next generation. However, the fitness is just a one-sided eval-

uation to a meta-heuristic problem. The diversity is also a critical performance

factor. We therefore take the diversity into consideration on the evaluation func-

tion. Both the cost of an individual and its diversity contribution are evaluation
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criterion. Pareto ranking scheme is used to computed the integrated fitness of

each individual.

The fitness is calculated based on the cost with penalty. Their are several

factors to consider:

- The number of missed requests.

- The number of period-incompatible requests.

- The number of time-window violating requests.

- The total waiting time.

The fitness of individual can be defined as:

fitness(P ) = f(P )+ωm ∗mc(P )+ωc ∗pc(P )+ωw ∗ twv(P )+ωt ∗ τω(P ) (4.16)

In the equation 4.16, f(P ) is the travel cost of a solution defined in 4.2. ωm is

the penalty factor of missed customer of a solution P and mc(P ) is the number

of missed requests of P ; ωc is the penalty factor of period-incompatible requests

pc(P ); ωw is the penalty factor of time-window violation requests and twv(P ) is

the number of requests that don not respect their time windows; τω(P ) is the

penalized by a factor ωt.

A solution s represents an individual P in a population of genetic search. The

fitness of P is defined as the penalized cost of the solution s: φ(s). Its diversity is

measured by a normalized Hamming distance. The Hamming distance between

two individuals P1 and P2, noted as δH(P1, P2) is based on the differences between

the service period and the depot assignments of the two individuals.

δH(P1, P2) =
1

2n

∑

i=1,...,n

(1(πi(P1) 6= πi(P2)) + 1(δi(P1) 6= δi(P2)) (4.17)

Equation 4.17 gives the method to compute the hamming distance of this

problem. πi(P ) is the period of the service to customer vi in individual P and

δi(P ) represents the depot of customer vi. 1((cond)) is a valuation function that

returns 1 if the condition cond is true and 0 otherwise.

The diversity contribution of an individual P in a population Π of size nΠ is

computed according to Equation 4.18.

100



4.4 Genetic Algorithm with Diversity Control for MDMPVRPTW

∆(P ) =
1

nΠ

∑

P ′∈Π

δH(P, P ′) (4.18)

to evaluate an individual in a population, we use biased fitness Vidal et al.

(2013) BF (P ) defined in 4.19. This is a diversity and cost objective that involves

both the rank fit(P ) of P in the population with regards to solution cost φ(P ),

and its rank dc(P ) in terms of diversity contribution ∆(P ). BF (P ) depends upon

the actual number of individuals in the subpopulation nbIndiv, and a parame-

ter nbElit ensuring elitism properties during survivor selection. This trade off

between diversity and elitism is critical for a thorough and efficient search.

BF (P ) = fit(P ) + (1−
nbElit

nbIndiv
)dc(P ) (4.19)

4.4.5 Repair Procedure

An infeasible offspring resulting from the crossover operator undergoes an re-

pair operator based on neighbourhood search. The repair is essential for a fast

progression toward high-quality solutions.

When infeasible solutions are used, evaluation moves implies to compute the

change in total arc costs, as well as the variation of duration and time-window

infeasibility of the routes. Calculation of cost and load variation is straight for-

ward to perform in amortized O(1) for moves based on a constant number of

arc exchanges. A method is proposed to compute infeasibility in O(1) for some

neighbourhoods, including 2 − opt∗, inter-route swaps, and inter-route inserts.

We introduce an approach to evaluate combined duration and time-window in-

feasibility which can be applicable to various neighbourhood based on a constant

number of arc exchanges or sequence relocations.

For measuring the feasibility of a solution, we define a score of feasibility. This

is the sum of penalized terms of an individual.

S(P ) = ωm ∗mc(P ) + ωc ∗ pc(P ) + ωw ∗ twv(P ) + ωt ∗ τω(P ) (4.20)

The repair procedure is a set of nine heuristic. The nine heuristics have been

described in chapter 3. The route improvement phase iterates, in random order,
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over each vertex v1 and v2. Moves are examined in random order, the first yielding

an improvement of feasibility score being implemented. The route improvement

phase stops when the solution becomes feasible or all possible moves have been

successively tried without success.

