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Introduction

Foreword

This document is written as a requirement of the Habilitation à Diriger des Recherches (HDR), which
allows researchers to supervise PhD works as principal advisors in France. It summarizes my research
activities since 2004, when I joined SIGMA Clermont (formerly IFMA) as an assistant professor. My
academic achievements are listed in Appendix B and the list of my publications is given in Appendix C.
My interest in uncertainty quantification came after my PhD degree in structural mechanics, which was
obtained in 1996 at École Centrale de Nantes. I discovered this new field when I was serving as a
structural engineer for the Armaments Procurement Agency of the French Ministry of Defense (DGA)
from 1997 to 2004, through fruitful exchanges with Prof. Maurice Lemaire at IFMA, who introduced me
more specifically to structural reliability. The catalyst for my academic career was my research period
at UC Berkeley in 2001 under the supervision of Prof. Armen Der Kiureghian, who encouraged me to
further explore this field which was new to me. My enthusiasm for reliability assessment, extended
later to the wider scope of uncertainty quantification, has continued to grow since then.

Context

The design of optimal and reliable systems is an objective which is pursued in several fields of engi-
neering. Optimality is expressed in terms of a system cost which needs to be minimized, including the
partial costs involved at each instant of the system’s life, e.g. construction costs, maintenance costs
and costs resulting from potential failures. In addition, the system is expected to satisfy performance
requirements considering all the criteria which could cause it to fail. In a probabilistic framework this
performance is assessed through a failure probability w.r.t. such criteria, accounting for all sources
of uncertainty in the problem inputs. The tradeoff to make between optimality and safety constitutes
nowadays one the greatest challenges to solve in the engineering field. The set of works presented in
this document brings contributions to the efficient solving of the above-defined problem, by addressing
either the calculation of the system failure probability (problem referred to as reliability assessment) or
the finding of its optimal design under constraints expressed in terms of this failure probability (problem
referred to as reliability-based design optimization).

The probabilistic model has a prominent role in the analysis. The type of model, along with its
parameters, must be carefully selected, since it greatly impacts the results of the uncertainty propaga-
tion analysis. If statistical data concerning the inputs are available in sufficient quantity, a trustworthy
probabilistic model can be identified and used in the analysis. Such a situation is considered in works
presented in Chapter III in the specific context of buckling and crack propagation, by using data either
available in the literature (Virkler data set for crack extension, imperfection data bank for shape im-
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perfections in cylindrical shells) or provided by industrial partners (load sequences in a fleet of fighter
aircraft). As detailed in this report, the choice of a given probabilistic model may have consequences in
terms of applicable methods for reliability assessment and the accuracy of the obtained results.

Another important aspect of the analysis is the computational time required for the evaluation of the
failure criteria. In all fields of engineering highly accurate numerical solutions can be obtained, most
often by means of costly-to-evaluate methods, e.g. finite element solutions in structural mechanics.
The computational burden associated with the use of such numerical models needs to be addressed for
the efficient solving of uncertainty propagation problems. The several calls to this model, necessary
e.g. in a crude Monte Carlo approach, are most often incompatible with the available computational
resources. As a consequence, we need to consider approaches which require as few calls to the costly-
to-evaluate model as possible. Surrogate models, as investigated in Chapter II, are one solution which
has become increasingly popular over the years, with limits in terms of input space dimensionality
and model complexity that can be handled in current approaches. In this report we focus on support
vector machine and kriging surrogate models, which have been used in adaptive methods for reliability
assessment and design under uncertainty as efficient alternatives to other, more expensive, techniques.

Outline

The document is organized in three chapters as described below, with highlights on my contributions.

Chapter I concerns methods which are well established in reliability. My objective has been to make
a clear and almost self-contained presentation of the main available methods with unified notations.
All these methods were applied in the works I supervised, which are described later in Chapter II and
mainly in Chapter III. My contributions to these methods concern sensitivities of failure probability w.r.t.
distribution parameters, exact sensitivities in FORM with the Nataf model, including those regarding
correlation, and sensitivities in the standard normal space with subset simulation. I am also providing
the reader with a comparison between subset simulation and the cross-entropy method applied to vari-
ates of the standard normal space on a set of selected examples, which illustrates the performances of
each method.

Chapter II gives a presentation of kernel-based techniques used as surrogates of costly-to-evaluate
models involved in failure criteria. These surrogate models are used for the purpose of reliability as-
sessment and reliability-based design optimization in adaptive approaches. This type of approach starts
from an initial set of evaluated points in the input space and then sequentially selects a few new points
to evaluate, with updates to the surrogate model until a sufficient accuracy is reached. Two surrogate
techniques are presented in this document: support vector machines (SVMs) and kriging, whose juxta-
position will hopefully help the reader in understanding the connections between them, in addition to
the well-known and shared concept of kernel.

• In Chapter II SVMs are presented for the usual linear case, both in classification and regression. The
formulations are then extended to nonlinear models by means of kernels. The settings of SVMs are
placed in the framework of regularization, which clearly states the target objective for the accuracy
of the constructed models: a tradeoff between the simplest model possible but close enough to the
available data. The mathematical formalism has been kept minimal, albeit hopefully sufficiently rig-
orous, in order to express the key ideas without too heavy notations and mathematical proofs. I am
also addressing the tuning of SVM models, which is, in my opinion, the key to accurate approximate
models. This tuning can be achieved by the minimization of approximations of the leave-one-out
errors available for SVM both in classification and regression. SVMs in classification were explored in
the PhD work of Deheeger (2008) in an adaptive approach for reliability assessment, as described in
this chapter (referred to as 2SMART method). I have further explored adaptive surrogates based on
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SVMs used in regression, again for reliability assessment (referred to as ASVR method). In this latter
method the minimization of the leave-one-out errors of the surrogates is performed by stochastic op-
timization. This chapter gives the main algorithms and a comparison of results between the 2SMART
and ASVR methods, also including those obtained using other methods.

• The main elements of kriging are then recalled in the second part of Chapter II, including training on
noisy data with the so-called nugget effect. Noisy kriging allows us to make the connection between
kriging and SVMs. It is shown that the kriging mean predictor and the least squares support vector
regressor are equivalent in their formulations. The chapter is concluded by a presentation of the
RBDO approach proposed in the PhD work of Dubourg (2011) and the quantile-based RBDO approach
proposed in the PhD work of Moustapha (2016), both based on sequential constructions of kriging
surrogate models in the so-called augmented reliability space. The two methods take advantage of
the kriging variance of the constructed models. The RBDO approach of Dubourg is illustrated in
Chapter III in the context of the optimal design of a submarine pressure hull.

Chapter III compiles some results obtained in two specific fields of structural mechanics, namely
buckling and crack propagation, which are known for their uncertain character as observed in experi-
mental works. Several types of challenge were addressed in the selected problems, e.g. identification
of a probabilistic model from statistical data; reliability assessment not so easy to carry out due to the
reliability problem formulation or intricacy of the limit-state surface; high computational cost of the
numerical model involved in the analysis.

Regarding the buckling of shells with shape imperfections, the PhD works of Noirfalise (2009) and
Dubourg (2011) were both based on nonlinear finite element solutions obtained by means of the asymp-
totic numerical method, as an alternative to more conventional incremental-iterative methods.

• In the presented work of Noirfalise, the purpose is to model the shape imperfections in a cylindrical
shell by a random field considered as the input of a reliability problem. The two proposed models,
based on a Fourier representation with random coefficients and a Karhunen-Loève series expansion,
are identified from real data extracted from the imperfection data bank of Delft University. Subset
simulation is applied for failure probability estimation.

• The first problem addressed by Dubourg aims to estimate the failure probability of a shell roof sub-
jected to buckling with random shape imperfections and space-variant material/thickness properties.
The studied reliability problem with random fields as inputs was solved using subset simulation and
FORM. This latter method, applicable here, revealed the existence of multiple most probable failure
points of equal importance.

• In the second problem studied by Dubourg the objective is to find the optimal design of a single bay
reference structure representative of a submarine pressure hull under a reliability constraint. This
RBDO problem is efficiently solved using the proposed adaptive method, based on kriging surrogate
models and presented in Chapter II.

Random crack propagation was studied in scope of the PhD works of Nešpůrek (2010) and Mattrand
(2011). Two selected problems are presented in Chapter III:

• The first problem investigates the randomization of the Paris-Erdogan crack growth law under constant-
amplitude fatigue loading. The reliability problems are analyzed using FORM and some of the results
are compared with the experimental data of Virkler et al. The problem is found to be quite sensitive
to the correlation between the two parameters C and m of the crack growth law, depending on the
random model which is selected as the input. The reliability problem is additionally found to be
highly sensitive to the small errors between the crack extensions given by the model and those found
experimentally, which has been the source of a controversial interpretation in the literature.
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• In the second presented problem, investigated by Mattrand, the focus is put on crack propagation
under random loading. The PREFFAS crack closure model is used in this work, in order to account
for load interactions during crack growth, such as retardations and accelerations. Markov chains and
hidden Markov models are proposed as candidates for the modeling of random loads recorded in-
flight in a fleet of fighter aircraft. After their identification these models are used for the purpose of
reliability assessment. The formulated problems differ from those conventionally solved in structural
reliability, due the use of such Markov models. Results are obtained by means of the cross-entropy
method as an efficient alternative to a crude Monte Carlo approach.
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6 Chapter I. Rare-event probability estimation

!Overview: This chapter presents the main techniques used to estimate the probabilities of rare failure
events and their sensitivities. The first class of methods is the so-called approximation methods (FORM
and SORM), which are well known in structural reliability. FORM was applied in several PhD works
I co-supervised with Profs. Lemaire, Fogli and Sudret (Noirfalise, 2009; Nešpůrek, 2010; Dubourg,
2011; Kouassi, 2017). Simulation methods are introduced next, with crude Monte Carlo presented
first. For better efficiency in the context of low failure probabilities, several techniques are available,
among which subset simulation and importance sampling. Subset simulation was applied in all the
works I co-supervised except the one Nešpůrek (2010) that was carried out before this method was
brought to my attention by Deheeger. This method was applied either directly to the physical model
involved in the failure criterion or to a surrogate of this model such as developed in Chapter II. A specific
form of importance sampling known as the cross-entropy method is also presented. This technique was
used by Mattrand (2011) in the specific context of Markov models, as described in Chapter III. The
chapter concludes with a section concerning the failure probability sensitivities w.r.t. random inputs
and distribution parameters.

Contributions: This chapter presents all the methods with unified notations. I implemented all the
presented methods in the open-source code FERUM (Bourinet et al., 2009) under Matlab, starting from
the basis of this code developed at UCB Berkeley until 2003 (Der Kiureghian et al., 2006). I contributed
to the computation of the failure probability sensitivities w.r.t. distribution parameters in the context
of FORM with the Nataf transformation (Bourinet, 2017a; Bourinet, 2017a), including sensitivities to
correlation, see Section I–4.2.2. The computation of these sensitivities is part of the current release of
FERUM. Sensitivities expressed in the standard normal space w.r.t. means and standard deviations of
the associated standard normal variates are proposed in Section I–4.3.3, and this is a new idea to the
best of my knowledge. Another contribution is the fair comparison made between subset simulation
and the cross-entropy method applied in the standard normal space, see Section I–3.4.

Credits: This chapter has excerpts from the paper of Bourinet and Lemaire (2008) and the book
chapter of Bourinet (2017a) in Section I–4.2.2.

I–1 Introduction

The scope of this chapter will be restricted to time-invariant reliability problems as defined in the struc-
tural reliability literature (see, e.g., Ditlevsen and Madsen, 2007; Lemaire et al., 2010) a.k.a. static
simulation problems or models by some authors (see, e.g., Homem-de-Mello and Rubinstein, 2002;
Cancela et al., 2009), in which time is not an explicit variable.

We consider a finite set of uncertain scalar parameters modeled by a random vector X = (X1, . . . ,
Xn)T defined by its joint continuous probability density function (PDF) fX :Rn→R≥0,x 7→ fX(x), whose
support1 D fX is denoted by X and where x= (x1, . . . , xn)T.

We assume that the performance of a given physical system is defined by a deterministic scalar
function g : Dg ⊆ Rn → R,x 7→ g(x), known as the limit-state function (LSF) or performance function,
where Dg is the domain of definition of g, assumed to verify Dg ⊇ D fX = X . As an illustration, if we
are interested in the exceedance of a given threshold level yth by some response s(x) of the system, the
LSF takes the form g(x) = yth − s(x) for any given x ∈Dg .

The hypersurface F0
x = {x ∈Dg : g(x) = 0} is called the limit-state surface (LSS). It divides Dg into

a failure domain conventionally defined as Fx = {x ∈ Dg : g(x) ≤ 0} and a safe domain Fx defined as
the complement of Fx in Dg , see Figure I.1b.

1The support D fX of a PDF fX is the set of points over which this PDF is not equal to zero: D fX = {x : fX(x)> 0}.
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(a) Joint PDF fX
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(b) LSS and safe/failure domains
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Fx

g(x) = 0

Figure I.1 – Joint PDF fX, limit-state surface F0
x , safe domain Fx and failure domain Fx.

It is important to point out that the LSF g can only be evaluated pointwise and, as a consequence,
the LSS F0

x cannot be explicitly defined. The LSF g will be assumed to be expensive to evaluate for any
realization x ∈ X of X. Each evaluation of g may require the solution of a large system of equations, e.g.
finite element models in structural mechanics. The formulation is restricted here to a single function g
but this function may represent a combination of several failure criteria in more general settings, such
as studied in system reliability (union or intersection of failure events, or any more general systems
based e.g. on the union of minimal cutsets).

The probability pf that the system fails w.r.t. the above defined LSF g is given by the following n-fold
integral:

pf = P (E) =

∫

g(x)≤0

fX(x)dx=

∫

X
1Fx
(x) fX(x)dx , (I.1)

where E = {g(X) ≤ 0} is the failure event, 1D (·) denotes the indicator function of domain D such that
1D (x) = 1 if x ∈D, 1D (x) = 0 otherwise, and dx= dx1 . . . dxn.

The reliability R of the system is defined as the probability of the complementary event of E: R =
P
�
E
�
= 1− pf. We will assume that the failure probability pf is small (pf� 1), i.e. that the failure event

E is rare. Such a situation is frequent in many domains, where the safety level is required to be high.

I–1.1 Mapping to the multivariate standard normal space

This section addresses two important interrelated points in reliability assessment: could Eq. (I.1) be
solved in another space than X by means of a suitable mapping, to be defined in order to make calcu-
lations more tractable (this will enable us to introduce the so-called standard normal space) and, if so,
how can we practically define this mapping such that the new reliability assessment problem to solve is
set up in accordance with the statistical information known about the joint PDF fX. We will assume that
both the marginal and conditional CDFs of X are strictly continuous, i.e. there should not be probability
masses associated with any outcome of X.
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A central idea of structural reliability is to rewrite the reliability problem defined in Eq. (I.1) in
the standard Gaussian context. To do so, a diffeomorphism 2 T : X → Rn,x = (x1, . . . , xn)T 7→ u =
(u1, . . . , un)T = T (x) (referred to as isoprobabilistic transformation in the following) is constructed such
that the following equalities (in distribution) hold:

U= T (X)⇔ X= T−1(U) , (I.2)

where U = (U1, . . . , Un)T is a n-dimensional standard Gaussian vector whose joint PDF ϕn(·) is given,
for any u= (u1, . . . , un)T ∈Rn, by:

ϕn(u) =
1

(2π)n/2
exp

�
−‖u‖

2

2

�
, (I.3)

where ‖u‖2 = uTu= u2
1 + · · ·+ u2

n and ‖·‖ represents the canonical Euclidean norm on Rn.

In the image space Rn referred to as standard normal space, the LSF is a mapping G :Rn→R,u 7→
G(u) such that, for any u ∈Rn:

G(u) = (g ◦ T−1)(u) . (I.4)

The reformulated problem is obtained by performing the change of variable x = T (u) in Eq. (I.1),
which is justified by the fact that T is a diffeomorphism. Its expression writes:

pf = P (E) =

∫

G(u)≤0

ϕn(u)du=

∫

Rn

1Fu
(u) ϕn(u)du , (I.5)

where Fu = {u ∈ Rn : G(u) ≤ 0} is the failure domain in the standard normal space and du =
du1 . . . dun.

This formulation in the standard normal space Rn, also referred to as u-space, presents the follow-
ing properties, which are exploited by the FORM and SORM approximation methods presented later
in Section I–2:

• The u-space is normalized (same standard normal distribution for each component Ui) and rotation-
ally symmetric.

• If we consider a given point P∗ in the u-space specified by its coordinates u∗ = (u∗1, u∗2)
T, the joint PDF

ϕn is characterized by an exponential decay with the square of the distance from the origin (i.e. ‖u‖2)
along the radial direction (see blue cross-section in Figure I.2). An exponential decay also appears
in the orthoradial direction when we move away from P∗ in the hyperplane {u ∈ Rn : β −αTu = 0}
where β = αTu∗ (see red cross-section in Figure I.2).

• The probability in the half-space {u ∈Rn : β−αTu≤ 0} is equal to Φ(−β)where Φ(·) is the univariate
standard normal CDF.

The transformation T from the physical input space X to the standard normal space Rn is con-
structed in accordance with the level of information that is given about the random vector X. Complete
knowledge of the joint PDF fX is rare, and some simplifying assumptions are often made due to the avail-
able amount of statistical data. The marginal distributions of X are assumed to be known through their
PDFs fX i

or CDFs FX i
for i = 1, . . . , n. Statistical independence between some or all the X i-components

of X is often encountered, and this specific case is first presented. The case of known linear correlations
between X i-components is then considered. This latter case is often a practical choice in the case of
limited statistical information. More general situations based on other measures of dependence, e.g.
defined in terms of a given copula, may be considered. Such models are not addressed within the scope
of this report. The transformations corresponding to the following cases are considered in Section I–1.3:

2A diffeomorphism is a globally bijective (i.e. surjective and injective, or onto and one-to-one) mapping which is
continuously-differentiable and has a continuously-differentiable inverse.
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• statistical independence between the X i-components and knowledge of their marginal distributions
(marginal PDFs fX i

or CDFs FX i
for i = 1, . . . , n),

• knowledge of linear correlations between X i-components in addition to their marginal distributions
(marginal PDFs fX i

or CDFs FX i
for i = 1, . . . , n),

• complete knowledge of the joint PDF fX.

These transformations are presented in the context of copulas, which constitute a useful and general tool
to express the dependence between random inputs. To this end, some basic definitions and important
results are given in Section I–1.2.

O u1

u2

u∗1

u∗2
P∗

α
β = αTu∗

β −αTu= 0

ϕ2(u1, u2) = cst

Figure I.2 – Standard normal space.

I–1.2 Copulas and correlation

This section introduces copulas for their practical use in the modeling of dependencies between random
inputs. For a detailed presentation of copulas and their mathematical basis, the reader is invited to refer
to general textbooks (see, e.g., Nelsen, 1999). From a practical point of view, a copula C is a joint CDF on
[0, 1]n with uniformly-distributed marginals (on [0, 1]). From Sklar’s Theorem (Sklar, 1959) recalled
hereafter, it clearly appears that a copula represents the complementary information needed to define
the joint CDF of a random vector X in addition to the information given by its marginals (here marginal
CDFs FX i

).

Theorem I–1.1 (Sklar’s Theorem) Let FX be a n-dimensional joint CDF with given marginal CDF FX i

for i = 1, . . . , n. Then there exists a n-dimensional copula C such that, for all x = (x1, . . . , xn)T ∈
[−∞,+∞]n:

FX(x) = FX(x1, . . . , xn) = C
�
FX1
(x1), . . . , FXn

(xn)
�

. (I.6)

In addition, if the marginal CDFs FX1
, . . . , FXn

are continuous, then C is unique.

As a corollary of Sklar’s Theorem, if we consider a given n-dimensional joint CDF FX with continuous
marginal CDFs, we can express the copula C as follows, for any u= (u1, . . . , un)T ∈ [0,1]n:

C(u1, . . . , un) = FX

�
F−1

X1
(u1), . . . , F−1

Xn
(un)

�
, (I.7)

where F−1
X i

denotes the inverse of the marginal CDF FX i
for i = 1, . . . , n.



10 Chapter I. Rare-event probability estimation

From Sklar’s Theorem, it is also possible to express the joint PDF fX for a given copula C , knowing
the marginal PDFs fX i

of X for i = 1, . . . , n:

fX(x) = fX(x1, . . . , xn) = c
�
FX1
(x1) , . . . , FXn

(xn)
� n∏

i=1

fX i
(x i) , (I.8)

where c(u1, . . . , un) =
∂ nC(u1, . . . , un)
∂ u1 . . .∂ un

is the density of copula C .

Several copulas are available for modeling dependencies, e.g. normal, Student, Frank, Clayton and
Gumbel, among others. Only the definitions of the independent and normal copulas are given in this
report, since they are used in the construction of the isoprobabilistic transformation T in Section I–1.3.
We also recall a few important results concerning copulas (Lebrun and Dutfoy, 2009b, p. 578). These
results are useful in the following for the definition of T .

Definition The n-dimensional independent copula is given by:

C(u1, . . . , un) = Cind(u1, . . . , un) =
n∏

i=1

ui . (I.9)

Definition Let Φn(·;R0) denote the n-dimensional standard normal CDF with linear correlation matrix
R0. Then

C(u1, . . . , un) = CNn
(u1, . . . , un;R0) = Φn

�
Φ−1(u1), . . . ,Φ−1(un);R0

�
(I.10)

is the n-dimensional normal copula (or Gaussian copula) parameterized by the linear correlation matrix
R0.

Theorem I–1.2 Let X = (X1, . . . , Xn)T be a vector of continuous random variables with copula C. If
α1, . . . ,αn are strictly increasing functions on the respective supports of X i components, then C is also
the copula of (α1(X1), . . . ,αn(Xn))T.

CDF of random vector (X1, . . . , Xk)T. Let X = (X1, . . . , Xn)T be a vector of continuous random variables
defined by its copula C and its marginal CDFs FX i

for i = 1, . . . , n. The CDF of the k-dimensional random
vector (X1, . . . , Xk)T is given for k ≤ n by:

FX1,...,Xk
(x1, . . . , xk) = C1,...,k

�
FX1
(x1), . . . , FXk

(xk)
�

, (I.11)

where C1,...,k(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1).

Conditional CDF of Xk|X1, . . . , Xk−1. Let X = (X1, . . . , Xn)T be a vector of continuous random variables
defined by its copula C and its marginal CDFs FX i

for i = 1, . . . , n. The CDF of the conditional random
variable Xk|X1, . . . , Xk−1 is given for k ≤ n by:

FXk|X1,...,Xk−1
(xk|x1, . . . , xk−1) = Ck|1,...,k−1

�
FXk
(xk)|FX1

(x1), . . . , FXk−1
(xk−1)

�
, (I.12)

where Ck|1,...,k−1(uk|u1, . . . , uk−1) =
∂ k−1C1,...,k(u1, . . . , uk)

∂ u1 . . .∂ uk−1

Á
∂ k−1C1,...,k−1(u1, . . . , uk−1)

∂ u1 . . .∂ uk−1
.

In addition to the basics of copula modeling, we present a brief review of some scalar and bivari-
ate measures of dependence (see, e.g., Nelsen, 1999; Lebrun, 2013, for more details, including the
definitions of measures of concordance, dependence and association). It is important to stress that
dependences defined in terms of copulas are more informative than such scalar measures, and as a con-
sequence we cannot in general define a dependence structure only in terms of these scalar measures.
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A first and usual measure used to describe the dependence between two random variables X i and
X j is linear correlation (or Pearson’s correlation), defined in terms of the following coefficient:

ρi j = ρ(X i , X j) =
Cov

�
X i , X j

�
p

Var [X i]
q

Var
�
X j

�

=
1p

Var [X i]
q

Var
�
X j

�
∫ 1

0

∫ 1

0

�
C
�
ui , u j

�− uiu j

�
dF−1

X i
(ui)dF−1

X j

�
u j

�
,

(I.13)

where Cov
�
X i , X j

�
= E

�
(X i −E [X i])

�
X j −E

�
X j

���
is the covariance between X i and X j , and Var [X i],

Var
�
X j

�
are the respective variances of X i , X j (assumed to be finite and nonzero).

From Eq. (I.13), it is found that linear correlation is not a function of the copula only, but also of the
marginal CDFs of X . The direct consequence is that linear correlation is not independent of the marginal
distributions. This scalar measure is nevertheless well suited to joint normal or elliptical distributions,
provided the second moments exist. The dependence structure of more general distributions cannot,
however, be represented by such a unique scalar for each pair of inputs, and using linear correlation
in such situations could be misleading. Recourse to better-suited scalar measures is recommended for
non-elliptical distributions, such as Spearman’s rank correlation ρS given in Eq. (I.14) and Kendall’s τ
given in Eq. (I.15), where C denotes the bivariate copula of

�
X i , X j

�T
:

ρS = ρ
�
FX i
(X i) , FX j

�
X j

��
= 12

∫ 1

0

∫ 1

0

�
C
�
ui , u j

�− uiu j

�
duidu j , (I.14)

τ= 4

∫ 1

0

∫ 1

0

C
�
ui , u j

�
dC
�
ui , u j

�
. (I.15)

I–1.3 Isoprobabilistic transformations

I–1.3.1 Independent random inputs

In this first case, we make the following assumptions about the random vector X = (X1, . . . , Xn)
T:

• the n marginal distributions of X are known through their PDFs fX i
or CDFs FX i

for i = 1, . . . , n,
• the X i-components of X are mutually independent.

In order to construct the isoprobabilistic transformation T , each component X i of X is first mapped
into a uniform random variable Vi on [0,1] using its CDF FX i

. This uniform random variable Vi is then
mapped into a standard normal variable Ui using the inverse CDF of the standard normal distribution.

The isoprobabilistic transformation T is therefore defined as the following composed application:

T = Tvu ◦ Tx v : X → [0, 1]n → Rn

x 7→ v= Tx v (x) 7→ u= Tvu (v)
(I.16)

where x= (x1, . . . , xn)
T, v= (v1, . . . , vn)

T, u= (u1, . . . , un)
T, and where, for i = 1, . . . , n:

vi = FX i
(x i) , ui = Φ

−1 (vi) . (I.17)

The joint CDF of X is given from Theorem I–1.1 by:

FX (x) = FX (x1, . . . , xn) = CX

�
FX1
(x1) , . . . , FXn

(xn)
�

=
n∏

i=1

FX i
(x i) ,

(I.18)
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where CX is the independent copula Cind, i.e. such that Cind (u1, . . . , un) =
∏n

i=1 ui , see Eq. (I.9).

From Eq. (I.8), the joint PDF of X simply reads:

fX (x) = fX (x1, . . . , xn) = cX

�
FX1
(x1) , . . . , FXn

(xn)
� n∏

i=1

fX i
(x i)

=
n∏

i=1

fX i
(x i) ,

(I.19)

where cX is the density of the independent copula given by cind (u1, . . . , un) = 1.

The joint PDF in the u-space Rn is obtained as a direct application of the invariance of the copula
CX by the n strictly increasing transformations

�
Φ−1 ◦ FX i

�
(·) for i = 1, . . . , n, see Theorem I–1.2. We

therefore have CU = CX and cU = cX, and we can write:

fU (u) = fU (u1, . . . , un) = cU (Φ (u1) , . . . ,Φ (un))
n∏

i=1

ϕ (ui)

=
n∏

i=1

ϕ (ui) ,
(I.20)

whereϕ (·) denotes the univariate standard normal PDF, which confirms that fU (u) is the n-dimensional
standard normal PDF ϕn (u) =

∏n
i=1ϕ (ui).

I–1.3.2 Nataf transformation

We now make the following assumptions about the random vector X = (X1, . . . , Xn)
T:

• the n marginal distributions of X are known through their PDFs fX i
or CDFs FX i

for i = 1, . . . , n,
• the linear correlation coefficients ρi j = ρ

�
X i , X j

�
of
�
X i , X j

�
-pairs are known for i, j = 1, . . . , n. R=�

ρi j

�
1≤i, j≤n will denote the matrix of linear correlation coefficients.

The isoprobabilistic transformation T under such assumptions is known as the Nataf transformation
(Nataf, 1962). This transformation was introduced into structural reliability by Liu and Der Kiureghian
(1986). Its presentation in the framework of copulas is due to Lebrun and Dutfoy (2009a), from which
the text of this section is inspired. In the Nataf transformation, each component X i of X is first mapped
into a uniform random variable Vi on [0,1] using its CDF FX i

. These uniform random variables Vi are
then mapped into correlated standard normal variables Zi using the inverse CDF of the standard normal
distribution, i.e. such that Z= (Z1, . . . , Zn)

T ∼N (0,R0) where R0 denotes the correlation matrix of the
random vector Z. The correlated standard normal variables Zi are finally mapped into independent
standard normal variables Ui using a linear transformation denoted Tzu.

The isoprobabilistic transformation T is therefore defined as the following composed application:

T = Tzu ◦ Tvz ◦ Tx v : X → [0, 1]n → Rn → Rn

x 7→ v= Tx v (x) 7→ z= Tvz (v) 7→ u= Tzu (z)
(I.21)

where x= (x1, . . . , xn)
T, v= (v1, . . . , vn)

T, z= (z1, . . . , zn)
T, u= (u1, . . . , un)

T,
and where, for i = 1, . . . , n:

vi = FX i
(x i) , zi = Φ

−1 (vi) . (I.22)
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For the construction of Tzu, we assume a linear relation between z and u in the form z = Au. The
correlation matrix R0 can be written as follows:

R0 =
�
Cov

�
Zi , Z j

��
1≤i, j≤n = E

�
ZZT

�−E [Z]E �ZT
�

= AE
�
UUT

�
AT

= AAT .

(I.23)

From Eq. (I.23), it appears that A can be chosen as the lower-triangular matrix L0 of the Cholesky
decomposition of matrix R0 (assumed positive definite) such that:

R0 = L0LT
0 , (I.24)

which defines the transformation Tzu:

Tzu : Rn → Rn

z 7→ u= Tzu (z) = L−1
0 z

(I.25)

As described in Lebrun and Dutfoy (2009a), the underlying assumption of the Nataf transformation
is that the copula CZ of the random vector Z (or equivalently the copula CX of X) is the n-dimensional
normal copula parameterized by the correlation matrix R0.

The joint CDF of Z is therefore assumed to be given by:

FZ (z) = FZ (z1, . . . , zn) = CZ (Φ (z1) , . . . ,Φ (zn))
= CNn

(Φ (z1) , . . . ,Φ (zn) ;R0)
= Φn (z1, . . . , zn;R0) ,

(I.26)

where CZ is the n-dimensional normal copula CNn
parameterized by the correlation matrix R0, see

Eq. (I.10).

From Eq. (I.8), the joint PDF of Z reads:

fZ (z) = fZ (z1, . . . , zn) = cZ (Φ (z1) , . . . ,Φ (zn))
n∏

i=1

ϕ (zi)

= cNn
(Φ (z1) , . . . ,Φ (zn) ;R0)

n∏
i=1

ϕ (zi)

= ϕn (z1, . . . , zn;R0) ,

(I.27)

where cZ is the density of a n-dimensional normal copula parameterized by the correlation matrix R0,
whose expression is:

cNn
(u1, . . . , un;R0) =

ϕn

�
Φ−1 (u1) , . . . ,Φ−1 (un) ;R0

�
∏n

i=1ϕ (Φ−1 (ui))
, (I.28)

where ϕn (·;R0) is the n-dimensional standard normal PDF with linear correlation matrix R0.

The joint PDF in the x-space X is obtained as a direct application of the invariance of the copula
CZ by the n strictly increasing transformations

�
F−1

X i
◦Φ
�
(·) for i = 1, . . . , n, see Theorem I–1.2. We

therefore have CX = CZ and cX = cZ. The joint PDF of X is therefore given by the following expression:

fX (x) = fX (x1, . . . , xn) = cX

�
FX1
(x1) , . . . , FXn

(xn)
� n∏

i=1

fX i
(x i)

=
ϕn (z1, . . . , zn;R0)∏n

i=1ϕ (zi)

n∏
i=1

fX i
(x i) ,

(I.29)
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which is the expression given in Eq. (11) in the paper of Liu and Der Kiureghian (1986).

The R0 matrix has not been explicited yet. The elements ρ0,i j of this matrix are defined in terms
of the given linear correlation coefficients ρi j = ρ

�
X i , X j

�
of X i and X j components of X. They are

obtained from the following equation, for i, j = 1, . . . , n, in which we use the bivariate form of the joint
PDF expressed in Eq. (I.29):

ρi j = E

��
X i −µi

σi

��X j −µ j

σ j

��

=

∫

X j

∫

Xi

�
x i −µi

σi

�� x j −µ j

σ j

�
ϕ2

�
zi , z j;ρ0,i j

�

ϕ (zi)ϕ
�
z j

� fX i
(x i) fX j

�
x j

�
dx idx j

=

∫

R

∫

R

h
�
zi , z j ,µi ,µ j ,σi ,σ j

�
ϕ2

�
zi , z j;ρ0,i j

�
dzidz j ,

(I.30)

where Xi and X j denote the respective supports of the ith and jth components of the random vector X,
µi and µ j their respective means, and σi and σ j their respective standard deviations,

where h
�
zi , z j ,µi ,µ j ,σi ,σ j

�
=

�
F−1

X i
(Φ (zi))−µi

σi

� F−1
X j

�
Φ
�
z j

��−µ j

σ j

!
, and where

ϕ2

�
zi , z j;ρ0,i j

�
= ϕ2

�
zi , z j;

�
1 ρ0,i j
ρ0,i j 1

��
=

1

2π
Ç

1−ρ2
0,i j

exp


−

z2
i − 2ρ0,i jziz j + z2

j

2
�
1−ρ2

0,i j

�

.

The Nataf transformation is valid if Eq. (I.30) admits solutions for all i, j = 1, . . . , n and if the linear
correlation matrix R0 is positive definite. Such a situation is often met in applications of practical inter-
est, as reported by Liu and Der Kiureghian (1986). Findingρ0,i j solutions of the integral relation defined
in Eq. (I.30) is in general tedious, and for this reason approximate formulas for ρ0,i j were derived by
Liu and Der Kiureghian (1986) for most common statistical distributions. These formulas are in general
obtained by least squares fitting and therefore approximate, except for a few pairs of distributions. An
alternative solution consists of calculating ρ0,i j for i, j = 1, . . . , n and i > j by numerical integration,
as implemented in FERUM 4.x (Bourinet et al., 2009). Such calculations are performed only once to
define the transformation T and they are fast with currently available computers. Coefficients ρ0,i j
of the R0 matrix are obtained by 2D numerical integration as solutions3 of the following equation for
i, j = 1, . . . , n and i > j:

ρi j =
ni∑

k=1

n j∑
l=1

ωkωl h
�
zk,µi ,σi , zl ,µ j ,σ j

�
ϕ2

�
zk, zl ,ρ0,i j

�
, (I.31)

where (zk, zl) are the ni × n j integration points and ωkωl their respective weights. A Gaussian quadra-
ture rule is applied over the truncated domain [−6, 6] × [−6,6]. Special attention must be paid to
strongly-correlated random variables for accurate ρ0,i j values. A practical rule adopted in FERUM 4.x
consists of increasing the number of integration points along each dimension with correlation, ranging
from ni = n j = 32 points along each dimension for absolute correlation values lower than 0.9 to 1, 024
points for absolute values larger than 0.9995.

3It is important to point out that the unknown ρ0,i j in Eq. (I.31) is in the right-hand side of the equation, which requires
an iterative solution for each pair (i, j).
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In many engineering problems, the joint PDF fX is often out of reach and the available statistical in-
formation is often limited to marginal distributions of X and, in some cases, linear correlations between
its components. This explains why the Nataf transformation is so popular in the structural reliability
literature, even if the assumption of normal copula may be questionable, as raised by Lebrun and Dutfoy
(2009a). Note that all the works presented in this report are based on this transformation.

I–1.3.3 Rosenblatt transformation

We now assume that the random vector X = (X1, . . . , Xn)
T is known through its joint distribution, e.g.

its joint CDF FX.

In such a case, the isoprobabilistic transformation applied is known as the Rosenblatt transforma-
tion (Rosenblatt, 1952), see the paper from Hohenbichler and Rackwitz (1981) for its introduction in
structural reliability. Based on the joint CDF FX, the random vector X is first mapped into a uniformly
distributed random vector V = (V1, . . . , Vn)

T over [0,1]n with independent copula (see demonstration
by Ditlevsen and Madsen, 2007, p. 123). The uniform random variables Vi are then mapped into inde-
pendent standard normal variables Ui using the inverse CDF of the standard normal distribution.

The isoprobabilistic transformation T is defined as the following composed application:

T = Tvu ◦ Tx v : X → [0, 1]n → Rn

x 7→ v= Tx v (x) 7→ u= Tvu (v)
(I.32)

where x= (x1, . . . , xn)
T, v= (v1, . . . , vn)

T, u= (u1, . . . , un)
T,

and where ui = Φ−1 (vi) for i = 1, . . . , n.

One possible choice for the transformations Tx v is given in Eq. (I.33). Note that there exist n!
different choices due to the variable ordering in the conditional expressions.

v1 = FX1
(x1)

v2 = FX2|X1
(x2|x1)

v3 = FX3|X1,X2
(x3|x1, x2)

. . .

vn = FXn|X1,...,Xn−1
(xn|x1, . . . , xn−1)

(I.33)

It is important to notice that the definition of Tx v necessitates a knowledge of the conditional CDFs
of Xk|X1, . . . , Xk−1 for k = 2, . . . , n. When the joint distribution of X is defined by its copula C and its
marginal CDFs FX i

for i = 1, . . . , n, the Rosenblatt transformation T is computationally tractable by using
the conditional expression obtained in Eq. (I.12). The definition of the inverse T−1 of the Rosenblatt
transformation (needed in approximation methods such as FORM and SORM, addressed in Section I–2)
may however require substantial efforts.

As a final remark, the dependence of the FORM results on the variable ordering in the conditional
expressions of Eq. (I.33) has been studied in several works, see e.g. the example based on the bivariate
exponential CDF FX (x) = FX (x1, x2) = 1− exp (−x1)− exp (−x2)− exp (−x1 − x2 − x1 x2) in Ditlevsen
and Madsen (2007) and Lemaire et al. (2010). As pointed out by Lebrun (2013), it is important to men-
tion that, despite differences in terms of FORM results, the exact failure probability remains unchanged,
whatever the order of variables we choose in the Rosenblatt transformation.
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I–2 MPFP-based methods

I–2.1 First-order reliability method (FORM)

I–2.1.1 Problem statement

The first-order reliability method (FORM) aims at finding the point P∗ of the LSS F0
u that is the closest to

the origin O in the standard normal space, i.e. the point in the failure domain Fu with the largest PDF
value (see, e.g., Ditlevsen and Madsen, 2007; Lemaire et al., 2010), cf. Figure I.3. This point, known as
the most probable failure point (MPFP) (also called design point) in structural reliability, is the solution
of the following quadratic optimization problem under nonlinear constraint:

u∗ = arg min
u∈Rn

1
2

uTu s.t. G (u) = 0 , (I.34)

where u∗ is the coordinate vector of P∗ in the standard normal space Rn.

The so-called Hasofer-Lind reliability index βHL is given by:

βHL = β = α
Tu∗ , (I.35)

where α is a unit vector such that α= −∇G (u∗)/‖∇G (u∗)‖ and∇ is the gradient operator. In general,
the origin O of the standard normal space belongs to the safe domain. As a consequence, β is positive
and represents the Euclidean distance from the MPFP P∗ to the origin O of the standard normal space,
and α is the unit vector of the (O, P∗) axis, see Figure I.3.

O u1

u2

u∗1

u∗2
P∗

α
β

G1 (u) = 0

G (u) = 0

Figure I.3 – FORM approximation.

Under the assumption that the LSF is continuous, smooth and differentiable in the neighborhood of
the MPFP, we define the linear approximation of G at the MPFP P∗ (first-order Taylor polynomial of G
at u∗), which is given by the following expression:

G1 (u) =∇G (u∗)T (u− u∗) , (I.36)

in which the term G (u∗) has been dropped since it is equal to zero (the MPFP P∗ belongs to the LSS
F0

u).

The FORM method consists in approximating the unknown probability pf defined in Eq. (I.5) by the
following n-dimensional integral:

pFORM
f =

∫

Rn

1Fu1
(u) ϕn (u) du , (I.37)
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where Fu1 = {u ∈Rn : G1 (u)≤ 0}= �u ∈Rn : β −αTu≤ 0
	
.

This integral can be evaluated in a closed form, and a simple calculation gives:

pFORM
f = Φ (−β) , (I.38)

where Φ denotes the one-dimensional standard normal CDF.

I–2.1.2 Solving the constrained optimization problem

The main computational task of the FORM method is to search for the supposedly unique MPFP using
a suitable optimization algorithm. Several methods are available to solve the optimization problem
in Eq. (I.34), including general algorithms such as the usual sequential quadratic programming (SQP)
algorithm, or others which have been specifically tailored to solve Eq. (I.34), e.g. the HLRF algorithm
(Hasofer and Lind, 1974; Rackwitz and Fiessler, 1978) and the i-HLRF algorithm (Zhang and Der
Kiureghian, 1994). The reader may refer to Lemaire et al. (2010, Chap. 5) for an overview of these
algorithms and to Liu and Der Kiureghian (1991) for a comparison of the performances of the SQP, the
HLRF and a few other algorithms.

Most of the existing algorithms share the same basis: they are iterative until some convergence
criteria are met and, at each iteration of the algorithm, a search direction is determined along with a step
length in that direction. Their performances are usually evaluated based on the following criteria: types
of problems that can be solved, convergence to the solution with a prescribed accuracy, convergence
rate of the algorithm, ability of the algorithm to scale with the dimension n of the problem.

From a practical viewpoint, all the above-mentioned algorithms require an evaluation of the gradient
of the LSF at each iteration. The LSF gradient involves those of one or more outputs of a numerical
model (e.g. a FE model) w.r.t. its inputs, considered as random. The gradients (or sensitivities to
input parameters) are in general not directly accessible from the numerical codes, except in a very
few cases and under some often restrictive assumptions, e.g. model linearity. If these sensitivities are
available e.g. by direct differentiation of the equations governing the response(s), they can make FORM
very efficient, see the early paper of Zhang and Der Kiureghian (1993) for the application of the so-
called direct differentiation method to the dynamic response of structures with inelastic materials and the
report by Haukaas and Der Kiureghian (2004) for more details on such approaches in the context of FE
analyses. In the most general case, these sensitivities are inaccessible (case of nonintrusive approaches
in reliability assessment) and they need to be assessed by finite differences, with the dilemma of choosing
very small or sufficiently large perturbation steps in the finite difference scheme:

• If the applied perturbations are too small, the numerical model is often unable to evaluate outputs
with sufficient accuracy (this could be interpreted as noisy outputs from the code) and the calculated
sensitivities are therefore not representative of the level of perturbation applied to the model inputs.

• If large perturbations are selected, the output values are well separated from each other but the
calculated sensitivities are no longer representative of first-order derivatives.

The selection of suitable perturbation steps, usually expressed as ratios of random input standard de-
viations, has considerable consequences on the convergence and convergence rate of the optimization
algorithms used to solve Eq. (I.34). The tuning of such perturbation steps in a finite difference scheme
may require considerable efforts in engineering applications of practical interest.

The FORM results presented in this report are based on the i-HLRF algorithm. This algorithm was
implemented in FERUM 4.x so as to take advantage of independent tasks in multicore computational
platforms (distributed LSF evaluations to assess the gradient by finite differences and to determine an
optimal step size by means of the Goldstein-Armijo approximate line search rule).
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I–2.1.3 Remarks about the accuracy of the FORM solution

It is important to emphasize that the approximation of pf given in Eq. (I.38) is under the assumption
of a unique MPFP P∗ and a linear (or weakly nonlinear) LSS F0

u . If these assumptions are not fulfilled,
the FORM approximation could be a fairly crude one with a large bias w.r.t. the true failure probability.

The uniqueness of the MPFP is often encountered in practice. Note that such an assumption cannot
be checked beforehand, and it is also hard to verify it when a FORM solution has been obtained. Some
engineering reliability assessment problems may, however, exhibit several zones of similar importance
(and therefore multiple MPFPs), as presented in Section III–1.4. In the FORM context, the method pro-
posed by Der Kiureghian and Dakessian (1998) aims at solving such problems. In essence, the method
consists in repeating the FORM analysis with a modified LSF which triggers the search outside the zone
where a MPFP has been found. Assuming that K MPFPs have already been identified (the first one
being obtained e.g. with the i-HLRF algorithm), the FORM analysis performed next uses the following
modified LSF Gbulge,K+1 in the standard normal space, which consists in adding bulges centered at each
of the K obtained MPFPs, see examples of corresponding LSS in Figure I.4:

Gbulge,K+1 (u) = G (u) +
K∑

k=1

1Bk
(u) sk

�
r2

k − ‖u− u∗k‖2
�2

, (I.39)

where u∗k and βk are the MPFP and reliability index of the kth MPFP, Bk is the ball of radius rk centered
on the kth MPFP, i.e. such that Bk =

�
u ∈Rn : ‖u− u∗k‖ ≤ rk

	
, and where rk is the radius of the bulge

and sk a parameter that controls its height, defined as follows:

rk = γβk , sk =
δβk‖∇G

�
u∗k
�‖

�
(γβk)

2 − (δβk)
2�2 , (I.40)

where δ and γ are user-defined parameters such that 0< δ < γ.

This procedure is repeated until a spurious MPFP is obtained. Such points appear in the foot of one
of the created bulges and they correspond to artificially-created minimal distance points, see Figure I.4c.
To make the method more efficient, it is suggested by Der Kiureghian and Dakessian (1998) to start the
FORM algorithm from an initial point u0,K+1, defined as follows to search for the (K + 1)th MPFP:

u0,K+1 = −ε
K∑

k=1

u∗k , (I.41)

where ε is a user-defined parameter in the range 0.2-0.5.

(a) First MPFP u∗1
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(b) Second MPFP u∗2
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u1

u2

2nd MPFP

(c) Spurious MPFP
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−2
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2

4

u1

u2 Spurious
MPFP

Figure I.4 – Successive use of bulges to find multiple MPFPs (Der Kiureghian and Dakessian, 1998,
Example 1). Selected parameters: δ = 0.75, γ= 1.1, ε= 0.5.
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Regarding a potential nonlinearity of the LSS, the FORM approximation may be corrected by a
subsequent recourse to one of the second-order reliability methods presented in the next section (either
curvature-fitting or point-fitting SORM).

I–2.2 Second-order reliability method (SORM)

I–2.2.1 Curvature-fitting SORM

We assume that the LSF is continuous, smooth and at least twice differentiable in the neighborhood
of the MPFP obtained by a FORM analysis. In the second-order reliability method (SORM) based on
curvature-fitting (SORM-cf), we consider the quadratic approximation of G at the MPFP P∗ (or second-
order Taylor polynomial of G at u∗) given by:

G2 (u) =∇G (u∗)T (u− u∗) +
1
2
(u− u∗)T∇2G (u∗) (u− u∗) , (I.42)

where ∇2 denotes the Hessian operator. The SORM-cf approximation of the unknown probability pf
defined in Eq. (I.5) is expressed as the following n-dimensional integral:

pSORM-cf
f =

∫

Rn

1Fu2
(u) ϕn (u) du , (I.43)

where Fu2 = {u ∈Rn : G2 (u)≤ 0}.
In order to make the calculation of this integral tractable, the quadratic approximation defined in

Eq. (I.42) is usually expressed in another set of axes by means of the following composed orthonormal
transformations (Der Kiureghian, 1999).

The first, u 7→ u′ =
�
u′1, . . . , u′n

�T
= R1u, is constructed such that the last coordinate axis u′n coincides

with the direction (O, P∗), e.g. by means of a Gram-Schmidt algorithm. In the new space, Eq. (I.42)
is rewritten as follows, in which the factor terms of

�
u′n − β

�
are dropped in relation to the remaining

terms:
G2

�
R−1

1

�
u′
��

‖∇G (u∗)‖ ≈ β − u′n +
1
2
eu′TeAeu′ , (I.44)

where eu′ = �u′1, . . . , u′n−1

�T
and eA is the sub-matrix composed of the first (n− 1) rows and colums of

A= R1∇2G (u∗)RT
1/‖∇G (u∗)‖.

O u1

u2

u∗1

u∗2
P∗

α
β

G1 (u) = 0

G (u) = 0
G2 (u) = 0

Figure I.5 – SORM-cf approximation.



20 Chapter I. Rare-event probability estimation

A rotation around axis u′n is then applied to be in the principal coordinates of the parabolic approx-

imation of the LSS. Let us denote this rotation eu′ 7→ eu′′ = eR2eu′ where eu′′ = �u′′1 , . . . , u′′n−1

�T
, defined

such that eR2eAeRT
2 = diag (κi). The rotation matrix eR2 represents the eigenmatrix of eA, and the (n− 1)

principal curvatures κ1, . . . ,κn−1 are the corresponding eigenvalues. In this rotated space, Eq. (I.44)
takes the following canonical form:

G2

�
R−1

1

�
R−1

2

�
u′′
���

‖∇G (u∗)‖ ≈ β − u′′n +
n−1∑
i=1

κiu
′′
i

2 , (I.45)

where u′′ =
�
u′′1 , . . . , u′′n

�T
and R2 =

�eR2 0
0T 1

�
.

Eq. (I.43) can then be rewritten in the following form:

pSORM-cf
f ≈

∫

Rn

1Fu′′2

�
u′′
�
ϕn

�
u′′
�

du′′ , (I.46)

where Fu′′2 =
¦
u′′ ∈Rn : β − u′′n +

∑n−1
i=1 κiu

′′
i

2 ≤ 0
©

.

Several formulas can be found in the literature to approximate this integral. The best known are
those established by Breitung (1984), Tvedt (1988), and Hohenbichler and Rackwitz (1988). Only the
SORM approximation given by the asymptotic formula of Hohenbichler and Rackwitz is recalled here:

pSORM-cf
f ≈ Φ (−β)

n−1∏
i=1

1p
1+ψ (β)κi

(β →∞) , (I.47)

where ψ (β) = ϕ (β)/Φ (−β), assuming that κi > −1/ψ (β) for all i ∈ {1, . . . , (n− 1)}.
It is important to point out that the SORM-cf method requires the evaluation of the Hessian matrix

at P∗ used for the definition of eA. This Hessian matrix ∇2G (u∗) is computed numerically by finite
differences in FERUM 4.x by means of n+ n (n+ 1)/2 calls to the LSF. All these calls are independent
and therefore run in parallel by FERUM.

I–2.2.2 Point-fitting SORM

An alternative method proposed by Der Kiureghian et al. (1987) and known as point-fitting SORM
(SORM-pf) consists in approximating the LSS by a piece-wise paraboloid surface which must be tangent
to the LSS at the MPFP and interpolates the LSS at a set of fitting points. This method is advantageous
for slightly noisy LSF, such as those resulting from calls to a FE code for which the computation of the
Hessian matrix by finite differences cannot be achieved with sufficient accuracy, for high-dimensional
problems, i.e. large n, or when the computation of curvatures fails.

The method works in a rotated standard normal space such that the last coordinate axis u′n coincides
with the direction (O, P∗), as defined in the SORM-cf method (note that this choice of axes is made
regardless of the orientation of the principal directions of the LSS, whose determination would require
us to calculate the Hessian of G at the MPFP). The orthogonal transformation to this new space is, as
previously described, defined by u′ = R1u, where u′ denotes the coordinate vector in the new space.

For each coordinate u′i , i = 1, . . . , n − 1, the objective is to find two fitting points of the LSS with
coordinates (−kβ , u′n,−i) and (kβ , u′n,+i), where β is the reliability index and k is a preselected parameter
which controls the distance of these points from the (O, P∗) axis, see Figure I.6. The ordinates u′n,−i and
u′n,+i of these two points are solutions of the following equation:

G
�
R−1

1 u′
�
= 0 , (I.48)
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where u′ =
�
0, . . . , 0,u′i , 0, . . . , 0, u′n

�T
and u′i = ±kβ , u′n = u′n,±i . The corresponding optimization prob-

lem is solved in FERUM 4.x using a vectorized version of the Matlab fzero function, which allows the
2 (n− 1) independent searches to be run in parallel.

Two semi-parabolas can then be defined in the
�
u′i , u′n

�
plane, which are tangent to the LSS at P∗

and pass through the fitting points, see Figure I.6. The corresponding curvatures at P∗ are given by
κ±i = 2(u′n,±i − β)/ (kβ)2 and the Hohenbicher and Rackwitz approximation reads:

pSORM-pf
f ≈ Φ (−β)

n−1∏
i=1

1
2

�
1p

1+κ−iψ (β)
+

1p
1+κ+iψ (β)

�
. (I.49)

O u′i

u′n

kβ−kβ

β

u′n,−i

u′n,+i

P∗

G(R−1
1 u′) = 0

semi-parabola

semi-parabolafitting point

fitting point

Figure I.6 – Concept of SORM-pf approximation in the (u′i , u′n) plane.

I–3 Simulation methods

This section presents the main basis of some popular sampling methods, which are often used for the
reliability assessment of rare events. The common idea of all these method is to generate samples in
the outcome space, e.g. random realizations from the joint PDF fX in a crude Monte Carlo simulation,
in order to find an estimate of the failure probability pf. The goal is to construct an estimator bpf that
is close to the unknown failure probability pf for any generated sample. This “proximity” to the true
and unknown quantity pf is defined in terms of the following important properties of the estimator bpf:
bias of bpf w.r.t. the true and unknown probability pf (the objective is to have an unbiased estimator
such that E [bpf] = pf), and variance Var [bpf] (the objective is to construct an estimator with the lowest
achievable variance in order to obtain an estimate close to the unknown value pf for any sample set
that is drawn). Note that other properties, such as consistency and efficiency, are also of interest for the
characterization of bpf.

The well-known Monte Carlo method, applied in numerous fields of physics and engineering, is
introduced first in Section I–3.1. For improved efficiency in the context of rare events, two variance
reduction techniques are then presented: subset simulation, proposed by Au and Beck (2001) in Sec-
tion I–3.2, and importance sampling, through its adaptive variant known as the cross-entropy method
(Rubinstein, 1999) in Section I–3.3. The objective of variance reduction techniques is to retain most
of the advantages of the Monte Carlo method (sampling in the outcome space, no assumption about
the complexity of the LSF and independence w.r.t. the dimension n of the outcome space) with a lower
variance of the estimator bpf for a fixed computational budget. For complementary details about the
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sampling methods addressed in this section and some of the related useful techniques (e.g. random
number generation and Markov chains), the reader may refer to general textbooks such as those of
Robert and Casella (2004), Rubinstein and Kroese (2007), and Kroese et al. (2011).

I–3.1 Crude Monte Carlo (MC) simulation

In order to define the estimator of pf in a crude Monte Carlo (MC) simulation, Eq. (I.1) is rewritten as:

pf = P (E) =

∫

X
1Fx
(x) fX (x) dx= E fX

�
1Fx
(X)
�

, (I.50)

where Eh denotes the mathematical expectation operator w.r.t. a given PDF h.

The crude MC estimator of pf is simply derived from Eq. (I.50) as the sample mean of the failure
indicator function:

bpMC
f =

1
N

N∑
j=1

1Fx

�
X( j)

�
, (I.51)

where {X( j), 1≤ j ≤ N} are N independent copies of the random vector X, i.e. X(1), . . . ,X(N)
i.i.d.∼ fX, and

N denotes the sample size.

From simple calculations, we can find that the coefficient of variation (c.o.v.) of the crude MC
estimator bpMC

f writes as follows:

δbpMC
f
=

q
Var

�bpMC
f

�

E
�bpMC

f

� =

√√ pf (1− pf)
N

pf
=

√√1− pf

N pf
. (I.52)

From Eq. (I.52), it can be noticed that the convergence speed of a crude MC simulation is a function
of N (the c.o.v. of bpMC

f is proportional to 1/
p

N). As an illustration, a 10% c.o.v. on bpMC
f by crude MC

requires a sample size N approximately equal to 100/pf in the case of a rare event (pf � 1). Crude
MC hence appears inefficient for estimating probabilities of rare events. The efficiency can, however, be
enhanced by means of variance reduction techniques such as those presented in Sections I–3.2 and I–
3.3. It is also important to mention that the c.o.v. of bpMC

f is independent of the dimension n of the
problem. This independence w.r.t. the dimension is a key advantage of the crude MC approach over
other techniques. Last but not least, it is of paramount importance to remember that the crude MC
method works regardless of the complexity of the LSF, which is also an advantage over approximation
methods presented in Section I–2 or approaches based on surrogate models such as those addressed in
Chapter II.

The crude MC method is implemented in FERUM 4.x and takes full advantage of the independence
of
�
X( j), 1≤ j ≤ N

	
, which allows the respective calls to the LSF to be sent in parallel.

I–3.2 Subset simulation (SS)

This section describes the subset simulation (SS) method developed by Au and Beck (2001) which has
become popular over the years in the structural reliability community. Methods with a very similar basis
have been proposed in the statistical community, starting with the seminal work of Kahn and Harris
(1951) in the setting of particle transmission. Such methods are also known as adaptive multilevel
splitting (Cérou and Guyader, 2007; Botev and Kroese, 2012). These methods were developed in a
framework that may differ from the specific one of structural reliability, e.g. such as the classical context
of Markovian processes (Cérou and Guyader, 2007).
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I–3.2.1 Conceptual idea of subset simulation

The conceptual idea of subset simulation (SS) is to represent the small probability of a rare failure event
E as a product of larger and sequentially-estimated probabilities of wisely-selected intermediate events
Es, s = 1, . . . , m. These m intermediate events are nested such that Em ⊂ Em−1 ⊂ · · · ⊂ E2 ⊂ E1 where
Em = E. From the inclusion rule and by successive conditioning we can write:

pf = P (E) = P (Em) = P (Em|Em−1)P (Em−1)

= . . .

= P (Em|Em−1)P (Em−1|Em−2) . . .P (E2|E1)P (E1)

=
m∏

s=1

ps ,

(I.53)

where p1 denotes the probability of E1, and ps = P (Es|Es−1) the conditional probability of Es given Es−1
for s = 2, . . . , m. Hence, pf appears as the product of m probabilities, each of which is necessarily larger
than pf and therefore easier to estimate than pf by sampling.

We will here assume a component-wise independence of the input random vector for the subsequent
application of the Metropolis algorithm modified by Au and Beck (2001) (m-M), see Section I–3.2.3.
This can be conveniently achieved by considering the reliability assessment problem in the standard
normal space, see Eq. (I.5), wherein ϕn (u) =

∏n
i=1ϕ (ui). All the components Ui for i = 1, . . . , n have

the same univariate standard normal distribution, which moreover greatly simplifies the choice of the
proposal multivariate PDF used for Monte Carlo Markov chain sampling and the tuning of the algorithm
parameters.

We define the following set of nested intermediate failure domains in the standard normal space, for
s = 1, . . . , m, see Figure I.7:

Fu, s = {u ∈Rn : G (u)≤ ys} , (I.54)

where ys represents intermediate levels of the LSF such that ym = 0 and ym < ym−1 < . . . < y1. The
intermediate events Es are such that Es = {G (U) ≤ ys} for s = 1, . . . , m. They correspond to the
intermediate failure domains Fu, s and they meet the previously defined inclusion rule Em ⊂ Em−1 ⊂
· · · ⊂ E2 ⊂ E1.

(a) First domain Fu, 1

O u1

u2

G (u) = 0G (u) = y1

Fu, 1

(b) Second domain Fu, 2

O u1

u2

G (u) = 0G (u) = y2

Fu, 2

(c) Last domain Fu, 3

O u1

u2

G (u) = y3 = 0

Fu, 3 = Fu

Figure I.7 – Intermediate failure domains Fu, s for s = 1, . . . , m (here m= 3).
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I–3.2.2 Description of SS algorithm

The rare event estimation problem formulated in Eq. (I.5) is replaced by a sequence of m problems with
larger probabilities to estimate w.r.t. the intermediate levels ys, for s = 1:

p1 = P (E1) = Eϕn

�
1Fu, 1

(U)
�

, (I.55)

and, for s = 2, . . . , m:
ps = P (Es|Es−1) = Eϕn(·|Es−1)

�
1Fu, s

(U)
�

. (I.56)

Estimators of these probabilities are given by the fraction of independent samples (for s = 1) or
conditional independent samples (for s > 1) that cause failure w.r.t. the selected intermediate level ys,
respectively for s = 1:

bp1 =
1
N

N∑
j=1

1Fu, 1

�
U( j)1

�
where U(1)1 , . . . ,U(N)1

i.i.d.∼ ϕn , (I.57)

and for s = 2, . . . , m:

bps =
1
N

N∑
j=1

1Fu, s

�
U( j)s

�
where U(1)s , . . . ,U(N)s

i.i.d.∼ ϕn (·|Es−1) , (I.58)

where N denotes the sample size (same value used at each level ys) and where the conditional PDF
ϕn (·|Es−1) is defined as follows, for s = 2, . . . , m:

ϕn (u|Es−1) =
ϕn (u)1Fu, s−1

(u)

P (Es−1)
. (I.59)

In SS, the intermediate levels ys are selected such that, by construction, all the estimates bps for
s = 1, . . . , (m− 1) are set equal to p0, where p0 is a prescribed probability level (a usual choice is
p0 = 0.1). Note that targeting equal probability levels in terms of conditional probabilities corresponds
to the optimal choice for a minimal asymptotic variance of bpSS

f =
∏m

s=1 bps, as pointed out by Guyader
(2011). This probability level p0 governs how many intermediate failure domains Fu, s are required
to reach the failure domain Fu. A small value for p0 ensures a fast exploration but with the main
disadvantage of poorly-estimated probabilities w.r.t. the intermediate levels ys. A large value for p0
enables good accuracy on the estimated probabilities but at the cost of a lengthy exploration (large m).
According to Zuev et al. (2012), the optimal range for p0 is 0.1-0.3. Optimality here means that we
are searching for a value of p0 that minimizes the variance of bpSS

f for a given total number of samples
Nt = mN . It is assumed here that both 1/p0 and p0N are positive integers. If not, we can work
with slightly different values for p0 and N , such that p0 = 1/k0 and N = k1k0, where k0 = b1/p0e,
k1 = bN/k0e and bxe denotes the nearest integer to x .

The first intermediate level y1 is straightforward to obtain. It is defined as the p0-quantile of Y1 =
{G(u( j)1 ), 1 ≤ j ≤ N}, where U1 = {u( j)1 , 1 ≤ j ≤ N} are the N i.i.d. samples drawn from ϕn, and we
therefore have bp1 = p0. At the following levels s > 1, we proceed similarly by defining ys as the p0-
quantiles of Ys = {G(u( j)s ), 1 ≤ j ≤ N}, where Us = {u( j)s , 1 ≤ j ≤ N} are the i.i.d. samples drawn from
ϕn (·|Es−1). The SS algorithm ends when the p0-quantile of Ys = {G(u( j)s ), 1 ≤ j ≤ N} becomes lower
than zero. The last level ym is set to zero, and the corresponding probability bpm is given by bpm = #J /N ,
where J = { j ∈ {1, . . . , N} : G(u( j)m )≤ 0} and #J denotes the cardinality of the set J . The probability
bpm estimated at the last level ym = 0 is therefore greater than or equal to p0, and the estimation of pf
by SS is simply given by:

bpSS
f = pm−1

0 bpm . (I.60)
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In SS, we need to generate independent samples from the n-dimensional standard normal PDF
ϕn at the first level (s = 1), see Eq. (I.57), and from the conditional n-dimensional standard normal
PDF ϕn (·|Es−1) at the next levels (s > 1), see Eq. (I.58). Sampling from ϕn is straightforward and
corresponds to a crude MC simulation. Sampling from the conditional PDF ϕn (·|Es−1) for s > 1 is
however not trivial. In SS, this is performed by means of Markov chain Monte Carlo (MCMC), which is a
useful technique for approximate sampling from an arbitrary distribution (see, e.g., Robert and Casella,
2004; Kroese et al., 2011). The specific algorithm used in SS is detailed in the next section.

I–3.2.3 Approximate sampling from ϕn (·|Es−1) for s = 2, . . . , m

It should first be noticed that an acceptance-rejection method would be inefficient to generate samples
from ϕn (·|Es−1) for s = 2, . . . , m (draw samples from ϕn, accept those that belong to Fu, s−1, reject
otherwise). The acceptance probability is proportional to P (Es−1), which decreases with s to reach a
value for s = m in the order of the unknown and small probability pf.

In order to simulate samples from ϕn (·|Es−1) for s = 2, . . . , m, SS resorts to Markov Chain Monte
Carlo (MCMC). This technique was invented soon after crude Monte Carlo and dates back to 1953 with
the original work of Metropolis et al. (1953) at Los Alamos. This section briefly presents the principle of
Markov chains to generate samples from an arbitrary multivariate target distribution which cannot be
directly sampled (e.g. known up to a scaling factor). The Metropolis-Hastings algorithm, one of the most
popular MCMC techniques, is first described. This algorithm was adapted by Au and Beck (2001) for the
specific needs of SS and this important variant is then detailed. Note that the presentation of Markov
chains and the above-mentioned algorithms is made in the standard normal space Rn, in coherence
with the formulation of the SS method. A presentation in similar settings can be found in Papaioannou
et al. (2015).

Let us introduce a time-homogeneous discrete-time Markov chain {Uk, k ∈ N} in the continuous
state space Rn (here the standard normal space). It is assumed that {Uk, k ∈N} is a first-order Markov
chain:

P
�
Uk+1 ∈ A |⋂k

m=0{Um = um}
�
= P

�
Uk+1 ∈ A | {Uk = uk}�

def
= K

�
A|uk

�
,

(I.61)

for any A ∈ B, B being the Borel σ-field of Rn, and where K is the transition kernel of the Markov
chain. K

�
A|uk

�
=
∫

A K
�
dv|uk

�
is a conditional distribution function that represents the probability of

moving from uk to a point in the set A. K is assumed to be independent of k, which makes the chain
time-independent (or stationary). The marginal distribution of U0 is called the initial distribution of the
chain.

At any given level s > 1 of the SS algorithm, the objective is to sample a Markov chain {Uk, k ∈N}
whose invariant (or stationary) distribution is the target distribution ϕn (·|Es−1). MCMC algorithms
start from a set of initial states of the chain which are in general not distributed according to the target
distribution. The samples generated from the Markov chain are expected to follow the target distribution
for sufficiently large k after a transient stage known as the burn-in period. It is important to point out
that the generated samples are expected to be identically distributed according to the target density
after this burn-in period but they are not independent. Some level of dependence in fact appears in
the chain due to the use of a proposal PDF q, introduced later in this section. Convergence to a unique
invariant distribution occurs under some regularity conditions of the constructed Markov chain, known
as aperiodicity and irreducibility (see, e.g., Kroese et al., 2011). These conditions are met in usual
MCMC samplers. They are in particular satisfied for proposal PDFs q with a restricted support, such as
uniform PDFs centered at the current state of the chain with a finite width (Chib and Greenberg, 1995),
as applied in SS.
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The potential move in the standard normal space from a current state denoted u to a new state
denoted v is characterized by a transition kernel K , generally expressed as follows:

K (dv|u) = p (v|u)dv+ r (u)δu (dv) , (I.62)

where p : Rn ×Rn → R≥0, (u,v) 7→ p (v|u) is a given function, such that p (u|u) = 0, δ is the Dirac
delta function, such that δu (dv) = 1 if u ∈ dv and 0 otherwise, and r (u) = 1− ∫

Rn p (v|u)dv. The first
continuous term of the sum defines the move from u to v according to p (v|u), and the second discrete
term represents the stagnation at u with probability r (u).

The invariant distribution of the Markov chain must satisfy the following condition, which states
that if Uk is distributed according to the target distribution ϕn (·|Es−1), then Uk+1 and all subsequent
elements of the chain are also distributed according to ϕn (·|Es−1):

ϕn (v|Es−1)dv=

∫

Rn

K (dv |u)ϕn (u|Es−1)du . (I.63)

A sufficient condition for the target distribution ϕn (·|Es−1) to be a stationary (or invariant) distri-
bution for K is to satisfy the so-called reversibility condition a.k.a. detailed balance:

ϕn (u|Es−1) p (v|u) = ϕn (v|Es−1) p (u|v) . (I.64)

It is easy to show that Eq. (I.64) implies Eq. (I.63) (see, e.g., Tierney, 1994; Chib and Greenberg, 1995).

We will be specifically interested here in the Metropolis-Hastings kernel (Hastings, 1970), defined
such that:

p (v|u) = pMH (v|u) =
¨

q (v|u)α (u,v) if u 6= v ,

0 if u= v ,
(I.65)

where q (v|u) is a proposal PDF (note that we have
∫
Rn q (v|u)dv= 1), and α (u,v) is the probability of

moving from u to v. The reversibility of the transition kernel w.r.t. ϕn (·|Es−1) is imposed by construction,
by defining α (u,v) as follows:

α (u,v) =





min
§
ϕn (v|Es−1)q (u|v)
ϕn (u|Es−1)q (v|u)

, 1
ª

if ϕn (u|Es−1)q (v|u)> 0 ,

1 if ϕn (u|Es−1)q (v|u) = 0 .
(I.66)

The original Metropolis sampler (Metropolis et al., 1953) is obtained by assuming that the pro-
posal PDF q is symmetric, i.e. such that q (v|u) = q (u|v). In such a case, the move probability (a.k.a.
acceptance probability) is given by:

α (u,v) =





min
§
ϕn (v|Es−1)
ϕn (u|Es−1)

, 1
ª

if ϕn (u|Es−1)q (v|u)> 0 ,

1 if ϕn (u|Es−1)q (v|u) = 0 .
(I.67)

If ϕn (v|Es−1) > ϕn (u|Es−1), the move from u to v is always accepted. Otherwise the move is accepted
with a probability given by the ratio ϕn (v|Es−1)/ϕn (u|Es−1). A straightforward choice to ensure sym-
metry in the proposal PDF q is to consider v = u + z, where z is a realization of a random vector Z
independent of U and whose n-variate PDF fZ is symmetric about zero, i.e. such that fZ (z) = fZ (−z).
The proposal PDF is then defined as q (v|u) = fZ (v− u). Straightforward choices for fZ include the nor-
mal or uniform multivariate distributions. Because the candidate state is equal to the current state of
the chain plus noise, samplers of this form are usually termed random-walk Metropolis samplers. Note
that if q does not satisfy the symmetry property q (v|u) = q (u|v), the constructed sampler is usually
referred to as a Metropolis-Hastings sampler.
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Assuming that ϕn (u|Es−1)q (v|u) > 0 (i.e. u ∈ Fu, s−1 and q (v|u) > 0), we can express the move
probability α (u,v) as follows, using Eq. (I.59) (Papaioannou et al., 2015):

α (u,v) =min
§
ϕn (v|Es−1)q (u|v)
ϕn (u|Es−1)q (v|u)

, 1
ª

=min
§
ϕn (v)q (u|v)
ϕn (u)q (v|u)

1Fu, s−1
(v) , 1

ª

=min
§
ϕn (v)q (u|v)
ϕn (u)q (v|u)

, 1
ª
1Fu, s−1

(v)

= αϕn
(u,v)1Fu, s−1

(v) .

