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The literature of science is filled with answers found when
the question propounded had an entirely different direction and end.

— John Steinbeck

There was a lot more to magic, as Harry quickly found out,
than waving your wand and saying a few funny words.

— J.K. Rowling





A B S T R A C T

Over the last decades, genomic databases have grown exponen-
tially in size thanks to the constant progress of modern DNA se-
quencing. A large variety of statistical tools have been developed, at
the interface between bioinformatics, machine learning, and statisti-
cal physics, to extract information from these ever increasing datasets.
In the specific context of protein sequence data, several approaches
have been recently introduced by statistical physicists, such as direct-
coupling analysis, a global statistical inference method based on the
maximum-entropy principle, that has proven to be extremely effective
in predicting the three-dimensional structure of proteins from purely
statistical considerations.

In this dissertation, we review the relevant inference methods and,
encouraged by their success, discuss their extension to other chal-
lenging fields, such as sequence folding prediction and homology
detection. Contrary to residue-residue contact prediction, which re-
lies on an intrinsically topological information about the network of
interactions, these fields require global energetic considerations and
therefore a more quantitative and detailed model. Through an exten-
sive study on both artificial and biological data, we provide a better
interpretation of the central inferred parameters, up to now poorly
understood, especially in the limited sampling regime. Finally, we
present a new and more precise procedure for the inference of gen-
erative models, which leads to further improvements on real, finitely
sampled data.

Keywords: inference, statistical learning, regularization, maximum
entropy, protein coevolution, statistical modeling of protein sequences,
maximum likelihood, mean field, pseudolikelihood, cluster expan-
sion
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R É S U M É

Grâce aux progrès des techniques de séquençage, les bases de don-
nées génomiques ont connu une croissance exponentielle depuis la
fin des années 1990. Un grand nombre d’outils statistiques ont été dé-
veloppés à l’interface entre bioinformatique, apprentissage automa-
tique et physique statistique, dans le but d’extraire de l’information
de ce déluge de données. Plusieurs approches de physique statistique
ont été récemment introduites dans le contexte précis de la modéli-
sation de séquences de protéines, dont l’analyse en couplages directs.
Cette méthode d’inférence statistique globale fondée sur le principe
d’entropie maximale, s’est récemment montrée d’une efficacité redou-
table pour prédire la structure tridimensionnelle de protéines, à partir
de considérations purement statistiques.

Dans cette thèse, nous présentons les méthodes d’inférence en ques-
tion, et encouragés par leur succès, explorons d’autres domaines com-
plexes dans lesquels elles pourraient être appliquées, comme la pré-
diction de repliement de protéines ou la détection d’homologies. Con-
trairement à la prédiction des contacts entre résidus qui se limite
à une information topologique sur le réseau d’interactions, ces nou-
veaux champs d’application exigent des considérations énergétiques
globales et donc un modèle plus quantitatif et détaillé. À travers une
étude approfondie sur des données artificielles et biologiques, nous
proposons une meilleure interpretation des paramètres centraux de
ces méthodes d’inférence, jusqu’ici mal compris, notamment dans le
cas d’un échantillonnage limité. Enfin, nous présentons une nouvelle
procédure plus précise d’inférence de modèles génératifs, qui mène à
des avancées importantes pour des données réelles en quantité limi-
tée.

Mots-clefs : inférence, apprentissage statistique, régularisation, en-
tropie maximale, coévolution des protéines, modélisation statistique
des séquences de protéines, vraisemblance maximale, champ moyen,
pseudo vraisemblance, développement en grappe

viii



R E M E R C I E M E N T S

Je tiens à remercier Rémi Monasson et Martin Weigt d’avoir ac-
cepté de diriger ma thèse entre le laboratoire de physique théorique
de l’École Normale Supérieure et le laboratoire de biologie compu-
tationnelle et quantitative de l’Université Pierre et Marie Curie. Leur
exigence et l’autonomie qu’ils m’ont accordée auront fait de ces trois
dernières années une expérience unique dont les enseignements me
suivront encore longtemps.

Je voudrais exprimer la plus grande gratitude envers mes collabo-
rateurs. Tout d’abord à Guido Uguzzoni, pour sa disponibilité et sa
pédagogie, sans oublier les heures passées à regarder des taux de
vrais positifs ou des figures colorées. À John Barton pour des discus-
sions toujours enrichissantes. Merci à Eleonora De Leonardis, pour
sa clarté et son enthousiasme, ainsi que pour son amitié qui m’est
très chère. Enfin, je suis tout particulièrement reconnaissante envers
Simona Cocco pour sa disponibilité et nos fructueuses et agréables
interactions tout au long de ma dernière année de thèse.

Je remercie Olivier Martin et Aleksandra Walczack d’avoir accepté
de participer au jury de ma thèse, et Andrea De Martino et Olivier
Rivoire d’en être les rapporteurs.

Je remercie également Jean-Marc Berroir de m’avoir écoutée et sou-
tenue, Aleksandra Walczack (à nouveau) d’avoir cru en moi, Sylvie
Hénon pour ces deux merveilleuses années d’enseignement et Sébas-
tien Balibar pour les nombreuses discussions passionnantes. Merci
à Giulio Biroli pour m’avoir appris à associer physique et voile et
whisky et chocolat. Merci aussi à Jean-François Allemand de m’avoir
convaincue de venir à l’ENS un jour d’août 2010. Enfin, je voudrais
remercier Yann Brunel pour son enthousiasme communicatif pour la
physique et sa bienveillance, sans qui je ne serais sûrement pas là où
je suis.

Viviane Sébille, Sandrine Patacchini et Claire Bourliaud m’ont fourni
une aide très précieuse dans un contexte administratif compliqué,
qu’elles en soient ici remerciées.

J’ai eu la chance de rencontrer et côtoyer des personnes exception-
nelles entre les rues Lhomond et de l’école de médecine. Par ordre
d’apparition Tom, Jonathan, Thibaud, Thimothée, Suzanne, Antoine,
Jean, Sophie, Dario, Matteo, Juliana, Alberto, Ulisse, Ralph, Quentin,
Andreas, Christoph, Pierre, Lorenzo. Merci pour, pêle-mêle, l’élevage
de dumb cane, le taboulé, les jeux de piste du CPER, les débats sur il
caffè, la pasta, e la ‘nduja calabrese, les jeux de pôt, le benchmarking
du flan du 5ème arrondissement, l’élucidation du mystère de la ma-
chine à glaçons, l’eau municipale et son menu de luxe ... En somme,

ix



d’avoir rendu supportables les coups durs et les désillusions passa-
gères. Je remercie aussi mes amis de plus longue date – je pense à
Faustine, Diane, Marie, Elisa, Tancrède, Margot, Raphaëlle, Minh-Tu,
Gabi – qui ont pardonné mes errances théoriques ; à Sophia, qui m’a
rendu visite partout, ou presque.

Je voudrais remercier ici Declan McCavana et les coaches de la
French Debating Association qui m’ont accueillie dans leur big family,
donnant à mes années de thèse ce je-ne-sais-quoi qui leur manquait.

Je n’aurais probablement jamais pu achever cette thèse sans le sou-
tien indéfectible de ma famille, et je voudrais leur témoigner ici toute
mon affection. Merci aux Levené/Gaudron/Benech pour tous ces
rires et ces discussions sans fin, sans oublier les embuscades et la
sacro-sainte pizza-houmous du dimanche soir. Aux grumeaux, aka
Jeanine et Dédé, pardon pour ce que j’ai dit quand j’avais faim ; à
Rosa dont je suis si fière et qui ne cesse de m’étonner, notamment
pour sa connaissance encyclopédique des champignons, des émul-
sions et de la musculation ; à Léon avec un “n” le grand lettré de
la famille, de loin le plus passionné, aussi bien des discontinuités en
géographie que des tartines de beurre sans beurre. Merci à ma grande
soeur Caroline, qui m’a appris tant de choses, ainsi qu’à Khéo et Evan,
promis maintenant c’est bien fini ! À mes parents, enfin, pour leur an-
ticonformisme que j’ai mis trop longtemps à accepter et l’éducation
déplorable qui m’a menée jusqu’ici.

Alaa, me supporter pendant ces trois années a du être au moins
aussi frustrant qu’essayer d’améliorer le score APC. Aussi, je laisserai
ce bon vieux Charles Bukowski s’exprimer à ma place : “The free soul
is rare, but you know it when you see it – basically because you feel
good, very good, when you are near or with them”.

x



C O N T E N T S

foreword 1

I from coevolution to inverse statistical physics
3

1 a word about coevolution in proteins 4
2 inverse potts model 8

2.1 Maximum-entropy modeling 8
2.1.1 Potts model 8
2.1.2 Maximum-entropy principle 10

2.2 Approximations to the inverse problem 11
2.2.1 Boltzmann machine learning 12
2.2.2 Mean-field approximation 13
2.2.3 Pseudolikelihood maximization 14
2.2.4 Adaptive cluster expansion 15

2.3 Model parameters 17
2.3.1 Gauge invariance 18
2.3.2 Data preprocessing for finite-sample effects 19

3 application to biological data 21
3.1 Protein families 21

3.1.1 Basic notions 21
3.1.2 Multiple sequence alignments 22
3.1.3 Protein structure prediction 27

3.2 Lattice proteins 30
3.2.1 Background 31
3.2.2 Covariation in lattice proteins 32

II scoring of sequences 35
1 a first example : ww domain 36

1.1 Background 36
1.2 Folding prediction with direct-coupling analysis 37

2 sequence scoring and gap treatment 40
2.1 Scoring procedure 41

2.1.1 Gaps are not modeled well by direct-coupling
analysis 41

2.1.2 Null model 43
2.1.3 Scoring method 44

2.2 Results 45
2.2.1 PF00091 - Tubulin/FtsZ family GTPase domain 46
2.2.2 More protein families 49

2.3 Outlook 55
3 modeling of gaps as missing information 56

3.1 Method 56

xi



xii contents

3.1.1 Maximum-likelihood equations 57
3.1.2 Mean-field approximation 58
3.1.3 Iterative Procedure 59

3.2 Convergence and recovery of the Potts parameters 60
3.2.1 Effect of the amount of missing data 61
3.2.2 Effect of the sampling 64

3.3 Sequence energies are accurately reproduced 64
3.3.1 Real energies 65
3.3.2 Inferred energies 66

3.4 Comparison with standard direct-coupling analysis 67
3.4.1 Absence of missing data 67
3.4.2 Presence of missing data 68

3.5 Outlook 69

III direct couplings reflect biophysical residue in-
teractions 71

1 introductory remarks 72
1.1 Motivations 72
1.2 Miyazawa-Jernigan statistical potential 73

2 protein sequences data 75
2.1 Method 75

2.1.1 Dataset 75
2.1.2 Mean coupling matrix and its spectral modes 76

2.2 The coupling matrices reflect biologically relevant in-
formation 77
2.2.1 C-C signal and structural classification 78
2.2.2 Hydrophilicity and solvent exposure 80
2.2.3 Differences with Miyazawa-Jernigan 81

2.3 Distance distribution 84
2.3.1 Naive clustering 84
2.3.2 Contact distances 85

2.4 Clustering of the coupling matrices 86
2.4.1 Method 86
2.4.2 Results 87

2.5 Toward an improved contact prediction 91
2.5.1 Using the unveiled structure of the coupling ma-

trices 91
2.5.2 Attempt: combining the APC and projection

scores 93
2.6 Outlook 94

3 lattice proteins 96
3.1 Dataset and background 96
3.2 Profile-HMM specificity of lattice proteins 98
3.3 Properties of the inferred couplings 99

3.3.1 Effect of the regularization 99
3.3.2 Effect of the sampling 100



contents xiii

3.4 Mean coupling matrix 101
3.5 Structural predictions 104
3.6 Outlook 105

IV adaptive cluster expansion 107
1 background 108

1.1 Fisher information matrix and finite sampling errors 108
1.1.1 Expression of the finite sampling errors 108
1.1.2 Approximated errors on the inferred parame-

ters 109
1.1.3 Absolute and relative errors between true and

inferred couplings 110
1.2 Compressed representation of the data 111

2 comparison with standard methods on various
datasets 113
2.1 Datasets 113
2.2 Recovery of the ER05 parameters 114
2.3 Inference of structural contacts for PF00014 115
2.4 Reproducibility of the statistics of the data 117
2.5 Reproducibility of the energy distribution 119
2.6 Outlook 120

3 role of the compressed representation of the
data 121
3.1 Method and datasets 121
3.2 Conditioning of the Fisher information matrix and gauge

choice 122
3.3 Minimizing the Kullback-Leibler divergence 123

3.3.1 Theoretical framework 123
3.3.2 Results 125

3.4 Compression and recovery of the ER05 parameters 126
3.4.1 Inference with the adaptive cluster expansion 126
3.4.2 Inference with the compressed pseudolikelihood

maximization 128
3.5 Compression and reproducibility of the statistics 130
3.6 Outlook 133

V concluding remarks 135
1 summary of the results 136
2 outlook and future work 140

VI appendix 143
a publication abstracts 144

a.1 Journal of Chemical Physics [31] (under review) 144
a.2 Bioinformatics [13] 145

b hmmer scoring procedure 146
c training on the eukaryotic sub-families 147



xiv contents

d maximum-likelihood equations with missing data 148
d.1 First maximum-likelihood equation 148
d.2 Second maximum-likelihood equation 149

e list of pfam families analyzed in part III 152
e.1 List of the 70 Pfam families 152
e.2 Structural Classification of Proteins 152

f silhouette of a clustering 153

bibliography 155



A C R O N Y M S

ACE Adaptive Cluster Expansion

APC Average Product Correction

AUC Area Under the Curve

BML Boltzmann Machine Learning

cplmDCA Compressed Pseudolikelihood Maximization

DCA Direct-Coupling Analysis

DI Direct Information

HMM Hidden Markov Model

i.i.d independent and identically distributed

KL Kullback-Leibler

LP Lattice Proteins

MaxEnt Maximum-Entropy Principle

MC Monte Carlo

MCMC Monte Carlo Markov Chain

mfDCA Mean-Field Direct-Coupling Analysis

MI Mutual Information

MJ Miyazawa-Jernigan

MSA Multiple Sequence Alignment

PCA Principal Component Analysis

PDB Protein Data Bank

plmDCA Pseudolikelihood Maximization

PPV Positive Predictive Value

PSICOV Protein Sparse Inverse Covariance Estimation

ROC Receiver Operating Characteristic

RSA Relative Solvent Accessibility

SCOP Structural Classification of Proteins

xv





F O R E W O R D

The exponential growth of genomic databases over the recent years
has prompted a surge of interest among researchers in the fields of
bioinformatics, machine learning, and statistical physics. A large
variety of statistical tools have been developed to extract informa-
tion from these ever increasing datasets. In statistical physics, esti-
mating the probability distribution from which a given dataset may
have been generated is referred to as the inverse problem. Direct-
coupling analysis is a generic name for several approximate methods
to solve the inverse problem based on maximum-entropy modeling,
in the specific context of protein sequence data. Such approaches,
introduced by statistical physicists, have proven to be extremely ef-
fective in predicting the three-dimensional structure of proteins from
sequence information alone, reaching a level of accuracy previously
thought to be beyond reach.

In this dissertation, we will review these existing methods and, en-
couraged by their success, explore other challenging fields in which
they may be applied. However, we will quickly realize that many
things about these models are not fully controlled. Some effort first
needs to be put in understanding them better, especially if we want to
go beyond protein structure prediction. Indeed, while it has proven
possible to make predictions about the tertiary structure of a pro-
tein based solely on a map of the interactions between its residues,
a more detailed description of these interactions is needed to tackle
more complex questions. Fields such as fitness landscape modeling
or homology detection can only be addressed through global consid-
erations concerning the energy of whole sequence, and require more
quantitative statistical models.

Part I will be therefore dedicated, after a brief word about coevo-
lution in proteins, to the introduction of inverse Potts problems in
statistical physics in the context of maximum-entropy modeling. We
will present a review of the most popular approximation methods
to tackle this problem on biological sequence data. We then explore
the specificities of protein domain families in more details, as well
as the success of statistical physics approaches in protein structure
prediction.

We will discuss the ability of inverse Potts methods to go beyond
structural prediction in Part II. We will start by analyzing the data
from a recent publication where the authors designed artificial pro-
teins and experimentally tested their ability to fold. Then, we will
show that the application of direct-coupling analysis approaches in
the context of remote homology detection gives promising but also



2 foreword

unexpected results. It incidentally raises several questions about gaps
modeling that we will subsequently address through a more princi-
pled approach, which is the object of a publication currently in prepa-
ration.

The main focus of Part III will be the inferred Potts couplings.
When used for residue-residue contact prediction, these couplings
are usually mapped onto simple scalar parameters and subsequently
ranked, so that the full information they potentially contain gets lost.
A detailed understanding of these crucial parameters is lacking. By
analyzing 70 protein families, we will provide a quantitative interpre-
tation of the inferred couplings and describe their properties in great
details. We will also assess the crucial role of sampling and regular-
ization by studying artificial lattice proteins. This work has led to the
following paper “Direct coevolutionary couplings reflect biophysical
residue interactions in proteins”, A Coucke, G Uguzzoni, F Oteri, S
Cocco, R Monasson, and M Weigt, Journal of Chemical Physics (2016)
[31], currently under review.

Finally, we will describe in Part IV the adaptive cluster expansion,
a new approach to inverse problems. Introduced by our group in
the Ising case in the context of neural recordings, it has been recently
generalized to the Potts case and we will discuss its application to arti-
ficial and protein sequence data. We will compare this new approach
to standard direct-coupling analysis models on various datasets and
study its ability to accurately recover the model parameters, recon-
struct the statistics of the input data, and predict protein structure.
This work has been recently published in “ACE: adaptive cluster ex-
pansion for maximum entropy graphical model inference”, JP Barton,
E De Leonardis, A Coucke, and S Cocco, Bioinformatics (2016) [13].
We will also go into more details about a new compressed represen-
tation of the data which aims at reducing overfitting and improving
the quality of the inference; a paper on this topic is currently in prepa-
ration.



Part I

F R O M C O E V O L U T I O N T O I N V E R S E
S TAT I S T I C A L P H Y S I C S

In this introduction, we first motivate the statistical physics
approach to tackle genomic data, and in particular present
the general principles of modeling coevolution in proteins
(Chapter 1). We then provide a review of the inverse
Potts model in the context of maximum-entropy model-
ing and introduce the direct-coupling analysis approach
(Chapter 2). These models are vastly used for the com-
putationally challenging task of estimating the probabil-
ity distribution from which the given data may have been
drawn. Finally we go into more details about the speci-
ficity of protein sequence data and show that direct-cou-
pling analysis is very successful in exploiting coevolution
to predict residue-residue contacts in the protein structure
(Chapter 3).
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A W O R D A B O U T C O E V O L U T I O N I N P R O T E I N S

More is different.

— P. W. Anderson [4]

Over the last decades, the development of new experimental tech-
niques in biology has given rise to a rapid increase in data availability.
Consequently, a large variety of statistical tools have been recently
developed to extract information from these growing datasets. In
particular, genomic databases have known a spectacular exponential
growth thanks to the constant progress of modern DNA sequencing
technologies, resulting in about 100 million known protein sequences.
However, only a small fraction of these sequences have been manu-
ally annotated – from 5% in 2010 to 0.5% in 2015 – meaning that some
of their biological features have been experimentally identified by a
human being. Experimentally extracting the three-dimensional struc-
ture of a protein is indeed still hard and costly. On the other hand,
while these annotations are continuously updated, the research ef-
fort is directed at improving the quality of the annotations (not only
structural, but also functional) rather than the quantity. The vast ma-
jority of the protein sequences are therefore unreviewed, automati-
cally annotated entries. In the UniProt database [30], a freely acces-
sible database of protein sequences, the gap between the manually
annotated Swiss-Prot [22] and the automatically annotated TrEMBL
databases dramatically widens, as shown on Fig. 1.1.

The function of a protein mainly depends on its three-dimensional
structure [5]. Knowing the structure of a protein is therefore very in-
formative about its potentiality. The ultimate goal would be go back
and forth from genotype to phenotype, or in other words from a sin-
gle protein sequence (amino-acid chain) to its folded structure and
function. It would for instance allow to design new drugs targeting
specific agents. Given the very large number of degrees of freedom
(torsion angles) in an unfolded amino-acid chain, the number of possi-
ble spatial configurations is astronomical and the folding energy land-
scape extremely complex. For a protein of 100 residues, finding the
global energy minimum by exploring each possible configuration at
the speed of light would take 1075 years (known as Levinthal’s para-
dox [69]). Mapping a single sequence to its three-dimensional struc-
ture is therefore extremely difficult, even with the most advanced
computational techniques – computational protein folding 1 is actu-

1. Computational protein folding uses far more than sequence information alone.
It usually includes the physico-chemical properties of amino acids and molecular
dynamics simulations.

4
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Figure 1.1 – Evolution of the number of entries in the UniProt database. The
gap between TrEMBL (unreviewed automatically annotated se-
quences) and SwissProt (manually annotated entries) dramati-
cally widens.
Source: uniprot.org/statistics

ally one of the most active fields of biophysics and bioinformatics [23].
On the other hand, starting from thousands of sequences coding for
the same kind of protein (across different species or different path-
ways in the same species), thus sharing the same structure, would be
much easier. We could indeed exploit the variability and statistical
properties of the ensemble. As challenging as it may be, it is there-
fore very tempting to apply statistical physics tools to sequence data
alone and try to infer information about the proteins.

Fortunately, the 100 million protein sequences are classified into
16306 protein domain families in the publicly available Pfam database
[49]. Many families contain about 103-105 evolutionary related ho-
mologous proteins, taking the form of a multiple sequence alignment
(MSA), where all amino-acid sequences of the family are aligned to
be as similar as possible (cf. Fig. 1.2 for a schematic view). A key
point is that the structure and functionality of the proteins belong-
ing to the same family are very conserved, whereas the amino-acid
sequences are quite diverged, with only 20-30% sequence identity
on average [48]. Across evolution, mutations indeed occurred, lead-
ing to a lot of variability in protein MSAs. Besides, this variability
is not homogeneous: although some positions – or MSA columns –
may contain a large variety of amino acids, others will be remark-
ably conserved. The question is whether the statistical properties of
the ensemble of sequences may be used to unveil global informations
about the protein family. The Pfam database is updated roughly once
a year: the number of protein families is growing slowly, whereas the
number of sequences per family is continuously increasing. Creating

uniprot.org/statistics
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MSAs of ever improving quality is indeed a major topic of bioinfor-
matics – the main ideas about sequences alignment will be presented
in Chapter 3.
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Figure 1.2 – Schematic view of the basic connection between correlation pat-
terns in the MSA and residue-residue contacts. Inspired by [82].

The conservation of structure and function across protein families
induces important constraints on the sequence variability. Single-
column variability is a first step toward identifying these constraints:
a very conserved position indicates residues whose mutations have
deleterious effects and disrupt the integrity of the protein. However,
compensatory mutations can happen to preserve the protein function,
even if single-site mutations are deleterious [54, 72]: if two residues
of a protein form a contact, a destabilizing mutation at one position is
expected to be compensated by a mutation of the other position over
the evolutionary timescale, to maintain the protein structure. A natu-
ral idea is therefore to take the reverse path and analyze the statistical
correlations induced by coevolution between residues across protein
families to infer structural information about proteins (cf. Fig. 1.2).
Over the last few years, it has prompted a surge of interest among re-
searchers [68, 99, 116], especially in the context of the inverse problem
in statistical physics (cf. Chapter 2): what is the simplest statistical
model for protein sequences capable of reproducing the empirically
observed correlations in the MSA?

The difficulty of such an approach mainly lies in disentangling
direct (resulting from native contacts in the 3D structure) and indi-
rect (mediated through chains of native contacts) correlations, while
dealing with a limited and biased sampling (few and phylogeneti-
cally related sequences). A strong correlation between two residues
(columns in the MSA) may indeed result from two situations: either
residue i is in contact with residue j, or residues i and j are both in
contact with residue k (cf. Fig. 1.3). The direct measure of statistical
correlations has therefore remained of very limited accuracy for un-
veiling structural constraints [38, 50, 87, 88]. First introduced in 2009
[116], direct-coupling analysis (DCA) is a global statistical inference
method based on the maximum-entropy principle (MaxEnt) [61, 62],
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Figure 1.3 – A strong correlation between two residues i and j may indicate
either a direct interaction (native contact) between them or an
indirect interaction mediated through chains of contacts.

that uses pairwise correlations in amino-acid occurrence from large
multiple sequence alignments and has been very successful in the
field of protein structural prediction [33, 34, 42, 43, 77, 82] (cf. Chap-
ter 3).

Encouraged by this success, the exploitation of coevolution in pro-
teins goes beyond structural prediction, with recent applications to
describing fitness effects of mutations [46, 73, 83], or designing artifi-
cial proteins with native properties [65]. Experiments actually show
that a significant fraction of artificial sequences generated to respect
the two-point correlation patterns from the natural MSA acquire the
native fold, whereas none of them do fold when reproducing only
the single-site frequencies (cf. Part II). Very recently, DCA related ap-
proaches were found to be able to locate drug resistance regions of
the HIV virus [25], and to be very promising in detecting homology
in artificial data [60].



2
I N V E R S E P O T T S M O D E L

Interpreting patterns of statistical correlations in data is a funda-
mental problem across scientific disciplines. The goal is to estimate
a global probability distribution describing the system from samples
of a large number of variables. This model should explain some sta-
tistical properties through a network of effective interactions between
the variables and may be used to make predictions. The main chal-
lenge is to disentangle direct from indirect interactions, through the
analysis of correlations between the variables. Usually, the datasets
come from experimental measurements and provide a reduced and
often biased sample of the possible configurations of the system, in-
creasing the difficulty of this approach, known as inverse problem in
statistical physics.

Here, we focus on a specific family of statistical models referred to
as Potts models [119] – a generalization of the Ising model – which
assign a probability distribution P(a|J, h) to a configuration (or se-
quence) a = (a1, ..., aN) of N variables (or protein residues) taking
any value from an alphabet of size q (q = 21 for proteins), given the
parameters J, h (see Eq. (2.1) for a definition). Inverse Potts models
have been applied to various fields, such as patterns of neuron firing
activity based on multi-electrode recordings [14, 26, 98, 102], predic-
tion protein 3D structure [57, 78, 82, 110], fitness effect of mutations
[25, 45, 46, 76], and gene expression networks [8], all based on the
analysis of statistical correlations in experimental data.

However, solving the Potts inverse problem is challenging as the re-
quired computational time scales exponentially with the system size,
becoming rapidly infeasible for realistic systems. Many approxima-
tions have been developed over the recent years to tackle this problem,
the most celebrated of which – in the context of protein sequence data
– will be presented in this chapter.

2.1 maximum-entropy modeling

2.1.1 Potts model

Potts models – or pairwise Markov random fields – are a particular
family of undirected graphical models. Considering a system of N
variables, this model assigns to every configuration a = (a1, ..., aN) a
probability

8
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P(a|J, h) =
1

Z(J, h)
exp (−E(a|J, h))

=
1

Z(J, h)
exp

N−1∑
i=1

N∑
j=i+1

Jij(ai, aj) +

N∑
i=1

hi(ai)

 .
(2.1)

Each variable can be found in one of the q possible states, or in
other words ai may take any value from an alphabet of size q; typi-
cally q = 21 for protein sequences (20 amino acids and 1 alignment
gap), or q = 2 (Ising case) for neurons (spiking, not spiking). Potts
parameters {hi(a)}a=1,...,q and {Jij(a, b)}a,b=1,...,q are respectively lo-
cal fields on a single variable and direct couplings between pairs of
variables. The latter take the form of q× q matrices, with positive
and negative entries. Each entry of these matrices is the coupling be-
tween a pair of Potts states a, b; the higher the value of the entry, the
more probable it is to find the pair a, b at positions i and j. The cou-
pling matrices will be extensively described in Part III in the context
of protein residue interactions.

The energy, or Hamiltonian, of the system

E(a) = −

N−1∑
i=1

N∑
j=i+1

Jij(ai, aj) −

N∑
i=1

hi(ai) , (2.2)

is naturally anti-correlated with the probability P of observing con-
figuration a, low energies indicating a favorable configuration. The
normalization constant Z, or partition function, writes

Z(J, h) =
∑
a

exp

N−1∑
i=1

N∑
j=i+1

Jij(ai, aj) +

N∑
i=1

hi(ai)

 . (2.3)

It will be sometimes more convenient to adopt a slightly different
notation using spins σ̂i = {σia}a=1,...,q which are binary q-dimensional
vectors given by

σia =

{
1 if ai = a

0 else
. (2.4)

Any configuration can therefore be described by a binary vector σ =

(σ̂1, ..., σ̂N) composed of N blocks of size q. With these notations, Eq.
(2.1) now writes

P(σ|J, h) =
1

Z(J, h)
exp

 N∑
i,j
i<j

q∑
a,b=1

σiaJij(a, b)σjb +

N∑
i=1

q∑
a=1

hi(a)σia

 .

(2.5)
Interestingly, Potts models naturally arise in the context of the

maximum-entropy principle (MaxEnt).
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2.1.2 Maximum-entropy principle

As explained in the introduction of this chapter, we wish to learn
the joint probability distribution P ofN random variables, given some
realizations of these variables. Supposing that the B samples σ(1), ..., σ(B)

we have access to are independent and identically distributed (i.i.d),
the probability distribution should be coherent with the data. In other
words, the empirical frequencies fi(a) and correlations fij(a, b) from
the data

fi(a) :=
1

B

B∑
τ=1

σ
(τ)
ia ,

fij(a, b) :=
1

B

B∑
τ=1

σ
(τ)
ia σ

(τ)
jb ,

(2.6)

should be matched by its one- and two-point marginals∑
σ

σiaP(σ) = fi(a) and
∑
σ

σiaσjbP(σ) = fij(a, b) . (2.7)

However, these conditions can be satisfied by an infinite number of
probability distributions. We are looking for the least constrained of
them, or namely, the one with the maximum (Shannon) entropy [61,
62]:

S[P] := −
∑
σ

P(σ) logP(σ) . (2.8)

As in any optimization problem, constraints (2.7) are enforced by
Lagrange multipliers hi(a), Jij(a, b):

S =−
∑
σ

P(σ) logP(σ) +
∑
i<j

∑
a,b

Jij(a, b)

(∑
σ

σiaσjbP(σ) − fij(a, b)

)

+
∑
i

∑
a

hi(a)

(∑
σ

σiaP(σ) − fi(a)

)
+ λ

(∑
σ

P(σ) − 1

)
,

(2.9)
the last term guaranteeing the normalization of P. By differentiating
Eq. (2.9) for an arbitrary σ, we get:

∂S

∂P(σ)
= 0 =− 1− logP(σ) +

∑
i<j

∑
a,b

σiaJij(a, b)σjb

+
∑
i

∑
a

hi(a)σia + λ .
(2.10)

P therefore takes the form of a Boltzmann distribution with the Hamil-with
Z = exp(1− λ) tonian of a Potts model defined at Eq. (2.5).

If the variety of biological effects involved in protein evolution
could certainly not be reduced to pairwise interactions, the impor-
tance of higher-order terms is not clear, but frequently requires even
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more samples [21]. Note that MaxEnt only gives the general form of
the probability distribution. The Potts parameters still have to be in-
ferred from the data, as explained in the next section. Some of the
existing methods – such as pseudolikelihood [7, 94] – actually require
the whole knowledge of the samples, not only frequencies and corre-
lations. Other methods which only need frequencies and correlations
rely on approximations – mean-field [67] or variational approxima-
tions [115] – leading to statistically inconsistent estimators 1. For these
reasons, MaxEnt has been sometimes criticized [6].

2.2 approximations to the inverse problem

Formally, the inverse Potts problem is solved by the set of fields
and couplings that maximize the average log-likelihood over the data
D, in the so-called maximum-likelihood approach. Denoting the Potts
parameters J = {Jij(a, b), hi(a)}, the average log-likelihood L writes

L(J|D) =
1

B

B∑
τ=1

logP(σ(τ))

=

N−1∑
i=1

N∑
j=i+1

q∑
a,b=1

Jij(a, b)fij(a, b)

+

N∑
i=1

q∑
a=1

hi(a)fi(a) − logZ(J) ,

(2.11)

where B is the number of samples in the data (e.g. the number of
sequences in a MSA).

Alternatively, the cross-entropy between the data and the model
S ≡ −L(J|D) can be written as the sum of the entropy of the data
and the Kullback-Leibler (KL) divergence 2 of the model with respect
to the data [105]. Defining the empirical measure over the observed
configurations through

Pobs(σ) =
1

B

B∑
τ=1

δσ,σ(τ) , (2.12)

with δ the Kronecker delta function, the cross-entropy indeed rewrites

S = −
∑
σ

Pobs(σ) logPobs(σ) +D(Pobs||P) . (2.13)

1. The exact parameters cannot be recovered even in the limit of an infinitely
large number of samples drawn from the Potts model.

2. The Kullback-Leibler divergence is a measure of the difference between proba-
bility distributions. It can be thought of a distance between probability distributions
P and Q, except that it is not symmetric under the exchange of P and Q. It is always
non-negative and equals 0 if and only if P = Q.
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Hence, maximizing the log-likelihood – or minimizing the cross-entropy
– over the parameters J = {J, h} ensures that the “best” (in the sense
of the KL divergence) Potts measure is found.

The log-likelihood is indeed concave, as can be easily shown con-
sidering its Hessian, that is the Fisher information matrix up to a sign
(see Part IV of this dissertation for more details). The log-likelihood
(resp. cross-entropy) therefore has a maximum (resp. minimum),
guaranteeing that the maximum-likelihood approach has a solution.

Note however that the computation of Z required in Eq. (2.11)
involves a summation over the qN possible configurations. In the
case of protein sequences with q = 21 and N = 50 − 500 residues
typically, there are 1065 − 10650 possible configurations, making any
exact computation of Z impossible. Many approximated methods
have been proposed, and four of them will be presented below.

Direct-coupling analysis (DCA) is a generic name for approximat-
ing the inverse problem in the maximum-entropy approach, in the
specific case of biological sequence data. As mentioned at the begin-
ning of this chapter, it has been successfully applied for the inference
of protein and RNA residue contacts, protein-protein interaction net-
works, and fitness landscape. The most used methods in this context
are the mean-field and the pseudolikelihood approximations.

2.2.1 Boltzmann machine learning

The inverse problem can be tackled with the Boltzmann machine
learning (BML) approach developed in the 1980’s [1], avoiding the
computation of Z. Given an input set of fields and couplings, the
model frequencies and correlations fMCi and fMCij are computed through
Monte Carlo (MC) simulations. The Potts parameters are then up-
dated according to the gradient of the log-likelihood [96], until the
model correlations match the imposed values (2.7):

hi(a)→ hi(a) +
(
fMCi (a) − fi(a)

)
ηi(a) ,

Jij(a, b)→ Jij(a, b) +
(
fMCij (a, b) − fij(a, b)

)
ηij(a, b) ,

(2.14)

where {ηi, ηij} are parameter-specific weight factors, also updated at
each iteration.

Eq. (2.14) can be seen as the minimization of the KL divergence
between the MC equilibrium distribution and the empirical measure
over the observed configurations. Given the convexity of the opti-
mization problem, this gradient ascent is supposed to converge to
the exact solution. However, thermalization is needed to estimate
the model correlations. Each MC step requires huge computational
efforts to estimate the change in energy due to a change in the con-
figurations, which may be prohibitive for large system sizes. More
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over, this data-driven approach leads to overfitting in the case of poor
sampling.

Besides, the number of updates can be extremely large without a
good initial guess for the Potts parameters, rendering the algorithm
very slow to converge. This starting point can however be provided
by other faster inference methods, as will be illustrated in Part IV of
this dissertation.

2.2.2 Mean-field approximation

The mean-field approximation allows for a computation of Z in
polynomial time and the equations in the Ising case (σi = ±) read
[89, 95]

tanh−1mi = hi +
∑
j

Jijmj , (2.15)

with mi the magnetization at site i. Connected correlations Cij =

〈σiσj〉− 〈σi〉〈σj〉 can be obtained from the linear response [67, 117]:

Cij =
∂mi
∂hj

, (C−1)ij =
∂hi
∂mj

. (2.16)

An equation involving the connected-correlation matrix and the cou-
plings can therefore be derived:

Jij = −(C−1)ij . (2.17)

In the context of protein sequences, mean-field direct-coupling anal-
ysis (mfDCA) – based on the naive mean-field inversion – was the first
efficient method to infer the Potts parameters given a MSA. It is based
on the high temperature (small couplings) expansion of the Legendre
transform of the free energy [53, 92], generalized to the Potts case.
The full derivation can be found in the supplementary material of
[82].

The proper generalization of Eq. (2.15) to the Potts case reads

Pi(a) =
1

zi
exp

hi(a) +∑
jb

Jij(a, b)Pj(b)

 , (2.18)

where Pi(a) =
∑
σ σiaP(σ) is the marginal of the probability distri-

bution P, and zi =
∑
a exp

(
hi(a) +

∑
jb Jij(a, b)Pj(b)

)
, a normaliza-

tion constant. Using the linear response, the inferred Potts couplings this formula is exact
in the “q-gauge” (cf.
Section 2.3.1)

therefore read
Jij(a, b) = −(C−1)ij(a, b) , (2.19)

with the connected-correlation matrix Cij(a, b) = fij(a, b)− fi(a)fj(b)
depending on the empirical values fi(a) and fij(a, b) computed from
the dataset. Practically, the inverse problem can therefore be solved in
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one single step, by calculating and inverting the connected-correlation
matrix directly from the data. The complexity of the procedure is
thus of O(q3N3). The idea of inverting the connected-correlation ma-
trix also arises in the Gaussian analogy of mfDCA, the Protein Sparse
Inverse Covariance Estimation (PSICOV) approach [64].

Notice that the connected-correlation matrix always displaysN zero
modes due to the identity∑

b

Cij(a, b) =
∑
b

fij(a, b) − fi(a) = 0 , (2.20)

and is therefore not invertible. This problem is related to the over-
parametrization of the system and the zero modes can be removed by
fixing the Potts gauge (cf. Section 2.3.1). However, in case of insuffi-
cient data availability, the connected-correlation matrix may still not
be invertible (even after fixing the gauge). Some Potts states (amino
acids) indeed may never be observed in the data and the matrix may
not be of full rank. The empirical frequencies and correlations need
to be adjusted with a regularization variable, as will be discussed in
Section 2.3.2.

2.2.3 Pseudolikelihood maximization

First implemented on the inverse Ising case [94], the pseudolikeli-
hood method is now the most used tool in the field of protein struc-
ture prediction. The pseudolikelihood approximation of the direct-
coupling analysis (plmDCA) [41, 42] (or equivalently GREMLIN [9,
66]) has been shown to outperform any other existing method in this
specific context. Avoiding the complete computation of Z, like BML,
the pseudolikelihood related methods however require the complete
knowledge of the configurations – not only the frequencies and corre-
lations. The runtime complexity of the pseudolikelihood approaches
is of O(Bq2N2). Note the linear dependence in B, the number of
samples (or homologous sequences in the MSA).

