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Adaptive control of deterministic and stochastic approximation errors in simulations
of compressible flow

by Jan Willem VAN LANGENHOVE

This thesis addresses several open questions regarding robust adaptive uncertainty quan-
tification. More precisely, we have considered two situations when propagating uncertain-
ties through an approximate model: (a) no information regarding the deterministic error
contained in each sample is available and (b) the case where estimates of this error can be
computed and used to reduce the overall error.

Concerning (a), we propose a non-iterative robust numerical method for the non-
intrusive uncertainty quantification of multivariate stochastic problems with reasonably
compressible polynomial representations. The approximation is robust to data outliers
or noisy evaluations which do not fall under the regularity assumption of a stochastic
truncation error but pertains to a more complete error model, capable of handling inter-
pretations of physical/computational model (or measurement) errors. The method relies
on the cross-validation of a pseudospectral projection of the response on generalized Poly-
nomial Chaos approximation bases; this allows an initial model selection and assessment
yielding a preconditioned response. We then apply a L1–penalized regression to the pre-
conditioned response variable. Nonlinear test cases have shown this approximation to be
more effective in reducing the effect of scattered data outliers than standard compressed
sensing techniques and of comparable efficiency to iterated robust regression techniques.

With respect to be (b), we focus on parametrized complex flow simulations leading to
output responses with low regularity and discontinuities for which a novel adaptive ap-
proach to control errors in stochastic CFD problems is proposed. More precisely, we focus
on errors committed on a stochastic quantity of interest. A goal-based a priori error estima-
tion is proposed as indicator for adaptivity in the deterministic space while adaptivity in
the stochastic (uncertain parameter) space is driven by a control of the interpolation error.
An optimization problem for optimal control of the distinct sources of errors is formulated
in the continuous framework of Riemannian metric space. From the solution of this prob-
lem, a unit mesh in the Riemannian metric can be obtained, which upon transformation
to the Euclidean space yields a stretched anisotropic mesh that automatically takes into
account the anisotropic features of the solution field. This approach, initially developed
for mesh adaptation in CFD problems, is extended to the stochastic space to adaptively
refine the surrogate model consisting of linear stochastic simplices. We demonstrate the
capability of this method to accurately capture discontinuities (also) in the stochastic re-
sponse for compressible CFD problems with two uncertain flow parameters with different
probability distributions.

http://www.upmc.fr
http://dalembert.upmc.fr
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Chapter 1

Introduction

Science and engineering have benefited greatly from the developments in numerical meth-
ods and computing power over the last few decades. As a consequence, numerical sim-
ulation has become an essential ingredient of the design process. In this thesis, the field
of interest will be that of Computational Fluid Dynamics (CFD). There, real-life applica-
tions are often defined on complex, 3D geometries for which exact solutions are rarely
available. Discretization techniques and numerical schemes introduce errors and these
numerical approximation errors need to be controlled. Besides these errors there can also
be numerous uncertainties.

To distinguish uncertainty from errors we recall the definitions from AIAA’s "Guide for
the Verification and Validation of Computational Fluid Dynamics Simulations", where uncer-
tainty is defined as:
"A potential deficiency in any phrase or activity of the modeling process that is due to the lack of
knowledge" and error as:
" A recognizable deficiency in any phase or activity of modeling and simulation that is not due to
lack of knowledge".

An example of an uncertainty occurs when one needs to specify the inputs for the
simulation: initial conditions, boundary conditions, and sometimes parameters such as
geometry parametrization or even model parameters (for instance parameters of a turbu-
lence model). Errors in these inputs due to a lack of knowledge can lead to solutions that
no longer represent the real-world flow one intended to simulate. Hence, in order to instill
confidence in the predictions obtained from computational models, both the uncertainties
and errors need to be accounted for.

1.1 Uncertainty quantification

The aim of uncertainty quantification (UQ) is to numerically evaluate the stochastic re-
sponse of some physical quantity of interest (QoI) y(ξ), dependent upon various uncer-
tain model parameters ξ := (ξ1, . . . , ξD). In this thesis we will always assume that these
uncertainty models are correct and the focus will solely be on non-intrusive uncertainty
propagation techniques: i.e. the sampling of N model solutions is done using any legacy
solver for the deterministic problem as a black box.

Ideally one would like to know the full distribution of the stochastic output response,
but in practice this is often unattainable. Instead one usually tries to estimate the sta-
tistical moments that characterize the output distribution. The computation of statistical
moments is essentially an integration problem in a domain of possible high dimensional-
ity where the probability measure needs to be taken into account. The traditional mainstay
for this sort of application is the Monte Carlo simulation. It is robust, simple to implement
and easy to parallelize. The convergence rate however is rather slow at (1/

√
N) where N

is the number of samples. Interestingly, the convergence of the Monte Carlo method does
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not depend on the dimension (i.e. the number of uncertain parameters) of the stochas-
tic space. In spite of this, because of the slow convergence rate, the number of samples
needed for accurate results so high that it often becomes prohibitively expensive for prac-
tical applications.

When the number of uncertain input sources of a complex model is too large (D � 1),
the efficient propagation of these uncertainties through the system remains an open prob-
lem due to the so-called curse of dimensionality. In any case, as the computational cost of
a single simulation model is often high, e.g. for computational fluid dynamics simulations
(CFD), a compulsory approach for UQ is to build a surrogate model ỹ that approximates
the exact response of the QoI as accurately as possible based on the smallest number of
observations or samples [Bijl et al., 2013]. Once the samples are acquired, the construction
and interrogation of the surrogate model itself should be computationally efficient so that
the predictive capability of the surrogate model is fully harnessed. A surrogate model not
only provides access to the statistics of interest but also provides a continuous representa-
tion of the stochastic QoI response. This latter fact can a requirement if one is interested in
Robust Design Optimization (RDO) or Bayesian calibration.

Different methods are available to construct these surrogate models, examples are
Gaussian processes (Kriging) [Williams and Rasmussen, 2006], Support Vector Machines
[Smola and Schölkopf, 2004], stochastic interpolation [Tatang et al., 1997; Xiu and Hes-
thaven, 2005a] or stochastic spectral methods such as polynomial-based representations.
Of the latter class are generalized Polynomial Chaos (gPC) Xiu and Karniadakis, 2002
approximations which consist in constructing a parametrized polynomial approximation
of the QoI response. The implementation using a Stochastic Galerkin (SG) method is a so
called intrusive method which requires modifications to existing code and results in a large
system of coupled equations to be solved. The nonintrusive variant of this method, uses
a pseudospectral projection or a linear regression to find the coefficients for this polyno-
mial basis, which is constructed to be orthogonal w.r.t. the underlying probability density.
Stochastic Collocation (SC) methods on the other hand, aim at constructing interpolation
functions for given coefficients [Babuška, Nobile, and Tempone, 2007; Xiu and Hesthaven,
2005b]. Both PCE and SC methods allow for the use of legacy solvers as a black box similar
to MC methods.

1.2 Robust adaptive UQ

When the problem under study is sensitive to variations in the input parameters, small
variations in these parameters can yield large, nonlinear changes and discontinuities in
the stochastic response. The presence of shock waves in the physical solution or sudden
regime changes then propagate to the stochastic space. In that case the global polyno-
mial approximation methods mentioned above can suffer from Gibbs oscillations which
severely degrade the response surface. More robust alternatives to these global polyno-
mial approximations make use of h− and hp− adaptation. Such methods are the Multi-
Element gPC (ME-gPC) method [Wan and Karniadakis, 2005; Wan and Karniadakis, 2006],
and the Multi-Element Probabilistic Collocation Method (ME-PCM) [Foo and Karniadakis,
2010; Foo, Wan, and Karniadakis, 2008] which use a decomposition into hypercubes. A
similar decomposition but this time based on wavelets and not on polynomials has been
proposed in [Le Maıtre et al., 2004a; Le Maıtre et al., 2004b]. Different decomposition meth-
ods have been proposed in the Minimal Multi-Element Stochastic Collocation (MME-SC)
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[Jakeman, Narayan, and Xiu, 2013] and the Simplex-Stochastic Collocation (SSC) method
[Witteveen, Loeven, and Bijl, 2009]. In the MME-SC method a discontinuity detector is
used to decompose the domain into elements of arbitrary shape following the discon-
tinuity lines while the SSC method obtains a continuous representation of the stochas-
tic response surface by forming a tessellation of simplices similar to the meshes used to
discretize the physical domain. The anisotropic nature of the discontinuous features in
the response surface are well captured by the MME-SC and SSC methods, but the afore-
mentioned Multi-Element methods are limited by their hypercube decomposition and the
degrading effects will still be present in the elements traversed by a discontinuity. Fur-
thermore, these Multi-Element methods place the samples following a tensor structure
resulting in a fast increase in the number of samples as the number of elements increases
and on top of that, not all samples may be reused after the splitting of an element.

Furthermore, as usually no analytical solution is available for realistic engineering
problems, the solver will compute an approximate solution. Thus, every sample in the
stochastic space (the QoI from a deterministic computation at a fixed combination of the
random input parameters) will contain an error. This deterministic error affecting each
sample is called the model error and its magnitude will vary from sample to sample. Note
that in the interpretation used in this thesis, model error encompasses both the modelling
error (discrepancy between the mathematical model and the physics) and the numerical
approximation error present in the simulation result of the model.

Two cases can be distinguished: the case where the deterministic solver provides infor-
mation on the error contained in each sample (for instance by computing an error estimate)
and the case where no error information is available.

1.2.1 Model error as noise

When the model error is not explicitly available, an often used approach is to see it as
an unknown noise corrupting the samples in the stochastic space. In literature, this noise
is mostly assumed to be a centered independent identically distributed (i.i.d.) random
variable with uniformly bounded variance. In practice however, the model error rarely
adheres to this assumption. In real life, model errors are often biased, not uncorrelated
and uniform nor are they normally distributed. Reducing the impart of such noise that
goes beyond the usual assumptions is a question that will be addressed in this thesis.

1.2.2 Error control

In the case where error estimates for the deterministic computations are available, one
can control the error contained in each sample using error control methods such as mesh
adaptation. Note that this will control only the numerical approximation error and not the
modelling error. One is often interested in a specific Quantity of Interest (QoI) that is a
functional of the solution field (e.g. the drag or lift of an airfoil). In this case goal-oriented
error estimates for functional outputs may be used to drive the mesh adaptation. These
error estimates require the solution of an adjoint problem which takes into account the
QoI. While there is a cost associated to solving this additional adjoint problem, goal-based
mesh adaptation allows for a faster convergence in the QoI. For a more complete overview
of mesh adaptation the reader is referred to [Alauzet and Loseille, 2016a] and references
therein.
An open question remains: is it better to adapt the surrogate model (add samples for in-
stance) or to refine existing samples, and in the latter case, which existing samples should
be refined by how much? To formulate an answer to this question it is essential to have
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error indicators of both the deterministic errors and the errors contained surrogate model
on the stochastic space. In order to have computable error estimates on the stochastic
space, some authors have proposed an extension of existing a posteriori goal-oriented er-
ror estimators to the stochastic space [Almeida and Oden, 2010; Butler, Constantine, and
Wildey, 2012; Butler, Dawson, and Wildey, 2011; Le Maître and Knio, 2010; Mathelin and
Le Maître, 2007]. The only publication demonstrating error splitting and adaptivity in
both spaces is [Bryant, Prudhomme, and Wildey, 2015].

1.3 Thesis overview

The previous sections painted the part of the UQ landscape within this thesis can be situ-
ated. Within that scope some deficiencies in existing methods were mentioned and open
questions where raised.

The question of how to deal with model error appearing as noise in the stochastic
space where the noise not necessarily follows some predefined distribution, is addressed
in Chapter 2. In that chapter a numerical approach is proposed that automatically detects
noisy samples and data outliers and weighs them with a low level of confidence. For the
detection use is made of the leave-one-out (LOO) technique. LOO error estimation is a
fundamental tool in statistical learning theory [Hastie, Tibshirani, and Friedman, 2009]
and has previously been used for basis selection of gPC expansions [Blatman and Sudret,
2011; Jakeman, Eldred, and Sargsyan, 2015]. The LOO technique is classically used in
combination with an (unstructured) sampling approach, and is unavailable for UQ meth-
ods relying on structured grids made up of tensorizations of quadrature rules. A remedy
will be proposed to overcome the loss of quadrature power resulting from an incomplete
quadrature, relatively recent results from the field of Compressed Sensing (CS) are ex-
ploited. Using this approach, LOO error estimation also becomes available on quadrature
grids.

Chapter 3 contains a review of the Riemannian metric framework in which a continu-
ous model for discrete meshes is introduced. The basic idea is to generate a unit mesh in
the Riemannian metric (a mesh where all edges have length≈ 1), which upon transforma-
tion to Euclidean space will yield an anisotropic adapted mesh. This mesh adaptation ap-
proach, called metric-based mesh adaptation, was developed for use in CFD applications
[Loseille, Dervieux, and Alauzet, 2010; Loseille and Alauzet, 2011a; Loseille and Alauzet,
2011b] and will be extended to the stochastic space in Chapter 4. The aim in that chapter
will be to demonstrate a surrogate modelling technique that automatically adds samples
where needed in order to provide a continuous representation of the response surface us-
ing a simplex tessellation, even when this response surface contains (multiple) anisotropic
discontinuities. In contrast to the MME-SC method it does not rely on a discontinuity de-
tector and actually resolves the discontinuities, meaning that the surrogate model includes
the discontinuities in the response surface rather then merely cutting the stochastic space
around them into elements. Furthermore, the extension of the a priori continuous interpo-
lation error estimate for metric-based mesh adaptation to the stochastic space will make
it possible to compare deterministic errors (error present in each sample) and stochastic
errors (errors in the surrogate model representation of the stochastic response). In Chap-
ter 5 this error splitting along with adaptation in both spaces will be demonstrated on
compressible flow problems. Finally, Chapter 6 will summarize the conclusions and given
perspectives for future work.
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Chapter 2

Robust uncertainty quantification in
absence of sample error information

2.1 Introduction

The focus in this chapter will be on generalized Polynomial Chaos (gPC) expansions [Wiener,
1938; Cameron and Martin, 1947; Ghanem and Spanos, 2003; Xiu and Karniadakis, 2002]
that are well-suited for functions that belong to the L2 space, and may be seen as dis-
crete least-squares projection on a polynomial space. The gPC represents a function as a
weighted linear combination of P multivariate (polynomial) basis functions that are mu-
tually orthogonal with respect to the probability measure of the uncertain parameters.

The coefficients u in the expansion may be computed in different ways: e.g. – using
pseudospectral projection together with high-order (sparse) quadratures that are efficient
for functions of moderately high dimensionality [Resmini, Peter, and Lucor, 2015] or – by
least-squares regression type of approach based on (random) data sampling. Written in a
generic form, we have:

y ≈ ỹ = ŷ(ξ) + eT ,

where, for a given model, ỹ represents some numerical simulations or “observations" of
the system, ŷ is what we call the surrogate model and eT is the truncation error that obvi-
ously depends on ξ.

Because we deal with computer experiments, the observations are in practice cor-
rupted by model errors. Let us consider a family of models characterized by unobserved
random variables χ (e.g. related to mesh quality criteria). Now, y may be modeled as a
functional of (ξ,χ) via a model error eM , and we have:

y(ξ,χ) = ỹ(ξ) + eM , where ỹ(ξ) = ŷ(ξ) + eT (ξ).

A frequent assumption found in the literature is the one of a stochastic noise model, where
eM ≡ eM (χ) are centered i.i.d. (normal) random variables, with uniformly bounded vari-
ance. In real life, modeling errors are often biased, not uncorrelated and uniform (het-
eroscedasticity) and not normally distributed. Therefore, they bear a deterministic noise
component that depends on ξ [Chkifa et al., 2015], such that eM ≡ eM (ξ,χ). In practice, it
is very hard to quantify these modeling errors as we do not directly observe χ. Moreover,
the system may not be in the asymptotic regime for which we may have convergence infor-
mation/estimates for the deterministic model error. The interplay between (the different
scales related to) χ and ξ is also very difficult to apprehend. Ideally, one would want to

Chapter based on Van Langenhove, J., D. Lucor, & A. Belme, (2016). "Robust uncertainty quantification
using preconditioned least-sqaures polynomial approximations with L1−regularization". International Journal
for Uncertainty Quantification, 6(1);
Lucor, D., J.W. Van Langenhove, & A. Belme, (2017). Robust uncertainty quantification of CFD via weighted
compressed sensing. ERCOFTAC Bulletin 89
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marginalize over the model error in order to assess the conditional random variable:

y(ξ) := E [y(ξ,χ) | ξ] = ŷ(ξ) + e(ξ), where e(ξ) = eT (ξ) + E [eM (ξ,χ) | ξ] ,

but this approach is often out of reach [Hampton and Doostan, 2015b]. Another strategy
is to perform the regression for a given model, which implicitly coincides with a given
value of χ. When the dependence between the solution and the random parameters ξ
is smooth, model errors are generally relatively independent from the parameters ξ and
their effects often result in some form of biased predictions (e.g. under-prediction in case
of model numerical diffusion). When the dependence is not smooth due to some brutal
change in the solution physical regime, bifurcations, instabilities, transients, etc.1, model
or computational errors induce some local large-amplitude oscillations that may be seen
as data outliers and are very detrimental to the stability of the stochastic quantification of
the response. In this case, these large errors are unpredictably scattered and increasing
the number N of samples of ξ does not help as the prediction essentially fits the model
error. This is the well-known problem of overfitting when a model fits training data very
well, but will do a poor job of predicting results for new data. A first step toward robust
UQ in this framework would be to automatically detect the data outliers and reduce their
influence in order to regularize the response on a given model basis.
A simple way of thinking about the eM error is to relate it, for instance, to the discretiza-
tion error of the computational model. Indeed, it is not always possible due to prohibitive
computational cost to lower the discretization error to levels that do not play a significant
role in UQ. The case of CFD simulations of a compressible flow past an airfoil at random
angle of attack presented later in this chapter is a nice illustration of this setup and was the
starting point of this work. For a given level of discretization (in practice a given mesh)
and Mach number, a small variation in the angle of attack may induce a change in the flow
from subsonic to transsonic regime, materialized by the emergence of a flow discontinuity
(shock). This shock is then poorly captured if the mesh is not properly adapted in space,
inducing large model errors and fluctuations in addition to the truncation error. In this
case, the discretization error will strongly affect only few or a short range of the angle of
attack realization values.
One of our contributions in this work is to propose a numerical approach that automati-
cally detects data outliers and weighs them with low level of confidence. In this work, the
detection and weighting is in part based on exhaustive surrogate model cross-validation
namely the leave-one-out (LOO) technique. The LOO error estimation has been used be-
fore in the context of basis selection of gPC expansions [Blatman and Sudret, 2011; Jake-
man, Eldred, and Sargsyan, 2015], and more generally in statistical learning theory for
model selection [Hastie, Tibshirani, and Friedman, 2009]. The negative effects of the out-
liers on the construction of the surrogate model will then be minimized in order to avoid
overfitting.

Another key aspect of this chapter is to take advantage of the sparsity of the solution
structure. Indeed, the solution of high-dimensional problems is sometimes sparse (or near-
sparse) at the stochastic level. This means that it may be accurately represented with only
few terms when linearly expanded into a stochastic approximation space, such as the one
encompassed by a gPC basis. In this case, the number s of dominant basis functions is
small relative to the cardinality P of the full basis and the problem is said to be s−sparse.
Promising approaches for solving this kind of problem involve compressed sensing (CS)

1Or due to some soft system faults (e.g. bit-flips), nowadays more frequent in petascale high performance
computing.
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techniques, also known under the names of Compressive Sensing, L1−minimization, con-
vex relaxation and L1-regularized least-squares minimization. Relatively recent results
in CS have made it clear that sparse functions can be accurately recovered from much
fewer observations than necessary for classical solution methods [Candès, Romberg, and
Tao, 2004; Candès and Tao, 2005; Donoho, 2006]. Interestingly, this ability is preserved in
the case of sparse solutions tainted by noise, as long as it is sufficiently regular and bears a
low signal-to-noise ratio [Candès, Romberg, and Tao, 2006; Donoho, Elad, and Temlyakov,
2006; Fuchs, 2005; Tropp, 2006].
Several research groups have recently been using CS in a gPC framework [Doostan and
Owhadi, 2011; Mathelin and Gallivan, 2012; Yan, Guo, and Xiu, 2012; Yang and Karni-
adakis, 2013] and have considered this noise as the truncation error of the gPC approx-
imation. The efficiency of this approximation depends on the type and cardinality of
the gPC approximation basis selected [Blatman and Sudret, 2011; Jakeman, Eldred, and
Sargsyan, 2015] and the choice of the collocation samples to be used. The most readily
available literature is about sparse Legendre and Hermite polynomials with random sam-
pling. For both cases, different sampling strategies are possible: – standard sampling
according to the underlying probability measure, and – asymptotic sampling according to
the Chebyshev measure for Legendre polynomials, and to Hermite functions for Hermite
polynomials [Hampton and Doostan, 2015b; Tang and Zhou, 2014]. For s-sparse Legendre
polynomial with maximal degree p, it was shown that the asymptotic relation between the
number N of samples drawn according to Chebyshev distribution, s and p, guaranteeing
recovery, is given by N � s log4(p) [Rauhut and Ward, 2012]. Chebyshev sampling has
been shown to be superior to uniform sampling for elliptic stochastic partial differential
equations of moderately high dimension (D ∼ 10) [Yang and Karniadakis, 2013], but the
results can not be generalized. In fact, Yan et al. [Yan, Guo, and Xiu, 2012] show that for
high-dimensional problems, sampling according to the Chebyshev measure can become
less efficient. Interestingly, in case of standard sampling, the Chebyshev probability mea-
sure may be imposed afterwards by preconditioning the L1−minimization problem. This
approach inspired us to use data-driven preconditioning to improve approximation ro-
bustness. Finally, a recently developed sampling strategy is the coherence-optimal sampling
[Hampton and Doostan, 2015b], which guarantees recoverability with a number of sam-
ples that is bound linearly by the number of basis functions up to a logarithmic factor.

Very recent works have investigated the efficiency of these methods for randomized
quadratures: i.e. randomly subsampling among structured Gauss quadrature nodes [Tang
and Iaccarino, 2014; Zhou, Narayan, and Xiu, 2015]. Using the bounds from [Rauhut and
Ward, 2012], Tang & Iaccarino [Tang and Iaccarino, 2014] show that for an efficient recov-
ery of the gPC Legendre expansions, the number of observations scales with the sparsity
s and only logarithmically with P . When the number of random dimensions is small to
moderate, and more specifically when p > D, it is conceivable to directly rely on com-
plete structured grids inherited from full or partial (also known as sparse) tensorization
of quadrature rules, which is what we propose in our contribution. Moreover, the use of
these regular grids minimizes leverage effects in regressions due to unusual design points.

The aim in this chapter is to fully harness the capability of CS techniques for UQ, even
in the presence of scattered data outliers attributable to computational model errors that
do not fall under the common Gaussianity and low signal-to-noise ratio assumptions. We
wish to do so by regularizing the system response for a given computational model. We
propose preconditioned compressed sensing in order to build robust polynomial surro-
gate of the stochastic response from sampling on structured grids. More specifically, after
selecting the best model by cross-validation using numerical quadrature, the weight for
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each observation will be based on the inverse of its contribution to the cross-validation
error of this model. Using confidence in samples in the form of a weighted least squares
solution has been done before, see for example [Zhou and Han, 2008]. Here however, no
a priori knowledge about the scale of the noise is needed, nor does one need to know
beforehand which observations have been affected by the noise. This weighting of the
observations can be used in combination with any available method for constructing the
surrogate model. In this study, we have opted for the use of the Least Absolute Shrink-
age and Selection Operator (LASSO) technique [Tibshirani, 1996], which is known to be
very robust, to compute the coefficients of the surrogate model, but as stated before, other
methods can be used as well.

The structure of this chapter is as follows: section 2.2 will briefly recall the key points of
the collocated stochastic spectral approximation framework with and without L1−regularization.
This will serve mostly as an introduction for our notations. In section 2.3, we will discuss
how we derive observation weights using cross-validation and how it is interwoven with
the L1−minimization constraint. The proposed technique will be demonstrated on several
test problems in section 2.4. The chapter ends with some conclusions.

2.2 Different formulations for the generalized Polynomial Chaos
approximation

As stated in the introduction, gPC expansions will be used to express the surrogate model
in a closed form [Ghanem and Spanos, 2003; Le Maître and Knio, 2010; Xiu and Karni-
adakis, 2002]. Let (Ω,B,P) be the probability space where Ω is the space of random events
ω, this domain has a σ-algebra B and is equipped with a probability measure P . The vec-
tor of random parameters can be written as ξ ≡ ξ(ω) = (ξ1, . . . , ξD), but we will often
omit the dependence on ω to simplify notation. If we consider a D−variate functional
y : Iξ ⊆ RD → R, then any second-order random variable y(ξ) ∈ L2(Ω,B,P), can be
expressed as a gPC expansion [Xiu and Karniadakis, 2002]:

y(ξ) =
∞∑
j=0

u(j)ψ(j)(ξ), (2.1)

where ψ(j)(ξ) =
∏D
i=1 ψi ,(j )(ξi) are the multivariate basis functions that form a complete

basis, orthonormal with respect to the probability measure ρξ of the random input, and
ψi ,(j ) are the univariate basis functions along the ith dimension. The convention used for
subscript notations is that a subscript without parenthesis indicates the dimension index
of a vector or simply the index of a basis function; subscripts between parenthesis indicate
the sample number. Boldface Greek subscripts are multi-indexes. We also assume that all
ξi are independent and thus ρξ =

∏D
i=1 ρi(ξi). Note that Ω is a Hilbert space and that we

can write its inner product in terms of the expectation operator < y, g >≡ E[y · g], in this
case:

E [y(ξ)g(ξ)] =

∫
Iξ
y(ξ)g(ξ)ρξdξ. (2.2)

Instead of indexing the expansion of equation (2.1) on a single integer amounting to the
cardinality of the entire approximation space, one can also make use of a multi-index
notation that is equivalent. If Λp is an index set (to be defined) for multi-index γ =
(γ1, . . . , γD) ∈ ND0 , then PΛp ≡ span{ψγ | γ ∈ Λp} and we can then write ψγ(ξ) =
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∏D
i=1 ψi ,(γi )(ξi) where ψi ,(γi ) is the γthi order basis function in dimension i. Using the nota-

tion introduced above, one can write out the truncated gPC expansion approximating y as
follows:

y(ξ) =
∑
γ∈Λp

uγψγ(ξ) + eT (ξ), (2.3)

where uγ are the coefficients corresponding to the ψγ basis2. We will restrict ourselves to
tensor-product polynomial spaces PΛp , where Λp is an index set of “degree" p, and where
P = dim(PΛp) ≡ #Λp, will denote the cardinality of the selected polynomial space. There
are different ways of constructing the approximating polynomial spaces that will impact
their cardinality:

• Tensor Product (TP): PTP
Λp

with index set ΛTP
p = {γ ∈ ND0 : ||γ||∞ ≤ p},

• Total Degree (TD): PTD
Λp

with index set ΛTD
p = {γ ∈ ND0 : ||γ||1 ≤ p}, or

• Hyperbolic Cross (HC): PHC
Λp

with index set ΛHC
p = {γ ∈ ND0 :

∏D
i=1(γi + 1) ≤ p+ 1}

[Shen and Wang, 2010].

