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Introduction

"For a successful technology, reality must take

precedence over public relations, for Nature

cannot be fooled."

Richard P. Feynmann

“NANOELECTRONICS , far from being a niche field of material science, may hold

a foundational importance to the future of several hundred billion dollar

digital computing industries that form the bedrock of modern global communica-

tions, information technology (IT), and data storage. In this introductory chapter,

global problem context is illustrated for the important task of developing and co-

integrating emerging new architectures and nanodevices for reduced energy con-

sumption and improved scaling as billions of new grid-connected devices come on-

line in the next decade. ”



2 INTRODUCTION

BY 2018, projections estimate that internet-connected devices- servers, laptops, phones,

and tablets double the number of humans in all- will account for 12% of the world’s

electricity consumption ( 2.5 PW ) [1]. Somewhat surprisingly, less than a quarter of this total

consumption comes from the large server farms so often associated with the IT industry’s foot-

print; in a Berkeley Lab report, this use was estimated at 61 kWh/year, constituting 1.5 % of total

US Grid consumption [2]. While the same report identified major opportunities for energy effi-

ciency and reducing power use at scale, peripheral, e.g. home or mobile use energy costs have

continued to increase super-linearly [1]. The International Energy Agency confirms this trend

in a 2009 report which notes that "the growth of electricity consumption by small electrical and

electronic devices has been the most rapid of all appliance categories over the past five years

in both OECD and non-OECD countries", to account for 15 % of all present global residential

energy consumption [3]. Moreover, the IEA predicts this total use will triple, to nearly half of all

world-wide residential energy use, by 2030.

Unchecked, these accelerating energy burdens for computing and telecommunications sys-

tems may place severe stress on economic infrastructures and carry non-neglible environmen-

tal impliciations. In particular, emissions from non-renewable fuels originally powering the

electrical grid contribute to coupled and quickly worsening crises of natural resource scarcity,

agricultural productivity, and public health that accelerate as global temperatures continue to

rise [4]. While the computing industry, and in particular the scientific and academic computing

community, can make an important contribution to modeling expected impacts and simulate

potential solutions to this emerging crisis [5], the projected binge in consumer computing en-

ergy threatens to outweigh any potential gains from that effort.

Even more alarmingly, the above estimates of future consumer electronics energy use al-

ready miss a critical emerging trend. In particular, a new generation of internet-connected

wearables, sensors, robots, and other devices of all varieties, collectively referred to as the In-

ternet of Things (IOT), are poised to come online. Gartner Inc. estimates that another 3.1

billion connected devices will be activated and connected to the data/electrical grid in 2017

alone; this already brings up the total to a staggering estimate, 8.4 billion devices[6]. In addi-

tion to raw pressure on the electrical and tele-communication grids, these sort of devices bring

fundamental challenges to the future of data transfer, compression/storage, analytics, and in-

tegration. According to Gartner:

"IoT applications will generate extremely high data rates that must be analyzed in

real time. Systems creating tens of thousands of events per second are common,

and millions of events per second can occur in some telecom and telemetry situa-

tions. To address such requirements.... computing platforms.. typically use parallel

architectures to process very high-rate data streams to perform tasks such as real-

time analytics and pattern identification." [6]

Due to the sheer scale and complexity of this challenge, the emerging IoT computing era

will require an entirely new approach to Information Technology (IT) among the world’s tech-
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nology companies, start-ups, governments, and other institutions. To reduce an exponential

burden on centralized systems, any successful new approach "..may require bringing data pro-

cessing close to the edges ("things") where data is generated... this data of interest may not, as

traditionally expected, be kept only at centralized information infrastructures" [7]. In the near

term, this transition will probably involve the use of micro-clouds (’cloudlets’) as well as dis-

tributed or federalized cloud systems, thus reducing reliance on single monolithic data-center;

in the medium term, a complete transition towards mobile edge computing (MEC), sometimes

also called ’fog computing’, is projected especially as 4G/5G global wireless standards come on-

line [8]. In addition to improving efficiency by performing local computations, such distributed

and federated systems can also improve fault tolerance by distributing and saving the results of

these computations across many nodes in the grid [9].

UNFORTUNATELY, implementing distributed computer systems alone is not sufficient to

mitigate these projected future trends. By optimizing only system-level efficiencies,

one takes as granted the materials and architecture of modern computing devices when both

are fundamentally limited in certain ways. Such is the domination of metal-oxide field-effect

transitors (MOSFETs) built from silicon in general, and in particular the modern design of low-

power, high speed FET known as the complementary-MOSFET (CMOS), that a compelling case

can be made that we presently inhabit the "Silicon Age". Yet, this present dominance hides

something of an unfortunate reality about the energy cost of this device. In 1973 Robert H.

Dennard postulated that since the overall power density of MOSFET will stay constant during

downward scaling, current and voltage will drop as the gate length falls [10]. As these physi-

cal parameters have fallen, overall power consumption dropped too, and more transistors are

available on a given die (feature size F decreases along with gate length), prices do as well.

However, between 2006-7, this trend stopped. Since then, overall CMOS efficiency has contin-

ued to slightly increase due to a variety of engineering efforts as high-κ gate dielectrics, strained

silicon, and three-dimensional definition (e.g. FinFETs) and stacking. However, with the power

density of the newest CMOS now physically increasing as F still falls, a major electronics indus-

try shake-up seems to be on the horizon.

Indeed, with transistor feature size now dropping below 10 nanometers, the end to Moore’s

iconic law- a famous prediction by Gordon Moore that transistor density on an integrated chip

(IC) would double every two years- is approaching not as a function of economics but due to

physics (thermodynamic constraints). The latest- and last- report of the Semiconductor In-

dustry Assocation, the ITRS, predicts that Moore’s law will terminate in 2024 as transistors hit

a thermal wall [11]. At smaller than 10nm size, the risk of false bit flips due to high thermal

noise becomes increasingly likely, as given by the Johnson–Nyquist formula [12]. However,

long before this ultimate physics-wall is hit, a variety of atomic computing schemes that may

be fundamentally quantum, and/or analog, in their operation and implementation, may be

considered to replace CMOS systems due to superior energy and/or performance. Delaying

this changing of the guards are a set of tweaks to physical transistor design collectively referred
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to as "more than Moore." Such applications often involve the integration of a variety of exotic

new materials into the architecture of the transistor design itself, such as graphene integration

to improve speed [13] or carbon nanotube logic devices [14].

At the same time, architectural inefficiencies have multiplied the limitations of this ’Sil-

icon age’ computer hardware and software stack. Von Neumann’s influential reports on the

design for an electronic digital computer [15] emphasized a design in which logic or arithmetic

options, collectively known as the central processing unit (CPU) are separated from mem-

ory read/write operations both in time and space. The von-Neumann, sometime also called

Princeton, architecture dominated relative to more complex proposals, especially since effi-

cient CPU and memory modules could be separately designed and scaled according to differ-

ent materials and energy requirements. However, as decades have passed and global energy

and cooling requirements have become more stringent, this physical separation has become

more of an liability than an asset. The fact that all communication between the CPU and mem-

ory cells must pass through a shared bus is often referred to as the characteristic von Neumann

bottleneck, and results in a fundamental speed limit and energy inefficiency for all computers

built with this architecture. While CPU cache memory and methods such as branch predic-

tion have somewhat mitigated the time delays due of this limitation, its energetic implications

remain mostly unsolved. According to Mark Horowitz, an order of magnitude more energy is

spent transferring/accessing the data in memory or obtained in the CPU, then in the raw en-

ergy cost of the fundamental operations needed to obtain them (e.g., write operation in mem-

ory, or the cost of powering transistors performing arithmetic operations) [16]. Even worse, the

von-Neumann paradigm has also created inefficiencies at the level of the hardware level lan-

guages, and later software systems, used to operate upon this foundation. In his ACM Turing

Prize lecture, John Backus described this as follows:

"The von Neumann bottleneck.. is [not only] a literal bottleneck for ... data traf-

fic .. but, more importantly, it is an intellectual bottleneck that has kept us tied to

word-at-a-time thinking instead of encouraging us to think in terms of the larger

conceptual units of the task at hand. [P]rogramming is basically planning and de-

tailing the enormous traffic of words through the von Neumann bottleneck, and

much of that traffic concerns not significant data itself, but where to find it."[17].

MOVING beyond these bottlenecks requires a fundamental re-thinking of the way(s) we

compute and the substrate(s) we use to do so- a difficult task. Yet, if navigated suc-

cessfully, visionary new solutions might simultaneously solve the linked conundrums of ris-

ing energy budgets, over-reliance on centralized systems, and over-reliance on outdated archi-

tectures. While individual logic and memory operations with nanodevices have been imple-

mented for at least a decade, in particular using carbon nano-tubes for random access memory

and semi-conducting nanowires as configurable field-effect transistors [18, 19], these designs

still separate memory and computing functions. On the other hand, emerging designs broadly
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referred to as in-memory computing which directly co-integrate computing and memory func-

tions, have only so far been considered in the context of ’in database’ computing operations

with dynamic-Random Access Memory (DRAM) devices [20]. The development of a new gen-

eration of nano-architectures that attempt similarly hybrid operations within the context of

the physics or dynamics of these devices themselves remains a critical and unfinished research

task. In particular, emerging types of memory devices known as resistive switching devices

open the possibility of merging existing ’hierarchies’ of memory access into a unified template

for on-chip computing and data storage, which could bring massive gains in computing perfor-

mance, energy efficiency, and density [21]. Critical advantages of these nanodevices for build-

ing new types of architectures are their intrinsic non-linearity (we can build and chain thresh-

old operations with them), their non-volatility which can yield extreme energy efficiency, and

the ability to perform biologically plausible operations such as hebbian learning in-situ (within

the device), rather than emulating these behaviors in accompanying silicon hardware [22]. Ul-

timately, these new types of architectures will be critical to realizing an Internet of NanoThings

(IoNT), in which nanoscale memory-computers and nanoscale sensors localize energy pro-

duction and use, computation tasks, and distributed storage [23]. Not only would such an IT

strategy avoid the negative impacts from existing or linear scaling with CMOS systems, it could

open the doorway to revolutionary applications in healthcare, environmental and agricultural

monitoring or repair, and economic optimization.

THIS thesis explores the use of a new class of non-volatile memory (NVM) computing ele-

ments, also referred to as memristive nanodevices or memristors, as an attractive build-

ing block for IoNT architectures. Arrays built with these memristive or NVM devices are intrin-

sically attractive from the energy-savings perspective, as they require zero power in standby

(non-volatile) mode, unlike modern staged memory-CPU systems that require power to pre-

serve states and to power-up/power-down memory cells. In addition, well-engineered emerg-

ing NVM devices are fast, extremely durable, and scalable down to ultrahigh density. For these

reasons, NVM devices integrated in dense , three-dimensional arrays are actually in the process

of industrial realization to replace Flash memory in laptops and phones. Some of the claimed

benefits of pre-industrial NVMM arrays include 1000x faster writes, 20x less power consump-

tion and half the total die size of earlier storage systems [24]. An industrially available NVM

system, Intel’s 3D XPOINT, has already been integrated in a solid state drive (SSD) product line

called Optane [25].

Fig. 1 (a) shows an NVM three-dimensional memory array where the yellow contact lines

are known as bit and word lines and the selection of particular indices on the array allows for

devices/cells to be written (green), deleted (red), or read out. This is already exciting, yet in the

following chapters I argue that these devices represent a serious opportunity for building neu-

romorphic architectures and may be under-used in the context of stateful storage or random

access memory (RAM) architectures. In fact, memristive nanodevices have special properties

that make them an attractive hardware implementation reminiscent of biological synapses;
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Figure 1: (a) Depicts a crossbar where word line (WL) and bit line (BL) are specified to either
write (green) or erase (red) a stored cell of information, in this case a single stored
bit. (b) Depicts a crossbar in a neuromorphic context, where a set of input voltages x
provides an output (y) which is functionally a vector-matrix product. As highlighted,
each cross point implements an elementary operation where the conductance G is
multiplied by the pre-synaptic voltage Vi to contribute to this product collected at the
post-synaptic (bottom electrode) wires.

like real synapses they learn/remember meta-stable ionic concentrations, and possess intrin-

sic non-linear dynamics [26, 27]. Meanwhile, while ReRAM is fast and energy efficient, it still

does not perform its own learning or inference. In the following chapters I demonstrate many

examples of architectures that do just this, and in fact have been designed expressly to per-

form their own learning locally. As already discussed, such a non-von-Neumann approach

could massively reduce the transfer of data between physically separate memory and comput-

ing cells, further saving energy. In Fig. 1 (b), an essential non-von-Neumann operation used

in all of these architectures is noted. The operation, which has been variously referred to as a

forward-inference read, or an on-chip matrix-vector operation, uses a vector of simultaneously

presented voltages x to almost instaneously read-out a set of outputs y . The mutliply operation

is electrically performed at every crosspoint by Ohm’s law, while the accumulate is electrically

performed at each post-synaptic (output) line by Kirchoff’s law [28]. As this operation is a crit-
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ical feature of many artificial neural network (ANN) models, the ability to perform it in-situ in

hardware is an unprecedented advantage.

Preview of key topics explored

In the following chapters, the vision of on-chip (local) learning with memristive devices is

built up gradually. Chapter 1 provides a strong conceptual foundation by introducing the ba-

sic concepts of neuromorphic engineering, describing material aspects of various memristive

devices, describing a variety of conceptual models of computation (artificial neural network

models), and lastly illustrating a general survey of methods for on-chip learning. Chapter 2 fo-

cuses in depth upon the computing possibilities of one particular device, a powerful organic

thin-film memristive device, showing its concrete integration in both simulated and experi-

mental local learning schemes where it always plays the role of nanosynapse. Chapter 3 zooms

out to larger neurmorphic artificial neural network (ANN) architectures- all simulated- which

would allow these basic principles to be scaled to difficult tasks encountered in the world of

machine learning. In this chapter, a particular focus is put on the non-ideal aspects of device

behavior that might constrain these systems at scale. Finally, Chapter 4 proposes new varieties

of architectures that use timing dynamics, at either the device or system level, to reach new

levels of learning performance and/or energy-savings.

Summary of key contributions

• A novel organic memristive nanodevice has been characterized and modeled, and a suite

of simulations were performed to understand more about its complex behaviors. These

simulations were overall promising, and thus encouraged us to go ahead with an experi-

mental demonstration. In the process, we formalized a compact model.

• We experimentally implemented an elementary learning system with several of these or-

ganic memristor devices. The learning system was built to learn linearly separable func-

tions automatically. We analysed in great depth the imperfections of the devices in this

learning set-ups and how these imperfections affected learning outcomes. Notably, we

developed different learning rules to account for a key physical contraint when learning

(device asymmetry).

• Building upon our simulated and experimentally realized nanodevice learning primitive,

we expanded our analysis through space and simulated complex multi-layer memristive

learning systems across a wide variety of key parameters. Ultimately, we have compared

and contrasted conventional on-chip multi-layer perceptron architectures with random

first layer, trained second layer systems (often called NoProp or ELM in the literature), re-

vealing intriguing trade-offs between accuracy, size, energy, and overhead requirements.
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• Due to the promising performance of the nanodevice-built projection-regression sys-

tems, we also looked for additional ways to enhance this system. First, on the device

level, we looked at the potential for the first-layer weights to be imprinted by exploiting a

unique plasticity transition made possible by a silver ionic electrochemical metallic cell.

Indeed, this system seems to outperform the fully random system.

• Second and finally, on the systems level, we evaluated the impact of increased neuron

complexity and sparsity (less than full synapse connectivity) to reduce overhead. Imple-

menting this design allows us to achieve a 28x reduction in the crossbar size required to

implement on-chip classification at high accuracy.



Chapter 1

Essential Neuromorphic Concepts,

Devices, and Methods

"Either mathematics is too big for the human mind, or the

human mind is more than a machine."

Kurt Godel

“EXTENDING upon the global context of the introduction, this chapter serves as

an overview of the rapidly emerging field of neuromorphic computing field:

its objectives, its models of computation, and their possible physical realization(s).

Taken together, the confluence of neuromorphic design and emerging concepts from

material physics emphasizes the importance of alignnment between physical device

behavior, scaling dimensions and trends, and abstract models of computation. In

particular, the broad class of devices considered in the context of this thesis, memris-

tive devices, are introduced in the context of this grand challenge and their favorable

aspects highlighted. ”
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THIS CHAPTER presents a conceptual background in the field of neuromorphic engineer-

ing (1.1), and furthermore, provides an introduction to the concrete class of nanode-

vices (and their associated phenomena) used throughout this thesis (1.2). Lastly, a variety of

non-VonNeumann computational primitives and concepts are introduced so as to provide ad-

equate conceptual background on how such computing systems work (1.3). This chapter does

not serve as a comprehensive review to the theory or practice of neuro-computation, and con-

tains blind-spots. Pedagogically, it has instead been oriented towards describing in advance

the essential concepts which shall be important to understand the later chapter’s works.

1.1 The Neuromorphic Imperative

1.1.1 Carver Mead’s Vision

As Carver Mead noted in the 1980s, the cost of a computer’s single operation was then 10−7 J ,

yet the entire computer’s operation per cycle is 10−5 J , or two orders of magnitude more expen-

sive (due to scaling, these numbers would be slightly lower today) [29]. Mead’s vision for the

future of electronics rests upon the assumption that, even assuming ultimate scaling (100 fold

higher density), surpassing 10−9 J per elementary on-chip operation, and 10−7 J system wide,

our electronic systems would remain in the best case around 10 million times less efficient than

the human brain. With 1016 synapses, about as many complex operations per second, and a to-

tal energy budget of a few Watts, (thus 10−16 J per operation), the brain remains an un-reached

Pareto frontier compared to all of our current schemes. Mead’s "unavoidable conclusion" is

that we have something "fundamental to learn from the brain about a new and much more

effective form of computation" [29]. In the 25 years since this vision was articulated, a good

amount of progress has been made towards realizing it, primarily in the context of silicon neu-

romorphic designs, as the next section addresses.

1.1.2 Analog Neuromorphic Implementations in Silicon

Some of the first implementations of Mead’s visions utilized standard MOSFET technology in

the sub-threshold regime. Using these principles and other standard electronic components

such as capacitors, simple spiking neural models for integration in larger systems, e.g. the leaky

integrate and fire (LIF) model, can be constructed [30]. Moreover, since accessing transistors

in the sub-threshold requires smaller currents than in standard digital arithmetic logic unit

(ALU) architectures, very large scale integrated systems (VLSI) built from these building blocks

can be extremely energy efficient [31, 32]. While simple pattern recognition has been achieved

using spike-based learning rules [33], achieving industrial results requires general purposes ar-

chitecture, e.g. multi-core designs that separate spiking neurons and synaptic stored weights.

A few examples of these sorts of architectures recently proposed and in various stages of de-



1.2 MEMRISTIVE DEVICES: A NEUROMORPHIC BUILDING BLOCK 11

velopment include NeuroGrid at Stanford [34], and the ROLLS spiking neural system devel-

oped at the University of Zurich [35]. In addition original learning schemes such as recurrent

(attractor-based) schemes, have also been introduced and evaluated in the context of analog

CMOS neuromorphic systems [36].

1.1.3 Digital Neuromorphic Implementations in Silicon

Analog VLSI implementations exploiting transistor physics provide one possible path to reach-

ing the neuromorphic vision, but recent efforts have also focused on entirely digital imple-

mentations. Presently available, general purpose systems that can realize such designs include

Field-programmable gate arrays (FPGA), which incorporate fast, on-site memory for weight

storage, usually with Flash or electrically erasable non-volatile memory (EEPROM) devices. In

addition, special full-purpose CMOS neuromorphic architectures including SpiNNAker at the

University of Manchester [37], and IBM’s TrueNorth [38] have been desinged to meet key neu-

romorphic criteria including parallelism and energy efficiency. On the latter platform, a whole

host of non-vonNeumann neuro-inspired algorithms have been successfully ported, including

hidden Markov Models, restricted Boltzmann Machines, and multi-layer perceptrons [39].

1.1.4 Moving beyond Silicon in Neuromorphic Design

All of these systems rely upon well developed commercial device technologies- CMOS, DRAM,

SRAM, and EEPROM- to realize reconfigurability on many scales, to compute inter-neuronal

weights (synapses) and to simulate intra-neuronal dynamics (activation functions) [40]. How-

ever, in the last decade, new nanofabrics incorporating emerging memory and logic devices

at multiple scales have helped open the doorway to post-silicon, or hybrid silicon-nanodevice,

implementations of the neuromorphic vision. In terms of future reconfigurable computing sys-

tems, such designs may improve the speed and efficiency of existing FPGA implementations,

open the way towards a new type of field-programmable analog array (FPAA) design built with

in part with nanodevices, or even lead to bespoke new analog computers built entirely with

nanodevices. In any of these systems, critical design assets of emerging non-volatile mem-

ory (memristive) devices include the possibility for extremely dense information integration,

strong energy efficiency due their non-volatile operating modes, and flexible operation be-

tween analog or digital modes, as suggested in [41, 42]. The next section provides far more

evidence of the promise of these devices from the material physics perspective.

1.2 Memristive Devices: A Neuromorphic Building Block
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1.2.1 Early Interest in Two-Terminal Nanodevices

Long before nanodevices were shown to exhibit memristive properties, there was already in-

tense interest upon the use of two-terminal, non-volatile nanodevices in the context of emerg-

ing molecular computing proposals. In particular, much of the early research concerned semi-

conducting nanowires or carbon-nanotubes [19], but these were usually meant either to imi-

tate transistor designs or act as solid-state memory. An exception was the early neuromorphic

considerations of Likharev [43]. In 2003, nanoscale molecular switches were experimentally

realized in a grid or crossbar configuration, with top and bottom wires sandwiching a rotax-

ane active switching layer [44], making such speculations far more feasible. Then, in 2005

Strukov and Likharev, proposed an ambitious design called CMOL, which proposed that this

variety of molecular two-terminal devices could be directly paired with CMOS logic circuits

into reconfigurable architectures inspired by field programmable gate arrays (FGPAs) previ-

ously built with CMOS [45]. This design was further expanded in (CrossNets), which estimated

top-performance and energy draw of these systems, and proposed a variety of concrete neuro-

inspired tasks and architectures which could be attempted [46].

1.2.2 The Theoretical Memristor

In 1971, Leon Chua predicted a future fundamental circuit element [47]. Of the four basic elec-

tronic state variables- current (i ), voltage (v), charge (q), and flux (ϕ), he asked why there were

mathematical relationships between most (yielding resistor, inductor, and capacitor), and yet

a relationship between q and ϕ did not exist. In turn he introduced both the characteristic ϕq

curve, and its device symbol. At a given time t, the voltage drop of a charge-controlled memris-

tor is given by

v(t ) = M(q(t ))i(t ) (1.1)

M(q) = dϕ(q)

d q
(1.2)

Current through a given memristor device and the evolution of the internal state variable W

are given by:

i (t ) =W (ϕ(t ))v(t ) (1.3)

W (ϕ) = d q(ϕ)

dϕ
(1.4)

Thus, at t , the state variable depends on the total integral of all previous changes in, respec-

tively, charge or voltage. This implies the device has an intelligent, or stateful memory of what

has occurred before [48].

In 2008, a hugely impactful Nature article, summarizing the work of researchers at Hewlett-

Packard (HP) Labs emphasized that the missing hypothetical (theoretical) memristor had been

experimentally realized in the form of titanium dioxide switching cells [49]. Since then, criti-

cisms have been levied against the claim that this experimental device accurately corresponds
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to the full theoretical circuit model, and whether the ideal theory comports to known facts of

condensed matter physics [50]. Of particular relevance to experimental designers is that the

original model proposes a completely smooth pinched-hysteresis loops, while real memristive

nanodevices usually have a non-continuous hysteresis curve bifurcated by thresholds. In [51]

this issue was further clarified by Chua in differentiating between the circuit theory of ideal

non-linear circuit elements, and real memristive devices, non-volatile analog memory devices

which implement Ohm’s law in a state-dependent way. The ’real’ memristor model is:

v = R(x, i )i (1.5)

d x

d t
= f (x , i ) (1.6)

Where x is a set of internal state variables independent on current/voltage.

In fact, this simplified formluation is very similar to Pershin and DiVentra’s formulation of

memristive, memcapactive, and mem-inductive systems from condensed matter theory (Kubo

response theory) [52]. In its most general and well-recognized form, all mem-elements might

be expressed as:

y(t ) = g (x,u, t )u(t ) (1.7)

ẋ = f (x,u, t ) (1.8)

where f is a vector of internal states corresponding to the relevant behavior (ion diffusion, etc),

u(t ) is the input, and y(t ) is the output as a function of time [53]. For memristive devices,

then, which have meta-stable internal states relevant to their electrical activity expressed as

conductance, u(t ) is current, y(t ) is voltage, and ẋ would be a momentary conductance value.

In fact, f can be further understood in the case of memristive devices by clarifying a unitary

vector x of all relevant state variables. Given R , the vector of all atomic positions of relevant

ions, an applied electrical field E , and assuming a Newtonian treatment of force on each ion,

x1 = R , x2 = dR
d t , then

I (t ) =G(x1, x2, t )(V (t )) (1.9)

ẋ2 = f (x1, x2) (1.10)

When we simply define x = x1, x2, the easily recognized form is again obtained:

I (t ) =G(x , t )V (t ). (1.11)

Other electrical ’mem-elements’ , e.g. memcapacitors (capacitors with programmable/meta-

stable states) can be defined according to the appropriate input-output pairs. In fact, sym-

metric derivations were also made on the basis of relevant internal state variable equations for

mem-capacitance devices (storing energy or charge) or mem-inductive devices (storing flux

linkage). For the purposes of this work, we emphasize that we do not depend too strongly on

any one theoretical construct; however, our studied devices, as physical nano-conductive/nano-
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ionic map most closely to Pershin and DiVentra’s model.

1.2.3 Physically-Realized Memristive Nanodevices

As noted in [54], a variety of physical memristive device ’families’ exist, each of which depend

on a variety of internal processes of ionic drift/diffusion, magnetic response, crystallization,

etc. Care must be taken in this case to emphasize the true physical cause of switching phe-

nomenon, and not electrical effects due to the electrode, or corresponding activity such as

nano-scale Joule heating. Following this philosophy, we explore the physical mechanisms, ad-

vantages and disadvantages of a few of these families. Particular attention is paid to the first

of these families, redox-based or filamentary memristive devices, since the two particular nan-

odevices studied mostly closely in this work fall are members.

1.2.3.1 Redox-based resistive Memories

Redox-based resistive random access memory, or ReRAM, is an emerging class of nanoelec-

tronics elements which tend to rely upon filamentary behavior in order to realize multi-state

switching. Waser places ReRAM devices in the context of the broader class of MIM memory

devices, in which M are good electron conductors, often standard metallic electrodes, and I

is an insulating layer and a medium which allows for ionic conduction and/or growth [55].

MIM memory systems are known to possess hysteretic switching and are broadly divided into

bipolar and unipolar classes; while the former depends on the polarity of the applied voltage or

current to switch, the latter does not (is symmetric). A wide variety of redox switching scenarios

exist; in a typical such system, an active ionic electrode (anode) is reduced and forms filaments

as it moves through the insulating layer towards the inert cathode. This particular variety of cell

is called an electrochemical metallization cell (ECM) [56], which have also been referred to as

Conducting-bridge memories (CB-RAM) in the literature as well. In ECM cells, the exact mech-

anism of dendritic filament formation and growth depends greatly on the ionic/insulating layer

(e.g. oxide, sulfide, or selenide), leading to a variety of device properties [57]. Another variety

of ReRAM exists, which relies upon the movement of migrating anions (negative ions) rather

than cations; this typically happens in transition metal oxides. This is the case for HP’s iconic

T iO2 device in which oxygen vacancies migrate between the two electrodes, and related oxide

ReRAM computing devices built from Vanadium and Tantalum oxides [55].

According to Waser [58], all the above device varieties have the following important prop-

erties and advantages:
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1. Multi-level switching. Because these devices rely upon motion of individual ions and

demonstrate meta-stable states as filaments are formed and destroyed, they can intrin-

sically be written (and read) from many points. In principle, the ultimate limit would be

Landauer conductance steps, which some studies on atomic switches (ECM) approach.

2. Fast write speed. Because again single atoms are being moved, even extremely small

voltage pulse (widths) have a discernible effect on conductance. ReRAM switching times

can be on the order of nanoseconds, and are usually less than 100ns.

3. Excellent scalability (bottom feature size). Since the ultimate computing frontier is

atomic and again ReRAMs are intrinsically exploiting nano-ionic dynamics, all well-

scaled ReRAM devices should in principle be F < 10nm (less than 10nmx10nm).

In short, ReRAM devices work because of their dynamic filamentary behavior, based on the

movements of nano-ions, and this gives them the ability to manifest rich meta-stable states;

from this, we can build powerful computers.

ReRAM devices also have signature disadvantages. One issue is that due to the wide variety

of possible materials and the electronic potentials needed to move ions, low-voltage and low-

current operation is not always possible, which means energy-dissipation per write in these

systems may be higher than competing approaches. Second, ReRAMs are arguably the most

intrinsically variable and prone to retention issues (e.g. conductance drift) of all emerging

memory types. Since the devices rely upon atomic mechanisms for their basic operation, inter-

device variability is effectively unavoidable, as a wide variety of physical parameters yield dif-

ferent operating conditions for filamentary formation/destruction within every single ReRAM

device. When scaled to large arrays, variation in key parameters, e.g. GON, the maximum typical

conductance (corresponding to a complete filament), and GOFF, the minimum typical conduc-

tance (corresponding to no filament) are usually significant [59].

Recent studies provide new insight on the formation and growth of filaments, which could

be critical to optimizing ReRAM computing platforms. In [60], transmission electron microscopy

revealed two different varieties of filamentary growth, and suggested that since the narrowest

filament growth was near the dielectric (inert electrode), this area may need to be further op-

timized in future devices. A three dimensional study of conducting-bridge filament formation

was made using conducting atomic force microscopy (c-AFM) which suggested that cation-

transport was the rate-limiting aspect of their studied device, and suggested that optimizing

cation mobility could lead to faster and more efficient ReRAM devices [61]. A similar study

using c-AFM to examine filamentary formation in a sub-set of ReRAMs called valence change

memories (VCM) found that multiple filaments were often growing and competing simultane-

ously [62]. Drawing on some of these insights, recently various improvements to traditional

ReRAMs including a custom Schottky barrier at electrodes and specific doping schemes to im-

prove filamentary mobility have been proposed [63].
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1.2.3.2 Phase Change Memories

Phase-change materials (PCM) memories, sometimes also referred to as chalcogenide memo-

ries or ovonic memories in the literature, rely upon phase transitions within a small glass ’plug’

which sits in between two electrodes and possesses two structurally distinct material states,

usually, an amorphous and a crystalline one; these states of matter possess dramatically differ-

ent electronic properties and are switched using heat [64]. The implementation of such materi-

als into memories depends upon developing a fine control of tuning between the energetically

stable crystalline states and meta-stable amorphous states using the interplay of heating and

cooling phases. The material most widely used in PCMs is germanium-antimony-tellurium or

GST, which sits in an insulating middle layer and is connected between an upper and lower

electrode. In this device and many other similar ones, the low-resistance state occurs when the

device is an a crystalline state (current flows, ’1’), and the high-resistance state occurs when

the device is in the amorphous (less or no current flows, ’0’). In order to program the device

(SET, 0 → 1), a particular voltage determined by Joule heating sets the device to low-resistance

at a temperature above the crystalline phase, but below melting point, so it cools back into the

crystalline phase. To erase it (RESET, 1 → 0) an even higher voltage (above the melting point) is

used to bring the device into the amorphous state. These operations are almost instantaneous,

with the only major delay being the ’cooling’ wait; however, this time also reduces as devices

are scaled.

As a result, well-engineered and scaled phase-memories have several favorable physical

properties including extremely fast (<10 ns) switching time and long stability (5-10 years) [65,

66]. Based on these favorable properties, they are being considered as a replacement to tradi-

tional floating-gate flash memories for conventional memory storage [64]. In addition to binary

memory storage, can also be used in an analog fashion by applying extremely small program-

ming pulses to access a range of intermediate states [67, 68]. PCM devices are presently being

used in both binary and analog-mode for neuromorphic purposes, as discussed in 1.4.

1.2.3.3 Spintronic or ferroelectric memories

The most well-known and industrially ready magnetic memories are spin-transfer torque RAM

(STT-RAM), multi-layer magnetic tunnel junction devices in which a ’free’ magnetic layer can

switch between one of two orientations (making it a binary device). The device is current-

controlled, very fast, and has great endurance. Since it can also be scaled to very small feature

size [69] and is compatible in ultra-dense cross-point architectures [70], this technology is cur-

rently another candidate for replacing conventional (e.g., Flash or DRAM) memory storage.

In addition to conventional memory applications, spin-based devices are being considered to

build next-generation logic circuits [71, 72] and in the neural network context, to use spin de-

vices either as synapse [73] or as neuron [74].

Another interesting magnetic synapse candidate are superparamagnetic tunnel junctions,
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atomic scale in-plane magnetized junctions that exploit the switching behavior of a free layer

(CoFeb) pinned in between magnetic barrier layers (M gO). These devices can be switched

with very low currents, making them leading candidates for future computing systems. Of par-

ticular note is that oscillator synchronization [75], and phase-locking [76], may be useful to

build ultra-low power circuits that utilize stochastic effects intelligently.

Lastly, a very recent and promising type of nanodevice is the ferroelectric memristive de-

vice realized by Julie Grollier and her team [77]. In contrast to the STT-RAM device above, this

electronic device can be addressed at multiple analog levels. In addition to being an attrac-

tive solid state memory device, these sort of spintronic devices may make ideal candidates for

integration into a variety of emerging neuro-inspired architectures [78].

1.2.3.4 Carbon Nanotube Memories

CNT-based non-volatile memory storage were proposed as early as [19], and their memris-

tive behavior (properties) was subsequently demonstrated [79]. Their integration in a neuro-

inspired circuit was first proposed in [80]. A variant of this design was since experimentally

realized [81]. Advantages of these devices include high speed due to electrical mobility, while

a strong disadvantage is the lack of easy tunability or controllability of intermediate conduc-

tive states. Often these require exotic physical mechanisms to reduce conductance or burn the

devices, such as using lasers [81].

1.2.3.5 Nanoparticle Assemblies with Memristive behavior

Soon after the original solid state memristor device demonstrations, typical memristive hys-

teresis curves were also observed in nanoparticle electronic devices. In [82], the authors de-

tected this behavior in collections of crystalline magnetite nanoparticles and notably hypoth-

esized the memristive effect was due to the different mobilities of two ionic species moving

throughout the crystalline lattice. In [83], another more complex nanoparticle system with

memristive effects was realized, this time with gold nanoparticles suspended in a thin-film of

organic material called pentacene. The device, referred to as a nanoparticle organic memory

field effect transistor (NOMFET), displays meta-stable electronic states consistent with the for-

mation of many filaments through the active thin film layer.

1.3 Neuro-inspired architectures and algorithms

1.3.1 Connectionism’s past and future

One might reasonably argue that McCulloch and Pitt’s iconic paper [84] gave birth to the field

of neuro-computing. In a somewhat radical suggestion, the piece suggested that, not only was

the brain comprehensible, but that any conceivable (neural) network may be "treated by means
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of propositional logic." Even more astoundingly, the paper already made a serious distinction

between such networks with and without circles (recurrency), and predicted that, by using re-

cursion, such circuits may make networks complete. From the broader perspective, McCulloch

and Pitts’ work was also the birth of a powerful variety of computational thinking that was and

is referred to as connectionism. This approach to cognitive computation emphasizes the critical

role of networks in determining the algorithms of learning. As a core principle it emphasizes

that macro-states, far from being ’classical’ phenomena, are really caused by underlying dis-

tributions of many micro-states or features. While this suggestion was at first considered as

reductionist and heretical, the past half century’s advances have treated it kindly [85].

From a more abstract computational perspective, formal investigations of the space of

computable numbers, functions, and vector spaces remained an open and thorny issue. In

1937, Turing noted that the computation of every logical gate (AND, NOT, NAND, XOR.. ) can

be embodied in the activity of a Turing Machine (TM), a theoretical construct composed of a

readable/writable set of states (alphabet), tape head which reads and writes these states, and

a table of transitions (more colloquially, a computer program) [86]. By combining the correct

number or type of gates into the operation of this program (for instance, NAND gates alone

are sufficient), a universal computer is born. In addition, a universal Turning Machine (UTM)

can be constructed by chaining the operation of many smaller TMs. As a corollary, the Church-

Turing Thesis argues that anything that is computable, can be represented by an equivalent

TM or UTM design. However, Turing models may be an inefficient way to model many phys-

ical systems due to exponential complexity issues. In fact, physical computing in biological

organisms is a sequential process that occurs through time, with the substrate itself evolving

and adapting. Although little known, Turing himself was rather sympathetic to some of these

connectionist arguments, and fascinated by a variety of biological computing and structuring

processes such as morphogenesis [87]. In the last decade, renewed theoretical interest in the

power of bio-computation has led to a variety of amendments to the ’strong’ Church-Turing

thesis [88, 89].

Broadly speaking, unconventional computing considers how various physical phenomenon

or systems, such as chemical/biological networks or quantum systems, may enhance, expand,

or directly challenge the performance of classical (digital, turing-inspired) computers [90]. Neu-

rormorphic computing is one sub-set of unconventional computing which considers how the

brain’s massive parallelism, spatio-temporal processing modes, heterogeneity of sub-systems,

and hierarchy may inspire a new generation of molecular computers inspired by the brain’s

chemical mechanisms of computation. The next section sketches a general outline of the bi-

ological computation through a family of conceptual models of learning collectively known as

artificial neural networks (ANNs). In a sense, these conceptual models have become powerful

experiments in neuro-computation themselves.
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1.3.2 Artificial Neural Networks

ANN or ANN-like structures are topologies (structures) that possess dynamics (behavior) and

are evolved according to certain rules. The two essential features of any artificial neural net-

work are its nodes or information processing units (’neurons’), and its adaptive connections

(synapses). Next, we expand upon this idea in biological terms.

1.3.2.1 Biological inspiration

A schematic of multiply connecting biological neurons and synapses in visible in Figure 1.1,

and related context provided in Table 1.1. The following concepts, inspired by neuroscience

research on how real neural networks work, are critical to understanding how artificial neural

networks function as well:

• Topology: A community or population of neurons are connected together in a particu-

lar topology; of particular relevance is the order of information propagation, e.g. in Fig.

1.1 neurons (a)-(d) pass along information to integrating and receiving neuron (e). This

directionality of neurons is directly relevant to adaptation or learning, as explained in

Section 1.3.3. Note, however, that neurons can also create backwards information flows;

for instance, a downstream neuron may connect to a third neuron which connects back

around to the original neuron- creating recurrence.

• Integration: Based on the spike activity of preceding neurons and the connectivity ma-

trix/strength of various synapses in the pre-soma dendritic arbor, each neural cell body

(soma), (a)-(e) in Fig. 1.1 may fire at a given time, if and only if the total excitation

on its membrane exceeds some critical threshold. The biological integration and fir-

ing procedure is complex, and relates to the spatio-temporal integration of excitatory

post-synaptic potentials (EPSP) along the membrane due to the activity of various ionic

channels.

• Information Propagation: Neurons communicate information through these critical

spikes or action potential events, as visible in the box (iii) and noted emanating from each

of the active neurons in Fig 1.1 (b,c,e). Spikes, once generated by the cell body, travel for-

ward along the axonic system towards other neurons with which it is interconncted with

via axonic synapses.

• Learning: Learning in a neural network takes place critically on the level of synapses (it

may happen at other time-scales and locations too). Synapses are the junctures between

neurons, as pictured in the red and green dots in Fig 1.1 box (vi). They change their

strengths relative to the activity (spiking patterns) of neurons, which physically occurs

through the activity of chemical communicators known as neurotransmitters. Synapses

adapt and integrate information differently depending on their place in the neural net-
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work. For instance, with regards to the synapses pictured in the box (vi), (e) is post-

synaptic, and (a)-(d) are pre-synaptic. Thus, synapses embody bi-directional informa-

tion about system connectivity. In addition, broadly there are two classes of synapses:

dendritic synapses which are receiving information in arbor structures (i), and axonic

synapses which are delivering it in the terminals of the neuron (v).

Artificial neural networks are in general rough approximates of the complexity of real (bi-

ological) neural networks, and in particular two short-comings of traditional ANN models are

worth highlighting. First, while in biology the structure of neural networks is intrinsically alter-

able and new wiring patterns (neurogenesis) is known to be a key component of memory for-

mation and consolidation [91], the vast majority of ANNs have static topologies (e.g., new con-

nections may not be allowed to form, or the basic topology itself may be set). However, some

varieties of ANNs rely upon evolving topologies [92], and a recent proposal considers the evo-

lution of spiking neuronal systems [93]. Second, while according the original McCulloch-Pitts

model the dendritic branch is treated in most artificial neuronal systems as a simple weighted

sum, this particular sub-system has extremely complex dynamics, and seems capable of per-

forming complex temporal mapping operations in its own right [94–96].

Figure 1.1: This illustration suggests some of the very basic aspects of neuronal structure
and function that are crucial to an understanding of ANN systems. Here, neu-
rons are typically composed of 4 main sub-systems: a dendritic arbor which pre-
processes (i), the central neuron cell body or soma (ii) which accumulates inputs
and in response may output a characteristic spike response (iii), which is forwarded-
propagated along the axonic system (iv), until it ultimately reaches the axonic ter-
minal system and forward communicated to other arbors (v). (vi) shows a field of
synapses in the process of adaptation; more detail is given in the text.
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1.3.2.2 ANNs: Hypotheses of Adaptation

Any intelligent system or organism has the underlying task of predicting or inferring future

events based on past ones; this is critical to allow for survival and/or reproductive success, in

the case of living organisms, and thus evolution has optimized for it. Succeeding at this meta-

task requires an adaptive system/organism to possess a native understanding or model of the

true causes of past observations/data. In the case of neural networks, the embodiment of this

model and the algorithm that is used to achieve it an active topic of research. For instance,

while one model of the brain’s canonical learning circuits has been hypothesized [97], it is not

universal. A central puzzle concerns how the brain manages to efficiently encode, transmit and

preserve information on different temporal and spatial scales [98]. While a variety of theories

including neuronal orientation selectivity or ’tuning curves’ [99, 100], individual spike encod-

ing, and spike-rate based encoding [101] have been used to predict the behavior of individual

neural circuits, an active debate still persists about which is most explanatory [102].

With the atoms of neural computation mostly unenumerated, there is a great deal of in-

terest in expanding our patchwork understanding of the brain’s central algorithms or learning

methods [103]. Nonetheless, there is widespread appreciation that the fundamental engine

of this algorithm or ensemble of algorithms must be continuous adaptation at many tempo-

ral and spatial scales. Adaptive or learning methods may be broadly divided into cases. The

first case, supervised learning, provides neurons with a directly available teacher signal which

communicates a target behavior/output; the difference between this ideal output and the ac-

tual provides the engine of learning/adaptation. This signal can either be externally provided,

for instance by a teacher brain circuit/region, or automatically generated by the environment

in the form of positive or negative feedback communicated back to the brain circuit. Simple

reinforcement learning, e.g. trial and error based learning, has indeed been observed in the

adaptations of synapses in the oculomotor system [104].

In the second case, either no teacher signal is ever seen, or it is rarely seen; instead, lo-

cal dynamics and information steer neurons to adapt. The two cases, unsupervised and semi-

supervised learning respectively, typically use biologically-inspired adaptation methods (intro-

duced rigorously in following section), or statistically-derived inference models- e.g. learning

with Bayesian or probabilistic graphical models [105, 106]. Moreover, recent research suggests

that the wiring patterns of neural circuits and the natural properties of stochastic phenomenon

within them may be exploited to naturally perform probabilistic inference [107].