4.4.6 Population Management

The population management mechanism complements the selection, crossover,

and repair operators in identifying and propagating the characteristics of good

solutions, enhancing the population diversity, and providing the means for a thor-

ough and efficient search. For a population with µ individuals, if the infeasible

individuals exceed ρ ∗µ, the population needs a ’refresh’. ρ is the maximum per-

mitted rate of infeasible solutions. Firstly, we delete some infeasible individuals

to the proper number and generate new feasible solutions to insert in the pop-

ulation. The penalty parameters are dynamically adjusted during the execution

of the algorithm, to favor the generation of naturally-feasible individuals. Let R

be a target proportion of naturally-feasible in individuals, Let ΣX be the pro-

portion in the last generated Nnew individuals of solutions that is feasible to one

respect. The X could be M , C, W and T , represents respectively missed city,

period compatibility, time window and waiting time. The following adjustment

is performed every N iterations.

- if ΣX ≤ R− 0.05, then ωX = ωX ∗ λ;

- if ΣX ≥ R + 0.05, then ωX = ωX ∗ γ;

In the above formula, λ and γ are coefficients to adjust the penalty parameters.

λ is a number greater than 1 and γ is a number in (0, 1). In our algorithm, λ is

fixed as 1.2 and γ is fixed as 0.85.

4.5 Computational results

In this section, we present the results of computational experiments of our pro-

posed algorithm on technician routing problem. The proposed algorithm is coded

in Java language and implemented on a personal computer with a procesor Inter

Core i5 1.8 GHz. The genetic algorithm is tested with instances of Tricoire (2007).
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As we described in previous chapter, the instances of C1 contain 100 customers

and instances of C2 contain 180 customers. The time horizon is consisted of 5

periods of 8 hours to simulate the 5 workdays during a week. The number of

vehicles is 3.

Firstly, we compare the results of our proposed GA and the results of Cplex on

small size multi-depot and multi-period field service routing problem with time

window. Secondly, proposed algorithms are executed on the instances of C1 and

C2. The results are analyzed and a sensitivity analysis is done. Thirdly, we test

the performance of genetic algorithm with diversity control on instances C1 and

C2.

4.5.1 Computational experiments of proposed GA

4.5.1.1 Results on small size instances

We solve the instances with the proposed GA. The results and the computing

times are shown in Table 4.2. The column Cost GA is the average of the best

solutions for each instances with 10 runs. The column Time GA is the average of

the computing time with proposed genetic algorithm. The column Cost Cplex is

the average of best solutions computed with Cplex. The column Time Cplex is

the computing time of Cplex. The value of column Gap is calculated by Gap =
Cost GA−Cost Cplex

Cost Cplex
. For the instance size N = 20 and N = 30, the results are

average values of the 10 instances in C1 and C2. While for instances of size

N = 40, the results are calculated from the three instances C1_4, C_4 and

C2_5.

The gap is 0.06% for instances of size N = 20. The differences of computing

time between two methods are relatively small. As the size of instance becomes

larger, the gap becomes larger but still in a reasonable range. However, the

computing time has undergone great changes. For instance size of N = 30, the

two times are 27s and 1347s for the two methods; for instance size of N = 40,

the computing time of Cplex is up to 18h which is not any more suitable for

the real world application. It can be concluded that for instances more than 40

customers, exact method can not solve the problem.

For instances of larger size, the mentioned computer has not enough memory

to solve the problem with exact method. We will investigate the large scale
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Table 4.2: Results of GA and Cplex for small size instances
Instance size Cost GA Time GA Cost Cplex Time Cplex Gap

20 5041.17 14s 5040.89 79s 0.06%

30 8486.26 27s 8465.65 1347s 0.24%

40 9203.21 183s 9154.96 18h 0.53%

Table 4.3: Parameter setting for crossover operators comparison

Parameter Time popsize Pm elitenumRc

Value 30min 100 0.05 20 0.7

problems from other aspect.

4.5.1.2 Investigation of crossover operator

This investigation is performed to test the performance of the new crossover

methods proposed in our genetic algorithm. We compare our proposed the three

crossover operators mentioned in this chapter: Crossover1, Crossover2 and PIX.

The numerical results are computed after 10 independent runs with each crossover

operator and each run is executed for a time of 3o minutes. We compare our

two proposed crossover operators and the PIX crossover operator to determine

whether the proposed operators are advantageous to produce offspring. For this

reason, the three crossover operators mentioned are employed in our proposed GA

with parameters shown in Table 4.3. These parameters are fixed during the whole

computing. The computational results of the comparison of the three crossover

operators are shown in Table 4.4.

