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Introduction
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1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main Contributions and Organization of the Manuscript . 2

1.1 Context

The heart is a very complex and robust organ in the human body, whose func-
tion is to create the necessary blood flow through the cardiovascular system. Its
malfunction (or cardiac failure) is often fatal and is the leading cause of death in
the world (more than 32% of all deaths according to the Global Burden of Disease
[Feigin 2016]).

To better investigate and help treat cardiac diseases, personalised cardiac mod-
els have been developed and investigated for the past 30 years, with the goal of
combining anatomical knowledge with multi-modal clinical data to build the most
comprehensive virtual model of a patient’s heart. Possible applications of these
models in patient care are the prediction of changes and outcomes under therapy,
better characterization of pathologies, for example by comparing with other patients
in a database of personalised models.

These models are made of various components such as a patient-specific mesh ge-

ometry for the 3D models, an electromechanical model which computes the electrical
activity and biomechanical forces in the myocardium, and possibly some initial and
boundary conditions. The interactions between these components lead to the sim-
ulation of the cardiac motion, and possibly other aspects of cardiac dynamics such
as ventricular pressure and volumes and valve dynamics. Each of these components
have many parameters, which all have an impact on the simulation.

To build a good personalised model of a patient’s heart, relevant values of these
parameters must then be estimated so that the personalised simulation is the most
realistic possible. However, the consistent estimation and analysis of these parame-
ters is still a scientific challenge, both due to the complexity of the models and the
nature of clinical data:

• Clinical data can be sparse (a few, global measurements) or noisy (due to



2 Chapter 1. Introduction

imaging resolution) which makes it impossible to estimate exactly all the model
parameters.

• In large databases of patients data across different hospitals, the data is usually
heterogeneous (the same measurements or images are not available for every
case), which makes it hard to compare personalised parameters.

• 3D cardiac model simulations can be quite computationally expensive, so it
limits the possibility to use numerically intensive methods in practical appli-
cations.

1.2 Objectives

This thesis focuses on the consistent and practical estimation of electromechanical
parameters in personalised 3D models and its application for clinical data analysis.
The main questions we investigate are:

1. How to quantify uncertainty in personalised simulations due to uncertainty in
biomechanical parameters ?

2. Can we jointly use models at multiple scales to speed up some applications,
in particular the computationally expensive process of 3D electromechanical
model personalisation ?

3. How can we use personalised parameters for the analysis of short term and
long-term longitudinal evolution of the cardiac function ?

4. How to perform consistent parameter estimations despite the sparse and het-
erogeneous nature of clinical data ?

1.3 Main Contributions and Organization of the

Manuscript

The main contributions of this work are the following:

• An innovative 0D/3D multiscale approach to 3D cardiac model personalisa-
tion, made of a multifidelity coupling to approximate outputs of the 3D model
from a reduced "0D" model, and a fast and computationally efficient multifi-

delity personalisation algorithm called Multifidelity-CMA derived from this
coupling.

• The creation of more than 140 personalised 3D simulations in the con-
text of two longitudinal studies where personalised parameters are used first
to model short-term transient effects in digestion, then to analyze long-term
evolution of the cardiac function in cardiomyopathies.
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• A method called Iteratively Updated Priors to automatically select ob-
servable directions in the parameter space from a set of measurements, and
simultaneously compute population-based prior probabilities in these directions
to constrain parameter estimation in cases where measurements are missing.

After an introductory chapter (Chapter 3), the manuscript is organized along
the published and submitted papers during this PhD:

Chapter 3 presents the scientific context of this PhD: we present the structure
and dynamics of the heart, and we review the state-of the heart in cardiac modeling
and personalisation. We then present the MD-Paedigree project in the context of
which this Ph.D. was performed, and the dataset on which the work is based.

Based on [Molléro 2015], Chapter 4 introduces 3D cardiac electromechanical
model personalisation and the impact of uncertainty in biomechanical parameters on
personalised simulations. First, the uncertainty in the fibre architecture is estimated
by sampling 7 representative fibre sets along the 3 principal directions of fibre vari-
ations in an atlas of 10 hearts whose fibres were acquired from DTI. These fibre sets
are mapped onto new cases and used to compute the resulting uncertainty in person-
alised simulations through a generic personalisation process. We show differences in

depolarization times across the myocardium between personalised simulations with
the different fibre sets (up to 10ms), and variability of the personalised parame-

ters (up to 50% for the aortic peripheral resistance). This study shows that given
personalised simulations which fit the same measurements, both the personalised

parameter values and other outputs of the simulations can be very different depend-
ing on the values of other parameters. This first means that personalised parameter
values cannot be interpreted without taking into considerations the values of other
parameters and their uncertainty. In addition, we found that the personalisation
algorithm used in this study (the Unscented Transform) required a careful manual
initialisation, possibly different for each case and set of parameters. Overall, this
study outlines the need for a more consistent approach and more efficient tools to
parameter estimation in a possibly large database of cases.

Motivated by the need for an efficient personalisation algorithm for 3D simu-
lations, we present in Chapter 5 a 0D / 3D multifidelity approach, published in
[Molléro 2017b], which tackles the burden associated with the computational com-
plexity 3D simulations. We introduce an original multifidelity coupling between a
3D cardiac model and a simplified "0D" version of this model, which enables to
get reliable (and extremely fast) approximations of the global behavior of the 3D
model using 0D simulations. Then we use this multifidelity approximation to speed-
up an efficient optimisation algorithm called CMA-ES, leading to a fast and com-
putationally efficient multifidelity personalisation method for the 3D model called
Multifidelity-CMA. We compare our method to classic optimisation methods in
terms of gains in CPU time and Optimization Time, and show that the method is
particularly fast and computationally efficient. We finally use this method to build
121 3D personalised simulations in less than 2.5 days, witout manual supervision,
fine-tuning of the algorithm or precomputation.
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In Chapter 6 and 7 we build and use more than 140 personalised 3D sim-
ulations in two studies on the longtitudinal analysis and modeling of the cardiac
function:

• In Chapter 6 (published in [Molléro 2017c]), we build a data-driven model
of cardiovascular parameter evolution during digestion, from a clinical study
involving more than 80 patients. We present a method for longitudinal param-
eter estimation in 3D cardiac models, which we apply to 21 patient-specific
heart geometries at two instants of the study, for 6 parameters (two fixed and
four time-varying parameters). From these personalised hearts, we then ex-
tract and validate a law which links changes of cardiac output and heart rate
under constant arterial pressure to the evolution of these parameters, enabling
fast simulation of hearts during digestion for future patients.

• In Chapter 7 (published in [Molléro 2017a]) we tackle for the first time in
this thesis the problem of non-uniqueness in parameter estimation when some
parameter directions cannot be estimated (they are not observable), which is
an obstacle to get relevant personalised parameters for clinical applications.
We introduce the estimation of electromechanical parameters as a Maximum A

Posteriori (MAP) estimation with prior probabilities on the estimated values,
which we apply to 84 different cases. We show that the use of priors reduces
considerably the variance of the estimated parameters, in particular because
it promotes specific values during estimation when parameter values are not
unique. This enables a better conditioning of the parameters for statistical
analysis of the cardiac function, which we illustrate on the longitudinal analysis
of paediatric cardiomyopathies, where the personalised parameters suggest an
improvement of the cardiac function under therapy.

Finally, Chapter 8 addresses the question of which parameters can be estimated

given a set of measures (the problem of parameter observability). We present an
algorithm called Iteratively Updated Priors, which performs successive person-
alisations of the database, in which the prior probability of a personalisation is
set from the distribution of personalised parameters in the previous iteration. We
show that the algorithm performs the optimisation of a cost function over the whole
database with a sparse regulariser on the number of dimensions of the personalised

parameter set. At convergence, estimated parameters of the population lie on a
linear subspace of reduced and possibly sufficient dimension, in the sense that for
each case of the database there is a unique parameter value for which the simu-
lation fits the measurements. Since the resulting population-based priors represent
the population statistics in this subspace, they can also be used to perform consis-
tent parameter estimation for cases where measurements are possibly different or
missing, which we illustrate with the 0D model on a database of 811 cases. Finally
we argue that through the selection of subspaces of reduced and possibly sufficient
dimensions, the algorithm can help find a space of maximal dimension in which
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parameters are completely observable from a dataset, possibly providing a complete
framework to tackle the problem of observability in personalisation.

Chapter 9 summarizes the main contributions of the thesis and presents the
perspectives of this work.
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2.1 Contexte

Le cœur est un organe complexe et robuste du corps humain, dont la fonction est
de créer et maintenir le flux sanguin à travers le système cardiovasculaire. Son
dysfonctionnement (ou insuffisance cardiaque) est souvent mortel, et constitue la
première cause de mortalité dans le monde (plus de 32% de tous les décès selon le
Global Burden of Disease [Feigin 2016]).

Pour mieux comprendre et traiter les maladies cardiaques, des modèles car-

diaques personnalisés ont été développés depuis 30 ans. L’objectif est de combiner
les connaissances anatomiques avec des données cliniques multimodales, pour con-
struire le modèle virtuel le plus complet du cœur d’un patient. Les applications
cliniques possibles de ces modèles sont la prédiction des changements sous l’effet du
traitement, et une meilleure caractérisation des pathologies en comparant à d’autres
patients dans une base de données de modèles personnalisés.

Ces modèles sont constitués de différents composants tels qu’un maillage per-

sonalisé de la géométrie du coeur du patient pour les modèles 3D, un modèle élec-

tromécanique qui calcule l’activité électrique et les forces biomécaniques dans le
myocarde, et éventuellement certaines conditions aux limites. Les interactions entre
ces composants conduisent à la simulation du mouvement cardiaque, et éventuelle-
ment Ã d’autres aspects de la dynamique cardiaque tels que la pression ventriculaire
et la dynamique des valves. Chacun de ces composants a de nombreux paramètres
qui ont tous un impact sur la simulation.

Pour construire un bon modèle personnalisé du cœur d’un patient, des valeurs
pertinentes de ces paramètres doivent être estimées, afin que la simulation personnal-
isée soit la plus réaliste possible. Cependant, l’estimation et l’analyse cohérentes de
ces paramètres reste à ce jour un défi scientifique, à la fois en raison de la complexité
des modèles et de la nature des données cliniques:
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• Les données cliniques peuvent être assez limitées (quelques mesures globales
de volumes ou de pression) ou comporter du bruit (dans le cas de l’imagerie),
ce qui rend impossible l’estimation exacte de tous les paramètres du modèle.

• Dans les grandes bases de données de patients, les données sont générale-
ment hétérogènes (les mêmes mesures ou images ne sont pas disponibles pour
chaque cas), ce qui rend difficile la comparaison entre patients des paramètres
personnalisés.

• Les simulations de modèles cardiaques 3D peuvent être relativement coûteuses
en temps de calcul, ce qui limite la possibilité d’utiliser certaines méthodes
numériques complexes pour des applications pratiques.

2.2 Objectifs

Cette thèse se concentre sur l’estimation pratique et cohérente des paramètres élec-
tromécaniques dans les modèles 3D personnalisés, et les applications à l’analyse de
données cliniques. Les principales questions que nous étudions sont:

1. Comment quantifier l’incertitude dans les simulations personnalisées due à
l’incertitude des paramètres biomécaniques ?

2. Est-il possible d’utiliser conjointement des modèles à plusieurs échelles pour
accélérer certaines applications, en particulier l’estimation de paramètres pour
la personnalisation des modèles 3D ?

3. Comment utiliser des paramètres personnalisés pour l’analyse de la fonction
cardiaque et son évolution longitudinale à court et à long terme ?

4. Comment effectuer des estimations de paramètres cohérentes malgré des don-
nées cliniques hétérogènes ou limitées ?

2.3 Principales contributions et organisation de la thèse

Les principales contributions de ce travail sont les suivantes:

• Une approche multi-échelle 0D / 3D innovante pour la personnalisation du
modèle cardiaque 3D, faite d’un couplage multi-échelle pour approcher les
sorties du modèle 3D à partir d’un modèle réduit "0D", et d’un algorithme
de personnalisation multi-échelle rapide, flexible et efficace en temps de calcul
appelé Multifidelity-CMA.

• La création de plus de 140 simulations 3D personnalisées dans le cadre de
deux études longitudinales où les paramètres personnalisés servent à modéliser
les effets transitoires à court terme de la digestion, puis à analyser l’évolution
à long terme de la fonction cardiaque dans des cardiomyopathies.
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• Une méthode appelée Iteratively Updated Priors pour sélectionner au-
tomatiquement des directions observables dans l’espace des paramètres à par-
tir d’un ensemble de mesures, et calculer des probabilités a priori empiriques
(population-based priors) dans ces directions, pour contraindre l’estimation des
paramètres dans les cas où des paramètres du modèles ne sont pas observables.

Après un chapitre introductif (Chapitre 3), le manuscrit est organisé autour
des articles publiés et soumis au cours de ce doctorat:

Le Chapitre 3 présente le contexte scientifique du doctorat: nous présentons
la structure et la dynamique du coeur, et passons en revue l’état de l’art de la
modélisation cardiaque et de la personnalisation. Nous présentons ensuite le projet
MD-Paedigree dans le contexte duquel ce doctorat a été effectuée, ainsi que les
données considérées au cours de ce travail.

Basé sur [Molléro 2015], le Chapitre 4 introduit la personnalisation 3D du
modèle électromécanique cardiaque et l’impact de l’incertitude dans les paramètres

biomécaniques sur des simulations personnalisées. L’incertitude dans l’architecture
des fibres est d’abord estimée en échantillonnant 7 ensembles représentatifs de fi-

bres le long des 3 directions principales des variations de fibres, dans un atlas de 10
coeurs dont les fibres ont été acquises par DTI. Ces ensembles de fibres sont trans-
férées sur de nouveaux cas et utilisés pour calculer l’incertitude qui en résulte dans
les simulations personnalisées, via un processus de personnalisation simple. Nous
montrons les différences dans les temps de dépolarisation à travers le myocarde en-
tre les simulations personnalisées avec les différents ensembles de fibres (jusqu’à
10ms), et la variabilité des paramètres personnalisés (jusqu’à 50% de sa valeur pour
la résistance aortique périphérique). Cette étude montre qu’étant donné des sim-

ulations personnalisées qui reproduisent les mêmes mesures, à la fois les valeurs

des paramètres personnalisés et d’autres aspects de ces simulations peuvent être
très différents en fonction des valeurs des autres paramètres (non personnalisés).
Cela signifie en particulier que les valeurs des paramètres personnalisés ne peuvent
être interprétées sans tenir compte des valeurs des autres paramètres et de leur in-
certitude. De plus, nous avons pu constater dans cette étude que l’algorithme de
personnalisation utilisé dans cette étude (Unscented Transform) nécessite une ini-
tialisation manuelle spécifique, possiblement différente pour chaque cas et ensemble
de paramètres. Dans l’ensemble, cette étude souligne la nécessité d’une approche
plus robuste et d’outils plus efficaces pour l’estimation des paramètres dans une base
de données potentiellement plus large.

Motivé par la nécessité d’un algorithme de personnalisation efficace pour le mod-
èle 3D, nous présentons dans le Chapitre 5 une approche multi-échelle 0D / 3D,
publiée dans [Molléro 2017b], qui aborde le probleme de la complexité en temps de
calcul des simulations 3D. Nous introduisons un couplage multi-échelle original entre
un modèle cardiaque 3D et une version simplifiée "0D" de ce modèle, ce qui permet
d’obtenir des approximations fiables (et extrêmement rapides) du comportement
global du modèle 3D en utilisant des simulations 0D. Nous utilisons ensuite cette
approximation multi-échelle pour accélérer un algorithme d’optimisation efficace ap-
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pelé CMA-ES, conduisant à une méthode de personnalisation multi-échelle rapide
et efficace pour le modèle 3D appelé Multifidelity-CMA. Nous comparons notre
méthode aux méthodes classiques d’optimisation en termes de gains en temps de
CPU et en temps d’optimisation, et montrons que la méthode est particulièrement
rapide et efficace. Nous utilisons enfin cette méthode pour construire 121 simula-
tions personnalisées en 3D en moins de 2,5 jours, sans supervision ni initialisation
manuelle de l’algorithme.

Dans les Chapitres 6 et 7, nous construisons et analysons plus de 140 simula-
tions 3D personnalisées dans le cadre de deux études sur l’analyse longitudinale et
la modélisation de la fonction cardiaque:

• Dans le Chapitre 6 (publié dans [Molléro 2017c]), nous construisons un mod-
èle de l’évolution des paramètres cardiovasculaires pendant la digestion, basé
sur une étude clinique impliquant plus de 80 patients. Nous présentons une
méthode pour l’estimation longitudinale des paramètres du modèle cardiaque
3D, que nous appliquons à 21 patients à deux instants de l’étude, pour 6
paramètres (deux paramètres fixes et quatre paramètres variables dans le
temps). A partir de ces cœurs personnalisés, nous extrayons et validons une
loi qui relie les changements de débit et de fréquence cardiaque sous pression
artérielle constante à l’évolution de ces paramètres, permettant une simulation
rapide de la digestion pour de futurs patients.

• Dans le Chapitre 7 (publié dans [Molléro 2017a]) nous abordons pour la pre-
mière fois le problème de la non-unicité dans l’estimation de paramètres lorsque
certaines directions de paramètres ne peuvent être estimées (ells ne sont pas
observable), qui est un obstacle à l’estimation de paramètres personnalisés
consistants pour des applications cliniques. Nous estimation les paramètres
électromécaniques via un Maximum A Posteriori (MAP), que nous appliquons
à 84 cas. Nous montrons que l’utilisation de probabilités a priori réduit con-
sidérablement la variance des paramètres estimés, notamment parce qu’elle
favorise des valeurs spécifiques lorsque les valeurs des paramètres ne sont
pas uniques. Ceci permet un meilleur conditionnement des paramètres pour
l’analyse statistique de la fonction cardiaque, que nous illustrons sur l’analyse
longitudinale de cardiomyopathies pédiatriques, où les paramètres personnal-
isés suggèrent une amélioration de la fonction cardiaque avec le traitement.

Enfin, le Chapitre 8 aborde la question de quels paramètres peuvent être estimés

étant donné un ensemble de mesures (le problème de l’observabilité des paramètres).
Nous présentons un algorithme appelé Iteratively Updated Priors, qui effectue
des personnalisations successives de la base de donnée, dans laquelle la probabilité
a priori d’une personnalisation est établie à partir de la distribution de paramètres
personnalisés dans l’itération précédente. Nous montrons que l’algorithme effectue
l’optimisation d’une fonction de coût sur toute la base de données avec un terme
de régularisation parcimonieuse sur le nombre de dimensions du jeu de paramètres

personnalisés. À convergence, les paramètres estimés de la population se trouvent
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sur un sous-espace linéaire de dimension réduite et éventuellement suffisante, au sens
que pour chaque cas de la base de données il existe un vecteur unique de paramètres
pour laquelle la simulation reproduit les mesures. Puisque les probabilités à priori

empiriques qui en résultent représentent les statistiques de population dans ce sous-
espace, ils peuvent également être utilisés pour effectuer une estimation cohérente
des paramètres dans le cas où les mesures sont différentes ou manquantes pour
certains cas, ce que nous démontrons sur une base de données de 811 cas. Enfin,
nous soutenons que grâce à la sélection d’un sous-espace de dimension réduite et
suffisante, l’algorithme conduit à trouver un espace de dimension maximale dans
laquelle les paramètres sont complètement observables (étant donné un ensemble
de données). Cela fournit donc potentiellement un cadre complet pour gérer le
problème de l’observabilité dans la personnalisation.

Le Chapitre 9 résume les principales contributions de la thèse et présente les
perspectives de ce travail.
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3.1 Structure and Dynamics of the Heart

The heart is a biological pump within the human body which creates the necessary
blood flow to ensure the oxygen supply to the different organs. It consists of two
parts (See Figure 3.1), the right heart and the left heart which contain two chambers
each: an atrium and a ventricle. After going through the systemic circulation where
it provided oxygen to the various organs, the blood reaches the right atrium and
is pushed into the right ventricle, then it is ejected into the pulmonary circulation

toward the lungs during contraction. Going through the pulmonary circulation, the
blood lowers its concentrations in carbon dioxide (C02) and increases its concentra-
tion in oxygen (O2) through gas exchanges in the lungs. Then the blood arrives into
the left atrium, is pushed into the left ventricle, then ejected again into the systemic
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circulation. The main difference between systemic and pulmonary circulations is the
blood pressure, lower in the pulmonary circulation to enable gas exchanges between
the blood and the air through the lungs, and higher in the systemic circulation to
enable the propagation of the blood into a long circulatory system.

Figure 3.1: Heart anatomy showing in particular the two parts of the heart syn-
chronously pumping blood into the two different parts of the circulatory system: in
blue is the blood with a low concentration of oxygen going from the organs to the
lungs, in red is the blood full in oxygen which goes from the lungs to the organs.
(image from ib.bioninja.com.au)

The constant blood flow is ensured by the periodic contraction of the my-
ocardium, which is the muscular tissue of the heart. This muscle contraction is
caused by a series of intertwined physical phenomenons leading to the build-up of
the contractile force within the myocardium. First, an electrical wave propagates
from the sino-atrial (SA) node in the atrium, provoking the atrial systole. Then the
wave propagates into the whole myocardium approximately 120ms later (a duration
called the Atrio-ventricular delay) through the Atrio-Ventricular (AV) node the
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Bundle of His and the system of Purkinje Fibres in the ventricles (See Figure 3.2),
provoking the systole.

Figure 3.2: Components of the cardiac electrical system which leads to the prop-
agation of the depolarization wave across the whole myocardium. (Image from
http://www.dreamstime.com/)

During the systole, the electrical wave leads to a depolarization of the myocardial
cells which creates, through complex ion exchanges within the sarcomeres and the
binding of the actin and myosin protein filaments, the buildup of contractile forces
within the individual myocytes. This depolarization lasts around 200 to 400 ms,
after which a repolarization wave leads to the unbinding of the filaments and the
relaxation of the contractile forces, a phase called the diastole.

At the organ level, the myocardial tissue is organized along fibres whose direction
vary from the inner part (the endocardium) to the outer part (the epicardium) of
each ventricle. The local contraction of the myocardial tissue leads to the contraction
of both atrium, then both ventricles, and the ejection of the blood into the arteries.
The resulting cardiac cycle is usually described with 4 cardiac phases, illustrated in
Figure 3.3:

• Filling, when the ventricle fills in with blood coming from the atrium. First
it fills passively, then the atrium actively fills the ventricle with blood during
atrial systole.
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• Isovolumetric contraction, which occurs when the ventricle starts contract-
ing. The atrioventricular valve closes and the ventricular blood pressure rises
quickly.

• Ejection, when the blood pressure becomes higher than the arterial pressure,
leading to the opening of the arterial valve and the ejection of blood in the
arteries.

• Isovolumetric relaxation, when the myocardial forces drop and the ventricular
pressure becomes lower than the arterial pressure. The arterial valve close and
the ventricular blood pressure lowers quickly.

Figure 3.3: Cardiac cycle. Image from Wikipedia.

3.2 Computational Cardiac Modeling

Computational modeling of cardiac physics has been an active area of research
for the past 30 years. It has led to an extremely wide variety of multiphysics

and multiscale models describing multiple aspects of cardiac dynamics at mul-
tiple scales, and methods to apply these models to the analysis of real clinical
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data. Here we provide an non-exhaustive overview of different approaches in mod-
eling and parameter estimation. More references can be found in the reviews of
[Chabiniok 2016, Clayton 2011, Lopez-Perez 2015, Trayanova 2011].

3.2.1 Multiphysics and Multiscale Modeling

Models can be roughly classified around which aspects of cardiac physiology they
model, and at which scale.

- Models of cardiac cell describe the transmembrane currents and action po-

tential during the depolarisation of a single cell, either through the modeling of pos-
sibly many cellular ionic processes involved [Hodgkin 1952, Ten Tusscher 2004] or
with a more phenomenological approach [FitzHugh 1961, Mitchell 2003, Aliev 1996].

- Models of electrical propagation study the propagation of the electrical
wave within the myocardium in 2D or 3D cardiac tissue [Clayton 2008]. Reaction-
diffusion equations coupled with cardiac cells models [Relan 2010] are the most
common approach, in particular to study mechanisms of fibrillation [Gray 1998,
Panfilov 1998] and tachycardia [Gray 1995]. There are also more phenomenological
approaches such as the Eikonal model [Sermesant 2007].

- Mechanical and Electromechanical models describe the active contrac-
tile forces (activated by the depolarisation) and the passive elastic properties of
the myocardium, leading to the contraction and deformation of the myocardium.
As classified in [Chabiniok 2016] very large variety of model of forces exists with
different properties: hyperelastic [Humphrey 1990] or viscoelastic [Holzapfel 2001],
orthotropic [Costa 2001, Nash 2000], isotropic [Yang 1991] or transversly-isotropic
[Huyghe 1991, Guccione 1991] depending on the modeling of myocardial fibers and
laminar sheets. Many models compute separately the electrophysiology and the
mechanical forces [Kerckhoffs 2003, Sermesant 2006], but the most complete ap-
proaches model the coupled interaction of electrical activity and mechanical defor-
mation [Nash 2004, Nickerson 2005].

- Models of fluid dynamics describe the dynamics of blood flow in the ven-
tricle or the arteries, from zero-dimensional approaches [Thomas 1992] to compu-
tational fluid dynamics (CFD) and the computation of the Navier-Stokes equa-
tions [Nordsletten 2011, Oertel 2011]. Such models can be coupled to lumped pa-
rameter models of the heart and the circulatory system as boundary conditions
[Vignon-Clementel 2006, Esmaily Moghadam 2013].

- Models of cardiovascular circulation describe the blood circulation in
various part of the cardiovascular system [Westerhof 1969]. It can involve a complete
closed-loop lumped parameter network (LPN) [Arts 2005, Mihalef 2017, Pant 2016]
of the circulatory system. Such models can also be coupled with 3D models for some
parts of the system such as the ventricle [Kerckhoffs 2007] or the arteries.

- Finally, the representation of myocardial and arterial geometries can be based
on various types of discretisation: surface meshes [McLeod 2013, Frangi 2002], vol-
umetric tetrahedral meshes [Bestel 2001, Marchesseau 2010] or meshless approaches
such as the Smoothed Particle Hydrodynamics (SPH) [Lluch 2017].
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3.2.2 Personalisation and Parameter Estimation

Figure 3.4: Personalisation of a cardiac model. Image from [Marchesseau 2013b].

Personalisation is the process of building a simulation which is as similar as possi-
ble to the patient’s heart (See Figure 3.4). In the case of a 3D model it often includes
the extraction of a patient-specific geometry from the imaging data through segmen-

tation, which includes various types of approaches and techniques for which large
reviews can be found in [Peng 2016, Petitjean 2011, Suinesiaputra 2014]. Then, rel-
evant parameters values of the cardiac model have to be estimated so that some of
its outputs in the simulation correspond to some measurements. Methods to esti-
mate relevant model parameters can be classified into the following (non mutually
exclusive) classes:

• Sequential methods update the parameters during the simulation. The key
idea is to define a set of observations extracted by from the simulation, and
repeatedly compare the trajectory of these observations to the data in order
to retrieve the unknown parameters. Filtering methods and their reduced-

order versions are common sequential methods used in the cardiac community,
such as the Kalman Filter [Marchesseau 2013c, Moireau 2008], the Unscented
Kalman Filter [Pant 2017, Xi 2011, Moireau 2011] or the Extended Kalman
filter [Liu 2009].

• Variational methods consist in computing and optimising an error crite-
rion over the whole simulation, by alternating successive phases of sim-
ulations and updates of the parameters. To that end, adjoint methods

[Delingette 2012, Sundar 2009] performs a gradient descent through the com-
putation of an adjoint model. This can lead to a fast optimisation because the
adjoint model incorporates knowledge of the internal dynamics of the model.
On the other hand such methods require to recompute the derivatives of a
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possibly complex system of equations if the governing equations of the model
are changed.

• Gradient-free methods can be seen as a sub-class of variational methods, where
the criterion is optimised without knowledge on the internal dynamics of the
model. This includes algorithms based on local quadratic approximations
such such as BOBYQA [Seegerer 2015] and sequential quadratic programming
(SQP) [Wang 2009, Schmid 2008], or also genetic algorithms [Khalil 2006]. In
general, these methods have the advantage to be parallelisable but they can
be sensitive to the initialisation.

• Data-driven methods consists in learning a statistical model of the relation-
ship between the parameters and the outputs through the precomputation of
many simulations within the parameter space. Such methods include Prin-
cipal Orthogonal Decomposition (POD) [Boulakia 2011, Yang 2017], poly-
nomial regression [Zettinig 2014] and polynomial chaos expansion (PCE)
[Neumann 2014a, Konukoglu 2011], or more recently reinforcement learning
[Neumann 2016]. Such methods are usually faster than sequential methods,
but may require a careful selection of the parameter space and a possibly high
number of precomputed simulations to best approximate the non-linearities of
the model.