Given this high-level context, the following sections concretely introduce the abstract com-

putational models (ANN types) referred to in the rest of the thesis. We start with the two most

classical adaptation rules, Hebbian learning and the ancestors of gradient descent, which are

the engines for most un-supervised and supervised learning methods, respectively. Following

introduction of these classical methods/structures, progressively more complex modern-day

networks are introduced, finally leading to a discussion of deep neural networks, recurrent net-

works, and reservoir computers.
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Table 1.1: Key components of artificial neural networks

Component Key Function(s)
Neuron Information Integration
Cell Body/Soma Activation Function / Threshold
Pre-Neuron Spike Train(s) Input; Information channel(s) to be integrated
Post-Neuron Spike Train Output; Information channel(s) to be communicated
Dendritic Synapses Pre-processing and weighting of incoming connections
Axonic Synapses Post-processing and weighting of outgoing connections

1.3.3 Hebbian Learning

The classical rule of actual neuronal spike-learning, the Hebbian rule of learning, has been

stated colloquially as follows: ’neurons that fire together, wire together.’ More formally, Hebb

stated that a cell A is near enough to excite a cell B repeatedly, such that "some growth pro-

cess or metabolic change takes place in one or both cells such that A’s efficiency, as one of the

cells firing B, is increased" [108]. This positive association or correlation is known as long-term

potentiation or LTP, and its inverse (anti-correlation) as long-term depression or LTD. Mathe-

matically, the classical Hebbian principle is extremely simple:

∆wi , j = ηxi (t )x j (t ) (1.12)

Where xi (t ) is the activity of the pre-synaptic neuron at some time, x j (t ) is the activity of the

post-synaptic neuron at the same moment, and η is a scaling parameter. According to this

formulation, if neuron i and j are simultaneously firing they strengthen together (associate);

if one is firing and the other not they lose connection strength (dissociate); else, there is no

change. This basic dynamic is demonstrated in Fig. 1.1, box (vi) where the (green) synapses

strengthen and are connected between the co-active synapse pairs (e) and (c) and (e) and (b),

and the rest (red) connected to the inactive pre-synaptic neurons weaken.

A further generalization of Hebbian learning explicitly integrates a teacher signal. As given

in [109], this is:

∆wi , j = ηg (xi (t ), ti (t ))h(x j (t ), wi j ) (1.13)

Here, g is now a composite function - corresponding to the prior/pre-synaptic neuron (i )- and

h is its a composite function corresponding to the post-synaptic neuron ( j ). This equation will

be re-iterated in the Section 1.3.5 shortly.

However, these formations are not ideally adapted if we take into account the precise, rather

than general, timings of spikes. The Spike-Timing Dependent Plasticity, or STDP model, then

refines the Hebbian model on a more precise time scale; biophysically, the relative timing of

the pre and post-synaptic spikes relates to changes upon voltage or conductance of the mem-

brane of the focus neuron [110]. STDP is far richer than Hebbian learning because it provides

a local, unsupervised engine for detecting temporal correlations, or anti-correlations, which
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may provide a window into the casual origin of learning or inference. Since the discovery of

STDP, the model has been discovered to perform unsupervised clustering of sequences [104]

and visual features [111], as well as to animate competitive learning between neuro-circuits

[112]. Interestingly, STDP may also approximate Bayesian computation [113, 114].

1.3.4 Perceptron: The Classic ’Neurocomputer’

In 1958, Frank Rosenblatt proposed the first network-based hypothesis for neuronal learning

(classification), the ’perceptron’. This scheme is often referred to as the fundamental linear

classifier of machine learning [115]. Rosenblatt abstracted from basic Hebbian principles of

association by weight, corresponding alteration in synaptic strength ∆w proportional to the

firing of these two neurons together, and proposed a mechanistic model for behavior in which

n inputs from pre-synaptic neurons x1, x2, · · · , xn are integrated into a single output signal, y

given as follows:

y =ϕ(T ) (1.14)

T = w0 +w1x1 +·· ·+wn xn (1.15)

where T denotes the weighted sum of input signals that has been offset by a correction factor

w0. The ϕ function works as follows: it returns 1 if T > 0, else, returns 0 (this is often referred

to as the Heaviside function). Note that, while the thresholding operation and binary output

resembles neuron behavior in a conceptual sense, the perceptron model is considered a non-

spiking algorithm since neuron outputs are timeless.

The learning operation involves an iterative procedure where a vector of weights w is up-

dated following the output ϕ given input vector x for each example. By construction x takes

values fromRn . This space is divided into two subspacesR1 andR2 (Rn =R1∪R2 andR1∩R2 = 0

) so that the desired output (training task) ŷ behaves as ŷ = 1(0) for x ∈R1 (x ∈R2). The update

to w is done as follows:

∆w =


ηx x ∈R1,T < 0

−ηx x ∈R2,T > 0

0 otherwise

(1.16)

Here η represents a suitably chosen analog damping factor (often called "learning rate"). Up-

dates are performed until a convergence is reached or the program halts. Convergence is guar-

anteed if and only if the set of inputs (the training set) is linearly separable; that is, if the positive

and negative examples (recognized and non-recognized) can be separated into two different

groups by a plane (or, more accurately, an n-dim hyperplane) [116]. Famously, the perceptron

model cannot learn the XOR logic gate [117]. However, even if the system is not guaranteed to

converge, it will still do its best to approximate a (linear) solution to a non-linear problem.
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Derivation of LMS Algorithm

Let y p =∑n
i=1 wi xi +b be the actual output of a given neuron in response to x , where b is

an offset or bias. Then, for a single example p, the error is:

Ep = 1

2
(d p − y p )2

given the mean-squared error formulation, assuming d p is the teacher signal or expected

value. In addition, Etot can be derived for all presented samples 1. . .P :

Etot =
P∑
p

Ep =
P∑
p

1

2
(d p − y p )2

The overall problem set-up is to minimize error mi n(Etot) by transforming w into wθ, if
∂Ep

∂wθ
= 0 Classically, we achieve this optimization problem by adjusting each weight after

every new sample has been presented as follows:

∆w j =−γ∂Ep

∂w j

Where γ is a constant, often called the learning rate. However, we still need to obtain the

derivative of the samples’ error and every weight’s w j contribution to it (
∂Ep

∂w j
). To do this

we can separate it out into the contributions related to the output and input:

∆w j =−γ∂Ep

∂yp

∂yp

∂w j

Since the derivative of the cost-function with respect to the output can be easily obtained,

∂Ep

∂yp
= δp =−(d p − y p )

and
∂yp

∂w j
= x j , we finally obtain:

∆w j = γδp x j

1.3.5 Adaline: A Generalized Perceptron

While the perceptron makes discrete computational adjustments, the Adaline is a more general

and powerful extension introduced by Bernard Widrow [118] which considers the difference

between the output (prediction) and the expectation (teacher) in the execution of the learn-

ing step. Explicitly, given the network’s prediction (output) ŷ = w x , where w are the present

weights and x is the presented example, a loss of (y − ŷ)2 is incurred, where y is the set of
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true/actual values (eg labels). Then,

∆w =−η(y − ŷ)x (1.17)

In the literature, this is variously referred to as the ’delta rule’ or the least mean squares

(LMS) algorithm [119]. Note that the adaline weight update rule is the same as that used for

larger multi-layer networks. The derivation for this is shown in ’Derivation of LMS Algorithm.’

One interesting about the delta rule is that it could also be directly derived from the Heb-

bian with teaching formulation (Eqn. 1.13) when h is simplified to x j , and g is simplified to

η(ti (t )− ai (t ), as above. In this sense, this simple rule is considered not only a first-order ap-

proximation of gradient descent, but also a first-order approximation of simple reinforcement

learning [120].

The schematic of a simple Adaline is shown in Fig. 1.2 (a), where the input x is fed through

a set of weights w and taught by the simple teacher signal t , which would produce one of two

binary outputs that is compared to the sign of the output y . In Fig. 1.2 (b) , the multiple or

parallel adaline construction is introduced. In this scenario, several adalines learn in parallel;

they collectively produce an output y , and each component learns relative to its component

of the global teacher signal t . In the context of a multiple-classification problem where one

vote is counted, when a final inference is made, the ’winning’ output or neuron y* is typically

computed as

y* = ar g max(y) (1.18)

Like perceptrons, adaline systems at best construct linear classifier boundaries.

1.3.6 Multilayer Perceptrons (MLP)

This problem of linear separability was the motivation for the introduction of a multi-layer

perceptron model to deal with arbitrarily complicated input values. The essential elements

of such a network are an input layer, a hidden layer of N internal nodes or ’neurons’, and an

output (or read-out layer). Hidden neurons solve the linear separability problem by changing

dimensionality. In particular, given the N nodes a mapping to a representation in RN space

is made. Thus, with the introduction of hidden nodes, a multi-layer-perceptron (MLP) is now

capable of mapping any continuous given input function to any degree accuracy- obtaining

Turing universality. However, this requires an arbitrarily large hidden layer, which is often not

practically realizable [121].

The network is feed-forward, i.e., values propagate from input to output through the net-

work. However, since the error function is only given to the ultimate layer, earlier layers are

adjusted ’backward’ in order to accurately approximate the target function. In this sense, the

back-propagation approach is a spatial (layer-by-layer) extension of the general stochastic gra-

dient rule (delta rule) already demonstrated.
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Figure 1.2: Conceptual depictions of the structure of supervised learning ANN models: Adaline,
parallel adalines, MLP, and ELM/NoProp. In every model, some set of inputs x are
mapped into a vector w (a) or a matrix of weights W (b-d), and in every cases a
target function t directs the network’s adaptation. Learning is performed in each
case according to the methods described in more detail in the text.

1.3.6.1 Derivation of MLP with Standard Loss

Given a set of D training examples, the objective of such a network is to minimize the aggregate

prediction error over the entire set squared error over the entire set. Prediction error for an

individual is again difference between expected td and actual output od . If the loss or cost

function is least-squares, this is

E [w ] ≡ 1

2

∑
d∈D

(td −od )2 (1.19)

This global error function may be parameterized with respect to the vector w of all synaptic

weights, of length n, as a collection of partial derivatives:

∇E [w ] ≡
[
∂E

∂w0
,
∂E

∂w1
, · · · ∂E

∂wn

]
(1.20)

All weights in the first matrix/layer (input index i , hidden index j ) update as:

wi , j ← wi , j +∆wi , j (1.21)

where

∆wi , j = ηδ j xi , j . (1.22)
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As given before in Eqn. 1.17, η is a learning rate and xi , j is the pre-synaptic input for that

particular synapse. While we immediately have xi , j (the network’s input), we cannot imme-

diately obtain δ j , or the error derivative on the hidden layer. To obtain this, error must be

back-propagated from the ultimate layer of K neurons (index k) to the first. Again following

the chain rule, derivative of error is:

δk = (tk −ok ) f ′(ok ), (1.23)

where f ′(ok ) is the derivative of the activation function of the final layer. Once obtained for all

output neurons, the ultimate error is propagated to preceding layers; for hidden layer neuron

j :

δ j = f ′(h j )
∑
N
δk w j ,k , (1.24)

here h j is the activation of that middle layer neuron, and f ′(h j ) its derivative. This sum or rank-

2 update is used to propagate error backward. Then, every synapse within this layer adapts

following an edited version of Eqn. 1.21,

w j ,k ← w j ,k +∆w j ,k (1.25)

where

∆w j ,k =−η(δk x j ,k ). (1.26)

Finally, with the hidden layer gradients obtained by Eqn. 1.24, weights can be updated in the

first layer as well. Thus, layer-by-layer learning is an algorithmic constraint in multi-layer sys-

tems using back-propagation. A visual depiction of an MLP is shown in Fig. 1.2 (c).

1.3.6.2 Improving MLPs with Info-Theoretic Cost-Functions

The process of backward-propagation can introduce problems that may not have been a factor

with simple one layer/adaline learning systems. The system needs to traverse an increasingly

complex gradient landscape, increasing the odds that a local rather than a true global min-

ima may be selected; in addition, due to the large number of free parameters, the system may

struggle to converge (find this optimum). Avoiding local/false minima (incomplete solutions)

and speeding convergence is an active field of research in machine learning, and many viable

partial solutions have been proposed. One particular topic will be discussed here since it is rel-

evant to one of the later systems introduced: an improvement in cost-function chosen in the

ultimate layer. The costs function is a critical constraint, since it determines which errors are

being back-propagated to all previous layers

When squared error/MSE, also often-called L2 loss, is combined with a linear output func-

tion ( f ′(Ok ) = 1 ), δk = (tk −ok ) results, which is the delta rule. Although simple, the fragility of

this approach has been demonstrated in the context of multi-layer software neural nets [122].
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In particular, performance is overly dependent on initial conditions, and especially in multi-

class classification tasks, backpropagated error often vanishes over several epochs; in both

cases, slow or no convergence results. In contrast, the cross-entropy (log-loss) cost function is

not as susceptible to these effects, as it always scales adjusted error according to the logarithm

of difference between the expected and actual probability distribution [123]. The cross-entropy

error function in a multi-neuron context, is defined for a given neuron k as:

LCE =−∑
k

tk l og (ok ) (1.27)

Where tk is the target distribution (label value for that neuron) and ok is the actual distribution

(output). In batch form, or accumulating cross-entropy loss over S total samples (index i = s)

at neuron k (total K ) is:

E =−
S∑

i=s

K∑
k

yi k · l og (oi k ), (1.28)

Now, let us assume that the immediate output ok is transformed into the softmax output sk as:

sk = expok∑
expoi N

, (1.29)

Softmax has some intriguing properties, foremost, that it outputs a probability distribution of

the outputs relative to each other which always falls in the range of reals ([0,1]); this prevents

vanishing or exploding output issues over multi-epoch training periods. Indeed, the literature

suggests that a softmax transformation of original network outputs can bestow some immunity

to convergence failure [124]. Typically, the derivative of softmax is rather complex:

∂tk

∂sk
=

sk (1− si ) i f i = k

−si .sk i f i 6= k
(1.30)

However, the combination of softmax and cross-entropy functions produces a simplified form

that substantially reduces this complexity. The derivative of the cross-entropy loss function

with regards to softmax output sk is given as:

∂LCE

∂sk
=−∑

tk
1

sk

∂tk

∂sk
(1.31)

Given the cases earlier defined for ∂tk
∂sk

in Eqn. 1.30, and assuming that the vector of labels t is

using one-hot encoding (expected = ’1’, e.g. k = i , and unexpected = ’0’, e.g. k 6= i ), Eqn. 1.31

substantially simplifies:
∂LCE

∂sk
= sk − tk (1.32)

This is effectively as simple as the L2 case (delta rule), while gaining a far richer (probabilistic)

cost function. This can help immensely in a multi-layer gradient learning environment.
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1.3.7 Random Projection (ELM/No-Prop) Learning Systems

Another approach to learning in multi-layer systems that also allows for universal solution to

non-linearly separable problems is to treat a certain set of synaptic weights as un-changeable,

often those in earlier layers, and to evolve (adapt) only the ones that come at later layers. This

approach has been independently proposed by [125, 126] and is widely referred to as either

’NoProp’ or the extreme learning machine (ELM) approach in the literature. Its successful im-

plementation relies upon three pre-conditions:

• Earlier, static layers of the ANN have higher dimensionality (larger number of hidden

neurons) than the relatively compressed read-out component.

• The large hidden layer is usefully transforming the input by performing some variety of

non-linear projection (it could not be linear).

• These static layers must have random weights, which could for instance be chosen from

a random Gaussian values, or could be made around another uniform distribution. Ac-

tually, the exact distribution does not matter, but what is critical is that these weights do

not change during the training or testing phases. Indeed, the random field of synaptic

weights/connections have to be treated as a constant by the learning system.

The state of the j th hidden neuron (of M total) is given by:

H j = f (
N∑

i=1
Wi n,i j Xi ), (1.33)

where f is a non-linear activation function, such as t anh, sigmoid, or some other choice. How-

ever, while f must be non-linear, it does not necessarily need to be differentiable, since the

global error function does not need to pass through this layer. A toy version of a random pro-

jection network learning is demonstrated in Fig. 1.2 (d), where L1 performs the projection

function above, the first layer of weights Wi n is static, and the second layer of weights Wout

is obtained either analytically or progressively according to an appropriate method for linear

regression, e.g., a pseudo-inverse of the collected states from the hidden layer (if analytical is

chosen).

In its original formulation, this ANN model does not possess much complexity at the hid-

den layer. However, the literature demonstrates recent improvements which may allow ran-

dom projection learning machines to achieve competitive performance in some task varieties.

Such ’enhanced-ELM" systems principally benefit from two additions: increasing complexity

of system, and expanding the depth or breadth of layers.

1.3.7.1 Enhanced ELM/NoProp systems

Increasing Complexity

In [127], various improvements such as computed inputed weights (CIW), image pre-processing,
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receptive fields, were discussed to collectively boost ELM performance to achieve only 1% loss

on the MNIST test-set. All of these operations increased spatial intelligence on the task, but

did not add temporal processing abilities. However, in [128] Tapson suggests adding various

time-dependent synaptic kernels at the hidden layer (the kernels are particular mathematical

functions). This gives the system intrinsic spatio-temporal processing ability; however, it is not

recurrent. In parallel, Ortin et al. have suggested the closeness of the ELM approach and an ap-

proximation of true recurrent neural networks called Reservoir computers, when time-delays

are added at hidden layer neurons [129]. More information on reservoir computers is provided

in Section 1.3.9.

Increasing Depth

Another option is to increase system depth, defined as the number of hidden layers. While

in large MLP systems backpropagation is done through every layer, in Deep ELM systems (D-

ELM), hidden layers typically switch between random projection (static) and learned (evolved)

in succession, such that each regression system’s learning task is simpler. Two recent exam-

ples include the integration of hierarchy are shown in [130, 131]. Finally, many smaller pro-

jection modules may be connected together to access greater task performance. In [132], it

was demonstrated that separate, small ELM auto-encoders collaborating on a learning task

improved performance relative to a homogeneous single hidden layer of equivalent combined

size.

1.3.8 Recurrent Neural Networks

So far, the ANN designs we have considered here have been either entirely feed-forward, or if

they do use back-propagation, use this alternate movement only in the error-correcting step.

However, in another set of ANN designs broadly known as ’Recurrent neural networks’ (RNN),

internally evolving state variables, e.g. those possessed by individual neurons/nodes in the

network, are treated as a matter of intrinsic computation. In partcular, in an RNN, neurons

send feedback to other neurons (or themsleves).

Thus, in an RNN scheme, communities of neurons form loops rather than just lines; com-

plex feedbacks and circularities predominate over linearity. Moreover, activations of individual

neurons (nodes) then also take on a degree of interdependence of memory in between them-

selves. RNNs includue a wide variety of computational models including, Hopfield models

(in which all connections are symmetric) [133], simple recurrent neural network models such

as the Elman or Jordan networks, and complex, bio-inspired competitive neural field models

[134].

Recurrent systems possess a great deal of computational power including non-linear map-

ping (segregation) abilities, stored associative memory, and collective state behavior described

by attractor dynamics. Moreover, since these systems are spatio-temporal in nature, they are
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naturally suited to performance inference on complex, real-world tasks. For instance, a RNN

was recently trained to not only memorize digits, but to transcribe (draw) them using a motor

[135]. However, an online training scheme for such systems has remained elusive [136, 137].

A conceptual map of an RNN is illustrated in Fig. 1.3 (a), where the key distinctions between

this system and the multi-layer perceptron, its closest cousin, are noted as the recurrent arrows

mapping each hidden neuron’s state H j back into itself, along with the recurrence between the

output nodes and the hidden layer conferred as the states evolve. Indeed, back-propagation

must be applied not backward through layers but through the state of the network in time, a

process often referred to as back-propagation through time (BPTT). BPTT is visualized in Fig.

1.3 (b), where the state of two hidden layer neurons are depicted over three discrete time steps.

As visible in the small red arrows, standard RNNs learn by passing the gradient backwards over

many time iterations, which both increases their computational power and complexity simul-

taneously. As for the second fact, this may lead to the ’vanishing gradient problem’ [138]. One

solution to this problem exists in the form of a new variety of memory cell called the Long-

short term memory (LSTM) cell, which both allows for the network to evolve through time and

preserves crucial information about the gradient [139]. While powerful, this design is famously

complex. A related and slightly less complex is known as gated-feedback RNNs (referred to

as the GRU cell) [140]. The two models are compared directly on several tasks in [141]. In-

stead of these models, we more closely study a related proposal which exploits the dynamics of

recurrent neural networks without requiring backpropagation, as introduced in the following

section.

1.3.9 Reservoir Computers

In 2002, Maass et al, described the information processing capability and a simple read-out

(training) mechanism for recurrent neural circuits [142]. The readout point can receive input

from hundreds or even thousands of different inputs and still effectively discriminate impor-

tant information from this high dimensional transient set of states- a so-called Liquid State

Machine (LSM). Independently, Jaeger et al derived a similar formulation (Echo State Network

or ESN), which concerns ANNs that conduct more processing within their dynamical reser-

voirs [143]. Together, we refer to these equivalent models as reservoir computing (RC) systems,

which use the combination of random weights and recurrent projection spaces- often called

the liquid state- to generate rich outputs that can be used in spatio-temporal classification or

processing tasks. Quite similarly to ELM/NoProp networks, these systems typically accumulate

a large set of activations from the un-trained part of the system and then use ridge regression to

analytically obtain output weights mapping these complex outputs to the desired target func-

tions. Subsequently, the system can be used for classification or clustering tasks. Methods for

training reservoirs online also exist, including of particular note the FORCE algorithm [144]

which nudges reservoirs towards edge-of-chaos stable states.

In an LSM, given u as the input set, and an operator known as the liquid filter LM (the
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Figure 1.3: Conceptual depictions of RNN, Reservoir Computer, and DCNN computation mod-
els. In every model, some set of inputs x are mapped into a set of matrices of weights
W1 · · ·Wn , and a simple target function t is used to direct the network’s adaptation.
Panel (c) highlights the temporal evolution of the RNN’s hidden layer.

function performed by the dynamics of the reservoir on the input), a transient or liquid state

xM (t ) is obtained at some time t . This liquid state is visualized as the central circle shape with

many internal recurrent nodes in Fig. 1.3 (c). Finally, f M represents a memory-less readout

that transposes this current state/value, into the output. While the liquid filter is ’set’, it is the

choice of the readout function or map that directs the processing or computation conducted

within such a recurrent network. Just as the MLP, the LSM model is computationally universal

(can compute anything a Turing machine could).

A LSM derives this power from two necessary and sufficient properties: the separation

property, and the approximation property. The first describes formally the separation between

the trajectories of internal states in response to an external stimulation, as ripples would prop-

agate on a pond; the latter property describes the ability of the read-out mechanism to ac-

curately distinguish these internal states into the target output(s). In addition, the compu-

tational power of this network is strongly affected by its fading memory, which is the ability

to deduce from the value at x(t ) information about the inputs at some previous times (from

u(t −1)...u(t −T )), but not all previous ones- hence fading. In this way, the reservoir is both en-

trained to the input and also flexible enough to continue adapting through time. This property,

also typically referred to as the Echo State Property (ESP), was demonstrated in [145] to depend

not only on the state and design of the reservoir, but also the format of the input. The ESP is
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somewhat the inverse of another key metric of a RC: its memory function. This function, m(t ),

distinguishes how many steps backward in time the present state x(t ) could be reconstructed

from; its integral is the system’s memory capacity.

The two formal properties described earlier (separation and approximation) can be ob-

served in physical systems that perform effective spatiotemporal projection/pre-processing.

In one case, a literal ’liquid machine’ was built [146]. In this pedagogical experiment, a bucket

of water implements perfect learning of the XOR function and noisy but respectable perfor-

mance on digit recognition when these inputs are projected into the water as ripples and fed

to a classifier (performance). Additionally, recent work in experimental neuroscience suggests

that the LSM may be an appropriate model for at least one sub-system of the brain- the cere-

bellum [147]. Given all these properties, the RC/LSM model proves to be a relevant schema for

investigating the brain itself. A recent study indeed used RC computational methods to better

understand the dynamics of the fronto-striatal system [148].

1.3.10 Modern Deep and Convolutional Approaches

In the 1980s, Fukushima proposed the integration of small receptive field computing kernels

into a larger, and later hierarchical architecture, integrating each of their individual encodings

[149, 150]. Subsequently, LeCun demonstrated the power of these deep, convolutional image

processing in image processing tasks using his LeNet architectures [151]. While these power-

ful architectures were conceptually ready, they lacked both the hardware to be properly exe-

cuted, as well as the large, well-labeled datasets necessary to efficiently generalize on difficult

tasks. Between 2005-2012, the triple combination of successful ’tweaks’ to increase learning ef-

ficiency, the adaptation of existing hardware (graphical processing units [GPUs]) to massively

increase training speed, and the development of well-designed datasets opened the doorway

to a renaissance in artificial intelligence. Demonstrating the last point, in 2012 a deep neural

network called AlexNet was able to perform multi-class image recognition on a difficult image

dataset called ImageNet at remarkable levels of performance [152]. Since then, improvements

to these sorts of deep networks have resulted in super-human level accuracy [153]. We call

these modern, complex networks deep and convolutional neural networks (DCNNs). Beyond

image recognition tasks, DCNNs have been adapted to achieve remarkable performance in au-

dio (speech) recognition, drug-discovery, material research discovery, and a variety of other

tasks [154]. Although the field still lacks a principled theoretical understanding as to why these

powerful networks are generalizing so well, what is well-understood is that the powerful com-

putational abilities of these networks largely derive from the ability of successive non-linear en-

codings (layers) to capture structures (correlations) in extremely high-dimensional data. Exact

solutions to similarly deep linear neural networks have shown that, while they can be exactly

compressed (combined) into an equivalent shallow network, no such decomposition can be

made for deep, non-linear neural networks [155]. A toy illustration of a DCNN is shown in Fig.

1.3 (d), in which two convolutional layers early in the network detect and combine edges, and
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later layers combine and compress key features. The last weight field (between L3,L4) is here

fully-connected and performing the final classification prediction is typically obtained using

the softmax function (Eqn. 1.29).

Deep neural networks, while powerful, have some critical constraints. Even with the advent

of new GPU hardware and accelerated training, for two fundamental reasons these networks

are very slow to learn and extremely power hungry:

• In order to correlate extremely high-dimensional features, DCNNs need dozens of lay-

ers. As a result, some large DCNNs contain dozens of layers, millions of neurons, and

hundreds of millions of individual synapses.

• The backpropagation algorithm must proceed layer-wise, rather than simultaneously

training all layers, as some un-supervised or energy-based models might.

As a result, these models can take days or weeks to compute in server clusters, making them

mostly inappropriate for local, off-grid learning systems. Some effort has been made to reduce

the complexity of the elements of these ANNS; they are often built with the simplest possible

differentiable neuronal units such as rectifiers [153], and reduced precision weights and acti-

vation functions are also being considered to accelerate their convergence (training) [156, 157].

In addition, a deeper conceptual understanding needs to be unlocked in order to prevent DC-

NNs from being mis-used in industrial or safety-oriented contexts due to the well-known sus-

ceptibility of these types of networks to subtle perturbation during either inference (testing)

or training stages (e.g., adversarial examples meant to break the network). As noted in [158],

DCNNs learn to recognize classes in an inherently discontinuous way, which may make them

intrinsically susceptible to these sort of attacks.

1.3.11 Evaluation: implementing a vision task on ANNs

In this section, we demonstrate the power of these type of networks as well as briefly compare

their performance on an equivalent task. The chosen vision classification task, which will be

referred to and used several times in the upcoming works as a general test of the ability of

the neurmorphic ANN designs we propose, is the M-NIST task of handwritten digits. The M-

NIST task was reconstituted from the original, far larger NIST databases of handwritten digits

obtained from approximately 250 writers; in its modern form, this database consists of 60,000

training examples and 10,000 testing examples of the ten digits, each example being a grey-

scale image of 784 pixels [159]. Individual examples of each of the digit classes in the database

are visible in the left part of Fig. 1.4; as pictured, these images are typically ’unwrapped’ and

presented to the input layer of the given ANN system at once.

Next, we briefly demonstrate the absolute as well as comparative power of the ANN struc-

tures introduced in the previous sections on this task. The following benchmark results were

all obtained from the benchmarks listed at 1 with the exception of the NoProp and Reser-

1http://yann.lecun.com/exdb/mnist/
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ANN type Performance on Test Set Parameter Notes

One-layer adaline 88% MSE
Multi-layer perceptron 95.3% M = 300, MSE
Multi-layer perceptron 98.5% M = 300, softmax + cross-entropy
NoProp 96.7% M = 3500
RNN (LSTM) 99.05% M = 128 units
Reservoir 96.3% M = 500 nodes in liquid
DCNN 99.25% Many hidden layers (Le-Net 5)

Table 1.2: Test results obtained on the MNIST Test set for all the considered ANN structures. M
is the number of hidden layer neural or memory cell components.

voir system results, which were obtained using extensions of the TensorFlow [160] and Oger

[161] Python packages, respectively. As visible in Table 1.2, the one-layer system is a notable

poor performer, as it can only construct linear mappings on the task. Among the complex

multi-layer systems, the convolutional neural network demonstrated in [151] is most perfor-

mant, while the multi-layer perceptron (MLP) systems with complex cost function and the RNN

system (using LSTM memory cells) obtain third and second place, respectively. However, as

demonstrated in the major difference between the two equivalent MLP architectures, not only

the architecture but the choice of the cost function can have a major effect on the network’s

ability to generalize.

Figure 1.4: In the left, many training examples of handwritten digits are illustrated. In the given
moment, one of them belonging to the class ’0’ has been selected, unwrapped and
presented to a set of input neurons X . After presentation, outputs 0 are compared to
the target values or label, T . The generic ANN pictured is a multi-layer perceptron.

1.4 Learning with memristive nanodevices

1.4.1 Uniting the Strands: computation meets nanodevice

This penultimate section stands as bridge between the two previous sections, namely, the de-

vice perspective and the algorithmic perspective of neuro-inspired computing. As noted in
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[27], memristive devices are an ideal building block for future neuro-synaptic hardware learn-

ing systems, due to their simple (non-volatile weight storage) as well as complex (ability to

emulate spike timing effects) physical behaviors. In addition to neuro-inspired synaptic func-

tions, memristive devices are chemical computing components that may be combined in more

complex ways to realize molecular turing machine or logic gate architectures [162].

In the following sections, we discuss a variety of elementary learning or adaptation strate-

gies so far considered with emerging memristive devices. Emerging memristive devices playing

the role of nanosynapses may be used for systems trained “off-line” (or ex-situ), used only for

inference. However, their most attractive use would be in learning capable systems, which can

learn data “on-line” (or in-situ) without reliance to the cloud or external computers [163]. Due

to this work’s emphasis on online or local learning, off-chip examples are very briefly intro-

duced, while a great deal of emphasis is placed on various online computing strategies and

algorithms.

1.4.2 Off-chip learning

In off-chip learning, weights are obtained using another generative or training model, and then

imported directly to the crossbar system for the inference operations. This approach is fur-

ther compared and contrasted with on-chip learning in [163]. This sort of approach can make

sense when the weights correspond to a very complex and difficult to train model, e.g. a large

convolutional neural network. An example of an H f O2 learning network that primarily uses

imported weights is given in [166].

1.4.3 On-chip learning

In the online learning approach, neuromorphic architectures employ the intrinsically adaptive

behavivor of devices to realize learning [164]. In general these architectures have a surpris-

ing degree of immunity to imperfect devices [165], although these tolerances may depended

greatly on the specific memristive device model (or broad ’family’ of device).

There are two varieties of on-chip learning: supervised and un-supervised. In on-chip

supervised learning, the system has access to a teacher signal and/or cost-function; in the

context of a classic data-science task such as classification, these would be labels for classes.

Such a teacher/loss function is critical to the performance of such systems. In contrast, semi-

supervised or un-supervised systems learn without direct knowledge of what is ’right’ and ’wrong’;

in its place a variety of local dynamics and plasticity effects nudge the network towards a native

understanding of the data being fed into it.

1.4.3.1 Plasticity-based learning rules

Standard STDP modulates weights according to ∆t = Tpr e −Tpost , as in Fig. 1.5 (a). A binarized

version of this learning rule, as depicted in Fig. 1.5 (b), does not analogically change weights,
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Figure 1.5: (a) Demonstrates the typical analog STDP curve; (b) shows a binary approxima-
tion to it; (c) shows the equivalent binary representation when timing is encoded by
the expectation signal, δ. (d) Demonstrates how an un-supervised crossbar learn-
ing system adapts its weights according to (b) ; (e) Demonstrates how a supervised
crossbar learning system, now with double the devices to encode negative weights,
adapts its weights according to (c).

but would merely update a fixed amount according to si g n(∆t ). This system can be physically

implemented using a crossbar of nanodevices in which a post-synaptic firing using a winner-

take-all scheme (the firing or ’winning’). As illustrated in Figure 1.5 (d), this scheme punishes

the in-active (anti-correlated) synapses on that active output line, while rewarding active (cor-

related) ones; all synapses connected to the inhibited neurons are un-affected. Note that, to

physically be implemented in a crossbar, this scheme requires a ’back-propagated’ spike along

the pre-synaptic lines in order to program the devices successfully (dotted line). It also requires

careful tuning of the output neuron’s parameters (for instance, to avoid one output neuron al-

ways firing). Further implementation details of this particular scheme are shown in [73].

In 2010, Pershin and DiVentra built a memristor emulator using standard electronic com-

ponents, and used it to build a circuit which demonstrated a simple correlation or condition-

ing problem often known as ’Pavlov’s dog’ (correlating the ’sound’ or ’sight’ of food to saliva-

tion) [167]. A more complex scheme was demonstrated with actual filamentary resistive RAM

[27], in which a crossbar of silicon nanowires with amorphous Ag filaments exposed to various

Pre and Post synaptic signals were shown to more explicitly match the canonical experiments

[110]. Since these canonical demonstrations, a variety of other demonstrations of STPD using

memristive devices have been attempted or claimed; most use special voltage wave-forms or

companion circuits to obtain the results [168]. In analog mode, phase-change memory devices

have realized Hebbian learning [169], while in binary mode, PCM devices have been used to
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realize a low-power neuromorphic engine for car-counting on a highway [170]. Another binary

neuromorphic circuit design using these devices was given by [171], who notably managed to

use the stochastic aspects of this device as a feature rather than a bug for learning.

Application to semi-supervised or unsupervised learning

Bio-inspired approaches using spike-timing dependent plasticity (STDP) aim to intrinsically

identify correlations in input data, an operation which may pave the way towards a genera-

tive system that learns without (un-supervised) or with just a few (semi-supervised) training

labels. Notably, in [172], a single spiking layer with 300 output neurons achieved 93.5% classi-

fication on the M-NIST task without training labels. While such a scheme relies heavily upon

complex behavior in output neurons, this demonstrates the ability of nanodevices to perform

unsupervised clustering. An unsupervised system reaches 95% test-set classification, also on

M-NIST, in [173]. However, reaching this performance requires over 6000 inhibitory/excitatory

spiking neurons and fine tuning of many parameters. Hardware spiking implementations us-

ing memristive devices as nanosynapses have been realized, identifying simple images [174].

In [175], a 1T1R CMOS neuron/PCM synapse circuit realizes an artificial STDP dynamic; indi-

vidual classes from the MNIST task are memorized with this dynamic. Recently, a fully spiking

network using STDP was implemented in a crossbar of memristive devices in [176].

Physical STDP-like behavior

In most of the above cases, the STDP or STDP-like phenomenon did not derive from the physics

of the nanodevices implementing it, but instead arose more as a systems-level effect. However,

other examples have demonstrated STDP effects arising from material physics. For instance,

the nanoparticle computing device earlier mentioned intrinsically demonstrated spike-timing

dependent plasticity (STDP) effect [177]. A recent, truly intrinsic use of STDP in more scalable

ECM ionic silver filamentary devices has been explored in [178]. The complex plasticity effects

of this device are also explored in more detail in this thesis in Section 4.2. These developments

are exciting, since intrinsic plasticity mechanisms with nanodevices may pave the way to new

types of sparse or spiking neural networks with minimal energy draw [164].

1.4.3.2 On-Chip Supervised Learning

Mapping delta rule to a crossbar

In the delta rule, sign-symmetric gradient learning is employed to optimize the network such

that it performs a certain task or mapping function (e.g., classification on pixels). One way of

understanding the dynamic implementation of this algorithm in a crossbar environment is to

track a local error parameter, δ = Eval −Oval, instead of the global error function. In words,

the difference between the expected or teacher signal and post-synaptic (actual) output deter-

mines whether the neuron should adapt or not. When a binarized version is implemented, two

archetypal adaption cases are possible; if si g n(δ) is positive, the neuron is not as active (posi-
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tive) as it should be, and so a reward signal to increase its output is backpropagated; conversely,

if si g n(δ) is negative, the neuron is not as quiet (negative) as it should be, and so it is punished

(weight decreased). However, for each output neuron there is also a dependence on the pre-

synaptic values X j that led to that case. If we define ξ = si g n(X j )si g n(δ), we obtain a simple

binarized ’STDP-like’ rule (Fig. 1.5 (c)). Inspecting the schematic of crossbar implementation of

this simple rule (Fig. 1.5 (e)) the only additional complication is that pairs of devices are differ-

entially programmed in this approach since we need two device to encode a full range of weight

Gsyn = (Gpos−Gneg). In other words, two nanodevices are sufficient to encode one nanosynapse

with a full range of weight/response. Thus, inspecting the crossbar again one can see that the

si g n(ξ) rule is also valid for all devices on the positive lines, and sign-inverted on the negative

lines. Furthmore, the comparison of the delta rule and STDP are evident when considering

this scheme. In particular the synapses connected to δ+ case neurons fulfill Hebbian learn-

ing (connected/active rewarded and inactive punished); the δ− connected synapses undergo

the opposite, or ’anti-Hebbian’ learning. This formulation yields an elementary relationship to

models of dendritic learning; in [179], dendritic learning is modeled as a system which adapts

and is punished or rewarded corresponding to the difference between its expected and global

contribution to the global error. According to this interpretation, single neurons employing

multiply adaptive dendrites aim to minimize global surprise.

Experimental implementations with nanodevices

Due to its simplicity and universality, this rule or slight variants of it, has been the staple of

many simulated and experimental works with memristive devices [81, 180–183]. For instance,

single layer experimental demonstrations of this principle have been made with memristive

oxide devices [163, 181]; recently, a multi-layer prototype using this learning strategy was also

realized [184, 185]. This work used PCM devices in the analog mode to realize more elaborate

multi-layer systems performing the M-NIST machine learning task already described in Sec.

1.3.11.

1.4.3.3 PCA or sparse coding with memristive devices

Oja introduced a theory which suggests that a neuron can behave as a principle component

analyzer (PCA) [186]. Subsequently, Sanger expanded this result into a general algorithm called

Generalized Hebbian learning algorithm, often also referred to eponymously as Sanger’s Al-

gorithm [187]. Recently, these principles were used to experimentally perform un-supervised

clustering with a crossbar of memristive devices [188].

A more complex, full-featured bio-inspired unsupervised algorithm is the sparse coding

method described by Rozell [189]. In effect, this algorithm constructs an over-complete set of

basis vectors to represent input vectors (this is in contrast to the PCA approach, which only

creates a complete set). A variety of works have aimed to the realization of this concept with

nanosynapses, the most recent and notable being the full implementation of sparse-coding in
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a crossbar environment where it constructed dictionaries to reconstitute small images [190].

1.4.3.4 Recurrent or reservoir learning systems with memristive devices

Limited recurrent networks in the classic Hopfield configuration can realize classic associative

memory abilities. Recently, experimental works have demonstrated associative memory built

with PCM nanosynapses [169]. In [191] the authors construct a more elaborate reconfigurable

associative memory architecture. A more classic RNN-inspired design using memristive de-

vices in crossbars was proposed and simulated in [192], but to our knowledge full RNNs have

not yet been built with memristive devices.

Reservoir inspired schemes built with memristive devices were first mentioned in [193] and

simple classification task were attempted in this context. Subsequently, more complete designs

have been proposed but they used memristive devices only in the read-out layer [194]. In [195],

a hierarchical approach exploiting the dynamics of smaller memristive reservoirs themselves

was proposed, but the optimal read-out and training scheme for such a complex system re-

mains an open question. As it is, all schemes using memristive devices for online learning can

exploit a favorable fact about reservoirs, which is that they are intrinsically good at processing

time-series data. While all reservoir computers are dynamical systems that can perform intel-

ligent mappings on inputs (act as a filter), not all dynamical systems are necessarily reservoir

computers [196]. In [197, 198], attempts were made to understand how basic memristive sys-

tems can act as intrinsic online computing filters, and upon what set of input signals they may

be effective in performing this operation.

1.4.4 Physical implementation of synaptic arrays

1.4.4.1 Grid (Crossbar) Topology

Crossbar topologies have been successfully implemented since 2003 [44] due to the ease of

fabrication using e-beam lithography and photo-lithography processes, the potential for ultra-

dense integration, and the ability to easily co-integrate such a structure with other CMOS lay-

ers [45]. In such a configuration, a large grid of top-electrodes contacting a bottom grid of

electrodes (typically both nanowires), giving rise to a massive number of electrical switches.

Specifically, given m top wires/electrodes, and n bottom, there would be nm total. The two

most popular variants on this fabric relate to the way that individual device, or groups of de-

vices, are accessed for reading and programming within this synaptic matrix.

The first, known as the passive (1R) architecture places no additional device at every cross-

point, but still employs control circuitry at one or both periphery of the fabric. Early experi-

mental results demonstrated the possibility of a deleterious sneak-path effect, in which cur-

rent flowing through devices (notably in the ON or low resistance state) disturbs the states of

surrounding devices [199]. As a result, an alternative crossbar design known as one-transistor-

one-resistor (1T1R) was designed; it places an additional transistor CMOS device at every cross-
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point [200]. While this design increases the size or overhead of the synaptic grid substantially,

it may be useful for controlling non-ideal circuit effects, or it may be essential to realizing suc-

cessful programming of the nano-synapse. One example of the second case is given in [201]

which describes a 1T1R fabric used to emulate STDP with a metal-oxide ReRAM device. In

[202], a three-dimensional 1T1R (called 1S1R in the paper) example is demonstrated using tan-

talum oxide memristive devices. While it has been argued that 1R designs are more susceptible

to the sneak-path effect [203], the nature of the programming operation has a key effect on the

severity or existence of this effect. In particular, if individual devices are read and write as in

the context of memory, sneak paths are more of an issue; however, electrical simulations [204]

as well as experimental works [67, 181, 182] demonstrate that neuromorphic-style program-

ming schemes (updating an entire row or column of devices) are less susceptible to this effect.

However, when scaling m/n to very high dimensions, the issue can arise again; as illustrated in

[205], the non-linearity of the nanodevices then has a critical effect in determining the ultimate

scalability of this 1R approach. Linn and collaborators have also proposed and experimentally

realized a composite device called the complementary resistant switch (CRS) that naturally ob-

tains very non-linear behavior [206], and verified its use in simple neuromorphic applications

[207]. Another powerful engineering solution to this issues has also been provided in the form

of specially engineered cell selectors or diodes, such as the recently realized FAST selector [208].

This solution is critical to realizing some pre-industrial realizations of 3D resistive-RAM ReRAM

with extremely high accuracy and speed. For instance, Crossbar Inc. [24] highlights the impor-

tance of this 1D1R, or as they call it 1TnR, approach to accesses rows of devices simultaneously.

1.4.4.2 Random Topology

Unlike the ordered topology of a crossbar, the alternate approach employs random networks

with an arbitrary number of neuronal nodes and synaptic edges/connections, resulting in un-

ordered computational graphs. Examples of such architectures include the atomic switch net-

work (ASN), self-assembled nanowire networks, and self-assembled forests of carbon-nanotubes.

These sorts of systems are often fabricated using a combination of standard top-down pattern-

ing and bottom-up self-assembly, often using an array of ’seed’ nanoparticles to sprout the

growth of the network. Despite being feasibly realizable, they are presently difficult to char-

acterize, understand, and control for computational tasks. Typically, a small number of input

and output ports are designated, while a far larger number of ports is used to read information

about internal states or dynamics. Work by Sillin has shown that self-assembled ASN networks

operate with emergent criticality, a close-to-chaos computational regime [209]. The imple-

mentation of ASNs in reservoir computing schemes, first proposed in [210], has since been

expanded into analysis of their computational capacity [211]. Recently, an ASN system was

used in a demonstration of logic function memorization [212]. These sort of approaches are

also extremely defect and fault-tolerant, as demonstrated in [213, 214].



42 CHAPTER 1: NEUROMORPHIC CONCEPTS, DEVICES, AND ALGORITHMS

1.4.5 The Neural Unit Framework: A scalable on-chip architecture

Much of the remainder of this thesis introduces various schemes for on-chip learning, whether

they be experimental or theoretical. In this section, we build greatly upon the explanation

given in Section 1.4.3.2 to demonstrate the foundational learning architecture/approach that

will be used and referenced extensively within the following chapters. We first explain the de-

sign choices that led us to this framework, then describe its function.

1.4.5.1 Motivation and summary of key advantages

In general, we have chosen the crossbar as an organizing nanofabric for learning as it presently

attracts the most attention for future memory designs, due to its scaling towards terabit-density

synaptic arrays, and upcoming industrial realization. Specifically, we have built upon a past ap-

proach previously referred to as the Neural Logic Block (NLB) concept, which is demonstrably

resilient to sneak paths, device variability, and defects due to the parallel programming and

training style [204, 215]. Since nanodevices always suffer from some device variability and im-

perfections [216], finding an architecture which is intrinsically adaptive would be a major ad-

vantage. Indeed, our considered architecture has a natural ability to overcome the failings of

individual devices at the systems level [217].