In the following, we will use the notations of Eqs. (2.1 - 2.3), with
the variables ai ∈ {1, ..., q}. plmDCA substitute the probability P in
the log-likelihood (Eq. (2.11)) by the conditional probability of ob-
serving one variable ar in the configuration a(τ) = (aτ1, ..., a

τ
N) given

observation of all other variables aτ
\r = (aτ1, ..., a

τ
r−1, a

τ
r+1, ..., a

τ
N):

P(ar = a
τ
r |a

τ
\r) =

exp
(
hr(a

τ
r) +

∑
i 6=r Jri(a

τ
r , a

τ
i )
)

∑q
l=1 exp

(
hr(l) +

∑
i 6=r Jri(l, a

τ
i )
) . (2.21)

The parameters hr and Jr = {Jri}i 6=r can be computed via the maxi-
mization of the pseudo log-likelihood at site r:

PLr(hr, Jr) =
1

B

B∑
τ=1

logP{hr,Jr}(ar = a
τ
r |a

τ
\r) . (2.22)
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The total pseudo log-likelihood then writes

Lpseudo(J|D) =

N∑
r=1

PLr(hr, Jr) . (2.23)

Contrary to mfDCA, this procedure is statistically consistent, i.e. it
guarantees to extract the exact parameter values in the limit of an
infinitely large sample drawn from the Potts model. However, this
consideration might not be relevant in the case of real biological data,
which are of course not extracted from Potts models.

Besides, for a finite sample, this method returns two different val-
ues for the couplings Jri: J?,iri and J?,rir obtained from the maximiza-
tion of PLi and PLr respectively. One simple way to reconcile these
values is to replace them by the average: Jri = 1

2

(
J?,iri + J?,rir

)
. This ap-

proach is referred to as asymmetric pseudolikelihood maximization [41],
and will be used in this dissertation.

A prior probability distribution (typically Gaussian) can be consid-
ered for the model parameters, which discounts large values result-
ing from insufficient statistics in the original data. It takes the form
of a regularization term added to the objective function, described in
Section 2.3.2.

2.2.4 Adaptive cluster expansion

Another method to accurately estimate the partition function lies
in cluster expansions. Widely used in statistical mechanics [55, 90],
such expansions are limited by the system size or only consider fixed
cluster sizes, and do not tackle overfitting issues. The adaptive cluster
expansion (ACE), first developed in the Ising case [27, 28], proposes a
method adapted to the specificity of the data, fully accounting for the
complex patterns of statistical correlations present in experimental
samples. It has been successfully applied in the Ising case (q = 2)
to real data with as many as several hundred variables, including
studies of neural activity [14, 113], or human immunodeficiency virus
(HIV) fitness based on protein MSA data [11, 76].

Practically, ACE builds global solutions from local ones. Let us con-
sider the susceptibility matrix and its inverse:

χ =
∂p

∂J

∣∣∣
J
, χ−1 =

∂J

∂p

∣∣∣
p
, (2.24)

with the Potts parameters J = {Jij(a, b), hi(a)} and the one- and two-
site correlations from the MaxEnt model p = {fij(a, b), fi(a)}. χ de-
scribes the direct problem and how the correlations respond to a small
variation in the Potts parameters. On the other hand, χ−1 is a natu-
rally associated to the inverse problem, and measures the response of
the inferred parameters to a small change in the correlations.
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These two matrices are crucially different, in the sense that χ−1 is
much sparser and shorter range than χ (for more details, see [27]).
It means that even if the system is described by strong long-range
correlations, the Potts parameters may only depend on a small (com-
pared to the system size) number of correlations. This property is
essential as it ensures that the inverse problem is actually solvable
and meaningful.

Given these considerations, ACE proposes to accurately estimate
the parameters by building a sparse network of interactions. The
regularized cross-entropy or negative log-likelihood

S = logZ−

N−1∑
i=1

N∑
j=i+1

q∑
a,b=1

Jij(a, b)fij(a, b)

+

N∑
i=1

q∑
a=1

hi(a)fi(a) −
1

B
logP0(J) ,

(2.25)

where P0 is a prior distribution for the parameters typically Gaus-
sian (cf. Section 2.3.2), is decomposed into sum of contributions from
clusters of variables Γ = {i1, ..., ik}, k 6 N:

S =
∑
Γ

∆SΓ , ∆SΓ = SΓ −
∑
Γ ′⊂Γ

∆SΓ ′ , (2.26)

where the summation is over all possible subsets of the N variables.
The cluster entropy ∆SΓ is recursively defined as the remaining con-
tribution once all contributions from smaller clusters have been re-
moved. SΓ is the minimum of Eq. (2.25) restricted to the variables in
Γ , thus depending only on fij(a, b), fi(a), for i, j ∈ Γ . SΓ is tractable
if the clusters are small. ∆SΓ is the contribution to the cross-entropy
from the cluster Γ which is not captured by any subset of Γ .

The key of this approach is to approximate the cross-entropy – and
therefore the Potts parameters which minimize it – by truncating the
sum in Eq. (2.26) to a restricted set of clusters Γ contributing most to
the cross-entropy. The convergence of Eq. (2.26) is therefore made
faster, especially since contributions for overlapping clusters shar-
ing the same interaction subgraph partially compensate, as shown
in [27, 28]. Moreover, by neglecting clusters which contribute less to
the cross-entropy (poorly sampled Potts states), overfitting can be re-
duced. Note that, by construction, the summation over all possible
clusters would give the exact value of the cross-entropy.

The algorithm is quickly described below. For more details, see the
pseudocode in [28]. A threshold t is defined on the cross-entropy to
separate the significant clusters from negligible ones. Initially large,
this threshold is progressively lowered (outer loop) until enough clus-
ters are included to yield an inferred model fitting the imposed corre-
lations in Eq. (2.7), within the statistical error due to finite sampling
(see Part IV of this dissertation for more details). On the other hand,
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an inner loop iteratively constructs the set of clusters Γ with contribu-
tions to the cross entropy |∆SΓ | > t, giving rise to an approximation
of the cross-entropy and the Potts parameters at threshold t.

We give here a description of the inner loop, based on [13] co-
authored by the author of this dissertation. Given a list Lk of clusters
of size k, beginning with k = 2,

1. For each cluster Γ ∈ Lk
a) Compute SΓ by numerical minimization of Eq. (2.25) re-

stricted to Γ .

b) Record the parameters minimizing Eq. (2.25), called JΓ .

c) Compute ∆SΓ using Eq. (2.26).

2. Add all clusters Γ ∈ Lk with |∆SΓ | > t to a new list L ′k(t).

3. Construct a list Lk+1 of clusters of size k+ 1 from overlapping
clusters in L ′k(t).

After the summation of clusters terminates, the approximate value
of the Potts parameters – minimizing the cross-entropy given the cur-
rent value of t – is computed by

J(t) =
∑
k

∑
Γ∈L ′k(t)

∆JΓ , ∆JΓ = JΓ −
∑
Γ ′⊂Γ

∆JΓ ′ . (2.27)

Note that this formula generally yields sparse solutions because
nonzero couplings are only included if some clusters containing them
have been selected. In this algorithm the dominant contribution to
the computational complexity often comes from the evaluation of the
partition function Z for large cluster sizes k, which requires O(qk)

operations to compute. Note that this is much smaller than for the
exact computation which would be of O(qN), ensuring reasonable
execution time of the algorithm.

ACE adapts the complexity of the inferred Potts model to the level
of the sampling in the data, reducing overfitting. This is achieved
first by a sparse inference procedure that omits interactions that are
unnecessary for reproducing the statistics of the data to within the er-
ror bounds due to finite sampling. On the other hand, less frequently
observed Potts states are regrouped into a unique state according to
a threshold on entropy or frequency, as will be extensively discussed
in Part IV. Initially developed in the Ising case, this procedure has
been adapted to the Potts case and will be illustrated to both real and
artificial data sets, also in Part IV.

2.3 model parameters

Besides the chosen approximate method to solve the inverse prob-
lem, several parameters need yet to be fixed before any application
to experimental data. Among them are the gauge invariance due to
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the over-parametrization of the problem, regularization accounting
for finite-sample effects, and reweighting dealing specifically with bi-
ased samples.

2.3.1 Gauge invariance

The Nq frequencies fi(a) and 1
2N(N − 1)q2 correlations fij(a, b)

(i < j), estimated from the data are not independent. The former sum
up to 1, and the latter have the frequencies as marginals. Therefore
not all constrains in Eq. (2.7) are independent: the total number of
non redundant parameters is actually 1

2N(N− 1)(q− 1)2 +N(q− 1).
This number is smaller than the total number Nq+ 1

2N(N− 1)q2 of
Potts parameters hi(a) and Jij(a, b). The model is therefore over-
parametrized, a fact referred to as gauge invariance in physics lan-
guage. We can reparametrize the model without changing proba-
bilities 3 using an arbitrary Kij(a), 1 6 i, j 6 N,a ∈ {1, ..., q}:

Jij(a, b)→ Jij(a, b) +Kij(a) +Kji(b) ,

hi(a)→ hi(a) +
∑
j(j6=i)

Kij(a) . (2.28)

The inferred fields and couplings can be expressed in the so-called
“zero-sum gauge”, in which

q∑
c=1

Jij(a, c) =

q∑
c=1

Jij(c, a) =

q∑
c=1

hi(c) = 0 , (2.29)

for all states a and all variables i, j. In practice, the couplings Jij(a, b)
can be simply put in the zero-sum gauge through

Jij(a, b)→ Jij(a, b) − Jij(·, b) − Jij(a, ·) + Jij(·, ·) ,
hi(a)→ hi(a) −

∑
j

Jij(a, ·) , (2.30)

where g(·) denotes the uniform average of g(a) over all states a at
fixed position. The zero-sum gauge minimizes the Frobenius norm
of the coupling matrices, which is used as a scalar measure of the
coupling strength. It allows for the ranking of residue pairs (i, j) in
order to predict residue-residue contacts [29, 42, 116].cf. Chapter 3

Alternatively, a gauge state ci per variable can be chosen such that

Jij(a, cj) = Jij(ci, b) = hi(ci) = 0 , (2.31)

for all states a, b and variables i, j. The couplings and fields are trans-
formed as follows:

Jij(a, b)→ Jij(a, b) − Jij(ci, b) − Jij(a, cj) + Jij(ci, cj) ,

hi(a)→ hi(ci) −
∑
j6=i

(
Jij(a, cj) − Jij(ci, cj)

)
. (2.32)

3. Although the gauge transformation conserves the probability, it modifies en-
tirely the Potts parameters (i.e. the couplings and fields)
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Usually, ci is chosen as the most frequent observed state for the vari-
able i, this specific gauge being referred to as “consensus gauge”.
Besides, mfDCA typically uses the “q-gauge”, where ci = q for all
sites i.

2.3.2 Data preprocessing for finite-sample effects

2.3.2.1 Regularization

Experimental data are often not i.i.d; they form a finite and usually
small-size sample. For instance, a Potts model describing a protein
family with sequences of 50− 500 amino acids requires ca. 106 to 108

parameters. Few protein families are large enough to directly deter-
mine these parameters, and regularization is essential to avoid overfit-
ting. Moreover, adding a regularization term helps the hill-climbing
optimization (in plmDCA or ACE) to rapidly find the maximum of
the (pseudo) likelihood, or alternatively guarantees the inversion of
the connected-correlation matrix (in mfDCA). Different regularization
schemes and their effects have been extensively addressed in [12].

A prior probability distribution (typically Gaussian) is considered
for the model parameters, yielding to a penalty term in the objec-
tive function. The following l2-penalty is therefore added to the log-
likelihood of the data:

γ

N∑
i=1

q∑
a=1

hi(a)
2 + γ

N∑
i<j

q∑
a,b=1

Jij(a, b)
2 . (2.33)

For γ ∼ 1/B, this factor can be thought of as a weakly informative
prior [52], whose main purpose is to ensure that solutions of the in-
verse problem are not infinite due to issues of undersampling (e.g. pa-
rameters corresponding to a state that is never observed). For plmDCA,
the standard value of the regularization parameter is γ = 10−2 as it
gives optimal results for contact prediction [42].

Other forms of regularization are also possible, such as l1 intro-
duced in [94] for the inverse Ising problem, which forces a fraction of
the Potts parameters to be set to 0 and effectively reduces the number
of parameters. Since we are interested, in context of contact predic-
tion, in the accuracy of the strongest couplings (which will be ranked,
as explained in Chapter 3), l1 penalty might be less appropriate than
l2, as it makes no difference for the ranking whether the weakest cou-
plings are small or precisely set to 0 [42]. Note that these forms of
regularizations are not invariant under gauge transformations. Thus,
the results of the inference including the regularization do have some
dependence on the gauge choice.

Alternatively, in the context of mfDCA, the connected-correlation
matrix may not be of full rank, as some states may never be observed
in finite-size samples. To ensure its invertibility, empirical frequencies
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and correlations (defined at Eq. (2.6)) are adjusted with a regulariza-
tion variable λ, referred to as “pseudocount” and introduced in [82]:

fi(a) =
1

λ+B

(
λ

q
+

B∑
τ=1

στia

)
,

fij(a, b) =
1

λ+B

(
λ

q2
+

B∑
τ=1

στiaσ
τ
jb

)
.

(2.34)

This is equivalent to adding λ random samples to the data. It was
observed in [82], that optimal results for contact prediction in mfDCA

are obtained with a fairly large pseudocount parameter λ ∼ B. .

2.3.2.2 Reweighting

In the context of protein sequences, phylogenetic relations between
proteins and human selection of the sequenced species yield strong
sampling biases. This issue has been the object of previous studies [24,
38, 114, 118], but a simple sampling correction can be implemented
by counting sequences with more than 80% identity and reweighting
them in the frequency counts [82]. A weight wτ is associated to each
sequence aτ, reflecting their importance in the sampling. Sequences
too similar to other sequences are attributed a lower weight, whereas
isolated sequences contribute with a higher weight to the sampling.

The weight is defined as the inverse number of sequences within
Hamming distance dH < xN, with x ∈ [0, 1]:

wτ =
1

| {b|1 6 b 6 B;dH(a(b), a(τ)) 6 xN} |
, (2.35)

with τ = 1, ..., B. The value x ∼ 0.2 was found to be optimal across
many protein families [82]. The number of non-redundant sequences
is measured as the effective sequence number after reweighting:

Beff =

B∑
τ=1

wτ . (2.36)

As a rule of thumb, Beff should be at least 300 to ensure good results
in the context of inference on protein sequences.
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A P P L I C AT I O N T O B I O L O G I C A L D ATA

3.1 protein families

3.1.1 Basic notions

Some very basic
concepts about
proteins will be
presented in this
section, mainly
based on [2]

Proteins are long polymer chains consisting of monomeric blocks
that are the same for all living cells: the amino acids. Many different
protein molecules are present in each cell – forming most of its mass,
excluding the water – and they are involved in most of the biologi-
cal functions within living organisms, such as acting as enzymes to
catalyze chemical reactions, maintaining structure, generating move-
ments, responding to stimuli, etc. [2]. There are 20 amino acids, each
with a distinctive chemical character given by a specific side group at-
tached to a common core structure. Amino acids therefore display a
large variety of physico-chemical properties [19], such as charge, size,
acidity, polarity, hydrophobicity (cf. Fig. 3.1), which play a central
role in determining the shape of the protein.

Figure 3.1 – The 20 amino acids display a large variety of physico-chemical
properties.
Source: [71]

Each protein molecule defined by its sequence of amino acids –
covalently linked by peptide bonds – folds into a specific three-di-
mensional structure, unique 1 to each type of protein (within some
flexibility). The structure can be described on four distinct levels:

1. allosteric proteins may have more than one structural conformation.

21
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— primary structure: linear sequence of amino acid along the
polypeptide backbone;

— secondary structure: folding patterns resulting from hydrogen
bonds in the backbone, mainly α-helices and β-sheets (short-
hand symbols helices and arrows in ribbon drawings of pro-
teins, cf. Fig. 3.2);

— tertiary structure: three-dimensional conformation of the pro-
tein – α-helices and β-sheets folded into a compact structure –
characterized by long range non-convalent interactions, such as
hydrogen bonds or disulfide bonds;

— quaternary structure: several polypeptide chains bounded to-
gether, forming a multi-subunit protein (called dimer with two
subunits, cf. Fig. 3.2).

Beyond the four levels of organizations, the protein domain is a unit
of major importance. This substructure designates any part of the
polypeptide chain folding independently into a stable structure. Typ-
ical domain lengths range from 40 to 350 amino acids, also called
residues [2].

Figure 3.2 – Dimeric assembly of PDB entry 1bhc, corresponding to protein
BPT1_BOVIN (residues 39-91) from the Kunitz/Bovine pancre-
atic trypsin inhibitor domain (Pfam id: PF00014).
Source: [81], ebi.ac.uk/pdbe, rbvi.ucsf.edu/chimera [91].

3.1.2 Multiple sequence alignments

3.1.2.1 Families

The 100 million known protein sequences are grouped into domain
families composed of homologous proteins – i.e. of common evolu-
tionary origin – displaying similar 3D structures and functions. The
Pfam database [48] lists 16306 different domain families, mainly com-
posed of 102 − 105 sequences forming a MSA, where all amino-acid
sequences of the family are aligned to be as similar as possible. In the
course of evolution, mutations occurred – substitutions, insertions or

ebi.ac.uk/pdbe
rbvi.ucsf.edu/chimera
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deletions – leading to a lot of diversity in the MSA (displaying only
about 20%-30% sequence identity). Therefore, it often happens that a
residue of a domain cannot be aligned perfectly with the other mem-
bers of the family and a “gap” symbol is introduced. On the other
hand, a mutation with a deleterious effect – that alters 3D structure
of the protein – would have caused the denatured protein to be elim-
inated by natural selection. In the MSA, not every mutation is there-
fore possible and the conservation of the structure imposes strong
constraints on the sequence variability.

Practically, a MSA is a matrix aτi , which lines τ = 1, ..., B are amino-
acid sequences considered to be different versions of the same pro-
tein, and which columns i = 1, ..., N are the aligned protein residues.
Therefore aτi is either one of the 20 amino acids, or the gap sym-
bol. These symbols are then converted to numbers from 1 to 21 for
statistical analysis purposes. As mentioned in Chapter 1, some MSA

columns will be highly conserved whereas other will be more vari-
able, depending on the constraints imposed by the conservation of
the 3D structure. A sub-alignment of the MSA for the Kunitz/Bovine
pancreatic trypsin inhibitor domain (Pfam id: PF00014) is shown on
Fig. 3.3. The alignment indeed displays non-trivial statistical patterns,
which are analyzed by DCA related methods. In particular, gaps come
in long stretches contrary to amino acids, resulting from affine penal-
ties in the alignment procedure (see next section).

--------GACYAYFPLFSYYPESNSCELFIYGGCWGNANRFHSKESCEEKCL 
-CEQAFDAGLCFGYMKLYSYNQETKNCEEFIYGGCQGNDNRFSTLAECEQKCI 
-CEQAFDAGLCFGYMKLYSYNQETKNCEEFIYGGCQGNDNRFSTLAECEQKCI 
-CEQAFNSGPCFAYIKLYSYNQKTKKCEEFIYGGCKGNDNRFDTLAECEQKCI 
-CEQAFNSGPCFAYIKLYSYNQKTKKCEEFIYGGCKGNDNRFDTLAECEQKCI 
-CEQAFNSGPCFAYIKLYSYNQKTKKCEEFIYGGCQGNDNRFITLAECEQKCI 
-CEQAFDAGPRDAYIKLYSYNQETKKCEEFIYGGCLGNDNRFNTLAECEQKCI 
-CEQAFDVGPCGAYFKLYSYNQETKKCEEFIYGGCQGNDNRFNTLAECEQKCI 
--------GACLAYIPSWSYN--GRTCEEFIYGGCGGNDNRFNSQAECEAKCL 
--------GACLAYIPSWSYN--GRACEEFIYGGCGGNDNRFNSQAECEAKCL

B3N358_DROER/24-81 
Q86QT1_BOMMO/32-85 
ISC3_BOMMO/9-62 
ISC2_BOMMO/8-61 
Q967V8_BOMMO/31-84 
ISC1_BOMMO/8-61 
Q5MBP2_BOMMO/31-84 
Q8WPI5_BOMMO/31-84 
B4G9D5_DROPE/24-79 
B5DIF0_DROPS/24-79 

Figure 3.3 – Sub-alignment of 10 sequences from the multiple sequence
alignment of PF00014, on the left are protein names and domain
coordinates in the full length sequences. Non trivial statistical
features arise, in particular for gaps. Red highlights a totally
conserved residue, whereas green shows a much more variable
residue.

As an example, Pfam domain family PF00014 contains 7005 se-
quences of length N = 53 residues from 176 different species. 253
different structures are available, but with a lot of redundancy – some-
times crystallized several times – and overall very similar. All struc-
tures are experimentally determined (X-ray crystallography, NMR
spectroscopy) by biologists around the world and classified in the
freely accessible Protein Data Bank (PDB) [17, 18]. Besides, protein do-
mains are (mainly) manually classified in the structural classification
of proteins (SCOP) database [84], based on the similarity of their struc-
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tures. The types of folds are grouped into “classes”, the top level of
the hierarchical classification, such as “all α-proteins”, “ membrane
and cell surface proteins and peptides”, or “small proteins”.

3.1.2.2 Profile hidden Markov models

Forming multiple sequence alignments and assigning a given se-
quence to a domain family is closely related to predicting its struc-
ture and function. In this section, we will shortly present of one ofmainly adapted from

[39] & [32] the most powerful tool in bioinformatics: the profile hidden Markov
model (HMM) [39, 40]. It is widely used in the fields of MSA building,
homology detection, and structural modeling. The HMMer software
[47] is used to build the alignments in the Pfam database.

Figure 3.4 – HMM logo of PF00014, providing a graphical representation of the conservation in
the MSA as well as the profile-HMM. Each amino acid letter scales according to its
frequency at the given position (N = 53).
Source: pfam.xfam.org

Profile models on MSA are based on single-residue conservation
and are similar to non-interacting Potts models with local fields only.
The corresponding probability distribution is factorized on MSA columns:

P(a1, ..., aN) =
N∏
i=1

fi(ai) , (3.1)

with fi(a) the single-site frequency. The “information” contained in
column i taking into account the amino-acid conservation score is
therefore

Ii = log2(21) +
21∑
a=1

fi(a) log2 fi(a) , (3.2)

where the first term is the maximum information, obtained for a to-
tally conserved site, and the second term is the entropy of position i
(up to a sign). This defines the “alignment logo”, a graphical repre-
sentation of the sequence conservation, where the amino acid letters
are scaled according to their frequency. Fig. 3.4 shows the HMM logo
[103] for PF00014, providing additional information about the profile-
HMM of this domain family.

Profile-HMM are a generalization of profile models which include
the possibility of amino-acid deletions or insertion. They take the

pfam.xfam.org


3.1 protein families 25

form of directed graphical models summarizing the statistical prop-
erties of a MSA, based on single-site conservation. The (visible) sym-
bols composing the sequence (amino acids or gap) are conditioned
by hidden states. The underlying probabilistic model is a Markov
chain, which jumps from one hidden state to the other depending on
a transition probability T ; after the transition to a new hidden state, a
symbol can be produced with an emission probability E.

Such models display three hidden states for each column i of the
MSA:

— match states Mi, emitting the visible outputs with position-
dependent probabilities;

— insertion states Ii, allowing for addition of excess residues;
— deletion states Di, representing the lack of correspondence to

the residue i, allowing for its removal.
Match and insertion states lead to the emission of an amino acid,
whereas deletion states do not and often lead to gaps. The model also
includes a gap penalty for matching an amino acid with a gap. The
most used schemes assign a large cost for opening a gap and a smaller
to extend it [39], taking the form of an affine penalty p(l) = a+ bl

depending on the length l of the gap stretch (with |a| > |b|). Gaps
and amino acids are therefore intrinsically different, and stretches of
gaps are much more likely to occur than subsequences of repeated
amino acids. We will come back to this asymmetry in Part II.

Figure 3.5 – Schematic structure of a profile-HMM. The alignment of a se-
quence to a profile-HMM corresponds to the most likely path
from Begin to End. Squares indicate match states, diamond in-
sertion states, and circles deletion states.
Source: [39]

The parameters T and E are estimated from seed alignments of
previously aligned sequences. The quality of the seed alignments is
therefore crucial in the procedure: in Pfam, they consist in manu-
ally curated alignments of 100-200 sequences, which are constantly
improved.

The homology search goes as follows: given a seed alignment, the
model parameters E and T are learned and the Uniprot database [30]
can be searched for sequences that have a high probability under the
model. The alignment of a sequence to a profile-HMM corresponds to
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the most likely path from “Begin” to “End” on Fig. 3.5. The probabil-
ity of a sequence s in the database reads [32]

P(s) =
∑
h∈Hn

P(s, h) =
∑
h∈Hn

P(s|h)P(h) , (3.3)

where Hn denotes all possible hidden chains of length n. This cal-
culation requires a summation over an exponentially large space and
can be solved by dynamic programming methods. The Viterbi al-
gorithm [32, 39] enables to efficiently find the maximum-likelihood
hidden sequence:

h∗ = arg max
h∈Hn

P(s, h) . (3.4)

The whole procedure can be done with the “hmmsearch” com-
mand of HMMer software [47], with the profile-HMM (built on a seed
alignment) as input. It defines various significance thresholds on the
computed scores to decide whether a sequence should be added to
the MSA or not. Such scores include:

— the log-odds score, i.e. the log of the ratio of the probability of
the sequence s in the model to the probability of the sequence
in a random model [39];

— the E-value, i.e. the expected number of hits among random
sequences with equal or higher log-odds score.

The log-odds score will be referred to as the “HMMer score” in the
following, and will be widely used in Part II to compare with DCA

energies.
Profile-HMM is the most used method to search for homologous

sequences, but it treats the protein residues independently and is
only based on single-site conservation patterns. If the poor avail-
ability and quality of the sequences at the time it was introduced
justified to neglect higher order statistics, the spectacular growth of
the genomic databases allows for more engaged methods based on co-
evolution, such as DCA. Models assuming independent evolution of
distinct residues are indeed unable to provide structural information
about proteins (see next section), detect protein-protein interactions
[44, 116], or describe epistasis 2 [46].

All the MSAs used in this dissertation were downloaded from Pfam
and therefore built with a profile-HMM. We then develop approaches
based on coevolution, which consists in pairwise models exploiting
covariation patterns in MSAs. To be fully consistent, one should first
build alignments with a pairwise method and then exploit the statisti-
cal correlations. This point has not been addressed in this dissertation,
but would surely need to be tackled in the context of DCA approaches.

2. The effect of a mutation depends on the background, through interactions
between genes.
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3.1.3 Protein structure prediction

Prediction of residue-residue contacts in the tertiary structure of a
protein, given sequence information alone, is the major application
of DCA approaches [78, 116]. Its success makes it a reference in this
major field of bioinformatics, and contact maps from plmDCA are at
the source of the most advanced computational techniques in contact
prediction using deep learning [106].

In this section, the results from DCA approaches will be compared
with the direct measure of statistical correlations, mainly based on
[82] and [42].

3.1.3.1 Mutual information

The mutual information (MI) is computed directly from the one-
and two-point correlations in the MSA, after pseudocount regulariza-
tion and sequence reweighting (cf. Section 2.3.2):

MIij =

21∑
a,b=1

fij(a, b) log
fij(a, b)

fi(a)fj(b)
. (3.5)

MI is the KL divergence of the joint distribution fij(a, b) from its fac-
torized form fi(a)fj(b) [116]. It equals 0 if and only if i and j are
uncorrelated and it is positive else.

As mentioned in Chapter 1 (cf. Fig. 1.3), high mutual information
may result from either a strong direct coupling between i and j (which
is interpreted as a contact between the residues), or from an indirect
interaction mediated through a chain of couplings (the residues are
not in contact). As MI is intrinsically local, it cannot disentangle direct
from indirect interactions. As a result, the accuracy of the methods
directly measuring the correlations remains very limited to unveil
structural information from protein MSAs [38, 50, 87, 88], cf. Fig. 3.7.

3.1.3.2 Direct-coupling analysis

Contrary to the Ising case – where each interaction is described by
one scalar coupling Jij – each residue pair (i, j) in the Potts model is
characterized by a q× q matrix {Jij(a, b)}a,b=1...q. To measure the
coupling strength between two sites, the inferred coupling matrix
needs to be mapped onto a scalar parameter, which will be subse-
quently ranked: the larger they are, the higher is the probability that
residues i and j are in contact in the tertiary structure.

Previous work have mainly used the so-called direct information
(DI) [82, 116], the mutual information of a restricted two-site proba-
bility model only including the direct coupling between the two posi-
tions to be scored:

DIij =

21∑
a,b=1

P
(dir)
ij (a, b) log

P
(dir)
ij (a, b)

fi(a)fj(b)
, (3.6)
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where the isolated two-site model in question displays the direct cou-
plings Jij(a, b) and modified fields h̃i(a) to match the empirical fre-
quencies:

P
(dir)
ij (a, b) =

1

zij
exp

(
Jij(a, b) + h̃i(a) + h̃j(b)

)
. (3.7)

More recently, it has been observed that a different score FAPCij -
the Frobenius norm Fij of the coupling matrix adjusted by an average
product correction (APC) term - improves the contact prediction in the
case of pseudolikelihood [42] or mean-field related methods [10, 29]:

Fij =

√√√√ 21∑
a,b=1

Jij(a, b)2 , FAPCij = Fij −

〈
Fij
〉
i

〈
Fij
〉
j〈

Fij
〉
ij

, (3.8)

where 〈·〉i denotes the position average. The APC score 3 is not gauge
invariant, contrary to the DI score. Before computing the norm, the
couplings are shifted to the zero-sum gauge (defined at Eq. (2.29)), as
it is the gauge that minimizes the Frobenius norm.

Introduced in [38], the APC correction is presented as an entropy
correction to suppress effects from phylogenetic biases and insuffi-
cient sampling. The origin of this efficiency is unclear, but it does
improve the accuracy of contact prediction compared to DI [42].

3.1.3.3 Comparison

A residue pair is considered to be a contact in the tertiary structure
if its minimal heavy-atom distance is below 8 Å in the crystallized pro-
tein structure. This threshold is quite large and is often criticized by
structural biologists, claiming that 6 Å is a more reasonable value for
residue-residue contact distances. It is usually chosen in DCA related
methods as the distance distribution among residue pairs is bimodal
with two peaks around 3–5 and 7–8 Å [82]. To avoid trivial contacts –
local contacts inside the secondary structure – a minimum separationone helix turn

is 3.6 Å between the residues along the protein backbone is imposed (usually
|j− i| > 4).

Fig. 3.6 is taken from [82] and displays the top 20 predictions of
the ranked MI score – directly computed from the correlations in the
MSA – and DI score – obtained after inferring the coupling matrices in
the mfDCA approximation – for the protein domain family Region 2 of
the bacterial Sigma factor (Pfam id: PF04542). Red links indicate true
positive predictions and green links indicate false positive. 19 out
of 20 predictions with DCA appear to be truly native contacts, lead-
ing to a precision of 95% (panel A). On the other hand, only 13 out
of 20 predictions with mutual information are truly residue-residue

3. For the sake of simplicity, FAPC – the Frobenius norm with the average product
correction – will be referred as “APC score” in the following.
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that mfDCA captures a large number of intradomain contacts
across these domain families. Together, the predicted contacts
are able to recapitulate the global structure of the contact map.
Many cases, where mfDCA finds strong correlation between
distant residue pairs, have interesting biological reasons, includ-
ing interdomain contacts, alternative structures of the same
domain, and common interactions of residues with a ligand. The
mfDCA results are found to outperform those generated by sim-
ple covariance analysis as well as a recent approximate Bayesian
analysis (10).

Results and Discussion
A Fast DCA Algorithm. In this study, we wish to characterize the
correlation between the amino acid occupancy of residue posi-
tions as a predictor of spatial proximity of these residues in folded
proteins. Starting with a multiple-sequence alignment (MSA) of a
large number of sequences of a given protein domain, extracted
using Pfam’s hidden Markov models (HMMs) (21, 22), the basic
quantities in this context are the frequency count f iðAÞ for a single
MSA column i, characterizing the relative frequency of finding
amino acid A in this column, and the frequency count f ijðA;BÞ
for pairs of MSA columns i and j, characterizing the frequency
that amino acids A and B coappear in the same protein sequence
in MSA columns i and j. Alignment gaps are considered as the
21st amino acid. Mathematical definitions of these counts are
provided in Methods.

The raw statistical correlation obtained above suffers from a
sampling bias, resulting from phylogeny, multiple-strain sequen-
cing, and a biased selection of sequenced species. The problem
has been discussed extensively in the literature (10, 23–26). In this
study, we implemented a simple sampling correction, by counting
sequences with more than 80% identity and reweighting them in
the frequency counts. All the frequency calculations and results
reported below are obtained using this sampling correction; the
number of nonredundant sequences is measured as the effective
sequence numberMeff after reweighting (seeMethods). The com-
parison to results without reweighting and to reweighting at 70%
in SI Appendix, Fig. S1 shows that reweighting systematically
improves the performance of DCA, but results are robust with
respect to precise value of reweighting.

A simple measure of correlation between these two columns
is the mutual information (MI), defined by Eq. 3 in Methods. As
we will show, the MI turns out to be an unreliable predictor of
spatial proximity. Central to our approach is the disentanglement
of direct and indirect correlations, which is attempted via DCA,
which takes the full set of f iðAÞ and f ijðA;BÞ as inputs, and infers
“direct statistical couplings,” which generate the empirically
measured correlations. Their strength is quantified by the direct
information (DI) for each pair of MSA columns; see Eq. 12 in
Methods and ref. 16. However, the message-passing algorithm
used to implement DCA in ref. 16, mpDCA, was computationally
intensive, thus limiting its use in large-scale studies. Here we de-
veloped a much faster heuristic algorithm based on a mean-field
approach; seeMethods. This algorithm, termedmfDCA, is able to
perform DCA for alignments of up to about 500 amino acids per
row, as compared to 60–70 amino acids in the message-passing
approach. For the same protein length, mfDCA is about 103 to
104 times faster, which results mainly from the fact that the costly
iterative parameter learning in mpDCA can be solved analytically
in a single step in mfDCA. This performance gain enabled us to
systematically analyze hundreds of protein domains and examine
the extent to which a high DI value is a predictor of spatial proxi-
mity in a folded protein. Many residue-position pairs, which
are close neighbors along the sequence, also show high MI
and/or DI. To evaluate nontrivial predictions, we therefore
restricted our analysis throughout the paper to pairs, which are
separated by at least five positions along the protein’s backbone.

Intradomain Contacts. We shall first illustrate the correlation
between the DI values and the spatial proximity of residue pairs
through a specific example, namely the domain family homolo-
gous to the DNA-recognition domain (region 2) of the bacterial
Sigma-70 factor (Pfam ID PF04542). The mfDCA was used to
compute the DI values using anMeff of approximately 3,700 non-
redundant sequences—i.e., below a threshold of 80% sequence
identity. The MSA columns with the 20 largest DI and MI values
are mapped to the sequence of the SigmaE factor of Escherichia
coli (encoded by rpoE) whose structure has been solved to 2-Å
resolution [Protein Data Bank (PDB) ID 1OR7; ref. 27]. The
residue pairs with the 20 highest ranked DI values are connected
by bonds of different colors in Fig. 1A. Those residue pairs with
minimum atomic distances <8 Å are defined as “contacts” and
are shown in red, the others in green.* Because only one out of
the top 20 DI pairs is green, DI is seen as a good predicator of
spatial contact, characterized by a true positive (TP) rate of 95%
for this protein. A similar analysis using the 20 highest MI values
(Fig. 1B) yielded 13 contacts (TP ¼ 65%), illustrating a reduced
predictive power by the simple covariance analysis. Furthermore,
we see that the DI predictions are more evenly distributed over
the entire domain, whereas many of the MI predictions are asso-
ciated with a few residues; this difference is significant for contact
map prediction and will be elaborated upon below.

In order to test the generality of the predictive power of DI
ranking as contacts, we applied the above analysis to 131 predo-
minantly bacterial domain families (with >90% of the sequences
belonging to bacterial organisms). These families were selected
according to the following two criteria (see Methods for details):
(i) The family contains Meff > 1;000 nonredundant sequences
after applying sampling correction for >80% identity, in order to
ensure statistical enrichment, and (ii) there exist at least two
available high-quality X-ray crystal structures (independent PDB
entries of resolution <3 Å), so that the degree of spatial proxi-
mity between each residue pair can be evaluated. The selected
domain families encompassed a total of 856 different PDB struc-
tures (see SI Appendix, Table S1). Note that Meff is found to
be typically in the range of one-third to one-half of the total
sequence number M (see SI Appendix, Fig. S2).

Fig. 1. Contact predictions for the family of domains homologous to Region
2 of the bacterial Sigma factor (Pfam ID PF04542) mapped to the sequence of
the SigmaE factor of E. coli (encoded by rpoE) (PDB ID 1OR7). A shows the top
20 DI predictions, and B shows the top 20 MI predictions for residue–residue
contacts, both with a minimum separation of five positions along the back-
bone. Each pair with distance <8 Å is connected by a red link, and the more
distant pairs are connected by the green links.

*The choice of the relatively large value of 8-Å minimum atom distance as a cutoff value
for contacts is supported later in the discussion of Fig. 2B, where the distance distribution
of the top DI pairings is analyzed.
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Figure 3.6 – Contact predictions for the family of domains homologous
to Region 2 of the bacterial Sigma factor (Pfam id PF04542)
mapped to the sequence of the SigmaE factor of E. coli (en-
coded by rpoE) (PDB id: 1OR7). Panel A shows the top 20 DI

predictions, and panel B shows the top 20 MI predictions for
residue–residue contacts, both with a minimum separation of
five positions along the backbone. Each pair with distance < 8Å
is connected by a red link, and the more distant pairs are con-
nected by the green links.
Source: figure and caption from [82].

contacts, reaching a precision of only 65% (panel B). MI predictions
are also concentrated on only a few residues, whereas DI predictions
are more evenly distributed in the protein.

