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Résumé

Nous présentons deux problèmes de biologie faisant appel à un traitement de données et des

modèles issus de la physique statistique : la dynamique des populations en immunologie et la

régulation génétique dans le développement embryonnaire. En immunologie, nous étudions le

problème de la sélection somatique dans le système immunitaire adaptatif: la sélection cellulaire

et la compétition qui s’y opèrent, constituant un système quasi Darwinien au sein de l’organisme.

Dans un premier temps, nous considérons différentes hypothèses sur la dynamique selective :

signaux déclenchant la division ou la mort cellulaire par liaison antigénique ou par cytokines,

paramètres dynamiques de division, mort et fluctuations environnementales. Nous explorons

leur influence sur la taille des clones dont la distribution à queue lourde a été observée à travers

les espèces et les types de cellules. Deux familles de modèles émergent : un premier dans

lequel le bruit est cohérent à l’échelle du clone et un second dans lequel le bruit varie de cellule

à cellule. Nous montrons dans quelle mesure la distribution de taille de clones permet de

déterminer le meilleur modèle et relions la forme de la distribution ainsi que l’exposant apparent

de la loi de puissance aux paramètres biologiques. Dans un second temps, nous explorons les

caractéristiques du réseau complexe et aléatoire formé par les clones et les antigènes : dimension,

adjacence, dynamique. Nous nous intéressons à l’effet de la sélection dans le temps et à la vitesse

d’évolution des clones.

La deuxième partie de cette thèse est consacrée au développement embryonnaire. Dans

l’embryon, il est essentiel pour le noyau de déterminer sa position avec une grande précision

pour orienter la différentiation et construire un organisme structuré viable. Cette information

positionnelle est acquise, transmise et conservée par la diffusion de protéines et l’activation de

circuits génétiques. Plus précisément, la formation de l’axe antéro-postérieur chez la Drosophile

est déterminée entre autres par l’activation du gène hunchback par la protéine Bicoid. Nous

analysons des données issues d’expériences d’imagerie fluorescente dynamique dans les premiers

cycles cellulaires de l’embryon. Nous contruisons un modèle spécifique permettant d’analyser

la fonction d’autocorrélation des traces temporelles de fluorescence qui prend en compte toutes

les difficultés biologiques et expérimentales (bruit, calibration traces courtes, structure du gène

artificiel) pour extraire les paramètre dynamiques d’activation de hunchback. Nous examinons

différentes dynamiques potentielles (poisonnienne, markovienne ou non markovienne) et leur

implication pour l’information dont la cellule dispose sur sa position ainsi que la précision de la

lecture du gradient de Bicoid.

Mots clés : Immunologie, Développement, Dynamique des populations, Circuits génétiques
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Abstract

This work presents two problems of biology requiring data analysis and models from statistical

mechanics: population dynamics in immunology and gene regulation in embryo development. In

immunology I study the problem of somatic evolution in the adaptive immune system: selection

of and competition among cells that form a close-to-Darwinian system within one individual.

First, I consider different potential hypotheses for selective dynamics: division and death signals

through antigen binding or cytokines, dynamical parameters for division, death and fluctuations

of the environment. I explore their impact on clone sizes. Experimentally, these clone sizes show

heavy tail distributions for different species and different pools of cells. Two families of models

emerge: models where noise is consistent at the level of the clone and models where it varies

from cell to cell. I show how clone size distributions help discriminate between these models and

relate the shape of the distribution and the exponent of the power law to biological parameters.

Second, I explore the specifics of the complex stochastic network of clones and antigens: its

dimensionality, connectivity and dynamics. I study the effect of selection at different time scales

and the speed of evolution of the clones.

The second part of this dissertation concerns embryo development. In the fly embryo, it is

crucial that nuclei can evaluate their position within the organism accurately to determine cell

fate and build a healthy organism. This positional information is obtained, transferred, and

maintained through diffusion of proteins and activation of genetic networks. More specifically,

the patterning of the antero-posterior axis in drosophila requires the hunchback gene, activated

by the Bicoid protein. I analyze data from fluorescent live imaging in the early cell cycles of the

embryo. I build a tailor-made model to analyze autocorrelation functions of fluorescence time

traces overcoming all biological and experimental challenges (noise, calibration, short traces,

transgene construct) to extract the parameters of hunchback activation. I examine several po-

tential types of dynamics for gene switiching (Poisson, Markovian or non-Markovian) and predict

their impact on positional information and the accuracy of bicoid gradient readout.

Keywords : Immunology, Development, Population dynamics, Gene regulatory network
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Chapter 1

Introduction

If the field of biophysics is hard to define, it is even harder to define theoretical biophysics. The

use of theory of biology is not new (no one would argue that the theory of evolution, for instance,

is not a cornerstone of biology), but a quantitative theory of biology is a recent idea.

Over the last decade experiments in biology and medical sciences that include quantitative

measurements with the physics-level precision have exploded. Large amounts of data are avail-

able in many subfields of biology, and the need for tools and models to analyze them and make

sense of them is great. Large scale genetics experiments can create ever increasing amount of

data using deep sequencing, while single cell experiments give us access to the finer structure

of living organism. Physics, with its long tradition of modeling complex systems, has the tools

required to efficiently build simple descriptions of biological systems.

Most tools available in physics to model complex systems were developed in the field of

statistical mechanics. The emergence of collective behaviour from a large number of individual

subsystems and their stochastic description are common in many biological systems. This collec-

tive behaviour in the stochastic description of the group arises from the (almost) deterministic

laws of physics and chemistry at the molecular level because many units or many interactions

are involved. A lot of biological problems involve large numbers of cells or proteins, or long time

scales and the most efficient way to describe them is the framework of statistical mechanics (and

in some cases thermodynamics).

Historically, the fields of biophysics and stochastic processes are closely related. Robert

Brown, the first person to observe and describe Brownian [1] motion was a botanist. The

explanation of the irregular movement of particles he observed came a century later, from

physicists. As pointed out in [2] a key point of Albert Einstein’s [3] (and Smoluchowski’s [4])

explanation of the phenomenon is that “the motion of these molecules is so complicated that its

effects can only be explained probabilistically”. While it is obvious to physicists nowadays that

this is one of the foundations of descriptions of complex systems using statistical mechanics,

it is also an early beginning of a long tradition of stochastic models in biophysics. The use

of statistical mechanics is particularly strong in the two subfields of this thesis: population

dynamics and gene regulatory networks. In population dynamics, while some deterministic

models can capture the essence of the dynamics (such as the famous Lotka-Volterra equations [5,

6]) most models follow Wright, Fisher or Kimura [7, 8, 9] in population genetics and include the

effect of stochastic fluctuations [10]. Similarly, in gene regulatory networks, most chemical events

happening in cells are known to be stochastic (e. g., binding and unbinding [11], conformation

13
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changes)[12]. Including the effect of noise is the only way to go beyond the law of mass action and

understand the details of gene regulation [13]. The stochasticity of gene activation is paramount

for studies of the accuracy of gene regulatory systems [11],.

Different subfields of biophysics developed as interaction and collaboration between physi-

cists, medical doctors and biologists increased. One of the most impactful fields of theoretical

biophysics is theoretical immunology. The field takes it start from the publication of pioneering

work on shape space of immune receptors by Perelson and Oster in 1979 ([14]), which gave a

first answer to the question: what fraction of the pathogenic environment can an immune cell

react to? This work was based on the assumption that complex interactions of immune cells and

antigens can be described by effective low dimensional variables that can be used in theoretical

models without being explicitly described and specified. Such effective descriptions follow the

tradition of models in statistical mechanics. The early success of theoretical immunology in

improving the understanding of HIV and fighting it (see [15] for a thorough review of the topic)

has made it a major field of biophysics. Development of sequencing and deep sequencing have

provided large amounts of genomic data and stirred the explosion of new bioinformatics tools,

and in particular their application to the theoretical immunology research. The work done dur-

ing my PhD, while using such experimental genomic data, runs more along the lines of effective

analytical models than heavy bioinformatics programming.

The vertebrate adaptive immune system - comprised of B-cells and T-cells - is the second

line of defense of our organisms against pathogens such as viruses and bacteria. Pathogens are

identified by the adaptive immune system through the recognition of the molecules they produce

called antigens. Adaptive immune cells express antigen-specific receptors on their membrane

that can recognize pathogens and trigger immune responses [16]. To face the wide variety of

threats in the environment and the fast evolution of these pathogens, and to fulfill the need for

a fast response to invasions, the adaptive immune system relies on a large repertoire of receptors

with well-honed dynamics. Receptors are very specific (the binding affinities of receptors to

antigens are high only for a very small fraction of couples) and cross-reactive (each receptor

can bind to several antigens and each antigen to several receptors). The adaptive immune

system maintains these specific features by using a mechanism for selection of cells able to

fight off invasions and controlling the size of clones (groups of immune cells that share the

same receptor). The distribution of clone sizes is a signature of selective dynamics in immune

systems. Recent experimental techniques (single molecule barcoding) give us access to large

and reliable data including clone size distributions. They show that, even though receptors

are very different from cell type to cell type and from species to species, the distribution of

clone sizes is systematically heavy tailed and resembles a power law. The main ingredients of

adaptive immune systems have been determined experimentally (e. g., pathogen recognition

triggering division, exchange of growth factor, hypermutations for B-cells) but the specifics of

the dynamics remain quite inaccessible as available data is always a modulated result of the

dynamical processes (division, death, differentiation, mutation, selection). In this thesis, I use

clone size distributions as a probe into the selective dynamics of immune systems. I rely on

stochastic models to bridge the gap between experimental data and theoretical understanding.

In my models, each cell in a given environment can be attributed a fitness based on its ability

to bind to pathogens or growth factors. Cells with high fitness are more likely to divide and

less likely to die: cell lineages constitute a small Darwinian system within the organism. This

Darwinian evolution is kept out of equilibrium by constant introduction of new clones and by
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fluctuations of pathogenic environments. Previous analyses of Darwinian selection dynamics do

not apply to the immune system because most new lineages stem from external production in

the bone marrow or the thymus and not from branching processes and the genetic drift (with

the notable exception of hypermutations).

In Chapter 4 (which follows [17]), I show that fitness fluctuations acting at the level of a clone

and not at the level of a cell are necessary to reproduce the long-tailed distributions observed

in data. More precisely, I show that models of adaptive immune systems fall into two classes:

• In clone-level noise models, the main signal to initiate cellular division is the recognition

of pathogens by the receptor. Fluctuations of the environment are perceived consistently

by cells across each clone, leading to large expansions of specific clones and the absence of

a population scale in the system. Both numerical and analytical analyses show that such

models produce power laws in clone size distributions. I express the power law exponent

in terms of the biological parameters and discuss what can be learned from experimentally

observed power law exponents.

• In cell-level noise models, the main signal to initiate cellular division or death is the

exchange of cytokines (non specific proteins that have been shown to influence growth and

division of lymphocytes). Cytokines do not bind to immune receptors and fitness can vary

within a clone. In this model, fitness depends on a complex cell-state that does not require

to be explicitly defined for the analysis of the model. The relevance of clone structures for

the dynamics is no longer related to receptor-based antigen recognition but relies on its

identification with cell lineages providing correlation in fitness between clonal cells that

decays with time, division and population size. I show that these models do not produce

power laws but could be mistaken for one when sequencing is not deep enough.

This work shows that physicists’ tradition of classifying models can prove very powerful when

dealing with large numbers of unknown biological parameters.

Another important question in theoretical immunology is understanding how the adaptive

immune system matures and ages. The constant short-term selection of adaptive immune cells in

their fluctuating environment also has long-term consequences for aging of the immune system. I

analyze these long-term variations of immune repertoires by modeling the turnover of the fittest

clones in receptor-space niches. This analysis requires a very fine description of receptor-antigen

interactions. The analysis of Chapter 4 assumes steady-state at the level of the organism and

relies on the assumption that the complex network of immune interactions can be described by

sets of independent equations in a sort of mean-field approach. In Chapter 5, I explore the fine

structure of the bipartite random graphs that represent B-cell and T-cell pools interacting with

antigens. I consider the effect of selection on clone distributions and discuss the prediction of

fitness drift models on aging of immune repertoires. I find that fitter and fitter clones are selected

over time and that the variation of the fitness distribution of clones depends on the specifics of

receptor space. To relate the analysis to the results of Chapter 4 and to experimental data I

investigate the effect on clone size distributions of different features of the network of antigens and

clones such as the dimension of receptor space, the adjacency of the antigen-receptor interactions

and the niche structure of antigenic resources. I find that in certain parameter regimes, the

description of Chapter 4 can break due to intraclonal competition.

The second part of my PhD was dedicated to a collaboration with experimentalists at the

Curie institute on development of fly embryos. This follows an established line of research started
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by Berg and Purcell. In [11], Berg and Purcell gave their celebrated formula on limits of preci-

sion of sensing molecular signals that spread through diffusion processes. It shows how simple

arguments based on scaling laws can be used to determine natural limits on performance of bio-

logical systems. We can now revisit these questions thanks to great experimental developments

that allow us to study gene expression in living systems [18, 19].

During development, cells need to determine their fate to contribute to building a func-

tioning organism. Cell fate is defined by activation or repression of several genes resulting in

the production of different proteins [20] as represented by the famous Waddington landscapes

[21]. The decision to activate or repress these gene regulatory networks is based on a reading

of the cell’s position in the embryo through protein gradients. Specifically, the formation of the

antero-posterior axis in the Drosophila melanogaster embryo happens in the early cell cycles by

hunchback genes in the nuclei reading off the concentration of the Bicoid maternal gradient [22],

which decays exponentially along the antero-posterior axis of the embryo. During these early

cell-cycles, the embryo is made of one large cytoplasm and many nuclei. Recent progress in

imaging techniques has made it possible to record gene expression in live organisms with excep-

tional temporal resolution [18, 19]. The goal of my work was to analyze this new live fluorescent

imaging data to infer the structure and dynamics of hunchback gene expression.

Fluorescence is accumulated at the locus as the gene is read. Our model includes a description

of the accumulation process and several competing hypotheses on the dynamic of gene switching

(Poisson, Markov, high dimensional Markov, and non Markov). It predicts the behaviour of the

autocorrelation function of the fluorescent signal overcoming all experimental and biological

challenges: short time traces, experimental noise, and fluorescent background. We infer the

parameters of gene activation at different positions along the antero-posterior axis and compare

the validity of the competing assumptions on gene activation. We find that hunchback gene

dynamics are bursty with several events of activation and deactivation within one cell cycle. We

show that the precision of the readout of Bicoid gradient expected from the inferred dynamical

parameters is consistent with experimental results but far below the observed accuracy of antero-

posterior boundary patterning. These results imply the potential recovery of missing information

further downstream in the regulatory pathway. This work is submitted and available on the

arXiv [23].

The rest of this Dissertation is structured as follows.

In Chapter 2, I introduce the tools from statistical mechanics and the numerical simulation

methods used in the rest of the Dissertation.

In Chapter 3, I give a brief introduction to immunology and discuss some important theo-

retical immunology models from the last two decades.

In Chapter 4, I derive the equation of clone sized distributions in fluctuating environments

and show that only clone level noise can explain the scale free experimental data. This Chapter

is a direct copy of the work published in [17].

In Chapter 5, I explore selection over long time scales in the immune system and derive clone

size distributions in explicit competition models of the naive immune repertoire.

In Chapter 6 I give the necessary notions on development to understand the related parts of

this dissertation, present experimental methods on gene expression imaging, and discuss limits

to sensing in diffusion limited processes.

In Chapter 7, I build a model of autocorrelation functions of gene expression time traces to

extract the parameters of gene activation from fluorescent live imaging. I compare the estimates
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for accuracy of protein gradient readouts with experimental data and the predictions from the

different models of stochastic gene switching. This chapter is a direct copy of the work submitted

for publication and available on the arXiv and bioRxiv [23].

Chapter 8 contains the conclusion, discussion and the outlook of the future research.
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Chapter 2

Stochastic processes and simulation

methods

In this Chapter I present analytical and numerical tools required to tackle the challenges of the

biological models used in the Chapters that follow.

2.1 Stochastic processes in statistical mechanics

In this section I present the tools from statistical mechanics used in the following parts of this

work. See [24] for a more detailed presentation.

2.1.1 Markov processes

We define a stochastic process as a random path that is a function of time X(t). The variable

X itself can be multidimensional or even infinite dimensional. Note that the time t can either

be continuous or discrete.

When X can take discrete values, the probability distribution of the process X at time t is

written as P (x, t). When the process can take continuous values the probability for X to be in

the window dx is p(x, t)dx.

The simplest stochastic process is a process independent in time where the joint probability

distribution factorizes as:

p(x1, t1; x2, t2...xn, tn) =
n

Ÿ

i=1

p(xi, ti). (2.1)

A generalization of independent processes, known as Markov process, is not uncorrelated to its

past, but a process where all the memory is captured in the variable itself at all times, so that

the dependence of the conditional probability is reduced to the last point of the past

p(x, t|x1, t1; x2, t2...xn, tn) = p(x, t|xn, tn), (2.2)

where t1 < t2 < ...tn < t.

Markov processes are so useful because in a Markov process any joint probability can be

written as a product of two-point conditional probabilities and one initial condition:

p(x1, t1; x2, t2...xn, tn) = p(xn, tn|xn≠1, tn≠1)p(xn≠1, tn≠1|xn≠2, tn≠2)...p(x2, t2|x1, t1)p(x1, t1),

(2.3)

19
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where t1 < t2... < tn. So a continuous Markov process is entirely determined by an initial (or

final) fixed time probability distribution and its two-point conditional probability (or transition

probabilities).

Markov processes obey the probability conservation equation known as the Chapman-Kolomgorov

equation (or Smoluchovski equation):

p(x1, t1|x3, t3) =

⁄

dx2p(x1, t1|x2, t2)p(x2, t2|x3, t3), (2.4)

where t1 > t2 > t3.

In a time homogeneous Markov process the laws of the dynamics do not depend on time and

the transition probability only depends on the time difference:

p(x2, t2|x1, t1) = f(x1, x2, t2 ≠ t1), (2.5)

where again t2 > t1.

Markov processes are ubiquitous in statistical mechanics and biophysics as most seemingly

non-Markovian systems can be expanded to form Markov processes in higher dimensions [2].

2.1.2 Jump processes and the Master equation

In this subsection, I describe jump processes for continuous time. Jump processes in discrete

time are much simpler to define and Master equations can be derived from the continuous time

case. It so happens that a lot of processes in statistical mechanics and in biology are not

continuous, or that the most efficient way to describe them is by discontinuous processes. Most

specifically discontinuous processes fall into the class of jump processes.

A jump process is a random piecewise constant function that “jumps” from state to state.

In a discrete state space, the process is defined by the states {σ}σœS and the transition rates or

jump rates

WσÕσ = lim
∆tæ0

5

1

∆t
P (σÕ, t + ∆t; σt)

6

, (2.6)

which are assumed to be finite and defined for σ ”= σÕ. It follows from Eq. 2.6 that

∂tP (σ, t) =
ÿ

σÕ ”=σ

#

WσσÕP (σÕ, t) ≠ WσÕσP (σ, t)
$

. (2.7)

This equation is called the Master equation and represents a very detailed description of a

stochastic process. In the most general case, the jump rates can be functions of time, although

the analyses presented in this work are always set in a time homogeneous framework.

In a continuous state space s œ S we define the jump rates from s to sÕ W (sÕ|s) as density

functions:

W (sÕ|s)∆sÕ = lim
∆tæ0

5

1

∆t
p(sÕ, t + ∆t; st)∆sÕ

6

(2.8)

and the Master equation is

∂tp(s, t) =

⁄

dsÕ #

W (s|sÕ)p(sÕ, t) ≠ W (sÕ|s)p(s, t)
$

. (2.9)

Note that the time spent in a state before jumping is exponentially distributed with the pa-

rameter
q

σÕ WσÕσ in the discrete case and
s

dsÕW (sÕ|s) in the continuous case. It is also worth

noting that all jump processes are Markov processes.
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2.1.3 Transition matrices

In this paragraph we restrict our analysis to discrete state Markov systems known as Markov

chains. The definitions and results can be extended to continuous states by replacing transition

matrices with kernels.

Let Xn be a Markov chain with discrete time steps n Ø 1. We can encode the jump rates in

a matrix T called a transition matrix:

TσÕσ = WσÕσ (2.10)

if σ ”= σÕ and

Tσσ = 1 ≠
ÿ

σÕ

WσÕσ. (2.11)

In its most general form the matrix T is a function of time. TσÕσ represents the probability to

be in state σÕ at time n + 1 given that the system was in state σ at time n. Let P (n) be the

vector of probabilities with coordinates Pσ(n). Then the Master equation can be rewritten in a

simpler form as

P (n + 1) = TP (n). (2.12)

If the system is time homogeneous, then T is independent of time, and we can write that

P (n + m) = TmP (n). (2.13)

T is a left stochastic matrix (each column sums to 1). It means that 0 is an eigenvalue. The cor-

responding eigenvectors (once normalized) are called the stationary distributions of the system.

The stationary distribution is unique under certain conditions of irreducibility of the Markov

chain that are not discussed in this Dissertation.

For a continuous time system we have the equivalent of Eq. 2.12:

∂tP (t) = [T ≠ ] P (t). (2.14)

Defining U = T ≠ we get the equivalent of Eq. 2.13 for a time homogeneous system

∂tP (t) = e(T≠ )(t≠s)P (s), (2.15)

where s < t.

2.1.4 Langevin equations

In this section, we present the Langevin formalism in the one-dimensional case for simplicity.

See [24] for complete proofs and the multidimensional case.

A Langevin equation is a random process defined by a dynamical equation for the trajectories

of the form:

∂tx(t) = a(x) + b(x)ξ(t), (2.16)

where ξ(t) is a Gaussian white noise with correlation function

Èξ(t)ξ(s)Í = δ(t ≠ s). (2.17)

There are many definitions of the Gaussian white noise as a limit of time-correlated noise. See

[24] for a more complete discussion of these definitions and their implications on the definition

of stochastic integrals.
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The formalism of Langevin equations is convenient because it is close to the type of equations

that physicists are used to writing for deterministic dynamics with the addition of the random

Langevin force. It is often easier to derive Langevin equation from the microscopic description

of trajectories in large systems and then extract information about the whole population by

moving to the Fokker-Planck framework or manipulating directly the Langevin equation. This

is in particular the approach followed in Chapter 4 and Appendix A.

Eq. 2.16 is ambiguous. When building Riemann integrals the choice of discretization of space

for summing (of which the integral is the continuous limit) does not matter as the difference

between conventions vanishes for small tilings. In stochastic integrals, however, Gaussian white

noise is δ correlated, and so the point where the functions are evaluated when building the

integral matters. The convention depends on a parameter traditionally named α to define the

integral solution of Eq. 2.16

x(t + ∆t) ≠ x(t) = a(xα)∆t + b(xα)

⁄ t+∆t

t
ξ(s)ds, (2.18)

where

xα(t) = (1 ≠ α)x(t) + αx(t + ∆t). (2.19)

Choices of α are related to the fine details of the model and will be discussed more thoroughly

in section 2.1.8. It is enough to say here that changing α is equivalent to systematically adding

an extra term in Eq. 2.16.

Langevin equations are equivalent to the mathematical formalism of stochastic differential

equations, where Gaussian white noise is replaced with the Wiener process. The choice of

systematically using the Itô formalism (α = 0) in mathematics is inconvenient to physicist

making Langevin equations a more natural framework.

2.1.5 The Fokker-Planck equation: expanding the Master equation

The Fokker-Planck equation is an approximate description of a given Markov processes. It can

be seen as a limit of Master equations in jump processes where jumps are so numerous and small

that the system becomes continuous.

Let X be a jump process on a continuous state space described by Eq. 2.9. We rewrite the

jump rate W (sÕ|s) as a function of the the initial point and the jump length W (s, sÕ ≠ s). We

assume that jumps are very small (so W (s, r) is very peaked around 0 in r). We then Taylor

expand W in 2.9 to get the Kramers-Moyal expansion:

∂tp(x, t) =
+Œ
ÿ

n=1

(≠1)n

n!

3

∂

∂x

4n

(an(x)p), (2.20)

where the moments of the jump rates an(x) are

an(x) =

⁄

drW (x, r)rn = lim
∆tæ0

1

∆t

⁄

dy(y ≠ x)np(y, t + ∆t|x, t). (2.21)

The second right hand side in Eq. 2.21 shows how the Fokker-Planck equation emerges as a

limit of jump processes. In a lot of processes used in statistical mechanics and biophysics (and,

in particular, processes deriving from the Gaussian white noise or the Wiener processes), the

moments vanish for n Ø 3 (even when they do not, the Fokker-Planck equation is often an
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efficient simplifying assumption that still describes the dynamics very well). This is equivalent

to saying that the variation of the process within a time step ∆t are bounded by a term of order

∆t2. Under this assumption Eq. 2.20 reduces to the Fokker-Planck equation

∂tp(x, t) = ≠∂x [a1(x)p(x, t)] +
1

2
∂2

x [a2(x)p(x, t)] , (2.22)

also known as the Kolmogorov forward equation. Eq. 2.22 is particularly convenient as it has re-

duced a very high dimensional problem (the Master equation) into a low dimensional continuous

equation with a very specific form. At equilibrium, the solution to the Fokker-Planck equation

is simply given by

peq(x) =
K

a2(x)
e

2
s x

x0
dy

a1(y)

a2(y) , (2.23)

where K is determined by normalizing the distribution.

However, a lot of physical systems and most biological systems are not at equilibrium, and

the Fokker-Planck formalism is very convenient in these situations. It is very easy to add a

source term to Eq. 2.22 when the system is kept out of equilibrium by the introduction of new

particles.

Indeed, let us assume, for instance, that p(x, t) represents the probability for a population

to have x individuals at time t in an environment with insufficient resources (we ignore compe-

tition). The drift term a1(x) represents the decay of the population in these harsh conditions

and can be written as ≠νx (where ν is a death rate) and the diffusion term a2(x) is the result

of birth death fluctuations in the population and so is proportional to
Ô

x. We can see that the

equilibrium solution of this system is a delta function in 0 because the population is bound to

go extinct at long times (which is consistent with Eq. 2.23 as
Ô

x is not integrable around 0).

If we now keep the system out of its equilibrium by constantly adding new species at random

or deterministic times with rate s with a distribution of introduction sizes θ(x), the system can

still be described by a Fokker-Planck equation. Then Eq. 2.22 is modified by adding a source

term

∂tρ(x, t) = ∂x [a1(x)p(x, t)] +
1

2
∂2

x [a2(x)p(x, t)] + sθ(x), (2.24)

and θ can even depend on time. Some details of the source of new species are not included in

the equation, such as the arrival time distribution, which could be rigorously accounted for in

the Master equation. At the level of a large population such details do not necessarily matter.

If θ is independent of time, there exists a steady state solution to Eq. 2.24. Its properties will

be discussed in 2.1.9.

There exist different variations of the Fokker-Planck equation (backward and forward) that

can tackle a very wide range of problems (e. g., moments, escapes, first passage times). I will

not discuss these here.

2.1.6 From Langevin to Fokker-Planck

The Langevin and the Fokker-Planck formalisms are equivalent, and it is very useful to have a

set of rules to go from one description to the other as most problems are easier to solve (or to

define) in one of the two descriptions.

From Eq. 2.16 we can extract the moments of the Kramers-Moyal expansion

an(x) = lim
∆tæ0

∆xn

∆t
(2.25)
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by Taylor expanding Eq. 2.16 in x and t and computing the average of the powers of ξ. We find

that

a1(x) = a(x) + αb(x)bÕ(x),

a2(x) = b2(x), (2.26)

where α defines the type of stochastic integral used (Itô and Stratonovitch for instance). We

immediately get the Fokker-Planck equation associated with Eq. 2.16:

∂tp(x, t) = ∂x
#

(a(x) + αb(x)bÕ(x))p(x, t)
$

+
1

2
∂2

x

Ë

b2(x)p(x, t)
È

. (2.27)

The role of α in this equation will be discussed in 2.1.8 but we can already see that changing α

will simply add an extra drift term: α ”= 0 means that the noise can influence itself and create

systematic drift.

2.1.7 Boundary conditions

In many problems of biophysics the range that the stochastic process can reach is not infinite, but

bounded. Species populations or numbers of proteins cannot be negative (as particle physicists

haven’t yet produced anti-proteins), and many populations are bounded by a carrying capacity

defined by available space or homeostatic constraints. In all these cases, it is crucial to determine

what happens to the process when it reaches the boundary of the available domain. These

“details” can make a lot of seemingly simple problems intractable. For continuous systems,

these conditions are easier to implement in the Fokker-Planck formalism. The most common

types of boundary conditions include:

• Absorbing boundary conditions: when reaching the wall, the process is stopped and stays

at the wall. This is very common in population dynamics as a species reaching a population

size of 0 usually cannot expand back to positive values without exterior help (since Pasteur

and the end of spontaneous generation). Formally it is equivalent to imposing that p(x, t) =

0 at the boundary. The use of absorbing boundary conditions can also be used to compute

the statistics of species extinctions. The mass loss in the probability distribution represents

extinction rates as species hit the wall. These problems can be tackled very elegantly with

the formalism of path integrals.

• Reflecting boundary conditions: when reaching the wall, the process is sent back to the

bulk, usually in the opposite direction with the same speed. This type of boundary condi-

tions arise in mechanics when elastic collisions happen at the walls. In population dynamics

carrying capacities can be represented by reflecting absorbing conditions and the popula-

tion going through the carrying capacity wall should be assumed to be 0. Technically this

means that the flux of probability at the wall is set to 0.

• Periodic boundary conditions: when hitting one wall, the process reenters the domain

through another wall. There is little biological motivation for using periodic boundary

conditions as biological systems rarely behave that way (or any real system in general).

This type of conditions has its use though in representing very large systems in numerical

simulations and equation solving. This is because periodic boundary conditions usually

create less problems than having the distribution vanish at the edge of a tiled space.

Periodic boundary conditions also preserve some translational symmetries.
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2.1.8 The old problem of Itô and Stratonovitch

The introduction and the choice of the discretization parameter α in section 2.1.4 can seem a

bit mysterious. We have seen that the choice of α influences the form and the solutions of the

Fokker-Planck equation corresponding to the Langevin dynamics and so it is clear that it has

an impact on the trajectories and cannot be ignored. The two most common choices for α are

Itô (α = 0) and Stratonovitch (α = 1/2) [25]. The chain rule only applies to Langevin equations

in the Stratonovitch formalism, while most mathematical work is done with the Itô one. Some

people advocate the use of α = 1 as a fully anticipating noise.

The choice of α is part of the model and should be based on a careful analysis of the physical

or biological phenomena at hand. Attempts to determine the “right” α date back to 1974 [26]

and after more than fourty years there is still no absolute answer although the consensus is that

in most physical situations the Stratonovitch rule applies. What emerges is that intrinsic and

extrinsic noise as defined below should not be treated the same way. I give below a summary of

the main points of [25] where a detailed analysis of intrinsic and extrinsic noise is given.

α represents how much the noise anticipates the future (an important point for financial

markets in particular): a non-zero value of α means that, at the microscopic level, the noise can

act on itself and be self-correlated even at very small time scales. In that sense, the discretization

of an extrinsic noise (such as the random external force driving a mechanical system or the

introduction of new pathogens in the immune system) should lead to α = 1/2 as the noise,

being produced outside of the system, does not have to “wait” for the system to evolve. There

is no reason for the effect of the noise on itself not to be centered. The continuous time equation

does not need to include the limit of a discrete delay of the effect of the noise on itself.

In intrinsic noise (such as birth death noise in population dynamics), the effect of the noise

on the dynamics should be delayed as it is produced by the noisy system itself. In this case, the

noise should not be anticipating the future and the Itô convention should work.

Thirty years later, after a lot of discussion, a pretty similar picture still holds [27], with the

important addition that noise in continuous limits of discrete discontinuous processes should

also obey the Itô rule (as the discontinuity and discreteness mean that events are scarce and

cannot affect the noise itself without delay).

The effect of these choices will be illustrated and discussed at length in the context of

population dynamics in immunology in Chapter 4 and Appendix A.

2.1.9 In and out of equilibrium

Thermodynamics was initially formulated at equilibrium, where all variables are well defined.

Since the 1970’s, methods to deal with the difficulty of out-of-equilibrium systems have flour-

ished, and we are now armed with a variety of tools to tackle these challenges. Most biological

systems are set out of equilibrium including both the immune system in Chapter 4 and Ap-

pendix A and the gene regulatory network of Chapter 7.

A state of equilibrium is reached when stochastic processes are at the detailed balance. In

the language of 2.1.2, at any steady state we have

∂tP (σ, t) = 0 ∆ P (σ, t)
ÿ

σÕ

WσÕσ =
ÿ

σÕ

P (σÕ, t)WσσÕ . (2.28)

Beyond this, what detailed balance ensures is that “each elementary process is equilibrated by
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Figure 2.1: Different jump process models of promoter binding and gene activation. In these

models, the gene can be in different states. In some states, labeled ON in the figure, the gene can

be transcribed. Other states are labeled OFF, and in these states the gene cannot be transcribed.

The arrows from state to state correspond to jump probabilities. In the left panel, the process

is Markovian and jump times are exponentially distributed. The second model (central panel)

is also Markovian, but irreversible, as the process cycles through the states. The third model

(right panel) is non-Markovian as the jump times from OFF state to ON state are Γ distributed

(with parameters α and β) and not exponentially distributed. The Γ function for jump times is

peaked and has intrinsic memory. These models are studied in Chapter 7.

its reverse process”:

P (σ, t)WσÕσ = P (σÕ, t)WσσÕ . (2.29)

When at equilibrium, in particular, the transition matrix can be symmetrized and its eigenvalues

become real. It is then much easier to directly access the equilibrium distribution. At equilibrium

the system is reversible, no entropy is produced, and no energy is dissipated. In a system

out of equilibrium, the forward path and backward path do not have the same probability to

happen (see [28] for details), and this irreversibility is related to entropy production and energy

dissipation [29].

Systems in biology are out-of-equilibrium essentially for three potential reasons: they are

transient and have not yet reached a steady state or equilibrium, there is a source disturbing

the system, or the system is at steady state, but going through cycles that are not reversible.

In Chapter 4, the immune system is kept out of equilibrium by the constant introduction of

new lymphocytes and new antigens, as well as by the decay of antigenic concentration in the

body. The bath (here the outside world and the bone marrow or thymus) creates a flux of cells

and clones through the system. One of the recent ideas in the field of immunology is to use this

population or fitness flux to quantify how far out of equilibrium the system is [30].

In Chapter 7, the activation of the gene state by the Bicoid protein is represented by a

Markov chain with different assumptions (or a Gamma model). When the chain has only two

states with exponential jumps (Fig 2.1 A), the system is reversible as it can jump from any

state to any other state directly, and the steady state solution is at equilibrium. In the Markov

models with a higher number of states (Fig 2.1 B), the chain is irreversible (in the specific models

of Chapter 7). The cycle structure creates a flux and dissipates energy. The theoretical and

biological meaning of fluxes in gene regulatory networks is studied at length in [31].
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2.1.10 About non-Markovian processes

Almost all the processes presented in this work are Markov processes. The tools that have been
developed for Markov analysis are so powerful, that in most situations it is worth going through
the trouble of finding a Markov description for the system of interest. In some cases where the
non-Markovian nature of the process is deep (in a sense that we will try to define later), it can
prove impossible to map the problem onto a Markov case.

Let us consider a simple example that illustrates mappings between Markovian and non-
Markovian processes. In Chapter 4, we study the integrated Ornstein-Uhlenbeck process that
can be defined as

dx

dt
= f0 + y(t), (2.30)

dy

dt
= ≠λy(t) +

Ô
2γξ(t), (2.31)

where ξ is a Gaussian white noise. This process is clearly Markov as it is defined by a traditional
Langevin equation. Another way of writing the same process is

dx

dt
= f0 + ÷(t), (2.32)

where ÷ is not a Gaussian white noise, but a correlated noise with mean 0 and the same au-
tocorrelation decay as the Ornstein Uhlenbeck process. The process described in Eq. 2.32 is
clearly not Markovian as its memory is hidden in its derivative (the noise ÷). Simply adding
one extra dimension to the process is enough to make it Markovian. Such processes are not
deeply non-Markovian and can usually be rewritten as Markov processes in higher dimensions.
Methods have been developed to solve first passage time problems directly for such processes
using the Chapman Kolomogorov equation.

