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Abstract

Multi-label learning is a specific supervised learning problem where each instance can be asso-

ciated with multiple target labels simultaneously. Multi-label learning is ubiquitous in machine

learning and arises naturally in many real-world applications such as document classification,

automatic music tagging and image annotation.

In this thesis, we formulate the multi-label learning as an ensemble learning problem in order

to provide satisfactory solutions for both the multi-label classification and the feature selection

tasks, while being consistent with respect to any type of objective loss function.

We first discuss why the state-of-the art single multi-label algorithms using an effective commit-

tee of multi-label models suffer from certain practical drawbacks. We then propose a novel strat-

egy to build and aggregate k-labelsets based committee in the context of ensemble multi-label

classification. We then analyze the effect of the aggregation step within ensemble multi-label

approaches in depth and investigate how this aggregation impacts the prediction performances

with respect to the objective multi-label loss metric.

We then address the specific problem of identifying relevant subsets of features - among po-

tentially irrelevant and redundant features - in the multi-label context based on the ensemble

paradigm. Three wrapper multi-label feature selection methods based on the Random Forest

paradigm are proposed. These methods differ in the way they consider label dependence within

the feature selection process.

Finally, we extend the multi-label classification and feature selection problems to the semi-

supervised setting and consider the situation where only few labelled instances are available.

We propose a new semi-supervised multi-label feature selection approach based on the ensem-

ble paradigm. The proposed model combines ideas from co-training and multi-label k-labelsets

committee construction in tandem with an inner out-of-bag label feature importance evaluation.

Satisfactorily tested on several benchmark data, the approaches developed in this thesis show

promise for a variety of applications in supervised and semi-supervised multi-label learning.
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Chapter 1

Introduction

1.1 The scope of the thesis

Machine learning is a multidisciplinary field consisting of many contributing scientific domains

related to computing, mainly Artificial Intelligence, Mathematics, Statistics, and Probability. In

1959, Arthur Samuel defined machine learning as "a field of study that gives computers the ability

to learn without being explicitly programmed." During the last few decades, machine learning

gained in popularity and become ubiquitous in various application domains such as recognition

systems, natural language processing, and data mining [1]. With the broadening availability of

large-scale data sets, machine learning is expected to play a significant role in everyday life by

providing predictive solutions that generalize well from previously observed examples.

An important research field in machine learning is the task of inferring a function that can predict

the best value for an output target variable given an input object (typically a vector of variables).

This task is known as Supervised learning. The function is learned by exploring a set of observed

examples (training examples) with an already identified input and output pairs. The idea is to take

advantage of a limited number of observed examples to induce a mechanism that automatically

annotates the output (the target variable) for a large set of examples or new unseen examples.

In the traditional supervised learning context, there is only one target variable to predict. The

supervised task is categorized as single-label classification when the target variable is discrete

and categorized as regression when the target variable is continuous.

Multi-label classification has emerged as a natural extension to single-label classification in re-

sponse to applications where examples are associated with multiple interdependent classes si-

multaneously. For example, a medical patient may be diagnosed with more than one health

condition: ’asthma’, ’diabetes’, ’high blood pressure’, and ’heart disease’. Likewise, an article

can be categorized into multiple categories: ’education’, ’business’, ’technology’, ’social’, and

1



Introduction 2

’science’. From a computational perspective, the multi-label classification aims to obtain a bi-

partition ("on" and "off") of the set of all possible classes; the positive classes are referred to as

labels, the so-called relevant labels of the instances. Under these circumstances, the one-label

assignment assumption conducted by conventional single-label classification methods is not sat-

isfied. First, each example can be associated with more than one label at the same time. Thus,

the prediction model should correctly associate a collection of binary classifications to an un-

seen example. Second, the performance evaluation of the multi-label prediction are different;

since that, a multi-label prediction could be partially correct (where some labels are correctly

predicted), fully wrong (where all predictions are wrong), or fully correct (where all labels are

correctly predicted).

Multi-label models also have to deal with other challenges such as the inherent labels depen-

dencies, the computational complexity related of the model’s inference, the large dimensions of

the (input/output) spaces and the imbalance label representation where negative labels massively

outnumber positive ones. Various multi-label algorithms have been developed in the literature

[2] to cope these challenges. Tsoumakas and Katakis [3] summarized the multi-label classifica-

tion algorithms into two categories depending on the manner in which they tackle the multi-label

task, namely problem transformation methods [3, 4] and algorithm adaptation methods [5–8].

The first category transforms the multi-label learning task into either several binary classifica-

tions or one multi-class classification problem. Algorithm adaptation methods, on the other hand,

extends specific learning models to handle the multi-labeled data.

Besides these two categories of multi-label algorithms a third category of meta-models distin-

guish itself as ensemble multi-label models [9]. Ensemble multi-label models are based on the

top of a committee of single multi-label models with the goal of combining their outputs as a

single prediction. This group of models aims to enhance the generalization ability of single-

models by combining multiple ones to accomplish jointly one common task. The improvement

of performances within this family of methods relies on the concept of diversity, stating that a

good ensemble is a committee of models in which misclassified instances are different from one

individual model to another. This paradigm has proved to be efficient in traditional single-label

learning with a large body of work [10–14].

In the multi-label context, ensemble models have been suggested, not only to improve the predic-

tive performance and the robustness of single-models, but also to overcome other issues that are

specific to multi-labeled data (such as the learning complexity [15, 16], and the independence

assumption over the target labels [17]). For example, to deal with a large number of labels while

maintaining moderate learning complexity, Tsoumakas, and Katakis [15] proposed to construct

a committee of multi-label models where each member is specialized in a subset of labels with

the idea to combine their outputs in the prediction step.
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In most of the studies in ensemble multi-label learning, the emphasis is generally on the way the

committee is constructed, rather than on the combination step, and they often fail to provide the

new ensemble model with the adequate multi-label combination strategy that is consistent with

the committee construction. The combination is treated as in the traditional single-label ensem-

ble models and often highlighted as a step that can only improve the predictions quality. In many

works, a careful analysis of the combination step is lacking, thereby ignoring the peculiarity of

the multi-label context, namely different committee structure and evaluation metrics. In fact,

since multiple interdependent labels can be predicted simultaneously by each committee mem-

ber, ensemble multi-label models cannot always rely on a straightforward combination scheme

borrowed from the single-label learning.

1.2 Challenges and research goals

The main question studied in this dissertation is how to tackle multi-label learning problems

through the ensemble paradigm. The thesis explores ensemble multi-label models construction

including the diversity induction used to generate the base classifier committee and the aggrega-

tion of their predictions. The work also analyzes the type of loss metrics optimized by the state-

of-the-art ensemble model and the influence of the different stages of the ensemble framework

on their prediction quality. The thesis identifies some unique characteristics of the aggregation

step and its connection with the loss function minimized by the ensemble model.

The main objective of this dissertation is to study in depth how ensemble approaches can be

used effectively for multi-label learning and its related tasks, such as classification and feature

selection in a supervised and a semi-supervised way. To accomplish this objective, this work is

divided into two main parts.

The first focuses on ensemble multi-label classification problems, especially for the needs to

optimize a particular loss metric. This raises a number of challenging questions:

• How to build a loss consistent ensemble multi-label model? Is it sufficient to consider the

objective loss function exclusively in the committee construction?

• What is the role and the influence of the combination step in the ensemble of multi-label

models? Should we combine base-classifier predictions with a specific combination strat-

egy instead of a simple label-wise combination strategy?

These questions reflect the fundamental problem in multi-label classification that we therefore

wish to address in this thesis. Our objective is to develop an efficient ensemble framework that
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remains fair for all multi-label committee-based models while being consistent with a multi-

label loss metric to minimize. We discuss different ensemble combination strategies addressing

the loss consistency issues in the ensemble multi-label model and propose a new calibration

algorithm adapting the ensemble prediction output to meet the objective loss function.

The second part aims to extend the ensemble multi-label framework to conduct multi-label fea-

ture selection, in the supervised and the semi-supervised way when only a few multi-label in-

stances are available. This raises again the following questions:

• Can we efficiently use the power of ensemble methods to identify and remove the irrelevant

features in a multi-label setting? Is there a link between the loss function minimized by

the ensemble model and the model’s feature importance estimation?

• Can we benefit from the ensemble paradigm advantages to tackle the multi-label feature

selection in the semi-supervised context?

1.3 Contribution

The main novelty in this thesis is an efficient exploitation of the ensemble paradigm in the multi-

label context. The thesis starts by addressing some shortcomings of the k-labelsets based ensem-

ble multi-label approaches. We first propose a novel strategy to build and aggregate k-labelsets

based committee in line with an objective multi-label loss function of interest.

Motivated by the results obtained in this part, we discuss in depth the effect of different ag-

gregation strategies within various state-of-the-art ensemble multi-label approaches. Then, we

investigate how these combinations strategies can effectively impact the performances of en-

semble models especially when they are used in conjunction with a thresholding strategy that

optimizes a multi-label performance measure of interest.

The second part of this thesis is dedicated to the problem of the multi-label feature selection

based on the ensemble paradigm. We propose to evaluate the feature importance in multi-label

data using three different wrapper approaches in a Random Forest style. These variants optimize

different loss metrics depending on the way the label dependence is estimated. We also analyze

how the optimized loss metrics (in the inner multi-label classifier) influences the relevance of a

multi-label feature selection process.

Finally, the dissertation considers the problem of using a large amount of unlabeled data to im-

prove the efficiency of feature selection in high dimensional multi-label data sets, when only a

small set of labeled examples is available. We propose a new semi-supervised multi-label feature

importance evaluation method, which combines ideas from co-training and random k-labelsets

ensemble learning with a new permutation-based out-of-bag feature importance measure.
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1.4 Thesis organization

This manuscript is intended to be self-contained. Readers familiar with machine learning con-

cepts may skip Chapters 2, 3 and 6, which respectively present a comprehensive review of Multi-

label Classification, ensemble learning and Multi-label feature selection approaches. Personal

contributions are reported in Chapters 4, 5, 7 and 8.

In Chapter 2 we introduce the fundamentals of multi-label learning including both problem for-

mulation and evaluation metrics. The chapter also reviews proposed multi-label classification

approach with a scrutinized analysis over their optimized loss function.

In Chapter 3, we give an overview of ensemble learning with a focus on the state-of-the-art

ensemble multi-label models. The goal is to provide the necessary background to understand the

approaches presented in the latter parts of this thesis.

Chapter 4 and Chapter 5 present the main contributions of the thesis on multi-label classifica-

tion. In particular, Chapter 4 presents our novel strategy to build and aggregate k-labelsets based

committee in line with an objective multi-label loss function of interest.

Chapter 5 elaborates on the issue of base-classifier combination in various state-of-the-art en-

semble multi-label approaches and discusses its impact on the performances of ensemble models

especially when it is used in conjunction with a thresholding strategy that optimizes a multi-label

performance measure of interest.

Chapter 6 reviews recent studies on supervised and semi-supervised multi-label feature selection.

Chapter 7 introduces the three Random Forest based multi-label feature selection methods and

describes how variable importance used in Random Forest can be extended in multi-label context.

In Chapter 8, we propose a new proposed ensemble multi-label framework to help to solve the

problem of multi-label feature selection in a semi-supervised multi-label way.

Chapter 9 concludes the thesis and outlines open research problems for further research direc-

tions.



Chapter 2

Multi-label learning

Multi-label learning is the extension of single-label classification in which the goal is to predict

the set of relevant labels for a given input. This classification context is encountered in various

fields, including text, multi-media, biology. It was introduced to cope complex learning problems

of multi-class classification, with the aim to predict simultaneously a set of classes appointed as

labels. The issue of learning from multi-label data has recently attracted significant attention

from many researchers, and a considerable number of approaches have been proposed [2, 9, 18].

From a computational perspective, multi-label classification aims to obtain simultaneously a

collection of binary classifications for each individual object. There are two broad categories of

algorithms in multi-label learning, namely a) problem transformation methods and b) algorithm
adaptation methods. The first category transforms the multi-label learning task into either several

binary classifications or one multi-class classification problem. Algorithm adaptation methods,

on the other hand, extend specific learning models to handle the multi-labeled data.

This chapter will be devoted to present the fundamental concept of the multi-label learning and

to summarize the state-of-the-art of multi-label algorithms. The chapter also gives a first analysis

about the loss metric optimized by several well-established multi-label models. It starts with a

formal statement of the multi-label learning problem, then discusses the multi-label evaluation

metrics and gives a survey of works related to the multi-label learning. Finally, the loss func-

tion optimized in the multi-label algorithms is discussed. The goal of the chapter is to provide

the necessary background to understand the approaches presented in the upcoming parts of this

thesis.

2.1 Multi-label terminology

In contrast to the traditional single-label learning, the target labels are not mutually exclusive in

the multi-label context. Instances can be associated simultaneously with more than one label.

6
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Let  denote the input (instance) space, and let  = {𝜆1, 𝜆2, ..., 𝜆𝑞} be a finite set of labels.

Assuming that each training instance x ∈  is associated with a subset of labels 𝑙, where 𝑙 ⊆ ,

this subset of labels is called labelset and denotes the relevant labels for x. The remaining set

of labels ( ⧵ 𝑙) represents, on the other hand, the set of irrelevant labels for x. These sets of

relevant are represented by a binary vector y = (𝑦1, 𝑦2,⋯ , 𝑦𝑞), where 𝑦𝑖 = 1 ⇔ 𝜆𝑖 ∈ 𝑙 and

𝑦𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. The set of all possible subsets of labels (i.e. the powerset of : ()) is

denoted by  = {0, 1}𝑞 and represents the output (label) space.

Besides, instances in the input space can be described over a collection of 𝑓 features which can be

Boolean, discrete, or continuous or even a mixture thereof (i.e., x(𝑗) = (𝑥1(𝑗),… , 𝑥𝑀(𝑗)),∀x(𝑗) ∈  ,

Where the bold is used to distinguish vectors from scalars). Thus, a multi-label sample is a join

up of tuples from the descriptive space and the label space, (x(𝑗), y(𝑗)) ∈  ×  . Table 2.1

shows the data set representation of a multi-label data set 𝐸 consisting of 𝑛 instances : 𝐸 =
{(x(1), y(1)),⋯ , (x(𝑛), y(𝑛))}.

X1 X2 . . . X𝑀 Y1 Y2 . . . Y𝑞

x(1) 𝑥1(1) 𝑥2(1) … 𝑥𝑀(1) 𝑦1(1) 𝑦2(1) . . . 𝑦
𝑞

(1)

x(2) 𝑥1(2) 𝑥2(2) … 𝑥𝑀(2) 𝑦1(2) 𝑦2(2) … 𝑦
𝑞

(2)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

x(𝑛) 𝑥1(𝑛) 𝑥2(𝑛) … 𝑥𝑀(𝑛) 𝑦1(𝑛) 𝑦2(𝑛) … 𝑦
𝑞

(𝑛)

TABLE 2.1: Multi-label data set

An important characteristic of a multi-label data set is the number of labels associated to each

example. Depending on the application domain, this number of label can be large or small rel-

atively to the number of all possible labels. Tsoumakas and Katakis [3] proposed two pertinent

statistics that describes a multi-label data set: The label cardinality and the label density. The

label cardinality indicates the average number of labels associated with each instance, while the

label density, indicates the average proportion of labels associated with each example. Lets |y|
denote the number of labels represented in y. For a given data set  the statistics are defined as

follows:

• The label cardinality (Card)

Card(𝐸) = 1
𝑛

𝑛∑
𝑗=1

|y(𝑗)|
• The label density (LD)

LD(𝐸) = 1
𝑛

𝑛∑
𝑗=1

|y(𝑗)|
𝑞
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Both statistics characterize the number of labels that describe the instances of a multi-label data

set. The former is independent of the size of the label space, while the latter considers the number

of labels 𝑞. Two multi-label data sets with exactly the same label cardinality and different label

density might exhibit distinctive properties that impact the predictive multi-label model. The

two statistics are related to each other : Card(𝐸) = 𝑞 × LD(𝐸).

2.2 Multi-label learning: Formulation & Problem Statement

Assuming that x and y are jointly distributed according to some fixed but unknown probability

distribution 𝑃 (x, y) over  ×  , the multi-label classification task is formulated as follows:

Given a training data, in the form of a finite set of paired observations (x, y) ∈  × generated

by sampling according to the distribution 𝑃 (x, y). The goal is to provide an estimator h ∶  → 

which predicts the best value of an output y given an input x. That is, the estimator h returns, for

each x ∈  , a predicted vector h(x) = (ℎ1(x), ℎ2(x),⋯ , ℎ𝑞(x)) with the objective to generalize

well beyond the training observations in the sense of minimizing the risk with respect to a specific

loss metric. Basically, the learning model aims to minimize the expected risk of h with regard

to some multi-label loss 𝐿(⋅), i.e.,

𝑅𝐿(h) = 𝔼X,Y[𝐿(Y,h(X))] (2.1)

In general, it is not easy to learn the h directly. In practice, one instead learns a real-valued vector

function s ∶  → 𝕊, where the predicted score can be either 𝑠(x, y), so 𝕊 = ℝ||; or 𝑠(x, 𝜆𝑖), so

𝕊 = ℝ𝑞 and s(x) = (𝑠(x, 𝜆1),⋯ , 𝑠(x, 𝜆𝑞)). 𝑠(x, y) is the confidence of y ∈  , being the proper

labelset of x; and 𝑠(x, 𝜆𝑖) is the confidence of 𝜆𝑖 ∈ , being a proper label of x. The former

confidence could also be formulated as an estimation of 𝑝(y|x) ∶ y ∈  supported only on y
satisfying

∑||
𝑛=1 y(𝑛) = 1. Meanwhile the latter is an estimation of 𝑝(𝑦𝑖|x) ∶ 𝑦𝑖 ∈ [0, 1] (i.e.

𝑝(𝑦𝑖 = 1|x) or 𝑝(𝜆𝑖|x)). To keep the notation uncluttered, we use 𝑠y(x)) to denote 𝑠(x, y); and

ℎ𝑖(x) (respectively 𝑠𝑖(x)) to denote ℎ(x, 𝜆𝑖) (respectively 𝑠(x, 𝜆𝑖)). These different multi-label

outputs are formulated as :

• A bi-partition of the label space  into relevant and irrelevant labels:

h(x) = (ℎ1(x),⋯ , ℎ𝑞(x)) ∈  ⊆ {0, 1}𝑞.

• A label probability score vector, where the vector component indicates the relevance of

the label 𝜆𝑖 ∈  : s(x) = (𝑠1(x),⋯ , 𝑠𝑞(x)) ∈ [0; 1]𝑞.

• A probability score for each labelset indicating the relevance of each possible label com-

bination : ∀y ∈  𝑠y(x) ∈ [0; 1].
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In practice, the choice of the output space depends on the application context. For example,

in fully automated annotation the prediction model must be as accurate as possible in its labels

assignment. Such context matches to the email transfer system which forwards an incoming

email to all relevant departments of a company. Besides, the predicted label’s score reflects

the confidence degree of the model to associate x with the label 𝜆. Thus, its allows ranking a

set of labels regarding their appropriateness for the predicted instance, and reciprocally, allows

ranking a set of instances regarding their appropriateness for the label 𝜆. Of course, it may be that

in some situations the label probability score and the label bi-partition space are both important

for decision making.

2.2.1 Multi-Label output transformations

In several multi-label tasks, the output space of the most suitable algorithm is not adequate to the

application needs or not adequate to the objective loss function. Hence, the need to transform the

predictions, via a mapping function , to meet the adequate output space. The most popular

transformation is to switch the label probabilities to label space bi-partition. Meanwhile, it is

also possible to transit from labelset probabilities to a vector of label probabilities and vice-versa

(under particular hypothesis). Figure 2.1 summarizes the possible outputs transitions that we

will examine in the flowing subsections.

FIGURE 2.1: Multi-Label output transformations

Transition from 𝑠y(x) to 𝑠𝑖(x)

In this case, we consider that the multi-label model provides an estimation of the probability

distribution over all possible labelsets 𝑠y(x) ∶ y ∈  ; meanwhile, the desired output space is

the label probability score (i.e. a vector of label probabilities scores: s(x) = (𝑠1(x),⋯ , 𝑠𝑞(x)) ∈
[0, 1]𝑞). This Transformation is carried out via a marginalization procedure over the labelsets
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probabilities [19]. The transition is guaranteed since that, the labelset probability scores are an

estimation of the conditional joint label distribution (𝑠y(x) ≃ 𝑝(y|x)), and the label probability

scores are an estimation of the conditional marginal label distribution (𝑠𝑖(x) ≃ 𝑝(𝜆𝑖|x)).
 ∶ [0, 1]|| → [0, 1]𝑞

𝑝(𝜆𝑖|x) = ∑
y∈

𝑝(y|x).𝐼(𝜆𝑖 ∈ y) ≃ 𝑠𝑖(x) =
∑
𝑦∈

𝑠y(x).y𝑖

The transformation  consists of simply estimating each label score 𝑠𝑖(x) as the sum of the

probabilities predicted for all labelsets containing the label 𝜆𝑖. The example below illustrates

the transition from 𝑠y(x) to 𝑠𝑖(x) of a possible labelset probability distribution predicted by a

multi-label model.

y ∈  𝑠y(x) 𝜆1 𝜆2 𝜆3 𝜆4

{𝜆1, 𝜆4} 0.7 1 0 0 1

{𝜆3, 𝜆4} 0.2 0 0 1 1

{𝜆1} 0.1 1 0 0 0

{𝜆2, 𝜆3, 𝜆4} 0.0 0 1 1 1

⋯ 0.0 - - - -

𝑠𝑖(x) = ∑
y 𝑠

y(x)𝑦𝑖 0.8 0 0.2 0.9

𝑠y(x) is a possible labelset probability

distribution provided by a multi-label model

Transition from 𝑠𝑖(x) to 𝑠y(x)

In this case we consider that the multi-label model provides a probability score for each label

𝑠𝑖(x) ∈ [0, 1]𝑞 ∶ 𝑖 ∈ {1;⋯ ; 𝑞} and the desired output space is the probability distribution over

all possible labelsets 𝑠y(x) ∶ y ∈  . The transformation is represented by the dashed line in

Figure 2.1 and is based on the assumption of conditional label independence given x. When this

condition holds [20], the joint probability estimation 𝑝(y|x) can be written as the product of the

marginal probabilities 𝑝(𝜆𝑖|x). Thus, the mapping function is simply formulated as :

 ∶ [0, 1]𝑞 → [0, 1]||
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𝑝(y|x) = 𝑞∏
𝑖=1

𝑝(𝜆𝑖|x) ≃ 𝑠y(x) =
𝑞∏
𝑖=1

𝑠𝑖(x)

Such transition is based on a strong assumption that is hard to check, but useful when the multi-

label classification is an intermediate task where the independence condition holds [21].

Transition from 𝑠y(x) to h(x)

In this case, we consider that the multi-label model provides an estimation of the probability

distribution over all possible labelsets 𝑠y(x) ∶ y ∈  ; and, the desired output is a vector of crisp

labels (labelset). This Transformation is carried out via a simple selection of the labelset with

the larger probability score.

 ∶ [0, 1]𝑞 → 

h(x) = argmax
y∈

𝑝(y|x) ≃ argmax
y∈

𝑠y(x)

Transition from 𝑠𝑖(x) to h(x)

In this case, we consider that the multi-label model outputs, for each label, a probability score

𝑠𝑖(x) and the desired output is a vector of crisp labels (labelset). Such transformation function is

well known as thresholding procedure and commonly noted as 𝜏(⋅) [22–24]. The straightforward

option is to implement the thresholding function 𝜏(⋅) as 0.5 constant for all the label score predic-

tions. This thresholding procedure is also used to guide the multi-label model to be optimal for

a particular loss metric [25]. In section 2.5.4 a discussion is given about loss guided threshold

calibration in general multi-label models and in Chapter 4 and Chapter 5 we discuss how the

thresholding strategy can be used in ensemble multi-label models. Thus, the mapping function

is simply formulated as :

 ∶ [0, 1]𝑞 → [0, 1]𝑞

2.3 Multi-label evaluation metrics

The generalization performance of a multi-label model is evaluated differently from traditional

single-label models. Multi-label evaluation metrics are more complicated as each instance can be

associated with multiple labels simultaneously. A multi-label prediction could be partially cor-

rect (where some labels are correctly predicted), fully wrong (where all predictions are wrong),
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or fully correct (where all labels are correctly predicted). For this propose, several performance

metrics have been proposed in the multi-label literature [9, 26]. These metrics can be distin-

guished by the multi-label outputs they consider: Some metrics are specific to evaluate multi-

label score outputs (probability-based metrics) while others are specific to evaluate crisp labels

output (bi-partition-based metrics).

2.3.1 Bi-partition-based metrics

These metrics can also be categorized according to how they evaluate the output vectors. Tsoumakas

et al. [3] categorize the multi-label metrics into two groups, namely : label-wise metrics and

instance-wise metrics. Metrics in the first group conduct a separate evaluation for each label, then

average the measures across the labels. On the other hand, instance-wise metrics are computed

for each evaluated instance to be averaged, in a second time, over the test evaluation sample.

A more general and theoretical formulation of these metrics categorization was given by Dem-

bczyński et al. [18]. Authors define the label-wise decomposable multi-label loss metrics as a

category of functions where the risk minimizer is obtained by minimizing the risk over each label

separately ; and the instance-wise decomposable multi-label loss metrics as a category of multi-

label loss functions where the risk-minimizing the prediction is only obtained by minimizing the

risk jointly over all labels for each instance.

Let  = {(x(𝑗), y(𝑗)), 1 ≤ 𝑗 ≤ 𝑛} be a multi-label test data set with 𝑛 instances represented

in the form of an input feature matrix X = [x(1),⋯ , x(𝑛)]⊺ and an output label matrix Y =
[y(1),⋯ , y(𝑛)]⊺. Respectively, let h(X) represent the matrix of predictions. Let 𝑡𝑝𝑖, 𝑓𝑝𝑖, 𝑡𝑛𝑖 and

𝑓𝑛𝑖 represent the number of true positives, false positives, true negatives and false negatives for

a label 𝜆𝑖. Multi-label learning loss metrics evaluating the relevance of the predicted bi-partition

can be formulated as :

𝐿 ∶ {0; 1}𝑞 × {0; 1}𝑞 → ℝ𝑞

+

In the following, we give a mathematical description of the commonly used multi-label loss

metrics evaluating the crisp label predictions.

• The Subset 0/1 loss generalizes the well-known 0/1 loss from the traditional single-label

classification to the multi-label context and defined as:

𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠(Y,h(X)) = 1
𝑛

𝑛∑
𝑗=1

(h(x(𝑗)) ≠ y(𝑗)) (2.2)

Where (𝜙) equals to 1 if 𝜙 holds and 0 otherwise for any predicate 𝜙. The Subset 0/1 loss
metric is known to be a very strict evaluation measure as it does not distinguish between
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the "partially correct" and the "fully wrong" predictions and thus requires an exact match

between the true set of labels and the predicted set of labels.

• The Jaccard loss is originally defined by set operators as one minus the ratio of intersection

and union and formulated as follows:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑙𝑜𝑠𝑠(Y,h(X)) = 1 − 1
𝑛

𝑛∑
𝑗=1

∑𝑞

𝑖=1 𝑦
𝑖
(𝑗)ℎ

𝑖(x(𝑗))∑𝑞

𝑖=1 𝑦
𝑖
(𝑗) +

∑𝑞

𝑖=1 ℎ
𝑖(x(𝑗)) −

∑𝑞

𝑖=1 𝑦
𝑖
(𝑗)ℎ

𝑖(x(𝑗))
(2.3)

• The Instance-F1 loss is defined as an instance-wise metric. Its value is the average of the

F1 score for each instance in the test data set.

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠(Y,h(X)) = 1 − 1
𝑛

𝑛∑
𝑗=1

2
∑𝑞

𝑖=1 𝑦
𝑖
(𝑗)ℎ

𝑖(x(𝑗))∑𝑞

𝑖=1 𝑦
𝑖
(𝑗) +

∑𝑞

𝑖=1 ℎ
𝑖(x(𝑗))

(2.4)

• The Macro-F1 loss is an average of the label F1 score computed separately for each label.

Assuming that 𝑝𝑖 and 𝑝𝑖 are the precision and recall over the label 𝑖. The Macro-F1 loss is

defined as :

𝑀𝑎𝑐𝑟𝑜-𝐹1 𝑙𝑜𝑠𝑠(Y,h(X)) = 1 − 1
𝑞

𝑞∑
𝑖=1

2.𝑝𝑖.𝑟𝑖

𝑝𝑖 + 𝑟𝑖
(2.5)

• The Micro-F1 loss, in contrast to the Macro-F1 loss, first sums the contingency matrices

(i.e. 𝑡𝑝𝑖, 𝑡𝑛𝑖, 𝑓𝑝𝑖, 𝑓𝑛𝑖) for all labels and then computes the F1 score as follow:

𝑀𝑖𝑐𝑟𝑜-𝐹1 𝑙𝑜𝑠𝑠(Y,h(X)) = 1 − 𝐹1(
𝑞∑
𝑖=1

𝑡𝑝𝑖,

𝑞∑
𝑖=1

𝑡𝑛𝑖,

𝑞∑
𝑖=1

𝑓𝑝𝑖,

𝑞∑
𝑖=1

𝑓𝑛𝑖) (2.6)

It is important to notice that, by construction, the Micro-F1 loss falls neither in the label-

wise category nor in the instance-wise category [18] of the multi-label metrics.

• The Hamming loss evaluates the accuracy as the average of the binary classification error.

It measures the percentage of incorrectly predicted labels to the total number of labels.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠(Y,h(X)) = 1
𝑞

𝑞∑
𝑖=1

∑𝑛

𝑗=1 (𝑦
𝑖
(𝑗) ≠ ℎ𝑖(x(𝑗)))
𝑛

(2.7)

By definition, these metrics take values in the interval [0; 1] and the smaller the value, the better

the algorithm performance is (the best value is scored 0 and the worst at 1). As the Subset 0/1 loss,

Jaccard loss and the Instance-F1 loss consider each instance separately they are instance-wise

decomposable metrics. It is also important to highlight that these metrics are not decompos-

able over single labels since their risk minimizer could not be obtained by minimizing the risk
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separately for each label [18]. Besides, the Macro-F1 loss is computed as an average of the per-

formance over the labels. Thus it is considered as a label-wise decomposable metric. On the

other hand, the Hamming loss, especially, could be considered, simultaneously, as a label-wise

decomposable and as an instance-wise decomposable metric, since that the metric is decompos-

able over single instances and also decomposable over single labels [27]. However, it is generally

considered, in the literature, only as a label-wise decomposable metric [18]. In this thesis, we

will only focus on the label decomposition of the Hamming loss.

2.3.2 Probability-based metrics

When the multi-label model outputs the real-valued or probabilities scores, others multi-label

metrics can be defined as well. Generally, these metrics evaluate the model performance from a

ranking perspective [28] and formulated as:

𝐿 ∶ {0; 1}𝑞 ×ℝ𝑞 → ℝ𝑞

+

• The𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 is defined as the average fraction of label pairs that are reversely ordered

for the prediction. It is defended as :

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠(Y, s(X)) = 1
𝑛

𝑛∑
𝑗=1

|{(𝜆𝑢, 𝜆𝑣)|𝑠𝑢(𝑥(𝑗)) ≤ 𝑠𝑢(𝑥(𝑗)), (𝜆𝑢, 𝜆𝑣) ∈ 𝑙 × 𝑙}||𝑙(𝑗)||𝑙(𝑗)| (2.8)

where 𝑙(𝑗) denotes the set of labels associated with the instance x(𝑗) and 𝑙(𝑗) denotes its

complementary set in  (i.e. 𝑦𝑖(𝑗) = 1 ⇔ 𝜆𝑖 ∈ 𝑙(𝑗) and 𝑦𝑖(𝑗) = 0 ⇔ 𝜆𝑖 ∈ 𝑙(𝑗)).

• The 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟 evaluates the fraction of prediction where the top-ranked label is not on the

set of the true relevant labels. The 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟 is formulated as follows :

𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟(Y, s(X)) = 1
𝑛

𝑛∑
𝑗=1

([argmax
𝜆𝑖∈

𝑠𝑖(x(𝑗))] ∉ 𝑙(𝑗))

The 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟 takes values between 0 and 1. The smaller the value is, the better the per-

formance is. Note that, for single-label classification problems, the 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟 is identical

to ordinary classification error.

• The 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 evaluates the number of required steps, on average, to move down the

ranked predicted scores to cover all the labels associated with the instance. The 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

is formulated as follows :
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𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(Y, s(X)) = 1
𝑝

𝑝∑
𝑖=1

max
𝜆∈𝑙(𝑗)

[𝑟𝑎𝑛𝑘(s(x(𝑗)))] − 1

For either 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, the smaller the metric value the better the

model’s performance, where 0 is the optimal value for the 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 and the 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟

whereas the optimal value of the 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 is
1
𝑛

∑𝑛

𝑗=1 |y𝑗| − 1.

Furthermore, most of the classical single-label performance metrics can also be generalized to

the multi-label context and used to evaluates the quality of the predicted scores via a Macro or

Micro averaging process, as for the Macro-F1 loss and the Micro-F1 loss. Thus similarly to these

two metrics Zhang and Zhou defined the multi-label 𝐴𝑈𝐶 metric such as the 𝐴𝑈𝐶 Area Under

ROC Curve [28], where the 𝐴𝑈𝐶𝑚𝑎𝑐𝑟𝑜 is the averaged value of the 𝐴𝑈𝐶 across all the labels.

2.4 Multi-label learning methods

Basically, existing multi-label learning methods may be grouped into two main approaches: al-
gorithm adaptation and (b) problem transformation [3, 9]. Algorithm adaptation approaches

extends specific learning algorithms to handle the multi-label data directly. Problem transfor-
mation approaches, on the other hand, comprises approaches that transform the multi-label learn-

ing problem into either one or more traditional single-label learning problems. The single-label

learning problems are then solved with a commonly used single-label classification approach.

Finally, and the output predictions are transformed back to the multi-label representation.

2.4.1 Algorithm adaptation approaches

In this category of multi-label models almost all traditional paradigms in conventional single-

label classification have been revisited to be adapted to handle multi-labeled data. Models in this

category are based on existing algorithms such as: classical decision trees algorithm [6], Support

Vector Machines (SVMs) [29], neural networks [8] and k-nearest neighbours (K-NN) [5]. The

keys concerns in these models are i) how to deal with the label overlap and ii) how to consider

the links ( correlation ) among different labels while improving the prediction quality.

Algorithms based on Decision Tree

Due to their hierarchical outcome and their interpretability, decision trees have been widely used

in multi-label models especially in genomic applications [6, 7, 30–32].
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Clare et al. modified in [6] the entropy function in the classical decision tree C4.5 algorithm to

handle instances associated with multiple labels. In this new multi-label C4.5 algorithm (termed

ML-C4.5), multiple labels in the tree’s leaves are allowed, and the entropy formulation is adapted

to quantify the information needed to describe the labels associated with instances. Formally,

the modified function of entropy, for a given data set , sums the entropies for each individual

label 𝑞 and considers both the membership and the non-membership of labels as :

𝑒𝑛𝑡𝑟𝑜𝑝𝑦() = −
𝑞∑
𝑖=1

(𝑝(𝜆𝑖) log 𝑝(𝜆𝑖) + 𝑞(𝜆𝑖) log 𝑞(𝜆𝑖))

Where 𝑝(𝜆𝑖) is the probability (relative frequency) of the label 𝜆𝑖 and 𝑞(𝜆𝑖) = 1 − 𝑝(𝜆𝑖).

By adopting the rule of maximum information gain, which is the difference of entropy after

splitting, the decision tree is equipped to handle the multi-label data directly. Finally, the leaves

of the tree are allowed to predict the most frequent set of labels in the branch.

In [32], Kocev et al. propose the Predictive Clustering Tree (PCT), which considers the decision

tree as a hierarchy of clusters where multi-labeled data is partitioned [7]. The induction process

in PCT is a top-down generation of clusters where the intra-cluster variation is minimized. The

model can be assimilated to a hierarchy of clusters where nodes are partitioned into smaller

clusters by traversing from top to bottom, and each leaf is labeled with its cluster’s prototype in

the prediction step. The idea behind the PCT model is to provide the possibility to adopt of a

variance function describing the nodes and a prototype function to decide over their values. In

the multi-label setting, the PCT uses the sum of the Gini indices as a variation criterion in order

to consider the links between the labels. The variance function is formulated as:

𝑉 𝑎𝑟() =
𝑞∑
𝑖=1

𝐺𝑖𝑛𝑖(,Y𝑖), 𝐺𝑖𝑛𝑖(,Y𝑖) = 1 − (𝑝2(𝜆𝑖) + 𝑞2(𝜆𝑖))

Where 𝑝(𝜆𝑖) is the probability of the label 𝜆𝑖 and 𝑞(𝜆𝑖) = 1 − 𝑝(𝜆𝑖).

Algorithms based on SVM

Support Vector Machines SVMs have been wildly used in the multi-label context. they generally

construct a tailored model to minimize an objective loss function explicitly [33–35].

For instance, in [29] Elisseeff and Weston presented a ranking approach based SVM to handle

multi-label data termed RankSVM. The proposed method tries to control the model complexity

while minimizing the empirical error. But, the key idea of the RankSVM algorithm is to use the

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 as a specific loss function in the inner optimization process and thus allows the
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model to capture multi-label characteristics of the multi-label task. In [36, 37] authors propose

to extends the structural SVMs to minimize the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠.

The SVMs have also been used in order enhance the classification performance of exiting multi-

label models by constructing a new kernel that expresses the correlation among different labels

[38]. Furthermore, in [39] authors introduced a generalization of SSVMs that can be imple-

mented for optimizing a variety of multi-label loss metrics.

Algorithms based on Probabilistic Framework

Many of the approaches to multi-label learning mainly rely on discriminative modeling tech-

niques; nevertheless, some generative models have also been devised. In [40, 41] a probabilistic

generative model for multi-label document classification were presented. The proposed approach

is constructed to model multiple labels associated with each input document. The model assumes

that a document is generated by a mixture of word distributions, where each word distribution is a

label. In the learning step the expectation maximisation is used to estimates the mixture weights

and the word distribution. While, in the prediction step, the Bayes rule is applied to predict

the most probable set of labels given the document as an input. Confronted to other multi-label

learning models, these probabilistic models can only be applied for text classification. More

general approaches are desirable to handle a wider range of multi-label learning tasks.

Algorithms based on Neural Networks

Zhang and Zhou proposed to use the neural networks in [8], and present Back-Propagation Multi-
Mabel Mearning BP-MLL; which is an adaptation of the traditional multilayer feed-forward

neural network in the multi-label learning. The important modification of the algorithm is the

use of a function error that considers multi-labeled data and closely related to the 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠.

The idea is to assume that the labels associated with an instance should have a higher ranked than

those not associated with the instance. The neural network is trained with gradient descendent

algorithm where the minimized error is formulated as :

 =
𝑛∑
𝑖=1

1|y(𝑖)||ȳ(𝑖)|
∑

(𝑗,𝑘)∈y(𝑗)×ȳ(𝑘)
𝑒𝑥𝑝(−(𝑓𝑗

(𝑖)(x(𝑖)) − 𝑓𝑘
(𝑖)(x(𝑖))))

where (𝑓𝑗

(𝑖)(x(𝑖))−𝑓𝑘
(𝑖)(x(𝑖)) measures the difference between the outputs of the network on the set

of relevant labels and the set of irrelevant ones for the 𝑖-th instance.

Besides, inspired by the Radial Basis Function (RBF) methods [42] Zhang[43] proposed the

Multi-Label Radial Basis Function (ML-RBF). The proposed network is trained in a two-stage



Multi-label learning 18

procedure. In the first stage, the basis functions of the hidden layer are learned through a k-

means instances clustering aver each label. The stage aims to construct the prototype vectors

of the first-layer basis functions as the centroids of the clusters. In the second stage, the second

layer’s weights are optimized via the minimization of the sum-of-squares error function. The link

between the labels is considered via a connection between all the basis functions corresponding

to the prototype vectors of all labels.

Algorithms based on k-Nearest Neighbor

In [5] Zhang and Zhou extend the k-Nearest Neighbor (𝑘NN) to handle multi-label data. The

central idea of ML-𝑘NN is to label each instance based on the labels of the neighboring instances.

Although the determination of the labels for a new test instance is different, the algorithm uses the

prior and the posterior probabilities of each label among the 𝑘NN. The statistical information is

gained from the labelsets of the neighboring instances via the Maximum A Posterior to predict the

labels of a new example. Formally, given an unseen example x, the algorithm first determines

the set of 𝑘 nearest neighbors: 𝑁 = {(x(𝑖), y(𝑖))|1 ≤ 𝑖 ≤ 𝑘}, and gets a vector counting the

number of instances associated to each label in the neighborhood of x: 𝑐 = (𝑐1,⋯ 𝑐𝑞) where

𝑐𝑗 =
∑

(x(𝑖),y(𝑖))∈𝑁 (y𝑗(𝑖) = 1). Then, based on the prior and the posterior probabilities of each

label within the neighborhood, the algorithm identifies the labelset to be associated with the new

instance via the maximum a posteriori principle:

y𝑖 =
{

1 𝑖𝑓 𝑝(𝑐𝑗|y𝑗 = 1)𝑝(y𝑗 = 1) ≥ 𝑝(𝑐𝑗|y𝑗 = 0)𝑝(y𝑗 = 0)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.4.2 Problem transformation approaches

The straightforward strategy to handling the multi-label learning task is converting it into one

or a series of mono-label learning tasks where conventional mono-label learning models can

be applied directly. The key principle is to get rid of the label overlap in the original target

space. Compared to the algorithm adaptation approach, the problem transformation approach
is more flexible since any conventional mono-label model can be used. First, the original multi-

label task is transformed into one or more single-label tasks solved via traditional algorithms.

Then in the prediction step, the outputs transformed back into the initial representation. Problem
Transformation approaches can be grouped into three schemes: i) Binary Relevance (BR), ii)
Pair-wise, and iii) Label Power-set (LP).
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Binary Relevance methods (BR)

The main idea in the Binary Relevance scheme is to switch the multi-label problem into several

distinct binary problems. BR learns 𝑞 = || binary models; each specialized in one label inde-

pendently from the others. Concretely, for each label 𝜆𝑖, the associated model learn to predict,

as positive instances, all the training samples associated with 𝜆𝑖 and the remaining samples are

considered as negative: ℎ𝑖 ∶  ⟶ {0, 1}, where ℎ𝑖, is the binary model associated to 𝜆𝑖. For

an unseen instance x, the predicted labels ŷ are the concatenation of the predictions trough all

the binary models i.e. ŷ = (ℎ1(x),⋯ , ℎ𝑞(x)).

The BR style models are intuitive approaches, easy to implement, with a low computation com-

plexity. Furthermore, it can also be combined with many binary learning algorithms such as

Support Vector Machines and Artificial Neural Networks or KNN [4] and has been widely used

as a baseline to evaluate the performance of multi-label learning models [4]. Nevertheless, the

main drawback of the binary relevance scheme is its hard label dependence assumption. Indeed,

as each label is treated independently from the others, the BR approach does not consider any

links among the labels. It also suffers from the target imbalance problem due to the typical spar-

sity of labels in multi-label data sets. Indeed, for each label, the number of positive instances can

be significantly less than the number of negative instances. Furthermore, when dealing with a

large number of labels, the BR scheme may not scale since a binary model has to be constructed

for each label.

In order to take into account the label links, several works propose to overcome the BR label

independence assumption.

Following the one-versus-one philosophy Hüllermeier et. al. [44] propose to transform the

original multi-label problem into (𝑞 − 1) × 𝑞∕2 binary tasks, one for each pair of labels. In each

task, example associated to one of the labels are considered as positive while instances belonging

to both labels or any label are not considered as training samples. So a binary model is used to

discriminates the two labels. In the prediction step, the vote of the (𝑞 −1) × 𝑞∕2 classifiers gives

a ranking of labels according to the predictions of the binary models.

However, even if the pairwise model takes into consideration pairwise links between the labels,

it predicts only label ranking and is not able to output a bi-partition of the label space. To do

so, an other variation has been presented in [45, 46] termed Calibrated Label Ranking (CLR)

incorporating a strategy to ameliorate the selection of relevant labels. The idea is to introduce,

an artificial label 𝜆0, which act identically to a BR transformation and serves as a split point

separating the relevant labels from the irrelevant ones. Even though these methods consider the

links between pairs of labels, which is relatively effective. Links between labels are generally

grouped on more than two labels. Furthermore, these models have a significant complexity in the

prediction step and require consulting all the generated binary models, which may be impractical
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for large labeled data. To speed up prediction step several voting schemas has been proposed

aiming to avoid evaluating all pairwise classifiers [47, 48]. Still remain, however, the need to

store a quadratic number of binary models.

Classifier Chains algorithm (CC)

To tackle the BR label independence assumption Read et al. [17] proposed the multi-label classi-
fier chain (CC). The main idea of CC is to generates 𝑞 binary models linked in such a way that the

input space of each binary model is extended with the 0/1 labels associations of all its previous

classifiers. Specifically, each model learns a mapping from  × {0, 1}𝑖−1 to {0, 1} reflectively

for each label 𝜆𝑖 as :

ℎ𝑖 ∶  × {0, 1}𝑖−1 → {0; 1}

(x, 𝑦1,⋯ 𝑦𝑖−1) → 𝑝(y𝑖|x, 𝑦1,⋯ 𝑦𝑖−1) (2.9)

The label models ℎ𝑖 can also be interpreted as a probabilistic classifier where the predictions are

an estimation of the probability of 𝑦𝑖 = 1. From this perspective, the CC model can exploits the

probability product rule to estimate the joint probability distribution 𝑝(y|x). According to the

chain rule, the joint probability can be decomposed into a product of conditionals probabilities:

𝑝(y|x) = 𝑝(y1|x)×𝑝(y2|x, y1)×⋯×𝑝(y𝑞|x, y1,⋯ , y𝑞−1). Thus the CC model considers the links

between the labels effectively and overcomes the label independence assumption of BR.

In their first proposition, Read et al. [17], suggest to classify the labels in a greedy sequence

where the each is decided by maximizing 𝑝(y𝑖|x, y1, .., y𝑖−1) directly in each step. Despite, this

procedure has three shortcomings: First, the predicted subset of labels can be different from the

real mode of the distribution. Second, in the prediction step, the error prediction can be spread

to the following labels predictions. Third, the global label prediction depends on the order used

to chain the binary models.

