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Introduction A

In the current context of ecological transition, buildings represent a major pool of
energy savings since they account for more than 40% of the final energy consumption.
In the field of building energy management, researches firstly focused on the envelope
of the building or on its energy systems. However, various feedbacks highlight the
discrepancies between the energy consumption estimated during the design phase
and the real consumption during the operating phase. Occupants play an important
role in that gap since feedbacks showed that significantly different consumptions can
be observed between 2 similar apartments. The first "low-consumption” buildings
or "green” buildings implemented a high degree of automation regarding the energy
systems: heating systems, ventilation systems... everything was centralized and au-
tomated. The degree of freedom allowed to occupants has been decreasing over sev-
eral years. Yet, the gap between design and effective energy consumption remained
unchanged. To understand the reasons of this phenomenon, sociology researchers
started different experiments and surveys in order to understand the reasons of this
phenomena. They explained that decreasing the controls available to occupants on
their systems could bring a feeling of discomfort and of frustration. The challenge is

then to find a way to involve and empower users.

The way explored here consists in involving users by giving them the keys to
understand the impact they can have on the building, in terms of energy consumption
and comfort. This can be done via a web or mobile application providing different
energy services such as explanations of what happened, suggestions on improvements,
simulations to measure the impact of a different behaviour or a different control
strategy. All these services must access the thermal dynamics of the buildings.
Usual simulations such as Dynamic Thermal Simulation (DTS) cannot be used in
that context because end-users are not heating engineers and most of the time have
no access to the detailed building intrinsic information. It is then necessary to

implement simplified models based on data and not only on expert knowledge. The
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challenge is to determine a model structure able to forecast the temperature and
CO, evolutions with a sufficient accuracy and a low computational time. The model
must be able to adapt while unknown events occur and to predict on a daily horizon

basis.

In this thesis, different kinds of models are implemented and tested on two study
cases: a mono-zone office and a multi-zone apartment. In the first chapter a literature
review is performed on the sociology of energy as well as the different types of models
for building energy management: black-box models and grey-box models. Then,
in chapter 2, the mono-zone study case is presented as well as the different grey-
box models used in the following chapters. Chapter 3 highlights the advantages
and limits of the modelling by ARX (Auto Regressive model with eXternal inputs)
models or multi regressions models and the gain brought by the introduction of
some limited physical knowledge. Then, are described the two parameter estimation
methods implemented and their application to the mono-zone office study case. A
selection methodology is implemented in order to identify and validate the best model
structure for the energy services. Finally, chapter 4 investigates the behaviour of the
selected model structure in boundary conditions: lack of sensors and multi-zone
environment for example. It details as well an automatic procedure to generate the

model and services from only the informations an end-user can provide.
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5 Problemstatement . . . . . . . . . . . . . . .. . .. ... .23

1 Context: Sociology of energy

As the energy efficiency of buildings increases, so does the influence of human
practices on their global consumption. Henceforth, users can no longer be consid-
ered as disturbances in a building. It is needed to take them into consideration
and thus to make them aware of the energy issues if the goal is to guaranty low
energy consumption in the operation phase of the buildings. Indeed, the importance
of human practices impacts was highlighted: modifying only heating set-points and
the air change rate can make vary the energy consumption of a building by a fac-
tor 3 while the technical systems installed remained the same [21]. To compensate
for this effect, one of the first reactions was to go towards more automation in the
“green” or “smart” buildings. Despite this automation, the gap between the pre-
dicted and the effective consumption still exists as has been proven by the feedbacks
of sociologists after surveys on the first office buildings HQE (High Environnemen-
tal Quality) [18] and those on residential buildings [84]. A feedback on 6 dwellings
with the label "BBC Effinergie” (BBC: Low consumption building) also brought to
light that unless occupants are aware of the specificities of the BBC buildings and of
the recommended usages, the performances of buildings were strongly damaged [19].
When the installed systems are misunderstood, not properly controlled or simply un-
accepted, behaviours may appear which bypass the systems installed and can have
a severe impact on the global energy consumption of the building [17]. Energy effi-
ciency of buildings will be reached only if the inhabitants accept to become “smart
inhabitants” [95]. More precisely, Bartiaux et al. [11] explain that the energy con-
sumption is the result of the convergence of standards, practices and technological
developments which participate to the construction of a socially acceptable standard
in terms of comfort. Sociologists also studied the feelings of efficient-building oc-
cupants and the efficiency of implemented measures. Dujin et al. [29] furthermore
explained that in these approaches, users are seen as passive actors of the buildings,

having to learn everything anew and suffering from systems whose rhythms and cri-
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teria are not suitable to their needs. The challenge is to involve users so that they
change their practices. However, this requires facing several difficulties, for example
to make users accept technical systems in buildings or to have interests in energy
savings. To answer these questions, these last years have seen the emergence of the
sociology of energy focusing on the relationships between humans and energy and
inspired by concepts of social psychology. Studies realised are done according to
different scales [27]:

e Micro-individual : Scale of individuals

« Micro-social : Scale of domestic spaces and small groups (strategy of actors in

the domestic sphere)

o Meso-social : Scale of the organizations and action systems (co-ownership,

operator,...)

» Macro-social : Scale of social allegiances (social strata, sex, culture,...)

In the context of energy consumption at building scale, only the macro-social and
micro-social scales are considered since it is a matter of understanding the courses of
action and consumption habits of occupants, operators and managers in a particular
situation: in an efficient building.

From here, two main trends can be distinguished within the sociology of energy: the
approach focusing on the behaviours and the more recent approach focusing on the
practices. The approach focusing on the behaviours bets on the behavioural incen-
tives to lead up to change. These incentives can either be financial or appealing
to the community or individual’s values. About the decrease of energy consump-
tion, Moser [69] estimates that it is possible to act for behaviour change in several
ways but recommends to appeal to 3 in particular which are complementary: in-
centives (such as financial rewards), awareness and education campaigns, feedbacks.
However, Zélem [96] tempers the impact of the financial rewards, specifying that in
order to commit the change, the expected profits need to be higher than the costs
either financial or social and that the induced consequences must be quickly visi-
ble. Regarding the feedback, it is a subject which appears in various projects and
studies such as the project “Affichéco” where 28 dwellings were equipped during 15
to 28 months with a system enabling the display of the energy consumption both
global and by function (real-time and history). It did not bring a clear impact on

energy consumptions, but it contributed to the development of an energy efficiency
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culture [8]. Two cross-analyses were conducted to take advantage of these experi-
ments. The first one covers 26 studies conducted worldwide between 1987 and 2008
and stipulates that the savings realized vary from 1.1 to 20%, that the average is
around 5 to 12% and that in a few cases no savings were obtained (3 studies) [35].
The second analysis compiles a dozen studies mostly North-American, led in the
same field and explains that energy savings also reach 3 to 13% with an average at
7% [32]. Research was carried out also on different types of incentives. One can
quote an experiment done in California aiming to study the impacts of the social
standard and of the community. Occupants were informed that “the most popular
choice within their community” was to use a fan instead of the air conditioning.
This brought a decrease of electric consumptions by almost 10% [22]. In the same
way, Zélem [96] refers to the “Hawthorne effect” highlighted by Elton Mayo in the
1930s, explaining that individuals are less concerned with decreasing their energy
consumption and more with the feeling to be part of a community. They are looking
for a “social recognition”. It brings to light that valuing the behaviours of persons
who are familiars can lead to a deep modification of practices.

Another essential element to take into consideration is the importance of the rebound
effect which consists in the reinvestment of savings realized thanks to a new tech-
nology in other usages. Thus, on the basis of their study of the existing literature
(in the US), Greening et al. [44] confirm that the rebound effect has a significant
impact: up to 50% of the savings realized are then lost in the residential sector, i.e.
the energy is spent on new usages. Barreau et al. [10] for their part estimate to one
or two years the viability of a feedback-type solution before a return to the original
behaviour.

The important point is that the financial incentive in itself is not a sufficient mo-
tivation to induce changes in the behaviour on the long term and that users must
be integrated within their dwelling and not anymore considered as disturbances.
Indeed, occupants should no longer be considered as an external input that needs
to be controlled but as an actor of the energy management system that needs to
be informed. It is necessary to take into account their need for information on the

installed systems in order to enable a real appropriation.
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2 Energy management services

2.1 Objective

The goal pursued in this research work is to develop a thermal building model
and to implement it in energy management services towards the different actors of
the buildings including occupants but also operators and managers. The idea then is
to make available an “e-consultant” which could be materialised for instance by an
application for tablets, smart-phones or web services. This “e-consultant” will have
to interact with the users of the building via different services in order to help users
understand their building and to better communicate on the way designers thought
the building. This work is led in collaboration with the ANR project named Involved
(ANR-14-CE22-0020). In this context, an example of the type of the considered

interface can be seen on figure 1.1.
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Figure I.1: Persuasive interface

The models developed in this thesis are meant to serve the end-users energy
services described in the next section. That will induce several constraints in terms

of time scale and complexity of the models described in section 2.3.
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2.2 Description of the services

The analysis of the sociological literature was made in order to implement services
relevant for the users and to induce a real and durable change in human practices.
Therefore, with the objective to help users understand the operation of their building
and their impact in terms of energy, different services are considered to be imple-

mented:

o “What-if” : What are the consequences of this action?

o “Replay” : What happened yesterday? last month? last year?

o “Mirror” : What is the current state of my dwelling / building?

« “What-for” : How to reach my goal? (Generation of anticipative plans)

o “Suggest-and-adjust” : Adjustment of the anticipative plans by users

o “Explain” : Qualitative representation of physical phenomena

o “How-to” : Explanation of usages expected by the building designers

For each of these services match a list of relevant indicators and physical scales,
time scales and rules about the frequency of solicitations of the user. The imple-
mentation of these services relies on the hypothesis that the users have previously

defined their own objectives: minimizing the energy consumption, minimizing the

financial bill or maximizing the comfort, ...

2.2.1 What-if

As explained in section 1, one of the main expectations of the end-users is to
understand how their dwelling operates and what are the consequences of one action
or another. It enables the occupant to raise questions such as: “If I open my window
30 minutes now, what is going to happen in the next hour?”. The e-consultant will
run a simulation of the thermal model to bring quantitative answers to that question.

The What-if function can take as input different time scales and actions.
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2.2.2 Replay

The Replay function analyses what happened in the past. It relies on the data
history in terms of context data, controls, answers and estimations. Research is led
to decide against which time scales each sequence of data should be plot: hourly,

daily, monthly, billing periods to enable a factual comparison with the bills received
by households.

2.2.3 Mirror

The mirror function responds to different motivations; it relies first on the cog-
nitive dissonance theorized by Festinger [34]. He explains that when somebody is
subjected to two opposite stimuli, he will act in order to solve the conflict. An ex-
ample could be the acknowledgement that his actions are not in agreement with his
values. In that case, the person will act to match both actions and values. Following
that idea, the user will be asked to define his commitment as an individual and in
relation to his neighbours regarding a certain indicator. Then, the Mirror function
will display a feedback on how well the actions taken match the announced objective.

It could also generate notifications under the form of alerts in case of:
o Drift regarding the objective
o Drift regarding data history
It can be noticed that this function can be seen in many applications or proto-

types linked to energy under the form of simple feedbacks of energy consumption for
example (cf. Kjeldskov et al [56], Gamberini et al [39]).

2.2.4 What-for

The What-for function generates anticipative plans of actions in order to reach
the objective previously defined by users. It is done via an optimization of the
thermal model taking into account the user objective previously defined and the

possible actions in the considered dwelling.

2.2.5 Suggest-and-adjust

Once these anticipative plans are generated and proposed to the end-user, the

Suggest-and-adjust function enables him to adapt them to constraints not previously
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considered. A really simple example would be to propose a plan for a very hot
day in summer and then to incite users to close their shutters in the afternoon in
order to maximize the comfort and avoid too high temperatures in the dwelling. It
may happen, however, that the user having planned to work home is not willing to
spend his afternoon in the dark. The Suggest-and-Adjust function will then make it
possible for him to update the generated anticipative plan with this new constraint.
In addition, it can also generate a summary of the consequences of the changes

operated.

2.2.6 Explain

This function will be transparent for the users and transversal to all the other
functions. Indeed, its role is to translate the quantitative information returned by the
other functions into terms that the end-user can understand. Thus, every function
will have to appeal to that Explain function before reaching the end-user or to

translate user enquiries to the system.

2.2.7 How-to

The How-to function is the keeper of the design of the building. It consists partly
in indexing the views of the designer in terms of design and uses for the buildings,
explaining which systems are installed and their optimal use. This function is even
more important when the dwelling is occupied by tenants and not owners because
of the turnover. The use of this function is highlighted by the report "Vivre dans
un logement BBC” (Living in a low-consumption dwelling) [19] studying the human
practices and energy consumptions of several new dwellings. It explains that the
tenants who maximize the capacity of energy savings are those who know the systems

and the way to use them properly.

2.3 Inherent constraints

These different services require simulation, optimisation, sometimes both and
impose different specifications for the models. Among them, one can focus on the
"HOW-TO” function. The user will have to define his own objective: minimizing
the electric consumption, minimizing his bill, maximizing the comfort, maximizing
the air quality or compromising between some of these objectives... Regarding the

indoor air quality (IAQ),it is affected by gases (including carbon monoxide, radon,
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volatile organic compounds), particulates, microbial contaminants (mold, bacteria).
Properly measuring this aspect would require many different sensors and / or exper-
iments. For this reason, it was decided to consider only the measure of CO in the
air. Indeed, COy has the double interest to be a good indicator of occupancy and
to be a gas. Then, even if a high concentration of COy does not constitute a great
danger to health, it reveals a lack of ventilation and so a potential decrease of the
IAQ. These different objectives imply different time resolutions but globally, daily
end-user services follow a 24 hour time horizon with a 30 or 60 minutes time resolu-
tion to avoid bothering people with frequent advice or numerous data. For instance,
a 24-hour horizon with a minimum time step of one hour is used for the generation
of anticipative plans. For the function "WHAT-IF”, one must be able to represent
the impact of the opening of the door and the window for example which involves
phenomena with a daily dynamic. In order to provide advice and explanations of
the physical phenomena, models must enable to determine the causality, that is why
in a first place physical models are going to be implemented. However, it is needed
to take into account that physical models such as ”grey-box” models require a cali-
bration of parameters which arises in turn a number of requirements. Zayane, [94],
Armstrong [7] and Alaoui El Azher [4] studied that identification problem. On the
other hand, the project aims to implement the technical solution in any dwelling.
This then implies that the model requires no expert knowledge about the building in
which the system is installed; that is why knowledge models can not be implemented

to reach that goal.

3 Literature review on models

In order to set up the services presented in the section 2.3, it is necessary to
resort to thermal building models in order to forecast the temperature and CO,
trends in the dwelling. This section presents a literature review on the different

types of models used for building energy management.

3.1 Black-box models

Universal models or black-box models are based on a general purpose structure
suitable for parameter estimation and thus do not require any expertise in physics.

However, although black-box models are often criticized for their lack of physical
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interpretation [33], Richalet [79] demonstrated that certain kinds of these models
allow to recover some physical information. Universal models can be either linear
or non linear and accept one or several inputs. Most of the time, universal models
have been used for modelling specific systems or walls rather than the whole building
[23], [89]. Extending these models for describing a whole building system would be
very costly in terms of number of variables. Besides, since most of the time the
description of the building systems is unknown, this approach cannot be applied

with this objective.

More recently, several authors modelled an entire building with different objec-
tives: predicting the indoor temperature [66], predicting the thermal load [93] or
recovering u and g values of the building [52]. Even if the phenomena involved in
building physics such as heating, ventilation or occupancy are non-linear, authors of-
ten chose linear models to represent the building dynamics. However, models taking
only one input tend to disappear due to the increased complexity of building inte-
grated systems. On the other hand MISO models (Multi Inputs Single Output) or
MIMO (Multi Inputs Multi Output) are becoming more and more common. These
two categories can be broken down into different formulations: ARX (Auto Regres-
sive with exogenous inputs), OE (Output Error), ARMAX (Autoregressive moving
average with exogenous inputs), BJ (Box-Jenkins). OE was found to provide the
best prediction compared to ARX and BJ models when seeking the response of in-
ternal temperature in an office building [64]. Mustafaraj et al [71] conclude that BJ
models outperform ARX and ARMAX models. Rabl [76] presented an overview of
different methods, focusing especially on their physical interpretation. This study,
applied to building models, revealed that even with wrong parameters a model may
give a good fit to the data due to compensations in errors. It confirms thus that

estimated parameters should be interpreted carefully.

ARX models are the most common in thermal modelling, Jiménez and Mad-
sen [52] and Mustafaraj et al. [71] also show that they are sufficiently efficient to
model building thermal behaviour. ARX models were also used by Amstrong [7]
and Naveros et al. [73] for building applications. Thus, it is this structure which is

implemented in here.

The general formulation of an ARX model with one output is illustrated in equa-

tion I.1 below for the temporal description.
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where b, are the coefficients for the respective inputs u, and e represents the error

which is assumed to be white noise. The z-form is represented in equation [.2:

71 Tk Z B Uk + e (12)

Lowry and Lee [64] implemented different autoregressive models such as ARX
or OE models in order to predict the response of internal temperature in a building
under passive conditions. Having studied different orders for their models, they con-
cluded that even if outdoor and indoor air temperatures are highly correlated, simple
linear-regression models have a variance of at least 44%. Thus, auto-regressive mod-
els are interesting. They tested different possibilities of higher-order with respect to
any combination of the input and output variables and concluded that no improve-
ment was noticed beyond second-order. The models were able to predict with a good

accuracy the indoor air temperature for more than one week.

3.2 Physical models

In this section, there will be presented a literature review on the models in the

field of energy management from prevalent structures.

3.2.1 Different types of models

Two main categories of physical models are usually considered:

o Pure knowledge-based models or “white-box” models

e Semi-physical models or “grey-box” models

“White-box” models. Knowledge-based models rely on more general models grounded
on physical laws. They require much information on the physical characteris-
tics of the buildings and on the phenomena involved. They can compensate a

lack of measurements.
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“Grey-box” models. Semi-physical models combine a part of physical knowledge
formalized by structures of equations and a part of parameters learnt thanks
to an estimation procedure. These models represent an interesting compro-
mise since they can be more easily extrapolated than black-box models but
they also keep a high capacity of adaptation with adjustable parameters. The
parameters of these models are however difficult to estimate because unlike
pure data models, their structure is not suited for calibration (non-linearity
towards parameters). Compared to white-box models, the tuned parameters

are degrees of freedom to fit the measurements.

White-box models are not retained for this study mainly because they require too
much data on the building itself and so their deployment on different dwellings in a
short time is difficult. Grey-box and black-box models have the advantage to model
a dynamic system from the measurement of the inputs and outputs of the model.
Mathematical functions with or without a link to the physics of the phenomena

modelled are then chosen to minimise the forecast error.

3.2.2 Models for energy management in buildings

In the field of the energetics of buildings, most models were designed to perform
analysis of energy needs in the design phase as a guide in the choice of the archi-
tecture, materials and then to ensure the respect of thermal regulations. Therefore,
most studies compute annual needs. Indeed, the French regulation for example,
the RT2012, limits the average annual energy consumption in order to prevent the
construction of buildings with too high consumption. However, the computation is
based on standard scenarios of occupancy, heating set-points... which are most of
the time very far from the reality as can be seen in the appendix of the French “Of-
ficial bulletin n°201114” explaining the computation method of usage scenarios. In
consequence, big gaps are observed between predicted consumptions and real ones.
On the other hand, the more efficient a building, the more significant the impact
of human practices. As it is very difficult to forecast human practices on a long
term, it is necessary to adapt the model variables and to have short time scales.
The objectives of building energy management are different: they aim at producing
set-points suitable for use on a short time scale. The granularity required is thus
very different from that necessary for the performance evaluation of buildings, as
it ranges from an annual horizon to one day. Forecasts are usually about heating

set-points, indoor temperature and indoor air quality (IAQ) such as for example
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COg concentration. It is neither necessary to provide a high accuracy in measure-
ments nor a time step of one minute. However, some phenomena neglected for an
annual simulation but which impact on both the energy consumption and the occu-
pants’comfort on a daily basis need to be taken into consideration, as for example,
the ventilation habits. According to Fabi et al. [31], the opening of windows is one
of the user-accessible adaptive actions most impacting energy consumption, com-
fort and air quality. Castillo et al. [20] also reached the conclusion that taking into
account the opening of the door on the corridor led to significant improvements in
their results. That’s why the impact of door or window opening on thermal or CO,
balances will be more specifically studied in this thesis.

In this study, the objective is to identify structures of models allowing to provide
advice for users in both old or new buildings. It is then necessary to be able to
free itself from an accurate knowledge of the structure of the building (insulation,
materials,...) while remaining able to access some physical parameters (window and
door openings for example) in order to generate relevant explanations and advice.
Thus, semi-physical models are then a priori suitable for energy management needs.
The literature review reveals that the use of electric analogy modelling is prevalent.
The concept of the analogy is summarized in figure [.2. These models offer a good
representation of the different components of the buildings and a high ease of use.
It is thus this option which is first investigated. However, when deciding to deal
with physical or semi-physical modelling, it is important to tackle the issue of the
required granularity, i.e. the physical phenomena to take into consideration but also
to question which elements of an occupied area need to be modelled. As previously
seen although, this choice is strongly impacted by the objective of the model, some
elements are recurrent in the literature. Two main points can be identified about

which authors have divergent opinions:

o the localisation of the inertia

o the computation and impact of solar gains

3.2.3 Working hypothesis

Based on the literature review presented and the objective of the models devel-
oped, choices were made regarding the localisation of the inertia and the computation

and impact of solar gains.
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Figure 1.2: Principle of electric analogy

3.2.8. i) Inertia and models order

Regarding the modelling of inertia in building for semi-physical models, most
authors consider that it is located only in the exterior walls and the air with only
a few exceptions. However, Hazyuk et al. [47] and Mathews et al. [65] also take
into consideration the impact of the slab in their modelling. Bacher and Madsen [9]
carried out a study aiming at comparing models with different orders. To do so,
they generated seventeen models including two to five capacitors. Starting from
the model of the smallest order, they moved on to determine different models of
superior order, computing for each one the likelihood function. Then, they selected
only the model with the bigger value of the likelihood ratio to pursue the iteration.
The selection procedure stopped when no significant superior order could be found,
which was the order five for that study. In conclusion, it was demonstrated that
the order five brought less than a 5% improvement, in consequence, the retained
model is a fourth-order model. Mejri et al [67] applied models varying from first-
order to fifth-order on a tertiary building and their results show in particular that
exceeding second-order not only brings no further improvement but can even lead
to damaged results. When the objectives are to forecast the temperature and the
power of a complex building, authors agree on the fact that a second-order model
is the most simple order to reach these objectives. Thus, Zayane [94], Fraisse et
al. [37] and Alaoui El Azher [4] all studied models of type R4C2 (4 resistances and
two capacitors). The study conducted by Del Barrio et al [26] highlights the fact

that the choice of the order also depends on the objective of the model and so on
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the requirements in terms of accuracy but also of the controller used. It seems thus

difficult to choose a model order a priori.

3.2.8. ii) Solar gains impact

Regarding the impact of solar gains, it has been observed more heterogeneity in
the proposed solutions. Teichmann et al. [87], Achterbosch et al. [2] as well as Bacher
and Madsen [9] consider that solar gains contribute directly to heat the ambient air
but do not take into consideration the warming of the exterior and inner walls. Oth-
ers, like Berthou et al. [14] or Hazyuk et al. [47] include the impact of solar gains
on the exterior walls whereas Nielsen [74] favours the impact on inner walls. Kdmpf
and Robinson [54] and Foucquier et al. [36] are going even further combining these
three places of impact of the solar radiation. Mathews et al. [65] conduct one of the
few studies neglecting the impact of solar gains on ambient air and so the radia-
tive component; they only take into account the impact on inner and exterior walls.
These different approaches can be explained partly by the diversity of the associated
goals: some aim at quantifying building performance, others seek to create models
for energy management systems and still others want to launch simulations at a
district level. Castillo et al. [20] compared different approaches without coming to
any positive conclusion about which was the most suitable. However, they confirm

that it is necessary to take solar gains into account.

3.2.3. iii) Solar gains computation

For the services based on simulation or prediction, it will be necessary to compute
or forecast the solar gains for the next 24h or more. For this reason, a choice needs to
be made on how the computation is done. Different research organizations developed
their own model for solar radiation, such as the European Solar Energy Research
(EUFRAT) in the European Solar Radiation Atlas based on the work of Kasten and
Czeplak [55] and ASHRAE (American Society of Heating, Refrigerating and Air-
Conditioning Engineers) who developed another one which is among other things
used in the Energy+ software. They all have their own specifications about the
input data required and their accuracy. The data commonly used gather the type,
amount and distribution of clouds, cumulated rainfall or fractional sunshine. Usually,

they are sorted in two main categories:
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1. parametric models

2. decomposition models

Parametric models require several inputs including detailed information on the
atmospheric conditions as explained by Wong and Chow [91]. Decomposition models
require information only on global radiation to predict the beam and sky components.
Wong and Chow [91] proposed different comparisons between solar models. First,
two parametric models are compared: the Igbal model [51] offering a better accuracy
than more conventional models [45] and the ASHRAE one, simpler but widely used
by the engineering community. Then, ten decomposition models are compared and
finally a comparison is made between parametric and decomposition models. The
conclusions are diverse: first it must be noted that at a zero-zenith inclination, the
difference between the Igbal model and the ASHRAE one did not exceed 7 %, the
ASHRAE model being though less accurate for diffuse radiation predictions due to
some of its hypotheses. About the decomposition models, three of them agreed
with the measured data, while the others provided reasonable predictions. Lacking
precise atmospheric information, decomposition models based on measured hourly

global radiation would be a good choice.

Since the objective here is to limit the number of sensors required for an easier

implementation of our system, a decomposition model will be preferred.

3.3 Parameter estimation

This being said, it is important to realize that the choice of the model (order and
structure) will depend on the possibility or not to estimate its parameters. Indeed,
as the number of parameters to estimate increases, so does the cost of the estimation

in terms of computation time and necessary data.

3.3.1 Principle

According to Ljung [63], the estimation consists in giving a class of models, or
model structures, for finding within such class the model that fits a given data-set
with the minimum loss, according to a given criterion. Then, this process puts in
relation three different elements: the data set, the model structure and the parameter

identification procedure. This procedure can be described in different steps:
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1. Measurements are conducted on the inputs and outputs of the system using or

not specific excitations of the systems
2. A model is developed to process the recorded input and output sequence
3. A suitable structure of model is determined

4. A statistical method is used to estimate the unknown parameters of the model.

Usually, step 3 is done iteratively: a simple structure is defined and evaluated; if
the representation of the system does not reach the required accuracy, a more com-
plex structure is then tested. The identification processes aroused a lot of research
works (Jimenez and Madsen [52]) and comparisons (Androutsopoulos [6]) as well as
international competitions (1994, 1996). The software and tools implement different
estimation methods and different kinds of models but the bulk of them are based on
deterministic differential equations or state space models. During the first competi-
tion, 20 participants had to solve a specific parameter estimation problem. At the
end, the estimated results were compared according to the overall values for R and
C with the values used in the simulation model for the creation of the data along
with statistical tests. The conclusions drawn were that estimating the individual
parameters of a lumped model was more difficult than estimating an overall value
and that researchers needed an expertise on the models they used in order to obtain
good results. Rabl [76] provides a description of the different type of models together

with the different estimation methods.