Some processes can also be deeply non-Markovian as their memory is inifinite dimensional,
and there is no way to reduce them to a Markov case by adding a finite number of extra
dimensions. This is the case of the Gamma model in Fig 2.1 C. The Gamma distribution can
be seen as the convolution of several Markov steps with the same exponential jump parameter
k in the limit of small k and so is the limit of higher dimensional Markov models but cannot be
written exactly as a finite-dimensional Markovian process. In the general case it is impossible
to reduce it to a Markov chain in higher dimension. In Chapter 7, I give a method to compute
the autocorrelation function of the Γ model fluorescent traces in Fourier space exactly.

2.1.11 Correlation, covariance, and autocorrelation functions

Chapter 7 is mostly concerned with the autocorrelation of stochastic processes. A few theoretical
definitions can help before trying to understand the empirical problem.

The covariance of two random variables X and Y is defined as

cov(X, Y) = È(X ≠ ÈXÍ)(Y ≠ ÈYÍ)Í = ÈXYÍ ≠ ÈXÍÈYÍ (2.33)

and measures how much one process determines the other.
The average È.Í here is taken over realizations of the process. In ergodic systems this is

equivalent to taking the time average of the process. The stochastic processes in the following
chapters are all ergodic. The equivalence empirically breaks when the time available for averaging
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the process is too short. In this case, the average over the finite time of the process available È.Ít

is very different from the average over realizations È.Íω (also defined as the “true” or theoretical
average X̄). These notions will be expanded in Chapter 7.

The (Pearson’s) correlation between two random variables is very similar and defined as

ρX,Y =
È(X ≠ ÈXÍ)(Y ≠ ÈY Í)Í

σXσY
, (2.34)

where σZ is the standard deviation of the probability distribution of the variable Z.
For steady state stochastic processes, we can define the autocorrelation function of the process

X(t) as a function of the time distance τ = t ≠ s between the two time points involved

ρX(τ) =
È(Xt ≠ ÈXÍ)(Xt+τ ≠ ÈXÍ)Í

σ2
X

=
ÈXtXt+τ Í ≠ ÈXÍ2

σ2
X

, (2.35)

where averages and variances are independent of time because the system is in the steady state.
Chapter 7 deals with autocorrelation (and cross-correlation) when the average ÈXÍ cannot be
estimated properly. Then the second equality in Eq. 2.35 no longer holds, and new definitions
are required.

2.2 Computational methods

This section describes the numerical tools used for this work. All simulations and computational
methods have been implemented in Matlab. The methods are standard and have been imple-
mented independently of specialized numerical libraries with the exception of some optimization
routines.

2.2.1 Simulating random population models: Gillespie method and fixed

time step methods

The models of Chapter 4 and Chapter 5 both contain equations for the dynamics of a population
of cells that divide and die at rates that depend on the other actors of the system, sometimes the
other cells and sometimes the antigens (that also evolve randomly). Concurrently, new clones
and new antigens enter the system at random times.

When the system has to be described cell by cell by modeling explicitly cell division and clone
size as an integer (and not in a continuous approximation of the populations of the clones), the
model is formally equivalent to a reaction process. In a reaction process, different components
react with each other at rates that can vary with time and be functions of the concentrations of
components, just like in the population dynamics problem.

The most efficient way of simulating this type of problem is usually the family of Gillespie
and Gillespie-like algorithms. The Gillespie algorithm ([32, 33]) popularized by Gillespie in 1976
and invented by Doob in 1945, simulates the trajectories of a reaction process. The necessary
parameters are the initial quantities of the different reagents, the set of possible reactions, and
formulas for computing the reaction rates between the reagents. The waiting time before each
reaction happens is assumed to be exponentially distributed. The algorithm repeats the following
steps:
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• The algorithm computes the rate ki of each reaction from the concentrations of reagents
(or the absolute number of reagents if the system is described this way). Note that here the
rates are defined as already containing the reagent concentration factor, which is usually
not the convention in chemistry or in most descriptions of this algorithm.

• The algorithm computes the waiting time before the next reaction. The minimum of n

exponentially distributed random variable with rates k1, k2...kn has the same distribution
as an exponentially distributed random variable with a rate

q

j kj . Thus the algorithm
draws an exponential random variable with a rate equal to the sum of the reaction rates.
Time is updated.

• The algorithm decides which reaction happens. Once the time is picked, the algorithm
randomly picks the reaction that happens. Each reaction happens with a probability
ki/

q

j kj . The reaction happens and concentrations or absolute numbers are updated
accordingly.

This method is very accurate because it exactly simulates the Master equation defined above.
It is computationally very expensive. Faster but approximate versions of the algorithm exist.
One of the most famous ones is the τ leaping method [34] adapted to systems where reactions
rates do not vary much when only one reaction happens but require many reactions to change
[35]. This algorithm computes a time that statistically corresponds to the number of events
required to macroscopically change the reaction rates. It then computes the number of times
each reaction has happened during the interval using Poisson distributed random variables.

I will not describe here all the variants of the Gillespie algorithm. The original version was
implemented for simulating clones of adaptive immune systems in Appendix A.8. Each clone is a
reagent with a population and the reactions are divisions and deaths of cells. Division and death
are assumed to be memoryless and can be represented by exponential processes. The Gillespie
algorithm was also implemented to simulate Markov chains in Chapter 7 as it simulates exactly
the Master equation of Markov processes with discrete states.

All other simulations in population dynamics in this work are based on Langevin equations
and continuous descriptions of population sizes (and their fitnessess when they are defined). In
these cases the Gillespie algorithm does not apply as the system is not described in terms of
discrete reaction events. Simulating a stochastic differential equation or a Langevin equation
requires two parts: one of them is drawing the random variables and the other one is having a
method for integrating the differential equation.

All algorithms need to use a time step that is small enough to ensure that the deterministic
increment is small and that the random increment has very high probability to be small. Other
than that, the methods are very similar to Euler integration in ordinary differential equations.
There exist different methods for Itô and Stratonovitch formalisms. All methods are simpler
for Itô because the functions are evaluated at the previous point exactly. In all the simulations
in this work, any equation with the Stratonovitch convention was analytically transformed into
its Itô equivalent and then simulated using Itô based methods. For this reason, I only present
methods for the Itô formalism here.

When simulating the trajectories x(t) of a Langevin equation (with the Itô convention),

∂tx(t) = a(x) + b(x)ξ, (2.36)
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the simplest algorithm called the Euler-Maruyama method uses a given time step ∆t to integrate
the process

x(t + ∆t) = x(t) + a(x(t))∆t + b(x(t))∆ξ, (2.37)

where ∆ξ is a Gaussian random variable with mean 0 and variance ∆t. This algorithm requires
the use of a short time step because the order of convergence is 0.5, which is a very slow conver-
gence (i. e., the expectation value of the difference between the process and its approximation
by the Euler-Maruyama method is proportional to ∆t). The Euler-Maruyama method is called
“the order 0.5 strong Taylor scheme”.

The Euler-Maruyama method can be improved by including higher order derivatives in the
integration scheme. Including the first order derivative is called the Milstein method, and for
the Itô convention, the integration step is

x(t + ∆t) = x(t) + a(x(t))∆t + b(x(t))∆ξ +
1
2

b(x)bÕ(x)(∆ξ2 ≠ ∆t). (2.38)

Intuitively, the Gaussian white noise ξ has variations of size
Ô

∆t so the expansion in Eq. 2.37
is of order

Ô
∆t. In Eq. 2.38 the expansion is of order ∆t so it includes square terms from ξ and

b(x), but only linear terms from a(x). This method has faster convergence for small time steps
(of order 1) than the Euler-Maruyama method. It is possible to avoid explicitly computing the
derivative of b in Eq. 2.38 if it is not analytically available by replacing it with a finite difference
approximation without reducing the performance of the algorithm.

Higher order methods can be implemented with Runge-Kutta schemes that take into account
the ∆t2 terms in the Taylor expansion. The formulas are heavier and heavier as the order
increases, but the time steps can be longer, which is usually advantageous when simulating large
populations. The simulations of populations of clones of the immune system in this work were
done with the Euler-Maruyama method with small time steps as they were never computationally
very heavy.

2.2.2 Numerical solutions to partial differential equations (PDEs)

Numerically solving a stochastic differential equation can be done in two ways. The first one,
described in the previous section, randomly generates enough trajectories to estimates the prob-
ability distribution. The second type of methods solves a partial differential equation to obtain
directly the probability distribution of the process, usually solving the corresponding Fokker-
Planck equation.

This section explains how to find approximate numerical solutions to a Fokker-Planck equa-
tion

∂tp(x, t) = ≠∂x [a1(x)p(x, t)] +
1
2

∂2
x [a2(x)p(x, t)] , (2.39)

on a domain Ω with specified boundary conditions on ∂Ω using finite difference methods. Finite
difference methods build a discretized version of Eq. 2.39 to solve it on a grid of Ω. Finite
difference method is applied to two-dimensional equations in Chapter 4, where one dimension
is clonal population and the other one is fitness. I describe the method for a one-dimensional
problem in this section for simplicity. In all the equations of Chapter 4, there is a source term
and the goal is to find a steady-state solution, so the left-hand side is set to zero. In this context,
Eq. 2.39 becomes

0 = ≠∂x [a1(x)p(x)] +
1
2

∂2
x [a2(x)p(x)] + s(x), (2.40)
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where s(x) is the source term. The equations have an absorbing boundary at 0 for x, but the
probability distribution is defined for populations going to +Œ. Of course it is impossible to
define a grid for an infinite space numerically. Thus I use the fact that the probability distribution
vanishes for very large values of x to restrict Ω to a bounded domain 0 Æ x Æ xmax (the latter
is picked to be wide enough for the probability distribution to be very small at the boundaries
representing infinity). The boundary conditions at the boundaries representing infinities are set
to be reflecting to avoid losing probability mass artificially.

To find steady-state solutions of Eq. 2.40, we reintroduce time, compute a discretized version
of the differential operator acting on p(x, t) on the right-hand side of Eq. 2.40, and propagate it
until the distribution reaches a fixed point of the operator. This fixed point is the steady-state
distribution.

For each (discrete) time point n, there is a vector of probability un for the J discrete x values
xj = jh, where h = xmax/J (i. e., un

j = P (x(n) = xj)). The first step is to build the discrete
version of ∂x [a1(x, t)p(x, t)]:

∂x [a1(x, t)p(x, t)] ∆
a(un

j+1)un
j+1 ≠ a(un

j )un
j

h
. (2.41)

It is sometimes safer to write the discretization for derivatives of only one function by expanding
∂x [a1(x, t)p(x, t)] = p(x, t)∂xa1(x, t) + a1(x, t)∂xp(x, t). The same is done for time

∂tp(x, t) ∆
un+1

j ≠ un
j

∆t
, (2.42)

where ∆t is the time discretization constant. This choice of discretization is called the forward
discretization.

The second step requires discretizing a second order derivative. There are several ways to
do so, the simplest one being the explicit central difference:

∂2
x [a2(x, t)p(x, t)] ∆

a(un
j+1)un

j+1 ≠ 2a(un
j )un

j + a(un
j≠1)un

j≠1

h2
. (2.43)

The explicit central difference is stable (i. e., it does not amplify small errors in the probability
vector), but is not necessarily the most efficient way of discretizing the equation. Other choices
of discretization include in particular the implicit scheme, where the spatial derivative is written
for the next time step. It is usually more accurate, but requires more calculations. The equations
of Chapter 4 are numerically solved using the simple explicit method.

The operator is built by adding the contributions of Eq. 2.41, 2.42 and 2.43 into one matrix
that acts on the probability vector. The solution is obtained by having this matrix act on the
probability vector until a fixed point is reached.

2.2.3 Optimization and Maximum Likelihood estimation

In Chapter 7 the goal is to infer the parameters of a model by comparing the prediction of the
model with experimental or simulated data. The optimal parameters are found by maximizing
a function called Likelihood which is proportional to the probability of having a given set of
parameter given the data.

More precisely the data is a set of observations x1, x2, ..., xn. The model depends on a set of
parameters θ that are the variables that need to be determined (or optimized). For each set of
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parameters θ, the model provides us with the probability to see an observation p(xi|θ). If the
different observations are independent, then the probability to see a given series of observations
is

L(θ, x1, x2...xn) = p(x1, x2...xn|θ) =
n

Ÿ

i=1

p(xi|θ). (2.44)

This function is called the likelihood of the parameters θ for the observations x1, x2, ..., xn. Note
that it reverses the roles of parameters and observations (justified by the Bayes formula [36]).
Maximum Likelihood estimation (MLE) developed by R. A. Fisher almost a century ago consists
of looking for the value of θ that maximizes L. This value is called the MLE. Because L is a
probability of a large number of events, it varies over a wide range, and it is easier numerically
to look for its maximum in log space (and the problems are equivalent because the logarithm is
a strictly increasing function of its argument). If the MLE θMLE exists, it is a local maximum
of the log-likelihood function and must satisfy

∂

∂θ
log L(θ, x1, x2...xn) = 0 (2.45)

and
∂2

∂2
θ

log L(θ, x1, x2...xn) < 0. (2.46)

Numerical methods look for maxima of the log-likelihood using many different techniques.
The simplest method called gradient ascent follows the most positive direction of the gradient at
each point to find the maximum (in cases where it applies, conjugate gradient methods are much
faster). The three major computational difficulties that can arise in trying to find this maximum
are high dimensionality of parameter space, log-likelihood functions that are computationally
expensive to compute, and the existence of multiple local minima. All optimizations in Chapter 7
were done for a small number of parameters (maximum of 2) and with an analytical log-likelihood
function that is fast to compute. The only potential problem is multiple local maxima and it is
solved by starting several optimization routines from different points of parameter space to find
the global minimum. The number of optimization that needs to be performed to find the global
minimum can be determined by reducing the unit of the grid until no new minima are found.

2.2.4 The example of least squares

The optimization problems of Chapter 7 are solved in terms of the method of least squares to
fit the data. Each observation is a vector xi with components xj

i , 1 Æ j Æ m. Each coordinate
of the observations is assumed to be normally distributed with a variance σ2

j that is known and
a mean θj that is the parameter to be fitted. The variance σ2

j is given by the model (or, in the
case of Chapter 7, by the data since it is very hard to compute the expected variance from the
model). Note that in the method of least squares, the variance can also be a parameter to be
optimized.

If the observations are normally distributed, the probability to see xi is

p(xi|θ) =
1

σ
Ô

2fi

m
Ÿ

j=1

e≠(xj≠θj)2/2σ2
j . (2.47)



2.2 Computational methods 33

From this we obtain the log-likelihood:

log L(θ, x1) = ≠
m

ÿ

j=1

(xj ≠ θj)2

σ2
j

. (2.48)

Defining the least square error as the sum of squared residuals xj ≠ θj

S(xi) =
m

ÿ

j=1

(xj ≠ θj)2

σ2
j

, (2.49)

the problem of Maximum Likelihood is equivalent to finding the minimum of S. Equivalent
methods to finding the maximum of L can be applied to finding the minimum of S.
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Chapter 3

Introduction to immunology

3.1 The immune system

This section provides the reader with some introductory biological knowledge about the adaptive
immune system that is specifically aimed at understanding the use of models in immunology.
For a complete introduction to immunology for physicists see [37] and [16] for a thorough guide
to the field.

3.1.1 The role of the immune system

The immune system is as essential to the definition of the self as our skin: it is the one of the few
systems that can distinguish what is us from what is not. It has the enormous task of clearing
the body of foreign invasions, but also of fighting cancer cells [16].

A pathogen left unchallenged in an organism can very quickly become a threat and so
immune systems must be very efficient and fast when dealing with invasions. At the same time,
the variety of pathogens existing at one time point is extremely wide and the immune system
must be prepared to face them all. Moreover, bacteria and viruses evolve quickly and keep
eluding existing immune defenses. For that reason, the immune system needs diversity and
plasticity.

The efficiency and diversity of the immune system is the result of two selection processes:
one at the evolutionary time scale with selection of individuals through generations and one at
the cellular time scale with selection of the most efficient cells within one organism. In this
work, I focus on the second one.

3.1.2 Actors of the immune system

All blood cells - including red and white blood cells - derive from the same type of precursor:
the pluripotent hematopoietic stem cell located in the bone marrow. This precursor cell can
differentiate into two types of progenitors: the common lymphoid progenitor later produces
B-cells and T-cells, while the myeloid progenitor later turns into red blood cells, monocytes,
dendritic cells and granulocytes.

The immune system is divided into two parts: the innate immune system is a non specific
first line of defense against pathogenic invasions. The cells of the innate immune system can
recognize targets as not being part of the self, but have no affinity to a specific subset of them.

35
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On the other hand, adaptive immune cells (T-cells and B-cells) are highly specific fighters that
recognize a small subset of targets that can bind to receptors located on their membrane called
T-cell receptors (TCR) and B-cell receptors (BCR). Cells that share the same TCR or BCR
form a clone. These targets of immune reactions are called antigen. The definition of antigen
is very loose, and pretty much any kind of protein can qualify as an antigen. The adaptive
immune system triggers powerful responses to infections by greatly increasing the number of
cells specific to the recognized pathogen. The information about the invasion transits the innate
immune system by what is called antigen presenting cells (APC), mostly dendritic cells and
macrophages that gather epitopes (the part of the antigen recognized by the immune cell) of
encountered pathogens everywhere in the organism and transfer them to the lymph nodes and
germinal centers. Many types of cell can work as an antigen presenting cell through their Major
Histocompatibility Complex (class I MHC), but only so called “professional” antigen presenting
cells (macrophages, dendritic cells and B-cells) include the class II MHC and the co-stimulatory
signals that increase T-cell recognition.

Cells communicate with each other through the use of cytokines, small proteins that can act
as growth inducer or repressor on immune cells. Binding of cytokines does not depend on the
specific receptor shared by the cells of the clone (the TCR or the BCR), but on receptors that
are specific for each cytokine and the same on all cells (although their number can vary from cell
to cell). The implication of this statement on the role cytokines can have on clonal dynamics is
part of Chapter 4. These cytokines can be produced by immune cells (among others). There is
a wide variety of cytokines, and our understanding of their role changes and improves very fast.
One important cytokine that is mentioned at length in Chapter 4 is IL-7. IL-7 is a cytokine
that influences production of new lymphocytes by the bone marrow and is an essential growth
factor for T-cells. It regulates T-cell homeostasis and has been used in treating HIV.

3.1.3 B cells and T cells

The adaptive immune system is made of B-cells that mature in the bone marrow and T-cells
that mature in the thymus. Throughout life, the organism keeps producing new B-cells and
T-cells although production rates fall drastically with age. The thymus in particular shrinks in
adult humans and bone marrow activity reduces to let the task of de novo production rest on
flat bones. A very complete analysis of T-cell production at the different stages of life is given
in [38].

B-cells and T-cells have different ways of contributing to immunity. When activated, B-cells
produce antibodies, Y shaped proteins that recognize antigens and both tag target microbes or
infected cells for attack by other parts of the immune system or directly kill them by blocking
essential pathways for survival and division. T-cells are divided into two subtypes: cytotoxic
T-cells or killer T-cells (known as CD8+ T-cells) and Helper T-cells (also known as CD4+ T-
cells). Killer T-cells bind to infected cells or tumor cells by recognition of antigens present on the
membrane of the target and then destroy cells by release of cytotoxins or triggering apoptosis.
Helper T-cells play a role in immune response by enhancing proliferation of B-cells and their
differentiation into a antibody secreting state. Helper T-cells are the main targets of HIV. The
lethality of the disease demonstrates how important they are to the immune system.

Without going too far into details what one can get from this picture is that B- and T-
cells have different action modes and rely in an asymmetric way on each other for activation
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and immune response. Although their interaction is asymmetric they are both essential to the
immune response.

3.1.4 The adaptive immune system and the immune response

B-cell and T-cell specificity is based on the receptor they carry on their membrane. The group
of cells sharing the same receptor is called a clone. The central, variable part of the receptor
(or immunoglobulin) is produced once for the clone through a complex process of random gene
recombination implying the choice of gene templates for three genes (V, D and J) and a high
number of insertions and deletions on a small DNA region. This random process has been
studied very carefully (see for instance [39, 40]) and the probability to produce twice the same
receptor is sufficiently low for cells of the same clone to be considered to belong to the same
lineage. After this recombination the receptor is maintained throughout cell divisions (with the
exception of hypermutations). To make sure that they do not target the self, B-cells and T-
cells undergo a round of negative selection where cells that respond too strongly to self antigen
stimuli are discarded. At the same time cells that do not reply at all are also discarded as
not efficient enough, in a process called positive selection. After these two rounds of selection,
cells are released into the periphery (blood and lymphoid organs) where they can divide or die
depending on the type of signal they receive.

When a pathogen enters the organism the first defenses it will usually encounter belong to
the innate immune system as macrophages for instance patrol the tissues. Bits of the invad-
ing pathogens are carried by antigen presenting cells and will eventually reach T-cells (if the
infection is too severe to be fought off by the innate system alone). The message is amplified
and lymphocytes specific to the invader proliferate in lymph nodes forming germinal centers.
Proliferation during a full fledge immune response can increase enormously and clone sizes be
multiplied several powers of ten fold.

Once activated, B-cells trigger a mechanism called somatic hypermutations where an enzyme
called AID changes specific nucleotides and error-prone polymerases are recruited to repair the
modifications. These mutations are targeted specifically at the variable part of the BCR and
quickly produce different cell lineages with slightly different receptors. Each receptor has a
different binding affinity to the antigens of the invasive pathogen and the fittest clones will be
selected through a process known as affinity maturation to form effector and memory cells.

Effector B-cells and T-cells actively fight off pathogenic invasions while memory cells are
stored ensuring that the organism can react very fast to another invasion by a pathogen similar
to one that has already been seen. This acquired immunity has varying time scales that are not
very well understood. In that sense the organism can react both immediately and on the long
term to the fluctuations of its environment by adapting its immune repertoire (explaining the
name adaptive immune system).

The first person to use acquired immunity was Edward Jenner in 1796. He noticed that people
that had been infected with cowpox were immune to smallpox, a disease that caused several
hundreads of thousand of deaths each year in Europe. The similarity between the two strains
gave human immune systems an edge when fighting infections. He advocated the inoculation
of vaccinia (the other name of cowpox) and named the process after it. Two centuries later
smallpox had officially disappeared. The use of vaccines has spread and improved so that they
can be designed for various diseases. The discovery of Edward Jenner marks the beginning of
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the field of immunology.

3.1.5 The naive and memory pool

Adaptive immune cells undergo heavy phenotypic changes when activated (i.e when encountering
an antigen with high enough binding affinity to stay bound for a time exceeding a certain
threshold). Cells that have been activated are called memory and effector cells. Effector cells
have fast dynamics with a lot of division and death. The dynamics of memory cells is hard to
access, some of them are believed to be dividing while others seem to be dormant.

The naive pool contains cells that have not yet encountered an antigen. It does not include
an overwhelming fraction of immune cells but it does contain the main reservoir of diversity of
the immune system. Naive cells dynamics are slower than that of activated cells. Division is
very rare and cells are long lived. Different estimates have been given for the different pools (in
particular with labeling experiments [41, 42]) and in all of them naive cells are more dormant
than other repertoires with cell life span estimates going up to 2 years in mice and a turnover
about 30 times slower than for effector cells. Still, the stability of the naive pool size even
after thymectomy (or using lymphopenic mice for B cells) shows that there is a control of the
population of the naive repertoire (called homeostatic control).

Using mice living in sterile environment and irradiated mice where clonal diversity has been
reduced Freitas et al ([43]) showed that there is competition between naive B-cells and the
resources required for this competition include antigens. It is still believed that in normal
conditions (in healthy individuals) the main limiting resource for naive cells are cytokines.

3.1.6 Immune systems across species

Immune systems vary across species. Bacteria are protected using a system called CRISPR
that inserts bits of phage genome (spacers) in their DNA to interfere with phage invasion of
the cell. Non-jawed vertebrates rely on their own specific type of adaptive immune system but
jawed vertebrate all rely on adaptive immune systems that are quite similar in structure. This
attribution of immune systems can be seen as the optimal solution to adapting to fluctuating
environments [44]. However the specifics of immune system differ across species even among
mammals.

First of all the size of the immune system scales with the size (i.e the number of cells scales
with the mass) of the organism while the diversity of repertoires seems to scale as the logarithm of
the mass [45]. It results that clone sizes and dynamics vary from species to species. The mouse is
the most common system studied (apart from humans) in immunology and their immune system
seems to be less diverse than the human immune system. Whether this is a simple consequence
of scaling laws or has deeper biological meaning has not been elucidated.

3.2 Experimental clone size distributions

High-throughput data of immune repertoires has been available since 2009 ([46]) with the se-
quencing of antibodies in zebrafish. High-throughput methods have multiplied the number of
receptors that can be analyzed in an experiment making it possible to gather large statistics on
the distribution of clones (among other things). Since then the method has been expanded to
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It is now possible to state with much confidence that the effector and memory cells in mice and
human immune repertoires show distributions that are very close to power laws. Experiments on
naive cells are unfortunately not that numerous and the results are still controversial although
heavy tailed distributions have been reported ([50]).

Power laws in physics are well known to be associated with critical phenomena and scale-free
problems. The work presented in Chapter 4 explains how scale free laws can emerge in immune
dynamics but does not answer the question of criticality of immune systems. The idea that
biological systems are the result of an optimization through evolution and as such tend to be
poised at criticality has surfaced in the last decade [53]. It does not seem that these power laws
are produced by finely tuned parameters (at least not for any exponent of the power law). The
emergence of power law distributed data is not necessarily enough to justify criticality ([54])
and can simply be due to random parameters in the dynamics.

There is of course much more information in the result of a deep sequencing experiment
than a simple clone size distribution. The exact sequence of all the cells can also be analyzed.
Such analysis requires the use of much more complex bioinformatics tools and has lead to a
quantification of selection as a function of position on the variable part of the receptor ([39, 55])
leading to a better understanding of selection before and after the release of lymphocytes in
the periphery. Linking the sequence structure to function remains an open problem although
progress has recently been made in this direction [56]. The choice to stay clear of explicitly
modeling receptor sequence in this work is motivated by the analytical difficulty of dealing with
high dimensional variables such as sequences. In the models that follow the sequence is hidden
in an abstract shape space that is more closely related to function and easier to understand.
Fortunately results can be derived within this convenient framework independently of the hidden
genetic variables.

Recent estimates of the size of the immune repertoire in humans have shown that it is
extremely large. The number of T-cells in a healthy adult is estimated to be around 4.1011.
Such values are sufficiently large to motivate the use of statistical mechanics tools in modeling
the immune system.

3.3 Models of the immune system

3.3.1 Why model the immune system?

What can we hope to achieve by modeling immune systems and immune repertoires? Beyond
the sheer interest for knowledge and understanding models of the immune systems are central
for many contemporary medical questions. I have mentioned above how crucial models of the
immune system have been in fighting HIV. There are many unknowns in the dynamics of human
immune systems (and of mice, of fish and other animals). One of the most exciting prospects of
understanding the dynamics of the immune system is a better understanding of auto-immune
diseases. Auto-immune disorders are rising in western countries and constitute one of the main
threats to public health as pollutions of all kind increase. It has been suggested that insufficient
stimulation of the immune system leads to auto-immune disorders but no clear quantitative
understanding of this phenomenon is available yet. Getting a precise idea of the dynamics of
adaptive immune cells would help greatly move in that direction. All over the world vaccination
is still a necessary tool to prevent epidemics. As viruses evolve and elude vaccines protecting
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populations from pandemics becomes harder and harder. To improve vaccines one needs to
manipulate the antigens to produce weakened strains that still trigger acquired immunity in
hosts. This can only be achieved with a clear understanding of immune reactions and memory.
Last but not least the success of immunotherapy has put focus on immunology in the fight
against cancer.

From the point of view of evolutionary dynamics models of immune repertoires are very
exciting as they constitute a variant of classic Darwinian systems: in immune systems new
species are produced de novo in the bone marrow or in the thymus and do not evolve from
existing ones (with the exception of hypermutations). Most of the other features of the system
are similar to Darwinian dynamics with the existence of niches with specific antigenic resources.

3.3.2 A model of antigenic stimuli

In this section I present a very important model of competition between adaptive immune cells
for antigenic resources. It was introduced and expanded in a series of papers by De Boer, Perelson
and Freitas between 1994 and 2001 ([57, 58]). The model is theoretically and experimentally
well established and constitutes a safe basis for further investigations (although not without
detractors). For consistency I present the model with the notations of Chapter 4.

Let us consider a peripheral repertoire of B-cells or T-cells clones. We have a number M of
clones with index i œ [1, M ]. Each clone contains a population of cells Ci(t) that is a function
of time. At the same time in the organism a certain number N of antigens are present with
absolute count aj(t) with j œ [1, N ].

The interaction between antigens and lymphocytes happens through binding. The binding
affinity of antigen j with the clonotype i is a number Ki,j and the collection of these numbers is
encoded in a matrix called interaction matrix that corresponds to a weighted adjacency matrix of
the bipartite graph of clonotypes and antigens. De Boer and Perelson show that the availability
Fj of antigen j is inversely proportional to the sum of binding probabilities of all the cells in the
system:

Fj(t) =
1

1 +
qM

i=1 Ki,jCi(t)
. (3.1)

Here it is important to note that all cells of a clone have the same properties because they have
the same receptor. The antigenic stimulus received by a cell of clone i is

Si(t) =
N

ÿ

j=1

aj(t)Fj(t)Ki,j . (3.2)

Note that including thymic or bone marrow output of new clones and renewal of antigens in the
body would also make N , M and K functions of time. The choice of the entries of the matrix
K is complex. A very reliable assumption to make is that K is sparse because adaptive immune
cells are very specific. Beyond sparsity the distribution of the K matrix entries is biologically
unclear. The structure of K and of the underlying shape space are discussed in the following
chapters.

Here we must leave the precise framework of [57] to write a more general equation on clonal
dynamics. The idea is to write an equation for the dynamics of the clonal population based on
the assumption that antigenic stimulus enhances division or prevents death. Following [57] I
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include the effect of antigen as a death rate decrease:

∂tCi(t) = µCi ≠ ν
Ci

Si
. (3.3)

The average stimulus can be seen as a local in time fitness of the clone. These equations can
be considered in a fixed antigenic environment or coupled to antigen fluctuations. In all cases
they include competition for antigens and resource niches with partial competitive exclusion.
We discuss the notion of competitive exclusion in Chapter 5.

3.3.3 Current models of the immune system

In the last years there has been several attempts at modeling immune repertoires but none of
them mentioned the relationship to clone size distributions. A lot of focus in particular has been
put on proving that neutral dynamics (i.e equal fitness of clones) can explain the observed data
[59] and trying to learn parameters from steady state of neutral equations. In the neutral model
the variability of clone sizes relies entirely on birth death noise. In particular, no quantitative
comparison of the predictions of neutral models with observed clone size distributions had been
made. We show in Appendix A.1 that the assumptions of neutral models are not compatible
with observed distributions in effector and memory cells.

This means that the variability of clone sizes cannot be explained by simple fluctuations of
birth and death within equally fit populations. This conclusion leads to examining the other
possible mechanisms for sources of fluctuations. Another main difference between the models
developed in the following Chapters and pre-existing models is that they do not only try to ex-
tract some parameters from clone size distributions, they also help distinguish between different
mechanisms for the dynamics of selection in the adaptive immune system.

In many aspects, our analysis widens the range of possible models to include more realistic
dynamics. We include the neutral model in a much larger class of dynamical models based on
cytokine exchange with cell to cell variability. When talking about power laws one must be
careful as many people define power laws as power laws with exponential cutoff. This is not
what we mean here. Of course all biological systems have cutoffs as they cannot be infinite but
when a power law behaviour is observed over several decades one must check that a model of it
that predicts a cutoff to the power law is indeed far enough to be consistent with the data.

Recent discussions and presentations at the 2016 Santa Barbara program on Quantitative
Immunology (https://www.kitp.ucsb.edu/activities/immuno16) showed that neutral dynamics
could be successfully applied to the naive repertoire and its aging. We discuss this in more detail
in Chapter 5.
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4.1 Significance

Receptors on the surface of lymphocytes specifically recognize foreign pathogens. The diversity
of these receptors sets the range of infections that can be detected and fought off. Recent
experiments show that, despite the many differences between these receptors in different cell
types and species, their distribution of diversity is a strikingly reproducible power law. By
introducing effective models of repertoire dynamics that include environmental and antigenic
fluctuations affecting lymphocyte growth or “fitness,” we show that a temporally fluctuating
fitness is responsible for the observed heavy tail distribution. These models are general and
describe the dynamics of various cell types in different species. They allow for the classification of
the functionally relevant repertoire dynamics from the features of the experimental distributions.

4.2 Abstract

The adaptive immune system relies on the diversity of receptors expressed on the surface of B
and T-cells to protect the organism from a vast amount of pathogenic threats. The proliferation
and degradation dynamics of different cell types (B cells, T cells, naive, memory) is governed by
a variety of antigenic and environmental signals, yet the observed clone sizes follow a universal
power law distribution. Guided by this reproducibility we propose effective models of somatic
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evolution where cell fate depends on an effective fitness. This fitness is determined by growth
factors acting either on clones of cells with the same receptor responding to specific antigens, or
directly on single cells with no regard for clones. We identify fluctuations in the fitness acting
specifically on clones as the essential ingredient leading to the observed distributions. Combining
our models with experiments we characterize the scale of fluctuations in antigenic environments
and we provide tools to identify the relevant growth signals in different tissues and organisms.
Our results generalize to any evolving population in a fluctuating environment.

4.3 Introduction

Antigen-specific receptors expressed on the membrane of B and T cells (BCRs and TCRs ) rec-
ognize pathogens and initiate an adaptive immune response [16]. An efficient response relies on
the large diversity of receptors that is maintained from a source of newly generated cells, each
expressing a unique receptor. These progenitor cells later divide or die, and their offspring make
up clones of cells that share a common receptor. The sizes of clones vary, as they depend on
the particular history of cell divisions and deaths in the clone. The clone size distribution thus
bears signatures of the challenges faced by the adaptive system. Understanding the form of the
clone size distribution in healthy individuals is an important step in characterizing the antigenic
recognition process and the functioning of the adaptive immune system. It also presents an im-
portant starting point for describing statistical deviations seen in individuals with compromised
immune responses.

High throughput sequencing experiments in different cell types and species [46, 48, 49, 60,
61, 62, 63, 51] have allowed for the quantification of clone sizes and their distributions [46, 64, 50,
51]. Previous population dynamics approaches to repertoire evolution have taken great care in
precisely modeling these processes for each compartment of the population, through the various
mechanisms by which cells grow, die, communicate, and change phenotype [65, 66, 67, 68, 69, 70].
However, one of the most striking properties of repertoire statistics revealed by high-throughput
sequencing is the observation of power laws in clone size distributions (see Fig. 4.1A-B), which
holds true for various species (human, mice, zebrafish), cell type (B and T cells) and subsets
(naive and memory, CD4 and CD8), and seems to be insensitive to these context-dependent
details. It remains unclear, however, what universal features of these dynamics lead to the
observed power-law distributions. Here we identify the key biological parameters of the repertoire
dynamics that govern its behavior.