In practice, we compute the positive predictive value (PPV) to com-
pare the different scores, which is the fraction of true predictions
among the total number of predictions. The PPV in the top n pre-
dictions is usually plotted against n. Fig. 3.7, also taken from [82],
displays the average PPV for 131 Pfam families 4 with DI scores ob-
tained with mfDCA (black curve) and MI scores (red curve). The third
method – Bayesian dependency tree [24] – is out of the scope of this
thesis. Scores obtained from DCA couplings (DI, or even better APC

[42]) largely outperform simple covariance analysis.
First introduced in 2009, DCA approaches have helped unveiling

the structural information contained in protein MSAs and proved that
although residue-residue contacts are the result of complex physico-
chemical interactions (e.g. hydrophobicity or amino-acid charge), they
can actually be inferred from purely statistical considerations. Protein
contact prediction has today reached a level of precision that was be-

4. Although the y-axis label indicates TP (True Positive) rate, it is actually the PPV

which is plotted ...
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We computed the DI values for each residue pair of the 131
domain families and evaluated the degree to which high-ranking
DI pairs corresponded to actual contacts (minimum atomic dis-
tances <8 Å), based on the available structures for each domain.
The results are shown in Fig. 2A (black star). The x axis represents
the number of top-ranked DI pairs (separation >5 positions along
the sequence) considered and the y axis is the average fraction
of pairs up to this DI ranking that are true contacts. The latter
was calculated using the best-predicted structure† (i.e., the PDB
structure with the highest TP value) for each of the 131 families.
Similar results were obtained when considering all the available
structures; see below. In contrast, results computed using MI
ranking (red circle) gave significantly reduced TP rates.‡ Also
shown in Fig. 2A are results generated by an approximate Baye-
sian approach, which has been established as the currently
best-performing algorithm in identifying contacts from sequence
correlation analysis (10). The Bayesian approach (yellow trian-
gle) is seen to perform better than the simple covariance analysis
(MI), but TP rates are not as high as the ones obtained by
mfDCA. Analogous results for the relative performance of these
methods are also observed for a collection of 25 eukaryotic pro-
teins analyzed (see SI Appendix, Fig. S3), suggesting that the
applicability of DCA is not restricted to bacterial proteins.

As seen in Fig. 2A, on average 84% of the top 20 DI pairs
found by mfDCA (black star, black solid curve) are true contacts.
The average TP rate is indicative of the TP of typical domain
families, as the individual TPs for the 131 families examined
are distributed mostly in the range of 0.7–1.0; see SI Appendix,
Fig. S4A evaluated using the best-predicted structure and SI
Appendix, Fig. S4B when all 856 structures are used. This figure
also shows little difference in the quality of the prediction using
the top 10, 20, or 30 DI pairs, and coherent results between
the best-predicted and all 856 structures, despite the somewhat
uneven distribution of available PDB structures over the 131 do-
main families. The distribution of the actual (minimum atomic)
intradomain distances between residue pairs with the top 10, 20,
and 30 DI ranking are shown in Fig. 2B, using the complete set of
856 PDB structures. The distribution exhibits a strong peak
around 3–5 Å with a weaker secondary peak around 7–8 Å, for

all three sets of DI rankings used. This double-peak structure is a
characteristic feature of the DCA results. It is not observed in the
background distribution of all residue pairs (see SI Appendix,
Fig. S5, which has a single maximum around 20–25 Å). In Fig. 2B,
this background is reflected by a small bump in the histograms
for the top 20 and 30 DI ranking pairs. The two short-distance
peaks are consistent with the biophysics of molecular contacts:
The first peak presumably arises from short-ranged interactions
like hydrogen bonding or pairings involved in secondary structure
formation, whereas the second peak likely corresponds to long-
ranged, possibly water-mediated contacts (28–30). The observa-
tion of this second, biologically reasonable peak in Fig. 2B also
motivates the choice of 8 Å as a cutoff distance for what is con-
sidered a residue–residue contact in Figs. 1 and 2A.

To understand how many sequences are actually needed for
mfDCA, we randomly generated subalignments for two protein
families; see SI Appendix, Fig. S6. For at least these two families,
an effective number ofMeff of approximately 250 is already suffi-
cient to reach TP rates close to one for the top predicted residue
pairs, and the predictive power increases monotonously when
more sequences are available. These numbers are consistent with
but slightly larger than the sequence requirements reported in
ref. 31 for the statistical-coupling analysis originally proposed
in ref. 5.

Long-Distance High-DI Residue Pairs. The results from the previous
section illustrate the ability of mfDCA to identify intradomain
contacts with high sensitivity. However, a small fraction of
pairs showed high DI values (in the top 20–30 ranking) but were
located far away according to the available crystal structure. Here
we investigate various biological reasons for the appearance of
such long-distance direct correlations.

Interdomain Residue Contacts. Given the biological role of some
interdomain contacts (32), we studied if the appearance of
long-distance high-DI pairs may be due to interactions between
proteins which form oligomeric complexes, as described pre-
viously for the dimeric response regulators of the bacterial two-
component signaling system (16). To further investigate this
possibility, we examined members of the 131 proteins which
formed homodimers or higher-order oligomers according to the
corresponding X-ray crystal structures.

A first example is the ATPase domain of the family of the
nitrogen regulatory protein C (NtrC)-like sigma54-dependent
transcriptional activators (Pfam PF00158). Upon activation, dif-
ferent subunits of this domain are known to pack in the front-

Fig. 2. (A) Mean TP rate for 131 domain families, as a function of the number of top-ranked contacts and histogram of the distances of all predicted structures
for each of the 131 domains studied. DI results (★) clearly outperform the other two methods: MI (red ⦁) and an approximate Bayesian approach (yellow ▾)
developed by Burger and van Nimwegen (10). Their method aims at disentangling direct and indirect correlations by averaging over tree-shaped residue–
residue coupling networks, and it contains a phylogeny correction. The method can also reach length-400 multiple alignments as mfDCA does; our imple-
mentation follows closely the description in ref. 6. However, coupling trees do not allow for multiple coupling paths between two residues as DCA does,
possibly accounting for its lower TP rates compared to mfDCA. (B) The mfDCA predictions for the top 10, 20, and 30 residue pairs show a bimodal distribution
of intradomain distances with two frequency peaks around 3–5 and 7–8 Å.

†The best-predicted structures were used due to the variance in the quality of PDB
structures. Also, for the number of cases where substantially different structures of the
same protein exist in the PDB, the existence of a single structure containing the predicted
contacts substantiates them as contacts of a native conformation of that protein.

‡Both DI and MI benefited modestly from sampling correction; see SI Appendix, Fig. S1 for
a comparison of the performance of these methods with/without sampling correction.
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Figure 3.7 – Mean PPV for 131 domain families, as a function of the number
of top-ranked predictions. DI scores obtained with DCA clearly
outperform MI.
Source: [82].

fore thought to be unattainable. More recently, such approaches have
been applied to other challenging fields such as protein-protein in-
teraction networks [44], or mutation fitness landscape [46, 76]. Struc-
tural prediction consists in revealing the topology of the network of
interaction by detecting strongly and directly interacting pairs of sites.
These new topics, however, require a more detailed description of the
system and aim at constructing a global energetic model. Most of
the work presented in this dissertation aims at better understanding
DCA approaches and trying to apply them beyond protein structure
prediction.

3.2 lattice proteins

LP are exactly solvable models of proteins folding on a 3D lattice.
As in silico systems, LP allow for precise numerical control, and large
samples of sequences corresponding to a single fold can be gener-
ated without phylogenetic bias. The many common properties they
share with real proteins (efficient folding, non trivial statistical fea-see Chapter 3 of Part

III for more details tures, existence of families in the profile-HMM sense with conserved
folds, etc.), make them an ideal benchmark for better understanding
inference methods developed in the context or real protein data. Most
of the results presented in this section have been recently published
in [60] by members of our team at ENS.
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3.2.1 Background

3.2.1.1 Polymers on a cubic lattice

A lattice protein is a chain of N = 27 residues occupying the sites
of a 3× 3× 3 simple cubic lattice; each residue position in the chain
can be occupied by one of the 20 different amino acids. N = 103, 346

self-avoiding conformations unrelated through symmetry have been
enumerated [104]. Each conformation defines a possible structure, or
fold of a the protein sequence. The geometry of the cube imposes
exactly 28 contacts (neighbors on the lattice but not on the backbone)
between the protein sites, cf. Fig. 3.8.

Figure 3.8 – Representative fold of a lattice protein (structure SB); 3 out of
the 28 contacts of this structure have been circled in red.

Given a fold S, an energy is assigned to each amino-acid sequence
a = (a1, ..., a27):

E(a|S) =
∑
i<j

c
(S)
ij EMJ(ai, aj) , (3.9)

where c(S)ij is the contact map of structure S, i.e. the 27× 27 adjacency

matrix (c(S)ij = 1 if i and j are in tertiary contact, but not along the
chain, and 0 otherwise). Amino acids in contact interact through
the Miyazawa-Jernigan (MJ) statistical potential EMJ(a, b) [79], which
will be extensively described in Part III Chapter 1. The probability
that a given sequence a folds in structure S is defined by

Pnat(S|a) =
e−E(a|S)∑N
S ′=1 e

−E(a|S ′)

=
1

1+
∑
S 6=S ′ e−[E(a|S ′)−E(a|S)]

,

(3.10)

and depends on its energies in all folds S ′. A good folder S? is a
sequence a with a minimal energy E(a|S?) and the largest energy
gap E(a|S ′) −E(a|S?) with competing structures S ′. These conditions
are satisfied by many sequences which define a protein-like family.
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3.2.1.2 Lattice protein families

The method to create alignments of sequences folding in the same
structure is given in [60], and will be briefly described here. A MSA

corresponding to a native fold S is generated through Monte Carlo
Markov Chain (MCMC) sampling of Pnat(S, a), with the Metropolis
rule. The sequence a is mutated into a ′: if Pnat(S|a ′) > Pnat(S|a)

the mutation is accepted, otherwise it is accepted with the probability
[Pnat(S|a

′)/Pnat(S|a)]
β (< 1). The corresponding effective Hamilto-

nian also includes contributions coming from all other folds S ′ with
multiple body interactions at any orders > 2:

H(a) = −β logPnat(S|a)

= β log

1+ ∑
S ′ 6=S

exp
∑
i<j

[
c
(S)
ij − c

(S ′)
ij

]
EMJ(ai, aj)

 .
(3.11)

Supplementary materials of [60] give access to four MSAs of B =

50000 sequences generated at regular intervals and folding in their
native structure with Pnat > 0.995 (fine-tuning of the inverse temper-
ature β).

3.2.1.3 Competitor folds

The closest competitor to the native fold S is defined in [60] as the
structure S ′ minimizing the gap ∆(S ′|S) defined through

e−∆(S ′|S) =
〈
e−[E(a|S ′)−E(a|S)]

〉
a
, (3.12)

where the mean is over sequences a in the MSA defined above. The
number NS of competitors and their typical gap ∆ with the native
structure S are approximated through

NSe
−∆ =

∑
S ′( 6=S)

e−∆(S ′|S) . (3.13)

The average contact map of these competitors reads

cij =
1

NSe−∆

∑
S ′( 6=S)

e−∆(S ′|S)c
(S)
ij . (3.14)

3.2.2 Covariation in lattice proteins

Covariation properties of lattice proteins (LP) have been studied
only recently in [60], and the main results are summarized in this
section. The same inverse methods used for real proteins have been
applied to the generated MSAs, and, as in real data, inferred couplings
(with mfDCA, plmDCA or ACE) are very accurate in predicting contacts
in the native structure, even if MI predictions are also quite good. Very
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interestingly, a linear dependency is observed between the inferred
couplings Jij(a, b) and the MJ energetic parameters EMJ(a, b), with a
coefficient λij depending on the residue pair:

Jij(a, b) ≈ λijEMJ0 (a, b) , (3.15)

where EMJ0 (a, b) is the MJ statistical potential placed in the gauge of
the couplings (see Chapter 1 of Part III for more details). This coeffi-
cient is interpreted in [60] as a measure of the coevolutionnary pres-
sure on residues i, j due to the design of the native structure. Fig. 3.9
taken from [60] displays – for fold SB – the empirically measured λij

λij =

∑
ab Jij(a, b)E

MJ
0 (a, b)∑

ab E
MJ
0 (a, b)

, (3.16)

as a function of δcij = cij − cij, the difference between the native
contact map of SB and the average contact map over the structures in
competition with SB (cf. Eq. (3.14)). The dependence of the pressure
λij is monotonic in δcij, and both have the same sign.

Pairs of sites that can never be in contact due to geometrical con-
straints (magenta pluses), corresponding to δcij = 0, display weak
pressures (at the level of noise in the data). Pairs that are in contact in
the native fold, but not in the competitor structures (filled triangles),
corresponding to a large positive δcij, are subject to strong covaria-
tion pressures, as it is essential that they stabilize the native fold and
not the competitors. On the contrary, pairs in contact both in the
native structure and its competitors (small and positive δcij) show
weak pressures (empty triangles), as they are less specific to the na-
tive fold. Respectively, pairs not in contact in the native structure
display negative pressures. Either they are also not in contact in the
competitors – corresponding to small negative δcij – and the pres-
sure is weak (empty squares), or they are in contact in the competitor
folds (large negative δcij) and are therefore subject to negative design:
such conformations should be avoided and the resulting pressure in
large negative.

The evolutionary pressure λij can therefore be used for contact pre-
diction and gives better results than classical estimators such as the
APC score [60] (see also Chapter 3 of Part III). The idea is that large
APC scores not corresponding to contacts can result from large cou-
plings anti-correlated with EMJ(a, b). As the APC score is based on
the squared couplings (cf. Eq. (3.8)), such pairs are given high scores
and give rise to false positive. On the contrary, they are associated
with large negative evolutionary pressures and are low-ranked with
the predictor λij.
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Fig 4. Inferred Potts couplings encode energetics and structural information about native and competitor folds, reflecting both positive and
negative designs. A. Values of Jij(a, b) (inferred from a MSA of structure SB with the Potts-ACE method) vs. −E(a, b) across all pairs of sites i, j and of amino
acids a, b (found at least once in the MSA on those sites). Couplings and MJ energy parameters are shown in the consensus gauge, in which the entries
attached to the most probable amino acids in each site are fixed to zero. Red symbols correspond to pairs (i, j) in contact, while blue symbols correspond to
no contact.B. Lower-triangle: contact map cij of structure SB. Full blue squares correspond to pairs of sites i, j in contacts. Green and red dots show,
respectively, true and false positives among the 28 largest scores FAPC

ij with the ACEmethod (Methods). Upper triangle: average contact map !cij, computed
over all competitor folds weighted with their Boltzmann weights (Methods). The four missed contacts (all touching the central site 4) correspond to large !cij.
Red squares locate the four false positives.C. Pressure λij for each pair of sites (i, j), computed from Eq [2], vs. cij ! c! ij for structure SB. The 195 pairs of sites
which can never be in contact on any fold due to the lattice geometry are shown with magenta pluses. The 28 contacts on SB (red symbols) are partitioned
into the Unique-Native (UN, 14 full triangles) and Shared-Native (SN, 14 empty triangles) classes, according to, respectively, their absence or presence in the
closest competitor structure, SF (Fig 4D). The remaining 128 pairs of sites (blue symbols) are not in contact on SB, and are partitioned into the Closest-
Competitor (CC, 14 full squares) and the Non-Native (NN, 114 empty squares) classes, according to, respectively, whether they are in contact or not in the
closest competitor structure, SF. Similar results are found for SA, SC and SD, see Table 2 and Figs H, I, and J in S1 Text. As in Fig 4A, we use coupling and MJ
entries expressed in the consensus gauge, since the consensus sequence corresponds, or is close to the best folding sequence, used as a reference
sequence in our theoretical calculation of the pressure (S1 Text, Section III). Changing the gauge e.g. to the least-probable gauge affects the amplitudes of
the pressures λij, but does not qualitatively alter the results.D. Structure SF, the closest competitor structure to SB. Note that the four missed contacts (among
the top 28 FAPC scores with the ACEmethod) are carried by the center of the cube (site i = 4 on SB and SF), see fold SB in Fig 2A and its contact map in Fig
4B. Two of the four false positives are contacts on SF, and are thus in the CC class.

doi:10.1371/journal.pcbi.1004889.g004
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Figure 3.9 – Empirical pressure λij for each pair of sites (i, j), vs. δcij =

cij− cij for structure SB. The 195 pairs of sites which can never
be in contact on any fold due to the lattice geometry are shown
with magenta pluses. The 28 contacts on SB (red symbols) are
partitioned into the Unique-Native (UN, 14 full triangles) and
Shared-Native (SN, 14 empty triangles) classes, according to,
respectively, their absence or presence in the closest competi-
tor structure. The remaining 128 pairs of sites (blue symbols)
are not in contact on SB, and are partitioned into the Closest-
Competitor (CC, 14 full squares) and the Non-Native (NN, 114
empty squares) classes, according to, respectively, whether they
are in contact or not in the closest competitor structure.
Source: figure and caption from [60]

.



Part II

S C O R I N G O F S E Q U E N C E S

This section is dedicated to illustrating the ability of the
direct-coupling analysis (DCA) inference methods to go be-
yond protein structure prediction. We start by shortly
analyzing the data of [107], where the authors designed
new proteins based on an alignment of the WW domain,
and experimentally tested their ability to fold (Chapter 1).
Then, applying DCA in the context of remote homology de-
tection to a dozen of protein domain families, we observe
that alignment gaps give rise to several complications and
we define a null model to suppress this dominating signal,
leading to interesting but unexpected results (Chapter 2).
Finally, inspired by this problem of gaps, we develop a
more principled approach modeling gaps as missing in-
formation and thus gap-rich sequences as partial observa-
tions, in the theoretical framework of mean-field inverse
Potts models (Chapter 3).



1
A F I R S T E X A M P L E : W W D O M A I N

Originally developed in the context of prediction of residue-residue
contacts in the tertiary and quaternary structures of proteins, DCA

related approaches have proven to be very accurate and are today
widely used in the field. Encouraged by this success, DCA has been
successfully applied by members of our group to predict the antibi-
otic drug resistance properties of beta lactamase TEM-1 [46], and – as
it has already been mentioned several times in this dissertation – in
other challenging fields, such as drug resistance detection in the HIV
virus [25], fitness effects of mutations [45, 76], or folding properties
of lattice proteins [60].

In the specific context of [107], where properties of artificial se-
quences have been tested experimentally, we will shortly asses the
ability of DCA related approaches to be good predictors of protein
folding properties.

1.1 background

The WW domain is a small protein domain involved in specific
interactions with protein ligands. Socolich and collaborators [107] de-
signed new artificial sequences using the statistical information from
the multiple sequence alignment (MSA) of the WW domain (Pfam id
PF00397, N = 33 residues), and experimentally tested their ability to
fold into the native WW structure. Four groups of new sequences
have been generated based on Monte Carlo Markov Chain (MCMC)
simulations:

— Natural (NAT): natural WW sequences drawn from the original
MSA,

— Coupled conservation (CC): artificial sequences with the same
single-site frequencies fi(a), and the same connected correla-
tions Cij(a, b) than the original MSA,

— Independent-site conservation (IC): artificial sequences with the
same single-site frequencies fi(a),

— Random (R): random sequences, only with the overall same fre-
quencies than the original MSA.

The main result of the paper is that the knowledge of statistical
correlations is sufficient but also necessary to create sequences that
fold into the native WW structure. Indeed, as displayed on Fig. 1.1,
a significant fraction of CC sequences correctly fold, whereas none of
IC or R sequences do. This emphasizes the role of the interactions
between residues in the folding process - which are not described by

36
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for both CC and IC sequences (Table 1). As described, this protein is
well folded by several independent biophysical assays (Fig. 3b, g). We
solved the three-dimensional structure of CC45 by solution NMR
methods, using 800 distance and dihedral angle restraints (Fig. 5a, b;
see also Supplementary Table 2). CC45 was refined to reasonably
high precision, clearly confirming the curved three-stranded anti-
parallel b-sheet structure characteristic of all WW domains. How-
ever, the structural similarity of CC45 to otherWWdomains seems to
go well beyond just the fold level. Tertiary structure motifs common
to WW domains are found in CC45, including a centrally located
tryptophan (W7) that sits upon a platform of two proline side chains
(P4, P33, Fig. 5b). In addition, several sites in CC45 display unusual
proton chemical shifts based on comparison with the BioMagRes-
Bank database of protein NMR data (for example, d ¼ 20.38 p.p.m.
for N22 Hb2, Fig. 3g; see Supplementary Table 1 for further
examples). Such unusual shifts arise from unique tertiary packing
that places protons in close proximity to aromatic side chains.
Comparison of the chemical shifts of CC45 to those of two natural
WW domains, Pin1 (ref. 28) and Nedd4.3 (ref. 29), showed that
all three proteins display these same unusual shifts at analogous
positions in each sequence. Thus, CC45 adopts a stable WW-like
three dimensional structure.

To examine howwell the SCA-based design recapitulates the native
structure of the WWdomain, we overlaid the structure of CC45 with
those of several different natural WW domains by minimizing the
rootmean squared deviations (r.m.s.d.) of backbone Ca atoms for all
structures (Fig. 5c). All seven structures clearly adopt very similar
backbone folds, and no obvious feature seems to distinguish CC45
from the other proteins. To quantify this result, we compared the
average pairwise r.m.s.d. values for backbone atoms of all the natural
WW domains (1.52 ^ 0.4 Å) with the r.m.s.d. values of CC45 from
all the natural domains (1.19 ^ 0.65 Å). The difference between
these distributions is not significant (P ¼ 0.34), demonstrating
that CC45 is as similar at atomic resolution to natural WW domains
as natural domains are to each other.

Conclusions
Classical studies indicate that protein structure and function results
from globally minimizing the free energy of the polypeptide chain
under physiological conditions1. In this work, we have tested a model
for the specific pattern of amino acid interactions that makes up the
global free energy minimum using the WW domain as a model
system (Fig. 1b, c). The model is based on three core hypotheses: (1)
that amino acid interactions specifying the atomic structure are
conserved throughout members of a protein family rather than being
idiosyncratic; (2) that conservation is a distributed rather than site-
independent property because it fundamentally arises from the
cooperativity of energetic interactions; and (3) that the parsing of
conservation is well estimated by the statistical energy function
contained in the SCA method. The finding that a significant fraction
of CC sequences are natively folded whereas IC sequences are not
provides strong support for these hypotheses. This result is particu-
larly informative because CC sequences are statistically indistin-
guishable from IC sequences with regard to sequence divergence
from natural WW domains. We conclude that it is the specific
distribution of conservation rather than the quantity of conservation
that dictates native folding.

Figure 4 | Summary of experiments on all natural and artificial WW
sequences. a, A pie chart showing the outcomes of folding studies for
natural (n ¼ 42), CC (n ¼ 43), IC (n ¼ 43), or random (n ¼ 19) WW
sequences. Red, natively folded; blue, soluble but unfolded; yellow,
insoluble; grey, poor expressing. b, Melting temperatures (Tm) and van’t
Hoff enthalpies of unfolding for all folded WW sequences. Open circles
indicate natural sequences and filled circles indicate the 12 folded CC
sequences. The artificial sequences show thermodynamic parameters that
fall into the same range as that of natural WWdomains.

Figure 5 | NMR structure determination of CC45, an artificial WW
domain. a, Ensemble of ten lowest energy structures determined for CC45,
showing backbone traces of each structure and side chains of selected
residues discussed. b, Ribbon diagram of the representative structure of the
CC45 ensemble. Residues highlighted in CPK or stick bonds illustrate
packing interactions in the core (Trp 7, Pro 33, Asn 22), and in the canonical
proline-binding pocket (Tyr 19, Trp 30). c, Structure-based alignment of
CC45 (blue) with six natural WWdomains in white (FBP28WW (1E0L),
YJQ8WW (1E0N), dystrophin (1EG3), Nedd4.3 (1I5H), YAP65 (1K9R) and
Pin1 (1PIN)). The data show that the CC45 adopts a WW-like tertiary
structure.
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WW domains (1.52 ^ 0.4 Å) with the r.m.s.d. values of CC45 from
all the natural domains (1.19 ^ 0.65 Å). The difference between
these distributions is not significant (P ¼ 0.34), demonstrating
that CC45 is as similar at atomic resolution to natural WW domains
as natural domains are to each other.

Conclusions
Classical studies indicate that protein structure and function results
from globally minimizing the free energy of the polypeptide chain
under physiological conditions1. In this work, we have tested a model
for the specific pattern of amino acid interactions that makes up the
global free energy minimum using the WW domain as a model
system (Fig. 1b, c). The model is based on three core hypotheses: (1)
that amino acid interactions specifying the atomic structure are
conserved throughout members of a protein family rather than being
idiosyncratic; (2) that conservation is a distributed rather than site-
independent property because it fundamentally arises from the
cooperativity of energetic interactions; and (3) that the parsing of
conservation is well estimated by the statistical energy function
contained in the SCA method. The finding that a significant fraction
of CC sequences are natively folded whereas IC sequences are not
provides strong support for these hypotheses. This result is particu-
larly informative because CC sequences are statistically indistin-
guishable from IC sequences with regard to sequence divergence
from natural WW domains. We conclude that it is the specific
distribution of conservation rather than the quantity of conservation
that dictates native folding.

Figure 4 | Summary of experiments on all natural and artificial WW
sequences. a, A pie chart showing the outcomes of folding studies for
natural (n ¼ 42), CC (n ¼ 43), IC (n ¼ 43), or random (n ¼ 19) WW
sequences. Red, natively folded; blue, soluble but unfolded; yellow,
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sequences. The artificial sequences show thermodynamic parameters that
fall into the same range as that of natural WWdomains.

Figure 5 | NMR structure determination of CC45, an artificial WW
domain. a, Ensemble of ten lowest energy structures determined for CC45,
showing backbone traces of each structure and side chains of selected
residues discussed. b, Ribbon diagram of the representative structure of the
CC45 ensemble. Residues highlighted in CPK or stick bonds illustrate
packing interactions in the core (Trp 7, Pro 33, Asn 22), and in the canonical
proline-binding pocket (Tyr 19, Trp 30). c, Structure-based alignment of
CC45 (blue) with six natural WWdomains in white (FBP28WW (1E0L),
YJQ8WW (1E0N), dystrophin (1EG3), Nedd4.3 (1I5H), YAP65 (1K9R) and
Pin1 (1PIN)). The data show that the CC45 adopts a WW-like tertiary
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for both CC and IC sequences (Table 1). As described, this protein is
well folded by several independent biophysical assays (Fig. 3b, g). We
solved the three-dimensional structure of CC45 by solution NMR
methods, using 800 distance and dihedral angle restraints (Fig. 5a, b;
see also Supplementary Table 2). CC45 was refined to reasonably
high precision, clearly confirming the curved three-stranded anti-
parallel b-sheet structure characteristic of all WW domains. How-
ever, the structural similarity of CC45 to otherWWdomains seems to
go well beyond just the fold level. Tertiary structure motifs common
to WW domains are found in CC45, including a centrally located
tryptophan (W7) that sits upon a platform of two proline side chains
(P4, P33, Fig. 5b). In addition, several sites in CC45 display unusual
proton chemical shifts based on comparison with the BioMagRes-
Bank database of protein NMR data (for example, d ¼ 20.38 p.p.m.
for N22 Hb2, Fig. 3g; see Supplementary Table 1 for further
examples). Such unusual shifts arise from unique tertiary packing
that places protons in close proximity to aromatic side chains.
Comparison of the chemical shifts of CC45 to those of two natural
WW domains, Pin1 (ref. 28) and Nedd4.3 (ref. 29), showed that
all three proteins display these same unusual shifts at analogous
positions in each sequence. Thus, CC45 adopts a stable WW-like
three dimensional structure.

To examine howwell the SCA-based design recapitulates the native
structure of the WWdomain, we overlaid the structure of CC45 with
those of several different natural WW domains by minimizing the
rootmean squared deviations (r.m.s.d.) of backbone Ca atoms for all
structures (Fig. 5c). All seven structures clearly adopt very similar
backbone folds, and no obvious feature seems to distinguish CC45
from the other proteins. To quantify this result, we compared the
average pairwise r.m.s.d. values for backbone atoms of all the natural
WW domains (1.52 ^ 0.4 Å) with the r.m.s.d. values of CC45 from
all the natural domains (1.19 ^ 0.65 Å). The difference between
these distributions is not significant (P ¼ 0.34), demonstrating
that CC45 is as similar at atomic resolution to natural WW domains
as natural domains are to each other.
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Figure 1.1 – Outcome of folding studies for natural, CC, IC and random
WW sequences. Red: natively folded, blue: soluble but un-
folded, yellow: insoluble, grey: poor expressing. A significant
part of CC sequences are natively folded, whereas IC sequences
are not.
Source: [107]

a independent or random model - and justifies the use of a pairwise
Potts model, beyond maximum entropy (MaxEnt). Note that some
natural sequences do not fold, simply reflecting the imperfections of
the experimental procedure to test folding.

1.2 folding prediction with direct-coupling analysis
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Figure 1.2 – mfDCA energies (left panel) and HMMer scores (right panel) of sequences from [107],
experimentally folding (red) and not folding (blue) in the native WW structure. mfDCA

seems to be more able to discriminate between natively folded and not folded se-
quences.

In this short study, we will show that the energy in the DCA Potts initiated with C.
Feinauer from
Politecnico di Torino

model – inferred on the original WW alignment – of a given sequence
is a good predictor of its ability to fold (even among CC and NAT
ones), whereas the procedure of [107] scores only the full MSA or
artificial protein sequences, and does not provide any information
about the potential value of each single sequence.

Each sequence a = (a1, ..., aN) in the test alignment – composed of
the four groups of new sequences described above – is assigned the
energy (cf. Eq. (3.9) in Part I):
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E(a1, ..., aN) = −

N−1∑
i=1

N∑
j=i+1

Jij(ai, aj) −

N∑
i=1

hi(ai) , (1.1)

where {hi(a), Jij(a, b)} are the couplings and fields inferred with
DCA in the mean-field approximation (mfDCA) from the original MSA

of the WW domain (PF00397), the training alignment. Fig. 1.2 shows“good” sequences
are given low

energies and high
HMMer scores

the energies and HMMer [47] scores (see Chapter 3 of Part I for the
definition) of the different groups of sequences. Red (resp. blue) bars
correspond to sequences that do (resp. do not) fold experimentally,
according to [107]. As expected, natural sequences globally have a
lower mfDCA energy than the IC sequences and the folded CC se-
quences lie in a low energy region mostly free from IC sequences.
On the contrary, HMMer gives similar scores to Natural, CC and IC
sequences as they share the same single-site frequency patterns. Ran-
dom sequences are discarded by both models. Similar results are
obtained with other pairwise inference methods, such as pseudolike-
lihood maximization (plmDCA) or adaptive cluster expansion (ACE),
and by replacing HMMer by a site-independent (factorized or fields)
model (cf. Eq. (3.1) in Chapter 3 of Part I).

A graphical representation of the performance of the different mod-
els as binary classifiers, i.e. discriminating between folded and un-
folded sequences is given by the receiver operating characteristic (ROC)
and the area under the ROC curve (AUC), displayed on Fig. 1.3. The
ROC curve is the true positive rate – proportion of positives (folded
sequences) detected (given a top-ranked score) – as a function of the
false positive rate – fraction of negative (unfolded sequences) identi-
fied as such (given a low score) – for various thresholds (number of
predictions). A random guess would go along the diagonal in the
ROC space and get a AUC of 0.5; a perfect classifier would have a ROC

constant equal to 1 and a AUC of 1. Any method in between recovers
non-random information.

In this case, mfDCA, plmDCA, and ACE are much better classifiers
than independent-site models such as HMMer or the independent
model. It is also quite astonishing that the pairwise models are
so similar, given that they cover very different energy ranges, with
mfDCA seemingly working at much lower temperature. DCA related
approaches therefore seem to be very efficient in predicting whether
a given sequence will fold in a native structure or not, in the specific
context of [107]. This success is very encouraging, but needs to be
confirmed on more data. The next chapter will focus on a dozen of
protein families in the context of homology detection.
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Figure 1.3 – ROC (panel (a)) and AUC (panel (b)) curves illustrating the performance of the different
models in discriminating between folded and unfolded sequences. Pairwise models
are better classifiers.
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S E Q U E N C E S C O R I N G A N D G A P T R E AT M E N T

In the previous section, we showed that DCA related approaches
seem to be able to assess the folding ability of a given sequence, in the
specific context of [107]. More data will be available in the near future,
leading to further work by our team. In the meantime, we would
like to test our method in the context of homology detection. As
mentioned in Chapter 3 of Part I, homology detection is a major field
of bioinformatics as it allows to assign a sequence to a protein domain
family, therefore building sequence alignments and predicting the
structure and function of proteins. A vast literature addresses this
topic in bioinformatics and machine learning [40, 47, 59, 101, 108,
109].

Methods treating residues independently – such as profile-HMM

– perform quite well on phylogenetically close enough proteins, be-
cause their sequences are still similar. However, there is no approach
working well in all cases for remote homology detection, a much
harder problem focusing on proteins which are “far” in a phyloge-
netic point of view and with low sequence similarity. Interestingly,
a few methods tackling this specific problem tend to use non-local
information from MSAs [16, 35, 74]. Moreover, for the specific case of
RNA 1, coevolution of the secondary structure is taken into account by
approaches introduced as covariance models (such as Infernal [86]).
The naive idea that covariation patterns – currently not taken into
account – may be better preserved than single-site conservation pat-
terns in remote but homologous sequences motivates the use of DCA

approaches in this context.
The three domains of the tree of life offer a natural clustering into

phylogenetically different groups: archaea, bacteria and eukaryota, to
which we can add viruses. In the following, we will divide a dozen
MSAs of protein families into sub-alignments, according to these do-
mains of life. The task here is more complex than in the last chapter,
as we have no such thing as a binary information whether the se-
quence is folded/unfolded for instance. We will however study the
energy distribution of DCA models across these domains of life and
compare it to the HMMer scoring, the currently most used tool in the
context of homology detection.

1. Ribonucleic acids are polymeric molecules consisting in chains of nucleotides
(A, C, G, U). Their secondary structure is composed of Watson-Crick base pairings.

40



2.1 scoring procedure 41

2.1 scoring procedure

Before applying it to broad domain families with both bacterial and
eukaryotic sub-families, the scoring procedure will be first illustrated
on the Kunitz/Bovine pancreatic trypsin inhibitor domain (Pfam id
PF00014, N = 53 residues). The Potts parameters {Jij(a, b), hi(a)} are
inferred with mfDCA from the one- and two-point statistics in the MSA

– which has been downloaded from Pfam, as well as the profile-HMM

(needed to compute the HMMer scores). The original MSA is referred
to as the training alignment. A test alignment is created by search-
ing (using the hmmsearch tool of the HMMer software [47]) the whole
Uniprot database with the PF00014 profile-HMM 2. We force HMMer
to align also with negative log-odds scores, hoping that among all disabling all

significance
thresholds

these aligned sequences there are not only totally unrelated elements,
but also distant homologs. This artificial alignment is of course ex-
tremely rich in gaps (with some sequences gaped at more than 50%).
The idea initially was to use DCA to distinguish between homologs
and unrelated sequences.

2.1.1 Gaps are not modeled well by direct-coupling analysis

Figure 2.1 – PF00014 - Energies of the sequences in the artificial test align-
ment, with the Potts parameters inferred on the original MSA, as
a function of their HMMer scores. Sequences with more than
30% of gaps are given low HMMer scores, but surprisingly ex-
tremely low energies. The “sequence” with the lower HMMer
score has one of the lowest energies and consists in 52 gaps and
1 amino acid.

Similarly to the previous section, an energy (cf. Eq. (1.1)) is as-
signed to each sequence of the artificial test alignment, with the Potts
parameters inferred on the original MSA. The energy distribution is
compared with the HMMer score, as displayed on Fig. 2.1. Surpris-

2. The procedure to build alignments from profile-HMM is briefly explained in
Part I Section 3.1.2.2
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ingly, some sequences are given very low energies in the DCA model,“good” sequences
are given low

energies and high
HMMer scores

whereas they have bad HMMer scores. A quick verification shows
that they are very rich in gaps, from 30% to 98% – the sequence with
one of the lowest energies (-245) also has the lowest HMMer score 3

(-83) and consists in 52 gaps and 1 amino acid. This “sequence” has
of course absolutely no biological meaning and should never have
been aligned, but for the sake of this study we disabled HMMer sig-
nificance thresholds. It anyway seems that DCA dangerously under-
estimates the energy of gap-rich sequences.

When sequences are distant in evolution – such as proteins present
in both bacterial and eukaryotic domains of life – not necessarily all
parts of the sequences are well conserved and alignable. As a conse-
quence, broad families – containing a lot of sequences Beff & 500 in
both domains of life – frequently have many gaps. Gaps in align-
ments are reflecting deletion or insertion mutations in sequences,
and therefore a mismatch between two residues to be aligned in the
same MSA column. Consequently, gaps are intrinsically different from
amino acids. Their distribution along the positions of the MSA is also
very different as they tend to come in repeated stretches - especially
at the beginning or the end of sequences - which is not the case for
amino acids (cf. Fig. 3.3 in Part I). However, they are treated as an
extra symbol by DCA related approaches.
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Figure 2.2 – PF00014 - Panel (a): couplings {Ji,k(a, a)} with i = 11 as an
example and k ∈ {1, ..., N = 53}, inferred with mfDCA, for a
gap (black) and amino acid (colors). Panel (b): energies of the
test alignment, as a function of the frequency of gaps in the se-
quences. Gap-Gap couplings are dominant in a range of about
10 sites and the energy of a sequence is highly correlated to the
frequency of gaps.

These gap-induced artifacts give rise to strong DCA couplings be-
tween gaps. Fig. 2.2a shows the range of the couplings Jij(a, a), with

3. Gap-rich sequences are given low HMMer scores because of gap penalties in
the profile-HMM procedure, see Part I Chapter 3.
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i = 11 as an example, for all symbols a (amino acids and gap) and as
a function of j ∈ {1...N}. The highest interactions are gap-gap (black
curve, other colors are amino acids), in a range of about 10 sites. The
second peak reflects a very strong interaction between residues 11
and 35 due to a disulfide bridge in the 3D structure (a contact be-
tween two Cysteine, in green on the Figure).

The couplings have been inferred on the original MSA (the training
alignment) and are absolutely unrelated with the artificial test align-
ment. 89% of its sequences actually contain less than 10% of gaps.
These spurious interaction therefore arise even if few gaps are present
in the training alignment. It however does not impact residue-residue
contact prediction as severely, given that residues too close on the
backbone which are the most involved in the gap-gap interactions
are usually discarded from the ranking (cf. Part I Chapter 3).

The high gap-gap couplings lead to an artificially low energy of the
gap-rich sequences in the test alignment. Fig. 2.2b shows how corre-
lated the mfDCA energy is to the frequency of gaps, from about 30%
of gaps in the sequence 4. Previous work [43] proposed to suppress
strong couplings induced by gaps by introducing additional gap pa-
rameters learned from the MSA besides usual Potts couplings and
fields. This new asymmetry between gaps and amino acids improves
contact prediction, especially in the region at the end of the proteins
richer in gaps. Here, we present another solution taking the form a
null model on the gap distribution.

2.1.2 Null model

The null model we have implemented requires a manipulation on
the training MSA. It consists in keeping the gaps at the same positions,
but reemitting the amino acids with their overall frequency in Uniprot
(totally site-independent). Any signal stemming from amino acids is
therefore suppressed and only the spurious signals coming from gaps
remain. The training set can be replicated a certain number of times
(typically 10) to avoid finite size effects, the randomization of amino
acids being done independently in the replicas. The inference is then
done as usual with DCA approaches using two different sets of one-
and two-sites frequency counts {fi(a), fij(a, b)} and {f0i (a), f

0
ij(a, b)},

coming respectively from the actual training MSA, and from the new
randomized (except for gaps) training MSA. It leads to two sets of
Potts couplings and fields: {hi(a), Jij(a, b)} and {h0i (a), J

0
ij(a, b)}.