To deal with the first and the second issues, a Bayes optimal approach of forming classifier chains

based in probability theory, termed Probabilistic Classifier Chains (PCC), was proposed in [49].

PCC tests all possible chain order and predicts the new set of label as �̂� = argmax
y∈

, 𝑝(y|x). Despite

obtaining better performance than CC, as PCC has to look at each of 2𝑞 possible labelset in the

prediction stage. Thus, the exact inference can become impractical and the model applicability

is only advisable for tasks with a fair number of labels (𝑞 ≤ 15).

To avoid the exhaustive search -while bypassing a greedy one-, approximation techniques may

have to be used to cope with the computation complexity. Several variant has been proposed with

some more accurate search, such as approximate search [50], A* search [51], or Beam Search

[52].
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Finally, to avoid the adverse effects of the chaining order, Real et al. [17] proposed to combine

several chaining in an Ensemble of Classifier Chains (ECC). The main idea is to select the most

probable label according to the prediction of several CC each based on a different order (See

Section 3.3.2.2). An other strategy is proposed in [53] aiming also to increment the feature

space of the BR model with labels. In this case -the (BR+) approach- for each binary classifier

the feature space is augmented with 𝑞−1 descriptive features corresponding to the all other labels.

In the prediction stage, the 𝑞 − 1 augmented features of the unlabeled instance are replaced by

the prediction of BR classifier trained with the original training data.

Label Powerset algorithm -approach- (LP)

The Label Powerset (LP) approach considers each label subset as distinct meta-class. Thus it

reduces the multi-label label task into one multi-class mono-label task. The transformed target

represents all possible distinct subsets of labels present in the initial multi-label problem. So in

the learning step, any conventional multi-class learning model can be used ℎ ∶  ⟶  . When

a new instance is presented, The LP outputs a class, which is actually a labelset in the original

multi-label task. By combining all the labels into a single meta-class, LP is also able to consider

the links between the labels and model their correlations in the training data. Although, after

the transformation step it is possible to have a restricted number of training instances for the less

frequent labelsets, creating a class imbalance issue. Besides, the LP approach only considers the

distinct labelsets in the training data, so it is not able to predict unseen labelsets [17]. Another

limitation of the LP scheme is the potentially large number of classes to be handled in the multi-

label format, in the worst-case exponential with the number of labels || = 2𝑞 [3].

In order to bypass these shortcomings, a Pruned Problem Transformation named Pruned Sets
(PS), has been developed by Read et al. [16]. PS extends the LP transformation scheme while

avoiding both its complexity problems and unbalanced class representation. The main idea of PS

is to prune examples with less frequent labelsets to withdraw the LP complexity. To make up for

the loss of information in the pruning step, the model reintroduces the pruned sample associated

with the frequent subset of their original labelset. Finally, to output labelsets outside the training

set, Read et al. [16] propose to build a committee of PS models where the prediction is based on

label vote (see Section 3.3).

In a similar perspective to reduce the complexity of the LP model, Tsoumakas et al. [54] ad-

dressed the LP complexity through the HOMER algorithm for Hierarchy Of Multi-label classi-
fiERs. The main idea, behind of the HOMER algorithm, is to convert the original multi-label

task into a tree hierarchy of reduced multi-label problems, each dealing with a small number of

labels. At each node in the hierarchy, the label space  is clustered -using a clustering algo-

rithm such as k-means- into balanced groups of similar labels, considered as meta-label. Then,
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a multi-label model is adopted to predict one or more meta-labels. The HOMER algorithm is

a computationally efficient multi-label model, especially for large multi-labeled data sets with

a linear complexity in the training step and a logarithmic complexity in the testing step (with

respect to the size of the label space || = 𝑞).

2.4.3 Algorithm adaptation and problem transformation in practice

In practice, the use of algorithm adaptation or problem transformation approach depends on the

application needs and the user’s preferences. Algorithm adaptation approaches have the conve-

nience to extend the scope of the well-known learning technique, and hence their use is more

generic. Moreover, multi-label models in this category have the advantage to be well designed

for specific application domains such as the text classification [8, 40, 45]. On the other hand,

problem transformation approaches are superior regarding their simplicity and generality. They

have the advantage to be model-free and are considered as meta-learners. By adopting models

in this category, all well-known and efficient algorithms in machine learning can be used and

applied to any domains of multi-label classification. Additionally, the effects produced by the

transformation step can be relieved by simple schemes. For instance, the problem of imbalanced

training data can be alleviated by the under or over sampling strategies.

The efficiency of a multi-label model is also challenged by the dimensionality of the label space.

On one side, the cost of training a multi-label model, in term of computation, may be affected by

the number of labels. Simple algorithms such as Binary Relevance have linear complexity on 𝑞,

but algorithms that involve a pairwise confrontation between the labels have a worse training cost,

e.g., pair-wise methods [44, 45]. Even more, the complexity of the LP model is exponential with

the number of the label since that the learned multi-class model has an exponential complexity.

Besides, the prediction step is also influenced by the number of models which can be time-

consuming [47]. Also, the memory requirements represent an additional important factor [2,

44]. In fact, these important factors need to be considered simultaneously when developing a

new multi-label model in order to gain time and space efficiency. Besides, algorithm adaptation

approaches also incur considerable algorithmic complexity [55]. On the other hand, they offer

the possibility to be tailored to the application context, for example, by adding constraints over

the feature space and the label representation especially for domains such as in text classification

where the labels can be organized hierarchically. Alongside with the two multi-label models

categories, Madjarov et al. [9] distinguish a third category of multi-label models based on top of

algorithm adaptation and problem transformation models. This third category will be discussed

in detail in Chapter 3.

For completeness, it is also important to note that multi-label models can also be categorized

based on the considered order of correlations [28]. Three categories are distinguished First-order
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models, Second-order models and High-order models. The First-order models ignore the label

dependencies and decompose the multi-label tasks into a set of independent binary problems as

in the BR model. Second-order models consider the pairwise correlation between the labels such

as CLR [45, 46] or QWeighted approach to multi-label learning [47]. Finally, High-order models

consider the high-order links between the labels with stronger correlation-modeling capabilities

such as LP and CC [17].

Besides multi-label classification, another popular problem in multi-label learning is label rank-
ing which learns an ordering of the labels based on their relevance to a given instance. In this

thesis, we mainly focus on multi-label classification. More details on connections between multi-

label classification and label ranking can be found in [2].

2.5 Multi-label classifiers and loss minimization

To meet the needs of the multi-labeled tasks, the multi-label algorithms should be able to consider

a multitude of loss metrics. To do so, algorithms adopt two possible approaches: The first one

is to model the entire distribution of y given x then use the loss formulation (2.1) to give the

optimal prediction for any loss. The second approach is to model directly a function giving the

optimal prediction for the objective loss. In the latter case, the choice of the loss function is

made before the model construction and the purpose of the learning algorithm is to learn from

the training examples by explicitly or implicitly optimizing the specific metric [33, 34]. However,

since those multi-label metrics are generally neither convex nor differentiable, constructing an

optimal predictor that optimizes directly the cost function is not straightforward. Hence, the

standard approach consists in minimizing a convex surrogate rather than the original loss metric

[56].

2.5.1 Label Dependence in multi-label Learning

The idea of taking advantage of the label dependence to enhance the performance of multi-label

predictions intuitively makes sense when it is compared to the BR base-line predictions which

ignore the mutual labels links. But, the comprehension of this nature of the possible link between

labels is only recently taking shape. Authors of [18, 20] give a theoretical perspective of the

multi-label classification pointing out from a probabilistic basis, the difference between

- marginal dependence: where 𝑝(𝑦𝑗|𝑦𝑘) ≠ 𝑝(𝑦𝑗); and

- conditional dependence; where 𝑝(𝑦𝑗|𝑦𝑘) ≠ 𝑝(𝑦𝑗|𝑦𝑘, x).
The conditional dependence between the labels and the feature can be expressed in terms of

graphical models such as the conditional random fields in [57]. Indeed, these models provide

the possibility to represent the relationships between labels and features of a given task.
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When the nature of the dependence is known in advance, using the graphical structure for mod-

eling and learning seems to be the most appropriate solution. The output of this category of

models is an estimation of the entire joint distribution of the labels. The learning cost depends

primarily on the complexity of the modeled structure. Much more restrictive, however, is the

inference using the joint distribution as the exact inference can become impractical. However, in

these methods, the inference from the estimated joint distribution limits the applicability of this

category of models to a moderate number of labels (𝑞 ≤ 15).

Besides, by learning labels and inputs together, methods such as the LP and the CC can model

the conditional dependence. In contrast, BR approach does not take any kind of label depen-

dence into account, neither conditional or marginal. An enhancement over BR model can also

be achieved using a prior understanding about the marginal dependence within the labels. Ap-

proaches like Staking (BR+) [53] tries to take advantage of the similarities between the labels

and exploit the label dependence. The general scheme of these methods can be expressed as

follows:

y = 𝜙(h(x), x)

The idea is to replace the original predictions, learned separately, by adjusting using the infor-

mation regarding the predictions of the other labels using a new multi-label model 𝜙 as a meta-

model. This transformation of the initial predictions is presented as a regularization procedure

or as a feature expansion strategy. This approach is used in practice to enhance the predictive

performance of the BR classifier [53].

The final meta-classifier 𝜙 can be trained either on the BR predictions ℎ(x) alone or use both

the predictions ℎ(x) and the original features 𝑥 as additional inputs. It is also possible to use the

score provided by the inner learning model in the BR rather than its crisp label predictions.

2.5.2 Optimality in multi-label learning

Basically, the purpose of a learning model is to minimize the expected risk of h with regard to

the underlying joint distribution ℙ(X,Y), i.e.,

𝑅𝐿(h) = 𝔼X,Y[𝐿(Y,h(X))]

A risk-minimizing model h∗ for the loss 𝐿 is determined by :

h∗ = argmin
h∶x→y

𝔼Y,X∼ℙ[𝐿(h(X),Y)] = argmin
h∶x→y

𝔼X∼ℙ[𝔼Y∼ℙ(Y|X)[𝐿(h(X), y)]]
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Given that h∗ optimizes the expected loss regarding the conditional distribution 𝑝(Y|x) at each

given value of x ; investigating the optimal predictions at a given x is sufficient. Therefore, the

pointwise risk-minimizing model h∗(x) is given by :

h∗(x) = argmin
h∶x→y

𝔼Y∼ℙ(Y|X)[𝐿(h(X), y)] (2.10)

However, the optimization problem in 2.10 mostly requires a search over all possible binary vec-

tors of length 𝑞. Thus, seeking an optimal solution or constructing a consistent model can be

intractable depending on the loss metric and the joint distribution. The choice of the loss func-

tion depends on the application task and the metrics to measure the achievement of the required

objectives [58]. Clearly, if the loss metric is instance-wise decomposable (decomposable over

instances), such as the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 or the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, a consistent estimator of the op-

timal solution can be reached through empirical risk minimization. Nevertheless, the principal

difficulty in the analysis of the multi-label loss metrics is that they are often non-label-wise de-

composable,i.e., the loss on predicting a vector of labels does not decompose into the sum of

losses over the individual labels. Even more, multi-label metrics are generally complex, either

convex or differentiable. Consequently, constructing an optimal predictor that optimizes the cost

function directly is not straightforward.

Besides, for the label-wise decomposable metrics the risk-minimizing prediction can be obtained

from the label marginal distributions alone, i.e., 𝑝(y𝑖|x) [56]. However, these loss functions

do not require having the joint label distribution to get the risk-minimizing predictions. This

suggests that instead of modeling the joint label distribution to be marginalized over the labels,

one can directly use a separate model for each label in order to estimate the required marginal

distributions.

Thus, it is evident in case of the𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 2.7, where the risk minimizer is obtained directly

from the marginal distribution ℎ∗ which is formulated as follows:

h∗(x) = argmin
y∈

𝑞∏
𝑖=1

𝑝(y𝑖|x)
or equivalently, via a separate 𝑎𝑟𝑔𝑚𝑎𝑥 decision rule over each label:

h∗(x) = (ℎ∗𝑖(x),⋯ , ℎ∗𝑞(x)) where h∗𝑖(x) = argmax
𝑦𝑖∈{0;1}

𝑝(𝑦𝑖|x)
For the 𝑀𝑎𝑐𝑟𝑜-𝐹1 𝑙𝑜𝑠𝑠 it has been also demonstrated that, under the conditional label indepen-

dence [59], the optimal solution for 2.10 is simply obtained by sorting the probabilities over each

label and setting to 1 the k-top instances and the remaining to 0.Thus, one only requires to esti-

mates the marginal label distribution to compute the optimal predictions. Similarly, in the case of
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the 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, one may simply use any single label model that estimates the labels’ marginal

probabilities thoroughly. From this simple fact, it is clear that considering only the marginal

distribution 𝑝(y𝑖|x) is enough to minimize a loss metric that is label-wise decomposable [18].

In stark contrast, for metrics that are instance-wise decomposable but not label wise-decomposable

(such as 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠, 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑙𝑜𝑠𝑠, 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠), the construction of an optimal

model, requires the estimation of the label joint distribution given the input. Especially, the

risk-minimizing prediction for the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 is given by the distribution mode:

h∗(x) = argmax
y∈

𝑇∑
𝑡=1

𝑝(y|x)
Thus, to get the risk-minimizing prediction for the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠, the optimal model will nec-

essarily require the entire distribution of y given x, or at least sufficient information to identify

the mode of this distribution.

For the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑙𝑜𝑠𝑠 and the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠, it is an open question to determine if a closed-

form solution for the risk minimizers exists or not. These two metrics are complex, and there is

no simple approach to build a classifier minimizing them directly [18]. The minimization (and

even the evaluation) of these two metrics is not straightforward and involves exponential-time

computation, even when dealing with known label distribution [58]. Recently, Dembczyński et.
al. [60] showed that the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠 can be minimized efficiently using 𝑞2 parameters of

the labels joint conditional distribution . For the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑙𝑜𝑠𝑠, the exact optimization is much

harder [61].

In the light of the recently published theoretical results, the necessary computation for the op-

timal predictions can be considerably simplified using a rigorous implementation [58, 60, 62].

Nagarajan et al. [58] proposed an algorithm that runs in 𝑂(𝑞3) time for a general multi-label loss

metric. For specific metrics such as the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠 and the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑙𝑜𝑠𝑠, the optimum

can be reached in 𝑂(𝑞2). In [60] Dembczyński et al. point out that for the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠, and

an arbitrary distribution, the optimal solution to 2.10 can be obtained only in a quadratic number

of parameters of the joint distribution 𝑂(𝑞2). However, for the case of the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 the

risk minimizer is the mode of the joined distribution which is infeasible to estimate for arbitrary

𝑝.

For general multi-label losses, the standard approach is to employ structural support vector ma-

chines to optimize a convex upper bound for the expected loss on the training data [34, 35].

However, Dembczyński et al. [63] showed that the approach suffers from inconsistency, in the

case of the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒-𝐹1 𝑙𝑜𝑠𝑠 metric, for an arbitrary label distribution 𝑝.
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2.5.3 Loss minimization in multi-label classifiers

As aforementioned, BR is the most simple and intuitive approach for the multi-label classifi-

cation. It reduces the multi-label tasks into separate binary classification where the learning is

conducted independently for each label. In doing so, the BR approach is based on the label in-

dependence assumption 𝑝(y|x) = ∏𝑞

𝑖=1 𝑝(y
𝑖|x) which may be too strong, as labels are likely to

be dependent in practice. Thus, the decision rule conducted by the BR model to predict a label

vector is given by:

h𝐵𝑅(𝑥) = argmin
y∈

𝑞∏
𝑖=1

𝑝(y𝑖|x)
The BR model is not able to reach the risk-minimizing predictions for the non-label-wise decom-

posable metrics like𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠. But, it evidently yields the risk-minimizing predictions for

the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠. More generally, if the base learner provides the estimation of the marginal

label distribution 𝑠𝑖(x) it it can yield the risk-minimizing predictions for a label-wise decompos-

able metrics [18]. Therefore, it is not reliable to criticize BR for its lack of considering links

between the labels, especially when its performances are evaluated on label-wise decomposable

metrics.

In contrast, as the prediction of the joint label distribution mode is equivalent to predicting most

probable meta-class in the LP model, the approach is suitable for the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠. How-

ever, in the literature, it is often defended to be the most appropriate approach for the multi-label

classification tasks, as it takes into account the label dependence in the learning process. This

argument is incorrect since that LP usually fails for label-wise decomposable loss functions like

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠. Furthermore, it is obvious that a risk minimizer model cannot be optimized si-

multaneously for different multi-label loss functions. Recent theoretical studies show that multi-

label classifier minimizing the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 would perform poorly if evaluated regarding the

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠, and vice-versa [18, 64]. Nevertheless, in some (not necessarily extreme) condi-

tions, the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 and the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 risk-minimizing predictions coincide which

leads to some misleading observation over the experimental results. These conditions has been

characterized by Dembczyński et al. [18] through the following proposition.

Proposition 1. (Dembczyński et. al. [18])

The 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 (𝐻𝐿) and subset 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 (0∕1) have the same risk minimizer, i.e.,
h∗
𝐻𝐿

(x) = h∗
0∕1(x), if one of the following conditions holds:

(1) Labels y1,⋯ , y𝑞 are conditionally independent, i.e, 𝑝(y|x) = ∏𝑞

𝑖=1 𝑝(y
𝑖|x).

(2) The probability of the mode of the joint probability is greater than or equal to, i.e, 0.5
𝑝(h∗

0∕1(x)|𝑥) ≥ 0.5.

It is also worth to notice that, the LP approach is theoretically able to deliver an estimation of the

joint distribution if its inner multi-class learner is a probabilistic model. Practically, however, the
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large number of possible label sets turns out the probability estimation to a notably challenging

problem. To this end, most of the LP’s implementations typically do not take into consideration

the labelsets outside the training set or set to 0 their probabilities [16]. This method is suitable

as a trade-off between efficiency and accuracy since that to minimize the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 only

the most probable labelsets is required.

The other possibility to bypass the complexity problems is to address the problem of predicting

the set of labels in a step-wise mode (label by label) as formulated in the product rule decompo-

sition and conducted by the CC model :

𝑝(y|x) = 𝑝(y1|x) 𝑞∏
𝑖=1

𝑝(y𝑖|y1,⋯ , y𝑖−1x)

The approach breaks down the multi-label problem into a set of binary classification task mod-

els such as CC, and its variants seem to behave like the BR approach. Despite, the estimation

produced by the chain model is closer to LP than that of BR estimation. Thus, it is not very clear

what is the cost function optimized by CC. In [50], a deep analysis about CC optimality shows

that regret of CC is quite important respectively for the both𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 and𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠

but with a lower worst-case regret for the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠. Indeed, by selecting successively the

most probable label based on each binary classifier CC, it is generally considered as a simple

greedy approximation of the labels joint mode which (risk minimized of the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠).

Theoretically, the product rule result is independent of the labels order. In practice, however,

different chaining order may give different predictions, simply because they use different mod-

els trained on different learning sets. To reduce the impact of the chaining order, Read et al.
propose to use a committee of chaining models, each learned on a different label order, then

average, label by label, the decision of the committee predictions. But, this averaging process

may also damage the consistency of the product rule approach and drift the model to minimize

an undefined function that is neither the LP loss or the BR loss but some vague metric lying in

between 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 and 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠.

Besides, multi-label models from the algorithm adaption category adopt generally a more direct

strategy for constructing a tailored model to minimize the objective loss function [33]. For in-

stance in [36, 37], authors propose to extends the structural SVMs to minimize the𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠.

Furthermore, in [39], authors introduced a generalization of SSVMs that can be implemented for

optimizing a variety of multi-label loss metrics.

Moreover, algorithm adaption models are also inspired by the boosting techniques aiming to

minimize the objective loss function. In [33], Amit et al. introduce a label covering loss function

aiming to generalize the loss function optimized by the boosting strategy, that includes as special

cases the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 and the 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠.
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Much more problematic, however, is the analysis of the loss function optimized by multi-label

algorithms based on decision trees, i.e., MLC4.5 and PCT). Indeed, the loss function optimized

is more complicated since that the adaptations based on a surrogate strategy that averages the

scores over the labels in the inner model construction. Thus, it is unclear what these models

really manages to estimate, and what loss function they attempt to minimize. Consequently, the

loss function optimized by multi-label models following similar scheme remains unknown.

2.5.4 Threshold Calibration

As mentioned in Section 2.2.1, the thresholding function is a decision function that transforms

the multi-label score outputs to crisp label outputs. It is either implemented as a function learned

to predict dynamically the relevant labels for each instance (dynamic decision function), or as a

static function, being a constant (or a vector of constants) that draws the model decision borders

between relevant labels and irrelevant labels [23].

Dynamic decision functions use a stacking-style procedure to calibrate a specific threshold for

each instance [8, 28, 29, 65, 66]. The main idea behind a dynamic thresholding function 𝜏(⋅) is

to learn a model that minimizes |𝜆𝑗 ∈ 𝑌 ∶ 𝑠𝑗(𝑥) ≤ 𝜏(𝑥)| + |𝜆𝑗 ∈ 𝑌 ∶ 𝑠𝑗(𝑥) ≥ 𝜏(𝑥)|. In doing

so, 𝜏(⋅) can be seen as an instance based strategy which calibrates a Single-threshold [23].

On the other hand, static decision function can calibrate either an overall threshold for all labels

(Single-threshold) or a separate threshold per label (Multi-threshold). One of the simplest tech-

nique to set a Single-threshold is RCut [22]. For each instance’s predicted scores, RCut considers

as relevant the 𝜏 top scored labels. Thus, RCut is an instance based decision function that takes

values in {0,… , 𝑞} and outputs a fixed number of labels. The thresholding function in RCut can

be either specified by the user or considered as the label cardinality of the learning data set [3].

It can also be automatically tuned using a validation data set or via a Cross-validation procedure

[22]. A similar label-wise Single-threshold technique is to consider a label as relevant if its as-

sociated score is greater than a calibrated fixed constant function 𝑡 [15, 16]. The calibration of 𝜏

can be performed for optimizing a multi-label indicator, e.g., a multi-label performance measure

of interest [25] or to minimize the difference in label cardinality between the training set and the

test set [17].

On the other-side, the Multi-threshold decision functions use a specific threshold for each la-

bel. Consequently, the decision function is a vector of 𝑞 labels thresholds 𝜏 = {𝜏1,… , 𝜏𝑞} ∶
𝜏𝑗 ∈ [0, 1]. Based on this formulation, SCut [22] calibrates the vector of decision borders 𝜏𝑖

to optimize an objective multi-label metric. The thresholds 𝜏𝑖 in SCut are tuned independently.

Thus, if the objective multi-label function is label decomposable (Hamming loss, Macro-F1 loss)

then a single pass from each label is sufficient, otherwise, the tuning process must reiterate until

convergence (Micro-F1 loss, Subset 0/1 loss). In [25], two variations of SCut, named FBR.0
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and FBR.1, were proposed and studied to optimize Micro-F1 and Macro-F1 in BR models. The

idea behind FBR heuristics is to iteratively update each 𝑡𝑖 via a greedy cyclic optimization algo-

rithm to maximize the model performances on Micro-F1 loss or Macro-F1 loss. Another variant

of Multi-threshold calibration technique named PCut was also proposed in [22]. Unlike SCut,
thresholds in PCut take values in {0, 1,… , 𝑁}, where 𝑁 is the size of the test data set. Thus,

PCut requires the existence of a complete test set and its use is limited to offline multi-label

classification applications [23].

Obviously, using a static thresholding function that optimizes a specific multi-label metric bounds

the decision function to a specific measure, unlike the dynamic decision function, which works

autonomously. Nevertheless, a dynamic decision function remains dependent on two important

factors i) the choice of learning model and ii) the input space construction (which is more com-

plex to handle compared to simply selecting an objective function).

On the other hand, static decision function can easily lead to overfitting, especially when cali-

brating Multi-threshold over a validation data set [23, 24]. In [23], Ioannou et al. proposed a

theoretical and empirical comparative study of static thresholding techniques over the Hamming
loss as a multi-label loss function of interest. They come up with the conclusion that calibrating

one Single-threshold remains the most promising technique. Moreover, the study attributes the

success of the technique to the number of optimized parameters (only one threshold) which at-

tenuate the overfitting risk. Moreover, in [24], an analysis of the optimization strategies proposed

in [25] concluded that the optimization of specific performance measures on a given data set can

easily lead to overfitting. Empirical results were confirmed by the theoretical study on thresh-

old optimization for F1 metrics [67], which demonstrates that Micro-F1 could be optimized by

predicting all instances to be negative for high imbalance labels.

2.6 Chapter summary

The study of multi-label models is an active research area, with a lot of different ensemble multi-

label models being proposed in the literature. This chapter introduced the multi-label learning

and reviewed the existing multi-label models. We first presented the multi-label classification ter-

minology and defined the classification task. We also presented the different evaluation metrics

used in the multi-label context. Next, we reviewed the current research on multi-label classifica-

tion algorithms. We therefore discussed the optimality in the multi-label models and highlighted

the challenges brought by the label dependence in the multi-label model prediction, along with

their influence on the model performance. Finally, we presented the threshold calibration, an

important technique that emphasizes the prediction performances and enables tailoring the pre-

diction outputs to a specific loss metric.
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From this overview, we observed that the majority of the proposed multi-label learning algo-

rithms take foundation in classic single-label learning (i.e., problem transformation models,

problem adaptation). Furthermore, ensemble multi-label models have inspired several works in

multi-label learning, and represent a category of classifiers that are based on top of a committee

of single multi-label models, with the goal of combining their outputs as single final prediction.

In order to get the best use of the ensemble multi-label models, one needs a better understanding

of the ensemble paradigm. Thus, in the next chapter, we give a description of key elements in

ensemble classifiers, along with an explanation of their prominent role in enhancing the classi-

fication performances over single multi-label models. We also give an overview of the existing

ensemble learning models as well.



Chapter 3

Ensemble learning

Ensemble methods, also known as committee-based models or multiple classifier systems, are a

general classification system in machine learning. They build a set of base-models and combine

their predictions, in contrast to ordinary single-learning models. Ensemble models were origi-

nally developed to reduce the variance in order to improve the accuracy of traditional machine

learning models, ensemble models are shown to be very beneficial for enhancing the general-

ization ability of a single classifier, which widely influenced the development in Data Mining

and Machine Learning in the last couple of decades (bagging [10], boosting [68, 69], Bayesian

averaging [70], and stacking [71], to name a few).

In this chapter, we first present the committee models concept, and explain how this class of

methods is broadly effective. Then, we focus on single-label learning to present the bagging and

the Random Forest as both are extensively studied in the literature and relevant to this thesis.

Next, we present the ensemble framework in the multi-label classification and review the state-

of-the-art of ensemble multi-label algorithms.

3.1 Ensemble paradigm

Ensemble learning consists in training multiple models to jointly accomplish one common task.

This category of models is based on the idea that improved performance can be achieved by

consolidating the prediction of multiple models, instead of just using a single one in isolation.

In the literature, such frameworks are usually named committee or committee models. The main

concept in this category of models is twofold i) train a committee of individual models and ii)

combine their output to deliver more accurate predictions. The principle is to give, for each base

model a separate perspective of the same learning task to give more accurate predictions when

consolidating their predictions.

32
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For classification tasks, an ensemble classifier incorporates a number of sub-models called base-

classifiers. Base-classifiers are usually obtained by training a base learning algorithm (Decision

tree, Neural Network, k-Nearest Neighbors or other kinds of learning algorithms). Commonly,

ensemble classifiers are based on the same learning model to produce a set of homogeneous
models. Although, ensemble classifiers can also use multiple learning models to generate a

heterogeneous committee.

The improvement of performances within the family of ensemble methods relies on the concept

of diversity, which states that a good ensemble is the one in which the misclassified examples

are different from one individual classifier to another. Hence, various strategies are used to ob-

tain a group of diversified base-classifiers, whose diversities are mostly encouraged by several

alternative manners, e.g., sub-resampling training data, feature subsets selection, etc. Dietterich

[72] explained the improvement led by ensemble models accordingly to the following three fun-

damental reasons:

• Statistical: In general, for a given training data set, the space of potential classifiers can

be too large to explore with potential classifiers sharing a similar training performance

and with different unknown generalization performances. Therefore, selecting a single

classifier may increase the risk of selecting a wrong classifier with a poor generalization

ability. A safer option is to use all the base-classifiers and combine their outputs. Such

strategy might not be better than the single best classifier ℎ∗ but will reduce the risk of

choosing a wrong classifier. Dietterich gives an illustration of this argument as shown in

Figure 3.1-a.

• Computational: Several learning models are based on random search or perform a local

search, which causes the model to be sensitive to local optima. Even when enough data

are available, finding the best hypothesis may be tough. However, running a set of dif-

ferent models from many different starting points may lead to different local optima, and

combining all classifiers can reduce the risk of getting stuck in a local minimum. Figure

3.1-b depicts this situation.

• Representational: In many machine learning tasks, it is possible that the considered clas-

sifier space does not contain the optimal classifier. However, an ensemble of classifiers

can approximate the true unknown classifier and may expand the space of representable

classifier. Figure 3.1-c gives an illustration of this argument given Dietterich [72] where

the optimal classifier ℎ∗ is outside the space of considered of classifiers.

Ensemble models work in two steps a) The training step and b) The prediction step. Figure 3.2

shows a common ensemble classifier architecture. The training step aims to generate a committee

of base-models from a training data set using a base-learner generator. In the training step, we

can distinguish two main architectures of ensemble models:
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FIGURE 3.1: Fundamental reasons for combining base-model predictions: the outer curve rep-

resent the space of all possible models. ℎ∗ is the true model for the problem, and ℎ𝑖’s are learned

base-models. The inner curve in (a) is the space of models with the same performances on the

training data. Graphical illustrations based on similar figure in [72].

(a) Statistical (b) Computational (c) Representational

• Parallel: In this architecture, the base-classifiers are trained in parallel and independently

from each other as depicted in Figure 3.2-(a)). It is the simplest and the most popular

ensemble architecture as it has the advantage of being easy to use and can be implemented

in parallel.

• Serial: In this architecture the base-classifiers are trained sequentially (illustration given

in Figure 3.2-(b)). This variant of ensemble models involves an iterative training where

a specific error function is used to train each base-model depending on the performance

of the previous ones. Ensemble models based on this architecture are known as boosting

models.

Besides, the prediction step intends to label unseen instances with the ultimate purpose of merg-

ing the committee predictions. The prediction step works in two phases: first, each individual

model provides its prediction outputs, second, all predictions are combined to form the final en-

semble prediction. The combination step consists in an aggregation scheme of the predictions

(typically through simple or weighted averaging) based either on the crisp class predictions or

the probability predictions. The appropriate combination scheme depends on the type of infor-

mation obtained from each individual model and also on the output information expected from

the ensemble model.

3.2 Committee construction

As aforementioned, the principle of this category of algorithms is to train different base models

with the idea to come up with a final prediction that is the combination of the predictions given by

each individual model. The simplest approach for combining committee predictions is to average

the predictions for each new instance. From a frequentist perspective, this is motivated by the

trade-off between bias and variance, which decomposes the prediction error of a model into the
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FIGURE 3.2: Emsemble models architecture

(a) Parallel training (b) Serial training

bias component arising from the difference between the trained model and the true function to

estimate, and the variance component that expresses the model sensitivity to individual data

samples.

In practice, only one single data set is available, so it is necessary to come up with some way

to introduce variability among the committee. One strategy is to use the bootstrap data sets.

Before introducing the bootstrap strategy, let assume there is a model class 𝑤 where we gen-

erate the base-classifiers ℎ ∈ 𝑤. Let 𝐻 denote the ensemble framework combining mul-

tiple base models and let 𝑡 index the 𝑡𝑡ℎ base-classifier. In this section, let consider a mono-

label classification problem in which we aim to predict the value of a multi-class target where

𝐵 = {(x(1), 𝑦(1)), (x(2), 𝑦(2)),⋯ , (x(𝑛), 𝑦(𝑛))} represents its associated training data set.

3.2.1 Bootstrap Aggregation

Also known as Bagging [10], it consists on a vote different classifiers generated by different boot-

strap samples [73]. A collection of 𝑇 bootstrap samples,𝐵𝑡, with 𝑡 = 1,⋯ , 𝑇 , are generated from

the training data. The bootstrap data sets are used to train separate copies of the base-classifier

ℎ𝑡. Each bootstrap is generated by uniformly sampling with replacement 𝑛 instances from the

training data set. The final committee classifier 𝐻 is built from ℎ1,⋯ , ℎ𝑇 and outputs the class

predicted most often by the committee, with ties broken arbitrarily. The bagging prediction is

defined by :

𝐻(x) = argmax
𝑦∈

1
𝑇

𝑇∑
𝑡=1

(ℎ𝑡(x) = 𝑦). (3.1)
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This combination scheme can be seen as a simple averaging process overall the base-classifiers in

the committee aiming to reduce the variance. Indeed, the Bagging exploits the independence be-

tween base-classifiers to give more accurate predictions [1]. This is based on the fact that errors

can be dramatically reduced by combining independent base models. In fact, the Bagging gives

an incorrect prediction when at least half of the base-models make incorrect predictions. Assum-

ing that each base-classifier has a probability ε to produce an independent miss-classification:

𝑝(ℎ𝑡(x) ≠ 𝑦) = ε, the probability of the Bagging making an incorrect prediction is given by:

𝑝(𝐻(x) ≠ 𝑦) =
𝑇 ∕2∑
𝑡=0

(
𝑇

𝑡

)
(1 − ε)𝑡ε𝑇−𝑡 ≤ 𝑒𝑥𝑝

(
−1
2
𝑇 (1 − ε)2

)
. (3.2)

The probability decreases exponentially with the number of base-classifiers and approaches zero

when the committee size approaches infinity. This result suggests that the average error of a

model can be reduced by a factor of 𝑇 simply by averaging 𝑇 versions of the model. However,

it depends on the assumption that the errors due to each model are uncorrelated. The purpose

of the Bootstrap sampling is to best exploit the independence by adding perturbation to enhance

diversity within the committee. Indeed, the bagging consists in estimating the 𝐸𝑝ℎ(𝑥) where

each (𝑥, 𝑦) ∼ 𝑝. Thus, the bagging formulation (3.1) can be seen as a Monte Carlo estimate of

the model prediction, approaching it as the committee size approaches infinity. In other words,

𝐻(𝑥) → ℎ(𝑥) as 𝑇 → ∞ 1. Thus, the bootstrapping is considered as a way of assessing the accu-

racy of a prediction. In practice, the improvement also depends on the base learner used to learn

the base-classifiers. The performance improvement is important if the base learner is unstable

(e.g., decision trees) and the induced models are good and not correlated. While, bagging stable

algorithms (e.g., k-nearest neighbor) may not lead to good performances [10].

It is important to note that, when the bootstrap samples are generated from the data, they seem

to be similar. However, they are not identical since that each bootstrap will cover only around

63% of the initial training data set under the condition of a large data set. Given a training set of

𝑛 instances, each bootstrap is a subset of size 𝑛 generated by sampling with replacement 𝑛 times

from the original training data. Thus, some observations do not appear in the bootstrap sample.

The probability that the 𝑖𝑡ℎ training instance is not sampled once is (1−1∕𝑛), and the probability

that it is not sampled at all is (1−1∕𝑛)𝑛. For large 𝑛, this probability approach
1
𝑒
≃ 37%. In other

words, each bootstrap sample contains only about 63% of unique instances, meanwhile 37% of

instances will not appear in the bootstrap. These later instances are called Out-of-bag (Oob)

samples. They provide an effective way to estimate the generalization error of the base learner

known as out-of-bag estimation [74–76].

1Note that the bagged estimate will differ from the original estimate when the latter is a nonlinear or adaptive

function of the x.
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3.2.1.1 Bagging to estimate probabilities

Frequently,the class-probability estimates (at x) is required rather than a direct classification. In

such case, it is tempting to consider the voting proportions 𝑆𝑦(x) = 1
𝑇

∑𝑇

𝑡=1 (ℎ𝑡(x) = 𝑦) as an

estimation of these probabilities. A simple binary classification example confirms that they fail

in this regard. Suppose the true probability of class 𝑦 = 1 for a given 𝑥 is 0.75, and each of the

bagged classifiers models predict accurately 1. Then 𝑆𝑦=1(x) = 1, which is incorrect. For many

base-classifiers there is already an inner function that estimates the class probabilities at a given x.

For instance, the estimation of the class probability in a decision tree is the class proportion in the

terminal node. In such case, the decision process of the Bagging can be softened by considering

the probability outputs of the base-classifiers, instead of the crisp prediction. As long as each

of the models gives posterior probabilities for the classes, it is possible to combine the outputs

systematically using the average of their probabilities predictions, i.e., 𝑆𝑦(x) = 1
𝑇

∑𝑇

𝑡=1(𝑠
𝑦

𝑡
(x) =

𝑦) ∶ 𝑦 ∈  , where the finale committee class prediction is as follows:

𝐻(x) = argmax
𝑦∈

1
𝑇

𝑇∑
𝑡=1

(𝑠𝑦
𝑡
(x) = 𝑦).

Furthermore, the bagged committee can also give a probabilistic interpretation to the model out-

puts in order to provide a fully probabilistic mixture of models (Bayesian model averaging) with

an accurate estimation for the 𝑝(𝑦|x). This strategy does not only produce improved estimates of

the class probabilities, but also manages to provide bagged classifiers model with lower variance,

especially for small 𝑇 [1].

The bootstrap method provides a straight computational way of assessing uncertainty, by only

sampling from the training data. It is also important to highlight that no other information about

ℎ(x) is required in the combination step except that each base-classifier takes the input vector

x as a parameter and generate an output 𝑦 ∈  . The bootstrap method is “model-free,” since

it is based only on the instance samples, not a particular parametric model, in order to gener-

ate the bootstraps. To achieve more significant improvements, more sophisticated committee

construction techniques are proposed such as Random Forest.

3.2.2 Random Forest

As suggested by the name, a Random forest (RF) [11] is a tree-based ensemble model were each

tree is depending on a set of descriptive features. It is an extension of the bagging with more

randomness on the inner decision tree predictors to obtain more diverse classifiers. The main

idea is to use a collection of unpruned decision trees (unstable models) as base classifiers and

introduces additional randomness into all trees. Namely, in each interior node of each tree, a
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subset of 𝑟 inputs variables are randomly selected and evaluated with the Gini index heuristics.

The variable with the highest Gini index is chosen as a split in that node. The number of the

selected features 𝑟, also known as mtry parameter, is usually fixed to
√
𝑓 , or 𝑙𝑜𝑔(2 × 𝑓 ) where

𝑓 is the dimension of the input feature space.

Random Forests can be used for either a categorical target variable or a continuous target variable.

Similarly, It can also handle both continuous and categorical input features. From a computa-

tional standpoint, Random Forests are a popular machine learning model since they are relatively

fast to train and easy to use in the prediction. It also has the advantage of having a reduced number

of parameters and can easily be implemented in parallel. Furthermore, Random Forests are ap-

pealing because of the additional possibilities they provide, such as feature importance measure,

a built-in estimate of the generalization error and missing value imputation [12].

3.2.3 Using Out-of-Bag samples for error estimation

As aforesaid, when a bootstrap sample is generated from the data set, some observation does

not appear in the bootstrap. These "out-of-bag" samples are extremely useful for estimating the

generalization error and the variable importance in the RF model.

To estimate the generalization error of the model, one cannot use observations that were in the

training data, and have to use only data that has been outside the training set. The alternative

idea in the bootstrap models is to take advantage from the out-of-bag instance as they were not

used as training samples in the base models. For this reason, the predictions for observations

that were in the original training set are only performed using the base-classifiers where these

observations were out-of-bag, where these predictions are known as out-of-bag predictions. For

classification, the generalization for the 0/1 loss error rate is estimated using the out-of-bag is

given by:

𝑂𝑜𝑏 =
1
𝑛

𝑛∑
𝑖=1


(
𝐻𝑂𝑜𝑏(x(𝑖) ≠ 𝑦(𝑖)

)
. (3.3)

It is important to highlight that the out-of-bag error rate is not obtained by computing the out-of-

bag error rate separately for each individual base-classifier to be averaged over the committee.

Instead, it is computed using the error rate of the out-of-bag predictions. Algorithm 1 details the

out-of-bag predictions process.
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Algorithm 1 Out-of-Bag Predictions
Require:

The training data set 𝐵 = {(x(1), 𝑦(1))⋯ (x(𝑛), 𝑦(𝑛))};

The set of bootstrap samples {𝐵1 …𝐵𝑇 };

The committee of base classifiers {ℎ1 …ℎ𝑇 };

1: for 𝑖 ∈ {1,… , 𝑛} do
2: 𝑖 ← {𝑡 ∶ (x(𝑖), 𝑦(𝑖)) ∉ 𝐷𝑡}
3: 𝐽𝑖 ← cardinality of 𝑖

4: 𝐻𝑂𝑜𝑏(x𝑖) = argmax
𝑦∈

1
𝐽𝑖

∑
𝑗∈𝑖


(
ℎ̂𝑗(x(𝑖) = 𝑦

)
.

5: end for

3.3 Ensemble Multi-label models

As presented in the previous section, ensemble approaches are proposed in traditional mono-

label learning to improve the robustness and the predictive performance of a weak classifier. On

the other hand, in multi-label classification tasks, ensemble models have been suggested for the

same reasons and also to overcome other issues that are specific to the multi-label setting (the

computational complexity of LP approach [15] or the independence assumption of BR models

[17]). In this context, ensemble multi-label models are defined as meta-algorithms based on the

top of common multi-label learners [9].

In this section, we give an overview of the state-of-the-art ensemble multi-label models. We

follow the same categorization proposed by Tsoumakas and Katakis [3] and distinguish two main

categories of ensemble multi-label models: a) Ensemble models based on adaptation methods
and b) Ensemble models based on transformation methods.

3.3.1 Ensemble models based on adaptation methods

Algorithm adaptation based ensembles consist of base-classifiers that are adaptation multi-label

algorithms [9] (see Section 2.4.1). They are based in the top of extended and tailored machine

learning algorithm for the multi-label task, e.g., decision trees [6, 32], and k-nearest neighbors

[77].

3.3.1.1 Random Forest Predictive Clustering Tree (RFPCT)

Kocev et al. [32] presented a Random Forest multi-label ensemble model named Random Forest
Predictive Clustering Tree RFPCT (see Section 2.4.1). The RFPCT approach is based on the
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top of the Predictive Clustering Tree algorithm [78]. The diversity in the ensemble committee is

carried out by the bagging strategy along with a random subset selection of the input features at

each node of PCT as in the Random Forest model [11]. During the prediction step, each base-

model outputs its multi-label predictions, which are then combined via a label voting scheme,

i.e., using typically a majority or a probability distribution vote for each label separately.

3.3.1.2 Random Forest of Multi-Label-C4.5

Another version of multi-label Random Forest based on the top of the ML-C4.5 [6] was proposed

in [9] and named Random Forest of ML-C4.5 (RFML-C4.5). The ensemble model follows the

same construction philosophy as in RFPCT: the diversity is carried out using the bagging strategy

and a random selection of a subset of variables in each tree node. The used ML-C4.5 is an

adaptation of the well-known C4.5 algorithm to the multi-label setting, where the definition of

entropy is modified to allow multiple labels in the leaves (see Section 2.4.1). In the prediction

step, the RFML-C4.5’s base-classifiers are combined using either a crisp label or probabilistic

vote over each label.

3.3.1.3 Variable Pairwise Constraint projection for Multi-label Ensemble (VPCME)

Recently, a novel multi-label classification framework called Variable Pairwise Constraint pro-
jection for Multi-label Ensemble (VPCME) [77] was proposed. The framework extends the tra-

ditional pairwise constraints projection to the multi-label task. The diversity within the base-

classifier committee is carried out by re-sampling the pairwise constraints to learn, for each

base-classifier, a different lower-dimensional representation of the input space that preserves

the correlations between samples and labels. After that, the base-classifiers are learned using

boosting-like strategy in order to improve the generalization ability of each committee member.

VPCME is different from other adaptation ensemble multi-label models, in the sense that it offers

the possibility to use any multi-label classifier and adapts the boosting to the multi-label context.

3.3.2 Ensemble models based on transformation methods

3.3.2.1 Ensemble of Binary Relevance classifiers (EBR)

The most simple multi-label model is the EBR classifier which is based on the top of the popular

multi-label Binary Relevance classifier (BR). In its original version in [17], each base-classifier

in EBR is carried out on a random sub-sampling of the training data set. For the multi-label

classification of a new instance x, each base-classifier ℎ𝑡 provides its binary predictions ℎ𝑖
𝑡
(x)
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for each label 𝜆𝑖. Subsequently, the EBR calculates the average decision for each label 𝜆𝑖 and

outputs a final positive prediction if the average prediction for a label is greater than 0.5.

3.3.2.2 Ensemble Classifier Chain (ECC)

To tackle the chain order in CC, Read et al. [17] proposed the Ensemble of Classifier Chains
model (ECC). Indeed, as the order of the chain can influence the CC performance, the idea in

ECC is to train a committee of CC models, each based on random chain orderings, and on a

random subset of training instances. In the prediction step, ECC combines the base-classifiers

outputs via label vote, where a label is assigned to an instance if predicted accordingly by the

majority of base-classifiers, i.e., if the average prediction for a label is greater than 0.5.

3.3.2.3 Ensemble of Pruned Sets (EPS)

Similarly to the EBR models, the strain forward ensemble multi-label model based on the LP

is the ELP model. The diversity within the committee is conducted using a bagging strategy.

Inspired by this simple strategy, researchers proposed sophisticated base-classifiers in order to

bypass the LP complexity drawbacks. In fact, Read et al. [16] proposed the Ensemble of Pruned
Sets (EPS). First, the model deals with the LP complexity and prune samples with rare labelsets to

let the model focus on the most important ones. Then, the model compensates the information

loss by reintroducing the pruned sample associated with the frequent subset of their original

labelsets. It is noteworthy that an LP model is not able to output labelsets that are not in the

training set. EPS trains a committee of LP classifiers, each trained on a random selection of

samples. Furthermore, during the prediction stage, EPS specifically uses a label voting scheme,

where a majority threshold separates relevant labels to expand the generalization of the model

by predicting additional labelsets being outside the training set [16].