3.3 Collaborative Context: The MD-Paedigree Project

3.3.1 Presentation of the Project

This Ph.D. was funded and performed in the context of the European project MD-

Paedigree of the FP7-ICT programme, which is self-described as a clinically-driven

and strongly VPH-rooted (for Virtual Physiological Human) project which pursue

improved interoperability of paediatric biomedical information, data and knowledge

by developing reusable and adaptable multi-scale models for more predictive, individ-

ualised, effective and safer paediatric healthcare.

Through this Ph.D., Inria Sophia-Antipolis was mainly involved in two work-
packages of this project: paediatric cardiomyopathies (CMP) and cardiovascular

disease risk in obese children (CVD). The long-term vision of all VPH projects is
to promote the use of models in clinical practice and for a better understanding of
cardiac diseases. On the short term it is also designed to enable the cooperation
between clinicians from various centers on current areas of clinical research. In par-
ticular the goal of the paediatric cardiomyopathies workpackage was to study and
characterize various types of rare or idiopathic (for which the the cause is unknown)
cardiomyopathies, affecting (possibly very young) children. In the cardiovascular

disease risk in obese children workpackage, the goal was to study the mechanisms
of cardiovascular diseases development in relation to obesity in children and adoles-
cents.
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The main clinical and technical partners in these workpackages in addition to
Inria Sophia Antipolis were, first on the technical and modeling side:

• Siemens Healthineers, formerly Siemens Healthcare which is the branch
of Siemens AG developping medical technologies.

and on the clinical side:

• Ospedale Pediatrico Bambino Gesù (OPBG), a children’s hospital located
in Rome, Italy.

• University College of London (UCL) in coordination with the Great Or-

mond Street Hospital for Children (GOSH), both located in London,
United Kingdom.

• Deutsche Herzzentrum Berlin (DHZB), a medical research centre special-
ized in cardiovascular disease and cardiopulmonary transplantation located in
Berlin, Germany.

A main focus of the project was to build a comprehensive database of cases with
detailed clinical data available for many patients. To that end, patients underwent
a large variety of protocols with different imaging modalities such as 2D and 3D

echocardiography, cine MRI and 4D flow MRI. In addition, protocols were made
to include multiple follow-up timepoints where similar acquisition protocols were
performed again, in order to study the evolution of the disease from the original
baseline timepoint (at enrollment of the patient).

3.3.2 3D Modeling Workflow and Parameter Estimation

On the modeling side, the goal was to build personalised models of patients from
this database at various timepoints, in particular with the idea that personalised
parameter values could give additional information for the analysis of diseases. Here
is the modeling workflow to build a 3D simulation from cine MRI:

Geometrical modeling

From MRI, a biventricular tetrahedral mesh of the patient’s heart morphology
(around 15 000 nodes) is generated, and the boundaries of both the endocardium
and epicardium were tracked along the cardiac cycle. This was done by the Siemens

Healthineers team with a combination of the methods described in [Wang 2013a]
and [Jolly 2011] (Figure 3.5).
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Figure 3.5: Biventricular mesh with myocardial fibres.

On this mesh, we define a myocardial fibre direction at each node of the mesh.
This is done either from an fibre atlas, in particular in Chapter 4, or from the rule-
based model of [Streeter 1979], by varying the elevation angles of the fibres across
the myocardial wall, from α1 = −80 degrees on the epicardium to α2 = 80 degrees
on the endocardium (except in Chapter 6 where α1 is an estimated parameter).

Electrophysiological Modeling

Two different methods were used to compute the depolarization and repolariza-
tion times across the myocardium:

• In Chapter 4, a personalised Mitchell-Schaeffer is used as implemented in
[Zettinig 2014]. Conductivity values and the Action Potential Duration (APD)
across the myocardium are personalised as in [Neumann 2014b, Seegerer 2015]
from measurements in the ECG.

• In the rest of the manuscript, depolarization times across the myocardium
were computed with the Multi-front Eikonal method [Sermesant 2007]. The
APD is set from the Heart Rate with classical values of the restitution curve
and default values of conductivity are used as in [Pernod 2011].

Mechanical modeling: the BCS model

Our 3D cardiac electromechanical model is based on the implementation of
the Bestel-Clement-Sorine (BCS) model [Chapelle 2012] by [Marchesseau 2010,
Marchesseau 2013a] in SOFA1. The model uses the following items as an input:

• The 3D tetrahedral biventricular mesh.

• The set of myocardial fibres directions, defined at each node of the mesh.

1www.sofa-framework.org
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• The set of depolarisation and repolarisation times at each node.

Myocardial forces are then computed at each node of the mesh and at each time
step, as the combination of an active contraction force in the direction of the fibre,
and a passive anisotropic hyperelasticity driven by the Mooney-Rivlin strain energy
(see Fig 3.6a). A haemodynamic model implements the 4 phases of the cardiac cycle.
It describes the pressure in the cardiac chambers with global values and the aortic
pressure from a Windkessel model [Westerhof 2009] (see Fig 3.6b). The myocardial
motion, ventricular volumes and pressures are then computed at each time step of
the cardiac cycle.

Figure 3.6: Left: Rheological model (from [Marchesseau 2013a]) and interpretation
of the BCS model, detailed in Section 3.4.1. Right: Schema and rheological model
(from [Westerhof 2009]) of the windkessel model, detailed in Section 3.4.2.

We report the complete equations of the BCS model and the Windkessel model
in the APPENDIX (Section 3.4) of this chapter and refer to [Marchesseau 2010,
Marchesseau 2013a] for the details of the implementation in the software SOFA. In
this thesis, we considered various sets of parameters of this model for personalisation:

• For the passive elasticity: in Chapter 4 we estimate the bulk modulus K

while c1 and c2 are set to a constant value (see Equation 3.4). Then in the
subsequent chapters, we set c2 = c1 and K = 80c1, which we found empirically
to give a better mechanical behaviour of the model, and only estimate c1.

• For the active contractile force: we estimate in all chapters the contracility

σ0 (in Equation 3.1). In Chapter 4 we also estimate the viscosity µ (Equa-
tion 3.3), then it is set to a constant value in the subsequent chapters instead
of being estimated.

• For the haemodynamics: in Chapter 4, we estimate the aortic peripheral

resistance RP . In the subsequent chapters we also estimate the aortic com-

pliance C and the venous pressure Pve (See Equation 3.6) which we found
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to be important parameters for modeling the aortic pressure. Alternatively,
in Chapter 8, we estimate for practical reasons τ = RpC in the 0D model.
Estimating Rp and C is equivalent to estimate Rp and τ .

The variety of parameter sets considered for personalisation reflects the challenge
of finding relevant parameters to be estimated during personalisation, which is a
topic of this PhD. After a parameter estimation based on the sensitivity analysis of
[Marchesseau 2013a] in Chapter 4, we focused on parameters which enable to fit the
measurements and data available in the MD-Paedigree project (see Section 3.3.3).
Finally in Chapter 8, a method was developed to help automatically select the
most relevant parameters (and combination of parameters) according to a specific
dataset, possibly providing a complete framework to tackle this parameter selection
challenge.

3.3.3 A Database of 137 cases for 3D modeling

Due to the large number of patients and acquisition protocols, the data within the
project was quite heterogeneous and the same measurements were not available for
every patient. In particular in many cases, the cine MRI was available but either
the heart rate or pressure measurements were missing. In this work we focused on
building a homogeneous database of complete acquisitions, which is defined as an
acquisition for which all the following data was available:

• The biventricular mesh from the cine MRI.

• The heart rate, either from the properties of the MRI acquisitions (in the
DICOM file), or reported by the clinician.

• The diastolic pressure, reported by the clinician.

• The aortic pressure, reported by the clinician.

• The stroke volume, extracted from the tracking or reported by the clinician.

Across the project and the two workpackages, this led to a database of 137

complete acquisitions on which we performed 3D modeling, from three various
cohorts:

• The CVD-UCL cohort is a group of patients who participated to a clinical
study (published in [Hauser 2016]) to assess the cardiovascular response after
the ingestion of a high-energy high-fat (142g) meal after fasting for 12h. In
particular a short axis cardiac cine MRI sequence was acquired, as well as
measurements of the stroke volume, systolic, diastolic and mean cuff pressures
before and at several time points within 1h30 of the ingestion of the meal.

• The CVD-OPBG is a cohort of mostly overweight patients (80% of the patients
have a Body Mass Index (BMI) greater than 26) from OPBG.
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• The CMP cohort is the aggregated group, from the three clinical centers, of
children with cardiomyopathies which are between 0 and 19 years old.

We report here the number of complete acquisitions available in each cohort:

Cohort 3D modeling

CVD-UCL 43
CVD-OPBG 36

CMP 58

Total 137

The data was not available from the beginning of this Ph.D., but was progres-
sively gathered throughout the project. All the subsequent studies are thus not
based on the full dataset of complete acquisitions. In the following we then specify
at the beginning of each chapter which part of this dataset is used in the presented
study.

3.4 APPENDIX: Mechanical Equations of the BCS

model and Haemodynamics

As described in [Marchesseau 2013a] our 3D electromechanical model is based on
the Bestel-Clement-Sorine model (BCS) of sarcomere contraction as extended by
[Chapelle 2012], in conjunction with a Mooney-Rivlin energy for the passive hyper-
elasticity (see Fig 3.6a). Hemodynamics are represented through global values of
pressures and flows in the cardiac chambers, and coupled to the mechanical equations
with the Windkessel model of blood pressure for the aortic pressure (see Fig 3.6b).

3.4.1 The BCS model: Active Contraction and Passive Material

The BCS model describes the sarcomere forces as the sum of an active contrac-
tion force in the direction of the fibre, in parallel with a passive isotropic visco-
hyperelastic component (see Fig 5.1.b). It is compatible with the laws of thermody-
namics, and allows to model physiological phenomena at the sarcomere scale which
translate at the macroscopic scale (such as the Starling Effect).

The active force in the sarcomere is modeled by the filament model of
[Huxley 1957], which describes the binding/unbinding process of the actin and
myosin in the sarcomere at the nanoscopic scale. At the mesoscopic scale, it results
[Caruel 2014] in a differential equation which relates the active stress τc, stiffness kc

and strain ec of the filament within the sarcomere:

{
k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+,
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+,

(3.1)

where α is a constant related to the cross-bridge destruction during contraction, k0

is the maximum active stiffness and σ0 is the maximum contraction (simply called
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contractility in this thesis). The values of |u|+ and |u|- are respectively the rate of
build-up kATP and decrease kRS of the force during contraction and relaxation, which
depends on the depolarisation and repolarisation times Td and Tr of the sarcomere:

u =





kATP when Td ≤ t ≤ Tr
−kRS otherwise
|u|+ = max(u, 0),

|u|- = −min(u, 0).

(3.2)

This active force is applied in the direction of the fibre through the visco-elastic
component, made of a spring Es and a dissipative term µ (see Fig 5.1.b). As derived
in [Caruel 2014], the resulting stress σ1D in the fibre direction is given by:





σ1D = Es
e1D − ec

(1 + 2ec)2
,

(τc + µėc) = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3
,

(3.3)

where e1D = τ1·e·τ1 is the strain in the fibre direction τ1 (e is the Green-Lagrange
strain tensor).

Finally for the passive component the isotropic Mooney Rivlin model of hyper-
elastic material is used, driven by the following strain energy:

We = c1(I1 − 3) + c2(I2 − 3) +
K

2
(J − 1)2, (3.4)

where I1, I2 and J are the invariants of the Cauchy-Green deformation tensor, c1,
c2 and K are the parameters of the material.

3.4.2 Haemodynamics and the Windkessel Model

To model the influence of blood dynamics during the cardiac circle, the mechanical
equations are coupled with a basic circulation model implementing the 4 phases of
the cardiac cycle. For a given ventricle, if we note Pat the pressure in the atrium,
Par the pressure in the artery and PV the pressure in the ventricle, the phases are
the following:

• Diastolic Filling : when PV ≤ Pat, the atrial valve is open and the ventricle
fills up with blood.

• Isovolumetric contraction: when contraction starts, PV rises. Pat ≤ PV ≤ Par

and all the valves are closed.

• Systolic Ejection: when PV ≥ Par, the arterial valve opens and the blood is
ejected into the artery.

• Isovolumetric relaxation: when the contractile forces disappear, PV finally
decreases. Pat ≤ PV ≤ Par again and all the valves are closed.
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We use the haemodynamic model introduced by [Chapelle 2012] which links
the blood flow q to the ventricular, atrial and arterial pressures with the following
equations:

q =





Kat(PV − Pat) for PV ≤ Pat

Kiso(PV − Pat) for Pat ≤ PV ≤ Par

Kar(PV − Pat) +Kiso(Par − Pat) for PV ≥ Par

(3.5)

Here the atrial pressure Pat(t) (cardiac preload) is imposed at a constant value
Pat_lower except for a pressure bump up to Pat_upper at the beginning of cardiac
cycle, to account for the contraction of the atrium before the ventricular contrac-
tion. Finally the pressure of the artery Par (cardiac afterload) is modeled with
the 3-parameters Windkessel model [Westerhof 1969] and coupled to the ventricular
outflow q through the equation:

RpC ˙Par + Par − Pve = (Rp + Zc)q +RpZcCq̇, (3.6)

where ZC and R are the proximal and distal (peripheral) resistances, C is the arterial

compliance and PV e is the venous pressure.

3.4.2.1 Implementation

The passive Mooney Rivlin energy is discretised on the 3D mesh with the
MJED (Multiplicative Jacobian Energy Decomposition) method described in
[Marchesseau 2010], and the BCS fibre stress and stiffness are computed at each
node, separately from the positions and velocities. This allows a fast assembly and
a good conditioning of the system of mechanical equations. A Rayleigh damping is
then added to account for the viscous global dissipation and finally, the ventricular
pressure is computed using a prediction-correction approach, performed after solv-
ing the first system of mechanical equations. This efficient algorithm and all the
details of the mechanical equations and their 3D discretizations are fully discussed
in [Marchesseau 2013a].
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This chapter presents a joint work by the teams at INRIA Sophia-Anpolis,

Siemens Healthineers and Ospedale Pediatrico Bambino Gesù, performed

at the beginning of the project MD-Paedigree to evaluate the influence of unknown

parameters on the estimation of personalised parameters. First, uncertainty in my-

ocardial fibre orientation is quantified from 7 representants sampled from a fibre atlas

and propagated in a generic personalisation pipeline, applied to the personalisation

of a case from the CMP cohort. We then evaluate the resulting variability in 7 per-

sonalised simulations and personalised parameter sets. Due to the lack of constraints

during parameter estimation, we can observe at the end of the study that the result-

ing uncertainty in estimated values is extremely large. For example the uncertainty
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on the aortic peripheral resistance can be up to 50% of its value, which appears in-

compatible with physical considerations. This outlined the need for more consistent

approaches to parameter estimation, which we develop in the sequel of this thesis.

This work was presented at the FIMH conference in 2015 [Molléro 2015].

4.1 Introduction
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Figure 4.1: Global scheme of fibre variability propagation along a personalisation
pipeline.

Cardiac modeling aims at understanding cardiac diseases (such as heart failure,
dissynchrony or tachycardia), helping diagnosis and predicting cardiac response to
therapy (e.g. cardiac resynchronization therapy, or radiofrequency ablation). In
order to impact clinical practice, generic models have to be adjusted to a given
patient, which is personalisation [Marchesseau 2013a, Zettinig 2014]. This is still
a challenging part, and often computationally demanding, therefore most of the
approaches are deterministic. However there are several sources of uncertainty, both
due to the data and the models [Neumann 2014a, Konukoglu 2011]. In this work we
present the propagation of the uncertainty coming from the lack of knowledge on
cardiac fibres for a given patient. Indeed, it is still difficult to obtain measurements
on the fibre architecture for a given patient in-vivo, therefore we have to rely on prior
knowledge. In order to propagate this uncertainty, it has first to be quantified. This
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was done by computing statistics on a small population of healthy hearts (details in
Section 4.3). Then the personalisation pipeline has to be efficient enough so that a
sampling of this uncertainty can be propagated. Finally we obtained a sampling of
the distribution of the parameters and personalised simulations (see Figure 4.1).

We illustrated this method on a paediatric dilated cardiomyopathy case (details
in 4.4.1). From a clinical standpoint, it is very difficult to predict the dramatic
evolution of such rapidly-evolving case, even with advanced imaging. The aim of
the project is to test if parameters derived from biophysical models could help
predicting the outcome of such cases.

4.2 Personalisation of the Cardiac Electromechanical

Model

4.2.1 Robust Segmentation of Myocardium from MRI

Patient-specific heart morphology is obtained from short-axis cine magnetic reso-
nance images (MRI). To that end, a robust, data-driven machine learning approach
is employed [Wang 2013a] to estimate surface meshes of the left endocardium, left
outflow tract, left epicardium, right endocardium, right outflow tract and right in-
flow tract. Each surface is estimated using marginal space learning and probabilistic
boosting trees, constrained by a shape model learned from a database of hundreds
of cases, thus ensuring inter-patient point correspondence. Next, each surface is
tracked over the entire cine sequence using a combination of tracking by detection
and tracking by registration. Finally, the surface meshes at mid-diastole are selected
to generate a closed surface of the biventricular myocardium, which is transformed
into a tetrahedral volume mesh for simulation1.

4.2.2 Personalised Cardiac Electrophysiology Model

Cardiac electrophysiology (EP) is modeled using the approach presented
in [Zettinig 2014]. Cardiac transmembrane potentials are calculated according to
the mono-domain Mitchell-Schaeffer (MS) model as it offers a good compromise
between model observability and fidelity. In this study, we are mostly interested
in two parameters: the time during which the ion channels are closed τclose, which
captures action potential duration and is directly linked to the QT duration; and
tissue diffusivity c, which determines the speed of the electrical wave propagation
and is directly linked to the QRS duration. We model fast regional diffusivity for the
left cLV and right cRV endocardium to mimic the fast conducting Purkinje network,
and slower diffusivity cmyo ≤ cLV, cmyo ≤ cRV, for the myocardium. Transmem-
brane potentials are calculated using LBM-EP, a Lattice-Boltzmann method, which
is coupled to a boundary element method approach to calculate the 12-lead cardiac
electrocardiogram (ECG) resulting from the cardiac potentials [Zettinig 2014]. The
model is finally personalised like in [Neumann 2014b, Seegerer 2015]. BOBYQA, a

1http://www.cgal.org – computational geometry algorithms library
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constrained gradient-free optimization method is used to estimate tissue diffusivity
and τclose such that computed QRS duration, QRS electrical axis (EA) and QT
duration match the measurements.

4.2.3 Personalised Cardiac Mechanical Model

The cardiac mechanical model is based on the Bestel-Clement-Sorine (BCS)
model [Chapelle 2012]. This model describes the heart as a Mooney Rivlin ma-
terial, and model the stress along the cardiac fibres according to microscopic scale
phenomena. Particularly, this model is compatible with the laws of thermodynamics
and is able to model the Starling Effect. In this pipeline, it integrates a circulation
model representing the 4 phases of the cardiac cycle (aortic pressure modeled by a
4-parameter Windkessel model), and takes the depolarization times and the action
potential durations in each point of the mesh as an input to compute the mechanical
contraction and relaxation of the myocardium.

As in [Marchesseau 2013a], we only personalise the most influential and inde-
pendent parameters which are the contractility σ0, the viscosity µ, the bulk modulus

K and the aortic peripheral resistance Rp. The calibration is performed following
[Marchesseau 2013a]: after performing 9 simulations using some specific parameter
values that lies in a range of acceptable values, an algorithm runs and finds in one
iteration the set of parameters that best fit the observations using the Unscented
Transform Algorithm. In our case, the observations are the minimal LV volume and
the time between the two moments the LV is at 50% of its contraction volume, both
calculated from the cine MRI.

4.3 Population-Based Uncertainty Quantification of Fi-

bres

4.3.1 Variability Estimation in Atlas Space

One often characterize the variability of a random vector by its mean and covariance
matrix since these two first moments completely characterize the Gaussian distribu-
tion. However, in more than a few dimensions, the covariance matrix is too large to
be computed robustly from only a few data observations. An alternative is to draw
just a few samples from the population distribution, either by choosing randomly a
number of points from the data observations, or more rationally by selecting a few
points that describe the main subspace of variation in the data, for instance through
Principal Component Analysis (PCA). Within this subspace one could describe the
variability using a minimal number of points thanks to the so-called sigma-points
at the vertices of a minimal simplex, originally designed for the Unscented-Kalman
Filter [Julier 1997]. However, it is often empirical observed that using symmetric
points on all axes is significantly more accurate for underlying symmetric distribu-
tions. This is the approach we took in this study to quantify the variability of the
fibre architecture.
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We used N = 10 ex-vivo DTI acquisitions of healthy human hearts, registered in
the atlas space [Lombaert 2011]. Both left and right ventricles images were gener-
ated with this atlas but due to the lower resolution of the right ventricle we chose to
use this atlas only for the left ventricle part. On the right ventricle, we instead use a
single DTI heart acquisition with high resolution done by Johns Hopkins University
(JHU) [Helm 2005]. Therefore we have no variability estimation of the fibres for the
right ventricle.

To compute the mean DTI over the population and quantify the variability, we
work in the Log-Euclidean space [Arsigny 2009] rather than the standard Euclidean

space. The mean DTI is D̄ = exp
(

1
N

∑N
i=1 log(D

(i))
)

and the data matrix of

centred observations is X = [vect(logD(1) − log D̄) . . . vect(logD(N) − log D̄)]. The
PCA is obtained by diagonalising the large covariance matrix Σ = XX⊤/(N − 1)

or more efficiently we chose to compute the singular-value decomposition (SVD) of
the data matrix X = UΛV T , where the N × N diagonal matrix Λ encloses the
square root of the eigenvalues of Σ. We choose to only study the first 3 eigenmodes
Ui=1,2,3, because they already explain 59% of the variation of the log-tensors seen in
the population. For each mode i, we compute two symmetric images representing
the range of variation along the mode at plus or minus one standard deviation si
as: Mi,±(x) = exp

(
log(D̄(x))± siUi(x)

)
.

4.3.2 From Atlas to Patient Space

In order to relate the atlas space to the geometry of our target patient, we register
the mesh of our patient to the mask of both the atlas (for the LV) and the JHU heart
(for the RV) with a three-steps framework. First, the mask of the patient is aligned
with the mask using a rigid landmark based registration method. Correspondences
between the atlas and the target heart are manually checked. Secondly, we perform
a similarity registration with five coarse levels and one fine level, each of which
are composed of 10 iterations. Finally, we perform a diffeomorphic registration
using diffeomorphic demons algorithm with 15x10x5x5 iterations (from coarsest to
finest levels), a Gaussian smoothing factor of 2 in the regularization phase, and an
interpolation for the moving image done with B-splines [Vercauteren 2009]. We
then get the full diffeomorphic transformation for each one of our two initial atlases
to the target patient mask.

We apply the transformation found in the previous step to the mesh of the pa-
tient. For each of the vertices, if the correspondence lies within the RV we use
the JHU DTI-image whereas we use the mean or the sampled images of the Lom-
baert atlas if it lies within the LV. We take the mean (in the Log-Euclidean space)
of the tensors of the 5-nearest voxels. The tensor value is then reoriented using
the Finite Strain method, and the fibre orientation is taken as its first eigenvec-
tor [Peyrat 2007]. The results of the fibres personalisation are 7 sets of fibres shown
in Figure 4.2.
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4.4 Propagation of Fibre Uncertainty on a Case Study

4.4.1 Clinical Background

The patient is a 16 years old male who had no family history of cardiac disease.
After being admitted at the hospital for chest pain, evidence of reduced ejection

fraction and dilated left ventricle led to a first diagnosis of myocarditis. A de-
tailed echocardiographic examination performed 3 month later showed evidence of
markedly increased trabeculae of the left ventricular apical and lateral walls, possi-
bly suggesting the presence of left ventricular non-compaction. The MRI study did
not confirm this diagnosis but only the idiopathic dilated cardiomyomathy. After 9
month of follow-up in the clinic, the patient was put on the national heart transplant
list due to worsening conditions. The patient is now doing well at follow-up after
transplant, and the pathology and histology testing at the hospital confirmed the
diagnosis of idiopathic dilated cardiomyopathy.

4.4.2 Goodness of Fit and variability after Personalisation

For each of the 7 tested fibre architectures we personalised EP and EM parameters
as described in Sec. 4.2.2. High goodness of fit between observations and simulations
were achieved for all instances : for the ECG, the maximum obtained errors after
personalisation are 0.2 ms for QRS, 2.9ms for QT and 0.3◦ for EA, which is well
below 1% of the measured values for QRS (96 ms) and QT (413ms), and below 1%
of the maximum possible error (180◦) for EA (5◦), respectively. Similarly in terms
of mechanics, the error between simulated and measured minimal volume and the
time at 50% contraction are below 3%.

After this step, we can observe the spatial variability of EP depolarisation times
and end-diastolic strain between modes in Figure 4.2. Although the main features
of the ECG are the same, variations in local depolarization times can be up up to
10ms from one set of fiber to the mean fiber set due to the difference in current
propagation. Interestingly we can notice for some of the sets a correlation between
the peaks and zones of the variations of the depolarization times and the variations
of fibre orientation which would be interesting to further study.

4.4.3 Uncertainty on the Model Parameters and Discussion

Table 4.1 shows the values of the parameters after calibration for the mean fibre
model, and their relative variation for each fibre set (Mx and Px are the two fibre
sets representing the mode x as described in Section 4.3, for x = 1, 2 or 3).

For the EP parameters, we first note that cRV varies the most although the fibres
are fixed on this ventricle. This might be explained by the large changes in direction

of depolarisation on the LV due to changes in fibre orientation, which would require
the conductivity of the RV to vary as well to match the same EA. Logically, τclose
varies very little, since it is directly linked to the QT duration, that is not much
affected by fibre orientation. Finally, one should notice the observed variabilities
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Mean Mode 1 Mode 2 Mode 3

Figure 4.2: Top left: Mean fibres. Top right: modes of variation plus (top) /
minus (bottom) si coloured by angular variation w.r.t. the mean (from 0◦ blue to 20◦

red). Middle left: Mean depolarisation times after EP personalisation; from blue
(early) to red (late≈100 ms). Middle right: Variation from mean depolarisation
times colouring from blue (-10ms) to grey (0 ms) to red (+10 ms). Bottom left:
Local strain at end-systole range from blue (high) to red (low). Bottom right:
Variation for each different fibre modes after mechanical personalisation (blue: more
contraction, red: less than on mean fibre).
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with the intrinsic uncertainty due to the parameter estimation process (which was
for instance quantified as high as 45% for cRV in some cases) [Zettinig 2014].

About the mechanical parameters, we can easily explain the variations of Rp and
σ0. It’s indeed well known that the fiber architecture has a strong influence on the
stroke volume and when we fix all the parameters, we see that the ejection fraction
is maximal for the mean fibre, with the largest variations along the mode 2. To
achieve the same level of ejection fraction with a less efficient set of fiber, the aortic
peripheral resistance must be lowered and the contractility increased, which is what
we observe for all the modes, (and in a larger range for the mode 2). The variations
of K and µ are more challenging to interpret directly. They impact directly the
slopes of contraction and relaxation phases, thus ensuring the fitting of the time at
50% contraction.

Table 4.1: Variability in estimated EP and EM model parameters after personali-
sation.

Parameter cmyo cLV cRV τclose σ0 µ K Rp
Unit mm2/s mm2/s mm2/s ms Pa Pa s Pa Pa m3 s

Mean 1.21e3 4.70e3 1.83e4 2.09e2 4.74e6 2.29e5 2.01e7 1.9e7
P1 -17.2% -14% -14.7% -0.48% +2.71% -5.84% -5.21% -26.7%
M1 +11.5% +10.6% +6.06% +0.14% +4.2% -8.54% -11.4% -30.9%

P2 -0.82% +2.34% +24.2% -0.14% +2.4% -20.1% +4.86% -54.6%
M2 +3.28% +2.55% -30.9% -0.14% +0.86% -2.02% +10.6% -35.8%

P3 +3.28% +7.02% -11.4% -0.14% +3.75% -2.87% -7.64% -34.4%
M3 -0.82% -7.66% +9.06% -0.57% +0.75% -12.6% -0.98% -20.7%

4.5 Conclusion

In this chapter we detailed how a quantified uncertainty on myocardial fibres could
be propagated along an efficient model personalisation pipeline. We presented the
need to comprehensively quantify the influence of the parameters on the final output,
and reversely to quantify their uncertainty when personalising models in order to fit
clinical data. Atlases with mean and principal modes of variations are a good way
to hierarchically represent the main directions of variability on quantities with many
parameters such as vector or scalar fields. We used that method for the uncertainty
on local fibre orientation in each point of the heart, and assessed the variations of
personalised parameters according to those uncertainty. Interestingly, if we have
prior knowledge on some parameters of the heart, this method could reciprocally
give us information on the fibre set with the highest probability.