The wide range and types of interactions that influence a B or T cell fate happen in a com-
plex, dynamical environment with inhomogeneous spatial distributions. They are difficult to
measure in vivo, making their quantitative characterization elusive. Motivated by the uni-
versality of the observed clone size distribution, we describe the effective interaction between
the immune cells and their environment as a stochastic process governed by only a few relevant
parameters. All cells proliferate and die depending on the strength of antigenic and cytokine sig-
nals they receive from the environment, which together determine their net growth rate (Fig. 4.1
C). This effective fitness that fluctuates in time is central to our description. We find that its
general properties determine the form of the clone size distribution. We distinguish two broad
classes of models, according to whether these fitness fluctuations are clone specific (mediated
by their specific BCR or TCR) or cell specific (mediated by phenotypic fluctuations such as the
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number of cytokine receptors). We identify the models that are compatible with the experimen-
tally observed distributions of clone sizes. These distributions do not depend on the detailed
mechanisms of cell signaling and growth, but rather emerge as a result of self-organisation, with
no need for fine-tuned interactions. Performing a series of validated approximations we find
a simple algebraic relationship constraining the different timescales of the problem by the ex-
perimentally observed exponent of the clone-size distribution. This result allows for testable
predictions and estimates of the rates that govern the diversity of a clonal distribution.

4.4 Results

4.4.1 Clone dynamics in a fluctuating antigenic landscape

The fate of the cells of the adaptive immune system depends on a variety of clone-specific stim-
ulations. The recognition of pathogens triggers large events of fast clone proliferation followed
by a relative decay, with some cells being stored as memory cells to fend off future infections.
Naive cells, which have not yet recognized an antigen, do not usually undergo such extreme
events of proliferation and death, but their survival relies on short binding events (called “tick-
ling”) to antigens that are natural to the organism (self-proteins) [71, 72]. Because receptors
are conserved throughout the whole clone (with the exception of B cell hypermutations), clones
that are better at recognizing self-antigens and pathogens will on average grow to larger pop-
ulations than bad binders. By analogy to Darwinian evolution, they are “fitter” in their local,
time-varying environment.

We first present a general model for clonal dynamics that accounts for the characteristics
common to all cell types, following previous work by de Boer, Perelson and collaborators [73,
67, 74]. We later explore the effect of specific features such as hypermutations, memory/naive
compartmentalization and thymic output decay on the clone size distribution.

We denote by aj(t) the overall concentration of an antigen j as a function of time. We
assume that after its introduction at a random time tj , this concentration decays exponentially
with a characteristic lifetime of antigens λ≠1, aj(t) = aj,0e≠λ(t≠tj) as pathogens are cleared out
of the organism, either passively or through the action of the immune response. Lymphocyte
receptors are specific to certain antigens, but this specificity is degenerate, a phenomenon refered
to as cross-reactivity or poly-specificity. The extend to which a lymphocyte expressing receptor i

interacts with antigen j (foreign or self) is encoded in the cross-reactivity function Kij , which is
zero if i and j do not interact, or a positive number drawn from a distribution to be specified, if
they do. In general, interactions between lymphocytes and antigens effectively promote growth
and suppress cell death, but for simplicity we can assume that the effect is restricted to the
division rate. In a linear approximation, this influence is proportional to

q

j Kijaj(t), i.e. the
combined effect of all antigens j for which clone i is specific. This leads to the following dynamics
for the evolution of the size Ci of clone i (Fig. 4.1 C):

dCi

dt
=

Q

aν +
ÿ

j

Kijaj(t) ≠ µ

R

b Ci + Bξi(t), (4.1)

where ν and µ are the basal division and death rates, and where Bξi(t) is a birth-death noise of
intensity B2 = (ν +

q

j Kijaj(t) + µ)Ci, with ξi(t) a unit Gaussian white noise (see Appendix
A.1 for details about birth death noise).
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Figure 4.1: Experimental clone size distributions have heavy tails. A. B cell zebrafish exper-
imental cumulative clone size distribution for fourteen fish as a function of the fraction of the
population occupied by that clone from data in Weinstein et al. [46]. B. Clone size distribution
for murine T-cells from Zarnitsyna et al. [50] (data plotted as presented in original paper). C.

The dynamics of adaptive immune cells include specific interactions with antigens that promote
division and prevent cell death. New cells are introduced from the thymus or bone marrow with
novel, unique receptors. Division, death and thymic or bone marrow output on average balance
each other to create a steady state population. D-E. Example trajectories from simulations of
the immune cell population dynamics in Eq. 4.1. The total number of cells (D) shows large
variations after an exceptional event of a large pathogenic invasion. One or a few cells that
react to that specific antigen grow up to a macroscopic portion of the total population, and then
decrease back to normal sizes after the invasion. A typical clone size trajectory along with its
pathogenic stimulation

q

j Kijaj(t) shows the coupling between clone growth and variations of
the antigenic environment (E). Parameters used: sC = 2000 day≠1 , C0 = 2, sA = 1.96 · 107

day≠1, aj,0 = a0 = 1, λ = 2 day≠1, p = 10≠7, ν = 0.98 day≠1, µ = 1.18 day≠1.
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New clones, with a small typical initial size C0, are constantly produced and released into the
periphery with rate sC (Fig. 4.1 C). For example, a number of the order of sC = 108 new T-cells
are output by the thymus daily in humans [38]. Since the total number of T cells is of the order
of 1011, this means that the net effect of cell death and proliferation results in a negative average
growth rate of 10≠3 days≠1 in homeostatic conditions [38]. Because the probability of rearranging
the exact same receptor independently is very low (< 10≠10) [40], we assume that each new clone
is unique and comes with its own set of cross-reactivity coefficients Kij . Assuming a rate sA of
new antigens, the average net growth rate in Eq. 4.1 is f0 = ν + Èaj,0ÍÈKÍsAλ≠1 ≠ µ < 0, and
the stationary number of clones should fluctuate around NC ¥ sC |f0|≠1 clones. This is just an
average, and treating each clone independently may lead to large variations in the total number
of cells (i.e. the sum of sizes of all clones). To maintain a constant population size, clones
compete with each other for specific resources (pathogens or self-antigens) and homeostatic
control can be maintained by a global resource such as Interleukin 7 or Interleukin 2. Here
we do not model this homeostatic control explicitly, but instead assume that the division and
death rates ν, µ are tuned to achieve a given repertoire size. We verified that adding an explicit
homeostatic control did not affect our results (see Fig. S2 and Appendix A.2).

We simulated the dynamics of a population of clones interacting with a large population of
antigens. Each antigen interacts with each present clone with probability p = 10≠7, and with
strength Kij drawn from a Gaussian distribution of mean 1 and variance 1 (truncated to positive
values). Although it has been argued that the breadth of cross-reactivity and affinity to self-
antigens are correlated [75, 76], here for simplicity we draw them independently, as we do not
expect this correlation to qualitatively affect the results. A typical trajectory of the antigenic
stimulation undergone by a given clone,

q

j Kijaj , is shown in Fig. 4.1E (green curve), and shows
how clone growth tracks the variations of the antigenic environment. When the stimulation is
particularly strong, the model recapitulates the typical behaviour experimentally observed at
the population level following a pathogenic invasion [77, 78], as illustrated in Fig. 4.1D: the
population of a clone explodes (red curve), driving the growth of the total population (blue
curve), while taking over a large fraction of the carrying capacity of the system, and then decays
back as the infection is cleared.

On average, the effects of division and death almost balance each other, with a slight bias
towards death because of the turnover imposed by thymic or bone marrow output. However, at
a given time, a clone that has high affinity for several present antigens will undergo a transient
but rapid growth, while most other clones will decay slowly towards exctinction. In other words,
locally in time, the antigenic environment creates a unique “fitness” for each clone. Since growth
is exponential in time, these differential fitnesses can lead to very large differences in clone sizes,
even if variability in antigen concentrations or affinities are nominally small. We thus expect to
observe large tails in the distrubution of clone size. Fig. 4.2A shows the cumulative probability
distribution function (CDF) of clone sizes obtained at steady state (blue curve) showing a clear
power-law behaviour for large clones, spanning several decades.

The exponent of the power-law is independent of the introduction size of clones (see inset of
Fig. 4.2A), and the specifics of the randomness in the environment (exponential decay, random
number of partners, random interaction strength) as long as its first and second moment are
kept fixed (See Fig. S3 and Appendix A.3).
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4.4.2 Simplified models and the origin of the power law

To understand the power-law behavior observed in the simulations, and its robustness to various
parameters and sources of stochasticity, we decompose the overall fitness of a clone at a given
time (its instantaneous growth rate) into a constant, clone-independent part equal to its average
f0 < 0, and a clone-specific fluctuating part of zero mean, denoted by fi(t). This leads to
rewriting Eq. 4.1 as:

dCi

dt
= [f0 + fi(t)]Ci(t) + Bξi(t), (4.2)

with B2 ¥ (|f0| + 2µ)Ci.
The function fi(t) encodes the fluctuations of the environment as experienced by clone i.

Because antigens can be recognized by several receptors, these fluctuations may be correlated
between clones. Assuming that these correlations are weak, Èfi(t)fj(tÕ)Í ¥ 0, amounts to treating
each clone independently of each other, and thus to reducing the problem to the single clone level.
The stochastic process giving rise to fi(t) is a sum of Poisson-distributed exponentially decaying
spikes. This process is not easily amenable to analytical treatment, but we can replace it with a
simpler stochastic process with the same temporal autocorrelation function. This autocorrelation
is given by Èfi(t)fi(tÕ)Í = A2e≠λ|t≠tÕ|, with the antigenic noise strength A2 = sApa2

0ÈK2Íλ≠1,
and where we recall that λ≠1 is the characteristic lifetime of antigens. The simplest process
with the same autocorrelation function is given by an overdamped spring in a thermal bath, or
Ornstein-Uhlenbeck process,

dfi

dt
= ≠λfi +

Ô
2“÷i(t), (4.3)

with ÷i(t) a Gaussian white noise of intensity 1 and “ = A
Ô

⁄ quantifies the strength of variability
of the antigenic environment (see Appendix A.4). This is also the process of maximum entropy
or caliber [79] with that autocorrelation function (see Appendix A.5 and [80]).

The effect of the birth death noise B›i(t) is negligible when compared to the fitness variations
for large clones and it has no effect on the tail (see Fig. S5 and Appendix A.6). It can thus be
ignored when looking at the tail of the distribution and its power law exponent, but it will play
an important role for defining the range over which the power law is satisfied.

The population dynamics described by Eqs. 4.2 and 4.3 can be reformulated in terms of a
Fokker-Planck equation for the joint abundance fl of clones of a given log-size x = log C and a
given fitness f :

ˆfl(x, f, t)
ˆt

= ≠(f0 + f)
ˆfl

ˆx
+ ⁄

ˆ(ffl)
ˆf

+ “2 ˆ2fl

ˆf2
+ s(x, f), (4.4)

where the source term s(x, f) describes new clones arriving at rate sC with size C0 and nor-
mally distributed fitnesses of variance Èf2Í = “2/⁄. This Fokker-Planck equation can be solved
numerically with finite element methods with an absorbing boundary condition at x = 0 to
account for clone extinction. The solution, represented by the black curve in Fig. 4.2A, matches
closely that of the full simulated population dynamics (in blue). The power-law behaviour is
apparent above a transition point that depends on the distribution of introduction sizes of new
clones and the parameters of the model (see below). Intuitively, the microscopic details of the
noise are not expected to matter when considering long time scales, as a consequence of the
central limit theorem. However, the long tails of the distribution of clone sizes involve rare
events and belong to the regime of large deviations, for which these microscopic details may be
important. Therefore, the agreement between the process described by the overdamped spring
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and the exponentially decaying, Poisson distributed antigens is not guaranteed, and in fact does
not hold in all parameter regimes (see Fig. S8).

We can further simplify the properties of the noise by assuming that its autocorrelation
time is small compared to other timescales. This leads to taking the limit γ, λ æ Œ while
keeping their ratio constant σ = γ/λ constant, so that fi(t) is just a Gaussian white noise with
Èfi(t)fi(tÕ)Í = 2σ2δ(t ≠ tÕ) (see Appendix A.6 and Fig. S4). The corresponding Fokker-Planck
equation now reads

∂tρ(x, t) = ≠f0∂xρ(x, t) + σ2∂2
xρ(x, t) + s(x), (4.5)

with s(x) = sCδ(x ≠ log(C0)). This equation can be solved analytically at steady state, and the
resulting clone size distribution is, for C > C0:

ρ(C) =
sC

ασ2

1
Cα+1

, (4.6)

with α = |f0|/σ2 = λ|f0|/A2 (details in Appendix A.6). The full solution, represented in
Fig. 4.2A in red, captures well the long-tail behaviour of the clone size distribution despite
ignoring the temporal correlations of the noise, and approaches the solution of the colored-noise
model (Eq. 4.3) as λ, γ æ Œ, as expected (see Fig. 4.2A).

The power law behaviour and its exponent depend on the noise intensity, but are otherwise
insensitive to the precise details of the microscopic noise, including its temporal properties. Fat
tails (small α) are expected when the average cell lifetime is long (small |f0|) and when the
antigenic noise is high (large σ or A). The explicit expression for the exponent of the power law
1 + α as a function of the biological parameters can be used to infer the antigenic noise strength
A2 directly from data. The typical net clone decay rate |f0| ¥ 10≠3 can be estimated from
thymic output and repertoire size, as discussed earlier. The characteristic lifetime of antigens
λ≠1 is harder to estimate, as it corresponds to the turnover time of the antigens that the body
is exposed to, but is probably of the order of days or a few weeks, λ ¥ 0.1 day≠1. We estimated
α = 1 ± 0.2 from the zebrafish data of Fig. 4.1A [46, 64] using canonical methods of power-
law exponent extraction [81] (see Appendix A.7 for details), and also found a similar value in
human T cells [82]. The resulting estimate, A = 10≠2 day≠1, is rather striking, as it implies
that fluctuations in the net clone growth rate, A, are much larger than its average f0.

While the distribution always exhibits a power law for large clones, this behavior does not
extend to clones of arbitrarily small sizes, where the details of the noise and how new clones
are introduced matter. We define a power-law cut-off Cú as the smallest clone size for which
the cumulative distribution function (CDF) differs from its best power-law fit by less than 10%.
Using numerical solutions to the Fokker-Planck equation associated to the colored-noise model,
we can draw a map of Cú as a function of the parameters of the system. In Fig. 4.2B-C we show
how Cú varies as a function of the introduction size for different values of the dimensionless
parameter related to the effective strength of antigen fluctuations relative to their characteristic
lifetime at fixed power law exponents. In principle one can use this dependency to infer effective
parameters from data. In practice, when dealing with data it is more convenient to consider the
value of the cumulative distribution at Cú, rather than Cú itself. For example, fixing C0 = 4
and fitting the curve of Fig. 4.1A with our simplified model using λ as an adjustable parameter,
we obtain λ ¥ 0.14 day≠1 (see Appendix A.7), which corresponds to a characteristic lifetime of
antigens of around a week. Although this estimate must be taken with care, because of possible
PCR amplification biases plaguing the small clone size end of the distribution, the procedure



50 CHAPTER 4. FLUCTUATING FITNESS

described here can be applied generally to any future repertoire sequencing dataset for which
reliable sequence counts are available.

4.4.3 A model of fluctuating phenotypic fitness

So far, we have assumed that fitness fluctuations are identical for all members of a same clone.
However, the division and death of lymphocytes do not only depend on signaling through their
TCR or BCR. For example, cytokines are also growth inducers and homeostatic agents [83, 84],
and the ability to bind to cytokines depends on single-cell properties such as the number of
cytokine receptors on the membrane of a given cell, independent of their BCR or TCR receptor.
Other stochastic single-cell factors may affect cell division and death. These signals and factors
are cell specific, as opposed to the clone specific properties related to BCR or TCR binding.
Together, they define a global phenotypic state of the cell that determines its time-varying
“fitness,” independent of the clone and its T-cell or B-cell receptor. This does not mean that
these phenotypic fitness fluctuations are independent across the cells belonging to the same
clone. Cells within a clone share a common ancestry, and may have inherited some phenotypic
properties of their common ancestors, making their fitnesses effectively correlated with each
other. However, this phenotypic memory gets lost over time, unlike fitness effects mediated by
antigen-specific receptors.

We account for these phenotypic fitness fluctuations by a function fc(t) quantifying how
much the fitness of an individual cell c differs from the average fitness f0. This fitness difference
is assumed to be partially heritable, which we model by:

dfc

dt
= ≠λcfc(t) +

Ô
2γc÷c(t), (4.7)

where ⁄≠1
c is the heritability, or the typical time over which the fitness-determining trait is

inherited, “c quantifies the variability of the fitness trait, and ÷c(t) is a cell-specific Gaussian
white noise of power 1. Despite its formal equivalence with Eq. 4.3, it is important to note that
here the fitness dynamics occurs at the level of the single cell (and its offspring) instead of the
entire clone. The dynamics of the fitness fi(t) of a given clone i can be approximated from
Eq. 4.7 by averaging the fitnesses fc(t) of cells in that clone, yielding:

dCi

dt
= [f0 + fi(t)]Ci(t) +

Ò

(‹ + µ)Ci(t)›i(t), (4.8)

dfi

dt
= ≠⁄cfi(t) +

1


Ci(t)

Ô
2“c÷i(t), (4.9)

where ÷i(t) and ›i(t) are clone-specific white noise of intensity 1, and ‹ and µ are the average
birth and death rates, respectively, so that f0 = ‹ ≠ µ (details in Appendix A.9). The difference
with Eq. 4.3 is the 1/



Ci(t) prefactor in the fitness noise ÷i(t), which stems from the averaging
of that noise over all cells in the clone, by virtue of the law of large numbers. Because of this
prefactor, the fitness noise is now of the same order of magnitude as the birth-death noise, which
must now be fully taken into account. Taking Eq. 4.8 and Eq. 4.9 at the population level gives a
Fokker-Planck equation with a source term accounting for the import of new clones. We verify
the numerical steady state Fokker–Planck solution against Gillespie simulations (Fig S6, see
Appendix A.8 for details).

Fig. 4.3A-B show the distribution of clone sizes for different values of the phenotypic relax-
ation rate ⁄c and environment amplitude “c. These distributions vary from a sharp exponential
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Figure 4.2: Clone size distributions for populations with fluctuating antigenic, clone-specific
fitness. A. Comparison of simulations and simplified models of clone dynamics. Blue curve:
cumulative distribution of clone sizes obtained from the simulation of Eq. 4.1. Black curve: a
simplified, numerically solvable model of random clone-specific growth, also predicts a power-
law behaviour. Red curve: analytical solution fo the Gaussian white noise model, Eq. 4.4.
Parameters used: ν = 0.98 day≠1, µ = 1.18 day≠1, λ = 2 day≠1, sC = 2000 day≠1 , C0 = 2,
sA = 1.96 · 107 day≠1. Inset: the exponent is independent of the initial clone size. Results from
simulation with different values of the introduction clone size. The cut-off value of the power
law behaviour, represented here as a dot, is strongly dependent on the value of C0. Parameters
are ν = 0.2 day≠1, µ = 0.4 day≠1, λ = 2 day≠1, γ = 1 day≠3/2 and sC = 5000. B. Value of
the cumulative distribution function at the point of the power law cut-off as a function of the
introduction clone size C0 for different values of a dimensionless parameter related to the effective
strength of antigen fluctuations relative to their characteristic lifetime λ3/γ2 for a fixed power
law exponent α. We use the cumulative distribution function because it is robust, invariant
under multiplicative rescaling of the clone sizes. This way we do not need to correct directly
for PCR multiplication or sampling. Parameters are for B and C ν = 4.491 days≠1, µ = 5.489
days≠1 and α = ≠0.998. C. Power-law cut-off as a function of the introduction clone size.
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drop in the case of low heritability (large λc) to heavier tails in the case of long conserved
cell states (small λc). To quantify the extend to which these distributions can be described as
heavy-tailed, we fit them to a power law with exponential cut-off, ρ(C) Ã C≠1≠αe≠C/Cm , where
Cm is the value below which the distribution could be interpreted as an (imperfect) power law.
Fig. 4.3C shows a strong dependency of this cut-off with the phenotypic memory λ≠1

c . The
longer the phenotypic memory λ≠1

c , the more clone-specific the fitness looks like, and the more
the distribution can be mistaken for a power law in a finite-size experimental distribution. Larger
birth-death noise also extends the range of validity of the power-law. As a result, and despite the
absence of a true power-law behaviour, these models of fluctuating phenotypic fitnesses cannot
be discarded based on current experimental data.

The model can be solved exactly at the two extremes of the heritability parameter λc. In
the limit of infinite heritability (λc æ 0) the system is governed by selective sweeps. The clone
with the largest fitness completely dominates the population, until it is replaced by a better
one, giving rise to a trivial clone-size distribution. In the opposite limit, when heritability goes
to 0 (λc æ +Œ), the Fokker-Planck equation can be solved analytically (see Appendices A.9
and A.10), yielding an exact power-law with exponential cutoff, ρ(C) Ã C≠1≠αe≠C/Cm , with
α = ≠[1 + (µ + ν)λ2

c/2γ2
c ]≠1 and Cm = (µ ≠ ν)≠1[(µ + dν)/2 + γ2

c /λ2
c ]. The numerical solution

of Fig. 4.3B is close to this limit. Note that even with a negligible exponential cutoff, the
predicted α < 0 contradicts experimental observations.

4.5 Discussion

The model introduced in this paper describes the stochastic nature of the immune dynamics with
a minimal number of parameters, helping interpret the different regimes. These parameters are
effective in the sense that they integrate different levels of signaling, pathways, and mechanisms,
focusing on the long timescales of clone dynamics. We assumed that they are general enough
that different cell types (B and T cells) or subsets (naive or memory) can be described by the
same dynamical equations despite their differences. How do refined models including these
differences affect our results?

Naive and memory cells differ in their turn-over rate, i.e. their death rate, memory cells
being renewed at a pace 10 times faster than naive ones [42]. In our model, this difference is
reflected in a higher birth-death noise for memory cells. We have shown that this noise had
no effect on the tail of the clone-size distribution for clone-specific fitness (SI Fig. S5), while it
was important for the case of a cell-specific fitness, where birth-death noise contributed to the
distribution to the same extend as fitness fluctuations. However, some repertoire datasets mix
both naive and memory sets, and one could wonder whether our results hold for such mixtures.
To examine this question, we simulated a simple two-compartment model where naive cells get
irreversibly converted into memory cells when their stimulation is above a certain threshold
(see SI, Appendix K for details). We found that, when fitness was clone specific, the clone-
size distribution of the mixture and that of memory cells alone still follows a power law, while
that of naive cells only does so when conversion to memory upon stimulation is partial (SI Fig.
S12). Repeating the same analysis for the cell-specific fitness model, we found that clone-size
distributions for each phenotype differed according to their respective birth-death noises, with
a longer tail for memory cells as expected from their higher turn-over rate.

The main difference between B and T cells ignored by our model is that B cell receptors
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Figure 4.3: Clone size distributions for populations with a cell specific fluctuating phenotypic
fitness. A. Cumulative distribution of clone sizes for moderate phenotypic heritability (λ≠1

c ).
The distribution is power-law like for small clone values and drops above a cut-off around 0.01
of clone size probability. An experiment that does not sequence the repertoire deeply enough
could report a power law behavior (see zoom). Parameters are ν = 0.17 days≠1, µ = 0.3 day≠1,
λc = 0.4 days≠1 and γc = 0.5 days≠3/2. C0 = 2 for all three graphs. B. An example of a
distribution of clone sizes from a cell-specific model with very low environmental noise, close to
the pure birth-death limit. The distribution is flat (α = 0) and then drops exponentially. It
does not resemble experimental data. Parameters are ν = 0.1 days≠1, µ = 0.3 days≠1, λc = 2
days≠1 and γc = 5 days≠3/2. C. Value of the cumulative distribution at the exponential cut-off
as a function of the speed of environment variations λc, for different birth-death noise levels.
Parameters are f0 = ≠0.998 days≠1 and f0λ2

c/γ2
c = 0.998.
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accumulate hypermutations upon proliferation. We studied this effect by allowing proliferating
clones to spawn new clones with slightly modified affinities to antigens (see SI, Appendix L).
The resulting clone-size distribution still follows a power-law (Fig. S13), although with a slightly
smaller exponent due to increased stochasticity.

Another simplifying assumption of our model is that the dynamics reaches a steady state.
This may be challenged by the decay of the thymic output sC with age. To estimate the
importance of this effect, we simulated the model of a clone-specific fitness with an exponentially
decaying source term, combined with a decreasing |f0| chosen to keep the population constant
on average (see SI Appendix M). The clone-size distributions at different points in time, shown
in Fig. S14, still follow a power law. Interestingly, the exponent α is predicted to decrease with
age, consistent with α Ã |f0|.

We showed that the relevant sources of stochasticity for the shape of the clone–size distribu-
tions fall into two main categories, depending on how cell fate is affected by the environment.
Either the stochastic elements of clone growth act in a clone-specific way, through their receptor
(BCR or TCR), leading to power-law distributions with exponent Ø 1, or in a cell-specific way,
e.g. through their variable level of sensitivity to cytokines (and more generally through any
phenotypic trait affecting cell fitness), leading to exponentially decaying distributions with a
power-law prefactor. These two types of signals (clone specific and cell specific) are important
for the somatic evolution of the immune system [83, 84, 85, 86, 87, 74] and our analysis shows
that the shape of the clone size distribution is informative of their relative importance to the
repertoire dynamics. It provides a first theoretical setting and an initial systematic classification
for modeling immune repertoire dynamics. Our method applied to high-throughput sequencing
data can be used to quantify how much each type of signal contributes to the overall dynamics,
and what is the driving force for the different cell subsets. For example, although it is reason-
able to speculate that clone-specific signals should dominate for memory cells (through antigen
recognition), and cell-specific selection for naive cells (through cytokine-mediated homeostatic
division), the relative importance of these signals for both cell types is yet to be precisely quan-
tified, and may vary across species. A clear power law over several decades would strongly hint
at dynamics dominated by interactions with antigens, while a faster decaying distribution would
favor a scenario where individual cell fitness fluctuations dominate. Applying these methods to
data from memory cells can give orders of magnitude for the division and half-life of memory
lymphocytes, as well as the typical number of cells C0 from a clone that are stored as memory
following an infection.

The application of our method to data from the first immune repertoire survey (B cell re-
ceptors in zebrafish [46]) suggests that clone-specific noise dominates in that case, allowing us
to infer a relation between the dynamical parameters of the model from the observed power-law
exponent ¥ 2. However, there are a few issues with applying our method directly to data in the
current state of the experiments. First, the counts (i.e. how many cells have the same recep-
tor sequence and belong to the same clone) from many high-throughput repertoire sequencing
experiments are imperfect because of PCR bias and sampling problems. New methods using
single-molecule barcoding have been developed for RNA sequencing [88, 89, 63], but they do
not solve the problem entirely, as the number of expressed mRNA molecules may not faithfully
represent the cell numbers because of possible expression bias. In addition, most studies (with
the exception of [90]) have been sequencing only one of the two chains of lymphocyte receptors,
which is insufficient to determine clone identity unambiguously. As methods improve, however,
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our model can be applied to future data to distinguish different sources of fitness stochasticitiy
and to put reliable constraints on biological parameters. Studying clone size distributions in
healthy individuals allows us to characterize signatures of normally functioning immune sys-
tems. By comparing them to the same properties in individuals suffering from immune diseases
or cancer, our approach could be used to identify sources of anomalies.

Thanks to its generality, our model is also relevant beyond its immunological context, and
follows previous attempts to explain power laws in other fields [91, 92, 93]. The dynamics
described here corresponds to a generalization of the neutral model of population genetics [9]
where thymic or bone marrow outputs are now reintepreted as new mutations or speciations,
and where we have added a genotypic or phenotypic fitness noise (receptor or cell-specific noise,
respectively). It was recently shown that such genotypic fitness noise strongly affects the fixation
probability and time in a population of two alleles [94, 95]. Note that, since new thymic or
bone marrow clones are unrelated to existing clones, there are no lineage histories, in contrast to
previous theoretical work on evolving populations in fluctuating fitness landscapes [96, 97, 98].
Our main result (Eq. 4.6) shows how fitness noise can cause the clone-size distribution (called
frequency spectrum in the context of population genetics) to follow a power law with an arbitrary

exponent > 1 in a population of fixed size, while the classical neutral model gives a power law of
exponent 1 with an exponential cut off (as shown in our exact solution with γc = 0). Our results
can be used to explain complex allele frequency spectra using fluctuating fitness landscapes.
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Chapter 5

Random networks of immune
systems: structure and selection

This work is destined to publication once more material has been produced, some of the questions

are not answered yet.

This section contains unpublished work that goes beyond the steady state mean-field ap-
proach of the previous chapter. Indeed, it has been proven that non-obvious effects can arise
in population dynamics due to discretization and spatial dimensions [99] for instance. I first
describe how the niche structure of the immune system is related to an increase in fitness of
clones with time. In the second part, I investigate the structure of the graph of interactions
between cells of the immune system and the antigenic environment and study its effect on clone
size distributions. Chapter 4 was mostly dedicated to the dynamics of effector cells and fluctu-
ating pathogenic environment. This chapter focuses on a fixed environment and the dynamics
and the competition for self-peptides (although some results can be used in both systems).

5.1 Selection and fitness change with de novo mutations

5.1.1 Introduction

In standard Darwinian competition dynamics, mutations occur from existing clones and are
selected through competition. Sweeps and selection of fitter and fitter individuals have been
studied in this case extensively (see for instance [100] for a recent example). In many systems,
however, most new genotypes do not come from the existing clones but are produced by in-
dependent external sources. Such situations can arise in populations of animals or bacteria if
members of new clones wander into the system at a rate much higher than the rate of mutations.
The main motivation for this model is the immune system. The most obvious fitness factor for
adaptive immune cells is their receptor (BCR or TCR). This receptor is inherited by daughter
cells during clonal expansion (with the exception of hypermutations), so no new genetic material
is produced by direct mutations from existing clones. Of course, errors in replication can occur
but the contribution from such errors compared to introduction of new materials by the thymus
or the bone marrow is very small with the exception of the enhanced level of mutations during
B-cell clonal expansion with hypermutations. Indeed, the effect of point-mutations on receptors
is very small compared to the high variability of VDJ recombinations [39]. The thymus and bone

57
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marrow continuously provide the system with new genetic lineages. Antigen binding is clearly
essential for the division and survival of effector cells and it also has been proven to contribute to
naive repertoire homeostasis [43]. The fight for antigenic resources calls for a definition of clone
fitness. In this section, I present a model of fitness change in systems with de novo mutations
and discuss its application to the immune system.

The main difference between this model and the previous one is that it no longer assumes
that the environment fluctuates. This model is mostly motivated by the naive immune system,
where self-peptides can be assumed to be constant. It can also be used as a basis for a model of
the pool of memory cells,where the pathogenic environment varies slowly.

5.1.2 From biology to model

This model assumes the existence of a shape space of receptors and antigens that is closely
related to fitness. This shape space is assumed to have a given dimension d, and both clones
and resources (antigens) are represented by a position in R

d in this shape space. Clones compete
for resources but can only access them if they are close, where closeness is defined in terms of
an interaction kernel. The interaction kernel is a function of the positions of the antigen and
the receptor in shape space and gives a value that represents the strength of their interaction.
It is also assumed that the clonal reservoir, from which newcomers are introduced, is large
enough and varied enough to never send the same genetic material twice. So the equations that
describe the evolution of existing clones have no external source terms because the only source
of new cells in the clone is division. The model assumes that the resources in shape space are
drawn from a given probability distribution. This recognition space is an effective projection of
the high dimensional genotypic space onto the function of the lymphocytes that is the binding
to antigens. In the simple case where the expected density of resources in shape space is low
enough (and there is no region in shape space where the probability density accumulates), then
the resources can be assumed to be far enough from each other to create independent niches. In
this limit it is possible to derive exactly the distribution of fitness of the main clones occupying
these niches. It can then be used as a first building block for more complex models, including
niches that partially overlap (some clones can access different resources) in the direction of [65],
but on a global population level.

One of the goals of this model is to discuss aging in the immune system and see if clone
size distributions contain hints of the structure of shape space and of the resource distributions.
The model presented here has a fixed antigenic space, extension to varying antigenic space are
discussed at the end of the section.

5.1.3 Model of a niche

Let us consider a system made of N independent niches. Independent here means that each
niche is approximatively undisturbed by whatever is happening in other niches. A system of
independent niches is locally reduced to one niche. To develop ideas, let us consider a system of
clones i œ I (cells or individuals with the same receptor sequence) with population size Ci and
fitnesses fi. Let us also assume exponential growth as a function of fitness:

∂tCi = fiCi +
Ò

(µ(fi) + ν(fi))Ciξ, (5.1)
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where µ and ν are respectively the birth and death rate of the cells of the clone, and ξ is the
standard Gaussian white noise. In general there can be different parameterizations of fitness,
the simplest one is to define it as the exponential growth factor (as is done here). The fitness
is directly related to the birth and death rates: fi = µ(fi) ≠ ν(fi). fi is a decreasing function
of the number of competitors and their fitness. The second term accounts for the birth-death
randomness in the population and can be ignored in the first approximation as being much
smaller for large clones than the fitness variations.

In a fixed environment with no arrival of new clones, the system will equilibrate to a state
where one clone Ciú outcompetes all others in the limit of long times. In a system kept out
of equilibrium by the arrival of new clones, at any given time, one clone will have the highest
fitness. In a first approximation, we assume that the arrivals are separated by long enough time
intervals. Then at any given time, there is one clone dominating the niche and all the other
ones are outcompeted and decaying at rates depending on their relative fitness compared to the
dominant clone. As time goes by and fitter and fitter individuals are selected (assuming the
fitness distribution of new individuals is constant), the expectation time for arrival of a clone
fitter than Ciú goes to infinity and we are in a regime of the separation of the time scales.

Therefore, on long time scales, we can assume that in each niche one clone is selected as the
dominant, while all the other ones are slowly decaying after entering the system. For each niche
j, we set the winner clone index to be ij = iú and so we get a bimodal distribution of clones.
Some of them belong to a pool of winners

W = {Cij }j , (5.2)

and all the other clones belong to the (a priori much larger) pool of losers L.

5.1.4 The dynamics of the winners’ pool

Let us consider a set of N niches (where N ∫ 1) and the distribution ρ(f, t) of fitness f in
the W pool (and Γ(f, t) the cumulative distribution of ρ(f, t)). We also define ρ0(f) as the
distribution of fitness f in the newly introduced clones (assumed to be independent of time),
Γ0(f) its cumulative distribution function, and θ the number of new clones introduced per time
unit. Intuitively, Γ(f, t) selects and keeps a limited number of the highest extreme values of
Γ0(f) up to time t.

Having several independent niches is completely equivalent to replicating several times the
niche process. The ensemble average - ρ, is the same as a time or realization average over
one niche. The probability for one niche j to have its dominant clone replaced is equal to the
probability of having a new clone entering the niche in this time unit (θ/N) times the probability
for this clone to be better than the existing one 1 ≠ Γ0(fij ).

Following the above argument we obtain the Master equation for the distribution of fitness
of clones in the winners’ pool:

∂tρ(f, t) =
θ

N

A

ρ0(f)
⁄ f

0
df Õρ(f Õ, t) ≠ ρ(f, t)

⁄ +Œ

f
df Õρ0(f Õ)

B

, (5.3)

assuming fitness can only be positive (other cases would only change the integration boundaries).
In particular, if there is a cutoff in the fitness distribution, the integral can either be cut or
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Figure 5.1: Simulation and prediction (Eq. 5.6) of the cumulative distribution of fitness of the
largest clone in independent niches with a Gaussian distribution of fitnesses of new clones. In
blue and black are the results of simulations with error bars.The dynamics are simple with
exponential growth and linear fitness factor (Eq. 5.8). Parameters are: Nú = 105 individuals,
introduction size 2 individuals, introduction rate is 10 new clones per day, new fitness is drawn
from Gaussian with mean 1 and standard deviation 0.5. The number of niches is 1000. Note
that increasing the number of niches will decrease the size of the error bars.

assumed to be 0 above a certain value. Using the definitions of the cumulative distribution
functions and rewriting Eq. 5.3, we obtain

∂tρ(f, t) =
θ

N
(ρ0(f)Γ(f, t) ≠ ρ(f, t)(1 ≠ Γ0(f))) . (5.4)

The right hand side is the derivative of a product. Integrating over f on both sides we get
that

∂tΓ(f, t) = ≠ θ

N
Γ(f, t)(1 ≠ Γ0(f)). (5.5)

Renormalising time to define s = θt/N we find

Γ(f, s) = Γ(f, 0)e≠Λ0(f)s, (5.6)

where Λ0 = 1 ≠ Γ0. We obtain for the distribution of fitness of clones in the winner pool

ρ(f, s) = e≠Λ0(f)s (ρ(f, 0) ≠ Γ0(f, 0)ρ0(f)s) . (5.7)

5.1.5 The case of independent niches

We simulate the dynamics of independent niches. Each individual belongs to one niche and
competes only with the other individuals of the niche. Each new clone is introduced with a
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new random fitness drawn from a fixed distribution. In Fig. 5.1, the distribution of new fitness
is Gaussian but the result holds for any distribution. A non-Gaussian fitness distribution will
simply lead to a different shape. The dynamics are taken to be

∂tCi = fiCi ≠ N

Nú
Ci, (5.8)

where Nú is the carrying capacity of the system when the mean fitness is equal to 1 (and is
proportional to the carrying capacity for other values of the mean fitness). Different coefficients
or exponents for the homeostasis term (the second term) will yield the same results. We simulate
this system and find perfect agreement with the theory for the distribution of fitness of the largest
clone of each niche (see Fig. 5.1).