3.3.2.4 Ensemble of RAndom k-labELsets (RAkEL)

To keep LP’s advantage (modeling the joint distribution) while overcoming its considerable

shortcomings, Tsoumakas et al. proposed an effective and more popular ensemble method named

RAndom k-labELsets (RAkEL) [15]. The idea behind RAkEL is not only to construct a committee

of base-classifiers to enhance the quality of the single model, but also to trade off the BR label

independence assumption with LP complexity. The main innovation introduced by RAkEL in

the realm of ensemble multi-label models, is the way in which the diversity is promoted within

the committee. Indeed, this diversity is established in the target space rather than the feature

space as in traditional ensemble models. Several other works have been inspired by this idea and

proposed extensions of the RAkEL algorithm [79–81].
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Each base-classifier in RAkEL is an LP multi-label model, specialized on a small random subset

of k labels (k-labelsets). By construction, RAkEL takes into account the correlation between the

labels within the same k-labelsets, and at the same time, reduces the number of labels handled

by each LP.

For each base classifierℎ𝑡, the algorithm selects (randomly and without replacement) a k-labelsets

from all distinct subsets of 𝑘 sized labels. The number of all possible k-labelsets is given by
(
𝑞

𝑘

)
.

Then, it learns an LP base classifier ℎ𝑡 ∶  → 𝑘
𝑡

to learn to predict the label appearing on its

own k-labelsets. The prediction of a new instance is achieved by combining the committee crisp

labels outputs through a label vote by considering all the base-classifiers.

In the prediction step, each base classifier provides a binary decision ℎ𝑖
𝑡
(x) for each label 𝜆𝑖 in its

corresponding k-labelsets 𝑘-𝑡. Subsequently, RAkEL computes the average decision separately

for each label 𝜆𝑗 in . The final committee decision for 𝜆𝑗 is positive if the average is greater

than 0.5, otherwise the instance is not associated with the label. A formal description of the

RAkEL model is given in Algorithm 2. Despite its intuitive appeal and competitive performance,

RAkEL suffers a lack of theoretical understanding. For instance, it is not clear what loss function

it intends to minimize.

As the first extension of RAkEL, Kouzani et al. combine a random selection of labels, a random

feature subset, and a random instance subsets, to build a Triple-Random Ensemble Multi-Label

Classification (TREMLC) [79]. Each base-classifier in TREMLC is trained using a portion of

data (drawn randomly without replacement) and trained to predict k-labelsets using only a subset

of features. The authors reported that the model performance was especially susceptible to the

percentage of instance selection and the random subspace size. In fact, such diversity is hard to

manage and requires a large ensemble size. However, the ensemble size depends on the number

of labels since the k-labelsets selection is carried by a random selection without replacement

from all possible k-labelsets in . In [80], an improved version of RAkEL named RAkEL++

is presented [15]. The idea is to, i) aggregate the probabilities provided by the base-classifiers

rather than using the 0/1 votes as in the original RAkEL, and ii) use a single threshold for all

labels, calibrated by optimizing a performance measure of interest via a cross-validation (CV)

procedure.

3.3.3 Other ensemble multi-label methods

Other than the aforementioned ensemble methods, some multi-label approaches are occasionally

referred to as ensemble methods, in the sense that they involve multiple classifiers. This include

the well known HOMER algorithm by Tsoumakas et al. in [54], Pair-wise methods such as

Calibrated label ranking (CLR) [82] and QWeighted approach to multi-label learning (QWML)

[47]. Also, other models extended the ensemble paradigm to handle the multi-label tasks, rather
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Algorithm 2 RAkEL: Ensemble of RAndom k-labELsets

Require: Training multi-label data (𝐷); Set of labels (); k-labelsets size (𝑘); Ensemble size

(𝑇 ).

B- Training
1: 𝐻 ← ∅
2: 𝑅 ← 𝑘

3: for 𝑡 = 1 ∶ 𝑇 do
4: 𝑘

𝑡
← randomly select a k-labelsets from 𝑅

5: train an LP classifier ℎ𝑡 ∶  → 𝑘
𝑡

on 𝐷

6: 𝑅 ← 𝑅∖𝑘
𝑡

7: 𝐻 ← 𝐻 ∪ ℎ𝑡

8: end for

B- Prediction
Require: Test instance x

9: 𝑆𝑢𝑚 ← 0; 𝑉 𝑜𝑡𝑒𝑠 ← 0
10: for 𝑡 = 1 ∶ 𝑇 do
11: for 𝜆𝑗 ∈ 𝑘

𝑡
do

12: 𝑆𝑢𝑚𝑗 ← 𝑆𝑢𝑚𝑗 + ℎ
𝑗

𝑡
(x)

13: 𝑉 𝑜𝑡𝑒𝑠𝑗 ← 𝑉 𝑜𝑡𝑒𝑠𝑗 + 1
14: end for
15: end for
16: for 𝑗 = 1 ∶ 𝑞 do
17: 𝐴𝑣𝑔𝑗 ← 𝑆𝑢𝑚𝑗∕𝑉 𝑜𝑡𝑒𝑠𝑗
18: if 𝐴𝑣𝑔𝑗 > 0.5 then
19: 𝐻𝑗(x) ← 1
20: else
21: 𝐻𝑗(x) ← 0
22: end if
23: end for
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than the classification algorithm itself. This includes ADABOOST.MH and ADABOOST.MR

[83] and their variants [84, 85], which are two extensions of the well-known ADABOOST on

multi-label data. The aim of AdaBoost.MH is to minimize the Hamming loss, meanwhile AD-

ABOOST.MR is designed to minimize the ranking loss. During the training phase, the original

multi-label task is transformed into a binary problem, and a set of weights are maintained for

both instances and labels through the iterating process.

In this thesis, these methods are not considered as ensemble multi-label models, since that the

multi-label problem is decomposed into one binary mono-label task managed with an ensemble

model, i.e., the inner base-models are not multi-label models. In contrast, an ensemble multi-

label model directly manages multi-labeled data using a committee of multi-label models [2, 9].

Thus, these models are considered beyond the scope of this thesis.

Besides, an other group of heterogeneous models distinguishes itself. This type of committee-

based models aims to use different multi-label learners as base-classifiers to improve the global

committee performance. The diversity in heterogeneous ensemble multi-label models is carried

out not only by classical instance-based diversity, i.e., random instance selection or bagging, but

also by the dissimilarity of the base-learner [86].

3.4 Chapter summary

In this chapter, we presented the ensemble learning paradigm. We first presented the main idea

behind this category of models and showed how they enhance the generalization performance of

a single classifier. Then, we presented in more details the two key components of these models,

i.e., the committee generation and the base-classifier aggregation. Next, the chapter presented

the bootstrap aggregation as the classical ensemble models since it is closely related to our con-

tribution in this thesis.

Finally, the chapter introduced the ensemble multi-label models and gave an overview of the re-

cently proposed algorithms and discussed their strategies in the light of the two main categories of

multi-label models: Algorithm adaptation approaches and Problem transformation approaches.

However, we noticed that most works in ensemble multi-label paradigm often propose a new en-

semble model (based on a new committee construction strategy) while lacking a rigorous analysis

of the combination step and its consistency with the committee construction. In the next chapter,

we investigate the consistence between the committee generation and the base-classifier aggre-

gation in ensemble k-labelsets models (RAkEL). Furthermore, we highlight the importance of

the combination step over the model performance and suggest a new committee construction

together with an adequate committee combination to enhance the prediction quality.
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Calibrated k-labelsets for Ensemble
Multi-Label Classification

Ensemble multi-label k-labelsets models are efficient and computationally practical approaches.

Their greatest concern in breaking down the multi-label tasks in a set of smaller ones where

the links between the labels can be modeled easily. The idea behind these models is to train

a committee of multi-label models each specialized in a smaller multi-label set. RAndom k-

labELsets (RAkEL) is the most popular k-labelsets ensemble multi-label approach. Each base-

model in RAkEL is a LP model trained on a small random subset of 𝑘 labels. Unlike traditional

ensemble, where the diversity within the base-model is created in the input space, the diversity in

this category of multi-label models is basically carried out in the output space. By construction,

the model aims to consider the label structure within each base-model, and at the same time,

reduce the number of labels handled by each LP. In the prediction step, the labels associated

with a new instance are given by the aggregation through a label majority voting process of the

binary outputs of each base-model in the committee.

This Chapter, examine the RAkEL model as the basic k-labelsets multi-label approach and point

out some weaknesses within the model committee construction raised by the imbalanced label

representation. Then, we propose three practical solutions to overcome these drawbacks in a new

Calibrated k-labelsets committee [81].

4.1 Committee construction in the RAkEL model

As described in the Section 3.3.2.4, the diversity in ensemble k-labelsets models is carried out

in the output space by a random selection of 𝑇 k-labelsets (𝑘) without replacement from the set

of all possible label sets of size 𝑘 in .

45
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This committee construction allows the base classifier having different parts of the multi-label

classification task while sharing some target labels (i.e., labels appearing simultaneously in sev-

eral selected k-labelsets). The overlapping character of the k-labelsets selection allows the com-

mittee to gather multiple predictions for the same label by the different base-models. Further-

more, as the different base-models are trained on different label spaces, it offers a diverse per-

spective for each label prediction considering that, in each k-labelset, a label appears with a

different subgroup of labels. Thus, combining the predictions made by the committee of the

base-classifiers through a voting process, offer the possibility to correct potential uncorrelated

errors and improves the overall performance. To guarantee the effectiveness of this reasoning, it

is necessary to ensure that each k-labelsets does not appear more than once within the committee;

as this may damage the voting procedure. For this purpose, the random k-labelsets selection in

RAkEL is conducted without replacement from the set of all possible label sets of size 𝑘 in  and

not by randomly selecting subsets of labels of size 𝑘 from .

However, as all heuristic methods, RAkEL has several shortcomings:

• First; during the k-labelsets sampling process, some labels are selected less often than oth-

ers, hence creating an imbalance label representation within the selected labelsets (i.e.,

some labels are over selected meanwhile others are rarely selected (or never selected)).

Obviously, the probability predicted for a label appearing in several k-labelsets is more

accurate than the probability predicted for label appearing in one k-labelset. However,

aggregating naively the committee predictions regardless of this imbalance may reveal

inconsistency over the confidence of each label probability estimates. The following ex-

ample illustrates the potential problem with such aggregation. Assume that 𝜆1 and 𝜆2

appear respectively in 10 and 3 k-labelsets. If for a test sample (x(𝑡)), 9 base-classifiers

predict 𝜆1 and 3 classifiers predict 𝜆2, the probabilities to assign 𝜆1 and 𝜆2 to x(𝑡) given by

the original RAkEL are respectively 𝑆𝑙1(x(𝑡)) = (9∕10) = 0.9 and 𝑆𝑙2(x(𝑡)) = (3∕3) = 1.

The confidence in the probability prediction based on 3 classifiers is not as good as for 10

classifiers of course.

Furthermore, the question remains on how the model should predict a label which has

never appeared in the committee? In fact, this highlights the shortcoming of the model to

adequately i) control the k-labelsets generation ii) cover the label space and iii) to balance

the label representation in the committee.

• Second; considered as an ensemble approach, RAkEL fails taking advantage of the best

part of the diversity concept when constructing its base-classifiers, since that, each label

combination is allowed to appear at most once. Even if this choice is motivated by the

fact that prediction error should be uncorrelated to be reduced, nothing hinders two base-

classifiers to share the same output space if the diversity is maintained in the input space.

On the contrary, this may improve the predictive performance of the ensemble since more
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votes could be performed for each k-labelsets leading to more accurate estimates of the

true value of the k-labelsets.

• Third; the use of a unique 0.5 threshold to select the final predicted bi-partition is not

managed in accordance with the label imbalance representation within the committee and

also does not suit data sets where labels are associated with few training examples which

is the case of the multi-label classification task [17].

4.2 CkMLC: A New k-labelsets ensemble model

In this section, we discuss a Calibrated k-labelsets for Ensemble Multi-Label Classification method

(termed CkMLC as a shorthand) to improve the overall performance of k-labelsets based ensem-

ble models. Our contribution is three-fold: First, we use Bagging in tandem with random k-

labelsets to increase the diversity of the base classifiers and thus the robustness of the ensemble.

Second, the label set probabilities are calibrated to account for the effective label occurrence

rate in the random labelsets sampling. Third, a finely-tuned threshold is associated to each label

instead of using a single threshold for all the labels [15].

4.2.1 Committee construction

To fully benefit from the ensemble paradigm, we propose to expand the committee size by in-

creasing the diversity within the base-classifiers. From this perspective, we propose to induce

diversity also in the input space by a bootstrapping strategy. The latter will allow multiple base-

models sharing the same target space while preserving the input diversity. In contrast to [79] we

enforce diversity only in instance space via random sampling with replacement from the instance

set. Combining the input and the output diversity has two advantages: The k-labelsets strategy

provides a specific output view to the base-classifier. Meanwhile, the latter strategy enforces

diversity by allocating distinct samples to the classifiers. Last but not least, in each bootstrap,

almost 33% are left out-of-bag (Oob), i.e., they are not used for the construction of their cor-

responding model. These samples can be used as an unbiased validation set for the threshold

calibration. Figure 4.1 shows the CkMLC architecture.

4.2.2 Adaptive base-model combination

As illustrated above, the committee construction in ensemble k-labelsets induces different pre-

dictions for each label. To cope the imbalance in the labels representation, we aim to consider
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FIGURE 4.1: Calibrated k-labelsets Multi-Label Classifier committee construction

the number of the base-classifiers used for the prediction of each label. Therefore, we propose

to smooth the ensemble probability estimate for each label using the Laplace estimate as:

𝑆𝑙𝑖(x) =

(∑
{ℎ𝑡∈𝐻|𝜆𝑖∈k-𝑡} ℎ

𝑖
𝑡
(x)

)
+ 1

|{ℎ𝑡 ∈ 𝐻|𝜆𝑖 ∈ k-𝑡}| + 𝐶
(4.1)

Where 𝐶 is the number of classes per label, in our case 𝐶 = 2. In the previous example, the

Laplace estimate yields a probability of
9+1
10+2 = 0.83 for 𝜆1 and

3+1
3+2 = 0.8 for 𝜆2.

This smoothing strategy flattens the label probability distribution and improves the multi-label

model performance regarding the probability-based ranking measure. It is important to note that

the smoothing does not change the probability distribution regarding 0.5. i.e. if a probability is

greater (lower) than 0.5, it will remain greater (lower) than 0.5 for the Laplace estimate.

4.2.3 Threshold calibration

To refine the scope of the CkMLC predictions, we propose to use a specific threshold for each

label that considers the imbalance in the data set. We propose a simple forward algorithm easy to

implement with a low computational cost for calibrating label the decision thresholds. The idea

is to take advantage of the committee structure in the CkMLC and benefits from the model 𝑂𝑜𝑏

instances. Thus, the calibration does not need to carry a cross-validation procedure to create a

validation data set.

To select the most promising multi (separate) thresholds over a specific multi-label performance

measure of interest in our Forward Multi-label Thresholds Calibration strategy, the best thresh-

olds are firstly selected independently for each label 𝜆 ∈ . Then, the label achieving the best

performance 𝜆∗ is selected as well as its optimal threshold 𝜏𝜆∗ . Then, 𝜆∗ is removed from the

search space  and added to ∗. Afterward, for each label in  the best thresholds are selected as

having the best performance jointly with labels in ∗ associated with their calibrated thresholds.

The process is repeated until calibrating all thresholds. Algorithm 3 gives a formal description

of the procedure. To the best of our knowledge, this is the first attempt to propose an algorithm
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for selecting a distinct threshold per label based on oob instance and without being metric depen-

dent. The proposed thresholding algorithm is valid for all bi-partition-based metrics, including

both instance-wise and label-wise measures.

Algorithm 3 Forward Multi-label Thresholds Calibration
Require:

𝑂𝑜𝑏 predictions probabilities (𝑌 ); 𝑂𝑜𝑏 real labels (𝑌 ); label set ; multi-label loss metric to

minimize (𝑀𝐿𝑙𝑜𝑠𝑠);

1: ∗ ← ∅; 𝜏∗ ← ∅
2: while  ≠ ∅ do
3: 𝜆∗, 𝜏∗

𝜆∗
← argmin

𝜆∈,𝜏∈[0,1]
𝑀𝐿𝑙𝑜𝑠𝑠([𝑌∗∕𝜏 ∪ {𝑌𝜆∕𝜏∗}], [𝑌∗ ∪ {𝑌 }])

4: ∗ ← ∗ ∪ 𝜆∗

5: 𝜏∗ ← 𝜏∗ ∪ 𝜏𝜆∗

6:  ← ∖𝜆∗

7: end while
8: return 𝜏∗

Most state-of-the-art thresholding strategies propose a multi-threshold calibration via a cross-

validation procedure. However, the CV procedure leads to a critical issue on how to select the

most promising threshold vector 𝜏. i) Should the algorithm select 𝜏 as the combination of the best

performing thresholds per label which should be crucial for label-wise performance metrics but

not for instance-wise ones, ii) should the algorithm select the most promising threshold vector 𝜏

based on the performances of all possible threshold combinations? In that case, for 9 different

threshold values per label ranging for example from 0.1 to 0.9 in 0.1, the calibrating threshold

via CV is too intensive since it will need to evaluate the performances of 9𝑞 threshold vectors 𝜏.

Unlike these algorithms, our approach avoids these issues by using the out-of-bag data set; which

also reduces the learning complexity since only one single model is learned and can exploit the

entire training data set.

4.3 Experimental evaluation

This section investigates the effectiveness of our proposed CkMLC algorithm and show experi-

mental studies on a broad range of real-life multi-label data sets. We first give a short description

of the multi-label data sets and performance metrics used in this study. Next, we present the eval-

uation protocol and the parameter instantiations for the compared multi-label learning methods.
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4.3.1 Data sets

To thoroughly evaluate the performance our algorithm, a variety of real-word multi-label data

sets from the Mulan’s repository [87] are employed in this section. We selected these data sets as

they have already been used in various empirical studies and cover different application domains,

including text categorization (Yahoo data, Enron, Medical), Image classification (Scene), bioin-

formatics (Yeast), music and audio classification (Emotions and Birds). In summary, 20 data sets

were used with labels ranging from 5 to 53 labels and a number of examples from 194 to over

5000. Table 4.1 summarizes their basic statistics: N the number of examples, M the number of

features, q the number of labels; Card the Label Cardinality and LD the Label Density (Section

2.1)

TABLE 4.1: Description of the multi-label data sets used in the experiments.

Data Domain N M q Card LD
Arts Yahoo-Text 5000 462 26 1.636 0.063

Birds Audio 645 260 19 1.014 0.053

Business Yahoo-Text 5000 438 30 1.588 0.053

Computers Yahoo-Text 5000 681 33 1.508 0.046

Education Yahoo-Text 5000 550 33 1.460 0.044

Emotions Music 593 72 6 1.869 0.311

Enron Text 1702 1001 53 3.378 0.064

Entertainment Yahoo-Text 5000 640 21 1.420 0.068

Flags Image 194 19 7 3.392 0.485

Health Yahoo-Text 5000 612 32 1.662 0.052

Image Image 2000 249 5 1.236 0.247

Medical Text 978 1449 45 1.245 0.028

Recreation Yahoo-Text 5000 606 22 1.423 0.065

Reference Yahoo-Text 5000 793 33 1.169 0.035

Scene Image 2407 294 6 1.074 0.179

Science Yahoo-Text 5000 743 40 1.540 0.036

Slashdot Text 3782 1079 22 1.180 0.041

Social Yahoo-Text 5000 1047 39 1.283 0.033

Society Yahoo-Text 5000 636 27 1.692 0.063

Yeast Biology 2417 103 14 4.237 0.303

4.3.2 Evaluation protocol

As the CkMLC can output either a probability score for each label or a bi-partition of the label

space into crisp labels, the performance analysis will cover both type of outputs. In the sequel,
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both the new ensemble construction and the threshold calibration strategies combined together in

our CkMLC approach are firstly studied and compared according to score based metrics. Then,

the algorithm’s performances of CkMLC were analyzed over bi-partition-based metrics. CkMLC

is compared with several state-of-the-art multi-label classification methods, namely RAkEL taken

as our gold standard k-labelsets approach, RAkEL++ [80] and TREMLC [79] that should be

viewed as another variants of RAkEL, the multi)-label classification approach FBR [25] which

implement (as in our CkMLC and RAkEL++) a different thresholding strategy for the prediction

step. Details about the algorithm are given in Section 2.5.4. CkMLC is also compared against

EBR, ELP and ECC to assess its performances against traditional multi-label ensemble models.

Finally, the experiments cover a large group of multi-label performance measures including

Ranking loss and One error to evaluate the quality of label score predictions; and Subset 0/1
loss, Jaccard loss, Micro-F1 loss, Macro-F1 loss, Instance-F1 loss and Hamming loss as met-

rics to evaluate the crisp labels outputs. Note that the threshold calibration should not affect

probability-based metrics. However, the calibration should significantly affect the model perfor-

mances over bi-partition-based metrics. A detailed description of these multi-label metrics is

given in Section 2.3.

4.3.3 Experimental setup

To make fair comparisons, the parameters of each algorithm were set as suggested in the literature

for yielding the most satisfactory performances. The same experimental setting in [79] was

adopted here for the RAkEL approach [15] and its variants (RAkEL++ and TREMLC), i.e., the

number of models was set to 𝑇 = 𝑚𝑖𝑛(2 × 𝑞, 100) and a size of labelsets 𝑘 of 3. These values

were found to yield the most satisfactory performances in [15, 79]. The remaining parameters

of TREMLC are tuned as suggested by the authors in [79]. In our CkMLC approach, the number

of label per bag 𝑘 was set to 3 as for RAkEL and the committee size 𝑚 was computed using the

following formula: 𝑇 = 10 × 𝑐𝑒𝑖𝑙(log(𝛼)∕ log(1 − 1∕𝑘)). This formula ensures that each label

is drawn 10 times at a confidence level of 𝛼 = 1%. The classregtree Matlab implementation

of decision tree was used as the base learner in all compared algorithms. For EBR, ECC and

ELP equivalent settings were adopted. The ensemble model were implemented with the bagging

strategy [10] to generate diversity within a committee of 100 base-classifiers and the with the

classregtree Matlab implementation of decision tree as base learner. Finally, instead of manually

setting up the single threshold for all labels to 0.5 to output the final bi-partition as in RAkEL and

TREMLC, this threshold was tailored to each data set in RAkEL++ using a 5-fold CV procedure

[80]. On the other hand, FBR and CkMLC select a separate threshold for each label, using 5-fold

CV procedure for FBR and using Oob calibration for CkMLC. We tested 9 different threshold

values ranging from 0.1 to 0.9 in 0.1 steps.
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We estimate the predictive performance of each compared model using 2-fold cross-validation

[88]. To get reliable statistics over the performance metrics, experiments were repeated 25 times.

So, the results obtained were averaged over 50 runs. Finally, we wrap up the experiments using

statistical tests to evaluate the significant differences among the methods.

4.3.4 Results and Discussion

Detailed average performances of each compared model over the 20 data sets are reported in

Tables 4.2-4.9. Each table depicts the results for each analyzed multi-label loss metric. The

performances are tabulated in terms of averaged values as well as standard deviations on each

data set. The lower the value of the considered metric, the better the algorithm performance is.

To examine whether the results are statistically significant, paired t-tests were carried out at 5%

significance level. The marker ’∙∕◦’ suggests that our approach is statistically superior/inferior to

others. Otherwise, a tie is counted and no marker is placed. The obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts

for CkMLC against the compared algorithms are reported in the bottom row of each table. Fur-

thermore, following [89], if two compared algorithms are, as assumed under the null-hypothesis,

equivalent, each should win on approximately 𝑛∕2 out of 𝑛 data sets. The number of wins is dis-

tributed according to the binomial distribution and the critical number of wins at 𝛼 = 5% is equal

to 15 in our case. Since tied matches support the null-hypothesis we should not discount them

but split them evenly between the two classifiers when counting the number of wins; if there is

an odd number of them, we again ignore one. Finally, each pairwise comparison for which a

variant is significantly better, the (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) count is boldfaced.

In the following, we will first evaluate the performances of the analyzed models over score-based

metrics then we will compare the model performances over bi-partition-based metrics.

Performances analysis over score-based metrics

Table 4.2 and 4.3 respectively report the models performances over the Ranking loss and One-
error. In order to better assess the effectiveness of our smoothing strategy, we also report the

results of our algorithm without smoothing. It will be denoted with the superscript ’*’ in the

sequel.

As may be observed over the score-based metrics, CkMLC exhibits the best performances com-

pared to all other algorithms. CkMLC outperforms the other methods by generally achieving the

smallest values. This firstly validates the motivation behind our CkMLC method that encourag-

ing diversity in the committee construction achieves more robust votes per label and thus more

accurate probability estimates for each label. Moreover, the results also confirm the effective-

ness of the smoothing strategy in CkMLC to rank the labels properly. Compared to CkMLC∗ and
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TABLE 4.2: Predictive performances in terms of 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙𝑜𝑠𝑠. The lower the score, the better

the performance is.

CkMLC CkMLC* RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .128±.015 .147±.006∙ .126±.003 .139±.006 .733±.024∙ .387±.089∙ .183±.002∙ .135±.003 .143±.003∙
Birds .260±.103 .298±.046 .202±.017 .236±.035 .692±.026∙ .255±.043 .356±.027∙ .314±.024 .313±.024

Business .043±.012 .062±.006∙ .038±.001 .052±.005 .245±.008∙ .183±.049∙ .076±.002∙ .050±.000 .051±.002∙
Computers .078±.002 .117±.004∙ .078±.002 .105±.004∙ .483±.011∙ .281±.018∙ .149±.004∙ .105±.004∙ .110±.002∙
Education .079±.001 .107±.003∙ .080±.001∙ .097±.004∙ .549±.017∙ .401±.034∙ .140±.004∙ .091±.002∙ .099±.003∙
Emotions .158±.010 .159±.009 .213±.016∙ .234±.017∙ .344±.022∙ .373±.022∙ .161±.013 .156±.008 .152±.009◦

Enron .084±.002 .119±.004∙ .084±.002 .104±.003∙ .367±.012∙ .251±.020∙ .132±.004∙ .105±.002∙ .105±.004∙
Entertainment .097±.003 .116±.004∙ .102±.002∙ .112±.004∙ .691±.061∙ .376±.030∙ .142±.005∙ .108±.003∙ .112±.003∙

Flags .199±.013 .201±.015 .233±.019∙ .255±.018∙ .252±.020∙ .316±.024∙ .225±.013∙ .200±.009 .203±.022

Health .046±.002 .065±.004∙ .047±.002∙ .060±.003∙ .316±.047∙ .296±.024∙ .088±.004∙ .052±.003∙ .055±.002∙
Image .147±.008 .150±.007∙ .217±.012∙ .236±.012∙ .264±.015∙ .394±.014∙ .155±.006∙ .147±.007 .143±.007◦

Medical .029±.007 .056±.014∙ .046±.010∙ .050±.011∙ .187±.015∙ .115±.014∙ .067±.014∙ .041±.007∙ .040±.008∙
Recreation .133±.003 .158±.004∙ .139±.003∙ .153±.006∙ .766±.012∙ .367±.017∙ .200±.006∙ .144±.005∙ .157±.004∙
Reference .070±.001 .106±.003∙ .071±.002 .095±.008∙ .446±.010∙ .295±.020∙ .151±.007∙ .084±.002∙ .100±.003∙

Scene .075±.003 .076±.003∙ .139±.014∙ .144±.017∙ .137±.008∙ .303±.018∙ .077±.004 .073±.001 .066±.002◦

Science .108±.003 .148±.005∙ .107±.003 .129±.004∙ .619±.016∙ .439±.023∙ .208±.005∙ .125±.004∙ .143±.004∙
Slashdot .071±.037 .117±.013∙ .061±.006 .093±.013 .201±.011∙ .138±.035∙ .127±.010∙ .092±.007 .099±.007∙
Social .057±.001 .087±.003∙ .057±.002 .076±.004∙ .277±.007∙ .219±.026∙ .124±.003∙ .074±.002∙ .080±.003∙
Society .129±.003 .155±.004∙ .128±.003◦ .144±.005∙ .522±.014∙ .441±.020∙ .192±.006∙ .147±.003∙ .154±.004∙
Yeast .169±.003 .170±.004∙ .168±.003 .171±.002∙ .266±.005∙ .407±.014∙ .173±.003∙ .172±.003∙ .167±.003◦

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (17/3/0) (9/10/1) (16/4/0) (20/0/0) (19/1/0) (18/2/0) (12/8/0) (14/2/4)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

TREMLC for which the idea is to mainly encourage the diversity in RAkEL using a triple ran-

domization, the combination of our diverse committee construction and probability smoothing

strategy in CkMLC shows promise for obtaining a multi-label k-labelsets framework that enjoys

significant improvements in terms of Ranking Loss and One error metrics.

When compared to classical ensemble models, CkMLC remains competitive and achieves the

best performances even if these models (EBR, ELP and ECC) have the advantage to cover all

the label space () using the same number of models per label. As observed in Table 4.2 and

Table 4.3, CkMLC outperforms the ELP model by taking advantage from its reduced complexity

and bypass the EBR model by considering the links between the labels in its inner base-models.

However, its performances are not statistically distinguishable from the performance of ECC

when the One error metric is concerned. This is mainly due to the chaining strategy conducted

in ECC that also trades off between the label correlation and the label space complexity. The

ECC model benefits from the advantage of considering high order correlation by covering all the

label space in each base-model (i.e. CC here) and also of using the same number of base-models

in the majority-voting step. Indeed, ECC works especially well in terms of score-based metrics

for data sets having a small number of labels and with a strong conditional dependence between
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TABLE 4.3: Predictive performances in terms of 𝑂𝑛𝑒-𝑒𝑟𝑟𝑜𝑟. The lower the score, the better the

performance is.

CkMLC CkMLC* RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .266±.035 .488±.010∙ .487±.008∙ .490±.008∙ .485±.006∙ .560±.028∙ .511±.006∙ .481±.007∙ .474±.004∙
Birds .268±.026 .419±.061∙ .475±.042∙ .494±.042∙ .379±.083∙ .501±.047∙ .334±.034∙ .334±.029∙ .322±.031∙

Business .116±.004 .119±.005∙ .121±.005∙ .122±.005∙ 0.12±.005∙ .218±.061∙ .123±.006∙ .122±.005∙ .118±.005∙
Computers .382±.008 .381±.010 .392±.010∙ .395±.009∙ .410±.007∙ .487±.016∙ .393±.008∙ .388±.003∙ .375±.005◦

Education .410±.016 .493±.007∙ .495±.007∙ .498±.007∙ .493±.007∙ .578±.010∙ .511±.007∙ .498±.007∙ .487±.007∙
Emotions .274±.022 .276±.025 .341±.029∙ .341±.038∙ .366±.028∙ .326±.033∙ .268±.028 .255±.023◦ .253±.017◦

Enron .233±.008 .231±.004 .237±.007 .242±.006∙ .252±.011∙ .310±.034∙ .229±.008 .229±.005 .217±.006◦

Entertainment .272±.095 .412±.006∙ .424±.010∙ .426±.009∙ .412±.006∙ .502±.006∙ .434±.008∙ .411±.009∙ .404±.010∙
Flags .132±.041 .186±.034∙ .242±.048∙ .249±.049∙ .186±.036∙ .233±.060∙ .219±.036∙ .191±.027∙ .201±.033∙

Health .274±.005 .276±.006∙ .277±.005∙ .277±.006 .328±.018∙ .335±.012∙ .275±.007 .275±.008 .255±.006◦

Image .273±.018 .272±.017 .358±.018∙ .362±.019∙ .308±.012∙ .409±.016∙ .275±.013 .259±.011◦ .257±.015◦

Medical .151±.020 .155±.021∙ .158±.019∙ .163±.021∙ .203±.017∙ .178±.019∙ .126±.013◦ .218±.016∙ .198±.018∙
Recreation .191±.016 .473±.007∙ .479±.008∙ .484±.006∙ .477±.006∙ .571±.011∙ .505±.006∙ .468±.007∙ .472±.007∙
Reference .393±.008 .390±.010◦ .389±.007◦ .390±.006 .421±.025∙ .490±.017∙ .409±.008∙ .403±.015∙ .394±.012

Scene .227±.009 .228±.009 .314±.019∙ .314±.017∙ .222±.008 .388±.021∙ .219±.008◦ .212±.007◦ .198±.006◦

Science .403±.014 .526±.010∙ .534±.008∙ .534±.009∙ .528±.009∙ .636±.010∙ .562±.007∙ .532±.010∙ .525±.010∙
Slashdot .069±.002 .097±.011∙ .111±.008∙ .113±.012∙ .091±.006∙ .148±.020∙ .091±.005∙ .087±.003∙ .087±.003∙
Social .300±.005 .301±.005∙ .307±.003∙ 0.31±.004∙ .318±.008∙ .374±.008∙ .308±.007∙ .308±.008∙ .299±.008

Society .418±.012 .427±.011∙ .421±.012∙ .424±.010∙ .423±.016∙ .519±.006∙ .438±.008∙ .434±.009∙ .423±.010∙
Yeast .228±.007 .239±.007∙ .232±.006∙ .233±.008 .235±.007∙ .191±.035◦ .221±.007◦ .239±.006∙ .232±.007

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (14/5/1) (18/1/1) (17/3/0) (19/1/0) (19/0/1) (13/4/3) (12/4/4) (11/3/6)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

labels, including Emotions, Image, Scene and Yeast data sets (The reader can refer to [18, 21]

for more details about the label dependence in these data sets).

Performances analysis over bi-partition-based metrics

Tables 4.4-4.9 depict the performances of all compared models in terms of bi-partition-based

metrics. In the sequel, the thresholding strategies proposed respectively in CkMLC, FBR and

RAkEL++ are implemented separately for each metric. Besides, for the traditional ensemble

model EBR, ELP and ECC the majority 0.5 decision threshold is used.

To better assess the effectiveness of our thresholding strategy, we also report, in each table, the

results of our algorithm using the majority 0.5 single threshold for all labels. This approach

without threshold selection is denoted with the superscript ’0.5’.

The results show that CkMLC outperforms both RAkEL and CkMLC0.5 that use the single ma-

jority threshold 0.5. This validates the motivation behind our threshold calibration strategy to

greatly help ensemble multi-label k-labelsets models to reduce bi-partition-based loss metrics.
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TABLE 4.4: Predictive performances in terms of Subset 0/1 loss. The lower the score, the better

the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .747±.067 .819±.045∙ .891±.035∙ .808±.052∙ .805±.044∙ .880±.022∙ .801±.005∙ .830±.008∙ .819±.009∙
Birds .529±.039 .537±.043 .567±.034 .524±.034 .533±.046 .551±.036∙ .501±.011◦ .520±.021 .499±.019◦

Business .473±.056 .478±.104 .612±.056∙ .478±.060∙ .490±.095 .583±.021∙ .469±.010 .442±.009 .444±.009

Computers .622±.009 .671±.005∙ .814±.009∙ .672±.008∙ .672±.008∙ .756±.006∙ .672±.008∙ .674±.006∙ .664±.005∙
Education .726±.005 .820±.004∙ .928±.008∙ .800±.004∙ .800±.004∙ .858±.007∙ .794±.004∙ .853±.003∙ .835±.005∙
Emotions .772±.026 .721±.025◦ .893±.019∙ .786±.021∙ .786±.021∙ .832±.023∙ .720±.025◦ .699±.028◦ .688±.017◦

Enron .869±.010 .887±.005∙ .917±.009∙ .876±.007∙ .876±.007∙ .914±.011∙ .886±.012∙ .885±.008∙ .880±.006∙
Entertainment .621±.010 .677±.006∙ .820±.015∙ .668±.007∙ .668±.007∙ .786±.003∙ .689±.008∙ .711±.004∙ .699±.007∙

Flags .797±.034 .795±.032 .948±.025∙ .803±.041 .803±.041 .894±.018∙ .840±.026∙ .790±.019 .811±.026

Health .547±.005 .563±.005∙ .793±.011∙ .571±.006∙ .571±.006∙ .738±.012∙ .600±.007∙ .596±.006∙ .574±.005∙
Image .629±.023 .610±.011◦ .858±.008∙ .650±.022∙ .650±.022∙ .740±.014∙ .591±.008◦ .606±.010◦ .585±.011◦

Medical .315±.022 .322±.019 .434±.021∙ .314±.015 .314±.015 .369±.021∙ .338±.026∙ .552±.022∙ .640±.014∙
Recreation .689±.004 .754±.006∙ .849±.010∙ .743±.006∙ .743±.006∙ .832±.008∙ .755±.004∙ .795±.006∙ .787±.004∙
Reference .561±.005 .635±.006∙ .738±.013∙ .630±.005∙ .630±.005∙ .702±.010∙ .637±.007∙ .661±.007∙ .657±.005∙

Scene .494±.018 .481±.012◦ .777±.013∙ .513±.018∙ .513±.018∙ .628±.015∙ .461±.012◦ .480±.010◦ .456±.011◦

Science .740±.005 .839±.007∙ .893±.017∙ .817±.005∙ .817±.005∙ .867±.005∙ .822±.004∙ .883±.005∙ .871±.004∙
Slashdot .313±.030 .311±.074 .383±.026∙ .323±.031∙ .338±.074 .332±.029∙ .294±.010◦ .293±.010◦ .294±.008◦

Social .491±.009 .501±.007∙ .665±.016∙ .517±.009∙ .517±.009∙ .631±.010∙ .535±.011∙ .512±.005∙ .511±.005∙
Society .695±.009 .745±.007∙ .864±.013∙ .753±.008∙ .753±.008∙ .840±.007∙ .741±.006∙ .748±.004∙ .739±.004∙
Yeast .811±.006 .854±.010∙ .955±.009∙ .843±.011∙ .843±.011∙ .956±.004∙ .846±.009∙ .856±.010∙ .841±.006∙

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (12/5/3) (19/1/0) (17/3/0) (15/5/0) (20/0/0) (14/1/5) (13/3/4) (13/2/5)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

Moreover, the results indicate that diversity in ensemble k-labelsets models is not easy to han-

dle. Indeed, TREMLC achieves disappointing performances since the diversity introduced in the

ensemble construction is improved at the expense of the prediction performances of individual

multi-label classifiers. On the other hand, the parameter instantiations of TREMLC (the percent-

age of instance selection and the random subspace size) seem to be more data dependent which

tends to deteriorate the performances of the final model [79]. In CkMLC, the diversity effect is

managed as long as the model allows repeating several times same k-labelsets and do not use

randomization in the feature space.

When compared to classical ensemble models (EBR, ELP and ECC), CkMLC seems to be very

competitive and is able to achieve statistically distinguishable performances over multi-label

metrics based on F-measure (i.e. Micro-F1 loss, Macro-F1 loss and Instance-F1 loss). However,

CkMLC performances are equivalent to these ensemble models over Subset 0/1 loss, Jaccard loss
and Hamming loss.

To summarize the obtained results so far, we can draw several conclusions from these observa-

tions:
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TABLE 4.5: Predictive performances in terms of Jaccard loss. The lower the score, the better

the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .689±.018 .761±.011∙ .744±.007∙ .708±.031 .866±.013∙ .744±.008∙ .730±.008∙ .797±.009∙ .777±.009∙
Birds .448±.016 .471±.017∙ .482±.021∙ .459±.012∙ .481±.019∙ .462±.034 .428±.015◦ .503±.022∙ .452±.018

Business .312±.052 .312±.052∙ .311±.024 .456±.025∙ .297±.003 .375±.005∙ .309±.006 .297±.006 .296±.006

Computers .593±.006 .620±.006∙ .619±.008∙ .626±.005∙ .633±.028∙ .628±.007∙ .598±.008 .617±.006∙ .606±.005∙
Education .677±.006 .789±.006∙ .762±.003∙ .714±.004∙ .819±.011∙ .738±.007∙ .734±.003∙ .828±.004∙ .802±.004∙
Emotions .506±.019 .506±.019∙ .561±.020∙ .660±.037∙ .600±.043∙ .558±.017∙ .482±.018◦ .488±.021◦ .472±.014◦

Enron .582±.005 .608±.003∙ .602±.007∙ .597±.007∙ .627±.019∙ .613±.007∙ .557±.016◦ .613±.003∙ .569±.006◦

Entertainment .601±.008 .643±.007∙ .628±.007∙ .639±.006∙ .843±.024∙ .666±.005∙ .625±.008∙ .689±.005∙ .666±.008∙
Flags .434±.011 .434±.011∙ .425±.029 .476±.028∙ .489±.035∙ .449±.027 .415±.020◦ .391±.016◦ .394±.017◦

Health .472±.006 .472±.006∙ .474±.005 .572±.007∙ .606±.056∙ .558±.006∙ .468±.004◦ .514±.005∙ .477±.004∙
Image .499±.032 .542±.010∙ .553±.021∙ .736±.037∙ .609±.009∙ .586±.014∙ .499±.007 .540±.012∙ .505±.012

Medical .246±.019 .246±.019∙ .241±.016 .279±.016∙ .322±.023∙ .268±.023∙ .249±.023 .494±.024∙ .580±.019∙
Recreation .645±.009 .729±.005∙ .711±.005∙ .683±.005∙ .852±.012∙ .726±.007∙ .705±.006∙ .776±.006∙ .765±.004∙
Reference .542±.005 .610±.005∙ .598±.005∙ .580±.004∙ .711±.047∙ .610±.009∙ .589±.007∙ .640±.007∙ .634±.005∙

Scene .317±.025 .457±.013∙ .469±.022∙ .786±.053∙ .542±.007∙ .516±.014∙ .426±.012∙ .459±.010∙ .431±.010∙
Science .688±.009 .817±.007∙ .790±.005∙ .718±.006∙ .866±.019∙ .769±.007∙ .770±.004∙ .872±.006∙ .851±.005∙
Slashdot .284±.020 .284±.020∙ .256±.017◦ .313±.009∙ .291±.012 .258±.017◦ .231±.007◦ .232±.006◦ .233±.004◦

Social .506±.010 .506±.010∙ .468±.007◦ .508±.008 .593±.040∙ .520±.008∙ .465±.010◦ .482±.004◦ .476±.007◦

Society .650±.008 .690±.009∙ .696±.009∙ .706±.008∙ .757±.039∙ .703±.005∙ .656±.007∙ .694±.004∙ .679±.005∙
Yeast .491±.005 .519±.006∙ .513±.008∙ .573±.004∙ .594±.005∙ .587±.007∙ .496±.005∙ .525±.006∙ .503±.005∙

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (20/0/0) (14/4/2) (18/2/0) (18/2/0) (17/2/1) (9/4/7) (15/1/4) (12/3/5)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

• CkMLC exhibits the best performances over all the metrics than the original RAkEL and

TREMLC.

• The performances of CkMLC are statistically distinguishable from the performance of

CkMLC∗ over score-based metrics. This indicates the effectiveness of our probability

smoothing strategy to flatten the label probability distribution and to improve the multi-

label classification performances in terms of score-based metrics.

• CkMLC significantly outperforms CkMLC0.5 (without threshold calibration) by a notice-

able margin over all the metrics (except for Subset 0/1 loss and Hamming Loss). This

confirms the ability of the proposed greedy thresholding algorithm to optimize any per-

formance measure of interest.

• The strategy proposed in CkMLC to calibrate a separate threshold per label seems to per-

form better than selecting one single threshold for all labels in RAkEL++.

• FBR is worse than CkMLC in all comparisons. Even if the proposed thresholding algo-

rithm has no guarantee of optimality (as for FBR), the results in Tables 4.4 to Tables 4.9
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TABLE 4.6: Predictive performances in terms of Instance-F1 loss. The lower the score, the

better the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .580±.004 .737±.038∙ .711±.034∙ .717±.026∙ .855±.014∙ .725±.037∙ .703±.009∙ .785±.009∙ .762±.010∙
Birds .414±.023 .443±.015∙ .433±.018∙ .419±.018 .467±.019∙ .465±.026∙ .401±.018◦ .496±.023∙ .433±.017∙

Business .257±.033 .253±.033◦ .322±.040∙ .252±.013 .241±.003 .350±.007∙ .252±.006 .244±.006 .243±.005

Computers .499±.004 .600±.007∙ .591±.009∙ .599±.008∙ .607±.030∙ .639±.016∙ .570±.009∙ .596±.007∙ .584±.005∙
Education .570±.006 .778±.006∙ .747±.004∙ .748±.003∙ .809±.012∙ .732±.006∙ .713±.004∙ .820±.004∙ .790±.004∙
Emotions .390±.009 .436±.019∙ .459±.022∙ .486±.020∙ .518±.051∙ .511±.021∙ .404±.017∙ .419±.022∙ .401±.016

Enron .451±.006 .501±.004∙ .470±.005∙ .497±.007∙ .528±.020∙ .561±.014∙ .444±.017 .509±.005∙ .459±.007

Entertainment .503±.008 .630±.007∙ .611±.008∙ .614±.007∙ .837±.024∙ .656±.007∙ .602±.008∙ .681±.005∙ .655±.009∙
Flags .281±.009 .292±.019 .305±.017∙ .316±.027∙ .353±.036∙ .544±.075∙ .300±.021∙ .280±.015 .281±.014

Health .423±.003 .439±.006∙ .429±.004∙ .439±.005∙ .572±.057∙ .523±.011∙ .421±.004 .484±.005∙ .442±.004∙
Image .433±.008 .519±.010∙ .492±.013∙ .520±.023∙ .469±.035∙ .558±.020∙ .468±.008∙ .517±.013∙ .477±.013∙

Medical .209±.013 .220±.019 .215±.016 .216±.016∙ .295±.024∙ .265±.023∙ .219±.023 .474±.025∙ .559±.022∙
Recreation .554±.008 .719±.005∙ .703±.005∙ .699±.005∙ .846±.012∙ .715±.008∙ .686±.007∙ .769±.006∙ .757±.004∙
Reference .462±.004 .601±.005∙ .585±.003∙ .587±.004∙ .702±.048∙ .621±.008∙ .572±.007∙ .633±.007∙ .627±.005∙

Scene .372±.008 .449±.013∙ .445±.014∙ .454±.023∙ .300±.028◦ .493±.011∙ .415±.012∙ .452±.010∙ .423±.010∙
Science .596±.008 .809±.008∙ .782±.005∙ .780±.006∙ .859±.020∙ .768±.007∙ .751±.005∙ .868±.007∙ .844±.005∙
Slashdot .217±.038 .258±.027∙ .226±.010 .233±.013 .269±.010∙ .279±.012∙ .210±.006 .211±.004 .212±.003

Social .390±.005 .449±.008∙ .448±.007∙ .450±.007∙ .583±.042∙ .510±.013∙ .440±.011∙ .471±.004∙ .463±.008∙
Society .554±.005 .668±.010∙ .651±.010∙ .675±.010∙ .739±.043∙ .688±.007∙ .623±.008∙ .673±.005∙ .655±.005∙
Yeast .414±.005 .411±.005 .395±.004◦ .406±.007◦ .385±.004◦ .502±.010∙ .388±.005◦ .417±.005 .396±.004◦

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (16/3/1) (17/2/1) (16/3/1) (17/1/2) (20/0/0) (13/5/2) (16/4/0) (14/5/1)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

confirm its ability, compared to FBR, to select the relevant thresholds accurately by opti-

mizing the performance measure of interest.