In this manuscript, without any loss of generality, we will be using approximation spaces
of total degree (TD), so Λp will refer to ΛTD

p in the following.

2.2.1 Galerkin projection

The first way of determining the coefficients is by use of a Galerkin projection [Ghanem
and Spanos, 2003]. One can write

E

∑
γ∈Λp

uγψγψβ

 = E [ψβy] , ∀ β ∈ Λp. (2.4)

Here, with some abuse of notation, we have written the above equation as an equality
instead of an approximation, the same will be done in the rest of this work. Assuming the
basis is orthonormal, the coefficients can be found simply by computing:

uγ = E [ψγy] with γ ∈ Λp, (2.5)

making use of a quadrature in the case of a pseudospectral implementation [Le Maître and
Knio, 2010].

2.2.2 Least-Squares Minimization

One can also use linear regression to compute the unknown coefficients uγ , e.g. [Choi et
al., 2004; Berveiller, Sudret, and Lemaire, 2006]. The Least-Squares (LS) solution minimizes
the residuals, r ≡ y − ψΛpu in the L2−norm and may be written as an optimization
problem:

u = argmin
u∈RP

‖y −ψΛpu‖2, (2.6)

whereψΛp is the measurement matrix corresponding to the gPC expansion in the index set
Λp. The solution to (2.6) is obtained by computing the following system written in matrix

2If the functional to approximate is a random process, it may also depend on space and time and in that
case the gPC coefficients will be deterministic space- and time-dependent fields.
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form:

u =
(
ΨT

ΛpΨΛp

)−1
ΨT

Λpy, (2.7)

where y is a vector of observations of size N ×1, ΨΛp the measurement matrix of size N ×P
with Ψij = ψ(j)(ξ(i)) (the jth basis function evaluated at the ith sample point), and u the
vector of coefficients of size P ×1. There has been a growing interest in understanding the
conditions under which problem (2.6) leads to accurate and stable (multivariate) polyno-
mial chaos approximations for data randomly and independently sampled according (or not)
to their natural orthogonality measures [Cohen, Davenport, and Leviatan, 2013; Miglio-
rati et al., 2014; Hampton and Doostan, 2015a]. More specifically, these studies focussed
on the relation between the required number of samples and the cardinality of the ap-
proximation basis for different sampling measures. If one uses enough sampling points to
be able to properly recover the orthonormality of the basis functions ψ(j), then the matrix(
ΨT

ΛpΨΛp

)
is the identity matrix and the link between (2.7) and (2.5) becomes clear. The

aforementioned works mainly deal with noiseless evaluations of the target function, and
only few papers consider noisy data samples [Migliorati, Nobile, and Tempone, 2015]. In
any case, response fittings based on standard or ordinary LS type objective functions are
not robust against outliers, i.e. data samples that strongly deviate from assumptions (e.g.
of normality). It is said that the LS estimator has a breakdown point of 1/N because just
one leverage point may cause it to break down [Huber and Ronchetti, 2009]. In this case,
the approximation might be biased, with an artificially inflated variance.

Robust regression

In robust statistics, robust regression is a form of analysis designed to circumvent some
limitations of traditional parametric and non-parametric methods by dampening the in-
fluence of outlying cases [Huber and Ronchetti, 2009]. Most common robust regression
methods fall into the class of M−estimators3 which attempt to minimize the sum of a
chosen objective (also called loss) function4 of the residuals, i.e.

∑N
j=1 ρ(r(j)). This mini-

mization may be equivalently written as a weighted LS problem; the weight of each sample
being expressed via the score function υ(r) ≡ ∂ρ/∂r, i.e. a derivative of the objective func-
tion at that point. Because of their connection to the residual values, the weights are iter-
atively evaluated until numerical convergence. In this framework, iteratively re-weighted
least square (IRLS) algorithms are implemented for different choices of objective functions,
e.g. leading to Huber , Tukey’s bisquare, or Cauchy estimators, etc... [Green, 1984; James
O. Street and Ruppert, 1988]. In our numerical applications, we will often derive our
sample weights from the Cauchy objective function: ρ(rj) = log (1 + r2

(j))/2. The different
M−estimators are influenced by the scale of the residuals σr, so a scale-invariant version
based on r̃ = r/σr is preferred. A robust estimation for this scale, σ̂r, is the normalized
median absolute deviation (MADN), which is a robust measure of dispersion:

σr ≈ σ̂r ≡MADN = MAD/K, with MAD = median
∣∣r(i) −median(r)

∣∣ and K = Φ−1(3/4),
(2.8)

where Φ is the cumulative distribution function of the standard normal distribution. M−estimators
may be vulnerable to high-level leverage observations due to unusual design points, but

3This class of estimators may be regarded as a generalization of “maximum likelihood" estimation, and
hence the capital M designation.

4This objective function must satisfy certain properties (non-negativity, symmetry, monotonicity in |r|,
ρ(0) = 0). For ordinary LS regression in the case of error terms that are i.i.d and normally distributed, then
ρ(r) ∼ r2. For robust regressions, the goal is to minimise some sum of less rapidly increasing function of r(j).
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this effect is minimized in our case due to our use of regularly/symmetrically spaced sam-
pling grids.
Even with these approaches, gross outliers can still have a considerable negative effect
on the model. Moreover, when the number of observations N is smaller than P , LS pro-
duces an underdetermined matrix system. This is why we also wish to benefit from the
robustness of the L1−norm type regression techniques described in the next section.

Least squares minimization with L1−regularization

When a function admits a sparse representation, the sparsest representation is obtained by
solving this optimization problem:

u = argmin
u∈RP

‖u‖0 subject to ΨΛpu = y. (2.9)

The L0−norm of u is just the number of non-zero entries, it is a measure of the spar-
sity of u. This problem, however, is a combinatorial optimization problem: one needs to
go through all possible combinations of the columns of ΨΛp to find the sparsest solution
which is computationally too expensive. One can approximate problem (2.9) instead by an
L1−optimization problem called basis pursuit. This problem is convex and can be solved
using linear programming:

u = argmin
u∈RP

‖u‖1 subject to the constraint ‖y −ψΛpu‖2 = 0, (2.10)

where ‖u‖1 =
∑P

j=1 |u(j)|. When the observations are noisy, the constraint is too strict and
needs to be relaxed. If the magnitude of the noise is bounded: ‖e‖2 = ε, then we may
write:

u = argmin
u∈RP

‖u‖1 subject to ‖y −ψΛpu‖2 ≤ δ, (2.11)

with δ ≥ ε. This problem is sometimes called basis pursuit denoising. It is also a convex
minimization problem. One can rewrite equation (2.11) as a corresponding optimization
problem in Lagrangian form yielding the so-called LASSO estimate:

u = argmin
u∈RP

1

2
‖y −ψΛpu‖

2

2
+ λ‖u‖1, (2.12)

where an appropriate λ = λ(y, δ) is required. In practice the right value of λ depends on
the realizations of the underlying random variables more than the random variables them-
selves. Therefore the delicate selection of this parameter is often left to cross-validation
techniques in order to avoid overfitting. The systems (2.11) and (2.12) are equivalent un-
der certain conditions [Donoho, Elad, and Temlyakov, 2006] and depending on the for-
mulation one chooses, one of several existing solution techniques can be used to com-
pute u [Becker, Bobin, and Candès, 2011; Efron et al., 2004; Needell and Tropp, 2009; Van
Den Berg and Friedlander, 2008]. Several approaches have been recently proposed in or-
der to enhance the efficiency of the representation resulting from solving Equation (2.11)
or (2.12): – (a priori or iteratively) re-weighted L1−minimization: u = argminu ‖W u‖1
where W is diagonal weight matrix, subject to ‖y −ψΛpu‖2 ≤ δ in order to enhance
sparsity [Peng, Hampton, and Doostan, 2014; Yang and Karniadakis, 2013], – better sam-
pling strategies minimizing the mutual coherence of ΨΛp [Hampton and Doostan, 2015b],
– Bayesian compressive sensing [Sargsyan et al., 2014], or – adaptive basis selection [Jake-
man, Eldred, and Sargsyan, 2015].
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In our work, we will solve formulation (2.12), the Least Absolute Shrinkage and Se-
lection Operator (LASSO), to compute the coefficients. The solution will be computed for
a range of values of λ, and using cross-validation, the λ value that is best suited will be
retained. The cross-validation used in LASSO is independent from the cross-validation
used to determine the weight of each observation. As an alternative, one could use the
result from [Fuchs, 2005] where a value for λ is computed that guarantees, under certain
conditions, that the true sparse representation will be recovered.

2.2.3 Model validation

In the absence of model error eM , truncation and aliasing/sampling error are the two main
potential sources of error in L2−based approximations. One can further distinguish inter-
nal from external aliasing errors [Conrad and Marzouk, 2013]. The former exists when the
number and position of the samples do not guarantee the numerical discrete orthogonal-
ity within the chosen expansion basis. In practice, one can check this by verifying if one of
these equalities are satisfied: ΨT

ΛpΨΛp = I or E[ψ(i)ψ(j)] = δij . For pseudospectral gPC ap-
proximations, it is for instance very easy to choose a (sparse) quadrature rule that insures
null internal aliasing errors [Resmini, Peter, and Lucor, 2015]. Inversely, based on a given
(sparse) quadrature, we know the (sparse) structure and the order pmax of the polynomial
approximation basis we can afford.

In this case, the truncation error eT , already defined before, will remain. One way to
minimize its contribution is to perform cross-validation of the stochastic approximation in
order to identify the optimal approximation space frontier (e.g. PΛpopt

⊆ PΛpmax
) for the

functional of interest. This procedure is also appealing in the presence of model error eM
because cross-validation can reduce the sensitivity to data outliers. This is particularly true
for functions that have a smooth noiseless component ỹ. In section 2.3, we will show how
we use a leave-one-out cross-validation approach as a first step for the preconditioning
strategy of the LS minimization with L1−regularization.

Resorting to CS techniques in order to exploit potential sparsity of the QoI is interesting
because it allows the exploration of a larger approximation space for the same sampling
budget. It is therefore a way of reducing the truncation error of the approximation at no
cost. In terms of model validation, these techniques, with their built-in property to per-
form basis selection, also prevent overfitting to some degree. In the LASSO formulation,
cf. for instance Eq. (2.12), there is a data fidelity term related to the L2−norm and a spar-
sity term in the L1−norm. The LASSO evaluates the coefficients as a trade-off between
these two terms thanks to the adjustment of the λ tolerance parameter. The latter may
be determined again from cross-validation, e.g. [Hastie, Tibshirani, and Friedman, 2009;
Blatman and Sudret, 2011]. In this chapter, we use a K = N−fold cross-validation in the
1D examples and K = 10 in the higher dimensional test cases ( K = 10 is usually a good
choice for model selection [Breiman and Spector, 1992]). There is still one more ingredient
that may be added, that is the preconditioning of the data fidelity term. This may be done
by assigning some weights or “trust indices" to the samples. Again cross-validation is a
handy numerical tool used to evaluate the weight of each sample and this is the second
step of our preconditioning strategy.

2.3 Preconditioning and weight selection

In this section we explain in detail how we derive the observation weights. We aim to
assign small weights to observations in which we have a low level of confidence whilst
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granting a higher weight to observations which we think are reliable. Weighing the ob-
servations is a customary technique used in LS regression when one wants to filter out
noise:

u = argmin
u∈RP

‖Wy −WψΛpu‖2. (2.13)

The solution to Eq. (2.13) can be computed as follows:

u =
(
ΨT

ΛpWΨΛp

)−1
ΨT

ΛpWy, (2.14)

where W is a diagonal N × N matrix containing the observation weights. It is also in-
teresting to note that when the sample points are taken as the abscissa of an appropriate
quadrature rule and one chooses the diagonal of W to be composed of the quadrature
weights, then formulations (2.14) and (2.5) are equivalent.

Appointing weights to the observations can also be done in a compressed sensing
framework, the weighted equivalent of Eq. (2.11) is:

u = argmin
u∈RP

‖u‖1 subject to ‖Wy −WψΛpu‖2 ≤ δ. (2.15)

Analogously, one can formulate the weighted equivalent to Eq. (2.12) as:

u = argmin
u∈RP

1

2
‖Wy −WψΛpu‖

2

2
+ λ‖u‖1. (2.16)

It is the formulation above that we will be using and the weights will be computed by
cross-validation as will be explained in the sections to follow.

2.3.1 Cross-validation

Leave-one-out cross-validation is a form ofK-fold cross-validation with replacement where
K = N . One constructs the surrogate model, using a method at will, with all but one
of the samples. If the ith sample has been left out in the construction of the surrogate
model, we shall call the result ŷ(−i)

Λp
to indicate that this is the approximated surrogate

model in Λp, computed without taking into account the ith sample. In the framework of
compressed sensing, the use of classical cross-validation has been investigated in [Ward,
2009], where results were obtained regarding the number of samples that need to be with-
held for the cross-validation process to ensure an accurate representation of the error. The
cross-validation method investigated there however is not the same as LOO, so while these
results do not directly apply here, heuristics indicate that the LOO error yields a satisfac-
tory estimate for the mean squared error [Molinaro, Simon, and Pfeiffer, 2005]. The LOO
error is usually computed as:

εLOO
Λp =

1

N

N∑
j=1

(
y(ξ(j))− ŷ

(−i)
Λp

(ξ(j))
)2
. (2.17)

For LS solution methods based on a random sampling strategy, Eq. (2.17) can be more
efficiently computed as :

εLOO
Λp =

1

N

N∑
j=1

(
yj −ΨΛp,j u

1− hj

)2

, (2.18)
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where hj is the jth diagonal term in the matrix ΨΛp

(
ΨT

ΛpΨΛp

)−1
ΨT

Λp , and ΨΛp,j is the jth

row of ΨΛp . When normalized by a variance estimation, this error is called the training
error. In this work we will derive this variance from the robust scale estimate introduced
in equation (2.8).

2.3.2 Quadrature-based leave-one-out error estimation

Because we have intended to work with quadrature rules, we have to develop an accurate
and flexible way of computing LOO errors. That is, every time a point is left out from the
grid, quadrature weights of the remaining points need to be adjusted in order to insure ad-
equate polynomial integration capability. In the following, we explain in detail how this is
done in D = 1 and D = 2, the generalization to higher dimensions being straightforward.

In D = 1 dimension5, let us consider a N−point: ΞN = {ξ1, . . . , ξN} quadrature
rule of polynomial accuracy (N − 1): QN−1[·], and corresponding nodal weights: WN =
{w1, . . . , wN}.

We now require the (N−1)− point: Ξ̃
(−i)
N−1 = {ξ1, . . . , ξi−1, ξi+1, . . . , ξN}i∈{1...N} reduced

quadratures (which will be missing one point relative to the original grid) to be of accu-
racy (N − 2): Q(−i)

N−2[·], i.e. to integrate exactly all univariate polynomials PΛN−2
. Let us

decompose a member y ∈ PΛN−2
in a specific basis: i.e. the Lagrange basis L constructed

from the discrete nodal values Ξ̃
(−N)
N−1 : i.e. we left out the last point, ξN , for simplicity of

notation but the result holds for any other dropped point:

y(ξ) =
N−1∑
j=1

y(ξj)Lj(ξ), (2.19)

where Lj(ξ) is the Lagrange polynomial associated to ξj . Moving to the expectations, we
have:

E [y(ξ)] =
N−1∑
j=1

y(ξj)E [Lj(ξ)] , (2.20)

We call the new weights W̃(−N)
N−1 = {w̃1, . . . w̃N−1}. These new weights should satisfy exact

integration of y. It then follows quite naturally from Eq. (2.20) that these weights should
be w̃i = E [Li(ξ)] , for i = 1, . . . , N − 1, which may be evaluated in turn from the full
original quadrature:

w̃i =

N∑
j=1

wjLi(ξj) = wiLi(ξi) + wNLi(ξN ) (because Li(ξj)|j =
j 6=i

1,...,N−1 = 0)

= wi + wNLi(ξN ), for i = 1, . . . , N − 1. (2.21)

The updated weights of the truncated quadrature are made of a summation of the weights
from the full quadrature plus the Lagrange polynomial contributions evaluated at the
missing node weighted by the original weight of that node. The new weights add up

5Whereas in the previous section the subscript indices without parenthesis indicated the dimension and
the subscript indices with parenthesis indicated the sample number or the basis function number, here since
there is no confusion possible in the one-dimensional case, the subscripts without parenthesis will directly
indicate the sample number or basis function index.
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to unity:

N−1∑
j=1

w̃j =

N−1∑
j=1

(wj + wNLj(ξN )) =

N−1∑
j=1

wj + wN

N−1∑
j=1

Lj(ξN ) = 1− wN + wN × 1 = 1,

and the truncated quadrature is now valid.
The global LOO error is now evaluated on the full quadrature grid as:

εLOO
Λp =

N∑
j=1

wj r
2
Λp,j , with rΛp,j =

(
y(ξj)− ŷ(−i)

Λp
(ξj)

)
, (2.22)

where ŷ(−i)
Λp

are constructed on the truncated quadratures with adjusted weights W̃(−i)
N−1,

for i ∈ {1, . . . , N}.
In higher dimensions, it is common practice to rely on the assumption of independence
of the random variables to construct full-grid cubatures6, that are tensor-products of one-
dimensional quadrature rules. In our case, we perform the tensorization between one-
dimensional quadratures with different number of points and integration power.
In D = 2 dimensions for instance, we build the quadratures by tensorizing the first and
the second dimension. Dropping one point along the first direction results in the case of a
truncated quadrature rule along the first dimension and a full rule along the second dimen-
sion; we form quadratures of the type:

(
Q(−i1)
N1−2⊗QN2−1

)
i1=1...N1

[·], which are exact for any

polynomials7 from PΛN1−2
⊗PΛN2−1

, based on a Ξ̃
(−i1)
N1−1× Ξ̃N2 grid of (N1−1)N2 points and

corresponding W̃N1−1 × W̃N2 weights. Due to symmetry of the computational grid, we
can also build

(
QN1−1⊗Q(−i2)

N2−2

)
[·], for polynomials from PΛN1−1

⊗PΛN2−2
, on Ξ̃N1 × Ξ̃

(−i2)
N2−1

grid, with weights W̃N1 × W̃N2−1.
Figure 2.1 shows how we proceed to combine error estimation at a particular grid point
based on those quadratures. In this example, we are interested by the first point, i.e.
(i1, i2) = (1, 1). The first grid retained corresponds to the points selected by the dark blue
dashed frame, once the left blue column has been dropped from the full lattice. Based on
the remaining points, and once the weights have been adjusted, the updated quadrature
is put to use to build a surrogate model of the QoI over the full integration domain. This
allows a prediction/error estimation at any point from the shaded blue column, such as
the lowest left point in red. Note that we can obtain a model error estimation at that point
another way: by dropping the points in the bottom green row. Only the points in the green
solid frame would then be retained to construct a surrogate model. These two different
errors may be combined in several ways. After some testing, we have opted for the arith-
metic mean.
The combined residual error at any particular point rΛp,i is therefore taken as the mean
value of the different errors produced by the ensemble of the d surrogate model designs,
each built on N = N1 × . . . (Nk=1...d − (D − 1)) . . .×Nd points.

For the computational setup of the quadratures, all partially truncated grids and cor-
responding adjusted weights combinations can be stored once and for all, for a given grid.
Moreover, this step maybe by facilitated by exploiting the natural symmetry of the origi-
nal multi-dimensional grid. The evaluation of the LOO errors for a given QoI on that grid
are then very fast. As a side remark, we have found that estimating LOO errors from trun-
cated Gauss-based quadratures is not significantly more efficient than estimating errors

6We will keep the quadrature nomenclature, no matter the integral dimensions.
7In practice, we choose N1 = N2 ≡ Ñ and restrain our approximation space to PΛTD

Ñ−2
in order to build the

surrogate model.
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FIGURE 2.1: Schematic illustration of quadrature breaking down for leave-
one-out error estimation (here for a Gauss-Legendre grid in D = 2 dimen-
sions). Quadrature weight magnitudes (before adjustment) are proportional

to the circle diameters.

from quadratures with a lower theoretical integration power such as the Clenshaw-Curtis
rule. This is because the truncation automatically deteriorates the integration capability
from PTP

Λ2N−1
to PTP

ΛN−2
. In the application section, we will be using Clenshaw-Curtis (CC)

or Kronrod-Patterson (KP) quadrature rules.

2.3.3 LOO-weighted preconditioned L1−minimization approximation

In this section, we review how the different numerical ingredients introduced previously
are put together into the general approximation method we propose. There are essentially
three main stages, that can be summarized as follows:

1. Selection of a quadrature rule and level, providing a N−point grid. Numerical sim-
ulations are then performed at these N sampling points and this grid is conserved
for the rest of the method.

2. Evaluation of response sample weights that are a measure of confidence in the data
obtained and will serve as a preconditioning in the next step.

3. Construction of the cross-validation preconditioned L1−minimization approxima-
tion using a weighted LASSO procedure in order to promote sparsity in a robust
way.

The second stage requires more explanations as it is made from of several courses of ac-
tion. The main idea is to take advantage of cross-validation for the estimation of prediction
error in order to guide our model selection and perform robust model assessment. Here
the different steps are: 2.i. to rely on the global LOO error of Eq. (2.22) to determine the
most accurate polynomial approximation of the problem response, with the constraint that
the aliasing error must be minimized. Then 2.ii. (this step is optional) in order to make
the process more robust, not only the optimal approximation but several levels of approx-
imation that are within a certain error threshold are retained. Finally, 2.iii and 2.iv. sample
weights are computed as normalized score functions taken at the (averaged) residual error
contribution of the retained approximation(s).
More specifically, here are those main steps, revisited in more detail:
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2.i. Designation of optimal total degree approximation space PΛpopt
for pseudospectral

gPC representation of the data: popt = argminpl∈Npmax
0

εLOO
Λpl

, will provide the lowest
truncation error in the LOO cross-validation criterion with the guarantee of no in-
ternal aliasing error. pmax is the highest degree authorized by the quadrature while
maintaining no internal aliasing error. The different error estimations εLOO

Λpl
are com-

puted from Eq. (2.22).

2.ii. (this step is optional) Choice of a model cross-validation tolerance parameter α ≥ 1.
Definition of “neighbor" approximation spaces PΛp∈L withL = {l ∈ {1, . . . , pmax} | εLOO

Λl
≤

α · εLOO
Λpopt
}with lower errors than threshold and that will be used in the following.

2.iii. Collect the residual errors at each grid point for the retained surrogate models: rΛl∈L, i∈{1,...,N}.

2.iv. Estimation of the (averaged) preconditioning weights as:

w(i) =
1

|L|
∑
l∈L

υ(rΛl,(i))

rΛl,(i)
, ∀i = 1, . . . , N, (2.23)

where |L| is the set cardinality. This averaging is not always necessary (i.e. if α = 1
and l = popt) but sometimes helps in particular when the LOO error function is not
clearly convex nor the choice of popt sharp. It is in some sense reminiscent of the
damped version of the re-weighting procedure of Peng et al. on p.8 [Peng, Hampton,
and Doostan, 2014].
In this work, Huber, Tukey bisquare and Cauchy score functions have been tested
[James O. Street and Ruppert, 1988] in the numerical applications.

The third stage then consists of the weighted regression and regularization on a space of
approximation of total degree larger than the one identified in step 2. i.

The algorithmic complexity and scaling of the computational framework just under-
lined can be split in different components. The main effort obviously lies in 1. the solution
sampling at the grid points. Full cubatures scale exponentiallyO(N (D)) while sparse cuba-
tures somewhat alleviate the cost O

(
N−r(logN)(D−1)(r+1)

)
, especially if the solution has

high bounded mixed partial derivatives of order r and is isotropic. Then, 2. the determi-
nation of response sample weights requires cross-validation evaluations that involve mul-
tiple pseudospectral projections and arithmetic averaging. This part is computationally
very efficient, even for a large number of dimensions, as long as adjusted weights neces-
sary to the truncated cubatures have been tabulated and stored prior to the computation
(cf. discussion at the end of section 2.3.2). Finally, 3. a regularized weighted regression
must be carried out. The computational cost of a L1 LASSO-type minimization associ-
ated to the problem of Eq. (2.12) is always more expensive than ordinary or weighted LS
methods for the same problem. This is due to the “search" for the best parameter λ. Nev-
ertheless, we have noted that our LOO-weighted version sped up the computation. This
is due to the preconditioning of the solution. Computational savings differ depending on
the problem size and complexity. We have noted savings 5 − 40% in computational time
(savings are more substantial for larger sample points number N ). Further improvements
may make use of the preconditioning information in order to restrain the search range of
λ.
The proposed method will now be demonstrated on several illustrative test problems of
different dimensionality, sparsity and complexity.
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FIGURE 2.2: Continuous response surfaces of sparse Legendre polynomi-
als obtained from different approximation methods based on a CC grid of
level l = 5 (left) and KP l = 4 (right). Randomly selected outliers data are
identified by red circles. Green circles represent normally distributed data
samples subject to background stochastic noise. The SC curve refers the
stochastic collocation based on Lagrange interpolation; IRLS is an iterative
reweighted least square approximation with the same predictors as the gPC
pseudospectral representation. The reference curve is the target noiseless

QoI response.