(I.68)

From the above expression, it is found that the move probability α (u,v) of the Metropolis-Hastings
kernel can be expressed as the product of the move probability αϕn

(u,v) based on the unconditional
n-dimensional standard normal PDF ϕn and the indicator function of the intermediate failure domain
Fu, s−1. This enables a two-step implementation of the Metropolis-Hastings algorithm for generating
samples from the target distribution ϕn (·|Es−1):

1. First, a candidate sample v is drawn from the proposal PDF q (v|u) and the move from u to v is tem-
porarily accepted with probability αϕn

(u,v). This corresponds to a single application of a Metropolis-
Hastings kernel where pMH (v|u) = q (v|u)αϕn

(u,v) for u 6= v, see Eq. (I.65).
2. Second, the move from u to v is finally accepted if v ∈ Fu, s−1. If not, the chain remains in its current

state u. This second step requires the evaluation of the LSF at v to know whether v ∈ Fu, s−1 or not.

An implementation of the standard Metropolis-Hastings sampler is given in Table I.1. For a given
intermediate level with s ∈ {2, . . . , m}, the objective is to construct the sample set Us = {u( j)s , 1≤ j ≤ N}
such as defined in Section I–3.2.2. These samples are obtained from K = 1/p0 successive draws of
Nc = p0N separate Markov chains, see lines 4-14 in Table I.1 (note that we do not consider any burn-in
period as explained later in this section, all the draws are gathered in Us starting from the first element of
the chain and this for each chain 4). The initial states of these Nc chains (called seeds of the chains) are
taken as the samples of Us−1 whose LSF evaluations are lower than ys−1, see lines 1-3 in Table I.1. The
algorithm proposed in Table I.1 presents some deficiencies in high-dimensional spaces (large n) which
make it inapplicable in such a context. The probability that a given Markov chain will remain in its
current state u( j),k−1

s approaches 1 when the dimension n increases (see Au and Beck, 2001, Appendix;
Papaioannou et al., 2015, Section 3.1.2). The direct consequence is to obtain repeated samples in Us
sets and therefore a high level of correlation between samples in these sets. This results in a poor
convergence of bps estimators given in Eq. (I.58) compared to the ideal case based on i.i.d. samples. A
geometric interpretation of why the standard Metropolis-Hastings sampler fails in high dimensions can
also be given (Katafygiotis and Zuev, 2008).

In order to address high-dimensional reliability problems, Au and Beck (2001) proposed a com-
ponentwise adaptation of the standard Metropolis sampler. This adaptation is known as the modified
Metropolis (m-M) algorithm, which represents a key ingredient of SS. We assume again a two-step
implementation of the m-M algorithm, as used for the standard Metropolis-Hastings sampler. The tran-
sition kernel applied in the first step is now expressed as a product of the transition kernels of each
coordinate (Zuev and Katafygiotis, 2011b; Zuev et al., 2012):

K (dv|u) =
n∏

i=1

Ki (dvi|ui) , (I.69)

4The notation u( j),ks will be used if an explicit mention of the kth sample in the jth chain is required. If not, the shorter
notation u( j)s will be used for reference to the jth sample in the set Us.
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1 Jseeds = { j ∈ {1, . . . , N} : G(u( j)s−1)≤ ys−1} // index set of seeds in Us−1 (size Nc = p0N)

2 Jchains = {1, . . . , Nc} // index set of Markov chains in Us (size Nc = p0N)

3 u(Jchains),0
s = u(Jseeds)

s−1 // set initial state of Nc Markov chains

4 K = 1/p0

5 for k = 1 to K

6 for j = 1 to Nc

7 // apply Metropolis-Hasting algorithm

8 Sample v from proposal PDF q(·|u( j),k−1
s )

9 Compute acceptance ratio αk
ϕn
= αϕn

�
u( j),k−1

s ,v
� ϕn (v)q

�
u( j),k−1

s |v�

ϕn

�
u( j),k−1

s

�
q
�
v|u( j),k−1

s

�

10 Accept or reject v : ev=
¨

v with probability min{1,αk
ϕn
}

u( j),k−1
s with probability 1−min{1,αk

ϕn
}

11 Accept or reject ev : u( j),ks =

¨
ev if ev ∈ Fu, s−1

u( j),k−1
s if ev /∈ Fu, s−1

12 end for

13 end for

14 Us = {u( j),ks , 1≤ j ≤ Nc, 1≤ k ≤ K} // define new sample set Us

Note: dxe stands for the smallest integer not lower than x .

Table I.1 – Application of the standard Metropolis-Hasting sampler, construction of the sample set Us =
{u( j)s , 1≤ j ≤ N} for s = 2, . . . , m.

where dv= (dv1, . . . , dvn)
T, u= (u1, . . . , un)

T and Ki represents the transition kernel of the ith coordi-
nate. For i = 1, . . . , n, Ki is taken as a standard Metropolis kernel defined as follows:

Ki (dvi|ui) = pi (vi|ui)dvi + ri (ui)δui
(dvi) , (I.70)

where pi : R×R → R≥0

(ui , vi) 7→ pi (vi|ui) =

¨
qi (vi|ui)αϕ (ui , vi) if ui 6= vi ,

0 if ui = vi ,

in which qi is a univariate proposal PDF (assumed symmetric in SS) and αϕ (ui , vi) =
ϕ (vi)
ϕ (ui)

,

and where ri (ui) = 1− ∫
R

pi (vi|ui)dvi .

The algorithm proposed in SS by Au and Beck (2001) is given in Table I.2. Note that this algorithm
is similar to the one proposed in Table I.1, except lines 7-11 which are replaced by lines 7-13. The initial
states of the Nc = p0N chains are again defined as the samples of Us−1 whose LSF evaluations are lower
than ys−1, see the 2-dimensional example for s = 2 given in Figure I.8a. The n proposal PDFs qi are
chosen as uniform PDFs of width 2wi = 2w centered at the ith coordinate of the current state u( j),k−1

s ,
i.e. such that qi (vi|ui) =

1
2w1[ui−w,ui+w] (vi), see Figure I.8b for k = 1 (centering at the initial state of

the chains). Note that the wi parameters are identically set to a unique value denoted w, since we are
working in the standard normal space, with the same “scale” along each axis ui .

The m-M algorithm is characterized by the following important properties:

1. The m-M algorithm works componentwise with univariate proposal PDFs qi , which allows inde-
pendent moves along each axis. Such a technique reduces the number of repeated samples in Us
sets compared to the original Metropolis-Hastings algorithm, which makes SS well adapted to high-
dimensional reliability problems (large n).
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1 Jseeds = { j ∈ {1, . . . , N} : G(u( j)s−1)≤ ys−1} // index set of seeds in Us−1 (size Nc = p0N)

2 Jchains = {1, . . . , Nc} // index set of Markov chains in Us (size Nc = p0N)

3 u(Jchains),0
s = u(Jseeds)

s−1 // set initial state of Nc Markov chains

4 K = 1/p0

5 for k = 1 to K

6 for j = 1 to Nc

7 // apply componentwise Metropolis algorithm from Au and Beck (2001)

8 for i = 1 to n

9 Sample vi from proposal PDF qi(·|u( j),k−1
s,i )

10 Compute acceptance ratio αk
ϕ,i = αϕ

�
u( j),k−1

s,i , vi

�
=

ϕ (vi)

ϕ
�
u( j),k−1

s,i

�

11 Accept or reject vi : evi =

¨
vi with probability min{1,αk

ϕ,i}
u( j),k−1

s,i with probability 1−min{1,αk
ϕ,i}

12 end for

13 Accept or reject ev= (ev1, . . . ,evn)T : u( j),ks =

¨
ev if ev ∈ Fu, s−1

u( j),k−1
s if ev /∈ Fu, s−1

14 end for

15 end for

16 Us = {u( j),ks , 1≤ j ≤ Nc, 1≤ k ≤ K} // define new sample set Us

Note: dxe stands for the smallest integer not lower than x .

Table I.2 – Application of the componentwise Metropolis sampler of Au and Beck (2001), construction
of the sample set Us = {u( j)s , 1≤ j ≤ N} for s = 2, . . . , m.

(a) Initial state of Markov chains u( j),0s for
s = 2

O u1

u2

G (u) = 0G (u) = y1

Fu, 1u( j),02

(b) Sampling from univariate proposal
PDFs qi(·|u( j),02,i ), i = 1, 2

O u1

u2

G (u) = 0G (u) = y1

Fu, 1

v1

v2

u( j),02,1

u( j),02,2

2w

2w

Figure I.8 – Modified Metropolis algorithm: seeds of Markov chains and proposal PDFs.
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2. The target distribution of samples with MCMC is usually attained as the stationary distribution of the
Markov chain, which generally imposes a burn-in period. In SS, the seeds already follow the target
distribution ϕn (·|Es−1) which means that any further states of the chain are distributed according to
this target distribution (see, e.g., Au and Beck, 2001; Zuev et al., 2012, for a demonstration). This
property, known as perfect sampling in the MCMC literature, makes any burn-in period unnecessary.
For this reason, theUs sets are composed of all the states of the Markov chains from k = 1 to K = 1/p0.

3. The samples generated with the m-M algorithm are not independent. The level of correlation in the
chains (and therefore in the samples of the Us sets) depends on the choice of the n proposal PDFs
qi . The idea of the m-M algorithm of SS is to use proposal PDFs qi which are sufficiently local to
ensure that the sample candidates ev mostly lie in Fu, s−1. Practically, this is tuned by means of the
unique parameter w of the uniform proposal PDFs qi . If w is too small, the probability that ev lies in
Fu, s−1 is high, which thus avoids repeated samples in the Us set. However, the candidate state ev is

close to the current state u( j),k−1
s , which induces a high level of correlation in the chain due to the

small moves and therefore reduces the efficiency of the conditional estimators bps for s = 2, . . . , m.
Moreover, proposal PDFs which are too local do not enable a sufficiently wide exploration of the
intermediate failure domain Fu, s−1, which may result in a biased estimate bpSS

f if important failure
zones are missed at intermediate levels. If w is too large, the proposal PDFs allow a sufficiently wide
exploration of Fu, s−1 but the probability that ev lies in Fu, s−1 is low. The chain is expected to remain

at the current state u( j),k−1
s , which results in an increase in the number of repeated samples in the Us

set. The consequence is again a high level of correlation in the chains, which therefore implies a drop
in the efficiency of the conditional estimators bps. According to Au and Beck (2001), the efficiency
of the m-M algorithm is not sensitive to the type of proposal PDFs but to their spreads. A tradeoff is
made in SS with a parameter w set to 2 (Au and Beck, 2001). It is worth pointing out that attempts
to reduce the correlation in the chains have been made in a few works (Miao and Ghosn, 2011;
Santoso et al., 2011; Zuev and Katafygiotis, 2011a; Zuev et al., 2012; Papaioannou et al., 2015).
The reader may refer to the recent paper from Papaioannou et al. (2015) for a comparative review
of these works.

I–3.2.4 Statistical properties of the SS failure probability estimator

(a) Coefficient of variation of bpSS
f

The coefficient of variation of bpSS
f can be estimated from a single run of the SS method. This is im-

portant for assessing the accuracy of the probability estimate obtained by this method. Only the main
expressions required to calculate this quantity are recalled here, and the reader may refer to Au and
Beck (2001) for further details and proofs of the given expressions. The coefficient of variation of bpSS

f
denoted δbpSS

f
can be bounded above according to the following expression:

δ2
bpSS

f
= E



�bpSS

f − pf

pf

�2

≤

m∑
r,s=1

δrδs + o
�

1
N

�
=O

�
1
N

�
, (I.71)

where δs represents the coefficient of variation of bps for s = 1, . . . , m. This upper bound is established
under the assumption of fully-correlated probability estimators bps. It is worth pointing out that the
coefficient of variation δbpSS

f
is expressed in terms of a deviation w.r.t. the unknown probability pf and

not w.r.t. the expectation of the probability estimator such as defined in Eq. (I.52) for the MC estimator.
For this reason, δbpSS

f
accounts for the bias effect.
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The coefficients of variation δs appearing in Eq. (I.71) for s = 1, . . . , m are calculated as follows.
The first level of SS is merely a crude MC simulation and the coefficient of variation of bp1 therefore
reads:

δ1 =

√√1− p1

N p1
. (I.72)

At the next level s = 2, . . . , m, the coefficient of variation δs of the conditional estimators bps is given
by the following expression (Au and Beck, 2001):

δs =

√√1− ps

N ps
(1+ γs) , (I.73)

where:

γs = 2
K−1∑
`=1

�
1− `

K

�
ρs (`) , (I.74)

in which K = N/Nc = 1/p0 and ρs (`) = Rs (`)/Rs (0),

and where Rs (`) is the covariance between 1Fu, s

�
u( j),ks

�
and 1Fu, s

�
u( j),k+`s

�
for any lag `= 0, . . . , (K−1)

(note that this covariance should be independent of k due to stationarity, and independent of j since all
chains are probabilistically equivalent):

Rs (`) = E
�
1Fu, s

�
u( j),ks

�
1Fu, s

�
u( j),k+`s

��− p2
s . (I.75)

The autocovariance sequence {Rs (`) ,`= 0, . . . , K − 1} is practically estimated from the samples of
the set Us by averaging on both the Nc chains and their elements according to the following expression:

bRs (`) =

 
1

Nc (K − `)
Nc∑
j=1

K−∑̀
k=1

1Fu, s

�
u( j),ks

�
1Fu, s

�
u( j),k+`s

�
!
− bp2

s . (I.76)

The coefficient γs > 0 appearing in Eq. (I.73) makes the coefficient of variation δs of the conditional
probabilities bps larger than that of the MC estimate with i.i.d. samples, which corresponds to the case
γs = 0. Working with correlated MCMC samples therefore appears less efficient than a simulation with
i.i.d. samples. For a better efficiency in the SS method, one could search for optimal values of the
parameter w which controls the width of the n uniform proposal PDFs in order to minimize γs at each
level s = 2, . . . , m. This problem investigated by Zuev et al. (2012) has unfortunately no practically
implementable solution. An alternative proposed by these authors is to adapt w for an average number
of accepted candidate states between 30 and 50%.

Another expression, less pessimistic than the upper bound given in Eq. (I.71), is often used to es-
timate the coefficient of variation of bpSS

f . This expression, based on the assumption of independent
probability estimators bps, writes (Au and Beck, 2001):

δ2
bpSS

f
≈

m∑
s=1

δ2
s . (I.77)

This second expression is reported to give fairly good approximations of the true coefficient of variation
of bpSS

f in Au and Beck (2001), although it underestimates it. From the author’s experience neither of
these two expressions is more accurate than the other. The upper bound sometimes appears closer to
the true coefficient of variation in some problems.
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(b) Bias of bpSS
f

The estimator bpSS
f =

∏m
s=1 bps is biased for any sample size N due to the correlation that exists between

the estimators bps for s = 1, . . . , m (Au and Beck, 2001). This correlation is due to the way the seeds
of the chains are selected: the seeds at level s are samples generated at the previous level (s − 1), see
lines 1-3 of Table I.2. This therefore results in a correlation between bps and bps−1 for s = 2, . . . , m.
The estimator bpSS

f is asymptotically unbiased, and its relative bias can be bounded from above by the
following expression (Au and Beck, 2001):

�����E
�bpSS

f − pf

pf

������≤
∑
r>s

δrδs + o
�

1
N

�
=O

�
1
N

�
. (I.78)

This bias of order 1/N thus becomes negligible compared to the standard deviation when N is increased.
Moreover, it can be shown that the bias is always positive (Guyader, 2011).

I–3.2.5 Remark about the computer implementation of SS

The SS method is available in FERUM 4.x as proposed by Au and Beck (2001). The implemented
algorithm takes full advantage of the independence of:

• the first N calls to the LSF evaluated at the initial level s = 1 of SS (crude MC), which are sent as
independent tasks,

• the Nc chains that are sampled in parallel for a given k, see lines 6-12 of Table I.2.

In SS, the LSF evaluation tasks are sent in the following sequence: N independent calls to the LSS
for s = 1, then p0N independent calls times K (length of the chains) times (m − 1) (for each inter-
mediate level s = 2, . . . , m). SS therefore appears less suited to distributed computations than crude
MC. Improving the parallelization efficiency of the method may be of interest, as recently investigated
by Walter (2015) in the framework of moving particles. Walter proposes a parallel multilevel splitting
algorithm that allows the simultaneous and independent moves of several particles.

I–3.3 Importance sampling (IS) and cross-entropy (CE) methods

Importance sampling (IS) is one of the most well-known variance reduction techniques used for assessing
small failure probabilities. The idea of IS is to draw samples following another distribution than the
original one in order to populate the failure domain more frequently. The failure probability estimate
assessed by IS is then obtained as a weighted average of these draws. The basic ideas of IS were outlined
in the early fifties and this technique, used in conjunction with FORM, was later introduced in structural
reliability (Schuëller and Stix, 1987; Melchers, 1989a). Several IS methods are available and the reader
is invited to refer to general textbooks for an exhaustive list (see, e.g., Kroese et al., 2011). IS is also
used in adaptive versions, one of which, known as the cross-entropy (CE) method, is presented in this
report. The CE method has been used by the present author in different contexts: reliability assessment
in time-invariant problems, see the examples given in Section I–3.4, reliability assessment in the context
of uncertainty propagation with Markov chains considered as random inputs, see Section III–2.3.3, and
stochastic optimization for hyperparameter selection of surrogate models, see Section II–2.4.
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I–3.3.1 Importance sampling (IS)

Let us consider another PDF hX in the problem formulated in Eq. (I.50), called importance sampling PDF
or instrumental PDF, such that fX, from now on referred to as nominal PDF, is dominated by hX in the
absolutely continuous sense:

hX (x) = 0⇒ 1Fx
(x) fX (x) = 0 or equivalently 1Fx

(x) fX (x) 6= 0⇒ hX (x) 6= 0 . (I.79)

Note that this condition simply means that the support of 1Fx
(·) fX (·) must be included in the support

DhX
of hX.

Using the IS PDF hX, the unknown failure probability pf is now rewritten as follows:

pf =

∫

D fX

1Fx
(x) fX (x) dx

=

∫

DhX

1Fx
(x)

fX (x)
hX (x)

hX (x) dx

= EhX

�
1Fx
(X)

fX (X)
hX (X)

�

= EhX

�
1Fx
(X) W (X)

�
,

(I.80)

where the ratio of densities W (x) = fX (x)/hX (x) is called the likelihood ratio or importance sampling
quotient.

The IS estimator of pf therefore reads:

bpIS
f =

1
N

N∑
j=1

1Fx

�
X( j)

� fX
�
X( j)

�

hX

�
X( j)

� , (I.81)

where {X( j), 1≤ j ≤ N} are N independent copies of the random vector X following the IS PDF hX, i.e.

X(1), . . . ,X(N)
i.i.d.∼ hX, and N denotes the sample size.

The IS estimator is unbiased (i.e. EhX

�bpIS
f

�
= pf) and its variance is given by:

VarhX

�bpIS
f

�
=

1
N

�
EhX

��
1Fx
(X)

fX (X)
hX (X)

�2�
− p2

f

�
. (I.82)

The accuracy of the approximation given by IS critically depends on the choice of the IS PDF hX.
The optimal choice for this PDF is obtained by minimizing the variance of bpIS

f defined in Eq. (I.82). The
optimal solution h∗X is given in Eq. (I.83) (see, e.g., Rubinstein and Kroese, 2007). It is easy to show
that this choice leads to a zero variance of bpIS

f from Eq. (I.82).

h∗X (x) =
1Fx
(x) fX (x)

pf
. (I.83)

The use of this optimal PDF h∗X is unfortunately not possible because it depends on the failure
probability pf, which is unknown. Nevertheless it is expected that the “good” candidates for IS sampling
correspond to PDFs which are not too far from this optimal solution. One important condition that needs
to be fulfilled is that the IS estimator VarhX

�bpIS
f

�
should have a finite variance, as expressed in Eq. (I.84).
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Such a condition is met if hX does not have lighter tails than fX or if the likelihood ratio W is bounded
(Kroese et al., 2011).

EhX

�
12
Fx
(X)

f 2
X (X)

h2
X (X)

�
= E fX

�
12
Fx
(X)

fX (X)
hX (X)

�
<∞ . (I.84)

In structural reliability, several types of IS PDF have been defined in the context of FORM (see a
review of some of these strategies in Engelund and Rackwitz, 1993). The most common choice that
has emerged is to perform IS in the standard normal space by means of a multivariate standard normal
PDF centered on the supposedly unique MPFP identified by FORM (Schuëller and Stix, 1987; Melchers,
1989a):

hU (u) = ϕn (u− u∗) . (I.85)

In the case of multiple MPFPs, solutions based on mixtures of multivariate standard normal PDFs need
to be considered. However such approaches assume that these MPFPs have been determined, which is
often hardly possible. If some MPFPs corresponding to high probability content failure subdomains are
missed, then the failure probability estimate may be seriously biased and therefore inaccurate.

In order to fit the optimal IS PDF, some works consider adaptively adjusting the IS PDF by iteratively
using wisely-selected samples in order to populate the subdomains of higher probability density within
the failure domain. Such methods are known as adaptive importance sampling and examples of such
a strategy can be found in Bucher (1988), Karamchandani et al. (1989), Melchers (1989b), Melchers
(1990), Au and Beck (1999), Zou et al. (2003), and Morio (2012). It is worth pointing out that these
methods also relate to particle filters (Chopin, 2002) and sequential Monte Carlo methods (Doucet et
al., 2001; Johansen et al., 2005; Del Moral et al., 2006; Cérou et al., 2012).

A convenient solution for the IS PDF is often to consider that it belongs to some parametric family
of distributions, e.g. the same as that of the nominal PDF fX as assumed later. Let us consider that hX
belongs to the following family:

hX (·) ∈ {h (·;q) , q ∈Q} , (I.86)

where q = (q1, . . . , qnq
) is a finite-dimensional vector of nq real parameters. The objective is therefore

to select q such that h (·;q) is as “close” as possible to the optimal IS PDF h∗X.

A first and natural solution consists in finding the value of q that minimizes the variance of the IS
estimator bpIS

f . The optimal solution q∗ is given by:

q∗ = arg min
q

∫
12
Fx
(x)

fX (x)
h (x;q)

fX (x) dx , (I.87)

or equivalently by:

q∗ = arg min
q

∫
h∗2X (x)

h (x;q)
dx . (I.88)

Solving this first type of optimization problem is known as the variance minimization (VM) method
(Kroese et al., 2011).
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A second solution is obtained by choosing the IS PDF h (·;q) that is the closest to h∗X w.r.t. a given
measure, here the Kullback-Leibler (KL) divergence or Kullback-Leibler distance5 (Kullback and Leibler,
1951). The KL distance between h∗X and h (·;q) is given by:

DKL

�
h∗X, h (·;q)

�
=

∫
h∗X (x) ln

�
h∗X (x)
h (x;q)

�
dx

=

∫
h∗X (x) ln

�
h∗X (x)

�
dx−

∫
h∗X (x) ln (h (x;q)) dx .

(I.89)

The optimal solution q∗ which leads to the minimal distance is therefore given by:

q∗ = arg min
q

∫
h∗X (x) ln

�
h∗X (x)
h (x;q)

�
dx , (I.90)

or equivalently by:

q∗ = arg max
q

∫
h∗X (x) ln (h (x;q)) dx , (I.91)

which can also be expressed as follows:

q∗ = arg max
q

∫
1Fx
(x) ln (h (x;q)) fX (x) dx . (I.92)

Solving this second type of optimization problem is known as the cross-entropy (CE) method (Kroese
et al., 2011).

Although the solutions of these two optimization problems are different, it is shown by Chan et
al. (2011) that the CE and VM methods provide parameters q∗ that are asymptotically identical from
the treated examples. The optimization problem to solve using the VM method is known to be highly
nonlinear and noisy (see, e.g., Botev and L’Ecuyer, 2011). In contrast, the optimization problem of the
CE method appears easier to solve than its VM counterpart, especially when h (·;q) belongs to a natural
exponential family, as detailed and used later in this chapter.

The CE method is often used with a parametric IS PDF hX (·) ∈ {h (·;q) , q ∈Q}6. As described in
the next section, the CE method consists of an adaptive scheme that updates the vector of parameters
q iteratively until the IS PDF h (·;q) becomes sufficiently close to the optimal IS PDF h∗X. It is important
to mention that the performances of both the CE and VM methods used with a parametric IS PDF are
closely related to how well this parametric PDF can approximate the optimal IS PDF. For highly nonlinear
LSS with possibly disconnected failure subdomains, such “rigid” parametric IS PDFs may not be able
to approximate h∗X sufficiently well. Such a problem was e.g. recently addressed by Kurtz and Song
(2013), who used the CE method with a multimodal IS PDF based on a Gaussian mixture. Moreover,
for high-dimensional problems, the number of parameters in the vector q necessarily becomes large and
the CE and VM-optimization problems could become too hard and costly to solve.

As an alternative to IS based on parametric PDFs, the recourse to surrogate-based (and often adap-
tive) IS has been explored in several works. In such approaches, the first step consists in drawing
samples that adaptively populate the subdomains of the failure domain with high probability content.
This may be carried out by means of Markov chains (see, e.g., Au and Beck, 1999; Dai et al., 2012a).

5The KL divergence is in fact not a distance, since it is not symmetric: DKL ( f , g) 6=DKL (g, f ). However, we haveDKL ( f , g)≥
0 with equality if and only if f = g.

6Note that the CE method can also be used in a non-parametric framework, i.e. without assuming any specific family of
distributions. Examples of such approaches are found in Botev et al. (2007) in which a χ2-divergence and kernel mixture
densities are used, and in Homem-de-Mello (2007) in which a product form on the IS distribution is assumed.
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From these samples, a nonparametric PDF is constructed as an approximation of the optimal IS PDF and
then used for sampling. Several surrogate models are available to construct such approximate IS PDFs.
A first type of surrogate model is known as kernel density, most often based on the choice of a Gaussian
kernel. Such kernel PDFs were used by Au and Beck (1999), Morio (2011), and Dai et al. (2012a)
among others. Kriging surrogate models constitute a second type of surrogate model, which was used
for adaptive IS by Balesdent et al. (2013) and Echard et al. (2013). Kriging is also used by Dubourg
et al. (2013) to define a kriging-based probabilistic classification function as a surrogate for the true
failure indicator function that appears in the optimal IS PDF. A modification of the AK-IS algorithm of
Echard et al. (2013), also based on kriging, is proposed in the work of Cadini et al. (2014), in which the
assumption of a unique MPFP found by FORM is relaxed. This work makes use of the metamodel-based
IS of Dubourg et al. (2013). A third and less common solution is to use support vector machines to
build an approximate IS PDF, as in the work of Dai et al. (2012a).

As a final and important remark about IS, it is worth pointing out that finding a suitable IS PDF
in high dimensions is a challenging task, especially for highly nonlinear LSS and possibly disconnected
failure subdomains of similar probability weights. IS may yield erroneous failure probability estimates
which are even worse than those obtained by crude MC, as pointed out by Au and Beck (2003) and
Katafygiotis and Zuev (2008). Regarding surrogate-based IS, it is also hard to find an approximate PDF
sufficiently close to the optimal one. If the surrogate-based IS PDF is too crude an approximation of
the optimal IS PDF, then the surrogate-based IS method may require too many samples or, even worse,
may fail to give a correct failure probability approximation even if a large number of samples is used,
as pointed out by Dubourg et al. (2013).

I–3.3.2 Cross-entropy (CE) method

The CE method, whose basis was briefly introduced in Section I–3.3.1, is a generic approach which
addresses a variety of problems, such as the probability estimation of rare events (Rubinstein, 1997)
and the optimization of discrete or continuous problems (Rubinstein, 1999). The presentation will be
limited here to rare-event probability estimation for the so-called static problems such as introduced in
Section I–1. Another use of this method, still for rare-event probability estimation, is made in the context
of Markov chains and hidden Markov model random inputs, which slightly differs from static problems,
see Section III–2.3.3. An example of the application of the CE method to continuous optimization can
also be found in Section II–2.4 for the purpose of hyperparameter selection of support vector machines.
For a broader view and understanding of the CE method, the reader may refer to the general textbook
of Kroese et al. (2011) and the tutorial of de Boer et al. (2005) in addition to the above cited seminal
papers of Rubinstein.

(a) CE method for estimation

Let us now assume that the IS PDF hX we use belongs to the same family as that of fX:

fX (·) , hX (·) ∈ { f (·;q) , q ∈Q} (I.93)

for some reference vector of parameters q. Let us moreover consider that the nominal PDF fX is param-
eterized by the vector of parameters p such that fX (·) = f (·;p).

The optimization problem defined in Eq. (I.92) thus rewrites:

q∗ = arg max
q

∫
1Fx
(x) ln ( f (x;q)) f (x;p) dx , (I.94)

or equivalently:
q∗ = arg max

q
E f (·;p)

�
1Fx
(X) ln ( f (X;q))

�
. (I.95)
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By IS with a change of measure f (·; r) corresponding to any vector of parameters r (we will define
how to choose r in the following), we can write:

q∗ = arg max
q

E f (·;r)
�
1Fx
(X) W (X;p, r) ln ( f (X;q))

�
, (I.96)

where W (x;p, r) = f (x;p)/ f (x; r) is the likelihood ratio at x between f (·;p) and f (·; r).

Practically, this problem is solved by simulation using the so-called stochastic counterpart of the CE
program:

max
q

1
N

N∑
j=1

1Fx

�
X( j)

�
W
�
X( j);p, r

�
ln
�

f
�
X( j);q

��
, (I.97)

where X(1), . . . ,X(N)
i.i.d.∼ f (·; r).

If we define Xel =
�
X( j) : 1Fx

�
X( j)

�
= 1

	
as the set of samples that belongs to the failure domain Fx,

known as the elite set of samples, Eq. (I.97) becomes:

max
q

bD (q) =max
q

1
N

∑

X( j)∈Xel

W
�
X( j);p, r

�
ln
�

f
�
X( j);q

��
. (I.98)

The above-defined function bD (q) is often convex and differentiable, and the solution of Eq. (I.98)
can be obtained from the following system of equations:

1
N

∑

X( j)∈Xel

W
�
X( j);p, r

� ∇q ln
�

f
�
X( j);q

��
= 0 . (I.99)

For distributions that belong to a natural exponential family (NEF) (for a definition see, e.g., Kroese
et al., 2011, Appendix D), the system of equations defined in Eq. (I.99) has an analytical solution,
which is recognized as being a key advantage of the CE method. Such a type of distribution is used in
Section I–3.4.

If we take r = p in the case of rare events (i.e. pf � 1), most of the evaluations of the indicator
function 1Fx

in Eq. (I.97) are equal to zero for a moderate sample size N . This results in an excessively
small or even worse an empty elite set of samples and it is therefore difficult or impossible to solve
Eq. (I.98) or Eq. (I.99). This motivates the introduction of the multilevel version of the CE method,
which will be presented next.

(b) Multilevel CE method

In order to avoid too small an elite set of samples, and therefore too few terms in the sums appearing
in Eq. (I.98) and Eq. (I.99), the idea is to build a sequence of reference parameters {bqs, s ∈ N} with
bq0 = p and a sequence of LSF levels {bys, s ∈ N>0} and iterate on both bys and bqs. The algorithm first
proceeds with an update of bys before updating bqs.

The algorithm of the multilevel CE method is given in Table I.3. It requires the specification of the
so-called rarity parameter ρ (typically between 0.01 and 0.1), the sample size N used at each level s
and the sample size N1 used for the final estimation of the failure probability7.

7N1 is set equal to N in all the applications presented in this report.
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1 Define ρ, N and N1 // define the parameters of the multilevel CE algorithm

2 Set s = 0, bq0 = p and by0 = +∞ // initialize the algorithm

3 Do

4 s = s+ 1

5 Generate a sample X(1), . . . ,X(N)
i.i.d.∼ f

�·;bqs−1

�

6 Assess g
�
X(1)

�
, . . . , g

�
X(N)

�

7 Define the sample ρ-quantile bys of Y =
�

g(X( j)), 1≤ j ≤ N
	

8 if bys < 0, then bys = 0, end if // reset bys if lower than zero

9 Define the elite set of samples Xel =
�
X( j) : g

�
X( j)

�≤ bys

	

10 Solve the stochastic program defined in Eq. (I.98) with r= bqs−1 and denote the solution by eqs:

eqs = arg max
q

1
N

∑

X( j)∈Xel

W
�
X( j);p,bqs−1

�
ln
�

f
�
X( j);q

��

11 Update the reference parameter: bqs = eqs

12 while bys > 0

13 Set m= s // define the total number of levels used

14 Generate a sample X(1), . . . ,X(N1) i.i.d.∼ f
�·;bqm

�

15 Estimate pf by IS: bpCE
f =

1
N1

N1∑
j=1

1Fx

�
X( j)

�
W
�
X( j);p,bqm

�

Table I.3 – Multilevel CE algorithm for rare-event probability estimation.

I–3.4 Reliability assessment with the CE method, comparison with SS

For illustration purposes, a multilevel CE algorithm applied in the standard normal space is proposed
and the results are compared with those obtained by SS. The comparison is made by varying the sample
size per level, denoted N for both the SS and CE methods. The bias and variance of the failure prob-
ability estimated by these two methods are empirically assessed via several independent runs. Some
conclusions are drawn from the treated examples.

I–3.4.1 CE method in the standard normal space

The CE method is applied in the standard normal space in order to work with a NEF distribution and
therefore have a stochastic counterpart program that has an analytical solution, see Eq. (I.99). The
choice made here is to express the multivariate IS PDF in the following form:

f (u;q) =
n∏

i=1

1

σi
p

2π
exp

�
−1

2

�
ui −µi

σi

�2
�

, (I.100)

where q = (µ,σ) is vector of 2n parameters such that µ = (µ1, . . . ,µn) and σ = (σ1, . . . ,σn). Note
that only the variances are parameterized and not the full n×n covariance matrix, in order to maintain
a number of parameters which does not grow too fast with the dimension n.

The nominal PDF ϕn here writes:

f (u;p) = ϕn (u) , (I.101)

where p= bq0 = (0, . . . , 0, 1, . . . , 1).
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The components of the gradient vector ∇q ln ( f (u;q)) which appears in Eq. (I.99) write, for i =
1, . . . , n:

∂ ln ( f (u;q))
∂ µi

=
ui −µi

σ2
i

, (I.102a)

∂ ln ( f (u;q))
∂ σi

=
(ui −µi)

2 −σ2
i

σ3
i

. (I.102b)

Let us now consider the multilevel CE method at a given iteration s.

From a given sample set U(1), . . . ,U(N)
i.i.d.∼ f

�·;bqs−1

�
where bqs−1 = (bµs−1,Òσs−1) and the corre-

sponding values of the LSF Y =
�

G(U( j)), 1≤ j ≤ N
	
, we define the sample ρ-quantile bys of Y and the

elite set of samples Uel =
�
U( j) : G

�
U( j)

�≤ bys

	
. The solution eqs = (eµs, eσs) of the stochastic program of

Eq. (I.98) is analytically defined, for i = 1, . . . , n, by:

eµs,i =

∑
U( j)∈Uel

W
�
U( j);p,bqs−1

�
U ( j)i∑

U( j)∈Uel
W
�
U( j);p,bqs−1

� , (I.103)

where U ( j)i denotes the ith component of U( j) and eµs,i the ith component of eµs,

and:

eσ2
s,i =

∑
U( j)∈Uel

W
�
U( j);p,bqs−1

� �
U ( j)i − eµi,s

�2

∑
U( j)∈Uel

W
�
U( j);p,bqs−1

� , (I.104)

in which eµs,i is given by Eq. (I.103) and where eσs,i denotes the ith component of eσs.

It is known by experience that updating the reference parameter bqs with the solution eqs of the
stochastic program defined in Eq. (I.98) may cause too fast a convergence to a degenerate distribution,
which may result in large errors on the failure probability estimate obtained by the CE method. In prac-
tice it is often recommended to update bqs as a weighted-average between eqs and the current parameter
estimate bqs−1 (see, e.g., de Boer et al., 2005; Kroese et al., 2006). Several strategies may be selected:
smoothing is varied with each iteration (dynamic smoothing) or not (static smoothing), the smoothing
parameters may be different for each component of the reference parameter q, etc. In the following
examples, we use basic static smoothing with a single smoothing parameter α ∈ [0,1] that applies to
all the components of both µ and σ, see Eq. (I.105). If α is set to too small a value, the convergence
of the CE algorithm is very slow. If too large a value is given, the convergence of the algorithm is faster
but the IS PDF may converge to a suboptimal solution, which is not desirable.

bµs = αeµs + (1−α) bµs−1 and Òσs = αeσs + (1−α)Òσs−1 . (I.105)

I–3.4.2 Application examples

Three examples are considered for illustration purposes.

(a) Example 1.

This first example was initially proposed by De Stefano and Der Kiureghian (1990) and studied in
several references published since 2010. The reliability assessment of a two-degree-of-freedom primary-
secondary system under white noise base acceleration is considered. System failure is defined in terms
of the exceedance of the peak response of the secondary spring during loading (see De Stefano and
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Variable mp ms kp ks ζp ζs Fs S0

Distribution lognormal

Mean 1.5 0.01 1 0.01 0.05 0.02 {15, 27.5} 100

C.o.V. 0.1 0.1 0.2 0.2 0.4 0.5 0.1 0.1

Table I.4 – Example 1 - Random variables.

Der Kiureghian, 1990, for details about how the LSF expression is derived). Uncertainty is modeled by
8 independent random variables whose distributions are given in Table I.4. The mean value of the force
capacity of the secondary spring Fs is set to either 15 or 27.5. This problem is characterized by a single
MPFP with a strongly curved LSS. The LSF expression writes as follows:

g (x) = Fs − 3ks

√√√√√ πS0

4ζsω3
s


 ζaζs

ζpζs

�
4ζ2

a + θ2
�
+ γζ2

a

�
ζpω3

p + ζsω3
s

�
ωp

4ζaω
4
a


 (I.106)

where x= (mp, ms, kp, ks, ζp, ζs, Fs, S0 )T,

and where ωp =
Æ

kp/mp , ωs =
p

ks/ms , ωa = (ωp +ωs)/2 , ζa = (ζp + ζs)/2 , γ = ms/mp and
θ = (ωp −ωs)/ωa.

(b) Example 2.

The second example is a reliability problem with a smooth LSS, a single MPFP and moderate (and equal)
curvatures at the MPFP. The LSF is given by (Rackwitz, 2001):

g (x) =
�
n+ a σ

p
n
�−

n∑
i=1

x i (I.107)

where {X i , 1 ≤ i ≤ n} are n i.i.d. lognormal random variables with unit means and the same stan-
dard deviation σ equal to 0.2. The dimension n is varied in order to investigate how the perfor-
mances of the CE method scales with dimensionality, while keeping the same LSS shape. We take
n ∈ {25 ; 50 ; 100 ; 250 ; 500 ; 1000 } and a = 3 for a first analysis. In a second analysis and for the
specific case of n= 100, we allow the failure probability to vary in the approximate range

�
10−7, 10−3

�
by setting a ∈ {3 ; 4 ; 5 }.

(c) Example 3.

The third and last example is a 16-dimensional series system reliability problem in which the failure
domain Fu in the standard normal space is defined as the union of four failure subdomains of almost
equal probability contents and all four characterized by a linear LSS. This problem is derived from
the FORM results of the reliability analysis of the Scordelis-Lo shell structure with random geometric
imperfections and space-variant material properties and thickness, performed in Section III–1.4. The
initial 93-dimensional problem is replaced by an equivalent series system reliability problem with four
linear LSSs. Only the 16 most influential variables are kept for the analysis, based on the importance
factors of the four FORM solutions of the initial problem. The LSF of the simplified problem considered
here is defined as follows:

G (u) = min
k∈{1, ... ,4 }

Gk (u) , (I.108)
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where Gk (u) = βk −αT
ku for k = 1, . . . , 4.

The LSFs of each component are defined by:

β1 = 4.0118 β2 = 4.0109 β3 = 4.0108 β4 = 4.0051 ,

and

α1 =





0.3040
−0.4013

0.2131
0.3218
−0.3253

0.2534
0.1582
0.1067
0.2065
−0.3173

0.1614
0.2842
−0.2397

0.2022
0.1601
0.1306





α2 =





0.3061
0.4007
0.2131
0.3219
0.3253
0.2534
−0.1582
−0.1060

0.2064
0.3164
0.1614
0.2838
0.2394
0.2020
−0.1600
−0.1319





α3 =





0.3038
0.4006
−0.2133

0.3217
−0.3262
−0.2535
−0.1582

0.1065
0.2065
0.3166
−0.1615

0.2841
−0.2396
−0.2023
−0.1603
−0.1319





α4 =





0.3004
−0.4077
−0.2181

0.3262
0.2787
−0.2586

0.1605
−0.1120

0.2102
−0.3231
−0.1649

0.2894
0.2445
−0.2067

0.1632
0.1346





.

As an additional element of information, the pairwise distances between the four MPFPs are given
in the following matrix D= [di j]1≤i, j≤4 where di j = dist(P∗i , P∗j ):

D=




0 5.6929 5.7056 4.6901
5.6929 0 4.7552 5.7572
5.7056 4.7552 0 5.6509
4.6901 5.7572 5.6509 0


 . (I.109)

I–3.4.3 Results and comments

The reference failure probabilities obtained by the SS and CE methods are given in Table I.5. These
failure probabilities are computed with N = 220 ≈ 1.05×106 samples per level with both methods. The
probability level p0 is set equal to 0.1 in the SS analysis. For the CE method, the rarity parameter ρ is
set to 0.05 and the static smoothing parameter α to 1 (i.e. no smoothing). By experience it appears that
results obtained for large values of N without smoothing are better in terms of variance of the failure
probability estimate than those obtained with smoothing. The failure probabilities reported in Table I.5
are obtained by averaging over the results of 500 independent runs of each method. The coefficients
of variation listed in this table are those empirically assessed from these 500 runs. In this table, Nt
represents the averaged total numbers of samples used in each analysis, i.e. Nt = mN for a SS analysis
and Nt = mN + N1 = (m + 1)N for a CE analysis7, where m denotes the averaged number of levels
necessary for each method to converge and N is the number of samples used in each level.

The averaged failure probability estimates obtained by both methods are in excellent agreement for
each example up to a 3-digit accuracy. The c.o.v. of pf is always lower with the CE method than with
the SS method, except in example 3 for which it is slightly greater. The relative gain on the c.o.v. in the
first two examples is in the range 2 to 5, with a similar cost in terms of number of calls to the LSF for
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pCE
f ref = bpCE

f δbpCE
f

NCE
t pSS

f ref = bpSS
f δbpSS

f
N SS

t

×10−2 ×106 ×10−2 ×106

Example 1 - µFs
= 15 4.774× 10−3 0.30 3.15 4.775× 10−3 0.64 3.16

Example 1 - µFs
= 27.5 3.783× 10−7 0.54 5.24 3.784× 10−7 2.27 7.67

Example 2 - n= 25 - a = 3 2.169× 10−3 0.18 3.15 2.169× 10−3 0.70 3.15

Example 2 - n= 50 - a = 3 1.909× 10−3 0.18 3.15 1.909× 10−3 0.71 3.15

Example 2 - n= 100 - a = 3 1.735× 10−3 0.18 3.15 1.734× 10−3 0.74 3.15

Example 2 - n= 250 - a = 3 1.587× 10−3 0.18 3.15 1.588× 10−3 0.70 3.15

Example 2 - n= 500 - a = 3 1.516× 10−3 0.17 3.15 1.516× 10−3 0.74 3.15

Example 2 - n= 1000 - a = 3 1.466× 10−3 0.18 3.15 1.467× 10−3 0.80 3.15

Example 2 - n= 100 , a = 4 5.750× 10−5 0.21 4.19 5.751× 10−5 1.01 5.31

Example 2 - n= 100 , a = 5 9.078× 10−7 0.24 4.19 9.068× 10−7 1.26 7.56

Example 3 1.215× 10−4 1.25 4.19 1.214× 10−4 0.96 4.24

Table I.5 – Reference failure probabilities obtained with the CE and SS methods (N = 220 samples per
level, results averaged over 500 independent runs).

probabilities close to 10−3, with a lower cost for probabilities lower that 10−3 (i.e. in example 1 with
µFs
= 27.5 and in example 2 with n = 100 and a = 4 or a = 5). The c.o.v. of pf with the CE method is

25% larger than that of the SS method for example 3.

In order to compare the accuracy and efficiency of the two methods, it is proposed to vary the
number of samples per level N in the SS and CE analyses such that N = 2m where m = 6, . . . , 15 for
the SS analysis and m= 7, . . . , 15 for the CE analysis. The settings are p0 = 0.1 for the SS method and
ρ = 0.05, α = 0.4 for the CE method8. Smoothing is applied here in order to improve the quality of
the failure probability estimates for the lowest selected values of N . It is found that some unreliable
estimates of pf are obtained for small N if α is too large. Smoothing, however, slightly increases the
variance of the failure probability estimates and the number of levels required for convergence of the
CE method (and therefore the number of calls to the LSF). The absolute relative bias of the averaged
failure probability estimates w.r.t. the reference solutions (pCE

f ref and pSS
f ref respectively for the CE and SS

analyses) and the coefficient of variation of the failure probability estimates empirically assessed from
500 independent runs of each method9 are represented in Figure I.9 for example 1, in Figures I.10 and
I.11 for example 2, and in Figure I.12 for example 3. The absolute relative bias and the coefficient of
variation are represented as a function of Nt which denotes the averaged total numbers of samples used
in each analysis.

As expected it is found that the c.o.v. of the SS analysis is inversely proportional to
p

N and that
the bias is always positive except when it becomes quite low (i.e. for absolute bias lower than 10−2),
see the bias plots in Figures I.9–I.12 in which a positive bias is marked by a triangle-up. We can also
notice that the performance of the SS method is insensitive to the dimension n of the problem: the plots
representing the c.o.v. of pf vs. Nt for example 2 with n ∈ {25 ; 50 ; 100 ; 250 } are all much the same.

Regarding the results obtained with the CE method, the following comments can be made:

8The following values were used as candidates for the CE parameters: ρ ∈ {0.05 ; 0.075 ; 0.1 ; 0.15 ; 0.2 } and α ∈
{0.4 ; 0.6 ; 0.8 ; 1 }. Only the results with ρ = 0.05 and α= 0.4 are presented here.

9The coefficients of variation plotted in Figures I.9–I.12 are empirically estimated from 500 independent runs of each
method. For SS, it is important to point out that the empirical c.o.v. may be substantially larger than the value given by
Eq. (I.77), such as in example 1 with µFs

= 27.5 (Bourinet et al., 2011, Fig. 4.c).
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(a) µFs
= 15 (bias)
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(b) µFs
= 15 (c.o.v.)
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(c) µFs
= 27.5 (bias)

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

7
8

9
10

11

12 13 14

15

7
8

9

10 11 12
13

14 15

SS (×500)
CE (×500)

(d) µFs
= 27.5 (c.o.v.)
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Figure I.9 – Example 1. Absolute relative bias |bpf − pf ref|/pf ref (left) and coefficient of variation δbpf

(right) vs. averaged total number of samples Nt. The indices m = 6, . . . , 15 refer to the 2m number of
samples per level used in the analyses. The results are based on 500 independent runs of each method:
bpf denotes the average of the 500 failure probability estimates and δbpf

its empirical c.o.v.. A triangle-up
(resp. down) marker denotes a positive (resp. negative) bias. Biases lower than 10−4 are not plotted.

• Influence of the dimension n: From the results obtained, it is found that the performances of CE method
decrease with n. For the 8-dimensional problem of example 1, the CE method outperforms the SS
method both in terms of bias and variance for N ≥ 28, see Figure I.9. From the results obtained
for example 2, in which the dimension is varied, it appears that the CE method outperforms the SS
method in terms of variance for a sample size N which increases with the dimension n. For pf ≈ 10−3

(case a = 3), the failure probability is better estimated for N ≥ 28 for n = 25, 29 for n = 50, 210 for
n= 100 and 212 for n= 250. The c.o.v. of pf is inversely proportional to

p
N as in a SS analysis, but

is appears about three times lower than its SS counterpart for sufficiently large values of N .

• Influence of the failure probability level pf: The influence of the failure probability level can be analyzed
from the results obtained for example 1 (µFs

= 15 vs. 27.5) and example 2 with n= 100 (a = 3, 4 or
5). It appears that the efficiency of the CE method increases when the probability level decreases. For
example 1, the gain in terms of c.o.v. is larger for µFs

= 27.5 than for µFs
= 15, see Figure I.9 (b) and

(d). For example 2, the gain in terms of c.o.v. becomes larger when a is increased, see Figure I.11
(b), (d) and (f).

• Bias of the failure probability estimate obtained with the CE Method: The bias on pf with the CE method
always appears lower than that of the SS estimates, if a sufficiently large value of N is selected. For
very small values of N , the CE estimate is unreliable (usually too low values for pf, which results in
an absolute relative bias close to 100%), which clearly shows that the CE method is inefficient for
small sample sizes.
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(a) n= 25 - a = 3 (bias)
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(b) n= 25 - a = 3 (c.o.v.)
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(c) n= 50 - a = 3 (bias)
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(d) n= 50 - a = 3 (c.o.v.)
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(e) n= 100 - a = 3 (bias)
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(f) n= 100 - a = 3 (c.o.v.)
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(g) n= 250 - a = 3 (bias)
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(h) n= 250 - a = 3 (c.o.v.)
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Figure I.10 – Example 2, n ∈ {25 ; 50 ; 100 ; 250 }, a = 3. Absolute relative bias |bpf − pf ref|/pf ref (left)
and coefficient of variation δbpf

(right) vs. averaged total number of samples Nt. See plotting details in
Figure I.9.
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(a) n= 100 - a = 3 (bias)
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(b) n= 100 - a = 3 (c.o.v.)
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(c) n= 100 - a = 4 (bias)
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(d) n= 100 - a = 4 (c.o.v.)
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(e) n= 100 - a = 5 (bias)
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(f) n= 100 - a = 5 (c.o.v.)
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Figure I.11 – Example 2, n = 100, a ∈ {3 ; 4 ; 5 }. Absolute relative bias |bpf − pf ref|/pf ref (left) and
coefficient of variation δbpf

(right) vs. averaged total number of samples Nt. See plotting details in
Figure I.9.
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(a) (bias)
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(b) (c.o.v.)
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Figure I.12 – Example 3. Absolute relative bias |bpf − pf ref|/pf ref (left) and coefficient of variation δbpf

(right) vs. averaged total number of samples Nt. See plotting details in Figure I.9.

• Specific case of multiple MPFPs: The CE method appears less efficient than the SS method in example 3.
The CE c.o.v. of pf never gets lower than that obtained by the SS method when the sample size is
increased. This is not surprising, since the parametric IS PDF used by the CE method is far from the
optimal one. Nevertheless, the CE method is still able to give an estimate of pf with an acceptable
accuracy compared to SS for N ≥ 211.

As a final comment, it can be said that the CE method represents an interesting alternative to SS
if the number of samples per level N is set sufficiently high, and under the assumption that the LSS is
not too “exotic” (in other words, one needs to be cautious if the LSS features several MPFPs of similar
importances). If an accurate solution needs to be found, say pf estimated with a c.o.v. of less than 10%,
then the CE method is a good candidate. Moreover, the gain in terms of accuracy increases for small
failure probabilities. It is worth pointing out that the CE method is also applicable to reliability problems
with Markov chains and hidden Markov models considered as random inputs, as later presented in
Section III–2.3.3.

I–4 Sensitivity measures

I–4.1 Introduction

In uncertainty propagation, it is of interest to quantify, in a probabilistic sense, how each random input
contributes to a given output of interest. A first type of approach, known as global sensitivity analysis
(Saltelli et al., 2008), consists in assessing the sensitivity to inputs over the entire support of the joint
PDF fX. Several methods are available to perform such a global analysis, among which are screening
methods, variance-based methods such as those based on Sobol’ indices (Sobol’, 1993), nonparametric
methods and density-based methods. Note that global sensitivity analysis is not considered within the
scope of this report.

If reliability assessment is the objective pursued, then the analyst is usually interested in the sen-
sitivities to random inputs at failure. These sensitivities are therefore of a local nature and they need
to be evaluated at failure, e.g. at the MPFP in a FORM analysis. Such local importance measures in-
troduced in the context of FORM are briefly reviewed in Section I–4.2.1, either with independent or
Nataf-correlated random inputs.



I–4. Sensitivity measures 47

In engineering problems of practical interest, the statistical data available is often limited, and as-
sessing how the results of an uncertainty propagation analysis are sensitive to the statistical model used
as an input turns out to be of paramount importance. Several uncertainties may be considered, such
as the types of marginal distributions, the dependence structure between the random components or
any related model parameters that are used in the analysis. In this report, the scope will be limited to
the sensitivity of the failure probability pf w.r.t. distribution parameters, assuming that choices have
been made regarding the types of marginal distributions and the dependence structure that are used
(here linear correlation, accounted for by means of the Nataf model). We assume that all the distribu-
tion parameters are gathered in a vector denoted θ = (θ1, . . . ,θnθ ) in which θk designates any given
parameter of this vector. These parameters include the statistical moments of the components X i of
the random vector X for i = 1, . . . , n, but also and more generally any parameters used to define the
corresponding marginal distributions. The appropriate notation for the joint PDF of X would be fX (·;θ )
but we will simply use fX (·) in the following without making explicit the dependence on θ for shorter
notations.

The sensitivities of pf w.r.t. distribution parameters in the FORM context and under the assumption
of a Nataf model are presented first. Section I–4.2 addresses FORM sensitivities w.r.t. parameters of the
marginal distributions of X and also those w.r.t. correlations between the components of X. Note that
these sensitivity measures are available in FERUM 4.x (Bourinet et al., 2009).

Sensitivity w.r.t. distribution parameters is then placed in the broader context of MC methods. The
sensitivities of pf w.r.t. distribution parameters can be obtained from a crude MC analysis by means of
the score function introduced by Rubinstein (1976), as described in Section I–4.3.1. Such sensitivities
were later derived in the SS framework by Song et al. (2009), as presented in Section I–4.3.2. An
interpretation of these sensitivities in the standard normal space is proposed in Section I–4.3.3, allowing
the components of X to be ranked by importance in the specific case of independent inputs. Note that
it is also possible to assess such sensitivities by means of surrogate models, as recently proposed by
Dubourg and Sudret (2014), in which the sensitivities of pf w.r.t. distribution parameters are assessed
by means of the meta-IS adaptive refinement technique initially proposed for reliability assessment
(Dubourg et al., 2013) .

I–4.2 FORM

I–4.2.1 Importance factors

In a FORM analysis, the variance of G1(U) defined in Eq. (I.36) can be expressed as follows (see, e.g.,
Der Kiureghian, 1999; Ditlevsen and Madsen, 2007):

Var [G1(U)] = Var
�−‖∇G (u∗)‖ �αTU− β��

= ‖∇G (u∗)‖2 Var
�
αTU

�

= ‖∇G (u∗)‖2 �α2
1 +α

2
2 + . . .+α2

n

�
,

(I.110)

where αi for i = 1, . . . , n are the components of the unit vector α.

From this expression, it appears that the squared values of the components of the α-vector are
indicative of the relative importance of the corresponding random inputs in the standard normal space
in the neighborhood of the MPFP. These α2

i -values are known as importance factors. If the random
inputs are independent, these importance factors clearly express the relative importance of each random
component X i . This is no longer true when correlated inputs are used in reliability analysis. In such a
context, Der Kiureghian introduced a new vector γ of importance factors by considering an “equivalent”
normal vector in the x-space at the MPFP x∗, denoted bX, such that u= u∗ + JT (bx− x∗) where JT = Ju,x
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is the Jacobian matrix of the diffeomorphism T evaluated at x∗. This vector of importance factors is
expressed as follows (Der Kiureghian, 1999):

γT =
αT JT bD
‖αT JT bD‖

, (I.111)

where bD= [bDii]1≤i≤n is a (n× n)-diagonal matrix such that bDii =
p

J2,ii for i = 1, . . . , n and J2,ii is the
ith diagonal term of the (n× n)-matrix J2 = [J2,i j]1≤i, j≤n = JT−1 JT

T−1 where JT−1 = Jx,u is the Jacobian
matrix of the inverse T−1 of T evaluated at u∗. It should be noted that γ = α for the specific case of
independent components X i .

I–4.2.2 Sensitivities of pf w.r.t. distribution parameters

In the context of a FORM analysis, the gradient of the failure probability approximation pFORM
f w.r.t. the

distribution parameters θ is given by:

∇θ pFORM
f = −ϕ (β)∇θβ . (I.112)

The gradient of the reliability index β w.r.t. θ reads as follows, as shown by Hohenbichler and
Rackwitz (1986):

∇θβ = Ju,θ (u
∗;θ )Tα , (I.113)

where Ju,θ (u;θ ) = [∂ ui/∂ θ j]1≤i≤n , 1≤ j≤nθ represents the Jacobian of the transformation T w.r.t. the
distribution parameters θ . Note that this Jacobian is expressed at the MPFP u∗.

The kth column of this Jacobian matrix for k = 1, . . . , nθ can be obtained by differentiating u defined
in Eq. (I.25) w.r.t. the kth element θk of the vector of distribution parameters θ :

∂ u
∂ θk

= L−1
0
∂ z
∂ θk

+
∂ L−1

0

∂ θk
z . (I.114)

Two main cases deserve attention, as respectively detailed in Section I–4.2.2 (a) and (b):

(a) The first case appears when θk is a correlation coefficient of R. The components zi = Φ−1
�
FX i
(x i)

�
of z for i = 1, . . . , n are expressed in terms of the parameters of the marginal distributions of X
and therefore do not depend on θk. For this reason the first term of Eq. (I.114) vanishes.

(b) The second case appears when θk is a parameter of a given marginal distribution (e.g. its mean
or standard deviation or, more generally, any parameter of this marginal distribution). The depen-
dence of z on θk is clear from the transformation (Tvz ◦Tx v) defined in Eq. (I.114). The calculation
of the first term of Eq. (I.114) is therefore required to assess the sensitivity to θk. The contribution
of the second term is less clear and often neglected. It is however non-zero, due to µi , σi , µ j and
σ j that appear in Eq. (I.30), which may imply a dependence of R0, and therefore of L−1

0 , on θk.

(a) Sensitivities to correlation

Sensitivity to correlation in the framework of the Nataf transformation has been studied in very few
works (Žanić and Žiha, 1998; Žanić and Žiha, 2001; Bourinet and Lemaire, 2008; Bourinet, 2017a).
The methods proposed by Žanić and Žiha are based on the approximate formulas F = ρ0,i j/ρi j of Liu
and Der Kiureghian (1986) derived for pairs of commonly-used marginal distributions. Two methods
are proposed in this work, one based on the Cholesky decomposition, as later used by Bourinet and
Lemaire (2008) and presented in the following, the other based on a spectral decomposition of R0. The
objective here is to assess these sensitivities by numerical integration from the integral problem defined
in Eq. (I.30) in order to obtain highly accurate sensitivities.
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The sensitivity to a given correlation coefficient ρi j of R requires evaluating the following expression
at u∗:

∂ u
∂ ρi j

=
∂ L−1

0

∂ ρi j
z . (I.115)

From L−1
0 L0 = I, where I is the n× n identity matrix, we can straightforwardly obtain:

∂ L−1
0

∂ ρi j
= −L−1

0
∂ L0

∂ ρi j
L−1

0 . (I.116)

This expression shows that the sensitivity of L−1
0 w.r.t. ρi j can be obtained from that of L0. The

evaluation of ∂ L0/∂ ρi j is carried out in two steps, as described in the following.

In the first step, the sensitivity of R0 is derived from Eq. (I.30). All the elements of the matrix
∂R0/∂ ρi j are zeros except the one in the ith row and jth column, which can be expressed as follows:

∂ ρ0,i j

∂ ρi j
=

�
∂ ρi j

∂ ρ0,i j

�−1

. (I.117)

The sensitivity ∂ ρi j/∂ ρ0,i j is assessed from the following equation by numerical integration with
the same rule as the one used to solve Eq. (I.30), see Eq. (I.31):

∂ ρi j

∂ ρ0,i j
=

∫

R

∫

R

h
�
zi , z j ,µi ,µ j ,σi ,σ j

� ∂ ϕ2

�
zi , z j ,ρ0,i j

�

∂ ρ0,i j
dzidz j . (I.118)

In the second step, the sensitivity of L0 w.r.t. ρi j is obtained from that of R0 through a step-by-step
differentiation of the Cholesky algorithm. The algorithm used to calculate both L0 and ∂ L0/∂ ρi j can
be found in Bourinet (2017a).

(b) Sensitivities to other distribution parameters

For k = 1, . . . , nθ , we want to assess ∂ u/∂ θk in Eq. (I.114), where θk represents any given marginal
distribution parameter. Evaluating the first term L−1

0 ∂ z/∂ θk is quite standard from the following ex-
pression obtained from Eq. (I.22), for i = 1, . . . , n:

∂ zi

∂ θk
=

1

ϕ
�
FX i
(x i)

� ∂ FX i
(x i)

∂ θk
, (I.119)

in which ∂ FX i
/∂ θk has to be derived for any usual statistical distribution.

Evaluating the second term (∂ L−1
0 /∂ θk)z is less easy. The sensitivity of L−1

0 to θk is obtained in three
steps, similarly to the process for the sensitivity of L−1

0 to correlation in the previous section:

(1) We first express the sensitivity
∂R0

∂ θk
, as described in the following.

(2)
∂ L0

∂ θk
is obtained from R0 and

∂R0

∂ θk
by means of the algorithm given in Bourinet (2017a).

(3)
∂ L−1

0

∂ θk
is obtained from

∂ L0

∂ θk
, see Eq. (I.116).
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The sensitivity of R0 to θk is obtained from the following equation. For any i, j = 1, . . . , n, we have:

∂ ρi j

∂ θk
=

∫

R

∫

R

�
∂ h
�
zi , z j ,µi ,µ j ,σi ,σ j

�

∂ θk
ϕ2

�
zi , z j ,ρ0,i j

�
+

h
�
zi , z j ,µi ,µ j ,σi ,σ j

� ∂ ϕ2

�
zi , z j ,ρ0,i j

�

∂ θk

�
dzidz j ,

(I.120)

where:

∂ h
∂ θk

=
∂ h
∂ zi

∂ zi

∂ θk
+
∂ h
∂ z j

∂ z j

∂ θk
+
∂ h
∂ µi

∂ µi

∂ θk
+
∂ h
∂ µ j

∂ µ j

∂ θk
+
∂ h
∂ σi

∂ σi

∂ θk
+
∂ h
∂ σ j

∂ σ j

∂ θk
, (I.121)

and:
∂ ϕ2

∂ θk
=
∂ ϕ2

∂ zi

∂ zi

∂ θk
+
∂ ϕ2

∂ z j

∂ z j

∂ θk
+
∂ ϕ2

∂ ρ0,i j

∂ ρ0,i j

∂ θk
. (I.122)

It is important to notice that the unknown sensitivity ∂ ρ0,i j/∂ θk (i.e. the element of ∂R0/∂ θk in
the ith row and jth column) appears in the integrand of Eq. (I.120), see last term of Eq. (I.122). This
sensitivity is obtained by solving Eq. (I.120) by numerical integration, in which we have ∂ ρi j/∂ θk = 0.
We use again the same rule for numerical integration as the one defined for the calculation of R0. Note
that the partial derivatives of µi , µ j , σi and σ j w.r.t. θk in Eq. (I.121) are all zeros if θk is a distribution
parameter of a component of X other than X i or X j .

From the examples investigated in Bourinet (2017a), it is found that the contribution of the second
term of Eq. (I.114) is important only when correlated components with sufficiently large variances are
present in X. Accounting for this second term is moreover only required when at least one component of
X has a distribution belonging to Group 2 as defined by Liu and Der Kiureghian (1986). As a reminder,
this group includes the lognormal, gamma, type-II largest value and type-III smallest value distributions.
When X i belongs to Group 2, ρ0,i j (therefore R0) depends on the coefficient of variation δi of X i , see
approximate expressions of F = ρ0,i j/ρi j given by Liu and Der Kiureghian. This implies a dependence
of L−1

0 on the marginal distribution parameters of X i and, as a consequence, a non-zero sensitivity of
L−1

0 w.r.t. those parameters.

I–4.3 Crude MC simulation and subset simulation

I–4.3.1 Crude MC sensitivities of pf w.r.t. distribution parameters: the score function

The sensitivities of pf w.r.t. distribution parameters can be assessed as a simple post-processing of a crude
MC simulation by means of the score function introduced by Rubinstein (Rubinstein, 1976; Rubinstein,
1986). Such an approach was later brought to the structural reliability community by Wu (1994).

We wish to assess the sensitivity of pf w.r.t. a given distribution parameter θk of θ :

∂ pf

∂ θk
=
∂

∂ θk

∫

X
1Fx
(x) fX (x) dx . (I.123)

Assuming that (i) the joint PDF of X is continuously differentiable w.r.t. θk, and that (ii) the inte-
gration domain X does not depend on θk, we can write:

∂ pf

∂ θk
=

∫

X
1Fx
(x)

∂ fX (x)
∂ θk

dx . (I.124)
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It is important to point out that assumption (ii) is not met for truncated distributions. An example of
such distributions is the uniform distribution for which the bounds of the integration domain depend
on its statistical moments (see, e.g., Lee et al., 2011a; Lee et al., 2011b).

This integral can be assessed by IS with the joint PDF fX, as detailed in the first line of Eq. (I.125).
It is worth pointing out that this IS PDF is the same as the one used in a crude MC simulation, which
therefore implies that the sample drawn for the estimation of pf by crude MC can also be used to estimate
the sensitivity of pf w.r.t. any θk ∈ θ . The function κθk

(x) = ∂ ln ( fX (x))/∂ θk which is introduced line 3
of this equation is known as the score function.

∂ pf

∂ θk
=

∫

X
1Fx
(x)

∂ fX (x)
∂ θk

fX (x)
fX (x) dx

=

∫

X
1Fx
(x)

∂ ln ( fX (x))
∂ θk

fX (x) dx

= E fX

�
1Fx
(X) κθk

(X)
�

.

(I.125)

The corresponding MC estimator of ∂ pf/∂ θk is given by:

Õ∂ pf

∂ θk
=

1
N

N∑
j=1

1Fx

�
X( j)

�
κθk

�
X( j)

�
, (I.126)

where {X( j), 1≤ j ≤ N} are N independent copies of the random vector X, i.e. X(1), . . . ,X(N)
i.i.d.∼ fX, and

N denotes the sample size.

I–4.3.2 SS sensitivities of pf w.r.t. distribution parameters

A similar approach can be applied to SS to derive the sensitivities of pf w.r.t. distribution parameters,
as proposed by Song et al. (2009), see also the presentation by Dubourg (2011, pp. 161–163). From
Eq. (I.53), the sensitivity of the failure probability pf w.r.t. a given distribution parameter θk ∈ θ can be
expressed as follows:

∂ pf

∂ θk
=

m∑
s=1

pf

ps

∂ ps

∂ θk
, (I.127)

where p1 = P (E1) and ps = P (Es|Es−1) for s = 2, . . . , m,
and where the partial derivatives of the intermediate probabilities ps for s = 1, . . . , m are defined by
recurrence (Song et al., 2009):

∂ p1

∂ θk
= Eϕn

�
1Fu, 1

(U) Kθk
(U)

�
, (I.128)

and, for s = 2, . . . , m:

∂ ps

∂ θk
= Eϕn(·|Es−1)

�
1Fu, s

(U)

�
Kθk
(U)−

s−1∑
r=1

1
pr

∂ pr

∂ θk

��
, (I.129)

where Kθk
(u) = (κθk

◦ T−1)(u) denotes the score function expressed in the standard normal space.

The corresponding sensitivity estimator at the first level of SS is:

Õ∂ p1

∂ θk
=

1
N

N∑
j=1

�
1Fu

�
U( j)

�
Kθk

�
U( j)

��
, (I.130)
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where {U( j), 1≤ j ≤ N} are N independent copies of the random vector U at the first SS level, i.e. such

that U(1), . . . ,U(N)
i.i.d.∼ ϕn, and N denotes the sample size of the SS levels.

At the next levels s = 2, . . . , m , the sensitivity estimator writes:

Õ∂ ps

∂ θk
=

1
N

N∑
j=1

�
1Fu, s

�
U( j)

��
Kθk

�
U( j)

�−
s−1∑
r=1

1
pr

Õ∂ pr

∂ θk

��
, (I.131)

where {U( j), 1 ≤ j ≤ N} are N independent copies of the random vector U at level s, i.e. such that

U(1), . . . ,U(N)
i.i.d.∼ ϕn (·|Es−1).

I–4.3.3 Normalized sensitivities in the standard normal space

The sensitivities defined in Sections I–4.3.1 and I–4.3.2 are defined w.r.t. distribution parameters of the
joint PDF fX. These sensitivities are often useful for optimal design under uncertainty in a gradient-
based algorithm, such as presented in Section II–5.2 where the design parameters are the means of
some components of the random vector X. It is now proposed to assess the sensitivity of the failure
probability w.r.t. distribution parameters of the standard normal space PDF, i.e. ϕn. Such an approach
presents the major advantage of obtaining normalized sensitivities, since each component of U follows a
univariate standard normal PDF. The disadvantage is that the correlation structure is lost, which makes
it difficult to interpret such sensitivities in the case of correlated random inputs.

The n-dimensional standard normal PDF is written as follows, as already introduced in Section I–
3.4.1, see Eq. (I.100):

ϕn (u) = ϕn (u;θ ) =
n∏

i=1

1

σi
p

2π
exp

�
−1

2

�
ui −µi

σi

�2
�

, (I.132)

where θ = (µ1, . . . ,µn , σ1, . . . ,σn) = (0, . . . , 0, 1, . . . , 1).

The score function of ϕn, denoted κθk
(u), is given, for k = 1, . . . , 2n 10, by:

κθk
(u) =

∂ ln (ϕn (u))
∂ θk

=





ui −µi

σ2
i

= ui if θk = µi , i = 1, . . . , n ,

(ui −µi)
2 −σ2

i

σ3
i

= u2
i − 1 if θk = σi , i = 1, . . . , n .

(I.133)

The SS sensitivity estimators defined in Eqs. I.130-I.131 now rewrite:

Õ∂ p1

∂ θk
=





1
N

N∑
j=1

�
1Fu

�
U( j)

�
U( j)

�
if θk = µi , i = 1, . . . , n ,

1
N

N∑
j=1

�
1Fu

�
U( j)

� �
U( j)

2 − 1
��

if θk = σi , i = 1, . . . , n .