In this architecture, parallel rows of memristive devices holding trained weights (conduc-

tances) are each connected to a neuron and processing unit. The neural unit may be either

built entirely from CMOS, or also integrate memristive devices in a hybrid neuron, depending

on energy and density requirements. Each row (memristors + respective neuron) of the system

learns in parallel, and can be considered as a rough analogy to a single dendritic branch. In

addition, each individual neural learner is computationally equivalent to an adaline, a gener-

alization of the perceptron, and thus learns with an on-chip friendly adaptation of the classic

Widrow-Hoff algorithm, also called the ’delta rule’ [119]. Building a nanofabric optimized to

implement the delta rule also allows us to implement stochastic gradient descent in an entire

crossbar, and naturally opens the doorway to more complex architectures as well.

To achieve such structures, individual learners can be chained together in a single cross-

bars to solve a problem in parallel. More elaborately, several crossbars of these learners could

be connected to form a more expressive multi-layer feed forward neural network [218]. These

approaches are illustrated in the top of Fig. 1.6, which shows how individual learners can be

cascaded in a single or multiple crossbars. Since a crossbar of closely connected analog nanosy-

napses can be sequentially or simultaneously accessed in both programming mode, when ap-

plied voltage pulses are greater than thresholds, or inference mode, when applied pulses are

below them, the energy efficiency of such structures should be very high since individual cells

in the array do not need to be powered on/off. Lastly and very significantly, bottleneck com-

putational operations in software neural networks, e.g. matrix-vector multiplications, can be

naturally performed on-chip in the crossbar configuration [219, 220]. This makes them a natu-
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ral building block for on-chip neural networks.

Due these favorable electrical and parallelization features, this design has high forward

compability with the 1TnR (1 row of resistive device per selector or diode) ReRAM systems ear-

lier discussed. All branches/learners in a given layer/crossbar are connected to a finite state

machine (FSM) which provides programming and input learning pulses [221]. If combined

with the ultra-high density memristor/CMOS neuron design, this proposal could even increase

the energy efficiency of proposed 1TnR designs by reducing the number of control transistors

typically needed to implement parallel programming in a large synaptic array.

Figure 1.6: Schematic representation of the neuromorphic learning system.

1.4.5.2 Operation of canonical circuit

Our canonical adaline circuit encodes weights using signed-synaptic pairs of memristive de-

vices with modifiable conductivity; n + 1 pairs, or 2n + 2 memristive devices, are required to

successfully map a function with n inputs. Each of the n + 1 inputs requires a negative and

positive wire to separate states for that case, and negative and positive bias lines configure the

entire line. In response to a set of input voltages, the sum of all conductances is proportional

to current on the common post-synaptic line for that particular branch. After said current is

converted to voltage and digitized, the sign (+,-) of the output is compared to the sign of de-

sired function (teacher signal). If they are different, a programming cell applies an appropriate

correction pulse. A depiction of this is also visible in Fig. 1.6, bottom system schematic.

The Widrow-Hoff (WH) algorithm or delta rule, which solves the least-mean squares prob-

lem by stochastic gradient descent, provides the engine by which weights are successfully trained
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to map any linear function perfectly, and more complex ones imperfectly [118, 222]. This sys-

tem was already conceptually introduced as well in Section 1.3.5. Relative to this design, our

on-chip friendly version of WH is simplified in one key way: the difference between teacher (ex-

pected) and actual output signal is passed through a binary filter (si g n), such that only three

cases exist: same sign (0); different sign, low error (-1); different sign, high error (1).

Online learning with binary WH is implemented step-by-step; at each step (epoch), binary

difference between expected (O j ) and actual output (T j ) for the neuron j is evaluated and, if

an an error case exists, the appropriate adjustment is made. The first error case, low error/-

1, exists when O j < 0,T j > 0; the second, high error/1, when O j > 0,Y j < 0. In the former

case, WH increases the value of pairs connected to positive lines, and decreases the ones con-

nected to negative lines so that output rises. In the latter case, WH does exactly the opposite:

increases the weight of all pairs connected to negative lines, and decreases pair weights on the

positive lines so that output falls. In order to achieve this, error correcting pulses Vp+,Vp− on

the post-synaptic line program every device according to the voltage from the pre-synaptic

line. In particular, voltage difference across a given device (EDP) automatically determines

whether conductivity increases, decreases, or remains constant at that particular active (error-

correcting) moment. The four active ( T j 6= O j ) steps that implement on-chip binary WH are

demonstrated in Table 1.3 below, considering every possible combination of sign on the input

Xi , sign of the output O j , and sign of target function T j . In particular, Steps 2,4 (S2,S4) correct

the low error/-11 case, and Steps 1,3 (S1,S3) improve the high error/1 case.

Xi Y j O j ∆Wi j Step

-1 -1 1 1 S1
-1 1 -1 -1 S2
1 -1 1 -1 S3
1 1 -1 1 S4

Table 1.3: Active programming steps that solve the delta rule.

1.4.5.3 Implementation with a nanodevice

In the following Chapter, we consider the implementation of this abstract learning system and

its rules in the context of an actual emerging nanodevice. In this context, adaptations to the

standard scheme are made to account for characteristic device behavior, and resilience of the

framework to imperfect physical phenomenon is assessed.



Chapter 2

Computing with organic nanodevices:

theoretical and experimental work

Imagination is more important than knowledge.

Albert EINSTEIN

“THIS CHAPTER builds upon the neuromorphic inspiration already introduced

to show, using phenomenological device models as well as physical memris-

tive devices, how a practical on-chip learning system may be implemented electron-

ically. Characterization, modeling, and experimental learning demonstration of

an organic nanosynapse are all highlighted in this chapter. A broad discussion is

ultimately fostered in considering the merits of each of these approaches and the

ultimate prospects for building neuro-computers with highly analog organic mem-

ristors. ”
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THIS CHAPTER focuses in-depth upon a single memristive device, a complex polymeric

redox filamentary nanodevice, and shows its physical properties, behavior, and per-

formance in theoretical, electrically simulated, and experimentally realized learning systems.

There are five sections that explore the following topics respectively:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. General motivations are given for exploring this novel device (2.1)

2. A materials physics, electrical, and behavioral introduction to the device is provided.

(2.2)

3. Proof-of-concept learning of the basic neural crossbar scheme and automatic error-

programming for local learning is demonstrated with electrical simulations using a sim-

ple functional compact model (2.3)

4. More complex aspects of device behavior are analysed with the introduction of a more

complex and physics-oriented compact model. On this basis, more complex electrical

simulations are introduced (2.4)

5. Experimental learning of a single learning system is implemented, and key results pre-

sented, with the emphasis on non-ideal effects that were different than electrical simu-

lations. (2.5)

2.1 Motivation for studying novel organic nanodevices

Memristive devices made with organic materials offer unique advantages: high retention and

strong data storage properties [223], low material costs by using renewable or cheap chemi-

cal materials [224], scalable fabrication via roll-to-roll imprint lithography [225], compatibility

with flexible substrates [226], and possibility of three-dimensionsal array integration [227]. In

addition, fabrication allows for rich structure flexibility through chemical synthesis, and room

temperature processing ability [228]. These properties pave the way towards integration with

embedded sensors, bio-medical devices or wearables, and other internet of things (IoT) appli-

cations. One particularly appealing vision is the combination of organic nanosynapses with

organic transistor devices into all-organic learning systems [229] in cheap or even disposable

electronic devices for ambient computing.

In addition to their marketability for building future neuro-synaptic technology, from the

material physics perspective organic memristors are particularly fascinating. Several other

species exist and have been listed in the literature depending on the considered polymer and/or

the materials used for the electrodes; most of them are presented in [54]. Their switching bears

similarity to other filamentary ReRAM, but with an added layer of complexity based on the elec-

trochemical behavior of the active switching material. Generically, organic memristor devices

rely upon conformational changes of a thin polymer layer/film between a highly conductive
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(oxidized) state and a highly resistive (reduced) one [230]. In some cases this is a well known

redox reaction, while in other cases it may be a more complex ensemble of effects that resemble

switching in inorganic memristors, e.g. reversible filamentary conduction based on anion- or

cation- migration [55]. Lastly, some switching mechanisms are specific to organic memristive

devices, such as chemical conformational effects. In addition, sample preparation and mor-

phology, electrode materials, interfacial properties, testing methods, and circuit environment

all contribute towards the final electrical characteristics of a given set of memristor devices

[231, 232]. Within this complex context, we aim not only to adequately characterize our novel

new device, but to show its practical applications.

Our work is not the first to attempt to integrate some variety of organic memristive device

into a hardware learning system. For instance, [233] integrated polyaniline polymeric devices

previously characterized in [234] into an ANN set-up. However, the programming durations

for this set-up were far too slow (30s per programming pulse) for IoT applications that require

online learning. This trade-off is not unique, as the cost of slower programming in highly ana-

log memristive synapses relative to inorganic memristive devices or binary organic memory

devices is mentioned often in the literature [235, 236]. In this sense, the fact that the TBFe de-

vice we study here is capable of learning at speeds relevant for modern applications (100 µs

per programming pulse) is a significant asset. Next, we introduce the physical properties of our

device that make this sort of operation possible.

2.2 Physical properties of TBFe Memristor

Through a partnership with V. Derycke’s group at CEA-IRAMIS as a part of the ANR-MOOREA

project [237], we have worked on the characterization as well as experimental demonstrations

of a novel form of electro-grafted organic memristive device that has several very favorable

properties for future applications. In this section, we introduce the physical parameters of this

exciting new device.

The organic memristive device has as its active layer a polymeric film electro-grafted in

between metal contacts; an applied current implements memristive behavior as conductive

filaments are created or destroyed between the two electrodes above or below given critical

thresholds. The electro-chemistry of the polymer used as well as the metal type and work func-

tion of the electrodes determines the conductance evolution graph. The switching media is a

thin-film polymer of tris-bipyridine Fe(bpy)2+
3 iron complexes (TBFe), where memory effects

emerge as a dynamic redox system [238, 239]. Chemically, each molecular complex Fe(bpy)3
2+

contains three bi-pyridine ligands surrounding a central iron core with three diazonium func-

tions, which allow for covalent bindings between molecular complexes, and between the com-

plexes and the electrodes.
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Figure 2.1: (a) Schematic representation of the metal/organic/metal memristor and the
organic-composing active layer. (b) SEM image of the actual devices. Scale bar in
the left and right images represent 20 µm and 200 nm, respectively. (c) Electrical
characteristics of the memristor under voltage sweeps.

Individual devices consist of metal/organic/metal junctions fabricated on an oxidized sil-

icon wafers (SiO2/Si substrate) . A series of Ti/Au electrodes are then fabricated by e-beam

lithography, evaporation and lift-off on top of the substrate to yield gaps between the electrodes

(≈ 30nm). A thin (height ≈ 10nm) organic film of covalently bounded TBFe complexes is then

formed by electrografting in between the two gold metal electrodes; this forms an electrochem-

ical cell [239]. Next, the three diazonium functions on the iron complexes are electrochemi-

cally reduced via cyclic voltammetry (CV) technique. The radicals formed covalently bond the

molecules to the electrodes and to each other to form a compact and robust thin-film [240].

Critically, the redox properties of iron complexes inside the electrografted film are preserved

during this process. Once formed, the robust thin film consists of about 6-7 molecules in the

vertical direction and 20 molecules along the gap direction. TBFe cations are counterbalanced

by PF6- anions. Further Details on material synthesis and the experimental electro-grafting

process are presented in Sections A.1.1 and A.1.2, respectively.

Regarding fabrication environment, electrochemical deposition is fast and takes place at

room temperature in a mild chemical environment. It enables the localization of the func-

tionalization and the fine control of the film parameter [241, 242], and also allows the local

deposition of different compounds on the same chip. It is thus fully compliant with preexist-

ing structures or devices on the chip, allowing heterogeneous co-integration of synapses and

neurons in future designs. In addition, our device possesses GMax/GMin ratio above 103 and

endurance above 2000 SET/RESET cycles, as visible in Fig. A.3.
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A schematic representation of the device and an image of a series of organic memristive

devices under scanning electron microscope (SEM) are visible in Fig. 2.1a,b respectively. If un-

encapsulated, the present devices behave as a unipolar conductive-filament memristor only in

vacuum (10−2 Torr). In future designs, encapsulation should allow for memristive behavior at

room temperature/pressure. The characteristics of this device and its immunity to the scaling

of surface junction imply a dynamic filamentary behavior at the active region. Although a pla-

nar structure was employed in this work, the vertical structure of the device shows comparable

switching performances as horizontal ones. This demonstrates the possibility for integration in

high density crossbar arrays. Further information and an additional experimental realization

of this vertical approach is presented in Section, A.3.

2.2.1 Electrical Regimes

Our device possesses two electrical thresholds. If voltages larger than the first (Vth1) are ap-

plied to the device, its conductance increases non-linearly (SET mode); if voltages larger than

the second (Vth2) are applied, its conductance decreases non-linearly. Considering the non-

volatile regime, which corresponds to all applied voltages below the first electrical threshold,

there are three operating modes. These thresholds and modes are all visible in the I/V curve

in Figure 2.1 (c), where the arrows demonstrate the directionality of the voltage sweep produc-

ing the curve. As visible in this curve, conductance evolution is symmetrical (the memristor is

unipolar): negative and positive bias is applied in the given ranges have the same effect. An-

other positive asset of our organic memristive device is that it does not require a compliance

current to form an initial filament and thus allow ’Set’ mode operation, as many other unipolar

[243] as well as bipolar [244] non-volatile memory devices require. This is a decisive asset from

a circuit point of view; since the initial forming step can require a high current, device initial-

ization can be difficult or damaging inside of a dense crossbar structure with this constraint.

Fig. 2.2a shows the conductivity evolution with pulses of increasing amplitude. Series of

100µs long programming pulses are applied by increasing 0.25V every 15 pulses. Conductance

evolution is monitored at 0.5V between each pulse. The actual applied waveform is shown in

the inset of Fig. 2.2a. A measurement cycle begins at 2V and ends when the device returns to a

low conductance state. The black curve shows one representative cycle of the total∼2300 cycles

that were applied (grey curves). These measurements show the possibility of reaching many

intermediate levels with short pulses during the SET process (between 3 and 5V), while a stable

state is more difficult to obtain during RESET, which dramatically decreases conductivity above

5V. Asymmetry between SET and RESET modes is typical of dynamic filamentary behavior, and

constitutes a general limitation learning schemes must address [170].

The top panel of Fig. 2.2b shows the change of conductivity (∆G) as a function of pulse

amplitude, based on the statistics of the former measurement. ∆G is defined as the difference

between the device conductivity before and after applying the pulse. The red curve shows the

average ∆G for each pulse amplitude. The two thresholds, Vt1 and Vt2 distinguish the SET and
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RESET region and are used for the learning algorithm. It should be noted that, in practice, most

pulses induce very little change in memristor conductivity. The lower panel of Fig. 2.2b shows

the SET/RESET event probability with respect to the pulse amplitude, where a SET/RESET

event is counted when ∆G/G0 > 40%. These device characteristics are essential to optimize

SET/RESET pulses amplitudes for the learning algorithm, and for the memristor to properly

display synaptic function in a neuromorphic system.

Figure 2.2: (a) Top panel: Conductivity (G) evolution of the device under pulses with increasing
amplitude. Gray traces show all transitions and one characteristic transition (black)
is highlighted. Bottom panel: amplitude of each pulse. Inset: representation of
the applied waveform. (b) Top panel: Statistics of conductivity change (∆G) versus
pulse amplitudes. The gray boxes show the 25%-75% probability and the whiskers
are 10%-90%; bottom panel: SET/RESET event (∆G/G0 > 40%) probability with re-
spect to the pulse amplitude.

2.2.2 Origins of dynamic redox behvior

In the TBFe thin film layer, dynamic filamentary behavior results due to conductive paths be-

ing formed or destroyed. A schematic of the individual TBFe complexes surrounded by neg-

ative anions and their connection through both "azo" bridges and carbon bonds is visible in

Figure 2.3(b); Fig. 2.3(c) shows a conceptual depiction of how filaments (green) may grow and

evolve within this environment over time. Our current hypothesis is that the change in con-

ductivity within filaments arises from reversible charge separation between the iron core, the

ligands and the azo-bridges. At the bottom most image roughly corresponding to Goff, some

TBFe complexes connect but none provide a clear path between the electrodes; in the inter-

mediate states, the domains develop; finally, in the top-most state corresponding to Gon, many
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conductive filaments exist between the two electrodes. A high voltage reversibly disrupts these

conductive filaments.

A more detailed switching mechanism hypothesis based on intramolecular charge trans-

fers in analogy with percolation models was made in [239]. In particular, our device’s meta-

stable redox behavior most likely is related to two different key molecular bonds forming and

breaking: conventional C-C bonds of low conductivity and azo-bridge bonds that can switch

between aromatic and quinoid conformations. Azo-bridges bonds are more conductive in

quinoid form than in aromatic one. At V > Vth1, an intramolecular charge transfer associated

with the oxidation of the iron ion (Fe2+ À Fe3+) occurs and is stabilized by a conformational

change of the bond which is turned to its more conductive form. This central redox operation

is visible in Figure 2.3(a). Above the second threshold Vth2, electrons injected from the metal

contact induce reverse switching. Depending on the proportion of molecular bonds stabilized

in the conductive state, the film presents either complete or incomplete conductive paths. This

rich behavior allows for stabilization at varying levels of conductivity. Further discussion on the

nature of the filamentary behavior is in Section A.3.1.

2.2.3 Dimensions and Scaling

Device tunability for different applications exists as a function of the selected molecular com-

pounds, grafted parameters and device geometry. With regards to the latter case which is

most directly modifiable in the fabrication cycle, current-voltage plots are shown for the ini-

tial (forming) step in Figure 2.4 (b). As visible, shortening the inter-electrode distance L has a

discernible effect on the device’s electrical behavior; downward scaling yields reduced required

WRITE and ERASE voltages (by lowering Vth1, Vth2). This is a favorable trend which could be

exploited in the future to engineer smaller organic nanodevices that are even more easily co-

integrated with standard CMOS technologies.
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Figure 2.3: (A) Two configurations of the central Iron core TBFe molecule are highlighted,
with conformational change (redox change) noted. B) Schematic of chained TBFe
molecules into a compact thin-film structure C) Filamentary development within
the thin-film as current is applied between the two electrodes; conductive areas
shaded in green. Source: [238].
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Figure 2.4: (a)3D rendering of the planar device, where red is the electrografted active layer,
with key dimensions (L, inter-electrode instance, h, electrode height, and w elec-
trode width) noted. (b) Current as a function of voltage at the forming stage, mea-
sured for different device size (inter-electrode distance L). The two dotted lines
show the first and second threshold for the hardware device. Both adapted from
[238]
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2.3 On-chip learning with organic memristive devices

2.3.1 Simple Functional Model

In a simple bipolar memristor model, conductance does not vary when the device is exposed to

a given voltage value in between the thresholds (below the positive threshold Vth and yet above

−Vth); else, it increments at a voltage above the positive threshold or decrements at a voltage

below the negative threshold. A unipolar two-threshold device such as the organic TBFe species

evolves its conductance by a notably different scheme. When a given voltage value applied at

time t : V (t ) = VM has an absolute value greater than first threshold Vth1 and smaller than the

second threshold Vth2 an increment to conductance occurs (WRITE mode); when its absolute

value is greater than Vth2 a decrement occurs (ERASE); and when its absolute value is less than

Vth1, no conductance change occurs (READ). The simplest model to express these ideas is:

dG

d t
=


Vth2 > |VM | >Vth1 α(|VM −Vth1|)
|VM | >Vth2 −β(|VM −Vth2)

|VM | <Vth1 0.

(2.1)

Constants α and β were set based on early experimental results with the organic memristor.

Notably, α < β, as noted in experimental results. Integrating over a small time window, 10−8s,

is equivalent to a positive conductance change of ∆G = 7×10−8S in the write/SET mode, and

over an equivalent integration window, ∆G = 1.2× 10−7S for RESET, which is nearly twice as

powerful. In addition, as noted in Eqn. 2.1, voltage values further from the threshold in both

regimes produce large ∆G values. While a maximal conductance increment voltage value is

given at the absolute voltage value just below |Vth2|, the maximum value for decrement is given

at an absolute voltage value just about 0.5V above |Vth2|, and saturates at this maximum rather

than linearly scaling at even higher voltages. However, in our case, these values are not mod-

ulated, yielding to typical ∆G values for both SET and RESET the learning process. Note this

is a physically unrealistic assumption, but useful as an early benchmark of possible perfor-

mance. Lastly, early experimental results also suggested (Goff=150nS, Gon= 100µS). This simple

uniform model for unipolar organic memristor was implemented in Verilog-A, an all-analog,

continuous time sub-set of the Verilog AMS hardware language- and integrated into electrical

simulations in the context of the Cadence Spectre electrical simulation environment. It is used

for all simulations of our unipolar organic memristors in the following section.

2.3.2 Mapping Learning Scheme to Organic Device

First, we demonstrate a mapping of the generic memristive learning scheme using binary Widrow-

Hoff (WH), or delta rule, learning as shown in Section 1.4.5 to our particular device. Once again,

the objective is to implement the following weight update at each synapse connected to pre-
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Figure 2.5: (a) is a conceptual schematic of a crossbar with two parallel neural learning sys-
tems, where the top row is in the LH error case ( O j ,1 < 0,Y j ,1 > 0) and the bottom
in the HL error case ( O j ,1 > 0,Y j ,1 < 0). (b) Shows the truth table for implementing
binary WH learning. (c) shows the conductance evolution of the device, in particu-
lar δG as a function of a voltage V , with the two utilized conditional programming
pulses, Vp− and Vp+ noted. (d) shows the implementation of the error-correcting
steps shown in (b) by these programming pulses, while (e) shows implemented con-
ductance changes ( δ− is S3,S2; δ+ is S4,S2). Consistent color coding between (a),
(d), and (e) shows the implementation of delta rule on different scales.

synaptic neuron i and post-synaptic neuron j :

∆Wi j =αsi g n(Xi )si g n(T j −O j ) (2.2)

where α is a constant and in practice relates to the size of the programming pulse, and Wi j is

physically represented as a pair of devices to realize a full range of weights ( Wi j = Gi j+−Gi j−).

These updates minimize prediction error on a given task by implementing negative or posi-

tive increments towards the correct configuration in successive steps. Physically, this requires

us to lower the aggregate conductance of every pair of devices whose output is too high, and

inversely physically increase the conductance of every pair of devices which is too low.

From the on-chip perspective, binary WH is implemented by comparing sign of output (O j )

and expected (Y j ). Therefore, there are two relevant error cases: when O j < 0,Y j > 0 (Low/High

(LH), or −1), and when O j > 0,Y j < 0 (High/Low (HL), or 1). In the former case, WH increases

the value of all pairs such that output rises to meet expected. In the latter case, WH decreases

the weight of all pairs such that output falls to meet expected. Error-correcting pulses Vp+,Vp−,

are back-propagated from an on-chip learning cell along the post-synaptic line of our system,

as depicted in Fig. 2.5(a). Crucially, these programming pulses have differential impact de-
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pending on whether the input line has a positive or negative voltage polarity. In turn, the

combination of pre-synaptic and post-synaptic voltage potentials at each device determines

whether conductivity increases, decreases, or remains constant at that particular active (error-

correcting) cycle of the given epoch. Since input can be high or low, two error cases become

four active steps that implement binary WH completely: Steps 2,4 (S2,S4) improve LH error,

and Steps 1,3 (S1,S3) improve HL error (Fig. 2.5(b)).

Appropriate programming pulses Vp+,Vp−, are determined by the conductance evolution

of the device [245]. Our device possesses two thresholds and is unipolar in conductance evo-

lution, which offers a unique advantage. As visible in Fig. 2.5(c), programming pulses applied

at the second thresholds (Vp+ =Vt2−,Vp− =Vt2+ allow the system to correct all four error cases

(Fig. 2.5(d)) when the voltage polarity is opposite of the sign of the error case. This simultane-

ous programming step can also be seen in the crossbar schematic (Fig. 2.5(a)) where the δ−,

δ+ improvements on each pair that directly satisfy binary WH are noted (Fig. 2.5(e)).

This is notably more economical than the on-chip binary WH rule for bipolar devices,

which not only requires four pulses but maintains separate lines for the momentary inversion

of all inputs to program successfully. This requirement has to do with the conductance asym-

metry evolution of these devices, as described in [245]. While these energy savings may seem

small in this context of a single learning operation, for very larger functions presented over hun-

dreds of epochs, this could represent significant savings. This highlights the favorable proper-

ties of our symmetric devices, and motivated the development of a hybrid memristor/CMOS

neuron design for even greater energy and density benefits.

2.3.3 Building electrical neural learners

In this section, we extend the conceptual neural model just described to a more concrete elec-

trical implementation. There are three components to this electrical system, as depicted in

Figure 2.6:

• The dense crossbar of memristive devices which realizes adaptive weights.

• Simple neuron thresholding functions (realized in CMOS)

• Complex neural logic or learning cell (realized in CMOS and with memristive devices

separate of the crossbar)

First, regarding the crossbar of adaptive weights, if we want an input with n inputs to be rec-

ognized, 2n + 2 physical wires and physical devices are required to achieve this. In particu-

lar, each input stream Xi , requires two nanowires (Xi+, Xi−) at whose intersection with row j ,

two memristors (Mi j+, Mi j−) encode a unique synaptic weight pair as a difference function

(Gi j+−Gi j−). This approach is visible in Figure 2.6 where the blue, red and green pairs of de-

vices encode adaptive weights that relate Input 2, Input 1, and Bias respectively to the common
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teaching line. Second, for every neural learner we obtain a post-synaptic potential V j auto-

matically by the combination of Ohm’s and Kirchoff’s Laws. Once inverted at a simple neuron

(CMOS inverter) with ground as the threshold, we obtain the final output state O j which is high

(+1) or low (-1):

V j b =O j = si g n(V j ) (2.3)

The output of this inverter, O j is subsequently fed to a set of transistor switches through which

it is compared to the target output, Y j . Third, after error cases are obtained for every neuron,

configuration is required to appropriately route error-correcting pulses to each neural learner.

In practice, these configurations are achieved automatically using complex logic within the

learning cell, as will be described in the following section. Ultimately, once both the neurons

and learning cells have completed their activities following each presentation, application of

programming pulses Vp+ and Vp− occurs, during which correction pulses are passed from the

learning cell back along post-synaptic line, simultaneously correcting all existing error cases in

the crossbar.

Figure 2.6: Schematic for an all-unipolar neural crossbar setup (all constituent memristors fol-
low conductance evolution graph in inset). Each row takes a separate programming
pulse per cycle so SWprg is now SWPrgJ for each row. No input polarity Ip . Parasitic
resistances are materialized by the R and Rin variables. Adapted from [245]

2.3.3.1 Working principle of hybrid learning cell

Within the learning cell, a pair of memristive devices separate from the main synaptic adaptive

grid/crossbar encodes a logic function through its states. In particular, as discussed in [246],

the pair of memristive devices implements an IMPLY logic gate, and this conditional logic is
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used to achieve intelligent programming.

In particular, we automatically program neural learners by connecting the input of the dual

memristive devices to control two signal lines, S+ and S−, which are sent from a nearby state

machine that controls the overall learning process. The signal lines S+ and S− directly feed into

a set of memristive ’latches’ A1..A j , B1..B j , or the positive and negative latch for each learner

system. Meanwhile, each set of memristive latches is of course connected to its own appropri-

ate output line O j . This is all visible within Figure 2.6.

In the standard latch programming scheme, demonstrated in Fig. 2.7(a), the two signal

lines are connected to two memristor latches in opposite orientation (e.g., one has its positive

pole facing the common line, while the other has its negative pole facing the common line).

When the polarity of the two memristor devices along the signal lines are reversed, the two

devices implement exactly opposite responses to applied voltage V on the line. This scheme

requires four control transistors, which are controlled by gate voltages SWVj, SWPR, SWRS and

SWYj, respectively. These transistors connect or disconnect signal lines from each other at var-

ious moments in the learning cycle. This process is visualized in the bottom panel of Fig. 2.7

(a). There are two overall steps: configuration phase, where the latches are prepared to cor-

rectly route, and programming stage, where pulses are actually applied.

In the configuration step, the output or common line O j is first opened; this is an ’uncondi-

tional open’ that RESETs the state of all devices. Second, the common line facing both S+ and

S− is connected to V j b , which implements a conditional close at the latch’s thresholds −Vth and

+Vth , respectively. This means that A j will RESET (close) and B j will SET (open) conditional

on the value of V j b, as noted in Fig. 2.7 (a). Lastly, the common line is connected to the target

Y j , implementing the opposite operation (conditional open). Precisely, A j will SET (open) and

B j will RESET (close) depending on the value of the expected output. Taken together, these last

two steps program the anti-parallel memristive devices for all neural learners to exactly corre-

spond to the error case it possesses (V j b and Y j cases may be different at each line/learner).

In the programming step, the Vp− programming pulse is first sent through line S+, reaching

all learners where A j is open, and automatically correcting will the LH/−1 error case in all of

them (S2,S4 steps implemented at every pair). Finally, Vp+ programming pulse is sent through

line S−, reaching all learners where B j is open, and automatically correcting the HL/1 error

case in all of them (S1,S3 steps implemented at every pair) [221].

2.3.3.2 Unipolar memristive latch scheme

We have built upon the above generic scheme by proposing to directly integrate our unipo-

lar devices into the learner cell as well as the crossbar (e.g., an all-organic scheme for on-chip

adaptation and logic). We first note that the proper logic voltage level for programming pulses

now sits at the second threshold (Vth2 or −Vth2), since slight changes in either direction can in-

duce an increment or decrement. The polarity of the pulse must follow the sign of the expected

output for the row or function, Y j , with the condition that Vp+ =−Vth2 and Vp− =+Vth2 (since
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Figure 2.7: A): One complete configuration and programming phase through time t is shown
for a pair of generic memristor logic devices which implement the automatic pro-
gramming within the learning cell. B): Our adapted all-organic scheme is demon-
strated. More details on both of these schemes are provided in the text.

conductance drops along the second threshold) [245]. Given this, a single pulse fed simulta-

neously to signal lines S+ and S− can then implement learning with only one programming

pulse per cycle. If Y j > 0, the programming pulse Vp− satisfies both S2 decrementing conduc-

tance and S4 incrementing it depending on whether the input line is low or high respectively; if

Y j < 0, the programming pulse Vp+ implements S3 decrementing or S1 incrementing conduc-

tance when input is high or low respectively.

This all-organic scheme for implementing both the synaptic grid and the memristive neu-

ron design with the two-threshold unipolar device is visible in Figure 2.7 (b). Note first that in

this case anti-parallelism is no longer required- the devices are arranged exactly like in the nor-

mal analog array. As in the other cases a large pulse is needed to unconditionally open the latch;

here it is the value just below Vth2 = 4.8V . Moreover, due to the analog nature of the latches,

it was found that a large negative pulse V = 5.5V was needed just before this to properly reset

states for each cycle due to gradually climbing conductance levels. Note that, to realize this

scheme successfully, different threshold levels are needed which could be realized by different

device scaling parameters. Values of Vth1=1.2V and Vth2=2.5V were chosen for the analog ar-

ray memristor; a larger device is used in the learning cell, and its threshold values Vth1 = 3.3V ,

Vth2 = 4.8V , closely correspond to the experimental values from Figure 2.1 (c).
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While conditionally closing and conditionally opening the unipolar device latches is more

or less synonymous in polarity with the earlier approach, it requires the use of pulses at both

thresholds in order to function properly. Since the programming pulse for the row devices must

also sit at their own second threshold voltage, the first threshold |Vth1-Latch| of the latch must be

greater than |Vth2-Array| so as to keep the analog latch safely in its configured state while these

pulses are applied at the end of each cycle. This requirement has motivated the use of two

differently sized organic devices, a possibility offered by organic memristors.

Unlike the bipolar case, the dark blue or white programming moments are not both re-

quired; only one pulse is sent for each error-type (Vp+, Vp−). Thus, in a multi-neural unit system

where both types of errors exist, two pulses applied through the programming lines will solve

all error cases in the crossbar. In this case, the gate voltage level for each of the programming

transistors SWPrgJ ensures that each row only gets the pulse it needs.

2.3.4 Simulations of memristor/CMOS hybrid neuron system

The objective of this section is to provide a proof-of-concept by integrating the simple func-

tional memristive analog model, the electrical crossbar set-up (neural learner scheme), and

automatic programming in the learning cell in order to concretely demonstrate high-density

on-chip learning. We depict successful learning of simple logic functions before discussing the

impact of a key electrical system-level defect.

2.3.4.1 Electrical Simulations: Logic functions

As our first demonstration, we chose to wire a crossbar of memristive devices such that each

row (neuron) can learn a linearly separable function given an arbitrary number of logic inputs

(bits). Again, if we want a logic function of n bit or inputs to be learned/recognized, 2n + 2

physical wires and physical devices are required to achieve this- double for each bit and an

extra two devices for the bias lines. Using delta rule to memorize a temporal sequence (here

logic function) can be achieved by presenting all possible cases of the function (truth table)

sequentially and updating weights after each one has been given. Given a logic function of

depth n bits to be learned, 2n cycles per epoch are required to map a full presentation of the

truth table to the nanodevices. In the following simulations, we are only learning the simplest

(2 bit) logic functions, hence there are 4 cycles per epoch. In our following simulations, we set

1 epoch as 4µs. Epochs repeat until the function is learned.

In this section, we verify the successful integration of the proposed analog device and the

on-chip neural learning scheme using the Cadence Spectre environment to perform electrical

simulations. All nanosynapse models in the synaptic grid or neuron used our own Verilog-A

models, while the all CMOS elements were standard simulated using a commercial 45nm low

power design kit. Transient simulations, visible as Figure 2.8 reveal that all considered auto-

matic programming schemes learn successfully. Learning takes several epochs (presentations
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of the target) to complete; it is finished around 19µs, or just before the end of the entire learn-

ing period in both cases. For both hybrid and all-organic models it was seen that final conduc-

tance values stay low overall, evolving from 150ns to somewhere in between 5µS −10µS , one

to two orders of magnitude change but nowhere near the Gmax value. This is mostly due to the

fact that the simple conductance evolution models has specified a higher β than α value, so

conductance values always stay relatively low. Nevertheless, the fact that the model can still

learn with a generic asymmetry case demonstrates the power of the algorithm to automatically

adapt.

2.3.4.2 Electrical Simulations: Resilience to Parasitic Resistances

Lastly, we analyzed how parasitic resistances might degrade learning performances within our

concrete electrical proposal for on-chip neural learners. Since metallic nanowire resistances

can vary within orders of magnitude depending on diameter, length, grain boundaries, scatter-

ing, and contact resistance issues, resilience to non-negligible wire resistance is a critical topic

in synaptic array design. In this section, we evaluated the ability of both memristor neuron

designs- the all-organic and standard design- to properly learn 8 functions simultaneously over

a wide variety of parasitic line resistances.The 8 functions chosen (in the left of Panel A, Figure

2.9) are the 8 non-trivial and logically separable options amongst 2-bit functions. In order to

simulate this, resistors were placed along all connections in the simulated neural crossbar sys-

tem, as visible already in Fig. 2.6.

At lower wire resistances (for R < 5kΩ), all 8 functions are learned simultaneously in both

systems without any incident. As depicted in Figure 2.9 B, above 5kΩ, the first breakdown val-

ues are obtained with the NOR function in both systems. Between 5kΩ to 20kΩ, functions

drop off sequentially, with 2 or 3 still persisting in correct output far beyond the ceiling value

of 20kΩ. Neither hybrid nor all organic perform significantly better than the other- the lines

closely resemble each other despite some deviations. This indicates that the all-organic auto-

matic programming scheme demonstrated in Fig. 2.7)(B) does not require a major trade-off in

learning performance.

Overall, both systems are very resilient to wire resistances. This is due to the fact that in all

simulations initial conductance values are at Goff. As the final values exist within the range

1µS − 10µS, this implies that even the most open memristors are still relatively resistive as

compared to the wires. Yet, within the same order of magnitude (e.g. Rmem = 100kΩ while

R = 15kΩ ), the voltage pulse needed to switch certain critical memristor devices may be atten-

uated enough that a threshold is no longer reached and the increments needed to implement

supervised learning do not occur [204].

As seen in in Figure 2.9 C, some functions (eg NOR) break down early while others (eg NAND

and IMP) do not. Moreover, functions that are inverse of each other (IMP, N-IMP; CONV, N-

CONV) tend to do better preferentially between the two schemes. There is an underlying pat-

tern: in the system using the organic memristive device in the neuron design, functions with
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3 highs (1) and one low (0) are more resilient, while the opposite is true for the hybrid system

using bipolar devices in the latch, (functions with 3 low and 1 high are more resilient). This is

due to the differential maximal value of the latches. As the analog latch is more resistive overall

(Goff = 18µS) than the binary latch (Goff = 10µS), the organic scheme should be better at clamp-

ing logic function with many low/’0’ values even when wire resistances are very high. Inversely,

as the Gon value of the binary device G = 100nS, is more conductive than the corresponding

unipolar latch Gon = 1.5µS, it should better clamp logic functions with many ’1’ values when

wire resistances are high.

Overall, the analysis suggests that parasitic wires are unlikely to force learning errors when

the equivalent resistance of the least resistant state of the memristive devices Goff is still at least

one order of magnitude more than the typical wire resistances.
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Figure 2.8: A) Waveforms depicting successful learning of the AND function in the Hybrid (or-
ganic unipolar memristors, binary latch) case; target, output, 6 analog memristors
being trained, and latches are depicted from top to bottom. B) Equivalent wave-
forms for the All-unipolar organic memristor learning case. As visible Latch behav-
ior is now also analog.
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Figure 2.9: A) All possible 2-bit functions. The 8 functions in the left box are the non-obvious
ones on which the system is trained. B) Rate of success at learning these 8 functions
for each variant system- hybrid and organic-, as a function of horizontal and vertical
nanowire resistance R ( 40 parametric simulations), while Rin at the input wires is
held constant at 500Ω. C) ’Breakdown’ value in R = kΩ: the given wire resistance at
which the output for one of the four cases of the truth table is incorrect.
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2.4 Development and utilization of a physics-oriented com-

pact model

2.4.1 Motivation in developing/ evaluating a second model

The simple model used in Section 2.3 allowed us to gauge the potentials of our organic devices

for learning in the context of a system level design (Neural unit framework). However, from the

device perspective it had a few severe limitations:

• It did not consider the effect of initial (starting) conductance on the effect of the voltage

pulse in changing the conductance (∆G)

• Because it was not a time-parameterized model, it did not allow for an accurate under-

standing of the effects of pulse widths on conductance evolution

• The physical parameters used, such as α and β, were rough approximations of device

behavior rather than being extracted from real devices via characterization procedures.

In this section, a physics-based compact model which is notably sensitive to the effects of both

initial conductance and pulse timing (widths), is introduced and used to further test the re-

silience of our proposed learning systems.

From the point of view of contribution to the literature, we note that while a wide variety

of inorganic memristor compact models have been published and many are available for re-

searchers to build test circuits [207, 247–250], to the best of our knowledge no compact model

of an organic memristive device is available to neuromorphic circuit designers. Thus an addi-

tional contribution of the following section is to contribute something back to the community.

The following compact model was developed in partnership with the Compact Modeling

Team at IMS, Universite-Bordeaux, experts in the development of efficient analog compact de-

vice models, as part of the ANR-MOOREA project [237]. In addition, the electrical characteri-

zations performed below were obtained via this collaboration.

2.4.2 Electrical characterization approach

The following results are derived from electrical characterization and parametric extractions

performed on 33 tests structures which was performed at our partner lab, IMS Bordeaux. Ramp

voltages (0V → 5V → 0V → 10V ) with a dynamic of 1V/s have been applied to the test struc-

tures. A typical I-V curve is shown in Fig. 2.10(a). At its initial steady state, the memristor is in a

low conductance state. For low voltages between 0V to 3V (step 1), the current evolves linearly

indicating that the memristor conductance remains stable. Once applied voltage rises above

3V, the current rises by at least two orders of magnitude as it approaches 5V (step 2). The ap-

plied voltage is afterward decreased from 5V back to 0V (step 3). The current measured remains
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high indicating that the device state (ON) has been preserved. Finally, the voltage is increased

yet again from 0V to 10V (step 4). Above the second threshold of 8.5V, current decreases by

more than one order of magnitude and the memristor switches back to its initial (OFF) state.

The same I-V characteristics were obtained with negative voltage ramps, confirming the unipo-

lar (symmetric) nature of this particular organic memristor species. Three operating ranges are

distinguished, with the two threshold voltages VON and VOFF: READ mode, for which there is

no variation of the conductance and the memristor’s state follows the previous programming

(voltage between 0V and 3V); SET mode, in which conductance evolves towards the conduc-

tive/ON state (voltage between 3V and 8.5V); and RESET mode, in which conductance evolves

towards the insulating/OFF state (voltage above 8.5V).

We note that these are different, larger devices than the ones that produced the I/V curves

in Fig. 2.1. In particular, the higher operating voltage range can be explained by the organic

polymer dimensions considered for this study (junction area: 30nm x 250nm) [238]. As noted,

this decreases when scaling to smaller organic polymer film thickness (Fig. 2.4); previously, it

was VON = 3.5, VOFF = 5.5. In addition to smaller dimensions, the scaling can bring additional

trade-offs; as will be discussed in far more depth in Section 2.5, down-scaled devices notably

suffer from larger variability than the devices studied here.

Figure 2.10: (a) Typical I-V characteristic in semi-log scale obtained for the test structures by
applying, with a dynamics of 1V/s, the following ramp: 0V → 5V → 0 → 10V (b)
Schematic showing the evolution of the conductance when a train of n identical
pulse are applied (red curve) and the conductance evolution obtained when fitting
a first order response (blue curve) with the conductance values measured during
READ mode (blue dots).

For these measurements, one hundred identical pulses of period T=200ms and 40ns rise

and fall times were applied to the positive electrode while the negative electrode is grounded.

During a pulse of width W, voltage is set to VHIGH in which the memristor switches to the SET

mode (VON ≤ VHIGH < VOFF) or the RESET (VHIGH > VOFF) mode. The memristor conductance
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value varies accordingly. During the moments between pulses (T-W), applied voltage VLOW

is within READ mode such that the memristor device retains earlier conductance value (Fig.

2.10(b)). The conductance evolution is obtained by measuring current when the memristor is

in this mode. During the measurement process (20 seconds) the conductance evolves gradually

each time a SET or RESET pulse is applied, from an initial value GInit towards a final value GFinal

after 20s. Once over, a series of pulses is applied to the memristor device’s positive electrode to

return it to conductance GInit; this process is repeated ten times.

Several values of VHIGH, W and GInit have been considered during the measurement cam-

paign. Parametrical extraction has been performed on various configurations given within the

following ranges: GInit = (5µS, 10µS, 50µS, 100µS); W = (1µs, 10µs, 100µs, 1ms); and VHIGH vary-

ing from 2.4V to 10V with voltage step 0.2V. Depending primarily on the configuration (GInit, W,

VHIGH), electrical behavior also varied between each of the ten individual runs at each con-

figuration. This variation stems from delays and/or rapid conductance transitions that may

be caused by: (i) intermixed filaments forming a more conductive single structure, (ii) several

conductive paths located in different conductive areas and formed during a same pulse, (iii) or

a conductive path formed by segments which have changed locally the conductivity.