Finally, several aspects of this pipeline could be further improved for a more
general assessment of the uncertainty, in particular with a better personalisation
from clinical data (evolution of regional volumes, the whole flow curve) and an
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extension of the Atlas method to regional parameters such as conductivity or stiffness
maps.
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The study [Molléro 2015] presented in Chapter 4 led to the conclusion that both

a more consistent personalisation framework (which possibly integrates uncertainty

quantification), and a more handy and efficient tool for parameter estimation were

required to perform consistent personalisations of a possibly large database of pa-

tients in the context of MD-Paedigree. In both cases, the computational complexity

of 3D simulations (15 minutes in average but possibly up to 1 hour) is an obstacle.

In this chapter we develop a reduced "0D" model of our 3D model, then build a

multiscale coupling to approximate outputs of 3D simulations from 0D model sim-

ulations. Then, we use this coupling to build an efficient personalisation algorithm

called Multifidelity-CMA for the 3D model. A preliminary version [Mollero 2016]

of this work was presented at the MICCAI conference in 2016. The complete method,

presented here, was published in Biomechanics and Modeling in Mechanobiology in

August 2017 [Molléro 2017b]. In both papers the method was applied to the com-

plete collection of complete acquisitions from the 3 cohorts available at the time of

submission.

5.1 Introduction

Electromechanical models of the heart simulate the physical behavior of a patient’s
heart, in order to perform advanced analysis of the cardiac function. They are
of increasing interest to help clinicians in their daily practice [Kayvanpour 2015,
Baillargeon 2014, Smith 2011]. In particular, recent works have been success-
ful in predicting haemodynamic changes in cardiac resynchronization therapy
[Sermesant 2012], ventricular tachycardia inducibility and dynamics [Chen 2016], as
well as in detecting and localising infarcts [Duchateau 2016] using 3D personalised
models.

After building the patient’s heart mesh geometry, the simulated heartbeat has
to match clinical data, such as ejected blood volume and pressure measurements,
or more detailed information about regional motion and abnormalities available
from imaging modalities such as 3D echocardiography or cine MRI. This is done by
finding adequate simulations settings (boundary conditions, loading constraints)
and values of model parameters such as myocardial stiffness and contractility
[Xi 2011, Chabiniok 2012]. This phase of parameter estimation is usually referred
to as the personalisation of the cardiac model [Marchesseau 2013c] and results in
a personalised cardiac model [Wang 2012] made of a patient-specific heart geometry

[Schaerer 2006] and patient-specific biomechanical parameters.
A wide variety of 3D computer heart models exists in the literature, which

describe the anatomy and physiology of the heart at various scales. For example
the 3D mesh describing the heart geometry can be made of very different numbers
of nodes, and the cellular electromechanical phenomena underlying the build-up
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of myocardial forces can either be described with a large number of equations, or
simplified equations. We refer to the two comprehensive reviews of [Chabiniok 2016]
and [Clayton 2011] for a large discussion of various models of different scales, types
and implementations. The scale and precision (also known as fidelity) of the model
is chosen according to the study and the available data. In general, the time required
to compute a simulation increases with its level of detail. The simulation of a 3D
heartbeat using some of the most complex 3D models can take up to several hours
of computation on computers with hundreds of cores [Panthee 2016]. This means
that for applications where many simulations need to be repeatedly performed (e.g.
parameter estimation), computational time becomes a real issue.

The joint use of low-fidelity models to approximate a high-fidelity model and
lower the computational burden has been investigated by the multifidelity modeling

community since [Kennedy 2000]. As described in [Peherstorfer 2016], a model-

management method usually handles and feeds the outputs of a low-fidelity model

(e.g. a simplified model, a regression model or a projection-based model) to an un-
derlying application-specific method (e.g. an optimisation algorithm) as surrogates
to the high-fidelity model outputs. The method also optionally decides when to
recompute simulations of the high-fidelity model to guarantee the accuracy of the
low-fidelity approximation.

Here we present an original 0D/3D multifidelity approach for the personalisation
of 3D cardiac models (Fig. 5.1). First, from our 3D cardiac model, we derived and
implemented a simplified "0D" model which is faster by 4 orders of magnitude.
This was performed as proposed in [Caruel 2014], by approximating the geometry
of the ventricle as a sphere and assuming spherical symmetry and homogeneity of
the electromechanical behavior.

Then, we introduce a multifidelity coupling in order to approximate 3D model
simulations from 0D model simulations. To this end, we build a parameter mapping
which converts parameters of the 3D model into parameters of the 0D model, based
on a few representative 3D simulations in the parameter space (called the sigma-

simulations). Outputs of the 3D model are then approximated from 0D model
simulations, thus enabling a reduction of the computational burden when a large
number of 3D simulations outputs are required.

Finally, we present a multifidelity personalisation method, built by adapting an
efficient optimization algorithm called CMA-ES [Hansen 2006] to use approxima-
tions of the 3D simulations obtained through the multifidelity coupling instead of
the real 3D simulations. This leads to a fast and computationally efficient person-
alisation method for the 3D model parameters.

A preliminary version of this work was described in [Mollero 2016]. Here we
propose a significantly extended methodology for the multifidelity coupling. First,
the sigma-simulations selection is performed so that additional computational gains
are possible when some estimated parameters have the same equations and values
in both models. Then, a more robust, non-linear, parameter mapping is used. An
additional step is finally introduced to correct the possible errors arising during the
estimation of 0D model parameters. We also present an improved methodology for
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Figure 5.1: 3D and 0D cardiac models (1.a, 1.b and 1.c). Our multifidelity person-
alisation method performs parameter estimation in the 3D model using CMA-ES
(1.d), based on 0D simulations obtained through the multifidelity coupling between
the models.
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the multifidelity personalisation method which enables the use of a single coupling
for many iterations of CMA-ES. This is done while simultaneously ensuring that
the approximation is accurate enough for the optimisation algorithm, resulting in
an overall estimation which is 5 times faster than in [Mollero 2016] on average.

In terms of results, we present extended results and discussions for both the mul-

tifidelity coupling and the multifidelity personalisation method. The approximation
accuracy of the coupling is compared to an hypersurface interpolation method and
the personalisation method is compared to BOBYQA [Powell 2009], a commonly
used derivative-free optimization algorithm. This leads to an extended discussion
on the computational aspects of our method in a parallel environment. This work
is illustrated on a personalisation problem involving 5 parameters and 3 outputs,
and we demonstrate results on a database of 121 different geometries and clinical

values, which we believe to be one of the largest cohort of personalised cardiac cases
to date. This personalisation took around 2.5 days on our cluster.

Lastly our 0D model equations are encoded in the CellML format [Cuellar 2003]
and made available for download from the Physiome Model Repository1 [Yu 2011].
Python scripts to perform parameter estimation in the 0D model will be released
within 1 month of publication, from the same location.

5.2 Multi-fidelity Cardiac Modeling and Personalisation

Framework

In this work we use both a 3D electromechanical model which can simulate the
behaviour of complex patient-specific heart geometries, and a reduced "0D" version
of this model which can be summarized in a few equations. Both models rely on the
same mechanical laws but simplifying assumptions are made on the geometry of the
0D model to derive its equations. We also introduce the personalisation framework

for the parameters of both models.

5.2.1 The 3D Cardiac Model

Our 3D cardiac eletromechanical model is an implementation of the Bestel-Clement-
Sorine (BCS) model ([Chapelle 2012]) by [Marchesseau 2010, Marchesseau 2013a] in
SOFA2, an open-source simulation software. The model uses the following items as
an input:

- A 3D tetrahedral biventricular mesh, either synthetically created or derived
from segmented MRI images.

- A set of myocardial fibres directions, defined at each node of the mesh. Here
we use synthetic fibres from the rule-based of [Streeter 1979].

- A set of depolarisation and repolarisation times at each node of the set com-
puted from an electrophysiology model. Here we use the Eikonal model as described

1https://models.physiomeproject.org/e/470
2www.sofa-framework.org
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in [Sermesant 2012].
Myocardial forces are then computed at each node and at each time step from the

equations of the BCS model. Then the myocardial motion (mesh nodes velocities)
as well as ventricular volumes and pressures are computed at each time step of
the cardiac cycle from these forces (As described in Section 3.4). With myocardial
meshes made of around 15 000 nodes and a time step of 5 ms, a single beat of
0.9s takes 15 minutes to compute on average on a single-core (Intel(R) Core(TM)
i7-4600U [2.10GHz]).

5.2.2 The 0D Cardiac Model

As described in [Caruel 2014], it is possible to derive the equations of a fast 0D model

of the heart, which relies on the same BCS equations. This is done by making the
following simplifying assumptions on the geometry, the electrical activation and the
properties of the material:

1. The ventricle has a spherical shape.

2. The material is incompressible.

3. The electrical activity is synchronous and homogeneous over the sphere.

With these assumptions of spherical symmetry, myocardial forces and motion
are also spherically symmetric and can be entirely described by the inner radius r of
the ventricle. Deformation and stress tensors can also be reduced to a simple form
(see [Caruel 2014]), which leads to a system of a dozen equations (see APPENDIX).

We implemented the equations into C code and solve the system of equations
using an explicit Forward Euler method with a temporal discretisation of 0.01 mil-
liseconds. This leads to the simulation of around 15 beats per second. We also
encoded the 0D model in the CellML format [Cuellar 2003], which is an open stan-
dard based on the XML markup language to store and exchange computer-based
mathematical models. This model can be downloaded from the Physiome Model
Repository3 and easily exploited through the software OpenCOR [Garny 2015].

5.2.3 Parameter Estimation Framework for Cardiac Models

After building the model, parameter estimation is usually the first step to anal-
yse clinical data with a model. It consists in finding parameter values for
which the simulation with the model reproduces available values and quantities
in the data, such as pressure or volume measurements. In particular when the
geometry is patient-specific, this phase is called cardiac model personalisation

[Marchesseau 2013c, Kayvanpour 2015].
Formally, we consider a cardiac model M , a set of simulated quantities called

the outputs O and a subset PM of varying parameters of the model (while the other
parameters are supposed fixed). Given a vector of these parameters x ∈ ΩM, we

3https://models.physiomeproject.org/e/470
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note OM(x) the values of the outputs O in the simulation of M with parameter
values x. The goal of personalisation is to find parameter values x∗ ∈ ΩM for which
the outputs values OM(x∗) best match some target values Ô.

This is an inverse problem, which can be tackled by different methods (see the
review of [Chabiniok 2016]). We propose here a parameter estimation framework
(Fig 5.1.d) through derivative-free optimization, using an efficient genetic algorithm
called CMA-ES [Hansen 2006].

5.2.3.1 Robust Optimisation With the Genetic Algorithm CMA-ES

We define the score S(x, Ô) of some parameter values x as the L2 distance between
OM(x) and Ô, normalised by the Hadamard (coordinate-by-coordinate) division ⊘
with a vector N , in order to compare outputs with different units:

S(x, Ô) = ‖(OM(x)− Ô)⊘ N ‖.

We then perform a derivative-free optimisation with the genetic algorithm CMA-

ES, which aims at minimising this score S. The algorithm (which stands for Covari-
ance Matrix Adaptation Evolution Strategy) asks at each iteration n for the scores
of m points xi ∈ ΩM (a generation), drawn from a multivariate distribution with
covariance Icn and mean Imn . Then, it combines bayesian principles of maximum

likelihood with natural gradient descent on the ranks of the points scores in the
generation to update both Icn and Imn .

The CMA-ES algorithm has many advantages in this context. First, it can
explore a large and unbounded parameter space while still performing a local search
at each iteration, and has shown very good results on problems involving hundreds
of parameters to optimise [Geijtenbeek 2013]. Second, because the updates of the Icn
and Imn only depend on the score ranks, it is very robust to outliers in the generation,
in particular to parameter values for which the simulation diverges (in which case
we give an arbitrary high score to these parameters).

Also, since each score comes from an independent simulation, this algorithm
is well suited to parallel environments. We can either decide to set a very high
population size m and do many parallel simulations (in this case the algorithm can
converge in a few iterations), or a lower population size and rely instead on many
iterations of the algorithm for convergence.

5.2.3.2 Application to the 0D model

Because the 0D model is extremely fast (15 beats per seconds), parameter estimation
is also very fast with the 0D model. For example with a population size of 50 points
per generation it takes less than 50 generations and 3 minutes on a 4-core computer
(with parallel computation of the simulations within each generation) to make most
of the problems with sets of up to 10 outputs and parameters converge.

In our current implementation, 29 outputs can be extracted from the pressure,
volume and flow curves and 25 parameters of the 0D model can be estimated. Python
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Table 5.1: Sets of 3D model parameters and global outputs in the example.

Global outputs O

Stroke Volume SV
Mean Aortic Pressure MP
Diastolic Aortic Pressure DP

Parameters of the 3D model P

Contractility σ0
Stiffness c1
Peripheral resistance Rp
Aortic Compliance C
Venous Pressure Pve

scripts to automatically perform the parameter estimation will be released within
1 month after the publication, available for download from the Physiome Model
Repository4.

5.2.3.3 Application to the 3D model

It is possible to apply directly this framework to the 3D model, but the computa-
tional burden can become an issue because of the time required to compute the 3D
simulations. Indeed, either we set a small population size, but we need many itera-
tions of CMA-ES (of around 15 minutes each). Or we set a high population size but
is the number of parallel CPUs used at the same time which may become prohibitive.
In Section 5.4, our multifidelity personalisation method lowers this computational
burden by replacing the outputs values of 3D simulations with approximations com-
puted from 0D simulations through a multifidelity coupling between the two models,
as explained in Section 5.3.

5.3 Multi-fidelity Coupling: Approximating Global Out-

puts Values of the 3D Model

We present here a multifidelity coupling between the 3D and the 0D model. We
will call global outputs of the models quantities which can be computed from the
simulations of both models, such as the total ejected blood volume (stroke volume)
or the minimal (diastolic) aortic pressure.

We consider a set of N1 parameters of the 3D model P3D, a set of global outputs
O, and a set of parameter values xi ∈ Ω3D of the parameters P3D. The goal is to
get approximations of the values O3D(xi) by performing 0D simulations and only a
few 3D simulations.

We will illustrate the method on the following problem: a set of 5 parameters
P3D of the 3D model, and a set of 3 outputs O listed in Table 5.1. We want to
approximate the output values for m = 30 simulations with parameters xi, drawn
from a multivariate distribution (as in a CMA-ES iteration).

4https://models.physiomeproject.org/e/470
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5.3.1 Global Strategy: Building a Mapping Between 3D and 0D
Mechanical Parameters

Because they rely on the same equations, both models display many similar trends
in their global outputs values when some parameters vary. For example, if a 3D
simulation and a 0D simulation have the same stroke volume, the stroke volume
variations with changes in the haemodynamic parameters (such as the aortic pe-
ripheral resistance) are very similar in both models.

However some parameters do not behave exactly the same, and are not always
even in the same range of values. This is especially the case of mechanical pa-

rameters such as the 3D and 0D dampings which rely on different equations. But
even for parameters from the same equations in both models (such as σ0 and c1)
the values might be very different in 0D and 3D simulations with similar outputs,
due to the different assumptions.

Formally, there is no trivial function which can convert the xi ∈ Ω3D into values
y ∈ Ω0D of 0D model parameters P0D, for which the global outputs values O0D(y)

and O3D(x) are the same (or at least close). The idea of the multifidelity coupling is
to find 0D model simulations which are similar to a few selected 3D simulations, then
build a parameter mapping φ between the parameters of both models.
We use the following strategy:

1. First we perform a few representative 3D simulations within the domain of
interest (called the sigma-simulations with parameters Xi ∈ Ω3D).

2. Then, for each 3D sigma-simulation with parameter values Xi ∈ Ω3D, we
estimate parameter values Yi ∈ Ω0D of a coupled 0D simulation which approx-
imates the outputs O of the 3D sigma-simulation .

3. From those 3D model parameters Xi and 0D model parameters Yi we derive
a parameter mapping φ which converts 3D parameters into 0D parameters.

4. Finally, we approximate the global outputs values O3D(x) of all the 3D sim-
ulations xi ∈ Ω3D, from the 0D simulations with parameters φ(xi) ∈ Ω0D.
This is done by adding a correction term ψ which is learnt, to avoid numerical
errors in the previous steps.

The overall process is illustrated in Fig 5.2. In the sequel, we first discuss the
selection of representative sigma-simulations (Sec. 5.3.2), then the computation of
coupled 0D simulations (Sec. 5.3.3), then the parameter mapping φ (Sec. 5.3.4)
and the correction term ψ (Sec. 5.3.5). Finally we give numerical results of the
multifidelity approximation in Sec. 5.3.6.

5.3.2 Sigma-Simulations: Performing Representative 3D Simula-
tions Within the Domain of Interest

We consider a subset P ′
3D ⊂ P3D of N2 < N1 parameters which cannot be con-

verted directly into 0D model parameters. In order to assess the global outputs
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Figure 5.2: Multi-fidelity coupling: After performing a few 3D sigma-simulations,
we find coupled 0D simulations for each of those simulations. Then we build a
parameter mapping which converts parameters of the 3D model into parameters of
the 0D model, in order to approximate 3D simulations outputs with the outputs of
0D simulations.

variations to these parameters in the set of xi ∈ Ω3D, we perform a few selected
simulations in the domain Ω3D.

To this end, we perform PCA on the set of xi ∈ Ω3D, which gives N1 eigenvectors
of the set. Then we extract the N2 eigenvectors ~dk which display the maximal
variations of the parameters P ′

3D. This is done by sorting the eigenvectors by the
norm of their projection of the subspace made by the coordinates corresponding to
the parameters P ′

3D, and selecting the N2 largest.

One sigma-simulation is then performed at the center (X0) of the domain of
interest Ω3D and pairs are performed equidistant of X0 in each of the N2 extracted
directions (X+

k = X0 + dk and X−
k = X0 − dk for k = 1..N2). This gives a total of

2N2 + 1 representative simulations in the domain.

In our example, the three haemodynamics parameters Rp, C and Pve have the
same values and the same equations in both models, so we can use the same val-
ues directly in the two models. On the other hand, the contractility σ0 and the
stiffness c1 do not have the same values in both models so we need to assess how
their variation is going to impact the global outputs. We then extract the N2 = 2

directions for which the variations of σ0 and c1 are maximal, and perform a total of
2N2 + 1 = 5 sigma simulations with parameters X0, X+

1 , X+
2 , X−

1 and X−
2 .



5.3. Multi-fidelity Coupling: Approximating Global Outputs Values of
the 3D Model 47

Table 5.2: Coupling outputs, Coupled 3D parameters, Coupled OD parameters which
are estimated and Directly Mapped Parameters in the example of Fig 5.3.

Coupling outputs O

Maximal Volume Vmax
Minimal Volume Vmin
Mean Aortic Pressure MP
Diastolic Aortic Pressure DP

Directly Mapped Parameters

Peripheral resistance Rp
Aortic Compliance C
Venous Pressure Pve

Coupled 3D parameters P ′
0D

Contractility σ0
Stiffness c1

Coupled 0D parameters P0D

Contractility σ0
Stiffness c1
Resting Radius r0

5.3.3 Coupled 0D Simulations: Reproducing Global Outputs of
the 3D Sigma-Simulations with 0D Simulations

Then for each sigma-simulation with parameters Xi, i = 1..2N2 + 1 and output
values O3D(Xi), we want to find a corresponding 0D simulation which has similar
global outputs values. To this end, we consider another set O ′ of global outputs
called the coupling outputs, and a set of 0D parameters P ′

0D called the coupled 0D

parameters.
We then find values Yi of the parameters P ′

0D for which the coupling outputs

values O ′
0D(Yi) of the 0D model simulations are the closest from the coupling outputs

values O ′
3D(Xi) of the 3D model sigma-simulations, with all other parameters being

the same in both models. This is what we call a coupled 0D simulation.
This is done by performing, for each 3D sigma-simulation k = 1..N2, an inde-

pendent parameter estimation of the 0D model parameters P0D using the method
presented in Section 5.2.3. The target values Ô ′ for the coupling outputs O ′ are
their values in the corresponding 3D sigma-simulation.

In our example, since we want to approximate outputs from the volume and
pressure curves (see Table 5.1), we need to approximate these curves with the 0D
model. We then chose a set of 4 coupling outputs O ′ from these curves, and a set of
3 coupled 0D parameters P0D of the 0D model to estimate, both listed in Table 5.2.

After performing the 5 parameter estimations for the 5 sigma-simulations, we
found 5 coupled 0D simulations with parameters Yi, i = 1..5 which have similar cou-

pling outputs values, which we report in Table 5.3. We also display the pressure and
volume curves of the 3D sigma-simulations and coupled 0D simulations in Fig 5.3.

It is worth noting there is no guarantee that we can find a set of parameters
for which the 0D simulation has exactly the same global outputs values as the 3D
simulation. In fact, we can observe in Table 5.3 that some coupling outputs do not
have the same values in a 3D sigma-simulation and the 0D corresponding coupled
simulations. We will see in a subsequent section how this obstacle can be overcome.
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Figure 5.3: Comparison between the volume (top) and pressure (bottom) curves of
the sigma-simulations simulated with the 3D model (red), and the corresponding
coupled 0D simulations (black). The 5 columns correspond respectively to the sigma-
simulations with parameters X0, X+

1 , X+
2 , X−

1 and X−
2 .

Table 5.3: Coupling outputs values for the 3D sigma-simulations with parameters
Xi and the corresponding coupled 0D simulations with parameters Yi

Vmax (ml) Vmin (ml) MP (Pa) DP (Pa)

X0 129 51.8 10278 7290
X+

1 129 35.5 10034 7590
X+

2 129 64.4 9556 7614
X−

1 129 69.8 10743 7906
X−

2 129 40.4 10761 6664

Y0 128 53.9 10318 7310
Y +
1 125 41.0 10107 7679
Y +
2 128 66.3 9591 7634
Y −
1 129 70.4 10759 7910
Y −
2 128 42.5 10806 6683

We point out that there are many possibilities to choose the sets of coupling

outputs O ′ and coupled 0D parameters. For example, another possibility would have
been to use directly the set of outputs to approximate O. This would have lead to
0D and 3D simulations with the same stroke volume, but not necessarily the same
minimal and maximal volumes. In general the sets of O ′ and O have to be related
so that it is possible to calculate the values of the outputs O from the values of the
coupling outputs O ′.

Similarly, there are many possibilities to choose the sets of coupling 0D param-

eters. Here we could also have set the resting radius in the 0D model to a value
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for which the "resting volume" is the same than in the 3D model, then estimate
only the stiffness and contractility of the 0D model. Empirically, it seems to be a
good thing to use more parameters to avoid ending in a local minimum during the
parameter estimation of the 0D simulations.

5.3.4 Parameter Mapping: A Function to Convert 3D Model Pa-
rameters into 0D Model Parameters

We now have a corresponding coupled 0D simulation with parameters Yi ∈ Ω0D for
each sigma-simulation with parameters Xi ∈ Ω3D. The second idea of the coupling
is to build a mapping φ between the 3D and 0D model parameters using the Xi and
Yi. This mapping will then be used to approximate global outputs values O3D(xi)

of the 3D simulations with parameters xi, from the values O0D(φ(xi)) of the 0D
simulations with parameters φ(xi).

The parameters Xi ∈ Ω3D were chosen in a specific way in Section 5.3.2: one
(X0) is at the center of the xi and there are two equidistant of X0 (X+

k and X−
k for

k = 1..N2) for each of the N2 axis, which are orthogonals from each other. However,
the Yi were independently estimated for each sigma-simulation so there is no such
relationship.

For the mapping φ we use here a degree 2 hypersurface which interpolates the Yi
in the points Xi. In dimension 1 this is equivalent to finding a degree 2 polynomial
which interpolates three specific points. In higher dimension (N2 in our case),
there is a straightforward formula because of the specific organisation of Xi along
orthogonal axis:





ck = ~(x−X0) ·
~dk

|| ~dk||2
, k = 1..N2

~F+
k =

(Y +

k
−Y0)+(Y −

k
−Y0)

2 , k = 1..N2

~F−
k =

(Y +

k
−Y0)−(Y −

k
−Y0)

2 , k = 1..N2

φ(x) = Y0 +
N2∑
k=1

ck · (ck · ~F+
k + ~F−

k ).

(5.1)

This formula leads to φ(Xi) = Yi for all the i = 1..2N2 + 1 sigma-simulations,
so the parameters of the 3D sigma-simulations are mapped to the parameters of the
coupled 0D simulations of the previous section. We will then use this mapping to ap-
proximate global outputs of 3D simulations with parameters xi from 0D simulations
with parameters φ(xi).

5.3.5 Approximating Global Outputs: Correcting Bias

Ideally in the computation of coupled 0D simulations in Section 5.3.3, we find 0D
simulations with the same coupled outputs values than the 3D sigma-simulations i.e.
O ′

3D(Xi) = O ′
3D(Yi). As illustrated in Table 5.3, this is not always the case and

the coupled outputs values can be different between the coupled 0D simulations and
the sigma-simulations. This also means that the direct approximation of the sigma-
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simulations output values O3D(Xi) by the values O0D(Yi) through the mapping has
a bias due to this difference.

In order to correct this approximation bias, both for the output values of
the sigma-simulations and all the subsequent 3D simulations with parameters xi,
we build a new degree 2 hypersurface ψ between the parameters of the sigma-
simulations Xi and the bias. The formula is exactly the same as in Equation 5.1
where the Yi are replaced by the bias values (O3D(Xi)− O0D(Yi)).

The final approximating function Cφ,ψ used to approximate the O3D(xi) is then
given by the following formula:

Cφ,ψ(xi) = O0D(φ(xi)) + ψ(xi) ≈ O3D(xi), (5.2)

and interpolates in particular the global outputs values O3D(Xi) of the sigma-
simulations.

5.3.6 Approximation Results

Results are given here for the approximation of the global outputs values O3D(xi) of
the 30 simulations with parameters xi. We compute the mean absolute error made
on the approximation of the 3 global outputs O, first with the biased approximation
with O0D(φ(xi)) (MAEBiased), then with the corrected approximation with Cφ,ψ

(MAECorrected). Results are reported in Table 5.4.
We observe a good approximation of the output values compared to the range

of values to be approximated, and that the corrected approximation makes a better
approximation of the outputs values than the biased approximation. This means the
hypersurface ψ indeed corrects errors due to the differences between the coupled 0D

simulations and the 3D sigma-simulations.

Table 5.4: Error in the approximation of the global outputs values O3D(xi) with the
various methods.

Global Output SV (ml) DP (Pa) MP (Pa)

Range 38.23 3010 2254

MAECorrected 1.59 56.4 137
MAEBiased 4.58 62.8 140
MAEHypersurface 2.09 511 408

MAEHypersurface-11 0.25 174 93

Finally, we compare our method to an interpolation with a degree 2 hypersurface
(MAEHypersurface). To this end we use the same formula than Equation 5.1, where
the Yi are replaced by the output values O3D(Xi). We see in particular that our
method performs better on all the outputs (MAECorrected < MAEHypersurface), in
particular on the pressure values. This is because the sigma-simulations are com-
puted only in the directions of maximal variations of the parameters σ0 and c1 (see
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Section 5.3.2). There is then a few directions of the parameter space in which the
variations of global output values could not be evaluated by the interpolation.

In order to compare more fairly to an interpolation method, we computed the
sigma-simulations in all the directions of the domain by selecting all the eigenvec-
tors in Section 5.3.2, leading to 2 · N1 + 1 = 11 sigma-simulations. We performed
the degree 2 interpolation from these 11 sigma-simulations and report the results
(MAEHypersurface-11). The degree 2 hypersurface performs better than our method
on the stroke volume and the mean pressure but not on the diastolic pressure.

We conclude that the approximation using the coupling of the 0D and 3D models
gives competitive approximation results compared to the classical regression meth-
ods, and with the lowest computational cost. This is because the variations of some
outputs (which rely on the same equations in both models) can be directly approx-
imated in some directions of the parameter space, without having to compute 3D
simulations in these directions. Here in particular, the pressure outputs variations
due to changes in the haemodynamic parameters C, Rp and Pve are correctly pre-
dicted with the coupling (especially the Diastolic Aortic Pressure (DP) variations),
even though no sigma-simulation was computed in the directions of maximal varia-
tion of these parameters (Section 5.3.2). As a consequence, only 5 sigma-simulations
are required to approximate all the outputs values within the parameter space with
the coupling, while the hypersurface interpolation needs 11 sigma-simulations to
achieve similarly accurate results.