2.4 Numerical Examples

2.4.1 Sparse polynomial test functions

The point of these tests is to check the robustness through an analysis of the mechanisms
of the proposed method on the approximation of sparse nonlinear polynomial function-
als corrupted by few randomly selected data outliers, accounting for deterministic noise.
Consider the function z(ξ) = P10(ξ) + P3(ξ) + P0(ξ), where Pk is the kth degree univariate
Legendre polynomial, known at some discrete points, in the presence of a stochastic noise
component, we have: yi = z(ξi) +χi, with i ∈ {1, . . . , N} and χi are centered i.i.d. random
variables distributed according to N (0, σχ). These data also contain some outliers that do
not match this definition. In practice we have considered σχ values about one order of
magnitude lower than the variability scale associated to the outliers. The noiseless version
of this functional has been previously tested with iterative adaptive polynomial approx-
imations [Poëtte, Birolleau, and Lucor, 2015]. Here, the random variable ξ ∼ U[−1,1] is
uniformly distributed. Continuous approximations will be constructed from discrete sam-
pling on regular grids. Without loss of generality, we will be presenting 1. a CC quadrature
rule of level l = 5 (17 points) and 2. a KP quadrature rule of level l = 4 (15 points). Finer
grids have also been tested with success.
For case 1., the function we try to approximate by projection is of maximum order 10 which
is out reach for the polynomial integration capability of our grid. Standard pseudospec-
tral methods are not able to capture the correct solution in this case, but the function being
sparse (only 3 active basis functions are needed), we expect that the L1-regularization term
will help in approaching the right solution. As stated before, we will be using LASSO in
order to solve Eq. (2.12), but our proposed technique for weighting the observations can
also be used in combination with other solution methods. The results are presented in
Figure 2.2-(left). The outliers data points are plotted as red open circles, the other points as
green open circles. The number of outliers are arbitrarily chosen and affectNo = κ(%)×N
samples (with κ ≈ 18%), while χi ∼ N (0, 4 · 10−2). The chosen example is tricky as
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Grid Approximation pTD µ σ2 R2 L1 L∞

CCl=5 gPC 8 4.04·10−2 3.97·10−1 2.90·10−1 5.70 1.13

LASSO 16 2.82·10−2 3.25·10−1 9.74·10−1 1.53 1.61·10−1

weightedα=1-LASSO (3) 16 3.99·10−4 1.23·10−1 9.96·10−1 6.06·10−1 1.08·10−1

weightedα=1.35-LASSO (3) 16 1.03·10−2 1.61·10−1 9.92·10−1 8.51·10−1 9.32·10−2

IRLS 8 5.04·10−2 1.53 5.01·10−1 5.69 1.63

CCl=5 gPC 8 5.08·10−2 4.05·10−1 2.93·10−1 5.70 1.12

LASSO 16 4.16·10−2 3.42·10−1 9.68·10−1 1.64 1.93·10−1

weightedα=1-LASSO (3) 16 1.92·10−2 1.61·10−1 9.94·10−1 7.50·10−1 8.53·10−2

weightedα=1.35-LASSO (3) 16 2.47·10−2 1.84·10−1 9.92·10−1 8.88·10−1 1.04·10−1

IRLS 8 9.49·10−2 7.20·10−1 5.69·10−1 5.16 1.41

TABLE 2.1: In reference to the results of Figure 2.2-(left): overview of dif-
ferent functional error indicators for a sparse polynomial test case with
(top) and without (bottom) stochastic background noise and for different
choices of α. The best overall result in bold. p(TD) is the chosen total de-
gree of the polynomial approximation basis; for the weighted-LASSO ap-
proach, the value in parenthesis is the optimal order obtained from the orig-
inal pseudospectral gPC representation resulting in the lowest overall cross-

validation LOO error.

the outliers are placed within the [ min
ξ∈[−1,1]

y(ξ), max
ξ∈[−1,1]

y(ξ)] range. The reference noiseless

curve is depicted as a full dashed light blue line. The three solutions that are clearly off
the marks are the standard gPC (full blue line), the IRLS (full green line) and the stochastic
collocation (thin dotted-dashed gray line) which are also shown for sake of completeness
and exhibit too little or too large oscillations. LASSO solution (thin purple dashed line)
performs better but not as good as the LOO-weighted LASSO. It is clear that the precondi-
tioned L1−regularized approximations perform best. These qualitative observations are
quantitatively confirmed in Table 2.1. Table 2.1 shows the errors in the L1, L∞ norm and
theR2 (goodness of fit) and the errors in the global statistical moments. Results with stochas-
tic noise-free (green) samples but bearing the same outlying (red) cases are also included.
In Figure 2.3 some of the internal workings of the proposed technique are exposed. Sub-
plot (a) shows how the cross-validation with LOO technique clearly predicts, despite the
noise, that polynomial approximation of total degree p = 3 will minimize prediction er-
rors within the range of affordable polynomial orders. This is coherent with the 0th- and
3rd-order components present in the functional. Error estimation solely based on domain
integrated gPC residuals are lower as expected but less robust and the optimal polynomial
order choice within {3, . . . , 8} is therefore less obvious. Subplot (c) shows the weights as-
signed to the samples for a Cauchy score function. As expected, levels of confidence are
lower for data outliers (represented by red circles). They are also low for the boundary
samples that are negatively affected due to their distance to the low-order approximation.
Last two subplots show the subtle differences in the mean square errors (MSE) distribution
vs. λ for the LASSO (d) and the weighted-LASSO (e). Very low values of λ, to the right of
these plots, lead to approximations dominated by the first term of Eq. (2.16). Despite the
preconditioning, the L2 minimization alone produces larger errors with large error bars.
Once the optimal λ selected, very low MSE errors are obtained and coefficients amplitude
in subplot (b) shows that the three leading modes of the functional, including the 10th-
order, are almost perfectly captured, despite some weak spurious energy in the 5th and
12th modes.

The next test case has a similar setup but a larger noise, e.g. χi ∼ N (0, 7 · 10−2) and
consequently more severe data outliers, on a different sampling grid. For case 2., the
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FIGURE 2.3: In reference to the results of Figure 2.2-(left): (a) overview of
the model errors vs. polynomial total degree p, (b) polynomial coefficients
magnitude u2j vs. p, (c) sample weights and finally model cross-validated

mean square errors vs. λ for LASSO (d) and for weighted-LASSO (e).

Grid Approximation pTD µ σ2 R2 L1 L∞

KPl=4 gPC 10 1.48·10−3 2.10·10−1 8.47·10−1 2.58 6.18·10−1

LASSO 20 5.62·10−2 5.57·10−1 7.43·10−1 2.39 5.25·10−1

weighted-LASSO (10) 20 4.48·10−2 3.58·10−1 9.17·10−1 1.56 3.07·10−1

IRLS 10 1.92·10−2 4.27·10−1 5.89·10−1 3.82 1.80

TABLE 2.2: Same caption as in Table 2.1, but in reference to the results of
Figure 2.2-(right).

KP quadrature/grid combination has a higher integration capability than the previous
grid. This time, results presented in Figure 2.2-(right) are not visually as impressive, but
weighted-LASSO still performs best in most of the error norms, cf. Table 2.2.

Additional results collected in Figure 2.4 better point to some of the differences with the
previous case. This time, the cross-validation is able to predict that polynomial of order 10
is also crucial to the approximation. Data outliers are then endowed with low confidence
but a few other data samples are misleadingly granted with low weights as well (c). The
LASSO error distribution plots (d-e) show that the error levels remain low even for very
small values of λ. In this case, the L1−regularization term does not contribute signifi-
cantly in terms of the accuracy improvement. However, the preconditioning still helps the
LASSO algorithm in better finding the optimal λ value. Looking at the emerging modal
coefficients in (b), we notice again that despite its better results, weighted-LASSO is not as
sparse as the standard LASSO approximation.
Other one-dimensional tests were pursued in the same spirit, for non-sparse non-polynomial
functions. For instance, results for a noisy data set obtained from z(ξ) = (−3ξ5 + ξ2 + ξ)×
tanh(ξ) and corrupted by four data outliers (results not presented here) confirmed the
performance advantage of weighted-LASSO with respect to LASSO and standard gPC.
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FIGURE 2.4: Same caption as in Figure 2.3, but in reference to the results of
Figure 2.2-(right).

2.4.2 Higher-dimensional non-polynomial test function

Now, we consider a higher-dimensional test function that is not necessarily compressible
so that we do not favor L1−type regression method over robust iterative weighted least-
square approximations. We assess the continuous approximation of an algebraic noisy
version of the Genz corner-peak function, known at some discrete locations, which pro-
vides a flexible test for the proposed method:

y(i) =

(
1 +

D∑
k=1

ckξk,(i)

)−(D+1)

+ χ(i), with i = 1, . . . , N, (2.24)

and χ(i) are centered i.i.d. random variables distributed according to N (0, σχ) and ξ ≡
(ξ1, . . . , ξD) ∼ U[0,1]D . Specifically, the coefficients ck can be used to control the effective
dimensionality and the compressibility of this function. In the following, we first test the
d = 3−dimensional version using the anisotropic coefficients ck = 1/k2 defined in [Jake-
man, Eldred, and Sargsyan, 2015]. The function is computed on a 73 KP grid but similar
tests have been performed for finer grids as well as for grids of different nature without
affecting the overall conclusion. The outlying cases amount to No = κ(%) ×N randomly
selected samples in the domain. In practice, the outlier locations are randomly distributed
in the computational domain with a uniform distribution. For these high-dimensional
cases, their magnitude is automatically drawn from either: - a non-normal distribution or
- a normal distribution with a standard deviation of one order of magnitude larger than σχ.
The latter definition has been used for the results presented next. Moreover, the procedure
has been repeated 500 times (i.e. with different initial conditions both for outlier locations
and magnitudes and for the stochastic noise). Statistical results are presented in Figure
2.5. They show that the standard gPC approximation is not robust. LASSO improves the
error statistics, in particular in the L1 and L∞ norms. Mean values extracted from these
distributions and reported in Table 2.3 confirm these findings.
One-shot LOO-weighted LASSO improves the results even further, coming close to the
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Grid Approximation pTD µ σ2 R2 L1 L∞

KPl=3 gPC 5 1.46e−02 2.07e−01 8.33e−01 1.75e+01 3.10e−01
LASSO 9 1.14e−02 1.52e−01 9.60e−01 7.24e+00 9.49e−02
weighted-LASSO (1.2) 9 6.82e−03 6.55e−02 9.89e−01 3.88e+00 5.38e−02
IRLS 5 3.67e−03 3.21e−02 9.91e−01 4.05e+00 5.05e−02

TABLE 2.3: Similar caption as Table 2.1 for D = 3 dimensions Genz corner-
peak functional. But this time, all errors are averaged as the test cases have

been repeated 500 times for different initial conditions.

IRLS iterative scheme.
A single test following a similar setup is carried out for d = 5 dimensions. We recall that
this dimensional limitation closely connected to memory requirement is inherited from
the scaling of full cubature sampling grid, but would be alleviated for a sparse cubature.
The error results summarized in Table 2.4 demonstrate again that LOO-weighted LASSO
and IRLS are the best two contenders for robustness and that our approach performs well
compared to the iterative scheme.
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FIGURE 2.5: Comparison of different approximation errors: i.e. µ (a), σ2

(b), L1 (c) and L∞ (d), of a three-dimensional non-polynomial noisy Genz
corner-peak function obtained from different methods relative to the noise-
free reference solution. All approximations are based on 73 KP sampling
grid. Data outliers affect κ = 15% of the total number of samples and σχ =
0.03. The test is repeated 500 times for different random initial conditions

and stochastic noise.

2.4.3 2D compressible, inviscid flow test cases

We rely on an compressible Euler equations solver named Wolf [Alauzet and Loseille,
2016b]. It is based on a compressible mixed-element-volume method on unstructured
grids and is meant to deal with highly anisotropic meshes. For our computations we
used a second-order HLLC approximate Riemann solver, MUSCL-type scheme with lim-
iters and an implicit matrix free method for time advancing. The adjoint capabilities of
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Grid Approximation pTD µ σ2 R2 L1 L∞

KPl=3 gPC 5 2.70·10−3 2.88·10−2 9.71·10−1 3.71·102 2.70·10−1

LASSO 9 3.38·10−3 1.93·10−2 9.98·10−1 8.29·101 4.44·10−2

weighted-LASSO (2) 9 1.28·10−3 5.20·10−3 9.99·10−1 5.37·101 2.79·10−2

IRLS 5 3.35·10−3 1.04·10−2 9.99·10−1 6.06·101 1.91·10−2

TABLE 2.4: Same caption as Table 2.1 for D = 5 dimensions Genz corner-
peak test case.

the solver is also exploited to drive goal-oriented mesh adaptivity as it will be specified
hereafter.

NACA0012 airfoil

The study of compressible flows around a NACA0012 airfoil are considered in this exam-
ple. The functional of interest is the stagnation pressure Pa integrated along the airfoil
profile Γ :

Pa =
1

L(Γ)pa∞

∫
Γ
padΓ, (2.25)

where pa = p
(

1 + γ−1
2 M2

∞

) γ
γ−1 (respectively pa∞) is the (upstream) stagnation pressure,

γ is the specific heat ratio, here fixed at 1.4 and the free-stream Mach number M∞ = 0.5,
L(Γ) denotes the length of the airfoil. We have considered for this analysis one uniformly
distributed uncertain parameter: the angle of attack AoA ≡ ξ ∼ U[0;8o]. It is well known
that for subcritical Euler flows at zero or moderate angle of incidence, the stagnation pres-
sure should be exactly equal to unity [Peter, Nguyen-Dinh, and Trontin, 2012]. In practice,
even for low Mach numbers this exact value is unreachable due to numerical (e.g. dis-
cretization) errors. Moreover, for larger angles of incidence (i.e. AoA ' 6), the loss of
symmetry is such that the flow switches from the subsonic to a transonic regime, with a
shock appearing on the upper surface close to the leading edge. Figure 2.6 illustrates this
phenomenon with three snapshots of the density field for AoA = 0 (left image), AoA = 6
(middle image) and AoA = 8 (right image), respectively. The rise of this shock noticeably
modifies the flow features and negatively affects accuracy of the prediction if no adjust-
ment is made to the model in order to account for it. It especially impacts the discretization
error if the retained mesh is too coarse and not adapted at the shock location. In this case
the model error magnitude will depend on the value of the AoA in quite an unpredictable
manner as can be seen in the stagnation pressure response pictured in Figure 2.7 (red cir-
cles). The response was obtained for each AoA from the same coarse mesh: with about
five thousand mesh cells regularly distributed around the airfoil and referred as the uni-
form 5K mesh. We notice strong oscillations in the transcritical region for AoA larger than
about six degrees. Consequently, high-order pseudospectral gPC approximation (dotted
blue curve) is corrupted with errors as expected. Cross-validation preconditioned regu-
larized approximation (solid red curve) does much better at filtering out small spurious
fluctuations in the left region where Pa is not dependent on the AoA, as well as controlling
and erasing large unphysical Pa oscillations on the right hand side of the domain.
Interestingly, for this problem, it is possible and still affordable to produce results that are
almost model error-free. By refining the mesh to 38000 mesh cells (38K), the discretization
error is drastically reduced. These refined meshes are adapted to each AoA scenario in or-
der to capture the critical physics (e.g. shocks). Computations on the refined and adapted
meshes are represented by the green stars. We observe a flat zone corresponding to low
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FIGURE 2.6: NACA0012: density field closeup for different angles of attack:
AoA = 0 (left), AoA ≈ 6 (middle) and AoA = 8 (right). Note the presence
of small shocks close to the leading edge at large angles of attack. Com-
putational meshes are not displayed but have been adapted and refined to

capture all relevant flow features.

angles of attack where the stagnation pressure is very close to, but lower than unity (due
to still present numerical diffusion), followed by a sharp almost linear decrease for larger
angles of attack. In this case, our method does not alter the data and produces a smooth
response (solid brown curve) while perfectly maintaining the right slope.
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FIGURE 2.7: NACA0012: averaged stagnation pressure Pa response sur-
faces vs. AoA, obtained from different approximation methods based on
a level l = 5 Kronrod-Patterson data sampling. Two classes of discretiza-
tion meshes of the Euler flow are investigated: – uniform coarse mesh (red

circles) vs. – fine mesh adapted to each flow incidence (green stars).

If we now consider that the Mach number is also uncertain: for instance, M∞ ∼
U[0.3,0.5], the stagnation pressure value departs from unity at a critical angle that depends
on the Mach number; this angle being larger for lower Mach numbers. This induces a nar-
row region with a steep slope that is difficult to capture accurately by standard projection
techniques and induces spurious oscillations, cf. Figures 2.8 and 2.9. Again the proposed
method increases the regularity of the surrogate where it is needed, with no a priori in-
formation nor significant computational overhead, while capturing relevant local sharp
features even on the coarser mesh. We notice in particular that the surface goes through
the data samples much better in the transcritical region.
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Clenshaw-Curtis data sampling: – pseudospectral gPC expansion with
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Scramjet engine internal flow

Major progress has been achieved over the past decades in CFD capabilities to provide
engineers with powerful tools for analysis of complex flows, such as high-speed com-
pressible flows. This has been motivated in part by the growing interest in the hypersonic
flight regime for which the engine of choice is the supersonic combustion ramjet (scram-
jet), for atmospheric propulsion of both hypersonic aircraft and missiles. The scramjet
engine is fundamentally simple in concept – it was proposed in the 1950s [Curran, 2001]
– but difficult in realization as current simulation capability of in-flight performance is
overwhelmed by numerous uncertainties (e.g. natural variability of flight scenario, effect
of geometrical variability and manufacturing tolerances, fuel conditions and combustion
kinetics,...) and errors due to the multi-physics nature of the problem [Witteveen, Du-
raisamy, and Iaccarino, 2011]. Here we will be interested in the internal flow through
a scramjet inlet [Alauzet and Loseille, 2016b] at moderate to high Mach numbers. The
geometry is shown in Figure 2.10. While its configuration with sharp angles induces a so-
lution with numerous shock waves (shock-train), as air compression occurs across shocks
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FIGURE 2.10: Scramjet geometry; the QoI is integrated on Γ.

(fluidic compressor), the position of the shock-train directly affect combustion and engine
performance. The shock’s number, orientation and amplitude is strongly dependent on
the free stream Mach number and the angle of attack of the incoming flow that we con-
sider here incertain and independent with bounded distributions. Another challenge of
hypersonic flows is the simulation of the strong interaction between those shocks and the
turbulent boundary layers. In this preliminary work, we neglect viscosity and do not ad-
dress this issue.
We are interested by the effect of uncertain parameters on the outlet flow pressure – i.e. at
the downstream boundary condition Γ, cf. 2.11 – just upstream of the location where the
fuel is mixed with air and combust in the combustor chamber of the full scramjet configu-
ration. More specifically, we consider the following QoI :

j(w) =

∫
Γ

(
p− p∞
p∞

)2

dy, (2.26)

that is integrated along the outlet edge. This choice is also motivated from the numer-
ical point of view. Indeed, it has been shown that advanced mesh adaptivity methods
are needed to capture intricate shocks and contact discontinuities developing at the rear
boundary [Alauzet and Loseille, 2016b]. It is interesting to analyze how this behavior
evolves when the operating condition changes, and thus the impact it has on our QoI.
The Mach number and the angle of attack are uniformly distributed withM∞ ∼ U[2.4,4] and
α ∼ U[0,6] degrees respectively. The Mach number lower bound is purposely chosen to be
within the subsonic regime in order to make the case more challenging. The results show
that the sensitivity of the pressure distribution is mainly to the Mach number. Circle mark-
ers in the graphs of 2.12 show the QoI predicted from the solver sampling at the nodes of
a CC grid of level l = 5 (i.e. N = 172). We notice that for an intermediate range of Mach
numbers the QoI sharply increases due to the transition to supersonic regime. For higher
Mach numbers, the integrated quantity decreases again due to the specific combination of
shocks distribution at the outlet. Moreover, for angles of attack > 4 degrees, the super-
sonic transition at the entrance of the inlet geometry is slightly delayed to higher Mach
numbers. This has implication on the outlet shocks distribution as well and induces a shift
in the maximum QoI response to higher Mach numbers. The stochastic response surface
that we have to approximate from the solver discrete samples is therefore extremely chal-
lenging without any sampling nor reconstruction adaptation.
We present the results of different approximation methods based on Legendre polynomial
chaos in 2.12. Reference results obtained from standard pseudospectral projection on a
space of approximation satisfying orthogonality constraints: PΛp=8 (a) does not provide
satisfactory results and exhibit strong oscillations. The results obtained with the Lasso for-
mulation on PΛp=15 show some improvements and the regularization somewhat dampens
the oscillations. Thanks to the sample weights adjustment, the proposed LOO-weighted
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LASSO formulation provides, on the same approximation space, the smoothest and most
accurate approximation, as the surface response closely approaches the data while avoid-
ing excessive overfitting. Nevertheless, we notice that the approximation most likely still
under-predicts the maximum response. This is because the formulation has difficulty dis-
cerning large and sudden amplitude peak variation from model noise. In order to be more
confident in the samples corresponding to the maximum response, a new set made of
refined simulations (i.e. 17 simulations at M∞ = 2.89 and various angles of attack, illus-
trated by the red circle markers in 2.12-(d)) is generated and added to the data set. For each
of these new simulations, we rely on an anisotropic adapted mesh where the refinement
criteria is based on an a priori estimation of the discretization error of the QoI [Loseille,
Dervieux, and Alauzet, 2010]. A metric field is then computed for each mesh node which
provide optimal directions and sizes for remeshing. The optimal adaptive mesh is gen-
erated for a given target number of mesh nodes and these steps are iteratively repeated
(in practice 4 or 5 times) until mesh convergence. An example of such an adapted mesh
is presented in 2.11-(b); we notice that flow features are much better captured, which im-
proves considerably the accuracy of the QoI prediction. In our case, the peak integrated
pressure values increase relative to their reference values. Consequently, the results of the
refined simulations are now better trusted and maximum weight values of unity are then
assigned to each sample. The LOO-weighted LASSO formulation is then repeated with
this new constraint. The results of 2.12-(d)) show that the approximation directly adjusts
to the new weight distribution and includes the new samples, while controlling the growth
of excessive spurious oscillations.

(A) Uniform mesh. (B) Adapted mesh.

FIGURE 2.11: Distributions of iso-Mach contours for an inviscid Mach num-
ber M∞ = 3 scramjet inlet at zero angle of attack; (a): uniform coarse mesh

(3818 elements), (b) adapted fine mesh (11707 elements).

2.5 Conclusions

The main contribution of this chapter was to propose a non-iterative robust numerical
method for the uncertainty quantification of reasonably compressible multivariate stochas-
tic solutions. The goal was to make the approximation capable of dampening the effect of
outlying data to that do not fit the assumption of small additive stochastic noise repre-
sented by centered i.i.d. (normal) random variables with uniformly bounded variance;
in particular, noise which does not fall under the regularity assumption of the stochas-
tic truncation error but pertains to a more complete error model. The method required
a preconditioning prior to a dimension reduction of the solution, i.e.: 1. a L2−based
cross-validation of a generalized Polynomial Chaos approximation of the response; this
allowed a first model selection and the computation of (preconditioning) weights (i.e. con-
fidence measures) associated to the samples, followed by 2. a preconditioned least-squares
polynomial approximation with regularization using the weighted Least Absolute Shrink-
age and Selection Operator. For the first step, observation weights were computed from
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FIGURE 2.12: Scramjet integrated outlet pressure response surfaces vs. M∞
and α, based on a 172 CC data sampling: pseudospectral gPC expansion
with p = 8 (a), LASSO (b) and LOO-weighted LASSO (c-d) with p = 15.
Most Euler deterministic CFD simulations (white circles) are performed on
a non-adapted mesh (cf. 2.11-(a)), except for the simulations∗ (red circles)
carried out on QoI-oriented adapted meshes (example of such a mesh in

2.11-(b)).
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sample contributions to the cross-validation leave-one-out error of the selected surrogate
model. For the second step, other algorithms may be used to solve the optimization prob-
lem resulting from the L1−regularization. Numerical test cases treated above have proved
the numerical method to be more effective in automatically canceling out or reducing the
influence of data outliers than standard compressed sensing techniques and of compara-
ble efficiency to iterative robust regression techniques.
A particularity of this work was to make use of quadrature rules/grids as opposed to ran-
dom sampling. This zero-variability sampling brings reliability to the recovery procedure
but is better suited for low to moderate dimensional problems (with possibly high-order
representation). However, the approach remains general and could be applied to higher
dimensions by using random sampling or quadrature subsampling schemes taking ad-
vantage of recent advances in terms of polynomial recovery optimization. In this case, the
use of other cross-validation techniques with potentially lower variance error estimations
is also conceivable.
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Chapter 3

Riemannian metric framework for
anisotropic adaptation

Over the past decades, developments in numerical methods for solving partial differen-
tial equation together with the advancements in computational power made the solving
of engineering problems by use of simulations ever more practical. Complex engineer-
ing problems formulated on sophisticated geometries are nowadays reachable, even for
realistic unsteady problems. This is partially due to progress made in properly defining
the meshes associated to these complex problems. A mesh can be defined as optimal if it
captures the physics of the problem to within a prescribed accuracy at an acceptable cost.
Such optimal meshes are often obtained with an adaptive process and the resulting mesh
will be called the adapted mesh. An indicator will be needed to identify mesh regions
that need refinement or coarsening. Error estimators have been proven be a valuable such
indicator.

If the exact solution is given by u and the approximated solution by uh, then it would
make sense to use the error ||u−uh|| as the refinement indicator. Unfortunately this quan-
tity cannot be computed since u is not known. In order to overcome this problem, com-
putable error estimators are used to estimate this error. One can distinguish two classes
of error estimators: a posteriori and a priori error estimators. The former are based on the
truncation error while the latter quantify how well u verifies the (approximate) model.
Another important aspect is how, once the error indicator computed, this information is
used to generate a refined mesh. The simplest method is to divide each mesh element
where the error estimate is above a certain limit into smaller elements of the same shape.
This is called isotropic refinement. While this refinement method will lead to smaller ele-
ments and a reduction in the discretization error in regions where the error is estimated to
be large, it has the disadvantage of lacking the capacity to capture the anisotropic nature
of physics. When the physics of the problem at hand behaves differently in different di-
rections, isotropic meshes are not suitable.
A novel class of methods emerged to address the anisotropy issue by making use of met-
rics. The underlying idea is to generate a mesh where the edge lengths are unit with re-
spect to some Riemannian metric. This method, known as metric-based mesh adaptation saw
its initial development in [Diaz et al., 1997; Hecht and Mohammadi, 1997; Vallet, 1992];
it has since been used in a variety of research fields and a non exhaustive list of mesh
generators using this metric concept is: BAMG [“BAMG: Bidimensional Anisotropic Mesh
Generator”], BL2D [Laug and Borouchaki, 2003], YAMS [Frey, 2001], Feflo.a [Loseille
and Löhner, 2010], EPIC [Michal and Krakos, 2012], Forge3d [Coupez, 2000], Fun3d
[Jones, Nielsen, and Park, 2006], Gamanic3d [George, 2002], MAdLib [Compere et al.,
2010], MeshAdap [Li, Shephard, and Beall, 2005], Mmg3d [Dobrzynski and Frey, 2008],
Mom3d [Tam et al., 2000], Tango [Bottasso, 2004], LibAdaptivity [Pain et al., 2001]. For
a review on metric based mesh adaptation and the current state of the art, the reader is
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referred to [Alauzet and Loseille, 2016a] and references therein.