2.4.3 Compact Model Approach

The conduction mechanisms have been modeled macroscopically by a filament-type mecha-

nism for which memristor device conductance evolves depending on the number of conduc-

tive filaments created and/or destroyed. The conductance G(t) is assumed to be approximately

proportional to the number of filaments and is assumed to be limited to a maximum value

GMax (GOn ) corresponding to one unified/combined filament covering the entire device sur-

face. Generation and destruction phenomena occur simultaneously, so conductance variation

over time is:

dG

d t
= S1(Gmax −G(t ))−S2G(t )) (2.4)

where S1 and S2 are respectively the mean conductive filament creation and destruction

rates varying with time according to V(t), the time-varying voltage difference between the de-

vice’s positive and negative electrodes:

S1 = s1 exp(
|V (t )|

Vo1
) (2.5)

S2 = s2 exp(
|V (t )|

Vo2
) (2.6)

The exponential terms represent the effects of the electric field on charge displacement

between molecules having different energy levels, and Vo1 Vo2 are used as fitting parameters

for this exponential expression. Since the model does not take into account the microscopic
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geometry of the phenomenon, the electric field is summarized by the associated voltage V(t)

between electrodes. In this equation, the generation rate takes into account the number of

available positions for filament creation, with the (GMax −G(t )) factor in Eq. 2.4. However, in

the range of measured values, the extractions show that S1 is very small in comparison with

S2 (equivalently, GMax ÀG(t )) so that we cannot extract separately S1 and GMax, but only their

product: z1. Hence, the model is simplified when

z1 = s1Gmax

as:

dG

d t
= z1 exp(

|V (t )|
Vo1

)−S2G(t )exp(
|V (t )|

Vo2
) (2.7)

If Gmax varies significantly, which could be the case for devices at different scaling dimen-

sions, parameter variation on z1 explicitly can account for that. However, as our experimental

characterizations revealed Gmax variability in our properly programmed devices was not that

severe (Fig. 2.11c), this parameter variation was not made a core part of our analytical ap-

proach.

2.4.3.1 Conductance Evolution Analysis

Conductance evolution analysis showed a first order system response trend in all configura-

tions. For each configuration, ten runs mean conductance evolution G(t) have been considered

and fitted; The parameter β is the inverse of the time constant (Eqn. 2.10), and parameters A

and C are constant values defined in Eqns. 2.9, 2.11 respectively.

G(t ) = A exp(−βt )+C (2.8)

A =Ginit −Gfinal (2.9)

β= τ−1 (2.10)

C =Gfinal (2.11)

The device only evolves when it is in the SET or RESET pulse (width W ), yet the entire timing

window of analysis T is larger since it includes a period (T −W ) in READ mode (T −W ) where

the device should be be non-volatile (Fig. 2.10(a)). Given this, Eqn. 2.7 is redefined as:

∆G

T
= z1 exp(

|V (t )|
Vo1

)− s2G(t )exp(
|V (t )|

Vo2
) (2.12)
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Table 2.1: Model Fitting Parameters. Units are the following:V o1,V o2, V; K1, S.s−2 ; K2, s−2;
n1,n2 are unit-less.

Mode V o1 V o2 K1 K2 n1 n2

Set 1.28 1.51 8.3.10−6 8.1.10−2 0.35 0.308
Reset 1.66 1.66 2.38.10−6 0.5 0.35 0.308

This equation is a solution of Eqn. 2.8 and the coefficients of the two equations are associ-

ated as:

α= z1 exp(
|V (t )|

Vo1
) (2.13)

β= s2 exp(
|V (t )|

Vo2
) (2.14)

Gfinal =C = α

β
= z1

s2
exp(

|V (t )|
Vo1

− |V (t )|
Vo2

) (2.15)

The parameters z1, s2, Vo1, and Vo2 were extracted by parametric analysis on the mean conduc-

tance evolutions G(t) according to Eqns. 2.9,2.12 of all the (GInit, W, VHIGH) configurations.The

extractions revealed that parameters Vo1 and Vo2 might be considered as constant. In contrast,

parameters z1 and s2 depend on the pulse width W. Indeed, the number of filaments created

and destroyed increases for longer W. Parameters z1 and s2 are expressed as:

s1 = K1W n1 (2.16)

s2 = K2W n2 (2.17)

Values Vo1, Vo2, K1, K2, n1 and n2 are listed in Table 1 for both SET and the RESET modes.

2.4.3.2 Integration in Compact Model

The Fe(bpy)2+
3 organic memristor compact model has been implemented in Verilog-A. It is a

three port structure having two I/O ports (“in” and “out”) corresponding to the organic device’s

positive and negative electrodes, and a third port Gf where the current value of the conductance

is stored and read. Current is calculated as:

Iin,out(t ) =G(t )(Vin(t )−Vout(t )) =G(t )Vin,out(t ) (2.18)

The only user defined input to the compact model is an initial or starting conductance GInit

at t = 0. Then, conductance variation is calculated according to Eqn. 2.8, which in turn depends

on the pulse width W given by Eqns. 2.16,2.17. The model itself evaluates the pulse width dur-

ing a transient simulation when VON ≤Vin,out(t ) <VOFF (SET mode) or VOFF <Vin,out(t ) (RESET

mode). Equation 2.12 is therefore rewritten as:
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∆G = X1W n1 −X2G(t )W n2 (2.19)

X1 = K1T exp(
|V (t )|

Vo1
) (2.20)

X2 = K2T exp(
|V (t )|

Vo2
) (2.21)

Given that the integral on conductance variation over the range 0 to W is:

∫ 0

W

dG

d t
d t =∆G −0 =∆G (2.22)

Conductance variation as function of time is finally:

dG

d t
= n1X1t n1−1 −n2X2G(t )t 2n−1 (2.23)

In the Verilog-A description, conductance evolution for a given time window G(t) corre-

sponds to a floating voltage VGf taken between a current generator delivering a current equal to

(18) and a capacitor C integrating the same current. Hence, the capacitor C retains the device’s

conductance value. The state variable G also takes the value of VGf. Current intensity is then

calculated as a function of the voltage dynamics Vin,out(t ), variable G and simulation time t. At

the initial step of the simulation (t = 0), the compact model is at VGf =G =GInit

2.4.3.3 Comparison between Model and experiments: SET

For configurations at higher W , a higher dispersion exists between the Gfinal values than in

the lower ones; for instance, the largest dispersion (σ = 16.9µS) comes when W = 1ms (Fig.

2.11b). This is because, in these cases, the results of the longer programming event are more

unpredictable, as many filaments could be created or destroyed simultaneously during it du-

ration. This can result in very different effects depending on GInit, and even lead to incomplete

filament formation issues (hence, some devices never reach Gmax). In contrast, when W is far

smaller, programming is a more well-controlled phenomenon, resulting in a more predictable

synaptic outcomes. As visible in Fig. 2.11c, where W = 100µs, almost all devices in the more

gradual SET mode reach their maximal values, resulting in a fall smaller (σ= 4.8µS) dispersion

value. Since increased dispersion counteracts desired model determinism, this favors shorter

and more predictable pulse programming modes for our later neuromorphic applications. As

visible in Fig. 2.12a, our analytical expression is finally in agreement with normalized device

behavior (averaged across all configurations).
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2.4.3.4 Comparison between Model and experiments: RESET

The analytical expression is also validated in the RESET mode relative to all measured conduc-

tance evolutions. Regardless of W , dispersion is more prominent in the RESET mode than in

the SET mode. All of the conductance transitions for one configuration within RESET mode

are visible in Fig. 2.11a. In most of the investigated configurations, conductance decreases

abruptly after the first pulse having an amplitude higher than VOFF. It implies, when correlat-

ing measured G(t) with Eqn.2.6 , that the time constant (Eqn. 2.10) between the initial conduc-

tance and the final conductance is less than W. This relates to the fact that conductive paths

in the RESET mode can be entirely or partially destroyed. One hypothesis is that although the

pulse dynamics are rapid, since VOFF >VON, conducting paths are recreated during the rise and

fall times because of inrush currents. After this definitive step, conductance variations stabilize

and oscillate around a mean value. As already shown in the I-V graph of Fig. 2.10(a), conduc-

tance stabilizes in the RESET mode after its initial decrease at 8.5V. Fig. 2.12b reiterates this

behavior.

Figure 2.11: (a) Analytical and actual conductance evolution compared for RESET for one con-
figuration: Ginit = 10µS , W = 100µs , VHIGH = 8.6V (b) Similar comparison for SET
mode, Ginit = 10µS, W = 1mS, VHIGH = 8.6V (c) A second set configuration, but
with W = 100µs

Figure 2.12: Normalized conductance evolution measurements during all successive pulse
runs, for both SET (a) and RESET (b) modes, with the compact model’s prediction
according to (18).
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2.4.4 Systems-level scripting methods

For use in neuromorphic applications with complex learning procedures, a versatile compact

model ought to keep its conductance state between individual learning stages. For this reason,

we have extended the compact model to a dynamical approach through the use of a comple-

mentary software tool chain assessing circuit description organization, visible below conceptu-

ally in Fig. 2.13. This approach is especially useful for circuit electrical schematics that contain

a large number of memristor compact model instances, e.g., large crossbar architectures.

The dynamical approach uses a PERL script to process the post-simulation data retrieved

after simulation of a circuit netlist in Spectre format (.scs file). Post-simulation data is retrieved

in the .raw format- a table of all the voltages and the currents of a considered circuit integrat-

ing instances of the compact model. Among all of these voltages and currents, the PERL script

retrieves, for each compact model instance, the image voltage corresponding to G(t) by iden-

tifying the voltage coming from the compact model Gf port, i.e. VGf. The process has been

automated by integrating the model as a sub-circuit. The PERL script generates a file to be in-

cluded in the netlist which updates GInit values for each memristor compact model instance

contained in the circuit description using .ALTER instructions. In continuing to simulate with

Spectre software, the circuit netlist now includes all previous conductance values; the GFinal

values from the previous simulation have become the GInit values of the next one. Still, repeat-

ing this method manually may be tiresome. For this reason, a shell script which performs each

of the individual steps was written to automate the process. The functions of this script are

visible as the gray surrounding box in the right pane of Fig. 2.13. Now, the user needs simply

output a circuit netlist (design) to the home directory, specify the desired number of iterations,

and invoke the bash script. The script edits the netlists via the awk Unix command and outputs

n text files into a results folder which correspond to the final conductance at the end of each

epoch.

2.4.5 Considered architecture

Our system is composed of several individual neural learning units, as described in Section

1.4.5. In the following sections, we consider these systems in an unsupervised (plasticity ori-

ented) context, as well as in the context of a discrete supervised learning task.

2.4.5.1 Neuron design

In contrast to the hybrid neuron design selected, for the following demonstrations we built an

entirely CMOS neuron system with the crucial component being a differential amplifier built

using Cadence’s analog library. As is standard, the non-inverting input is grounded and the

inverting input is connected to the entire line, as visible in the bottom right of Fig. 2.14. This

ensures that sum of all input voltages multiplied by the respective conductances M1, . . . , Mn , as

given by Kirchoff’s Law, produces a unitary current output, and allows our circuit to perform
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Figure 2.13: Left pane: shows integration of compact model and standard CMOS design kits
into a static design. Right pane: shows the dynamic method developed where the
design (netlist) can become an evolving neuromemristive circuit using the pro-
posed scripting techniques.

approximate dot-product operations on-chip [220]. The pre-neuron current value is multiplied

by R, effectively converting small current changes in Pre into much larger voltage changes at

Post. An additional benefit of the amplifier design is that the output varies in the power range

and is constant outside of it, making it appropriate for both analog and digital signals being

passed forward in a mulitlayer systems [251]. A transistor acts as a switch to apply learning

pulses during correct moments only, so that the circuit is stable and weights can be read in

between active (programming) moments; this allows for stable and fast online learning.

Figure 2.14: This electrical schematic demonstrates the system used to produce all results in
Sec. 2.4.6. The system is built entirely out of CMOS components and instances of
the organic memristor devices (represented here as the memristor circuit symbol).
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2.4.6 Unsupervised adaptation in a single neural learner

Before attempting a supervised learning task, we first analyzed the adaptation abilities of a sin-

gle neural learner consisting of 4 input channels (8 input wires total) connecting to a single

common (output) line via 8 model organic devices. To create an environment for differential

synaptic adaptation, we set each of the pre-synaptic CMOS neurons to send pulses at different

frequencies or rates; this approach relates to a critical observation in neuroscience, which is

that rate-based encoding of spikes may be critical to information encoding, decoding, or both

in neural circuits [98, 252]. Hereafter, T is a global timing parameter used to scale the over-

all rate of learning by setting the period of input (pre-synaptic) and feedback (post-synaptic)

voltage pulses. The pulse programming scheme chosen to demonstrate emergent plasticity

effects, completely visible in Fig. 2.14, is the following: inputs oscillate between Vin+ = 1.5V ,

Vin- =−1.5V , at multiples of period T , with half of the period an active pulse (W ). The param-

eter additionally varies line-by-line; for devices fed by Input 1, pulse width is T
2 and period T ;

devices fed by Input 2, period 2T and pulse width T ; devices fed by Input 3 have period 4T and

pulse width 2T ; positive and negative devices receive input patterns at opposite moments as

each other. Bias inputs are constant with the positive line always at Vin+ and the negative always

at Vin-. Programming pulses applied on the common line (Post) oscillate between Vp+ =−4.6V ,

Vp- = 4.6V , with both period and width T ; this programs devices in either SET or RESET mode,

depending on the combination of voltages. Note that, in order to make this workable, VOFF was

edited from 8.1V to 6V in the compact model description (it does not otherwise change the

model functionality).

2.4.6.1 Sensitivity to initial conductances

Fig. 2.15(a)-(c) shows the evolution of three systems with the previously described differential

encoding set-up, where the only difference between the three panes is starting conductances.

Electrically, since the voltage for each device is shifting as a combination of the sign of the input

as well as the voltage drop between input and shared wire (Pre), dynamic collective behavior

exists between the devices and their evolution through time is quite complex, as visible in the

many small oscillations. Each device demonstrates plasticity by adapting its preferred state

towards the combination of the respective input line it is connected to and the post line. The

speed of the adaptation is non-linear; that is, more changes occur towards the first half of the

simulation (between 0 and 5ms) than in the latter half (5ms to 10ms). Since, as visible, the

devices are not all saturated at the minimal (Gmin) or maximal (Gmax) values, further investiga-

tions were made as to how the rate of adaptation or plasticity additionally relates to the global

timing parameter (T ).
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2.4.6.2 Sensitivity to pulse width

Now, the same circuit and task was considered but varying timing parameter (T ) used to set the

overall pace of adaptation across the systems. As the total simulation time is always capped to

t = 20ms, this creates a trade-off between frequency and intensity or programming/plasticity

events; Fig. 2.15(d)-(f) demonstrates three possible outcomes. As visible, when T is quite large

(f), fewer total programming or plasticity events occur, and steps are larger and far more dra-

matic. This results in slower convergence overall, and somewhat unpredictable learning out-

comes. Conversely T is very small (d), adaptation happens very rapidly and smoothly due to

the many small increments; this creates a relatively predictable dynamic, but there is less rich-

ness in the plasticity effects. The middle timing case (e) shows an intermediate case where the

weights adapt in a complex way, with most converging towards a final state, but some oscil-

lating. Note, finally, that pulse programming regime has an important effect on the outcome

of the final synaptic values; for instance, Input 3+ ends up in maximal, minimal, and inter-

mediate conductance levels depending on whether the global timing parameter was fast (d),

intermediate (e), or slow (f), respectively.

These experiments demonstrate the ability of the neural learner electrical system to act

as a laboratory for examining plasticity effects in nanodevices. For instance, the observed

state-dependent and rate-dependent plasticity behaviors could be exploited in unsupervised

or semi-supervised learning schemes. Weight-dependent STDP was recently demonstrated us-

ing pulsed biasing on metallic oxide nanodevices [253]; promisingly, our organic nanodevice

model also evolve in a state-dependent way due to differential voltage biases.

2.4.7 Demonstration of sequential simulations

In this section, we show the implementation of the scripting methods of Sec. 2.4.4 using the

simple single learner circuit (i.e., the netlist used to obtain these results is the same as what

produced those in Figs. 2.15 (a)-(f)). Given this constant input system, i = 10 iterations are per-

formed for one of three different cases, where what is varied is again the global timing param-

eter T . The results for ten subsequent cascading iterations are visible in Fig. 2.16 (a)-(c), where

(a) shows the case of T = 10µs, (b) T = 100µs, and (c) T = 500µs; note that the first epoch in

each chart corresponds to final resting states in Fig. 2.15(d)-(f). This demonstration shows how

complete adaption or learning is necessary in order to evaluate the real potential of a scheme.

While in this set-up the fast system (a) converges completely within the first two epochs, the

slow system (c) converges between epoch six to ten, depending on device. In the context of this

device, it suggests that an intermediate timing parameter (between T = 100µs and T = 500µs)

may be optimal such that convergence does not happen either too fast or too slow. In the con-

text of our proposed simulation methodology, the numerical efficiency of the model and de-

veloped scripting tools will be an asset to neuromorphic hardware designers looking for quick

and electrically realistic evaluations of learning architectures. In the context of application to
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neural network set-ups, these simulations highlights that weights may drift in an unintended

context if convergence speed is not set properly; this would be even more crucial to analyze in

a larger network which may require dozens or even hundreds of epochs. In the next section, we

evaluate one relatively simple yet typical neural network set-up.

2.4.8 Electrical Simulations: Small digits

Finally, we examine how the compact model and neuromorphic circuit building blocks can be

integrated to perform a toy data science task. We implement an on-chip learning system that

classifies digits from the scikit-learn small digit database [254], also called the OCR database.

This database consists of 1797 examples of each of the 10 digits; each has a dimensionality of

64 grey-scale pixels (individual training images are 8x8) (Fig. 2.17 (b)). To achieve this we built a

second, far larger crossbar schematic in SPICE which connects 130 pre-synaptic neurons to 10

outputs via 1300 organic memristive compact model instances (while the digit database have a

dimensionality of n = 64, double lines and two bias lines are required as per the neural learner

scheme). Unlike in the logic function implementation previously detailed in Section 2.3.4.1, the

presentation of images through these channels is not multiplexed in time, but instead training

images are presented simultaneously in their entirety. The digit database was split into training

and testing cohorts of 1200 and 597, respectively. Neural network training was conducted dur-

ing several epochs; during each, one quarter (300) of the total training database was randomly

selected and randomly ordered before presentation to the network.

During one training step within a given epoch, a known digit is presented in voltage mode in

the sign-symmetric fashion shown in Fig. 2.17 (a); immediately after, corresponding error cases

are corrected in each weight pair by applying the appropriate polarity of Vp to the post-synaptic

line of each of the systems in error; this follows the implementation given in Section 1.4.5 and

corresponds to a single iteration of stochastic gradient descent. The width of this pulse now

corresponds to the timing or learning rate earlier discussed: W = T . As before, Vp+ = −4.6V ,

Vp- = 4.6V , Vin+ = 1.5, Vin- = 1.5, to manifest the conditional programming scheme during

training. New for this case, input voltages are analog and correspond to pixel values in in-

ference/test mode. Weight updates and learning were all done in-situ in the Cadence platform.

After all epochs have concluded, all unknown digits are presented sequentially using a script

and guesses, defined as the maximal output or most confident prediction, are compared to true

values in order to yield a final classification success percentage. An example of one inference

step during the testing period is visible in Fig. 2.17(e), where the read-out vector is produced as

a the dot-product of input digit’s voltage input vector and the crossbar’s weights. In contrast to

the un-supervised case analyzed earlier, the configuration of initial weights is not critical to the

functioning of the algorithm, although this does introduce variability in learning outcomes.

2.4.9 On-chip learning outcomes
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2.4.9.1 Loss from ideal software outcomes

When convergence is successful, our OCR learning system built with the organic compact

model instances achieves greater than 90% of the accuracy that could be achieved with a com-

parable software ANN. When successful, the nanodevice weight matrix manifests one hyper-

plane in Rn space (where n is again the dimensionality of the task) for each of the separately

learning neural units; in this case 10 units, one trained to recognize each digit against the oth-

ers, learn in parallel. We achieve mean 89.8% classification in this optimally converging range.

In order to demonstrate why such a strong classification can be made with just linear clas-

sification boundaries, we performed a clustering analysis of 500 examples from the training

set with t-distributed stochastic neighbor embedding (t-SNE), a machine learning technique

which is ideal for mapping datasets from high-dimensions back to a visually understandable 2-

dimensional space [255]. As visible in Fig. 2.17 (c), linear classification in the high-dimensional

space should indeed be able to separate the vast majority of class examples from each other,

with some notable exceptions, e.g. ’1’ class which blends with several others. To further test

this hypothesis we trained a support vector machine in software, which also trains to use a hy-

perplane for classification. This software system achieves between 93−97% classification, as

listed in Table 2.2. The 4−7% loss in accuracy from the software ideal is mostly accounted for

due to the effect of our device’s characteristic non-linearities; while software learning systems

use perfectly linear weight updates, SET and RESET produce different ∆G values in our device,

which may also be scaled according to the device’s starting conductance Ginit. This effect has

previously been discussed in the context of PCM devices [256].

2.4.9.2 Convergence depends on adaptation speed

However, successful on-chip learning with the present algorithm is not always possible, and

indeed heavily dependent on the pulse width parameter W = T . While 200µs < T < 400µs

showed strong results, pulse programming widths below this range resulted in poor perfor-

mance due to the synaptic saturation effects already discussed, and pulse programming above

it resulted in slow or failed convergence. The two faulty cases are highlighted in Fig. 2.16 (e),

and Fig. 2.16 (d), respectively, which show the evolution of 32 devices within one neural learner

during training. Examples for all three cases are demonstrated in Table 2.2, with standard devi-

ation noted where each case was attempted 10 times with different initial random conductance

values in the on-chip array. As visible, the effect of the first failure case is far worse than the sec-

ond case, in which learning is mostly correct just incomplete.

2.4.10 Implementing Elementary Learning Rates

The dynamic approach allows one to both inherit final conductances from a previous simula-

tion and to change key learning parameters in the simulation in between sub-steps (epochs) of

a complex learning procedure. As a further demonstration of the value of the dynamic scripting
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Table 2.2: Performance on the Image Classification Task (%)

100µs 250µs 500ms Software (SVM)

OCR: Mean 62.5 89.8 78.2 95.2

OCR: Deviation 3.85 2.35 6.21 1.52

approach, an elementary form of learning rate modulation was attempted in the standard on-

chip procedure by changing the pulse width W in the midst of a multi-epoch learning process.

As visible in Fig. 2.16 (f), while the approach succeeded in adding some form of momentum,

e.g., forcing it to converge towards the end of learning, the end results were not very different

than the ’slow’ system learning case overall. Moreover, the achieved results with this approach

(mean 87%) were no better than the a constant optimal W value throughout training. This

suggests a more complex scheme is necessary; while a wide variety of more complex options

are available to optimize stochastic gradient descent in software systems [257], their on-chip

implementations may be complex and remains a topic for future consideration.
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Figure 2.15: (a), (b), (c): Three identical simulations depict the evolution of 8 compact model
devices during a simulation period t = 10ms according to the differential pulse
programming scheme described in the text. The only difference between the three
panes is the initial set of device conductances. (d),(e),(f): systems are initialized at
equivalent conductances, while pulse width is being varied instead. (d) shows the
case of T = 10µs, (e) T = 100µs, and (f) T = 500µs. Total simulation time in these
cases is now t = 20ms.
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Figure 2.16: (a)-(c): demonstrate sequential simulations. At step 0, all conductances are ini-
tialized randomly. After every step, all conductances values evolve based on pre-
vious GInit values. Note that the transition between weights from epoch = 0 and
epoch = 1 is precisely the transitions shown in Fig. 2.15(d)-(f). Total simulation
time of each epoch is T = 20ms.
(d)-(f): track evolution of 32 memristor compact models connected to the same
output neuron during training. (d)’Large’ pulse (T = 500µs) learning takes a long
time to converge ; (e) ’small’ pulse (T = 10µs) learning, seems to learn too quickly
and converge weights too close to each other; (f) The dynamic scripting tools are
used to change T in a multi-epoch learning environment; T = 500µs during the
first 6 epochs, T = 100µs during the second 6, and T = 10µs during the last 8.
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Figure 2.17: (a) The simulated crossbar neuromorphic architecture is illustrated; it expresses
differential weights connecting inputs to outputs, which are in turn connected
to a learning cell and/or future layers (b) A single example from each of the ten
classes from the Sci-Kit digit database is shown alongside reconstructed neuron-
by-neuron ’weight filters’, that correspond to each of the ten output neurons of
our model system; (c) Sci-Kit Digits/OCR dataset is visualized in arbitrary two di-
mensional space using the Barnes-Hutt implementation of the t-SNE mapping
algorithm; each point is an example and its color is the class, as in the legend;
axes are arbitrary or unit-less (d) The entire weights matrix obtained using the
on-chip learning algorithm are demonstrated; colorbar, shared by both, shows
all weights as normalized pairs (-1 corresponds to Gmin −Gmax; 1 corresponds to
Gmax−Gmin; (e) During the entire time duration, a single training digit (in this case,
corresponding to the class ’3’) biases the network at 0.1V , producing the pictured
post-synaptic voltage on lines O1 to O10. During an active ’fire’ moment’ (between
t = 10−7 and t = 10−4), a companion pulse carries only the ’winning’ neuron above
the threshold (0), implementing a ’spike’ carried forward to the next layer.
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2.5 Experimental Demonstration of Scheme

2.5.1 Motivation

There are several inter-related challenges in moving from device simulations to real hardware

prototypes: intrinsic variability of memristive devices may be worse than expected, non-ideal

circuit behavior may disturb theoretically perfect learning schemes, and devices may behave

dramatically different in ’live use’ than their characterizations or models would suggests. The

primary motivation in building and realizing learning in the following system, was to enhance

our understanding both at the device and systems levels of the feasibility of on-chip (local)

learning with emerging filamentary nanodevices. By discovering more about these factors, we

also contribute to the community of neuromorphic engineers, because there are just a few

works that address in-depth imperfect behaviors in physical learning systems [59, 256]. While

some of the phenomenon addressed in these works are irrelevant to our case (resistance in-

stability, which is only applicable to phase change devices), others, such as an asymmetric

increase (SET) and decrease (RESET) of device conductance in filamentary-based devices and

stuck-on/off effects, are very relevant to our case. We extend this sort of analysis to a completely

novel, polymeric filamentary device, which should be very helpful for future designers of new

any new variety of synaptic organic nanodevice. Overall, in the following work we discuss and

demonstrate ways to improve tolerances of generic learning rules for real-world systems.

Figure 2.18: This high-level depiction of our set-up demonstrates the key components of our
ANN system, including memristive synapses, CMOS accompanying circuitry, and
off-chip programming set-up. The overall task is to have the ANN reconfigure itself
to reproduce (output) any chosen binary teacher (input) signal. Because we only
use one learner system, however, a major limitation of the present set-up is that
this teacher system must be linearly separable.
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2.5.2 Building an Adaline System with our devices

In this work, we have experimentally realized a single learner system or Adaline with 4 synapses

(8 organic memristive nanodevices). We have realized experimentally a full ANN set-up that

uses accompanying CMOS logic devices to instruct the nanosynapses to perform online learn-

ing autonomously. The circuit is composed of a CMOS-based neuron implemented on a field-

programmable gate array (FPGA), and a series of memristive devices mimicking synapses be-

tween differential inputs and the neuron, as demonstrated in Fig. 2.18. The circuit encodes

weights using signed-synaptic pairs of memristive devices with modifiable conductivity; n +1

pairs, or 2n +2 memristive devices, are required to successfully map a function with n inputs.

Each of the n+1 inputs requires a negative and positive wire to separate states for that case, and

negative and positive bias lines configure the entire line. In response to a set of input voltages,

the sum of all conductances is proportional to current on the common post-synaptic line. Pre-

cisely, given inputs X1 · · ·Xn+1, a shared post-synaptic potential X j is obtained automatically

by linear combination of pair weights:

X j =
n+1∑
i=1

=Wi X i (2.24)

X j is converted from current to voltage and from analog to digital (si g n(V j )) after it passes

through a comparator set to ground. This has the effect of inverting the sign of X j . For every

(2n , where n is the number of bits ) case of the function’s truth table, the learning block checks

every post-comparator’s output (O j ) to verify if it is the same sign as expected (Y j ). If so, the

next case is checked; else, if si g n(Y j ) 6= si g n(O j ), a programming pulse is sent. In this case,

the learning block applies an appropriate programming pulse, as defined by pre-defined logic

in the FPGA. Once trained for all cases of the target function, our system should be able to

reproduce a desired signal based on its synaptic weights and input signals.

As previously described in Section 1.4.5 generically, and in Section 2.3.4.1 specifically for

our device, our system learns using an online, binary adaptation of the Widrow-Hoff rule (WH).

This requires it to learn example-by-example using a canonical procedure. Specifically, at each

step (epoch), difference between expected and actual output s computed and is compared on

the basis of the si g n function and an appropriate adjustment is made to minimize that cost.

In this experimental work, we expanded upon the earlier scheme based on the insight that

our multi-threshold device can, when needed, offer a choice between two programming modes

(Fig. 2.19c). As visible in Fig. 2.19c-d, first threshold programming uses only SET mode of the

device (hereafter, Set Only (SO) mode), or two of the four active programming steps. Since

the polarity of a programming pulse follows the line output O j , Vp+ = Vt1+,Vp− = Vt1− in SO

mode. Two threshold programming uses both SET and RESET (hereafter, Set Reset (SR) mode),

implements all four error-correcting steps with just two pulses as shown in Fig. 2.19e (and, as

previously visible in Fig. 2.5). Again because conductance falls across the second threshold,

and rises above the first, Vp+ = Vt2−,Vp− = Vt2+ in SR mode. In practice, then, SO and SR
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modes send pulses with opposite voltage polarity to correct an equivalent error. The precise

voltage programming configuration to implement both SR/SO modes in our experimental work

is listed below in Section 2.5.3.2.

Figure 2.19: (a) A schematic of SO programming in an active case; while both possible correct-
ing pulses are shown on the line, only one would be sent corresponding to depicted
error case (b) Similar schematic showing SR programming being used to correct
an error. (c) A diagram of device conductance evolution as it relates to appropriate
thresholds for programming pulses in both modes. (d) Color-coded table of the
active steps that SO programming implements. (e) Color-coded table of SR pro-
gramming that implements all active steps. (f) Table which shows input, expected,
line output, and prescribed weight change binary (sign) values at each of the four
active steps.

2.5.3 Experimental Set-up

2.5.3.1 Overview of Operation

The electrografted memristive synapses have been integrated in a chip with 22 total devices

(11 on two individual lines), where they can be accessed individually and collectively on each

of their ports using individual input lines along with the common line. Once put in vacuum us-

ing an accessory pump (Alcatel ACP 286), said chip is connected to a custom-designed printed

circuit board (PCB) connected to a power source (Agilent E3631A). Within the PCB, devices

are connected to accessory circuitry such as the comparator, current to voltage converter, etc

needed to read line output. In addition, the PCB contains components for electrostatic dis-

charge (ESD) protection. The board is directly connected to an FGPA (Altera Cyclone DE2-70),
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Figure 2.20: Organic memristive nanodevices, placed within a custom designed PCB board
connected to a power source, are put into vacuum using an accessory pump.
Within the PCB board, the devices are connected to accessory circuitry (compara-
tor, current to voltage converter), needed to interpret line output. The PCB board
contains additional components for electrostatic discharge (ESD) protection. The
board is connected to an FGPA, which sends appropriate programming pulses us-
ing the logic (FSM) it was programmed with before the learning process began us-
ing a PC. A NIOS softcore was created to allow for real time user control of the
functions that have been loaded onto the FPGA during programming via the con-
nected PC interface. Functions such as erase, read, and learning modes (single
epoch, or continuous) can be applied to devices subsequently. Finally, an oscillo-
scope probes the key electrical ports noted in Figure 3,4: line output X j , compara-
tor output O j , programming pulses Vp , and expected function Y j . The oscilloscope
is also connected to the PC for real time data collection.

which both reads from the devices and sends appropriate programming pulses by using the

onboard logic (FSM) with which it has been programmed by accompanying generic Altera soft-

ware (Quartus). A custom NIOS softcore dedicated to interface with a PC and corresponding

graphical user interface were coded to allow for real time user control of the functions that have

been loaded onto the FPGA during programming. Functions such as erase, read, and learning

modes (single epoch, or continuous) can be applied to devices subsequently. An oscilloscope

(Agilent MSO 6014A) probes key electrical ports and is also connected to the PC for real time

data collection assisted by LabView. A representation of the actual setup is below (Fig. 2.20).

2.5.3.2 Voltages scheme implementing learning

Table 2.3 shows the actual voltage levels used to manifest conductance change according to the

conditional logic scheme just described. As visible, the electrical potential across every device

satisfactorily implements the active error-correcting steps.
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Error case
Actually applied voltages (V)

Individual conductance (G)
and Pair Weights Changes Step(s)

Xi+ Xi− VP EDP+ EDP- ∆G+ ∆G− ∆Wi j

SO Mode
1 (H→L) +1.5 -1.5 +3* -1.5 -4.5 - ↗ -1 (↘) S1
1 (L→H) +1.5 -1.5 -3 4.5 1.5 ↗ - 1 (↗) S4

SR Mode
1 (H→L) +1.5 -1.5 -5* 6.5 4.5 ↘ ↗ -1 (↘) S3,S1
1 (L→H) +1.5 -1.5 +5 -4.5 -6.5 ↗ ↘ 1 (↗) S4,S2

*Correspond to VP+ in Fig. 3d,e of the main text. (The unmarked ones correspond to VP−)

Table 2.3: Simplified example of each programming case as presented in Fig. 3 of the main
text, assuming Vt 1=3V, Vt 2=5V, Vi =1.5V, and electrical differential potential across
the memristor (EDP) = Vi −VP . Xi+ and Xi− stand for the input of one memristor
pair, S1-S4 are active step to correct errors according to the WH table, as also shown
in Fig. 3 of the main text.

2.5.4 Learning Results

Both SO and SR programming schemes demonstrate successful learning of diverse 3-input

functions using 4 pairs of organic memristive devices (3 pairs for each of the input lines, and

one pair for bias).

2.5.4.1 Characteristic Learning Experience

One learning example using SO scheme is presented in Fig. 2.21a-d. In this case, the system

is learning the "A nand B and C " function. To read the initial state of the neural learner, a

series of input signals is sequentially applied at 10kHz rate, representing the 8 different 3-input

configurations (i.e. 000, 001, ..., 111). The devices can be programmed with pulses as short as

1 µs, but with such short pulses, programming cannot be considered reliable. For this reason,

in this demonstration, 100 µs pulses are chosen. The blue line in Fig. 2.21a is the output of

current-voltage converter (noted schematically on Fig. 2.19), which represents the total post-

synaptic weight (X j ) of all memristor pairs. Note that as depicted in Fig. 4 the post-synaptic

value (blue line) depicted is always inverted (-X j ) due to the operation of the transimpedance

amplifier. The pink line shows the output of the comparator (O j ), which compares actual X j

(blue) to ground (0V). If X j > 0, O j is pulled towards "high" output (1); if X j < 0 it is pulled to

"low" output (0). As shown in Fig. 2.21a, the initial state of the neural learner gives an output

of "00110011" from the eight (A,B ,C ) input configurations.

Figure 2.21b shows the synaptic weight evolution (top panel), and error counts (bottom

panel) at each epoch. Errors are gradually corrected until the system reaches an error-free state

after 7 epochs. Fig. 2.21c shows an example of every event inside one learning epoch. The

black line is the input of one memristor, Xi+, changing its sign according to the input signal

at positive polarity. The blue and pink waveforms- X j and O j respectively- are read from the

same nodes as depicted in Fig. 2.19a,b. The red line indicates a measurement along the wire

that supplies programming pulses (Vp as noted on Fig. 2.19a,b). It shows that three pulses were
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Figure 2.21: Learning of "A nand B and C " function (00001110) using the SO programming
mode. (a) Output of I-to-V converter (blue line, -X j ) and comparator (pink line,
O j ) showing the initial state of the system of each learning. The initial errors are
marked in red. (b) Learning histogram showing the synaptic weights (top panel)
and total errors (bottom panel) evolution at each epoch. (c) Example of a single
learning epoch (marked with grey circle in (b)) showing the input Xi (black), pro-
gramming pulses at Y j (red), synaptic output -X j of the I-to-V converter (blue),
and digital output of the comparator O j (pink) which is being compared to Y j . The
active programming steps, when the system attempt to correct an error, are shaded
red. (d) System output at the end of the learning, showing successful learning of
the "A nand B and C " function.

applied in this particular epoch to correct the output errors for "010", "110" and "111" inputs,

respectively. It should be noted that when not in programming mode, a switch guarantees the

common line is virtually grounded by the current converter, as also shown in Fig. 2.19a,b. Fig.

2.21d probes the synaptic output (X j ) and digital output (O j ) nodes at this final state. It clearly

shows that the CMOS neuron has learned the target function, "A nand B and C ", by producing

the output "00001110" when provided a truth table as input.

Fig. 2.22a-d shows a learning example using the SR mode instead. Error counts starts at

5, and oscillates thereafter until the function is learned perfectly at epoch 13. The synaptic

weights are adjusted actively during the learning process to reach the final state of "A nand B

and C " function. As visible, the main difference between SO and SR programming styles is that

there is much less fluctuation of synaptic weight during learning in the former. This is because

SO programming uses only SET, which changes a given memristive device’s conductivity more
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gently than RESET. It should be noted that SR programming can begin regardless of the initial

state. Whilst, for SO learning, all memristive devices were first RESET before learning begins

(since a physical decrease in device conductance is not accessible through this learning rule).

Figure 2.22: Learning of "A nand B and C " function (00001110) using the SR programming
mode. Panels are the same as in Fig. 2.21.

2.5.4.2 Overall learning performances

In total, 7 linearly-separable 3-bit functions were attempted by our demonstrator using both

programming styles (SO,SR). Of the 7 functions attempted, 5 were successfully learned in both

cases (a 71% success rate). All successful cases are noted below for SO and SR modes in Ta-

bles 2.4 and 2.5, respectively. Although a very small sample, mean values show that SR com-

pletes faster but ’wastes’ many pulses in the process. Conversely, SO takes more epochs but

less pulses. The former is explained by RESET overshoots; the latter, by ’sticky’ devices that

take many epochs to reach a high enough conductance.

2.5.4.3 Resilience to Imperfect Devices

Large device variability is a major setback toward the realization of robust ANNs. Fig. 2.23a

and b show the typical Vt1, Vt2, GMax, and GMin variability of 11 devices (in the same row). The

variation of Vt1 is relatively small compared to that of Vt2. This suggests the learning system

should be more reliable if only Vt1 is required for learning (SO mode). As for GMax and GMin,
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Epoch Learned Errors Corrected
3NAND 33 38

(A and B) or C 21 31
A → (B → C) 9 26

A nand B or C 7 10
MAJ 12 24

Mean 16.2 25.8

Table 2.4: All Functions learned Successfully by demonstrator using First Threshold (SO) Pro-
gramming

Epoch Learned Errors Corrected
MIN 14 39

A nand B or C 13 64
MAJ 6 13

A and (B or C) 8 20
3AND 22 39
Mean 12.6 35

Table 2.5: All Functions learned Successfully by demonstrator using Second Threshold (SR)
Programming

their variations are relatively large, which is a common issue in memristive devices. Neverthe-

less, a relatively wide working region exists, as shown in the green zones of Fig. 2.23b, which

permits learning in the system. The immediate effect of variability is to increase the number

of epochs required to learn. For example, when using GMin as initial states, devices with lower

GMin need extra time to correct their errors, while a lower GMax will reduce the safe working

range. The measured variability of all 11 devices on chip were 10%, 14% and 59% for Vt1, Vt2,

GMax, respectively, as summarized in Table 2.6. Our learning demonstration was carried out

using the 8 most similar devices, reducing GMax variability to 40%.

Mean Standard deviation Variability
Vt1 (V) 3.78 0.39 10%
Vt2 (V) 6.72 0.97 14%

GM ax (µS) 69.5 41.2 59%
*GM ax (µS) 73.3 29.0 40%
*GM ax of the 8 memristors used in learning system prototype.

Table 2.6: Typical variability of memristive performances extracted from 11 devices of the same
chip.

Although less studied, physical devices possess non-idealities beyond variable response to

equivalent voltage inputs. In the case of our organic-composing device, two additional effects-

asymmetric switching behavior and evolution of threshold voltages through time- have non-

negligent effects on our supervised-learning system. Asymmetric behavior manifests as an im-

balance between the SET/RESET processes of our device. To increase conductivity, filaments
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Figure 2.23: (a) Threshold voltages variability of 11 memristors in the same chip (Vt1 in black
and Vt2 in red). (b) Maximum and minimum conductivity (GMax, GMin) variation of
these 11 devices. The symbols marks the average values and the error bars indicate
their standard deviations. (c) Evolution of SET and RESET events in numbers of
On/Off cycles, extracted from the data shown in Fig. 2.2b. The green line shows
the moving average of Vt1, and the red line for the Vt2. (d) Contour map of SET and
RESET voltage with respect to their initial conductivities, G0.

build up gradually through atomic/ion diffusion or charge transfer/trapping. By contrast, the

decrease of conductivity is mostly caused by the breaking of the conductive filament, which is a

violent process. This asymmetric behavior causes a fundamental problem during SR learning:

instead of gradually approaching the target output (decreasing errors) at the constant weight

adjustment required by WH, a dramatic RESET overshoots and in turn creates more errors than

it corrects (red arrow in Fig. 2.22b). An immediate way to avoid this issue is to switch learning

algorithm: in SO programming, memristive devices are programmed only at the first threshold,

avoiding dramatic RESETs. Inversely, devices with the opposite SET/RESET asymmetry could

use Reset-Only programming to avoid dramatic SET [81]. To prevent conductances from satu-

rating (vanishing) in such a scheme, a RESET (SET) pulse would be required at every pair after

a certain number of unsuccessful learning cycles.

The second physical constraint encountered with our devices is their evolution through op-

erating time. Figure 2.23c shows the evolution of SET and RESET events in sequentially applied

On/Off cycles. While Vt1 remains constant after 2300 cycles, Vt2, experiences non-negligible

changes throughout the measurement period. It tends to gradually shift to higher voltage,
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drops to a lower voltage, and begins another upward drift cyclically. The observed behavior is

compatible with formation and growth of conductive filaments. As the filament grows thicker,

larger current (thus higher voltage) is required to break it. As also shown in Fig. 2.23d, the

RESET threshold increases for a higher initial conductance. At some point, when the broken

filament can no longer recover, a new thin filament is grown, which breaks at lower voltage.

The aging of the device makes formation of subsequent filaments harder, and provides an ex-

planation for why Vt2 generally moves to a higher voltage over time. This impacts operation of

the learning system, as the device can no longer RESET if it does not dynamically adjust the

amplitude of programming pulses. While lifetime can eventually be improved by engineering,

one immediate way to reduce aging is again adjustment of the learning algorithm. Switch-

ing from SR to SO programming reduces the number of On/Off events per active cycle by half

(since the former implements every active step at each cycle while the latter keeps half devices

in read mode at each cycle). When considering the combined effect of violent RESET and dou-

ble switching activity, a switch from SR to SO could increase device and thus system lifetime

substantially.

Device imperfections also affect the efficiency of SO learning, similarly increasing number

of required epochs for learning. As shown in Fig. 2.21b, the number of errors may remain

unchanged for several epochs before decreasing again. This is due to non-linearity in the SET

mode: while a programming pulse efficiently increase conductivity (∆G)of the devices at lower

conductance, the increment is reduced when the state prior to a pulse is already conductive.

While this does not prevent learning, it does decrease efficiency. If both devices in a synaptic

pair reach maximum conductivity in SO mode, i.e. are stuck at the ON state, the only solution

is to RESET the system and start another learning cycle, which can complicate the function of

the neuron. Moreover, if a single device is thoroughly stuck-on, learning may not be possible

depending on the pair it is in and function being learned.

2.5.5 Complementary Simulations evaluating effect of variability

2.5.5.1 Simulation Methodology

We expanded upon the generic model presented earlier in Section 2.3.1 to develop a model

which individualizes the evolution of each device in an array where Gmax, Gmin, and the cor-

responding conductance change ∆G is thus different for each organic memristor device. As-

suming the device is biased at a voltage Vb above the first critical threshold Vth1 but below Vth2

and decreases above Vth2, and given a total number of total addressable states g and the write

range , r =Gmax −Gmin, as follows :

dG

d t
=


Vth2 > |Vb | >Vth1 f (|Vb1 −Vth1|, g ,r )

|Vb | >Vth2 − f (|Vb2 −Vth2|, g ,r )

|Vb | <Vth1 0.

(2.25)
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In our case where d t is set, e.g we employed a constant programming scheme with Vb2 =Vp+=
5.5V for reset, Vb1 = Vp− = 3.3V and programming (pulse) length d t = 100µs, ∆G = f (g ,r )

can be approximated in a discrete time-step simulator during each writing (learning) phase as

follows:

∆G = r

g −1
. (2.26)

We always set g = 64, thus variability is introduced through the r parameter as constructed

by the device’s individualized writable range. For the control case of perfect devices, every

device has identical extrema ( Gmax = 69.5µS,Gmin = 2.1µS) and identical thresholds; for the

variable cases, we have introduced extrema distributed around a Gaussian spread from those

means, and with first and second thresholds distributed around Vth1 = 3.1, Vth2 = 5.5. Finally,

to account for the asymmetry issues, we have treated the ∆GSET as a baseline for each device,

and multiplied ∆GRESET = γ∆GSET where γ is the asymmetry parameter. This model was built

and evaluated in Matlab.