From Table 4.4, we can clearly observe that the better solution quality is

obtained under the crossover operator 2. The efficiency of crossover operator 1

is better than the PIX but is not as good as crossover operator 2. As a result,

the proposed two crossover operators are both advantageous in generating better

offspring. Compared to PIX, the two proposed crossover operators inherit more

orderly and more respectable to the compatibility of period and time window.

This makes them easier to get feasible offspring feasible. Only feasible offspring

are accepted to the new generation. In this way, our operators have higher pos-

sibility to get a better offspring.
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Table 4.4: Comparison between crossover operators.

Instance Crossover
1

Crossover
2

PIX

C1_1 17556.27 16899.08 19183.93
C1_2 16333.30 14641.58 17280.72
C1_3 15439.22 15013.20 17714.03
C1_4 16076.60 15010.54 18893.53
C1_5 14559.87 13461.81 15617.30
C2_1 26766.25 25954.63 28989.23
C2_2 26029.15 25276.24 27408.71
C2_3 25946.78 25434.10 26868.58
C2_4 25818.01 24777.15 27570.77
C2_5 24526.74 23939.51 26127.61

Fig. 4.7 shows the search evolution of GA of crossover 1 and crossover 2 with

iteration number. The searching efficiency per generation of crossover 1 is much

more higher than crossover 2. However, during a running time of 1 hour, GA with

crossover 1 searched 604 generations and the GA with crossover 2 searched up

to 105 generations. The ’quantity’ overwhelms the ’quality’ in our experiments.

That’s why crossover 2 gets better solution than crossover 1 within a certain

running time.

4.5.1.3 Investigation of initial population

The computational study is carried out to compare the algorithm with random

generation for the initialization procedure (GA1) and the proposed algorithm

with constructive heuristic based on best insertion (GA2). The performance is

evaluated using the instances in C1. The parameters of the GA for this exper-

iments are: population size = 100, mutation rate = 0.05, crossover rate = 0.7,

elite number = 10. The running time is limited as 60 min. Table 4.5 shows the

results of two algorithms. The GA based on best insertion get better results in

all the instances. The only difference between the two experiments is the quality

of initial solutions. To deep understand the performance of the two algorithms,

we compare the evolution of travel cost with iteration number in Fig 4.8.
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Figure 4.7: Evolution with iteration number of crossover 1 and crossover 2

In Fig.4.8, evolution of GA2 start at a lower point and always finds better

solution than GA1 in every single iteration. GA1 converges quickly at the be-

ginning. After it gets the level of the initial solutions of GA2, the convergence

rate slows down. Though the convergence rate of GA2 is lower than GA1, it find

better solutions than GA1 during the whole searching process. We conclude that

initial population makes great influence to the search efficiency.

4.5.1.4 Sensitivity analysis of the parameters

To analyze the influence of the parameters, we performed many experiments with

different settings. To find the relationship between the time consumption and the

quality of solutions with different parameter settings, we applied the proposed

algorithm on the instances with 10 runs. The parameters we investigate include

rate of crossover, rate of mutation and elite number. In Fig 4.9, the processes of
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Table 4.5: Influence of initial population

Instance Random initialization Construction based
on best insertion

C1_1 17726.04 15800.33

C1_2 16849.62 14916.66

C1_3 16077.32 15013.54

C1_4 15916.82 14593.60

C1_5 15365.61 14025.91

genetic search with different crossover rates are shown. The three curves represent

respectively the evolution of searching with crossover rate = 0.5, 0.7 and 0.9.

We can tell from the figure that the higher the crossover rate is, the better the

search quality is. Crossover rate of 0.9 gets the best solution among the three

crossover rate value.

Fig 4.10 presents the influence of the elite number on the final results. The

population size of the experiment is 100. We set the elite number as 5, 10 and

20. The results tells us that the elite number makes influence to the results. The

search with elite number = 20 gives better results than the lower elite number.
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Figure 4.8: Compare initial population
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Figure 4.10: Results of different elite numbers
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Figure 4.9: Results of different rates of crossover

Fig 4.11 presents the influence of the mutation rate on the final results. The

influence of different mutation rates don not make as large difference to the results

as the crossover rate and elite number.