3.0.1 Overview of this chapter

This chapter reviews the metric-based mesh adaptation as it has been developed for use
in CFD applications. No new results are developed in this chapter, it merely summarizes
existing work on metric-based mesh adaptation and introduces the notation that will be
used later on.

After having introduced some notions from differential geometry, the continuous mesh
model will be presented. The discrete counterpart to the interpolation error in this con-
tinuous framework will then be introduced followed by an explanation on how discrete
meshes are derived from the continuous formulation.

3.1 Metrics in the context of mesh adaptation

3.1.1 Euclidean metric space

The inner product between two vectors u and v belonging to a RD spanned by basis vec-
tors (ei)i=1,...,D can be expressed as:

〈u,v〉 =

〈
D∑
i

uiei,
D∑
j

vjej

〉
(3.1)

=
D∑
i

ui

〈
ei,

D∑
j

vjej

〉
(3.2)

=

D∑
i

D∑
j

ui 〈ei, ej〉 vj . (3.3)

One can now define a matrixMwhose components mij are given by

mij = 〈ei, ej〉

which leads to the following definition of the inner product on a Euclidean metric space:

〈u,v〉M = 〈u,Mv〉 = uTMv. (3.4)

When the basis vectors ei are orthonormal the matrixM becomes the identity matrix as in
that case mij = 〈ei, ej〉 = δij . In this case, (3.4) is reduced to 〈u,v〉ID = uTIDv or

〈u,v〉ID =

D∑
i

uivi.

In the more general case however, where one does not necessarily have an orthonormal
basis, one needs to take into account this matrix M, which is called the metric tensor or
simply the metric.

Formally, the Euclidean metric space of dimension D is denoted as
(
RD,M

)
whereM

is a symmetric positive definite tensor that defines the inner product. M, represented by
a D ×D matrix, should have the following properties
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1. ∀(u,v) ∈ RD × RD, 〈u,v〉M = 〈v,u〉M (symmetric)

2. ∀u ∈ RD, 〈u,u〉 ≥ 0 (positive)

3. 〈u,u〉M = 0 ⇐⇒ u = 0 (definite)

The properties imposed onM ensure that it defines an inner product. This, in turn, means
that RD is now a normed vector space (RD, ||·||M) and a metric vector space (RD, dM(·, ·)).
The norm induced by the inner product will be

∀u ∈ RD, ||u||M =
√
〈u,u〉M,

and the distance function dM(·, ·) is given by

∀(u,v) ∈ RD × RD, dM(u,v) = ||v − u||M = `M(uv).

With the structure of the Euclidean metric space now in place, one can also compute vol-
umes and angles with respect to the metric tensorM. The volume of some bounded subset
K of a Euclidean metric space RD with respect toM is given by

|K|M =
√

detM|K|ID ,

and the angle between u and v, both non-zero vectors, is

cos (θM) =
〈u,v〉M
||u||M||v||M

.

While in the Euclidean metric space the length of the segment between u and v is just
the distance between these two points from a bird’s-eye view, this will not be the case in
Riemannian metric spaces which will be introduced shortly.

Geometric interpretation

The metric tensorM can be diagonalized as follows

M = RΛRT,

with R being the orthonormal matrix of eigenvectors and Λ the diagonal matrix with the
eigenvalues (λi)i=1,...,D ofM on the diagonal. The squared distance between two points a
and b with respect to the metricM can thus be written as

dM(a,b)2 = (b− a)TM(b− a) = (b− a)TΛ(b− a).

The unit ball BI about a point a is the set of points whose distance in the metric I (the
identity matrix) is equal to one. Obviously this will just be a circle in 2D, a sphere in 3D
etc. The unit ball BM at a point a of the domain Ω ⊂ RD can be defined as follows

BM(a) =

{
x ∈ Ω|

D∑
i=1

λi(xi − ai)2 ≤ 1

}

=

{
x ∈ Ω|

D∑
i=1

(
xi − ai
hi

)2

≤ 1

}
.
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h1 = λ
− 1
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− 1
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h2 = 1M−
1
2

I2M

FIGURE 3.1: Mapping corresponding to the metricM. On the left hi = λ
− 1

2
i

(λi being the eigenvalues ofM) and on the right hi = 1 (as the eigenvalues
of I2 are all equal to one).

BB will be an ellipsoid centered at a with the axes tilted according to the directions indi-

cated by the eigenvectors ofM and the size of each axis will be given by hi = λ
− 1

2
i . The

mapping from the unit ball BI to the unit ball BM is given byM−
1
2 , where:

M−
1
2 = RΛ−

1
2RT.

For example, in 2D one will obtain:

M−
1
2 =

[
v1 v2

] [ λ
− 1

2
1 0

0 λ
− 1

2
2

] [
v1 v2

]T
.

A graphic representation of this mapping in 2D between BI2 and BM is shown in Figure
3.1.

3.1.2 Riemannian metric space

Up until now the metric M has been treated as a constant. That restriction will now be
lifted and the metricM(x) is allowed to smoothly vary in the entire space. Such a space,
with a metric tensor varying smoothly from point to point, is known as a Riemannian
manifold. More precisely, a Riemannian manifold or Riemann space is a continuous man-
ifold Ω ⊂ RD endowed with a metricM(·) and is denoted by (x,M(x))x∈Ω. At each point
x of the manifold, the metricM(·) defines an inner product on the local tangent space TxΩ.
The tangent space TxΩ with the inner product defined byM(·) is a Euclidean metric space.
One can see a Riemannian manifold as an assembly of Euclidean metric spaces, deformed
in such a way that the global behaviour of this space is no longer that of a Euclidean metric
space.
For the application of mesh adaptation, the manifold will generally not be known. Only
the metric M(x) and the computational domain Ω ⊂ RD will be known. A simplified
space called a Riemannian metric space, denoted by M = (M(x))x∈Ω, will therefore be
used. This Riemannian metric space can be assimilated to a Cartesian surface embedded
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in a higher dimensional space RD+1. Such a Cartesian surface in RD+1 is defined as

S = (x1, x2, . . . , xD, σ(x1, x2, . . . , xD)),

where σ is a C2 scalar function defined on RD. The link between this surface S and the
Riemannian metric space (M(x))x∈Ω is clarified by a small example.

Example Take as the computational domain Ω =
{

(x, y) ∈ R2| − π
2 ≤ x, y ≤

π
2

}
and let

S ⊂ R3 be the Cartesian surface defined by

S =
{

(x, y, z) ∈ R3|z = σ(x, y) = sin(x2 + y2) with (x, y) ∈ Ω
}

This surface S, a Cartesian surface embedded in R3, is shown on the left in Figure 3.2.
Consider a curve γ on Ω, parametrized by t ∈ [0, 1] such that γ(t) = (x(t), y(t)) and let its
image on S be c(t). Thus c(t) can be written as

c(t) = (γ(t), σ(γ(t))) = (x(t), y(t), σ(x(t), y(t))),

and its length can be computed by

`(c) =

∫ 1

0

∣∣∣∣∣∣∣∣dc

dt
(t)

∣∣∣∣∣∣∣∣dt.
Dropping the dependence on t for ease of notation, one can now compute ||dc||2 on the
surface S:

||dc||2 = dx2 + dy2 + dz2 = dx2 + dy2 + (d(sin(x2 + y2)))2

= dx2 + dy2 +
(
4x2dx2 + 8xydxdy + 4y2dy2

)
(cos(x2 + y2))2

=
[

dx2 dy2
] [ 1 + 4x2(cos(x2 + y2))2 4xy(cos(x2 + y2))2

4xy(cos(x2 + y2))2 1 + 4y2(cos(x2 + y2))2

]
︸ ︷︷ ︸

M(x)

[
dx2

dy2

]

From this example one can see that the Riemannian structure induced by the surface S,
defined by the equation z = σ(x, y), is a metric space. This induced Riemannian metric
space is shown on the right in Figure 3.2 where at given points x the unit ball of the metric
M(x) is drawn. Furthermore it also becomes clear that computing the length of a seg-
ment on Ω (which is flat) with respect toM(x) will yield the same result as computing the
length of the image of this segment on the (curved) surface S.

In the context of mesh adaptation we will be computing the straight line parametriza-
tion of edges on Ω with respect to the metricM(x). The main idea of metric based mesh
adaptation is to adapt the mesh by controlling this metric. The above example made clear
that it is very straightforward to deduce the Riemannian metric space from the initial
curved surface. The inverse problem is not so easy, but that will be of little concern here as
the length of line segments on the curved manifold will never be computed; for our needs
however, the Riemannian metric space will be an adequate mathematical object.

As the metric on the Riemannian metric space varies smoothly, there are only local
definitions of distances, angles and volumes. One can however obtain global notions by
applying integration formulae. For example, the length of a line segment ab = b − a
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FIGURE 3.2: The surface S corresponding to z = σ(x, y) = sin(x2 +
y2) (left) and a visualisation of the Riemannian metric space M =
(M(x))x∈[−π2 ,

π
2 ]×[−π2 ,

π
2 ] on the right where the unit ball corresponding to

M(x) is plotted at different points (the size of the ellipses has been scaled
down to allow for easier visualization). The length of the path between two
points on Ω (right) computed w.r.t.M(x) is equal to the length of the curved

path projected onto the surface S (left).

parametrized by γ(t) = a + tab is computed by:

`M(ab) =

∫ 1

0
||γ′(t)||Mdt =

∫ 1

0

√
abTM(a + tab)ab dt.

Similarly, the volume of a bounded subsetK of the Riemannian metric space M = (M(x))x∈Ω

is computed by integrating:

|K|M =

∫
K

√
det(M(x)) dx.

And finally, the angle between two line segments uv and vw on (M(x))x∈Ω is defined by
the unique real value θ ∈ [0, π] satisfying

cos(θ) =
〈uv,vw〉M(v)

||uv||M(v)||vw||M(v)
.

This summarizes the basic properties of Riemannian metric spaces. The reader interested
in more details on this subject are referred to [Bottasso, 2004; Berger, Cole, and Levy, 1987a;
Berger, Cole, and Levy, 1987b; Berger, 2003].

3.2 Continuous mesh model

The Riemannian metric space can be seen as a continuous representation of a mesh. This
continuous mesh can be defined using the following two sets of equivalent variables [Lo-
seille and Alauzet, 2011a; Loseille and Alauzet, 2011b]:

(R(x), h1(x), . . . , hD(x)) or (R(x), d(x), r1(x), . . . , rD−1(x)),
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where R is again the matrix containing the eigenvectors ofM. Remember that, sinceM
is symmetric positive definite, its spectral decomposition exists and is given by:

M(x) = R(x)Λ(x)RT(x)

with Λ the diagonal matrix of eigenvalues λi. As hi = λ
− 1

2
i , the metric M(x) can be

completely defined by the set of variables (R(x), h1(x), . . . , hD(x)).
Alternatively, the second set of variables, called local variables, defines the continuous
mesh in terms of the anisotropy ratios ri(·), the mesh density d(·) and P defined by:

P =
D−1∏
i=1

ri, (3.5)

The anisotropy ratios ri are computed as follows:

ri = hi

(
D∏
k=1

hk

)− 1
D

, (3.6)

and d is the mesh density defined as:

d =
1∏D

k=1 hk
=

√√√√ D∏
k=1

λk. (3.7)

Using the anisotropy ratios and the mesh density, hi can be expressed as:

hi = d−
1
D ri with i = 1 . . . D − 1,

and hD as

hD = d−
1
DP−1.

M(x) can then be expressed in a second set of variables:

M(x) = d2/D(x)R(x)

 r−2
i (x)

. . .
r−2
D (x)

RT(x).

With this formulation, the anisotropy ratios and density of the mesh have been decou-
pled. The mesh density d affects the local accuracy of the mesh without influencing the
anisotropy. One can furthermore define the complexity C of M:

C(M) =

∫
Ω
d(x)dx =

∫
Ω

√
det(M(x))dx.

This complexity can be seen as the continuous equivalent of the number of vertices in
the discrete mesh and is a fundamental notion when formulating and solving the mesh
adaptation problem.
To go from the continuous representation of a mesh by means of the Riemannian metric
to a discrete mesh on which the problem under consideration can be solved, one more
step is needed: the notion of unit elements and a unit mesh. In what follows, we will discuss
how one can generate a discrete object, the adapted anisotropic mesh, from the continuous
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object of the Riemannian metric.

3.2.1 From Riemannian metric spaces to anisotropic unit meshes

The principal idea of metric based mesh adaptation is to construct a unit mesh in the
Riemannian metric, which will then translate to an adapted, anisotropic mesh in the Eu-
clidean space. Such a unit mesh will be uniform and isotropic in the Riemannian metric
space, but upon transformation to the Euclidean space will yield an adapted and anisotropic
mesh.

In order to understand what a unit mesh is, it is best to begin by defining what a unit
element is.

Definition 3.2.1. Let K be a mesh element, then K is called unit with respect to the metricM is
all its edge lengths are unit in the metricM.

A triangle in 2D or a tetrahedron on 3D is considered a unit element if for each edge ei
(i = 1, · · · , 3 in 2D, i = 1, · · · , 6 in 3D) the following holds:

`M(ei) = 1 with `M(ei) =
√

eTiMei. (3.8)

A mesh where all elements are unit elements is called a unit mesh; in practice how-
ever, one can only obtain quasi-unit meshes. This is due to the fact that a mesh filling
the computational domain Ω composed of unit elements may not exist. To circumvent
this problem of existence, one can relax the definition of unit mesh to: a mesh where all el-
ements are quasi-unit with respect to a Riemannian metric space M. Instead of demanding the
length of the edges of each element be 1 in the given Riemannian metric space, we want
the lengths of all edges ei of a quasi-unit element to fall within the interval:

`M(ei) ∈
[

1√
2
,
√

2

]
∀i.

Note that only controlling the edge sizes of mesh elements does not exclude zero-volume
elements where the element collapses onto itself. This can be avoided by adding a con-
straint on the volume of the elements. Rather than imposing some minimal volume, one
usually imposes a minimal quality of the element QM which indirectly also works as a con-
straint on the volume. In 3D, the quality of a tetrahedron K is defined as:

QM(K) =
36

3
1
3

|K|
2
3
M∑6

i=1 `
2
M(ei)

Definition 3.2.2. An element K is said to be quasi-unit with respect toM(x) if the length of all
its edges ei satisfy

`M(ei) ∈
[

1√
2
,
√

2

]
,

and

QM(K) ∈ [α, 1] with α > 0.

The following definition for a quasi-unit mesh can now be formulated.

Definition 3.2.3. Let H be a discrete mesh of the domain Ω ⊂ RD, then H is unit with respect to
the Riemannian metric space (M(x))x∈Ω is all its elements are quasi-unit.
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Discrete Continuous
element K M(x)

meshH M = (M(x))x∈Ω

# vertices N C(M)

orientation R(x)

stretching ri(x)

element size d(x)

TABLE 3.1: Continuous-discrete duality

Such a unit mesh composed of such quasi-unit elements can always be created in the
given Riemannian metric space [Loseille and Alauzet, 2011a].

There exists a bijection between the continuous and the discrete framework, the ele-
ments of this duality are summarized in Table 3.1. The previous section has emphasized
the role of metric tensors and Riemannian metric spaces as useful mathematical tools to
prescribe sizes and directions to adaptive meshers. Additionally, these differential geom-
etry notions are more than just a simple tool for mesh generation. Indeed, the Riemannian
metric spaces can be seen as continuous models representing meshes. The fundamental
consequence is that all kind of mathematical analysis can be performed using such spaces
for which powerful mathematical tools are available. In practice however, the problem
at hand is solved on a discrete mesh and the resulting solution will be a discrete solu-
tion. Hence the continuous solution, gradient and Hessian are obtained using derivative
recovery methods as L2 projection of Green’s formulat (see [Zienkiewicz and Zhu, 1992a;
Zienkiewicz and Zhu, 1992b]).

3.3 Continuous linear interpolation error

The previous section introduced the Riemannian metric space and gave some hints as to
its use for mesh adaptation. The linear interpolation error ||u − Πhu||L1(Ωh) will be used
to drive the mesh adaptation. In this formulation, Πh is the linear interpolation operator,
defined by a unit mesh H on a discretized domain Ωh. However, this discrete form of the
interpolation error is not directly amenable to the adaptation of a continuous mesh. In [Lo-
seille and Alauzet, 2011a] a well-posed continuous linear interpolation operator πM was
defined in order to overcome this. The subscriptM in the continuous interpolation opera-
tor indicates that the interpolation is done with respect to the continuous mesh (M(x))x∈Ω.
The resulting continuous linear interpolation error ||u− πMu||L1(Ω) is a reliable model for
||u−Πhu||L1(Ωh).

In the case where u is a nonlinear twice differentiable function pertaining to some func-
tion space H(Ω), and Hu(x) its Hessian, then [Loseille and Alauzet, 2011a] show that the
continuous linear interpolation error estimate in the 3D case is

∀x ∈ Ω, eM(x) = |u− πMu|(x) =
1

20
trace

(
M(x)−

1
2 |Hu(x)|M(x)−

1
2

)
(3.9)

=
1

20

3∑
i=1

h2
i (x)vT

i (x)|Hu(x)|vi(x), (3.10)
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and in the 2D case

∀x ∈ Ω, eM(x) = |u− πMu|(x) =
1

8
trace

(
M(x)−

1
2 |Hu(x)|M(x)−

1
2

)
(3.11)

=
1

8

2∑
i=1

h2
iv

T
i (x)|Hu(x)|vi(x), (3.12)

where |Hu| is obtained by taking the absolute value of the eigenvalues of Hu.
Relations (3.10) and (3.12) can be cast into the more general form of the following error

model:

eM =

(
D∑
i=1

hβi γi

)α
(3.13)

with γi(x) = |vi(x)THu(x)vi(x)|. Taking α = 1 and β = 2 will yield, up to a constant, the
previous expression.

Furthermore, using the anisotropy ratios ri and mesh density d defined in (3.6) and
(3.7) respectively, a simple change of variables leads to:

eM(x) =
1

20

(
d(x)−

2
3

3∑
i=1

ri(x)
2
3 vT

i (x)|Hu(x)|vi(x)

)
, (3.14)

and

eM(x) =
1

8

(
d(x)−1

2∑
i=1

ri(x)vT
i (x)|Hu(x)|vi(x)

)
. (3.15)

In the same way, (3.13) can be rewritten as

eM = d−
αβ
D

(
D−1∑
i=1

rβi γi + P−βγD

)α
. (3.16)

The importance of this change of variables will become clear in the next section where the
computation of optimal meshes is explained.

3.4 Defining the optimal mesh

In this context, the mesh adaptation problem can easily be formulated as an optimization
problem where we seek the optimal mesh that minimizes the continuous error model:

Find MLp = argmin
M

Ep(M) =

(∫
Ω
epMdx

) 1
p

=

(∫
Ω

(u− πMu)pdx

) 1
p

(3.17)

under the constraint

C(M) =

∫
Ω

(
D∏
i=1

hi

)−1

dx = N. (3.18)
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The advantage of having a continuous formulation is that all the mathematical tools avail-
able for convex optimization are at our disposal.

By rewriting the optimization problem in terms of the variables ri and d, one obtains

MLp = argmin
((ri)i=1,...,D,d)

∫
Ω
d−

αβp
D

(
D−1∑
i=1

rβi γi + P−βγD

)αp
dx subject to

∫
Ω
d dx = N. (3.19)

The change of variables has two advantages: firstly, the constraint C(M) = N is now linear
in the variable d, making it a convex problem, and secondly, the problem is decoupled into
a global and a local problem. After solving for the optimal local anisotropy ratios, one can
find the optimal density d independently afterwards.

Hence, the optimization problem can be solved analytically [Loseille, 2008] and the
resulting optimal metric is:

MLp = N
2
D

(∫
Ω

det(|Hu|)
p

2p+D

)− 2
D

det(|Hu|)
−1

2p+D |Hu|. (3.20)

From this optimal metric, a quasi-unit discrete mesh can then be generated which will
capture the anisotropy of the physics of the problem. For a more in-depth treatment of this
process, interested readers are referred to [Frey and George, 2007; Loseille, 2008; Loseille,
Dervieux, and Alauzet, 2010; Loseille and Alauzet, 2011a; Loseille and Alauzet, 2011b].

In the context of UQ, the stochastic response we try to approximate on the stochas-
tic space is not directly the solution of some physical phenomenon. The QoI is rather a
functional of some physical solution, parametrized by random variables. Nevertheless
the metric-based mesh adaptation approach can be used to construct a surrogate model of
the stochastic response. In the next chapter an extension of metric-based mesh adaptation
to the stochastic space will be presented, the utility of such a method will be discussed and
its performance will be evaluated.
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Chapter 4

Metric-based stochastic error control

4.1 Introduction

Popular UQ methods such as Stochastic Galerkin (SG), Polynomial Chaos Expansions
(PCE) and Stochastic Collocation (SC), are highly efficient when the Quantity of Interest
(QoI) response is sufficiently smooth. However, in the case where the stochastic response
is of low regularity and exhibit discontinuities, these global polynomial approximations
are not a good choice as they suffer from Gibbs oscillations. In order to address this defi-
ciency, the Multi-Element gPC (ME-gPC) method [Wan and Karniadakis, 2005; Wan and
Karniadakis, 2006], and Multi-Element Probabilistic Collocation Method (ME-PCM) [Foo,
Wan, and Karniadakis, 2008; Foo and Karniadakis, 2010], were devised. These methods
split the parameter space into rectangular subdomains on which a local polynomial ap-
proximation is constructed. While some anisotropy can be achieved, unless the disconti-
nuities run along one of the principal axes, this rectangular subdivision will not be able to
capture these discontinuities. The degrading effects will still be present in the elements tra-
versed by the discontinuities. Furthermore, these ME methods place the samples follow-
ing a tensor structure resulting in a fast increase in the number of samples as the number of
elements increases and on top of that, not all samples may be reused after the splitting of
an element. Most of these problems are alleviated in the Minimal Multi-Element Stochas-
tic Collocation (MME-SC) method [Jakeman, Narayan, and Xiu, 2013], which relies on
elements of irregular shapes where a discontinuity detector is used to split the parametric
space into a minimal number of elements defined by the discontinuities. Moreover, these
numerical techniques are often applied to problems with complex functionals but simple
unimodal and smooth underlying probability measures that do not account for multivari-
ate correlated inputs.
In an attempt to cure Gibbs phenomena, the use of a multi-wavelet instead of polyno-
mial basis has been proposed [Le Maıtre et al., 2004a; Le Maıtre et al., 2004b] along with an
h−refinement technique using hypercubes, similar to the aforementioned ME-gPC method.
A different decomposition is proposed with the Simplex-Stochastic Collocation (SSC) method
[Witteveen, Loeven, and Bijl, 2009], a stochastic finite element–type method which uses
a Newton-Cotes quadrature in (non hypercube) simplex elements. Gibbs oscillations are
avoided using Local-Extremum Conserving limiter while later developments include higher
order interpolation by use of Essentially Non-Oscillatory (ENO) stencils [Witteveen and
Iaccarino, 2013a], subcell resolution [Witteveen and Iaccarino, 2013b], applications to non-
hypercube domains [Witteveen and Iaccarino, 2012b] and higher dimensional problems
[Witteveen and Iaccarino, 2010; Edeling, Dwight, and Cinnella, 2016].

Most of these adaptive methods use refinement criteria that are heuristics and require
tuning to specific problems. More rigorous refinement criteria making use of dual-based

Chapter partially based on Van Langenhove J., Lucor D., F. Alauzet and A. Belme. "Goal-oriented control
of stochastic system approximations using metric-based anisotropic adaptation". (to be submitted to Journal
of Computational Physics).
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a posteriori error estimates in the stochastic space were developed in [Mathelin and Le
Maître, 2007; Butler, Dawson, and Wildey, 2011; Butler, Constantine, and Wildey, 2012;
Bryant, Prudhomme, and Wildey, 2015].

Whenever possible, one would like the adaptation technique to work out of the box
for any problem. An error estimator driving the adaptation process is therefore preferable
over a, possibly problem dependent, heuristic adaptation criterion that requires choosing
and tuning extra parameters.

In this chapter an extension of the metric-based mesh adaptation technique introduced
in Chapter 3 to the parametric space is proposed. The idea will be to make use of a power-
ful mathematical framework for efficient anisotropic multivariate parametric refinements.

The stochastic response is then approximated on the optimized mesh using a tessella-
tion of linear simplex/tetrahedron elements, well adapted for discontinuous responses. In
this respect it resembles the SSC method which uses a similar discretization. In contrast,
the method proposed here will, by controlling the interpolation error, drive h−adaptivity
in the parametric space using metric-based adaptation.

While this clear choice for h−adaptivity in the parametric space nullifies the need for
user-chosen refinement parameters typical of hp−adaptive methods, it also means that in
the case of highly regular response surfaces, this method will not have the benefit of the
superconvergence brought by p−refinement in those situations.

This chapter starts with the formal setup of our stochastic problem while the stochastic
error estimate for both the discrete and continuous framework is proposed in Section 4.2.
Next, the optimal stochastic mesh as the solution to an optimization problem is computed
in Section 4.3. The adaptive strategies and a review of the Simplex-Stochastic Collocation
method are outlined in Section 4.4. In Section 4.5.1 the proposed approach is validated in
stochastic test functions and the fluid mechanical piston problem. A short conclusion ends
this chapter.