2.5.5.2 Impact of Device Imperfections on Logic tasks

First, we used the model to attempt the same logic-learning functions we attempted exper-

imentally. For each function being learned, 500 Monte-Carlo iterations- each which begins

with a random set of low initial conductances among 8 simulated memristive devices- are sim-

ulated. When variability mode is enacted, at each iteration, inter-device variability is emulated

by picking random first threshold, GMax , and GMin values for each memristive device from a

normal distribution around a characteristic value with σ(GMax) = 40%, σ(Vt1) = 10%, and for

SR simulations, σ(Vt2) = 10%. Even in the default case, γ= 1.33, reflecting the fact that RESET

is more powerful than SET. Every simulated system in a given iteration is granted 50 epochs;

if it does not solve all cases of the target function’s truth table by the final epoch using WH to

adjust weights, learning is considered a failure. Average success rate is given by the number of

successful trials divided by iterations. Errors corrected and epoch completed are obtained by

taking mean values over all iterations (if the function failed to learn, epoch learned in that case

is counted as the maximum (50)).

The results of these functional simulations stress the decisiveness of device variability and

conductance change asymmetry. Without variability in device thresholds and GMax, learning is

always possible; the 7 three bit functions learned by our demonstrator learn in simulation ev-

ery time, by mean 3.5 epochs for SO programming and mean 4.4 epochs for SR programming

(when characteristic change in conductance above the first or second thresholds, ∆G+,∆G−,

respectively, are constant for every device). However, variability creates imperfect learning

outcomes. Table 2.7 lists averages for 500 trials with variable nanodevices in SO mode. As

visible also in Fig. B.3, the average success rate now varies slightly function-by-function. SR

programming introduces the possibility of an asymmetry between the sizes of the characteris-

tic conductance change ∆G+,∆G−. Table 2.8 (also Fig.B.4 (a)) shows the variable simulations
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for this result in a mild asymmetry case (∆G− is slightly larger than ∆G+).

Simulated learning results for SO, SR modes are similar: every function is learned success-

fully in at least four out of five cases at experimental levels of variability, while SO is slightly

faster. Demonstrator learning results (Supplementary Tables S2,S3) show that SR mode actu-

ally finishes faster on average (mean 12.6 epochs, SR; mean 16 epochs, SO), while requiring

more programming pulses (35 SR, 26 SO). Although the sample size of successful demonstrator

examples is small, characteristic device imperfections are nonetheless highlighted by this con-

trast. In SR mode, dramatic RESETs double the error pulses predicted by the model to be sent

in one case. While SR mean epoch nearly matches predicted, SO mean epoch is driven up by

functions that struggle against non-linear conductivity: 2 functions in particular (3NAND, "(A

and B)or C") each take 10 epochs to correct their final error case, nearly doubling epochs from

9 to 16.

Our simulations also highlight the fragility of SR mode by exploring the effect of the asym-

metry parameter, γ. While mild intra-device asymmetry as in Table 2.8 is workable, stronger

asymmetry (∆G− À ∆G+) produces an average success rate of only 5%− 30%, depending on

the function (Fig. B.4 (b)). When device conductances remain ’pinned’ to low values, insuffi-

cient weights are available to separate some cases of the truth tables of some functions from

others (Fig. B.4 (e)). The converse strong asymmetry case (∆G+ À∆G−) yields better results for

the SR style than any other configuration (Fig. B.4(c),(f)) because it has the opposite effect of

increasing the span of possible weights (conductances).

Complex, non-linearly separable functions may be perfectly learned in several layers when

our system is cascaded, or imperfectly learned in one layer with larger neural units than the

one we physically realized. To show the former, we emulated a multi-layer perceptron system

by feeding forward functions learned in a first layer to build the truth tables of linearly non-

separable functions in subsequent layers [117]. Similarly to [258], which showed a multi-layer

memristive system can learn AND and NOT in a first layer with two neural learners and subse-

quently the 2-bit XOR function with another in the second, we learned the 3-bit XOR function

(01101001). Three learners in the first layer and one in the second (32 organic memristive de-

vices total) are required to resolve this problem. The function is perfectly learned with perfect

devices; when approximating experimental levels of inter-device variability, both programming

styles can still successfully resolve the problem: mean 79% success rate is obtained for SR mode

(Fig. B.5 (a),(c)) and 71% for SO mode (Fig. B.5 (b),(d)).

2.5.6 Demonstration on larger image task

Lastly, we used this model to simulate the performance of a hypothetical crossbar of our de-

vices performing online learning in the context of a canonical image recognition task (the M-

NIST database of handwritten digits [159]). To do this, we simulated crossbar composed of

15,680 of our organic memristive synapses. Ten separate perceptrons or neural learners- one

for each digit class- each require double the number of synaptic devices as pixels (p = 784) to
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Avg Success Avg Epoch Avg Errors
3NAND 87% 9.36 25.33

(A and B) or C 80% 12.77 36.73
A → (B → C) 88% 9.05 30.02

A nand B or C 86% 9.98 28.1
MAJ 91% 8.54 25.08

A and (B or C) 83% 11.35 32.76
3AND 85% 10.73 30.1

Table 2.7: Simulated results for First Threshold (SO) Learning assuming experimental variabil-
ity parameters.

Avg Success Avg Epoch Avg Errors
3NAND 83% 13.44 26.34

(A and B) or C 80% 14.81 25.11
A → (B → C) 88% 11.34 13.11

A nand B or C 82% 14.04 26.04
MAJ 84% 13.07 19.01

A and (B or C) 85% 12.94 22.95
3AND 82% 14.85 26.71

Table 2.8: Simulated results for Second Threshold (SR) Learning assuming experimental vari-
ability parameters.

encode positive and negative weights. All see a given example digit simultaneously, and all cor-

rect weights simultaneously as given by the error case (if there is one). This presentation and

electrical scheme is the same as already presented for the OCR/Sci-kit digits scheme in Sec-

tion 2.4.8, except for the fact that the system is now much larger due to the additional input

dimensionality.

By the end of training, the algorithm has progressively adjusted weights (device conduc-

tances) such that each neural learning unit emulates a binary classifier between the chosen

class and all others (geometrically, this solution is a hyperplane in p-dimensional space). As

visible in Fig. 2.24(a), performance on this task is robust: top performances for SO and SR

modes are at 86 % and 88 % respectively, and mild dispersions around the thresholds and Gmax

are not noticeably detrimental. While SR mode continues to slightly improve performance as

it receives more training samples, SO performance markedly declines after a certain number

are given due to a saturation of all devices towards Gmax. Similarly to the logic gate case, SR

is superior in the symmetric case but is uniquely subject to poor performance due to device

asymmetry (violent RESETs) effects. This effect is further assessed in Fig. 2.24(a)’s purple (uni-

form devices) and red (variable) series. These series suggest the case in which every RESET is a

violent one: that, is,∆G+ = 2.5%GMax,∆G− = 5%GMax. As visible, assuming all devices in the ar-

ray suffer from this effect, the system would be incapable of resolving the MNIST task at greater

then 70% accuracy even at full convergence (after sufficient examples have been presented).
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Figure 2.24: (a)Classification performance as percentage of 10,000 Tests on the MNIST
database answered correctly (guess g matches actual class value k) as a function
of the number of examples chosen randomly from the pool of training examples.
Each point is the average of 5 simulations under different low starting conduc-
tances, in the uniform cases, and 10 simulations under different starting and dis-
persion values, in the variable cases.(b)Performance is given as the function of in-
creasing dispersion parameter σ used to assign different threshold and maximum
conductivity values to each of the simulated 15.6k organic memristive nanodevices
for both SO, SR modes along a Gaussian spread. Every point is again averaged over
10 total runs.

On the other hand,Fig. 2.24(b) shows that systems with worse than experimental levels of

variability continue to perform well on the task. SR is more resilient than SO as dispersions

increase, which may relate to devices with very low Gmax becoming ’stuck on’ early (whereas

they could be decreased in SR). The task shows that a large memristive perceptron using binary

Widrow-Hoff approaches the natural accuracy limit of a perfect perceptron implemented in

software (90 %). The higher performance on MNIST than the 3-XOR problem highlights a trade-

off between exactness and efficiency in hardware ANNs. With logic functions every case of the

truth table must be perfectly emulated, while in classification problems aggregate dynamics

allows for approximately correct answers to emerge.

2.6 Discussion and Perspective

We explored the use of a unipolar organic memristor device with multiple thresholds, and

demonstrated its advantages as well as limitations in both simulated and experimental super-

vised learning tasks. Our initial work formulated this learning in terms of the adaptive learning

of logic functions (Sec. 2.3.4.1), and we found that on-chip learning is successful in this context.

In addition, we found something special and unexpected, that the symmetry of our particu-

lar device’s conductance evolution reduces the complexity of programming operations to one
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pulse per cycle for a single function learned, and 2 per cycle in array. Moreover, the all-unipolar

memristive latch scheme (Sec. 2.3.3.2) paved the way towards an all-organic on-chip design.

This design was also confirmed to learn successfully in a non-ideal circuit environment.

Due to the simplicity of the model that yielded these results, we used a more complex ana-

log compact model (Section 2.4.3.2), which was developed using concrete measurements of

TBFe nanodevices. This model, notably allowed for a realistic temporal approximation of con-

ductance evolution of the device, allowing us to appreciate which pulse-programming regime

is most appropriate for learning in different contexts. In this context, we demonstrated inter-

esting plasticity effects with the devices in the context of parallel neural learners architecture

(Section 2.4.6), and subsequently adapted it to the full supervised case, where small handwrit-

ten digits were memorized and recognized on-chip (Section 2.4.8)

Lastly, our experimental work demonstrates the supervised learning ability of our organic

memristive device in a physical, self-learing neuromorphic system; this is an important out-

come that unites the two strands discussed in Section 1.4. In all of our past works, we always

assumed the device would use both of its active conductance evolution modes, but in this work

realistic physical constraints, in particular asymmetric RESET behavior, inspired us to consider

a flexible programming scheme or learning style. In particular, both SET and RESET regimes

can be exploited to effect suggested weight changes (second threshold/SR learning), or only

SET (first threshold/SO learning). Examples of the learning of 3-input logic functions are shown

for both styles and are compared to simulations.

Our physical system demonstrated high tolerance to inter-device variability in both first

and second threshold styles (Section 2.5.4.3), which speaks to the power of our supervised

learning algorithm. However, there is less resilience to imperfections involving the RESET

mode. For this reason, while first threshold (SO) programming is a better choice for neuromor-

phic systems built with the present devices, improvement of devices for future use in SR mode

represents a compelling future research direction. In particular, device engineering which im-

proves RESET performance could unlock efficient pulse programming and thus considerable

energy savings in larger systems.

Finally, through the use of a functional model directly inspired by the inter-device variabil-

ity and asymmetry issues we encountered, (Section 2.5.5.1), we evaluated in greater depth how

the architecture allows us to execute imperfect learning of non-linear function (in contrast to

the experimentally demonstrated ’perfect’ learning of linearly separable logic functions). In

this context, our neural learner architecture accepts inputs more complex than a truth table

and be chained together, as demonstrated also in the XOR learning example. This suggests that

systems with many layers (crossbars), each composed of several parallel learners, can be built.

2.6.1 A bridge to multi-layer architectures

Multilayer memristive systems in principle should be able to solve canonical tasks with greater

accuracy then we showed here due to their ability to generalize better on intrinsically non-
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linear tasks. This is due to the difference between the computational capabilities of single feed-

forward networks, which can only make linear approximations (as explained in Section 1.3.5,)

and mulitlayer feedforward networks, which use a hidden layer allows to encode a higher-

dimensional understanding of the considered task (see Sections 1.3.6 and 1.3.7). However,

the physical implementation of multiple layer memristive architectures is an open topic of

research, with many design choices and parameters unset or unconsidered. In the following

topic, we consider this topic in great depth.
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Chapter 3

Benchmarking Multilayer Memristive

Learning Architectures

If a machine is expected to be infallible, it cannot

also be intelligent.

Alan M. TURING

“THIS CHAPTER studies larger on-chip architectures by expanding fundamen-

tal operations already demonstrated to larger multi-layer learning systems.

These systems are evaluated on several data science (machine-learning) tasks. Here,

more focus is on the systems-level operations and the performance of the designs

than on the particular device they are built from, and the designs may be used with

more than just the polymeric device from Chapter 2. However, typical failings of

nanodevices are taken into account, and even in some cases, useful to the comput-

ing schemes being proposed. ”
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THIS CHAPTER focuses upon the integration of memristive devices into larger learning sys-

tems. Special attention is paid throughout to the ease of realization and the resilience of

the proposed schemes to problems or constraints with emerging nanodevices. There are four

sections:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. Motivation for exploring the design space of architectures for multi-layer online learning

system is given, the considered benchmarking tasks are explained, and a generic, highly

parameterizable nanosynapse model is introduced which is used in the context of the

extended learning systems. (3.1).

2. Presentation of one layer regression, on-chip progression/regression learning system

(ELM/No-Prop), and memristive MLP design (gradient-learning system) architectures

that will be evaluated, (3.2))

3. Performance of each of these architectures on the benchmarks is noted, with a particular

focus given on the MNIST benchmark as the primary one (3.3))

4. Critical constraints in terms of system size/overhead, nanosynapse richness, resilience

to standard non-ideal effects such as variability and asymmetry, and energy con-

straints/requirements are discussed. (3.4))

3.1 Benchmarking Online Memristive ANNs

3.1.1 Research Question

Overall, in this chapter we extend the project of building scalable neurosynaptic learning sys-

tem based on parallel and/or cascaded on-chip neural learner systems (as articulated in Sec-

tion 1.4.5) to more powerful multi-layer systems that, in principle, should be able to generalize

better on difficult tasks. However, there are many possible architecture configurations possible

in the multi-layer learning context, which raises an important research question: which multi-

layer architecture is preferable given realistic device constraints on candidate nanosynapses?

To answer this question, we:

• Introduce a high-level choice possible between static, e.g. NoProp multi-layer learning

systems, and multi-layer systems learning with backpropagation,

• Describe the data science tasks used to provide a constant basis of comparison,

• and detail the generic and highly parameterized nanosynapse model used in all of these

systems to evaluate their resilience to key constraints.
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3.1.1.1 Possible architectural tradeoffs

As introduced in Sections 1.3.5 and 1.3.6, Widrow-Hoff learning or the delta rule is also the en-

gine of the iconic backpropagation algorithm [259]. Thus, in a multi-layer learning, a full back-

propagation learning system is one option. In this context, on-chip friendly approximations

of this architecutre have been detailed in simulated [180], experimental single-layer learning

systems, [163, 181], and recently, a multi-layer prototype using this learning strategy was also

realized [185]. Despite these successes, systems learning with the full backpropagation have

two key constraints, one algorithmic and one related to co-integration with nanodevices: slow

training/convergence, especially as system size (number of layers) and/or size of the training

task is large [187], and deterioration relative to floating point performance due to imperfect

device phenomenon (and, in particular, non-linearity device effects) [185, 256, 260].

A second general option involves an on-chip adaptation of the extreme learning machine

(ELM) or No-Prop architecture. As described in Section 1.3.7, these systems use a combi-

nation of non-linear projections in first layer(s) and only trains the weights of the last layer

[125, 126, 261]. An analogous approach of projecting to a higher dimensional space followed

by linear regression has also been proposed in the neuromorphic engineering literature [128].

Moreover, this architecture possesses neuroinspiration, both to dendritic computation in in-

dividual pyramidal neurons [262], as well as to the non-linear encoding, linear-decoding neu-

ral population learning model called the Neural Engineering Framework (NEF) [100]. So far,

ELM/No-Prop inspired projection systems constructed in part by nanosynapses have previ-

ously been described in [263, 264], but all assumed ex-situ learning to yield analytically derived

second layer weights. We greatly expand upon these ideas and propose an ELM-inspired multi-

layer learning system which can learn entirely on-chip (locally).

In the following sections we construct a direct comparison between the efficiency of both of

these multi-layer (multiple crossbar) neural network schemes, with a control case represented

by a single network learning system (crossbar) on a standard task in machine learning, the

MNIST database of handwritten digits.

3.1.1.2 Considered Benchmark Tasks

To explore the computing possibilities of nanosynapse arrays, a few canonical tasks taken from

the data-science literature were tested, with various input dimensionality x and task complex-

ity c. As an analytical value for c is difficult to compute, we instead used an informal approach

to estimate complexity by clustering dataset examples using t-Distributed Stochastic Neighbor

Embedding (t-SNE), a well-known dimensionality reduction technique in the machine learn-

ing literature [255] and visually assessing the task’s difficulty. The first task we considered is the

Sci-Kit/OCR database of handwritten digits [254]. As introduced in the electrical simulations

show in Section 2.4.8, this database consists of 1579 images of 10 handwritten classes (digits

0-9), each which has dimensionality x1 = 64 (64 pixels). Some examples are visible in Fig. 3.1
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(a). In addition, complexity c is relatively low for the task; as visible in the clustering plot (Fig.

3.1 (c)), the database could be easily classified as a combination of several linear functions due

to the easily separated clusters (different colors in the plot). The second task we considered is a

far larger and more complex version of the ten handwritten digits, the iconic M-NIST database

first developed by Yann LeCun [151]. M-NIST consists of 60,000 training digits and 10,000 test

digits; now, each example has a dimensionality of 784 pixels (x2 = 784). A few examples from

the M-NIST database are shown in Fig. 3.1 (b), which notably are more complex and irregular

than those shown for SciKit. Moreover, the corresponding tSNE plot in Fig. 3.1 (d) demon-

strates that clustering of these classes is notably non-separable or ’tangled’ when mapped to a

2-dimensional space. As such, simple lines no longer suffice, and high-dimensional structures

are required to yield strong classification results. Lastly, a very recent database called Fash-

ion M-NIST was chosen which is the most difficult of all tasks considered [265], while being

the same dimension as the M-NIST task (x2). Like the other two cases, there are ten classes

to distinguish; these include shirts, blouses, and pants, a few of which are shown in Fig. 3.1

(c). Meanwhile, the corresponding tSNE clustering plot (Fig. 3.1 (f)) shows that the classes are

even more entangled in the 2-dimensional space than M-NIST, a sign of very high complexity.

Fashion M-NIST has the same total number of testing/training examples as M-NIST.

Although all three databases are benchmarked occasionally in the following results sec-

tion, the MNIST database forms the bed-rock of analysis since benchmarks for the computing

task are available within the field of neurmorphic engineering, making it possible to usefully

compare the upper limits of our approaches with contrasting/competing neuromorphic ap-

proaches.

Like in standard computer vision tasks, images are unwrapped and presented as a single

vector to our nanosynapse learning systems. To make them appropriate for a nanoelectronic

environment, a mapping from analog pixel values to voltage values was made on a pixel-by-

pixel basis within the range −Vread <Vi <+Vr ead as

Vi = 2Vread(Xi /Lmax)−Vread, (3.1)

where Lmax is the maximum pixel intensity, and Vread is a voltage that does not itself alter nan-

odevice conductances; critically, this allows for non-disruptive inference steps.

3.1.1.3 Fully Parameterizable Nanosynapse models

In order to achieve relevant benchmarking results for nanosynaptic learning systems, we needed

to develop a generic nanodevice model (i.e., applicable to designers of many species of mem-

ristive devices) that internally considers the implications of intra-device imperfections (non-

linearity, asymmetry) as well as inter-device mismatch.

These two important features could not be imported from the modeling work previously

presented in Chapter 2, which developed analytical models either directly (Section 2.4), or in-
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Figure 3.1: (a), (b), (c): Demonstration of examples from the SciKit Digits, M-NIST, and
Fashion-MNIST databases, respectivel. (d), (e), (f): Demonstration of an un-
supervised clustering of the entire database of SciKit Digits, and 5000 samples from
the MNIST and Fashion-MNIST databases, using the Barnes-Hutt implementation
of t-distributed Stochastic Neighbor Embedding (tSNE) method [255]. In all graphs,
the axes are unit-less, the colors correspond to the labels or classes, and the col-
ors/legend is the same among all graphs.

Figure 3.2: (a),(d) demonstrate symmetric linear model for both SET/RESET in which conduc-
tance evolves only as a function of the device’s available weight space (Gmax −Gmin)
and number (g ) of writable levels; (b), (e), and (c),(f) demonstrate non-linear model
in which positive (SET) and negative (RESET) conductance evolution, respectively,
are also dependent on the starting conductance (Ginit). Plots (a)-(c) share the same
legend, are on a linear scale; (d)-(f) also share legend and are on log-log scale.

directly (Section 2.5.5.1) inspired by the physics of our particular polymeric device, and at least

in the first case, was always uniformly applied for every device in a learning array. Nevertheless,

our characterization of physical devices was a major guidepost; it suggested that behavioral
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models must account for physical constraints in order to meaningfully predict behavior, and

provided us with concrete demonstrations of these constraints. As discussed in Section 2.5.4.3,

these constraints are many and had differential effects on learning outcomes.

Based on these observations, we have generalized the two models described in 2.5.5.1, and

developed a third model which accounts for intrinsic device nonlinearity, as previously dis-

cussed in [260, 266]. This suite of three mathematical models: ‘perfect”, “variable”, and “non-

linear”, deal with these constraints at increasing levels of realism.

The first two models are based on identical equations, illustrated in Fig. 3.2(a) and Fig. 3.2(d).

Conductance G evolves by a fixed amount whenever the device experiences a programming

operation: it is changed by

∆GL = r

g −1
. (3.2)

when a “positive” (or SET) programming operation is performed, and by −∆GL when a “nega-

tive” (or RESET) programming operation is performed (r =Gmax −Gmin; g , number of writable

levels, is a now also taken as input to the model.

In the perfect model, all nanosynapses have identical Gmin and Gmax values; conversely,

the imperfect model individualizes each device with different maximal and minimal values. As

each device possesses a slightly different device range, each changes differently as a result.

These models are symmetric between SET and RESET behavior and linear as a function

of number of programming operations, which is often not the case with physical memristive

nanodevices: SET pulses are more effective when the device is low conductance and conversely

RESET pulses are more effective when the device is high conductance [170]. Indeed, our exper-

imental results with the polymeric devices demonstrated that devices using SET repeatedly (SO

mode) struggled to complete their learning, as discussed in Section 2.5.4.3

To account for this reality, we make use of a third model, illustrated in Fig. 1(b-c) and

Fig. 1(e-f), which is both non-linear and state-dependent. Conductance evolution now follows

∆GN L =β(G ,r, g )exp(
−G

r
), (3.3)

with β uniquely defined for each SET and RESET:

βSET =αSET (Gmax −G)∆GL (3.4)

βRESET =αRESET (G −Gmin)∆GL , (3.5)

where αSET and αRESET are parameters of the model.

In such a non-linear model, many device states tend to cluster near the conductance ex-

trema of the device. This is visible in Fig. 3.2 (b)-(c), (e)-(f) as the red (strongly non-linear)

zones. To form a fair basis of comparison between the different models of nanosynapse, αSET

and αRESET constants were used to fit the curve with far more than g discrete states along the

entire space, but g writable levels within the remaining, quasi-linear weight space (clipped
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within 10% of Gmax in either direction).

3.2 Single and multi-layer on-chip learning

3.2.1 On-Chip Regression Scheme

Before exploring the dueling multi-layer architectures, we need a stonger foundation for un-

derstanding learning in the one-layer (single crossbar) case. In this section, we first generalize

upon the designs already shown in Chapter 2 Sections 2.4.8, 2.5.6.

Since neural networks require negative weights, and conductances are physically positive

values, we always associate nanosynapses in pairs of differentially accessed devices. In fact,

two basic topologies are possible for such a system. If a neural network layer has N inputs and

K outputs, the “dual input” topology has 2N inputs and K outputs (Fig. 3.3 (a),(c)), while the

“dual output” one has N inputs and 2K outputs ( Fig. 3.3 (b),(d)). Electrically, in the dual output

situation, input is applied as a set of voltage-mode inputs X1 · · ·Xn+1; in dual-input, each input

Xi is biased via sign-symmetric wires (Xi+, Xi−).

Output current values Yk are obtained naturally through Kirchhoff’s laws. For the dual out-

put case this is done by taking the difference of the two output lines,

Yk =
N∑

i=1
Wi+,k Xi −

N∑
i=1

Wi−,k Xi . (3.6)

where Wi+,k and Wi−,k are physically analog conductance values (Gi+,k ,Gi−,k ) (the bias can

classically be included by including a constant input).

For the dual input case, the output is naturally obtained on a unique wire:

Yk =
2N∑
i=1

Wi+/−,k Xi+/− . (3.7)

During training stages, the final output of each neuron, Ok , is a logic signal representing

its sign (-1, 1). This can be obtained using a simple circuit with a transimpedance amplifier, as

described in Section 2.5.4 as well as [220]. When compared to Yk , the appropriate error case,

if any, is revealed. For ANN applications, during testing or inference stages, the sign-based

output is no longer appropriate, and analog values amongst all output neurons of the ultimate

layer must be compared. To realize this, the following function must be implemented on-chip,

as was described conceptually in Section 1.3.5:

y* = ar g max(y) (3.8)

Where y is the analog vector of all outputs from the neurons. This approach, also referred to as

max-out or winner take all, is a staple of learning operations in neuro-computing [267].
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Online learning in such a physical neural network takes place by repeatedly alternating be-

tween inference and programming modes. In the former, training images are applied and the

system output immediately demonstrates the error cases; in the latter, appropriate program-

ming pulses are applied. Simple programming pulses can naturally implement learning. The

precise voltage levels and number of steps needed to properly implement learning depends on

the chosen nanodevice. Examples for every possible conductance evolution variety are shown

in [245], while cases for the common bipolar, one-threshold device as well as the two-threshold,

unipolar device inspired by the TBFe are visible in Figure 3.4, (iii)-(iv). Notably bipolar mem-

ristive devices require dual pulses per programming step, while unipolar memristive devices

require only one. The combination of post-synaptic programming voltage pulses Vp and pre-

synaptic, Vn , reduce error within all pair weights simultaneously (Fig. 3.3 (c),(d)), satisfying a

simple version of the Widrow-Hoff learning algorithm : [118]:

∆Wi ,k =∆Gsi g n(Xi (Tk −Ok )), (3.9)

where ∆Wi ,k is the weight change at each programming step for the synapse connecting

input i to output k, Tk is the expected output, Ok the actual output, Xi the input value, and∆G

the conductance change given by the device model.

Figure 3.3: (a) Dual input system during inference mode (b) Dual output system during infer-
ence mode (c) Dual input system during an error-correcting (programming) step;
the first two lines are active, while the third remains in non-volatile state. (d) Dual
output system during an error-correcting step; now, only first, third output neurons
are programmed. Outlined synapses pairs have their total weights changed by ei-
ther δ+ or δ−; to realize weight pair changes, individual devices evolve positively/
are SET (green) or negatively/ are RESET (red). respectively.
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3.2.2 On-Chip Multi-Layer Random Projection (NoProp) system

The NoProp uses a two-layer neural network pairing a crossbar of random weights with a cross-

bar of trained ones, as conceptually introduced in Section 1.3.7. The first layer’s weights Win are

random, and are used to non-linearly transform inputs: the state of the j th hidden neuron (of

M total) is given by:

H j = f (
N∑

i=1
Wi n,i j Xi ), (3.10)

where f is a non-linear activation function. In hardware, the random weights can be physically

realized by using the natural dispersion of conductances around Gon and Goff. As noted in

[264], this can be realized by turning all devices on or off. For our simulations, we always used

the dispersion around the Goff state, using measurements extracted from the TBFe devices that

we investigated in 2.2; experimentally obtained GON and GOFF dispersions are shown in Fig.

3.4 (i). Projections from this first layer are then transformed from analog currents to voltages.

Here, we used the simplest activation function to implement: f (x) = si g n(x).

In software/offline learning, the weights of the second layer Wout are computed using a

Moore-Penrose pseudo-inverse, or a regularized form of ridge regression. These schemes in-

volve complicated arithmetics and thus would imply considerable overhead on-chip.

Here, we propose a much simpler scheme that approximates this solution incrementally,

i.e., gradually writes the optimal Wout on-chip. To realize this, we use a crossbar with weights

Wout (Fig. 3.4), which implements the second-layer of the neural network. When Wout is bi-

ased, again a post-synaptic currents (Yk ) is obtained and converted into voltage outputs Ok .

When compared to expected Tk , on-chip regression is implemented using digital Widrow-

Hoff, using the conditional pulse programming scheme detailed in Section 2.5.2, and shown

in Fig. 3.4 (iii) . Three hidden-layer variations, presented in Fig. 3.4(b), were considered to im-

plement a full range of weights:

• M + 1, s (1 extra line, simple): a single row of devices acts as negative reference for all

other neurons;

• M +1,c (1 extra line, complex): each row (n) is subtracted from the one following (n+1),

first from an extra row (note that this requires sequential rather than instantaneous read-

out);

• 2M (double lines): pairs of projection lines are used, exactly as in the dual output design

(notes this doubles the area overhead required for the projection crossbar)

These three options are visually contrasted in the inset (ii) of Fig. 3.4, where the red line shows

the constant and/or variable line which is being used as he reference line. Note that in the

second case, the reference line is dynamically changing through time, and thus read-out from

the first layer is not instantaneous.
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Figure 3.4: Main diagram depicts a NoProp system in the midst of a single training step. The
first layer (Win) is in either OFF or ON state (perfect model), or experimentally de-
rived dispersions used automatically when imperfect and non-linear nanosynapses
are chosen; Inset (i) shows examples of nanodevice variability used to naturally ob-
tain random first layer weights, where the values are experimentally derived from
the TBFE devices characterized in Chapter 2. Next, projection to the second layer is
realize using schemes one of the schemes given in inset (ii); 2M is shown in the main
diagram. Finally, second layer weights (Wout) are corrected in accordance to the er-
ror cases shown using pictured conditional pulse programming scheme. Inset (iii)
shows the general delta rule implementation and how the unipolar TBFe devices
can implement learning in one parallel learning step. In contrast, Inset (iv) shows
the case for generic bipolar memristive devices where dual programming pulses of
opposite polarity are required to fully implement the delta rule.

3.2.3 On-Chip Multi-layer Gradient Learning system

Now, we contrast this nanoelectronic vision with another alternative for learning in a multiple-

crossbar environment. As conceptual introduced in Section 1.3.6, a full multilayer perceptron

trained by backpropagation must also iteratively train the input weight matrix, Win. In this

work, we build upon the conceptual insights provided in Section 1.3.6.2 to demonstrate an

on-chip MLP system learning with a cross-entropy (log-loss) cost function, and softmax one-

hot encoded outputs (e.g., binary labels; target classes are 1 and non-target classes are 0). This
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Figure 3.5: A gradient learning system is depicted during programming step for the single ex-
ample (SGD) system. In this case, a single conditional programming step may be
used to improve all error cases in all layers. A few possible activation functions, and
their derivatives, are visible in the inset.

choice indeed leads to excellent performance in terms of machine learning, and maps relatively

naturally to nanodevices crossbar. Softmax output means that the circuit output Ok is obtained

as

Ok = expγYk∑
expγYk

, (3.11)

where Yk is obtained as in Eq. 3.6, and γ is a normalizing parameter. Softmax output is a signif-

icant cost in terms of circuit overhead. It could be implemented by op-amp circuitry; however,

as each output neuron’s computation depends on the others, this requires calculation outside

the crossbar arrays and increases computations per training cycle. Nevertheless, the choice

of softmax leads to learning rules that are simplified with regards to apparently simpler output

choices. Indeed, following standard backprogation calculations, the weights in the output layer

should be adapted as:

∆w j ,k =−ηδ j ,k , (3.12)

where η is a learning rate, and δ j ,k = H j (Ok −Tk ). For the input layer,

∆wi , j =−η∑
k
δ j ,k w j ,k f ′(H j ), (3.13)

where H j is the activation of that middle layer neuron, and f ′(H j ) its derivative. See Section

1.3.6 again for the full derivations of these equations.

A critical constraint in on-chip backpropagation is that activation functions must be differ-

entiable; the si g n function used in the ELM-inspired system just introduced in Section 3.2.2
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does not meet this criteria, as its derivative is 0 almost everywhere, and even more complex

stochastic or quantization amendments to it have mixed efficacy [268]. Therefore, we intro-

duce two additional activation functions: a t anh activation function, and a rectifying linear

one. In the rectifying linear family, which has achieved state of the art results in machine learn-

ing [153], positive outputs are projected by constant α, hence
d H j

d x = α , and negative ones by

a constant β, thus
d H j

d x = β. We have considered and contrasted both options in this work.

Notably, while the derivative f ′(H j ) = 1− t anh(x)2 varies analogically, rectifier’s gradients are

constants; this significantly reduces constraints on accompanying analog CMOS circuitry.

The sum in equation 3.13 used to propagate error backward, can be performed in-situ us-

ing the dot product operation [269]. Nevertheless, the calculation of gradients for every pair of

nanosynapses and its on-chip implementation is non-trivial, and a considerable circuit over-

head with regards to the NoProp system. In this work, to make the backpropgation easier to im-

plement with memristive devices, we simplify this rule to a sign-based implementation appro-

priate for on-chip learning. This is achieved by adjusting weights according to (si g n(δk x j ,k )) in

both layers [218]. This has the added advantage of transforming stored gradients from analog

values to binary ones. For ultimate energy efficiency, these binary gradient values (error-cases)

could be stored locally for automatic programming by the on-chip memristive latch scheme

already demonstrated in Section 2.3.3.1.

We consider two variants of this on-chip learning scheme; in the single example stochastic

gradient descent (se-SGD) implementation, programming steps are made after every example

image as in the two previous systems; in mini-batch stochastic gradient descent (mb-SGD),

error is accumulated over a set of n training samples before a programming step. There are sig-

nificant differences between the two approaches in terms of over-head and programming costs.

After each presented example in stochastic training, the vector of post-synaptic errors e and the

vector of pre-synaptic values x stored as binary values can easily be stored at the periphery of

every row/column. This means that se-SGD requires no more special CMOS programming ac-

cessory than the previously demonstrated programming for the NoProp system, and can rectify

all error-cases on-chip with the single conditional programming step (for unipolar devices), or

with dual conditional programming steps (for bipolar devices).

However, during batch learning or mb-SGD policy , this favorable periphery property no

longer holds, since gradient descent is always manifested with regards to the unique pre-synaptic

and post-synaptic combination of error at every synapse in the array, as given by Eqns. 3.12,

3.13. As demonstrated in Fig. 3.6, far more than a single simultaneous programming step may

be required; in the worst/standard case, as many as there are columns of devices. As also dis-

cussed in [181], this accumulation operations within every batch additionally requires non-

negligible hardware overhead. Specifically, mb-SGD would require associated memory devices

to continually store/add error gradients. However, by storing only the sign (binary values), this

complexity is greatly reduced compared to a fully analog proposal.
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Figure 3.6: (a) se-SGD; top shows the algorithm defined ∆W for weights, and bottom its cross-
bar writing scheme, where here differential weights are expressed relative to double
output weights (gray boxes denote equivalence of two devices to a single nanosy-
napse). As visible, all of the writing pulses can happen simultaneously (in one
writing pulse). (b) mb-SGD; top shows accumulated gradient for every weight in
the matrix may no longer correspond necessarily to a periphery-compatible writing
scheme. Thus, as shown in two progressive time frames in the bottom pane, mb-
SGD error correction scheme may take place in a line-by-line writing style in the
crossbar array. This may require as much as nxm associated memory to store the
gradients for each nanosynapse (device pair).

3.3 Performances of all considered systems

3.3.1 Performance of standard one-layer scheme

First, we benchmark the online learning capabilities of the one-layer (single crossbar) nanosy-

napse learning systems. Figure 3.7 (a) shows that both dual input/ dual output designs success-

fully converge on the MNIST task at between 85-88 % recognition rate, with devices with num-

ber of states g = 256. Depending on the architecture choice, online learning systems using the

Widrow-Hoff rule lose either negligibly (dual-input; red) or 2-3% in performance relative to the

ex-situ or imported weights control case ( 89 % on the test set). As visible, in-situ performance

always slightly trails the ex-situ approach, yet by two training epochs (120,000 samples), some

of the considered nanosynapse models/designs have converged to this level. Notably, dual in-

put systems (red) slightly outperform dual output (blue). While both linear (perfect, imperfect)

models achieve roughly comparable performance, non-linear models lose significantly: 6-7%

in the dual input case, and 8-9 % in the dual output case.
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Figure 3.7: (a): One Layer system convergence as a function of training samples presented. (b):
NoProp convergence also as a function of samples presented, with both on-chip and
off-chip solutions contrasted. Every system learns with nanosynapses with g = 256
or 8-bit resolution analog devices.

Figure 3.8: For two-layer learning systems using a random first layer (crossbar) and a sec-
ond crossbar using Binary Widrow-Hoff, an analog gain factor ε is varied (where
t anh(xε),x being the pre-synaptic input from the first layer) for the three varieties
of nano-synapses. These three series are contrasted to the three constant series us-
ing the digital, si g n activation function. Every point is the average of 5 simulations
with new starting conductances in both layers.

3.3.2 Performance of random multi-layer scheme

Figure 3.7 (b) shows the convergence of all in-situ NoProp systems with the 3 considered pro-

jection schemes, alongside results obtained using computed output weights (ridge regression).



3.3 PERFORMANCES OF ALL CONSIDERED SYSTEMS 113

As visible, the ex-situ learning approach requires less training examples to obtain the opti-

mal solution; when (M = 3L), maximum 93.8% performance is analytically obtained in around

30,000 samples; in contrast, a full 3 epochs or 180,000 training samples are required to achieve

in-situ convergence. Of the three considered weight modes, only 2M projection with linear de-

vices converges closely to the software solution; linear devices using M+1,c projection scheme

lose only 0.3 % of the off-chip solution, and non-linear devices using these models lose around

2 % in accuracy on the test set. Notably, the M +1,c scheme does very poor overall, achieving

90.1 % (linear) and 87.9 % (non-linear).

Nevertheless, all NoProp systems do better with non-linear device models relative to one-

layer systems; predictability (separability) of inputs is greatly improved once passing through

the hidden layer as compared to direct presentation. With regards to relative success of the

three projection schemes, it is worth nothing that dot-product current differences may need

to be optimized with respect to the hidden layer neurons function. In the present scheme, a

Gaussian probability distribution centered as close as possible to 0 optimizes the symmetry

of the si g n activation function. The 2M /pair projection method reliably insures symmetry;

the M +1,c adequately approximates symmetry; M +1, s method often results in asymmetric

outcomes since it relies on a single row of devices as reference.

So far, all results with the random projection system have assumed a binary activation func-

tion at the hidden layer ( si g n), but we have also considered an analog alternative, the same

t anh function used otherwise in the gradient learning system. Figure. 3.8 shows that, far from

being an advantage, an analog activation function in our studied system can be a disadvantage

unless the correct value of the slope parameter ε, or the gain factor, is chosen. As demonstrated,

at the optimal value between ε= 500, the full performance of the digital/sign activation is em-

ulated, but at too high or too low value, significant loss is incurred. This trend holds true for

all three considered type of nano-synapses. This phenomenon has been earlier noted in [264],

which commented on the critical role of the parameter. We note that, since there is no need for

the activation functions in the progression-regression systems to be differentiable, the digital

approximation seems unambiguously better for its purpose. The removal of another hyper-

parameter can be a major asset to reduce the complexity of design and evaluation of NoProp

or NoProp-inspired ANNs.

3.3.3 Performance of full gradient learning scheme

First, we used the proposed se-SGD learning policy (no minibatch), t anh(εx) activation func-

tion, softmax output, cross-entropy error function, and si g n(δ) to obtain the basic conver-

gence results visible in Fig. 3.9 (a), green curves. When g = 256, systems with linear nanosy-

napses reach 87% and those with non-linear ones reach 83% on the MNIST test set. This is poor

performance relative to system complexity, as the far simpler one-layer systems can achieve

the same result. However, a direct comparison to software results obtained and imported as

8-bit weights to the crossbars shows that linear and non-linear devices lose only 1.5% and 4%
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Figure 3.9: (a): Convergence for all t anh activation function systems, including both se-SGD
and mb-SGD approach. Mean performances (n = 5) over 10 epochs (600k Tr) are
demonstrated when network is trained after every example. Here g = 256 address-
able levels, M = 300, tanh is activation function. (b): convergence for all considered
mini-batch systems. Mean performances (n = 5) over 10 epochs are again shown,
with presentation in mini-batches (b = 100 each) and programming subsequently.
g = 256 addressable levels; M = 300, tanh; M = 800, rectifiers.

Figure 3.10: (a): Grid search of possible derivatives is performed for the various rectifier sys-
tems (b): Grid search of gain factor (ε ) used in the inner layer of t anh activation
against the gain factor γ (used in the softmax projection of the ultimate layer). The
colors correspond to the classification accuracy on the test set, as visualized in the
colorbars besides each image.
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from the maximum reachable, respectively. Evidently, multi-layer stochastic gradient both in

software and hardware does not generalize very well on this dataset due to excessive updates.

Moving from online or single example training to accumulated groups of examples can help

ease convergence, since the order of individual samples in the groups does not matter.

To explore to which extent batch-learning should be applied, we tested progressively in-

creasing the batch sizes from b = 1, which is the same as online/single-example, up to b = 300.

Figure 3.11 shows that, in general, an optimal size for mb-SGD for both the fully analog (t anh)

and digital (ReLu) hidden layer neurons exists around 80-150 samples. Thus, in all the follow-

ing simulations we have always considered mb-SGD as b = 100.

Figure 3.11: All six curves show the gradual transformation from the se-SGD to mb-SGD policy,
for the three device cases given each hidden layer neuron considered. In all cases 7
epochs were given to converge, and every point is the average of 5 total trials with
different initial random weights; dispersion from this mean is shaded.

Following this result, we proceeded to implement the mb-SGD learning policy with train-

ing images into mini-batches of b = 100 images and only applying training moments after this

multiple-inference period. Again using cross-entropy and softmax error as the cost function

and following sign-based gradient descent, Fig. 3.9 (b) demonstrates that the switch from

SGD to batch learning improved performance on the test set to 96% for linear nanosynapse

models and 92% for non-linear ones. The on-chip systems eventually reach the performance

reached by software batch learning systems or even slightly outperform them, but only after

7-10 epochs (420k-600k training samples).

The effect of hidden layer activation function on performance is also assessed in Fig. 3.9

(b), which contrasts batch convergence using t anh (already shown) to convergence of the best
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performing rectifier system (α = 1.5, β = 0.1). The former out-performs the latter, which also

notably converges slowly. Final performance for t anh systems is greater than 95%, and rectifier

93.5% in linear cases, and 92.5%, 91% in the non-linear cases, respectively (Table 1). However,

stronger performance for t anh(εO j ) does come at the expense of fine tuning of gain factor ε;

as visible in Fig. 3.10 (b), generally lower gain factors perform better.

In contrast, rectifier cases are tuning free, as simple (linear) gradients are obtained auto-

matically. Even if the optimal α,β values are not known a priori, choosing a standard rectifier

such as ReLu (α= 1, β= 0) still obtains reasonable performance; this well known function lost

only 0.6% on average compared to the optimal rectifier as visible in Table 1. The possibility

space of allα, β values is visible in Fig. 3.10 (a); this graph shows that, in general small constant

negative derivatives and large positive ones achieve best results, while values along the diag-

onal do worse (when α = β, the hidden layer function simplifies to a linear one, reducing the

system’s computational power substantially). Finally, Fig. 3.10 (b) shows that all systems using

the chosen cost-function must use a large enough output factor γ at the softmax layer.

3.3.4 Comparison of all results on MNIST benchmark

With regards to the primary benchmark task, we have noted the performance of the best per-

forming as well as the mean performance of 10 different systems for each of the considered

architectures. As visible in Table 3.1, gradient learning systems with analog hidden layer func-

tions and optimized parameters perform the best overall, achieving mean 96% on the MNIST.

With still optimized parameters but digital hidden layer functions, performance drops 2%,

mean of the optimal rectificer performance, and a 3% loss in performance when a standard,

non-optimal digital neuron scheme is used (rectified linear unit). Interestingly, both of these

performances are already slightly lower than the mean of the NoProp system, which can reach

greater than 94% mean performance with a very large hidden layer. Finally, note that the

se − SGD gradient learning performance, mean 88% is a very disappointing result, as it only

represents a small increase in improvement relative to the single crossbar learning environ-

ment (85−86%).