3.3.2 lllustration

Figure 1.3 shows a practical example of the estimation process. During the train-
ing period, the input and output data are used to identify the parameters of the
model. In that example the input data are the outside temperature and the state of
the window, and the output chosen is the indoor air temperature. It can be observed
in figure 1.3 that the estimated temperature is close to the reference except on one
or two points. During the validation period, the identified parameters are recovered,
the input data used and the error between the predicted and measured outputs is
computed. It can be seen in figure 1.3 that the gap between estimated and mea-
sured temperatures is bigger, but this can be explained by the appearance of some
new physical phenomena. So, it is possible to obtain the parameters measuring the

outputs without a need for expert knowledge on the physical characteristics of the
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building, which is perfectly adapted to the needs of this study. In the following chap-
ters, different parameter estimation methods will be investigated in order to ensure

a maximum agreement between the prediction of the model and the measures.
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Figure .3: Learning and validation process

3.3.3 Data used for parameter estimation

Another aspect of major importance on both the results accuracy and the com-
putational time required for the learning phase is the specifications of the training
phase: its duration and the data used. Castillo et al. [20] also performed tests on
periods from 1 to 20 days and noticed that a longer training phase led to a better

model accuracy. Thus, they finally obtained interesting results for periods of 7 days.

4 |dentifiability

The objective of this research work is to identify a structure of model able to
accurately forecast indoor CO, concentration and air temperature in different study
cases in order to help the occupants to reach their comfort with the less energy
possible. The physical meaning of the parameters is not required for providing
the energy services described in section 2 of chapter I. However, this possibility is

investigated in order to well identify the limits of this modelling and the hypothetical
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Authors Learning duration | Order
Bacher and Madsen [9] 6 days 2
Bouache et al. [15] 5 days 7
Coley and Penman [24] 10 days 2
Braun et al [16] 7 to 14 days 8
Hazyuk et al. [47] 60 days 2
Freire et al. [38] 15 days 1
Harb et al. [46] 39 to 110 days 1to3
Jimenez and Madsen [52] 10 to 12 days 0 to 4
Le Mounier et al. [60] 37 days 1
Liao and Dexter [61] 14 days 2
Mustfaraj et al. [71] 1.9 days 1to2

Table I.1: Learning duration and orders of the models

other applications. In this context, the structural identifiability does not constitute
a requirement but an information on the possibility of recovering physical knowledge

from the parameters.

Methods to determine identifiability are very rarely applied in the field of building
models but very common in other fields such as biosciences. Identifiability can be

divided into two types: structural identifiability and practical identifiability.

Structural identifiability (a priori). It deals with the model structure in itself
and gives information on the ability to obtain a unique set of parameters for a

given output.

Practical identifiability (a posteriori). It evaluates the input data available

and ensures that it is sufficient to reliably uniquely estimate the parameters.

4.1 Literature review

The structural identifiability is a necessary condition to the practical identifiabil-
ity. Several techniques exist to perform an identifiability analysis, either algebraic
or analytic. Most of them were implemented for linear models and cannot be easily
applied to non-linear models due to computational cost. Some techniques such as
that based on the Markov parameters, the transfer matrix or the minimum reali-
sation of the state space use different forms of the model. In order to apply those

methods to non-linear models, different techniques can be implemented:
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Linearisation around an equilibrium point (Godfrey and Distefano III [42])

Development in series (Godfrey and Distefano III [42] and Walter [90]);

Method of similarities (Vajda et al. [88])

Differential algebra (Ollivier [75])

Only some of these approaches allow to determine the global identifiability while
others address local identifiability, holding around a point in the parameter space.
The complexity in the number of variables and parameters of these methods grows
too fast for them to be generally applicable to models of large dynamic systems.
Sedoglavic developed a probabilistic semi-numerical algorithm for testing observ-
ability and global structural identifiability of systems even for large models with a
few hundred state variables and parameters and also yielding the functional relations
between parameters [82]. This tool has been developed under Maple, a software for

symbolic computation.

The practical identifiability will not be studied in this work since the objective

is to validate the selected structure regardless the data available.

4.2 Tools

In order to test the structural identifiability, two tools were used:

o The Differential Algebra Identifiability of Systems (DAISY) proposed by Bellu
et al [12]

o The algorithm developed by Sedoglavic under Maple [82]

Unfortunately, if the tool DAISY returns quickly interesting results for simple
models such as Reference model, the computation time rockets for the selected
Model4C. After more than 11 days of computations, it did not yield any conclu-
sions. Raue et al. [77] compared three different approaches for identifiability includ-
ing DAISY and reached the same conclusion about the ability of the tool to deal
with complex models. In contrast, the approach chosen by Sedoglavic is based on
Exact Arithmetic Rank (EAR) which presents the advantage to handle large and
complex systems. For these reasons, DAISY was not used in this study since the

selected parameter cannot be tested via this method.
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5 Problem statement

The global objective of the ANR project Involved (ANR-14-CE22-0020) is the
development of a persuasive e-consultant for energy management services. Focusing
on residential sector, the objective is to allow any end-user to configure its own system
in order to enjoy dedicated energy management services. The goal is not to provide
real-time control of the dwelling but to give explanations of past events (replay)
or anticipative plans for the day to come. The implementation of energy services
implies to develop thermal models to forecast the temperature and CO, to assess
the thermal comfort and the air quality. Targeting the end-users and the existing
buildings implies to free the model from building detailed characteristics. It requires
also to study the modalities of interaction with the end-user. Indeed, generating
anticipative plans with actions to do every 10 minutes is not realistic: end-users are
not willing to do this investment. For this reason, the time-step defined is of 1 hour
and the horizon to 24 hours. The general objective pursued and the methodology
adopted in the present thesis are summarized in figure [.4. Upstream of this work,
a team is working on the persuasive interface and the interaction with the end-
user. They are, in particular, in charge of defining how the end-user can describe its

dwelling and how to store the information into a standardized format (xml form).
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Figure 1.4: General objective and process
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The aim of this thesis is to pass from this description of the dwelling on an
xml form to an estimated model able to forecast the temperature and CO, with
a time-step of 1 hour and a horizon of 24 hours. This objective is decomposed in
different steps: the first one is to select a suitable model structure. Different types
of models are implemented and compared: first, data-based models such as ARX
or multiple regressions. Then, physics will be taken into consideration in a wider
model with the development of models based on thermal circuits (called RC-models
or semi-physical models in the following). The detailed building characteristics being
unknown, all these models require a step of training to estimate the values of the
resistances and capacitances or the coefficients of the regressions. Semi-physical
models are generally more difficult to estimate than regressions, this is why two
different parameter estimation methods are applied: a gradient-based and a meta-
heuristic algorithms. Once all these models defined, they are applied first to a
mono-zone study case in order to compare their performance. The second step of the
work consists in ensuring the implementation of this model to more complex study
case. The different types of models are then applied to a multi-zone study case
and compared again. This new study case brings issues regarding the generation
of the model. Defining manually the semi-physical model structure for an entire
flat is hazardous. Then, it has been necessary to implement an automatic process
to pass from the simple description of the building to the equations of the model.
To finish, additional studies have been led regarding the physical interpretation of
the parameters or the identifiability. The physical meaning of the parameters is
not considered as an objective in this research work but studied as an interesting

additional aspect.
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1 Presentation of the case study

The study case used to test the models and compare the different estimation
methods is an office of the G-SCOP laboratory in Grenoble.

1.1 Architecture and instrumentation

A first wall of the office, with two windows, is in direct contact with the outdoor.
Two walls overlook a corridor, one with a door and the other with a glass partition.
The last wall is in contact with stairs and an emergency exit. The floor and the
ceiling are both in contact with offices or classrooms. This office is occupied by 1
to 4 people depending on the periods in the year. In terms of instrumentation, the
office is on a 1500 m? site equipped with almost 200 ENOCEAN sensors. The office
is equipped with 26 sensors including: temperature sensors, CO5 and COV sensors,
door and windows contacts, motion sensor, one illuminance sensor, one humidity
sensor, several power consumption meters and a weather station (cf. figure I1.1). As
the problem posed generates constraints in terms of the number of sensors, only part
of the measurements available will be used to estimate the parameters of the models
presented. The useful data are then coming from air temperature, COy, window
and door contacts sensors and from the weather station for the outdoor temperature
and the nebulosity. As the behaviour of a building is very different in winter and
summer, it has been chosen to validate the models on two different datasets covering

these two periods.
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1.2 Solar gains

For the solar gains, according to what was explained in section 3.2.3. iii) in
chapter [, the model used is a decomposition model. First of all, solar gains are the
sum of the direct, the diffuse and the reflected radiations. The direct radiation is

based on:

¢direct = TM¢AtmeiMEmyl€ighL (Wm72) (IIl)

where 7); is the transmissivity coefficient, ¢ a4, the solar radiation coming to the
atmosphere, M the actual crossed mass of air with regard to the vertical mass of air,
Erayieigh the Rayleigh optic thickness (diffusion due to molecules) and L represents
the atmospheric blur (steam, fog, dusts) of Linke. These coefficients depend on the

day of the year, the atmospheric pressure, the temperature and the humidity.
The solar power collected by an inclined surface depends on the incidence angle
0 defined as:

0 = cos™ ! (cos(a)sin(B)cos() — ) + sin(a)cos(3)) (I1.2)

where « is the altitude, [ is the slope, ¢ the azimuth and ~ the exposure.

The next step consists in determining the diffuse radiation wich can be considered
isotropic according to Kumar et al [58]. Based on this hypothesis, Liu and Jordan [62]
developed en empirical relationship between the transmissivity coefficients for direct

and diffuse radiation for clear days:

Tdif fuse = 0.271 — 02947']\4 (II?))
Then, the extraterrestial radiation incident on the plane normal to the radiation
on the nth day of the year is defined according to (c¢f. Spencer [86]):

360n
365

Gon = Gse(1 +0.033)cos( ) (I1.4)

where G, is the solar constant considered equal to 1367W.m =2

which yields to:
gbdiffuse = GoaniffuseSin(a) (Wm_Q) (II5)
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Finally, the reflected solar radiation is computed according the Gate’s formula as

expressed below:

Orefrected = Gon(0.271 + O.7067'M)Sz'n(oz)sin2(g) (W.m™2) (11.6)

1.3 Estimators

The models will need some input information about occupancy and heating power
which will cannot be deduced directly from measurements. It is thus needed to
implement what is called here “Estimators” of these variables. They will first be
applied to this case study and, in chapter IV, it will be investigated whether or not
they can be generalized. The occupancy is deduced from power meters measurements
on the different desks. According to the number of plugs delivering power, the

number of people in the office is computed.

Due to the global heating system configuration, it is impossible to measure the
heating power injected in the office. An alternative was found by placing a tem-
perature sensor on the surface of the heater and by applying a factor Ky, to the
difference of temperature Theqter — Lin. The Kjeor factor is part of the parameters

which need to be learnt.

To complete these estimators, an internal gain is also computed, as the sum of
the solar gains, the electric gains due to the appliances, the gains due to occupancy
and a constant heat flow for including non-modelled phenomena. The solar gains
have already been described, the electric gains are also based on the sum of the
power measurements of the desks. The gains due to occupancy are the results of an
average of a power due to the body metabolism of 8OW multiplied by the occupancy.
And the constant heat flow is one of the parameters requiring to be estimated and
representing all the phenomena neglected here. Then, the internal gains are defined

as the sum of solar gains, heating gains, electric gains and occupancy gains:

¢in == Cbsolar + ¢heat + ¢electric + ¢occupancy (117)

which yields to:

¢in == ¢solar + Kheat (Theater - T‘zn) + ¢electric + an (118)
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where @404 is the solar gains described in the previous section, Theqrer is the tem-
perature on the surface of the heater,T;, is the indoor air temperature, Kj..: is a
parameter which is learnt, @gecric is the heat emitted by the laptops, B,, is the

average production of heat per person and n is the number of occupants.

Obviously, some of these estimators are suitable for an office building but not
at all for a residential one. For example, the occupancy forecast estimated from
power-meters sensors will very likely not be valid for dwellings. It can be noticed
also that these estimators require data from sensors, which seems in contradiction
with the objective of making the developed solution easy to spread. That is why,
different estimators will be applied in chapter IV aiming both at decreasing the need

for sensors, while allowing to match the different functions of the building.

2 Description of model structures

2.1 Structural description

The structures of the models studied in the present work rely both on the pre-
vious literature review and on a dwelling ontology. Establishing such a “dwelling
ontology” involved the listing of all components present in a dwelling along with
their characteristics impacting the energy management. Each zone is characterized
by its geographical location, its inertia, its volume, its area, its appliances and its
sensors. The links between the zones can be of different types: openings or walls.
Walls are characterized by their thermal resistance whereas openings can be broken
down into several categories. Openings may have a glass or opaque surface. Open-
ings with a glass surface are characterized by their ability to be opened or not, their
area, their orientation and the sensor informing on their state. Connexions with an

opaque surface are characterized only by their ability to be opened or not.

Then, as described in the ontology, it was necessary that the models be able to
represent different specific characteristics, among them the impact of window and
door openings. In order to define which structure would be simplest to implement,
a literature review was first performed, as presented in section 3. But the structures
identified neither matched the requirements of the ontology nor the needs of users

advice generation. Thus, it has been chosen to extract from this state-of-the-art the
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different hypotheses on the inertia modelling in order to quantify the improvements,
if any, on the results (cf. table II.1).

Localization of the inertia

Ambient air ner walls ner walls + Ambi- | bient air
ent air

Exterior walls 4+ | Exterior walls + In- | Exterior walls + In- | Inner walls + Am-

Table I.1: Approaches to be tested

2.2 Building blocks

Based on the literature review on the physical models and the “dwelling ontology”
established in the previous section, different building blocks were defined for each part
of the ontology. They are distinguished in 3 categories: the exterior wall represented
in table I1.2, the inner wall which only differs by taking into consideration a door and
not a window represented in table I1.3 and the zone represented in table I1.4. These
different building blocks will then be combined to create different structures in order
to select the most suitable structure for end-users energy services. To guarantee a low
computational time (especially regarding the parameter estimation), the structures
are going to be tested from the most simple (with no capacitance) to the most
complex (with 4 capacitances). The main difference between the different structures
tested in the location of the inertia as described in the previous section. The four
possible inertia locations are: the indoor air, the inner wall, the outer wall or what
is called here a “fictive” wall. The “fictive” wall intervenes when the whole inertia

in a unique equivalent capacitance.
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Exterior wall

Building block Equation
R
Tout; _Tin Tin — Tow = Ro
()]
Rout 1
T T T;n - Tou = - 5 ¢
Wl Ry gy t L, w
o4 Rou R
Cwoutﬁf dTw,out _ 1 Tout E
w,out2 Tw,out w,outl dt B Ow,out Rw,oth Rw outl
1 1
R _
TOUt ot jﬁ Tw,OUt (Rw,outl * Rw,out2
)] RW C Req CW
En = —Tw ou Re = = Tou
4|:|_/W Rw,outl out g Rout * RW '
1 1 1
— = + =+ 2
Req Rw,outl Rout RW

where ¢ represents the heat flow rate between the indoor air temperature 7;,
and the outdoor temperature 7,,;

Table 11.2: Building blocks for exterior wall




32 | CHAPTER Il. STUDY CASES AND CANDIDATE SELF-TUNING MODEL STRUCTURES

A 5

NI ZwZSSBI
T e
A A A A A A A

O

{

Ausoingsu

inoj

=
Leuoz Jamod
J00p _ - |__6u02 -
Z8u0z Jemod | ¢OU0Z ( MOpUIMm g
Q
Buiuedo100p e / I
Q
201110 uluado™ mopuim %
g'.
=}
S g e
5 = o
DO Q o
Io ® s)
geuoz geuoz— Q ;
gdoide) |doide) - >
~J1emod ~Jamod % :
- .
> .
S v
= .
=] &
gauoz
WOy L X001 §d01de| K
sse|b a|buls Jomod |
— V .
suonotl psjasiop |I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I :
251500 108 SO i preoadns L g
i r |||||||||||| pJBOanO |||||| |||||| || V'.
7 yaoley a9IAIBS l ||||||||||||””””””““”“l||||||||||||| :\7
JOp1II0D UoIBIIUBOUOD gD 99110 ¥
J0pLIOD|

Figure I1.1: Study case: researcher office
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Inner wall
Building block Equation
R
)]
Rn
1
e —a T |’
QO | L 2= R, Rp
Coune ATy 1 [T, T
RW n2 T n Rw'nl dt Cw,n Rw,nZ Rw,nl
1 1
R -T,
Tn ; jn o <Rw,n1 * Rw,nQ
[0)] RD Req 1 CW
T;n Twn Re e o TTZ
e By T+ R (o
1 1w
Req B Rw,nl * Rn * RW

where ¢ represents the heat flow rate between the indoor air temperature Tj,
and the neighbouring air temperature 7,

Table 11.3: Building blocks for inner wall

Zone
Building block Equation Building block Equation
T, ﬁ c
air
Tin
I
Ril | & 1 (T 1) (e
a N a Rz B E dt CZ Rz Rz
T Ri @ win dT; Lo
dt Cair "
o o T
I Ci
¥

Table 11.4: Building blocks for zone
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2.3 Reference model

From these building blocks, a first simple structure is built locating the whole
inertia in a unique equivalent capacitance (called later “fictive” wall). This simple

structure is represented in figure I1.2.

Rout Rn

Tout Rw CW/ Tin o CD/ Tn

a

Figure I.2: Reference model

As a reminder, the notations used in the reference model in figure I1.2 are explained
below:

T,, T;, and T,,; represent respectively the temperature of the neighbouring room,
the room considered and the outdoor

R, and R,,; represent the resistance of the wall between the room and respectively
the corridor and the outdoor

Rp and Ry represent respectively the resistance of the door and the window

(p and (y represent respectively the opening rate of the door and the window

R; and C; represent respectively the resistance and the capacity of a fictive wall
lumping the whole inertia of the building in the reference model

¢in Tepresents the internal gains: solar gains, heating gains, electric gains and occu-

pancy gains

The thermal resistance of the door Rp and the thermal resistance of the window Ry

are defined as below:
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1
Rp=——n
Pair cp,airQD

1
Ry=—
Pair Cp,airQW

where pg;, is the air density, ¢, .;r the specific heat capacity of the air and ¢)p and

(1L.9)

(I1.10)

Qw respectively the air flow by the door and the window. @)p and Qy are part of

the parameters which are estimated during the training phase.

To ease the reading of equations, an equivalent conductance is defined below:

111 w1 G
— = — - 4+ — 4+ = I1.11
R R Row  Rw  Ri @ Ro (IL11)

It is then possible to define the general differential equation of the model Reference

to determine 7(¢):

= i (e ) et (g ) 7wt (s )70
(I1.12)

As the model Reference includes only one state variable, it can be described by only
one differential equation, but later the resolution of the state-space system will be
detailed. The evolution of the indoor temperature in this case is then governed by

the equation below:

Tin(t) = %T(t) +R ( R(lm + ]C%VVVV((?)) Tour(1) + R (Rin + él; ((?)) T (t) + Rpin (1)
(I.13)

with R,,, Rout, Ri and C; time invariant

Solving the system of equations composed with equation I1.12 et 11.13 allows to
forecast the evolution of the indoor temperature. To this thermal model is coupled
a mass balance model presented in figure I1.3. This model will be used for every
model structure studied in this work, thus it will no be detailed again in the following

descriptions.

From this simple aeraulic model, the following equations can be readily deduced:
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Room Office Exterior
next door
QD QW

Figure I1.3: Aeraulic model

dly, (t)

V
dt

= —(Qwt)+Qp(t)Tin(t)+Qw ()T ot (t) + Qp ()T (t) + Speom(t) (11.14)

where I';,,I',.s and I',, represent the COy concentrations of the office, the outdoor
and the neighbourhood, V' is the volume of the room considered, Sg)gé/ is the average
production of COy per person, Quw and QQp are the air flows from respectively the
window and the door and n the number of occupants in the room. Qy and ()p are

part of the parameters learnt during the training phase.

2.4 Model with no capacitor

The next step consisted in modifying the inertia modelling in order to measure the
impact on the accuracy and computational time needed for the parameter estimation.
Therefore, in a first time the capacity of the fictive was deleted. Considering that
the aim is to predict the air temperature and C'Oy concentration trends in the office
(or dwelling) on a very short time period, it has been considered relevant to test a

model without any capacitance (cf. figure 11.4).

The model is thus linear, as shown below:

) = R | (28 + D) 0+ (2280 4 D) i)+ o] 1119

11 w 1
Req B Rout * RW * Rn * RD

(I1.16)
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Rout Rn

Rw Rp

Tout _/ Tin _/ Tn

Qin

Figure 1.4: Model with no capacitor

2.5 Model with two capacitors

Next, different structures with two capacitors have been defined to bring a second
dynamics. In the first instance, a capacitor was added to model the air capacitance
(quick dynamics) and then another capacitor to model either the inertia of the ex-

terior wall or that of an inner wall.

2.5.1 Models with a wall capacitor

Therefore, the reference model has first been completed with a wall capacitor

inserting a slow dynamics in the model (¢f. figures I1.5 et I1.6).

2.5.1. i) FEuzterior wall

In this case, the expression of the equivalent conductance is:

1
F 2t 2+ —— (11.17)

The resolution is done using a state-space representation which can be written in
the following form:
X = AX + BU (T1.18)

Y =CX + DU (I1.19)

where A, B, C' and D are the matrix of the state-space system, U the input vector,

X the state vector, X the derivative state vector and Y the output vector.
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Wi/
Cwout ——
Rw,outz Rw,outl
] Tw,out ]
Rout Rn
Tout Ru _Cy Tin Ro _CD/ Tn
Ri ®in
T
C—T
777

Figure I.5: Model with an exterior wall capacitor

In this case, the input vector is:

T,
U= | T,u (I1.20)
¢in
The state vector is constituted of all the temperatures directly linked to a capaci-
tance:
-
X = (I1.21)
Tw,out

and the output Y is the indoor air temperature T;,.

In these conditions, the state-space matrix A, B, C' and D are:

Req 1 qu

A= CiR? CiR; CiR;Ryout1 (1122)

Regq Regq 1 141
Cwwout Rwout1 Ri CwoutRfUl Cuwout Ruyout1 Ruyout2

+

$p Req Lo Sw Req
Rp CiR; \ Rout Rw CiR;

Req (L
CiR; \ Rn
B =
[958 Req 1 + Cw Req
Rp Cwout Rwout1 Rout Rw Cuwout Rwout1

(I1.23)

+

__Req (1
CwoutRwoutl Rnp
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— Req Req
C o |: T’L Ryout1 ] (1124>
D= Rey(f+48) Re(g+85) Ry (11.25)

Yielding to:

R R 1 Cw 1 §5)
T;n = = = Tw ou Re - - Tou Re = a5 Tn Re in
Ri T Rwoutl out i I (Rout i RW> t+ I (Rn N RD * q¢
(I1.26)
2.5.1. i) Inner wall
CW,FI f
Rw,nZ Rw,nl
— LT =
Rout Rn
- —
L 1
Rw C . Ro C
Tout I:I W Tin :l—}— Tn
Ri ®in
T
Figure I1.6: Model with inner wall capacitor
For this structure, the equivalent conductance is:
1 1 1 1 1
iy tw bt (11.27)

Req Rz Rout RW Rn RD anl
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The structure is perfectly symmetric to the previous structure. Then, the input

vector is:
1,
U= | T, (I1.28)
¢in
The state vector is constituted of all the temperatures directly linked to a capaci-
tance:
-
X = (I1.29)
Tw,n

and the output Y is the indoor air temperature T;,.

In these conditions, the state-space matrix A, B, C' and D are:

R_qu 1 Req
o CiRi Csz CiRianl
A= N S (T1.30)
C’wanlRi Cwanzunl C’LUTL Rum,l anQ
Re 1 Re 1 ¢ Re
B— C’LRgi (R_n + %) Cilguz‘ (Rout + %) Cilgbz‘ (H 31)
Req LJF(_D) Reg ( 1 +<l> Reg '
Cwannl Rn D Cwannl Rout RW Cwannl
o[ ] o
D=|R., () R +88) Ry | (IL.33)
Yielding to:
Re Re 1 CW 1 CD
T’in = g g Twn Re - - Tou Re = - Tn Re in
B Ry e T\ Ry TRy ) T e\ Ty, ) Tt fen?

(I1.34)
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2.5.2 Model with an air capacitor

An extra capacitor representing the dynamics of the air allows to add fast dy-

namics to the model. The corresponding structure is represented in figure I1.7.

Rout Rn
L 2 S e B
Tout I:IRW Cw_ —‘:n :IRD Co_ Tn
Ri ®in
-

Figure 11.7: Model with an air capacitor

Equations of the model are described below:

dr 1 [T T
A T 1.
i~ C, (RZ- Ri) (I1.35)
dT; 1 1 1 CW 1 CD 1
= = |75 e Tou = = Tn - _En in I1.36
i o\ Gy Ry Tt g, T, ) g T e (11.36)

Here again, the indoor temperature T}, is one of the state variables, so it follows

naturally the resolution of the state space.

2.6 Models with 3 capacitors

The next step is to define structures with three capacitors, which has been done
in two ways: combining the capacitance of the indoor air with a capacitor for either
the inner wall or the exterior wall or combining both the capacitors of the inner and
exterior walls. The modelling and the resolution of these models are done in the

same way as for those with two capacitors detailed in section 2.5.



42 | CHAPTER II. STUDY CASES AND CANDIDATE SELF-TUNING MODEL STRUCTURES

2.6.1 Models with an air capacitor

2.6.1. i) Exterior wall

/A
Cwout ——
Rw,outz Rw,outl
[ Tw,out | ]
Rout _Z_Z Rn
Cair——
T ) Gy o G
Ri ®in
T
C—T
777

Figure 11.8: Model with air and exterior wall capacitors

So we have:
T, T
U= | T,u (11.37) X = | Tw.out
Din T,

2.6.1. it) Inner wall

So it yields to:

T, T
U = Tout (1139) X = Tw,n
¢zn En

2.6.2 Model with wall capacitors

So we have:

(I1.38)

(I1.40)
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1

Cwn
Rw,nZ Rw,nl
_| Twn l_
Rout Rn
;] Cair
Rw Cw T Ro Co Tn

Tout I:I >~

Ri ®in

T

Figure 11.9: Model with air and inner wall capacitors

1 1

Cw,out Cw,n
Rw,outz Rw,outl Rw,nZ Rw,nl
_| TW,Out l_ _| Tvv,n l_
Rout Rn
- — —
L1
Rw Cw Ro Co Ta

Ri ®in

T

Figure 11.10: Model with a capacitor for the inner and the exterior wall

T, T
U = Tout (1141) X = Tw,out
¢z’n Tw,n

P

Tout | ~ Tin :l_/

(I1.42)
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2.7 Model with 4 capacitors

The model with 4 capacitors is the most complex of those appropriate for this
study taking into account the data available and the willingness not to increase the
number of sensors required for estimating the parameters. It is represented in figure
IT.11. Tt includes simultaneously the capacitor of the “fictive wall”, the ones of the

inner and exterior walls and the one of the indoor air, in order to represent the most
of the building dynamics.