4.2 Formal error estimation

An abstract model formulation is first considered in this section. It consists of a boundary-
value problem defined on an open bounded domain Ωx ⊂ RDx with Dx the dimension of
the physical space. Furthermore, we suppose our problem depends on several uncertain
parameters that will be defined as random variables. We therefore introduce a probabil-
ity space (Ωξ,B,P) where Ωξ is the sample space, B is a σ-algebra and P the probability
measure. We denote ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξDξ

(ω)) the vector of random variables that
is sufficient to quantify our set of uncertain parameters, where ω ∈ Ωξ and Dξ represents
the dimension of the random input space. Throughout this manuscript, it will be assumed
that the random input can be represented by a finite-dimensional probability space (the so
called finite-dimensional noise assumption). This ensures that the input can always be rep-
resented by a finite-dimensional set of random variables ξ(ω). Furthermore let ρξ denote
the joint probability density function of ξ and let Ξ be the parameter space to which the ξ’s
belong. Each realization in the probability space corresponds, by a mapping defined by
the probability density function of the random variables, to a parameter value. In short:
ξ ∈ Ξ ≡

∏Dξ

i=1 Ξi where Ξi is the image of ξi(Ωξ).
Thus, for a particular set of parameters ξ(i), the model problem can be cast in the following
abstract form:

Ψ(ξ, w(ξ,x)) = 0 (4.1)
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where Ψ is a state equation (for example a steady Navier-Stokes or Euler system) having
w(ξ,x) for exact solution. As we will see in the following, the “exact" wording does not
refer to a finite and fixed solution – as it is a random quantity – but designates the refer-
ence solution that is free of numerical errors. Indeed, the exact solution of a model is often
out of reach for real-life engineering applications, and one has to rely on approximate nu-
merical methods in order to approach it. For instance, for the previously introduced set of
parameters ξ(i), we may have a numerical tool that is capable of solving the correspond-
ing deterministic discrete problem on a given spatial discretization Hhx , and produce an
approximate solution of Ψ(ξ(i), w(ξ(i),x)) = 0 at the expense of a certain computational
cost, i.e.:

Ψhx(ξ(i), whx(ξ(i),x)) = 0, (4.2)

withwhx the deterministic discrete solution associated to sample ξ(i) and solved on a mesh
Hhx . As will be seen later, there obviously exists an implicit dependence or “coupling"
between the choice of an adequate spatial discretization and the parameter value. For
instance, certain parametric values might drastically affect the flow regime which will re-
quire an adequate mesh adaptation in order to produce a valid and reliable numerical
approximation of the solution.
Here, we will be more interested in an accurate approximation of a scalar quantity of in-
terest (QoI) j that is computed from the solution w(ξ,x) (and therefore depends on the
uncertain random vector ξ), than in the solution of the problem itself. We define our QoI
sample obtained from the solution of the deterministic model built for the set of parame-
ters ξ(i) and a given spatial discretizationHhx as:

j(ξ(i)) = J
(
ξ(i), whx(ξ(i),x)

)
, (4.3)

where J is the observation operator. Point-wise evaluations of the QoI are limited in prac-
tice as each evaluation involves a costly simulation. Predictions of j for new parametric
values or statistical information (e.g. moments) of interest related to j may be more ef-
ficiently computed from a continuous approximation, a surrogate model, which is built
across the span of the ξ parametric range. One way to construct these approximations is
via a discretizationHhξ of the multivariate stochastic (uncertain parameter) space.
The random input space will be discretized using the metric-based approach presented in
the previous chapter. This discretization relies a finite number of samples (or design of
experiments (DoE)) which are mapped through the deterministic model and the surrogate
stochastic model for j is built from the computations on these samples:

jhξ(ξ) = Jhξ
(
ξ, whx(ξ,x)

)
. (4.4)

We can thus define the total error committed on our QoI for a certain set of parameters:

δj(ξ) ≡ j − jhξ = J(ξ, w)− Jhξ(ξ, whx). (4.5)

where Jξ(ξ, wh) denotes the approximate QoI.
The exactness of the QoI thus depends on two components:

1. on the deterministic discrete solution whx(ξ) error and its choice of spatial discretiza-
tionHhx ,

2. on the stochastic error committed by discretizing the stochastic spaceHhξ and build-
ing the surrogate model Jhξ .
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Usually the two sources of error, deterministic and stochastic, are treated separately, and
an error control strategy is applied either in the deterministic approximation space (e.g.
mesh control/adaptation) [Venditti and Darmofal, 2003; Fidkowski and Darmofal, 2011;
Loseille, 2008; Palacios et al., 2012] or into the stochastic approximation space [Mathelin
and Le Maître, 2007; Witteveen, Loeven, and Bijl, 2009; Butler, Dawson, and Wildey, 2011].
However, the interplay between the errors as well as which one dominates the computa-
tion of j remain very important questions which will be addressed later in this thesis.
In order to give some elements of answer, we first split the total error in two contributions:

δj(ξ) = J(ξ, w)− J(ξ, whx)︸ ︷︷ ︸
ε(hx,hξ)

+ J(ξ, whx)− Jhξ(ξ, whx)︸ ︷︷ ︸
η(hx,hξ)

. (4.6)

where J(ξ, whx) only accounts for errors introduced by the deterministic approximation of
j. While both error contributions, (ε, η) are random quantities depending on ξ, we assume
that they will be controlled (in a complementary fashion) in the different approximation
spaces: – ε will be controlled via deterministic refinement (at given hξ) and – η will be
controlled via stochastic refinement (at given hx).

In practice, δj being a random quantity, we will be interested in lowering the average
QoI total error, that we express as:

δj ≡ E [δj(ξ)] = E [ε]︸︷︷︸
ε

+E [η]︸︷︷︸
η

(4.7)

In this chapter, we will focus on controlling η using h−refinement on the stochastic space.
The control of both contributions will be the subject of the next chapter.

4.2.1 Stochastic error estimate

The stochastic error contribution in (4.6) will be controlled through the Lp norm of the
interpolation error.

We propose an error estimate of the numerical approximation of the solution in the
parametric space inspired by the previous developments. Motivated by the need for
anisotropic information, we wish to deploy the notion of Riemannian metric field in the
stochastic space. For the type of applications we consider, it is common knowledge that
the dependence of the QoI on the random variables is anisotropic as we often encounter
singularities and sharp response gradients. To this purpose, following [Loseille, 2008] we
will control the stochastic error through the Lp norm of the interpolation error∥∥J(ξ, whx)− πhξJ(ξ, whx)

∥∥
Lp(Ξ)

where πhξ is the (linear) interpolation operator in the parameter space. For the purpose of
this manuscript we will focus on the L1 norm of the interpolation error in the stochastic
space. This is a purely practical choice, well adapted for approximation of potentially dis-
continuous solutions, but there is no restriction in using a different p-norm.

For deterministic problems, this kind of approach has been proposed to capture all the
scales/singularities of the system, and has been applied to deterministic CFD problems
[Loseille, 2008]. In this case, a sensor is defined (for CFD applications a sensor will be a
prescribed field: density, Mach, ...) and some norm of the interpolation error associated
to the sensor is controlled by anisotropic mesh refinement. Several differences appear
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naturally when transposing this approach in the stochastic context, leading to a different
interpretation. First, what plays the role of the sensor in our case is the stochastic scalar
QoI j. In a deterministic context, this would be seen as a scalar quantity for each DoE and
would not be controlled directly. Instead one would have to make use of an adjoint-based
approach as described in the previous section. Second, the Lp norm of the interpolation
error of j on the parameter space, now equipped with a probability measure P , introduces
the parameters probability density function in the formulation:

η̄ = E [η] =

∫
Ξ
|J(ξ, whx)− πhξJ(ξ, whx)|ρξdξ, (4.8)

where ρξ is again the joint probability density function (pdf) of ξ. The probability density
function acts as a weighting of the interpolation error, but the formulation is more straight-
forward than a deterministic goal-oriented one as it does not involve an adjoint solution.
The fact that Ehξ→0 [η] → 0 will insure a convergence in the mean of the (piecewise linear)
interpolated surrogate. Thanks to Markov’s inequality, this convergence in the mean will
insure that it converges in probability, which in turn implies convergence in distribution.
Moreover, triangle inequality1 will insure that the mean value of the surrogate will con-
verge to the exact QoI mean j̄ ≡ E[J ] at least as fast as the expectation of the interpolation
error, i.e.: ∣∣j̄ − E[πhJ ]

∣∣ ≤ E [η] . (4.10)

4.3 Stochastic continuous model

The Estimate (4.8) in the continuous framework of Riemannian metric spaces was derived
in Chapter 3 and is recalled here:

Eξ(M) =

∫
Ξ

trace
(
M−

1
2 (ξ) Hj(ξ)M−

1
2 (ξ)

)
dξ (4.11)

where in this case:
Hj(ξ) = ρξ ·H(j(ξ))

with H(j(ξ)) the Hessian matrix of j(ξ) of size Dξ ×Dξ.

The stochastic optimisation problem is then formulated as follows:

Find Mopt
ξ = argmin

M
Eξ(M), subject to C(M) = Nξ (4.12)

where Nξ denotes a given number of samples (or CFD computations) which corresponds
to a targeted computational effort constraint. The notation Mopt

ξ holds for the optimal met-
ric that minimises the expectation of the continuous interpolation error in the parameter
space. We will use this metric to build a simplex tessellation of the parameter space, which
is, roughly the mesh associated with Ξ.

1This is sometimes called the reverse triangle inequality:∣∣‖a‖ − ‖b‖∣∣ ≤ ‖a− b‖ . (4.9)
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LetH(j(ξ)) denote the Hessian of the stochastic response, then the optimal stochastic met-
ric, solution to the optimisation problem (4.12) can be written as :

Mopt
ξ = N

2
Dξ

ξ

(∫
Ωξ

det(ρξ|H(j(ξ))|)
1

2+Dξ dξ

)− 2
Dξ

det(ρξ|H(j(ξ))|)
− 1

2+Dξ |ρξH(j(ξ))|

(4.13)

and the error estimate on this optimal metric is given by:

Eopt
ξ (Mopt

ξ ) = DξN
− 2
Dξ

ξ

(∫
Ξ

det(ρξ|H(j(ξ))|)
1

2+Dξ dξ

) 2+Dξ
Dξ

︸ ︷︷ ︸
Kξ

(4.14)

In what follows, where we will explain how these results were obtained, the subscript ξ
will be dropped for ease of notation.

We recall that the model for the continuous interpolation error on a continuous mesh
M(·) introduced in Chapter 3 was given by (3.13):

eM =

(
D∑
i=1

hβi γi

)α

where D is the number of dimensions of the domain, α and β are parameters of the er-
ror model, hi(·) are the local edge lengths in each dimension, γi(·) = |vi(ξ)TH(ξ)vi(ξ)|
where (vi)i=1,...,D are the principal directions ofM and H is the Hessian of the function
we are approximating. These γi’s are positive scalars that reflect the alignment between
the directions of the continuous mesh (vi)i=1,...,D and the Hessian Hu.

As explained in Section 3.2, We recall that one can define a mesh using the anisotropy
ratios ri (defined in (3.6)) and mesh density d (defined by (3.7)). In these variables, the
error model can be formulated as:

eM = d−
αβ
D

(
D−1∑
i=1

rβi γi + P−βγD

)α
. (4.15)

This reformulation has the advantage of making the optimization problem a convex one
which is decoupled into a global and a local problem.

An important fact in the optimization of the mesh in this case is that the optimization
takes place on the stochastic space and that the variables ξi(ω) are random variables per-
taining to the probability space (Ωξ,B,P). Consequently, one should take the probability
measure into account in the optimization problem. The optimal mesh will be defined as
the mesh for which the expectation of the error to the pth power is minimal (this is anal-
ogous to minimization in the Lp norm in the deterministic case). This expectation can be
worked out further as

Ep = E[epM] =

∫
Ξ
epMdP =

∫
Ξ
epMρξdξ. (4.16)
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After substituting the error model (4.15) into (4.16), the optimal mesh in the L1 norm
can be found by solving the following optimization problem:

Mopt
ξ = argmin

((ri)i=1,...,D,d)

∫
Ξ
d−

αβp
D

(
D−1∑
i=1

rβi γi + P−βγD

)αp
ρξdξ subject to

∫
Ξ
d dξ = Nξ.

(4.17)

4.3.1 Formal resolution

Let scalar λ̃ denote a Lagrange multiplier, and C the constraint, then the augmented La-
grangian for this minimization problem is

L(r1, . . . , rD, d, λ̃) = E[epM] + λ̃C

=

∫
Ξ
d−

αβp
D

(
D−1∑
i=1

rβi γi + P−βγD

)αp
ρξdξ + λ̃

(∫
Ξ
d dξ −N

)
.

(4.18)

The variation of Ep can be approximated by

δEp(M; δM) = lim
ε→0

1

ε

(∫
Ξ
epM+εδM −

∫
Ξ
epM

)
≈
∫

Ξ
lim
ε→0

epM+εδM − e
p
M

ε

≈
∫

Ξ

∂epM
∂M

δM,

while the variation of the constraint will be zero as N is a constant:

δC(M; δM) = lim
ε→0

1

ε

(∫
Ξ

(d+ εd)−
∫

Ξ
δd

)
=

∫
Ξ
δd = 0.

As the necessary conditions for a minimum are δL(ri; δri) = 0, δL(d; δd) = 0 and δL(λ; δλ) =
0, the following optimality conditions can be formulated:

δL(ri; δri) =
∫

Ξ αβp d
−αβp

D

(
rβ−1
i γi − P−β

ri
γD

)(∑D−1
j=1 rβj γj + P−βγD

)αp−1
ρξδridξ = 0 ∀δri

δL(d; δd) =
∫

Ξ
−αβp
D d−

αβp+D
D

(∑D−1
j=1 rβj γj + P−βγD

)αp
ρξδddξ + λ̃

∫
Ξ
δddξ︸ ︷︷ ︸

=δC(d;δd)=0

= 0 ∀δd

δL(λ̃; δλ̃) =

(∫
Ξ
ddξ −N

)
︸ ︷︷ ︸

C(M)

δλ̃ = 0 ∀δλ̃

(4.19)

The third condition is again the constraint from the original formulation of the optimiza-
tion problem. By solving for the first two conditions, whilst taking the constraint into
consideration, one can find the expressions for the optimal anisotropy ratios (ri)i=1,...,D

and density d.

In the next paragraphs the necessary conditions for the solution will be derived by
proposing valid functions for δd and δri.
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Optimal anisotropy ratios (δL(ri; δri) = 0): In order to find the optimal anisotropy ra-
tios, choose δd = 0, and rk = 0 for k 6= i. Since for all i the functions d, ri, γi, P , ρξ and
the constants α, β and p are strictly positive, solving for the first condition comes down to
requiring the middle factor to be zero:

δL(ri; δri) =

∫
Ξ
αβp d−

αβp
D

(
rβ−1
i γi −

P−β

ri
γD

)
︸ ︷︷ ︸

=0

n−1∑
j=1

rβj γj + P−βγD

αp−1

ρξδridξ = 0 ∀δri

Requiring

rβ−1
i γi −

P−β

ri
γD = 0,

yields for ri

ri =

(
γD
γi

) 1
β

P−1 for i = 1, . . . , D − 1.

One can now inject the above expression into the definition of P =
∏D−1
i=1 ri, which yields

P = γ
D−1
β

D

D−1∏
j=1

γj

− 1
β

P 1−D ⇒ P = γ
1
β

D

(
D∏
k=1

γk

)− 1
Dβ

for i = 1, . . . , D − 1. (4.20)

Finally, substituting this result back in the expression for ri obtained previously, one finds
the optimal ratios of anisotropy:

ri = γ
− 1
β

i

(
D∏
k=1

γk

) 1
Dβ

for i = 1, . . . , D − 1 (4.21)

Note that the probability density function does not intervene here, the result for the op-
timal anisotropy ratio is exactly the same as the one found by [Loseille and Alauzet, 2011b].

Optimal density (δL(d; δd) = 0): Choose δri = 0 for all i, the second condition then
becomes:

δL(d; δd) =

∫
Ξ

−αβp
D

d−
αβp+D
D

D−1∑
j=1

rβj γj + P−βγD

αp

ρξδddξ + λ̃

∫
Ξ
δddξ︸ ︷︷ ︸

=δC(d;δd)=0

= 0 ∀δd

(4.22)
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The second term in (4.22) needs to be zero because the number of samples N is fixed, thus
δC should be zero. Therefore, the following two conditions need to be satisfied:

∫
Ξ

−αβp
D

d−
αβp+D
D

D−1∑
j=1

rβj γj + P−βγD

αp

ρξ︸ ︷︷ ︸
∂e
p
M
∂d

ρξ

δddξ = 0, ∀δd

∫
Ξ
δddξ = 0, ∀δd.

From this we can conclude that ∂epM
∂d ρξ should be constant. Thus there should exist a con-

stant K1 such that

−αβp
D

d−
αβp+D
D

D−1∑
j=1

rβj γj + P−βγD

αp

ρξ = K1.

Using (4.20) and (4.21) we can rewrite the expression in the between the parenthesis above
as:

D−1∑
j=1

rβj γj + P−βγD =

D−1∑
j=1

( D∏
k=1

γk

) 1
Dβ

γ
−1
β

j

β γj +

γ 1
β

D

(
D∏
k=1

γk

) −1
Dβ

−β γD
=

D∑
j=1

(
D∏
k=1

γk

) 1
D

= D

(
D∏
k=1

γk

) 1
D

.

This means that d should verify

d = K2

 D∏
j=1

γj


αp

αβp+D

ρ
D

αβp+D

ξ . (4.23)

We can now inject the above expression for d into the constraint and solve for the constant
K2:

C(M) =

∫
Ξ
d dξ = K2

∫
Ξ

 D∏
j=1

γj


αp

αβp+D

ρ
D

αβp+D

ξ dξ = N,

from which we deduce for K2 the following expression:

K2 = N

∫
Ξ

 D∏
j=1

γj


αp

αβp+D

ρ
D

αβp+D

ξ dξ


−1

.

We can now obtain the optimal density d by substituting the above result into (4.23):

d = N

∫
Ξ

 D∏
j=1

γj


αp

αβp+D

ρ
D

αβp+D

ξ dξ


−1 D∏

j=1

γj


αp

αβp+D

ρ
D

αβp+D

ξ . (4.24)
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Optimal solutions Now that the optimal anisotropy ratio’s (ri)i=1,...,D have been found,
the expressions for the optimal hi and λi (the optimal edge lengths) can be deduced. From
these, one can then derive the expressions for the optimal metric Mopt and the error es-
timate on the optimal mesh. The details of this operation are similar to the optimal goal-
oriented metric given in [Loseille, 2008], and the results are summarized below.

Optimal weighted metric when α = 1, β = 2, p = 1 is found to be

Mopt = N
2
D

(∫
Ξ

(det(ρξ|H|)
1

2+D dξ

)− 2
D

(det(ρξ|H|))
−1

2+D |ρξH|, (4.25)

and the expectation of the continuous interpolation error is given by

E[eMopt ] = DN−
2
D

∫
Ξ

 D∏
j=1

ρξγj

 1
2+D

dξ


2+D
D

. (4.26)

Similar results to (4.25) and (4.26) have been found by [Loseille, 2008] in the determin-
istic context a of goal-oriented optimal metric. Here however, it is the probability density
function ρξ that acts as a weighting instead of an adjoint state related to the quantity of
interest in the goal-oriented case.

This allows us to exploit the existing numerical tools for both the deterministic and
stochastic metric-based mesh adaptation. In this thesis, METRIX [Alauzet and Loseille,
2009] will be used for the computation of the metricMhξ while FEFLO [Loseille and Löh-
ner, 2010] will be used to generate a discrete mesh Hhξ form the optimal metric. In this
process, estimate (4.26) will be used as indication for the estimated interpolation error.

4.4 Stochastic adaptive strategy

In practice, the problem of deriving an optimal mesh is a nonlinear problem that is solved
iteratively using a fixed-point loop in order to converge the couple (mesh, solution).

In a deterministic context, this iterative procedure means that at each fixed-point itera-
tion, a new mesh with a new topology is built. However, for computational cost reasons, it
is obvious that in the stochastic context we cannot afford to not reuse information already
available. Thus, once a sample has been added to the mesh (this corresponds to a new
CFD computation), it will be kept throughout all subsequent iteration loops. The adapta-
tion process used to control the stochastic error E[eM] is detailed in Algorithm 1, each cycle
of the algorithm corresponds to the resolution of one optimisation problem with a fixed
number of required samples. The notation used in Algorithm 1 is as follows: the iteration
count index will be l and will appear as a subscript. As such {ξ}l is the set of samples at
iteration l,Hξ,l is the discrete mesh on the parametric domain at iteration l containing Nξ,l

vertices. The superscript t indicates a target quantity, for example Ctξ is the target complex-
ity of the mesh on the parametric domain at iteration l. This target complexity is passed
on to the meshing code which, based on the computed optimal metricMopt, constructs a
discrete mesh with the specified complexity.

4.4.1 Simplex-Stochastic Collocation

Since the error estimate used to drive mesh adaptation is based on the interpolation error
resulting from a linear interpolation, a piecewise linear approximation will be used as the
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Algorithm 1 Optimisation of stochastic discretization

Generate (or read) initial samples {ξ}0 and form initial mesh Hξ,0 containing Nξ,0 ver-
tices by a Delaunay triangulation.
Compute j0({ξ}0) for this DoE.
Set target complexity Ctξ = N t

ξ > Nξ,0.
for l = 1 to nadap do

Compute optimal metricMopt
ξ,l for complexity Ctξ = N t

ξ based numerical approxima-
tion constructed on previous meshHξ,l−1.

Generate new meshHξ,l fromMopt
ξ,l containing Nξ,l = Nξ,l−1 +Nnew

ξ,l samples.

Run deterministic solver to compute QoI at the Nnew,l
ξ new samples and update

j({ξ}l).
Compute the statistical moments of the surrogate model.

end for

surrogate model. In the following, a brief outline of a baseline version of the Simplex (el-
ements) Stochastic Collation (SSC) approximation will be provided. This technique was
greatly developed and extended by Witteveen et al. in the context of robust adaptive un-
certainty quantification, see for instance [Witteveen, Loeven, and Bijl, 2009; Witteveen and
Iaccarino, 2012a; Witteveen and Iaccarino, 2013b; Witteveen and Iaccarino, 2013a].

It relies on a piecewise multivariate polynomial approximation of a stochastic response
j that depends on a vector of random parameters ξ ∈ Ξ ⊂ RDξ , i.e. j(ξ). The SSC method
discretizes the parameter space into a tessellation of N elem

Ξ simplices.
On a linear Lagrange element Ξ(i) the continuous representation of the response sur-

face is obtained by an interpolation on Nq points; we define the interpolation operator on
element Ξ(i):

IΞ(i)
j(ξ) =

Nq∑
k=1

j(ξ(k))bk(ξ),

where bk are the barycentric coordinates of ξ locally in Ξ(i). The global interpolant on mesh
Hξ can then be written as

IHξj(ξ)|Ξ(i)
= IΞ(i)

j(ξ).

The tessellation of the parametric space decomposes integrals over the parametric
space into a summation of integrals over N elem

Ξ simplices. Let Ωξ,(i) be the ith such ele-
ment and Ξ(i) its image in the parameter space. The integrals over these elements will
be approximated by a Newton-Cotes (NC) quadrature using Nq quadrature points. The
quadrature weights of these integrals over the simplex domains however will need to take
into account the probability measure. For simplicity, Nq will be assumed to be the same in
each element. Hence the expectation will be approximated as

E[j(ξ)] =

∫
Ξ
j(ξ)ρξdξ

=

Nelem
Ξ∑
i=1

∫
Ξ(i)

j(ξ)ρξdξ

≈
Nelem

Ξ∑
i=1

Nq∑
k=1

c(i,k)j(ξ(i,k)),

(4.27)
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where ξ(i,k) and c(i,k) are the parameter value and the quadrature weight corresponding
to the kth quadrature point in the ith element. For a given pdf and tessellation, quadrature
weights are computed once as the integrals of the Lagrange basis weighted by the pdf:

c(i,k) =

∫
Ξ(i)

L(i,k)(ξ1, ξ2, . . . , ξDξ
)ρξ(ξ1, ξ2, . . . , ξDξ

)dξ with i = 1, . . . , N elem
Ξ , (4.28)

where L(i,k)(ξ) is the Lagrange polynomial in the ith element corresponding to the kth

quadrature point evaluated at ξ. In this work, first degree NC quadrature rule is used.
This corresponds to one quadrature/sample point at each vertex of the Dξ−simplex. In
that case L(i,k) are linear Lagrange polynomials on element Ξ(i), taking value 1 on vertex
j and 0 on all other vertices.
As proposed in [Witteveen, Loeven, and Bijl, 2009], a higher degree quadrature with stan-
dard weights is used in order to compute the integral in (4.28). Let q(i,l) be the standard
NC quadrature weight from a quadrature rule containing Nqsub points, then the weights
c(i,k) can be computed as

c(i,k) ≈
Nqsub∑
l=1

q(i,l)L(i,k)(ξ(i,l))ρξ(ξ(i,l)). (4.29)

In Figure 4.1 these linear Lagrange polynomials have been drawn for the 2D case where
the stochastic space has been decomposed into 4 triangles.

For the fine quadrature on which the weights c(i,k) will be computed, NC quadratures
up to degree 8 have been implemented in 2D and up to degree 6 in 3D. Figures 4.2 and
4.3 demonstrate these quadratures on a reference element. One can easily transform this
reference element and the quadrature points on it to the element Ξ(i) in the parametric
space, hence the linear Lagrange polynomials only need to be computed once on the fine
quadrature points, thereafter one needs to compute for each element the transformation
matrix to go from the reference element to the actual element Ξ(i) in the parameter space.

It should however be noted that on the 2D simplices, the Newton-Cotes quadrature
weights of degrees 4, 6, 7 and 8 contain negative weights while on the 3D tetrahedra,
quadratures of degrees 2, 4, 5 and 6 contain negative weights. These particular quadra-
ture rules are not guaranteed to be stable. It is a well-known drawback of Newton-
Cotes quadratures that the use of larger numbers of equally spaced points can produce
ill-conditioned quadrature rules with negative weights. Do note that these higher degree
quadratures are not needed to integrate the linear Lagrange polynomials but merely ac-
count for the complexity introduced by the local probability density functions. In section
4.5.1, where the results on test problems will be presented, it will be verified that the ap-
proximation error present in the quadrature weights becomes small enough not to impact
the results as the number of elements increases.

