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Structural biology has allowed us expand our knowledge of living organisms. It is defined as the investigation of the structure and function of biological systems at the molecular level. Studying a biomolecule's structure offers insight into its geometry, as angles and distances between the biomolecule's atoms are measured in order to determine the biomolecular structure. The values of these geometrical parameters may be obtained from biophysical techniques, such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. One of the most used methods to calculate protein structures from geometric restraints is simulated annealing. This method does not guarantee an exhaustive sampling of protein conformational space, which is a shortcoming as one protein may adopt multiple functional conformations, and it is important to determine them exhaustively. In this PhD project, the efficiency of a new method -derived from operations research and computational geometry -is studied in order to answer this question: How does this method explore the conformational spaces of small proteins?

This method -implemented within the iBPprot software framework -treats protein structure determination as a distance geometry problem, which the interval branch-andprune algorithm tries to solve by the full exploration of its solutions space. The results obtained by iBPprot on a set of test proteins, with sizes ranging from 24 to 120 residues and with known structures, are analyzed here. Using short-range exact distance restraints, it was possible to rebuild the structure of all protein targets, and for many of them it was possible to exhaustively explore their conformational spaces. In practice, it is not always possible to obtain exact distance restraints from experiments. Therefore, this method was then tested with interval data restraints. In these cases, iBPprot permitted the sampling of the positions of more than 70% of the atoms constituting the protein backbone for most of the targets. Furthermore, conformations whose r.m.s. deviations closer than 6 Å to the target ones were obtained during the conformational space exploration. The quality of the generated structures was satisfactory with respect to Ramachandran plots, but needs improvement because of the presence of steric clashes in some conformers. The runtime for most performed calculations was competitive with existing structure determination method.

Résumé

En biologie structurale, de nombreuses techniques biophysiques pour la détermination de structures de protéines sont basées sur la mesure de distances et d'angles entre atomes. En bioinformatique structurale, une partie des méthodes computationnelles qui calculent les structures de protéines à l'aide de données expérimentales, effectuent une optimisation de la position des atomes sous les contraintes expérimentales mesurées sur le système étudié, ainsi que sous des contraintes provenant de la connaissance générique de la stéréochimie organique. Ces méthodes d'optimisation présentent l'inconvénient de ne pas garantir la détermination de la meilleure solution. De plus, la validation de l'optimisation se fait en comparant les résultats obtenus pour des calculs répétés, et le résultat d'un calcul est accepté dans la mesure où le même résultat est obtenu plusieurs fois. Par cette approche, on rend plus difficile la détection de conformations alternatives de protéines, qui sont pourtant le sujet d'un vif intérêt dans la littérature. En effet, depuis plusieurs années, le développement de la sensibilité des techniques de résonance magnétique nucléaire (RMN) a permis de mettre en évidence plusieurs cas d'échange conformationnel reliés à la fonction des protéines.

Dans ce projet de thèse, nous avons étudié une nouvelle approche pour le calcul de structures des protéines et l'exploration de leurs espaces conformationnels, basée sur la résolution du problème de Géométrie de Distance associé aux contraintes de distances dans une protéine. Tout d'abord, la protéine est representée par un graphe pondéré non orienté, dont les sommets sont les atomes de la chaine principale et les arêtes sont les couples d'atomes pour lesquels la distance interatomique est une donnée du problème.

Ensuite, les sommets du graphe sont ordonnés de telle sorte que chaque quatre atomes consécutifs constituent un sous-graphe complet, ce qui assure que chaque atome soit relié aux trois précédents par des contraintes de distance. Ainsi, la position de cet atome est obtenue à l'aide de l'intersection de trois sphères qui donne deux solutions presque sûrement si les distances sont connues de manière exacte et si elles sont consistantes entre elles, ou plus de deux solutions si les distances sont présentées sous forme d'intervalles qui doivent être discrétisés. L'ensemble des positions atomiques possibles est dressé en structure arborescente, dans laquelle chaque niveau regroupe les emplacements possibles d'un atome particulier sous forme de noeuds. Cet arbre renferme l'espace conformationnel de la protéine investiguée. Par la suite, l'algorithme "interval branch-and-prune" (iBP) parcourt l'arbre des solutions de façon récursive. À chaque noeud visité, iBP calcule les coordonnées spatiales de la position contenue dans le noeud (la phase 'branching'), ensuite il vérifie sa faisabilité par rapport aux contraintes données (la phase 'pruning'), si les coordonnées calculées ne sont pas compatibles avec une seule de ces contraintes données alors iBP élimine ce noeud. Les noeuds restants, dessinant des chemins reliant le tronc de l'arbre jusqu'à ses feuilles, représentent les solutions possibles du problème.

La méthode décrite ci-dessus a été codée en langage C++, et le logiciel résultant est appelé iBPprot.

Dans un premier temps, on s'est intéressé à l'application de la méthode en utilisant exclusivement des constraintes de distances exactes. Pour ce faire, un jeu de différentes protéines, ayant des tailles variées et des dispositions de structures secondaires diversifiées, a été recueilli de la PDB. Par ailleurs, deux objectifs ont été établis: i) reconstruire les structures PDB de ces protéines, ii) parcourir exhaustivement l'espace conformationnel de chaque protéine. Afin de répondre à ces objectifs, des contraintes de distance ont été mesurées directement sur les structures références, et ont été introduites comme input à iBPprot suivant un protocole bien défini. Les résultats ont démontré que iBPprot est capable de reconstruire les structures des références en s'appuyant seulement sur quelques contraintes à courte portée. De plus, la reconstruction a été d'une precision telle que la conformation générée présente un RMSD de 1Å maximum avec la structure référence. L'exploration exhaustive de l'espace conformationnel, de son côté, a été possible pour une bonne partie des protéines cibles. Les temps de calcul pour l'exploration des espaces conformationnels ont été très variables allant de quelques secondes pour quelques protéines jusqu'à des semaines pour d'autres. La corrélation entre les propriétés structurale d'une référence donnée et la complexité d'échantillonage de son espace conformationnel n'a pas été précisément élucidée, on pense que la topologie des structures secondaires est probablement l'élément le plus influent. D'autre part, l'évaluation de la qualité des structures obtenues est une étape importante dans le calcul de structures moléculaires. Deux critères d'évaluation ont été utilisés: i) la distribution des valeurs des angles de torsion ϕ et ψ dans le diagramme de Ramachandran, ii) la quantité de clashes stériques observés entre les atomes d'une conformation calculée. Ces évaluations, ayant été réalisées par le logiciel PROCHECK, ont démontré qu'au moins 68% des valeurs de ϕ et ψ sont localisées dans la zone 'core' du diagramme de Ramachandran. Cependant, des clash stériques ont été détectées dans plusieurs conformations mettant en jeu jusqu'à 7% d'atomes dans quelques unes de ces conformations.

Dans un deuxième temps, on s'est intéressé à l'application de la méthode en incluant des intervalles de distances comme contraintes dans les calculs. La complexité du problème nous a conduit à simplifier les calculs: i) les parties N et C terminales de plus de 10 residus ont été coupées, ii) les éléments de structures secondaires régulières ont été rigidifiés, iii) des contraintes de distance ont été rajoutées entre les carbones α de tous les résidus. Dans ce cas de figure, iBPprot a réussi a reconstruire la conformation PDB avec un RMSD inférieur à 5Å pour plus de la moitié des protéines cibles. En contre partie, le parcours complet de l'espace conformationnel n'a été possible que pour la plus petite protéine de l'ensemble des protéines étudiées. Pour la moitié des autres protéines, plus de 70% des atomes ont vu leurs positions échantillonnées. La qualité des structures obtenues a regressé en comparaison avec les simulations faites avec des distances exactes, en effet seulement 53% des valeurs de ϕ et ψ étaient localisées dans la zone 'core' du diagramme de Ramachandran, et le pourcentage d'atomes impliqués dans un clash stérique s'élevait jusqu'à 22% pour quelques protéines. Concernant le temps de calcul, le taux de génération de conformations a été déterminé pour chaque protéine cible, et il s'est avéré que globalement sa valeur etait compétitive par rapport aux valeurs des taux observables dans la littérature.

En conclusion, iBPprot est un logiciel de calcul de structures protéiques adéquat pour être utilisé dans le cadre de la détermination de structure par RMN, en supposant qu'au préalable la consistance des données expérimentales a été bien verifiée. Il incarne, de par sa conception, l'une des premières tentatives d'échantillonnage exhaustive des espaces conformationnels des protéines. 
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Introduction

Structural biology is the field of research that studies the structures and the 3D shapes of biomolecules, especially proteins and nucleic acids, two central molecules of life [START_REF] Oakley | Structural biology and its applications to the health sciences[END_REF][START_REF] Oehler | High local concentration: a fundamental strategy of life[END_REF].

The study of the three-dimensional shape of proteins started with the work of John Kendrew on myoglobin, and of Max Perutz on haemoglobin. This field has since grown and emerged as a more defined discipline about twenty years ago, where previously it was considered part of molecular biology [START_REF] Harris | Transmission electron microscopy in molecular structural biology: A historical survey[END_REF][START_REF] Levitt | The birth of computational structural biology[END_REF].

Structural biology requires knowledge from disciplines ranging from physics and mathematics to organic chemistry and biology, and has gradually out-grown molecular biology.

This partly explains its independence from molecular biology in the last twenty years. Advances in structural biology are significantly influential, as they enable us to understand and control the functions of biomolecules, which in turn enhances their biotechnological and clinical applications. Undoubtedly, the development of structural biology during the last years has been partly driven by the development of biophysical methods. Many of them allow the measurement of geometrical parameters either between specific atoms or through the measurement of distance distributions in the molecule. Thereafter come computational methods that use the produced experimental data to determine the molecular structure. These computational methods are mainly based on a combination of sampling and optimization. The aim of this PhD project is to develop an innovative method that calculates molecular structures based on exhaustive enumeration. All possible conformations satisfying a given set of constraints are explored. Thus this method is superior to the many non-exhaustive methods because no possible structure is missed.

Before entering into the details of this new method, we need to present an overview on proteins, which are the target molecules of our method. Moreover, we shall introduce the main biophysical experiments used in the field as well as the principal concepts behind the pre-existing computational techniques used for protein structure determination. It has been observed that the R group is restricted to a repertoire of twenty hydro-carbon chains, represented in the fourth column of Table I.1, and thus defining twenty possible proteinogenous amino acids. Moreover, these R groups will contribute distinct physicochemical properties to each amino acid, including solubility and charge. Therefore amino acids could be divided into hydrophobic, charged and polar classes. The Glycine amino acid is a unique class in and of itself [START_REF] Albert L Lehninger | Lehninger Principles of Biochemistry[END_REF]. The Table I.1 presents these standard amino acids by their names, abbreviations and side chains R.

Chirality L & D

The term chirality is encountered in several branches of science, designating the property of asymmetry. In chemistry, a chiral molecule is non-superposable on its mirror image (Figure I.2), and the carbon atom is an obvious source of chirality if it has four different substituents. This latter condition being necessary, the C α is the only atom in the main chain of an amino acid molecule that can be stereogenic, depending on the R group (Figure I.1). In the case of Glycine, the R group is no more than a hydrogen atom, hence its C α is not stereogenic because it has two identical substituents H α1 and H α2 . Consequently Gly is achiral. The nineteen remaining amino acids are chiral, which gives the possibility to define two C α -based stereo isomers for each amino acid, the d-isomer and its mirror image the l-isomer (Figure I.2). In biosynthesized proteins, the l-form is almost always observed. Table I.1: Amino acids arranged by the chemical class of their side chains R. The bond from the side chain to the C α , as well as all atoms not belonging to the side chain are drawn in red. In the Proline case, the whole amino acid molecule is represented. tion. The C α in l-amino acids has the S absolute configuration with respect to the Cahn-Ingold-Prelog conventions, except in the l-Cysteine. We can not go from one form to the other without breaking one or more bonds connected to the chiral atom.

Name

61 anticodons (64 anticodons minus three stop codons) with the correct one from each of the twenty amino acids. The tRNA is characterized by a template recognition site formed by a sequence of three nucleotides called anticodon, this sequence determines to which codon the charged tRNA will bind and therefore which amino acid will be added to the currently synthesized peptide.

Indeed, a ribosome takes an mRNA that was transcripted from DNA and reads the nucleobase sequence on it from the start codon to the stop codon. In most cases, the start codon corresponds to methionine -exceptions are encountered in some viruses [START_REF] Sasaki | Methionine-independent initiation of translation in the capsid protein of an insect RNA virus[END_REF] as well as in short cryptic peptides in antigen-presenting cells where leucine is translated as an initiator amino acid [START_REF] Schwab | Constitutive display of cryptic translation products by mhc class i molecules[END_REF]. The tRNA that carries methionine binds to this codon, thanks to the unique complementarity existing between the tRNA anticodon sequence and the mRNA start codon sequence. Subsequently the ribosome shifts to the second codon. A second tRNA whose anticodon recognizes the second codon moves into the ribosome-mRNA complex with its carried amino acid. The first amino acid, Methionine, quits the attachment site of the first tRNA and binds to the second amino acid through the chemical reaction of Figure I.3. Here the second tRNA becomes charged [START_REF] Albert L Lehninger | Lehninger Principles of Biochemistry[END_REF] with a dipeptide chain, i.e. two amino acid residues linked by a peptide bond.

The ribosome continues moving along the mRNA and associating amino acids to the growing polypeptide chain, with respect to the browsed codons. Elongation of the polypeptide is terminated when the ribosome reaches the stop codon. The ribosome then liberates the nascent amino acid polymer, that may undergo some modifications before it attains its biologically active form: the protein. More details could be found in [START_REF] Albert L Lehninger | Lehninger Principles of Biochemistry[END_REF].

Let us focus on the features of the newly formed protein. The sequence of amino acids in a protein is called primary structure. The amine group of the first amino acid of the primary structure constitutes its N-terminus, while the carbonyl group of the last amino acid constitutes its C-terminus. These define the two extremities of the polymer chain, whereas the main chains of the amino acid residues define its backbone and the R groups of the amino acid residues define its side chain. denotes the type of amino acid side chain. First the reaction happens between Met-tRNA (fMet-tRNA f for prokaryotic cells) and the second aminoacyl-tRNA, and we have n=0. Then the reaction happens between the dipeptidyl-tRNA and the next arrived aminoacyl-tRNA, and n becomes 1. As the new aminoacyl-tRNA are still coming, the reaction model do not change: the polymer elongation continues and n keeps incrementing by 1. The blue thick bond is the peptide bond formed after each reaction.

Peptide plane

The peptide bond linking two consecutive amino acid residues in the primary structure is characterized by its rigidity. Due to its electronic environment described in Figure I.4, the peptide bond acts as a double covalent bond and therefore the rotation over the C-N axis is difficult. This rotation is identified by the dihedral angle

ω between the vertices (C i α ,C i ,N i`1 ,C i`1 α )
, where i is the index of the residue in the primary structure. The dihedral angle ω is mostly around 0 0 (the rare cis configuration) or 180 0 (the typical trans configuration), which makes the atoms C i α , C i , N i`1 , C i`1 α , as well as O i and H i`1 almost in the same plane. This plane is called the peptide plane and is represented in Figure I.5. Thus, we can consider that the protein backbone is built from peptide planes that can rotate, one with respect to the other, over the N-C α axis and the C α -C axis. These rotations are identified respectively by the dihedral angle ϕ between the vertices (C i ,N i`1 ,C i`1 α ,C i`1 ), and the dihedral angle ψ between the vertices (N i ,C i α ,C i ,N i`1 ). For a given configuration of the peptide bond, ϕ and ψ are the geometric parameters defining the backbone geometry. The ω angle is also presented with a value of 1800 and usually do not vary. The polypeptide chain is assembled from such linked peptide planes and only ϕ and ψ values differ along the chain. The side chain R is outside the peptide planes, hence its name.

I.1.b Secondary structures of proteins

In order to attain its biologically active form, the protein backbone folds progressively during the translational phase and the post-translational phase until it assumes a native conformation. This 3D conformation is maintained with the formation of appropriate hydrogen bonds, in addition to van der Waals, electrostatic and hydrophobic interactions.

Patterns arise frequently from this folding process: the helices and the β-sheets. Helices could be approximated to rigid cylindrical rods when they are linear, i.e the helix axis is a straight line. However, many of the observed helices are curved: their axes are not linear [START_REF] Barlow | Helix geometry in proteins[END_REF]. There exists also kinked helices, whose axis direction changes abruptly at one or many positions that are called kinks [START_REF] Henry R Wilman | Helix kinks are equally prevalent in soluble and membrane proteins[END_REF]. Apart from the helix axis properties, the number of residues per helix ring is another parameter distinguishing the type of the helix, giving rise, amongst others, to the α-helix, the 3 10 -helix, and the π-helix.

The second periodically-shaped pattern is the β-sheet, where multiple sets of consecutive residues from different regions of the backbone become adjacent to one another to form a pleated structure. It could contain some irregularities named β-bulges [START_REF] Jane S Richardson | The beta bulge: a common small unit of nonrepetitive protein structure[END_REF]. β-bulges are distorted regions that disrupt the classical alternation of side chain direction observed in a regular β-sheet [START_REF] Craveur | β-Bulges: Extensive structural analyses of β-sheets irregularities[END_REF][START_REF] Milner-White | Beta-bulges within loops as recurring features of protein structure[END_REF]. Five types of β-bulges are distinguished: classic, G1, bent, wide, and special [START_REF] Aw Chan | Identification, classification, and analysis of beta-bulges in proteins[END_REF]. Non Periodically-shaped protein fragments named turns and coils are also found in the native conformation and constitute, together with helices and β-sheets, α-helix These helices, named also 3.6 13 , vary in length (number of turns) and have 3.6 residues per helical turn [START_REF] Barlow | Helix geometry in proteins[END_REF]. This secondary structure is stabilized thanks to hydrogen bonds formed between the oxygen of residue i and the hydrogen of residue i `4. Figure I.7 shows the geometrical properties of the helix. Some amino acids are preferably located in α-helices such as Ala, Glu, Leu and Met, whereas some are less frequently observed in α-helices such as Pro, Gly, Tyr and Ser [START_REF] Pace | A helix propensity scale based on experimental studies of peptides and proteins[END_REF]. The α-helix is the most observed helical secondary structure, accounting for about 31% of amino acid secondary structure states [START_REF] Mn Fodje | Occurrence, conformational features and amino acid propensities for the π-helix[END_REF].

3 10 -helix The 3 10 -helix is more tightly coiled than the α-helix. Indeed, it has on average 3.2 residues per helical turn [START_REF] Barlow | Helix geometry in proteins[END_REF][START_REF] Vieira-Pires | 3 1 0 helices in channels and other membrane proteins[END_REF] and display hydrogen bonds formed between the oxygen of residue i and the hydrogen of residue i `3. The 3 10 -helix is usually short in length, spanning five residues in average. When the helix length exceeds this average, 3 10 -helices become less stable. For a fixed number of forming residues, the 3 10 -helix is longer than the α-helix [START_REF] Enkhbayar | 3 1 0-helices in proteins are parahelices[END_REF]. The 3 10 -helix is relatively common in proteins. A study by [START_REF] Enkhbayar | 3 1 0-helices in proteins are parahelices[END_REF] has shown that on average 3% of a protein length is involved in a 3 10 -helix.

π-helix These helices -also called 4.4 16 helix -are thought to occur rarely in protein structures, while a study published in 2010 [START_REF] Richard B Cooley | Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of αhelices that enhance protein functionality[END_REF] stipulated that this secondary structure is found in 15% of the known protein structures that time. Most of this percentage was met as one π-helix ring incrusted among an α-helix turns. The most common length for π-helices is seven residues [START_REF] Mn Fodje | Occurrence, conformational features and amino acid propensities for the π-helix[END_REF]. They display a hydrogen pattern linking each oxygen of the i th residue to the hydrogen of the i `5th residue.

left-handed helix

The α-helix, 3 10 -helix and the π-helix are right-handed helices, i.e.

they spiral in the direction pointed by the four fingers of a closed right hand with the thumb pointing towards the carboxyl terminal of the helix [START_REF] Albert L Lehninger | Lehninger Principles of Biochemistry[END_REF]. In this respect, lefthanded helices -being mirror images of right-handed helices -have been observed. They are energetically disfavored [START_REF] Schulz | Patterns of folding and association of polypeptide chains[END_REF] due to the l chirality of amino acids in proteins. Despite that, a commonly observed left handed helix in globular [START_REF] Adzhubei | Left-handed polyproline ii helices commonly occur in globular proteins[END_REF] and fibrous [START_REF] Gn Ramachandran | Structure of collagen[END_REF] proteins, as well as unstructured states of polypeptides, is the PPII: the left-handed poly-L-proline II helix. This helix has three residues per turn and displays main chain dihedral angles pϕ, ψ, ωq around p´75, 146, 180q [START_REF] Moradi | Conformations and free energy landscapes of polyproline peptides[END_REF], respectively. This structure has no internal hydrogen bonding and each residue from the helix traverses 3.8Å approximately. Proline seems to be quite effective in populating this structure -as it is the less disfavored amino acid in such conformation. However, other amino acids were also observed in this helical conformation [START_REF] Adzhubei | Left-handed polyproline ii helices commonly occur in globular proteins[END_REF], like glycine. known β-sheets, whatsoever parallel, antiparallel or mixed, have singly or multiply bent strands [START_REF] Chothia | New folds for all-β proteins[END_REF]. The bend is characterized by a total bend angle Tβ by which the total strand rotate over a major axis defined by the principal plane through the N, C α , and C backbone atoms of the strand [START_REF] Chelvanayagam | Anatomy and evolution of proteins displaying the viral capsid jellyroll topology[END_REF][START_REF] Daffner | Structural characteristics and stabilizing principles of bent beta-strands in protein tertiary architectures[END_REF]. Thus the β-strand surface become curved instead of being totally flat. Another observed dislocation from a purely flat β-strand conformation is the twisting. In this regard, the strand polypeptide chain twist away relatively to the direction of its adjacent strand neighbor [START_REF] Fr Salemme | Structural properties of protein β-sheets[END_REF]. The twist is invariably observed in the direction pointed by the four fingers of a right closed hand with the thumb pointing the carboxy terminal of the strand [START_REF] Chothia | Conformation of twisted β-pleated sheets in proteins[END_REF]. Turns They are defined as sites where the polypeptide chain reverses its overall direction by 180 0 [START_REF] Chou | Prediction of tight turns and their types in proteins[END_REF][START_REF] Av Efimov | Standard structures in proteins[END_REF][START_REF] George D Rose | Turns in peptides and proteins[END_REF]. The turn structure has its backbone groups closely packed together and side chains projecting outward. Two main classes may be distinguished in turns: tight turns and loose turns or loops. Tight turns might be classified into five types: δ-turn, γ-turn, β-turn, α-turn and π-turn. The δ-turn is made of two residues with intra-turn hydrogen bond formed between the amide hydrogen of residue i and the carbonyl oxygen of residue i `1 [START_REF] Chou | Prediction of tight turns and their types in proteins[END_REF]. The γ-turn is made of three residues with intra-turn hydrogen bond formed between the carbonyl oxygen of residue i and the amide hydrogen of residue i `2.

The β-turn involves four residues. They may be either stabilized by a hydrogen bond between the carbonyl oxygen of residue i and the amide hydrogen of residue i `3 [START_REF] Venkatachalam | Stereochemical criteria for polypeptides and proteins. v. conformation of a system of three linked peptide units[END_REF],

or open [START_REF] Peter N Lewis | Chain reversals in proteins[END_REF] -have no intra-turn hydrogen bond. The α-turn is made of five residues with interatomic distance between C α of residue i and C α of residue i `4 less than 7Å [START_REF] Pavone | Discovering protein secondary structures: Classification and description of isolated α-turns[END_REF]. The π-turn is the largest tight turn and involves six residues. The α-turn and the π-turn may have a hydrogen bond between their first and last residue. The values of the backbone dihedral angles of the inner residue define other subclasses of the turns [START_REF] Chou | of a-turn types[END_REF][START_REF] Kr Rajashankar | π-turns in proteins and peptides: Classification, conformation, occurrence, hydration and sequence[END_REF].

For example, there is four subclasses of β-turns named type I, type II, type I' and type II'. According to Chou [START_REF] Chou | Prediction of tight turns and their types in proteins[END_REF], one way to differentiate between a β-turn and a 3 10 -helix, between an α-turn and an α-helix, between a π-turn and a π-helix, is to consider the number of hydrogen bonds. For tight turns the number of hydrogen bonds must equal to one, while in helices the number of hydrogen bonds must be greater than one.

Turns may constitute a site for molecular recognition and serve as loci for receptor binding, antibody recognition, and post-translational modification [START_REF] George D Rose | Turns in peptides and proteins[END_REF]. In addition, they connect the regular secondary structure segments to obtain specific motifs. The β-turn for instance is frequently observed as a connection between two antiparallel β-strands, resulting in a β-hairpin. Turns may as well overlap regular secondary structures. The β-bulge for instance could be regarded as a tight turn overlapping a β-strand [START_REF] Av Efimov | Standard structures in proteins[END_REF].

Coils They are regions where the polypeptide chain adopts random conformation. In this respect, the term 'random coil' was used to qualify these regions, then criticized since interactions between amino acid side-chains foster lower-energy backbone conformations.

Thus the adopted conformations in these regions are not fully random, making the term 'statistical coil' more preferred [START_REF] Abhishek K Jha | Statistical coil model of the unfolded state: resolving the reconciliation problem[END_REF][START_REF] Makowska | Polyproline ii conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins[END_REF]. The Dictionary of Protein Secondary Structure [START_REF] Kabsch | Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features[END_REF] assigns 'coil' to residues that are not recognized as belonging to any of the other secondary structures. Amide hydrogens and carbonyl oxygens in coil regions can form hydrogen bonds to water molecules of the solvent.

Ramachandran plot

In 1963, the biophysicist G. Ramachandran used ball-and-stick models to study the possible ϕ and ψ angles allowing a polypeptide chain to fold without steric clashes. In his original publication [START_REF] Narayana Ramachandran | Stereochemistry of polypeptide chain configurations[END_REF], Ramachandran considered the coplanarity of the atoms in the group (C i α ,C i ,N i`1 ,C i`1 α ), which attributes to ω two possible values only, and that's why his plot do not show ω angle. The reason why that atoms are coplanar, as well as the two possible values for ω were already given in the last paragraph of subsection I.1.a. Carugo and coworkers [START_REF] Carugo | Half a century of ramachandran plots[END_REF] justified the absence of ω angle study by writing that "The relevance of the bond between the carbonylic C atom and the amidic N atom of the next amino acid is also minor, since there are only two possible geometries".

Accordingly, Ramachandran accomplished a bidimensional plot with ϕ in abscissa and ψ in ordinate: this plot gives a graphical view of the allowed values for ϕ and ψ corresponding to the secondary structures α and β. However, the growing database of known proteins structures with higher resolution showed that these allowed regions tend to be narrower [START_REF] Walther | Conformational attractors on the ramachandran map[END_REF]. In [START_REF] Carugo | Half a century of ramachandran plots[END_REF], they highlighted that the allowed regions do not only depend on the secondary structures to which the amino acid residue belongs, but also on its type [START_REF] Hovmöller | Conformations of amino acids in proteins[END_REF], the type of the neighboring residues [START_REF] Andrew | Experimentally observed conformation-dependent geometry and hidden strain in proteins[END_REF] and their conformation [START_REF] Rohit V Pappu | The Flory isolatedpair hypothesis is not valid for polypeptide chains: implications for protein folding[END_REF]. The Ramachandran plot has thus evolved since its first drawing, taking into account the other secondary structures beyond α and β (Figure I.11). It was observed by Ramakrishnan and colleagues [START_REF] Ramakrishnan | Structural compromise of disallowed conformations in peptide and protein structures[END_REF] that 0.6% of the residues in their protein data set fell in the disallowed regions of the Ramachandran plot. According to [START_REF] Scott | A fresh look at the ramachandran plot and the occurrence of standard structures in proteins[END_REF], this could occur without steric clashes if it is accompanied with distortions in bond lengths and angles, highlighting that there is no ideal local geometry values as bond lengths and angles of a given residue could be [START_REF] Scott | A fresh look at the ramachandran plot and the occurrence of standard structures in proteins[END_REF]. This plot is based on the analysis of 72,000 residues' torsion angles from a set of diverse protein structures determined at ď 1.2 Å resolution. The nomenclature of the displayed regions is as follows. α for residues forming α-helices. β for those forming β-strands. P II for those forming polyproline-II conformation. γ for those forming γ-turns and γ 1 is its mirror image. ε mostly populated by glycine residues adopting left-handed extended conformations, it encompasses the P II region mirror image, the P' II region. δ for residues involved in right-handed turns and its mirror image δ 1 for those involved in left-handed turns. ζ for residues occurring before proline, although 49% of the residues falling in this region do not precede proline.

function of its ϕ and ψ. Another possible compensation may come from interactions with the surrounding residues' main and side chains [START_REF] Deane | Carbonylcarbonyl interactions stabilize the partially allowed ramachandran conformations of asparagine and aspartic acid[END_REF]. Residues with unfavourable ϕ and ψ are generally located in tight turns [START_REF] Carugo | Half a century of ramachandran plots[END_REF] and seem to be involved in enzymatic functions.

Finally, it should be stressed that Ramachandran plots have many relevant applications, notably in protein 3D structure validation, structure calculation and modeling.

I.1.c Tertiary structures of proteins

The main driving force for folding water-soluble proteins is the packing of hydrophobic residues in the core of the protein structure. Several motifs show up therefrom, they combine to form four kinds of domains: α-domains, β-domains, α{β-domains and α `βdomains [START_REF] Alexey G Murzin | SCOP: a structural classification of proteins database for the investigation of sequences and structures[END_REF].

The protein tertiary structure is composed of one to dozens of such domains. From an evolutionary point of view, the tertiary structure can be a source of important insights into evolutionary relationships. Comparing the domains of different proteins helps determine how these proteins are related. Such comparisons involve sequence alignments, which allow to find sequence homology. The SCOP [START_REF] Alexey G Murzin | SCOP: a structural classification of proteins database for the investigation of sequences and structures[END_REF] and CATH [START_REF] Orengo | CATH-a hierarchic classification of protein domain structures[END_REF] databases provide a hierarchical survey of known protein folds as well as a description of the structural and evolutionary relationships between them. The paragraphs below will give a very partial number of examples to illustrate each type of folds. α-domains They exclusively contain α-helix motifs. Coiled-coil α-helices are a type of α-helix motif that can occur in α-domains. They consist of two α-helices that are intertwined and gradually coil around each other. The primary structures of the two helices contain a repetitive heptad amino acid sequence pattern. The heptad repeated amino acid is usually hydrophobic and serves as an anchor for the coiled coil structure, in the sense that each helix pack it against its analogous from the other helix. Charged residues also interact with each other to form salt bridges between the two α-helices, thereby stabilizing the coiled-coil structure. Another typical pattern of this motif is the packing of hydrophobic side chains between the two helices according to the "knobs and holes" model. In spite of being observed in many fibrous proteins such as keratin and myosin, the coiled-coil motif is not sufficient to constitute a complete domain. The fourhelix bundle motif [START_REF] Av Efimov | A novel super-secondary structure of proteins and the relation between the structure and the amino acid sequence[END_REF] is more widely observed among proteins and can be a full-blown domain. It comprises four α-helices arranged in such a way that adjacent helices in the primary structure are also adjacent in the 3D structure and that helical axes are almost parallel. The middle of the bundle buries hydrophobic residues belonging to the four helices which in turn establishes a hydrophobic core along the bundle's axis. Conversely, hydrophilic residues are essentially exposed at the surface of the bundle (Figure I.12). The four-helix bundle occurs in myohemerytin and ferritin molecules for instance. There are also bundles of eight α-helices in which the spatial arrangement of helices is different from four-helix bundles, and thus define yet another type of motif: the globin fold. Indeed, the eight helices wrap in different directions to create a pocket and the sequentially adjacent helices are not adjacent in the 3D structure. Side chains between close helices are packed according to a "ridges and grooves" model. The globin fold is manifest in many orthologs like hemoglobin and leghemoglobin which suggests that this domain has been conserved over a long evolutionary period. ). Jelly roll barrels are also mentioned in the literature but could be considered as a special case of Greek key barrels. Disregarding the topology, β-barrels are constructed from a number of antiparallel β-strands going from five to ten strands [START_REF] Ob Ptitsyn | Principal folding pathway and topology of all-β proteins[END_REF], split over two twisted beta sheets that form a barrel-like structure. In water-soluble β-barrels, most hydrophilic residues point outwards and are solvated by water molecules and ions. On the other hand, a number of hydrophobic residues point to the interior of the protein in such a way that a hydrophobic core arises inside the barrel. But these are global trends, hydrophobic residues can be found on the surface of the soluble β-barrel, and hydrophilic residues that point to the interior of the protein.