• CkMLC outperforms the other traditional ensemble multi-label methods by generally achiev-

ing the lowest values over the used multi-label loss metrics.

4.4 Chapter summary

In this Chapter, we discussed a novel strategy to build and aggregate k-labelsets ensemble multi-

label model. The proposed strategy extends and improves upon the original RAkEL algorithm

in three ways: i) new randomization strategy using bagging in tandem with random k-labelsets;

ii) accounting for the imbalanced label representation when aggregating the base-classifiers pre-

dictions; and iii), a specific label threshold calibration procedure on out-of-bag instances.

The proposed ensemble CkMLC approach joins ideas to simultaneously encourage diversity and

better aggregate the base-classifiers predictions in tandem with an inner out-of-bag threshold

calibration strategy for optimizing a performance measure of interest. Experimental results on
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TABLE 4.7: Predictive performances in terms of Micro-F1 loss. The lower the score, the better

the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .582±.022 .681±.011∙ .630±.013∙ .665±.005∙ .662±.009∙ .672±.009∙ .649±.006∙ .726±.009∙ .698±.007∙
Birds .587±.034 .699±.054∙ .595±.022 .641±.052∙ .655±.038∙ .605±.028∙ .611±.027∙ .869±.027∙ .706±.013∙

Business .293±.030 .296±.028∙ .370±.017∙ .290±.009 .296±.026∙ .346±.013∙ .293±.007 .296±.007 .291±.006

Computers .484±.007 .551±.006∙ .549±.003∙ .551±.007∙ .551±.007∙ .566±.006∙ .530±.009∙ .552±.008∙ .533±.007∙
Education .541±.004 .681±.009∙ .612±.003∙ .656±.006∙ .656±.006∙ .653±.006∙ .632±.006∙ .728±.004∙ .701±.005∙
Emotions .366±.017 .363±.016 .400±.008∙ .425±.016∙ .425±.016∙ .421±.017∙ .342±.017◦ .346±.014◦ .333±.013◦

Enron .396±.005 .491±.003∙ .474±.006∙ .487±.005∙ .487±.005∙ .488±.005∙ .423±.009∙ .493±.005∙ .442±.005∙
Entertainment .487±.008 .568±.005∙ .568±.006∙ .551±.007∙ .551±.007∙ .591±.007∙ .542±.008∙ .611±.005∙ .571±.008∙

Flags .249±.016 .260±.017∙ .267±.010∙ .276±.025∙ .276±.025∙ .297±.022∙ .266±.016∙ .253±.012 .254±.013

Health .369±.007 .408±.005∙ .461±.006∙ .407±.006∙ .407±.006∙ .472±.006∙ .402±.004∙ .442±.004∙ .409±.003∙
Image .413±.013 .428±.009∙ .470±.006∙ .462±.019∙ .462±.019∙ .486±.013∙ .395±.008◦ .426±.011∙ .396±.010◦

Medical .189±.015 .196±.014 .234±.007∙ .194±.012∙ .194±.012∙ .206±.015∙ .191±.016 .369±.020∙ .429±.020∙
Recreation .557±.006 .656±.005∙ .620±.005∙ .638±.007∙ .638±.007∙ .663±.008∙ .634±.007∙ .704±.008∙ .689±.005∙
Reference .442±.005 .507±.004∙ .522±.006∙ .500±.004∙ .500±.004∙ .543±.008∙ .502±.006∙ .535±.006∙ .523±.005∙

Scene .347±.015 .333±.010◦ .418±.007∙ .376±.020∙ .376±.020∙ .418±.012∙ .311±.010◦ .332±.007◦ .308±.007◦

Science .582±.006 .742±.010∙ .631±.005∙ .713±.008∙ .713±.008∙ .703±.008∙ .690±.003∙ .817±.010∙ .784±.007∙
Slashdot .229±.014 .225±.041 .325±.014∙ .234±.014∙ .244±.041 .235±.012∙ .215±.007◦ .215±.007◦ .216±.007◦

Social .387±.004 .406±.010∙ .463±.009∙ .411±.007∙ .411±.007∙ .472±.007∙ .415±.009∙ .423±.006∙ .414±.009∙
Society .552±.008 .642±.007∙ .621±.008∙ .646±.008∙ .646±.008∙ .654±.005∙ .617±.007∙ .647±.003∙ .630±.004∙
Yeast .330±.004 .380±.005∙ .438±.003∙ .376±.006∙ .376±.006∙ .440±.007∙ .359±.004∙ .386±.005∙ .366±.005∙

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (16/3/1) (19/1/0) (19/1/0) (19/1/0) (20/0/0) (14/2/4) (15/2/3) (14/2/4)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.

20 benchmark data sets indicate that the proposed model outperforms the RAkEL algorithm and

other recent state-of-the-art MLC algorithms over different multi-label loss metrics.

In the next Chapter, further discussions will be conducted to analyze the importance of the com-

bination step as well as effectiveness of our proposed thresholding strategy on different ensemble

multi-label classification approaches in order to adapt, in a more principled way, the aggregation

procedure to a multi-label performance measure of interest.
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TABLE 4.8: Predictive performances in terms of Macro-F1 loss. The lower the score, the better

the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .347±.088 .549±.070∙ .567±.024∙ .453±.054∙ .379±.043 .794±.055∙ .531±.036∙ .456±.056∙ .483±.038∙
Birds .382±.135 .458±.099 .493±.058∙ .407±.062 .395±.034 .691±.084∙ .374±.058 .436±.071 .465±.086∙

Business .252±.104 .498±.060∙ .508±.035∙ .308±.092∙ .379±.026∙ .796±.073∙ .435±.047∙ .286±.052 .438±.067∙
Computers .244±.044 .518±.023∙ .519±.023∙ .378±.046∙ .548±.026∙ .814±.008∙ .531±.039∙ .336±.045∙ .487±.035∙
Education .202±.010 .329±.011∙ .328±.012∙ .214±.016∙ .178±.027◦ .848±.006∙ .358±.020∙ .235±.021∙ .324±.040∙
Emotions .389±.015 .411±.008∙ .397±.009 .437±.015∙ .520±.008∙ .431±.015∙ .368±.015◦ .323±.014◦ .320±.013◦

Enron .175±.020 .394±.031∙ .393±.031∙ .217±.023∙ .444±.027∙ .830±.006∙ .360±.031∙ .398±.034∙ .381±.029∙
Entertainment .409±.024 .409±.004 .403±.003 .424±.027 .452±.030∙ .776±.008∙ .434±.018∙ .403±.025 .398±.007

Flags .304±.054 .322±.011 .315±.014 .337±.049∙ .206±.011◦ .371±.026∙ .354±.022∙ .360±.030∙ .304±.014

Health .228±.034 .310±.017∙ .306±.016∙ .275±.012∙ .207±.024◦ .759±.010∙ .333±.031∙ .241±.012 .245±.024

Image .429±.010 .491±.007∙ .465±.005∙ .461±.021∙ .599±.012∙ .484±.014∙ .400±.009◦ .339±.016◦ .339±.009◦

Medical .093±.021 .181±.016∙ .178±.016∙ .112±.022∙ .024±.016◦ .628±.023∙ .110±.021 .104±.016 .176±.050∙
Recreation .411±.021 .561±.038∙ .551±.038∙ .507±.037∙ .610±.027∙ .767±.008∙ .567±.051∙ .505±.023∙ .520±.032∙
Reference .244±.014 .351±.021∙ .348±.020∙ .285±.029∙ .382±.029∙ .865±.003∙ .341±.031∙ .271±.022∙ .281±.013∙

Scene .335±.009 .422±.006∙ .390±.008∙ .368±.019∙ .674±.011∙ .407±.013∙ .316±.009◦ .230±.007◦ .242±.005◦

Science .310±.029 .480±.021∙ .479±.021∙ .364±.029∙ .532±.027∙ .853±.007∙ .473±.022∙ .418±.030∙ .409±.052∙
Slashdot .156±.086 .351±.062∙ .360±.044∙ .205±.051∙ .415±.038∙ .825±.151∙ .159±.027 .060±.017◦ .210±.037∙
Social .176±.019 .405±.024∙ .401±.024∙ .249±.040∙ .499±.029∙ .815±.010∙ .364±.053∙ .212±.027∙ .385±.059∙
Society .323±.022 .532±.041∙ .532±.041∙ .344±.019 .552±.032∙ .853±.006∙ .502±.048∙ .447±.034∙ .520±.047∙
Yeast .391±.022 .483±.003∙ .481±.002∙ .437±.060∙ .486±.003∙ .600±.008∙ .511±.018∙ .445±.004∙ .462±.037∙

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (17/3/0) (17/3/0) (17/3/0) (14/2/4) (20/0/0) (14/3/3) (11/5/4) (14/3/3)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.
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TABLE 4.9: Predictive performances in terms of Hamming loss. The lower the score, the better

the performance is.

CkMLC CkMLC0.5 RAKEL++ TREMLC RAKEL fbr𝑀−𝑇 EBR ELP ECC

Arts .056±.005 .064±.030 .080±.007∙ .067±.038 .060±.018 .072±.000∙ .055±.000 .055±.000 .054±.000

Birds .053±.008 .065±.025∙ .069±.011∙ .054±.010∙ .063±.022∙ .056±.006∙ .048±.002 .050±.002 .046±.002◦

Business .027±.003 .028±.008 .036±.003∙ .027±.003∙ .028±.005 .034±.001∙ .026±.000 .026±.000 .026±.000

Computers .036±.000 .035±.000◦ .051±.002∙ .036±.000∙ .036±.000∙ .046±.000∙ .035±.000 .035±.000◦ .034±.000◦

Education .038±.000 .038±.000 .060±.002∙ .038±.000 .038±.000∙ .050±.000∙ .038±.000∙ .038±.000∙ .038±.000

Emotions .234±.010 .199±.008◦ .338±.014∙ .238±.009∙ .238±.009∙ .264±.010∙ .197±.008◦ .189±.006◦ .187±.007◦

Enron .046±.000 .047±.000∙ .065±.002∙ .048±.000∙ .047±.000∙ .060±.001∙ .046±.000 .048±.000∙ .046±.000

Entertainment .053±.000 .052±.000◦ .088±.004∙ .053±.001∙ .053±.001∙ .070±.000∙ .054±.000∙ .053±.000 .051±.000◦

Flags .270±.016 .251±.015◦ .314±.013∙ .266±.020 .271±.017 .295±.012∙ .261±.010 .247±.010◦ .248±.010◦

Health .034±.000 .033±.000 .053±.001∙ .034±.000 .034±.000 .045±.000∙ .035±.000∙ .035±.000∙ .033±.000◦

Image .186±.005 .160±.003◦ .333±.008∙ .197±.010∙ .196±.007∙ .234±.007∙ .164±.004◦ .158±.003◦ .154±.003◦

Medical .010±.000 .010±.000 .013±.000∙ .010±.000 .010±.000 .011±.000∙ .011±.000∙ .015±.000∙ .017±.000∙
Recreation .054±.000 .053±.000◦ .080±.003∙ .054±.000∙ .054±.000∙ .072±.001∙ .055±.000∙ .055±.000∙ .054±.000

Reference .026±.000 .026±.000◦ .038±.001∙ .026±.000 .026±.000∙ .035±.000∙ .026±.000∙ .026±.000∙ .025±.000◦

Scene .114±.005 .095±.002◦ .199±.013∙ .117±.007∙ .117±.007∙ .146±.005∙ .091±.002◦ .093±.001◦ .089±.001◦

Science .032±.000 .032±.000 .047±.001∙ .032±.000∙ .032±.000 .043±.000∙ .033±.000∙ .033±.000∙ .032±.000∙
Slashdot .016±.001 .017±.005 .021±.001∙ .017±.002∙ .017±.002∙ .018±.001∙ .015±.000 .015±.000◦ .015±.000◦

Social .021±.000 .020±.000◦ .031±.001∙ .021±.000∙ .021±.000∙ .028±.000∙ .021±.000◦ .020±.000◦ .020±.000◦

Society .052±.000 .052±.000◦ .075±.002∙ .053±.000 .053±.000 .072±.000∙ .052±.000 .053±.000 .052±.000◦

Yeast .195±.002 .197±.002∙ .332±.010∙ .197±.003∙ .197±.003∙ .261±.003∙ .195±.002 .198±.002∙ .193±.002◦

(𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) (3/7/10) (20/0/0) (13/7/0) (13/7/0) (20/0/0) (7/9/4) (8/5/7) (2/5/13)

The marker ’∙∕◦’ indicates that CkMLC is significantly better/worse, at a level of significance

of 5%. The bottom row reports he obtained (𝑤𝑖𝑛∕𝑡𝑖𝑒∕𝑙𝑜𝑠𝑠) counts for CkMLC against the com-

pared algorithms. Bold cells highlight that CkMLC is significantly better than compared algo-

rithm according to the sign test at 𝛼 = 5%.



Chapter 5

Towards effective aggregation in
ensemble multi-label learning

In the previous Chapters, we gave an overview of the different steps in the ensemble multi-

label methods and discussed the importance of the combination step in ensemble 𝑘-labelsets

models. We analyzed how an adequate combination can boost the overall performances of the

𝑘-labelsets model. This substantial performance improvement w.r.t. ensemble 𝑘-labelsets multi-

label models, is due to the reflection conducted to make the committee generation consistent

with the committee output combination. In this Chapter, we investigate the effectiveness of

the combination step and how it influences the prediction performances in traditional ensemble

multi-label models.We analyze it from the loss function perspective and distinguish two types of

combination schemes, namely Label-wise Combination and Powerset-wise Combination.

Indeed, ensemble multi-label models consist of a set of multi-label classifiers and present a sig-

nificant improvement over single multi-label classifier models. This improvement is usually

claimed to be attributed to the committee construction and the combination step, with a lack of

an in-depth investigation on the conditions under which these steps bring added value.

Even though researchers have designed several ensemble multi-label learning methods [15, 17,

32], they mostly focus on developing strategies for the base-classifier construction and their abil-

ity to handle label correlations. Works often propose a new ensemble model and lack a precise

study of the combination step and its consistency to the committee construction. Moreover,

claimed results in these recently proposed research papers are usually confusing. The authors

usually claim that their proposed ensemble model generally outperforms other state-of-the-art

approaches in terms of numerous multi-label loss metrics, without specifying the loss metric

that the proposed ensemble approach is supposed to optimize.

61
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In general, proposed ensemble multi-label models do often fall short of deepening the under-

standing of the benefit of ensemble paradigm in the multi-label classification. We rely on several

arguments for this, notably the following:

• The combination step is generally carried out in an intuitive manner without formally spec-

ifying the output of the ensemble model given the base-classifiers outputs.

• The combination step is seen as a step that improve the predictions without questioning its

potential benefits and drawbacks.

• Notions of label dependence and optimized loss function are considered separately in the

base-classifier construction and ignored in the combination step. However, both notions

should be considered jointly throughout the various stages of the ensemble multi-label

model.

In this Chapter, we aim to elaborate on the base-classifier combination problem. We propose

a new formulation for the combination step in the ensemble multi-label models along with a

theoretical analysis of the optimized loss function. Our study provides a new perspective on the

mechanisms behind the ensemble multi-label models with a deeper understanding of the base-

classifiers combination.

In Section 5.1 we formulate two strategies for combining the base-classifiers predictions in en-

semble multi-label models: (i) Label-wise Combination and (ii) Powerset-wise Combination.

The latter combination strategy preserves the predicted label structure, whereas the former one

considers each label separately and ignores the dependency structure of the label. In Section 5.2,

we discuss the influence of the combination strategy on the prediction performances of ensemble

multi-label models and highlight the links between the combination strategy and the loss metric

optimized by the ensemble model. We present our experimental study in Section 5.3, where

experimental results compare several combination strategies on a wide range of multi-label data

sets arising from different domains. Finally, we conclude in Section 5.4.

5.1 Multi-label committee combination

In this section, we propose two major strategies for the combination step: i) The Label-wise
Combination strategy where the mapping function combines the multi-label outputs separately

for each label and ii) the Powerset-wise Combination strategy where the mapping function com-

bines the multi-label outputs jointly as an indivisible information. In the sequel, we first describe

the two combination strategies, then denote their main differences.
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5.1.1 Label-wise Combination

The Label-wise Combination strategy is the most popular combination scheme in ensemble

multi-label models. It considers each label independently, such that the base-classifiers outputs

are combined for each label separately. In other words, to decide for the ensemble prediction,

the base-classifiers outputs are averaged for every label. Thus, the ensemble output is a vector of

probability scores (a probability score for each label 𝑠𝑖(x)) indicating the relevance of each label

𝜆𝑖 ∈  for the predicted instance. Each label score 𝑠𝑖(x) is the average of the committee predic-

tions for the label 𝜆𝑖. Depending on the information provided by the base-models, we define the

Label-wise Combination (LC) strategy of an ensemble multi-label model 𝐻 = {ℎ1,⋯ , ℎ𝑇 } as

follows:

• If each base-model ℎ𝑡 provides a vector of crisp label predictions ℎ𝑖
𝑡
(𝑥) ∈ {0; 1} with

1 ≤ 𝑖 ≤ 𝑞, the LC strategy is formulated as :

Sl(x) = (𝑆𝑙1(x),⋯ , 𝑆𝑙𝑞(x)) ∶ 𝑆𝑙𝑖(x) = 1
𝑇

𝑇∑
𝑡=1

ℎ𝑖
𝑡
(x)

• If each base-model ℎ𝑡 provides a vector of label probability score 𝑠𝑖
𝑡
(𝑥) ∈ [0; 1] with

1 ≤ 𝑖 ≤ 𝑞, the soft version of the LC strategy is formulated as :

Ss(x) = (𝑆𝑠1(x),⋯ , 𝑆𝑠𝑞(x)) ∶ 𝑆𝑠𝑖(x) = 1
𝑇

𝑇∑
𝑡=1

𝑠𝑖
𝑡
(x)

The meaning of the predicted scores is different according to the base-models output. When

combining crisp labels prediction (ℎ𝑖
𝑡
(x) ∈ {0, 1}) the scores given by the LC estimates the

probability that a multi-label model (a multi-label classifier in this case) assigns the label 𝜆𝑖

giving the instance x : 𝑆𝑙𝑖(x) ≃ 𝑝(ℎ𝑖(x) = 1|x). On the other hand, when combining probability

output (𝑠𝑖
𝑡
(x) ∈ [0, 1]) the LC result estimates the probability to assign the label 𝜆𝑖 given the

instance x: 𝑆𝑠𝑖(x) ≃ 𝑝(𝑦𝑖|x).
5.1.2 Powerset-wise Combination

The Powerset-wise Combination strategy considers jointly the information predicted by each

base-classifier and produces a probability score for each labelset in  . Depending on the infor-

mation provided by the base-classifiers, we define the Powerset-wise Combination (PC) strategy

of an ensemble of multi-label models 𝐻 = {ℎ1,⋯ , ℎ𝑇 } as follows:
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• If each base-model ℎ𝑡 provides a vector of crisp label predictions (i.e h𝑡(x) ∈ ) the PC
computes the frequency of each labelset over the ensemble committee predictions as :

∀y ∈  , 𝑆𝑙y(x) = 1
𝑇

𝑇∑
𝑡=1

𝐼(h𝑡(x) = y)

• If each base-model ℎ𝑡 provides a label probability score for each labelset 𝑠
y
𝑡
(x) ∈ [0; 1]

with y ∈  , the soft version of the PC strategy averages the predicted distribution over

the committee as :

∀y ∈  , 𝑆𝑠y(x) = 1
𝑇

𝑇∑
𝑡=1

𝑠
y
𝑡
(x)

As in the LC strategy, the meaning of the estimated scores is different according to information

provided by the base-models. When combining crisp label output (h𝑡(x) ∈ {0, 1}𝑞) the score 𝑆𝑙

resulting from the PC strategy estimates the probability that a multi-label classifier assigns the

labelset y given the instance x: 𝑆𝑙y(x) ≃ 𝑝(h(x) = y|x), with y ∈  . On the other hand, when

each base-model provides 𝑠y as an estimation of 𝑝(y|x) for each labelset y ∈  ; the PC strategy

estimates the probability to assign the labelset y given the input x: 𝑆𝑠y(x) ≃ 𝑝(y|x), with y ∈  .

5.1.3 Label-wise Combination Vs Powerset-wise Combination

LC strategy is the commonly used combination in ensemble multi-label models [16, 17, 32] due

to its simplicity and low computational cost. As the LC strategy considers each label separately,

the probabilistic dependency structure of the labels (given the inputs) is ignored in the combi-

nation step. Furthermore, the LC strategy may potentially break the labels’ structure learned by

the individual base-classifiers which leads to failures in predictions. In contrast, by considering

the predicted labels as an indivisible entity, the PC preserves the labels’ structure predicted by

each base-classifier in the ensemble committee. However, the PC strategy suffers an important

computational complexity, being exponential with the number of labels. Nevertheless, it is worth

mentioning that labelsets present in the data set are consistently dominated by a small minority

of core label combinations. This prevalent character in multi-label data sets makes the use of PC
easier when coupled with an appropriate multi-label base-learner despite the exponential num-

ber of possible labelsets. Furthermore, this complexity can be bypassed by adopting a crisp label

formulation of the combination strategy. Notice that the soft combination is generally used only

for a homogeneous committee. For the heterogeneous committee, the probabilities generated by

the different types of base-classifiers cannot be aggregated without a careful calibration. In such

situations, the predicted probabilities are often converted to crisp labels, and then a crisp label

combination strategy is applied [86].
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5.2 Ensemble multi-label combination and loss metrics

As aforementioned, two strategies are possible for combining base-classifiers predictions in an

ensemble model, and each addresses the relationship between labels in a different way. Thereby,

two important questions remain: 𝑖)Does the combination strategy influence the predictions of the

ensemble model ? and, 𝑖𝑖) How to make the combination step consistent with the loss function

optimized by the base-classifiers ?

In this Section, we throw light on these questions and give a first theoretical insight on the cost

optimized by each combination strategy, and we also discuss the loss consistency in ensemble

multi-label models.

5.2.1 Why different combination strategies ?

It is evident from a Bayesian perspective that for a committee of Bayes-optimal predictors, there

is no need to distinguish between the LC and PC strategies since, regardless of the combination

strategy, the final prediction will be the same. If we suppose that the ensemble committee is

formed with duplicates of the optimal classifier ℎ∗, all the base-classifiers will predict the same

labelset. Under this optimal conditions, one can alternatively think of selecting any predictor

output to get a correct optimal prediction, regardless of the objective loss metric.

Moreover, for an objective label-wise decomposable metric, a correct prediction for the com-

mittee can also be constructed by selecting for each label 𝜆𝑖, a random prediction within the

predictor outputs for 𝜆𝑖. In numerical experience, this typically occurs when a labelset domi-

nates the predictions of all the predictors outputs with a probability greater than 0.5. In this case,

demonstrating the equivalence is simple. Dembczyński et al. [18] proved a very similar result,

although the proof turns out to be much simpler in this context.

Proposition 2. The LC and PC strategies have the same predictions, i.e., H-𝑃𝐶(x) = H-𝐿𝐶(x),
if the probability of the mode of the base-classifier labelset output is greater than 0.5, i.e.,

𝑝(H-𝑃𝐶(x)|x) > 0.5.

Proof. Since the probability of the jointly combined labelset H-𝑃𝐶(x) = 𝓁 is greater than 0.5,
𝑖.𝑒., 𝑝(𝓁|x) > 0.5, the marginal probabilities of 𝜆𝑖 ∈ 𝓁 or can be written by: 𝑝(𝜆𝑖|x) = 𝑝(𝓁|x) +∑

𝓁′∈(⧵𝜆𝑖) 𝑝(𝜆𝑖 ∪ 𝓁′|x) and is always greater than 0.5. The statement also holds for 𝜆𝑖 ∈  ⧵ 𝓁.

Thus, the joint mode is decomposed on marginal modes and we have H-𝐿𝐶(x) = H-𝑃𝐶(𝑥).

This result points out a misleading situation where the usefulness of the distinction between the

two combination strategies is challenged.



Towards effective aggregation in ensemble multi-label learning 66

However, it is important to notice that if we could build such perfect machine learning model,

which would give every time the best possible prediction by sheer force, there will be no need

of a committee model itself (since it is only a set replicate of the same predictor), neither for

ensemble learning paradigm in general. Furthermore, when the numerical equivalence condi-

tion holds, the resulting committee is made of many strong predictors where the predictions are

highly correlated. In this context, the ensemble approach will not necessarily lead to a signifi-

cant performance improvement and it would be better to use a single multi-label model [10, 90].

Moreover, the diversity behind the committee construction is acting against creating duplicates

base-classifier and aims to create dependent predictors. The diversity in the committee con-

struction is expected to produce a flat distribution over the labelset predictions where the correct

labelset is taking the largest score, rather than a sharp distribution on (or near 1) the correct la-

belset. And thus, in the multi-class equivalent setting of the multi-label task (the case where PC
strategy operates and also where the equivalence condition is verified), there is no guarantee that

the majority class is predicted more than 50% (absolute majority).

The underlying principle of ensemble paradigm is a recognition that in real-world situations,

every model has limitations and will make errors. Within these "limitations", the purpose of

ensemble learning is to trade-off their strengths and weaknesses, heading to the best possible

overall predictions being taken [91]. Thus the combination should be conducted in order to

enhance the prediction performance. Several theoretical and empirical works have demonstrated

that ensemble model can significantly overtake single model in terms of the overall prediction

accuracy [10, 11, 91].

In a frequentist perspective, this is motivated considering the trade-off between bias and variance,

which decomposes the model error into two components.

Namely the bias component and variance component, where the bias component results from

the difference between the estimated model and the actual one and the variance component ex-

presses the model sensitivity regarding the individual data points. Indeed, when training multiple

models, and then averaging the resulting predictions, the contribution arising from the variance
component tended to cancel, leading to improved predictions. As the LC strategy considers each

label separately, the probabilistic dependency structure of the labels (given the inputs) is ignored

in the combination step.

However, this may help the committee to avoid considering pointless variability due to the data

noise and thus achieve more accurate prediction for each label. On the other hand, by considering

the predicted labels as an indivisible information, the PC strategy preserves the labels’ structure

predicted by each base-classifier. Thus, it allows the committee to consider the inherent varia-

tions within the labelsets predicted by the base-models and draws near the optimal labelset. The

difference between the two combinations strategies is blatant when there are multiple modes or

1near in terms of similarity between the associated labels: almost the same subset of associated labels.
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multiple optimums. In the following, we throw light on the theoretical evidence supporting our

distinction between the two combination strategies.

5.2.2 Toward theoretical insights into multi-label combination

The final decision of a multi-label ensemble classifier 𝐻 = {ℎ1,⋯ , ℎ𝑇 } when using the LC
strategy is obtained by the popular majority voting of the outputs received by each label sepa-

rately from each ensemble member. Depending on the nature of the outputs from each ensemble

member, this combination is formulated as follows:

• If the committee members output crisp labels ℎ𝑖
𝑡
(x) ∈ {0; 1} with 1 ≤ 𝑖 ≤ 𝑞 :

H(x) = (𝐻1(x),⋯ ,𝐻𝑞(x)) ∶ 𝐻𝑖(x) = argmax
𝑦𝑖∈{0,1}

𝑇∑
𝑡=1

𝐼(ℎ𝑖
𝑡
(x) = 𝑦𝑖)

• If the committee members output label probability scores 𝑠𝑖
𝑡
(x) ∈ [0; 1] with 1 ≤ 𝑖 ≤ 𝑞:

H(x) = (𝐻1(x),⋯ ,𝐻𝑞(x)) ∶ 𝐻𝑖(x) = argmax
𝑦𝑖∈{0,1}

𝑇∑
𝑡=1

𝑠𝑖
𝑡
(x)

As a result, it follows that LC strategy is well suited for every loss metric whose risk-minimizer

can be expressed marginally. Moreover, the risk-minimized by the LC rule is exactly the Ham-
ming loss risk-minimizer, when the LC decision rule combines the base-classifiers’ estimated

probability distributions 𝑠𝑖(x). Indeed, the Hamming loss risk-minimizer is formulated in [18]

as:

h∗(x) = (ℎ∗1(x),⋯ , ℎ∗𝑞(x))

where

h∗𝑖(x) = argmax
y𝑖∈{0,1}

𝑝(𝑦𝑖|x)
More generally, when the LC decision rule combines base-classifiers outputs and the loss metric

optimized by the base-models is label-wise decomposable. Thus, the committee and the base-

models optimize the same loss metric (i.e. 𝐿𝐻-𝐿𝐶 = 𝐿ℎ).

Certainly, assuming that each base-model h outputs the optimal prediction over the metric 𝐿ℎ,

if 𝐿ℎ is label-wise decomposable, it follows that h𝑖(x) is optimal for 𝐿ℎ over each label 𝜆𝑖 ∶
1 ≤ 𝑖 ≤ 𝑞. Indeed, since that the LC decision rule selects the most frequent prediction within

the committee’s predictions separately for each label 𝜆𝑖, the committee prediction (𝐻𝑙𝑖(x) =
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argmax
𝑦𝑖∈{0,1}

∑𝑇

𝑡=1 𝐼(ℎ
𝑖
𝑡
(x) = 𝑦𝑖)), also gives the optimal prediction for 𝐿ℎ across each label 𝜆𝑖. Thus,

via the label decomposition of the 𝐿ℎ, 𝐻𝑙(x) is also optimal for the 𝐿ℎ.

Thereby, the LC decision rule cannot be adequate for instance-wise loss metrics like the Subset
0/1 loss, the Instance-F1 loss or the Jaccard loss.

To decide about the ensemble output estimated on a PC strategy, the majority vote considers

jointly the predicted labelset. The ensemble output is the labelset predicted by the largest number

of base-models or the labelset with largest average score. Hence, the PC step and the majority

vote step of a committee are written as follows:

H(x) = (𝑚𝑜𝑑𝑒{h1(x),⋯ , ℎ7(x)})

We define the Powerset-wise Combination decision rule of an ensemble of classifiers 𝐻 =
{ℎ1,⋯ , ℎ𝑇 } as follows :

• If the base-models provide crisp labels h𝑡(x) ∈  :

Hl(x) = argmax
y∈

𝑇∑
𝑡=1

𝐼(h𝑡(x) = y)

• If the base-models provide labelsets probability scores 𝑠
y
𝑡
(x) ∈ [0; 1] with y ∈  :

Hs(x) = argmax
y∈

𝑇∑
𝑡=1

𝑠
y
𝑡
(x)

It follows that PC is most suitable for the class of multi-label loss functions that require the joint

label prediction y or the estimation of the joint conditional probability distribution in the case of

the soft combination 𝑝(y|x).
Furthermore, the risk-minimized by a committee of base-models estimating the 𝑝(y|x) combined

via the PC decision rule is exactly the Subset 0/1 loss risk-minimizer [18] which is :

h∗(x) = argmax
y∈

𝑇∑
𝑡=1

𝑝(y|x)
When aggregating crisp labels, the majority decision rule coupled with the PC strategy is an

estimation of the optimal prediction regardless of the type of loss metric optimized by the base-

models. Indeed, assuming that each base-classifier outputs h(x) is optimal for 𝐿ℎ, the most

frequent labelset, within all the base-models predictions, selected by the PC decision rule is

necessarily optimal for 𝐿ℎ.
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5.2.3 Loss function consistency in ensemble multi-label models

In previous sections, a link between the combination strategy and multi-label loss metrics is

established and we showed that the combination strategy is firmly connected to the function op-

timized by the ensemble model. As a meta-algorithm, ensemble models can be built on top of any

multi-label learner themselves optimizing a particular loss function [18]. However, one cannot

build an ensemble multi-label model using a multi-label base learner optimal for a specific metric

and then thoughtlessly combine the committee outputs (or vice versa). For instance, building a

committee of base-classifiers that learn each label separately, then combining the base-classifier

predictions using the PC strategy to be optimal for an instance-wise metric. In fact, such ensem-

ble construction will lead to output labelsets that are inadequate or impossible for the task and in

any case optimal for a well-defined loss metric such as the Subset 0/1 loss. Thus, it is important to

build an ensemble model where the combination step is in line with the loss function optimized

by the base-learners (and vice versa). Therefore, it is better to set first the objective function

to optimize by the ensemble model then, determine the adequate base-learner and the compat-

ible combination strategy jointly. In other words, to be optimal for label-wise decomposable

measure (respectively for instance-wise decomposable measure) it is more appropriate to com-

bine base-classifier that optimize label-wise decomposable (respectively instance-wise decom-

posable) multi-label performance measures using LC strategy (respectively using PC strategy).

Recall that instance-wise decomposable measure are not label-wise decomposable measure.

However, the PC strategy has never been recommended in the literature despite proposing ensem-

ble models considering the links between the labels such as in ECC [17], ELP [16] and RFPCT

[32].

Besides, in some situation one can be only reluctant for the actual loss optimized by some base-

classifiers such as in (RFPCT and VPCME). Furthermore, in some other contexts the objective

loss function may not have a known optimal multi-label model (such as in the case of the Jaccard
loss [18]). In such case, it is essential to give a brand-new meaning to the loss optimized by this

ensemble multi-label whatever the base-classifier is. The straightforward option in this case is

to use the threshold calibration.

On the other hand, as ensemble models use the bagging strategy to generate their committee, it

is promising to take advantage from the ensemble construction step to build a parallel out-of-bag

calibration data set. Thus, we propose to use our out-of-bag Forward Multi-label Thresholds
Calibration algorithm presented in Chapter 4.

The proposed optimization algorithm is valid for all ensemble models based on the bagging strat-

egy. To the best of our knowledge, this is the first attempt to propose an algorithm for selecting a

distinct threshold per label by optimizing any multi-label performance measure of interest for en-

semble multi-label models. All the more, since the threshold calibration is independent from the
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base-classifier generation, it will allow the same committee to be used -alongside with different

thresholds- to achieve appropriate prediction across different metrics.

In the next Section, we will analyze the behaviour of ensemble multi-label model with respect

to the two combination strategies. We will also highlight the benefit of our proposed out-of-bag

threshold calibration and how it can be used to tweak ensemble multi-label predictions across

different metrics.

5.3 Experimental evidence

To substantiate the theoretical results by means of empirical evidence, this Section presents an

experimental analysis of numerous ensemble models coupled with both LC and PC strategies

over a wide range of multi-label data sets. We first describe the experimental design, then we

describe the data sets used in this study. Next, we state the parameter settings for all compared

ensemble multi-label algorithms. Finally, we present and discuss the experimental results.

5.3.1 Experimental design

Our aim in this empirical analysis is not to conduct a comprehensive comparison of the existing

multi-label ensemble methods in the literature, but to understand the influence of the combination

strategy over the ensemble multi-label performances. We hope to provide useful insights into

the link between the combination strategy within the ensemble approach and the optimized loss

function.

Thus, we first evaluate the performance of each combination strategy in each ensemble approach

over different multi-label loss metrics. In a second time, the best performing combination strat-

egy for each ensemble approach on each metric are selected and compared together.

This study explores these questions for six ensemble multi-label methods including both "prob-
lem transformation" and "algorithm adaptation" ones. The set of compared models consists of

Ensemble of Binary Relevance model (EBR) [3, 17], Ensemble of Label Powerset model (ELP),

[16, 27], Ensemble of Classifier Chains model (ECC) [17], Random Forest Predictive Clustering
Tree (RFPCT) [32], RAndom k-labELsets (RAkEL) [15], Variable Pairwise Constraint projection
for Multi-label Ensemble (VPCME) [77] and our proposed Calibrated k-labelsets Multi-Label
Classifier CkMLC presented in Chapter 4.

The compared approaches come in four variants. The first variant corresponds to the Label Com-
bination strategy and is suffixed with ’−𝐿𝐶’ while the second variant corresponds to Powerset
Combination strategy and is suffixed with ’−𝑃𝐶’. As aforementioned, these variants correspond
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to the majority voting strategy: −𝐿𝐶 for label majority vote and −𝑃𝐶 for labelset majority

vote. The other two variants are a specific to Label Combination strategy and correspond to the

two threshold calibration variants (Single-threshold and Multi-threshold). Variants with Single-

threshold strategy (respectively with Multi-threshold) are denoted with the subscripts ’−𝐿𝐶𝑆−𝑇 ’

(respectively with ’−𝐿𝐶𝑀−𝑇 ’). These two former variants are examined in order to shed some

further light on the differences observed when threshold calibration is performed for optimizing

a multi-label indicator. In the Multi-threshold strategy, a finely-tuned threshold is associated to

each label based on our Forward Multi-label Thresholds Calibration algorithm instead of using

a single tuned threshold for all the labels in the Single-threshold strategy. On the other hand, it is

noteworthy that RAkEL and CkMLC base-classifiers cannot be aggregated using the PC strategy

since their base-classifiers do not predict all labels (see Section 3.3.2).

To assess the effectiveness of the different combination strategies and performances of the an-

alyzed methods, we conducted the experiments on 20 benchmark data sets from the Mulan’s
repository [87]. The selected data sets were broadly used in various studies on multi-label learn-

ing and cover different application domains: biology, semantic scene analysis, music emotions

and text categorization. Table 5.1 summarizes the main statistics of these data sets: the number

of features M, the number of labels q; the Label Cardinality Card= 1
𝑁

∑𝑁

𝑖=1 |𝑌𝑖|, which is the

average number of labels associated with each example; the Label Density LD= 1
𝑁

∑𝑁

𝑖=1
|𝑌𝑖|
𝑞

,

which is the normalized Card.

On the other hand, algorithm’s performances were analyzed according to six commonly used

multi-label performance measures including Subset 0/1 loss, Jaccard loss, Instance-F1 loss,

Micro-F1 loss, Macro-F1 loss and Hamming loss. The selection of these measures was made to-

ward analyzing the performances of all compared approaches on both label-wise decomposable

(Hamming loss, Macro-F1 loss) and instance-wise decomposable (Subset 0/1 loss, Jaccard loss,

Instance-F1 loss) metrics (See Section 2.3).

5.3.2 Experimental setup

To make fair analysis, the same ensemble size 𝑇 = 100 was adopted for all the compared meth-

ods, except for RAkEL and CkMLC where the committee size depends on the label space cardinal-

ity || [15]. Thus, the ensemble size for RAkEL was set to 𝑇 = 𝑚𝑖𝑛(2𝑞, 100) [15] 𝑘 was set to 3.

For the CkMLC approach, the number of labels per bag 𝑘 was set to 3 as for RAkEL and the com-

mittee size 𝑚 was computed using the following formula: 𝑇 = 10 × 𝑐𝑒𝑖𝑙(log(𝛼)∕ log(1 − 1∕𝑘)).
The diversity within the committee of 100 base-classifiers is generated using the bagging strategy

[10]. The classregtree Matlab implementation of decision tree was used as the base learner for

EBR, ECC, ELP, RAkEL and CkMLC. Besides, as suggested by authors in [77], the instance-

based learning method MLkNN with 𝑘 = 10 [5] was used for VPCME due to its excellent
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TABLE 5.1: Description of the multi-label data sets used in the experiments.

Data Domain N M q Card LD
Arts Yahoo-Text 5000 462 26 1.636 0.063

Birds Audio 645 260 19 1.014 0.053

Business Yahoo-Text 5000 438 30 1.588 0.053

Computers Yahoo-Text 5000 681 33 1.508 0.046

Education Yahoo-Text 5000 550 33 1.460 0.044

Emotions Music 593 72 6 1.869 0.311

Enron Text 1702 1001 53 3.378 0.064

Entertainment Yahoo-Text 5000 640 21 1.420 0.068

Flags Image 194 19 7 3.392 0.485

Health Yahoo-Text 5000 612 32 1.662 0.052

Image Image 2000 249 5 1.236 0.247

Medical Text 978 1449 45 1.245 0.028

Recreation Yahoo-Text 5000 606 22 1.423 0.065

Reference Yahoo-Text 5000 793 33 1.169 0.035

Scene Image 2407 294 6 1.074 0.179

Science Yahoo-Text 5000 743 40 1.540 0.036

Slashdot Text 3782 1079 22 1.180 0.041

Social Yahoo-Text 5000 1047 39 1.283 0.033

Society Yahoo-Text 5000 636 27 1.692 0.063

Yeast Biology 2417 103 14 4.237 0.303

predictive performance. Besides, its variable pairwise constraint threshold was set to 0.6 as

recommended in [77]. Furthermore, we investigate the behavior of all ensemble models within

crisp label aggregation since that some models can not predict the probability distribution over

all possible labelsets 𝑠y(x).

Notice that the soft combination is generally used only for a homogeneous committee. For the

heterogeneous committee, the probabilities generated by the different types of base-classifiers

cannot be aggregated without a careful calibration. In such situations, the predicted probabilities

are often converted to crisp labels, and then a crisp label combination strategy is applied [86].

For both Single-threshold and Multi-threshold strategies, different threshold values ranging from

0.1 to 0.9 in 0.1 steps were considered in the calibration step as in [17]. For both strategies, out-

of-bag instances are used as an unbiased validation set and Algorithm 3 is performed for the

Multi-threshold strategy. As aforementioned before, RAkEL and CkMLC base-classifiers cannot

be aggregated using the PC strategy. For these two models, only three variants are reported the

’−𝐿𝐶’ variant, the ’−𝐿𝐶𝑆−𝑇 ’ variant and the ’𝑀−𝑇 ’ variant.
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Moreover, we estimate predictive performances by using 2-fold cross-validation [88]. To get

reliable statistics over the performance metrics, experiments were repeated 25 times. So, the

results obtained were averaged over 50 iterations. Finally, we wrap up the experiments using

statistical tests to evaluate significant differences among methods.

5.3.3 Results and discussion

Detailed average performances of each ensemble version for all 20 data sets using the protocol

described above are reported in Tables A.1-A.6 in the Appendix. Each table depicts the models

performances in terms of each considered multi-label loss metric. Models performances are

tabulated in terms of averaged values as well as standard deviations for each ensemble variant

and over each data set.

To help summarize the results, we conduct statistical analysis to better assess the results obtained

for the different variants of each ensemble algorithm on each metric. Thus, we adopt in this

study the methodology proposed by [89] for the comparison of several algorithms over multiple

data sets. In this methodology, the non-parametric Friedman test is firstly used to evaluate the

rejection of the hypothesis that all the classifiers perform equally well for a given risk level (i.e. in

our case all the ensemble version are equally well for a given risk level). It ranks the algorithms

for each data set separately, the best performing algorithm getting the rank of 1, the second

best rank 2 etc. In case of ties it assigns average ranks. Then, the Friedman test compares the

average ranks of the algorithms and calculates the Friedman statistic. If a statistically significant

difference in the performance is detected, we proceed with a post-hoc test. The Nemenyi test is

used to compare all the methods to each other. In this procedure, the performance of two methods

is significantly different if their average ranks differ more than some critical distance (CD). The

critical distance depends on the number of algorithms, the number of data sets and the critical

value (for a given significance level 𝑝) that is based on the Studentized range statistic (see [89]

for further details).

In this study, the Friedman test reveals statistically significant differences (𝑝 < 0.05) between the

ensemble version and over for all the performance measures. One case do the exception (EBR

over the Subset 0/1 loss) we will highlight it when discussing its specific results. Furthermore,

we present the result from the Nemenyi post-hoc test with average rank diagrams as suggested by

Demsar [89]. These are given on Figures 5.1 - 5.7. The ranks are depicted on the axis, in such a

manner that the best ranking algorithms are at the rightmost side of the diagram. The algorithms

that do not differ significantly (at 𝑝 = 0.05) are connected with a line. The critical difference CD

is shown above the graph.

As may be observed in Figures 5.1- 5.7 and Tables A.1-A.6, the LC strategy is significantly

better than the PC one over label-wise metrics (Hamming loss and Macro-F1 loss). On the other
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hand, the PC strategy is significantly better than the LC one over instance-wise metrics (Subset
0/1 loss, Jaccard loss and Instance-F1 loss). This advantage is more pronounced when the label

correlation is considered in the training process (in the case of ELP and ECC).

As far as the ELP model is concerned, results in Figure 5.2 and Tables A.1-A.6, corroborate our

previous finding, namely that the PC strategy is well-tailored for Subset 0/1 loss minimization in

ELP. Obviously, the loss function minimized by both ELP’s base-classifier (LP here) and the PC
strategy is the Subset 0/1 loss. This confirms that preserving the coherence of the optimized loss

function throughout the ensemble model construction (base classifier generation + combination)

may yield a high improvement in performance. The same observation also holds for ECC-𝑃𝐶

results on the Subset 0/1 loss, since that the loss function minimized by the ECC’s base-learner

(CC) is the Subset 0/1 loss [18]. More generally, results assert that the PC strategy preserve

the quality of the predicted labelsets by the base-classifiers, and thus the PC strategy is generally

suitable for models that aim to learn a join label distribution directly such as ELP or via heuristics

such as ECC or RFPCT.

Besides, the PC strategy, as expected, is arguably inefficient when coupled with a multi-label

base-classifier that ignores the inter-dependencies between the labels in the training process as

in the EBR where variants performances are not distinguishable. Indeed, PC seems to be the

worst performing methods for EBR on all metrics, except for Subset 0/1 loss, for which no clear

conclusion emerged when one examines their values in Table A.1 and A.2.