Let us now consider a slightly more complex case. We describe the space of genotypes as
a low dimensional space. Resources are allocated in this genotype space and each new clone
comes in with a random position in this space. The fitness is then a decreasing function of
the distance to resources, and each clone competes with other clones only through fitness. So
effectively clones compete only with clones that are close enough to the same resources. In this
limit, clones that are not drawn close enough to any resource quickly die, and there are empty
regions in shape space (see Fig 5.3 A). We consider the limit in which the fitness function decays
faster than the typical distance between two resources (in the shape space), and statistically
each resource creates its own independent niche.

For each niche, the relevant fitness parameter is simply the distance to the resource. We
simulate this system for a two dimensional genotype space with a Gaussian interaction kernel
(fitness decays as the exponential of the square of the distance to the resource). Clones locally
compete for resources through the interaction matrix K. The interaction term between clone i

and resource j is given by
Ki,j = e≠di,j/l2 , (5.9)

where l is the typical distance, above which clone-resource interaction decays. It is smaller than
the typical distance between two resources. di,j is the Euclidian distance. The choice of the
Euclidian distance is arbitrary because recognition space is an effective space and any other Lp

norm could also be valid. In the simulation example of Fig. 5.2 I have chosen this to be the
Euclidian distance. We assume periodic boundary conditions to avoid artificial boundary effects
on the distribution of clones. Resources are randomly and uniformly distributed in space, and so
are the positions of initial and new clones. We then describe a typical Lotka-Volterra dynamics
with competition where each resource has availability

Fj =
1

1 +
q

i KijCi
(5.10)

and each clone feels the stimulus
Si =

ÿ

j

KijFj . (5.11)

This model is inspired by the classic models of [57, 58] described in Chapter 3.3.2.
Instead of writing the equations in terms of fitness, we write them directly in term of the

distance to the local resource (as fitness here is a decreasing function of distance). In order to
keep the function increasing, we write the equations in terms of the inverse distance. The goal
is now to determine what is the probability for a newcomer to enter a niche and beat all its
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Figure 5.2: Simulation and prediction for Γ, the cumulative distribution of fitness of the largest
clone in independent niches on a two dimensional shape space with Gaussian kernel. The
prediction is given by Eq. 5.6 with Γ0 defined as in Eq.5.12. Parameters are: V = 1, l = 0.01,
θ = 8 day≠1, α = 1 day≠1, β = 0.01 day≠1.

competitors in this model. To beat all competitors, a newcomer must enter a disk of radius
smaller than the best existing clone’s distance to the resource.

We expect again competitive exclusion in each niche. The probability for a newcomer to be
at a distance smaller than d from the resource is the ratio of the volume of a sphere of radius
d to the total volume V of shape space (in the case of infinite shape space volume and infinite
introduction rate V is a ratio of these constants). So the cumulative distribution function of the
fitness of the newly introduced sequences is a function of the inverse distance

Γ0(1/d) =
fin/2dn

Γ(n
2 + 1)V

, (5.12)

where d is the distance to the resource, and n is the dimension of shape space. A discussion of
the value of n in realistic biological terms is given in [14]. The formula is simply the ratio of the
probability to be within the hypersphere of radius d to the total volume.

We check the validity of Eq. 5.12 with simulated data in Fig. 5.2. The cumulative distribution
solution is not exact, but only true in the limit of low resource density, which explains the small
discrepancy between the prediction and the simulation. Nevertherless we find good agreement
with the theory.

5.1.6 Prospects and discussion

This simple model can be used as a building block of more complex models of niche interactions
and selection. These possibilities have not been explored yet due to lack of time.
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A first direction is to relax the assumption of fully independent niches and allow the density
of resources to increase. The network becomes much more complex. A realistic goal is then to
derive an approximate formula based on the connectivity of the network by accounting for the
number of resources available to each clone and thus the number of competitors a newcomer
would have to overcome. However, as soon as clones rely on several resources for survival, then
non-trivial niche occupation replacement dynamics occur (see Fig. 5.3 A for an example). As
local competitors have extra resources with availability depending on clones that do not compete
for the local resource, the simple equations of the previous sections do not always apply.

This could constitute a good model of the naive repertoire, as it is reasonable to assume
that the self-antigen naive cells use as resources are quite stable over a clone’s lifetime. Such
a model would give insight into the selection of fitter and fitter naive clones with aging, and it
would predict an increase in clone size with age that has been observed.

However, aging also includes the reduction of thymic and bone marrow outputs that are
alternative explanations to increase of clone size with age. Recent studies have proved that
infection by Cytomegalovirus (CMV) is strongly correlated with immunosenescence, the decay
of immune functions with aging (see [101] for a complete review on the topic). CMV triggers
recurrent inflammation at old age. The exact mechanism that relates it to immunosenescence,
and in particular, to the decrease of clonal diversity is still a mystery. The model presented
above could be used to represent the memory pool with a fixed antigenic memory. In that case
CMV could be an overabundant resource or a resource that has an especially large interaction
radius. This model could be used to investigate the effect of this abundant resource on clone
size distributions and shape space coverage by the immune system on long time scales and find
out if constant inflammation is enough to trigger large-scale population effects in fitness.

A difficulty that arises is that, at long times, the waiting time for niche winner replacement
goes to infinity. At the same time, the fitness difference between the newcomer and the existing
large clone goes to 0, and so the time it would take a fitter clone to grow bigger than the existing
one and outcompete it goes to infinity. The interaction of these time scales must be included
with care in model building.

A second direction for model building is to introduce time-varying resources. A model with
separation of time scales between competitive exclusion and resource variations could still be
tractable. It would provide an interesting model of the complete immune system (including
effectors and memory) and should be compared to the steady state of Chapter 4.

5.2 Fine structure of networks and clone size distributions

Some of the main actors of the immune system - B-cells and T-cells - are divided into three
different pools: naive, effector and memory cells. The naive cells, being those that have not yet
encountered a pathogen they bind to, rely on large diversity to ensure an immune response to
any new pathogen invading the organism. The binding ability is encoded in a receptor located
on the surface of the cell and adapted to a few pathogens. This receptor consists of an alpha
and a beta chain almost uniquely built during lymphocyte production (in the thymus or in the
bone marrow) and transmitted through divisions. The aim of this analysis is to explain and
predict clone size distributions as a result of assumptions made about interclonal and intraclonal
competition. I will show that those two types of competition have very different effects on the
clones in the populations.





5.2 Fine structure of networks and clone size distributions 65

How does this competition occur? In order to remain alive, naive cells require short binding
events with peptides presented by the self so the organism can be rid of the least active clones.
Here again, binding affinity depends on the receptor that usually responds to a few peptides.
This necessary encounter with the self - called tickling - is a source of competition between clones
and within clones for the limited resources that are these self-peptides. The intricate network
of interacting cells and peptide reservoirs generates complex, non-linear dynamics for the clone
populations while the constant introduction of new clones due to thymic or bone marrow output
keeps the system out of equilibrium. A perturbation around mean-field solutions is explored
here, trying to answer some of the following questions. What are the typical sizes and lifetimes
of a clone? What is the essential competition mechanism? What is the typical distribution of
clone sizes? In what range of parameters are these results valid and what should we expect for
different values of these parameters?

The model is quite faithfully adapted from [67] though used in a different context, under dif-
ferent assumptions and to a broader applicability. This model differs from the ones in Chapter 4
because they do not directly average out the competition to form independent sets of equations.
The competition is modeled explicitly and the mean-field independent equations are derived as
a limit of the model. This means that the fluctuations in fitness can come from different sources.
One of them is fluctuations of the resources as explored in Chapter 4. The possibility explored
here is to assume the environment is fixed but the system is still out of equilibrium because new
clones are introduced, disturbing the graph structure and creating fluctuations.

5.2.1 Modeling competition: antigens and lymphocytes

The naive lymphocyte population (typically 4 · 1011 for T-cells) in adult humans is divided
into p clones labeled with an index i œ [1; p] with populations Ci. The antigens presented by
the self are indexed by j œ [1, q], their important variable is their availability to bind Fj which
represents the fraction of antigens that are not currently bound to a lymphocyte. These antigens
do not change over time since this model does not intend to represent invasions or a variable
environment but the interaction with the self. The information on the network is the binding
probability of each antigen with a lymphocyte. It is encoded in a p ◊ q matrix K called the
interaction matrix, where Ki,j is the binding probability of the antigen j with lymphocyte i.

Writing down the partition function for binding equilibrium gives immediately the availability
of antigens:

Fj =
1

1 +
q

i Ki,jCi
, (5.13)

as described in 5.1.5. The lymphocytes are maintained alive by binding to self-proteins so
we need to compute the probability of these encounters. Each lymphocyte is tickled by the
encounters with the self proportionally to a tickling factor Si that only depends on the clone it
belongs to. The tickling factor Si is given (again in a similar way as in 5.1.5) by

Si =
ÿ

j

Ki,jFj . (5.14)

5.2.2 Dynamics of the system

With these definitions at hand, it is possible do define the dynamics of the system. Let us
consider a single clone i. The cells can divide with rate α (in divisions per day) and die with a
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modified rate β
Si

that is lower if the binding events are more numerous. The clone population
dynamics are given by

dCi

dt
= αCi ≠ β

Si
Ci. (5.15)

Si acts on the death rate because tickling is a survival signal rather than a proliferation signal.
The form of Eq. 5.15 is a strong assumption. Different choices should be explored to prove that
the results do not depend strongly on the specifics of Eq. 5.15.

Another important variable is N , the total size of the lymphocyte population. Here it is
assumed that it is constant since its variations scale over years and are irrelevant in this short
time-scale dynamics [38]. New clones are constantly produced in the bone marrow (B-cells) and
the thymus (T-cells). We will assume that these new clones all present original receptors (the
probability of seeing a new clone with an already existing receptor is extremely low) and that
their population when entering the system is given by a known distribution s(C) (the choices of
distributions will be discussed later).

5.3 Clone size distributions in limits of the niche structure

Within an individual, clones compete and are selected, fitness being here the ability to bind to
the self. In this small evolutionary system, a wide diversity is preserved and the fittest clone
does not sweep over the whole population. The reason for this is essentially three-fold and
quite similar to the reasons why sweeps do not happen in traditional clonal evolution (without
the spatial aspect). First, due to birth and death stochasticity, the life span of a clone is too
short, and the division rate too small (in the naive repertoire) to allow its population to grow
up to a macroscopic fraction of the cell population. The second argument (which can also be
seen as a time scale argument) is that the constant introduction of new clones brings too many
competitors for one to completely sweep over the others. The last argument - the essential
argument for the dynamics - is that since clones are specific to a few antigens, niches harbour
different clones that are locally fit. It is from this point of view that our perturbative analysis
will be carried out.

5.3.1 Degenerated cases: fully specific and nonspecific models

In this first section, we derive results for two extremely simplified models that, though defined
differently turn out to be equivalent.

The first model is a mean-field approximation of the interactions and competition. Let us
assume that all clones can bind with equal probability to any antigen. The lymphocytes are
nonspecific and mathematically speaking, this assumption means that K is a full matrix with
all entries equal to a unique value k.

Let nA be the number of clones that we assume to be constant. Then the availability and
tickling factor are uniform and respectively equal to

Fj = F =
1

1 + kN
; Si = S =

knA

1 + kN
. (5.16)

The clones are all equality fit so, summing over all clones in Eq. 5.15, at steady state the average
total cell population Nú is the solution of

0 = ∂tN
ú =

5

α ≠ β(1 + kNú)
knA

6

Nú + s, (5.17)
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where s is the average number of new cells entering the system per unit time. The solution of
the equation is

Nú =
αnA

2β
≠ 1

2k
+

Û

3

1
2k

≠ αnA

2β

42

+
nAs

β
. (5.18)

The model is fully deterministic except for birth-death noise. If the birth-death noise is small
because the dynamics are slow and all new clones enter at size C0, then the system has a source
and deterministic dynamics with an absorbing barrier in 0. We obtain the distribution of clone
sizes from detailed balance:

ρ(C) = N
1

C log C0
for C < C0, and 0 for C > C0. (5.19)

Note that this distribution has a cutoff at C0 and is not heavy tailed. Including the birth-
death noise reproduces the Langevin equation of drift with birth-death of Appendix A.1 and its
solution.

The real system, however, is not so a simple because specificity generates much more complex
dynamics.

Let us now assume that clones are entirely specific and can only bind to one and only one
antigen. Then each clone is equivalent to a smaller version of the preceding case and the formula
given above for the total population holds for the population of each clone.

5.3.2 Perturbation, global effects and fitness change

In this section I derive the central equation of Chapter 4 from the competition equations (the
equations involving S and F explicitly) using a mean-field approximation. We will see that this
mean-field approximation does not include the specific effect of intraclonal competition and fails
to predict correctly the clone size distribution.

Let us write the affinity as a perturbation of the mean-field case for all (i, j) œ [1, nA] ◊ [1, q]

Ki,j = k + δki,j , (5.20)

where ki,j is small in comparison to k. This assumption is not unreasonable: as the clone growth
is exponential, even a small difference in fitness will create large variations at long times.

We must now assume that all clones are are a priori equally fit. The idea is that no receptor
has any intrinsic advantage (the ones that are non functional have already been ruled ruled
out in negative selection) but that fitness is due to the random number of competitors and the
fluctuations of the graph topology. It means that Èδki,jÍ = 0 (where the average is taken over
different realizations of the clone-antigen interaction random variable).

The stochasticity induced by new arrivals and birth-death processes is amplified by the non-
linear dynamics of the system. I present below a direct calculation that shows that it predicts
power-laws. However we will see that the approximation upon which the calculation relies breaks
when intraclonal competition starts to matter.

Expanding F and S using Eq. 5.20, the tickling factor can be divided into two parts:

S = Sú + δSi, (5.21)

where

Sú =
knA

1 + kN
+

k

(1 + kN)3

ÿ

j

(
ÿ

l

δkl,jCl)2 +
1

N(1 + kN)2

ÿ

j,l

δ2
l,jCl (5.22)
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and

δSi =
ÿ

j

δki,j

1 + kN
≠ 1

(1 + kN)2

ÿ

j,l

δkl,jδki,jCl ≠ 1
N(1 + kN)2

ÿ

j,l

δ2
l,jCl. (5.23)

This equation is obtained by Taylor expanding the definition of S around its average Sú.
Sú does not depend on i, it is a global effect and is treated as the systematic drift of the clone
population. δSi is due to specific interactions with a varying environment, its correlation time
scale is of the order of the clones average lifespan. We model this interaction using a white noise
proportional to a factor computed from the variance of Si and the lifespan of the clones.

5.3.3 Fokker-Planck equation

The expansion of the tickling factor can lead to a dynamical equation that is formally equiv-
alent to the simplified (delta-correlated fitness noise) version of clone-level noise dynamics in
Chapter 4. The precision equation is Eq. A.24, given in Appendix A.6. This perturbative ap-
proximation does not give an accurate description of the distribution of clone sizes for large
clones as we will see in 5.3.4. The clone size follows the dynamical stochastic equation

∂tCi = αCi ≠ β

Sú
Ci +

βCi

(Sú)2

Ô
Γξ, (5.24)

where ξ is a Gaussian white noise and the convention for stochastic integral is Stratonovitch
because the noise for each clone is extrinsic. Eq. 5.24 corresponds to Eq. A.24 with parameters
f0 = α ≠ β/Sú and σ =

Ô
Γβ/(

Ô
2(Sú)2).

The derivation of the solution is given in Appendix A.6. Under the simple assumption that
all new clones have the same population C0 we get the power law:

ρ(C) =
1

aσ2

τ

Ca

3

1 ≠ 1
C0

4

for C > C0 (5.25)

and
ρ(C) =

1
aσ2

τ

C0

3

1 ≠ 1
Ca

4

for C < C0, (5.26)

where

a =
f0

σ2
. (5.27)

This solution has the same form as the main result of Chapter 4. Its novelty is that it is
formulated in terms of a precise description of competition. The parameters Γ and Sú do not
appear in the description of Chapter 4.

Here τ is the number of new cells produced daily. In the mean-field picture, the small,
exponentially decaying clones constitute most of the repertoire but large population explorations
happen often enough to compensate the most frequent behaviour. We will see in the next section
that this picture is not accurate: intraclonal competition was not accounted for in the calculation
and it creates a spontaneous scale in the distribution, breaking the power-law.

5.3.4 Interclonal and intraclonal competition

The picture of Eq. 5.24 explains how scale free distributions emerge from fluctuations of the
interaction graph of clones and antigen through interclonal competition but does not explicitly
account for intraclonal competition.
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Figure 5.4: Distribution of clone sizes from the simulation of the competition model described
in 5.2.1. The parameters of the simulations are α = 1 day≠1, β = 0.0001 day≠1, C0 = 10, s = 20
clones per day.

Even in the context of a scale free interclonal competition where clones can expand to very
large populations thanks to exponential growth, intraclonal competition introduces a natural
scale in the system. If each clone has a typical number Cc of competitors and a size C at which
this competition makes its population stable, the model of the previous section assumes that
all the competitors can randomly disappear, letting the clone grow indefinitely. Let us assume
a situation where all competition for a resource is gone through random events in other niches.
Only one clone is left alone in the niche, once this clone has grown large enough to reach a size of
the same order as Cc, intraclonal competition is equivalent to the former interclonal competition
and so the growth of the clone is stopped.

So the typical number of competitors creates a natural scale in the distribution and an
exponential cutoff to the power law. This effect can be observed in simulations (see Fig. 5.4). The
exponent of the power-law region of the distribution is very small since in explicit competition
models, f0 is always small because it is the result of the equilibration of birth and death through
competition. In the distribution in Fig. 5.4 a power-law behaviour is observed for the first
three decades of clone sizes with exponential cutoff due to the effect of intraclonal competition.
Only a high number of competitors is consistent with large power-law distributed regions in
experimental data.

In that context the picture of an infinite dimensional shape space for the matrix Ki,j is
not very reasonable and the matrix needs to have a specific topology: if two clones share one
resource, they are more likely to share other resources than two random clones. For a random
event to wipe out such a high number of competitors requires that their population evolutions
are very correlated. This can only happen in a low dimensional shape space as the number of
directions in the graph the competitors can use for extra resources is reduced.

The next step for this model is to quantify the cutoff of the power law from intraclonal
competition and compare it to experimental distributions of naive repertoires. This has not
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been done as not reliable data is yet available.
Naive repertoires have recently been sequenced and their distributions of clones sizes seem

to have an exponential decay for large clone sizes (from Benny Chain, private communication).
The models above could explain those distributions as competition in a fixed environment.



Chapter 6

Development in Drosophila embryos

Parts of this section directly use material from Ferraro et al in [102].

6.1 Patterning in early embryos

Adult organisms have a complex structure with several symmetries along different axes. Yet
this structure is formed from an initial egg that one would naively imagine structureless and
isotropic. Going from the egg to the adult requires several genetic and epigenetic mechanisms
to break the symmetry of the egg and implement the blueprint of development. The structure
is built by phenotypic variation of cells from one location to another in the embryo and so it is
essential that cells estimate their position to influence their cell fates.

The same is true of Drosophila melanogaster. In the hours following egg laying cell divisions
in Drosophila embryos are synchronous (they actually spread in a fast wave across the embryo)
so that the early life of the embryo can be divided into numbered nuclear cycles corresponding
to the time between mitoses. Divisions first happen in the center of the embryo. At nuclear
cycle 6, nuclei start their migration from the center to the periphery of the embryo and spread
in a single layer at the surface of the embryo to give rise after about one hour of development
to the syncytial blastoderm (see Fig. 6.1A). During each nuclear cycle the number of nuclei
is defined very precisely. Each nucleus needs to know where it is located in the embryo to
determine its fate. Positional information is encoded and read in concentrations of different
proteins called morphogens that activate or repress a set of initially activated genes called gap
genes. Together, these concentration gradients form a map of the embryo that nuclei can read
[103]. The mechanism that processes concentration of proteins to alter the fate of the nuclei
is a series of gene regulatory networks. The accuracy and reproducibility of these processes is
paramount to ensuring the build of a healthy organism as they bridge the gap between local
processes such as migration or differentiation with global properties (e.g. shape, patterns).

Information theory is a natural framework to describe these phenomena. Positional infor-
mation can be defined as the mutual information between the value of the cue the nucleus uses
to determine its fate and the position in the embryo ([104, 105]) where mutual information I

between two random variables X and Y is defined as

I(X, Y ) =
⁄ ⁄

p(x, y) log
p(x, y)

p(x)p(y)
. (6.1)

It quantifies the amount of information the morphogen gradient can provide about position.

71
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In this framework it is possible to evaluate the performance of a readout of the morphogen
gradient and ask what class of patterning is optimal from the information point of view ([106]).
It is also possible to compute the mutual information between the input and the output of gene
regulatory networks and evaluate their influence on the efficiency for gradient readout. Much
work has been done in that direction in particular to define and find optimal networks with low
complexity ([107, 108]).

The question of information is even more complex in the case of embryo development as
each mitosis may erase most of the information stored during the nuclear cycle limiting the time
available for the nucleus to accurately read its position.

In this work I do not focus on information theory as the goal is really to infer the dynamics of
the gene networks from experimental data rather than study their efficiency from a theoretical
point of view. I will to a certain extent discuss the implications of these results on positional
information in the nucleus.

6.2 Development in fly embryos: Bicoid and hunchback

The Drosophila embryo has been used for decades as an excellent model to understand how
cell identity is determined and maintained during development. The key regulatory networks in
Drosophila include (among others):

1. two morphogenic transcription-factors: Bicoid and Dorsal and all the networks they ac-
tivate downstream that are essential, respectively for Antero-Posterior (AP) [109] and
Dorso-Ventral (DV) [110, 111] patterning,

2. the transcription cascade responsible for the formation of muscles (myogenic program)

3. the chain of reactions responsible for neural patterning.

Very early in embryonic life the mother deposits bicoid mRNA at one edge of the embryo. As
the translated proteins diffuse through the embryo they create a gradient. Bicoid activates the
transcription of the hunchback gene, a gap gene that codes for the development of the antero-
posterior axis. The region where hunchback is strongly expressed will form the anterior part of
the Drosophila body and the region where it is not expressed the posterior (see Fig 6.1 B). In
the middle region of the antero-posterior axis only a fraction of nuclei express the hunchback

gene. The slope of hunchback expression sets a border at the center (the exact definition of this
border is ambiguous and will be discussed). It is the accuracy of the boundary location and its
sharpness that define the efficiency of the readout.

The accuracy of the antero-posterior boundary formation process suffers from two limitations:
one is the precision with which the regulatory network can read Bicoid concentration (it will be
discussed in Chapter 7), the other are the fluctuations of the gradient of Bicoid concentration
itself. The following section reviews results on the accuracy of diffusion limited processes.

6.3 The Berg and Purcell limit

In the setup of the hunchback readout of the Bicoid gradient, the hunchback gene sits in the
nucleus surrounded by diffusing bicoid molecules at a concentration c̄. Bicoid can bind to the
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Figure 6.1: Top: Cell division and migration in the first two hours after egg laying. Bottom: On
the right, nuclei (blue, nuclear envelope labeled with WGA-AlexaFluor-63315) are visualized at
the surface of the whole embryo at nc11 and on the left, a close up of expressing nuclei (taken
from the dashed square on the right). Expression of a given gene of interest (here hunchback)
can be detected by RNA FISH with fluorescently labeled anti-sense RNA probes. Expression is
revealed by two type of staining: speckle-like dots (arrow heads) corresponding to single mRNA
and bright intense foci (arrow) corresponding to the accumulation of several nascent pre-mRNAs
at their site of synthesis, as schematically diagrammed for the two hunchback loci.
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hunchback site triggering the expression of the gene and the production of hunchback mRNA. In
the limit of fast polymerase recruiting the total mRNA produced can be considered proportional
to the time the promoter is occupied providing the nucleus with a way of integrating the binding
signal it received. What is the variability of the estimate the nucleus can make of Bicoid
concentration? More precisely can we compute δc/c where c is the empirical concentration
measured by the nucleus over a given time T?

The classic argument of Berg and Purcell in [11] gives an answer to that question in the
case of a single binding site. Experiments and analysis have shown that between 5 and 7 Bicoid
molecules can bind to the hunchback gene but the level of expression of the gene as a function of
the number of bound Bicoid molecules is not known precisely [112, 113]. The Berg and Purcell
limit provides us with an intuitive understanding of the different parameters on accuracy of
concentration readouts as well as an upper bound on the sharpness of the boundary.

The Berg and Purcell limiting formula assumes that the time scales of binding and unbind-
ing (the inverse of the jump rates of the Markov chain) are small compared the total time of
integration T the nucleus has to read the concentration. It is equivalent to saying that a very
high number of binding and unbinding events happen during the time T .

The movement of Bicoid in the nucleus is modeled by a simple diffusion equation

∂tc = DÒ2c, (6.2)

where c is the local concentration of Bicoid and D is the diffusion constant. Under those
assumptions the flux of ligands arriving at a binding site is 4Dσc̄ where σ, the binding cross
section of receptor and ligand represents the size of the target. Defining n as the empirical
occupancy of the gene over the time T and n̄ as the true average of this occupancy we see that
the probability that the gene is free at any time point is given by 1 ≠ n̄. So the average number
of binding events is

4Dσc̄(1 ≠ n̄)T. (6.3)

Due to averaging we expect the relative variability δc/c to be proportional to the inverse of the
square root of the number of events. The constants can be computed (see [11] for details) to get

δc

c
=

Û

2
4Dσc̄(1 ≠ n̄)T

, (6.4)

which is the celebrated Berg and Purcell limit.
Eq. 6.4 is a fundamental tool in understanding the accuracy of diffusion limited processes but

it also has a few problems. It assumes that any ligand finding the target will bind which is not
true for most real biological systems. In [114] Bialek and Setayeshgar derive a correction to the
Berg and Purcell formula by including two additional effects: the three dimensional geometry
of the target and the possibility for the ligand to fail at binding the receptor even in contact.
The new formula they derive is

δc

c
=

Û

1
fiD‡cT

+
2

kac̄(1 ≠ n̄)T
, (6.5)

where ka is the association rate of ligand-receptor interactions (independently of space and
diffusion). This new limit has the advantage of not converging to 0 when the diffusion constant
goes to infinity. Unfortunately, as pointed out in [115] it does not agree with the Berg and
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Purcell formula in the limit of deterministic binding (ka æ Œ). In [115] Kaizu et al show that
a new version of Eq. 6.5 where the first term is replaced with the Berg and Purcell limit can be
derived analytically:

δc

c
=

Û

1
2fiD‡c̄(1 ≠ n̄)T

+
2

kac̄(1 ≠ n̄)T
. (6.6)

In Chapter 7 I introduce a new approach to the problem of Bicoid readout accuracy in fly
embryos based on effective models of gene switching that are rather agnostic about the details
of ligand binding and diffusion. In particular, this approach does not require any assumption
about the geometry of the target or the role of diffusion and association. This new approach
does not have the constructive advantage of the ones presented above to directly link the result
to the microscopic constants of the system. However its main asset is that it is formulated in
terms of parameters that can be extracted from available data (as is done also in Chapter 7). I
check the consistency of the precision prediction with the experiments.

6.4 Experimental methods

In this section I discuss the different experimental methods to access information about hunchback

activity. They rely on the expression of fluorescent molecules that accumulate around mRNA
produced at active loci. For a complete review of experimental methods to image transcription
in living fly embryos see [102].

6.4.1 RNA FISH

Fluorescence in situ hybridization (FISH) is an experimental technique using fluorescent probes
to bind specific DNA or RNA targets. In the context of development, it requires the embryo to
be “fixed”, meaning that its dynamics are stopped and the embryo is killed. The information is
collected by fluorescent microscopy.

Until the last three years, gene expression in Drosophila embryo was mainly monitored on
fixed samples by in situ hybridization or antibody staining. These techniques provided an
exhaustive description of the precision and variability of spatial gene expression and helped
understand its effect on patterning [116, 117, 118, 119, 120]. FISH has proven a very useful
tool for defining the shape of average gene activation along the antero-posterior axis. Apart
from problems due to fixation time that can lead to accumulation of non-instantaneous signal in
certain areas FISH has almost no experimental problems and can detect single mature mRNA
molecules in the embryo both in the cytoplasm and in the nucleus.

However, the development of the embryo happens very fast and the static picture of FISH
is not very informative about the temporal dynamics of gene transcription and even less about
the variability of gene expression in time. This limitation called for new methods providing live
imaging of the embryo through time to study and quantify the transcription processes.

6.4.2 Live fluorescent Imaging

Benefiting from the pioneering work of R. Singer [121] several systems have been developed to
fluorescently tag RNA in living cells. The first experiments using such techniques in fly embryos
were carried out in 2013 ([18, 19]). In these experiments (and in those presented in Chapter 7)
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a fluorescently tagged coat protein (CP) is expressed by the nucleus (MCP in Chapter 7). It
binds strongly to a stem loop produced by a transgene inserted next to the hunchback gene
location (MS2 in Chapter 7). Any time a polymerase transcribes the gene it also transcribes
the transgene, producing loops that accumulate fluorescence at the transcription locus. This
new method has proven extremely fruitful, giving insights about many processes including the
dynamics or RNA synthesis: its initiation, elongation rate, the possibility of splicing or the time
spent by the RNA at the locus after the end of transcription.

There are limitations to these approaches. First of all the constant production of fluorescently
tagged coat proteins creates a background of fluorescence in the embryo. This background
increases the lower bound on the amount of RNA production necessary to distinguish signal
from noise. It also makes absolute counts more difficult to estimate. The background effect can
be reduced by monitoring the concentration of coat proteins, keeping it as low as possible while
high enough to ensure their presence in excess in the loop binding reaction. The last downside
of live fluorescent imaging is that the transgene presence can alter the expression of the gene
itself for many reasons. This is much harder to control but the insertion of only one transgene
copy in the genome strongly reduced the risks of altering gene expression dynamics.

6.4.3 The importance of the construct

As represented in Fig 6.1 B as the transgene is transcribed fluorescence accumulates at the locus.
The duration and the shape of this accumulation depend on the location of the probe along the
gene. The probe should reasonably only be introduced in non coding regions and should be
close enough to the gene to ensure good correlation between probe and gene transcription. This
essentially only leaves two possibilities: putting the probe at the 5Õ or at the 3Õ end of the gene.
The 5Õ is located where transcription of the gene begins and the 3Õ end is where the termination
of transcription happens. The 5Õ options gives a bigger signal and longer accumulation of
fluorescence. It increases the signal to noise ratio. Unfortunately it also smoothes out the
signature of fluctuation in gene expression (see Fig. 6.2). On the other hand putting the probe
at the 3Õ end reduces the length and accumulation of the signal. It makes it more sensitive to
the background but it also makes it more sensitive to fast on and off switching that would have
been invisible with a 5Õ build. The buffering time tbuff is the time spent accumulating signal
by a single mRNA transcribing the gene. It is much smaller for 3Õ (52s) than for 5Õ (168s). The
buffering time sets a lower bound on the time scale of dynamics available for direct analysis.

6.4.4 On the dynamics of hunchback activation

As mentioned above, gene expression relies on transcription-factor binding and is thus a noisy
process contributing to the variability of protein profiles between homogeneous nuclei [122]. Two
nuclei with the same genetic material put in the same environment can still generate different
levels of RNA. These fluctuations cannot be traced back to any known cause or parameter,
making them de facto intrinsically stochastic. Variability in total RNA production over a nuclear
cycle can have different sources in temporal profiles: two nuclei producing mRNA at two different
time-constant levels can differ just as much as two nuclei expressing levels of mRNA fluctuating
with time but with the same mean (see Fig. 6.3 for illustration). Those two scenarios are clearly
different from a biological point of view but would lead to similar results in FISH experiments.
Live imaging is the only way to explore the temporal variability of signals. To formulate a clear
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Figure 6.2: A lower sensitivity to noise background with 5’ insertions but a better correlation
between promoter activity and signal readout with 3’ insertions. Simulations were performed
assuming an irreversible promoter cycle (with three inactive states) model for transcription acti-
vation and deactivation at different frequencies of ON/OFF transitions (high (A), intermediate
(B), and low (C)). koff is the parameter of the exponential distribution of waiting times before
jumping from the ON state to the first OFF state. kon is the same parameter for each of the
jumps from OFF1 to OFF2, OFF2 to OFF3 and OFF3 to ON. For each case, we show: the
change in the state of promoter activity with the distributions of ON (expressing) and OFF
(not expressing) waiting times as collected at the promoter (top panel), the simulation of the
fluorescent signal detected when the loop tagging sequence is inserted in a 3’ (middle panel) or
5’ (bottom panel) position of the transcribed sequence. The three distributions at the bottom
show the distribution of waiting times spent ON and OFF and how well a simple derivative
analysis of the signal would do at estimating this distribution for both 3Õ and 5Õ cases. It is
assumed that the concentration of PolIIs is not a limiting factor and that they can bind at
every moment when the gene is in the ON state. Multiple PolII molecules can constitutively
transcribe the gene during one ON event. The horizontal dashed lines in the middle and bottom
panels indicate the background levels frequently encountered. The results do not qualitatively
depend on the number of inactive states used, and the three models (the reversible two state
telegraph, the irreversible three state telegraph model and the Gamma model) of Chapter 7 give
qualitatively the same results.
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Figure 6.3: Bursting or nonbursting gene activity, the two types of transcription dynamics of
a promoter. A continuum between the two extreme situations portrayed here can be found for
different genes. (a) The amount of nascent RNA produced at the promoter fluctuates around
a given positive value. The RNA PolII initiates transcription at an average constant rate. The
promoter is active and nonbursting. (b) The activity of the promoter (measured as the amount
of nascent RNA produced at a given time) alternates between periods of strong production
(bursts) and periods of inactivity. The promoter is bursting. The characteristics of a bursting
promoter include the frequency of the bursts, the intensity of the bursts, and their duration.
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question one can ask if the dynamics of gene transcription are bursty (i.e the gene switches
from an on to an off transcription state and back several times within one nuclear cycle) or non
bursting (small fluctuations around a mean transcription rate). The evidence provided so far
hinted at a non bursting situation but was based on 5Õ probe experiments where fluctuations are
much less visible. While [19] does not exclude bursting dynamics, the model used to represent
data is based on a single pulse for each nuclear cycle. I will show that live imaging can go further
in complexity and examine the dynamics of gene transcription.

In Chapter 7 I translate the different biological assumptions about the transcription dynam-
ics into mathematical models of gene switching and evaluate their statistical consistency with
experimental data. The result hints at bursting dynamics.

6.5 Motivation for autocorrelation method

The goal of the next chapter is to infer the statistics of gene activation from fluorescent live
imaging experimental data and find the model that describes best the switching of the gene
between expressing and non-expressing states. The gene is assumed to have two possible levels
of expression: one where there is no expression (OFF state) and one where there is expression
(ON state). Passing from the expressing state to the non-expressing state can take the gene
through several changes of configuration and transcription factor binding so different models of
gene switching are possible. In Fig. 6.3 I show an example of a model with one ON state and
three OFF states.