Cw,out f Cw,n f
Rw,outz Rw,outl Rw,n2 Rw,nl
_| Tw,out l_ _| Tw,n l_

Rout Rn

CairT I:I
Tout Rw Cw T Ro o T
e EmE

Figure I.11: Model with 4 capacitors

The input and the state variables for this model are described below:

T
T,
Tw,out
U= |1, (11.43) X = (11.44)
Tw,n
¢in
Tin

2.8 Summary

Table 1.5 summarizes the different structures studied with their name, the state
variables, the data required and the number of parameters to estimate N. For each of
the models detailed in section 2 of chapter II and the associated estimation methods,

tests will be conducted to study the decrease of the number of sensors with the
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Models States Observations N
Reference 7T; T ToutCpCw 12
ReferenceNo( 775 T T ous 14
Model0C - 1 ToutCpCw 10
Model0CNo( - T, T 12
Model2Cair T T ToutCpCw 13
Model2CairNo( 71 T. T, 15
Model2Cwall T, TTowout T TouCplw 15
Model2CwallT,:NoC¢ 7T, out T, o 17
Model2CwallT,, TTwn T, TouCplw 15
Model2CwallT,No¢ 7T, T T o 17
Model3CT,,; TLinTw out TnTouCplw 16
Model3CT,,;:No( TTin T out T, o 18
Model3CT,, T T T, TouCplw 16
Model3CT,No( TLinTwm T T ous 18
Model3Cwall TTwoutTwn T T ouCplw 18
Model3CwallNo( T L. out Lwn T ot 20
Model4C TTinTwoutTwn  TnToulplw 19
Model4CNo( Tl Tw.outLwn  TnTout 21

Table 11.5: Summary of studied models

elimination of window and door contacts (cf. section 2.3 of chapter III). These

models are designated by adding No( to the name of the model.

3 Acceptability and selection criterion

Once the parameters of the models identified, several procedures of selection and
validation of models are presented in the literature. They differ according to the
objective(s) of the model. In this work, the procedure chosen is derived from Bacher
and Madsen [9] and the PhD thesis of Reynders [78]. These steps allow to validate
the robustness and the accuracy of the model identified but also to select the most

suitable order.



46 | CHAPTER IIl. STUDY CASES AND CANDIDATE SELF-TUNING MODEL STRUCTURES

3.1 Tools

To do so, different tools are needed: the standardized version of the Root Mean
Square Error (sSRMSE) and a sensitivity analysis. The RMSE enables to quantify
the forecast error between the indoor simulated temperature and the measured one.

It is defined by:

N
1 .
RMSE = |+ ;:Ij(yk — yp)? (I11.45)

where yj, represents the measured value and § the predicted one of the indoor tem-

perature.

From here, the sSRMSE is computed to allow the comparison of the model on
different datasets:

sRMSE = 58 (11.46)

Ymaz — Ymin
A sensitivity analysis is also performed in order to ensure that every parameter is
useful for forecasting the air temperature and the COs concentrations in the case

study as described in section 3.4 of chapter II.

3.2 Test of acceptability

The validation method consists in different steps:

« Validity of the model on the estimation phase
« Capacity of the model to forecast future behaviour

» Stability of the model along seasonal variations

For the first two steps, the SRMSE is computed and a limit to 0.1 is set to accept
a model. Then, for the stability, the higher value on the validation phase is chosen
between both summer and winter scenario. A range of +20% of this value is defined

and if the other value does not fit in that range, the model is rejected.
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3.3 Selection method

If the models verify every condition of the validation, they are then compared to
each other in order to select the most suitable one. For that purpose, the sum of the
sRMSE obtained for both summer and winter is computed and then compared. The

selected model will be the one with the lowest value.

3.4 Sensitivity analysis of the parameters

To complete the validation process, a sensitivity analysis is performed in order
to ensure that every parameter is useful for forecasting the air temperature and COq
concentrations in the case study. Otherwise, that would lead to a simplification of

the model structure.

3.4.1 Choice of the method

Different methods exist such as the Sobol’s indices [85] which rely only on the
hypothesis that the variance and the expectation of the output are finite. However,
despite the few hypotheses needed, it requires a high number of simulations so it is
a very interesting method for models with low computation cost. Another method
was developed by Saltelli et al [80] in 1999; it is based on the principles of the Fourier
analysis. It enables to write the variance as a Fourier series. Quicker and more stable
than the Sobol method, it still requires a lot of simulations: N.d with N the number
of samples and d the number of factors. Also available, the method of Morris [6§]
relies on a discretization of the space of variables. Thus, the sensitivity of the output
to one of the factors X; is measured comparing results where only this parameter
X; varied. This is why this method is classified amongst the "One at a Time”
(OAT) methods. The number of simulations required is equal to (N + 1)? where
N is the number of samples. It is then faster than the Sobol and FAST (Fourier
amplitude sensitivity testing) methods. However, contrary to the other methods, the
Morris method is qualitative which means that it is possible to classify the different
parameters but not to ensure their relevance. As the goal of the sensitivity analysis
in this research is to ensure that the structure of the model is coherent and that
each parameter has an impact on the output, it is not suitable. Therefore, despite

its computational cost, the Sobol method will be implemented.



48 | CHAPTER Il. STUDY CASES AND CANDIDATE SELF-TUNING MODEL STRUCTURES

3.4.2 Principle

The method of Sobol is a global and model-independent sensitivity analysis
method based on variance decomposition. It determines the contribution of each
input parameter and their interactions to the overall model output variance. In the
general framework of a non-linear and non-monotonous model, if the output can
be deduced from the set of parameters x = (z1, 23, ...z4) by the function f, Sobol

suggested to decompose that function into summands of increasing dimensionality:

d d
f(Il, T, l‘d) = f() + Z fz(xz) + Z fij(xiy ZE]') + ...+ le...d(fL‘l, Z9, ZL‘d) (1147)

1<j

where fj is a constant and this condition is verified:
1
/ fi1,-..is (ZEZ'N ceey Izs>dxzk = O\V/l{? = ]_, ceey S7V{i1, ceey ’LS} Q {]_, ceny d} (1148)
0

Sobol demonstrated then that this decomposition is unique. From here, the total

variance decomposition can be obtained:

Var[Y] =Y Vi(Y)+ ) Vi(Y)+ > Vig(Y) + ..+ Vig_a(Y) (I1.49)

where: N is the number of samples, d the number of factors, Y the output of the
system andV;(Y') = Var[[E(Y | z;)], Vi;(Y) = Var[[E(Y | z;z;)] — Vi(Y) — V;(Y)

and so on.

This writing of the variance allows to easily obtain the sensitivity indices or
Sobol’s indices:
_ Var[[E(Y [2)]  Vi(Y) () Vije(Y)

— = = g = 11.
! Var(Y) Var(Y)’ Sii Var(Y)’ Siih Var(Y)’ (IT.50)

The Sobol’s indices are normalized, and so very easily interpreted. The second-
order contribution illustrates the sensitivity of the model to the interaction between
the parameters z; and z;. If the number of parameters increases and exceeds 10,

the computation of these indices becomes really costly. This is why Homma and
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Saltelli [48] introduced the total sensitivity indices such as:

i i kLG <k leti

where fii represents all the subsets of indices containing the index i. In our study,
according to the number of parameters to estimate in our models, only the first-order

and the total indices will be computed and analysed.

4 Conclusion

In this chapter, a general methodology to generate models has been introduced.
First, the mono-zone office study case is presented with an architectural point of view
as well as different useful tools: estimators and the computation of the solar gains.
Then, a focus is done on the structure of the semi-physical models studied in chapter
I1I. To do so, an ontology for dwelling is proposed followed by a decomposition into
different building blocks developed in agreement with both this ontology and the
literature. From here, the different blocks are assembled into the 8 model structures,
which will be analysed considering our purpose: models for end-user services. To
conclude, the acceptability and selection methods used to elect the most relevant

structure are described.
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1 Introduction

As explained in section 5 of chapter I, two different categories of models are
implemented in this work: black-box models such as multi-regression models and
semi-physical models such as RC-models. Indeed, recovering physical values of the
model parameters is not an objective in itself. Then, it is logical to first implement
easily estimated non-physical models such as black-box models. Their application
is not common for forecast purposes their performance in prediction is arguable.
But, as shown in section 3 of chapter I, they have gained in popularity for their low

computational costs for the estimation process.

Semi-physical models, on the other hand, are a common solution in the building
physics community, then this option is explored as well. But, using physical models
for energy management in buildings requires a calibration step since there is no
expert information (insulation, materials,...) available on the specific building in
which the solution will be implemented. This step will be realized in this study
with measured data. Different parameter estimation methods exist: some of them
demand expert knowledge to select a relevant initial dataset such as usual descent
algorithms in a rough parameter space while others require a linear model such as
linear regressions. Optimization methods can be not ergodic (which means that the
algorithm does not systematically converge towards the same optimized dataset).
The choice of the parameter estimation method is impacted by the linearity with

respect to model parameters of the problem. Considering the reference model with
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one capacity, it can be seen than if it is linear with regards to its variables, it is not
with regard to its parameters. Then, a certain number of optimization methods are
not suitable for estimating parameters. Optimization algorithms can be sorted into
two main categories: the stochastic ones and the deterministic ones. The descent
algorithms, part of the deterministic category, are based on the computation of the
gradient of the objective function. Thus, according to the initial point, it can be
stuck in a local optimum but it is less costly in terms of computational time than
genetic algorithms. That is why a "meta optimization” procedure is implemented to

try to avoid that problem and keep a low computational cost.

In this chapter, are tested whether these two kinds of models as well as the two
different estimation methods described above for semi-physical models are suitable
for end-user energy services or not. First, the requirements induced by the imple-
mentation of end-user energy services are detailed. Then, the meta-optimization
approach is described and applied on the office mono-zone study case, followed by

the meta-heuristic approach.

2 End-user energy services requirements

The final objective here is to allow the implementation for end-user energy ser-
vices in order to help them understand the thermal phenomenon in their dwellings.
The services considered are not about control of the house but generation of antic-
ipative plans for the next 24 hours for advice and explanations of past behaviour.
Occupants having very little knowledge about the intrinsic building physical param-
eters, the thermal models developed must be mainly based on data. The main target
of the project is the residential sector and the goal is to obtain a model easily ex-
trapolated to other kind of buildings. Then, it is aimed to implement these services
in every house. This leads to another constraint: the instrumentation must be as
minimal as possible. In order to ease the implementation and to allow a calibration
for each dwelling without requiring an expert, models must be self-tuning. Most of
the services based on predictions are built on a 24-hour horizon so the model can be
daily set-up to measurements to avoid any drifts. Indeed, as end-users are targeted
and services considered are not about control, the 24 hour horizon appears to be the
most relevant for providing advice, anticipative plans of energy management and
explanations. The resolution considered is 1 hour time-step as there is no point in

giving advice of actions every 10 minutes, hence the quick dynamics do not signifi-
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cantly impact the models. The most important here is to properly model the slow
thermal dynamics of the building. As explained in the introduction of this chapter,
models have to be suitable for learning process. This means that the computational
time required for estimating the parameters the first time must be less than 24 hours
and the length of data required as small as possible since it cannot be expected from
occupants to wait until they have one-year of data before being able to use the energy
services. It also means that the estimation process must be ergodic: the estimation
provided by the services needs to be always as accurate as ever. Otherwise, the user’s

trust in the e-consultant would be definitely damaged.

To meet all these technical specificities, the methodology implemented consists
first in defining the right kind of model and the right model structure to properly
represent the building thermal dynamics. And, in parallel, to ensure that this model
structure can be coupled with a parameter estimation method which is not too costly

in computational time and is ergodic.

3 Multi-regression models for energy services

Firstly, multi-regression models have been applied to the mono-zone office de-
scribed in section 1 of chapter II for both summer and winter periods. The first
step consists in defining the training and cross-validation datasets. The inputs and

outputs of the model are then determined as well as the error criteria considered.

3.1 Implementation

3.1.1 Training and validation datasets

The summer scenario consists in estimating the model for the month of May
2015 and to validate it for the month of June 2015. June is a fairly hot month in
Grenoble, with maximum outdoor temperatures oscillating between 20 and 32°C as
can be seen in figure III.1a. Measured data take into account a great number of
openings of windows and door, with a clear impact on the office temperature and
COg concentrations. The winter scenario consists in estimating the models using the
month of October 2015 and in validating it with the month of November 2015. Here
again the separation is materialized by a change of colours on the graphs: blue for the

training phase and red for the cross-validation phase. This period is characterised
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by a relatively high indoor temperature for the season: around 22°C for the month
of October and by an abrupt fall of temperatures in November, down to 16°C. The
outdoor temperature oscillates between 0 and 15°C (¢f. figure I11.1b), which suggests

a significant usage of the heaters.
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Figure I1l.1: Outdoor temperature

3.1.2 Choice of the inputs

For both the temperature and CO, models, inputs need to be defined. For the
temperature model, the inputs considered are: the outdoor temperature (7,,;), the
temperature of the corridor (Tiopridor), the hourly rate of the door opening ((p)
varying from 0 to 1, the hourly rate of the window opening ((y) varying from 0 to 1
and the internal gains: the total electric power (P...) and the solar gains(¢soar). For
the CO5 model, the variables of interest are: corridor COy concentration (I'corridor ),
the hourly rate of the door opening (({p) varying from 0 to 1, the hourly rate of
the window opening ((w) varying from 0 to 1 and the COy sources (Sbcoggn). The
internal sources are not considered as inputs since they are not directly measured
in this study case and should then be estimated. The structure of the temperature

model is:

—

ﬂn (t) = bOTout (t) + bchorridor (t) + b2<D (t) + bSCW (t) + b4¢solar (t> + bSPelec(t) (IIIl)

and the one of the COy model:

—

an(t> = bOFcorridor (t) + blCD <t> + bQCW (t) -+ bgsgoggn(t) (IIIQ)
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where b; represent the coefficients to estimate and the ~— represents the estimation.

3.1.3 Results

Results of the models for the temperature and the COs concentration in the

mono-zone study case can be seen in figure I11.2.
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Figure I11.2: Results of prediction for the multi-regression models including the internal gains

It can be observed that the CO5 concentration values obtained during the vali-
dation are significantly different from the measurements and most of all unrealistic.
Indeed, the outdoor CO, concentration is around 400 ppm and cannot be lower. With
this model, CO5 concentrations reach almost 200 ppm. The validation is performed
by recovering the coefficients b estimated based on the training data and launch the
simulation for the following month. The order of the multi-regression models is zero,

then there is no daily calibration. Indeed, the prediction being independent of the

past events, there is no risk of drifts.

In order to generalize the result, the same protocol has been applied to the months
of April and May 2015 instead of May and June. The results are presented in figure
I11.3. It can be observed that the CO5 concentration estimation is greatly improved:
the number of unrealistic values is close to zero and the amplitude is correct. The
same thing is observed for the temperature estimation. It is more accurate and there

is less fluctuations during the validation phase than previously.

Regarding the winter scenario, results are presented in figure II1.4. It can be
seen that results are pretty accurate for both CO5 concentration and air temperature.

Even if there is a gap of temperature between the month of September and the month
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Figure I11.3: Results of the multi-regression model during April and May

of October, the model successfully forecast the evolution of temperature during the

validation phase.
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Figure lll.4: Results of the multi-regression model during September and October

From a quantitative point of view, two elements are observed: the absolute av-

erage error between the measured and the estimation values and the standard devi-
ation. They are observed for both the training phase and the the validation phase.

This information is summarized in table ITI.1 where the absolute average is expressed

in °C' for the temperature and in ppm for the CO, concentration.
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Months Data Absolute Average Error | Standard Deviation
0.29 0.38
Temperature (°C)
0.95 0.58
May - June 76 28
CO m
2 (ppm) 59 80
0.39 0.52
Temperature (°C)
. 0.47 0.55
April - May
CO, ( ) 57 90
m
> PP 50 89
.32 )
Temperature (°C) 0-3 044
0.44 0.49
Sept - Oct % -
CO
2 (ppm) 58 103

Table lll.1: Comparison of absolute average error and standard deviation for the reference model
and the multi-regression inspired by physics on both training (in italics) and validation phases

As a test, other models are implemented, deleting the internal sources (of heat

and COy) as shown below:

m = bOTout(t) + bchorridor (t) + bZCD(t) + bgCW(t) (III3)
m - bOFcorridor(t) + blCD(t) + bQCW(t) (1114)

where b; represent the coefficients to estimate and the ~ represents the estimation.
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Figure ll1.5: Results of the multi-regression model without the internal gains
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Results can be seen in figure I11.5 and are very similar to the ones obtained with
the internal gains. This result is quite surprising and requires further investigation.
Then, the coefficients of the different terms are observed in order to see their re-
spective impact. For the temperature model with the internal gains, the impacts are

expressed below in percentage:

o Toulk]: 2.10%

o Teorridor [K]: 92.4%
« Cplk]: 0.157%

o Gylk]: 0.225%

¢ Dsolar[k]: 4.84%

e Puelk]: 0.309%

Then, it can be observed that the temperature of the corridor is the main contributor
to the indoor air temperature of the office. This highlights that there is a strong
correlation between these two temperatures that can hide the impacts of the dif-
ferent actions. In this case, multi-regression models are not suitable for end-user
energy services in a mono-zone study case. To confirm this, the estimated model
represented by the equation II1.1 has been used for the simulation of the month of
April considering that the window stay open all the time. This simulation has been
compared with the simulation of the model taking the measured window opening.
The difference of these two different models is plot in figure ??. It highlights that
opening the window has no impact on the indoor air temperature despite the low

outdoor temperatures which can reach negative temperatures.

§ 0001

u_\.\_ Ls_ |.s_|_l

Figure 111.6: Difference of temperatures between the two scenarios tested
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This study shows that multi-regression models do not seem to be suitable for end-
user energy services. Despite this observation, the case of June is further investigated
in the next section in order to understand the specific behaviour observed for this
month. Later, other models are implemented integrating more physics in order to

study if it helps to correct the importance of the temperature of the corridor.

3.2 The case of June

Multi-regression models have been proved to deliver acceptable performance for
forecasting air temperature and COs concentration in some cases but to present
significant errors in others. Regarding the COs, the case of June requires further
investigation to understand the observed behaviour. For that purpose, environmen-
tal inputs are plotted in order to identify whether any specific phenomena happened
during this month. Then, window and door openings, outdoor and indoor air tem-
peratures as well as CO, concentrations in the corridor are observed (cf. figure
II1.7). Tt can be seen that while the door behaviour is quite similar: graphically the
behaviour is quite the same during May, June and July; there is a gap between the
window openings in May and those in June which is consistent with the significant
increase in outdoor temperatures. Indeed it can be observed in figure I11.7b that
there are very few window openings between the 7th of May and the 4th of June,
whereas the months of June and July are characterized by a high rate of openings.
The opening rate is three times higher in June than in May. This can explain why

the multi-regression model is not able to forecast the COy concentrations in June.

Then, another test is launched, estimating the model on the month of July which
also presents many window openings and similar outdoor conditions with validation
on the month of June. Results in figure I11.8 reveal that the prediction is still not as
accurate as it was for winter forecasts but there is a significant improvement with an
average absolute error of 34.54 ppm against 72.62 ppm and a standard deviation of
64.52 ppm against 96.60. This study highlights that multi-regression models require
rich datasets for learning the coefficient of the variables of interest and that they

cannot ensure a systematic accuracy in the estimations.
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Figure lll.7: Environmental inputs during the month of June

1100~

— €02 estimated (validation)
— €02 estimated (training)
=+ CO2 reference

1000

900
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3.3 Multi-regression inspired from physics

In order to solve problems such as the case studied in the previous section, an
issue is explored: how to integrate an a priori physical knowledge in the multi-
regression model structure and how it can improve the accuracy of the estimations.
The low performances observed for the month of June may indeed be due to new
physical phenomena (absent from the training data) but these phenomena may be

accounted for by physical equations.

3.3.1 Principle

The main idea is to improve the prediction ability of multi-regression models
when facing new dynamics or behaviours and to develop an automatic method for
determining the inputs to consider and the model order. Indeed, if black-box models
have the advantage of not requiring any specific prior knowledge of the building, their
structure needs to be properly selected [71]. For that purpose, physical equations
can be extracted either from grey-box models such as electric analogy models (RC
models) presented in figure I11.9 for forecasting the temperature or from mass balance

equations for forecasting the CO, concentration.

In the RC-model, T,,, T;, and T,,; represent respectively the temperature of the
neighbouring room, the room considered and the outdoor
R,, and R,,; represent the resistances of the wall between the room and respectively
the corridor and the outdoor
Rp and Ry represent respectively the resistances of the door and the window
(p and (y represent respectively the opening rate of the door and the window
R; and C; represent respectively the resistance and the capacity of the fictive wall
¢in represents the internal gains : solar gains, electric gains, heating gains and oc-

cupancy gains.

Wu and Sun [92] tackled the same questions but using thermodynamics equa-
tions to enrich ARMAX models. They predicted the indoor air temperature in the
Science and Engineering (SE) building of UC Merced. They succeeded in precisely
forecasting the room temperature over both short and long-term periods from models

trained with the data over a relatively short time.
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Figure 111.9: RC model

The simple mass balance model used for forecasting the COy concentration is

presented schematically in figure II1.10 and mathematically in the three following

equations:

Room

Office Exterior
next door

Qp

Figure 111.10: Aeraulic model

dl';,

4 dt - (QW + QD>Fm + QWFout + QDFn (III5)
+ Seon

Qout(t) = Qout + Cw (H)Qw (I11.6)

Qcorridor (t> = Sorridor + CD (t)QD (1117)

where I';,,I',; and T',, represent the COy concentrations of the office, the outdoor

and the neighbourhood, V' is the volume of the room considered, S?gg is the average

production of COs per person, Qy and (Qp are the air flows from respectively the

window and the door and n the number of occupants in the room. Qy and Q)p are

part of the parameters learnt during the training phase.

3.3.2 Application

To apply this principle to the multi-regression model as defined in section 3, one

had first to identify those variables from the mass balance model that were relevant
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to the physics-inspired multi-regression. The training and validation periods had

then to be properly defined to guarantee a rich enough dataset.

3.3.2. i) Determination of coefficients

Equation II1.5 represents a simplified physical CO, behaviour of the mono-zone
office. This equation is parsed in order to recover the variables of interest. Firstly,
the variables Qy and Qp are replaced in equation I11.5 according to equations I11.6
and II1.7. The parameters Q° are part of the parameters to estimate. This induces
the appearance of terms including (p and (y,. As the structure of a multi-regression
model is linear, terms containing I';,, are not considered here. Only the coefficients
of measurable inputs are kept: I'.,., n, (p and (y for the estimation of the CO45 and
Touts Teorridor, ™, Cp and Cy for the temperature estimation. This yields the variables
listed below for the COs model:

I corridor: the COq concentration of the corridor

(p: the rate of door openings

Cw: the rate of window openings

[ corridor(p: the product between the rate of door openings and the COs con-

centration of the corridor

n: the occupancy

The term I',,;(w has not been taken in consideration as I',,; is constant. It has
then been replaced by the term I'.y.rigor(w- and the variables listed below for the

temperature model:

Trorridor: the air temperature of the corridor
e (p: the rate of door openings
e (w: the rate of window openings

o T.orridorCp: the product between the rate of door openings and the air temper-

ature of the corridor

o T,uCw: the product between the rate of window openings and the outdoor

temperature
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e n: the occupancy

These analyses led to the following models :

Fin = bOFcorridor + blCD + bQCW + bSn + b4rcorridorCD + b5Fcorm'dorCW (IIIS)

En :bOTout + bchorm'dor + bZCD + b3CW + b4TCOTTidOTCD

(111.9)
+ b5Tout w + b6¢sola7‘ (t) + b7Pelec(t)

3.8.2. i) Implementation

The coefficients of the variables of interest in the multi-regression model inspired
by physics can be estimated and the resulting model can be simulated. Results can be
seen in figure I11.11 and values of the absolute average error and standard deviation
are shown in table II1.2. Regarding the temperature model, the new structure does
not improve significantly the results obtained. But, regarding the CO, model, it
can be seen that both the absolute average error and the standard deviation are
decreased which improves the accuracy of the model and increases the trust that
end-users can put in the forecast. Especially, it can be seen that the estimations
with the multi-regression model inspired by physics stay most of the time in the

realistic ranges which represents a great advantage in terms of trust.
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Figure I11.11: Results obtained for the multi-regression models inspired by physics
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Models Data |Average Error| | Standard Deviation
0.29 0.38
T (°C)
) ) 0.95 0.58
Standard multi-regression
<0, (ppm) | 9 88
2 PP g 80
0.29 0.38
T 0 0.94 0.59
Inspired by physics : :
O, (ppm) | ! 54
m
2 PPR 58

Table lll.2: Comparison of absolute average error and standard deviation for the reference model
and the multi-regression inspired by physics during the validation

3.4 Limits

Multi-regression models have proved to deliver good performance for forecasting
air temperature and CO, concentration in some specific cases. However, several
limits need to be raised. The first one was described in section 3.2 of chapter III:
when forecasting CO2 concentrations, multi-regression models require a sufficiently
rich training dataset to reach a satisfactory precision. It was also highlighted that
for the mono-zone study case there is a strong correlation between the indoor air
temperature and the temperature of the corridor. Indeed, keeping only the outdoor
temperature and the corridor temperature is enough to well forecast the temperature
of the office. This reveals issues regarding the possibility to develop end-users energy
services since the impact of openings or internal gains is negligible. In the next sec-
tions, semi-physical models are implemented in order to assess whether introducing
some physics can solve this problem and estimate properly the respective impacts of
the actions and environmental inputs. Then, it is also important to further investi-
gate the ability of the model to be generalized to other study cases (especially multi
zone study cases) and configurations. For that purpose, the impact of the lack of

contact sensors on the accuracy of the output is investigated.

Indeed, it would ease the implementation of the model on other study cases
with less sensors and reduce the instrumentation needed. For that purpose, the
information of contacts of the door and window used in the thermal model is no
longer used. In fact, if temperature sensors and to some extent CO, sensors are
currently spreading over the residential and tertiary sector it is less so for contact

sensors. Although some can be found in security packages for detection of intrusion,
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it is very unlikely to find any on indoor openings. Besides, they can raise issues of
social acceptability because they are perceived as more intrusive. Then, it would be
very interesting to be able to free the models from the corresponding data. On the
other hand, the rest of the data currently used to forecast CO2 concentrations comes
from temperature and CO5 sensors which cannot be avoided. Some other sensors are
used especially for estimating the occupancy in the office but those are not common

to all case studies since this logic cannot be applied for residential buildings.

This raises in turn the question of the adaptation of this mono-zone model to
a multi-zone one. In fact, how will the model behave when the information of the

adjacent room needs also to be estimated?