(I.134)

10Note that the score function of ϕn was already given in Eqs. I.102a-I.102b for the application of the CE method in the
standard normal space.
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and, for s = 2, . . . , m:

Õ∂ ps

∂ θk
=





1
N

N∑
j=1

�
1Fu, s

�
U( j)

��
U( j) −
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1
pr

Õ∂ pr

∂ θk

��
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1
N

N∑
j=1

�
1Fu, s

�
U( j)

���
U( j)

2 − 1
�
−

s−1∑
r=1

1
pr

Õ∂ pr

∂ θk

��
if θk = σi , i = 1, . . . , n .

(I.135)

The sensitivities of pf to distribution parameters in the standard normal space as proposed above are
assessed for example 1 introduced in Section I–3.4.2 with µFs

= 27.5. These sensitivities are obtained
by means of a simple post-processing of a SS simulation run, from the samples used at each level of SS
and the corresponding LSF values. Let us introduce the following probabilities πs for s = 1, . . . , m:

πs =
s∏

k=1

pk . (I.136)

Note that we have pSS
f = πm.

The choice made here is to represent the sensitivity of πs w.r.t. any θk ∈ θ normalized by πs for
s = 1, . . . , m, which enables us to investigate how this sensitivity evolves with the SS levels:

1
πs

∂ πs

∂ θk
=

1
πs

s∑
r=1

πs

pr

∂ pr

∂ θk

=
s∑

r=1

1
pr

∂ pr

∂ θk
.

(I.137)

The corresponding estimator of these sensitivities is given by the following expression:

Û1
πs

∂ πs

∂ θk
=

s∑
r=1

1
bpr

Õ∂ pr

∂ θk
, (I.138)

where bpr is given in Eqs. I.57-I.58, and Û∂ pr/∂ θk is given in Eqs. I.134-I.135.

These normalized sensitivities, estimated from a single application of the SS method with N = 106

samples per level and p0 = 0.5, are represented in Figure I.13. Note that a large number of samples N
is taken here for the sake of accurate sensitivities. The unusual choice of p0 = 0.5 is made in order to
obtain an increased number of SS levels compared to the case p0 = 0.1 (here m= 22 instead of m= 7)
and therefore a finer representation of the normalized sensitivities of pSS

f w.r.t. µi and σi in the plots for
i = 1, . . . , 8. For example 1, all the random components X i for i = 1, . . . , 8 are statistically independent,
which allows a straightforward interpretation of the obtained sensitivities. A single random component
X i is important if its normalized sensitivity to mean (∂ πs/∂ µi)/πs and/or its normalized sensitivity to
standard deviation (∂ πs/∂ σi)/πs is/are important, i.e. if their values noticeably differ from zero. As
observed in this example, the three most important variables are ζp, Fs and ζs, in decreasing order of
importance. It is also worth pointing out that the most important variables may change with the SS
level, indicating that some variables are more important in the central tendency than at failure, or vice
versa. This therefore shows that a dimension reduction of the reliability problem based on a selection of
the most important variables in the central tendency could result in an incorrectly set-up problem and
therefore an incorrect failure probability estimation. These normalized sensitivities have not yet been
extended to Nataf-correlated random inputs. One direction to explore would be to derive sensitivities
similar to those proposed, but in the z-space, in which all the inputs are scaled to standard normal but
still correlated random variates.
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Figure I.13 – Example 1, µFs
= 27.5. Normalized sensitivities ofπs w.r.t. mean µi and standard deviation

σi in the standard normal space for i = 1, . . . , 8. The normalized sensitivities of pf w.r.t. µi and σi
correspond to the right-hand points of these plots, i.e. when bpSS

f = bπm =
∏m

k=1 bpk. The results are
obtained from a single SS analysis with N = 106 samples per level and a prescribed probability level
p0 = 0.5.
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!Overview: The estimation of low failure probabilities in reliability is often confronted with the limits
imposed by the available computational resources. This burden is alleviated by using surrogates for the
costly-to-evaluate models involved in the analysis, under some assumptions about the dimensionality
and complexity of the model we want to approximate. This chapter gives an overview of the main sur-
rogate models and their use in adaptive approaches, i.e. methods that sequentially select a few points
to evaluate in the input space and update the surrogate model until sufficient accuracy is attained.
The focus in this report is on kernel-based techniques, mainly support vector machines (SVMs) but
also kriging to a lesser extent. This chapter recalls the main principles of these two techniques, with
technical details about their construction and the tuning of their parameters. SVMs in classification
were used in the PhD work of Deheeger (2008) for the purpose of reliability assessment. I recently
extended this work to support vector regression based on the ε-insensitive loss function. Kriging was
used in surrogate-based approaches for the purpose of reliability-based design optimization (RBDO)
in the PhD works of Dubourg (2011) and Moustapha (2016).

Contributions: This chapter presents linear SVMs in their two main forms, classification and regres-
sion, with their extension to the nonlinear case by means of kernels. Emphasis is placed on the tradeoff
to be made between a model which is simple to learn and its closeness to the data, by placing the prob-
lem to solve in a regularization framework, see Section II–2.3. The two proposed adaptive methods
for reliability assessment are recalled in Section II–3. The first, called 2SMART, is based on SVMs
used in classification (Bourinet et al., 2011). The second and more recent one, called ASVR, is based
on support vector regression (Bourinet, 2016). A key ingredient of this latter method is the accuracy
of the constructed approximate models, which are obtained by minimizing an approximation of the
leave-one-out error, see Section II–2.4. The most important aspects of kriging are given in Section II–4,
which also clearly identifies the relationship between kriging and least squares support vector regres-
sion, one of the forms of SVMs in regression. The two proposed adaptive methods for RBDO based on
kriging are detailed in Section II–5.3 (Dubourg et al., 2011; Moustapha et al., 2016). These methods
are expressed in an augmented space and take advantage of the kriging variance.

Credits: This chapter has excerpts from:
• papers of Bourinet et al. (2011) and Bourinet (2016) in Section II–3,
• PhD manuscripts of Dubourg (2011) and Moustapha (2016), papers of Dubourg et al. (2011) and

Moustapha et al. (2016) in Section II–5.

II–1 Introduction

The propagation of uncertainties in costly-to-evaluate numerical models used in several fields of engi-
neering physics is often a challenging task. In practice, the analyst is almost always confronted with
insufficient computational resources to analyze the many situations he(she) wishes to solve in order to
identify the most influential variables, allowing him(her) to find a better design of the studied system in
subsequent steps. We will here focus on the situations that arise in uncertainty propagation, but similar
challenges are also found e.g. in deterministic optimization (Jones, 2001; Forrester and Keane, 2009).
More explicitly, we will consider the specific cases of reliability assessment characterized by low failure
probabilities such as addressed in Section I, but also uncertainty propagation for optimal design (also
termed as optimization under uncertainty), such as the reliability-based design optimization introduced
in Section II–5. For engineering problems of practical interest, assessing small failure probabilities by
the methods presented in Section I requires a number of calls to a numerical model that may exceed the
maximum number authorized. Such a situation is often met in high-dimensional problems with inputs
modeled by random processes or random fields, for which the SS method still requires thousands to
tens of thousands calls to the LSF for a failure probability estimate of an acceptable accuracy (say with
a c.o.v. of pf close to 10-20%).
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To alleviate the computational burden, interesting alternative methods have emerged in the past few
decades. Their basic principle consists in substituting the true and costly-to-evaluate model which we
cannot afford to call too often with a cheap-to-evaluate model that should be sufficiently “close” to the
true one (note that we therefore assume that this model is an approximation of the true one). Practically,
the construction of this cheap-to-evaluate model necessitates few calls to the costly-to-evaluate one and
the main objective is to keep this number minimal for the sake of computational efficiency. This field
is often known as computer simulation experiments (Sacks et al., 1989; Santner et al., 2003; Kleijnen,
2007).

Such approximate models have been proposed in various contexts over the years and several terms
can be found to designate such models: response surfaces (most often assumed in a polynomial form),
surrogate models1, meta-models, proxy models, emulators and machines (in machine learning), to cite
the most common terms. From our perspective, a natural approach is to consider a surrogate model
that replaces the costly-to-evaluate LSF in reliability assessment or the cost function and/or probabilistic
constraints in optimization under uncertainty. Let us assume that the true model is defined by means
of a scalar function y : X → Y ,x 7→ y = y(x) where X ⊆ Rn denotes the input space and Y ⊆ R
the output space. Unless otherwise stated, the surrogate of y is denoted ey : x 7→ ey = ey(x) = ey(x;T )
in this report, where T is the set of data on which ey is trained, see Section II–1.1. The notation eyT
is sometimes used for making explicit the dependence of the surrogate model on the training data T .
The approximation ey depends on the type of surrogate model that is selected, see the short overview of
existing techniques given in Section II–1.3. Some types of surrogate models may require some additional
parameters which, as seen later in this report, need to be tuned from the available data T for accurate
predictions of the model ey . It is also important to stress that any type of surrogate model is characterized
by its own underlying assumptions due to the specific form of the approximation. It is worth pointing
out that these assumptions are expected to be “compatible” with the properties of the true function y
(e.g. continuity, differentiability, smoothness of y). If this is not the case, the constructed approximate
model ey could be severely biased and therefore inappropriate to surrogate y .

II–1.1 Construction of surrogate models

It is assumed that we are given a set of N data pairs D = {(xi , yi) ∈ X ×Y , 1≤ i ≤ N}. We will restrict
the presentation to a scalar output for simplicity. Let us also assume that the yi ’s are the respective
evaluations of the true function y we want to surrogate at the given xi ’s: yi = y(xi) for i = 1, . . . , N .
We consider that the surrogate model ey is constructed from a set of data pairs T called the training
set (called design of experiments 2 or experimental design in the context of surrogate models applied to
deterministic functions y). It should be indicated that T is often (but not necessarily3) equal to the set
of known data pairs D. If the set of outputs Y is continuous, the construction of the surrogate model
is known as regression and ey is termed a regressor. In the case of a discrete set Y the approach is
known as classification and ey is a classifier. Both cases are considered in this chapter, see Sections II–2.2
and II–4 for regression with support vector machines and Gaussian process emulators respectively, and
Section II–2.1 for binary classification with support vector machines.

1This term surrogate model is the one that is most often used in this report. The costly-to-evaluate model is often referred
to as the true model.

2Experimental designs are also widely used for real physical experiments (see, e.g., Box and Draper, 1987). For a discussion
of the differences between the two types of practice, the reader may refer to Sacks et al. (1989, p. 411).

3Some algorithms can be devised to learn over a subset of the known data pairs. In the case of regression, this means that
a local regression is made.
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For a broader perspective, the construction of surrogate models should be placed in the context of
machine learning (Rasmussen and Williams, 2006) or statistical learning (Hastie et al., 2009). Con-
structing regressors or classifiers from data is known as supervised learning in such contexts. It is also
worth mentioning that machine learning methods were not developed for the specific case of determin-
istic function approximation of interest in this chapter. These methods are able to learn from data in a
general sense, without requiring that the data comes from a physical model (here the costly-to-evaluate
model defined through the function y). This could be real (and most often noisy) data gathered from
any observed phenomenon.

Assuming that a set of training data has been defined and that a type of surrogate model has been
selected, it is then necessary to tune the unknown parameters of the surrogate model ey . Selecting
optimal parameters of ey from a training set T is often specific to each type of surrogate model. In order
to clarify what optimality means, it is useful to introduce some definitions from statistical learning
theory.

In the classical framework of statistical learning, it is assumed that the training set T = {(xi , yi) ∈
X ×Y , 1≤ i ≤ N} is composed of i.i.d. samples drawn from an unknown distribution denoted p(x, y)4.

The accuracy of a given surrogate model ey can be defined in terms of its ability to make good
predictions on new points. This performance is measured by the so-called expected risk R(ey) that defines
the generalization error:

R (ey) = Ep(x,y) [` (Y, ey (X))] =
∫

X×Y
` (y, ey (x)) p (x, y) dxdy , (II.1)

where ` : Y ×R→R≥0 is a chosen loss function (or cost function) which specifies the cost incurred by
replacing y by ey(x) (this loss measures how “different” y and ey(x) are).

The distribution p(x, y) is in general unknown. We therefore introduce the empirical risk Remp(ey)
that can be directly assessed from the training data T :

Remp (ey) = 1
N

N∑
i=1

` (yi , ey (xi)) . (II.2)

Let us assume that we are searching for a surrogate model in a space of functions denotedH (called
hypothesis space in machine learning) from a given training set T . If we denote ey∗H the minimizer of
the expected risk R in the hypothesis space H:

ey∗H = arg min
f ∈H

R ( f ) , (II.3)

and by ey∗Hemp the minimizer of the empirical risk Remp:

ey∗Hemp = arg min
f ∈H

Remp ( f ) , (II.4)

a central question of statistical learning is whether the expected risk of ey∗Hemp is sufficiently close to
that of ey∗H, i.e. R(ey∗Hemp) ≈ R(ey∗H) (see, e.g., Evgeniou et al., 2000). It is important here to stress out
that minimizing the expected risk R is out of reach, since the distribution p(x, y) is unknown. Hence
minimizing the empirical risk Remp appears as a natural solution to resort to, since it is defined from the

4In statistical learning, a probabilistic relationship between x and y is assumed in order to account for noise. Two different
values of y could be obtained for the same x.
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training data. This approach, known as empirical risk minimization (ERM), is unfortunately ill-posed,
as illustrated by the following example taken in the context of binary classification (Smola et al., 2000,
Chapter “Introduction to large margin classifiers”, p. 9).

In binary classification, the 0-1 loss function `(y, u) = 1{u6=y} is often used as a measure of the
classification error. The expected risk in such a context represents the probability of misclassification:

R (ey) = P (ey (X) 6= y (X)) , (II.5)

and the empirical risk is given by:

Remp (ey) = 1
N

N∑
i=1

1{ey(xi)6=yi} , (II.6)

which is simply the training error.

If ERM is applied to a binary classification problem in which Y = {−1,+1}, we can choose ey∗Hemp
such that all the training pairs of T are memorized, and a random output inY is given at points other that
those belonging to T . With such a model, the empirical risk is Remp(ey∗Hemp) = 0 but the expected (and
therefore true) risk is R(ey∗Hemp) = 0.5 provided that the finite training sample T has a zero probability
measure. This clearly indicates that a model characterized by a zero training error on the training data
may be unable to predict well on new data. Such a phenomenon is known as overfitting, and of course
it should be avoided.

In order to assess the performance of a surrogate model, it is usual to express the difference between
the expected risk of the constructed surrogate model ey = eyT averaged over all possible training sets T
(expectation on T ) and the so-called Bayes’ risk R∗ = R (ey∗):

ET [R (eyT )]− R (ey∗) = �ET [R (eyT )]− R
�ey∗H

��
+
�
R
�ey∗H

�− R (ey∗)� , (II.7)

where
ey∗ = arg min

f
R ( f ) (II.8)

denotes the best possible model that can be obtained by minimizing the expected risk over all measurable
functions, and where ey∗H denotes the best model that can be obtained within the class of models defined
by H, see Eq. (II.3).

In Eq. (II.7), the first term of the sum is called the estimation error (this error, due to the random
choice of the training set T , quantifies how well it is possible to identify the best model from data
within the class H), and the second term is called the approximation error (this error does not involve
the data set T on which eyT is trained; it quantifies how well it is possible to approximate y under the
restrictive assumption that the surrogate model belongs to H). In regression based on the square loss
`(y, u) = (y−u)2, this decomposition into two terms is known as the bias/variance decomposition (see,
e.g., Geman et al., 1992, p. 10), in which the first term (estimation error) represents the variance and
the second term (approximation error) the squared bias.

From a practical viewpoint, the construction of an accurate surrogate model ey requires choosing
both a type of model through H and a training set through T . If H is chosen sufficiently large (high
complexity of the approximation ey), we quite naturally expect that the approximation error will be
small, but the adverse effect is that the estimation error will grow, thus imposing the use of prohibitively
large training sets T (case of overfitting). Conversely, ifH is small (low complexity of ey), the estimation
error will be small (we do not need a large set of data to train ey with good accuracy) but the approxi-
mation error will become large (case of underfitting). A tradeoff therefore needs to be found in order
to avoid the two above-mentioned issues. It is desirable to find the right balance between the level of
complexity of the approximation ey and the amount of data that is required to train the surrogate model.
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This is usually achieved by restricting the “size” of the space of functions H in which the surrogate is
sought (the complexity of the surrogate model is controlled by the type of approximation that is used,
e.g. polynomials of a given maximum degree) and/or by working with a regularized risk instead of the
empirical risk, such as presented in Section II–2.3.2 in the context of support vector machines.

II–1.2 Data-adaptive strategies

So far it has been assumed that we were given a training set T and the objective was to construct the
“best” surrogate model from it. The points xi for i = 1, . . . , N were supposedly drawn passively from
some given probability distribution p(x). With no prior information about the distribution p(x) and
the true response y(x), these points are expected to uniformly cover the entire space X in order to
construct a surrogate model that is able to predict equally well at any point x in X . In computer experi-
ments, samplings that achieve such a purpose are known as space filling designs (see, e.g., Pronzato and
Müller, 2012). They include Latin hypercube sampling (LHS) (McKay et al., 1979) and distance-based
samplings such as the maximin- and minimax-distance designs (Johnson et al., 1990), among others.

In many applications including those addressed in this chapter, it is unnecessary for the surrogate
model to be equally accurate in the entire spaceX . It appears intuitive that more training samples should
be placed in those sub-domains of the input space X which are the most influential on the accuracy
of the output response y or any post-processed quantity(ies) derived from y . A greater accuracy of
the surrogate model is expected to be achieved, e.g., near the optimal solution x∗ in deterministic
optimization, or within failure subdomains with high probability contents in reliability assessment. With
this objective the idea is to move from passive to active sampling. Such active sampling strategies have
emerged in various contexts with very similar purposes. They are referred to as active learning5 or query
learning in machine learning (MacKay, 1992; Cohn, 1996), see also the review by Settles (2009) for a
smooth introduction, and adaptive designs or sequential designs in computer experiments and statistics
(Santner et al., 2003).

Such strategies often adopt the following scheme:

(1) First step s = 1. A first surrogate model ey1 is constructed from an initial training set denoted
T1 =D1 = {(xi , yi) ∈ X ×Y , i ∈ I1} where yi = y(xi) for i ∈ I1 and #I1 = N1.

(2) Proceed to the next step: s = s+ 1.

(3) A set of Ns new input points {xi ∈ X , i ∈ Is} is chosen at each subsequent step s > 1, where #Is = Ns.
The locations in X of these Ns new points are selected based on the information obtained from the
surrogate models constructed up to step (s − 1). Most often this information comes from the last
constructed surrogate only, i.e. eys−1. In machine learning, these new points may be required to
belong to a large pool of input points with predefined locations inX and unknown outputs (so called
unlabeled pool of examples). Strategies with only one point added at a time are often proposed,
i.e. Ns = 1 for any s > 1, but it is of interest to explore the case Ns > 1 with currently available
multi-cpu and multi-core computer systems.

(4) The true model y is evaluated at these Ns new points {xi ∈ X , i ∈ Is}. Let us denoteDs = {(xi , yi) ∈
X ×Y , i ∈ Is} where yi = y(xi) for i ∈ Is.

(5) A new training set Ts is defined, e.g. Ts =
⋃s

k=1Dk, but this could also be only a subset of this
union of Dk sets.

(6) A new surrogate model eys is trained on Ts.

5Active learning is defined by Cohn et al. (1994) as “any form of learning in which the learning program has some control
over the inputs on which it trains”.
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(7) A sequence {eys, 1 ≤ s ≤ sfinal} of surrogate models is constructed by repeating the adaptive con-
struction from (2) until the final model ey = eysfinal

meets some prescribed accuracy criterion. The
total number of calls to the true model y therefore is Nt =

∑sfinal
s=1 Ns.

Finding the most computationally efficient surrogate-based adaptive strategy with controlled accu-
racy can therefore be formalized through the following optimization problem:

min Nt s.t. ε (ψ (y) ,ψ (ey))≤ εtol , (II.9)

where ψ denotes a real-valued scalar or vector function applied to the true or surrogated output re-
sponse (e.g., ψ(y) may represent a failure probability if y is a given LSF in reliability assessment, a set
of Sobol’ indices in a global sensitivity analysis w.r.t. a given output y or the global minimum/maximum
of the function y in the domain X in a deterministic optimization analysis), ε defines an error measure
between ψ (y) and ψ (ey) and εtol is a prescribed accuracy level. The minimization in Eq. (II.9) should
be viewed as one carried out over all the strategies that can be devised, i.e. all possible numbers of
new points and their locations in space X for s = 1, . . . , sfinal. Additional constraints may also be added
to this optimization problem, e.g. Ns ≥ Ncore for any s where Ncore is the minimum number of cores
that need to be used simultaneously in case of computations run on multi-core systems. In practice,
this optimization problem is never solved in such formal settings. Strategies are proposed based on a
selected type of surrogate model, and their efficiency/accuracy are assessed on a set of examples.

A central question should now be asked: can we make sure that active learning always performs
better than passive learning for a given type of surrogate model? This question is asked in a few works
(see, e.g., Niyogi, 1995, Chap. 3), but no general answer can be given and this remains quite an open
problem in the author’s opinion, despite the evidence of successful approaches reported in the literature.
Surrogate-model-driven sampling used to select new training points in active learning departs from the
uniform distribution, which has the best exploration ability. A tradeoff therefore needs to be found for
such adaptive learning strategies: sampling should focus on the domains which are important for the
problem of interest while remaining sufficiently explorative. This is also known as the compromise be-
tween exploration (searching in the unexplored space X ) and exploitation (using available information
provided by the previously constructed surrogate models) in the context of Kriging surrogate models
(Forrester and Keane, 2009). In the case of insufficiently explorative sampling (too much exploitation),
the risk is to miss important zones of the input space X , which results in an inaccurate final surrogate
and therefore a biased solution. Conversely if the sampling is too explorative (case of insufficient ex-
ploitation), the risk is to generate too many samples in order to construct a surrogate model that is
accurate everywhere in X , therefore also in unimportant zones (i.e. strategy not optimal in terms of
computational efficiency).

Examples of such surrogate-based adaptive strategies will be given in the context of the estimation
of rare event probabilities in Section II–3 and reliability-based design optimization in Section II–5.

II–1.3 Main types of surrogate models

The aim of this section is to briefly recall the main types of surrogate models that are often used for
uncertainty propagation. The support vector machines (SVM) and kriging specifically applied in the
works presented in this report are respectively detailed in Sections II–2 and II–4. For details about
the theoretical basis and practical implementation of the other models, the reader is invited to refer to
specialized textbooks or papers, some of which cited here.
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(a) Polynomial response surface

The construction of surrogate models for real-valued functions has been often performed by regression
based on polynomial response surfaces (RS). The RS methodology (Box and Draper, 1987; Myers et al.,
2009) finds its roots in the seminal work by Fisher in the early 1930s. The expression of the surrogate
model ey used in a polynomial RS regression can be written as follows:

ey (x) = φ (x)T w , (II.10)

where the map φ : X ⊆ Rn → Rp,x 7→ φ(x) = (φ1(x), . . . ,φp(x))T is known as the basis expansion
and where w ∈ Rp is a vector of weights to be determined from the training set T = {(xi , yi) ∈ X ×
Y , 1 ≤ i ≤ N}. A quadratic basis expansion is often considered in structural reliability approaches
based on polynomial RS, see Section II–3. For n = 2, such a quadratic basis, including cross-terms,
writes φ(x) = (1 , x1 , x2 , x2

1 , x1 x2 , x2
2 )

T where x = (x1, x2)T. It is assumed that the number N of
data pairs in the training set T is greater than the number p of regression functions in φ(x), so that the
problem is not under-determined.

The unknown weights are obtained from the training data set by minimizing the empirical risk w.r.t.
the square loss function `(y, u) = (y − u)2:

w∗ = arg min
w∈Rp

1
N

N∑
i=1

(yi − ey (xi))
2 . (II.11)

This minimization problem has an exact closed-form solution:

w∗ =
�
ΦTΦ

�−1
ΦTy , (II.12)

where Φ= [φ j(xi)]1≤i≤N , 1≤ j≤p and y= (y1, . . . , yN )T.

The expression of the approximate model ey therefore writes:

ey (x) = φ (x)T �ΦTΦ
�−1
ΦTy . (II.13)

This approach is also known as ordinary least squares regression, where it is assumed that the mag-
nitudes of the residuals yi − ey(xi) for i = 1, . . . , N are all independent from each other.

The main drawback of polynomial RS is the rigid structure of the low-degree polynomial approxi-
mations that are commonly used (most often either a full or incomplete quadratic basis), which may be
not flexible enough to accurately fit the true function y we want to surrogate (see, e.g., Hurtado, 2004).
This drawback is avoided by kernel-based surrogate models (e.g. kriging and support vector machines)
whose unknown parameters are identified from locally-controlled errors over the training set. Another
drawback of polynomial RS is the number N of training pairs needed for the regression, which is in the
order of nd for a complete d-order polynomial basis. This may require too large a training set for not
particularly high dimensions n of the input space X .

(b) Moving least squares polynomial regression

An alternative technique consists in constructing a local approximation based on moving least squares
(MLS) (Lancaster and Salkauskas, 1981; Levin, 1998). The term “moving” is used because the weight
function θ appearing in Eq. (II.15) (and therefore the weight coefficients w) depends on the location of
any new point x where we want to predict y , and therefore “moves” with x. This method is presented
here in conjunction with a polynomial approximation, but it can also be used with other types of basis,
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e.g. splines or radial basis functions. The surrogate model ey used in a MLS polynomial regression is
given by:

ey (x) = φ (x)T w (x) , (II.14)

where, for any given point x ∈ X , the unknown weight vector w=w(x) is now obtained by minimizing
the following weighted least squares error:

w∗ =w∗ (x) = arg min
w∈Rp

N∑
i=1

�
yi −φ (xi)

T w
�2
θ (‖xi − x‖) , (II.15)

where θ is a non-negative weight function and ‖·‖ denotes the Euclidean distance in Rn (usual choices
are Gaussian or spline weight functions).

This optimization problem again has a closed-form solution, which writes:

w∗ (x) = A (x)−1 B (x) y , (II.16)

where A(x) = ΦT W(x)Φ, B(x) = ΦT W(x) and W(x) = [wii(x)]1≤i≤N is a (N ×N)-diagonal matrix such
that wii(x) = θ (‖xi − x‖) for i = 1, . . . , N (we again assume that the number N of training pairs is
greater than the number p of regression functions), and the approximate model ey therefore writes:

ey (x) = φ (x)T A (x)−1 B (x) y . (II.17)

The MLS polynomial regression is often used for responses with improved accuracy close to a point
of interest by putting more weight on the points of the training set that are in the neighborhood of this
given point. The lack of flexibility of low-order polynomials mentioned for RS is still present to some
degree with the MLS polynomial regression technique. Another disadvantage of MLS surrogate models
is due to the parameter(s) of the weight function θ governing the locality of the approximation which
is(are) often hard to tune, such as the parameter controlling the bandwidth of the Gaussian weight
function.

(c) Polynomial chaos expansion

In the specific context of uncertainty propagation, a common practice consists in expanding the random
output Y = y(X) onto an appropriate orthogonal polynomial basis. For such an expansion, we will
assume that Y has finite variance and that the components of X = (X1, . . . , Xn)

T are independent (if not,
a suitable transformation may be applied, such as described in Section I–1.3). The exact representation
of Y requires an infinite number of basis terms and is usually referred to as polynomial chaos expansion
(PCE) (Soize and Ghanem, 2004). For computational purposes, an approximation limited to a finite
number of terms is considered:

eY = ey (X) =
∑
α∈A

wαΦα (X) , (II.18)

where Φα are multivariate polynomials and wα are unknown deterministic coefficients for any multi-
indice α = (α1, . . . ,αn) belonging to a finite-size set A ⊂ Nn, e.g. A = {α ∈ Nn :

∑n
i=1αi ≤ p} for

polynomials with a total degree not greater than a maximum degree p.

Under the assumption that the components of X are independent, the multivariate polynomials Φα
can be obtained as tensor products of univariate polynomials and expressed as follows:

Φα (x) =
n∏

i=1

φ(i)αi
(x i) , (II.19)

where φ(i)αi
is the univariate polynomial of degree αi from the orthonormal family associated with X i

for i = 1, . . . , n, i.e. such that:
E
�
φ
(i)
j (X i) ,φ

(i)
k (X i)

�
= δ jk , (II.20)
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and where δ jk = 1 if j = k, δ jk = 0 otherwise.

Hermite polynomials are selected for standard normal inputs, as proposed by Wiener in the homo-
geneous chaos expansion (see, e.g., Ghanem and Spanos, 1991). Polynomials are also available for a
few other types of random input distributions from the Wiener-Askey PCE (Xiu and Karniadakis, 2002).
With non-normal distributions, the expansion in Eq. (II.18) is referred to as generalized PCE. For dis-
tributions for which these polynomials are not known, recourse to isoprobabilistic mapping is made,
so that the generalized PCE can be applied. We can e.g. define the generalized PCE in the standard
normal space by expressing it in terms of the n-dimensional standard normal random vector U = T (X),
see Section I–1.

The unknown coefficients wα = {wα,α ∈A} can be obtained by regression from a given training set
T = {(xi , yi) ∈ X ×Y , 1≤ i ≤ N}, by minimizing the empirical risk w.r.t. the square loss function (ordi-
nary least squares regression) (Berveiller et al., 2006), similarly to the approach applied for polynomial
RS. The solution writes:

w∗α =
�
ΦTΦ

�−1
ΦTy , (II.21)

where Φ = [Φα j
(xi)]1≤i≤N , 1≤ j≤#A and y = (y1, . . . , yN )T, in which α j denotes the jth multi-index in

the set A and #A the cardinality of A.

The number of coefficients to be evaluated depends both on the dimension n of the problem of
interest and the selected maximum total order p of the expansion. For a complete basis of polynomials
with a total degree not greater than a given maximum degree p, we have:

#A=
�

n+ p
p

�
. (II.22)

The number of polynomials inA (and consequently the number of data pairs required in the training set
T ) rapidly increases with the dimension n. Several strategies have been proposed to limit the number
of polynomials for large n and therefore alleviate the curse of dimensionality. A first approach proposed
by Blatman and Sudret (2009) consists in choosing a hyperbolic truncation scheme that only retains the
interaction terms of low orders:

A=
�
α ∈Nn : ‖α‖q ≤ p

	
, (II.23)

where:

‖α‖q =
� n∑

i=1

α
q
i

�1/q

, (II.24)

and q is an arbitrary selected parameter in ]0,1]. Another approach consists in using the hybrid least
angle regression method for the construction of sparse PCE (Blatman and Sudret, 2011). The selection
of the best set of predictors is based on the LAR algorithm of Efron et al. (2004) and the unknown
coefficients are obtained by ordinary least squares regression.

(d) Artificial neural networks

Artificial neural networks (ANN) or simply neural networks (NN) are another type of surrogate model
often used in uncertainty propagation, and are part of machine learning. Several models can be used
for supervised or unsupervised learning. Among the supervised techniques, the multilayer perceptron
(MLP) and the radial basis function (RBF) networks are the most common models. An ANN is composed
of neurons (a.k.a. nodes) assembled into an architecture that connects these neurons together. In each
neuron (let us denote a given neuron by the subscript m), a transfer or activation function f :R→ [0, 1]
is built in:

ym = f
�
bm +wT

mxm

�
, (II.25)
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where xm = (xm,1, . . . , xm,nm
)T denotes the vector of inputs of the neuron (nm scalar inputs), ym its

scalar output, wm = (wm,1, . . . , wm,nm
)T its weights and bm its bias.

Among all these architectures, the feedforward multilayer perceptron (FFMLP) network is the most
widely used. It is composed of three or more layers, the first one being composed of the inputs and
the last one of the output(s). The intermediate layers (also called hidden layers) are fully connected,
meaning that each neuron belonging to an intermediate layer is connected to those of the previous layer
and to those of the next one. Several types of transfer functions can be chosen in the hidden layers,
among which the sigmoid function f : a 7→ f (a) = 1/(1+ exp(−αa)) is a common choice, where α is a
parameter that defines the slope of the function.

The construction of an ANN surrogate model requires first that we choose an architecture and then
train the model on the data in order to find the biases and weights of all the neurons of the network.
Choosing an architecture for a network is something of an art. It is argued in Hornik et al. (1989) that
a single hidden layer with well-chosen activation functions (so-called squashing functions) is sufficient
for an ANN to surrogate continuous functions to any desired accuracy. However, it sometimes appears
more efficient to increase the number of hidden layers for complex functions. Practically, the choice
of the number of hidden layers and number of neurons is often made empirically by expert judgment.
Regarding the training of ANNs, the objective consists in minimizing some cost function defined over the
training set T (often the empirical risk expressed by means of the square loss function) and finding the
optimal combination of weights and biases for the ANN. Note that several techniques are also available
to improve the generalization ability of ANNs (e.g. early stopping and regularization) (see, e.g., Orr and
Müller, 1998, Chapters 2–6). One popular approach to train an ANN is the so-called backpropagation
algorithm (Haykin, 1998). This algorithm seeks a local minimum of the selected cost function over T
by using a steepest descent method based on the gradients of this cost function (note that this imposes
a differentiability property for the activation functions, which is verified for the sigmoid function). The
algorithm is said to be recursive, since it first adjusts the weights in the output layer based on the cost
function, and then propagates recursively in the hidden layers to adjust the weights of their neurons.

(e) Radial basis function networks

Among all types of ANNs, radial basis function (RBF) networks are a very popular model. RBFs were
developed for data interpolation by Hardy (1971) and later introduced to ANN by Broomhead and Lowe
(1988). An RBF network is expressed as a linear combination of radially symmetric activation functions:

ey (x) =
M∑

j=1

w jφ
�‖x− c j‖

�
, (II.26)

where M denotes the number of neurons, c j ∈ Rn for j = 1, . . . , M are their respective centers and
w j ∈ R for j = 1, . . . , M are the corresponding weights. An RBF network is therefore composed of
three layers: an input layer, a hidden layer with the same radially symmetric activation function φ for
the M neurons, and a linear output layer.

If the RBF network surrogate model is used for interpolation on the training set T = {(xi , yi) ∈
X×Y , 1≤ i ≤ N}, the neuron centers are naturally taken as the training points (ci = xi for i = 1, . . . , N)
and we must satisfy:

y= Φw , (II.27)

where y= (y1, . . . , yN )T, Φ= [φ(‖xi − x j‖)]1≤i, j≤N and w= (w1, . . . , wN )T. For commonly-used basis
functions φ (e.g. Gaussian and inverse multiquadric), Φ is symmetric positive definite and the linear
system in Eq. (II.27) can be solved by standard techniques in order to obtain the unknown weight vector
w∗ = Φ−1y. Special iterative methods have also been proposed in the case of an ill-conditioned matrix
Φ (see, e.g., Dyn et al., 1986).
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When the number of neuron centers M is lower than the size of the training set N , the RBF network
surrogate model is a regressor and the weights can be obtained by ordinary least squares, similarly to
the polynomial RS:

w∗ =
�
ΦTΦ

�−1
ΦTy , (II.28)

where Φ= [φ(‖xi − c j‖)]1≤i≤N , 1≤ j≤M and y= (y1, . . . , yN )T.

The choice of the number of neurons M and their respective centers is a key aspect for the accuracy
of the RBF network (note that additional parameters such as the M radii appearing in the activation
function also need to be tuned). If too many centers are used, the surrogate model has a large number
of parameters to calibrate (high complexity). In such a case it is prone to overfitting, and has therefore
poor generalization performances. Again two strategies previously mentioned can be followed, which
consist either in introducing some regularization into the model or in limiting its complexity, i.e. by
limiting the number of neuron centers (see, e.g., Orr, 1995). For a review of some techniques used for
the optimal determination of neuron centers, the reader may also refer to (Cohen and Intrator, 2000).

(f) Other models

In addition to the methods briefly described in this section, it is worth mentioning a few others, which
are not presented in this report for the sake of brevity. The following two techniques, high-dimensional
model representation (HDMR) (Rabitz et al., 1999) and multivariate adaptive regression splines (MARS)
Friedman (1991), have also been found to be useful in uncertainty propagation for the construction of
surrogate models.

(g) Comparisons

The techniques presented in this section have been compared by several authors and a non-exhaustive
list of such works is given hereafter. It is important to point out that the performances of these models
are often problem-dependent and it is hard to draw general conclusions in light of the results obtained
from a very few examples. Note also that a number of these comparative studies were made in the
specific context of reliability assessment. For an overview, the reader may refer to the following works,
listed in chronological order, for a review and/or comparative results concerning surrogate models:

• MLP and RBF networks used in a MC analysis (Hurtado and Alvarez, 2001),
• Polynomial RS, MARS, RBF networks and kriging for the optimization of deterministic nonlinear

functions (Jin et al., 2001),
• Polynomial RS, ANN and kriging and other techniques for the approximation of deterministic func-

tions (Simpson et al., 2001),
• SVR, polynomial RS, kriging, RBF networks and MARS for the approximation of deterministic func-

tions (Clarke et al., 2004),
• RSM and ANN used with FORM, crude MC simulation and IS (Gomes and Awruch, 2004),
• Polynomial RS, ANN, MARS and other techniques for the optimization of deterministic and stochastic

nonlinear functions (Chen et al., 2006),
• MLS, ANN and RBF networks for structural reliability analysis (Bucher and Most, 2008),
• Kriging, SVR and RBF networks for the optimization of deterministic nonlinear functions (Bompard,

2011),
• RSM, PCE and kriging for structural reliability analysis (Sudret, 2012),
• SVR and kriging for the approximation of nonlinear deterministic functions (Moustapha et al., 2018).



II–1. Introduction 67

II–1.4 Challenges

The objective of surrogate-model-based approaches is to make accurate predictions (low bias between
ey and y and low variance of ey w.r.t. the choice of the training set T ) based on limited information
(small training sets T ) and under the assumptions of a selected type of approximation (corresponding
to a given class of surrogate model).

The time spent in the evaluation of the true function y should be kept to a minimum, which usually
implies limiting the size of the training sets T as much as possible.

A surrogate model which is fast to train is also often of interest. Note that the training time should
be compared with that spent in the evaluation of the true function y . Since these two tasks alternate,
the computational resources used for the true function evaluations may also be used for training if the
algorithm chosen for training can take advantage of the available computer resources (e.g. independent
tasks that can be parallelized).

Additionally, the selected surrogate model needs to be fast to evaluate, in general. In the context of
uncertainty propagation, simulation methods often require thousands to millions of calls to the surrogate
model. A fast-to-evaluate surrogate model is therefore of practical interest for reliability assessment and
optimal design under uncertainty.

A critical step in any surrogate-based approach is to first choose a type of surrogate model and there-
fore the associated approximation that is applied to the problem. Most often a given type is arbitrarily
selected in accordance with the practitioner’s experience. An alternative strategy consists in considering
a set of surrogate candidates and then defining the approximation as a weighted sum of these models,
where the weights are obtained by optimization from the training data (see, e.g., Goel et al., 2007; Viana
et al., 2009) and the references therein. Note that similar approaches were developed for SVMs, where
the idea is to consider models based on a combination of kernels (Lanckriet et al., 2004; Sonnenburg
et al., 2006; Rakotomamonjy et al., 2007). As already pointed out in the introduction to Section II–1,
the choice of a given type of surrogate model is critical in the sense that the associated approximation
needs to be compatible with the characteristics of the true function y , which are unknown in general.
If the assumptions of the selected approximation are not met, the surrogate construction approach is
flawed and this often results in an incorrect approximate model.

Several obstacles are encountered in the construction of accurate surrogate models and it is proposed
to give an overview of the main challenges that need to be addressed. The main difficulties experienced
in surrogate-based approaches are closely related to the dimensionality n of the input space X and the
smoothness of the function y to learn. Other critical issues may also come from the adaptive strategies
used for the construction of approximate models.

(a) Input space dimensionality

The dimensionality of the input space is critical for any surrogate model, which often restricts the anal-
ysis to relatively low-dimensional problems or problems of a larger dimension addressed by simple
models. This phenomenon is commonly referred to as the curse of dimensionality coined by Bellman
(1961). In simple terms, the learning cost defined in terms of the number of data pairs required to train
a sufficiently accurate surrogate model rapidly grows with the dimension of the input space, making
intractable any approach in high-dimensional spaces with a reasonable amount of training data. If the
function y is simple to learn (the case e.g. of a linear or an almost linear function), then it may be
possible to select models that perform well at a moderate cost. Making the assumption of a very simple
approximate model is e.g. often made in genomics and other areas of computational biology, where
we have more inputs that the number of available data pairs, i.e. n� N (see, e.g., Hastie et al., 2009,



68 Chapter II. Surrogate models & adaptive strategies for uncertainty propagation

Chapter 18, for a presentation of the techniques used in such areas). For more complex functions y ,
the performances of all surrogate models worsen with n and building a surrogate to the true function
is often out of reach when y is costly to evaluate.

(b) Smoothness of the true function y

In order to choose one approximate model rather than another, some a priori knowledge about the
true function y we want to approximate would be useful. Unfortunately, the form of the functional
relation between the input vector x and the output y = y(x) is often unknown and the only source
of knowledge comes from the pointwise evaluations of y at the selected points xi ’s of the training set.
Nevertheless, assumptions need to be made to approximate y and quite a usual choice (common to all
types of surrogate models) is to assume that the unknown function y is smooth. A natural interpre-
tation of smoothness is that two similar inputs x and x′ are expected to have similar outputs. Within
a class of differentiable functions, a function which is smoother than another means that it oscillates
less. In more formal settings, smoothness functionals can be defined in terms of the Fourier transform
of y (see, e.g., Girosi et al., 1995). With such a definition, a smooth function is characterized by a
low frequency content. In the framework of SVM regularization, see Section II–2.3.2, the degree of
smoothness of the approximation is equivalently controlled by means of the norm of the approximate
function in a reproducing kernel Hilbert space H. The less prominent the high-frequency content of
the approximate function, the lower its norm in H. When y is nonsmooth everywhere in X , or worse
when it is characterized by nonstationary smoothness, it becomes less easy to learn a surrogate to y .
For globally nonsmooth functions, one solution is a recourse to kernel methods with controlled smooth-
ness, e.g. the Matérn kernel, see Section II–2.3.1. For functions with nonstationary smoothness, it is
harder to find an approximate solution. If the lack of smoothness is limited to subdomains of X that are
unimportant w.r.t. the quantity of interest assessed from the surrogate model, the problem is expected
to be satisfactorily learned with the techniques available for smooth functions. If not, learning the true
function y is a great challenge. Examples of functions with nonstationary smoothness may appear in
reliability assessment (see, e.g., Kouassi et al., 2016, application example 1) where the nonsmoothness
due to one of the most influential inputs is unfortunately located at the MPFP. This example is recalled
in Appendix A–1.

(c) Adaptive surrogate models

Choosing an adaptive strategy in any surrogate model-based analysis is quite a critical exercise. As
already pointed out in Section II–1.2, a good tradeoff should be found between a fully explorative
strategy independent of the data pairs (xi , yi) evaluated so far and a strategy exploiting such data that
is driven too much by the objective aimed at. In deterministic optimization, the risk is to focus too early
on subdomains of X that are unimportant and to finally miss the subdomain where the global optimum
is located. In reliability assessment, the risk is to converge too early to some subdomains of the failure
domain Fx that are not the most important ones. As reviewed in Section II–3, several adaptive methods
have been devised in the specific context of reliability assessment and have been successfully applied,
with various results, to a few selected examples (most often of low dimension). It should however be
emphasized that such adaptive strategies are less robust than a crude MC analysis, which naively but
exhaustively explores the outcome space X according to the joint PDF of the random inputs. What
we gain in efficiency is lost in robustness. Note that robustness is also diminished in other simulation
methods, such as the SS method. In SS, adaptive exploration may be triggered to unimportant zones if
an insufficient number of samples per level is used (remember that SS is only asymptotically unbiased).
Such a failure of the SS method is exemplified in Appendix A–2, in which the gradient of the LSF is
highly nonstationary. It should moreover be noted that adaptive approaches based on surrogate models
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are more prone to such failures than simulation methods, due to the low sample sizes that are used for
training. The less information we get from the problem, the more risk we have of missing important
zones of X .

To conclude this section, it should be emphasized that the choice of a hypothesis space (which
defines the type of approximation of the surrogate model) which is compatible with the properties of
the unknown true function is a key ingredient for the success of any surrogate-based analysis. Quoting
MacKay (1992) about criteria for selecting data in active learning: “All these criteria depend on the
assumption that the hypothesis space is correct, which may prove to be their main weakness”. Function
approximation is highly challenging, since it is hard to infer the main properties of the true function
from very little data (e.g. degree of smoothness, level of noise, ..., all properties that may be spatially
dependent in X ) and this task becomes harder in high-dimensional spaces.

II–2 Support vector machines (SVM)

Support vector machines (SVMs) are supervised learning models proposed by Vapnik and Chervonenkis
as early as the 1960s. They are based on structural risk minimization (Vapnik, 1995; Vapnik et al.,
1997), whose objective is to construct a parsimonious model in the sense of the Vapnik-Chervonenkis
dimension (VC dimension). SVMs were first introduced in the context of binary classification with the
concept of optimal separating hyperplanes. Their extension to nonlinear problems is due to Boser et al.
(1992). The principle is to apply a nonlinear transformation of the input space X into a space of a
larger dimension (possibly infinite) known as the feature space. In a nutshell, this nonlinear mapping
only requires the use of a kernel which represents the dot product in the kernel-induced feature space.
For non-separable data (e.g. due to noise in the data) it is necessary to make some adaptations of
the method, and this is achieved by means the so-called soft margin technique proposed by Cortes and
Vapnik (1995). SVMs were later extended to regression by Vapnik and coauthors using the ε-insensitive
loss function (Vapnik, 1995; Drucker et al., 1997; Vapnik et al., 1997).

The organization of this section is quite conventional in its first part and follows the introduction
made above. Binary classification is addressed first in Section II–2.1. The specific case of linearly
separable data is considered in Section II–2.1.1 and the corresponding quadratic program to solve is
given in Section II–2.1.2. In Section II–2.1.3, the hypothesis of perfectly linearly separable data is
relaxed with the introduction of soft margin linear classifiers. Section II–2.2 is then devoted to linear
regression by means of SVMs. Support vector regression (SVR) based on ε-insensitive loss function is
detailed first, see Section II–2.2.1. Another quite popular technique, known as least squares support
vector machines (LS-SVM), is then described in the context of regression, see Section II–2.2.2. Moving
from linear to nonlinear SVMs is exposed in Section II–2.3.1, where the central concept of kernels is
introduced. In Section II–2.3.2, SVMs are presented from the viewpoint of regularization theory (Girosi
et al., 1995; Evgeniou et al., 2000), which gives a broader perspective to function approximation using
SVMs. Another approach to the SVM optimization problem based on Fenchel duality (as opposed to
the Lagrange duality conventionally used in SVMs) is also given for a unified framework of both SVM
classification and regression. Section II–2.4 finally addresses the optimal tuning of SVM models by
taking the leave-one-out error (LOO) as an estimate of the generalization error. After a short review of
the approximations and bounds of the LOO error available for SVMs in classification and regression, a
stochastic algorithm is proposed for the selection of optimal hyperparameters based on the span bound
approximation of the LOO error (Vapnik and Chapelle, 2000; Chang and Lin, 2005).

The theoretical concepts of SVMs will be left aside and we will focus on the construction of SVM
surrogates and the technical details of their optimal tuning. The reader may refer to general textbooks
for the SVM theoretical basis (see, e.g., Vapnik, 1995; Schölkopf and Smola, 2001). Other useful ref-
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erences concerning SVMs are Cristianini and Shawe-Taylor (2000) and Smola et al. (2000). We will
moreover assume that the reader has the necessary background on the convex programming behind
SVMs (see, e.g., López, 2011, Chapter 2, for a list of minimal recalls).

II–2.1 Linear models for binary classification

We want to predict a response of interest y ∈ Y at a given point x ∈ X ⊆ Rn knowing a set of training
data pairs T = {(xi , yi) ∈ X × Y , 1 ≤ i ≤ N}. We here restrict the approach to binary classification,
where Y = {−1,+1} is discrete, see Figure II.1a. Such a binary classification appears e.g. in the context
of reliability assessment, where the input space X (or Rn if the problem is expressed in the standard
normal space) is split into two classes: the failure domain and the safe domain. In such a context, the
class y of a point x is given by y = sgn g(x).

(a) Binary classification

yi = +1

yi = −1

(b) Several candidate linear classifiers

yi = +1

yi = −1

〈w,x〉+ b > 0

〈w,x〉+ b < 0

〈w,x〉+ b = 0

(c) Canonical form of the decision function

yi = +1

yi = −1

〈w,x〉+ b = +1
〈w,x〉+ b = 0
〈w,x〉+ b = −1
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(d) Optimal linear classifier
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〈w,x〉+ b = +1
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Figure II.1 – Classification of linearly separable data and optimal linear classifier.

II–2.1.1 Linearly separable data

It is first assumed that the two classes can be perfectly separated by a linear classifier, i.e. a (n − 1)-
dimensional hyperplane. In the context of binary classification, such models are known as hard-margin
SVMs, as opposed to soft-margin SVMs presented in Section II–2.1.3, for which the strict assumption of
linear separation is relaxed. The principles of hard-margin SVMs for binary classification are detailed
in the seminal paper of Boser et al. (1992). Training a linear SVM classifier on the known set of data T
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consists in learning the following decision function ef : X →R:

ef (x) = 〈w,x〉+ b , (II.29)

where the weight vector w ∈Rn and the scalar bias term b ∈R are the unknown parameters of the SVM
model, and where 〈·, ·〉 denotes the dot product.

The predicted class ey of any point x ∈ X is given by the following decision rule:

ey = ey (x) = sgn ef (x) . (II.30)

As represented in Figure II.1b, several candidate classifiers exist which all separate the data without
error. The solution of this classification problem is uniquely defined by selecting the SVM classifier that
is the farthest from the training data points xi for i = 1, . . . , N . A rescaling of the problem is applied,
such that the closest points to the separating classifier satisfy the following normalizing condition:

min
i∈{1, ... ,N}

|〈w,xi〉+ b|= 1 . (II.31)

The canonical form of the decision function 〈w,x〉+b which results from this rescaling satisfies (〈w,xi〉+
b) ≥ 1 for i = 1, . . . , N . Starting from two points x1 and x2 respectively belonging to the two linear
classifiers eF+1 = {x ∈ X : 〈w,x〉+ b = +1} and eF−1 = {x ∈ X : 〈w,x〉+ b = −1}, see Figure II.1c, the
Euclidean distance between eF+1 and eF−1 writes:

D
� eF−1, eF+1

�
= 〈 w
‖w‖ ,x1 − x2〉

=
(〈w,x1〉+ b)− (〈w,x2〉+ b)

‖w‖

=
+1− (−1)
‖w‖

=
2
‖w‖ ,

(II.32)

where 1/‖w‖ is known as the margin of the SVM classifier.

The optimal linear classifier is obtained by maximizing the margin under the constraint of a correct
classification of the training data6, see Figure II.1d. We therefore need to solve the following optimiza-
tion problem:

max
w,b

2
‖w‖ s.t.

¨
〈w,xi〉+ b ≥ 1 if yi = +1 for i = 1, . . . , N

〈w,xi〉+ b ≤ 1 if yi = −1 for i = 1, . . . , N
, (II.33)

which in turn is equivalent to minimizing ‖w‖ or ‖w‖2:

min
w,b

‖w‖2
2

s.t. yi (〈w,xi〉+ b)≥ 1 for i = 1, . . . , N . (II.34)

This latter formulation is the primal optimization problem of hard-margin binary classification with
SVMs. For a given i, it is important to note that the two constraints of Eq. (II.33) are grouped into the
following single constraint in Eq. (II.34):

yi
ef (xi)≥ 1 . (II.35)

6From geometric considerations, the optimal hyperplane is orthogonal to the shortest line which connects the convex hulls
of the two classes, and it intersects this line at its half-way point, see Figure II.1d.
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II–2.1.2 Solving the optimization problem

The primal formulation defined in Eq. (II.34) is in the form of a quadratic program (QP) with N linear
constraints. A convenient approach to solving it is to derive the Wolfe dual QP using Lagrange multipli-
ers7. The Lagrangian takes the following expression:

L (w, b,α) =
‖w‖2

2
−

N∑
i=1

αi [yi (〈w,xi〉+ b)− 1] , (II.36)

where α= (α1, . . . ,αN )T contains the N Lagrange multipliers and αi ≥ 0 for i = 1, . . . , N .

The Lagrangian L has to be minimized w.r.t. the primal variables w and b, and maximized w.r.t. the
dual variables αi with nonnegativity constraints on the αi ’s (saddle point solution). The Karush-Kuhn-
Tucker (KKT) conditions give:

∇wL (w, b,α) = 0 → w=
N∑

i=1

αi yixi ,

∂L (w, b,α)
∂ b

= 0 →
N∑

i=1

αi yi = 0 ,

(II.37)

and the Lagrangian, reduced in terms of the remaining variables, rewrites:

W (α) = −1
2

N∑
i=1

N∑
j=1

αiα jqi j +
N∑

i=1

αi , (II.38)

where, for i, j = 1, . . . , N :
qi j = yi y j〈xi ,x j〉 . (II.39)

The Wolfe dual of the optimization problem defined in Eq. (II.34) therefore writes8:

max
α
W (α) = −1

2

N∑
i=1

N∑
j=1

αiα jqi j +
N∑

i=1

αi s.t.





N∑
i=1

αi yi = 0

αi ≥ 0 for i = 1, . . . , N

, (II.40)

with the following additional KKT complementary slackness conditions (i.e. the relations between the
inequality constraints of the primal problem and their associated Lagrange multipliers):

αi [yi (〈w,xi〉+ b)− 1] = 0 for i = 1, . . . , N . (II.41)

From these conditions, two cases need to be considered:

• The first case corresponds to an xi irrelevant to the construction of the decision function, for which
we have αi = 0 and yi(〈w,xi〉 + b) > 1. The corresponding set of indices is denoted Isv = {i ∈
{1, . . . , N} : αi = 0}.

7The dual formulation presents the following advantages (Chapelle, 2007): 1) the constraints of the dual are easier to
handle than those of the primal formulation (the dual no longer features the complicated constraints expressed by the Lagrange
multipliers), 2) the dual optimization problem can be written in terms of dot products, which enables the use of kernels for
the construction of nonlinear SVMs, see Section II–2.3.1.

8It is important to note that the constraint
∑N

i=1 αi yi = 0 in the dual optimization problem is due to the presence of the
bias term b in the decision function.
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• The second case corresponds to the so-called support vectors (SV) xi for which we have αi > 0 and
yi(〈w,xi〉+ b) = 1 (points belonging to either eF+1 or eF−1, see points circled in black in Figure II.1d).
The corresponding set of indices is denoted Isv = {i ∈ {1, . . . , N} : αi > 0}.

The bias term b can be obtained from the KKT complementary slackness condition of any SV:

b = yi − 〈w,xi〉 for any i ∈ Isv , (II.42)

where w is defined in Eq. (II.37). For better numerical stability, the bias term is preferably obtained by
averaging the expression given in Eq. (II.42) over the whole set of SVs:

b =
1

#Isv

∑
i∈Isv

(yi − 〈w,xi〉) . (II.43)

As an alternative, b can be obtained as a by-product of the interior-point optimization algorithm used
to solve Eq. (II.40) if such a type of algorithm is applied.

The decision function ef can then be expressed in terms of the SVs as follows:

ef (x) = 〈w,x〉+ b

=
N∑

i=1

αi yi〈xi ,x〉+ b

=
∑
i∈Isv

αi yi〈xi ,x〉+ b .

(II.44)

A few but important remarks should be made regarding the type of optimization problem we need
to solve to define ef and the best algorithms we can use for a numerical solution.

The primal formulation defined in Eq. (II.34) is a convex program9 because of the convexity of
both the objective function and the inequality constraints. If the objective function of the primal has a
minimum, it is a global one. This therefore implies that there are no local minima. It is important to
point out that the convexity of the optimization problem will appear in all the other SVM formulations
presented in the following (soft-margin classification and regression), which is a key advantage of SVMs
compared with e.g. neural networks, where local minimum solutions may be found by training. The
dual formulation defined in Eq. (II.40) is not only a convex but also a quadratic program (QP)9, which
can therefore be solved (more or less efficiently) by several available techniques. Note that the primal
defined in Eq. (II.34) is also a QP in the specific case of linear classification, but this is not true with
more general formulations involving kernels other than the linear one, see Section II–2.3.1.

In practice the most common approach consists in solving the dual. Solving the primal is often
considered of interest in the case of linear SVMs, although a few attempts have been made to investigate
the nonlinear case (see, e.g., Chapelle, 2007). The dual QP of hard-margin classification with SVMs is
expressed in terms of the N variables of the input vector α under a single affine equality constraint and
N affine inequality constraints:

min
α

1
2
αTQα− 1Tα s.t.

¨
yTα= 0

α≥ 0
, (II.45)

9We here recall a few definitions (see, e.g., López, 2011, Chapter 2). 1) A convex program is a constrained optimization
problem where the objective function and the inequality constraint functions are convex and the equality constraint functions
are affine. 2) A quadratic program is a constrained optimization problem where the objective function is quadratic and all the
constraint functions (inequalities or equalities) are affine.
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where y = (y1, . . . , yN )T, Q = [qi j]1≤i, j≤N and qi j = yi y j〈xi ,x j〉 for i, j = 1, . . . , N . This clearly shows
that problem-solving complexity is closely related to the size N of the training set T . For this reason,
the choice of an algorithm to solve Eq. (II.45) is highly dependent on N (see, e.g., Vogt and Kecman,
2005; Bottou and Lin, 2007; Shawe-Taylor and Sun, 2011, for a review of the main types of algorithms
with their advantages and limitations).

For low N (say N in the order of 1000 to 10, 000 or less), interior-point methods (see, e.g., Boyd
and Vandenberghe, 2004), are considered a good choice (Schölkopf and Smola, 2001, p. 297). These
methods are expected to give reliable and accurate solutions at the expense of a Cholesky decompo-
sition of a matrix whose dimension scales with N . The size of the KKT gap is found to be several
orders of magnitude lower than that achieved by means of the SMO type of algorithm described next.
Interior-point algorithms for convex optimization are available in a number of software packages such
as LOQO (Vanderbei, 2006), MATLAB Optimization Toolbox (The MathWorks, 2012), MOSEK (MOSEK
ApS, 2014) and QPC (Wills, 2009) among others. Due to the above-cited advantages (accuracy of the
solution and reliability of the algorithms), a recourse to interior-point methods was preferred in the
most recent works of the author (Bourinet, 2014; Bourinet, 2015; Bourinet, 2016).

For very large data sets, as often encountered in SVM applications (N in the range of several thou-
sands to millions), solving the QP often becomes intractable in memory and time requirements. The
matrix Q in Eq. (II.45) is fully dense and is too large to be stored (the required memory increases with
N2). In such a context the main idea is to devise algorithms that solve smaller QP subproblems by
working with only one subset of the vector α per iteration. The corresponding methods are known as
decomposition methods or working-set methods (see, e.g., Osuna et al., 1997; Platt, 1998; Joachims,
1999). The most extreme case is the Sequential Minimal Optimization (SMO) algorithm of Platt (1998),
which takes only two elements αi and α j in the working set at each iteration. This allows the QP sub-
problem to be solved exactly by means of a simple analytical update (Platt, 1998, Appendix). Several
strategies have been tested to select the working set i, j at each iteration. One of the fastest implemen-
tations of SMO is based on the working set selection of Fan et al. (2005). The corresponding strategy is
implemented in the most recent version of LIBSVM software (Chang and Lin, 2011). It should be noted
that SMO may be slow to converge if high accuracy is required for the solution (Platt, 1998). Moreover
the accuracy that can be reached by SMO is lower than that achieved by interior-point algorithms. As
pointed out by Bottou and Lin (2007, Section 1.1.1), too high an accuracy is not especially required
in most usual SVM applications. Some errors on the SVM models due to the optimization algorithm
may be tolerated w.r.t. other sources of error, i.e. approximation and estimation errors. In the specific
context of function approximation, as investigated in the scope of this report, it is the author’s belief that
accuracy is a key point for high-quality surrogate models. As described in Section II–2.4.3, the strategy
proposed to select optimal values of the parameters of the SVM models is based on the computed vec-
tor α. Inaccuracies on α therefore induce non-optimal parameters of SVM models, which themselves
induce inaccurate SVM models. This motivates the exclusion of SMO techniques from the candidate
strategies applicable to SVM training.

II–2.1.3 From hard- to soft-margin classifiers

For hard-margin SVMs, we assumed that the training data were perfectly separable. If the data are not
separable (e.g. in the case of noisy data), see Figure II.2, there is no feasible solution and the hard-
margin problem is unsolvable. We need to allow some training errors, and this is achieved by using the
so-called soft-margin formulation of SVMs proposed by Cortes and Vapnik (1995). The following soft
constraints are imposed:

yi
ef (xi)≥ 1− ξi , (II.46)
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where ξ = (ξ1, . . . ,ξN )T is set of nonnegative slack variables which define the amount by which the
constraints of the hard-margin binary classification problem defined in Eq. (II.35) are violated, see Fig-
ure II.2. The corresponding deviations are cumulated in the objective function of the primal (summation
or summation of squared values) and penalized by means of a strictly positive tradeoff parameter de-
noted C . The formulation is known as Lp or p-norm soft-margin SVM, where p ∈ {1,2} denotes the
power these slack variables are raised to in the objective function, see Eq. (II.47) corresponding to
p = 1. In the following we will use the acronym L1-SVC for L1 soft-margin SVM used in classification.
The presentation is restricted to L1-SVC since it is the only formulation that is used in the subsequent
applications of Section II–3. The reader may refer to López (2011) for a detailed description of L2-SVC.

yi = +1

yi = −1

〈w,x〉+ b = +1

〈w,x〉+ b = 0

〈w,x〉+ b = −1(x2, y2 = +1)

(x1, y1 = −1)

ξ2

ξ1

Figure II.2 – Soft-margin linear classifier.

The primal optimization problem for L1-SVC is written as follows:

min
w,b,ξ

‖w‖2
2
+ C

N∑
i=1

ξi s.t.

¨
yi (〈w,xi〉+ b)≥ 1− ξi

ξi ≥ 0
for i = 1, . . . , N . (II.47)

Based on the Lagrangian, the Wolfe dual optimization problem is derived similarly to the hard-
margin SVM case by introducing the Lagrange multipliers of the 2N primal inequality constraints (see,
e.g., López, 2011, Chapter 3) for further details. The following Wolfe dual is obtained for L1-SVC:

max
α

W (α) = −1
2

N∑
i=1

N∑
j=1

αiα jqi j +
N∑

i=1

αi s.t.





N∑
i=1

αi yi = 0

0≤ αi ≤ C for i = 1, . . . , N

, (II.48)

where α = (α1, . . . ,αN )T in which, for i = 1, . . . , N , the Lagrange multiplier αi corresponds to the
inequality constraint yi (〈w,xi〉+ b)≥ 1−ξi of the primal, see Eq. (II.47), and where, for i, j = 1, . . . , N :

qi j = yi y j〈xi ,x j〉 . (II.49)

It should be noted that this dual is identical to the one obtained for hard-margin SVMs except that the
N multipliers αi are upper-bounded by C , see Eq. (II.40):

min
α

1
2
αTQα− 1Tα s.t.

¨
yTα= 0

0≤ α≤ C1
. (II.50)

If C = +∞, the hard-margin case is recovered. It is also worth pointing out that the L1-SVC optimization
problem is again a convex and quadratic program.

The following three cases are obtained for L1-SVC (see the corresponding justifications e.g. in Abe,
2010; López, 2011):
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• The first case corresponds to αi = 0. Then ξi = 0 and therefore yi(〈w,xi〉+ b) ≥ 1. Point xi is not a
SV and it is correctly classified. The corresponding set of indices is denoted Isv = {i ∈ {1, . . . , N} :
αi = 0}.

• The second case corresponds to 0 < αi < C . Then ξi = 0 and yi(〈w,xi〉 + b) = 1. Point xi is
called an unbounded SV. It belongs to either eF+1 or eF−1 and it is therefore correctly classified. The
corresponding set of indices is denoted Iusv = {i ∈ {1, . . . , N} : 0< αi < C}.

• The third and last case corresponds to αi = C . Then ξi ≥ 0 and yi(〈w,xi〉+ b) = 1−ξi ≤ 1. Point xi
is called a bounded SV. If 0≤ ξi < 1, point xi is correctly classified. If ξi ≥ 1, point xi is misclassified.
The corresponding set of indices is denoted Ibsv = {i ∈ {1, . . . , N} : αi = C}.

The decision function is expressed in terms of all the SVs (i.e. bounded or unbounded SVs):

ef (x) =
∑

i∈Iusv∪Ibsv

αi yi〈xi ,x〉+ b . (II.51)

II–2.2 Linear models for regression

The objective now is to predict a response of interest y ∈ Y =R at a given point x ∈ X ⊆Rn knowing a
set of training data pairs T = {(xi , yi) ∈ X ×Y , 1≤ i ≤ N}. It should be noted that Y is now continuous
as opposed to the case of binary classification in which Y was discrete. As in classification, we start from
the linear problem and the formulation will be extended to nonlinear regression in Section II–2.3.1 by
means of kernels. Training a linear SVM regressor on the known set of data T consists in learning the
following function ef : X →R:

ef (x) = 〈w,x〉+ b , (II.52)

where the weight vector w ∈Rn and the scalar bias term b ∈R are the unknown parameters of the SVM
model.

The predicted value ey at any point x ∈ X is given by:

ey = ey (x) = ef (x) . (II.53)

II–2.2.1 Support vector regression based on the ε-insensitive loss function

The most current form of SVM regression is based on the ε-insensitive loss function introduced by Vapnik
(1995), see right plot in Figure II.3:

` (y, u) = (|y − u| − ε)+ =
¨

0 if |y − u|< ε ,

|y − u| − ε otherwise ,
(II.54)

where ε ∈R≥0 is a given parameter and (x)+ =max(x , 0). If the magnitude of the difference between
the predicted value ef (xi) and the true value yi is lower than ε, it is assigned a zero loss. The points
xi with such an error level are said to belong to the ε-insensitive zone or ε-insensitive tube (see shaded
area in blue in the left plot of Figure II.3). Outside of this zone, the loss is set equal to the difference
between the magnitude of yi− ef (xi) and ε. The approach used for regression based on the ε-insensitive
loss function shares some similarities with that used for classification. Instead of requiring that yi

ef (xi)
exceed the value of one for a perfect linear classification, see Eq. (II.35), it is now required that yi− ef (xi)
be bounded by a margin of width ε on both sides for a perfect linear regression, see left plot in Figure II.3.
In order to handle potentially nonfeasible solutions (some points outside of the ε-insensitive zone), we
use again the concept of soft margins. The following soft constraints are imposed, for i = 1, . . . , N :

yi − ef (xi)≤ ε+ ξi and ef (xi)− yi ≤ ε+ ξ∗i , (II.55)
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where the two sets of slack variables ξ = (ξ1, . . . ,ξN )T and ξ∗ = (ξ∗1, . . . ,ξ∗N )
T are introduced to

measure the deviation above and below the ε-insensitive zone, respectively, see left plot in Figure II.3.

This constructed surrogate model based on the ε-insensitive loss function will be denoted by the
acronym L1-ε-SVR for L1 soft-margin SVM used in regression. As for classification, a 2-norm formulation
(L2-ε-SVR) also exists, based on the squared ε-insensitive loss function `(y, u) = (|y − u| − ε)2+ (see,
e.g., López, 2011).

xi x j x

〈w,xi〉+ b

yi

y

+ε
0
−ε

ξi

ξ∗j

` (y, u)

y − u+ε−ε

ξξ∗

Figure II.3 – Linear regression based on the ε-insensitive loss function.

For L1-ε-SVR, the primal optimization problem writes (Vapnik, 1995; Smola and Schölkopf, 2004):

min
w,b,ξ,ξ∗

‖w‖2
2
+ C

N∑
i=1

(ξi + ξ
∗
i ) s.t.





yi − 〈w,xi〉 − b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

for i = 1, . . . , N , (II.56)

where C is a strictly positive tradeoff parameter.

The Wolfe dual is expressed as follows:

max
α,α∗

W (α,α∗) = −1
2

N∑
i=1

N∑
j=1

(αi −α∗i )(α j −α∗j )ki j +
N∑

i=1

yi(αi −α∗i )− ε
N∑

i=1

(αi +α
∗
i )

s.t.





N∑
i=1

(αi −α∗i ) = 0

0≤ αi ≤ C for i = 1, . . . , N

0≤ α∗i ≤ C for i = 1, . . . , N

,

(II.57)

where α = (α1, . . . ,αN )T (resp. α∗ = (α∗1, . . . ,α∗N )
T) contains the Lagrange multipliers corresponding

to the N inequality constraint yi − 〈w,xi〉 − b ≤ ε+ ξi (resp. 〈w,xi〉+ b − yi ≤ ε+ ξ∗i ) of the primal
formulation defined in Eq. (II.56), and where, for i, j = 1, . . . , N :

ki j = 〈xi ,x j〉 . (II.58)

The dual of the QP is reformulated in the following matrix form:

min
α,α∗

1
2

�
α
α∗

�T �
K −K
−K K

��
α
α∗

�
+

�
ε1− y
ε1+ y

�T �
α
α∗

�

s.t.

�
1
−1

�T �
α
α∗

�
= 0 ,

�
0
0

�
≤
�
α
α∗

�
≤ C

�
1
1

�
,

(II.59)
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where y= (y1, . . . , yN )T, K = [ki j]1≤i, j≤N is the Gram matrix and ki j = 〈xi ,x j〉 for i, j = 1, . . . , N .

It is important to note that this new formulation of the QP to solve is expressed in terms of the 2N
variables of (αT,α∗T)T. This dual is again a convex QP, since K (and therefore

�
K −K
−K K

�
) are positive

semi-definite matrices.

Several comments can be made regarding the different cases resulting from the resolution of the
QP defined in Eq. (II.59). First of all, αi and α∗i cannot be simultaneously nonzero for a given i, since
the corresponding point xi cannot belong to both sides of the ε-insensitive zone (it is easy to prove that
αiα

∗
i = 0). The following six cases may occur (López, 2011):

• Case αi = 0. Then ξi = 0 and yi−〈w,xi〉−b ≤ ε. Point xi is not a SV and it belongs to the ε-insensitive
zone.

• Case α∗i = 0. Then ξ∗i = 0 and 〈w,xi〉 + b − yi ≤ ε. Point xi is not a SV and it belongs to the
ε-insensitive zone.

• Case 0 < αi < C . Then ξi = 0 and yi − 〈w,xi〉 − b = ε. Point xi is an unbounded SV and it is on the
“upper” bound of the ε-insensitive zone.