On the other side, the LC strategy slightly improves the results of models considering the links

between the label (completely such as in ELP or in an approximate way such as in ECC and RF-

PCT) compared to the PC strategy on label-wise loss metrics. An effect that could be attributed

to the ability of LC to correct the prediction made for each label based on the agreement of the

base-classifier on each individual label. Moreover, LC strategy achieves the best performing

performances with the EBR over the Hamming loss since that loss function remains consistent

within the ensemble model.

Another interesting observation when looking at the average rank diagrams is that calibrated

variants (-𝐿𝐶𝑆−𝑇 and -𝐿𝐶𝑀−𝑇 ) are dominating all the models whatever the analyzed metrics,

meaning that the threshold calibration is beneficial for the multi-label models. We found cali-

bration to be remarkably effective at improving the performance of all the models over all the

metrics compared to the majority-voting based approaches. The models performances are sig-

nificantly improved when the loss function optimized by the base-classifiers is different from the

metric of interest such as in VPCME.

Moreover, the -𝐿𝐶𝑀−𝑇 strategy used to calibrate a separate threshold per label seems to perform

better than calibrating one single threshold for all labels (i.e -𝐿𝐶𝑆−𝑇 ). In general, the 𝐿𝐶𝑀−𝑇
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variant exhibits the highest performances in terms of all metrics and seems to be the more suit-

able strategy for models that ignores the labels correlations such as EBR. We also note that the

calibrated variants achieve equivalent performance to those obtained with optimal variants. In-

deed, we observe that the performances of EBR-𝐿𝐶𝑀−𝑇 and EBR-𝐿𝐶 are not distinguishable

over the Hamming loss as well as the performances of ELP-𝐿𝐶𝑀−𝑇 and ELP-𝑃𝐶 over the Subset
0/1 loss which makes the use of calibrated variants valid for all metrics.

Over k-labelsets ensemble models (i.e RAkEL and CkMLC), the best performing variant is the

calibrated variant over all metrics. This rolls out that their performances are generally boosted

when the thresholds are calibrated and illustrates the effectiveness of the calibration step for the

model proposed in Chapter 4.

To briefly summarize the obtained results, we draw conclusions from the following observations:

• The overall ensemble multi-label performances are closely linked to the combination step

and an inappropriate use combination of the base-classifier predictions may damage the

ensemble predictive performances.

• The PC strategy is well designed for the instance-wise metrics especially when the base-

classifier considers the correlation between labels.

• The LC strategy is more appropriate for label-wise metrics by locally correcting the en-

semble output for each label.

• Multi-Threshold calibration over out-of-bag samples performs well across all multi-label

ensemble models and metrics. Given its simplicity and its computational cost, it could

be considered as a very simple and practical approach to calibrate the decision threshold

toward the objective loss metric.
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FIGURE 5.1: The critical diagrams for the EBR variants across the six multi-label bi-partition-

based metrics: the results from the Nemenyi post-hoc test at 0.05 significance level on the data

sets: (a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ; (e) Macro-
F1 loss ; (f) Hamming loss.
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FIGURE 5.2: The critical diagrams for the ELP variants across the six multi-label bi-partition-

based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on the data sets:

(a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ; (e) Macro-F1
loss ; (f) Hamming loss.
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FIGURE 5.3: The critical diagrams for the ECC variants across the six multi-label bi-partition-

based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on the data sets:

(a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ; (e) Macro-F1
loss ; (f) Hamming loss.
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FIGURE 5.4: The critical diagrams for the RFPCT variants across the six multi-label bi-

partition-based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on

the data sets: (a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ;

(e) Macro-F1 loss ; (f) Hamming loss.
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FIGURE 5.5: The critical diagrams for the RAkEL variants across the six multi-label bi-partition-

based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on the data sets:

(a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ; (e) Macro-F1
loss ; (f) Hamming loss.
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FIGURE 5.6: The critical diagrams for the CkMLC variants across the six multi-label bi-

partition-based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on

the data sets: (a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ;

(e) Macro-F1 loss ; (f) Hamming loss.
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FIGURE 5.7: The critical diagrams for the VPCME variants across the six multi-label bi-

partition-based metrics: results from the Nemenyi post-hoc test at 0.05 significance level on

the data sets: (a) Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ;

(e) Macro-F1 loss ; (f) Hamming loss.
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In order to give an overview of the six analyzed models after the combination analysis, we select

the best ranked variant of each ensemble model and compare their performances over different

metrics using the same the methodology introduced above (Friedman test in tandem with the

Nemenyi post-hoc test). It is worth noting that the Multi-threshold variant (i.e. −𝐿𝐶𝑀−𝑇 ), that

use our Forward Multi-label Thresholds Calibration algorithm is the most represented among

the best ranked approaches. This validates again the motivation behind our threshold calibration

strategy to greatly help ensemble multi-label models to reduce bi-partition-based loss metrics.

In this analysis, the Friedman test reveals statistically significant differences (at 𝑝 = 0.05) be-

tween the ensemble approaches across all the metrics. The Nemenyi post-hoc tests with the

average rank diagrams are presented on Figure 5.8. The algorithms that do not differ signifi-

cantly (at 𝑝 = 0.05) are connected with a line. The critical difference CD is shown above the

graph (CD=1.9653 here).

As may be observed in Figure 5.8 the ranks of the models differ w.r.t. each metric. However,

the ELP and the ECC approaches are generally within the best ranked approaches across all the

metrics.
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Besides, the RFPCT is located within the best ranked models over the Subset 0/1 loss, the Jaccard
loss, the Instance-F1 loss and the Micro-F1 loss. By cons, the RFPCT approach is away from

the leading group over the label-wise metrics (over the Macro-F1 loss and Hamming loss). We

also note that the VPCME is all usually located in the left side of the diagram within the worst

performing group of approaches.

FIGURE 5.8: Average ranks diagrams comparing the six ensemble approaches in terms of (a)

Subset 0/1 loss ; (b) Jaccard loss ; (c) Instance-F1 loss ; (d) Micro-F1 loss ; (e) Macro-F1 loss
; (f) Hamming loss
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(b) Jaccard loss
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(c) Instance-F1 loss
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(d) Micro-F1 loss
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(e) Macro-F1 loss
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5.4 Chapter summary

In this Chapter, we addressed the combination strategies in ensemble multi-label models. We

proposed, discussed and analyzed two possible combination schemes: i) The Label-wise Com-
bination strategy and ii) the Powerset-wise Combination strategy. Then, we investigate the link

between the combination strategy and the loss function optimized by the ensemble multi-label

model.



Towards effective aggregation in ensemble multi-label learning 84

Moreover, we discussed the different properties of the proposed strategies and analyzed their

behaviour on different ensemble models over different loss metrics. We argued that the combi-

nation step should be considered in conjunction with the loss metric on which the predictions

will be evaluated as it influences the prediction quality. We corroborated our findings with an

extensive empirical analysis over a wide range of multi-label data sets.

Based on our findings, we drew three main conclusions: i) For instance-wise performance met-

rics, it is more appropriate to consider the base-model prediction as an indivisible information

by adopting the Powerset-wise Combination strategy. ii) The Label-wise Combination strategy

is more appropriate for label-wise metrics by locally correcting the ensemble output for each la-

bel. iii) Multi-Threshold calibration over out-of-bag samples perform well across all multi-label

ensemble models for both label-wise and instance-wise metrics.

We believe that these results have some important implications from a methodological and practi-

cal point of view. Perhaps one can build an ensemble committee and change the combination step

to reach the best-prediction w.r.t. different loss functions, using the adequate combination strat-

egy for each metric. Furthermore, given its simplicity and its computational cost, our proposed

threshold calibration over out-of-bag samples could be considered as a very practical approach

to calibrate the decision threshold to handle efficiently more complex multi-label metrics with

an unclear multi-label model from a loss-minimization point of view.



Chapter 6

Feature Selection in Multi-label
learning

Similarly to other machine learning tasks, multi-label learning also experiences the curse of

dimensionality, which may cause problems when learning from high-dimensional data. Thus,

the identification of relevant subsets of random variables -among thousands of potentially ir-

relevant and redundant variables- is a very important issue to overcome. Multi-label feature

selection is an emerging research topic as considerable real-world applications are dealing with

high-dimensional data such as text categorization, gene function classification, and semantic an-

notation of images [92–94]

Unlike single-label feature selection -where the aim is to strike on the most discriminant features

for the target label-, in the multi-label context, the feature selection task is more complicated as

there is more than one target label. The standard approach for multi-label Feature Selection is

to address the task by extending the techniques available for single-label classification via the

bridge provided by multi-label transformations.

The multi-label feature selection task becomes more difficult when the amount of labeled data

is very limited, in the sense that it is time-consuming or costly to obtain. In such situation,

it becomes difficult to build an accurate classification model and more challenging to identify

redundant and irrelevant variables from the feature set. In this regard, Semi-supervised multi-

label feature selection addresses this problem by using unlabeled data together with labeled data

in the feature selection process.

This Chapter focuses on feature selection in supervised and semi-supervised multi-label learning.

It will be devoted to present the fundamental concept of feature selection and summarizes the

state-of-the-art of proposed feature selection approaches in the supervised and semi-supervised

85
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multi-label contexts. The goal of the Chapter is to provide the necessary background to under-

stand the approaches presented in the following Chapters.

6.1 Features selection : Basic Concepts

As an effective data preprocessing step, feature selection is a vital process to prepare high-

dimensional data for numerous data mining and machine learning tasks. Feature selection en-

ables the identification of important features in the data sets. The main goal of the process is to

find a subset of features with predictive performance comparable to the full set of features accord-

ing to an evaluation criterion [95]. The objective is to enable the classification model to achieve

good or even better solutions with a restricted subset of features [96]. Thus, providing support

to cope with the "curse of dimensionality" problem when learning from high-dimensional data.

The feature selection problem is also known as "subset selection" and has been studied by the

statistics and machine learning communities for many years. It can efficiently reduce data di-

mensionality by removing irrelevant and/or redundant features.

Feature selection algorithms use information from labeled data to find the relevant subsets of

variables, i.e., those that conjunctively prove useful to construct an efficient classifier from data.

By removing irrelevant and/or redundant features, the feature selection process aims to speed

up the learning algorithms, better understanding of the underlying process that generates the

data, and increase the learning accuracy [96]. Indeed, since the goal -in the supervised setting-

is to approximate the underlying function between the input and the output, it is reasonable

and inherent to ignore input features with light effect on the output target, to preserve the size

of the model small. Various studies show that variables can be removed without performance

deterioration [97–100].

From a performance perspective, the aim of the feature selection is to enable the classification

model to achieve good or even better solutions with a restricted subset of features [96]. In prac-

tice, irrelevant features involved in the learning process may induce significant computational

cost and may also lead to over-fitting.

In supervised learning, feature selection approaches are based on a specific feature importance

metric to evaluate the feature relevance. Several feature importance measures have been proposed

in the literature, such as the Chi-square, ReliefF, Gini Index, Information Gain, Random Forest

feature importance [11], to name a few. The feature relevance is evaluated in two main ways:

Individual evaluation and subset evaluation. On the one hand, individual evaluation evaluates

individual features and assigns them weights (ranks) according to their relevance to the target

variable. Thus, the approach is computationally less expensive. Nevertheless, the individual
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feature evaluation is inadequate to detect redundant features as they are likely to have similar

rankings.

On the other hand, the subset evaluation approach is the brute-force feature selection approach.

It can handle both, feature relevance and feature redundancy. Unlike individual evaluation, it

exhaustively evaluates all possible combinations of the input variables and then determines the

best subset. Obviously, the cost of the exhaustive search approach is prohibitively high, with the

considerable risk of over-fitting.

Depending on the interaction with the learning algorithm, features selection methods, are clas-

sified in three categories: a) Wrapper methods, b) Embedded methods or c) Filter methods.

In wrapper methods, the learning algorithm output is used to evaluate the importance of features.

Each subset of features is evaluated using a measure criterion until finding the best feature set.

Wrapper methods have a significant computational cost since they need to evaluate the algo-

rithm’s prediction quality for each feature set considered.

As wrapper methods, embedded methods, are related to a learning method. In embedded meth-

ods, the relation between the learner and the feature evaluation step is more important than in

wrapper method. For the reason that the feature selection process is incorporated in the algo-

rithm’s training process, such as decision trees, to decide in each node the feature that has the

best ability to discriminate among the target classes.

In filter methods, the feature selection process is conducted independently from the learning al-

gorithm. In those methods, general characteristics of data are used to select the most relevant

features. Thus, they have the advantage of being fast and simple to implement. However, un-

like the wrapper methods, filters methods may not choose the most suitable features for specific

learning algorithms.

Feature selection algorithms based on the embedded and filter approaches may return either a

subset of selected features or the weights (measuring feature importance) of all features.

Besides, is also worth mentioning that parallel works on dimension reduction concentrate on

feature extraction techniques. Unlike, feature selection techniques -that measure the relevance of

individual features (or subsets of features)-, these methods aims to transform the original feature

space into a lower dimensional space by proposing new features extracted from the original ones.

The new features are built either by using unsupervised or supervised methods such as Principal
Component Analysis, Linear Discriminant Analysis, Kernel Discriminant Analysis, to name but

a few.
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6.2 Supervised multi-label feature selection

Feature selection has been an active research topic in supervised, semi-supervised and unsuper-

vised machine learning, with a large number of related publications and comprehensive surveys

[99, 101, 102]. However, most of the works related to supervised feature selection have been

mainly to support single-label classification, and less amount of research on multi-label clas-

sification have been conducted. This was confirmed by a systematic review process related to

multi-label feature selection we carried out in [103].

In multi-label learning, most feature selection tasks have been addressed by extending the tech-

niques available for single-label classification using either the bridge provided by multi-label

transformations or adaptation approaches. Most of methods are inspired by the transformation

approaches, and propose a previous transformation of multi-label data to single-label data, i.e.,
to binary data or multi-class data using either the Binary Relevance or Label Powerset approach.

When the BR strategy is used, it is straightforward to employ a filter approach on each binary

classification task, and then combining somehow the results (by averaging for example) [103].

In this context, different feature importance measures have been used, such as Information Gain

[97, 104–106], Chi-square [100] and ReliefF [104]. Since each label is treated independently,

these methods fail to consider the correlation among different labels. On the other hand, in [107]

authors propose the use of ReliefF, which takes into account feature interaction. However, theses

methods may not be able to select discriminative features shared by multiple labels.

Methods which perform feature selection considering label correlation are based instead over the

Label Powerset transformation approach. The Chi-square measure is applied after a Label Pow-

erset transformation in [100]. In [108] an evaluation measure which concerns the ranking quality

between output labels is used. The Mutual Information measure is applied in [109] according

to a Pruned Powerset Transformation (PPT) [16], which also considers the abel dependence in

the feature selection process. The proposed approach termed PPT-MI uses the Pruned Problem

Transformation to avoid the Label Powerset transformation drawbacks, then applies a sequential

forward selection with the Mutual Information as a search criterion. The Symmetrical Uncer-

tainty measure is extended in [110] to find relationships between all pairs of features and labels.

However, these methods fail in two extreme cases where (1) the feature selection model may

completely ignore any links or correlation within the labels by considering each label separately

[104], or on the contrary, (2) it considers each label combination as a meta-class, in an LP style

feature selection model [104, 109].

As a first attempt for a multi-label feature selection model that takes into account the label inter-

actions without resorting to problem transformation, Lee and Kim proposed the PMU approach

[111]. PMU is a filter multivariate mutual information feature selection that naturally derives
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from mutual information between a set of features and a set of labels. It evaluates the feature

importance by considering jointly correlation between labels and variables.

In [108, 112], the wrapper approach is directly addressed in multi-label data using evaluation

measures and a meta-heuristic to search for the best feature subset, while embedded feature se-

lection based on decision tree classifiers are suggested in [6, 113].

In contrast to these previous filter approaches, Gu el al. propose an embedded-style feature selec-

tion method for multi-label learning called CMLFS [114]. CMLFS (for Correlated Multi-Label

Feature Selection) is based on LaRank SVM, which is among state-of-the-art multi-label learn-

ing methods. In the proposed method, the goal is to find a subset of features, based on which

the label correlation regularized loss of label ranking is minimized. Although this method con-

siders correlation among labels, it optimizes a set of parameters during feature selection process

to tune the kernel function of multi-label classifier making it impractical in the viewpoint of

computational cost [111].

6.3 Semi-Supervised multi-label feature selection

In many real-world applications, the amount of labeled data is very limited, in the sense that

it is time-consuming or extremely expensive to obtain. In such situation, there are mainly two

challenges. First, in the presence of few amount of labeled data, it becomes difficult to build an

accurate multi-label model. And even more to conduct feature selection, since that traditional

feature selection algorithm use information from labeled data to find the relevant subsets of vari-

ables. Meanwhile a large amount of unlabeled data may be relatively easy to collect, but there

has been few ways to use them. Semi-supervised multi-label learning addresses this problem

by using unlabeled data together with multi-labeled data in the training process, to enhance the

performance of the learned classifiers. On the other hand, the labels in multi-labeled data are

typically interdependent and correlated, which poses more difficulties to identify or remove re-

dundant and irrelevant variables from the feature set, especially in high-dimensional data. To

overcome this problem, feature selection methods need to explicitly model the label interactions

in evaluating the quality of features, which is crucial for better performance.

In the following we will review the semi-supervised multi-label classification and semi-supervised

multi-label feature selection approaches that appeared in the literature.



Feature Selection in Multi-label learning 90

6.3.1 Semi-supervised multi-label classification

Semi-supervised multi-label approaches are proposed to deal simultaneously with few labeled

instances and a large amount of unlabeled instances while getting benefit from the information

provided by unlabelled data.

In such learning configuration, the key assumption is that two examples will be assigned to sim-

ilar labels if they overlap in their input space. In [115], Liu et. al. formulate the semi-supervised

multi-label task as a Constrained Non-negative Matrix Factorization problem, where the objec-

tive is to minimize the difference between the instance similarity matrix of the feature space and

the similarity matrix of the label space to determine the labels of unlabeled data.

Besides, Chen et. al. [116] propose a semi-supervised approach based on two graphs of similar-

ities. The first corresponds to the instance level, with nodes and edges representing respectively

instances and pairwise similarities between instances meanwhile, the second graph corresponds

to the label level. The idea is to combine the regularization terms for the two graphs (i.e. instance

graph and label graph) in a regularization framework where the labels of unlabeled instances were

obtained by solving a Sylvester Equation. In an another graph-base approach, Wong et. al. [117]

present an effective multi-label classification algorithm that simultaneously models the labeling

consistency between similar videos and the multi-label interdependence for each video. The

model is based on a discrete hidden Markov random field approach for transductive multi-label

classification which preserves the multi-label co-positive, co-negative and mutual-exclusive in-

terdependence over the unlabeled and the labeled data points. In [118], Guo and Schuurmans
propose another transductive algorithm which exploits unlabeled data to learn simultaneously

the underlying subspace feature representations of the data with a large margin multi-label clas-

sification model. Zha et al. [119] proposed other graph-based framework which uses one loss

function and two types of regularizers. The first is adopted to handle the label consistency on

the graph while the second is used to tackle the correlations of multiple labels. Based on this

framework, two graph-based algorithms were developed. The idea is to learn the cardinality

of the labeled instance to assign new label sets to unlabeled instances using the estimated label

concept compositions.

Most of the works on semi-supervised multi-label learning are graph-based approaches and differ

only in the way that regularization term affects the labels and the features. These methods work

only in transductive setting and require that all unlabeled instances to be available during training,

since that the learned classifier can only predict the labels of unlabeled data used during training,

and can not generalize to unseen new test instances. Nonetheless, it is worth citing a recent

different approach, named iMLCU for inductive Multi-Label Classification with Unlabeled data

[120], which tackles semi-supervised multi-label learning under the inductive setting by adapting

the semi-supervised support vector machines. The semi-supervised multi-label classification
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task is formulated as an optimization problem of 𝑞 linear models that fits the labeled instances by

exploiting pairwise label correlations and uses the unlabeled instances for regularization. The

resulting optimization problem of empirical loss term on labeled data and regularization term

on unlabeled data, which is non-convex and solved via the ConCave Convex Procedure [121].

However, these proposed methods simply explore the multi-label inter-similarity and impose the

smoothness assumption of the labels over each data point which is not accordant in practice, since

that excludes the mutual–exclusive links within the labels [117]. Moreover, their formulation

leads to complex optimization problems for which the computational cost is very expensive.

More recently, a new approach named Coins, for CO-training for INductive Semi-supervised
multi-label learning is proposed [122]. The approach adapt the co-training strategy in the multi-

label context. In each co-training round, a dichotomy over the input feature space is learned

by maximizing the diversity between the two classifiers. Then, pairwise ranking predictions on

unlabeled data are communicated between either classifier for the model refinement.

6.3.2 Semi-supervised multi-label feature selection algorithms

In the multi-label context, the feature selection task is considered as a more difficult problem as

there is more than one target label. And in a multi-label semi-supervised setting, the task becomes

more challenging. Although considerable attention has been given recently to multi-label feature

selection where different sophisticated approaches have been proposed, little attention has been

given to consider feature selection in the semi-supervised multi-label setting. Existing multi-

label feature selection algorithms are designed for the supervised setting. They need a sufficient

amount of labeled training data and are not able to handle both labeled and unlabeled data.

The key for designing an effective semi-supervised multi-label feature selection algorithm is to

develop a framework, under which the relevance of a feature can be evaluated by both labeled

and unlabeled data in a natural way.

Recently, Chang et al. proposed a convex semi-supervised multi-label feature selection algorithm

for large-scale multimedia analysis, named (CSFS) for Convex Semi-supervised multi-label Fea-
ture Selection [123]. The proposed algorithm makes use of both labeled and unlabeled instances

to select feature while taking into account correlation within the labels. Besides, Alalga et al.
[124] proposed a scoring function for measuring the relevance of each feature called S-CLS for

soft-constrained Laplacian score. The proposed scoring framework is based on the Laplacian

score and reflects the correlation of the feature to the label.

More recently, a semi-supervised multi-label feature selection method leveraging shared infor-

mation among multiple labels is proposed [125]. The method is based on graph matrix formu-

lation of the semi-supervised multi-label task to model the geometric structure of the training
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data over both labeled and unlabeled examples. It uses a 𝑙1-norm based graph matrix is imposed

to capture a clear underlying manifold structure in the multi-label target space. To select the

representative features, the model considers the shared subspace learning approach and uses a

𝑙2-norm to select the most representative features. An iterative algorithm is proposed to optimize

the non-smooth objective function, involving the both 𝑙2-norm and 𝑙1-norm. The proposed al-

gorithm has only been applied for three different applications: natural scene classification, web

page annotation, and yeast gene functional classification.

It is also worth mentioning that there are parallel works for dimension reduction in the semi-

supervised learning, which uses semi-supervised multi-label data to achieve efficient dimension-

ality reduction [126]. This category of methods have demonstrated their effectiveness in various

application domains such as image annotation [126], but unfortunately, their detailed description

is beyond the scope of this thesis.

6.4 Chapter summary

Multi-label feature selection is an active area of research today, with more recent proposals. This

Chapter introduced the multi-label feature selection and overviewed the proposed multi-label

feature selection techniques in both supervised anD semi-supervised ways.

The Chapter first gives the basic concept of the feature selection and terminology. It then presents

the proposed works in the supervised multi-label feature selection.

As discussed the transformation approach are the most popular strategy in the proposed multi-

label feature selection methods. This could be explained the advantage given by the transforma-

tion approach to apply existing single-label feature selection method. Further-more this choice is

often coupled with filter approaches which is partly justified by the relative lower computational

cost in comparison with other alternatives. Only a few works adopt a multi-label perspective in

term of metrics to handle the feature selection task.

The Chapter also presented the semi-supervised multi-label learning and overviewed proposed

classification algorithm and feature selection methods.

Most of the works on semi-supervised multi-label learning are graph-based approaches. Gen-

erally, graph-based semi-supervised techniques are utilized to construct an affinity matrix over

the labeled and unlabeled data. Then the classifications of unlabeled data are obtained via label

propagation. Furthermore, these propositions work under the transductive setting, which only

focus on classifying given unlabeled data and thus cannot generalize to unseen instances. Be-

sides, although considerable attention has been given recently to multi-label feature selection
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where different sophisticated approaches have been proposed, little attention has been given to

consider feature selection in the semi-supervised multi-label setting.

Under this overview, we observed that little attention has been given to exploiting the power of

ensemble methods with a view to identify and remove the irrelevant features in a multi-label

setting. Such methods are shown to be very beneficial for enhancing the robustness and the

generalization ability of single learners and overcoming the curse of dimensionality problem.

Ensemble methods, in particular Random Forest [127] have been proved to be effective for esti-

mating feature importance in traditional single-label [127], semi-supervised [128] and unsuper-

vised [129–131] learning. Therefore, in the Chapter 7 we naturally adapt the traditional Random

Forest permutation importance measure to the multi-label scenario via three different strategies.

Then in Chapter 8 we extend our proposed ensemble model CkMLC to the semi-supervised con-

text. The proposed approach combines ideas from co-training and random k-labelsets ensemble

learning with a new permutation-based out-of-bag feature importance measure.



Chapter 7

Multi-Label Feature Selection Using
the Random Forest Paradigm

The identification of relevant subsets of random variables, among thousands of potentially irrel-

evant and redundant variables, is a very important topic of pattern recognition research that has

attracted much attention over the last few years.

As aforementioned in Chapter 6, multi-label feature selection has been widely studied and have

encountered some success in many applications during the past few years [104, 111, 114]. How-

ever, little attention has been given to exploiting the power of ensemble methods with a view to

identify and remove the irrelevant features in a multi-label setting. Such methods which com-

bines multiple base learners to jointly accomplish one common task are shown to be very benefi-

cial for enhancing the robustness and the generalization ability of single learners and overcoming

the curse of dimensionality problem. Besides, ensemble methods, in particular Random Forest

(RF) [127], which originally inspired this work, have been proved to be effective for estimat-

ing feature importance in traditional single-label [127], semi-supervised [128] and unsupervised

[129–131] learning. On the other hand, the diversity of multi-label classification evaluation per-

formances create confusion towards the classification algorithm effectiveness; and even more

towards multi-label feature selection relevance.

Motivated by this, we discuss in the sequel, three different wrapper multi-label feature selection

strategies [132] based on Random Forest paradigm. These variants optimize different loss func-

tions depending on the way label dependence is operated. We also analyze how the optimized

loss function in the multi-label classifier influences the relevance of a multi-label feature selec-

tion process, thereby contributing to a better understanding of the internal meaning of selected

features.

The main contributions of this work are highlighted as follows :

94
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• In multi-label classification task, authors in [133] showed, on the basis of theoretical and

empirical results, that there is a strong connection between the optimized performance

measure and the way the dependencies between class labels are modeled. In this regard,

we believe that the type of loss function has a strong influence on whether or not an ex-

ploitation of label dependencies can be expected to yield a true benefit for feature selection

results. Perhaps most importantly, it cannot be expected that the same multi-label feature

selection method to be optimal for different types of losses at the same time. The main

proposal of this Chapter is grounded on this consideration. We pursue this direction to

elaborate more closely on the idea of exploiting label dependence, thereby contributing to

a better understanding of multi- label feature selection.

• We discuss three wrapper multi-label feature selection methods [132], which use the RF

paradigm. The three RF-based approaches differ in their considerations of label depen-

dence and its connection with the optimized loss function. Differences between these

approaches lead to different feature selections each one adapted to optimize specific loss

function during the RF feature selection process. The three RF variants called BRRF,

RFLP and RFPCT, stand respectively for BRRF, for Binary Relevance Random Forest
and RFLP, for Random Forest Label power-Set, consists of the two problem transforma-

tion approaches BR and LP, to previously transform the multi-label data into single-label

data, which is then used to perform a Random Forest. However, RFPCT [134] (Random

Forest of Predictive Clustering Trees) is another extension of RF that uses as base classi-

fier PCT [135], a decision tree predicting multiple target attributes at once. We would like

to mention that feature selection using RFPCT was initially proposed in [136], nonethe-

less, it was evaluated on a single biological data set and only compared to a trivial random

feature ranking algorithm in [137].

• Extensive experimental comparison were conducted on 13 various real-life multi-labeled

data sets to evaluate the power of RF-based multi-label feature selection methods. Results

support the main claims of this work concerning loss minimization and its relationship

with label dependence consideration in the multi-label feature selection process. They

also demonstrate that RF handles accurately the feature selection in multi- label context

and enjoys significant advantages compared to other recently proposed methods.

In the remaining of this Chapter, we first study the three RF-based multi-label feature selection

methods and describe how variable importance used in RF can be extended in multi-label context.

Then, we present our experimental study using real-life multi-label data sets to confront these

strategies against recently proposed multi-label feature selection approaches.
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7.1 Random Forest-based multi-label feature selection

RF has several desirable characteristics for feature selection: It is robust, exhibits high-quality

predictive performance, does not overfit and handles simultaneously categorical and continu-

ous features [127]. Furthermore, RF have proved to be efficient in traditional supervised [127],

semi-supervised [128], and unsupervised [131] feature selection process. This section introduces

three wrapper multi-label feature selection methods, which use the RF paradigm. In this way,

we discuss three variants of RF for Multi-label learning Random forest of predictive clustering
trees (RFPCT), Binary Relevance Random Forest (BRRF), and Random Forest Label Power-set
(RFLP); and then exploit the RF permutation importance measure [127] to evaluate the good-

ness of a feature. Before introducing the proposed methods, we recall how RF with permutation

based out-of-bag (oob) measures feature importance.

The variable importance measure in RF is based on the decrease of predictive performance when

values of a descriptive variable in a node of a tree are permuted randomly. Basically, a bootstrap is

used as training set to create trees in the forest. In each bootstrapped data set, almost 33% are left

oob, i.e., they are not used for the construction of the 𝑡𝑡ℎ corresponding model ℎ𝑡 (𝑡 ∈ {1,… , 𝑇 }).

We refer to them as 𝑂𝑜𝑏𝑡. Thus, these instances can be used to estimate non biased feature

relevancies. In every tree grown in the forest, the values of the 𝑓 𝑡ℎ feature in the 𝑂𝑜𝑏𝑡 data, is

randomly permuted to form 𝑂𝑜𝑏
𝑓

𝑡
, and the tree ℎ𝑡 is used to predict the labels of the new oob

patterns. The predictive performance of each tree ℎ𝑡 is evaluated on the untouched oob data and

the permuted versions of the oob data. The importance of the 𝑓 𝑡ℎ variable is then calculated

as the relative increase of the error that is obtained when its values are randomly permuted (c.f.
Equation 7.1). The average of this number over all trees in the forest is the importance score for

variable 𝑓 . We note that the greater the value of the importance measure, the more relevant is

the feature. A formal description of the pseudocode is given in Algorithm 4.

𝐼𝑓 = 1
𝑇

𝑇∑
𝑡=1

𝑒(ℎ𝑡(𝑂𝑜𝑏
𝑓

𝑡
)) − 𝑒(ℎ𝑡(𝑂𝑜𝑏𝑡))

𝑒(ℎ𝑡(𝑂𝑜𝑏𝑡))
(7.1)

where 𝑇 is the size of the forest and 𝑒 is the error measure function.

Given a label space  = {𝜆1, 𝜆2, ..., 𝜆𝑞} and a data set  that consists of 𝑛 instances each taking

the form (x𝑖, y𝑖) where x𝑖 = (𝑥1
𝑖
,⋯ , 𝑥𝑀

𝑖
) is a vector of 𝑀 descriptive features and y𝑖 ∈  is the

subset of labels associated to x𝑖 (represented by a binary feature vector (𝑦1
𝑖
, 𝑦2

𝑖
,⋯ , 𝑦

𝑞

𝑖
) ∈ {0, 1}𝑞),

we present, in the sequel, the three used variants of RF for multi-label learning and describe how

variable importance used in RF can be extended in this context.
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Algorithm 4 Feature importance estimation using 𝑂𝑜𝑏

Require:
𝐷 : samples database;

𝑀 : feature space cardinality

𝑇 : forest size;

ℎ𝑡 : tree learning algorithm

1: 𝐼 = 0
2: for 𝑡 ∈ {1,… , 𝑇 } do
3: 𝐵𝑎𝑔𝑡 ← bootstrap sample from 𝐷

4: 𝑂𝑜𝑏𝑡 ← 𝐸∖𝐵𝑎𝑔𝑡
5: ℎ𝑡 ← 𝑙𝑒𝑎𝑟𝑛 𝑎 𝑡𝑟𝑒𝑒 𝑓𝑟𝑜𝑚 𝐵𝑎𝑔𝑡

6: for 𝑓 ∈ {1,… ,𝑀} do
7: 𝑂𝑜𝑏

𝑓

𝑡
← 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑂𝑜𝑏𝑡, 𝑓 )

8: 𝐼𝑓 ← 𝐼𝑓 + 1
𝑇
.
𝑒(ℎ𝑡(𝑂𝑜𝑏

𝑓

𝑡
)) − 𝑒(ℎ𝑡(𝑂𝑜𝑏𝑡))

𝑒(ℎ𝑡(𝑂𝑜𝑏𝑡))
9: end for

10: end for
11: return 𝐼

7.1.1 Binary Relevance Random Forest (BRRF)

This method transforms the multi-label data set  into many single-label data sets, one for each

individual label in 𝜆𝑖 ∈ . After this transformation, a RF is created for each label 𝜆𝑖. The

relevance of each feature according to each individual label is measured using the above Equation

7.1 for which 𝑒 is the traditional single-label classification error. Finally, the average of the score

of all features across all labels is considered. BRRF, focuses on each label individually and does

not take into account label dependence. Consequently, it gives a local feature selection. Note

that in [133], a concrete connection between the type of multi-label classifier used and the loss to

be minimized has been established, showing that BR is optimal for decomposable loss functions

over labels, such as Hamming loss.

7.1.2 Random Forest Label Power-set (RFLP)

In this method the multi-label feature selection problem is handled using the Label Powerset

(LP) strategy. This approach reduces the multi-label data set  to a multi-class data set by

treating each distinct labelset as an unique multi-class label. To avoid creating too many rarely

classes, causing overfitting and imbalance problems the Pruned Problem Transformation in [109]

was used; patterns with too rarely occurring labels are simply removed from the training set by
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considering labelsets with a predefined minimum occurrence. A RF could be now performed

and the above described feature selection procedure will be naturally applied using in Equation

7.1 the traditional single-label classification error 𝑒. In this way, this approach directly takes into

account label correlation. It is worth noting that, according to theoretical claims in [133], LP

should perform well for the subset 0/1 loss metric.

7.1.3 Random Forest Predictive Clustering Tree (RFPCT)

In contrast to both previous approaches (BRRF and RFLP) for which the RF grows many clas-

sification trees using a CART as a base classifier, RFPCT [134] is an extension of RF that use

a randomized variant of the non Pruned Predictive Clustering Tree (PCT) [135], as a base clas-

sifier. In this approach, the multi-label data  is handled directly and is then able to provide an

intuitive way for taking into account relationships between labels. Nevertheless, it is noteworthy

that BRRF and RFPCT perform comparably for classification (see [134] for more details).

The feature selection problem with RFPCT follows the same procedure described above. Feature

relevances are measured on each PCT tree, and then averaged over all the trees in the forest.

However, since PCT is an adaptation method devoted to learning simultaneously all the labels,

the RF-based feature evaluation procedure requires an appropriate multi-label error measure 𝑒

instead of the ordinary classification error used for BRRF and RFLP. As suggested in [136,

137], the multi-label error for each tree in the forest is obtained by averaging the individual

classification errors across the 𝐿 labels. It is worth remarking though that this error was defined

independently of the model-performance metric, here the global accuracy.

7.1.4 Computational complexity

In this section, we analyze and discuss the computational complexity aspects of the three RF-

based multi-label feature selection methods. For this purpose, we identify two phases: in the first

phase a random forest is built, in the second phase the structure of the forest is used to generate

feature importance.

In BRRF a random forest is constructed for each label in  = {𝜆1, 𝜆2, ..., 𝜆𝑞}. In each forest the

computational complexity of inducing a random tree scales as 𝑂(𝑎𝑛 log(𝑛)) where 𝑎 denotes the

number of tests considered to construct a node (𝑎 = 𝑓 (𝑀) in our case, where 𝑀 is the number

of features) and 𝑛 stands for the number of elements in the data set, under the assumption that

a reasonably symmetric tree is built (the depth of which is logarithmic in the number of leaves)

and that the evaluation of a single test takes constant time in the size of the data set (see [138]

for more details). The complexity for the first phase, the induction of the whole 𝑞 random forest,

scales then as 𝑂(𝑞𝑇𝑀𝑛 log(𝑛)), where 𝑇 is the size of each forest. The complexity of the second
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phase in BRRF (RF permutation feature importance measure) depends on the prediction costs

with a decision tree and the random permutation of descriptive attributes in the 𝑂𝑜𝑏 data. In

every tree of a forest of a given label, each feature 𝑓 from the 𝑀 descriptive ones is shuffled

(randomly permuted) in the𝑂𝑜𝑏 cases (𝑂(𝑛)). These𝑂𝑜𝑏 instances of size 𝑛 are then re-classified

in 𝑂(𝑛 log(𝑛)) steps. The importance of variable 𝑓 is then measured as the relative increase of

the single-label error in the 𝑂𝑜𝑏 permuted instances (𝑂(𝑛)). The dominant term for measuring

importance for the feature 𝑓 in every tree is 𝑂(𝑛 log(𝑛)). Hence, measuring variable importance

for all 𝑀 descriptive variables using all 𝑇 trees in a forest of a given label costs 𝑂(𝑇𝑀𝑛 log(𝑛)).
Consequently, the complexity of the second phase overall the𝐿 labels is𝑂(𝑞𝑇𝑀𝑛 log(𝑛)), which

means that BRRF takes order 𝑂(𝑞𝑇𝑀𝑛 log(𝑛)) steps. Note that BRRF can easily be parallelized.

The derivation of the computational complexity of RFPCT for feature importance evaluation

is very similar. In RFPCT, the computational complexity of inducing a PCT tree scales as

𝑂(𝑎𝑞𝑛 log(𝑛)) with 𝑎 = 𝑓 (𝑀). The difference here lies in the procedure for calculating the

best split at a given node. This procedure, now scales as 𝑂(𝑎𝑞𝑛) instead of 𝑂(𝑎𝑛). So, the overall

computational complexity of constructing a random forest of PCT is 𝑂(𝑞𝑇𝑀𝑛 log(𝑛)). In the

second phase of RFPCT and in every tree of the forest, each feature (out of 𝑀) is randomly

permuted in the 𝑂𝑜𝑏 cases (𝑂(𝑛)). These 𝑂𝑜𝑏 instances of size 𝑛 are then classified again in

𝑂(𝑛 log(𝑛)). The importance of variable 𝑓 is then measured as the relative increase of the multi-

label error in the 𝑂𝑜𝑏 permuted instances (𝑂(𝑞𝑛)). For each feature, it takes 𝑂(𝑛 log(𝑛) + 𝑞𝑛).
Consequently, for the 𝑀 features and 𝑇 trees in RFPCT, it scales as 𝑂(𝑇𝑀𝑛 log(𝑛) + 𝑞𝑇𝑀𝑛).
This means that the computational complexity of RFPCT is dominated by the random forest

construction (𝑂(𝑞𝑇𝑀𝑛 log(𝑛))), as observed with BRRF.

In RFLP the multi-label data set is first transformed into one single-label data set in 𝑂(𝑛 log(𝑛))
and then a random forest is constructed in𝑂(𝑇𝑀𝑛 log(𝑛)). Bearing in mind that the second phase

in RFLP follows the same scheme as in RFPCT, the overall complexity of RFLP is𝑂(𝑇𝑀𝑛 log(𝑛)+
𝑇𝑀𝑛𝑞). Let us assume that 𝑞 < log(𝑛). This means that the dominant term in the computational

complexity of RFLP is𝑂(𝑇𝑀𝑛 log(𝑛)). Considering this, RFLP reduces the computational com-

plexity by a factor 𝑂(𝑞) compared to BRRF and RFPCT. On the other hand, if we assume that

𝑞 > log(𝑛), the dominant term is equal to 𝑂(𝑇𝑀𝑛𝑞). In this case, RFLP reduces the computa-

tional complexity by a factor 𝑂(log(𝑛)).

7.2 Performances analysis

This section presents an experimental study using benchmark data to confront the different vari-

ants of feature selection models. We investigate the effectiveness of the RF-based feature im-

portance measures for multi-label feature selection regarding the optimized loss function; and

compared their performances against recently proposed multi-label feature selection methods.
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TABLE 7.1: Description of the Benchmark multi-label data sets used in the experiments.

Data set Domain q M
Training set Test Set

N Card N Card

Arts Text 26 462 2000 1.627 3000 1.642

Business Text 30 438 2000 1.590 3000 1.586

Education Text 33 550 2000 1.465 3000 1.458

Emotions Music 6 72 391 1.813 202 1.975

Enron Text 53 1001 1123 3.387 579 3.363

Entertainment Text 21 640 2000 1.426 3000 1.417

Health Text 32 612 2000 1.667 3000 1.659

Medical Text 45 1449 333 1.255 645 1.240

Scene Image 6 294 1211 1.062 199 1.086

Science Text 40 743 2000 1.489 3000 1.425

Slashdot Text 22 1079 1513 1.174 2269 1.185

Social Text 39 1047 2000 1.274 3000 1.290

Yeast Biology 14 103 1500 4.228 917 4.252

7.2.1 Data sets and evaluation protocol

To confront the different variants of feature selection, we use 13 benchmark multi-label data

sets obtained from the Mulan‘s repository [87]. The selected data sets were used in various

studies and evaluations of multi-label learning methods. It covers different application domains:

Biology, semantic scene analysis, music emotions and text categorization. From the literature,

these data sets come pre-divided into training and testing parts; thus, in the experiments, we use

the original training and test sets in their original format. This also allow an easier comparison

to future and already published studies.

Table 7.1 summarizes basic statistics of the data sets: the number of features (M); the number

of labels (q) and the Label Cardinality (Card), which is the average number of single labels

associated with each instance.

We confronted the three variants of RF-based multi-label feature selection methods to two re-

cently proposed ones: PPT-MI [109] and PMU [111]. PPT-MI is a multi-label feature selection

method using the Pruned Problem Transformation (PPT) to improve the LP approach followed

by a sequential forward selection with the Mutual information (MI) as search criterion. PMU is

a filter approach that takes into account label interactions in evaluating the dependency of given

features without resorting to problem transformation. It is presented as a multivariate mutual

information-based feature selection method for multi-label learning that naturally derives from
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mutual information between selected features and a set of labels. Guided by considering jointly

correlation between labels and variables, both approaches (PPT-MI and PMU), seek to minimize

the joint conditional distribution error. We also compared these approaches to a Binary relevance

feature selection strategy using mutual information. Such as BRRF, this feature selection gives

a feature raking for each label. We denote this approach by BRMI for Binary Relevance Mu-

tual Information. For PMU, BRMI and PPT-MI, the numeric data sets are discretized using the

Equal-width interval scheme, as suggested by the authors in [111]. Furthermore, the three vari-

ants of RF of multi-label learning (BRRF, RFLP and RFPCT) are tuned similarly. The number

of variables to split on at each node and the committee size are set to
√
𝑀 , and 100, respectively.

To evaluate the predictive performance of the compared multi-label feature selection algorithms,

we used two multi-label classification schemes: Binary relevance scheme, where each label is

treated independently and does not take into account dependencies among labels. This scheme

is favorable to boost the performance of multi-label loss functions with marginal conditional

distributions as Hamming loss [133]. Label Power Set scheme, where correlation between labels

is taken into consideration. This scheme improve the performance of loss functions that estimate

the joint conditional distribution as the Subset 0/1 loss [133]. Both multi label classification

scheme were instantiated with the LIBSVM (with linear kernel).

As mentioned above, BRRF and BRMI generate, for each label, a specific feature ranking. This

leads specific feature pertinence for each label. For BR scheme, this property is operable by

allowing each classifier to focus on most discriminative features for each single label. For LP

scheme, specific label feature importance is aggregated by averaging features importance (or

features ranking) across all labels to generate a common feature label raking for all labels. Al-

though, RFLP, RFPCT, PMU and PPT-MI, generate a single ordered common list of features

toward all labels which convenient for both strategies where the classifiers, in BR strategy, learn

from the same relevant features.

In order to better assess the results obtained for each feature selection algorithm and following

the risk minimized by each scheme (BR and LP), we restricted the evaluation measures used in

this experiment on two performance measures: Hamming loss and Subset 0/1 loss.

7.2.2 Comparison results

In the sequel, we present the results obtained from our empirical study and concludes on the

applicability and performance of RF for multi-label feature selection.

Tables 7.2 and 7.3 reports the averaged results of the six feature selection methods over the top

50 features (as used in [111]) obtained with both BR and LP schemas for respectively Hamming
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TABLE 7.2: Hamming loss of all feature selection approaches and all data sets using BR and

LP as base multi-label learning algorithm. Bold cells highlight the best performing algorithms

for each data set.