3.5 Conclusion

In this section, the possibility of modelling a mono-zone office thanks to multi-
regression structure has been explored. Despite the great accuracy obtained in some
cases, several issues have been raised. The main one being the structure of the
multi-regression obtained and the weight of the corridor temperature in the model.
Besides, the month of June has also highlited some limits especially regarding the
COs concentration which reached unrealistic values. Indeed, multi-regression mod-
els require rich datasets to forecast the temperature with a sufficient accuracy. If
multi-regressions fit the needs of some applications, they do not seem to suit the

requirements of energy services for mono-zone study cases at least.

4 Meta-optimization

4.1 Principle of the meta-optimization

The approach chosen here was presented by Audrey Le Mounier in her PhD the-
sis [59]. The goal is to guarantee the physical validity of parameters and to guide
the optimization in order to improve the results. It requires an a priori knowledge
of the values of the parameters in order to initialize them. As the goal is to free the
system of any expert knowledge, parameters are initialized with some vague values
which are only of the right order of magnitude. Then, low and high bounds are
defined very broadly to simultaneously give more freedom to the algorithm and limit

the impact of the choice of initial values. Giving freedom to the algorithm is done
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with the aim of finding the more suitable and accurate result. But, knowing that
the goal is to guarantee the physical validity of the parameters and that parameters
are restricted by their limited values in terms of physical acceptability, a parameter
reaching its bounds can difficultly be justified on a physical level. Thus, the opti-
mization is guided towards zones where the objective function is not monotonous in
the directions of the parameters. The procedure consists in the implementation of a
series of successive optimizations and in the selection of set of parameters minimiz-
ing the errors without letting them reach their bounds. The optimization used in
this process is a non-linear optimization called Sequential Quadratic Programming
(SQP) [57] which is an iterative method. This algorithm requires that both the
objective function and the constraints can be differentiated twice. Then, it divides
the problem into sub-problems and optimizes the quadratic model of the objective
function subject to the linearisation of the constraints. To explain more precisely
the whole process of this method, two terms need first to be defined: adjustable and

current value.

Adjustable. A parameter is said adjustable in the neighbourhood of a given pa-
rameter value if the error criterion admits a minimum for a variation of the
parameter within its definition range starting from a given parameter value

set.

Current value. The current value of a parameter is the last value estimated by
the optimization process which did not reach the bounds of the parameter
domain. In case the parameter is out of the acceptable domain and never was
determined as adjustable, it is reset to its initial value defined a priori. In case
the parameter is out of the acceptable domain and never was determined as
adjustable, it is estimated to the value reached at the last step when it was

adjustable.

At each step, the following are performed:

e An analysis to determine if the parameter is adjustable or not in the neigh-

bourhood of the current value of the parameters.

o An optimization of the adjustable parameters

A summary is presented in figure I11.12.
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Model with: R
Model Study of the - M Parameters Adjustable => initialized to the value minimizing the criteria Optlmlzatlon on
—_— M adjustable
N parameters monotony - N-—M Parameters Not adjustable => fixed to initial value parameters

M parg, ¢!
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Figure 111.12: Diagram of the meta-optimization principle

4.1.0. i) Study of the monotony of the error criteria

In order to determine whether a parameter is adjustable or not, an estimation of
the error criterion is performed by varying the concerned parameter in its definition
range, all other parameters remaining at their current value. The monotony provides
information on the capacity of the parameter to be identified. Indeed, if the error
criterion is strictly monotonous, then the value of the parameter minimizing the
error criteria will slide outside of the physically acceptable domain. Because the
monotony study is implemented while all the other parameters are frozen to their
current value, the adjustable characteristic of a parameter can change according to

the considered current parameter values.
4.1.0. i) Optimization

For the optimization phase, any algorithm can be used. The one used in this study
is a truncated Newton algorithm with is a conjugate gradient method. It minimizes
a scalar function of one or several variables and is based on the computation of the

gradient and the Hessian.

4.2 Application to the different structures

To apply this method to the case study presented in chapter II section 1, it is

necessary to define for each structure initial values to the set of parameters to be
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identified but also a research interval. In this case, some of the building physics was
accessible. Then, it allowed to define the physical variables of the reference model
according to the insulation, surface and type of walls. For the other parameters
which required a more detailed knowledge, it was set to the right order of magnitude.
This information is summarized in table II1.3. In general building behaviours are
significantly different in summer and winter as illustrated in the French translation of
the European directive 2002 / 91 / CE on energy efficiency of existing buildings [1]. In
this technical report the goal is to make appear the behaviour of buildings according
to the seasons. To do so, two different periods were selected to validate the models:
from May to July and from October to December. Datasets consist in data collected
during occupation of the building, so they include the impact of users on their

dwelling: opening of windows and doors or heating set-points.

Parameters Minimum value Initial value Maximum value
Qoour (m3.571) 2,77.107° 0,010779 0,00277
Qw (m3.s™1) 0,00556 0,041031 1,38889
Qp (m3.s71) 0,00556 0,040493 1,38889
Qocor (m3.571) 2,77.107° 0,006958 0,00277
Rowt (KW™1) 10~ 0,246071 1

R, (KW™1) 1073 0,010291 107t
Sco, (ppm.m?®.s~'.per™) 3 4117725 12

Solar factor (-) 0 0,154460 1
Geonstant (W) -10000 0 10000
Kheat () 0 25 10000

R; (KW~ 104 0,005284 107t

C; (JK™Y 3600 720000 86400000
C, (JK™ 3600 967,04 86400000
Cwp (JJK™) 483,52 967,04 4835200
Ry (KW 10~ 0,001 1

Ru2 (KW 1074 0,001 1

(p(-) 0 0,001 1

Cw (-) 0 0,001 1

Table 111.3: Initial values and range of parameters to be estimated
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4.2.1 The reference model

The training and validation datasets used are the same as those used in section
3 of chapter III. End-users energy services requiring a 24-hour time horizon, models
variables can be daily set to the measured value in order to avoid the drifts in the
model. This is possible as long as the model remains observable. The temperature
and CO,y concentration responses of the reference model are represented on figure
[T1.13. It illustrates the first phase of validation of the model which consists in the
simulation of the model on a dataset not used for estimating the parameters. The
separation between the training phase and the cross validation one is materialized
by a vertical black bar on the graphs. The graphs enable in a first time to perform a
qualitative evaluation of the results of the model. It can be observed also a missing
data period for the CO5 concentration in the month of November due to a failure of
the corresponding sensor. Then, for a quantitative analysis of the estimation results,
the standardized RMSE is computed (cf. tables I11.4 and II1.5), the numerical values
confirm the relevance and accuracy of the model and also highlight that the model

is more accurate in winter than in summer.

Estimation | Validation

sRMSE 0.06931 0.08726

Table 111.4: Errors in summer

Estimation | Validation

sRMSE 0.04279 0.06099

Table ll1.5: Errors in winter

This improvement in the performances of the model in winter can be explained
by the strong diminution of the doors and windows openings during that period (cf.
figure I11.14).

4.2.2 Modification of the inertia

Displaying all the temperature profiles of the models for the same periods under-

lines, important differences between these models (cf figure 111.15). This significant
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(b) CO5 in summer

—  CCO2_estimated

— office_CO2_concentration

(c) Winter Temperature (d) COs5 in winter

Figure 111.13: Results of the reference model

gap cannot be found in figures I11.16a and II1.16b, which display all the values of
sRMSE of the different structures in both the validation and learning phases. It
confirms the need of different steps in the validation process. Observing more pre-
cisely the sSRMSE graphs, what should first draw the attention is the high value of
sRMSE for the "Model2CwallT,,;” in Summer. Indeed, this way of computing the
error penalized significantly the outliers in temperatures. Observing the temperature
profile obtained for that model (c¢f. figure I11.17), it can be seen that the fluctuations
are very important and furthermore present a high offset. For the winter behaviour,
it can be noticed that all the models with two capacities present higher values for
sRMSE than the reference model which is not consistent with the theory. On the
other hand, except for the "Model2CwallT,,”, there is a big gap between the re-
sults in estimation and validation, apparently ruling out these models for prediction

purposes.
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Figure 111.14: Sensor measurements of door and window openings
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Figure I11.15: Temperature profiles obtained with the different models

To understand what happens for the models with two capacitors, the optimization

process was studied in respect of how the parameters evolve along with the iterations
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Figure ll.16: Results of the different models in estimation and validation phase
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Figure lll.17: Estimated and measured temperatures for the model ~~Model2CwallT ;"

(cf. figure I11.18). It can be observed that the optimization seems to find it difficult to
converge: indeed for some parameters such as R,,; the values oscillate several times
between the upper and lower bound. This phenomenon is symptomatic of a poorly
stated problem: it fails to converge during the optimization because it remains stuck
in a zone where the objective function does not admit an obvious minimum. On the

other hand, it can be seen in figure I11.17 that dynamics are not well represented.
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Figure 111.18: Values of parameters to estimate along the iterations for the model
>~ Model2CwallT ;"

These observations raise real issues stressing the limits of this method. Indeed,
it seems that the meta-optimization does not succeed in guiding the optimization
towards the global optimum and thus the algorithm remains stuck in some local
optimum. This is why, the validation procedure was not continued and first limits

of the optimisation process were investigated (cf. section 4.3 of chapter I1I).

4.3 Limits

Since the results obtained for models with two-capacitors were not those expected:
a better accuracy despite a higher computational time, several analyses were per-
formed in order to explore the limits of the procedure presented in that chapter. The
objective was to investigate the ability of the parameter estimation method to return

parameter values quickly and with an acceptable accuracy.
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4.3.1 Time of computation

In section 2 of chapter II, structures with up to 4 capacitors were introduced.
However due to both the rapid deterioration of the results and the exponential in-
crease of computation time, the meta-optimization described in this chapter was
applied only to the models up to 2 capacitors. Indeed, where the computation time
for the reference model was around 300 seconds, it rose to 7240 seconds for the
Model2CwallT,,. This exponential increase for a mono-zone model combined with
the fact that the convergence of the algorithm is questionable was not in favour of
proceeding with the development of this method for more complex models. More-
over, digging into the process of the optimization algorithm (algorithm SQP from
Python library scipy) revealed that for all the models with two capacitors, the algo-
rithm returned the error “Unable to progress” for some optimizations. This problem

of convergence is partly responsible of the increase of computational time.

4.3.2 Training period

In order to decrease the computational time needed, some tests were conducted
to quantify the impact of a shorter learning period on the accuracy of the results.
Besides, the length of the training period also impacts the attractiveness of the so-
lution. Indeed the longer it is, the harder the implementation in a real context is
in terms of acceptability of the solution. Thus, it would be interesting to determine
the minimum length of training period bringing the required accuracy. Results are
presented in figure I11.20. It can be seen that, as expected, dividing the length of
the training period by 2 damages the accuracy for all the models except the refer-
ence model for which the impact is negligible. For Model0C, “Model2CwallT,,; and
“Model2CwallT,, the error rises by around 20% which remains significant. Then, it
can be seen that for Model2Cair, the error almost doubles to reach 0.32. Considering
the gain in computational time, it was not really significant and depended a lot on

the convergence or not of the algorithm as described in the previous section.

4.3.3 Sensitivity to the initial point

As the convergence problem seems to appear only occasionally, a further analysis
is led to investigate the sensitivity to the initial point. A high Sensitivity to the initial
point jeopardizes the user’s trust in the e-consultant and would lead to the opposite

of the expected result: a disengagement of the user regarding its dwelling energy
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Figure 111.20: Impact of the duration of the training data

management. The idea here is to evaluate if a good initialization could solve the
limits developed above. Indeed, passing from the reference model to two-capacitor
models means taking into consideration the inertia of walls or the ambient air. Due to
the lack of available data for the study case (insulation, materials...), it was difficult
to define relevant initial points for Cyout, Cuwn, Cuir or the new resistances. These
parameters have therefore been initialized with vague values on the right order of

magnitude. The stated hypothesis if that this optimization method requires accurate
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initial values for the parameters. To investigate this hypothesis, an ergodicity test
has been launched: 406 simulations were performed each of them initialized with a
different dataset. The results can be seen in figure I11.21. It can be noticed that
according to the initial point, the absolute average error can vary strongly, with
values up to 20°C which is obviously widely off the acceptable limit for a energy
management model. It seems that as soon as parameters are added with vague
initial values, the algorithm fails to converge. It is then impossible to guarantee the

end-users any model performances.
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Figure 111.21: Absolute average error for 406 simulations

4.4 Conclusion

This section presented a study of a gradient-based deterministic optimisation
algorithm guided by an exploratory process. This methodology has been applied to
the reference model and to the models up to 2 capacitors. At this point, some issues
have been raised since the accuracy of the models obtained was damaged compared

to the reference model. Then, different investigations were led to understand the
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origins of this result. It has been demonstrated that the procedure is highly sensitive
to the initial parameter values with an error that can reach 20°C. Besides, some
convergence issues arose for the more complex models leading also to a exponential
increase of the computational time. All those elements illustrate that the procedure
implemented is not sufficient to guide the optimization algorithm towards the global
optimum. Consequently, this method does not suit the implementation of energy
services. Another deterministic algorithm than SQP might solve this issue but as the
parameter estimation methods should be adapted to more complex study cases and to
more complex models, the risks of non-convergence seem too high. Another method
of parameter estimation based on a stochastic algorithm will then be investigated
in order to allow a comparison between models and a choice of a suitable thermal

structure.

All these results highlight that this estimation method is not suitable for end-users
energy services. Indeed, occupants will not be able to build a trust in a service which
cannot guarantee them any performances. Besides, the model structure implemented
and for which the convergence is ensured is not able to properly model the slow and

quick dynamics as required by the energy services.

5 Meta-heuristic

To remedy the problems of convergence and sensitivity to the initial point and
better satisfy the technical specificities implied by the energy services described in
section 2 of chapter III, it has been considered to use genetic algorithms which en-
able to cope with non linear models with regard to parameters. On the other side,
genetic algorithms are usually more costly in terms of computational time. Further-
more, the choice was made of a multi-objective algorithm in order to deal with the
CO, and temperature objectives separately. The objective of the models remains
the ability to forecast the temperature and CO4 evolution with good accuracy. En-
ergy management end-user services also require from the models to be able to be
self-tuned but the physical meaning of the estimated parameters is not mandatory.
Several algorithms exist in the literature, such as the VEGA algorithm (Vectorial
Evaluation Genetic Algorithm) [81], the NPGA (Niched Pareto Genetic Algorithm)
which resorted mainly to a selection based on Pareto domination [49]. Later, it was
superseded by the algorithm NPGA2 which uses the degree of domination of an in-

dividual as a deciding factor for the tournament selection [30]. Also available the
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algorithm NSGA-IT (Non Dominated Sorting Genetic Algorithm) is an elitist genetic
algorithm introduced by Deb et al. in the 2000s [25] and based on a classification
of individuals in several levels. In the field of buildings and energy optimization for
different purposes, are also used the algorithm MIGA (Multi-island Genetic Algo-
rithm) by Huang et al. [50] or the algorithm NSGA-II by Mozer [70] or Ghisi and
Tinker [41]. In this work, the NSGA-II algorithm was chosen for several reasons: the
elitist approach implemented enables to accelerate the sorting process in comparison
with the algorithm NSGA but also to preserve the diversity of populations by saving
the best found solutions during the previous generations on one hand and on the
other hand by a comparison operator based on the computation of the Crowding
distance [83].

5.1 Principle

The basic principle of this algorithm involves four main steps: random creation
of the initial population, selection of individuals, mutations and crossover operations

and computation of the selection criteria.

Figure I11.22 summarizes the NSGA-II mechanism for a given population size of
6 [72]. First, an initial population is randomly generated. Then, while the number
of generations is inferior to the maximum set by the user (termination criterion of
the algorithm iterations), each individual is assigned its non-domination rank and
crowding distance based on the evaluation of the objective function. During the
reproduction step (or crowded tournament selection), the solution with a lower rank
value is allowed to win a tournament. If two solutions have the same rank, then
the solution with the higher crowding distance is allowed to win in order to preserve
the diversity of the population. After a complete generation, a maximum of 6 non-
dominated solutions can be obtained. After each generation, both the parent (F;)
and offspring (Q);) populations are mixed to form a combined population, R;. The
next step consists in sorting all the solutions according to their rank. Solutions with
the same rank are grouped in the same front. In the example presented in figure
[11.22, 3 different fronts (Fy,F5,F3) are obtained after the non-dominated sorting of
Rt corresponding to rank values. From these fronts, the new population P, is filled
with six individuals by the best non-dominated solutions. The filling process then
starts with the front Fi, if the number of solutions in this front is inferior to 6, it
continues with the front F5. If they are two many solutions in the front F; to fit in

the new population, then solutions of this front are passed through a niche-preserving
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operator which sorts them according to their crowding distance. Then, the solutions
with the higher crowding distance are preferred. If two solutions present the same
crowding distance, the choice is made randomly. This new population P, is now
considered as the parent population P;. The offspring generation @), is then created
using genetic operators like crowded tournament selection, crossover and mutation
in the next generation. This cycle is continued until the termination criterion is

reached.

Initialize the population
at random | BEGIN

y Replace the current
population by P, L
Parent Current
solutions,|~  Non-dominated Population
P.(size =6] sorting of solutions Prs

Y

Y

Fy

Niche preserving . NO Assign non-domination rank and
operator G::::;:':; z - crowdir_lg d?stance \.r_alue (cd) based
genaration on objective function values (f,)
p | | __ |:|'> — —=
F2
Sol"9 Rejected VES Y

Sol" 10

| s I REPRODUCTION

Sol" 12

Offspring
solutions,) Combined population, R,

'
o CROSSOVER
(size=6) | _

—1 Generation=Generation+1 k—m,ﬂ—
Figure 111.22: Scheme of principle of the algorithm NSGA-II [72]

i

5.2 Configuration

The implementation of the algorithm requires a certain amount of manual config-
urations. Indeed, several parameters need to be set up: the number of generations,
the number of individuals amongst every generation, the rate of mutation and cross

over and so on.

5.2.1 Number of generations and individuals

The number of generations was first set to a very large number and then the
evolution of the error criteria along the generations was plotted in order to see when
the improvement was no longer significant. As it is a two-objective optimization, the

error criteria could be based either on the temperature criteria, on the CO, criteria
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or even on a recombined total objective. A two-objective optimization is considered
because the models of temperature and COsare linked by the air change rate which
improves the air quality and can damage the thermal comfort. In this case, it was
decided to focus on the temperature criteria as the CO, forecasts did not seem to
vary a lot among the optimizations and mainly because actual occupants in buildings
are more interested in a good forecast of temperatures than in CO,. As the objective
is to implement energy services for end-users it is important to answer their needs.
The first simulation was done with 200 individuals and 400 generations, the evolution
of the error can be seen in figure [11.23a. It seems that the error decreases a lot in the
beginning and reaches its minimum after approximatively 45 generations. As this
operation required 64 minutes of computation, the number of individuals was divided
by two, in order to see the impact on the error trend. For this second optimization,
the required computational time was around 50 minutes. It can be seen that after
100 generations, the error has almost reached its minimum. Thus, it was decided
to launch the optimizations for 100 individuals and 100 generations which required

only 5 minutes for the Reference model.
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Figure 111.23: Evolution of the temperature error along the generation

5.2.2 Impact of the length of the learning phase

As it is known that genetic algorithms are more costly than descent ones, it was
tried to reduce the computational time as much as possible. One way to do it was
to study the impact of the length of the learning phase on computational time and
on errors in order to choose the best compromise. Figure I11.24 shows the trends of
the computational time and the sSRMSE according to the number of weeks used in

the training dataset. It can be seen that the computational time increases quickly
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with the number of weeks used to learn the models but also that using more than 4
weeks of data does significantly impact the sSRMSE. This is why a period of 4 weeks
is used in the rest of the study.
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Figure 111.24: Impact of the length of the learning phase on the temperature error

5.3 Test of sensibility to the initial point

A high sensibility to the initial point jeopardizes the user’s trust in the e-consultant
and would lead to the opposite of the expected result: a disengagement of the user
regarding the energy management of its dwelling. Indeed, if for some days, the
convergence is not reached and the model returns a prediction with low accuracy,
users will find it difficult to trust the prediction the following day. Since, the meta-
optimization developed in section 4 of chapter III suffered from problems of robust-
ness, i.e the algorithm did not reach the same optimum according to the chosen
initial parameter values, the same test was performed for the genetic algorithm. In
that case, the initial point is chosen randomly, so around 160 simulations were per-
formed for the Reference model and the values of SRMSE were recovered. It can be
seen in figure I11.25 that all the values are in a narrow range. They are not all equal
because a genetic algorithm is less accurate than a descent one but it seems that the

algorithm is robust with regard to initial parameter values.
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Figure 111.25: Results of the robustness test

5.4 Application to the different model structures

5.4.1 The Reference model

The training and validation datasets used with the genetic algorithm are the
same than those used for multi-regression models in section 3.1.1 of chapter III. The
temperature and CO, concentration responses of the reference model are represented
in figure I11.26. This illustrates the first phase of validation of the model which
consists in the simulation of the model on a dataset not used for estimating the
parameters. The separation between the training phase and the cross validation
one is materialized by a change of colours in the graphs (blue : training / red
. validation). The graphs allow firstly to perform a qualitative evaluation of the
results. Then, for a quantitative analysis of the estimation results, the standardized
RMSE is computed (cf. table II1.6 ), the numerical values confirm the relevance and

accuracy of the model.

Training | Validation

Summer | 0.13949 0.11774

Winter 0.14327 0.167634

Table l1l.6: sSRMSE values
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Figure 111.26: Results of the reference model

5.4.2 Acceptability of the models

According to the results of the SRMSE presented in figure I11.27, it can be seen
that the “Model2Cair” and “Model0C” respect neither the sSRMSE threshold nor
the robustness along the seasons. Then, the “Reference” model exceeds the sSRMSE
threshold set to 0.1 and the "Model3CT,,;” is not robust: its performances are too

different between the summer and winter scenarios.

The models considered as valid after that first step are: “Model3CT,,”, “Model2CwallT,,;”,
“Model3Cwalls” and “Model2CwallT,,”. As a reminder, the descriptions of the model
structures can be found in section 2 of chapter III. Figure II1.28 shows their per-
formances in terms of SRMSE for both winter and summer. In this graph, only
the validation phase is considered as the estimation process does not require fur-
ther investigation. Indeed, it has already proven to be ergodic and requiring low

computational time.
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Figure Il.27: Results of the different models in estimation and validation phase

0.10 T T T
u u Ete
v Hiver

0.09 f -

0.08 f--

SRMSE

0.07 f--

0.06 f-

Mode/e v, |
4

B N s

S 3 IS
5 $ £
§ § 3

§ ¥ £
< <

Figure 11.28: sRMSE values of the valid models in validation phase

5.4.3 Selection of the most suitable structure

The next step consists in selecting the most suitable model between “Model3CT,,”,
“Model2CwallT,,;”, “Model3Cwalls”, “Model2CwallT,,” and “Model4C” which will
be done by looking at the sum of the SRMSE values obtained for the different sea-
sons. The result can be seen in figure I11.29. It appears directly that "Model4C” is
the best according to the criterion described above. From here, a sensitivity analysis

is performed to ensure the necessity of each parameter involved.

In order to ensure that thermal circuits are suitable for end-user energy services,
the same test applied to multi-regression models has been applied here. Two differ-
ent scenarios have been compared in simulation with the estimated model for the
month of April: the standard simulation with measured window openings and one

considering that the window is opened all the time. Then, the difference of temper-
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SRMSE

Figure I11.29: Sum of the SRMSE values for both seasons

ature between these two scenario are compared (cf. figure 111.30) and it appeared

that this time modifying the window opening impact the indoor air temperature.
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Figure 111.30: Difference of indoor air temperature between the two scenario simulated

5.5 Sensitivity analysis

After the selection, several analyses have been performed on the selected model
in order to ensure the relevance of the intrinsic model parameters. Firstly, sensitivity
analyses are applied in order to evaluate the relevancy of every parameter and to
seek some simplifications in the model structure. Later, in chapter IV, an analysis
on the identifiability of the model is led to assess the ability or not of the parameters

to support physical knowledge.

5.5.1 Morris

The Morris analysis shown in figure [11.31 reveals that three main structural

parameters of the model Cy out, Ryn2 and Ry, our2 seem not to have a negligible
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impact on the output. Yet, deleting the parameters C,, o,y and Ry, oure would mean
considering the structure with three capacities for which performances (according to
the criteria of accuracy) are less interesting. Hence, this result needs to be further
investigated, especially studying the estimated values of the parameters. However,
contrary to the other methods, the Morris method is qualitative which means that it
is possible to classify the different parameters but not to ensure their relevance. The
goal of the sensitivity analysis in this research being to ensure that the structure of
the model is consistent and that each parameter has an impact on the output, the
Morris method is not suitable. Therefore, despite its computational cost, the Sobol

method will be further investigated in order to confirm these results.

QOout

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
u e

(a) "Model4C", Summer (b) "Model4C", Winter

Figure 111.31: Morris analysis

5.5.2 Sobol

As a reminder, the Sobol method is detailed in chapter II section 3.4.2. The
sensitivity analysis is used to validate the relevance of the model structure. First,
the evolution of the residuals according to the variability of these parameters is
examined. For that purpose, wide intervals have been adopted for each parameter
in accordance to what was done in the meta-optimisation approach (cf. table I11.3).
This step will show whether the model has the same behaviour in all these intervals
and thus allow the definition of the variability intervals of each parameter required
for the configuration of the analysis. Goffart [43] in her PhD thesis explained the
importance of determining these variability intervals. Indeed, if for some values of one
parameters in the wide interval initially defined, the model returns a high error, then
this parameter will be estimated as having a major impact on the output. However,

in this analysis, the convergence of the model has been previously ensured, the



5. META-HEURISTIC | 89

question then is: ‘Has each parameter an impact on the output considering that the
returned error of the model is acceptable?”. Considering parameter domains where
the residuals are important would lead to overestimate the impact of parameters on

the output as the indices are normalized.

5.5.2. 1) Sobol analysis over parameter domains leading to low resid-

uals

In consequence, the residuals have been plotted for each parameter varying in
their wide initial interval, all others remaining still. In figure I11.32, it can be seen
that the different parameters do not have the same impact on the residuals. In-
deed, the capacitances representing the dynamics of the inner and outer walls do
not significantly impact the residuals contrary to the air capacitance. The most
impacting parameters are R,, and R,,;. It can be seen especially that R,, can only
vary on a narrow range without greatly impacting the residuals. It validates and
explains the results of the Morris method in which the impact of this parameter was
leading. Then, R, was kept out of the sensitivity analysis. These conclusions are
model dependent and do not necessarily reflect the real behaviour since the models

are simplified.

In figure I11.33, it can be seen that R; and R,,,; seem to have a minor impact on
the output. However, deleting R,,,1 would mean deleting also R,,,2 and C,,, because
they are intrinsically linked and this does impact the output. Besides, deleting R;
would lead to have 2 air capacitances the C; and C, and it can be seen that C;
Sobol index is low: under 0.05. It would be then interesting to consider a new
structure corresponding to the Model4C without the branch with C; and R;. The

corresponding model is represented in figure [11.34.