• Case 0 < α∗i < C . Then ξ∗i = 0 and 〈w,xi〉+ b− yi = ε. Point xi is an unbounded SV and it is on the
“lower” bound of the ε-insensitive zone.

• Case αi = C . Then yi − 〈w,xi〉 − b ≥ ε. Point xi is a bounded SV and it is “above” the ε-insensitive
zone.

• Case α∗i = C . Then 〈w,xi〉+ b − yi ≥ ε. Point xi is a bounded SV and it is “below” the ε-insensitive
zone.

Let us denote Iusv = {i ∈ {1, . . . , N} : 0 < αi < C ∨ 0 < α∗i < C} the set of unbounded SVs, and
Ibsv = {i ∈ {1, . . . , N} : αi = C ∨ α∗i = C} the set of bounded SVs, where ∨ denotes the inclusive OR
operator.

As for binary classification, the bias parameter b can be obtained in theory from any unbounded SV
for which the inequality constraints become equalities (Smola and Schölkopf, 1998):

b = yi − 〈w,xi〉 − ε for 0< αi < C or b = yi − 〈w,xi〉+ ε for 0< α∗i < C . (II.60)

An alternative is to obtain b as an output of interior-point algorithms (Smola, 1998; Bompard, 2011).
This latter approach is applied in the ASVR method presented in Section II–3.3.

The regressor ef can be expressed in terms of all the SVs (i.e. bounded or unbounded SVs):

ef (x) =
∑

i∈Iusv∪Ibsv

�
αi −α∗i

� 〈xi ,x〉+ b . (II.61)

II–2.2.2 Least squares SVM for regression

This section presents another form of SVM regression known as least squares support vector machines
(LS-SVM), initially proposed by Suykens and Vandewalle (1999) for the purpose of binary classification.
The version of this method adapted to regression is the one we focus on here (see, e.g., Suykens et al.,
2002). It will be denoted LS-SVR in the following. The optimization problem to solve is set up as
follows:

min
w,b,ξ

‖w‖2
2
+

C
2

N∑
i=1

ξ2
i s.t. yi − 〈w,xi〉 − b = ξi for i = 1, . . . , N , (II.62)

where ξ= (ξ1, . . . ,ξN )T ∈RN and C is a strictly positive tradeoff parameter.
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xi x

〈w,xi〉+ b

yi

y

ξi

Figure II.4 – LS-SVM linear regression.

Several comments can be made about this formulation. All the errors ξi = yi − ef (xi) are penalized
by means of the parameter C , which is applied to the sum of squares of these errors, see Eq. (II.4). The
LS-SVR optimization problem defined in Eq. (II.62) is shown to correspond to the primal optimization
problem of Vapnik’s L2-ε-SVR with ε = 0 (see, e.g., Saunders et al., 1998). LS-SVR is in this sense less
general than L2-ε-SVR, which has a suitable parameter ε > 0 to tune, but it appears to be less compu-
tationally expensive than L2-ε-SVR, as detailed in the following. In the context of linear regression, the
LS-SVR formulation without the bias term b is equivalent to the so-called ridge regression (Hoerl and
Kennard, 1970). Note, however, that ridge regression is sometimes presented with a bias term, such
as in Hastie et al. (2009, Section 3.4.1). In the more general context of nonlinear models based on
kernels, LS-SVR is also known as kernel ridge regression (see, e.g., Cristianini and Shawe-Taylor, 2000,
Section 6.2.2; Saunders et al., 1998). The LS-SVR formulation also encompasses ordinary least squares
regression (see Section II–1.3) by setting C = +∞. It is easy to see that, in this case, Eq. (II.62) is
equivalent to minimizing the empirical risk w.r.t. the square loss function.

The Lagrangian L is given by:

L
�
w, b,ξ,α

�
=
‖w‖2

2
+

C
2

N∑
i=1

ξ2
i −

N∑
i=1

αi [〈w,xi〉+ b+ ξi − yi] , (II.63)

where α= (α1, . . . ,αN )T contains the N Lagrange multipliers and αi ∈R for i = 1, . . . , N .

The Lagrangian L has to be minimized w.r.t. the primal variables w, b and ξ, and maximized w.r.t.
the dual variables αi (saddle point solution). The KKT conditions for optimality are:

∇wL
�
w, b,ξ,α

�
= 0 → w=

N∑
i=1

αixi , (II.64a)

∂L
�
w, b,ξ,α

�

∂ b
= 0 →

N∑
i=1

αi = 0 , (II.64b)

∇ξL
�
w, b,ξ,α

�
= 0 → αi = Cξi for i = 1, . . . , N , (II.64c)

∇αL
�
w, b,ξ,α

�
= 0 → 〈w,xi〉+ b+ ξi − yi = 0 for i = 1, . . . , N . (II.64d)

By plugging Eqs (II.64a–II.64c) into Eq. (II.64d), we obtain the dual optimization problem to be
solved, which writes as follows: �

K+ C−1I 1

1T 0

��
α

b

�
=

�
y

0

�
, (II.65)
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where y= (y1, . . . , yN )T, I is the N ×N identity matrix, K = [ki j]1≤i, j≤N is the Gram matrix and where,
for i, j = 1, . . . , N :

ki j = 〈xi ,x j〉 . (II.66)

The regressor ef can be expressed in terms of all the points xi of the training set T :

ef (x) =
N∑

i=1

αi〈xi ,x〉+ b . (II.67)

From Eq. (II.65), we can notice that the LS-SVR formulation requires the solving of a linear set of
equations, instead of the convex QP problem appearing in L2-SVR (and in the other SVM formulations
addressed so far, i.e. hard-margin SVC, L1-SVC and L1-ε-SVR). LS-SVR therefore enables the use of less
computationally involved methods and the solution can be obtained faster. However, the sparseness of
the α vector found in other SVM formulations is lost, due the choice of the square loss function for error
penalization. The prediction writes in terms of all the points of the training set, see Eq. (II.67). The
entire set of training data points could therefore be viewed as SVs, although there is no strict concept
of support vectors in LS-SVMs. The lack of sparseness of the LS-SVR solution is often considered as a
serious disadvantage with regard to classical SVMs, but this is not really troublesome in the context of
function approximations since we work with small sets of training data.

II–2.3 Kernels for nonlinear models and regularization theory framework

II–2.3.1 From linear to nonlinear models, kernels and RKHS

The main concepts of SVMs and the details about the derivation of the corresponding models have been
given in a linear context for binary classification in Section II–2.1 and for regression in Section II–2.2.
In most general situations the binary classifiers or regressors are nonlinear and such an assumption in
SVMs can be accounted for by means of kernels. The main idea is to map the input data into a high-
dimensional feature space denotedF (whose dimension may be infinite) so as to enable the construction
of a linear SVM model in this space F . The power of SVMs (and other kernel-based methods) is that it
is unnecessary to explicitly define this mapping, denoted φ : X → F , it is sufficient to choose a given
kernel k which corresponds to a dot product of the input data mapped into F (Aizerman et al., 1964;
Boser et al., 1992):

k : X ×X → R

(x,x′) 7→ k(x,x′) = 〈φ(x),φ(x′)〉 (II.68)

Before defining the main requirements that the function k must fulfill to be a valid kernel verifying
Eq. (II.68), let us see how the hard-margin SVC problem reformulates by working in the feature space
F . Eqs. (II.29), (II.34), (II.40), (II.39) and (II.44) respectively rewrite:

Decision function:
ef (x) = 〈w,φ(x)〉+ b (II.69a)

Primal:

min
w,b

‖w‖2
2

s.t. yi (〈w,φ(xi)〉+ b)≥ 1 for i = 1, . . . , N (II.69b)

Dual:

max
α
−1

2

N∑
i=1

N∑
j=1

αiα jqi j +
N∑

i=1

αi s.t.





N∑
i=1

αi yi = 0

αi ≥ 0 for i = 1, . . . , N

where, for i, j = 1, . . . , N :

(II.69c)
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qi j = yi y j〈φ(xi),φ(x j)〉
= yi y j k(xi ,x j)

(II.69d)

Decision function (solution):
ef (x) =

∑
i∈S
αi yi〈φ(xi),φ(x)〉+ b

=
∑
i∈S
αi yik(xi ,x) + b

(II.69e)

Several important comments can be made in light of these newly-obtained equations. First of all, the
norm ‖w‖which appears in the primal formulation of Eq. (II.69b) now corresponds to the weight vector
w of the linear representation of ef in the feature space F . Secondly, it is noticed that the optimization
problem to solve (dual formulation) can be expressed in terms of the kernel k only, without explicitly
needing the map φ, see Eq. (II.69d). The same remark also applies to the decision function, which is
also expressed in terms of k, see Eq. (II.69e). We therefore need the dot product in the feature space
(i.e. the kernel k) without requiring an explicit definition of φ, and this is known as the kernel trick in
the SVM literature. The introduction of kernels is a key ingredient of all SVM formulations, including
those mentioned so far (soft-margin SVC, soft-margin SVR based on the ε-insensitive loss function and
LS-SVR). Practically, to construct nonlinear SVM models, it is sufficient to replace the dot product in the
input space X by the dot product in F , i.e. replacing 〈xi ,x j〉 by k(xi ,x j) in Eqs. (II.39), (II.49), (II.58)
and (II.66).

Let us now recall a few definitions concerning some important properties of kernels. For a clear
introduction to kernels, along with more details, the reader may refer to (Genton, 2001; Hofmann et
al., 2008).

By definition, the Gram matrix K = [ki j]1≤i, j≤N associated with a given kernel k : X ×X → R and
with the data x1, . . . ,xN ∈ X is defined by:

ki j = k(xi ,x j) . (II.70)

A symmetric function k : X ×X → R is called a positive definite (p.d.) kernel10 if its N × N Gram
matrix K = [k(xi ,x j)]1≤i, j≤N verifies:

αTKα≥ 0 , (II.71)

for all N ∈N, for all (x1, . . . ,xN ) ∈ X N and for all α= (α1, . . . ,αN )T ∈RN . A positive definite kernel is
therefore a kernel whose N×N Gram matrix is positive semidefinite for all N ∈N and all x1, . . . ,xN ∈ X .
The use of p.d. kernels k ensures that dual optimization problems are convex w.r.t. α in Eq. (II.45) and
Eq. (II.50), or w.r.t. (αT,α∗T)T in Eq. (II.59), and thus that they feature a unique minimum. A p.d.
kernel is strictly positive definite (strictly p.d.) if for any distinct vectors x1, . . . ,xN ∈ X the above-
defined inequality holds strictly when at least one of the αi ’s is not zero (case of a positive definite
Gram matrix K).

Let us also introduce the less common conditionally positive definite (c.p.d.) kernels w.r.t. an arbi-
trary finite dimensional vector space of functions P (see, e.g., Walder and Chapelle, 2008; Auffray and
Barbillon, 2009). Such c.p.d. kernels will be useful to broaden the presentation of some specific points,
such as the use of a bias term in SVM formulations and the relation between SVM and kriging surrogates
later addressed in this report. A function k : X ×X →R is called a conditionally positive definite (c.p.d.)
kernel w.r.t. the linear space of functions P if its N × N Gram matrix K = [k(xi ,x j)]1≤i, j≤N verifies:

αTKα≥ 0 , (II.72)

10Symmetric positive definite kernels are called covariances in the statistics literature.
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for all N ∈N, for all (x1, . . . ,xN ) ∈ X N and for all α= (α1, . . . ,αN )T ∈RN such that, for all p ∈ P:

αTp= 0 , (II.73)

where p= (p(x1), . . . , p(xN ))T.

Note that c.p.d. kernels may be defined in slightly different settings in the literature, as pointed out
by Walder and Chapelle (2008). The c.p.d. kernels of order m on Rn considered in Poggio and Girosi
(1989) and Smola et al. (1998) are defined such that P denotes the set of all polynomials p on Rn of
degree m− 1 at most. C.p.d. kernels may specifically designate the only c.p.d. kernels of order m = 1
as default notation (Schölkopf and Smola, 2001; Hofmann et al., 2008). In this latter case we have
P = {1}, and Eq. (II.73) rewrites:

N∑
i=1

αi = 0 . (II.74)

We recall here a few classes of kernels (see, e.g., Genton, 2001, for a useful review on the subject).
Stationary (or translation-invariant or shift-invariant) kernels are defined by k(x,x′) = f (x − x′) and
therefore depend only on the lag x− x′. The class of stationary kernels encompasses that of isotropic
(or radial) kernels k(x,x′) = f (‖x − x′‖), which depends only on the norm of x − x′ and not on its
direction (it is assumed that ‖·‖ = ‖·‖2). When a kernel is not isotropic it is said to be anisotropic. For
anisotropic stationary multivariate kernels, a tensor product of stationary univariate kernels is often
assumed in the form k(x,x′) =

∏n
i=1 ki(x i − x ′i). Examples of such kernels (often called separable

kernels) are commonly used in the construction of kriging surrogate models, where ki for i = 1, . . . , n
are e.g. Gaussian or Matérn univariate kernels.

A list of popular kernels in SVMs is given below (see, e.g., Smola et al., 2000; Schölkopf and Smola,
2001). The Matérn kernel is also introduced, although it is rarely used in SVMs (see, e.g., Vazquez and
Walter, 2003; Moustapha et al., 2014; Bourinet, 2016).

• Gaussian radial basis function kernel (Gaussian RBF kernel):

k(x,x′) = exp
�−γ‖x− x′‖2� , (II.75)

where γ ∈ R>0. This kernel is p.d. and the corresponding feature space is infinite dimensional. The
γ parameter determines the locality of the basis functions. This kernel is often parameterized with
a parameter, denoted σ, which represents the bandwidth of the kernel such that γ = 1/2σ2. The
Gaussian RBF Kernel is the most common kernel used by SVM practitioners. It is an excellent choice
for approximating smooth functions and it is defined in terms of one single parameter γ, which makes
it easy to tune, see Section II–2.4. Its anisotropic version writes:

k(x,x′) = exp

�
−

n∑
i=1

γi(x i − x ′i)
2

�
, (II.76)

where γ1, . . . ,γn ∈R>0.

• Polynomial kernel (inhomogeneous form here):

k(x,x′) =
�
c + 〈x,x′〉�d

, (II.77)

where d ∈ N>0 and c ∈ R>0. With such a kernel, F is the space spanned by all monomials up to
degree d, and the dimension of the corresponding feature space is:

#F =
�

n+ d
d

�
. (II.78)
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• Sigmoid kernel:
k(x,x′) = tanh

�
κ〈x,x′〉+ θ� , (II.79)

where κ ∈ R>0 and θ ∈ R<0. Though this kernel is not p.d., it has found useful applications in the
SVM literature.

• C2ν-Matérn kernel:

k(x,x′) =
1

2ν−1Γ (ν)

�
γ
p

2ν‖x− x′‖�ν Kν
�
γ
p

2ν‖x− x′‖� , (II.80)

where ν≥ 1/2 is a regularity parameter which controls the smoothness of the approximation, γ ∈R≥0
is again a parameter that determines the locality of the kernel, Γ is the Gamma function and Kν is
the modified Bessel function of second kind of order ν (a.k.a. modified Bessel function of third kind
or MacDonald’s function). This kernel has been used in spatial interpolation (see, e.g., Stein, 1999).
The C2ν-Matérn kernel includes the Gaussian RBF kernel as the limiting case ν→∞. This kernel is
p.d. and it has a closed form expression for ν = m+ 1/2 where m ∈ N. The kernels with ν = 3/2
and ν= 5/2 are most often used in their isotropic or anisotropic versions.

Several other types of kernels are available and there is no intention here to establish a complete list.
It is nevertheless of interest to cite a few other kernels which are mainly used in regularized networks
(Girosi et al., 1995): multiquadratic kernel (c.p.d., m = 1), inverse multiquadratic kernel (p.d.), m-th
order thin-plate splines kernel (c.p.d w.r.t. the set of n-variate polynomials of degree m − 1 at most)
(Wahba, 1990; Walder and Chapelle, 2008).

At the beginning of this section, it was mentioned that the kernel k introduced in the SVM formu-
lation should correspond to a dot product in the feature space F , see Eq. (II.68). We will now look at
the different ways of constructing feature spaces for a given kernel k. Two main types of approaches
are found in the SVM literature, one based on Mercer kernels and another based on reproducing kernel
Hilbert spaces (RKHS) associated with k. We will provide the reader with a short description of the latter
approach (see Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004; Hofmann et al., 2008,
for further details).

For the construction of the RKHS associated with a given kernel k, we consider a map from X in the
space of functions, mapping X into R, denoted RX , such that:

φ : X → RX

x 7→ φ(x) = k(x, ·) (II.81)

It is worth noting that φ(x) : x′ 7→ k(x,x′) is a function of x′, for any x ∈ X .

We want to construct a dot product space containing the images of X under φ.

The image of φ is first turned into a vector space. This is done by taking all linear combinations of
the functions k(xi , ·) for i = 1, . . . , N , for any N ∈N and for any xi ∈ X :

¨
f (·) =

N∑
i=1

αik(xi , ·) , N ∈N , (x1, . . . ,xN ) ∈ X N , (α1, . . . ,αN ) ∈RN

«
. (II.82)

The second step consists in equipping this vector space of functions with a suitable dot product. The
dot product between two functions f (·) =∑N

i=1αik(xi , ·) and g(·) =∑M
j=1 β jk(x′j , ·) is defined by:

〈 f , g〉=
N∑

i=1

M∑
j=1

αiβ jk(xi ,x
′
j) , (II.83)
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where N , M ∈ N, where xi ∈ X and αi ∈ R for i = 1, . . . , N , and where x′j ∈ X and β j ∈ R for
j = 1, . . . , M . This dot product is well defined. It is shown to be bilinear and symmetric. It is additionally
positive definite, since we assume that k is also positive definite:

〈 f , f 〉=
N∑

i=1

N∑
j=1

αiα jk(xi ,x j) = α
TKα≥ 0 , (II.84)

where α = (α1, . . . ,αN )T ∈ RN and K is the N × N Gram matrix defined in Eq. (II.70). We can also
show that 〈 f , f 〉= 0⇒ f = 0.

From these definitions, the so-called reproducing property of the kernel k can be found:

〈k(x, ·), f 〉= f (x) , (II.85)

and, in particular, it also holds that:

〈k(x, ·), k(x′, ·)〉= k(x,x′) ≡ 〈φ(x),φ(x′)〉= k(x,x′) , (II.86)

which makes it clear that the reproducing kernel k can be seen as the dot in the feature space, as required
from Eq. (II.68).

With the above-defined properties the kernel k is called a reproducing kernel (Aronszajn, 1950). The
vector space of functions defined in Eq. (II.82) endowed with the dot product defined in Eq. (II.83) is
a dot product space a.k.a. a pre-Hilbert space. It is turned into a Hilbert space over R by completing it
by the norm corresponding to the dot product, i.e. ‖·‖=p〈·, ·〉 (see, e.g., Schölkopf and Smola, 2001,
Appendix B). A Hilbert space of functions that possesses a reproducing kernel is called a reproducing
kernel Hilbert space (RKHS). We will denote Hk the RKHS of functions generated by k, 〈·, ·〉Hk

the
dot product of Hk and ‖·‖Hk

the corresponding norm. It is important to note that there is a perfect
equivalence between RKHS and p.d. kernels. To every RKHS there corresponds a p.d. reproducing
kernel, and conversely, given a p.d. kernel k : X ×X → R, we can construct a unique RKHS of real-
valued functions on X with k as its reproducing kernel (Aronszajn, 1950). If instead of assuming k to
be p.d., it is assumed to be c.p.d. w.r.t. an arbitrary finite dimensional vector space of functions P , then
Hk is a semi-reproducing kernel Hilbert space (Wahba, 1990). The theory behind semi-RKHS is more
complicated than that of RKHS, due to the null space of the semi-norm.

II–2.3.2 SVMs in the framework of regularization theory

Learning an approximate model ef : X → Y ,x 7→ ey = ef (x) from a finite set of training data T =
{(xi , yi) ∈ X × Y , 1 ≤ i ≤ N} is known to be an ill-posed problem. In simple terms, this means that
the amount of information in the (possibly noisy) training data is insufficient to construct a uniquely-
defined approximate model. In order to make the learning problem well-posed, it is necessary to impose
some a priori assumptions about the form of the approximation. The most common strategy consists in
imposing some degree of smoothness on the approximate function that constrains the hypothesis space
in which a solution is sought. The techniques that exploit such smoothness constraints are known under
the term of standard regularization (Tikhonov and Arsenin, 1977; Wahba, 1990), and SVM falls into this
category of techniques. The reader may refer to the following useful references from which this text is
inspired for a deeper insight on the subject (Girosi, 1998; Smola et al., 1998; Evgeniou et al., 2000).
The central idea in regularization is to minimize the following objective function, called the regularized
risk functional (Schölkopf and Smola, 2001):

Rreg[ef ] = Remp[ef ] +λΩ[ef ] , (II.87)
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where Remp[ef ] is the empirical risk, see Eq. (II.2), Ω[ef ] is a selected regularizer and λ ∈ R>0 a regu-
larization parameter.

The regularization problem is now expressed in the context of kernels and associated RKHS. By
application of the representer theorem, see Eq. (II.89), we will see that the functions h solutions of this
problem are expressed without a bias term, i.e. in the general form ef (x) = h (x) =

∑N
i=1αik(xi ,x).

Accounting for a bias term b in the solution (as considered in all the SVM models presented so far)
makes the problem harder to tackle, and this will be addressed later in this section. The minimization
of the regularized risk functional defined in Eq. (II.87) is reformulated as follows:

min
h∈Hk

N∑
i=1

` (yi , h (xi)) +λΩ
�‖h‖Hk

�
, (II.88)

where ` : Y ×R → R ∪ {+∞} is an arbitrary loss function and Ω : R≥0 → R is strictly monotonic
increasing function. The first term enforces the closeness to the data. It corresponds to the empirical
risk from which the factor 1/N has been dropped, see Eq. (II.2). The second term, expressed in terms of
the norm of h in the RKHS, embeds the a priori information on the smoothness of h (see, e.g., Girosi et al.,
1995). Relations between the norm of the RKHS and the smoothness of the function can be established,
depending on the chosen kernel k (a clear understanding of this relation can be given by means of the
so-called regularization operators, which go beyond the scope of this report). If we additionally assume
the convexity of ` and Ω, then the dual optimization problem is also convex (therefore featuring a
unique global minimum) and we can solve it by means of convex optimization methods.

By virtue of the representer theorem (Kimeldorf and Wahba, 1970; Schölkopf and Smola, 2001), the
minimizer of Eq. (II.88) admits a representation in the form:

h (x) =
N∑

i=1

cik(xi ,x) , (II.89)

where c= (c1, . . . , cN )T ∈RN is the vector of unknown expansion coefficients.

The representer theorem initially proven in the context of the square loss is of prime importance.
It clearly states that the solution of an optimization problem in a potentially infinite dimensional space
Hk can be expressed in terms of a linear combination of the kernel evaluated at the points of a finite
dimensional set (x1, . . . ,xN ). The optimization problem defined in Eq. (II.88) therefore boils down to
one over RN .

For an equivalence between the solution of the regularized problem and those obtained for classifi-
cation in Section II–2.1 and regression in Section II–2.2, Eq. (II.88) is rewritten as follows:

min
h∈Hk

C
N∑

i=1

` (yi , h (xi)) +
1
2
‖h‖2Hk

. (II.90)

The regularization parameter is now C (such as introduced in Sections II–2.1 and II–2.2), where C = 1/λ
and we take Ω

�‖h‖Hk

�
= 1

2‖h‖2Hk
, which is quite a standard choice in regularization (note that such a

choice leads to a convex QP). The parameter C controls the tradeoff between finding a function h of low
complexity (i.e. small norm of h in the RKHS) and fitting the training data well (i.e. small empirical
risk over the training set w.r.t. the loss function `), which thus avoids overfitting.

As can be seen in Eq. (II.89), the kernel expansion obtained by the representer theorem does not
include any bias term b, which was considered in all the SVM models defined in Sections II–2.1 and
II–2.2. The role of this bias term, which appears in the SVM formulations due to Vapnik, is not so
clear in the literature (Poggio et al., 2002) and we will see that b is introduced in the formulation as
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an unregularized term. In a few specific contexts, we may search for solutions ef of the regularization
problem in the following form, which is more general than the one obtained in Eq. (II.89):

ef (x) = h (x) + p (x)

=
N∑

i=1

cik(xi ,x) +
M∑

j=1

d j p j(x) ,
(II.91)

where p j : X → R for 1, . . . , M is a set of M real-valued functions, M ∈ N, and d1, . . . , dM ∈ R. Note
that a kernel expansion with a bias term corresponds to the particular case M = 1 and p1 : X →R,x 7→
1.

Such a representation is found to be the solution of the following minimization problem:

min
h∈Hk , p∈span(p j)

N∑
i=1

`
�

yi , ef (xi)
�
+λΩ

�‖h‖Hk

�
, (II.92)

where ef = h + p, Ω is again assumed to be a strictly monotonic increasing function and where the
N × M matrix P = [p j(xi)]1≤i≤N ,1≤ j≤M has rank M . This extension of the representer theorem is due
to Schölkopf et al. (2001) and it is called the semiparametric representer theorem. It is important to
note that the contributions of the functions p1, . . . , pM are not regularized. Examples of application
include the so-called semi-parametric approaches, where we have some a priori knowledge about the
approximate solution we expect to obtain. In such a context the parametric part of the solutions comes
from the linear combination over the function basis p1, . . . , pM , and the nonparametric part is accounted
for by means of the kernel expansion over the training data. The solution of Eq. (II.92), i.e. both
c = (c1, . . . , cN )T and d = (d1, . . . , dM )T, can be found by solving an optimization problem similar to
that of classical SVMs (see Smola et al., 1999, where a solution is obtained with the ε-insensitive loss
function). In comparison with Eq. (II.57), the dual optimization problem has the following M additional
equality constraints:

N∑
i=1

ci p j(xi) = 0 for j = 1, . . . , M , (II.93)

and the coefficients d1, . . . , dM can be found from the KKT conditions or directly as by-products of
interior-point methods. It is worth noting that Eq. (II.93) corresponds to the unique equality constraint
found in all SVC and ε-SVR formulations (case M = 1 and p1(·) = 1), see Eq. (II.48) and Eq. (II.57).

The representation of ef given in Eq. (II.91) is also the form of the solution obtained in the context
of regularization based on c.p.d kernels. For c.p.d. kernels, the regularization operator has a null space
which is spanned by a set of functions p1, . . . , pM which are not regularized. An analog of the repre-
senter theorem can be derived for c.p.d. kernels w.r.t. an arbitrary finite dimensional vector space of
functions P (see Walder and Chapelle, 2008, Theorem 4.6; Auffray and Barbillon, 2009, Theorem 6.1).
For c.p.d. kernels of order m, P = Πm−1

n denotes the set of all polynomials p on Rn of degree m− 1 at
most, whose dimension is:

M = dim
�
Πm−1

n

�
=

�
n+m− 1

m− 1

�
. (II.94)

An application example is the m-th order thin-plate kernel, which is c.p.d. w.r.t. Πm−1
n (Walder and

Chapelle, 2008).

In Lp-SVC and Lp-ε-SVR, p ∈ {1,2}, we are searching for a solution ef in the form:

ef (x) = h (x) + b where h (x) =
N∑

i=1

cik(xi ,x) , (II.95)
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where c= (c1, . . . , cN )T is the vector of unknown expansion coefficients and where b is an unregularized
bias term.

The norm of h in the RKHS Hk writes:

‖h‖Hk
=
q
〈h, h〉Hk

=
p

cTKc , (II.96)

where K = [ki j]1≤i, j≤N is the Gram matrix such that ki j = k(xi ,x j).

The evaluation of ef at points xi of the training set can be expressed as follows:

ef (xi) =
N∑

j=1

c jk(x j ,xi) + b = (Kc)i + b . (II.97)

The regularization problem to solve can therefore be expressed as follows:

min
c,b

C
N∑

i=1

` (yi , (Kc)i + b) + eg
�p

cTKc
�

, (II.98)

where c = (c1, . . . , cN )T ∈ RN , b ∈ R and eg : R→ R ∪ {+∞}, t 7→ 1
2 t2 if t ≥ 0, +∞ otherwise. The

second term of the objective function is slightly modified to allow the derivation of its conjugate by
Fenchel duality in the following (introduction of the function eg (Heinrich, 2012)). The loss function
` (yi , u) is assumed to be convex w.r.t. its second argument, but not necessarily differentiable. This
assumption is verified for the loss functions used in Lp-SVC and Lp-ε-SVR, which are given in Table II.1
and represented in Figure II.5.

A dual formulation of Eq. (II.98) can be obtained by means of the theory of Fenchel duality (Borwein
and Lewis, 2000) instead of the more common Lagrangian duality used so far. The use of Fenchel
duality in SVMs was investigated by Bach et al. (2005), Rifkin and Lippert (2007), Bach (2009), and
Heinrich (2012), and the reader may refer to these references for details. We simply recall here the dual
formulation of the regularization problem obtained by Fenchel duality, which can be written nicely in
terms of the Fenchel conjugate of the loss function:

max
p
−C

N∑
i=1

`(yi , ·)∗
�
− pi

C

�
− 1

2
pTKp s.t. 1Tp= 0 , (II.99)

where p = (p1, . . . , pN )T ∈ RN and `(yi , ·)∗ : R → R is the Fenchel conjugate of the convex function
`(yi , ·):

`(yi , ·)∗(v) =max
u∈R

uv − ` (yi , u) . (II.100)

Method Loss function name Loss function `(y, u) Fenchel conjugate `(y, ·)∗(v)
LS-SVM, RN? square 1

2 (y − u)2 1
2 v2 + v y

L1-SVC hinge (1− yu)+ v y if v y ∈ [−1, 0], +∞ otherwise

L2-SVC squared hinge 1
2 (1− yu)2+

1
2 v2 + v y if v y ≤ 0, +∞ otherwise

L1-ε-SVR ε-insensitive (|y − u| − ε)+ v y + |v|ε if |v| ≤ 1, +∞ otherwise

L2-ε-SVR squared ε-insensitive 1
2 (|y − u| − ε)2+ 1

2 v2 + v y + |v|ε
?: regularized networks (see, e.g., Girosi et al., 1995).

N.B.: (x)+ =max(x , 0).

Table II.1 – Methods, loss functions and Fenchel conjugates (from Bach, 2009).
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(a) Classification
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Figure II.5 – Loss functions in classification and regression.

The Fenchel conjugates of Lp-SVC and Lp-ε-SVR loss functions are given in Table II.1 for p ∈ {1,2}
(Rifkin and Lippert, 2007; Bach, 2009). The Lagrangian dual problems defined in Eq. (II.48) for L1-SVC
and Eq. (II.57) for L1-ε-SVR are equivalent to the Fenchel dual defined in Eq. (II.99), where `(yi , u) =
(1− yiu)+ and (|yi − u| − ε)+, respectively. It is worth emphasizing that the unique equality constraint
1Tp= 0 appearing in Eq. (II.99) is due to the presence of the unregularized bias term b in the expression
of ef .

II–2.4 Hyperparameter selection

So far we have focused on finding the solution of a regularization problem for a given type of kernel
and assuming some values for its parameters. Moreover, the level of regularization introduced in the
problem was also assumed given through the parameter C . In regression based on the ε-insensitive loss
function, the parameter ε was also assumed fixed to some arbitrary value.

Based on given data T = {(xi , yi) ∈ X ×Y , 1≤ i ≤ N}, solving the learning problem requires:

1. finding the most appropriate kernel or combination of kernels,
2. choosing the most suitable parameterization of the selected kernel(s),
3. choosing a regularization level which avoids both overfitting and underfitting.

This general problem, which is not specific to SVMs, is a great challenge and it is referred to as model
selection. In the scope of this report we will assume that the kernel type is given, which leaves us to tackle
only points 2 and 3 (if we have no prior knowledge about the function f to surrogate, the choice of an
isotropic Gaussian RBF kernel is often assumed by SVM practitioners, even though this choice may be
questionable). The problem therefore reduces to the selection of a finite number of parameter values,
and this parametric form of model selection is known as hyperparameter selection. Hyperparameters
include the parameters of the selected kernel, e.g. the unique parameter γ of a Gaussian RBF kernel,
see Eq. (II.75), and the other SVM formulation parameters such as the regularization parameter C
and additional parameters like the ε parameter of the ε-insensitive loss function in regression. These
hyperparameters are assumed to be gathered in a vector denoted θ = (θ1, . . . ,θnθ ) ∈ Θ in the following.
The number of kernel parameters is usually low unless an anisotropic form is selected for the kernel, in
which case nθ ∝ n= dim (X ).

The objective pursued in hyperparameter selection (or more generally in model selection) is to
minimize the generalization error, defined in terms of the expected risk, see Eq. (II.1). As pointed out in
Section II–1.1, the expected risk is unknown and, as a consequence, we must consider an estimate of the
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generalization error based on the given data T . Two questions then arise: 1) what is the best estimate
we can take to quantify the generalization error and how can we assess its value from the known data
T , 2) how can we efficiently minimize this estimate in the search domain of hyperparameters Θ.

Regarding question 1, we will focus first on cross-validation (CV), which is a standard technique
used in model selection. The principle of K-fold cross-validation (K-fold CV) and one of its variants
known as leave-one-out cross validation (LOO-CV) are briefly recalled in Section II–2.4.1. The set of
hyperparameter values that minimize the errors assessed by either K-fold CV or LOO-CV are considered
as optimal values, i.e. they are assumed to ensure the lowest generalization error of the constructed
model.

In a practical situation, K-fold CV and especially LOO-CV are often computationally expensive. For
LOO-CV, N model trainings are required to assess the LOO error for a given set of hyperparameters,
which precludes the use of this technique for sizes N of practical interest. As an alternative to true
LOO-CV, it is possible to consider using approximations (or bounds) of the LOO error which have been
derived in the SVM context. Such approximations are briefly reviewed in Section II–2.4.2, and we will
focus on one of the most accurate ones, known as LOO span bounds. A description of these LOO span
bounds is given, based on the work of Vapnik and Chapelle (2000) for classification and that of Chang
and Lin (2005) for ε-insensitive regression.

In Section II–2.4.3, we give a brief outline of some techniques used to minimize the generalization
error and thus tune the SVM hyperparameters (answer to question 2). Minimizing the approximate LOO
error given by the span bounds is investigated and an algorithm based on the cross-entropy method is
proposed in order to solving the optimization problem in classification and regression.

Before moving on to the technical details of hyperparameter selection, it is worth making some im-
portant comments. A proper tuning of SVM model hyperparameters is of paramount importance in the
case of training on small sample sets. Inadequate choices for these hyperparameters could result in a
poor predictive capacity of the SVM models, with either severe underfitting or overfitting. Finding opti-
mal values for these hyperparameters therefore requires 1) using an estimate of the generalization error
which is a good proxy of the true and unknown expected risk (accuracy of the selected generalization
error estimate), 2) finding a set of hyperparameter values that truly minimizes this estimate (use of a
robust optimization technique to find a reliable solution).

II–2.4.1 Cross-validation (CV), leave-one-out (LOO)

For hyperparameter selection, the ideal situation would be to train on the given data T = Ttrain, then
use another set of independent data Ttest to test the accuracy of the constructed model, and thus find the
best values of θ leading to the lowest level of errors on Ttest. Since the only information at our disposal
is given by T , the main idea of cross-validation (CV), independently introduced by Allen (1974), Stone
(1974), and Geisser (1975) is to split the set of available data T into training sets and corresponding
testing sets in order to find hyperparameter values that minimize the errors averaged over the testing sets.
Practically, K-fold cross validation (Geisser, 1975) consists in splitting the training set T = {(xi , yi) ∈ X×
Y , 1 ≤ i ≤ N} into K randomly selected and mutually exclusive subsets T (1), . . . ,T (K) (called folds) of
equal or nearly equal size bN/Ke (bxe denoting the nearest integer to x) where T (k) = {(xi , yi), i ∈ I(k)}
and the set of indices I(1), . . . ,I(K) are defined such that:

K⋃
k=1

I(k) = {1, . . . , N} and I(i) ∩ I( j) for i 6= j . (II.101)
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For each subset T (k), a SVM model denoted ef (−k) is trained on the data of the (K − 1) remaining
subsets, denoted T (−k) = {(xi , yi), i ∈ I(−k)}, where I(−k) denotes the complementary set of I(k) in
{1, . . . , N}, see Eq. (II.102), and the constructed model is tested on the data set T (k) considered as
validation data.

I(−k) = {1, . . . , N}\I(k) . (II.102)

The SVM model trained on T (−k) writes:

ef (−k) (x;θ ) =
∑

i∈I(−k)

c(−k)
i (θ )k(xi ,x;θ ) + b(−k)(θ ) , (II.103)

where θ are given hyperparameter values (same values for k = 1, . . . , K), and where c(−k)
i (θ ) and

b(−k)(θ ) are the coefficient solutions of the corresponding dual optimization problem.

K trainings are performed and the CV error is given by averaging the errors committed on T (k) for
k = 1, . . . , K:

ÓErrK-CV,`(θ ) =
1
K

K∑
k=1

1
#I(k)

∑

i∈I(k)
`
�

yi , ef (−k)(xi;θ )
�

, (II.104)

where ` is a given loss function. This loss function is chosen as a measure of errors, and has no connec-
tion with the loss function used in the SVM formulation. In practice, it is often taken as the square loss
`(y, u) = (y −u)2 or the absolute loss `(y, u) = |y − u| for regression, and the 0-1 loss for classification.
It worth pointing out that the CV error is an estimate (hat notation) since there are many choices when
selecting the K folds.

In order to reduce the variance of the CV error, we may consider repeating the CV M times using
different random subsets {T (1,m), . . . ,T (K ,m)}, m = 1, . . . , M , and averaging the errors of the M CVs.
Let us therefore consider M random sets of indices {I(1,m), . . . ,I(K ,m)} verifying Eq. (II.101) for m =
1, . . . , M with the associated complementary sets {I(−1,m), . . . ,I(−K ,m)} and such that #I(k,m) ≈ bN/Ke
for all m and k. The M -averaged K-fold CV error is expressed as follows:

ÓErrM ,K-CV,`(θ ) =
1
M

M∑
m=1

(
1
K

K∑
k=1

1
#I(k,m)

∑

i∈I(k,m)

`
�

yi , ef (−k,m)(xi;θ )
�
)

. (II.105)

Such a CV requires M × K SVM trainings for a given set of hyperparameter values θ .

The choice of K for CV is subject to debate and there are unfortunately no general rules for an
“optimal” choice. For an in-depth analysis of CV, the reader may refer to Arlot and Celisse (2010), where
the performances of CV are analyzed in various contexts, including classification and regression. Some
asymptotic results can be obtained under certain restrictive assumptions, but they are unfortunately of
little help since we are working with finite sets of training data. Among SVM practitioners, K = 5 or
10 is often assumed for model selection and only one CV is performed in order to keep CV runtime
reasonable (i.e. M = 1).

Leave-one-out cross-validation (LOO-CV) is obtained in the limiting case K = N , for which we have
I(k) = {k} (and therefore #I(k) = 1) and I(−k) = {1, . . . , N}\{k}. For each k = 1, . . . , N , a SVM model
is trained on the (N − 1) data pairs of the set T (−k) and is tested on the left-out pair (xk, yk). The
LOO-CV error (simply termed LOO error in the sequel) thus writes:

ErrLOO,`(θ ) =
1
N

N∑
i=1

`
�

yi , ef (−i)(xi;θ )
�

. (II.106)

In this specific case, the CV error is not an estimate since there is a single possible choice. LOO-CV is
known to give an almost unbiased estimate of the generalization error (see, e.g., Chapelle et al., 2002).
The bias is due to the training on N−1 data pairs instead of the full set of N pairs. Intuitively, LOO-CV is
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expected to give a better estimate than K-fold CV in the case of low-sample training sets11 since almost
of the information of T is used to train each of the N SVM models. However the variance of the CV error
also needs to be considered, due to the limited amount of known data and the way the training samples
are selected. According to Efron (1983), LOO-CV is characterized by a large variance in the context of
small training sets. In practical situations LOO-CV is often too demanding in terms of computational
resources, since it requires N model trainings. Approximations or bounds of the LOO error are often
preferred, as presented in the following section.

II–2.4.2 Approximations of the LOO error

For shorter and clearer notations, the hyperparameter vector θ is dropped in all the expressions of this
section. All quantities have therefore to be understood for a given θ .

(a) Classification (L1-SVC)

In classification, the LOO error is expressed in terms of the number of misclassified points:

ErrLOO,`0-1
=

1
N

#
�

i ∈ {1, . . . , N} : yi 6= sgn ef (−i)(xi)
	

=
1
N

N∑
i=1

`0-1

�
yi , ef (−i)(xi)

�

=
1
N

N∑
i=1

Ψ
�−yi

ef (−i)(xi)
�

,
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where `0-1(y, u) = Ψ(−yu) is the 0-1 loss function, see Figure II.5a, and Ψ is the unit step function:
Ψ(x) = 1 if x > 0, 0 otherwise.

The LOO error can also be equivalently rewritten in the following form:

ErrLOO,`0-1
=

1
N

N∑
i=1

Ψ
�−yi

ef (xi) + yi

�ef (xi)− ef (−i)(xi)
��

. (II.108)

Several expressions have been proposed to upper-bound the LOO error in classification (see, e.g.,
Chapelle et al., 2002). The simplest one is obtained as the ratio of the number of SVs over N in the
case of hard-margin SVCs. Other bounds have been derived, such as the Jaakkola-Haussler, the Opper-
Winter and the radius-margin bounds. These bounds are derived for SVCs without a bias term and the
last two bounds are only valid for the hard-margin case. Another more accurate estimate of the LOO
error, known as the span bound, was proposed by Vapnik and Chapelle (2000) (see also Chapelle, 2004,
for a more detailed description). This estimate is based on the geometrical concept of span of the SV
xi , denoted Si for i = 1, . . . , N and given by the following distance in the feature space:

Si = dist (φ(xi),Λi) =min
z∈Λi
‖φ(xi)− z‖ , (II.109)

where the set Λi is a constrained linear combination of the points {φ(x j) : j 6= i}, defined as follows for
L1-SVC:

Λi =

( ∑
j∈Iusv, j 6=i

λ jφ(x j) : λ j ∈R ,
∑

j∈Iusv, j 6=i

λ j = 1 , ∀ j 6= i, 0≤ α j + y j yiαiλ j ≤ C

)
. (II.110)

11Note that this corresponds to the context of surrogate models of costly-to-evaluate functions.
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Under the assumption that the set of both unbounded and bounded SVs remains unchanged during
the LOO-CV, i.e. I(−i)

usv = Iusv and I(−i)
bsv = Ibsv for i = 1, . . . , N , Vapnik and Chapelle (2000) demonstrate

that the following equality holds true, for i = 1, . . . , N :

yi

�ef (xi)− ef (−i)(xi)
�
= αiS

2
i . (II.111)

Under this assumption, the expression of Λi can be simplified to:

Λi =

( ∑
j∈Iusv, j 6=i

λ jφ(x j) : λ j ∈R ,
∑

j∈Iusv, j 6=i

λ j = 1

)
, (II.112)

and the LOO error rewrites:

ErrLOO,`0-1
≈ Errspan

LOO,`0-1
=

1
N

N∑
i=1

Ψ
�−yi

ef (xi) +αiS
2
i

�

=
1
N

#
�

i ∈ {1, . . . , N} : αiS
2
i ≥ yi

ef (xi)
	

.
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Errspan
LOO,`0-1

will be used as an approximation of the true LOO error. This is not an upper bound, as
pointed out by Schölkopf and Smola (2001), since the main assumption (the sets of SVs do not change
in LOO-CV) has no chance of being verified in general.

Another important point is that Errspan
LOO,`0-1

is not a continuous function. The spans Si are not contin-
uous (Chapelle et al., 2002), and discontinuities also appear due the use of the step function Ψ in the
definition of the span approximation of the LOO error. This makes the minimization of the estimate of
the LOO error harder to solve, as later addressed in Section II–2.4.3.

Practically, the span bound Si can be computed as follows (Chapelle, 2004):

• xi is an unbounded SV:

S2
i =

1

(eK−1
SV )ii

for i ∈ Iusv , (II.114a)

where eKSV =

�
Ku 1
1T 0

�
, Ku = [ku,i j]1≤i, j≤#Iusv

and ku,i j = k(xi ,x j) for i, j ∈ Iusv.

• xi is a bounded SV:

S2
i = k(xi ,xi)− vT

i
eK−1

SV vi for i ∈ Ibsv , (II.114b)

where vi is a (#Iusv + 1)-dimensional column vector whose jth element is k(xi ,x j) for j ∈ Iusv and
whose last element is 1.

• xi is not a SV:

S2
i = 0 for i ∈ Isv , (II.114c)

since ef (−i) = ef .
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(b) Regression (L1-ε-SVR)

Similarly to classification, span approximations of the LOO error were derived by Chang and Lin (2005)
for regression, based on the ε-insensitive loss function. The LOO error considered by Chang and Lin is
based on the absolute loss function `1(y, u) = |y − u|:

ErrLOO,`1
=

1
N

N∑
i=1

`1

�
yi , ef (−i)(xi)

�

=
1
N

N∑
i=1

|yi − ef (−i)(xi)| .
(II.115)

Under the assumption that the set of SVs remains the same during LOO-CV, the following approxi-
mations of the LOO error are obtained for L1-ε-SVR12:

ErrLOO,`1
≈ Errspan

LOO,`1
=

1
N

N∑
i=1

(αi +α
∗
i )S

2
i +

1
N

N∑
i=1

(ξi + ξ
∗
i ) + ε , (II.116)

where the span Si is given by Eqs (II.114a-II.114b-II.114c) and where:

Iusv = {i ∈ {1, . . . , N} : 0< αi < C ∨ 0< α∗i < C} ≡ {i ∈ {1, . . . , N} : 0< αi +α
∗
i < C} ,

Ibsv = {i ∈ {1, . . . , N} : αi = C ∨ α∗i = C} ,

Isv = {i ∈ {1, . . . , N} : αi = 0 ∧ α∗i = 0} ,

(II.117)

in which ∨ denotes the OR operator and ∧ denotes the AND operator.

As for soft margin classification, it is shown that the spans Si of ε-SVR are not continuous (Chang
and Lin, 2005).

(c) Regression (LS-SVR)

For LS-SVR, an exact expression of LOO error can be obtained. Let us define the LOO error in terms of
the square loss `2(y, u) = (y − u)2:

ErrLOO,`2
=

1
N

N∑
i=1

`2

�
yi , ef (−i)(xi)

�

=
1
N

N∑
i=1

�
yi − ef (−i)(xi)

�2

=
1
N

PRESS ,

(II.118)

where PRESS is Allen’s predicted residual sum of squares statistic (Allen, 1974).

For i = 1, . . . , N , the loss between yi and ef (−i)(xi) is given by (see, e.g., Cawley et al., 2006,
Appendix A):

yi − ef (−i)(xi) =
αi�eK−1�

ii

, (II.119)

12An approximation of the LOO error is also available for L2-ε-SVR (Chang and Lin, 2005). It is given by the sum of the
first and last terms of Eq. (II.116).
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where α= (α1, . . . ,αN )T is the solution of Eq. (II.65),

and where
�eK−1�

ii
is the ith diagonal element of the inverse of eK =

�
K+ C−1I 1

1T 0

�
.

The exact LOO error for LS-SVR therefore writes:

ErrLOO,`2
=

1
N

N∑
i=1

α2
i�eK−1�2

ii

. (II.120)

II–2.4.3 Strategies for optimal hyperparameter selection

Several strategies have been proposed for the selection of optimal (or nearly optimal) values of SVM
model hyperparameters. The most popular strategies, sorted by increasing complexity, are briefly out-
lined in this section. Due to the popularity of the isotropic Gaussian RBF kernel in SVMs, most of the
techniques found in the literature aim at finding suitable values for C and γ (or σ) in soft-margin classi-
fication, and additionally for ε in regression based on the ε-insensitive loss function. Tackling problems
with a large number of hyperparameters is less common in SVMs (see, e.g., Chapelle et al., 2002) for the
tuning of the anisotropic Gaussian RBF kernel given in Eq. (II.76). For such problems, model selection
becomes much more complex.

If the runtime for model selection is a concern, heuristic choices for the hyperparameter values may
be considered, see the following examples suggested for a Gaussian RBF kernel:

• Selection ofσ: For SVC classification, Jaakkola et al. (1999) propose to takeσ as the median distance
in the input space X between all pairs composed of one point from the positive class and another
from the negative class.

• Selection of C: Following the work of Mattera and Haykin (1999), which suggests taking a value
for C in the range of the output response, Cherkassky and Ma (2004) propose to take C equal to
max(|y − 3s∗y |, |y + 3s∗y |), where y and s∗y are respectively the mean and standard deviation of the
y-values of the training data.

• Selection of ε: In Cherkassky and Ma (2004), it is proposed to take ε = 3σ
p

ln N/N where σ is an
estimated noise level and N is the number of training data elements.

From the author’s experience, such heuristics as those defined above are not able to give SVM models
of suitable accuracy in the context of function approximation based on few training data elements.

Among SVM practitioners, the most common technique for tuning the hyperparameters of a SVM
model is called grid search (see, e.g., Hsu et al., 2016). This simple yet efficient technique consists in
estimating the generalization error (usually by means of a K-fold CV) over a grid G composed of all
combinations of exponentially growing sequences of values of the SVM hyperparameters:

G = G1 × . . .× Gnθ where Gi = {bai+ j(bi−ai)/Ni , 0≤ j ≤ Ni} for i = 1, . . . , nθ , (II.121)

where b defines the basis of the log-scale used for the grid (a usual choice is b = 2), [ai , bi] defines the
logb-range over which the hyperparameter θi is sought, and Ni defines the associated grid resolution.

The best model is then the one which achieves the minimal generalization error over the grid:

θ ∗ = arg min
θ∈G

ÓErrK-CV,`(θ ) , (II.122)

where θ = (θ1, . . . ,θnθ ).

Grid search, however, presents two main drawbacks. First the exploration of the hyperparameter
space Θ = [ba1 , bb1] × . . . × [banθ , bbnθ ] is discrete. If the solution θ ∗ is required to be found with
high accuracy, we need to define a very fine grid, which may result in too expensive a hyperparameter
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selection procedure. The second drawback is that grid search cannot be used for the tuning of many
hyperpameters, since the number of combinations grows too fast with nθ . As an example, if we consider
L1-ε-SVR with a Gaussian RBF kernel, we need to find an optimal triple (C ,ε,γ). If we take a 20×20×20
grid (which is a rather coarse grid) and a 5-fold cross validation, we need to solve 20× 20× 20× 5 =
40, 000 QP problems in order to tune C , ε and γ.

As an alternative, robust optimization algorithms can be used to solve the hyperparameter selection
problem. Two main types of methods have been investigated in the SVM context. A first solution is
a recourse to stochastic optimization algorithms. Several techniques have been applied for the tun-
ing of SVM hyperparameters, such as simulated annealing (Pai and Hong, 2006; Lin et al., 2008a),
the particle swarm optimization method (Lin et al., 2008b; Fei et al., 2009), the cross-entropy method
(Bourinet, 2014; Bourinet, 2015; Bourinet, 2016) and the covariance matrix adaptation evolution strat-
egy (Bourinet, 2017b) among others. The second solution consists in using gradient-descent algorithms
under the assumption that the gradient can be derived for the estimate of the generalization error cho-
sen for the analysis. With span approximations, it is first necessary to adapt the formulation for a smooth
estimate, since these approximations are not continuous. Such smooth estimates are usually obtained
by introducing an additional regularization term in the definition of the span of SVs (see, e.g., Chapelle,
2004, pp. 71–73, for classification, and Chang and Lin, 2005, for regression). Such a gradient-based
approach can also be applied with other approximations than the span estimate (see, e.g., Keerthi,
2002; Chung et al., 2003, where a BFGS optimization algorithm is used to minimize the radius/margin
bound).

We give hereafter some details about hyperparameter selection based on the LOO error approxima-
tions introduced in Section II–2.4.2. Assuming that these LOO error estimates are good proxies of the
true and unknown generalization error, finding optimal hyperparameter values consists in solving the
following optimization problem:

θ ∗ = arg min
θ∈Θ

ÝErrLOO(θ ) , (II.123)

where:

• ÝErrLOO = Errspan
LOO,`0-1

(approximation) for Lp-SVC, p ∈ {1,2},
• ÝErrLOO = Errspan

LOO,`1
(approximation) for Lp-ε-SVR, p ∈ {1, 2},

• and ÝErrLOO = ErrLOO,`2
(exact) for LS-SVR.

First, we need to make some important comments, which justify the favored solving strategy w.r.t.
those commonly applied in other works in the literature:

• The accuracy of the LOO error estimates is closely related to that achieved in the solution of the
dual optimization problem, i.e. on the coefficients αi of the kernel expansion (and α∗i in the case
of ε-SVR) and on the bias term b. For accurate estimates of the LOO error, the QP problems of soft
margin SVC and ε-SVR need to be solved by interior point algorithms instead of usually-preferred
SMO algorithms.

• In the optimization problem defined in Eq. (II.123), the domain Θ in which the solution is sought
needs to be defined. In the case of a Gaussian RBF kernel, the searches are usually carried out within
the following bounds: log10 C ∈ [−5, 4], log10 ε ∈ [−4,0] and log10 γ ∈ [−9,4]. In the proposed
approach, the search is allowed beyond these bounds, and this is where the optimal hyperparameter
values often lie. In particular, the optimal C parameter is found to take large values, e.g. 107-108 (this
results in longer QP solving times), and the optimal ε parameter takes small values, e.g. 10−7-10−6,
see Figure II.6.
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• In the author’s experience, the slight regularization of the span approximation of the LOO error pro-
posed by Chapelle (2004) for SVC and by Chang and Lin (2005) for ε-SVR induces unacceptably
large variations of the LOO error estimate, resulting in non-optimal values for the hyperparameters.
For this reason, a stochastic search directly applied to the span estimate without any regularization
is preferred.

• The optimization problem defined in Eq. (II.123) appears rather noisy, with many local minima, which
precludes the use of gradient-descent algorithms. The choice made here is to apply a robust stochastic
optimization algorithm in order to find the lowest minimum in Θ. The direction followed here goes
against the common practice, which assumes that it is not necessary to find the true minimizer of the
generalization error estimate in order to obtain good hyperparameter values, as recommended e.g.
by Keerthi (2002) and Chung et al. (2003).

The cross-entropy (CE) method presented in Section I–3.3.2 in the context of the estimation of rare
event probabilities can also be used for continuous optimization, as described in Botev et al. (2013).
The CE method has been applied to hyperparameter selection of soft margin classification with L1-
SVC (Bourinet, 2014) and regression with L1-ε-SVR (Bourinet, 2015; Bourinet, 2016). In these works
it was used in the specific context of an isotropic Gaussian kernel, which involves a small number
of hyperparameters to tune (2 for classification and 3 for regression based on the ε-insensitive loss
function). With kernels involving many parameters to tune, such as the anisotropic Gaussian kernel,
the covariance matrix adaptation evolution strategy (CMA-ES) algorithm proposed by Hansen (2016)
appears more appropriate than its CE counterpart, as reported by Bourinet (2017b) and Moustapha
et al. (2018).

For the sake of illustration, we describe hereafter the CE-algorithm applied to hyperparameter se-
lection of L1-ε-SVR based on a Gaussian RBF kernel (Bourinet, 2016):

1. The hyperparameter space Θ is explored in base-10 logarithmic scale. Formulating the optimization
problem in log-scale is a common practice that brings stability to optimization algorithms (see, e.g.,
Chapelle et al., 2002). Let us denote log10 θ = (log10 C , log10 ε, log10 γ) a given point in Θ. Let us
define the following base-10 logarithmic ranges for log10 θ : log10 C ∈ [aC , bC], log10 ε ∈ [aε, bε],
log10 γ ∈ [aγ, bγ] (line 2 of Table II.2).

2. At each iteration s > 0, the following sample {log10 θ
(k), 1 ≤ k ≤ K} is composed of realizations of

3 independent and truncated normal PDFs (line 8). bµt−1 and Òσ t−1 respectively denote the mean
and standard deviation vectors of the corresponding untruncated normal PDFs. [a,b] = [aC , bC]×
[aε, bε]× [aγ, bγ] defines the supports of the truncated normal PDFs.

3. K SVR models are trained (lines 9–11) and the respective span approximations of the LOO error are
assessed from Eq. (II.116). These K SVR trainings are independent and can be run in parallel to
reduce the time spent in hyperparameter selection.

4. The so-called elite set of samples {log10 θ
(k), k ∈ Iel} is composed of the Nel = #Iel = dρKe samples

whose approximations of the LOO error are lower than the sample ρ-quantile of {ÝErr
(k)
LOO, 1≤ k ≤ K}

(lines 12–13).
5. From the elite set of samples, new values eµs and eσs are respectively proposed for means and stan-

dard deviations of the untruncated normal PDFs (lines 19–20). These values are smoothed using
a parameter α in order to define the distribution parameters used at the next iteration. The best
candidate obtained so far, denoted θ best, is used for the updated mean vector bµs, and the current
standard deviation vector Òσs−1 is used for the updated standard deviation vector Òσs (lines 21–22).

6. The algorithm iterates until the standard deviation components bσs; j , j = 1, . . . , 3, all fall below a
prescribed accuracy level (line 23).

The following settings have been found to ensure a sufficient level of accuracy of the SVR models.
Such settings are used in the ASVR method presented later in Section II–3.3.

• sample size K = 300, parameter ρ = 0.05,
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• base-10 log-range for parameter C: [aC , bC] = [0, 16],
• base-10 log-range for parameter ε: [aε, bε] = [−13+ log10(ymax − ymin), log10(ymax − ymin)],

where ymin =min{yi , 1≤ i ≤ N} and ymax =max{yi , 1≤ i ≤ N},
• base-10 log-range for parameter γ: [aγ, bγ] = [−16, log10(1/(2d2

min))],
where dmin represents the minimal pairwise-distance between {xi , 1≤ i ≤ N},

• constant static smoothing parameter: α= 0.4,
• standard deviation threshold values for convergence of the CE algorithm:
σth;C = 0.1 , σth;ε = 0.5 , σth;γ = 0.1.

1 // initialization

2 a= (aC , aε, aγ) , b= (bC , bε, bγ) // lower and upper bounds for log10 C , log10 ε and log10 γ

3 bµ0 = (a+ b)/2 , Òσ0 = 100 (b− a) // initial means and standard deviations

4 Ýerrloo,min = +∞ // minimal value of LOO error span approximation

5 s = 0 // iteration counter

6 do

7 s = s+ 1

8 Draw log10 θ
(1), . . . , log10 θ

(K) i.i.d.∼ N[a,b](bµs−1,Òσs−1) where bµs−1 and Òσs−1

.. denote the vectors of means and standard deviations of the untruncated normal PDFs

9 for k = 1 to K

10 ( ef (k) , ÝErr
(k)

LOO ) = train(T , θ (k) ) where T = {(xi , yi) ∈ X ×R, 1≤ i ≤ N}
11 end for

12 Define the sample ρ-quantile Ýerrloo,s of {ÝErr
(k)

LOO, 1≤ k ≤ K}
13 Define the elite set of indices Iel = {k ∈ {1, . . . , K} : ÝErr

(k)

LOO ≤Ýerrloo,s}
14 Define the indice of the sample with lowest LOO error kbest = arg min

k
{ÝErr

(k)

LOO, 1≤ k ≤ K}
15 if ÝErr

(kbest)

LOO <Ýerrloo,min then

16 Ýerrloo,min =ÝErr
(kbest)

LOO // minimal LOO error obtained so far

17 θ best = θ
(kbest) , efbest = ef (kbest) // best solution obtained so far

18 end if

19 eµs; j =
1

#Iel

∑
k∈Iel

θ
(k)
j for j = 1, 2,3 // mean update

20 eσ2
s; j =

1
#Iel

∑
k∈Iel

(θ (k)j − eµs; j)
2 for j = 1, 2,3 // variance update

21 bµs = αeµs + (1−α) log10 θ best // static smoothing of means

22 Òσs = αeσs + (1−α)Òσs−1 // static smoothing of standard deviations

23 while (bσs;1 > σth;C ) or (bσs;2 > σth;ε) or (bσs;3 > σth;γ)

24 θ ∗ = θ best , ef ∗ = efbest // optimal hyperparameter values, optimal SVR model

Table II.2 – Pseudo-code of the proposed CE algorithm for hyperparameter selection.

In Figure II.6, a representation of the LOO error estimate is given at the optimal triple (C ,ε,γ) found
by the CE method. This representation is made through the three pairwise cross-cuts (log10 γ, log10 C),
(log10 γ, log10 ε) and (log10 ε, log10 C), the third parameter being set equal to its optimal value. The
training set T = {(xi , yi) ∈ X ×R, 1 ≤ i ≤ N} is the one used to construct the final LSF surrogate with
the ASVR method, see Section II–3.3. These representations are given for example 1 with µFs

= 27.5
where N = 250 (top plots) and example 2 with n= 100 where N = 480 (bottom plots).

A first comment is that the optimal triple (C ,ε,γ) is found in a very flat basin and at the limits of the
solutions that can be obtained by the interior point method. The white areas correspond to solutions
that are either not feasible or not converged. A second comment is that the shapes of the iso-LOO-error
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Figure II.6 – Span approximation of the LOO error. Example 1, µFs
= 27.5, N = 250 (top plots).

Example 2, n = 100, N = 480 (bottom plots). Cross-cut (log10 γ, log10 C) for optimal ε (left), cross-cut
(log10 γ, log10 ε) for optimal C (middle), cross-cut (log10 ε, log10 C) for optimal γ (right).

contours of the (log10 γ, log10 C)-plot are quite independent of the considered example (similar shapes
are also observed for other examples than the two presented ones). These iso-contours are in close
agreement with the generic shape reported by Keerthi and Lin (2003), whose proposal is to select an
optimal pair (log10 C , log10 γ) (in a classification context) along a given line going through the flat basin.

The CE algorithm used in classification and applied in Bourinet (2014) is not given for the sake
of brevity. It is important to point out that the definition of the elite set of samples in such a context
cannot be made based on the sole consideration of the span estimate of the LOO error. Several pairs
(log10 C , log10 γ)may in fact ensure a zero LOO error estimate and we need to add extra criteria to define
the elite set of samples. It is proposed to select the samples with the lowest training errors among those
ensuring a zero LOO error. If the size of this set is still greater than dρKe, then we suggest keeping
the samples achieving the lowest level of regularization on the SVC solution, i.e. corresponding to the
lowest parameter C . It is worth noting that this approach differs from the one proposed by Basudhar
(2011), which consists in selecting the lowest γ parameter under the assumption of no training errors
ensured by a sufficiently large value of C .

II–3 Surrogate-based reliability assessment

II–3.1 Short review of existing methods

This section gives a short overview of the works based on surrogate models in the specific context of
small failure probability estimation. These works are mainly applied to structural mechanics problems,
and are therefore referred to as structural reliability problems in the literature. The reader may find ad-
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ditional details in the following references focusing on uncertainty propagation (Hurtado and Alvarez,
2001; Gomes and Awruch, 2004; Bucher and Most, 2008; Sudret, 2012). The constructed approximate
models are most often used as surrogate models, i.e. in replacement of a true and costly-to-evaluate
function. Some other methods use these approximate models in conjunction with sampling methods,
either to improve the performances of the sampling method or to correct the potential bias of the con-
structed approximate model.

(a) Polynomial response surfaces (RS), polynomial moving least-squares (MLS) regression

The first occurrence of polynomial response surfaces (RS) used as surrogates of limit-state functions
(LSF) in structural mechanics is due to Faravelli (1989). This seminal work then inspired many other
researchers in the nineties (Bucher and Bourgund, 1990; Enevoldsen et al., 1993; Rajashekhar and
Ellingwood, 1993; Kim and Na, 1997; Das and Zheng, 2000), with variants of the method based on
the choice of the polynomial approximation and the way the training points were selected to construct
the RS. In all these works, a quadratic multivariate polynomial representation is assumed, with or
without cross-terms, and the approximation is constructed in the neighborhood of a supposedly unique
MPFP. A weighted quadratic polynomial regression was preferred by Bourinet et al. (2000), Kaymaz and
McMahon (2005), and Nguyen et al. (2009). In Gayton et al. (2003), a complete quadratic polynomial
approximation is used with a LOO procedure in order to derive confidence intervals on the MPFP. In
order to limit the number of terms in the polynomial basis, Roussouly et al. (2013) used a forward
regression method to select the most important terms. They also provide a bootstrap-based confidence
interval on the failure probability. In all RS approaches, the quality of the approximate model and
therefore of the failure probability estimate is highly dependent on the shape of the true LSS, as pointed
out in some of these works. The failure probability estimate may be severely biased if the single MPFP
assumption does not hold or if the polynomial approximation is too “rigid” for the true LSF. For a more
flexible polynomial model, a local approximation of the true function may be preferred. This can be
achieved by means of moving least-squares polynomial regression, as addressed by Bucher and Most
(2008), Proppe (2008), and Kang et al. (2010) in the context of reliability assessment.

(b) Polynomial chaos expansions (PCE)

Polynomial chaos expansions (PCE) are rooted in the fundamental work of Ghanem and Spanos (1991)
on stochastic finite elements, and the generalized version of PCEs is based on the Wiener-Askey exten-
sion of Xiu and Karniadakis (2002). Their non-intrusive use as LSF surrogates in reliability analysis was
originally explored by Sudret (2000). The application of PCE surrogate models to structural reliability
was further investigated in the works of Sudret and Der Kiureghian (2002) and Choi et al. (2004). For
the estimation of rare failure events the accuracy of the PCE, usually achieved around mean values,
must occur in the tail of the joint distribution of X, more precisely in the most important subregions
of the failure domain Fx. For this purpose, the idea of Paffrath and Wever (2007) is to use a shifted
and windowed Hermite PCE to enhance the accuracy of the approximate model in the failure domain.
The shift is selected based on a known FORM MPFP P∗ and the windowed PCE corresponds to a local
approximation around this MPFP. When the number of random inputs n is large, the number of terms in
the PCE basis blows up and it is necessary to consider the construction of sparse PCE models. The most
significant terms of the PCE are selected with adaptive algorithms in Blatman and Sudret (2010) and
Hu and Youn (2011) and the proposed algorithms are applied to structural reliability problems. Sparse
PCEs, based on least angle regression, are also proposed by Blatman and Sudret (2011), see the PhD
manuscript of Blatman (2009) for further details.
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(c) Artificial neural networks (ANN), radial basis function (RBF) networks

The first application of artificial neural networks (ANN) to structural reliability is due to Papadrakakis
et al. (1996), based on the training of a feedforward multilayer perceptron (MLP). The authors’ interest
is in the collapse of elasto-plastic structures, and failure probabilities are assessed by means of crude
MC and IS. The use of ANNs as surrogate models for reliability assessment was later investigated by
several researchers, among whom Hurtado and Alvarez (2000), Deng et al. (2005), Hosni Elhewy et al.
(2006), Most and Bucher (2006), Cardoso et al. (2008), and Cheng and Li (2008). In these works, the
feedforward multilayer perceptron with three layers (i.e. with only one hidden layer) and a sigmoid
transfer function is a common choice. In most cases, a crude MC simulation is applied to estimate the
failure probability based on the ANN model. ANNs have also been used in conjunction with subset simu-
lation (SS) to increase the number of samples per subset level and improve SS efficiency (Papadopoulos
et al., 2012). Selecting an optimal ANN architecture with no prior information about the function to
approximate is known to be a difficult task. The choices that are made have consequences on the quality
of the ANN predictions. If too large a number of nodes is e.g. chosen in the hidden layers, the network
can fit the data well (small empirical risk), but it is also well known that it will have poor prediction
performances (large expected risk). Some simple heuristics or tricks are available to choose a “good”
ANN architecture (see, e.g., LeCun et al., 1998), but these recommendations are rather general ones
and the best architecture is often problem-dependent. Among ANNs, the use of radial basis function
(RBF) networks is less common for reliability assessment (see, e.g., Deng, 2006, where three RBF net-
works are used with crude MC, FORM and SORM). The reader may also refer to Hurtado and Alvarez
(2001) for an overview of MLP and RBF networks in the specific context of structural reliability, with
details about their training.

(d) Support vector machines (SVM)

Support vector machines (SVM) were introduced to structural reliability by the seminal works of Rocco
and Moreno (2002) and Hurtado and Alvarez (2003). In these works, the estimation of a failure prob-
ability is considered as a binary classification problem, where the two classes correspond to the failure
and safe domains. In line with these original approaches, the use of SVC as surrogate models was also
investigated by Deheeger and Lemaire (2006), Li et al. (2006), Most (2007), Basudhar et al. (2008),
Basudhar and Missoum (2010), Bourinet et al. (2011), and Bourinet (2014). An alternative approach
consists in approximating the LSF from a regression viewpoint. In such a case, the constructed approx-
imation uses the full information provided by the evaluation of the LSF at the points of the training
set (i.e. the values in R), and not just the binary information given by the signs of these evaluations.
This type of approach was followed by Pai and Hong (2006), Chen (2007), Yuan et al. (2009), Dai
et al. (2012b), Bourinet (2015), Bourinet (2016), and Bourinet (2017b), by means of SVR based on
the ε-insensitive loss function. The use of LS-SVM has remained rather marginal for reliability analysis
(see, e.g., Guo and Bai, 2009b; Guo and Bai, 2009a; Wang et al., 2013, for application examples in
classification and regression).

The training data set T is selected adaptively in general. In classification-based approaches, it has
mainly been assumed that at least one data point was needed in the failure domain to start the adaptive
training. One solution was often to consider sufficiently widespread initial samples to meet such a
condition (see, e.g., Li et al., 2006). Note that it is not mandatory to have data points in the two
classes to start the training process, see e.g. the adaptive method proposed by Bourinet (2014) which
consists in selecting SVM classifiers associated with a decreasing sequence of positive LSF values, the
final one being equal to zero and therefore corresponding to the LSS. In SVM classification, several
strategies have been developed to generate new points which are sequentially added to the training set.
In Deheeger and Lemaire (2006), it is suggested to take samples belonging to the SVC margin. In Most
(2007), the idea is to select the point of a given MC sample set that minimizes both the distance to the
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SVC classifier eF0
u = {u ∈ Rn : ef (u) = 0} in the standard normal space and an inter-point potential

energy. In Basudhar and Missoum (2010), it is proposed to include points on the SVC classifier eF0
u

that maximize the distance to the closest training point. Alternative strategies have been applied to
SVR-based approaches. A common idea shared in a few works has been to elaborate training sets from
Markov chain samples or sample candidates (Yuan et al., 2009; Dai et al., 2012b; Bourinet, 2014;
Bourinet, 2016; Bourinet, 2017b).