Data set
ML Base

BRRF BRMI RFLP RFPCT PMU PPT-MI
learner

Arts
BR .0559 ± .001 .0558 ± .002 .0577 ± .002 .0575 ± .001 .0603 ± .001 .0580 ± .002

LP .0769 ± .002 .0748 ± .003 .0722 ± .004 .0728 ± .003 .0768 ± .002 .0738 ± .003

Business
BR .0268 ± .001 .0271 ± .001 .0273 ± .001 .0282 ± .001 .0284 ± .001 .0280 ± .004

LP .0284 ± .001 .0286 ± .001 .0274 ± .001 .0283 ± .001 .0283 ± .001 .0275 ± .001

Education
BR .0393 ± .001 .0398 ± .001 .0412 ± .001 .0412 ± .001 .0413 ± .001 .0407 ± .001

LP .0529 ± .001 .0508 ± .002 .0499 ± .002 .0508 ± .001 .0494 ± .001 .0489 ± .001

Emotions
BR .2340 ± .015 .2477 ± .017 .2383 ± .015 .2373 ± .012 .2657 ± .029 .2452 ± .024

LP .2552 ± .047 .2483 ± .034 .2504 ± .021 .2498 ± .015 .3062 ± .063 .2552 ± .033

Enron
BR .0486 ± .002 .0507 ± .002 .0517 ± .003 .0532 ± .002 .0527 ± .002 .0535 ± .002

LP .0610 ± .002 .0655 ± .001 .0608 ± .001 .0610 ± .001 .0611 ± .002 .0604 ± .001

Entertainment
BR .0549 ± .001 .0564 ± .006 .0591 ± .003 .0590 ± .003 .0655 ± .001 .0594 ± .003

LP .0813 ± .003 .0781 ± .004 .0761 ± .005 .0775 ± .004 .0829 ± .002 .0770 ± .004

Health
BR .0365 ± .003 .0371 ± .003 .0413 ± .003 .0405 ± .003 .0431 ± .002 .0404 ± .002

LP .0496 ± .001 .0489 ± .002 .0443 ± .003 .0429 ± .001 .0453 ± .001 .0429 ± .002

Medical
BR .0117 ± .001 .0123 ± .001 .0150 ± .003 .0179 ± .003 .0212 ± .001 .0150 ± .003

LP .0164 ± .005 .0186 ± .005 .0181 ± .005 .0208 ± .005 .0265 ± .001 .0185 ± .005

Scene
BR .1374 ± .018 .1484 ± .012 .1577 ± .011 .1472 ± .012 .1292 ± .014 .1611 ± .010

LP .1636 ± .034 .1852 ± .016 .1710 ± .027 .1585 ± .024 .1245 ± .026 .1804 ± .019

Science
BR .0325 ± .001 .0327 ± .001 .0341 ± .003 .0338 ± .001 .0353 ± .001 .0341 ± .003

LP .0483 ± .001 .0468 ± .001 .0437 ± .002 .0445 ± .001 .0461 ± .001 .0433 ± .001

Slashdot
BR .0439 ± .002 .0452 ± .001 .0473 ± .003 .0483 ± .001 .0483 ± .002 .0476 ± .002

LP .0626 ± .004 .0620 ± .004 .0632 ± .004 .0706 ± .005 .0650 ± .003 .0623 ± .004

Social
RB .0216 ± .002 .0224 ± .002 .0242 ± .005 .0242 ± .002 .0250 ± .001 .0245 ± .002

LP .0302 ± .003 .0286 ± .001 .0274 ± .002 .0274 ± .001 .0282 ± .001 .0273 ± .001

Yeast
BR .2068 ± .008 .2078 ± .007 .2123 ± .009 .2133 ± .009 .2157 ± .007 .2116 ± .008

LP .2230 ± .011 .2273 ± .010 .2266 ± .011 .2268 ± .012 .2314 ± .011 .2245 ± .013

loss and Subset 0/1 loss metrics. Bold cells highlight the best performing algorithms for each

data set.

Several conclusions may be drawn from these experiments:

• In the case of data sets in which a strong conditional dependence between labels is observed

(all data sets except the Medical and Slashdot data sets [18, 21]), this result in different

risk minimizers for both Hamming loss and Subset 0/1 loss metrics. One can observe for

these data sets that feature selection methods treating each label independently (BRRF and

BRMI here) are more appropriate for the Hamming loss compared to the ones that consider

the interaction among labels for evaluating feature importance (RFLP, RFPCT, PMU and

PPT-MI). More specifically, we observe that BRRF, used in tandem with BR as a multi-

label base classifier, scores 12 wins and performs significantly better than BRMI. On the

other hand, as far as the Subset 0/1 loss is concerned, the results suggest that it is more
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TABLE 7.3: Subset 0/1 loss of all feature selection approaches and all data sets using BR and

LP as base multi-label learning algorithm. Bold cells highlight the best performing algorithms

for each data set.

Data set
ML Base

BRRF BRMI RFLP RFPCT PMU PPT-MI
learner

Arts
BR .8471±.016 .8449±.035 .8802±.048 .8738±.031 .9259±.023 .8965±.041

LP .7774±.020 .7574±.027 .7321±.036 .7405±.032 .7788±.014 .7531±.029

Business
BR .4584±.004 .4639±.002 .4586±.005 .4639±.003 .4651±.001 .4726±.072

LP .4578±.001 .4599±.001 .4468±.005 .4575±.003 .4570±.002 .4482±.005

Education
BR .8649±.023 .8779±.024 .9246±.024 .9219±.012 .9281±.034 .9074±.032

LP .7595±.011 .7309±.024 .7193±.019 .7318±.006 .7146±.017 .7097±.016

Emotions
BR .7950±.040 .8196±.043 .8135±.050 .8085±.038 .8644±.067 .8160±.060

LP .6935±.042 .6973±.038 .6837±.018 .6910±.013 .7361±.050 .7007±.038

Enron
BR .9164±.025 .9455±.051 .9416±.046 .9518±.023 .9681±.027 .9858±.009

LP .8534±.014 .8836±.007 .8447±.009 .8504±.007 .8444±.016 .8458±.005

Entertainment
BR .7394±.028 .7517±.039 .8107±.058 .8134±.066 .9412±.017 .8241±.075

LP .7236±.030 .6919±.036 .6714±.044 .6869±.039 .7422±.015 .6823±.040

Health
BR .6477±.051 .6078±.026 .6771±.056 .6381±.024 .7081±.026 .6278±.018

LP .6770±.007 .6697±.017 .6191±.031 .6050±.019 .6312±.016 .6100±.018

Medical
BR .3931±.009 .4046±.012 .5017±.100 .6014±.117 .7489±.028 .5038±.116

LP .4067±.083 .4599±.083 .4457±.083 .5204±.095 .5926±.030 .4574±.082

Scene
BR .6811±.103 .7686±.061 .8073±.086 .7704±.065 .6198±.094 .8490±.057

LP .5134±.094 .5690±.046 .5230±.077 .5013±.069 .4026±.073 .5594±.054

Science
BR .8739±.024 .8735±.023 .9194±.027 .9266±.024 .9843±.012 .9213±.027

LP .8063±.003 .7824±.011 .7354±.023 .7459±.016 .7701±.010 .7274±.019

Slashdot
BR .7160±.038 .7429±.060 .7684±.050 .8707±.035 .8180±.046 .7664±.049

LP .6700±.031 .6624±.034 .6712±.032 .7324±.040 .6858±.022 .6641±.033

Social
BR .5811±.060 .6101±.059 .6428±.098 .6526±.076 .6761±.056 .6375±.092

LP .5463±.050 .5142±.013 .4940±.032 .4923±.020 .5086±.013 .4903±.017

Yeast
BR .8785±.035 .8915±.040 .9107±.045 .8972±.050 .9390±.030 .9002±.051

LP .7943±.024 .7959±.024 .7866±.030 .8001±.031 .8161±.023 .7962±.029

effective to use feature selection methods built considering the correlation among labels

with LP as a multi-label base classifier, rather than ignoring this correlation within the

feature selection process. In such case, the results show a relative superiority of RFLP

which scores 6 wins, followed by PPT-MI (4 wins), then PMU (2 wins) and RFPCT (1

win). These results corroborate the previous finding in [18] for multi-label classification

and extend them to the multi-label feature selection task.

• In the case of data sets (Medical and Slashdot) for which the labels are conditionally inde-

pendent (see [18, 21] for more details about these data sets and their directed acyclic graphs

(DAG)), it seems that both risk minimizers for Hamming loss and Subset 0/1 loss coincide.

The best feature selection algorithms perform equally good for both losses. Here, BRRF

and BRMI seem to have equivalent performances and perform significantly better than the

remaining feature selection methods in terms of both Hamming loss and Subset 0/1 loss.
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• Like in RFLP, RFPCT is also expected to take into account the interaction among labels

for evaluating feature importance. However, RFPCT is still not well understood from a

theoretical point of view. For example, it is not clear what loss function it intends to mini-

mize compared to RFLP for which it is rather clear that it tries to minimize the Subset 0/1
loss metric [18]. The superiority of RFLP compared to RFPCT in the feature selection

process could be further motivated by the following reasons. With RFPCT, the classifi-

cation error does not vary significantly when the values of a specific feature are randomly

permuted. Indeed, we noticed that the label errors often compensate each other. This is

why the classification error vary moderately after shuffling a variable. This issue worsen

as the number of labels is increased. To confirm this observation from an experimental

point of view, we analyzed the average gap between classification error before and after

the variable shuffling in Equation 7.1. We observed error variations of the magnitude of

10−7 on the data sets with a large number of labels (e.g. Enron, Medical).

• More generally, these experiments confirm the ability of Random Forest, that showed

promising results for multi-label classification in [139], to rank the relevant features accu-

rately in a multi-label context.

7.2.3 Robustness analysis of feature selection

In this section we report on the experiments performed to evaluate the robustness of aforemen-

tioned feature selection methods. The robustness of feature selection techniques can be defined

as the variation in feature selection results due to small changes in the data set. When applying

feature selection for knowledge discovery, not only model performance but also robustness of the

feature selection process is important, as domain experts would prefer a stable feature selection

algorithm over an unstable one when only small changes are made to the data set [140]. Robust

feature selection techniques would allow domain experts to have more confidence in the selected

features, especially if subsequent analyses or validations of selected feature subsets are costly.

To assess the robustness of the compared multi-label feature selection techniques, we focus here

on comparing feature rankings using the conventional consistency index 𝐼𝐶 in [141] for the top

5% features of the rankings obtained over the 15 iterations. The Consistency Index for two feature

subsets 𝑆𝑖 and 𝑆𝑗 , such that ||𝑆𝑖
|| = |||𝑆𝑗

||| is given by,

𝐼𝐶 (𝑆𝑖, 𝑆𝑗) =
𝑟𝑀 − 𝑘2

𝑘(𝑀 − 𝑘)
(7.2)

The overall stability of a feature selection algorithm for a set of sequences of features  =
{𝑆1, 𝑆2,… , 𝑆𝐾} (𝐾 = 15 in our case) is defined as the average over all pairwise consistency

indices:
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𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
2
∑𝐾−1

𝑖=1
∑𝐾

𝑗=𝑖+1 𝐼𝐶 (𝑆𝑖, 𝑆𝑗)
𝐾(𝐾 − 1)

(7.3)

where 𝑀 is the number of features in the data set, 𝑘 = |𝐴| = |𝐵| and 𝑟 is the cardinality of the

intersection of subsets 𝐴 and 𝐵. The more similar the outputs, the higher the stability measure.

Table 7.4 summarizes the results of the robustness analysis across the different data sets. The

conclusions we can draw upon looking at this table follows:

1. Overall, BRRF exhibits more robust results than the other algorithms. Indeed, BRRF

clearly benefits from averaging of feature importances over the different forests (one forest

per label), hence the gain in robustness of the feature ranking. BRRF is followed by RFLP.

This demonstrates again the effectiveness of ensemble methods to improve the robustness

of the feature selection [140].

2. RFPCT is however the less stable algorithm. This is especially due to our aforementioned

observation, namely that when estimating feature importance with RFPCT the classifi-

cation error vary moderately after shuffling a variable, resulting in very small variations

across the feature importances. This leads to a degradation in the robustness because

the top performing features vary a lot with respect to the data subsamples. The situation

worsen as the number of labels is increased. As may be observed, the robustness of RF-

PCT on Enron decreased dramatically. The large variance among the top selected features

is the main caveat of RFPCT.

3. PPT-MI on the other hand proves to be more stable compared to PMU and BRMI.

7.3 Chapter summary

This Chapter presented and experimentally evaluated three wrapper multi-label feature selection

methods, which use the Random Forest paradigm: BRRF, RFLP and RFPCT. These extensions

differ in the way they consider label dependence within the feature selection process. The perfor-

mance of the methods were compared against recently proposed approaches using 13 benchmark

multi-label data sets emerging from different domains. The result of this evaluation is two-fold:

1) Random Forest handles accurately the feature selection process in a multi-label context and is

able to improve the efficiency as well as the robustness of feature selection techniques; 2) We also

demonstrates how the optimized loss function in the multi-label classifier influences the relevance

of a multi-label feature selection process, thereby contributing to a better understanding of the

internal meaning of selected features. According to this analysis, BRRF appears more suitable
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TABLE 7.4: Robustness of the different multi-label feature selection methods across the different

data sets using the consistency index on the subset of 5% best features.

Data set BRRF BRMI RFLP RFPCT PMU PPT-MI

Arts 0.934 0.694 0.848 0.9 0.742 0.779

Business 0.826 0.694 0.783 0.269 0.696 0.59

Education 0.88 0.681 0.809 0.34 0.675 0.843

Emotions 0.765 0.62 0.718 0.612 0.406 0.575

Enron 0.763 0.635 0.722 0.174 0.544 0.496

Entertainment 0.962 0.708 0.917 0.68 0.719 0.945

Health 0.852 0.739 0.82 0.379 0.743 0.716

Medical 0.9 0.769 0.82 0.546 0.62 0.874

Scene 0.856 0.856 0.574 0.572 0.577 0.637

Science 0.862 0.647 0.776 0.375 0.615 0.696

Slashdot 0.835 0.688 0.768 0.468 0.661 0.874

Social 0.908 0.683 0.81 0.508 0.688 0.891

Yeast 0.906 0.713 0.792 0.744 0.727 0.622

Average 0.875 0.723 0.788 0.526 0.652 0.753

for label-wise metrics (like Hamming loss), while RFLP is more appropriate for instance-wise

metrics such as Subset 0/1 loss, in the case of data sets in which a strong conditional depen-

dence between labels is observed. RFPCT on the other hand is still not well understood from a

theoretical point of view and it is rather unclear what this approach actually tends to optimize.

In the next Chapter we consider the problem of using a large amount of unlabeled data to improve

the efficiency of feature selection in high dimensional multi-label data sets, when only a small

set of labeled examples is available. The way internal estimates are used to measure variable

importance in the Random Forest paradigm and discussed in this Chapter have been influen-

tial in our thinking. We extended our previously proposed k-labelsets based ensemble approach

CkMLC [81] (c.f. Chapter 4) to deal with multi-label feature selection in a semi-supervised con-

text by using both labeled and unlabeled data. Consequently, we propose a new semi-supervised

multi-label feature importance evaluation method (SSkC for short), that combines ideas from

co-training and random k-labelsets ensemble learning with a new permutation-based out-of-bag

feature importance measure.



Chapter 8

Semi-Supervised k-labelsets ensemble
framework

Similarly to other machine learning tasks, multi-label learning also experiences the curse of

dimensionality, which may cause problems when learning from high-dimensional data. The

identification of relevant subsets of random variables (i.e. feature selection), among thousands of

potentially irrelevant and redundant variables, is a very important issue to overcome this problem.

In this regard, feature selection algorithms use information from labeled data to find the relevant

subsets of variables, i.e., those that conjunctively prove useful to construct an efficient classifier

from data. They enable the classification model to achieve good or even better solutions with

a restricted subset of features [96]. As discussed in Chapter 6, Multi-label feature selection

has been widely studied and have encountered some success in many applications during the

past few years [104, 111, 114]. In multi-label learning, most feature selection tasks have been

addressed by extending the techniques available for single-label classification using either the

bridge provided by the multi-label transformations or new adaptation approaches.

These methods have been designed to work with a sufficient amount of labeled training data.

However, in many real-world applications, the amount of labeled data is very limited, in the

sense that it is time-consuming or extremely expensive to obtain. In such situation, there are

mainly two challenges. First, in the presence of few amount of labeled data, it becomes difficult

to build an accurate multi-label model. Meanwhile a large amount of unlabeled data may be

relatively easy to collect, but there has been few ways to use them. Semi-supervised multi-label

learning addresses this problem by using unlabeled data together with multi-labeled data in the

training process, to enhance the performance of the learned classifiers. The second challenge is

that the labels in multi-label learning are typically interdependent and correlated, which poses

more difficulties to identify or remove redundant and irrelevant variables from the feature set,

especially in high-dimensional data. To overcome this problem, feature selection methods need

107
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to explicitly model the label interactions in evaluating the quality of features, which is crucial for

better performance.

In this Chapter, based on the above motivation, we aim to solve both challenges in one shot.

We present a new ensemble approach for semi-supervised multi-label feature selection that use

both dependencies between labels and the unlabeled data together to enhance the multi-label

learning performance. It ranks features through a multi-label ensemble framework, in which a

feature’s relevance is evaluated by its predictive performance using both labeled and unlabeled

data. The proposed approach, termed as Semi-Supervised k-labelsets Committee (SSkC) [142]

extends our k-labelsets based ensemble model CkMLC [81] (c.f. Chapter 4) to handle semi-

supervised multi-label feature selection. It combines both data resampling (bagging) and random

projections of the label space (random k-labelsets) strategies for generating a committee of multi-

label models in a co-training style algorithm. The key ideas behind this approach are to i) promote

and maintain diversity in the multi-label base-classifiers committee, ii) define a new cost oriented

metric to estimate the labeling confidence of unlabeled examples, and iii) use a new multi-label

permutation-based out-of-bag feature importance measure which operates over both labeled an

unlabeled instances in a semi-supervised way.

In the rest of this Chapter, we first introduce the SSkC framework for variable importance es-

timation. Then, we present our experiments using relevant multi-label benchmarks data sets to

compare SSkC to a recent state-of-the-art supervised and semi-supervised multi-label feature

selection algorithms over different multi-label metrics.

8.1 The proposed framework

One of the most attractive semi-supervised ensemble models is the Co-training algorithm [143].

In Co-training two base-classifiers are initially trained using two redundant and independent

sets of features. Then, in further iterations, each base-classifier classifies the unlabelled exam-

ples, adds the examples about which it is most confident in the training set. The aim is that the

most confident examples with respect to one classifier can be informative with respect to the

other. As an improvement of the Co-training algorithm, Hady and Schwenker proposed the Co-

training By Committee (CoBC) learning approach [144]. In this model, an ensemble of diverse

base-classifiers is used instead of redundant and independent views. The committee of diverse

accurate classifiers is initially constructed by using a successful ensemble learning algorithms:

Bagging or random subspace method. At each iteration and for each classifier, a subset of un-

labelled examples is drawn randomly from the whole unlabelled data set and classified using

the concomitant ensemble. The most confident examples to label are then determined and the

committee members are retrained using their updated training sets.
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On the other hand, as aforementioned before, semi-supervised multi-label feature selection have

encountered some success during the past few years. However, no attention has been given to

exploiting the power of ensemble methods with a view to identify and remove the irrelevant

features in a semi-supervised multi-label setting. Such methods which combines multiple base

learners to jointly accomplish one common task are shown to be very beneficial for enhanc-

ing the robustness and the generalization ability of single learners and overcoming the curse of

dimensionality problem. In this section, we discuss in details our semi-supervised multi-label

ensemble Learning Guided feature selection framework, named SSkC [142]. It combines ideas

from co-training, bagging, and random k-labelsets ensemble learning with an extension of the

RF permutation importance measure.

8.1.1 Committee construction

While considerable attention has been given on the problem of constructing an accurate and

diverse ensemble committee for multi-label learning [15, 17] and to the best of our knowledge this

is the first attempt that tries to explore this strategy in the semi-supervised multi-label learning.

Given a set of multi-labeled training examples𝐿 associated with a set of labels in = {𝜆1, 𝜆2, ..., 𝜆𝑞}
and a set of unlabeled training examples 𝑈 , independently drawn from the same data distribution

and described over the input space 𝐹 = {𝑓1,… , 𝑓𝑝}, our approach SSkC constructs a committee

according to the following steps.

The implementation of our ensemble k-labelsets model is based on the top of 𝑇 multi-label base-

classifiers, where each classifier is trained on a small subset of 𝑘 labels from  as in [15]. As

discussed before, the most important condition for a successful ensemble learning method is

to combine models which are different from each other. Thus, to maintain diversity between

committee members, we have employed two strategies : data resampling (bagging) of labeled

instance set 𝐿 and random projections of the label space (random k-labelsets). A combination

of these two main strategies for producing ensemble of classifiers leads to exploration of distinct

views of inter-pattern relationships. To further maintain the diversity during the learning pro-

cess in the semi-supervised setting, we also use the bagging strategy over the set of unlabelled

instances 𝑈 . The objective here is to keep the diversity over the augmented training set for the

retrained multi-label classifiers once the most confident unlabeled data are incrementally added

into the labeled data set.

The formal description of SSkC is given in Algorithm 5. First, as formulated in step A, the initial

committee is constructed as follows: for each committee memberℎ𝑡, a k-labelsets (𝑃𝑆𝑡) is formed

with 𝑘 labels randomly selected from . Then, 𝐿
𝑏𝑎𝑔

𝑡
and 𝑈

𝑏𝑎𝑔

𝑡
are selected with replacement,

from 𝐿 and 𝑈 respectively. Each base-classifier ℎ𝑡 is learned by a ML-𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑟𝑛𝑒𝑟 using

its corresponding labeled training examples 𝐿
𝑏𝑎𝑔

𝑡
and its corresponding k-labelsets 𝑃𝑆𝑡. The
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ensemble model learned by our approach output a score vector and need a thresholding method

in order to assign for each unlabeled instance a label set in . In step 11, our algorithm is used in

conjunction with our previously proposed Forward Multi-label Thresholds Calibration method

(c.f. Algorithm 3 in Chapter 4) that optimizes a multi-label performance measure of interest

(ML-𝑙𝑜𝑠𝑠). Step 12 uses a new permutation-based out-of-bag feature relevance measure which

operates over the out-of-bag instances in order to give a first accurate rank of feature importances

per label.

The block B identifies the concomitant ensemble of each base-classifier ℎ𝑡. Denoted by 𝑐-𝐻𝑡, the

concomitant ensemble of ℎ𝑡 is formed by all the classifier members of the committee 𝐻 sharing

at least one label 𝜆 ∈  with ℎ𝑡, i.e., 𝑐-𝐻𝑡 = {ℎ𝑖 ∈ 𝐻|∃𝜆 ∈ {𝑃𝑆𝑖 ∩ 𝑃𝑆𝑡} with 𝑡 ≠ 𝑖}.

Finally, according to the steps in C, each committee member ℎ𝑡 is trained in a co-training style

by asking its concomitant ensemble 𝑐-𝐻𝑡 to label samples from 𝑈
𝑏𝑎𝑔

𝑡
for it. In order to avoid that

the concomitant ensemble gives a biased labels prediction, each concomitant member is asked

to label only its out-of-bag instances, i.e., instances that do not appear in its bag and are never

used to learn this classifier member. Thereby, the number of labeled examples for each base-

classifier increases by including the most confident new labeled examples for the k-labelsets

𝑃𝑆𝑡. To describe how the most confident examples are selected a formal description of the

𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑜𝑛𝑓𝑖𝑑𝑎𝑛𝑡𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 function is given in Algorithm 6. Next, the newly labeled samples

Π∗
𝑡

for ℎ𝑡 are removed from 𝑈
𝑏𝑎𝑔

𝑡
, and incrementally added into its set of labeled instances �̂�𝑡.

Afterwards, the multi-label base-classifier ℎ𝑡 is retrained over the augmented set 𝐿
𝑏𝑎𝑔

𝑡
∪ �̂�𝑡.

Our ML-𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑟𝑛𝑒𝑟 can use any learning algorithm for training each classifierℎ𝑡 (𝑡 ∈ {1,… , 𝑇 }).

It is worth noting that our approach produces relevance scores of features in 𝐹 . In this incremen-

tal retraining process, instead of considering equally the features when training a given committee

member ℎ𝑡, we suggest to randomly select the features according to their relevances in predict-

ing accurately its corresponding k-labelsets 𝑃𝑆𝑡. Our ensemble approach relies on this step to

simultaneously encourage diversity and individual accuracy in the committee. The goal of this

selection scheme is to consider the feature subspaces which are as relevant as possible to the

k-labelsets 𝑃𝑆𝑡, especially for large 𝑝. Using probability of selection proportional to relevance

scores ensures that informative features are selected and will lead to promote the accuracy of the

committee members. On the other hand, since that different base-classifier focus on different

k-labelsets having their specific relevant features, the use of feature importance in our approach

will maintain the randomness in our committee construction and does not hurt the diversity of

classifiers.

Once all the base-classifiers are updated, the label decision thresholds are re-calibrated to meet

the objective multi-label performance measure of interest (step 22 using our Forward Multi-label
Thresholds Calibration method) and the feature importances are re-evaluated (step 23) using
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both labeled and unlabelled instances. Finally, the co-training steps are repeated until a maximal

number of iteration is reached.

8.1.2 Confidence measure

One of the most important aspects in a co-training style approach is how to estimate the label

confidence of unlabeled instances which gives their probabilities of being selected. Indeed, an

inaccurate confidence measure leads to adding noisy instances to the labeled training set. Al-

gorithm 6 gives a formal description of how the most confidant instances are selected in our

framework. More specifically, to efficiently estimate the confidence of an unlabeled instance

x𝑢 for a base-classifier ℎ𝑡 (x𝑢 ∈ 𝑈
𝑏𝑎𝑔

𝑡
), each classifier member ℎ𝑗 in the concomitant ensemble

𝑐-𝐻𝑡 which did not use x𝑢 in its training process (x𝑢 ∈ 𝑈
𝑏𝑎𝑔

𝑗
) is asked to label it and to gener-

ate an estimation of the probability 𝑃 (𝑦𝑖 = 1|x𝑢) of having label 𝜆𝑖 (for each 𝜆𝑖 ∈ 𝑃𝑆𝑡) given

x𝑢. Thus, the probability 𝑆𝑖(x𝑢) for x𝑢 of having the label 𝜆𝑖 is estimated through averaging all

base-classifiers scores in 𝑐-𝐻𝑡. Nevertheless, label distribution in multi-label classification is

highly imbalanced. An accurate decision threshold could be different from the traditional sin-

gle threshold 0.5 and may change also from one label to another. In the previous Chapters, we

have shown that threshold calibration can improve dramatically the multi-label performances,

especially when the calibration is in line with an objective multi-label loss function of interest.

Therefore, it is wise to consider the decision threshold for each label when selecting the final

predicted labelset of x𝑢 (𝑦x𝑢) and in estimating its confidence. This will firstly help to tackle the

imbalance label distribution problem and secondly to keep the confidence measure consistent

with an optimized performance metric. The confidence measure of an unlabeled instance 𝑥𝑢

given a label 𝜆𝑖 with a threshold 𝑡𝑖 can be defined as follows:

𝐶𝑜𝑛𝑓 𝑖(𝑆𝑖(x𝑢), 𝜏𝑖) =
|𝑆𝑖(x𝑢) − 𝜏𝑖|
𝛿(𝑆𝑖(x𝑢), 𝜏𝑖)

where 𝑆𝑖(x𝑢) is the estimation of the probability of having the label 𝜆𝑖 for x𝑢 and

𝛿(𝑧, 𝜏𝑖) =

{
𝜏𝑖 if 𝑧 ≤ 𝜏𝑖

1 − 𝜏𝑖 if 𝑧 > 𝜏𝑖

Our confidence measure is based on the margin between the decision threshold and the estimated

label score 𝑆𝑖(𝑥𝑢). Consequently, the confidence of a committee on predicting a labelset related

to a vector of thresholds 𝜏 = (𝜏1, 𝜏2,⋯ , 𝜏𝑞) is given by:

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑆(x𝑢), 𝜏) = 𝑚𝑖𝑛(𝐶𝑜𝑛𝑓 1, 𝐶𝑜𝑛𝑓 2,⋯ , 𝐶𝑜𝑛𝑓𝑞)
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Algorithm 5 Semi-supervised k-labelset model
Require:

Training Multi-label samples (𝐿); Unlabelled training examples (𝑈 ); Maximum number

of iterations (𝑚𝑎𝑥𝑖𝑡𝑒𝑟); Multi-label base-learner (ML-𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑟𝑛𝑒𝑟); k-labelsets size (𝑘);

Ensemble size (𝑇 ); Number of instances to label (𝑛); Multi-label loss function (ML-𝑙𝑜𝑠𝑠);

Set of feature space descriptors (𝐹 = {𝑓1,… , 𝑓𝑝})

1: 𝐻 ← ∅
2: 𝐹 𝑖𝑚𝑝(𝑖, 𝑗) = 1

𝑝
(for 𝑖 = {1,… , 𝑝} and 𝑗 = {1,… , 𝑞})

A- Initial Committee construction
3: for 𝑡 = 1 ∶ 𝑇 do
4: 𝑃𝑆𝑡 =← randomly draw 𝑘 labels from 

5: 𝐿
𝑏𝑎𝑔

𝑡
← bootstrap sample from 𝐿

6: 𝑈
𝑏𝑎𝑔

𝑡
← bootstrap sample from 𝑈

7: 𝐿𝑜𝑜𝑏
𝑡

← 𝐿∖𝐿𝑏𝑎𝑔

𝑡
; 𝑈𝑜𝑜𝑏

𝑡
← 𝑈∖𝑈𝑏𝑎𝑔

𝑡

8: ℎ𝑡 ← ML-𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑟𝑛𝑒𝑟(𝐿𝑏𝑎𝑔

𝑡
, 𝑃𝑆𝑡, 𝐹 𝑖𝑚𝑝)

9: 𝐻 ← 𝐻 ∪ ℎ𝑡

10: end for
11: 𝜏 ← ThresholdCalibration (𝐻,𝐿𝑜𝑜𝑏,ML-𝑙𝑜𝑠𝑠)

12: 𝐹 𝑖𝑚𝑝 ←MeasureFeatureImportance(𝐻,𝐿𝑜𝑜𝑏, 𝑈𝑜𝑜𝑏)

B- Co-committee identification
13: for 𝑡 = 1 ∶ 𝑇 do
14: 𝑐-𝐻𝑡 ← {ℎ𝑖 ∈ 𝐻|{𝑃𝑆𝑖 ∩ 𝑃𝑆𝑡} ≠ ∅ with 𝑡 ≠ 𝑖}
15: end for

C- Committee refinement
16: for 𝑖𝑡𝑒𝑟 = 1 ∶ 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do
17: for 𝑡 = 1 ∶ 𝑇 do
18: Π∗

𝑡
←SelectConfidantExamples(𝑐-𝐻𝑡, 𝑈

𝑏𝑎𝑔

𝑡
, 𝜏, 𝑛,ML-𝑙𝑜𝑠𝑠)

19: 𝑈
𝑏𝑎𝑔

𝑡
= 𝑈

𝑏𝑎𝑔

𝑡
∖Π∗

𝑡
; 𝐿

𝑏𝑎𝑔

𝑡
← 𝐿

𝑏𝑎𝑔

𝑡
∪ Π∗

𝑡

20: ℎ𝑡 ←ML-𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑟𝑛𝑒𝑟(𝐿𝑏𝑎𝑔

𝑡
, 𝑃𝑆𝑡, 𝐹 𝑖𝑚𝑝)

21: end for
22: 𝜏 ← ThresholdCalibration (𝐻,𝐿𝑜𝑜𝑏,ML-𝑙𝑜𝑠𝑠)

23: 𝐹 𝑖𝑚𝑝 ←MeasureFeatureImportance(𝐻,𝐿𝑜𝑜𝑏, 𝑈𝑜𝑜𝑏)

24: end for
25: return 𝐻 and 𝐹 𝑖𝑚𝑝
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Once the multi-label confidence measure is computed for all unlabeled examples in 𝑈
𝑏𝑎𝑔

𝑡
, the 𝑛

top-ranked labeled instances along with their corresponding labels are selected as a candidate

instances to expand the set of ℎ𝑡’s labeled samples.

Algorithm 6 Select Confident Examples
Require:

Concomitant ensemble (𝑐-𝐻𝑡); Unlabeled data set (𝑈
𝑏𝑎𝑔

𝑡
); Multi-label decision threshold (𝜏)

Number of most confident instances to select (𝑛); Multi-label loss function (ML-𝑙𝑜𝑠𝑠);

1: for each 𝑥𝑢 ∈ 𝑈
𝑏𝑎𝑔

𝑡
do

2: 𝑆(x𝑢) ← predict x𝑢 using its out-of-bag 𝑐-𝐻𝑡

3: 𝑦x𝑢 ← threshold 𝑆(x𝑢) using 𝜏

4: 𝐶𝑜𝑛𝑓 (x𝑢) ← Confidence(𝑆(x𝑢), 𝜏)

5: end for
6: Π𝑡 ← select the top 𝑛 ranked instances in 𝑈

𝑏𝑎𝑔

𝑡
along with their corresponding labels

7: Π∗
𝑡
←NoiseElimination(Π𝑡, ML-𝑙𝑜𝑠𝑠)

8: return Π∗
𝑡

One of the most important problems of semi-supervised learning resides in the noise brought by

unlabeled data. Explicitly, false-labelled instances accepted in the training set, serve as correct

instances and hurt the classification quality. Compared to traditional single-label learning, the

problem is more challenging in multi-label context since it affects a set of labels. In order to

reduce this effect, it is important to efficiently remove the noisy instances. In our approach, the

newly labeled instances go throughout a noise elimination procedure which take advantage from

the out-of-bag labeled data set 𝐿𝑜𝑜𝑏 of each committee member ℎ𝑡. The basic assumption is

that a correctly labeled instances should not hurt the classification performance of ℎ𝑡 regarding

the multi-label performance measure of interest (ML-𝑙𝑜𝑠𝑠). Here, this can be achieved by the

Backward-Froward search strategy. The detailed description of our multi-label noise elimination

procedure is given in Algorithm 7.

In detail, the search strategy starts by evaluating an unbiased performance of the committee

member ℎ𝑡 over the 𝐿𝑜𝑜𝑏 data when trained with the complete set of candidates Π𝑡 and compare

it to the original performance (without adding the newly labeled instances). If the model perfor-

mance are not improved, then the search strategy tries either to remove 𝑁𝑜𝑢𝑡 instances from Π𝑡

to be added to a set of potential noisy instances set Π𝑡, or to reintroduce 𝑁𝑖𝑛 instances from Π𝑡 to

the set of candidates instances Π𝑡 where 𝑁𝑜𝑢𝑡 > 𝑁𝑖𝑛. This process is repeated until the model’s

performance improves or remains steady. Due to the bootstrapping strategy on unlabeled data in

our framework, it is notable that some instances in 𝑈
𝑏𝑎𝑔

𝑡
may occur multiple times. In order to

guarantee the consistency of the learning process and an accurate labeling for unlabeled data, we

consider all the occurrences of the same instance in noise elimination step as a single example

in each iteration.
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Algorithm 7 Backward-Forward noise elimination
Require:

Committee member (ℎ𝑡); Out-of-bag labeled samples (𝐿𝑜𝑜𝑏
𝑡

) Set of new labeled instances

(Π𝑡); Multi-label loos function (ML-𝑙𝑜𝑠𝑠); Search rate (𝑟)

1: �̂� ← predict 𝐿𝑜𝑜𝑏
𝑡

using ℎ𝑡

2: 𝑒 ← ML-𝑙𝑜𝑠𝑠(�̂�, 𝐿𝑜𝑜𝑏
𝑡

)
3: ℎ∗ ← update ℎ𝑡 using 𝐿

𝑏𝑎𝑔

𝑡
; �̂�𝑡 and Π𝑡

4: �̂�∗ ← predict 𝐿𝑜𝑜𝑏
𝑡

using ℎ∗

5: 𝑒∗ ← ML-𝑙𝑜𝑠𝑠(�̂�∗, 𝐿𝑜𝑜𝑏
𝑡

)
6: 𝑓𝑙𝑎𝑔 ← 0; Π𝑜𝑢𝑡 ← ∅
7: while 𝑒 < 𝑒∗ do
8: if 𝑓𝑙𝑎𝑔 < 𝑟 then
9: 𝑓𝑙𝑎𝑔 ← 𝑓𝑙𝑎𝑔 + 1

10: 𝜋 ← randomly select a sample from Π𝑡

11: Π𝑜𝑢𝑡 ← Π𝑜𝑢𝑡 ∪ 𝜋

12: Π𝑡 ← Π𝑡∖𝜋
13: ℎ∗ ← update ℎ𝑡 using 𝐿

𝑏𝑎𝑔

𝑡
; �̂�𝑡 and Π𝑡

14: �̂�∗ ← predict 𝐿𝑜𝑜𝑏
𝑡

using ℎ∗

15: 𝑒∗ ← ML-𝑙𝑜𝑠𝑠(�̂�∗, 𝐿𝑜𝑜𝑏
𝑡

)
16: else
17: 𝑓𝑙𝑎𝑔 ← 0
18: 𝜋 ← randomly select a sample from Π𝑜𝑢𝑡

19: Π𝑡 ← Π𝑡 ∪ 𝜋

20: Π𝑜𝑢𝑡 ← Π𝑜𝑢𝑡∖𝜋
21: ℎ∗ ← update ℎ𝑡 using 𝐿

𝑏𝑎𝑔

𝑡
; �̂�𝑡 and Π𝑡

22: �̂�∗ ← predict 𝐿𝑜𝑜𝑏
𝑡

using ℎ∗

23: 𝑒∗ ← ML-𝑙𝑜𝑠𝑠(�̂�∗, 𝐿𝑜𝑜𝑏
𝑡

)
24: end if
25: end while
26: Π∗ ← Π𝑡

27: return Π∗
𝑡
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8.1.3 Out of Bag multi-label feature relevance measure

The key for designing an effective semi-supervised feature selection algorithm is to develop a

framework under which the feature importance is measured using both labeled and unlabeled

samples in a natural way. In our approach, the random projections of the label space method

is combined to bootstrapping. Actually, in each bootstrapped labeled and unlabeled set, almost

33% are left oob, i.e., they are not used for the construction of the corresponding model. We

refer to them as 𝐿𝑜𝑜𝑏
𝑡

and 𝑈𝑜𝑜𝑏
𝑡

. Thus, these patterns can be used to estimate an unbiased feature

importance. Our proposed feature selection measure is based on the assumption that a feature 𝑓

is relevant for the classification of a label 𝜆𝑖 if small variation over 𝑓 leads to a shifted predictions

over the label 𝜆𝑖. Thus, the importance of the feature 𝑓 can be measured by the number of cor-

rectly predicted instances that changes classification when the values of feature 𝑓 are randomly

permuted. Clearly, for the labeled examples, a label 𝜆𝑖 is well predicted, if the label assigned by

ℎ𝑡 corresponds to the real label. Its label confidence is set to 1. For unlabelled examples, the

right label is unknown. The idea in this work is to assume that an unlabelled example x𝑢 is "well

labeled" by ℎ𝑡 if the label given by ℎ𝑡 is the label given by the ensemble committee 𝐻 . In that

case, the label confidence will be set to 𝐶𝑜𝑛𝑓 𝑖(𝑆𝑖(x𝑢), 𝜏𝑖) as in the previous section.

The feature importance procedure works in two steps: the first step computes the feature im-

portance within the set of labeled instances 𝐿𝑜𝑜𝑏 whereas the second step focuses on unlabeled

instances 𝑈𝑜𝑜𝑏. Algorithm 8 summarizes the procedure. To estimate the importance of a feature

𝑓 , the values of the feature 𝑓 are randomly permuted over the 𝑜𝑜𝑏 samples in 𝐿 and 𝑈 . We refer

to these subsets by 𝐿𝑜𝑜𝑏
𝑡

and 𝑈𝑜𝑜𝑏
𝑡

. Over the both steps, each committee member ℎ𝑡 is used to

predict the k-labelsets of the new switched out-of-bag instances. Then, for each label 𝜆𝑖 in 𝑃𝑆𝑡

the sum of all the miss-labelled example’s confidence is computed. The latter value is summed

for each label 𝜆𝑖 over the 𝑇 classifiers in the committee and the resulting value is taken as the

global importance of the feature 𝑓 . The procedure is repeated for every feature 𝑓 ∈ {𝑓1,… , 𝑓𝑝}.

8.1.4 Why should our approach work

The proposed SSkC framework enjoys several advantages.

First, SSkC takes advantage from the unlabeled instances to generate a committee of diverse

classifiers. This characteristic improves the generation ability of the SSkC model compared to

supervised k-labelsets based approaches such as RAkEL[15] and CkMLC [81] or TREMLEC [79],

especially when the available labeled training set is small within a large feature space. Indeed,

a supervised k-labelsets based ensemble relies on the available training data for encouraging

diversity and enhancing base-classifier accuracy. So, if the size of the training set is as small as

for semi-supervised settings, performing an efficient LP base-classifier will be a hard task.
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Algorithm 8 Feature Importance Measure
Require:

Semi-supervised k-labelsets model 𝐻 ; Out-of-bag labelled samples (𝐿𝑜𝑜𝑏
𝑡

); Out-of-bag un-

labelled samples (𝑈𝑜𝑜𝑏
𝑡

); Multi-label decision threshold (𝜏); Set of feature space descriptors

(𝐹 = {𝑓1,… , 𝑓𝑝})

Return:
Label feature importance 𝐹 𝑖𝑚𝑝

Feature importance in 𝐿

1: 𝐼𝑚𝑝𝐿 ← 0
2: for 𝑓 ∈ 𝐹 do
3: for ℎ𝑡 ∈ 𝐻 do
4: �̂� ← predict 𝐿𝑜𝑜𝑏

𝑡
with ℎ𝑡

5: 𝐿𝑜𝑜𝑏
𝑡

← randomly permute 𝑓 in 𝐿𝑜𝑜𝑏
𝑡

6: �̂�𝑃𝑆𝑡
← predict 𝐿𝑜𝑜𝑏

𝑡
with ℎ𝑡

7: Increase 𝐼𝑚𝑝𝐿(𝑓, 𝑃𝑆𝑡) by the number of mismatches between �̂� and �̂�𝑃𝑆𝑡
over each

label

8: end for
9: end for

Feature importance in 𝑈

10: 𝐼𝑚𝑝𝑈 ← 0
11: for 𝑓 ∈ 𝐹 do
12: for ℎ𝑡 ∈ 𝐻 do
13: 𝑆 ← predict 𝑈𝑜𝑜𝑏

𝑡
with the out-of-bag 𝑐-𝐻𝑡

14: �̂� ← threshold 𝑆 using 𝜏

15: 𝐶𝑜𝑛𝑓 (𝑈𝑜𝑜𝑏
𝑡

) ← Confidence(𝑆, 𝜏)

16: 𝑈𝑜𝑜𝑏
𝑡

← randomly permute 𝑓 in 𝑈𝑜𝑜𝑏
𝑡

17: 𝑆𝑃𝑆𝑡
← predict 𝐿𝑜𝑜𝑏

𝑡
with ℎ𝑡

18: �̂�𝑃𝑆𝑡
← threshold 𝑆𝑃𝑆𝑡

using 𝜏

19: Increase 𝐼𝑚𝑝𝑈 (𝑓, 𝑃𝑆𝑡) by the label confidence 𝐶𝑜𝑛𝑓 of mismatches between �̂� and

�̂�𝑃𝑆𝑡
over each label

20: end for
21: end for

Global Feature importance
22: 𝐹 𝑖𝑚𝑝 ← 𝐼𝑚𝑝𝐿 + 𝐼𝑚𝑝𝑈

23: return 𝐹 𝑖𝑚𝑝
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Second, SSkC maintains the diversity within the ensemble committee throughout the co-training

process. This diversity is sustained both by the bagging over 𝑈 and also by allowing to each

base-classifier to focus only on the most relevant features for its k-labelsets which tackles the

curse of dimensionality problem in the input space.

Third, the objective loss function optimized by the SSkC is well defined and consistent through

every step of the ensemble construction (i.e. the aggregation of the committee prediction, the

confidence on unlabelled data and the feature importance evaluation). In addition, this cost func-

tion alignment remains unbiased through the use of out-of-bag and also allows to take into ac-

count the imbalance label representation in multi-label data.

8.2 Performances analysis

This section shows empirical results on benchmark multi-label data sets and compare SSkC

against state-of-the-art semi-supervised and supervised multi-label feature selection algorithms.

SSkC is compared with three other feature selection methods : (1) the greedy forward feature

selection algorithm PPT-MI which is a filter multi-label feature selection method based on mul-

tidimensional Mutual Information [109], (2) the Convex Semi-supervised multi-label Feature

Selection (CSFS) [123], and (3) the recent soft-constrained Laplacian score multi-label feature

selection method (S-CLS). Seven benchmark multi-label data sets, obtained from the Mulan’s
repository [87], were used to assess performance of SSkC. The selected data sets cover different

application domains: Biology, semantic scene analysis and music emotions. Table 8.1 summa-

rizes basic statistics of the data sets: the number of examples N; the number of features M, the

number of labels q; the Label Cardinality Card= 1
𝑁

∑𝑁

𝑖=1 |𝑌𝑖|, which is the average number of la-

bels associated with each example; the Label Density LD= 1
𝑁

∑𝑁

𝑖=1
|𝑌𝑖|
𝑄

, which is the normalized

Card.

TABLE 8.1: Description of the multi-label data sets used in the experiments.

Data Domain N M q Card LD
Business Yahoo-Text 5000 438 30 1.588 0.053

Education Yahoo-Text 5000 550 33 1.460 0.044

Emotions Music 593 72 6 1.869 0.311

Entertainment Yahoo-Text 5000 640 21 1.420 0.068

Health Yahoo-Text 5000 612 32 1.662 0.052

Scene Image 2407 294 6 1.074 0.179

Yeast Biology 2417 103 14 4.237 0.303
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8.2.1 Evaluation framework

To make fair comparisons, parameters for each algorithm were set as suggested in the literature

for yielding the most satisfactory performances. For our SSkC approach, the size of k-labelsets

𝑘 was set to 3 as in our gold standard ML ensemble approach RAkEL [15] and the classregtree
Matlab implementation of decision tree is used for training the LP base-classifiers. The commit-

tee size 𝑇 was computed using the following formula: 𝑇 = 10×𝑐𝑒𝑖𝑙(log(𝛼)∕ log(1−1∕𝑘)). This

formula ensures that each label is drawn 10 times at a confidence level of 𝛼 = 1%.

Regarding the number of iterations 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 and the sample size 𝑛 in our approach SSkC, they

are both set to 10. For PPT-MI, the numeric data sets are discretized using the Equal width

interval scheme, as suggested by the authors in [111]. The regularization parameter 𝜇 of the

CSFS was tuned in the range of {10−6, 10−4, 10−2, 100, 102, 104, 106} so to report the best results

as in [123]. In S-CLS the regularization parameter was set as suggested by the authors [124] and

the k-neighborhood parameter is set to 10 for all data sets.

Moreover, the 2-fold cross validation is used to evaluate the performance of the compared meth-

ods. To get reliable statistics over the performance metrics, experiments were repeated 25 times.

So, the results obtained were averaged over 50 runs. To simulate a semi-supervised context in

each iteration, we randomly select 10% of instances from the training fold as labeled data, while

the remaining training instances are used as unlabelled data.