However, this approach is valid only if the operating point chosen for this analysis
is illustrative of the global operation of the system. Do the estimated parameter
values always reach the same range of values or can they take significantly different
values? To answer this question an analysis of the dispersion of parameters has been

led over 50 parameter estimations.
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5.5.2. 1i) Dispersion of parameters

In order to verify the results obtained with the Sobol sensitivity analysis, 50
parameter estimations have been performed and the dispersion of the parameter
values obtained is displayed in figure I11.35. It can be seen that for C, or R, the
values obtained among the 50 parameter estimations are concentrated around the
same final value. For the other parameters, the estimated values obtained are quite
distributed on the whole parameter field. However, since the scales of the different
parameters are significantly different, this simple graphic observation is not enough
to conclude on the dispersion of the parameters. This is why, for each parameter,
the standard deviation is computed (cf. table I11.7). It can be observed that except
for C,, the standard deviation is at least of 0.33 and can reach 85%. Then, it seems
difficult to draw any physical meaning from the parameter values obtained but that
was suspected already. Indeed, most of the time, dealing with simplified models

reduces the meaningfulness of the considered parameters.

Different conclusions can be drawn from these results. The first thing that can
be observed is that the more the parameters have an impact on the output, the lower
the standard deviation is, which is consistent. The two analysis led then to the same

conclusion.

However, the high dispersion of parameters informs that starting from a specific
configuration to determine the intervals of Sobol introduces a significant bias in the
results. Indeed, the set of parameters obtained after a parameter estimation could
be very different from the one obtained previously and so the residual computed for
every parameter could vary completely differently. To outreach this, a first Sobol

analysis is performed with very wide ranges and then, for each parameter set evalu-
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Figure 111.35: Dispersion of the parameters over 50 estimations for the Model4C

Parameter

Standard deviation (%)

Ca
Cw,n
Cw,out
Rn
Rwout,l

Rwout,2

Rout
an,l
an,Z

0.15
64.40
0.66
0.86
0.53
0.39
0.34
0.59
0.65

Table lll.7: Standard deviation of model estimated parameters for the Model4C

ated via Sobol to plot the residuals of the model according to the parameter values.

This will allow to have a more global vision of the model behaviour. Then, this will

allow to determine the intervals to consider for the Sobol analysis. The Sobol anal-
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ysis with wide ranges returns that only one parameter has an impact on the output:
R;. Then the 240 000 values of residuals are plot for each parameter as shown in
figure I11.36. These figures confirm that in this context only R; has a clear impact
on the residuals. Then, the Sobol’s analysis can be launched again keeping the wide

intervals for every parameter except R; which will be kept between [0.02,1].
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Figure I11.36: Sum of the residuals according to the values of the different structural parameters

The dispersion analysis has been launched for the “Reference” model in order to
see whether the number of parameters has an impact on their dispersion (cf. figure
II1.37 and table II1.8). It can be noted that standard deviations are all around 50%.
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Then, even with fewer parameters, it is difficult to recover any physical knowledge

from the estimated parameters.

@Rn (b) C; (©R;

(d) Rout

Figure 111.37: Dispersion of the parameters over 50 estimations for the Reference model

Parameter | Standard deviation (%)
C; 54.51
R, 49.55
R, 59.22
Row 39.93

Table III.8: Standard deviation of model estimated parameters for the "Reference" model

5.5.2. 1ii) Discussion

The dispersion of parameters observed for the parameters of the Model4C high-
lights that the first analysis performed in order to define the range for Sobol sensi-
tivity analysis is not sufficient. Starting from a specific configuration to determine
the intervals of Sobol introduces a significant bias in the results. Indeed, the set of
parameters obtained after a parameter estimation could be very different from the
one obtained previously and so the residual computed for every parameter could vary
completely differently. To outreach this, a first Sobol analysis is performed with very
wide ranges and then, for each parameter set evaluated via Sobol to plot the resid-

uals of the model according to the parameter values. This will allow to have a more
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global vision of the model behaviour. Then, this will allow to determine the intervals
to consider for the Sobol analysis. The Sobol analysis with wide ranges returns that
only one parameter has an impact on the output: R;. Then the 240 000 values of
residuals are plot for each parameter as shown in figure [11.38. These figures confirm
that in this context only R; has a clear impact on the residuals. Then, the Sobol’s
analysis can be launched again keeping the wide intervals for every parameter except
R; which will be kept between [0.05,0.1].

(C) Cu; n

(k) Rw,n2

Figure 111.38: Sum of the residuals according to the values of the different structural parameters
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The results returned by the Sobol’s analysis are displayed in figure I11.39. The
impact of the parameter R; can be seen again. It can be noticed that only two other
parameters impact the output and significantly less than R;. However, considering
only these parameters does not really make sense in this context. The hypothesis
studied is then that the impact of R; is too significant that it hides the impact of
other parameters. Another sensibility analysis is thus launched excluding R; from
the varying parameters. The problem of this approach is that it is highly dependent
on the value set for R;. And indeed, this analysis returned only three significant

parameters which differ from the previous significant ones.
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Figure 111.39: Sobol index over the new parameter ranges

Finally, the analyses returning no meaningful results regarding the objective, the

model structure stays unchanged.

5.6 Observability of the model

Considering the 24-hour horizon required by the energy services, an important
issue is to initialize the model. Until now, models have been launched for periods of
about 1 month, in which case initial values do not impact significantly the results.
On a 24-hour simulation with a hourly step, initial values take on more importance.
In order to allow this initialisation, models must be observable. Indeed, a linear
system is considered completely observable if, given the control and the output over
the interval ¢y <t < T, one can determine any initial state x (o). It can be ensured

through the rank of the observability matrix defined as:
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C

CA
0= (I11.10)

CAm

where A and C are the matrix of the state space and n the number of state variables.

Computing the observability matrix for the Model4C has highlighted that two
states are not observable. Further investigations have been led to quantify the impact
of this non-observable state on the output and so on the initialization process. For
this analysis, the state space has been transformed into the Kalman observability
decomposition form [53]. It is a mathematical way to decompose a representation of
any linear time-invariant (LTI) control system into a standard form which makes clear
the observable and controllable components of the system. The Kalman observability
decomposition form states that if the state space is non-observable, then there exist

a similarity transformation such as 121\, B , C , D defined as below:

A= P AP (ITL.11)
B=P'B (I11.12)
C=CP (I11.13)
D=D (111.14)

where P is an invertible matrix. For real-values matrix state space, P can be chosen

as an orthogonal matrix.

In this context, matrix A\, B and C can be put under the following form:

| 4, 0
= (111.15)
Ase As
B= ] (111.16)
C=|c 0 (111.17)
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where A, € R"*", C, € R"™, n being the rank of the state variables vector and
n, the rank of the observability matrix. In this configuration, the pair (C1, Ay;) is

observable.

The next step consists in expressing the state-space in the new space:
X = AX + BU (I11.18)
and the state vector can be written:

X =PX (I11.19)

and decomposed in the new base according to:

X =XP+ %P+ %P, (I11.20)

Then, matrix P being normalized, the magnitude of )/(\3 and )/(\4 directly illustrates
the impact of the non observable states on the output. It can be observed that
although they are less important than the two first components, they cannot be

considered as negligible.

Figure 111.40: Evolution of the different components of X over 60 days

To complete the analysis, a test of the observer has been performed with a sim-
ulation with wrong initial values and a 24 hour horizon. The 1st of October has
been chosen, the indoor air temperature initialized at 40°C and the observer used for

the daily calibration set at 6 AM. The temperature profiles obtained can be seen in
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figure I11.41. It can be observed that at 6 AM the estimated temperature is indeed

equal to the measure which reflects the relevancy of the observer.
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Figure 111.41: Temperature profiles for the 1st of November

5.7 Reliability of the model along the seasons

The reliability of the estimated model along the year is an important issue to
investigate. Can a model estimated during the month of May predict with sufficient
accuracy the thermal behaviour during the month of October ? Is the model re-
quires to be estimated several times along the year? How does the accuracy of the

estimation evolve?

In figure [11.42, yearly estimations of the Model3Cfinal learnt during the month of
May and during the month of October respectively are displayed. It can be observed
that the model succeeds in estimating the thermal dynamics in every scenario. It
can be reminded that during the training month the heating was off, the window
and door openings numerous. Nevertheless, the model successfully forecasts the
CO4 and temperature trends during winter. In turn, the model estimated during
the heating period adapts successfully to a period with heating systems off and
numerous openings. These results demonstrate how strong the semi-physical models

are compared to the multi-regression which failed in this same exercise.

To confirm quantitatively these graphical results and to determine their accuracy,
sRMSE values for the yearly validation are computed. Table II1.9 shows that the

errors obtained are surprisingly lower. This can be explained by the choice of the
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(a) Yearly temperature of the Model4C
estimated in May

T
ok
e

I

(c) Yearly temperature of the Model4C
estimated in October

(b) Yearly CO> concentration of the Model4C
estimated in May

2000

(d) Yearly CO> concentration of the Model4C
estimated in October

Figure 111.42: Yearly forecasts of COsand temperature of the multi-regression models estimated
either in a month in winter or a month in summer

standardized version of the SRMSE since it is obtained from the RMSE divided by the
higher gap in temperature. And obviously this gap is significantly higher over a year
than a month. In order to bypass this difficulty, the sSRMSE has been calculated for

each month separately and the worst value has been kept to compare with previous

results (cf. table I11.10). It can be observed that in this case, values somewhat exceed

the sSRMSE limit defined in the acceptability process while remaining reasonable

according to the objectives.

Training month

Data sRMSE value

May

Temperature | 0.0423

October

Temperature | 0.0393

Table 111.9: sSRMSE values for the validation on the whole year for the Model4C estimated in either

summer or winter
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Training month | Data sRMSE value
May Temperature | 0.1472
October Temperature | 0.1252

Table 111.10: sRMSE values for the validation on the whole year for the Model4C estimated in either
summer or winter

5.8 Physical interpretation

The objective of this research work has been to identify a structure model able to
accurately forecast indoor COyconcentration and air temperature in different study
cases. The physical meaning of the parameters is not required for providing the
energy services described in section 2 of chapter I. In this section, this possibility is
investigated in order to well identify the limits of this modelling and the hypothet-
ical other applications. It is done in two ways: firstly the study of the structural
identifiability of the model and then the study of the parameters dispersion over an
important number of parameter estimations. In this context, the structural identi-
fiability does not constitute a requirement but an information on the possibility of

recovering physical knowledge from the parameters.

5.8.1 Identifiability

As a starting point, the identifiability of models is evaluated considering that
window and door contacts are inputs of the model. It was the case for example in
the study case of the mono-zone office. For the implementation of the Sedoglavic’s
algorithm, the formulation of Model4C is adapted according to the following equa-

tions:
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U := [uy, ug, us, g, us] (I11.25)

where F' represents the state variables derivatives, X the state variables, G the

output, © the estimated parameters and U the inputs.

The output returned by the Sedoglavic’s algorithm indicates that the Model4C
is locally structurally identifiable according to the definition of Sedoglavic, i.e. "the

model is structurally identifiable almost everywhere”.

The identifiability analysis is first performed on the model developed in section 2.3
of chapter III. Following the progress previously detailed of the models, firstly it has
been decided to consider that door and window openings are unknown and therefore
need to be estimated. If these openings are estimated by a unique value then the

system cannot be identified. Indeed,the variables (p, (w, Rp and Ry appear in the

equations only under the form }g—V; and conversely é—l;, thus it becomes impossible to
estimate these two parameters independently on an unique way. They are considered
as variables for identifiability problem because they are part of the parameters to
be estimated. From this structure, simplifications need to be performed in order to
obtain an identifiable model. Obtaining a single value for (p (or () is the same

than estimating an equivalent resistance Rzp which would gather the values of (p
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and Rp. Then, it will lead to two resistances in parallel : Rzp and R, which once

again can be simplified in one new resistance Rzp, as explained in equation below:

1 1 1
— (I11.26)

= -
Rz Dn Rz D Rn
All these changes lead to the structure represented in figure 111.44.
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Figure 111.43: Model with an air capacitor and one for the inner wall
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Figure ll.44: Model with an air capacitor and one for the inner wall

This new structure of model represented in figure I11.44 illustrates well why it

does not allow anymore to provide advice on window and door openings. Indeed,



104 | CHAPTER Ill. LEARNING BEHAVIOURAL MODELS FOR ONE DAY TIME HORIZON

the values of door or window openings have been directly integrated in the values
of resistances and cannot be accessed independently. The same logic can be applied
to all the model structures. From this statement, the objective is to see whether
introducing the window and door opening logit model (binomial regression) can make

the model structurally identifiable since the (p (or (/) will then be time-dependent.

5.8.2 Physical values

In order to confirm the results previously obtained regarding identifiability, the
physical values of the different parameters of the study case were computed for the
mono-zone office. Indeed, the access to the building information on materials and
insulation is still preserved. From this physical information about insulation and
composition of walls, physical knowledge is used to compute theoretical values of the
different equivalent resistors and capacitors. Nevertheless, the available information
is not sufficient to compute all the model parameters. Then, the estimated values
obtained via the genetic algorithm for the selected model are compared with those.

The theoretical and estimated values are summarized in table I11.11.

Parameter Physical value | Estimated value
C, (JK™) 4.62e4 3.72e6
C; (JK™h 5.6e6 2.2e7
Cun (JKh - 7.2e4
Cuwour (JJK) | 3.5e6 3.9¢e5
Rp (K.W™) 0.25 0.011
R; (KW= 0.04 0.01
R, (KW 0.04 4.3e-3
Ruout (K-W™) | 7.1e-2 0.77
Ry (K.W™1) 0.16 5.1e-3
Ryn (KW ] 0.07 0.63

Table lll.11: Physical values of model parameters

It can be seen that some values are quite accurate such as C, o but a factor

100 can appear for some others (Ry ). As a single optimization may not be enough
to conclude on the physical meaning of the parameters, a dispersion study has been

performed.
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6 Conclusion

In this chapter, multi-regression models of indoor air temperature and COs con-
centration for energy services have first been explored. They have been applied to a
mono-zone study case located in Grenoble. They have been proved to be quite accu-
rate for most situations, their reliability however suffering some exceptions such as
demonstrated by the example of the month of June. Indeed, when new physical phe-
nomena appear in the cross-validation period, it can be seen that the multi-regression
model finds it difficult to forecast COs concentration. To solve this problem, a new
structure has been examined using physical equations to determine the variables of
interest of the multi-regression structure. Results were mixed: the COs prediction
markedly improved, but the temperature prediction deteriorated. In a last section,
the limits of application of such a model have been explored. The ability of the
model to adapt in case of missing sensors was first investigated. Results showed
that deleting such information improved the results of CO, concentration, which
can be explained by the specificities of the study case. Indeed, the door of this office
appeared to stay open most of the time during summer. Using the COy concentra-
tion of the corridor as an input therefore amounts to forecasting something known
since the two concentrations are very close. This is why multi-regression models do
not seem to fit the requirements for implementing energy services intended for the
end-user. To overcome these limitations, new structures of models are investigated

including more physical knowledge in order to better forecast new phenomena.

In this chapter, were presented two parameter estimation methods of semi-
physical models: a study of a gradient-based deterministic optimisation algorithm
guided by an exploratory process (called meta-optimization) and a genetic algorithm.
The objective is to accurately forecast the indoor CO, concentration and air temper-
ature of the study case. The physical meaning of the estimated parameters obtained
is not an objective in this research work since the energy services do not require

access to the physical values of insulation, materials or other building specifics.

These methodologies have been applied to different model structures from no
capacitance up to 4 capacitances and to a mono-zone study case. Concerning the
meta-optimization, the increase in complexity was stopped after 2 capacitances due
to different issues. Indeed, the accuracy of the models with 2 capacitances obtained
was damaged compared to the reference model. Then, different investigations were

led to understand the origins of this result. It has been demonstrated that the
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procedure is highly sensitive to the initial parameter values with an error around
5°C for most models and which can reach 20°C. Besides, some convergence issues
arose for the more complex models leading also to an exponential increase of the
computational time. All of those elements illustrate that the meta-optimization
process implemented is not sufficient to guide the optimization algorithm towards
the global optimum. Another deterministic algorithm than SQP might solve this
issue but as the parameter estimation methods are intended be adapted to more
complex study cases and to more complex models, the risks of non-convergence
seem too high. Then, another method of parameter estimation based on a stochastic
algorithm is investigated in order to allow a comparison between models and a choice

of a suitable thermal structure.

With this purpose a parameter estimation method based on a genetic algorithm
was implemented. It was aimed at overcoming the robustness problems of the de-
scent algorithm. It has been applied to all eight model structures studied in this work
with no problem of convergence or computational time. For each model, the algo-
rithm succeeded to converge in a reasonable time. It was proved that this method is
stable and robust and that it does not require a great computational effort. Then,
a selection method could be implemented in order to compare all these models ac-
cording to the criteria presented in chapter II and technical specificities detailed in
section 2. The winning model was the Model4C which is both stable and the most
accurate with a sSRMSE around 0.1 for both summer and winter scenarios i.e. less
than 0.3°C of error. Then, a sensitivity analysis has been implemented to ensure
that each structural parameter is relevant and do impact the output of the model.

It has revealed that in this mode, no simplification of the structure was obvious.

This last method meets all the requirements implied by the implementation of
end-users energy services. The model structure is sufficient to describe the slow
dynamics while neglecting the quick dynamics. It is as minimal as possible as shown
by the sensitivity analysis which allows to keep an acceptable computational time
for the estimation process. The estimation method implemented is both ergodic and
requiring a low computational time which confers a good reactivity to the end-users
services. The period of data required for the estimation is about 1-month which
is acceptable for the end-user. It can be compared to some off-the-shelf smart-
thermostat that requires 2 weeks to learn the occupants behaviour; period during

which users have to be pro-active and to feed information to the system. Here,
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models are designed as self-tuning with a minimal set of information required from

the end-user.






| 109

Chapter IV

From building description to end-user

energy services o~
Contents
1 Objectives . . . . . . . . . . . . . . . . .. . ... . ... ...110
2 Studycase . . . . . . . . . . . . . . . ... ... ... ... 110
2.1 Architecture and instrumentation . . . . . . . . . . . . . . . . . .111
2.2 Estimators . . . . . . . . L . Lo Lo s 112
2.3 Removal of contactsensors . . . . . . . . . . . . . . . . . .. 112
3 Mono-zone model applied to a multi-zone studycase . . . . . . . . . . . . . .116
3.1 Application to the "garden" bedroom . . . . . . . . . . . . . . . . .116
3.2 Two-neighbouring zones model applied to multi-zone studycase . . . . . . 118
3.3 Impact of a false temperature. . . . . . . . . . . . . . . . . . . .119
4 Generationofthemodel . . . . . . . . . . . . . .. . .o 120
4.1 Objectives and methodology . . . . . . . . . . . . . . . . . .. .121
4.2 Configuration: Gathering information fromusers . . . . . . . . . . . .122
4.3 Storage of the information . . . . . . . . . . . . . . . . . . . . .122
4.4 Model configuration: Generating equations . . . . . . . . . . . . . .123
5 Implementation . . . . . . . . . . . . . . . . . . . ... ... 129
5.1 Configuration of the genetic algorithm . . . . . . . . . . . . . . . .130

5.2 Choice of the right configuration. . . . . . . . . . . . . . . . . . .130



110 | CHAPTER IV. FROM BUILDING DESCRIPTION TO END-USER ENERGY SERVICES

5.3 Study of theconvergence . . . . . . . . . . . . . . . . . . .. .13
6 Applicationto anenergyservice. . . . . . . . . . . . . . . . . . ... .13
7 Conclusions . . . . . . . . . . . . . . L . ... 13

1 Objectives

Once the model structure selected and validated on a mono-zone office, it is
important to change the scale and to evaluate the adaptability of the model to a
whole flat. In order to verify the extensibility of the approach, a new study case is
introduced involving a three-room apartment. Introducing a multi-zone case study
implies a significant increase in the complexity of the model, both in the equation
definition and in the parameter estimation problem. For that reason and in the
perspective to ease the implementation in the e-consultant, a general framework is
set up. Thus, further work had been led on the automatic generation of the model
from the simple descriptive information given by the end-user. In this chapter, the
study case will be described as well as the estimators used, then the different steps to
implement in the process of automatic generation are discussed and finally the genetic
algorithm will be applied to estimate the parameters of the new generated structure.
In this section, firstly the study case is described. Then, the ARX structure described
in chapter III is applied to the multi-zone study case. Finally, the general process
for automatically generating the physical model, estimating it and applying it on the

multi-zone study case is detailed.

2 Study case

In order to test the model developed in a multi-zone environment, the case studied

is a three-room flat located in Aix-les-Bains in France.
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2.1 Architecture and instrumentation

The architectural plan can be seen in figure IV.1. The flat is equipped with 5
NetAtmo stations, a main one in the Living Room providing measurements of noise
level, relative humidity, temperature, pressure and COs concentration and three
auxiliaries in each room delivering only measurements on humidity, temperature and
COg concentration. The device in the bathroom will not be used in a first time, since
the significant amount of extra complexity needed for the model to advice on energy
management in the bathroom was deemed irrelevant considering the common use
of this particular room. There is also an outside auxiliary measuring temperature,
humidity and atmospheric pressure. For a preliminary study, the outside station will
not be taken into consideration since the relevancy of the measures really depends on
where the user choose to place it. So, it was tried to use more general information
coming from more distant weather stations and test whether this information is

sufficient. One-year of data was available.

Garden

[
Bedroom garde
L 12.41 m2 rI
Living Room

. ° I Heater
[

. Wood stove

Bedroom middle I Window
11.83 m2 I ®  Net Atmo

North

Bedroom street @
“ml 13.78 m2

Kitchen
8.5 m2

Street

Figure IV.1: Architectural plan of the flat

The flat is occupied by a couple and a baby. Both parents are working on a
conventional schedule: the whole week from 9 am to 6 pm. They do not come back
home for lunch. About the appliances, each room has a heater represented by a red
rectangle on figure IV.1 and a wood stove in the living room represented by a red
square. None of these heating sources were measured or precisely modelled. The

windows and glazed doors are represented in green.
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2.2 Estimators

The first study case used in this research was a mono-zone office where occupancy
was estimated from the electric consumptions of the different plugs and where users
had only a limited number of actions available regarding energy management. In
this new case study, the context is completely different. Indeed, occupants can have
a major impact on the energy consumption of the building and electric consumption
has a remote correlation with occupancy. Then, estimators must be adapted. As
a starting point, occupancy in the complex case study was estimated according to
some limits set on COs level for the bedrooms and a limit on noise level for the living
room. Indeed, CO; level has extensively been studied in the literature. Aglan [3]
established a physical model to reduce energy use and improve comfort based on CO,
measurements. Dong et al [28] used CO5 data combined with a camera to estimate

occupancy.

Regarding, the estimation of the heating power, it was previously estimated
thanks to a temperature sensor placed on the surface of the heater. In the flat,
there is just one air temperature sensor in each room so the heating power estimator
has to be adapted. In order to obtain a variable power without introducing too many

variables to estimate, the heating power was defined based on occupancy as below:

Prear = P1 + Pyoccupancy (IV.1)

2.3 Removal of contact sensors

This study case is not equipped with contact sensors. Then, attempts have been
made to quantify the impact of the loss of data on the accuracy of the results.
More generally, it would ease the implementation of the model on other study cases
with less sensors and reduce the instrumentation required. For that purpose, the
information of the door and window contacts used in the thermal model is left
out. Indeed, if temperature sensors and to some extent CO, sensors are currently
spreading over the residential and tertiary sector it is less the case for contact sensors.
Whereas some can be found in security packages for detection of intrusion, it is very
unlikely to find any on indoor openings. Besides, it can raise issues on the field of
social acceptability. Then, it would be very interesting to be able to free the models

from such data. On the other hand, the rest of data currently used comes from
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temperature and COy sensors which cannot be avoided. Some other sensors are used
especially for estimating the occupancy in the office but those ones are not common

to all case studies since this logic cannot be applied to residential buildings.

The Model4C first applied to the office mono-zone study case to quantify the

impact of the loss of data, was then implemented on the multi-zone study case.

2.3.1 Application to the mono-zone study case

For this study, data from sensors are then no longer used and the states of opening
are added to the parameters to be estimated as a unique value for the whole period.
The results can be seen in figure IV.2. Contrary at expectations, deleting data does

not necessarily lead to a decrease of performance.
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Figure IV.2: Comparison between contact data and not

2.3.2 Limits

Including parameters (p and (y in the parameters to estimate presents two
main limitations: first it can be observed in table IV.1 that the values cannot really
be interpreted in a physical way since 34% of window openings in winter is highly
unlikely and above all it becomes impossible to provide advice based on opening doors
and windows. Indeed, in that configuration, (p or (y are two estimated parameters
as are the resistances and capacities of the structure, and as such they participate in
the overall estimation of the model. Modifying their value in order to simulate one
action or another would then amount to simulating a non-calibrated model. In that
situation, it is impossible to predict the model response and to ensure the relevance

of the advice provided.
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& w
Winter | 0,45 0,34

Summer | 0,08 0,41

= open, 0 = closed

Table IV.1: Estimated values of (p and

2.3.3 Modelling of window openings

In order to bypass this main problem, another approach has been implemented

to model the window and door openings.

2.3.3. 1) Implemented approach

In order not to maintain the complexity of the model to a similar level and to
allow advice on the openings, window and door opening models have been developed
intuitively according to the difference of temperature as described in the two following

equations:
exp(ap0+ bp * (T, — Tr,)

~ 1+ eaplap0 +bp * (T, — T,))

Cp (IV.2)

. GZEp(CLWO + bW * (T;,n - Tout)
1+ exp(aw0 + by * (Tin, — Thout))

Cw (IV.3)

where ap,bp,aw and by, are the parameters to estimate.

It is a highly simplified model but as window or door openings depend on human
behaviour and many other environment variables, it is unrealistic to have a model
both simple and reliable. The objective here is to obtain a model with a variable

rate of openings for window and door.

2.8.3. ii) Application to the office mono-zone study case

This opening model has been integrated in the thermal model selected (Model4C)
and applied to the same mono-zone study case presented in chapter II section 1. The
temperature profiles can be seen in figure IV.3 and the sSRMSE values in table V.2
for both summer and winter scenarios. It can be seen that the behaviour and the

accuracy of both training and validation phases are still accurate and efficient.
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Figure IV.3: Temperature and CO profiles for Model4C with the new model for openings

Estimation | Validation
Summer 0.06602 0.07468
Winter 0.043061 0.06940

Table IV.2: SRMSE values

However, if the specific behaviour of the opening model is compared to the mea-

sured data available in the office, some inconstancies can be observed (cf. figure

IV.4). This was not further investigated here since the objective is not to ensure

the physical interpretation of the estimated parameter but to obtain a model able

to accurately forecast the indoor temperature.
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Figure IV.4: Measured and simulated window openings

3 Mono-zone model applied to a multi-zone study case -~

Firstly, the same mono-zone structure has been applied to a room of the apart-

ment described in the section above in order to validate the model.

3.1 Application to the "garden" bedroom

The “garden” bedroom has first been considered in contact with the exterior and
the living room. The selected model is represented in figure IV.5 where T;, is the
indoor air temperature of the bedroom “garden” and 7, the indoor air tempera-
ture of the living room, all other parameters remaining unchanged. As previously,
¢in represents the internal gains : solar gains, heating gains and occupancy gains

according to the estimators defined in section 2.2 of chapter IV.