In SVM-based reliability assessment, the isotropic Gaussian RBF kernel has often been preferred,
despite a few works based on the polynomial kernel (Rocco and Moreno, 2002; Li et al., 2006; Basud-
har and Missoum, 2010). As already pointed out by Li et al. (2006) and Chen (2007), the selection
of optimal hyperparameters is a key issue for the accuracy of the SVM model. The method used to
select these hyperparameters is not always clear in the above cited works, and it is sometimes not even
mentioned. A simulated annealing algorithm based on a sum of square errors and normalized root
mean square error measure is used by Pai and Hong (2006). A genetic algorithm, again based on this
same error measure, is preferred in Pai (2006). A genetic algorithm is also applied for hyperparameter
selection by Chen (2007), but here based on a 5-fold CV error. In the works of Basudhar (2011), it is
proposed to take the lowest parameter γ for an isotropic Gaussian RBF kernel or the lowest degree d
for a polynomial kernel, under the assumption of no training errors of the SVC classifier (C being set to
an “infinite” value). In the 2SMART method of Bourinet et al. (2011), a grid search based on a 3-fold
CV error is used to select an optimal pair (C ,γ). Regarding the solver of the SVM QP problem, there
are often no details reported in the papers. A SMO algorithm is e.g. used in Most (2007) and Bourinet
et al. (2011) and a SQP algorithm in Basudhar and Missoum (2010).

The reliability problems addressed by SVM surrogates are most often low-dimensional, i.e. n≤ 10.
A three-span five-story frame structure with 21 random inputs is solved by Most (2007) but it can be
shown that the corresponding LSS in the standard normal space is almost linear. High-dimensional
problems with weakly nonlinear LSS are also studied by Most (2007) (example 2 with a = 3 and n up
to 100) and by Bourinet (2011; 2016) (same example with n up to 250). Problems featuring disjoint
failure domains or multiple MPFPs have also been reported in the literature. These problems are often
limited to a very few random inputs, bidimensional cases in general except in Most (2007), and to a
very few disjoint domains or multiple MPFPs.

(e) Kriging (or Gaussian process prediction)

Kriging (or Gaussian process emulators) described in Section II–4 are also used as surrogate models
for rare event probability estimation. The first occurrences of kriging surrogates in structural reliability
date back to 2005 and are due to Kaymaz (2005) and Schueremans and Van Gemert (2005).

The training set, often called design of experiments (DoE) in the kriging literature, is, as with SVMs,
constructed adaptively. In Kaymaz (2005), a simple two-step procedure was proposed: construction
of an initial training set centered on mean values, followed by the construction of a second set shifted
toward the MPFP found by FORM run on the kriging surrogate trained on the initial training set. Several
criteria were later proposed for the enrichment of an initial training set. These criteria define the optimal
location(s) of the next point(s) to add to the training set. The central idea of these criteria used in
kriging-based adaptive strategies is to make a controlled tradeoff between the exploration of the regions
of interest (subdomains of Fx with high probability content in reliability assessment) and the reduction
of the global uncertainty of the surrogate model (unexplored regions ofX due to the limited information
available through the current training set T ). These criteria are defined in terms of the kriging predictor
and the kriging variance, which are directly provided by the kriging model that is trained, see Section II–
4. The most popular criteria are due to Ranjan et al. (2008), Bichon et al. (2008), Picheny et al. (2010),
Echard et al. (2011), and Bect et al. (2012). The criteria defined by Ranjan et al. (2008), Bichon et
al. (2008), and Echard et al. (2011) are heuristic extensions of the expected improvement criterion
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of Jones et al. (1998). Their corresponding functions are respectively called improvement function,
expected feasibility function and learning function U . These criteria directly depend on the marginal
posterior distribution at a given point x ∈ X (Gaussian distribution). For this reason these simple
functions are fast to evaluate. Conversely, the stepwise uncertainty reduction (SUR) criterion of Bect
et al. (2012) and the integrated mean square error of Picheny et al. (2010) are integral criteria, which
are therefore more costly to evaluate. The SUR strategy can be generalized to more than one point
added at a time, as proposed by Chevalier et al. (2014). For complete descriptions and a numerical
comparison of these criteria (including their respective costs), the reader may refer to Bect et al. (2012)
and Chevalier (2013, Appendix E).

In reliability assessment, ordinary kriging is most often applied for the training of surrogate models.
It is argued in Bichon et al. (2011) that universal kriging does not make the adaptive strategy more
efficient. Since it requires additional parameters to be tuned, these authors’ preference is ordinary
kriging. A recent alternative approach was proposed by Schöbi et al. (2017), which consists in using
a finite set of multivariate orthogonal polynomials as the trend of a universal kriging model (the most
common practice in universal kriging is to consider a multivariate linear trend). The optimal sparse set
of polynomials is obtained by least-angle regression. Such an approach seems to improve the results in
terms of the total number of LSF evaluations compared with ordinary kriging.

In most of the reliability analyses based on kriging surrogates, the covariance function is taken
as a translation-invariant function. The correlation function is often assumed to be componentwise
anisotropic with Gaussian or Matérn univariate correlation functions. For the Gaussian case, the ex-
pression of the correlation function is identical to that of the kernel given in Eq. (II.76). It is worth
pointing out that the reliability problems addressed by kriging are low-dimensional in general (n≤ 10),
which results in a small set of parameters to tune with componentwise anisotropic functions. High-
dimensional examples are addressed by Echard et al. (2011) and Huang et al. (2016), where example 2
is taken with n ∈ {40,100} and a = 3.

In kriging-based reliability approaches, a space-filling initial training set is first constructed (usually
based on a LHS). Its size is arbitrarily chosen, most often proportionally to the dimension n of the
problem (and therefore irrespective of the complexity of the true function to surrogate). One of the
above-cited adaptive strategies for the optimal placement of new points is then applied. In the AK-
MCS method (Echard et al., 2011), the new points are chosen among a MC sample set of a given size,
which needs to be chosen according the targeted failure probability level. In the case of low failure
probabilities this sample set becomes too large, and more efficient techniques may be used, such as
FORM-based importance sampling (Echard et al., 2013) or subset simulation (Huang et al., 2016).

(f) Other types of surrogate models, other uses of approximate models

A few other methods have been derived for surrogate-based reliability assessment, whose review is
omitted in this report for the sake of brevity. Among these other methods, high dimensional model
representation (HDMR) techniques (Rabitz et al., 1999) are worth noting and were found useful for the
estimation of small failure probabilities by Chowdhury et al. (2009a; 2009). Another version of HDMR,
used in conjunction with moving least squares, is also proposed by Chowdhury and Rao (2009b). The
main idea of HDMR is to capture the high-dimensional input-output relationships by neglecting higher-
order input correlations. In the methods developed by Chowdhury and his coauthors, the sampling
scheme is adapted according to the order of the HDMR representation (first or second-order).

In all the methods reviewed so far, the approximate model was used as a substitute for the true and
costly-to-evaluate response function (which justifies the use of a surrogate model). It is in fact never
sure that the approximation error between the surrogate and true models is acceptable. Whatever the
complexity of the approximate model, we may find an even more complex true function that will not be fitted
with sufficient accuracy. This issue is considered as the main drawback of surrogate-based approaches.
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In order to address this main issue, it is worth devising methods that are able to either 1) reduce or
better cancel the approximation error that may appear in the surrogate-based approach, or 2) take ad-
vantage of the approximate model to obtain a failure probability estimate more efficiently, and possibly
with no bias.

The first objective has been pursued in a few works. A method is proposed by Au (2007) for a
consistent failure probability estimate based on an approximation of the true LSF. With this sampling
method, an unbiased failure probability estimate is obtained based on the theorem of total probability.
The approximate model may be a surrogate model or a simplified model, e.g. an elastic model instead
of an elasto-plastic one. Another method is proposed by Li and Xiu (2010) to correct a potentially
biased failure probability estimate induced by an inaccurate surrogate model (the method is applied to
generalized PCE models of insufficient accuracy in the paper). The main idea of this hybrid method
is to generate a small set of samples from the true and expensive model close to the LSS and many
other samples from the cheap-to-evaluate surrogate model elsewhere. Li et al. (2011) use this hybrid
approach in conjunction with the CE method for enhanced efficiency in the case of rare event probability
estimation. The meta-IS method of Dubourg et al. (2013), based on kriging, achieves the same purpose
in its second stage, through the computation of a correction factor based on samples of the true model.
How the efficiency of these methods varies with the approximation error of the surrogate model and
the complexity/dimension of the true function has not been quantified, to the author’s knowledge.
Efficiency is expected to be altered, as pointed out by Dubourg et al. (2013) in the specific case of the
meta-IS method (see example 1 with µFs

= 27.5 for which a crude kriging surrogate is obtained).

The second objective is pursued e.g. in adaptive importance sampling methods based on approxi-
mate models, such as those introduced in Section I–3.3.1 (see, e.g., Balesdent et al., 2013; Dubourg et
al., 2013; Cadini et al., 2014, for kriging-based IS, and Dai et al., 2012a, for ε-SVR-based IS). Another
recent method proposed by Li and Der Kiureghian (2016) also aims to reach such an objective. The
proposed method, based on subset simulation, avoids too many calls to the true LSF and uses a kriging
surrogate trained on the fly instead. This is in practice based on a modification of the acceptance ratio
of SS (delayed acceptance strategy), which is explicitly expressed in terms of the probability of belong-
ing to the kriging-based intermediate failure domain. According to Li and Der Kiureghian, this method
yields unbiased failure probability estimates but its efficiency depends on the quality of the approximate
model (i.e. on the approximation error w.r.t. the true LSF).

II–3.2 2SMART method

This section gives a short description and the main ideas of the 2SMART method (see Bourinet et al.,
2011, for more details including a pseudo-code for the implementation of the method). Its perfor-
mances, assessed on a few selected examples, are commented in Section II–3.4 compared with those of
the ASVR method more recently proposed by Bourinet (2016) and described in Section II–3.3.

This adaptive surrogate-based reliability method was elaborated for the estimation of small failure
probabilities of time-invariant problems. The method hinges on SVMs used for classification. The main
objective was to bring improvements to the method proposed by Hurtado and Alvarez (2003) based on
the prospective work of Deheeger and Lemaire (2006).

The proposed SVM settings used in the 2SMART method are:

• The method is based on L1-SVC models and an isotropic Gaussian RBF kernel.
• The QP solver is libsvm embedded in the Spider Toolbox for Matlab, Version 1.71 (2006). It is therefore

based on an SMO algorithm.
• Hyperparameter selection is made via a grid search technique over γ only. C is set to infinite.
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1 s = 0 , y0 = +∞ , T0 =∅ // initialization of algorithm

2 while ys > 0 // loop on each intermediate threshold value ys

3 s = s+ 1
4 Define set of Nu data pairs { (u( j), y ( j)) , j ∈ Iu } where y ( j) = G(u( j)) and #Iu = Nu

5 Define set of Nn data pairs { (u( j), y ( j)) , j ∈ In } where y ( j) = G(u( j)) and #In = Nn

6 Define ys as the p0-quantile of { y ( j) , j ∈ In } where p0 = 0.1. Set ys = 0 if ys < 0
7 Define initial training set at level s: Ts = Ts−1 ∪ { (u( j), sgn(y ( j) − ys)) , j ∈ Iu ∪ In }
8 Train initial SVC classifier efs at level s on Ts

9 for m= 1 to M // update of SVC classifier efs at each iteration m

10 Define sample set W = { u( j) , j ∈ Iw } where #Iw =





N1 if m< m1 (localization stage)
N2 if m1 ≤ m< m2 (stabilization stage)
N3 if m2 ≤ m≤ M (convergence stage)

and where





Imargin ∈ Iw : points in the margin
Iswitch ∈ Iw : points switching from one side of the classifier to the other
Iclose ∈ Iw : closest points to the classifier efs(u) = 0

11 Select Na = Na margin + Na switch + Na close additional training points whose indices j belongs to:



Ia margin ⊂ Imargin where #Ia margin = Na margin

Ia switch ⊂ Iswitch where #Ia switch = Na switch

Ia close ⊂ Iclose where #Ia close = Na close

12 Evaluate LSF at new training points { y ( j) : j ∈ Ia margin ∪ Ia switch ∪ Ia close } where y ( j) = G(u( j))
13 Update training set: Ts = Ts ∪ { (u( j), sgn(y ( j) − ys)) , j ∈ Ia margin ∪ Ia switch ∪ Ia close }
14 Update SVC classifier efs by a new training on Ts

15 end for
16 Assess estimate beps of eps =P

�eEs

�
if s = 1 or eps =P

�eEs|eEs−1

�
if s > 1 where eEs = { efs(U)≤ 0 }

17 Define p0N1, p0N2 and p0N3 seeds to be used at next level s if ys > 0
18 end while
19 Set m= s, compute failure probability estimate as bp2SMART

f =
∏m

s=1
beps

Table II.3 – General flowchart of the 2SMART method.

A general flowchart of the method is given in Table II.3 (for a detailed pseudo-code, see Bourinet
et al., 2011). The 2SMART method proceeds similarly to the subset simulation method. Intermediate
threshold values ys of the LSF are selected until ys becomes lower than zero. At each intermediate
level s, a SVC surrogate model efs is constructed iteratively. At each iteration m= 1, . . . , M , Na new data
pairs are defined and added to the training set T . For each m, the updated SVC model efs is obtained by
training on the newly-defined set T . Let us denote eFu, s the obtained approximation of the true failure
domain Fu, s:

eFu, s =
�
u ∈Rn : efs(u)≤ 0

	 ≈ Fu, s = {u ∈Rn : G(u)≤ ys} . (II.124)

The approximate failure probability of the 2SMART method is given by:

p
2SMART
f =

m∏
s=1

eps , (II.125)

where:
ep1 = P

�eE1

�
= Eϕn

�
1 eFu, 1

(U)
�

, (II.126)

and, for s = 2, . . . , m:
eps = P

�eEs|eEs−1

�
= Eϕn(·|eEs−1)

�
1 eFu, s

(U)
�

. (II.127)

Practically, these probabilities are estimated by the SS method applied to the constructed SVC surrogate
models efs for s = 1, . . . , m.
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At each level s, the training set T is composed of the following points, see Table II.3:

• Initially, Nu points {u( j) , j ∈ Iu } (see lines 4) and Nn points {u( j) , j ∈ In } (see line 5),
• at each iteration m, Na points {u( j) , j ∈ Ia margin ∪ Ia switch ∪ Ia close } (see line 11).

During the iterative construction of the SVC surrogate, the selection of the Na new points is made
from a set of samples denoted W (see Table II.3, line 10). The way in which this set is composed
depends on m, and the number of additional training Na also varies with m (see Bourinet et al., 2011,
Table A.1, for a full description of the parameter settings of the 2SMART method). The cardinality
of W is increased in three steps, from a coarse sample set taken initially (#W = N1 = 10, 000 for
1 ≤ m < m1), to a finer set (#W = N2 = 50,000 for m1 ≤ m < m2) and finally to a more refined set
(#W = N3 = 200,000 for m2 ≤ m ≤ M). The number of iterations varies with the input dimension n
of the reliability problem: m1 = b6(n/2)0.2e, m2 = b12(n/2)0.2e and M = m2 + 16.

For the first level (s = 1), W is composed of uniform samples in the n-dimensional hypersphere
Sn(ru) of radius ru = max{‖u( j)‖ : u( j)

i.i.d.∼ ϕn , j = 1, . . . , N3 } for m < m2, see the left column of
Figure II.7, top and middle plots. For s = 1 and m2 ≤ m ≤ M , W is composed of N3 n-dimensional
standard normal samples.

For the next levels (s > 1), the sample setW is generated by means of the componentwise Metropolis
sampler of Au and Beck (2001) for m2 ≤ m≤ M (m-M algorithm). For m< m2, the spread of the sample
candidates is widened by increasing the acceptance ratio αk

ϕ,i by a factor λ > 1 in the m-M algorithm. In
practice, αk

ϕ,i is replaced by λαk
ϕ,i in line 11 of the algorithm, see Table I.2. The corresponding algorithm

is referred to as the λα-m-M algorithm in the following. We choose λ = λ1 = 7 for 1 ≤ m < m1 and
λ = λ2 = 3.5 for m1 ≤ m < m2, see the corresponding samples in the right column of Figure II.7, top
and middle plots.

From the SVC model constructed at each iteration m, it is possible to identify three subsets of samples
inW: those that are in the margin of the SVC (set of indices denoted Imargin), those that are switching
from one class to another during two successive iterations (set of indices denoted Iswitch) and those
that are the closest to the classifier efs(u) = 0 (ordered set of indices denoted Iswitch). The Na additional
training points are selected within these sample subsets: Na margin cluster centers of {u( j) , j ∈ Imargin },
Na switch cluster centers of {u( j) , j ∈ Iswitch }, and Na close points of {u( j) , j ∈ Iclose } that are the closest
to the SVC classifier. The ratios Na margin/Na, Na switch/Na and Na close/Na vary with each iteration (see
Bourinet et al., 2011, Table A.1, for details). The number of additional training points Na varies with
iterations m from 3

p
n to 5

p
n.

For s = 1, the set of points {u( j) , j ∈ Iu } is composed of Nu samples uniformly distributed in Sn(ru)
(see Table II.3, line 4). For s > 1, these Nu points are cluster centers of N1 samples generated by the
λ1α-m-M algorithm and belonging to eFu, s−1.

For s = 1, points {u( j) , j ∈ In } are Nn standard normal samples (see Table II.3, line 5). For s >
1, these points are samples generated by the m-M algorithm and belonging to eFu, s−1. Note that the
determination of the threshold values ys of the intermediate level s is based on these Nn samples. In
the proposed implementation of the 2SMART method, Nn is set to 100.

II–3.3 ASVR method

This section presents the adaptive surrogate-based reliability method proposed by Bourinet (2016).
Early developments of this method can also be found in Bourinet (2015). Its performances are com-
mented in Section II–3.4. This method referred to as ASVR method is characterized by the following
properties:



106 Chapter II. Surrogate models & adaptive strategies for uncertainty propagation

Step
s = 1 s > 1

Uniform samples in Sn(ru) λ1α-m-M samples ∈ eFu, s

Localization stage

N1 sampling points
Iteration 1≤ m< m1

Uniform samples in Sn(ru) λ2α-m-M samples ∈ eFu, s

Stabilization stage

N2 sampling points
Iteration m1 ≤ m< m2

Samples ∼ ϕn m-M samples ∈ eFu, s

Convergence stage

N3 sampling points
Iteration m2 ≤ m≤ M

Figure II.7 – Generation of sample setW (coarse to fine sampling process).
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• Adaptive surrogate models. An iterative sequence of surrogate models { eGs : u 7→ eGs(u) , s = 1, . . . , sfinal }
is constructed in the standard normal space. A key idea of the method is to first explore the safe do-
main as fast as possible with surrogate models of moderate accuracy. The accuracy of the surrogate
models is only increased in the final iterations s, when the failure domain Fu is reached by the gener-
ated training samples. This is in contrast with the conceptual idea of the 2SMART method (Bourinet
et al., 2011) which constructs accurate surrogate models at each SS-like intermediate threshold value
ys of the LSF.

• Surrogate regression models. The ASVR method uses SVM surrogate models in regression, as also
proposed by Pai and Hong (2006), Chen (2007), Yuan et al. (2009), and Dai et al. (2012b). More
specifically, it uses L1-ε-SVR models based on the ε-insensitive loss function, see Section II–2.2.1.
Although reliability assessment can be viewed as a binary classification problem, the author’s opinion
is that exploiting theR-value of the LSF is more informative than its sign alone is. Based on the same
adaptive strategy, it has been noticed that SVR are superior to SVC in terms of the accuracy of their
failure probability estimates (see Bourinet, 2014, for preliminary results based on L1-SVC).

• Enrichment of the training set T . Additional training points are defined at each iteration s of the
method. These points are taken as a random subset of MCMC samples generated based on the cur-
rently constructed SVR surrogate eGs. As for the 2SMART method, this is specifically achieved by
means of the componentwise Metropolis sampler of Au and Beck (2001) (m-M algorithm), see Ta-
ble I.2. MCMC samples were also used in prior works to adaptively populate important regions of
the failure domain (see, e.g., Proppe, 2008, for their use with polynomial moving least squares, and
Yuan et al., 2009; Dai et al., 2012b, with SVR). Distance-based and other space-filling driven criteria
often used in the literature may be quite efficient in low-dimensional spaces, but it is the author’s
belief that such criteria do not scale well with the dimensionality n of the reliability problem.

• Local regression, left-out data for testing. The cost of SVR training increases with the size of the training
set T . In order to keep the training runtime reasonable13, the surrogate models are trained on a subset
of the currently available data. Only the data pairs with the lowest LSF values are selected, and the
left-out data pairs are used for testing. We therefore make a local regression on the closest data to
the failure domain Fu. The left-out data constitutes the so-called trailing set. If some errors occur in
this set (points incorrectly classified w.r.t. the currently-selected intermediate threshold value ys), the
corresponding data pairs are transferred to the training set T and a new SVR surrogate eGs is trained.

• Highly accurate SVR surrogate models. The use of highly accurate SVR surrogate models at each
iteration s is of paramount importance for the efficiency and robustness of the adaptive strategy. In
the ASVR method, this is achieved thanks to 1) the use of an interior point algorithm to solve the SVR
QP problems, and 2) the selection of optimal hyperparameter values by minimizing the span bound
approximation of the LOO error with the CE method, see Section II–2.4.3.

The main conceptual ideas of the ASVR method are depicted in Figure II.8 and a pseudo-code is
given in Table II.4. The algorithm is composed of three main phases (1, 2 and 3) which are iterated
with s. These phases differ in the way the training set is composed and how the additional training
points are defined. The transition from phase 1 to 2 occurs when the intermediate threshold level ys
becomes lower than zero. The transition from phase 2 to 3 occurs when the mean ratio of switching
points rSS switch drops below the given value of 0.1, see Table II.4, lines 34–39. This criterion quantifies
the accuracy of the constructed SVR surrogate.

13From a general perspective, the training time should not be an issue in surrogate modeling. In several problems, the
computational burden may be alleviated by an efficient computer implementation of the algorithms (e.g. parallel training).
However it often becomes an issue in practical situations, which justifies some efforts to lower this time as much as possible.
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(a) Initial training set, SVR surrogate eG1

: {ui : G(ui)> y1}
: {ui : G(ui)< y1}

eG1(u) = y1

(b) uSS samples, new training points

: uSS samples

: new training points

eGs(u) = ys

(c) Current training set, new training points

: current training set

: new training points

eGs(u) = ys

(d) Trailing points, new training set

: trailing points

: new training set

eGs(u) = ys

(e) New threshold value ys+1

: {ui : G(ui)> ys+1}
: {ui : G(ui)< ys+1}

eGs(u) = ys

(f) Updated SVR surrogate eGs+1

: {ui : G(ui)> ys+1}
: {ui : G(ui)< ys+1}

eGs(u) = ys

eGs+1(u) = ys+1

(g) uSS samples at current iteration s

: uSS samples

eGs(u) = ys

eGs−1(u) = ys

(h) uSS switch samples, new training points

: uSS switch samples

: new training points

eGs(u) = ys

eGs−1(u) = ys

Figure II.8 – Main conceptual ideas of the ASVR method.

The parameters of the ASVR method are: initial and minimal numbers of data pairs in T , resp. N
and Nmin, and ratio pa over N of additional training points at each iteration s (this ratio is considered
specific to each phase, i.e. pa = pa1, pa2 or pa3). The default settings of these parameters can be found
in Table II.5.
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1 // initialization
2 phase= 1 , pa = pa1 // type of training phase, current ratio pa to use
3 s = 0 , sfinal = +∞ // current iteration, maximal number of iterations
4 Ns = 0 // total number of calls to LSF
5 u=∅ , g=∅ // recorded sets of u-vectors and corresponding g-values
6 Itrain =∅ , Itrail =∅ // sets of indices corresponding to training and trailing points

7 // main algorithm
8 Na = N , ua = { ui : i = 1, . . . , Na } where ui are realizations of i.i.d. Ui ∼ ϕn

9 do
10 ga = G(ua) // evaluate Na new training points ua

11 u= { u , ua } , g= { g , ga } // update recorded sets of u-vectors and corresponding LSF values
12 // define sets of indices of training and trailing points
13 Itrain = Itrain ∪ { (Ns + 1), . . . , (Ns + Na) } , Ntrain = #Itrain

14 I = sort( gItrain
, ’ascend’ ) , Itrain = Itrain(I)

15 if (phase= 1) and (Ntrain > Nmin) then
16 Itrain = Itrain; 1,...,Nmin

, Ntrain = Nmin

17 Itrail = Itrail ∪ Itrain; (Nmin+1),...,Ntrain

18 end if
19 Ns+1 = Ns + Na , s = s+ 1 // update number of calls to LSF, increment s
20 if (phase= 1) then
21 ys =median( gItrain; 1,...,N

) // select current threshold value of the LSF
22 if ys < 0 then , ys = 0 , phase= 2, pa = pa2 , end if
23 else
24 ys = 0
25 end if
26 do // train SVR until no error is made in trailing points
27 eGs = train( uItrain

, gItrain
)

28 Iatrail = { i ∈ Itrail : eGs(ui)≤ ys }
29 Itrain = Itrain ∪ Iatrail , Ntrain = #Itrain

30 Itrail = Itrail\Iatrail

31 while Iatrail 6=∅
32 // assess probability estimate bps and generate training point candidates by subset simulation
33 ( bps , uSS ) = SubSim( NSS , pSS , eGs − ys )
34 // assess ratios of switching samples in uSS set
35 for k =max{ 1 , (s−max{3, b1/pae}) } to (s− 1)
36 ISS switch; k = { i ∈ {1, . . . ,#uSS} : eGk(uSS; i)> ys }
37 rSS switch; k = #ISS switch; k/#uSS

38 end for
39 rSS switch =mean(rSS switch) , uSS switch = uSS;ISS switch; s−1

40 if (phase= 2) and (rSS switch < 0.1) then , phase= 3 , pa = pa3 , sfinal = s+ b3/pae , end if
41 // select Na new training points
42 Na = paN
43 switch phase
44 case {1, 2}, ua = uSS; 1,...,Na

45 case 3, ua = uSS switch; 1,...,Na

46 end switch
47 while (s < sfinal)
48 Nt = Ns // total number of calls to LSF
49 bpASVR

f = bps // failure probability estimate

Table II.4 – Pseudo-code of ASVR method.
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General parameters

N = 50 , Nmin = 100 initial, minimal number of data pairs in T
pa1 = 1/10, pa2 = 1/2, pa3 = 1/2 ratios (over N) of new data pairs added at each iteration

Parameters of the m-M algorithm

pSS = 0.5 prescribed probability level p0 of SS

NSS = 10, 000/pSS = 20, 000 sample size at each subset level

Table II.5 – Settings of the ASVR method.

The algorithm proceeds as follows:

1. A first SVR surrogate eG1 is trained from an initial training set T composed of N data pairs { (ui , G(ui)) ,
i = 1, . . . , N) } where ui are sampled from the n-dimensional standard normal PDF ϕn. The first
intermediate threshold level y1 is defined as the median of the sample {G(ui) , i = 1, . . . , N } (Ta-
ble II.4, line 21) and a first intermediate LSS eF0

u, 1 = {u ∈ Rn : eG1(u) = y1 } is obtained (Fig-
ure II.8a).

2. From this first SVR surrogate eG1 and more generally from those constructed at any iteration s and
denoted eGs, subset simulation (SS) is applied to the LSF u 7→ eGs(u)− ys. The prescribed probability
level of SS is set to pSS = 0.5 and the sample size at each level to NSS = 20, 000, see Table II.5.
The objective is twofold: 1) find an estimate of the probability ps = P(eGs(u) ≤ ys), and 2) define
a set of samples uSS = {uSS; i : i = 1, . . . , NuSS

} ∼ ϕn(·|eEs) where eEs = {eGs(U) ≤ ys} and NuSS
is

set to pSSNSS = 10, 000. This set uSS is composed of MCMC samples of the last level of SS verifying
eGs(uSS; i) ≤ ys for i = 1, . . . , NuSS

(Figure II.8b and Table II.4, line 33). Note that we have at least
pSSNSS samples verifying such a condition in the final level of SS. Na = paN samples are then ran-
domly selected in the set uSS (Figure II.8b and Table II.4, line 44) and used as additional training
points at the next iteration (Figure II.8c, Table II.4, lines 10–11).

3. At each iteration s, the intermediate threshold level ys is defined as the median of the N smallest LSF
values of the training data pairs T = { (ui , G(ui)) , i ∈ Itrain } where Itrain denotes the set of indices
of the training data (Table II.4, lines 14 and 21) and a new SVR surrogate eGs is trained (Table II.4,
line 27).

4. The algorithm iterates with the above-defined steps until the size of the training set T reaches Nmin.
Then, at each next iteration, the Na data pairs with the largest LSF values are withdrawn from the
training set T and transferred to so-called trailing set (Figure II.8d, Table II.4, lines 15–18) prior to
the training of a new SVR surrogate.

5. A new intermediate threshold level ys+1 is defined as the median of the N smallest LSF values of the
training data pairs T = { (ui , G(ui)) , i ∈ Itrain } (Figure II.8e, Table II.4, lines 14 and 21) and a new
SVR surrogate eGs+1 is trained (Figure II.8f and Table II.4, line 27).

6. The points belonging to the trailing set must verify eGs+1(ui) > ys+1 for i ∈ Itrail. If this condition
is not met, the corresponding data pairs are withdrawn from the trailing set and transferred to the
training set T , and the SVR surrogate eGs+1 is updated by a new training (Table II.4, lines 26–31).
This testing/training process is repeated until no error is made in the trailing set.

7. The algorithm iterates with the above-defined steps until ys < 0. Reaching this condition corresponds
to the end of phase 1. ys is set to zero for subsequent iterations (Table II.4, line 22).

8. The above-defined steps are repeated during phase 2, with the main difference that no data pairs
are excluded from the training set T . The ratio of additional training points pa is then set to pa2.
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9. Based on the set of samples uSS generated at iteration s, we investigate the ratio of such samples
that verify eGk(uSS; i) > ys where k < s is a given previous iteration and ys = 0. Let us denote
ISS switch; k the set of indices of such samples (represented by blue dots in Figure II.8h for the specific
case k = s − 1). We therefore consider the following ratios rSS switch; k = #ISS switch; k/NuSS

for k < s.
These ratios, averaged over a given number of iterations k (3 for phase 2), are representative of the
stability of the constructed SVR surrogate models (Table II.4, lines 35–39). Phase 2 ends when the
averaged ratio rSS switch falls below a prescribed threshold value set to 0.1 (Table II.4, line 40).

10. During phase 3, the additional training points are Na samples randomly selected from the set uSS switch =
uSS;ISS switch; s−1

, which gathers the samples uSS, i of the set uSS that switch from eGk(uSS, i)> 0 at itera-
tion s − 1 to eGk(uSS, i) ≤ 0 at iteration s (Table II.4, line 45). As in phase 2, no points are excluded
from the training set and ys is still set to zero. The ratio of additional training points pa is set to pa3
and b3/pae= 6 iterations are performed in phase 3.

11. The failure probability is estimated from the SVR surrogate eGsfinal
trained at the final iteration:

bpASVR
f = bpsfinal

(Table II.4, line 49). Nt = Nsfinal
stands for the total number of calls to the LSF (Ta-

ble II.4, line 48).

II–3.4 Results and comparison

Some results obtained with the 2SMART and ASVR methods are presented in this section. These results
are compared with reference failure probabilities obtained by SS. The focus is put on example 1 with
µFs
= 27.5 and example 2 with a = 3, n ∈ {100,250} (see Bourinet et al., 2011; Bourinet, 2016, for

more detailed results and additional examples).

It is first worth noting that the failure probabilities obtained by the 2SMART and ASVR methods are
estimates (i.e. random quantities). The random nature of the results has two sources. First, the adaptive
strategy applied for reliability assessment is based on training sets composed of samples generated by the
componentwise Metropolis algorithm of Au and Beck. Second, the failure probability approximations
are obtained from the constructed surrogate models by means of the SS method, which therefore gives
estimates of such probabilities. As a consequence, independent applications of the 2SMART or ASVR
methods give different failure probability estimates. For illustration, the plots of bps expressed in terms
of the cumulative number of calls to the LSF Ns and obtained from 3 independent runs of the ASVR
method are presented in Figure II.9 for example 1.
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bps

Figure II.9 – Example 1, µFs
= 27.5. ASVR results with (N , Nmin) = (50,100). Plots of bps vs. Ns from 3

independent runs. Dots are used for each pair (Ns,bps), a solid circle indicates the iteration at which ys
becomes negative (end of phase 1) and a solid square the final iteration sfinal (end of phase 3).
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The accuracy of the 2SMART and ASVR methods needs to be assessed in the light of the statistical
properties of the failure probability estimates obtained from independent runs of these methods. These
properties are expressed in terms of sample variance and bias w.r.t. the reference probabilities obtained
by SS. The presented results are averaged over 50 (resp. 20) independent runs of the 2SMART (resp.
ASVR) method. These results are compared with those averaged from 500 independent runs of the
SS method. The averaged relative bias and coefficient of variation obtained by these methods are
presented in Figure II.10 for example 1 with µFs

= 27.5 and in Figure II.11 for example 2 with a = 3,
n ∈ {100, 250}.

In the case of example 1 with µFs
= 27.5, both the 2SMART and ASVR methods give almost unbiased

estimates. The bias, respectively averaged over 50 and 20 independent runs, is close to 3% with the
2SMART method and 1% with ASVR, see left plot in Figure II.10. Note also that the coefficient of
variation from these runs is very low, less than 10% and 2% respectively, see right plot in Figure II.10.
A solution using SS of similar accuracy as that obtained with the ASVR method would require about
10 millions calls to the LSF. The ASVR method yields more accurate failure probability estimates than
2SMART, with a lower number of calls to the LSF (648 w.r.t. 4011 in average). This computational cost
is similar to that of the metamodel-based importance sampling of Dubourg et al. (2013), based on a
kriging surrogate: 480 plus an additional Ncorr = 200 samples for the estimation of the correction factor
of this method.

The LSS surface geometry of example 1 with µFs
= 27.5 has been explored. Figure II.12 gives (ui , u j)

pairwise cross-cuts passing through the MPFP P∗ in the standard normal space for i, j ∈ {1, . . . , 8}. The
approximate LSS obtained by the ASVR method is nearly coincident with the true one. The Gaussian
RBF kernel with a single parameter γ to tune appears appropriate in this problem. This type of kernel
is often a good candidate for smooth LSS. However, it is of importance to point out that it may lack
flexibility in problems with a more intricate geometry. In such situations an anisotropic Gaussian kernel
can be more appropriate, as found in example 2 addressed by Bourinet (2017b). It is however important
to mention that this latter kernel is more difficult to tune in high dimensions, its number of parameters
γi being equal to the dimension n of the input space, see Eq. (II.76).

(a) µFs
= 27.5 (bias)
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(b) µFs
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Figure II.10 – Example 1, µFs
= 27.5. 2SMART, ASVR and SS results.



II–4. Kriging 113

(a) n= 100 (bias)
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(b) n= 100 (c.o.v.)
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(c) n= 250 (bias)
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(d) n= 250 (c.o.v.)
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Figure II.11 – Example 2, a = 3 , n ∈ {100 ; 250 }. 2SMART, ASVR and SS results.

II–4 Kriging

This section gives a description of a surrogate modeling technique known as kriging. This method was
originally developed in the 1950s by Krige (1951) in the context of geostatistics and later formalized by
Matheron (1963) with the name of kriging. In this context the unknown function to approximate is a
2D or 3D spatial field observed only at a few points. The application of kriging to computer experiments
is due to Sacks et al. (1989), where the number of inputs n could be larger than 2 or 3. Kriging in the
context of SVMs uses kernels, and its relation to RKHS and regularization theory is well established
through early studies on splines, see e.g. the synthesis made by Vazquez (2005). Due to its formulation
based on Gaussian processes, kriging differs from SVMs by its probabilistic formulation. In this frame-
work, the approximation model obtained by kriging makes use of the conditional process knowing the
training data.

Section II–4.1 establishes the main equations of kriging in the case of a process of zero or known
mean. Section II–4.2 extends the formulation to kriging with a trend in the case of an unknown mean
of the process, with an introduction to universal kriging. Lastly, kriging in the context of noisy data is
addressed in Section II–4.3, by including the nugget effect in the kriging equations. Section II–4.4 gives
a few details about the techniques used for hyperparameter selection in kriging.
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Figure II.12 – Example 1, µFs
= 27.5. (P∗, ui , u j) cross-cuts at MPFP in standard normal space (random

variable numbers in their order of appearance in Table I.4). Black square: MPFP, black cross: projection
of space origin onto (P∗, ui , u j) cross-cut plane, black line: true LSS, green area: safe domain, pink area:
failure domain, red line: SVR-based LSS {u : eGsfinal

(u) = 0}.
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Theoretical details about kriging can be found in well-known references in the field (Cressie, 1993;
Stein, 1999; Santner et al., 2003; Chilès and Delfiner, 2012). A clear presentation of the main concepts
of kriging is made by Vazquez (2005), including intrinsic kriging. For a more concise description, the
reader may refer to the works of Dubourg (2011) and Moustapha (2016). A good introduction can also
be found in Roustant et al. (2012).

II–4.1 Basics of kriging, simple kriging

As introduced in Section II–1, the objective is again to construct an approximation ey of a true and
unknown function y : X → Y ,x 7→ y = y(x) knowing a set of data pairs T = {(xi , yi) ∈ X ×Y , 1≤ i ≤
N}, where X ⊆Rn and yi = y(xi) for i = 1, . . . , N . As for SVM, the presentation will be restricted to a
single scalar and real output, i.e. Y =R.

Kriging is based on the assumption that the unknown function y is a realization of a real-valued
random process Y (x) indexed over X . The set of observed outputs {yi , 1 ≤ i ≤ N} then appears as
respective realizations of the random variables {Y (xi), 1 ≤ i ≤ N}. We assume that Y (x) is a square-
integrable random process. Without loss of generality it is supposed that this random process has a zero
mean. If not, we assume that the mean µ(x) of Y (x) is known and we consider instead the centered
process Z(x) = Y (x)−µ(x). Note that the assumption of a known mean is relaxed later for kriging with
a trend. Y (x) is therefore fully characterized by its covariance function (or covariance kernel14), for
any x,x′ ∈ X :

k(x,x′) = Cov
�
Y (x), Y (x′)

�
= E

�
Y (x)Y (x′)

�
. (II.128)

In kriging the objective is to construct a predictor bY (x) of Y (x) at a given point x ∈ X . This predictor
is a random variable function of {Y (xi), 1 ≤ i ≤ N}. The kriging predictor is in general chosen in the
class of linear predictors and defined as follows:

bY (x) = λ(x)TY , (II.129)

where Y = (Y (x1), . . . , Y (xN ))T and λ(x) ∈ RN is a vector of unknown weights that depend on the
location x. It is important to point out that the assumption of a linear predictor does not imply the
linearity of the constructed approximate function ey(x). As for SVMs, the nonlinearity of ey results from
the use of a kernel.

We can first notice that the kriging predictor bY (x) has a zero mean and is therefore unbiased:

E
�bY (x)�= λ(x)TE [Y] = λ(x)T0= 0= E [Y (x)] . (II.130)

For a point x ∈ X the weights λ(x) of the best predictor in the mean square sense are obtained by
minimizing E

��bY (x)− Y (x)
�2�
= Var

�bY (x)− Y (x)
�
. The corresponding optimization problem writes

as follows:
min
λ(x)

λ(x)TKλ(x)− 2λ(x)Tk(x) + k (x,x) , (II.131)

where K = [k(xi ,x j)]1≤i, j≤N is the covariance matrix of the random variables {Y (xi), 1 ≤ i ≤ N} and
k(x) = (k(x1,x), . . . , k(xN ,x))T.

The optimality condition of Eq. (II.131) is:

Kλ(x) = k(x) . (II.132)

14Contrarily to SVMs, the kernel used in kriging has a probabilistic interpretation. It represents the covariance between
Y (x) and Y (x′).
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The expression of the predictor bY (x) in terms of λ(x) defined in Eq. (II.129), with the optimality
conditions on λ(x) given by Eq. (II.132), is known as the primal formulation of kriging, as opposed to
the dual formulation introduced in the following. This formulation was derived under the assumption
of a known mean of Y (x), which corresponds to so-called simple kriging (SK).

The weights λ(x) appearing in Eq. (II.129) need to be calculated for each x ∈ X from Eq. (II.132).
Dual kriging (Chilès and Delfiner, 2012) avoids solving Eq. (II.132) for each new point x where the
prediction needs to be defined. Assuming that the covariance matrix K is full rank, and making use of
the symmetry property of the covariance matrix K (and therefore of its inverse K−1), the predictor bY (x)
is rewritten as:

bY (x) = �K−1k(x)
�T

Y

= k(x)TK−1Y

= k(x)TC

=
N∑

i=1

Cik(xi ,x) ,

(II.133)

where the random vector C= (C1, . . . , CN )T is the solution of the following linear system of equations:

KC= Y . (II.134)

The above-defined system needs to be solved only once, for the available realization y= (y1, . . . , yN )T

of Y = (Y (x1), . . . , Y (xN ))T:

Kc= y , (II.135)

where c= (c1, . . . , cN )T ∈RN . Note that the solution vector c does not depend on the location x where
the prediction needs to be defined.

The so-called mean prediction at location x can be obtained. In the case of simple kriging it is given
by:

µSK(x) = k(x)TK−1y

= k(x)Tc

=
N∑

i=1

cik(xi ,x) ,

(II.136)

where c is the solution of Eq. (II.135). It is important to notice that the mean prediction of the dual
formulation of simple kriging has the same expression as that obtained from the representer theorem
for SVMs, see Eq. (II.89).

Eq. (II.136) further generalizes as follows in the case of a non-centered random process Y (x) with
known mean µ(x):

µSK(x) = µ(x) + k(x)TK−1 (y−µ) . (II.137)

where µ= (µ(x1), . . . ,µ(xN ))T.

In the context of function approximation, it is worth noting that this mean prediction is in general
taken as the surrogate model ey for any (x) ∈ X :

ey(x) = µSK(x) . (II.138)
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The variance of the prediction error bY (x)−Y (x) can also be easily derived. This quantity, known as
the kriging variance, is given by:

σ2
SK(x) = Var

�bY (x)− Y (x)
�
= E

��bY (x)− Y (x)
�2�

= E
�bY (x)2�− 2E

�bY (x)Y (x)�+E �Y (x)2�

= λ(x)TKλ(x)− 2λ(x)Tk(x) + k (x,x)

= k (x,x)− k(x)TK−1 k(x) .

(II.139)

The last line is obtained by plugging the optimal weights λ(x) obtained from Eq. (II.132) into the
equation, assuming again an invertible covariance matrix K and making use of the symmetry property
of the covariance matrix K (and therefore of its inverse K−1).

The kriging predictor bY (x) is characterized by the following important properties (see, e.g., Chilès
and Delfiner, 2012, Chapter 3):

• Unbiased predictor: assuming that Y (x) has a known mean, we find that bY is an unbiased predictor
of Y (x), i.e. that E

�bY (x)� = E [Y (x)] for any x ∈ X , see Eq. (II.130) in the specific case of simple
kriging. If kriging with a trend is applied, a constraint needs to be added to the optimization problem
defined in Eq. (II.131) to ensure the unbiasedness of the constructed predictor, see Section II–4.2.

• Exact interpolator: it is easy to prove that bY is an exact interpolator, i.e. that bY (xi) = Y (xi) for
i = 1, . . . , N . If a nugget effect is introduced into the kriging formulation (e.g. to handle noisy data),
we will see in Section II–4.3 that this property no longer holds.

• Kriging variance: the kriging variance is equal to zero at each x = xi for i = 1, . . . , N . Again this
property disappears when a nugget effect is introduced into the kriging formulation. Moreover, the
kriging variance in the case of simple kriging does not depend on y.

• Choice of a Gaussian process for Y (x): if Y (x) is assumed to be Gaussian, the conditional process
Y (x)|Y = y is still Gaussian. Under such an assumption the SK prediction mean µSK(x) and variance
σSK(x)2 at location x respectively coincide with the conditional mean and variance of the process
Y (x)|Y = y. The Gaussian assumption of the process is transmitted to the predictor bY (x) as a linear
combination of the Gaussian observations Y (xi) for i = 1, . . . , N . This enables easy calculations of
exceedance probabilities P(bY (x) < c), c ∈ R, and confidence intervals [a, b] such that bY (x) ∈ [a, b]
with probability 1−α, a, b ∈R and a < b.

The choice of a covariance kernel k for a random process is, as for SVMs, of paramount importance in
the accuracy of the predicted output. A function k : X×X →R is a covariance kernel if and only if it is a
symmetric positive definite function, see Eq. (II.71). The usual approach among kriging practitioners is
to use stationary covariance kernels15, such as the Gaussian and Matérn kernels introduced in Section II–
2.3.1, most often in their anisotropic versions. Such stationary covariance kernels are usually defined
in terms of the autocorrelation function R of the process satisfying:

k(x,x′) = f (x− x′) = σ2R(x− x′) , (II.140)

where σ2 = f (0) is the variance of the process.

With such a definition, the kriging mean and variance respectively rewrite as follows:

µSK(x) = µ(x) + r(x)TR−1 (y−µ)
σ2

SK(x) = σ
2
�
1− r(x)TR−1r(x)

�
,

(II.141)

where R= [R(xi − x j)]1≤i, j≤N is the correlation matrix and r(x) = (R(x1 − x), . . . , R(xN − x))T.

15The use of non-stationary kernels in kriging is less popular than stationary ones, see e.g. an example of such use in the
work of Xiong et al. (2007).
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II–4.2 Kriging with a trend

The mean of the random process Y (x) is in general unknown, and needs to be estimated from the
set of training data pairs T . A common assumption is to consider that Y (x) is the sum of two terms,
respectively termed drift and residual:

Y (x) = µ(x) + Z(x) , (II.142)

where Z(x) is a zero-mean square-integrable random process and µ(x) is its unknown mean assumed
to be expressed as follows:

µ(x) =
M∑

j=1

d j p j(x) = p(x)Td , (II.143)

where p(x) = (p1(x), . . . , pM (x))T is a given basis of M ∈N>0 real-valued functions, where p j : X →R
for 1, . . . , M , and d= (d1, . . . , dM )T ∈RM is a vector on unknown coefficients.

A linear predictor bY (x) satisfying Eq. (II.129) is again sought. Let us first express the random
deviation between bY (x) and Y (x):

bY (x)− Y (x) = λ(x)TY− Y (x)

= λ(x)T (Pd+ Z)− �p(x)Td+ Z(x)
�

= λ(x)TZ− Z(x) +
�
λ(x)TP− p(x)T

�
d ,

(II.144)

where P = [p j(xi)]1≤i≤N , 1≤ j≤M , Z = (Z(x1), . . . , Z(xN ))T, and where λ(x) and d are the unknown
weights.

The expectation of this deviation reduces to:

E
�bY (x)− Y (x)

�
=
�
λ(x)TP− p(x)T

�
d , (II.145)

since E [Z] = 0 and E [Z(x)] = 0 (we assume that the process Z(x) has a zero mean).

The unbiasedness property of bY (x) therefore imposes the following constraint on λ(x):

λ(x)TP− p(x)T = 0T . (II.146)

Under the constraint of no bias the best predictor bY (x) in the mean square sense is obtained by min-
imizing E

��bY (x)− Y (x)
�2�
= Var

�bY (x)− Y (x)
�
. The corresponding optimization problem therefore

writes as follows:

min
λ(x)

λ(x)TKλ(x)− 2λ(x)Tk(x) + k (x,x) s.t. PTλ(x)− p(x) = 0 , (II.147)

where K = [k(xi ,x j)]1≤i, j≤N is the covariance matrix of the random variables {Z(xi), 1 ≤ i ≤ N},
k(x) = (k(x1,x), . . . , k(xN ,x))T and k(x,x′) = Cov

�
Z(x), Z(x′)

�
= E

�
Z(x)Z(x′)

�
.

The optimality conditions are given in the following matrix form:

�
K P

PT 0

��
λ(x)

β(x)

�
=

�
k(x)

p(x)

�
, (II.148)

which is denoted Kλ(x) = k(x) in the following and where β(x) = (β1(x), . . . ,βM (x))T is the vector of
Lagrange multipliers introduced to enforce the equality constraint.
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The mean prediction at location x then can be expressed as follows:

µUK(x) = λ(x)
Ty

= λ(x)Ty

= k(x)TK
−1

y

= k(x)Tc

= k(x)Tc+ p(x)Td

=
N∑

i=1

cik(xi ,x) +
M∑

j=1

d j p j(x) ,

(II.149)

where y = (yT,01×M )T and where c = (cT,dT)T, c ∈ RN , d ∈ RM is the solution of the following linear
system of equations for the given realization y of Y:

K c= y , (II.150)

assuming that K is invertible. We can notice that the mean prediction now has the same expression as
that obtained by means of the semiparametric representer theorem for SVMs, see Eq. (II.91).

After simple calculations the mean prediction can be further expressed as follows:

µUK(x) = p(x)Tbd+ k(x)TK−1
�
y− Pbd� , (II.151)

where bd= �PTK−1P
�−1

PTK−1y, and the kriging variance is given by:

σ2
UK(x) = σ

2
SK(x) + u(x)T

�
PTK−1P

�−1
u(x) , (II.152)

where u(x) = p(x)T − k(x)TK−1P and σ2
SK(x) is defined in Eq. (II.139). For more details, the interested

reader may refer to (Dubourg, 2011, Section 1.4) in which the expression of the universal kriging mean
prediction and variance are derived for a given autocorrelation function R.

If M > 1, the formulation detailed in the present section is known as universal kriging (UK). The
specific case where M = 1 and p1 : X → R,x 7→ 1 corresponds to ordinary kriging (OK), i.e. to the
assumption of an unknown constant mean.

The properties of the UK predictor are similar to those of the SK one that are detailed in Section II–
4.1. Another interesting property concerns the prediction made far from the points of the training set
T under the assumption of a stationary covariance kernel k decreasing with ‖x− x′‖ (Roustant et al.,
2012). µUK(x) tends to the best linear fit p(x)Tbd for locations where the covariances gathered in k(x)
are small. In addition, the kriging variance σ2

UK(x) becomes large at these locations, reflecting the
uncertainty in the estimation of d.

Universal kriging can be placed in the broader context of intrinsic kriging (Matheron, 1973). Such a
formulation is based on intrinsic random functions (IRF) which allow Y (x) to be nonstationary, with the
assumption that increments Y (x)− Y (x′) are second-order stationary. Stationary differences enable a
constant drift to be removed (i.e. the unknown constant mean). A wider class of functions includes IRFs
of order k whose increments of order k are second-order stationary, which remove a polynomial drift
of order up to k (see, e.g., Chilès and Delfiner, 2012). The connection between intrinsic kriging and
regularized regression can be made (see, e.g., Vazquez, 2005). Intrinsic kriging hinges on semi-RKHS,
evoked in Section II–2.3.1, based on conditionally positive definite kernels.

In practice, ordinary kriging is often preferred to its more general universal counterpart. If no prior
information is available about the trend, the safer choice (i.e. one that avoids overfitting) is to consider
an unknown and constant mean only (Ginsbourger et al., 2009). The scarce information known from
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the available training set is in general not sufficient to make any guess about the trend. As an additional
point in favor of ordinary kriging, the number M of functions that are selected in the basis p(x) may
substantially increase the size of the training set T (its size needs to be at least equal to M). As an
example, a second-order polynomial (with interactions) inRn requires that N ≥ (n+1)(n+2)/2, which
may be too large from a computational viewpoint. In practical situations, the limits in the choice of the
functional basis are those imposed by the size of the training set. For these two reasons ordinary kriging
was favored in the works of Dubourg (2011) and Moustapha (2016). Additionally, it is worth noting a
few recent attempts to propose some well-chosen function basis for the mean of the process, such as PCE
determined by least-angle-regression (Schöbi et al., 2015; Schöbi et al., 2017) and nested polynomial
(Perrin et al., 2017). The advantages of using such approaches remains to be demonstrated, in the
author’s opinion, especially in the context of high-dimensional spaces, small training sets and complex
functions to approximate.

II–4.3 Noisy data, relation between kriging and SVR

As pointed out in Section II–4.1, the kriging mean µUK(x) and therefore the constructed approximate
model ey(x) interpolate the training data. In some situations this property needs to be relaxed. If
e.g. the output of the true model y has a stochastic nature, we do not want µUK(x) to interpolate
T = {(xi , yi) ∈ X × Y , 1 ≤ i ≤ N} where yi for i = 1, . . . , N are given realizations of the true model
outputs. Another situation appears when the true model output is defined with some usually unknown
accuracy (e.g. numerical solution of a finite element problem in structural mechanics). For two input
vectors x and x′ that are very close, the corresponding outputs may substantially differ, due to the
numerical error made on the solutions given by the true model (e.g. due to discretization or convergence
errors). Interpolating the data makes here no sense, and it is preferable to construct a regularized
approximate model, which is close to the available data without being interpolating.

For this purpose a common technique in kriging consists in introducing the so-called nugget effect
(Forrester et al., 2006). The training set T is now assumed to be composed of noisy observations
yi = y(xi) + εi of the true outputs y(xi) for i = 1, . . . , N where εi are zero-mean random variables of
respective variances τ2

i . A common choice consists in considering the N noises εi as i.i.d. Gaussian ran-
dom variables with the same variance τ2 = τ2

1 = . . .= τ2
N . Such a choice corresponds to the assumption

of a homogeneous level of noise. Under the assumption that the random process Y (x) is Gaussian and
that the N Gaussian noises εi are statistically independent, Y (x) is still Gaussian conditionally on the
noisy observations Y (xi) + εi for i = 1, . . . , N .

In the kriging equations introduced so far (primal or dual form, SK, OK or UK), we only need
to replace the covariance matrix K by (K + τ21) where 1 is the N × N identity matrix.16 The main
consequences of such an assumption in terms of properties of the kriging predictor are that the mean
prediction is no longer interpolating and that the kriging variance does not vanish at the observation
points {xi , i = 1, . . . , N}.

Let us rewrite the optimality conditions defined in Eq. (II.148) (primal formulation) in the specific
case of ordinary kriging (OK) with inclusion of the nugget effect:

�
K+τ21 1

1T 0

��
λ(x)

β(x)

�
=

�
k(x)

1

�
, (II.153)

16The kriging formulation proposed here differs slightly from the so-called kriging with nugget effect used in geostatistics,
which also includes the noise variance τ2 in k(x) (see, e.g., Roustant et al., 2012). Using τ2 in both the covariance matrix K
and the covariance vector k(x) results in an interpolating kriging mean predictor.
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and the corresponding dual formulation given in Eq. (II.135):
�
K+τ21 1

1T 0

��
c

d

�
=

�
y

0

�
. (II.154)

The connection between SVR and kriging now becomes obvious. Let us consider the specific case of LS-
SVR, whose solution is given by Eq. (II.65) where the Gram matrix should be taken as that associated
with a given kernel k, i.e. defined by Eq. (II.70). The linear system of equations to solve in OK is identical
to that of LS-SVR with a bias term b, with the following identities: c≡ α, d ≡ b and τ2 ≡ 1/C . For the
same set of kernel parameters and with τ2 = 1/C , the OK mean prediction is therefore equivalent to
the LS-SVR regressor:

ey(x) = µOK(x) =
N∑

i=1

cik(xi ,x) + d ≡ ey(x) = efLS-SVR (x) =
N∑

i=1

αik(xi ,x) + b . (II.155)

Let us again recall that LS-SVR corresponds to L2-ε-SVR with a zero-width ε tube, i.e. satisfying
ε = 0, see Section II–2.2.2. This conclusion can be generalized to universal kriging by considering
a function basis p(x) = (p1(x), . . . , pM (x))T in the LS-SVR formulation instead of a single constant
bias term b. The interested reader may refer to (Matías et al., 2004) for further details about this
comparison. However, it is important to point out that no probabilistic interpretation can be given to
the LS-SVR solution, contrary to kriging, which defines the variance of the predictor.

II–4.4 Hyperparameter selection

As for SVMs, a central issue in kriging is the choice of the covariance kernel k. A common practice
consists in selecting a parametric family for the kernel k, defined in terms of a vector of unknown
parameters θ : k(x,x′) = k(x,x′;θ ). Under the assumption that this kernel is able to correctly “fit”
the true function y to learn, the main numerical task then consists in finding the best values of θ that
achieve the greatest accuracy of the approximate model ey w.r.t. the true function y . Apart from the
variogram estimation, which is inapplicable in dimension n> 3, there are two main techniques available
for parameter selection in kriging, namely maximum likelihood estimation (MLE) and cross-validation
(CV).

Let us first consider MLE. The observations Y follow the multivariate normal distribution:

Y ∼NN (Pd,K) . (II.156)

We will restrict the presentation to noise-free kriging for the sake of brevity (see, e.g., Roustant
et al., 2012, Appendix A, for noisy kriging). In the case of a stationary covariance kernel k defined in
terms of an autocorrelation function R, the covariance matrix is denoted K(σ,θ ) = σ2R(θ ) where σ2

is the variance of the process and R(θ ) = [R(xi −x j;θ )]1≤i, j≤N is the correlation matrix. The likelihood
of the observations writes:

L (d,σ,θ | y) = 1

(2πσ2)
N
2 |R(θ )| 12

exp
�
− 1

2σ2
(y− Pd)T R(θ )−1 (y− Pd)

�
. (II.157)

The MLE estimates of d and σ2 are analytically obtained from the first-order optimality conditions
of the log-likelihood minimization problem:

bd(θ ) = �PTR(θ )−1P
�−1

PTR(θ )−1y

cσ2(θ ) =
1
N

�
y− Pbd(θ )�T R(θ )−1

�
y− Pbd(θ )� .

(II.158)
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By plugging the expressions of bd and cσ2 into Eq. (II.157), we obtain an expression of the log-
likelihood that only depends on the autocorrelation function parameters gathered in θ :

logL (θ | y) = −N
2
[1+ log (2π)]− N

2
log

�cσ2(θ ) |R(θ )| 1
N

�
. (II.159)

The MLE estimate of θ is equivalently given by:

bθ = arg min
θ∈Θ

ψ(θ ) = cσ2(θ ) |R(θ )| 1
N , (II.160)

whereψ(θ ) is known as the reduced likelihood function andΘ denotes the domain in which the solution
bθ is sought.

A central issue in kriging is to efficiently solve Eq. (II.160). The solution bθ cannot be obtained
analytically, and we have to resort to numerical optimization techniques. The correlation matrix R(θ )
is in fact badly conditioned for several values of θ , which makes Eq. (II.160) extremely difficult to
solve (see, e.g., Lophaven et al., 2002a; Marrel, 2008). Moreover ψ(θ ) is known to have many local
minima. Several optimization techniques are available in kriging packages such as DACE (Lophaven
et al., 2002b), DiceKriging (Roustant et al., 2012), ooDACE (Couckuyt et al., 2014), UQLAB (Lataniotis
et al., 2017). These techniques usually include stochastic optimization in order to identify potential
“good” starting points (e.g. by means of genetic algorithms) with the potential subsequent application
of a gradient-based search method (e.g. the BFGS algorithm).

In the case of kriging with the nugget effect with the assumption of homogeneous noise, the MLE
estimate of the noise parameter τ also needs to be found. A common practice consists in avoiding
such an estimation and considering a small value for τ. The main aim of this practice is to prevent the
covariance matrix from being ill-conditioned and therefore to ease its inversion. For details about this
specific numerical topic the reader may refer to the recent work of Mohammadi et al. (2017), in which a
comparison is made between two techniques for the regularization of the covariance matrix: calculation
of the pseudoinverse of K or use of a nugget effect in the kriging formulation such as presented in
Section II–4.3.

As an alternative to MLE, cross validation (CV), already introduced in Section II–2.4.1, is a very
popular technique for model selection. Exactly as for LS-SVR17, see Eq. (II.119), the application of
LOO-CV in kriging presents the main advantage of providing an exact LOO error obtained from a single
training on the whole training set T . The expression of the LOO error in the context of kriging is due to
Dubrule (1983). In the case of universal kriging with an unknown homogeneous noise, the LOO error
is given by:

ErrLOO,`2
=

1
N

N∑
i=1

�
yi −µ(−i)

UK-nugget(xi)
�2

=
1
N

N∑
i=1

c2
i�

K
−1�2

ii

.
(II.161)

where µ(−i)
UK-nugget is the UK mean prediction obtained by training on T \(xi , yi),

where c= (c1, . . . , cN )T ∈RN is the solution of:

�
K+τ2I P

PT 0

��
c

d

�
=

�
y

0

�
, (II.162)

17It is recalled that the LS-SVR regressor and the kriging mean prediction are identical by construction, see Section II–4.3.
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which is denoted K c= y, and where
�
K
−1�

ii
is the ith diagonal element of the inverse of K.

In practice, MLE is often preferred to CV to determine the optimal hyperparameters of kriging sur-
rogate models. A comparison between the two techniques was recently performed by Bachoc (2013).
The conclusion of this author is that CV performs better than MLE in the case of a misspecification of the
parametric family of the covariance kernel, i.e. when the selected parametric covariance kernel differs
from the true underlying covariance kernel.

II–5 Surrogate-based RBDO

II–5.1 Design under uncertainty

Design optimization is of prime importance in a wide spectrum of engineering fields. The problem to
solve consists in finding the set of design variables that minimizes a cost model while satisfying some im-
posed constraints and design requirements. In real systems to optimize, uncertainties are often present
at various levels. The system of interest may be subjected to an uncertain loading, its properties may be
not perfectly known due to some uncertainty in the manufacturing process, the numerically-assessed
responses may differ to some extent from the true and real ones, etc. Optimal design under uncer-
tainty can be addressed in various frameworks depending on where the uncertainty is introduced in the
optimization problem formulation (i.e. cost function or constraints, or both). The two most popular
approaches are known as reliability-based design optimization (RBDO) and robust design optimization
(RDO). For a short review of RBDO and RDO the reader may refer to the PhD manuscript of Moustapha
(2016). For an overview of other variants which are less well-known than the two approaches men-
tioned above, the reader may refer to the recent review paper of Lelièvre et al. (2016).

Several formulations can be included in RBDO (Enevoldsen and Sørensen, 1994; Royset et al., 2002;
Chateauneuf and Aoues, 2008; Schuëller and Jensen, 2008; Aoues and Chateauneuf, 2010; Valdebenito
and Schuëller, 2010; Beck and Gomes, 2012). RBDO most often utilizes the reliability of the system
as a constraint, and the objective function is deterministic. We may also include uncertainties in the
objective function e.g. when we try to minimize the expected lifetime costs considering the construc-
tion cost, maintenance costs and eventual failures18. Stochastic subset optimization (SSO) (Taflanidis
and Beck, 2008) is also another approach that includes uncertainties in the objective function. In this
sampling-based method closely related to subset simulation the objective is to find the optimal design
that minimizes the failure probability with potential deterministic constraints on costs.

In RDO, the objective is to find the least sensitive possible design w.r.t. the system variations at the
optimal point (Doltsinis and Kang, 2004; Park et al., 2006; Beyer and Sendhoff, 2007; Schuëller and
Jensen, 2008). The objective function of RDO is often expressed in terms of the statistical moments of
the response, mainly its mean and standard deviation.

The challenges of optimal design under uncertainty are those combining probabilistic analysis and
optimal design. Optimal design under uncertainty requires the estimation of the objective function
and/or constraints, if these quantities are assumed uncertain. As already indicated in the specific con-
text of reliability, such estimations are in general expensive to evaluate. Moreover, only a limited ac-
curacy can be achieved for these estimations, either due to the limited number of samples used in
Monte Carlo methods or to the potential bias of the constructed approximations w.r.t. the true model in
surrogate-based analyses. As pointed out e.g. by Medina (2014), this estimation error acts as a noise in

18This type of problem is addressed e.g. in the recent paper of Beck and Gomes (2012). The interested reader can find
therein a justification of a formulation that includes failure costs.
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the objective function and/or reliability constraint, which poses significant difficulties for optimization
algorithms. If Monte Carlo methods are used this noise can be reduced, either by lowering the variance
of the function estimation (e.g. by increasing the sample size) or by working with common random num-
bers (see, e.g., Taflanidis, 2007, Section 5.1), which limits the relative estimation errors by using samples
generated with the same seed at each iteration of the optimization algorithm. The techniques related
to common random numbers are commonly referred to as exterior sampling approximations (Taflani-
dis, 2007) or sample average approximations (Royset and Polak, 2004a; Royset and Polak, 2004b). In
the work of Royset and Polak on RBDO the sample size is increased, leading to more accurate esti-
mates as the algorithm converges to an optimal solution. Regarding optimization algorithms, the use of
gradient-based nonlinear programming algorithms is inapplicable to optimal design under uncertainty.
Such a type of algorithm is incompatible with a noisy objective function and/or constraints. Moreover,
the gradients of such functions w.r.t. the design variables are most often unavailable. As an alterna-
tive, we may consider gradient-free optimization algorithms. Unfortunately, such algorithms tend to
be computationally expensive and do not scale well with the number of design variables (Royset et al.,
2006).

A presentation of RDBO as addressed in the works of Dubourg (2011) and Moustapha (2016) is
given Section II–5.2 along with a brief overview of the main methods applied in this field. In the case
of functions which are expensive to evaluate, the use of surrogate models can be interesting to tackle
optimal design under uncertainty. Examples of such approaches are given in Section II–5.3, which
presents the main concepts of the kriging-based methods developed by Dubourg and Moustapha.

II–5.2 RBDO problem formulation and solving strategies

The scope of the analysis is here restricted to the following RDBO formulation, as considered by Dubourg
(2011) and Moustapha (2016):

d∗ = arg min
d∈D

c(d) s.t.

¨
f j(d)≤ 0 for j = 1, . . . , n f

P (gk (X(d),Z)≤ 0)≤ pf,k for k = 1, . . . , ng
, (II.163)

where c is the objective function (or cost function) to be minimized w.r.t. the design variables d =
(d1, . . . , dnd

) ∈D ⊂Rnd , { f j , 1≤ j ≤ n f } are n f deterministic soft constraints that bound the admissible
space in D, {gk, 1 ≤ k ≤ ng} are ng limit-state functions related to the failure modes of interest, pf,k
are ng threshold probabilities not to be exceeded by the respective failure probabilities, X ∼ fX|d is a
random vector indexed on the given design d and Z∼ fZ is another random vector independent of d. X
are called design random variables by Dubourg (2011). Z are called basic random variables by Dubourg
(2011) and environmental random variables by Moustapha (2016). The ng probabilistic constraints
P (gk (X(d),Z)≤ 0)≤ pf,k are usually termed hard-constraints. No uncertainty is accounted for in c, the
objective function is supposed to be deterministic. It should be noticed that d gathers a set of parameters
that defines the joint PDF of the random vector X, e.g. the means of its components. It should also be
borne in mind that sensitivities of failure probabilities w.r.t. the distribution parameters of X can be
obtained by the methods presented in Chapter I, Section I–4. Each LSF gk is often expressed in terms
of a given model outputMk (e.g. a FE model) in the following form gk(x(d),z) = gk −Mk(x(d),z)
where gk is a threshold which is not to be exceeded by the model outputMk and where x(d) (resp. z)
is a realization of X(d) (resp. Z).

A slightly different problem formulation is adopted by Moustapha (2016), which reformulates the
problem defined in Eq. (II.163) in terms of quantiles of the model outputsMk:

d∗ = arg min
d∈D

c(d) s.t.

¨
f j(d)≤ 0 for j = 1, . . . , n f

Qαk
(d;Mk (X(d),Z))≤ gk for k = 1, . . . , ng

, (II.164)
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where:

Qαk
(d;Mk (X(d),Z)) = inf

�
qαk
∈R : P

�
Mk (X(d),Z)≤ qαk

�≥ αk

	
, (II.165)

and αk = 1− pf,k. The choice of such a formulation is motivated by the probability levels pf,k that are
targeted in the work of Moustapha, which are in the range of 1 to 10% and therefore not very low.
In this context it is not necessary to apply any of the reliability assessment techniques presented in
Chapter I, the αk-quantiles can be directly estimated from a Monte Carlo sample of the model outputs
corresponding to a given design d: {y( j) =Mk

�
x( j)(d),z( j)

�
, 1 ≤ j ≤ N}, where x( j)(d) and z( j) for

j = 1, . . . , N are realizations of X ∼ fX|d and Z ∼ fZ respectively. For numerical stability, common
random numbers are used for sample generation. The same realizations {z( j), 1≤ j ≤ N} of Z are used
at each iteration of the optimization algorithm (Moustapha, 2016).

The methods available to solve the RBDO problem defined in Eq. (II.163) are often categorized into
three groups (Chateauneuf and Aoues, 2008; Aoues and Chateauneuf, 2010; Valdebenito and Schuëller,
2010): (a) double loop-approaches, (b) single-loop approaches and (c) decoupled approaches.

(a) Double loop-approach

The double loop-approach consists in solving two nested optimization problems: the outer loop explores
the design space D by iterating on different values of d, while the inner one solves the reliability assess-
ment problem. Two main formulations have emerged in this category: the reliability index approach
(RIA) and the performance measure approach (PMA).

The reliability index approach (Enevoldsen and Sørensen, 1994) uses FORM in the inner loop. The
constraints expressed in terms of failure probabilities in Eq. (II.163) are replaced by their equivalents
in terms of reliability indices. The gradients of the reliability indices w.r.t. the design variables d need
to be assessed accurately in order to ensure a stable convergence in the optimization loop.

An alternative strategy, known as the performance measure approach (PMA), was proposed by Tu
et al. (1999) to solve the RBDO problem. The reliability problem is solved in a different way to that
used in FORM. Instead of minimizing 1

2uTu = 1
2‖u‖ subject to G(u) = 0, see Eq. (I.34), the reliability

index is set to its target value and the LSF is minimized:

u∗MPTP = arg min
u∈Rn

G (u) s.t. ‖u‖= β , (II.166)

where the subscript MPTP stands for minimum performance target point and β is the target reliability
index, i.e. β = −Φ−1(pf). The spherical constraint introduced is claimed to be easier to handle than
that of RIA.19 Another advantage of PMA is that it only requires the gradient of the LSF w.r.t. the design
variables, which may be simpler than obtaining the gradient of the failure probability. For further details
the reader may refer to Tu et al. (1999) and Lee et al. (2002).

As an additional comment, the conceptual idea of the double-loop approach may be extended to
other methods than FORM for a broader scope of application (e.g. crude Monte Carlo or subset sim-
ulation). The reliability constraints of Eq. (II.163) may be assessed by any other method inside the
optimization loop. If the design parameters are taken as distribution parameters of X, the sensitivities
of the failure probability derived in Section I–4 can be used in a gradient-based optimization approach.