In order to assess the quality of a feature subset obtained with the aforementioned semi-supervised

procedures, we train the semi-supervised algorithm TRAM [145] using the labeled data and the

unlabelled data, and evaluate its performances on the test data according to six multi-label mea-

sures, Subset 0/1 loss,Jaccard loss,Instance-F1 loss,Micro-F1 loss, Micro-F1 loss and Hamming
loss. The obtained measure is taken as the score for the feature subset. We preferred to assess

the feature selection quality over a semi-supervised algorithm because it reflects the condition

in which these variables are supposed to be used. Moreover, it is worth noting that our approach

SSkC is performed six runs, each of them using one evaluation metric as an objective multi-label

performance measure of interest (ML-𝑙𝑜𝑠𝑠) in the threshold calibration method.

8.2.2 Results
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FIGURE 8.1: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Business data set.
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(a) Subset 0/1 loss
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(b) Jaccard loss
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(c) Instance-F1 loss
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(d) Micro-F1 loss
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(e) Macro-F1 loss
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FIGURE 8.2: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Education data set.
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(b) Jaccard loss
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(c) Instance-F1 loss
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(d) Micro-F1 loss
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(e) Macro-F1 loss
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FIGURE 8.3: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Emotions data set.
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(d) Micro-F1 loss
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(e) Macro-F1 loss
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FIGURE 8.4: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Entertainment data set.
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(d) Micro-F1 loss
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FIGURE 8.5: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Health data set.
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(b) Jaccard loss
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(d) Micro-F1 loss
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FIGURE 8.6: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Scene data set.
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(b) Jaccard loss
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(c) Instance-F1 loss
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(d) Micro-F1 loss
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FIGURE 8.7: Performances metrics averaged over the 25x2 runs vs. different numbers of se-

lected features on Yeast data set.
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(b) Jaccard loss
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(c) Instance-F1 loss
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(d) Micro-F1 loss
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Figures 8.1-8.7 plot the classification performance for each data set in terms of Subset 0/1 loss,

Jaccard loss, Instance-F1 loss, Micro-F1 loss, Micro-F1 loss and Hamming loss averaged over

the 25x2 runs of the above compared approaches against the 30 most important features (as

used in [124]). As expected, we clearly observe that the more features we select, the better
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performances we can achieve and that all curves tend to converge as more features are included

in the input of the TRAM classifier. Moreover, it may also be observed that, SSkC outperforms

the other methods by generally achieving the lowest values over all metrics, except for Emotions

(respectively Health) data set for where the PPT-MI (respectively CSFS) approach performs the

best. This indicates the effectiveness of our strategy that includes the loss function consistency

throughout different stages of SSkC (i.e. committee aggregation, instance confidence measure

evaluation and feature importance evaluation) to increase dramatically the classification quality

in terms of a multi-label performance measure of interest.

The performance of SSkC generally increases swiftly at the beginning (the number of selected

feature is small) and slows down at the end. This characteristic suggests that SSkC ranks the

features properly and that a classifier can achieve a very good classification accuracy with the

top 10 or 12 features while the other methods need more features to achieve comparable results.

TABLE 8.2: Subset 0/1 loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .604±.080 .769±.061∙ .695±.139∙ .752±.075∙ .761±.061∙
Education .819±.051 .880±.024∙ .836±.050∙ .853±.052∙ .889±.027∙
Emotions .859±.013 .919±.016∙ .887±.028∙ .853±.016◦ 0.92±.007∙
Entertainment .805±.040 .922±.031∙ .854±.041∙ .881±.019∙ .839±.014∙
Health .863±.035 .908±.019∙ .803±.067◦ .923±.014∙ .907±.012∙
Scene .748±.005 .829±.014∙ .761±.013∙ .781±.006∙ .771±.029∙
Yeast .850±.021 .881±.018∙ .879±.025∙ .889±.026∙ .913±.012∙

TABLE 8.3: Jaccard loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .400±.086 .529±.180∙ .483±.177∙ .495±.151∙ .539±.120∙
Education .749±.065 .820±.035∙ .776±.061∙ .793±.068∙ .823±.045∙
Emotions .609±.006 .713±.068∙ .645±.033∙ .595±.017◦ .716±.050∙
Entertainment .745±.029 .883±.045∙ .802±.059∙ .825±.022∙ .759±.021∙
Health .672±.077 .719±.057∙ .650±.079◦ .707±.064∙ .725±.026∙
Scene .733±.004 .816±.015∙ .747±.013∙ .767±.006∙ .757±.029∙
Yeast .517±.022 .538±.023∙ .540±.033∙ .543±.024∙ .567±.015∙

For the sake of completeness, we also averaged the performances over the different numbers of

selected features for each multi-label feature selection algorithm. Tables 8.2-8.7 report the av-

eraged classification performances of the compared algorithms over all considered performance

metrics. Algorithms performances are tabulated in terms of averaged values as well as standard
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TABLE 8.4: Instance-F1 loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .326±.086 .441±.214∙ .414±.200∙ .407±.177∙ .461±.142∙
Education .722±.070 .797±.039∙ .752±.065∙ .770±.075∙ .798±.052∙
Emotions .513±.008 .629±.090∙ .550±.032∙ .497±.019◦ .632±.070∙
Entertainment .721±.027 .869±.050∙ .783±.066∙ .805±.025∙ .729±.024∙
Health .599±.095 .646±.074∙ .592±.085◦ .623±.083∙ .654±.035∙
Scene .728±.004 .811±.015∙ .743±.013∙ .763±.006∙ .753±.029∙
Yeast .403±.020 .419±.022∙ .423±.035∙ .424±.023∙ .445±.015∙

TABLE 8.5: Micro-F1 loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .359±.060 .426±.143∙ .421±.168∙ .425±.184∙ .450±.133∙
Education .727±.061 .800±.037∙ .751±.060∙ .775±.066∙ .801±.049∙
Emotions .496±.007 .610±.071∙ .535±.034∙ .484±.019◦ .613±.052∙
Entertainment .715±.022 .840±.062∙ .766±.063∙ .791±.024∙ .738±.019∙
Health .560±.069 .649±.062∙ .597±.067∙ .631±.059∙ .660±.031∙
Scene .729±.004 .807±.009∙ .744±.012∙ .763±.006∙ .753±.026∙
Yeast .390±.019 .406±.021∙ .409±.031∙ .411±.021∙ .431±.014∙

TABLE 8.6: Macro-F1 loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .338±.007 .450±.012∙ .448±.020∙ .446±.016∙ .455±.011∙
Education .433±.016 .466±.007∙ .444±.016∙ .453±.014∙ .456±.010∙
Emotions .543±.010 .672±.054∙ .586±.038∙ .530±.021◦ .671±.033∙
Entertainment .688±.012 .753±.016∙ .717±.023∙ .736±.008∙ .692±.006∙
Health .505±.020 .524±.019∙ .504±.014◦ .529±.019∙ .543±.002∙
Scene .778±.003 .866±.008∙ .792±.011∙ .813±.007∙ .806±.018∙
Yeast .483±.003 .494±.005∙ .505±.007∙ .505±.006∙ .522±.006∙

deviation on each data set. The lower the value of the considered metric, the better the algo-

rithm performance is. To examine whether the results are statistically significant, paired t-tests

were carried out at 5% significance level. The marker ’∙∕◦’ suggests that SSkC is statistically

superior/inferior to others. Otherwise, a tie is counted and no marker is placed.

Again, SSkC is distinguished from other feature selection methods by achieving, in average,

the best performances. This result confirms the ability of our permutation feature importance
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TABLE 8.7: Hamming loss averaged over the 30 most important features. The marker ’∙∕◦’

indicates that SSkC is significantly better/worse, at a level of significance of 5%.

Data set SSkC S-CLS CSFS PPT-MI PMU

Business .035±.004 .043±.003∙ .038±.006∙ .040±.004∙ .044±.003∙
Education .056±.002 .063±.002∙ .056±.003∙ .058±.004∙ .063±.004∙
Emotions .317±.005 .362±.009∙ .338±.019∙ .308±.011◦ .364±.003∙
Entertainment .080±.004 .087±.005∙ .088±.006∙ .087±.007∙ .098±.002∙
Health .058±.001 .067±.003∙ .056±.004◦ .066±.002∙ .069±.002∙
Scene .253±.002 .277±.006∙ .258±.004∙ .264±.002∙ .259±.004∙
Yeast .230±.012 .240±.013∙ .239±.013∙ .243±.013∙ .255±.009∙

measure to rank the relevant features accurately compared to a fully supervised approach like

PMU, due to efficiently exploiting the information from the unlabelled data. Overall, SSkC

compares favorably to the other two semi-supervised algorithms that appeared recently in the

literature. However, some degradation are reported in performances of SSkC with Emotions

data set which is relatively small data set where features have equivalent importance.

8.3 Chapter summary

This Chapter extends our k-labelsets based ensemble method CkMLC [81] to propose and ex-

perimentally evaluate a new semi-supervised multi-label feature selection approach based on the

ensemble paradigm called SSkC. The proposed method joins ideas from co-training style mod-

els and multi-label k-labelsets committee construction in tandem with an inner Random Forest

based out-of-bag feature importance evaluation. The three key points are combined in the light

of the loss function consistency throughout the different stages of the proposed semi-supervised

ensemble approach (i.e. committee aggregation, instance confidence measure evaluation and

feature importance evaluation). The proposed model differs in the way both labeled and unla-

belled out-of-bag instances are used in the learning model and also to evaluate the relevance of

the features.

Empirical results on multi-label benchmark data sets indicated that SSkC leads to significant

improvement over recent state-of-the-art supervised and semi-supervised multi-label feature se-

lection algorithms. The proposed method also shows promise to deal with different multi-label

data set domains.
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Conclusion

In this thesis, we addressed the problem of multi-label learning where each instance can be

associated with multiple target labels simultaneously. We formulated the multi-label learning

as an ensemble learning problem to provide satisfactory solutions for both classification and

feature selection tasks. First, we tackled the problem of loss consistency in ensemble multi-label

models, especially in the base-classifier combination step. Second, we addressed the multi-label

feature selection task, which consists of removing irrelevant and/or redundant features, in both

supervised and semi-supervised contexts.

Our main contributions are :

1. A novel strategy to build and aggregate k-labelsets based committee in line with an objec-

tive multi-label loss function of interest presented in Chapter 4, competitive and able to

achieves good performances compared to the state-of-the-art approaches.

2. A new strategy to combine the base-classifier predictions in conjunction with a new out-

of-bag thresholding strategy for ensemble multi-label models. The proposed combination

scheme provides a new perspective on the ensemble multi-label mechanisms which inves-

tigates the connection between the loss function being optimized by the base classifiers

and the loss of the ensemble model. It extends the applicability of ensemble multi-label

models with various performance metrics by using (for each specific metric) the adequate

combination scheme coupled with an ensemble-based thresholding strategy (if necessary).

3. Three new multi-label feature importance evaluation approaches based on the Random

Forest paradigm. These variants optimize different loss metrics depending on the way the

label dependence is estimated. Furthermore, we consider the difficult problem of identi-

fying the important features when only a small set of labeled examples is available and

propose a new semi-supervised multi-label feature importance evaluation method which

129
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combines ideas from co-training, random k-labelsets ensemble learning and permutation-

based out-of-bag feature importance assessment.

In the last few years, dramatic decreases in generalization error in multi-label classification have

come about through the growing and combining of an ensemble of diverse multi-label models

(e.g. the k-labelsets method and ECC). While diversity is an important factor in this success, care

shoud be taken when encouraging diversity in the multi-label context as it may easily hurt the

individual performances of multi-label base-classifiers. Furthermore, classical diversity gen-

eration methods such as 𝑏𝑎𝑔𝑔𝑖𝑛𝑔 - despite being efficient in binary classification - is not well

adapted to imbalanced labels distributions in the multi-label context. Thus we found it neces-

sary to investigate the extent to which diversity it is beneficial to the predictive performance of

the ensemble, either individually during the training of the base-classifiers or globally when re-

combining the predictions. The proper manner to enforce diversity was discussed in Chapters

4 and 5, both at the model level and at the combination level, but also in the ensemble feature

selection frameworks, either supervised or semi-supervised, presented in Chapter 8.

In addition to this work, we also proposed a novel ensemble multi-label classification method

for the specific problem of text categorization [146]. The proposed model termed Multi Label
Rotation Forest, is based on a combination of two powerful techniques: 1) Rotation Forest [147],

one of the most powerful ensemble methods for binary classification problems as shown in ex-

tensive experimental studies [148, 149] over a wide range of data sets, and 2) Latent semantic

indexing (LSI) an efficient indexing and retrieval method that uses a rank-reduced singular value

decomposition (SVD) to identify patterns in the relationships between the words (or terms) and

the (latent) concepts. The key idea is to apply the LSI on small random subsets of the vocabulary

in order to build a collection of training sets with distinct samples and concept representations.

Individual accuracy and diversity within the ensemble are promoted simultaneously. Diversity

is promoted through the different splits of the set of words that lead to different orthogonal pro-

jections on lower dimensional subspaces, namely the space of concepts. Accuracy is promoted

through the underlying latent semantic structure in the text uncovered by LSI. The LSI also re-

duces noise and other undesirable artifacts of the original space.

An interesting follow-up to our work would be to extend our loss function consistency analysis

and feature selection to ensemble multi-target regression problems [150–152]. While a plethora

of approaches have been proposed to deal with the challenging task of multi-output regression,

the topic of feature selection in multi-output regression is rather unexplored in the literature.
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Appendix

A.1 Details of the algorithms performances

This Section provides the tables that present the results of the experiments for each ensemble

multi-label method and its variants on 20 multi-label data sets according to the six considered

multi-label loss metric : Subset 0/1 loss, Jaccard loss, Instance-F1 loss, Micro-F1 loss, Macro-
F1 loss and Hamming loss.

131



Appendix A Appendix 132

TABLE A.1: Ensemble multi-label variant performances in term of 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 (Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .801 ± .005 .830 ± .008 .819 ± .009 .798 ± .006 .942 ± .004 .805 ± .044 .819 ± .045

𝑃𝐶 .800 ± .005 .648 ± .005 .788 ± .011 .660 ± .006 .940 ± .004 — —

𝐿𝐶𝑆−𝑇 .789 ± .002 .702 ± .005 .747 ± .010 .743 ± .008 .882 ± .013 .944 ± .003 .944 ± .006

𝐿𝐶𝑀−𝑇 .786 ± .005 .701 ± .005 .745 ± .004 .738 ± .007 .879 ± .013 .748 ± .064 .747 ± .067

Birds

𝐿𝐶 .501 ± .011 .520 ± .021 .499 ± .019 .507 ± .016 .528 ± .023 .533 ± .046 .537 ± .043

𝑃𝐶 .503 ± .014 .495 ± .018 .497 ± .021 .516 ± .016 .528 ± .023 — —

𝐿𝐶𝑆−𝑇 .506 ± .014 .489 ± .014 .492 ± .021 .511 ± .016 .511 ± .019 .609 ± .020 .564 ± .025

𝐿𝐶𝑀−𝑇 .509 ± .017 .488 ± .017 .492 ± .026 .510 ± .016 .516 ± .022 .533 ± .048 .529 ± .039

Business

𝐿𝐶 .469 ± .010 .442 ± .009 .444 ± .009 .462 ± .009 .449 ± .009 .490 ± .095 .478 ± .104

𝑃𝐶 .462 ± .012 .431 ± .009 .441 ± .010 .447 ± .010 .448 ± .009 — —

𝐿𝐶𝑆−𝑇 .468 ± .011 .442 ± .009 .444 ± .009 .453 ± .007 .450 ± .008 .781 ± .047 .674 ± .109

𝐿𝐶𝑀−𝑇 .458 ± .011 .432 ± .008 .446 ± .011 .452 ± .010 .450 ± .009 .490 ± .096 .473 ± .056

Computers

𝐿𝐶 .672 ± .008 .674 ± .006 .664 ± .005 .648 ± .006 .697 ± .010 .672 ± .008 .671 ± .005

𝑃𝐶 .672 ± .007 .558 ± .004 .633 ± .005 .565 ± .007 .693 ± .010 — —

𝐿𝐶𝑆−𝑇 .665 ± .011 .611 ± .007 .623 ± .004 .620 ± .005 .657 ± .006 .887 ± .006 .876 ± .005

𝐿𝐶𝑀−𝑇 .650 ± .010 .599 ± .006 .617 ± .006 .627 ± .007 .657 ± .005 .624 ± .008 .622 ± .009

Education

𝐿𝐶 .794 ± .004 .853 ± .003 .835 ± .005 .816 ± .004 .891 ± .007 .800 ± .004 .820 ± .004

𝑃𝐶 .792 ± .003 .654 ± .005 .780 ± .008 .667 ± .006 .889 ± .007 — —

𝐿𝐶𝑆−𝑇 .780 ± .005 .713 ± .003 .759 ± .010 .751 ± .005 .791 ± .010 .957 ± .005 .963 ± .005

𝐿𝐶𝑀−𝑇 .774 ± .004 .716 ± .004 .742 ± .008 .740 ± .004 .786 ± .011 .728 ± .007 .726 ± .005

Emotions

𝐿𝐶 .720 ± .025 .699 ± .028 .688 ± .017 .689 ± .024 .877 ± .023 .786 ± .021 .721 ± .025

𝑃𝐶 .720 ± .017 .648 ± .016 .679 ± .013 .663 ± .026 .872 ± .022 — —

𝐿𝐶𝑆−𝑇 .727 ± .023 .662 ± .026 .693 ± .020 .695 ± .019 .804 ± .022 .987 ± .007 .910 ± .043

𝐿𝐶𝑀−𝑇 .717 ± .021 .676 ± .021 .697 ± .019 .692 ± .019 .812 ± .020 .787 ± .026 .772 ± .026

Enron

𝐿𝐶 .886 ± .012 .885 ± .008 .880 ± .006 .875 ± .010 .919 ± .017 .876 ± .007 .887 ± .005

𝑃𝐶 .890 ± .014 .834 ± .008 .870 ± .009 .854 ± .013 .918 ± .015 — —

𝐿𝐶𝑆−𝑇 .885 ± .013 .869 ± .009 .867 ± .009 .874 ± .010 .878 ± .010 .947 ± .006 .940 ± .015

𝐿𝐶𝑀−𝑇 .855 ± .009 .837 ± .009 .842 ± .009 .853 ± .010 .898 ± .011 .865 ± .009 .869 ± .010

Entertainment

𝐿𝐶 .689 ± .008 .711 ± .004 .699 ± .007 .674 ± .007 .899 ± .014 .668 ± .007 .677 ± .006

𝑃𝐶 .687 ± .009 .535 ± .004 .662 ± .008 .550 ± .006 .899 ± .014 — —

𝐿𝐶𝑆−𝑇 .689 ± .008 .597 ± .003 .648 ± .005 .631 ± .007 .831 ± .035 .875 ± .007 .886 ± .006

𝐿𝐶𝑀−𝑇 .685 ± .007 .599 ± .008 .646 ± .007 .629 ± .010 .829 ± .035 .623 ± .010 .621 ± .010

Flags

𝐿𝐶 .840 ± .026 .790 ± .019 .811 ± .026 .819 ± .024 .936 ± .028 .803 ± .041 .795 ± .032

𝑃𝐶 .819 ± .022 .746 ± .030 .783 ± .027 .756 ± .020 .944 ± .024 — —

𝐿𝐶𝑆−𝑇 .834 ± .031 .798 ± .026 .811 ± .026 .819 ± .024 .942 ± .019 .987 ± .007 .951 ± .029

𝐿𝐶𝑀−𝑇 .835 ± .038 .818 ± .028 .836 ± .032 .829 ± .034 .948 ± .030 .825 ± .062 .797 ± .034

Health

𝐿𝐶 .600 ± .007 .596 ± .006 .574 ± .005 .548 ± .004 .741 ± .047 .571 ± .006 .563 ± .005

𝑃𝐶 .598 ± .008 .490 ± .008 .546 ± .007 .503 ± .005 .733 ± .052 — —

𝐿𝐶𝑆−𝑇 .600 ± .007 .545 ± .006 .551 ± .008 .548 ± .004 .663 ± .033 .885 ± .008 .782 ± .098

𝐿𝐶𝑀−𝑇 .595 ± .006 .517 ± .008 .543 ± .009 .547 ± .006 .663 ± .035 .551 ± .005 .547 ± .005
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Complementary of Table A.1

Ensemble multi-label variant performances in term of 𝑆𝑢𝑏𝑠𝑒𝑡 0∕1 𝑙𝑜𝑠𝑠 (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .591 ± .008 .606 ± .010 .585 ± .011 .552 ± .010 .632 ± .014 .650 ± .022 .610 ± .011

𝑃𝐶 .598 ± .009 .453 ± .014 .561 ± .012 .472 ± .010 .619 ± .018 — —

𝐿𝐶𝑆−𝑇 .581 ± .009 .510 ± .011 .546 ± .013 ..52 ± .013 .564 ± .010 .896 ± .010 .863 ± .064

𝐿𝐶𝑀−𝑇 .587 ± .014 .511 ± .015 .547 ± .015 .525 ± .012 .573 ± .014 .644 ± .019 .629 ± .023

Medical

𝐿𝐶 .338 ± .026 .552 ± .022 .640 ± .014 .334 ± .017 .458 ± .024 .314 ± .015 .322 ± .019

𝑃𝐶 .332 ± .028 .393 ± .018 .630 ± .017 .326 ± .010 .450 ± .025 — —

𝐿𝐶𝑆−𝑇 .345 ± .025 .448 ± .012 .442 ± .014 .336 ± .015 .409 ± .012 .475 ± .018 .441 ± .051

𝐿𝐶𝑀−𝑇 .349 ± .023 .366 ± .009 .385 ± .013 .351 ± .020 .414 ± .013 .317 ± .015 .315 ± .022

Recreation

𝐿𝐶 .755 ± .004 .795 ± .006 .787 ± .004 .749 ± .007 .911 ± .009 .743 ± .006 .754 ± .006

𝑃𝐶 .756 ± .006 .591 ± .007 .776 ± .005 .605 ± .007 .911 ± .009 — —

𝐿𝐶𝑆−𝑇 .754 ± .004 .677 ± .008 .718 ± .005 .687 ± .007 .863 ± .009 .896 ± .006 .898 ± .006

𝐿𝐶𝑀−𝑇 .761 ± .007 .660 ± .007 .728 ± .007 .687 ± .006 .862 ± .009 .690 ± .006 .689 ± .004

Reference

𝐿𝐶 .637 ± .007 .661 ± .007 .657 ± .005 .636 ± .005 .821 ± .011 .630 ± .005 .635 ± .006

𝑃𝐶 .638 ± .007 .489 ± .012 .625 ± .005 .497 ± .007 .821 ± .011 — —

𝐿𝐶𝑆−𝑇 .621 ± .005 .545 ± .012 .556 ± .009 .575 ± .008 .645 ± .024 .798 ± .008 .792 ± .007

𝐿𝐶𝑀−𝑇 .596 ± .008 .530 ± .013 .553 ± .007 .559 ± .006 .644 ± .024 .567 ± .005 .561 ± .005

Scene

𝐿𝐶 .461 ± .012 .480 ± .010 .456 ± .011 .431 ± .012 .402 ± .015 .513 ± .018 .481 ± .012

𝑃𝐶 .467 ± .012 .275 ± .009 .423 ± .011 .302 ± .008 .381 ± .016 — —

𝐿𝐶𝑆−𝑇 .422 ± .011 .366 ± .007 .378 ± .007 .374 ± .012 .368 ± .012 .885 ± .013 .847 ± .073

𝐿𝐶𝑀−𝑇 .432 ± .013 .356 ± .010 .382 ± .009 .375 ± .011 .363 ± .011 .506 ± .018 .494 ± .018

Science

𝐿𝐶 .822 ± .004 .883 ± .005 .871 ± .004 .841 ± .005 .936 ± .004 .817 ± .005 .839 ± .007

𝑃𝐶 .821 ± .003 .653 ± .008 .850 ± .007 .662 ± .005 .935 ± .004 — —

𝐿𝐶𝑆−𝑇 .804 ± .006 .736 ± .005 .772 ± .005 .745 ± .008 .846 ± .009 .940 ± .006 .938 ± .007

𝐿𝐶𝑀−𝑇 .790 ± .005 .724 ± .007 .765 ± .004 .748 ± .010 .844 ± .009 .736 ± .005 .740 ± .005

Slashdot

𝐿𝐶 .294 ± .010 .293 ± .010 .294 ± .008 .297 ± .012 .360 ± .014 .338 ± .074 .311 ± .074

𝑃𝐶 .295 ± .009 .293 ± .009 .294 ± .007 .299 ± .011 .360 ± .014 — —

𝐿𝐶𝑆−𝑇 .297 ± .012 .293 ± .011 .294 ± .008 .295 ± .012 .364 ± .012 .556 ± .058 .371 ± .018

𝐿𝐶𝑀−𝑇 .297 ± .011 .293 ± .011 .290 ± .008 .299 ± .012 .362 ± .012 .336 ± .075 .313 ± .030

Social

𝐿𝐶 .535 ± .011 .512 ± .005 .511 ± .005 .503 ± .009 .610 ± .015 .517 ± .009 .501 ± .007

𝑃𝐶 .534 ± .012 .415 ± .005 .488 ± .005 .425 ± .010 .595 ± .014 — —

𝐿𝐶𝑆−𝑇 .535 ± .010 .467 ± .006 .484 ± .006 .479 ± .010 .493 ± .010 .728 ± .011 .745 ± .015

𝐿𝐶𝑀−𝑇 .522 ± .011 .448 ± .007 .483 ± .006 .481 ± .008 .495 ± .009 .496 ± .008 .491 ± .009

Society

𝐿𝐶 .741 ± .006 .748 ± .004 .739 ± .004 .723 ± .005 .813 ± .016 .753 ± .008 .745 ± .007

𝑃𝐶 .744 ± .005 .657 ± .008 .725 ± .007 .673 ± .008 .812 ± .016 — —

𝐿𝐶𝑆−𝑇 .741 ± .006 .695 ± .008 .707 ± .005 .698 ± .007 .702 ± .010 .937 ± .003 .927 ± .006

𝐿𝐶𝑀−𝑇 .711 ± .008 .687 ± .008 .704 ± .007 .695 ± .007 .702 ± .010 .702 ± .009 .695 ± .009

Yeast

𝐿𝐶 .846 ± .009 .856 ± .010 .841 ± .006 .822 ± .007 .854 ± .005 .843 ± .011 .854 ± .010

𝑃𝐶 .875 ± .006 .743 ± .009 .803 ± .011 .753 ± .009 .840 ± .006 — —

𝐿𝐶𝑆−𝑇 .844 ± .007 .810 ± .009 .818 ± .007 .823 ± .008 .809 ± .009 .967 ± .005 .941 ± .010

𝐿𝐶𝑀−𝑇 .829 ± .012 .803 ± .011 .813 ± .010 .807 ± .006 .810 ± .010 .815 ± .008 .811 ± .006
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TABLE A.2: Ensemble multi-label variant performances in term of Jaccard loss (Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .730 ± .008 .797 ± .009 .777 ± .009 .755 ± .007 .921 ± .005 .866 ± .013 .761 ± .011

𝑃𝐶 .729 ± .007 .587 ± .006 .745 ± .012 .591 ± .005 .920 ± .005 — —

𝐿𝐶𝑆−𝑇 .684 ± .002 .599 ± .006 .650 ± .003 .623 ± .006 .845 ± .014 .647 ± .024 .714 ± .016

𝐿𝐶𝑀−𝑇 .687 ± .008 .615 ± .008 .637 ± .004 .651 ± .006 .848 ± .014 .658 ± .021 .689 ± .018

Birds

𝐿𝐶 .428 ± .015 .503 ± .022 .452 ± .018 .460 ± .013 .512 ± .023 .481 ± .019 .448 ± .016

𝑃𝐶 .429 ± .016 .446 ± .024 .451 ± .021 .454 ± .018 .511 ± .024 — —

𝐿𝐶𝑆−𝑇 .436 ± .012 .404 ± .015 .406 ± .018 .445 ± .016 .467 ± .020 .454 ± .031 .448 ± .016

𝐿𝐶𝑀−𝑇 .428 ± .023 .408 ± .015 .400 ± .022 .443 ± .016 .466 ± .016 .428 ± .019 .448 ± .016

Business

𝐿𝐶 .309 ± .006 .297 ± .006 .296 ± .006 .299 ± .006 .302 ± .005 .297 ± .003 .375 ± .025

𝑃𝐶 .306 ± .008 .292 ± .007 .297 ± .006 .300 ± .007 .302 ± .005 — —

𝐿𝐶𝑆−𝑇 .311 ± .008 .289 ± .005 .285 ± .004 .299 ± .006 .294 ± .005 .325 ± .045 .374 ± .012

𝐿𝐶𝑀−𝑇 .297 ± .008 .282 ± .004 .288 ± .003 .298 ± .007 .295 ± .005 .309 ± .023 .312 ± .052

Computers

𝐿𝐶 .598 ± .008 .617 ± .006 .606 ± .005 .586 ± .006 .630 ± .012 .633 ± .028 .620 ± .006

𝑃𝐶 .598 ± .008 .486 ± .003 .571 ± .006 .490 ± .007 .626 ± .013 — —

𝐿𝐶𝑆−𝑇 .554 ± .014 .515 ± .004 .524 ± .011 .516 ± .006 .560 ± .006 .542 ± .009 .624 ± .004

𝐿𝐶𝑀−𝑇 .556 ± .010 .503 ± .005 .512 ± .004 .532 ± .006 .560 ± .006 .543 ± .013 .593 ± .006

Education

𝐿𝐶 .734 ± .003 .828 ± .004 .802 ± .004 .781 ± .005 .872 ± .008 .819 ± .011 .789 ± .006

𝑃𝐶 .732 ± .003 .593 ± .008 .743 ± .008 .601 ± .008 .872 ± .008 — —

𝐿𝐶𝑆−𝑇 .671 ± .004 .612 ± .004 .649 ± .009 .626 ± .005 .739 ± .015 .627 ± .005 .714 ± .004

𝐿𝐶𝑀−𝑇 .670 ± .007 .621 ± .006 .631 ± .005 .642 ± .003 .746 ± .013 .640 ± .012 .677 ± .006

Emotions

𝐿𝐶 .482 ± .018 .488 ± .021 .472 ± .014 .460 ± .022 .681 ± .030 .600 ± .043 .557 ± .008

𝑃𝐶 .483 ± .017 .415 ± .015 .451 ± .010 .428 ± .026 .671 ± .029 — —

𝐿𝐶𝑆−𝑇 .447 ± .012 .425 ± .012 .429 ± .014 .430 ± .021 .537 ± .013 .519 ± .033 .521 ± .008

𝐿𝐶𝑀−𝑇 .450 ± .013 .425 ± .006 .421 ± .013 .437 ± .019 .545 ± .015 .514 ± .022 .506 ± .019

Enron

𝐿𝐶 .557 ± .016 .613 ± .003 .569 ± .006 .567 ± .011 .648 ± .020 .627 ± .019 .608 ± .003

𝑃𝐶 .594 ± .014 .595 ± .007 .600 ± .008 .608 ± .006 .647 ± .020 — —

𝐿𝐶𝑆−𝑇 .531 ± .011 .530 ± .004 .513 ± .009 .533 ± .003 .573 ± .011 .535 ± .009 .608 ± .008

𝐿𝐶𝑀−𝑇 .525 ± .011 .524 ± .007 .510 ± .004 .531 ± .008 .574 ± .011 .555 ± .012 .582 ± .005

Entertainment

𝐿𝐶 .625 ± .008 .689 ± .005 .666 ± .008 .634 ± .008 .889 ± .015 .843 ± .024 .643 ± .007

𝑃𝐶 .625 ± .008 .492 ± .006 .629 ± .009 .496 ± .007 .889 ± .015 — —

𝐿𝐶𝑆−𝑇 .600 ± .012 .519 ± .006 .573 ± .006 .527 ± .010 .805 ± .036 .542 ± .014 .645 ± .006

𝐿𝐶𝑀−𝑇 .603 ± .009 .526 ± .008 .551 ± .008 .551 ± .010 .810 ± .034 .555 ± .008 .601 ± .008

Flags

𝐿𝐶 .415 ± .020 .391 ± .016 .394 ± .017 .398 ± .017 .492 ± .024 .489 ± .035 .434 ± .011

𝑃𝐶 .422 ± .020 .416 ± .022 .408 ± .017 .416 ± .011 .497 ± .020 — —

𝐿𝐶𝑆−𝑇 .394 ± .015 .393 ± .016 .382 ± .019 .394 ± .014 .460 ± .010 .410 ± .024 .434 ± .011

𝐿𝐶𝑀−𝑇 .389 ± .016 .386 ± .017 .376 ± .010 .387 ± .019 .463 ± .019 .406 ± .032 .434 ± .011

Health

𝐿𝐶 .468 ± .004 .514 ± .005 .477 ± .004 .440 ± .005 .665 ± .051 .606 ± .056 .573 ± .005

𝑃𝐶 .470 ± .005 .394 ± .007 .449 ± .005 .398 ± .005 .656 ± .057 — —

𝐿𝐶𝑆−𝑇 .461 ± .007 .407 ± .006 .409 ± .007 .414 ± .006 .493 ± .032 .431 ± .005 .520 ± .008

𝐿𝐶𝑀−𝑇 .458 ± .005 .393 ± .007 .415 ± .006 .420 ± .003 .499 ± .035 .425 ± .009 .472 ± .006
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Complementary of Table A.2

Ensemble multi-label variant performances in term of Jaccard loss (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .499 ± .007 .540 ± .012 .505 ± .012 .474 ± .010 .563 ± .015 .609 ± .009 .499 ± .032

𝑃𝐶 .504 ± .008 .365 ± .015 .474 ± .014 .379 ± .012 .548 ± .019 — —

𝐿𝐶𝑆−𝑇 .443 ± .010 .385 ± .010 .422 ± .016 .389 ± .011 .430 ± .012 .609 ± .009 .499 ± .032

𝐿𝐶𝑀−𝑇 .451 ± .014 .392 ± .012 .416 ± .009 .407 ± .018 .436 ± .014 .609 ± .009 .499 ± .032

Medical

𝐿𝐶 .249 ± .023 .494 ± .024 .580 ± .019 .258 ± .019 .393 ± .025 .322 ± .023 .284 ± .010

𝑃𝐶 .247 ± .024 .311 ± .014 .568 ± .019 .254 ± .014 .384 ± .026 — —

𝐿𝐶𝑆−𝑇 .243 ± .016 .338 ± .018 .276 ± .017 .249 ± .016 .309 ± .012 .237 ± .019 .268 ± .014

𝐿𝐶𝑀−𝑇 .243 ± .019 .267 ± .015 .328 ± .010 .261 ± .013 .307 ± .010 .236 ± .018 .246 ± .019

Recreation

𝐿𝐶 .705 ± .006 .776 ± .006 .765 ± .004 .718 ± .008 .902 ± .009 .852 ± .012 .729 ± .005

𝑃𝐶 .705 ± .006 .547 ± .007 .753 ± .006 .554 ± .006 .902 ± .009 — —

𝐿𝐶𝑆−𝑇 .673 ± .004 .563 ± .007 .651 ± .003 .604 ± .006 .844 ± .010 .618 ± .005 .682 ± .006

𝐿𝐶𝑀−𝑇 .684 ± .004 .587 ± .009 .634 ± .006 .610 ± .009 .846 ± .010 .625 ± .007 .645 ± .009

Reference

𝐿𝐶 .589 ± .007 .640 ± .007 .634 ± .005 .608 ± .005 .808 ± .011 .711 ± .047 .610 ± .005

𝑃𝐶 .589 ± .007 .444 ± .012 .598 ± .005 .451 ± .007 .807 ± .011 — —

𝐿𝐶𝑆−𝑇 .546 ± .006 .472 ± .010 .486 ± .009 .485 ± .007 .590 ± .029 .499 ± .006 .570 ± .005

𝐿𝐶𝑀−𝑇 .521 ± .012 .466 ± .014 .488 ± .007 .493 ± .008 .592 ± .029 .496 ± .007 .542 ± .005

Scene

𝐿𝐶 .426 ± .012 .459 ± .010 .431 ± .010 .404 ± .010 .367 ± .014 .542 ± .007 .317 ± .025

𝑃𝐶 .431 ± .011 .243 ± .008 .398 ± .011 .271 ± .008 .348 ± .016 — —

𝐿𝐶𝑆−𝑇 .348 ± .007 .284 ± .005 .312 ± .007 .315 ± .005 .284 ± .007 .542 ± .007 .317 ± .025

𝐿𝐶𝑀−𝑇 .355 ± .010 .297 ± .011 .310 ± .009 .314 ± .011 .282 ± .008 .542 ± .007 .317 ± .025

Science

𝐿𝐶 .770 ± .004 .872 ± .006 .851 ± .005 .815 ± .005 .925 ± .005 .866 ± .019 .817 ± .007

𝑃𝐶 .771 ± .004 .611 ± .008 .829 ± .008 .612 ± .005 .925 ± .005 — —

𝐿𝐶𝑆−𝑇 .704 ± .004 .634 ± .008 .686 ± .006 .662 ± .006 .814 ± .011 .668 ± .008 .712 ± .005

𝐿𝐶𝑀−𝑇 .712 ± .006 .655 ± .008 .672 ± .007 .670 ± .010 .817 ± .012 .668 ± .007 .688 ± .009

Slashdot

𝐿𝐶 .231 ± .007 .232 ± .006 .233 ± .004 .233 ± .008 .296 ± .010 .291 ± .012 .284 ± .020

𝑃𝐶 .233 ± .006 .232 ± .005 .233 ± .004 .235 ± .007 .296 ± .010 — —

𝐿𝐶𝑆−𝑇 .236 ± .007 .232 ± .006 .230 ± .005 .234 ± .007 .299 ± .007 .267 ± .046 .284 ± .020

𝐿𝐶𝑀−𝑇 .235 ± .007 .231 ± .007 .234 ± .005 .236 ± .008 .299 ± .007 .258 ± .011 .284 ± .020

Social

𝐿𝐶 .465 ± .010 .482 ± .004 .476 ± .007 .459 ± .009 .583 ± .016 .593 ± .040 .506 ± .010

𝑃𝐶 .466 ± .011 .368 ± .006 .451 ± .006 .374 ± .009 .567 ± .015 — —

𝐿𝐶𝑆−𝑇 .454 ± .007 .399 ± .009 .403 ± .004 .406 ± .006 .413 ± .007 .420 ± .007 .506 ± .010

𝐿𝐶𝑀−𝑇 .438 ± .006 .381 ± .007 .402 ± .006 .410 ± .008 .414 ± .008 .420 ± .010 .506 ± .010

Society

𝐿𝐶 .656 ± .007 .694 ± .004 .679 ± .005 .650 ± .007 .773 ± .019 .757 ± .039 .690 ± .009

𝑃𝐶 .659 ± .007 .562 ± .009 .656 ± .008 .576 ± .008 .771 ± .020 — —

𝐿𝐶𝑆−𝑇 .623 ± .007 .579 ± .006 .592 ± .008 .584 ± .007 .607 ± .010 .591 ± .008 .696 ± .006

𝐿𝐶𝑀−𝑇 .605 ± .012 .576 ± .007 .587 ± .008 .585 ± .009 .609 ± .009 .588 ± .007 .650 ± .008

Yeast

𝐿𝐶 .496 ± .005 .525 ± .006 .503 ± .005 .485 ± .005 .520 ± .004 .594 ± .005 .491 ± .005

𝑃𝐶 .541 ± .007 .469 ± .008 .503 ± .010 .470 ± .008 .517 ± .005 — —

𝐿𝐶𝑆−𝑇 .469 ± .007 .457 ± .004 .452 ± .005 .452 ± .005 .454 ± .004 .594 ± .005 .491 ± .005

𝐿𝐶𝑀−𝑇 .460 ± .004 .454 ± .005 .453 ± .004 .455 ± .005 .454 ± .005 .594 ± .005 .491 ± .005
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TABLE A.3: Ensemble multi-label variant performances in term of Instance-F1 loss (Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .703 ± .009 .785 ± .009 .762 ± .010 .739 ± .007 .913 ± .005 .855 ± .014 .737 ± .038

𝑃𝐶 .703 ± .008 .563 ± .006 .728 ± .012 .563 ± .005 .913 ± .005 — —

𝐿𝐶𝑆−𝑇 .620 ± .005 .573 ± .006 .603 ± .003 .604 ± .006 .836 ± .015 .623 ± .008 .622 ± .044

𝐿𝐶𝑀−𝑇 .636 ± .007 .536 ± .006 .570 ± .003 .567 ± .008 .832 ± .015 .624 ± .006 .580 ± .004

Birds

𝐿𝐶 .401 ± .018 .496 ± .023 .433 ± .017 .442 ± .013 .505 ± .024 .467 ± .019 .443 ± .015

𝑃𝐶 .402 ± .017 .427 ± .028 .432 ± .021 .432 ± .020 .504 ± .025 — —

𝐿𝐶𝑆−𝑇 .397 ± .017 .372 ± .014 .371 ± .019 .415 ± .018 .447 ± .015 .445 ± .021 .440 ± .015

𝐿𝐶𝑀−𝑇 .393 ± .026 .362 ± .016 .361 ± .017 .410 ± .019 .448 ± .020 .446 ± .021 .414 ± .023

Business

𝐿𝐶 .252 ± .006 .244 ± .006 .243 ± .005 .242 ± .005 .248 ± .004 .241 ± .003 .257 ± .033

𝑃𝐶 .251 ± .007 .240 ± .006 .245 ± .005 .247 ± .006 .248 ± .004 — —

𝐿𝐶𝑆−𝑇 .248 ± .006 .227 ± .004 .228 ± .004 .239 ± .005 .239 ± .005 .364 ± .011 .257 ± .033

𝐿𝐶𝑀−𝑇 .238 ± .007 .238 ± .007 .231 ± .003 .242 ± .005 .238 ± .004 .358 ± .025 .257 ± .033

Computers

𝐿𝐶 .570 ± .009 .596 ± .007 .584 ± .005 .562 ± .006 .604 ± .013 .607 ± .030 .600 ± .007

𝑃𝐶 .570 ± .008 .458 ± .003 .546 ± .007 .462 ± .008 .600 ± .014 — —

𝐿𝐶𝑆−𝑇 .500 ± .016 .453 ± .007 .472 ± .013 .474 ± .012 .526 ± .008 .533 ± .004 .513 ± .004

𝐿𝐶𝑀−𝑇 .494 ± .013 .468 ± .009 .456 ± .006 .458 ± .006 .523 ± .007 .533 ± .004 .499 ± .004

Education

𝐿𝐶 .713 ± .004 .820 ± .004 .790 ± .004 .769 ± .006 .866 ± .008 .809 ± .012 .778 ± .006

𝑃𝐶 .711 ± .004 .571 ± .009 .730 ± .008 .577 ± .008 .865 ± .009 — —

𝐿𝐶𝑆−𝑇 .606 ± .008 .573 ± .008 .597 ± .012 .592 ± .004 .730 ± .014 .612 ± .003 .596 ± .004

𝐿𝐶𝑀−𝑇 .620 ± .008 .542 ± .019 .560 ± .003 .566 ± .005 .722 ± .017 .612 ± .003 .570 ± .006

Emotions

𝐿𝐶 .404 ± .017 .419 ± .022 .401 ± .016 .384 ± .023 .611 ± .032 .518 ± .051 .436 ± .019

𝑃𝐶 .405 ± .017 .337 ± .016 .376 ± .012 .348 ± .026 .599 ± .033 — —

𝐿𝐶𝑆−𝑇 .352 ± .016 .337 ± .012 .342 ± .010 .345 ± .020 .454 ± .016 .527 ± .008 .414 ± .006

𝐿𝐶𝑀−𝑇 .356 ± .012 .334 ± .012 .324 ± .011 .336 ± .010 .439 ± .013 .518 ± .028 .390 ± .009

Enron

𝐿𝐶 .444 ± .017 .509 ± .005 .459 ± .007 .457 ± .012 .551 ± .021 .528 ± .020 .501 ± .004

𝑃𝐶 .484 ± .015 .503 ± .008 .498 ± .008 .512 ± .006 .550 ± .021 — —

𝐿𝐶𝑆−𝑇 .415 ± .015 .405 ± .007 .396 ± .005 .410 ± .004 .471 ± .011 .501 ± .007 .471 ± .007

𝐿𝐶𝑀−𝑇 .404 ± .012 .411 ± .003 .391 ± .004 .410 ± .003 .466 ± .011 .501 ± .007 .451 ± .006

Entertainment

𝐿𝐶 .602 ± .008 .681 ± .005 .655 ± .009 .620 ± .008 .886 ± .015 .837 ± .024 .630 ± .007

𝑃𝐶 .602 ± .009 .476 ± .007 .617 ± .009 .477 ± .007 .885 ± .015 — —

𝐿𝐶𝑆−𝑇 .557 ± .015 .489 ± .008 .533 ± .010 .517 ± .010 .803 ± .035 .545 ± .004 .533 ± .006

𝐿𝐶𝑀−𝑇 .561 ± .007 .498 ± .004 .500 ± .009 .484 ± .009 .797 ± .036 .545 ± .004 .503 ± .008

Flags

𝐿𝐶 .300 ± .021 .280 ± .015 .281 ± .014 .287 ± .016 .357 ± .021 .353 ± .036 .292 ± .019

𝑃𝐶 .309 ± .020 .311 ± .023 .298 ± .015 .308 ± .012 .360 ± .018 — —

𝐿𝐶𝑆−𝑇 .269 ± .016 .264 ± .013 .264 ± .011 .274 ± .016 .325 ± .021 .353 ± .009 .290 ± .009

𝐿𝐶𝑀−𝑇 .270 ± .016 .264 ± .009 .258 ± .011 .273 ± .015 .317 ± .010 .353 ± .009 .281 ± .009

Health

𝐿𝐶 .421 ± .004 .484 ± .005 .442 ± .004 .401 ± .005 .637 ± .053 .572 ± .057 .439 ± .006

𝑃𝐶 .424 ± .004 .358 ± .006 .414 ± .005 .360 ± .005 .628 ± .059 — —

𝐿𝐶𝑆−𝑇 .388 ± .005 .339 ± .007 .355 ± .006 .363 ± .006 .445 ± .044 .469 ± .005 .447 ± .005

𝐿𝐶𝑀−𝑇 .393 ± .008 .348 ± .005 .346 ± .007 .359 ± .006 .432 ± .034 .469 ± .005 .423 ± .003
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Complementary of Table A.3