The energy difference between the standard and the null model
should capture the signal due to amino acids alone. For a given
sequence a = (a1, ..., aN), it reads

∆E(a1, ..., aN) = E(a1, ..., aN) − E0(a1, ..., aN) , (2.1)

4. The scoring of artificial WW domain sequences in the last chapter was not
affected by gaps, as there are very few of them in this specific data.



44 sequence scoring and gap treatment

k
0 20 40

J
1
1
;k
(a

;a
)
!

J
0 1
1
;k
(a

;a
)

0

2

4

6

8

(a) (b)

Figure 2.3 – PF00014 - Panel (a): effective couplings {Ji,k(a, a) − J
0
i,k(a, a)}

with i = 11 as an example, k ∈ {1, ..., N = 53} and a amino
acids (colors) and gap (black), inferred with mfDCA, corrected
by the null model. Panel (b): corresponding energies of a
test alignment as a function of the frequency of gaps in the se-
quence. The effect of gaps is suppressed and energies globally
anti-correlated to the frequency of gaps.

where E0(a1, ..., aN) = −
∑
i<j J

0
ij(ai, aj) −

∑
i h
0
i (ai). The range

of the new effective couplings J − J0 are displayed on Fig. 2.3a:
the strong long range gap-gap couplings have been suppressed, and
the energies are slightly anti-correlated with the gap frequency from
about 30%, as it should be (Fig. 2.3b). This model will be applied
in the following to a dozen of broad protein families, containing se-
quences in various domains of life.

2.1.3 Scoring method

It is necessary at this point to understand the difference between
the training and the test alignments. The training alignment is the
one on which the parameters of the different models are learned: the
frequency counts {fi(a), fij(a, b)} for DCA related approaches and the
profile-HMM for HMMer scoring. The test alignment contains the se-
quences to which a score will be assigned: an energy for DCA and a
log-odds score for HMMer. It can of course be very different from
the training alignment, but a constraint is that their sequences should
have the same length N. For example, in the following section, the
training set is typically the bacterial sub-alignment of the studied pro-
tein family, and the test sets are the eukaryotic, archaea, and viruses
sub-alignments.

The computation of the HMMer score should be explained in more
details, as it is not straightforward. The inputs of the HMMer soft-the detailed

procedure is in
Appendix B

ware are a profile-HMM and a target database of full length (not
aligned) sequences. It finds the most relevant (hit) domains from
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the sequences in the database corresponding to the profile. For con-
sistency with the “training/test” point of view, a profile-HMM is built,
specific only to the training alignment. This profile is therefore dif-
ferent from the Pfam profile used to align the sequences of the entire
family (training+test). Moreover, HMMer requires the full length ver-
sion of the sequences (available in Uniprot [30]) and cannot use as
a target database the aligned MSA from Pfam. We therefore need to
make sure that the relevant hit domains correspond to the test align-
ment, if we want to compare the HMMer scores and the DCA energies.

2.2 results

pfam id description N Beukar Bbact

PF00004 AAA 132 18844 31242

PF00006 ATP synthase α/β family 215 11041 21821

PF00011 HSP20/α-crystallin domain 102 3660 5812

PF00013 KH domain 60 12576 6502

PF00023 Ankyrin repeat 33 7256 1006

PF00027 Cyclic nucleotide-binding 91 8811 17078

PF00033 Cytochrome b/b6/petB 188 1577 6821

PF00089 Trypsin 220 18275 3897

PF00091 Tubulin/FtsZ/GTPase domain 216 14988 876

PF00664 ABC transporter 275 13285 37386

PF03547 Membrane transport protein 385 1148 7790

Table 1 – List of the selected Pfam families.

Eleven protein families (cf. Table 1) have been selected because of
their natural division into two bacterial and eukaryotic sub-families,
with the condition that they contain enough sequences so that DCA

related approaches can be applied on each of the sub-alignments
(Beff & 500). Only six of them, displaying the most significant re-
sults will be studied in the following: PF00011, PF00013, PF00027,
PF00033, PF00091, and PF00664. Fig. 2.4 displays a graphical rep-
resentation of the distribution of the Pfam family PF00011 across
species, with large bacterial and eukaryotic sub-families.

The main result of this preliminary study is that DCA related ap-
proaches (mfDCA and plmDCA) have a stronger tendency to discrim-
inate between sequences from the same family, where this discrimi-
nation is, e.g. consistent with the phylogenetic distribution. Besides,
DCA is sometimes able to detect errors in the labeling of sequences, or
at least gives interesting insights about unclassified sequences - auto-
matically annotated unreviewed sequences, metagenomic sequences
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Figure 2.4 – Graphical representation of the distribution of PF00011 across
species, with bacteria (green) eukaryota (purple), archaea (red)
and unclassified sequences (blue).

from environmental samples, etc. - indicating good candidates for
further studies.

We will go into details for the first case of PF00091, before review-
ing the other protein families. Energies from both mfDCA and plmDCA

have been compared to HMMer scores, giving similar results, but
only mfDCA energies have been displayed in the following, for the
sake of simplicity. In each case, both eukaryotes and bacteria have
been treated as training alignments, yielding a similar outcome, but
we will present here only the most significant results for each Pfam
family.

2.2.1 PF00091 - Tubulin/FtsZ family GTPase domain

This family (Tubulin/FtsZ family, GTPase domain) includes the
tubulin α, β and γ chains, as well as the bacterial FtsZ family of pro-
teins, all involved in polymer formation. FtsZ is the polymer-forming
protein of bacterial cell division, part of the ring formed in the middle
of the dividing cell that is required for the constriction of the mem-
brane. The discovery of bacterial tubulins (principal component of
microtubules) was a surprise, and little is known about the structure
of these proteins [75].

2.2.1.1 Scoring

The training set is the eukaryotic sub-family (mainly tubulin). The
bacterial sub-family (test alignment) is composed of four groups of
sequences differing from each other by their Uniprot annotations:
“FtsZ cell division” proteins (in majority), bacterial “tubulins”, “puta-
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tive uncharacterized” proteins (mainly inferred from homology) and
“deleted” proteins (mainly fragments or preliminary data deleted
from the latest Uniprot release 5). Fig. 2.5 displays the comparison
between the mfDCA energies and HMMer scores of the bacterial se-
quences. The different bacterial groups have been colored in blue
(FtsZ), red (tubulin), grey (putative) and black (deleted). The squares
are two types of eukaryotic sequences: the dark green ones are di-
rectly taken from the training set and the light green ones are a ran-
dom subset of eukaryotic sequences that were not included in the
training set in the first place.

HMMer score
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Figure 2.5 – PF00091 - Comparison between mfDCA energies (corrected by
the null model) and HMMer scores. Training on the eukaryotic
sub-family and testing on the bacterial sub-family. Eukaryotes
(light and dark green squares) have lowest energies than bacte-
ria (other colors).

What is particularly striking (and it will be the case for all the
studied families), is the range of HMMer scores for the eukaryotic se-
quences (from the training set). Although the profile-HMM has been
built on the training set, their HMMer scores are widely spread from
about 20 (which usually is the minimum score for homology detec-
tion) to several hundreds. On the contrary, the DCA pairwise mod-
els give a very high scores to eukaryotic sequences, much more effi-
cient than HMMer in pointing out sequences similar to the training
sub-family. The two groups of eukaryotic sequences having approxi-
mately the same mfDCA energies, we see that the overfitting is limited
here.

We also denote a very interesting feature: the bacterial tubulins
(red) are divided into two groups of low and high HMMer scores.
However, they are given similar scores by DCA. Too little is known
about these bacterial tubulins to be able to investigate further and

5. The fact that Uniprot is updated more frequently than Pfam can be of interest
for us, as the label of some sequences may change from one Uniprot version to the
other, with some sequences being misclassified; this information can be used to see
whether DCA models could have predicted these changes
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verify these predictions in a structural point of view. Besides, low
scores are assigned to the putative uncharacterized sequences (grey)
by both models. The deleted proteins (black) are mainly drafts of
FtsZ proteins, to which they have equivalent scores in both models.

2.2.1.2 Structural information

3
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Figure 2.6 – Cumulative distribution function of APC scores for pairs in con-
tact only in the eukaryotic structures (green), and only in the
bacterial structures (blue).

The possibilities in linking scoring and structure informations are
limited by the scarcity of sequences for which there are available
structures. To unveil the structural differences between eukaryotes
and bacteria (pointed out by DCA), we compare the average product
correction (APC) scores of two group of residue pairs (i, j):Standard

Frobenius-based
score used for

contact prediction,
cf. Eq. (3.8) in Part I

— the pairs that are contacts ONLY in the eukaryotic structure, but
not in the bacterial one (deukij < 8 Å and dbactij > 8 Å),

— the pairs that are contact ONLY in the bacterial structure, but
not in the eukaryotic one (deukij > 8 Å and dbactij < 8 Å).

The chosen structures have PDB 6 id 3CB2-A for the eukaryotic se-
quence TBG1_HUMAN (energy: -1002) and 2R75 for FtsZ bacterial
sequence FTSZ_AQUAE (energy: -237). We would expect the APC

scores to be higher for the first group, as the training has been done
on the eukaryotic sub-alignment and eukaryotic sequences have been
assigned lower DCA energies than bacterial sequences.

Fig. 2.6 displays the cumulative distribution function of the APC

scores of the pairs that are in contact only in the eukaryotic structures
(green curve) and the APC scores of the pairs that are in contact only

6. The Protein Data Bank (PDB) is a database of all known experimentally-
determined structures of proteins.
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in the bacterial structures (blue curve). We see that the cumulative
distribution is systematically shifted in favor of the training set, which
is consistent with the fact the the eukaryotic sequences have lower
energies than the bacterial ones.

This preliminary result on the link between energy (scoring) and
structure is to consider carefully as it was done on only two structures,
and as it was not possible to generalize it further to all studied protein
families. Besides, both distributions do remain strongly overlapping
on Fig. 2.6. It means that residue pairs in contact only in the bacterial
structure also display some coevolution in the eukaryotic structure,
and may even be in contact in other eukaryotic structures (which is
not easy to verify).

2.2.2 More protein families

We will present the results for Pfam families PF00011, PF00013,
PF00027, PF00033, PF00664. In each case, the training has been done
on both eukaryotic and bacterial sub-alignments, yielding similar
results, but only the outcomes for a training on the bacterial sub-
families 7 are displayed on Fig. 2.8b, 2.9a, 2.10, 2.11, 2.12, and 2.13.
The same color code has been used in these figures for test sequences
– eukaryotes (blue dots), archaea (red dots), viruses (purple dots)
– and training sequences – bacteria present in training (dark green
squares) and not present in training (light green squares). Some se-
quences are unclassified (black dots) for several reasons: they have
been deleted in the current version of Uniprot as Uniprot is updated
more frequently than Pfam (usually drafts or duplicates), or no infor-
mation is known about their biological domain (usually metagenomes).

2.2.2.1 Specificity to the training sub-family

Confirming the interesting results obtained for PF00091, DCA pair-
wise models (corrected by the null model) always give lower energies
to sequences in the same domain of life as the training sub-family,
whereas HMMer scores are usually widely spread and not able to
distinguish between training-like sequences and test sequences. This
is independent of whether the sequences in the same domain of life
as the training sub-family were actually in the training set or not,
showing that the observed discrimination is independent from over-
fitting effects. On the contrary, without the null model, extremely low
energies are given to sequences containing a lot of gaps, equivalent
to the energies of the training sequences (cf. Fig. 2.8b & Fig. 2.9a for
PF00011). These gap-rich sequences are usually given low scores by
HMMer, due to gap penalties in the alignment procedure.

7. Some results for a training on the eukaryotic sub-families can be found in
Appendix C.
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Figure 2.7 – Mean ROC (panel (a)) and AUC (panel (b)) curves – over the five
studied Pfam families – illustrating the performance of the dif-
ferent models in discriminating between sequences, depending
on whether they belong to the same domain of life than the
training sub-family or not. Pairwise models are better classi-
fiers if corrected by the null model on gaps.

To illustrate the properties of the different models to discriminate
between the training and test sub-families, we consider the ROC curve
(and the corresponding AUC), assessing their performance as binary
classifiers. The two classes are in this case the bacteria (training
sub-family) considered as true positives and the eukaryotes (test sub-
family) considered as false positives 8. A perfect classifier would give
higher scores to all bacteria and therefore would be the constant func-
tion 1 in the ROC space; a random guess would go along the diagonal.
Figure 2.7 displays the mean ROC and AUC over the five Pfam families
studied in this section (PF00011, PF00013, PF00027, PF00033, PF00664)
in four models (HMMer score, standard mfDCA, mfDCA corrected by
the null model, plmDCA corrected by the null model).

As mentioned above, the energy in the standard mfDCA model is
deeply affected by the presence of gaps in the sequence, performing
no better than a random classifier for the first top-ranked sequences,
and much worse than HMMer (see also Fig. 2.8b). The latter is out-
performed by mfDCA and plmDCA when corrected by the null model
on gaps. Interestingly, the mean-field approximation leads to a better
discrimination between sequences than pseudolikelihood, probably
because mfDCA typically tends to overestimate the inferred couplings
[12]. The observed discrimination is consistent with the phylogenetic
distribution and typically depends on whether they belong to the
same domain of life than the training sub-family or not.

8. The ROC and AUC curves for a training on the eukaryotic sub-families can be
found in Appendix C, displaying similar results.
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2.2.2.2 Detailed information about sequences

More over, some eukaryotic or unclassified sequences have low DCA

energies equivalent to the bacterial sub-family on which the training
is done (see the figures below). Usually these eukaryotic sequences
similar to bacteria according to DCA are putative or automatically la-
beled by homology softwares, meaning that there is no experimental
proof and few indications that they really are eukaryotes. They of-
ten have been deleted in the last Uniprot version. The unclassified
sequences similar to bacteria according to DCA usually are metag-
neomic sequences from environmental samples, or even misclassified
as bacteria the last Uniprot version. Fortunately, the sequences that
are pointed out by DCA are the same in the mean-field and the pseu-
dolikelihood approximations, emphasizing the robustness of the pro-
cedure.

— PF00011 (Figs. 2.9a & 2.8b): 4 eukaryotes (blue) and 8 unclas-
sified (black) sequences have DCA energies equivalent to bacte-
ria. All the eurkaryotes are automatically annotated and unre-
viewed (inferred from homology), which means that very little
is known about these sequences. 3 of them have been deleted in
the last Uniprot release. All of the 8 unknown sequences are un-
classified metagenomic sequences from environmental samples.
DCA seems to suggest that they are bacteria.

— PF00013 (Fig. 2.10): 4 eukaryotes (blue) and 9 unclassified
(black) sequences have DCA energies equivalent to bacteria. All
the eukaryotes are unreviewed and inferred from homology, 2
of them are “putative uncharacterized”, meaning that very lit-
tle is known about these sequences. More interestingly, 2 of
the unclassified sequences actually are labeled as bacteria in
the last Uniprot release and the remaining 7 are unclassified
metagenomic sequences from environmental samples, which
could very well be bacteria.

— PF00027 (Fig. 2.11): 7 eukaryotes (blue) and 7 unclassified
sequences (black) have similar DCA energies than bacterial se-
quences. All of these eukaryotic sequences are unreviewed and
inferred from homology, 1 has been deleted in the latest Uniprot
release, 1 is putative uncharacterized. Besides, 5 of the unclassi-
fied sequences actually are bacteria and the remaining 2 are un-
classified metagenomic sequences from environmental samples,
possibly bacteria. HMMer is unable to detect these sequences.

— PF00033 (Fig. 2.12): a group of high HMMer score eukaryotic se-
quences have a relatively high DCA energy. Unfortunately, their
structure is unknown and we could not investigate further. We
notice 15 unclassified sequences which have a low DCA ener-
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gies: 1 is actually a bacterial protein and the 14 others are again
metagenomic sequences from environmental samples.

— PF00664 (Fig. 2.13): 72 unclassified sequences have a DCA en-
ergy as low as bacterial sequences: 15 are ecological metagenomes
and 57 actually are labeled as bacteria in the last Uniprot release.
HMMer is unable to detect these sequences.
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Figure 2.8 – PF00011 - Comparison between standard mfDCA energies and
HMMer scores. Training on the bacterial sub-family and test-
ing on the eukaryotic and archaea sub-families. Some eukary-
otic (blue) and archaea (red) sequences are given extremely low
energies, equivalent to energies of bacterial sequences (light
and dark green squares): these sequences have low HMMer
score and contain a lot of gaps, their energy is overestimated by
mfDCA.
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Figure 2.9 – PF00011 - Comparison between mfDCA energies corrected by the
null model and HMMer scores. Training on the bacterial sub-
family and testing on the eukaryotic and archaea sub-families.
Bacteria (light and dark green squares) have lowest energies
than eukaryota, archaea and viruses (other colors).
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Figure 2.10 – PF00013 - Comparison between mfDCA energies (corrected by
the null model) and HMMer scores. Training on the bacte-
rial sub-family and testing on the eukaryotic and archaea sub-
families. Bacteria (light and dark green squares) have lowest
energies than eukaryota or archaea (other colors).
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Figure 2.11 – PF00027 - Comparison between mfDCA energies (corrected by
the null model) and HMMer scores. Training on the bacte-
rial sub-family and testing on the eukaryotic and archaea sub-
families. Bacteria (light and dark green squares) have lowest
energies than eukaryotes (other colors).
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Figure 2.12 – PF00033 - Comparison between mfDCA energies (corrected by
the null model) and HMMer scores. Training on the bacte-
rial sub-family and testing on the eukaryotic and archaea sub-
families. Bacteria (light and dark green squares) have lowest
energies than eukaryota and archaea (other colors).
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Figure 2.13 – PF00664 - Comparison between mfDCA energies (corrected by
the null model) and HMMer scores. Training on the bacte-
rial sub-family and testing on the eukaryotic and archaea sub-
families. Bacteria (light and dark green squares) have lowest
energies than eukaryotes (other colors).
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2.3 outlook

DCA was originally developed to unveil structural information about
proteins from sequence data alone, reaching a level of accuracy that
was at the time thought to be beyond reach. It is only natural to use
this successful framework in other ambitious fields such as fitness
landscape modeling, folding prediction, or remote homology detec-
tion. In this chapter, we have made encouraging but preliminary
steps in some of these challenging fields and showed for instance
that DCA approaches were promising in predicting the folding ability
of a given sequence, in a case where it was experimentally verified.
More data of this kind will be available in the near future, leading to
further exciting work by our team.

Remote homology detection is a hard problem, where no totally
satisfactory approach has been developed yet in bioinformatics. Re-
mote homologs indeed display lower sequence similarity and current
tools such as profile-HMM only take into account conservation pat-
terns. The idea that covariation patterns may be better preserved
in remote homologs is what motivated the use of DCA approaches
in the first place. Very surprisingly, it seems to answer a different
question: DCA has a stronger tendency than HMMer to discriminate
between sequences from the same family, where this discrimination
is, e.g. consistent with the phylogenetic distribution. However, this
tendency does not make it currently a tool for distant homology de-
tection, but it seems to allow for a more detailed description of pro-
tein sequences, such as recognizing biological domains or pointing
out interesting sequences for further studies. Having a more detailed
picture of the different domains of life could also be very useful for
phylogeny, although non trivial technical problems may arise. These
results, although preliminary, are promising and encourage the use
of DCA approaches beyond protein structural prediction.

However, the latter remains intrinsically topological - based on a
ranking of couplings parameters, whereas fitness prediction or ho-
mology detection require global energetic considerations and there-
fore a much more detailed and quantitative statistical model. We
have already encountered the problem of gaps, treated by DCA re-
lated approaches as an extra amino acid, despite strong evidence that
they are intrinsically different. Another question raised in this con-
text is the modeling of gaps as a missing information about the se-
quence. Although less appropriate for remote homology searches,
treating missing data in the specific context of statistical inference on
sequence samples is an interesting problem in itself. Besides, a quan-
titative understanding of the inferred Potts parameters is also lacking.
We will address these two points in the next two parts of the present
dissertation.



3
M O D E L I N G O F G A P S A S M I S S I N G I N F O R M AT I O N

As explained in the previous section, introducing an asymmetry
between gaps on one hand and amino acids on the other hand al-
lows for more accuracy in the DCA related approaches in the context
of contact prediction [43] or sequence scoring (Chapter 2). The null
model we have previously presented is a simple way of discarding
strong contribution from gaps to the DCA energy of a sequence. An-
other solution is to consider gaps as missing information in the data.
This approach is particularly relevant in amino acid sequences such
as metagenomes 1, where long stretches of gaps reflect a high level of
uncertainty on a specific region of the alignment. Related problems
have already been addressed in the literature, but in the specific con-
text of hidden nodes [15, 37], or phylogenetic trees reconstruction [70].
In this chapter, we will develop a general theoretical framework for
dealing with random missing information in the observed samples,
in the general context of Potts inverse problem within the mean-field
approximation.

3.1 method

The probability of observing a sequence a = (a1, ..., aN) of lengthThe full derivation is
in Appendix D N with ai ∈ {1, ..., q} is (cf. Eq. (2.1) in Part I)

P(a1, ..., aN) =
1

Z
exp

 N∑
i=1

hi(ai) +

N−1∑
i=1

N∑
j=1

Jij(ai, aj)

 . (3.1)

Given a subset K of missing entries in sequence a, the variables that
are not observed are set to 0:

∀k ∈ K ak = 0 . (3.2)

The probability P̃(a1, ..., aN) of the sequence including missing en-
tries (thus with ai ∈ {0, ..., q}) is the marginal probability of the ob-
served symbols:

P̃(a1, ..., aN) =
∑

{bk=1,...,q|k∈K}

P(a1, ..., bk, ..., aN)

=
∑

b1,...,bN

 ∏
{j|aj 6=0}

δaj,bj

P(b1, ..., bN) .
(3.3)

1. Genetic material from environmental samples, as opposed to traditional micro-
bial genome sequencing from in vitro cultivated samples.

56
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Given a multiple sequence alignment A = {aτi | i = 1...N, τ =

1...B} of B configurations of length N, where some of the entries are
missing 2, the log-likelihood writes

L̃(J,h | A) =
1

B

B∑
τ=1

log P̃(aτ1, ..., a
τ
N) , (3.4)

where J = {Jij(a, b)}, and h = {hi(a)} denote the Potts parameters.

3.1.1 Maximum-likelihood equations

The Potts parameters are found by maximizing the log-likelihood:
∂L̃

∂hk(c)
= 0 ,

∂L̃

∂Jkl(c, d)
= 0 .

(3.5)

After computation (cf. Appendix D for the full derivation), we get the
following maximum-likelihood equations:

BPk(c) =

B∑
τ=1

δaτk,c +
∑

{τ|aτk=0}

P(aτk = c | {aτi | aτi 6= 0}) ,

BPkl(c, d) =

B∑
τ=1

δaτk,cδa
τ
l ,d

+
∑

{τ|aτk=0}

δaτl ,dP(a
τ
k = c | {aτi | aτi 6= 0})

+
∑

{τ|aτl=0}

δaτk,cP(a
τ
l = d | {aτi | aτi 6= 0})

+
∑

{τ|aτk=0,
aτl=0}

P(aτk = c, aτl = d | {aτi | aτi 6= 0}) ,

(3.6)

where c, d 6= 0 (c, d ∈ {1, ..., q}) are observed states at sites k, l, and
Pk(c) and Pkl(c, d) are the marginals of the probability distribution P.

Up to the first term on the right-hand side, both equations are simi-
lar the usual maximum-likelihood equations where marginals should
match the frequency counts measured on the data. They contribute
only if aτk is observed in the first equation, and both aτk and aτl are
observed in the second equation. The following terms account for
the missing data and take the form of a combination of the observed
part with averages over the observed background, taking the form
of conditional probabilities on the observed symbols. In the second
equations, three possible cases are taken into account: either aτl is

2. Notice that each sequence has its own subset of missing entries. In other words,
a variable can be observed in one sequence, but missing in another.
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observed and aτk is not (second term), or aτk is observed and aτl is not
(third term), or both aτk and aτl are not observed (last term).

3.1.2 Mean-field approximation

Eqs. (3.6) are exact. Within the mean-field approximation at the
first order in the couplings, the conditional probabilities are approxi-
mated through

P(aτk = c | {aτi | aτi 6= 0}) =
1

Zk
exp

(
hk(c) +

∑
{i|aτi 6=0}

Jki(c, a
τ
i )

+
∑

{i|aτi=0}

q∑
α=1

Jki(c, α)Pi(α)

)
,

(3.7)

P(aτk = c, aτl = d |{aτi | aτi 6= 0}) =
1

Zkl
exp

(
hk(c) + hl(d) + Jkl(c, d)

+
∑

{i|aτi 6=0}
i 6=l

Jki(c, a
τ
i ) +

∑
{i|aτi=0}
i 6=l

q∑
α=1

Jki(c, α)Pi(α)

+
∑

{i|aτi 6=0}
i 6=k

Jil(a
τ
i , d) +

∑
{i|aτi=0}
i 6=k

q∑
α=1

Jil(α, d)Pi(α)

)
,

(3.8)
where Zk and Zkl ensure that the conditional probabilities are nor-
malized. One could have expected to find a conditional probability in-
stead of Pi(α) in the right-hand side of Eqs. (3.7) & (3.8). This would
have however included higher-order terms in the couplings, which
have been neglected in the mean-field approximation (but could be
included within the higher-order TAP approximation).

In extreme cases of high amount of missing data or low sampling
(cf. Section 3.2), the convergence of the procedure may be compro-
mised. In addition to the mean-field approximation, the two-point
conditional probability can be approximated by the product of the
one-point conditional probabilities:

P(aτk = c, aτl = d | {aτi | aτi 6= 0}) =P(aτk = c | {aτi | aτi 6= 0})
× P(aτl = d | {aτi | aτi 6= 0}) .

(3.9)

Mean-field approaches indeed overestimate the coupling parameters,
while this approximation tends to underestimate them. Couplings
between missing states are actually not taken into account in Eq. (3.9),
considering only couplings between missing and observed residues
in a given sequence. One can therefore expect that approximation
(3.9) makes the inference less constrained, improving the convergence
properties of the whole procedure when put in difficulty by small
sample sizes or large amount of missing data.
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3.1.3 Iterative Procedure

In the following, we refer to the the mfDCA equations (cf. Eqs. (2.18)
& (2.20)) in the q-gauge introduced in Part I Section 2.3.2.

3.1.3.1 Initialization

We initialize with J(0) = 0. The mfDCA equations in the q-gauge
with zero couplings give h(0)k (c) = log fk(c)fk(q)

, with fk(c) the single
site frequency count computed from the MSA and normalized only
on observed states:

∑q
c=1 fk(c) = 1. In this case, Eqs. (3.6) write



BP
(0)
k (c) =

B∑
τ=1

δaτk,c +
∑

{τ|aτk=0}

fk(c) ,

BP
(0)
kl (c, d) =

B∑
τ=1

δaτk,cδa
τ
l ,d

+
∑

{τ|aτk=0,
aτl=0}

fk(c)fl(d)

+
∑

{τ|aτl=0}

δaτk,cfl(d) +
∑

{τ|aτk=0}

δaτl ,dfk(c) .

(3.10)

Eq. (3.10) is equivalent to replacing the missing symbols by new ones
with the frequencies of the considered sites, independently of the
observed sequence background.

The couplings and fields
{
J(1),h(1)

}
are inferred with mfDCA from{

P
(0)
k (c), P

(0)
kl (c, d)

}
:


h
(1)
k (c)

h
(1)
k (q)

= log

(
P
(0)
k (c)

P
(0)
k (q)

)
−

q∑
b=1

L∑
j=1
j6=k

J
(1)
kj (c, b)P

(0)
j (b)

J
(1)
kl (c, d) = −

(
(C(0))−1

)
kl

(c, d)

(3.11)

with C
(0)
kl (c, d) = P

(0)
kl (c, d) − P

(0)
k (c)P

(0)
l (d). As explained in Part I

Section 2.2.2, the invertibility of the connected-correlation matrix is
insured by fixing the Potts gauge (here, we chose the q-gauge).

3.1.3.2 Iteration

We use Eqs. (3.6), (3.7) & (3.8) to iterate the procedure. Given{
J(t),h(t)

}
and P(t−1)k (c), we compute

{
P
(t)
k (c), P

(t)
k,l(c, d)

}
:
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BP
(t)
k (c) =

B∑
τ=1

δaτk,c +
∑

{τ|aτk=0}

P(t−1)(aτk = c | {aτi | aτi 6= 0}) ,

BP
(t)
kl (c, d) =

B∑
τ=1

δaτk,cδa
τ
l ,d

+
∑

{τ|aτk=0,
aτl=0}

P(t−1)(aτk = c, aτl = d | {aτi | aτi 6= 0})

+
∑

{τ|aτl=0}

δaτk,cP
(t−1)(aτl = d | {aτi | aτi 6= 0})

+
∑

{τ|aτk=0}

δaτl ,dP
(t−1)(aτk = c | {aτi | aτi 6= 0}) .

(3.12)
A damping parameter ε is added to help the convergence of the algo-
rithm: {

P̃
(t)
k = (1− ε)P

(t−1)
k + εP

(t)
k ,

P̃
(t)
kl = (1− ε)P

(t−1)
kl + εP

(t)
kl .

(3.13)

The couplings and fields
{
J(t+1),h(t+1)

}
are inferred through mfDCA

equations from
{
P̃
(t)
k (c), P̃

(t)
kl (c, d)

}
:


h
(t+1)
k (c)

h
(t+1)
k (q)

= log

(
P̃
(t)
k (c)

P̃
(t)
k (q)

)
−

q∑
b=1

L∑
j=1
j6=k

J
(t+1)
kj (c, b)P̃

(t)
j (b) ,

J
(t+1)
kl (c, d) = −

(
(C̃(t))−1

)
kl

(c, d) ,

(3.14)

with C̃
(t)
kl (c, d) = P̃

(t)
kl (c, d) − P̃

(t)
k (c)P̃

(t)
l (d).

3.2 convergence and recovery of the potts parameters

We consider a Potts model with q = 2 states (ai ∈ {1, 2}), where the
network of interactions is described by an Erdős-Rényi random graph
with N = 30 variables. Each edge in the interaction graph is included
with probability 0.8. Field and coupling values for interacting pairs of
sites

{
Jtrue,htrue

}
are selected from a Gaussian distributions with

mean µ = 0 and standard deviation σJ = 0.05. A MSA of B = 106

configurations A = {aτi | i = 1...N, τ = 1...B} is generated through
Monte Carlo (MC) sampling. A Potts model with q = 4 states (ai ∈
{1, ..., 4}) has also been studied and gives similar results, emphasizing
the robustness of the procedure.

The missing data in the MSA is simulated given two types of ran-
dom distributions:
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— uniform: x =10%, 30% or 50% of the B×N entries of the MSA

are set to 0 with a uniform distribution.
— stretch: fragmented sequences are simulated by stretches of length
l < 0.5N of 0 entries, generated at the beginning or the end of
a given sequence, with l drawn from a Poisson distribution of
mean 0.1N, 0.3N or 0.5N. 1/4 of the sequences are left un-
touched, otherwise the stretch of length l is randomly set in 3
different ways: at the beginning of the sequence (from site 1 to
site l), at the end (from site N− l+ 1 to N), at both (from site 1
to bl/2c AND from site N− bl/2c+ 1 to N).
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Figure 3.1 – Missing entries (black) and other symbols (grey) frequency in
the uniform (top panel) and stretch (bottom panel) distributions
of missing data along the N = 30 positions of the MSA, for
x =30% and l = 0.3N respectively. The stretch distribution
roughly simulates gaps in protein MSAs.

Fig. 3.1 displays the frequency of the 3 types of entries (aτi ∈
{0, 1, 2}) in the generated MSA for a realization of both distributions
of missing data. The stretch distribution roughly simulates the effect
of gaps in protein MSA, which tendency to come in long stretches at
the beginning or the end of a sequence introduces dangerous artifacts
in DCA related approaches (cf. Chapter 2).

3.2.1 Effect of the amount of missing data

We test the convergence and efficiency of the algorithm to recover
the underlying parameters of the random graph on a MSA of B = 105

sequences, depending on the amount of missing data: x ∈ {10, 30, 50}

and l ∈ {0.1N, 0.3N, 0.5N}. Convergence is achieved when a plateau
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is reached in the correlation (or RMSD) between the Potts parameters
inferred through the procedure and the true parameters. Reducing
the damping parameter ε (cf. Eq. (3.13)) prevents from oscillations in
the iterative procedure.

Interestingly, the initial step of the algorithm - replacing the miss-
ing data by amino acids with their frequency on the considered site
- gives rise to an underestimation of the inferred couplings. This re-
placement of missing data indeed suppresses correlations between
interacting pairs of sites, leading to smaller couplings. It corresponds
to the slope (regression coefficient) < 1 at t = 0 on Fig. 3.2a.
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Figure 3.2 – Uniform distribution of missing data with x =30% - Panel (a):
inferred vs. true couplings at t = 0. Panel (b): inferred vs.
true couplings at t = 100. Convergence is achieved in about
100 iterations and the Potts parameters are accurately recovered
through the procedure.

In most cases, convergence is achieved in less than 150 iterations
with the Potts parameters being accurately recovered by the proce-
dure (cf. Fig. 3.2b). Tables 2 & 3 display the mean Pearson correlation
and slope between true and inferred couplings over 10 realizations
of both distributions of missing data. The more data is missing, the
lower the initial slope (t = 0 in Tables 2 & 3), with for instance a mean
slope going from 0.814 to 0.251 for 10% to 50% of missing entries in
the MSA.

Convergence could not be achieved for x =50% of missing data in
the uniform distribution, even for small damping parameters ε. Bet-
ter convergence properties are obtained with the stretch distribution
of missing data because its nature is different: the effective amount
of missing entries is lower due to the Poissonian distribution of the
stretch length, and one fourth of the configurations are not altered,
leading to a better quality of inference.

In the case of x =50% of missing data in the uniform distribution,
approximating the two-point conditional probability by the product
of the one-point conditional probabilities (Eq. (3.9)) allows for better
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x =10% x =30% x =50%

t = 0 slope 0.814 0.490 0.251

t = tf
slope 1.01 1.02 0.505

Pearson 0.988 0.977 0.961

Table 2 – Mean Pearson correlation coefficients and slope between true and
inferred couplings over 10 realizations of the uniform distribution
of missing data. Coefficient are given at initialization (t = 0) and
convergence (t = tf), for B = 105 configurations, depending on
the percentage x of 0 entries in the MSA. Red numbers indicate
that convergence could not be achieved, and that approximation
(3.9) was used.

l = 0.1N l = 0.3N l = 0.5N

t = 0 slope 0.871 0.621 0.487

t = tf
slope 1.01 1.02 1.02

Pearson 0.988 0.979 0.964

Table 3 – Mean Pearson correlation coefficients and slopes between true and
inferred couplings over 10 realizations of the stretch distribution of
missing data. Coefficient are given at initialization (t = 0) and
convergence (t = tf), for B = 105 configurations, depending on
the mean length of stretches l in the MSA.
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Figure 3.3 – Uniform distribution of missing data with x =50% and approx-
imation (3.9) - Panel (a): inferred vs. true couplings at t = 0.
Panel (b): inferred vs. true couplings at t = 100. Convergence
is achieved, but there is still an underestimation of the inferred
couplings.
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convergence properties (see red numbers in Table 2). As can be ex-
pected, this new approximation leads to an underestimation of the
inferred couplings (slope < 1) even if convergence is achieved – the
Pearson correlation between true and inferred couplings has reached
a plateau – as displayed on Fig. 3.3.

3.2.2 Effect of the sampling

l = 0.1N l = 0.3N l = 0.5N

B = 50000
slope 1.02 1.03 1.06

Pearson 0.974 0.961 0.934

B = 10000
slope 1.02 1.04 0.910

Pearson 0.898 0.855 0.805

B = 1000
slope 1.06 0.8433 0.8360

Pearson 0.529 0.415 0.395

Table 4 – Mean Pearson correlation coefficients and slopes over 10 realiza-
tions of the stretch distribution of missing data, depending on the
mean length of stretches l in the MSA and the number of configu-
rations B. Red numbers indicate that the algorithm failed to con-
verge, and that approximation (3.9) was used.

We consider the influence of the number of configurations B in
the MSA on the convergence of the algorithm and its efficiency in
recovering the true Potts parameters of the random graph. As dis-
played on Table 4 (for the stretch distribution of missing data), the
effect is twofold: the accuracy in recovering the underlying Potts pa-
rameters of the graph strongly decreases as the sampling drops, and
convergence cannot be achieved - no matter how small is the damp-
ing parameter - for large values of l and small sample sizes. However,
approximation (3.9) allows for better convergence properties in these
extreme cases. As the sample size drops, the slope between real and
inferred couplings slightly increases, reaching values superior to 1
(except when approximation (3.9) is used, see the previous section).
mfDCA indeed tends to overestimate the couplings, especially in poor
sampling cases [12].

3.3 sequence energies are accurately reproduced

Standard DCA approaches consider gaps as an extra symbol. There-
fore, the standard model displays q+ 1 states, contrary to the present
method with only q states. The size of the inferred coupling matrices



3.3 sequence energies are accurately reproduced 65

being different, it is not possible to directly compare both procedures
on their accuracy to recover the model parameters. However, some
comparison can be obtained through the energy function which as-
signs a scalar score to a configuration.

We therefore consider a test alignment, in which some data may
also be missing (or, equivalently, gaps may be present). In the present
framework, the energy of a sequence in which some sites are not
observed is the average energy over all sequences compatible with
the observation, and weighted by the Boltzmann distribution. It is
therefore the best-educated guess possible, considering only a partial
observation.

The energy of sequence a with missing entries (∃K, ∀k ∈ K, ak = 0)
therefore reads

Ẽ(a1, ..., aL) =
∑

{i|ai 6=0}
hi(ai) +

∑
{i,j|ai 6=0,
aj 6=0}

Jij(ai, aj)

+
∑

{i|ai=0}

q∑
α=1

hi(α)P(ai = α | {al | al 6= 0})

+
∑

{i,j|ai=0,
aj 6=0}

q∑
α=1

Jij(α, aj)P(ai = α | {al | al 6= 0})

+
∑

{i,j|ai 6=0,
aj=0}

q∑
β=1

Jij(ai, β)P(aj = β | {al | al 6= 0})

+
∑

{i,j|ai=0,
aj=0}

q∑
α,β=1

Jij(α,β)P(ai = α, aj = β | {al | al 6= 0}) ,

(3.15)
with the conditional probabilities given by Eqs. (3.7) & (3.8) within
the mean-field approximation. Again, the coupling term takes into
account the four possible cases: either both ai and aj are observed,
or aj is observed and ai is not, or ai is observed and aj is not, or
both ai and aj are not observed.

In the following, we will call training alignment the MSA with B =

105 sequences introduced in the last section, on which the iterative
procedure is applied.