β-domains

These features make the β-barrel domain particularly suited to act as a container for quite different ligands. For instance, the human plasma retinol-binding protein is an up-anddown β-barrel that binds retinol and transports it to vitamin-A-dependent tissues.

Besides, not only transport proteins are concerned by β-barrel domains. Proteins with other functions such as enzymes or membrane proteins can also hold β-barrels or other β-domains through their tertiary structure. The Neuraminidase protein from influenza virus is made up of four β-propellers, whose "blades" are β-sheets of four antiparallel strands connected in β-hairpin fashion. Thus, additionally to the β-barrel domain, the β-propeller is an example of an antiparallel β-domain. On the other hand, no parallel β-sheet domains were depicted until 1993, when the β-helix was discovered. This structure turns out to be a wide helix in which each turn is composed of two or three strands separated by loop regions. The strands of one turn form with the ones of the previous and next turn a large parallel β-sheet. The β-helix domain is present in numerous proteins like the bacteriophage P22 tailspike protein and the bacterial enzyme pectate lyase.

α{β-domains These domains correspond to the most frequently encountered combinations of secondary structures and mainly consist of a parallel or mixed β-sheet surrounded by α-helices that connect its strands. Many types of such structure are distinguished: 147 types are listed in the SCOP database in May 2017. In the paragraph below only three types will be presented. In the first type, the β-sheet comprises eight parallel β-strands arranged close together to form a barrel, while the α-helices are arranged outside the barrel. This α{β-domain is called the TIM barrel and is one of the largest and most regular of all domain structures [START_REF] Nagano | One fold with many functions: the evolutionary relationships between tim barrel families based on their sequences, structures and functions[END_REF]. It has been found in many enzymes such as the triosephosphate isomerase. The second type of α{β-domain was revealed by Michael Rossmann in the lactate dehydrogenase -it is so-called the Rossmann fold. It contains an open β-sheet encircled by α-helices. Contrary to TIM barrel domains, Rossmann fold domains vary considerably in size, number of β-strands and orientation (the strands could be all parallel or mixed). Rossmann fold is present in multiple paralogs and seems to be extremely ancient regarding evolution [START_REF] Piotr | Natural history of S-adenosylmethioninebinding proteins[END_REF]. The third type is called the horseshoe fold: a curved parallel β-sheet forms a horseshoe-like structure and the α helices form an external layer around this horseshoe shape. The primary structure of horseshoe domains is Leucine rich.

In 3D structures, these Leucine residues are located in the hydrophobic core between the β-sheet and the α helices α `β-domains This class of domains combines α-helices and β-strands that are largely segregated [START_REF] Alexey G Murzin | SCOP: a structural classification of proteins database for the investigation of sequences and structures[END_REF]. By May 2017, the SCOP database lists 376 fold types of this class. Two examples of such domains will be introduced here. The first one is the Ferredoxin-like domain [START_REF] Orengo | Protein superfamilies and domain superfolds[END_REF]. It has a βαββαβ secondary structure along its backbone. Structurally, the ferredoxin fold can be regarded as a long and symmetric hairpin that is wrapped once around, so that its two terminal β-strands hydrogen-bond to the central two β-strands, forming a four-stranded, antiparallel β-sheet covered on one side by two α-helices. The second example is the Src homology 2 (SH2) domain. Its length is about 100 amino acids [START_REF] Luc | Structure and function of SH2 domains[END_REF]. Its overall shape forms a compact flattened hemisphere. The core structural [Taken from [START_REF] Branden | Introduction to Protein Structure[END_REF]] elements comprise a central hydrophobic anti-parallel β-sheet, flanked by 2 short alphahelices. The loop between strands two and three provides many of the binding interactions with a phosphate group of a phosphopeptide ligand. The N and C termini of the domain are close together in space and on the opposite face from the phosphopeptide binding surface.

I.1.d Protein folding controversy

In the previous subsections, protein folding was synoptically addressed by mentioning some of the driving forces that engender the formation of the secondary and the tertiary structure, albeit no consensus was reached about the order in which these interactions happen. The N-terminal part of a protein may fold into a domain structure while the C-terminal part is still being synthesized in the ribosome. In the case of mammalian soluble proteins, profiling experiments showed that protein domains acquire their native state shortly after the emergence of the entire domain from the ribosome [START_REF] Han | Monitoring cotranslational protein folding in mammalian cells at codon resolution[END_REF]. In [START_REF] Unger | Local interactions dominate folding in a simple protein model[END_REF], Ron Unger and co-workers concluded that favorable and unfavorable local interactions are the most important driving forces for protein folding, which may suggest that the native structure starts to form as soon as the nascent peptide is emerging. On the other hand, the work of Ron Unger and co-workers in [START_REF] Noivirt-Brik | Non-local residueresidue contacts in proteins are more conserved than local ones[END_REF] stipulates that the non-local interactions are the most important, which may suggest that the whole polypeptide must be synthesized in order to obtain the native structure. These two conclusions in respect to cotranslational folding seem in disagreement, unless one takes into account the interac-tions of the ribosome with the nascent chain. Indeed, these interactions change the folding landscape, resulting in the formation of length-dependent folding intermediates that may not form during protein folding in solution [START_REF] Holtkamp | Cotranslational protein folding on the ribosome monitored in real time[END_REF]. When traveling through the polypeptide exit tunnel of the ribosome, the nascent peptide can form some structures, such as α-helices [START_REF] Bhushan | α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel[END_REF], hairpins [START_REF] Tu | Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome[END_REF] or a small α-helical domain [START_REF] Ola B Nilsson | Cotranslational protein folding inside the ribosome exit tunnel[END_REF]. A slow pace of translation would allow for the equilibration of different folding micro-states that are accessible on the ribosome, thereby shaping the thermodynamically favorable folding pathway inside the ribosome [START_REF] Ajeet | Physical origins of codon positions that strongly influence cotranslational folding: a framework for controlling nascent-protein folding[END_REF]. Changes in translational velocity may alter the conformational space of the nascent polypeptide and affect folding [START_REF] Buhr | Synonymous codons direct cotranslational folding toward different protein conformations[END_REF]. Similarly, the ribosome can slow down the formation of stable tertiary interactions in a protein that has fully emerged from the exit tunnel [START_REF] Christian | The ribosome modulates nascent protein folding[END_REF]. To summarize, local interactions lead to tertiary structures that may evolve as the elongation is carried, however, the final stable tertiary structure forms only when all elements of the peptide that are required for folding are leaving the exit tunnel of the ribosome [START_REF] Chen | Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis[END_REF][START_REF] Chen | Dynamics of translation by single ribosomes through mRNA secondary structures[END_REF][START_REF] Chen | Coordinated conformational and compositional dynamics drive ribosome translocation[END_REF]. In the case of transmembrane proteins, being cotranslationally inserted into target membranes by ribosome-translocon complexes, observations suggest a folding pathway in which at least the early steps of cotranslational tertiary interactions can already form in or in the immediate vicinity of the translocon [START_REF] Cymer | Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements[END_REF].

Denaturation experiments (heating, detergent adding, or alteration of the solvents physical properties that induces protein unfolding) followed by possible renaturation (recovery of protein native conformation when the denaturing influence is removed) showed that a quasi-stable intermediate state exists between the unfolded state and the folded state. This intermediate is called the molten globule state, where the secondary and the tertiary structures are already established but the packing is slightly loose compared to the native structure. The molten globule structure is unique if Anfinsen's dogma is assumed. Anfinsen postulated that, in the environmental conditions in which folding occurs, the native structure is a unique, stable and kinetically accessible minimum of the free energy. The Anfinsen's hypothesis implies that the folding pathway is unique and is specified by the protein sequence. However, both single and multiple folding pathways have been observed, which redefines the molten globule state as a set of structures that all have a loosely packed hydrophobic core and some secondary structures. Thus, some proteins seem to have multiple parallel pathways such that each pathway is characterized by its intermediate structures that allow the polypeptide to overcome the energy barriers towards the native state energy funnel. Furthermore, the transient state structures within a given pathway reveal a possible elucidation to Levinthal's paradox [START_REF] Rooman | What is paradoxical about Levinthal paradox?[END_REF]. Indeed, Levinthal states that on one hand, a polypeptide chain has such an astronomical number of possible conformations so that sequentially sampling all of them would lead to the correct configuration on a geological time scale, and that on the other hand, most proteins spontaneously attain their native configuration on a second time scale. This paradox can be resolved if one considers protein folding intermediates as steps of rapid formation of local interactions that speed up and guide the folding process. A second criticism of Anfinsen's dogma is originated from proteins that need chaperones to attain their biological active forms. Chaperones are proteins that may have a cylinder-alike shape. They assist unfolded polypeptides to fold properly by shielding them from aggregating with other polypeptides, and therefore native conformations achieved with the help of chaperones are not solely amino-acid-sequence-dependent.

Protein aggregation is usually associated with amyloid diseases including Alzheimer's disease. Misfolding and primary sequence mutations may result in the exposure of a hydrophobic patch to the solvent instead of being buried in the core of the molecule. This hydrophobic patch is a source of multimerization with other ill-shaped proteins. When aggregation occurs, the protein often undergoes a conformational change -like in the case of transthyretin -from a globular tertiary structure to a fibrous one. Another example of conformational transition -although not a pathogenic one -is found in the spider silk, where the α-helical globular silk fibroin adopts a β structure upon leaving the spider gland to its spinning machinery [START_REF] Allen | Changes in fine structure during silk protein production in the ampullate gland of the spider araneus sericatus[END_REF].

The aforementioned examples show how a sole amino acid sequence could give birth to more than one stable 3D structure. Several stable state conformations are also observed for proteins subject to conformational equilibrium. The underlying conformational changes are triggered by environmental changes or ligand binding and switch the equilibrium in favor of an active or a latent form. This feature is remarkable for proteins involved in the signaling pathways of the cell like cyclin-dependent kinases. An additional exception to Anfinsen's dogma are intrinsically disordered proteins. Actually, the fact that 30% of proteins in eukaryotic cells are disordered and functional has brought the scientific community to rethink the structure-function paradigm [START_REF] Gsponer | The rules of disorder or why disorder rules[END_REF]. In fact, the new paradigm now is sequence-structure(s)-dynamics-function(s).

Post-translational modifications (PTMs) rise additional question about sequence-structure relationship [START_REF] Prabakaran | Post-translational modification: nature's escape from genetic imprisonment and the 142 basis for dynamic information encoding[END_REF]. These modifications change the physiochemical properties of the associated proteins, which play a crucial role in its function and, sometimes, its structure. Some PTMs affect amino acid residue isomerization -from L-to D- [START_REF] Buczek | Post-translational Amino Acid Isomerization A FUNCTIONALLY IM-PORTANT d-AMINO ACID IN AN EXCITATORY PEPTIDE[END_REF], and most of them introduce additional chemical groups to residue side chains -such as phosphorylation, methylation, and acetylation [START_REF] Mann | Proteomic analysis of post-translational modifications[END_REF]. These modifications has the potential to alter the energy landscape of a protein and subsequently lead to conformational changes observed in crystal structures [START_REF] Xin | Post-translational modifications induce significant yet not extreme changes to protein structure[END_REF]. The types of structural changes are highly diverse, such as local and long-range changes; association and disassociation of protein complexes; orderto-disorder and disorder-to-order transitions [START_REF] Bah | Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch[END_REF] were observed. The extent of structural changes is also diverse. For example, phosphorylation of Ser14 in glycogen phosphorylase results in a 50Å [START_REF] Xin | Post-translational modifications induce significant yet not extreme changes to protein structure[END_REF] shift in Ser14 itself, while the phosphorylation of Pseudomonas putida benzoylformate decarboxylase results in a global root mean-square deviation between the phosphorylated and non-phosphorylated structures inferior to 0.13Å [START_REF] Xin | Post-translational modifications induce significant yet not extreme changes to protein structure[END_REF]. It was speculated that nearly every protein undergoes some form of PTM, and that PTMs have been reported for species spanning all domains of life [START_REF] Xin | Post-translational modifications induce significant yet not extreme changes to protein structure[END_REF]. Given that a large amount of proteins whose structures are deposited in the PDB was synthesized in prokaryotic systems, where PTMs are different from the protein host organism, some published structures might not be accurate in regards to the ones in vivo.

I.1.e Quaternary structures of proteins

A significant proportion of known proteins display a fourth level of structural organization.

In fact, a protein composed of a single polypeptide chain is called a monomeric protein.

However, many proteins are composed of several polypeptide chains. In this case the individual peptide chains are called protein subunits, and generally can not function on their own. The arrangement of these protein subunits in 3D constitutes the quaternary structure of the multisubunit protein. Having been synthesized on the ribosome, the distinct amino acid polymers come together to form a multimer after they attain their secondary and tertiary structures. The resulting macromolecular assembly -referred to as multimeric protein or multiprotein complex -contains two or more polypeptide chains, in contrast to monomeric proteins made of one polypeptide chain. While multimers can comprise up to hundreds of subunits, those comprising a small number of subunits are often called oligomers. The number of subunits, their tertiary structures and the nature of the interactions between them are determining parameters of the quaternary structure [START_REF] Irving M Klotz | Quaternary structure of proteins[END_REF][START_REF] Matthews | Structure and symmetry of oligomeric enzymes[END_REF]. The simplest quaternary structure is that of a homo-dimer: an oligomer consisting of two identical subunits. More complicated quaternary structures are common, such that more than one type of subunits are present in variable numbers.

A study in 2006 [START_REF] Emmanuel | 3D complex: a structural classification of protein complexes[END_REF] has shown that the majority of deposited multimeric proteins in the PDB were constructed from a repeated unit that is usually a polypeptide chain [START_REF] Emmanuel | Assembly reflects evolution of protein complexes[END_REF] but also could be a group of polypeptide chains. This unit is referred to as a protomer, and is repeated either by rotational or by helical symmetry [START_REF] Albert L Lehninger | Lehninger Principles of Biochemistry[END_REF]. One of the simplest forms of rotational symmetry is cyclic symmetry, where protomers are repeated by a rotation around a single n-fold rotational axis, n being the number of protomers. One may consider the human hemoglobin to illustrate cyclic symmetry. This oligomer comprises two copies of two peptide chains called α chain and β chain. They are packed in symmetric pairs, each pair includes one copy of α and one copy of β. Hemoglobin can therefore be described as a dimer of αβ protomers linked by cyclic symmetry around a 2-fold rotational axis. There Changes in quaternary structure can occur when individual protein subunits undergo conformational changes, when they reorient themselves, or upon binding of small molecules that affect the interaction between them. It is through such changes that many proteins activate or deactivate their physiological functions [START_REF] Friedrich | Supramolecular enzyme organization: quaternary structure and beyond[END_REF]. The principle of conceiving of large proteins as the assembly of smaller pieces -i.e. polypeptide chains -allows to assign multiple functions to the multiprotein complex as well as a greater flexibility.

Besides, it allows to code them from a shorter nucleic acid sequence by using many copies of each subunit to achieve a single bulkier structure. The longest protein is the titin [START_REF] Bang | The complete gene sequence of titin, expression of an unusual 700-kda titin isoform, and its interaction with obscurin identify a novel z-line to i-band linking system[END_REF].

It is composed of 38,138 residues and belongs to the human proteome. The mean protein length coded by the human genome is estimated to 800 residues. Table I.2 provides statistics on protein lengths in different life kingdoms. Some very large macromolecular assemblies are the association of amino acid chains and nucleic acid chains, and are the sites of complex, multistep reactions. One example is the ribosome, which embodies several tens of protein subunits along with a number of RNA molecules.

I.2 Experimental techniques for structure determination

The first protein structure to be determined was that of myoglobin. Indeed, it was John Kendrew that solved this 3D structure to low resolution using X-ray crystallography in 1958. Since then, structure determination has pervaded the rest of the century, taking advantage of scientific progress notably in molecular biology, and of technical advances concretized by the sophistication of structure-determining instruments as NMR spectrometers or electron microscopes. As a result, the number of solved structures increased starkly, reaching over 120,000 in June 2016 in the Protein Data Bank. Another noteworthy aspect in the enhancement of structure determination is the improvement of resolution.

Resolution is a crucial parameter in the accuracy of structure determination, and nowadays researchers routinely achieve better than 1.5Å resolution. Currently, the available different techniques give different and complementary information about protein structure and may therefore be combined to studying a given target.

I.2.a X-ray crystallography

Carl Branden wrote: "The crystallographic method depends upon directing a beam of Xrays onto a regular, repeating array of identical molecules so that the X-rays are diffracted from it in a pattern, a diffraction pattern, from which the structure of an individual molecule can be retrieved" [START_REF] Branden | Introduction to Protein Structure[END_REF].

Materials First of all, a pure and homogeneous sample of the protein in question is necessary for the experiment. Such a sample is often tedious to prepare in sufficient amounts. A common method is overexpressing the coding gene, and recombinant DNA techniques have been a major breakthrough in this regard [START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]. The next step is to make protein crystals from the sample. This implies the screening of favorable conditions (pH, solvent, temperature, additives, ...) that make proteins precipitate out of the solution and form large (" 0.5mm) well ordered crystals. Usually crystallization occurs when molecules are precipitated very slowly from supersaturated solutions, and the most used procedure for making protein crystals is the hanging-drop method. When a macromolecule does not crystallize, it is usual to try to crystallize stable fragments that could be obtained by expressing a truncated gene. Afterwards, the obtained crystal will be exposed to a beam of X-rays ( Besides, shortening the exposure time to limit crystal irradiation has become possible thanks to synchrotrons, which are X-ray sources that emit very intense beams at different wavelengths, while standard X-ray sources are monochromatic. When the crystal receives the X-ray beam, it diffracts it into a pattern which constitutes the experimental data (Figure I.15.c). These X-ray data are recorded either on image plates or by electronic detectors that simplify the collection and the reading of the several hundred thousand diffraction spots [START_REF] Sol | X-ray detectors for macromolecular crystallography[END_REF].

Methods X-rays are electromagnetic radiation at short wavelength emitted when electrons jump from a higher to a lower energy state. The X-ray wavelength has the same order of magnitude than the atom dimensions, which lies at the heart of X-ray scattering when an X-ray hits an atom. When an X-ray beam is directed onto a regular, periodically repeated array of identical molecules -as it is the case for protein crystal, scattered waves from all atoms interfere. This scattered waves may either add to or cancel each other, which produces the diffraction phenomenon: rays scatter only in privileged directions [START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]. Consequently, the exposure of the crystal to an X-ray beam provides a diffraction pattern, each spot of the pattern being a diffracted X-ray beam. Thousands of diffraction spots need to be collected to solve a protein structure. That's why the crystal is usually repeatedly exposed to the X-ray beam, while changing its orientation by rotating it one degree at a time. Depending on the type of the crystal (unit cell dimensions and symmetry), different strategies for data processing are followed. Generally, the relative position of one spot is used to compute one Bragg reflection angle θ hkl , which in turn is used to compute the distance d hkl between the lattice plans of Miller indices h, k and l, using the Bragg's Law:

2d hkl ˆsin θ hkl " λ (I.1)
where λ is the wavelength of one monochromatic X-ray. On the other hand, the measured intensities I hkl of the spots on a diffraction pattern are the squares of the amplitudes of the structure factors

I hkl "| F hkl | 2 . (I.2)
The electron density ρp⃗ xq of the molecules within the crystal can be calculated as the Fourier transform of the structural factors:

ρp⃗ xq " 1 V ¡ F hkl e ´iϕ hkl d 3 s, (I.3)
where V is the volume of the crystal and ϕ hkl " 2π⃗ s ¨⃗ x is the phase of the diffracted beam, ⃗ x and ⃗ s being the position vectors in the 3D space and in the reciprocal space respectively [START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]. The structure factor is a complex number defined by its modulus and its phase. The modulus is obtained from the intensity (Equation I. 

F obs hkl | , (I.5)
T being a partition of the reflections set that is not used in the modeling process [START_REF] Axel | Free R value: a novel statistical quantity for assessing the accuracy of crystal structures[END_REF].

Still, an exact matching between the model and the data is never reached [START_REF] Branden | Introduction to Protein Structure[END_REF] due to, amongst others, slight variations in conformation of the protein molecules in the crystal.

This means that the final model represents an average of molecule that are different both in conformation and orientation. Approaches to address the modeling of conformational heterogeneity within the crystal are presented in [START_REF] Woldeyes | E pluribus unum, no more: from one crystal, many conformations[END_REF]. They propose strategies as room temperature X-ray data collection relying on X-ray free electron lasers to avoid radiation damage, the use of multiple contours or color maps for identifying conformations in weak and irregular electron densities, plotting electron density distributions as a function of dihedral angle, modifying electron density maps by applying local feature enhancement, maximum entropy principles and B-factor sharpening in order to identify important alternative conformations, performing multiple independent refinements from a slightly perturbed starting model (using multiple simulated annealing trajectories or Monte Carlo sampling for example) to reveal conformational heterogeneity. qFIT [START_REF] Van Den | Modeling discrete heterogeneity in X-ray diffraction data by fitting multi-conformers[END_REF] was proposed as an automated approach to identify, build, and refine multiple conformations in X-ray diffraction data. It enumerates many potential main and side chain conformations for each residue, then selects the optimal combination of conformations based on combined fit to the density, then assembles fragments of neighboring residues using computational approaches borrowed from robotics to build the final model. The authors conclude that in the near future integrative refinement and cross validation with solution experiments will play a larger role, and that the focus will shift from describing conformational ensembles within a crystal to understanding which of the populated conformations are important for biochemical functions. ) placed in an X-ray facility to be hit by X-ray beams. These days, often synchrotron radiation is used. As a result a diffraction pattern in c) is obtained. This is analyzed and d) an electronic density map (gray) is then inferred and an atomic fitting is performed (red).

[Adapted from [START_REF] Branden | Introduction to Protein Structure[END_REF]]

Limitations Structure elucidation by X-ray crystallography for a macromolecule is a multistep process that requires full success at each step. In [START_REF] Chruszcz | Determination of protein structures -a series of fortunate events[END_REF], they examine the difficulties presented by each step on the path from a gene to the final publication, such that beyond a significant amount of work, much luck is required. Indeed, the period between obtaining the initial crystallization conditions and publishing a structure may extend over a decade. A major difficulty in protein crystallography is that the success of a particular step can only be fully evaluated at the next step, or sometimes two or three steps later.

Even after succeeding all steps till the acquisition of diffraction images, the extraction of a low signal from high noise remains a big difficulty.

In this paragraph, I introduce some of the difficulties in crystallogenesis and phase determination step. First, crystallization is usually quite difficult to achieve. Finding the proper conditions for a protein to crystallize is by no means trivial, and some proteins have eluded any attempt to crystallize them so far. Afterward, even if these crystallization conditions are found, it may require months for a protein crystal to grow sufficiently to suit a diffraction experiment. Then, whether or not the obtained crystal will diffract to high resolution is still a problematic question. Globular protein molecules are large objects with irregular surfaces, and packing them into a crystal often entails the formation of large channels of disordered solvent between the individual molecules. Meanwhile, the less solvent the crystal contains, the better is the diffraction pattern, since tight molecular packing reduces the reticular plans' interdistance d hkl , and the resolution s is inversely proportional to d hkl . Using Equation I.1 we can express the resolution as

s " 1 d hkl " 2 sin θ hkl λ , (I.6)
which gives that s " 2{λ is the best resolution we can obtain [START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]. Resolution is also inversely proportional to the B factor, also called the temperature factor, which describes the thermal agitation of the molecule.

Second, phase determination is a major problem. Calculations of the electronic density with false phases and correct modules (Equation I.3) leads to false interpretations of the structure, while calculations made with incorrect modules and exact phases gives a considerably better approximation [START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]. Indeed, a random choice of phase introduces a root mean square error in the structure factor F that is greater than the structure factor itself, and a random choice of amplitude introduces a much smaller root mean square error, so that a map with true phases but random amplitudes still looks like the object that contributed the phases. Figure I.16 schematically illustrates the repercussion of a random amplitude and a random phase on F in the complex frame.

Endeavors to overcome this problem gave rise to various strategies presented in Table I.3. The isomorphous replacement is a common technique used in these strategies. It roughly consists of using heavy-atom derivatives of the crystal, i.e. introducing heavy metal atoms in the crystal by soaking it in heavy metal solution or using recombinant DNA technology to incorporate selenomethionine instead of methionine. Then, X-rays with different wavelengths may be used to infer the phase.

I.2.b NMR spectroscopy

Nuclear magnetic resonance spectroscopy is a method that was used in first place by chemists to determine the developed formula of a given molecule. It has then been applied in the field of structural biology, since this technique is able to catch information on the distances between the atoms of the biomolecule. Applications in the protein structure determination have shown that in many cases, only minor differences exist between an NMR solved structure and an X-ray solved structure. These differences mostly appear in coils and turns regions as well as in the side chains. Two main varieties of NMR conditions exist: solution state NMR and solid state NMR. Solution state NMR determines the protein structure in solution, which is relatively closer to physiological conditions of non-membrane proteins. Consequently, it proves to be useful when probing some dynamic processes such as protein folding. The developments in NMR instrumentation and methodologies have made this spectroscopic method versatile enough for different analyses, a feature that sets it apart from other structural techniques. Solid-state NMR will not be discussed in this subsection.

Materials

The method requires highly concentrated protein solutions, meanwhile protein molecules must not aggregate at these concentrations. The use of cryoprobes in recent NMR spectrometers has relaxed the concentration requirements down to 20µM.

Cryoprobes are probe coils in the spectrometer that are cooled with a stream of Helium gas at less than 20 K. The thermal noise generated by the electronic components of the signal receiver is then reduced, allowing a drastic enhancement of the signal to noise ratio. This improved sensitivity allows to reduce the data acquisition time within the experiment, or to reduce the sample concentration requirements while keeping the same data acquisition time as the one needed with standard probes [START_REF] Kovacs | Cryogenic NMR probes[END_REF].

The pH of the protein solution must be lower than 7 to slow down the hydrogen ex-change between water and amides of the polypeptide chain. Heavy water may be used as a solvent instead of H 2 O to strengthen the protein signal and avoid water proton resonance.

In heteronuclear experiments, isotopes having magnetic moment or spin such as 13 C and 15 N are introduced in the molecule. This is done by producing the protein in microorganisms grown in media enriched with these isotopes. Aside from sample considerations, a strong magnetic field is required. This is performed by a superconducting magnet; the most expensive and technologically demanding component of the NMR spectrometer. The actual magnet is a solenoid made up of several hundred thousand meters of wound NbTi or Nb 3 Sn superconducting wire that is immersed into liquid helium at a temperature of 4.2 Kelvin. The higher the magnetic field is, the larger the nuclei's resonance frequency is, ergo the better resolved the obtained spectrum is. Nowadays, the most powerful NMR spectrometer in the world can generate a magnetic field of 36 Tesla -it is located at the Florida State University [130].

Methods NMR methods use the magnetic properties of atomic nuclei, specifically the quantum mechanical property of spin. When a nucleus of spin I " 1 2 is placed into a uniform magnetic field B 0 , it precesses around the B 0 at a speed called the Larmor frequency

ν L " γB ef f 2π , (I.7)
such as γ is the gyromagnetic ratio of the isotope of the nucleus, and B ef f " p1´3σqB 0 is the effective magnetic field 'felt' by the nucleus, 3 σ being called the shielding constant [START_REF] Evans | Biomolecular NMR spectroscopy[END_REF].

As a result, for a given sample, two energy states will be adopted by such nuclei, depending if the precession of the nucleus is parallel or anti-parallel to B 0 . The energy states are spaced by ∆E " hν L where h is the Plank constant, and are unequally populated. This equilibrium situation may be perturbed by pulses of a second magnetic field B 1 generated by a small coil surrounding the sample. B 1 is less intense than B 0 and is non static; it oscillates with a radio frequency ν 0 close to Larmor frequency of the spin which causes the resonance phenomenon; the precessing nuclei at lower energy states absorb energy and flip to the higher energy state. When B 1 is switched off, relaxation occurs and excited nuclei regain their ground state energy emitting radio frequency signals that could be detected by the spectrometer probe. A Fourier transform is then applied to the recorded signal f ptq of the system to obtain a frequency spectrum F pνq composed of peaks whose position and width are spin dependent. The peak position depends on the Larmor frequency of the spin, which in turn depends on the nucleus type (through γ in Equation I.7)

as well as its environment (through B ef f in Equation I.7). Indeed, the variation of its Larmor frequency is called the chemical shift δ and represents the effects of the atomic and molecular environment on the spin's Larmor frequency. For instance, an aromatic proton In fact, mutual exchange of magnetization energy between spins happens through chemical bonds and gives rise to the scalar coupling, whereas spin diffusion through space gives rise to the dipolar coupling whose strength is dependent upon internuclear distance r.

Dipolar interactions cause the cross-relaxation that engenders the nuclear Overhauser effect (NOE, η), with intensity η 9 r ´6. Hence, NOE is observable between close nuclei separated by r ď 6Å, and is widely measured on are covalently connected through one or two other atoms, therefore it reveals interactions within the same residue. This is used in the framework of the sequential assignment, which determines at which chemical shift resonates each nucleus. Usually, for a given protein, many assignment experiments (listed in Table I.4) are needed to assign backbone nuclei to their chemical shifts. Once the backbone is assigned, the TALOS [START_REF] Cornilescu | Protein backbone angle restraints from searching a database for chemical shift and sequence homology[END_REF] program can be used to predict the backbone torsion angles ϕ and ψ from C α and H α chemical shifts. Another alternative approach is the use of DANGLE [START_REF] Cheung | DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure[END_REF] program, which predicts ϕ and ψ from chemical shifts and conformational preferences of each amino acid type.

Scalar coupling constants 3 J measured between H N and H α might be an alternative to computing ϕ dihedral angles, using the Karplus relationship 3 J Hα,H N pϕq " 6.4 cos 2 pϕ ´60 0 q ´1.4 cospϕ ´60 0 q `1.9, (I.8)

but it is still difficult to obtain quantitative information this way. The next step is to assign the protons of the side chain using the particular set of NMR experiments (Table I.4). After the assignment step has finished, the protein structure calculation is performed along with the NOE assignment. NOESY experiments, that give peaks between pairs of hydrogen atoms close in space, are used to collect distance restraints between protons of the protein. Distance restraints as well as angular restraints that have been computed thanks to scalar coupling are used to derive possible structures of the protein (Figure I. [START_REF] Bhowmick | Finding our way in the dark proteome[END_REF]). The structural-constraint-based structure calculation is commonly carried through the classical mechanical formalism, and preliminary 3D models are refined by simulatingannealing-based optimization [START_REF] Thérèse | Structure des protéines par RMN[END_REF]. Finally, a set of conformations is found with respect to the provided restraints, rather than a unique conformation. Importantly, the more numerous the collected restraints, the more accurate and precise the obtained structures ensemble. It is also noteworthy that secondary structure elements of the protein can be identified immediately in an NOE spectrum thanks to their characteristic pattern of cross-peaks.