These experiments shows that the three factors have more or less influence

to the performance of proposed GA. Every new generation is composed with

three parts: crossover offspring, elite members and new generated solutions. In

Fig.4.9 and Fig.4.10, we observe that when the number of new generated solution

increases, it is hard to find good solutions. New solutions bring diversity to the

population while at the same time they reduce the quality of individuals. As a

result, if the number of new generated solution is too large the searching efficiency

gets worse.

4.5.2 Results of GA with Diversity Control

We conducted several sets of experiments to evaluate the performance of the

method. Firstly, we employ the method to the instances in C1 and C2 mentioned

in chapter 3.
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Table 4.6: Parameter Calibration
Parameter Range Final Setting

Population Size [20,200] 100
Proportion of elite

individuals
[0,1] 0.3

Reference proportion of
feasible individuals

[0,1] 0.3

Granularity threshold [0,1] 0.4
Rate of crossover [0,1] 0.7
Rate of mutation [0,1] 0.05

The GA proposed in this chapter relax the constraints and allowed the search in

infeasible solutions. We are able to fine near-optimum results for a large instance

in C2. The column GADC presents the best results found by genetic algorithm

with diversity control. The column GAP is calculated by GAP = GADC−GA
GA

,

the gap of results of genetic algorithm with diversity and the previous genetic

algorithm. The computing time of each instance is 3600s. The results are the

best solutions during 10 runs of the genetic algorithm with diversity control for

each instance. For instances of C1, the gaps between two results are small. For

instances of C2 with large number of customers, the GADC performs better than

GA. The reason is that for a more constrained problem in C2, it takes much time

to find feasible solutions. As GADC searches the infeasible solution space and its

searching speed is larger, it is more likely to find a feasible solution.

4.5.2.3 Sensitivity analysis on method components

This section analyses the role of several of these components. We measure the

impact of the decomposition phases, the contribution of infeasible solutions to

the search, which required new move evaluation procedures, and the diversity

and cost objective. Table 4.8 compares the average results on 5 runs, as an

average gap to the best results of the instances C1 and C2.
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Table 4.7: Results of Instances C1 and C2
Instance GADC GA GAP

C1_1 15792.09 15800.33 −0.05%

C1_2 14853.55 14641.58 1.4%

C1_3 14832.71 15013.20 −1.2%

C1_4 14433.23 14593.60 −1.1%

C1_5 13335.14 13461.81 −0.9%

C2_1 24800.93 25954.63 −4.2%

C2_2 24116.23 25276.24 −4.5%

C2_3 25013.08 25434.10 −1.7%

C2_4 23593.25 24777.15 −4.8%

C2_5 22025.05 23939.51 −8.0%

Table 4.8: Sensitivity Analysis on the Components

Instance No Diversity
Objective

No Infeasibility Complete
Algorithm

C1 +1.21% +0.65% +0.27%

C2 +3.94% +1.71% +0.61%

These experiments confirms the pertinence of the framework of the algorithm,

as the diversity and infeasible search space contributes largely to the performance

of the proposed method.

4.6 Conclusion

In this chapter, we studied the multi-period and multi-depot field service prob-

lem with time window. We proposed a genetic algorithm with a chromosome

representation by resource and a new crossover operator for solving the problem.

The computational experiments showed that the proposed algorithm is compet-

itive in terms of the quality of the solutions found. Then we proposed a new

genetic search method with diversity control to efficiently address several classes

of multi-depot and multi-period field service routing problems, for which few ef-

ficient algorithms are currently available. We introduce several methodological
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contributions, in particular the repair of infeasible solutions, the individual eval-

uation procedure driven both by solution cost and contribution to population

diversity and the adaptive population management mechanism that enhances di-

versity.
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Conclusions and Perspectives

In this chapter, we will conclude the dissertation by summarizing the main results

and then present some perspectives of future research to complete and improve

this work.

Conclusions

The aim of this dissertation has been focused on optimizing the field service

routing problem for realistic application. We have studied the multi-depot and

multi-period field service routing problem of technicians, where we have deter-

mined daily technician schedules and routes in order to meet customer visit re-

quirements over a time horizon. The problem has not been much studied in

the literature. In this dissertation, we proposed several approaches to solve the

problem.