3.3.1 Real energies

We consider a test alignment of B = 4000 sequences including miss-
ing data generated by the stretch distribution with l ∈ {0.1N, 0.3N, 0.5N}.
Two energies relative to the true underlying model are compared on
Fig. 3.4:
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— Etrue, the true energy (with true couplings and fields) of the
full sequences;

— Ẽtrue, the true energy (with true couplings and fields) of the
same sequences, but including missing entries (given by Eq. (3.15)).

Naturally, the more data is missing, the less accuracy there is in recov-
ering the true energies, with Pearson correlation from 0.994 for less
than 10% of non observed entries in the sequence, to 0.158 for more
than 50%. This gives an indication about the precision that can be
expected in the optimal case (true Potts parameters), which is limited
by the amount of missing data in the sequence.
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Figure 3.4 – True energy of full sequences vs. sequences with missing data.
Different colors indicate the amount of missing data in the se-
quence, generated with the stretch distribution. Pearson corre-
lation coefficients are successively 0.994, 0.781, 0.325, 0.158 for
less than 10% to more than 50% of gaps in the sequence.

3.3.2 Inferred energies

Three energies are compared on Fig. 3.5:
— Etrue (ideal case),
— Ẽtrue (best expected case),
— Ẽ(tf), the inferred energy of the sequences with missing data.

The energy Ẽ(tf) is computed with the inferred couplings and fields{
J(tf),h(tf)

}
obtained after convergence (t = tf) of the iterative pro-

cedure on a training alignment including missing data. The test align-
ment has been described in Section 3.3.1.

Fig. 3.5 displays the comparison between true and inferred ener-
gies. The Potts couplings have been inferred from a training align-
ment with missing data generated by the stretch distribution with
l = 0.3N. Compared on the same test alignment with missing data,
Ẽtrue and Ẽ(tf) are very well correlated (panel (a)); whereas the cor-
relation between the true energies of the full sequences Etrue and
the inferred energy on sequences with missing data Ẽ(tf) naturally
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depends on the amount of uncertainty (panel (b), very similarly to
Fig. 3.4). Pearson correlation coefficient are of 0.987 for less than 10%
of non observed entries in the sequence, to 0.156 for more than 50%.
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Figure 3.5 – Panel (a): true energies of full sequences vs. inferred energies of sequences with
missing data (comparison with the ideal case). Panel (b): true vs. inferred energies
of sequences with missing data (comparison with the best expected case). Different
colors indicate the amount of missing data in the sequence – generated by the Stretch
distribution, both in the training (l = 0.3N) and test (l ∈ {0.1N, 0.3N, 0.5N}) alignments.
Pearson correlation coefficients are successively 0.987, 0.778, 0.316, 0.156 for less than
10% to more than 50% of gaps in the sequence.

3.4 comparison with standard direct-coupling analy-
sis

As stated above, this is not possible to compare directly the true
Potts parameters or the inferred Potts parameters obtained after con-
vergence of the iterative procedure on one hand, with the standard
mfDCA parameters on the other hand. The latter indeed correspond to
q+ 1 Potts states (gap is an extra amino acid) leading to (q+ 1)× (q+

1)-sized coupling matrices and (q + 1)-sized field vectors, whereas
the former describe q Potts states (gap is missing data) with q× q-
sized couplings matrices and q-sized field vectors. We can however
compare the energies or Frobenius norms in both models.

3.4.1 Absence of missing data

Without any missing data (gaps) in the training or test alignments,
the true energies and the energies inferred with q+ 1-states mfDCA

(state q+ 1 is therefore never observed in both alignments), although
very different in absolute value, are very well correlated with a slope
of 0.91 and a Pearson coefficient of 0.989 (Fig. 3.6a). On the other
hand, very small true couplings give rise to poorly sampled configu-
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Figure 3.6 – Panel (a): true vs. standard mfDCA energies of the test alignment
with missing entries. Panel (b): Frobenius norm of the true vs.
mfDCA inferred couplings.

rations and are difficult to infer. Strong pseudocounts are therefore
used by standard DCA related approaches to ensure that the corre-
sponding inferred parameters are not infinite. This explains why the
small Frobenius norms are badly estimated by mfDCA, while there is
a good correlation for larger Frobenius norms (cf. Fig. 3.6b). In any
case, mfDCA gives very satisfactory results without missing entries
on both the training and test alignments. This is of course not the
case when gaps are present, as it has been extensively discussed in
Chapter 2.

3.4.2 Presence of missing data
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Figure 3.7 – True vs. mfDCA energies of sequences. Different colors indicate
the amount of missing data (gaps) in the sequence – generated
by the Stretch distribution, both in the training (l = 0.3N) and
test (l ∈ {0.1N, 0.3N, 0.5N}.
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Fig. 3.7 displays the comparison between true and standard mfDCA

energies on a test alignment with missing entries (gaps). The mfDCA

fields and couplings have been inferred on the same training align-
ment than the iterative procedure in last section, but the missing data
is regarded here as an extra amino acid. The correlation between real
and mfDCA energies strongly depends on the amount of missing data
(gaps), with very low energies for sequences rich in gaps (consistently
with Chapter 2).
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Figure 3.8 – Inferred energy vs. amount of missing data (gaps), for mfDCA

(panel (a)) and the iterative procedure (panel (b)). The missing
data has been generated by the stretch distribution, both in the
training (l = 0.3N) and test (l ∈ {0.1N, 0.3N, 0.5N}.

Similarly to what has been observed in Chapter 2 on real data,
mfDCA energies are highly correlated to the amount of gaps in the
sequence (cf. Fig. 3.8a). This is not the case for energies computed
with the iterative procedure, as displayed on Fig. 3.8b.

3.5 outlook

This general framework for dealing with missing data in the con-
text of the inverse Potts problem within the mean-field approxima-
tion proves to be very promising. To the best of our knowledge, this
specific problem has never been addressed in the literature. True cou-
plings of an underlying random graph are very accurately recovered
in the large sample size situation, even for large amounts of miss-
ing data. The recovery of the true parameters of course depends on
the sample size, but approximating the two-point conditional proba-
bilities by the product of the one- point conditional probabilities im-
proves the convergence properties of the algorithm for smaller sample
sizes and larger amount of missing data. Consistently, the energies of
sequences from a test MSA also including missing entries are well re-
produced, within the expected precision due to the uncertainty, and
much better than with the standard mfDCA model.
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The next step would be to apply this method to real biological se-
quences, such as metagenomic sequences which are often fragments
with stretches of gaps indicating a high level of uncertainty on a spe-
cific region of the MSA. The application to remote homology search is
maybe less relevant as the procedure tends to replace gaps according
to correlation patterns observed in the data.



Part III

D I R E C T C O U P L I N G S R E F L E C T B I O P H Y S I C A L
R E S I D U E I N T E R A C T I O N S

To achieve residue-residue contact prediction, the Potts
parameters inferred with direct-coupling analysis (21×21
matrices accounting for direct couplings between the 20
amino acids and the alignment gap) are mapped onto
simple scalar parameters and subsequently ranked. The
full information they potentially contain gets lost. In this
part, we provide a quantitative understanding of the in-
ferred couplings and show they contain detailed and in-
terpretable information about the physico-chemical prop-
erties of the amino acids in contact. Our results are based
on the analysis of 70 protein families (Chapter 2). We fur-
thermore consider abstract lattice-protein models to bet-
ter understand the crucial role of sampling on the results
(Chapter 3).



1
I N T R O D U C T O RY R E M A R K S

1.1 motivations

Structural prediction has improved considerably in the last recent
years – reaching a precision that was at the time thought to be beyond
reach – thanks to direct-coupling analysis (DCA) related approaches
today widely used in the field. As explained in Part I Chapter 3,
contact prediction is performed by mapping DCA coupling matrices
onto simple scalar parameters – average product correction (APC) or
direct-information (DI) scores – and subsequently ranking them. Al-
though they are inferred at high computational cost, the full informa-
tion these 21× 21 matrices potentially contain gets lost. Moreover, a
better understanding of the Potts parameters is paramount if DCA is
to be applied beyond contact prediction to new challenging fields re-
quiring more quantitative considerations and sensitive to the details
of the coupling matrices.

For each residue pair (i, j), these inferred matrices have positive
and negative entries corresponding to the coupling between a pair
(a, b) of amino acids (or Potts states). The interpretation of these en-
tries somewhat depends on the gauge in which the couplings have
been inferred; a schematic interpretation in the zero-sum gauge –See Part I

Chapter 2.3.1
Eq. (2.29)

used in the following, with the sum of the lines and columns of each
coupling matrix set to 0 – is that large positive entries indicate that
amino acids a, b are favored at positions i, j, and alternatively, large
negative entries show that the pair of amino acids is avoided.

The aim this work is to provide a better quantitative understanding
of these inferred couplings. Earlier works have shown that the coevo-
lutionary couplings derived by DCA contain an electrostatic signal
[93]. Here, we go considerably further and show that the coevolution-
ary couplings also contain quantitative and interpretable biological
information related to all the physico-chemical properties of amino-
acid interactions. These interactions are consistent with knowledge-
based amino-acid potentials inferred from known protein structures,
such as the statistical potential derived by Miyazawa and Jernigan
[79], which will be described below. Other statistical potentials, more
recently introduced, may perform better in several tasks, such as de-
scribing energetically the native folded states [100], but an extensive
comparison between the coupling matrices and scoring potentials is
beyond the scope of this dissertation.

Most of the results of this part have been very recently submitted
to “Direct coevolutionary couplings reflect biophysical residue interactions

72
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in proteins”, A Coucke, G Uguzzoni, F Oteri, S Cocco, R Monasson, and M
Weigt, Journal of Chemical Physics (2016), [31], currently under review.

1.2 miyazawa-jernigan statistical potential

Developed from the 1980s, the Miyazawa-Jernigan (MJ) knowledge-
based potential EMJ(a, b) was derived from the statistics of amino
acids in contact in known 3D protein structures. This 20×20 inter-
action matrix reflects the physico-chemical properties of the amino
acids (cf. Fig. 3.1 in Part I), torsions angles, solvent exposure and
hydrogen bonds geometry [79], finally compressed in a 20×20 inter-
action matrix between pairs of amino acids.
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Figure 1.1 – (a) MJ energy matrix EMJ0 (a, b). (b) Spectrum of the MJ matrix dominated by several
eigenvalues. MJ’s 3 largest spectral modes, displaying physico-chemical interactions:
(c) hydrophobicity-hydrophilicity (λ(1) = 4.55), (d) electrostaticity (λ(2) = −3.51), (e)
Cysteine-Cysteine (λ(3) = 1.28), and (f) Histidine-Histidine (λ(4) = 1.04) signals.

In contrast to more detailed potentials including also, e.g., the re-
sidue distance, the MJ interaction matrix is a natural starting point
for comparison with the DCA-derived coupling matrices. Panel (a) of
Fig. 1.1 displays EMJ0 (a, b), the 20× 20 matrix provided by Miyazawa
and Jernigan in 1996 [80], upon transformation into zero-sum gauge
(cf. Part I Section 2.3.1), to compare with DCA couplings later on. It
has also been multiplied by a factor −1 to comply with the standard
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convention that attractive interactions are positive, and repulsive ones
are negative:

EMJ0 (a, b) = −
(
EMJ(a, b) − EMJ(·, b) − EMJ(a, ·) + EMJ(·, ·)

)
, (1.1)

where g(·) denotes the uniform average of g(a) over all 20 amino
acids a at fixed position (cf. Eq. (2.30) in Part I). In this specific
gauge 1, the spectrum of the MJ matrix shows several significant eigen-
values (Fig. 1.1 panel (b)).

Panels (c) to (f) display the first spectral projections of the MJ matrix
(M(k)(a, b) = λ(k)v

(k)
a v

(k)
b , k = 1...4, cf. Eq. (2.3) below). They are lo-

calized on particular amino acids according to physico-chemical inter-
actions. Panel (c) is related to hydrophobicity/hydrophilicity: amino
acids from A to P are hydrophobic, whereas the rest are hydrophilic.
Hydrophobic amino acids tend to form contacts with other hydropho-
bic amino acids but not with hydrophilic ones, according to the signs
of the corresponding entries. Panel (d) is related to electrostaticity:
amino acids K, R and H are positively charged whereas D and E are
negatively charged. A contact between amino acid of the same charge
is very unlikely. Panel (e) is localized on the Cysteine-Cysteine entry,
as those amino acids tend to form strong chemical disulfide bounds
where paired with each other. Finally, panel (f) shows the fourth spec-
tral mode of the MJ matrix, localized on the Histidine-Histidine entry,
often forming like-charged contact pairs [56].

The eigenvalues corresponding to hydrophobicity/hydrophilicity
(λ(1) = 4.55), the Cysteine-Cysteine (λ(3) = 1.28) and Histidine-His-
tidine interactions (λ(4) = 1.04) are positive, describing an attractive
interaction between like amino acids. On the other hand, the eigen-
value corresponding to electrostaticity (λ(2) = −3.51) is negative, re-
flecting the attraction between charges of opposite sign, and repulsion
between like charges (antiferromagnetic-like interaction).

1. The original MJ statistical potential – without gauge transformation – is how-
ever completely dominated by the hydrophobic eigenmode [121].



2
P R O T E I N S E Q U E N C E S D ATA

In this chapter, we will consider a set of 70 protein families, from
which we infer the coupling matrices with the pseudolikelihood ap-
proximation of direct-coupling analysis (plmDCA). After selecting the
top ranked residue pairs for each family, we analyze the mean cou-
pling matrix and its spectral modes. Considering structural classifi-
cations and solvent exposure helps unveiling the full biological con-
tent of the coupling matrices {Jij(a, b)}a,b∈{1,...,21}. Our analysis also
shows that the distribution of contact distances in the tertiary struc-
ture greatly depends on the type of interaction associated to the con-
tact.

2.1 method

2.1.1 Dataset

We consider a random set of 70 protein families from the Pfam
database [49] satisfying the following criteria: (i) the selected families I worked with

G. Uguzzoni from
our team at LCQB
on the selection

contain enough sequences (Beff > 500) to guarantee a good inference
(sufficient sampling), and (ii) possess at least one X-ray crystal struc-
ture of resolution below 3 Å in the Protein Data Bank (PDB) [17]. This
enables to extract experimental contact maps and to use the first level
of SCOP (structural) categorization [84] of PDB structures, the Class,
that account for the types of folds (e.g., beta sheets). (iii) Every PDB

chain that contains a selected domain family has been classified into
a unique structural group according to SCOP; (iv) the families are
selected to cover a broad range in protein length and to have good
sensitivity in the contact prediction. The complete list can be found
in Appendix E.

Here, a residue pair is considered to be a contact in the tertiary
structure if its minimal heavy-atom distance is below 6 Å in the pro-
tein structure. A mapping application was developed to map domain by F. Oteri from our

team at LCQBfamily alignments to crystal structures and to extract distances of
residue pairs in PDB structures in order to obtain the contact map.
The 6 Å threshold is chosen consistently with prior studies [82]. We
take into account several crystal structures, when available, to include
the structural variability over homologous proteins that are present in
the PDB. Therefore, when more structures are at disposal, we take as
the distance between residues the minimum distance over the residue
pairs in the different PDB structures.

75
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To avoid both trivial contacts (neighbors on the backbone) and
strong but uninformative “gap-gap” signals, we also impose a mini-
mum separation |j− i| > 10 along the protein backbone. Indeed, as
it has been extensively discussed in Part II, gaps in the multiple se-
quence alignment (MSA) are not generally modeled well by DCA meth-
ods, as they tend to come in long stretches, giving rise to artificially
high couplings for closer sites on the backbone.

We use MSAs of protein domains downloaded from the Pfam database
version 27.0 [49]. We compute the solvent accessibility of a given
residue using the “Naccess” tool [58].

2.1.2 Mean coupling matrix and its spectral modes

For each Pfam family n we infer the 1
2Nn(Nn − 1) (Nn being the

aligned length of the proteins in family n) coupling matrices with the
plmDCA method [41] at standard regularization (γ = 10−2), and shift
them into the zero-sum gauge. The top ranked residue pairs (i, j)

according to the APC score are selected until a rate of 20% of false-see Eq. (3.8) in
Part I positive contact predictions is reached within the selection. Then,

only the true-positive predictions (contacts in the tertiary structure)
are kept in the selection Sn. The number of selected pairs |Sn| thus
depends on the Pfam family n. We obtain the global selection of
residue pairs S by assembling the selected pairs of each Pfam family
together: S =

⋃70
n=1 Sn, with |S| = 3790.

In the following, we consider the mean matrix

e(a, b) =
〈
Jij(a, b)

〉
ij∈S , (2.1)

where 〈.〉ij∈S denotes the mean over all residue pairs in the above-
mentioned selection S, all Pfam families taken together. The ma-
trix e is subsequently symmetrized, as any non-symmetric features
of amino-acid interactions originate only from finite-sampling effects
in the selection:

e(a, b)→ 1

2

(
e(a, b) + e(b, a)

)
. (2.2)

The average coupling matrix e is already in the zero-sum gauge, since
the couplings Jij(a, b) are. By considering the mean matrix, we ex-
pect site specificities and finite-sampling noise to be averaged out,
while the joint global interaction modes should be prominently dis-
played.

We define the spectral mode k of e by

M(k)(a, b) = λ(k)v
(k)
a v

(k)
b , (2.3)

where {λ(k), v(k)}k=1...21 are the eigenmodes of e, with the eigenval-
ues λ(k) ranked in decreasing order in absolute value.
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2.2 the coupling matrices reflect biologically relevant
information

Strikingly, we find that the mean matrix e and its top three spectral
modes display some physico-chemical interactions at the amino-acid
scale, consistent with the MJ energy matrix EMJ0 , cf. Fig. 2.1. The first
spectral mode (λ(1) = −0.0923) is indeed related to electrostaticity, the
second (λ(2) = 0.0363) and third (λ(3) = −0.0197) modes are mainly
localized on some hydrophobic amino acids (A to P). The third mode I thank R Guerois

for useful
discussions on
stericity

illustrates favorable residue pairing between amino acids of opposing
size: A on one hand (Van der Waals volume of 67 Å3) and F, I, L on
the other hand (Van der Waals volume of 135 Å3, 124 Å3, and 124Å3

respectively). This coevolutionary effect derives from stericity, and is
dominant here because of the abundance of the involved amino acids.
The favorable interaction between amino acids of opposite size, and
unfavorable between amino acids of the same size can be easily un-
derstood: given a contact between two amino acids of opposite size,
each single change of a small into a large or a large into a small amino
acid induces unfavorable steric effects. A compensatory mutation of
the second amino acid would be possible.
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Figure 2.1 – (a) Mean matrix e(a, b) over all residue pairs in the selection, taking all Pfam fam-
ilies together. (b) Spectrum of e, dominated by three eigenvalues. (c) First spectral
mode of e (λ(1) = −0.0923), displaying the electrostatic interaction. (d), (e) Second
(λ(2) = 0.0363) and third (λ(3) = −0.0197) spectral mode of e(a, b), mainly localized
on hydrophobic amino acids (A to P).
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The sign of all eigenvalues is consistent with what has been pre-
viously reported for the MJ energy matrix: it is positive for attrac-
tive interaction between like amino acids (second mode related to
hydrophobicity), negative for attractive interaction between unlike
amino acids (first and third modes related to charge and size). Note
that the entries and the eigenvalues of e(a, b) are small compared to
their counterparts in MJ, a fact we will discuss in Section 2.2.3.

We conclude that the inferred DCA coupling matrices display quan-
titative and biologically relevant information, beyond their known
efficiency to predict tertiary contacts. However, contrary to the MJ

statistical potential (Fig. 1.1) which includes the possibility of con-
tacts between hydrophilic amino acids (from H to G) and Cysteine-
Cysteine (C-C entry), we do not observe such a signal in the modes
of the mean matrix e. The Pearson correlation coefficient between
e(a, b) and EMJ0 (a, b) is quite low: 0.58.

2.2.1 C-C signal and structural classification

The absence of the Cysteine-Cysteine signal may very well be ex-
plained by the scarcity of contacts of this type. In order to gain a
more detailed view of the possible contact matrices, we divide up
the pool of Pfam families into structural domains based on similar-
ities of their structures using the manual Structural Classification
of Proteins (SCOP) database [84] (the repartition is in Appendix E).
Five SCOP classes are considered in this analysis : all α-proteins, all
β-proteins, α- and β-proteins (mainly antiparallel beta sheets: beta-
alpha-beta units and segregated alpha and beta regions), membrane
and cell surface proteins and peptides, small proteins. The latter is
characterized by the abundance of disulfide bridges between two Cys-
teines. This gives rise to 5 new selections S(x) =

⋃
n∈x Sn, where

x is the SCOP class (x ∈ {α,β, α + β,membrane, small}). We get
|S(α)| = 300, |S(β)| = 493, |S(α+β)| = 1814, |S(membrane)| = 879, and
|S(small)| = 304.

Figures 2.2 to 2.6 display, for each of the five SCOP classes, the new
mean matrices e(a, b|x) =

〈
Jij(a, b)

〉
ij∈S(x) , their spectra and the top

three spectral modes. Electrostatic spectral modes are found in all five
SCOP classes (with negative eigenvalues), whereas hydrophobicity-
related modes are identified in all but the small protein classes. The
Cysteine-Cysteine mode is found only in the small protein class, as
expected (and with a positive eigenvalue). Interestingly, while the
hydrophilic signal (amino acids H to G) is still rare in the dominating
spectral modes, its presence can be observed in classes α, β and small,
respectively on the third (Fig. 2.2, panel (e)), second (Fig. 2.3, panel
(d)), and third (Fig. 2.6, panel (e)) spectral modes. The third mode
of class small (Fig. 2.6, panel (e)) even displays both hydrophobic and
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Figure 2.2 – α proteins - (a) e(a, b|α) - (b) Spectrum - (c), (d), (e) Top three spectral modes dis-
playing electrostatic (λ(1) = −0.1043), hydrophobic (λ(2) = 0.0459), and hydrophilic
(λ(3) = 0.0238) interactions.
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Figure 2.3 – β proteins - (a) e(a, b|β) - (b) Spectrum - (c), (d), (e) Top three spectral modes
displaying electrostatic (λ(1) = −0.1171) and hydrophobic/hydrophilic interactions
(λ(2) = 0.0405, λ(3) = 0.0328).
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Figure 2.4 – α+β proteins - (a) e(a, b|α+β) - (b) Spectrum - (c), (d), (e) Top three spectral modes
displaying electrostatic (λ(1) = −0.0905) and hydrophobic (λ(2) = 0.0412, λ(3) =

−0.0198) interactions.
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Figure 2.5 – membrane proteins - (a) e(a, b|membrane) - (b) Spectrum - (c), (d), (e) Top three
spectral modes displaying electrostatic (λ(1) = −0.0729) and hydrophobic (λ(2) =

−0.0366, λ(3) = 0.0299) interactions.
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Figure 2.6 – small proteins - (a) e(a, b|small) - (b) Spectrum - (c), (d), (e) Top three spectral modes
displaying electrostatic (λ(1) = −0.1129, Cysteine-Cysteine (λ(2) = 0.00567), and hy-
drophobic/hydrophilic (λ(3) = 0.0306) interactions.
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hydrophilic interactions, similarly to the MJ energy matrix EMJ0 (cf.
Fig. 1.1, panel (c)).

The spectrum of e(a, b|β) is dominated by one eigenvalue (λ(1) =

−0.1171), the second and third eigenvalues being relatively close (λ(2) =
0.0405, λ(3) = 0.0328). It causes the separation between the second
and third spectral modes (Fig. 2.3, panels (d) and (e)) to be less clear
and more sensitive to finite sampling noise than for the other classes,
whose spectra are dominated by more than one eigenvalue.

2.2.2 Hydrophilicity and solvent exposure

The weakness of a signal involving hydrophilic amino acids (from
H to G) may be explained by the scarcity of contacts between two sites
localized on the surface of the protein as compared to all other con-
tacts – surface amino acids are indeed most likely to be hydrophilic.
We now divide the selected residue pairs in S into three new classes
depending on the solvent exposure – measured by the relative solvent
accessibility (RSA) determined using the “Naccess” software [58] – of
the involved residues, regardless of the Pfam family they are issued
from:

— “surface-surface” contacts: more than half of the surface of both
residues is exposed to the solvent,
(selection S(ss) = {ij ∈ S | RSA(i), RSA(j) > 50%});

— “core-core” contacts: less than half of the surface is exposed,
(selection S(cc) = {ij ∈ S | RSA(i), RSA(j) < 50%});

— “core-surface” contacts: one residue has more than half of its
surface exposed, the other has less than half,
(selection S(cs) = {ij ∈ S | (RSA(i) > 50%, RSA(j) < 50%) ∨

(RSA(i) < 50%, RSA(j) > 50%)}).

77%

3%

20%

all contacts

84%

2%

14%

selection S

Figure 2.7 – Distribution of core-core (blue), surface-surface (green), and
core-surface (yellow) contacts among all contacts (left panel)
and contacts in our selection (right panel). Surface-surface con-
tacts are statistically underrepresented in both cases.
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Fig. 2.7 displays the repartition of core-core (blue), surface-surface
(green), and core-surface (yellow) contacts among all existing tertiary
contacts (left panel) and contacts in the selection S (right panel). As
expected, by far the largest part of the tertiary contacts lies in the
core of the proteins. Only 2-3% of the (selected) contacts are between
surface residues.

Similarly to what has been done before, we consider average cou-
pling matrices for these 3 new classes: e(a, b|y) =

〈
Jij(a, b)

〉
ij∈Sy ,

with y ∈ {ss, cc, cs} along with their spectral modes. In all classes,
the first spectral mode displays the usual electrostatic signal. How-
ever, while the second mode of the “core-core” class is localized on
hydrophobic amino acids only (from A to P), in agreement with what
is observed on Fig. 2.1, the second modes of the “surface-surface”
and “core-surface” classes are localized only on hydrophilic (H to G)
amino acids, as shown on Fig. 2.8.
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Figure 2.8 – Second spectral modes of the mean matrices (a) e(a, b|cc) over “core-core” contacts,
(b) e(a, b|ss) over “surface-surface” contacts, and (c) e(a, b|cs) over “core-surface” con-
tacts. A hydrophilicity-related signal is displayed on the 2 latter.

2.2.3 Differences with Miyazawa-Jernigan

2.2.3.1 Analog of the Miyazawa-Jernigan potential

The analog of MJ’s contact energy (see Eq. (9a) in [79]) in our de-
scription would be approximately the quantity Estat(a, b) defined
through

Estat(a, b) = log

〈
fij(a, b)

〉
ij∈S

〈fi(a)〉i∈S
〈
fj(b)

〉
j∈S

, (2.4)

where 〈.〉ij∈S denotes the mean over all residue pairs in the selection S

(all Pfam families taken together), and 〈.〉i∈S and 〈.〉j∈S are the means
over all single residues involved in a contact pair in the selection S.
Estat is then symmetrized and shifted to the zero-sum gauge. A
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straightforward computation gives the analytical expression of Estat

in the zero-sum gauge:

Estat(a, b)→ log
〈
fij(a, b)

〉
ij
− log

〈
fij(·, b)

〉
ij
− log

〈
fij(a, ·)

〉
ij

+ log
〈
fij(·, ·)

〉
ij
,

(2.5)
which is by definition the zero-sum gauge transformation of the ma-

trix Ẽstat(a, b) = log
〈
fij(a, b)

〉
ij

. The denominator of Eq. (2.4) is
therefore irrelevant.
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Figure 2.9 – (a) Mean matrix Estat (analog to MJ) over all residue pairs in the selection. (b)
Histogram of the spectrum of Estat. (c), (d), (e), (f) First spectral modes of Estat

displaying hydrophobic-hydrophilic, Cysteine-Cysteine, electrostatic, and Histidine-
Histidine interactions.

As shown on Fig. 2.9, the first spectral modes of Estat are very
similar to the genuine MJ energy matrix EMJ0 (a, b) – although not in
the exact same order – and the Pearson correlation coefficient between
the two matrices is 0.81. The order of magnitude of Estat(a, b) and
its top eigenvalues are also close to the MJ energy matrix.

2.2.3.2 Relation with inferred couplings

The Estat matrix can be related to the inferred couplings in an ap-
proximate way as follows. For pairs of site i, j in contact (in the selec-
tion S), contrary to sites not in contact, the major contribution to the
direct coupling Jij(a, b) comes from the direct correlation fij(a, b)/(fi(a)fj(b))
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between the sites. Indirect contributions to fij(a, b), mediated through
other sites, are expected to be much smaller. Approximating Jij(a, b)
with log(fij(a, b)/(fi(a)fj(b))) is indeed exact in the case of two inter-
acting sites only. Consequently we introduce the matrix EDIR(a, b)
as

EDIR(a, b) = log

〈
fi(a)fj(b) exp Jij(a, b)

〉
ij∈S

〈fi(a)〉i∈S
〈
fj(b)

〉
j∈S

. (2.6)

Again, EDIR is symmetrized and shifted to zero-sum gauge. As dis-
played on Fig. 2.10, the first spectral modes are very close to the MJ en-
ergy matrix (Fig. 1.1), although not in the same order (of decreasing
eigenvalue in absolute value). The order of magnitude of EDIR(a, b)
and its top eigenvalues are much more similar to the MJ matrix than
the other mean matrices e(a, b|?), with a Pearson correlation coeffi-
cient of 0.77.
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Figure 2.10 – (a) Mean matrix EDIR over all residue pairs in the selection, taking all Pfam families
together. (b) Histogram of the spectrum of EDIR. (c), (d), (e), (f) First spectral modes
of EDIR displaying hydrophobic-hydrophilic (λ(1) = 6.44), Cysteine-Cysteine (λ(2) =
3.78), Histidine-Histidine (λ(3) = 1.80), and electrostatic (λ(4) = −1.41) interactions.

This shows that the DCA couplings reflect the full information of
the MJ contact energy, provided that the mean is properly weighted
by the single-site frequencies. This is consistent with the previous
results where the data set of coupling matrices is divided up into
structural classes or solvent exposure related classes.
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2.3 distance distribution

2.3.1 Naive clustering

Within the SCOP classification defined in Section 2.2.1, we assign
each residue pair (i, j) in the selection S(x) to one spectral mode (k)

of e(a, b|x) (with x ∈ {α,β, α+β,membrane, small}), as follows: we
first define the score π(k)ij via the projection of the coupling matrix
Jij(a, b) onto the spectral mode (k):

π
(k)
ij =

21∑
a,b=1

Jij(a, b) v
(k)
a v

(k)
b , (2.7)

where v(k)a , a = 1, ..., b are the components of the eigenvector associ-
ated to the kth eigenvalue of e(a, b|x). Then, the residue pair (i, j) is
assigned to the mode (k) on which the projection π(k)ij is maximum.
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Figure 2.11 – Projection scores π(k)ij , k = 1, 2 for all residue pairs (i, j) within SCOP classes (a)
α (electrostatic and hydrophobic), (b) β (electrostatic and hydrophobic), (c) α + β

(electrostatic and hydrophobic), (d) membrane (electrostatic and hydrophobic), and
(e) small (electrostatic and Cysteine-Cysteine). Colors indicate the cluster the residue
pair has been assigned to (maximum projection score): electrostatic (blue), hydropho-
bic (red), and Cysteine-Cysteine (yellow).

For each SCOP class, we consider the projection onto the top two
spectral modes k = 1, 2: electrostatic and hydrophobic for the SCOP
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classes α, β, α+β, membrane, and electrostatic and Cysteine-Cysteine
for the class of small proteins (Figs. 2.2 to 2.6). The top two eigenval-
ues of e(a, b|x) indeed account in each class for about 50% of the sum
of all eigenvalues. Figure 2.11 displays the two projection scores π(k)ij ,
with k = 1, 2, for all residue pairs (i, j) within the five SCOP classes.
Each color corresponds to the cluster the residue pairs are assigned
to, i.e. the mode (k) with maximum projection π(k)ij .

The projection π(elec)ij on the electrostatic modes (red dots on Fig. 2.11)
is positive for the vast majority of contacts, reflecting the strength and
importance of the electrostatic interaction. Residue pairs assigned to
hydrophobic modes (blue dots on Fig. 2.11) usually have a projection
π(elec) close to zero, pointing out that hydrophobic residues are un-
charged. While the assignment procedure seems to be well justified
for the SCOP classes α, membrane, and small (panels (a), (d), (e)), no
clear separation is observed for classes β and α+ β (panels (b) and
(c)), in which the values of the projection scores for a given residue
pair may be both large and comparable in magnitude. This can be
explained by the overlapping supports of the electrostatic and hy-
drophobic spectral modes in theses classes, the latter also having a hy-
drophilic signal (amino acids K,H,R,D,E are charged and hydrophilic),
especially for the β class, cf. Fig. 2.3 panel (d) and Fig. 2.4 panel (d).
Notice that, for the class small, the separation between electrostatic
and Cysteine-Cysteine modes is very good as the amino acids sup-
porting those interactions are disjoint (K,H,R,D,E for the former, C
for the latter).

2.3.2 Contact distances
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Figure 2.12 – Distribution of distances in the tertiary structure among the
selected residue pairs in contact for the different interaction
types, pooled across the SCOP classes.
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We now study how the native distances in the tertiary structure
between the residue pairs vary with the type of interactions they have
been assigned to (electrostatic, hydrophobic or Cysteine-Cysteine) as
described above. The distance distributions are shown on Fig. 2.12,
and vary considerably with the interaction types. The “hydrophobic”
type involve residue pairs with a contact distance centered around
3.5Å, the “electrostatic” type displays a bimodal distance distribution
mostly around 2.7 Å and 3.5 Å, and the “Cysteine-Cysteine” type is
the only one to have a significant number of pairs in contact at short
distance 2 Å. Notice that 3.5 Å is the typical distance between heavyI thank E. Westhof

for his insight on
contact distances

atoms, twice the Van der Waals distance (1.7 Å), on the other hand
2.7 Å corresponds to the distance between atoms linked by a strong
to moderate hydrogen bond [63], and 2 Å is the distance between two
Cysteine involved in a disulfide bridge.

2.4 clustering of the coupling matrices

The naive clustering presented in the previous section unveils im-
portant variations in the native distances in the tertiary structure, de-
pending of the type of interaction. In this section, we propose a more
refined clustering method, confirming the results obtained in Sections
2.2.1 & 2.3.

2.4.1 Method

Within each SCOP class x, we consider the matrix J(x) of size |S(x)|×
212, where each element (J(x))n=ij,p=ab is the coupling entry Jij(a, b).
The singular value decomposition of this collection of coupling ma-
trices J writes

(J(x))np =

212∑
µ=1

U
(µ)
n E

(µ)
p σµ , (2.8)

with U the matrix of left-singular vectors, i.e. eigenvectors of

(
J(x) × (J(x))>

)
n=ij,m=kl

=

21∑
a,b=1

Jij(a, b)Jkl(a, b) , (2.9)

E the matrix of right-singular vectors, i.e. eigenvectors of

(
(J(x))> × J(x)

)
p=ab,r=cd

=

|S(x)|(|S(x)|−1)/2∑
i,j=1

Jij(a, b)Jij(c, d) ,

(2.10)
and σ the diagonal matrix of singular values.

The spectrum of J(x) is usually dominated by only a few singular
values, so the summation in Eq. (2.8) can be truncated. In the follow-
ing, we apply the Principal Component Analysis (PCA) to perform a
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dimensional reduction by only considering the few singular vectors
related to the largest singular values. Finally, the signals from dif-
ferent types of contacts are disentangled by clustering these singular
vectors into several classes, with a simple k-means algorithm.

This algorithm is implemented with the correlation distance (one
minus the sample correlation between points), and 100 replicates
(number of times the clustering is made using new initial conditions
to help find the best local minimum). When the euclidean distance is
used instead, the identified contact classes are roughly the same, but
with a supplementary class of all the coupling matrices with lowest
norms. Indeed, if two coupling matrices are proportional with a large
proportionality coefficient, the euclidean distance is large whereas the
correlation distance is 0. The clustering is moreover remarkably sta-
ble, independent of the initial conditions.

The number of clusters – an input in the k-means algorithm – is
chosen to be close to the number of singular values clearly outside
of the bulk in the spectrum of J(x) (from 2 to 7 depending on the
considered SCOP class x). To find the optimal number of singular
vectors in the PCA dimensional reduction and the optimal number of
clusters, we consider the so-called silhouette of the clustering. This
method is a measure of the consistency within clusters, i.e. of how
well each coupling matrix lies within its cluster. For each coupling
matrix Jp=ij, let a(p) be the average distance correlation of Jp with
all other coupling matrices within the same cluster. Let b(p) be the
lowest average distance correlation of Jp to any other cluster, of which
it is not a member. The silhouette is defined as

s(p) =
b(p) − a(p)

max{a(p), b(p)}
. (2.11)

By definition, the silhouette is smaller than one in absolute value: Appendix F displays
examples of
silhouettes for
clusterings of
normally distributed
random numbers.

−1 < s(p) < 1. Silhouette values close to 1 indicate appropriately
clustered data points. Silhouette values close to -1 suggest that the
corresponding data points would be better allocated to the neighbor-
ing cluster.

With this method, all the residue pairs in S(x) are divided into dif-
ferent clusters. What we call in the following “class of contacts” is de-
fined as the center of mass of the cluster: (E(k))ab =< Jij(a, b) >ij∈(k),
where the mean is over the contact pairs attributed to the cluster (k).

2.4.2 Results

Similarly to the results of Section 2.2.1, the identified clusters also
display physico-chemical interactions at the amino-acid scale: hy-
drophobicity, electrostaticity and Cysteine-Cysteine, closely related
to the spectral modes of the MJ matrix. Figures 2.13 to 2.17 display,
for each of the five SCOP classes x, the histogram of the singular val-
ues of J(x), the silhouette of the clustering, and the classes of contacts
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Figure 2.13 – α proteins - (a) spectrum of J(α) - (b) Silhouette values - (c), (d), (e) Classes of
contacts displaying electrostatic and hydrophobic interactions.
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Figure 2.14 – β proteins - (a) spectrum of J(β) - (b) Silhouette values - (c), (d), (e), (f) Classes of
contacts displaying electrostatic and hydrophobic interactions.
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Figure 2.15 – α+β proteins - (a) spectrum of J(β) - (b) Silhouette values - (c), (d), (e), (f) Classes
of contacts displaying electrostatic and hydrophobic interactions.
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Figure 2.16 – membrane proteins - (a) spectrum of J(membrane) - (b) Silhouette values - (c), (d),
(e), (f) Classes of contacts displaying electrostatic and hydrophobic interactions.
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Figure 2.17 – small proteins - (a) spectrum of J(small) - (b) Silhouette values - (c), (d) Classes of
contacts displaying electrostatic and Cysteine-Cysteine interactions.
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scop pfam pca clusters hydro. elec . cc mixed

α 12 4 3 2 1 0 0

β 12 4 4 2 1 0 1

α+β 18 5 4 4 1 0 0

membrane 16 6 4 3 1 0 0

small 13 4 2 0 1 1 0

Table 5 – Set of chosen parameters for the different SCOP classes: number of Pfam families in the
class, number of singular vectors (or dimensions) selected for PCA, and number and types
of clusters identified by the k-means algorithm.