The goal of the next chapter is to infer the structure of gene switching (number of states) and
the parameters of the transition from state to state to quantify directly hunchback expression in
the embryo as a function of position along the antero-posterior axis. Quantifying the dynamics
of gene expression is an essential step in understanding how positional information is encoded
in gene regulation networks.

The method developed in the next chapter makes use of the autocorrelation function of the
fluorescent signal. Simpler methods do not give reliable results as evaluating on and off switching
rates directly from the duration of transcriptional windows is biased by the integration time of
the signal: short events are averaged out and blurred by the inertia of gene transcription. Using
the derivative to identify increasing and decaying phases of the signal is also unreliable as it
strongly enhances noise. Even in the absence of noise some fast OFF events could fail to lead
to decrease in total fluorescence as loops would continue to accumulate.

The autocorrelation approach is quite intuitive and rigorous. It still faces a number of
challenges, in particular the absence of reliable experimental calibration and the unavoidable
short length of time traces. The next chapter shows how to overcome all these difficulties.
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7.1 Abstract

The simultaneous expression of the hunchback gene in the multiple nuclei of the developing fly
embryo gives us a unique opportunity to study how transcription is regulated in functional organ-
isms. A recently developed MS2-MCP technique for imaging transcription in living Drosophila

embryos allows us to quantify the dynamics of the developmental transcription process. The
initial measurement of the morphogens by the hunchback promoter takes place during very short
cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in
short time traces. Additionally, the relationship between the measured signal and the promoter
state depends on the molecular design of the reporting probe. We develop an analysis approach
based on tailor made autocorrelation functions that overcomes the short trace problems and
quantifies the dynamics of transcription initiation. Based on life imaging data, we identify
signatures of bursty transcription initiation from the hunchback promoter. We show that the
precision of the expression of the hunchback gene to measure its position along the anterior-
posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting
additional post-translational averaging mechanisms to provide the precision observed in fixed

81
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material.

7.2 Introduction

During development the different identities of cells are determined by sequentially expressing
particular subsets of genes in different parts of the embryo. Proper development relies on the
correct spatial-temporal assignment of cell types. In the fly embryo, the initial information about
the position along the anterior-posterior (AP) axis is encoded in the exponentially decaying
Bicoid gradient. The simultaneous expression of the Bicoid target gene hunchback in the multiple
nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is
regulated and controlled in a functional organism [113, 123]. Despite many downstream rescue
points where possible mistakes can be corrected [103, 113, 124], the initial mRNA readout of
the maternal Bicoid gradient by the hunchback gene is remarkably accurate and reproducible
between embryos [120, 125]: it is highly expressed in the anterior part of the embryo, quickly
decreasing in the middle and not expressed in the boundary part. This precision is even more
surprising given the very short duration of the cell cycles (6-15 minutes) during which the
initial Bicoid readout takes place and the intrinsic molecular noise in transcription regulation
[122, 126, 127].

Even though most of our understanding of transcription regulation in the fly embryo comes
from studies of fixed samples, gene expression is a dynamic process. The process involves the
assembly of the transcription machinery and depends on the concentrations of the maternal
gradients [128]. Recent studies based on single-cell temporal measurements of a short lived
luciferase reporter gene under the control of a number of promoters in mouse fibroblast cell
cultures [129, 130] and experiments in E. Coli and yeast populations [131, 132, 133, 134] have
quantitatively confirmed that mRNAs are produced in bursts, which result from periods of
activation and inactivation. What are the dynamical properties of transcription initiation that
allow for the concentration of the Bicoid gradient and other maternal factors to be measured in
these short intervals between mitosis?

In order to quantitatively describe the events involved in transcription initiation, we need
to have a signature of this process in the form of time dependent traces of RNA production.
Recently, live imaging techniques have been developed to simultaneously track the RNA produc-
tion in all nuclei throughout the developmental period from nuclear cycle 11 to cycle 14 [18, 19].
In these experiments, an MS2 cassette is placed directly under the control of an additional copy
of a proximal hunchback promoter. As the gene is transcribed, mRNA loops are expressed that
bind fluorescent MCP proteins. Their accumulation at the transcribed locus gives an intense
localized signal above the background level of unbound MCP proteins (Fig. 7.1C) [102]. By
monitoring the living embryo, we obtain a time dependent fluorescence trace that is indicative
of the dynamics of transcription regulation at the hunchback promoter (Fig. 7.1B, D and F).

However the fluorescent time traces inevitably provide an indirect observation of the tran-
scription dynamics. The signal is noisy, convoluting both experimental and intrinsic noise with
the properties of the probe: the jitter in the signal is not necessary indicative of actual gene
switching but could simply result from a momentarily decrease in the recording of the inten-
sity. To obtain a sufficient strong intensity of the signal to overcome background fluorescence, a
long probe with a large number of loops is needed, which introduces a minimum buffering time
(in the current experiments the minimal buffering time is τ buff

min = 72s) and preventing direct
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Figure 7.1: Transcription dynamics in the fly embryo. (A) The three models of transcrip-
tion dynamics considered in this paper. From left to right: the two state model, the cycle model
and the Gamma model (see SI Sections B, D and E). (B) Example of the promoter state dynam-
ics (either ON or OFF) as a function of time. We assume that the polymerase is abundant and
every time the promoter is ON and is not flanked by the previous polymerase a new polymerase
will start transcribing. The black lines represent arrival times of the RNA polymerases to the
promoter. (C) In the ON state, the promoter (Pr) is accessible to RNA polymerases (Pol II)
that initiate the transcription of the target gene and the 24◊ MS2 loops. As the 24◊ MS2
mRNA is elongated MCP-GFP fluorescent molecules bind creating a detectable fluorescence
signal. (D) The probability that site i on the gene was occupied by a polymerase as a function
of time is given by the promoter occupancy in B and the finite size of the polymerase. (E)
MCP-GFP molecules labeling several mRNA co-localize at the transcription loci, which appear
as green spots under the confocal microscope. The spot intensities are then extracted over time
and classified by each nuclei’s position in the Drosophila embryo as Anterior, Boundary and
Posterior. (F) An example of the experimental signal: one spot’s intensity a function of time,
corresponding to the arrivals of RNA polymerases in (D) and the promoter state in (B).
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observation of activation [102].

To understand the details of the regulatory process that controls mRNA expression we need
to quantify the statistics of the activation and inactivation times, as has been done in cell cultures
[129, 130, 132, 133]. However the very short duration of the cell cycles (5-15 minutes for cell
cycles 11-13) in early fly development prevents accumulation of statistics about the inactivation
events and interpretation of these distributions. Direct observation of the traces suggests that,
contrary to the previous reports[18, 19], transcription regulation is not static but displays bursts
of activity and inactivity. However the eye can often be misleading when interpreting stochastic
traces. In this paper we develop a statistical analysis of time dependent gene expression traces
based on specially designed autocorrelation functions to investigate the dynamics of transcription
regulation. This method overcomes the curse of naturally short traces caused by the limited
duration of cell cycles that make it impossible to infer the properties of the regulation directly
from sampling the activation and inactivation time statistics. Combining our analysis technique
with models of transcription initiation and high resolution microscopy imaging of the MS2-
MCP transgene under the control of the hunchback promoter, we show evidence suggesting that
transcription initiation in cell cycles 12-13 is bursty. We focus on characterizing the transcription
in the anterior and middle parts of the embryo and find that the dynamics is unchanged between
cycle 12 and 13. We use these results to estimate the precision of the transcriptional readout.
We show that the readout in each cell cycle is relatively imprecise compared to the precision of
the mRNA measurement obtained on fixed samples [125].

7.3 Results

7.3.1 Characterizing the time traces

We study the transcriptional dynamics of hunchback by generating embryos that express an MS2-
MCP reporter cassette under the control of the proximal hunchback promoter (Fig. 7.1C), using
previously developed techniques [18, 19], with an improved MS2 reporter [135] (see Materials and
Methods for details). The MS2-MCP cassette was placed towards the 3’ end of the transcribed
sequence and contained 24 MS2 loop motifs. While the gene is being transcribed, each newly
synthesized MS2 loop binds a MCP-GFP molecule. In each nucleus, where transcription at this
transgene is ongoing, we observe a unique bright fluorescent spot, which corresponds to the
accumulation of several MS2-containing mRNAs at the locus (Fig. 7.1C). We assume that the
fluorescent signal from a labelled mRNA disappears from the recording spot when the RNAP
reaches the end of the transgene. With this setup we image the total signal in four fly embryos
using confocal microscopy, simultaneously in all nuclei (Fig. 7.1E) from the beginning of cell
cycle (cc) 11 to the end of cell cycle 13. We obtain a signal that corresponds to the temporal
dependence of the fluorescence intensity of the transcriptional process in each nucleus, which
we refer to as the time trace of each spot. Fig. 7.1F shows a cartoon representation of such
a trace resulting from the polymerase activity (Fig. 7.1D) dictated by the promoter dynamics
(Fig. 7.1B). We present examples of the traces analyzed in this paper in Fig. B.1 and the signal
preprocessing steps in the Materials and Methods and SI Section A.

To characterize the dynamics of the hunchback promoter we need to describe its switching
rates between ON states, when the gene is transcribed by the polymerase at an enhanced rate
and the OFF states when the gene is effectively silent with only a small basal transcriptional
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Figure 7.2: Autocorrelation analysis of fluorescent traces from cell cycles 12-13. (A)
Autocorrelation functions for traces of different length caused by the variable duration of the cell
cycle. Reading off the autocorrelation time as the time at which the autocorrelation function
decays by a value of e would give different values for each trace. (B) Autocorrelation function
calculated for the same traces reduced to have equal trace lengths, all equal to the trace length
of the shortest trace, shows that the differences observed in panel A are due to finite size
effects. (C) An example of a signal simulated for the process described in Fig.7.1 for a two state
model for 300 seconds (blue). Taking the whole 300 second interval (red dashed) gives a good
approximation of the average signal (red line) and the effect of finite size on the autocorrelation
function is small (D). Reducing the time window to 60 seconds (green dashed line) correlates the
average with the signal much more and the effect of finite size on the autocorrelation is strong
(E). Parameters for the simulation in (C-E) are: kon = koff = 0.06s≠1, sampling time dt = 4s,
for the red curve T = 60s and M = 2000 nuclei, for the green curve T = 300s and M = 10000
nuclei (same total amount of data).

activity (Fig. 7.1A and B). Estimating the ON and OFF rates directly from the traces is prob-
lematic due to the high background fluorescence levels coming from the unbound MCF-GFP
proteins that make it difficult to distinguish real OFF events from noise. To overcome this
problem, we consider the autocorrelation functions of the signal. To avoid biases from differen-
tial signal strengths from each nucleus, we first subtract the mean of the fluorescence in each
nucleus, F (ti) ≠ ÈF (ti)Í and then calculate the steady state connected autocorrelation function
of the fluorescence signal (equivalent to a normalized auto-covariance), C(τ), at two time points
separated by a delay time τ , F (ti) and F (ti + τ), normalized by the variance of the signal over
the traces, according to Eqs. 7.11 and 7.12 in Materials and Methods. We will always work
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with the connected autocorrelation function, which means the mean of the signal is subtracted
from the trace. The autocorrelation function is a powerful approach since it averages out all
temporally uncorrelated noise, such as camera shot noise or the instantaneous fluctuations of
the fluorescent probe concentrations.

Fig. 7.2A compares the normalized connected autocorrelation functions calculated for the
steady state expression in the anterior of the embryo (excluding the initial activation and final
deactivation times after and before mitosis) in cell cycles 12 and 13 of varying durations: ≥ 3 and
≥ 6 minutes. The steady state signal from cell cycle 11 did not have enough time points to gather
sufficient statistics. The functions decay as expected, showing a characteristic correlation time,
then reaching a plateau at negative values before increasing again. Since the number of data
points separated by large intervals is small the uncertainty increases with τ . Autocorrelation
functions calculated for very long time traces have neither the negative plateau nor the increase
at large τ . For example, the long-time connected autocorrelation functions shown in Fig. 7.2D
calculated from the simulated trace of the process described in Fig. 7.1 and shown in Fig. 7.2C
differ from the short time connected autocorrelation function in Fig. 7.2E calculated from the
same trace (see SI Section G for a description of the simulations). As the traces get longer the
connected autocorrelation function approaches the longtime results (Fig. B.4) and the connected
autocorrelation function of a finite duration trace of a simple correlated brownian motion (an
Ornstein-Uhlenbeck process) displays the same properties (see Fig. B.5). The dip is thus an
artifact of the finite size of the trace. We also see that the autocorrelation functions shift to the
left for short cell cycles (Fig. 7.2A), resulting in shorter correlation times, defined as the value of
τ at which the autocorrelation function decays by e, for earlier cell cycles. However, calculating
the autocorrelation functions for time traces of equal lengths for all cell cycles (Fig. 7.2B) shows
that the shift was also a bias of the finite trace lengths, and after taking it into account, the
transcription process in all the cell cycles has the same dynamics (although we note that the
dynamics from this truncated trace is not the true long time dynamics).

This preliminary analysis shows that to extract information about the dynamics of tran-
scription initiation we will need to account for the finite time traces. Additionally, a direct
readout of even effective rates from the correlation time is difficult, because the autocorrelation
due to the underlying gene regulatory signal (Fig. 7.1B) is obscured by the autocorrelation due
to the timescale for the elongation of the sequence to be transcribed after the MS2 cassette
(Fig. 7.1D) – the gene buffering time. The observed time traces are a convolution of these in-
puts (Fig. 7.1F). The form of the autocorrelation function and our ability to distinguish signal
from noise also depends on the precise positioning and length of the fluorescent gene [102]. The
analysis is thus limited by the buffering time of the signal, given as the length of the transcribed
genomic sequence that carries the fluorescing MS2 loops divided by the polymerase velocity, and
is only possible if the autocorrelation time of the promoter is larger than the buffering time. A
construct with the MS2 transgene placed at the 3’ end of the gene (Fig. 7.4B) gives a reliable
readout of the promoter activity even for fast switching between the two states but the weak
signal is hard to distinguish from background fluorescence levels. Conversely, a 5’ positioning of
the transgene (Fig. 7.4A) is insensitive to background fluorescence but can only be used to infer
very slow switching [102].
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7.3.2 Promoter switching models

The promoter activity we are interested in inferring can in principle be described by models of
varying complexity (see Fig. 7.1A). In the simplest case, the gene is consecutively yet noisily
expressed following a Poisson distribution of punctual ON events – this has previously been
called a static promoter (not represented in Fig. 7.1A). Although the promoter dynamics would
be uncorrelated in this case, the gene buffering would still produce a finite correlation time (see
SI Section F). Alternatively, the promoter could have two well defined expression states: an ON
state during which the polymerase is transcribing at an enhanced level and OFF state when it
transcribes at a basal level. This situation can be modeled by stochastic switching between the
two states with rates kon and koff (left panel in Fig. 7.1A and Materials and Methods). However,
as was previously observed in both eukaryotic and prokaryotic cell cultures [129, 130, 132, 133],
once the gene is switched off the system may have to progress through a series of OFF states
before the gene can be reactivated. Recently these kinds of cycle models have been discussed
for the hunchback promoter [136]. The intermediate states can correspond to, for example,
the assembly of the transcription initiation complex, opening of the chromatin or transcription
factor presence. These kinds of situations can either be modeled by a promoter cycle (middle
panel in Fig. 7.1A and Materials and Methods), with a number of consecutive OFF states, or
by an effective two state model that accounts for the resulting non-exponential, but gamma
function distribution of waiting times in the off state (right panel in Fig. 7.1A and Materials
and Methods). We present our method for all of these models and consider all but the gamma
function distributed switching time model to learn about the dynamics of hunchback promoter
dynamics.

7.3.3 Autocorrelation approach

To infer the transcription dynamics from the data we built a mathematical model that calculates
the autocorrelation functions that account for the experimental details of the probes, incorpo-
rating the MS2 loops at various positions along the gene and correcting for the finite length of
the signal. The basic idea behind our approach is that while the initiation of transcription is
stochastic and involves switching between the ON and possibly a number of OFF states (X(t)
in Fig.7.1B denotes the binary gene expression state), the obscuring of the signal by the probe
design is completely deterministic [137, 19], resulting in the probability a(i, t) that the poly-
merase is at position i at time t (Fig.7.1D). The promoter dynamics can thus be learned from
the noisy autocorrelation function of the fluorescence intensity F (t) =

qr
i=1 Lia(i, t) (Fig.7.1F),

provided the parameters of the probe design encoded in the loop function Li (positioning of the
probe etc.) are known (Fig. 7.1C) and the signal is calibrated to know the fluorescence intensity
coming from one loop [19].

Broadly, our model assumes that once the promoter is in an ON state the polymerase binds
and deterministically travels along the gene producing MS2 loops containing mRNA that im-
mediately bind MCP and result in a strong localized fluorescence (Fig. 7.3). We count the
progression of the polymerase in discrete time steps, where one time step corresponds to the
time of it takes the polymerase to cover a distance of 150 base pairs equal to its own length
(Fig. 7.3A). The probability that there is a polymerase at position i at time t, a(i, t) is simply
a delayed readout of the promoter state at time t ≠ i, a(i, t) = X(t ≠ i) where t is measured in
polymerase time steps (Fig. 7.1B). We assume that polymerase is abundant and that at every
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Figure 7.3: The gene expression model used in the autocorrelation function calcula-

tion. The autocorrelation inference approach is based on the idea that the stochastic transcrip-
tional dynamics can be deconvoluted from the signal coming from the deterministic fluorescent
construct, if we know the gene construct design. (A) A concatenation of snapshots of the gene
from r consecutive time steps. A polymerase covers a length on the gene corresponding to its
own length in one time step, producing one MS2 loop. The gene has total length r and at
any position i along the gene Li < 24 loops have been produced. (B) The promoter state as a
function of time and (C) an instantaneous snapshot of the gene corresponding to transcription
from this promoter. (D) The construct design is encoded in the loop function Li. As the poly-
merase moves along the gene it produces MS2 loops. Li is an average representation in terms
of polymerase time steps of how many loops have been produced by a single polymerase. It is
based on the experimental design shown on the left of the panel.
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time step a new polymerase starts transcribing, provided the gene is in the ON state (Fig. 7.1B
and D). The amount of fluorescence produced by the gene at one time point is determined
by the number of polymerases on the gene (Fig. 7.3A). The amount of fluorescence from one
polymerase that is at position i on the gene depends on the cumulated number of loops that
the polymerase has produced Li, where 1 Æ i Æ r, r corresponds to the maximum number of
polymerases that can transcribe the gene at a given time and Li = 1 corresponds to one loop
fluorescing, as depicted in the cartoon in Fig. 7.3D. The known loop function Li depends on
the build and the position of the MS2 cassette on the gene, it is input to the model and does
not necessarily take an integer value since the polymerase length and the loop length do not
coincide (Fig. 7.3D). Given the steady state probability of the gene to be on Pon the average
fluorescence in the steady state is:

ÈF Í = Pon

r
ÿ

i=1

Li. (7.1)

Since we assume the polymerase moves deterministically along the gene, seeing a fluorescence
signal both at time t and position and i and at time s and position j means the gene was ON
at time t ≠ i and s ≠ j, which is determined by how many loops (i and j) the polymerase has
produced. Taking the earlier of these times, we need to calculate the probability that the gene is
also ON at the later time. The autocorrelation function of the fluorescence can thus be written
as:

ÈF (t)F (s)Í =
qr

i=1

qr
j=1 LiLjP (gene was ON at time

min(t ≠ i, s ≠ j)) · A(|t ≠ i ≠ s + j|), (7.2)

where A(n) is the probability that the gene is ON at time n given that it was ON at time 0. The
precise form of Pon, P (gene was on at time min(t ≠ i, s ≠ j)) and A(|t ≠ i ≠ s + j|) depends on
the type of the promoter switching model. We assume that the polymerase moves at constant
speed along the gene and that there is no splicing throughout the transcription process. We
give explicit expressions for all the models used in the Materials and Methods section and the
Supplementary Information. Importantly, if we know the design of the construct, and calibrate
the signal, we can use Eq. 7.1 to obtain the ratio of switching rates and Eq. 7.2 to obtain their
particular values (see Materials and Methods).

To avoid biases coming from nucleus to nucleus variability, we calculated the normalized
connected correlation function defined in Eqs. 7.11 and 7.12 in Materials and Methods. The
theoretically calculated connected autocorrelation function, Cr (Eq. 7.13 which corresponds to
the longtime correlation function in Fig. 7.2C and D) differs from the empirically calculated
connected autocorrelation function from the traces, c(r) (Eqs. 7.11 and 7.12 in Materials and
Methods, which corresponds to the short time correlation function in Fig. 7.2C and E) due to
finite size effects coming from spurious correlations between the empirical mean and the data
points. Since by definition the mean of a connected autocorrelation function is zero (see Eqs. 7.11
and 7.12 in Materials and Methods), the area under the autocorrelation function must be zero.
For short traces this produces the artificial dip discussed in Fig. 7.2, which for long traces is not
visible as it is equally distributed over long times. To compare our theoretical and empirical
correlation functions we explicitly calculate the finite size correction and include this correction
in our analysis (Materials and Methods and SI Section H and I).

In this paper, we have analyzed data from fly embryos with 3’ promoter constructs only,
limiting ourselves to the steady state part of the trace. We limit our analysis to the steady
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state part of the interphase by taking a window in the middle of the trace to avoid the initial
activation and final deactivation of the gene between the cell cycles (see Materials and Methods).
However the method can also be applied to non-steady state systems (see SI Section C) and
other constructs, including cross-correlation functions calculated from signals of different colors
inserted at different positions along the gene (see SI Section J), which we discuss using simulated
data.

7.3.4 Simulated data

We first tested the autocorrelation based inference on simulated short-trace data with underlying
molecular models with different levels of complexity for a construct with the MS2 probe in the
3’ end of the gene (Fig. 7.4B). In Fig. 7.4D we compare autocorrelation functions for the three
state model for constructs with the MS2 loops positioned at the beginning of the transcribed
region (5’, Fig. 7.4A) and at the end of the transcribed region (3’, Fig. 7.4B), and the cross-
correlation function calculated from a two-colored probe construct (Fig. 7.4E). The analytical
model correctly calculates the short trace autocorrelation function approach and is able to infer
the dynamics of promoter switching for all models. It can also be adapted to infer the promoter
switching parameters for any intermediate MS2 construct position, given of the limitations of
each of the constructs discussed above [102].

The autocorrelation function based inference reproduces the underlying parameters of the
dynamics with great accuracy for switching timescales smaller than the gene buffering time
that obscures the signal (Fig. 7.4F). In Fig. 7.4F we show the results of the inference for the
3’ two state model for difference values of the ON and OFF rates, kon and koff . For switching
rates faster than the gene buffering time, the autocorrelation function coming from the length
of the construct dominates the signal and the precision of the inference goes down. For very
fast switching rates (> 0.12s≠1), increasing the length of the traces or the number of nuclei (red
vs blue curve above kon + koff = 0.1s≠1 in Fig. 7.4F) does not help estimate the properties of
transcription. For intermediate switching rates (0.07 ≠ 0.12s≠1), increasing the trace length or
increasing the number of nuclei extends the inference range (black and green dashed lines vs blue
solid line Fig. 7.4F) and in all cases increasing the number of nuclei decreases the uncertainty as
can be seen from the smaller error bars (shown only for the red and blue lines for figure clarity).

Using two colored probes attached at different positions along the gene gives two measure-
ments of transcription allows for an independent measurement of the speed of the polymerase -
one of the parameters of the model that currently must be taken from other experiments. While
the estimates of polymerase speed in the fly embryo are reliable [19], it has been pointed out as
a confounding factor in other correlation analysis [138].

The autocorrelation approach also correctly infers the parameters of transcriptional processes
when applied to traces that are out of steady state (see SI Section C). However, since the process
is no longer translationally invariant more traces are needed to accumulate sufficient statistics.
For this reason, in the current analysis of fly embryos we do not analyze the transient dynamics
at the beginning and end of each cycle and we restrict ourselves to the middle of the interphase
assuming steady state is reached.
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7.3.5 Fly trace data analysis

We divided the embryo into the anterior region, defined as the region between 0% and 35%
of the egg length (the position at 50% of the egg length marks the embryo midpoint), where
hunchback expression is high, and the boundary region, defined as the region between 45% and
55% egg length, where hunchback expression decreases. The mean probability for the gene to
be ON during a given cell cycle Pon (restricted to the times excluding the initial activation
and deactivation of the gene, which we will call the steady state regime), given by Eq. 7.1, is
reproducible between the four embryos in cell cycle 12 and 13, both in the anterior region and
at the boundary (Fig. 7.5A). The probability for the gene to be ON is over three fold higher in
the anterior region than in the boundary and does not change with the cell cycle. Pon ≥ 0.5 in
the anterior indicates that in each nucleus the polymerase spends about half the steady state
expression time transcribing the observed gene. At the boundary the gene is transcribed on
average during about 10% of the steady state part of the cell cycle. The estimates for Pon in
the earlier cell cycles were not reproducible between the four embryos, likely because the time
traces were too short to gather sufficient statistics for this kind of analysis. We concentrated on
cell cycle 12 and 13 for the remainder of the analysis.

Based on the different behavior at the boundary and in the anterior, we separately inferred
the transcriptional dynamics parameters in the two regimes, using the autocorrelation approach
that corrects for finite time traces. The Poisson random firing model, the two and three state
cycle models all provide reasonably good fits to the all the traces in both regions (see Fig. 7.5B
for an example and Fig. B.3 for the fits in both regions in all embryos). However, the fit of the
Poisson random firing model (red line) only captures the short time behavior of the measured
autocorrelation function. The two and three state model fits are indistinguishable and the two
state fit is reproducible between cell cycles and embryos (Fig. 7.5B). The variability of the
two-state inferred parameters is given in Fig. B.9. The three state fit is reproducible at the
level of the sum of the effective ON and OFF rates (same fit as shown for the two state model
in Fig. 7.5C), but gives fluctuating values for k1/k2, the parameter determining how well it is
approximated by a two state model (see Fig. B.6, k1/k2 < 1 describes one fast reaction between
the OFF states, effectively giving a two state model, while k1/k2 = 1 gives equal weights to the
two reactions, clearly distinguishing two OFF states). Since the two state model is reproducible
and has lesser complexity we will further consider the two state model.

The inference procedure independently fits the characteristic timescale of the process, defined
as the inverse of the sum of two rates, kon + koff (Fig. 7.5C), and then uses an independent fit of
the probability of the gene to be ON, Pon (Fig. 7.5A), to disentangle the two rates (Fig. 7.5D).
Examples of the promoter state over time with the rates’ inferred values are shown in Fig. 7.5E
(for the anterior region) and Fig. 7.5F (for the posterior region). Assuming the two state model
we find that the characteristic timescale in most embryos is slighter shorter at the boundary
(≥ 25s) than in the anterior region (≥ 33s) and the variability between the two cell cycles is
comparable to the embryo to embryo variability (Fig. 7.5C). Both timescales are much larger
than the 6s buffering time during which a second polymerase cannot bind because the first
one has not cleared the binding site (shown as the gray dashed line in Fig. 7.5D), which sets
a natural scale for the timescales we can infer. We find that in the anterior region of the
embryo the two switching rates kon and koff show variability from embryo to embryo (between
0.009s≠1 to 0.078s≠1 – see Table I and II in the SI) but always scale together, which gives the
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properties. We performed simulations with characteristic times similar to those inferred from
the data (kon + koff = 0.01) assuming a two (Fig. 7.6A) and three state model (Fig. 7.6A). We
then inferred the sum of the ON and OFF rates (kon + koff) and the ratio of the two OFF rates
(k1/k2). If the two OFF rates are similar (k1/k2 ≥ 1) we infer a three state model. If one of
the rates is much faster (k1/k2 ≥ 0), we infer a two state model. We find that having more
nuclei, which corresponds to collecting more embryos, would not significantly help our inference.
However looking at longer traces would allow us to disambiguate the two scenarios, if the traces
were 4 times longer, or ≥ 20 minutes long. Since cell cycle 14 lasts for ≥ 45 minutes, analyzing
these traces could inform us about the effective structure of the OFF states. However in cell
cycle 14, other genes get turned on after 15 minutes, so additional regulatory elements could be
responsible for the observed transcriptional dynamics than in cell cycle 12 and 13. Our results
suggest that with our current trace length we should be able to identify a two state model with
large certainty, but we could not clearly identify a three state model. Our data may thus point
towards a more complex model than two state, but a different kind of multistate model or a two
state model obscured by other biases cannot be ruled out.

The error bars for the autocorrelation functions describe the variability between nuclei com-
ing from both natural variability and measurement imprecision. While the autocorrelation
function is insensitive to white noise, it does depend on correlated noise. The noise increases
for large time differences τ , as the number of pairs of nuclei decreases and in our inference we
reweigh the points according to their sampling so that the noise does not impair the precision
of our inference. The error bars on the inferred parameter are due to variability between nuclei
and are obtained from sampling different subsets of the data in each region and cell cycle. Addi-
tionally to the inter-nuclei and experimental noise there is natural variability between embryos.
Since each nucleus transcribes independently and we assume similar Bicoid concentrations in
each of the regions, the inter-embryo variability is of a similar scale as the inter-nuclei variability
(Fig. 7.5C), as one expects given that the Bicoid gradient is incredibly reproducible between
embryos [139].

7.3.6 Accuracy of the transcriptional process

At the boundary, neighboring nuclei have dramatically different expression levels of the Hunch-
back protein. From measurements of the Bicoid gradient, Gregor and collaborators estimated
that for two neighboring nuclei to make different readouts, they must be able to distinguish
Bicoid concentrations that differ by 10% [116]. Following the Berg and Purcell [11] argument
for receptor accuracy, and using measurements of diffusion constants for Bicoid proteins from
cell cycle 14, the authors showed that, based on protein concentrations, the hunchback gene
is not able to read-out the differences in the concentrations of Bicoid proteins to the required
10% accuracy in the time that cell cycle 14 lasts. The authors invoked spatial averaging of
Hunchback proteins as a possible mechanism that achieves this precision. Spatial averaging can
increase precision, but it can also smear the boundary. Erdmann et al calculated the optimal
diffusion constant Hunchback proteins must have for the averaging argument to work [140] and
showed it is similar to experimental observations [120, 139]. However precision can already be
established at the mRNA level and using static measurements Little and co-workers found that
the relative variability of the mRNA transcribed from a hunchback locus in one nucleus is ≥ 50%
[125]. However measurements of cytoplasmic mRNA reduced this variability to ≥ 10% [125].
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Here we go one step further and use our direct measurements of transcription from the hunch-

back gene to directly estimate the precision with which the hunchback promoter makes a readout
of its regulatory environment in a given cell cycle, δPon/Pon. δPon/Pon is the relative error of
the probability of the gene to be ON averaged over the steady state part of a cell cycle. Since
the total number of mRNA molecules produced in a given cycle is proportional to Pon (shown in
Fig. B.7E as a function of embryo length), the precision at the level of produced mRNA in a given
cycle is equal to the precision in the expression of the gene, δmRNA/mRNA = δPon/Pon. The
accuracy of transcription activation is encoded in the stochasticity of gene activation. The gene
randomly switches between two states: active and inactive, making a measurement about the
regulatory factors in its environment and indirectly inferring the position of its nucleus. Since no
additional information is provided by a measurement that is strongly correlated to the previous
one, the cell can only base its positional readout on a series of independent measurements. Two
measurements are statistically independent if they are separated by at least the expectation
value of the time τi it takes the system to reset itself:

τi ≥ 1
keff

on + keff
off

, (7.3)

where in a two state model keff
on = kon and keff

off = koff . A more detailed estimate obtained by
computing the variance of the time spent ON by the gene during the interphase (see SI Section K)
shows that Eq. 7.3 underestimates the time needed to perform independent measurements. We
find that for a two state model the accuracy of the readout of the total mRNA produced is
limited by the variability of a two state variable divided by the estimated number of independent
measurements within one cell cycle:

δmRNA
mRNA

=

Û

2
τi(1 ≠ Pon)

TPon
, (7.4)

where T is the duration of the cell cycle and the factor
Ô

2 is a prefactor correction to the naive
estimate. Eq. 7.4 is valid in the limit of T >> τi (the exact result if given in SI Section K).
Using the rates inferred from the autocorrelation analysis (Fig. 7.5D) we see that the precision
of the gene readout is much lower at the boundary than in the anterior, does not change with
the cell cycle and is reproducible between embryos (ordinate in Fig. 7.7A). In the anterior part
of the embryo it reaches ≥ 50%, while at the boundary, it is very large, ≥ 150%, even at cell
cycle 13.

We can compare these theoretical estimates with direct estimates of the relative error of
the total mRNA produced during a cell cycle , δmRNA/mRNA, from the data. We divide the
embryo into anterior and boundary strips, as we did for the inference procedure and calculate the
mean and variance of Pon. These empirical estimates of the precision of the gene measurement
calculated agree with the theoretical estimates (Fig. 7.7A). We verified that our conclusions
about the scale of our empirical estimates do not depend on the definition of the boundary
and anterior regions (Fig. B.7B). To see whether integrating the mRNA produced can increase
precision we compared the empirical estimate of the steady state mRNA production (red line
in Fig. 7.7B) to the relative error of the total mRNA produced in cell cycle 13 (blue line in
Fig. 7.7B) and the total mRNA produced from cell cycle 10 to 13 (green line in Fig. 7.7B)
averaged over embryos. We assumed that each nuclei has the total mRNA produced in cell cycle
13, 1/2 of the total mRNA produced by its mother in cell cycle 12, 1/4 of the mRNA produced
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by its grand-mother in cell cycle 12 etc. While we see about a 1/3 increase in the precision at
the boundary from integrating the mRNA produced in different cell cycles, the estimate in the
anterior region is not helped by integration over the cell cycles.

Since we are not able to rule out the three state cycle model as an accurate description of
the transcriptional dynamics, we calculated the relative error assuming the same kon + keff

off for a
three state cycle (keff

off = k1 + k2) as for a two state model (keff
off = koff) for different values of kon

and keff
off (Fig. 7.7C). We found that the relative error is always lower for the three state cycle

model and the error decreases, regardless of the duration of the cell cycle, and as expected from
Eq. 7.4 as the relative error is decreased by increasing kon and decreasing koff . However the
increase in precision from a three state cycle model in the parameter regime we inferred from
the fly embryo is relatively modest.

Many previous analysis of precision from static images calculated the relative error of the
distribution of a binary variable, which in each nucleus was 1 if the nucleus expressed mRNA
in the snapshot, and 0 if it did not express[22, 119]. We analyzed our data using this definition
of activity (see Fig. B.7D for mean activity as a function of position) and found that for most
embryos the relative error in the anterior drops to zero (Fig. B.7C), indicating that all nuclei in
a given region show the same expression state, but at the boundary the precision is still ≥ 50%,
in agreement with previous reports about the total mRNA in the nucleus [125]. This provides
additional evidence for the bursty nature of transcription in the anterior of the embryo.

7.4 Discussion

Contrary to initial reports [18, 19] about the static nature of transcription initiation controlled
by the hunchback promoter in fly development we show that the promoter is bursty with distinct
periods of enhanced polymerase transcription followed by identifiable periods of basal polymerase
activity. Our conclusions are based on a new autocorrelation based analysis approached applied
to live imaging MS2-MCP data. The data we used in this paper was generated with a modified
MS2 cassette [135] compared to the previously published data [18]. However the difference in
our conclusions mainly comes from a detailed analysis of the traces.