Limitations Although sample preparation could be tricky -with required protein purity greater than 95%, one of the most challenging parts in NMR methods remains the peak picking in a protein NOESY spectrum. Many ambiguities are present in NOE that hamper the stereospecific assignment, consisting mainly in which pair of protons generated the observed NOE peaks. These ambiguities results from the limited accuracy of chemical shift values and peak positions, additionally to peak overlap, spectral artifacts and noise, absence of expected signals because of fast relaxation. Therefore, NOESY cross peaks mostly can not be attributed to a single unique spin pair but have an ambiguous NOE assignment comprising multiple spin pairs. In [START_REF] Mumenthaler | Automated combined assignment of NOESY spectra and three-dimensional protein structure determination[END_REF], the authors provide [ 1 H, 1 H]-NOESY spectrum with an accuracy of the peak position of ∆ω. Assuming a uniform distribution of the proton chemical shifts over a range ∆Ω, the chemical shift of a given proton falls within an interval of half-width ∆ω about a given peak position with probability p " 2∆ω{∆Ω. Peaks with unique chemical shift-based assignment have in both spectral dimensions exactly one out of all n proton shifts inside the tolerance range ∆ω from the peak position. Their expected number is N " N expp´4n∆ω{∆Ωq. Using this formula, an example of such ambiguity is given in [START_REF] Antuch | Ancestral βγ-crystallin precursor structure in a yeast killer toxin[END_REF]. The Williopsis mrakii killer toxin is an 88-amino-acid protein with n " 457 proton chemical shifts and N " 1986 NOESY cross peaks within a range of ∆Ω " 9ppm. In this case, less than 2% of the NOEs can be assigned unambiguously based on chemical shift information with an accuracy of ∆ω " 0.02ppm. Another example of such ambiguity is given in the case of NMR structure calculation of symmetric homo-oligomers. The ambiguities include both the identities of the protons within a subunit, and the identities of the subunits to which they belong.

The ambiguity is resolved if only one out of all chemical shift-based assignment possibilities corresponds to an interatomic distance shorter than the maximal NOE-observable distance, d m ax. If one assumes that the hydrogen atoms are evenly distributed within a sphere of radius R representing the protein, the probability that two given hydrogen atoms are closer to each other than d m ax is q " pd m ax{Rq 3 . Yet d m ax " 5Å, implying that it is impossible, on fundamental grounds, to resolve all assignment ambiguities, since q will always be larger than zero. Ambiguous distance restraints [START_REF] Nilges | Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities[END_REF] provide a powerful concept for handling ambiguities in the chemical shift-based NOESY cross peak assignments.

Every NOESY cross peak is treated as the superposition of the signals from each of its possible assignments by applying relative weights proportional to the inverse sixth power of the corresponding interatomic distances. In the other hand, an iterative process in which preliminary structures are calculated from limited numbers of distance restraints, serve to reduce the ambiguity of cross peak assignments. The ambiguous distance restraints and the iterative assignments are implemented in the ARIA software, which is introduced in section I.3.b. Wrong peak attribution or erroneous noise peaks peaking results in misassignments. This leads to incorrect distance restraints, which results in a local distortion in the computed structure. That causes an NMR structure accuracy to be variable over the whole molecule and to be hard to quantify. The availability of 13 C and 15 N chemical shifts allow many 1 H chemical shift degeneracies to be resolved, such that the probability of accidental erroneous NOE assignments is decreased compared to the case of homonuclear data [START_REF] Güntert | Automated NMR protein structure calculation[END_REF].

Distance restraints derived from NMR signals are intervals rather than exact values.

Intense peaks correspond to close hydrogens in the space, and thus to small interval distances. However -because of spin diffusion -weak intensities can be due as well to more distant or relatively close hydrogens, and thus to a bigger interval distances. Traditionally, the intensities are divided into three categories: small, medium and large; the corresponding intervals are [1,8Å ; 2,7Å] , [1,8Å ; 3,3Å] and [1,8Å ; 5,0Å] [START_REF] Thérèse | Structure des protéines par RMN[END_REF]. An ensemble of conformations is found to match these interval restraints rather than a sole conformation. The quality of a conformational ensemble is assessed through the evaluation of its Root Mean Square Deviation, the number of violated experimental restraints, the molecular energies of its conformations, the comparison to structure database (using PROCHECK [START_REF] Roman A Laskowski | PROCHECK: a program to check the stereochemical quality of protein structures[END_REF] for example), and the back-calculation of the experimental parameters (mainly the NOE intensities).

Last but not least, the size of the protein is a real limitation in NMR spectroscopy.

The larger the protein, the larger the rotational correlation time τ c . The parameter τ c correlates the molecule isotropic motion with time, and its influence transpires over the width of the peaks in the spectra. When τ c increases, peak widths increase which drive them to overlap greatly, and leads to a decrease in the signal intensity that could cause some signals to disappear. Though NMR is difficult to apply on large proteins, it remains an invaluable method for small or medium proteins that might be difficult to crystallize.

I.2.c Hybrid methods

Cryo-EM combined to advanced image-analysis methods Cryogenic electron microscopy (Cryo-EM) is a variant of the classical transmission electron microscopy. Macromolecules are analyzed in cryogenic conditions in which the samples are maintained in the liquid nitrogen or helium temperatures [START_REF] Kenneth | Electron diffraction of frozen, hydrated protein crystals[END_REF]. Cryo-EM is currently witnessing a resolution improvement at an unprecedented pace. Examples include the determination of the 3D structure of TRPV1 channel at a resolution of 3.4 Å [START_REF] Liao | Structure of the TRPV1 ion channel determined by electron cryo-microscopy[END_REF]. Recently a record has been made with the structure of glutamate dehydrogenase (334 kDa) solved at 1.8

Å [START_REF] Merk | Breaking cryo-em resolution barriers to facilitate drug discovery[END_REF]. The technological advancements that have made this progress possible include sample preparation [START_REF] Kastner | Grafix: sample preparation for single-particle electron cryomicroscopy[END_REF], ultra stable electron microscopes, automation of data acquisition using sensitive direct electron detectors (e.g. Charge-Coupled Device detectors, Complementary Metal-Oxide Semiconductor detectors), and improvements in image-analysis softwares (e.g. PRIME [START_REF] Elmlund | Prime: probabilistic initial 3d model generation for single-particle cryo-electron microscopy[END_REF], RELION [START_REF] Sjors | Relion: implementation of a bayesian approach to cryo-em structure determination[END_REF], FREALIGN [START_REF] Grigorieff | Frealign: high-resolution refinement of single particle structures[END_REF], HEMNMA [START_REF] Jin | Iterative elastic 3d-to-2d alignment method using normal modes for studying structural dynamics of large macromolecular complexes[END_REF]) for analyzing the conformational variability in cryo-EM images, increasing the signal to noise ratio and overcoming the signal blurring caused by the beam-induced motions. High resolution cryo-EM offers the advantage to study macromolecular structures in closer conditions to the physiological cell environment than X-ray crystallography. Interest to apply the method in solving transmembrane protein structures has grown considerably, as many of these proteins resisted more conventional methods such as X-ray crystalloŋgraphy or solution NMR. Limitations of cryo-EM include collecting, stocking and analyzing the images which could be computationally expensive. Obtaining the required biochemical quality of the sample to determine the structure at high resolution remains very challenging.

IM-MS Mass Spectrometry (MS) is a separation technology that allows for the identification, quantification, and interrogation of different components of transient protein assemblies in the context of complex mixtures. Ion mobility (IM) is an emerging technique that is used to assess the size and shape of proteins. IM is frequently coupled with MS, allowing the separation of proteins based on the ability of ions to traverse a gas-filled chamber under the influence of a weak electric field [START_REF] Politis | Integrating ion mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes[END_REF]. The mobility (K) of ions is inversely related to their Collision cross sections (CCS) that is directly related to the shape of an ion and can therefore be used to provide topological information on protein complexes [START_REF] Politis | Integrating ion mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes[END_REF]. IM-MS is gaining in popularity as a tool to assess the overall shape of protein complexes partly due to its recent commercialization through traveling wave ion mobility spectrometry TWIMS. The use of IM-MS restraints to interrogate structural models generated by computational methods has been recently emerged as a useful tool for structural modeling of protein complexes. IM-MS is therefore well-placed to play a central role in hybrid approaches since it benefits from the same advantages as native MS with regard to protein yield and complexity [START_REF] Politis | Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded dna binding protein[END_REF]. However, IM-MS presents some important limitations that are derived from the ionization event used to generate protein complex ions. Actually, using nano-electrospray, it is extremely difficult to generate ions that correspond to hydrophobic membrane-bound protein assemblies. Given interpretable MS data, the structural information provided by IM-MS is limited by the IM resolution (R) achieved for the complex of interest. Currently, it is difficult to find examples of high IM resolution for large protein complexes. Moreover, the ability of the calibration protocol of IM-MS to produce high-precision collision cross-section measurements for large protein complexes (more than 500 kDa) is limited by the current pool of calibrant ions available and their associated precision [START_REF] Salbo | Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers[END_REF].

HDX-MS Hydrogen Deuterium eXchange (HDX) is intimately coupled to protein dynamics. Amide HDX operates on experimentally tractable timescales of millisecond to days due to hydrogen bonding or solvent accessibility. The uptake of deuterium has an associated mass shift that can be measured accurately by MS. Through HDX the mass is directly coupled to protein motion without the need for specialized linkers or other derivatization. HDX-MS can easily tolerate protein masses of many hundreds of kilodal-ton. To date, valuable structural insights have been gained using HDX-MS as exemplified by the ATP-binding cassette transporter (BmrA) with the presence of a ligand and the HIV virus capsid. HDX-MS yields information about the structural flexibility of protein complexes and can offer additional restraints that are orthogonal to those obtained by IM-MS. Nevertheless, in HDX-MS methods, resolution is routinely limited. Furthermore, while the concept of HDX experiment may appear rather transparent, interpretation of the results is usually not [START_REF] Mao | Hydrogen/deuterium exchange of myoglobin ions in a linear quadrupole ion trap[END_REF][START_REF] Pan | Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kda protein[END_REF].

XL-MS

The general approach of Cross-linking (XL) is to chemically crosslink proteins in their native or native-like state then generate crosslinked peptides by enzymatic digestion of the crosslinked samples. The identification of the sequence of the crosslinked peptides is performed via tandem MS. Indeed, a purified protein complex is incubated with a crosslinking reagent that forms covalent bonds between reactive surface-exposed amino acid side chains, and the samples are digested with trypsin. The resulting peptides can be enriched for crosslinked peptides and are analyzed by liquid chromatography tandem MS (LC-MS/MS) [START_REF] Malin | High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry[END_REF]. XL-MS provides insight into both the structure and the organization of proteins in a wide variety of conditions. An advantage of XL-MS over other structural techniques is that it can deal with limited sample heterogeneity or dynamic complexes as it provides an averaged ensemble measure [START_REF] Maiolica | Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching[END_REF]. A major limitation of XL-MS is its unablity to directly determine the relative stoichiometry of subunits in a complex, although this information can be derived from complementary quantitative MS methods. Moreover, XL-MS can not easily distinguish between intrasubunit crosslinks and crosslinks between members of a homomeric interaction.

AP-MS Affinity-purification mass spectrometry (AP-MS) has emerged as a particularly

attractive method for Protein Protein Interaction (PPI) mapping. This method allows unbiased detection of PPIs under physiological conditions. Indeed, AP-MS can assess PPIs in relevant biological contexts such as mammalian cell lines or even tissues. Moreover, AP-MS experiments have the advantage to provide quantitative information (q-AP-MS).

This greatly increases the confidence in interaction partners that are identified and can also be used to study the impact of perturbations on PPIs. Although AP-MS may reveal interacting proteins, it does not fully detail the assembly of the protein complex. This limitation is due to difficulties in distinguishing direct from indirect interactions [START_REF] Mellacheruvu | The crapome: a contaminant repository for affinity purification mass spectrometry data[END_REF].

It does not resolve highly connected proteins that may participate in multiple distinct complexes and cellular functions [START_REF] John H Morris | Affinity purificationmass spectrometry and network analysis to understand protein-protein interactions[END_REF].

I.3 Methods for structure calculation I.3.a In silico modeling of proteins for structure calculation

Protein structure modeling and refinement have largely benefited from molecular mechanics force field method. Molecular mechanics ignore the electronic motions and consider the energy of a system as a function of the nuclear positions only, based on Born-Oppenheimer approximation. A force field is then an energy function that calculate interatomic potentials with respect to these positions (Equation I.9). Different functional forms have been adopted for force fields, most of them seek a compromise between accuracy and computational efficiency, and all of them are subject to many approximations besides the one cited above. In addition, this energy function is characterized by a set of parameters that are generally stemmed from observations on small organic molecules which are more tractable for experimental studies and quantum calculations. Therefore, force fields are empirical.

A second feature of force fields is transferability: parameters set developed and tested on some cases could work with a wider range of molecules. This feature is assumed when predicting new molecular structures.

The basic form of this energy function can be written as

V prq " V bonded `Vnonbonded , (I.9)
where r codes for the positions of the atoms in the considered system in Cartesian or internal coordinates, V bonded describes interactions of covalently bonded atoms, and V nonbonded describes non-bonded interactions between atoms separated by more than three bonds.

Interactions of bonded atoms concerns the potential energies of bonds, bond angles and dihedral angles:

V bonded " V bonds `Vangles `Vdihedrals . (I.10)
The first right-side term of Equation I.10 ascribes an energetic penalty each time a bond length l deviate from its equilibrium value l 0 :

V bonds " ÿ bonds K l 2 pl ´l0 q 2 . (I.11)
K l is the force constant for bond stretching. Considerable energy is required to change the length of a covalent bond from its equilibrium value. The carbon-carbon single bond energy is about 350 kJ/mol [START_REF] Gordy | A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms[END_REF], for example. Hence the force constants for covalent bond stretching is also large. For example, the bond between N and C α in proline has l 0 =1.4340 Å and an associated K l =320 kcal.mol ´1.Å ´2 in charmm36 [START_REF] Vanommeslaeghe | Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing[END_REF] force field.

The second term of Equation I.10 ascribes an energetic penalty each time a bond angle θ deviate from its equilibrium value θ 0 :

V angles " ÿ angles K θ 2 pθ ´θ0 q 2 . (I.12)
K θ is the force constant for angle bending. Rather less energy is required to distort an angle away from its equilibrium value than to stretch a bond, and force constants are then proportionally smaller. For example, the angle between C α , C' and carbonyl oxygen O in amino acids has θ 0 =120.40 0 and K θ =0.0243kcal.mol ´1. deg ´2 in parm99 [START_REF] Wang | Development and testing of a general AMBER force field[END_REF] force field. As one could remark in Equations I.11 and I.12, bond and angle terms are modeled by quadratic energy functions derived from Hooke's law, as it is the case in numerous force fields. However, a more realistic description of covalent bond and angle energies is provided by Morse potential, which is on the other hand more computationally expensive.

The third term V dihedrals in Equation I.10 involves energetic expenses when rotating about bonds. This rotation is defined by a dihedral angle ϕ such that

V dihedrals " ÿ dihedrals K ϕ r1 `cospnϕ ´δqs. (I.13)
K ϕ gives a qualitative indication of the relative barriers to bond rotation. This force constant is larger for a double bond than for a single bond rotation, and promote trans configuration over cis configuration. n is called the multiplicity and stands for the number of minima in V dihedrals as ϕ browses through 360 0 . δ is the phase factor and determines where the dihedral angle passes through its minimum. The dihedral potential may also embody improper dihedral angles especially to maintain atoms known to be planar in the same plane. This functional form for V dihedrals could highly vary from one force field to another, and some molecular mechanics don't even use dihedral potentials, instead, they rely on non-bonded interactions between the atoms at the end of each torsion angle [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF].

Indeed, non-bonded interactions comprise electrostatic interactions and van der Waals interactions

V non´bonded " V elec `VvdW (I.14)
that are usually computed with Coulomb's law and Lennard-Jones potential respectively

(Figure I.20). The electrostatic potential is V elec " ÿ i,j q i q j 4πϵ 0 ϵ r r ij . (I.15)
The sum is over the number of point charges q i and q j , ϵ 0 is the vacuum permittivity and ϵ r is the relative permittivity of the medium, r ij is the Euclidean distance between q i and q j . The van der Waals potential is

V vdW " ÿ i,j ˜C12 r 12 ij ´C6 r 6 ij ¸, (I.16)
where C 12 " 4ϵσ 12 and C 12 " 4ϵσ 6 , σ and ϵ being the collision diameter and the well depth respectively. A representation summarizing the five contributing potentials is given in Figure I.21. The resulting overall potential is thus given by this equation:

V prq " ÿ bonds K l 2 pl´l 0 q 2 `ÿ angles K θ 2 pθ´θ 0 q 2 `ÿ dihedrals K ϕ r1`cospnϕ´δqs`ÿ i,j ˜qi q j 4πϵ 0 ϵ r r ij `C12 r 12 ij ´C6 r 6 ij ¸.
a

The parameters values along with the potential form constitute the force field. Note that this force field is of class I. A class II force field would have Morse potential terms instead of harmonic potential terms. The Morse potential has the form vplq " D e t1 ´expr´apl ´l0 qsu 2 (I.17) D e is the depth of the potential energy minimum and a " ω a µ{2D e , where µ is the reduced mass and ω is the frequency of the bond vibration. ω is related to the stretching constant of the bond, K l , by ω " a K l {µ. l 0 is the reference value of the bond [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF]. This form yields more accurate calculations than the harmonic form but is not particularly amenable to efficient computation and requires three parameters to be specified for each bond. Class II force fields also include cross terms that reflect coupling between internal coordinates. In fact, a variable deviating from its equilibrium value usually induces other deviations of other variables in the proximate neighborhood, and cross terms are to take into account these couplings. A class III force field would include, beyond Morse potentials and cross terms, chemical effects such as electronegativity and hyperconjugation.

Thereby, class III force field provides higher accuracy than class II force field at the price of less computational efficiency. In conclusion, the higher is the force field class, the more accurate is its functional form, and the higher is its computational cost. Whatsoever the class of a force field, the latter contains a large number of parameters.

Indeed, each parameter in the set tK l , l 0 , K θ , θ 0 , K ϕ , n, δ, q i,j , σ, ϵu used in the equation above differs according to the atom type, the chemical bond orbitals, the dihedral angle specificities and etc. Consequently, parametrization is a weighty task, such that addition of few parameters to an existing force field to model a new class of molecules can be complicated. Quantum mechanics calculations are used conjointly with experimental information for force field parametrization. Two possible approaches may be followed to obtain the parameters values. The first one is the parametrization by trial and error, in which parameters are gradually refined to better fit the data. The second one is to use least-squares fitting, where the sum of squares of the differences between observed and computed values is minimized. It was stipulated that the performance of a force field is often sensitive to non-bonded and dihedral terms parameters particularly [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF].

Overall, force fields have been successfully utilized for refining protein structures coming from X-ray crystallography and NMR spectroscopy and assessing their quality.

I.3.b Experimental restraint-based optimization methods

When the potential energy function is used to refine experimentally determined molecular structures, we speak about constrained optimization. This involves including experimental restraints in the force field formulation. In NMR structure determination, geometric constraints coming from NOE measurements as well as 3 J coupling constants are added to the empirical potential of Equation I.9:

V prq " V bonded `Vnonbonded `VNMR , (I.18)
with

V N M R " V N OE `VTOR . (I.19)
The potential V N OE maintains the interatomic distance r ij between hydrogens i and j in the measured interval rr l ij , r u ij s. This is achieved by a piecewise harmonic expression:

V N OE " $ ' ' ' ' & ' ' ' ' % K N OE ˆpr ij ´ru ij q 2 if r ij ą r u ij , 0 if r l ij ď r ij ď r u ij , K N OE ˆpr ij ´rl ij q 2 if r ij ă r l ij .
(I.20)

K N OE is the NOE force constant and is usually of the order of 2.39kcal.mol ´1.Å ´2 [START_REF] Evans | Biomolecular NMR spectroscopy[END_REF].

The torsional potential V T OR include dihedral angle constraints from scalar coupling information, it has the form:

V T OR " $ ' ' ' ' & ' ' ' ' % K T OR ˆpϕ i ´ϕu i q 2 if ϕ i ą ϕ u i , 0 if ϕ l i ď ϕ i ď ϕ u i , K T OR ˆpϕ i ´ϕl i q 2 if ϕ i ă ϕ l i , (I.21)
with ϕ i being the dihedral angle to be computed, ϕ l i and ϕ u i are, respectively, the lower and upper bonds of the experimentally measured angular interval restraint. K T OR is the torsion force constant typically chosen to be of the order of 0.291kcal.mol ´1. deg ´2 [START_REF] Evans | Biomolecular NMR spectroscopy[END_REF].

Force constants K N OE and K T OR are set relatively high in order to minimize experimental data violations, although, in the meanwhile, the contribution of the empirical force field should maintain the structures at small deviation from ideal geometry and without steric clashes. This has given rise to the dilemma of how to weigh experimental data against chemical knowledge. Consequently, different approaches were suggested to deal with the relative weights of the two contributions, exemplified by the Levitt approach [START_REF] Axel | Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR spectroscopy[END_REF][START_REF] Jack | Refinement of large structures by simultaneous minimization of energy and R factor[END_REF] and the Bayesian approach [START_REF] Habeck | Weighting of experimental evidence in macromolecular structure determination[END_REF]. When the constrained energy of Equation I.18 is set to be minimized, local minima are inevitably encountered which lead to inaccurate solutions. To circumvent this situation, simulated annealing method can be applied to draw near the global minimum. Indeed, simulated annealing is a computational method based on an increase of the temperature of the system followed by slow cooling [START_REF] Nilges | Determination of threedimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations[END_REF]. When the temperature T increases, the kinetic energy K of the system increases too, since the two variables are related in the simulation by the expression

K " N ÿ i 1 2 m i v 2 i " 3N 2 k B T, (I.22)
where N is the number of atoms and 3N is the number of degrees of freedom, m i and v i are the mass and velocity of atom i accordingly, and k B is the Boltzmann constant [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF]. The energy surplus enables the system to step over potential barriers surrounding the local minimum where it is eventually trapped. Subsequently, the temperature is decreased, and the system sink into another basin of the energy landscape. This system behavior is sketched in Figure I.22. Notice that in numerical simulations, the temperature scales with non realistic values, such as the system could not physically exist at this temperature [START_REF] Thérèse | Structure des protéines par RMN[END_REF].

ARIA program [START_REF] Bardiaux | ARIA for solution and solid-state NMR[END_REF] exemplifies the use of simulated annealing optimization. ARIA is an experimental constraint-based structure determining software that is widely disseminated in the biological NMR community. It takes as input chemical shift assignments and cross peak lists of the molecule under investigation, then alternatively calculates the structure and assigns the cross-peaks in an iterative procedure, somewhat similar to the general trend of NMR structure calculation described in Figure I. [START_REF] Bhowmick | Finding our way in the dark proteome[END_REF]. Based on the concept of Ambiguous Distance Restraints, ARIA treats each NOESY cross-peak as the superposition of signals from each of its multiple assignments possibilities. Thereby, each NOE restraint is the sum of unambiguous contributions, each corresponding to a given assignment for the involved protons. All collected distance restraints are then incorporated into a force field of the form of the Equation I.18, where the force constants for the physical energy terms are relatively low, and the distance restraints energy potential term is multiplied by a weight optimally determined by the Bayesian approach. The resulting energy function is minimized using CNS [START_REF] Brünger | Crystallography & NMR system: a new software suite for macromolecular structure determination[END_REF] through a simulated annealing protocol. The high temperature search phase is performed in torsion angle space, and the energy potential for the distance restraints has a flat-bottom harmonic-wall form with zero-energy between the distance bounds and the linear asymptotes. Interestingly, the cooling phase has two stages, such that the first stage is performed in the torsion angle space with the flat-bottom harmonicwall potential for the data, and the second phase occur in Cartesian space with logharmonic potential for the data. The violations of NOE restraints and of unambiguous contributions are analyzed among conformers ensemble obtained from the optimization process and the most violated contributions are eliminated from their corresponding NOE.

The peaks for which no contribution is present are then labeled as 'noise peaks' in the peak input list. The thusly updated set of restraints will underpin the next ARIA iteration.

Alternative approaches for NMR structure calculation include NOAH [START_REF] Mumenthaler | Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry[END_REF], KNOWNOE [START_REF] Gronwald | Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE)[END_REF], CANDID [START_REF] Herrmann | Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA[END_REF] and AUTOSTRUCTURE [START_REF] Yuanpeng | A topology-constrained distance network algorithm for protein structure determination from NOESY data[END_REF].

I.3.c In silico methods for the exploration of the free energy surface

For a system consisting of solvated macromolecules, the free energy ∆G could be expressed as

∆G " ∆G M M `∆G p solv `∆G np solv ´T ∆S, (I.23)
such that ∆G M M is the molecular mechanics energy of the system, it embodies the kinetic energy K and the potential energy V defined in Equation I.9. The solvation energy comprise a polar contribution ∆G p solv , calculated by solving the equation of Poisson Boltzmann, and a non polar contribution ∆G np solv , which depends on the molecular surface accessible to the solvent. T is the temperature and ∆S is the conformational entropy. Minimum energy configurations of the atoms correspond to stable states of the system, hence stable conformations of the molecules. As native conformations of proteins are believed to be the most stable thermodynamically under physiological conditions, much focus have been placed on finding the minimum points of the free energy surface. Nonetheless, the free energy surface is difficult to explore for systems like liquids or flexible macromolecules, whose energy surface has many local minima separated by low-energy barriers [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF].

Molecular dynamics method can be used to evaluate the free energy of an ensemble of conformers and designate the conformation with highest presence probability. The method consists of the modeling of the evolution of a system of particles over the time, using classical mechanics with a number of appropriate assumptions. Indeed, the evolution of atom positions r i at a constant mechanical energy, ∆G M M " 0, is given by the Fundamental Principle of Dynamics:

m i γ i " ÿ j F i j (I.24)
where m i is the mass of atom i, γ i is its instantaneous acceleration, and F i j are the forces applied to it. Within each time step t, the position and the velocity of atom i are interpolated from its instantaneous acceleration, as well as its position and its velocity at time t ´δt, since

γ i " d 2 r i dt 2 .
(I.25)

The forces F i j are supposed to be constant over the time interval δt, and can be expressed as ÿ

j F i j " ´ÝÝÑ grad i V prq. (I.26)
The time interval δt must be small enough against atomic vibrational motion. Giving that hydrogen bonds vibrate with a frequency f such that 1{f " 10fs, an integration step δt " 1fs seems appropriate [START_REF] Laine | Analyse de l'activation du facteur oedémateux de Bacillus anthracis par la calmoduline, en vue de la[END_REF]. Typically, a molecular dynamics simulation proceeds as follows. First of all, the simulated system is set up. Atomic coordinates are obtained from 3D structures solved by X-ray crystallography or NMR. If any atomic coordinates are missing, concerned atoms are modeled. Counterions are added to neutralize the system [START_REF] Jo | Charmm-gui: a web-based graphical user interface for charmm[END_REF], independently of the residues' pKa. The system is then placed in the center of a box of solvent molecules. Second, the system energy is minimized. Usually, a steepest descents algorithm is used for initial refinement, and a conjugate gradients algorithm is used for more stringent minimization. In every cycle of minimization, the configuration of the system is modified according to the direction determined by the gradient of the potential energy [START_REF] Andrew R Leach | Molecular modelling: principles and applications[END_REF]. Subsequently, a trajectory of molecular dynamics simulation is produced. The free energy analysis could then be performed on the conformations ensemble constituting the trajectory.

One limitation of the method is that on medium power computational system, protein behavior in aqueous solution may be simulated for up to hundreds of nanoseconds because of computational cost, while the time scale over which biological interactions in the cell occur is rather long, going from microseconds to minutes. Another limitation in classical molecular dynamics transpire by the fact that simulations are easily trapped in one of the many local minima of the often ill-conditioned potential energy function. This limitation is tentatively overcome by the enhanced-sampling molecular dynamics methods like the metadynamics [START_REF] Laio | Assessing the accuracy of metadynamics[END_REF] or the accelerated molecular dynamics method [START_REF] Wang | Implementation of accelerated molecular dynamics in NAMD[END_REF]. Metadynamics method uses an additional potential energy to bias the exploration of the conformational space. This potential is the sum of Gaussians centered on the values of chosen collective variables and varies according to time. In that way, metadynamics is able to take the system out of local minima and drive it to explore other regions in the conformational space [START_REF] Laine | Analyse de l'activation du facteur oedémateux de Bacillus anthracis par la calmoduline, en vue de la[END_REF]. Accelerated molecular dynamics method, for its part, modifies the potential energy surface by filling energy surfaces that are below a certain threshold level, and leaving energy surfaces above this level unaffected. As a consequence, barriers separating adjacent energy minima are reduced, allowing the system to sample conformational space regions that classical molecular dynamics simulation would probably not access.

I.3.d Protein structure prediction

Protein structure prediction methods refers to constructing the tertiary structure of the protein from its primary structure, regardless of experimental data on the investigated protein.

Motivations behind fostering such methods can be settled along two main axes.

On the one hand, the number of available protein sequences starkly exceeds the number of harvested protein 3D structures. This is due to the disparity between the pace of genomic sequencing and the pace of experimental structure determination. As a consequence, a plethora of protein sequences do not have any experimental information about them.

In the other hand, the number of possible domain folds, at least those that has been identified heretofore, is smaller than the number of possible sequences, such that the majority of the new structures lately solved display similar folds to ones already available in the databases. Consistently with these observations, knowledge-based approaches were devised to predict structures relying on structural databases, and could be divided into two categories: template-based and de novo approaches. Besides, structure predictions not using structural database information are called ab initio.

Comparative modeling Homology modeling exploits close evolutionary relationships between the protein target and proteins of known structure. The target conformation is constructed by matching the target sequence to an evolutionarily related database sequence whose domains are annotated and are then used as structure templates, where the equivalent residues between the target and each template are recognized by aligning the sequences. The first bottleneck in this method is to detect the protein domains within the target sequence, which is an essential early step to determine which parts of the sequence the comparative study will consider. Once the target sequence has been split into its putative domains, sequence and structure databases are searched for tem-plates selection. The use of sequence comparison methods such as pair-wise alignments, sequence-profile alignments or sequence-Hidden Markov Models, enables to select templates with highest percent sequence similarity regarding the pretended domains. An optimal target-template alignment is crucial to obtain reliable homology based structure predictions. The generated models meet high-resolution requirements if the target exhibits high percentage of identities with the template sequences, especially in the case of single-domain proteins. High-accuracy comparative models are based on >50% sequence identity. Medium-accuracy comparative models are based on 30% to 50% sequence identity [START_REF] Baker | Protein structure prediction and structural genomics[END_REF]. Sequence identity below 30% gives low-accuracy models. When the sequence identity is below 25%, comparative modeling is no more reliable in most cases, because the two proteins are not likely to have similar tertiary structures [START_REF] Chothia | The relation between the divergence of sequence and structure in proteins[END_REF][START_REF] Kister | Amino acid distribution rules predict protein fold: Protein grammar for beta-strand sandwich-like structures[END_REF].

Threading Template-based structure prediction is also tackled by threading methods.

They are used in case of remote or absent evolutionary kinship. The target sequence is directly matched to the solved 3D structures of template proteins in order to recognize similar folds by assessing the compatibility between fragments from the target sequence and folds from the template structures through a scoring function. Are taken into account trends of the residues to be part of protein cores or secondary structures. Threading can be used in the twilight zone [START_REF] Baker | Protein structure prediction and structural genomics[END_REF][START_REF] Of | A Primer on How to Analyze Derived Amino Acid Sequences[END_REF] and the midnight zone [START_REF] Rost | Protein structures sustain evolutionary drift[END_REF][START_REF] Rost | Twilight zone of protein sequence alignments[END_REF] of sequence alignments. The twilight zone is the region between 10% to 25% of sequence identity [START_REF] Eswar | Protein structure modeling with MODELLER. Structural proteomics: high-throughput methods[END_REF].