(center of mass of the different clusters). Again consistently with
Section 2.2.1, electrostatic clusters are found in all five SCOP classes,
whereas hydrophobicity-related clusters are identified in all but the
small protein classes. The Cysteine-Cysteine cluster is found only in
the small protein class, as expected.

Table 5 contains all the parameters used in each SCOP group: the
number of Pfam families (see Appendix E for a complete list), the
number of singular vectors considered for the PCA analysis, the num-
ber of clusters and their categories. For instance, in the SCOP group
of all α-proteins, 4 singular vectors have been used to identify 3 clus-
ters (cf. Fig. 2.13). 2 of them are “Hydrophobic” (as they involve
only hydrophobic amino acids) and 1 is “Electrostatic”. The num-
ber of singular vectors and clusters have been chosen to optimize the
silhouette distribution (panel (b)). Although the clustering method
is more refined, it also depends on more input parameters than the
naive approach with the mean matrices, which remains quite simple.

The silhouette values are generally large and positive, underlin-
ing the efficiency of the clustering method. The clustering is also re-
markably stable: the clusters barely depend on the initial conditions.
The silhouette values of the different hydrophobic clusters tend to be
more peaked, with smaller values, underlying the fact that hydropho-
bic clusters have overlapping supports. Negative silhouette values are
observed only for the α+β class, confirming what has been observed
in Section 2.2.1. Panel (c) of Fig. 2.11 indeed showed that there is no
clear separation between electrostaticity and hydrophobicity in this
SCOP class. This is also the case for class β, where cluster 4 displays
both electrostatic and hydrophilic signals (panel (f) of Fig. 2.14), al-
though all silhouette values are positive. The separation between the
spectral modes of e(a, b|β) was indeed not so clear (cf. Section 2.2.1).

This more refined clustering also enables to study the distribution
of native distances in the tertiary structure between the residue pairs
depending the type of interactions (or cluster) they have been as-
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signed to, similarly to what has been done in Section 2.3. The dis-
tribution is strictly identical to Fig. 2.12, confirming this result.

2.5 toward an improved contact prediction

2.5.1 Using the unveiled structure of the coupling matrices

An important question is whether the detailed structure of the in-
ferred couplings revealed in this work could be used to improve struc-
tural predictions, based so far on the Frobenius norms of the cou-
plings only (with an APC adjustment, cf. Chapter 3 of Part I). It was
indeed recently shown [60] that for artificial lattice proteins the pro-
jection of the couplings onto the MJ matrix (which has been defined
as the evolutionary pressure, see Eq. (3.16) of Part I) is more effective
for protein contact prediction than the usual Frobenius-based estima-
tor. However, the sampling situation is extremely favorable in lattice
proteins. This is not the case for real proteins, as we will see in the
next chapter. Making any improvement to the structural predictions
is therefore extremely challenging.

Fig. 2.18 displays the projection of all coupling matrices in the se-
lection S onto the MJ matrix π(MJ) (panel (a)) and onto its first three
spectral modes π(elec), π(hydro), and π(cc) (panels (b), (c), (d)) as a
function of the APC score. Note that the definition of the projections
π(k) slightly differs from Eq. (2.3) as it involves here the modes (k)

of MJ and not the modes of e(a, b|x). Each of the two methods has
its strengths and weaknesses. On one hand, the MJ matrix displays
the whole variety of residue-residue contacts but is quite different
from the couplings without a proper frequency weighting, as it has
been extensively discussed above. On the other hand, e(a, b) has
to be learned from the couplings first, leading to more overfitting –
contrary to MJ which only results from residue-residue contact statis-
tics in knwon structures. In any case, equivalent results are obtained
in both methods, but we will focus here on the projection onto the
modes of MJ for the sake of simplicity.

Interestingly, the projections onto the full MJ matrix and onto its
electrostatic spectral mode seem quite informative: an important part
of the contacts (blue dots) have a high projection and a rather small
APC score. Respectively, few of non contacts (red dots) have a high
projection. Several attempts have therefore been made by the author
of this dissertation to improve the structural prediction by combining
both APC and the projections – such as using the union of both pre-
dictors, or fitting the bulk of non contacts with gaussian functions (cf.
Section 2.5.2 below). Unfortunately, none of them is quantitatively
improving the accuracy of the structural predictions.

This might be partly explained by the presence of homo-oligomer
contacts in the selection, or in other words, residue pairs that are
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(a) (b)

(c) (d)

Figure 2.18 – Projections of the coupling matrices in the selection S onto the
MJ matrix and its first three spectral modes as a function of
their APC scores, for the tertiary structure contacts (blue), non
contacts (red), and for the pairs in contact in the quaternary
structure but not in the tertiary structure (yellow).

not in contact in the tertiary structure but in contact in the quater-
nary structure, an arrangement of multiple folded protein subunits.
Many protein domains indeed form homo-oligomers with copies of
the domain on different chains in the quaternary assembly. It has
been shown that this kind of physical constraints constitute a source
of coevolution signals detected by DCA approaches [36]. In order toThis data has been

made available by
G. Uguzzoni, from
our team at LCQB

avoid mis-categorization between true- and false- positive predictions,
we therefore include in the analysis the homo-oligomers contact map
when present and superimpose the contact maps obtained by parsing
the monomers and the homo-oligomers structures.

As displayed on Fig. 2.18 (yellow dots), many of the highest APC or
projections which are not tertiary contacts – and therefore misclassi-
fied as false-positive predictions – are actually coevolving in the qua-
ternary structure. This illustrates how dependent the performance
of the structural prediction is in the definition of the contacts, and
therefore how complex it is to improve it.
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2.5.2 Attempt: combining the APC and projection scores

In this paragraph, we will shortly describe an attempt to combine
both APC and the projection scores to improve the structural predic-
tions. We focus on the projection onto the electrostatic mode, dis-
played on panel (c) of Fig. 2.18, showing interesting features. As dis-
played on Fig. 2.19, the angle θ defines a straight line in the space
(APC,π(elec)); θ = 0 corresponds to the APC score only, whereas
θ = π/2 is equivalent to the projection alone. Each residue pair (there-
fore point on the Figure) will be attributed a score corresponding to
its orthogonal projection on this straight line. The scores are subse-
quently ranked and the positive predictive value (PPV) is plotted (cf.
Chapter 3 of Part I for the definition) and compared to the PPV with
APC only. Each value of θ corresponds to a different combination of
the APC score and the projection. Unfortunately, it seems that the
choice of θ = 0 could not be outperformed and that considering APC

alone remains the best option.
Alternatively, since the ranking in the euclidean space was not effec-

tive, a more elaborated option is to consider a distance in the metric
space defined by the bulk of non contacts. The latter is fitted by a
gaussian function f : t 7→ exp

(
−(t− t0)

2/2σ20
)
. A residue pair of co-

ordinates (x, y) in the space (APC,π(elec)) will be attributed a score
λ such that y = λf(x/λ); cf. Fig. 2.20. The scores are then ranked
and the corresponding PPV is compared to the one obtained with APC.
Again, this new score is outperformed by APC alone.

3 = 0 (APC)
3 = :=2 (:(elec))
3 = 30
contacts
non contacts

Figure 2.19 – Projections of the coupling matrices in the selection S onto
the electrostatic mode of the MJ matrix. θ = 0 corresponds
to APC (full line), θ = π/2 is the projection (dashed line), and
θ ∈ [0, π/2] is a combination of both scores. Here θ0 ≈ 0.76
(dotted line) and the score of the green point of coordinates
(APC= 1.198,π(elec) = 0.8201) corresponding to its orthogonal
projection is of S = 1.434.

We propose here two methods based on the idea that the combi-
nation of both the already effective APC score and the newly defined



94 protein sequences data

6 = 1
6 = 1=2
6 = 2
6 = 4:67
contacts
non contacts

Figure 2.20 – Projections of the coupling matrices in the selection S onto the
electrostatic mode of the MJ matrix. For a point of coordinates
(x, y), the score λ is defined such that y = λf(x/λ), with f :

t 7→ exp
(
−t2/0.07

)
(λ = 1). The score of the green point of

coordinates (APC = 1.198,π(elec) = 0.8201) is λ = 4.67.

projection score might improve the structural prediction in proteins.
These methods show no improvement compared to the use of APC

alone. As mentioned above, the presence of homo-oligomer contacts
yields false positives which are actually in contact, but not in the ter-
tiary structure. Considering these as true positive does improve the
prediction with the projection, but also with APC, leading to no sub-
stantial change in the previous results. On the other hand, although
the PPV, or precision – number of selected predictions that are true
positive – is the reference to compare different methods in the field
of protein structure prediction, it is maybe not the best way to asses
the predictive properties of a model.

Notice that the most advanced techniques in protein structure pre-
diction – which are the most effective in separating signal from noise
– are meta methods, such as PconsC2 [106], including also the vicin-
ity of a potential contact, secondary-structure predictions etc. Inter-
estingly, they are mostly improving the contact prediction between
secondary structures – i.e. filling the vicinity of the predicted con-
tact map – but frequently not adding new structurally informative
contacts. Such meta methods display much better PPV than usual
approaches, but the gain of information is rather limited.

2.6 outlook

DCA exploits the statistical correlations implied by coevolution in
protein multiple sequence alignments to infer residue-residue con-
tacts within the tertiary structure. The probabilistic model takes the
form of a q = 21-states Potts model, whose parameters are inferred
to reproduce the one- and two-residue statistics of the data. Usually,
the inferred coupling matrices {Jij(a, b)} are mapped onto scalar pa-
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rameters to measure the coupling strength between two residues and
thereby predict contacts, without exploring the full information they
contain.

By studying extensively 70 Pfam protein families, we show that
these couplings reflect the physico-chemical properties of amino-acid
interactions, such as electrostatic, hydrophobic/hydrophilic, Cysteine-
Cysteine and steric interactions. Some of these interaction modes are
present in a small fraction of residue pairs only, and are not easily
seen in the global analysis over the 70 protein families. We show,
however, that Cysteine-Cysteine and hydrophilic signals are unveiled,
when we consider the SCOP structural classification (small proteins)
and solvent exposure (surface contacts).

Using this detailed information to improve structural predictions
is quite challenging. If interesting features are displayed by the pro-
jection of the coupling matrices onto the Miyazawa-Jernigan matrix
and its spectral modes, we could not quantitatively improve the re-
sults obtained with the standard APC score. This might be explained
on one hand by the presence of homo-oligomer contacts, which are
not in contact in the tertiary structure, but in the quaternary assem-
bly of multiple folded protein subunits. Source of coevolution, these
false-positive are detected by DCA. This stresses how important is the
definition of contacts and structure. On the other hand, as will be ex-
tensively discussed in the next chapter, sampling plays a crucial role
in the information contained in the coupling matrices. The limited
sampling in real proteins drastically restricts their potentiality.

Nevertheless, even at the current state of sequence sampling, the
coupling matrices contain important quantitative information which
can directly be implemented into protein-structure prediction: our
work indicates that the type of interaction reflected by the inferred
couplings is correlated with the distances in the tertiary structure be-
tween the residues in contact. Cysteine-Cysteine tend to form very
strong chemical bonds such as disulfide bridges and therefore are
the only contact type associated to very short distances ∼ 2 Å. Elec-
trostatic contacts give rise to distances with a bimodal distribution,
centered around 2.7 Å and 3.5 Å. Finally, hydrophobic contacts are
mainly located around 3.5 Å.



3
L AT T I C E P R O T E I N S

Introduced in Part I, lattice proteins (LP) are exactly solvable mod-
els of proteins, folding on a 3D lattice into a compact conformation
given by a self-avoiding walk on a cube of dimension 3× 3× 3 [104].
Real proteins and LP share many common properties (efficient fold-
ing, non trivial statistical features, existence of families in the profile-
HMM sense with conserved folds, etc.), but LP as in silico systems
allow for precise numerical control. It is easy to generate even large
samples of sequences (MSA) corresponding to a single fold, defining
the equivalent of a protein family, without any phylogenetic sampling
bias. LP are therefore an ideal benchmark – in a relatively realistic and
fully controllable context – for studying and better understanding in-
ference methods developed in the context of real protein data [60].

After presenting the dataset and a short analysis of the profile-HMM

specificity of LP, we will hereafter use the LP framework to study in
detail the effect of sampling quality vs. regularization strength in the
inference of the coevolutionary couplings {Jij(a, b)}.

3.1 dataset and background

Figure 3.1 – Four representative LP structures used for the analysis. Three
among the 28 contacts of structure SA have been circled in the
top left panel.

96
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We consider four LP folds in this chapter, SA, SB, SC, SD, taken
from [60] and shown on Fig. 3.1. MSAs corresponding to these folds
have been generated by Monte Carlo Markov Chain (MCMC) sam-
pling, each containing B = 50000 sequences folding with probability
Pnat > 0.995. The same inverse methods based on maximum-entropy
and Potts modeling used for real proteins (mfDCA, plmDCA and ACE)
can applied to infer the pairwise couplings Jij(a, b) from the empir-
ical one- and two-point statistical correlations measured on the MSA

of the lattice proteins.
Below are a few reminders of the main results presented in Part I

Chapter 3 in more details. As in real data, inferred couplings are
excellent predictors of contacts in the structure. Interestingly, a lin-
ear dependency is moreover observed between the inferred couplings
Jij(a, b) and MJ energetic parameters EMJ0 (a, b) used to compute the
energy, both in the zero-sum gauge and for a given residue pair (i, j):
Jij(a, b) ≈ λijEMJ0 (a, b). We display this dependency for fold SB on
Fig. 3.2. The prefactor λij is interpreted in [60] as a measure of the
coevolutionary pressure on the residues (i, j), due to the design of
the native structure. Large positive λij indicate positive design, and
generally correspond to residues (i, j) in contact in the native struc-
ture, but not in its competitor folds S ′. Conversely, large negative λij
reflect negative design and generally correspond to residues (i, j) in
contact in competitor structures but not in the native structure.

Figure 3.2 – Couplings Jij(a, b) for fold SB vs. the MJ matrix EMJ0 (a, b)

across all residue (i, j) and amino-acid (a, b) pairs, inferred
with plmDCA. Blue dots correspond to pairs in contact, while
red dots correspond to pairs not in contact. Broken lines: lin-
ear fits for contacts (blue, slope ∼ 1.90) and not in contact (red,
slope ∼ −0.04). Person correlation for contacts is 0.69 and for
non contacts is −0.11.
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3.2 profile-hmm specificity of lattice proteins

Lattice proteins share many common features with real protein se-
quences, including specificity of their profile-HMM [40], which will be
illustrated in this section. For each of the four studied folds, a profile-
HMM is built on a sub-alignment of 1000 sequences. The percentage
of hits – or detected homologs – found in each of the four align-
ments is then recorded, using the hmmsearch command of the HM-
Mer software [47]. The tables below display the percentage of hits
detected on the target alignments containing the natural sequences
of N = 27 residues (Tab. 6), and on target alignments of natural
sequences with 15-sites random sequences appended at the begin-
ning and the end (Tab. 7). The latter configuration aims at modeling
full length sequences, similar to real sequences data available in the
Uniprot database.

SA SB SC SD

HMM SA 84.09 0.002 0 0

HMM SB 0 76.43 0 0

HMM SC 0.049 0 83.52 0

HMM SD 0.007 0.017 0 85.41

Table 6 – Percentage of hits detected on the target alignments of natural se-
quences.

SA SB SC SD

HMM SA 74.45 0.026 0.002 0

HMM SB 0.014 66.50 0.002 0.004

HMM SC 0.053 0.010 67.10 0.008

HMM SD 0.011 0.065 0.017 71.84

Table 7 – Percentage of hits detected on the target alignments of natural se-
quences with 15-sites random sequences appended at the begin-
ning and at the end.

Notice that a profile-HMM built on a subpart of a MSA associated to
a given fold is very family-specific, and gives high scores to sequences
with a high Pnat for this fold. Sequences belonging to other families
have such lower scores that almost none of them is reported as homol-
ogous. The percentage of hits in the alignment corresponding to the
profile-HMM decreases when random sub-sequences are appended at
the beginning and at the end of the natural sequence. Moreover, the
number of hits in the other alignments increases. This is expected, as
the LP “domain” is harder to detect from much longer sequences.
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3.3 properties of the inferred couplings

For each fold, the coupling matrices are computed using plmDCA

in zero-sum gauge (as in Chapter 2) for four different values of the
sampling and regularization parameters:

— large sample size (B = 50000 sequences) and strong regulariza-
tion (γ = 10−2, standard value for plmDCA),

— large sample size (B = 50000 sequences) and weak regulariza-
tion (γ = 1/B = 2× 10−5),

— small sample size (B = 500 sequences extracted from the MSA)
and strong regularization (γ = 10−2),

— small sample size (B = 500 sequences extracted from the MSA)
and weak regularization (γ = 10−4).

As mentioned in Section 3.1, the inferred coupling matrices are closely
related to the MJ potential, but varying the sampling and regulariza-
tion strength provides interesting insights. The default regularization
parameter is set in plmDCA to the value γ = 10−2, as it gives the
best results for contact prediction [42]. This regularization strength
penalizes large couplings and sparsifies the 20 × 20 matrix. With
smaller regularization penalties, γ = 10−5 − 10−4, couplings can ac-
quire larger values.

3.3.1 Effect of the regularization

Figure 3.3 displays the coupling matrix J14,17 of a representative
residue pair (14,17) in contact in structure SA (Fig. 3.1) at strong
(γ = 10−2, panel (a)) and weak (γ = 1/B = 2× 10−5, panel (b)) regu-
larizations. Left and bottom colorbars are single site frequencies f14
and f17, and red squares indicate zero frequency. The characteristics
of the mean coupling matrix will be described in Section 3.4.

Strikingly, decreasing the regularization strength enables new in-
teraction signals to emerge, e.g. hydrophobic and Cysteine-Cysteine
interactions, which are consistent with the MJ matrix, cf. panel (a) of
Fig. 1.1. The correlation between Jij(a, b) and EMJ0 (a, b) for all (i, j)
in contact in the four studied folds therefore increases, with an av-
erage Pearson coefficient raising from 0.51 (strong regularization) to
0.70 (weak regularization).

The unveiling of interactions at weak regularization depends, how-
ever, on the amino-acid statistics on the involved sites. For example,
for the pair (14, 17) displayed on Fig. 3.3, electrostatic and hydrophilic
amino acids (H to G) have sufficiently large frequencies on sites 14
and 17 to produce enough correlation statistics for the corresponding
interaction. On the contrary, no interaction signal is revealed at low
regularization for amino acids F, I and L, as they are never found on
site 17 (vertical band of zero couplings on panel (b)). Decreasing the
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regularization in the latter case merely results in increasing noise, as
discussed in the next subsection.
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Figure 3.3 – Coupling matrices of pair (14,17), structure SA. Left and bottom
colorbars are single site frequencies f14 and f17. Red squares
indicate zero frequency. (a) B = 50000, γ = 10−2, (b) B = 50000,
γ = 2× 10−5, (c) B = 500, γ = 10−2, (d) B = 500, γ = 10−4.

3.3.2 Effect of the sampling

The length of LP is N = 27 residues, which is small compared to
real biological proteins (typically 50− 500 amino acids in a single do-
main). Moreover, the MCMC procedure used to generate MSAs ensures
that the sequences are well distributed in sequence space. In conse-
quence, inference based on good sampling (B = 50000 sequences)
becomes very accurate. The situation for real biological sequences
is less optimal, as the effective number of sequences Beff is much
smaller (we have chosen Beff = 500 as a lower bound for the 70 Pfam
families studied in the present work), and only very few proteins
reach values close to B = 50000.

To test our analysis in a more realistic situation, we therefore select
sub-alignments of B = 500 sequences for each of the four structures.
The bottom panels of Fig. 3.3 display the coupling matrices obtained
in this poor sampling situation, at strong (panel (c)) and weak (panel
(d)) regularizations. Contrary to the good sampling case, no new
interaction signal compatible with MJ is revealed at low regulariza-
tion. Globally, the coupling matrices of all residue pairs in contact
are even less correlated with MJ, as the Pearson correlation goes from
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0.42 (small sample size, strong regularization) down to 0.36 (small
sample size, weak regularization). The difference between couplings
at strong and weak regularization seems to be due to noise for poor
sampling.

In the last chapter, the couplings for real protein sequences have
been inferred at (plmDCA standard) high regularization (γ = 10−2).
Consistently with what has been described in the last paragraph, and
since real biological sequences are not very well sampled (Beff '
500− 1000), decreasing the regularization does not change the mean
matrices e(a, b) and their spectral modes previously defined; they
contain simply more noise.

sampling regularization correlation

B = 50000
γ = 10−2 0.51 / −0.15

γ = 1/B 0.70 / −0.14

B ′ = 500
γ = 10−2 0.42 / −0.05

γ = 10−4 0.36 / −0.04

Table 8 – Pearson correlation coefficients between Jij(a, b) and the MJ energy
matrix EMJ0 (a, b) across all residue pairs (contacts / non contacts)
in the four studied folds for different sample sizes and regulariza-
tion strengths

To sum up the effects of the different parameters (regularization
and sampling), Table 8 gathers the Pearson correlation coefficients
between Jij(a, b) and EMJ0 (a, b) for all amino-acid and residue pairs
in the 4 studied folds (4 × 28 = 112 pairs). As we have discussed
above, with a good sampling, the correlation between Jij(a, b) and
EMJ0 (a, b) globally increases when the regularization decreases. On
the contrary, with poor sampling (as it is the case for real biological
data), the correlation slightly decreases when the regularization de-
creases. However, the inferred signal appears pretty stable at strong
regularization, which may be a reason why plmDCA needs this high
regularization on real protein data.

3.4 mean coupling matrix

Similarly to what has been done for real sequences data in Chapter
2, we compute the mean matrix

e(a, b|LP) =
〈
Jij(a, b)

〉
ij
, (3.1)

where the mean 〈.〉ij is over all residues pairs in contact in the four
studied folds (28× 4 = 112 coupling matrices). The four cases of dif-
ferent sampling and regularization parameters defined in Section 3.3
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give rise to four different matrices e(a, b|LP): (B = 50000, γ = 10−2),
(B = 50000, γ = 1/B), (B ′ = 500, γ = 10−2), and (B ′ = 500, γ = 10−4),
which are displayed on Fig. 3.4 to 3.7, along with their spectrum and
spectral modes.

Consistently to what has been previously stated, the correlation be-
tween e(a, b|LP) and the MJ energy matrix EMJ0 is maximum (0.94) in
the case of large sample size and weak regularization (Fig. 3.5). Ta-
ble 9 displays the Pearson correlation coefficients between e(a, b|LP)
in the four cases (panels (a) of the figures) and the MJ energy matrix
EMJ0 .

sampling regularization correlation

B = 50000
γ = 10−2 0.76

γ = 1/M 0.94

B ′ = 500
γ = 10−2 0.74

γ = 10−4 0.72

Table 9 – Pearson correlation coefficients between the mean matrices
e(a, b|LP) and the MJ energy matrix EMJ0 (a, b) for different sam-
plings and regularization strengths.

Interestingly, the regularization strength seems to play an impor-
tant role in determining the order of magnitude of the entries of the
matrix e(a, b|LP) and its dominant eigenvalues. With a fixed sam-
pling B = 50000, the top eigenvalues are divided by 5 with the regu-
larization going from γ = 10−2 to γ = 2× 10−5 (cf. panels (b) of Fig.
3.4 and 3.5). On the contrary, decreasing B at fixed regularization
does not affect the top eigenvalues (cf. panels (b) of Fig. 3.4 and 3.6).

In the optimal case of large sample size and weak regularization,
where the correlation with the MJ energy matrix is maximal (cf. Ta-
ble 9), the entries of e(a, b|LP) and its top eigenvalues are larger than
the MJ energy matrix (cf. Fig. 1.1). The presence of negative and
positive designs indeed causes the inferred couplings to be larger. It
illustrates the strong influence of the evolutionary pressure and posi-
tive/negative design in LP [60].

The situation for real proteins is less stable, as structure is only
partially conserved over protein families, and contacts stabilizing a
structure may not always be exactly the same across thousands of
distant homologs. This probably explains why the entries and top
eigenvalues of the mean coupling matrix e(a, b) are much smaller in
real proteins than in the MJ energy matrix.
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Figure 3.4 – (B = 50000, γ = 10−2). (a) mean matrix e(a, b|LP) over all residue pairs in contact
across the 4 studied fold. (b) Histogram of the spectrum of e(a, b|LP). (c), (d), (e) First
spectral modes of e(a, b|LP) displaying electrostatic, Cysteine-Cysteine, and mixed
Cysteine-Cysteine/hydrophobic/hydrophilic interactions.
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Figure 3.5 – (B = 50000, γ = 1/B = 2× 10−5). (a) mean matrix e(a, b|LP) over all residue pairs in
contact across the 4 studied fold. (b) Histogram of the spectrum of e(a, b|LP). (c), (d),
(e) First spectral modes of e(a, b|LP) displaying electrostatic, Cysteine-Cysteine, and
hydrophobic/hydrophilic interactions.
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Figure 3.6 – (B′ = 500, γ = 10−2). (a) mean matrix e(a, b|LP) over all residue pairs in contact
across the 4 studied fold. (b) Histogram of the spectrum of e(a, b|LP). (c), (d), (e) First
spectral modes of e(a, b|LP) displaying electrostatic, Cysteine-Cysteine, and mixed
Cysteine-Cysteine/hydrophobic/hydrophilic interactions.
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Figure 3.7 – (B′ = 500, γ = 10−4). (a) mean matrix e(a, b|LP) over all residue pairs in contact
across the 4 studied fold. (b) Histogram of the spectrum of e(a, b|LP). (c), (d), (e) First
spectral modes of e(a, b|LP) displaying electrostatic, Cysteine-Cysteine, and mixed
Cysteine-Cysteine/hydrophobic/hydrophilic interactions.
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Figure 3.8 – Projections of the coupling matrices Jij(a, b) onto the MJ ma-
trix as a function of the APC scores, across all residue pairs in
contact (blue) and not in contact (red) in the four LP folds. In-
ference is performed on B = 50000 sequences and with a weak
regularization strength.

3.5 structural predictions

Recent work by our team at ENS [60] shows that the projection of
the couplings onto the MJ matrix improves the precision of the contact
prediction compared with the usual APC score. Fig. 3.8 displays the
projection π(k) of all coupling matrices from the four folds onto the
MJ matrix and its first spectral modes as a function of the APC score
(equivalently to Fig. 2.18 for real proteins). The coupling matrices
have been inferred with plmDCA at low regularization strength. In
this case – and contrary to real proteins – the separation between
contacts (blue) and non contacts (red) is clearer in terms of projection
than of APC, the former therefore being a better classifier.

The reason is twofold. First the projection, contrary to the Frobe-
nius norm, has a sign, and allows for the distinction of positive design
(positive projection, likely to correspond to contact in the native fold)
from negative design (negative projection, likely not to correspond to
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Figure 3.9 – Positive predicted values as a function of the number of pre-
dictions all folds taken together (panel (a)), or averaged over
the folds (panel (b)). Various classifiers are displayed: standard
APC score (black), projection π(MJ) (light blue), intersection of
the APC and π(MJ) classifiers (dark blue), and the optimal theo-
retical classifier (dashed green).

a contact, but with a large APC). Secondly the projection measures the
magnitude of the coupling matrix along one direction in the 20× 20-
dimensional space of amino-acid pairs, and is thus not sensitive to the
noise in the 399 remaining orthogonal directions, contrary to APC.

Fig. 3.9 displays the precision (or PPV, number of true predictions
divided by the total number of predictions) for structural predictions
with different scores. As already shown in [60], the projection π(MJ)

(light blue) is indeed more efficient than the standard APC (black).
Because they usually do not display the same false positives, com-
bining both methods further improves the score. The “intersection”
of both classifiers – the first n residue pairs are predicted in contact
if they belong to the top ranked n scores of both APC and the projec-
tion – is naturally better (dark blue), approaching the perfect classifier
(dashed green).

3.6 outlook

Study of lattice proteins (LP) – synthetic protein models folding
on a 3D lattice with energetics ruled by the Miyazawa-Jernigan sta-
tistical potential – gives useful insights on the effect of regulariza-
tion strength and sampling on contact classes. Decreasing the reg-
ularization strength (from the default plmDCA value γ = 10−2 to
γ = 1/B, where B is the sample size) allows for a richer interaction
signal to emerge in the coupling matrices, highly correlated with the
Miyazawa-Jernigan energy matrix. However, this rich interaction pat-
tern may be inferred only if the sequence sample is sufficiently large.
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For sample sizes representative of current real protein databases,
decreasing the regularization strength simply makes the correlation
with the Miyazawa-Jernigan energy matrix worse, as the inferred cou-
plings merely reproduce the sampling noise in the amino-acid pair-
wise correlations. With such poor sampling, strong regularization is
more reliable: the inferred interaction signal becomes relatively in-
sensitive to the sample size, explaining why plmDCA on real proteins
was found to perform consistently with a constant regularization of
γ = 10−2. Note that this picture somewhat depends on the inference
method considered: more precise inference procedures could allow
for detecting a larger correlation with MJ even with poor sampling
[64, 112]. The adaptive cluster expansion (ACE) [13], is on of these
methods that will be presented in the next part of this dissertation.

The order of magnitude of the mean coupling matrices e(a, b|LP)
seem to be determined by both regularization – increasing the penalty
induces strongly damped couplings – and evolutionary pressure. The
presence of positive and negative designs indeed causes the inferred
couplings to be larger, with the entries of e(a, b|LP) exceeding the MJ

matrix. The role of evolutionary pressure is less clear for real proteins,
because of partially conserved structures and variety of stabilizing
contacts. This could explain why the mean coupling matrix on real
proteins e(a, b) has much smaller entries and eigenvalues than the MJ

potential.
If the detailed structure of the inferred couplings unveiled in this

work can be use to improve structural predictions in the LP context,
the applicability to real protein data appears currently limited due to
two reasons. First, the projection in is done on the MJ matrix used
in the generative model of the lattice proteins, i.e. complementary
information not coming from the data is used. In real proteins, the
reference coupling matrix has to be inferred from data first and is
thus expected to be less accurate. Second, the currently limited sam-
pling in real proteins was shown to impose a strong regularization
during the inference of the DCA model parameters, which even in lat-
tice proteins reduces the correlation between inferred couplings and
the MJ matrix. We however anticipate this situation to improve soon
due to the rapid growth of available genomic data, leading to a better
and better sampling of protein families.



Part IV

A D A P T I V E C L U S T E R E X PA N S I O N

In this chapter, we focus on the Potts version of the adap-
tive cluster expansion (ACE) algorithm – presented in Part I
and initially developed in the Ising case. The inference
procedure is now adapted to the level of sampling in the
data, both by proposing a compressed representation of
this data and by inferring a sparse network omitting un-
sufficientely well sampled interactions. Chapter 1 shortly
introduces two technical points: the analytical computa-
tion of the statistical errors on inferred Potts parameters
due to finite sampling, and a compressed representation
of the data. In Chapter 2, we then illustrate the ACE me-
thod – and compare it with standard direct-coupling anal-
ysis (DCA) approaches – on three artificial and biological
datasets, and assess its ability to recover the true under-
lying parameters when known, reproduce the statistics of
the input data, or predict structural contacts in protein
family data. In Chapter 3, we finally explore in more de-
tails the compressed representation of the data and the
effect of the compression parameter on the inference.



1
B A C K G R O U N D

In this short chapter, we will address two technical points that will
prove useful in the following. First, we will go into details describing
the Fisher information matrix, that provides an interesting insight on
the statistical errors on the inferred parameters due to finite sampling.
Second, we will introduce a compressed representation of the data,
where the number of explicitly modeled Potts states depends on the
variable. It reduces the complexity of the inferred Potts models to
the level of the sampling in the data, enabling to both decrease the
computational time of ACE and reduce overfitting.

1.1 fisher information matrix and finite sampling er-
rors

1.1.1 Expression of the finite sampling errors

This section is
mainly based on [28] The Hessian of the cross-entropy – also called the Fisher informa-

tion matrix – is defined through

χ =
∂2S

∂J∂J
=

(
χia,i ′a ′ χia,j ′b ′k ′c ′

χjbkc,i ′a ′ χjbkc,j ′b ′k ′c ′

)
, (1.1)

where J = {Jij(a, b), hi(a)} denotes the Potts parameters. Its entries
can be expressed as averages over the Potts Gibbs measure 〈·〉J:

χia,i ′a ′ = 〈σiaσi ′a ′〉J − 〈σia〉J 〈σi ′a ′〉J ,
χia,j ′b ′k ′c ′ =

〈
σiaσj ′b ′σk ′c ′

〉
J
− 〈σia〉J

〈
σj ′b ′σk ′c ′

〉
J
,

χjbkc,j ′b ′k ′c ′ =
〈
σjbσkcσj ′b ′σk ′c ′

〉
J
−
〈
σjbσkc

〉
J

〈
σj ′b ′σk ′c ′

〉
J

.
(1.2)

With x = {xia, xia,jb} an arbitrary (N(N−1)/2q2+Nq)-dimensional
vector, the quadratic form

x† ·χ ·x =
〈(∑

ia

xia(σia− 〈σia〉J)+
∑
i<j
ab

xia,jb(σiaσjb− 〈σiaσjb〉J)
)2〉

,

(1.3)
is semi-definite positive. The cross-entropy S is therefore a convex
function, guaranteeing that it has a minimum.
χ can also be used to estimate the statistical deviations due to finite

sampling B. If the data were generated by a Potts model with param-
eters J, the frequencies fi(a), fij(a, b) would obey a normal law with
the covariance matrix 1

Bχ. The typical uncertainties of the one- and

108
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two-point frequencies therefore simply derive from the covariance
matrix:

δfi(a) =

√
1

B
χia,ia =

√
〈σia〉J (1− 〈σia〉J)

B
,

δfij(a, b) =

√
1

B
χiajb,iajb =

√〈
σiaσjb

〉
J
(1−

〈
σiaσjb

〉
J
)

B
.

(1.4)

Practically, estimates of the expected deviations are obtained by re-
placing the Gibbs averages by the empirical averages fi(a) and fij(a, b).

More interestingly, the inverse Fisher information matrix χ−1 can
also be used to estimate the statistical fluctuations of the inferred pa-
rameters due to a finite number of sampled configurations B. Ac-
cording to the asymptotic theory of inference, in the limit of large B
the cross-entropy obeys a normal law centered on the minimum of
SPotts(J|f), and of covariance matrix 1

Bχ
−1, with f = {fij(a, b), fi(a)}

denoting the data. Consequently the statistical errors on the cou-
plings and fields are given by:

δhi(a) =

√
1

B
(χ−1)ia,ia ,

δJij(a, b) =

√
1

B
(χ−1)iajb,iajb .

(1.5)

χ−1 is not necessarily well defined, and a regularization term γ =

1/B needs to be included before inverting the Hessian: See also Part I
Section 2.3.2

χia,ia → χia,ia + γ ,

χiajb,iajb → χiajb,iajb + γ .
(1.6)

Removing the zero modes of χ also guarantees the uniqueness of
SPotts(J|f). However, the regularization breaks the gauge invariance
and the gauge choice may have an impact of the statistical errors. This
problem will be addressed in Chapter 3.

1.1.2 Approximated errors on the inferred parameters

The inversion of χ is computationally feasible only for a small sys-
tem sizeN and Potts states number q, as it is of size

(
qN+ q2N(N− 1)

)
×(

qN+ q2N(N− 1)
)
. Typical values for proteins being N ≈ 100 and

q = 21, χ is in this case a 106 × 106 matrix, computationally impos-
sible to invert. We can however approximate the statistical errors in
a two-variable system, where the analytical expressions of the cou-
plings and fields are known. In the following we will derive the
approximate errors in the consensus gauge, as it will be the chosen
gauge for the study in Chapter 3.
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1.1.2.1 Two-variable couplings and fields

A simple calculation gives the couplings and fields for a system of
two variables:

hi(a) = log fi(a) ,

Jij(a, b) = log
fij(a, b)

fi(a)fj(b)
.

(1.7)

Assuming this analytical expression, the couplings and fields write in
the consensus gauge:cf. Eq. (2.31) in

Part I
hi(a) = log fi(a) − log fi(ci)

+

N∑
j=1

(
log

fij(a, cj)

fi(a)fj(cj)
− log

fij(ci, cj)

fi(ci)fj(cj)

)
,

Jij(a, b) = log fij(a, b) − log fij(ci, b) − log fij(a, cj) + log fij(ci, cj) .
(1.8)

1.1.2.2 Approximated errors

Following Eq. (1.8), the approximate variances for inferred fields
and couplings due to finite sampling in consensus gauge are:

σhi(a) =(N− 2)
1− fi(a)

Bfi(a)

+ (N− 2)
1− fi(ci)

Bfi(ci)

∑
j6=i

(
log

fij(a, cj)

fi(a)fj(cj)
− log

fij(ci, cj)

fi(ci)fj(cj)

)
,

σJij(a,b) =
1− fij(a, b)

Bfij(a, b)
+
1− fij(ci, b)

Bfij(ci, b)
+
1− fij(a, cj)

Bfij(a, cj)
+
1− fij(ci, cj)

Bfij(ci, cj)
,

(1.9)
and the approximate statistical errors are given by

δhi(a) =
√
σhi(a) ,

δJij(a, b) =
√
σJij(a,b) .

(1.10)

Note that of all possible gauge states ci (such that hi(ci) = Jij(ci, b) =
0), the consensus (of maximum frequency fi(ci)) states gives the low-
est statistical errors.

1.1.3 Absolute and relative errors between true and inferred couplings

Suppose that the true Potts parameters are known, we define the
absolute error between true and inferred parameters as

∆h =

√
1

qN

∑
i

∑
a

(
hinfi (a) − htruei (a)

)2
,

∆J =

√√√√ 1

q2N(N− 1)/2

∑
i<j

∑
ab

(
Jinfij (a, b) − Jtrueij (a, b)

)2
.

(1.11)
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Given the finite sampling errors (cf. Eq. (1.5) and the two-site ap-
proximation Eq. (1.10)), the relative errors between true and inferred
parameters write

εh =

√√√√ 1

qN

∑
i

∑
a

(
hinfi (a) − htruei (a)

)2
δhi(a)2

,

εJ =

√√√√√ 1

q2N(N− 1)/2

∑
i<j

∑
ab

(
Jinfij (a, b) − Jtrueij (a, b)

)2
δJij(a, b)2

.

(1.12)

1.2 compressed representation of the data

The number of Potts states each variable may take on is not nec-
essarily the same for all variables. States with zero or very small
frequencies may be very few observed in real, finitely-sampled data.
The relative error on the corresponding frequencies and correlations
due to finite sampling is large. For instance, several columns of a pro-
tein multiple sequence alignment (MSA) may contain much less than
21 symbols because of functional constraints, but also of finite size
effects due to the limited number of available sequences.