Quantification of transcription from time dependent fluorescent traces in prokaryotes and
mammalian cell cultures has shown that the promoter states cycle through at least three states
[129, 130]. In one of these states the polymerase transcribes at enhanced levels, while in most of
the remaining states the transcription machinery gets reassembled or the chromatin remodels.
We find that in the anterior part of a living developing fly embryo, the hunchback promoter also
cycles through at least two states, although we cannot conclusively rule out the possibility of
more states when the gene is inactive. The main impediment to distinguishing different types
of transcriptional cycles comes from the very short durations of the interphase in the early cell
cycles when the hunchback gene is expressed. We showed that increasing the number embryonic
samples would not help us distinguish between two and three state models, however looking at
longer time traces would be informative (Fig. 7.6). Since cell cycle 14 lasts about 45 minutes,
our analysis shows that the steady state part of the interphase provides enough time to gather
statistics that can inform us about the detailed nature of the bursts. Unfortunately, other
transcription factors such as the other gap genes regulate hunchback expression in cell cycle 14,
possibly changing the nature of the transcriptional dynamics in a time dependent manner. We
showed that the transcriptional dynamics is constant and reproducible in the earlier cell cycles
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Figure 7.7: Precision of the hunchback gene transcription readout. A. Comparison of
the relative error in the mRNA produced during the steady state of the interphase estimated
empirically from data (abscissa) and from theoretical arguments in Eq. 7.4 using the inferred
parameters in Fig. 7.5C (ordinate), in the anterior (blue) and the boundary (red) regions, show
very good agreement. B. The relative error in the total mRNA produced in cell cycle 13 directly
estimated from the data as the variance over the mean of the steady state mRNA production
(red line, same data as in A), sum of the intensity over the whole duration of the interphase
(blue line) and the total mRNA produced during cell cycles 11 to 13 (green line) for equal width
bins equal to 10% embryo length at different positions along the AP axis. Each line describes
a an average over four embryos (see Fig. B.7C for the same data plotted separately for each
embryo) and the error bars describe the variance. To calculated the total mRNA produced over
the cell cycles, we take all the nuclei within a strip at cell cycle 13 and trace back their lineage
through cycle 12 to cycle 11. We then sum the total intensity of each nuclei in cell cycle 13 and
half the total intensity of its mother and 1/4 of its grandmother. C. Comparison of the relative
error in the mRNA produced during the steady state for a two state, k1/k2 = 0, (solid lines) and
three state cycle model, k1/k2 = 1, (dashed lines) with the same kon + keff

off for different values
of kon and koff shows that the three state cycles system allows for greater readout precision.

(12-13) (Fig. 7.2), so independently of the question of the nature of the bursts it would be very
interesting to see whether and how it changes when the nature of regulation changes.

Alternatively to looking at longer traces, a construct with two sets of MS2 loops placed at
the two ends of the gene that bind different colored probes could be used to learn more about
transcription dynamics [141]. We do not have access to data coming from such a promoter ,
but our analysis approach can be extended to calculate the cross-correlation function between
the intensities of the two colored probes. Such cross-correlation analysis have previously been
used to study transcription in cell cultures [142], transcriptional noise [143] and regulation in
bacteria [144, 145] . Our theoretical prediction for such a cross-correlation function agrees
with simulation results (Fig. 7.4C). Unfortunately, the cross-correlation function with one set of
probes inserted at the 5’ end and the other at the 3’ shares the same problems of a 5’ construct.
For fast switching rates, such a cross-correlation function suffers from the large buffering time
(≥ 300s in[19]) drawback of the 5’ design and can only be used for inferring large switching
rates [146]. However, it does gives us access into dynamical parameters of transcription such as
the speed of polymerase and it is able to characterize whether mRNA transcription is in fact
deterministic and identify potential introns. Possibly, cross-correlations from two colored probes
both inserted closer to the 3’ end could be optimal designs.

We assumed an effective model that describes the transcription state of the whole gene and
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does not explicitly take into account the individual binding sites. As a result all the parameters
we learn are effective and describe the overall change in the expression state of the gene and
not the binding and unbinding of Bicoid to the individual binding sites. For concreteness we
presented our model assuming a change in the promoter state and constitutive polymerase bind-
ing, but our current model does not discriminated between situations where the transcriptional
kinetics are driven by polymerase binding and unbinding and promoter kinetics. The presented
formalism can be extended to more complex scenarios that describe the kinetics of the individual
binding sites and random polymerase arrival times. Since we already have little resolution power
to discriminate between these effective models, we chose to interpret the results of only these
effective models. The exact contribution of the individual transcription binding sites could be
inferred from the activity of promoters with mutated binding sites.

The time traces we had to analyze are very short and finite size effects are pronounced.
Unlike in cell culture studies, where long time traces are available, we could not collect enough
ON and OFF time statistics to characterize the promoter dynamics from the waiting time
distributions. In this paper we show that simple statistics, the auto- and cross-correlation
functions are powerful general tools that can be used in these kinds of challenging circumstances.

The approach we propose is a general method that can be used for any type of time trace
analysis. However it becomes very useful in studying in vivo biological process where the bi-
ology naturally limits the available statistics. In our case the number of ON and OFF events
is naturally limited by the short duration of the cell cycles. Our method explicitly calculates
correlation functions for short traces, correcting for the finite size effects, and can be also used
without making steady state assumptions about the dynamics (although this requires collecting
sufficient statistics about two time points, which may be hard for short traces). With these
corrections we see that while an effective two state model of the underlying dynamics of tran-
scription regulation holds in the anterior and boundary regions of the embryo in all of the early
cell cycles, the rates are different in the boundary and anterior regions, showing a strong depen-
dence on position dependent factors such as Bicoid or maternal Hunchback concentrations. More
statistics will make it possible to build more explicit models of Bicoid dependent activation.

In all cases, the rates that we can infer from time dependent traces are naturally limited by
the timescales at which the polymerase leaves the promoter, which in our case is estimated to
be ≥ 6s. If the switching rates are faster than this scale, even a perfect, noiseless and infinitely
accurate sampling of the dynamics will not be able to overcome this natural limit.

Our method requires knowing the design of the experimental system (number and position
of the loops), the speed of polymerase as input and calibrating the maximal fluorescence from
one gene. Measurements using two colored probes positioned at a distance on the same gene
combined with a cross-correlation function analyses could access parameters such as the speed
of polymerase and verify assumptions about the monotonous progression of the polymerase.
Such effects can easily be incorporated into the model. While the polymerase speed is an
important parameter and erroneous assumption could influence the inference, we have shown
that our inference is relatively insensitive to polymerase speeds (see Fig. B.8). In the current
experiments we do not have an independent calibration of the maximal fluorescence coming from
one gene, which could introduce potential errors in our analysis. However the reproducibility of
our results suggests that these potential errors are small.

The presented analysis is an investigation of transcription dynamics from time dependent
traces in living functioning organisms. It shows that the functional promoter that controls the
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first regulatory steps in fly development is bursty, even in the region with the highest activator
concentration. The inferred rates are reproducible between nuclei and embryos and the inter
embyo variability is similar to the inner embryo variability (Fig. 7.5A, C and D).

We used the obtained results to estimate the precision of the transcriptional process from
the hunchback promoter. We found that even in the boundary region the variability in the
mRNA produced in steady state by the different nuclei is large, with a relative error of about
50% (Fig. 7.7A). This variability further increases to 150% of the mean mRNA produced at the
boundary. These empirical estimates are completely explained by theoretical arguments that
treat the gene as an independent measuring device that samples the environment, correcting
for the number of independent measurements during a cell cycle. In both cases, the precision
at the level of the gene readout is not sufficient to form the precise Hunchback boundary up to
half a nuclear width [147]. However, although we can extend our argument to the total mRNA
produced in the early cell cycles (Fig. 7.7B), we do not know the amount of maternal hunch-

back mRNA in the nuclei. Having an irreversible promoter cycle could increase the theoretical
precision, but only slightly in the parameter regime we have inferred and it would not change
the quantitative conclusions about low precision backed by the empirical results.

In the same spirit, the construct we used here was limited to the 500 bp of the proximal
hunchback promoter, which recapitulates the formation of a sharp boundary at later cell cycles
in Fluorescent In Situ Hybridization (FISH) [135]. It is possible that the boundary phenotype
is recovered thanks to averaging of mRNAs and proteins produced by the real gene or the
transgenes in other nuclei. In the latter case, this would point towards a robust "safety" averaging
mechanism that relies on the population. Alternatively, we have to be aware that the sharp
boundaries were only detected on fixed samples and that having access to the dynamics of
the transcription process likely provides a more accurate view on the process. We calculated
and estimated from the data the precision of the gene readout based on the variability of the
transcription process between nuclei. We find that the transcriptional process at a given position
is quite noisy. Previous estimates of precision were based on static data and did not consider
the probability of the gene to be ON, but assumed a binary representation where each nuclei
is either active or inactive. By analyzing the full dynamic process we show that the gene is
bursty and the transcriptional process itself is much more variable. Reducing the information
contained in our traces to binary states, we find precise expression in the anterior, but still large
variability at the boundary, similarly to previous results from Fluorescent In Situ Hybridization
(FISH)[125].

Assuming that the precision in determining the position of the nuclei is encoded in the
precision of the gene readout, a gene with the dynamics characterized in this paper needs to
measure the signal ≥ 200 times longer at the boundary to achieve the observed ≥ 10% precision.
A gene in the anterior would need to integrate only ≥ 25 times longer. These results again
suggest that the precision in determining the position of the nuclei is not only encoded in
the time averaged gene readout, but probably relies either on spatial averaging mechanisms
[116, 148, 140] or more detailed temporal information.

In summary, the early developing fly embryo provides a natural system where we can inves-
tigate in a functional setting the dynamics of transcription in a living organism. In our data
analysis we are confronted by the same limitations that natural genes face: an estimate of the
environmental conditions must be made in a very short time. Analysis of dynamical traces
suggests that transcription is a bursty process with relatively large inter-nuclei variability, sug-
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gesting that simply the templated one to one time-averaged readout of the Bicoid gradient is
unlikely. Comparison of mutant experiments can shed light on exactly how is the decision to
form the sharp hunchback mRNA and protein boundary made.

7.5 Materials and Methods

7.5.1 Constructs

For live monitoring of hb transcription activity in Drosophila embryos, we used the MS2-MCP
system which allows fluorescent labeling of RNAs as they are being transcribed [121, 18, 146].
To implement the reporter system in embryos, we generated flies transgenic for single insertions
of a P-element carrying hb proximal promoter upstream of an iRFP-MS2 cassette carrying 24
MS2 repeats [149, 18]. The flies also carry the P{mRFP-Nup107.K} [150] transgenic insertion
on the 2nd chromosome and the Pw[+mC]=Hsp83-MCP-GFP transgenic insertion on the 3rd
chromosome. These allow the expression of the Nucleoporin-mRFP (mRFP-Nup) for the labeling
of the nuclear envelopes and the MCP-GFP required for labeling of nascent RNAs [121]. All
stocks were maintained at 25¶C.

7.5.2 Live Imaging

Embryo collection, dechorionation and imaging have been done as described in [18]. Image
stacks (≥19Z ◊ 0.5µm, 2µm pinhole) were collected continuously at 0.197µm XY resolution,
8bits per pixels, 1200x1200 pixels per frame. A total of 4 movies capturing 4 embryos from
nuclear cycle 10 to nuclear cycle 13 were taken. Each movie, due to having different scanned
field along the embryos’ width, has a different time resolution: 13.1 s, 10.2 s, 5.1 s and 4.3 s.

7.5.3 Image analysis

Nuclei segmentation, tracking and MS2-MCP loci analysis were performed as in [18] and reca-
pitulated here. All steps were inspected visually and manually corrected when necessary. Nuclei
segmentation and tracking were done by analyzing, frame by frame, the maximal Z- projection
of the movies’ mRFP-Nup channel. Each image was fitted with a set of nuclei templates, disks of
adjustable radius and brightness comparable with raw nuclei’s, from which the nuclei positions
are extracted. During the cycle’s interphase, each nucleus was tracked over time with a simple
minimal distance criterion. For the analysis of MS2-MCP loci detection and fluorescent inten-
sity quantification, the 3D GFP channel (MS2-MCP) were masked with the segmented nuclei
images obtained in the previous step. This procedure also helps associating spots to nuclei. We
then applied a threshold equal to 2 times the background signal to the masked images and
selected only the connected regions with an area larger than 10 pixels. The spot positions are
set as the position of the centroids of the connected regions. The intensity of each spot was
calculated by summing up all the pixel intensity in the vicinity of the centroids (region of 1.5µm
x 1.5µm x 1µm) subtracted to the background intensity extracted from the region around and
excluding the spots. In the (rare) case of multiple spots detected per nucleus, the biggest spot
was selected.

For each nucleus, we collected the nucleus’ position and the spot intensity over time (here
referred as "traces"). The traces were then classified according to their respective embryos (out
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of 4 embryos), cell cycle (10 to 13) and position along AP axis (either Anterior or Boundary).
See SI Section A and Fig. B.1 for examples of traces.

7.5.4 Trace preprocessing

Before the autocorrelation function can be calculated the traces need to be preprocessed. To
ensure that the data captures the dynamics of gene expression in its steady state, for each
embryos and each cell cycle, we observed the spot intensity only in a specific time window. The
beginning and the end of this window is determined as the moment the mean spot intensity over
time of all traces (both at the anterior and the boundary) reaches and leaves its an expression
plateau (see example in Fig. B.2).

7.5.5 The two state model

The detailed form of the autocorrelation function in Eq. 7.2 depends on the underlying gene
promoter switching model. For the two state – telegraph switching model (left panel in Fig. 7.1A)
the jumping times between the two states are both exponential and the dynamics is Markovian.
The mean steady state probability for the promoter to be ON is Pon = kon/(kon + koff), which
combined with Eq. 7.1 gives the form of the mean fluorescence ÈF Í. The probability that the
gene is ON at time n given that it was on at time 0 is An = Pon + e(δ≠1)n(1 ≠ Pon), where
δ = 1 ≠ kon ≠ koff . The steady state connected correlation function depends only on the time
difference (see SI Section B):

ÈF (t)F (t + τ)Í ≠ ÈF (t)Í2 =
ÿ

i,j

LiLjPon(1 ≠ Pon)e(δ≠1)|τ≠j+i|. (7.5)

7.5.6 The cycle model

In the cycle model (center panel in Fig. 7.1A) the OFF period is divided into different sub-steps
that correspond to K intermediate states with exponentially distributed jumping times from one
to the next. The transition matrix T encodes the rates of this irreversible chain. The probability
of the promoter to be in the ON state is:

Pon =
kon

kon +
qK≠1

i=1 ki

, (7.6)

and that the steady state connected autocorrelation at is (see SI Section D):

ÈF (t)F (t + τ)Í ≠ ÈF (t)Í2 =
r

ÿ

i=1

r
ÿ

j=1

L(i)L(j)Pon

C

1

1 0
2

e(T ≠1)ú|i≠j≠τ |

A

1
0

B

≠ Pon

D

, (7.7)

where τ is counted in polymerase steps. In the simple case of a two state model Eq. 7.7 reduces
to Eq. 7.5.

7.5.7 The γ waiting time model

An alternative description of a promoter cycle relies on a reduced description to an effective two
state model where we use the fact that the transitions between the states are irreversible. The
distribution of times spent in the effective OFF state τ , is no longer exponential, as it was in
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the two state model, but it has a peak at nonzero waiting times, which can be approximated by
a Gamma distribution

Γ(τ) =
βα

Γ(α)
xα≠1e≠βx, (7.8)

with mean α/β, where β is the scale parameter, α is the shape parameter and Γ(α) is the gamma
function. The true distribution of waiting times in a cycle model approaches the γ distribution
if the OFF rates are all the same and koff << 1. In this limit β ¥ koff , and α describes the
number of intermediate OFF states. In the more general case it correctly captures the effective
properties of the process. The mean probability of the promoter to be in ON state in the γ

waiting time model is given by

Pon = (1 +
αkoff

β
)≠1. (7.9)

The autocorrelation function cannot be computed directly analytically. The steady state Fourier
transform of the steady state autocorrelation is (see SI Section E):

F(ÈF (t)F (t + τ)Í ≠ ÈF (t)Í2)(ξ) =
⁄ +Œ

≠Œ
dτe≠2iπτ (ÈF (t)F (t + τ)Í ≠ ÈF (t)2Í) (7.10)

=
ÿ

k,j

LkLjPon2Ÿ
Ë

e≠2iπ(i≠j)#
1

koff + 2ifi› ≠ koff(1 +
2ifi›—

–koff
)≠α

2≠1
≠ Pon

2ifi›

$

È

.

7.5.8 Finite cell cycle length correction to the connected autocorrelation
function

Due to the short duration of the cell cycle, the theoretical connected correlation functions
need to be corrected for finite size effects when comparing them to the empirically calculated
correlation functions. When analyzing the data we calculate the autocorrelation function from
M traces {vα}1ÆαÆM of the same length K, vα = {vαj}1ÆjÆK . We calculate the connected
autocorrelation function for each trace and normalize it to 1 at time t = 0 to avoid spurious
nucleus to nucleus variability:

cα(r) =

q

(i,j),|i≠j|=r

IA

vαi ≠ 1
K

K
q

l=1
vαl

B A

vαj ≠ 1
K

K
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l=1
vαl

BJ

K ≠ r

K

K
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j=1

A

vαj ≠ 1
K

K
q

l=1
vαl

B2 , (7.11)

and then average over all M traces to obtain the final connected autocorrelation function:

c(r) =
1

M

M
ÿ

α=1

cα(r). (7.12)

For v̄ = ÈviÍ – the steady state true theoretical average of the random fluorescence intensity
over random realization of the process, and v̄2 = Èv2

i Í – the true theoretical second moment of
the fluorescence signal, when K æ Œ the average over time points is equal to the theoretical

average, 1/K
K
q

i=1
vαi = v̄ and the using time invariance in steady state the autocorrelation

function becomes:

Cr =
Èvivi+rÍ ≠ v̄2

v̄2 ≠ v̄2
, (7.13)
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where È·Í is an average over random realizations of the process. Eq. 7.13 corresponds to the
limit we calculated in the theoretical model. To account for the finite size effects that arise

due to short time traces we need to correct for the fact that for short traces 1
K

K
q

i=1
vαi ”= v̄ and

1
K

K
q

i=1
v2

αi ”= v̄2 but both the mean and the variance are functions of K. We note that for short

traces the definitions of autocorrelation and autocovariance differ:
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In practice for the analyzed dataset we found that the finite size effects for the variance can
be neglected, however the mean over time points is a bad approximation to the ensemble mean.
We present the finite size correction to the mean below. For completeness we include the finite
size correction for the variance in SI Section I, although we do not use it in the analysis due to
its numerical complexity and small effect.

If the variance of the normalized fluorescence intensity over random realizations of the process
is well approximated by the average over the K time points, we can replace the denominator in
Eq. 7.11 by v̄2 ≠ v̄2 and in steady state evaluate the mean connected autocorrelation function
(see SI Section H for details):

c(r) =
1

v̄2 ≠ v̄2

Ë

C̃r +
1
K

3

1
K

≠ 2
(K ≠ r)

4
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KC̃0 +
K≠1
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k=1

2(K ≠ k)C̃k

B

(7.15)
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rC̃0 +
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2(r ≠ k)C̃k +
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C̃m[min(m + r, K) ≠ max(r, m)]
"

È

where C̃k = Èvivi+kÍ is the theoretical steady state non-connected correlation function of the
process and the average is over random realizations of the process. If vi = X(i) then Ck is
proportional to A(k).

7.5.9 Inference

The inference proceeds in three steps:
Step 1. Signal calibration. The intensity of the measured signal depends on a constant trace

dependent offset value I0, I(t) =
qr

i=1 I0aiLi. To calibrate this offset we take the maximum
expression to be the mean of the maximun expression over all traces in a given region Imax =
Èmaxt I(t)Í = I0

qr
i=1 Li. The calibrated fluorescence signal used in the analysis is then F (t) =

I(t)/I0 =
qr

i=1 aiLi. Pon is directly calculated using Eq. 7.1.
Step 2. Estimating parameter ratios. The ratios of the rates can be estimated directly from

the steady state mean fluorescence values using Eqs. 7.6 and 7.9.
Step 3. Estimating parameters. Using the estimate for the ratio of the rates, the ON and

OFF rates are found by minimizing the mean squared error between the data and the model.



Chapter 8

Conclusions

8.1 About models in biophysics

I have presented two topics that are very different in biological content: immunology and de-
velopment. Both of them require the use of tools from statistical mechanics to be modeled and
include random networks at their core. In practice the methods used to tackle the challenges
they bring are quite different: continuous population dynamics equations in immunology and
discrete Markov chains in regulatory networks.

What do physicists bring to the table in biology? At the end of the analysis what stands
out is an intuitive but rigorous formalism and the ability to write minimal models capturing the
essence of the dynamics. Looking for general laws and simple equations in biological systems
goes against the flow of large models including vast numbers of parameters that account for
every constituent of the system. Such models do not bring much to the field of biophysics unless
particularly smart or powerful ways of implementing them are developed.

Apart from having very few parameters, the models developed also have in common that
they are specifically designed to answer a set of questions. It is very important to remember
that there is no absolute right description of a system but that the approximations, the choice
of scales, the variables have to be adapted to the questions asked. The issue with this vision of
modeling is that it is dangerous to rely on a model that can only reproduce one specific feature
of the data. In that sense, large models with many predictions that can be compared with
experimental results are safer. In particular, in the two examples presented in this Dissertation,
different models reproduce the observed data for a specific set of parameters (antigen-based and
cytokine-based for immune repertoires, and Poisson or bursty for the autocorrelation functions).
While there are several hints that one model is more convincing than the others, a rigorous
process of model selection based on one feature is difficult, even when knowledge of the biological
system limits the possibilities. For the morphogenesis models, it is eventually the comparison of
the precision of the hunchback activation boundary that allows to favour the bursty dynamics
(updated publication in preparation).

8.2 Future work

The immune models can open up a set of interesting new experiments. To test the validity of the
power law result, an experiment could be designed where different mice live in environments with
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different levels of pathogenic stimulation (such as fully sterilized, normal laboratory conditions
and wildlife conditions). The distribution of clone sizes should vary with the level of pathogenic
threats the environment would pose as it would affect both the amplitude and the correlation
time of antigenic fluctuations.

In immunology, in terms of model, I would like to extend the analysis to the hypermutation
phase of the immune response. A first attempt at this type of models is shown in Appendix A
and already hints at a strong effect of hypermutation rates on the distribution of clone sizes. It
seems that a lot could be learned from comparing these predictions with observed distribution
of antibodies during infections.

In development it seems that much could be learned from a two-colored fluorescent exper-
iment where the crosscorrelation of a 3Õ probe and a 5Õ probe could be computed. This would
not only provide another set of data for analysis of gene switching parameters, it would also
open new insights in elongation speed, splicing, and variability of polymerase reading paths.
Applying the method to other development networks (such as the famous pair rule genes) would
also produce fast results about gap genes and morphogen interactions.

From the point of view of modeling, an exciting prospect is to mix the two frameworks in a
dynamical analysis of correlation of populations in immune repertoires. This would give much
more information than the static picture of clone size distributions and help understand the
fine structure of immune dynamics considered in Chapter 5. Another interesting direction to
explore is to expand the analysis started in Appendix A.11 to divide clones between naive and
memory. In this framework it is possible to investigate the effect of a less abundant pathogenic
contribution to the antigenic pool (compared to self antigen) on the dynamics of the naive
repertoire. One could then test how sanitized environments affect peripheral immune dynamics
and discuss potential links to auto-immune disorders. The cytokine model of Chapter 4 and the
models of Chapter 5 both give potential descriptions of the naive repertoire. They could be a
way to test what are the potential sources of auto-immune disorders in the dynamics of self-
antigen-receptor interactions in the periphery as opposed for instance to problems in positive
and negative selection of incoming clones. A theoretical analysis would make a strong case with
predictions for clonal populations would help call for a deep sequencing of auto-immune disorder
patients repertoires.

More broadly, a lot of the analysis done above calls for a general theoretical framework
defining a complex cell state with many variables and limited cell-to-cell fluctuations. This
would constitute a solid basis for general work on variability inside and across cell lineages. It
would be exciting to see what type of prediction can be made on a system based on assumptions
such as noise sources rather than precise descriptions of the dynamics in a general framework
(as is done in Chapter 4 in a specific case).



Appendix A

Fitness shapes clone size

distributions of immune repertoires:

supplementary information

A.1 Simple birth-death process with no fitness fluctuations, and

its continuous limit

In this Appendix we derive the steady-state clone size distribution for a system that does not
experience any environmental stimulation or noise, but is governed by a birth death process.
We will show that the small number fluctuations arising from the discrete nature of birth and
death are not sufficient to explain the observed distributions. We also show that our choice of
a continuous birth death process is equivalent to its discrete version.

The multiplicative birth–death process corresponds to the following discrete dynamics:
Y

]

[

P (n æ n + 1) = µndt

P (n æ n ≠ 1) = νndt,
(A.1)

where µ is the division rate, ν the death rate. We assume that the population of cells of size
n is maintained out of equilibrium by a source of new cells. The steady state solution for cell
numbers above the value of the source satisfies detailed balance

P (n)µn = P (n + 1)ν(n + 1) (A.2)

and, assuming the death rate is larger than the birth rate, takes the form

P (n) ≥ K

n
e≠n log ν/µ. (A.3)

The continuous counterpart of this discrete stochastic process corresponds to the following
linear-noise approximation:

∂tCi = f0Ci +
Ò

(µ + ν)Ciξ, (A.4)

where Èξi(t)ξi(tÕ)Í = δ(t ≠ tÕ) and f0 = µ ≠ ν < 0 (and we use the Îto convention ). In terms of
x = log C the Langevin equation is

∂tx = f0 +
Ô

µ + νe≠x/2ξ ≠ e≠x (µ + ν)
2

, (A.5)

107



108 APPENDIX A. FLUCTUATING FITNESS SI

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Clone size

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

 

 

Simulated solution

Analytical continuous solution

Analytical dicrete solution

Figure S1: We compare results from a full Gillespie simulation (blue crosses) of a system
with only birth-death dynamics with analytical prediction for a discrete system (black crosses,
Eq. A.3) and a continuous system (red curve, Eq. A.12). The prediction with discrete variables
is more accurate for small clones but the behaviour of all systems is the same for large popula-
tions. The parameters are ν = 1.45 day≠1, µ = 1.5 day≠1, C0 = 2 and we introduce 2000 new
clones per day.

and the corresponding Fokker-Planck equation reads

∂tρ = ∂x(≠f0ρ) + ∂2
x

3

µ + ν

2
e≠xρ

4

+ ∂x

3

e≠xρ
µ + ν

2

4

+ s(x), (A.6)

where s(x) is the distribution of sizes of newly arriving clones. At steady state, we find

K ≠ sCθ(x ≠ x0) = ≠f0ρ +
µ + ν

2
e≠xρÕ, (A.7)

where K is an integration constant. Defining

Cm = (µ + ν)/(2|f0|) (A.8)

for x < x0 we obtain

ρ(x) = e≠ex/CmK

⁄ x

0
exeex/Cm = KCm(1 ≠ e≠(ex≠1)/Cm) (A.9)

and for x > x0

ρ(x) = e≠ex/CmCm

Ë

Keex/Cm ≠ Ke1/Cm (A.10)

≠ sC

|f0|Cm
eex/Cm +

sC

|f0|Cm
eex0 /Cm

È

To ensure convergence we set K = sC/(|f0|Cm) and the steady solution of the Fokker-Planck
equation is

ρ(x) =

Y

]

[

sC
|f0|(1 ≠ e≠(ex≠1)/Cm) , if x < x0

sC
|f0|(e

ex0 /Cm ≠ eC≠1
m )e≠ex/Cm , if x > x0

(A.11)
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or in terms of the clone size

ρ(C) =

Y

]

[

1
C (1 ≠ e≠(C≠1)/Cm), if C < C0

(eC0/Cm ≠ eC≠1
m ) e≠C/Cm

C , if C > C0

(A.12)

This result is exactly equivalent to that of Eq. A.3 when ν ≠ µ = |f0| π µ, ν. The accuracy of
the approximation is verified in Fig. S1. Even for very large exponential cutoff values, Cm, the
apparent exponent is α = 0, corresponding to a flat cumulative distribution. This distribution
is inconsistent with experiments, regardless of sequencing depth and we conclude that pure
birth-death noise is not sufficient to explain the observed distributions.

A.2 Effects of explicit global homeostasis

In the simulations of clone dynamics in a fluctuating environment presented in the “Clone
dynamics in a fluctuating antigenic landscape” Results section of the main text, we did not
explicitly include a homeostatic control term, but tuned the division and death rates to achieve
a given repertoire size. Here we add an explicit homeostatic term to the growth and degradation
terms in the Langevin simulations described by Eq. 1 of the main text

≠ h

5
q

i Ci

N

6r

, (A.13)

where N is a carrying capacity, h is the homeostatic constant multiplicator and r is the exponent
of homeostatic response that described the sharpness of the response when approaching then
carrying capacity limit. Comparing in Fig. S2 the resulting clone size distribution obtained with
the explicit homeostatic term to the distribution from the simulations in the main text, we see
that the explicit homeostatic term does not have an effect on the form of the distribution. It
does have an effect on the trajectory of certain clones, and in particular on the response of the
system to a very large invasion, making it an important feature of the dynamics of the immune
system. However, as shown by the results in Fig. S2 its net effect on the clone size distribution
can be taken into account by tuning division and death. When considering specific trajectories
in the mean field approximation homeostatic control will add a systematic negative drift to the
clonal population and can be accounted for by an additional contribution to f0.

A.3 Details of noise partition do not influence the clone size

distribution function

In the simulation of the dynamics of receptors experiencing a clone-specific fitness presented
in the “Clone dynamics in a fluctuating antigenic landscape” Results section of the main text
we distributed the noise between the different random distributions: the poisson distributed
number of new antigens (sA), the variance of the initial concentrations (aj,0) and the variance
of the binding probability (the values of Kij). We made specific choices for this reparation by
picking specific parameters of the random processes. Here we show that these specific choices of
repartitioning the contributions to the noise do not influence the clone size distributions. Fig. S3
compares clone size distributions obtained with different values of the poisson distributed number
of newly arriving antigen Na and the variance of the Gaussian distributed binding probabilities
Kij , reproducing the same distributions in both cases.
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Figure S2: Adding an explicit homeostatic control term does not affect the clone size distribution
compared to tuning the degradation and death rates to obtain a given repertoire size as is done
in the main text. Comparison of the clone size distribution with an explicit homeostatic control
term given by Eq. A.13 (black line) to the distribution presented in the main text (red line). We
simulate the Langevin equation for a division rate ν = 0.2 days≠1, death rate µ = 0.4 days≠1,
introduction size C0 = 2, environmental correlation time of λ≠1 = 0.5 days and an amplitude
of variations of the environment A = 1.41 days≠1 without any homeostatic control for the red
curve and with carrying capacity N = 4 · 1010 (h = 1) and a homeostatic exponent r = 3 for the
black curve.
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Figure S3: Repartitioning the sources of stochasticity between the number of new antigens per
time unit or the variability of binding probabilities does not influence the clone size distributions.
We compare simulations of the full system dynamics defined by Eq. 1 of the main text with two
sets of values sA of the poisson distributed number of newly arriving antigen Na and the variance
of the Gaussian distributed binding probabilities Kij that give the same total environmental
noise A2 = sApa2

0ÈK2Íλ≠1. The parameters were taken to be (as in Fig. 1) sC = 2000 day≠1 ,
C0 = 2, day≠1, aj,0 = a0 = 1, λ = 2 day≠1, p = 10≠7, ν = 0.98 day≠1, µ = 1.18 day≠1. For the
red curve the variance of the entries of Kij is 1, so that ÈK2Í = 2 and sA = 1.96 · 107 while for
the black curve the variance of the entries of Kij is 3, so that ÈK2Í = 4, and sA = 0.98 · 107.



A.4 Model of temporally correlated clone-specific fitness fluctuations 111

A.4 Model of temporally correlated clone-specific fitness fluc-

tuations

In the “Simplified models and the origin of the power law” Results section of the main text
we make a series of approximations to effectively describe the dynamics of immune cells: we
first approximate the antigenic environment by a random process with time correlated (colored)
noise and we later neglect these temporal correlations. In this section and Appendix A.6 we
give the details that lead to the specific forms of the effective equations. In this Appendix we
derive the Fokker-Planck equations for the time correlated noise model. In Appendix A.6 we
will consider the limit of an infinitely quickly changing environment.

The Langevin equations describing the dynamics of cells experiencing clone specific fitness
fluctuations with a finite correlation time are

dCi

dt
= [f0 + fi(t)]Ci(t) +

Ò

(ν + µ)Ci(t)ξi(t), (A.14)

dfi

dt
= ≠λfi(t) +

Ô
2“÷i(t), (A.15)

where È›i(t)›i(tÕ)Í = ”(t ≠ tÕ) represents birth death noise in the linear-noise approximation
(with the Îto convention) and È÷i(t)÷i(tÕ)Í = ”(t ≠ tÕ) is the noise of antigenic environment. The
autocorrelation function of this Ornstein-Uhlenbeck process is

Èfi(t)fi(t
Õ)Í = e≠λ(t+tÕ)

A

Èfi(0)2Í ≠ “2

⁄

B

+
“2

⁄
e≠λ|t≠tÕ|. (A.16)

We pick the steady-state value of the initial fitness distribution to cancel the first in Eq. A.16, Èfi(0)2Í =
“2/⁄ and obtain

Èfi(t)fi(t
Õ)Í =

“2

⁄
e≠λ|t≠tÕ|, (A.17)

(conditioned on the integral of the net growth rate f + f0 being positive so that the clone does
not go extinct). Setting x = log C, we obtain a new set of Langevin equations

ˆtxi = f0 + fi +
Ô

µ + ‹e≠xi/2›i ≠ e≠xi
(µ + ‹)

2
, (A.18)

dfi

dt
= ≠⁄fi +

Ô
2“÷i, (A.19)

where the birth-death noise is now treated in the Îto convention. The corresponding Fokker-
Planck equation for the distribution of fitness and clone size at time t, fl(x, f, t), verifies

ˆtfl = ˆx(≠f0fl) + ˆf (⁄ffl) + ˆ2
f (“2fl) + (A.20)

ˆ2
x

3

µ + ‹

2
e≠xfl

4

+ ˆx

3

e≠xfl
µ + ‹

2

4

+s(x, f),

where s(x, f) is the source of new clones. We solve this equation numerically using finite element
methods to obtain clone size distributions for the clone-specific fitness model.
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A.5 The Ornstein Uhlenbeck process and maximum entropy

In this Appendix we show that the maximum entropy or maximum caliber process with au-
tocorrelation function Èx(t)x(t + s)Í = A2e≠λ|s| corresponds to the Ornstein-Uhlenbeck pro-
cess. We consider this continuous maximum entropy process as the continuous limit of a
simpler maximum entropy system in discrete time. Burg’s maximum entropy theorem [151]
states that the maximum entropy process in discrete time that constrains ÈXn(t)2Í = A2 and
ÈXn(t)Xn+1(t)Í = A2e≠λτ corresponds to the following Markovian dynamics:

Xn+1 = e≠λτ Xn +


1 ≠ e≠2λτ A÷, (A.21)

where ÷ is Gaussian white noise. In the limit of · æ 0 we recover the constrained autocorrelation
function in the vicinity of s = 0+: Èx(t)2Í = A2, (d/ds)Èx(t)x(t+s)Í|s=0+ = ≠⁄A2, and Eq. A.21
converges to an Ornstein-Uhlenbeck process.

A.6 Model solution for white-noise clone-specific fitness fluctu-

ations

In the limit of infinitely quickly fluctuating environments, “ æ +Œ and ⁄ æ +Œ while keeping
their ratio ‡ = “/⁄ constant, the autocorrelation of the fitness noise approaches a Dirac delta
function, and the fluctuating part of the growth rate fi(t) converges to Gaussian white noise,
Èfi(t)fi(tÕ)Í = 2‡2”(t ≠ tÕ). Effectively the immune cell dynamics are now described by a one
dimensional Langevin equation for the clone size

ˆtCi = f0Ci +
Ô

2‡Ci÷i +
Ò

(‹ + µ)Ci(t)›i, (A.22)

where È÷i(t)÷i(tÕ)Í = ”(t ≠ tÕ) follows the Stratanovich convention and ›i is as before. The
equation for the logarithm of the clone size x = log C is

ˆtxi = f0 +
Ô

2‡÷i +
Ô

µ + ‹e≠xi/2›i ≠ e≠xi
(µ + ‹)

2
. (A.23)

We explicitly checked that the numerical solution to the clone specific fitness model in
Eqs. A.14 and A.15 converged to the dynamics described by Eq. A.22, as demonstrated in
Fig. S4.