5.4 Multi-Fidelity Optimization for Efficient 3D Cardiac

Model Personalisation

Here we present our multifidelity personalisation method for the 3D model. We
suppose a parameter estimation with CMA-ES was set up over N1 parameters P

of the 3D model as described in Section 5.2.3, some global outputs O, some target
values Ô and a population size m. The idea of the method is to replace the scores of
3D simulations in CMA-ES with approximate scores calculated through multifidelity

coupling.

We illustrate the method with the same set of 5 parameters P and 3 outputs
O as in Section 5.3 and the same number m = 30 for the population size. Target
values Ô for the optimization are respectively 60 ml for the Stroke Volume (SV),
7315 Pa for the Diastolic Aortic Pressure (DP) and 10152 Pa for the Mean Aortic
Pressure (DP). The normalisation coefficients for this problem (in the vector N

defined in Section 5.2.3.1) are 10 ml for the Stroke Volume (SV), 200 Pa for the
Diastolic Aortic Pressure (DP) and the Mean Aortic Pressure (DP).
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5.4.1 Multifidelity-CMA: CMA-ES Optimisation with the Multi-
fidelity Coupling

At each iteration, the algorithm CMA-ES asks for the scores of m simulations of
the 3D model, whose parameters xj are drawn from a multivariate distribution.

A first approach to replace the computation of the 3D simulations by 0D sim-
ulations is to perform the coupling described in Section 5.3 for each generation of
CMA-ES. This means recomputing sigma-simulations, coupled 0D simulations and
a parameter mapping for each set of xj . This was our approach (called Coupled-

CMA) in [Mollero 2016]. We showed that the optimisation could converge with
approximate scores, even as fast as with the real scores in some cases. We also
personalised 34 hearts with this method, thus exhibiting a practical personalisation
method with a lower computational burden than the original CMA-ES algorithm
(because only the sigma-simulations were computed for each generation instead of
the m 3D simulations).

Here we present an improved approach called Multifidelity-CMA. Instead of re-
computing the coupling for each generation, we approximate scores of 3D simulations
of successive generations of CMA-ES. Indeed, because the sets of parameters xnj and
xn+1
j asked by CMA-ES in two consecutive generations n and n+1 are usually close,

the function Cφ,ψ computed at the iteration n to approximate 3D simulations with
parameters xnj , can give a good approximation for 3D simulations with parameters
xn+1
j as well.

On the other hand, after a few iterations n+1..n+p, the points asked by CMA-
ES can be increasingly far from the sigma-simulations of the multifidelity coupling

performed at n. This can lead to approximations of the scores which are increasingly
inaccurate, making the optimisation impossible.

We then developed a criterion to evaluate the accuracy of the approximation for
a few successive iteration of CMA-ES, then decide at which step a new multifidelity

coupling has to be computed. This is done by iterating on the following steps:

1. Coupling step. At a generation n0 of CMA-ES, we first perform a multi-

fidelity coupling, as explained in 5.3.4. This leads to the computation of the
function Cφ,ψ.

2. Exploration step. Then, we perform N iterations n = n0 + 1..n0 + N of
the CMA-ES algorithm, where all the outputs O3D(x

n
j ) of the 3D simulations

with parameters xni are approximated by Cφ,ψ(x
n
j ).

3. Control step. For each of these N iterations, we compute a control-

simulation: the 3D simulation whose parameters on are the mean of the pop-
ulation parameters xnj .

4. Selection step. We compute our criterion M(on) as the Mahalanobis dis-

tance between the vector of outputs values O3D(on) of the control-simulation
and the set of vectors of approximated outputs values Cφ,ψ(x

n
j ).
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Figure 5.4: Criteria for selecting the generation for the next coupling step in the
selection step: as the 3D parameters of the simulations asked by CMA-ES (in
black) are increasingly far from the sigma-simulations (in green) of the coupling,
the predicted outputs values with 0D simulations (in orange) are increasingly far
from the real outputs values of the 3D simulations. We then recompute the coupling
when this distance is too high (M(on) > γ

√
|O|).

Finally we select the iteration n∗ at which the next coupling step is per-
formed with the following criteria:

n∗ = argmin
M(on) < γ

√
|O|

O3D(on)

The process is illustrated in Fig 5.4. The Mahalanobis distance M(on) is a
ratio between the approximation error on the control-simulation output values, and
the range of approximate outputs values for this generation. Roughly, this gives an
indication on "how accurate the coupling is" on the control-simulation, compared
to "how accurate it needs to be" so that CMA-ES can rank the scores accurately.

For example in Fig 5.5, we report for N = 10 iterations the scores of the control-
simulations on which were predicted through the function Cφ,ψ (in black), and the
real scores of these simulations (in blue). Simultaneously, we show the criterion
M(on) for these N iterations and the upper value (red line) γ

√
|O| for the criterion

(γ = 1.5 here).
We can see that the score prediction (thus the approximation of the outputs

O3D(x
n
j ) values by Cφ,ψ) is quite accurate for at least the 5 first iterations, and is

less accurate for n ≥ 6. Then, even though the score prediction seems as accurate
at the iteration 5 than at the generation 1, M(on) is higher. This is because the
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prediction error is more important relatively to the set of Cφ,ψ(x
n
j ) of the generation,

in particular in directions where the set has a lower variance.

Figure 5.5: Top: real scores (blue) and approximated scores (black) of the
N=10 control-simulations. Bottom: Value of the criterion M(on) of the control-
simulations.

In this example, the iteration 5 was selected to recompute the coupling (black
vertical line), which is also the iteration where the control simulation has the minimal
score over the 10 iterations. In some cases, later iterations can have a lower score
but are not selected because the criterion M(on) is too high for this iteration (such
as the iteration 7).

The upper bound γ
√

|O| for the criterion has an important impact on the op-
timisation behavior. If a high accuracy is imposed (small γ value), then one of the
earlier iterations of the exploration step is usually selected for the subsequent
coupling step, even if a later control-simulation has a lower score. This can lead
to a slow optimization. On the other with a small accuracy (high γ value) the CMA-
ES algorithm can end up in local minima because it performed the optimization on
inaccurate values.

Therefore the value of γ characterizes a trade-off between maximising the opti-
misation gain with a single coupling, and ensuring the approximation errors do not
impact the optimisation process. Because of the probabilistic nature of the algo-
rithm and the various non-linearities of the score function, the optimal value of γ
seems very dependent on the optimisation problem. We found γ = 1.5 to give good
convergence results in our experiments and the number n∗ of the iteration selected
in the selection step is 5.5 in average in our experiments.

5.4.2 Computational Considerations: A Parallelisable Method

The main computational cost in personalisation methods comes from the computa-
tion of the 3D simulations. In our implementation, each simulation of one heartbeat
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with the 3D model uses one CPU, during a time T3D which depends mostly on the
size of the mesh, and the heartbeat duration.

Most of the modern research is performed on computer clusters which can per-
form many tasks at the same time. In particular in our method, many steps can
be parallelised. To compare different optimization methods in a parallel setting, we
introduce here two metrics: the classic CPU Time which measures the total amount
of CPU resources used, and the Optimization Time which measures the duration of
the optimization in (real) time.

During one complete iteration of Multifidelity-CMA, the following steps are par-
allelised:

1. Computation of the 2N2 + 1 3D sigma-simulations: the simulations are per-
formed in parallel and each one takes a CPU Time T3D. The whole step has
then a CPU Time of (2N2 + 1) · T3D and an Optimization Time of T3D

2. Computation of the coupled 0D simulations : all the parameter estimations are
performed in parallel. Each one uses 4 CPUs during fixed time of around 3
minutes. The whole step has a CPU Time of (2N2 + 1) · 4· 3 minutes and an
Optimization Time of 3 minutes.

3. Computation of the N 3D control-simulations: the simulations are performed
in parallel and each one takes a CPU Time T3D. The whole step has a CPU

Time of N · T3D and an Optimization Time of T3D

In our example we have 5 sigma-simulation and 10 control-simulation, and the
3D simulation takes 15 minutes. Each iteration of Multifidelity-CMA then takes a
total CPU Time of 5*15+4*5*3+10*15 = 285 minutes and an Optimization Time

of 33 minutes.

5.4.3 Results: Comparison of Optimization Time, CPU Time for
4 Personalisations Methods

Here we compare the evolution of the CPU Time and the score S during optimization
on a typical case, with the 4 following optimization methods:

1. The Multifidelity-CMA method with 0D/3D coupling.

2. The Multifidelity-CMA method where the approximation of outputs is done
with a degree 2 hypersurface interpolation relying on 11 sigma-simulations (as
explained in Section 5.3.6).

3. The classic CMA-ES method with a population size of m = 30.

4. BOBYQA, which is another commonly used gradient-free optimizer for ex-
ample to solve personalisation problems [Seegerer 2015] or as a baseline to
evaluate other personalisation methods [Neumann 2016]. It uses trust region

method and forms successive quadratic models of the score function which
interpolates the points computed during optimization.
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Figure 5.6: Comparison of the evolution of the score S (top) and CPU Time (bottom)
during optimization for the four methods. BOBYQA is in red, the classic CMA-ES
is in blue, Multifidelity-CMA with the hypersurface approximation is in black and
Multifidelity-CMA with 0D/3D coupling is in green.

Results are shown in Figure 5.6. We can see that BOBYQA (red) is slow to
converge, but has also a low computational cost, both due to the fact that BOBYQA
performs only one iteration at a time. The normal CMA-ES (blue) converges faster
than BOBYQA, but with a very high computational cost because 30 simulations of
the 3D model are computed at each generation.

Finally, both our multifidelity approaches are very fast to converge, however
the Multifidelity-CMA which uses the 0D/3D multifidelity coupling is the one with
the lowest CPU Time (because only 5 sigma-simulations per complete iteration is
computed instead of 11, as explained in Section 5.3.6).

We conclude than the multifidelity approach of the CMA-ES algorithm leads to
considerable improvements in optimization speed, both from the original CMA-ES
algorithm and BOBYQA. Finally, the approximation of outputs with a 0D/3D mul-

tifidelity coupling instead of a generic hypersurface interpolation leads to additional
computational gains.

5.4.4 Results: Personalisation of a Database of 121 cases

We finally present results on a large database of 121 cases. For each patient, a
biventricular heart mesh geometry (between 10 000 and 15 000 nodes) was built
from the available MRI image and the boundaries of the myocardium were tracked
in the cine MRI images as described in [Jolly 2011] and [Wang 2013b]. This led to
the computation of the volume curve, then the value of the stroke volume. Pressure
measurements were also available for each heartbeat.

We applied our Multifidelity-CMA method to personalise the whole cohort.
The optimization started from a vector xstart of parameter values which has the same
values for every patient, except for Pve, which is set at the value DP − 2000Pa (see
Table 5.6). The algorithms ran for around 2.5 days, and the BOBYQA optimization
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was ran on the same problems during this period as well.
We consider a personalisation to be successful when a set of parameter values

was found with a score lower than l1 = 0.1, and acceptable if the score is lower than
l2 = 1. This means the personalised simulation matches the target stroke volume
within 1 ml and the pressure measurements within 20 Pa for the successful case,
and within respectively 10 ml and 200 Pa in the acceptable case. In other cases the
personalisation is said failed. We report the number of successful, acceptable and
failed cases on this database, for both methods in Table 5.5.

Table 5.5: Results of the personalisation on the database.

Result Successful Acceptable Failed

Multifidelity-CMA 113 6 2
BOBYQA 5 69 47

A high number of cases were successfully personalised (113 among 121 cases) with
our method. For the acceptable cases, and one of the failed case, the optimization
had converged in a local minima. For the other failed case, the CMA-ES algorithm
diverged to extreme parameter values during optimization. For BOBYQA, the con-
vergence was not yet reached in most of the non-successful cases (the score is the
lowest in the last iteration).

We finally report the mean and standard deviation of all the estimated parameter
values, in Table 5.6, as well as the norm of their relative variation |∆| compared to
the starting value during the optimization. This shows in particular that the stiffness
c1 did not change a lot during the personalisation process. The aortic compliance
C and the contractility σ0 are the parameters which changed the most.

Table 5.6: Statistics of the estimated parameter values and their variations during
the personalisation.

c1 (kPa) σ0 (MPa) Pve (Pa) R (MPa.m3.s) C (MPa-1.m-3)

xstart 50.1e1 68.8 DP-2000 54.1 18.0e-3

Mean 50.5e1 91.6 4760 68.2 8.17e-3

Std. 0.36e1 36.5 1340 16.3 2.41e-3

Mean |∆| 4.74% 53.9% 26.2% 35.8% 54.7%

5.5 Discussion and Conclusion

We presented a novel multifidelity approach involving a 3D cardiac electromechan-
ical cardiac model and a simplified 0D model, which relies on the same equations
but with simplifying assumptions. We developed an original multifidelity coupling

between the parameters of both models, which gives a good multifidelity approxima-

tion of global output values in 3D simulations from 0D simulations. We then used
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this approximation in an efficient parameter estimation process using the genetic al-
gorithm CMA-ES, in order to have an efficient multifidelity personalisation method

for the 3D model.
Our multifidelity coupling procedure computes a mapping between the parame-

ters of a few representative 3D sigma-simulations within the domain, and the param-
eters of corresponding coupled 0D simulations with the same output values. This is
done through parameter estimation on the 0D model parameters to compute coupled

0D simulations that have the same global outputs values than 3D sigma-simulations.
The parameter mapping is then derived through an interpolation method.

This enables to get fast and accurate approximations of 3D simulations with the
0D model. These approximations are then used in the parameter estimation of 3D
model parameters with CMA-ES, to replace 3D simulations while simultaneously
controlling the accuracy of the approximation and recomputing a coupling when
the accuracy is too low. Ultimately, this results into both an increase of the speed
of the 3D parameter estimation process and a decrease of the computational cost.

Our multifidelity approach slightly differs from more classic multifidelity meth-
ods [Kennedy 2000, Peherstorfer 2016] where the same parameter values are used
as input of both models, and the outputs of the low-fidelity model are corrected a

posteriori to fit the outputs of the high-fidelity model. Since the parameters of both
models are not exactly the same, we had to find a mapping between the parameters

instead of the outputs. This was tractable thanks to the fast parameter estimation
in the 0D model.

A first extension of the multifidelity coupling would be to use additional shared
parameters and equations in both models, to approximate a larger variety of outputs
of the 3D model (e.g. flow velocities, timings of valve opening and closing). Since
CMA-ES has already been proven successful on complex optimisation problems
with a larger parameter space, we expect the personalisation method to scale well.
A second extension would be to use the multifidelity personalisation to personalise
"geometrical" or "local" measurements which are outputs of the 3D model but
not of the 0D model (e.g. the septal shortening or the circumferential torsion).
Indeed, even though they cannot be approximated through the 0D/3D multifidelity

coupling, their values can still be locally approximated during personalisation using
the hypersurface interpolation.

Finally, the lower-fidelity approximation could be used not only for person-
alisation but also for other applications that require many simulations, such as
parameter sensitivity or uncertainty quantification (with Monte-Carlo methods for
example) and also for applications simulations that require the computation of many
cardiac cycles. In particular, a case where the multifidelity approach could be useful
is when the 3D model is coupled with a full-body circulation model as boundary
conditions. Indeed, studies associated to such models (for example on the influence
of physical exercise, increased heart rate and/or pressure loads) usually require
many heartbeats to be computed. This can be computationally intensive with the
3D model but, it could be done faster using 0D simulations, through a similar cou-
pling method. In this case where the number of coupled parameters would be high,
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additional constraints could be added in the parameter mapping to impose corre-
lations between parameters with different equations or values but a similar behavior.

Compliance with Ethical Standards : Informed consent was obtained
from the subjects and the protocol was approved by the local Research Ethics
Committee.

5.6 APPENDIX: Reduced Equations of the 0D model





k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+

(τc + µėc) = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3

C = (1 +
y

R0
)2

e1D =
C − 1

2

σ1D = Es
e1D − ec

(1 + 2ec)2

σpassive = 4(1− C-3)(c1 + c2C)

σviscosity = 4η(1 + C-6)Ċ

Σsph = σ1D + σpassive + σviscosity

ρd0ÿ = Pv(1 +
y

R0
)2 −

d0

R0
(1 +

y

R0
)Σsph

q = 4πR2
0(1 +

y

R0
)2ẏ =




Kat(PV − Pat) for PV ≤ Pat

Kiso(PV − Pat) for Pat ≤ PV ≤ Par

Kar(PV − Pat) +Kiso(Par − Pat) for PV ≥ Par

RpC ˙Par + Par − Pve = (Rp + Zc)q +RpZcCq̇

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Table 5.7: Mechanical equations of the 0D model

5.6.0.1 Mechanical Equations

The list of simplified equations of our 0D model is reported in Table 5.7. Equations
(a), (b), (c) and (f) are the same sarcomere and visco-elastic equations than Equa-
tions 3.1 & 3.3, which are calculated once for the whole sphere. C in equations (d),
(e), (g) and (h) denotes a component of the simplified Cauchy-Green deformation
tensor which depends only on y = R−R0. σpassive in equation (g) is the stress due
to the passive law and σviscosity in equation (h) is the stress due to an additional
viscous damping η, both expressed as a simple function of C (see [Caruel 2014] for
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the full derivations). In equation (i), Σsph is the sum of all the stresses applied to
the sphere. Equation (j) is the resulting equation of motion which, coupled with the
haemodynamic model (k) and the windkessel equation (l), gives the full system of
3 equations to be solved at each iteration.

5.6.0.2 Electrophysiology Equations

Assuming synchronous and homogeneous electrical activation (and thus sarcomere
force) means that all of the ventricle is depolarised simultaneously. This leads
to a rate of ventricular pressure rise during the isovolumetric contraction (resp.
isovolumetric relaxation) which is very close to the rate of build-up kATP (resp.
decrease kRS) of the active stress τc. However in 3D, this rate is also very dependent
on the time for the ventricle to be fully depolarised, which is roughly the QRS
duration.

f =





t− Td,global

QRSduration
when Td,global ≤ t ≤ Td,global +QRSduration

1 when Td,global +QRSduration ≤ t ≤ Tr,global

(1−
t− Tr,global

QRSduration
) when Tr,global ≤ t ≤ Tr,global +QRSduration

0 otherwise
|u|+ = kATP.fdepo

|u|− = kRS.(1− fdepo)

(5.3)

Table 5.8: Electrical activation in the 0D model

In order to correct this discrepancy between the models, we adapted the electrical
parameter u to take into account the QRS duration. We model the fraction fdepo

of the ventricle which is currently depolarised as a piecewise linear function of time
which depends on Td,global, Tr,global and QRSduration. Then the values of |u|+ and
|u|− in Equation (a) are adapted to depend on the value of fdepo as described in
Table 5.8.
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After building an efficient personalisation algorithm in Chapter 5, we built

personalised simulations of all the cases available in the MD-Paedigree project. We

then studied applications of these personalised simulations for longitudinal modeling

and analysis of the cardiac function, which we present through two studies, in this

chapter, and in Chapter 7.

The study in this chapter is a joint work on the CVD-UCL cohort with the Great

Ormond Street Hospital for Children, which was presented at the FIMH con-

ference in 2017 [Molléro 2017c]. For 21 patients, we build personalised simulations

of complete acquisitions at two instants (before and within 1h30 after ingestion of

a high-fat high-calorie meal) and we analyse the trends in personalised parameters

evolution in relation to real physiological phenomena during mild exercise. This en-

ables to build a simple multilinear law of cardiovascular parameter changes which

we show to be accurate for the fast simulation of the second timepoint.
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6.1 Introduction

The main function of the heart is to create the necessary blood flow through the
cardiovascular system, so that the oxygen supply of all the organs meets their needs.
When an organ or a part of the body needs more energy (such as the muscles during
exercise, or the digestive system during digestion), the heart rate and the blood flow
increase because the overall demand in oxygen is higher.

The main changes in the cardiac function leading to an increase of the cardiac
output are an increased heart rate, a decreased action potential duration and an in-
creased contractility (positive inotropy). When the cardiac output increase is small
(such as digestion or a mild exercise), the systolic pressure usually increases but
the diastolic pressure is constant, the latter being a consequence of the dilation of
the arteries which lowers the arterial resistance [Laughlin 1999]. Those qualitative
changes are well-known, but are rarely quantified in the context of 3D cardiac elec-
tromechanical models, in part because most studies only involve personalisations on
a single beat only (see [Chabiniok 2016] for a complete review).

A clinical study was performed in [Hauser 2016] to assess the cardiovascular re-
sponse to a food stress protocol, involving the ingestion of a high-energy meal after
fasting for 12h. From the data of this study, we propose a consistent estimation
of patient-specific 3D cardiac electromechanical models at two different instants of
the protocol (pre-ingestion and t+1h). We first calibrate both the biomechanical
parameters which are constant in time (such as the myocardial fibre directions)
and time-varying (such as the arterial resistance) from the pre-ingestion measure-
ments and heart motion extracted from the MRI. Then, we re-estimate values of
the time-varying parameters (contractility and haemodynamics parameters) to re-
produce changes in cardiac output and blood pressure at the second instant.

From these personalised simulations, we analyse the trends of the esti-
mated parameters in relation to known physiological changes during mild exercise
[Otsuki 2006, Albert 1952]. Finally, we build a law of evolution of the biomechanical
parameters which leads to arbitrary changes of both the simulated cardiac output
and stroke volume, while maintaining the same mean and diastolic pressure. The
good accuracy of this law, which we validate with cross-validation over the 21 pa-
tients, then opens the door to the fast simulation of hearts during digestion in future
patients.

6.2 Clinical Study and Data

More than 80 patients participated to a clinical study to assess the cardiovascular
response after the ingestion of a high-energy (1635 kcal), high-fat (142g) meal after
fasting for 12h, following the stress protocol in [Hauser 2016]. Informed consent was
obtained from the subjects and the protocol was approved by the local Research
Ethics Committee. An objective of the study was to analyze the evolution of blood
flow toward the various organs of the body. In particular, a short axis cardiac cine
MRI sequence was acquired before the ingestion, as well as measurements of the



6.3. Patient-Specific Cardiac Modeling 63

SP (mmHg) DP (mmHg) MP (mmHg) SV (mL) CO (L/min) HR (bpm)

Mean 117.13 60.95 84.16 92.11 6.17 67.65
Std. 9.99 6.45 5.98 19.69 1.34 10.25

Mean ∆ (%) - - - -0.10 17.58 17.76
Std. ∆ (%) - - - 11.43 17.74 13.19

Table 6.1: Statistics of the measurements and their evolution ∆ between T1 and T2
(in percentage of the value at T1). Systolic, Diastolic and Mean cuff Pressure (SP,
DP, MP), Stroke Volume (SV), Cardiac Output (CO) and Heart Rate (HR).

stroke volume, systolic, diastolic and mean cuff pressures at several time points
within 1h of the ingestion of the meal. Two instants are considered in particular: T1
which is before the meal ingestion, and the latest measurement time T2 around 1h
after ingestion, which also corresponds to the peak of the increased cardiac activity.

Overall (see Table 6.1), an increase of both the Heart Rate (HR) and the Cardiac
Output (CO) of around 17% was observed. There were no significative changes in
the values of the Systolic, Diastolic and Mean cuff pressure (SP, DP, MP) during the
1h process of digestion (beyond the intra-patient variability of the measurements).
Finally the Stroke Volume (SV) was constant on average but the measurement
showed a high inter-patient variability of the evolution (11%).

Additionally, we tracked the boundaries of the endocardium over the entire cine
MRI sequence acquired at T1, then extracted from this sequence a point at the apex
of the left ventricle and one at the top of the left ventricle septum. This was used
to calculate the Septal Shortening (SS) as the maximal shortening of the distance
between these two points during the cycle. It has an average value of −17% and a
standard deviation of 3.7% across the population.

6.3 Patient-Specific Cardiac Modeling

6.3.1 3D Electromechanical Cardiac Model

We performed 3D cardiac modeling for 21 of these patients. A high-resolution
biventricular tetrahedral mesh of the patient’s heart morphology was extracted as
in [Molléro 2015] from the pre-ingestion MRI at T1, made of around 15 000 nodes.
On this mesh, a myocardial fibre direction can be defined at each node of the mesh
(see Fig 6.1a), by varying the elevation angles of the fibre across the myocardial wall
from α1 on the epicardium to α2 degrees on the endocardium. In this paper, α2 is
set at the default value of 90o and α1 is a variable parameters in our experiments.

The depolarization times across the myocardium were computed with the Multi-
front Eikonal method [Sermesant 2007]. The APD is set from the Heart Rate with
classical values of the restitution curve and default values of conductivities are used
as in [Pernod 2011]. Myocardial forces are computed based on the Bestel-Clement-
Sorine model as detailed in [Chapelle 2012]. It models the forces as the combination
of an active contraction force in the direction of the fibre, in parallel with a passive
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(a) Fig 1a: 3D heart geometry with my-
ocardial fiber direction

(b) Fig 1b: Schema and rheological
model and of the windkessel model (fig-
ure from [Westerhof 2009])

anisotropic hyperelasticity driven by the Mooney-Rivlin strain energy. In this paper,
we only consider two main parameters of the model: the contractility σ0 and the
stiffness c1. Finally for the haemodynamics, the pressure in the cardiac chambers
are described by global values, and the mechanical equations are coupled with a cir-
culation model implementing the 4 phases of the cardiac cycle [Marchesseau 2013b].

In particular the pressure of the aortic artery Par (cardiac after-load) is mod-
eled with a 4-parameter Windkessel model [Westerhof 2009], which describes the
evolution of arterial blood pressure with the second-order equation of an electric
circuit (see Fig 6.1b). The blood inertia is modeled by the inductance L, the arte-
rial compliance by a capacity C and the proximal and distal (peripheral) resistances
respectively by a resistance ZC and Rp (see Fig 6.1b). Finally, the venous pressure
Pve models the mean pressure in the venous system. In the following, ZC and L are
fixed at a default value (see [Marchesseau 2013b]) while C, Rp and Pve are variable
parameters.

6.3.2 Longitudinal Parameter Estimation

After building the heart mesh geometry, parameter estimation is the next step in
order to have model simulations which reproduce the available data. Considering
a set of simulated quantities called the "outputs" O (such as the Stroke Volume or
the Mean Pressure for example), and a set of model parameters P , it consists in
finding adequate values x of the parameters such that the output values O(x) in the
3D model simulation fit the "target values" Ô available in the data. This is done
by performing an optimization of the parameter values x in order to minimize a
distance S(x, Ô) = ||O(x)− Ô||S between the simulated values O(x) and the target
values Ô (normalised to compare quantities with different units).

For each patient, we have here measurements of different varying quantities at
the two instants T1 and T2 (such as the stroke volume and the heart rate), so we
need to estimate different values for some cardiac model parameters (in particular
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the haemodynamic parameters) at these two instants. On the other hand, during
the time-scale of the study (1h on average), some parameters of the cardiac model
can be considered constant. This is the case of the epicardial fibre elevation angle
α1 for example, or the stiffness c1. In order to have consistent sets of estimated
parameters at these two different instants, we need to use the same values for these
parameters at these two instants.

To that end, we perform a two-step parameter estimation. First, we estimate
values of both the fixed and varying parameters from the data at T1. Then we reuse
the estimated values of the fixed parameters for T2 and estimate new values for the
varying parameters only, from the data at T2. As summarized in Table, we then have
two distinct Parameter Estimation problems : the estimation of 6 parameters values
in order to fit 4 target output values at T1 (with the heart rate of the simulations
set to its value at T1). Then the estimation of 4 parameters values in order to fit 3
target output values at T2 (with the heart rate at T2).

Estimated Parameters at T1 Target Outputs at T1

Stiffness c1 Septal Shortening
Epicardial Fibre Elevation Angle α1 Stroke volume at T1
Contractility σ0 Aortic Diastolic Pressure
Aortic Peripheral Resistance Rp Aortic Mean Pressure
Aortic Compliance C
Venous Pressure Pve

Estimated Parameters at T2 Target Outputs at T2

Contractility σ0 Stroke volume at T2
Aortic Peripheral Resistance Rp Aortic Diastolic Pressure
Aortic Compliance C Aortic Mean Pressure
Venous Pressure Pve

Table 6.2: Estimated Parameters and Target Outputs in the parameter estimations
at T1 and T2. Constant parameters whose values are reused for the estimation at
T2 are outlined in bold. The heart rate in the simulations for the estimation at T1
(resp T2) correspond to the measured value at T1 (resp T2).