3.3.5 Performances across all datasets

Finally, Table 3.2 shows the performance of all systems on all three tasks. As visible, the com-

putational ability of models across all the tasks is a constant, with backprop in batch mode

always achieving the strongest result, NoProp/ELM achieving the second strongest, and one-

layer along with backprop se-SGD mode always performing worst and second-worst, respec-

tively. However, this comparison also reveals the respective difficulty of the tasks. As visible,

the Sci-Kit small digits/OCR task is by far the easiest, Fashion-MNIST the most difficult, and

MNIST is an intermediate case closer in difficulty to the latter than the former.

Formally speaking, this difficulty relates to how non-linearly separable the classes are from
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Nanodevice ANN Algorithm Performance on MNIST Test Set [10k]

Mean Linear Mean Nonlinear Best

One Layer 2In 85.2% 84.1% 86.1%

One Layer 2Out 86.3% 84.9% 87.3%

NoProp SGD (M=3000) 94.5% 92.8% 95.2%

Backprop t anh SGD (M=300) 88.3% 83.8% 88.9%

Backprop t anh Batch (b=100) 96.1% 91.7% 96.9%

Backprop ReLu Batch (b=100) 93.2% 90.3% 93.9%

Backprop Rectifier Best, Batch (b=100) 93.9% 91.1% 94.8%

Table 3.1: Performances for all examined systems are directly contrasted on the same challenge
(10k digits of the MNIST testing set), with mean values (n = 10) for the variable linear
model and variable non-linear models shown as well as best system performance
overall (always a linear model)

each other. As was previously visible in Fig. 3.1, in the small digits/OCR case the classes

are visually quite linearly separable; for MNIST and Fashion-MNIST, these classes become in-

creasingly difficult to distinguish. In the case of the Fashion-MNIST database in particular,

exceeding 90% accuracy on the test set is not achievable with the present neural network set-

up. Indeed, a single hidden-layer system (MLP) may fail to generate a sufficiently complex

enough non-linear mapping function to separate these classes from each other. More com-

plex gradient-learning architectures, e.g. the deep and/or convolutional network described in

Section 1.3.9 would be required.

ANN Architecture % correct on Respective dataset’s Test Set (Average of 10)

SciKit Digits MNIST Digits Fashion-MNIST

One Layer 92.1 86.1 77.24

NoProp/ELM 97.7 94.2 84.92

Backprop se-SGD 93.4 87.5 80.22

Backprop mb-SGD 98.8 95.9 88.12

Table 3.2: All results are based on a characteristic convergence times of 2 epochs (single layer),
3 epochs (NoProp systems), and 8 epochs (gradient learning). NoProp Systems are
M=3L and always with si g n activation; backprop systems M=300 and batch learning
with b = 100; all backprop systems use t anh activation. Every system learns using
quasi-linear nanosynapses with 8 bit weight space (g = 256). Listed values are mean
of 10 iterations with different initial weights and presentation of examples shifted
throughout the epochs.
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3.4 Critical constraints in considered learning systems

3.4.1 On the basis of Hidden Layer size

While single layer systems (dual-in, dual-out) have fixed sizes set by the dimension of the in-

put L and the number of parallel perceptrons or classes N , the considered multi-layer NoProp

and gradient learning systems have flexible hidden layer sizes M ; varying this parameter has a

strong influence on the quality of the learning outcomes. Fig. 3.12 (a) shows that only NoProp

systems with larger hidden layers generalize well on the test set. Only when M = 2L is benefit

over the one-layer parallel perceptron system evident; indeed, at very small hidden layer sizes,

performance is actually inferior to one-layer, direct task presentation. At dimensions greater

than 3L, the system improves towards 95% classification accuracy, in the case of linear devices,

and 93.5% , for non-linear devices. Among the considered weighting schemes, 2M systems on

average gain about 2%-3% in classification performance relative to M +1 complex, and non-

linear systems lose, on average, 1%-1.5% relative to systems with more ideal linear models. As

visible, only 2M systems with more ideal nanosynapses can emulate the results obtained using

analytically-derived weights.

The quality of generalization of gradient learning systems also depends on M , although less

dramatically. As visible in Fig. 3.12 (b), the t anh function performs better with a smaller hid-

den layer size, between M = 100 and M = 300, whereas rectifier systems perform at their best

between M = 600 to M = 1000. In the former case, too large systems suffer from over-fitting, as

a number of over-complete neurons leads to confusion in learning outcomes. In the latter case,

it is worth noting that rectifier hidden layers already implement a form of implicit "drop-out"-

a form of normalization that battles this sort of over-fitting. Explicitly, synapses in the first layer

connected to activations for ’dead’ (negative) neurons - ReLu (β = 0), or asymmetrically small

outputs (β<α) do not adjust, or hardly adjust to weight updates, respectively.

3.4.1.1 On the basis of Nanosynapse richness

Figure 3.13 contrasts the performance of single and multiple crossbar to solve all three consid-

ered data science tasks (SciKit/OCR, M-NIST, Fashion-MNIST). As demonstrated in the con-

trast between the solid lines (one-layer/crossbar) and dashed lines (two-layer/crossbars), a

hidden or projection layer not only provides a decisive advantage in classification performance,

but also allows less rich nanosynapses to perform online learning than in the single crossbar

case. In the graph, this is visualized as the leftward movement of the corresponding data sci-

ence curves. While all systems fail to learn with binary devices, the difference is especially pro-

found from 2 bits (g = 4) to 5 bits (g = 64); at 7 bit (g = 128) and greater resolution, differential

effect of nanosynapse quality is less.

Next, we have extended this analysis to conduct a direct comparison of all three learning

systems, including multi-layer gradient systems, and to consider the impact of device non-
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Figure 3.12: (a): Response of the two best NoProp designs to increasing hidden layer M . Mean
of 5 simulations, with g = 256 addressable levels, and 3Tr epochs given for conver-
gence. (b): Response of gradient learning systems, using t anh and best perform-
ing rectifier activations and mini-batch of b = 100, to variance in M . Mean of 5
simulations, with g = 256 addressable levels, 7Tr epochs given for convergence.

Figure 3.13: All 3 data science tasks are attempted with systems built from increasingly
deep/rich nanosynapses, within the range of 1 bit (g = 2) to 10 bits (g = 1024).
One layer systems are a single crossbar of double dimensionality of the task as in-
put and the number of classes as output. For 2-layer or double crossbar learning
systems, the hidden layer size is M = 3L; that is, M = 2352 for MNIST and Fashion-
MNIST, and M = 192 for the simple SciKit database. In every case the linear/ideal
model is assumed for the nanosynapses in these learning systems

linearity. Figure 3.14 shows the dependence of all considered learning systems upon nanode-

vice analog richness given the linear variable model, and the non-linear model, respectively, for

the M-NIST database case. Notably, all considered learning systems perform very poorly be-

low 32 addressable levels/5 bits, for the linear models, and 64 levels/6 bits, for non-linear ones.
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While at 6 bits the single crossbar and NoProp systems are both within 1-2% of their maximum

achievable test-set performances, even given non-linear device behavior, 7 bits (g = 128) are

required for linear gradient learning systems to do the same, and 8 bit (g = 256) is required for

gradient systems built with non-linear devices (the most realistic case). This is a very significant

contrast which is explained mostly by the varying requirements of the two learning algorithms.

While Widrow-Hoff only needs a hyperplane to separate classes, gradient systems traverse a

more complex error function/landscape.

Figure 3.14: (a): Effect of nanosynapse richness for all considered learning systems using linear
model. (b): Effect of nanosynapse richness for all considered learning systems us-
ing non-linear models.
All regression (one and two layer) systems are given three epochs , and gradient
systems are given seven epochs, to converge. Mini-batch style programming was
used for all gradient learning simulation cases. M = 300 for gradient Tanh; M = 800
for gradient rectifier; and M = 3000 for no-prop. Every point is average of 5 runs.

3.4.2 Differential constraints on nanosynapse depth

As discussed before, the same quality of nanosynapse is used throughout the system. In the

case of the NoProp system this comparison does not matter because the first layer weights are

not trained; however, in gradient learning systems where both layers are trained, nanosynapses

with different depth may be used in different layers. Given a differential nanosynpase depth be-

tween the layers, where g1 is and nanosynapse depth in the first/input layer depth and g2 is the

depth on the output layer, a search of the parameter space was conducted in order to discover

additional constraints on learning. As visible in Figure 3.15 for the MNIST task, gradient learn-

ing systems learning with both layers in batch-mode are notably more sensitive to the depth

of the first layer weights (x-axis) than the second layer weights (y-axis). For instance, while

between 3-6 bits in the second layer can still achieve between 50-90 % performance when first

layer has 8 bits or more (bottom right grid search), the inverse case (top left grid seach) achieves
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little better than chance. The contrast between Fig. 3.15(a),(b) shows that while non-linear de-

vices reduce performance overall, they may slightly reduce this stringency requirement on the

first layer devices.

(a) Nanosynapse depth is differentially varied in two
layer learning systems with linear synapses

(b) Nanosynapse depth is differentially varied in two
layer learning systems with non-linear synapses

Figure 3.15: Both systems depict gradient learning systems learning with (a): Grid search com-
binations of first and second layer nano-synapse number of addressable levels/bits
for systems learning with linear/quasi-linear devices (b): Grid search combina-
tions of first and second layer nano-synapse number of addressable levels/bits for
systems learning with strongly non-linear devices.

Practically, this result implies that, when building multi-layer memristive ANNs, priority

ought to be given to constructing earlier layers with higher quality nanosynapses (nanode-

vices), wherever possible. Theoretically, this result relates to an emerging information-theoretic

understanding of the way that deep networks learn known as the information bottleneck prin-

ciple. More precisely, multi-layer neural networks resemble a Markov chain, and information

lost in a preceding (earlier) layer in the network cannot be recovered by a later layer in the

network [270]. This implies, in the case of our networks, that more information is lost in the

forward passes (inference) (which pass through the g1 layer first) than in the backward or back-

propagation passes (which pass through the g2 layer first). However, the analysis we have pre-

sented so far is necessarily incomplete, since in addition to nano-synapse depth there are two

critical information representations being held, the vector of the hidden layer neuron activa-

tions and the vector of the output layer neuron activations. In the future, it would be interesting

to see what variety of on-chip neuron designs can alleviate this critical constraint.

3.4.3 Resilience to non-adaptive devices

Occasionally, individual devices are unadaptive, rendering them conventional resistors; this

phenomenon is often referred to as stuck-on/off defects. To assess the effect of this phenomenon,

a set percentage of all, in the case of single crossbar or gradient systems, or second layer in the
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case of NoProp, devices remain constantly at either GON or GOFF (are unadaptive) through-

out the entire training and testing process. These simulations were repeated ten times with

different broken systems and random initial conductances and averaged, with standard devi-

ation visible. As visible in Figure 3.16, the introduction of broken devices only slightly harms

systems built with linear devices, but can substantially harm systems built from non-linear

ones, across all architecture choices. Second, multi-layer (NoProp, backprop) systems are sub-

stantially more resistant to this effect than the one-layer or crossbar systems. While multi-

layer/multiple-crossbar systems harness a non-linear projection and the interdependence of

the first and second layer to reduce reliance on any one individual device, single crossbar learn-

ing systems at best try to constitute a two-dimensional reconstruction (image) of the class. In

this context, the removal of individually adaptive devices, while at first insignificant, becomes

increasingly catastrophic in single layer systems beyond a certain point.

3.4.4 Resilience to programming mode asymmetries

Next, an asymmetry in the device’s programming modes (SET, RESET) was simulated; this

could be either an intrinsic issue of the device, as often encountered with devices that have

asymmetrical physical mechanisms between creation and destruction of filaments ([271], as

seen with the TBFe devices in Section 2.2, or a system failing due to unreliable programming

circuitry or sneak paths. Following the device case, we modeled increasingly asymmetric (more

powerful) RESET as compared to set, where all programming pulses sent are equivalent but the

resulting effect on negative conductance evolution is constantly stronger than positive evolu-

tion (∆GRESET = ζ∆GSET). The effects as ζ increases are visible in Fig. 3.17 for systems with

rich nanosynapses (g = 256). All systems are notably more harmed by the conductance mode

asymmetry effect than any other effect, with one-layer systems being the least resilient, back-

prop the most resilient, and NoProp an intermediate case. The fragility of one-layer systems

relates to the combination of smallest system and simplest programming style, while backprop

systems benefit from the most complex programming style.

3.4.5 Energy scaling tradeoffs

Assuming an analog array of nanosynapses consisting of N columns and M rows, the overall

energy footprint for both reading and writing is given as:

• Parallel read and/or inference steps should scale as N xM (i.e, the ability to perform

vector-matrix operations) multiplied by the elementary forward/read cost Eread.

• Parallel write should scale as N xM for both simultaneous and sequential cases multi-

plied by the elementary writing cost Ewrite. When writing in the column-by-column fash-

ion, we assume that diodes or another variety of high-quality access device has been

paired to each output neuron so as to minimize parasitic current losses [208, 272].
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Figure 3.16: Effect of unadaptive synapses on learning outcomes, where given percentage of
devices are stuck at either maximal or minimal conductance.All systems have been
given sufficient epochs to converge; M = 3000 for NP, M = 300 for backprop. Every
point is the mean of s = 10 sample systems, with the shaded standard deviation
shown.

We computed read/inference and programming costs for three different device test cases:

our TBFe devices described further in Section 2.2, the ENODe polymer devices given in [273],

and the ferroelectric devices given [274]. The following computations are based on the follow-

ing energy dissipations estimates

Eread = TreadGµ(Vread)2 (3.14)

Ewrite = TwriteGµ(Vedp)2 (3.15)

Where Vedp is the voltage difference seen across the device as the result of the primary and

associate programming pulses, and Gµ is an average conductance for the considered device

species. Notably, the values for the writing programming pulses for TBFe, ENODE, and ferro-

electric devices are 81n J , 2.92n J , and 1.481p J , respectively. Based on these values, we have

extrapolated elementary operation costs to budgets for complete learning (convergence).

Among all systems, the primary energy cost (> 90%) is due to write or programming op-

erations to adapt the nanosynapses. In between all compared systems, one-crossbar envi-

ronments expend the least energy to converge and gradient learning systems the most, with

No-Prop learning systems as an intermediate case (Fig. 3.18 (a) ). Among multi-layer learning

systems, a notable trade-off exists between the energy-savings of a quick finish (faster conver-
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Figure 3.17: Effect of disturbed programming on learning outcomes, where systems have RE-
SET operations grow asymmetrically large at the given constant level. All adapting
synapses have equivalent richness (g = 256). All systems have been given suffi-
cient epochs to converge; M = 3000 for NP, M = 300 for backprop. Every point is
the mean of s = 10 sample systems, with the shaded standard deviation shown.

gence), and the energy loss from system overhead/size (No Prop systems depend on a larger

M). This trade-off was explored further and our analysis suggests that, up to M = 6300, NoProp

systems gain more from the quick finish than what they lose from the larger dimension ( Fig.

3.18 (b)). While these trends are independent of the chosen device’s elementary programming

costs, the choice of nanosynapse can have significant implications on the final energy costs of

learning. All extrapolated results are visible in Table 3.3 both for standard stochastic gradient

descent, as well as batch-style programming. Batch style programming results in very sub-

stantial energy savings, since it directly reduces the number of programming pulses needed to

implement learning. However, as additional analog components are needed to integrate and

store intermediate values between each program step and these have power budgets as well,

these gains would be somewhat mitigated in hardware implementations.
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Figure 3.18: Energy expenditure for all considered architectures is estimated as a parameter of
system speed (a) as well as size (b). Energy estimates are computed by multiply-
ing the number of Vprog and Vread pulses required according to the architecture/
learning policy, times the total number of iterations. Batch-mode estimations cal-
culate read energy at every iteration, but Vprog pulses applied to the system only
once every b times; b = 100 throughout. Once converged, no additional read or
programming pulses are applied; one-layer systems converge in 2 epochs, NoProp
in 3, and gradient in 8.
(a) depicts increasing energy use for all considered policy and assumes the device
from [274]; (b) varies in M for No-Prop systems, using gradient as benchmark, and
assumes device from [273].

Nanodevice ANN Algorithm Total Energy Cost of Learning [Joules]

Polymeric - TBFE Polymeric -ENODE Ferroelectric

One Layer SGD 76.2 2.74 1.4e −3

One Layer Batch 0.76 0.027 1.4e −5

NoProp SGD (M=3L) 342.96 12.36 6.3e −3

NoProp Batch (M=3L) 3.466 0.124 6.3e −5

Backprop SGD (Tanh, M=300) 920.7 33.2 0.017

Backprop Batch (Tanh, M=300) 9.2 0.33 1.7e −4

Table 3.3: Energy cost for three different nanosynapses integrated into our learning nanosys-
tems are estimated: fast, high-voltage TBFe polymeric device (Section 2.2); slow, very
low-voltage ENODE polymer devices ([273]); and very fast, intermediate voltage fer-
roelectric memristor devices ([274]. All energy computations are based on a charac-
teristic convergence times of 2 epochs (single layer), 3 epochs (NoProp systems), and
8 epochs (gradient learning). NoProp Systems are M=3L; backprop systems M=300;
all backprop systems use t anh activation. For all cases, the batch learning size of
b = 100 is considered (total programming operations are reduced one-hundredfold).
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3.5 Conclusion and Perspective

Our benchmarking analysis uncovered intriguing trade-offs that could be of great interest to

neuromorphic engineers building future systems with nanosynapse arrays. In the following

three sub-sections, we summarize the contrasting advantages of the two systems relative to

each other before finally highlighting which constraints or limitations confronting each indi-

vidually.

3.5.1 Contrasting Properties

Speed

1 layer and NoProp systems learn quickly, often reaching 90% of their final recognition rate in a

single epoch, and full convergence between 2-3 epochs. In contrast, sign-based gradient learn-

ing systems are slow, requiring between 6-9 epochs to completely converge.

Size

A major dis-advantage of NoProp hardware neural networks is the large physically realized

hidden layer. For instance, the best-performing system here uses a hidden layer with approxi-

mately ten times as many hidden layer components as a gradient learning system that performs

at least as well.

Required nanodevice quality

One of our central conclusions is that the stringency for nanodevice quality in gradient learn-

ing systems is far higher than in the NoProp/ELM systems. Nanodevice resolution of 6-7 bits is

required even with linear device, and for non-linear ones, 7-8 bits of weight space is required.

On the other hand, ELM system can respectfully perform with as little as 4 bits (16 states) and

perform with full accuracy with 5-6 bits (32-64 states). This result is broadly consistent with

the literature; in [275], 4 bits were shown sufficient to implement weights executing simple

STDP (temporal correlation) learning; in [276], a memristive two-layer system using an un-

supervised first layer operating according to the locally competitive algorithm, and a super-

vised second layer again required between 4-6 bits depending on the ideality of the device.

Resilience to non-linearity

Relative to all other systems, NoProp loses the least when non-linear device behavior is ac-

counted for; backprop and simple regression systems lose two and three times as much perfor-

mance, respectively.

Accuracy

On the other hand, gradient learning systems with the most complex hidden layer transfer sys-

tem t anh undeniably outperformed all other learning systems, achieving 97% on the MNIST

task. However, this level of performance was only reachable with the more complex /high-

overhead mb-SGD programming style.

Energy footprint
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Energy costs are again driven primarily by the programming overhead, and demonstrate a ma-

jor tradeoff between system size and required system training length. Of all systems the one

crossbar learning systems cost the least, and between multi-layer systems the NoProp systems

gain more from the fast finish than from their large size. Across all the architecture choices,

batch learning can greatly reduce the total number of programming steps, but it comes with

non-negligible overhead.

3.5.2 Constraints on effective local gradient learning

Our on-chip gradient learning systems learn equivalently to the software comparison system

when eight bit weight resolution is employed, and do progressively worse as they are further

discretized. This is consistent with the machine learning literature, which has suggested that

less than 8 bits can significantly impede network generalization and accuracy [156]. Recently,

a contrasting binarized implementation for deep neural networks was proposed [268], which

binarizes neuron activations, and weights. However, this approach requires the accumulation

of a highly analog gradient value at the end of the batch to faithfully implement stochastic

gradient descent. Future highly dense implementations of gradient learning, therefore, will

have to store a highly analog value somewhere to learn properly; we have proposed doing so

intrinsically (within the device itself).

Other works using gradient learning in the crossbar environment have achieved slightly

superior results than ours; in [277], 98.5 % was achieved on the MNIST test set. This is around

1.5% better than our best performing system (batch mode t anh). In explaining the higher per-

formance, we found that this work employed an analog nanosynapse model with extremely

high nano-device weight resolution (g > 1000). Another study on hardware acceleration of

deep neural networks reached 97% using a stochastic simplification of the backprop learning

rule [278], which is equivalent to our results. Like in our work, the authors considered g as

a parameter, and found that when devices possessed less than g = 600, results fell substan-

tially. These comparisons highlight the importance of including realistic nanodevice richness

constraints when estimating the possible performances of future learning systems.

3.5.3 Constraints on effective local ’NoProp’ learning

The principle dis-advantage of the NoProp policy relative to the other two choices is its high

system size/overhead, as hidden layers multiples of input dimension are necessary for useful

projection. To mitigate this requirement, designers might:

• Compress the dimensionality of input data in a pre-processing step, using PCA or t-SNE.

A pre-processing network, such as an on-chip restricted Boltzmann machine [279], or an

addition crossbar performing data clustering [280], could perform this locally.

• Encode the input as channels in the time domain, although additional circuitry is re-
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quired at the hidden layer. This approach is discussed further in Chapter 4, Section 4.2.

In all cases, three-dimensional crosspoint array operations could further lessen the size/scope

of hidden layer operations. For instance, 2M biasing could be obtained via current differences

across two random layers, rather than a single crossbar array with double the dimension

Finally, maximum accuracy obtained in any of our two-layer projection systems lags behind

competing gradient learning system alternatives. However, in [127], various improvements to

standard systems, such as computed inputed weights (CIW), receptive fields, and extending to

several non-linear projection layers to 2 (3 total hidden layers), were demonstrated to collec-

tively boost ELM performance to achieve only 1% loss on the MNIST test-set. This suggests

that in addition to ’standard ELM’, mapping the ’enhanced ELM’ concepts discussed in greater

depth in 1.3.7 to a nano-electronic environment could be a fruitful approach. In the following

Chapter, we consider two related concepts.

3.5.4 Considering timing in multi-layer context

The feed-forward multilayer architectures considered so far have conducted learning in a very

ordered and discretized way, such that plasticity effects on the device level, and systems-level

timing parameters, could be carefully controlled or ignored, respectively. Although this can

indeed improve the predictability of learning operations, it may also pose an additional bottle-

neck in performance as it restricts these systems from harnessing intrinsic temporal dynamics.

These dynamics allow recurrent and reservoir computers to generalize well on tasks with which

multi-layer feedforward networks greatly struggle (see Secs. 1.3.8, 1.3.9). In the following chap-

ter, we push multi-layer memristive systems to incorporate timing parameters, at either the

device and the systems level.



Chapter 4

Temporal Memristive Learning

Architectures

Space and time are the framework within which

the mind is constrained to construct its

experience of reality

Immanuel KANT

“THIS CHAPTER demonstrates larger on-chip architectures that, at some point in

their operation, use the intrinsic time-dynamics of a circuit or device as a key

component of learning. This unlocks new frontiers in performance, and provides

important stepping stones towards the ultimate vision of building nanosynaptic ar-

rays that learn on-chip with the full computation power of full Recurrent Neural

Networks. ”
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THIS CHAPTER focuses upon the integration of memristive devices into learning systems

which use timing parameters at various levels to perform local learning. In contrast to

standard feed-forward models, bio-inspired learning models that integrate time as a key part

of the learning process may lead to new frontiers in accuracy as well as energy efficiencies. In

particular, the earlier described NoProp-inspired nanodevice learning systems are enhanced

in two critical ways. The outline for this final chapter is as follows:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. First, a general motivation for exploring timing dynamics as a feature of future neuro-

morphic computing systems is provided, with a focus on inspiration from the field of

neuroscience and how it relates to improvements in conceptual neural network models.

(4.1).

2. Second, we present and evaluate the performance of a multi-layer learning scheme

which combines a time-intrinsic computing portion and a standard supervised learn-

ing portion. This "enhanced ELM" system outperforms the standard random weights

multilayer system explained previously in 3.2.2. Off-chip and on-chip learning schemes

are both considered. (4.2).

3. Third, we present and evaluate a reservoir computing inspired scheme appropriate for

on-chip implementation with analog nanodevices. By adding time-specific complexity

at the hidden layer, performances greater than any of our previously demonstrated multi-

layer ANN systems are realized, and with less overhead too. (4.3).

4. Lastly, a discussion of the outcomes and prospects for further improvements is made.

4.1 Motivation for exploring temporal learning and meta-

plasticity

4.1.1 Spatio-temporal learning in the brain

The brain is, without a doubt, a spatio-temporal learning machine. That is, the timing of con-

secutive learning operations and the intrinsic dynamics of neural circuits are temporal in na-

ture. In particular, temporal integration at varying time-scales seems to be critical at both the

intra-neuronal level (e.g., learning in dendritic branches) [94, 95], as well as the inter-neuronal

level (e.g, firing patterns and spatio-temporal filters in populations of neurons) [281, 282]. In

order to build these sort of features into learning systems, a general mathematical model is

needed. Some foundational model for spatio-temporal analysis in neural circuits include the

linear-non-linear model (LN) [283], which can be generalized into many pathways, as well as

the generalized linear models (GLM) [284]. Recent improvements to these models use regular-

ization and hierarchy to more accurately predict the spiking behavior of multi-layered neural

cirucits in the retina [285]. In all of these cases, the power of the model relies upon staged
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computation between time-dependent spatio-temporal filters or kernels, followed by time-

independent static non-linear filters.

Drawing upon these models of computation and attempting their integration into artifi-

cial neuro-synaptic learning systems can provide a significant source of inspiration to exist-

ing computational methods, while also inversely informing a deeper understanding of neuro-

computation [286]. Focusing on the synapse as a laboratory for implementing some of these

ideas is a powerful tactic to achieve this strategy, given the richness of behavior and dynamics

even at this small scale [287].

4.1.2 Spatio-temporal effects: a natural extension of NoProp systems

As mentioned in Sec. 3.1, NoProp systems arguably possess more neuro-inspiration than com-

peting machine learning approaches 1. In general, NoProp systems have a surprising ability to

achieve quick convergence on high-dimensional problems, in spite of the apparent simplicity

of their learning style. Unlike the brain, however, standard NoProp systems still fail to either ac-

count for time-dependent plasticity effects, or to implement crucial temporal or spatial coding

tricks implemented by the brain. Nevertheless, enhanced ELM/NoProp systems are a natu-

ral environment in which to implement these methods (as also discussed in Sec. 1.3.7.1). In

the remainder of this Chapter, two such improvements are made: first, a critical plasticity im-

provement to the NoProp learning system, in particular its first-layer weights, is proposed and

evaluated in Sec. 4.2; second, a major improvement to its hidden layer functionality and com-

plexity is proposed and evaluated in Sec. 4.2. However, before describing these schemes, we

note further motivation and inspiration behind the two considered extensions.

4.1.2.1 Inspiration for expanding NoProp with plasticity transitions

In the brain, short-term plasticity (STP) refers to synaptic state change (potentiation) connect-

ing neurons on the scale of seconds to minutes, while long-term plasticity (LTP) potentiates

synapses for hours, days or even for a lifetime. Meta-plasticity learning systems or mecha-

nisms [288] use learning taking place over different time scales in order to implement critical

functions such as memory consolidation. Often times, complex metaplastic effects take place

over physically separated memory systems, often which learn at different rates or in different

ways [289]. In particular, priming is a cognitive mechanism in which an associate cortical sys-

tem or pathway is trained to pre-recognize or prepare a primary memory system to perform a

later task or association [290].

While the transition from short to long-term plasticity is already considered in neuroscience

models, this transition remains an under-explored topic in the field of memristive learning due

to an interest in the non-volatility of devices. This is peculiar since, just as synapses in the

1As far as we presently understand, biological neuronal networks are not implementing the backpropagation
algorithm; on the other hand, some neural coding strategies look vaguely reminiscent of NoProp approaches
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brain, some memristive nanodevices present rich plasticity behaviors over shorter term time

scales [164, 291–293]. While [291, 292] explored memristive STP/LTP transitions and [294, 295]

realized metaplasticity effects with memristive devices, none of these works developed learn-

ing architectures based on these mechanisms. In [296], volatile tungsten-based memristive

devices that relax relatively quickly were considered for integration into a learning system, but

only the STP regime exploited for classification. Given the gap between the potentials of nan-

odevices to intrinsically implement plasticity transitions, and the well-established importance

of these transitions to efficient learning (memory) systems, we are excited to explore how such

a transition can improve a nanodevice NoProp system.

Concretely, we do this by priming the first layer weights. In deciding to implement the

plasticity transition in the first layer, we additionally drew upon inspiration in the machine

learning literature, which tended to emphasize the effectiveness of priming or pre-computing

the first layer weights of ELM/NoProp software systems. Indeed, this computed input weights

(CIW) strategy was reported to improve performance over the standard case [127, 297]. Here,

we show a similar result subject to unique device timing constraints.

4.1.2.2 Inspiration for expanding NoProp with hidden layer complexity

With regards to the latter strategy, the Neural Engineering Framework (NEF) proposed by Chris

Eliasmith [100] looks in a sense like a critical enhancement of standard NoProp systems. In

addition to a random weights encoder (first layer) and a trained decoder (second layer), the

hidden layer uses different neuronal tuning curves, or the fact that neurons have different pre-

ferred stimuli. This principles is used to achieve very general results. Recently this framework

has also attracted perspective from the neuromorphic engineering community [298]. In addi-

tion to tuning curves, hidden layer effects can also be enhanced by considering various time-

dependent computing kernels at each neuron [128].

4.2 On-Chip Plasticity Transition Learning Schemes

Using the transition from short-term to long-term plasticity as the core component of a nano-

electronic learning system is the crux of this first work. Two different learning architectures

that use this transition to memorize and retain target data are detailed, and simulated versions

of these systems are then used to attempt two classification tasks. In particular, the two models

are a single crossbar approach, and multiple crossbar approach partly inspired by the NoProp

system. The latter system in particular exhibits exciting performance and high resilience to

device variability. All of the following results are simulated.



4.2 ON-CHIP PLASTICITY TRANSITION LEARNING SCHEMES 133

4.2.1 Nanosynaptic Plasticity Transitions: Device and Model

Here, we focus on the integration of a highly promising device, electrochemical metallization

(ECM) cells where rich STP and LTP dynamics have been evidenced recently [293]. We were

introduced to this device and its exciting properties through a scientific collaboration with Drs.

Fabien Alibart and Selina LaBarbera at IEMN Lille, who have experimentally investigated the

intrinsic time dynamics of custom ECM nanodevices. In this collaboration, we drew upon an

experimentally validated model of their behavior to consider and construct larger nanoelec-

tronic systems.

Figure 4.1: (i) depicts a pre-synaptic spike train that keeps a device in the STP regime; a corre-
sponding, weaker filament that can easily relax is pictured (ii). (iii) depicts a more
powerful spike train that successfully moves the pictured device from the STP to
LTP regime with many thick filaments (iv). The black solid lines in (i), (iii) are the
measurement results and the red dots are the model predictions.

The devices considered are electrochemical metallization (ECM) cells with a 60 nm switch-

ing layer, where dendritic filaments form in between a reactive top electrode (anode) of silver,

and an inert bottom electrode (cathode) of platinum [293]. The application of a positive bias

above a threshold Vth causes oxidation and drift of silver ions (Ag+) across the Ag2S switching

layer from the cathode towards the anode. This increases conductivity and physically corre-

sponds to the formation and strengthening of filaments. Conversely, a negative bias induces

reduction at the Ag electrode, weakening filaments and decreasing conductivity. This bipolar

behavior is different than the unipolar behavivor of the TBFe devices introduced in Chapter 2.

Moreover, unlike many nanosynapses which retain their states for long periods (are intrin-

sically non-volatile), the ECM cells shows a natural relaxation towards lower conductivity as

Ag+ ions continue to diffuse and reverse oxidation-reduction occurs. Critically, this natural re-

laxation may be fast or slow, depending on the quantity and quality of the filaments. As reported

in [293], varying filamentary morphology and a possible trade-off between filament density and
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diameter create complex synaptic behavior. In particular, the transition from a relatively small

relaxation time (τ)- the STP regime- to a larger τ corresponding to the LTP regime - was tun-

able both by the number and the characteristics of subsequent pre-synaptic excitatory pulses.

Fig. 4.1(i) depicts the STP case where a small number of pulses strengthen the filament so that

the ECM cell’s conductance increases to 0.9mS. However, this state is not stable: after a time

τ = 100s, the conductance has relaxed to a low conductance state. Conversely, Fig. 4.1(ii) de-

picts the LTP case. Differently timed spikes move the synapse to a high conductance of 3mS,

which remains stable after τ= 100s.

A detailed model of STP to LTP transition in ECM cells, reminiscent of a biological model

of plasticity [287], was validated experimentally in the previous work of our collaborators [293].

We now revisit the basic equations of this model. Synaptic potentiation increases in response to

a train of pre-synaptic pulses; the facilitating time constant τfac constantly increases as spikes

are applied and conductance increases, facilitating the STP to LTP transition. After each pro-

gramming spike:

τfac = a ·G(t )b , (4.1)

and after any given delay ∆t from the last spike at time t , the conductance is

Grelax =G(t ) ·exp

(−∆t

τfac

)
(4.2)

Finally, at time t+∆t , the conductance value results from the sum of the exponential relaxation

and of a programming spike if any is applied:

G(t +∆t ) =
Grelax +U (A−Grelax) , if spike

Grelax , if no spike.
(4.3)

A corresponds to maximum synaptic efficiency (Gmax). A typical value extracted from de-

vice measurement is A = 4mS. The typical synaptic efficiency is U = 0.025. The power law

prefactor a = 2.42×10−12 s ·S−b, and the power law exponent b = 4 [293].

4.2.2 A Simple Learning Task and Algorithm

In the following section, we detail an architecture that highlights the promise and challenge

associated with exploiting the STP to LTP transition in nanodevices. At this stage, the architec-

ture has three components: a software image database or sensor and circuitry to convert pixels

into voltage spikes, an all-to-all crossbar that connects input and output neurons electrically at

each ECM cell crosspoint, and accompanying CMOS circuitry. Learning occurs in three stages.
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4.2.2.1 Imprinting

In the first stage, ECM cells are “imprinted”. This stage is sub-divided into several epochs cor-

responding to the total number of classes J .

Figure 4.2: The simple learning system, with characteristic images input to the system, selected
and non-selected nanodevices, and input and output computing accessories re-
quired for learning.

Figure 4.3: Conductance as a function of time during the imprinting process- n = 30,∆t = 200µs
and subsequent waiting period, for the 36 ECM cells connected to a single output
neuron. Inset: conductance of the cells at t = 1.026 s, presented as a reconstructed
2-D image. Note time is portrayed on a semi-logarithmic and not linear axis.
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During each epoch, n noisy examples of the given class are subsequently presented to the

crossbar where an active (white) pixel is presented at Vin = h1, and inactive (black) pixels are

silent. Each input neuron receives one pixel consistently, and the patterns are presented with a

delay ∆t as depicted in Fig. 4.2, where (A) is in epoch ’O’ and (B) in epoch ’X’. After imprinting,

no voltage is applied on the crossbar for a wait period T . This allows ECM cells in the STP

regime, assumed to be noise, to return to low conductance states, while it will not affect those

in LTP. Fig. 4.3 presents the evolution of the conductance of the 36 ECM cells connected to

one particular neuron, during imprinting (timprint = 26.4ms) and subsequent wait (T = 1s). The

final conductance map for the output neuron- in this case it has learned ’X’- is visualized pixel-

by-pixel in the inset.

Imprinting only works if each output neuron corresponds to a different class. In the present

work, output neurons are mapped to classes in a supervised manner- employing a selector

as discussed in Section 1.4.4.1. Only nanodevices at the intersection of an active pixel/row

(receiving pre-synaptic spike Vprog,h = 0.42V , Vprog,w = 100µs) and the selected column (green

nanodevices in Fig. 4.2) increase conductance.

4.2.2.2 Collecting and testing

Second, images are presented to the network in ’read’ mode (Vread = 0.1V ) - so as to not dis-

turb conductances- and currents are read out at all output neurons (not just the corresponding

one). As output currents are a dot product of device conductances and active pixels for a given

image, many unique values are possible. These values are stored in a circuit (register) below

where they are iteratively averaged. After N examples, J 2 = 9 currents (signatures) are stored:

Ireg. Computing an iterative average during training and storing it in a register may be achieved

in either analog (operation amplifiers, sample and hold circuits each containing a capacitor),

or digital (analog to digital converters and conventional digital memory, eg RAM) fashions, or

a combination. Agnostic of implementation, the circuit overhead is significant and a consider-

able drawback of this approach.

Testing is the final phase: K unknown digits are presented at Vread and output currents Itest

are compared to the register’s values. The predicted class is the one which minimizes Etot:

Etot =
J∑

i=1

∣∣Ir egi − Itesti

∣∣ (4.4)

If predicted class is the true class, ’1’ is stored in an accompanying memory cell; else ’0’. The

final score is the sum of all correct guesses g divided by K . Computing Etot during tests ad-

ditionally requires an absolute value circuit. Each output neuron (class) must have access to

equivalent circuitry.

All of the following reported results, as well as that depicted in Fig. 4.3, were produced by

a software program that simulates a crossbar of nanodevices, each following the mathematical

model for conductance evolution introduced earlier, and tracks evolution of synapses and cur-
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rents over time in response to voltage encoded input spike trains. This simulation software also

models nanodevice specific issues such as device variability. For the simulation results imme-

diately following, N = K = 100, long wait T = 1s. Noise is added by randomly flipping to their

opposite state 10 % of all pixels in images used for imprinting, training, and testing.

4.2.3 Calibration on the Simple Task

Figure 4.4: Both plots demonstrate classification rate of the simple system on the simple im-
ages, as a function of time step ∆t . (A) for different number of patterns presented
per epoch (class) and (B) for different degree of device variability (n = 45 patterns
imprinted per epoch).

To calibrate the ECM learning system, we first used a simple, custom-constructed image dataset

in Matlab. It consists of J = 3 classes, each a ’hand-written’ letter: ’O’, ’Z’ and ’X’. Each image

contains L = 36 total and 8 active pixels. We automatically generate a training set from the per-

fect images by randomly adding noise. To add noise, we apply a probability at every pixel that it

may switch state; that is active pixels (1) may switch to inactive (0) ones, and the opposite case.

Fig. 4.4(A) presents classification rates as a function of the chosen inter-pattern wait step

∆t . Each series represents a different number of patterns n presented per epoch of imprint-

ing stage. The performance reaches a nearly perfect 98% over a broad timing range (0.1ms <
∆t < 1.2ms) for n > 20. Below n = 20, it is not possible to reach the plateau as there are in-

sufficient presynaptic pulses to move nanodevices from the STP to LTP regime (also visible in

Fig. 4.1(i),(ii) and discussed in [293]).

Fig. 4.4(A) also shows sub-optimal classification before and after the optimal range. The

former occurs when patterns imprint too fast to synchronize with the nanodevice’s normal re-

laxation parameter τ f ac , hence the conductance map is over-saturated (too many devices enter

LTP). Conversely, when ∆t is too large, insufficient devices enter LTP to retain the digit image.

In these cases currents no longer vary meaningfully neuron-by-neuron, and classification be-

comes difficult.
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4.2.3.1 Effect of Device Variability

Next, we consider the case where ECM cells each behave slightly differently to equivalent pre-

synaptic spikes. Each now receives a different internal device timing variable: U , A, a. From

Eq. 4.1, each device then possesses a slightly different τ f ac as a changes; from Eq.4.3, each con-

ductance evolves a bit differently due to varying synaptic efficiency (U ) and Gmax (A). Random

values U , A, a are drawn from a normal distribution with mean (µ) set as those listed in Section

II, and coefficient of variation considered over degrees σ/µ = {0.025, 0.05, 0.1, 0.15 }. For each

degree of variation, 20 simulations were performed at each∆t value and averaged. As depicted

in Fig. 4.4(B), increasing variability reduces the nearly perfect classification plateau. Unlike the

uniform case, increasingly variable crossbars do not fall off a performance ’cliff’, but experi-

ence a gentler landing at increasing dispersion parameters. In the σ/µ = 0.15 case, the same

recognition ’floor’ as in the other cases ( 30%) is not reached even at a very long inter-pattern

wait (4ms).

4.2.3.2 Effect of Increasing Training Samples

Few examples are needed in order to learn the functions, because the register reaches a use-

ful average very quickly. In the uniform case classification reaches 70% with 5 samples, and

approaches 100% after 10. Considering variability, 15 samples are needed to reach peak (95%)

classification; however, the highest dispersion case (15%) takes 25 samples to reach its peak

(90% classification).

4.2.3.3 Effect of Increasing Noise

In the uniform case, classification remains nearly perfect until around 15% of pixel flips and

then deteriorates linearly after that until a minimum of 75%. Low and medium variability cases

perform well until 10%, following a similar deterioration trajectory thereafter. However, the

highest variability case (15%) only does as well as the others in the 0-5 % noise range; by 20%

noise-induced flips it already falls to 80% correct.

4.2.4 Calibration on the MNIST Task

In attempting to classify the MNIST database of hand-written digits [151], J = 10, M = 784 so

7840 synapses (ECM devices) attempt to resolve the problem. In this case, the register must

hold J 2 = 100 values. While MNIST provides N = 60k training, K = 10k tests, only N = K = 1k

were used. Overall, the system’s performance on this task is not favorable. Fig. 4.5(A) shows that

classification peaks at∆t = 1.1ms with 61% correct. The insets highlight that at this peak, digits

are relatively well constructed if sparse, while reconstructed pixel maps in the mostly evapo-

rated (super-optimal ∆t ) and oversaturated (sub-optimal ∆t ) regions are unusable. However,

even at the peak, classification is weak because of an intrinsic algorithmic weakness. Since
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Variable Definition Default Value

L input pixels 36 (simple) 784 (MNIST)

M hidden layer size n/a

J output neurons 3 (simple) 10 (MNIST)

N training patterns 60,000 (MNIST)

K testing patterns 10,000 (MNIST)

n patterns per imprint cycle 50

∆t Inter-pattern wait 200 µs

T Rest/wait period 1 s

Table 4.1: Summary of key parameters and variables used in system calibration

all the register memorizes are currents and test images have a wide variety of active pixels (in

contrast to the small images), it has a hard time distinguishing between different classes that

produce similar current sums. Fig. 4.5(A) also suggests that increasing the number of output

neurons beyond J = 10 does not help with the present algorithm, as stored averages for redun-

dant neurons will be similar. Fig. 4.5(B) shows that device variability has a deleterious effect on

learning ability. At low dispersion, degree peak classification drops to 50% while preserving a

similar trend, while large dispersion echoes the phenomena of resilience to large pattern delays

observed in Fig. 4.4(B).

Figure 4.5: Both plots show classification rate on the entire MNIST test-set also as a function of
∆t . (A) Varying J output neurons when constantly n = 50. The three insets depict
reconstructed conductance maps for one of the (Ji ) neurons imprinted at given ∆t
parameter; white represents device in LTP (ON), and black those in STP (OFF) (B)
Effect of degree of device variability (J = 10 output neurons,n = 50 in each case).
Every image has 10% noise.
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4.2.5 Multi-Layer Plasticity Transition Learning system

Inferior performance on the harder task, and complex readout scheme, inspired us to expand

from a one-crossbar system. Rather than using currents from the imprinted layer to solve a

classification problem, we considered the case where those currents are passed forward, after

being transformed at the hidden layer via an activation function, to a second crossbar. There-

fore, we return to a system that looks more or less like the NoProp system introduced in Section

3.2.2, but with an additional level of complexity due to the pre-training/priming operation,

conducted on the first layer weights Win.

Figure 4.6: Conceptual architecture diagram for the dual-crossbar system that can compute
higher dimensional tasks by projecting currents from examples to a second regres-
sion layer. One representative moment of the system - presentation of an image
Tri = 7 during the training period- is depicted. The timeline below depicts opera-
tion through major phases.

4.2.5.1 System Description

Fig. 4.6 reveals a conceptual hardware implementation of our NoProp-improved system built

with two crossbars of memristive devices, along with a timeline of its operation. As in the sim-

ple (one-layer) system, there are overall four phases: imprinting, waiting, training, and testing.

In all cases, the original database is presented to the inputs of the first crossbar as binary, noisy,

voltage vectors.