The non-intrusive SSC method is used in our framework as a robust and efficient
stochastic collocation approximation. It is based on an unstructured tessellation rather
than relying on the more common tensor product structure and allows for anisotropic
refinements. Moreover, it is capable of handling non-hypercube probability spaces [Wit-
teveen and Iaccarino, 2012b]. Note that our approximation differs slightly form the SSC
method proposed in [Witteveen, Loeven, and Bijl, 2009]. In [Witteveen, Loeven, and Bijl,
2009] a second degree Newton-Cotes is used resulting in a piecewise quadratic approxi-
mation of the stochastic response. Furthermore, in order to avoid unphysical oscillations
near singularities, the original SSC method splits quadratic elements into smaller first de-
gree elements when an extremum is detected that is not located at one of the quadrature
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FIGURE 4.1: Lagrange basis of degree 1 plotted on four elements. On the
left, the Lagrange basis function corresponding to the first vertex of each
element is drawn in red (element 1), green (element 2), yellow (element 3)
and blue (element 4). In the middle frame the Lagrange basis function cor-
responding to the second vertex is drawn (same colours as before) and on
the right the Lagrange basis functions corresponding to the third vertex is
presented (colours as before). The open red circles show the higher degree
quadrature on which ρξ will be evaluated in order to compute the integra-
tion weights corresponding to the three vertices of each element. In this ex-
ample the fine quadrature is a third degree Newton-Cotes quadrature, but
quadratures up to degree 8 have been implemented in 2D and up to degree

6 in 3D.

FIGURE 4.2: Newton-Cotes quadrature points on the 2D reference element.
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FIGURE 4.3: Newton-Cotes quadrature points on the 3D reference element.

points. In later publications other refinement criteria were investigated [Witteveen and
Iaccarino, 2012a] as well as more elaborate schemes in order to obtain truly discontinuous
representations [Witteveen and Iaccarino, 2013b; Witteveen and Iaccarino, 2013a].

We use only linear elements and rely only on h−adaptivity to control the error. The
h−adaptivity used in this work is also very different from the one applied in the SSC
method which splits existing elements according to a predefined pattern. In this work, we
use a metric-based approach to drive anisotropic h−adaptivity, allowing for far greater
flexibility.

4.5 Numerical Applications

In the previous sections, links between metric-based mesh adaptation in the stochastic
space and deterministic goal-oriented mesh adaptation were pointed out. In the former,
we have noticed how the probability density function plays a role similar to the adjoint
solution in the latter. The deterministic version of this mesh adaptation technique has al-
ready been validated in [Loseille and Alauzet, 2011a; Loseille and Alauzet, 2011b]. In this
section the effectiveness of metric-based mesh adaptation will be demonstrated on some
test cases. In particular, we will emphasize the impact of the dimensionality and the pa-
rameter probability density functions on the effectiveness of the adaptive approximations
of sensitive nonlinear functionals.

4.5.1 Validation of stochastic test functions

The first test function treated is one with multiple curved and straight discontinuities pro-
posed by [Jakeman, Narayan, and Xiu, 2013]. A graphic representation is presented in
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Figure 4.4 while its analytic form is given by

y(ξ) =


f1(ξ)− 2 if 3ξ1 + 2ξ2 ≥ 0 and − ξ1 + 0.3ξ2 < 0,
2f2(ξ) if 3ξ1 + 2ξ2 ≥ 0 and − ξ1 + 0.3ξ2 ≥ 0,
2f1(ξ) + 4 if (ξ1 + 1)2 + (ξ2 + 1)2 < 0.952 and Dξ = 2,
f1(ξ) otherwise.

(4.30)

Furthermore, f1 and f2 are given by

f1(ξ) = exp

(
−

2∑
i=1

ξ2
i

)
− ξ3

1 − ξ3
2 ,

f2(ξ) = 1 + f1(ξ) +
1

4Dξ

Dξ∑
i=2

ξ2
i .

The domain on which this function will be solved is [−1, 1]Dξ .

FIGURE 4.4: Test function with multiple discontinuities.

Test 1: uniform probability density function in two dimensions

Figure 4.5 shows the mesh at different mesh refinement steps on a 2D domain when both
ξ1 and ξ2 follow a uniform probability distribution U[−1,1].
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FIGURE 4.5: Approximated solution on the mesh at each refinement.

The initial mesh shown in Figure 4.5 (top left) contains 10 samples which were ran-
domly drawn using Latin Hypercube Sampling (LHS) DoE following a uniform law. Three
subsequent adaptation steps were done: first increasing from 10 to 83 samples, then to 235
samples and finally up to 818 samples. One can observe that the initial mesh contains
very little information as to the whereabouts of the discontinuities, the first adapted mesh
containing 83 samples starts showing a moderate amount of alignment with the discon-
tinuities. It can be observed in the lower left quadrant of the top right figure that the
mesh follows the arc-shaped discontinuity in a very coarse way and similarly, in the up-
per right quadrant, one can see the beginnings of mesh alignment with the discontinuity
there. Mesh alignment becomes much clearer after the second adaptation step, in the mesh
shown on the lower left in Figure 4.5. Sample point density is significantly higher in the
vicinity of the discontinuities leading to a more accurate approximation in those regions.
Finally, after the third adaptation step, a mesh with 818 samples is obtained where de dis-
continuities are clearly visible by the even higher sample point density, making a sharp
resolution of the discontinuities possible. Note that no discontinuity capturing technique
is used here, nor are there any parameters that need to be set; the results are obtained by
running the metric-based mesh adaptation out-of-the-box on this test problem.
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(A) 8 refinement steps (B) 3 refinement steps

FIGURE 4.6: Convergence of the interpolation error and the error esti-
mate. The interpolation error is computed on a third degree Newton-Cotes
quadrature, a sort of subgrid constructed in order to evaluate the real inter-

polation error.

Since this is an analytic test function, one can easily evaluate the expectation of the ex-
act error committed by the response surface approximation. The convergence of the exact
error and the error estimate are shown in Figure 4.10 for two separate cases. Both figures
(A) and (B) started with the same initial mesh containing 10 samples. The difference is that
in Fig. 4.10 (A) 8 small refinement steps were used (each time doubling the mesh complex-
ity) while in Figure 4.10 (B) only 3 steps were taken (at each step the mesh complexity was
increased by a factor of 5.5). This allows to evaluate the influence of the step size on the
convergence of the error.

The theoretical error convergence is given by βN
2
Dξ , which would mean that in the

2D case, one should observe a convergence rate O(N−1). It can be seen in Figure 4.10
that this convergence rate is surpassed in both cases. Furthermore it can be seen that the
convergence rate is not significantly altered when the adaptation step size is significantly
increased, the convergence constant of the error estimator does change significantly. The
expectation of the evaluated interpolation error shown in Figure 4.10 is computed on a finer
NC quadrature within each element. The convergence constant will both depend on the
function that is being approximated and on the discrepancy between the continuous num-
ber of mesh vertices N and the number of vertices in the discrete mesh N . In the compu-
tation of the continuous interpolation error estimate, the continuous number of vertices
is used, while in Figure 4.10 it is plotted as a function of the realized number of vertices
in the discrete mesh N . For a detailed numerical validation between the continuous error
estimate and the actual interpolation error, the reader is referred to [Loseille and Alauzet,
2011b].

Since the initial mesh is the Delaunay triangulation of randomly drawn sample points,
it is a good idea to check the influence of this initial mesh on the error convergence prop-
erties. The test case with 3 refinement steps was run 50 times, each time with a different
randomly drawn initial mesh. From each run results a convergence curve similar to Figure
4.6b, and for each of these a least squares fit to the model βNκ

ξ is performed; the parame-
ters are called βest and κest for the interpolation error estimate and βeval and κeval for the
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Nξ,0 µ σ CoV = σ
|µ| ·100%

10 κest −1.188 0.1221 10.27%

10 βest 258.8 213.5 82.49%

10 κeval −1.108 0.0563 5.09%

10 βeval 51.05 17.66 34.58%

30 κest −1.242 0.0881 7.10%

30 βest 331.0 212.7 64.26%

30 κeval −1.143 0.0644 5.63%

30 βeval 67.37 29.17 43.30%

TABLE 4.1: A least squares fit of the error convergence to the model βNκ
ξ

is performed. For the convergence curve of the interpolation error estimate,
the parameters are called βest and κest, for the evaluated interpolation error
they are called βeval and κeval (interpolation errors were evaluated on a NC
subgrid quadrature of degree 5). Both the average and standard deviation
after 50 repetitions are given for the case when the initial random mesh is

composed of Nξ,0 = 10 samples and for the case where Nξ,0 = 30.

evaluated interpolation error. The evaluation of the interpolation error was done on a NC
subgrid of degree 5 in each element. In Table 4.1 the average and standard deviation as
well as the Coefficient of Variation (CoV) for the parameters β and κ is given.

Additionally, the histogram of the convergence constant β and convergence exponent
κ for all 50 runs is given in Figure 4.7.

FIGURE 4.7: Histogram of the exponent κ and constant β for 50 runs of
the test problem with Nξ,0 = 30. For each run the convergence of the error
estimate and the actual evaluated error is fitted to βNκ

ξ , the histograms show
the distribution of the parameters β and κ.



4.5. Numerical Applications 61

While 50 trials may not be enough to have statistically significant conclusions on the in-
fluence of the initial mesh on the error convergence, it does provide important information
to this end. First of all, it is reassuring to see that there are no trials where the convergence
rate of error is slower than the theoretical κ = −1. The histogram of the exponent κ for
both the evaluated interpolation error (κeval) and the interpolation error estimate (κest)
have a similar, vaguely bell-shaped form, all be it centered around different values. The
influence of the initial mesh on the convergence rate can be called modest, with the CoV
of the order of 10%. It is interesting to note that the CoV of κest is higher than the one of
κeval, with the former being double the latter in the case where Nξ,0 = 10.
The initial mesh has a much larger effect on the convergence constant β however. Their
CoV is between 43% and 82%, but care should be taken with the interpretation ofCoV and
standard deviation in this case because, as can be seen from the histograms on the right in
Figure 4.7, the distributions are skewed. As for the size of the initial mesh, Nξ,0 = 10 or
Nξ,0 = 30, the convergence rate is slightly better in the case of Nξ,0 = 30.

Test 2: discontinuous probability density function in two dimensions

The same test function treated previously will now be used again, but in order to shown
the effect of the underlying probability density function, instead of the uniform distribu-
tion used previously, now a discontinuous probability density function will be used:

ρξ =


1−(2.6− 1

2
0.22π)0.005−( 1

2
0.22π)0.9

1.4 ≈ 0.66 if ξ2 ≥ −0.3ξ1 + 0.3,
0.9 if ξ2

1 + (ξ2 + 1)2 ≤ 0.22,
0.005 otherwise.

(4.31)

The method presented in this manuscript does not require an orthogonal basis to be found
with respect to the probability density function. This is an advantage over the ME-gPC
method where finding an orthogonal basis in each stochastic element locally orthogonal
to the pdf can be a nuisance. This is a practical advantage that can be useful when ran-
dom variable parametrizing the problem do not follow some well-known distribution but
rather follow an arbitrary distribution obtained from experiments for example.

In Figure 4.8 the colour contours visualise this discontinuous probability density func-
tion while the mesh shown is the result of three subsequent adaptation steps. The inter-
mediate meshes and the approximation on these meshes is shown in Figure 4.9.
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FIGURE 4.8: The mesh plotted is the one obtained at the end of three itera-
tion steps and for which the interpolation error is shown in 4.10b. The color

background represents the discontinuous probability density function.

The mesh shown in Figure 4.8 clearly shows how the probability distribution is taken
into account in the mesh refinement. In regions with low event probability, even if there are
discontinuities, few sample points will be placed. In regions with high event probability,
more sample points will be placed and the sample point density is especially high in the
vicinity of the discontinuities.
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FIGURE 4.9: Approximated solution on the mesh at each refinement step
where the discontinuous probability density function is taken into account.

In the evolution of the mesh adaptation process shown in Figure 4.9, it is interesting to
note that the initial mesh contains no sample points in the high-probability half circle at
the bottom of the domain. Still, the importance of this region is automatically detected.

(A) 8 refinement steps (B) 3 refinement steps

FIGURE 4.10: Convergence of the interpolation error and the error esti-
mate. The interpolation error is computed on a third degree Newton-Cotes
quadrature, a sort of subgrid constructed in order to evaluate the real inter-

polation error.
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Nξ,0 µ σ CoV = σ
|µ| ·100%

10 κest −1.601 0.2112 13.19%

10 βest 2.320 4.049 174.53%

10 κeval −1.458 0.1387 9.515%

10 βeval 3.277 2.885 88.06%

30 κest −1.470 0.1340 9.11%

30 βest 7.173 6.047 84.29%

30 κeval −1.389 0.1114 8.02%

30 βeval 2.023 1.474 72.86%

TABLE 4.2: Similar to Table 4.1 except that now the underlying pdf is the
discontinuous pdf given by (4.31).

Similarly to the previous case, the adaptation process was executed with different step
sizes. The resulting convergence of both the expectation of the actual interpolation error
and the expectation of the error estimate are shown in Figure 4.10. The observations made
for the case of uniform distribution are confirmed here: the convergence rate is at least
what was predicted by theory and is not significantly affected when the step size is dras-
tically increased. The convergence constant of the error estimate does increase when the
step size is increased.

As was done with the previous test case, again here the numerical experiment with 3
refinement steps was repeated 50 times, each time with a different initial mesh with the
samples drawn according to the discontinuous pdf. A first series of 50 runs was done
whose initial meshes contained 10 vertices, and in a second series of 50 runs the initial
meshes had 30 vertices. An overview of the mean, standard deviation and CoV of the con-
vergence constant β and convergence exponent κ is given in Table 4.2 and the histograms
of βest, βeval, κest and κeval for the case where Nξ,0 is shown in Figure 4.11.
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FIGURE 4.11: Histogram of the exponent κ and constant β for 50 runs of the
test problem with Nξ,0 = 30; similar to Figure 4.7.

From both Table 4.2 and Figure 4.11 one comes to the same conclusions as for the case
with uniform pdf: the convergence rate is only moderately influenced by the initial mesh
while the effect on the convergence constant is much higher. As before, the influence
of the initial mesh on the convergence rate of the evaluated interpolation error is lower
than the influence on the convergence rate of the interpolation error estimate. Equally, the
convergence rate is slightly higher when the initial mesh contains more samples.

Accuracy of quadrature weights As an indication for the magnitude of the error con-
tained in the approximation (4.29), we look at the sum of the quadrature weights of all ele-
ments. The total should equal exactly 1. For current test case (discontinuous response and
discontinuous pdf) a table is presented below collecting the sum of the quadrature weights
on the meshes shown in Figure 4.9 for different degrees of subgrid NC quadratures. From
Table 4.3 one can see that the error committed in approximating the quadrature weights
is significant on meshes with very few elements. However, with increasing quadrature
degree and increasing Nξ, this error quickly drops to O(10−3) or less.

Test 3: uniform distributions in three dimensions

The case of three uncertain variables is also examined for which a cutout of the 3D mesh
is shown in Figure 4.12.
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Subgrid NC deg. Nξ = 10 Nξ = 77 Nξ = 218 Nξ = 707

1 1.209 1.195 1.024 0.996

2 0.589 0.986 0.984 1.007

3 1.199 0.984 1.003 1.002

4 0.965 0.980 1.004 1.002

5 1.012 0.999 1.001 0.999

6 0.856 1.002 0.993 1.000

7 0.965 1.002 1.006 1.000

8 1.073 1.003 1.000 1.000

TABLE 4.3: Overview of the sum of the quadrature weights for the discon-
tinuous pdf (4.31) on the meshes in Figure 4.9. The subgrid NC quadrature
degree used to compute the weights according to (4.29) is indicated in the

column on the left.

(A) Exterior of the 3D mesh. (B) Cutout of the 3D mesh.

FIGURE 4.12: The adapted 3D mesh with 4290 samples.

As before, the error convergence is examined using different step sizes, the conver-
gence plots obtained are shown in Figure 4.13.
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(A) 8 refinement steps (B) 3 refinement steps

FIGURE 4.13: Convergence of the interpolation error and the error estimate
with three uncertain variables. The interpolation error is computed on a
third degree Newton-Cotes quadrature, a sort of subgrid constructed in or-

der to evaluate the real interpolation error.

The theoretical convergence should be ofO(N−
2
3 ) ≈ O(N−0.67) and it can be observed

that the convergence rate obtained surpasses this prediction. In contrast to the 2D case,
the actual error decreases faster than the error estimate. This could be due to the fact
that in the 3D version of this test function the solution is mostly discontinuous w.r.t. the
first and second dimension but not in the third. It can be seen from (4.30) that the test
function depends quadratically on ξ3 whilst the dependence on ξ1 and ξ2 is discontinuous.
As this somewhat reduces the effective dimensionality of the problem it seems that the
evaluated expectation of the interpolation error diminishes quicker than the expectation
of the interpolation error estimate.

4.5.2 Fluid mechanics stochastic piston problem

The metric-based mesh adaptation for the stochastic space is tested here on a classical ap-
plication of fluid mechanics: the piston problem. This fundamental problem was revisited
several times in the context of uncertainty quantification e.g. [Lin, Su, and Karniadakis,
2004; Zhang et al., 2013]. A particular version was well described by [Witteveen, Loeven,
and Bijl, 2009]. In the following, we use the same notations as in that reference, the config-
uration of which is shown in Figure 4.14. It consists of a tube filled with air, assumed to be
an ideal gas, and a piston pushing into the tube from the right. The flow domain is consid-
ered one-dimensional and the piston starts moving to the right at time t = 0 with constant
velocity upiston > 0. The initial conditions in the tube are given by the initial density ρpre,
initial pressure ppre and the initial velocity upre = 0.
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FIGURE 4.14: Setup of the piston problem (figure from [Witteveen, Loeven,
and Bijl, 2009]).

As the piston moves to the right a shock runs into the gas with speed ushock. The
conditions behind the shock are given by ρpost, ppost and upost = ushock. The effects of
viscosity are neglected and so the pressure behind the shock can be obtained from the
Rankine-Hugonoit equation

ppost − ppre = ρprecpre(upost − upre)

√
1 +

γ − 1

2γ

ppost − ppre

ppre
,

where the initial sound speed is given by cpre =
√
γppre/ρpre and the specific heat ratio

is chosen as γ = 1.4. The Mach number of the shock is obtained by the one-dimensional
shock wave relations [Anderson, 2001]

Mshock =

√
1 +

γ + 1

2γ

(
ppost

ppre
− 1

)
.

The QoI is the instantaneous mass flow measured by the sensor positioned at a distance L
from the initial position of the piston.

m(t) =

{
ρpreupre if t < L

ushock
,

ρpostupost if t > L
ushock

.

Two uncertain parameters

Identically to [Witteveen, Loeven, and Bijl, 2009], we consider first two uncertain parame-
ters will be upiston and ppre, both being modeled as random variables following a lognormal
distribution with mean µupiston = µppre = 1 and CoV = 10% (the equations are nondimen-
sionalized). The QoI is the mass flow m(t) for t = 0.5 at the sensor which is located at
L = 1.
The mesh adaptation process is visualized in Figure 4.15 where one can see how the curved
discontinuous response surface is gradually resolved whilst taking into account the prob-
ability distribution ρξ.
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FIGURE 4.15: Adaptive refinement of the response surface. The joint proba-
bility density function of upiston and ppre is shown on the top left plot.

Mass flow low-order moments (mean and variance) convergence results are given in
Figure 4.16. The errors in mean and variance are computed w.r.t. mean and variance
obtained from Monte Carlo simulation (obtained with 107 samples). In the same figure the
results obtained by Witteveen et al. [Witteveen, Loeven, and Bijl, 2009] are also included
which allows for a quantitative comparison.

FIGURE 4.16: Piston problem 2D: Convergence of the error of the mean,
variance and the interpolation error eMopt . The results obtained by [Wit-
teveen, Loeven, and Bijl, 2009] are included for comparison. The legend
entry Error mean signifies the error of E[QoI] (|E[QoI]MC −E[QoIsurrogate]|),
and analogously the entry Error variance the error of Var[QoI] while

E[interp err] is η, the expectation of the interpolation error estimate.
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In order to underscore how the adaptation process takes into account the probability
distribution, Figure 4.17 compares the adaptation process when to random variables fol-
low a lognormal distribution versus the case where the random variables would follow a
uniform distribution.
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FIGURE 4.17: On the left: mesh adaptation sequence when the two random
variables follow a lognormal distribution with µupiston = µppre = 1 and a co-
efficient of variation of CoV = 10%; the underlying contour map is a repre-
sentation of the probability density function. On the right: mesh adaptation

sequence when the two random variables follow a uniform distribution.
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Comparison with ME-gPC The ME-gPC method proposes to decompose the parametric
space into hypercube elements; on each of these elements a local polynomial chaos ex-
pansion is then constructed and the global solution will be the combination of all these
solution patches. Applying the ME-gPC method to the piston problem with two uncertain
variables where both variables are uniformly distributed will allow for a comparison with
the metric-based simplex-stochastic collocation method demonstrated above. As noted be-
fore, the decomposition into hypercube elements used by the ME-gPC method is not the
most effective at capturing discontinuities that do not run along one of the principal axes.
Secondly, the hp−refinement indicators are set by the user and, for optimal performance,
these need to be tuned to the particular problem at hand.

The parameter controlling h−refinement, θ1, is a limit on the weighted local variance
decay rate (see [Wan and Karniadakis, 2005). Following the definitions from [Wan and
Karniadakis, 2005] the parameters contriling the hp−adaptivity were chose as follows θ1 =
10−8, θ2 = 0.5 and α = 0.5; the resulting final domain decomposition is shown in Figure
4.18 and convergence curves are shown in Figure 4.19.

FIGURE 4.18: Piston problem 2D: Response surface obtained with the ME-
gPC method for the piston problem with two uncertain variables following

a uniform probability distribution.
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FIGURE 4.19: Comparison of convergence of metric-based SSC and ME-
gPC for the piston problem with two uncertain variables both following a

uniform probability distribution.

Three uncertain parameters

Similarly to [Witteveen, Loeven, and Bijl, 2009], a third lognormal random variable, the
sensor position L, is added to the previous test case. In Figure 4.20, the convergence of
the expectation of the interpolation error, the error in the mean and variance are shown.
Plotted in the same figure are the results obtained by Witteveen et al.
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FIGURE 4.20: Piston problem 3D: Convergence of the error of the mean,
variance and the interpolation error eMopt . The results obtained by [Wit-

teveen, Loeven, and Bijl, 2009] are included for comparison.

With respect to the SSC results obtained by Witteveen et al., the metric-based mesh
adaptation has a lower convergence constant and a slightly faster convergence of the error
in the mean and variance.

4.6 Conclusions

From the results presented in this chapter, the following conclusions can be drawn:

• we show a convergence in the mean of the proposed metric-based approximation method
for multivariate nonlinear discontinuous functionals. More specifically, the method
is at least 2nd−order in the L1−norm, i.e. the mean error is such that: E [η] ∼
β ×N−2κ/Dξ , with (β > 0, κ & 1) positive constants

• the convergence is robust: – for a given functional with a fixed number of random
parameters, a change in the nature and/or the regularity of the probability measure
of the parameters does not affect the convergence rate of this mean error, – the choice
of the refinement step size does not greatly affect the convergence rate of the error,
i.e. κ

• we have verified that the L1−error of the surrogate solution mean is always lower
in magnitude than the mean error of the surrogate; while its convergence rate is
significantly higher than the latter one

• we have noticed that the L1−error of the surrogate solution variance is larger than
the error of the mean solution with a rate of convergence lower than the latter one,
but higher than the convergence rate of the mean error

• we have investigated the influence of the intial DoE and found that the effect on the
convergence rate is low with a CoV of the convergence rate around 10%.



4.6. Conclusions 75

For the piston problem, we have compared our results to the SSC results proposed by
[Witteveen, Loeven, and Bijl, 2009], and we have noticed that:

• the proposed metric-based approximation method generates convergence rates – for
the surrogate solution mean that are larger than the ones obtained with the SSC
method and – for the surrogate solution variance that are of comparable order as the
ones obtained with the SSC method

• convergence constants β are smaller with our method

• our convergence is more monotone than the SSC convergence that is based on local
refinements.
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Chapter 5

Metric-based adaptive error control in
deterministic and stochastic spaces

5.1 Introduction

The SSC method and most other adaptive UQ methods mentioned in Chapter 4, make
use of refinement criteria that are heuristics computed at a local level in the parametric
space and these are often tailored to specific problems. While for some it has been shown
that adaptation following the given criterion will lead to convergence, these criteria do
not permit a straightforward comparison between the error committed in the continuous
representation of the stochastic response and the error introduced in each sample by the
deterministic solver approximation. We propagate the uncertain parameters though an
approximate model (Ψh), which leads to errors in each sample and consequently to errors
in the stochastic response surface. Potentially large computational gains in efficiency are
to be realized if one were able to predict what level of sampling refinement is needed in
each deterministic computation and what level of refinement is needed is the representa-
tion of the stochastic response in order to remain within a given total error level. By an
extension of a dual-based a posteriori error estimate, the authors in [Bryant, Prudhomme,
and Wildey, 2015] achieved this splitting of the error into deterministic and stochastic con-
tributions in order to drive adaptivity in both spaces. In the parametric space, along with
global (anisotropic) p−refinement, a Multi-Element style h− and h/p−adaptivity methods
are proposed which have the same deficiencies as the standard ME-gPC method: the re-
finement parameters driving h− and p−adaptivity are chosen by the user and need to be
tailored to the problem for optimal performance; secondly the use of hypercube elements
does not permit efficient representation of discontinuities. The extension of a posteriori
goal-oriented error estimates has previously been applied to problems with uncertain in-
put parameters [Mathelin and Le Maître, 2007; Le Maître and Knio, 2010; Almeida and
Oden, 2010; Butler, Dawson, and Wildey, 2011; Butler, Constantine, and Wildey, 2012] but,
to the best of the author’s knowledge, the work from Bryant et al. [Bryant, Prudhomme,
and Wildey, 2015] is to date the only publication that demonstrates error splitting and au-
tomated adaptivity in both spaces. Other authors demonstrate estimates of the total error
(the deterministic and stochastic contributions combined) [Mathelin and Le Maître, 2007],
computable estimates of the error in each deterministic sample [Almeida and Oden, 2010],
or estimates of the error of the stochastic response approximation [Butler, Dawson, and
Wildey, 2011; Butler, Constantine, and Wildey, 2012] (although in [Butler, Dawson, and
Wildey, 2011] adaptivity in the parametric space is not addressed).