• Chapter 1 explained the motivation of this thesis. A general introduction

of the problem studied in this thesis is given.

• In chapter 2, a state of the art of the literature in the addressed problem is

given. We introduced the different variants of VRP classified by the different

characteristics and elements. Then the methodologies of VRP especially of

the variants that similar to our problem is presented. The study in chapter

2 perform as the basis of the following research.

• In chapter 3, a formal statement of the addressed problem is given. Heuris-

tics of construction and improvement are investigated to find optimized

solutions of the multi-period and multi-depot field service routing with

time window. These heuristics can obtained feasible solutions and these

solutions constructed by constructive heuristic based on best insertion can
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be improved by a series of improvement heuristics. Different heuristics are

compared in terms of the results and running times (Liu & El Kamel, 2015).

• In chapter 4, we studied the addressed problem with genetic algorithm.

First, we adapted the GA with a new chromosome representation and new

crossover operators. Only feasible solutions are accepted in the population.

Second, we proposed a GA with diversity control. Diversity contribution

is added to the evaluation of the individuals which avoids the premature

of the search. Experiments results show that these approaches have a ap-

proving performance on the instances simulated the real world data (Liu &

El Kamel, 2017a), (Liu & El Kamel, 2017b).

Future Work

In order to meet the higher needs of the practical applications, there are still

following aspects to be studied in the future on this addressed problem.

First of all, this dissertation has provided theoretical foundations on the field

service routing problem. Due to lack of the instances that corresponding to the

addressed problem, very limited numerical experiments have been done to the

problem. It is necessary to modify some of the existed benchmark problems or

create new instances to help the study of the problem.

Second, for a use of real world production, it is critical to consider the dynamic

elements of the problem, such as emergency requests, stochastic travel time and

service time, the break down of vehicles, etc, and therefore, the dynamic routing

problem should be studied in the future.

Third, as the development of new technology, new informations could be in-

volved for the resolution of the problem. For example, GPS can obtain the current

location of each vehicle and telecommunication technology contributes to the real-

time communication between customers and technicians. These informations are

very useful to the real-time optimization of the field service routing problem.

116



Résumé Étendu en Français

Introduction

Aujourd’hui, avec le développement du secteur tertiaire, la performance logis-

tique des entreprises et l’optimisation des transports sont devenus des enjeux

économiques importants. Cela repose notamment, pour beaucoup d’entreprise,

sur l’efficacité des tournées de véhicules réalisées quotidiennement. La planifi-

cation de tournées de service est une activité consiste à organiser, sur plusieurs

périodes de temps, les déplacements de personnels chez des clients pour effectuer

des opérations techniques. Nous nous intéressons à un problm̀e de tournées des

service multi-période et multi-dépôt avec fenêtres de temps de visite chez les

clients.

Cette thèse est composée de cinq chapitres organisés de la manière suivante:

• Le chapitre 1 donne la motivation de la recherche et une introduction

générale au problème que nous avons étudié dans cette thèse.

• Le chapitre 2 examine la littérature sur le VRP et les problèmes similaires

de notre problème.

• Au chapitre 3, nous avons formalisé le problème étudié avec le modèle

methématique. Ensuite, les heuristiques de construction de d’amélioration

sont proposées pour obtenir des solutions raisonnables.

• Le chapitre 4 a proposé un algorithme génétique pour le problème abordé.

Ensuite nous avons discuté de l’algorithme génétique avec le contrôle de

diversité.
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Motivation

Au cours des dix dernières années, la logistique a finalement été reconnue comme

un domaine qui était essentiel à la réussite globale de lentreprise. Il a une

grande importance dans léconomie, dans l’industrie et dans la protection de

l’environnement. Figure 4.12 montre qu’en union européenne, la logistique représen-

tait environ 9% du GDP au cours des dernières décennies. Ce nombre est signi-

ficativement plus élevé dans les pays en développement que dans les pays dévelop-

pés. En adoptant une approche de gestion de l’efficacité logistique, les coûts liés

à la logistique en pourcentage des ventes diminuent de 4% à 7%. En outre,

l’augmentation de la consommation d’énergie liée aux transports et ses effets

négaifs sur l’environnement ont suscité de plus en plus de préoccupations mon-

diales. Table 4.9 montre le pourcentage d’émmisions totales liées aux transports

à Ile-de-France. Nous pourrions dire que la pollution environnementale pourrait

être réduite en optimisant l’acheminement de la logistique, car les camions sont

habituellement utilisés à des fins de logistique.