This model has been applied in both summer and winter. Results can be seen
in figure I'V.6 with the same configuration of the genetic algorithm than before, i.e.
100 generations of 100 individuals. It can be observed that results are less accurate
than those of the office mono-zone study case. This is even more obvious in winter
since the variations are larger. The indoor air temperature observed during the third
week of October reveals a period without occupants. The model fails to predict this
fall of temperature with sufficient accuracy: a gap of around 2°C can be noticed.

During summer, the model succeeds in modelling the dynamics of the model but the
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Figure IV.5: Model4C

range is not well represented. The same issue can be observed regarding the CO,

concentration estimations.
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(c) Indoor air temperature during winter (d) CO5 concentration during summer

Figure IV.6: Temperature and CO5 concentration of the bedroom ™~ garden" with a mono-zone
model
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These results can be explained in different ways. First of all, the variety of
states is higher in an apartment than in an office: less automated control, more
variability in occupancy. Besides, the “garden” bedroom is not connected to only
one neighbouring zone but at least to two, so this model does not well represent the
interactions between the rooms. An hypothesis could be that introducing the other
zones as other branches impacting the indoor air temperature of the living room and

improve the accuracy of the estimation.

3.2 Two-neighbouring zones model applied to multi-zone study case

In order to verify this hypothesis, a new model has been implemented taking into
consideration the two neighbouring zones surrounding the “garden” bedroom. The
new model implemented is represented in figure IV.7. It can be seen that the added
connection with the “middle” bedroom does not contain a door opening since only

a wall separates these two rooms.

Bin

Figure IV.7: Model with 2 neighbouring zones

Consequently, as can be seen in the figure V.8, the results for CO, concentrations
have not changed. However, as expected, it can be noticed that the results for indoor

air temperature are significantly improved.

To confirm the graphical results, as previously, sMRSE values are computed for
the mono-zone model applied to a multi-zone study case and the two-neighbouring-
zones model for both the training and validation phases. Results are presented in
table IV.3. It can be observed that taking into consideration the “middle” bedroom
improves the SRMSE values by at least 50% . Referring to the selection procedure
presented in chapter 11, it can be noted that the acceptability criteria (each sSRMSE

value below 0.1 and stability of the model along the seasons) is not always respected.
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Figure IV.8: Temperature and CO, concentration of the bedroom "garden" with a two-neighbouring
zones model

This raises issues concerning the relevancy of the model. Besides, it must be noted
that in these two examples it is required to know the neighbouring temperatures.
Nevertheless, in a real multi-zone study case, these temperatures must be estimated
as well. Although, this way of modelling enables to reproduce the thermal dynamics
of the zone considered its accuracy is not sufficient and it does not take all the

constraints into consideration.

3.3 Impact of a false temperature

In parallel, it was tried to quantify the impact on the temperature estimation of
a false input, i.e. an error on the estimated neighbouring temperature. To do so,
an error is introduced in the neighbouring zone indoor air temperature by adding

with a random term ranging from 0 to 3°C during the training phase. It can be seen
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Model Period | sRMSE
0.1513
Summer
0.1031
Mono-zone 0.952
Winter 3924
0.3592
0.0588
Summer 0.0467
2 neighbouring zones '
) 0.1377
Winter
0.1087

Table IV.3: Comparison of sSRMSE values for the two different approaches during both training (in
italics) and validation phases

in figure IV.9 that the estimated temperature during the training phase presents
great differences with the measured temperature. As a consequence, the model
encounters difficulties to forecast the indoor air temperature during the validation
phase. As expected, the estimated temperature is higher than the measured one.

This illustrates well the sensitivity of the output to the input.

Figure IV.9: Bedroom "garden" indoor air temperature with an error on the input

4 Generation of the model

Then semi-physical models are faced with the constraints of a multi-zone study
case. The first issue is to determine the global model structure including every room
of the study case and the equations matching it. The problem is that as the size of

the study case increases, so does the complexity of the model. In order to properly
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model flats or even buildings, making the generation of the equations automatic

becomes essential.

4.1 Objectives and methodology

The objectives here are to generate the complete model structure of an entire flat
only based on the information that an occupant could give through the e-consultant
interface. This information should be as small as possible not to bother the occu-
pants. This requires first to structure the information recovered from the end-user
on a machine-readable form. Then, to extract this information for a modelling pur-
pose and to generate the equations relative to a specific dwelling. From here, the
same methodology as previously can be applied for estimating the parameters and

providing the end-user energy services.

In the global project, discussions made appear that different teams required in-
formation from the occupant. Then, it was decided to define a tool which can be
useful for everyone. For that purpose, it was first needed to establish the list of
all the information required for the Human Machine Interface (MHI), the modelling
part and the explanation part. From here, a general structure is defined pooling
all this information which happened to be presented structurally as xml (Extensible
Markup Language) file. This allows to define all the information required from the
end-user and ensure that every end-user can access it. Then, the xml file will be
used by the different parts of the e-consultant in order to finalize the configuration
by itself as described in figure IV.10.

Configuration:
Questions to the user

I

Storage:
Organizing the information in the xml form

Configuration models: Configuration explanation: Configuration IHM:
Generating equations Defining the framework for explanation Defining the architectural plan

[ E-consultant configured ! ]

Figure IV.10: Methodology implemented
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4.2 Configuration: Gathering information from users

The following is the list of information needed from the user in order to properly
model the flats:

e The number and the orientation of the rooms,
e The connections between them,

o The surface and the orientation of the windows for each room.

4.3 Storage of the information

The minimal structure of the xml file results from the gathering of required
information on one hand and on the ontology approach developed in section 2.1
of chapter I on the other hand. The root element of the description file is the
architecture and contains two main pieces of information: the latitude and longitude
of the study case which are important for the computation of solar gains. Then

different child elements can be identified:

o Outdoor
o LivingZone

« Connection

The general organization of the xml can be seen in figure [V.11.

The elements “Outdoor” and “LivingZone” represent respectively the exterior
and the rooms of the study case and are described with a list of the sensors present
in these different zones. Each sensor is itself described by the physical quantity it
measured and the unity of the value returned. The role of the “Connexion” element
is to transcribe the architectural plan filled out by the user into usable information.
For that purpose, it was proposed to describe it connection by connection where
“connection” designates a surface between two rooms. Then, the element “Connex-
ion” contains the references of the two rooms connected and the description of the
connection: its type (glazed or opaque surface), its ability to be opened, its orien-

tation and its surface.An example of the xml for a “LivingZone” is given in figure
IV.12.
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<?xml wverzion="1.0" encoding="UTF-8"72>
<description xmlns:xsi="http:/  www.w3.org/2001 /XMLSchema-instance"

x3i:nolamespaceSchemalocation="file:description.xsd">
<architecture lattitude="45.1666700" longitude="5.7166700">
<outdoor name="putdoor" type="Zone">
<livingZone name="Chambre3" type="Zone">
<livingZone name="Chambre2" tyvpe="Zone">

<livingZone name="Chambrel" type="Zone">

FHHIHT]

]

[+]

[+]

<livingZone name="5ejonr Entree Cunizine" tvpe="Zone">

[+]

[+] <connectioni
[+] <connection>
[+ <connection>
<oconnection>
foonnection>
<oconnection
<connectioni

</architecture>

< /description>

Figure IV.11: Structure of the xml file

<livingZone name="Chambre3" type="Zone">»

<temperature name="Chambre3 Temperature" type="Variable"»<sensor name="Chambre3 Temperature" unit="Celsius"/></temperature>
<CO2concentration name="Chambre3 CO2" type="Variable"»<sensor name="Chambre3 CO2" unit="ppm"/></CO2concentration>
<humidity name="Chambre3 humidity" type="Variable"><sensor name="Chambre3 humidity" it="%"/></humidity>
<occupancy name="occupancy" type="Variable">

<estimator name="Ch3occupancy" ="gccupants">

<sensor name="Chambre3 CO2" nit="ppm"/>
</estimator>

</occupancy>
</livingZone>

Figure IV.12: Structure of an element "LivingZone" of the xml file

The ways to recover this information from the occupant are studied by other

partners in the project and will not be detailed here.

4.4 Model configuration: Generating equations

4.4.1 Principle

These information are used in different parts of the model. The number of rooms
and connexions between them are used to generate the equations and identify the
heat exchanges between the rooms. The number and area of windows are used to

compute the internal gains and more specifically the solar gains.

From only these information, a generic function has been developed to generate
the state-space system of the flat model. To do so, it was decided to pass by symbolic

computations even though they are known to be very time consuming. This method
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has been developed and applied to the selected model: Model4C. However, as it was
developed in a very generic way, every model presented in section 2 and even more

could be automatically tested.

The symbolic equation generation is done thanks to the library SymPy imple-
mented in Python 3.4. This library aims to become a full computer algebra system.
The first step consists in generating all the symbolic variables required according
to the number of rooms and connections between them as well as the state and
input vectors. From here, the different derivatives of the state variables need to
be expressed. They are then two different situations: models which present an air

capacitance in each zone and models which do not.

For every model without an air capacitance, it can be noticed that consequently
the indoor air temperatures of the different rooms are not state variables. Besides,
they all depend on each other according to the connections between the rooms. In
order to express the equations of the derivatives of the state variables in function
of only the state variables, it becomes necessary to express all the indoor air tem-
perature in function of the state variables. This step requires to solve a system of
n equations and n unknown variables (the indoor air temperatures of each room),
where n is the number of rooms, before generating the matrix of the state-space
system. Unfortunately, this kind of models introduce a problem due to the com-
putational time required. Indeed, the next step consists in parsing the equations of
the derivatives of the state-space to recognize the state variables and the inputs and
to extract their coefficients in order to fill the matrix. To do so, the library SymPy
implemented in Python expands the expression at its maximum level. Then, replac-
ing the indoor air temperatures by their expression in function of the state variables
increases significantly the complexity of the equations. Scanning all the expression
of the derivatives of the state variables to identify each one of the coefficients of the
state-space matrix becomes then very costly. As an example, for a study-case with
only 4 rooms, three days were not enough to achieve the generation of the state-space
system. The simulation was launched on a classic laptop with 8 Go of active mem-
ory and a Pentium Core i5 with 4 cores. Besides, the computational time required

increases exponentially with the number of rooms.

For models with an air-capacitance, this computational time is significantly de-
creased. Indeed, for the same study case with the same computer, the generation
of the state-space system takes less than 1 second. If the initial model does not

have an air capacitance, a solution could then be to consider one but adapt its range



4. GENERATION OF THE MODEL | 125

to minimize its impact on the system behaviour. A perspective would be either to
investigate further this issue in order to decrease the computational time or to use
another software specialized in dealing with symbolic computations such as R or
Maple. However, for our current problem as the selected model does contain an air

capacitance, this problem was not further investigated.

4.4.2 State variables derivatives

The inputs of this automatic process are issued from the xml and stored in two
different lists. The first one pools the information about the number and kind of
zones:

list_rooms = [(0,0),(1,0),(2,0), (3,0)] (IV.4)

where the first number of each tuple (list between brackets) is the number of the

room and the second is to indicate is there is an air capacitance (0) or no (1).

The second one pools the information about the number and kind of connections

between the rooms and is expressed as a list of lists:
list_connections = [[(0,1),2],[(1,2),1],[(0,2),2],[(0,3),2],[(2,3), 1]] ~ (IV.5)

where, in a sub-list, the two elements of the tuple are the numbers of the rooms con-
cerned by the connection described, and the last element is the type of the connexion:

2 means there is a door and 1 a wall.

The two last equations are applied to the study case presented in section 2 of
chapter IV. In this case, the living room is numbered 0, the “garden” bedroom 1,
“middle” bedroom 2 and the “street” bedroom 3. Each room is considered to be
connected to the exterior by a wall with a window and modelled by a capacitance.
Otherwise, it will just be necessary to add the exterior as a zone and to add the

connections with their kind to the list below.

The two lists are then used to create all the symbolic variables required for the
generation of the state-space system. First, the state variables are created. The num-
ber of “fictive” wall and outer wall temperatures to be considered is directly linked
to the number of rooms if there is an air capacitance. Otherwise, the temperatures
of the “fictive” walls do not intervene. The number of inner wall temperatures is
based on the list__connections and one is created for each connection of type 2 using

the numbers in the tuple to specify the wall temperature considered. And finally,
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the indoor air temperatures are added thanks to the list _rooms if there is an air
capacitance. Regarding the input vector it is constituted of the outdoor temperature

and all the internal gains for each room.

Once, this is defined, the next step consists in building the derivatives of the
state variables. For this step, for each building blocks defined is section 2 of chapter
II, the relative equations have been written. Their generation is also based on the

lists defined on the beginning of the process.

For each room present in list rooms, if there is an air capacitance, two deriva-

tives of the state variables can be written due to the modelling of the zone itself:

dr, 1 (T, =
j:_*(_f_l) (IV.6)

dt C; R, R;
dT; 1 T; T,
L = —- 1 i IV.
dt Cliri i (Ri R; i ¢) (Iv.7)

where i is the number of the room considered, T; is the indoor air temperature of the
room %, 7; is the “fictive” wall temperature of the room i, R; is the resistance of the
“fictive” wall of the room 7, Cy;,; is the capacitance of the indoor air of the room 4,
C'; is the capacitance of the “fictive” wall of the room 7 and ¢; is the internal gains

of the room 1.

Then two other equations can be written since it is considered that each room is

connected to the outdoor thanks to a window and a wall with a capacitance:

dT’z 1 7 1 Twou % % 1 1
S Y T+ et gy (S L .
dt Cair,i RW@ Routi Rwoutza RWz Routi Rwoutza

(IV.8)

dTwou ) 1 E Tou 1 1
! = * |: + i _Twouti*< + >:|

dt Cwouti Rwouti,  Rwoutiy, Rwouti,  Rwoutiy

(IV.9)
where the index ¢ identifies the room considered and the different variables are rep-

resented on figure [V.13.



4. GENERATION OF THE MODEL | 127

Cw,outiﬁ

Rw,outib Tolout RWrOUtia
B D

P I

Figure IV.13: Representation of an outer wall

Finally, for each element of the list_connections of type 2, the following equa-

tions can be defined:

d,-rz 1 CDij 1 Twnij CDij 1 1

= - T+ ———— -1, —
dt  Cairg ’ KRDU " Rnij) FhE Rwnij; * Rpij " Ry " Rwniy;
(IV.10)

SCH S (2 PR S O R DY (. R
dt Cair,j RDij Rm]’ me]j RDij Rm]’ mejj
(IV.11)

L = * — o+ ——L— — Typnij * — + — (IV.12)
dt Cunij | Rwnij;  Rwnij; Rwnij;  Rwnij;

where the index ¢ and j identify the rooms involved in the connection and the different

variables are represented on figure IV.14.
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Figure IV.14: Representation of an inner wall with a door

If the type of the connection is different, the terms relative to the branch with
the switch must not be considered. It can be noticed that the derivative of the
indoor air temperature appears several times in the equations below. This is simply

because every segment added is linked to the indoor temperature and so impacts its
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evolution. Combining these different equations allows to reconstructs the derivatives

of every state variables of the global model.

From these equations, parsing methods have been used to find the different co-
efficients of the state space matrix and build them. As explained in the previous
section, the first step the library Sympy requires is to expand every terms of these
equations. Then, it is possible to recover the coefficients of the state-space matrix
and to build them. The more complex the equations are, the longer this step will be.
To decrease this computational time, all the equations have been simplified. Each

derivative has been written under the form:
dX;
= Z X; + zk: m (IV.13)

where X are the state variables, ¢ the number of the state variables, u the inputs

and k their number.

It is then easier for SymPy to identify the coefficients of the state-space matrix.
This operation in that configuration takes less than 1 second. Once the system is
defined, it is not longer necessary to appeal to symbolic computation. The system
is then translated in a non-symbolic form. To do so, the process of the genetic
algorithm is called. Indeed, the library Deap in Python 3.4 requires to register
every parameter which needs to be estimated on a certain form in a toolbox. From
here, the library can generates the population 0 with random values for the different
parameters. Each one of the values are registered in a dictionary under their name
as key. The variables can then be handled as usual with a very low computation

cost.

Once the state-space system is well defined, the model can be estimated thanks to
the genetic algorithm presented in the chapter I11. The first step consists in replacing
the global variables defined to gain some time by their expression according to the

different parameters.

In order to illustrate, the thermal circuit of the flat is represented in figure 1V.15.
It is a combination of all the different building blocks defined in section 2 of chapter I1
and applied to the new study case respecting the selected structure: Model4C. This
means that each room has been represented by an air capacitance, a “fictive” wall
and internal gains. Each connection between rooms is represented with a resistance

and two resistances and a wall capacitance in parallel. If there is a door between
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these rooms is added in parallel a resistance and a opening rate. Each room is

connected to the exterior in the same way but with a window opening rate.

Figure IV.15: RC model of the flat

5 Implementation

Once the structure defined (cf. figure IV.15) and automatically generated thanks
to the proposed process, the next step consists in estimating the parameters and
validating the results. If the mono-zone parameter estimation model was made of 12
parameters, the number of parameters reach 69 for the multi-zone study case. Then
the model of openings presented in section 2.3.3 was not implemented at first since it
implies a high increase in terms of computational time. The same genetic algorithm

presented in section 5 is used for that purpose.

As a reminder, the measured inputs are the data from the Netatmo stations
in the flat (¢f. section 2 of chapter IV) which provide: indoor air temperature,
COgconcentration and relative humidity. The one in the living room measures in

addition the noise level. Data from a weather station are also used to forecast the
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solar gains. Occupancy and heating power are estimated according to the estimators

explained in section 2.2 of chapter IV.

5.1 Configuration of the genetic algorithm

5.1.1 Starting configuration

For the mono-zone study case, 100 generations of 100 individuals were simulated
and it was enough to reach a sufficient accuracy. However, if the same configuration
is applied for the multi-zone study case, convergence is not reached (i.e. the accuracy
obtained is too low) due to the increased complexity of the problem (c¢f. figures IV.16
and IV.17). This is especially true for the CO, estimations which are measured via
the Netatmo sensors as explained in section 2 of chapter IV. Actually, for three
rooms out of four, the CO, profiles obtained seem likely but estimated with a great
offset while the last one is accurate. As for temperature, it can be noticed that
though the results are not as good as they were for the mono-zone study case, they
remain promising. Indeed, the dynamics are well represented. Still, the gaps between
predicted and measured values can reach 2°C which can damage user’s trust. Indeed,
there are already discussions concerning the 19°C required by the French regulation
whether it is sufficient or not. Many voices rise claiming that 21°C would be more
relevant. This illustrates that a gap of 2°C is considered as significant by most (at

least) French people and researchers.

It can be observed that for the estimated temperature in the living room, results
seem to be less accurate during the training phase. This is due to a daily calibration
during the cross-validation phase: every day at the same hour the estimated state
spaces are set to the observed ones. This allows to significantly improve the results
and is in agreement with the energy services considered. Indeed, the daily horizon

is the most relevant for most services.

5.2 Choice of the right configuration

The next step is then to determine the right configuration to reach the accuracy
required for the energy services. Different tests have been launched in order to reach
the target: considerably decreasing the number of individuals and increasing the
number of generations on one hand, and increasing both individuals and generations

in a second hand.
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Figure IV.16: Temperature profiles for the summer scenario

Training | Validation
“garden” bedroom | 0.2046 0.1780
“middle” bedroom | 0.1825 0.1906
“street” bedroom 0.1536 0.2003
Living room 0.2763 0.2148

Table IV.4: sRMSE values for the simulation of 100 generations of 100 individuals

Then, another test was launched with 1200 generations of 800 individuals (cf.
figure IV.18). The results confirm that the previous configuration was not sufficient

to ensure the convergence of the algorithm. Indeed, if no significant improvement
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Figure IV.17: Temperature profiles for the summer scenario

can be noticed on the prediction of the temperature, the CO, trends are greatly
improved. Nonetheless, the convergence does not seem to be reached. The same
tools are applied in order to validate and quantify the accuracy of the model (cf.

table IV.5). As expected, the accuracy is not as high as it was for the mono-zone

office.

5.3 Study of the convergence

In order to see whether or not the lack of accuracy results from a convergence
problem, the evolution of the error along the optimisations have been plot. Figure
IV.20 shows an healthy behaviour with an error decreasing all along the generations.
However, it must be noted that from the generation number 600, the diminution of

the error is really slow down. This confirms that the results obtained are not due to

a convergence problem.
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Training | Validation

“garden” bedroom 0.2310 0.2285

“middle” bedroom 0.1950 0.1937

“street” bedroom 0.1874 0.1950

Living room 0.3476 0.2042

Table IV.5: sRMSE values for the simulation of 1200 generations of 800 individuals
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Figure IV.18: Temperature profiles for the winter scenario (1200 generations of 800 individuals)
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Figure IV.19: CO,, profiles for the winter scenario (1200 generations of 800 individuals)
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Figure IV.20: Evolution of the absolute error along the generations

6 Application to an energy service

As explained all along this thesis, these models have been developed to serve

end-user energy services. However, the implementation of these services are not part
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of this research work. Amr Alyafi, part of INVOLVED project, is in charge of the
generation of explanations. In this section, a part of his work is presented [5] in order
to illustrate how the models developed in this thesis will be used. For the moment,

it has been applied to the mono-zone office study case described in chapter II.

The semi-physical model developed in this thesis is used for generating differential
explanations. The goal of his work is to create a contextual causal explanation and
so to identify the causes and consequences of the different actions available. In this
context the causes are the occupant’s actions or the contextual phenomena and the
consequences are divided between the final effects and the intermediate effects. It
is summarized in figure IV.21 where the arrows represent the cause-effect relation
between the groups and o the dissatisfaction felt by the user in terms of temperature
or air quality. This dissatisfaction criteria is determined based on the preferences
defined by the end-user. The distinction between the intermediate and effects groups
is whether or not the variable considered is experienced directly by the end-user or
not. The intermediate effects allow also to build a complete causal chain and to help

users understand why their comfort or energy consumption have been affected.
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< \ —L —L “Effects
D / _
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Figure IV.21: General schema of explanations

To generate the explanations, a concept of a qualitative distance is defined by

comparing the actual scenario to the optimal one.

This mapping is done to show to the occupants the impact of their actions on
the comfort criteria, and to convince them why do they need to change their be-
haviour when it is far from optimality. First, the semi-physical model is used to
determine the optimal set of actions to reach the objective defined by the end-user

regarding the temperature and the COy concentration. From here, the following
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step consists in determining the distance between the actual occupant’s behaviour
and the optimal one. From the optimization results, occupants can understand their
position according to the possible set of the optimal solutions for the entire day.
Differential explanations will help them to understand what needs to be done to
reach the chosen optimal solution according to their objectives. This explanation is
done by differentiating explanations, i.e. based on the comparison of two scenario
on different levels: the set of actions, the intermediate variables and the effects. It
is then possible to define an indicator representing the impact of the actions taken
on the optimality. The cause-effect relations must be highlighted to improve the oc-
cupant’s understanding. This step leads to the construction of the table represented
in figure V.22 where the cause-effect relations are represented on both the final and
intermediate effects. In this table, it can be observed that different levels of impact
are modelled. This is a direct consequence of the qualitative distance computation
to the optimal scenario. Resorting to the physical model including capacitances also

allow to evaluate the delayed impact of an action on the different variables.

hour | A actions |A effects |A intermediates
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Figure IV.22: Differential explanations help the inhabitants to understand their actions like at
4pm, the user behaves correctly (its action was similar to the proposed optimal plan); at 12am,
the inhabitant should have opened the door for much longer time, this would helped him getting a
high improvement in his thermal comfort and slight enhancement in the air quality.

Still, this table amounts too complex to be well understood bye the end-user.
That is why the last step of this work consists in generating automatically a well-
written statement synthesizing the information included in the table. For that pur-
pose, a first model was developed in ARIANE-HELOISE [13] for a feasibility demon-
stration: the GRA-FRA ("GRAphe vers texte en FRAn ais”: graph to French text)
model. It was specifically designed for generating messages from the tables contain-
ing differential explanations. In figure 1V.23, it can be observed an example of the

output generated by the automatic text generation process.
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Traduction

Dans le créneau horaire 17h-18h, si vous aviez laissé la porte et la
fenétre ouvertes beaucoup plus longtemps, la qualité de l'air aurait

diminué un petit peu, il y aurait eu un courant d’air sensible vers le
couloir et un flux thermique léger venant de l’extérieur ;

Figure IV.23: Output from Ariane-Heloise GRA-FRA GM phase

7 Conclusions

In this chapter, the application of models to a multi-zone study case have been
explored. This new study case has been challenging for different reasons. Despite,
the simple increase in the complexity of the model, it presented also a great loss of
data compared to the office study case. In the same way, estimators are more difficult
to define considering the change of function of the study case: from an office to a
dwelling. All of these modifications increase greatly the complexity of the estimation
process. The relevance of the mono-zone semi-physical model applied to each room
of a more complex study case has been tested. It revealed that the performances were
acceptable but that this model was very sensitive to the inputs and so that it could
not be applied to all the rooms since each of them is dependent on one another. The
next step consisted then in implementing a multi-zone semi-physical model. But, the
implementation of such a model requiring to define complex equations and structure,
an automatic generation has been implemented. The developed automatic process
is able to determine the state space of the model based only on the information
provided by the end-user such as: orientation and area of windows and rooms and
connections between the different rooms. From here, equations are generated and
the estimation process is launched on the data available. Regarding the parameter
estimation process based on the genetic algorithm, it needed to be adapted since
the number of parameters to estimate increased greatly for the multi-zone model.
Then from 100 generations of 100 individuals, 1200 generations of 800 individuals
were generated and the probability of mate and mutations were increased as well to
improve the exploration. However, despite these modifications, it has been shown
that predicting COy concentration with a good accuracy remained a challenging
topic. Regarding the temperature, the results were good but still less accurate than
for a mono-zone study case. It can be noted nonetheless that the trends obtained
for the CO4 suggest that the convergence is not reached. Different simulations have
been run with higher number of generations and individuals but the same trends

were obtained.
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Conclusions and future works A

Conclusion

This thesis presented a new methodology to select a suitable thermal and aeraulic
model for end-user energy services. The objective was to determine a model structure
able to predict temperature and CO4 evolutions on a 24-hour horizon based on little
expert knowledge. These requirements induce the different constraints regarding the
model structure and its configuration. The structure might neglect fast dynamics
and sufficiently recover slow dynamics to fit a daily prediction with 1-hour time step.
The learning phase must be done within a reasonable amount of data (1 month
maximum) and based on the fewest sensors as possible. It has been performed with
only 6 sensors for the mono-zone study case and one Netatmo station per room

(providing three measurements) for the multi-zone study case.

The first step consisted in a state-of-the-art regarding different fields. The sociol-
ogy of energy helped us to determine the relevant energy services which will engage
end-users towards habit changes. The study of the different model structures used
within the community of building energy analyses enabled to identify which one that

could answer the energy services needs as well as the parameter estimation methods.