The midnight zone is the region of less than 10% sequence identity [START_REF] Eswar | Protein structure modeling with MODELLER. Structural proteomics: high-throughput methods[END_REF].

Targets without evolutionary or structurally related solved proteins should be built from scratch by free modeling. This includes de novo methods and ab initio methods. The energy functions used in ab initio protein modeling are solely physics-based.

Ab initio methods

De novo methods These methods try to predict the protein structure from its sequence, based on physics first principles of protein folding and database knowledge about experimentally determined structures. Structural data from the PDB show that proteins present several kinds of regularities. These regularities arise from the stabilizing forces of the native states. These regularities can be expressed statistically based roughly on four assumptions [START_REF] Sippl | Knowledge-based potentials for proteins[END_REF]. First, the structural properties of the protein could be described as a free energy function. Second, the free energy function can be expressed as the contribution of multiple two bodies interaction in the system. Third, structural properties of the native states corresponding to the lowest free energy are frequently observed. Fourth, the highly populated states are energetically more favorable according to the Poisson-Boltzmann rule.

One largely acknowledged way to obtain de novo predictions is the use of ROBETTA [START_REF] Chivian | Automated prediction of casp-5 structures using the robetta server[END_REF][START_REF] David E Kim | Protein structure prediction and analysis using the Robetta server[END_REF], a fully automated protein structure prediction server that uses the ROSETTA program package [START_REF] Kaufmann | Practically useful: what the Rosetta protein modeling suite can do for you[END_REF]. It relies on a scoring function developed by Simons et al. in [START_REF] Kim T Simons | Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions[END_REF][START_REF] Kim T Simons | Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins[END_REF]. This scoring function predicts the probability of a 3D coordinate set being the native structure given the sequence of the amino acids (Ppstructure|sequenceq). Based on Bayes' theorem, the scoring function can be described as the contribution of a sequenceindependent term (Ppstructureq) and a sequence-dependent term (Ppsequence|structureq).

The sequence-independent term can be expressed by a simple conditional function in which the probability term is zero if atoms in the system clash. This sequence-independent term is proportional to the radius of gyration for all other configurations. This results in a total of eight energy terms including a Lennard-Jones term, an implicit solvation term, an orientation-dependent hydrogen bond term, side chain and backbone torsion potentials, a short-ranged knowledge-based electrostatic term, and reference energies for each of the 20 amino acids that model the unfolded state [START_REF] Rohl | Protein structure prediction using Rosetta[END_REF]. Another improvement has then been added to the scoring function [START_REF] Matthew | Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta[END_REF]. Knowledge-based scoring functions were also used in I-TASSER [START_REF] Roy | I-tasser: a unified platform for automated protein structure and function prediction[END_REF] (Iterative Threading ASSEmbly Refinement), one of the most successful approaches in modeling 3D structures of proteins. First a fold recognition search over representative non redundant protein structures is performed to detect the local folds of short fragments typically with a length superior to 5 residues. The search relies on LOMETS, a meta-threading method using eight different profile-profile alignment softwares, each of which is designed to detect similarities based on different structural properties [START_REF] Yang | The i-tasser suite: protein structure and function prediction[END_REF]. The significance of the alignments with the templates is evaluated on the base of a Z-score. The retaining of the template is decided based on a specific cutoff value for each LOMETS program. A segment in the sequence query could be either threading aligned or threading unaligned region. The collected threading fragments can be assembled to construct the threading-aligned regions. For the rest of the segments, the method uses an ab initio lattice-based modeling approach. Following the assembly of the structure, the folding is achieved using a replica exchange Monte Carlo method. At this stage, the protein main chain is approximated to the C α trace and the side chains are represented by their corresponding centers of mass.

The conformational search is guided by a knowledge-based energy function incorporating a generic statistical potential, a hydrogen-bonding network and LOMETS restraints.

Following the Monte-Carlo sampling, the accepted structures are clustered. A second stage of conformational search is made starting from the centroids. The selected models are obtained following a full atom refinement. The set of the lowest energy solutions is then evaluated with a confidence score combining the significance of the fold recognition alignment and the clustering analysis. I-TASSER is recognized as being one of the best protein modeling web based servers among many others [START_REF] Kinch | Evaluation of free modeling targets in casp11 and roll[END_REF].

Assessment and use of prediction models

After building a model from prediction methods, it is important to estimate its quality both as a whole and at the residue level to make effective use of it. This can be performed throughout the comparison of the stereochemical features of a prediction with those observed in experimental structures. It is as well common in this area to evaluate a priori the accuracy of a predictive method.

For instance, The Critical Assessment of Structure Prediction (CASP) assesses current modeling techniques and diagnoses their primary deficiencies, within the framework of a large-scale competition in the structure prediction community. Models produced by prediction methods have disparate utilities in structural biology. In X-ray crystallography, they can be used to help phase determination in the molecular replacement procedure (Table I Limitations Template based protein modeling accuracy is highly dependent on the availability of homologous protein structures in the public databases. The rate of discovery of new protein folds decreased dramatically during the last years which represents a major limitation if the sequence query constitute a new fold. Besides, the query may adopt a known fold but is so remote from any solved structure that the homology is not detected. Another limitation of these methods is that constructed models are closer to the template structure than the target structure [START_REF] Maccallum | Assessment of protein structure refinement in CASP9[END_REF]. Improvement of the refinement methods is proposed as a solution to this problem [START_REF] Schwede | Protein modeling: what happened to the "protein structure gap[END_REF]. Effect of point mutations on the structure is an inherent limitation to purely template-based prediction algorithms [START_REF] Lawrence | Protein structure prediction on the web: a case study using the phyre server[END_REF]. Such subtle changes to the primary sequence generally does not result in a different 3D model. Besides, post-translational modifications make structure prediction from the sequence not completely trustworthy [START_REF] Lawrence | Protein structure prediction on the web: a case study using the phyre server[END_REF]. Successful predictions by free modeling are limited to small proteins (<150 residues), and depend upon convergence of multiple independent trials toward a single low-energy solution. A major limitation of de novo protein prediction methods is the extraordinary amount of computer time required to successfully solve the native confirmation of the investigated sequence. One of the major challenges for all protein modeling approaches is the prediction of the loop conformations. Most accurate predictions are made for loops of less than 8 residues length.

I.3.e Conformational space exploration by global optimization methods

Traditional energy minimization methods often do not guarantee the convergence towards a global minimum. As a result, these methods are run many times in the hope that the global optimum would be captured by one of the generated structures ensembles. Another way to catch the global minimum is to guarantee the sampling of all the conformational space. In this subsection, some of global optimization methods that tend to sample the global minimum by performing complete solution space sampling are presented.

DISCO is a computational method that enables accurate structure determination in the case of symmetric homo-oligomeric proteins using distance restraints from NOEs and disulfide bonds, as well as orientational constraints from residual dipolar couplings. The method provides a graphical analysis of the distance restraints and distinguish possible inconsistencies using maximally satisfying regions identified by intersection of annuli that represent distance restraints. Thus, this geometrical method is robust when not all of the intermolecular restraints are assigned unambiguously. Nevertheless, the restraints should be truly identified as intermolecular or intramolecular. DISCO compute deterministically the position and orientation of the symmetry axis by analytically determining the three eigenvectors of the alignment tensor computed from the RDCs. However, the need for a null tensor rhombicity and an input subunit structure is inevitable [START_REF] Jeffrey W Martin | A geometric arrangement algorithm for structure determination of symmetric protein homo-oligomers from NOEs and RDCs[END_REF][START_REF] Jeffrey W Martin | A graphical method for analyzing distance restraints using residual dipolar couplings for structure determination of symmetric protein homo-oligomers[END_REF].

In the same context of symmetric oligomers structure determination by NMR, Potluri and coworkers [START_REF] Potluri | Structure determination of symmetric homo-oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing[END_REF][START_REF] Potluri | A complete algorithm to resolve ambiguity for intersubunit NOE assignment in structure determination of symmetric homo-oligomers[END_REF] have developed an approach to resolve both intermolecular and intramolecular restraints ambiguity inherent in NOEs to identify all conformations of a homo-oligomeric complex which are consistent with the restraints and display high-quality van der Waals packing. The approach determines consistent sets of NOE assignments and computes any structure consistent with one of the sets to within a user-defined similarity level. A Branch & Bound algorithm is used to exhaustively search the symmetry configuration space. Complete computation of all solutions avoids sampling bias in the search and being trapped in local minima. Note that it is not always possible to apply this method of exhaustive computation of all solutions. This method depends on the size of the phase space. If the phase space is too large, this method would not work. Next, the structures found are subject to a filtering step excluding those carrying steric clashes. To do so, CNS energy functions are employed to evaluate van der Waals packing. One shortcoming of the method is that it fails with set of noisy restraints, since the algorithm eliminates a solution if just one NOE is violated [START_REF] Chandola | NMR structural inference of symmetric homo-oligomers[END_REF]. For this reason, the approach was extended to handle a fixed maximum number of violations. Similarly to DISCO, the method also needs the subunit structure as input.

Chandola and colleagues [START_REF] Chandola | NMR structural inference of symmetric homo-oligomers[END_REF] have developed an approach that performs symmetric homo-oligomers structure determination by including a Bayesian inference framework. Indeed, the symmetry configuration space is hierarchically subdivided into cells containing structures whose probabilities to be plausible are measured. Posterior probability distribution is driven by restraint satisfaction, while prior probability helps pruning structures that display serious steric clashes. The approach is able to provide error guarantees on inferred expectations in atomic coordinates. The input data for this method are also distance restraints coming from NOESY experiments. Spurious or missing NOE data are handled robustly such that the inference performance degrades smoothly, thanks to a probabilistic restraint evaluation. A drawback to the method is that the structure sampling is data-driven, i.e structure fetching is essentially based on the experimental data, while better account for biophysical plausibility should be incorporated. Another shortfall is that the posterior is computed over the backbone rather than over complete structure including side-chains.

Always in the context of structure discovery with NMR data, JIGSAW [START_REF] Bailey-Kellogg | The NOESY Jigsaw: Automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data[END_REF] is an algorithm for automated assignment of NMR data and protein secondary structure determination. It requires only four spectra of an 15N-labeled protein to find and align secondary structure fragments, based on a graph formalization for spectra interpretation. Moreover, the graph representation permit to handle the noise in the data by applying a statistical model that computes the probability of false positives and false negatives to identify extra and missing edges in the graph. JIGSAW is able to manage the search space and prevent combinatorial explosion, making it useful for quick structural assays and applicable in high throughput fashion. Nevertheless, the method has not proved efficiency with large protein spectra.

Finally, an example of template-based side-chain positioning optimization method is the SCWRL4 [106] software. Once an input target sequence is aligned to available homologous proteins of known structure and a model is produced, SCWRL4 can be used to predict side-chain conformations. The predictions rely on a rotamer library based on experimental structures data, and on a scoring function that represents the physical forces that position side chains in proteins. The coordinates for rotamers and subrotamers are estimated from the rotamer library, then optimized through the minimization of the energy function in a graph formalization that is solved by tree decomposition of the constructed graph. SCWRL4 ensure convergence in a reasonable time and its predictions are relevant for molecular replacement or structure refinement in the framework of X-ray crystallography, particularly because of its ability to consider the crystal symmetry and to predict all side chains conformations within the crystal. Accuracy of the prediction is less good for side chains exposed to the solvent than those buried within the protein core. Figure I.24 provides a quantification of the prediction accuracy as a function of side-chain relative accessible surface area. Whether it is important for us to know the surface properties of a protein depends on the questions asked: if we are interested in its general structure, then the surface properties are less important; but if we are studying proteins like antibodies whose 'business end' is near the surface, then we would want to know the conformations of the surface side-chains with greater accuracy.

I.4 Conclusion

Proteins are major components of living systems. Advances in molecular biology have allowed to determine their composition, while physical tools have shed light on the characteristics of their four designated levels of structure: primary, secondary, tertiary, and quaternary structures. The importance of the proteins 3D structure, highlighted by its key influence on protein function and physico-chemical properties, has made integrative structural biology a fully-fledged scientific field. In the previous sections, an essay on this state-of-the-art field was presented, along with a glimpse of possible future horizons. Indeed, capitalizing on technological advances and cutting-edge techniques, structure determination is now being performed at increasingly higher resolutions. Combining data coming from disparate types of experiments has also enabled structural biology to tackle objects that are increasingly larger in size, which has taken advantage of the synergy between available experimental techniques. Prominent advances through digitization have given much more room for the automation of structural methods. On the one hand, experimental groundwork and data collection are being increasingly automated, while on the other, computational methods are getting more sophisticated without fighting shy of the consequent complexity. This has contributed to the enrichment of structural databases, which in turn provide knowledge that can be better exploited for the determination of new structures.

I.5 Position of the thesis in this context

In this work, we present a new method to solve the distance geometry problem: given a set of Euclidean distance restraints between points in the Cartesian space, the method searches through all possible solutions to find the sets of the points coordinates satisfying all restraints [START_REF] Thérèse E Malliavin | Distance geometry in structural biology: new perspectives[END_REF]. NMR experiments on proteins give us distance constraints, and this method uses these constraints to determine the structure of the protein. In the context of protein conformational space exploration, the question we aim to answer is: How does this new method perform?

Regarding the state-of-the-art, the distance geometry problem was previously tackled by Crippen et al. in the context of molecular structure determination [START_REF] Gordon | Distance geometry and molecular conformation[END_REF], and the algorithm they proposed appears amongst the first methods to be applied in NMR structure determination. Unfortunately, Crippen's method is only effective with systems where all the distances are known. This is often not the case with NMR experimental results.

Either some distances are missing, or the experiment could report conflicting distances.

We show here a new formulation of the problem, called Discretizable Molecular Distance

Chapter II

Exploration of protein conformational space based on exact distance restraints

iBPprot is a computational method that is able to enumerate all possible solutions to discretisable distance geometry problems. The question to be answered in this chapter is: how does iBPprot explore the conformational space of small proteins using exact distance restraints? To resolve this question, the behavior of iBPprot will be investigated against a set of twenty four proteins of known structures, from which exact distance restraints will be extracted.

Mathematical and computational basis of this approach will be presented. Therefore, the following notations are introduced. N denotes the total number of residues in the protein. The integers i and j are counters over the protein atoms, and the integers k and l are counters over the protein residues. The atoms are noted A k , such that A is the atom chemical symbol and k is the residue index to which the atom belongs. The symbols H 1 , H 2 and H 3 denote the three amine hydrogens of the first residue. The amide hydrogens of the rest of the residues are denoted H.

II.1 Theory

II.1.a Molecular distance geometry problem

In R 3 the DGP (Distance Geometry Problem) can be defined as follows [START_REF] Lavor | Clifford Algebra and the discretizable molecular distance geometry problem[END_REF]:

Definition. Given a simple undirected graph G " pV, E, dq whose edges are weighted by

d : E Ñ p0, 8q, find a function x : V Ñ R 3 such that @u, v P E, }x u ´xv } " d u,v (II.1)
where x u " xpuq, x v " xpvq, d u,v " dpu, vq, and }x u ´xv } is the Euclidean distance between x u and x v .

The decision problem associated to the function problem defined above, i.e. does there exist a realization x : V Ñ R 3 such that @u, v P E, }x u ´xv } " d u,v ?, is NP-hard [START_REF] Liberti | Euclidean distance geometry and applications[END_REF]. This problem has been formulated to cater for the need to position entities in the Euclidean 3-space, knowing some inter-entity distances, and the chosen positions must respect the known distances [START_REF] Liberti | Molecular distance geometry methods: from continuous to discrete[END_REF]. When these entities are atoms, the problem is referred to as Molecular DGP or MDGP. Indeed, the MDGP aims to find the 3D conformation of a given molecule based on the knowledge of some interatomic distances [START_REF] Lavor | The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances[END_REF]. In this case, the graph G represents the molecule, its vertices v P V represent the atoms of the molecule, and its edges tu, vu P E are the pairs of atoms for which an interatomic distance is known.

II.1.b Discretizable molecular distance geometry problem

Molecular distance geometry problems involve a search in a continuous Euclidean space [START_REF] Liberti | A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem[END_REF]. However, under a certain condition, the search space can be reduced to a discrete set. This condition is the existence of a 2-trilateration order on the set of vertices V such that:

1. For the three first vertices, there exist x 1 , x 2 , x 3 P R 3 satisfying Equation II.1;

Each four consecutive vertices constitute a clique in G;

3. Each three consecutive vertices have unaligned positions in R 3 .

The MDGP instances satisfying this condition are called Discretizable MDGP (DMDGP), and the order itself is called a DMDGP order [START_REF] Lavor | Clifford Algebra and the discretizable molecular distance geometry problem[END_REF].

Figure II.1:

The hand-crafted DMDGP order used in this thesis is shown on a tripeptide. The generalization of this order to an Npeptide backbone is extrapolated as follows. For the first residue, the vertex order is

ρ 1 atom " tN 1 , H 1 1 , H 1 2 , C 1 α , N 1 , H 1 α , C 1 α , C 1 u.
In the second residue, the atoms are ordered as

ρ 2 atom " tN 2 , C 2 α , H 2 , N 2 , C 2 α , H 2 α , C 2 , C 2 α u. For the k-th residue, the generic order is ρ k atom " tN k , C k´1 , C k α , H k , N k , C k α , H k α , C k , C k α u, k ą 2 and k ă N .
For the last residue we have

ρ N atom " tN N , C N ´1, C N α , H N , N N , C N α , H N α , C N , C N α , O N 1 , C N , O N 2 u
. The defined vertex order on the whole protein backbone is then ρ atom " Ť N k"1 ρ k atom [Taken from [START_REF] Lavor | The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances[END_REF]].

The DMDGP order In this thesis, the DMDGP order used is the same for all protein instances, and is depicted in Figure II.1. This DMDGP order is a repetition order, its formal definition is stated in [START_REF] Lavor | The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances[END_REF]. Practically, the repetition order is a non injective mapping that maps strictly positive integers to the atoms of the protein backbone, except the carbonyl oxygens and the third amide hydrogen of the first residue:

1:N 1 , 2:H 1 1 , 3:H 1 2 , 4:C 1 α , 5:N 1 , 6:H 1 α , ..., L ´2:O N 1 , L ´1:C N , L:O N 2
, N being the total number of residues. Note that the C-terminal carboxyl oxygens O N 1 and O N 2 are included in the order, while internal carbonyl oxygen atoms are not. Thus, the following sequence of ordered vertices is yielded

ρ atom " ! N 1 , H 1 1 , H 1 2 , C 1 α , N 1 , ..., C k α , H k , N k , C k α , ..., C N , C N α , O N 1 , C N , O N 2 ) ,
with k being the residue index. It should be seen from the above and from Figure II.1 that several atoms recur in the sequence. This is possible because of the non injectivity of the repetition order, such that an atom can have more than one fiber. For example N 1 has the fiber 1 and the fiber 5. As a result, provided that the repetition order is surjective, it will rebuild a longer virtual protein backbone. The purpose behind that is to satisfy the three requirements of a DMDGP order. Indeed, let us first define some notations: let v i and v j denote the vertices (or the atoms) at positions i and j in the sequence ρ atom , respectively. If tv i , v j u P E then let d j,i " d v j ,v i " d v i ,v j be the weight of the edge.

• The first requirement is fulfilled by x 1 " p0, 0, 0q, x 2 " p´d 1,2 , 0, 0q, x 3 " p´d 1,2 d1,3 cos θ 3 , d 1,3 sin θ 3 , 0q for the vertices v 1 " N 1 , v 2 " H 1 1 and v 3 " H 1 2 respectively. The distances d 1,2 and d 1,3 are known because they are the lengths of the N 1 H 1 1

and N 1 H 1 2 bonds, respectively. The angle θ 3 " { N 1 H 1 1 H 1 2 is known because it is a bond angle.

• The second requirement implies that all the six distances d i´3,i´2 , d i´3,i´1 , d i´2,i´1 , d i´2,i , d i´1,i and d i´3,i between four consecutive vertices are known. By repeating some atoms up to three times in the sequence ρ atom , the repetition order ensures that these distances are either bond lengths or bond angles, with the exception of d i´3,i which could be none of those known parameters. In this case, d i´3,i is either a distance usually available from NMR experiments or having trend values that have been statistically observed from different proteins local conformations.

• The third requirement imposes a strict triangle inequality on the distances between three consecutive vertices: d i´3,i´2 `di´2,i´1 ą d i´3,i´1 . The atom ordering in ρ atom guarantees that each three consecutive atoms constitute a bond angle in the molecule. Yet it is known that all bond angles in natural amino acids are smaller than 180 0 , which gives that each three consecutive vertices in ρ atom are never collinear.

It follows from the above that our repetition order is genuinely a DMDGP order.

The solution set of a DMDGP instance

The search domain for DMDGPs is a discrete set that has the structure of a tree [START_REF] Cassioli | An algorithm to enumerate all possible protein conformations verifying a set of distance constraints[END_REF]. This tree is constructed based on the DMDGP order, which would be the repetition order in our case. Indeed, let T designates the search tree: T has | ρ atom | levels, each level i contains Λ i nodes representing the possible positions x λ i , 1 ď λ ď Λ i , of the vertex v i (i-th atom in ρ atom ). Moreover, T is binary because for fixed positions x i´3 , x i´2 , x i´1 for vertices v i´3 , v i´2 , v i´1 respectively, the vertex v i has at most two possible positions. In fact, from the second requirement, any v i with i ą 3 is adjacent to the three preceding vertices in ρ atom , and consequently its position is located on the intersection of three spheres S px i´3 ,d i´3,i q , S px i´2 ,d i´2,i q and S px i´1 ,d i´1,i q (Figure II.2), which is at most two points in R 3 due to the unalignment of v i´3 , v i´2 , and v i´1 , imposed by the third requirement. This property lies at the heart of the search domain discretization, and makes the enumeration of the entire solution set of a DMDGP instance possible. [START_REF] Liberti | Molecular distance geometry methods: from continuous to discrete[END_REF]]. b) The atom v i can only be in the two shown positions x ì and x í in order to be feasible with the distances d i´3,i , d i´2,i and d i´1,i (the two latter distances are not indicated to alleviate the draw). Notice that the positions x ì and x í are mirror images with respect to the plane χ formed by positions x i´3 , x i´2 and x i´1 of the three preceding vertices [Adapted from [START_REF] Liberti | A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem[END_REF]].

Theorem. Given a DMDGP instance G " pV, E, dq, the number of embeddings x : V Ñ R 3 such that }x u ´xv } " d u,v for each u, v P E is finite, up to translations and rotations [START_REF] Lavor | Discretization orders for distance geometry problems[END_REF].

The theorem above justifies why it is possible to perform an exhaustive solution search in the framework of DMDGP. In effect, a solution (called also an embedding or a realization) is no more than a path connecting the level i " 1 to the level i " |ρ atom | on the tree T (Figure II.3), and the total number of solutions is given by the corollary [START_REF] Lavor | Discretization orders for distance geometry problems[END_REF] below:

Corollary. For a DMDGP instance with n ě 4 atoms, there are at most 2 n´3 possible embeddings up to translations and rotations.

At the end of this subsection, two remarks have to be made: Remark 1. Besides that all embeddings can be found, DMDGP has the advantage of increased solution accuracy compared to continuous MDGP [START_REF] Lavor | The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances[END_REF].

Remark 2. The complexity class of DMDGP in R 3 is also NP-hard [START_REF] Lavor | Discretization orders for distance geometry problems[END_REF].

II.1.c The Branch-and-Prune algorithm

To solve the DMDGP, a branch-and-prune (BP) algorithm was designed [START_REF] Liberti | A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem[END_REF]. BP is based on the idea of recursively exploring T while generating new atomic positions through a branching phase, and verifying the feasibility of such positions through a pruning phase.

Figure II.3:

The binary tree T for |ρ atom | " 6. Each level i in T shows how many positions are possible for vertex v i . For example level 5 contains 4 nodes, so accordingly there are 4 possible positions for v 5 (thus Λ 5 " 4). The blue boxes show a complete path on T, which corresponds to one possible solution to the DMDGP [Adapted from [START_REF] Liberti | Molecular distance geometry methods: from continuous to discrete[END_REF]].

The first three atoms v 1 , v 2 , v 3 , are not concerned by these two phases as their positions are already generated by the first requirement. They constitute the start of the algorithm.

For the rest of this section, i P 4, |ρ atom | and the edges set E is partitioned into two subsets E B and E P . The subset E B contains all edges tv i , v j u such that 0 ă i ´j ď 3, while E P contains all edges tv i , v j u such that i ´j ą 3, thus we have E P " EzE B . For a given node λ in T , let ϖpλq be the set of the parent nodes to λ.

Branching phase

The edges in E B are called the discretization edges, and BP relies on their weights to perform the branching phase. Indeed, let E B be partitioned such that

E B " Ť|ρ atom | i"4 E i B , with E i B " ␣ tv i´3 , v i u, tv i´2 , v i u, tv i´1 , v i u (
. Given a node λ at level i ´1 in T , BP will 'branch' two possible positions of atom v i at the two child nodes in level i, by computing the three-sphere intersection based on the distances d i´3,i , d i´2,i and d i´1,i which are the weights of the edges in E i B , and on the positions x λ i´1 , x γ i´2 , x ζ i´3 , pγ, ζq P ϖpλq. Notice that the three spheres may intersect in one point with probability 0, in this case only one position will be branched to v i . If the intersection is empty, no positions to atom v i will be branched @λ, and the algorithm will abort with no solutions to the DMDGP instance.

Practically, the distances d i´3,i , d i´2,i and d i´1,i constitute the minimal set of distance restraints for BP to run, as they are mandatory to branch the possible positions of the atoms of the molecule. Additionally, this set of data must be consistent, otherwise no solutions will be found by BP, since the three-sphere intersection would yield an empty set. Pruning phase The edges in E P are called the pruning edges, and BP relies on their weights to perform the pruning phase. Let E P be partitioned such that E P " Ť|ρ

atom | i"4 E i P , with E i P "
␣ tv i , v j u|i ´j ą 3 ( . Let ε P R `be a tolerance specified by the user. At a branched position x λ i for vertex v i at a node λ, BP will check its feasibility by verifying all inequalities | }x λ i ´xλ j j } 2 ´d2 j,i |ď ε 2 , such that x λ j j are the branched positions for vertices ␣ v j |tv i , v j u P E i P ( at nodes λ j P ϖpλq. If even one of these inequalities does not hold, then the position x λ i is unfeasible and the node λ is pruned from the tree. If all inequalities hold, then the position x λ i is accepted. If E i P " H, then all positions x λ i are accepted for any node λ of the level i in T .

Practically, the distances d j,i , i ´j ą 3, constitute the extra set of distance restraints used by BP to refine the search and reduce the size of the tree T . These distances come mainly from NMR or other experimental measurements on the protein under investigation.

When this extra set of data is unavailable, E P " H and the number of solutions is maximal and equals 2 n´3 , n being the number of the backbone atoms disregarding carbonyl oxygens and the third amide hydrogen of the first residue.

Algorithm

The recursive procedure of BP explores the search tree T in a depth-first fashion. At the current node, the branched position of the atom being placed is checked.

If the position is feasible, then BP stores it and the search moves to the child nodes, whereas if the position is infeasible, the node is pruned as well as the subtree rooted in it (Figure II.4), and the search is back tracked. This procedure is given in the algorithm tative node is pruned, otherwise the subspace is divided into smaller ones, and children nodes are branched to the node. Therefore, like BP, BB also decomposes the search space (Branching phase), but instead of eliminating some node because of its infeasibility (like in Pruning phase), BB eliminates a node because of its value. However, if we consider the violation of restraints as an objective to be minimized to zero, we can consider BP as a particular case of BB, since a subspace (a possible atomic position) is pruned when its violation is greater than zero. More precisely, BP is similar to a Depth-First Search BB with eager strategy [START_REF] Clausen | On the best search strategy in parallel branch-and-bound: Best-first search versus lazy depth-first search[END_REF] for node evaluation, since bounds -which are δ ij in our algorithm -are calculated as soon as nodes are available.

Informatics design of BP

The real informatics implementation of BP algorithm was done by Dr. Andrea Cassioli. Its design is based on the following considerations: being a tree-search algorithm high efficiency is required as the number of nodes might be huge, interfaces and requirements on the data structures should be as simple as possible, and memory overhead should be avoided even if it is basically a deep-first search. The choice has been to use a template meta-programming based C++ style. This approach allows for high efficiency avoiding virtual classes, and reduce the structure dependencies by a *duck-typing* philosophy. Indeed, meta-programming is a programming idiom that focus on the requirements and behavior of components more than on the specific types [START_REF] Abrahams | C++ template metaprogramming: Concepts, tools, and techniques from boost and beyond[END_REF]. In C++, it is accomplished by the use of templates, i.e. typeless placeholders that allow for the implementation of generic code. A template variable has then an unspecified type until the very end of the compilation process. Once its type is defined, the code in which it appears can be actually generated for that specific type. Thus, the code adapt to the data type and only requires that the given data type 'fits' in the code properly (for instance a class must provides all the methods that is invoked in the code). Therefore, the design of BP is generic in order to allow the use of user-defined data without asking for specific interfaces. The user is free to use any kind of data as long as it provides what BP expects. Moreover, the BP has been designed to follow the style of the Standard Library (STL) [START_REF] Matthew H Austern | Generic programming and the STL: using and extending the C++ Standard Template Library[END_REF][START_REF] Josuttis | The C++ standard library: a tutorial and reference[END_REF]: use of iterators whenever possible, use of functors to define routines, give the responsibility of the allocation/initialization of the data to the user, generic data types.

Using STL promotes compatibility and reliability.

Besides, the Boost library (http://www.boost.org) has been used. It is a cutting edge open source project that has been became a standard reference for C++ developer. It includes high quality and efficient libraries to support many common tasks that a developer is often facing: timers, command line options, concept checking, et cetera. Instead of implementing all the code from scratch, BP was based on some small parts of Boost, namely tuple (a library that extends the "pair" concept to a generic n´tuple, providing helper functions and more intuitive access to the single items), concept checking (a library that provides macros and classes to implement concept checking test on the code) and function pointers.

These libraries have allowed to built BP code upon three basic components: 1) a routine responsible to generate the tree nodes, 2) a routine responsible to detect unfeasible solutions and prune the tree nodes, 3) a set of functions for eventual future extensions of the algorithm. The code across these routines is highly assertive to improve safety, and has a large use of templates to promote efficiency and genericity. However, BP genericity and efficiency come at a price: BP can not be easily configured at runtime. It is also remarked that, in order to obtain good performance, users should consider switching on aggressive optimization features when compiling.

II.2 Implementation details

In this section we provide an overview of the main implementation features involved in the work presented in the next section. The software iBPprot has been coded in C++ with extensive use of template meta-programming [START_REF] Abrahams | C++ template metaprogramming: Concepts, tools, and techniques from boost and beyond[END_REF], STL [START_REF] Matthew H Austern | Generic programming and the STL: using and extending the C++ Standard Template Library[END_REF][START_REF] Josuttis | The C++ standard library: a tutorial and reference[END_REF], and BOOST (www.boost.org). Linear systems, as for instance (II.12) thereafter, are solved using the LAPACK library [START_REF] Anderson | LAPACK Users' Guide[END_REF].

II.2.a Data preprocessing

The preprocessing is done by a set of python scripts not belonging to the iBPprot framework. For each protein target, one conformation is selected from the associated PDB file: the first conformer for the NMR structures, or the chain A conformer for the X-ray structures. A PSF file is generated using the script generate_seq.inp of CNS 1.3 and the topology file protein-allhdg5-4.top and the parameter file protein-allhdg5-4.param.

The missing atoms in the PDB file are added using the CNS script generate_easy.inp.