Figure 4.12: Coût de la logistique en pourcentage du GDP dans l’UE (Source:
State of Logistics Report 2014/CSCMP)

Dans la littérature, la plupart des travaux traitent de problèmes impliquant

des livraisons de marchandises. Cependant, des problèmes de tournées de ser-
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Table 4.9: Pourcentage des émissions des camions dans des émissions totales de
transport en Ile-de-France

CO2 SO2 NOX PM10

Camions 26% 43% 38% 59%

vice sont aussi importants que des problèmes de livraisons. Les tournées de

service concernent l’organisation de déplacement de personnels vers des clients

afin d’effectuer différents activités techniques ou commerciales. Les entreprises

souhaitent organiser au moindre coût un meilleur service chez les clients. Avec

le développement de l’économie, de plus en plus d’entreprises doivent fournir des

services à faible coût et de haut niveau. Par conséquent, le problème de tournées

de service est très digne d’étude.

Pésentation du Problème

Dans cette thèse, nous intéressons en cas des tournées en clientèle, qui sont des

tournées de service. Il ne s’agit pas de livrer une marchandise, mais d’effectuer des

réparations, des opérations de maintenance, des relevés, ou même des enquêtes.

Les demandes sont séparées en deux catégories : les clients obligatoires avec

fenêtres de temps et les clients optionnels sans fenêtres de temps.

Les problèmes des tournées de véhicules (Vehicle Routing Problem, VRP)

constituent une famille de problèmes abondamment traités dans la littérature.

Les problèmes étudiés dans le cadre de cette thèse présentent quelques différences

majeures avec le cas classique:

- Les problématiques liées à la capacité sont absentes de ces problème; cepen-

dant, la durée totale de chaque tournée est bornée par la durée d’une journée

de travail, et il s’agit en pratique d’une contrainte forte.

- Nous traitons le cas multi-périodes, c’est-à-dire avec un horizon de plani-

fication de plusieurs jours. Une période de validité est associée à chaque

demande.

- Le nombre de véhicules est limité, et cette limite est une contrainte forte.
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- Chaque véhicule dispose de points de départ et d’arrivée propres, et poten-

tiellement différents.

- Les clients obligatoires sont considérés comme étant plus importants que

les optionnels. La période de validité d’un client obligatoire est toujours

limitée à une seule période.

L’objectif est de minimiser le coût total des tournées. Il n’existe pas de coût

fixe associé à la création d’une tournée, et le coût est assimilé à la distance.

L’objectif est donc de minimiser la distance totale de parcours.

Heuristiques de Construction et d’Amélioration

Nous présentons une famille d’heuristiques de construction et amélioration pour

le problème de tournées de service multi-dépôt multi-périodes avec fenêtres de

temps. Ces heuristiques permettent de produire des solutions réalisables, servant

de point de départ pour les métaheuristiques.

Pour des problèmes multi-période, généralement, les chercheurs décomposent

le problème en deux sous-problèmes: affectation des visites aux jours et résolution

d’un VRP par période de l’horizon. Nous proposons une méthode de construc-

tion globale pour les problèmes de tournées basée sur best insertion. Dans best

insertion, on essaie d’insérer chaque demande dans chaque tournée afin de déter-

miner l’insertion de coût minimal. L’incompatibilité entre certaines demandes et

certaines tournées est donc une contrainte forte.

Avant chaque insertion, il faut vérifier la faisabilité de cette insertion; c’est-à-

dire, si cette insertion est exécutée, la solution devrait être faisable. Il y a trois

critères à vérifier: (1) tous les clients sont visités pendant les périodes compatibles;

(2) pas de violation de fenêtres de temps; (3) la durée de chaque véhicule pour

chaque période est inférieure au temps de travail maximal. Les procédures sont

exécutées deux fois, d’abord pour des clients obligatoires et ensuite pour des

clients optionnels.