We describe here a restricted Potts model where the number of
states qi depends on the site i. A total (before the gauge reparametriza-
tion) number of

(∑N
i=1 qi +

∑
i<j qiqj

)
parameters (fields and cou-

plings) are therefore inferred, instead of
(
Nq+ q2N(N− 1)/2

)
, wich

can be much larger. Reducing the number of Potts states per site to a
minimal number therefore limits the overfitting and reduces the com-
putational time (O(qli) operations instead of O(ql), with qi < q and l
the cluster size in the expansion, see Part I Chapter 2). To do so, in-
frequently observed states are effectively grouped together according
to a given compression parameter.

Two conventions for a compressed representation of the data can
be implemented. First, for each variable, only the k states observed
with a frequency larger than a cutoff value

fi(a) > f0 , (1.13)

are explicitly modeled, while all the q− k low frequency states are
grouped together into the same state. Alternatively, ordering the
states decreasingly by their contribution to the total single-site en-
tropy S

q
i , only the first k states are treated explicitly to capture a

cutoff fraction η0 of Sqi :

Ski = −

k∑
a=1

fi(a) log fi(a) −

(
1−

k∑
a=1

fi(a)

)
log

(
1−

k∑
a=1

fi(a)

)
> η0S

q
i ,

(1.14)
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with the remaining q− k states regrouped into one last state. In the
following, we will focus on the first convention which can be used
to explore a wide range of compression regimes. The entropy-based
scheme easily gives rise to strong compressions, relevant only in poor
sampling situations (cf. Chapter 3).

The frequency of the regrouped Potts state is then the sum of the
frequencies of the states which have been grouped together: fi(k+
1) =

∑q
a=k+1 fi(a). With these notations, the final number of Potts

states at site i is qi = k + 1. Once the restricted Potts model is in-
ferred, the complete (q states) model can be recovered by modifying
the fields of the regrouped state a ′:

hi(a
′) = hi(k+ 1) + log

(
fi(a

′)
fi(k+ 1)

)
, (1.15)

but keeping the same value for the corresponding couplings

Jij(a
′, b) = Jij(k+ 1, b) . (1.16)

The fields for the zero frequency states are still fixed from regulariza-
tion alone.

The inevitable loss of information induced by the state compression
– at least when non zero frequency states are regrouped – is balanced
by a huge gain in computational time of the ACE algorithm, as well as
a reduced overfitting leading to an improved inference quality. The
choice of the compression parameters f0 and η0 along with the ef-
fects of this compressed representation of the data will be extensively
discussed in Chapter 3.



2
C O M PA R I S O N W I T H S TA N D A R D M E T H O D S O N
VA R I O U S D ATA S E T S

In this chapter, we apply the Potts version of ACE to various datasets
and asses its ability to recover the true underlying model parameters
when known, reproduce the statistics of the input data, and achieve
structural prediction of contacts in protein family data. A compari-
son with standard DCA approaches (mean-field and pseudolikelihood
approximations) will also be performed.
Most of the results of this section have been recently published in
“ACE: adaptive cluster expansion for maximum entropy graphical model in-
ference”, JP Barton, E De Leonardis, A Coucke, and S Cocco, Bioinformatics
(2016), [13].

2.1 datasets

We will focus in the following on three datasets. First, we study ar-
tificial data (ER05) from a Potts model with q = 21 states, where the
network of interactions is described by an Erdős-Rényi random graph
with N = 50 variables. Each edge in the interaction graph is included
with probability 0.05. Field and coupling values for interacting pairs
of sites are selected from a Gaussian distribution, with mean µ = 0

and standard deviation σ2J = 1 for couplings and σ2h = 5 for fields.
If i and j interact, Jij is a 21× 21 matrix whose elements are chosen
according to the above distributions. B = 104 configurations are gen-
erated through Monte-Carlo sampling. The infrequently observed
Potts states have been compressed with f0 = 0.05 (cf. Eq. (1.13)).
Chapter 3 provides discussion on the choice of f0. The inference has
been performed with and a regularization of γ = 1/B = 10−4 in the
gauge of the compressed state 1.

Second, we analyze the trypsin inhibitor protein family (PF00014),
with N = 53 sites and B = 4915 sequences [29, 42, 82]. After reweight- The reweighting

procedure is
described in Part I
Section 2.3.2

ing in the frequency count the sequences with more than 80% identity,
there are Beff = 2051 sequences left. The rarely observed Potts states
have been grouped together with f0 = 0.05 (cf. Eq. (1.13)). The in-
ference has been performed with regularizations γ = 2/Beff = 10−3

and γ = 1 in the minimum consensus gauge, where the least ob-
served state per site is gauged to zero. Additionally, we noted in Part
II that gaps in the MSA tend to be present in long stretches and are not
generally modeled well in the Potts model representation with pair-

1. In other words, the gauge symbol ci is the compressed state, for more details
about the gauge see Part I Section 2.3.1
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wise interactions. Such stretches of highly correlated gaps slow down
the inference procedure with ACE because they give rise to large clus-
ters. Here we have processed the data to replace gaps by random
amino acids with the same frequency as observed in the non-gapped
sequences, which corresponds to the initial step of the procedure de-
scribed in Part II Chapter 3.

Finally, in the framework of lattice proteins, we consider an align-
ment of B = 5× 10−4 with N = 27 sites folding on a 3× 3× 3 cube
with structure SB and with a probability Pnat > 0.995 [60, 104]. TheSee Part I Chapter 3

for definitions never observed amino acids have been removed (f0 = 0), and the in-
ference has been performed in consensus gauge with regularization
γ = 5/B = 10−4.

2.2 recovery of the er05 parameters

In the following figures, the error bars correspond to the approx-
imate statistical errors on the inferred parameters due to finite sam-
pling, introduced in the last chapter at Eq. (1.10).
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Figure 2.1 – ACE accurately recovers the the true fields (panel (a)) and cou-
plings (panel (b)) corresponding to Potts states with fi(a) >
0.05 for the ER05 model. Error bars denote approximated stan-
dard deviations in estimated parameters due to finite sampling
(Eq. (1.10)).

Fig. 2.1 shows that the 2× 104 underlying parameters of the ER05
model corresponding to the explicitly treated Potts states (fi(a) >
0.05) are accurately recovered by ACE. The infrequently observed
states being discarded by the compression, the remaining states are
better sampled and therefore have smaller statistical uncertainties
(cf. Eq. (1.4) in the last chapter). The error bars on the inferred pa-
rameters are thus fairly small. The model inferred by the standard
plmDCA method at strong regularization and without compression
contains around 106 parameters, which are compared to the true ones
on panels (a) & (b) of Fig. 2.2. Those corresponding to the explicitly
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modeled states in ACE (red dots) are recovered fairly well (with some
errors in the fields), but parameters corresponding to compressed
states are difficult to infer due to insufficient sampling.
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Figure 2.2 – plmDCA fairly well recovers the couplings (left panels) and fields
(right panels) on explicitly modeled states (red dots), com-
pressed states (blue dots) are hard to infer. Standard regular-
ization γ = 10−2 (top panels) gives less accurate results than
weak regularization γ = 1/B = 10−4 (bottom panels).

Panels (c) & (d) of Fig. 2.2 display the plmDCA couplings and fields
with a weaker regularization γ = 1/B = 10−4, similar to the one used
in ACE. The recovery of the parameters is improved, but fields are
still much less precisely inferred than with ACE. As expected, the sta-
tistical errors due to finite sampling are small on explicitly modeled
states (red dots) and very large (especially for fields) on rarely ob-
served states (blue dots), as shown on the error bars of Fig. 2.3. These
poorly inferred parameters will have a huge impact on the generative
properties of plmDCA (cf. Section 2.4 below).

2.3 inference of structural contacts for pf00014

The inferred couplings are used to predict contacts in the tertiary
structure of PF00014. We compare results from ACE and from stan- See Part I Chapter 3

for the methoddard contact prediction methods using direct-coupling analysis in the
mean-field (mfDCA) and pseudolikelihood (plmDCA) approximations.
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Figure 2.3 – plmDCA couplings and fields at weak regularization γ = 1/B =

10−4 for sites i = 2 and j = 4. The statistical errors due to finite
sampling (error bars) are small on explicitly modeled states (red
dots) and very large on rarely observed states (blue dots).
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Figure 2.4 – Panel (a): Contact map for PF00014 inferred by ACE. The top 100
predicted contacts are shown, with true predictions in red and
false predictions in blue. The remaining contact residues in the
structure are shown in gray. Close contacts (< 6 Å) are darkly
shaded and further contacts (< 8 Å) are lightly shaded. The
upper triangular part is for strong regularization (γ = 1) and
the lower triangular part is for weak regularization (γ = 2/B).
Panel (b): Positive predictive values (PPV) as a function of the
number of predictions, for various models. ACE is competitive
with standard approaches.

We consider residues in contact if within 6 Å of each other in the
structure, and we exclude trivial contacts along the protein backbone
(|j− i| 6 4). The accuracy in recovering the contact map with ACE can
be increased by using a large regularization (γ = 1), consistently with
standard approaches using strong regularization or pseudocount like
mfDCA or plmDCA. Fig. 2.4 shows that ACE is competitive with DCA

related approaches
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Figure 2.5 – Fit for ACE-inferred models describing ER05 (top panels), SB (middle panels), and
PF00014 (bottom panels). The frequencies, and two-point connected correlations are
accurately reproduced. ACE also captures higher order correlations, such as the three-
point connected correlations and the probability P(k) of observing a sequence with k
mutations from the consensus configuration. A too strong regularization (γ = 1 for
PF00014) strongly affects the generative properties of the model.

This very large regularization also induces strongly damped cou-
plings and the ACE algorithm converges much faster, with smaller
clusters. As the algorithm is typically slower than standard DCA ap-
proaches, it is important to notice that if one is interested in recov-
ering protein structures, the speed can be increased by using such
regularizations. However, the generative properties of the algorithm
are lost (cf. Section 2.4 below).

2.4 reproducibility of the statistics of the data

The generative properties of an inference method are assessed by
its ability to reproduce the statistics of the input data. We there-
fore compute the statistical correlations of the model through Monte-
Carlo (MC) sampling of a number of configurations from the inferred
model and compare them to the true ones (from the training align-
ment). Four quantities are compared: the frequencies fi(a) and two-
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Figure 2.6 – Fit for plmDCA-inferred models describing ER05 (top panels), SB
(middle panels), and PF00014 (bottom panels). plmDCA is out-
performed by ACE in reproducing the frequencies and two-point
connected correlations, or the probability P(k) of observing a
sequence with k mutations from the consensus configuration.

point connected correlations Cij(a, b) = fij(a, b) − fi(a)fj(b) directly
fitted by the inference method, and higher order statistics not di-
rectly taken into account by the model such as the three-point con-
nected correlation 2 Cijk(a, b, c) and the distribution P(k) of Ham-
ming distances k between the sampled sequences and the consensus
sequence 3.

Fig. 2.5 shows that ACE displays excellent generative properties:
not only the one- and two-point statistics of the input data are ac-
curately reproduced, but ACE gives very satisfactory results on the
higher order functions. The bottom panels of Fig. 2.5 also display
the fits for one- and two-point statistics with γ = 1. Although a very
strong regularization increases the efficiency of ACE to recover the

2. The three-point connected correlation reads Cijk(a, b, c) = fijk(a, b, c) −

fi(a)fjk(b, c) − fj(b)fki(c, a) − fk(c)fij(a, b) + 2fi(a)fj(b)fk(c).
3. P(k) is equivalently the probability of observing a sequence with k mutations

from the consensus sequence, i.e. the configuration in which each site takes on the
most probable value.
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contact map of PF00014 (cf. Fig. 2.4), it causes an over damping of
the inferred couplings and strongly affects the generative properties,
as expected. Furthermore, the generative properties of ACE outper-
form plmDCA. Poorly inferred couplings and fields (cf. Fig. 2.2 & 2.3)
indeed affect the generative properties of plmDCA, which cannot accu-
rately reproduce the statistics of the input data. Even the frequencies
are poorly recovered (cf. Fig. 2.6).

Besides, algorithms based on iterative rounds of MC simulation and
Boltzmann machine learning (BML) are capable of inferring models See Part I Chapter 2

for more detailsthat accurately reproduce the observed correlations, but they are typ-
ically slow to converge [1, 76, 112]. If one is interested in the genera-
tive properties of the inferred model, running such algorithms from
a good initial guess of parameters, such as those obtained by ACE or
even plmDCA, could help to accelerate the inference procedure. An
illustration will be given in the next chapter.

2.5 reproducibility of the energy distribution
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Figure 2.7 – Energies distribution of sequences from the input data (black)
and from the sampled model (blue) for ER05 (left panels), SB
(middle panels), and PF00014 (right panels). MC generated con-
figurations with ACE (top panels) have similar energies than the
input sequences. This is not the case for plmDCA (bottom pan-
els).

A last aspect of statistical consistency lies in comparing the dis-
tribution of energies for configurations sampled from the inferred
model to the distribution obtained from the original data. It indicates
whether the real data could have been generated from the inferred
model. This ability to estimate the energy of a configuration is actu-
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ally paramount when comparing the likelihood of a sequence in two
different models, as we have done in Part II of this dissertation.

The top panels of Fig. 2.7 show that the distributions of energies of
sequences from the input data and sequences generated by the ACE

inferred models closely overlap. A small discrepancy is observed in
PF00014 (right panel), because of the reweighting procedure – the
histogram is normalized by the sequence weights. The energy dis-
tribution for the lattice protein model is broader than for the data,
although the peak is fit correctly.

Contrary to model inferred with ACE, the distribution of energies
is less well reproduced with plmDCA, as shown on the bottom panels
of Fig. 2.7. This is again consistent with Fig. 2.2 & 2.3, which show
that the true Potts parameters are poorly inferred due to insufficient
sampling affecting the generative properties of the model.

2.6 outlook

In this chapter, we applied the Potts version of ACE to various
datasets. The complexity of the inferred Potts models is adapted
to the level of the sampling in the data by both regrouping less
frequently observed Potts states into a unique state (according to a
threshold on entropy or frequency), and then by a sparse inference
procedure that omits interactions that are unnecessary for reproduc-
ing the statistics of the data to within the error bounds due to finite
sampling. We then compared ACE with standard maximum-entropy
inference methods based on pseudolikelihood and mean-field approx-
imations. The latter are particularly fast and adapted to find struc-
tural contacts and use large regularizations. Inference with ACE is
generally slower than mean-field and pseudolikelihood approaches.

However, we showed that ACE was very efficient in recovering the
underlying model parameters when known, and in constructing good
generative models of the data when using a Bayesian value of the
regularization strength (γ ∼ 1/B), outperforming plmDCA. The dis-
tribution of energies is also better described by the models inferred
with ACE than with plmDCA, a paramount property for comparing
sequence scorings (cf. Part II). In analogy with standard DCA meth-
ods, using ACE with strong regularizations improves the contact pre-
diction while the generative properties of the inferred model are de-
graded.

Reducing the number of explicitly Potts states according to their
sampling allows for a faster and more precise inference of the model
parameters while reducing overfitting, and can also be applied to
other inference methods. This is precisely the topic of the next chap-
ter.
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R O L E O F T H E C O M P R E S S E D R E P R E S E N TAT I O N O F
T H E D ATA

In the very last chapter of this dissertation, we will extensively ex- This work has been
initiated in
collaboration with
E. De Leonardis
from LPS-ENS &
LCQB

plore the effect of the compressed representation of the data intro-
duced Chapter 1 – i.e. the adaptation of the complexity of the inferred
Potts model to the level of sampling – on the quality of the inference
with the ACE and plmDCA methods. To carry out this study, we con-
sider artificial data from Erdős-Rényi random graphs. We will start
by analyzing the impact of both compression and gauge on the con-
ditioning of the Fisher information matrix (cf. Chapter 1 Section 1.1).
The variations of the approximate Kullback-Leilbler (KL) divergence
between the true and the inferred distributions with the compression
will then be discussed, leading to indications regarding the optimal
choice for the compression parameter. Finally, the influence of the
compression parameter on the recovery of the true underlying model
parameters and the statistics of the input data will be investigated.

3.1 method and datasets

We consider artificial data from two types of Potts model where the
network of interactions is described by an Erdős-Rényi random graph:
a Potts model with q = 5 states and N = 15 variables for the study of
the conditioning of the Fisher information matrix, and a Potts model
with q = 10 states and N = 50 variables for the rest of this chapter.
In both cases, each edge in the network is included with probability
0.05 with an maximum connectivity of 7 and the Potts parameters
on interacting sites are selected from Gaussian distributions of mean
µ = 0 and standard deviations σ2J = 1 and σ2h = 5.

In each case (q = 5, N = 15 and q = 10, N = 50), 10 realizations
(new network of interactions and new set of fields and couplings) are
generated. For each realization, B = 102, B = 103, B = 104, and
B = 105 configurations are generated through Monte-Carlo sampling.
The observed Potts states are described with the compression scheme
on frequency introduced in Chapter 1 Section 1.2, with parameters
f0 = [10−5, 10−4, 10−3, 10−2, 10−1], in the limit f0 > 1/B.

For the purposes of this study, a version of plmDCA including data
compression (i.e. the number of Potts states depends on the variable)
has been implemented and will be referred to as cplmDCA. Two regu-
larization strengths have been used: the standard high regularization
γ = 10−2 and a sample size dependent regularization γ = 1/B. After

121
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being inferred, the couplings and fields are shifted to the consensus
gauge to compare with the true underlying model parameters.

The ACE inference has been performed by gauging the consen-
sus (and also minimum consensus and compressed states for the
q = 5-state Potts models), with the standard regularization γ = 1/B.
Whichever the chosen gauge, the couplings and fields are then shifted
to the consensus gauge to compare with the true underlying model
parameters.

Taking into account the 10 realizations of the Erdős-Rényi model,
the 4 sample sizes, the 2 to 5 (depending on the sampling) values of
the compression parameter in frequency, the ACE and cplmDCA algo-
rithms have been used to infer the Potts parameters of 140 different
models.

3.2 conditioning of the fisher information matrix and
gauge choice

The Fisher information matrix χ can be used to estimate the statis-
tical fluctuations of the inferred parameters due to finite sampling, as
explained in Chapter 1 Section 1.1. Here, χ is analytically computed
on random graphs of N = 15 variables and q = 5 Potts states, the
inversion of χ being computationally infeasible for larger values of
these parameters. Moreover, to ensure that χ is positive definite, a
sampling-dependent regularization term of 1/B is added to its diago-
nal (cf. Eq. (1.6)).

We introduce the condition number κ of the Fisher information
matrix:

κ(χ) = ||χ|| · ||χ−1|| = σmax(χ)

σmin(χ)
, (3.1)

where σmax and σmin are the largest and smallest singular value of
χ respectively. It measures the stability of the inverse Fisher informa-
tion matrix, or in other words how sensitive it is to small changes in
the statistics of the input data. It is particularly of interest here, as the
statistical errors on the inferred parameters are related to the inverse
of χ. κ ranges from κ = 1 (identity matrix, “perfectly” conditioned)
to κ =∞ (singular matrices, not invertible).
χ is computed for various compression parameters f0 in the three

following gauges:cf. Part I
Section 2.3.2 for the

gauge definition
— consensus, where the gauged symbol ci at site i is the most

frequent state;
— minimum consensus, where the gauged symbol ci is the least

frequent state within the k explicitly modeled states (cf. Section
1.2);

— regrouped, where the gauged symbol is the regrouped state.
Interestingly, the condition number barely depends on the com-

pression parameter as shown on Fig. 3.1, meaning that compressed
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Figure 3.1 – Mean condition numbers κ(χ) of over 10 realizations of the model, as a function of the
compression parameter f0 6 1/B for gauges consensus (blue), minimum consensus
(red), and regrouped (yellow) and sample sizes (a) B = 102, (b) B = 103, (d) B = 104,
and (d) B = 105. Error-bars are standard deviations over the 10 realizations.

representation of the data does not affect the inversion of the Fisher
information matrix and hence the finite sampling errors. We also note
that the condition number strongly depends on the sampling via the
diagonal regularization term 1/B. Indeed, any zero mode will be re-
placed by σmin = 1/B and give rise to a B multiplicative factor to the
condition number.

Moreover, it seems that the condition number is smaller for the
consensus gauge (blue), meaning that σmax is smaller. The consen-
sus gauge will therefore be the chosen gauge for ACE inference in the
following. Although we must stress here that this is only an indi-
cation about the gauge choice, it has also been empirically observed
that the convergence of the algorithm was often faster in this gauge.

3.3 minimizing the kullback-leibler divergence

3.3.1 Theoretical framework

The analytical computation is done in the Ising case for the sim-
plicity of the notations, the generalization to the Potts case being
straightforward. We denote JB = {JBij, h

B
i } the parameters inferred

on a sample of size B, and Jtrue = {Jtrueij , htruei } the true underlying
model parameters. The inferred cross-entropy at sampling B writes

SB = −
∑
σ

PJB(σ) logPJB(σ) , (3.2)

where the sum is over all possible configurations σ = {σ1, ..., σN}. The
inferred probability distribution at finite sampling B is

PJB(σ) =
1

ZB
exp

 N∑
i=1

hBi σi +

N∑
k,l=1
k<l

JBklσkσl

 . (3.3)
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The Kullback-Leibler (KL) divergence between the true and the in-
ferred distributions writes

D(PJtrue ||PJB) =
∑
σ

PJtrue(σ) log
PJtrue(σ)

PJB(σ)

= −Strue −
∑
σ

PJtrue(σ)

{∑
i

hBi σi +
∑
k<l

JBklσkσl − logZB

}

= −Strue + logZB −
∑
σ

PJtrue(σ)

{∑
i

hBi σi +
∑
k<l

JBklσkσl

}
.

However, Eqs. (3.2) & (3.3) give

logZB = SB +
∑
σ

PJB(σ)

{∑
i

hBi σi +
∑
k<l

JBklσkσl

}
.

The KL divergence between the true and the inferred distributions
then writes

D(PJtrue ||PJB) =(SB − Strue) −
∑
σ

PJtrue(σ)

{∑
i

hBi σi +
∑
k<l

JBklσkσl

}

+
∑
σ

PJB(σ)

{∑
i

hBi σi +
∑
k<l

JBklσkσl

}
.

Moreover, a reasonable approximation is

Strue = −
∑
σ

PJtrue(σ) logPJtrue(σ)

≈ SB→∞ = −
∑
σ

PJB→∞(σ) logPJB→∞(σ) ,
(3.4)

because the true underlying parameters are recovered by the infer-
ence method in the perfect sampling case: PJB→∞(σ) → PJtrue(σ).
Therefore,

D(PJtrue ||PJB) =(SB − S∞) +∑
i

hBi

(
〈σi〉B − 〈σi〉∞)

+
∑
k<l

JBkl

(
〈σkσl〉B − 〈σkσl〉∞) , (3.5)

where 〈·〉B =
∑
σ · PJB(σ), and 〈·〉∞ =

∑
σ · PJB→∞(σ) ≈

∑
σ · PJtrue(σ).

It naturally generalizes to the q-state Potts case:

D(PJtrue ||PJB) =(SB − S∞) +
N∑
i=1

q∑
a=1

hBi (a)
(
〈σia〉B − 〈σia〉∞)

+

N∑
k,l=1
k<l

q∑
c,d=1

JBkl(c, d)
(
〈σkcσld〉B − 〈σkcσld〉∞) .

(3.6)
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The dependence of Eq. (3.6) in the compression parameter is not
straightforward: the Potts parameters JB = {JBij, h

B
i } are inferred on

explicitly modeled states only (fi(a) > f0) and then completed to
the full q-state form with Eqs. (1.15) & (1.16). The number of Potts
states depending on f0, each new value of the compression parame-
ters gives rise to new couplings and fields, as well as a new value of
the final entropy SB, computed by the ACE procedure.

To simulate a perfect sampling and compute the one- and two-
point statistics 〈σia〉∞ and 〈σkcσld〉∞ in Eq. (3.6), B = 109 config-
urations are generated through MC sampling of the true underlying
model parameters. The value of entropy S∞ is then inferred from
these correlations with ACE.

3.3.2 Results
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Figure 3.2 – Mean Kullback-Leibler divergence over 10 realizations between
true and inferred probability distributions, as a function of the
compression parameter f0 and for sample sizes B = 102 (blue),
B = 103 (red), B = 104 (yellow), and B = 105 (purple). Black
squares indicate f?0 = 1/

√
B. Error-bars are standard deviations

over the 10 realizations.

Fig. 3.2 displays the mean KL divergence between the true and
the inferred distributions for various sample sizes and compression
parameters. As expected, the KL divergence decreases as the sam-
pling increases, becoming very close to zero for large sample sizes.
The variations of the standard deviations on the 10 realizations (error
bars on the figure) are large for small sample sizes, but very small as
the sampling increases.
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Very interestingly, the KL divergence depends fairly little on the
reduction parameter. However, its behavior is qualitatively different
depending on the sampling. For small sample sizes (B = 102 − 103),
it slightly decreases for large compression parameters. It means that
reducing the number of explicitly modeled Potts states – i.e. increas-
ing f0 and hence reducing the number of parameters to infer – limits
the overfitting and improves the quality of the inference.

On the contrary, for larger sample sizes (B = 104 − 105) it slightly
increases for large compression parameters. Indeed one can expect
that if the sampling is already large enough, reducing too much therelated to the

bias-variance
tradeoff in

supervised learning

number of explicitly modeled Potts states will end up in an important
loss of information affecting the quality of the inference.

Moreover, a natural choice for the compression parameter is f?0 =

1/
√
B such that pair correlations between independent states with

frequencies of f?0 are at the threshold of detection 1/B (i.e. observed
at least once within the B samples). For the considered sample sizes
B = {102, 103, 104, 105}, f?0 takes on the values {0.1, 0.03, 0.01, 0.003}
respectively, pointed out by black squares on Fig. 3.2. This choice
seems indeed relevant as it corresponds to almost optimal values of
the computed KL divergence.

3.4 compression and recovery of the er05 parameters

3.4.1 Inference with the adaptive cluster expansion

Consistently with what has been presented in Chapter 2, the under-
lying true parameters of the model are accurately recovered by ACE.
Fig. 3.3 displays the Pearson correlation coefficients, the absolute er-
rors, and the relative errors (introduced at Eqs. (1.12) & (1.11)) as a
function of the compression parameter f0 and for different sample
sizes. Explicitly modeled states only (fi(a) > f0) are displayed on
the left panels (a) & (d), whereas the complete q-state model (cf. Eqs.
(1.15) & (1.16)) are shown on the right panels (b) & (d).

As expected, the correlations and errors get globally better as the
sample size increases. As the compression parameter f0 increases,
the number of explicitly modeled Potts states is reduced and only
the sufficiently well sampled states are explicitly treated. The cor-
relation between true and inferred couplings on explicitly modeled
states (panel (a)) therefore increases, reaching values close to 1 for
large sample sizes. Besides, the absolute error ∆J (panel (c)) strongly
decreases.

On the other hand, the correlations and absolute errors between
the true and the complete q-state inferred model (panels (b) & (d))
are globally fairly independent from the reduction parameter. For the
largest sample size B = 105 and large compression parameters, the
correlation (resp. absolute error) slightly decreases (resp. increases).
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Figure 3.3 – Mean Pearson correlation (top panels), absolute error ∆J (mid-
dle panels), and relative error εJ (bottom panel) over 10 real-
izations between the true and ACE inferred couplings for ex-
plicitely modeled states only (panels (a) & (c)) and complete q-
state model (panels (b), (d) & (e)), as a function of the compres-
sion parameter f0 and for sample sizes B = 102 (blue), B = 103

(red), B = 104 (yellow), and B = 105 (purple). Error-bars are
standard deviations over the 10 realizations.
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Reducing too much the number of Potts states with a large sampling
indeed results in a loss of information about the system that affects
the quality of the inference. On the contrary, for smaller sample sizes
B = 102 − 104, the correlations and absolute errors get slightly better
for large compression parameters, underlying that reducing the num-
ber of Potts states for small sampling reduces the overfitting. This
confirms what has been previously stated about the KL divergence
between the true and the inferred distributions (Section 3.3).

Finally, the same behavior is observed for the relative error εJ
(panel (e)), which gets a lot bigger for the largest sampling as the
compression parameter increases. Notice that the expected value for
the relative error is around 1. Smaller errors are measured because of
the 2-site approximation (Eq. (1.10)) used here, which overestimates
the finite sampling errors.

3.4.2 Inference with the compressed pseudolikelihood maximization

Very similar results are obtained with the compressed version of
the pseudolikelihood maximization (cf. Fig. 3.4), implemented for
the purposes of this study. It therefore validates the methods of
compression limiting the overfitting within plmDCA, the most used
approximation in the context of protein sequence data. The gain in
computational time is less relevant regarding pseudolikelihood, be-see Part I

Section 2.2.3 for
more details

cause it also linearly depends on the number of sequences in the in-
put alignment, contrary to ACE which only takes one- and two-point
(compressed) frequencies as inputs.

The role of regularization, however, is less clear (cf. Fig. 3.4). It
naturally depends on the sampling, as a weak regularization gives
smaller errors for a large sample size (B = 105). On the contrary, a
strong regularization seems to be more efficient in small sampling
cases. Moreover, this behavior is qualitatively different for large com-
pression parameters (B = 104 − 104 panel (a)). To better understand
the role of regularization, we consider a specific realization of the
ER05 model at B = 104, f0 = 0.01. Fig. 3.5a displays the inferred cou-
plings compared to the true underlying model couplings at strong
(γ = 10−2) and weak (γ = 1/B = 10−4) regularizations.

Strong regularization clearly overdamps large couplings, and as
seen in Chapter 2, the recovery of the true couplings is less accurate.
However, very surprisingly, the absolute error decreases:

∆J(γ = 10−2) = 0.2246 < ∆J(γ = 10−4) = 0.2701 .

This is entirely due to the zero true couplings (the maximum con-
nectivity being fixed to 7, some pairs of sites do not interact and the
corresponding true couplings are zero), which are very badly inferred
at low regularization (vertical bar at x = 0 on Fig. 3.5a). Indeed, these
zero true couplings induce low correlations in the MC-generated align-
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ment and therefore poor inference, giving rise to abnormally high
couplings. High regularization suppresses this effect.
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3.4.2 Inference with cplmDCA

Very similar results are obtained with the compressed version of
the pseudo-likelihood maximization (see Fig. 3.4), validating the im-
plementation of Potts states compression within this approximation.
This is interesting, because plmDCA is a widely used method and we
show here that it can be improved with a compressed representation
of the data, limiting the overfitting. The gain in computational time
is less relevant regarding cplmDCA, because it mainly depends on the
number of sequences in the input alignment, contrary to ACE whichrenvoyer au calcul

de PLM only takes one- and two-point frequencies as inputs.
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Figure 3.4 – Mean absolute error �J (top panels) and relative error ✏J (bot-
tom panel) over 10 realizations between the true and cplmDCA

inferred couplings for explicitely modeled states only (panels
(a)) and complete q-states model (panels (b) & (c)), as a func-
tion of the compression parameter f0, for standard regulariza-
tion � = 10-2 (stars) and sampling-dependent regularization
� = 1/B (diamonds), and for sample sizes B = 102 (blue),
B = 103 (red), B = 104 (yellow), and B = 105 (purple). Error-
bars are standard deviations over the 10 realizations.

(c)

Figure 3.4 – Mean absolute error ∆J (top panels) and relative error εJ (bot-
tom panel) over 10 realizations between the true and cplmDCA

inferred couplings for explicitely modeled states only (panels
(a)) and complete q-states model (panels (b) & (c)), as a func-
tion of the compression parameter f0, for standard regulariza-
tion γ = 10−2 (stars) and sampling-dependent regularization
γ = 1/B (diamonds), and for sample sizes B = 102 (blue),
B = 103 (red), B = 104 (yellow), and B = 105 (purple). Error-
bars are standard deviations over the 10 realizations.

Actually, if zero real couplings are discarded, the absolute errors
becomes:

∆̃J(γ = 10−4) = 0.0956 .

Interestingly, increasing the compression parameter and thus re-
ducing the number of explicitly modeled Potts states discards these
poorly sampled sites and reduce the abnormally high inferred cou-
plings, as displayed on Fig. 3.5b, on which the above-mentioned ver-
tical bar shrinks.
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Figure 3.5 – Comparison between cplmDCA-inferred couplings and true un-
derlying model couplings for a specific realization of the ER05
model at B = 104. Panel (a): comparison between strong (light
blue) and weak (dark blue) regularizations at fixed compression
f0 = 0.01. Panel (b): comparison between compression parame-
ters f0 = 10−4 (blue), f0 = 10−2 (red), and f0 = 10−1 (yellow)
at fixed weak regularization γ = 1/B.

3.5 compression and reproducibility of the statistics

The very last section of this dissertation will address the influence
of the compressed representation of the data on the generative prop-
erties of the inferred model. For each of the 10 Erdős-Rényi random
graph realizations, sample sizes, and values of the compression pa-
rameter in frequency f0 (a total of 140 different models), we compute
the one-, two-, and three-point correlation functions through Monte-
Carlo sampling of a given number of configurations from the inferred
model with ACE and cplmDCA, as in Chapter 2. The Pearson correla-
tion between the MC statistics and to the true ones is then computed
for each of the 140 models. Consistently with Chapter 2, ACE gives
better results than cplmDCA, as shown on Fig. 3.6, on explicitly mod-
eled states only. This is especially the case for magnetizations (left
panels) and three-point connected correlations (right panels). As ex-
pected, the Pearson correlation between the true and MC statistics
increases with the sample size.

The role of compression is however less clear than for the KL di-
vergence between the true and the inferred distributions or the re-
covery of the true underlying Potts parameters. The generative prop-
erties (on explicitly modeled states) seem rather unaffected by the
compressed representation of the data, as the Pearson correlation is
globally flat. It has a slight tendency to increase with the compres-
sion parameter, as poorly inferred states are removed, consistently
with the results of the previous sections. However, for largest val-
ues of the compression parameter f0 = 0.1, the correlation between
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Figure 3.6 – Mean Pearson correlation coefficient over the 10 realizations be-
tween the input statistics and the MC statistics from ACE (top
panels) and plmDCA, fi(a) (left panels), Cij(a, b) (middle pan-
els), and Cijk(a, b, c) (right panels), as a function of the com-
pression parameter f0 and sample sizes B = 102 (blue), B = 103

(red), B = 104 (yellow), and B = 105 (purple). Error-bars are
standard deviations over the 10 realizations.

true and MC statistics sometimes decreases. It is the case for magne-
tizations inferred with cplmDCA for all sample sizes (panel (d)) and
three-point connected correlations with ACE for small sample sizes
(panel (c)). In Chapter 2, we noted that magnetizations are partic-
ularly badly reproduced by plmDCA (cf. Fig. 2.6), regardless of the
sample size. Three-point connected correlations are in any case hard
to infer for small sample sizes.

More than the compression parameter (when at least the non ob-
served states are removed), what seems to matter most is the strength
of the regularization. Fig. 3.7 gives an overview of the generative
properties for a given realization of the Erdős-Rényi model with B =

104 configurations, depending on the inference method: ACE (top
panels) with f0 = 0.1, standard plmDCA without any compression and
standard regularization γ = 10−2, compressed version cplmDCA with
f0 = 0.1 and standard regularization γ = 10−2, cplmDCA with f0 = 0.1
weak regularization γ = 1/B = 10−4, and cplmDCA with f0 = 0.1
standard regularization and refined with BML (bottom panels).

As usual, ACE (top row) outperforms any version of plmDCA, re-
gardless of the presence of compression or the regularization strength.
The standard version of plmDCA with no compression scheme (second
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Figure 3.7 – Fit for ACE with f0 = 0.1 (top panels) and various versions
of the pseudolikelihood maximization, from top to bottom:
plmDCA standard without compression and strong regulariza-
tion, cplmDCA with compression f = 0.1 and standard strong
regularization, cplmDCA with compression f = 0.1 at weak regu-
larization, plmDCA with compression f = 0.1 at standard strong
regularization refined with BML.
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row) also includes poorly sampled states and the two- and three-point
connected correlations cannot be accurately reproduced. Adding a
compression scheme regroups these states and improves the genera-
tive properties on explicitly modeled states (third to fifth rows). With
cplmDCA at fixed compression f0 = 0.1, decreasing the regularization
from standard γ = 10−2 (third row) to weak γ = 1/B (fourth row)
gives much better fits.

Finally, as mentioned in Chapter 2 Section 2.4, the output set of
fields and couplings of cplmDCA can be used as starting values for
a BML routine. In this case, the procedure can lead to rapid conver-
gence of the model even when the starting error is large due to strong
regularization. Besides, running plmDCA or cplmDCA with weak reg-
ularization greatly increases the computational time. The latter can
therefore be reduced by using a strong regularization to infer the
Potts parameters and refining them with BML. The generative prop-
erties of the resulting model (last row) are excellent, comparable to
ACE.

3.6 outlook

In this last chapter, we have explored the role played by the com-
pressed representation of the data on the quality of the inference,
by studying the conditioning of the Fisher information matrix, the
Kullback-Leibler divergence, the recovery of the true underlying model
parameters, and the generative properties of the inferred models.
140 models have been generated corresponding to 10 realizations of
Erdős-Rényi random graphs, 4 sample sizes (B = 102 to 105), and
various values of the compression parameters f0. Potts parameters
have been inferred for each of these models with ACE and a com-
pressed version of pseudolikelihood maximization called cplmDCA im-
plemented for the purposes of this study.

If the KL divergence for the completed models (the regrouped states
are expanded according to Eqs. (1.15) & (1.16)) depends fairly little
on the compression parameter, interesting variations are observed at
strong compression depending on the sampling. For small sample
sizes, the KL divergence between the true and the inferred distribu-
tions can be reduced by decreasing the number of explicitly modeled
states (increasing f0), therefore limiting the overfitting. On the con-
trary, for large sample sizes, all Potts states are expected to be well
represented in the samples and the loss of information induced by
the compression affects the quality of the inference.

This behavior is confirmed by the analysis of statistical errors on
the inferred Potts parameters with ACE and cplmDCA. Naturally, the
precision on the inferred parameters increases with the compression
parameter, as insufficiently sampled states are removed. Moreover,
regularization plays an important role in both the accuracy of the in-
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ferred couplings and the generative properties of the model. Decreas-
ing the standard plmDCA regularization from 10−2 to 1/B improves
the generative properties of the model but also increases the required
computational time. On the other hand, Boltzmann machine learn-
ing routines have been shown to give good generative models but are
typically slow to converge. A compromise can be found by using a
strong regularization and then refining the inferred Potts parameters
with BML.

A possible application for the compressed representation would be
protein domain families with few sequences. Some Pfam protein do-
mains indeed contain a limited number of sequences, and although
Pfam is frequently updated and grows continuously, the tendency is
rather in adding more sequences to already large families than com-
pleting small families. DCA related approaches are of course strug-
gling in poor sampling cases. However, we have seen in this chap-
ter that the compression of the Potts states is particularly efficient in
these cases, and it would be very interesting to see whether the com-
pression could help improving the inference with only few sequences.