The optimisation was performed with an extended version of the framework de-
scribed in [Mollero 2016]: the main algorithm is the CMA-ES genetic algorithm,
which asks at each iteration for the score of a high number of 3D simulations. In-
stead of actually computing all these 3D simulations, we only compute a few within
the parameter space (2N+1 where N is the number of estimated parameters). Then
we build a "low-fidelity" surrogate model [Peherstorfer 2016] from these simulations
which allows to approximate the outputs of the 3D simulations for many successive
iterations of the algorithm, without performing all the 3D simulations. This robust
and efficient "multifidelity optimization" allows a very fast exploration of large pa-
rameter sets with a low computational cost. In particular for the two problems at
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c1 (kPa) α1 (◦) σ0 (MPa) Pve (mmHg) Rp (MPa.m3.s) C (MPa-1.m-3)

Mean 54.2e1 -58.7 82.6 48.3 47.4 6.23e-3

Std. 27.7e1 2.94 34.0 12.9 17.2 1.98e-3

Mean ∆ - - -1.52% 6.93% -14.2% -7.30%

Table 6.3: Statistics of the estimated parameters and of the difference ∆ between
estimated parameters at T1 and T2

T1 and T2, we performed the optimization for the 21 patients simultaneously and
the convergence was reached in around two days.

6.4 Exploitation of Estimated Parameters

6.4.1 Analysis of Parameter Trends in the Population

Across the 21 patients and the two estimations, the average fit error on the target
output values are 1.9 mL for the Stroke Volume, 1% for the Septal Shortening,
and 0.1 mmHg for both the mean and diastolic pressures, with few outliers. As a
consequence of this step, we now have a population of 21 personalised patient hearts
at two instants. For each parameter, we report in Table 7.1 the mean and standard
deviation of its estimated values at T1 across the 21 patients, as well as the mean
of its evolution ∆ between the instants T1 and T2 (difference between the values
estimated at T2 and T1).

The first remark is that on average, the parameter Rp which models the arterial
peripheral resistance decreases by 14%. This was expected and corresponds to
findings in [Hauser 2016]. In a clinical setting the peripheral resistance is indeed
computed as the ratio between the blood flow and the blood pressure, and a similar
relationship can be derived in the model: as shown in Fig 6.2a the ratio (MP-
Pve)/CO is almost exactly equal to the peripheral resistance Rp in our simulations.
Across the population, since the cardiac output CO increases by around 17% but the
pressures are constant, the peripheral resistance has to decrease by a close number
(14.2% here) on average.

We then notice both an average increase of the venous pressure Pve and decrease
of the arterial compliance C. These two trends can be explained as to compensate
the decrease of the resistance and avoid a drop in the mean blood pressure. Indeed,
in the model, a decrease of Rp leads to a decrease of the "characteristic time"
τ = RC at which the blood pressure decreases from the systolic pressure to the
"asymptotic pressure" Pve. A decrease of Rp only leads then to a decrease of the
mean pressure. On the other hand, a decrease of C leads to an increase of the
"pulse pressure" (difference between systolic and diastolic pressure) since C links
an increase of arterial volume to an increase of arterial pressure with the formula
C∆P = ∆V (a less compliant aorta has a higher pulse pressure for the same stroke
volume). This contributes to the increase of the mean pressure (see Fig 6.2b), and
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it is also the case of the increase of Pve. Interestingly, we can note that these
two trends (decrease of the arterial compliance and increase of venous pressure)
in parameters correspond to actual cardiovascular phenomena which are commonly
observed during exercise [Otsuki 2006, Albert 1952].

(a) Fig 2a: (MP-Pve)/CO
as a function of Rp

(b) Fig 2b: SV/(MP-DP)
as a function of C

(c) Fig 2c: ∆σ0 (%) as a
function of ∆SV (%)

Finally, we can also observe a high correlation between changes in the Contrac-
tility σ0 and changes in the ejected volume, as shown in Fig 6.2c. This is also a
known phenomenon in cardiac dynamics, in particular at the core of the Starling
Effect.

6.4.2 Parameter Evolution Law

From this data and the estimated parameters, we then build a law f which, from
a given simulation, gives variations of the electromechanical parameters σ0, Pve,

Rp and C which leads to a new simulation with prescribed changes in heart period

(HP) and stroke volume (SV) while having same mean and diastolic pressures:
f(∆HP,∆SV ) = (∆σ0,∆Pve,∆R,∆C)

This is done by computing a multivariate regression between the changes (in
%) in Heart Rate and Stroke Volume and the changes in the estimated parameters
values at the two instants T1 and T2, for the 21 patients. We report in Table 6.4
the coefficients of this multivariate regression:

Table 6.4: Coefficient of the multivariate regression f

∆ σ0 ∆ Pve ∆ Rp ∆ C

∆ HP -0.02 -0.15 1.20 0.51
∆ SV 3.05 0.52 -1.04 1.19

The predicted variations of parameters with the variations of the heart period
(∆HP) are consistent with the mean variations across the population described
earlier. Interestingly with the coefficients of the second row (∆SV), we can also
note how the parameters have to change for an increase in Stroke Volume only with
constant pressures.
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We finally tested the accuracy of this law with a leave-one-out approach: for each
patient, we computed the regression f from the data and estimated parameters
of all the others patients. Then we changed the baseline parameters (at T1) of
this patient with the parameters predicted from f , and simulated the Pressure and
Stroke Volume values at T2. The obtained results were accurate: on average, the
target Stroke Volume at T2 was predicted within 1.9 mL and the mean absolute
variations in Diastolic and Mean Pressure were within 2.1mmHG, which is beyond
the variability of both the intra-patient and population variabilities.

6.5 Conclusion and Discussion

In this chapter we performed a consistent longitudinal estimation of cardiac model
parameters for 21 patient-specific hearts at two different instants within a 1h time
span, from clinical data. This was done through two successive parameter estimation
problems: we first estimated 6 parameters to fit the simulated Stroke Volume, the
Septal Shortening and the Mean and Diastolic Pressures to their values at the first
instant. Then we reused the estimated values of the fixed parameters at this step
and performed a second estimation of 4 parameters to fit values of Stroke Volume
and Pressures at the second instant. This was done in parallel for the 21 hearts in
around two days and a maximum of 150 simulations of the 3D model per patient.

From those personalised hearts, we identified relationships between the esti-
mated parameters and the simulated pressure and volume outputs, and linked their
evolution between these two instants to classical physiological phenomena. Then
we extracted a law which computes changes of electromechanical parameters from
changes of stroke volume and heart rate with constant pressure. This law allows in
particular to easily simulate the changes observed between the two instants without
having to perform the parameter estimation step at the second instant. This was
evaluated in a leave-one-out test and showed that it can predict accurately changes
in the model parameters.

A first direct continuation of this work would be to quantify (from further data)
to what extent this law holds for changes of cardiac outputs which are more impor-
tant (digestion can be seen as a ’mild’ exercise and it is known for example that
blood pressure rises during more intense exercises). Finally, for future patients, it
could also be interesting to evaluate to what extent the changes in both the Stroke
Volume and the Heart Rate can be predicted, and use our law to simulate the
predicted heartbeats.
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In this chapter we present a study which was performed on all the available com-
plete acquisitions in March 2017 from the CVD-UCL and CMP cohorts, which is a

joint work with the 3 clinical partners. In a first step we show that performing

Maximum A Posteriori estimation with prior probabilities leads to less variance in

the population of personalised parameters, in particular because specific (and usually

unique) values are promoted when there is no uniqueness in parameter estimation.

With this approach, the variability in the population only reflects variability in phys-

iological properties of the cases, and the parameters can be used for analysis of the

cardiac function. In a second step we project these personalised parameters onto

the main axis of a classifier between the CVD-UCL and the CMP cohorts, and we

show that for the 4 patients of the CMP cohort where we have a second timepoint,

the evolution suggests an improvement of the cardiac function under therapy. This

work was presented at the MICCAI conference in 2017 [Molléro 2017a].
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7.1 Introduction

Tridimensional Personalised Cardiac Models are of increasing interest for clinical
applications. They compute the myocardial motion under the influence of simu-
lated electromechanics and haemodynamics, in order to simulate a heartbeat. Their
equations usually depend on a large number of parameters, so after extracting a
patient’s heart geometry from clinical imaging, the first step to build a personalised

simulation is to estimate parameter values for which the simulation matches the
measured heartbeat.

Recent works have shown that the personalised parameter values can capture
intrinsic properties of the heart [Chabiniok 2012]. In particular, the simulations can
help predict the possible behavior of the heart to some changes associated to specific
conditions (such as exercise or drug treatment), leading to applications in therapy
planning [Crozier 2015]. Although these studies are very promising, progress is
facing three main obstacles:

• the difficulty to find large homogeneous cardiac databases where the same
information is available for all the cases

• the non-uniqueness of the parameter values due to the sparsity of clinical
measurements compared to the high number of parameters of the models

• the computational time required to run models (from few minutes to several
days for the most complex ones). This can be a burden in the parameter
estimation requiring many simulations, and even worse for large databases

Here we present a cardiac modeling study overcoming these difficulties by first build-
ing a homogeneous cohort of more than 61 patients including 22 controls and 39
children with various cardiomyopathies. For each case, MRIs were acquired, together
with pressure and heart rate measurements, resulting in 84 heart mesh geometry
and haemodynamic conditions. On the modeling side, we performed the estimation
of 6 parameters to reproduce the stroke volume and pressure measurements. This
was performed with prior probabilities on the parameter values, in order to over-
come the problem of the parameters uniqueness. Finally, the personalisation for the
full cohort was performed in a relatively short time (around 2 days), thanks to a
"multi-fidelity" optimization scheme which predicts changes in simulations of the
3D model with a much faster and simpler 0D model.

This led to more consistent parameter values across the 84 cases, on which we
studied the relationship to clinical condition and its evolution. In particular, us-
ing the follow-up data patients with cardiomyopathy we show that the evolution of
parameters naturally suggest and improvement of the heart condition under ther-
apy. Finally we demonstrate that these estimated parameters could also be comple-
mentary to the clinical measurements in order to characterise better the difference
between healthy and cardiomyopathy cases.
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7.2 Clinical Data

We used two different cohorts (C1 and C2) in this study. The two protocols were
approved by the local Research Ethics Committees. First 22 volunteers (C1) who
participated to a clinical study to assess the cardiovascular response after the inges-
tion of a high-energy (1635 kcal), high-fat (142g) meal after fasting for 12h, closely
following the protocol in [Hauser 2016]. In this study, short axis cardiac cine MRI
sequences were acquired before the ingestion and at one or more time points within
1h of the ingestion of the meal, in order to study the evolution of the blood flow
in the arteries. After the meal ingestion, both the heart rate and the cardiac out-
put increased by around 15%. However no substantial changes were observed in
the mean, diastolic and systolic pressures during digestion (compared to the intra-
patient variability of the measurement).

The second cohort (C2) consists in 39 children with various cardiomyopahies,
ranging from class I to IV on the Ross and NYHA classifications [Hsu 2009] for heart
failure symptoms, from two different clinical centers. The cine MRI was acquired
at their enrollment and for 4 of them, at follow-up (after a few months). The
most common symptom among this cohort is a dilation of the left ventricle (Dilated
CardioMyopathy) with low ejection fraction.

(a) Fig 1a: Typical mesh geometry
of a heart in the cohort (C1)

(b) Fig 1b: Mesh geometry of a pae-
diatric heart with Dilated Cardiomy-
opathy (DCM) in the cohort(C2)

We performed the cardiac modeling of a total of 41 different instants across the
22 volunteers of the first cohort, and at the 39 enrollment times and 4 available
follow-up times of the second cohort. This lead to a total of 84 complete set of cine
MRI, cuff pressure measurements and heart rates. See Figs.7.1a,7.1b for typical
heart geometries from each cohort.
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7.3 Personalised Cardiac Modeling

7.3.1 3D Electromechanical Cardiac Model

From each MRI, a high-resolution biventricular tetrahedral mesh of the patient’s
heart morphology (around 15 000 nodes) is generated as described in [Wang 2013b].
On this mesh, a myocardial fibre direction is defined at each node of the mesh by
varying the elevation angles of the fibre across the myocardial wall from α1 = −80

on the epicardium to α2 = 80 on the endocardium.
The depolarization times in the myocardium were computed with the Eikonal

model using default values of conductivities and the APD was computed from the
Heart Rate with classical values of the restitution curve. Myocardial forces are com-
puted based on the Bestel-Clement-Sorine model as detailed in [Marchesseau 2013a].
It models the forces as the combination of an active contraction force in the direc-
tion of the fibre, in parallel with a passive anisotropic hyperelasticity driven by the
Mooney-Rivlin strain energy. In this paper, we only consider two main parameters
of the model: the contractility σ0 and the stiffness c1.

Finally the mechanical equations are coupled with a haemodynamic model which
implements the 4 phases of the cardiac cycle, and describes the pressure in the car-
diac chambers with global values (see [Marchesseau 2013a] for implementation de-
tails). In particular, the pressure of the aortic artery is modeled with a 4-parameter
Windkessel model [Westerhof 2009], whose main parameters are blood inertia L, the
arterial compliance C and the proximal and distal (peripheral) resistances ZC and
Rp. A venous pressure Pve has to be set as well. In the following, ZC and L are
set at a default value (see [Marchesseau 2013a]), while C, Rp and Pve are estimated
parameters.

7.3.2 Parameter Estimation with Priors

A typical parameter estimation problem is composed of simulated quantities called
the "outputs" O (such as the simulated Stroke Volume and Mean Pressure), and a
set of model parameters P . The estimation consists in finding adequate values x of
the parameters such that the output values O(x) in the 3D model simulation fit the
"observed values" from the clinical measurements Ô of interest.

This is done by minimizing a cost function (or score) S(x, Ô) between the
simulated values O(x) and the target values Ô:

S(x, Ô) = ||O(x)− Ô||2 + λR(x)

where R(x) is a penalty (or regularisation) term, weighted with λ, that can be
formulated as a quadratic form with mean value µR and covariance matrix ∆:

R(x) = (x− µR)∆
−1(x− µR)

T

In Bayesian Inference, this is equivalent to finding the maximum a posteriori
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with a Gaussian prior and a Gaussian likelihood.
Finally, since the parameters are positive, it is more meaningful to consider that

the logarithm of the parameter values follow a Gaussian distribution rather than
the parameter themselves, so the optimisation is performed over the logarithm of
the parameters values.

In this paper, we focus on the set of 5 parameters P : c1, σ0, Rp, C and Pve, in
order to fit 3 target outputs to their clinical measurements, which are the Stroke

Volume SV the Aortic Diastolic Pressure DP and Mean Pressure MP.
We then performed two different personalisations: first, one (P1) without priors

on the parameter values during the optimization (λ=0). This allowed us to have a
first assessment of the variability of the parameters and of the values which lead to
the best simulations. It was then followed by a second personalisation (P2), with
priors on the values of both c1 and C equipped with diagonal covariance matrix:

µR =

[
µc1
µC

]
,∆ =

[
δc1 0

0 δC

]
(7.1)

We observed in P1 that simulations with c1 around 500 000Pa led to good
behavior compared to the dynamics observed in echocardiographic images. For the
arterial compliance C, we used a prior based on the mean value of 1.8e−8 S.I. as
reported in [Laskey 1990].

Therefore µc1 = ln(500 000) = 13.12, δc1 = 0.5 and µC = ln(1.8e−8) = −17.83,
δc = 1.

7.3.3 Efficient Multi-Fidelity Optimization

The optimization in each personalisation problem was performed with a "multifi-
delity" approach [Peherstorfer 2016] based on our recent work in cardiac model per-
sonalisation [Mollero 2016], where the outputs of the 3D model are approximated
during the optimization by simulations from a very fast low-fidelity model called
"0D model", made of around twenty equations only.

As explained in [Mollero 2016], a small number of 3D "sigma-simulations" can
indeed be used to approximate many 3D simulations in a large parameter space. This
is done by first finding similar 0D simulations with the same outputs of interest (such
as the pressure and stroke volume), then building a mapping between the parameters
of the corresponding 3D and 0D simulations.

This multifidelity method was here adapted for the two personalisation problems,
where the 0D and the 3D models share the same haemodynamic variables Rp, C
and Pve from the Windkessel model. In this specific case, the variations of pressure
and stroke volume with respect to these variables are very similar, and we found to
have better approximation results by only computing a mapping between c1 and σ0
(as opposed to all the personalised parameter in our original approach) to the 0D
model parameters.

As a result, our Multi-Fidelity Optimization Method performs the optimization
of 3D parameters based on 0D model approximations which are faster to compute.
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Table 7.1: Statistics of the estimated parameters in the estimations (P1) and (P2)

σ0 (MPa) c1 (kPa) Rp (MPa.m3.s) C (MPa-1.m-3) Pve (mmHg)

Mean (P1) 156 37.8e1 48.0 6.13e-3 44.6
Log-Mean (P1) 18.51 12.60 17.62 -18.96 8.62
Log-Std (P1) 0.98 0.66 0.37 0.32 0.44

Mean (P2) 71.1 4.44e1 84.1 7.29e-3 32.01
Log-Mean (P2) 18.03 12.98 18.2 -18.77 8.32
Log-Std (P2) 0.41 0.22 0.26 0.25 0.27

It only requires the computation of successive sets of 5 simulations of the 3D model
(the sigma-simulations). In particular, the simultaneous personalisation (P1) of the
84 hearts was completed in around 36 hours, and in 48 hours for (P2).

7.4 Results

In Table 7.1 we report the mean of both the estimated values (Mean) and logarithmic
estimated value (Log-Mean), as well as the standard deviation of the logarithm of
the estimated values (Log-Std).

As expected, we can notice that the standard deviation of all the parameters in
the population is reduced between (P1) and (P2). Interestingly, the goodness of fit
was not impacted in the personalisation by the use of prior probabilities on c1 and
σ0 in (P2). Most cases are fitted under 1.2ml for the stroke volume and 0.5 mmHg
for the pressure measurements with few outliers. This means that the prior could
be stronger in order to further reduce the variability while maintaining simulations
which match the clinical measurements.

7.4.1 Application to Longitudinal Analysis of the Cardiac Function

From a clinical point view, an interesting application of the modeling is to charac-
terise the state of the heart function, beyond the information given by the clinical
measurements and the imaging. The underlying idea is that some of the estimated
parameters values can capture properties of the heart which cannot be directly
measured from standard imaging (such as the myocardial stiffness). This additional
information on the heart could contribute to the diagnosis, by comparing the esti-
mated parameters with the parameters of other known cases.

To analyse the relationship between the parameter values and the clinical condi-
tion, we performed a linear discriminant analysis (LDA) over the parameter values
and the heart rate, in order to classify between the two cohorts. This leads to the
computation of two vectors w and b such that given a vector X of parameter x, the
predicted cohort is C2 if ATX + b > 0, and C1 otherwise.

The vector w corresponds to the most discriminative direction in the population
between healthy and cardiomyopathy cases. In this context, this axis could be a
candidate to characterise whether the cardiac function at a given time is closest to
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a healthy heart, or a heart with cardiomyopathy, based on the parameters values
observed in the two cohorts.

For example, we display in Fig 7.2 the projection of the parameters on this vector
(x-axis) and a orthogonal direction to w. Most healthy cases (dark blue dots) are
on left side of the black line (w < 0) and most cardiomyopathy cases (red dots) are
on the right (w > 0).

Figure 7.2: Projection of the parameter on the main direction w of a LDA classifier
between the healthy cases (dark blue dots) and cardiomyopathy (other dots) cases
(x-axis) and an principal orthogonal direction of this vector (y-axis). The dots in
light blue, brown, orange and green correspond to 4 patients for which the data was
available both at baseline (small dot) and follow-up (larger dot).

Interestingly, this could also help to quantify the evolution of the patient’s heart
condition under the influence of the pathology and the therapy. Indeed, for all the
cardiomyopathy cases for which we have the follow up data, we can notice a decrease
in the coordinates along the horizontal axis (see the pairs of brown, light blue, green
and orange dots. The larger dot is the follow-up). This could be interpreted as an
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improvement of the cardiac function with the therapy, which is at least becoming
closer to the condition of an healthy heart. One of the cases (in light blue) is on the
"healthy" side of the classification at follow-up.

Finally, the predictive power of such a classifier can be assessed, through a leave-

one out cross-validation. This is done by training the classifier on all the cases but
one, and predicting the diagnosis for the remaining case. If we perform the LDA over
the 5 estimated parameters and the heart rate, the number of prediction errors is 11.
The same classifier trained on the 3 clinical outputs (stroke volume and pressures)
and the heart rate makes 9 prediction errors. However, if we train the classifier with
both the 5 estimated parameters and the 3 clinical measurements and the heart rate,
it only makes 6 classification errors.

In this context, a possible explanation is that the estimated parameters were able
to capture a complementary information on the cardiac function, different from the
clinical measurements of volume and pressure only, both through the 3D personal-

isation and the comparison with the other values estimated in the population. This
information was then used by the simple linear classifier to improve its accuracy in
the diagnosis of a patient.

7.5 Conclusion and Discussion

In this chapter, we presented a cardiac modeling study based on the estimation of 5
model parameters from 3 clinical measurements of stroke volume and pressures, on
a large cohort of 61 patients. We used recent ideas developments in "multi-fidelity"
personalisation, to drive a very fast and computationally efficient estimation of these
parameters with priors. Both the personalisations with and without priors were per-
formed simultaneously for all the patients on our cluster, and converged respectively
in less than 36 and 48 hours. We showed that the use of priors during optimization
reduces the variability of the estimated values in the population, leading to more
consistency for further applications.

We then analyzed the estimated parameter values with respect to the clinical
conditions of the patients. A linear discriminant analysis (LDA) was used to charac-
terise the cardiac function the cases along the most discriminative axis between the
two cohorts. For cardiomyoathy patients, we showed that the evolution in time along
this axis suggests that their cardiac function is improving under therapy. Finally,
we also demonstrated how the estimated parameter values could be complementary
to clinical measurements in the context of diagnosis.

A direct extension of this study is to estimate values for more model parameters,
from a larger set of measurements such as the flow or the myocardial strain. On
the cardiomyopathy point of view, this could help to further discriminate between
the various types of cardiomyopathy, with applications in risk stratification of heart
failure. Another interesting direction of study is the further analysis of longitudinal
data in order to better understand both the short-term and long-term variabilities
in cardiac function, with applications on the prediction of disease evolution and
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therapy planning.
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After partially tackling the problem of parameter non-observability in per-

sonalisation with the use of priors in Chapter 7 and the corresponding study

[Molléro 2017c], we propose in this chapter a general approach to answer the fol-

lowing questions:
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• Given a database of cases and measurements, which parameters or parameter

directions can be estimated (i.e. are observable)?

• Can we select a reduced and fully observable parameter subspace for personal-

isation, which also makes sense from a modeling point of view?

• Can we use population-based statistics on personalised parameter values to

constrain cases with a different set of measurements in this subspace?

We introduce a method called Iteratively Updated Priors which performs suc-

cessive personalisations of all the cases in a population, where the prior probability

distribution at each iteration is set from the distribution of personalised parameters

in the previous iteration. With this method, parameter values in unobservable direc-

tions are progressively "gathered" and "grouped" to values which are closer to the

prior mean, which simultaneously makes the penalty stronger in these directions. At

convergence, parameters in the population lie on a linear subspace of reduced dimen-

sion (with less unobservable directions) and the prior distribution, which we call

population-based, correspond to the distribution of parameters in the population.

Applied to the personalisation of the 137 complete acquisitions with the 0D

model, we extract from an initial space of 6 parameters, a linear subspace of di-

mension 4 based on 5 parameters. This space is coherent from a modeling point of

view and sufficient in the sense that there is a unique set of parameter values for each

complete acquisition in our database. We then use the resulting population-based

priors in this subspace to personalise a database of 811 acquisitions with missing

and heterogeneous measurements, and we observe that the use of priors leads to a

form of imputation in the parameter space in cases where measurements are missing.

We argue that because our priors are estimated from personalised parameters of 137

complete acquisitions, in a reduced and sufficient subspace, we achieved one of the

most consistent parameter estimation possible in this dataset.

Finally we believe that through the selection of a subspace of sufficient dimension,

the algorithm also helps find a subspace of maximal dimension in which parameters

are completely observable from this specific dataset. In this context we believe that

the proposed approach, though it requires supervision for the selection of parameters

with physiological relevance, possibly provides a complete framework to tackle the

problem of observability in personalisation from large databases.

8.1 Introduction

Personalised cardiac models are of increasing interest for clinical applications. To
that end, parameter values of a cardiac model are estimated to get a personalised

simulation which reproduces the available measurements for a clinical case. Then
the parameter values are used for analysis, for example comparing values between
personalised hearts could help classify between pathologies and predict evolution.

Most cardiac models depend on many parameters, especially in 3D models where
each parameter can take a different value at each node of the mesh. The number
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of parameters can be up to hundreds of thousands while on the other hand for an
individual patient, the available clinical data is usually sparse and typically consists
of a set of global measurements (such as ejection fraction, systolic and diastolic
pressure) and possibly some imaging data with a considerable degree of noise or
blurriness. Consequently, many sets of parameter values can lead to a simulation
which can reproduce the available clinical data. The parameter estimation problem
is an ill-posed inverse problem and all the parameters cannot be uniquely estimated
from the measurements only.

A classical technique to estimate relevant parameters in this context is the use
of prior probabilities over the parameter values in Bayesian inference. In this frame-
work, parameters values come from a (usually Gaussian) prior probability distribu-
tion, which represents some knowledge or beliefs about the distribution of parame-
ters. Then, given a set of measurements, a vector of Maximum A Posteriori (MAP)
parameter values is estimated, which realises an optimal trade-off between its like-
lihood in the prior probability distribution and the error of fit of the simulation.
The set of Maximum A Posteriori values is usually smaller than the set of values
for which the simulation fits the measurements and possibly unique. A challenge
to estimate relevant parameters is then to define accurately the prior probability

distribution, which should be ideally as close as possible to the "true" distribution
of parameters.

Here we explore an original approach, which we name Iteratively Updated

Priors (IUP), which consists in performing successive personalisations with priors,
where the priors distribution is set from the distribution of personalised parameters
in the previous personalisation. The rationale is twofold: first, if the algorithm con-
verges, all the cases are personalised through a MAP where the prior distribution
is the distribution of the population parameters itself. Intuitively this opens the
possibility, for some cases where the value of a parameter is unobservable from the
available measurements, to guide the estimation of this parameter value from other
cases in the database where the value was observable. Secondly, when there are
directions in the parameter space in which the simulated measurements do not vary
(i.e. an unobservable parameter direction), the use of priors promotes the estima-
tion of parameter values which are closer to the prior mean, which in turn makes
the penalty (from the prior) stronger in this direction at the next personalisation.
Intuitively, this process will tend to group parameters onto directions which are
observable, and reduce the spread into directions which are not. In practice, we
will see this algorithm leads the parameters to lie on a linear subspace of smaller
dimension (See Figure 8.1).

In the first section we present the IUP algorithm in relation to two different math-
ematical frameworks. First, we express the Maximum A Posteriori (MAP) parame-
ter estimation in the context of Bayesian inference. Secondly, we use the Iteratively

Reweighted Least Square (IRLS) algorithm from sparse regression to show that the
IUP algorithm, when it converges, performs the minimisation of a population-wide

cost function with a sparse regulariser on the number of dimensions of the parameter

space. We introduce two types of updates of the parameters of the (Gaussian) prior
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Figure 8.1: Schematic representation of parameter estimation when the problem
is ill-posed. In this toy example, both the contractility and the stiffness are esti-
mated from values of the stroke volume (SV). Both have an influence on the stroke
volume (SV) so there are isolines of stroke volume (in grey) on which the value
of the stroke volume is the same. Image a: estimation without priors, the esti-
mated values (green) for each case can be anywhere on an isoline (grey). Image
b: the estimation is performed with a (gaussian) prior (the gaussian covariance
is in blue), the estimated values are grouped closer to the prior mean. Image c:
the Iteratively Updated Priors (IUP) algorithm performs successive estimations
where the prior is set from the distribution of estimated parameters at the previous
iteration. This leads the parameters to lie on a reduced linear subspace (orange).

probability: "Full Matrix", where no assumption is made on the distribution and
the covariance matrix, and "Diagonal Matrix" where the covariance matrix is
supposed diagonal, which assumes independence of parameters in the distribution
of the population. We demonstrate that in the first case the algorithm leads to the
automatic selection of parameter directions in which parameter values are set to a
constant value in the population, and in the second case to the automatic selection
of parameters which are set constant.