La méthode de construction nous offre les solutions faisables comme un point

départ des heuristiques d’amélioration. Nous avons proposé neuf voisinages dif-

férents, chacun associé à un type d’amélioration, puis nous avons les utilisé pour

produire des heuristiques d’amélioration.
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Algorithme Génétique

Les algorithmes génétiques sont des heuristiques de recherche locale qui imitent

le processus de la sélection naturelle. Ils sont été appliqués dans de nombreux

de domaines. Nous avons proposé deux algorithmes génétiques pour résoudre le

multi-dépôt multi-période problème de tournées de service avec fenêtre de temps.

En raison de la nature aléatoire, les solutions trouvées par algorithme génétique

peuvent être bonnes, mauvaises ou irréalisables. Il est de grande importance de

trouver des solutions faisables.

Comme mentionné précédemment, l’algorithme génétique a déja été utilisé

pour résoudre divers VRP. Cependant, les algorithmes existants ne peuvent pas

être utilisés pour résoudre notre problème. Tout d’abord, ce probème est un prob-

lème avec multi-période et multi-dépôt, il est important de trouver une représen-

tation de chromosome appropriée. Deuxièmement, la détermination de la popu-

lation initiale et de l’espace de recherche mérite d’être discutée car les contraintes

de notre problème sont très fortes. Enfin, la conception de l’opérateur de croise-

ment est une clé pour améliorer la qualité de la recherche génétique. Nous avons

proposé un nouvel algorithme génétique pour résoudre le problème abordé dans

cette thèse.

Nous avons implémenté l’algorithme en trois catégories des instances: de pe-

tite taille (<40 clients), de moyenne taille (100 clients) et de grande taille (180

clients). En comparant avec les solutions obtenues avec le solveur Cplex, pour

les instances de petite taille, la solution optimale est obtenue dans un délai

raisonnable et les résultats obtenus par nos algorithmes génétiques sont assez

proches de la solution optimale. Pour les instances de moyenne taille et de grande

taille, Cplex ne peut plus obtenir des solutions optimales dans un délai acceptable

et nos algorithmes peuvent identifier de meilleures solutions rapidement. Pour-

tant, la performance de cet algorithme en instances de grande taille n’ est pas

aussi satisfaisante que celle en instances de moyenne taille. Donc nous avons

proposé un algorithme génétique avec controle de diversité basé sur l’algorithme

ci-dessus.

Cette méthode développe des solutions faisables et infaisables dans la pop-

ulation. La contribution de diversité d’un individu est définie par le Hamming

distance dans la population. Elle constitue un facteur dans l’évaluation des chro-

mosomes. Nous avons proposé une méthode pour réparer les progénitures pour
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enlever la possibilité d’avoir des solutions faisables. Les résultats de cet algo-

rithme sont comparés avec l’algorithme avant en instances de moyenne taille et

de grande taille. Pour les instances de moyenne taille, les écarts entre deux algo-

rithmes sont faibles. Pour les instances de grande taille, l’algorithme génétique

avec contrôle de diversité fonctionne mieux que l’autre.

Contributions Principales

Cette thèse considère l’optimisation du probème de tournées de service dans le

monde réel. L’objectif est de trouver un plan de tournées optimisé pour les

entreprises afin dóffrir un service de qualité avec un coût minimum.

Les principales contributions de cette dissertation sont résumées comme suit:

Le problème de tournées de véhicules de service est un problème important

dans l’industrie moderne. Pourtant, la recheche menée sur ce problème du monde

réel est très limitée. Les problèmes réalistes sont généralement plus contraint et

compliqués. Le problème étudié dans cette thèse est modélisé pour une enquête

plus approfondie. Diverses contraintes ont été prises en considération pour simuler

le problème réaliste afin de résoudre le problème réel.

Les méthodes exactes et les méthodes méta-heuristiques sont largement util-

isées pour la VRP générale. Cependant, il n’y en a pas beaucoup qui peuvent

être applicables au problème abordé. Nous avons adopté un algorithme génétique

pour résoudre le problème avec la nouvelle représentation chromosomique conçue

et les opérateurs pour s’adapter au problème. Ces composants forment un nou-

vel algorithme génétique adapté au problème abordé. Cette méthode résout le

problème en obtenant l’effet souhaité.

Les algorithmes *évolutionnaires rencontrent souvent le problème de pré-

maturé. Pour faire face à ce problème, un nouvel algorithme génétique permettant

l’exploration de la solution infaisable est proposé. Une procédure de contrôle de

la diversité aide à éviter les prématurés. Les solutions infaisables sont réparées

par un opérateur de réparation. Cette méthode peut résoudre les instances de

grande taille avec une bonne efficacité.
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Perspective

Afin de répondre aux besoins plus élevés des applications pratiques, il reste encore

des aspects à étudier à l’avenir sur ce problème adressé.