To provide some insight about the feasibility of this application,
we display on Fig. 3.8 the distribution of single-site entropies given
by Si = −

∑q
a=1 fi(a) log fi(a) for two protein domain families: the

response regulator receiver domain (Pfam id: PF00072) and the P53
DNA-binding domain (Pfam id: PF00870). The former is one of the
largest family in the Pfam database with Beff & 150000 sequences
and N = 112 residues and the latter is a small family with Beff =

117 sequences and N = 196 residues. The single-site entropies seem
to vary considerably from one family to the other, and are typically
higher in the large family. It indicates that the effective number of
Potts states (qi, i = 1, ..., N) may also greatly vary from one family to
the other and also, more importantly, from one site to the other.
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Figure 3.8 – Single-site entropy distribution for PF00072 (blue) and PF00870
(red), with respectively Beff & 150000 and Beff = 117 se-
quences.
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1
S U M M A RY O F T H E R E S U LT S

Proposed in 2009, direct-coupling analysis (DCA) is a global statisti-
cal inference method taking the form of a q-state Potts model, which
describes the variability of sequences across homologous protein fam-
ilies. Using pairwise correlations in amino-acid occurrence from large
multiple sequence alignments – readily available thanks to rapidly
increasing sequence databases – DCA is able to make structural pre-
dictions about proteins (i.e. contacts on the 3D fold) from purely sta-
tistical considerations based on sequence information alone, and is
today widely used in the field (Part I). Encouraged by the success of
this approach, we explored other challenging fields in which it may
be applied, such as protein folding or homology detection (Part II).
Contrary to residue-residue contact prediction, which remains an in-
trinsically topological information about the network of interactions,
these fields require global energetic considerations and therefore a
more quantitative and detailed model. We indeed realized that a
better understanding of DCA models, of their couplings parameters
(which were not fully exploited), and of the role of other aspects of
the problem (gauge, regularization, sampling, etc.) are paramount to
succeed in going beyond protein structure prediction (Parts III & IV).

In Part II, we focused on two possible applications for DCA ap-
proaches: sequence folding prediction and homology detection. We
proved in Chapter 1 that DCA is a good predictor of whether a given
artificial sequence will fold in a native structure or not, outperform-
ing non-pairwise models such as HMMer. This work is based on
a recent publication, where artificial proteins sequences for the WW
domain were designed based on the original multiple sequence align-
ment, and their folding properties assessed experimentally. This is a
very encouraging result toward the applicability of DCA methods to
protein design.

Another possible field of application is remote homology detection,
a computationally hard problem where methods treating residues in-
dependently, such as HMMer, are often not satisfactory. Pairwise
models considering covariation patterns – currently not taken into ac-
count – could perform better. While alignment gaps are quite rare in
the artificial sequences for the WW domain, they are much more fre-
quent in remote homologs. We showed that they give rise to strong
couplings in DCA approaches, which treat them as an extra amino
acid, despite strong evidence that they are intrinsically different. The
sequence scoring with DCA energies can therefore become completely

136
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irrelevant, because mostly dominated by gap signals. We introduced,
in Chapter 2, a correction based on a null model of the gap distribu-
tion, so that only the signal stemming from amino acids is captured,
getting rid of the spurious gap-induced interactions.

We applied this model to a dozen of protein domain families di-
vided into sub-families according to their natural clustering into do-
mains of life (eukaryotes, bacteria, archaea). Surprisingly, DCA has a
stronger tendency than HMMer to discriminate between sequences
from the same family, consistently with the phylogenetic distribution.
It is sometimes able to detect errors in the labeling of sequences, or at
least to give interesting insights about unclassified sequences, point-
ing out good candidates for further studies. Having a more detailed
picture of the different domains of life could also be very useful for
phylogeny. Although they do not quite answer the question about
remote homologies asked in the first place, these preliminary results
are promising for the application of DCA approaches beyond struc-
tural prediction in proteins.

In a more principled approach presented in Chapter 3, we pro-
posed a theoretical framework in which alignment gaps are modeled
as missing information, and thus gap-rich sequences as partial obser-
vations. This specific problem had never been addressed in the litera-
ture to the best of our knowledge; related approaches indeed consider
hidden nodes (and not random missing entries in the dataset). Our
iterative procedure has been tested on random distributions of gaps
in Erdős-Rényi graphs. We proved that the true underlying model pa-
rameters can be accurately recovered, depending on the sample size
and the amount of missing entries in the sequences. The true ener-
gies are also well reproduced, within the expected precision due to
the uncertainty, and much better than with the standard DCA model.

Then, in order to better understand the specificities of DCA ap-
proaches, we studied extensively in Part III its central parameters: the
Potts couplings. These q×q matrices are usually mapped onto scalar
parameters which are subsequently ranked, losing a large part of the
information they potentially contain. We showed that the couplings
contain quantitative and interpretable biological information related
to the physico-chemical properties of amino-acid interactions. These
interactions are consistent with state-of-the-art knowledge-based ami-
no-acid potentials.

Our results are based on the analysis of 70 protein multiple se-
quence alignments (MSAs) in Chapter 2, from which we inferred the
Potts parameters. The average coupling matrix (over the top-ranked
residue pairs for each family) and its spectral modes display interest-
ing features: electrostaticity, hydrophobicity, and stericity. The full
biological content of the coupling matrices – Cysteine-Cysteine and
hydrophilic interactions – was however unveiled by considering struc-
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tural classifications and solvent exposure. We also showed that the
distribution of contact distances in the tertiary structure greatly de-
pends on the type of interaction associated to the contact. Despite
our several attempts, we could not however use this information to
improve the structural prediction in proteins. Notice that only meta
methods, such as PconsC2 [106] – using also e.g. the vicinity of a po-
tential contact, or secondary-structure predictions – are currently able
to better separate signal from noise. Interestingly, such meta meth-
ods are mostly improving the contact prediction between secondary
structures – i.e. filling the predicted contact map – but frequently not
adding new structurally informative contacts.

We furthermore considered abstract lattice-protein models in Chap-
ter 3 to better understand the crucial role of sampling and regulariza-
tion on the inferred Potts parameters. Decreasing the regularization
strength allows for a richer signal to emerge in the coupling matrices
– consistent with amino-acid interactions and evolutionary pressure –
but only if the sample size is sufficiently large. Otherwise, the signal
is strongly affected by sampling noise. This is precisely the case for
real proteins, where the number of non-redundant sequences (Beff) is
still limited. Consistently with a recent publication by our group, we
used the detailed structure of the inferred couplings to improve struc-
tural predictions for lattice proteins in the sufficient sampling case.
Note that this picture somewhat depends on the inference method
considered: more precise inference procedures, such as the adaptive
cluster expansion, allow to detect a stronger signal.

Finally, in Part IV, we focused on the adaptive cluster expansion
(ACE), recently generalized to the Potts case. This method is adapted
to the level of noise in the data by inferring a sparse network omit-
ting insufficiently well sampled interactions, while proposing a com-
pressed representation of the data (introduced in Chapter 1). In
Chapter 2, we compared ACE to standard DCA approaches on several
datasets (Erdős-Rényi graphs, lattice proteins, and real proteins). We
showed that ACE outperforms DCA methods based on pseudolikeli-
hood approximations (plmDCA) in recovering the underlying model
parameters on artificial data, and in constructing good generative
models. More over, ACE is competitive with standard approaches in
predicting protein contacts. The distribution of energies is also better
described by the models inferred with ACE, a paramount property for
comparing sequence scorings.

By reducing the size of the system, the compression of the num-
ber of Potts states decreases the computational time of the procedure.
We explained in Chapter 3 that it also reduces overfitting in the finite
sampling case, improving the quality of the inference. The Kullback-
Leibler divergence between the true and the inferred distributions
may indeed be lowered by decreasing the number of explicitly mod-
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eled states. This behavior is confirmed by the analysis of statistical er-
rors on the inferred Potts parameters with ACE and a compressed ver-
sion of the pseudolikelihood approximation of direct-coupling analy-
sis (cplmDCA), implemented for the purposes of this study. The role of
state compression on the generative properties of the model remains
unclear and needs to be further investigated.



2
O U T L O O K A N D F U T U R E W O R K

I review here several aspects of the work I have presented in this
dissertation which, in my opinion, call for further investigation.

The first problem that needs to be addressed is related to remote
homology detection, where similarities need to be found among evo-
lutionary distant proteins. As explained above – under the naive as-
sumption that single-site conservation patterns may be less preserved
than covariation patterns among remote homologs – pairwise mod-
els inferred with DCA seems to be a natural method to tackle this
problem. I was quite surprised to see that, on the contrary, pairwise
models have a stronger tendency than independent-site methods to
discriminate (rather than finding similarities) between sequences from
the same family, consistently with their phylogenetic distribution.

At first, I was quite disappointed that DCA could not straightfor-
wardly be used as a tool for remote homology search, but it does
answer a different question related to the detection of dissimilarities
among sequences. To my mind, we need to put effort in finding a
use case, where this ability could be of interest. Strikingly, members
of my group working on neuroscience problems also showed thatR. Monasson with

S. Rosay, and later
L. Posani.

inferred pairwise model outperform single-site approaches in retriev-
ing a rat’s current environment from place cells recordings [97]. The
ability of pairwise models to discriminate between neuron sequences
was paramount in the success of this study. In a way, we need to find
the equivalent in the context of protein sequences.

This also raises the question of sequence alignment. All multiple
sequence alignments used in this dissertation have been downloaded
from the Pfam database and thus built with profile models, treating
residues independently and based on single-site frequency patterns.
The methods we develop are, however, based on pairwise models
and exploit covariation patterns, currently not taken into account in
alignment methods. Furthermore, standard DCA approaches are lim-
ited to sequences of a fixed length N – corresponding to the size of
the alignment from which the Potts parameters have been inferred –
contrary to profile-HMM specifically designed (via insertion states) to
produce sequences longer than the profile length. Developing a sim-
ilar approach to align sequences, but with pairwise Markov random
fields, would address both issues.

I mentioned several times in this dissertation the future availability
of artificially designed protein data. R. Ranganathan and his team at
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UT Southwestern have developed the techniques introduced for the
WW domain (cf. Part I) and have reduced the time and cost of the
experimental procedure. They have applied similar methods to the
chorismate mutase, an enzyme catalyzing the production of amino
acids. Our group recently obtained preliminary results on this data, M. Figliuzzi from

our group at LCQBconfirming the ability of DCA approaches to predict protein folding.
New sequences with specifically low DCA energies have also been sub-
mitted for experimental design to the aforementioned collaborators,
and the results should be known soon. Protein design really is an
exciting domain of research with limitless potentialities, and I look
forward to the development of DCA methods in this field.

On a different topic, the theoretical framework we have developed
for inverse Potts models with missing information in samples needs
to be applied to real data. An interesting application would be metage-
nomic sequences, which often come in fragments indicating a high
level of uncertainty on specific regions of the alignments. This ap-
proach is not really relevant for homology search as it replaces the
gaps of a given sequence according to the correlation patterns in
the observed alignment, thus slightly favoring this sequence energet-
ically.

Besides, it could be really interesting to apply the compressed rep-
resentation of the data (cf. Part IV) to Pfam families with few se-
quences. DCA methods naturally struggle on poorly sampled data,
and we have shown in the last part of this dissertation, that group-
ing insufficiently observed Potts states together helps reducing over-
fitting. Such domain families include proteins of major importance,
such as complex protein interfaces involved in many cellular path-
ways [120], HIV p7 nucleocapsid protein essential for viral replication
[51] (with a lot of sequence redundancy in a single patient, limiting
Beff), or the tumor suppressor protein p53 [111] (with Beff = 117).

A last problem I wish I had the time to tackle is related to the
detection of intermediate contacts. Protein folding can indeed be a
slow process, pausing in many well-define intermediate states [20].
The corresponding contacts are crucial for the folding at an interme-
diary stage, but not present in the final, native structure. Provided
that these conformations are stabilized long enough, they may very
well induce coevolution between residues. In the same way that con-
tacts in dimeric assemblies are detected by DCA approaches [36] and
lead to false positive (because in contact in the quaternary but not
tertiary structure), it would be absolutely fascinating to see if some
false predictions could actually be explained by intermediate states
in the folding process. Some data may be available in [3, 85].

In my opinion, what is particularly complex in the field of pro-
tein sequence data is that we consider real, biased, finitely sampled
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data that is of course not generated by a known model. There is
no such thing as the “best” method, outperforming any other ap-
proach for all use cases. For instance, given the results we obtained
in Part II, the mean-field approximation of direct-coupling analysis
seems to be better than pseudolikelihood in discriminating between
protein sub-families, consistently with their phylogenetic distribution.
The pseudolikelihood approach, however, outperforms all approxi-
mations in protein structure prediction but its generative properties
are surpassed by adaptive cluster expansion.

A theoretically perfect model, which is both consistent – in the
sense that it recovers the exact parameter values in the limit of an
infinitely large sample drawn from the Potts model – and genera-
tive can very well be defeated by simple approximations on real data.
Each new field of application requires a benchmark of all existing
methods, which is quite unsatisfactory in my humble opinion. But
what makes biology a fascinating field for statistical physicists is the
limitless number of applications; while we try to understand the bio-
logical world with our own tools, we discover new ways to improve
these tools and every question raises another.

I think that we also need to keep in mind that the availability and
the quality of the data is constantly improving. Therefore, we could
rapidly reach a point where databases contain large samples of rather
unbiased configurations, and then it will be paramount that our mod-
els are statistically consistent and generative.
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Direct coevolutionary couplings reflect biophysical residue
interactions in proteins

Alice Coucke,1, 2 Guido Uguzzoni,2 Francesco Oteri,2 Simona Cocco†,3 Remi Monasson†,1 and Martin
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Coevolution of residues in contact imposes strong statistical constraints on the sequence variabil-
ity between homologous proteins. Direct-Coupling Analysis (DCA), a global statistical inference
method, successfully models this variability across homologous protein families to infer structural
information about proteins. For each residue pair, DCA infers 21⇥21 matrices describing the co-
evolutionary coupling for each pair of amino acids (or gaps). To achieve the residue-residue contact
prediction, these matrices are mapped onto simple scalar parameters; the full information they con-
tain gets lost. Here, we perform a detailed spectral analysis of the coupling matrices resulting from
70 protein families, to show that they contain quantitative information about the physico-chemical
properties of amino-acid interactions. Results for protein families are corroborated by the analysis of
synthetic data from lattice–protein models, which emphasizes the critical effect of sampling quality
and regularization on the biochemical features of the statistical coupling matrices.

I. INTRODUCTION

Across evolution, the structure and function of ho-
mologous proteins are remarkably conserved. As
a consequence, neighboring residues in the three-
dimensional structure tend to coevolve, leading to
strong constraints on the sequence variability. Di-
rect Coupling Analysis (DCA)1,2, a global inference
method based on the maximum-entropy principle3,4,
successfully exploits pairwise correlations in amino-
acid occurrence, which are easily observable in
large multiple-sequence alignments, to infer spa-
tial residue-residue contacts within the tertiary pro-
tein structure. This approach uses a global sta-
tistical model P (a1, ..., aL) for an amino-acid se-
quence (a1, ..., aL) of length L, whose parameters
are fields/biases {hi(a)} and statistical couplings
{Jij(a, b)}, where a, b are amino acids or align-
ment gaps (denoted for simplicity by {1, ..., 21}
throughout the paper). These parameters are learnt
from site-specific amino-acid frequencies, and from
the covariance between amino-acid pairs estimated
from multiple-sequence alignments (MSA), which
are readily available thanks to rapidly increasing
sequence databases5,6. Contact prediction is per-
formed by measuring the total coupling strength be-
tween two residues. The coupling matrices - inferred
at high computational cost - are mapped onto sim-
ple scalar parameters, and the full information they

potentially contain gets lost.
The aim of our work is to provide a better quan-

titative understanding of these inferred couplings.
Earlier works have shown that the coevolutionary
couplings derived by DCA contain an electrostatic
signal7. In the present study, we go considerably
further and show that the coevolutionary couplings
also contain quantitative and interpretable biologi-
cal information related to all the physico-chemical
properties of amino-acid interactions, not only elec-
trostaticity, but also hydrophobicity/hydrophilicity,
Cysteine-Cysteine bonds, Histidine-Histidine and
steric interactions. These interactions are consistent
with knowledge-based amino-acid potentials inferred
from known protein structures, such as the statisti-
cal potential derived by Miyazawa and Jernigan8.

To carry out our study, we first consider a set of
70 Pfam6 protein families from which we infer the
coupling matrices. After selecting the top ranked
residue pairs for each family, we analyze the mean
coupling matrix and its spectral modes. Considering
structural classifications and solvent exposure helps
unveiling the full biological content of the coupling
matrices {Jij(a, b)}a,b2{1,...,21}. Our analysis also
shows that the distribution of contact distances in
the tertiary structure greatly depends on the type
of interaction associated to the contact.

In a second part of the article, to better under-
stand the effect of sampling and regularization on
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The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/061390doi: bioRxiv preprint first posted online Jun. 29, 2016; 

144



A.2 bioinformatics [13] 145

a.2 bioinformatics [13]

Sequence analysis

ACE: adaptive cluster expansion for maximum
entropy graphical model inference

J. P. Barton1,2,*, E. De Leonardis3,4, A. Coucke4,5 and S. Cocco3,*

1Departments of Chemical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA
02139, USA, 2Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and
Harvard, Cambridge, MA 02139, USA, 3Laboratoire de Physique Statistique de L’Ecole Normale Supérieure, CNRS,
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Abstract

Motivation: Graphical models are often employed to interpret patterns of correlations observed in
data through a network of interactions between the variables. Recently, Ising/Potts models, also
known as Markov random fields, have been productively applied to diverse problems in biology,
including the prediction of structural contacts from protein sequence data and the description of
neural activity patterns. However, inference of such models is a challenging computational prob-
lem that cannot be solved exactly. Here, we describe the adaptive cluster expansion (ACE) method
to quickly and accurately infer Ising or Potts models based on correlation data. ACE avoids overfit-
ting by constructing a sparse network of interactions sufficient to reproduce the observed correl-
ation data within the statistical error expected due to finite sampling. When convergence of the
ACE algorithm is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We
illustrate this method on a variety of biological and artificial datasets and compare it to state-of-the-
art approximate methods such as Gaussian and pseudo-likelihood inference.
Results: We show that ACE accurately reproduces the true parameters of the underlying model
when they are known, and yields accurate statistical descriptions of both biological and artificial
data. Models inferred by ACE more accurately describe the statistics of the data, including both the
constrained low-order correlations and unconstrained higher-order correlations, compared to
those obtained by faster Gaussian and pseudo-likelihood methods. These alternative approaches
can recover the structure of the interaction network but typically not the correct strength of inter-
actions, resulting in less accurate generative models.
Availability and implementation: The ACE source code, user manual and tutorials with the ex-
ample data and filtered correlations described herein are freely available on GitHub at https://
github.com/johnbarton/ACE.
Contacts: jpbarton@mit.edu, cocco@lps.ens.fr
Supplementary information: Supplementary data are available at Bioinformatics online.
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H M M E R S C O R I N G P R O C E D U R E

The several steps of the scoring procedure are detailed below:

1. The first task is to divide a protein domain family downloaded
from the Pfam database into sub-families, according to the do-
mains of life (Eukaryota, Bacteria, Archaea). This is done by re-
trieving the labeling of the aligned sequences in the MSA, given
in the tab “species” in Pfam (pfam.xfam.org/family/PF00011#
tabview=tab7). Some discrepancies may be observed between
Pfam and Uniprot, as the latter is updated more regularly. More
over, some sequences are uncharacterized, or of unknown do-
main.

2. A profile-HMM is built (hmmbuild command of the HMMer soft-
ware) on the training sub-alignment, which therefore has to be
retrieved in full length from the Uniprot database (by searching
by sequence name). A problem is that the profile length may dif-
fer from the original MSA. A simple way to solve the problem
is to “fake” the full length alignment by using the semi-aligned
version from Pfam also including insertions.

3. All the sequences from the original MSA are scored with the
profile-HMM corresponding to the training sub-family (hmmsearch
command of the HMMer software). It rarely happens (2% of the
sequences on average) that HMMer breaks a sequence into two
relevant domains that do not exist in the original MSA. This is
always due to the presence of insertions in the middle of the
sequence, too penalized by HMMer to be detected as a whole.
The log-odds score assigned to such sequences is the sum of the
scores of both domains.
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T R A I N I N G O N T H E E U K A RY O T I C S U B - FA M I L I E S

To illustrate the properties of the different models to discriminate
between the training and test sub-families, we consider the ROC curve
(and the corresponding AUC, area under the ROC curve), assessing
the performance of binary classifiers. The two classes are in this case
the eukaryotes (training sub-family) considered as true positive and
the bacteria (test sub-family) considered as false positive. A perfect
classifier would give higher scores to all eukaryotes and therefore
would be the constant 1 in the ROC space; a random guess would
go along the diagonal. Figure C.1 displays the mean ROC and AUC

over the five Pfam families studied in this section (PF00011, PF00013,
PF00027, PF00033, PF00664) in three models (HMMer score, mfDCA

corrected by the null model, plmDCA corrected by the null model).
HMMer is outperformed by mfDCA and plmDCA when corrected by
the null model on gaps.
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Figure C.1 – Mean ROC (panel (a)) and AUC (panel (b)) curves over the 5
studied Pfam families, illustrating the performance of the dif-
ferent models in discriminating between sequences, depending
on whether they belong to the same domain of life than the
training sub-family (here eukaryotes) or not. Pairwise models
are better classifiers.
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M A X I M U M - L I K E L I H O O D E Q U AT I O N S W I T H
M I S S I N G D ATA

d.1 first maximum-likelihood equation

The derivative of the log-likelihood with respect to the field hk(c)
writes:

∂L̃

∂hk(c)
=

∂

∂hk(c)

M∑
m=1

log
∑

b1,...,bL

 ∏
{j|aj 6=0}

δaj,bj

P(b1, ..., bL)
=

M∑
m=1

1

P̃(am1 , ..., a
m
L )

∑
b1...bL

 ∏
{j|amj 6=0}

δamj ,bj


× ∂

∂hk(c)

 1
Z

exp
L∑
i=1

hi(bi) +

L∑
i,j=1

Jij(bi, bj)


︸ ︷︷ ︸

αk(c)

.

But
αk(c) = (δbk,c − Pk(c))P(b1, ..., bL) ,

with Pk(c) the marginal of the probability distribution P:

Pk(c) :=
1

Z

∑
b1...bL

δbk,c exp
L∑
i=1

hi(bi) +

L∑
i,j=1

Jij(bi, bj) .

We then have

∂L̃

∂hk(c)
= −MPk(c) +

M∑
m=1

1

P̃(am1 , ..., a
m
L )

×
∑
b1...bL

 ∏
{j|amj 6=0}

δamj ,bj

 δbk,cP(b1, ..., bL)︸ ︷︷ ︸
χmk (c)

.

The quantity χmk (c) depends on the observation of amk :

— If amk 6= 0 (observed):
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χmk (c) =
∑
b1...bL

 ∏
{j|amj 6=0}
j6=k

δamj ,bjδa
m
k ,bk

 δbk,cP(b1, ..., bL)

= δamk ,c
∑
b1...bL

 ∏
{j|amj 6=0}

δamj ,bj

 δbk,cP(b1, ..., bL)
= δamk ,c × P̃(a

m
1 , ..., a

m
L ) .

— If amk = 0 (not observed):

χmk (c) =
∑
b1...bL

 ∏
{j|amj 6=0}
j6=k

δamj ,bj

 δbk,cP(b1, ..., bL)
= P̃(am1 , ..., a

m
k = c, ..., amL ) .

Therefore

∂L̃

∂hk(c)
=

M∑
m=1

δamk ,0
P̃(am1 , ..., a

m
k = c, ..., amL )

P̃(am1 , ..., a
m
L )

+

M∑
m=1

δamk ,c −MPk(c)

=
∑

{m|amk =0}

P(amk = c|{ami |ami 6= 0}) +
M∑
m=1

δamk ,c −MPk(c) ,

because P̃(am1 , ..., a
m
L ) = P({ami |ami 6= 0}).

We finally get the first maximum-likelihood equation:

MPk(c) =

M∑
m=1

δamk ,c +
∑

{m|amk =0}

P(amk = c|{ami |ami 6= 0}) (D.1)

d.2 second maximum-likelihood equation

The derivative of the log-likelihood with respect to the couplings
Jkl(c, d) writes:

∂L̃

∂Jkl(c, d)
=

∂

∂Jkl(c, d)

M∑
m=1

log
∑

b1,...,bL

 ∏
{j|aj 6=0}

δaj,bj

P(b1, ..., bL)
=

M∑
m=1

1

P̃(am1 , ..., a
m
L )

∑
b1...bL

 ∏
{j|amj 6=0}

δamj ,bj


× ∂

∂Jkl(c, d)

 1
Z

exp
L∑
i=1

hi(bi) +

L∑
i,j=1

Jij(bi, bj)


︸ ︷︷ ︸

βkl(c,d)

.
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But
βk(c) = (δbk,cδbl,d − Pkl(c, d))P(b1, ..., bL) ,

with Pkl(c, d) the marginal of the probability distribution P:

Pkl(c, d) :=
1

Z

∑
b1...bL

δbk,cδbl,d exp
L∑
i=1

hi(bi) +

L∑
i,j=1

Jij(bi, bj) .

We then have

∂L̃

∂Jkl(c, d)
= −MPkl(c, d)

M∑
m=1

1

P̃(am1 , ..., a
m
L )

×
∑
b1...bL

 ∏
{j|amj 6=0}

δamj ,bj

 δbk,cδbl,dP(b1, ..., bL)︸ ︷︷ ︸
ξmkl(c,d)

.

The quantity ξmkl(c, d) depends on the observation of amk and aml :

— If amk 6= 0 and aml 6= 0 (both observed):

ξmkl(c, d) =
∑
b1...bL

 ∏
{j|amj 6=0}
j6=k,j6=l

δamj ,bj

 δbk,cδbl,dδamk ,bkδaml ,blP(b1, ..., bL)
= δamk ,cδaml ,d × P̃(a

m
1 , ..., a

m
L ) .

— If amk = 0 and aml = 0 (both not observed):

ξmkl(c, d) =
∑
b1...bL

 ∏
{j|amj 6=0}
j6=k

δamj ,bj

 δbk,cδbl,dP(b1, ..., bL)
= P̃(am1 , ..., a

m
k = c, ..., aml = d, ..., amL ) .

— If amk 6= 0 and aml = 0:

ξmkl(c, d) =
∑
b1...bL

 ∏
{j|amj 6=0}
j6=k

δamj ,bj

 δbk,cδbl,dδamk ,bkP(b1, ..., bL)
= δamk ,cP̃(a

m
1 , ..., a

m
l = d, ..., amL ) .

— If amk = 0 and aml 6= 0:

ξmkl(c, d) = δaml ,dP̃(a
m
1 , ..., a

m
k = c, ..., amL ) .
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Therefore

∂L̃

∂Jkl(c, d)
=

M∑
m=1

δamk ,cδa
m
l ,d

−MPkc(l, d)

+
∑

{m|amk =0,
aml =0}

P̃(am1 , ..., a
m
k = c, ..., aml = d, ..., amL )

P̃(am1 , ..., a
m
L )

+
∑

{m|aml =0}

δamk ,c
P̃(am1 , ..., a

m
l = d, ..., amL )

P̃(am1 , ..., a
m
L )

+
∑

{m|amk =0}

δaml ,d
P̃(am1 , ..., a

m
k = c, ..., amL )

P̃(am1 , ..., a
m
L )

.

Using the identity P̃(am1 , ..., a
m
L ) = P({ami |ami 6= 0}), we finally ob-

tain the second maximum-likelihood equation:

MPkl(c, d) =

M∑
m=1

δamk ,cδa
m
l ,d

+
∑

{m|amk =0,
aml =0}

P(amk = c, aml = d|{ami |ami 6= 0})

+
∑

{m|aml =0}

δamk ,cP(a
m
l = d|{ami |ami 6= 0})

+
∑

{m|amk =0}

δaml ,dP(a
m
k = c|{ami |ami 6= 0})

(D.2)
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e.1 list of the 70 pfam families

PF00226, PF00250, PF00618, PF00804, PF00806, PF00808, PF01638,
PF02561, PF02909, PF06439, PF07647, PF12840, PF00011, PF00080, PF00169,
PF00355, PF00595, PF00805, PF01458, PF05592, PF07559, PF10282, PF13360,
PF14602, PF00032, PF00115, PF00208, PF00375, PF00529, PF00654, PF00689,
PF00909, PF01035, PF01127, PF01699, PF01715, PF03349, PF07238, PF12700,
PF13609, PF00005, PF00013, PF00069, PF00152, PF00290, PF00300, PF00445,
PF00814, PF00849, PF01042, PF01244, PF01487, PF01713, PF03460, PF08334,
PF08501, PF09360, PF12697, PF00014, PF00057, PF00084, PF00090, PF00105,
PF00200, PF00412, PF00593, PF01774, PF01807, PF02953, PF07648.

e.2 structural classification of proteins

The five structural groups we used are the following:
— alpha proteins, corresponding to the SCOP group a (domains

consisting of α-helices);
Pfam IDs: PF00226, PF00250, PF00618, PF00804, PF00806, PF00808,
PF01638, PF02561, PF02909, PF06439, PF07647, PF12840.

— beta proteins, corresponding to the SCOP group b (domains
consisting of β-helices);
Pfam IDs: PF00011, PF00080, PF00169, PF00355, PF00595, PF00805,
PF01458, PF05592, PF07559, PF10282, PF13360, PF14602.

— alpha and beta proteins, combining the SCOP groups c, d and
e (group SCOP that includes proteins with both beta and alpha
folds);
Pfam IDs: PF00005, PF00013, PF00069, PF00152, PF00290, PF00300,
PF00445, PF00814, PF00849, PF01042, PF01244, PF01487, PF01713,
PF03460, PF08334, PF08501, PF09360, PF12697.

— membrane proteins, corresponding to SCOP group f (mem-
brane and cell surface proteins and peptides);
Pfam IDs: PF00032, PF00115, PF00208, PF00375, PF00529, PF00654,
PF00689, PF00909, PF01035, PF01127, PF01699, PF01715, PF03349,
PF07238, PF12700, PF13609.

— small proteins, corresponding to SCOP group g (usually domi-
nated by metal ligand, heme, and/or disulfide bridges);
Pfam IDs: PF00014, PF00057, PF00084, PF00090, PF00105, PF00131,
PF00200, PF00412, PF00593, PF01774, PF01807, PF02953, PF07648.
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S I L H O U E T T E O F A C L U S T E R I N G

As stated in the main text, the silhouettes s(p) of a clustering
method take the values −1 < s(p) < 1. Silhouette values close to
1 indicate appropriately clustered data points. Silhouette values close
to -1 suggest that the corresponding data points would be better allo-
cated to the neighboring cluster.

Fig. F.1 displays three very simple cases with the clustering of nor-
mally distributed random numbers and the corresponding silhouette
values.
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Figure F.1 – k-means clustering of 3 cases of normally distributed random
numbers and the corresponding silhouette values.
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Résumé

Mots-Clefs Keywords

Abstract
Grâce aux progrès des techniques de
séquençage, les bases de données génomiques
ont connu une croissance exponentielle depuis
la fin des années 1990. Un grand nombre d’outils
statistiques ont été développés à l’interface entre
bioinformatique, apprentissage automatique
et physique statistique, dans le but d’extraire
de l’information de ce déluge de données.
Plusieurs approches de physique statistique
ont été récemment introduites dans le contexte
précis de la modélisation de séquences de
protéines, dont l’analyse en couplages directs.
Cette méthode d’inférence statistique globale
fondée sur le principe d’entropie maximale, s’est
récemment montrée d’une efficacité redoutable
pour prédire la structure tridimensionnelle de
protéines, à partir de considérations purement
statistiques.
Dans cette thèse, nous présentons les méth-
odes d’inférence en question, et encouragés par
leur succès, explorons d’autres domaines com-
plexes dans lesquels elles pourraient être ap-
pliquées, comme la prédiction de repliement de
protéines ou la détection d’homologies. Contrai-
rement à la prédiction des contacts entre résidus
qui se limite à une information topologique sur
le réseau d’interactions, ces nouveaux champs
d’application exigent des considérations énergé-
tiques globales et donc un modèle plus quan-
titatif et détaillé. À travers une étude ap-
profondie sur des données artificielles et bi-
ologiques, nous proposons une meilleure inter-
pretation des paramètres centraux de ces méth-
odes d’inférence, jusqu’ici mal compris, notam-
ment dans le cas d’un échantillonnage limité.
Enfin, nous présentons une nouvelle procédure
plus précise d’inférence de modèles génératifs,
qui mène à des avancées importantes pour des
données réelles en quantité limitée.

inférence, apprentissage statistique, régularisa-
tion, entropie maximale, coévolution des pro-
téines, modélisation statistique des séquences
de protéines, vraisemblance maximale, champ
moyen, pseudo vraisemblance, développement
en grappe

Over the last decades, genomic databases
have grown exponentially in size thanks
to the constant progress of modern DNA
sequencing. A large variety of statisti-
cal tools have been developed, at the in-
terface between bioinformatics, machine
learning, and statistical physics, to ex-
tract information from these ever increas-
ing datasets. In the specific context of
protein sequence data, several approaches
have been recently introduced by statisti-
cal physicists, such as direct-coupling anal-
ysis, a global statistical inference method
based on the maximum-entropy principle,
that has proven to be extremely effective in
predicting the three-dimensional structure
of proteins from purely statistical consider-
ations.
In this dissertation, we review the rele-
vant inference methods and, encouraged
by their success, discuss their extension
to other challenging fields, such as se-
quence folding prediction and homology
detection. Contrary to residue-residue con-
tact prediction, which relies on an intrin-
sically topological information about the
network of interactions, these fields re-
quire global energetic considerations and
therefore a more quantitative and detailed
model. Through an extensive study on
both artificial and biological data, we pro-
vide a better interpretation of the central
inferred parameters, up to now poorly un-
derstood, especially in the limited sam-
pling regime. Finally, we present a new
and more precise procedure for the infer-
ence of generative models, which leads to
further improvements on real, finitely sam-
pled data.

inference, statistical learning, regulariza-
tion, maximum entropy, protein coevo-
lution, statistical modeling of protein se-
quences, maximum likelihood, mean field,
pseudolikelihood, cluster expansion


	Dedication
	Abstract
	Résumé
	Acknowledgments
	Contents
	Acronyms
	Foreword
	Foreword
	From coevolution to inverse statistical physics
	1 A word about coevolution in proteins
	2 Inverse Potts model
	2.1 Maximum-entropy modeling
	2.1.1 Potts model
	2.1.2 Maximum-entropy principle

	2.2 Approximations to the inverse problem
	2.2.1 Boltzmann machine learning
	2.2.2 Mean-field approximation
	2.2.3 Pseudolikelihood maximization
	2.2.4 Adaptive cluster expansion

	2.3 Model parameters
	2.3.1 Gauge invariance
	2.3.2 Data preprocessing for finite-sample effects


	3 Application to biological data
	3.1 Protein families
	3.1.1 Basic notions
	3.1.2 Multiple sequence alignments
	3.1.3 Protein structure prediction

	3.2 Lattice proteins
	3.2.1 Background
	3.2.2 Covariation in lattice proteins



	Scoring of sequences
	1 A first example: WW domain
	1.1 Background
	1.2 Folding prediction with direct-coupling analysis

	2 Sequence scoring and gap treatment
	2.1 Scoring procedure
	2.1.1 Gaps are not modeled well by direct-coupling analysis
	2.1.2 Null model
	2.1.3 Scoring method

	2.2 Results
	2.2.1 PF00091 - Tubulin/FtsZ family GTPase domain
	2.2.2 More protein families

	2.3 Outlook

	3 Modeling of gaps as missing information
	3.1 Method
	3.1.1 Maximum-likelihood equations
	3.1.2 Mean-field approximation
	3.1.3 Iterative Procedure

	3.2 Convergence and recovery of the Potts parameters
	3.2.1 Effect of the amount of missing data
	3.2.2 Effect of the sampling

	3.3 Sequence energies are accurately reproduced
	3.3.1 Real energies
	3.3.2 Inferred energies

	3.4 Comparison with standard direct-coupling analysis
	3.4.1 Absence of missing data
	3.4.2 Presence of missing data

	3.5 Outlook


	Direct couplings reflect biophysical residue interactions
	1 Introductory remarks
	1.1 Motivations
	1.2 Miyazawa-Jernigan statistical potential

	2 Protein sequences data
	2.1 Method
	2.1.1 Dataset
	2.1.2 Mean coupling matrix and its spectral modes

	2.2 The coupling matrices reflect biologically relevant information
	2.2.1 C-C signal and structural classification
	2.2.2 Hydrophilicity and solvent exposure
	2.2.3 Differences with Miyazawa-Jernigan

	2.3 Distance distribution
	2.3.1 Naive clustering
	2.3.2 Contact distances

	2.4 Clustering of the coupling matrices
	2.4.1 Method
	2.4.2 Results

	2.5 Toward an improved contact prediction
	2.5.1 Using the unveiled structure of the coupling matrices
	2.5.2 Attempt: combining the APC and projection scores

	2.6 Outlook

	3 Lattice proteins
	3.1 Dataset and background
	3.2 Profile-HMM specificity of lattice proteins
	3.3 Properties of the inferred couplings
	3.3.1 Effect of the regularization
	3.3.2 Effect of the sampling

	3.4 Mean coupling matrix
	3.5 Structural predictions
	3.6 Outlook


	Adaptive Cluster Expansion
	1 Background
	1.1 Fisher information matrix and finite sampling errors
	1.1.1 Expression of the finite sampling errors
	1.1.2 Approximated errors on the inferred parameters
	1.1.3 Absolute and relative errors between true and inferred couplings

	1.2 Compressed representation of the data

	2 Comparison with standard methods on various datasets
	2.1 Datasets
	2.2 Recovery of the ER05 parameters
	2.3 Inference of structural contacts for PF00014
	2.4 Reproducibility of the statistics of the data
	2.5 Reproducibility of the energy distribution
	2.6 Outlook

	3 Role of the compressed representation of the data
	3.1 Method and datasets
	3.2 Conditioning of the Fisher information matrix and gauge choice
	3.3 Minimizing the Kullback-Leibler divergence
	3.3.1 Theoretical framework
	3.3.2 Results

	3.4 Compression and recovery of the ER05 parameters
	3.4.1 Inference with the adaptive cluster expansion
	3.4.2 Inference with the compressed pseudolikelihood maximization

	3.5 Compression and reproducibility of the statistics
	3.6 Outlook


	Concluding remarks
	1 Summary of the results
	2 Outlook and future work

	Appendix
	A Publication abstracts
	A.1 Journal of Chemical Physics coucke2016direct (under review)
	A.2 Bioinformatics barton2016adaptive

	B HMMer scoring procedure
	C Training on the eukaryotic sub-families
	D Maximum-likelihood equations with missing data
	D.1 First maximum-likelihood equation
	D.2 Second maximum-likelihood equation

	E List of Pfam families analyzed in Part III
	E.1 List of the 70 Pfam families
	E.2 Structural Classification of Proteins

	F Silhouette of a clustering
	Bibliography