Ensemble multi-label variant performances in term of Instance-F1 loss (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .468 ± .008 .517 ± .013 .477 ± .013 .448 ± .011 .540 ± .015 .469 ± .035 .519 ± .010

𝑃𝐶 .472 ± .008 .335 ± .016 .445 ± .014 .348 ± .013 .523 ± .020 — —

𝐿𝐶𝑆−𝑇 .384 ± .011 .339 ± .009 .365 ± .016 .354 ± .018 .391 ± .018 .606 ± .010 .470 ± .008

𝐿𝐶𝑀−𝑇 .394 ± .019 .320 ± .023 .335 ± .005 .333 ± .009 .378 ± .014 .598 ± .034 .433 ± .008

Medical

𝐿𝐶 .219 ± .023 .474 ± .025 .559 ± .022 .232 ± .020 .371 ± .025 .295 ± .024 .220 ± .019

𝑃𝐶 .219 ± .023 .284 ± .013 .547 ± .020 .230 ± .015 .362 ± .026 — —

𝐿𝐶𝑆−𝑇 .214 ± .025 .225 ± .021 .230 ± .018 .227 ± .016 .277 ± .011 .227 ± .016 .218 ± .011

𝐿𝐶𝑀−𝑇 .204 ± .021 .282 ± .012 .266 ± .010 .215 ± .015 .272 ± .012 .227 ± .016 .209 ± .013

Recreation

𝐿𝐶 .686 ± .007 .769 ± .006 .757 ± .004 .707 ± .008 .898 ± .009 .846 ± .012 .719 ± .005

𝑃𝐶 .686 ± .007 .530 ± .007 .745 ± .006 .535 ± .006 .898 ± .010 — —

𝐿𝐶𝑆−𝑇 .631 ± .016 .553 ± .010 .608 ± .005 .577 ± .010 .840 ± .011 .597 ± .004 .579 ± .005

𝐿𝐶𝑀−𝑇 .641 ± .006 .518 ± .007 .573 ± .005 .540 ± .004 .837 ± .010 .597 ± .004 .554 ± .008

Reference

𝐿𝐶 .572 ± .007 .633 ± .007 .627 ± .005 .598 ± .005 .803 ± .011 .702 ± .048 .601 ± .005

𝑃𝐶 .571 ± .007 .429 ± .012 .589 ± .005 .435 ± .008 .803 ± .011 — —

𝐿𝐶𝑆−𝑇 .517 ± .014 .435 ± .012 .453 ± .008 .460 ± .008 .574 ± .031 .490 ± .003 .477 ± .004

𝐿𝐶𝑀−𝑇 .486 ± .007 .462 ± .023 .437 ± .008 .448 ± .007 .571 ± .030 .490 ± .003 .462 ± .004

Scene

𝐿𝐶 .415 ± .012 .452 ± .010 .423 ± .010 .396 ± .010 .355 ± .014 .300 ± .028 .449 ± .013

𝑃𝐶 .419 ± .010 .233 ± .007 .389 ± .011 .260 ± .009 .336 ± .016 — —

𝐿𝐶𝑆−𝑇 .324 ± .008 .267 ± .012 .284 ± .004 .285 ± .015 .253 ± .011 .681 ± .009 .404 ± .006

𝐿𝐶𝑀−𝑇 .319 ± .014 .262 ± .036 .260 ± .009 .260 ± .004 .245 ± .008 .664 ± .056 .372 ± .008

Science

𝐿𝐶 .751 ± .005 .868 ± .007 .844 ± .005 .805 ± .005 .921 ± .005 .859 ± .020 .809 ± .008

𝑃𝐶 .752 ± .005 .596 ± .009 .822 ± .008 .594 ± .005 .922 ± .005 — —

𝐿𝐶𝑆−𝑇 .655 ± .005 .614 ± .009 .646 ± .009 .630 ± .008 .806 ± .013 .623 ± .006 .611 ± .005

𝐿𝐶𝑀−𝑇 .676 ± .008 .587 ± .008 .610 ± .004 .589 ± .005 .803 ± .012 .623 ± .006 .596 ± .008

Slashdot

𝐿𝐶 .210 ± .006 .211 ± .004 .212 ± .003 .211 ± .007 .274 ± .008 .269 ± .010 .217 ± .038

𝑃𝐶 .212 ± .006 .211 ± .004 .212 ± .003 .212 ± .006 .274 ± .008 — —

𝐿𝐶𝑆−𝑇 .212 ± .007 .210 ± .006 .210 ± .004 .214 ± .006 .276 ± .005 .352 ± .015 .217 ± .038

𝐿𝐶𝑀−𝑇 .214 ± .006 .212 ± .005 .213 ± .004 .211 ± .006 .277 ± .005 .345 ± .032 .217 ± .038

Social

𝐿𝐶 .440 ± .011 .471 ± .004 .463 ± .008 .444 ± .009 .573 ± .017 .583 ± .042 .449 ± .008

𝑃𝐶 .441 ± .011 .350 ± .006 .438 ± .006 .355 ± .009 .557 ± .015 — —

𝐿𝐶𝑆−𝑇 .417 ± .015 .350 ± .006 .371 ± .009 .377 ± .008 .387 ± .009 .417 ± .004 .409 ± .008

𝐿𝐶𝑀−𝑇 .399 ± .008 .362 ± .008 .367 ± .006 .362 ± .007 .384 ± .008 .417 ± .004 .390 ± .005

Society

𝐿𝐶 .623 ± .008 .673 ± .005 .655 ± .005 .622 ± .008 .757 ± .021 .739 ± .043 .668 ± .010

𝑃𝐶 .626 ± .007 .525 ± .009 .630 ± .008 .538 ± .007 .755 ± .021 — —

𝐿𝐶𝑆−𝑇 .566 ± .011 .523 ± .007 .537 ± .012 .532 ± .010 .572 ± .013 .614 ± .006 .585 ± .006

𝐿𝐶𝑀−𝑇 .551 ± .013 .516 ± .013 .533 ± .008 .523 ± .007 .570 ± .011 .614 ± .006 .554 ± .005

Yeast

𝐿𝐶 .388 ± .005 .417 ± .005 .396 ± .004 .379 ± .004 .412 ± .003 .385 ± .004 .411 ± .005

𝑃𝐶 .431 ± .007 .376 ± .007 .404 ± .009 .376 ± .009 .411 ± .004 — —

𝐿𝐶𝑆−𝑇 .352 ± .003 .343 ± .005 .340 ± .005 .343 ± .004 .349 ± .004 .464 ± .004 .445 ± .004

𝐿𝐶𝑀−𝑇 .347 ± .003 .345 ± .009 .343 ± .005 .342 ± .005 .347 ± .003 .464 ± .004 .414 ± .005
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TABLE A.4: Ensemble multi-label variant performances in term of Micro-F1 loss(Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .649 ± .006 .726 ± .009 .698 ± .007 .607 ± .006 .870 ± .008 .662 ± .009 .681 ± .011

𝑃𝐶 .653 ± .006 .595 ± .006 .675 ± .009 .595 ± .006 .870 ± .007 — —

𝐿𝐶𝑆−𝑇 .632 ± .006 .613 ± .036 .598 ± .004 .673 ± .006 .769 ± .013 .662 ± .010 .634 ± .015

𝐿𝐶𝑀−𝑇 .616 ± .006 .572 ± .008 .579 ± .004 .584 ± .005 .768 ± .013 .588 ± .032 .582 ± .022

Birds

𝐿𝐶 .611 ± .027 .869 ± .027 .706 ± .013 .613 ± .025 .886 ± .038 .655 ± .038 .699 ± .054

𝑃𝐶 .612 ± .023 .697 ± .043 .704 ± .021 .683 ± .043 .884 ± .037 — —

𝐿𝐶𝑆−𝑇 .578 ± .023 .597 ± .035 .548 ± .016 .708 ± .033 .716 ± .029 .635 ± .018 .627 ± .028

𝐿𝐶𝑀−𝑇 .566 ± .021 .571 ± .027 .539 ± .018 .594 ± .024 .732 ± .041 .610 ± .074 .587 ± .034

Business

𝐿𝐶 .293 ± .007 .296 ± .007 .291 ± .006 .327 ± .010 .301 ± .006 .296 ± .026 .296 ± .028

𝑃𝐶 .294 ± .008 .292 ± .008 .296 ± .006 .298 ± .006 .301 ± .005 — —

𝐿𝐶𝑆−𝑇 .325 ± .012 .362 ± .007 .288 ± .008 .284 ± .006 .289 ± .006 .399 ± .015 .370 ± .027

𝐿𝐶𝑀−𝑇 .343 ± .036 .279 ± .004 .273 ± .004 .285 ± .006 .289 ± .005 .285 ± .005 .293 ± .030

Computers

𝐿𝐶 .530 ± .009 .552 ± .008 .533 ± .007 .518 ± .012 .577 ± .010 .551 ± .007 .551 ± .006

𝑃𝐶 .532 ± .008 .489 ± .004 .516 ± .006 .488 ± .008 .575 ± .011 — —

𝐿𝐶𝑆−𝑇 .536 ± .008 .544 ± .002 .488 ± .004 .514 ± .007 .523 ± .005 .576 ± .005 .552 ± .003

𝐿𝐶𝑀−𝑇 .515 ± .011 .478 ± .005 .473 ± .004 .482 ± .009 .521 ± .005 .488 ± .006 .484 ± .007

Education

𝐿𝐶 .632 ± .006 .728 ± .004 .701 ± .005 .575 ± .004 .784 ± .011 .656 ± .006 .681 ± .009

𝑃𝐶 .633 ± .006 .572 ± .009 .651 ± .007 .583 ± .009 .783 ± .011 — —

𝐿𝐶𝑆−𝑇 .597 ± .007 .566 ± .039 .558 ± .003 .673 ± .009 .636 ± .014 .638 ± .002 .615 ± .003

𝐿𝐶𝑀−𝑇 .587 ± .005 .536 ± .006 .550 ± .005 .558 ± .006 .635 ± .014 .543 ± .003 .541 ± .004

Emotions

𝐿𝐶 .342 ± .017 .346 ± .014 .333 ± .013 .320 ± .020 .552 ± .026 .425 ± .016 .363 ± .016

𝑃𝐶 .344 ± .016 .312 ± .014 .324 ± .011 .323 ± .024 .545 ± .026 — —

𝐿𝐶𝑆−𝑇 .331 ± .006 .309 ± .010 .311 ± .010 .332 ± .020 .417 ± .017 .516 ± .007 .413 ± .007

𝐿𝐶𝑀−𝑇 .320 ± .009 .312 ± .016 .302 ± .014 .313 ± .015 .415 ± .015 .380 ± .020 .366 ± .017

Enron

𝐿𝐶 .423 ± .009 .493 ± .005 .442 ± .005 .457 ± .005 .503 ± .009 .487 ± .005 .491 ± .003

𝑃𝐶 .473 ± .008 .504 ± .008 .492 ± .006 .524 ± .004 .501 ± .009 — —

𝐿𝐶𝑆−𝑇 .460 ± .007 .466 ± .034 .433 ± .007 .447 ± .006 .435 ± .006 .517 ± .007 .482 ± .005

𝐿𝐶𝑀−𝑇 .433 ± .017 .417 ± .008 .389 ± .003 .411 ± .002 .434 ± .006 .405 ± .004 .396 ± .005

Entertainment

𝐿𝐶 .542 ± .008 .611 ± .005 .571 ± .008 .511 ± .011 .825 ± .020 .551 ± .007 .568 ± .005

𝑃𝐶 .544 ± .008 .501 ± .006 .550 ± .006 .500 ± .007 .825 ± .020 — —

𝐿𝐶𝑆−𝑇 .543 ± .007 .490 ± .006 .490 ± .008 .546 ± .007 .716 ± .035 .602 ± .006 .579 ± .007

𝐿𝐶𝑀−𝑇 .528 ± .012 .467 ± .009 .483 ± .010 .492 ± .007 .714 ± .035 .490 ± .008 .487 ± .008

Flags

𝐿𝐶 .266 ± .016 .253 ± .012 .254 ± .013 .258 ± .016 .346 ± .022 .276 ± .025 .260 ± .017

𝑃𝐶 .276 ± .016 .282 ± .019 .272 ± .012 .278 ± .010 .348 ± .018 — —

𝐿𝐶𝑆−𝑇 .247 ± .012 .254 ± .018 .246 ± .014 .255 ± .013 .302 ± .013 .336 ± .010 .272 ± .008

𝐿𝐶𝑀−𝑇 .248 ± .012 .251 ± .012 .240 ± .011 .250 ± .014 .303 ± .009 .256 ± .014 .249 ± .016

Health

𝐿𝐶 .402 ± .004 .442 ± .004 .409 ± .003 .390 ± .006 .569 ± .049 .407 ± .006 .408 ± .005

𝑃𝐶 .405 ± .004 .375 ± .004 .402 ± .003 .382 ± .004 .563 ± .053 — —

𝐿𝐶𝑆−𝑇 .409 ± .005 .386 ± .006 .359 ± .006 .388 ± .004 .442 ± .041 .508 ± .003 .478 ± .005

𝐿𝐶𝑀−𝑇 .400 ± .009 .349 ± .004 .364 ± .005 .373 ± .005 .436 ± .030 .370 ± .006 .369 ± .007
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Complementary of Table A.4

Ensemble multi-label variant performances in term of Micro-F1 loss (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .395 ± .008 .426 ± .011 .396 ± .010 .339 ± .013 .454 ± .012 .462 ± .019 .428 ± .009

𝑃𝐶 .401 ± .009 .344 ± .015 .383 ± .012 .354 ± .011 .445 ± .015 — —

𝐿𝐶𝑆−𝑇 .363 ± .012 .332 ± .011 .342 ± .011 .383 ± .008 .373 ± .012 .599 ± .009 .493 ± .006

𝐿𝐶𝑀−𝑇 .360 ± .012 .330 ± .011 .344 ± .009 .336 ± .008 .373 ± .011 .428 ± .013 .413 ± .013

Medical

𝐿𝐶 .191 ± .016 .369 ± .020 .429 ± .020 .258 ± .014 .294 ± .019 .194 ± .012 .196 ± .014

𝑃𝐶 .192 ± .017 .287 ± .016 .422 ± .017 .235 ± .015 .291 ± .019 — —

𝐿𝐶𝑆−𝑇 .218 ± .018 .366 ± .047 .217 ± .012 .219 ± .018 .253 ± .009 .255 ± .015 .237 ± .018

𝐿𝐶𝑀−𝑇 .228 ± .017 .222 ± .014 .257 ± .008 .217 ± .016 .258 ± .010 .194 ± .013 .189 ± .015

Recreation

𝐿𝐶 .634 ± .007 .704 ± .008 .689 ± .005 .587 ± .007 .851 ± .013 .638 ± .007 .656 ± .005

𝑃𝐶 .637 ± .007 .568 ± .006 .678 ± .007 .575 ± .004 .850 ± .014 — —

𝐿𝐶𝑆−𝑇 .624 ± .005 .548 ± .007 .588 ± .007 .643 ± .007 .775 ± .011 .658 ± .003 .631 ± .005

𝐿𝐶𝑀−𝑇 .619 ± .007 .545 ± .005 .582 ± .005 .568 ± .005 .775 ± .011 .561 ± .005 .557 ± .006

Reference

𝐿𝐶 .502 ± .006 .535 ± .006 .523 ± .005 .483 ± .008 .711 ± .013 .500 ± .004 .507 ± .004

𝑃𝐶 .504 ± .007 .442 ± .012 .500 ± .006 .453 ± .007 .711 ± .012 — —

𝐿𝐶𝑆−𝑇 .510 ± .010 .459 ± .031 .448 ± .007 .511 ± .006 .524 ± .013 .559 ± .003 .533 ± .004

𝐿𝐶𝑀−𝑇 .492 ± .012 .425 ± .010 .441 ± .010 .454 ± .008 .523 ± .013 .446 ± .005 .442 ± .005

Scene

𝐿𝐶 .311 ± .010 .332 ± .007 .308 ± .007 .268 ± .006 .285 ± .010 .376 ± .020 .333 ± .010

𝑃𝐶 .316 ± .009 .239 ± .007 .292 ± .008 .265 ± .008 .277 ± .010 — —

𝐿𝐶𝑆−𝑇 .276 ± .011 .250 ± .004 .244 ± .007 .306 ± .008 .252 ± .006 .680 ± .008 .444 ± .007

𝐿𝐶𝑀−𝑇 .269 ± .007 .246 ± .010 .247 ± .004 .265 ± .008 .254 ± .007 .356 ± .018 .347 ± .015

Science

𝐿𝐶 .690 ± .003 .817 ± .010 .784 ± .007 .621 ± .010 .880 ± .008 .713 ± .008 .742 ± .010

𝑃𝐶 .694 ± .003 .624 ± .008 .763 ± .009 .618 ± .005 .880 ± .008 — —

𝐿𝐶𝑆−𝑇 .654 ± .006 .643 ± .004 .606 ± .007 .732 ± .007 .729 ± .016 .657 ± .005 .636 ± .005

𝐿𝐶𝑀−𝑇 .639 ± .004 .575 ± .009 .601 ± .007 .604 ± .008 .727 ± .016 .583 ± .005 .582 ± .006

Slashdot

𝐿𝐶 .215 ± .007 .215 ± .007 .216 ± .007 .346 ± .023 .250 ± .008 .244 ± .041 .225 ± .041

𝑃𝐶 .217 ± .007 .215 ± .007 .216 ± .006 .219 ± .008 .250 ± .007 — —

𝐿𝐶𝑆−𝑇 .276 ± .010 .297 ± .005 .231 ± .008 .216 ± .009 .250 ± .006 .386 ± .020 .248 ± .009

𝐿𝐶𝑀−𝑇 .294 ± .031 .248 ± .011 .216 ± .007 .217 ± .008 .251 ± .006 .230 ± .008 .229 ± .014

Social

𝐿𝐶 .415 ± .009 .423 ± .006 .414 ± .009 .445 ± .010 .493 ± .013 .411 ± .007 .406 ± .010

𝑃𝐶 .417 ± .009 .392 ± .008 .406 ± .008 .398 ± .008 .481 ± .010 — —

𝐿𝐶𝑆−𝑇 .456 ± .010 .492 ± .004 .391 ± .008 .408 ± .009 .402 ± .006 .508 ± .003 .484 ± .008

𝐿𝐶𝑀−𝑇 .436 ± .024 .369 ± .007 .388 ± .008 .393 ± .007 .404 ± .008 .391 ± .005 .387 ± .004

Society

𝐿𝐶 .617 ± .007 .647 ± .003 .630 ± .004 .641 ± .009 .722 ± .019 .646 ± .008 .642 ± .007

𝑃𝐶 .620 ± .005 .569 ± .009 .616 ± .007 .596 ± .008 .720 ± .020 — —

𝐿𝐶𝑆−𝑇 .644 ± .008 .624 ± .004 .619 ± .005 .612 ± .005 .589 ± .009 .658 ± .005 .625 ± .006

𝐿𝐶𝑀−𝑇 .636 ± .026 .582 ± .008 .558 ± .008 .567 ± .008 .587 ± .009 .554 ± .007 .552 ± .008

Yeast

𝐿𝐶 .359 ± .004 .386 ± .005 .366 ± .005 .370 ± .008 .382 ± .002 .376 ± .006 .380 ± .005

𝑃𝐶 .401 ± .006 .358 ± .007 .374 ± .008 .357 ± .007 .380 ± .003 — —

𝐿𝐶𝑆−𝑇 .379 ± .003 .406 ± .034 .368 ± .009 .353 ± .005 .333 ± .004 .463 ± .003 .441 ± .003

𝐿𝐶𝑀−𝑇 .370 ± .015 .370 ± .009 .329 ± .004 .328 ± .005 .333 ± .004 .333 ± .003 .330 ± .004
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TABLE A.5: Ensemble multi-label variant performances in term of Macro-F1 loss (Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .531 ± .036 .456 ± .056 .483 ± .038 .582 ± .025 .529 ± .055 .379 ± .043 .549 ± .070

𝑃𝐶 .596 ± .032 .509 ± .023 .551 ± .030 .630 ± .021 .526 ± .050 — —

𝐿𝐶𝑆−𝑇 .513 ± .035 .336 ± .039 .393 ± .026 .599 ± .032 .479 ± .028 .521 ± .031 .514 ± .030

𝐿𝐶𝑀−𝑇 .483 ± .024 .311 ± .033 .386 ± .036 .495 ± .016 .469 ± .027 .452 ± .051 .347 ± .088

Birds

𝐿𝐶 .374 ± .058 .436 ± .071 .465 ± .086 .480 ± .069 .283 ± .037 .395 ± .034 .458 ± .099

𝑃𝐶 .510 ± .068 .514 ± .041 .498 ± .053 .530 ± .042 .284 ± .035 — —

𝐿𝐶𝑆−𝑇 .341 ± .043 .305 ± .049 .300 ± .047 .518 ± .067 .178 ± .057 .499 ± .045 .524 ± .064

𝐿𝐶𝑀−𝑇 .283 ± .048 .203 ± .041 .235 ± .064 .388 ± .034 .173 ± .050 .448 ± .104 .382 ± .135

Business

𝐿𝐶 .435 ± .047 .286 ± .052 .438 ± .067 .514 ± .045 .356 ± .033 .379 ± .026 .498 ± .060

𝑃𝐶 .552 ± .026 .417 ± .049 .455 ± .041 .549 ± .024 .354 ± .037 — —

𝐿𝐶𝑆−𝑇 .431 ± .051 .241 ± .032 .249 ± .045 .559 ± .029 .291 ± .040 .482 ± .046 .487 ± .045

𝐿𝐶𝑀−𝑇 .404 ± .048 .244 ± .028 .247 ± .043 .460 ± .043 .281 ± .039 .311 ± .098 .252 ± .104

Computers

𝐿𝐶 .567 ± .039 .505 ± .045 .520 ± .035 .607 ± .025 .533 ± .035 .610 ± .026 .561 ± .023

𝑃𝐶 .611 ± .026 .514 ± .020 .587 ± .014 .616 ± .026 .534 ± .035 — —

𝐿𝐶𝑆−𝑇 .566 ± .042 .487 ± .044 .516 ± .037 .580 ± .023 .441 ± .050 .510 ± .023 .514 ± .027

𝐿𝐶𝑀−𝑇 .477 ± .041 .470 ± .044 .496 ± .031 .570 ± .047 .436 ± .037 .507 ± .046 .411 ± .044

Education

𝐿𝐶 .358 ± .020 .235 ± .021 .324 ± .040 .422 ± .025 .342 ± .022 .178 ± .027 .329 ± .011

𝑃𝐶 .447 ± .049 .291 ± .022 .334 ± .021 .472 ± .056 .342 ± .023 — —

𝐿𝐶𝑆−𝑇 .342 ± .021 .202 ± .011 .221 ± .016 .418 ± .060 .267 ± .030 .312 ± .022 .311 ± .029

𝐿𝐶𝑀−𝑇 .317 ± .040 .220 ± .007 .219 ± .012 .337 ± .026 .267 ± .030 .214 ± .016 .202 ± .010

Emotions

𝐿𝐶 .368 ± .015 .323 ± .014 .320 ± .013 .332 ± .025 .448 ± .088 .520 ± .008 .411 ± .008

𝑃𝐶 .331 ± .010 .317 ± .013 .332 ± .018 .323 ± .018 .449 ± .088 — —

𝐿𝐶𝑆−𝑇 .366 ± .016 .353 ± .032 .347 ± .011 .324 ± .011 .424 ± .086 .387 ± .019 .373 ± .015

𝐿𝐶𝑀−𝑇 .363 ± .020 .380 ± .016 .363 ± .014 .355 ± .020 .415 ± .077 .437 ± .015 .389 ± .015

Enron

𝐿𝐶 .360 ± .031 .398 ± .034 .381 ± .029 .444 ± .036 .212 ± .026 .444 ± .027 .394 ± .031

𝑃𝐶 .448 ± .034 .385 ± .032 .417 ± .027 .459 ± .033 .212 ± .026 — —

𝐿𝐶𝑆−𝑇 .264 ± .034 .315 ± .032 .389 ± .032 .406 ± .031 .138 ± .023 .355 ± .027 .385 ± .032

𝐿𝐶𝑀−𝑇 .264 ± .034 .304 ± .036 .323 ± .033 .304 ± .024 .115 ± .021 .217 ± .023 .175 ± .020

Entertainment

𝐿𝐶 .434 ± .018 .403 ± .025 .398 ± .007 .398 ± .013 .498 ± .019 .452 ± .030 .409 ± .004

𝑃𝐶 .432 ± .026 .388 ± .018 .404 ± .008 .463 ± .042 .499 ± .019 — —

𝐿𝐶𝑆−𝑇 .434 ± .018 .406 ± .029 .450 ± .020 .400 ± .018 .444 ± .071 .398 ± .015 .396 ± .013

𝐿𝐶𝑀−𝑇 .449 ± .019 .398 ± .025 .414 ± .023 .434 ± .018 .440 ± .066 .424 ± .027 .409 ± .024

Flags

𝐿𝐶 .354 ± .022 .360 ± .030 .304 ± .014 .348 ± .014 .325 ± .046 .206 ± .011 .322 ± .011

𝑃𝐶 .308 ± .018 .316 ± .006 .320 ± .017 .316 ± .021 .302 ± .055 — —

𝐿𝐶𝑆−𝑇 .351 ± .022 .336 ± .071 .359 ± .020 .314 ± .014 .347 ± .074 .316 ± .020 .308 ± .016

𝐿𝐶𝑀−𝑇 .340 ± .042 .321 ± .062 .351 ± .042 .332 ± .017 .323 ± .063 .337 ± .049 .304 ± .054

Health

𝐿𝐶 .400 ± .031 .339 ± .012 .339 ± .024 .349 ± .025 .402 ± .024 .599 ± .024 .491 ± .017

𝑃𝐶 .356 ± .013 .322 ± .011 .352 ± .028 .332 ± .009 .402 ± .024 — —

𝐿𝐶𝑆−𝑇 .395 ± .030 .345 ± .011 .380 ± .003 .331 ± .025 .479 ± .015 .424 ± .021 .407 ± .011

𝐿𝐶𝑀−𝑇 .395 ± .023 .425 ± .032 .396 ± .019 .381 ± .022 .490 ± .015 .461 ± .012 .429 ± .034
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Complementary of Table A.5

Ensemble multi-label variant performances in term of Macro-F1 loss (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .110 ± .009 .104 ± .016 .176 ± .009 .139 ± .012 .129 ± .012 .024 ± .012 .181 ± .007

𝑃𝐶 .168 ± .011 .138 ± .011 .157 ± .013 .196 ± .013 .123 ± .013 — —

𝐿𝐶𝑆−𝑇 .106 ± .008 .079 ± .026 .128 ± .013 .175 ± .009 .112 ± .018 .146 ± .015 .152 ± .013

𝐿𝐶𝑀−𝑇 .102 ± .008 .093 ± .012 .117 ± .011 .124 ± .009 .110 ± .015 .112 ± .021 .093 ± .010

Medical

𝐿𝐶 .316 ± .021 .230 ± .016 .242 ± .050 .257 ± .024 .278 ± .013 .674 ± .016 .422 ± .016

𝑃𝐶 .264 ± .016 .231 ± .017 .243 ± .014 .255 ± .015 .275 ± .010 — —

𝐿𝐶𝑆−𝑇 .312 ± .015 .249 ± .012 .290 ± .019 .259 ± .022 .308 ± .009 .342 ± .023 .332 ± .025

𝐿𝐶𝑀−𝑇 .301 ± .018 .335 ± .013 .311 ± .017 .304 ± .028 .317 ± .008 .368 ± .022 .335 ± .021

Recreation

𝐿𝐶 .341 ± .051 .271 ± .023 .281 ± .032 .346 ± .030 .317 ± .049 .382 ± .027 .351 ± .038

𝑃𝐶 .383 ± .021 .303 ± .026 .321 ± .021 .402 ± .029 .318 ± .049 — —

𝐿𝐶𝑆−𝑇 .334 ± .050 .300 ± .028 .303 ± .048 .358 ± .041 .277 ± .053 .296 ± .020 .294 ± .025

𝐿𝐶𝑀−𝑇 .326 ± .035 .290 ± .035 .289 ± .028 .315 ± .016 .284 ± .050 .285 ± .037 .244 ± .021

Reference

𝐿𝐶 .502 ± .031 .447 ± .022 .520 ± .013 .571 ± .029 .428 ± .011 .552 ± .029 .532 ± .021

𝑃𝐶 .614 ± .030 .515 ± .017 .538 ± .017 .637 ± .036 .429 ± .011 — —

𝐿𝐶𝑆−𝑇 .504 ± .027 .343 ± .028 .415 ± .013 .569 ± .037 .306 ± .022 .511 ± .012 .528 ± .029

𝐿𝐶𝑀−𝑇 .399 ± .024 .343 ± .028 .389 ± .021 .459 ± .027 .292 ± .022 .344 ± .029 .323 ± .014

Scene

𝐿𝐶 .473 ± .009 .418 ± .007 .409 ± .005 .531 ± .008 .410 ± .007 .532 ± .011 .480 ± .006

𝑃𝐶 .531 ± .010 .423 ± .008 .459 ± .008 .570 ± .006 .408 ± .006 — —

𝐿𝐶𝑆−𝑇 .458 ± .010 .309 ± .005 .351 ± .008 .535 ± .006 .330 ± .011 .497 ± .016 .476 ± .016

𝐿𝐶𝑀−𝑇 .374 ± .023 .276 ± .006 .323 ± .007 .416 ± .008 .326 ± .011 .364 ± .019 .310 ± .009

Science

𝐿𝐶 .364 ± .022 .212 ± .030 .385 ± .052 .418 ± .039 .301 ± .030 .499 ± .027 .405 ± .021

𝑃𝐶 .504 ± .025 .296 ± .024 .372 ± .024 .540 ± .038 .301 ± .030 — —

𝐿𝐶𝑆−𝑇 .363 ± .024 .137 ± .025 .173 ± .029 .449 ± .037 .269 ± .028 .399 ± .032 .384 ± .041

𝐿𝐶𝑀−𝑇 .298 ± .029 .131 ± .034 .154 ± .023 .273 ± .023 .259 ± .029 .249 ± .029 .176 ± .029

Slashdot

𝐿𝐶 .159 ± .027 .060 ± .017 .210 ± .037 .182 ± .025 .054 ± .019 .415 ± .038 .351 ± .062

𝑃𝐶 .304 ± .054 .283 ± .052 .208 ± .041 .433 ± .057 .097 ± .027 — —

𝐿𝐶𝑆−𝑇 .161 ± .031 .030 ± .021 .046 ± .020 .366 ± .049 .047 ± .017 .286 ± .024 .309 ± .046

𝐿𝐶𝑀−𝑇 .157 ± .028 .041 ± .021 .041 ± .012 .155 ± .026 .047 ± .017 .209 ± .061 .156 ± .086

Social

𝐿𝐶 .511 ± .053 .445 ± .027 .462 ± .059 .490 ± .044 .465 ± .037 .486 ± .029 .483 ± .024

𝑃𝐶 .543 ± .040 .456 ± .015 .504 ± .024 .473 ± .026 .465 ± .037 — —

𝐿𝐶𝑆−𝑇 .513 ± .046 .470 ± .031 .477 ± .023 .458 ± .057 .393 ± .035 .445 ± .056 .447 ± .045

𝐿𝐶𝑀−𝑇 .513 ± .027 .470 ± .028 .501 ± .015 .467 ± .037 .375 ± .030 .437 ± .040 .391 ± .019

Society

𝐿𝐶 .502 ± .048 .447 ± .034 .520 ± .047 .571 ± .027 .428 ± .040 .552 ± .032 .532 ± .041

𝑃𝐶 .614 ± .025 .515 ± .028 .538 ± .035 .637 ± .034 .429 ± .040 — —

𝐿𝐶𝑆−𝑇 .504 ± .041 .343 ± .036 .415 ± .032 .569 ± .022 .306 ± .028 .511 ± .025 .528 ± .016

𝐿𝐶𝑀−𝑇 .399 ± .053 .343 ± .036 .389 ± .020 .459 ± .021 .292 ± .035 .344 ± .019 .323 ± .022

Yeast

𝐿𝐶 .531 ± .018 .336 ± .004 .487 ± .037 .505 ± .056 .430 ± .045 .548 ± .003 .518 ± .003

𝑃𝐶 .533 ± .039 .478 ± .006 .490 ± .026 .507 ± .031 .431 ± .045 — —

𝐿𝐶𝑆−𝑇 .521 ± .031 .258 ± .078 .315 ± .070 .499 ± .024 .301 ± .058 .505 ± .037 .517 ± .037

𝐿𝐶𝑀−𝑇 .492 ± .031 .258 ± .078 .292 ± .019 .450 ± .042 .293 ± .053 .378 ± .060 .244 ± .022
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TABLE A.6: Ensemble multi-label variant performances in term of Hamming loss (Part 1/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets Variants EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Arts

𝐿𝐶 .055 ± .001 .055 ± .001 .054 ± .001 .054 ± .001 .059 ± .001 .060 ± .018 .064 ± .030

𝑃𝐶 .059 ± .001 .062 ± .001 .055 ± .001 .066 ± .001 .059 ± .001 — —

𝐿𝐶𝑆−𝑇 .063 ± .001 .056 ± .001 .054 ± .001 .054 ± .001 .058 ± .001 .166 ± .022 .075 ± .009

𝐿𝐶𝑀−𝑇 .058 ± .001 .053 ± .001 .054 ± .001 .054 ± .001 .058 ± .001 .063 ± .026 .056 ± .005

Birds

𝐿𝐶 .048 ± .002 .050 ± .002 .046 ± .002 .048 ± .002 .050 ± .002 .063 ± .022 .065 ± .025

𝑃𝐶 .049 ± .002 .049 ± .002 .047 ± .002 .055 ± .003 .050 ± .002 — —

𝐿𝐶𝑆−𝑇 .048 ± .003 .046 ± .001 .045 ± .002 .049 ± .002 .049 ± .002 .114 ± .021 .069 ± .012

𝐿𝐶𝑀−𝑇 .048 ± .002 .045 ± .002 .045 ± .002 .048 ± .002 .049 ± .002 .066 ± .028 .053 ± .008

Business

𝐿𝐶 .026 ± .001 .026 ± .001 .026 ± .001 .026 ± .001 .026 ± .001 .028 ± .005 .028 ± .008

𝑃𝐶 .027 ± .001 .026 ± .001 .026 ± .001 .028 ± .001 .026 ± .001 — —

𝐿𝐶𝑆−𝑇 .027 ± .001 .026 ± .001 .026 ± .001 .026 ± .001 .026 ± .001 .057 ± .005 .036 ± .002

𝐿𝐶𝑀−𝑇 .027 ± .001 .025 ± .001 .025 ± .001 .026 ± .001 .026 ± .001 .029 ± .007 .027 ± .003

Computers

𝐿𝐶 .035 ± .001 .035 ± .001 .034 ± .001 .035 ± .001 .039 ± .001 .036 ± .001 .035 ± .001

𝑃𝐶 .038 ± .001 .037 ± .001 .035 ± .001 .040 ± .001 .039 ± .001 — —

𝐿𝐶𝑆−𝑇 .039 ± .001 .038 ± .001 .034 ± .001 .035 ± .001 .039 ± .001 .088 ± .001 .048 ± .001

𝐿𝐶𝑀−𝑇 .037 ± .001 .034 ± .001 .033 ± .001 .035 ± .001 .038 ± .001 .036 ± .001 .036 ± .001

Education

𝐿𝐶 .038 ± .001 .038 ± .001 .038 ± .001 .039 ± .001 .039 ± .001 .038 ± .001 .038 ± .001

𝑃𝐶 .040 ± .001 .044 ± .001 .038 ± .001 .046 ± .001 .039 ± .001 — —

𝐿𝐶𝑆−𝑇 .043 ± .001 .041 ± .001 .038 ± .001 .039 ± .001 .038 ± .001 .116 ± .001 .054 ± .001

𝐿𝐶𝑀−𝑇 .040 ± .001 .037 ± .001 .037 ± .001 .039 ± .001 .038 ± .001 .038 ± .001 .038 ± .001

Emotions

𝐿𝐶 .197 ± .008 .189 ± .006 .187 ± .007 .196 ± .011 .261 ± .005 .238 ± .009 .199 ± .008

𝑃𝐶 .197 ± .009 .198 ± .007 .189 ± .007 .208 ± .014 .261 ± .006 — —

𝐿𝐶𝑆−𝑇 .203 ± .013 .187 ± .008 .190 ± .012 .193 ± .011 .255 ± .009 .368 ± .037 .301 ± .006

𝐿𝐶𝑀−𝑇 .196 ± .010 .186 ± .005 .191 ± .009 .195 ± .011 .255 ± .010 .238 ± .009 .234 ± .010

Enron

𝐿𝐶 .046 ± .001 .048 ± .001 .046 ± .001 .049 ± .001 .049 ± .001 .047 ± .001 .047 ± .001

𝑃𝐶 .052 ± .001 .057 ± .001 .052 ± .001 .064 ± .001 .049 ± .001 — —

𝐿𝐶𝑆−𝑇 .048 ± .001 .048 ± .001 .046 ± .001 .049 ± .001 .049 ± .001 .107 ± .003 .058 ± .001

𝐿𝐶𝑀−𝑇 .046 ± .001 .047 ± .001 .045 ± .001 .049 ± .001 .049 ± .001 .048 ± .001 .046 ± .001

Entertainment

𝐿𝐶 .054 ± .001 .053 ± .001 .051 ± .001 .053 ± .001 .061 ± .001 .053 ± .001 .052 ± .001

𝑃𝐶 .057 ± .001 .060 ± .001 .052 ± .001 .063 ± .001 .061 ± .001 — —

𝐿𝐶𝑆−𝑇 .057 ± .001 .054 ± .001 .051 ± .001 .053 ± .001 .060 ± .001 .158 ± .003 .074 ± .001

𝐿𝐶𝑀−𝑇 .056 ± .001 .050 ± .001 .050 ± .001 .053 ± .001 .059 ± .001 .053 ± .001 .053 ± .001

Flags

𝐿𝐶 .261 ± .010 .247 ± .010 .248 ± .010 .260 ± .010 .325 ± .013 .271 ± .017 .251 ± .015

𝑃𝐶 .267 ± .010 .271 ± .013 .262 ± .011 .273 ± .006 .329 ± .011 — —

𝐿𝐶𝑆−𝑇 .263 ± .012 .249 ± .011 .248 ± .009 .265 ± .011 .330 ± .009 .391 ± .050 .318 ± .026

𝐿𝐶𝑀−𝑇 .262 ± .011 .257 ± .011 .251 ± .016 .260 ± .010 .334 ± .012 .266 ± .020 .270 ± .016

Health

𝐿𝐶 .035 ± .001 .035 ± .001 .033 ± .001 .034 ± .001 .041 ± .001 .034 ± .001 .033 ± .001

𝑃𝐶 .036 ± .001 .034 ± .001 .034 ± .001 .036 ± .001 .041 ± .002 — —

𝐿𝐶𝑆−𝑇 .036 ± .001 .034 ± .001 .033 ± .001 .034 ± .001 .039 ± .002 .088 ± .001 .044 ± .001

𝐿𝐶𝑀−𝑇 .036 ± .001 .031 ± .001 .032 ± .001 .034 ± .001 .039 ± .002 .034 ± .001 .034 ± .001
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Complementary of Table A.6

Ensemble multi-label variant performances in term of Hamming loss (Part 2/2).

’𝐿𝐶’ denotes the Label Combination variant, ’𝐿𝐶’ denotes the Powerset Combination variant,

’𝐿𝐶𝑀−𝑇 ’ denotes the Multi-threshold variant, ’𝐿𝐶𝑆−𝑇 ’ denotes the Single-threshold variant.

Data sets (↓) Combination EBR ELP ECC RFPCT VPCME RAkEL CkMLC

Image

𝐿𝐶 .164 ± .004 .158 ± .003 .154 ± .003 .155 ± .003 .171 ± .002 .196 ± .007 .160 ± .003

𝑃𝐶 .165 ± .004 .157 ± .007 .156 ± .005 .165 ± .005 .170 ± .003 — —

𝐿𝐶𝑆−𝑇 .172 ± .006 .151 ± .004 .154 ± .003 .156 ± .003 .172 ± .004 .380 ± .037 .273 ± .007

𝐿𝐶𝑀−𝑇 .161 ± .004 .151 ± .003 .154 ± .003 .155 ± .003 .173 ± .004 .197 ± .010 .186 ± .005

Medical

𝐿𝐶 .011 ± .001 .015 ± .001 .017 ± .001 .011 ± .001 .013 ± .001 .010 ± .001 .010 ± .001

𝑃𝐶 .010 ± .001 .014 ± .001 .017 ± .001 .012 ± .001 .013 ± .001 — —

𝐿𝐶𝑆−𝑇 .010 ± .001 .014 ± .001 .013 ± .001 .012 ± .001 .013 ± .001 .016 ± .001 .014 ± .002

𝐿𝐶𝑀−𝑇 .010 ± .001 .011 ± .001 .011 ± .001 .011 ± .001 .013 ± .001 .010 ± .001 .010 ± .001

Recreation

𝐿𝐶 .055 ± .001 .055 ± .001 .054 ± .001 .054 ± .001 .060 ± .001 .054 ± .001 .053 ± .001

𝑃𝐶 .060 ± .001 .063 ± .001 .054 ± .001 .068 ± .001 .060 ± .001 — —

𝐿𝐶𝑆−𝑇 .063 ± .002 .055 ± .001 .054 ± .001 .054 ± .001 .059 ± .001 .171 ± .002 .072 ± .001

𝐿𝐶𝑀−𝑇 .059 ± .001 .053 ± .001 .053 ± .001 .054 ± .001 .058 ± .001 .054 ± .001 .054 ± .001

Reference

𝐿𝐶 .026 ± .001 .026 ± .001 .025 ± .001 .026 ± .001 .030 ± .001 .026 ± .001 .026 ± .001

𝑃𝐶 .028 ± .001 .029 ± .001 .026 ± .001 .030 ± .001 .030 ± .001 — —

𝐿𝐶𝑆−𝑇 .030 ± .001 .028 ± .001 .025 ± .001 .026 ± .001 .030 ± .001 .064 ± .001 .033 ± .001

𝐿𝐶𝑀−𝑇 .028 ± .001 .025 ± .001 .025 ± .001 .026 ± .001 .029 ± .001 .026 ± .001 .026 ± .001

Scene

𝐿𝐶 .091 ± .002 .093 ± .001 .089 ± .001 .091 ± .002 .089 ± .002 .117 ± .007 .095 ± .002

𝑃𝐶 .094 ± .002 .082 ± .002 .087 ± .002 .092 ± .002 .088 ± .002 — —

𝐿𝐶𝑆−𝑇 .091 ± .003 .082 ± .001 .081 ± .001 .091 ± .003 .088 ± .003 .267 ± .044 .147 ± .003

𝐿𝐶𝑀−𝑇 .093 ± .002 .082 ± .001 .082 ± .002 .092 ± .002 .089 ± .003 .117 ± .007 .114 ± .005

Science

𝐿𝐶 .033 ± .001 .033 ± .001 .032 ± .001 .033 ± .001 .034 ± .001 .032 ± .001 .032 ± .001

𝑃𝐶 .036 ± .001 .039 ± .001 .033 ± .001 .041 ± .001 .034 ± .001 — —

𝐿𝐶𝑆−𝑇 .038 ± .001 .033 ± .001 .032 ± .001 .033 ± .001 .033 ± .001 .085 ± .001 .040 ± .001

𝐿𝐶𝑀−𝑇 .035 ± .001 .031 ± .001 .032 ± .001 .033 ± .001 .033 ± .001 .032 ± .001 .032 ± .001

Slashdot

𝐿𝐶 .015 ± .001 .015 ± .001 .015 ± .001 .015 ± .001 .019 ± .001 .017 ± .002 .017 ± .005

𝑃𝐶 .015 ± .001 .015 ± .001 .015 ± .001 .016 ± .001 .019 ± .001 — —

𝐿𝐶𝑆−𝑇 .015 ± .001 .015 ± .001 .015 ± .001 .016 ± .001 .019 ± .001 .039 ± .005 .020 ± .001

𝐿𝐶𝑀−𝑇 .015 ± .001 .015 ± .001 .015 ± .001 .016 ± .001 .019 ± .001 .018 ± .006 .016 ± .001

Social

𝐿𝐶 .021 ± .001 .020 ± .001 .020 ± .001 .021 ± .001 .022 ± .001 .021 ± .001 .020 ± .001

𝑃𝐶 .023 ± .001 .023 ± .001 .020 ± .001 .024 ± .001 .022 ± .001 — —

𝐿𝐶𝑆−𝑇 .023 ± .001 .021 ± .001 .020 ± .001 .021 ± .001 .022 ± .001 .050 ± .001 .027 ± .001

𝐿𝐶𝑀−𝑇 .023 ± .001 .020 ± .001 .019 ± .001 .021 ± .001 .022 ± .001 .021 ± .001 .021 ± .001

Society

𝐿𝐶 .052 ± .001 .053 ± .001 .052 ± .001 .054 ± .001 .055 ± .001 .053 ± .001 .052 ± .001

𝑃𝐶 .058 ± .001 .057 ± .001 .053 ± .001 .065 ± .002 .055 ± .001 — —

𝐿𝐶𝑆−𝑇 .058 ± .001 .057 ± .002 .052 ± .001 .054 ± .001 .055 ± .001 .156 ± .004 .065 ± .001

𝐿𝐶𝑀−𝑇 .057 ± .001 .052 ± .001 .052 ± .001 .054 ± .001 .054 ± .001 .053 ± .001 .052 ± .001

Yeast

𝐿𝐶 .195 ± .002 .198 ± .002 .193 ± .002 .195 ± .003 .196 ± .001 .197 ± .003 .197 ± .002

𝑃𝐶 .216 ± .003 .206 ± .004 .205 ± .003 .210 ± .004 .196 ± .001 — —

𝐿𝐶𝑆−𝑇 .203 ± .005 .198 ± .003 .193 ± .002 .195 ± .002 .195 ± .003 .509 ± .009 .302 ± .003

𝐿𝐶𝑀−𝑇 .195 ± .002 .194 ± .002 .193 ± .003 .195 ± .003 .195 ± .003 .197 ± .003 .195 ± .002
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