The PSF file is used to determine the input file of iBPprot, describing the list of atoms in the graph along with their ordering (figure II.5). All distance values as well as intervals in the iBPprot input file are determined from the atomic coordinates in the initial conformation. In that way, the possible inconsistencies present in local geometry of the topology files are overcome. As we are interested in determining the 3D coordinates of atoms N, C α , H, H α , C, C β and O of each residue of a given protein, and considering that proline residue does not contain an amide hydrogen, we change proline residues into alanine residues whenever they are met throughout the sequence. Accordingly, iBPprot can treat proline similarly to other residues. The same patch could be used for glycine, which contains an H α2 instead of a C β , but iBPprot has been conceived to handle the disparity of glycine.

II.2.b DMDGP graph handling

DMDGP instances consist of simple weighted undirected graphs G " pV, E, dq, which are handled by the Boost Graph Library (BGL) [START_REF] Lee | The Boost graph library: user guide and reference manual[END_REF]. The points in R 3 are represented using the Boost Geometry Library (also known as Generic Geometry Library, GGL [START_REF] Gehrels | A generic geometry library[END_REF]).

Constraints handling

The input constraints are typically expressed by enforcing a variable y to take values in a domain Y , which is generally the union of intervals and singletons:

Y " # S ď s"1 ȳs + Y # M ď m"1 ry l m , y u m s + . (II.2)
The Boost Interval Library (BIL -see [START_REF] Brönnimann | The design of the Boost interval arithmetic library[END_REF][START_REF] Brönnimann | The Boost interval arithmetic library[END_REF]) is used to store such representation, and to perform basic operations on intervals and singletons. On the top of the BIL, the type domain is defined to handle sets of intervals and operations as intersection, scaling, etc.

The BIL allows also to select the underlying data format for the intervals (single/double precision real, integer).

II.2.c Branching device

The branching device represents the implemented procedure used to perform the branching phase of BP. In this context, it should be borne in mind that the position x λ i at a node λ of the atom v i to be embedded is calculated using the set of distances d " td i,i´3 , d i,i´2 , d i,i´1 u, and the positions of the three previous atoms v i´3 , v i´2 , v i´1 in ρ atom at the parent nodes to λ. Although there are several methods to compute sphere intersections, the best trade-off between efficiency and numerical stability according to our collaborators Dr. Liberti and Prof. Lavor, is given by the use of recursive matrices multiplication [START_REF] Lavor | Discretization orders for distance geometry problems[END_REF]. Indeed, this allows us to avoid solving a system of 3 nonlinear equations in the coordinates of the unknown point(s) of intersection, and to use only one iteration. Moreover, methods such as Gaussian elimination and orthogonal decomposition [START_REF] Coope | Reliable computation of the points of intersection of n spheres in R n[END_REF] were considered as they enable to transform the nonlinear system into two linear systems. However, solving these linear systems make round-off errors propagate more easily when the spheres have different sizes [START_REF] Mucherino | MD-jeep: an implementation of a branch and prune algorithm for distance geometry problems[END_REF]. Furthermore, the memory requirement of our selected method is reduced to Opn ´3q. The following angles are used in the recursive matrices multiplication: (i) the angle θ i " { v i´2 , v i´1 , v i , (ii) the torsion angle Ω i between the planes pv i´3 v i´2 v i´1 q and pv i´2 v i´1 v i q. The recursion is applied through the equation:

» - - - - - - x i y i z i 1 fi ffi ffi ffi ffi ffi fl " B 1 B 2 B 3 . . . B i pd, σq » - - - - - - 0 0 0 1 fi ffi ffi ffi ffi ffi fl " Q i´1 B i pd, σq » - - - - - - 0 0 0 1 fi ffi ffi ffi ffi ffi fl " Q i » - - - - - - 0 0 0 1 fi ffi ffi ffi ffi ffi fl , (II.3)
where: and σ P t`1, ´1u. The series of recursion matrices is initialized as: and they are all pre-computed and stored before starting the recursion. The product Q i´1 B i is calculated in two steps: (1) the fourth column of Q i , which gives the coordinates x λ i , is computed; (2) only if λ is not pruned, the three remaining columns are computed. The planar law of cosines is used for determining the distance d i´2,i , given the distances d i´1,i and d i´2,i´1 , and the angle θ i :

B i pd, σq " » - - - - - - ´cos θ 2 ´σ sin θ 2 0 ´di´1,i
B 1 " » - - - - - - 
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 fi ffi ffi ffi ffi ffi fl , B 2 " » - - - - - - ´1 0 0 ´d1,2 0 
d 2 i,i´2 " d 2 i´1,i `d2 i´2,i´1 ´2 ˆdi´1,i ˆdi´2,i´1 ˆcos θ i . (II.6)
In each set of four consecutive atoms in ρ atom , given the distances

d i´3,i´2 , d i´3,i´1 , d i´2,i´1 , d i´2,i , d i´1,i
, the distance d i´3,i varies in an interval determined by the variation of the dihedral angle Ω i . Thereby it is possible to express cos Ω i using these six distances in the following way:

cos Ω i " c ´ab ? 1 ´a2 ? 1 ´b2 , (II.7)
where If it is not the first appearance of v i in ρ atom , we need to take into account the fact that numerical instabilities generate matrices which will lead to slightly different coordinates for v i than those computed the first time. In order to decrease the impact of these numerical errors, we compute the set of distances d, the angles θ i , Ω i and for σ P t`1, ´1u

a " d 2 i´1,i `d2 i´2,i´1 ´d2 i´2,i d 2 i´1,i ˆd2 i´2,i´1 , (II.8) b " d 2 i´3,i´1 `d2 i´2,i´1 ´d2 i´3,i´2 d 2 i´3,i´1 ˆd2 i´2,i´1 , (II.9) c " d 2 i´3,i´1 `d2 i´1,i ´d2 i´3,i d 2 i´3,i´1
the corresponding matrices B i pd, `1q, B i pd, ´1q, which lead to two possible embeddings of v i as x λ ì " Q i´1 B i pd, `1q and x λ í " Q i´1 B i pd, ´1q. We choose the value of σ that yields the updated coordinates of v i being the closest to the previous coordinates of this atom that were computed at a node ζ P ϖpλq.

II.2.d Computing the coordinates of additional atoms

This subsection concerns the coordinates computation of the carbonyl oxygens O k and the C k β atoms at a residue k, as well as of the third amide hydrogen H 1 3 . These atoms are called additional atoms because they do not belong to the sequence ρ atom , ergo they are not concerned by the BP algorithm. Consequently, iBPprot calculates their positions by solving linear systems, using the LAPACK subroutines DGESV and DGESVX [START_REF] Anderson | LAPACK Users' Guide[END_REF]. (see, e.g., [START_REF] Güntert | Torsion angle dynamics for NMR structure calculation with the new program DYANA[END_REF][START_REF] López | Automated protein structure determination from NMR spectra[END_REF]), we fix here the torsion angle ω k of the peptide plane to -180 ˝or 0 ˝, depending if we are in the trans peptide plane case, or in the cis peptide plane, respectively.

If the peptide plane configuration is not given, the trans configuration is assumed. The coordinates of O k can then be computed by solving the following non-linear system:

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % }x λ O k ´xζ i´2 } 2 " d 2 1 , }x λ O k ´xγ i´3 } 2 " d 2 2 , }x λ O k ´xλ i } 2 " d 2 3 , n T π k px λ O k ´xλ i q " 0 , (II.11)
where n π k is the normal to the peptide plane π k . Using an approach similar to those employed in [START_REF] Dong | A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data[END_REF], we obtain the equivalent linear system:

$ ' ' ' ' & ' ' ' ' % 2px γ i´3 ´xζ i´2 q T x λ O k " d 2 1 ´d2 2 ´}x ζ i´2 } 2 `}x γ i´3 } 2 , 2px λ i ´xζ i´2 q T x λ O k " d 2 1 ´d2 3 ´}x ζ i´2 } 2 `}x λ i } 2 , n T π k px λ O k ´xλ i q " 0 .
(II.12)

In a previous implementation [START_REF] Mucherino | Influence of pruning devices on the solution of molecular distance geometry problems[END_REF], the positions of the carbonyl oxygens were not stored.

Although that approach leads to memory saving, the availability of carboxyl oxygen positions can improve the definition of α-helix secondary structures. Indeed, having oxygen positions allows us to exploit the distance restraint between O k and H k`4 in α-helices, as these two atoms are hydrogen bonded. Therefore, we will have an additional source of pruning for α-helix atoms position. 

Computing the coordinates of C

´xζ i´2 q T x λ C k β " d 2 1 ´d2 2 ´}x ζ i´2 } 2 `}x ν i´1 } 2 , 2px γ i´3 ´xζ i´2 q T x λ C k β " d 2 1 ´d2 3 ´}x ζ i´2 } 2 `}x γ i´3 } 2 , 2px λ i ´xζ i´2 q T x λ C k β " d 2 1 ´d2 4 ´}x ζ i´2 } 2 `}x λ i } 2 .
(II.13) Solving the system above at

x λ C k β gives the coordinates of C k β .
Computing the coordinates of H 1 3 Following the idea proposed for C k β atoms, the coordinates of H 1 3 are computed once the position of C 1 α is embedded, using the positions of atoms N 1 , H 1 1 , H 1 2 and C 1 α , besides the distances from each one of the four atoms to H 1 3 .

II.2.e Pruning devices

Direct distance feasibility As the coordinates x λ i for an atom v i at a node λ are determined, we check that all distances between v i and the other embedded atoms v j , such that tv i , v j u P E i P , respect the input distances d i,j up to the tolerance ε. Indeed, let δ ij be a positive real such that

δ ij "| }x λ i ´xλ j j } 2 ´d2 i,j |, (II.14)
with x λ j j being the embedded position of v j at a node λ j P ϖpδq. If δ ij ď ε 2 , the position x λ i is embedded. If δ ij ą ε 2 , the position x λ i is discarded, and the node λ is pruned.

Chirality Another pruning device used here is the chirality device, used to check whether each protein residue is an L-amino acid. This is done by calculating the scalar triple product

V " x ÝÝÑ NC α ^ÝÝÑ CC α , Ý ÝÝ Ñ H α C α y (II.15)
and determining its sign. If V is positive than the residue is an L-amino acid, else the residue is a D-amino acid. In the latter case, the just computed position for atom C is rejected, and the node λ containing this position is pruned.

II.2.f Solution storage

The conformations generated by iBPprot are stored in two different ways. If small set of conformations are generated, each conformation is stored in PDB format. For large sets of conformations, the first conformation is stored in PDB format, and the next ones are saved as frames of a file in DCD format. The number of planned DCD files and the number of frames for each DCD file are given as inputs to the calculation.

Solution filtering

When a solution is found while parsing the search tree, two cases are possibly encountered. The first case is that this solution is the first one found by the algorithm. In this case the solution is directly stored. The second case is that this solution is not the first one to be found. In this case this solution is not automatically stored. Instead, an RMSD is computed between this solution and the previously stored one. If the RMSD is greater than a certain threshold rmsd_th -defined by the user, this solution is stored. The aim of this filtering is to diversify the stored conformations as much as possible, and to avoid storing many solutions that are almost the same.

II.3 Validation protocol

This work involves the reconstruction of given protein structure targets based on a customized constraints set E P . These constraints are exact distances (as opposed to approximate) measured on the target structures. The motivation of setting up this protocol is to validate our method by checking if the objectives below could be fulfilled.

II.3.a Objectives

We would like simply to answer these two questions:

(i) Is it possible for iBPprot to find the PDB structure conformation with only short range constraints?

(ii) Is it possible for iBPprot to exhaustively explore the conformational space associated to a protein target in reasonable time?

II.3.b Methods

For each protein target, the PDB file is preprocessed as described in subsection II.2.a and is used to extract the input distance restraints for iBPprot. The extracted distance restraints corresponds to the weights of the edges in E B , i.e. d i´3,i , d i´2,i and d i´1,i with i ą 3, and to the weights of the edges in E P , i.e. d i´p,i with i ą p. The integer p is called the pruning edge order, and is fixed in each series of calculation to construct the set E i P as follows:

E i P " ␣ tv i , v j u | i ´j " p ( . (II.16)
As p increases, the more distant atom v j is from atom v i in the primary sequence. This has no implication for β-sheet. Hence, the values that have been attributed to p in this protocol were chosen to be quite small, in order to keep the constraints as short-range as possible. Knowing that p ą 3 by the definition of E i P in the subsection II.1.c, the chosen values span from p " 4 to p " 12, producing eight series of calculation for each protein target. Table II.2 shows the residues indices involved in the constraints of order p for each value of p. The residues indices was not fixed but determined using the ordering list ρ atom .

It can be noticed that the longest pruning edges match an atom v i from residue k to an atom v j of a residue k ´2, wherefore they correspond to short-range restraints. Table II 

H k /C k , C α k´1 /H k , H α k´1 /C α k , C k´1 /H α k , N k´1 /N k 6 H α k´1 /H k , C k´1 /C k , H k´1 /N k 7 H k /C k , C α k´1 /H k , C α k´1 /H α k , N k´1 /C α k 8 C α k´1 /C k , H α k´1 /C α k , C k´1 /H α k , N k´1 /H k , H k´1 /C α k , C k´2 /N k 9 N k´1 /N k , H k´1 /H k , H α k´1 /H α k , C k´1 /C k 10 C α k´1 /H k , C α k´1 /H α k , C α k´1 /N k , H α k´1 /C k , N k´1 /C α k , H k´1 /N k , C k´2 /C α k 11 C α k´1 /C k , H α k´1 /C α k , N k´1 /C α k , N k´1 /H α k , H k´1 /C α k , C k´2 /N k , C k´2 /H k 12 C k´1 /C k , N k´1 /H k , N k´1 /C k , H k´1 /H α k , C α k´2 /C α k , H α k´2 /N k , C k´2 /N k
The case p " t5, 4u It should be noted that the case of p " t5, 4u combines pruning edges of order p " 4 and pruning edges of order p " 5. This combination allows to have a single constraint on each atom, except the four first atoms in ρ atom . Actually, for p " 4 only two constraints would be added per residue (additionally to the constraints coming from the branching edges), and for p " 5 only three constraints would be added per residue. This is due to the possible redundancy of some pruning edges as depicted in Figure II.6. This redundancy also holds for other p values with different rates, but in the p " 4 case 77% of the pruning edges are redundant, justifying the combination with other pruning edges having a different order p. The choice of combining with p " 5

pruning edges offers the possibility to have one non redundant pruning edge on each vertex v i , i ą 4, and this specific case is relevant with respect to the theory. Indeed, the search tree T is no longer binary in this case, but rather unary (Figure II.7) because the graph G becomes rigid with this specific set of edges E. The runtime of the algorithm is reduced to polytime and only two solutions would be obtained [START_REF] Liberti | Molecular distance geometry methods: from continuous to discrete[END_REF]. edges (green arrows) and pruning edges (magenta arrows for p " 4 and blue arrows for p " 5) are drawn for residue k. A pruning edge is redundant when it is superimposed on a branching edge, and is represented by a dashed arrow, like the case of the pruning edges between C k´1 α and N k . This superimposition is due to the repetition in ρ atom , resulting in atoms having more than one representative vertex v i . The numbers surrounding the atoms are hypothetical indices representing their ordering i in ρ atom , and are shown to verify the order of connecting pruning edges: let I 1 be the set of numbers surrounding an atom and I 2 be the set of numbers surrounding a second atom, if these two atoms are linked by a pruning edge of order p then Dι 1 P I 1 , Dι 2 P I 2 such that |ι 1 ´ι2 | " p. Beware that the arrow representation of the edges does not assign an orientation to the edge, as we are in the framework of weighted undirected graphs, but indicates that the atom receiving the arrow is subject to branching or pruning.

The choice of the pruning tolerance

Figure II.7:

The tree of solutions T with L levels is unary when each vertex v i , i ą 4, is adjacent to four vertices. At any node λ from level i, i ą 4, the position x λ i of v i stands at the intersection of four spheres instead of three spheres, which in R 3 and in presence of the strict triangular inequality is either empty or a singleton, reducing T to two single paths.

would be pruned otherwise. As a first consequence, many solutions would lack accuracy with respect to the target. As a second consequence, the tree T size would be bigger, generating a larger conformational space. On the other hand, tuning ε to be too narrow entails an aggressive pruning that may reject all positions for a given vertex v i , and no solution would be found for the DMDGP instance (protein) under investigation.

In this protocol, the values of the pruning tolerances ε in the second column of Table II.2 were chosen as follows: for each p value in the first column of Table II.2, ε was minimized gradually till no solutions were found for a given target, then incremented gradually (`0.01Å each incrementation) until every target from the whole set of targets has at least one solution. Once ε is fixed for a given p, it remains stable between all proteins.

II.3.c Materials

The whole set of targets is presented in Table II Most of these structures were solved by NMR, except two of them which were determined using X-ray crystallography. From now on, the protein targets will be referred to by their 

II.3.d Results i) aFinding the target structure

The RMSD (Root Mean Square Deviation) was used to compare the generated structures with the target structures. It is the measure of the average distance between the selected atoms (C α in our case) of superimposed protein conformations. Since the beginning of infographics, RMSD has been traditionally used to measure similarity between two or more protein conformations. However, this measure is superimposition dependent and strongly affected by the most deviated fragments [START_REF] Kufareva | Methods of protein structure comparison[END_REF]. GDT_TS score [START_REF] Zemla | Processing and evaluation of predictions in casp4[END_REF] could have been an

alternative measure to use, as it overcomes these two shortcomings. It performs multiple superimpositions, within them the largest set of the model residues that superimposes Distance between strands in the primary sequence with the corresponding set in the reference structure under a selected RMSD distance cutoff is found. For this validation protocol, RMSD measure is found to be more suitable.

The measure does not depend from chosen cutoff values as in GDT_TS score. Moreover, the RMSD is faster to compute than the GDT_TS score, as only one superimposition is performed within RMSD measure. These observations could be important when we have hundred of millions of structures to evaluate systematically, as it is the case in this protocol.

For each p value and each protein target, iBPprot was asked to generate five solutions with rmsd_th=2Å, i.e. a new obtained solution is saved only if its coordinate RMSD with the previously saved one is larger than 2Å. These five solutions are then compared to the initial PDB conformation, and four labels were defined to characterize the outcome of the of each label are checked in the same order as the preferential order. Once each of the five solutions was assigned a label, the best obtained label with respect to the preferential order is assigned to the calculation.

Results with chirality pruning device switched off

In these series of calculations, only the direct distance feasibility pruning device was used. The results are presented in Table II.5. Only few calculations permit to obtain a conformation closer than 2.0 Å from the PDB conformation. Most of the results are mirror images or partially found conformations or other failing cases. It is noticed that for pruning order p " t5, 4u, hundreds of solutions were found by iBPprot and five solutions were filtered from them, resulting in a contradiction with the expected number of solutions given by the theory in this specific case (see subsection II.3.b). This contradiction will be elucidated in subsection Results with chirality pruning device switched on In these series of calculations, the direct distance feasibility pruning device and the chirality pruning device are used.

II.3.e.
The results are presented in Table II.6. The first thing to notice is that the majority of cells in II.6 are blue, by contrast to II.5 in which the majority of cells are red. This observation highlights the efficiency of the amino acid chirality restraint to restrict the protein conformational space. Indeed, mirror images are no longer encountered in Table II. [START_REF] Antuch | Ancestral βγ-crystallin precursor structure in a yeast killer toxin[END_REF].

The second remark is that iBPprot succeeded to get the label 'Found' for all the calculations performed with p ą 9, except the case where p " 11 for the protein 2MNI, in which the generated conformations were subject to steric clashes. Provided that we are interested in the shortest range constraints yielding satisfactory results, we focused on the calculations case for p " 9, and we examined the corresponding inter-atomic distance constraints (sixth line of Table II.3). We found that the mean of the longest distance constraints over all the targets, i.e max targets `di,i´9 ˘, is equal to 5.25 Å, which means that they are still in the horizon of what NMR could measure. Explicitly, the inter-atomic distance H k´1 /H k is detectable using the 15N-NOESY-HSQC experiment, while the inter-atomic distance H α k´1 /H α k is detectable using the 13C-NOESY-HSQC (Table I.4). The interatomic distances N k´1 /N k and C k´1 /C k are determined by the torsion angles ψ and ϕ respectively, which could be inferred from chemical shift assignments as discussed in subsection I.2.b.

ii)aExploring the conformational space

For the second question (see subsection II.3.a), we focused on the calculations performed with chirality pruning device (Table II.6) and particularly on columns where p equals to 7 and 8. For about half of the protein targets calculated for these sets of inputs, there was no solution close to the PDB conformation among the first five stored conformations. These non-successful calculations were submitted to a systematic exploration of the conformational space to answer question (ii), and to see whether the PDB conformation belongs to the conformational space or not. In affirmative case, we would define the variable 'rank' in which we put the index of the closest solution to the PDB conformation, thus we would be able localize the latter on the solution tree. In a further stage we analyzed the quality of all conformations generated by iBPprot. Note that the rank is not related to the scoring function, which is the RMSD in our case. The rank is relevant for characterizing the difficulty to find the PDB structure, i.e how much we need to sample the conformational space in order to find the target conformation.

Exploring the conformational space for p " 8 The results of the conformational space exploration is presented in Table II.7. For all protein targets except 1CEY, it was possible to obtain a conformation closer than 1.0 Å to the PDB initial conformation.

The protein 1CEY is the largest target among the validation set with tertiary structure composed of α{β-domains (Figure II.9). We analyzed the secondary structures of the explored portion of the conformational space corresponding to the one million conformations generated by iBPprot. This analysis was based on the use of the STRIDE software [START_REF] Frishman | Knowledge-based protein secondary structure assignment[END_REF] and is given in helices of 1CEY were conserved in all solutions found. For their part, the β-strands were not present in the majority of the solutions: no generated conformation exhibited the first two β-strands of the target conformation. This is due to the fact that β-sheets are delocalized secondary structures in contrast to α-helices, which make them more difficult to encounter when sampling the conformational space. We believe that iBPprot would have been able to find the target conformation if the whole conformational space was explored. This belief is supported by two arguments. The first one is theoretical: given that the target conformation obeys to the same set of constraints, it should belong to the a)

Residue Index solution set. Since our method is able to sample exhaustively the solution set, it will met the target conformation at a certain sampling stage. The second argument is empirical: in all the experiments where the conformational space was completely explored, the PDB target conformation was always met. However, the bulk of 1CEY make its conformational space difficult to explore exhaustively in reasonable time, as one million conformations took almost 2 months to generate. One way to overcome this kind of limitation would be by parallelizing iBPprot.

On the other hand, a full enumeration of protein conformations was possible for smaller targets (6 targets over 10 in Table II.7), producing data-sets of several millions of filtered conformations. Calculation was performed on a single CPU of a Linux cluster with a clock rate ranging from 2333MHz to 3500MHz. The CPU time required for such exploration was always smaller than eight days, and most of the CPU times are of the order of one day, which makes iBPprot a reasonable method to use on small proteins with exact distance restraints.

Exploring the conformational space for p " 7 When applying pruning edges of order p " 7, the solution search is less constrained with respect to p " 8 (see the forth and the fifth line of Table II.3). More complexity is thus expected for conformational space exploration with p " 7, because the solution trees are less pruned. It could be remarked that the frequency of having a β-strand is higher when its complementary β-strand is nearer in the primary sequence. Moreover, this analysis gives an insight on the possible folding pathway which these proteins are subject to. Indeed, secondary structures with higher frequencies would be the local conformations that are built first (like α-helices for 1CEY) in the folding mechanism. Then, secondary structures with lower frequencies are built, as they correspond to joining parts of the polypeptide chain that are distant in the primary sequence. Another positive outcome of these calculations is that it was possible to obtain, for the majority of targets, a conformation closer than 1.0 Å to the PDB initial conformation. This proves the reliability of the algorithm and of the implementation of iBPprot to parse systematically the protein conformational space. The closest conformation to the PDB structure was obtained after storing a few hundreds of conformations for some targets, and was obtained after storing much more conformations for some other targets (see the column labeled 'rank' in Table II.8). This variability will be discussed in the next subsection. 

iii)aQuality analysis of the generated structures PROCHECK software [START_REF] Roman A Laskowski | PROCHECK: a program to check the stereochemical quality of protein structures[END_REF] was used to assess the quality of a part of the generated structures. This part is related to the targets that were investigated both in p " 7 case and in p " 8 case, in order to have as many conformations as possible with respect to a given target.

PROCHECK determines the percentages of protein residues located in the core, allowed, generously allowed and disallowed regions of the Ramachandran diagram. It also detects the number of bad contacts, i.e. the number of steric clashes between atoms. These clashes happen if the centers of two atoms are too close, thus inducing an intersection of the corresponding van der Waals spheres. case in the analysed set. The output of this evaluation is problematic especially if one wishes to obtain high quality structures with iBPprot. This issue will be discussed in the next subsection.

Evaluation of torsion angles

II.3.e Discussion

About the the case p " t5, 4u It has been noticed in the previous subsection that using pruning edges of order p " t5, 4u should have given only two solutions for each target, as each atom position would be the intersection of four spheres. However, if the centers of the four spheres are coplanar, the intersection of four spheres still give two positions, as the pruning edge d i´p,i will no longer be discriminative between the two positions determined by the branching edges. In fact, the more the position of v i´p is close to the plane formed by the positions of v i´3 , v i´2 and v i´1 , the less d i´p,i will be discriminative with respect to ε, ergo the more probable the two positions will be accepted, as it is depicted in Figure II.15. To verify this hypothesis, the PDB conformations of the targets were analyzed to see how many atoms v i´p , v i´3 , v i´2 and v i´1 in ρ atom are coplanar, for p " 4 and p " 5, using Cayley-Menger determinant. Indeed, knowing the six distances between the set of

atoms Π i " ␣ v i´p , v i´3 , v i´2 , v i´1 ( , the matrix M i is constructed as M i " ¨0 d 2 i´p,i´3 d 2 i´p,i´2 d 2 i´p,i´1 1 d 2 i´p,i´3 0 d 2 i´3,i´2 d 2 i´3,i´1 1 d 2 i´p,i´2 d 2 i´3,i´2 0 d 2 i´2,i´1 1 d 2 i´p,i´1 d 2 i´3,i´1 d 2 i´2,i´1 0 1 1 1 1 1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' a)
Residue Index The Cayley-Menger determinant is

Γ i " |M i | [51]. If Γ i " 0 then v i´p , v i´3 , v i´2 and v i´1
are coplanar. The percentages of null determinants are shown in Tables II.9. For p " 4, at least 21% of the sets Π i , 4 ă i ď |ρ atom |, are coplanar in each PDB conformation, implying that at most four fifths of the pruning edges are discriminative. For p " 5, at least 13% of the sets Π i , 5 ă i ď |ρ atom |, are coplanar in each PDB conformation, implying that at most seven eighths of the pruning edges are discriminative. Providing that the case p " t5, 4u includes 60% of non redundant pruning edges of order p " 4 and 40% of non redundant pruning edges of order p " 4, the resulting set of pruning edges is at most five sixths discriminative. This observation corroborates our explanation of the contradiction between the theory and the practice.

About the variability of finding the PDB target conformation in the conformational space One may be interested to learn about the parameters that influence the position of the PDB target conformation in the explored conformational space. The variability of the 'rank' in Table II.8 implies that some PDB conformations are found after little exploration of the conformational space, while for other targets finding the PDB conformation was difficult to achieve, as it demanded hours or days of conformational searching before succeeding. In Figure II.16, the influence of the percentage of residues involved in a regular secondary structure, as well as the influence of protein size, are studied for each target. From this, it seems that neither the secondary structure composition nor the size affect the rank of the PDB target conformation found by iBPprot. We believe that the topology is the determinant parameter on the 'rank' value. About the steric clashes found in some generated conformations The problem of steric clashes is possible to address using a van der Waals pruning device, as in [START_REF] Cassioli | An algorithm to enumerate all possible protein conformations verifying a set of distance constraints[END_REF].

Indeed, this pruning device checks that a computed atom position respects the van der Waals radii of each previously embedded atom. It was used to re-explore the conformational space of 2KXA with p " 8. The results are shown in Table II.10. Certainly, the conformational space was reduced and the bad contacts were reduced in the generated conformations, but the time cost was expensive as the runtime was almost squared. For this reason, we prefer generating conformations with the van der Waals pruning device deactivated, then we may filter the conformations displaying bad contacts in a second time, using an energy function from CNS [START_REF] Brünger | Crystallography & NMR system: a new software suite for macromolecular structure determination[END_REF] for example.

II.3.f Conclusion

The software iBPprot using BP algorithm to solve the DMDGP was evaluated here on a set of 24 proteins, representing various secondary structures and topologies. The series of calculations using exact distances showed that a full exploration of the conformational space can be performed for most of the targets for p " 8, with the exception of the Using exact distances, iBPprot efficiently explores the conformational space, and obtains conformations close to the initial PDB conformation. However, computing protein structures relying on exact distance restraints can be considered as a naive approach to structural biology problems. In retrospect, in the frame of homology modeling, if precise template structures and template-target sequence alignments are available, homology modeling could be performed based on exact distances, and the use of iBPprot would be relevant. 

Chapter III

Exploration of protein conformational space based on interval distance restraints

The calculations performed in the previous chapter have shown the efficiency of iBPprot in the presence of well-chosen sets of short-range exact distances connecting atoms belonging to residues k ´2, k ´1 and k. Although the distance set was small, the BP algorithm explored the whole conformational space for protein targets with sizes in the range of 24-85 residues.

The major weakness of this strategy is that some specific distances have to be known exactly. This is quite difficult to obtain in experimental structural biology, in which most of the experimental approaches measure interval distances. Indeed, interatomic distances and angles are usually measured with a certain level of precision. This arises first from the intrinsic internal mobility of the studied proteins, either in crystals where some vibrational motions are always present, or in solution where biomolecules can display large internal flexibility. Another reason for imprecision is the requirement for experimental techniques to repeatedly record data, which results in observing an average structure with immanent imprecision on the geometrical characteristics. A third reason for the uncertainty comes from the artifacts due to difficulties in sample preparation and/or in data acquisition.

Consequently, the uncertainty in geometric parameters measured in structural biology is difficult to remove and thereby has to be taken into account in the methods for structure calculation.

This chapter is devoted to present an approach to run iBPprot using interval distances as input. This approach enabled the retrieval of the PDB target structure for about half of processed proteins. For the smallest protein (2KXA: 24 residues), it was possible to completely sample the conformational space.

Branching phase If the branching distance d i´3,i is not uniquely defined, but rather defined by lower and upper bounds, i.e. d i´3,i P rl i´3,i , u i´3,i s with l i´3,i ‰ u i´3,i , then iBP uniformly picks b i ě 1 values for d i´3,i from rl i´3,i , u i´3,i s as follows:

t d i´3,i P " l i´3,i `pt ´1q pu i´3,i ´li´3,i q ϑ ˇˇt " 1, . . . , b i * , (III.1)
where ϑ is the discretization step. In this chapter, a sole discretization step of 0.4Å

was used for all calculations. The distances t d i´3,i are then used by iBP to compute the intersection of the spheres S px ζ i´3 , t d i´3,i q , S px γ i´2 ,d i´2,i q and S px λ i´1 ,d i´1,i q , pγ, ζq P ϖpλq, yielding the 2b i positions of atom v i (Figure III.3). , t di´3,iq , with t d i´3,i P rl i´3,i , u i´3,i s. The red points represent the 2b " 10 embeddable positions of the children nodes of the node λ, i.e. some of the possible positions of the atom v i [Adapted from [START_REF] Cassioli | An algorithm to enumerate all possible protein conformations verifying a set of distance constraints[END_REF]].