In the second section we present results of the IUP algorithm on the database of
137 complete acquisitions where the same 4 measurements are available. We perform
the estimation of 6 parameters of the 0D model likely to vary in this population,
which also makes the problem ill-conditioned. We observe that the IUP algorithm
leads to a trade-off between the number of dimensions of the final parameter set,
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and the mean error of fit of the 4 measurements across the whole database of per-
sonalised simulations. Then we show that if we impose a high goodness of fit of the
personalised simulations, the algorithm leads to the selection of a linear subspace of

minimal dimension in which for each case of the database there is parameter values
where the simulation fits exactly the measurements. We discuss how this algorithm
can be used to find a relevant subspace for personalisation from the modeling point
of view. Finally we extract a relevant subspace of dimension 4, based on 5 parame-
ters out of the original 6, in which there is a unique set of parameter values for each
case of the database.

In the last section we use the reduced subspace extracted in Section 2 and the
population-based priors built in this subspace to perform personalisation of a larger
database of 811 hearts. In this database, measurements reported by the clinicians
can be missing or heterogeneous. Because we use priors, estimated parameters are
well conditioned, and when measurements are missing, the algorithm performs a
form of imputation in the parameter space by selecting the most likely parameter
set according to the priors. Since the priors are computed from the population of
137 cases where all the measurements are available, in a space of minimal dimension

for the personalisation of these 137 cases, we believe that the parameter estimation
presented in this section is one of the most consistent personalisation which was
possible to achieve on such heterogeneous dataset.

8.2 Population-Based Priors

In this section we introduce the personalisation framework, based on the estima-
tion of a Maximum A Posteriori (MAP) with prior probabilities. In order to get
relevant values for each case through MAP estimation, the prior probability has
to be relevant. Ideally, it should be the "true" underlying probability distribution
of parameters in the population. We introduce here the Iteratively Updated Priors

(IUP) algorithm, which performs successive personalisations of the whole popula-
tion, where the prior at each step is set from the distribution of the personalised
parameters at the previous step.

First we present the MAP estimation of personalised parameters or a single
case (Section 8.2.1). Then we formulate the Iteratively Updated Priors algorithm
as successive maximization of the personalised parameter probabilities under two
different set of variables (Section 8.2.2). We explicit the equations of the prior
parameter update in two different cases with different assumptions on the shape of
the distribution (Section 8.2.3) and the actual equations which are minimised within
our optimisation framework with the genetic algorithm CMA-ES (Section 8.2.4).
Finally we present a link between the IUP algorithm and the Iteratively Reweighted

Least Square algorithm for sparse regularisation, and show that the IUP algorithm
performs the minimisation of a population-wide cost function with a penalty on
the rank of the set of personalised parameters. We explicit the cost function and
illustrate its interpretations for the two different updates (Section 8.2.5).
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8.2.1 Maximum A Posterior Estimation of Personalised Parame-
ters

We consider a cardiac model M and a set of simulated quantities called the outputs

O, such as the ejected volume, the mean ventricular pressure. We then consider a
subset PM of varying parameters (such as the contractility, the aortic resistance)
of the model, while the other model parameters P ′

M are supposed fixed. Given a
vector x ∈ ΩM of values of the parameters PM, we note OM(x) the values of the
outputs O in the simulation of M.

With this notations, personalisation consists in estimating parameter values X ∈
ΩM for which the outputs values OM(X) are consistent with some observed values
Ô of these outputs. This is an inverse problem, which can be tackled by different
methods (see the review of [Chabiniok 2016]).

We formulate the problem as the estimation of a Maximum A Posteriori in
Bayesian inference. With Bayes’ theorem, the posterior probability P (x|Ô) of pa-
rameter values considering the observed output values Ô is proportional to the
product of the conditional likelihood P (Ô|x) and the prior probability P (x):

P (x|Ô) ∝ P (Ô|x)P (x) (8.1)

In this work, we use Gaussian distributions for both the likelihood and the prior
probability: {

P (Ô|x) ∝ e−
1

2
(O(x)−Ô)TΣ−1(O(x)−Ô),

P (x) ∝ e−
1

2
(x−µ)T∆−1(x−µ),

(8.2)

which correspond to the assumptions that first, the observed values Ô are the sum
of the outputs values O(x) and a Gaussian noise with covariance Σ. Second, the
underlying probablity distribution of the model parameters is a Gaussian with mean
µ and covariance ∆. Finding a Maximum A Posteriori (MAP) consists in finding
(one of) the parameter values which has the highest posterior probability:

X = argmaxxP (x|Ô). (8.3)

This can also be interpreted as finding a maximum of the joint probability P (x, Ô)

of x and Ô with a uniform prior P(Ô) on Ô, thanks to the formula:

P (x, Ô) = P (x|Ô)P (Ô). (8.4)

8.2.2 Iteratively Updated Priors (IUP)

In the following we consider a population of i = 1..n cases to be personalised, we
note Ô = (Ô1, ..., Ôn) and X = (x1, ..., xn). We introduce the algorithm called Iter-

atively Updated Priors (IUP) which consists in successively estimating personalised
parameters Xi with the MAP estimation, and re-estimating the prior parameters
(µ,∆) as the maximum likelihood of these parameters considering the estimated
personalised parameters Xi:
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• Step 1: Personalisation

For each case i, find Xi = argmaxxP (xi, Ôi|µ,∆). This consists in per-
forming the MAP estimation in Equation 8.3 for each case with current
µ and ∆, which is the estimation of personalised parameters with a given prior.

• Step 2: Re-estimation of the Prior

Find (µ,∆) = argmax(µ,∆)P (X |µ,∆).
This consists in finding the most likely values (maximum likelihood estimation)
of µ and ∆ given a set of personalised parameters X .

When the algorithm converges, the prior probability distribution with the re-
sulting parameters (µ∗,∆∗) is called a population-based prior based on the Ôi.

8.2.3 Explicit updates formulas for µ and ∆ in two cases.

We explicit here the update in the Step 2 of the IUP algorithm in which µ and
∆ are set to the solutions of (µ,∆) = argmax(µ,∆)P (X |µ,∆). We consider two
formulations of the Gaussian prior probability:

• First, a case (Full Matrix) where no assumptions are made on the covariance
matrix ∆ of the Gaussian distribution.

• Second, a case (Diagonal Matrix) where we suppose that ∆ is diagonal.
This is equivalent to the (simplifying) assumption that parameter values are
independent from each other in the population.

The solutions of the maximum likelihood estimation of µ and ∆ in the two cases
are1:

• Update of µ: In both cases, µ is set to the mean of personalised parameters
xi:

µk =
1

n

n∑

i=1

Xk−1
i . (8.5)

• "Full Matrix" update of ∆: In this case the minimisation leads to set ∆

to the covariance matrix of the personalised parameters:

∆k =
1

n

n∑

i=1

(Xk−1
i − µk)(Xk−1

i − µk)T (8.6)

1A practical derivation of the maximum likelihood estimation of the covariance ma-
trix can be found in https://people.eecs.berkeley.edu/˜jordan/courses/260-spring10/other-
readings/chapter13.pdf
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• "Diagonal Matrix" update of ∆: In this case the minimisation leads to set
∆ to the diagonal part of the covariance matrix of the personalised parameters:

∆k = Diag(
1

n

n∑

i=1

(Xk−1
i − µk)(Xk−1

i − µk)T ) (8.7)

8.2.4 Practical Implementation of the MAP Estimation.

In the following, we use a constant Σ = γdiag(N ) for the noise model in 8.2, where
N is a normalisation vector whose coefficients are explicited later.

We find the MAP of Equation 8.3 through the minimization of the negative

log-likelihood −log(P (x|Ô), µ,∆). It is equivalent to minimizing the following regu-

larized cost-function Ŝ:

Ŝ(x, Ô, µ,∆) = S(x, Ô) + γR(x) (8.8)

with {
R(x) = (x− µ)T∆−1(x− µ),

S(x, Ô) = ||(O(x)− Ô)⊘ N ||2, (8.9)

where ⊘ is the Hadamard (coordinate-by-coordinate) division. We call S(x, Ô) the
data-fit term and R(x) the regularisation term.

We perform optimisation of this function with a derivative-free algorithm called
CMA-ES, which stands for Covariance Matrix Adaptation Evolution Strategy. It
asks at each iteration n for the scores of m points xi ∈ ΩM (a generation), drawn
from a multivariate distribution with covariance Icn and mean Imn . Then, it combines
Bayesian principles of maximum likelihood with natural gradient descent on the ranks
of the points scores in the generation to update both Icn and Imn .

For each MAP estimation, we perform from 50 to (maximum) 250 iterations of
CMA-ES with a population size of 20, and the algorithm also stops if all the values

of
√
Ŝ, (which we call the data-fit term) within the search space are in an interval

smaller than 0.01.

The algorithm is stochastic (because the parameter values of the generation
samples are drawn randomly). It iteratively enlarges its search space until it contains
a minimal solution, then reduces the search space according to the best members
of each generation (drawn randomly). As a consequence it does not converge to
the same solution when the possible solutions are not unique. Because of this it
can be used to give an (empirical) evaluation of the "non-uniqueness variability" by
repeating the personalisation process multiple times.

Finally for practical reasons, since all the parameters of our model are positive,
we always consider in the following the logarithm of parameter values instead of
their values. This enables in particular to not have the optimisation algorithm test
negative (non-physical) values in this step.
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8.2.5 Link with Sparse Regularization

Beside the Bayesian interpretation, the IUP algorithm has also strong links with the
Iteratively Reweighted Least Squares (IRLS) algorithm in sparse regression. When
the IUP converges, we can show (see a more complete derivation in APPENDIX)
that it performs the minimization of a population-wide cost function, with a penalty
on the rank of the set of personalised parameters :

S (X , Ô) =
1

n

n∑

i=1

S(xi, Ôi) + γD (8.10)

Where D is the rank (number of non-zero eigenvalues) of ∆∗, which is the co-
variance of the set of personalised parameters at convergence. The minimisation of
D thus correspond to the minimisation of the number of dimensions of the set of

personalised parameters. With the Diagonal Matrix assumption, the covariance
matrix eigenvectors are aligned with the coordinate axes so in this case, the IUP
algorithm minimises the number of parameters which do not have a constant value

in the population of personalised parameters. In order to illustrate the difference be-
tween the two types of updates, we display in Figure 8.2 a schematic representation
of the two different behaviours on the toy example presented in Figure 8.1.

8.3 Results on the 137 Complete Acquistions and Appli-

cation to Parameter Selection.

In this section we present results on the personalisation of the 137 complete acqui-

sitions, with the 0D cardiac model. We consider a set P0D of 6 parameters of the
model, and a set of 4 outputs O listed in Table 8.1 for which the values are available
for all the acquisitions.

The normalisation coefficients for this problem (in the vector N defined in
Section 8.2.4) are 10 ml for the Maximal Volume (MV) and the Stroke Volume
(SV), 200 Pa for the Diastolic Aortic Pressure (DP) and the Mean Aortic Pressure
(DP). With this normalisation, an error of fit

√
S(x, Ô) lower than 1 (resp 0.1),

means a personalised simulation matches volume measurements within 10 ml (resp
1 ml) and pressure measurements within 200 Pa (resp 20 Pa), which can qualitatively
be considered as acceptable (very good).
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Figure 8.2: Behaviour of the algorithm for the two different updates (See legend in
Figure 8.1). Image a: with the Full Matrix updates, there is no assumption on
the covariance matrix so the prior distribution at the next iteration is the closest
gaussian distribution (in terms of maximum likelihood) to the estimated parameters
distribution. Image b: with the Diagonal Matrix updates, the prior distribution
at each iteration is the closest gaussian distribution with the axes parallel to the
coordinate axes. In the final population of personalised parameters, this leads some
parameters to have a constant value (here the stiffness).

Table 8.1: Sets of 0D model parameters and outputs in the example.

Personalised Parameters P

Contractility σ0
Resting Radius R0

Stiffness c1
Peripheral Resistance Rp
Windkessel Characteristic Time τ

Venous Pressure Pve

Global outputs O

Maximal Volume MV

Stroke Volume SV

Mean Aortic Pressure MP

Diastolic Aortic Pressure DP
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8.3.1 Trade-off between Data-fit, Regularisation and Dimension of
the Set of Personalised Parameters

We provide results the IUP algorithm for at least 20 iterations, with both the Di-

agonal Matrix and the Full Matrix assumptions for values of γ of 0.5, 0.1, 0.05 (see
names of the run in Table 8.2).

Name γ Update

FULL-IUP-005 0.05
Full MatrixFULL-IUP-01 0.1

FULL-IUP-05 0.5

DIAG-IUP-005 0.05
Diagonal MatrixDIAG-IUP-01 0.1

DIAG-IUP-05 0.5

Table 8.2: Names and parameters of the 6 runs of the IUP algorithm

In Figure 8.3, we report for each run the mean value S̄(X , Ô) of the data-fit

term S(x, Ô) and the mean value R̄(X ) of the regularization term γR(x) at con-
vergence of the MAP estimations (bottom). We also perform the Singular Value
Decomposition (SVD) of the set of personalised parameters and report the eigen-
values (Figure 8.3, top). Then we report (rows of Table 8.3) the eigenvectors at the
last iteration (ei, i = 1..6), and their corresponding eigenvalue (λi, i = 1..6). The
eigenvectors coordinates are reported as 0 in bold when the value was below 0.01.

First we observe the classic phenomenon that the higher γ is, the higher the data-

fit term (which characterizes the distance between simulated and measured values)
is (Figure 8.3, bottom, blue). A higher γ means that the noise (i.e. uncertainty
on the measurements) is considered bigger in Equation 8.2 so estimated parameters
values then tend to be closer to the prior mean than from a value which perfectly
fits the measurements.

Second, that in every run of the algorithm, there is one or more eigenvalue which
converges to 0 and is under 10−4 at convergence. When the value is zero, this means
that the parameters lie on a subspace of lower dimension. Here for each run, we
report in Table 8.4 the number of eigenvectors with a eigenvalue above 10−4, the
mean value S̄(X , Ô) of the data-fit term across all cases and the mean value R̄(X )

of the regularization term.
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Figure 8.3: Top: value of the eigenvalues of the SVD of personalised parameters at
each IUP iteration. Bottom: mean values S̄(X , Ô) and R̄(X ) of the data-fit term
S(x, Ô) (blue) and the regularization term γR(x) (green) across the population at
each IUP iteration.

FULL-IUP-05

σ0 R0 c1 Pve Rp τ λi

e1 0.54 -0.31 -0.26 0.13 0.53 -0.50 3.62
e2 -0.12 0.16 0.06 -0.74 -0.17 -0.62 2.73
e3 -0.45 -0.69 -0.47 -0.25 0.03 0.15 1.34
e4 -0.21 0.63 -0.66 -0.03 0.34 0.08 7.42e-5
e5 -0.49 0 -0.05 0.61 -0.22 -0.58 5.42e-6
e6 -0.45 0 0.51 -0.05 0.73 0 2.87e-9

FULL-IUP-01

σ0 R0 c1 Pve Rp τ λi

e1 0.38 0.09 -0.04 0.02 -0.55 0.74 4.80
e2 0.68 -0.30 -0.41 0.33 0.42 -0.04 3.37
e3 0.55 0.17 0.07 -0.64 -0.23 -0.45 2.31
e4 0.08 0.69 -0.14 0.57 -0.25 -0.34 1.41
e5 0.03 0.63 -0.06 -0.29 0.61 0.37 6.65e-5
e6 0.30 0 0.90 0.27 0.19 0.02 3.13e-7

FULL-IUP-005

σ0 R0 c1 Pve Rp τ λi

e1 0.09 0.15 0.37 -0.68 -0.37 -0.49 5.03
e2 0.46 0.11 -0.27 -0.06 -0.67 0.50 4.49
e3 -0.72 0.29 0.38 0.11 -0.34 0.36 2.99
e4 0.31 0.74 0.20 -0.14 0.47 0.27 1.12
e5 0.14 -0.57 0.51 -0.31 0.21 0.50 5.73e-5
e6 -0.39 0 -0.59 -0.64 0.20 0.23 1.10e-6

DIAG-IUP-05

σ0 R0 c1 Pve Rp τ λi

e1 0.16 -0.18 0 -0.35 0.90 0 3.91
e2 -0.22 0.23 0 -0.91 -0.27 0 2.96
e3 -0.92 0.20 0 0.20 0.28 0 1.88
e4 -0.28 -0.93 0 -0.11 -0.18 0 1.11
e5 0 0 1.00 0 0 0.04 2.08e-13
e6 0 0 -0.04 0 0 1.00 3.71e-30

DIAG-IUP-01

σ0 R0 c1 Pve Rp τ λi

e1 0.12 -0.08 0 0 0.54 0.83 7.15
e2 -0.46 -0.14 0 0 0.76 -0.44 4.44
e3 0.86 -0.24 0 0 0.29 -0.33 3.04
e4 -0.16 -0.96 0 0 -0.23 0.08 1.06
e5 0 0 -0.31 -0.95 0 0 3.06e-13
e6 0 0 -0.95 0.31 0 0 3.64e-17

DIAG-IUP-005

σ0 R0 c1 Pve Rp τ λi

e1 0.13 -0.08 0 0.02 0.50 0.85 7.06
e2 0.51 0.13 0 0 -0.76 0.39 4.69
e3 0.84 -0.24 0 -0.01 0.34 -0.35 3.18
e4 0.16 0.96 0 0 0.23 -0.07 1.06
e5 0 0 0 -1 0.01 0.01 0.17
e6 0 0 -1.00 0 0 0 5.21e-14

Table 8.3: For each run of the IUP algorithm, final eigenvectors of the SVD of person-
alised parameters (ei) and their corresponding eigenvalue λi. In bold we emphasize
the coordinates of eigenvectors which are lower than 10−3 and the eigenvalues which
are lower than 10−4.
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Run γ λ ≥ 10−4 S̄(X , Ô) R̄(X )

FULL-IUP-05 0.5 3 1.85 1.5
FULL-IUP-01 0.1 4 2.15e-2 0.40
FULL-IUP-005 0.05 4 6.18e-3 0.20

DIAG-IUP-05 0.5 4 0.65 2.04
DIAG-IUP-01 0.1 4 0.23 0.41
DIAG-IUP-005 0.05 5 1.96e-2 0.25

Table 8.4: For each run at the final iteration : number of eigenvectors for each run
with a eigenvalue above 10−4 (column ’λ ≥ 10−4’), mean data-fit value S̄(X , Ô)
across all cases and mean value R̄(X ) of the regularization term.

From this table, we first observe that the mean of the regularization term is very
close to γD where D is the number of eigenvectors which do not have a value close
to 0 (we use λ ≥ 10−4 as the threshold for close to 0 ), which is consistent with
Equation 8.10 of a cost function with a sparse regulariser on the dimensionality of
the set of personalised parameters. We also observe that for the same γ, the data-
fit term is lower for the runs with the Full Matrix updates than the Diagonal

Matrix while having a lower number of non-zero eigenvalues.
More interestingly, we can observe the shape of the eigenvectors at convergence

of the algorithm. In every run with Diagonal Matrix updates, we observe that
the smaller the eigenvalue associated to eigenvector is, the more it is aligned to a
coordinate (a vector with shape (0,...,1,...0)). This means that for these runs, the
parameters associated with these coordinates have a constant values in the final set
of personalised parameters. In particular, the contractility c1 has always a constant
value, and either τ (in DIAG-IUP-05) or Pve (in DIAG-IUP-01) is constant as
well. On the other hand, there is no such phenomenon in the runs with Full Matrix.

The behaviour of the algorithm can be understood from the sparse formulation
explicited in 8.2.5 and the cost functions which is minimised. The algorithm indeed
tries to find a prior for which there is an optimal trade-off between the number of
dimensions of the set of personalised parameters, and the mean value S̄(X , Ô) of
the data-fit term. Given a specific γ, the "cost" of lowering the dimension is an
increase of γ in S̄(X , Ô). With the Diagonal Matrix updates, this is done with a
constraint on the prior covariance matrix to be diagonal so having a lower dimension
means fixing the value of a parameter. On the other hand, with the Full Matrix

updates, the algorithm can find any direction.
In particular we can observe than for γ = 0.1, both algorithms find a parameter

subspace of dimension 4, but the data-fit S̄(X , Ô) is higher with Diagonal Matrix

updates (0.23 ≥ 2.15e-2), where both c1 and Pve are fixed. By comparing to the
DIAG-IUP-005 where only the c1 is fixed, we can interpret that the "cost" of fixing
Pve is a loss of around 0.23 on S̄(X , Ô), which also means that the quality of some
personalisations in the database is impacted.

Indeed, for the final personalisation of DIAG-IUP-01 there are at least 3 cases
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for which the personalisation is highly impacted (
√
S ≥ 3.5) because of the fixed

value of Pve. These cases have an aortic diastolic pressure which is particularly low
compared to the rest of the database DP ≤ 5400Pa. To fit this measurement, Pve
(which is the asymptotic and minimal value of the aortic pressure in the blood flow
model) needs to be at least below this value (in particular in DIAG-IUP-005 and
FULL-IUP-01, all measurements of these cases are almost perfectly fitted and the
estimated Pve for theses cases is ≤ 5380Pa), but at this step the prior value of Pve
in DIAG-IUP-01 (which is thus the fixed constant value) is 5873Pa, which makes
the fitting of the Diastolic Pressure impossible in these cases.

8.3.2 Parameter Existence and Uniqueness in the Resulting Hy-
perplanes

A classical question in modeling and inverse problems, is to determine which param-
eters are observable with respect to a specific set of measurements. For example,
here we estimate 6 parameters from 4 observed outputs. If there is a linear rela-
tionship between the parameters and the outputs (i.e there exist a matrix M such
as O(x) = Mx), the size of the kernel of the matrix is at least 2. Considering
some measurements O, some parameters x such as such as O = Mx, then for any
vector y in the kernel O = M(x + y) as well. This means that there are at least
two orthogonal parameter directions in which the parameter values are unobserv-

able. With a non linear-model (such as cardiac models), a similar phenomenon of
non-uniqueness exists locally around some personalised parameters, to the extent
that the model can be approximated by its gradient. In general, there is an entire
manifold of parameters for which the outputs are the same.

Using Gaussian priors on such underconstrained linear models leads to promote
a unique solution to the inverse problem, because in this case, the cost function 8.8
is strictly convex. To a certain extent, this can be locally true for a non-linear model
and a unique specific value is promoted within the manifold of parameters for which
the outputs are the same.

Finding a (possibly unique) value which is the most consistent considering a
prior knowledge on the distribution of parameters is then the most interesting con-
sideration of the MAP estimation, but this supposes to have an accurate prior. Since
we are deriving the prior probability distribution from successive personalisations
over the dataset itself, it is thus not possible to rely on its interpretation as a "prior
knowledge" to set parameter values in the unobservable directions of this dataset.

On the other hand when no information on the statistics of the parameters is
available, the only possibility is to perform a reduction of the parameter space, by
forcing some parameter or parameter directions to have a fixed value. This can be
done through PCA, PLS ([Rohé 2016]) or sensitivity analysis ([Marchesseau 2013a])
on the parameters with respect to the clinical data, and estimate coordinates of the
first modes only. This also leads to a few questions regarding the reduced space
of parameters, particulary on the existence and uniqueness of parameter values for
which the simulation fits the target data.
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Here our parameters converge into a reduced subspace in all runs of the algo-
rithm. In particular in the FULL-IUP-005, FULL-IUP-01, DIAG-IUP-005 run,
there is also a very low data-fit term across the cases. This suggests that among the
parameter space in which there are undetermined directions, with a small enough

prior, the algorithm selects an hyperplane of minimal dimension in which

for each case, there is at least a set of parameter values which fits exactly

the measurements.
We demonstrate this claim by analysing the resulting parameter subspaces, in

these terms of parameter existence and uniqueness. To that end we perform multiple
personalisations without priors (i.e. an uniform prior, which is equivalent to solving
Equation 8.8 without regulariser, or setting γ = 0) where parameter are taken from
within these subspaces. Because the CMA-ES algorithm is stochastic, it usually
converges toward different values of the parameters at each run if there are multiple
set of parameter values which minimise the cost function. We compare the following
parameter subspaces:

1. The complete space H0 of 6 parameters.

2. The subspace Hc1 of 5 parameters of all parameters except the stiffness c1,
which is set to its final (constant) in the DIAG-IUP-005 run.

3. The 5 subspaces H(c1,σ0),H(c1,R0),H(c1,Rp),H(c1,τ) and H(c1,Pve) of 4 param-
eters where both the stiffness and another parameter are set to the final prior
mean value in the DIAG-IUP-005 run.

4. The 4 subspaces H5,H4,H3,H2 of dimensions respectively 5,4,3 and 2,
which are the hyperplanes defined by their center at the prior mean of the
FULL-IUP-01, and the l largest eigenvectors of the prior covariance for re-
spectively l=5,4,3,2.

We then report both the mean error of fit
√
S(X , Ô) across all cases in the

database, and the variability of estimated parameters across different personali-
sations, estimated by averaging across all cases the standard deviation of the 5
estimated values in the 5 personalisations.

We first observe that the mean error of fit is 0 (lower than 10−3) for only

four parameter spaces: the original space H0, the parameter space Hc1 with all
the parameters except c1, and the two parameter spaces H4 and H5 with respec-
tively the 4 and 5 largest eigenvectors of the Full-IUP-01 run. This shows that
they are the only subspaces which contain parameter values which fit the measure-
ments for all cases.

Then among these subspaces, we observe that the only subspace for which

both the mean error of fit and the variability of all parameters is 0 (lower

than 10−3) is H4, the hyperplane with the 4 largest eigenvectors of Full-IUP-01.
In the other subspaces there is a variability from one personalisation to the other for
at least the haemodynamic parameters Pve, Rp and τ showing that the parameters
are not unique.
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Table 8.5: Mean error of fit and variability of personalised parameters in 5 person-
alisations for the parameter subspaces. The value is reported as 0 if it is lower than
10−3.

√
S σ0 R0 c1 Pve Rp τ

H0 0 0.03 0 0.13 0.02 0.03 0.04

Hc1 0 0 0 - 0.02 0.02 0.03
H(c1,σ0) 0.99 - 0 - 0.02 0.02 0.14
H(c1,R0) 3.90 0 - - 0.05 0.02 0.04
H(c1,Pve) 0.06 0 0 - - 0 0.06
H(c1,Rp) 0.07 0 0 - 0.07 - 0
H(c1,τ) 0.01 0 0 - 0.02 0 -

H5 0 0 0 0 0.015 0.017 0.03
H4 0 0 0 0 0 0 0
H3 1.99 0.03 0 0.002 0 0.004 0.01
H2 3.03 0 0 0 0 0 0

This shows that around the prior which was found in the DIAG-IUP-005 run,
c1 was the only parameter which is possible to set to a constant value without the
personalisation of some cases being impacted (such as the 3 cases described in the
previous section). However, once c1 is set, the variability in H1 show that there is
still an unobservable direction (especially in the haemodynamic parameters), but it
is then necessarily a combination of parameters which is unobservable.

Finally, because of the possibility to find subspaces which are not necessarily
aligned with the coordinates, the Full-IUP-01 run was able to find a subspace
of lower dimension, 4, in which there are parameters fitting all the cases and no
variability, thus reducing the space in both directions of uncertainty.

8.3.3 Selection of a Parameter Subspace for Personalisation

The resulting parameter subspaces in the previous section exhibit interesting proper-
ties in terms of existence and unicity of parameters for personalisation, so a question
is how relevant are they in the context of personalisation? First, it is important to
observe that there is no guarantee of uniqueness of the parameter directions which
are selected by the algorithm (and the personalised parameter either). Indeed, in
addition of the model being non-linear (which makes the data-fit term not convex,
thus the whole Equation 8.8), sparse regularisations are usually not convex and have
many possible solutions. In particular here, there are possibly multiple parameter
subspaces on which the algorithm could converge. Visually, this can be observed
in the schema of Figure 8.2, where two different subspaces can be selected, each
containing a unique set of parameter values for each of the 5 cases.

Secondly, there are no guarantees that the parameter spaces selected by the
algorithm are relevant from a modeling or physiological point of view. In particular,
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when two parameters are not completely observable from some measurements in
a database, their ’actual’ value (if they correspond to physical parameters) in a
population is likely variable. In addition, a drawback of fixing a parameter to a
specific value, is that it might force other estimated parameters to vary more within
the population to account for variations which would have come from the fixed
parameter.

Parameter selection in the sense of setting a specific parameter direc-

tion to a constant value is then an imperfect approach in modeling, but it

is unavoidable to not have variability in the estimation when no other in-

formation or statistics is available on this specific parameter direction. In
this context, though the selection of relevant parameters for personalisation cannot
be performed entirely automatically (because the physical meaning of parameters is
ignored by the algorithms), we believe that our algorithm can help the modeler by
revealing unobservable parameter and parameter directions. To that end, we rec-
ommend the following general approach, considering a set of clinical data for which
observable parameters are unclear:

1. First, perform one (or multiple) runs of IUP with Diagonal Matrix updates.
This is because the resulting subspace is easier to analyze, since the parameters
usually have a physical meaning in the context of modeling. Then analyze the
parameters which end up with a eigenvalue close to 0, and set them to a
constant value if it is not incompatible with physiological considerations.