We now solve this equation analytically, starting with the case of no birth-death noise:
Eq. A.22 simplifies to

ˆtCi = f0Ci +
Ô

2‡Ci÷i (A.24)

The equation for x = log C (using the Stratanovich convention) is

ˆtxi = f0 +
Ô

2‡÷i, (A.25)

with the corresponding Fokker Planck equation

ˆtfl(x, t) = ˆx(≠f0fl) +
1
2

ˆx[2‡2ˆxfl] + s(x), (A.26)

where s(x) is the source term describing the size of newly introduced clones. Assuming a constant
initial clone size, s(x) = sC”(x ≠ x0), the steady state solution is

fl(x) = e≠αx 1
–

Ë

Keαx ≠ K ≠ sC‡2eαx + sC‡2ex0

È

, (A.27)
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Figure S4: Comparison between clone size distribution obtained as solutions of the time-
correlated and time-uncorrelated noise models (without birth death noise). As the values of
the dimensionless parameter related to the effective strength of antigen fluctuations relative to
their characteristic lifetime λ3/γ2 grow the time correlated noise prediction converges to the
exact power-law solution of the white-noise model. The cut-off value of the power law decreases
with λ3/γ2. All simulations performed at a constant value of α = |f0|λ2/γ2 set to 0.5. The
value of f0 is kept fixed to ≠0.5 days≠1 for all solutions.

where we have defined

α = |f0|/σ2, (A.28)

and K is an integration constant. Imposing that ρ vanishes at infinity sets K = sCσ2 and the
final form of the steady state clone size distribution is

ρ(x) =

Y

]

[

sC
|f0| (1 ≠ e≠αx) if x < x0

sC
|f0|e

≠αx (ex0 ≠ 1) if x > x0,
(A.29)

or in terms of clone size C = ex,

ρ(C) =

Y

]

[

sC
|f0|C

1

1 ≠ 1
Cα

2

if C < C0

sC
|f0|

1
Cα+1

1

1
Cx0 ≠ 1

2

if C > C0.
(A.30)

In all simulations and solutions we find that for large clones, the model of temporally corre-
lated fitness fluctuations behaves as the its white noise limit. This behaviour can be explained
by the fact that large clones need a long time to become large. At these long timescales, the
characteristic time of noise correlation is negligible and the noise may be approximated as white.
For this reason, the exponent α of the power law computed assuming a white noise for the fitness
fluctuations is still valid even when that noise is actually correlated in time.

Next, we re-introduce the birth-death noise and solve the general equation. The Langevin
equation for x = log C,

∂tx = f0 +
Ô

2‡÷ +
Ô

µ + ‹e≠x/2› ≠ e≠x (µ + ‹)
2

(A.31)
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Figure S5: We compare simulations of the Langevin dynamics with time correlated antigenic
noise with birth-death noise (black line) to the same dynamics without the birth-death noise
(red line). All other parameters are kept fixed.We find similar values of the power law exponents
but different small clone behaviours. The parameters are ν = 0.2 day≠1, µ = 0.4 day≠1 (for red
curve simply f0 = ≠0.2 day≠1) , C0 = 2, λ = 2 day≠1 and γ = 1 day≠3/2

results in the Fokker-Planck equation for the distribution of clone sizes

∂tρ = ∂x(≠f0ρ) +
1
2

∂x[2σ2∂xρ] + ∂2
x

3

µ + ν

2
e≠xρ

4

+∂x

3

e≠xρ
µ + ν

2

4

+ s(x).
(A.32)

Assuming that the initial size is constant, the steady state solution is given by the solution of
the inhomogeneous linear equation:

K ≠ sCθ(x ≠ x0) = ≠f0ρ + σ2ρÕ + e≠x µ + ν

2
ρÕ. (A.33)

The full solution is the sum ρ = ρ0 + ρ1 of the particular solution,

ρ0(x) =

Y

]

[

K
|f0| for x < x0,

K≠sC
|f0| for x > x0,

(A.34)

and the solution ρ1 to the homogeneous equation

f0ρ1 = σ2ρÕ
1 + e≠x µ + ν

2
ρÕ

1 (A.35)

of solution:

ρ1(x) = K Õ

S

U

ex + (µ+ν)
2σ2

1 + (µ+ν)
2σ2

T

V

≠α

, (A.36)

with α = |f0|/σ2. Therefore, for x > x0

ρ(x) = K Õ

S

U

ex + (µ+ν)
2σ2

1 + (µ+ν)
2σ2

T

V

≠α

+
K ≠ s

|f0| (A.37)
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we set K = s for convergence and obtain the steady state clone size distribution for large x

ρ(x) =
5

ex +
µ + ν

2σ2

6≠α

, (A.38)

or in terms of the clone size
ρ(C) =

1

C
1

C + µ+ν
2σ2

2α . (A.39)

We see that the white noise solution with birth–death noise has the same large clone power law
behaviour as without birth–death noise. Fig. S5 illustrates how birth death noise in the clone-
specific fitness models with time correlated noise also does not affect the power law exponent
but only the cut off of the power law.

A.7 Data analysis

In the main text we report values of the power law exponents and power law cut off values
obtained from the high throughput sequencing repertoire study of clone size distributions of
zebrafish B-cell heavy chain receptors of Weinstein et al. [46]. We extracted the power law
exponent and the best fit for the starting point of the power law, defined as its lower bound
cutoff, from the discrete clone size distributions plotted in Fig. 1 of the main text using the
methods discussed by Clauset and Newman [81]. Specifically, for each point of the cumulative
clone size distribution we compute an estimate of the power law exponent with that point as
cutoff (i.e the best fit of the power law including only the values of the distribution above that
point) using

α(Cmin) = 1 + n

C

n
ÿ

i=1

log
3

Ci

Cmin

4

D

, (A.40)

where Cmin is the cut off and n is the number of points with y-axis values above Cmin. For each
of these cut-off values we compute the Kolmogorov-Smirnov distance between the data and the
estimated power law distribution:

d(Cmin) = maxC>Cmin |Fd(C) ≠ Fe(C; Cmin)| (A.41)

where the maximum is taken over all values above the cut off Cmin, Fd is the cumulative dis-
tribution function (CDF) of the data and Fe(C; Cmin) is the CDF of the estimated power law
distribution with Cmin as a cutoff, using Eq. A.40. The the cut off is taken to be the minimum
of this distance over all possible cut off values and the exponent is the exponent found for this
value.

The obtained power law parameters are presented in Table A.1. The power law exponent
gives reproducible values for different individuals and agrees with values of the same exponent
obtained from human data [82]. We note that the power law exponent of the cumulative distri-
bution function is α for a power law distribution with exponent 1 + α. As discussed in detail
in the main text, the reliability of the cutoff estimate Cú is sensitive to experimental precision
of capturing the rare clones. In the presented dataset the reads were not barcoded and the
counts had to be renormalized by a known PCR amplification factor. Therefore, these normal-
ized counts could not to used as normal counts, making the definition of a cut-off clone size
problematic. To overcome this problem, we estimate the power law cut-off from the value of the
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Fish 1 + α Cú log(1 ≠ CDF(Cú))

A 2.0591 32.6445 - 3.1389
B 2.0214 10.7231 -1.8644
C 2.0708 16.7386 -2.4655
D 2.0670 14.9313 -2.1492
E 2.0529 8.2685 -1.8332
F 2.0006 5.8972 -1.6161
G 1.9867 52.2909 -2.7329
H 2.2242 32.1719 -2.6877
I 2.0835 18.4385 -2.2757
J 1.6907 44.4885 -2.2877
K 1.7641 3.6030 -0.9907
L 1.9417 18.5298 -2.2730
M 1.9901 18.5531 -2.2031
N 1.8877 108.4732 -2.7984

Table A.1: Fit of the power law exponent of the clone size distribution 1 + α and power law cut-
off value Cú for zebrafish B-cell heavy chain D segment data from Weinstein et al [46] presented
in Fig. 1. The fit for 14 fish (named A to N) shows a similar fit of the power law exponent.

cumulative distribution function at the cut-off clone size (instead of the cut-off clone size itself).
That value is invariant under rescaling of absolute clone size values, unlike Cú.

We notice that the steady state solution is invariant under a full rescaling of time in the
equations of the dynamics. This means that the system can be described by two dimensionless
parameters, α = f0λ2/γ2 and λ3/γ2, and the introduction size C0. Fitting α to data and
assuming value for C0, we can compare the value of the power law cut-off in data and in
simulations to fit the remaining dimensionless parameter, λ3/γ2. Estimating f0 based on thymic
output we can predict the order of magnitude of λ and γ.

A.8 Cell specific simulations

In the “A model of fluctuating phenotypic fitness” Results section of the main text, we present
results of Fokker-Planck simulations for the cells dynamics. Here we verify that the stochastic
dynamics of cells subject to a fluctuating cell-specific fitness are well approximated at the pop-
ulation level by a Fokker-Planck equation with a source term accounting for the import of new
clones by comparing its numerical steady-state solution obtained by a finite elements method to
explicit Gillespie simulations. We simulated the dynamics of clones using a Gillespie algorithm
where cell division and death are accounted for explicitly and depend linearly on a fitness fc(t)
fluctuating according to Eq. 7. The death rate is kept constant (above the average birth rate)
and the fluctuations of the fitness only affect the birth rate (with the constraint that the birth
rate is always positive). The agreement between the results of this detailed simulation and
the Fokker-Planck solution, shown in Fig. S6, validates the linear-noise approximation for the
birth-death noise as well as the averaging argument leading to Eq. 8 and 9. This allows us to
rely on the Fokker-Planck solution to explore parameter space.
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Figure S6: Comparison of the Fokker-Planck solution (red line) and explicit Gillespie simulations
of the dynamics (blue line) for the cell specific fitness model discussed in the “A model of
fluctuating phenotypic fitness” Results section of the main text, show good agreement allowing
us to use the population level Fokker-Planck solution to explore parameter space. Parameters
were taken to be ν = 0.5 day≠1, µ = 0.8 day≠1, C0 = 2, λc = 4 days≠1 and γc = 4 day≠3/2.
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Figure S7: Varying the dimensionless parameter related to the effective strength of antigen
fluctuations relative to their characteristic lifetime λ3/γ2 does not affect the exponent of the
power law if the ratio between exponential decay λ and standard deviation of the variation γ is
kept constant. For all three curves the exponent is α = 0.8 and ν = 0.5 days≠1, µ = 0.8 days≠1,
C0 = 2 while λ and γ vary.



118 APPENDIX A. FLUCTUATING FITNESS SI

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Clone size C

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
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Figure S8: Large deviations can influence the effect of Poisson noise on the simulated clone
size distributions and create a discrepancy between Poisson noise (red line) and the Gaussian
approximations (black line) we assume in the main text. The discrepancy is most apparent for
small clones. We simulated the Langevin dynamics of the Gaussian model with ν = 0.5 day≠1,
µ = 1 day≠1, C0 = 2, λ = 3 day≠1 and γ = 1 day≠3/2 and the same dynamics with Poisson
noise and ν = 0.5 day≠1, µ = 1 day≠1, C0 = 2, λ = 3 day≠1 and sA = 107 day≠1. In both cases
we introduce sC = 2000 new clones per day.

A.9 Model of cell-specific fitness fluctuations, and its limit of

no heritability

The cell specific fitness model described in the “A model of fluctuating phenotypic fitness”
Results section of the main text arises as a description of a population where each cell experiences
its own growth fluctuations but cells deriving from the same lineage remain correlated. In this
Appendix we derive the equations that describe the dynamics of clones in this system.

Each cell c experiences a time-correlated multiplicative noise from environmental growth
factors. For cells j in a given cell lineage (or clone) i, each individual cell’s fitness follows the
stochastic dynamics:

∂tfc(t) = ≠λcfc +
Ô

2γc÷c (A.42)

where È÷c(t)÷c(tÕ)Í = ”(t ≠ tÕ). Averaging over all cells in the clone, we obtain
Y

_

_

]

_

_

[

ˆtCi = f0Ci + fiCi +


(µ + ‹)Ci›i

ˆtfi = ≠⁄cfi +

Û

2
Ci

“c÷i,
(A.43)
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where fi is the average fitness in clone i

fi(t) =
1
Ci

ÿ

cœi

fc(t), (A.44)

and where we have added a birth-death noise term


(µ + ν)Ciξi. We use the Îto convention
for the birth-death noise, Èξi(t)ξi(tÕ)Í = δ(t ≠ tÕ) and the Stratanovich one for the environmental
noise È÷i(t)÷i(tÕ)Í = ”(t ≠ tÕ). The equivalent equations for x = log C are

ˆtxi = f0 + fi +
Ô

µ + ‹e≠xi/2› ≠ e≠xi
µ + ‹

2
(A.45)

ˆtfi = ≠⁄cfi +
Ô

2e≠xi/2“c÷i (A.46)

and the Fokker-Planck equation is

ˆtfl(t, x, f) = ≠ (f0 + f)ˆxfl + ⁄cˆf (ffl) + e≠x“cˆ
2
f fl

+
µ + ‹

2
ˆx(e≠xfl) +

µ + ‹

2
ˆ2

x(e≠xfl)

+ s(x, f),

(A.47)

where s(x, f) is the joint distribution of size and fitness or newly arriving clones (from thymic
or bone marrow output). This is the full Fokker-Planck equation that is solved numerically in
the main text using the finite elements method.

Because of the 1/
Ô

Ci prefactor in front of the noise term, we could expect fitness fluctuations
to behave like a birth-death noise in the limit of low heritability (⁄c æ Œ). In the remainder
of this Appendix we show that this is not the case, and we show how to take the limit of no
heritability properly.

Consider the limit of ⁄c æ Œ and “c æ Œ, keeping the ratio “c/⁄c constant, so that f does
not become infinitesimally small. The equation for the environmental stimulation f in x = log C

space is given by (in Stratanovich convention)

ˆtf = ≠⁄cf +
Ô

2“ce
≠x/2÷. (A.48)

Direct integration gives

f(t) =
Ô

2“c

⁄ t

0
e≠λcue≠x(t≠u)/2÷(t ≠ u)du (A.49)

and we divide the integral into two sub-integrals for k > 0

f(t) =
Ô

2“c

⁄ t

k/λc

e≠λcue≠x(t≠u)/2÷(t ≠ u)du

+
Ô

2“c

⁄ k/λc

0
e≠λcue≠x(t≠u)/2÷(t ≠ u)du.

(A.50)

With infinite precision, for any value of t, we set the integral of ÷ to be bounded and obtain the
first integral is with probability 1 ≠ ‘ smaller in norm than

Ô
2“c

Ô
tK(‘)e≠k, (A.51)

where K(‘) is a constant to control the variations of the integral of › with probability ‘ (the
time factor for the control of the integral is in the

Ô
t).
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The second sub-integral is

Ô
2γc

⁄ k/λc

0
e≠λcue≠x(t≠u)/2÷(t ≠ u)du

¥ e≠x(t≠)/2÷(t)
Ô

2
“c

⁄c
(1 ≠ e≠k).

(A.52)

We choose k =
Ô

⁄c and in the limit of ⁄c æ Œ and “c æ Œ keeping “c/⁄c = const we obtain
the final form of environmental fluctuations

f(t) ≠æ
Ú

2
“c

⁄c
e≠x(t≠)÷(t), (A.53)

where t≠ means the left-hand limit. f(t) depends only on the past, which means that in x = log C

space the noise is similar to a birth-death noise in the Îto convention. Yet in terms of clone
sizes C additional Îto terms make the effect of environmental fluctuations different from classical
birth-death dynamics.

A.10 Model solutions for cell-specific fitness fluctuations in the

limit of no heritability

In this Appendix we solve the model of cell-specific fitness fluctuations in the limit where trait
heritability is low. In this limit, the dynamics is described by a model with an instantaneous
random fitness that is uncorrelated for cells in the same clone. The resulting Langevin equation
reads:

dCi

dt
= f0Ci +



2Ci
“c

⁄c
÷i +

“2
c

⁄2
c

+
Ò

(µ + ‹)Ci›i (A.54)

where all noise is treated in the Îto convention, and where the extra term “2
c /⁄2

c comes the
converting back the low-heritability limit of the fitness fluctuations, given by Eq. A.53, into
C = ex space. We note that although the fitness and birth-death noise have very similar forms,
the birth-death noise is self-generated and intrinsic, while the fitness noise is environmental and
extrinsic. This small difference greatly affects the steady-state clone size distribution.

To see this, we first consider the case of no birth-death noise. In the cell-specific fitness
model consider the following equations with the Stratanovich rule:

Y

]

[

ˆtCi = f0Ci + fCi,

ˆtfi = ≠⁄cfi +
Ò

2
Ci

“c÷i,
(A.55)

and its equivalent for x = log(C)

Y

]

[

ˆtxi = f0 + fi,

ˆtfi = ≠⁄cfi + e≠xi/2“c÷i

(A.56)

In Appendix A.9 we have shown that in the limit of ⁄c æ Œ and “c æ Œ, the system reduces
to the one dimensional equation

ˆtxi = f0 + e≠xi/2
Ô

2
“c

⁄c
÷i (A.57)
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with the Îto rule for the white noise ÷i. The corresponding Fokker-Planck equation is

ˆtfl = ˆx(≠f0fl) +
1
2

ˆ2
x

C

2“2
c

⁄2
c

e≠xfl

D

+ s(x). (A.58)

Assuming a deterministic introduction size s(x) = sC”(x ≠ x0), at steady-sate we get

K ≠ sC◊(x ≠ x0) = ≠f0fl + e≠x “2
c

⁄2
c

flÕ ≠ “2
c

⁄2
c

fle≠x, (A.59)

which for x > x0 is solved by

fl(x) = e≠ex/Cm+x
Ë

KEi(ex/Cm) ≠ KEi(C≠1
m ) (A.60)

≠sC⁄2
c

“2
c

Ei(
ex

Cm
) +

sC⁄2
c

“2
c

Ei(
ex0

Cm
)
È

, (A.61)

where K is an integration constant, Ei is the exponential integral function and

Cm =
“2

c

|f0|⁄2
c

. (A.62)

The divergence of Ei at infinity sets K = sC⁄2
c/(“2

c ) and the clone size distribution is

fl(x) =

Y

]

[

!

Ei(ex/Cm) ≠ Ei(C≠1
m )

"

e≠ex/Cm+x for x < x0
!

Ei(ex0/Cm) ≠ Ei(C≠1
m )

"

e≠exCm+x for x > x0

(A.63)

or in terms of x = log C

fl(C) =

Y

]

[

e≠C/Cm
!

Ei(C/Cm) ≠ Ei(C≠1
m )

"

for C < C0

e≠C/Cm
!

Ei(ex0/Cm) ≠ Ei(C≠1
m )

"

for C > C0

(A.64)

The validity of this solution is checked in Fig. S9 and the convergence of the full solution of
Eq. A.47 (with no birth-death noise) to the analytical solution in the limit of no heritability
(⁄c æ Œ) is show in Fig. S10.

For comparison, in a pure birth-death process (no fitness fluctuations) the clone-size distri-
bution is, for C large enough, fl(C) ≥ e≠C/Cm/C where Cm = (µ + ‹)/(2(µ ≠ ‹)), as shown in
Appendix A.1. These two solutions both have an exponential cutoff, but have very different
power-law exponents, corresponding to – = 0 and – = ≠1, respectively.

We now add the birth-death noise, i.e. consider both types of noise, still in the limit of no
heritability. The corresponding Langevin equation reads:

ˆtxi = f0 +
Ô

µ + ‹e≠xi/2› ≠ e≠xi
µ + ‹

2
+ e≠xi/2

Ô
2“c

⁄c
÷ (A.65)

where all noise is in the Îto convention. Integrating the Fokker Planck associated to this equation
gives at steady state condition

K ≠ sC◊(x ≠ x0) = ≠f0fl +

C

µ + ‹

2
+

“2
c

⁄2
c

D

e≠xflÕ ≠ “2
c

⁄2
c

e≠xfl. (A.66)
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Figure S9: The result of a simulation of the Langevin equation of the white noise cell-specific
fitness model (blue line) compared to the analytical prediction of Eq. A.64 (red line) show very
good agreement. The parameters are ν = 0.2 day≠1, µ = 0.4 day≠1, C0 = 2, λc = 4 day≠1 and
γc = 8 day≠3/2.
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Figure S10: Convergence of the cell-specific fitness models (Eq. A.47) without birth-death noise
to Eq. A.64 in the limit of no heritability (λc æ Œ). For all four curves α = 0.2. Parameters
used: ν = 0.2 day≠1, µ = 0.25 day≠1, C0 = 2 and 1000 new clones introduced each day.
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Figure S11: Convergence of the cell-specific models (Eq. A.47) with birth-death noise to the
analytical result of Eq. A.68 (red line). Keeping constant α while λc æ Œ and γc æ Œ we
recover the solution of Eq. A.68. Parameters are the same as in Fig. S10

In order for ρ to be well defined we set K = sC . For x > x0 the equation is homogeneous and
solved by separation of variables:

dρ

ρ
e≠x

C

µ + ν

2
+

γ2
c

λ2
c

D

=

A

f0 +
γ2

c

λ2
c

e≠x

B

ρ, (A.67)

and gives the solution:

ρ(C) =
Ke≠C/Cm

C1+α
, (A.68)

with

α = ≠
A

1 +
(µ + ν)λ2

c

2γ2
c

B≠1

, (A.69)

which is a power-law with an exponent 0 Æ 1 + α Æ 1 and an exponential cutoff

Cm = (µ ≠ ν)≠1

A

µ + ν

2
+

γ2
c

λ2
c

B

. (A.70)

The convergence of the solution of the full system, Eq. A.47, to this solution is checked in
Fig. S11.

A.11 Dynamics of naive and memory cells

In this section we present our results on the division of the population between naive and memory
cells and its impact on the distribution of clone sizes. In our simulations and analysis so far we
have always considered the system to be uniform, because most of the data available at this time
is not sorted into naive and memory/effector cells and because the main difference between naive
and memory cells (higher stimulation of memory cells by binding events) is already included in
our models.

In principle, memory and naive cells could have a completely different set of parameters.
None of the values of these parameters are known with high, accuracy although it emerges from
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Figure S12: Simulation results for clone and cell specific model with two cell compartments for
naive and memory. Panels A to D are results from clone-specific fitness model with a switching
rate θ from naive to memory taken to be infinite (the whole clone switches instantly to memory
when above a fitness threshold) and fitness threshold fmem = 1 day≠1. Panels E to H are results
for a model with clone-specific fitness with a finite switching rate θ = 0.05 days≠1 and fitness
threshold fmem = 1 day≠1. For both clone-specific simulations the parameters are: sC = 200
day≠1 , C0 = 2, sA = 1.96 ·107 day≠1, Èaj,0Í = 1, Var(aj,0) = 1, λ = 2 day≠1, p = 10≠7, ν = 0.98
day≠1, µ = 1.18 day≠1. Panels I to L are results from simulations of a model with cell-specific
fitness with a switching rate θ = 0.25 and threshold fmem = 0.5. The other parameters are:
sC = 104 day≠1, C0 = 2, λc = 2 day≠1, γc = 4 day≠3/2, ν = 0.5 day≠1, µ = 0.7 day≠1.
Panels A, E and I show the clone size distribution of the whole population adding memory and
naive contributions to each clone and the power law prediction from the white noise model for
clone-specific fitness. Panels B, F and J show the clone size distributions of the naive pool of
cells compared to the white noise prediction for the clone-specific fitness (B, F) and the full
population distribution for the cell-specific dynamics (J). Panels C, G and K show the clone size
distributions of the memory pools (same comparisons as for naive). Panels D, H and L show
the fraction of memory cells in clones as a function of their rank (biggest clones have smallest
ranks) as a histogram for an infinite switching rate (because clones are either all naive or all
memory) and as scatter plots for the two other types of dynamics.
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all studies that memory cells have a higher turnover rate (or death rate µ) than naive cells.
However, our estimate of f0 (which is the average division rate minus the death rate) cannot
be performed for separate groups of naive and memory cells without knowledge of their total
population and the rate of conversion from naive to memory cells. For these reasons we keep
the same effective f0 for the whole population.

We model the immune system with two pools of cells: naive and memory/effector for both
the clone-specific and cell-specific fitness models. Clones from the naive pool with fitness over
a given threshold fmem turn irreversibly into memory cells at a certain rate θ per day. In both
cases the two pools have the same dynamics but memory cells have a higher turnover: the
death rate µ and the basal birth rate ν are higher in the memory pool but their difference f0

is unchanged. This means the birth-death noise is higher in the memory pool. We find that
in the clone-specific fitness model it does not affect the power-law exponent of the clone-size
distribution, but it does affect strongly the distribution (and more specifically the cutoff value
Cm) in the cell-specific fitness model, as birth-death noise is of the same order of magnitude as
the environmental noise (Fig. S12).

In the clone-specific fitness model, we find that the distribution still displays power-law
behavior with the expected exponent (Fig. S12A and E). For very high rates of conversion from
naive to memory we see that naive cell distributions drop exponentially above a threshold, as
all high fitness clones are completely converted into memory (Fig. S12B). For lower rates of
conversion both memory and naive pools have heavy tails and the memory pool has a higher
power law cutoff for small values (Fig. S12F and G). For the cell-specific fitness model we find
that the memory pool can have significantly heavier tails (as its dynamics is much faster) and a
higher cutoff Cm (a power-law like behavior in a wider range) than the naive pool (Fig. S12A-B-
C). In all cases we recover that naive clones are smaller than memory clones, or in other words
large clones are mostly made up of memory cells (Fig. S12D-H-L).

A.12 Effects of hypermutations

In this section we show that including the effect of somatic hypermutations in the clone-specific
fitness dynamics does not change the power law behavior of the distribution. We model the
somatic hypermutations by replacing a small fraction of the offspring of the fastest expanding
clones by new clones with binding affinities close to the ones of their parents. For each clone
such that fi > fhyp, offspring with hypermutated receptors are being produced with rate rhyp. A
large fraction rdel of those are assumed to have acquired deleterious mutations and are removed
from the pool. The rest (fraction 1 ≠ rdel) form new clones of size 1 (in our definition, which
differs from the usual convention for B cells, a clone is a subset of cells with the exact same
receptor sequence). The interaction matrix KiÕ,j of each new, hypermutated clone iÕ is formed
from the interaction matrix Ki,j of its progenitor i by changing each non-zero entry of Ki,j to:

KiÕ,j =

Y

]

[

0 with probability 1 ≠ phyp

ψKi,j + (1 ≠ ψ) + σhypζ otherwise,
(A.71)

where ψ is a parameter controling the heritability of the values of the K entries, and phyp the
probability that the specificity to a given antigen is passed on to the hypermutated offspring;
ζ is a Gaussian variable of mean 0 and variance 1. To compensate the loss of specificity, zero
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entries of Ki,j are assigned new, non-zero values of binding affinities with probability (1≠phyp)p
(where we recall that p is the probability for a given clone to be specific to a given antigen), so
that the number of non-zero values of K remains the same on average. The value of these new
binding affinities are drawn completely at random, as before (no inheritance).

A small part of the hypermutated clones branch out and undergo affinity maturation, mean-
ing that they are selected generation after generation. Their fitness increases until the envi-
ronment varies enough for their branch to be obsolete and decay back to low fitnesses. The
effect of hypermutations on the distribution depends on the ratio between the speed at which
hypermutated lineages drift in fitness space and the time scale for variations of the environment
(λ≠1).

Somatic hypermutations add a source of stochasticity in fitness and increase the number of
large clones. Accordingly, simulations of the model with hypermutations (see Fig. S13) show
that the clone size distribution still exhibits power law behavior, but with a lower exponent
(heavier tails) due to the extra stochasticity induced by hypermutations.

A.13 Time dependent source terms and aging

In this section we investigate the effect of a decaying thymic output on the distribution of clones
for the antigen recognition based model. In all our simulations we assume that the source of
new clones (thymic output) produces a number of clones that is on average constant with time.
It is an approximation since in humans or in mice thymic output is high at birth and during
growth and slowly decreases during adult life. This decrease is very slow compared to the time
scales involved in this analysis [38] and so within the time frames considered it can be considered
constant. In this section we look at the effect of this decrease over long time scales.

We model the decrease of thymic output with an exponentially decaying (with time) source
term. In real organisms, homeostatic control ensures that the total number of cells in the
body is conserved during this reduction of thymic output. We do not model this homeostatic
control explicitly, but rather tune the difference between birth and death rates f0 to keep the
total population constant on average, which we showed was equivalent (see Fig. S2). Simple
averaging of the dynamics shows that

dÈNÍ
dt

= f0N + nCÈfiCiÍ + sC (A.72)

where nC is the number of clones in the system and N is the total number of cells. Since our
source term is a function of time, to have on average a constant total population size we need
to define :

f0(t) = ≠nC(t)ÈfiCiÍ + sC(t)
N

. (A.73)

We show the results of a simulation in Fig. S14 with sC = sC,0e≠t/τ , τ = 8.3 yr. We recover
results known in humans and get predictions for the behavior of the exponent of the power
law at different ages. We find that, with the decrease of thymic output, the number of clones
is decreasing (Fig. S14C), meaning that clones become on average fitter (i.e. better at recog-
nizing antigens), but at the expense of repertoire diversity. Keeping the population constant
(Fig. S14D) slowly decreases the decaying rate of clones |f0| and so is expected to decrease the
exponent, which behaves as α = λ|f0|/A2. Accordingly, simulations show a clear power-law
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Figure S13: We show the clone size distribution that results from simulating a model of clone-
specific fitness with somatic hypermuations as described in Appendix A.12 and Eq. A.71. The
distribution exhibits clear power law behavior. Hypermutation parameters are: fhyp = 4 days≠1,
rhyp = 0.01 days≠1, rdel = 0.01, phyp = 0.5, ψ = 0.7 and σhyp = 0.05. Other parameters are:
sC = 200 day≠1 , C0 = 2, sA = 1.5 · 107 day≠1, Èaj,0Í = 1, Var(aj,0) = 1, λ = 2 day≠1, p = 10≠3,
ν = 0.75 day≠1, µ = 1.15 day≠1. Non zero Ki,j entries from thymic output have mean 1 and
standard deviation 0.3.
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Figure S14: Results of a simulation of a model of clone-specific fitness with a decaying source
term and balancing decrease of |f0| to keep the population size constant. A. The clone size
distributions at different time points maintains a power law behavior with an exponent α that
decreases with time. B. Decay of the thymic output with time. C. Total number of clones is
decreasing with time. D. Total number of cells is maintained by tuning the rate f0. Parameters
used are: source decay timescale tau = 8.3 yr, sC,0 = 200 day≠1 , C0 = 2, sA = 1.5 · 107 day≠1,
Èaj,0Í = 1, Var(aj,0) = 1, λc = 2 day≠1, p = 10≠7, ν + µ = 1.9 day≠1, f0 = ≠0.4 day≠1 at time
t = 0.
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behavior in the clone-size distribution (Fig. S14A), with the tail of the distribution becoming
heavier with age. We thus expect older organisms with lower thymic output to have a larger
tail in their clone-size distribution. We predict thymectomy to lead to distributions with very
fat tails.
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Appendix B

Precision of readout at the
hunchback gene: supplementary
information

B.1 Basic setup and data preprocessing

The raw data produced experimentally is a fluorescent signal I(t) measured at discrete times
corresponding to the sampling time frame of the movie (see SIFig. B.1 for examples of traces).
At each locus and at each time point it is the sum of the background signal and a number
of fluorescent molecules attached to loops formed by the mRNA. Each loop contributes to the
signal by a constant I0. This constant is unknown and can vary from trace to trace due to noise
in the experimental setup and the variability in the locations of the nuclei in the embryo. All
models are written for the renormalized signal F (t) = I(t)/I0.

Because the fluorescent signal is produced by discrete polymerases that travel down the gene,
we divide the gene into chunks of 150 base pairs, a length that corresponds to the irreducible
space occupied by a polymerase on the gene (Fig. 3 in the main text). The positions the
polymerase can occupy on the gene are labeled by an index 1 Æ i Æ r. The number of MS2
loops that have been formed by a polymerase that has reached a given position depends only
on the MS2 gene construct and we define a deterministic function Li for the whole length of
the gene that describes the number of MS2 loops that have been produced by a polymerase at
position i. In practice the exact number of loops is not an integer and varies from base pair to
base pair so we take Li as the average number of loops at this polymerase position (see Fig. 3
in the main text).

When the gene is fully loaded with polymerases (the number of polymerases is equal to the
length of the gene divided by 150 bp), the fluorescence intensity is I(t) = I0

qr
i Li. Assuming

that the maximum of the signal over the whole trace is a good approximation for the fully
loaded value we can determine I0 and renormalize the data. In practice, since we see variability
in the expressed signal in different nuclei at the same position, we are not sure the fully loaded
polymerase scenario occurs in each nuclei, so we take the mean of the maximum intensity values
in the anterior. We use this renormalized fluorescence signal to infer the parameters of the
dynamics.

The experimental data is analyzed assuming the system is in steady state and does not take
into account the initial activation period after mitosis. and the end of the trace when the gene is

131
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kon(1/s) mov1 mov2 mov3 mov4
12A 0.078 0.056 0.009 0.023
12B 0.004 0.005 0.003 0.011
13A 0.017 0.020 0.014 0.021
13B 0.004 0.006 0.004 0.005

Table B.1: The inferred kon rates from the autocorrelation approach assuming a two state model
for the four embryos and cell cycle 12 and 13, in the anterior and boundary.

deactivated before mitosis. We take only the middle window of the trace as shown in SIFig. B.2.

In all models based on a stochastic gene switching (so all models except the Poisson model)
we assume that the gene can be in several states with only two effective transcription rates: a
non zero transcription rate in the ON state and an basal production rate equal to zero in the
OFF state. When the gene is ON the polymerase loads at a maximal rate set by clearing of the
binding site by the previous polymerase, which is one polymerase every 6 seconds (calculated
as the irreducible polymerase length along the gene 150 bp divided by the polymerase speed,
v = 25bp/s). The state of the gene is described by a stochastic process X(t) that is equal to
1 when the gene loads polymerase (i.e is ON) and 0 when the gene is OFF (see Fig. 1B in the
main text). Once the polymerase is loaded its path is assumed to be deterministic with constant
speed.

The gene can be described by the locations where there is a polymerase: we define a(i, t) as
a function of time t and position 1 Æ i Æ r that is equal to 1 if there is polymerase at position
i at time t and 0 otherwise (see Fig. 1D in the main text). The fluorescence signal is then a
convolution of the polymerase position, a(i, t), and the details of the loop design of the MS2
construct, Li:

F (t) =
r

ÿ

i=1

Lia(i, t), (B.1)

and the polymerase position can easily be translated back to the gene state through the de-
terministic relation, a(i, t) = X(t ≠ i) (see Fig. 3D in the main text for the form of Li). This
disruption is exact for a system with a discrete regulatory process and a discrete time step equal
to the polymerase time step. Unfortunately, the moments in time when the gene switches are
not necessarily multiples of the natural coarse graining steps of the system (the polymerase
time step and its equivalent length) so it is necessary to introduce a continuous time in the
system. We will present results for both the discrete and continuous time models. The contin-
uous description is valid in the limit where the typical time spend by the gene in each state is
long compared to the polymerase step or equivalently the gene switching constants are small
compared to 1/6 s≠1. See SI Section B.2 for a more detailed argument.