Options for first layer

We contrast two approaches: the random weights first-layer system (nanodevice No-Prop sys-

tem introduced in Sec. 3.2.2) and a system which harnesses the STP to LTP transition to intel-

ligently modify the first layer. In the former case, we use the NoProp system described in Sec.
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3.2.2, with non-volatile nanosynapses placed randomly in the ON or OFF state.

In the latter case, the input crossbar uses ECM cells as described in the previous section.

It is imprinted with images taken from the training dataset, using the same procedure as in

Section 4.2.2. It is therefore the part of the system that uses the STP to LTP solution, and it

yields a projection space Wi n that will be used in training and testing. Imprinting happens

epoch by epoch, with the total number of epochs identical to size of the hidden layer, M . A

sequential programming could lead to timing bottleneck issues, as will be discussed later.

Hidden Layer Functionalities

Unlike the system detailed in Section 4.2.2, currents are not stored but fed to the the second

stage of the system. Before they reach the second crossbar, they are passed through activation

functions to increase dimensionality. For the random weights systems, we take difference of

each pair of pre-synaptic currents from the hidden layer and use the si g n function as the acti-

vation function, as described in Section 3.2.2. For the imprinted system, the t anh(ε]I ) function

was chosen since it can be easily implemented in CMOS [299] as well as engineered for vari-

ability. In our case, offsets were set randomly on each neuron and gain factor always ε= 10.

Options to train second layer

In both cases, the second layer’s weight matrix Wout acts as a regression layer, and is not im-

printed or random, but trained. It does not exploit the STP to LTP transition of the nanodevices.

Each input of the first crossbar is connected to two rows of the second crossbar to encode pos-

itive and negative weights, as already described in Sec 3.2.1.

A least squares solution may be obtained by collecting and computing weights at the end

of training and importing them in a single shot (one-shot learning, or ex-situ mode), or may

be computed iteratively as subsequent training examples are given (online learning, or in-situ

mode). Ex-situ solutions require a pseudo-inverse operation, which might be complex to com-

pute in hardware, or closed-form ridge regression, which may be easier to implement. Except

for the results shown in presented Section 4.2.5.5, the results hereafter always collected and

wrote weights in a one-shot fashion, using the closed-form ridge regression to obtain Wout

given actual matrix A of training examples (composed of current vectors from Wi n passed

through the activation function), and expected matrix Y (composed of binary vectors of all

labels):

Wout = Y A>i nv(A A>) (4.5)

For the online learning (iterative) read-out, we always used the single example binary WH

scheme detailed in Sections 1.4.5, 3.3.1, 3.3.2. Yet both single example and batch mode learning

are compatible with generic architecture shown in Fig. 4.6.

4.2.5.2 Effect of Device Timing and Variability

Fig. 4.7(A) again shows that a sufficient number of patterns presented per epoch (imprinted

neuron) n > 20 is a constraint for successful imprinting. Conversely, over-saturation is also
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Figure 4.7: Classification rate as a function of delay between pattern presentation during the
imprinting phase, for the ELM inspired system. (A) for different number of patterns
presented per epoch (M=10) (B) for different number of hidden neurons M (n=50
patterns) (C) for different nanodevice variability cases (M=100, n=50). In every case,
T = 1s, N = 60k, K = 10k, 10% noise applied to every image in imprinting, testing,
training.

possible when n > 50 patterns are applied per epoch at the faster (smaller) time steps. In all uni-

form cases, performance drops when imprinting is too slow (∆t > 1ms). Fig. 4.7(B) shows that

unlike the simple system, increasing output (hidden layer) neurons increases performance.

This is due to the different random activations provided at each neuron. Whereas Fig. 4.4

showed a reduction in performance at increasing dispersion, Fig. 4.7(C) reveals the contrary

case: maximum classification slightly increases. For instance, when M = 100 and at optimal

wait, max 78% is reached in the uniform case compared to 82% for variable. While the uni-

form case shows a classification ’cliff’ after 0.8ms, the 10%, 15% variable cases again show a

broad tolerance to slower imprinting. One explanation is that, with high conductance evolu-

tion variance, some synapses are always excited enough to move from STP to LTP. This result is

attractive, since nanodevice variability is transformed from a liability into a productive asset of

the computing system.

4.2.5.3 Effect of Hidden Layer on Performance

Fig. 4.8 (a) shows that regardless of device uniformity or variability, imprinting Wi n is demon-

strably meaningful: imprinted systems substantially out-perform the ELM control cases at ev-

ery value of M . This result can be compared with analogous priming of the first layer of ELM

systems in software artificial neural networks. Such priming has already been reported to im-

prove performance over the standard case [127, 297]. Here, we show a similar result subject to

unique device timing constraints. Fig. 4.8 (a) also shows that imprinted systems with synaptic

evolution variability consistently outperform the uniform case (where every synapse behaves

identically). Nanodevice variability then allows for a greater variability between the hidden
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Figure 4.8: Classification rate as a function of hidden layer size M in different conditions: ran-
dom weights on first layer (Random Weights ELM); imprinting on first layer, with no
variability (Imprinting Uniform ELM); or variability (Imprinting Var ELM) on nan-
odevices. The single purple point/ dashed line at L = M represents the direct re-
gression solution obtained when all training images are presented directly to the
second layer without any first layer (projections). In every imprinted case: n = 50
patterns are given per epoch (uniform), n=30 (variable cases), T = 1s for burn-off
period, ∆t = 200µs, 10% noise is present in every imprinting, train, and test image,
N = 60k,K = 10k.

neurons, enhancing the dimensionality of the data provided to the second layer beyond just

the varying activation functions. At M = 1450, peak classification of 91.8% is obtained for vari-

able imprinted systems, the uniform imprinted systems obtain 87.8%, and random weight ELM

reaches 84.4%. At M = L = 784 (dashed vertical line in Fig. 4.8 (a)), random weight ELM per-

forms similarly to a regression obtained by presenting all training samples directly to the sec-

ond layer (83.5%). While the direct regression can only be made at M = L, to reach higher per-

formances than standard regression, ELM requires substantially higher M values. Conversely,

the rich underlying dynamics of nanodevices allows designers to do more with less in the im-

printing cases.

4.2.5.4 Effect of Training Set on Performance

Whether in batch or online mode, minimizing training samples number N used to compose A

can save energy and time. Fig. 4.9 shows classification rate as a function of training samples, at

the case M = L = 784. At very low sample size, the rate of improvement is high; a steady state

is reached around N = 5,000, and performance is already within 1-2% of maximum around

N = 10,000. By N = 2,500, the variable imprinted system already outperforms the maximal

result obtained for standard ELM (83.5%); uniform imprinting surpasses by N = 8,500. With

the full training set, uniform and variable ECM projections ultimately reach new classification

heights (87% and 90%, respectively).
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Figure 4.9: Classification rate as a function of number of training samples N used to compute
Wout in the third stage, given M = L = 784 (the purple line/slice in Fig. 4.8 (a)), de-
picted on a log scale. Three two-layer systems cases are depicted: where Wi n is set
randomly with all ECM at low values (Random Weights ELM), and two imprinted
systems where ECM cells are uniform and variable (5% dispersion), respectively. In
every imprinted case: n = 50 patterns are given per epoch (uniform), n=30 (vari-
able cases), T = 1s for burn-off period, ∆t = 200µs, 10% noise is present in every
imprinting, train, and test image, N = 60k,K = 10k.

4.2.5.5 Comparison of Ex-Situ and In-Situ Learning

Next, we evaluate how online learning systems which implement on-chip readout using the

parallel adaline/binary WH algorithm perform relative to the one-shot weight calculation/import

approach. To test this possibility, we have integrated a non-volatile memristive device in the

second layer (the volatile properties of the ECM cell would not be advantageous in this ap-

plication). In particular, we used the TBFe device (Section 2.2) as a benchmark, and in the

following sections always considered two variations on it. In the ’perfect’ read-out device case,

the devices are always uniform and do not suffer from asymmetry or other nonlinear effects. In

’worst-case’, the device suffers both from inter-device variability (σ= 30%) in its maximal/minimal

values and typical conductance adaptation quantity ∆G ; additionally, ∆G varies depending on

the present conductance state affected (see ’Nonlinear’ from Chapter 3 Section 3.1.1.3).

Figure 4.10, which shows the variation in performance as a function of hidden layer size

M , again emphasizes that the imprinting approach boosts performance relative to the random

weights approach case, and this advantage is particularly distinctive at very small layer sizes.

Second, it emphasizes that the in-situ approach loses only 1−3% in accuracy from the ex-situ

perfect nanosynapse case but as much as 7−9% in the non-ideal nanosynapse case at a large

enough hidden layer size. At very small hidden layer size, the gap is more substantial. Third,

the simulations suggest that defective nanosynapses have overall a more negative impact in the

random weight online learning systems than the imprinted ones.

A more detailed analysis of how input noise and second layer variability in the read-out

devices effects system performance was also conducted. As expected, continually degrading
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Figure 4.10: Four online learning cases, one for each first layer weight approach and with both
qualities of read-out nanosynapses, are contrasted against the one-shot learning
results already shown. In all cases, training set is a randomly shuffled version of the
entire MNIST database presented twice, e.g. N = 120k, testing is the entire MNIST
test database K = 10k. In every imprinted case: n = 50 patterns are given per epoch
(perfect), n=30 (defect cases), T = 1s for burn-off period, ∆t = 200µs, 5% noise is
present in every imprinting, train, and test image. Every point on the graph is a
separate average of m = 5 total system trainings that have been performed; each
system started with different random weights in Wi n and Wout before imprinting
and/or online learning, respectively.

the input images continues to decrease system performance (Fig. 4.11(a)). However, it seems to

affect random weight systems slightly more than imprinted ones, and read-out synaptic arrays

with imperfect devices more than perfect ones. While the latter result is intuitive, the second

result probably relates to the ability of the imprinted system to naturally resist low amounts of

noise in the burn-off or relax period, as demonstrated in Fig. 4.3, for instance.

As far as second-layer variability, we find that slight levels of variability between device max-

imal and minimal values and corresponding conductance evolutions (e.g., 5-15 % ) can actually

slightly increase performance and assist the on-chip learning systems to more closely approxi-

mate the offline learning cases (written second layer weights), while substantial variability, es-

pecially greater than 20%, begins to substantially harm performance. These results are visible

in Fig. 4.12.

4.2.5.6 Discussion

The simple system introduced in section 4.2.2 achieves promising classification on a simple

task, and does so with minimal computing accessory as patterns are remembered naturally

as a function of time and device properties. Explicit weight changes are not needed, which

eliminates an impediment towards larger crossbars that require large circuit overhead for this
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Figure 4.11: The six series demonstrate how four online learning cases and two offline learning
cases respond to increasing corruption of the input images used to test and train
the network. In the former four systems, one with each quality of nanosynapse
(defective/imperfect or perfect) for each the randomly set (Win,rand) and imprinted
(Win,impr) cases, where the Wout weights are always set using the crossbar-adapted
binary WH learning scheme; in the latter two offline cases, Wout is externally ob-
tained and written. In every system, M = 250, and every point on the graph is a
separate average of m = 5 total system trainings that have been performed;

purpose. As memristor-CMOS systems have already been demonstrated to learn images of

equivalent complexity [181], a physical implementation of our system is possible and could

demonstrate further trade-offs. However, the readout involves a relatively complex procedure,

and the system is sensitive to device variability. While it is a proof of concept for harnessing

transition from STP to LTP in nanodevices, it has limited applicability to real nano-electronic

system design.

Conversely, the imprinted ELM architecture introduced in section 4.2.5 is a promising lead

for future nano-architectures. Imprinting a first layer with training examples definitively im-

proves performance on the primary task. By achieving a far better classification at far smaller

hidden layer size M than previously reported, the approach could dramatically reduce the

total size, number of nanodevices, and CMOS neurons required to implement future ELM-

inspired systems. Moreover, the fact that variable synapse ELM systems out-performed uni-

form synapse ELM systems is promising, as nanodevice variability is usually a serious concern.

As nanodevices are naturally imperfect and structural synaptic diversity has been shown to

enhance information coding in biological synapses [300], this implies that naturally variable

filamentary nanodevices, such as our ECM cells, are excellent building blocks for future neuro-

morphic systems.

In general, this work represents a milestone for realizing a crossbar-friendly design that ac-

tively uses volatile memristive devices in a complex classification task. In [296], percentages of
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Figure 4.12: The six series demonstrate how four online learning cases and two offline learn-
ing cases respond to increasing global variability parameter applied to the second
layer read-out weights. In the case of online learning, these imperfections directly
affect the weight updates made throughout the adaptive process; in the case of of-
fline learning, they still affect the write quality of the moment at which the off-chip
weights are written. In every system, M = 250 and points are average of 5 total
trainings.

80%+ on the primary task were only possible when the currents of several individual crossbars

were combined and when two following layers (a multi-layer perceptron), provided the solu-

tion. Our proposed system reduces area, complexity, and performance in comparison to these

past schemes.

By suggesting and briefly evaluating the impact of two different read-out strategies, we

have uncovered important trade-offs. On one hand, since ridge regression solutions are itera-

tive, ex-situ low sample (N ) solutions to Wout can represent a trade-off between accuracy and

speed/energy saving that might be intentionally exploited by approximate computing systems.

We have also demonstrated that in very small systems one-shot training brings superior re-

sults. However, one-shot training requires a substantial overhead to store the projections from

the first layer, and the circuitry to compute the matrix inverse on chip could be very large. For

these reasons, especially in chips that benefit from a large enough hidden layer, the fully online

learning approach is a performant and energy-efficient option.

Finally, while the imprinted systems broadly beat the control case of random weights, this

approach can come with its own dis-advantages. Most importantly, this process takes a great

deal of time due to a ’speed limit’ set by device relaxation. If imprinting proceeds faster than

∆t = 100µS, it oversaturates. Assuming ∆t = 200µs, n = 40, J = 10, and T = 1s (MNIST), then

Ttot = 1.1s is required to imprint Wi n . While these delays may be a major liability in a commer-

cial neuromorphic computing, the devices we studied were academic. Device engineering, in

particular device scaling, could tune τfac to allow for faster pattern presentation, thereby nar-
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rowing the gap between transient neuromorphic computing systems and non-volatile ones.

4.3 On-Chip Reservoir-Computing Inspired Scheme

In this section, we build upon the system introduced in Chapter 3, Section 3.2.2 by adding com-

plexity at the hidden layer. This allows us to approximate some of the important advantages of

the Reservoir Computing computing approach. As discussed in Chapter 1 Section 1.3.9, reser-

voir computing (RC) is a powerful computational framework because it approximates the full

power of recurrent networks without requiring an onerous training procedure.

However, in contrast with RC systems, and more like the on-chip NoProp system shown

previously, our system couples two crossbar arrays and operates in a feed-forward manner. In

addition, it still uses random weights in the first crossbar, unlike the plasticity scheme demon-

strated in Sec. 4.2. Here, we show that even with feed-forward operation, strong performance

on tasks with time-dynamic can be achieved by exploiting time-dynamics within the hidden

layer itself. This approach is reminiscent of a dendritically-inspired architecture proposed by

Tapson [128], who used a variety of synaptic kernels to achieve promising results on spatio-

temporal tasks. Ours uses simpler spatio-temporal integration schemes specifically designed

for on-chip learning with emerging, highly analog nanosynapse models. Given the well-known

advantages of the RC/NoProp paradigm (fast training, online operation) and the spatio-temporal

data processing challenges inherent in an upcoming era of distributed computing, we expect

this proposal should be of great interest to neuromorphic designers.

4.3.1 Architecture

4.3.1.1 Conceptual Depiction

A conventional RC architecture, visible in Fig 4.13 (a) is built with a sparsely connected graph of

m excitatory and inhibitory neurons in the liquid, some or all of which are recurrent; this graph

is excited along a set of input channels connected to Win and feeding out along weights Wout,

as was previously discussed in Section 1.3.9. As Win is static, Wout can be solved as the pseudo-

inverse of all collected output activations (A+), given a matrix of labels or expected values (Z ),

as depicted in the bottom of Fig. 1(a).

Our proposed scheme, introduced in Fig 4.13 (b) also sets input weights and linearly re-

gresses to achieve output weights, but now has a feed-forward fully-connected architecture to

form a crossbar-compatible multi-layer learning system, as fully detailed in Section 3.2. To

achieve the spatio-temporal features needed, the hidden neurons each possess a stateful value

which corresponds to the past activations they have received within the present example. Sym-
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bolically, given example s presented over k total time frames f , neuron m computes output as

Om,s = si g n(
k∑

f =1

n∑
i=1

Xi , f Wi ,m) (4.6)

where n is the input dimensionality (total number of channels) and i is the index of the input

channel. The si g n function means that, like an RC system, neurons have binary states: excita-

tory (+) or inhibitory (-). The scheme is built to perform well on tasks presented frame-by-frame

such as audio, video, or other tasks mapped to a time domain.

Two variations of the architecture are possible:

• In the ’uniform’ case, each hidden neuron integrates over every frame presented.

• In the ’sparse’ case, each hidden neuron integrates only a subset of the time frames, spe-

cific to the hidden neuron: the sum over f must be limited to a subset of f values (hence,

sparsity is enforced).

This is illustrated in Fig 4.13 (b), where the corresponding lettered hidden layer neurons inte-

grate over the frame areas pictured below them.

Figure 4.13: Conceptual illustrations of (a) the standard RC/LSM paradigm and the on-chip, (b)
RC-inspired scheme proposed here.

4.3.1.2 Nanoelectric Implementation

Our architecture implementation with nanoelectronics is presented in Fig. 4.14. It is consti-

tuted by two nanodevices crossbars implementing a “projection layer” and a “readout layer”

connected by circuits implementing the hidden neurons.

Input and projection layer

Inputs are presented to the first layer as consecutive frames of voltage pulses to n input chan-

nels. Weights in this layer are set randomly at the initialization of operation and unchanged.

Two modes were considered: analog and spiking. Following dissemination through the cross-

bar, output currents at the other side are subtracted in pairs (so as to achieve negative weights)
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and translated through standard op-amp circuitry into the voltage domain. Only the binary

value of this voltage, or its sign are relevant to the following cell.

Hidden neurons activation

Different technological options are possible for implementing the time-integration performed

by hidden neurons circuits. It can be achieved digitally using counters, or in an analog fash-

ion using capacitors, as is often done in the neuromorphic electronics field [30]. It could also

potentially performed using analog nanosynapses. As mentioned above, each hidden neuron

integrates activation over either all frames (uniform scheme) or smaller, random subsets of

frames (variable scheme). To realize the variable scheme a small memory needs to be associ-

ated and configured with each hidden neuron. In addition to standard memory components,

another crossbar of nanosynapses set randomly on or off could be used to constitute the phys-

ical reference for a sparsity matrix; in this case, dot-product operations between layers of a 3D

crossbar array would significantly reduce required overhead.

Readout layer

The readout layer uses the weight space of pairs of analog nanosynapses to provide on-chip

regression corresponding to the activations from the hidden neurons. The scheme proposed

for the readout layer is the same as the parallel on-chip regression system already described in

Section 3.2.1, and in principle held constant relative to the standard nanodevice NoProp system

of Sec. 3.2.2.

Figure 4.14: Schematic illustrating the simulated nano-system used to obtain results. Each
square icon in both cartoons represents a nano-synapse. In the first layer (projec-
tion) either binary device and/or natural dispersion around the maximal or mini-
mal values of the device can be used; in the second layer (readout), the full weight
range is exploited in order to achieve on-chip regression using a simplified version
of the Widrow-Hoff or delta learning rule.
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4.3.1.3 Nanosynapse

We used a realistic nanosynapse model extrapolated from experimental data obtained from

the TBFe device( Section 2.2), and that actively accounts for inter-device variability (’Imperfect’

from Chapter 3 Section 3.1.1.3, or Chapter 2 2.5.5.1).

For the projection layer (Win) which is unadaptive, the devices were either in ’binary mode’

and programmed randomly at one extrema (perfect devices); or were all programmed ran-

domly around the same extrema (ON or OFF), taking advantage of the natural Gaussian curve

as proposed in [263] (imperfect devices). For the adaptive read-out layer (Wout), we always used

nanosynapses with 7 bits or g = 128 addressable states.

4.3.2 Considered Tasks and Methodology

First, we considered a sub-set of 500 examples from the TI-46 corpus of spoken digits. These

spoken digits were encoded using an artificial cochleagram; pre-processing was based on the

passive ear model or filter bank designed by R.F. Lyon [301]. Full details on this pre-processing

and database are available in [302]. The processed data we used in our tests shows 77 chan-

nels with between 50 and 100 time frames or steps during each example digit. The dataset was

imported from and used in the context of a generic software simulator for reservoir computing

written in Python (Oger) [161]. The identical database and pre-processing methods were used

to present this set as training and testing examples to a custom discrete-time crossbar simula-

tor which tracks the evolution of all hidden neurons activation values and (second layer) device

weights; this software was also written in Python.

The 500 samples were divided into a training set of 350 samples, and a test set of 150 sam-

ples. The training set is labeled and used either to teach the readout layer or to build an out-

put matrix for ridge regression; conversely, testing examples are presented label-less, and the

prediction or inference is compared externally to the system. Each full training procedure con-

sisted of 10 subsequent presentations (epochs) of the sample set (5k iterations); examples were

always shuffled between each epoch.

Although this task has intrinsic time dynamic, the number of total samples is very small.

In addition, it is a highly separable task, and therefore somewhat trivial to solve; as demon-

strated in Fig. 4.15 (b), the data-set resolves into relatively separable clusters (classes). There-

fore, to further estimate the generalization abilities of our architectures, we also tested with the

well-known and more difficult MNIST database of handwritten digits [159], which consists of

70,000 samples (10,000 tests, 60,000 training examples) and is known to be non-linearly separa-

ble (also see, Fig. 3.1, (e)). In order to lend time-dynamic to the task we presented all individual

examples (from training and test) as 28 frames presented subsequently to the input layer, as in

[296]. As in the TI-46 database, training examples were always shuffled (presented in a differ-

ent order). Training with this database, due to its large size, consists of only a single epoch; no

distortions or pre-processing were made before presentation; reported scores are always based
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Figure 4.15: (a) Shows, in matrix form, one training example from the Lyon task- this one of
a spoken version ’three’. As visible, the example is composed of many consecu-
tive frames in analog mode. The values have been interpreted from their original
values to voltage value for presentation to the learning network. (b) Shows a clus-
tering visualization of 350 examples (entire training set)- each one such as (a)- in a
dimension-less space produced by the tSNE algorithm.

on classification on the entire test database.

For analog mode presentation: pixel intensity or channel’s analog value for cochleagram

were input directly as the corresponding voltage pulses. For spiking mode, all negative cochlea-

gram values (range [−1,1]) were converted to 0 (no spike), and all positive to 1 (spike); for

MNIST, pixel luminosity greater than 0.5 spiked, and that below did not (range [0,1]). When ap-

plying noise to spike channels, the noted percent of pixels or channels at each moment flipped

from one bit value to the other (on average).

4.3.3 Learning Performances

4.3.3.1 Effect of Hidden Layer size

As visible in Fig. 4.16, both the software reservoir and our proposed crossbar interpretation are

strongly dependent on a large enough number of nodes in the reservoir or hidden layer to reach

robust performance. However, while the software reservoir achieves > 95% already by M = 100

neurons, a dimensionality of at least M = 200 is required for the crossbar based version when it

is built with perfect nanosynapses. As visible, the sparse sampling method creates a noticeable

but not dramatic improvement.

The case of the MNIST challenge shows the same strong dependence of performance on

hidden layer size, but in this case, the performance improvement between the uniform integra-

tion and sparse schemes is dramatic. The uniform case only approaches 80% at large number

of hidden neurons; this is an inferior result for a two layer system, given that a one-layer cross-

bar learning system using the same device can already achieve this result (Section 3.3.1). This

suggests that the simple, or uniform integration scheme that was used earlier is not adequate
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to differentiate between many presented MNIST samples in the training phase. Two factors

may be at play: first, when artificially converted into the time domain few input channels are

available in general; second, integration (summation) across the entire time slice cannot en-

hance dimensionality but only reduce it. This would be especially punishing in the MNIST

case due to the complexity of the training data (which is not, in general, linearly separable).

In contrast, enforcing hidden layer sparsity results in a substantial boost in performance, with

ultimate performance at 95% at large hidden size. To obtain these results a random subset of

one fourth of the frames from each image was selected by each neuron; these sampling win-

dows are consistent over all presentations and between training and testing (the tuning curve

is constant).

Figure 4.16: Performance of the considered architecture on the two chosen tasks. (a) shows
performance on Lyon for software, on-chip simple integration, and on-chip sparse
integration; (b) shows both considered integration schemes for the MNIST chal-
lenge where mild variability (σ= 10%) is showed in the ’imperfect’ series

4.3.3.2 Effect of degree of sparsity

Next, we explored whether optimal sparse connection levels exist. As visible in Fig. 4.17 (a), the

optimal sparsity greatly depends upon the task; the optimal sparsity for MNIST is quite high,

with best performances coming when between 40-20% of frames are active per neuron. For the

Lyon task, 85-65% connection produces the best results. While the outcome for systems per-

forming the MNIST task with variable devices (σ= 10%) is mostly equivalent to those systems

performing it with ideal devices, the same cannot be said on the Lyon task. In this case, sys-

tems learning with imperfect devices increasingly trail the systems learning with perfect ones

as sparsity increases.

4.3.3.3 Effect of readout device variability

While projection layer variability can easily be taken in stride by using normal distributions

as an asset, imperfect devices in the adaptive (readout) layer can confound the learning rule’s
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performance. Fig. 4.17 (b) shows performance on each of the two considered challenges as

a function of increasing standard deviation or dispersion of maximal, minimal conductances

and thresholds at M = 200 for the Lyon task, and M = 1200 for the MNIST task. As visible,

slight variability is not very harmful, while greater variability starts to substantively effect per-

formance. Notably, the rate of deterioration on the Lyon task is much higher than the MNIST

task; in the far smaller readout crossbar for the Lyon task, each device is more important to

successfully resolving the problem.

The impact of variability in the second layer is further clarified in Fig. 4.18, which shows

the case of solving the Lyon task with the sparse, variable sampling windows. As visible, the

on-chip algorithm can only mimic software results perfectly with uniform devices, but 5% and

10% serve as close approximations, due to the adaptive nature of the algorithm. However, as

variability is increased to above 10%, both the average performance and the standard deviation

of error increases. Reducing the impact of device imperfections in general could be realized via

better engineering or through architectural tweaks such as using more than two nanodevices

per single nanosynapse element. A few engineering techniques to achieve this have been listed

in [260].

Figure 4.17: (a) shows response of variably integrating systems to the degree of spareness in
the first layer, where 1.0 is the default (uniform) case; (b) shows deterioration in
performance as dispersion the Gon, Goff parameters is increased

4.3.3.4 Fast Training Capabilities

One of the signature benefits of the RC/ELM paradigm is that such systems generally require

only a fraction of the quantity of training examples needed to solve the problem in more com-

putationally demanding methods; e.g. multi-layer backpropagation or convolutional neural

networks often require dozens of epochs (millions of individual updates) to properly converge.

As illustrated in Fig. 4.19 (a), the Lyon and MNIST tasks achieve within 10% of the maximum

performance in as few as 20% (12k) training examples, in the former case, and 60% (2.1k) train-

ing examples, in the latter case. For even more approximate applications (less stringent ac-
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Figure 4.18: For solving the Lyon task with the variable hidden layer, progressively larger sys-
tems are grown and tested, given a set of examples for how non-standard the
second-layer readout crossbar is (each colored series). Every point is the mean
of 10 different simulated systems with a different random starting set of Win and
Wout values clipped between the devices’ extrema, with the shaded region around
the lines demonstrating continuous error ’bars’.

curacy requirements), 80% of performance can be reached in only 5k samples, for the case of

the MNIST, and 1.4k samples, for the Lyon case. As small error rates lead to substantial energy

savings, these results suggest the system is an attractive approximate computer.

4.3.3.5 Performance with Spiking Input

In neuromorphic applications, spike coding bestows extreme energy efficiency [303]. We tested

the capability of our system to still provide strong solutions when the problem was presented

in either in perfectly presented spike form, or imperfect (increasingly noisy) spiking channel

input, as described previously. As visible in Fig. 4.19 (b), the initial conversion from analog

to digital (spiking) presentation has a slim effect on ultimate performance (between 1.1% and

0.4% drop from ideal analog case). With increasing noise, performance deteriorates slowly; on

a slightly noisy channel ( 5% bit flips) performance drops only 4-8%, and even with nearly one

third of the channel corrupted performance is still within 80% of the maximum. The system’s

performance degradation on the Lyon task is less than that on the MNIST challenge; this shows

that encoding the latter on only 28 channels is intrinsically difficult and with added noise many

of the features are lost.
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Figure 4.19: (a) shows convergence speed of the considered systems as a fraction of the total
given samples in other graphs; (b) shows degradation in performance as the input
channels to the first layer are increasingly simplified (analog to digital) and cor-
rupted (noise).

Device/Task Full Performance 10% Loss 20% Loss

ENODe-Lyon 0.65mJ 0.39mJ 0.182mJ

TBFe-Lyon 154mJ 92.4mJ 43.12mJ

TBFe-MNIST 11.09J 2.22J 0.924J

ENODe-MNIST 46.8 mJ 9.36mJ 3.9mJ

Table 4.2: Programming cost for two possible nanosynapses

4.3.3.6 Energy Estimates

Like the nanodevice NoProp systems, this scheme keeps the first layer weights static and trains

the second layer using a conditional programming pulse scheme (not every output neuron is

programmed at every training step). Due to high voltage levels for the simulated TBFe poly-

meric device (Vp = 4.4V ), we also include energy estimates using an alternate polymeric elec-

trochemical nanosynapse called ENODe [273] where Vp = 0.5mV . The energy cost per elemen-

tary write operation for the two devices is computed finally as 0.077µJ and 0.325n J , respec-

tively. Total programming expenditure for the Lyon task and the MNIST task for both polymeric

nanosynapses at full training (full performance), within 10 % of max performance, and within

20% of max performance following the analysis in Fig. 4.19 (a) are visible in Table 4.2; system

(hidden layer) size for Lyon is M = 200, and M = 1200 for MNIST. While this estimation is only

raw programming cost, power draw for sum/ integration operations in the hidden layer, and

checking/routing of error should be far less, especially if they use nanosynapses.
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4.3.3.7 Benchmarks

Our best obtained results on the Lyon task were very promising; they emulate not only RC soft-

ware results, but the best obtained results with an RNN approach (Long-short term memory

cell (LSTM) networks) [304]. To test how critical the two layer design is to the high performance

we achieved, we simulated a one-layer system with the training data directly presented (only

the readout layer). Using this approach, we achieved only 56% using the uniform and 62%

using the variable spatio-temporal integration scheme. As suggested in [128], the critical op-

eration expressed by synaptic (in our system, hidden layer) kernels is to project inputs into a

higher dimensional space.

In comparison to the results obtained in [296], which again presented that database simi-

larly to memristive crossbars, we obtained superior results while also avoiding off-chip compu-

tational requirements. At the given hidden layer/reservoir size (M = 1500), top obtained result

is superior to both the standard NoProp and imprinted first-layer NoProp systems by 3% and

5% on the M-NIST test set, respectively.

4.3.4 Discussion

While the proposed design has strong similarities to the RC paradigm: the first layer weights

(synaptic attractions) are fixed, standard regression can be used to extract the value of this

processing network, and neurons show both positive (excitatory) and negative (inhibitory) ac-

tivations, like ELM, the system is feedforward, not recurrent. As recurrence bestows a higher

memory capacity on a reservoir, it is not surprising that more hidden neurons are required in

our case than a true reservoir. The computational capabilities of RCs and ELMs have previously

been compared in [306], which noted that while RCs imply an unfortunate trade-off between

non-linearity (mapping performance) and memory capacity (ability to retain said map beyond

the fading time window), a synthesis of ELM and RC approaches might overcome this dilemma.

Our system implicitly addresses this trade-off by forcing non-linearity at a large set of hidden

neurons, and preserving capacity through stateful variables.

Our results with the frame-by-frame MNIST task suggest that achieving strong performance

on a high-dimensional task requires more than simple spatio-temporal integration. When hid-

den neurons time variability is included, e.g. diverse activation functions, the computational

power of the system amplifies as neurons specialize in their preferred frames from the database.

This approach forces greater sparsity (breaks all-to-all connectivity), and closely resembles the

concept of tuning curves used in [100] to implement efficient neural coding.

4.4 Conclusion and Perspective

Both of the considered improvements to the typical NoProp systems demonstrated major ben-

efits. In the case of the imprinted systems obtained as a result of the plasticity transition occur-
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ring within the silver ionic nanodevices, there were several critical benefits:

• All other things equal, i.e at equivalent hidden layer size M and given the same number

of training examples, multi-layer plastic systems with the imprinted first layer always

performed better on the test set of the given benchmark task (M-NIST) (Figs. 4.9, 4.8.)

• Imprinted systems benefited from variability in the first-layer devices used for the projec-

tion, (Figs. 4.5, 4.9, 4.8.) First layer variability would have no benefit in standard NoProp

systems.

• Imprinted systems intrinsically benefit from greater noise immunity.

• Imprinted systems learn more efficiently in the online learning mode than random weight

systems learning in this mode (Figs. 4.10, 4.12.)

However, the imprinting process requires time to present the images and to allows the devices

to relax. Worse, while relaxation time T is a constant, since the total imprint time scales with the

number of hidden layer neurons, Timpr = MT j , this method could become particularly onerous

for very large systems. A key improvement to this system and work would be a more efficient

way of pre-computing or priming weights in parallel in a large crossbar environment.

The reservoir-inspired system, which added complexity at the hidden layer to improve re-

sults over a standard nanodevice NoProp system, indeed achieved this goal, but only when

sparsity was enforced by creating variable sampling windows at the hidden layer neurons. The

system approached perfect performance on the Lyon spoken digits task, and by approaching

a performance of 95% at hidden layer size of M = 1400, the system outperformed a NoProp

system with twice the hidden layer size (see Table 3.1). Even more dramatically, note that the

dimension or overhead of the first layer was actually 28 times less, since the MNIST task was

presented slice-by-slice in order to realize the artificial timing effects. In addition to these accu-

racy and reduced overhead benefits, the system learned even more quickly than the standard

NoProp system, converging within 90% of maximal performance in less than one-third of a full

epoch (full presentation of the training set; see Fig. 4.19 (a)) . Fast convergence additionally

means that the RC-inspired system can also save about 3-5x as much relative energy relative to

the standard NoProp system in approximate computing applications.

In the future, more concrete hidden layer designs should be specified, especially those ex-

ploiting memristive devices due to their low area overhead. As is, the final energy and overhead

benefits of the system cannot be finalized due to the variety of competing designs. As far as im-

proving performance even further, inter-neuron effects could be explored to imbue the system

with even more power to tackle complex non-linear or stochastic effects. Two possible designs

to inter-connect hidden layer neurons for greater computational power are the time-delayed

reservoir (TDR) approach [129] or the simple cycle reservoir approach [308].



Conclusions and future work

“Sometimes it seems as though each new step

towards AI (Artificial Intelligence), rather than

producing something which everyone agrees is

real intelligence, merely reveals what real

intelligence is not. ”

Douglas R. Hofstadter

“IN the context of neuromorphic engineering, it might seem that a panoply of

algorithms, concepts, and physical devices are available, and so that picking

any one of them , or any combination of them, is difficult. However, in this work

care has been taken to emphasize, whenever possible, concrete models and devices

over abstract ones. Given this lens, the organic memristor device introduced and

studied, though far from perfect in terms of energy and scaling properties, serves

as a great test case for future on-chip learning systems. By building and extending

this model to new domains, and by testing the complementary performance of other

and slightly more exotic devices with intrinsic time-dynamic features, the ultimate

objective of the thesis- to explore the design space of future neuro-computers- has

been realized. In turn, several designs and directions towards this ultimate goal are

now under development. ”
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THIS concluding chapter quickly recaps the significance and summary of this work, before

discussing some natural extensions of the research.

Summary

In the next era of distributed computing, brain-inspired inference engines that perform data

science operations locally rather than in distant servers would be a major advantage, from the

perspective of reducing energy costs, reducing environmental impact, and increasing security

and ownership of local computing and/or data resources. A new generation of emerging non-

volatile memory devices are a leading candidate to achieve this neuromorphic vision. Using

both theoretical and experimental works, we have shown that efficient physical realization of

modern artificial neural network (ANN) architectures using emerging memory devices (mem-

ristive nanodevices) ought to whenever possible maximize the intrinsic (analog, temporal) abil-

ities of these devices, while also being mindful of their physical limitations. To that end, a major

consideration has been the design or optimization of architectures that resist or even exploit

these natural limitations (variability, non-linearity, etc).

Three major lines of exploration have supported this theme. First, a new variety of poly-

meric redox memory device was characterized and simple as well as complex compact models

were developed to assess its unique properties in a circuit environment. Importantly, we the-

oretically and then experimentally showed the compatibility of this exciting new device with a

key learning algorithm that allows for scalable computing in the ultra-dense crossbar environ-

ment. In our experimental work, our organic devices successfully and automatically adapted

themselves as reconfigurable logic gates by cooperating with conventional circuitry and a field

programmable gate array (FGPA). In addition, we imagined and implemented far larger sim-

ulated learning experiments with this device, including notably with the M-NIST handwritten

digits database. In the context of these tasks, critical device limitations such as asymmetric

device behavior between conductance modes (SET, or increasing conductance, and RESET, or

decreasing conductance) posed a core limitation, while typical inter-device parameter varia-

tion was handled far better.

Second, we abstracted away from this particular device and considered a variety of multi-

layer memristive neural network systems. In particular, we developed and simulated vari-

ants of random projection (NoProp) and backpropagation (MLP) learning systems on a suite

of tasks. These local learning systems again showed critical dependencies on physical device

constraints; notably, analog richness and non-linearity. By exhaustively considering these pa-

rameters, we uncovered non-obvious trade-offs between the efficiency of these learning algo-

rithms in the context of emerging non-volatile memory learning systems. Notably, our results

highlighted that random projection systems learn quickly compared to systems learning with

back-propagation- which saves time and energy- and can learn with less perfect nanosynapses-

a major asset in a pre-industrial context.
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Lastly, we examined how standard feed-forward ANNs designs may be modified to exploit

temporal effects, either at the device or system level. In this context, we focused in particular

upon improving the bio-inspiration and performance of the NoProp system. We considered

two such major improvements. In the first case, we enhanced the performance of standard

random-weight architectures with subtle plasticity effects in the first-layer; these effects were

obtained using a silver ionic nanodevice with an intrinsic plasticity transition behavior. In the

second, we improved the intelligence of the hidden layer sub-system in order to increase the

accuracy and speed of the on-chip learning system. In all of these improved systems, we always

considered to some extent what the impact of non-ideal effects such as inter-device variability,

corrupted input channels (noise), and others. Depending on the proposed system, they were

either immune, very, or somewhat resilient to these effects.

Future Work

Three lines of possible future inquiry stem out from the works completed here; one in terms of

device optimization and scaling with the nanodevice studied most closely (organic memristor),

one in terms of general optimal learning methods for on-chip hardware, and one in terms of

architectural/systems strategies in fully scaled synaptic grid computers.

In order to optimize the new class of organic memristive device used in the small sys-

tem learning for scale in larger systems, device engineering as well as systems-level mitigation

strategies to rectify the asymmetry between SET and RESTET issues encountered would be a

critical task. As demonstrated in both the experimental and theoretical work, this was a criti-

cal constraint to effective on-chip learning; while an alternate learning mode does exist taking

this into account (SET only mode, or continuous SET followed by ocassional RESET), it does

not benefit from many of the efficiencies that would be critical at scale and which only comes

when using SET/RESET together . Further device characterizations and simulations could help

reveal to what extent the RESET operation in the polymeric device involves violent destruction

(burning) of filaments, and if this is the case, possible changes in the polymer’s chemical com-

position be implemented to test if a more gradual RESET mode is possible. Otherwise, special

circuits and programming strategies may be considered to rectify this issue. Somewhat anal-

ogously to the case of Phase Change Materials, which require special circuit to carefully and

extremely quickly heat the device between the crystalline and amorphous stage, perhaps very

short programming pulses are required for gentle conductance decreases.

From the perspective of machine learning and optimal learning approaches, in the future

it would be intriguing to expand the supervised learning approach of this thesis to additionally

include semi-supervised and un-supervised approaches. As plasticity effects can implement

un-supervised learning operations, these effects could also be explored with nanodevices. Ul-

timately, in the future we hope to further consolidate supervised decoding systems with more

complex, un-supervised encoding layers, as suggested in [309]. In particular, enhancing the
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multi-layer plasticity transition system into a completely, or semi-supervised learning system,

would be an achievable and interesting extension of this work.

From the perspective of building scaled architectures with emerging ReRAM devices, it

would be interesting to compare the rich analog approaches considered here with the complex

binary adaptations of DCNNs have recently been proposed for on-chip implementation with

resistive memory devices [310–312]. Usually, these assume the use of binary devices or use of

complex, analog devices in ’binary-mode’. While such designs simplify many of the operations

discussed herein by greatly reducing the weight range of their constituent nanodevices, they

must then also store highly analog gradient updates ([268]). As a future set of work, it would

be interesting to analyze which trade-offs, in terms of energy footprint, speed, overhead, etc,

exist between larger networks using far more binary devices and those exploiting analog and

temporal aspects of nanodevices more fully as we have attempted to do here.

Lastly, while in this thesis we have mostly considered standard machine learning audio

and/or vision classification tasks, in the future it would be interesting to adapt the nanodevice

ANNs we have proposed here to function on more realistic, open-ended data stream environ-

ments, such as streaming video. In this context, ANNs can achieve functions other than simply

classification as well. In Sec. C.1, we have proposed an early version of an anomaly/novelty de-

tection system built with memristive nanodevices. In this system, the objective is not to reveal

what an unknown class is, but to compute an anomaly or outlier status relative to a baseline.

In the future, we hope to describe and design nanosystems that integrate both the essential

classification/regression activities shown here, alongside more neuro-inspired pre-processing

filters, i.e for anomaly, associative memory, or sensor fusion purposes.
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Appendix A

Additional details on TBFe devices

“IN THIS APPENDIX , additional details relating to the fabrication, mechanisms

of switching behavior, and scaling of the TBFe physical nanosynapses are pre-

sented. ”
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A.1 Synthesis and Fabrication of TBFe Devices

A.1.1 Chemical Synthesis

The iron(II) tr i s−bipyridine complex with diazonium functions was synthesized according to

the procedure depicted in Supplementary Fig. S2. All reagents and chemicals were purchased

from Aldrich and used as received. 4’-(4-Aminophenyl)-2,2’-bipyridine (BipyNH2) was pre-

pared according to a procedure described previously [? ]. Characterization techniques: NMR

spectra were recorded with a Bruker ADVANCE DRX 400 (400 MHz). Chemical shifts δ are ex-

pressed in ppm relative to tetra-methylsilane (TMS). Infrared spectroscopy (IR) was realized

with a Bruker Vertex 70 spectrometer (resolution 2 cm−1, 24 scans collected, MCT detector)

equipped with a Pike Miracle plate for ATR. UV-Vis spectra were recorded with a Perkin Elmer

Lambda 650 spectrometer. Mass spectra were acquired in the positive mode on a LCQ-ion trap

Thermofinnigan spectrometer equipped with an electrospray source (MS-ESI).

a) [Fe(Bipy−ph−NH2)3][PF –
6 ]2 (FeNH2).

A solution of iron(II) tetrafluoroborate hexahydrate (91 mg, 0.33 eq.) and BipyNH2 (200 mg,

0.81 mmol) in ethylene glycol (4 mL) was heated at 60◦C for 5 min. Afterward, 100 mL of water

saturated KPF6 were added. The precipitate obtained was filtrated and washed several times

with diethyl ether to give FeNH2 as a purple solid (270 mg; 92% yield). 1H NMR (400 MHz,

DMSO-6, δ): 9.12 (d, J=7.9Hz, 1H), 9.01 (s, 1H), 8.23 (t, J=7.2Hz, 1H), 7.83 (d, J=8.0Hz, 2H), 7.76

(m, 1H), 7.60-7.45 (m, 2H), 7.28 (d, J=6.1Hz, 0.5H), 7.17 (d, J=6.1Hz, 0.5H), 6.69 (d, J=8.0Hz, 2H),

5.87 (s, 2H). 13C NMR (50.32 MHz, DMSO-d6, δ): 159.3, 158.6, 151.7, 149.0, 138.2, 130.6, 128.8,

128.3 (2C), 127.3, 124.0, 122.1, 120.5, 118.8, 113.8 (2C). IR ν = 3367, 3098, 1594, 1524, 1470, 1437,

1411, 1330, 1261, 1189, 1054, 826, 787 cm−1. UV-vis (acetonitrile): λmax = 545, 508 (sh), 369 nm.