2. Second, perform one (or multiple) IUP with Full Matrix updates to further
select a lower dimensional subspace.

We apply this approach to the current problem. First it seems physically likely
that we do not have so much information on the stiffness c1 from only the 4 mea-
surements in Table 8.1, so we can reasonably decide to set its value to a constant,
which we set at its value in DIAG-IUP-005. Then we perform a new run of the
IUP algorithm, which we call Final-IUP-005, with Full Matrix and γ = 0.05

on the resulting parameters (thus in the hyperplane H5). This leads to the final
eigenvectors and eigenvalues:

Table 8.6: Final eigenvectors and eigenvalues of the IUP run with Full Matrix and
γ = 0.05 on H5.

Final-IUP-005

σ0 R0 Pve Rp τ λi

e1 0.58 0.07 0.05 -0.51 0.63 4.77467
e2 0.46 -0.32 0.50 0.65 0.10 3.41794
e3 0.65 -0.06 -0.44 -0.06 -0.61 2.95973
e4 0.16 0.94 0.15 0.25 -0.05 1.03746
e5 0.01 -0.01 0.73 -0.50 -0.47 4.30e-6
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We then select the hyperplane H ∗ made of the 4 largest eigenvectors
(e1, e2, e3, e4) at the end of the run, and test the existence and uniqueness of per-
sonalised parameters in this hyperplane, with the same method than in the previous
section. Results are reported in Table 8.7.

Table 8.7: Mean error of fit and variability of personalised parameters in 5 person-
alisations in H ∗. The value is reported as 0 if it is lower than 10−3.

√
S σ0 R0 Pve Rp τ

H ∗ 0 0 0 0 0 0

As expected, both the variability of parameters and the mean error of fit are 0
(lower than 10−3). This means that for each case, the hyperplane contains a unique
(to the extent that we can evaluate it through this algorithm) set of parameter
values for which the simulation fits the measurements.

To conclude, we found a minimal parameter subspace of dimension 4,

based on 5 parameters, consistent from a physiological point of view, in which
to perform consistent parameter estimation. We finally point out that the final pa-
rameters µ∗ and ∆∗ of the prior at the end of the Final-IUP-005 run respectively
correspond to the mean and covariance of the estimated parameters, which we then
call the population-based priors.

8.4 Consistent Parameter Estimation with Missing or

Heterogeneous Data.

In this section we present the application of the proposed framework to the person-
alisation of a large database with missing and heterogeneous measurements in the
reduced subspace H ∗, with the population-based priors µ∗ and ∆∗.

8.4.1 A Heterogeneous Database of Cases

In addition to the 137 complete acquisitions for which all the measurements and the
biventricular mesh were available in the database of the MD-Paedigree project, vari-
ous acquisitions were also available for many patients in the various cohorts, without
necessarily the imaging (which excludes the biventricular mesh) or the complete (or
even the same) set of measurements.

From this data, we built a database of 811 cases from different studies, hospitals
and protocols. We focused on gathering patients for which the heart rate and at

least one of the 6 following measurements in Table 8.8 was available.
Within this database, we have the following statistics:

• Pressure Measurements are available for 651 cases only.

• The Maximal Volume and Minimal Volume are both available for only 340
cases.
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Measurements O

Maximal Volume MaxV
Minimal Volume MinV
Stroke Volume SV
Ejection Fraction EF
Mean Aortic Pressure MP
Diastolic Aortic Pressure DP

Table 8.8: Measurements considered in the Heterogeneous Database

• Among the 471 other cases, either the Ejection Fraction (63 cases), Stroke
Volume (386 cases) or no volume measurement (21 cases) at all are available.

• Ejection Fraction is the only measurement available in 38 cases.

• Stroke Volume is the only measurement available in 45 cases.

• 258 cases have the ’complete’ set of 4 measurements: Maximal Volume, Min-
imal Volume, Mean Aortic Pressure and Mean Diastolic Pressure (we do not
report Ejection Fraction and Stroke Volume if the Maximal Volume and Min-
imal Volume are already reported).

8.4.2 Personalisation in the Reduced Subspace H ∗

In order to accommodate the heterogeneous nature of the database, we need to
build a heterogeneous data-fit term. Instead of using the fixed formulation S(x, Ô) =

||(O(x)− Ô)⊘N ||2 with O being the vecteur of outputs (MaxV,MinV,MP,DP )

and Ô the corresponding measurements, we build a different vector of observations
for each patient. Depending on the available measurements, we use in the order of
priority, depending on the available measurements:

1. (MaxV,MinV,MP,DP ),

2. (MaxV, SV,MP,DP ),

3. (MaxV,EF,MP,DP ),

4. (MinV,MP,DP ),

5. (SV,MP,DP ),

6. (EF,MP,DP ),

7. (MaxV,MinV ),

8. (MaxV, SV ),

9. (MaxV,EF ),

10. (MinV ),

11. (SV ),

12. (EF ),

and a corresponding normalisation vector N . The normalisation coefficient for the
Ejection Fraction (EF) (which is a number between 0 and 1) is 0.05 and it is 10

ml for the Stroke volume.
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Figure 8.4: Top: (resp Bottom:) Log-value of estimated parameters value as a
function of the Ejection Fraction (resp Stroke volume) for the 38 (resp 45) cases
where only the Ejection Fraction (resp Stroke Volume) is available, in blue with the
population-based priors µ∗ and ∆∗ algorithm, in red without priors.

We compare two parameter estimations for this database: first an estimation
of the 5 parameters without priors, and an estimation in the space H ∗ from Sec-
tion 8.3.3 with the population-based priors µ∗ and ∆∗ and γ = 0.02. For both
estimation the mean error of fit across the whole database is under 0.06, which
means most measurements are well fitted across the database.

The most interesting set of values to understand the impact of priors on cases
where measurements are missing is the following: in Figure 8.4, we display the
(log-)values of estimated parameters as a function of Ejection Fraction (resp Stroke
Volume) for the cases where only the Ejection Fraction (resp Stroke Volume) is
available. We observe a classic phenomenon with priors: personalised values not only
have less variance with the use of priors (blue points), but because one measurement
has to be fitted, they also lie onto a space of (local) dimension 1. Indeed, this
space is defined (in the case of the ejection fraction) by the solution of x(EF ) =

argminxŜ(x, Ô = EF, µ∗,∆∗). It is a space of local dimension 2 (resp 3) when 2
(resp 3) measurements have to be fitted (to the extent that the model is locally
approximable to its gradient).

On an interpretative level, when some measurements are missing in our database
and many parameter values are possible, the personalisation with priors in H ∗

leads to the selection of a set of parameter values which maximises its likelihood
in the probability distribution of the priors (or equivalently minimizes the distance
(xi − µ∗)T (∆∗)−1(xi − µ∗)). To that extent, it performs a form of imputation in
the parameter space by choosing the most likely set of parameters according to the
distribution defined by µ∗ and ∆∗. Because in our case µ∗ and ∆∗ are computed



8.5. Conclusion 99

from a population of personalised parameter values in a space of minimal dimension

(as explained in Section 8.3.3), we believe our population-based priors ensure one
of the highest form of consistency in estimated parameters for this larger dataset.

8.5 Conclusion

We introduced a method called Iteratively Updated Priors which performs suc-
cessive personalisations of the cases in a population, where the prior probabilities
on parameter values at each iteration are set from the statistics of personalised pa-
rameters in the previous iteration. We explicited two type of updates depending
on the assumptions made on the distribution of parameters in the population. We
then derived a mathematical link between this algorithm and the minimisation of a
population-wide cost function with a penalty on the dimension of the set of person-

alised parameters, with two different interpretations depending on the covariance
matrix update. Depending on the type of covariance used for the updates, we see
that the resulting set of personalised parameters has different properties, leading to
the estimation of either parameters or parameter directions which can be set to a
constant value. This led to the selection of a reduced parameter subspace and the
computation of population-based priors in this subspace, in which we personalised
a larger data set of 811 cases.

A first extension is that beside the two types of updates presented here (Full

Matrix and Diagonal Matrix), many other assumptions on the probability distri-
bution of parameters in the population could be used, resulting in different formula-
tions of the prior parameters. For example, the assumption could be made that the
contractility σ0 is independent of the other parameters, resulting in a block matrix
covariance. Similarly, if the mean of a parameter value is known, then it is also easy
to change the updates to accommodate this case (the derivations of the maximum
likelihood updates for parameters of Gaussian priors are easily tractable even with
such constraints). Finally, in the case where external information on the patient
such as the height and weight is available, this information could be included as ad-
ditional parameters in the (prior) probability distribution. Preliminary results (see
APPENDIX B) suggest that this could be particularly useful in cases where mea-
surements are missing, because parameters would be partly guided by correlations
to these values instead of just being attracted to the mean of the prior.

Secondly, in this work we first performed the IUP algorithm on a population
where all the measurements were available, then we applied the resulting priors
to the personalisation of a larger database. An interesting question is would it be

possible to do both at the same time? This would mean simultaneously estimating
a reduced parameter space, population-based priors in this space, and constrain the
cases where the measurements are missing. According to preliminary results, the
answer could be yes, but it needs an adaptation of the algorithm. Indeed, an IUP run
on the database of 811 patients with γ as small as 0.02 leads to a parameter space
of 3 directions instead of 4. Many cases with the 4 measurements available are thus
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not well fitted but because cases with less measurements are well fitted, it lowers
the impact on the mean error of fit across the population, leading the IUP algorithm
to remove a direction. An approach to avoid this problem would be to progressively
reduce the value of the normalisation coefficient N during personalisation to ensure
a sufficient fit of each member of the database at each iteration. In this context,
the most interesting outlook for future applications in our opinion is the possibility
of using this method to simultaneously perform parameter estimation of two or
multiple databases, in which parameters would only be partially constrained in each
database. We believe information on observed parameters from one database could
be shared to the other databases through the prior. For example, if a database only
contains information on systolic flow and another database contains information
on diastolic flow (such as the E and A indices in echocardiography), the values of
parameters which are determined by the fitting of the systolic flow would be used
as a prior to constrain the parameters in the other database, and reciprocally.

Thirdly, a last extension of this work is to apply the IUP to the 3D model to select
a reduced subspace of 3D model parameters for personalisation. However in the case
of the 3D model, the computational burden associated with performing a dozen or
more repeated personalisations of the whole database can be too high. Even though
it is usually not trivial to perform a mapping of parameter spaces between the 0D
model and the 3D model, we believe a possibility, for which we show preliminary
results in APPENDIX C, is to use the personalisation in a reduced subspace of 0D
model parameters (such as H ∗) to influence the estimation of a 3D model. Another
direction could be to investigate the use of specific 0D / 3D multifidelity couplings

such as presented in Chapter 5 to lower the burden of repeated personalisations.

We conclude with a general comment on priors and the relevance of parameter
selection in the context of personalisation. In the ideal case where we have prior
statistics on all the parameters, every parameter which has an influence on a specific
measurement will likely change during inference, in accordance to the probability
defined by the prior. This is why all the parameters vary at least slightly from
the mean when only the ejection fraction or the stroke volume are available in our
example. However if no statistics or external information is available on a set of
parameters, a specific set of values of these parameters does not make more sense

than another one that also fits the measurements. There is thus no other choice
than arbitrarily choosing a direction, until more information can be given on this
parameter direction from more experimental or physiological knowledge. Within
these considerations, the best approach consists in our opinion in starting with a
high number of parameters, and iteratively reducing the parameters space until a
sufficient subspace is found in which all directions can be observed. We argue that
our Iteratively Update Prior method, though it absolutely requires supervision for
the selection of parameters with physiological relevance, gives a complete frame-
work for consistent parameter estimation through the joint selection of a parameter
subspace of reduced dimension and the creation of relevant priors on its directions.
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8.6 APPENDIX: Link between the IUP algorithm and

the Iteratively Reweighted Least Square (IRLS) al-

gorithm

Here we demonstrate a link between the IUP algorithm and the Iteratively Reweighed

Least Square in sparse regression. In particular, we exhibit a population-wide cost
function with sparse regularisation. The sparse penalty correspond to the rank of
the covariance matrix of the estimated set of personalised parameters, which has
two different interpretation depending on the covariance matrix update.

For a given iteration k of the IUP algorithm, we note Xk = (x1, ..., xn) the
concatenation of some vectors of parameter values xi, i = 1..n for all the n cases,
and Ô = (Ô1, ..., Ôn). We define the population-wide cost function S (Xk, Ô)

as the mean of all the individual cost functions for all the i = 1..n cases:

S (Xk, Ô) = 1
n

n∑
i=1

Ŝ(xi, Ôi, µ
k,∆k),

S (Xk, Ô) = 1
n

( n∑
i=1

S(xi, Ôi) + γ
n∑
i=1

Rk(xi)
)
.

The first sum of this expression is the sum of the data-fit terms over all the
cases and is the same expression at each iteration. The second sum has a different
expression at each step depending on the updates which are performed, which impact
the behavior of the algorithm. We explicit here these expressions and explain the
resulting behaviour of the IUP algorithm with these updates.

"Diagonal Matrix" updates.

At each iteration k we have:

γ
n∑
i=1

Rk(xi) = γ
n∑
i=1

(xi − µk)T (∆k)−1(xi − µk),

where ∆k is a diagonal matrix computed from the personalised parameters Xk-1
i at

iteration k − 1 with Equation 8.7. We can break down the sum along the j = 1..N

coordinates (corresponding to the N personalised parameters): we note ∆k
jj the

j-th component of the diagonal of ∆k which formula is:

∆k
jj =

1
n

n∑
i=1

((Xk-1
i )j − (µk-1)j)

2.

We then have:

γ
n∑
i=1

Rk(xi) = nγ 1
n

n∑
i=1

N∑
j=1

((xi)j−(µk)j)
2

∆k
jj

,

γ
n∑
i=1

Rk(xi) = nγ
N∑
j=1

1

n

n∑
i=1

((xi)j−(µk)j)
2

∆k
jj

.
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To understand the behaviour of our algorithm with these updates, we can look at
the similarity between our updates and a classic method called Iteratively Reweighted

Least Square, used to solve the minimisation of cost functions involving Lp norms
such as

X∗ = argminX ||Y − f(X)||p = argminX
∑

l

(Y − f(X))pl . (8.11)

The IRLS algorithm works by succesively optimising the following (and usually
easier) "weighted L2" problems where in the k-th problem, each of the l coordinates
are reweighted by a vector W k

l derived from the norm of the coordinate in the
solution of the previous problem:

{
(X∗)k = argminX

∑
l

W k
l (Yl − fl(X))p,

where W k
l = |Yl − fl((X

∗)k−1)|p−2.
(8.12)

In this context, the Diagonal Matrix updates in our algorithm are reweight-
ing the penalty of each coordinate (or personalised parameters) j with the weight
(∆k

jj)
−1 which is inverse of the variance of the parameter in the current personal-

isation. To understand how the IRLS method applies in our case, we define the
random vector D as the difference (Xk

i − µk) of the personalised parameters Xk
i to

the mean of the population µk, for which all the cases are samples. The variance of
each personalised parameter is then the (L2) norm of the coordinate of this random
vector. In this formulation, each update correspond to the IRLS formulation with
p=0 for the minimisation of the L0 norm of D.

As a consequence, if the successive µk and xki converge, according to the IRLS
method the value of regularization term converges to:

γ
n∑
i=1

Rk(x
∗
i ) = nγ||D||0,

where ||D||0 is the number of coordinates of D which are non-zero, which is also
the number of personalised parameters which do not have a unique value in the

population.

"Full Matrix" updates.

At each iteration k we have:

γ
n∑
i=1

Rk(xi) = γ
n∑
i=1

(xi − µk)T (∆k)−1(xi − µk).

As ∆k is the covariance matrix of the Xk−1 it can be orthogonally diagonalised
and expressed as ∆k = (Ok)(Hk)(Ok)T with Ok an orthogonal matrix which
columns are the principal directions of the set of Xk−1, Hk diagonal which diagonal
coefficients are the variances of the Xk−1 in these principal directions. We can write:



8.7. APPENDIX B: Integration of External Parameters in the Prior
Distribution for Improved Estimation of Unobserved Parameters. 103

γ
n∑
i=1

Rk(xi) = γ
n∑
i=1

(Ok(xi − µk))T (Hk)−1Ok(xi − µk),

and in this case, each update consists in an IRLS step in the basis bk, defined by the
principal directions of the set of Xk−1

i (the columns of Ok) in which the covariance
matrix ∆k is diagonal.

Each of these updates thus correspond to an optimisation step of the L0 norm of
the random vector Dk of the difference Ok(Xk

i −µk) of the personalised parameters
Xk
i to the mean of the population µk, expressed in the basis bk.

As a consequence, if the successive µk and xki respectively converge to µ∗ and
x∗i , and we can build a random vector D∗ on a basis b∗ to which the Dk and bk
respectively converge, the regularization term converges to:

γ
n∑
i=1

Rk(xi) = nγ||D∗||0,

where ||D∗||0 is the number of coordinates of D∗ which are non-zero expressed in
the basis b∗ (made of principal directions of the set of x∗). It is the rank of X or
more simply the number of principal directions in which parameters do not have a

unique value in the population.

8.7 APPENDIX B: Integration of External Parameters

in the Prior Distribution for Improved Estimation of

Unobserved Parameters.

The key idea behind the use of priors is to model the distribution of parameters
in the population. Then with the MAP estimation, the goal is to find the most

likely parameters according to the correlations in this distribution. Here we explore
the possibility of integrating parameters which are not estimated into the prior
distribution (we call them external parameters), to influence the value of estimated
parameters.

Namely, for all the 811 cases of Section 8.4, the height and weight of the patients
were available. We can also consider the heart rate which is not an estimated
parameter. In order to add these three parameters to the prior distribution, we
perform the following modifications of the method: in Equation 8.8, instead of
considering a vector x which only contains the parameters to be estimated, we
use the concatenation vector of the estimated parameters and the three external

parameters. Formulations of the prior covariance and mean in Equations 8.2 and in
the equations of Section 8.2.3 are adapted as well to accomodate this concatenation

vector.
We then perform the following experiment: from the estimated parameters in

Section 8.4, we estimate the covariance matrix and the mean of the concatenation

vector, which we then use as a prior for a new estimation (This is equivalent to one
iteration of the IUP algorithm with Full Matrix with this concatenation vector).
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We report the most interesting result here in Figure 8.5. For both the estimation
without external parameters E1 (blue points) and with external parameters E2 (red
points), we display the estimated values of the resting radius R0 for the cases where
the Ejection Fraction is the only measurement, as a function of a/ the height of the
patient (left), b/ the weight of the patient (middle) and c/ the Ejection Fraction

of the patient.

Figure 8.5: Estimated values of the resting radius R0 in the estimation without
external parameters E1 (blue points) and with external parameters E2 (red points).

The results are the following: first in both estimations the goodness of fit for the
cases in the database is similar and high (a mean error of fit of around 0.06). For
the estimation without external parameters E1, the resting radius is well correlated
to the Ejection Fraction (this was already observed in Figure 8.4), but not at all

to the weight and the height. However with the external parameters E2, the
values of the resting radius is very correlated to the height and weight of

the patients, and tends to increase with both these measurements. Since the
resting radius, from a physical point of view, is related to the size of the heart, this
correlation makes sense from a physical point of view.

The preliminary results presented here show that it is possible to add external
parameters in the probability distribution of the prior, to then guide the estimation
of relevant physical parameters for cases where these parameters cannot be observed
(such as the cases where we only have the ejection fraction). An interesting extension
of this work would be to investigate if it is possible to perform this step automatically
within the IUP algorithm, simultaneously to the estimation of a reduced subspace
of estimated parameters.

8.8 APPENDIX C: Multiscale 0D / 3D personalisation

of the 137 complete acquisitions.

The IUP algorithm and parameter selection approaches presented in this chapter
can be applied directly to parameter estimations with the 0D or the 3D model.
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However in the case of the 3D model, the computational burden associated with
performing a dozen or more repeated personalisations of the whole database (around
2.5 days per complete personalisations) is too high. Here we propose a method to
use the personalisation of the 137 complete acquisitions in H ∗ with the 0D model
(Section 8.3.3), to guide the personalisation of the same cases with the 3D model.

We focus on the estimation of the same parameters of the 3D model than in
Chapter 7: stiffness, contractility and the 3 haemodynamics parameters. Because
the stiffness was set to a constant value in the 0D model, it makes sense to set it to
a constant value in the 3D model as well. The resulting sets of parameters for both
model are thus the following:

Table 8.9: List of estimated 0D model parameters (in H ∗) and estimated 3D model
parameters.

Estimated 0D Model Parameters

Contractility σ0
Resting Radius R0

Peripheral Resistance Rp
Windkessel Characteristic Time τ

Venous Pressure Pve

Estimated 3D Model Parameters

Contractility σ0
Peripheral Resistance Rp
Windkessel Characteristic Time τ

Venous Pressure Pve

The haemodynamic parameters Rp, C and Pve have the same equations in both
models. However as explained in Chapter 5 the contractility σ0 do not have the
same value in both models, because of differences in mechanical assumptions and
implementation. Also, we note that the resting radius parameter R0 in the 0D
model is not a variable in the 3D model because the biventricular mesh is an input
of the mechanical model. It is thus not possible to trivially convert or perform a
direct mapping of the reduced subspace H ∗ from the space of 0D parameters to
the space of 3D model parameters.

A possibility would be to impose the values of the haemodynamic parameters
estimated in the 0D model to the 3D model and estimating only the contractility
in the 3D model. However, this leads to a very badly conditioned non-convex func-
tion for the estimation of contractility. In addition, differences in the mechanical
properties of both models could possibly require haemodynamics parameters to have
different values in both models to reach the same measurements. Rather, in this
section, we relax this constraint and we propose to use the estimated values

of the haemodynamic parameters with the 0D model, as a prior to the

haemodynamics values in the parameters estimation of the 3D model.
We use our Multifidelity-CMA algorithm to personalise the whole database

with this setting (which we call P1). We report in Figure 8.6 the (log-)values the
estimated 3D parameters and the 0D as a function of the 0D parameters for all the
cases, which we compare to the estimated 3D parameters of the complete database
with the priors defined in Section ?? of Chapter 7 (which we call P2).

The mean error of fit for P2 is 0.07 and slightly higher (0.13) for P1. In both
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Figure 8.6: Log-value of the 3D estimated parameters as a function of the 0D
estimated parameters in H ∗. Top: Parameters estimated in the personalisation
P1, where the prior values for the haemodynamic parameters are their values in the
estimation of 0D model parameters in H ∗. Bottom: Parameters estimated in the
personalisation P2, where the prior values for the haemodynamic parameters are
the one in Section ?? of Chapter 7.

case, most cases are fitted within 2.5ml for the stroke volume and 0.5 mmHg for
the pressure measurements with few outliers. The most interesting result (which
was expected), is that we observe a different spread of haemodynamic parameters in
both cases: namely the estimated haemodynamic parameters in the 3D models are
a lot more correlated to the 0D estimated parameters in P1 than in P2, because
the prior in P1 for these parameters is their values in the parameter estimation with
the 0D model.

This preliminary result shows that is possible to partially guide the personalisa-
tion of a database of cases with the 3D model from an estimation of the 0D model,
instead of performing the IUP algorithm directly on the 3D model. This also exhibit
a multiscale personalisation of the whole database, with personalised simulations in
both models which have close haemodynamic parameters values.
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The main objective of this thesis was the consistent and efficient personalisation
of a 3D electromechanical model, with the goal of using personalised parameters and
simulations for the analysis of clinical databases. To that end, we first investigated
a source of possible inconsistency in parameter estimation, which is the uncertainty
in external (not personalised) parameters. Then, we tackled the computational bur-
den associated with parameter estimation in 3D electromechanical models, through
a 0D/3D multifidelity approach. We then built personalised 3D simulations for more
than 140 cases, and explored possible uses of personalised parameters for longitudi-
nal analysis of the cardiac function. Finally, we developed a method to tackle the
problem of parameter observability in personalisation. Here we summarize the main
achievements of this Ph.D. work and detail the perspectives which could be topic of
future research.
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9.1 Main Contributions

9.1.1 Uncertainty Quantification in Myocardial Fibre Directions
and Personalisation

In Chapter 4 and the corresponding study [Molléro 2015], we introduced an original
method to quantify uncertainty in myocardial fibre orientation, by sampling a few
representants of fibre variability in an atlas built from an small database of measured
fibre sets. This was done by performing PCA in the atlas space, and selecting two
representants in each of the 3 largest directions and the mean. We then propagated
this uncertainty in a generic personalisation process, which resulted in different
personalised simulations with different personalised parameters values.

This enabled a first assessment of the uncertainties which can arise in person-
alisation due to the uncertainty in the many parameters of a typical 3D cardiac
model. In addition, the personalisation algorithm used in this study (the Unscented
Transform) required a careful and manual initialisation, possibly different for each
case and set of parameters. Overall, this study outlined the need for a more consis-
tent personalisation framework (which incorporates uncertainty) as well as a more
practical personalisation algorithm in order to scale to a large database of cases.

We believe that computing the modes of a PCA in an atlas of cases is a very
practical way to define a data-driven variability of such high-dimensional vector sets,
jointly with a parametrisation of this variability. We argue that such parametrisation
is also interesting in the context of the population-based prior probabilities defined
in Chapter 6, because the eigenvectors and eigenvalues of the PCA decomposition
gives also a natural formulation of an Gaussian prior over this parametrisation.
Finally we point out that this method could be applied to other types of high-
dimensional vectors, in particular other local myocardial parameters in 3D models
such as contractility or conductivity.

9.1.2 0D/3D multifidelity Coupling and Personalisation

In Chapter 5 and the corresponding publication [Molléro 2017b], we proposed an
innovative and possibly very flexible 0D/3D multifidelity approach, in particular to
tackle problems associated with the computational complexity of 3D simulations.
This approach consists in three components:

• A 0D cardiac model, which is a reduced version of our original 3D model. This
model is very fast (up to 15 beats per seconds) and the equations, encoded in
the CellML format, are made available from the Physiome Model Repository1.
Efficient Python scripts to personalise this model (based on the CMA-ES
genetic algorithm) will be released as well at the same location.

• A multifidelity coupling of the two models, which enables the fast approxima-
tion of outputs of the 3D model from 0D simulations. This coupling is based

1https://models.physiomeproject.org/e/470
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on a parameter mapping which directly maps together parameters known to
be the same in both models (such as the Windkessel model parameters), and
performs en empirical quadratic mapping between parameters which have dif-
ferent values in both models. This enables the approximation of possibly many
3D simulations from 0D simulations and a few 3D simulations only. It is not
theoretically limited to specific sets of parameters and outputs as long as the
dynamics of both models are close enough for these parameters and outputs.

• Multifidelity-CMA, a multifidelity personalisation algorithm which per-
forms successive 0D/3D couplings to approximate the objective function in
many iterations of the CMA-ES genetic algorithm at once. This is done while
controlling an accuracy criterion on the approximation given by the coupling,
in order to determine at which iteration of CMA-ES a new coupling has to
be computed to keep a good accuracy. With this algorithm, we were able to
personalise 121 cases, in around 2.5 days and, more importantly, without spe-
cific manual supervision, fine-tuning of the algorithm or precomputation. We
believe this be an achievement in the cardiac modeling community and was
not possible with our previous approach based on the Unscented Transform.
Theoretically, this algorithm is not limited to specific sets of parameters and
outputs.

Beside the application to cardiac personalisation, we argue that Multifidelity-

CMA is in itself an interesting contribution to the larger problem of multi-objective

optimisation: indeed, the use of the Multifidelity-CMA with a simple quadratic
approximation of the outputs (with the degree 2 hypersurface) instead of the 0D/3D
coupling already leads to considerable speed-up of the optimisation and a lower
computational burden. Furthermore, in the context of multifidelity optimisation,
this algorithm could be used in other fields where models at multiple scales are
available. Indeed, as long as a lower-fidelity model can help approximate the outputs
of a higher-fidelity model with a direct mapping of at least some parameters, the
coupling with Multifidelity-CMA leads to additional computational gains.

9.1.3 Personalised 3D Modeling of 137 Complete Acquisitions

With the Multifidelity-CMA method, we built personalised 3D simulations for
137 complete acquisitions in the MD-Paedigree project and demonstrated in two
studies (Chapter 6 and 7) how they can be used for longitudinal analysis and
modeling of the cardiac function:

• First in Chapter 6 and the corresponding publication [Molléro 2017c], we
built a data-driven model of cardiovascular parameter changes during diges-
tion, from the parameters of personalised simulations at two instants (before
and within 1h30 after ingestion of a high-fat high-calorie meal). From the per-
sonalised parameters, we derived a multilinear law which accurately predict
changes in parameters leading to desired changes in the simulation, enabling
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fast simulation of cardiovascular changes for new patients. Interestingly, this
was possible despite non-uniqueness on the parameters which were not con-
strained with priors in this study.