19The spherical constraint of Eq. (II.166) is also considered in the so-called inverse-FORM approach (Der Kiureghian et al.,
1994) where the goal is to find the value of a given scalar parameter θ of the LSF G(u,θ ) which ensures a given reliability
level.
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(b) Single loop-approach

Single loop approaches have been proposed to alleviate the computational burden of nested approaches.
The main idea of one class of methods is to replace the reliability constraint by the Karush-Kuhn-Tucker
optimality condition at the MPFP in the RBDO formulation. It is assumed that a FORM analysis is
applicable, i.e. that the MPFP is unique and can be obtained. Following the idea of Madsen and Hansen
(1992), Kuschel and Rackwitz (1997) proposes to solve the following optimization problem:

(d∗,u∗) = arg min
d∈D,u∈Rn

c(d) s.t.





f j(d)≤ 0 for j = 1, . . . , n f

G (u,d) = 0

uT∇uG (u,d) + ‖u‖‖∇uG (u,d)‖= 0

β − ‖u‖ ≤ 0

, (II.167)

where the formulation is restricted here to a single LSF for the sake of simplicity, i.e. ng = 1. Note that
the original formulation of Kuschel and Rackwitz takes an objective function c as the sum of an initial
cost and an expected cost of failure. It is important to note that the optimization problem defined in
Eq. (II.167) is deterministic, the reliability constraint has disappeared. Such a formulation enables the
use of general-purpose non-linear optimization algorithms. However, this type of formulation turns out
to be unstable to solve numerically, and the convergence is not easy to obtain. A more robust single-loop
formulation was later proposed by Agarwal et al. (2007), in which the ng inverse FORM problems are
solved by means of a Lagrangian formulation. The optimization problem is minimized w.r.t. the design
variables d, the vector of standard normal variables uk involved in the ng LSF Gk and the ng multipliers

λk corresponding to the respective Lagrangians Lk = Gk (uk,d)+λk(‖u‖k −β k). In the case of a single
LSF, the optimization problem writes (Agarwal et al., 2007):

(d∗,u∗,λ∗) = arg min
d∈D,u∈Rn,λ∈R

c(d) s.t.





f j(d)≤ 0 for j = 1, . . . , n f

G (u,d)≥ 0

∇uG (u,d) +λ
u
‖u‖ = 0

λ
�
‖u‖ − β

�
= 0

‖u‖ − β ≤ 0

λ≥ 0

, (II.168)

From another perspective, Chen et al. (1997) converted the double-loop into a so-called single-loop
single-vector approach, which was further extended to series system RBDO by Liang et al. (2007). In
such an approach the design variables d are taken as the means of the random vector X. Under such
an assumption the reliability constraint can be replaced by an approximately equivalent determinis-
tic constraint. The principle of the method consists in iteratively solving the following optimization
problem:

d∗ = arg min
d∈D

c(d) s.t.

¨
f j(d)≤ 0 for j = 1, . . . , n f

g (x(d))≥ 0
, (II.169)

where:

x(d(i)) = d(i) − βσX ◦α(i−1) ,

α(i) =
σX ◦∇xg

�
x(d(i))

�

‖σX ◦∇xg
�
x(d(i))

�‖ .
(II.170)

where x(d(i)) is the approximate MPFP obtained at each iteration i, σX is the vector of standard de-
viations of X and ◦ denotes the component-wise multiplication. The method is started with an initial
and arbitrary point x(d(0)) = d(0). At the next iterations i > 0, the design variables d are changed and



II–5. Surrogate-based RBDO 127

an updated approximate MPFP is obtained, based on the normalized gradient α of the previous itera-
tion. The single-loop single-vector approach is quite efficient since no reliability constraint is involved.
However, the robustness of the method may be considerably affected by the choice of the initial starting
point x(d(0)) (Yang and Gu, 2004) and the nonlinearity of the LSF (Aoues and Chateauneuf, 2010).

(c) Decoupled approach

Another type of method, known as the decoupled approach, consists in performing optimization and
reliability analysis sequentially (Der Kiureghian and Polak, 1998). The term decoupled means that the
reliability method can be selected independently of the optimization algorithm. In the work of Royset
et al. (2001) the RBDO problem is reformulated into a deterministic semi-infinite optimization problem,
which enables the application of any optimization algorithm able to solve such problems and any reli-
ability assessment method. Another well-known decoupled approach is the sequential optimization and
reliability assessment (SORA) method proposed by Du and Chen (2004). In this method the probabilistic
constraints are equivalently replaced by deterministic ones by means of inverse FORM (cf. its use in
PMA). At each iteration, the SORA algorithm solves a deterministic optimization problem by shifting
the design variables based on the MPFP found at the previous iteration, which enforces the reliability
constraints. Other decoupled approaches include the sequential approximate programming of Cheng
et al. (2006) and the direct decoupling approach of Zou and Mahadevan (2006), as well as several
others not listed here for the sake of brevity. The first of these two approaches replaces the probabilistic
constraint by a deterministic one, which uses a recurrence-based approximation of the reliability index.
In the work of Zou and Mahadevan, the central idea is to consider an equivalent deterministic constraint
expressed in terms of a first-order Taylor series expansion of the failure probability w.r.t. the means of
X, taken as design variables.

II–5.3 Kriging-based adaptive approaches

Most of the approaches presented in the previous section rely on a FORM approximation of the relia-
bility constraint(s). The necessary assumptions for a valid approximation of the failure probability(ies)
may not hold true for some problems (nonlinear LSF, non unique MPFP). This may result in incorrect
values of the probabilistic constraint(s) of the RBDO approach and therefore in unsafe designs. Re-
course to more robust failure probability assessment techniques is for this reason of great interest. As
evoked in Chapter I such an objective can be reached by using the crude Monte Carlo method or some
of its variants achieving a reduced variance of the failure probability estimate (e.g. subset simulation).
The probabilistic constraint of the RBDO problem can be assessed by a Monte Carlo-like method in the
nested framework, see Section II–5.2. This can also be done using other methods such as that of Royset
and Polak (2004b), which consists in sequentially increasing the sample size used in the reliability anal-
ysis as the optimization algorithm converges towards an optimal design. Although sampling reliability
assessment techniques can easily be handled with such RBDO methods, it is worth emphasizing that the
associated computational cost is most often too high in practice, except for simple academic problems
involving cheap-to-evaluate LSFs. The several calls to the LSFs to obtain the failure probabilities in the
RBDO constraints need to be repeated for multiple sets of design parameters, which is unaffordable for
real-life RBDO problems on most current computational platforms.

To address this challenge the introduction of surrogate models in RDBO and robust design formu-
lations has been considered as an interesting direction to explore over the past fifteen years. As for
surrogate-based reliability analysis, the number of contributions to this field is large and only a few
works will be listed here. The solutions proposed are quite diverse, depending on the type of surrogate
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models used in the analysis, the quantities that are surrogated (objective function, constraints or both),
the type of method involved in the probabilistic estimation, the solver used for optimization and the
many ways all these tools are combined together.

Choi et al. (2001) used moving least squares surrogates to solve a PMA-based RBDO problem. An
extension of this work was later proposed by the same authors, where the inverse PMA problem was
solved by means of an hybrid mean-value method (Youn and Choi, 2004). In the work of Papadrakakis
and Lagaros (2002) artificial neural networks were selected in conjunction with importance sampling.
RBF artificial neural networks were more recently used by Gomes and Beck (2013), based on FORM
solutions of the reliability assessment problems. In the paper of Jin et al. (2003) three types of surrogate
models were compared in the context of robust design: polynomial response surfaces, kriging and radial
basis functions. Kriging surrogate models have also been used by several researchers to solve RBDO
problems (Dubourg et al., 2011; Lee et al., 2011b; Bichon et al., 2012; Moustapha et al., 2016). Lee et al.
(2011b) used kriging surrogates with a dynamically selected polynomial trend (called dynamic kriging
by these authors), which allows crude MCS estimates of the reliability constraint. In the approach
proposed by Bichon et al. (2012) the main idea is to combine the efficient global optimization algorithm
of Jones et al. (1998) (a gradient-free technique that solves unconstrained optimization problems) and
the EGRA method of Bichon et al. (2008) for the reliability analysis. In the works of Dubourg (2011) and
Moustapha (2016) a common idea is to alternate between optimization based on the current surrogate
model and the enrichment of this surrogate by means of additional training points if the surrogate model
is found to be insufficiently accurate, as described in the next section. Some researchers have also had
recourse to SVMs in RBDO approaches, see e.g. the work of Basudhar et al. (2008) in which SVMs in
classification are used to model the probabilistic constraint, and the more recent work of Lacaze and
Missoum (2014) in which kriging is additionally used to approximate the objective function.

To solve the optimization problem of surrogate-based RBDO, the choice is made between two main
techniques. The first option consists in using gradient-based algorithms if the gradients w.r.t. the design
variables d are readily available (see, e.g., Choi et al., 2001; Youn and Choi, 2004; Dubourg et al.,
2011). Let us recall that these gradients are conveniently obtained if d is composed of some distribution
parameters of the random vector X. The main issue associated with such a technique is that it may
only improve the design, without being able to find the optimal one (in other words, we obtain a
local optimum instead of the global one). To avoid such an issue, solutions based on stochastic search
algorithms have been explored as alternatives, such as evolution strategies (Papadrakakis and Lagaros,
2002; Moustapha et al., 2016) or particle swarm optimization (Gomes and Beck, 2013; Yang and Hsieh,
2013) among other techniques. The main advantage of such gradient-free methods is that they do not
require any gradients w.r.t. d. They may also work in the case of discrete design variables. However,
their main drawback is that they are quite demanding in terms of the number of calls to the objective
or constraint functions. Such methods are by construction actually more explorative in D than the
gradient-based ones.

Two more important ingredients are required for the elaboration of surrogate-based RBDO ap-
proaches, in addition to those listed so far (type of surrogate model, method applied for assessing
the probabilistic constraint(s), optimization algorithm). First, we need to define the domain in which
the surrogate models of the objective and/or constraint functions are trained. This task is not as sim-
ple as it seems, since this domain must jointly cover the supports of the PDFs of the random vectors X
and Z, assuming that the PDF of X depends on the set of design parameters d, see Eq. (II.163). The
domain in which the surrogate-based RBDO approach is performed hinges on the so-called augmented
reliability problem introduced by Taflanidis and Beck (2008), as presented in Section II–5.3.1. Second,
we need to define a strategy to compose the set of training points in this domain in order to build ac-
curate substitutes of the true objective and/or constraint functions. In a naive approach one would fill
the whole domain as densely as possible to achieve the required accuracy on all surrogates, e.g. by
means of a space-filling technique. Such an approach would result in too high a number of calls to
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the expensive-to-evaluate functions. Instead, we start from the premise that for optimization there is
no need to be accurate everywhere in the domain. The constructed surrogate models are expected to
be accurate only in part of this domain, where the constraints are close to being violated or where the
objective function is sufficiently low. In a similar spirit to what was presented for reliability assessment
earlier in this chapter, it is proposed to develop adaptive approaches for surrogate-based RBDO. The
common idea is to start with a fair initial training set, construct an initial surrogate from it, and from
there iteratively enrich the training set according to certain criteria, and update the surrogate model
until the surrogate-based optimal design can be obtained with sufficient accuracy. Two examples of such
approaches are recalled in Section II–5.3.2 (Dubourg, 2011) and Section II–5.3.3 (Moustapha, 2016).

Such adaptive strategies are not specific to RBDO, they are also of great interest in surrogate-based
deterministic optimization (see, e.g., Queipo et al., 2005; Forrester and Keane, 2009). Several methods
have been developed in the specific context of kriging, where advantage is taken of the kriging variance
as a measure of the epistemic uncertainty of the constructed surrogates due to the sparsity of the training
data. For an overview of adaptive techniques which are not specific to kriging (i.e. methods based on
query-by-committee, cross-validation or gradients), the reader may refer e.g. to the recent review of
Liu et al. (2017).

In the context of unconstrained optimization, the most popular approach was proposed by Jones
et al. (1998) and is known as expected global optimization (EGO). The method seeks to solve a kriging-
based minimization problem by balancing the search efforts between regions where the mean prediction
is minimal (exploitation) and those where the kriging variance is high (exploration). It is based on the
so-called expected improvement criterion20 defined by the following integral, which has a closed-form
expression (see, e.g., Ginsbourger, 2009, p. 109):

EI (x) =

∫ ymin

−∞
(ymin − y)ϕ

�
y −µbY (x)
σbY (x)

�
dy , (II.171)

where ymin =mini∈{1, ... ,N} yi . Variants of this criterion were developed later, see e.g. the review of such
so-called infill criteria made by Picheny et al. (2013).

In the context of constrained optimization, the expected improvement criterion is inapplicable, and
several adaptations have been proposed. This includes the adjusted expected improvement (Schonlau
et al., 1998), the expected violation (Audet et al., 2000), the expected improvement for contour esti-
mation (Ranjan et al., 2008), the expected feasibility function (Bichon et al., 2008), the constrained
EGO formulation (Bichon et al., 2010), the deviation number (Echard et al., 2011), the margin prob-
ability function (Dubourg, 2011), see e.g. the short review made by Moustapha (2016). Several of
these criteria have been elaborated and applied in a reliability assessment context. The margin prob-
ability function and the deviation number will be introduced in Section II–5.3.2 and Section II–5.3.3
respectively, since they were used in the works of Dubourg and Moustapha.

II–5.3.1 Augmented reliability space

This section describes the domain in which the surrogate models are trained in the surrogate-based
RBDO approaches developed by Dubourg (2011) and Moustapha (2016), which are respectively recalled
in Section II–5.3.2 and Section II–5.3.3. The definition of this domain allows the training set to be
sequentially enriched by additional points within the optimization loop. A central idea is to consider
a so-called augmented reliability space adopting the same philosophy as that proposed by Taflanidis

20This criterion can be extended to add more than one point at a time, thanks to the q-EI criterion, see Ginsbourger et al.
(2010).
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and Beck (2008) and following the original idea of Au (2005). Basically, the idea is to artificially
consider the design variables d as random, where the notation D is used for the corresponding random
vector. Indeed, the augmented random vector X(D) has a PDF h that accounts for both an instrumental
uncertainty in the design choices D and the assumed aleatory uncertainty in the random vector X. Under
such considerations h is expressed as follows:

h (x) =

∫

D
fX|d (x|d)π (d)dd , (II.172)

where fX|d is the PDF of X given the design parameters d, and π is a pseudo PDF for D, which is naturally
assumed uniform over the design domain D. An illustration of the definition of this augmented PDF
is provided in Figure II.13 for the case of normal distribution with a mean value uniformly distributed
over D. The augmented reliability space is spanned by V = X (D) in the top left corner of the figure.

Real uncertainty

Augmented uncertainty
Design range

Confidence interval

V = X (D)

X

D

X(D)

Figure II.13 – Augmented PDF.

For sequential constructions of surrogate models along the optimization process, the additional
points that are added to the training set need to cover a sufficiently large confidence region of the
augmented PDF h. Specifically, the surrogate models are required to be accurate for potentially ex-
treme choices of the design variables d (i.e. near their bounds) and extreme values of X and Z in the
case of small failure probabilities imposed by the reliability constraints. These confidence regions are
here denoted X(D) and Z for the respective design random vector X(D) and environmental random
vector Z. Assuming that X and Z are independent, the confidence region of the random vector (X(D),Z)
is obtained as a tensor product between X(D) and Z, i.e. X(D)×Z.

The confidence region X(D) relative to the design random variable is obtained by the following
tensor product (Dubourg, 2011; Moustapha, 2016):

X(D) =
nd∏

i=1

�
q−x i |di

, q+x i |di

�
, (II.173)

where nd is the number of design parameters and where, for i = 1, . . . , nd , the lower (resp. upper)
quantiles q−x i |di

(resp. q+x i |di
) at probability level α/2 (resp. 1−α/2) are defined by:

q−x i |di
= F−1

X i |d−i
(α/2) ,

q+x i |di
= F−1

X i |d+i
(1−α/2) ,

(II.174)

where X i|di follows the marginal PDF fX i |di
whose associated joint PDF fX|d was already introduced in

Eq. (II.172), F−1
X i |di

is the associated inverse CDF, and d−i (resp. d+i ) are lower (resp. upper) bounds of
the design variable di . Note that the components of X|d are assumed to be mutually independent here,
which makes X(D) a rectangular hypervolume.
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For the confidence regionZ associated with the environmental random vector Z, two solutions have
been proposed. In the work of Dubourg (2011), the random vector Z is mapped to the standard normal
space to allow the application of subset simulation. The confidence region Z is then defined as follows:

Z=
�
z ∈D fZ : ‖T (z)‖ ≤ β0

	
, (II.175)

whereD fZ denotes the support of fZ, T : z 7→ u is the isoprobabilistic transform and β0 is a given radius.
Another solution is proposed by Moustapha (Moustapha, 2016; Moustapha et al., 2016), since no map-
ping to the standard normal space is involved in his work. The confidence region Z is straightforwardly
defined by the following rectangular hypervolume:

Z=
nz∏

j=1

�
q−z j

, q+z j

�
, (II.176)

where, for j = 1, . . . , nz:
q−z j
= F−1

Z j
(α/2) ,

q+z j
= F−1

Z j
(1−α/2) ,

(II.177)

and where F−1
Z j

is the inverse CDF of component Z j of Z. Note that this definition implies that the nz

components of Z are mutually independent.

II–5.3.2 Proposed adaptive RBDO approach

(a) Adaptive enrichment strategy

We assume that a kriging predictor bY (x) has been trained on a given data set T = {(xi , yi) ∈ X ×Y , 1≤
i ≤ N}, as an approximate model of one of the ng LSF gk appearing in Eq. (II.163). Let us denote y
this specific gk function for the sake of clarity. The objective is to refine the approximate model around
the true limit-state surface {x ∈ X : y(x) = 0}, i.e. the zero-level contour of y .

Following the idea of region of interest proposed by Picheny et al. (2010), Dubourg (2011) defines
the margin of uncertainty ÓM1−α; t of the kriging surrogate with confidence level (1−α) associated with
the contour level t ∈R as:

ÓM1−α; t = ÒF1−α/2; t \ ÒFα/2; t , (II.178)

where:
ÒFξ; t = {x ∈ X : µbY (x)≤ t + uξσbY (x)} , (II.179)

and where uξ = Φ−1 (ξ) is the ξ-quantile of the standard normal univariate PDF. In the applications
made by Dubourg, α is set to 0.05 (i.e. choice of a 95% confidence interval). We are interested in
the zero-level contour of the function y , t is therefore set to zero in the following. It is important
to notice that ÒF0.5;0 = {x ∈ X : µbY (x) ≤ 0} is the approximate failure domain obtained by kriging.
The approximate LSS is defined by {x ∈ X : ey(x) ≡ µbY (x) = 0}. The margin of uncertainty therefore
represents the subdomain of X within u0.975 = 1.96 times the standard deviations of bY on both sides of
this approximate LSS.

Since ÒFα/2; 0 ⊂ ÒF1−α/2;0 the probability that a point x belongs to ÓM1−α; 0 is given by:

MP(x) = P
�bY (x) ∈ ÓM1−α; 0

�

= P
�bY (x) ∈ ÒF1−α/2;0

�−P �bY (x) ∈ ÒFα/2;0

�

= Φ

�
u1−α/2σbY (x)−µbY (x)

σbY (x)

�
−Φ

�−u1−α/2σbY (x)−µbY (x)
σbY (x)

�
,

(II.180)
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(a) Margin indicator 1ÓM1−α; 0
(x)

66 Chapter 2. Adaptive designs of experiments

t ∈ Y being the level of interest. Echard et al. (2011) also state that a point x for which
U(x )> 2 is classified with a sufficient confidence level. Actually, this arbitrary value comes
from a confidence level close to 95% (remember k95% = 1.96) so as to compare with the
margin of uncertainty M1−α. This comparison is illustrated in Figure 2.4. In Figure 2.4(b),
only the values of the deviation number function less than 2 were represented because its
gradient is then too large.
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Figure 2.4: Representation of the four simple criteria on the example from Section 1.5.3. They all
have their extrema in the vicinity of the identified contour.

The margin probability function

The smoother margin probability function which is used in this thesis is defined as fol-
lows:

MP(x )≡P
�bY (x ) ∈M1−α

�
=P

�bY (x ) ∈
�bF+1

1−α \ bF−1
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��
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(b) Deviation number U(x) (Echard et al., 2011)
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t ∈ Y being the level of interest. Echard et al. (2011) also state that a point x for which
U(x )> 2 is classified with a sufficient confidence level. Actually, this arbitrary value comes
from a confidence level close to 95% (remember k95% = 1.96) so as to compare with the
margin of uncertainty M1−α. This comparison is illustrated in Figure 2.4. In Figure 2.4(b),
only the values of the deviation number function less than 2 were represented because its
gradient is then too large.
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The margin probability function
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(d) Expected feasibility EF(x) (Bichon et al., 2008)

66 Chapter 2. Adaptive designs of experiments

t ∈ Y being the level of interest. Echard et al. (2011) also state that a point x for which
U(x )> 2 is classified with a sufficient confidence level. Actually, this arbitrary value comes
from a confidence level close to 95% (remember k95% = 1.96) so as to compare with the
margin of uncertainty M1−α. This comparison is illustrated in Figure 2.4. In Figure 2.4(b),
only the values of the deviation number function less than 2 were represented because its
gradient is then too large.

8 8
x1

8

8
x

2

M
(x

)
=

0

µ Ŷ
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Figure 2.4: Representation of the four simple criteria on the example from Section 1.5.3. They all
have their extrema in the vicinity of the identified contour.

The margin probability function

The smoother margin probability function which is used in this thesis is defined as fol-
lows:

MP(x )≡P
�bY (x ) ∈M1−α
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Figure II.14 – Representation of criteria on example 1 of Der Kiureghian and Dakessian (1998) (from
Dubourg, 2011).

where P should be understood as the probability measure w.r.t. the kriging epistemic uncertainty.
For illustration purposes, the probability MP(x) that a point belongs to the margin of uncertainty is
represented in Figure II.14, along with the deviation number U(x) of Echard et al. (2011) and the
expected feasibility function EF(x) of Bichon et al. (2008).

The probability that a point x belongs to the margin of uncertainty such as defined in Eq. (II.180) is
used in the following enrichment strategy (Dubourg, 2011; Dubourg et al., 2011), which is carried out
for each LSF gk, k = 1, . . . , ng .

From a given data set T = {(xi , yi) ∈ X ×Y , 1≤ i ≤ N}:
1. Train a kriging predictor bY (x) on T .

2. Define the weighted refinement criterion C(x) =MP(x)w(x) where MP(x) is defined in Eq. (II.180)
and where w(x) is a weighting PDF. In Dubourg et al. (2011) w is taken as a uniform PDF of a
sufficiently large radius β0 in the standard normal space where the vector X is mapped to.

3. Sample Ns candidates from C(x), considered as a pseudo PDF by MCMC slice sampler (Neal, 2003).

4. Select Na additional training points from these Ns candidates by K-means clustering (Lloyd, 1982).
Enrich the training set T with the Na corresponding data pairs.
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5. Loop back to step 1 until (Dubourg et al., 2011):

max
� bβ1−α/2 − bβ0.5 ; bβ0.5 − bβα/2

	≤ εbβ , (II.181)

where bβξ is the generalized reliability index corresponding to the failure probability assessed on the
approximate failure domain ÒFξ; 0:

bβξ = −Φ−1
�bPf,ξ

�
where bPfξ = P

�bY (x) ∈ ÒFξ; 0

�
, (II.182)

and where εbβ is a prescribed accuracy level (in the range 0.01 to 0.1 in Dubourg’s work). The

estimates of the three failure probabilities bPf,α/2, bPf, 0.5 and bPf, 1−α/2 are assessed by means of a single
subset simulation analysis, referred to as restarted subset sampling (see Dubourg, 2011, Chapter 3,
Section 3.4.2.2).

(b) Kriging-based RDBO approach

The following iterative scheme is proposed for kriging-based RBDO (Dubourg, 2011; Dubourg et al.,
2011).

1. Determine the augmented reliability space X(D)×Z.

2. Set s = 0. Choose an initial design d(0).

3. Fit/refine a kriging predictor with the above proposed adaptive enrichment methodology until the
accuracy criterion is below εbβ .

4. Apply one step of the Polak-He algorithm (Polak, 1997, Section 2.6) and update the design parame-
ters:

d(s+1) = d(s) + s(s)e(s) , (II.183)

where e(s) is the descent direction and s(s) the descent step. This requires the evaluation of the
gradient of the failure probability estimate w.r.t. d. These gradients are obtained by subset simulation
applied to ÒF0.5;0 if the design parameters d are distribution parameters of X, which is assumed here,
see Section I–4.3.2.

5. Set s = s+ 1.

6. Loop back to step 3 until the convergence of the optimizer is attained.

This adaptive kriging-based RDBO approach is applied to the buckling of imperfect shells in Sec-
tion III–1.5. As described in Dubourg (2011, Section 4.4.3) the proposed methodology requires some
adjustments for enhanced efficiency/accuracy. First, it is necessary to handle the very low failure proba-
bilities which may occur during optimization. This is achieved practically by stopping subset simulation
when failure probabilities lower than 10−15 are found. Second, some tunings were found beneficial to
increase the efficiency and accuracy of the proposed approach. One suggestion of Dubourg is to run
the proposed optimization algorithm several times with a decreasing sequence of the accuracy criterion
εbβ . It is proposed to start with εbβ = 1 and then divide this value by a factor of 2 and so on. Another
suggestion is to deliberately reduce the size of the augmented reliability space in order to make the en-
riching strategy more efficient. The idea is: 1) to center the new augmented reliability space of the next
run on the optimal design obtained at the previous run, and 2) to reduce its spread, while maintaining
this space inside the initially defined one. In practice, only two to three runs are necessary. The set of
training points is reused and enriched at each new run of the optimization algorithm.
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II–5.3.3 Proposed adaptive quantile-based RBDO approach

The objective pursued in the work of Moustapha (2016) is to refine the kriging surrogate model such
that the quantiles are accurately estimated in regions where the constraints are likely to be violated, see
Eq. (II.164). The constraints are expressed in the design domain D while the kriging surrogate is built
in the augmented spaceX(D)×Z. The trick is to find points inX(D)×Z which will most improve the
surrogate model such that the quantile is in fine more accurate in the regions of interest.

The method proposed by Moustapha (Moustapha, 2016; Moustapha et al., 2016) can be broken
down into two main stages.

• The first stage aims at sequentially constructing a kriging surrogate in the augmented space with
control of overall accuracy achieved on the quantile constraints. Residual model uncertainty is further
reduced during the optimization process of the next stage.

• The objective of the second stage is to iteratively find the optimal set of design parameters. In this
second stage the design is modified by the optimizer and the accuracy of the kriging surrogate model
is checked at each iteration of the optimizer. If the accuracy achieved on the quantile constraints is
found to be insufficient, the algorithm defines additional training points and the kriging surrogate is
updated.

This method was applied to the mass optimization of automotive body structures under crashwor-
thiness constraints (Moustapha, 2016; Moustapha et al., 2016). The objective was to find the best
distribution of the metal sheet thicknesses while satisfying frontal impact-related constraints. The ap-
plication of adaptive surrogate-based optimization was fully justified in this context, since each finite
element crash simulation was extremely time-consuming, i.e. about 24 hours for a single model run on
48-cpus in the most computationally intensive application (Euro NCAP frontal impact of a Peugeot 308).

(a) First stage: global adaptive enrichment strategy

The enrichment strategy involved in the first stage of the method is based on the deviation number U of
Echard et al. (2011). This criterion was retained for its straightforward evaluation and because other,
more elaborate, criteria have not shown any superior performances. The enrichment strategy is recalled
here for the specific case of a unique quantile constraint. Handling multi-constraints can be achieved by
means of a composite criterion, which ranks the constraints w.r.t. their U-values (see Moustapha, 2016,
Eq. (4.35) p. 126). Assuming that a set of data T = {(xi ,zi ,M(xi ,zi)) ∈X(D)×Z×Y , 1 ≤ i ≤ N} is
available, the proposed enrichment methodology can be summarized as follows:

1. Build/refine a kriging predictor ÓM(x,z) in the augmented spaceX(D)×Z as a surrogate of the true
modelM(x,z).

2. Uniformly sample a set of design parameters Cd = {d( j) ∈D, 1≤ j ≤ m}.

3. For each d( j) ∈ Cd:

(a) Generate the sample set C( j)xz = {(x(k)(d( j)),z(k)), 1≤ k ≤ Ns} of size Ns.
(b) Compute the set of approximate responses C( j)ÓM = {µÓM(x

(k)(d( j)),z(k)), 1≤ k ≤ Ns}.
(c) Compute the α-quantiles bqα(d( j)) of the sample set C( j)ÓM.

(d) Find the point (x( j)α ,z( j)α ) = {(x,z) ∈ C( j)xz : bqα(d( j)) = µÓM(x,z)}, where µÓM denotes the mean
of the kriging surrogate ÓM, see Figure II.15.
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(a) Monte Carlo sample sets C( j)xz and associated candi-
dates for enrichment

4. SURROGATE-BASED OPTIMIZATION

d) Compute the criterion on this point:

Ũ
(

d(i)
)
≡ U

(
x(i)α , z(i)α

)
=

∣∣∣ḡ− µM̂

(
x(i)α , z(i)α

)∣∣∣

σM̂

(
x(i)α , z(i)α

) ; (4.37)

3. Select the next best point as the one which minimizes the deviation number:

(xnext, znext) = arg min
(xα,zα)∈Cα

Ũ (d) , (4.38)

where Cα is the set of all points defined in Eq. (4.36).

Figure 4.17 illustrates how the point are chosen for the computation of the deviation number
in Eq. (4.37). In the left panel, four points are selected in the design space. They are shown as
blue crosses. For each of them, the MC population C

(i)
q used to compute the quantile is shown

as colored dots. The corresponding points
(

x(i)α , z(i)α

)
are highlighted by the red crosses. These

points are the one used to compute the U criterion.
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Figure 4.17: Illustration of enrichment in the augmented space while the constraint is defined
in the design space.

The entire methodology is also illustrated in Figure 4.18. We consider the two-dimensional
function introduced in Eq. (2.94). The left column shows contours of the enrichment function
in the augmented space. The contour

{
(x, z) ∈ X×Z|µM̂ (x, z) = 0

}
is also shown as the

black dashed line. The small crosses define the set Cα which are the input points for compu-
tation of U in Eq. (4.37). In the right column, the true and approximated quantiles are plotted
respectively in blue and black. The initial DOE consists of six points (blue triangles). The figure
illustrates four iterations of the enrichment. The convergence occurs after 11 iterations when
the confidence interval of the quantile estimation has shrunk considerably. This confidence
interval [q−α , q+α ] is computed here by evaluating the quantiles with respect to µM̂ ± 2σM̂.
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Figure II.15 – Illustration of enrichment in the augmented space (from Moustapha, 2016).

(e) Compute the deviation number U of Echard et al. (2011) at this point:

u(d( j))≡ U(x( j)α ,z( j)α ) =

���g −µÓM(x( j)α ,z( j)α )
���

σÓM(x
( j)
α ,z( j)α )

, (II.184)

4. Select the new additional point as the one which minimizes the deviation number for all designs
d( j) ∈ Cd:

(xnew,znew) = arg min
{(x( j)α ,z( j)α ),1≤ j≤m}

u(d( j)) , (II.185)

This criterion may be adapted if we wish to take advantage of sending distributed evaluations of the
true model M on multi-core computing resources. In order to define Na new points to be added
to the training set simultaneously (Na > 1), Moustapha suggests considering a weighted K-means
clustering of the candidates for enrichment, where each point is weighted by ϕ

�−u(d( j))
�
.

5. Loop back to step 1 until:

η=
#Cd, 2

#Cd
≤ η , (II.186)

where Cd, 2 = {d( j) ∈ Cd : u(d( j)) ≤ 2} and η is a prescribed accuracy threshold. This convergence
criterion is less stringent than the original one defined by Echard et al. (2011), which requires that
u(d( j)) > 2 for all d( j) ∈ Cd. Here η represents the ratio of points in Cd for which we tolerate
u(d( j))≤ 2. In practice, η is set in the range [0.15-0.30].

(b) Second stage: optimization with enrichment for quantile accuracy

The second stage aims at finding the optimal design under quantile-constraints, starting from the kriging
surrogate obtained in the first stage and considered as globally accurate. The idea is to bring additional
information for enrichment, as in the EGO algorithm. The proposed iterative scheme can be summarized
as follows (Moustapha, 2016; Moustapha et al., 2016):

1. Determine the augmented space X(D)×Z.

2. Proceed to the first stage with a global adaptive enrichment strategy. Obtain an initial kriging surro-
gate ÓM.
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3. Set s = 0. Choose an initial design d(0).

4. Generate the sample set C(s)xz = {(x(k)(d(s)),z(k)) ∈ X(D) × Z, 1 ≤ k ≤ Ns}, where X ∼ fX|d(s) and
Z∼ fZ.

5. Compute the three following sets of approximate responses based on ÓM:

C(s)ÓM = {µÓM(x
(k)(d(s)),z(k)), 1≤ k ≤ Ns} ,

C(s)ÓM− = {µÓM(x
(k)(d(s)),z(k))− 2σÓM(x

(k)(d(s)),z(k)), 1≤ k ≤ Ns} ,

C(s)ÓM+ = {µÓM(x
(k)(d(s)),z(k)) + 2σÓM(x

(k)(d(s)),z(k)), 1≤ k ≤ Ns} ,

(II.187)

6. Compute the respective α-quantiles of these sets: bqα(d(s)), bq−α (d(s)) and bq+α (d(s)).
7. Proceed to an enrichment of the training set and update the kriging surrogate if:

bq+α (d(s))− bq−α (d(s))
g

> ηq , (II.188)

where ηq is a prescribed threshold. The width [bq−α (d(s)) ,bq+α (d(s)) ] is taken as a measure of the
epistemic uncertainty of the kriging surrogate. The approach shares some similarities with that of
Dubourg, see Eq. (II.181). Regarding the choice of ηq, Moustapha suggests starting with a relaxed
threshold in the early iterations during the exploration by the optimizer, and then gradually reducing
it as the iterations grow and the optimizer starts exploring identified local minima.

The enrichment procedure is composed of the following steps:

(a) Compute {uk(d
(s)), 1≤ k ≤ Ns} where:

uk(d
(s)) =

��µÓM(x(k)(d(s)),z(k))− bqα(d(s))
��

σÓM(x(k)(d
(s)),z(k))

. (II.189)

(b) Select the single new additional point if Na = 1:

(xnew,znew) = arg min
{(x(k)(d(s)),z(k)),1≤k≤Ns}

uk(d
(s)) , (II.190)

or the Na additional points by K-means clustering with weights ϕ
�−uk(d

(s))
�

if Na > 1.
(c) Update the training set with the additional training data and train a new kriging surrogate ÓM.

8. Find the next design point to explore by means of the (1+1)-CMA-ES optimizer for constrained
problems (Arnold and Hansen, 2012):

d(s+1) = d(s) + ν(s) , (II.191)

where ν(s) is the mutation. In the (1+1)-CMA-ES algorithm, one parent generates one offspring at
each iteration. Such a global search algorithm is quite convenient in the proposed method, since
it allows us to check the quantile accuracy for the offspring before moving on. As a global search
algorithm, the (1+1)-CMA-ES algorithm is expected to perform better than gradient-based ones. This
has been verified e.g. in the bracket structure studied by Moustapha et al. (2016, Section 5.3), where
the weight at the optimum is much lower than that obtained by other researchers using gradient-
based methods. For details concerning the implementation of the (1+1)-CMA-ES algorithm, the
reader may refer to Moustapha (2016, Appendix B).

9. Set s = s+ 1.

10. Loop back to step 4 until the convergence of the optimizer.
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!Overview, contributions: Buckling of shells with shape imperfections and crack propagation are well
known for their uncertain character, which has been observed experimentally in several works. This
chapter presents some of the results obtained in these two fields of structural mechanics:
• In the buckling analyses carried out by Noirfalise (2009) and Dubourg (2011), the buckling loads

were assessed by means of the asymptotic numerical method as an interesting alternative to more
usual incremental-iterative finite element (FE) methods.

- Section III–1.3 presents some of the results obtained by Noirfalise, where random shape imper-
fections identified from experimental data are accounted for in a reliability analysis. One main
contribution of this work is the proposal of two random field models, one based on a random
representation of the Fourier coefficients and the other based on a Karhunen Loève series expan-
sion (Noirfalise et al., 2007; Noirfalise et al., 2008). Other interesting contributions made in the
finite element formulation are not recalled in this report.

- Section III–1.4 presents the reliability analysis of a cylindrical shell roof subjected to buckling
with random shape imperfections and space-variant material and thickness properties studied by
Dubourg (Dubourg et al., 2009a; Dubourg et al., 2009b). This problem illustrates the use of
FORM and subset simulation in the specific case of multiple MPFPs of equal weights.

- In Section III–1.5, the optimal design of a ring-stiffened cylindrical shell is analyzed using the
kriging-based adaptive RBDO approach of Dubourg presented in Chapter II, Section II–5.3.2.
This example illustrates the advantage of using an efficient surrogate-based adaptive approach in
the context of RBDO with costly-to-evaluate FE problems.

• Crack propagation under constant and variable amplitude was studied in the context of reliability
assessment.
- In Section III–2.2, crack propagation under constant-amplitude loading is analyzed by consid-

ering uncertainty in the Paris-Erdogan crack growth law. This analysis of the problem is based
on the experimental data collected by Virkler, which are subject to controversial interpretations.
Depending on its formulation, the reliability problem may be sensitive to correlation, which can
be assessed in the FORM context using the method proposed in Chapter I, Section I–4.2.2 (a).

- Section III–2.3 presents the main results obtained by Mattrand (2011) concerning crack prop-
agation under random loading. Markov chains and hidden Markov models are proposed and
identified from in-flight data recorded in a fleet of fighter aircraft (Mattrand and Bourinet, 2011;
Mattrand et al., 2011a). The associated reliability problems are efficiently solved by means of the
cross-entropy method presented in Chapter I, Section I–3.3.2 (Mattrand and Bourinet, 2014).
The PREFFAS crack closure model, which accounts for load interactions during crack growth,
such as retardations and accelerations, is used in this work. Another contribution not detailed in
the report is the adaptation brought to this model in order to relax its stationarity assumption,
which is incompatible with the non-stationary loads acting on real fighter aircraft.

Credits: This chapter is mainly composed of extracts from the PhD works I co-supervised and the
associated published papers:
• paper of Dubourg et al. (2017) in Section III–1.1 and Section III–1.2,
• PhD manuscript of Noirfalise (2009) in Section III–1.3,
• PhD manuscript of Dubourg (2011), papers of Dubourg et al. (2009a) and Dubourg et al. (2009b)

in Section III–1.4,
• PhD manuscript of Dubourg (2011), paper of Dubourg et al. (2017) in Section III–1.5,
• paper of Bourinet and Lemaire (2008), book chapter of Bourinet (2017a) in Section III–2.2,
• PhD manuscript of Mattrand (2011), papers of Mattrand and Bourinet (2011), Mattrand et al.

(2011a), Mattrand et al. (2011b), Bourinet and Mattrand (2013), and Mattrand and Bourinet
(2014) in Section III–2.3.
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III–1 Buckling of shells under external hydrostatic pressure

III–1.1 Introduction

Shell structures occupy a predominant part of our landscape (see, e.g., Ramm and Wall, 2004, for a
review of their applications). They owe this predominance to their curvature, which allows them to
withstand large transverse loading by a membrane-dominated stress state. As a result, they can be used
for building large-span shelters such as roofs, fuselages or boat and submarine hulls without requiring
too many intermediate supports such as stiffening beams or rims. Nonetheless, like many optimized and
therefore slender structures, the strength of thin shells also exhibits significant sensitivity with respect to
geometrical, material and other environmental conditions which are typically unknown to some extent.

Early work on the elastic stability of slender structures (such as beams, plates or shells) is often
attributed to Euler in 1744, although most of the theoretical concepts for shells in practice today are
due to Lorentz, Timoshenko and Southwell in the early nineties. In parallel with theoretical advances,
experimental studies revealed embarrassing discrepancies between the predicted buckling loads and
those obtained from real tests. Koiter (1945) was certainly the first researcher to point out that these
discrepancies are mostly explained by the imperfect geometry, boundary conditions and material prop-
erties of the experimental specimens. This premise is now fully acknowledged by the whole community
of engineers and scientists in structural mechanics in the light of other studies by Arbocz and Babcock
(1969), Singer et al. (1971), and Singer and Abramovich (1995) amongst others. The reader may refer
to Bažant (2000) for a review of works in the field of the stability of structures with an emphasis on
anelastic structures, and to the recent paper from Elishakoff (2012) for a detailed history of works on
the elastic stability of shells.

A key aspect of these imperfections, however, is that they are extremely variable in terms of shape
and amplitude. Hence, for the sake of structural safety, designers must account for extreme and for-
tunately unlikely imperfections. A common practice is to assume a given shape in the calculations,
corresponding to the worst case structural strength, and then resort to advanced numerical schemes
in order to justify the design. However, this approach, referred to as the worst case approach in the
following, introduces an unknown degree of conservatism which may not suit the safety requirements
imposed by stakeholders.

As suggested early on by Bolotin (1962) in his pioneering works, it is argued that a better solution
may be obtained by means of statistical methods and that the design of imperfect shells necessarily
falls under a probabilistic formulation. Several imperfection surveys were later carried out in order
to assess the statistical properties of imperfections present in both small and large-scale shells. These
statistics, such as those gathered in the imperfection data bank (Arbocz, 1982), were then introduced
into stochastic buckling analysis by researchers. Elishakoff (1979) was the first researcher to use the
random initial imperfections of compressed cylindrical shells in a Monte Carlo analysis. These initial
imperfections were expanded in a double Fourier series, and the Fourier coefficients were considered
as Gaussian random variables. Such a representation of random imperfections was also used in fur-
ther studies carried out by the same authors (see, e.g., Elishakoff and Arbocz, 1982; Elishakoff et al.,
1987; Arbocz and Hol, 1995; Arbocz and Hilburger, 2005). This double Fourier representation was
later investigated by other researchers in an effort to reduce the number of random Fourier coefficients
in order to alleviate the cost of the stochastic analysis (Noirfalise, 2009; Kriegesmann et al., 2010;
Kriegesmann et al., 2011). In the works of Schenk and Schuëller (Schenk and Schuëller, 2003; Schenk
and Schuëller, 2007), the geometric imperfection was modeled as a two-dimensional univariate non-
homogeneous Gaussian random field by means of a Karhunen Loève expansion. This representation is
also used by Craig and Roux (2008), Noirfalise (2009), and Dubourg et al. (2009b). As an alternative
technique, the spectral representation method was applied in several works to model two-dimensional
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univariate random fields, see e.g. the work of Stefanou and Papadrakakis (2004) which models ho-
mogenous Gaussian random fields representing spatially-varying material properties (Young’s modulus
and Poisson’s ratio) and thickness imperfections. The spectral representation method is also used in
conjunction with an autoregressive moving average technique with evolutionary power spectra by Pa-
padopoulos and Papadrakakis (2005) to model non-homogenous Gaussian random fields representing
a spatially-varying Young’s modulus in addition to geometric and thickness imperfections. A similar
approach based on non-Gaussian translation fields was adopted by Papadopoulos and Papadrakakis
(2005), putting the emphasis on the influence of the Gaussianity/non-Gaussianity assumption on the
results. Recourse to evolutionary power spectra estimated by means of a moving window averaging
technique is also found in Broggi and Schuëller (2011) for non-homogenous random fields represent-
ing geometric and thickness imperfections. Most of the works reported in the literature have focused on
metallic shells with geometric imperfections, possibly combined with spatially-varying material proper-
ties and thickness imperfections. A few research studies were also conducted on anisotropic composite
shells (Chryssanthopoulos and Poggi, 1995; Kriegesmann et al., 2010; Broggi and Schuëller, 2011;
Kriegesmann et al., 2011), characterized by larger imperfections due to their complex manufacturing
processes. For a more realistic treatment of imperfections, other sources of random imperfections were
additionally incorporated into probabilistic buckling studies, such as those arising from a non-uniform
distribution of the axial loading (Papadopoulos and Iglesis, 2007) or those coming from the application
of uncertain boundary conditions (Schenk and Schuëller, 2007). It is important to mention that most of
the models used to describe the geometric imperfections in the above-cited references were identified
from the experimental data available in the imperfection data bank. For thickness imperfections and
spatially-varying material properties, the parameters of the random fields are assumed to have specified
values, and they are sometimes varied in a parametric analysis.

In early probabilistic studies, buckling loads were computed by means of Koiter’s theory (Elishakoff,
1979; Elishakoff and Arbocz, 1982). More refined numerical solutions, based on a multimode analysis,
were later used by Elishakoff et al. (1987) and Arbocz and Hilburger (2005). Recourse to a nonlinear
finite element (FE) model is often advocated for enhanced accuracy w.r.t. the limit loads. FE-based prob-
abilistic approaches have been carried out using STAGS (Arbocz and Hol, 1995; Schenk and Schuëller,
2003; Schenk and Schuëller, 2007), ABAQUS (Kriegesmann et al., 2010; Broggi and Schuëller, 2011;
Kriegesmann et al., 2011) and LS-DYNA (Craig and Stander, 2007; Craig and Roux, 2008) (note that
this last code is specifically used in the context of dynamic buckling). In other studies, some researchers
implemented specific shell elements for their probabilistic buckling analysis. The TRIC triangular shell
element as described by Argyris et al. (2002) is used in the studies performed at the National Tech-
nical University of Athens (Stefanou and Papadrakakis, 2004; Papadopoulos and Papadrakakis, 2005;
Lagaros and Papadopoulos, 2006; Papadopoulos and Iglesis, 2007; Papadopoulos et al., 2009). In
their works, Noirfalise (2009) and Dubourg (2011) used the Büchter and Ramm 8-node shell element
(Büchter et al., 1994) for their reliability analysis and reliability-based design optimization. Most of
the probabilistic buckling analyses found in the literature assume linear elasticity for metallic shells,
which is perfectly appropriate for the studied thin shells taken from the imperfection data bank, such
as the so-called A-shells. The nonlinear behavior of shell material is addressed in Papadopoulos and
Papadrakakis (2005), Lagaros and Papadopoulos (2006), Dubourg et al. (2009b), and Dubourg et al.
(2017). Young’s modulus is considered as a random field in the first three references. Yield strength
is taken as an additional random field, independent of that of the Young’s modulus, by Dubourg et al.
(2009b). A random variable probabilistic model is used in the RBDO approach of Dubourg et al. (2017).

In several studies, probabilistic analysis consisted in constructing limit load histograms, in compar-
ison with those obtained experimentally, and analyzing the second-order statistics of these loads. Note
that the numbers of samples used in the FE-based Monte Carlo simulations of the reported references
are most often in the order of a few hundreds. Another direction followed by researchers has con-
sisted in performing a structural reliability analysis of shells by imposing that their limit loads should be
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greater than a prescribed service load. The earliest occurrences of such studies were based on the first-
order second-moment method (Elishakoff et al., 1987; Arbocz and Hol, 1995; Arbocz and Hilburger,
2005). The first-order reliability method (FORM) was later used in many works based on analytical
models, not listed here for the sake of brevity, or on FE models (see, e.g., Bourinet et al., 2000; Dubourg
et al., 2009b). In the specific case of imperfections modeled by random fields, using the subset sim-
ulation method (Au and Beck, 2001) is considered as the most suitable solution, as investigated by
Noirfalise (2009) and Dubourg et al. (2009b). For the purpose of improving designs, the optimization
of shells subject to buckling based on FE models has also been of interest in recent years. In Lagaros
and Papadopoulos (2006), the weight of shells with random geometric imperfections and space-variant
Young’s modulus and thickness was minimized in the framework of reliability-based design optimiza-
tion. This work was based on a (5+5)-evolution strategy optimization algorithm, and the probabilistic
constraint was assessed by means of a crude MC with 1000 samples. In Craig and Roux (2008), shells
with stochastic imperfections were optimized in a dynamic buckling context. Two optimization studies
were performed: the first aimed at minimizing the weight of the shell with constraints on the average
peak force and average internal energy, the second aimed at increasing the robustness w.r.t. variations
in the normal peak force with the same constraints. The strategy used by Craig and Roux was to con-
struct a quadratic polynomial response surface with a 96-sample MC simulation at each point of the
design of experiments.

The following sections compile some results concerning the probabilistic buckling of shells, obtained
in the scope of the PhD works of Noirfalise (2009) and Dubourg (2011). In these studies, the main field
of application is the stochastic analysis of shells with random imperfections and/or space-variant ran-
dom material properties and thicknesses. The stability of shells is assessed numerically by means of
a non-incremental non-iterative FE method known as the asymptotic numerical method (ANM), pro-
posed by Damil and Potier-Ferry (1990) and Cochelin (1994) and briefly recalled in Section III–1.2.
Section III–1.3 addresses the buckling of elastic shells of revolution under external hydrostatic pressure
with geometrical imperfections, i.e. accounting for deviations from the perfect shell geometry. This
section presents some reliability results obtained for shells with random imperfections identified from
real measurements in the imperfection data bank. In Section III–1.4 the interest is in the influence
of space-variant random material properties and thicknesses on the buckling of shells, accounting for
the nonlinear behavior of the constitutive material. The objective is a reliability analysis with certain
assumed properties of the random fields. Section III–1.5 illustrates the kriging-based adaptive RBDO
approach developed in Section II–5.3.2, where the aim is to optimize the weight of ring-stiffened cylin-
drical shells representative of those used in submarine pressure hulls.

III–1.2 Elements of shell nonlinear stability analysis

Buckling is a structural instability phenomenon triggered by an excessive load which needs to be identi-
fied. This load will be referred to as the critical buckling (or collapse) load in the following. In practice
it is determined by applying a so-called load proportionality factor (LPF) λ which is initialized to zero
and then incrementally increased until collapse is observed.

III–1.2.1 Problem formulation

In continuum mechanics, the equilibrium state of a conservative mechanical system is characterized by
a zero elementary variation in its total potential energy, denoted Et. This fundamental principle leads
to the establishment of the following so-called variational formulation of equilibrium states:

δEt = Et,u (λ, u)δu= 0 , (III.1)
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where u denotes any admissible displacement of the structure and Et,u is the first-order functional
derivative of the total potential energy that depends on the LPF λ. The infinite set of values of λ and
u satisfying the latter equation is known as the equilibrium path of the structure. This path is usually
constructed incrementally from a known initial state λ(0), u(0), e.g. the reference state of the unloaded
structure for which λ= 0.

For stable structures, the only state of interest corresponds to a unit value of the LPF λ. Unstable
(resp. stable) equilibrium states are characterized by a negative (resp. strictly positive) second-order
functional derivative of the total potential energy Et,uu, meaning that they correspond to the local
maxima (resp. minima) of this energy.

There exist basically two kinds of instabilities, both potentially leading to buckling and/or prema-
ture plastic collapse: bifurcation points and limit points, see Figure III.1 for an illustration. Regarding
bifurcation points, the structure may lose its stability along the equilibrium path, resulting in sudden and
large displacements, which often lead to collapse. Limit points occur when the structure is no longer
able to withstand loads, due to nonlinear geometrical and/or material effects. For many structures,
including shells, these two kinds of points generally interact in a joint manner, one triggering the other
and conversely.

Practical detection of these instabilities is a non-trivial task, and it involves the resolution of a per-
turbed equilibrium problem along with the resolution of Eq. (III.1). For structures with initial geomet-
rical imperfections, and for nonlinear material behaviors, it is commonly admitted that structures fail
at their limit load. In such a situation the detection of singular points along the equilibrium path is
equivalently replaced by the search for limit load points characterized by horizontal tangents to the
equilibrium path, as further developed in the context of the ANM in Section III–1.2.3 (c). Such an
assumption is made in the examples presented in Section III–1.4 and Section III–1.5.

u

Imperfection w/
increasing amplitude

Bifurcated path Bifurcation

Limit load

Regular point

Imperfection with
increasing amplitude

Figure III.1 – Equilibrium paths and stability.

III–1.2.2 General formulation of the static equilibrium equations

In a static analysis, the total potential energy of a structure of volume V is given by:

Et(λ, u) =

∫

V
Wint(ε)dv −λWext(u) , (III.2)

where Wint is the strain energy density in the structure, Wext is the work of external forces and dv is the
infinitesimal volume. ε stands for the Green-Lagrange strain tensor, defined as:

ε = ε(u) =
1
2

�∇u+∇Tu
�

︸ ︷︷ ︸
εl(u)

+
1
2
∇u∇Tu

︸ ︷︷ ︸
εnl(u, u)

, (III.3)
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where εl(u), resp. εnl(u, u), denotes the linear, resp. symmetric quadratic bilinear, term of ε and ∇
the gradient operator. Assuming linear elasticity, the strain energy density Wint reduces to the following
quadratic form:

Wint(ε) =
1
2
ε : D : ε , (III.4)

where D is the elasticity tensor of the material and : denotes the double contraction of tensors.

Introducing the second Piola-Kirchhoff stress tensor S = D : ε, the variational formulation of the
equilibrium equation rewrites as the following set of equations:

δEt =

∫

V
S : δε dv −λWext(δu) = 0

S= D : ε

(III.5)

where δε = εl(δu) + εnl(u, δu).

III–1.2.3 The asymptotic numerical method

The nonlinear problem in Eq. (III.5) is usually solved by means of so-called incremental iterative meth-
ods such as the Newton-Raphson algorithm. The present work is based on an original alternative, known
as the asymptotic numerical method (ANM) proposed by Damil and Potier-Ferry (1990) and Cochelin
(1994).

(a) The idea

It is first proposed to rewrite the nonlinear problem in Eq. (III.5) into the following convenient quadratic
form:

R(Y, λ) = L(Y) +Q(Y, Y)−λF= 0 , (III.6)

where R is a vector of residuals, L is a linear operator, Q is a bilinear quadratic operator, F is a known
vector and YT = (uT,ST) groups the unknowns of the problem.

A key idea of the ANM then consists in expanding the unknowns Y and λ over a unique path param-
eter denoted a in the form of the following polynomial series expansions:

�
Y(a) = Y0 + a Y1 + a2 Y2 + . . .+ aN YN
λ(a) = λ0 + aλ1 + a2λ2 + . . .+ aN λN

, (III.7)

where (Y0, λ0) describes the initial state of the system, which is presumed to be known. In all the
presented applications, the polynomial expansions are truncated after N = 30 terms.

Introducing these expansions into Eq. (III.6) and grouping the terms with the same power of a then
yields the following succession of linear systems for orders p = 1, . . . , N :





Lt(Y1) = λ1 F
Lt(Y2) = λ2 F−Q(Y1, Y1)

...

Lt(YN ) = λN F−
N−1∑
p=1

Q(Yp, YN−p)

, (III.8)

where Lt(·) = L(·) + 2Q(Y0, ·) is the tangent operator, which is the same at all orders.



144 Chapter III. Reliability assessment in structural mechanics

At this stage, the problem involves one more unknown than the number of available equations,
namely the parameter a. Similarly to a classical incremental iterative method, the ANM uses a pseudo
arc-length technique by setting:

a = (Y− Y0)
T Y1 + (λ−λ0) λ1 , (III.9)

which completes the system of equations given in Eq. (III.8).

Hence, it can be seen that the initial nonlinear problem in Eq. (III.6) has been genuinely transformed
into a set of N linear systems by rejecting all nonlinearities to the right-hand side of Eq. (III.8). In
addition, the N linear systems composing Eq. (III.8) feature a single linear operator Lt , which is the
same at all orders. When switching to the discrete form of the problem (by means of a classical FE
displacement formulation), the resolution of the N linear systems requires only one decomposition of
the tangent stiffness matrix Kt, which is the discrete counterpart of Lt. This latter remark makes the
ANM very efficient, as the tangent stiffness matrix Kt is large in practice.

Eventually, the ANM provides a continuous representation of the equilibrium path for any value of
λ thanks to the series expansion in a. This is an interesting property with respect to the incremental
iterative methods, which need to solve the problem for each value of λ.

(b) Validity of the expansion

Due to the use of finite expansions in Eq. (III.7), the solution becomes invalid for large values of a. Thus,
it is proposed to truncate the solution below a maximum value of a, denoted amax. This maximum value
is based on a study of the norm of the residual R(a) = R(Y(a), λ(a)).

Cochelin (1994) proved that it is reasonable to approximate this quantity by the norm of the first
omitted term in the expansion, so that:

‖R(a)‖ ≈ ‖aN+1 RN+1‖ . (III.10)

Based on this approximation, Cochelin then came up with the following expression for amax:

amax =
�
ε
‖F‖
‖RN+1‖

� 1
N+1

, (III.11)

where ε is the maximum tolerance on the norm of the residual. This tolerance is usually set at a small
value (here 10−8) thanks to the normalization of the residual with respect to the right-hand side ‖F‖ of
Eq. (III.6).

The description of the whole equilibrium path can therefore be made piecewise by repeating the
procedure incrementally, i.e. by resetting the initial state of the system to (Y0, λ0) to (Y(amax), λ(amax)).
It is worth pointing out that the ANM remains more computationally efficient than its incremental
iterative counterparts because it is incremental only. Indeed, incremental iterative methods need to
iterate within the increments in order to remain on the equilibrium path, which involves expensive
decompositions of the tangent stiffness matrix during the iterative process.

(c) Determination of bifurcation and limit loads

Bifurcations can be detected in the ANM by considering a small virtual displacement perturbation
(Boutyour et al., 1995). For a fixed displacement perturbation, singular points correspond to solu-
tions for which the force response tends to zero. The detection of such points is obtained by solving
an additional system of equations, which is again formulated in the framework of the ANM, i.e. their
unknowns are expressed in terms of series of a path parameter a truncated at an order N , where a
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and N are identical to those used in the equilibrium problem. The reader may refer to Baguet (2001,
Chapter 4) for a detailed presentation of this highly technical point of prime importance in buckling
analysis.

For limit loads their determination can be simply obtained from the parametric approximation of
the load proportionality factor. Indeed, limit load points are characterized by a horizontal tangent on
the equilibrium path, thus meaning that the derivative of the load proportionality factor with respect to
a equals zero at the critical limit load. Hence, the limit LPF is defined as λlimit = λ(alimit), where:

alimit =min
§

a ∈ [0; amax] :
dλ
da
= 0

ª
. (III.12)

Thanks to the chosen polynomial series expansion for the LPF, determining the limit load simply consists
in finding the roots of a polynomial of order (N − 1) and retaining the lowest positive root that is less
than amax, provided it exists.

(d) Sources of nonlinearity

In the works presented in Section III–1, the ANM is applied to geometric nonlinearities extended to
large rotations, based on the work of Zahrouni et al. (1999). It can be shown that the corresponding
equilibrium equations under such an assumption conveniently fit the quadratic formulation of the ANM
given in Eq. (III.6). Two additional sources of nonlinearity are explicitly accounted for within the ANM.

The first source of nonlinearity is due to follower forces resulting from the hydrostatic pressure
exerted on shells. Accounting for the specific effects of follower forces in a buckling analysis could be
of utmost importance for structural components such as the single-bay of the submarine pressure hull
with an overall geometrical imperfection studied in Section III–1.5. From a computational viewpoint,
this additional assumption introduces a dependence of the virtual work of external forces on the LPF
(see, e.g., Noirfalise, 2009, pp. 81–86). This results in additional terms appearing in the right-hand side
forces of Eq. (III.8), on the one hand, and a nonsymmetric tangent operator Lt (nonsymmetric tangent
stiffness matrix Kt in the matrix formulation), on the other hand.

The second source of nonlinearity accounted for in this work is due to the assumption of the non-
linear behavior of the constitutive material of shells. A nonlinear elastic Ramberg-Osgood constitutive
law characterized by the following stress-strain relationship is considered in the ANM (Zahrouni et al.,
1998):

Eε = (1+ ν)Sd − (1− 2ν) PI+
3
2
α

�
Seq

σy

�n−1

Sd , (III.13)

where E is the Young’s modulus, ν is the Poisson’s ratio, σy is the yield strength, P = −1
3S : I = −1

3 tr (S)

is the hydrostatic pressure, Sd = S+ PI is the deviatoric part of the stress tensor S, Seq =
q

3
2Sd : Sd is

the von Mises equivalent stress, and α and n are the two Ramberg-Osgood parameters.

Note that plasticity is not considered in the presented works. Even so, it is argued that the structures
under consideration do not present any significant local unloading until the collapse load of interest is
reached. In such a case, nonlinear elasticity represents a fairly accurate model.

As an additional detail, it is important to mention that large rotations and shear strains in the thin-
walled shell structure of interest are accounted for by means of the shell FE formulation. The present
approaches resort to a three-dimensional seven-parameter shell formulation proposed by Büchter et
al. (1994). This formulation, based on the enhanced assumed strain (EAS) concept, disables the usual
locking problems characteristic of shell elements. Such a formulation introduces another set of nonlinear
compatibility equations (see, e.g., Baguet, 2001, pp. 43–48).
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III–1.3 Elastic buckling of shells with geometrical imperfections

The structural elements of interest in this section are thin-walled cylindrical shells of length L = 1000 mm,
radius R = 220 mm and thickness t = 0.5 mm. We consider that the shells have some initial shape im-
perfections, i.e. there exist unavoidable deviations from the perfect cylinder. The shape and amplitude
of these imperfections are defined from the survey conducted by Rhijnsburger (1999) on 27 shells with
different sizes and cut-outs. Only the shells with the above-mentioned geometry are considered in the
analysis (specimens referenced from zyl113 to zyl121). The circular cut-out present in each of the shells
tested by Rhijnsburger is ignored in our analysis. The shells were scanned along their circumference
with 60 data points. The distance between the circumferential scans in the axial direction was 20 mm.
In the present analysis it is assumed that the shells are constructed of steel with deterministic material
properties: Young’s modulus E = 200, 000 MPa and Poisson’s ratio ν = 0.3. Material behavior is as-
sumed to be linear elastic. Contrarily to the real shells which were tested under axial compression, the
shells here are assumed to be subjected to a uniform external pressure. The cylindrical shells are as-
sumed to be simply supported at both ends (so-called SS3 boundary conditions). Additional constraints
are imposed in order to prevent rigid body modes.

The cylinder is discretized with a mesh containing 120 8-node Büchter and Ramm shell elements
in the circumferential direction and 25 elements in the axial direction (≈ 60, 000 d.o.f.)1. Bifurcations
are detected in the equilibrium path by the ANM as proposed by Boutyour et al. (1995), see Section III–
1.2.3 (c). The computational cost of a single FE run, including the determination of the equilibrium
path and the detection of bifurcations, was less than 90 min.2

III–1.3.1 Identification of random fields from measured imperfections

The initial imperfections, expressed in terms of their radial components, are determined from the exper-
imental measurements w.r.t. a best-fit perfect cylinder (Rhijnsburger, 1999). For each cylindrical shell,
the Fourier coefficients are obtained by a double harmonic analysis. Four types of representation are
proposed in Rhijnsburger (1999). The type retained here corresponds to a half-wave cosine represen-
tation in the axial direction. For a given shell, the radial component w(x ,θ ) of the shape imperfection
is expressed as follows, for (x ,θ ) ∈D = [0, L]× [0, 2π[:

w(x ,θ ) = t
N∑

i=0

ai0 cos
�

iπx
L

�
+ t

N∑
k=0

N∑
l=1

cos
�

kπx
L

�
[akl cos(lθ ) + bkl sin(lθ )] , (III.14)

where t is the thickness, {ai0, 0 ≤ i ≤ N}, {akl , 0 ≤ k ≤ N , 1 ≤ l ≤ N}, {bkl , 0 ≤ k ≤ N , 1 ≤ l ≤ N} are
the coefficients determined from the experimental data by Rhijnsburger (1999) and where the series is
truncated after N = 14. It is important to notice that the total number of coefficients involved in this
expression is equal to 15+ 2× 15× 14= 435.

Two types of random field model are proposed to represent shape imperfections in the objective of a
subsequent reliability analysis. The first model consists in considering the Fourier coefficients as random
variables in Eq. (III.14), see Section III–1.3.1 (a). In this model, the number of random coefficients
accounted for is limited to 35, and a multivariate normal PDF is identified from the experimental data.
Selection is made based on criteria representative of the importance of each coefficient in the series.

1The convergence of the FE solution of the buckling problem with the ANM is obtained with about 20,000 d.o.f. for the
perfect cylinder. It is assumed that the FE mesh with 60,000 d.o.f. is sufficiently refined for accurate solutions in all the
problems with shape imperfections involved in the reliability analysis performed later on.

2The computations related to this study were performed in 2008. The CPU time of a single FE run with the ANM would be
far less than 90 min using more recent computing resources.
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The second model is based on a Karhunen Loève (KL) series expansion of the shape imperfections, see
Section III–1.3.1 (b). The autocorrelation function is constructed from the measured imperfections, and
the integral problem is solved numerically by a Galerkin method using a trigonometric Fourier basis.
The random field is assumed to be Gaussian and the KL series is truncated after 12 terms.

(a) Fourier representation with random coefficients

The random shape imperfection W (x ,θ ) is simply obtained by considering the Fourier coefficients in-
volved in Eq. (III.14) as random variables:

W (x ,θ ) = t
N∑

i=0

Ai0 cos
�

iπx
L

�
+ t

N∑
k=0

N∑
l=1

cos
�

kπx
L

�
[Akl cos(lθ ) + Bkl sin(lθ )] , (III.15)

where {Ai0, 0≤ i ≤ N}, {Akl , 0≤ k ≤ N , 1≤ l ≤ N}, {Bkl , 0≤ k ≤ N , 1≤ l ≤ N} are random variables
whose joint distribution is inferred from the measured data.

A reduction in the number of random coefficients considered in the model was performed without
altering the accuracy of the shape imperfection representation. The idea is to retain in the representation
only those coefficients that are the most important w.r.t. the mean and/or variance of W (x ,θ ). An
additional selection criterion is based on the contribution of a given coefficient in the covariance matrix
related to the whole set of coefficients. Selection is made as follows:

1. We first proceed to a renumbering of the random coefficients by means of a single index k ∈ K =
{1, . . . , 435}, such that first the Ai0 and Akl coefficients are placed in (k ∈ {1, . . . , 225}), and then the
Bkl coefficients are placed in (k ∈ {226, . . . , 435}). Let us denote Ξ = (Ξ1, . . . ,Ξ435)T the random
vector with the reordered coefficients.

2. We compute the mean µW (x ,θ ) and the variance σ2
W (x ,θ ) of W (x ,θ ) for (x ,θ ) ∈D. These expres-

sions, detailed in Noirfalise (2009, p. 145), are expressed in terms of the expectations and covari-
ances of the random coefficients {Ξk, k ∈ K}, whose sample estimates are known from the data of
Rhijnsburger (1999).

3. We additionally compute the Frobenius norm of the covariance matrix ΣΞΞ of the random vector Ξ:

‖ΣΞΞ‖F =
Ç

tr
�
ΣΞΞΣ

T
ΞΞ

�
. (III.16)

4. For k ∈ K let us drop the coefficient Ξk in the expression of W (x ,θ ) given in Eq. (III.15). We
denote µ(−k)

W (x ,θ ), σ2
W
(−k)(x ,θ ) and ‖ΣΞ(−k)Ξ(−k)‖F the above-defined quantities with the coefficient

Ξk omitted.

5. The following error measures are introduced:

ε(−k)
µ =

sup(x ,θ )∈D
���µW (x ,θ )−µ(−k)

W (x ,θ )
���

sup(x ,θ )∈D |µW (x ,θ )| ,

ε
(−k)
σ2 =

sup(x ,θ )∈D
���σ2

W (x ,θ )−σ2
W
(−k)(x ,θ )

���
sup(x ,θ )∈D

��σ2
W (x ,θ )

�� ,

ε
(−k)
Σ =

‖ΣΞ(−k)Ξ(−k)‖F
‖ΣΞΞ‖F

.

(III.17)

6. The random coefficients selected in the Fourier series are those satisfying:

k ∈Ksel =Kµ ∪Kσ2 ∪KΣ where





Kµ = {k ∈K : ε(−k)
µ ≥ εµ}

Kσ2 = {k ∈K : ε(−k)
σ2 ≥ εσ2}

KΣ = {k ∈K : ε(−k)
Σ < εΣ}

, (III.18)
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with the following choices for the threshold values: εµ = εσ2 = 0.03 and εΣ = 1.

The selection criteria are shown in Figure III.2. The setsKµ,Kσ2 andKΣ are respectively represented
by blue squares in subplots (a), (b) and (c) of this figure. A total of 35 coefficients are selected. It is
shown that these coefficients are those associated with axial modes 0 and 2 only, while almost all the
circumferential modes are selected, see Figure III.3.

The stochastic model for shape imperfections is therefore expressed in terms of 35 random coef-
ficients. The distribution of the random vector Ξsel = (Ξk, k ∈ Ksel) is assumed to be Gaussian (it is
recalled that the sample size is small, i.e. only 9 cylinders, which does not leave us other choices). The
means and standard deviations of the marginal distributions were estimated from the data, along with
the linear correlation between the components of Ξsel.

(a) ε(−k)
µ criterion
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5 · 10−2

0.1

0.15
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Ai j Bi j

(b) ε(−k)
σ2 criterion
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0.15
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(c) ε(−k)
Σ criterion
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Figure III.2 – Criteria for the selection of random coefficients in the Fourier series.

(b) Stochastic model based on a Karhunen Loève series expansion

The second constructed model is based on a truncated Karhunen Loève (KL) series expansion. The
shape imperfection is assumed to be modeled by a Gaussian real-valued second-order random field
W = {W (τ),τ = (x ,θ ) ∈ D} and we denote in the following by U = {U(τ),τ ∈ D} the zero-mean
Gaussian field associated with W such that, for any τ ∈D:

U(τ) =W (τ)−E [W (τ)] . (III.19)
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(a) Coefficients Ai j (b) Coefficients Bi j

Figure III.3 – Selected random coefficients.

The autocorrelation function of U denoted RU : D × D → R, (τ,τ′) 7→ RU(τ,τ′) is defined by
RU(τ,τ′) = E

�
U(τ)U(τ′)

�
for any (τ,τ′) ∈D×D.

This random field admits the following expansion for any τ ∈ D, referred to as Karhunen Loève
(KL) expansion of U:

U(τ) =
+∞∑
k=1

Æ
λkξkϕk(τ) , (III.20)

where the scalars {λk, k ∈ N>0} and the real-valued functions {ϕk, k ∈ N>0} are the solutions of the
following homogeneous Fredholm integral equation of the second kind3 in (λ,ϕ), for any τ ∈D:

∫

D
RU(τ,τ′)ϕ(τ′)dτ′ = λϕ(τ) , (III.21)

and where the random variables {ξk, k ∈N>0} are given by:

ξk =
1p
λk

∫

D
U(τ)ϕk(τ)dτ . (III.22)

Under the Gaussianity assumption for the random field which is made here, the random variables ξk
are mutually independent standard normal random variables. For non-Gaussian random fields, these
random variables are zero-mean uncorrelated random variables, i.e. E

�
ξiξ j

�
= δi j , but they are not

independent.4 Note also that the series in Eq. (III.20) converges in quadratic mean and uniformly in τ.