Chapter partially based on Van Langenhove J., Lucor D., F. Alauzet and A. Belme. "Goal-oriented control
of stochastic system approximations using metric-based anisotropic adaptation". (to be submitted to Journal
of Computational Physics).
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A splitting of the total error committed on the quantity of interest in contributions from
stochastic and deterministic approximations has been proposed in Chapter 4. We have
shown there how a Riemannian metric approach applies to the parameter space in order to
control the stochastic interpolation error. This chapter builds upon the method presented
in the previous chapter, but, whereas Chapter 4 was focused only on the adaptation of
stochastic responses as demonstrated on analytical and semi-analytical test cases, in the
present chapter, we will move to CFD applications both the deterministic and stochastic
errors are controlled for internal and external flow simulations. An estimate of the deter-
ministic error on each sample is computed using an a priori error estimate in the continuous
framework of Riemannian metric space.

The structure of this chapter will be as follows: firstly the goal-oriented determinis-
tic error estimate will be presented in Section 5.2. This will build upon the formulation
and separation into a deterministic and stochastic error presented in Chapter 4. This is
followed up by Section 5.3 in which the adaptive strategies for the coupled deterministic-
stochastic refinement problem are proposed. Next, results obtained on several CFD test
cases will be presented in Section 5.4, and finally, some conclusions will be summarized in
Section 5.5.

5.2 Goal-oriented deterministic error estimate

Let us start with a brief recall of some elements introduced in Chapter 4. The abstract
formulation of the model problem was given as:

Ψ(ξ, w(ξ,x)) = 0 (5.1)

where Ψ is a state equation (for example a steady Navier-Stokes or Euler system) having
w(ξ,x) for exact solution. In its discretized form, (5.1) becomes:

Ψhx(ξ(i), whx(ξ(i),x)) = 0, (5.2)

withwhx the deterministic discrete solution associated to sample ξ(i) and solved on a mesh
Mhx . Furthermore, the quantity of interest j was defined as a functional of the solution
obtained for some fixed combination of the random parameters ξ(i):

jhξ(ξ) = Jhξ
(
ξ, whx(ξ,x)

)
, (5.3)

where the subscript hξ indicates that the deterministic solution was computed via a dis-
cretizationMhξ . The separation of the error on the quantity of interest, can then be written
as:

δj(ξ) = J(ξ, w)− J(ξ, whx)︸ ︷︷ ︸
ε(hx,hξ)

+ J(ξ, whx)− Jhξ(ξ, whx)︸ ︷︷ ︸
η(hx,hξ)

. (5.4)

In practice, δj being a random quantity, we will be interested in lowering the average total
error, that we express as:

δj ≡ E [δj(ξ)] = E [ε]︸︷︷︸
ε

+E [η]︸︷︷︸
η

(5.5)

A simple adaptive approach might be chosen in order to lower both contributions of the
right hand side of previous equation, i.e.: 1. optimizing the set of spatial discretizations
Hhx in order to diminish (or balance) the ε error contribution of the samples of a given
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DoE and concurrently 2. update the DoE to lower E [η] for a given set ofHhx .

The deterministic error contribution in (5.4), which appears each time the parameter
set is given/fixed is discussed in this section. An a priori error estimation of this error is
utilized, involving the computation of an adjoint problem. Only the main results are re-
called and we refer to [Loseille, 2008; Loseille, Dervieux, and Alauzet, 2010] for a more
detailed introduction. In this section, we have replaced · hx by · h for ease of notation and
ξ refers to a fixed/given value unless mentioned otherwise.

First, the variational problem associated to state equations (5.1-5.2) on an appropriate
Hilbert space of solutions V and respectively subspace Vh are introduced:

Find w(ξ(i), ·) ∈ V such that ∀ϕ ∈ V, 〈Ψ(w) , ϕ〉 = 0, (5.6)

with the associated discrete variational formulation:

Find wh(ξ(i), ·) ∈ Vh such that ∀ϕh ∈ Vh, 〈Ψh(wh) , ϕh〉 = 0. (5.7)

Furthermore, we assume some level of regularity for our QoI such that :

j(ξ(i)) ∈ R ; j = J(ξ(i), w) = 〈g, w〉 =

∫
Ωx

g w(x, ξ(i))dx (5.8)

where g represents the deterministic Jacobian of J . We introduce the continuous adjoint
solution w∗ of the following system:

w∗(ξ(i), ·) ∈ V , ∀ψ ∈ V ,
〈
∂Ψ

∂w
(w)ψ,w∗

〉
= 〈g, ψ〉 . (5.9)

We assume that both state solution w and adjoint solution w∗ are smooth enough, such
that w,w∗ ∈ V ∩ C0.
With Vh ⊂ V , the following error estimates for the unknown can be derived:

〈Ψh(w), ϕh〉 − 〈Ψh(wh), ϕh〉 = 〈Ψh(w), ϕh〉 − 〈Ψ(w), ϕh〉 = 〈(Ψh −Ψ)(w), ϕh〉. (5.10)

The error committed on the functional, which we are trying to estimate, is given by:

〈g, w〉 − 〈g, wh〉 = 〈g, w − wh〉

with w and wh the respective solutions of (5.1-5.2).
The idea is then to define a local error estimation to be used as a guide for anisotropic
mesh refinement. Interpolation errors are known to provide useful local information and
in our case, e.g. directions and sizes for anisotropic mesh refinement. We introduce thus
an interpolation operator: πh : V ∩ C0 → Vh, which allows for a simple decomposition of
the deterministic approximation error into two components:

J(ξ(i), w)− J(ξ(i), wh) = 〈g, w − πhw〉+ 〈g, πhw − wh〉, (5.11)

where the first term is the interpolation error and it can be shown (see [Loseille, Dervieux,
and Alauzet, 2010]) that the second error term, called here the implicit error, can also be
expressed in terms of interpolation errors. The following estimation is proposed for the
deterministic error ε [Loseille, Dervieux, and Alauzet, 2010]:

ε(ξ(i)) = J(ξ(i), w)− J(ξ(i), wh) ≈
〈
w∗,

(
Ψh(ξ(i), w)−Ψ(ξ(i), w)

)〉
. (5.12)
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The a priori error estimate (5.12) is used here as refinement indicator for the determin-
istic mesh adaptation. More specifically, we build our mesh adaptation as an optimisation
problem where we seek the optimal mesh that minimises (5.12) under the constraint of a
given number of mesh nodes; the adjoint state w∗ acting as a Lagrange multiplier associ-
ated to the equality constraint (5.1).

5.2.1 Application to nonlinear conservation laws: compressible Euler flow

The previously defined formal error analysis is illustrated next on the concrete example of
the compressible Euler system. Note that we provide details of the discretization for fixed
ξ, thus for ease of notation, the dependence on ξ and x will not be explicitly written out.

The two-dimensional time-independent Euler equations are set in the computational
domain Ω ⊂ R2 with a boundary denoted Γ, and will be working in the function spaceV =[
H1(Ω) ∩ C(Ω̄)

]4 (the set of measurable functions that are continuous and have a square
integrable gradient). The reason for choosing this function space is because it will allow
us to use the elementwise linear interpolation operator, an essential ingredient in the dis-
cretization. The variational formulation of the Euler equations is done in the function
space V and reads:

Find W ∈ V such that ∀ϕ ∈ V, 〈Ψ(W ) , ϕ〉 = 0

with 〈Ψ(W ) , ϕ〉 =

∫
Ω
ϕ∇ · F(W ) dΩ −

∫
Γ
ϕ F̂(W ).n dΓ . (5.13)

where n denotes the outward normal to Γ. Furthermore, W is used to denote the vector
of conservative flux variables, the usual Euler flux is written as F(W ) = (F1(W ),F2(W )),
and F̂ is the boundary flux containing the boundary conditions. The contents of W and F
are specified below:

W =


ρ
ρu
ρv
ρE

 ; F(W ) =


ρu
ρuu+ pex
ρuv + pey
ρuH

 . (5.14)

In the above relation, ρ is the fluid density, p the thermodynamic pressure, E the total en-
ergy per unit mass, H is the total enthalpy given by H = E+ p

ρ , and finally u and v are the
Cartesian components of the velocity vector u.

Discrete state system The Mixed-Element-Volume formulation [Cournède, Koobus, and
Dervieux, 2006] is used as a semi-discrete model, and, as in [Loseille, Dervieux, and
Alauzet, 2010] it is reformulated to a finite element variational formulation. The finite
element partitioning of Ω in simplex elements denoted K is proposed here, with the set of
elements being the meshH. Furthermore, the approximation space Vh is given by

Vh =
{
ϕh ∈ V

∣∣ ϕh|K is affine ∀K ∈ H
}
,

and Πh is the P1 projection operator:

Πh : V → Vh such that Πhϕ(xi) = ϕ(xi), ∀ xi vertex ofH.
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The weak discrete formulation can now be written as:

Find Wh ∈ Vh s.t. ∀ϕh ∈ Vh, 〈Ψh(Wh) , ϕh〉 = 0,

with 〈Ψh(Wh) , ϕh〉 =

∫
Ω
ϕh∇ · Fh(Wh) dΩ−

∫
Γ
ϕhF̂h(Wh).n dΓ +

∫
Ω
ϕhDh(Wh) dΩ,

(5.15)

where Fh = ΠhF and F̂h = ΠhF̂ . The term Dh in the above equation represents the nu-
merical diffusion which accounts for the difference between the Galerkin central-difference
approximation and the second-order Godunov approximation [Cournède, Koobus, and
Dervieux, 2006]. In the presence of shocks, monotonicity limiters become first-order terms,
but for smooth fields, theDh terms will be a third order term with respect to the mesh size.

Deterministic error estimate applied to Euler model The deterministic error estimate
applied to the Euler model is obtained by replacing in estimate (5.12) the operators Ψ and
Ψh by their expressions given by Relations (5.13) and (5.15). As in [Loseille, Dervieux,
and Alauzet, 2010], where it was observed that even for shocked flows, it is possible to
neglect the viscosity term, here we follow the same guideline. In doing so, the following
simplified error model is obtained:

ε ≈
∫

Ω
W ∗∇.

(
F(W )−ΠhF(W )

)
dΩ−

∫
Γ
W ∗

(
F̂(W )−ΠhF̂(W ))

)
.n dΓ . (5.16)

Integrating by parts leads to:

ε ≈
∫

Ω
∇W ∗

(
F(W )−ΠhF(W )

)
dΩ−

∫
Γ
W ∗

(
F̄(W )−ΠhF̄(W ))

)
.n dΓ . (5.17)

with F̄ = F̂ −F . We observe that this estimate of δj is expressed in terms of interpolation
errors of the Euler fluxes weighted by continuous functions W ∗ and∇W ∗.

In the error estimate (5.17) both positive and negative parts can (partially) cancel each
other out on specific meshes. We prefer however not to rely on such an eventuality and
rather choose to over-estimate the error by bounding all integrands by their absolute val-
ues:

ε ≤
∫

Ω
|∇W ∗| |F(W )−ΠhF(W )|dΩ +

∫
Γ
|W ∗| |(F̄(W )−ΠhF̄(W )).n|dΓ . (5.18)

5.2.2 Continuous error model

The continuous framework of the Riemannian metric space presented in Chapter 3 will be
used for the control of the deterministic error as well. We thus seek the optimal mesh with
a given number of vertices that minimizes the deterministic error ε.

Continuous error model applied to Euler equations Working in the continuous frame-
work enables us to write Estimate (5.18) in the following continuous form:

(g,Wh −W ) ≈ Ex(M) =

∫
Ω
|∇W ∗| |F(W )− πMF(W )| dΩ

+

∫
Γ
|W ∗| |(F̄(W )− πMF̄(W )).n| dΓ. (5.19)
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We observe that the second term introduces a dependency of the error with respect to the
boundary surface mesh. In the present work, we do not take this term into account and
refer to [Loseille, Dervieux, and Alauzet, 2010] for a discussion on its importance. Then,
introducing the continuous interpolation error, we can write the simplified error model as
follows:

Ex(M) =

∫
Ω

trace
(
M−

1
2 (x) H(x)M−

1
2 (x)

)
dΩ

with H(x) =

4∑
j=1

([∆x]j(x) + [∆y]j(x)) , (5.20)

in which

[∆x]j(x) =

∣∣∣∣∂W ∗j∂x
(x)

∣∣∣∣ · ∣∣H(F1(Wj))(x)
∣∣ (5.21)

[∆y]j(x) =

∣∣∣∣∂W ∗j∂y
(x)

∣∣∣∣ · ∣∣H(F2(Wj))(x)
∣∣. (5.22)

Here, H(Fi(Wj)) denotes the Hessian of the jth component of the vector Fi(W ).
The deterministic mesh optimization problem is formulated as:

Find Mopt
x = argmin

M
Ex(M), (5.23)

under the constraint of bounded mesh fineness:

C(M) = Nx, (5.24)

where Nx is a specified total number of nodes. The solution process is analogous to the
one outlined in Section 4.3 and yields:

Mopt
x = N

2
Dx
x

(∫
Ωx

det(K|Hx|)
1

2+Dx dx

)− 2
Dx

det(K|Hx|)−
1

2+Dx |KHx| (5.25)

where, for our Euler model, K = ∇W ∗ and Hx = H(F(W )).
The error estimate on this optimal metric will be:

Eopt
x (Mopt

x ) = DxN
− 2
Dx

x

(∫
Ω

det(∇W ∗|H(x)|)
1

2+Dx dx

) 2+Dx
Dx

︸ ︷︷ ︸
Kx

, (5.26)

The equivalent optimisation problem on the stochastic space was presented in Chapter
4. We thus have two optimisation problems to solve in the continuous framework of the
Riemannian metric space for the deterministic and respectively stochastic problems.

5.3 Adaptive strategies for total error control

In Chapter 3 the adaptation problem was formulated in the continuous framework of the
Riemannian metric space, where the mesh refinement problem became a continuous opti-
mization problem. Subsequently, in Chapter 4, this metric-based refinement was used to
construct surrogate models in the stochastic space. Here, both the deterministic and the
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stochastic error will be controlled using this refinement technique. Keep in mind that, as
indicated in Section 4.4, there are some differences between the refinement of the deter-
ministic computational domain and the refinement of the mesh/DoE on the parametric
domain.

In this section we first briefly recall the fixed-point mesh adaptation algorithm for the
deterministic space. Next, we propose a coupled algorithmic approach for a more optimal
control of both deterministic and stochastic error contributions.

5.3.1 Deterministic adaptive strategy

Regarding deterministic mesh adaptivity, we follow the work of [Alauzet, 2003; Belme,
2011; Loseille, 2008] and employ a fixed point algorithm as illustrated in Figure 5.1. In-
deed, the mesh adaptation problem is a non-linear problem, and an iterative algorithm is
well suited to converge the couple mesh-solution. The stopping criteria can be a targeted
error lever or, as is usually proposed in practice, a maximum number of iterative loops. In
general, 5 fixed-point iterations are enough to reach a satisfying level of convergence.

(Hi,Si)

(Hi,Mi)

(Hi,S0
i )

(H0,S0
0 )

(Hi+1,Si,Hi)

Si

Mi

Hi+1

S0
i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution

FIGURE 5.1: Schematic illustrating the mesh adaptation process. The couple
(mesh, solution) is denoted (Hi,Si) where the subscript i denotes the fixed-
point iteration number; S00 is the initial solution on mesh H0 whereas S0i is
the initial solution interpolated on the mesh Hi. Each discrete mesh Hi is

based on the continuous metricMi.

5.3.2 Optimal adaptive strategy

We have seen up until now the adaptive strategies and algorithms when solving the op-
timisation problems 5.23 or 4.12. However, as part of the motivation and novelty of this
paper we wish to: (a) quantify the deterministic error at each sample of the parameters
space and compute a local (sample-wise) optimization deterministic problem with a re-
quired complexity C(M) and to (b) be able to choose which error, stochastic or determin-
istic, dominates a computation and thus to solve the corresponding problem.
There are several options for the first issue (a). Indeed, the two sources of errors: stochastic
and deterministic, are strongly coupled. Suppose we compute our QoI for a sample ξ(i)

on a uniform mesh. This mesh is usually not fit to our QoI but to the studied problem
in general. Thus, very often, large deterministic errors can propagate to the parameter
space. This is even more pronounced when dealing with problems involving shocks. Very
often, the true solution is unreachable. However, we are now able to build an adapted
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mesh to best observe our QoI and thus reduce the propagation of the deterministic error
to the stochastic space by simply correcting a computation. Moreover, the deterministic
error on each sample does not necessarily contribute to the overall problem with the same
level of error. Ideally, one would want the mean deterministic error to be lower than or
equal to some target error ε̄t, best chosen to be comparable to the surrogate model error
η̄. Secondly, one would want the variance of the error contained in all the sample to be
as close as possible to zero. This ensures that all the samples used to construct the surro-
gate model of the QoI are of equal accuracy. Since an interpolation method is used for the
surrogate model, having a large error in a few samples can be detrimental to the quality
of the surrogate model. A trivial solution is to require that the deterministic error in each
sample be equal to ε̄t. This results in the expected deterministic error to be equal to ε̄t and
its variance to be (as close as possible to) zero.
Following the error model (5.26) the required complexity (or number of nodes N t

x) for this
case can be computed as:

N t
x =

(
DxKx

ε̄t

)Dx
2

. (5.27)

using the notation Kx introduced in (5.26).
The detailed optimisation algorithm is presented in Algorithm 2 hereafter. This optimi-

Algorithm 2 Sample-wise control of the deterministic error contribution over the paramet-
ric domain

Compute mean deterministic error over parameter space ε̄ = E[ε(ξ)] =
∫

Ξ ε(ξ)ρξdξ.
for i = 1 to Nξ do

if ε(ξ(i)) > ε̄t then ( ε(ξ(i)) is local deterministic error at ξ(i))
Compute required complexity Ct(i) from 5.27 to reduce deterministic error.
Solve optimisation problem (5.23) associated to this computed complexity Ct(i).
Update j(ξ(i)) value to sample point ξ(i) in the parametric domain.

else
Keep j(ξ(i)) value.

end if
end for

sation strategy can be coupled with Algorithm 1 in order to address issue (b) and control
both stochastic and deterministic errors. Indeed, one can now choose which errors dom-
inates our computation by comparing ε̄ and η̄. The required complexity (or number of
samples N t

ξ) for the stochastic problem will be computed following a similar approach
from (4.14):

N t
ξ =

(
DξKξ
η̄t

)Dξ
2

, (5.28)

where Kξ was introduced in (4.14). The coupled adaptation strategy is detailed below in
Algorithm 3.
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Algorithm 3 Total error control strategy

Generate and compute (or read) initial samples {ξ}0 on uniform or adapted initial de-
terministic meshHx,0.
Form initial stochastic mesh Hξ,0 by a Delaunay triangulation (or load initial existing
mesh).
Compute the stochastic error η̄0 and the mean deterministic error ε̄0.
Set maximal number of iteration cycles itMAX and set total target error value δ̄jt.
while l < itMAX OR δ̄j ≤ δ̄jt do

if ε̄l > η̄l then
Adapt deterministic computations following Algorithm 2 with ε̄t = η̄l.

else
Adapt in parametric domain following Algorithm 1.

end if
l = l + 1

end while

5.4 Numerical applications

5.4.1 Supersonic inlet/isolator

The interest in and difficulties of scramjet propulsion were underscored in Chapter 2
where a test case involving a scramjet engine was treated. Here we treat the inlet and iso-
lator of a dual-mode ramjet/scramjet engine. At low Mach numbers, this engine operates
as a ramjet while at high supersonic to hypersonic Mach numbers it operates in scramjet
mode. We will look at the internal flow of the inlet/isolator configuration depicted in Fig-
ure 5.2. The tapered part on the left (upstream) is the inlet and the straight duct, called the
isolator, connects the inlet to the combustion chamber. The capacity of the inlet/isolator

FIGURE 5.2: Inlet problem: geometry configuration with an illustration of
the targeted area Γ.

to provide an increase in static pressure before the combustor directly impacts the engine
performance. The static pressure gain depends on the geometry of the inlet/isolator and
the flow profile. Experimental investigations for this type of configuration can be found in
[Wagner et al., 2007; Wagner et al., 2009], the interested reader is referred to these works
for a more in-depth treatment of the physics involved.
In this numerical experiment, the flow is modeled by the compressible Euler equations,
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cf. Section 5.2.1, meaning that some important phenomena such as shock-boundary layer
interactions will not be treated as viscosity is neglected. Furthermore, the QoI is related
to the pressure signature on the lower surface wall, namely we define it as the integrated
pressure coefficient over a short segment: j =

∫
Γ

p−p∞
1
2
ρ∞||u∞||2

dx, where Γ is a small region

of size 5.08mm, located on the lower wall at x = 116.08mm from the entrance, slightly
downstream on the end of the inlet ramp, cf. Figure 5.2. It is thus interesting to analyze
how the shocked flow and pressure distribution are impacted by operational and geomet-
rical uncertainties: i.e. changes in the free stream Mach numberM∞ and in the ramp angle
α. A change in the ramp angle will also affect its length, i.e. the boundary of the domain
being modified. Palacios et al. [Palacios et al., 2012] analyzed this stochastic system with
an identical configuration and obtained a discontinuous response surface in the QoI. The
authors were interested in developing an adaptive deterministic mesh associated to one
nominal condition, in order to obtain a representative reference value of the QoI for the en-
tire variability range. Here, we have chosen uniformly distributed parameters with large
variabilities: i.e. α ∈ U[5.6;6.1] (in degrees) and M∞ ∈ U[3.5;5.5]. This is a challenging nu-
merical problem since singularities arise in both physical and parameter spaces. Indeed,
we can see from the study of some pressure fields associated to several conditions, as il-
lustrated in Figure 5.3, how variations in the M∞ and (to some extent) in the ramp angle
α affect the shock train and pressure values along the computational domain and more
specifically in the targeted zone Γ. One may also guess that depending on the combina-
tion between the flow speed and the angle of attack, the small area under interest may
experience some pressure discontinuities (or not), strongly impeding on the numerical er-
rors of the approximations. The solution fields shown in Figure 5.3 were computed on
uniform meshes with about 1500 vertices. This mesh is not at all adapted to the flow field
(notice the smeared out shocks), let alone to the specific quantity of interest.
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(A) M = 5.5, α = 5.6

(B) M = 4.78, α = 5.94

(C) M = 3.5, α = 6.1

FIGURE 5.3: Overview of iso-density lines for some selected parameter sets
on initial, non-adapted meshes.

We first need to make sure we control the discretization error for a given flow speed
and geometry. While it is obvious that a good “shock-capturing" method is needed for
this problem, depending on the available computing resources, it is in general not rec-
ommended to refine all shocks present in the domain. Our proposed adaptive method
based on optimal control of both stochastic and deterministic errors is a sound approach
to make the right selection for refinements. Thanks to the adjoint-based method, the mesh
is efficiently adapted only in the regions with large impact for our QoI. Representative
examples of goal-based adapted meshes for various ramp angles and Mach numbers are
displayed in Figure 5.4 (the target complexity there was Cx = 1000). With a closer look
at the meshes, cf. Figure 5.5, we observe that the remeshing effort is solely focused in the
regions impacting the QoI.
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(A) M = 5.5, α = 5.6

(B) M = 4.78, α = 5.94

(C) M = 3.5, α = 6.1

FIGURE 5.4: Overview of iso-density lines for the same parameter sets as
shown in Figure 5.3, but this time a goal-based mesh adaptation was pre-

formed on each mesh each mesh with a mesh complexity of C = 1000.

The shock waves are now resolved much more accurately and one can now clearly see
that Figures 5.4a, 5.4b and 5.4c represent three qualitatively distinct cases :

• Figure 5.4a and 5.5a: compression shock hits the lower wall downstream of the pres-
sure sensor. The pressure at the sensor is not influenced resulting in Cp = 0. Even
with a low mesh complexity, the error will be small.

• Figure 5.4b and 5.5b: compression shock hits the lower wall on the sensor. The
pressure coefficient on the sensor will heavily depend on a accurate resolution of the
shock for which appropriate mesh adaptation will be needed.

• Figure 5.4c and 5.5c: compression shock hits the lower wall upstream of the pressure
sensor. Not only does one need to resolve the shock accurately enough to obtain an
accurate solution field downstream of the shock where the pressure sensor is located,
but one also needs to resolve the interaction between the reflected compression shock
and the expansion fan. As can be seen in Figure 5.5c.
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(A) M = 5.5, α = 5.6, shock impinges on the wall downstream of the sensor.

(B) M = 4.78, α = 5.94, shock impinges on the wall on the sensor.

(C) M = 3.5, α = 6.1, shock impinges on the wall upstream of the sensor.

FIGURE 5.5: Zoom of the results shown before in Figure 5.4, showing the
position where the shock hits the lower wall relative to the pressure sensor.

The resulting response surface is, as can be expected, discontinuous. In Figure 5.6, this
response surface is visualized and the parameter sets corresponding to the solution fields
discussed above are indicated.
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FIGURE 5.6: Response surface of the pressure coefficient on the sensor.

We have applied our optimal adaptive strategy described in Section 5.3.2 to control
both stochastic and deterministic errors. Two computations were done, the first where
Cmaxx = 2000 and a second with Cmaxx = 128000. The evolution of the total error for both
cases is plotted in Figure 5.7 while the statistical moments and separated errors are given
in Table 5.1 for the case where Cmaxx = 2000 and in Table 5.2 for the case where Cmaxx =
128000. The results in the tables and error convergence plots show the final results after
each refinement step, which contains multiple fixed-point iterations.
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(A) Evolution of the total error ε+ η. (B) Error plot shown from above.

(C) Error plot seen from the side: total error in
function of Nx

(D) Error plot seen from the side: total error in
function of Nξ

FIGURE 5.7: Error control by adaptive refinement (multiple views of the
same plot). The total error is controlled by either refining the mesh com-
plexity each deterministic computation using Algorithm 2 (dotted lines) or
by increasing the mesh complexity in the parameter space following Algo-
rithm 1 (full lines). In the first computation the maximal mesh complexity
in each deterministic computation was set to Cmaxx = 2000 while in a second

computation it was set to 128000.

Setting a maximal complexity Cmaxx is not required, this limitation was used here for
the practical purpose of avoiding a cost exceeding our computational resources.