MS (ESI) m/z: calcd for C48H39FeN 2+
9 , 853.20; found, 398.8 (M - 2PF –

6 ).

b) [Fe(Bipy−ph−N +
2 )3][PF –

6 or BF –
4 ]5 (FeN +

2 ).

Under argon, nitrosium tetrafluoroborate salt (13 mg, 1.2 eq.) was added directly to a de-

gassed solution at -40◦C of FeNH2 (100 mg, 0.1 mmol) dissolved in dry acetonitrile (5 mL). After

5 min of stirring at this temperature, diethyl ether was added until a precipitate came out. The

precipitate was filtrated, washed several times with diethyl ether to give a purple powder FeN +
2

(125 mg, quantitative yield). 1H NMR (400 MHz, CD3CN, δ): 8.88 (d, J = 4.2Hz, 1H), 8.75 (dd, J

= 7.5Hz, J = 4.5Hz, 1H), 8.67 (d, J = 8.7Hz, 2H), 8.34 (d, J = 8.7Hz, 2H), 8.21 (t, J = 7.5Hz, 1H),

7.80-7.40 (m, 4H). IR ν = 3107, 2280 (N≡N), 1583, 1540, 1468, 1438, 1402, 1333, 1285, 1233, 1022,

826, 785, 750 cm−1.

A.1.2 Electrografting of Iron complex

The electrochemical grafting was conducted in a single-compartment three-electrode cell with

a potentiostat (Model VSP Bio-Logic SAS) in a glovebox. Ag/AgNO3 (10 mM) electrode and a

platinum wire served as reference and counter electrode, respectively. All potentials in the fol-
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lowing are referenced to Ag/AgNO3. The silicon substrate with the patterned gold working elec-

trodes was completely immersed in a solution of FeN +
2 (34 mg/L) dissolved in tetrabutylam-

monium hexafluorophosphate (0.1M)/acetonitrile electrolyte. The gold electrodes were con-

nected with a passivated tungsten tip. Chrono-potentiometry technique (5s at -8µA) was used

to make smooth thin films of covalently bounded Iron(tris-bipyridine) (TBPFe) complexes (See

Supplementary Fig. S3), AFM image and height profiles of modified electrodes. Cyclic voltame-

try (CV) technique was used to grow thicker film for the memristive device.

The electrochemical properties of an electrodeposited 14 nm-thick film were studied by CV

in a medium of analysis free from the pristine complex (Supplementary Fig. S4). CV shows

the characteristic peaks of the complexes grafted on the electrode, i.e. a reversible wave in

oxidation (0.78 V vs Ag/Ag+), two reversible waves in reduction (- 1.58 V and -1.76 V). It is worth

to note that the potentials of the metal complexes inside the polymer films were closed to those

for dissolved iron trisbipyridines complexes.

Figure A.1: AFM image of electrodes electro-functionalized with FeN +
2 (2× 10−5 mol·L−1) in

0.1M NBu4PF6/acetonitrile electrolyte using chrono-potentiometry technique (5s
at -8µA). Electrodes labeled REF. were not grafted and serve as reference. The AFM
height profiles show the homogeneity of the films thickness along each electrode
and between electrodes grafted separately.
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Figure A.2: CV of a gold electrode modified by FeN +
2 in 0.1 M Bu4NPF6/acetonitrile, 100

mV·s−1.

A.2 Device endurance and stability

Figure A.3: (a) Demonstrates current and voltage scheme used to conduct, SET, RESET, and
Read operations (b) Demonstrates the ability of devices to withstand several hun-
dred progressive pulse programming test schemes (Read/Write/Read/Erase) (c)
Demonstrates the temporal stability of devices’ conductance G over time, once
placed in the ON/ GMax, OFF/ GMin, state.

A.3 Crossbar-compatible scaling (Vertical device structures)

The vertical memristive junctions are fabricated by electrografting a thin organic film (of typi-

cally 20-30 nm) on bottom gold electrodes and then by direct deposition of a second gold elec-

trode. Both bottom and top electrodes are fabricated by e-beam lithography, evaporation and
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lift-off. A schematic representation and a SEM image of such vertical device are shown in fig-

ure A.4a,b. After electrical forming, the vertical device exhibit comparable characteristics to

the planar ones (figure A.4c): similar SET (2.5-3V) and RESET (3.7-4V) bias ranges and a wide

range of accessible intermediate conductivity states. The endurance of such vertical configu-

ration is lower than for planar structures and the device failure is characterized by devices get-

ting shorten. This is most probably due to partial deterioration of the organic layer upon metal

evaporation. Work is underway on the electrografting parameters to improve the compactness

of the film to limit such degradation.

Figure A.4: (a) Schematic representation and (b) SEM image of a vertical memristor. (c) Rep-
resentative IV characteristics of the vertical devices upon application of a series of
voltage sweeps with different final states. The conductivity at a read bias of 1V shows
the accessibility of different intermediate states.

A.3.1 Causes of Filamentary Operation

There is little agreement in the literature on the filamentary vs. bulk nature of the switching and

on the respective impact of the different elements (electrodes, organics, and substrates). In our

case, the unipolar filamentary nature of the switching is clearly established based notably on

the two following arguments:

• Firstly, the device properties (threshold voltages and the maximum conductivity) do not

scale with the junction area. As displayed in figure A.5, devices with different junction

area spanning a very large range display very similar characteristics. This implies that

the change of conductivity only affects a small area rather than the entire junction.

• Secondly, the RESET threshold varies with the initial conductivity, while the SET thresh-

old does not. The higher the initial conductivity, the higher the voltage required to RESET

the device. This can be explained if the organic memristor varies its conductivity through

the formation and rupture of conductive filaments. It is indeed expected that when a

larger conductive filament is formed, a higher energy is needed to break it.

Concerning the nature of the filaments, we excluded the role of the metal electrodes by

changing the nature of one or both metals (including by using carbon nanotubes as electrodes).
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We also excluded the role of the surface (in planar junctions) notably by studying organic mem-

ristors on flexible organic substrates. Electrochemical characterizations show clear reversible

memory effects in solution associated with redox process. Yet, in a device configuration, we

cannot presently fully exclude the formation of carbon-based filaments originating from a degra-

dation of the redox film during the electrical forming step.

Figure A.5: Dependency of (a) the maximum conductivity (GM AX ), (b) SET threshold and (c)
RESET threshold to the cross section area of the channel.



Appendix B

Additional learning experiences with

TBFe devices

“THIS appendix introduces in more depth the set-up used to implement hardware

learning with the organic nanodevices. Moreover, it contains additional com-

panion simulations to the experimental works not all visualized within the main

text. ”
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B.1 Additional examples of SR/SO Learning

Figure B.1: Examples of learning 3-input logic function using SO Mode. For each example, the
top panel shows the evolution of synaptic weight; the middle panel shows the error
counts after each epoch; the bottm panel shows the digital output of each case after
each epoch, where error(s) are marked in red. As shown in the middle panels, the
system often get stuck at an intermediate state with one or two errors due to the
"nonlinear SET" behavior of the memristor.

Figure B.2: Examples of learning 3-input logic function using SR Mode. For each example, the
top panel shows the evolution of synaptic weight; the middle panel shows the error
counts after each epoch; the bottm panel shows the digital output of each case after
each epoch, where error(s) are marked in red. As shown in the top panels, there is
more fluctuation of the synaptic weights when using Mode 2.
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B.2 Complementary learning simulations

Figure B.3: Simulated learning cases using SO (a) and SR (b) learning with variable nanodevices
(σ(GMax) = 40%, σ(Vt1) = σ(Vt2) = 10%). Learning is imperfect and success varies
slightly based on the function. Concluding conductances for a characteristic single
iteration (c) are noticeably higher than those for a characteristic SR iteration (d).
∆G+,∆G− vary on a device by device basis but always pegged at 10%GMax for the
given device.
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Figure B.4: (a) Minor SR asymmetry case (∆G+ = 15%GMax ∆G− = 20%GMax) closest to experi-
mental case and listed in Table 2 paper, and characteristic weights (d); (b) SR per-
formance is severely impacted when∆G+ = 5%GMax ∆G− = 20%GMax, as concluding
weights (e) are uniformly low; (c) Performance is far superior with inverse asymme-
try (∆G+ = 20%GMax ∆G− = 5%GMax), and weights much higher (f). Device variabil-
ity same as Fig. S7 in all cases.
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Figure B.5: SR mode learning of a non-linearly separable function- the 3XOR function- is de-
picted in (a) for the composing functions and (c) for the final function. Curves repre-
sent mean errors/correct values during each epoch for 500 monte carlo simulations;
learning of the first layer functions is nearly perfect, while the second layer function
(3XOR) learns in 79.6% cases by mean 30.2 epochs. SO mode learning for the iden-
tical task is depicted in (b), (d) for first and second layers respectively. 71% of all
cases now learn successfully, at a faster mean 23 epochs. Every simulation assumed
device variability at the same levels examined in Figs. S10-S11; ∆G+,− = 10%GMax

and the SR case is symmetric at this level.
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Appendix C

Online memristive anomaly detection

scheme

“AN additional application of evolving memristive tasks to a different task besides

generic classification is described, simulated, and evaluated in this section. ”
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C.1 Background: methods to implement novelty detec-

tion

Anomaly, or novelty detection- determining whether a given input is substantially different

then previously seen samples- is a problem with abundant applications in the fields of visual

and other sensory data processing (robotics), complex time series analysis (financial and in-

dustrial analysis), and monitoring of complex systems (e.g. web traffic or server bandwidth).

The problem is statistically represented as a classification task involving an outlier; while a wide

variety of generic mathematical techniques such as extreme value theorem (EVT) exist to solve

the problem with stable training sets, online (real-time) solutions to the problem are difficult

[313]. While online machine learning algorithms do exist to tackle the problem, the computa-

tional requirements are steep since each recursive computations are required at every timestep;

moreover, the system has difficulty being correctly tuned to the problem [314]. Local circuits

implementing anomaly detection are especially attractive for Internet of Things (IoT) devices

and space and ocean exploration vehicles, yet existing designs implementing these functions

are space and power hungry [315, 316]. In contrast, the brain- in particular structures such as

the left visual field of the right hemisphere- continuously provides robust online detection in

response to stimuli such as alarming or impossible objects [317, 318].

Cognitive computing could close this massive performance gap through a combination of

superior computing materials, such as synaptic nanodevices, as well as more approximate al-

gorithmic approaches [319, 320]. In real distributed systems, signal corruption or sparsity, high

dimensional sensor input/task, and strong energy limitations make the online anomaly detec-

tion task intrinsically difficult. Kohonen and Oja’s novelty filter- a system that continuously ex-

tracts the orthogonality of new data (input vectors) to the previously stored patterns that have

been stored in a memory matrix[321, 322]- nevertheless manages to tackle the task by comput-

ing in memory. In this work, we show that a crossbar of memristive nanodevices can implement

the key principles of this filter when inputs are presented recurrently or coincidently. Recur-

rent memristive crossbars have been examined from a mathematical perspective [323]; within

a neuromorphic context, such a system has only been preliminarily analysed [324]. Directly

implementing a novelty filter with a crossbar of memristive nanodevices, to our knowledge,

has not been proposed before.

C.1.1 Autocorrelation Matrix Memory

Kohonen’s autocorrelation matrix memory is an analog auto-associative system whose key com-

ponent is a matrix of adapatable weights (M), and whose output y in response to an input vec-

tor x at any time t is a combination of the immediate value of that signal joined with the feed-

back of all past signals, expressed through the weights ( y = M x). Each weight at row i , column

j (Mi , j ) ought to evolve according to the unique influence of its input row (xi ), recurrent or co-
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incident column (x̄ j ), and implicitly past events (starting weight). When Mi , j only changes in

response to coincidence of active input on xi , x̄ j , the system stores an auto-correlation matrix

and constitutes a dynamic novelty filter (can continuously report similarity of the presented in-

put to the auto-correlation). An ACMM may be complete- storing n2 values relative to an input

with n channels, or incomplete- storing only n.

C.2 Online anomaly detection nanoarchitecture

Initially, address-Event Representation (AER) circuitry converts real-time sensor data into frames

of voltages spikes x . A transposed voltage spike frame xT may be presented either recurrently,

traveling across top wires before flowing to charging circuits that generate appropriate spikes

on bottom nanowires, or coincidentally, bypassing the crossbar. While the coincident scheme

is sufficient to implement an ACMM, the ability to naturally implement a characteristic delay

function at the ’hidden layer’ is then lost. Memristive nanodevices at each crosspoint (inter-

section of a top and bottom nanowire) form filaments in response to sufficient biases, and this

internal state variable, readable as a characteristic conductance (G), bestows intrinsic memory

of past states (top right, Fig. C.1 ). In the crossbar architecture, voltage difference across the

top and bottom nanowire is exploited to realize a conditional programming scheme. As men-

tioned, an autocorrelation matrix results when only those devices with both an active input

(positive) and active feedback (negative) may non-linearly increase their conductances, G (cir-

cled cross points, Fig. C.1 ). The voltage differential across only these devices should be greater

than a characteristic device threshold Vth; one scheme that implements this is shown in Fig.

C.1, bottom right inset.

In the recurrent case, initial input from top wires is fed to intermediate circuitry as current

(for instance, Mead’s axon-hillock circuit[32], Fig. C.1 middle left). Since a negative voltage

spike is generated after a characteristic integration time (tpre) given by the capacitor, devices

evolve only within a brief window tg (when input voltage spike and recurrent spike are coin-

cident). During tpost only bottom nanowires are biased, and during tc capactive circuits reset

and no spikes are applied. After each update a subsequent read period (tr ) provides an online

estimation of similarity for the previous example. Output currents (y) are automatically ob-

tained by the dot product between input voltage spikes at Vread and nanodevice conductances.

Subsequently, trans-impedance amplifiers convert output currents into voltage at each output,

whose values are compared to characteristic thresholds in leaky integrate and fire (LIF) CMOS

neurons at each output (Fig. C.1(a)). These neurons ought to feature a characteristic threshold

and a short refractory period. In addition to LIF, log-domain LPF as well as DPI CMOS neurons

may implement these functions [30]. Our nanodevice memristive model is a generic bipolar

device. Our time-step simunlator tracks whether potential on each device during each time

integration step exceeds the critical threshold Vth = 0.5V ; if it does, conductance increases

non-linearly (∆G) towards a maximal conductance level (Gmax = 10mS). Active input spikes
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Figure C.1: A complete ACMM system that implements novelty filtering is depicted in the cen-
ter; diagonal (cobalt) devices correspond to the incomplete ACMM. Orange inset
(top left) highlights trans-impedance and threshold circuitry; purple inset (middle
left) depicts capactive charging circuit for generating recurrent column spikes; blue
inset (top right) shows nanodevice conductance evolution as a function of voltage
and filamentary formation. Bottom panels depict a conceptual nanofabric realiza-
tion of the system (left) and waveforms showing the timing and levels of various
spikes used to implement the scheme (right). At this moment, characteristic in-
put (gray) and recurrent (brown) spikes grow only the highlighted (green) device’s
filaments.

and inverted recurrent spikes are set at +Vi = 0.25V ,-V j = 0.25V to fulfill the scheme, while

Vread = 0.1V . A time step simulator software program tracks the evolution of all inputs, device

conductances, and outputs.

C.3 Online anomaly detection demonstration

C.3.1 Evaluating Filter Performance

Images of 36 pixels were subsequently presented to the system in spike form in three epochs,

each consisting of 40 cycles as depicted in Fig. C.2. An ’X’ (class 1), ’O’ (class 2), and ’Z’ (class 3)

were presented in that order to the network. All images have the same number of active pixels

(8), yet they are dis-similar to each other to varying degrees. While classes 1,3, and 2,3 each have

a Hamming Distance of 8 (pixel flips relative to each other), classes 1,2 have a distance of 16 (are

completely orthogonal to each other). Significantly, class 3 can be built entirely from the pixels

of classes 1,2. During online learning, memristive devices evolve and reads report disparities

through time and within the input space relative to what is stored in auto-correlation. If the
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novelty filter operates correctly, we expect to see sharp drops in reported similarity- or high

orthogonality- during transition periods (when a new image is shown). Over time, the ACMM

will eventually learn the new image as well and return to high similarity. A false positive error is

defined as reporting an anomaly when none existed; a false negative is missing a true anomaly.

Figure C.2: Top row: output currents at all columns (y) is depicted for the perfect case (a),
imperfect case with only 5% noise (b), and imperfect case with 5% noise as well
as device dispersion. Bottom row: corresponding conductance heat maps show-
ing stored conductances for all n2 at the last moment of the network’s operation
(t = 120).

C.3.1.1 Complete Adaptive Matrix Memory

In a complete ACMM, the response of every output neuron corresponds to a unique sub-space

of the auto-correlation matrix (M). The effect of this is visible in Fig. C.2(a), where each of

the n lines corresponds to the read current of a different column or channel of devices (before

voltage conversion or LIF neuron) during 120 test trials. As visible in Fig. C.2(b), a ’fractal’ auto-

correlation map is stored in the conductances of nanodevices (pictured at the end of testing).

While class 1 and 2 appear visually, since class 3 is a subset of both it is implicitly contained.

This map produces distinct spiking behavior during all three of the epochs; using the infor-

mation of all n output channels, anomaly detection is then successfully detected during each

transition. The distance that current falls (corresponding to the drop in reported similarity) is

half in the case of 2 to 3 versus 1 to 2; this exactly corresponds to the relative differences in

hamming distance between the classes. In order to simulate imperfect effects, the following

were added to the previously mentioned simulations: for noise, 5% of all incoming pixel pulses

sent to the network were flipped (actual pixels were deleted, and non-pixels became pulses);
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for variability, 5% variance around earlier mentioned mean threshold, maximum conductance,

and characteristic conductance change values were assigned on a device-by-device basis at a

normal (Gaussian) distribution. When adding just noise (5%) to the complete system, the pri-

mary effect is up and down current oscillations (predicted similarity) within epochs due to ran-

dom ’up and ’down’ pixels; however, neither the overall stored conductance pattern nor the

current trajectories through time are substantively changed (Fig. C.2(b),(e)). However, when

both noise and device variability are added, the system begins to deviate substantially from the

original pattern. The clustering of output neuron current levels to a few quanta, as visible in

Fig. C.2(a),(b), is no longer observable in (c). This causes several false positives (an anomaly

is reported when the image was the same). Additionally, the fractal map (auto-correlation) of

digits being stored in the weights now has random holes in it (Fig. C.2(f)); this follows from the

fact that deviations around Vth may cause some devices with uncharacteristically high thresh-

olds to never satisfy the condition for conductance increase (e.g., if Vth = 0.6). While this can

be solved simply (increasing Vi ), other effects of device variability are more intractable. Since

many devices saturate at ON , the effect of Gmax variability can be substantially negative to

accurate online similarity reporting at a higher dispersion value.

C.3.1.2 Incomplete Adaptive matrix memory

An incomplete ACMM requires only n devices, possibly saving space and energy. To verify

successful operation, only diagonal (cobalt devices, Fig. C.1) were also demonstrated on the

previous task. Figure C.3 shows operation in incomplete mode for both the perfect inputs and

devices case ((a), (c)) , and imperfect devices and noisy inputs ((b), (d)). In the perfect case,

high orthogonality (anomaly) is detected at the both the beginning (configuration period), and

during the transition from 1 to 2. However, a false negative occurs between epoch 2 and 3;

since the auto-correlation matrix has stored every pixel previously in class 3 (’Z’) already and

is only using n = 36 devices, it simply does not have the computational capacity to report this

transition. This implies that even with perfect devices and input, an incomplete ACMM only

works with relatively dissimilar inputs. In the imperfect case, the combination of noise and

device variability creates deviation between output currents within epochs, and leads to two

small anomaly detection periods slightly after the transitions from 1 to 2 and 2 to 3. While

noise tipped the scale towards successful detection in this case (avoided a ’false negative’), it

does not reliably do so; at even higher noise levels, the chance of a false positive grows as well.

C.3.2 Classification Performance

All performances so far used analog current outputs to demonstrate the performance of the

filter, however this mode of operation may be difficult in real nanoelectronic systems where

analog values are difficult to preserve and compare through time. In a realistic online operation

mode, the goal is to read-out a binary signal from the system about whether it is detecting
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Figure C.3: Top row: output current (y) received when presenting perfect images to perfect net-
work (a) and imperfect images to variable network (b). Zones of anomaly detection,
where the LIF neuron would likely fire, are denoted in the shaded regions, and the
small bar charts hold a record of the final conductance of each of the n nanode-
vices. Bottom row: input spikes presented to generate weight changes over all trials
for perfect (c) and imperfect (d) trial.

an anomaly situation or not at any particular state t ; [e.g.] whether the observed state is the

baseline/normal state (0) or anomaly state (1).

C.3.2.1 Implementation of a binary read-out for novetly detection systems

The online binary mode is demonstrated in Fig. C.4 (a) which shows that such a scheme is only

effective at determining moments of change from a stored baseline; it misses to continuously

report error during the ’Z’ epcoh. Worse, such an analog (baseline) value would need to be

stored, which would necessitate more circuit overhead. However, a slight modification can

yield more accurate binary estimates of novelty detection. This can occur if the currents are

summed, and a single value tref is stored and compared against the output of each line yi .

Electrically, this can be implemented through a simple circuit, such as a comparator clamped

to the target value, and as needed, a following neuron (e.g., Leaky Integrate and fire design). As

visible in Fig. C.4(b), this system now performs better, missing only a small moment of anomaly

case in the ’X’ epoch. A final option requires that the vector of outputs are compared to a vector

of baselines t , so that the system now compares against n threshold instead of one. As visible in

Fig. C.4(c), the system is now able to always report anomaly outside of its baseline state. Note

that, for both the two readout/threshold systems, a configuration step is required before the

system can enter into ’detection’ mode (threshold must be set).
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Figure C.4: Left: Direct current output is used to evaluate anomaly cases. As visible, only the
transient moments are noted as anomalies (red). Middle: A sum of outputs is com-
pared to a single threshold. As visible, most of the anomaly period is detected.
Right: each output channel has a threshold. Now, the entire anomaly period is
noted.

C.3.3 Novelty Detection with Forgetting

In Kohonen’s original work, it is already mentioned that the standard novelty detector engine

suffers from a critical draw-back, which is over-saturation due to pattern imprint in the mem-

ory matrix [321]. If synapses can naturally relax or forget, the system’s capacticity is massively

improved through time/operation (note however that its memory capacity at any one moment,

however, is not greater). Finally, we tested enhancing the standard novelty filter to a novelty fil-

ter with the forgetting effect by integrating the ECM device with meta-plastic behavior- earlier

introduced in Section 4.2- into the already described system. Figure C.5 shows, on the left, the

relaxation of all n = 64 synapses in the considered memory matrix back towards their resting

state following a previously occuring memory imprinting and detection phase (what is demon-

strated in Fig. C.4). The results suggest that a refresh time of about 0.1s is needed by the system

to partially erase weights, and 0.5s to completely erase/relax. This is a long time from the device

perspective, but possibly an acceptable refresh window from the nanosystem operation point

of view. Next, we tested whether the forgetting or relaxing effect has a deleterious effect during

operation itself. As visible in Fig. C.5 left, despite very small momentary relaxations, the direct

current outputs remain correct and so integration with the designed system is indeed possible.

Lastly, we tested integrating a full read-out scheme for anomaly detection as earlier dis-

cussed with the fully non-volatile device. For both the one threshold (Fig. C.6, left) and multi-

threshold schemes (Fig. C.6, right), anomaly is detected continuously during the two periods

corresponding to the non-baseline shown image. Note in these diagrams the combined thresh-

old , and one of the many, are shown as green line(s).
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Figure C.5: Left: forgetting or relaxation of nanosynapses is demonstrated after the main
anomaly detection phase. Right: basic operation of the novelty filter is confirmed
with the ECM cells. As visible, current output drops to none during the second im-
age class where no pixels are shared; in contrast, during the last phase, the distance
is estimated as half (half of the pixels are stored in the same image).

C.3.4 Discussion and Future Work

The proposed systems successfully implement online novelty filtering and generally demon-

strate a trade off between circuit overhead and usefulness; in particular, analog current output

reveals distance between inputs, but this distance needs to be stored and/or evaluated with

off-crossbar CMOS or logic circuitry in order to be meaningfully used in the novelty detection

set-up. In addition, the chosen image anomaly task was extremely simple and intended as a

proof of concept. Real AER data, such as from a Dynamic Vision Sensor (DVS) camera, may

prove a more challenging task.

Robustness of these systems to imperfections is mixed; nanodevice variability (especially

around GMax) is more damaging than noise. At the modest dispersion levels simulated here

false positives were possible (Fig. 2(c)); at even higher levels, similarity measures may become

meaningless. Thus, reliable nanodevices with low dispersion should be preferred for physical

realizations of the system. As all devices in the present scheme will tend to saturate towards

GMax after many patterns have been presented, a RESET could be periodically applied on all

input and output wires after awhile (e.g,, erase the entire ACCM). However, if memory traces

are treated as valuable by the system, the novel detection with forgetting scheme (Section C.3.3)

could significantly extend the lifetime of such an on-chip novelty detector. In particular, the use

of a device with both volatile and non-volatile filamentary dynamics allows for natural relax-

ation (forgetting)[293] beyond a certain memorization moment intrinsic to the device physics.

This scheme certainly deserves further exploration, particularly with respect to its potential

resilience to device variability and how it may be used in other contexts.

Finally, we note that, as formulated, the present simultaneous voltage encoding on the

crossbar implements a massive logic function - an AND gate at every cross-point. Recently, an
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Figure C.6: The single threshold (Left) and the Multiple threshold (Right) binary anomaly fil-
ters is demonstrated during operation phase with the ECM device. The green line
represents a single threshold.

extension of this work demonstrated that unipolar devices with an appropriate voltage scheme

could also implement the XOR gate at the diagonal elements of the crossbar (cobalt devices, Fig.

C.1)) [325]. Further extension of the present work could be to explore how different logic gates

could be multiplexed through time and space to implement other functions besides anomaly

detection.



Appendix D

Synthèse en Français

“ICI nous présentons brièvement contexte, et résumons rapidement les résultats

des travaux expérimentaux et théoriques de la thèse. ”
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Introduction et contexte

À l’ère de l’informatique distribuée, les algorithmes cognitifs inspirés par le cerveau effectu-

ant des opérations d’inférence localement plutôt que sur des serveurs déportés présentent de

nombreux avantages. Ces avantages découlent notamment de la consommation électrique

des serveurs informatiques centraux, et son impact environnemental indirect, ainsi que des

problèmes de sécurité et de fiabilité liés à la vulnérabilité des systèmes centralisés quant aux

attaques et perturbations. Cependant, même si les technologies informatiques existantes, par

exemple les smartphones, les tablettes et nouvelles variétés d’appareils et de capteurs «con-

nectés» effectuaient des calculs localement, de fortes dépenses énergétiques sont attendues

pour répondre à l’explosion de la demande de l’Internet des objets. Ces constats résultent à

la fois d’inefficacités physiques dans les dispositifs à transistors modernes et d’une faiblesse

conceptuelle fondamentale dans la structure actuelle des ordinateurs modernes dans lesquels

la mémoire est physiquement séparée des opérations de calcul - le «goulot d’étranglement

de von-Neumann». Dans ce contexte, la convergence de nouveaux équipements matériels

économes en énergie et d’architectures informatiques à faible coût est une nécessité urgente

pour les ingénieurs et scientifiques.

Dans cette thèse, j’explore en profondeur comment l’intégration d’une nouvelle génération

de mémoires émergentes non volatiles, communément appelées «memristors», représente un

atout majeur pour cette vision neuromorphique . Les avantages de ces nanodispositifs mem-

ristifs sont multiples; ils sont intrinsèquement économes en énergie, et leurs états étant non

volatils, ils présentent souvent de très faibles coûts énergétiques pour la lecture et l’écriture, et

ils peuvent s’intégrer dans des structures extrêmement denses, ouvrant la voie à des structures

de mémoire Téraoctets ou Pétaoctets. En ce qui concerne les réseaux de neurones artificiels

(ANN), ces structures ont le plus souvent été réalisées dans des logiciels et exploitées jusqu’à

présent sur des ordinateurs ou des serveurs. Au cours des dernières années, des implémenta-

tions dans des réseaux logiques programmables (FPGA) ainsi que des puces spécialisées con-

struites à partir de dispositifs CMOS appelés ASIC (Application Specific Interface Chips) ont

également été envisagées pour mettre en œuvre cette approche, et très récemment l’utilisation

de nanodispositifs est explorée. L’intérêt pour ce domaine est naturel puisque la convergence

des ANN et des nanodispositifs émergents offre une opportunité de faire des calculs mathéma-

tiques cruciaux pour les réseaux de neurones tels que les produits scalaires et les fonctions

non linéaires, au sein de dispositifs et de nano-structures. Ce sont des tâches qui requier-

ent beaucoup de puissance de calcul sur les ordinateurs traditionnels, mais que les réseaux

de neurones à nanodispositifs peuvent exécuter naturellement. Cependant, les recherches de

pointe sur l’intégration des nanodispositifs dans les structures ANN sont balbutiantes et intè-

grent rarement le dispositif, le système et les algorithmes.
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En utilisant à la fois des travaux théoriques et expérimentaux, cette thèse apporte des ré-

sultats importants à une génération émergente de travaux de physique appliquée visant la

réalisation physique efficace de réseaux neuronaux artificiels modernes utilisant des disposi-

tifs de mémoire émergents (nanodispositifs memristifs). En particulier, nous avons décou-

vert que pour maximiser les économies d’énergie et l’efficacité de ces systèmes, il fallait max-

imiser les capacités intrinsèques (analogiques et temporelles) de ces appareils tout en gardant

à l’esprit leurs limites physiques. À cette fin, une considération majeure a été la conception

ou l’optimisation de nouvelles architectures qui résistent ou même exploitent les limitations

des nano-dispositifs (variabilité, non-linéarité, etc.). Pour concevoir ces architectures, nous

nous sommes inspirés de la littérature en informatique en apprentissage automatique, tout

en restant attentifs aux applications des modèles conceptuels aux systèmes d’apprentissage

physiques.

Résultats

Tout d’abord, une nouvelle variété de dispositifs de mémoire redox polymériques a été carac-

térisée et des modèles compacts (programmation analogique écrite au niveau matériel) ont été

développés pour évaluer ses propriétés uniques et ses potentiels neuromorphiques. Le coeur

du dispositif est une substance polymère unique qui peut former des filaments conducteurs

entre des électrodes métalliques (Fig. D.1(a)). En raison de ce comportement et conformé-

ment à la théorie électrique memristive, ces systèmes possèdent une variété d’états stables. Ces

états de mémoire peuvent évoluer positivement (augmenter la conductance), évoluer négative-

ment (diminuer la conductance) ou rester stables pendant les impulsions de lecture (mode non

volatile) comme le montre Fig. D.1(b). La substance polymère est chimiquement déposée sur

de petites jonctions; nos dispositifs expérimentaux utilisaient des jonctions verticales, mais

les jonctions horizontales (dans lesquelles on peut construire des structures croisées) sont

faciles à construire en utilisant le même dispositif. Nos simulations dans le passé ont sug-

géré la compatibilité d’un algorithme d’apprentissage clé qui rapproche la descente en gradi-

ent, un puissant algorithme d’apprentissage automatique, dans un environnement standard

de structures croisées (crossbar). Nous avons testé le potentiel d’intégration de ce dispositif

organique unique en l’intégrant dans un petit système d’apprentissage autonome. En utilisant

une configuration de circuit conçue sur mesure et une programmation automatique du réseau

de memristors à l’aide d’un FPGA, notre dispositif organique a fonctionné avec succès comme

une porte logique reconfigurable. Nous avons démontré expérimentalement qu’il pourrait ef-

fectivement apprendre et répéter plusieurs portes logiques à la demande. La mise en œuvre

électronique physique est montrée pour Fig. D.1(c) l’un des deux styles d’apprentissage con-

sidérés (SO, "Set Only"), tandis qu’une expérience d’apprentissage correspondante correspon-

dant réussie apprenant la fonction logique ’00001110’ est démontrée en Fig. D.1(d)-(f). De
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plus, nous avons démontré que les dispositifs pouvaient effectuer une tâche d’apprentissage

automatique standard, la base de données des chiffres manuscrits MNIST. Cette simulation

suppose que nous disposions d’une plus grande structure croisée connectée - dix fois plus

grandes et interconnectées que ce que nous avons expérimenté. Ce travail, publié dans Na-

ture Scientific Reports, a également exploré les principales limitations des nanodispositifs,

telles que la variation d’un appareil à l’autre et le comportement asymétrique des disposi-

tifs entre les modes d’évolution de la conductance. Nous avons constaté que les problèmes

d’asymétrie constituaient une limite essentielle, tandis que la variation typique des paramètres

inter-dispositifs était beaucoup mieux maîtrisée. En raison de cette contrainte, nous avons

développé différents modes de programmation pour mieux prendre en compte le problème

d’asymétrie.

Figure D.1: (a) montre un schéma du nanodispositif organique. (b) montre les caractéristiques
électriques de nanodisositif (c) montre l’installation électrique pour l’apprentissage
en temps réel (d) montre la sortie avant l’apprentissage et (f) après l’apprentissage
est terminé, tandis que (e) montre l’évolution des poids à correctement adapter.
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Par la suite, ces résultats ont été élargis dans le cadre d’une exploration plus théorique de

systèmes d’apprentissage sur puce plus grands et plus complexes. Comme indiqué dans la lit-

térature, les réseaux monocouches peuvent au mieux résoudre des tâches linéaires et ils peu-

vent seulement estimer des solutions linéaires pour des tâches plus complexes (tâches non

linéaires). Nous avons donc recherché comment deux systèmes classiques à trois couches

(une couche cachée) qui peuvent en principe parfaitement résoudre des tâches non linéaires,

même très difficiles, doivent être implémentés comme des systèmes d’apprentissage sur puce

avec des nanosystèmes memristifs et quelles contraintes critiques ils peuvent rencontrer . Les

deux approches que nous avons opposées sont le perceptron multicouche qui apprend par

rétropropagation et un réseau d’apprentissage par projection aléatoire, parfois appelé NoProp,

également l’ELM (Extreme Learning Machine). Basé sur des contraintes de nanodispositifs

réalistes, nous avons proposé des architectures qui permettent à ces systèmes d’apprendre et

d’effectuer des inférences en ligne (en temps réel), automatiquement et dans la mesure du

possible avec un minimum de circuits annexes. Nous avons également utilisé la même tâche

d’apprentissage pour tous les systèmes, encore une fois la base de données MNIST des chiffres

manuscrits, et utilisé des modèles paramétrables de dispositifs memristifs qui sont à la fois

réalistes physiquement mais généralisables à différentes familles de dispositifs. Lorsqu’ils sont

implémentés en systems nanoélectronique, ces structures peuvent apprendre en temps réel

en alternant entre des étapes d’inférence ou de feed-forward, des exemples sont passés dans le

réseau et un cas d’erreur est obtenu (Fig. D.2(a)), et des étapes d’apprentissage ou de program-

mation dans lesquelles les cas d’erreur sont améliorés (Fig. D.2(c)).

Pour tous les systèmes d’apprentissage locaux considérés, notre analyse a montré des dépen-

dances critiques sur les contraintes physiques des appareils; notamment, la richesse analogique

et la non-linéarité. En ce qui concerne le premier point, la contrainte critique sur la richesse

analogique met en évidence la valeur de la construction d’ANNs avec des synapses hautement

analogiques plutôt que numériques (binaires) pour faciliter la mise en œuvre de l’algorithme

et économiser de l’espace. En ce qui concerne ces derniers, nous avons également constaté

que les systèmes ELM davantage bioinspirés possédaient une plus grande résilience aux effets

de non-linéarité, tandis que les systèmes d’apprentissage avec backprop étaient plus affectés

par ce phénomène. Comme le contraste visuel entre la Fig. D.2(b) et la Fig. D.2(d), l’un des

avantages les plus importants du système NoProp est leur apprentissage rapide, qui leur per-

met d’apprendre à pleine capacité entre 80k-100k mises à jour élémentaires, tandis que les

systèmes de rétropropagation totale 500k-1 million de mises à jour à compléter.

Enfin, nous avons examiné comment les conceptions ANN standard peuvent être mod-

ifiées pour exploiter les effets temporels, au niveau du dispositif ou du système. La moti-

vation ici est d’utiliser les effets spatio-temporels pour apprendre, tout comme le cerveau.

Nous avons examiné trois applications d’apprentissage basées sur le temps et / ou en évolu-

tion. Tout d’abord, au niveau de l’appareil, nous avons considéré un autre dispositif memristif,
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Figure D.2: (a) montre l’implémentation électronique de l’inférence, dans laquelle des situa-
tions d’erreur sont obtenues (c) montre l’implémentation électronique de la rè-
gle d’apprentissage parallèle ("règle delta") qui les résout. (b) montre l’approche
standard multi-couches (toutes les couches entraînées), tandis que (d) montre
l’approche NoProp suggérée par l’auteur qui utilise la variabilité naturelle des nan-
odispositifs et une formation simple aux règle delta.

un dispositif ionique argent qui tombe dans la classe des cellules de mémoire à métallisation

électrochimique (cellules ECM). Le travail d’un collaborateur a suggéré que ce dispositif peut

émuler une fonction d’oubli bio réaliste et, mieux encore, que le nombre et la variété des impul-

sions appliquées affectent la vitesse d’oublie. Cette transition entre un mode plastique à court

terme dans lequel l’information apprise est rapidement oubliée et un mode plastique à long

terme dans lequel elle est conservé pendant des périodes plus longues a été démontrée dans

des systèmes d’apprentissage sur une image simple et des tâches de classification d’images

complexes, parvenant à être robuste au bruit (activations aléatoires) tout en conservant des

reconstructions d’images propres. Cependant, l’appareil dispose d’un paramètre de temps na-

turel et ces systèmes doivent être orientés autour de ce point, sinon les systèmes risquent la

suractivation (activer trop de synapses) ou d’activer trop faiblement les synapses. Il a aussi

été démontré que ce système d’apprentissage temporel donnait une amélioration des perfor-

mances par rapport au système classique de projection à couches cachées (ELM) déjà évoqué.

Deux systèmes d’apprentissage au niveau système exploitant les effets temporels ont égale-

ment été pris en compte: un système embarqué qui exploite les entrées temporelles et utilise

les effets de la couche cachée, apparaissant comme un hybride de l’approche ELM et d’une ap-

proximation des réseaux récurrents, connus sous le nom d’ordinateurs réservoir, et un système
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de détection d’anomalies qui utilise l’évolution des synapses dans un modèle de grille pour

obtenir des estimations de distance en temps réel. Le premier système présente des tâches

temporelles intrinsèques à une première couche, qui la projette ensuite aléatoirement sur une

variété de filtres temporels sur la couche cachée; ceux-ci peuvent être uniformes, ou variables.

Ces filtres mettent en œuvre certaines des propriétés essentielles du calcul à réservoirs, comme

projeter des signaux d’entrée dans différents sous-espaces (propriété de séparation). La deux-

ième couche ne doit effectuer qu’une régression linéaire simple sur puce. La combinaison de

ces effets permet au système de fonctionner sur une tâche tempporelle classique, le test de

Lyon des chiffres parlés, et de très bien classifier MNIST lorsqu’il est encodé dans une com-

pression de 28 fois (présentée uniquement sur 28 canaux). Le deuxième système de détec-

tion d’anomalies, transpose des idées de l’œuvre originale de Kohonen dans les années 1980

à l’utilisation nanoélectronique moderne en considérant les concepts de l’informatique à mé-

moire. L’utilisation d’un seul crossbar est un environnement idéal pour présenter simultané-

ment des versions originales et transposées d’une seule entrée ou d’un flux d’entrées (canaux),

ce qui permet au crossbar de stocker une image de la corrélation des entrées présentes et

passées. La distance, le bruit et la variation inter-dispositifs ne nuisent pas beaucoup à ses

performances. Un concept complet de détection de nouveauté est testé en utilisant des images

simples présentées progressivement; selon la configuration exacte, le système peut signaler

avec succès les moments de transition entre les nouvelles classes («scènes»), ou lorsqu’il est

connecté à un circuit simple, il peut signaler une anomalie. Enfin, une extension du système

est envisagée avec des synapses qui oublient (en utilisant le modèle ECM discuté précédem-

ment), ce qui pourrait augmenter sa capacité.

Perspective

En conclusion, notre travail soutient l’affirmation selon laquelle les percées en nanoélectron-

ique, en particulier le travail d’inventer et d’optimiser une nouvelle génération passionnante

de dispositifs de mémoire moléculaire non-volatile («memristive nanodevices»), sont une so-

lution possible à un ensemble d’approches ayant des impacts électroniques, industriels, voire

environnementaux. Nous sommes enthousiasmés par l’émergence d’une nouvelle génération

d’ordinateurs à mémoire chimique qui peuvent être réalisés non seulement dans les installa-

tions de nanofabrication mais aussi dans les espaces de production ou les écoles du monde

entier et nous espérons que les leçons et les idées que nous avons obtenues sur ces disposi-

tifs, ainsi que les systèmes peuvent être utiles aux concepteurs et ingénieurs travaillant sur des

tâches similaires dans les années à venir.
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Titre : Apprentisage local avec des dispositifs de mémoire hautement analogiques 

Mots clés : neuromorphique, memristor, nanodispositif, modélisation, nanoelectronique, réseaux de neurones 

Résumé : Dans la prochaine ère de 

l'informatique distribuée, les ordinateurs inspirés 

par le cerveau qui effectuent des opérations 

localement plutôt que dans des serveurs distants 

seraient un avantage majeur en réduisant les 

coûts énergétiques et réduisant l'impact 

environnemental. Une nouvelle génération de 

nanodispositifs de mémoire non-volatile est un 

candidat de premier plan pour réaliser cette 

vision neuromorphique. À l'aide de travaux 

théoriques et expérimentaux, nous avons exploré 

les problèmes critiques qui se posent lors de la 

réalisation physique des architectures de réseaux 

de neurones artificiels modernes (ANN) en 

utilisant des dispositifs de mémoire émergents 

(nanodispositifs « memristifs »). 

Dans notre travail expérimental, nos dispositifs 

organiques (polymeriques) se sont adaptés avec 

succès et automatiquement en tant que portes  

logiques reconfigurables en coopérant avec un 

neurone digital et programmable (FGPA). 

Dans nos travaux théoriques, nous aussi avons 

considéré les  multicouche memristive ANNs. 

Nous avons développé et simulé des variantes de 

projection aléatoire (un système NoProp) et de 

rétropropagation (un système perceptron 

multicouche) qui utilisent deux crossbars. Ces 

systèmes d'apprentissage locaux ont montré des 

dépendances critiques sur les contraintes 

physiques des nanodispositifs. Enfin, nous avons 

examiné comment les conceptions ANNs “feed-

forward” peuvent être modi-fiées pour exploiter 

les effets temporels. Nous avons amélioré la bio-

inspiration et la performance du système 

NoProp, par exemple, avec des effets de 

plasticité dans la première couche. Ces effets ont 

été obtenus en utilisant un nanodispositif à 

ionisation d'argent avec un comportement de 

transition de plasticité intrinsèque. 
 

 

Title : Local learning with highly analog memory nanodevices 

Keywords : neuromorphic, memristor, nanodevice, compact modeling, nanoelectronics, neural networks 

Abstract : In the next era of distributed 

computing, brain-based computers that perform 

operations locally rather than in remote servers 

would be a major benefit in reducing global 

energy costs. A new generation of emerging 

nonvolatile memory devices is a leading 

candidate for achieving this neuromorphic 

vision. Using theoretical and experimental 

work, we have explored critical issues that arise 

when physically realizing modern artificial 

neural network (ANN) architectures using 

emerging memory devices (“memristors”). In 

our experimental work, we showed organic 

nanosynapses adapting automatically as logic 

gates via a companion digital neuron and 

programmable logic cell (FGPA). 

In our theoretical work, we also considered 

multilayer memristive ANNs. We have 

developed and simulated random projection 

(NoProp) and backpropagation (Multilayer 

Perceptron) variants that use two crossbars. 

These local learning systems showed critical 

dependencies on the physical constraints of 

nanodevices. Finally, we examined how feed-

forward ANN designs can be modified to exploit 

temporal effects. We focused in particular on 

improving bio-inspiration and performance of 

the NoProp system, for example, we improved 

the performance with plasticity effects in the 

first layer. These effects were obtained using a 

silver ionic nanodevice with intrinsic plasticity 

transition behavior. 
 

 