• Second, in Chapter 7 and the corresponding publication [Molléro 2017a], we
tackled the problem of parameter non-observability in personalisation through
the Maximum A Posteriori (MAP) estimation of personalised parameters for
84 different cases. We showed that the use of priors reduces considerably the
variance in the population of estimated parameters (by removing the variabil-
ity in non-observable directions), leading to well-conditioned parameter values
whose variability in the population only reflects physiological properties of the
cases. We then projected the personalised parameters onto the axis of a clas-
sifier which discriminates between a cohort of healthy and diseased cases. On
this axis, we showed that the evolution of parameter values suggests an im-
provement of the cardiac function under therapy, since the parameters of the
follow-up acquisition are closer to the healthy side of the classifier.

We believe that the two presented applications exhibit methodological aspects
which are particularly important for the success of any study of the cardiac function
with personalised simulations. First, in both cases, all the personalised simulations
are built from the same set of measurements, from the same pipeline and with the
same set of estimated parameters. In Chapter 6, this enabled the creation of a fast
law of parameter changes which predict accurate changes in the simulation, which
would have not necessary be possible (or with less accuracy) from personalised cases
with different models and personalisation pipeline for each case.

Secondly we argue that in order to properly evaluate the cardiac function from
personalised parameter values, it is very important to remove all sources of variabil-
ity in the estimation which are not related to physiological properties of the cases.
This was done through a MAP estimation in Chapter 8, which removed the vari-
ability due to the non-observability of some directions in the parameter space. In
addition, we also believe that because the set of measurements can be limited and
we thus cannot evaluate the true value of all parameters, it is important to evaluate
personalised values within a database of personalised cases which includes reference
cases where the cardiac function is known and also which are personalised through

the same process.

9.1.4 Parameter Selection and Population-Based Priors

In Chapter 8, we developed a general approach to the problem of parameter observ-
ability in personalisation. We developed an algorithm called Iteratively Updated

Priors, which performs successive personalisations of the database, in which the
prior probability of the current personalisation is defined from the distribution of
personalised parameters in the previous iteration. When the algorithm converges,
it has the following properties:
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• At convergence, personalised parameters lie on a linear subspace of reduced
dimension. The algorithm realises a trade-off between the number of dimen-
sions of the linear subspace and the mean error of fit of the measurements
across the database, which depends on the weight of the priors (defined by γ
in Chapter 8).

• When a high goodness of fit is imposed (small γ), the resulting subspace is a
linear subspace of minimal dimension in which for each case of the database,
there is a (possibly unique) parameter values for which the simulation fits the
measurements.

• At convergence, all the cases are personalised through a MAP where the prior
distribution is the distribution of the population parameters itself.

We applied to the database of 137 complete acquisitions for which the same 5
measurements are available. From 6 original parameters, we extracted a reduced
parameter subspace of dimension 4 based on 5 parameters which makes sense from a
physiological point of view and in which for each case, there is a unique personalised

value for which the simulation fits exactly the measurements. Then we used the
population-based priors derived from the population in this subspace to personalise
811 cases with various type of measurements. Because the parameters are estimated
through a MAP where the prior comes from a larger population where all the mea-
surements are available, we believe this ensure one of the highest form of consistency
possible in our dataset.

We believe this approach can be particularly interesting for applications on larger
and more heterogeneous databases: for example when the same measurements are
not available in two databases, we think using the IUP algorithm on the concatena-
tion of the two databases could lead parameters and parameter directions which are
unobservable in a database to be constrained by a prior which is defined by their
observed values in the other database. This theoretically enables the possibility of
integrating any kind of measurement, experiment and acquisition into the same very
large database, and let the algorithm jointly select relevant parameter directions,
build population-based priors in every parameter direction and estimate a consistent
population of personalised simulations from the data.

We also believe that by selecting of a reduced subspace of minimal dimension

for which there are parameters for each case, the algorithm also selects a reduced
subspace of maximal dimension in which we can have a relevant statistical informa-

tion from the available data. To that extent, we think our algorithm represents a
complete framework to extract the maximal statistical (and possibly physiological if
parameters are well chosen) information possible from any dataset (heterogeneous
or not) with a given cardiac model, while ensuring consistency of the personalisation
for all cases (both in terms of goodness of fit and unicity of the parameters).
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9.2 Perspectives

9.2.1 Multiscale Personalisation for the Analysis of Cardiac
Pathologies

A direct extension of this work is the creation of personalised simulations with a
larger number of estimated parameters, in order to reproduce a a wider variety of
clinical measurements. A particularly interesting direction seems to be the person-
alisation of electromechanical and pressure parameters from 2D echocardiographic

measurements such as the systolic (ejection) and diastolic (filling) flows, velocities
and strains of the myocardial tissue. Indeed, clinicians use these indices daily to
diagnose a large variety of pathologies, so their value have a high clinical relevance.
Integrating these measurements into the personalisation could drastically increase
the predictive power of personalised cardiac models, possibly matching the clinicians
ability to diagnose. Then with enough data we could possibly discover patterns in
personalised parameters related to specific pathologies, which are not easily observ-
able from the measurements only. This could be partially studied with the 0D model
only but using the 3D model would be important to integrate specific patterns of
myocardial strain in personalised simulations.

Similarly, another large (and already widely explored) area of interest for cardiac
modeling and clinical applications is the personalisation of a closed-loop model of
the cardiovascular circulation. Indeed, some pathologies are characterized by the
dysfunction of the cardiac function at elevated heart rates and blood pressures only,
during exercise for example. Modeling these effects would require to model the com-
plete adaptation of the heart and cardiovascular system to higher cardiac outputs in
order to understand the sources of dysfunction. A challenge for such studies is the
simulation of many (possibly hundreds) of cardiac cycles, which could be hard with
the 3D model. However we argue that a similar coupling than in Chapter 5 could
enable the speed up of the process through 0D simulations only. This could be done
by finding a mapping between the outputs of 0D model and the 3D model for a
specific state of the cardiac function (at rest for example) and recomputing the 0D
/ 3D coupling regularly every few cardiac cycles during transient effects to ensure
the accuracy of the approximation (as in the Multidelity-CMA algorithm).

9.2.2 Prediction of Response to drugs

An application of the longitudinal modeling of short-term transient effects as de-
scribed in Chapter 6 is the prediction of a heart’s response to drugs. Indeed, many
drugs used in cardiology such as diuretics or beta-blockers are characterized by a
rapid short-term evolution of the cardiac function, which can likely be described
by rapid changes in electromechanical or cardiovascular parameters. Such changes
could be quantified from the personalisation of many patients under therapy, in order
to build a predictive model of the heart’s response to these drugs. This could have
direct applications in therapy planning, such as predicting patient-specific optimal
doses to reach a specific state of the cardiac function.
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9.2.3 Longitudinal Evolution of Diseases

Similarly to the longitudinal modeling of short-term effects, it should be possible,
given enough data, to build models of the long-term evolution of the heart. Possi-
ble clinical application includes the prediction and cure of pathological remodeling
(usually dilation) of the heart, due to hypertension for example. In some cases, we
observe a inverse remodeling of the heart under therapy when a specific drug treat-
ment brings the cardiovascular system in normal range of values for an extended
period of time. Personalised simulations could then be used to predict the optimal
treatment to stabilise the cardiovascular system and optimize the inverse remodeling
process.
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L’objectif principal de cette thèse était la personnalisation cohérente et efficace
de modèles électromécaniques cardiaques, dans le but d’utiliser les paramètres et
les simulations personnalisés pour l’analyse de cas cliniques. Nous avons d’abord
démontré que l’incertitude sur les paramètres non personnalisés était potentiellement
une source d’inconsistence et d’incertitude dans la personalisation. Nous avons
ensuite abordé le problème du temps de calcul associé à l’estimation de paramètres
dans les modèles 3D, à travers une approche multi-échelle 0D / 3D. Cela nous a
permit de construire des simulations 3D personnalisées pour plus de 140 cas et
d’explorer l’utilisation des paramètres personnalisés pour l’analyse longitudinale de
la fonction cardiaque. Enfin, nous avons développé une méthode pour résoudre le
problème de l’observabilité des paramètres dans la personnalisation. Nous résumons
dans ce chapitre les principales contributions de ce doctorat et détaillons les possibles
perspectives de recherche.
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10.1 Contributions

10.1.1 Propagation de l’incertitude dans l’orientation des fibres
myocardiques sur la personnalisation

Nous avons introduit dans le Chapitre 4 (et l’étude correspondante [Molléro 2015])
une méthode originale pour quantifier l’incertitude dans l’orientation des fibres my-
ocardiques, en échantillonnant quelques représentants de la variabilité dans un atlas
construit à partir d’un base de données de fibres mesurées par DTI. Cela est fait
via une PCA dans l’espace de l’atlas, qui permet de sélectionner deux représentants
dans chacune des trois plus grandes directions plus la moyenne. Cette incertitude
est ensuite propagée dans un processus de personnalisation classique, pour obtenir
différentes simulations personnalisées avec des valeurs différentes de paramètres per-

sonnalisés.
Cela a permis une première évaluation des incertitudes possibles dans la per-

sonnalisation en raison de l’incertitude sur les nombreux paramètres d’un modèle
cardiaque 3D. De plus, nous avons constaté que l’algorithme de personnalisation util-
isé dans cette étude (Unscented Transform) nécessite une initialisation soigneuse,
manuelle et possiblement différente pour chaque cas. Dans l’ensemble, cette étude
a souligné la nécessité d’un cadre de personnalisation plus cohérent (qui incorpore
l’incertitude) ainsi que d’un algorithme de personnalisation plus robuste et plus
pratique pour personaliser des bases de données plus larges.

Enfin, nous pensons que le calcul des premiers modes d’une PCA dans un atlas
est un moyen très pratique de définir une variabilité empirique sur de tels ensembles
de vecteurs de haute dimension, conjointement avec une paramétrisation de cette
variabilité. En particulier, une telle paramétrisation est potentiellement intéressante
dans le contexte des probabilités empiriques définies dans le Chapitre 6, étant donné
que les vecteurs et valeurs propres de la PCA donnent une formulation naturelle d’un
a priori gaussien sur cette paramétrisation. Cette méthode peut potentiellement être
appliquée à d’ autres ensembles de paramètres en grande dimension, en particulier
aux paramètres locaux du myocardes dans des modèles 3D tels que la contractilité
ou la conductivité.

10.1.2 Couplage et personnalisation multi-échelle

Dans le Chapitre 5 et la publication correspondante [Molléro 2017b], nous avons
proposé une approche 0D / 3D multi-échelle innovante et très flexible, en particulier
pour résoudre les problèmes associé à la complexité de calcul des simulations 3D.
Cette approche contient trois composants:

• Un modèle cardiaque 0D, qui est une version réduite de notre modèle 3D
original. Ce modèle est très rapide (jusqu’à 15 battements par seconde) et
les équations, encodées au format CellML, sont disponibles dans sur le site
du Physiome Model Repository 1. Des scripts Python pour personnaliser ce

1https://models.physiomeproject.org/e/470
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modèle (basé sur l’algorithme génétique CMA-ES) seront également publiés
au même endroit.

• Un couplage multi-échelle des deux modèles, qui permet une approximation
rapide des sorties du modèle 3D à partir de simulations du modèle 0D. Ce
couplage est basé sur un mapping des paramètres qui relie directement les
paramètres communs aux deux modèles (tels que les paramètres du modèle
haemodynamique de Windkessel) et effectue une régression polynomiale de
degré 2 entre les paramètres comportant des différences dans les deux modèles.
Cela permet d’obtenir une approximation de nombreuses simulations 3D à
partir de simulations 0D (et de quelques simulations 3D). Ce couplage n’est pas
limité théoriquement à des ensembles spécifiques de paramètres et de sorties.

• Multifidelity-CMA, un algorithme de personnalisation multi-échelle qui ef-
fectue des couplages 0D / 3D successifs pour approximer la fonction de coût
dans des itérations successive de l’algorithme CMA-ES. Ceci est effectué en
contrôlant simultanément un critère de précision sur l’approximation donnée
par le couplage, afin de déterminer à quelle itération un nouveau couplage doit
être calculé pour conserver une précision suffisante. Avec cet algorithme, nous
avons pu personnaliser 121 cas en environ 2,5 jours avec le modèle 3D, sans
supervision, intialisation ou précomputation manuelle de l’algorithme. Nous
pensons que c’est un résultat majeur dans la communauté de la modélisation
cardiaque, qui était en particulier impossible avec l’approche précédente basée
sur l’algorithme "Unscented Transform". Finalement, cet algorithme n’est pas
limité non plus à des ensembles spécifiques de paramètres et de sorties.

En plus de l’application à la personnalisation cardiaque, nous soutenons que
Multifidelity-CMA est en soi une contribution intéressante au problème plus large
de l’optimisation multi-objectif : en effet, l’utilisation de l’algorithme Multifidelity-

CMA avec une simple approximation quadratique des sorties (au lieu du couplage
des modèles 0D / 3D) conduit déjà à une accélération considérable de l’optimisation
et à une charge de calcul plus faible. Ensuite, dans un contexte d’optimisation multi-

échelle, cet algorithme pourrait être utile sur d’autres cas où des modèles à plusieurs
échelles sont disponibles: en pratique, tant qu’un modèle de faible précision peut
aider à approximer les sorties d’un modèle de plus grande précision et que les deux
modèles partagent des paramètres communs, le couplage des deux modèles avec
Multifidelity-CMA conduit a des gains en temps de calcul supplémentaires.

10.1.3 Création de simulations 3D personnalisée pour 137 cas

Avec la méthode Multifidelity-CMA, nous avons construit 137 simulations 3D

personnalisées dans le cadre du projet MD-Paedigree, que nous avons exploitées
dans deux études (Chapitres 6 et 7) sur l’analyse et la modélisation longitudinale
de la fonction cardiaque:
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• Dans le Chapitre 6 et la publication correspondante [Molléro 2017c], nous
avons construit un modèle empirique de l’évolution des paramètres cardio-
vasculaires durant la digestion, à partir de simulations personnalisées à deux
instants (avant et dans 1h30 après l’ingestion d’un repas hypercalorique) pour
21 cas. A partir des paramètres personnalisés, nous avons dérivé une loi multil-
inéaire qui prédit avec précision les changements de paramètres conduisant aux
changements souhaités dans la simulation, permettant une simulation rapide
de nouveaux patients. Fait intéressant, cela a été possible malgré la non-
unicité sur les paramètres qui n’étaient pas contraints avec des probabilités a
priori dans cette étude.

• Deuxièmement, dans le Chapitre 7 et la publication correspondante
[Molléro 2017a], nous avons abordé le problème de la non-observabilité des
paramètres dans la personnalisation, à travers l’estimation d’un Maximum A

Posteriori (MAP) pour 84 cas différents. Nous avons montré que l’utilisation
des probailités a priori réduit considérablement la variance de la population
des paramètres estimés, en supprimant la variabilité dans les directions non
observables. Cela conduit à des paramètres mieux conditionnés, dont la vari-
abilité dans la population ne reflète que la variabilité des propriétés physi-
ologiques des cas. Nous avons ensuite projeté les paramètres personnalisés sur
l’axe d’un classifieur entre une cohorte de cas sains et de cas malades. Sur
cet axe, l’évolution des valeurs des paramètres suggère une amélioration de la
fonction cardiaque sous thérapie.

Nous pensons que ces deux études présentent des aspects méthodologiques par-
ticulièrement importants pour une bonne analyse de la fonction cardiaque avec des
simulations personnalisées. Tout d’abord, dans les deux cas, toutes les simulations
personnalisées sont construites à partir du même ensemble de mesures, à partir du
même processus de traitement des données et avec le même ensemble de paramètres
estimés. En particulier dans le Chapitre 6, cela a permis la création d’une loi
d’évolution des paramètres précise, ce qui n’aurait pas été possible (ou avec moins
de précision) si différents modèles ou algorithmes de personnalisation avaient été
utilisés pour les différents cas.

Deuxièmement, nous soutenons que pour évaluer correctement la fonction car-
diaque à partir de valeurs de paramètres personnalisés, il est très important
d’éliminer toutes les sources de variabilité dans l’estimation qui ne sont pas liées aux
propriétés physiologiques des cas. Cela a été fait dans le Chapitre 8 via une esti-
mation "MAP", qui a permis de supprimer la variabilité due à la non-observabilité
de certaines directions de l’espace des paramètres. Nous pensons également que
parce que nous ne pouvons pas généralement évaluer la vraie valeur de tous les
paramètres (par exemple si les mesures disponibles sont limitées), il est important
d’étudier les valeurs des paramètres personnalisées en relation avec d’autres cas dans

une base de données dont la fonction cardiaque est si possible connue, et qui ont été
personnalisés avec le même processus.
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10.1.4 Sélection de paramètres et probabilités a priori empiriques

Dans le Chapitre 8, nous avons développé une approche générale pour répondre au
problème de l’observabilité des paramètres. Celle-ci se base sur un algorithme appelé
Iteratively Updated Priors, qui effectue des personnalisations successives de la
base de données dans laquelle la probabilité a priori de la personnalisation courante
est définie à partir de la distribution des paramètres personnalisés dans l’itération
précédente. Lorsque l’algorithme converge, il a les propriétés suivantes:

• Les paramètres personnalisés se trouvent sur un sous-espace linéaire de dimen-
sion réduite. L’algorithme réalise un compromis entre le nombre de dimensions
du sous-espace linéaire et l’erreur moyenne d’ajustement des mesures dans la
base de données, qui dépend du poids de l’a priori (défini par γ in Chapitre

8).

• Quand une faible erreur d’ajustement est imposée (petit γ), le sous-espace
résultant est un sous-espace linéaire de dimension minimale qui contient, pour
chaque cas de la base de données, un vecteur de paramètres pour lequel la
simulation correspond aux mesures.

• Tous les cas sont personnalisés à travers un MAP où la distribution a priori
est la distribution des paramètres de population lui-même.

Nous avons appliqué cet algorithme à aux 137 cas pour lesquelles 5 mesures
sont toutes disponibles. A partir de 6 paramètres originaux, nous avons extrait un
sous-espace de paramètres de dimension 4 basé sur 5 paramètres qui a un sens d’un
point de vue physiologique et qui contient pour chaque cas un unique vecteur de
parametres. Nous avons ensuite utilisé les probabilités empiriques construites dans
ce sous-espace pour personnaliser 811 cas avec différents types de mesures. Comme
les paramètres sont estimés à travers un MAP où les probabilités a priori viennent
d’une population plus large où toutes les mesures sont disponibles, nous pensons
que cela assure une des meilleures cohérence possibles sur cet ensemble de données.

Nous pensons que cette approche peut être particulièrement intéressante pour
des bases de données plus volumineuses et hétérogènes. En particulier lorsque les
mêmes mesures ne sont pas disponibles dans deux bases de données, nous pensons
que l’algorithme IUP appliqué aux deux bases de données en même temps peut
permettre de contraindre des paramètres inobservables dans une base de données
par leur valeurs observées dans l’autre base de données (via les probabilités a pri-
ori). Cela permettrait théoriquement d’intégrer n’importe quel type de mesure,
d’expérience et d’acquisition dans la même (et très grande) base de données, et
de sélectionner simultanément un sous-espace de paramètres pertinent, construire
des probabilités empiriques dans chaque direction de ce sous-espace ainsi que les
simulations personnalisées.

Enfin nous pensons qu’en sélectionnant un sous-espace réduit de dimension min-

imale dans lequel il y a un vecteur de paramètres pour chaque cas, l’algorithme sélec-
tionne un sous-espace réduit de dimension maximale dans laquelle on peut extraire
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une information statistique pertinente à partir données. Dans ce contexte, nous
pensons que notre approche représente un cadre complet pour extraire l’information
statistique (et possiblement physiologique) maximale de tout ensemble de données
avec un modèle cardiaque donné, tout en créant des simulations personalisées co-
hérentes.

10.2 Perspectives

10.2.1 Personnalisation multi-échelle pour l’analyse des patholo-
gies cardiaques

Une extension directe de ce travail de thèse est la création de simulations person-
nalisées avec un plus grand nombre de paramètres estimés, afin de reproduire une
plus grande variété de mesures cliniques. Une direction particulièrement intéres-
sante semble être la personnalisation à partir de mesures échocardiographiques 2D,
telles que les flux systolique (éjection) et diastolique (remplissage), les vitesses et les
déformations du tissu myocardique. En effet, les cliniciens utilisent quotidiennement
ces indices pour diagnostiquer une grande variété de pathologies, ce qui signifie que
leur valeur contient beaucoup d’information clinique. L’intégration de ces mesures
dans la personnalisation pourrait considérablement augmenter le pouvoir prédictif
des modèles cardiaques personnalisés, et rivaliser avec la capacité diagnostique des
cliniciens. Ensuite, avec suffisamment de données, certaines pathologies pourraient
être reliées a des valeurs spécifiques de paramètres personalisés, qui ne sont pas
facilement observables à partir des mesures ou des images seulement. Cela pourrait
être partiellement étudié avec le modèle 0D, mais l’utilisation du modèle 3D semble
nécessaire pour intégrer des données comme la déformation myocardique.

Un autre domaine d’intérêt (et déjà largement exploré) avec des applications
cliniques est la personnalisation d’un modèle de la circulation cardiovasculaire. En
effet, certaines pathologies sont caractérisées par le dysfonctionnement de la fonc-
tion cardiaque à des rythmes cardiaques élevés uniquement, pendant un exercice
par exemple. La modélisation de ces effets nécessiterait de modéliser l’adaptation
complète du cœur et du système cardiovasculaire à des débits cardiaques plus élevés
afin de comprendre les sources de dysfonctionnement. Un défi pour de telles études
serait la simulation de plusieurs (peut-être centaines) de cycles cardiaques, ce qui
pourrait être difficile avec le modèle 3D. Cependant, nous pensons qu’un couplage
similaire à celui du Chapitre 5 pourrait permettre l’accélération du processus, par
exemple en trouvant d’abord un couplage entre les sorties du modèle 0D et le modèle
3D pour un état spécifique de la fonction cardiaque (au repos par exemple). Ensuite,
le couplage 0D / 3D serait recalculé régulièrement après quelques cycles cardiaques
pendant les effets transitoires pour assurer le précision de l’approximation.
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10.2.2 Prédiction de la réponse aux médicaments

Une application de la modélisation longitudinale des effets transitoires à court terme
décrits dans le Chapitre 6 est la prédiction de la réponse du cœur aux médicaments.
En effet, de nombreux médicaments utilisés en cardiologie tels que les diurétiques
ou les bêta-bloquants se caractérisent par une évolution rapide à court terme de
la fonction cardiaque, susceptible d’être décrite par des modifications rapides des
paramètres électromécaniques ou cardiovasculaires. Ces changements pourraient
être quantifiés à partir de la personnalisation de plusieurs patients sous traitement,
afin de construire un modèle prédictif de la réponse du cœur à ces médicaments.
Cela pourrait avoir des applications dans la planification de la thérapie, comme la
prévision de doses optimales pour chaque patient pour atteindre un état spécifique
de la fonction cardiaque.

10.2.3 Evolution longitudinale des maladies

De même que pour la modélisation longitudinale des effets à court terme, il devrait
être possible, avec suffisamment de données, de construire des modèles de l’évolution
à long terme du cœur. Une application clinique possible pourrait être la prédiction
et le soin du remodelage de la géométrie cardiaque du cœur, dû à l’hypertension
par exemple. Dans certains cas, un remodelage inverse du cœur sous traitement
est observé, lorsque le traitement amène le système cardiovasculaire dans un état
stable et normal pendant une période prolongée. Des simulations personnalisées
pourraient alors être utilisées pour prédire le traitement optimal pour stabiliser le
système cardiovasculaire et optimiser le processus de remodelage inverse.
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Robust Personalisation of 3D Electromechanical Cardiac Models.
Application to Heterogeneous and Longitudinal Clinical Databases

Abstract: Personalised cardiac modeling consists in creating virtual 3D simu-
lations of real clinical cases with an electromechanical cardiac model through the
estimation of biophysical parameter values for which the simulation match the clini-
cal data. The goal of this modeling is to help clinicians in patient care by predicting
the behaviour of the heart, but also improve the understanding of some patholo-
gies from the estimated values of these biophysical parameters, which are hard to
quantify from the imaging only.

We introduce this thesis by quantifying and propagating uncertainty in myocar-
dial fibres orientation from a fibre atlas into a generic personalisation process. We
show that the resulting uncertainty in the estimated parameters is extremely large
compared to the physical variability of these parameters. This underlines the need
for a more robust personalisation process which includes the uncertainty in param-
eter values, as an a priori for a possible clinical analysis.

In order to build a practical approach to parameter estimation, we first tackle
the computational complexity of 3D models. To that end we introduce an original
multiscale 0D/3D approach for cardiac models. We first build a multiscale coupling
to approximate outputs of a 3D model with a reduced "0D" version of the same
model. Then we derive from this coupling an efficient multifidelity optimisation
algorithm for the 3D model.

In a second step, this algorithm is used to build more than 140 personalised 3D
simulations, in the context of two studies involving the longitudinal analysis of the
cardiac function. On one hand the analysis of long-term cardiomyopathy evolution
under therapy, on the other hand the modeling of short-term cardiovascular changes
during digestion. Through these studies we outline possible use cases of personalised
parameter values in clinical practice.

Finally, after demonstrating the need to constrain and possibly select param-
eters to get consistent values for clinical applications, we present an algorithm to
automatically detect and select observable directions in the parameter space from
a set of measurements. This same algorithm estimates consistent population-based
priors probabilities in these directions, which can be used to constrain the param-
eter estimation for cases where measurements are missing. This finally enables to
perform consistent parameter estimations in a large clinical database of 811 cases
with the 0D model.

Keywords: Cardiac Modeling, Parameter Estimation, Multifidelity methods,
Prior probabilities.





Personalisation Robuste de Modèles 3D Electromécaniques du
Coeur: application à des bases de données cliniques hétérogènes et

longitudinales.

Résumé: La modélisation cardiaque personnalisée consiste à créer des simulations
de cas cliniques réels avec un modèle cardiaque électromécanique en estimant des
valeurs de paramètres pour lesquelles la simulation correspond aux données clin-
iques. L’objectif de ces simulations est d’assister le clinicien dans le traitement des
patients et possiblement de mieux comprendre l’évolution de certaine maladies. Un
important aspect pour permettre de telles applications cliniques est l’estimation des
valeurs pertinentes et cohérentes des paramètres de simulation.

D’abord nous quantifions et propageons l’incertitude sur l’orientation des fi-
bres myocardiques, calculée à partir d’un atlas, dans un processus de personnalisa-
tion générique. Nous montrons que l’incertitude qui en résulte dans les paramètres
estimés est extrêmement importante par rapport à la variabilité physique de ces
paramètres. Cela montre la nécessité d’un processus de personnalisation plus ro-
buste qui prend en compte l’incertitude sur les valeurs des paramètres.

Afin de concevoir une approche pratique de l’estimation des paramètres nous
présentons ensuite une approche multi-échelle 0D / 3D originale pour les modèles
cardiaques. Nous construisons un couplage multiscalaire pour approximer les sorties
d’un modèle 3D à partir d’une version "0D" réduite du même modèle. Ensuite, nous
dérivons de ce couplage un algorithme efficace de personalisation pour le modèle 3D.

Dans un deuxième temps, nous utilisons cet algorithme pour construire plus
de 140 simulations 3D personnalisées, dans le cadre de deux études impliquant
l’analyse longitudinale de la fonction cardiaque. D’une part, l’analyse de l’évolution
de la cardiomyopathie à long terme sous thérapie, d’autre part, la modélisation
des changements cardiovasculaires à court terme pendant la digestion. Grâce à
ces études, nous décrivons des cas d’utilisation possibles de valeurs de paramètres
personnalisés dans la pratique clinique.

Enfin nous présentons un algorithme pour détecter et sélectionner automatique-
ment les directions observables dans l’espace des paramètres à partir d’un ensemble
de mesures. Ce même algorithme estime des probabilités a priori basées sur la
population dans ces directions, qui peuvent ensuite être utilisées pour contraindre
l’estimation de paramètres pour les cas où des mesures sont manquantes. Cela nous
permet d’effectuer des estimations de paramètres cohérentes dans une grandes bases
de données cliniques de 811 cas avec le modèle 0D.

Mots-clés: Modélisation cardiaque, Estimation de paramètres, Méthodes
multi-échelles, Probabilités à priori.
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