From Figure 5.7 one can see that the total error for the case with Cmaxx = 2000 stag-
nates at a much higher level than for the case Cmaxx = 128000. This is cause by the fact
that initially, the deterministic error dominates and the constraint Cmaxx = 2000 impedes ε
from descending below η. Step 0 in Table 5.1 corresponds to the first point on the green
curve in Figure 5.7 with the coordinates (Nξ, mean Nx) = (30, 1000) which corresponds to
the initial mesh (a Delaunay triangulation of 30 randomly drawn points). On this initial
mesh, the stochastic error estimate is not yet available so by default a refinement step of
the stochastic mesh is done. At that point, called step 1, one can compare ε and η; since ε
dominates Algorithm 2 is called resulting in an increase of the average deterministic com-
plexity from 1000 to 1657. Still, however, the deterministic error dominates (see step 2 in
Table 5.1) and the constraint on the deterministic complexity makes it impossible to sig-
nificantly reduce ε further. In order to show the reader the existence of the plateau caused
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Step nr. Nξ mean Nx E[−Cp] Var[−Cp] ε η

0 30 1000 −0.10572691 0.00636237 0.0591

1 60 1000 −0.10545861 0.00626342 0.0641 0.0242

2 60 1657 −0.10545130 0.00626541 0.0415 0.0242

3 117 1454 −0.10451489 0.00624180 0.0508 0.0022

4 117 1832 −0.10452315 0.00624091 0.0398 0.0022

5 125 1811 −0.10450733 0.00624493 0.0407 0.0018

6 125 1836 −0.10450885 0.00624503 0.0400 0.0018

TABLE 5.1: Inlet statistics and errors with Cmaxx = 2000.

Step nr. Nξ mean Nx E[−Cp] Var[−Cp] ε η

0 30 4000 −0.10584943 0.00633727 0.0253

1 57 4000 −0.10521272 0.00622762 0.0286 0.0236

2 57 6446 −0.10521254 0.00622689 0.0175 0.0236

3 118 4885 −0.10443541 0.00626330 0.0229 0.0014

4 118 82373 −0.10443116 0.00626273 0.0024 0.0014

5 142 70471 −0.10441939 0.00626304 0.0057 0.0008

6 142 88849 −0.10441761 0.00626286 0.0023 0.0008

7 144 88708 −0.10441652 0.00626417 0.0023 0.0007

8 144 89294 −0.10441650 0.00626417 0.0023 0.0007
...

...
...

...
...

...
...

18 177 89351 −0.10441013 0.00626303 0.0024 0.0004

19 177 90096 −0.10440860 0.00626287 0.0022 0.0004

TABLE 5.2: Inlet statistics and errors with Cmaxx = 128000.

by this constraint, from this point on forced refinements alternating between the stochas-
tic and deterministic space were mandated. During each stochastic refinement step, new
samples are added and for each new sample the deterministic complexity Cx = 1000 is set
by default. Then follows a deterministic refinement step that will, if necessary, refine these
computations.

For the case where Cmaxx = 128000 the error decomposed into ε and η is plotted in
Figure 5.8, there one can see that Cmaxx = 128000 does permit the deterministic error to
dive below the stochastic error. As for the case with Cmaxx , the initial stochastic mesh is
made up of 30 samples but this time the default deterministic complexity is set to 4000.
The error estimate ε contained in each sample is given in the deterministic error map
Figure 5.9, notice the link between the error map and the features of the actual response
surface (Figure 5.6). This is even more pronounced in Figure 5.10 where the error map of
step 1 is shown. In the part of the parametric domain where the Mach number - inlet angle
couple makes the shock impinge upon the sensor, the error has its maximum. When the
shock falls behind the sensor, ans the Cp is zero, the error is very small, in the order of
10−6, and where the shock hits the wall upstream of the sensor, but not on the sensor, the
error lies in between.
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(A) Evolution of the deterministic error ε and
the stochastic error η. (B) Error plot shown from above.

(C) ε(Nx) and η(Nx) (D) ε(Nξ) and η(Nξ)

FIGURE 5.8: Behaviour of ε and η for the supersonic inlet test case with
Cmaxx = 128000. Dotted lines indicate deterministic refinement following
Algorithm 2 while full lines represent refinement in the parametric space

following Algorithm 1.

The error and complexity maps of of steps 0 and 1 (Figures 5.9 and 5.10) that most new
samples are added in the region of the parametric domain where the first oblique shock
hits the lower wall on the sensor. The deterministic error in these samples is also maximal
in this region. In order to compute to within the target accuracy the pressure coefficient
on the sensor for these samples, mesh refinement will be needed. At the same time, in
the parametric domain, this region corresponds to a discontinuity which, in order to be
resolved to within target accuracy, needs mesh refinement in the stochastic space.
After an initial refinement in the stochastic space, comparing ε and η (step 1 in Table 5.2)
shows that the deterministic error dominates and Algorithm 2 ensures that the necessary
computations are refined such that ε becomes smaller than or equal to the determinis-
tic target error εt. Comparing Figures 5.10 and 5.11 one can see how Algorithm 2 has
increased the complexity the most for the samples with the highest deterministic error
estimate. During this refinement step the mean deterministic complexity increases from
4000 to 6446 while the number of samples Nξ stays the same. The expectation and vari-
ance of the stochastic response however may change from step 1 to 2 as now the solution
field in the refined deterministic computations is more accurate thus the QoI, the pressure
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coefficient on the sensor, at these sample points may change.

FIGURE 5.9: Inlet step 0: Map showing the error on each deterministic com-
putation and the mesh complexity of those computations on the parameter

space.

FIGURE 5.10: Inlet step 1: Map showing the error on each deterministic
computation and the mesh complexity of those computations on the pa-

rameter space.



5.4. Numerical applications 95

FIGURE 5.11: Inlet step 2: Map showing the error on each deterministic
computation and the mesh complexity of those computations on the pa-

rameter space.

After completion of step 2, the dominating error is η. The next refinement step will
thus be a stochastic refinement step where new samples are added using metric-based
mesh refinement.

FIGURE 5.12: Inlet step 3: Map showing the error on each deterministic
computation and the mesh complexity of those computations on the pa-

rameter space.

The introduction of new samples during step 3 has lowered η from 0.0236 to 0.0014
(see Table 5.2) but it has also lead to an increase of ε from 0.0175 to 0.0229 due to the fact
that all new samples have been computed using the default complexity Cξ = 4000. With
the deterministic error now again dominating, a deterministic refinement step is started
with the goal of reaching a target error εt that is below the current η.
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FIGURE 5.13: Inlet step 4: Map showing the error on each deterministic
computation and the mesh complexity of those computations on the pa-

rameter space.

This goal, however, is not reached. At the end of step 4 the deterministic error ε has
been reduced to 0.0024, but the constraint on the maximum deterministic complexity im-
pedes it from getting below the current stochastic error η = 0.0014. In Figure 5.13 the
error and complexity maps at step 4 is given, where the latter shows a plateau of of all the
computations that were pushed to the maximal allowed deterministic complexity.
From this point on, forced alternate refinement was used. The result is that each time a few
samples are added at default complexity, the deterministic error rises, and in the subse-
quent deterministic refinement steps, these new samples are pushed to a higher complex-
ity in order to reduce ε as much as possible. However, as is clear form looking at Figure
5.8d, ε reaches a plateau, due to the constraint on the maximal complexity, while η does
continue do descend. With the dominating deterministic error stagnating, the fact that
η still goes down, means that the total error will still diminish but will never get below
the current deterministic error (see Figure 5.7d). This alternating refinement was forced to
continue up to step 19.

An overview of the adaptation process described above can be found in Figure 5.14
where results at the final sub-iteration of adaptation step 0 (i.e. at the initial stage), step
2 and final step 19 are shown. As was previously observed, we see that the integrated Cp
response (cf. second row) in the parametric space is quite regular except for two sharp
oblique transition regions of varying M∞ and α, corresponding to the impingement of the
inlet first compression shock onto the region of interest Γ. The metric-based stochastic
adaptation is able to sense these regions of poor smoothness. It gradually and anisotropi-
cally refines the approximation by adding more samples in these areas.

5.4.2 Scramjet internal flow

The coupled control of both deterministic and stochastic errors is now tested on the scram-
jet problem introduced in Chapter 2. The geometry is recalled in Figure 5.15, and the QoI
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FIGURE 5.14: Inlet problem: some results of the coupled adaptation strat-
egy for error control. Results are displayed at the end of step 0 (column
(a)), step 2 (b) and step 19 (c). Adapted stochastic partitions (first row) and
isocontour maps are shown in the parametric space: the surface response
of the approximated QoI j(M∞, α) (2nd row), – spatial discretization error
maps ε(M∞, α) (3rd row) and – corresponding optimal spatial complexity

map Cx(M∞, α) (bottom row).

is the pressure signature on Γ:

j(w) =

∫
Γ

(
p− p∞
p∞

)2

dy, (5.29)
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FIGURE 5.16: Scramjet: Density field solution for M∞ = 3 and α = 0: uni-
form mesh (left image) vs. goal-based adapted mesh (right image)

FIGURE 5.15: Scramjet geometry; the QoI is integrated on Γ.

The internal flow in the scramjet is modeled by the Euler equations, viscosity is ne-
glected in this study, and there are two uncertain parameters: the angle of attack α and the
free stream Mach number M∞. As before, both are assumed to follow a uniform distribu-
tion with α ∼ U[0,6] degrees and M∞ ∼ U[2.4,4] respectively. The effect of the goal-based
deterministic refinement is demonstrated in Figure 5.16 where density field is shown for
a uniform mesh on the left side and an adapted mesh on the right for one configuration
(M∞, α). In contrast to the previous treatment given to this test case, using a robust LOO-
weighted Least Squares method to construct a continuous representation of the response
surface where the approximation errors contained in each deterministic computation were
seen as noise, here this approximation error is computed for each deterministic sample
and the expectation of those errors ε and compared to the expected error on the paramet-
ric domain η. The coupled refinement strategy outlined in Algorithm 3 will ensure that
the refinement will take place in the space where the error is dominant.

Three response surfaces with increasing number of vertices are shown in Figure 5.17,
one can compare these response surfaces to the ones obtained in Figure 2.12 in Chapter 2.
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FIGURE 5.17: Response surfaces of the QoI for the scramjet case. On the left,
the Delaunay triangulation on the randomly drawn samples; in the middle
the response surface corresponding to the first data point in Figure 5.18; and
on the right the final mesh corresponding to the last data point in aforemen-

tioned figures.

In Figure 5.18 the evolution of the deterministic error ε and the stochastic error η are
shown in function of the number of samples Nξ and the mean deterministic mesh com-
plexity. The full lines in the plot indicate a adaptation of the stochastic response surface
and the dotted lines indicate that Algorithm 2 was used for a refinement of the determin-
istic computations. The subplots in Figure 5.18 each show a different view of the same
plot.
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(A) Evolution of the deterministic error ε and
the stochastic error η. (B) Error plot shown from above.

(C) ε(Nx) and η(Nx) (D) ε(Nξ) and η(Nξ)

FIGURE 5.18: Behaviour of ε and η for the scramjet test case with Cmaxx =
128000. Dotted lines indicate deterministic refinement following Algorithm
2 while full lines represent refinement in the parametric space following

Algorithm 1.

The deterministic error line has five markers, while the stochastic error line only four;
this is due to the fact that on the initial stochastic mesh no stochastic error estimate is avail-
able. This initial mesh (called step 0) is the Delaunay triangulation of 50 samples drawn
according to the pdf of the two random variables α and M∞. At least one fixed-point iter-
ation of the stochastic mesh adaptation procedure is needed to generate an error estimate
η. At this point we find ourselves in Figure 5.18b at the point (meanNx, Nξ) = (4000, 106)
(step 1). It can be seen in Figure 5.18a that at these coordinates, the deterministic error
ε dominates. Algorithm 3 then orders a deterministic refinement to be done and calls
Algorithm 2, the result of which is visualised by the dotted lines starting from the coordi-
nates (meanNx, Nξ) = (1000, 106) and ending at (81767, 106) (step 2). At the end of this
adaptation cycle, the mean mesh complexity of the deterministic computations has been
increased from 4000 to 81767, and the deterministic error estimate ε has decreased from
0.64 to 0.062 the number of samples Nξ has remained the same as did η. Now, at step 2,
the deterministic error still dominates, but further refining the deterministic computations
no longer reduces ε because of the limitation Cmaxx = 128000. In Figures 5.19, 5.21 and
5.22 a map of the complexity of each CFD computation Cx(ξ) and its corresponding error
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estimate ε(ξ) is shown on the parametric domain.

FIGURE 5.19: Map showing the error on each deterministic computation
and the mesh complexity of those computations for the scramjet case on the

initial Delaunay triangulation on the parameter space.

The initial complexity for all deterministic computations was set at 4000, as can be seen
on the right in Figure 5.19. While the complexity in each of the deterministic computations
is the same, the error is not. The angle of attack and free stream Mach number have an im-
portant effect on the flow solution, as the random variables change, the number of shocks,
their strength and interactions all change. The result is that for some computations, espe-
cially those where the free stream Mach number is low and, a complexity of only 4000 will
be enough to achieve an error of the order of 10−1 while for other computations, a much
higher complexity will be required. In the former case, at free stream Mach numbers in the
approximate range [2.4, 2.7], the complex system of interacting shocks as shown in Figure
5.16 is not yet in place and mesh complexities of 4000 suffice to achieve the target error. As
an illustration of the effect of the goal-based adaptation, Figure 5.20 shows, for M∞ = 3
and α = 0, how the refinement reveals much more detailed features of the flow solution.
Without the mesh refinement, many of these intricate features remain unresolved.

From step 0 (Figure 5.19) to step 1 (Figure 5.21) we see the effect one fixed-point it-
eration of the adaptation of the mesh on the parametric space.The complexity for each
deterministic computations remains at 4000, but the number of samples increases.
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FIGURE 5.20: Scramjet: Deterministic adapted meshes at M∞ = 3. By line:
zoom in the middle of the geometry vs. zoom at the outflow, for determin-

istic complexity Cx = 8000, 16000 and 32000.

FIGURE 5.21: Map showing the error on each deterministic computation
and the mesh complexity of those computations on the parameter space for

the scramjet case.

Going from step 1 (error map shown in Figure 5.21) to step 2 (error map given by Fig-
ure 5.22) one can see the effect of the deterministic refinement cycle. Following Algorithm
2, for each sample (which corresponds to a CFD computation), unless the deterministic
error contained in that sample is already below the global deterministic target error, an
individual target error is set, based on which the target complexity for that sample is com-
puted. One can see on the left in Figure 5.22 that the error has dropped by an order of
magnitude when compared to Figure 5.21. At the same time, the complexity map on the
right in Figure 5.22 shows two plateaus: a small plateau for Nx ≈ 4000 at the low end of
the M∞ range and a larger plateau with Nx ≈ 128000 towards the higher Mach numbers.
The plateau at Nx ≈ 4000 are the computations for which no goal-based mesh refinement
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was needed; the plateau at Nx ≈ 128000 represents all the computations that were given
the maximum complexity allowed.

FIGURE 5.22: Map showing the error on each deterministic computation
and the mesh complexity of those computations on the parameter space for

the scramjet case.

The errors and complexities shown in Figure 5.22 are the result of 4 iterations of Algo-
rithm 2. Due to the constraint set on the maximum mesh complexity allowed, the deter-
ministic error ε has not been reduced beyond the stochastic error η. It is still the determin-
istic error that dominates, and in order to reduce the total error in the most effective way,
one needs to refine the deterministic computations. Normally the refinement procedure
would end here, but in order to show the effect of stochastic refinement the computation
was forced to execute a refinement of the stochastic mesh. In that procedure, the new sam-
ples introduced are given the initial mesh complexity of 4000, which causes the error and
complexity maps shown in Figure 5.23 to become somewhat spiked.
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FIGURE 5.23: Map showing the error on each deterministic computation
and the mesh complexity of those computations on the parameter space for

the scramjet case.

As the stochastic refinement step has introduced new computations at a low complex-
ity, the mean complexity has now decreased and the deterministic error has increased.
Another deterministic refinement step will again increase the mean deterministic mesh
complexity and reduce ε to the same order of magnitude as was achieved in step 2. How-
ever, due to the limitation on Cmaxx is is impossible to reduce ε below η.

FIGURE 5.24: Map showing the error on each deterministic computation
and the mesh complexity of those computations on the parameter space for

the scramjet case.

An overview of the mean and variance of the response surface throughout this coupled
refinement procedure is summarized in Table 5.3; the table also includes ε, clearly showing
how an increase in the mean Nx impacts the deterministic error estimate.
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Step nr. Nξ mean Nx µj σ2
j ε η

0 50 4000 0.0491 0.0033 0.5429

1 106 4000 0.0514 0.0029 0.6374 0.0428

2 106 81767 0.0533 0.0035 0.0623 0.0428

3 132 66667 0.0561 0.0042 0.1897 0.0426

4 132 84300 0.0547 0.0040 0.0634 0.0426

TABLE 5.3: Scramjet statistics and errors.

5.4.3 NACA0012

The example focusses on a NACA0012 geometry, the flow is inviscid with the inflow Mach
number and the angle of attack as uncertain parameters; both follow a lognormal dis-
tributed such that µM∞ = 0.8 with a coefficient of variation CoVM∞ = 1% and µα = 1.5
degrees with CoVα = 10%. The scalar quantity of interest j(ξ) is the value of the Mach
number at x = 0.65c with c the chord length on the upper surface of the airfoil. The
geometry and the location of the pressure sensor are shown in Figure 5.25.

FIGURE 5.25: NACA0012 with pressure sensor.

In this transonic regime, the solution field is highly sensitive to small changes in the
flow conditions or to changes in the geometry. This is demonstrated in Figures 5.26a and
5.26b where the Mach field for two different samples in the parameter space are shown.
Mach field values range from subsonic to supersonic, with a shock forming on the upper
surface of the airfoil. The position and strength of the shock are very sensitive to the
random variables; when the shock traverses the pressure sensor, a sudden change in the
QoI produces a discontinuity in the response surface.
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(A) M∞ = 0.77 and α = 1 (B) M∞ = 0.83 and α = 2

FIGURE 5.26: NACA0012: Mach field for M∞ = 0.77 and α = 1 (A), vs.
Mach field for M∞ = 0.83 and α = 2 (B).

A sequence of response surfaces along with the pdf of the random variables shows how
this discontinuity is gradually resolved whilst taking into account the pdf in the placement
of new samples.

FIGURE 5.27: NACA0012 with pressure sensor.

For this test case, the initial stochastic DoE contains 50 samples, and the initial com-
plexity for the deterministic computations is 4000. From the start, the deterministic error
contribution is of the order of O(10−3) while the stochastic error contribution is much
higher at O(10−1. The maximal number of refinement steps was (arbitrarily) set at 9, and
different error contributions can be observed in Table 5.4.



5.5. Conclusions 107

Step nr. Nξ mean Nx ε η

...
...

...
...

...
3 140 3993 0.119·10−3 0.279

4 152 3993 0.118·10−3 0.262

5 169 3993 0.118·10−3 0.157

6 191 3993 0.118·10−3 0.153

7 214 3993 0.118·10−3 0.144

8 225 3993 0.118·10−3 0.130

9 233 3993 0.118·10−3 0.119

TABLE 5.4: NACA0012: Evolution of deterministic and stochastic error
components.

The evolution of the expectation and variance of the QoI is plotted in Figure 5.28 where
a convergence up to an accuracy of 10−2 becomes apparent.

(A) Expectation (B) Variance

FIGURE 5.28: NACA0012: Evolution of the expectation and variance during
refinement of the stochastic mesh.

Since the stochastic refinement is unable to reduce η below ε, no refinement extra re-
finement is needed on the deterministic computations; all refinement steps are done in
the stochastic space. The new samples are added at a default target complexity of 4000,
hence the mean Nx remains stable at 3993 throughout all the refinement steps. When η in
function of Nξ is fitted to the model βNκ

ξ this yields for the convergence constant β = 200
and for the convergence rate κ = −1.4. These findings are in line with what was reported
in Chapter 4.

5.5 Conclusions

In this chapter, we have proposed a coupled control of both stochastic and determinis-
tic errors using the Riemannian metric framework useful when dealing with anisotropic
behaviour. An a priori deterministic error control for the QoI is described, involving the
computation of an adjoint state. This approach allows to drive goal-based adaptivity in the
deterministic space where the remeshing effort is solely concentrated in the zones impact-
ing the QoI. An adaptive algorithm has been proposed to chose which error dominates
and to adapt in the appropriate space, the physical (deterministic) or parametric (stochas-
tic) space, in order to reduce the total error. The proposed approach has been applied for
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CFD problems modeled by the Euler system, for internal (inlet and scramjet problem) and
external flows (around a NACA0012 airfoil). Preliminary results have shown that we are
capable of:

• capturing the anisotropic behaviour in both deterministic and stochastic parametric
space,

• detection the dominating error, and further reduction of this error by solving opti-
misation problems with an increased number of nodes/samples constraint,

• reducing the total error on the QoI given a computational budget,

• reducing the variance of the deterministic error contained in the samples over the
stochastic space,

• reaching some numerical convergence of the statistical moments of the stochastic
response.
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Chapter 6

Conclusions and Perspectives

We have addressed in this thesis several open questions regarding robust adaptive un-
certainty quantification. More precisely, we have considered two situations when prop-
agating uncertainties through an approximate model: (a) no information regarding the
sample (deterministic) error is available and (b) the case where estimates of this error can
be computed and used to reduce the overall error.

In the first case, this model error appears as noise and outliers in the samples. This
noise however does not necessarily follow a particular distribution making the filtering of
this noise cumbersome in practice. In Chapter 2 an approach was proposed that quanti-
fied the confidence in each sample using an L2−based cross-validation of a generalized
Polynomial Chaos (gPC) approximation. This information was then used as precondi-
tioning weights in a second step where the final surrogate model was constructed by a
preconditioned L1−regularized gPC approximation. This approach showed to be effec-
tive in automatically filtering the effect of outliers and noise not following any particular
regularity assumption.

In this first part of the thesis we explored gPC formulations ranging from pseudospec-
tral projection, Least Squares regression, and interpolation. All of these formulations
used a DoE that is a tensorization of quadrature rules. For some applications this zero-
variability sampling can be beneficial as it brings reliability to the recovery procedure.
The downsides are that it is best suited for low to moderate dimensional problems and
that it does not take the anisotropic features of the response into account.

With a focus on parametrized complex flow simulations leading to output responses
with low regularity and discontinuities, an extension of metric-based adaptation to the
stochastic space was proposed in Chapter 4. In this context, the choice for linear simplex
elements in the parametric space is a legitimate one. It will preclude Gibbs phenomena
in the approximation of the response and furthermore, the use of this meshing approach
will allow for the automatic capturing of any discontinuities leading to an efficient ap-
proximation of these low regularity response surfaces. This was demonstrated on several
stochastic test problems and on the fluid mechanical piston problem where the proposed
method compared favourably to the existing Simplex-Stochastic Collocation and Multi-
Element gPC methods.

The effects of the error in each deterministic simulation were not considered in Chap-
ter 4 but were taken into consideration in Chapter 5. There, both the deterministic and
stochastic contributions were controlled using the Riemannian metric framework. In the
deterministic computations on the physical space, an a priori goal-oriented error estimate
was used while on the stochastic space the error was controlled though an estimate of the
interpolation error. This approach was demonstrated to be effective in reducing the total
error in selected compressible flow test problems.
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Since the original metric-based method is limited to 3D domains, the stochastic ex-
tension presented here will also be limited to three dimensional parametric domains. In
any case, uncertainty quantification methods based on a Delaunay triangulation of the
parametric space are not suited for high dimensional problems. In the context of the SSC
method, it has been reported [Witteveen and Iaccarino, 2012b; Edeling, Dwight, and Cin-
nella, 2016] that this becomes impractical from 5−dimensional parameter spaces onwards.
Since, like the SSC method, the first step of the method proposed in Chapters 4 and 5 will
be a Delaunay triangulation of the parameter space, the same limitations will apply here
even if the metric-based mesh adaptation method were extended beyond 3 dimensions.

Faced with discontinuities in the stochastic response, an accurate approximation will
never be cheap. One can therefore imagine that an approximation of such a response in
a very high-dimensional parametric space will be computationally infeasible no matter
what approximation method is used. The methods proposed in this thesis do not address
the curse of dimensionality, nonetheless the low-dimensional approach can be justified
by the fact that many engineering problems have a low effective dimensionality of the
parameter space and the realization that accurately approximating high-dimensional dis-
continuous stochastic response surfaces will be too computationally expensive whatever
method used.

6.1 Perspectives

With the results presented in this thesis in mind, several perspectives can be formulated.
Concerning the approach proposed in Chapter 2, potential perspectives for future

work involve: – a different way of evaluating the preconditioning weights that would
be even less sensitive to data outliers. With this aim, one may argue that non-weighted
LASSO–type algorithms could be deployed upfront as we have noticed they often per-
formed better in terms of robustness than standard L2−projections. Once combined with
the second step above, this approach could then be generalized in the form of an adap-
tive formulation where the weights would be iteratively refined in conjunction with the
surrogate model level of complexity. In this case, it would be reminiscent of an iter-
atively reweighted least squares technique; or – introduce a (re)weighted norm in the
L1−minimization which is known to produce better compressive performance. This infor-
mation could be provided by the spectrum of the low-order model, selected and validated
in the initial step.

A downside of the linear simplex approximation used in Chapters 4 and 5 is the lack
of p−refinement capability. A higher order interpolation error estimate could be applied
for both stochastic and deterministic problems in smooth regions, allowing thus to lower
the computational budget (while maintaining the desired accuracy). This would however
require developments of new error estimations and associated adaptive tools.

An alternative method of achieving some form of p−adaptivity without a need for a
higher order interpolation error estimate, would be to apply the Riemannian metric ap-
proach as presented in this manuscript, letting it determine the best sample locations.
Then as a post-processing step, higher order surrogate models could be constructed using
this unstructured sample set.

Furthermore, the way in which the complexity for new samples was determined in
Chapter 5 could be improved. The simulations corresponding to these new samples were
done on meshes with some predefined default complexity target. By looking at the target
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complexities chosen for the samples neighbouring the new sample, faster convergence of
the deterministic component of the total error could be achieved.
Lastly, the curse of dimensionality was not addressed in this theses. The UQ methods pro-
posed in this thesis could however become an ingredient in a more encompassing ap-
proach that isolates the lower dimensional subspaces where their strengths can be ex-
ploited.
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