Looking at the Equation II.7 determining cos Ω i , and knowing that cos Ω i P r´1, 1s, 94 lower bound l i´3,i and upper bound u i´3,i for d i´3,i can be determined without additional information:

l i´3,i " d 2 i´3,i´1 `d2 i´1,i ´2 ˆd2 i´3,i´1
ˆd2 i´1,i ˆpab `?1 ´a2 ? 1 ´b2 q, (III.2)

u i´3,i " d 2 i´3,i´1
`d2 i´1,i ´2 ˆd2 Pruning phase Given a pruning edge as interval data rl j,i , u j,i s, i ´j ą 3, iBP checks the feasibility of the branched position x λ i by verifying the following inequalities:

l 2 j,i ´}x λ i ´xλ j j } 2 ď ε 2 , (III.4) }x λ i ´xλ j j } 2 ´u2 j,i ď ε 2 , (III.5)
where x λ j j are the embedded positions for vertices ␣ v j |tv i , v j u P E i P ( at nodes λ j P ϖpλq, and ε is the tolerance specified by the user. If only one of these inequalities does not hold, then the position x λ i is unfeasible and the node λ is pruned from the tree T .

III.2 Materials

The major bottleneck for introducing interval data is the increase of problem complexity, from Op2 n´3 q (when all data are exact distances) to Op n ś i"4 2b i q. Thus, to be able to run efficient iBPprot calculations in the presence of interval distance restraints, it is desirable to make use of additional information that allow to reduce the problem complexity. This information was derived from statistical analysis of the target PDB conformations and has permitted to: (i) reduce the number of branches by fixing the sign of sin Ω i and by reducing the interval distances widths in secondary structure elements, (ii) add pruning interval distances between C l α /C k α with l ă k ´1. In this section, we present the targets investigated in this chapter, the input restraints for branching and pruning, and the clustering tool used for assessing conformational spaces exploration.

III.2.a The targets

The iBPprot calculation using interval distances was mainly performed on the same set of protein structures than the one used in the previous chapter, with some adjustments. Indeed, the targets 1CEY and 2LJ0 which displayed complicated topologies and encountered difficulties within exact distances calculations were removed. The targets 2RUP, 2MGV and 2MNI include individual loops longer than 10 residues. These loops slowed down the calculations, i.e no single conformation was generated after several hours of running. Therefore, these three targets were also removed.

Similarly, the targets 2MW9, 2M5X, 2MC6, 2MDI, 2MJ6, 2MP1 and 2N17 comprise N or/and C tails longer than 10 residues, which slowed down the calculations. Therefore, we shortened their N or/and C tails and they have become 2MW9_C, 2M5X_N, 2MC6_C, 2MDI_N, 2MJ6_N, 2MP1_NC and 2N17_N. In these new names, the letters 'N' and 'C' indicate whether the N or/and the C terminal tails have been removed. Table III 

III.2.b The input restraints used for branching

The input restraints for branching are the distances d i´1,i , d i´2,i and d i´3,i . The distances d i´1,i and d i´2,i are exactly known, as they correspond to bond lengths or to bond angles.

Their values were measured on the initial PDB conformation.

Looking at the atom ordering in ρ atom , the distances d i´3,i principally correspond to the interatomic distances between the following pairs of atoms: Finally, the interatomic distances between atom pairs H k´1 α /N k and H k /H k α are defined by intervals, and to our knowledge, no way exists to reduce these intervals to scalars. Albeit, we can reduce the width of these intervals by bounding cos Ω i between e and f , the interval re, f s being included within r´1, 1s. The reals e and f will be determined statistically in the next paragraph. Moreover, we will fix sin Ω i in order to reduce the number of branches for N k and H k α from 2b to b, whenever positions for them are branched from a node λ. Statistical analysis of cos Ω i and sin Ω i An analysis of the distribution of the Ω i values among the initial PDB conformations was performed. The cos Ω i values were determined from Equation II.7, the distances d i´3,i , d i´2,i , and d i´1,i having been measured on the initial PDB conformations. Let x i´3 , x i´2 , x i´1 , and x i be the vectors encoding the positions of the atoms v i´3 , v i´2 , v i´1 , and v i in the initial PDB conformations. The sign of the determinant of the three vectors px i´2 ´xi´3 q, px i´1 ´xi´3 q, and px i ´xi´3 q, connecting atom v i´3 to atoms v i´2 , v i´1 and v i , allowed to determine the sign of sin Ω i .

H k´1 α /N k , C k´1 α /C k α , N k /H k , H k /H k α ,
The presence of Glycine residues introduced spurious peaks in the distributions of cos Ω i and sin Ω i . Indeed, the atoms H α1 of glycines are introduced in the iBPprot input file (see subsection II.2.a), however, as there is no systematic nomenclature for the choice of the H α1 and H α2 positions, H α1 atoms may correspond to outliers in Ω i values. To remove these peaks and simplify the distributions, all Glycine residues have been replaced by Relying on these distributions, it was remarked that there is no need to fix the sign of sin Ω i for atom pair N k /H k , because it is close to zero. As discussed in subsection II.2.c, iBPprot automatically select the branch with positive value for sin Ω i when the latter is smaller than 0.001. The sign of sin Ω i for atom pair N k /C k will be fixed to negative.

The cos Ω i values involving C k´1 α /C k α corroborated our choice of fixing d i´3,i involving that atom pair based on secondary structure. Meanwhile sin Ω i involving C k´1 α /C k α is around 0 because this torsion angle is measured between atoms v i´3 "C k´1 α , v i´2 "C k´1 , v i´1 "N k and v i "C k α , which are coplanar due to their belonging to the peptide plane. Accordingly, sin Ω i will be fixed to positive values. Lastly, cos Ω i values involving atom pairs H k /H k α and H k´1 α /N k inside the α and β secondary structure elements will be restricted as well as the sign of sin Ω i . The use of these selections allowed to obtain L amino acids without the use of the chirality pruning device, which will thus be disabled for the calculations with interval distances. Two series of Ω i restraints were used, corresponding to soft (Table III.2) and strict (Table III.3) restraints on secondary structure elements.

Notice that rigidifying α helices and β strands agrees with the several possibilities existing to detect the presence of these secondary structure elements in a protein sequence.

Actually, the measurement of H α and C α chemical shifts by NMR permits to determine the chemical shift index [START_REF] David | The 13 C chemical-shift index: a simple method for the identification of protein secondary structure using 13 C chemical-shift data[END_REF], which is directly related to the presence of an α helix or a β strand. Besides, bioinformatics approaches [START_REF] Kandoi | Predicting Protein Secondary Structure Using Consensus Data Mining (CDM) Based on Empirical Statistics and Evolutionary Information[END_REF] are also available to predict the position of secondary structure elements.

III.2.c The input restraints used for pruning

Apart from the Ω i restraints described above, the iBPprot calculations using interval distances was performed without any additional information on the relative positions of the secondary structure elements. In particular, no NMR long-range constraints were used. Nevertheless, in order to reduce the conformational space, pruning interval distances were added for all pairs of α carbons. The justification for using pruning devices for all pairs of α carbons in lieu of some long-range distances is to avoid branching long tree arms that might get pruned in deep levels of the tree, which would be expensive in time. Each line contains the plots of cos Ω i and sin Ω i distributions for atom pair

v i´3 {v i : a) N k /H k , b) N k /C k , c) C k´1 α /C k α , d) H k´1 α /N k , e) H k /H k α .
Table III for each target. The third dimension has the length of the input vectors V m . Each vector along the third dimension is called a neuron.

After a random initialization of the SOM, the training is realized iteratively and each input vector is compared to all neurons. The neuron with the smallest Euclidean distance to the input vector, the so-called Best Matching Unit (BMU) is detected. The BMU as well as the neighbors of the BMU in the map are then modified towards the input vector. Indeed, SOM distributes data on the map so that points which are close or far in the descriptors space are also close or far in the map. To obtain this effect, the neurons neighboring the BMU are scaled by the learning rate α through the use of a neighborhood function, a 2D Gaussian, centered on the BMU, and with radius equal to 

?

M. The learning rate α decreases from 0.5 to 0.0 with the number of iterations to force convergence. The conventional Unified distance-matrix (U-matrix) [START_REF] Andrew D Mclachlan | A mathematical procedure for superimposing atomic coordinates of proteins[END_REF] is used to delineate clusters on the SOMs. The U-matrix is interesting here to visualize the clusters in 2D, while the data are in 3D. For each neuron ν on the map, a corresponding U-matrix element is calculated as the average Euclidean distance between the neuron ν and its eight immediate neighbors:

U-heightpνq " 1 8 ÿ µPN pνq dpν, µq (III.6)
where N pνq is the set of neighbors, and dpν, µq is the Euclidean distance between neurons ν and µ. In that way, the points of the U-matrix displaying the smallest values correspond to the most homogeneous clusters of neurons.

The parameters used for the SOM analyses For the size of the maps, 50ˆ50 maps was used for all targets, except for 2KXA such that a reduced map of 10 ˆ10 was used, and for 2MGV_N with strict input for which a reduced map of 20 ˆ20 was used. These reduced maps are convenient when only small number of conformations is available.

The state of the map at iteration t is deduced from the state of the map at step t ´1, according to this formula:

M t " M t´1 `αγpV m ´Mt´1 q. (III.7)
The learning rate α equals 0.5 at the first iteration, and decreases exponentially. The gaussian γ has a radius equals to 1

III.3 Results

The iBPprot calculations with input interval distances was performed with rigidified secondary structures and C l α /C k α pruning distances, as described in the previous section. Indeed, the soft restraints on secondary structure elements were combined to the global shape restraints to form the loose constraints input set, whereas the strict restraints on secondary structure elements were combined to the topology restraints to form the tight constraints input set. Notice that interval distances were thus larger in the loops connecting α and β secondary structures.

In order to improve the exploration of the conformational spaces, a new obtained conformation is saved only if its coordinate RMSD with the previously saved conformation is larger than a threshold given by the user. Filtering threshold rmsd_th=4.0Å was used.

For each protein target, the calculation was planned to stop after having stored 200,000 conformations.

In this section we assess the iBPprot generated conformations by i) quantitative analysis of the conformational space exploration similarly to subsection II.3.d (finding the PDB conformations, parsing the solutions trees, computing times), ii) qualitative analysis of the conformational space exploration using SOM, iii) analysis of the quality of the protein structures.

III.3.a Quantitative analysis of the conformational space exploration

The results are given in Table III.4 and Table III.5. They displayed an exploration more or less complete of the conformational spaces, depending on the target size and on the secondary structure composition. Parsing the solutions trees The percentages of trees being sampled during calculations are given in the last column of Tables III. [START_REF] Stephen F Altschul | Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[END_REF] and III.5. In both sets of calculations, for one protein target, 2KXA, it was possible to explore completely the conformational space and the iBPprot calculation had stopped before having stored the required 200,000 conformations. This is not surprising as 2KXA is the smallest protein target with N " 24 residues. For the loose constraints input set (Table III.4), 2KSL displayed a quite high sampling percentage. Inversely, 4BYA, 2MLA and 2MJ6_N displayed percentages smaller than 40%. In particular, 2MJ6 exhibited the worst results, having the smallest percentage of tree exploration and conformations with the largest RMSD to PDB. This is due to the rigidification of the secondary structures, while 2MJ6 contains a curved helix. Indeed, the measured C α -C α restraints no longer goes with the linear structure of the rigidified helix, resulting in total pruning of the solution tree. To overcome this issue, the width of the pruning interval distances was increased. Consequently, the pruning was less effective overall. The other targets displayed percentages in the range 50-80%. For the tight constraints input set (Table III.5); 2N17_N displayed a percentage of 21.3%, whereas all other targets displayed percentages in the range 45-80 %.

Finding the PDB conformations

A sorting of the targets with respect to the percentage of parsed tree revealed that, for loose constraints input set, the three best targets (2KXA, 2KSL and 2F05) are bundles of α helices. In the meantime, the same sorting with respect to tight constraints input set revealed that the four best targets (2KXA, 2MH2, 2MP1_NC, 2KSL, 2M5X_N) include α-helix bundles as well as α/β structures. The topology information introduced in C l α /C k α pruning restraints can explain this feature.

The percentages of trees exploration have not increased uniformly between the loose and tight input constraints. Indeed, 2KSL displayed a percentage of 96.1% for loose constraints with a closest coordinate RMSD to the PDB conformation equals to 4.39Å.

For the tight constraints inputs, the percentage of sampled trees has fallen to 80.4%, but the closest coordinate RMSD to the PDB structure has been improved to 3.41Å. Besides, for the tight constraints case, the percentage of tree sampled for 2MH2 is 98.4%, whereas its coordinate RMSD to the PDB structure is relatively important equaling 5.12Å, which means that the application of strict geometry for secondary structure elements along with extensive C l α -C k α pruning distances have not permitted to the generated conformations to go close to the PDB conformation. The use of more or less tight constraints could thus have contrasted results for various targets, thus making some SOM topologies different. These topologies are probably also dependent on the discretization step ϑ (Equation III.1)

and on the filtering threshold rmsd_th.

Computing times

The duration of calculations varied from 1 minute for 2KXA to 76 days for 1MP1_NC. The duration increased significantly between loose constraints and tight constraints input sets. As the tree size without pruning does not change between loose and tight input constraints, the increase of duration may arise from more frequent pruning at deep levels of the tree. For loose constraints inputs, fourteen targets displayed duration shorter than 7 days, and nine of them displayed duration shorter than 1 day.

For tight constraints inputs, five targets displayed duration shorter than 7 days and three targets displayed duration shorter than 1 day. The calculations are thus slower for the tight input constraints. Nevertheless, one should notice that each calculation was performed on a single CPU of a Linux cluster with a clock rate ranging from 2333MHz to 3500MHz. The algorithm parallelization would certainly speed-up the procedure. Finally, the duration of calculation does not seem to be directly impacted by the protein size, but rather by the topology of the protein and by the set of pruning restraints. The rate of conformation generation is determined as the ratio between the duration of the calculation and the number of produced conformations. For the loose constraints inputs, rates were mostly in the range 0.1-4 seconds, with very slow rates found for 2F05 (72.0s) and for 2MJ6_N (868.4s). For the tight constraints inputs, rates increased, and most of the targets displayed rates in the range 0.1-22.8 seconds, with very slow rates found for 2MP1_NC (40.5s), 4BYA (235.8s), 2MC6_C (35.4s) and 2F05 (52.8s). To give an order of comparison, a computational method proposed by [START_REF] Bhattacharya | De novo protein conformational sampling using a probabilistic graphical model[END_REF] and claimed to be faster than Rosetta [START_REF] Paul D Adams | Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems[END_REF] 

III.3.b Qualitative analysis of the conformational spaces exploration

The exploration of protein conformational space was analyzed using the self-organizing map (SOM) clustering approach [START_REF] Bouvier | An automatic tool to analyze and cluster macromecular conformations based on Self-Organizing Maps[END_REF], described in subsection III. The number of representative conformations extracted from the U-matrices are mainly in the range 47-67 with three outliers at 4, 5 and 80 for the loose constraints input, and in the range 34-95 with two outliers at 3 and 124 for the tight constraints input. Overall, the number of representative conformations for a given target is relatively small, and it is encouraging to see that a significant exploration of the protein conformational space (see the percentages of parsed atoms in Table III.5) can be represented by such limited numbers. This should ease further processing. On the other hand, limiting ourselves to the representative conformations has the drawback that important minority conformations can be missed. The comparison of the U-matrices obtained with the soft and strict input restraints will be analyzed in details for some targets. 

III.3.c Analysis of the quality of the generated protein conformations

The quality of the various sets of protein conformations was analyzed using the software PROCHECK [START_REF] Roman A Laskowski | PROCHECK: a program to check the stereochemical quality of protein structures[END_REF]. The PROCHECK analysis was first performed on the initial PDB conformations used for generating the iBPprot input files (Table III.6). For each target, the large majority of residues were located in the core of the Ramachandran diagram. Despite that, for most of them, a small percentage of residues was located in the disallowed region of the diagram. Few targets also displayed some bad contacts, concerning less than 3 residues. The PROCHECK analysis of the conformations sampled by iBPprot (Tables III. [START_REF] Matthew H Austern | Generic programming and the STL: using and extending the C++ Standard Template Library[END_REF] and III.8) showed that, for all targets, similar percentages of residues were observed along the conformations for all regions of the Ramachandran diagram. The average value of percentages present in the core regions decreased with respect to the ones observed in PDB conformations, whereas no residue was present in the disallowed region. This last feature may arise from the bounds applied to cos Ω i values during the calculations. Another feature of the conformations sampled by iBPprot was the appearance of several bad contacts arising from inappropriate relative positions of the secondary structure elements.

As no pruning device has been applied during the calculations for removing steric clashes due to atoms too close to each other, the obtained results were quite encouraging. A comparison of the two series of calculations revealed that, for more than the half of the targets the percentage of core residues has increased of about 10% if the definition of the secondary structure elements was strict.

The somehow worse quality conformations obtained using iBPprot with respect to the PDB conformations may arise from several aspects. First, iBPprot construct β-strands independently without intending to construct β-sheet. This gives more freedom to the exploration, but reduces the quality of β-sheets structure. Nevertheless, the worsening is also observed in the case of structures containing only α-helices, and other aspects should also be involved in this artifact. For example, another aspect having an influence on the quality of the obtained conformations is the discretization of the distance intervals. Indeed, the discretization step of 0.4 Å, used in the iBPprot runs, is relatively important with respect to the range of considered branching distances (2-3Å), and this high value may have induced too sparse exploration of the conformational space. In that way, only regions with lower percentage of core residues would have been explored. A second reason for quality decline is that the exact distances connecting atoms are measured from the PDB conformations and might have been slightly incompatible with the discretized distances extracted from the intervals.

The PROCHECK analysis of the closest iBPprot solution to the initial PDB conformation in Table III.9 and Table III.10 showed that the percentages of residues present in various regions of the Ramachandran diagram as well as the number of bad contacts were only slightly different from the average values present in Table III.7 and Table III.8. Getting closer to the PDB target does not improve the quality, in agreement with the points explained above that the overall conformational space exploration by iBPprot produces conformations of lower quality.

III.4 Conclusion

The iBP algorithm, proposed to solve the DMDGP with interval distance restraints, was evaluated here on a set of eighteen proteins displaying various secondary structures and topologies. A significant conformational space exploration was possible for more than a half of the targets, allowing to retrieve conformations close to the PDB initial conformations.

Indeed, the use of distance restraints between different carbons α of the polypeptide chain allowed to reduce significantly the size of the solutions space. In particular, combining C l α /C k α (1 ď l ă k ď N ) interval distance restraints with a strict definition of secondary structure elements has permitted to obtain solutions closer than 4.6Å to the 121 PDB conformations for thirteen targets. The duration of calculation was long for some targets, but could be reduced by optimizing the implementation of iBPprot. The rate of conformation generation was, for most of the targets, in the range of rates observed in the literature [START_REF] Bhattacharya | De novo protein conformational sampling using a probabilistic graphical model[END_REF] for algorithms exploring the conformational spaces of proteins. On the other hand, iBPprot generated conformations displayed worse quality parameters than the corresponding PDB structures. The number of bad contacts between atoms and the dispersion of the residues from the core to the allowed region of the Ramachandran diagram justify this observation. Nevertheless, the degradation of the conformations quality could be reverted by using the ROSETTA approach [START_REF] Kaufmann | Practically useful: what the Rosetta protein modeling suite can do for you[END_REF] for relaxing the protein conformations. For this purpose, the relatively limited numbers of representative conformations, obtained from the SOM clustering, is quite encouraging.

The fact that the iBPprot calculations depend on plenty of parameters, as the attributes of the pruning distances, the definition of the geometry within the secondary structure elements, the value of the discretization step, the value of the filtering threshold, makes difficult to criticize accurately the iBPprot performances with interval distance restraints. It is of no doubt that the DMDGP is more complicated to solve with interval distance restraints than with exact distance restraints, primarily due to the increase of the solutions tree size. However, restraints set consistency is critical when exact distances are used, whereas if interval distances are used, consistency is easier to obtain if the discretization step is appropriately chosen.

Chapter IV

Conclusions and perspectives

Structural biology has seen a great deal of development during the last thirty years. The sophistication of biophysical methods has paved the way to this development, allowing to obtain more accurate and relevant data as from X-ray crystallography, NMR, cryo-EM, SAXS, FRET, XL-MS, and so forth [START_REF] Michael D Purdy | Function and dynamics of macromolecular complexes explored by integrative structural and computational biology[END_REF][START_REF] Tyagi | Single-molecule FRET and crosslinking studies in structural biology enabled by noncanonical amino acids[END_REF][START_REF] Van | Integrative, dynamic structural biology at atomic resolution [mdash] it's about time[END_REF].

The application of these techniques to biological samples has produced a change in the view of the essence of protein structure. Indeed, the first protein structures, determined by X-ray crystallography, were considered as rigid. Later on, the vision of protein structure evolved and proteins are now considered to be much more flexible objects. Information about this flexibility has come from experimental techniques that are sensitive to internal mobility of biomolecules, as NMR, which has contributed a central role in endorsing this new vision [START_REF] Andrew | NMR spectroscopy brings invisible protein states into focus[END_REF][START_REF] Lewis | New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy[END_REF].

Another reason for the switching from rigid to flexible perception was the discovery that structural disorder plays an important role in protein function, for intrinsically as well as partially disordered proteins [START_REF] Bah | Modulation of intrinsically disordered pro-tein function by post-translational modifications[END_REF][START_REF] Bah | Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch[END_REF][START_REF] Bhowmick | Finding our way in the dark proteome[END_REF][START_REF] Dyson | Making Sense of Intrinsically Disordered Proteins[END_REF][START_REF] Mittag | From sequence and forces to structure, function, and evolution of intrinsically disordered proteins[END_REF]. In the context of proteins adopting multiple functional conformations, the optimization approaches commonly used for calculating structures or exploring the free energy space of proteins seems debatable. Indeed, the validation of these optimization approaches goes usually through the repeated convergence toward a given conformation. Notwithstanding, this validation strategy is impractical when dealing with a large number of possible conformations.

Global optimization approaches are widely developed [START_REF] Liberti | Global Optimization: From Theory to Implementation[END_REF], in order to find the maximum or minimum of a function over all input values, as opposed to finding local minima or maxima. The iBP algorithm was proposed some years ago [START_REF] Lavor | Discretization orders for distance geometry problems[END_REF][START_REF] Lavor | The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances[END_REF][START_REF] Liberti | A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem[END_REF][START_REF] Liberti | Euclidean distance geometry and applications[END_REF] to solve the DMDGP and determine all possible conformations of proteins. After a stage of method development [START_REF] Cassioli | An algorithm to enumerate all possible protein conformations verifying a set of distance constraints[END_REF], it was applied successfully to cases where the number of possible conformations was reduced to a handful. In retrospect, these application cases were far from the real-life cases of structural biology.
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IV.1 Conclusions

In the present work, we investigated the behavior of iBP, within the framework of iBPprot, in protein structure determination for various levels of known information that are close to what can be experimentally determined.

For this investigation, two protein sets have been chosen. On one side, twenty four proteins, having from 24 to 128 residues and displaying various combinations of secondary structures, have been collected. On this validation set, we showed that using only some short-range exact distance restraints, connecting residues k ´2, k ´1 and k, was sufficient to rebuilt all the proteins PDB conformations. Moreover, it was possible to completely explore the conformational space of about the half of the protein targets. However, the use of solely exact distance restraints as input is a very limiting assumption, especially in the context of protein structure determination using experimental information, as the latter is mostly expressed as intervals of values.

Subsequently, the second validation set, containing nineteen proteins ranging from 24 to 85 residues and owning diversified topologies, was prepared to assess iBPprot with interval distances input restraints. As the problem complexity has thus starkly increased, we decided to be more conservative by rigidifying the secondary structure elements, and adding interval distance restraints between non-consecutive α carbons in the primary structure. In that frame, for more than the half of the second targets set, it was possible to obtain a conformation close to the corresponding PDB conformation. On the other hand, exploring the conformational space was more intricate, as only the smallest protein witnessed a complete parsing of its conformational space.

From the calculation time point of view, iBPprot was satisfactory. Despite of being executed on a single processor of a Linux cluster, iBPprot showed a rate for generating protein conformation globally shorter than 25 seconds, which agrees with other methods for generating protein conformations [START_REF] Bhattacharya | De novo protein conformational sampling using a probabilistic graphical model[END_REF].

The analysis of structure quality of the obtained conformers revealed two features different from what is observed in the initial PDB structures. First, the iBPprot conformers displayed no residues in the disallowed regions of the Ramachandran diagram. Second, the number of bad contacts is higher in the iBPprot conformers than in the PDB conformations. Given that van der Waals pruning device was disabled during the calculation, the relatively limited increase of bad contacts in the iBPprot conformers was expected.

The take-home message from this thesis is the following. iBPprot is a software for protein structure determination that works mainly with geometrical input restraints. Its strengths are: i) ability to reconstruct accurately a whole conformation from few shortrange distance restraints, ii) precision, as the closest generated conformations to the PDB conformations displayed an RMSD less than 1Å with exact distance restraints, iii) fastness, with a competitive rate of conformation generation, vi) ability to explore exhaustively the conformational space for small proteins. Its weaknesses are: i) absolute dependency on the consistency of the input data, ii) instability, such that slightly perturbing the input data could lead to very different results, iii) execution speed decline when using long-range constraints.

IV.2 Future work

The current weaknesses cited above could be addressed in future work as below.

In data preprocessing A python script could be added in the data preprocessing part of iBPprot for checking the consistency of the input data. This script would construct consistent subsets from the given data set, then calculations can be performed with each subset as an independent data source.

In parallelizing the algorithm The structure of the solution tree is suitable for parallelizing the calculations. Indeed, for a chosen level i from the tree T , the run can be parallelized over Λ i processors, with Λ i being the total number of nodes in the level i. As paths explorations in T are independent from each other, there would be no dependency between the parallelized executions, which will ease further the parallelization groundwork. Nonetheless, the depth-first fashion with which the algorithm explores T will have to be dropped in the levels j of the tree preceding level i.

Parallelizing the algorithm would provide more speed in conformational space parsing.

Besides, it would reduce the instability induced from the discretization step. In effect, parallelizing the algorithm would allow to choose smaller discretization steps while keeping reasonable runtime, and that at its turn would allow not to miss certain conformations.

In dealing with long-range restraints

The current problem arising from using longrange restraints consists in uselessly exploring many nodes from the tree T , which is a waste of time. This happens because for a given long-range restraint between atoms v i and v j , with j ăă i, iBPprot has to explore a subpath from level j `1 to level i ´1 before it figures out at level i that eventually the computed positions for atoms v j`1 , v j`2 , . . . , v i´1 had led to an infeasible position for atom v i . To avoid this pitfall, it would be advantageous to predict at an earlier tree level that the subpath taken is misleading. Predicting at a level v P j `1, i ´1 that a long-range distance restraint will not be fulfilled is possible by comparing the output of a function f pϕ, ψq with the Euclidean distance between atoms v v and v i .

• The function f pϕ, ψq relies on bond lengths and bond angles, as well as ϕ and ψ torsion angle values, to compute the Euclidean distance which the polymer chain comprised between atoms v v and atom v i can browse. The variables of this function,

i.e the ϕ and ψ angles of the residues comprised between atoms v v and atom v i , are not always known. Nevertheless, one can use their trend values in the different secondary structure elements. By this way, if the secondary structures positions are given, one can affect the trend values to ϕ and ψ and estimate the output value of f .

• The Euclidean distance between atoms v v and v i can be calculated as dv,i " }x λ v ´xi }, with x λ v is the just computed position for v v at a node λ, and x i is an approximate position for v i taken as the intersection between D and S rx γ j ,d j,i s . D is the line connecting x λ v and x γ j , with x γ j being the embedded position for atom v j at the node γ P ϖpλq. S rx γ j ,d j,i s is the sphere centered at the embedded position of v j and having as radius d j,i which is the value of the long-range restraint.

Accordingly, at each computed position for a vertex v v , the function f pϕ, ψq is evaluated as well as the distance dv,i . If f pϕ, ψq ă dv,i , it means that the polymer chain between atoms v v and v i is not long enough to go back near atom v j , and the long-range restraint d j,i will not thus be fulfilled, then the node λ has to be pruned.

In pruning tolerance

As shown in subsection II.3.e, given an atom v j such that tv i , v j u P E i p , the more the position of v j is close to the plane formed by the positions of v i´3 , v i´2 and v i´1 , the less d i´p,i will be discriminative with respect to ε, and pruning infeasible positions for v i will be less efficient. To circumvent this problem, an adaptive pruning tolerance ε can be used. Indeed, a pruning tolerance ε would adapt its value at each pruning phase according to Cayley Menger determinant value Γ i for the set of atoms

Π i " ␣ v j , v i´3 , v i´2 , v i´1 (
. In this case, ε " gpΓ i q, with g a strictly increasing function.

Of note that the parameters values of the g function must be carefully chosen, in order to avoid total pruning.

iBPprot is born from a collaboration between different laboratories in France and outside France, and is a result of disparate skills combination. The project is yet in his early days, and many improvements and extensions, beyond those cited above, are planned out. I believe that this software will become in few years a reliable tool of choice for NMR experimentalists. 
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 111 Figure I.1: Un-ionized amino acid molecule drawn in skeleton diagram. This is the generic structure of the proteinogenous amino acids, except the Proline that has a secondary amine bonded to the R group.

HFigure I. 2 :

 2 Figure I.2: d-isomer and l-isomer of an amino acid drawn in Newman projec-

Figure I. 3 :

 3 Figure I.3: Chemical reaction corresponding to peptide bond synthesis. k

Figure I. 4 :Figure I. 5 :

 45 Figure I.4: Resonance structures of peptide bond in trans configuration. The mesomeric effect stabilizes the peptide bond.

Figure I. 6 :

 6 Figure I.6: Structure of a protein (PDB ID: 2MGV) drawn with VMD [84]. a) The backbone is drawn in cartoon style while the side chains are drawn in red ball-and-stick. b) The side chains are dropped to better see the backbone conformation of the protein. Secondary structure elements are highlighted with different colors: α-helix in magenta, β-sheet in yellow, turns in green and coils in white. N-terminus (Nter) and C-terminus (Cter) are labeled in b).

β- sheet

 sheet The second patterned structure found in proteins is the β-sheet. Multiple sets of consecutive residues from different regions of the backbone become adjacent to one another to form a pleated structure. Each set is called a β-strand and its forming residues are aligned in a fully extended conformation. Hydrogen bonds link the β-strands to one another and stabilize the resulting β-sheet structure. Figure I.8 represents an example of a β-sheet, wherein the β-strands are schematically illustrated as arrows pointing the direction to take if one walks on the polypeptide chain and wants to reach the C-terminus. In this respect, a pair of neighboring strands can either point in the same direction or in opposite directions. In the first case, we speak of parallel β-strands and they are represented by parallel arrows (Figure I.10). In the second case we speak of antiparallel β-strands and they are represented by antiparallel arrows (Figure I.9). Both types were observed in β-sheets, whether alone or mixed. It is also worth to note that almost all

Figure I.

  Figure I.8: β-sheet drawn in cartoon with VMD

Figure I. 9 :

 9 Figure I.9: Schematic illustrations of antiparallel β-strands. a) Two antiparallel β-strands in arrow representation. b) The two β-strands are viewed from the side of the β-sheet to emphisize its pleated structure. c) Schematic illustration of the hydrogen bonding pattern.[Taken from [22]]

Figure I. 11 :

 11 Figure I.11: Proposed Ramachandran plot by Hollingsworth and Karplus in 2010[START_REF] Scott | A fresh look at the ramachandran plot and the occurrence of standard structures in proteins[END_REF]. This plot is based on the analysis of 72,000 residues' torsion angles from a set of diverse protein structures determined at ď 1.2 Å resolution. The nomenclature of the displayed regions is as follows. α for residues forming α-helices. β for those forming β-strands. P II for those forming polyproline-II conformation. γ for those forming γ-turns and γ 1 is its mirror image. ε mostly populated by glycine residues adopting left-handed extended conformations, it encompasses the P II region mirror image, the P' II region. δ for residues involved in right-handed turns and its mirror image δ 1 for those involved in left-handed turns. ζ for residues occurring before proline, although 49% of the residues falling in this region do not precede proline.