B.2 The two state model

In this section we derive the equations required for the inference of the dynamics under the
assumption that the gene can be in two states: ON or OFF represented by a two dimensional
vector x(t) = [xon(t), xoff(t)]. xon(t) is the probability of the gene to be ON and xoff(t) is the
probability for the gene to be OFF. xon(t) is the average over traces of the random variable X(t)
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Figure B.1: Examples of individual spot intensity over time. Consecutively shown are
the traces in (A) Cycle 12, Anterior, (B) Cycle 12, Boundary (C) Cycle 13, Anterior, (D) Cycle
13, Boundary. The x axis is time in minute and y axis is the spot intensity in AU.

koff(1/s) mov1 mov2 mov3 mov4
12A 0.060 0.088 0.008 0.019
12B 0.020 0.034 0.021 0.051
13A 0.018 0.031 0.016 0.027
13B 0.031 0.054 0.031 0.064

Table B.2: The inferred koff rates from the autocorrelation approach assuming a two state model
for the four embryos and cell cycle 12 and 13, in the anterior and boundary.

depicted in Fig. 1B of the main text. We assume that the switching times between the two are
exponentially distributed:

∂t

A

xon

xoff

B

=

A

≠koff kon

koff ≠kon

B A

xon

xoff

B

. (B.2)

The steady state probability to be ON is Pon = xon(t = Œ) = 1/T
q

t xon(t), where T is the
duration of the steady state window in Fig. B.2, and is:

kon

koff
=

Pon

1 ≠ Pon
. (B.3)
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Figure B.2: Data calibration. Shown are examples of 5 (out of 154) individual traces (blue)
taken from embryo 1, cycle 13. Also shown is the mean spot intensity over time of all traces
(red). The steady state window is chosen to be from the 6th minute to the 11th minute (dashed
lines).

We learn Pon from Eq. 1 in the main text:

ÈF Í = Pon

r
ÿ

i=1

Li. (B.4)

and use it to obtain the ratio of the switching rate from Eq. B.3.
The autocorrelation function is:

ÈF (t)F (s)Í =
r

ÿ

i=1

r
ÿ

j=1

LiLjÈa(i, t)a(j, s)Í, (B.5)

where the brackets are an average over traces (different realizations of the random process). We
define A(t ≠ i, s ≠ j) = 1/xon(s ≠ j)Èa(i, t)a(j, s)Í – the probability that the polymerase is at
position i and time t given that there was a polymerase at position j at time s (here we assume
that t ≠ i Ø s ≠ j). Using the deterministic relation between the polymerase position at a given
time a(i, t) and the probability to be on at an earlier time X(t ≠ i), A(t ≠ i, s ≠ j) is equivalent
to the probability that the gene in ON at time t ≠ i given that is was ON at time s ≠ j:

A(t ≠ i, s ≠ j) = xon(t ≠ i| ON at time s ≠ j). (B.6)

Plugging the expression into Eq. B.5 we obtain Eq. 2 in the main text:

ÈF (t)F (s)Í =
qr

i=1

qr
j=1 LiLjxon(s ≠ j)A(t ≠ i, s ≠ j). (B.7)

In steady state the system is translationally invariant A(t ≠ i, s ≠ j) = A(|t ≠ i ≠ s ≠ j|) and
for brevity we will denote is as A(n) - the probability that the gene is ON at time n, given that
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Figure B.3: Fits of the autocorrelation function. The empirical autocorrelation function
for both the anterior and boundary regions in all four embryos is fit using the autocorrelation
function with the finite size corrections for the two state model.

it was ON at time 0. To find An we need to solve for x(t):

∂tx(t) = (T ≠ 1)x(t), (B.8)

where T ≠1 is given by Eq. B.2 and calculate the expectation value that the gene is ON at time
t given in was ON initially:

An =
1

1 0
2

en(T ≠1)

A

1
0

B

. (B.9)

Eq. B.9 is correct in a continuous time model. Its discrete time equivalent is

An =
1

1 0
2

T n

A

1
0

B

. (B.10)

In the limit of kon and koff much smaller than the polymerase step they are also much smaller
than 1 and en(T ≠1) ƒ 1 + n(T ≠ 1) ƒ (1 + (T ≠ 1))n. In this limit the continuous and discrete
time descriptions of Eq. B.9 and Eq. B.10 are equal.

The eigenvalues of T ≠1 are [1, δ], where δ = 1≠kon ≠koff with corresponding eigenfunctions:
A

Pon

Poff

B

,

A

1
≠1

B

. (B.11)
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Figure B.4: Example of the connected autocorrelation function for the two state

model calculated for different trace lengths as a function of time T . The shaded areas
denote the standard variation over xx simulated traces. The switching rates kon = koff = 0.01s≠1

and the number of nuclei M = 500.

The transition matrix T is

T =
1

Pon + Poff

A

Pon 1
Poff ≠1

B A

1 0
0 δ

B A

1 1
Poff ≠Pon

B

(B.12)

and

en(T ≠1) =

A

Pon + en(δ≠1)Poff Pon ≠ en(δ≠1)Pon

Poff ≠ en(δ≠1)Poff Poff + en(δ≠1)Pon

B

(B.13)

resulting in
An = Pon + en(δ≠1)Poff . (B.14)

In steady state xon(s ≠ j) = Pon and the connected autocorrelation is:

< F (t)F (t + τ) > ≠ < F (t) >2=
r

ÿ

i=1

r
ÿ

j=1

LiLjPonPoffe|τ≠j+i|(δ≠1). (B.15)

Since we already know the ratio of the rates from Pon, inferring δ using Eq. B.57 determines kon

and koff .

B.3 Computing out of steady state

The autocorrelation approach can be generalized to a case when the system is out of steady state,
when the autocorrelation function explicitly depends on the two time points and not only on
their difference. During mitosis the gene is OFF and then gets turned ON in early interphase.
Motivated by the hunchback expression we will present the calculation assuming the gene is
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initially ON, but it is generalizable to any other initial condition. Assuming t ≠ i < s ≠ j, we
want to calculate the probability that the polymerase is at position i at time t, given that it
was at position j at time s. Since the gene is initially OFF, we need to calculate the probability
that the gene is ON at time t ≠ i. The autocorrelation function of the polymerase position is:

Èai(t)aj(s)Í =
1

1 0
2

e(s≠t+i≠j)(T ≠1)

A

1
0

B

1

1 0
2

e(t≠i)(T ≠1)

A

0
1

B

. (B.16)

Using Eq. B.14 and
1

1 0
2

en(T ≠1)

A

0
1

B

= Pon(1 ≠ en(δ≠1)), (B.17)

we obtain:

ÈF (t)F (s)Í =
r

ÿ

i=1

r
ÿ

j=1

LiLjPon(1 ≠ e(δ≠1) min(t≠i,s≠j))(Pon + Poffe|s≠j≠t+i|(δ≠1)) (B.18)

B.4 Multiple off states

The calculations presented in Appendix B.2 can be extended to models that include more OFF
or ON states as long there are only two production states for the mRNA: one enhanced and
one basal production state. The transition matrix T will then be of higher dimension and in
practice should be (and has to be for dimensions larger than 3) diagonalized numerically. The
exact analytical solution for the autocorrelation function is still valid written in terms of the
powers of T .

B.5 Generalized multi step model

A gene with many OFF states can also be described using a reduced model with two effective gene
expression states ON and OFF, where the times of transitions between these two state are not
exponential but follow a long tailed distribution approximated by a Gamma distribution. The
Gamma distribution describes an effective transition over many irreversible transitions between
a series of OFF states:

Γα,β(x) =
βα

Γ(α)
xα≠1e≠βx, (B.19)

where β is the scale parameter, α is the shape parameter, and Γ(α) is the gamma function. The
mean time time spent in the OFF state is 1/keff

on = α/β, so the probability for the gene to be in
the ON state is:

Pon =
keff

on

keff
on + koff

=
1

1 + αkoff/β
. (B.20)

This model has three parameters, regardless of the number of OFF states, and using Eq. B.20
reduces the number of parameters to two, which greatly simplifies the inference. The remaining
two parameters are learned from the autocorrelation function in Eq. B.5, which formally has the
same form as Eq. B.7:

ÈF (t)F (s)Í =
qr

m=1

qr
n=1 LmLnxon(t ≠ m|s ≠ n)AΓ(|s ≠ t + mnj|), (B.21)

but AΓ(|s ≠ t + m ≠ n|) = xon(t ≠ m|s ≠ n) is now not memoryless. We limit our presentation
to the steady state, but the calculation generalizes to out of steady systems.
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We cannot solve the problem in real space, but we compute the Fourier transform of the
autocorrelation function of the fluorescence signal:

Ĉ(ξ) =
⁄ +Œ

≠Œ
dτ(ÈF (t)F (t + τ)Í ≠ ÈF (t)Í2)e≠2iπτξ, (B.22)

which using Eq. B.5
Ĉ(ξ) = xon

ÿ

m,n

LmLn2Ÿ
Ë

e≠2iπ(m≠n)Âú
Γ(ξ)

È

(B.23)

we reduce to calculating

Âú
Γ(ξ) =

⁄ +Œ

0
dte≠2iπtξ(AΓ(t) ≠ Pon). (B.24)

We decompose AΓ(t) into a sum over full cycles of the gene turning from ON to OFF, with
the constraint that at time t the gene is ON:

AΓ(t) =
Œ

ÿ

k=0

AΓk(t), (B.25)

where
AΓk(t) = xon(t| ON at time s & process has gone though k cycles) (B.26)

Since the first jump is from the ON to OFF, which is exponential it contributes AΓ0(t) = e≠kofft.
First we compute an auxiliary probability distribution function of the time it takes the

process to go through a full ON-OFF cycle ÷(t) of taking an exponential jump out of the ON
state followed by a Gamma distributed jump out of the OFF state:

÷(t) =
⁄ t

0
dxkoffe≠koffx —α

Γ(–)
(t ≠ x)α≠1e≠β(t≠x). (B.27)

The Fourier transform of this distribution is:

÷̂(›) =
⁄ +Œ

0
dte≠2iπξt÷(t) =

koff

2ifi› + koff

—α

(2ifi› + —)α
. (B.28)

To compute Âú
Γ(›) we need to sum over all the possible times at which the cycles could have

occurred, with the constraint that at time t the gene is ON:

Âú
Γ(›) =

⁄ +Œ

0
dte≠2iπξt

C

Œ
ÿ

k=0

A

⁄

ti>0,
qk

i=1
ti<t

e≠koff(t≠
q

i
ti)

k
Ÿ

i=1

÷(ti)dti

B

≠ Pon

D

. (B.29)

We can rewrite the last term in Eq. B.29:

Âú
Γ(›) =

⁄ +Œ

0
dte≠2iπξt

C

Œ
ÿ

k=0

A

⁄

ti>0,
qk

i=1
ti<t

e≠koff(t≠
q

i
ti)

k
Ÿ

i=1

÷(ti)dti

B

≠ Pon

Œ
ÿ

k=0
⁄

q

i
ti<t

(koff)ke≠koff

q

i
tie≠koff(t≠

q

i
ti)

D

, (B.30)

using the expansion of unity:

1 =
Œ

ÿ

k=0

e≠kofft (kofft)k

k!
(B.31)
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=
Œ

ÿ

k=0

⁄

q

i
ti<t

(koff)ke≠koff

q

i
tie≠koff(t≠

q

i
ti), (B.32)

with the convention for the k = 0 term:
⁄

q

i
ti<t

(koff)ke≠koff

q

i
tie≠koff(t≠

q

i
ti) = e≠kofft. (B.33)

Collecting terms:

Œ
ÿ

k=0

C

⁄

ti>0

k
Ÿ

i=1

dti

CA

k
Ÿ

i=1

÷(ti) ≠ Pon(koff)ke≠koff

q

i
ti

B

⁄

t>
q

i
ti

dte≠2iπξte≠koff(t≠
q

i
ti)

DD

(B.34)

and setting u = t ≠ q

i ti in the last integral:

Âú
Γ(›) =

Œ
ÿ

k=0

C

⁄

ti>0

k
Ÿ

i=1

dti

CA

k
Ÿ

i=1

÷(ti) ≠ Pon(koff)ke≠koff

q

i
ti)

B

⁄ +Œ

0
due≠2iπξ(u+

q

i
ti)e≠koffu

DD

(B.35)
we obtain:

Âú
Γ(›) = (koff + 2ifi› ≠ koff(1 +

2ifi›

—
)≠α)≠1 ≠ Pon

2ifi›
. (B.36)

Using Eq. B.21 we recover Eq. 7.11 in Materials and Methods. For – = 1 we recover results of
the two state model.

B.6 The autocorrelation of a Poisson polymerase firing model

We compared the auto-correlation function for our models with bursty dynamics to the auto-
correlation of a model that assumes in steady state stochastic gene expression with a constant
exponentially distributed rate – a Poisson polymerase firing model. We assume that the gene
expression rate is memoryless and the transcription interval follows an exponential distribution
of mean ·P :

P (t) =
1

·P
e≠t/τP . (B.37)

In order to compare the two models we need to reinterpret the statistics introduced for bursty
dynamics in the framework of a Poisson model. The quantity Pon corresponds to the average
occupancy of polymerase sites on the gene. This constant can be computed for a Poisson arrival
model. The size of the polymerase is 150 bp and its speed is ≥ 25 bp/second, the maximum
loading rate of polymerase is one every 6 second. Since the polymerase cannot load faster than
once every 6 seconds, we calculate the average occupancy of the gene as the temporal average
of probability that the polymerase starts transcribing within 6 seconds:

Pon =
⁄ 6

0
dt

1
·P

e≠t/τP = 1 ≠ e≠6/τP . (B.38)

Here we assume that the next polymerase to bind can be recruited while the previous one is
clearing off the binding site. Since the process is memoryless and the Poisson firing process is
uncorrelated, its connected autocorrelation is close to a delta function ”(· = 0). However, due to
the gene lengthy elongation time, there is a non-flat auto-correlation function of the fluorescence
signal. the probability of the polymerase to be at position i at time t, given it the gene to ON as
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predicted from the MS2 signal at short times. At steady state, the connected auto-correlation
function is:

ÈF (t)F (t + τ)Í ≠ ÈF (t)2Í = Pon

ÿ

i,j

LiLjAP (j ≠ τ ≠ i) ≠
A

Pon

ÿ

i

Li

B2

, (B.39)

where AP (τ) is the probability of the polymerase to be at position i at time τ , given it was at
position j at time 0 in the Poisson firing model.

If τ < 6s then the two positions on the gene, i and j, share the same polymerase with
a probability proportional to |6 ≠ τ |, taking equally distributed polymerase positions. If τ >

6s, AP (τ) is given by the probability that there is a polymerase at the second site, which is
independent of what happened at the first site. The two cases give:

AP (τ) =
θ(6 ≠ |τ |)

6
[(6 ≠ |τ |) + Pon|τ |] + θ(|τ | ≠ 6)Pon. (B.40)

This function is flat for τ > 6s and the first part of the right hand side of Eq. B.40 has little
effect on the autocorrelation function over a cell cycle (as cell cycle duration is much bigger than
6s). For this reason we use a flat function as a very good approximation for AP in our analysis.

From the form of Eqs. B.39 and B.40 and the flat approximation of AP we see that Pon

is only a normalizing constant and the shape of the function is completely determined by the
loop function Li, which is known. We can compare the expected autocorrelation function of a
Poisson model to data and find that it does not explain experimental results as well as bursty
dynamics (although gene switching models have higher numbers of parameters).

From Eq. B.38 we can learn polymerase arrival rates in the anterior and at the boundary of
the embryo. We find that the Poisson model would require very high heterogeneity of polymerase
arrival times as a function of A-P axis position. At the boundary in particular we expect the
mean polymerase arrival time to be above 60s.

B.7 Numerical simulations

To simulate the time evolution of MCP-GFP loci’s intensity, we used the Gillespie algorithm
[33, 152] to predict the time it takes for the gene to switch between the states, the active ON
state and the inactive OFF states. In all models we assume that the time of the transition from
the active to the inactive states, τon is exponentially distributed with rate koff . The time of the
transition from the inactive OFF states to ON state, τoff depends on the model considered:

• for the two-state model τoff is exponentially distributed with rate kon.

• for the three-state model τoff is a sum of two exponential processes with rates k1 and k2

that describe the transitions between the two OFF states.

• for the Gamma model τoff is chosen from a the Γ(α, β) distribution defined in Eq. B.19.

To generate the traces of length T from N nuclei, we first simulate a long trajectory of
length N ◊ T , denoted as X(t). To account for the incompressibility of the polymerase, we
divide the traces into 6s intervals, which is the time the polymerase needs to cover a region
of the gene equal to its own lengths. We assume that at each 6s time point, if the gene is in
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the ON state, there is a transcription initiation event by a single RNA polymerase with a full
transcription rate, defined as the length of the gene divided by the polymerase velocity, defined
in SI section B.1. Following this event, the RNA polymerase will slide along the target gene
segment and synthesize a nascent RNA. At time i into this elongation process, the nascent RNA
has Li MS2 binding sites as depicted in Fig. 3 of the main text. To impose Pon = keff

on/(keff
on +koff)

If the gene switches into the OFF state before a full 6s interval, the polymerase transcribes the
gene at a reduced rate proportional to the fraction of the 6s interval for which the gene was
ON. The number of MS2 binding sites at the transcription locus site is therefore given by the
convolution of the gene state and the promoter construct design function L (see Fig. 1 in the
main text):

F (t) = X(t) ú L. (B.41)

We assume that the number of MCP-GFP molecules in the nuclei is sufficient to bind to all
newly transcribed MS2 binding sites and that the binding process is infinitely fast. The spot
intensity is calculated as the number of binding sites produced at the loci (given the intensity
of each MPC-GFP dimer equal to 1). Lastly, the long spot intensity traces are divided equally
into N smaller traces of length T .

B.8 Correction to the autocorrelation function for finite trace
lengths

The short duration of the experimental traces, vα,i, where 1 Æ α Æ M describes the identity
of the trace and 0 < i < K denotes the sampling times, coupled with the need to correct
for experimental biases by calculating the connected correlation function introduces finite size
effects. The true connected correlation function between time points at a distance r, Cr (red
line in Fig. B.5), is not equal to the empirical connected correlation function calculated as an
average over the M traces, c(r) (blue line in Fig. B.5), of the autocorrelation functions of the
finite traces. The theoretical connected autocorrelation function calculated in our model is:

Cr =
Èvivi+rÍ ≠ v̄2

v̄2 ≠ v̄2
, (B.42)

where È·Í denotes an average over random realizations of the process and we assume steady state
v̄k = Èvk

i Í = Èvk
i+jÍ. The empirical connected correlation function of each finite trace of length

K << Œ has the form:

cα(r) =

S

W

W

W

W

W

U

q

(i,j),|i≠j|=r

IA

vαi ≠ 1
N

N
q

l=1
vαl

B A

vαj ≠ 1
N

N
q

l=1
vαl

BJ
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N

N
q

j=1

A

vαj ≠ 1
N

N
q

l=1
vαl

B2

T

X

X

X

X

X

V

(B.43)

and the empirical connected correlation function calculated averaged over M traces is

c(r) =
1

M

M
ÿ

α=1

cα(r). (B.44)

Cr requires knowing the true second moment of the fluorescence signal v̄2. In our data we find
that the true variance of the normalized fluorescence signal, v̄2 ≠ v̄2 is well approximated by the
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average over traces, so we approximate Eq. B.43 by:

cα(r) =

q

(i,j),|i≠j|=r

IA

vαi ≠ 1
K

K
q

l=1
vαl

B A

vαj ≠ 1
K

K
q

l=1
vαl

BJ

v̄2 ≠ v̄2
(B.45)

The difference between the theoretical and empirical connected correlation function is indepen-
dent of our model and arises for the connected correlation function of any random process,
as shown in Fig. B.5 for the simplest random process – the Ornstein-Uhlenbeck process. The
difference is due to the fact that the short time average induces spurious correlations when
calculating averages of the signal taken at different times. When analyzing the data, to avoid
describing nucleus-to-nucleus variability that is not connected to the signal, we first subtract
the mean steady state fluorescence signal of each trace, normalize this connected autocorrelation
function to 1 at time t = 0, and then average over traces (Eq. B.45) before averaging over the
trace ensemble (Eq. B.44). In steady state, the infinite trace mean equals the ensemble average,

limKæŒ
1
K

K
q

i=1
vαi = v̄. However, as shown in Fig. 2 of the main text, the short trace mean is

not a good approximation to the long term (or ensemble) average, 1
K

K
q

i=1
vαi ”= v̄. The points

located in the center of the trace are much more correlated with the mean than the points at
the beginning and end of the time interval. The correction for each value of r is different and
must be separately computed.

In analyzing our data we use the finite size correction for the mean derived below that
expresses the empirical connected correlation function c(r) in terms of the theoretical connected
correlation function Cr. For K æ Œ the empirical connected correlation function becomes the
infinite time connected correlation function, however our traces are very short. These corrections
are valid for all time dependent data sets so for completeness the finite size correction for the
variance is derived in SI Section B.9 but is not used in the analysis.

The number of pairs of time points of distance r in a trace of length N is simply N ≠ r and
the combination of Eqs. B.44 and Eqs. B.45 becomes:

c(r) =
1

M(N ≠ r)(v̄2 ≠ v̄2)

M
ÿ

α=1
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N≠r
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B A
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(B.46)

=
1

M(N ≠ r)(v̄2 ≠ v̄2)
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where we have explicitly written out the terms and in the last line we introduced the average
over traces È·Íα = 1/M

qM
α=1 ·. In steady state due to time invariance:
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(B.47)
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and the theoretical (not connected) correlation between two points is a function only of the
distance between these two points:

C̃r = Èvivi+rÍ = 1/M
M
ÿ

α=1

vαivαi+r. (B.48)

We have assumed that M is large and a population average over the M traces for points separated
by r on each trace approximates the M æ Œ limit of the theoretical average over different
realizations of the process. Using Eq. B.48 we obtain:

c(r) =
C̃r

v̄2 ≠ v̄2
+

1
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(B.49)

To rewrite

KA

N
q

l=1
vαl

B2L

α

as a sum over Cr we calculate the number of pairs of time points

separated by a distance k in the whole trace of length N . For k = 0 it is equal to N and for
1 Æ k Æ N ≠ 1 it is equal to 2(N ≠ k):

KA

N
ÿ
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vαl

B2L

α

= NC̃0 +
N≠1
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k=1

2(N ≠ k)C̃k. (B.50)

Similarly
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= rC̃0 +
r≠1
ÿ

k=1

2(r ≠ k)C̃k +
N
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l=r+1

r
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i=1

C̃|l≠i| (B.52)

= rC̃0 +
r≠1
ÿ

k=1

2(r ≠ k)C̃k +
N≠1
ÿ

m=1

C̃m[min(m + r, N) ≠ max(r, m)].(B.53)

Collecting the empirical connected autocorrelation function in Eq. B.44 is expressed in terms of
the theoretical non-connected correlation function in Eq B.48 as:

c(r) =
1

v̄2 ≠ v̄2
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r≠1
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2(r ≠ k)C̃k +
N≠1
ÿ

m=1

C̃m[min(m + r, N) ≠ max(r, m)]

BD

. (B.54)

B.9 Correction to the autocorrelation function from correla-
tions in the variance

In SI Section B.8 we calculated the finite size correction due to short traces for the empirical
connected correlation function assuming that differences between he empirical variance and the
theoretical variance for infinite traces do not affect the connected autocorrelation function. This
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Figure B.5: The finite trace effect for the Ornstein-Uhlenbeck process. The connected
autocorrelation function Cr = exp(≠t/τ) (red line) compared to the connected autocorrelation
function calculated from short time traces as described in SI Section B.8 (blue line) and the
corrected connected autocorrelation function (Eq. B.54 green line). λ = 2s≠1, γ = 4s≠1/2 and
the short trace length is 5s where the Ornstein-Ulhenbeck process is ∂tx = ≠λx + γξ and ξ is
Gaussian white noise.

approximation is valid for our data. For completeness we now calculate the finite size correc-
tion coming from spurious correlations in the variance obtained when computing the variance
trace by trace, before averaging over the traces (Eq. B.44). Analyzing the data, we normalize
the autocorrelation function of each trace before taking the average over all traces because of
potential nucleus-to-nucleus variability in the signal calibration. This is equivalent to dividing
each autocorrelation function by its variance, before averaging over the traces and can introduce
errors.

The empirical connected correlation function in Eqs. B.44 and B.43 can be rewritten by
adding and subtracting 1 in the denominator as:
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where the average È·Íα is over M traces as defined in SI Section B.8. Assuming the true variance
of the process is close to the empirical variance we linearize the denominator :
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. (B.55)

We first term is proportional to the connected correlation function in Eq. B.54 we calculated in
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SI Section B.8 assuming constant variance. We focus on the second term:
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Using time invariance at steady state (Eq. B.47) in the first factor and simplifying the algebra
in the second factor:
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The final correction for correlation due to correlations in the variance coming from short time
traces is easily evaluated terms of four-points correlation function F (s, t, u) = vivi+svi+s+tvi+s+t+u.

B.10 Cross-correlation

The presented correlation analysis can also be extended to constructs with two colored promoters
inserted at two difference positions on the same gene. In this case, each construct can have a
different loop design function Lν

i , where ν = 1, 2, and the cross-correlation of the normalized
fluorescence intensity is:

ÈF1(t)F2(s)Í =
r1

ÿ

i=1

r2
ÿ

j=1

L1
i L2

j < ai(t)aj(s) > . (B.56)

The Lν
i functions start at the same point (the one describing the downstream construct is 0 for

the first steps).
After the loop design functions Lν

i have been defined, the calculation of the theoretical cross-
correlation function and auto-correlation rely only on calculating the correlations of the gene
expression state, which is the same for both. So the results presented for the particular models
are valid, after correcting for the two different loops functions. For examples, the steady state
connected cross-correlation function of the two state model is:

ÈF1(t)F2(t + τ)Í ≠ ÈF1(t)Í2 =
r

ÿ

i=1

r
ÿ

j=1

LiLjPonPoffe|τ≠j+i|(δ≠1), (B.57)

where Pon and ÈF1(t)Í2 = ÈF2(t)Í2 can be independently calculated from either probe, which
provides an independent estimate of the experimental noise.
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The differences in the use of the cross-correlation function and auto-correlation function arise
when calculating the finite size corrections from short traces, because assumptions about the
statistical time invariance of the signal in steady state are no longer valid. The non-connected
theoretical correlation function (equivalent of Eq. B.48) is now defined on two signals, vi and
wi:

C̃r = Èvα,iwα,i+mÍ, (B.58)

where È·Í define the average over random realizations of the process and in steady state is
independent of i. Unlike for the auto-correlation function, C̃r is no longer symmetric with
exchange of vi and wi. The empirical cross-correlation function is (assuming the variance is well
approximated by the empirical variance):
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which in terms of the C̃m is:
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(B.60)
Repeating the steps in SI Section B.8 we obtain the finite size correction for the cross-correlation
function.
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B.11 Precision of the translational process

The precision of the total mRNA produced during a cell cycle presented in the main text is
proportional to the activity of the gene and requires a careful calculation of the variability
of the probability of the gene to be ON in different nuclei at the same position. The total
activity of a nucleus, defined as the integral of the normalized fluoresce

qK
i Fi, where i < K
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1
2

Figure B.6: The fit of the three state cycle model to the data The fit of the ratio of the
two rates for leaving the two OFF states k1/k2 to the steady state traces from four embryos in
the anterior and boundary region of cell cycle 12 and 13. Each point is data from one embryo.
The error bar represent the standard deviation of the inferred value. The fit is for a randomized
60% of the data. The sum of the switching rates kon + k1 + k2 is shown in Fig. 5B of the main
text.

are the sampling times in steady state window of the cycle, in steady state is proportional to
the probability of the gene to be ON in a given trace, P α

on. To keep our analysis independent of
normalization, we will calculate the relative error defined as the variance over the mean of P α

on,
var(P α

on)/ÈP α
onÍα, where the averages are taken over traces.

First, we can calculate the relative error of the probability of the gene to be ON P α
on directly

from the traces. We compute the mean and standard deviation of the distribution of P α
on in a

given window along the AP axis. P α
on for each trace is calculated from Eq. B.4.

We can compare the results of the empirically estimated relative error to predictions of the
steady state models. We know that the expected average over traces

qM
alpha=1 P α

on is Pon. Within
the assumption of our model presented in SI Section B.2, the expectation value of the square of
the P α

on is expressed in terms of the expression states of the gene, X(t):

ÈP α,2
on Íα =

K

1
T 2

⁄ T

0
dt

⁄ T

0
dsX(t)X(s)

L

α

, (B.61)

where the average is over M traces and T is the total duration of the trace in real time. In terms
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of the probability that the gene is ON at time τ given that it was ON at time 0, A(τ) defined
in Eq. B.6, we obtain

ÈP α,2
on Íα =

K

1
T 2

⁄ T

0
dt

⁄ T

0
dsPonA(t ≠ s)

L

, (B.62)

where A(τ) has units of seconds. The relative error is obtained by replacing A(τ) by the
appropriate function for each model. For the two state model:

ÈP α,2
on Íα =

Pon

T 2

⁄ T

0
dt

⁄ T

0
ds(Pon + Poffe≠|t≠s|(kon+koff)). (B.63)

Integrating and substracting the mean squared we obtain the relative error:

δPon

Pon
=

1
T

Û

2
koff

kon(kon + koff)
(T ≠ 1 ≠ e≠T (kon+koff)

kon + koff
). (B.64)

The probability of the gene to be on is proportional to the total mRNA produced and for large
T we reproduce the result in Eq. 4 in the main text:

δmRNA
mRNA

=

Û

2
T

koff

kon(kon + koff)
=

Û

2
τi(1 ≠ Pon)

TPon
. (B.65)

For the three state cycle model the same calculation is valid until Eq. B.62 and is then carried
out numerically.

Precision from static (Fluorescent In Situ Hybridization – FISH) images is calculated as the
variance over the mean of the distribution of a binary variable, which for each nucleus is 1 if the
gene is on in the static image and 0 if it off [139, 120, 125]. The signal in FISH datasets in an
average over an unknown timeframe. To compare our analysis of the time dependent signal to
these previous measurements, we use a binary variable, which is 1 for each nucleus that was ON
during the steady state interphase and 0 for each nucleus that was always OFF. The results of
the relative error as a function of position obtained using this empirical analysis in SIFig. B.7
show agreement with previous reports [125]: for most traces the relative error in the anterior is
zero – all nuclei in a given AP axis window express, and it increases to ≥ 50% at the boundary.
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Figure B.7: The relative error of gene expression. A. The conclusions about precision do
not depend on the embryo. The relative error of the total mRNA produced in cell cycle 13 as a
function of position for windows equal to 10% of the embyo length. Each colored line represents
one embryo. The same data plotted as an average over embryos with the variance as error bars
is shown in Fig. 7 of the main text. B. The conclusions about precision do not depend on the
window size. The total mRNA produced in cell cycle 13 as a function of position for different
window sizes. Except for very large scales (20%) and very small scales comparable to one nuclear
width (2%, the relative error as a function of position is reproducible. C.The relative error of
the discrete variable that describes the probability of the gene to be ON at any time during
the cell cycle as function of position. The relative error is much lower in the anterior compared
to the error in the total produced mRNA, but remains high at the boundary. D. The mean
probability of the gene to be ON at any time during the cell cycle as a function of the embryo
length (binary approximation). E. The mean probability for the gene to be ON averaged over
the cell cycle. In C-E each colored lines describe different embryos.
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Figure B.9: Fit of switching parameters with variability for the two-state model. This
graph presents the result of the two-state model data analysis in terms of gene switching rates
with error zones.
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Résumé
Nous présentons deux problèmes de biologie faisant ap-

pel à un traitement de données et des modèles issus

de la physique statistique : la dynamique des popula-

tions en immunologie et la régulation génétique dans le

développement embryonnaire. En immunologie, nous

étudions le problème de la sélection somatique dans le

système immunitaire adaptatif: la sélection cellulaire et

la compétition qui s’y opèrent, constituant un système

quasi Darwinien au sein de l’organisme. Dans un pre-

mier temps, nous considérons différentes hypothèses sur

la dynamique selective : signaux déclenchant la division

ou la mort cellulaire par liaison antigénique ou par cy-

tokines, paramètres dynamiques de division, mort et fluc-

tuations environnementales. Nous explorons leur influ-

ence sur la taille des clones dont la distribution à queue

lourde a été observée à travers les espèces et les types

de cellules. Deux familles de modèles émergent : un

premier dans lequel le bruit est cohérent à l’échelle du

clone et un second dans lequel le bruit varie de cellule

à cellule. Nous montrons dans quelle mesure la distribu-

tion de taille de clones permet de déterminer le meilleur

modèle et relions la forme de la distribution ainsi que

l’exposant apparent de la loi de puissance aux paramètres

biologiques. Dans un second temps, nous explorons les

caractéristiques du réseau complexe et aléatoire formé

par les clones et les antigènes : dimension, adjacence,

dynamique. Nous nous intéressons à l’effet de la sélec-

tion dans le temps et à la vitesse d’évolution des clones.

La deuxième partie de cette thèse est consacrée au déve-

loppement embryonnaire. Dans l’embryon, il est essen-

tiel pour le noyau de déterminer sa position avec une

grande précision pour orienter la différentiation et con-

struire un organisme structuré viable. Cette information

positionnelle est acquise, transmise et conservée par la

diffusion de protéines et l’activa- tion de circuits géné-

tiques. Plus précisément, la formation de l’axe antéro-

postérieur chez la Drosophile est déterminée entre autres

par l’activation du gène hunchback par la protéine Bi-

coid. Nous analysons des données issues d’expériences

d’imagerie fluorescente dynamique dans les premiers cy-

cles cellulaires de l’embryon. Nous contruisons un mod-

èle spécifique permettant d’analyser la fonction d’autoco-

rrélation des traces temporelles de fluorescence qui prend

en compte toutes les difficultés biologiques et expérimen-

tales (bruit, calibration traces courtes, structure du gène

artificiel) pour extraire les paramètre dynamiques d’activa-

tion de hunchback. Nous examinons différentes dynami-

ques potentielles (poisonnienne, markovienne ou non mar-

kovienne) et leur implication pour l’information dont la cel-

lule dispose sur sa position ainsi que la précision de la

lecture du gradient de Bicoid.

Mots Clés
Immunologie, Développement, Dynamique des popula-

tions, Circuits génétiques

Abstract
This work presents two problems of biology requiring data

analysis and models from statistical mechanics: popula-

tion dynamics in immunology and gene regulation in em-

bryo development. In immunology I study the problem

of somatic evolution in the adaptive immune system: se-

lection of and competition among cells that form a close-

to-Darwinian system within one individual. First, I con-

sider different potential hypotheses for selective dynam-

ics: division and death signals through antigen binding or

cytokines, dynamical parameters for division, death and

fluctuations of the environment. I explore their impact

on clone sizes. Experimentally, these clone sizes show

heavy tail distributions for different species and different

pools of cells. Two families of models emerge: models

where noise is consistent at the level of the clone and

models where it varies from cell to cell. I show how clone

size distributions help discriminate between these mod-

els and relate the shape of the distribution and the expo-

nent of the power law to biological parameters. Second,

I explore the specifics of the complex stochastic network

of clones and antigens: its dimensionality, connectivity

and dynamics. I study the effect of selection at different

time scales and the speed of evolution of the clones.

The second part of this dissertation concerns embryo de-

velopment. In the fly embryo, it is crucial that nuclei can

evaluate their position within the organism accurately to

determine cell fate and build a healthy organism. This

positional information is obtained, transferred, and main-

tained through diffusion of proteins and activation of ge-

netic networks. More specifically, the patterning of the

antero-posterior axis in drosophila requires the hunch-

back gene, activated by the Bicoid protein. I analyze data

from fluorescent live imaging in the early cell cycles of the

embryo. I build a tailor-made model to analyze autocor-

relation functions of fluorescence time traces overcom-

ing all biological and experimental challenges (noise, cal-

ibration, short traces, transgene construct) to extract the

parameters of hunchback activation. I examine several

potential types of dynamics for gene switiching (Poisson,

Markovian or non-Markovian) and predict their impact on

positional information and the accuracy of bicoid gradient

readout.

Keywords
Immunology, Development, Population dynamics, Gene

regulatory network
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