For practical implementation, we resort to a truncated expansion of U , for any τ ∈D:

UM (τ) =
M∑

k=1

Æ
λkξkϕk(τ) , (III.23)

3In other terms Eq. (III.21) expresses that λk and ϕk are respectively the eigenvalues and eigenfunctions of the autocorre-
lation function RU .

4In such problems a Gaussian kernel approximation can be used for modeling the joint PDF of the ξk ’s from a set of
observations, as recently proposed by Poirion and Zentner (2014).
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where the eigenvalues λk are assumed to be sorted in decreasing order. The truncation order M is
chosen w.r.t. the ratio

∑M
k=1λk/

∑+∞
k=1 λk, which represents an indirect measure of the error in the

variance of the random field U due to the truncation (see, e.g., Huang et al., 2001).

The main effort in constructing the KL expansion consists in computing the eigenvalue and eigen-
function solutions of Eq. (III.21). In practice, these solutions are obtained numerically, except for a
very few cases for which an analytical solution is available. In this context the eigenfunctions ϕk are
expanded on a chosen set of basis functions {Ψi(τ), 1 ≤ i ≤ N}, e.g. Fourier, orthogonal polynomial or
wavelet basis:

ϕk(τ) =
N∑

i=1

dk,iΨi(τ)

= Ψ(τ)Tdk ,

(III.24)

where Ψ(τ) = (Ψ1(τ), . . . ,ΨN (τ))T and dk = (dk,1, . . . , dk,N )T is the vector of unknown constant coef-
ficients.

By substituting the expansion of Eq. (III.24) in Eq. (III.21) and by setting the error in Eq. (III.21) to
be orthogonal to each basis function Ψi , we can obtain the following generalized eigenproblem:

Adk = λkBdk , (III.25)

where the N × N matrices A= [ai j]1≤i, j≤N and B= [bi j]1≤i, j≤N are given by:

ai j =

∫

D

∫

D
RU(τ,τ′)Ψi(τ

′)Ψ j(τ)dτ
′dτ,

bi j =

∫

D
Ψi(τ)Ψ j(τ)dτ.

(III.26)

It is worth noting that the number of terms M in the truncated KL expansion defined in Eq. (III.23)
cannot be greater than the selected number of basis functions N .

In the work of Noirfalise (2009), the eigenfunctions ϕk are expanded on a set of basis functions
{Ψα(τ), |α|= α1 +α2 ≤ p}, p ∈N>0:

ϕk(τ) =
∑
α∈A

dk,αΨα(τ) , (III.27)

where α = (α1,α2) ∈ N2 is a bi-index, |α| denoting its length, and dk,α are the unknown constant
coefficients. Given the Fourier representation of U , the most natural choice for Ψα is the following basis
of trigonometric functions:

Ψα(τ) = Ψα(x ,θ ) =ψα1

�πx
L

�
ψα2
(θ ) , (III.28)

where, for any t ∈R:

ψ0(t) = 1 and, for m ∈N>0, ψ2m−1(t) = cos(mt) , ψ2m(t) = sin(mt) . (III.29)

The basis selected by Noirfalise was truncated after p = 16 in order to select most important terms in
the Fourier series.

The solutions of Eq. (III.25) were obtained by symbolic computations. The problem to solve was
found to be very sensitive to rounding errors. The computed eigenvalues λk are represented in Fig-
ure III.4. Due to the rapid decay of the eigenvalues, the series defined in Eq. (III.23) was truncated
after M = 12 terms. The first four eigenvectors are represented in Figure III.5.
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Figure III.4 – Lowest eigenvalues λk of the integral equation Eq. (III.25).

(a) 1st eigenvector ϕ1(x ,θ ) (b) 2nd eigenvector ϕ2(x ,θ )

(c) 3rd eigenvector ϕ3(x ,θ ) (d) 4th eigenvector ϕ4(x ,θ )

Figure III.5 – Eigenvectors ϕk(x ,θ ) of the integral equation Eq. (III.25).
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III–1.3.2 Reliability assessment by subset simulation

We want to assess the reliability of the thin-walled cylindrical shells analyzed by Rhijnsburger subjected
to a prescribed external pressure p0 = 1000 Pa.5 We assume that these shells have random shape
imperfections, modeled by means of one of the two models presented so far: either the random Fourier
representation described in Section III–1.3.1 (a) or the truncated Karhunen Loève series expansion
described in Section III–1.3.1 (b). The failure probability is given by:

pf = P (pcr ≤ p0) , (III.30)

where pcr is the buckling pressure of the shell. For the random Fourier representation, pcr = pcr(Ξsel),
where Ξsel = (Ξk, k ∈ Ksel) and #Ksel = 35. For the truncated Karhunen Loève series expansion,
pcr = pcr(ΞM ), where ΞM = (Ξ1, . . . ,ΞM )T and M = 12. The critical buckling pressures pcr are assessed
numerically by bifurcation detection in the ANM, see Section III–1.2.3 (c).

The failure probability is estimated by subset simulation with 10,000 samples per level, see Sec-
tion I–3.2. The failure probability estimate obtained with the random Fourier representation of the
shape imperfection is 5.97× 10−6 with a coefficient of variation of 0.15. For the truncated Karhunen
Loève series expansion, the estimate is 4.47× 10−6 with a coefficient of variation of 0.16. Each subset
simulation analysis requires a total of 60,000 samples. The two failure probability estimates are very
close, with a difference in the order of the statistical dispersion. These results allow us to conclude that
both models are suitable for the purpose of reliability estimation. The probability estimates bπs of πs
at the intermediate levels ys of the LSF are also represented in Figure III.6 with their 95% confidence
intervals where, for s = 1, . . . , m= 6:

πs =
s∏

k=1

pk = P (pcr ≤ p0 + ys) . (III.31)
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Figure III.6 – Subset simulation results.

III–1.4 Elastoplastic collapse of shells with geometrical imperfections and space-variant
material properties / thicknesses

The structure of interest in this section is the cylindrical shell roof illustrated in Figure III.7. This example
is inspired by the article of Scordelis and Lo (1964) (see also Ramm and Wall, 2004, pp. 405–406), but
the load case and the material properties have been modified (Dubourg et al., 2009a). The dimensions

5The buckling pressure of the perfect shell determined by the ANM is equal to 2880 Pa.
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under consideration are given in Figure III.7. The longitudinal edges are free, while the circumferential
edges are simply supported by rigid diaphragms. The roof is subjected to a distributed non-follower
vertical load q over its whole upper surface. The constitutive material is assumed to follow a Ramberg-
Osgood nonlinear elastic law, as described in Section III–1.2.3 (d). The problem is discretized with
a mesh containing 30 × 30 8-node Büchter and Ramm shell elements (≈ 17,000 d.o.f.). Limit loads
are computed by differentiating the piecewise polynomial series expansions of the equilibrium path, as
explained in Section III–1.2.3 (c).

In the reliability analyses presented here, we assume that the space-variant properties of the roof
structure are uncertain over the rectangular domain [−L/2, L/2] × [−Rθ/2, Rθ/2], where θ denotes
the opening angle of the roof in radians. More specifically, the material properties (Young’s modulus
E and yield strength σy) and the shell thickness t are modeled by independent lognormal random
fields represented by translated Karhunen-Loève expansions. Moreover, we consider random shape
imperfection represented by a random linear combination of the three most critical buckling modes of
the perfect structure. The reader may refer to Dubourg et al. (2009a) and Dubourg (2011) for additional
details concerning the modeling aspects.

6.3. Reliability analysis of the Scordelis-Lo shell roof 219

tangents on the equilibrium path thus meaning that the derivative of the load proportion-
ality factor with respect to a equals zero at the critical limit-load. This naturally lead to the
following definition:

λlimit = λ(alimit), with alimit =
�

a ∈ �0; amax

�
:

dλ

da
= 0
�

. (6.15)

Thanks to the chosen polynomial series expansion for the LPF, finding the the limit load
simply consists in finding the roots of a polynomial of order N −1 and retaining the lowest
positive root that is less than amax, provided it exists.

6.2.6 The EVE finite element code

The asymptotic numerical method has been coupled to a finite element model within the
EVE code whose development was initiated by Cochelin (1994) and Baguet (2001). The
present studies resorts to a more recent version developed by Noirfalise (2009) who imple-
mented the follower forces and some other functionalities that are used in the sequel (such
as local boundary conditions for the Büchter-Ramm shell element).

6.3 Reliability analysis of the Scordelis-Lo shell roof

This section is concerned with the reliability analysis of the cylindrical shell roof illustrated
in Figure 6.4. This mechanical example is inspired from the article by Scordelis and Lo
(1961) (see also Ramm and Wall, 2004, pp. 405–406), but the load case and the material
properties have been modified as in Dubourg et al. (2009a, 2011b).
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Figure 6.4: A shell roof under a uniformly distributed vertical load (Scordelis and Lo, 1961).Figure III.7 – A shell roof under a uniformly-distributed vertical load (Scordelis and Lo, 1964).

III–1.4.1 Stochastic model for shape imperfections

The proposed probabilistic model for shape imperfections was deliberately constructed in the absence
of real data. The idea is to model the shape imperfection as a random linear combination of the lowest
most critical buckling buckling modes of the perfect roof structure. These modes are obtained from a
linear buckling analysis (so-called Euler buckling), see the first three modes shown in Figure III.8. The
random shape imperfection is expressed in terms of these three modes as follows:

ζ(x ,θ ) =
3∑

k=1

Ξζ, kUk(x ,θ ) , (III.32)

where {Uk, 1 ≤ k ≤ 3} are the displacement fields of the three lowest buckling modes of the perfect
structure, and where Ξζ = (Ξζ, 1, Ξζ, 2, Ξζ, 3) is a vector of three independent Gaussian random variables
with zero means and standard deviations set to σζ = 9.5 mm. These settings respectively ensure that:
(a) the mean shape matches the perfect structure, (b) the maximum amplitude of the shape imperfection
does not exceed a fraction of the mean thickness. This latter condition is imposed in order to validate
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the shell element theory. The standard deviation σζ = σζ, 1 = σζ, 2 = σζ, 3 has been adjusted by Monte
Carlo sampling so that the maximum amplitude at ±2 standard deviations matches half of the mean
roof thickness µt/2= 38 mm. Such a criterion is met for σζ = 9.5 mm.

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure III.8 – The three most critical buckling modes of the shell roof.

III–1.4.2 Stochastic model for space-variant material properties and thicknesses

The three lognormal random fields E, σy and h are obtained by transforming the realizations of three
independent standard normal random fields, denoted UE , Uσy

and Uh through the following translation:

F(x ,θ ) = exp (λF + ζF UF (x ,θ )) where F = E,σy, h , (III.33)

and where λF and ζF are respectively the location and scale parameters of the corresponding lognormal
distributions whose mean and coefficient of variation are given in Table III.1.

Each underlying standard normal random field UF is assumed to have the following isotropic squared
exponential autocorrelation function:

RUF
(τ,τ′) = exp

�
(x − x ′)2

`2
+

R2(θ − θ ′)2
`2

�
, (III.34)

Variable Distribution Mean C.o.V.

E (MPa) lognormal 200,000 0.03

σy (MPa) lognormal 390 0.07

h (mm) lognormal 76 0.05

Table III.1 – Parameters of the lognormal random fields of the shell roof.
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where τ = (x ,θ ), τ′ = (x ′,θ ′), and where the correlation length ` is set to 3500 mm. These random
fields are represented by means of their truncated Karhunen-Loève expansion:

UF,M (τ) =
M∑

k=1

Æ
λkξF,kϕk(τ) , (III.35)

where ΞF = (ξF,1, . . . ,ξF,M ) is a vector of independent standard normal random variates. It is recalled
that the M pairs {(λk,ϕk), 1≤ k ≤ M} are the solutions of the integral equation defined in Eq. (III.21),
corresponding to the greatest eigenvalues λk. This equation is solved numerically using the wavelet-
Galerkin scheme proposed by Phoon et al. (2002). In this scheme, the set of basis functions {Ψi(τ), 1≤
i ≤ N} involved in Eq. (III.24) is composed of wavelet functions. Phoon et al. propose to use the
Haar wavelet functions, which are the simplest form of Daubechies’ wavelets, with maximum wavelet
level m.6 The main advantage of wavelets over conventional bases is that the integrals appearing in
Eq. (III.26) do not require numerical integration. Matrix A in Eq. (III.25) in fact appears to be the
two-dimensional wavelet transform of RU(τ,τ′), which can be obtained by the application of the 1D
wavelet transform, first on the rows and then on the columns of the matrix containing the values of the
autocorrelation function RU(τ,τ′) evaluated over an N by N grid (Phoon et al., 2002). The truncation
order M of the expansion given in Eq. (III.35) is the same for the three random fields. It is set equal to
M = 30 so that the relative mean squared error w.r.t. the non-truncated expansion is less than 3.70%.

III–1.4.3 Reliability assessment

The probabilistic model involved in the reliability analysis features 93 independent normal random
variables grouped in the vector Ξ = (ΞE ,Ξσy

,Ξt ,Ξζ). For illustration purposes a realization of the four
random fields is illustrated in Figure III.9. The failure probability of the roof is given by:

pf = P (qcr(Ξ)≤ q0) , (III.36)

where qcr is the buckling load of the shell roof and q0 is arbitrarily set to 0.18 MPa in order to make
the failure probability sufficiently low.7 Buckling is detected by the ANM as a limit load, i.e. the load
corresponding to a path parameter a satisfying Eq. (III.12).

A subset simulation analysis with 5000 samples per level is performed. The failure probability
estimate is bpSS

f = 1.27× 10−4 with a coefficient of variation of δbpSS
f
= 0.12. A total of 20, 000 samples

is required in this analysis.

The restarted FORM analysis of Der Kiureghian and Dakessian (1998) presented in Section I–2.1.3
is also applied in order to shed light on the most probable configurations of the random inputs that
lead to failure. Four most probable failure points (MPFPs) are identified with the restarted i-HLRF
algorithm, tuned as proposed in the original paper by Der Kiureghian and Dakessian (1998), i.e. with
δ = 0.75,γ = 1.1,ε = 0.5. The four random fields at the first MPFP are represented in Figure III.10.
This figure clearly shows that failure occurs in one of the four roof corners when the following conditions
are met: Young’s modulus, yield strength and thickness are low in the given corner and, additionally,
shape imperfections are large in the same corner. Similar configurations are obtained for the three other
MPFPs, i.e. in the other three corners. The reliability indices and failure probabilities obtained by FORM
for these four MPFPs are listed in Table III.2. The problem of interest is characterized by four MPFPs

6In the present application, the maximum wavelet level m is set to 7. The basis {Ψi(τ), 1 ≤ i ≤ N} is therefore composed
of N = 2m = 128 elements.

7The limit load of the perfect structure is found to be equal to qlimit = 0.2676 MPa.
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(a) Young’s modulus E (b) Shell thickness t

(c) Yield strength σy (d) Shape imperfection ζ

Figure III.9 – A given realization of the four random fields.

MPFP #1 #2 #3 #4

β 4.01 4.01 4.00 4.01

pFORM
f 3.02× 10−5 3.02× 10−5 3.11× 10−5 3.04× 10−5

Table III.2 – FORM results at the four MPFPs.

of equal importance, with failure localized in each of the four corners of the roof. These results can be
explained by the symmetry w.r.t. x and θ of the three modes Uk(x ,θ ) which are combined linearly in
the random shape imperfection model, see Eq. (III.32) and Figure III.8.8

The importance factors of the FORM analysis can also be analyzed. These importance factors are
represented in Figure III.11 for the first MPFP (similar pie charts are obtained for the three other MPFPs).
The quantities represented in the pie chart are the following:

α2
F =

∑
i∈IF

α2
i , (III.37)

where IF denotes the set of indices of the components of ΞF in Ξ = (ΞE ,Ξσy
,Ξt ,Ξζ), and where

F = E,σy, h or ζ. The computed importance factors indicate that the random fields representing the
thickness and yield strength are the most influential inputs in the reliability analysis of the shell roof
w.r.t. buckling. Random shape imperfection is less important, and the space-variant Young’s modulus
has no influence on reliability. This type of conclusion was expected from the structural mechanics
viewpoint. The mean ratio R/T of the shell is equal to 100, which indicates that the instability is due to
the amplification of the shape imperfections, resulting in plastic buckling. This also justifies a posteriori
the limit point detection strategy that is used in the ANM, which is well suited to instabilities triggered
by material nonlinearities.

8The third buckling pattern U3(x ,θ ) is in fact symmetric w.r.t. x , but only anti-symmetric w.r.t. θ .
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(a) Young’s modulus E (b) Shell thickness t

(c) Yield strength σy (d) Shape imperfection ζ

Figure III.10 – The four fields at MPFP #1.

59%

< 1%

38%

2%

t
E
σy

ζ

Figure III.11 – FORM importance factors at MPFP #1.

III–1.5 Optimal design of shells with random imperfections

Submarine pressure hulls are mainly composed of structural elements such as ring-stiffened cylinders,
cones, elliptical or spherical ends, internal diaphragms, bulkheads and deep frames. At a diving depth
I , the pressure hull is subjected to an external hydrostatic pressure p = ρwater g I , where ρwater is the
sea water density (set here equal to 1000 kg/m3) and g ≈ 10 m/s2 is the gravitational constant. Such
a loading induces a compression stress state that is mostly membrane-dominated. Buckling therefore
constitutes a critical failure mode for submarines.

Design practice is usually based on specific standards and design codes, such as the British Standard
5500 (BS5500) or the more recent Eurocode 3, possibly along with finite-element-based simulations. It
often makes use of long-term-experience-based safety factors at various design stages, which potentially
implies an unknown degree of conservatism. A key issue for submarine structural designers consists in
finding an optimal ratio between the weight of the resistant structure and the buoyancy of the sub-
mersible. The tradeoff between the optimal weight and the safety level of the structure is addressed
here in the framework of reliability-based design optimization (RBDO).
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III–1.5.1 Single bay reference structure

(a) Ring-stiffened shell cylinder

The scope of the present analysis is restricted to a single bay reference structure of a submarine pressure
hull, i.e. a shell cylinder with a single inner T-section ring stiffener, whose length is equal to the stiffener
spacing. The dimensions of this elementary structure are shown in Figure III.12. In the following, the
outer cylinder is referred to as the shell plating, and the web (resp. the flange) designates the vertical
(resp. horizontal) part of the T-section ring stiffener. This simplified model with well-chosen boundary
conditions is assumed to be representative of the behavior of a central bay of a sufficiently long pressure
hull compartment (of infinite length in the present analysis).

The linear elastic stability analysis of this ring-stiffened shell exhibits typical buckling patterns. The
three most critical kinds of buckling patterns are known as overall buckling, interframe buckling and
frame tripping, and they are basically illustrated in Figure III.13. Actual structures exhibit some unavoid-
able shape imperfections due to the manufacturing process (mostly cold-bending- and welding-based)
and heavy loads connected to the hull. These initial imperfections may trigger buckling or premature
plastic collapse at pressures far below those corresponding to elastic buckling, even if these imperfec-
tions are of moderate amplitude due to the stringent tolerances used in construction.

uz

p  R²

p
Ls = 600 mm

ew = 10 mm hw = 156 mm

e = 24 mm

R = 2488 mm

ur

u

wf = 120 mm

ef = 24 mm

Figure III.12 – Single bay reference structure and initial design.

(a) Overall mode (b) Interframe mode (c) Frame tripping mode

Figure III.13 – Schematic representation of the most critical buckling patterns of a ring-stiffened shell
cylinder.
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Predicting the collapse pressure for any given imperfect geometry is not straightforward, however,
because the structure may feature a considerable degree of interaction between the aforementioned
buckling modes. To solve the buckling problem at hand, the designer may resort to closed-form solu-
tions or other semi-numerical methods available in the codes of practice (e.g. the BS5500). Another
alternative which is investigated here consists in using an appropriate FE model.

(b) Modeling of shape imperfections

The present analysis is restricted to the effects of overall and interframe shape imperfections. Collapse
due to frame tripping is avoided here by imposing some conservative rules taken from BS5500 regarding
the proportions of the stiffener web and flange during optimization. The overall (resp. interframe)
radial shape imperfection is given by:

ζn(z, θ ) = An cos (nθ ) ,

ζm(z, θ ) = Am cos
�
π

z
Ls

�
cos (mθ ) ,

(III.38)

where n (resp. m) is the number of circumferential waves, which typically ranges from 2 to 6 (resp. 10
to 20), An (resp. Am) denotes the amplitude of the overall (resp. interframe) radial imperfection, and
0 ≤ θ < 2π, 0 ≤ z ≤ Ls. In the present analysis, only two modes are considered: n = 2 and m = 14.
These two modes correspond to the most critical buckling patterns of the initial design.9

(c) Nonlinear finite element model

Collapse pressures are assessed by means of the ANM, accounting for material and geometric nonlinear-
ities. The constitutive material of the pressure hull is assumed to follow a nonlinear elastic Ramberg-
Osgood law, such as described in Section III–1.2.3 (d). Follower forces are taken into account for the
hydrostatic pressure field p so that it is always exerted normally with respect to the deformed structure.

Rigid body modes are eliminated in three nodes, as illustrated in Figure III.14a:

- in A, the three translations are set to zero,
- in B, the translation along the z-axis is set to zero,
- in C, the translations along the y- and z-axes are set to zero.

The orthoradial rotations of the two circular ends of the cylinder are set equal to zero in order
to fulfill the assumption of repeated adjacent bays. As an additional hypothesis, these two ends are
assumed to remain plane and normal to the z-axis during the whole loading process, i.e. the nodes of
each end cross-section undergo a constant but unknown overall axial displacement.

In addition to the hydrostatic pressure exerted on the outer cylinder, an axial membrane compressive
stress of amplitude pπR2 is applied, as indicated in Figure III.12. This additional load is due to the
hydrostatic pressure exerted on both ends of the pressure hull.

The structure is meshed with 1540 Büchter and Ramm 8-node shell elements featuring about 40,000
degrees of freedom: 70 × 10 elements for the outer cylinder, 70 × 8 for the web of the stiffener and 70
× 4 elements for its flange. The collapse pressure was shown to stabilize for a coarser mesh featuring
15,000 degrees of freedom although it has been raised here in order to accurately represent the highest
modal imperfection featuring 14 waves along the circumference, one wave being represented here by
70/14 = 5 elements. The amplified superimposition of the two shape imperfections considered here is
illustrated in Figure III.15.

9A finer study would consist in considering a larger spectrum of imperfections, depending on the current design at each
iteration of the optimization process.
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(a) Nodes for the elimination of rigid body modes

z

y

x

y

A

B

C

D

D

D-D

(b) Mesh of the perfect structure

Figure III.14 – FE modeling of the ring-stiffened shell cylinder.

(a) Overall imperfection (b) Interframe imperfection (c) Combined imperfections

Figure III.15 – Ring-stiffened shell cylinder with amplified imperfections.

(d) Semi-numerical model

In the following, the designs obtained using the ANM-based FE model are compared with those obtained
from approximate semi-numerical solutions available in the submarine pressure hull design codes of
practice (see Dubourg et al., 2008, for a review). These approximations suppose in general the geomet-
rical imperfection of a given modal shape and, as a consequence, they are not able to account for the
possible interactions between buckling modes in case of multimodal (therefore more general) imper-
fections. The model used to predict the overall plastic collapse pressure pn pl is based here on the Bryant
formula embedded in the BS5500. The one used for the interframe plastic collapse pressure pm pl resorts
to an interpolated table of numerical solutions derived by the Krylov Shipbuilding Research Institute
(KSRI). These two models assume an overall (resp. interframe) modal imperfection of amplitude An
(resp. Am).

The final semi-numerical model yielding the plastic collapse pressure of an infinite-length ring-
stiffened cylinder with both overall and interframe imperfections is approximated as follows:

pcritical (An, Am) =min
�
pn pl(An), pm pl(Am)

�
. (III.39)

III–1.5.2 Formulations of the design optimization problem

In this section, two design philosophies are opposed. The first resorts to the so-called worst case ap-
proach, which consists in designing for an extreme configuration specified by experts. The second one
uses a more comprehensive probabilistic model, and eventually falls under the RBDO formulation.
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(a) Objective and constraints

First, the objective of design optimization is to find the set of parameters defining the geometry of the
structure d= (e, hw, ew, wf, ef)T that minimizes the ratio between the structural weight and the weight
of the displaced water. The latter ratio reads as follows:

c(d) =
ρsteel Vsteel(d)

ρwaterπ (R+ e/2)2 Ls
, (III.40)

where Vsteel is the volume of steel composing the ring-stiffened bay and ρsteel = 7650 kg/m3 is the
density of steel.

The admissible design space is bounded by the following constraints:

(i) Since the semi-numerical model does not consider the frame tripping collapse mode, it is proposed
to use the following conservative safety criteria prescribed in the BS5500:

hw ≤ 1.1

√√√ E
σy

ew , (III.41)

wf ≤
√√√ E
σy

ef . (III.42)

These two constraints actually bound the slenderness ratios of the stiffener components.

(ii) The stiffener flange should not be too large with respect to the interframe distance:

445 mm≤ Ls −wf . (III.43)

(iii) The design space is bounded by the following reasonable values:

p R
σy
≤ e ≤ 50 mm , (III.44)

wf ≤ hw ≤ 2 wf , (III.45)

5 mm≤ ew ≤ 25 mm , (III.46)

70 mm≤ wf ≤ 150 mm , (III.47)

15 mm≤ ef ≤ 50 mm . (III.48)

The first lower constraint on the hull thickness e means that the circumferential stress in the
equivalent non-stiffened cylinder should not exceed the yield strength.

Finally, the predictive models for the collapse pressure (namely the FE model and the semi-numerical
solutions) are used to guarantee that collapse does not occur at some prescribed accidental diving depth
Iacc. This therefore leads to the establishment of the following final constraint:

Iaccρwater g ≤ pcritical(d) . (III.49)

It is assumed that the submarine under discussion is designed for an accidental diving depth Iacc of
250 m.



162 Chapter III. Reliability assessment in structural mechanics

Variable Distribution Mean C.o.V.

E (MPa) Lognormal 200,000 0.05

σy (MPa) lognormal 390 0.05

σu (MPa) lognormal 570 0.03

e (mm) lognormal µe 0.03

hw (mm) lognormal µhw
0.03

ew (mm) lognormal µew
0.03

wf (mm) lognormal µwf
0.03

ef (mm) lognormal µef
0.03

A2 (mm) Lognormal 1
3

5 R
1000 0.50

A14 (mm) Lognormal 1
3

Ls
100 0.50

Table III.3 – Probabilistic model for the ring-stiffened shell cylinder.

(b) Worst case approach

The worst case approach basically consists in setting all the demand (resp. capacity) variables to their
highest (resp. lowest) possible values and finding the optimal design for this worst-case scenario. In
the present context of shell design, this means having recourse to (i) prescribed maximum imperfection
amplitudes and (ii) a destruction diving depth Ides that is significantly larger than the accidental diving
depth Iacc.

Here, the maximum overall imperfection amplitude is taken from the BS5500 recommendations,
and is set to A2 max = 5 R/1000. The interframe imperfection amplitude is set to A14 max = Ls/100. The
destruction diving depth is arbitrarily fixed at 340 m.

(c) Probabilistic approach

Arguing that the previous worst case approach introduces an unknown degree of conservatism, it is
proposed to turn to a more comprehensive probabilistic model to describe the possible configurations
of the hull. This probabilistic model is specified in Table III.3.

Since no data is available, the probabilistic model for the material properties is built from the rec-
ommendations available in the JCSS probabilistic modeling code (Vrouwenvelder, 1997). This code
also prescribes a linear correlation between the yield strength σy and the ultimate stress σu in the form
of a Pearson correlation coefficient ρ = 0.75, which is taken into account in the present analysis. The
right-skewed probabilistic model for the imperfection amplitudes was constructed with an empirical
coefficient of variation of 50%, and the mean is such that the previous worst imperfections A2 max and
A14 max matches the 99.5%-quantile of the present probabilistic model. This thus leads approximately
to setting the mean value at one third of the latter worst imperfection amplitudes, as indicated in Ta-
ble III.3.

Given this probabilistic model, the original deterministic design optimization problem is transformed
into a reliability-based design problem where safety is measured by means of the following failure
probability:

pf(d) = P (pcritical(d, X)≤ Iaccρwater g) , (III.50)
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where X is the random vector that collects all the random variables of the probabilistic model. Opti-
mization is performed w.r.t. the means of the random design variables e, hw, ew, wf and ef. The single
probabilistic constraint (ng = 1) reads as follows:

pf(d)≤ Φ(−β0) , (III.51)

where β0 = 6 in the present application (i.e. pf 0 ≤ 10−9).

(d) Resolution strategies

The deterministic design optimization problem underlying the worst-case approach is solved here by
means of the Polak-He gradient-based optimizer. It uses the two proposed mechanical models for the
buckling strength of the structure, namely the semi-numerical (SN) and the ANM-based finite element
(FE) models.

The reliability-based design optimization problem underlying the probabilistic approach is solved
with the surrogate-based RBDO strategy presented in Section II–5.3.2. Again, two designs are computed
with each of the mechanical models.

Once the four optimal designs are found, a reliability analysis is performed in order to compute the
safety level of the optimally-designed structures at both the accidental and destruction diving depths,
using the probabilistic model of Table III.3. Since the FE model is expensive to evaluate, we resort to the
metamodel-based importance sampling technique (Dubourg et al., 2013) with a 5% target coefficient
of variation on the failure probability. For the less expensive semi-numerical model, it is proposed to
use direct subset simulation in order to compute the whole CDF of the critical pressure, which yields a
relationship between the failure probability and the diving depth in a single run for each design.

III–1.5.3 Results

The results are given in Table III.4 and the corresponding designs are illustrated in Figure III.16. First, it
should be noticed that the FE-based design is always more cost-optimal than its SN-based counterpart.
In fact, this confirms the initial intuition as the semi-numerical solutions involve a set of built-in safety
factors that eventually lead to a high (although unknown) degree of conservatism. In the worst-case
approach, the relative gain in using a FE model w.r.t. the SN cost is only 2%, whereas it reaches 17% in
the RBDO approach.

It should also be noticed that the SN-based design always features a more slender stiffener web
than the FE-based designs. This is because the SN-solution lacks an explicit consideration of the frame
tripping buckling mode. This lack is such that, in the deterministic worst-case approach, the BS5500
safety constraint regarding this mode and defined in Eq. (III.41) is active at the optimal design. Indeed,
in this case the stiffener web is clearly too slender, as illustrated in Figure III.16a.

As expected, the worst-case approach offers a significant degree of safety at the accidental diving
depth, and there even remains a little margin at the destruction diving depth, although the failure
probability is much greater there (pf ≈ 10−2). The probabilistic approach enables the explicit control of
the safety level at the accidental diving depth. Due to the high targeted safety level (pf < Φ(−6)≈ 10−9),
the reliability-based optimal designs are of course less optimal than their worst-case counterparts.

The relationship between diving depth and failure probability is illustrated in Figure III.17. The
subset sampling technique applied with the semi-numerical model enables the reconstruction of the full
CDF. Metamodel-based importance sampling applied to the expensive-to-evaluate finite-element model
only yields the failure probability estimates at the two diving depths of interest. It can be seen from
Figure III.17b that the failure probability matches the maximum tolerance, set here to pf = Φ(−6) <
10−9.
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Worst case approach RBDO (β = 6)
Method

FE-based SN-based FE-based SN-based

e (mm) 21.99 26.56 28.65 35.85

hw (mm) 186.01 a202.38 181.37 201.66

ew (mm) 19.47 a8.14 14.44 12.11

wf (mm) 119.57 101.22 130.62 146.18

ef (mm) 23.97 24.53 29.68 32.77

Cost 0.1960 0.2004 0.2356 0.2847

β(Iacc) 4.99 3.81 6.06 6.11

β(Ides) 1.40 2.00 4.42 4.99

a The frame tripping constraint is active.

Table III.4 – Results for the design optimization of the imperfect infinite-length ring-stiffened shell cylin-
der.

(a) Worst case approach

FE-based

SN-based

(b) RBDO (β = 6)

FE-based

SN-based

Figure III.16 – Comparison of optimal designs for the imperfect infinite-length ring-stiffened shell cylin-
der.
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(b) RBDO (β = 6))
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Figure III.17 – Relation between diving depth and failure probability for the imperfect infinite-length
ring-stiffened shell cylinder.
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The convergence of the surrogate-based RBDO strategy is obtained within 850 calls to the buckling
strength models. Note that this is of utmost importance for the FE-based application, due to the large
numerical effort required by a single FE analysis (about 10 minutes of CPU time in the present analysis).

III–2 Crack propagation

III–2.1 Introduction

Damage tolerance is of utmost importance for structures designed in various engineering fields, e.g.
the nuclear, aeronautical and automotive industries. In damage tolerance it is assumed that some flaws
exist, and that they can propagate under time-varying loadings. The models that govern crack propaga-
tion are based on the principles of fracture mechanics. Most usual approaches are based on the theory of
linear elastic fracture mechanics (LEFM), see, e.g., Nešpůrek (2010) for a short introduction. In LEFM
crack propagation is closely related to the stress field around the crack tip. In the works presented in
this section we assume that crack propagation is defined through an empirical crack growth law, defined
in terms of a so-called stress intensity factor (SIF). SIFs can be assessed by the conventional finite ele-
ment method or the more elaborate version of such a technique, known as the extended finite element
method (Moës et al., 1999). Regarding the crack growth law, the well-known Paris-Erdogan equation
is often used for constant-amplitude loading, see Section III–2.2. For variable-amplitude loading, of
interest in all real problems, it is of paramount importance to account for the load interactions that may
occur during crack growth for accurate fatigue life predictions. The latter case is of interest in the work
presented in Section III–2.3, where the PREFFAS crack closure model proposed by Aliaga et al. (1988)
is applied.

In damage-tolerant design, a common approach consists in using empirically-derived safety fac-
tors a.k.a. scatter factors. Such well-established procedures are assumed to ensure an acceptable,
albeit usually unknown, safety level for the designed structures. In practice, several uncertainties arise
in any damage tolerance problem. First of all, crack propagation is known to be a rather dispersive
phenomenon. Under well-controlled loading conditions, supposedly-identical specimens exhibit highly
scattered fatigue lives, as pointed out in several works (Virkler et al., 1979; Ghonem and Dore, 1987;
Ichikawa, 1987; Casciati et al., 2007). This uncertainty is mainly epistemic and comes from our lack
of knowledge of the complex physics that governs crack propagation at several levels (e.g. at the grain
level and below in metallic materials). Secondly, the loads applied to the structures of interest are in
general not known very accurately. This uncertainty may be due to the random nature of the loads
under consideration (e.g. for wind- or wave-induced loadings). It may also come from the use of the
structure, which is uncertain due to varying operating conditions. For example, the loads applied to an
aircraft structural element may be uncertain due to the missions assigned to the aircraft, which differ
from those accounted for in the design phase. Moreover, these loads are also uncertain due to the air-
craft maneuvers and the environmental conditions in which the aircraft operates (winds, gusts, etc).
Thirdly, the initial flaws present in the structure from which the cracks emanate are often not accurately
determined. These initial flaws are uncertain in terms of locations, sizes and shapes. Quantifying the
influence of all these uncertainties on crack propagation is therefore of great interest in damage tol-
erance. Such an analysis is performed in the framework of probabilistic fracture mechanics, which has
been developed for several decades (see, e.g., Provan, 1987). In the works presented in this section the
focus is put on the reliability of structural elements w.r.t. damage tolerance.

In Section III–2.2 the crack propagation experiments carried out by Virkler et al. (1979) under
constant amplitude are revisited in the context of the FORM analysis (Bourinet and Lemaire, 2008;
Bourinet, 2017a). In the proposed approach the Paris-Erdogan equation is randomized by means of
three random input models (inter-specimen scatter approach). For the first two models, the reliability



166 Chapter III. Reliability assessment in structural mechanics

problem is found to be highly sensitive to the correlation between ln C and m. The third model includes
an additional random input, representative of the model error between the Paris-Erdogan model and
the experimental data. It is shown that this latter model avoids a misleading interpretation of the
experimental results.

In Section III–2.3 the objective is to specifically account for the stochastic nature of fatigue loading in
damage tolerance. The results presented in this section are taken from Mattrand (2011). The analysis
performed requires that an appropriate model is available for variable-amplitude crack propagation.
Indeed, the model needs to account for the load interactions and retardation/acceleration effects which
are likely to occur during crack growth. The work of Mattrand is based on the PREFFAS model developed
in aerospace engineering by Aliaga et al. (1988) and briefly recalled in Section III–2.3.1. The random
load sequences of max-min stresses are modeled by means of discrete time Markov chains or hidden
Markov models, see Section III–2.3.2. The parameters of these models are inferred from in-flight load
data recorded in a fleet of fighter aircraft. Section III–2.3.3 presents the reliability assessment of a
structural element w.r.t. damage tolerance using the defined models. The reliability problems are solved
by means of the cross-entropy method presented in Section I–3.3.2 and adapted to the specific context
of Markov chains and hidden Markov models.

III–2.2 Statistical interpretation of the Virker experiment

The experiment carried out by Virkler et al. (1979) in 1979 consisted in recording the crack growth
trajectories of 68 samples at 164 equally-spaced measurement points, see Figure III.18, left plot. The test
samples were M(T) specimens made of 2024-T3 aluminum alloy of 558.8 mm length, 152.4 mm width
and 2.54 mm thickness. The crack was propagated from an initial crack length of 9 mm to a final length
of 49.8 mm, after pre-cycling crack growth started from a pre-machined central slit. These specimens
were all tested under constant amplitude fatigue loading at a maximum stress level σmax = 48.36 MPa
and a stress ratio R= 0.2.
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Figure III.18 – Crack length a vs. number of cycles N (left). Determination of m and ln C from da/dN
vs. ∆K curves (right).

For test samples of the same geometry and material properties subjected to the same fatigue loading,
the statistical scatter observed experimentally has been addressed by two types of approach in the
literature (Ichikawa, 1987):

1. The first approach aims at describing the randomness within the specimen itself a.k.a. intra-specimen
scatter. Such an approach is commonly based on the following equation:

da(t)
dt

= X (t) f (∆K(a(t));θ ) , (III.52)
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where X (t) is a nonnegative random process, f is a (deterministic) crack growth law and θ is a
vector of parameters (see, e.g., Lin and Yang, 1983; Yang and Manning, 1996). X (t) is usually chosen
as a stationary lognormal random process, and various approaches can be found in the literature,
i.e. either X (t) is assumed to be totally uncorrelated at any two different times (lognormal white
noise) or, on the contrary, it is assumed to be totally correlated at all times and therefore replaced
by a lognormal random variable (model known as the lognormal random model). It is shown that
a totally uncorrelated X (t) leads to the smallest statistical dispersion in terms of the service time
required to reach a given crack size, and that a totally correlated X (t) leads to the largest dispersion.
Some other models have been proposed with intermediate correlation (Lin and Yang, 1983; Yang
and Manning, 1996).

2. The second approach aims at describing the randomness between specimens a.k.a. inter-specimen
scatter. In this approach, a common practice consists in randomizing the crack growth model, such
as the Paris-Erdogan equation:

da
dN
= C∆K(a)m , (III.53)

where the model parameters C and m are considered as random. Such an approach is applied here
to the Virkler data set.

For each of the 68 trajectories recorded by Virkler et al., a crack growth rate vs. stress intensity
factor (SIF) range curve is obtained based on a 5-point moving least squares linear regression, see
Figure III.18, right plot. From each trajectory, a pair of values (m, ln C) is obtained such that:

ln
da
dN
= ln C +m ln∆K . (III.54)

Table III.5 gives the results of a statistical analysis of the 68 pairs (m, ln C). It is found that the
normality hypothesis can be assumed for both m and ln C . Moreover, a linear correlation ρ = −0.99795,
very close to −1, is observed between m and ln C due to the linear regression that is used to find these
two parameters. Note that these statistical parameters are consistent with those obtained in other
references (Ditlevsen and Olesen, 1986; Kotulski, 1998).

Variable Distribution Mean Standard deviation Correlation

m normal 2.855 0.166 −0.99795
ln C normal −26.056 0.972

a Units consistent with crack length in mm and stresses in MPa.

Table III.5 – Statistical distributions of m and ln C a.

In reliability assessment, failure is defined as when the number of cycles Nr to reach the final crack
length af = 49.8 mm of the Virkler experiment is lower than a given target number of cycles denoted
Ns. The LSF is therefore expressed as follows:

g (x) = Nr (m, ln C)− Ns , (III.55)

where x= (x1, x2)
T = (m, ln C)T and where Nr is given by:

Nr (m, ln C) =

∫ af

ai

1
C (∆K)m

da , (III.56)
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in which ai is the initial crack length, af = 49.8 mm is the final crack length and ∆K is the SIF range.
For the constant-amplitude fatigue loading of M(T) specimens as applied in the Virkler experiment, we
have ∆K = Kmax (1− R) where R= 0.2 is the stress ratio and Kmax is the maximum SIF given by:

Kmax =
1− 0.025 (a/W )2 + 0.06 (a/W )4p

cos (πa/W )
σmax

p
πa , (III.57)

where a is the current crack length, W = 152.4 mm is the width of the test specimen and σmax =
48.36 MPa is the maximum applied stress.

The following three test cases are defined for the subsequent reliability studies:

• Case #1: The initial crack length ai is considered as deterministic and equal to the minimum crack
size of the Virkler experiments, i.e. ai = 9 mm, and Ns is selected as the average value between the
7th and 8th lowest numbers of cycles of the Virkler tests:

Ns =
237, 293+ 237, 794

2
= 237, 543.5 cycles .

This case was proposed and studied by Annis (2017).

• Case #2: The initial crack length ai is considered as deterministic and equal to 4.4 mm. The target
number of cycles Ns is set to 400, 000.

• Case #3: The initial crack length ai is assumed to be exponentially distributed with a mean and a
standard deviation both equal to 1.5 mm. The target number of cycles Ns taken is 400,000.

III–2.2.1 Problem 1

This first problem assumes that the random vector X is composed of the two correlated normal variables
m and ln C with distribution parameters given in Table III.5 for cases #1 and #2. The exponentially-
distributed random variable ai is added to X as an additional component for case #3. The FORM results
obtained for the three cases are gathered in Table III.6. When the stochastic model involves only m
and ln C as random inputs, a very strong sensitivity of β w.r.t. the correlation ρ between m and ln C
is observed: −177.29 for case #1 and −368.22 for case #2. For illustration purposes, lowering ρ by
0.001 would approximately result in a reliability index increase of 0.18 and 0.37 for cases #1 and
#2 respectively. When the initial crack length is considered as random (case #3), the FORM solution
appears far less sensitive to ρ. Figure III.19 shows how the reliability index β evolves when ρ is varied
from −0.99795 to −0.9. It clearly appears that the computed sensitivity ∂ β/∂ ρ = −6.7092 represents
the first-order derivative of β at ρ = −0.99795.

Case #1 Case #2 Case #3

ai (mm) 9 4.4 Exp(1.5,1.5)

Ns (cycles) 237,543.5 400,000 400,000

β 0.7600 1.8005 1.8399

pFORM
f 0.224 3.59× 10−2 3.29× 10−2

∂ β/∂ ρa −177.29 −368.22 −6.7092

a ρ denotes the correlation between m and ln C .

Table III.6 – Problem 1: FORM results.
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We find that the failure probability of 0.224 obtained with FORM for Case #1 does not agree with
the experimental data. From the definition of the target number of cycles Ns, we would expect a failure
probability in the range [7/68, 8/68] = [0.103,0.118] since Ns is selected as the average value between
the 7th and 8th lowest numbers of cycles of the 68 Virkler tests. The origin of such a difference was
investigated by Bourinet and Lemaire (2008). First, it can be shown that the difference is not explained
by the nonlinearity of the LSS at the MPFP. A SORM analysis gives pSORM-cf

f = pSORM-pf
f = 0.219, which is

close to the FORM approximation and still far from [0.103, 0.118]. The LSS is in fact almost linear in the
standard normal space, see Figure III.20. Moreover, it is found that a few samples among the 68 of the
experimental data set are not correctly classified by the LSS of the selected model, see Figure III.20. We
can find some points with an experimental number of cycles greater than Ns = 237,543.5 that belong
to the failure domain: (M)T specimens #9, 23, 41, 54, 62, 63 and 66 of the Virkler data set. Besides,
the experimental point corresponding to the first experimental test and characterized by a number of
cycles lower than Ns is in the safe domain. Although it is very close to the LSS, this is not satisfactory,
either. All these issues led Annis (2017) to conclude that FORM and SORM were inappropriate for such
a problem, which is untrue. The incorrect approximation obtained by FORM and SORM is in fact due
to an inaccurate representation of the LSF, which results here in a slight underestimation of Nr and in
fine in quite a significant overestimation of the failure probability. This issue is fixed in Section III–2.2.2
by introducing an extra random variable which is representative of a model error.

−1 −0.98 −0.96 −0.94 −0.92 −0.9
1.4

1.5

1.6

1.7

1.8

1.9

ρ

β

1.8399− 6.7092 (ρ + 0.99795)

Figure III.19 – Problem 1, Case #3: Reliability index β vs. correlation coefficient ρ between m and
ln C .

−4 −2 0 2 4
−4

−2

0

2

uln C

um

MPFP
Nexp ≤ Ns
Nr ≤ Ns

−1 0 1

0

1

2

uln C

um

MPFP
Nexp ≤ Ns
Nr ≤ Ns

Figure III.20 – Problem 1, Case #1. Blue line: LSS, black dots: Virkler test samples satisfying Nexp > Ns,
red dots: Virkler test samples satisfying Nexp < Ns, red circles: Virkler test samples satisfying Nr < Ns.
Zoom in right plot.



170 Chapter III. Reliability assessment in structural mechanics

III–2.2.2 Problem 2

In order to account for a slight underestimation of the number of cycles Nr obtained numerically w.r.t.
those found experimentally by Virkler et al., the LSF defined in Eq. (III.55) is modified as follows:

g (x) = k Nr (m, ln C)− Ns , (III.58)

where x= (x1, x2, x3)
T = (m, ln C , k)T and k follows a Type-I largest value distribution (a.k.a. Gumbel

distribution) with a mean equal to 1.027 and a standard deviation equal to 1.91×10−2. This distribution
is identified from a statistical analysis of the ratios N ( j)exp/Nr(m( j), ln C ( j)) for j = 1, . . . , 68 where N ( j)exp

is the number of cycles of the jth M(T) specimen of the Virkler data set and (m( j), ln C ( j)) are the 68
pairs (m, ln C) identified from the experimental crack growth curves. Note that k is assumed to be
independent from both m and ln C . The distributions of m and ln C are those defined in Table III.5. A
linear correlation ρ = −0.99795 is again assumed between m and ln C .

FORM results with model error are given in Table III.7 for cases #1 and 2. We can easily show that
the 8 (=7+1) experimental points that were misclassified in Problem 1 are now correctly placed within
the safe and failure domains, see Figure III.21. The failure probability obtained by FORM is now 0.137
and a SORM analysis gives 0.126, which now becomes quite close to the expected range of probability
[0.103, 0.118]. Regarding sensitivities to correlation, the values obtained in this new problem are again
quite high in terms of absolute value: −241.62 for case #1 and −411.16 for case #2. An alternative
problem is next proposed which avoids such a high sensitivity to correlation.

Case #1 Case #2

ai (mm) 9 4.4

Ns (cycles) 237,543.5 400, 000

β 1.0947 2.0972

pFORM
f 0.137 1.80× 10−2

∂ β/∂ ρa −241.62 −411.16

a ρ denotes the correlation between m and ln C .

Table III.7 – Problem 2: FORM results.

III–2.2.3 Problem 3

We now express the linear regression of ln C on m as follows (Ditlevsen and Olesen, 1986):

bE [ln C |m] = E [ln C] +
Cov [m, ln C]

Var [m]
(m−E [m]) , (III.59)

and we make use of the following residual, which becomes uncorrelated with m:

εln C = ln C − bE [ln C |m] . (III.60)

The linear regression of ln C on m can be expressed from the 68 pairs (m, ln C) identified from the
Virkler data set. This linear regression reads:

bE [ln C |m] = −5.8468m− 9.3623 , (III.61)

and we therefore have:
εln C = ln C + 5.8468m+ 9.3623 . (III.62)
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Figure III.21 – Problem 2, Case #1. Blue dot surface: LSS, black dots: Virkler test samples satisfying
Nexp > Ns, red dots: Virkler test samples satisfying Nexp < Ns, red circles: Virkler test samples satisfying
Nr < Ns. Zoom in right plot.

The distribution parameters of εln C are inferred from the Virkler data set, see values given in Ta-
ble III.8. The correlation −9.29 × 10−7 between m and εln C is close to zero, which now allows us to
express the reliability problem in terms of three independent random variables. The LSF with model
uncertainty is rewritten in the following form:

g (x) = k Nr (m, ln C)− Ns , (III.63)

where x= (x1, x2, x3)
T = (m, εln C , k)T and ln C = εln C − 5.8468m− 9.3623.

Variable Distribution Mean Standard deviation

m normal 2.855 0.166

εln C normal −1.20× 10−6 6.22× 10−2

k Gumbel 1.027 1.91× 10−2

Table III.8 – Problem 3: Statistical distributions of m, εln C and k.

Results obtained by FORM are gathered in Table III.9. The failure probabilities with FORM and
SORM are respectively equal to 0.135 and 0.124 for Case #1. These results are almost identical to
those obtained in Problem 2. The failure probability obtained with SORM is again close to the expected
range [0.103,0.118]. The main difference is that the reliability results are now insensitive to correlation.
Near-zero values are obtained for the sensitivity to correlation between m and εln C .

III–2.3 Crack propagation under random loading

The modeling of crack growth under variable amplitude loading is a central point in the analysis of
structures subjected to real fatigue loadings. For accurate live prediction, the selected models needs to
account for load interactions that may occur during crack growth, see e.g. the description made by Davy
(1985) on the main interaction effects and their impact on crack propagation life estimation. Crack
retardation after an overload is an example of such effects. If such retardations are not modeled, this
could result in large underestimations of fatigue lives.
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Case #1 Case #2

ai (mm) 9 4.4

Ns (cycles) 237,543.5 400, 000

β 1.1050 2.1076

pFORM
f 0.135 1.75× 10−2

∂ β/∂ ρa −0.24 0.68

a ρ denotes the correlation between m and εln C .

Table III.9 – Problem 3: FORM results.

Such history effects in crack propagation can be studied e.g. by means of the extended finite element
method, where plasticity-induced crack closure and potential crack face contacts are accounted for in
the wake of the growing crack (Elguedj, 2006). The finite element method can also be used to build
incremental approaches by means of a phenomenological methodology, see e.g. Pommier (2003) and
Pommier (2015). The presented work uses the PREFFAS crack closure model, which was selected for its
easy implementation and fast evaluation.10 The main principles of this model are recalled in Section III–
2.3.1. The reader interested in a detailed description of this model may refer to Aliaga et al. (1988) and
Schijve (1987) for an additional analysis of its underlying aspects. A description of this model is also
available in Mattrand (2011). History effects in crack propagation can be handled by other reference
models, e.g. the strip yield model (Wang and Blom, 1991) among others.

III–2.3.1 PREFFAS crack closure model

The PREFFAS model is based on the Elber crack closure concept (Elber, 1971), which specifies that a
crack does not propagate during the whole loading range but only during part of it, even if the applied
loading is of the tension-tension type. An effective crack tip stress intensity factor range∆Keff, assuming
that fatigue crack growth occurs only when the crack is fully opened, is therefore postulated according
to the following expression:

∆Keff = Kmax − Kop = U(R) [Kmax − Kmin] = U(R)∆K , (III.64)

where Kmax, resp. Kmin, is the maximum, resp. minimum, value of the stress intensity factor K (SIF)
during the loading cycle, Kop is the opening stress intensity factor, R is the stress ratio and U(R) =
aR+ b is the Elber effective stress intensity range ratio. In PREFFAS it is often assumed that a+ b = 1,
which gives fairly good results for aluminum alloys and steels used in aircraft structural components.
The parameter b is identified from a R = 0.1 constant-amplitude test with periodic overloads every
1000 cycles, such that σoverload = 1.7σmax. This parameter b is found to be material- and thickness-
dependent. It is worth mentioning that this model does not assume any explicit calculation of the plastic
zone at the crack tip. These effects, which cover e.g. transitions from plain strain to plain stress at the
crack tip, are indirectly accounted for by the way Kop is evaluated throughout the cycles and by means
of the value which is selected for b (larger b-values correspond to larger plastic zones at the crack tip).

Under Elber’s crack closure assumption, the Paris equation is rewritten as follows:

da
dN
= Ceff

�
Kmax − Kop

�m
= Ceff ∆Keff

m , (III.65)

10The CPU time of the crack growth model is of great concern in reliability assessment, which requires large numbers of
model evaluations.
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where Ceff = CR/U(R)m, m is the exponent of the Paris law and CR is the C-parameter of the Paris law
determined from a constant amplitude loading test at stress ratio R.

(a) Opening stress intensity factor Kop

The crack opening level at a given cycle i, denoted Kop, i , depends on the previous load history, and
calculating its variation cycle-by-cycle is a key feature of the PREFFAS model. All previous cycles j < i
need to be considered in order to find the opening stress intensity factor at cycle i, noted Kop, i . For each
cycle j such that j < i, PREFFAS calculates a K-opening value Kop, i, j , based on the Kmax-value at cycle
j, noted Kmax, j , and the minimum Kmin-value occurring between cycle j and the given cycle i, say at
cycle k ( j < k < i), noted Kmin, k, and again in accordance with Elber’s assumption:

Kmax, j − Kop, i, j = U(R)
�
Kmax, j − Kmin, k

�
, (III.66)

where R= Kmin, k/Kmax, j .

According to PREFFAS model, the opening stress intensity factor Kop, i at cycle i is defined as the
maximum of these values Kop, i, j , derived from Eq. (III.66):

Kop, i = max
j∈{1, ..., (i−1)}

Kop, i, j . (III.67)

Eq. (III.67) assumes that the effects of a crack extension between cycle j and cycle i are neglected,
which is a major assumption of the PREFFAS model. This is presumed true if the variable amplitude load
spectrum has a “relatively” short recurrence period, i.e. it is repeated a large number of times during
crack growth. According to Eq. (III.67), all cycles j < i need to be considered. In practice, it is not
required to look at all Kmax, j and Kmin, k values in order to estimate Kop, i in Eq. (III.67). We simply need
to consider an increasing series of Kmin values and a decreasing series of Kmax values. These values
work in pairs (Kmax, j , Kmin, k) to estimate the corresponding K-opening values Kop, i, j in Eq. (III.66)
(KH-notation used in PREFFAS reference papers).

In addition to the method presented above to assess Kop, i for each cycle i, the PREFFAS method
incorporates the so-called Rainflow effect, in order to lower the effects of small intermediate load vari-
ations, which can result in unconservative predictions. The reader is invited to refer to Aliaga et al.
(1988) and Schijve (1987) for details of this specific issue and the way it is handled in PREFFAS.

(b) Crack growth and efficiency EF of the load sequence

The crack growth increment ∆a in a N -cycle load sequence is then derived from Eq. (III.65):

∆a =
N∑

i=1

δai = Ceff

N∑
i=1

�
Kmax, i − Kop, i

�m
= Ceff

N∑
i=1

∆Keff, i
m

= Ceff

N∑
i=1

�
F(a)
p
πa ∆σeff, i

�m
,

(III.68)

where F(a) is a geometry factor.

Since the effects of a crack extension are neglected in the load sequence, Eq. (III.68) now becomes:

∆a = Ceff

�
F(a)
p
πa

�m
N∑

i=1

�
∆σeff, i

�m
= Ceff

�
F(a)
p
πa

�m
EF , (III.69)
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where EF =
∑N

i=1

�
∆σeff, i

�m
=
∑N

i=1

�
σmax, i −σop, i

�m
is a quantity specific to the load sequence,

which requires a cycle-by-cycle calculation of ∆σeff, i based on σmin, σmax and σop history levels, in a
similar manner as that previously described for the K history levels. EF is called the sequence efficiency
in PREFFAS.

(c) Equivalent constant amplitude load sequence, σeq parameter

In the work of Mattrand (2011), the PREFFAS model is used in order to obtain a constant amplitude
load sequence equivalent in terms of crack extension to the N -cycle variable amplitude load sequence,
see Figure III.22. Assuming a given length of Nfix cycles for this constant amplitude load sequence and
a given stress ratio Rfix, the equivalence in terms of crack length writes:

∆a = Ceff

�
F(a)
p
πa

�m
EF= CRfix

�
F(a)
p
πa (1− Rfix)σeq

�m
Nfix , (III.70)

where σeq is the unknown maximum stress of the constant amplitude load sequence.

From Eq. (III.70), we can obtain the expression of σeq, which is called the severity of the load
sequence:

σeq =
�

EF
Nfix

� 1
m 1

U(Rfix)(1− Rfix)
. (III.71)

N cycles Nfix cycles
ai af ai af

σmin

σmax

σeq

Rfixσeq

Figure III.22 – Equivalent fatigue loading with the PREFFAS model.

(d) Stationarity assumption of the PREFFAS model

It is worth noting that the effects of crack length and geometry are fully separated from those of the stress
history in the PREFFAS model. This separation is made possible thanks to the assumption that the K-
levels corresponding to σ-levels are not affected by the crack growth during the applied load sequence.
This in fact implies a stationarity assumption during the application of this N -cycle length sequence.
However, the loading sequences recorded on real aircraft and used in Section III–2.3.2 are found to
be non-stationary, which makes the original PREFFAS model not strictly applicable in such a context.
Despite this major limitation, the PREFFAS model was used in the work of Mattrand (2011) due to its
main advantages w.r.t. other available models. The PREFFAS model is easy to implement, well validated
on many loading test cases, easy to tune due to its small number of parameters and fast to evaluate.
Mattrand (2011) also proposed an adaptation of the PREFFAS model, called PREFFAS-m in her PhD
manuscript, which no longer assumes stationarity for the loading sequences. This model, not described
here for the sake of brevity, enables the evanescence of the history effects and is therefore applicable
with any realization of a fatigue loading process. The PREFFAS-m model allows the retardation due to
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a single overload to vanish, by adaption of the Rainflow. It also enables a variation in the retardation
effects, depending on the number of applied overloads. The modified algorithm is given in Mattrand
(2011), Appendix B. In the proposed model, the effects of crack length and geometry are no longer
separated from those of the stress history. This results in increased computation times compared to the
original version of the PREFFAS algorithm. This newly-defined model was not used in the reliability
analyses performed by Mattrand. A set of experimental tests was required for the parameter tuning of
the PREFFAS-m algorithm, which could not be performed in the context of the PhD work.

III–2.3.2 Random load sequences

In variable-amplitude fatigue design, a common engineering practice is to resort to representative load-
time histories or standardized load sequences (see, e.g., Heuler and Klätschke, 2005, for a review).
These load sequences are frequently used for comparative tests to help in demonstrating structural
integrity and to validate fatigue/crack growth life prediction models. Examples of standardized load
sequences in aircraft design are TWIST (stresses in the lower wing skin at the wing root of a transport
aircraft) and FALSTAFF (stresses in the lower wing skin near the wing root in a fighter aircraft) (de Jonge
et al., 1973; de Jonge, 1973). These load sequences are deterministic even though their definition is
based on the statistics of real loads experienced in flight. In engineering practice they are repeated
several times, up to the failure of the structural component of interest.

In a probabilistic fracture mechanics framework, as assumed here, we need to define random models
to represent fatigue loading. In such a context a given load sequence corresponds to a realization of
the defined random process. Several studies involving random processes have been carried out in the
last two decades in order to assess history effects on crack growth life. In most of the reported works,
stationary Gaussian random processes are assumed with arbitrary selected parameters, e.g. narrow
or wide-banded processes with a given shape for the spectral density. These works were based on
experimental tests (Dominguez et al., 1997; Ustilovsky and Arone, 1999; Moreno et al., 2003; Wu and
Ni, 2007), crack growth numerical simulations (Domínguez and Zapatero, 1992; Zapatero et al., 1997)
or both (Zapatero et al., 2005). The authors mainly conclude that crack growth life dispersion is mostly
sensitive to the extreme values encountered in the load history and to the length of the load history,
which is repeated until failure.

The modeling of random sequences of turning points (i.e. pairs of min-max amplitudes) has also
been investigated in the specific context of a safe life approach based on SN curves. Discrete time
Markov chains were selected as suitable processes to represent real random sequences by Krenk and
Gluver (1989) and Rychlik (1996). The transition probability matrix used in such approaches keeps the
correlation structure between adjacent load levels, belonging to a finite set of discrete load levels which
constitutes the state space of the Markov chain. The first objective was to calculate the expected Rain-
flow matrix (and therefore the expected damage) with loads modeled by such a process, as described
by Rychlik (1989) and Olagnon (1994). The reverse problem of finding the transition probability ma-
trix of a Markov chain given an expected Rainflow matrix was tackled by Rychlik (1996). The case of
process properties varying over time was later addressed by Johannesson (1999) by means of switch-
ing Markov chains, which belong to the broad class of hidden Markov models (HMM). The principle
consists in defining an underlying and unobserved regime process (a Markov chain in this work) whose
state controls when to change the parameters of the load process and which values of these parameters
to use.
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Figure III.23 – Definition of the first-order Markov chain Xn (FMC).

In the work of Mattrand (2011), two main objectives were targeted:

1. The first objective was to construct random load sequences identified from in-flight load data recorded
in a fleet of fighter aircraft. An overall set of 27, 458 flights was recorded, from which two subsets
were identified with distinct flight domains. These two subsets, referred to as groups A and B11 in
Mattrand et al. (2011a), were identified by clustering, and the choice made was corroborated by
expert judgment. Two types of models were selected for the random load sequences: first-order
Markov chains (FMC) and hidden Markov models (HMM), see Section III–2.3.2 (a) and (b) respec-
tively. The presentation of the work of Mattrand is limited here for the sake of conciseness to the
random modeling of flights under a prescribed type of aircraft mission, referred to as given opera-
tional requirement in Mattrand and Bourinet (2011) and Mattrand et al. (2011a), i.e. an analysis
involving a model specific to a single group of flights, either group A or group B. The extension to
aircraft mission variability is addressed in Mattrand et al. (2011a).

2. The second objective was to assess the reliability of a given structural component with an initial
crack subjected to a random loading defined by the two proposed models. The solution was obtained
using the cross-entropy method presented in Section I–3.3.2 and extended to the specific formalism
of Markov chains and hidden Markov models. This analysis and the obtained results are given in
Section III–2.3.3. The novelty of the work of Mattrand lies in the use of Markov models as inputs of a
structural reliability problem, which moreover accounts for cycle interactions in applied loading. This
approach differs from the ones developed in other works, which also focused on crack propagation
under random loading in a reliability context, see e.g. Zheng and Ellingwood (1998), Beck and
Melchers (2004), Moustapha et al. (2013), and Altamura and Straub (2014) among other references.

(a) First-order Markov chains

A first-order Markov chain (FMC) with finite state space E is a sequence of E-valued random variables
(Xn)n∈N>0

such that the conditional distribution of Xn+1, knowing the discrete-time process (Xm)m≤n, is
the same as the conditional distribution of Xn+1 knowing only Xn:

P ( Xn+1 = en+1 | Xn = en, . . . , X1 = e1 ) = P ( Xn+1 = en+1 | Xn = en ) . (III.72)

An original idea of the work of Mattrand (2011) consists in taking Xn = (Mn, mn) where Mn and mn
denote respectively the peak and trough stresses of the nth cycle, see Figure III.23.

From the definition of Xn, the state space E composed of a finite number of load cycles is defined as
follows:

E = { ei = (sk, sl) , k, l ∈ {1, . . . , Kc} , k > l } , (III.73)

11Group A was composed of 24,320 flights recorded on aircraft loaded with two additional on-board fuel tanks. Group B
was composed of 3138 flights recorded on lighter aircrafts loaded with at most one additional on-board fuel tank.
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where {sk ∈ ck, 1≤ k ≤ Kc} are selected stress levels in Kc associated and ordered stress classes {ck, 1≤
k ≤ Kc}, see Figure III.24a where the Kc = 5 selected classes of the recorded load data referenced as
group B in Mattrand et al. (2011a) are represented. The associated normalized12 stress levels {sk, 1 ≤
k ≤ Kc} are set to {0.039, 0.113, 0.248, 0.507, 0.840}, by choosing either the mode or the center of
each class.

The corresponding load cycle state space E encompasses #E = K = Kc(Kc − 1)/2 cycle states such
that a valley mn systematically follows a peak Mn. Transition probabilities represent probabilities of
moving from a given cycle to the following one. The work of Mattrand (2011) assumes a first-order
dependence in terms of cycles, which indeed corresponds to a greater order of dependence in terms of
load levels, a cycle being composed of two load levels. These probabilities are gathered in a K × K-real
transition matrix P = [pi j]1≤i, j≤K assumed constant over time n (time-homogeneous Markov chain) and
which satisfies the following conditions:





0≤ pi j ≤ 1 for i, j ∈ {1, . . . , K}
K∑

j=1

pi j = 1 for i ∈ {1, . . . , K} (III.74)

where pi j = P
�

Xn+1 = e j | Xn = ei

�
and ei , e j are load cycle states which belong to the state space E.

It is important to point out that some probabilities pi j are zeros by construction, in order to ensure
alternating minima and maxima (see Mattrand, 2011, p. 96).

A homogeneous FMC chain is completely defined by its transition matrix P, its initial distribution X1
describing the starting probabilities of the various cycle states and its length N , which is itself considered
as random. The parameters identified from the recorded load data referenced as group B in Mattrand
et al. (2011a) are plotted in Figure III.24. The distributions of X1 and N are easily obtained by standard
statistical techniques. The transition matrix P is obtained by maximum likelihood inference.

(b) Hidden Markov models

As an alternative to FMC, Mattrand (2011) had recourse to hidden Markov models (HMMs) identified
from the same load data. The HMM model defined by Mattrand (2011) and described in the following
presents the main advantage of working with continuous stress levels. This continuous description
avoids the selection of a unique stress value per class, as is the case in the FMC model. Moreover, it is
found to be of great importance for the highest levels of stresses, which may cause a significant amount
of retardation in the crack growth. These highest stress levels are modeled here by means of generalized
Pareto distribution (GPD), which allows the realizations of stresses larger than those recorded. HMM
models were also found useful for describing the variability of the mission of an aircraft within the fleet
(Mattrand et al., 2011a), with a similar idea to that of switching Markov chains. A sequence of flights
for a given aircraft is controlled by a HMM which changes the parameters of the FMC or HMM model
used to model a single flight load sequence.

Hidden Markov chain models (Rabiner, 1989; Cappé et al., 2005) can be viewed as an extension of
the concept of Markov chains for which the observation of Xn is no longer a discrete state but a proba-
bilistic function of this state. Such models are hence described by a bivariate-time process {Sn, Xn}n∈N>0

with an observable continuous state space E, see Figure III.25:

12All stresses are divided by the maximum stress in the recorded data set.
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Figure III.24 – Input parameters of the FMC model. (a) Distribution of normalized peak/trough stresses
(all stresses divided by the maximum value of the recorded data). (b) Transition matrix P, where the
load cycle states are ordered as follows: {e1 = (s2, s1), e2 = (s3, s1), e3 = (s3, s2), . . . , e9 = (s5, s3), e10 =
(s5, s4)}. (c) Distribution of the initial state of the chain X1. (d) Distribution of the number N of cycles
per flight.

• (Sn)n∈N>0
with Sn = (M ′n, m′n) is a non-observable (hidden) Markov chain with finite state space

Eh = { ei = (ck, cl) , k, l ∈ {1, . . . , Kc} , k > l } where {ck, 1≤ k ≤ Kc} is a selected set of ordered stress
classes. Note that {ei , 1≤ i ≤ K} are no longer pairs of stress levels as in the FMC model but pairs of
stress classes,

• conditional on Sn, (Xn)n∈N>0
with Xn = (Mn, mn) is a sequence of independent observable random

cycle variables with values in E = R2
>0 such that the conditional distribution of Xn depends only on

Sn. The corresponding PDF, which is assumed to exist, is denoted fXn|Sn
.

Observed values of Mn and mn are therefore conditioned by those of M ′n and m′n. For each time n,
a realization of Mn, resp. mn, is a realization of a random variable with probability distribution fM ′n ,
resp. fm′n . According to the number of stress classes ck and cl that can be taken by M ′n and m′n for
k, l ∈ {1, . . . , Kc}, a set of Kc-candidate probability distributions is necessary to define fM ′n and fm′n . The
distributions are identified from the recorded stress data, along with their types and parameters, see
Figure III.26. Due to the sensitivity of the selected crack growth model to extreme load values (PREFFAS
model), the cKc

-load class corresponding to the upper tail of the distribution is modeled by a generalized
Pareto distribution (GPD):

fcKc
(Mn) =

1
β0

�
1+ ξ0

(Mn − us)
β0

�−1−1/ξ0

for ξ0 6= 0 , (III.75)
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Figure III.25 – Dependence structure of the hidden Markov model (HMM). Hidden chain Sn (initial state
X1, transition matrix P, length of chain N), observable process Xn ( fm′n: distribution of trough stresses,
fM ′n: distribution of peak stresses).
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Figure III.26 – Distributions fm′n and fM ′n of the HMM model. Classes c1, c2, c3, c4: truncated Gaussian
distributions, see detailed parameters in Mattrand et al. (2011a), Table 2. Class c5: generalized Pareto
distribution (us = 0.676, ξ0 = −0.20, β0 = 14.7).

where us, β0, ξ0 are respectively location, scale and shape parameters, identified by means of the
peak-over-threshold method (Davison and Smith, 1990). For the other classes, truncated Gaussian
distributions (TGD) are used. The reader may refer to Mattrand and Bourinet (2011) and Mattrand
et al. (2011a) which give details about parameter identification.

(c) Validation of the FMC and HMM models

Before their use in a reliability analysis, see Section III–2.3.3, the accuracy of the constructed FMC and
HMM models was assessed. The statistical properties of these models were compared to those of the
recorded load sequences they were identified from. It was noticed that small deviations between the
modeled random load sequences and the recorded loads resulted in large deviations in terms of crack
extension, due to the crack growth law (amplification due to m exponentiation in the Paris-Erdogan
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equation) and to the interaction effects accounted for by the PREFFAS crack closure model. For this
reason a comparison was not made directly in terms of stress levels but in terms of crack growth by
means of PREFFAS. The accuracy of the random models is assessed as follows:

• We consider the crack extension ∆a of a compact tension (CT) specimen defined in Mattrand et al.
(2011a), Section V.B.2, subjected to variable amplitude loads13

(a) simulated from the constructed random models (FMC and HMM),
(b) randomly and uniformly selected from the load sequences measured in flight.

Crack propagation is carried out by means of the PREFFAS crack closure model.
• A set of Nf = {1, 200, 500, 1000} cumulative flight(s) is generated with FMC and HMM models, in

order to analyze the effect of the length of random load sequences on crack growth.
• Such sets are independently repeated Nsim = 10,000 times. This enables the generation of Nsim

samples of crack extension ∆a for each Nf. The following statistical properties are determined for
each sample: first two statistical moments, 0.1, 1, 10, 50, 90, 99 and 99.9 percentiles.