  Figure I.12: Schematic illustrations of four-helix bundle. a) The path of the polypeptide chain in the bundle. α-helices (sketched as red cylinders) which are adjacent in the primary sequence are also adjacent in the 3D structure. b) The bundle is viewed down its axis. Large pink circles represent the main chain of the α helices, green circles are the buried hydrophobic side chains and red circles are side chains that are exposed on the surface of the bundle, which are generally hydrophobic. [Taken from[START_REF] Branden | Introduction to Protein Structure[END_REF]]

  . The ribonuclease inhibitor (Figure I.14.c) is a single domain protein consisted of a horseshoe made up of a 17-stranded parallel β-sheet surrounded by 16 α-helices. The three types of α{β-domains aforedescribed are based on a common recurrent motif, which is the β-α-β motif, represented in Figure I.14.

Figure I. 14 :

 14 Figure I.14: Schematic illustrations of β-α-β motif. α-helices are represented by yellow cylinders in a) and b) and blue cylinders in c), whereas red arrows are β strands. a) Right-handed β-α-β motif. This configuration is the most found. b) Left-handed β-α-β motif. c) Structure of the ribonuclease inhibitor made up from repetitive β-α-β motif. [Taken from [22]]

  Figure I.15.a and I.15.b) that could damage it. Applying cryocooling to the crystal with the use of cryoprotectants has proved to greatly minimize this damage.

Figure I. 15 :

 15 Figure I.15:From the crystal to the model. a) Protein crystals are growing in a liquid drop. One of them is extracted from the solution, suspended in solution and placed in a glass tube, and then b) placed in an X-ray facility to be hit by X-ray beams. These days, often synchrotron radiation is used. As a result a diffraction pattern in c) is obtained. This is analyzed and d) an electronic density map (gray) is then inferred and an atomic fitting is performed (red). [Adapted from[START_REF] Branden | Introduction to Protein Structure[END_REF]]

Figure I. 16 :

 16 Figure I.16:The impact of a random phase on structure factor F versus the impact of a random amplitude on structure factor F in the complex frame.

Figure I. 17 :

 17 Figure I.17: 1D NMR spectrum. a) 1 H NMR spectrum of a small protein. More than 500 resonance signals are present in the spectrum. Different chemical shift regions are indicated with respect to the proton localization. By convention, δ " 0 corresponds to the strongly shielded protons of tetramethyle-silane (TMS) [86]. b) NMR spectrum parameters. [Adapted from [172]]

Figure I. 18 :

 18 Figure I.18: 1 H-15 N HSQC spectrum of the periplasmic domain of PulG (110 residues plus 6 histidines C-terminal tag), major pseudopilin from Klebsiella oxytoca. The spectrum was recorded on 0.6mM uniformly 15 N/ 13 C labeled protein, in 50mM hepes buffer, pH 7, 50mM NaCl, 1.2mM CaCl 2 , 10% D 2 O (v/v), 298K, at 600MHz 1 H frequency. The resonance assignments for 1 H-15 N backbone amide peaks are depicted using one-letter residue code and the sequence number. Side chain NH 2 resonances of Asn and Gln residues are connected by horizontal lines. [Courtesy of Dr. Aracelys Lopez Castilla]

Figure I. 20 :

 20 Figure I.20: Frequently used potentials to model interatomic non-bonded interactions in force fields. a) Coulomb potential for electrostatic interactions. b) Lennard-Jones potential for van der Walls interactions.

Figure I. 21 :

 21 Figure I.21: Schematic representation of the five key contributions to a molecular mechanics force field: bond stretching, angle bending, torsional terms, electrostatic interactions and van der Waals interactions.

Figure I. 22 :

 22 Figure I.22:The behavior of the system (blue bead) in the energy landscape with simulated annealing method. The solid line schematizes a simplified 1D energy surface with two minima. [Adapted from[START_REF] Thérèse | Structure des protéines par RMN[END_REF]]

  This prediction methods use knowledge about features of protein domains, including sequence length, linker propensity or hydrophobicity indexes, and search the conformational space for the minimum free energy configuration. Ab initio protein structure modeling relies on three important components: (1) an efficient search method allowing the sampling of the energy landscape, (2) a scoring function with which the native structure is assumed to be the most favorably ranked compared to the other structures and (3) a strategy to pick out the native structure among other structures.

  It consists of a distance-dependent electrostatic correction to the orientation-dependent hydrogen bond term to account for the different behavior of hydrogen bonds at long and short distances. Protein structure prediction with ROBETTA starts by constructing a library of fragments. The PSIBLAST algorithm[START_REF] Stephen F Altschul | Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[END_REF] is used to compare short windows of three and nine residues of the query sequence to a set of non-redundant database of protein structures. Over each window a profile-profile similarity score is calculated. In addition the secondary structure of the query sequence is predicted and each sequence window is then compared to the DSSPassigned[START_REF] Kabsch | Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features[END_REF] secondary structure of its corresponding known structure. An overall score is then calculated consisting of the sum of the sequence similarity score and half of the secondary structure similarity scores. A ranked list of the fragments is then constructed iteratively for each of the sequence windows to end-up with 200 9-residues fragments and 200 3-residue fragments for each of the sequence query window. The acceptance criteria of fragments combination is assessed by the energy function according to the Metropolis criteria to bring the protein conformation toward the global minimum. The resulting models can then be subjected to a high resolution structural refinement before selecting the most relevant set of structures.

Figure I. 24 :

 24 Figure I.24: Accuracy of SCWRL4 predictions is shown as a function of side-chain relative accessible surface area: black curves for χ 1 , red curves for χ 1`2 , orange curves for χ 1`2`3 , blue curves for χ 1`2`3`4 , and magenta curves for all side chains of each type in the crystal. The points correspond to 0% surface accessibility.[Taken from [106]]

Figure II. 2 :

 2 Figure II.2: Discretization of the problem. a) The intersection of three spherical surfaces in R 3 containing exactly two points, colored in red [Taken from[START_REF] Liberti | Molecular distance geometry methods: from continuous to discrete[END_REF]]. b) The atom v i can only be in the two shown positions x ì and x í in order to be feasible with the distances d i´3,i , d i´2,i and d i´1,i (the two latter distances are not indicated to alleviate the draw). Notice that the positions x ì and x í are mirror images with respect to the plane χ formed by positions x i´3 , x i´2 and x i´1 of the three preceding vertices [Adapted from[START_REF] Liberti | A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem[END_REF]].

Figure II. 4 :

 4 Figure II.4: The binary tree T for |ρ atom | " 6 is pruned, with respect to a hypothetical pruning edges set E P . The red crossed nodes are pruned nodes. The dashed branches and nodes represent the discarded subtrees as they are rooted in pruned nodes. As a result, only two solutions are feasible in this case, among the eight possible ones.

Figure II. 5 :

 5 Figure II.5: The workflow of data preprocessing. The scripts generate_seq.inp, protein-allhdg5-4.top and protein-allhdg5-4.param are used to generate a PSF file from a PDB file. The script generate_easy.inp checks the PSF file missing atoms and adds them. The script create_DMDGP.py creates a DMDGP file from the PSF file. The DMDGP file is the main data input file for iBPprot.
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  relation II.7 is depicted in appendix IV.2. This relation gives only the value of cos Ω i . Two opposite values are then possible for sin Ω i , giving rise to the two possible branches emanating from T nodes (see subsection II.1.b). In the case where sin Ω i is smaller than 0.001, the angle Ω i is close to zero, and the four atoms v i´3 , v i´2 , v i´1 , v i are almost in the same plane. Thus, the calculation is simplified by selecting only the branch with positive value for sin Ω i .Branching repeated atoms in the sequence ρ atom Two cases must be distinguished when embedding an atom v i . If it is the first appearance of v i in ρ atom , equation (II.3) is used to compute all possible embeddings of v i for σ P t`1, ´1u and the set of distances d.

  Indeed, DGESV uses the LU factorization to compute the solution to a real system of linear equations AX " B. DGESVX do exactly the same thing than DGESV, but provides in addition the error bounds on the solution and the estimate of the reciprocal condition number of A. Computing the coordinates of O k , k ‰ N The positions of carbonyl oxygens (by contrast to carboxyl oxygens O N 1 and O N 2 ) have been calculated by solving the linear system obtained in the following way. For a fixed residue index k, the position x λ O k is uniquely determined once the position x λ i of atom H k`1 at a node λ is embedded. At that point, the positions x ζ i´2 and x γ i´3 of atoms C k and N k`1 respectively, with ζ, γ P ϖpλq, have already been embedded. Therefore, the positions of C k , N k`1 and H k`1 may be used, as well as the planarity of the peptide plane, to triangulate the position of O k . Let d 1 be the distance corresponding to the length of the double bond C O. Let d 2 be the distance between N k`1 and O k which can be deduced from the lengths of C O and C N, and the bond angle z OCN. Let d 3 be the distance between H k`1 and O k which depends on the lengths of C O, C N and N H, as well as on the bond angles z OCN and z CNH, and also on the backbone torsion angle ω k . As in common practice

Figure II. 6 :

 6 Figure II.6: Branching and pruning edges in the case p " t4, 5u. Branching

. 4 .

 4 Twenty four protein structures were chosen, representing various combinations of secondary structure elements arranged in various topologies (Figure II.8). The protein sizes span values from 24 to 128 residues.

Figure II. 8 :

 8 Figure II.8: Protein targets 2MDI, 2LXZ and 2RUP are represented by their 'chain A' conformation from left to right, respectively. These targets have 'bbb' as secondary structure, but display different topologies underlain by the diversification of the distances between the strands in the primary sequence.

  comparison. The label 'Found' is ascribed to a solution displaying a coordinate RMSD value smaller than 2Å with the PDB conformation (Figure II.9.a). The label 'Mirror-Found' is ascribed to a solution displaying a coordinate RMSD value smaller than 2Å with the mirror image of the PDB conformation (Figure II.9.b). The label 'Partially-Found' is attributed when it exists a part of the generated conformation of length tN {2 residues, that displays a coordinate RMSD value smaller than 2Å with the PDB conformation (Figure II.9.c). When none of the latter situations is encountered, the label 'Not-Found' is assigned (Figure II.9.d). These labels are submitted to the following preferential order: 'Found'ą'Mirror-Found'ą'Partially-Found'ą'Not-Found'. The conditions of attribution

Figure II. 9 :

 9 Figure II.9: Illustration of the labels 'Found', 'Mirror-Found', 'Partially-Found' and 'Not-Found'. a) The PDB conformation of 1CEY (left) and a solution generated by iBPprot (right) with label "Found". b) The PDB conformation of 1CEY (left) and a solution generated by iBPprot (right) with label "Mirror-Found". c) The PDB conformation of 1CEY (left) and a solution generated by iBPprot (right) with label "Partially-Found". The non-silver subparts of the molecules have coordinate RMSD value smaller than 2 and are longer than 64 residues, the letter number corresponding to uN {2 . d) The PDB conformation of 1CEY (left) and a solution generated by iBPprot (right) with label "Not-Found".

Figure II. 10 .

 10 It could be seen from Figure II.10.b that the five α-

Figure II. 10 :

 10 Figure II.10: Secondary structures of the explored subpart of 1CEY conformational space. Each residue is involved in a secondary structure labeled by one letter: 'B' for β-bridge, 'C' for coil, 'E' for βstrand, 'H' for α-helix and 'T' for turn. a) The secondary structure per residue of the target conformation. b) The frequency of the secondary structures adopted by each residue along all the conformations generated by iBPprot for 1CEY with p " 8.

  Figure II.12. It could be remarked that the frequency of having a β-strand is higher when

55 CCCCFigure II. 11 :

 5511 Figure II.11: Secondary structures of encountered conformations in the conformational space of 2RUP for p " 8. Each residue is involved in a secondary structure labeled by one letter: 'B' for β-bridge, 'C' for coil, 'E' for β-strand, 'L' for left-handed helix and 'T' for turn. a) The secondary structure per residue of the target conformation. b) The frequency of the secondary structures adopted by each residue along the whole conformational space.

Figure II. 12 :

 12 Figure II.12: Secondary structures of encountered conformations in the conformational space of 4RBX for p " 7. Each residue is involved in a secondary structure labeled by one letter: 'C' for coil, 'E' for β-strand and 'T' for turn. a) The secondary structure per residue of the target conformation. b) The frequency of the secondary structures adopted by each residue along the whole conformational space.

Figure II. 13 :

 13 Figure II.13: Distribution of the torsion angles in the core (blue), allowed (soft blue), generously allowed (violet) and disallowed (red) regions of the Ramachandran plot for a) the PDB target conformations, and for b) the generated conformations. The standard deviations is only showed for the angles in the core region to alleviate the barplots.

Figure II. 14 :

 14 Figure II.14: Mean percentage of atoms involved in bad contact in a) the PDB target conformation and b) the generated conformations.

Figure II. 15 :

 15 Figure II.15: Impact of the coplanarity of the vertices on the pruning efficiency.The atom v i is branched in positions i 1 and i 2 which are, by definition, symmetric to the plane formed by the positions of v i´3 , v i´2 and v i´1 branching them. The dashed red circles represent spheres of radius ε to illustrate the pruning tolerance. If the pruning edge (drawn in purple) enters the sphere, the corresponding position of i is accepted, else the position is rejected. a) The case where the position of v i´p is far from the plane formed by the positions of v i´3 , v i´2 and v i´1 . b) The case where the position of v i´p is close from the plane formed by the positions of v i´3 , v i´2 and v i´1 .

Figure II. 16 :

 16 Figure II.16: Impact of the size and the secondary structure on finding the PDB conformation. The size of each protein is indicated near the plotted points. a) The 'ranks' in Table II.8 are plotted in function of the percentage of α-helices in the protein length. b) The 'ranks' in Table II.8 are plotted in function of the percentage of β-sheets in the protein length. The best rank is 86 and was found with the PDB target 2RUP.

Figure III. 1 :

 1 Figure III.1: The intersection of two spheres with a spherical shell. The discretization factor b i is set to 4 in this case. Consequently, eight symmetric positions are possible for atom v i at a given node instead of the two symmetric ones x ì and x í of Figure II.2, where d i´3,i is scalar. [Adapted from [113]]

Figure III. 2 :

 2 Figure III.2: The search tree T for |ρ atom | " 6. T is not binary any more. Each level i in T shows how many positions are possible for vertex v i depending on the discretization factors b i : b 4 " 1, b 5 " 2, and b 6 " 3. In this hypothetical case there is 24 possible paths, i.e 24 possible solutions, while a binary tree with the same number of levels holds 8 possible solutions (Figure II.3), which illustrates the increase of complexity when interval data are used.

  torsion angle ω, which is known to be strongly dependent on the type of the peptide bond observed between the two residues k ´1 and k. If the peptide bond is trans, the distance between successive α carbons is about 3.8Å (Figure III.4.a). On the other hand, if the peptide bond is cis, then the distance between successive α carbons is much closer, around 2.9Å (Figure III.4.b). Therefore, whenever we are about to branch positions for C k α from a parent node λ, only two branches will emanate from λ. Similarly to the previous cases of H k and C k , we fixed the sign of sin Ω i involving C k α in order to get one branch instead of two.

Figure III. 4 :

 4 Figure III.4: Relative position of C k α with respect to C k´1 α . ϕ and ψ torsion angles and their rotation axes are not shown here, because their values do not geometrically impact the relative position of C k α with respect to C k´1 α . a) a trans configuration of a peptide plane with ω " 180 0 and (b) a cis configuration of a peptide plane with ω " 0 0 .

  The pruning interval distances between α carbons are obtained from analyses of C l α /C k α distance distributions (Figure III.6), varying k from 3 to N and l from 1 to k ´2. Two series of C l α /C k α restraints were deduced from the distributions of Figure III.6: a global shape series that will be used along with the soft restraints on secondary structures, and a topology series that will be used along with the strict restraints on secondary structures.

Figure III. 5 :

 5 Figure III.5: Distribution of cos Ω i (left column) and sin Ω i (right column) values along the various secondary structure elements in the targets set. Here, the term 'loop' includes the other secondary structures encoutered in the target conformation apart from α and β. They are mainly tight turns, large turns, and coils. Each line contains the plots of cos Ω i and sin Ω i distributions for atom pairv i´3 {v i : a) N k /H k , b) N k /C k , c) C k´1 α /C k α , d) H k´1 α /N k , e) H k /H k α .

Figure III. 6 :

 6 Figure III.6: Distribution of the C l α /C k α distances (Å) obtained on the protein PDB structures of a) 2F05, b) 2KSL, c) 2KXA, d) 2LVR, e) 2LXZ, f) 2M5X_N, g) 2MC6_C, h) 2MDI_N, i) 2MH2, j) 2MJ6_N, with respect to the distance between residue indices in the protein sequence.

  Figure III.8, these superpositions correspond to the following range of coordinate RMSD; 2F05: 6.36Å, 2KSL: 4.39Å, 2KXA: 2.36Å, 2LVR: 2.23Å, 2LXZ: 5.69Å, 2MDI_NC: 4.38Å, 2MW9_C: 3.93Å, 4RBX: 4.77Å. For 2LXZ and 2MDI_NC, the iBPprot solution conformation was only partially folded, which agrees with a non-sufficient tree exploration. In Figure III.9, fifteen targets are represented which is more than the double of the targets in Figure III.8. All iBPprot solutions were completely folded in the tight constraints case, and some topological distortions were observed for 2LXZ, 2MH2, and 2MXE. The

Figure III. 8 :

 8 Figure III.8: The PDB conformation and the iBPprot conformation generated with loose constraints that is closest to the PDB conformation are superposed. The proteins are drawn in cartoon, with α helices and β strands colored in magenta and yellow in the PDB structure. The iBPprot best conformation is colored in green.

Figure III. 9 :

 9 Figure III.9: The PDB conformation and the iBPprot conformation generated with tight constraints that is closest to the PDB conformation are superposed. The iBPprot conformations of 2M5X_N and 2N17_-N have been removed due to observed bad contacts. The proteins are drawn in cartoon, with α helices and β strands colored in magenta and yellow in the PDB structure. The iBPprot best conformation is colored in green.

  2.d. Figures III.10 andIII.11 illustrate the U-matrices, which are given in the appendices, obtained from the sets of protein conformations sampled by iBPprot using respectively loose and tight constraints inputs set. On these figures, the U-matrices are colored from dark blue to red.The dark blue corresponds to the smallest distances between the SOM neurones (Equation III.6), and thus to the most homogeneous regions of the SOM. The most homogeneous regions are considered as representative regions of the conformational space, because they contain many similar protein conformations. Thus, all local minima detected in neuron distances were connected to the conformations stored in the SOM, in order to extract representative conformations. The positions of the local minima are indicated in the Umatrices as yellow dots, and the numbers of extracted representative conformations are indicated for each target between parentheses. The U-matrix regions with yellow or red colors correspond to SOM regions in which the neighboring neurones contain quite different conformations, and are thus regions in which the protein conformations undergo transitions. They can be considered as topological barrier regions.The general feature of all U-matrices is that they include large dark blue or blue regions with only quite few red/yellow areas or barriers. This agrees with the purpose of iBPprot which is the exhaustive exploration of the protein conformational space. Indeed, the ultimate goal of this exhaustive exploration is to obtain a continuum of all conformations verifying a local geometry and a set of pruning restraints. Howbeit some barriers are present on the U-matrices. They could arise from the application of the pruning distances devices, or from the discretization of interval distances and the RMSD filtering of the output conformations. It is yet difficult to infer general rules concerning the pruning distances spin-off from the overall observation of the SOM clustering figures given in the appendices, as the application of tight constraints input can induce or remove barriers on the U-matrices. Overall, barriers appeared in the presence of tight constraints input set for 2KXA, 2LVR, 2LXZ, 2M5X_N, 2MC6_C, 2MDI_NC, 2MW9_C and 2N17_N.Barriers were not appearing in the presence of tight constraints for 2F05, 2MH2, 2MP1_-NC. The situation is similar for both sets of input constraints for targets 2KSL, 2MLA, 2MXE, 4BYA, 4OU0, 4RBX. From this global survey, the use of tight constraints seems to foster barrier appearance.

Figure III. 11 :

 11 Figure III.10: U-matrices obtained by SOM analysis of the iBPprot conformations generated using loose constraints. The target names are given along with the number (in parentheses) of representative conformations extracted from the SOM analysis. The yellow dots indicate the position of representative conformations.

FigureFigure III. 14 :

 14 Figure III.13: U-Matrix obtained for the target 2MH2 using loose constraints input set. Corresponding representative proteins conformations extracted from different map regions are drawn in cartoon. The secondary structure elements are colored in blue, cyan, magenta, pink and red along the protein sequence.

FigureFigure

  Figure III.15: U-Matrix obtained for the target 2MXE using loose constraints input set. Corresponding representative proteins conformations extracted from different map regions are drawn in cartoon. The secondary structure elements are colored in blue, cyan, magenta, pink and red along the protein sequence.



  In the figure above, O, C, B and A represent the positions of v i , v i´1 , v i´2 and v i´3 respectively. The vector Ý Ñ n 1 is normal to the plane χ 1 " pABCq. The vector Ý Ñ n 2 is normal to the plane χ 2 " pOBCq. Consequently { p Ý Ñ n 1 , Ý Ñ n 2 q " Ω i . In the triangle OCB, let α " z OCB. In the triangle ACB, let β " z ACB. In the triangle OCA, let γ " z OCA. Let us demonstrate relation II.7. Let A' be a point on [CB) such that CA'= xÅ. Let χ 3 be the plane perpendicular to (CB) in A'. Let B'=χ 3 Ş (CA) and C'=χ 3 Ş (CO). As (CB)=χ 1 Ş χ 2 and χ 3 K(CB), the angle { p ÝÝÑ A'B', ÝÝÑ A'C'q is by definition the dihedral angle between the planes χ 1 and χ 2 , implying that w 1 " Ω i .Applying the law of cosines in the triangle A'B'C' givescos w 1 " A'B' 2 `A'C' 2 ´B'C' 2 2 ˆA'B' ˆA'C' " cos Ω i . (IV.1) As CA'B' is a right-angled triangle at A', A'B'"A'Cˆtan β " x tan β and B'C" A'C cos β " x cos β . The triangle CA'C' is also right-angled at A', thus A'C'"A'Cˆtan α " x tan α and CC'" A'C cos α " x cos α . Applying the law of cosines in the triangle CC'B' gives B'C'

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  The magenta helix is made by nitrogens, alpha carbons and carboxyl carbons of the backbone. White balls are amino hydrogens and red balls are carboxy oxygens. The hydrogen bonds are black dashed lines and their lengths are between 1.9Å and 3.0Å. The R groups, sketched by the big green balls, always project out from the helix. The diameter D of the αhelix is about 2.8Å and its step P is approximately 5.4Å.

D P Cter Figure I.7: α-helix drawn with VMD [84].

  White balls and red balls are respectively amino hydrogens and carboxy oxygens. R groups are modeled by green balls and projects above and below the strands. Hydrogen bonds are black dotted and connect the strands laterally so that each strand can have at most two neighboring strands, one by each side. When a strand has one neighbor, its residues are alternately hydrogen bonded to the other strand, i.e. only one over two successive residues is involved in hydrogen bonding (Figures I.9 and I.10). When the strand has two neighbors, hydrogen bond pairs alternate at each side of the strand, in a manner that if a residue is hydrogen bonded to one neighbor, the next residue is hydrogen bonded to the other neighbor.

8: β-sheet drawn in cartoon with VMD

[START_REF] Humphrey | VMD: visual molecular dynamics[END_REF]

. Yellow arrows represent β-strands.

Table I . 2 :

 I2 Statistics on protein lengths (number of residues) as calculated from sets of predicted complete proteomes [Courtesy of Fredj TEKAIA].

	Kingdom	Bacteria Archaea Eukaryotes	Fungi Viruses
	Number of species	2,611	160	165	78	4,331
	Mean protein length	316	285	470	473	251
	Standard deviation	246	205	465	370	325
	Number of proteins	8,348,812 377,652	2,309,794 637,262 204,733
	exist computational methods that determine the quaternary structure of such symmetrical
	oligomers by geometrically characterizing the n-fold symmetry axis -some of them are
	presented in subsection I.3.e.					

Table I . 3 :

 I3 Main methods for phase determination. [Adapted from[START_REF] Janin | Biologie structurale : principes et méthodes biophysiques[END_REF]]

	Method	Application case
	Direct methods	Small molecules
	Molecular replacement	Pre-existing model
	Multiple Isomorphous Replacement	Several heavy-atom derivatives
	Single Isomorphous Replacement with anomalous signal	One heavy-atom derivative
	Multiple Isomorphous Replacement with anomalous signal Several heavy-atom derivatives
	Multiwavelengths Anomalous Diffraction	Presence of an anomalous diffuser

Assign all unique or unambiguous nOe Calculate an initial structure with all the initial data possible Use the structure to check on ambiguous nOe assignments

  

		Calculate new	
		structure with	
		new constraints	
	Add chemical shift constraints (TALOS)	Repeat process until all nOe are correctly assigned and quality structures are obtained	Identify and correct violated constraints
		Add angular constraints	
		(dihedral from ³J coupling	
		and orientational* from	
		residual dipolar coupling)	

Figure I.19: NMR structure calculation procedure. *Orientational angular restraints are angles between internuclear vectors and B 0 and are computed from residual dipolar coupling constants. They are available only in special experimental cases. [Based on [172]]

Table I

 I 

	Experiment	Spin nuclei	Usage
	1H-15N HSQC		

.4: List of the solution NMR experiments most commonly used in protein NMR assignment and structure calculation. [Based on

[START_REF] Evans | Biomolecular NMR spectroscopy[END_REF]

] 1 H,

15 

N HNCO 1 H,

13 

C,

15 

N HN(CA)CO 1 H,

13 

C,

15 

N backbone assignment CBCA(CO)NH / HN(CO)CACB 1 H,

13 

C,

15 

N CBCANH / HNCACB a mathematical model of the NOESY assignment process by chemical shift matching to underline this problem. It assumes a protein with n hydrogen atoms, for which complete and correct chemical shift assignments are available, and N cross peaks picked in a 2D

  .3). In protein function investigations, they can help to localize functionally important residues by identifying active sites boundaries or finding disease-associated mutations. In evolutionary studies, they can help identifying distantly related proteins and family/superfamily assignments (Figure I.23). Most importantly, they can guide experimental research. Indeed, when studying a new target, an initial model can be predicted using maximum information related to it from databases, scientific papers and available experimental observations. Next, the model can give hints on how to interpret and design further experiments, which in turn may validate and serve to refine it.Figure I.23: Classes of structure prediction methods.For proteins with close homologous templates, comparative modeling can be used, and most predicted structures have an RMSD of 1-2Å from the experimental structure. For proteins with distant homologous templates, threading often identifies correct templates and provides models with an RMSD of 2-6Å , with errors mainly occurring in the loop regions. For target proteins without solved template structures, free modeling usually perform an accuracy in the range of 4-8Å. TM-score is the Template Modeling score. It lies in the r0, 1s inter-

val, with a value ą 0.5 indicating a model with a roughly correct topology, and a value ă 0.17 indicating a random prediction. This score is more sensitive to the correctness of the global topology than the local structural errors. [Adapted from

[START_REF] Zhang | Protein structure prediction: when is it useful?[END_REF]

]

  P ϖpλq, have already been embedded. Let d 1 be the distance between C k α and C k β , d 2 be the distance between H k α and C k β , d 3 be the distance between N k and C k β , and d 4 be the distance between C k and C k β . These four distances are easily determined from the bond lengths and bond angles in amino acids. The following linear system can be

			k β	For a fixed residue index k, the position x λ C k β
	is uniquely determined once the position x λ i of atom C k at a node λ is embedded. At
	that point, the positions x ν i´1 , x ζ i´2 and x γ i´3 of atoms H k α , C k α and N k respectively, with
	ν, ζ, γ obtained:	$
		' ' ' & ' '	2px ν i´1
		' ' ' ' ' %

Table II . 2 :

 II2 .3 identifies the constraints of the third column of TableII.2 in terms of inter-atomic restraints. The pruning edges orders p, the corresponding ε and the range of involved residues.

	p	ϵ(Å)	involved residues max targets `di´p,i ˘(Å) k,k k,k-1 k,k-2
	t5, 4u 0.03	1	4	0	4.73
	6	0.03	0	3	0	4.38
	7	0.03	1	3	0	4.92
	8	0.03	0	5	1	5.62
	9	0.02	0	4	0	5.25
	10	0.05	0	5	2	6.01
	11	0.06	0	5	2	5.83
	12	0.07	0	4	3	7.16
	Table II.3: Correspondance between pruning edges and interatomic distance constraints
	p		Constraints between atoms
	t5, 4u					

Table II .

 II 4: Targets table. The tag 'N ' designates the total number of residues. The tag 'SecStruct' designates the secondary structures, with 'a' stands for α-helix and 'b' stands for β-strand. The tag "EXP" designates the experimental method used to determine the structure.

	PDB	N	SecStruct	EXP
	1CEY 128 ababababab NMR
	2F05	85	aaaa	NMR
	2KSL	51	aaaa	NMR
	2KXA 24	aa	NMR
	2LJ0	65	bbbbb	NMR
	2LVR 30	bba	NMR
	2LXZ	32	bbb	NMR
	2M5X 40	bbab	NMR
	2MC6 73	bbba	NMR
	2MDI 56	bbb	NMR
	2MGV 65	abbb	NMR
	2MH2 64	abaabb	NMR
	2MJ6	90	aabbbb	NMR
	2MLA 37	babb	NMR
	2MNI 92	baabba	NMR
	2MP1 77	bbba	NMR
	2MW9 33	bbb	NMR
	2MXE 47	bbaab	NMR
	2N17	56	bbab	NMR
	2N2Q 54	babb	NMR
	2RUP 58	bbb	NMR
	4BYA 75	aaaa	NMR
	4OU0 66	abaabb	X-ray
	4RBX 32	bbb	X-ray
	PDB entry.			

Table II . 5 :

 II5 Results with chirality pruning device switched off. Blue cells correspond to label 'Found'.Deep purple cells correspond to label 'Mirror-Found'. Yellow cells correspond to label 'Partially-Found'. Red cells correspond to label 'Not-Found'.

	PDB	N	SecStruct	p=5,4 p=6 p=7 p=8 p=9 p=10 p=11 p=12
	1CEY 128 ababababab	
	2F05	85	aaaa	
	2KSL	51	aaaa	
	2KXA 24	aa	
	2LJ0	65	bbbbb	
	2LVR 30	bba	
	2LXZ	32	bbb	
	2M5X 40	bbab	
	2MC6 73	bbba	
	2MDI 56	bbb	
	2MGV 65	abbbb	
	2MH2 64	abaabb	
	2MJ6	90	aabbbb	
	2MLA 37	babb	
	2MNI 92	baabba	
	2MP1 77	bbba	
	2MW9 33	bbb	
	2MXE 47	bbaab	
	2N17	56	bbab	
	2N2Q 54	babb	
	2RUP 58	bbb	
	4BYA 75	aaaa	
	4OU0 66	abaabb	
	4RBX 32	bbb	

Table II . 6 :

 II6 Results with chirality pruning device switched off. Blue cells correspond to label 'Found'.Deep purple cells correspond to label 'Mirror-Found'. Yellow cells correspond to label 'Partially-Found'. Red cells correspond to label 'Not-Found'.