Then, different kind of models have been implemented and validated on two
different study cases: an office and a flat. This enabled to validate the model on
buildings with different purposes and different scales and then to open many opportu-
nities of implementation. The first kind of models implemented are multi-regression
models; structure only based on data which do not require expert knowledge because
they are easy to estimate. These models proved to forecast with a good accuracy
the temperature and COs concentration on the mono-zone office. However, for in-
stance, the month of June which differs a lot from the month of May regarding

window openings and occupancy presented poor performances in particular for the
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COg estimation. This behaviour raised issued regarding the ability of the model to
guarantee performances along the year. On top of that, the implementation on a
multi-zone study case returned low performance. In order to outreach these limits,
another model structure was introduced embedding physical knowledge: the RC-
models dedicated to runtime end-user energy services. There are commonly used
among the community of building modellers and based on thermal circuits. It was
added switches in order to take into consideration door and window openings which
was not found in the literature. From a simple 1-C structure, different models of
higher order were defined in order to test the different ways of inertia modelling
found in the state-of-the-art. Acceptability and selection method were set up to
compare the performances of these different models and to identify the one answer-
ing the best to all the requirements of end-users energy services. For these models,
the estimation process is more complex and computational costly than for multi-
regression structures. Hence, firstly a classic descent-algorithm called SQP has been
implemented for its low computational cost. The research space being wide and
complex, a framework has been set to improve the exploration of the research space
and avoid to be stuck in local optimum. Unfortunately, this method requires ini-
tial values and its convergence was very dependant on it. It has been shown that
as soon as the complexity of the model structure increased, the algorithm did not
reach the convergence. In the following, another method has been tested: genetic
algorithms which are known for implying higher computational costs. Among the
choice of genetic algorithm, was chosen NSGA-II which preserves the diversity of
the offspring generated thanks to the computation of the crowding distance. The
combination of RC-models and NSGA-II has been proven to answer the end-users
energy services requirements: stability along the seasons, good accuracy and learning
phase of 1 month. The 8 RC-structures have been applied to the mono-zone office
and compared according their accuracy and prediction stability along the seasons.
The final selected structure has then been further studied. A sensitivity analysis has
been performed to ensure that every structural parameters had a significant impact
on the model output. This analysis did not reveal an obvious set of variables without
an impact on the output. Then, the structure stayed unchanged. To complete the
investigation of this final structure, a state observer is set. If the model structure
is not directly observable, it has been demonstrated that the non-observable states
have a negligible impact on the output. It is then possible to implement a state

observer and so to initialize the model for daily-horizon optimizations.
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Finally, the scale of the study case has been increased from a mono-zone office to
a whole flat. On top of that, the flat is equipped with very few sensors: temperature,
humidity and CO, concentration in the bedrooms and sound level measure in the
living room. The challenge of parameter estimation was then doubly increased. To
do so, a complete framework has been implemented to allow the automatic gener-
ation of the model from end-users configuration information. In the current state,
from the very simple information given by the end-user about architectural plan,
orientation and size of windows and rooms, the complete RC-model of the flat is
automatically generated and estimated via the NSGA-II algorithm. The configura-
tion of the algorithm must have been adapted in order to take into consideration the
increase of parameters to estimate. The COs estimation has not succeed probably
because of a lack of sensors. But, the temperature estimation reached a satisfactory

level considering the complexity of the model.

To conclude, an illustration of how the model will be used in future works for
implementing energy services, the work of Alzhouri Alyafi has been presented. It
highlights the gains of the semi-physical models for the generation of explanation as

well as the process implemented.

Future works

This work appeals extensions.

Regarding the results on the COs estimation on the multi-zone study case, an
hypothesis is that the lack of sensors is partly responsible of the estimation results.
To validate or not this hypothesis, it would be interesting to use the modelling
generation approach to other study cases with more sensors and especially door and

windows contacts.

Following the same idea, there is for sure a link between the instrumentation
available and the possible accuracy of the model. Indeed, the more sensors are
installed, the less it is necessary to build estimators. For instance, estimating with a
good accuracy and even measuring the effective heating power or occupancy would
significantly impact the accuracy of the prediction. Then, investigating the evolution
of the accuracy of the model according to the instrumentation as well as the impact

on the structure would give a meaningful insight.



142 | CONCLUSIONS AND FUTURE WORKS

Clustering methods could be used to segment the days into clusters of similar
days. One challenge of the parameter estimation is the length of data necessary to
estimate the model. A clustering process could give information on the similarity of
the day considered compared to the precedent ones it has seen. If there is a match,
it would then allow to learn the model on fewer days and enhance the accuracy of
the model. During this thesis, it was shown that one model estimated whether in
summer or in winter could predict the evolution of temperature and CO, all along
the year. But, perhaps these clustering methods could enhance the accuracy of the

prediction by estimating several different set of parameters for the different clusters.

The proposed validation methodology has focused on the estimation error for
temperature and CO, but end-user energy services use sometimes estimation of en-
ergy needs. Therefore, the validation at service level should be done: maybe with
poor estimations the services could yield good results A first example of an energy
service has been presented through the work of Amr Alzhouri Alyafi but many others
are still to be developed. As the specifications of the end-user energy services are
different from one another, it should be tested that the structure is resilient to all

the services.

Another issue regarding energy management is the detection of drifts or abnormal
behaviours. Indeed, flats or offices are evolving along the time and some systems can
be replaced or added. In this case, the learnt model will not be adequate anymore.
Implementing an automatic detection of such phenomenon and identify the causes
could enhance the robustness of the model and ensure that the accuracy of the

estimation can be guaranteed any time.
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Résumé en francais A

1 Introduction

Dans le contexte de transition énergétique actuel, les batiments représentent un
enjeu majeur puisqu’en France comme a I’étranger ils sont responsables de pres
de 40% de la consommation d’énergie finale. Les recherches dans le domaine de
I’énergétique du batiment se sont dans un premier temps concentrées sur les systemes
thermiques et ’enveloppe batiment. Nous savons donc aujourd’hui construire des
batiments tres performants. Toutefois, il subsiste toujours un écart important entre
la consommation prévue lors de la phase de conception et la consommation réellement
observée en phase d’exploitation. Dans un premier temps, le batiment a évolué vers
toujours plus d’automatisation en se basant sur I’hypotheése que 'occupant était
la cause de cet écart. L’objectif était ainsi d’assurer le fonctionnement optimal des
différents systemes CVC installés. Malheureusement, cela n’a pas réduit 1’écart entre
consommation prévue et consommation réelle. Suite a ce constat, des sociologues
sont allés a la rencontre des occupants de ces nouveaux batiments économes pour
identifier les causes de ce phénomene. Les premiers retours ont mis en lumiere qu’un
occupant en situation d’inconfort allait ressentir son inconfort de maniere décuplée
s’il n’avait pas de controle sur son batiment. Pour atteindre une réduction effective
des consommations énergétiques dans le batiment, les sociologues suggerent de rendre
le pouvoir a l'occupant. Ce travail de these s’inscrit dans le projet INVOLVED
financé par ’Agence Nationale de la Recherche (ANR) dont 'objectif est d’impliquer
I'usager dans sa gestion énergétique via une Interface Homme - Machine (IHM). Cette
IHM permettrait de fournir différents services énergétiques a 1'utilisateur final pour
lui permettre de comprendre son impact sur le batiment et I'aider a atteindre au

mieux ses objectifs.

Ces différents services énergétiques ont besoin de prédire I’évolution de la tem-

pérature et du CO5 dans les prochaines 24 heures a pas de temps horaire. Ils ont
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donc pour cela besoin de se baser sur un modele thermique du batiment. Toutefois,
comme I'THM s’adresse au grand public, il n’est pas envisageable de faire appel a
des connaissances expertes du batiment comme par exemple les caractéristiques des
matériaux d’enveloppe. La Simulation Thermique Dynamique (STD) n’est donc pas
ici un outil pertinent. Il est alors nécessaire de recourir a des modeles simplifiés pou-
vant se baser en partie sur des données capteurs pour combler le manque de données
expertes. Dans cette these, différents types et typologies de modeles ont été étudiés
et testés sur deux cas d’études réels : un bureau et un appartement. Dans le chapitre
1, est conduit un état de I'art sur la sociologie de I’énergie afin d’identifier les ser-
vices énergétiques pertinents ainsi que les différents types de modeles utilisés pour
la gestion énergétique des batiments. Le chapitre 2 présente le cas d’étude mono-
zone ainsi que les modeles "boite grise” utilisés par la suite. Le chapitre 3 détaille
les différents types de modeles implémentés ainsi que les méthodes d’estimation
paramétrique liées. II met tout d’abord en lumiere les avantages et limites des
modeles de type ARX (Auto Regressive model with eXternal inputs) et l'intérét
d’un apport de connaissance physique. Puis, il détaille 'approche par des modeles
semi-physiques de type analogie électrique (ou modeles RC) et les deux méthodes
d’estimation paramétrique implémentées. Ces différents modeles sont soumis a des
tests d’acceptabilité et a un processus de sélection pour identifier la structure la plus
adéquate a la mise en ceuvre des services énergétiques. Pour finir, le chapitre 5 ex-
plore la capacité du modele a s’adapter a des cas plus larges : absence de capteurs de
contacts, modélisation d'un cas d’études multi-zones. Est également présentée une
méthodologie de génération automatique du modele a partir des seules informations

accessibles a 'utilisateur final.

2 Sociologie de I'énergie et modeles pour les services
énergétiques

2.1 Sociologie de I'énergie

Plus les batiments deviennent performants, plus 'activité humaine a un impact
considérable sur la gestion énergétique des batiments. Les occupants ne peuvent
donc de fait plus étre considérés comme des perturbateurs du batiment mais doivent

étre impliqués dans leur gestion énergétique. Dujin et al. [29] expliquent que dans les
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approches actuelles, les occupants sont vus comme des acteurs passifs du batiment
devant tout apprendre et subissant les systemes dont les rythmes et caractéristiques
ne correspondent pas a leur besoins. Des études ont été menées dans les premiers
batiments performants HQE (Haute Qualité Environnementale) et BBC Effinergie
(Batiments Basse Consommation) (cf. [11] [19] and [84]). Les observations font
remonter que des lors que les systémes installés sont mal appréhendés, la perfor-
mance énergétique du batiment s’en trouve fortement dégradée. A partir de la, deux
tendances se distinguent dans le domaine de la sociologie : I'approche par les com-
portements et 'approche par les pratiques, plus récente. Concernant I'approche par
les comportements, Moser [69] estime que le changement de comportement vis a vis
de la consommation énergétique peut étre amenée de trois manieres différentes: in-
citations, sensibilisation et éducation. En effet, différentes études ont porté sur les
impacts d’un simple affichage temps réel de la consommation. Des analyses croisées
de ces études ont été réalisées sur 26 études menées mondialement entre 1987 et
2008 et stipulent que les économies réalisées peuvent varier de 1.1% a 20% avec une

moyenne entre 5 et 12%.

2.2 Services énergétiques

L’objectif de cette these est de développer un modele thermique du batiment
permettant de fournir des conseils et explications a 'utilisateur final. Les différents

services envisagés sont listés ci-dessous :

o “What-if” : Quelles sont les conséquences de telle action?

o “Replay” : Que s’est-il passé hier? le mois dernier? ’année derniere?

o “Mirror” : Quel est I’état actuel de mon logement?

o “What-for” : Comment atteindre mon objectif?

o “Suggest-and-adjust” : Ajustement de plans anticipatifs par I'utilisateur
o “Explain” : Formalisation qualitative des phénomeénes physiques

o “How-to” : Explication des usages prévus par les concepteurs

A chacun de ces services correspond ou ou plusieurs indicateurs pertinents, des

échelles temporelles et des regles quand a la fréquence de sollicitation de I'utilisateur.
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2.3 Etatde |'art surles modeles

Afin de mettre en place les services énergétiques précédemment cités, il est néces-
saire de faire un état de I'art des modeles actuellement utilisés en gestion énergé-
tiques. Ils se classent en trois grandes catégories : les modeles “boite noire” basés
exclusivement sur de la donnée, les modeles “boite blanche” ou modeles de con-
naissance qui reposent sur les lois de la physique et enfin les modeles “boite grise”
s’appuyant sur quelques connaissances physiques mais dont certains parametres sont
appris a partir de données. Dans cette étude, les modele “boite blanche” ne seront
pas étudiés car ils requierent trop de connaissance experte en entrée pour étre adaptés

a notre cas.

Les modeles “boite noire” ou modeles universels présentent 'avantage d’étre
facilement estimés et de ne se baser sur aucune connaissance experte. La plupart des
modeles universels ont été développés pour modéliser des systemes spécifiques du
batiment ou des parois plutét qu’un batiment dans son ensemble [23], [89]. Etendre
ces modeles au systéme batiment serait tres cotiteux en nombre de variables. De
plus, comme la plupart du temps, la description complete du batiment n’est pas
accessible, ces modeles ne sont pas adaptés a nos besoins. Plus récemment, plusieurs
auteurs ont modélisé un batiment complet avec différents objectifs: prédiction de la
température intérieure [66], prédiction de la demande thermique [93] ou récupération
des valeurs U et G du batiment [52]. Si différentes structures de modeles universels
cohabitent, les modeles ARX(Auto-Regressive with eXogenous inputs) sont les plus
répandus dans la communauté. Jimeénez et Madsen [52] et Mustafaraj et al. [71]
ont mis en évidence qu’ils permettaient de mettre en équation le batiment dans son
ensemble. La formulation générale d’'un modele ARX & une sortie est décrite dans

I’équation N.1.

p q
Tin=— Z alin—1+ Z Z br,jukn—j + €n (N.1)
=0

=1 k

avec bk les coefficients des entrées respectives uk et e 'erreur qui sera assumée égale

au bruit blanc.

En ce qui concerne les modeles “boite grise”, il est tout d’abord important
de noter que dans le domaine de la gestion énergétique des batiments, la plupart
des modeles ont été pensés pour des phases de conception. Ils s’intéressent donc

aux besoins annuels des batiments et se basent sur des scénarios types concernant
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I'occupation ou les températures de consigne du chauffage. Ces scénarios sont bien
souvent tres loin des scénarios réels comme l'indique le “Bulletin Officiel n°201114".
D’autre part, ces objectifs différents conduisent a une granularité et des hypotheses
différentes. L’état de l'art a mis en évidence que les modeles les plus utilisés dans
la communauté sont des modeles de type analogie électrique (ou modeles RC) qui
offrent a la fois une bonne représentation des différents éléments du batiment ainsi
qu'une grande facilité d’utilisation. Toutefois, les avis divergent quant a la modélisa-
tion de l'inertie, la prise en compte des apports solaires et les phénoménes négligés.
Un des facteurs prédominants dans le choix du modele va donc étre 'objectif du
modele. La plupart des auteurs considerent que l'inertie du batiment se situe dans
les murs extérieurs et dans l'air. Toutefois, Hazyuk et al. [47] et Mathews et al. [65]
prennent également en considération l'inertie de la dalle. Bacher et Madsen [9] ont
mené une étude visant a comparer différents ordres de modeles. Ils ont généré 17
modeles allant de 2 a 5 capacités et concluent qu’a plus de 4 capacités, 'amélioration

apportée en termes de précision ne dépasse pas les 5%.

Ceci étant dit, le choix du modele et de la structure dépend également de la
capacité ou non d’estimer ses parametres. L’estimation paramétrique consiste a la
calibration des parameétres du modele afin que la sortie simulée du modele corre-
sponde a la sortie mesurée. S’enchaine alors une phase de validation ou le modele
estimé est lancé sur une période n’ayant pas servi a la calibration des parametres.

Cette étape permet de caractériser la capacité de prédiction du modele.

2.4 Problématique

L’objectif général de cette these et la méthodologie mise en place sont résumés
dans la figure N.1. Tout d’abord, les utilisateurs finaux décrivent la configuration de
leur logement. Le systéme stocke alors les informations dans un fichier xml. Ce fichier
servira de base a la génération automatique du modele adapté a ce logement en par-
ticulier et lancera I'estimation paramétrique et la validation. Cette these s’intéresse
plus précisément a la prédiction de 1’évolution de la température d’air intérieur et de
la concentration de CO,. Les services énergétiques envisagés requierent une bonne
précision dans la prédiction a plus 24 heures. L’accent est donc mis ici sur la sortie
du modele et non sur 'interprétation physique de la valeur des parametres estimés.
Différentes structures de modeles ont été développées et testées sur deux cas d’études
distincts. Tout d’abord des modeles de type ARX puis des modeles RC. Pour ces

derniers, deux méthodes d’estimation paramétrique ont été mis en oeuvre et com-
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parées : une optimisation de descente et un algorithme génétique. Finalement, on
s'intéresse au passage d'un cas d’étude mono-zone a un cas d’étude plus complexe
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Figure N.1: Objectif général et méthodologie mise en place

3 Casd'études etstructures de modeles auto-configurables

3.1 Casd'études mono-zone

Le premier cas d’études considéré est un bureau accueillant 1 a 4 personnes selon
les périodes. Il est équipé de 26 capteurs dont : capteurs de température, con-
tacts portes et fenétres, détecteur de mouvement, éclairement, capteur d’humidité
et station météo (cf. figure N.2). Afin de favoriser le déploiement de la solution, un
set minimum de données de capteurs a été défini comme tel : température d’air in-
térieur, température de surface du radiateur, concentration de CO,, contacts fenétres

et portes ainsi que la nébulosité et la température extérieure.

Les apports solaires sont basés sur un modele de décomposition. Ils ont été
calculés & partir de la littérature en se basant sur la formule de Gate [40] pour
le flux réfléchi et les travaux de Spencer [86] pour le flux diffus. D’autre part, des
estimateurs sont définis pour prédire I'occupation et la puissance de chauffage car ces

informations sont inaccessibles par la mesure. Pour cela, la puissance de chauffage
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est définie par I'équation N.2 ot Kepauffage €St un parametre appris. La présence
quant a elle est estimée a partir de la consommation électrique des prises de chaque

bureau.

Pchauffage - chauffage(Tchauffage - ﬂnt) (Nz)

3.2 Blocs élémentaires et structures de modeéles

Pour définir les structures pertinentes de modeles a appliquer, une ontologie de
batiment a été définie. Il a donc été nécessaire de lister tous les composants du
batiment impliqués dans la gestion de I’énergie ainsi que leurs caractéristiques vis a
vis de I’énergie. Par la suite, chaque partie du batiment a été modélisée de différentes
manieres selon la prise en compte de 'inertie considérée (cf. tableaux N.1 to N.3).
Ces blocs élémentaires seront ensuite assemblés pour définir les différentes structures

de modeles qui seront implémentées dans cette these.

A partir de ces différents blocs, un premier modele a 1 capacité a été créé
(c¢f. figure N.3) puis la complexité du modele a été progressivement augmentée
jusqu’a obtenir un modele a 4 capacités; précision maximale possible avec les don-

nées disponibles (cf. figure N.4).

T,, T, et Ty, représentent respectivement la température de voisinage, d’air
intérieur et d’air extérieur
R, et Rous représentent la résistance du mur entre la piece et respectivement le voisi-
nage et 'extérieur
Rp et Ry représentent respectivement la résistance de la porte et de la fenétre
(p et (w représentent respectivement les ouvertures de portes et fenétres
R; et C; représentent respectivement la résistance du mur fictif et la capacité du mur
fictif
¢in représentent les gains intérieurs dus a 1’occupation, aux équipements électriques,

au chauffage et aux apports solaires.

Rp et Ry sont définis ci-dessous :

1
Rp= —— N.3
P paircp,airQD ( )

1
Ry=— (N.4)

Pair Cp,airQW
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Mur extérieur

Bloc élémentaire Equation
R
TOUt; _7-in T’in - Tout = R¢
)]
ROUt 1
TOUt RW CW Tin ,IILn - Taut = 1—CVV ¢
o Rou " B

Cw,outﬁ dTw,out o 1 |: Tout + E

R pr—
w,out2 Tw,out w,outl dt prut

1 1
R _
O B v E B ot o

Rw,outZ Rw outl

w,outl

(0)) RW C Req 1 CW
En = Tw ou Re - - Tou
4|:'—/W Rw,futl ’ t1+ ! 1Rout * RW '
_ Ll
Req Rw,outl Rout RW

ou ¢ représente le flux entre T, et T,

Table N.1: Bloc élémentaire pour le mur extérieur

A ces modeles est couplé un modele aéraulique pour modéliser 1’évolution de la
concentration de COy présenté en figure N.5. La mise en équation est détaillée dans

I’équation N.5.

dt

ul’ représenten ncentrations en 9 intérieur xtérieur
oul’;,, T, etl, représentent les concentrations en CO, de l'intérieur, de ’extérie

V—" = —(Qw + Qp)Tin + Qw)Tou + Qp)T + Seooim (N.5)

et du voisinage, Qw et Qp les flux d’air via respectivement la fenétre et la porte,

bod i
SCOOZ le volume de CO, expiré par une personne et n le nombre d’occupants dans le

bureau.
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Mur intérieur
R
()
Ry
1
. T, — T, =
Tn%‘ RD CD]Ln wm n i C_D ¢
® ] — Rn RD
Coy ke ATy, 1 [ T, T,
RW n2 T n Rw,nl dt B Cw,n Rw,n2 Rw,nl
' 1 1
R =T,
wl R ) el )
() RD Req 1 CW
irz’n = Twn Re = = Tn
B T R R v
1 1 1
Req Rw,nl Rn RW
Table N.2: Bloc élémentaire pour le mur intérieur
Zone
Bloc élémentaire Equation Bloc élémentaire Equation
T, ﬁ c
[ .
alr
Tin
[
R; S D dT_l(Tm T> dr 1 (Tu =
dt — Ci\R; R; a  C;\R; R
T Ri @ CDI- n dTin = bi
C, dt Cair mn

Table N.3: Bloc élémentaire pour une zone
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3.3 Méthodes de sélection et d'acceptabilité des modéles

Une fois les modeles développés, une méthode d’acceptabilité et de sélection ont
été développées afin de garantir une précision minimum et de définir des criteres de
comparaison entre les modeles. Le critere d’acceptabilité repose sur un seuil de pré-
cision minimum basé sur la SRMSE ("Root Mean Square Error” standardisée) ainsi
que sur un devoir de stabilité au long des saisons. En effet, il est essentiel de pouvoir
garantir les mémes performances en hiver et en été malgré le fait que le comporte-
ment du batiment soit substantiellement différent. Les modeles qui respecteront ces
critéres seront ensuite comparés en termes de précision en se basant a sur la somme
de la sSRMSE en été et en hiver.

Pour finir, le modele sera soumis a une analyse de sensibilité afin de s’assurer que
chaque parametre structurel a effectivement un impact sur la sortie et que la structure
ne peut donc pas étre simplifiée. En effet, il est important de minimiser au maximum
le nombre de parametres du modele afin de permettre le déploiement sur des cas
d’études plus complexes puisque les estimations paramétriques peuvent devenir tres
coliteuses en temps de calcul. De nombreuses méthodes d’estimation paramétrique
existent. Dans le domaine de la gestion énergétique des batiments, la méthode de
Morris est la plus couramment utilisée [68] du fait de son faible coiit en temps
de calcul. Malheureusement, cette méthode ne donne qu’une réponse qualitative
sur 'impact des parametres et non pas quantitative. C’est donc la méthode de
Sobol qui sera utilisée dans ces travaux [85]. Il s’agit d’'une méthode d’analyse de
sensibilité globale indépendante du modele basée sur une décomposition de variance.
Elle détermine la contribution de chaque parametre d’entrée et leurs interactions sur
la variance de sortie du modele. Puis, a partir de la décomposition de la variance
totale, les indices de Sobol sont calculés comme indiqué dans 1’équation N.6. Les

indices de Sobol sont normalisés et donc facilement interprétables.

Vige(Y)
Var(Y)’

VarlB(Y [m) Vi) V()

5 Var(Y) " Var(Y) 7Y Var(Y)’

Sijk = (N.6)
ou: V;(Y) = Var[[E(Y | z;)], Vi(Y) = Var[[E(Y | z;z;)] — Vi(Y) = V;(Y) et

ainsi de suite.
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4 Apprentissage de modeles a I"horizon 24 heures

Comme l'objectif ne nécessite pas de donner un sens physique aux parametres
du modele, il est logique d’implémenter dans un premier temps des modeles de type
"boite noire”. En effet, ces modeles présentent le grand avantage de ne se baser que
sur des données et d’étre tres peu cotiteux en temps de calcul. Leur application n’est
pas commune en énergétique du batiment mais comme expliqué précédemment ils
ont gagné en popularité ces dernieres années. A 1'opposé, les modeles semi-physiques
sont tres répandus dans la communauté de la physique du batiment. Toutefois,
ils nécessitent une étape d’apprentissage des parametres puisque ’on n’a pas acces
aux caractéristiques intrinseques du batiment. Cette étape est réalisée dans cette
these a partir d’informations capteurs présents dans les deux cas d’études considérés.
Différentes solutions existent pour estimer les parametres d’un modele. Certaines
demandent une expertise pour déterminer un point initial a partir duquel le gradient
de la fonction objectif est étudié pour se diriger vers le minimum. Ces optimisations
peuvent par construction aboutir a des optimum locaux. D’autres méthodes appelées
méta-heuristiques peuvent pallier a ce probleme mais sont significativement plus
coliteuses en temps de calcul. Ces différentes options seront étudiées dans cette
section apres avoir rappelé les pré-requis imposés par la mise en place de services

énergétiques.

4.1 Pré-requis pour les services énergétiques

L’objectif final est de permettre 'implémentation de services énergétiques a des-
tination de l'utilisateur final pour 'aider a comprendre I'impact de ses actions. Si
les données sont essentielles a 'apprentissage des modeles afin de pallier au manque
de données expertes, l'instrumentation se doit toutefois de rester minimale et peu
intrusive si I'on veut pouvoir déployer largement la solution. D’autre part, les mod-
eles doivent pouvoir se calibrer de maniere automatique sans nécessiter I'intervention
d’un expert a chaque déploiement. La plupart des services ont un horizon 24 heures
avec un pas de temps horaire. D’autre part, la quantité de données nécessaire a
I’apprentissage du modele doit rester dans le domaine de ’acceptable car on ne peut
pas attendre d’un utilisateur final qu’il installe le systeme s’il ne peut 'utiliser que
six mois plus tard. Enfin, le modele doit étre fiable. En effet, si d’un jour a I'autre, la
précision de la prédiction ne peut étre garantie, I'utilisateur perdra tres vite confiance

en ces services et cessera de les utiliser.
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4.2 Modeles ARX

Dans un premier temps, les modeles ARX ont été appliqués au cas d’étude mono-
zone. Les périodes d’entrainement et de validation sont définies puis les structures de
modeles identifiées. Pour le scénario hiver, le modele est appris sur le mois d’Octobre
et validé sur le mois de Novembre et pour le scénario d’été le modele est appris sur
le mois de Mai et validé sur le mois de Juin. Deux modeles ARX sont donc définis
: un pour la température et un pour la concentration en CO, comme défini dans les
équations N.7 et N.8.