• The accuracy of a given model (FMC or HMM) can be assessed based on the relative error between the
statistical moments or percentiles of the crack extensions obtained by simulations of load sequences
using this model (subscript sim) and those obtained with experimentally measured load sequences
(subscript exp). The relative errors represented in Figure III.27 are defined as (qsim − qexp)/qexp,
where is q is the statistical quantity of interest.

From these results, it is found that the length of the load sequence has a dramatic importance
on the accuracy of the crack extension. Crack extensions based on a single flight, i.e. with Nf = 1,
are incorrectly reproduced with both the FMC and the HMM models. The crack extensions simulated
with the random models are biased (FMB, group B), variance is underestimated (25 to 40%) and all
the percentiles are far from those obtained with the recorded data. For several cumulative flights the
accuracy of the FMC model is not improved, despite some better results on the upper percentiles of
group A. By contrast, the accuracy of the HMM model improves as Nf is increased. The variance of the
crack extensions simulated with the random models gets closer to that obtained with the recorded data.
The percentiles are highly accurate, especially the upper ones corresponding to largest crack extensions.
These results clearly point out the superiority of the HMM model w.r.t. FMC. This better accuracy can
be attributed to the continuous description of the stress levels, which produces the necessary degree of
retardation in the crack growth.

III–2.3.3 Reliability assessment using the CE method

In this section we study the reliability of a M(T) specimen of 150 mm width and 2 mm thickness, made
of a 2024-T351 aluminum alloy, under crack growth and subjected to random loading (Mattrand and
Bourinet, 2014). Two crack growth models are used: the Paris-Erdogan law, which is characterized
by straightforward and fast calculations, and the more elaborate PREFFAS crack closure model, which
accounts for interaction effects between cycles, such as crack growth retardations and accelerations.

The only source of uncertainty considered by Mattrand and Bourinet (2014) is that assumed in
fatigue loading. The crack growth properties and the initial crack length are considered deterministic
for the sake of simplicity. The material properties selected in the two models are: yield strength σy =
312 MPa, Paris-Erdogan equation model parameters C = 2.417× 10−13 and m = 3.42 (SIF range ∆K

13The accuracy of the random load models is analyzed in terms of the stress level σeq of an equivalent constant amplitude
load sequence in Mattrand and Bourinet (2011), as defined in Eq. (III.71). The results presented in Mattrand et al. (2011a)
and recalled here in Figure III.27 are quantitatively different from those given in Mattrand and Bourinet (2011), but the
conclusions drawn are the same.
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Figure III.27 – Relative error (in %) between statistical properties of ∆a-distributions simulated with
random models (FMC and HMM) and those of in-flight recorded load sequences.

consistent with MPa
p

mm and crack growth rate da/dN with mm/cycle), Elber crack closure parameters
a = 0.45 and b = 0.55. An initial crack length a0 = 5 mm is assumed in all the reliability analyses
performed.

For random load sequences, we take as inputs of the reliability problem the FMC and HMM models
identified from group B recorded load data, composed of 3138 flights, as defined in Section III–2.3.2.
The stress levels are split into Kc = 5 classes, which results in K = 10 load cycle states. The load
cycle states are ordered as follows in the transition matrix P, see Figure III.24b: {e1 = (s2, s1), e2 =
(s3, s1), e3 = (s3, s2), . . . , e8 = (s5, s2), e9 = (s5, s3), e10 = (s5, s4)}. In the HMM model, realizations of
Mn and mn are obtained from the set of Kc-probability distributions defined in Mattrand et al. (2011a),
see Figure III.26.

The following additional assumptions are made in the definition of the random loading:

• all simulated load sequences are composed of a fixed number of cycles N , which is considered as
deterministic,

• it is assumed that all the generated load sequences x = (xn)1≤n≤N start from the same load cycle
x1 = e2 = (s3, s1) = (0.248,0.039).
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The following LSF is considered in the reliability analyses:

g(x) = ac − a(x) , (III.76)

where a(x) is the crack length resulting from the application of the load sequence x = (xn)1≤n≤N to the
M(T) specimen with initial crack size a0, and ac is the critical crack length solution of K(ac,σl) = Kc,
where σl is a given stress level14 and Kc is the fracture toughness.

Three representative examples are studied: the first two are based on the Paris crack growth model
and the third makes use of the PREFFAS model, see Table III.10. For each example, two reliability
analyses are performed, the first with the FMC model and the second with the HMM model. The critical
crack lengths ac are arbitrarily selected to obtain sufficiently low failure probabilities, i.e. in the range
10−6 to 10−3. In order to meet the assumption of stationary spectra in the PREFFAS model, the whole
load sequence must be composed of a randomly-generated load subsequence which is repeated until
failure. For this purpose, any N -cycle load sequence applied in example 3 is composed of a randomly-
generated load sequence with Ns = 525 cycles, repeated F = 100 times. The whole applied sequence is
therefore composed of N = 100× 525= 52,500 cycles.

Crack growth model Number of cycles N Critical crack length ac (mm)

Example 1 Paris 500 5.09 (FMC) , 5.07 (HMM)

Example 2 Paris 102,000 25.2 (FMC) , 24.9 (HMM)

Example 3 PREFFAS 52,500 9.34 (FMC) , 6.90 (HMM)

Table III.10 – Reliability problems. FMC and HMM models identified from group B load data.

(a) First-order Markov chains

Failure probability pf with a FMC model for random loading is given by:

pf =
∑

x∈EN

1Fx ,N
(x) pX (x) = EpX

�
1Fx ,N

(X )
�

, (III.77)

where 1Fx ,N
(x) is the indicator function of the failure domain Fx ,N = {x ∈ EN : ac − a(x) ≤ 0} and pX

is the joint probability mass function of X = (Xn)1≤n≤N .

According to the first-order Markov property, the joint probability mass function of the homogeneous
FMC X = (Xn)1≤n≤N writes, by successive conditioning:

pX (x) = P (X = x) = P (X1 = x1)
N−1∏
n=1

P ( Xn+1 = xn+1 | Xn = xn ) . (III.78)

which can also be expressed as follows, by making explicit the dependence on the transition matrix P
considered as a parameter:

pX (x) = pX (x;P) =
K∏

i, j=1

pi j
ni j(x) , (III.79)

14In damage tolerance such as defined in aerospace engineering, this stress level σl can be assumed to be that related to the
so-called limit load which needs to be sustained at all flight instants during the whole life of the aircraft. If the critical crack
length is defined in terms of the peak stress Mn at cycle n, i.e. ac = ac,n such that K(ac,n, Mn) = Kc, the reliability problem
becomes time-variant, see discussion in Mattrand and Bourinet (2014). To the author’s knowledge, there is no alternative to
crude MC in order to solve time-variant reliability problems with Markov models as inputs.
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where K is the number of defined load cycle states and ni j(x) denotes the number of transitions from
cycle ei to cycle e j in the load sequence x = (xn)1≤n≤N .

The cross-entropy (CE) method introduced in Section I–3.3.2 is used to estimate the failure proba-
bility defined in Eq. (III.77). The CE method consists in finding the optimal parameter transition matrix
Q = [qi j]1≤i, j≤K solution to the following optimization problem, similar to that introduced in Eq. (I.95):

Q∗ = arg max
Q

EpX (·;P)
�
1Fx ,N

(X ) ln (pX (X ;Q))
�

s.t.

¨
0≤ qi j ≤ 1 for i, j ∈ {1, . . . , K}∑K

j=1 qi j = 1 for i ∈ {1, . . . , K} ,

(III.80)
where constraints are added such that Q is a transition matrix.

In the context of rare failure events as assumed here, it is necessary to resort once again to im-
portance sampling with a proposal joint probability mass function pX (X ;R), where R = [ri j]1≤i, j≤K .
Similarly to Eq. (I.96), we can write:

Q∗ = arg max
Q

EpX (·;R)
�
1Fx ,N

(X ) W (X ;P,R) ln (pX (X ;Q))
�

s.t.

¨
0≤ qi j ≤ 1 for i, j ∈ {1, . . . , K}∑K

j=1 qi j = 1 for i ∈ {1, . . . , K} ,
(III.81)

where the likelihood ratio W (x ,P,R) is expressed as:

W (x;P,R) =
pX (x;P)
pX (x;R)

=
K∏

i, j=1

�
pi j

ri j

�ni j(x)

. (III.82)

The transition probabilities of Q∗ are obtained after straightforward calculations by solving the as-
sociated Lagrangian maximization problem w.r.t. qi j:

q∗i j =
EpX (·;R)

�
1Fx ,N

(X ) W (X ;P,R) ni j (X )
�

EpX (·;R)
�
1Fx ,N

(X ) W (X ;P,R) ni (X )
� , (III.83)

where ni(x) =
∑K

j=1 ni j(x) represents the number of transitions starting from state ei in the load se-
quence x .

The corresponding estimator bq∗i j is given, for i, j ∈ {1, . . . , K}, by:

bq∗i j =

∑N0
k=11Fx ,N

�
X (k)

� �∏K
i, j=1

� pi j
ri j

�ni j(X (k))
�

ni j

�
X (k)

�

∑N0
k=11Fx ,N

�
X (k)

� �∏K
i, j=1

� pi j
ri j

�ni j(X (k))
�

ni

�
X (k)

� , (III.84)

where X (1), . . . , X (N0) are i.i.d. copies of (Xn)1≤n≤N sampled from the pX (·;R) distribution.

In the context of rare failure events, most of the realizations 1Fx ,N

�
x (k)

�
are zeros if an insufficient

number of samples N0 is taken. To overcome such an issue we use the multi-level CE method introduced
in Section I–3.3.2, see also de Boer et al. (2005) and Ridder (2005). The idea is to build a sequence
of reference parameters {bQs, s ∈ N}, with bQ0 = P and a sequence of LSF levels {bys, t ≥ 1} which
are iteratively updated. Static smoothing of the solution is applied at each level s. The solution bQs
is weighted with that of the previous level s − 1, with a smoothing parameter α set to 0.6. A rarity
parameter ρ = 0.1 is taken for the determination of the LSF levels bys. A detailed algorithm is given in
Mattrand and Bourinet (2014), Section 3.3.
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Method Nt bpf c.o.v. (%)

Example 1

MCS 107 8.39× 10−6 10.9

MCS 108 7.48× 10−6 3.66

CE(1000; 4) 4× 103 7.69× 10−6 26.2

CE(5000;4) 2× 104 7.71× 10−6 5.82

CE(20,000; 4) 8× 104 7.68× 10−6 3.13

Example 2

MCS 105 1.10× 10−3 9.53

CE(1000; 3) 3× 103 1.11× 10−3 10

CE(2000;3) 6× 103 1.11× 10−3 5.19

CE(5000;3) 1.5× 104 1.11× 10−3 4.77

Example 3

MCS 105 5.31× 10−4 13.7

CE(1000; 3) 3× 103 5.06× 10−4 17.1

CE(2000; 3) 6× 103 4.84× 10−4 8.75

CE(5000;3) 1.5× 104 4.84× 10−4 4.31

Table III.11 – FMC model. Results of the reliability analyses.

The multilevel CE method is applied to the three reliability problems presented in Table III.10 with
the FMC model identified from the load data of group B. The coefficient of variation of the failure
probability is estimated by 30 independent runs of the CE method. The results are given in Table III.11,
where the number of samples per level N0 and the number of levels m are given in brackets. The CE
results are compared to those obtained by crude MC. Reference results are in bold characters. The total
number of samples needed in each analysis is denoted Nt in the table.

As expected, the CE method clearly outperforms crude MC. The total number of samples required
by the CE method is much lower than that needed using a crude MC approach for a similar degree of
accuracy on pf The simulation effort is reduced by a factor of about 1000 in example 1, 30 in example 2
and 20 in example 3. Moreover, no significant bias is observed between the averaged failure probability
estimates obtained by the CE method and the reference MC estimate, given the statistical accuracy of
this estimate.

(b) Hidden Markov models

The CE method applied in the context of FMC and described in Section III–2.3.3 (a) can be extended to
HMM models with continuous state space. The joint probability mass function pX (x) used in the FMC
context needs to be replaced by:

pXS(x , s) = pX |S(x |s)pS(s) , (III.85)

where s and x are respectively realizations of the hidden chain S = (Sn)1≤n≤N and the observable chain
X = (Xn)1≤n≤N .

Similarly to FMC, see Eq. (III.79), the second term of the product related to the hidden chain S
writes:

pS(s) =
K∏

i, j=1

p
ni j(s)
i j , (III.86)

and the first term is given by:

pX |S(x |s) =
N∏

n=1

fXn|Sn
(xn|sn) = fM ′n(Mn) fm′n(mn) , (III.87)
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where Mn and mn are realizations of Xn. It is recalled that Sn = (M ′n, m′n) of the non-observable chain
(Sn)1≤n≤N corresponds to the nth cycle of the load sequence.

By making explicit the dependence on a parameter transition matrix P in pS and on a vector of
distribution parameters u in the PDFs fM ′n and fm′n , we obtain:

pXS(x , s;P,u) =

� N∏
n=1

fM ′n (Mn;u) fm′n (mn;u)

� K∏
i, j=1

p
ni j(s)
i j

!
. (III.88)

The CE optimization problem is derived in a similar manner to that established for FMC in Eq. (III.81).
It is expressed as follows:

(Q∗,v∗) = arg max
Q,v

EpXS(·;R,w)

�
1Fx ,N

(X ) W (X , S;P,R,u,w) ln pXS (X , S;Q,v)
�

s.t.

¨
0≤ qi j ≤ 1 for i, j ∈ {1, . . . , K}∑K

j=1 qi j = 1 for i ∈ {1, . . . , K} ,
(III.89)

where the likelihood ratio W (x , s;P,R,u,w) writes:

W (x , s;P,R,u,w) =
pXS (x , s;P,u)
pXS (x , s;R,w)

=
N∏

n=1

fM ′n (Mn;u) fm′n (mn;u)

fM ′n (Mn;w) fm′n (mn;w)

K∏
i, j=1

�
pi j

ri j

�ni j(s)

. (III.90)

It is worth mentioning that additional constraints need to be added to Eq. (III.89), such as bounds on
the distribution parameters v (see Mattrand, 2011, for details in the specific context of the constructed
HMM model). This is of prime importance in numerically solving the optimization problem.

The solution Q∗ and v∗ to Eq. (III.89) can be obtained by the partial differentiation of the associated
Lagrangian. The estimator bq∗i j of the optimal solution q∗i j writes, for i, j ∈ {1, . . . , K}:

bq∗i j =

∑N0
k=11Fx ,N

�
X (k)

�
W
�
X (k), S(k);P,R,u,w

�
ni j

�
X (k), S(k)

�
∑N0

k=11Fx ,N

�
X (k)

� �∏K
i, j=1 W

�
X (k), S(k);P,R,u,w

�
ni

�
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�� , (III.91)

where (S(1), X (1)), . . . , (S(N0), X (N0)) are i.i.d. copies of the HMM model (Sn, Xn)1≤n≤N sampled from
pXS(·, ·,R,w).

The best estimator bv∗ of the parameter vector v∗ is obtained by solving the following equation, which
results from the partial differentiation of the Lagrangian w.r.t. v:

1
N0

N0∑
k=1

�
1Fx ,N

�
X (k)

�
W
�
X (k), S(k);P,R,u,w

� ∇v

N∑
n=1

ln
�

fM ′n(Mn;v) fm′n(mn;v)
��
= 0 . (III.92)

The solution of Eq. (III.92) is in general not accessible analytically and the solution bv∗ must be therefore
obtained numerically.

The multilevel CE method is applied to the three reliability problems presented in Table III.10 with
the HMM model identified from the load data of group B.

In examples 1 and 2, the Paris law is not especially sensitive to extreme loads but to load ranges
∆σ = σmax − σmin according to its formulation. The idea followed to solve the HMM-based relia-
bility analysis is therefore to change the distributions in the CE algorithm that mainly affect the load
ranges. For this purpose, it is decided only to bias the distribution of the non-observable Markov chain
(Sn)1≤n≤N with the transition matrix P, and therefore to maintain fixed the set of parameters u of the
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Method Nt bpf c.o.v. (%)

Example 1

MCS 108 1.14× 10−6 9.36

CE(5000; 7) 3.5× 104 1.27× 10−6 45.8

CE(20, 000;7) 1.4× 105 1.13× 10−6 13.5

CE(40, 000; 7) 2.8× 105 1.19× 10−6 9.2

Example 2

MCS 105 1.47× 10−3 8.24

CE(1000; 4) 4× 103 1.42× 10−3 30.4

CE(2000; 4) 8× 103 1.35× 10−3 14.2

CE(5000;4) 2× 104 1.35× 10−3 6.48

Table III.12 – HMM model. Results of the reliability analyses.

distributions fM ′n (Mn;u) and fm′n (mn;u) of Xn|Sn, i.e. the parameters of the truncated Gaussian distri-
butions (TGDs) and those of the generalized Pareto distribution (TGD) identified for in-flight data and
plotted in Figure III.26. Such a strategy presents the main advantage of reducing both the dimension
and the complexity of the optimization problem in Eq. (III.89). The parameter w is kept equal to u and
the first term of the product in the likelihood expression defined in Eq. (III.90) vanishes. The results of
the reliability analyses are given in Table III.12. The coefficient of variation of pf with the CE method is,
as with FMC, estimated by 30 independent runs. As with FMC, no significant bias is observed between
the averaged failure probabilities obtained using the CE method and the reference solution obtained by
crude MC. The efficiency of the CE method is again observed in these two examples. It is especially im-
pressive for very low failure probabilities, as considered in example 1. The required number of samples
in this specific case is about 350 times less than the number needed using crude MC for a quasi-similar
c.o.v. We should however point out that the efficiency of the CE method is slightly reduced compared
with that achieved with the FMC model. The number m of CE levels required to converge appears higher
than in the case of FMC: 7 instead of 4 in example 1 and 4 instead of 3 in example 2.

Due to the complexity of the crack propagation model investigated in example 3 (PREFFAS model)
and its sensitivity to extreme loads, it is important to vary both the transition matrix P and the param-
eters ξ0 and β0 of the GPD defined in Eq. (III.75). The threshold us of the GPD is maintained fixed to
0.676 in order to not modify the lower bound of the cKc

class of stresses. The parameters of the TGDs
are expected to have a lesser impact on crack growth than those of the GPD and they are kept fixed for
this reason. The parameter vector u then reduces to u= (ξ0,β0). With such a choice it must be empha-
sized that the solution to Eq. (III.92) can here only be obtained numerically. The results obtained using
the CE method are not fully satisfatory in example 3. Failure probability estimates sufficiently close to
the crude MC reference solution of 1.15 × 10−3 estimated with a c.o.v. of 0.0932 can be found only
by lowering the smoothing parameter down to 0.2, which results in larger total number of samples Nt
compared with the case α= 0.6 set initially. Moreover, and even with α= 0.2, some estimates obtained
from 30 independent runs of the CE Method are too far from the reference failure probability, for a num-
ber of samples per level N0 varying between 1000 and 5000, see Mattrand (2011), Figure 5.6 p. 202.
This lack of robustness may have several origins, as investigated in Mattrand and Bourinet (2014). It
is the author’s belief that this lack of robustness is mainly due the likelihood ratio degeneracy (Chan
and Kroese, 2012), which is known to give unreliable failure probability estimates when the number of
parameters to estimate becomes large.

The biased transition matrix bQ∗ and parameter vector v∗ constitute interesting by-products of the
CE method, in addition to the failure probability estimate. These quantities have a similar meaning to
the most probable failure point in a FORM analysis. bQ∗ and bv∗, although unknown, are expected to be
close to bQm and bvm obtained in last level s = m of the multilevel CE method. The variations in (bQs −P)
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and bvs = (bξs, bβs) for s ∈ {1,2, 3, m = 4} are respectively represented in Figures III.28 and III.29.15

It is important to point out that these results are taken from a CE analysis whose failure probability
estimate is close to the MC reference. From Figure III.29, we can observe that only the GPD parameters
significantly change at first. The tail of the distribution becomes less heavy and, as a consequence, the
simulation is composed of fewer high loads. There are therefore fewer retardation effects, which results
in larger final cracks and consequently in more failures. Contrarily, we can notice from Figure III.28
that the transition probabilities do not vary significantly until level s = 2 is reached. The changes occur
at levels s = 3 and 4. The GPD then no longer evolves from level s = 3 to 4.

(a) s = 1, bγ1 = 0.63

−0.1

0

0.1

(b) s = 2, bγ2 = 0.33

−0.1

0

0.1

(c) s = 3, bγ3 = 0.08

−0.1

0

0.1

(d) s = 4, bγ4 = −0.05

−0.1

0

0.1

Figure III.28 – Variation in transition matrices (bQs − P). bpCE
f = 1.21× 10−3, N0 = 5000.
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fσ(σ)

bξ0 = −0.20 , bβ0 = 14.7
bξ1 = −0.26 , bβ1 = 11.9
bξ2 = −0.31 , bβ2 = 9.76
bξ3 = −0.35 , bβ3 = 8.00
bξ4 = −0.38 , bβ4 = 7.72

Figure III.29 – Variation in GPD parameters bvs = {bξs, bβs}. bpCE
f = 1.21× 10−3, N0 = 5000.

15Such an interpretation was also made was with the FMC model, where the variation in bQs with s was analyzed, see
Bourinet and Mattrand (2013) and Mattrand and Bourinet (2014).
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Concluding remarks, perspectives

This final section makes some concluding remarks and gives potential future research directions.

Reliability assessment

The core of my work has been focused on reliability assessment, and design under uncertainty where
reliability is taken as a constraint. The computation of failure probabilities is still a great challenge
in engineering, due to the ever-increasing cost of the numerical models involved in the analysis. It is
common for a single analysis to take hours or days on multi-core machines, which makes uncertainty
propagation analysis at best hard and at worst impossible to solve. The analyst is often confronted with
the following dilemma: applying sampling-based techniques known for their robustness at the expense
of often too-numerous calls to the numerical models, or applying approximation-based techniques for
the sake of efficiency while sacrificing robustness and generality.

From the experience gained in my research work, I believe that subset simulation has been and
still is the best choice if several thousands calls to the model are allowed. This method has remarkable
properties: it can be applied to models with a large number of inputs (e.g. thousands or more with
random processes in structural dynamics) and its efficiency is high compared to a crude MC approach.
If only a few hundred calls are possible, recourse to adaptive surrogate-based techniques is of interest,
and it has constituted one of the main directions of my research work. The advantage in terms of
computational cost, however, needs to be balanced by the following constraints on the models which
can be considered in an adaptive surrogate-based analysis: (1) an input space dimensionality which is
not too high, and (2) a reasonable shape complexity of the limit-state surface (e.g. a smooth LSS).

Less studied in the literature, reliability assessment based on Markov models has also been addressed
in the PhD work of Mattrand. In the case of Markov chain input models, excellent results have been
achieved in terms of efficiency w.r.t. crude MC. Those obtained using the proposed hidden Markov
models are less impressive. There are still optimization issues, probably due to the high parameter
space dimensionality, which would need to be investigated in future works.

Design under uncertainty

Reliability-based design optimization has been addressed by adaptive surrogate-based methods in the
PhD works of Dubourg and Moustapha. The problems tackled in these works combine two levels of
complexity: the first is associated with the assessment of failure probability under the constraint of the
optimization problem, as evoked above, and the second is associated with the search for a minimum
cost function. The proposed solving strategies are based on surrogates, with training sets constructed
in the augmented reliability space and enriched “on demand”, i.e. when the accuracy of the surrogate
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model is found to be insufficient for the application of the optimization algorithm. Optimization was
shifted from a gradient-based search technique in the work of Dubourg to a stochastic one in the work
of Moustapha, in order to avoid solutions associated with local minima.

The targeted applications were limited to problems with both few design parameters (up to 20) and
few random inputs (up to 10). The efficiency achieved in these examples was high, the proposed ap-
proaches enabling a reduction in the number of calls to the LSF down to a few hundred. LSF nonlinearity
was handled in these approaches by the application of subset simulation for the assessment of the relia-
bility constraint(s), which avoids the usual restrictions imposed by the FORM-based RBDO approaches
of the literature. The extension to higher-dimensional problems (both in terms of design parameters
and random inputs) is, in my opinion, dependent on advances in surrogate-based techniques.

Surrogate models

Several aspects of surrogate models have been addressed in my works performed so far. I am listing here
a few remarks based on experience gained over the studied examples, some of these remarks being more
personal beliefs. A few directions to explore are also suggested to improve the construction of surrogate
models.

Limits of surrogate models for function approximation

Two types of kernel-based techniques were selected in the work I supervised for the construction of
surrogate models: SVM and kriging. The complexity of the machine-learning task strongly depends
on the smoothness of the true function we want to approximate. If the function is smooth we may
expect to construct an approximation in a high-dimensional space, assuming that a suitable kernel is
selected. Unfortunately, this fundamental property may be not met in the functions involved in some
practical problems. Two examples of such difficult-to-learn functions are: (1) the LSF considered in
the shell buckling problem characterized by four-MPFP studied in Section III–1.4 or even its 16 random
input simplified version, introduced as example 3 in Section I–3.4.2, (2) the LSF considered in the
electromagnetic compatibility problem presented as example 1 in Appendix A, characterized by sharp
peaks at the MPFP.

Choice of a kernel

In usual surrogate-based approaches, the kernel type is chosen a priori and the construction consists
in defining the best parameters of this kernel. This was the choice made in the works I supervised or
was directly involved in. An isotropic Gaussian kernel was used with SVMs in classification (2SMART
method) and regression (ASVR method). The anisotropic version of this kernel was recently applied to
SVR. This same anisotropic Gaussian kernel was used in the works of Dubourg and Moustapha based on
kriging. The Matérn kernel with ν = 3/2 and 5/2 was also tested, but did not enable the construction
of surrogate models of greater accuracy.

For high-dimensional problems, I consider it mandatory to move to anisotropic versions of kernels,
in order to capture the different length scales of the inputs. The price to pay is more parameters to
tune and therefore longer training times. Choosing a kernel in the case of nonsmooth problems is in
my experience more challenging. The nonsmoothness is most often limited to some inputs, and may be
limited to only one subdomain of the whole input space. Two research directions which can possibly
be combined are worth investigating: nonstationary kernels and kernels with anisotropic regularities,
under the main assumption that these kernels can be tuned with a set of data which is not too large.
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Hyperparameter selection

From the works that were carried out, hyperparameter selection was found to be one of the most impor-
tant aspects of surrogate model construction. My experience has been with SVR mainly, but I presume
that the same situation applies to kriging. In the case of SVR, the hyperparameter selection problem has
been solved by using an accurate approximation of the generalization error and an exhaustive search
for its minimum by stochastic optimization. For SVR based on the ε-insensitive loss function, the LOO
error approximation of Chang and Lin seems to be a perfect candidate for estimating the generalization
error. The stochastic search initially applied by means of the CE method with the isotropic Gaussian
kernel is now carried out using the CMA-ES algorithm with anisotropic kernels involving numerous
parameters to tune. The stochastic optimization problems to solve are computationally demanding for
such anisotropic kernels. One research direction to help cope with the computational burden is to use
accelerated computing exploiting graphics processing units (GPUs), as planned in the near future.

Adaptive surrogate-based strategies

In all the works based on surrogate models which are presented in this report, the choice made was to
construct surrogate models sequentially, starting from an initial set of data pairs. The idea is to smartly
select new points to evaluate in the input space based on the information conveyed by the currently
available surrogate model. The choice of the locations of these new points has been found to impact the
accuracy of the surrogate models which are constructed. The Gram matrix may become ill-conditioned,
depending on the locations of the training points which are selected in the input space. This issue,
which is also dependent on kernel choice, needs to be addressed in future works.

SVM or kriging, which to prefer?

The question as formulated may give rise to controversial debate! Both techniques have been used in
my works and my only intention here is to pinpoint some important aspects in favor of one technique
or the other.

As a first remark, the learning problem in SVM is solved using the regularization parameter C , which
is tuned like other parameters, i.e. the kernel parameters and the width of the ε-tube in the case of SVR
based on the ε-insensitive loss function. An equivalent approach with kriging would imply the use of a
nugget with the proper identification of the noise parameter τ. In several kriging approaches found in
the literature, this parameter is unfortunately not tuned but set a very small constant value.

As a second remark, the SVM formulation requires the choice of a given loss function, which quan-
tifies the deviation between the approximate and true models at the points of the training set. My
preference has been for the ε-insensitive loss function in SVR-based approaches, while kriging (or LS-
SVR) assumes a square loss function. In my experience, I have found that LS-SVR were unable to
approximate high-dimensional functions compared to ε-insensitive SVR. I therefore assume that the
square loss function may not be the perfect candidate for function approximation in high dimensions.

In favor of kriging, one of its main advantages is its variance, which results from the assumption that
the function to approximate is a realization of a random process. This variance quantifies the epistemic
uncertainty of the constructed surrogates, allowing the derivation of infill criteria used in adaptive
approaches. This variance has been used by Dubourg and Moustapha in the context of RBDO. Alternative
enrichment strategies have been defined with SVR for reliability assessment, given the absence of a
quantity equivalent to the kriging variance for SVR.
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The SVM-based approaches developed in my works have been based on a formulation with an un-
known bias term b. As pointed out in Chapter II, this approach is similar to ordinary kriging with an
unknown constant mean. The extension of the SVM formulation to a set of real-valued functions as a
replacement for b, and similarly to universal kriging, has not been investigated. As already mentioned,
it is my belief that such an approach is too prone to overfitting in the case of small data sets.

Sensitivity analysis

Some contributions to sensitivity analysis in reliability assessment are presented in this report. Sensitiv-
ities to distribution parameters including correlation have been proposed in the FORM context, based
on the Nataf transformation. New sensitivities in the standard normal space have also been developed,
under the restrictive assumption of uncorrelated random inputs.

Sensitivities in reliability assessment are of prime importance in uncertainty propagation. They
allow the analyst to gain an insight into the most influential inputs in the system failure. Moreover
sensitivities w.r.t. distribution parameters can also be used in gradient-based RBDO approaches if dis-
tribution parameters are taken as design parameters, as considered by Dubourg.

Several perspectives concerning sensitivity analysis are envisaged. The first study to carry out is to
extend the proposed sensitivities in the standard normal space to the case of correlated inputs. The
derivation of global sensitivities in the context of reliability assessment also deserves some attention, in
the same spirit as the work carried out by Wei et al. (2012). Such global sensitivities are expected to
bring importance measures representative of the full information contained in the input distributions,
which can bring an additional insight into system failure. These sensitivities are currently being studied
in the scope of the PhD work of Chabridon. Another research direction which can take advantage of
sensitivities is the potential dimension reduction of the input space of the reliability problems to solve.
Attempts, not reported here, have been made using sensitivities in the standard normal space for a
selection “on the fly” of the most important inputs in the ASVR method.

Applications

The applications covered in my work include: buckling of submarine structures, crack propagation in air-
craft structural elements, frontal impact of vehicles, electromagnetic compatibility in wire networks, and
vehicle dynamics on rough-profile terrains. Problems of practical interest are often high-dimensional,
with inputs expressed as random processes or random fields. The efforts in my future works will still
be devoted to the development of efficient methods applicable to problems involving large numbers
of random inputs. The solutions will undoubtedly rely on surrogate models, as investigated so far, and
take advantage of accelerated computing based on GPUs for faster training. Developments in sensitivity
analysis are also extremely necessary, in order to shed light on the most influential inputs in the prob-
lems of interest. Attention will be paid to epistemic uncertainty due to scarce statistical information
on the inputs, a situation which is often met in engineering. Such epistemic uncertainties need to be
propagated throughout the system model, in order to quantify their impact on the results obtained in
uncertainty propagation analysis.
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A
Two challenging problems for surrogate-based reliability
analysis

A–1 Example 1

This first reliability problem is studied by Kouassi et al. (2016) in the field on electromagnetic compati-
bility. It investigates a lossy transmission line of length L, diameter d and attenuation coefficient α such
as defined by Rannou et al. (2002), see Figure A.1. The line is placed at a uniform height h (considered
as a random variable in the present study) above a perfectly conducting ground plane and loaded at
both ends by two impedances Z0 and ZL . This line is illuminated at a frequency f by a linearly polarized
plane wave with incidence angles φp (azimut angle) and θp (elevation angle). The polarization angle
and the magnitude of the electric field E are denoted θe and ae, respectively.

Figure A.1 – Representation of the transmission line studied by Rannou et al. (2002).

The observable of interest is the electric current magnitude I at the end of the line, i.e. in the output
load impedance ZL . This current can be analytically expressed in terms of the n = 11 above defined
input parameters (Rannou et al., 2002), and its magnitude writes :

I = I (x) =

����
2hae

I1
I2

�
I3

�
I4 − I5

�
+ I6

����� , (A.1)

where x= (L, h, d, ZL , Z0, ae,θe,θp,φp, f ,α),
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and where:

I1 = (Z0ZC + ZL ZC) cosh (γL) +
�
Z2

C + Z0ZL

�
sinh (γL) ,

I2 =
sin
�
βh cosθp

�

βh cosθp
,

I3 = iβ cosθp

�− sinθe cosθp sinφp + cosθe cosφp

�
,

I4 =
1
2
(ZC + Z0)

exp
��
γ+ iβ sinθp sinφp

�
L
�− 1

γ+ iβ sinθp sinφp
,

I5 =
1
2
(ZC − Z0)

exp
�− �γ− iβ sinθp sinφp

�
L
�− 1

γ− iβ sinθp sinφp
,

I6 = sinθe sinθp

�
ZC − (ZC cosh (γL) + Z0 sinh (γL))exp

�
iβ L sinθp sinφp

��
,

in which ZC = 60acosh (2h/d), β = 2π f /3× 108 and γ= α+ iβ . In these expressions, i =
p−1 is the

imaginary number and |·| denotes the modulus of a complex number.

The LSF is defined by:

g (x) = Icr − I (x) , (A.2)

where Icr = 1.5× 10−4 A is a given current magnitude level to be not exceeded.

The input parameters are modeled as mutually independent random variables. The marginal pdfs
are defined in Table A.1.

variable X i mean µX i
c.o.v. δX i

distribution / support

X1 = L (m) 4.2 0.10 lognormal / R≥0

X2 = h (m) 0.02 0.10 lognormal / R≥0

X3 = d (m) 0.001 0.05 lognormal / R≥0

X4 = ZL (Ω) 1000 0.20 lognormal / R≥0

X5 = Z0 (Ω) 50 0.05 lognormal / R≥0

X6 = ae (V/m) 1 0.20 lognormal / R≥0

X7 = θe (rad) π/4 0.577 uniform / [0 ,π/2]

X8 = θp (rad) π/4 0.577 uniform / [0 ,π/2]

X9 = φp (rad) π 0.577 uniform / [0 ,2π[

X10 = f (MHz) 30 0.096 uniform / [25 ,35]

X11 = α (-) 0.0010 0.289 uniform / [0.0005 ,0.0015]

Table A.1 – Example 1, second-order statistics and distributions.

The results of the reliability analyses are given in Table A.2. All the calculations are performed using
the algorithms implemented in FERUM 4.1 (Bourinet et al., 2009). A reference failure probability is
obtained by a crude MC approach using 109 samples. SS is applied with N = 2500 samples at each
intermediate level. The FORM and SORMcf approximations are also given.
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Method Failure probability estimate # of calls to LSF

MC (reference) bpMC
f = 2.24× 10−4 (δbpMC

f
= 0.002) 109

SS bpSS
f = 2.12× 10−4 (δbpSS

f
= 0.184) ≈ 10, 000

FORM pFORM
f = 31.83× 10−4 9144

SORMcf pSORM-cf
f = 1.10× 10−4 (9144+) 77

Table A.2 – Example 1, results.

From these results, it appears that FORM and SORMcf methods are unable to accurately quantify the
failure probability. The FORM failure probability estimate is about one order of magnitude greater than
the reference solution. Moreover the FORM result necessitates a large number of calls to the LSF due to
the small step size required for convergence of the i-HLRF algorithm (here 0.01). SORMcf probability
estimate is better than FORM but the bias w.r.t. the reference failure probability is still large.
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Figure A.2 – Example 1, (ui , u j) pairwise cross-cuts passing through the MPFP P∗ in the standard normal
space. Black square: MPFP, black cross: projection of standard normal space origin onto (ui , u j) cross-
cut plane, black line: LSS, green area: safe domain, pink area: failure domain. The numbering of the
random components of X is given in the first column of Table A.1.

In order to investigate why FORM and SORM fail in this example, the LSS geometry has been ex-
plored by means of (ui , u j) pairwise cross-cuts passing through the MPFP P∗ in the standard normal
space for i, j ∈ {1, . . . , 11}. Some of these cuts obtained are given in Figure A.2. The LSS appears
smooth in all pairwise cross-cuts except those involving the azimuth angle φp of the incident electro-
magnetic wave (9th component of X). The uncertain azimuth angle φp induces a very sharp LSS at the
MPFP P∗ in the u-space (see the three lower subplots of Figure A.2), which explains why FORM and
SORM are unable to predict the true failure probability with an acceptable accuracy. This sharpness of
the LSS is in fact due to the high sensitivity of the transmission line model to the azimuth angle. Small
departures of the angle φp from 0 and π induce large decreases in the electric current magnitude at
the end of the line. This results in a concentration of failure probability close to these two values of
azimuth angle.
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A–2 Example 2

This second reliability problem is defined in terms of two independent standard normal variates. The
LSF at u= (u1, u2)T is given by:

G (u) = min
k∈{1 ,2 }

Gk (u) , (A.3)

where:
G1 (u) = (u1 − ε) + β1 , (A.4)

G2 (u) = β1

�
1−

�
1
2

�
u1 − ε
β2

+

����
u1 − ε
β2

����
��γ�

, (A.5)

and where β1 = 6, β2 = 4.5, γ= 30 and ε= 10−6.

(a) LSS in the standard normal space
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Figure A.3 – Example 2, limit-state surfaces G1(u) = 0 and G2(u) = 0 in the standard normal space
(left), limit-state functions G1(u) and G2(u) vs. u1 (right). Green area: safe domain, pink area: failure
domain.

The reference failure probability is here obtained by means of a directional simulation (DS) with 100
directions evenly distributed over the unit-radius circle centered on the origin of the standard normal
space, see the obtained value in Table A.3. The true failure probability writes pf = Φ (−(β1 − ε)) +
Φ (−(β2 + ε))≈ Φ (−β2) = 3.40× 10−6.

The failure probabilities obtained using FORM and SORM-cf are given in Table A.3. Starting from
the origin of the standard normal space, the MPFP found by FORM is the closest point of the LSS
G1(u) = 0. We therefore obtain pFORM

f = pSORM-cf
f = Φ (−β) where β = β1−ε, values which are far from

the reference solution (almost three orders of magnitude lower than the true failure probability).

SS is applied with 1000 samples per subset level. The SS failure probability estimates obtained
from 500 independent runs of the SS method are represented in Figure A.4. It is worth noting that
SS explores quasi-exclusively the half-space {u ∈ R2 : u1 < 0} due to the plateau of G2 in the half-
space {u ∈ R2 : u1 > 0} (the width of this plateau is controlled by the parameter γ). With a sample
size per level set to 1000, there are almost no chances that MCMC samples populate the half-space
{u ∈R2 : u1 > 0}. As a consequence the failure probability estimate obtained using SS is almost always
severely biased (again, about three orders of magnitude lower than the true failure probability).
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Method Failure probability estimate # of calls to LSF

Directional simulation (reference) pDS
f = 3.40× 10−6 1601

FORM pFORM
f = 9.87× 10−10 21

SORMcf pSORM-cf
f = 9.87× 10−10 (21+) 5

Table A.3 – Example 2, results.
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Figure A.4 – Example 2, histogram of the failure probability estimates bpSS
f obtained from 500 indepen-

dent runs of the SS method.



226 Appendix A. Two challenging problems for surrogate-based reliability analysis



B
Short bio and academic achievements

B–1 Short bio

First name, last name Jean-Marc Bourinet
Date of birth February 2, 1969
Civil status Civil union, 2 children
Address SIGMA Clermont

Campus des Cézeaux - CS 20265, 63178 Aubière cedex, France
Phone +33 4 73 28 81 16
E-mail bourinet@sigma-clermont.fr
Google Scholar profile https://scholar.google.com/citations?user=pzrQbq8AAAAJ
Current position Associate professor at SIGMA Clermont (formerly IFMA)

Permanent researcher at Institut Pascal, CNRS UMR 6602, M3G Dept,
Leader of the Uncertainty Quantification research group

Education PhD in Mechanical Engineering, École Centrale de Nantes (Dec. 1996)
Subject: Numerical and experimental approach of damped vibrations of
tubes filled with granular materials
Engineering degree, Naval Architecture, ENSIETA Brest (Sept. 1993)

B–2 Positions held

Jan. 2003 to Aug. 2004 Centre d’Essais Aéronautique de Toulouse, DGA, Toulouse, France
Appraisal and test manager

Jan. to Dec. 2002 Centre Technique des Systèmes Navals, DGA, Toulon, France
Design engineer

Jan. to Dec. 2001 University of California at Berkeley, Berkeley, CA, USA
Visiting scholar, lecturer

Jan. 1997 to Dec. 2000 Centre Technique des Systèmes Navals, DGA, Toulon, France
Design Engineer

Sep. 1993 to Dec. 1996 École Centrale de Nantes, Nantes, France
Doctoral student

Apr. to Aug. 1993 IFREMER, Plouzané, France
Intern

Sep. 1989 to Aug. 1993 ENSTA Bretagne (formerly ENSIETA), Brest, France
Engineering student

https://scholar.google.com/citations?user=pzrQbq8AAAAJ


228 Appendix B. Short bio and academic achievements

B–3 Teaching

My courses are mainly given to engineering master’s students at SIGMA Clermont. I have also taught
classes outside my school: 3rd-year courses at École Centrale de Nantes (2005–2008) and specialized
master’s classes at Centre des Matériaux des Mines ParisTech (2004–2008). Since 2008, I have par-
ticipated every year in the Mécanique-Matériaux-Structures-Fiabilité (MMSF) research master, awarded
conjointly by Université Blaise Pascal and SIGMA Clermont. I also teach in professional training pro-
grams provided by the École Polytechnique / Executive Education for engineers and researchers. My
teaching activities are summarized in the tables below.

I elaborated the complete program content (lectures, tutorials and practical classes) of the follow-
ing course units: probability and statistics (PRST) given to 1st-year students, finite element method
(BMEF) given to 2nd-year students in the Materials and Structures (St2M) department, and uncer-
tainty propagation 1 (APIC) given to 3rd-year students in the same department. I am in charge of these
3 courses (giving lectures in collaboration with the tutorial and practical class teachers, setting exams
and assessments, interacting with students).

Level - Type Title Lectures Tutorials Practicals #Students Dates
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Ing. 2A - FI Finite element method ∗ 16h 12h 14h 48 Since 2004
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Table B.1 – Teaching at SIGMA Clermont.

Establishment Level - Type Title Lectures Practicals #Students Dates
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University of California
at Berkeley

Undergraduate Engineering mechanics - Statics ∗ 28h - 53 Fall 2001

∗ : course leader.

Table B.2 – Teaching in other establishments.

Establishment Participants Title #Hours #Students Dates

Collège de Polytechnique Engineers, researchers Probabilistic safety of structures 7h ≈ 10 2006, 2008

École Polytechnique -
Executive Education

Engineers, researchers Probabilistic methods for
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7h ≈ 10 2015, 2016

Table B.3 – Professional training.
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FERUM since 2004. This toolbox is freely accessible at https://www.sigma-clermont.fr/en/ferum.

The methods available in FERUM are: FORM and SORM-cf and -pf, crude MC, IS based on FORM,
directional sampling, subset simulation. It also includes the 2SMART adaptive method based on SVM
surrogates used in classification. Global sensitivity analysis based on Sobol’ indices is also available in
FERUM.

This toolbox is immediately comprehensible, easy to use and very accessible for students and re-
searchers who want to explore new solving strategies in uncertainty propagation. Since its initial re-
lease in 2009, this toolbox has been downloaded in about 60 countries by more than 1700 users (USA:
210, China: 180, France: 160, Iran: 130, India: 110, Denmark: 70, UK: 70, Germany: 60).

https://www.sigma-clermont.fr/en/ferum
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B–9 Editorial and review activities

I am member of the editorial board of Reliability Engineering & System Safety since January 2017.

Review of journal papers for:

• Reliability Engineering & System Safety (RESS)
• Structural Safety (STRUCS)
• Probabilistic Engineering Mechanics (PREM)
• Structural and Multidisciplinary Optimization (SMO)
• Engineering Fracture Mechanics (EFM)
• Computers and Structures (CAS)
• International Journal of Reliability and Safety (IJRS)
• European Journal of Computational Mechanics (EJCM)
• IEEE Transactions on Electromagnetic Compatibility (IEEE Transactions on EMC)

Edition of conference proceedings:

• IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, Special Section of Proba-
bilistic Engineering Mechanics (Elsevier), Vol. 37, pp. 123–184, July 2014,
http://www.sciencedirect.com/science/journal/02668920/37

• IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, Procedia IUTAM (Elsevier),
Vol. 6, pp. 1–210, 2013, http://www.sciencedirect.com/science/journal/22109838/6/supp/C

B–10 Organization of scientific events

Conferences:

• Proppe C., Bourinet J.-M., IUTAM Symposium on Multiscale Problems in Stochastic Mechanics,
Karlsruhe, Germany, June 25–29, 2012, 35 participants, 23 papers presented

Summer schools:

• Bourinet J.-M., Proppe C., Modeling and Numerical Methods for Uncertainty Quantification (MN-
MUQ 2014), French-German Summer School & École Thématique CNRS, September 1–5, 2014, Por-
querolles, France, fundings: French-German University (UFA/DFH), CNRS, AFM, Institut Pascal, ED
SPI Clermont and IFMA, 65 participants + 12 lecturers

• Proppe C., Bourinet J.-M., Uncertainty Quantification in Mechanics and Material Sciences, Theory
and Practice, French-German Summer School, August 22–26, 2011, Pforzheim, Germany, fundings:
French-German University (UFA/DFH) and AFM, 38 participants + 12 lecturers

Workshops:

• Lalléchère S. & al., 1st Uncertainty Modeling for ElectroMagnetic Applications Workshop (UMEMA
2015), June 29–31, 2015, Saint Nectaire, France

• Bourinet J.-M., Lemaire M., Journées Méc@Proba - Probabilistic Approaches in Engineering Me-
chanics, IFMA, June 4, 2009

• Lemaire M., Bourinet J.-M., Journées Méc@Proba, IFMA, January 28, 2008
• Lemaire M., Bourinet J.-M., Fogli M., Mébarki A., Journées Méc@Proba, Université de Marne-la-

Vallée, January 9–10, 2006

http://www.sciencedirect.com/science/journal/02668920/37
http://www.sciencedirect.com/science/journal/22109838/6/supp/C
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B–11 Organization of sessions and mini-symposia in conferences

International conferences:

• Sudret B., Bourinet J.-M., Mahadevan S., Taflanidis A., “Surrogate models for uncertainty quantifi-
cation, reliability and sensitivity analysis”, 12th International Conference on Structural Safety and
Reliability (ICOSSAR 2017), Vienna, Austria, August 6–10, 2017 (6 papers presented)

• Sudret B., Chatzi E., Bourinet J.-M., “Non-intrusive surrogate models for uncertainty quantification
in high dimensions”, 7th European Congress on Computational Methods in Applied Sciences and
Engineering (ECCOMAS 2016), Crete Island, Greece, June 5–10, 2016 (10 papers presented)

• Sudret B., Bourinet J.-M., Gayton N., “Surrogate models for structural reliability analysis”, 25th Euro-
pean Safety and Reliability Conference (ESREL 2015), Zurich, Switzerland, September 7–10, 2015
(9 papers presented)

• Sudret B., Bourinet J.-M., Mahadevan S., Missoum S., “Surrogate models for uncertainty quantifica-
tion, reliability analysis and robust design”, 12th International Conference on Applications of Statis-
tics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12–15, 2015 (20 papers
presented)

• Sudret B., Mahadevan S., Missoum S., Bourinet J.-M., Blatman G., “Meta-models / surrogate models
for uncertainty quantification, reliability analysis and robust design”, 11th International Conference
on Structural Safety and Reliability (ICOSSAR 2013), New York, NY, USA, June 16–20, 2013 (23 pa-
pers presented)

• Sudret B., Bourinet J.-M., Gayton N., Berveiller M., “Meta-models/surrogate models for uncertainty
propagation, sensitivity and reliability analysis”, 11th International Conference on Applications of
Statistics and Probability in Civil Engineering (ICASP11), Zurich, Switzerland, August 1–4, 2011
(13 papers presented)

• Lemaire M., Bourinet J.-M., “Machine learning in structural reliability and probabilistic mechanics”
(OS8), 10th International Conference on Structural Safety and Reliability (ICOSSAR 2009), Osaka,
Japan, September 13–17, 2009 (6 papers presented)

French conferences:

• Gayton N., Bourinet J.-M., Dantan J.-Y., Defaux G., Elachachi S.-M., Gogu C., Yalamas T., Session 3 “Fi-
abilité et Robustesse des Systèmes Mécaniques”, 23ème Congrès Français de Mécanique (CFM 2017),
Lille, August 28–September 1, 2017 (15 papers presented)

• Gayton N., Bourinet J.-M., Dantan J.-Y., Defaux G., Elachachi S.-M., Gogu C., Yalamas T., Session 12
“Fiabilité et Robustesse des Systèmes Mécaniques”, 22ème Congrès Français de Mécanique (CFM
2015), Lyon, August 24–28, 2015 (16 papers presented)

• Guillaumat L., Schoefs F., Bourinet J.-M., Session 30 “Incertitudes, Fiabilité et Maîtrise des Risques”,
20ème Congrès Français de Mécanique (CFM 2011), Besançon, August 29–September 2, 2011 (16 pa-
pers presented)

B–12 Participation in scientific committees of conferences

International conferences:

• 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineer-
ing (UNCECOMP 2019), Crete Island, Greece, June 24–26, 2019

• 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13),
Seoul, South Korea, May 26–30, 2019

http://2019.uncecomp.org/
http://www.icasp13.snu.ac.kr/
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• 27th European Safety and Reliability Conference (ESREL 2017), Portorož, Slovenia, June 18–22,
2017

• 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineer-
ing (UNCECOMP 2017), Island of Rhodes, Greece, June 15–17, 2017

• TensiNet - COST Action TU1303 Symposium 2016 on Novel Structural Skins, Newcastle, UK, Oc-
tober 26–28, 2016

• 25th European Safety and Reliability Conference (ESREL 2015), Zurich, Switzerland, September 7–
10, 2015

• 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12),
Vancouver, Canada, July 12–15, 2015

• 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineer-
ing (UNCECOMP 2015), Crete Island, Greece, May 25–27, 2015

• Uncertainty 2014, Rouen, France, June 23–27, 2014
• IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, Karlsruhe, Germany, June 25–

29, 2012

French conferences:

• 2nd Uncertainty Modeling for ElectroMagnetic Applications Workshop (UMEMA 2016), Paris, July
4–5, 2016

• 9ème Journées Nationales de la Fiabilité des Matériaux et des Structures (JFMS 2016), Nancy, March 31–
April 1, 2016

• 8ème Journées Nationales de la Fiabilité des Matériaux et des Structures (JFMS 2014), Aix-en-Provence,
April 9–10, 2014

• 7ème Journées Nationales de Fiabilité (JN’Fiab 2012), Chambéry, June 4–6, 2012
• 6ème Journées Nationales de Fiabilité (JN’Fiab 2010), Toulouse, March 24–26, 2010

B–13 Participation in PhD evaluation committees as examiner

• S. Dubreuil, Université Paul Sabatier, Toulouse, December 10, 2014
• O. Pasqualini, Université de Nantes, Nantes, October 28, 2013
• X.-H. Dang, Université Blaise Pascal, Clermont-Ferrand, October 11, 2012
• N. Roussouly, Université Paul Sabatier, Toulouse, December 16, 2011
• S. Kadry, Université Blaise Pascal, Clermont-Ferrand, May 16, 2007
• N. Gayton, Université Blaise Pascal, Clermont-Ferrand, September 26, 2002
• A. Legay, ENS Cachan, Cachan, July 5, 2002

B–14 Invited researchers

Permanent researchers:

• Dr. Sergei Kucherenko, Imperial College, London, UK, September 11–15, 2017
• Prof. Carsten Proppe, KIT, Karlsruhe, Allemagne, April to September 2010

PhD students:

• Maria Steiner, Bauhaus-Universität Weimar, Germany, “Global sensitivity analysis using adaptive LS-
SVR surrogate models”, October to November 2016

• Sylvain Lacaze, University of Arizona, AZ, USA, “SVC-based reliability assessment”, September to
December 2012

http://esrel2017.org/
http://2017.uncecomp.org/
http://conferences.ncl.ac.uk/tensinet2016/
http://esrel2015.ethz.ch/
http://icasp12.ubc.ca/
http://2015.uncecomp.org/
http://uncertainties2014.insa-rouen.fr/
http://www.itm.kit.edu/dynamik/iutam-symposium/
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• Anirban Basudhar, University of Arizona, AZ, USA, “SVC-based reliability assessment”, October to
December 2010

B–15 Invited and keynote lectures

• Invited lecture, “Adaptive surrogate-based methods for reliability assessment”, Uncertainty Modeling
for Engineering Applications Workshop (UMEMA 2017), Torino, Italy, November 23-24, 2017

• Invited lecture, “Reliability assessment with SVR adaptive surrogate models”, GRK1462 Summer
School on Uncertainty in Modeling, Weimar, Germany, September 6, 2016

• Invited lecture, “Méthodes, enjeux et limites pour l’estimation de probabilités d’événements rares -
Application aux lignes de transmission”, Assemblée Générale du GDR CNRS Ondes, Lyon, France,
October 20, 2015

• Invited lecture, “Adaptive SVM surrogate models for reliability assessment”, Risk and Reliability Sym-
posium in Honor of Prof. Armen Der Kiureghian, University of Illinois at Urbana-Champaign, IL, USA,
October 5, 2015

• Invited lecture, “Strengths and limits of reliability assessment methods - Illustration in the field of
electromagnetic compatibility”, Uncertainty Modeling for ElectroMagnetic Applications Workshop
(UMEMA 2015), Saint Nectaire, France, June 30, 2015

• Keynote lecture, “Reliability assessment with adaptive surrogates based on support vector machine
regression”, 1st International Conference on Uncertainty Quantification in Computational Sciences
and Engineering (UNCECOMP 2015), Crete Island, Greece, May 27, 2015

• Invited lecture, “Reliability assessment based on adaptive Support Vector Machine surrogates”, Journée
de la Conception Robuste et Fiable - Approches Universitaires et Industrielles (2nde édition), GST AFM
Mécanique & Incertain, Paris, France, April 10, 2015

• Invited lecture, “Reliability-based design optimization : bases de l’approche et tentatives d’application
à des fonctions coûteuses à évaluer”, Journées Optimisation sous Incertitudes & Modèles de Substi-
tution et Optimisation, ONERA, Palaiseau et Toulouse, France, November 12, 2014

• Invited lecture, “Reliability analysis - Application to stochastic damage tolerance”, 1st Cenaero Work-
shop on Damage Tolerant Approaches, Gosselies, Belgium, September 7–8, 2011

• Invited lecture, “Modélisation stochastique d’un chargement d’amplitude variable issue de mesures
- Application à l’approche fiabiliste de la tolérance aux dommages”, Séminaire Fatigue SF2M “Les
chargements de fatigue en conception et validation”, Paris, June 16, 2011

• Invited lecture, “Approches probabilistes en mécanique”, Séminaire de l’École Doctorale de l’Université
Paul Verlaine, Laboratoire de Physique et Mécanique des Matériaux (LPMM), Metz, March 18, 2010

• Invited lecture, “Metamodels in structural reliability and sensitivity analysis”, Journées Méc@Proba
- Probabilistic Approaches in Engineering Mechanics, IFMA, Clermont Ferrand, France, June 4, 2009

• Invited lecture, “Approche fiabiliste : Exemple d’application en flambage et en propagation de fis-
sures”, Sécurité et Sûreté des Structures, Journée IMdR, Paris, October 16, 2007

• Invited lecture, “Methods for reliability estimation and applications using FERUM, from FORM to
MC-like simulation”, Reliability Seminar, UC Berkeley, Berkeley, CA, USA, July 26, 2007
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C
List of publications

My scientific publications include 2 book chapters, 13 peer-reviewed journal papers (plus two re-
cently submitted), 30 papers and talks in international conferences, 9 papers and talks in French con-
ferences, and 8 talks in international conferences. The names of the PhD students I co-supervised are
underlined in the following list.

C–1 Book chapters

1. Bourinet J.-M. (2017a). In: Risk and reliability analysis: theory and applications. Ed. by P. Gardoni.
Springer Series in Reliability Engineering. Edited Volume in Honor of Prof. Armen Der Kiureghian.
Springer International Publishing. Chap. 12: FORM sensitivities to distribution parameters with
the Nataf transformation, pp. 277–302. (26 pages).

2. Bourinet J.-M. (2014a). In: Mechanics and Uncertainty. Ed. by M. Lemaire. John Wiley & Sons.
Chap. 2: Modeling uncertainty, reliability analysis - Classification methods (Contribution to),
pp. 82–91. (10 pages).

C–2 Peer-reviewed journal papers (submitted)

1. Steiner M., Bourinet J.-M., Lahmer T. (2019). An adaptive sampling method for global sensitivity
analysis based on least-squares support vector regression. Reliability Engineering & System Safety,
183, pp. 323–340.

2. Chabridon V., Balesdent M., Bourinet J.-M., Morio J., Gayton N. (2018b). Reliability-based sen-
sitivity estimators of rare event probability in the presence of distribution parameter uncertainty.
Reliability Engineering & System Safety, 178, pp. 164–178.

C–3 Peer-reviewed journal papers

1. Moustapha M., Bourinet J.-M., Guillaume B., Sudret B. (2018). Comparative study of kriging and
support vector regression for structural engineering applications. ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(2), p. 04018005.

2. Chabridon V., Balesdent M., Bourinet J.-M., Morio J., Gayton N. (2017a). Evaluation of failure
probability under parameter epistemic uncertainty: application to aerospace system reliability
assessment. Aerospace Science and Technology, 69(Supplement C), pp. 526–537.

http://dx.doi.org/10.1007/978-3-319-52425-2_12
http://onlinelibrary.wiley.com/book/10.1002/9781118931035
https://doi.org/10.1016/j.ress.2018.11.015
http://dx.doi.org/10.1016/j.ress.2018.06.008
http://dx.doi.org/10.1061/AJRUA6.0000950
http://dx.doi.org/10.1016/j.ast.2017.07.016
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3. Bourinet J.-M. (2016). Rare-event probability estimation with adaptive support vector regression
surrogates. Reliability Engineering & System Safety, 150, pp. 210–221.

4. Kouassi A., Bourinet J.-M., Lalléchère S., Bonnet P., Fogli M. (2016). Reliability and sensitivity
analysis of transmission lines in a probabilistic EMC context. Electromagnetic Compatibility, IEEE
Transactions on, 58(2), pp. 561–572.

5. Moustapha M., Sudret B., Bourinet J.-M., Guillaume B. (2016). Quantile-based optimization un-
der uncertainties using adaptive kriging surrogate models. Structural and Multidisciplinary Opti-
mization, 54(6). Special issue on Physical, Model, and Statistical Uncertainty in Structural and
Multidisciplinary Optimization, pp. 1403–1421.

6. Mattrand C., Bourinet J.-M. (2014). The cross-entropy method for reliability assessment of cracked
structures subjected to random Markovian loads. Reliability Engineering & System Safety, 123,
pp. 171–182.

7. Moustapha M., Beck A.T., Bourinet J.-M. (2013). Design-point excitation for crack propagation
under narrow-band random loading. International Journal for Uncertainty Quantification, 3(6).
Special issue dedicated to the 1st International Symposium on Uncertainty Quantification and
Stochastic Modeling (Uncertainties 2012), pp. 541–554.

8. Bourinet J.-M., Deheeger F., Lemaire M. (2011). Assessing small failure probabilities by combined
subset simulation and support vector machines. Structural Safety, 33(6), pp. 343–353.

9. Dubourg V., Sudret B., Bourinet J.-M. (2011b). Reliability-based design optimization using krig-
ing surrogates and subset simulation. Structural and Multidisciplinary Optimization, 44(5), pp. 673–
690.

10. Gayton N., Beaucaire P., Bourinet J.-M., Duc E., Lemaire M., Gauvrit L. (2011). APTA: advanced
probability-based tolerance analysis of products. Mechanics & Industry, 12 (2), pp. 71–85.

11. Mattrand C., Bourinet J.-M. (2011). Random load sequences and stochastic crack growth based
on measured load data. Engineering Fracture Mechanics, 78(17), pp. 3030–3048.

12. Gayton N., Bourinet J.-M., Lemaire M. (2003). CQ2RS: a new statistical approach to the response
surface method for reliability analysis. Structural Safety, 25(1), pp. 99–121.

13. Bourinet J.-M., Le Houédec D. (1999). A dynamic stiffness analysis of damped tubes filled with
granular materials. Computers & Structures, 73(1-5), pp. 395–406.

C–4 International conference papers and talks

1. Bourinet J.-M. (2017b). Anisotropic-kernel-based support vector regression for reliability assess-
ment. In: Proc. 12th International Conference on Structural Safety and Reliability (ICOSSAR 2017),
Vienna, Austria, August 6–10, 2017. TU Verlag. (10 pages).

2. Chabridon V., Balesdent M., Bourinet J.-M., Morio J., Gayton N. (2017b). Reliability-based sensi-
tivity analysis of aerospace systems under distribution parameter uncertainty using an augmented
approach. In: Proc. 12th International Conference on Structural Safety and Reliability (ICOSSAR
2017), Vienna, Austria, August 6–10, 2017. TU Verlag. (10 pages).

http://dx.doi.org/10.1016/j.ress.2016.01.023
http://dx.doi.org/10.1109/TEMC.2016.2520205
http://dx.doi.org/10.1007/s00158-016-1504-4
http://dx.doi.org/10.1016/j.ress.2013.10.009
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2013005074
http://dx.doi.org/10.1016/j.strusafe.2011.06.001
http://dx.doi.org/10.1007/s00158-011-0653-8
http://dx.doi.org/10.1051/meca/2011014
http://dx.doi.org/10.1016/j.engfracmech.2011.08.022
http://dx.doi.org/10.1016/S0167-4730(02)00045-0
http://dx.doi.org/10.1016/S0045-7949(98)00272-7
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3. Steiner M., Lahmer T., Bourinet J.-M. (2017b). Investigation of a global adaptive sampling method
based on least-squares support vector regression. In: Proc. GRK International Workshop 2017, Cou-
pled Numerical and Experimental Models in Structural Engineering, Weimar, Germany, April 26–28,
2017. (8 pages).

4. Bourinet J.-M. (2015). Reliability assessment with adaptive surrogates based on support vector
machine regression. In: Proc. 1st International Conference on Uncertainty Quantification in Compu-
tational Sciences and Engineering (UNCECOMP 2015), Hersonissos, Crete Island, Greece, May 25–27,
2015. Ed. by M. Papadrakakis, V. Papadopoulos, G. Stefanou, pp. 652–663. (12 pages).

5. Kouassi A., Lalléchère S., Bourinet J.-M., Bonnet P., Fogli M. (2015). Uncertainty assessment of
a coaxial line’s capacitance in a stochastic context. In: Proc. 7th International Conference on Elec-
tromagnetics in Advanced Applications (ICEAA 2015), Torino, Italy, September 7–11, 2015. IEEE,
pp. 1526–1529. (4 pages).

6. Moustapha M., Sudret B., Bourinet J.-M., Guillaume B. (2015). Adaptive kriging reliability-based
design optimization of an automotive body structure under crashworthiness constraints. In: Proc.
12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP
12), Vancouver, Canada, July 12–15, 2015. Ed. by T. Haukaas. The University of British Columbia.
(8 pages).

7. Bourinet J.-M. (2014c). Reliability assessment with sensitivity-based adaptive SVM surrogates.
In: Proc. 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013), New
York, NY, USA, June 16–20, 2013. Ed. by G. Deodatis, B.R. Ellingwood, D.M. Frangopol. CRC Press,
pp. 3297–3304. (8 pages).

8. Kouassi A., Bourinet J.-M., Lalléchère S., Bonnet P., Fogli M. (2014a). Fiabilité de fonctionnement
et sensibilité CEM pour un problème de ligne de transmission. In: Proc. 17ème Colloque Interna-
tional et Exposition sur la Compatibilité Electromagnétique (CEM 2014), Clermont Ferrand, France,
July 1–3, 2014. (6 pages).

9. Kouassi A., Bourinet J.-M., Lalléchère S., Bonnet P., Fogli M. (2014b). Safety assessment of a
transmission line with EMC requirements. In: Proc. XXXIth URSI General Assembly and Scientific
Symposium (URSI GASS), Beijing, China, August 16–23, 2014. IEEE. (4 pages).

10. Moustapha M., Sudret B., Bourinet J.-M., Guillaume B. (2014a). Metamodeling for crashwor-
thiness design: comparative study of kriging and support vector regression. In: Proc. 2nd Inter-
national Symposium on Uncertainty Quantification and Stochastic Modeling (Uncertainties 2014),
Rouen, France, June 23–27, 2014. Ed. by M. Lemaire, E. Souza de Cursi, pp. 279–286. (8 pages).

11. Moustapha M., Sudret B., Bourinet J.-M., Guillaume B. (2014b). Reliability-based design opti-
mization of an automotive body structure under crashworthiness constraints. In: Proc. 17th IFIP
WG 7.5 Working Conference on Reliability and Optimization of Structural Systems, Huangshan,
China, July 3–7, 2014. (8 pages).

12. Bourinet J.-M., Mattrand C. (2013). Damage tolerance and reliability assessment under random
Markovian loads. In: Procedia IUTAM. Ed. by C. Proppe, J.-M. Bourinet. Vol. 6. IUTAM Symposium
on Multiscale Problems in Stochastic Mechanics, Karlsruhe, Germany, June 25–29, 2012. Elsevier,
pp. 123–131. (9 pages).

13. Moustapha M., Bourinet J.-M., Beck A.T. (2012). Design-point excitation for crack propagation
under narrow-band random loading. In: Proc. 1st International Symposium on Uncertainty Quan-
tification and Stochastic Modeling (Uncertainties 2012), Maresias, São Sebastião, SP, Brazil, February
26–March 2, 2012. Editora Cubo. (14 pages).

https://www.researchgate.net/profile/Maria_Steiner5/publication/319878565_Investigation_of_a_global_adaptive_sampling_method_based_on_least-squares_support_vector_regression/links/59bfc3f10f7e9b48a29b865f/Investigation-of-a-global-adaptive-sampling-method-based-on-least-squares-support-vector-regression.pdf
https://doi.org/10.7712/120215.4298.728
http://dx.doi.org/10.1109/ICEAA.2015.7297379
https://open.library.ubc.ca/cIRcle/collections/53032/items/1.0076165
http://dx.doi.org/10.1201/b16387-476
http://dx.doi.org/10.1109/URSIGASS.2014.6929520
http://e-collection.library.ethz.ch/eserv/eth:14485/eth-14485-01.pdf
http://dx.doi.org/10.1016/j.piutam.2013.01.014
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14. Sudret B., Dubourg V., Bourinet J.-M. (2012). Enhancing meta-model-based importance sampling
by subset simulation. In: Proc. 16th IFIP WG 7.5 Working Conference on Reliability and Optimization
of Structural Systems, Yerevan, Armenia, June 24–27, 2012. Ed. by A. Der Kiureghian, A. Hajian.
AUA Press, Yerevan, Armenia. (8 pages).

15. Dubourg V., Bourinet J.-M., Sudret B., Cazuguel M. (2011a). Reliability-based design optimiza-
tion of an imperfect submarine pressure hull. In: Proc. 11th International Conference on Applications
of Statistics and Probability in Civil Engineering (ICASP 11), Zürich, Switzerland, August 1–4, 2011.
Ed. by M.H. Faber, J. Köhler, K. Nishijima. CRC Press, pp. 703–711. (8 pages).

16. Mattrand C., Bourinet J.-M., Lemaire M., Bernard P., Fogli M. (2011a). Modeling and simula-
tion of stochastic fatigue load sequences derived from in-flight load data. In: Proc. 13th AIAA
Non Deterministic Approaches Conference, Denver, CO, USA, April 4–7, 2011. American Institute of
Aeronautics and Astronautics. (17 pages).

17. Mattrand C., Bourinet J.-M., Théret D. (2011b). Analysis of fatigue crack growth under random
load sequences derived from military in-flight load data. In: Proc. ICAF 2011 Structural Integrity:
Influence of Efficiency and Green Imperatives, Montréal, Canada, May 29–30, 2011. Ed. by J. Ko-
morowski. Springer Netherlands, pp. 399–413. (16 pages).

18. Dubourg V., Bourinet J.-M., Sudret B. (2010a). A hierarchical surrogate-based strategy for reliability-
based design optimization. In: Proc. 15th IFIP WG 7.5 Working Conference on Reliability and Opti-
mization of Structural Systems, Munich, Germany, April 7–10, 2010. Ed. by D. Straub. CRC Press,
pp. 53–60. (8 pages).

19. Bourinet J.-M., Mattrand C., Dubourg V. (2009). A review of recent features and improvements
added to FERUM software. In: Proc. 10th International Conference on Structural Safety and Relia-
bility (ICOSSAR 2009), Osaka, Japan, September 13–17, 2009. Ed. by H. Furuta, D.M. Frangopol,
M. Shinozuka. CRC Press. (8 pages).

20. Dubourg V., Noirfalise C., Bourinet J.-M., Fogli M. (2009b). FE-based reliability analysis of the
buckling of shells with random shape, material and thickness imperfections. In: Proc. 10th Inter-
national Conference on Structural Safety and Reliability (ICOSSAR 2009), Osaka, Japan, September
13–17, 2009. Ed. by H. Furuta, D.M. Frangopol, M. Shinozuka. CRC Press. (8 pages).

21. Bourinet J.-M., Lemaire M. (2008). FORM sensitivities to correlation: application to fatigue crack
propagation based on Virkler data. In: Proc. 4th International ASRANet Colloquium, Athens, Greece,
June 25–27, 2008. Ed. by P.K. Das. (10 pages).

22. Dubourg V., Noirfalise C., Bourinet J.-M. (2008). Reliability-based design optimization: an appli-
cation to the buckling of imperfect shells. In: Proc. 4th International ASRANet Colloquium, Athens,
Greece, June 25–27, 2008. Ed. by P.K. Das. (10 pages).

23. Lemaire M., Deheeger F., Bourinet J.-M. (2008). Reliability analysis with an approximate re-
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