Tout d’abord, cette thèse a fourni des bases théoriques sur le problème de

tournées de véhicules. En raison du manque de cas qui correspondent au prob-

lème, des expérimentation numériques sont limitées. Il est nécessaire de modifier

certains des problèmes de référence existants ou de créer de nouvelles instances

pour faciliter l’étude du problème.

Deuxièmement, pour l’utilisation de la production du monde réel, il est es-

sentiel de considérer les éléments dynamiques du problème, tels que les deman-

des d’urgence, le temps de déplacement stochastique et le temps de service,

l’indisponibilité des véhicules, etc. Par conséquent, le problème de tournées dy-

namique devrait être étudié dans le futur.

Troisièmement, en tant que développement de nouvelles technologies, nou-

velles informations pourraient être impliquées dans la résolution du problème. Par

exemple, le GPS peut obtenir l’emplacement actuel de chaque véhicule et la tech-

nologie de télécommunication contribue à la communication en temps réel entre

les clients et les techniciens. Ces informations sont très utiles pour l’optimisation

en temps réel du problème de tournées de véhicules de service.
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Optimisation de Problème Tournées de Véhicules de Service à Domicile

Résumé: La performance logistique des entreprises et l’optimisation des transports sont

devenues un grand problème ces dernières années. La planification et l’optimisation de la force

de service constituent un nouveau défi pour le secteur des services. Afin d’accroître la productivité

et de réduire les coûts de la logistique, cette dissertation contribue à l’optimisation d’un problème

de tournéns de service à domicile multi-dépôt, multi-période avec fenêtres de temps de vie réelle.

Le problème vient du problème réaliste et est formulé comme un modèle en Mixed Integer

Programming (MIP). Les résultats avec Cplex montrent que ce problm̀e ne peut être résolu par

des méthodes exactes dans un délai raisonnable pour une utilisation pratique. Par conséquent,

nous étudierons les heuristiques. Premièrement, les heurstiques de recherche locales sont utilisées

pour résoudre le problème. Les solutions réalisables initiales sont générées par une heuristique

de construction et plusieurs heuristiques de recherche locales sont appliquées pour obtenir des

solutions dans un temps de calcul assez court. Ensuite, nous proposons un algoritme génétique

avec une nouvelle représentation du chromosome et de nouveaux opérateurs génétiques pour

le problème abordé. Enfin, nous considérons un algorithme génétique avec le contrôle de la

diversité pour problèmes à grande échelle. Les solutions infaisables sont prises en compte dans la

population et la contribution à la diversité fait partie de l’évaluation afin d’éviter une recherche

prématurée. Ces méthodes ont été mises en œuvre avec succès pour optimiser le problème de

tournées.

Mots-clés: Problème de tournées des véhicules, Algorithme génétique, Multi-dépôt, Multi-

période, Fenêtres de temps, Tournées de service, Heuristique.

Optimization of Vehicle Routing Problem for Field Service

Abstract: The logistics performance of the enterprises and the optimization of transporta-

tion have become a great issue in recent years. Field force planning and optimization is a new

challenge for the service sector. In order to increase productivity and reduce cost of logistics, this

dissertation contributes to the optimization of a real-life multi-depot multi-period field service

routing problem with time window. The problem is abstracted from the realistic problem and

formulated as a Mixed Integer Programming (MIP) model. Computational results with Cplex

show that this problem cannot be solved by exact methods in reasonable time for practical use.

First, local search heuristics are used for solving the problem. Initial feasible solutions are gener-

ated by a constructive heuristic and several local search heuristics are applied to obtain solutions

in a very short computing time. Then we propose a genetic algorithm with new representation

of chromosome and new genetic operators for the addressed problem. Finally we consider a ge-

netic algorithm with diversity control to deal with large scale problems. Infeasible solutions are

taken account in the population and the diversity contribution is part of the evaluation to avoid

premature of search. These methods have been successfully implemented to the optimization of

the routing problem.

Keywords: Vehicle routing problem, Genetic algorithm, Multi-depot, Multi-period, Time

windows, Service routing, Heuristics.
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