—

T'zn(t) = bOTout(t) + bchor’ridor(t) + bQCD(t) + b3CW (t) + b4¢sola7‘(t) + b5P€lec(t) (N7)

—

F'm@) = bOFcorridor (t) + blgD <t> + bQCW (t) + b352‘oggn(t) (N8)

4.2.1 Résultats

Les résultats de ces 2 modeles appliqués au cas d’étude mono-zone peuvent étre
visualisés dans la figure N.6. On peut constater que si les résultats en termes de
température présentent une bonne précision, il n’en va pas de méme pour I’estimation
de la concentration en CO,. Les valeurs prédites sont non seulement tres éloignées
des mesures mais plus grave n’ont pas de sens physiquement puisque la concentration
extérieure en COy (c’est a dire la plus faible) est aux alentours de 400ppm. Pour
comprendre les causes de ce comportement, la méme procédure a été relancée cette
fois sur les mois d’Avril et Mai et sur le scénario d’hiver (¢f. figure N.7). On peut

cette fois constater que les prédictions en CO5 sont meilleures.

Par la suite, la fiabilité du modele tout au long de 'année a été évaluée et s’est
révélée problématique. Si les dynamiques générales se retrouvent bien et les erreurs
moyennes en valeur absolue ne sont pas trop élevées, le modele semble instable selon
les mois. Le cas de Juin particulierement pose probleme. Les performances a la fois

en termes de température et de CO4 sont fortement dégradées.

4.2.2 LecasdeJuin

Afin de comprendre les raisons des performances dégradées sur le mois de Juin,

les variables environnementales ont été observées. Cette analyse a révélé que le
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mois de Juin se différenciait de maniere significative par rapport au mois précédent
sur plusieurs aspects : le nombre d’ouvertures de fenétres a fortement augmenté de
méme que les températures intérieures et extérieures. L’évolution de la concentration
de CO, étant tres sensible aux ouvertures de fenétres, elles peuvent expliquer les

performances dégradées de la prédiction.

Pour pallier a ce probleme, une nouvelle structure de modele ARX a été mise en
place. L’origine du probléeme pouvant étre physiquement expliquée, I’hypothese est
posée qu’une insertion de signification physique dans la structure du modele pourrait
améliorer ses performances. Cette hypothese a déja été étudiée par Wu and Sun [92]
qui se sont inspirés des équations de la thermodynamique pour enrichir des modeles
ARMAX. Dans cette these, se sont les équations du modele RC a une capacité ainsi
que le modele aéraulique qui ont servi de base pour identifier les variables d’intérét
a prendre en compte dans la nouvelle structure. Les équations physiques ont donc
été décomposées pour mettre en évidence toutes les variables d’entrée intervenant
ainsi que leurs interactions afin de s’en servir pour déterminer les différents termes
des modeles ARX. Cela a donc mené a 1’élaboration des modeles ARX inspirés de la

physique détaillés dans les équations suivantes :

Fin = bOFcorridor + blCD + bQCW + bdn (Ng)

T, = boTout + by T'corridor + bay(p + b3Cw + byn (N.10)

Les résultats obtenus avec ces modeles inspirés de la physique peuvent étre visu-
alisés qualitativement sur la figure N.8 et quantitativement dans le tableau N.4 grace
au calcul de 'erreur absolue moyenne et de I’écart type. Cela illustre la capacité de
cette nouvelle structure a améliorer la prédiction du modele et donc la confiance que

I'utilisateur peut avoir dans I’estimation et les services énergétiques.

Modele ‘ Erreur absolue moyenne ‘ Ecart-type
ARX standard 57.2248 78.3289
ARX inspiré de la physique | 48.9711 66.0473

Table N.4: Comparaison de I'erreur absolue moyenne et de I'écart-type pour le modéle ARX
classique et celui inspiré de la physique pendant la phase de validation
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4.2.3 Limites

Les modeles ARX ont démontré de bonnes performances quant a la prédiction de
la température et oour une moindre mesure de la concentration en CO,. Toutefois,
plusieurs limites ont été observées. En effet, le cas du mois de Juin met en lumiere
la nécessité pour le modele de disposer d’un jeu de données d’apprentissage riche,
¢’est-a-dire incluant la plupart des phénomenes que le modele est amené a rencontrer
dans la phase de validation. La capacité du modele a étre généralisé a d’autres cas
d’études nécessite d’étre plus précisément étudiée, et particulierement sa capacité a

se passer de certaines données capteurs.

4.3 Méta-optimisation

L’approche choisie ici a été développée par Audrey Le Mounier dans sa theése [59]
dont l'objectif est d’explorer le domaine de recherche et de garantir la cohérence
physique des parametres. Elle se base sur un algorithme de descente de type SQP
(Sequential Quadratic Programming). Le principe de la méthode est résumé dans la
figure N.9.

4.3.1 Application aux différentes structures

Cette méthode nécessite d’étre initialisée. Des valeurs ont donc été définies pour
les différentes capacités, résistances et estimateurs. Disposant d’informations sur
la structure du batiment, certains parametres ont été initialisés avec des valeurs
initiales réalistes alors que d’autres ont été initialisés avec des valeurs du bon ordre
de grandeur. L’application au modele Référence a démontré des résultats intéressants
avec une SRMSE variant de 0.06 a 0.09 selon les saisons. Cela reste donc dans les

critéres d’acceptabilité.

Toutefois, lors de la modification de l'inertie et donc de la montée en complexité
du modele, des phénomenes de divergence ont été observés. On peut observer sur la
figure N.10, les profils de températures obtenus pour les différents modeles. On ne
peut que constater que les modeles a 2 capacités présentent des erreurs conséquentes

et ne retrouvent pas les dynamiques du modele.

Une étude plus poussée pour comprendre l'origine du probleme a été menée.

L’évolution de la valeur des différents parametres au cours des itérations a été ob-
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servée. Cela a révélé un probleme de convergence avec des parametres présentant

des itérations incessantes entre leurs bornes minimum et maximum.

4.3.2 Limites

Ce probleme de convergence est associé a une augmentation exponentielle du
temps de calcul avec un temps requis de 300 secondes pour le modele Référence et
un temps de 7240 secondes pour le modele a 2 capacités. Une telle augmentation
n’est pas acceptable car cela remet en question I'extension du modele a des cas

d’études plus complexes.

D’autre part, une étude de 'ergodicité du modele a été faite pour s’assurer que le
résultat de 'estimation paramétrique garantissait toujours les mémes performances.
Pour cela, 406 simulations du modele Référence ont été lancées a partir de points
initiaux différents et l'erreur a été récupérée. La figure N.11 illustre 'impossibilité
de garantir une quelconque performance de l'estimation finale avec cette méthode
puisque 'erreur obtenue varie fortement et au-dela des valeurs acceptables puisque

pres de 25% des simulations ont une erreur supérieure a 2°C.

4.4 Optimisation génétique

Pour remédier aux problémes de convergence et de sensibilité au point initial, une
nouvelle méthode a été développée, basée sur un algorithme génétique. De nombreux
algorithmes de ce type existent mais le plus courant et performant est ’algorithme
NSGA-II (Non Dominated Sorting Genetic Algorithm), algorithme élitiste introduit
par Deb et al. [25] dans les années 2000. Dans le domaine de 'énergétique du

batiment, il a été utilisé notamment par Mozer [70] et Ghisi et Tinker [41].

4.4.1 Principe et configuration

Le principe de base de cet algorithme repose sur quatre grandes étapes : généra-
tion aléatoire d’une population initiale, sélection des individus, opérations de muta-
tion et croisement entre individus et évaluation des individus. L’intérét de I'algorithme
NSGA-II réside dans le fait que les individus sont triés en fonction de la distance
de "crowding” afin de préserver une diversité lors de la création de la génération

suivante.
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Contrairement a un algorithme de descente comme celui développé précédem-
ment, l'algorithme ne s’arréte pas lorsqu’il a atteint son critere de convergence. Le
point d’arrét est ici défini par 'expérimentateur qui doit décider du nombre de
générations. Des tests ont donc été menés pour étudier I'évolution de 'erreur au
cours des générations avec différentes tailles de population. Finalement, pour les
modeles mono-zone l'algorithme sera configuré avec 100 générations de 100 indi-

vidus.

4.4.2 Ergodicité

Au vu des résultats obtenus précédemment, une analyse de I'ergodicité de I’estimation
paramétrique est menée d’emblée. Les résultats peuvent étre visualisés sur la figure

N.12 et confirme la constance de I’estimation pour 50 simulations.

4.4.3 Application aux différentes structures

Une fois la phase de configuration effectuée, 'algorithme NSGA-II a été appliqué
aux différentes structures de modeles semi-physiques. Pour le scénario hiver, le
modele est appris sur le mois d’Octobre et validé sur le mois de Novembre et pour
le scénario d’été le modele est appris sur le mois de Mai et validé sur le mois de
Juin. Les résultats en termes de SRMSE pour les deux scénarios sont représentés sur
la figure N.13. A partir de la on peut appliquer les méthodes d’acceptabilité et de
sélection détaillées précédemment. On peut donc constater que le Model2CairTout,
le modele Référence et le ModelOC ne respectent pas le seuil de précision fixé a 0.1.
Le Model3CTout lui ne respecte pas la condition de stabilité entre les saisons. Les
autres modeles respectent les criteres de validité et peuvent donc passer a la phase

de sélection.

Pour cela, les valeurs de sSRMSE en validation des scénarios hiver et été sont
sommeées et le modele sélectionné correspond a celui qui affiche la meilleure précision
: le Model4C.

4.4.4 Analyse de sensibilité

Une fois la structure de modele la plus adéquate identifiée, une analyse de sen-
sibilité est lancée pour s’assurer que chacun des parametres structurels a un réel
impact sur la sortie. Comme expliqué précédemment, c¢’est 'analyse de Sobol qui est

choisie. La difficulté ici est que I'on cherche a identifier I'impact des parametres sur
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la sortie en partant de I’hypothese que la structure a été bien identifiée et présente
de bonnes performances. Il s’agit donc de bien définir les intervalles de variation
des parametres structurels sur lesquels va étre lancée 'analyse de sensibilité. On
lance donc dans un premier temps une analyse de Sobol avec des bornes tres larges
pour un grand nombre d’échantillons. Cela génere ainsi 240 000 simulations pour
lesquelles on récupere a la fois le résidu calculé et les valeurs prises par les différents
parametres et on observe leur évolution (cf. figure N.14). Cela permet d’identifier
que le parametre R; a une forte influence sur le résidu et donc de restreindre ses
bornes. L’analyse de sensibilité de Sobol peut ensuite étre lancée avec R; compris
entre [0.05,0.1].

L’analyse de Sobol relancée sur ces intervalles ne renvoie malheureusement pas
de résultat utilisable puisque seuls les parametres R;, C; et R,, sont détectés comme
impactant, ce qui n’a pas de sens au vu du contexte. En conséquence, la structure

du modele n’est pas simplifiée.

4.4.5 Observabilité du modeéle

La derniere validation mise en place a consisté a s’assurer de 1’observabilité du
modele, élément essentiel a la gestion énergétique. En effet, dans les simulations
précédentes, 'objectif était d’identifier le modele et donc le modele était lancé sur
un mois. Dans ce contexte, I'initialisation n’a alors que peu d’impact sur les perfor-

mances du modele.

Toutefois, lorsqu’il s’agit de fournir du conseil et de I'explication a l'utilisateur,
le probleme est inversé et il s’agit alors d’optimiser des actions selon les objectifs de
I'utilisateur. Le nombre de variables a optimiser augmente donc fortement puisqu’il
faut considérer la variation de la valeur de ces actions pour chaque pas de temps. De
plus, cela n’aurait pas de sens de conseiller 'utilisateur sur les actions a mettre en
oeuvre la semaine suivante. Or, sur une simulation a horizon 24 heures, I'initialisation

prend alors toute son importance.

Dans le cas du Model4C, deux états sur quatre seulement sont observables. Il a
donc fallu quantifier 'impact des deux états non observables pour évaluer si oui ou
non il s’agissait d’un frein. Pour cela, 'observateur d’état a été exprimé dans une
nouvelle base choisie grace a une matrice de passage orthogonale et les composantes

de cet observateur d’état ont été tracées. Comme on peut le voir sur la figure N.15,
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si les deux composantes x3 et x4 sont plus faibles que les deux premieres, on ne peut

pas pour autant les considérer comme négligeables.

Pour compléter cette analyse, I'observateur a donc été vérifié en pratique sur une
simulation de 24h le ler Novembre 2017. La température initiale a été volontairement
mal initialisée et on a fixé le recalage via I'observateur a 6h du matin. La figure
N.16 montre que I'observateur est effectivement capable de recaler avec précision la

température.

4.5 Conclusion

Dans ce chapitre, différentes topologies de modeles et différentes structures ont
été implémentées. Si les modeles boite noire de type ARX ont montré de bonnes
précisions, ils sont toutefois dans l'incapacité de garantir une performance comme
I’a démontré leur application au mois de juin. Par la suite, ce sont donc des mod-
eles boite grise de type analogie électrique qui ont été implémentés. Ces modeles
nécessitent une phase d’apprentissage plus complexe que ne le sont les régressions
linéaires notamment a cause du cofit en temps de calcul. Dans un premier temps,
c’est donc une estimation paramétrique basée sur un algorithme de descente qui
a été implémentée pour son faible cotit en appel de fonction objectif. Toutefois,
cette méthode s’est révélée non robuste et trop sensible au point d’initialisation des
parametres. Pour finir, il a été fait appel a un algorithme génétique. Il a été appliqué
aux différentes structures de complexité croissante présentées ci-dessus. Les méth-
odes d’acceptabilité et de sélection ont été appliquées afin de garantir une précision
minimum ainsi qu’une stabilité au long des saisons. A partir de la, la structure de
modele sélectionnée a été le ModeldC; structure la plus complexe. Pour finir, une
analyse de sensibilité a été menée afin d’évaluer si certains groupes ou parametres

pouvaient étre simplifiés mais cela n’a pas amené a simplifier la structure.
5 Deladescription dubatimentauxservices énergétiques~

5.1 Objectifs

L’objectif de cette section est d’étudier la capacité de la structure sélectionnée a

étre déployée a plus grande échelle sur un cas d’étude plus complexe. Le cas d’étude
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multi-zones implique une augmentation de la complexité du modele, a la fois de la

mise en équation et de 'estimation paramétrique.

5.2 Cas d'études multi-zones

Le cas d’étude considéré dans cette section est un appartement comportant 3
chambres et habité par un couple avec bébé. L’instrumentation est ici bien plus
sommaire que dans le cas d’étude précédent et se compose de capteurs grands publics
(stations Netatmo). Chaque station fournit la mesure de la température d’air in-
térieur, de I'humidité et de la concentration en CO,. La station présente dans le
séjour fournit également une mesure du niveau sonore. Le tout est complété par des
prévisions météorologiques. Le plan architectural du logement ainsi que le position-

nement des capteurs peut étre visualisé sur la figure N.17.

Du fait du changement de fonction du cas d’études, certains estimateurs néces-
sitent d’étre adaptés. En effet, si dans un bureau la consommation électrique des
ordinateurs est un bon indicateur de l'occupation, ce n’est plus vrai dans le cas
d’un logement. L’occupation est donc estimée a partir d’'un seuil de CO4 dans les

chambres et d’un seuil de niveau sonore dans le salon.

5.3 Modélisation des ouvertures de fenétres

Une information importante jusqu’ici disponible et qu’on ne retrouve pas dans
ce cas d’études est 'ouverture des portes et fenétres. En effet, 'ouverture de portes
et fenétres est une action qui impacte fortement a la fois la concentration en CO, et

la température intérieure en fonction des conditions extérieures.

Deux solutions ont été mises en place, la premiere a consisté a simplement ajouter
les parametres de taux d’ouverture dans les parametres a estimer. Les performances
du modele obtenue sont restées constantes mais cela enléve toute possibilité de pou-
voir développer des services énergétiques conseillant sur les actions a avoir sur les
portes et fenétres. Cela n’est donc pas une solution trés propice au déploiement de
services pertinents pour l'utilisateur final. Estimer des profils d’ouverture de portes
et de fenétres dépendant du temps n’était pas non plus envisageable d’un point de
vue de I'estimation paramétrique puisque cela impliquerait d’augmenter de maniere
considérable le nombre de parametres a estimer. Afin de trouver un entre-deux, un

modele intuitif a été développé comme présenté dans les équations N.11 et N.12. Il
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s’agit d'un modele tres simplifié mais limitant le nombre de parameétres a estimer
tout en permettant de pouvoir influer sur les ouvertures de portes et fenétres et ainsi

pouvoir fournir du conseil.

_ explap0+bp * (Tin, — T,)
1+ exp(ap0+ bp x (T;, — T,))

D (N.11)

~explaw0 4 by * (Tin, — Towr)
1+ exp(aw0 + by * (T — Tour))

Cw (N.12)

5.4 Génération automatique du modeéle

La structure de modele RC identifiée est alors confrontée aux contraintes d’un cas
d’études multi-zones. Le premier défi consiste a identifier les équations correspondant
au modele global de I'appartement. En vue d'un déploiement a plus grande échelle
et parce que la mise en équation manuelle est tres accidentogene pour des modeles
aussi complexes, une procédure de mise en équation automatique est mise en place.

Elle s’organise en plusieurs étapes :

Récupérer les informations nécessaires a la configuration des utilisateurs finaux
Nombre et orientation des pieces
Connexions entre pieces

Surface et orientation de chaque piece

Stockage de I'information dans un fichier xml basé sur I'ontologie d’un apparte-

ment

Génération des équations

Estimation paramétrique

Cette derniere étape a tout d’abord généré des problématiques des temps de
calcul puisqu’il a été nécessaire de passer par du calcul symbolique. Toutefois, une
fois ces difficultés contournées il a été possible de définir pour chaque connexion et
piece identifiées les équations correspondantes et de générer automatiquement les
équations du systeme d’état représentant la mise en équation du systeme global. Le

modele RC de 'appartement complet est représenté dans la figure N.18.
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5.5 Implémentation

Le passage a un cas d’étude multi-zones a généré une forte augmentation de
la complexité du probleme d’estimation paramétrique du fait de 'augmentation du
nombre de parametres a estimer. De ce fait, il est nécessaire d’adapter la con-
figuration de l'algorithme génétique en augmentant le nombre de générations et
d’individus. L’estimation a donc été lancée pour 500 générations de 300 individus.
Les résultats présentés par les figures N.19 et N.20 révelent toutefois que cela ne
suffit pas pour atteindre la convergence. En effet, si les estimations en terme de
température semblent bonnes méme si moins précises que pour le bureau, les résul-
tats obtenus pour la concentration en CO,y sont eux loin de représenter 1’évolution

réelle.

Afin de savoir si ces résultats sont dus a un probleme de convergence, d’autres
simulations ont été lancées. Le plus haut critere d’arrét a été fixé a 1200 générations
de 800 individus et 1’évolution de I'erreur tout au long des générations a été tracée
(¢f. figure 1V.20). On observe bien une diminution de 'erreur tout au long des
générations mais a partir de la 400ieme génération, l'erreur semble atteindre un

plateau. Il ne s’agit donc pas d’un probléme de convergence.

5.6 Application aux services énergétiques

Dans cette section est présentée une partie des travaux de these d’Amr Azhouri
Alyafi [5], prenant part également au projet de recherche INVOLVED. Son objectif
se situe en aval de mes travaux et consiste a générer de I'explication pour I'utilisateur
final. Il s’intéresse donc a générer une explication contextualisée a 1'utilisateur final
pour lui expliquer I'impact de ses actions sur le batiment et plus particulierement
sur son confort et sa consommation énergétique. Ces travaux sont appliqués au
cas d’études mono-zone présenté dans la section 2. L’objectif est de retrouver les
relations de cause a effets ou les causes sont soit les actions de 'utilisateur soit
les variables environnementales et les effets sont catégorisés entre les effets ressentis
directement par l'utilisateur (inconfort thermique ou di a la qualité de air) et les

effets intermédiaires. Tout cela est résumé dans la figure N.22.

Pour cela, il se sert dans un premier temps de la structure de modele sélectionnée
pour déterminer le jeu d’actions optimales a réaliser afin d’atteindre les objectifs

définis par 'utilisateur.
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Par la suite, il s’attache a définir la distance entre deux scénarios: le scénario
passé et le scénario optimal pour expliquer un comportement passé par exemple et le
poids des différentes causes. Cela lui permet alors de construire le tableau représenté
figure N.23.

Toutefois, ce tableau reste encore difficilement appréhendable par I'utilisateur
final. La derniére étape consiste alors a formaliser ce tableau sous forme de phrases
le mieux construite possible et le tout de maniere automatique. Un premier modele
a donc été développé dans ARTANE-HELOISE [13] pour une étude de faisabilité :
le modele GRA-FRA ("GRAphe vers texte en FRAngais”). Un exemple de résultat

obtenu peut étre observé figure N.24.

6 Conclusions et perspectives

Ce travail de these a consisté en 'implémentation d’une nouvelle méthodologie
pour sélectionner une structure de modele thermique et aéraulique adéquate pour les
services énergétiques. L’objectif a été de déterminer une structure de modele capable
de prédire I’évolution de la concentration en COs et de la température avec un horizon
24 heures au pas de temps horaire. Ces spécifications induisent différentes contraintes
concernant la structure de modele et sa configuration. La premiere étape a consisté
en un état de I'art dans différents domaines. L’étude de la littérature concernant la
sociologie de I’énergie a permis d’identifier les services pertinents. Puis, une étude
plus classique des modeles utilisés pour la gestion énergétique des batiments a été
faite pour identifier les types de modeles pertinents et élaborer la gamme de modeles

testés.

Ainsi, des modeles de type boite noire comme les modeles ARX ont été dévelop-
pés et implémentés. Si leurs performances en termes de précision étaient globalement
bonnes, il est toutefois apparu qu’il n’était pas possible de garantir une précision tout
au long de 'année. FEn effet, on a pu voir avec une application sur le mois de Juin que
le modele n’arrivait pas a délivrer une bonne performance. Par la suite, ce sont donc
des modeles de type RC (analogie électrique) qui ont été choisis. Ces modeles présen-
tant de plus grands défis concernant I’estimation paramétrique, deux méthodes ont
été comparées dans un objectif de garder des temps d’apprentissage raisonnables.
C’est 'algorithme génétique qui I’a finalement remporté car ’algorithme de descente
auparavant testé s’est avéré trop sensible aux conditions initiales et donc non er-

godique.
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Pour finir, la capacité du modele a s’adapter a d’autres conditions a été ex-
plorée et plus particulierement le changement d’échelle. Pour cela, un nouveau cas
d’études a été utilisé : un appartement de quatre pieces. Afin de s’affranchir des
erreurs de mise en équation relatives a la montée en complexité du modele, un mé-
canisme d’automatisation a été développé. De l'entrée des informations accessibles
a l'utilisateur concernant son logement (surface et nombres d’ouvertures ou plan
architectural), le systéme est ensuite capable de générer automatiquement les équa-
tions correspondantes et de lancer I'estimation paramétrique. L’application a un cas
d’études plus large a toutefois soulevé des limites notamment sur la prédiction de
I’évolution de la concentration en CO,. Cela est probablement di également a un

manque de capteurs.

Ce travail de recherche appelle des extensions. Concernant la faible précision
des résultats obtenus pour 'estimation de la concentration en CO, du cas d’études
multi-zones, une premiere hypothese est d’en imputer la responsabilité au manque
de capteurs. Il serait donc intéressant d’appliquer le modele a un autre cas d’études
multi-zones mais disposant de plus de capteurs et particulierement de contacts de

portes et de fenétres. Cela permettrait alors de valider ou non cette hypothese.

Dans la méme lignée, il est évident qu’il existe un lien entre le nombre de capteurs
et la précision du modele. En effet, plus on a de mesures moins il est nécessaire de
recourir a des estimateurs. Par exemple, estimer avec précision ou méme mesurer des
informations telles que la puissance effective de chauffage ou I'occupation permettrait
alors d’augmenter de maniere significative la précision du modele. Ainsi, explorer
I’évolution de la précision du modele en fonction de l'instrumentation disponible

apporterait une information précieuse.

Des méthodes de clustering pourraient étre utilisées pour classer les jours en dif-
férents clusters de jours similaires. En effet, un défi de ’estimation paramétrique est
la quantité de donnée nécessaire a I’apprentissage. Un processus de clustering pour-
rait renvoyer une information qualifiant la similarité du jour considéré par rapport
aux jours précédents. Sile systeme a déja rencontré des jours similaires, il serait alors
possible d’estimer le modele sur une période plus courte. Dans cette these, il a été
montré qu'un modele estimé en hiver ou en été était capable de prédire 1’évolution
de la température tout au long de 'année. Toutefois, ces méthodes de clustering
pourraient améliorés la prédiction en générant plusieurs jeux de parametres selon les

clusters.
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La méthodologie de validation proposée s’est concentrée sur ’erreur d’estimation
entre la température et le CO, mais les services énergétiques pour l'utilisateur
utilisent parfois I'estimation des besoins en énergie. Ainsi, la validation au niveau
du service devrait étre menée: peut-étre qu’avec des estimations non précises, les
services pourraient mener a de bons résultats. Un premier exemple de service én-
ergétique a été présentée via le travail de Amr Alzhouri Alyafi mais plusieurs restent
a développer. Les pré-requis des différents services énergétiques variant fortement, il
serait pertinent de s’assurer que la structure de modele est robuste a I’ensemble des

services envisagés.

Un autre défi de la gestion énergétique est la capacité a détecter des modifications
dans le comportement thermique du batiment. En effet, les bureaux ou logements
évoluent au long du temps et certains systémes peuvent étre ajoutés ou remplacés.
Dans ce cas la, le modele appris n’est alors plus adapté a la situation. Déployer une
détection automatique de tels phénomenes et en identifier les causes pourrait alors

améliorer la robustesse du modele et garantir sa performance en toutes circonstances.
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Figure N.24: Exemple de phrase obtenue en sortie de Ariane-Heloise GRA-FRA GM
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Abstract

In the current context of ecological transition, buildings represent a major pool of
energy savings since they account for more than 40% of the final energy consumption.
Involving end-users in their energy consumption could make a difference, but it
requires to properly model the building to be able to forecast the temperature and

COg evolutions with a sufficient accuracy and a low computational time.

In this thesis, different kinds of models are implemented as well as different
estimation methods and tested on two study cases: a mono-zone office and a multi-
zone apartment. A selection methodology is set up in order to identify and validate
the best model structure for the energy services. Finally, an automatic procedure to
generate the model and services from only the informations an end-user can provide

is developed for a multi-zone study case.

Résumé

Dans le contexte de transition énergétique actuel, les batiments représentent un
enjeu majeur puisqu’en France comme a I'étranger ils sont responsables de pres
de 40% de la consommation d’énergie finale. Impliquer l'utilisateur final dans sa
consommation énergétique peut faire la différence mais cela nécessite de modéliser
le batiment de maniere adéquate afin de prédire I’évolution de la température et du

COy avec une précision suffisante et un temps de calcul faible.

Dans cette these, différents modeles et méthodes d’estimation paramétriques sont
implémentées et testées sur deux cas d’études : un bureau et un appartement. Une
méthode de sélection est mise en place pour identifier et valider la meilleure structure
de modele pour les services énergétiques. Enfin, est développée pour un cas d’étude
multi-zones une procédure automatique pour générer les modeles et les services a

partir uniquement des informations fournie par I'utilisateur final.
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