	PDB	N	SecStruct	p=5,4 p=6 p=7 p=8 p=9 p=10 p=11 p=12
	1CEY 128 ababababab	
	2F05	85	aaaa	
	2KSL	51	aaaa	
	2KXA 24	aa	
	2LJ0	65	bbbbb	
	2LVR 30	bba	
	2LXZ	32	bbb	
	2M5X 40	bbab	
	2MC6 73	bbba	
	2MDI 56	bbb	
	2MGV 65	abbbb	
	2MH2 64	abaabb	
	2MJ6	90	aabbbb	
	2MLA 37	babb	
	2MNI 92	baabba	
	2MP1 77	bbba	
	2MW9 33	bbb	
	2MXE 47	bbaab	
	2N17	56	bbab	
	2N2Q 54	babb	
	2RUP 58	bbb	
	4BYA 75	aaaa	
	4OU0 66	abaabb	
	4RBX 32	bbb	

  Table II.8 corroborates this expectation, as 5 targets over 17 were exhaustively sampled in reasonable Table II.7: Results of the conformational spaces exploration for p " 8. The column tagged as'RMSD(Å)' indicates the coordinate RMSD value between the PDB target conformation and the closest generated conformation, whose 'rank' is revealed at the left side cell. The column tagged as 'filtered' indicates the number of filtered solutions (subsection II.2.f). The column tagged as 'tree size' indicates the total number of remaining paths on the solution tree T after pruning infeasible branches. In this column, numbers are written in red if T was not explored exhaustively. The last column contains the durations of calculations: 'd' for day, 'h' for 'hour', 'm' for minute and 's' for second.

	PDB	N	SecStruct	rank	RMSD(Å)	filtered	tree size	CPU
	1CEY 128 ababababab	-	-	10 6	ą 4 ˆ10 9 47d3h
	2F05	85	aaaa	5.37ˆ10 3	0.19	3.75ˆ10 7 5.36ˆ10 8 3d20h
	2M5X 40	bbab	1.66ˆ10 3	0.08	4.09ˆ10 3 1.63ˆ10 5	10s
	2MGV 65	abbb	5.07ˆ10 2	0.09	5.12ˆ10 2 1.63ˆ10 5	19s
	2MXE 47	bbaab	1.92 ˆ10 3	0.11	2.04 ˆ10 3 3.27ˆ10 3	30s
	2N17	56	bbab	2.04ˆ10 5	0.17	-	6.71 ˆ10 7	15h
	2N2Q 54	babb	1.77ˆ10 3	0.42	1.79ˆ10 3 2.68ˆ10 8 1d19h
	2RUP 58	bbb	22	0.09	64	64	9s
	4BYA 75	aaaa	9.99ˆ10 3	0.19	-	1.67 ˆ10 7	2h
	4OU0 66	abaabb	1.10ˆ10 5	0.12	-	1.07 ˆ10 9	8d

time. Proteins 4RBX and 2RUP belongs to the successful cases. It was noticed that much larger calculation times and sizes of explored spaces were obtained for 4RBX than for 2RUP, although the secondary structure content is the same and 4RBX is smaller

Table II . 8 :

 II8 Results of the conformational spaces exploration for p " 7. The columns tags are the same as in TableII.7.

	PDB	N	SecStruct	rank	RMSD(Å) filtered	tree size	CPU(s)
	1CEY 128 ababababab	-	-	1.13ˆ10 4 ą 4 ˆ10 8 141d20h
	2KXA		aa	7.88ˆ10 3	0.03	8.19ˆ10 3 6.55ˆ10 4	15s
	2LJ0		bbbb	-	-	10 7	ą 5 ˆ10 9 20d10h
	2M5X		bbab	4.14ˆ10 4	0.34	10 5	ą 3 ˆ10 6	2h8s
	2MC6		bbba	-	-	10 7	ą 1 ˆ10 9	7d3h
	2MGV		abbb	4.07ˆ10 3	0.25	4.09ˆ10 3 5.24ˆ10 5	42m9s
	2MH2		abaabb	3.45ˆ10 6	0.85	10 7	ą 6 ˆ10 8	3d8h
	2MJ6		aabbbb	1.48ˆ10 6	0.26	10 7	ą 5 ˆ10 9	37d2h
	2MLA		babb	5.18ˆ10 2	0.66	10 6	ą 5 ˆ10 8	1d8h
	2MNI		baabba	-	-	6.24ˆ10 5 ą 4 ˆ10 10 241d2h
	2MXE		bbaab	3.97ˆ10 2	0.11	6.55ˆ10 5 3.01ˆ10 8 23h40m
	2N17		bbab	5.61ˆ10 6	0.32	10 7	ą 3 ˆ10 8	1d13h
	2N2Q		babb	-	-	6.17ˆ10 5 ą 6 ˆ10 10 241d2h
	2RUP		bbb	86	0.09	2.56ˆ10 2 1.02ˆ10 3	10s
	4BYA		aaaa	-	-	10 6	ą 2 ˆ10 8	1d9h
	4OU0		abaabb	-	-	10 7	ą 2 ˆ10 10 95d17h
	4RBX		bbb	3.40ˆ10 2	0.41	9.83ˆ10 4 2.51ˆ10 7

Table II . 9 :

 II9 Percentage of atoms v i´p , v i´3 , v i´2 and v i´1 that are coplanar in the PDB target conformations for p " 4 and p " 5. The set of four atoms was considered coplanar if their corresponding Cayley-Menger determinant Γ i is lower than 0.00001 Å.

								100						
								75						
	Percentage						Percentage	50						
								25						
					p " 4					p " 5				
					1CEY 26%					1CEY 15%				
					2F05 31%					2F05 18%				
					2KSL 37%			0		2KSL 21%				
	1CEY	2M5X	2MH2	2MLA	2KXA 35% 2LJ0 26% 2MXE 2N17 2RUP PDB	4BYA	4OU0	1CEY	2M5X	2MH2 2KXA 21% 2MLA 2MXE 2LJ0 15% PDB	2N17	2RUP	4BYA	4OU0
					2LVR 29%					2LVR 18%				
					2LXZ 21%					2LXZ 13%				
					2M5X 31%					2M5X 19%				
					2MC6 27%					2MC6 16%				
					2MDI 27%					2MDI 16%				
					2MGV 35%					2MGV 20%				
					2MH2 32%					2MH2 19%				
					2MJ6 31%					2MJ6 18%				
					2MLA 28%					2MLA 16%				
					2MNI 30%					2MNI 18%				
					2MP1 29%					2MP1 17%				
					2MW9 29%					2MW9 17%				
					2MXE 32%					2MXE 19%				
					2N17 30%					2N17 17%				
					2N2Q 31%					2N2Q 18%				
					2RUP 35%					2RUP 19%				
					4BYA 30%					4BYA 18%				
					4OU0 32%					4OU0 19%				
					4RBX 32%					4RBX 19%				

Table II .

 II 10: 2KXA conformational space exploration for p " 8 with the van der Waals pruning device switched on. The tag 'tree size' indicates the total number of remaining paths on the solution tree T after pruning infeasible branches.

	Vdw	No	Yes
	Tree size	16384 5248
	Rank of the target structure	1893	599
	CPUpsq	6	30
	bad contactsp%q	2.6	0.5
	most complex ones, as 1CEY. This exploration allowed to retrieve conformations close to
	the PDB initial conformation. From these calculations, one can observe that enforcing
	amino-acid chirality plays a key role in reducing the size of the conformational space.

  Table II.8 are plotted in function of the percentage of α-helices in the protein length. b) The 'ranks' in Table II.8 are plotted in function of the percentage of β-sheets in the protein length. The best rank is 86 and was found with the PDB target 2RUP.

  .1gives the new set of targets.

  and N k /C k . TableIII.1: Table of the targets used for interval distance calculation. The modified targets with respect to the PDB has the N or/and C suffix to indicate that the N or/and C terminal tails have been removed. The tag N designates the total number of residues. The tag "EXP" designates the experimental method used to determine the target structure.The interatomic distances between atom pairs N k /H k and N k /C k are exactly known because they correspond to a bond length and a bond angle respectively. Consequently, d i´3,i is a scalar in this case (that was measured on the initial PDB conformation), meaning that whenever we are about to branch positions for H k or C k from a parent node λ, only two branches will emanate from λ. In spite of that, we are still being spellbound by reducing further the number of branches involving H k and C k . To do so, we can fix the sign of sin Ω i involving H k and C k in order to get one branch instead of two (see subsection II.2.c). The distance between C k´1 α /C k α belongs to an interval rl i´3,i , u i´3,i s, so it is not presented as a single value. Nonetheless, this distance depends on the backbone

	PDB	N Secondary structures EXP
	2F05	85	αααα	NMR
	2KSL	51	αααα	NMR
	2KXA	24	αα	NMR
	2LVR	30	ββα	NMR
	2LXZ	32	βββ	NMR
	2M5X_N 32	ββαβ	NMR
	2MC6_C 60	βββα	NMR
	2MDI_NC 26	βββ	NMR
	2MH2	64	αβααββ	NMR
	2MJ6_N 83	ααββββ	NMR
	2MLA	37	βαββ	NMR
	2MP1_NC 53	βββα	NMR
	2MW9_C 27	βββ	NMR
	2MXE	47	ββααβ	NMR
	2N17_NC 47	ββαβ	NMR
	4BYA	75	αααα	NMR
	4OU0	66	αβααββ	X-Ray
	4RBX	32	βββ	X-Ray

  .2: cos Ω i values and sin Ω i signs for soft definition of secondary structure elements. cos Ω i values and sin Ω i signs for strict definition of secondary structure elements.

	Atom pair SecStruct cos Ω i	cos Ω i	sin Ω i
			lower bound e upper bound f sign
	N k /H k	H/E/L	-1.0	1.0	+
	N k /C k	H/E/L	-1.0	1.0	Ćk´1
	α /C k α	H/E/L	-1.0	-0.97	+
	H k /H k α	H	-0.75	-0.4	Hk
	/H k α	E/L	-1.0	-0.9	+/H
	k´1 α /N k	H	-1.0	-0.9	+
	H k´1 α /N k	E	0.9	1.0	+/H
	k´1 α /N k	L	-1.0	1.0	+/T
	able III.3: Atom pair SecStruct cos Ω i	cos Ω i	sin Ω i
			lower bound e upper bound f sign
	N k /H k	H/E/L	-1.0	1.0	Ǹk
	/C k	H/E/L	-1.0	1.0	Ćk´1
	α /C k α	H/E/L	-1.0	-0.97	+
	H k /H k α	H	-0.75	-0.4	Hk
	/H k α	E	-1.0	-0.96	`{H
	k /H k α	L	-1.0	-0.9	`{H
	k´1 α /N k	H	-1.0	-0.99	+
	H k´1 α /N k	E	0.96	1.0	+/H

Table III . 4 :

 III4 Results with loose constraints input set. For the duration of calculation, 'd', 'h' and 'm' respectively mean day, hour and minute.

	PDB entry	rank	RMSD	filtered # of parsed Duration of	Percentage
			to PDB (Å) conformations		leaves calculation of parsed atoms
	2F05	3.12ˆ10 4	6.36		42,398		4.69ˆ10 9		35d8h	78.8
	2KSL	1.91ˆ10 5	4.39		200,000		8.49ˆ10 7		16h20m	96.1
	2KXA 2LVR	12 7.95ˆ10 4 2F05	2.36 2.23	2KSL	512 200,000 2KXA	3.27ˆ10 5 2.88ˆ10 8 2LVR	1m 15h55m	100 73.3
	2LXZ	1.48ˆ10 4	5.69		200,000		2.15ˆ10 9		5d8h	50.0
	2M5X_N	5.99ˆ10 4	5.53		106,042		4.07ˆ10 9		10d14h	68.7
	2MC6_C	2.98ˆ10 4	8.03		200,000		7.87ˆ10 7		9h40m	40.0
	2MDI_NC 2.07ˆ10 4	4.38		200,000		9.22ˆ10 8		44h15m	61.5
	2MH2	1.44ˆ10 4	8.48		200,000		1.34ˆ10 9		6d1h	76.6
	2MJ6_N	3.09ˆ10 3	13.46		4,701		3.33ˆ10 8		46h30m	15.7
	2MLA 2MP1_NC 9.39ˆ10 4 1.92ˆ10 4 2LXZ	5.33 6.64 2MDI_NC	200,000 200,000 2MW9_C 2.68ˆ10 9 3.88ˆ10 7	4RBX	6d9h 4h20m	37.8 50.9
	2MW9_C 1.86ˆ10 5	3.93		200,000		3.14ˆ10 8		11h35m	53.8
	2MXE	1.53ˆ10 5	5.60		200,000		5.98ˆ10 9		24d7h	66.0
	2N17_N	10 4	9.74		200,000		2.87ˆ10 9		10d14h	59.6
	4BYA	1.73ˆ10 4	8.68		200,000		1.05ˆ10 7		8h18m	26.7
	4OU0	1.05ˆ10 5	6.55		200,000		1.64ˆ10 9		6d14h	65.1
	4RBX	1.60ˆ10 5	4.77		200,000		1.84ˆ10 9		4d15h	65.6
	Table III.5: Results with tight constraints input set. For the duration of calculation, 'd', 'h' and 'm'
	respectively mean day, hour and minute.				
	PDB entry	rank	RMSD	filtered	# of parsed Duration of	Percentage
			to PDB (Å) conformations		leaves calculation of parsed atoms
	2F05	7.99ˆ10 3	5.12		81,615		9.00ˆ10 9		49d21h	45.9
	2KSL	9.32ˆ10 4	3.41		200,000		5.88ˆ10 7		5h55m	80.4
	2KXA	127	3.49		497		1.96ˆ10 5		1m	100
	2LVR	1.79ˆ10 5	1.94		200,000		3.63ˆ10 8		17h45m	76.7
	2LXZ	4.25ˆ10 4	4.19		200,000		1.95ˆ10 10		52d18h	68.7
	2M5X_N	1.06ˆ10 4	3.19		200,000		8.39ˆ10 9		20d22h	78.1
	2MC6_C	8.31ˆ10 4	5.48		82,172		1.36ˆ10 8		33d16h	53.3
	2MDI_NC 1.20ˆ10 5	2.28		200,000		1.79ˆ10 9		3d12h50	65.4
	2MH2	1.40ˆ10 4	5.12		83,113		3.85ˆ10 9		18d16h	98.4
	2MLA	1.24ˆ10 5	3.88		200,000		5.65ˆ10 9		16d8h	70.3
	2MP1_NC 6.92ˆ10 5	4.26		163,230		2.01ˆ10 8		76d13h	81.1
	2MW9_C 1.95ˆ10 5	2.43		200,000		1.37ˆ10 9		1d13h	61.5
	2MXE	1.63ˆ10 5	4.48		200,000		7.90ˆ10 9		24d3h	72.3
	2N17_N	10 4	5.45		200,000		3.07ˆ10 9		11d11h	21.3
	4BYA	8.64ˆ10 3	2.87		27,131		8.82ˆ10 6		74d1h	73.3
	4OU0	4.67ˆ10 4	4.58		200,000		5.34ˆ10 9		25d23h	74.2
	4RBX	1.97ˆ10 5	3.23		200,000		7.85ˆ10 9		20d4h	75.0

  allowed to generate 10000 conformations within 3 days, which corresponds to a rate of generation of about 25.9s. Thereby, except for the outliers, the rate of conformation generation by iBPprot compares well with this method. This method by Cheng group is named FUSION. It is a fragment-free probabilistic graphical model for de novo protein conformational sampling in continuous space. It is able to capture local relationships between protein sequence and structural features through a Markov chain of hidden states and allows for probabilistic sampling of conformational space of the protein backbone in full-atomic detail. FUSION is not able to capture side chain bias and also does not integrate multiple sequence alignment information.

Table III . 6 :

 III6 PROCHECK analysis on the PDB conformations of the targets.

	target	% core % allowed % generously % disallowed	Number of
						bad contacts
	2F05	86.7	12.0	0.0	1.2	0
	2KSL	85.7	12.2	0.0	2.0	0
	2KXA	86.4	4.5	4.5	4.5	1
	2LVR	92.9	3.6	0.0	3.6	0
	2LXZ	76.7	16.7	3.3	3.3	2
	2M5X_N	83.3	13.3	0.0	3.3	0
	2MC6_C	79.3	13.8	1.7	5.2	0
	2MDI_NC	87.5	12.5	0.0	0.0	0
	2MGV	80.4	12.5	3.6	3.6	0
	2MH2	91.9	3.2	3.2	1.6	0
	2MLA	74.3	14.3	5.7	5.7	0
	2MP1_NC	92.2	3.9	2.0	2.0	0
	2MW9_C	83.3	12.5	4.2	0.0	0
	2MXE	75.6	17.8	2.2	4.4	0
	2N17_N	84.4	11.1	2.2	2.2	0
	4BYA	86.3	9.6	2.7	1.4	0
	4OU0	90.6	4.7	4.7	0.0	0
	4RBX	90.0	3.3	6.7	0.0	0

Table III . 7 :

 III7 PROCHECK analysis of iBPprot generated conformations with loose constraints input set. Table III.8: PROCHECK analysis of iBPprot generated conformations with tight constraints input set.

	target	% core	% allowed	% generously % disallowed Mean number of
						bad contacts
	2F05	68.14 ˘1.08 27.84 ˘0.97	4.09 ˘1.13	0	5.93 ˘3.90
	2KSL	76.72 ˘2.37 15.26 ˘2.73	8.03 ˘2.91	0	8.72 ˘4.88
	2KXA	70.66 ˘1.69 23.74 ˘2.17	5.59 ˘1.67	0	2.05 ˘0.30
	2LVR	63.62 ˘2.64 29.99 ˘3.50	6.34 ˘3.04	0	2.13 ˘1.00
	2LXZ	61.23 ˘2.04 37.45 ˘2.63	1.30 ˘2.09	0	4.32 ˘2.11
	2M5X_N	53.54 ˘2.70 38.65 ˘4.27	7.80 ˘4.38	0	3.67 ˘3.24
	2MC6_C	52.95 ˘1.34 44.2 ˘1.64	2.86 ˘1.38	0	5.12 ˘3.92
	2MDI_NC 60.61 ˘2.43 36.23 ˘3.84	3.13 ˘3.37	0	1.77 ˘1.63
	2MH2	92.62 ˘0.84 4.87 ˘1.18	2.55 ˘0.94	0	14.24 ˘4.76
	2MJ6_N	63.53 ˘0.86 33.27 ˘1.07	3.22 ˘0.75	0	7.85 ˘2.44
	2MLA	59.35 ˘2.01 34.27 ˘3.18	6.39 ˘2.64	0	5.11 ˘3.27
	2MP1_NC 65.69 ˘1.52 30.61 ˘2.07	3.65 ˘1.74	0	15.41 ˘3.78
	2MW9_C 73.95 ˘2.70 25.74 ˘2.88	0.30 ˘1.16	0	2.74 ˘1.57
	2MXE	53.45 ˘2.77 41.9 ˘3.02	4.64 ˘2.86	0	7.97 ˘5.75
	2N17_N	48 ˘1.90	47.57 ˘2.61	4.39 ˘2.06	0	3.36 ˘2.50
	4BYA	59.44 ˘1.21 33.29 ˘1.60	7.25 ˘1.45	0	14.36 ˘4.47
	4OU0	60.95 ˘0.30 33.54 ˘0.79	5.49 ˘0.79	0	4.70 ˘3.70
	4RBX	60.70	39.29	0	0	2.68 ˘2.36
	target	% core	% allowed	% generously % disallowed Mean number of
						bad contacts
	2F05	70.39 ˘1.25 25.19 ˘1.24	4.37 ˘1.35	0	15.44 ˘8.98
	2KSL	75.74 ˘2.06 16.29 ˘2.43	8.00 ˘2.43	0	9.53 ˘5.50
	2KXA	68.05 ˘3.02 23.79 ˘2.14	8.14 ˘3.01	0	2.50 ˘0.50
	2LVR	60.61 ˘2.91 30.91 ˘4.27	8.44 ˘3.87	0	5.25 ˘3.38
	2LXZ	74.11 ˘0.94 24.75 ˘2.02	1.10 ˘1.88	0	10.78 ˘3.48
	2M5X_N	65.63 ˘2.58 30.39 ˘3.43	3.94 ˘3.80	0	11.24 ˘4.64
	2MC6_C	61.16 ˘1.16 36.33 ˘1.23	2.49 ˘1.14	0	10.28 ˘3.36
	2MDI_NC 69.73 ˘2.42 28.69 ˘3.25	1.58 ˘2.66	0	5.29 ˘2.81
	2MH2	87.15 ˘0.52 12.60 ˘0.76	0.23 ˘0.62	0	11.42 ˘3.05
	2MLA	66.38 ˘2.53 29.73 ˘2.45	3.88 ˘2.70	0	10.69 ˘4.37
	2MP1_NC 74.78 ˘1.79 21.36 ˘2.37	3.86 ˘1.99	0	9.02 ˘1.89
	2MW9_C 73.54 ˘2.54 25.06 ˘3.34	1.39 ˘2.65	0	6.82 ˘2.94
	2MXE	53.26 ˘2.84 40.85 ˘3.28	5.88 ˘3.26	0	8.94 ˘3.38
	2N17_N	56.04 ˘2.14 39.10 ˘2.90	4.85 ˘2.26	0	24.12 ˘5.38
	4BYA	72.72 ˘1.78 21.81 ˘1.69	5.48 ˘1.76	0	18.83 ˘4.53
	4OU0	63.10 ˘0.52 31.77 ˘0.78	5.10 ˘0.65	0	14.06 ˘7.09
	4RBX	60.70	39.29	0	0	5.53 ˘3.73

  Table III.9: PROCHECK analysis of iBPprot conformations generated with loose constraints that are the closest to the PDB conformations.Table III.10: PROCHECK analysis of iBPprot conformations generated with tight constraints that are the closest to the PDB conformations.

	target	% core % allowed % generously % disallowed	Number of
						bad contacts
	2F05	66.3	28.8	5.0	0.0	
	2KSL	77.8	17.8	4.4	0.0	
	2KXA	70.0	25.0	5.0	0.0	
	2LVR	61.5	30.8	7.7	0.0	
	2LXZ	64.0	36.0	0.0	0.0	
	2M5X_N	53.6	35.7	10.7	0.0	
	2MC6_C	53.6	42.9	3.6	0.0	
	2MDI_NC	59.1	40.9	0.0	0.0	
	2MH2	96.1	2.0	2.0	0.0	16
	2MJ6_N	62.7	34.7	2.7	0.0	
	2MLA	57.6	39.4	3.0	0.0	10
	2MP1_NC	64.4	33.3	2.2	0.0	13
	2MW9_C	76.2	23.8	0.0	0.0	
	2MXE	52.5	42.5	5.0	0.0	
	2N17_N	46.3	51.2	2.4	0.0	
	4BYA	58.2	34.3	7.5	0.0	11
	4OU0	62.5	32.8	4.7	0.0	
	4RBX	60.7	39.3	0.0	0.0	
	target	% core % allowed % generously % disallowed	Number of
						bad contacts
	2F05	67.9	24.4	7.7	0.0	
	2KSL	77.8	17.8	4.4	0.0	10
	2KXA	65.0	25.0	10.0	0.0	
	2LVR	65.4	26.9	7.7	0.0	
	2LXZ	73.9	26.1	0.0	0.0	17
	2M5X_N	69.6	30.4	0.0	0.0	11
	2MC6_C	60.4	37.5	2.1	0.0	
	2MDI_NC	73.7	26.3	0.0	0.0	
	2MH2	88.9	11.1	0.0	0.0	14
	2MLA	66.7	26.7	6.7	0.0	14
	2MP1_NC	75.6	22.0	2.4	0.0	
	2MW9_C	72.2	27.8	0.0	0.0	
	2MXE	51.3	41.0	7.7	0.0	
	2N17_N	54.1	43.2	2.7	0.0	20
	4BYA	72.2	24.1	3.7	0.0	19
	4OU0	62.9	32.3	4.8	0.0	
	4RBX	60.7	39.3	0.0	0.0	19

  Substituting each addend in Equation IV.1, it follows thatcos Ω i " x 2 tan 2 β `x2 tan 2 α ´x2 cos 2 β ´x2 cos 2 α `2x 2 cos γ cos β cos α 2x 2 tan β tan α (IV.4)Now let us express the terms cos α, sin α, cos β, sin β and cos γ in function of the distances between the atoms v i , v i´1 , v i´2 and v i´3 . Applying the law of cosines in the triangle OCB As α is localized into a triangle, we have 0 ˝ă α ă 180 ˝and sin α " `?1 ´cos 2 α " ? 1 ´a2 . Applying the law of cosines in the triangle ACB givesAs β is localized into a triangle, we have 0 ˝ă β ă 180 ˝and sin β " `?1 ´cos 2 β " ? 1 ´b2 . Applying the law of cosines in the triangle ACB gives As a result, substituting the terms in Equation IV.4 gives the expression cos Ω i "

							c ´ab 1 ´a2 ? ? 1 ´b2 .
	"	sin 2 α cos 2 α ´1	`sin 2 β cos 2 β ´1 2 tan α tan β `2 cos γ cos α cos β	(IV.5)
	"	´2 2 `2 cos γ cos α cos β cos α cos β sin α sin β		(IV.6)
	"	cos γ ´cos α cos β sin α sin β	.	(IV.7)
	gives					
		cos α "	CO 2 `CB 2 ´OB 2 2 ˆCO ˆCB	,	(IV.8)
			"	d 2 i´1,i d 2 `d2 i´2,i´1 i´1,i i´2,i´1 ´d2 i´2,i ˆd2	,	(IV.9)
			" a.		(IV.10)
		cos β "	CA 2 `CB 2 ´AB 2 2 ˆCA ˆCB	,	(IV.11)
			"	d 2 i´3,i´1 d 2 i´3,i´1 `d2 i´2,i´1 i´2,i´1 ´d2 i´3,i´2 ˆd2	,	(IV.12)
			" b.			(IV.13)
		cos γ "	CA 2 `CO 2 ´AO 2 2 ˆCA ˆCO	,	(IV.14)
			"	d 2 i´3,i´1 d 2 i´3,i´1 `d2 i´1,i ˆd2 ´d2 i´3,i i´1,i	,	(IV.15)
			" c.		(IV.16)
		"	x 2 cos 2 β	`x2 cos 2 α	´2x 2 cos γ cos β cos α	.	(IV.3)

2 

" BC' 2 `CC' 2 ´2 ˆCB' ˆCC' ˆcos γ, (IV.2)

H,[START_REF] Andrew | NMR spectroscopy brings invisible protein states into focus[END_REF] C,[START_REF] Bardiaux | ARIA for solution and solid-state NMR[END_REF] N CC(CO)NH 1 H, 13 C, 15 N H(CCO)NH 1 H, 13 C, 15 N HCCH-TOCSY 1 H, 13 C sidechain assignment HCCH-COSY 1 H, 13 C 13C-HMQC 1 H, 13 C H-H NOESY 1 H 15N-NOESY-HSQC 1 H, 15 N structure 13C-NOESY-HSQC 1 H, 13 C calculation 13C-HMQC-NOESY 1 H, 13 C

times the size of the map, and also decreases exponentially.
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To slightly present the methodology, DMDGP enables the discretization of the conformational space, then BP executes an exhaustive exploration of this discretized conformational space. While the most used methods for conformational space sampling are based on local optimization and check the validity of the solutions by repeating the execution several times and comparing the obtained results, our method guarantees a global optimization that ensues from the exhaustive solution search. We call our method iBPprot which stands for interval Branch-&-Prune for proteins.

We shall explain the theory behind the method in chapter II, where we also show the performance of the method using exact distances as input restraints. Chapter III is dedicated to discuss the results obtained by iBPprot when using interval distances as input restraints. Finally we conclude and point out the extensions that could be addressed in future work.

below, with λ being a node at level i ´1 in T and λ `, λ ´are the direct child nodes to λ. Note that this algorithm will find all solutions to the problem. If we are only interested in finding some z solutions, the search could be stopped as soon as z full paths on T are stored. The complexity in time of BP is exponential in the worst case [START_REF] Liberti | The discretizable molecular distance geometry problem seems easier on proteins[END_REF], which corresponds to E P " H, as the tree size is maximal in this case.

BP algorithm start(x

The difference between Branch&Bound (BB) and Branch&Prune (BP)

The Branch&Bound [START_REF] Ailsa | An automatic method of solving discrete programming problems[END_REF] algorithm (BB) is a widely used tool to solve combinatorial optimization problems. BB divides the search space over which an objective function has to be optimized. The resulting subspaces are represented as nodes in a dynamically generated search tree, which initially only contains the root. At each step, BB calculates bounds for the objective function in a given subspace (node). If the lower bound of the objective function is greater than the best value known, the subspace is discarded and the represen-

III.1 Methods

III.1.a From BP to iBP

As already mentioned in the previous chapter, there are two different types of distance restraints in an iBPprot calculation, depending whether they are involved in the branching or the pruning process. To handle interval distances data as input, new assumptions have to be added to the DMDGP definition of subsection II.1.b. These additional assumptions are made about the set of branching edges E B and the distance function d [START_REF] Cassioli | An algorithm to enumerate all possible protein conformations verifying a set of distance constraints[END_REF]:

1. The set of branching edges E B can be subdivided in E 1 B and E 2 B , so that E 2 B consists of all edges tv i , v j u with i ´j " 3, and

2. The distance function d is such that: (i) d j,i is a scalar for each tv i , v

Practically, the branching distances d i´3,i are now allowed to be interval data. As a result, the position x λ i of an atom v i is no longer located on the intersection of three spheres, but rather located on the intersection of two spheres and a shell, as depicted in the required time for tree traversal -increases exponentially, resulting in the increase of problem complexity. Similarly, the pruning distances d j,i , i ´j ą 3, are now allowed to be interval data. However, there is no need to discretize them, as they are used to check if }x λ i ´xλ j j }, λ j P ϖpλq, conforms to them or not. Hence, considering pruning interval distances increases neither the tree size, nor the problem complexity.

The interval branch-and-prune (iBP) algorithm is an extension of the BP algorithm that solves this new class of DMDGP problems.

III.1.b Implementation details

The same iBPprot software was used in this chapter than in the previous one, as the iBPprot implementation is based on the iBP algorithm. In fact, when providing exact distance data d j,i (i ´j ą 2) instead of interval distance data, iBP turns them to intervals rl j,i , u j,i s, with l j,i " u j,i " d j,i , and puts b i " 1. In this way, iBP works as BP, since BP is no more than a special case of iBP. The following paragraphs lay out the branching and pruning phases in iBP.

The global shape series was obtained in the following way: for each couple of α carbons located at residues l and k, the upper and lower bounds were selected as the upper and lower values of the distribution observed for the gap k´l in the primary sequence (abscissa axis in Figure III.6). For the topology series, the values have been determined not only along the gap between residues in the primary sequence, but also along the types of secondary structure elements.

Practically, the global series of C l α /C k α restraints include an information from the protein global shape, whereas the topology series include an additional information on the organization of secondary structure elements within the protein structure. For all targets except 4BYA in the global shape series of C l α /C k α restraints, the residues not belonging to α and β secondary structure elements was included in the C l α /C k α pruning distances.

During the iBPprot calculations, the individual upper and lower bounds derived from the distributions of Figure III.6 was respectively increased and decreased by offsets to avoid total pruning of T . The offset values were set-up manually as the minimum values for which more than zero solutions could be found. For the shape series of C l α /C k α pruning distances, all offsets were equal to 2Å, except for 2MJ6_N, for which the upper bound offset were chosen to be equal to 5Å. For the topology series of C l α /C k α pruning distances, all offsets were equal to 5Å, except for 2M5X_N, 2MNI_N and 4OU0, for which the lower and upper bounds offsets were set to 7Å. The input lower bounds was chosen as the maximum value between the shifted lower bound of the considered series of C l α /C k α distances and the sum of the van der Waals radii of the α carbons.

III.2.d Self-organizing maps as a tool for assessing the conformational space exploration

The SOM (Self-Organizing Maps) [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF] approach was used to cluster the conformations generated by iBPprot. The SOM algorithm allows the mapping of the conformational space on a periodic subspace of reduced dimensions. N ˆN pairwise square Euclidean distance matrices D are calculated for the N C α atoms of each conformation. To compress the data, a covariance matrix C is computed from each D. Its four eigenvectors, corresponding to the first four significant eigenvalues, are kept. For each conformation m, the resulting compressed 4ˆN matrix is stored as a vector V m , containing the conformational descriptors that are used to cluster the protein conformations [START_REF] Bouvier | An automatic tool to analyze and cluster macromecular conformations based on Self-Organizing Maps[END_REF].